rcu: Add event-trace markers to TREE_RCU kthreads
[deliverable/linux.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/stop_machine.h>
29
30 /*
31 * Check the RCU kernel configuration parameters and print informative
32 * messages about anything out of the ordinary. If you like #ifdef, you
33 * will love this function.
34 */
35 static void __init rcu_bootup_announce_oddness(void)
36 {
37 #ifdef CONFIG_RCU_TRACE
38 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
39 #endif
40 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
41 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
42 CONFIG_RCU_FANOUT);
43 #endif
44 #ifdef CONFIG_RCU_FANOUT_EXACT
45 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
46 #endif
47 #ifdef CONFIG_RCU_FAST_NO_HZ
48 printk(KERN_INFO
49 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
50 #endif
51 #ifdef CONFIG_PROVE_RCU
52 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
53 #endif
54 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
55 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
56 #endif
57 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
58 printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
59 #endif
60 #if NUM_RCU_LVL_4 != 0
61 printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
62 #endif
63 }
64
65 #ifdef CONFIG_TREE_PREEMPT_RCU
66
67 struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt);
68 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
69 static struct rcu_state *rcu_state = &rcu_preempt_state;
70
71 static void rcu_read_unlock_special(struct task_struct *t);
72 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
73
74 /*
75 * Tell them what RCU they are running.
76 */
77 static void __init rcu_bootup_announce(void)
78 {
79 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
80 rcu_bootup_announce_oddness();
81 }
82
83 /*
84 * Return the number of RCU-preempt batches processed thus far
85 * for debug and statistics.
86 */
87 long rcu_batches_completed_preempt(void)
88 {
89 return rcu_preempt_state.completed;
90 }
91 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
92
93 /*
94 * Return the number of RCU batches processed thus far for debug & stats.
95 */
96 long rcu_batches_completed(void)
97 {
98 return rcu_batches_completed_preempt();
99 }
100 EXPORT_SYMBOL_GPL(rcu_batches_completed);
101
102 /*
103 * Force a quiescent state for preemptible RCU.
104 */
105 void rcu_force_quiescent_state(void)
106 {
107 force_quiescent_state(&rcu_preempt_state, 0);
108 }
109 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
110
111 /*
112 * Record a preemptible-RCU quiescent state for the specified CPU. Note
113 * that this just means that the task currently running on the CPU is
114 * not in a quiescent state. There might be any number of tasks blocked
115 * while in an RCU read-side critical section.
116 *
117 * Unlike the other rcu_*_qs() functions, callers to this function
118 * must disable irqs in order to protect the assignment to
119 * ->rcu_read_unlock_special.
120 */
121 static void rcu_preempt_qs(int cpu)
122 {
123 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
124
125 rdp->passed_quiesc_completed = rdp->gpnum - 1;
126 barrier();
127 rdp->passed_quiesc = 1;
128 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
129 }
130
131 /*
132 * We have entered the scheduler, and the current task might soon be
133 * context-switched away from. If this task is in an RCU read-side
134 * critical section, we will no longer be able to rely on the CPU to
135 * record that fact, so we enqueue the task on the blkd_tasks list.
136 * The task will dequeue itself when it exits the outermost enclosing
137 * RCU read-side critical section. Therefore, the current grace period
138 * cannot be permitted to complete until the blkd_tasks list entries
139 * predating the current grace period drain, in other words, until
140 * rnp->gp_tasks becomes NULL.
141 *
142 * Caller must disable preemption.
143 */
144 static void rcu_preempt_note_context_switch(int cpu)
145 {
146 struct task_struct *t = current;
147 unsigned long flags;
148 struct rcu_data *rdp;
149 struct rcu_node *rnp;
150
151 if (t->rcu_read_lock_nesting > 0 &&
152 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
153
154 /* Possibly blocking in an RCU read-side critical section. */
155 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
156 rnp = rdp->mynode;
157 raw_spin_lock_irqsave(&rnp->lock, flags);
158 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
159 t->rcu_blocked_node = rnp;
160
161 /*
162 * If this CPU has already checked in, then this task
163 * will hold up the next grace period rather than the
164 * current grace period. Queue the task accordingly.
165 * If the task is queued for the current grace period
166 * (i.e., this CPU has not yet passed through a quiescent
167 * state for the current grace period), then as long
168 * as that task remains queued, the current grace period
169 * cannot end. Note that there is some uncertainty as
170 * to exactly when the current grace period started.
171 * We take a conservative approach, which can result
172 * in unnecessarily waiting on tasks that started very
173 * slightly after the current grace period began. C'est
174 * la vie!!!
175 *
176 * But first, note that the current CPU must still be
177 * on line!
178 */
179 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
180 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
181 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
182 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
183 rnp->gp_tasks = &t->rcu_node_entry;
184 #ifdef CONFIG_RCU_BOOST
185 if (rnp->boost_tasks != NULL)
186 rnp->boost_tasks = rnp->gp_tasks;
187 #endif /* #ifdef CONFIG_RCU_BOOST */
188 } else {
189 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
190 if (rnp->qsmask & rdp->grpmask)
191 rnp->gp_tasks = &t->rcu_node_entry;
192 }
193 raw_spin_unlock_irqrestore(&rnp->lock, flags);
194 } else if (t->rcu_read_lock_nesting < 0 &&
195 t->rcu_read_unlock_special) {
196
197 /*
198 * Complete exit from RCU read-side critical section on
199 * behalf of preempted instance of __rcu_read_unlock().
200 */
201 rcu_read_unlock_special(t);
202 }
203
204 /*
205 * Either we were not in an RCU read-side critical section to
206 * begin with, or we have now recorded that critical section
207 * globally. Either way, we can now note a quiescent state
208 * for this CPU. Again, if we were in an RCU read-side critical
209 * section, and if that critical section was blocking the current
210 * grace period, then the fact that the task has been enqueued
211 * means that we continue to block the current grace period.
212 */
213 local_irq_save(flags);
214 rcu_preempt_qs(cpu);
215 local_irq_restore(flags);
216 }
217
218 /*
219 * Tree-preemptible RCU implementation for rcu_read_lock().
