rcu: Provide OOM handler to motivate lazy RCU callbacks
[deliverable/linux.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/oom.h>
29
30 #define RCU_KTHREAD_PRIO 1
31
32 #ifdef CONFIG_RCU_BOOST
33 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
34 #else
35 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
36 #endif
37
38 /*
39 * Check the RCU kernel configuration parameters and print informative
40 * messages about anything out of the ordinary. If you like #ifdef, you
41 * will love this function.
42 */
43 static void __init rcu_bootup_announce_oddness(void)
44 {
45 #ifdef CONFIG_RCU_TRACE
46 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
47 #endif
48 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
49 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
50 CONFIG_RCU_FANOUT);
51 #endif
52 #ifdef CONFIG_RCU_FANOUT_EXACT
53 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
54 #endif
55 #ifdef CONFIG_RCU_FAST_NO_HZ
56 printk(KERN_INFO
57 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
58 #endif
59 #ifdef CONFIG_PROVE_RCU
60 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
61 #endif
62 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
63 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
64 #endif
65 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
66 printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
67 #endif
68 #if defined(CONFIG_RCU_CPU_STALL_INFO)
69 printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
70 #endif
71 #if NUM_RCU_LVL_4 != 0
72 printk(KERN_INFO "\tFour-level hierarchy is enabled.\n");
73 #endif
74 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
75 printk(KERN_INFO "\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
76 if (nr_cpu_ids != NR_CPUS)
77 printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
78 }
79
80 #ifdef CONFIG_TREE_PREEMPT_RCU
81
82 struct rcu_state rcu_preempt_state =
83 RCU_STATE_INITIALIZER(rcu_preempt, call_rcu);
84 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
85 static struct rcu_state *rcu_state = &rcu_preempt_state;
86
87 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
88
89 /*
90 * Tell them what RCU they are running.
91 */
92 static void __init rcu_bootup_announce(void)
93 {
94 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
95 rcu_bootup_announce_oddness();
96 }
97
98 /*
99 * Return the number of RCU-preempt batches processed thus far
100 * for debug and statistics.
101 */
102 long rcu_batches_completed_preempt(void)
103 {
104 return rcu_preempt_state.completed;
105 }
106 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
107
108 /*
109 * Return the number of RCU batches processed thus far for debug & stats.
110 */
111 long rcu_batches_completed(void)
112 {
113 return rcu_batches_completed_preempt();
114 }
115 EXPORT_SYMBOL_GPL(rcu_batches_completed);
116
117 /*
118 * Force a quiescent state for preemptible RCU.
119 */
120 void rcu_force_quiescent_state(void)
121 {
122 force_quiescent_state(&rcu_preempt_state, 0);
123 }
124 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
125
126 /*
127 * Record a preemptible-RCU quiescent state for the specified CPU. Note
128 * that this just means that the task currently running on the CPU is
129 * not in a quiescent state. There might be any number of tasks blocked
130 * while in an RCU read-side critical section.
131 *
132 * Unlike the other rcu_*_qs() functions, callers to this function
133 * must disable irqs in order to protect the assignment to
134 * ->rcu_read_unlock_special.
135 */
136 static void rcu_preempt_qs(int cpu)
137 {
138 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
139
140 rdp->passed_quiesce_gpnum = rdp->gpnum;
141 barrier();
142 if (rdp->passed_quiesce == 0)
143 trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
144 rdp->passed_quiesce = 1;
145 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
146 }
147
148 /*
149 * We have entered the scheduler, and the current task might soon be
150 * context-switched away from. If this task is in an RCU read-side
151 * critical section, we will no longer be able to rely on the CPU to
152 * record that fact, so we enqueue the task on the blkd_tasks list.
153 * The task will dequeue itself when it exits the outermost enclosing
154 * RCU read-side critical section. Therefore, the current grace period
155 * cannot be permitted to complete until the blkd_tasks list entries
156 * predating the current grace period drain, in other words, until
157 * rnp->gp_tasks becomes NULL.
158 *
159 * Caller must disable preemption.
160 */
161 static void rcu_preempt_note_context_switch(int cpu)
162 {
163 struct task_struct *t = current;
164 unsigned long flags;
165 struct rcu_data *rdp;
166 struct rcu_node *rnp;
167
168 if (t->rcu_read_lock_nesting > 0 &&
169 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
170
171 /* Possibly blocking in an RCU read-side critical section. */
172 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
173 rnp = rdp->mynode;
174 raw_spin_lock_irqsave(&rnp->lock, flags);
175 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
176 t->rcu_blocked_node = rnp;
177
178 /*
179 * If this CPU has already checked in, then this task
180 * will hold up the next grace period rather than the
181 * current grace period. Queue the task accordingly.
182 * If the task is queued for the current grace period
183 * (i.e., this CPU has not yet passed through a quiescent
184 * state for the current grace period), then as long
185 * as that task remains queued, the current grace period
186 * cannot end. Note that there is some uncertainty as
187 * to exactly when the current grace period started.
188 * We take a conservative approach, which can result
189 * in unnecessarily waiting on tasks that started very
190 * slightly after the current grace period began. C'est
191 * la vie!!!
192 *
193 * But first, note that the current CPU must still be
194 * on line!
195 */
196 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
197 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
198 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
199 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
200 rnp->gp_tasks = &t->rcu_node_entry;
201 #ifdef CONFIG_RCU_BOOST
202 if (rnp->boost_tasks != NULL)
203 rnp->boost_tasks = rnp->gp_tasks;
204 #endif /* #ifdef CONFIG_RCU_BOOST */
205 } else {
206 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
207 if (rnp->qsmask & rdp->grpmask)
208 rnp->gp_tasks = &t->rcu_node_entry;
209 }
210 trace_rcu_preempt_task(rdp->rsp->name,
211 t->pid,
212 (rnp->qsmask & rdp->grpmask)
213 ? rnp->gpnum
214 : rnp->gpnum + 1);
215 raw_spin_unlock_irqrestore(&rnp->lock, flags);
216 } else if (t->rcu_read_lock_nesting < 0 &&
217 t->rcu_read_unlock_special) {
218
219 /*
220 * Complete exit from RCU read-side critical section on
221 * behalf of preempted instance of __rcu_read_unlock().
222 */
223 rcu_read_unlock_special(t);
224 }
225
226 /*
227 * Either we were not in an RCU read-side critical section to
228 * begin with, or we have now recorded that critical section
229 * globally. Either way, we can now note a quiescent state
230 * for this CPU. Again, if we were in an RCU read-side critical
231 * section, and if that critical section was blocking the current
232 * grace period, then the fact that the task has been enqueued
233 * means that we continue to block the current grace period.
234 */
235 local_irq_save(flags);
236 rcu_preempt_qs(cpu);
237 local_irq_restore(flags);
238 }
239
240 /*
241 * Check for preempted RCU readers blocking the current grace period
242 * for the specified rcu_node structure. If the caller needs a reliable
243 * answer, it must hold the rcu_node's ->lock.
244 */
245 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
246 {
247 return rnp->gp_tasks != NULL;
248 }
249
250 /*
251 * Record a quiescent state for all tasks that were previously queued
252 * on the specified rcu_node structure and that were blocking the current
253 * RCU grace period. The caller must hold the specified rnp->lock with
254 * irqs disabled, and this lock is released upon return, but irqs remain
255 * disabled.
256 */
257 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
258 __releases(rnp->lock)
259 {
260 unsigned long mask;
261 struct rcu_node *rnp_p;
262
263 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
264 raw_spin_unlock_irqrestore(&rnp->lock, flags);
265 return; /* Still need more quiescent states! */
266 }
267
268 rnp_p = rnp->parent;
269 if (rnp_p == NULL) {
270 /*
271 * Either there is only one rcu_node in the tree,
272 * or tasks were kicked up to root rcu_node due to
273 * CPUs going offline.
274 */
275 rcu_report_qs_rsp(&rcu_preempt_state, flags);
276 return;
277 }
278
279 /* Report up the rest of the hierarchy. */
280 mask = rnp->grpmask;
281 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
282 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
283 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
284 }
285
286 /*
287 * Advance a ->blkd_tasks-list pointer to the next entry, instead
288 * returning NULL if at the end of the list.
289 */
290 static struct list_head *rcu_next_node_entry(struct task_struct *t,
291 struct rcu_node *rnp)
292 {
293 struct list_head *np;
294
295 np = t->rcu_node_entry.next;
296 if (np == &rnp->blkd_tasks)
297 np = NULL;
298 return np;
299 }
300
301 /*
302 * Handle special cases during rcu_read_unlock(), such as needing to
303 * notify RCU core processing or task having blocked during the RCU
304 * read-side critical section.
305 */
306 void rcu_read_unlock_special(struct task_struct *t)
307 {
308 int empty;
309 int empty_exp;
310 int empty_exp_now;
311 unsigned long flags;
312 struct list_head *np;
313 #ifdef CONFIG_RCU_BOOST
314 struct rt_mutex *rbmp = NULL;
315 #endif /* #ifdef CONFIG_RCU_BOOST */
316 struct rcu_node *rnp;
317 int special;
318
319 /* NMI handlers cannot block and cannot safely manipulate state. */
320 if (in_nmi())
321 return;
322
323 local_irq_save(flags);
324
325 /*
326 * If RCU core is waiting for this CPU to exit critical section,
327 * let it know that we have done so.