220 * Just increment ->rcu_read_lock_nesting, shared state will be updated
221 * if we block.
222 */
223 void __rcu_read_lock(void)
224 {
225 current->rcu_read_lock_nesting++;
226 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
227 }
228 EXPORT_SYMBOL_GPL(__rcu_read_lock);
229
230 /*
231 * Check for preempted RCU readers blocking the current grace period
232 * for the specified rcu_node structure. If the caller needs a reliable
233 * answer, it must hold the rcu_node's ->lock.
234 */
235 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
236 {
237 return rnp->gp_tasks != NULL;
238 }
239
240 /*
241 * Record a quiescent state for all tasks that were previously queued
242 * on the specified rcu_node structure and that were blocking the current
243 * RCU grace period. The caller must hold the specified rnp->lock with
244 * irqs disabled, and this lock is released upon return, but irqs remain
245 * disabled.
246 */
247 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
248 __releases(rnp->lock)
249 {
250 unsigned long mask;
251 struct rcu_node *rnp_p;
252
253 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
254 raw_spin_unlock_irqrestore(&rnp->lock, flags);
255 return; /* Still need more quiescent states! */
256 }
257
258 rnp_p = rnp->parent;
259 if (rnp_p == NULL) {
260 /*
261 * Either there is only one rcu_node in the tree,
262 * or tasks were kicked up to root rcu_node due to
263 * CPUs going offline.
264 */
265 rcu_report_qs_rsp(&rcu_preempt_state, flags);
266 return;
267 }
268
269 /* Report up the rest of the hierarchy. */
270 mask = rnp->grpmask;
271 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
272 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
273 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
274 }
275
276 /*
277 * Advance a ->blkd_tasks-list pointer to the next entry, instead
278 * returning NULL if at the end of the list.
279 */
280 static struct list_head *rcu_next_node_entry(struct task_struct *t,
281 struct rcu_node *rnp)
282 {
283 struct list_head *np;
284
285 np = t->rcu_node_entry.next;
286 if (np == &rnp->blkd_tasks)
287 np = NULL;
288 return np;
289 }
290
291 /*
292 * Handle special cases during rcu_read_unlock(), such as needing to
293 * notify RCU core processing or task having blocked during the RCU
294 * read-side critical section.
295 */
296 static noinline void rcu_read_unlock_special(struct task_struct *t)
297 {
298 int empty;
299 int empty_exp;
300 unsigned long flags;
301 struct list_head *np;
302 struct rcu_node *rnp;
303 int special;
304
305 /* NMI handlers cannot block and cannot safely manipulate state. */
306 if (in_nmi())
307 return;
308
309 local_irq_save(flags);
310
311 /*
312 * If RCU core is waiting for this CPU to exit critical section,
313 * let it know that we have done so.
314 */
315 special = t->rcu_read_unlock_special;
316 if (special & RCU_READ_UNLOCK_NEED_QS) {
317 rcu_preempt_qs(smp_processor_id());
318 }
319
320 /* Hardware IRQ handlers cannot block. */
321 if (in_irq() || in_serving_softirq()) {
322 local_irq_restore(flags);
323 return;
324 }
325
326 /* Clean up if blocked during RCU read-side critical section. */
327 if (special & RCU_READ_UNLOCK_BLOCKED) {
328 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
329
330 /*
331 * Remove this task from the list it blocked on. The
332 * task can migrate while we acquire the lock, but at
333 * most one time. So at most two passes through loop.
334 */
335 for (;;) {
336 rnp = t->rcu_blocked_node;
337 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
338 if (rnp == t->rcu_blocked_node)
339 break;
340 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
341 }
342 empty = !rcu_preempt_blocked_readers_cgp(rnp);
343 empty_exp = !rcu_preempted_readers_exp(rnp);
344 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
345 np = rcu_next_node_entry(t, rnp);
346 list_del_init(&t->rcu_node_entry);
347 if (&t->rcu_node_entry == rnp->gp_tasks)
348 rnp->gp_tasks = np;
349 if (&t->rcu_node_entry == rnp->exp_tasks)
350 rnp->exp_tasks = np;
351 #ifdef CONFIG_RCU_BOOST
352 if (&t->rcu_node_entry == rnp->boost_tasks)
353 rnp->boost_tasks = np;
354 /* Snapshot and clear ->rcu_boosted with rcu_node lock held. */
355 if (t->rcu_boosted) {
356 special |= RCU_READ_UNLOCK_BOOSTED;
357 t->rcu_boosted = 0;
358 }
359 #endif /* #ifdef CONFIG_RCU_BOOST */
360 t->rcu_blocked_node = NULL;
361
362 /*
363 * If this was the last task on the current list, and if
364 * we aren't waiting on any CPUs, report the quiescent state.
365 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
366 */
367 if (empty)
368 raw_spin_unlock_irqrestore(&rnp->lock, flags);
369 else
370 rcu_report_unblock_qs_rnp(rnp, flags);
371
372 #ifdef CONFIG_RCU_BOOST
373 /* Unboost if we were boosted. */
374 if (special & RCU_READ_UNLOCK_BOOSTED) {
375 rt_mutex_unlock(t->rcu_boost_mutex);
376 t->rcu_boost_mutex = NULL;
377 }
378 #endif /* #ifdef CONFIG_RCU_BOOST */
379
380 /*
381 * If this was the last task on the expedited lists,
382 * then we need to report up the rcu_node hierarchy.
383 */
384 if (!empty_exp && !rcu_preempted_readers_exp(rnp))
385 rcu_report_exp_rnp(&rcu_preempt_state, rnp);
386 } else {
387 local_irq_restore(flags);
388 }
389 }
390
391 /*
392 * Tree-preemptible RCU implementation for rcu_read_unlock().
393 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
394 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
395 * invoke rcu_read_unlock_special() to clean up after a context switch
396 * in an RCU read-side critical section and other special cases.