328 */
329 special = t->rcu_read_unlock_special;
330 if (special & RCU_READ_UNLOCK_NEED_QS) {
331 rcu_preempt_qs(smp_processor_id());
332 }
333
334 /* Hardware IRQ handlers cannot block. */
335 if (in_irq() || in_serving_softirq()) {
336 local_irq_restore(flags);
337 return;
338 }
339
340 /* Clean up if blocked during RCU read-side critical section. */
341 if (special & RCU_READ_UNLOCK_BLOCKED) {
342 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
343
344 /*
345 * Remove this task from the list it blocked on. The
346 * task can migrate while we acquire the lock, but at
347 * most one time. So at most two passes through loop.
348 */
349 for (;;) {
350 rnp = t->rcu_blocked_node;
351 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
352 if (rnp == t->rcu_blocked_node)
353 break;
354 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
355 }
356 empty = !rcu_preempt_blocked_readers_cgp(rnp);
357 empty_exp = !rcu_preempted_readers_exp(rnp);
358 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
359 np = rcu_next_node_entry(t, rnp);
360 list_del_init(&t->rcu_node_entry);
361 t->rcu_blocked_node = NULL;
362 trace_rcu_unlock_preempted_task("rcu_preempt",
363 rnp->gpnum, t->pid);
364 if (&t->rcu_node_entry == rnp->gp_tasks)
365 rnp->gp_tasks = np;
366 if (&t->rcu_node_entry == rnp->exp_tasks)
367 rnp->exp_tasks = np;
368 #ifdef CONFIG_RCU_BOOST
369 if (&t->rcu_node_entry == rnp->boost_tasks)
370 rnp->boost_tasks = np;
371 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
372 if (t->rcu_boost_mutex) {
373 rbmp = t->rcu_boost_mutex;
374 t->rcu_boost_mutex = NULL;
375 }
376 #endif /* #ifdef CONFIG_RCU_BOOST */
377
378 /*
379 * If this was the last task on the current list, and if
380 * we aren't waiting on any CPUs, report the quiescent state.
381 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
382 * so we must take a snapshot of the expedited state.
383 */
384 empty_exp_now = !rcu_preempted_readers_exp(rnp);
385 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
386 trace_rcu_quiescent_state_report("preempt_rcu",
387 rnp->gpnum,
388 0, rnp->qsmask,
389 rnp->level,
390 rnp->grplo,
391 rnp->grphi,
392 !!rnp->gp_tasks);
393 rcu_report_unblock_qs_rnp(rnp, flags);
394 } else {
395 raw_spin_unlock_irqrestore(&rnp->lock, flags);
396 }
397
398 #ifdef CONFIG_RCU_BOOST
399 /* Unboost if we were boosted. */
400 if (rbmp)
401 rt_mutex_unlock(rbmp);
402 #endif /* #ifdef CONFIG_RCU_BOOST */
403
404 /*
405 * If this was the last task on the expedited lists,
406 * then we need to report up the rcu_node hierarchy.
407 */
408 if (!empty_exp && empty_exp_now)
409 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
410 } else {
411 local_irq_restore(flags);
412 }
413 }
414
415 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
416
417 /*
418 * Dump detailed information for all tasks blocking the current RCU
419 * grace period on the specified rcu_node structure.
420 */
421 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
422 {
423 unsigned long flags;
424 struct task_struct *t;
425
426 if (!rcu_preempt_blocked_readers_cgp(rnp))
427 return;
428 raw_spin_lock_irqsave(&rnp->lock, flags);
429 t = list_entry(rnp->gp_tasks,
430 struct task_struct, rcu_node_entry);
431 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
432 sched_show_task(t);
433 raw_spin_unlock_irqrestore(&rnp->lock, flags);
434 }
435
436 /*
437 * Dump detailed information for all tasks blocking the current RCU
438 * grace period.
439 */
440 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
441 {
442 struct rcu_node *rnp = rcu_get_root(rsp);
443
444 rcu_print_detail_task_stall_rnp(rnp);
445 rcu_for_each_leaf_node(rsp, rnp)
446 rcu_print_detail_task_stall_rnp(rnp);
447 }
448
449 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
450
451 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
452 {
453 }
454
455 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
456
457 #ifdef CONFIG_RCU_CPU_STALL_INFO
458
459 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
460 {
461 printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
462 rnp->level, rnp->grplo, rnp->grphi);
463 }
464
465 static void rcu_print_task_stall_end(void)
466 {
467 printk(KERN_CONT "\n");
468 }
469
470 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
471
472 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
473 {
474 }
475
476 static void rcu_print_task_stall_end(void)
477 {
478 }
479
480 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
481
482 /*
483 * Scan the current list of tasks blocked within RCU read-side critical
484 * sections, printing out the tid of each.
485 */
486 static int rcu_print_task_stall(struct rcu_node *rnp)
487 {
488 struct task_struct *t;
489 int ndetected = 0;
490
491 if (!rcu_preempt_blocked_readers_cgp(rnp))
492 return 0;
493 rcu_print_task_stall_begin(rnp);
494 t = list_entry(rnp->gp_tasks,
495 struct task_struct, rcu_node_entry);
496 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
497 printk(KERN_CONT " P%d", t->pid);
498 ndetected++;
499 }
500 rcu_print_task_stall_end();
501 return ndetected;
502 }
503
504 /*
505 * Check that the list of blocked tasks for the newly completed grace
506 * period is in fact empty. It is a serious bug to complete a grace
507 * period that still has RCU readers blocked! This function must be
508 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
509 * must be held by the caller.
510 *
511 * Also, if there are blocked tasks on the list, they automatically
512 * block the newly created grace period, so set up ->gp_tasks accordingly.
513 */
514 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
515 {
516 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
517 if (!list_empty(&rnp->blkd_tasks))
518 rnp->gp_tasks = rnp->blkd_tasks.next;
519 WARN_ON_ONCE(rnp->qsmask);
520 }
521
522 #ifdef CONFIG_HOTPLUG_CPU
523
524 /*
525 * Handle tasklist migration for case in which all CPUs covered by the
526 * specified rcu_node have gone offline. Move them up to the root
527 * rcu_node. The reason for not just moving them to the immediate
528 * parent is to remove the need for rcu_read_unlock_special() to
529 * make more than two attempts to acquire the target rcu_node's lock.
530 * Returns true if there were tasks blocking the current RCU grace
531 * period.
532 *
533 * Returns 1 if there was previously a task blocking the current grace
534 * period on the specified rcu_node structure.
535 *
536 * The caller must hold rnp->lock with irqs disabled.
537 */
538 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
539 struct rcu_node *rnp,
540 struct rcu_data *rdp)
541 {
542 struct list_head *lp;
543 struct list_head *lp_root;
544 int retval = 0;
545 struct rcu_node *rnp_root = rcu_get_root(rsp);
546 struct task_struct *t;
547
548 if (rnp == rnp_root) {
549 WARN_ONCE(1, "Last CPU thought to be offlined?");
550 return 0; /* Shouldn't happen: at least one CPU online. */
551 }
552
553 /* If we are on an internal node, complain bitterly. */
554 WARN_ON_ONCE(rnp != rdp->mynode);
555
556 /*
557 * Move tasks up to root rcu_node. Don't try to get fancy for
558 * this corner-case operation -- just put this node's tasks
559 * at the head of the root node's list, and update the root node's
560 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
561 * if non-NULL. This might result in waiting for more tasks than
562 * absolutely necessary, but this is a good performance/complexity
563 * tradeoff.
564 */
565 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
566 retval |= RCU_OFL_TASKS_NORM_GP;
567 if (rcu_preempted_readers_exp(rnp))
568 retval |= RCU_OFL_TASKS_EXP_GP;
569 lp = &rnp->blkd_tasks;
570 lp_root = &rnp_root->blkd_tasks;
571 while (!list_empty(lp)) {
572 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
573 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
574 list_del(&t->rcu_node_entry);
575 t->rcu_blocked_node = rnp_root;
576 list_add(&t->rcu_node_entry, lp_root);
577 if (&t->rcu_node_entry == rnp->gp_tasks)
578 rnp_root->gp_tasks = rnp->gp_tasks;
579 if (&t->rcu_node_entry == rnp->exp_tasks)
580 rnp_root->exp_tasks = rnp->exp_tasks;
581 #ifdef CONFIG_RCU_BOOST
582 if (&t->rcu_node_entry == rnp->boost_tasks)
583 rnp_root->boost_tasks = rnp->boost_tasks;
584 #endif /* #ifdef CONFIG_RCU_BOOST */
585 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
586 }
587
588 #ifdef CONFIG_RCU_BOOST
589 /* In case root is being boosted and leaf is not. */
590 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
591 if (rnp_root->boost_tasks != NULL &&
592 rnp_root->boost_tasks != rnp_root->gp_tasks)
593 rnp_root->boost_tasks = rnp_root->gp_tasks;
594 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
595 #endif /* #ifdef CONFIG_RCU_BOOST */
596
597 rnp->gp_tasks = NULL;
598 rnp->exp_tasks = NULL;
599 return retval;
600 }
601
602 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
603
604 /*
605 * Check for a quiescent state from the current CPU. When a task blocks,
606 * the task is recorded in the corresponding CPU's rcu_node structure,
607 * which is checked elsewhere.
608 *
609 * Caller must disable hard irqs.
610 */
611 static void rcu_preempt_check_callbacks(int cpu)
612 {
613 struct task_struct *t = current;
614
615 if (t->rcu_read_lock_nesting == 0) {
616 rcu_preempt_qs(cpu);
617 return;
618 }
619 if (t->rcu_read_lock_nesting > 0 &&
620 per_cpu(rcu_preempt_data, cpu).qs_pending)
621 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
622 }
623
624 #ifdef CONFIG_RCU_BOOST
625
626 static void rcu_preempt_do_callbacks(void)
627 {
628 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
629 }
630
631 #endif /* #ifdef CONFIG_RCU_BOOST */
632
633 /*
634 * Queue a preemptible-RCU callback for invocation after a grace period.
635 */
636 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
637 {
638 __call_rcu(head, func, &rcu_preempt_state, 0);
639 }
640 EXPORT_SYMBOL_GPL(call_rcu);
641
642 /*
643 * Queue an RCU callback for lazy invocation after a grace period.
644 * This will likely be later named something like "call_rcu_lazy()",
645 * but this change will require some way of tagging the lazy RCU
646 * callbacks in the list of pending callbacks. Until then, this
647 * function may only be called from __kfree_rcu().
648 */
649 void kfree_call_rcu(struct rcu_head *head,
650 void (*func)(struct rcu_head *rcu))
651 {
652 __call_rcu(head, func, &rcu_preempt_state, 1);
653 }
654 EXPORT_SYMBOL_GPL(kfree_call_rcu);
655
656 /**
657 * synchronize_rcu - wait until a grace period has elapsed.
658 *
659 * Control will return to the caller some time after a full grace
660 * period has elapsed, in other words after all currently executing RCU
661 * read-side critical sections have completed. Note, however, that
662 * upon return from synchronize_rcu(), the caller might well be executing
663 * concurrently with new RCU read-side critical sections that began while
664 * synchronize_rcu() was waiting. RCU read-side critical sections are
665 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
666 */
667 void synchronize_rcu(void)
668 {
669 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
670 !lock_is_held(&rcu_lock_map) &&
671 !lock_is_held(&rcu_sched_lock_map),
672 "Illegal synchronize_rcu() in RCU read-side critical section");
673 if (!rcu_scheduler_active)
674 return;
675 wait_rcu_gp(call_rcu);
676 }
677 EXPORT_SYMBOL_GPL(synchronize_rcu);
678
679 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
680 static long sync_rcu_preempt_exp_count;
681 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
682
683 /*
684 * Return non-zero if there are any tasks in RCU read-side critical
685 * sections blocking the current preemptible-RCU expedited grace period.
686 * If there is no preemptible-RCU expedited grace period currently in
687 * progress, returns zero unconditionally.
688 */
689 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
690 {
691 return rnp->exp_tasks != NULL;
692 }
693
694 /*
695 * return non-zero if there is no RCU expedited grace period in progress
696 * for the specified rcu_node structure, in other words, if all CPUs and
697 * tasks covered by the specified rcu_node structure have done their bit
698 * for the current expedited grace period. Works only for preemptible
699 * RCU -- other RCU implementation use other means.
700 *
701 * Caller must hold sync_rcu_preempt_exp_mutex.
702 */
703 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
704 {
705 return !rcu_preempted_readers_exp(rnp) &&
706 ACCESS_ONCE(rnp->expmask) == 0;
707 }
708
709 /*
710 * Report the exit from RCU read-side critical section for the last task
711 * that queued itself during or before the current expedited preemptible-RCU
712 * grace period. This event is reported either to the rcu_node structure on
713 * which the task was queued or to one of that rcu_node structure's ancestors,
714 * recursively up the tree. (Calm down, calm down, we do the recursion
715 * iteratively!)
716 *
717 * Most callers will set the "wake" flag, but the task initiating the
718 * expedited grace period need not wake itself.
719 *
720 * Caller must hold sync_rcu_preempt_exp_mutex.
721 */
722 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
723 bool wake)
724 {
725 unsigned long flags;
726 unsigned long mask;
727
728 raw_spin_lock_irqsave(&rnp->lock, flags);
729 for (;;) {
730 if (!sync_rcu_preempt_exp_done(rnp)) {
731 raw_spin_unlock_irqrestore(&rnp->lock, flags);
732 break;
733 }
734 if (rnp->parent == NULL) {
735 raw_spin_unlock_irqrestore(&rnp->lock, flags);
736 if (wake)
737 wake_up(&sync_rcu_preempt_exp_wq);
738 break;
739 }
740 mask = rnp->grpmask;
741 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
742 rnp = rnp->parent;
743 raw_spin_lock(&rnp->lock); /* irqs already disabled */
744 rnp->expmask &= ~mask;
745 }
746 }
747
748 /*
749 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
750 * grace period for the specified rcu_node structure. If there are no such
751 * tasks, report it up the rcu_node hierarchy.
752 *
753 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
754 */
755 static void
756 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
757 {
758 unsigned long flags;
759 int must_wait = 0;
760
761 raw_spin_lock_irqsave(&rnp->lock, flags);
762 if (list_empty(&rnp->blkd_tasks)) {
763 raw_spin_unlock_irqrestore(&rnp->lock, flags);
764 } else {
765 rnp->exp_tasks = rnp->blkd_tasks.next;
766 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
767 must_wait = 1;
768 }
769 if (!must_wait)
770 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
771 }
772
773 /**
774 * synchronize_rcu_expedited - Brute-force RCU grace period
775 *
776 * Wait for an RCU-preempt grace period, but expedite it. The basic
777 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
778 * the ->blkd_tasks lists and wait for this list to drain. This consumes
779 * significant time on all CPUs and is unfriendly to real-time workloads,
780 * so is thus not recommended for any sort of common-case code.
781 * In fact, if you are using synchronize_rcu_expedited() in a loop,
782 * please restructure your code to batch your updates, and then Use a
783 * single synchronize_rcu() instead.
784 *
785 * Note that it is illegal to call this function while holding any lock
786 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
787 * to call this function from a CPU-hotplug notifier. Failing to observe
788 * these restriction will result in deadlock.
789 */
790 void synchronize_rcu_expedited(void)
791 {
792 unsigned long flags;
793 struct rcu_node *rnp;
794 struct rcu_state *rsp = &rcu_preempt_state;
795 long snap;
796 int trycount = 0;
797
798 smp_mb(); /* Caller's modifications seen first by other CPUs. */
799 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
800 smp_mb(); /* Above access cannot bleed into critical section. */
801
802 /*
803 * Acquire lock, falling back to synchronize_rcu() if too many
804 * lock-acquisition failures. Of course, if someone does the
805 * expedited grace period for us, just leave.
806 */
807 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
808 if (trycount++ < 10) {
809 udelay(trycount * num_online_cpus());
810 } else {
811 synchronize_rcu();
812 return;
813 }
814 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
815 goto mb_ret; /* Others did our work for us. */
816 }
817 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
818 goto unlock_mb_ret; /* Others did our work for us. */
819
820 /* force all RCU readers onto ->blkd_tasks lists. */
821 synchronize_sched_expedited();
822
823 raw_spin_lock_irqsave(&rsp->onofflock, flags);
824
825 /* Initialize ->expmask for all non-leaf rcu_node structures. */
826 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
827 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
828 rnp->expmask = rnp->qsmaskinit;
829 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
830 }
831
832 /* Snapshot current state of ->blkd_tasks lists. */
833 rcu_for_each_leaf_node(rsp, rnp)
834 sync_rcu_preempt_exp_init(rsp, rnp);
835 if (NUM_RCU_NODES > 1)
836 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
837
838 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
839
840 /* Wait for snapshotted ->blkd_tasks lists to drain. */
841 rnp = rcu_get_root(rsp);
842 wait_event(sync_rcu_preempt_exp_wq,
843 sync_rcu_preempt_exp_done(rnp));
844
845 /* Clean up and exit. */
846 smp_mb(); /* ensure expedited GP seen before counter increment. */
847 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
848 unlock_mb_ret:
849 mutex_unlock(&sync_rcu_preempt_exp_mutex);
850 mb_ret:
851 smp_mb(); /* ensure subsequent action seen after grace period. */
852 }
853 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
854
855 /**
856 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
857 */
858 void rcu_barrier(void)
859 {
860 _rcu_barrier(&rcu_preempt_state);
861 }
862 EXPORT_SYMBOL_GPL(rcu_barrier);
863
864 /*
865 * Initialize preemptible RCU's state structures.
866 */
867 static void __init __rcu_init_preempt(void)
868 {
869 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
870 }
871
872 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
873
874 static struct rcu_state *rcu_state = &rcu_sched_state;
875
876 /*
877 * Tell them what RCU they are running.
878 */
879 static void __init rcu_bootup_announce(void)
880 {
881 printk(KERN_INFO "Hierarchical RCU implementation.\n");
882 rcu_bootup_announce_oddness();
883 }
884
885 /*
886 * Return the number of RCU batches processed thus far for debug & stats.