397 */
398 void __rcu_read_unlock(void)
399 {
400 struct task_struct *t = current;
401
402 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
403 if (t->rcu_read_lock_nesting != 1)
404 --t->rcu_read_lock_nesting;
405 else {
406 t->rcu_read_lock_nesting = INT_MIN;
407 barrier(); /* assign before ->rcu_read_unlock_special load */
408 if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
409 rcu_read_unlock_special(t);
410 barrier(); /* ->rcu_read_unlock_special load before assign */
411 t->rcu_read_lock_nesting = 0;
412 }
413 #ifdef CONFIG_PROVE_LOCKING
414 {
415 int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
416
417 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
418 }
419 #endif /* #ifdef CONFIG_PROVE_LOCKING */
420 }
421 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
422
423 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
424
425 /*
426 * Dump detailed information for all tasks blocking the current RCU
427 * grace period on the specified rcu_node structure.
428 */
429 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
430 {
431 unsigned long flags;
432 struct task_struct *t;
433
434 if (!rcu_preempt_blocked_readers_cgp(rnp))
435 return;
436 raw_spin_lock_irqsave(&rnp->lock, flags);
437 t = list_entry(rnp->gp_tasks,
438 struct task_struct, rcu_node_entry);
439 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
440 sched_show_task(t);
441 raw_spin_unlock_irqrestore(&rnp->lock, flags);
442 }
443
444 /*
445 * Dump detailed information for all tasks blocking the current RCU
446 * grace period.
447 */
448 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
449 {
450 struct rcu_node *rnp = rcu_get_root(rsp);
451
452 rcu_print_detail_task_stall_rnp(rnp);
453 rcu_for_each_leaf_node(rsp, rnp)
454 rcu_print_detail_task_stall_rnp(rnp);
455 }
456
457 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
458
459 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
460 {
461 }
462
463 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
464
465 /*
466 * Scan the current list of tasks blocked within RCU read-side critical
467 * sections, printing out the tid of each.
468 */
469 static void rcu_print_task_stall(struct rcu_node *rnp)
470 {
471 struct task_struct *t;
472
473 if (!rcu_preempt_blocked_readers_cgp(rnp))
474 return;
475 t = list_entry(rnp->gp_tasks,
476 struct task_struct, rcu_node_entry);
477 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
478 printk(" P%d", t->pid);
479 }
480
481 /*
482 * Suppress preemptible RCU's CPU stall warnings by pushing the
483 * time of the next stall-warning message comfortably far into the
484 * future.
485 */
486 static void rcu_preempt_stall_reset(void)
487 {
488 rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
489 }
490
491 /*
492 * Check that the list of blocked tasks for the newly completed grace
493 * period is in fact empty. It is a serious bug to complete a grace
494 * period that still has RCU readers blocked! This function must be
495 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
496 * must be held by the caller.
497 *
498 * Also, if there are blocked tasks on the list, they automatically
499 * block the newly created grace period, so set up ->gp_tasks accordingly.
500 */
501 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
502 {
503 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
504 if (!list_empty(&rnp->blkd_tasks))
505 rnp->gp_tasks = rnp->blkd_tasks.next;
506 WARN_ON_ONCE(rnp->qsmask);
507 }
508
509 #ifdef CONFIG_HOTPLUG_CPU
510
511 /*
512 * Handle tasklist migration for case in which all CPUs covered by the
513 * specified rcu_node have gone offline. Move them up to the root
514 * rcu_node. The reason for not just moving them to the immediate
515 * parent is to remove the need for rcu_read_unlock_special() to
516 * make more than two attempts to acquire the target rcu_node's lock.
517 * Returns true if there were tasks blocking the current RCU grace
518 * period.
519 *
520 * Returns 1 if there was previously a task blocking the current grace
521 * period on the specified rcu_node structure.
522 *
523 * The caller must hold rnp->lock with irqs disabled.
524 */
525 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
526 struct rcu_node *rnp,
527 struct rcu_data *rdp)
528 {
529 struct list_head *lp;
530 struct list_head *lp_root;
531 int retval = 0;
532 struct rcu_node *rnp_root = rcu_get_root(rsp);
533 struct task_struct *t;
534
535 if (rnp == rnp_root) {
536 WARN_ONCE(1, "Last CPU thought to be offlined?");
537 return 0; /* Shouldn't happen: at least one CPU online. */
538 }
539
540 /* If we are on an internal node, complain bitterly. */
541 WARN_ON_ONCE(rnp != rdp->mynode);
542
543 /*
544 * Move tasks up to root rcu_node. Don't try to get fancy for
545 * this corner-case operation -- just put this node's tasks
546 * at the head of the root node's list, and update the root node's
547 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
548 * if non-NULL. This might result in waiting for more tasks than
549 * absolutely necessary, but this is a good performance/complexity
550 * tradeoff.
551 */
552 if (rcu_preempt_blocked_readers_cgp(rnp))
553 retval |= RCU_OFL_TASKS_NORM_GP;
554 if (rcu_preempted_readers_exp(rnp))
555 retval |= RCU_OFL_TASKS_EXP_GP;
556 lp = &rnp->blkd_tasks;
557 lp_root = &rnp_root->blkd_tasks;
558 while (!list_empty(lp)) {
559 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
560 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
561 list_del(&t->rcu_node_entry);
562 t->rcu_blocked_node = rnp_root;
563 list_add(&t->rcu_node_entry, lp_root);
564 if (&t->rcu_node_entry == rnp->gp_tasks)
565 rnp_root->gp_tasks = rnp->gp_tasks;
566 if (&t->rcu_node_entry == rnp->exp_tasks)
567 rnp_root->exp_tasks = rnp->exp_tasks;
568 #ifdef CONFIG_RCU_BOOST
569 if (&t->rcu_node_entry == rnp->boost_tasks)
570 rnp_root->boost_tasks = rnp->boost_tasks;
571 #endif /* #ifdef CONFIG_RCU_BOOST */
572 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
573 }
574
575 #ifdef CONFIG_RCU_BOOST
576 /* In case root is being boosted and leaf is not. */
577 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
578 if (rnp_root->boost_tasks != NULL &&
579 rnp_root->boost_tasks != rnp_root->gp_tasks)
580 rnp_root->boost_tasks = rnp_root->gp_tasks;
581 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
582 #endif /* #ifdef CONFIG_RCU_BOOST */
583
584 rnp->gp_tasks = NULL;
585 rnp->exp_tasks = NULL;
586 return retval;
587 }
588
589 /*
590 * Do CPU-offline processing for preemptible RCU.
591 */
592 static void rcu_preempt_offline_cpu(int cpu)
593 {
594 __rcu_offline_cpu(cpu, &rcu_preempt_state);
595 }
596
597 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
598
599 /*
600 * Check for a quiescent state from the current CPU. When a task blocks,
601 * the task is recorded in the corresponding CPU's rcu_node structure,
602 * which is checked elsewhere.
603 *
604 * Caller must disable hard irqs.
605 */
606 static void rcu_preempt_check_callbacks(int cpu)
607 {
608 struct task_struct *t = current;
609
610 if (t->rcu_read_lock_nesting == 0) {
611 rcu_preempt_qs(cpu);
612 return;
613 }
614 if (t->rcu_read_lock_nesting > 0 &&
615 per_cpu(rcu_preempt_data, cpu).qs_pending)
616 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
617 }
618
619 /*
620 * Process callbacks for preemptible RCU.
621 */
622 static void rcu_preempt_process_callbacks(void)
623 {
624 __rcu_process_callbacks(&rcu_preempt_state,
625 &__get_cpu_var(rcu_preempt_data));
626 }
627
628 #ifdef CONFIG_RCU_BOOST
629
630 static void rcu_preempt_do_callbacks(void)
631 {
632 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
633 }
634
635 #endif /* #ifdef CONFIG_RCU_BOOST */
636
637 /*
638 * Queue a preemptible-RCU callback for invocation after a grace period.
639 */
640 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
641 {
642 __call_rcu(head, func, &rcu_preempt_state);
643 }
644 EXPORT_SYMBOL_GPL(call_rcu);
645
646 /**
647 * synchronize_rcu - wait until a grace period has elapsed.
648 *
649 * Control will return to the caller some time after a full grace
650 * period has elapsed, in other words after all currently executing RCU
651 * read-side critical sections have completed. Note, however, that
652 * upon return from synchronize_rcu(), the caller might well be executing
653 * concurrently with new RCU read-side critical sections that began while
654 * synchronize_rcu() was waiting. RCU read-side critical sections are
655 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
656 */
657 void synchronize_rcu(void)
658 {
659 if (!rcu_scheduler_active)
660 return;
661 wait_rcu_gp(call_rcu);
662 }
663 EXPORT_SYMBOL_GPL(synchronize_rcu);
664
665 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
666 static long sync_rcu_preempt_exp_count;
667 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
668
669 /*
670 * Return non-zero if there are any tasks in RCU read-side critical
671 * sections blocking the current preemptible-RCU expedited grace period.
672 * If there is no preemptible-RCU expedited grace period currently in
673 * progress, returns zero unconditionally.
674 */
675 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
676 {
677 return rnp->exp_tasks != NULL;
678 }
679
680 /*
681 * return non-zero if there is no RCU expedited grace period in progress
682 * for the specified rcu_node structure, in other words, if all CPUs and
683 * tasks covered by the specified rcu_node structure have done their bit
684 * for the current expedited grace period. Works only for preemptible
685 * RCU -- other RCU implementation use other means.
686 *
687 * Caller must hold sync_rcu_preempt_exp_mutex.
688 */
689 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
690 {
691 return !rcu_preempted_readers_exp(rnp) &&
692 ACCESS_ONCE(rnp->expmask) == 0;
693 }
694
695 /*
696 * Report the exit from RCU read-side critical section for the last task
697 * that queued itself during or before the current expedited preemptible-RCU
698 * grace period. This event is reported either to the rcu_node structure on
699 * which the task was queued or to one of that rcu_node structure's ancestors,
700 * recursively up the tree. (Calm down, calm down, we do the recursion
701 * iteratively!)
702 *
703 * Caller must hold sync_rcu_preempt_exp_mutex.
704 */
705 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
706 {
707 unsigned long flags;
708 unsigned long mask;
709
710 raw_spin_lock_irqsave(&rnp->lock, flags);
711 for (;;) {
712 if (!sync_rcu_preempt_exp_done(rnp)) {
713 raw_spin_unlock_irqrestore(&rnp->lock, flags);
714 break;
715 }
716 if (rnp->parent == NULL) {
717 raw_spin_unlock_irqrestore(&rnp->lock, flags);
718 wake_up(&sync_rcu_preempt_exp_wq);
719 break;
720 }
721 mask = rnp->grpmask;
722 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
723 rnp = rnp->parent;
724 raw_spin_lock(&rnp->lock); /* irqs already disabled */
725 rnp->expmask &= ~mask;
726 }
727 }
728
729 /*
730 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
731 * grace period for the specified rcu_node structure. If there are no such
732 * tasks, report it up the rcu_node hierarchy.
733 *
734 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
735 */
736 static void
737 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
738 {
739 unsigned long flags;
740 int must_wait = 0;
741
742 raw_spin_lock_irqsave(&rnp->lock, flags);
743 if (list_empty(&rnp->blkd_tasks))
744 raw_spin_unlock_irqrestore(&rnp->lock, flags);
745 else {
746 rnp->exp_tasks = rnp->blkd_tasks.next;
747 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
748 must_wait = 1;
749 }
750 if (!must_wait)
751 rcu_report_exp_rnp(rsp, rnp);
752 }
753
754 /*
755 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
756 * is to invoke synchronize_sched_expedited() to push all the tasks to
757 * the ->blkd_tasks lists and wait for this list to drain.
758 */
759 void synchronize_rcu_expedited(void)
760 {
761 unsigned long flags;
762 struct rcu_node *rnp;
763 struct rcu_state *rsp = &rcu_preempt_state;
764 long snap;
765 int trycount = 0;
766
767 smp_mb(); /* Caller's modifications seen first by other CPUs. */
768 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
769 smp_mb(); /* Above access cannot bleed into critical section. */
770
771 /*
772 * Acquire lock, falling back to synchronize_rcu() if too many
773 * lock-acquisition failures. Of course, if someone does the
774 * expedited grace period for us, just leave.