887 */
888 long rcu_batches_completed(void)
889 {
890 return rcu_batches_completed_sched();
891 }
892 EXPORT_SYMBOL_GPL(rcu_batches_completed);
893
894 /*
895 * Force a quiescent state for RCU, which, because there is no preemptible
896 * RCU, becomes the same as rcu-sched.
897 */
898 void rcu_force_quiescent_state(void)
899 {
900 rcu_sched_force_quiescent_state();
901 }
902 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
903
904 /*
905 * Because preemptible RCU does not exist, we never have to check for
906 * CPUs being in quiescent states.
907 */
908 static void rcu_preempt_note_context_switch(int cpu)
909 {
910 }
911
912 /*
913 * Because preemptible RCU does not exist, there are never any preempted
914 * RCU readers.
915 */
916 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
917 {
918 return 0;
919 }
920
921 #ifdef CONFIG_HOTPLUG_CPU
922
923 /* Because preemptible RCU does not exist, no quieting of tasks. */
924 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
925 {
926 raw_spin_unlock_irqrestore(&rnp->lock, flags);
927 }
928
929 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
930
931 /*
932 * Because preemptible RCU does not exist, we never have to check for
933 * tasks blocked within RCU read-side critical sections.
934 */
935 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
936 {
937 }
938
939 /*
940 * Because preemptible RCU does not exist, we never have to check for
941 * tasks blocked within RCU read-side critical sections.
942 */
943 static int rcu_print_task_stall(struct rcu_node *rnp)
944 {
945 return 0;
946 }
947
948 /*
949 * Because there is no preemptible RCU, there can be no readers blocked,
950 * so there is no need to check for blocked tasks. So check only for
951 * bogus qsmask values.
952 */
953 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
954 {
955 WARN_ON_ONCE(rnp->qsmask);
956 }
957
958 #ifdef CONFIG_HOTPLUG_CPU
959
960 /*
961 * Because preemptible RCU does not exist, it never needs to migrate
962 * tasks that were blocked within RCU read-side critical sections, and
963 * such non-existent tasks cannot possibly have been blocking the current
964 * grace period.
965 */
966 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
967 struct rcu_node *rnp,
968 struct rcu_data *rdp)
969 {
970 return 0;
971 }
972
973 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
974
975 /*
976 * Because preemptible RCU does not exist, it never has any callbacks
977 * to check.
978 */
979 static void rcu_preempt_check_callbacks(int cpu)
980 {
981 }
982
983 /*
984 * Queue an RCU callback for lazy invocation after a grace period.
985 * This will likely be later named something like "call_rcu_lazy()",
986 * but this change will require some way of tagging the lazy RCU
987 * callbacks in the list of pending callbacks. Until then, this
988 * function may only be called from __kfree_rcu().
989 *
990 * Because there is no preemptible RCU, we use RCU-sched instead.
991 */
992 void kfree_call_rcu(struct rcu_head *head,
993 void (*func)(struct rcu_head *rcu))
994 {
995 __call_rcu(head, func, &rcu_sched_state, 1);
996 }
997 EXPORT_SYMBOL_GPL(kfree_call_rcu);
998
999 /*
1000 * Wait for an rcu-preempt grace period, but make it happen quickly.
1001 * But because preemptible RCU does not exist, map to rcu-sched.
1002 */
1003 void synchronize_rcu_expedited(void)
1004 {
1005 synchronize_sched_expedited();
1006 }
1007 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1008
1009 #ifdef CONFIG_HOTPLUG_CPU
1010
1011 /*
1012 * Because preemptible RCU does not exist, there is never any need to
1013 * report on tasks preempted in RCU read-side critical sections during
1014 * expedited RCU grace periods.
1015 */
1016 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1017 bool wake)
1018 {
1019 }
1020
1021 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1022
1023 /*
1024 * Because preemptible RCU does not exist, rcu_barrier() is just
1025 * another name for rcu_barrier_sched().
1026 */
1027 void rcu_barrier(void)
1028 {
1029 rcu_barrier_sched();
1030 }
1031 EXPORT_SYMBOL_GPL(rcu_barrier);
1032
1033 /*
1034 * Because preemptible RCU does not exist, it need not be initialized.
1035 */
1036 static void __init __rcu_init_preempt(void)
1037 {
1038 }
1039
1040 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1041
1042 #ifdef CONFIG_RCU_BOOST
1043
1044 #include "rtmutex_common.h"
1045
1046 #ifdef CONFIG_RCU_TRACE
1047
1048 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1049 {
1050 if (list_empty(&rnp->blkd_tasks))
1051 rnp->n_balk_blkd_tasks++;
1052 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1053 rnp->n_balk_exp_gp_tasks++;
1054 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1055 rnp->n_balk_boost_tasks++;
1056 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1057 rnp->n_balk_notblocked++;
1058 else if (rnp->gp_tasks != NULL &&
1059 ULONG_CMP_LT(jiffies, rnp->boost_time))
1060 rnp->n_balk_notyet++;
1061 else
1062 rnp->n_balk_nos++;
1063 }
1064
1065 #else /* #ifdef CONFIG_RCU_TRACE */
1066
1067 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1068 {
1069 }
1070
1071 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1072
1073 /*
1074 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1075 * or ->boost_tasks, advancing the pointer to the next task in the
1076 * ->blkd_tasks list.
1077 *
1078 * Note that irqs must be enabled: boosting the task can block.
1079 * Returns 1 if there are more tasks needing to be boosted.
1080 */
1081 static int rcu_boost(struct rcu_node *rnp)
1082 {
1083 unsigned long flags;
1084 struct rt_mutex mtx;
1085 struct task_struct *t;
1086 struct list_head *tb;
1087
1088 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1089 return 0; /* Nothing left to boost. */
1090
1091 raw_spin_lock_irqsave(&rnp->lock, flags);
1092
1093 /*
1094 * Recheck under the lock: all tasks in need of boosting
1095 * might exit their RCU read-side critical sections on their own.
1096 */
1097 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1098 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1099 return 0;
1100 }
1101
1102 /*
1103 * Preferentially boost tasks blocking expedited grace periods.
1104 * This cannot starve the normal grace periods because a second
1105 * expedited grace period must boost all blocked tasks, including
1106 * those blocking the pre-existing normal grace period.
1107 */
1108 if (rnp->exp_tasks != NULL) {
1109 tb = rnp->exp_tasks;
1110 rnp->n_exp_boosts++;
1111 } else {
1112 tb = rnp->boost_tasks;
1113 rnp->n_normal_boosts++;
1114 }
1115 rnp->n_tasks_boosted++;
1116
1117 /*
1118 * We boost task t by manufacturing an rt_mutex that appears to
1119 * be held by task t. We leave a pointer to that rt_mutex where
1120 * task t can find it, and task t will release the mutex when it
1121 * exits its outermost RCU read-side critical section. Then
1122 * simply acquiring this artificial rt_mutex will boost task
1123 * t's priority. (Thanks to tglx for suggesting this approach!)
1124 *
1125 * Note that task t must acquire rnp->lock to remove itself from
1126 * the ->blkd_tasks list, which it will do from exit() if from
1127 * nowhere else. We therefore are guaranteed that task t will
1128 * stay around at least until we drop rnp->lock. Note that
1129 * rnp->lock also resolves races between our priority boosting
1130 * and task t's exiting its outermost RCU read-side critical
1131 * section.
1132 */
1133 t = container_of(tb, struct task_struct, rcu_node_entry);
1134 rt_mutex_init_proxy_locked(&mtx, t);
1135 t->rcu_boost_mutex = &mtx;
1136 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1137 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1138 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1139
1140 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1141 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1142 }
1143
1144 /*
1145 * Timer handler to initiate waking up of boost kthreads that
1146 * have yielded the CPU due to excessive numbers of tasks to
1147 * boost. We wake up the per-rcu_node kthread, which in turn
1148 * will wake up the booster kthread.
1149 */
1150 static void rcu_boost_kthread_timer(unsigned long arg)
1151 {
1152 invoke_rcu_node_kthread((struct rcu_node *)arg);
1153 }
1154
1155 /*
1156 * Priority-boosting kthread. One per leaf rcu_node and one for the
1157 * root rcu_node.
1158 */
1159 static int rcu_boost_kthread(void *arg)
1160 {
1161 struct rcu_node *rnp = (struct rcu_node *)arg;
1162 int spincnt = 0;
1163 int more2boost;
1164
1165 trace_rcu_utilization("Start boost kthread@init");
1166 for (;;) {
1167 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1168 trace_rcu_utilization("End boost kthread@rcu_wait");
1169 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1170 trace_rcu_utilization("Start boost kthread@rcu_wait");
1171 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1172 more2boost = rcu_boost(rnp);
1173 if (more2boost)
1174 spincnt++;
1175 else
1176 spincnt = 0;
1177 if (spincnt > 10) {
1178 trace_rcu_utilization("End boost kthread@rcu_yield");
1179 rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
1180 trace_rcu_utilization("Start boost kthread@rcu_yield");
1181 spincnt = 0;
1182 }
1183 }
1184 /* NOTREACHED */
1185 trace_rcu_utilization("End boost kthread@notreached");
1186 return 0;
1187 }
1188
1189 /*
1190 * Check to see if it is time to start boosting RCU readers that are
1191 * blocking the current grace period, and, if so, tell the per-rcu_node
1192 * kthread to start boosting them. If there is an expedited grace
1193 * period in progress, it is always time to boost.