775 */
776 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
777 if (trycount++ < 10)
778 udelay(trycount * num_online_cpus());
779 else {
780 synchronize_rcu();
781 return;
782 }
783 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
784 goto mb_ret; /* Others did our work for us. */
785 }
786 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
787 goto unlock_mb_ret; /* Others did our work for us. */
788
789 /* force all RCU readers onto ->blkd_tasks lists. */
790 synchronize_sched_expedited();
791
792 raw_spin_lock_irqsave(&rsp->onofflock, flags);
793
794 /* Initialize ->expmask for all non-leaf rcu_node structures. */
795 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
796 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
797 rnp->expmask = rnp->qsmaskinit;
798 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
799 }
800
801 /* Snapshot current state of ->blkd_tasks lists. */
802 rcu_for_each_leaf_node(rsp, rnp)
803 sync_rcu_preempt_exp_init(rsp, rnp);
804 if (NUM_RCU_NODES > 1)
805 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
806
807 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
808
809 /* Wait for snapshotted ->blkd_tasks lists to drain. */
810 rnp = rcu_get_root(rsp);
811 wait_event(sync_rcu_preempt_exp_wq,
812 sync_rcu_preempt_exp_done(rnp));
813
814 /* Clean up and exit. */
815 smp_mb(); /* ensure expedited GP seen before counter increment. */
816 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
817 unlock_mb_ret:
818 mutex_unlock(&sync_rcu_preempt_exp_mutex);
819 mb_ret:
820 smp_mb(); /* ensure subsequent action seen after grace period. */
821 }
822 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
823
824 /*
825 * Check to see if there is any immediate preemptible-RCU-related work
826 * to be done.
827 */
828 static int rcu_preempt_pending(int cpu)
829 {
830 return __rcu_pending(&rcu_preempt_state,
831 &per_cpu(rcu_preempt_data, cpu));
832 }
833
834 /*
835 * Does preemptible RCU need the CPU to stay out of dynticks mode?
836 */
837 static int rcu_preempt_needs_cpu(int cpu)
838 {
839 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
840 }
841
842 /**
843 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
844 */
845 void rcu_barrier(void)
846 {
847 _rcu_barrier(&rcu_preempt_state, call_rcu);
848 }
849 EXPORT_SYMBOL_GPL(rcu_barrier);
850
851 /*
852 * Initialize preemptible RCU's per-CPU data.
853 */
854 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
855 {
856 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
857 }
858
859 /*
860 * Move preemptible RCU's callbacks from dying CPU to other online CPU.
861 */
862 static void rcu_preempt_send_cbs_to_online(void)
863 {
864 rcu_send_cbs_to_online(&rcu_preempt_state);
865 }
866
867 /*
868 * Initialize preemptible RCU's state structures.
869 */
870 static void __init __rcu_init_preempt(void)
871 {
872 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
873 }
874
875 /*
876 * Check for a task exiting while in a preemptible-RCU read-side
877 * critical section, clean up if so. No need to issue warnings,
878 * as debug_check_no_locks_held() already does this if lockdep
879 * is enabled.
880 */
881 void exit_rcu(void)
882 {
883 struct task_struct *t = current;
884
885 if (t->rcu_read_lock_nesting == 0)
886 return;
887 t->rcu_read_lock_nesting = 1;
888 __rcu_read_unlock();
889 }
890
891 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
892
893 static struct rcu_state *rcu_state = &rcu_sched_state;
894
895 /*
896 * Tell them what RCU they are running.
897 */
898 static void __init rcu_bootup_announce(void)
899 {
900 printk(KERN_INFO "Hierarchical RCU implementation.\n");
901 rcu_bootup_announce_oddness();
902 }
903
904 /*
905 * Return the number of RCU batches processed thus far for debug & stats.
906 */
907 long rcu_batches_completed(void)
908 {
909 return rcu_batches_completed_sched();
910 }
911 EXPORT_SYMBOL_GPL(rcu_batches_completed);
912
913 /*
914 * Force a quiescent state for RCU, which, because there is no preemptible
915 * RCU, becomes the same as rcu-sched.
916 */
917 void rcu_force_quiescent_state(void)
918 {
919 rcu_sched_force_quiescent_state();
920 }
921 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
922
923 /*
924 * Because preemptible RCU does not exist, we never have to check for
925 * CPUs being in quiescent states.
926 */
927 static void rcu_preempt_note_context_switch(int cpu)
928 {
929 }
930
931 /*
932 * Because preemptible RCU does not exist, there are never any preempted
933 * RCU readers.
934 */
935 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
936 {
937 return 0;
938 }
939
940 #ifdef CONFIG_HOTPLUG_CPU
941
942 /* Because preemptible RCU does not exist, no quieting of tasks. */
943 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
944 {
945 raw_spin_unlock_irqrestore(&rnp->lock, flags);
946 }
947
948 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
949
950 /*
951 * Because preemptible RCU does not exist, we never have to check for
952 * tasks blocked within RCU read-side critical sections.
953 */
954 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
955 {
956 }
957
958 /*
959 * Because preemptible RCU does not exist, we never have to check for
960 * tasks blocked within RCU read-side critical sections.
961 */
962 static void rcu_print_task_stall(struct rcu_node *rnp)
963 {
964 }
965
966 /*
967 * Because preemptible RCU does not exist, there is no need to suppress
968 * its CPU stall warnings.
969 */
970 static void rcu_preempt_stall_reset(void)
971 {
972 }
973
974 /*
975 * Because there is no preemptible RCU, there can be no readers blocked,
976 * so there is no need to check for blocked tasks. So check only for
977 * bogus qsmask values.
978 */
979 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
980 {
981 WARN_ON_ONCE(rnp->qsmask);
982 }
983
984 #ifdef CONFIG_HOTPLUG_CPU
985
986 /*
987 * Because preemptible RCU does not exist, it never needs to migrate
988 * tasks that were blocked within RCU read-side critical sections, and
989 * such non-existent tasks cannot possibly have been blocking the current
990 * grace period.
991 */
992 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
993 struct rcu_node *rnp,
994 struct rcu_data *rdp)
995 {
996 return 0;
997 }
998
999 /*
1000 * Because preemptible RCU does not exist, it never needs CPU-offline
1001 * processing.
1002 */
1003 static void rcu_preempt_offline_cpu(int cpu)
1004 {
1005 }
1006
1007 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1008
1009 /*
1010 * Because preemptible RCU does not exist, it never has any callbacks
1011 * to check.
1012 */
1013 static void rcu_preempt_check_callbacks(int cpu)
1014 {
1015 }
1016
1017 /*
1018 * Because preemptible RCU does not exist, it never has any callbacks
1019 * to process.
1020 */
1021 static void rcu_preempt_process_callbacks(void)
1022 {
1023 }
1024
1025 /*
1026 * Wait for an rcu-preempt grace period, but make it happen quickly.
1027 * But because preemptible RCU does not exist, map to rcu-sched.
1028 */
1029 void synchronize_rcu_expedited(void)
1030 {
1031 synchronize_sched_expedited();
1032 }
1033 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1034
1035 #ifdef CONFIG_HOTPLUG_CPU
1036
1037 /*
1038 * Because preemptible RCU does not exist, there is never any need to
1039 * report on tasks preempted in RCU read-side critical sections during
1040 * expedited RCU grace periods.
1041 */
1042 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
1043 {
1044 return;
1045 }
1046
1047 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1048
1049 /*
1050 * Because preemptible RCU does not exist, it never has any work to do.
1051 */
1052 static int rcu_preempt_pending(int cpu)
1053 {
1054 return 0;
1055 }
1056
1057 /*
1058 * Because preemptible RCU does not exist, it never needs any CPU.
1059 */
1060 static int rcu_preempt_needs_cpu(int cpu)
1061 {
1062 return 0;
1063 }
1064
1065 /*
1066 * Because preemptible RCU does not exist, rcu_barrier() is just
1067 * another name for rcu_barrier_sched().
1068 */
1069 void rcu_barrier(void)
1070 {
1071 rcu_barrier_sched();
1072 }
1073 EXPORT_SYMBOL_GPL(rcu_barrier);
1074
1075 /*
1076 * Because preemptible RCU does not exist, there is no per-CPU
1077 * data to initialize.
1078 */
1079 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
1080 {
1081 }
1082
1083 /*
1084 * Because there is no preemptible RCU, there are no callbacks to move.
1085 */
1086 static void rcu_preempt_send_cbs_to_online(void)
1087 {
1088 }
1089
1090 /*
1091 * Because preemptible RCU does not exist, it need not be initialized.
1092 */
1093 static void __init __rcu_init_preempt(void)
1094 {
1095 }
1096
1097 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1098
1099 #ifdef CONFIG_RCU_BOOST
1100
1101 #include "rtmutex_common.h"
1102
1103 #ifdef CONFIG_RCU_TRACE
1104
1105 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1106 {
1107 if (list_empty(&rnp->blkd_tasks))
1108 rnp->n_balk_blkd_tasks++;
1109 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1110 rnp->n_balk_exp_gp_tasks++;
1111 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1112 rnp->n_balk_boost_tasks++;
1113 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1114 rnp->n_balk_notblocked++;
1115 else if (rnp->gp_tasks != NULL &&
1116 ULONG_CMP_LT(jiffies, rnp->boost_time))
1117 rnp->n_balk_notyet++;
1118 else
1119 rnp->n_balk_nos++;
1120 }
1121
1122 #else /* #ifdef CONFIG_RCU_TRACE */
1123
1124 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1125 {
1126 }
1127
1128 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1129
1130 /*
1131 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1132 * or ->boost_tasks, advancing the pointer to the next task in the
1133 * ->blkd_tasks list.
1134 *
1135 * Note that irqs must be enabled: boosting the task can block.
1136 * Returns 1 if there are more tasks needing to be boosted.
1137 */
1138 static int rcu_boost(struct rcu_node *rnp)
1139 {
1140 unsigned long flags;
1141 struct rt_mutex mtx;
1142 struct task_struct *t;
1143 struct list_head *tb;
1144
1145 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1146 return 0; /* Nothing left to boost. */
1147
1148 raw_spin_lock_irqsave(&rnp->lock, flags);
1149
1150 /*
1151 * Recheck under the lock: all tasks in need of boosting
1152 * might exit their RCU read-side critical sections on their own.
1153 */
1154 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1155 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1156 return 0;
1157 }
1158
1159 /*
1160 * Preferentially boost tasks blocking expedited grace periods.
1161 * This cannot starve the normal grace periods because a second
1162 * expedited grace period must boost all blocked tasks, including
1163 * those blocking the pre-existing normal grace period.
1164 */
1165 if (rnp->exp_tasks != NULL) {
1166 tb = rnp->exp_tasks;
1167 rnp->n_exp_boosts++;
1168 } else {
1169 tb = rnp->boost_tasks;
1170 rnp->n_normal_boosts++;
1171 }
1172 rnp->n_tasks_boosted++;
1173
1174 /*
1175 * We boost task t by manufacturing an rt_mutex that appears to
1176 * be held by task t. We leave a pointer to that rt_mutex where
1177 * task t can find it, and task t will release the mutex when it
1178 * exits its outermost RCU read-side critical section. Then
1179 * simply acquiring this artificial rt_mutex will boost task
1180 * t's priority. (Thanks to tglx for suggesting this approach!)
1181 *
1182 * Note that task t must acquire rnp->lock to remove itself from
1183 * the ->blkd_tasks list, which it will do from exit() if from
1184 * nowhere else. We therefore are guaranteed that task t will
1185 * stay around at least until we drop rnp->lock. Note that
1186 * rnp->lock also resolves races between our priority boosting
1187 * and task t's exiting its outermost RCU read-side critical
1188 * section.