1194 *
1195 * The caller must hold rnp->lock, which this function releases,
1196 * but irqs remain disabled. The ->boost_kthread_task is immortal,
1197 * so we don't need to worry about it going away.
1198 */
1199 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1200 {
1201 struct task_struct *t;
1202
1203 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1204 rnp->n_balk_exp_gp_tasks++;
1205 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1206 return;
1207 }
1208 if (rnp->exp_tasks != NULL ||
1209 (rnp->gp_tasks != NULL &&
1210 rnp->boost_tasks == NULL &&
1211 rnp->qsmask == 0 &&
1212 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1213 if (rnp->exp_tasks == NULL)
1214 rnp->boost_tasks = rnp->gp_tasks;
1215 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1216 t = rnp->boost_kthread_task;
1217 if (t != NULL)
1218 wake_up_process(t);
1219 } else {
1220 rcu_initiate_boost_trace(rnp);
1221 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1222 }
1223 }
1224
1225 /*
1226 * Wake up the per-CPU kthread to invoke RCU callbacks.
1227 */
1228 static void invoke_rcu_callbacks_kthread(void)
1229 {
1230 unsigned long flags;
1231
1232 local_irq_save(flags);
1233 __this_cpu_write(rcu_cpu_has_work, 1);
1234 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1235 current != __this_cpu_read(rcu_cpu_kthread_task))
1236 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
1237 local_irq_restore(flags);
1238 }
1239
1240 /*
1241 * Is the current CPU running the RCU-callbacks kthread?
1242 * Caller must have preemption disabled.
1243 */
1244 static bool rcu_is_callbacks_kthread(void)
1245 {
1246 return __get_cpu_var(rcu_cpu_kthread_task) == current;
1247 }
1248
1249 /*
1250 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1251 * held, so no one should be messing with the existence of the boost
1252 * kthread.
1253 */
1254 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1255 cpumask_var_t cm)
1256 {
1257 struct task_struct *t;
1258
1259 t = rnp->boost_kthread_task;
1260 if (t != NULL)
1261 set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
1262 }
1263
1264 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1265
1266 /*
1267 * Do priority-boost accounting for the start of a new grace period.
1268 */
1269 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1270 {
1271 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1272 }
1273
1274 /*
1275 * Create an RCU-boost kthread for the specified node if one does not
1276 * already exist. We only create this kthread for preemptible RCU.
1277 * Returns zero if all is well, a negated errno otherwise.
1278 */
1279 static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1280 struct rcu_node *rnp,
1281 int rnp_index)
1282 {
1283 unsigned long flags;
1284 struct sched_param sp;
1285 struct task_struct *t;
1286
1287 if (&rcu_preempt_state != rsp)
1288 return 0;
1289 rsp->boost = 1;
1290 if (rnp->boost_kthread_task != NULL)
1291 return 0;
1292 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1293 "rcub/%d", rnp_index);
1294 if (IS_ERR(t))
1295 return PTR_ERR(t);
1296 raw_spin_lock_irqsave(&rnp->lock, flags);
1297 rnp->boost_kthread_task = t;
1298 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1299 sp.sched_priority = RCU_BOOST_PRIO;
1300 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1301 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1302 return 0;
1303 }
1304
1305 #ifdef CONFIG_HOTPLUG_CPU
1306
1307 /*
1308 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1309 */
1310 static void rcu_stop_cpu_kthread(int cpu)
1311 {
1312 struct task_struct *t;
1313
1314 /* Stop the CPU's kthread. */
1315 t = per_cpu(rcu_cpu_kthread_task, cpu);
1316 if (t != NULL) {
1317 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1318 kthread_stop(t);
1319 }
1320 }
1321
1322 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1323
1324 static void rcu_kthread_do_work(void)
1325 {
1326 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1327 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1328 rcu_preempt_do_callbacks();
1329 }
1330
1331 /*
1332 * Wake up the specified per-rcu_node-structure kthread.
1333 * Because the per-rcu_node kthreads are immortal, we don't need
1334 * to do anything to keep them alive.
1335 */
1336 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1337 {
1338 struct task_struct *t;
1339
1340 t = rnp->node_kthread_task;
1341 if (t != NULL)
1342 wake_up_process(t);
1343 }
1344
1345 /*
1346 * Set the specified CPU's kthread to run RT or not, as specified by
1347 * the to_rt argument. The CPU-hotplug locks are held, so the task
1348 * is not going away.
1349 */
1350 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1351 {
1352 int policy;
1353 struct sched_param sp;
1354 struct task_struct *t;
1355
1356 t = per_cpu(rcu_cpu_kthread_task, cpu);
1357 if (t == NULL)
1358 return;
1359 if (to_rt) {
1360 policy = SCHED_FIFO;
1361 sp.sched_priority = RCU_KTHREAD_PRIO;
1362 } else {
1363 policy = SCHED_NORMAL;
1364 sp.sched_priority = 0;
1365 }
1366 sched_setscheduler_nocheck(t, policy, &sp);
1367 }
1368
1369 /*
1370 * Timer handler to initiate the waking up of per-CPU kthreads that
1371 * have yielded the CPU due to excess numbers of RCU callbacks.
1372 * We wake up the per-rcu_node kthread, which in turn will wake up
1373 * the booster kthread.
1374 */
1375 static void rcu_cpu_kthread_timer(unsigned long arg)
1376 {
1377 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1378 struct rcu_node *rnp = rdp->mynode;
1379
1380 atomic_or(rdp->grpmask, &rnp->wakemask);
1381 invoke_rcu_node_kthread(rnp);
1382 }
1383
1384 /*
1385 * Drop to non-real-time priority and yield, but only after posting a
1386 * timer that will cause us to regain our real-time priority if we
1387 * remain preempted. Either way, we restore our real-time priority
1388 * before returning.
1389 */
1390 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1391 {
1392 struct sched_param sp;
1393 struct timer_list yield_timer;
1394 int prio = current->rt_priority;
1395
1396 setup_timer_on_stack(&yield_timer, f, arg);
1397 mod_timer(&yield_timer, jiffies + 2);
1398 sp.sched_priority = 0;
1399 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1400 set_user_nice(current, 19);
1401 schedule();
1402 set_user_nice(current, 0);
1403 sp.sched_priority = prio;
1404 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1405 del_timer(&yield_timer);
1406 }
1407
1408 /*
1409 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1410 * This can happen while the corresponding CPU is either coming online
1411 * or going offline. We cannot wait until the CPU is fully online
1412 * before starting the kthread, because the various notifier functions
1413 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1414 * the corresponding CPU is online.
1415 *
1416 * Return 1 if the kthread needs to stop, 0 otherwise.
1417 *
1418 * Caller must disable bh. This function can momentarily enable it.
1419 */
1420 static int rcu_cpu_kthread_should_stop(int cpu)
1421 {
1422 while (cpu_is_offline(cpu) ||
1423 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1424 smp_processor_id() != cpu) {
1425 if (kthread_should_stop())
1426 return 1;
1427 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1428 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1429 local_bh_enable();
1430 schedule_timeout_uninterruptible(1);
1431 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1432 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1433 local_bh_disable();
1434 }
1435 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1436 return 0;
1437 }
1438
1439 /*
1440 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1441 * RCU softirq used in flavors and configurations of RCU that do not
1442 * support RCU priority boosting.
1443 */
1444 static int rcu_cpu_kthread(void *arg)
1445 {
1446 int cpu = (int)(long)arg;
1447 unsigned long flags;
1448 int spincnt = 0;
1449 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1450 char work;
1451 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1452
1453 trace_rcu_utilization("Start CPU kthread@init");
1454 for (;;) {
1455 *statusp = RCU_KTHREAD_WAITING;
1456 trace_rcu_utilization("End CPU kthread@rcu_wait");
1457 rcu_wait(*workp != 0 || kthread_should_stop());
1458 trace_rcu_utilization("Start CPU kthread@rcu_wait");
1459 local_bh_disable();
1460 if (rcu_cpu_kthread_should_stop(cpu)) {
1461 local_bh_enable();
1462 break;
1463 }
1464 *statusp = RCU_KTHREAD_RUNNING;
1465 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1466 local_irq_save(flags);
1467 work = *workp;
1468 *workp = 0;
1469 local_irq_restore(flags);
1470 if (work)
1471 rcu_kthread_do_work();
1472 local_bh_enable();
1473 if (*workp != 0)
1474 spincnt++;
1475 else
1476 spincnt = 0;
1477 if (spincnt > 10) {
1478 *statusp = RCU_KTHREAD_YIELDING;
1479 trace_rcu_utilization("End CPU kthread@rcu_yield");
1480 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1481 trace_rcu_utilization("Start CPU kthread@rcu_yield");
1482 spincnt = 0;
1483 }
1484 }
1485 *statusp = RCU_KTHREAD_STOPPED;
1486 trace_rcu_utilization("End CPU kthread@term");
1487 return 0;
1488 }
1489
1490 /*
1491 * Spawn a per-CPU kthread, setting up affinity and priority.
1492 * Because the CPU hotplug lock is held, no other CPU will be attempting
1493 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1494 * attempting to access it during boot, but the locking in kthread_bind()
1495 * will enforce sufficient ordering.
1496 *
1497 * Please note that we cannot simply refuse to wake up the per-CPU
1498 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1499 * which can result in softlockup complaints if the task ends up being
1500 * idle for more than a couple of minutes.
1501 *
1502 * However, please note also that we cannot bind the per-CPU kthread to its
1503 * CPU until that CPU is fully online. We also cannot wait until the
1504 * CPU is fully online before we create its per-CPU kthread, as this would
1505 * deadlock the system when CPU notifiers tried waiting for grace
1506 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1507 * is online. If its CPU is not yet fully online, then the code in
1508 * rcu_cpu_kthread() will wait until it is fully online, and then do
1509 * the binding.
1510 */
1511 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1512 {
1513 struct sched_param sp;
1514 struct task_struct *t;
1515
1516 if (!rcu_scheduler_fully_active ||
1517 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1518 return 0;
1519 t = kthread_create_on_node(rcu_cpu_kthread,
1520 (void *)(long)cpu,
1521 cpu_to_node(cpu),
1522 "rcuc/%d", cpu);
1523 if (IS_ERR(t))
1524 return PTR_ERR(t);
1525 if (cpu_online(cpu))
1526 kthread_bind(t, cpu);
1527 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1528 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1529 sp.sched_priority = RCU_KTHREAD_PRIO;
1530 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1531 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1532 wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1533 return 0;
1534 }
1535
1536 /*
1537 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1538 * kthreads when needed. We ignore requests to wake up kthreads
1539 * for offline CPUs, which is OK because force_quiescent_state()
1540 * takes care of this case.
1541 */
1542 static int rcu_node_kthread(void *arg)
1543 {
1544 int cpu;
1545 unsigned long flags;
1546 unsigned long mask;
1547 struct rcu_node *rnp = (struct rcu_node *)arg;
1548 struct sched_param sp;
1549 struct task_struct *t;
1550
1551 for (;;) {
1552 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1553 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1554 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1555 raw_spin_lock_irqsave(&rnp->lock, flags);
1556 mask = atomic_xchg(&rnp->wakemask, 0);
1557 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1558 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1559 if ((mask & 0x1) == 0)
1560 continue;
1561 preempt_disable();
1562 t = per_cpu(rcu_cpu_kthread_task, cpu);
1563 if (!cpu_online(cpu) || t == NULL) {
1564 preempt_enable();
1565 continue;
1566 }
1567 per_cpu(rcu_cpu_has_work, cpu) = 1;
1568 sp.sched_priority = RCU_KTHREAD_PRIO;
1569 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1570 preempt_enable();
1571 }
1572 }
1573 /* NOTREACHED */
1574 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1575 return 0;
1576 }
1577
1578 /*
1579 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1580 * served by the rcu_node in question. The CPU hotplug lock is still
1581 * held, so the value of rnp->qsmaskinit will be stable.
1582 *
1583 * We don't include outgoingcpu in the affinity set, use -1 if there is
1584 * no outgoing CPU. If there are no CPUs left in the affinity set,
1585 * this function allows the kthread to execute on any CPU.
1586 */
1587 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1588 {
1589 cpumask_var_t cm;
1590 int cpu;
1591 unsigned long mask = rnp->qsmaskinit;
1592
1593 if (rnp->node_kthread_task == NULL)
1594 return;
1595 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1596 return;
1597 cpumask_clear(cm);
1598 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1599 if ((mask & 0x1) && cpu != outgoingcpu)
1600 cpumask_set_cpu(cpu, cm);
1601 if (cpumask_weight(cm) == 0) {
1602 cpumask_setall(cm);
1603 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1604 cpumask_clear_cpu(cpu, cm);
1605 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1606 }
1607 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1608 rcu_boost_kthread_setaffinity(rnp, cm);
1609 free_cpumask_var(cm);
1610 }
1611
1612 /*
1613 * Spawn a per-rcu_node kthread, setting priority and affinity.
1614 * Called during boot before online/offline can happen, or, if
1615 * during runtime, with the main CPU-hotplug locks held. So only
1616 * one of these can be executing at a time.
1617 */
1618 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1619 struct rcu_node *rnp)
1620 {
1621 unsigned long flags;
1622 int rnp_index = rnp - &rsp->node[0];
1623 struct sched_param sp;
1624 struct task_struct *t;
1625
1626 if (!rcu_scheduler_fully_active ||
1627 rnp->qsmaskinit == 0)
1628 return 0;
1629 if (rnp->node_kthread_task == NULL) {
1630 t = kthread_create(rcu_node_kthread, (void *)rnp,
1631 "rcun/%d", rnp_index);
1632 if (IS_ERR(t))
1633 return PTR_ERR(t);
1634 raw_spin_lock_irqsave(&rnp->lock, flags);
1635 rnp->node_kthread_task = t;
1636 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1637 sp.sched_priority = 99;
1638 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1639 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1640 }
1641 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1642 }
1643
1644 /*
1645 * Spawn all kthreads -- called as soon as the scheduler is running.
1646 */
1647 static int __init rcu_spawn_kthreads(void)
1648 {
1649 int cpu;
1650 struct rcu_node *rnp;
1651
1652 rcu_scheduler_fully_active = 1;
1653 for_each_possible_cpu(cpu) {
1654 per_cpu(rcu_cpu_has_work, cpu) = 0;
1655 if (cpu_online(cpu))
1656 (void)rcu_spawn_one_cpu_kthread(cpu);
1657 }
1658 rnp = rcu_get_root(rcu_state);
1659 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1660 if (NUM_RCU_NODES > 1) {
1661 rcu_for_each_leaf_node(rcu_state, rnp)
1662 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1663 }
1664 return 0;
1665 }
1666 early_initcall(rcu_spawn_kthreads);
1667
1668 static void __cpuinit rcu_prepare_kthreads(int cpu)
1669 {
1670 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1671 struct rcu_node *rnp = rdp->mynode;
1672
1673 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1674 if (rcu_scheduler_fully_active) {
1675 (void)rcu_spawn_one_cpu_kthread(cpu);
1676 if (rnp->node_kthread_task == NULL)
1677 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1678 }
1679 }
1680
1681 #else /* #ifdef CONFIG_RCU_BOOST */
1682
1683 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1684 {
1685 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1686 }
1687
1688 static void invoke_rcu_callbacks_kthread(void)
1689 {
1690 WARN_ON_ONCE(1);
1691 }
1692
1693 static bool rcu_is_callbacks_kthread(void)
1694 {
1695 return false;
1696 }
1697
1698 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1699 {
1700 }
1701
1702 #ifdef CONFIG_HOTPLUG_CPU
1703
1704 static void rcu_stop_cpu_kthread(int cpu)
1705 {
1706 }
1707
1708 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1709
1710 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1711 {
1712 }
1713
1714 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1715 {
1716 }
1717
1718 static int __init rcu_scheduler_really_started(void)
1719 {
1720 rcu_scheduler_fully_active = 1;
1721 return 0;
1722 }
1723 early_initcall(rcu_scheduler_really_started);
1724
1725 static void __cpuinit rcu_prepare_kthreads(int cpu)
1726 {
1727 }
1728
1729 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1730
1731 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1732
1733 /*
1734 * Check to see if any future RCU-related work will need to be done
1735 * by the current CPU, even if none need be done immediately, returning
1736 * 1 if so. This function is part of the RCU implementation; it is -not-
1737 * an exported member of the RCU API.
1738 *
1739 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1740 * any flavor of RCU.
1741 */
1742 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1743 {
1744 *delta_jiffies = ULONG_MAX;
1745 return rcu_cpu_has_callbacks(cpu);
1746 }
1747
1748 /*
1749 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
1750 */
1751 static void rcu_prepare_for_idle_init(int cpu)
1752 {
1753 }
1754
1755 /*
1756 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1757 * after it.
1758 */
1759 static void rcu_cleanup_after_idle(int cpu)
1760 {
1761 }
1762
1763 /*
1764 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1765 * is nothing.
1766 */
1767 static void rcu_prepare_for_idle(int cpu)
1768 {
1769 }
1770
1771 /*
1772 * Don't bother keeping a running count of the number of RCU callbacks
1773 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1774 */
1775 static void rcu_idle_count_callbacks_posted(void)
1776 {
1777 }
1778
1779 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1780
1781 /*
1782 * This code is invoked when a CPU goes idle, at which point we want
1783 * to have the CPU do everything required for RCU so that it can enter
1784 * the energy-efficient dyntick-idle mode. This is handled by a
1785 * state machine implemented by rcu_prepare_for_idle() below.
1786 *
1787 * The following three proprocessor symbols control this state machine:
1788 *
1789 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
1790 * to satisfy RCU. Beyond this point, it is better to incur a periodic
1791 * scheduling-clock interrupt than to loop through the state machine
1792 * at full power.
1793 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
1794 * optional if RCU does not need anything immediately from this
1795 * CPU, even if this CPU still has RCU callbacks queued. The first
1796 * times through the state machine are mandatory: we need to give
1797 * the state machine a chance to communicate a quiescent state
1798 * to the RCU core.