1189 */
1190 t = container_of(tb, struct task_struct, rcu_node_entry);
1191 rt_mutex_init_proxy_locked(&mtx, t);
1192 t->rcu_boost_mutex = &mtx;
1193 t->rcu_boosted = 1;
1194 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1195 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1196 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1197
1198 return rnp->exp_tasks != NULL || rnp->boost_tasks != NULL;
1199 }
1200
1201 /*
1202 * Timer handler to initiate waking up of boost kthreads that
1203 * have yielded the CPU due to excessive numbers of tasks to
1204 * boost. We wake up the per-rcu_node kthread, which in turn
1205 * will wake up the booster kthread.
1206 */
1207 static void rcu_boost_kthread_timer(unsigned long arg)
1208 {
1209 invoke_rcu_node_kthread((struct rcu_node *)arg);
1210 }
1211
1212 /*
1213 * Priority-boosting kthread. One per leaf rcu_node and one for the
1214 * root rcu_node.
1215 */
1216 static int rcu_boost_kthread(void *arg)
1217 {
1218 struct rcu_node *rnp = (struct rcu_node *)arg;
1219 int spincnt = 0;
1220 int more2boost;
1221
1222 trace_rcu_utilization("Start boost kthread@init");
1223 for (;;) {
1224 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1225 trace_rcu_utilization("End boost kthread@rcu_wait");
1226 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1227 trace_rcu_utilization("Start boost kthread@rcu_wait");
1228 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1229 more2boost = rcu_boost(rnp);
1230 if (more2boost)
1231 spincnt++;
1232 else
1233 spincnt = 0;
1234 if (spincnt > 10) {
1235 trace_rcu_utilization("End boost kthread@rcu_yield");
1236 rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
1237 trace_rcu_utilization("Start boost kthread@rcu_yield");
1238 spincnt = 0;
1239 }
1240 }
1241 /* NOTREACHED */
1242 trace_rcu_utilization("End boost kthread@notreached");
1243 return 0;
1244 }
1245
1246 /*
1247 * Check to see if it is time to start boosting RCU readers that are
1248 * blocking the current grace period, and, if so, tell the per-rcu_node
1249 * kthread to start boosting them. If there is an expedited grace
1250 * period in progress, it is always time to boost.
1251 *
1252 * The caller must hold rnp->lock, which this function releases,
1253 * but irqs remain disabled. The ->boost_kthread_task is immortal,
1254 * so we don't need to worry about it going away.
1255 */
1256 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1257 {
1258 struct task_struct *t;
1259
1260 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1261 rnp->n_balk_exp_gp_tasks++;
1262 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1263 return;
1264 }
1265 if (rnp->exp_tasks != NULL ||
1266 (rnp->gp_tasks != NULL &&
1267 rnp->boost_tasks == NULL &&
1268 rnp->qsmask == 0 &&
1269 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1270 if (rnp->exp_tasks == NULL)
1271 rnp->boost_tasks = rnp->gp_tasks;
1272 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1273 t = rnp->boost_kthread_task;
1274 if (t != NULL)
1275 wake_up_process(t);
1276 } else {
1277 rcu_initiate_boost_trace(rnp);
1278 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1279 }
1280 }
1281
1282 /*
1283 * Wake up the per-CPU kthread to invoke RCU callbacks.
1284 */
1285 static void invoke_rcu_callbacks_kthread(void)
1286 {
1287 unsigned long flags;
1288
1289 local_irq_save(flags);
1290 __this_cpu_write(rcu_cpu_has_work, 1);
1291 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1292 current != __this_cpu_read(rcu_cpu_kthread_task))
1293 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
1294 local_irq_restore(flags);
1295 }
1296
1297 /*
1298 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1299 * held, so no one should be messing with the existence of the boost
1300 * kthread.
1301 */
1302 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1303 cpumask_var_t cm)
1304 {
1305 struct task_struct *t;
1306
1307 t = rnp->boost_kthread_task;
1308 if (t != NULL)
1309 set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
1310 }
1311
1312 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1313
1314 /*
1315 * Do priority-boost accounting for the start of a new grace period.
1316 */
1317 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1318 {
1319 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1320 }
1321
1322 /*
1323 * Create an RCU-boost kthread for the specified node if one does not
1324 * already exist. We only create this kthread for preemptible RCU.
1325 * Returns zero if all is well, a negated errno otherwise.
1326 */
1327 static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1328 struct rcu_node *rnp,
1329 int rnp_index)
1330 {
1331 unsigned long flags;
1332 struct sched_param sp;
1333 struct task_struct *t;
1334
1335 if (&rcu_preempt_state != rsp)
1336 return 0;
1337 rsp->boost = 1;
1338 if (rnp->boost_kthread_task != NULL)
1339 return 0;
1340 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1341 "rcub%d", rnp_index);
1342 if (IS_ERR(t))
1343 return PTR_ERR(t);
1344 raw_spin_lock_irqsave(&rnp->lock, flags);
1345 rnp->boost_kthread_task = t;
1346 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1347 sp.sched_priority = RCU_KTHREAD_PRIO;
1348 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1349 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1350 return 0;
1351 }
1352
1353 #ifdef CONFIG_HOTPLUG_CPU
1354
1355 /*
1356 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1357 */
1358 static void rcu_stop_cpu_kthread(int cpu)
1359 {
1360 struct task_struct *t;
1361
1362 /* Stop the CPU's kthread. */
1363 t = per_cpu(rcu_cpu_kthread_task, cpu);
1364 if (t != NULL) {
1365 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1366 kthread_stop(t);
1367 }
1368 }
1369
1370 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1371
1372 static void rcu_kthread_do_work(void)
1373 {
1374 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1375 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1376 rcu_preempt_do_callbacks();
1377 }
1378
1379 /*
1380 * Wake up the specified per-rcu_node-structure kthread.
1381 * Because the per-rcu_node kthreads are immortal, we don't need
1382 * to do anything to keep them alive.
1383 */
1384 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1385 {
1386 struct task_struct *t;
1387
1388 t = rnp->node_kthread_task;
1389 if (t != NULL)
1390 wake_up_process(t);
1391 }
1392
1393 /*
1394 * Set the specified CPU's kthread to run RT or not, as specified by
1395 * the to_rt argument. The CPU-hotplug locks are held, so the task
1396 * is not going away.