1799 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1800 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1801 * is sized to be roughly one RCU grace period. Those energy-efficiency
1802 * benchmarkers who might otherwise be tempted to set this to a large
1803 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1804 * system. And if you are -that- concerned about energy efficiency,
1805 * just power the system down and be done with it!
1806 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1807 * permitted to sleep in dyntick-idle mode with only lazy RCU
1808 * callbacks pending. Setting this too high can OOM your system.
1809 *
1810 * The values below work well in practice. If future workloads require
1811 * adjustment, they can be converted into kernel config parameters, though
1812 * making the state machine smarter might be a better option.
1813 */
1814 #define RCU_IDLE_FLUSHES 5 /* Number of dyntick-idle tries. */
1815 #define RCU_IDLE_OPT_FLUSHES 3 /* Optional dyntick-idle tries. */
1816 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1817 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1818
1819 extern int tick_nohz_enabled;
1820
1821 /*
1822 * Does the specified flavor of RCU have non-lazy callbacks pending on
1823 * the specified CPU? Both RCU flavor and CPU are specified by the
1824 * rcu_data structure.
1825 */
1826 static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
1827 {
1828 return rdp->qlen != rdp->qlen_lazy;
1829 }
1830
1831 #ifdef CONFIG_TREE_PREEMPT_RCU
1832
1833 /*
1834 * Are there non-lazy RCU-preempt callbacks? (There cannot be if there
1835 * is no RCU-preempt in the kernel.)
1836 */
1837 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
1838 {
1839 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
1840
1841 return __rcu_cpu_has_nonlazy_callbacks(rdp);
1842 }
1843
1844 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1845
1846 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
1847 {
1848 return 0;
1849 }
1850
1851 #endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
1852
1853 /*
1854 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
1855 */
1856 static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
1857 {
1858 return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
1859 __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
1860 rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
1861 }
1862
1863 /*
1864 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
1865 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
1866 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
1867 * enter dyntick-idle mode. Otherwise, if we have recently tried and failed
1868 * to enter dyntick-idle mode, we refuse to try to enter it. After all,
1869 * it is better to incur scheduling-clock interrupts than to spin
1870 * continuously for the same time duration!
1871 *
1872 * The delta_jiffies argument is used to store the time when RCU is
1873 * going to need the CPU again if it still has callbacks. The reason
1874 * for this is that rcu_prepare_for_idle() might need to post a timer,
1875 * but if so, it will do so after tick_nohz_stop_sched_tick() has set
1876 * the wakeup time for this CPU. This means that RCU's timer can be
1877 * delayed until the wakeup time, which defeats the purpose of posting
1878 * a timer.
1879 */
1880 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1881 {
1882 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1883
1884 /* Flag a new idle sojourn to the idle-entry state machine. */
1885 rdtp->idle_first_pass = 1;
1886 /* If no callbacks, RCU doesn't need the CPU. */
1887 if (!rcu_cpu_has_callbacks(cpu)) {
1888 *delta_jiffies = ULONG_MAX;
1889 return 0;
1890 }
1891 if (rdtp->dyntick_holdoff == jiffies) {
1892 /* RCU recently tried and failed, so don't try again. */
1893 *delta_jiffies = 1;
1894 return 1;
1895 }
1896 /* Set up for the possibility that RCU will post a timer. */
1897 if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
1898 *delta_jiffies = round_up(RCU_IDLE_GP_DELAY + jiffies,
1899 RCU_IDLE_GP_DELAY) - jiffies;
1900 } else {
1901 *delta_jiffies = jiffies + RCU_IDLE_LAZY_GP_DELAY;
1902 *delta_jiffies = round_jiffies(*delta_jiffies) - jiffies;
1903 }
1904 return 0;
1905 }
1906
1907 /*
1908 * Handler for smp_call_function_single(). The only point of this
1909 * handler is to wake the CPU up, so the handler does only tracing.
1910 */
1911 void rcu_idle_demigrate(void *unused)
1912 {
1913 trace_rcu_prep_idle("Demigrate");
1914 }
1915
1916 /*
1917 * Timer handler used to force CPU to start pushing its remaining RCU
1918 * callbacks in the case where it entered dyntick-idle mode with callbacks
1919 * pending. The hander doesn't really need to do anything because the
1920 * real work is done upon re-entry to idle, or by the next scheduling-clock
1921 * interrupt should idle not be re-entered.
1922 *
1923 * One special case: the timer gets migrated without awakening the CPU
1924 * on which the timer was scheduled on. In this case, we must wake up
1925 * that CPU. We do so with smp_call_function_single().
1926 */
1927 static void rcu_idle_gp_timer_func(unsigned long cpu_in)
1928 {
1929 int cpu = (int)cpu_in;
1930
1931 trace_rcu_prep_idle("Timer");
1932 if (cpu != smp_processor_id())
1933 smp_call_function_single(cpu, rcu_idle_demigrate, NULL, 0);
1934 else
1935 WARN_ON_ONCE(1); /* Getting here can hang the system... */
1936 }
1937
1938 /*
1939 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
1940 */
1941 static void rcu_prepare_for_idle_init(int cpu)
1942 {
1943 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1944
1945 rdtp->dyntick_holdoff = jiffies - 1;
1946 setup_timer(&rdtp->idle_gp_timer, rcu_idle_gp_timer_func, cpu);
1947 rdtp->idle_gp_timer_expires = jiffies - 1;
1948 rdtp->idle_first_pass = 1;
1949 }
1950
1951 /*
1952 * Clean up for exit from idle. Because we are exiting from idle, there
1953 * is no longer any point to ->idle_gp_timer, so cancel it. This will
1954 * do nothing if this timer is not active, so just cancel it unconditionally.
1955 */
1956 static void rcu_cleanup_after_idle(int cpu)
1957 {
1958 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1959
1960 del_timer(&rdtp->idle_gp_timer);
1961 trace_rcu_prep_idle("Cleanup after idle");
1962 rdtp->tick_nohz_enabled_snap = ACCESS_ONCE(tick_nohz_enabled);
1963 }
1964
1965 /*
1966 * Check to see if any RCU-related work can be done by the current CPU,
1967 * and if so, schedule a softirq to get it done. This function is part
1968 * of the RCU implementation; it is -not- an exported member of the RCU API.
1969 *
1970 * The idea is for the current CPU to clear out all work required by the
1971 * RCU core for the current grace period, so that this CPU can be permitted
1972 * to enter dyntick-idle mode. In some cases, it will need to be awakened
1973 * at the end of the grace period by whatever CPU ends the grace period.
1974 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
1975 * number of wakeups by a modest integer factor.
1976 *
1977 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1978 * disabled, we do one pass of force_quiescent_state(), then do a
1979 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1980 * later. The ->dyntick_drain field controls the sequencing.
1981 *
1982 * The caller must have disabled interrupts.
1983 */
1984 static void rcu_prepare_for_idle(int cpu)
1985 {
1986 struct timer_list *tp;
1987 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1988 int tne;
1989
1990 /* Handle nohz enablement switches conservatively. */
1991 tne = ACCESS_ONCE(tick_nohz_enabled);
1992 if (tne != rdtp->tick_nohz_enabled_snap) {
1993 if (rcu_cpu_has_callbacks(cpu))
1994 invoke_rcu_core(); /* force nohz to see update. */
1995 rdtp->tick_nohz_enabled_snap = tne;
1996 return;
1997 }
1998 if (!tne)
1999 return;
2000
2001 /*
2002 * If this is an idle re-entry, for example, due to use of
2003 * RCU_NONIDLE() or the new idle-loop tracing API within the idle
2004 * loop, then don't take any state-machine actions, unless the
2005 * momentary exit from idle queued additional non-lazy callbacks.
2006 * Instead, repost the ->idle_gp_timer if this CPU has callbacks
2007 * pending.
2008 */
2009 if (!rdtp->idle_first_pass &&
2010 (rdtp->nonlazy_posted == rdtp->nonlazy_posted_snap)) {
2011 if (rcu_cpu_has_callbacks(cpu)) {
2012 tp = &rdtp->idle_gp_timer;
2013 mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
2014 }
2015 return;
2016 }
2017 rdtp->idle_first_pass = 0;
2018 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted - 1;
2019
2020 /*
2021 * If there are no callbacks on this CPU, enter dyntick-idle mode.
2022 * Also reset state to avoid prejudicing later attempts.
2023 */
2024 if (!rcu_cpu_has_callbacks(cpu)) {
2025 rdtp->dyntick_holdoff = jiffies - 1;
2026 rdtp->dyntick_drain = 0;
2027 trace_rcu_prep_idle("No callbacks");
2028 return;
2029 }
2030
2031 /*
2032 * If in holdoff mode, just return. We will presumably have
2033 * refrained from disabling the scheduling-clock tick.
2034 */
2035 if (rdtp->dyntick_holdoff == jiffies) {
2036 trace_rcu_prep_idle("In holdoff");
2037 return;
2038 }
2039
2040 /* Check and update the ->dyntick_drain sequencing. */
2041 if (rdtp->dyntick_drain <= 0) {
2042 /* First time through, initialize the counter. */
2043 rdtp->dyntick_drain = RCU_IDLE_FLUSHES;
2044 } else if (rdtp->dyntick_drain <= RCU_IDLE_OPT_FLUSHES &&
2045 !rcu_pending(cpu) &&
2046 !local_softirq_pending()) {
2047 /* Can we go dyntick-idle despite still having callbacks? */
2048 rdtp->dyntick_drain = 0;
2049 rdtp->dyntick_holdoff = jiffies;
2050 if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
2051 trace_rcu_prep_idle("Dyntick with callbacks");
2052 rdtp->idle_gp_timer_expires =
2053 round_up(jiffies + RCU_IDLE_GP_DELAY,
2054 RCU_IDLE_GP_DELAY);
2055 } else {
2056 rdtp->idle_gp_timer_expires =
2057 round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
2058 trace_rcu_prep_idle("Dyntick with lazy callbacks");
2059 }
2060 tp = &rdtp->idle_gp_timer;
2061 mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
2062 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
2063 return; /* Nothing more to do immediately. */
2064 } else if (--(rdtp->dyntick_drain) <= 0) {
2065 /* We have hit the limit, so time to give up. */
2066 rdtp->dyntick_holdoff = jiffies;
2067 trace_rcu_prep_idle("Begin holdoff");
2068 invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
2069 return;
2070 }
2071
2072 /*
2073 * Do one step of pushing the remaining RCU callbacks through
2074 * the RCU core state machine.
2075 */
2076 #ifdef CONFIG_TREE_PREEMPT_RCU
2077 if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
2078 rcu_preempt_qs(cpu);
2079 force_quiescent_state(&rcu_preempt_state, 0);
2080 }
2081 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2082 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
2083 rcu_sched_qs(cpu);
2084 force_quiescent_state(&rcu_sched_state, 0);
2085 }
2086 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
2087 rcu_bh_qs(cpu);
2088 force_quiescent_state(&rcu_bh_state, 0);
2089 }
2090
2091 /*
2092 * If RCU callbacks are still pending, RCU still needs this CPU.
2093 * So try forcing the callbacks through the grace period.
2094 */
2095 if (rcu_cpu_has_callbacks(cpu)) {
2096 trace_rcu_prep_idle("More callbacks");
2097 invoke_rcu_core();
2098 } else {
2099 trace_rcu_prep_idle("Callbacks drained");
2100 }
2101 }
2102
2103 /*
2104 * Keep a running count of the number of non-lazy callbacks posted
2105 * on this CPU. This running counter (which is never decremented) allows
2106 * rcu_prepare_for_idle() to detect when something out of the idle loop
2107 * posts a callback, even if an equal number of callbacks are invoked.
2108 * Of course, callbacks should only be posted from within a trace event
2109 * designed to be called from idle or from within RCU_NONIDLE().
2110 */
2111 static void rcu_idle_count_callbacks_posted(void)
2112 {
2113 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
2114 }
2115
2116 /*
2117 * Data for flushing lazy RCU callbacks at OOM time.
2118 */
2119 static atomic_t oom_callback_count;
2120 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
2121
2122 /*
2123 * RCU OOM callback -- decrement the outstanding count and deliver the
2124 * wake-up if we are the last one.
2125 */
2126 static void rcu_oom_callback(struct rcu_head *rhp)
2127 {
2128 if (atomic_dec_and_test(&oom_callback_count))
2129 wake_up(&oom_callback_wq);
2130 }
2131
2132 /*
2133 * Post an rcu_oom_notify callback on the current CPU if it has at
2134 * least one lazy callback. This will unnecessarily post callbacks
2135 * to CPUs that already have a non-lazy callback at the end of their
2136 * callback list, but this is an infrequent operation, so accept some
2137 * extra overhead to keep things simple.
2138 */
2139 static void rcu_oom_notify_cpu(void *unused)
2140 {
2141 struct rcu_state *rsp;
2142 struct rcu_data *rdp;
2143
2144 for_each_rcu_flavor(rsp) {
2145 rdp = __this_cpu_ptr(rsp->rda);
2146 if (rdp->qlen_lazy != 0) {
2147 atomic_inc(&oom_callback_count);
2148 rsp->call(&rdp->oom_head, rcu_oom_callback);
2149 }
2150 }
2151 }
2152
2153 /*
2154 * If low on memory, ensure that each CPU has a non-lazy callback.
2155 * This will wake up CPUs that have only lazy callbacks, in turn
2156 * ensuring that they free up the corresponding memory in a timely manner.
2157 * Because an uncertain amount of memory will be freed in some uncertain
2158 * timeframe, we do not claim to have freed anything.
2159 */
2160 static int rcu_oom_notify(struct notifier_block *self,
2161 unsigned long notused, void *nfreed)
2162 {
2163 int cpu;
2164
2165 /* Wait for callbacks from earlier instance to complete. */
2166 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
2167
2168 /*
2169 * Prevent premature wakeup: ensure that all increments happen
2170 * before there is a chance of the counter reaching zero.
2171 */
2172 atomic_set(&oom_callback_count, 1);
2173
2174 get_online_cpus();
2175 for_each_online_cpu(cpu) {
2176 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
2177 cond_resched();
2178 }
2179 put_online_cpus();
2180
2181 /* Unconditionally decrement: no need to wake ourselves up. */
2182 atomic_dec(&oom_callback_count);
2183
2184 return NOTIFY_OK;
2185 }
2186
2187 static struct notifier_block rcu_oom_nb = {
2188 .notifier_call = rcu_oom_notify
2189 };
2190
2191 static int __init rcu_register_oom_notifier(void)
2192 {
2193 register_oom_notifier(&rcu_oom_nb);
2194 return 0;
2195 }
2196 early_initcall(rcu_register_oom_notifier);
2197
2198 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
2199
2200 #ifdef CONFIG_RCU_CPU_STALL_INFO
2201
2202 #ifdef CONFIG_RCU_FAST_NO_HZ
2203
2204 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2205 {
2206 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
2207 struct timer_list *tltp = &rdtp->idle_gp_timer;
2208
2209 sprintf(cp, "drain=%d %c timer=%lu",
2210 rdtp->dyntick_drain,
2211 rdtp->dyntick_holdoff == jiffies ? 'H' : '.',
2212 timer_pending(tltp) ? tltp->expires - jiffies : -1);
2213 }
2214
2215 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
2216
2217 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2218 {
2219 *cp = '\0';
2220 }
2221
2222 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
2223
2224 /* Initiate the stall-info list. */
2225 static void print_cpu_stall_info_begin(void)
2226 {
2227 printk(KERN_CONT "\n");
2228 }
2229
2230 /*
2231 * Print out diagnostic information for the specified stalled CPU.
2232 *
2233 * If the specified CPU is aware of the current RCU grace period
2234 * (flavor specified by rsp), then print the number of scheduling
2235 * clock interrupts the CPU has taken during the time that it has
2236 * been aware. Otherwise, print the number of RCU grace periods
2237 * that this CPU is ignorant of, for example, "1" if the CPU was
2238 * aware of the previous grace period.
2239 *
2240 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
2241 */
2242 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2243 {
2244 char fast_no_hz[72];
2245 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2246 struct rcu_dynticks *rdtp = rdp->dynticks;
2247 char *ticks_title;
2248 unsigned long ticks_value;
2249
2250 if (rsp->gpnum == rdp->gpnum) {
2251 ticks_title = "ticks this GP";
2252 ticks_value = rdp->ticks_this_gp;
2253 } else {
2254 ticks_title = "GPs behind";
2255 ticks_value = rsp->gpnum - rdp->gpnum;
2256 }
2257 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
2258 printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
2259 cpu, ticks_value, ticks_title,
2260 atomic_read(&rdtp->dynticks) & 0xfff,
2261 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
2262 fast_no_hz);
2263 }
2264
2265 /* Terminate the stall-info list. */
2266 static void print_cpu_stall_info_end(void)
2267 {
2268 printk(KERN_ERR "\t");
2269 }
2270
2271 /* Zero ->ticks_this_gp for all flavors of RCU. */
2272 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2273 {
2274 rdp->ticks_this_gp = 0;
2275 }
2276
2277 /* Increment ->ticks_this_gp for all flavors of RCU. */
2278 static void increment_cpu_stall_ticks(void)
2279 {
2280 __get_cpu_var(rcu_sched_data).ticks_this_gp++;
2281 __get_cpu_var(rcu_bh_data).ticks_this_gp++;
2282 #ifdef CONFIG_TREE_PREEMPT_RCU
2283 __get_cpu_var(rcu_preempt_data).ticks_this_gp++;
2284 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2285 }
2286
2287 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2288
2289 static void print_cpu_stall_info_begin(void)
2290 {
2291 printk(KERN_CONT " {");
2292 }
2293
2294 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2295 {
2296 printk(KERN_CONT " %d", cpu);
2297 }
2298
2299 static void print_cpu_stall_info_end(void)
2300 {
2301 printk(KERN_CONT "} ");
2302 }
2303
2304 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2305 {
2306 }
2307
2308 static void increment_cpu_stall_ticks(void)
2309 {
2310 }
2311
2312 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
This page took 0.077815 seconds and 5 git commands to generate.