1397 */
1398 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1399 {
1400 int policy;
1401 struct sched_param sp;
1402 struct task_struct *t;
1403
1404 t = per_cpu(rcu_cpu_kthread_task, cpu);
1405 if (t == NULL)
1406 return;
1407 if (to_rt) {
1408 policy = SCHED_FIFO;
1409 sp.sched_priority = RCU_KTHREAD_PRIO;
1410 } else {
1411 policy = SCHED_NORMAL;
1412 sp.sched_priority = 0;
1413 }
1414 sched_setscheduler_nocheck(t, policy, &sp);
1415 }
1416
1417 /*
1418 * Timer handler to initiate the waking up of per-CPU kthreads that
1419 * have yielded the CPU due to excess numbers of RCU callbacks.
1420 * We wake up the per-rcu_node kthread, which in turn will wake up
1421 * the booster kthread.
1422 */
1423 static void rcu_cpu_kthread_timer(unsigned long arg)
1424 {
1425 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1426 struct rcu_node *rnp = rdp->mynode;
1427
1428 atomic_or(rdp->grpmask, &rnp->wakemask);
1429 invoke_rcu_node_kthread(rnp);
1430 }
1431
1432 /*
1433 * Drop to non-real-time priority and yield, but only after posting a
1434 * timer that will cause us to regain our real-time priority if we
1435 * remain preempted. Either way, we restore our real-time priority
1436 * before returning.
1437 */
1438 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1439 {
1440 struct sched_param sp;
1441 struct timer_list yield_timer;
1442
1443 setup_timer_on_stack(&yield_timer, f, arg);
1444 mod_timer(&yield_timer, jiffies + 2);
1445 sp.sched_priority = 0;
1446 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1447 set_user_nice(current, 19);
1448 schedule();
1449 sp.sched_priority = RCU_KTHREAD_PRIO;
1450 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1451 del_timer(&yield_timer);
1452 }
1453
1454 /*
1455 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1456 * This can happen while the corresponding CPU is either coming online
1457 * or going offline. We cannot wait until the CPU is fully online
1458 * before starting the kthread, because the various notifier functions
1459 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1460 * the corresponding CPU is online.
1461 *
1462 * Return 1 if the kthread needs to stop, 0 otherwise.
1463 *
1464 * Caller must disable bh. This function can momentarily enable it.
1465 */
1466 static int rcu_cpu_kthread_should_stop(int cpu)
1467 {
1468 while (cpu_is_offline(cpu) ||
1469 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1470 smp_processor_id() != cpu) {
1471 if (kthread_should_stop())
1472 return 1;
1473 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1474 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1475 local_bh_enable();
1476 schedule_timeout_uninterruptible(1);
1477 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1478 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1479 local_bh_disable();
1480 }
1481 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1482 return 0;
1483 }
1484
1485 /*
1486 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1487 * RCU softirq used in flavors and configurations of RCU that do not
1488 * support RCU priority boosting.
1489 */
1490 static int rcu_cpu_kthread(void *arg)
1491 {
1492 int cpu = (int)(long)arg;
1493 unsigned long flags;
1494 int spincnt = 0;
1495 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1496 char work;
1497 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1498
1499 trace_rcu_utilization("Start CPU kthread@init");
1500 for (;;) {
1501 *statusp = RCU_KTHREAD_WAITING;
1502 trace_rcu_utilization("End CPU kthread@rcu_wait");
1503 rcu_wait(*workp != 0 || kthread_should_stop());
1504 trace_rcu_utilization("Start CPU kthread@rcu_wait");
1505 local_bh_disable();
1506 if (rcu_cpu_kthread_should_stop(cpu)) {
1507 local_bh_enable();
1508 break;
1509 }
1510 *statusp = RCU_KTHREAD_RUNNING;
1511 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1512 local_irq_save(flags);
1513 work = *workp;
1514 *workp = 0;
1515 local_irq_restore(flags);
1516 if (work)
1517 rcu_kthread_do_work();
1518 local_bh_enable();
1519 if (*workp != 0)
1520 spincnt++;
1521 else
1522 spincnt = 0;
1523 if (spincnt > 10) {
1524 *statusp = RCU_KTHREAD_YIELDING;
1525 trace_rcu_utilization("End CPU kthread@rcu_yield");
1526 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1527 trace_rcu_utilization("Start CPU kthread@rcu_yield");
1528 spincnt = 0;
1529 }
1530 }
1531 *statusp = RCU_KTHREAD_STOPPED;
1532 trace_rcu_utilization("End CPU kthread@term");
1533 return 0;
1534 }
1535
1536 /*
1537 * Spawn a per-CPU kthread, setting up affinity and priority.
1538 * Because the CPU hotplug lock is held, no other CPU will be attempting
1539 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1540 * attempting to access it during boot, but the locking in kthread_bind()
1541 * will enforce sufficient ordering.
1542 *
1543 * Please note that we cannot simply refuse to wake up the per-CPU
1544 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1545 * which can result in softlockup complaints if the task ends up being
1546 * idle for more than a couple of minutes.
1547 *
1548 * However, please note also that we cannot bind the per-CPU kthread to its
1549 * CPU until that CPU is fully online. We also cannot wait until the
1550 * CPU is fully online before we create its per-CPU kthread, as this would
1551 * deadlock the system when CPU notifiers tried waiting for grace
1552 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1553 * is online. If its CPU is not yet fully online, then the code in
1554 * rcu_cpu_kthread() will wait until it is fully online, and then do
1555 * the binding.
1556 */
1557 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1558 {
1559 struct sched_param sp;
1560 struct task_struct *t;
1561
1562 if (!rcu_scheduler_fully_active ||
1563 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1564 return 0;
1565 t = kthread_create_on_node(rcu_cpu_kthread,
1566 (void *)(long)cpu,
1567 cpu_to_node(cpu),
1568 "rcuc%d", cpu);
1569 if (IS_ERR(t))
1570 return PTR_ERR(t);
1571 if (cpu_online(cpu))
1572 kthread_bind(t, cpu);
1573 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1574 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1575 sp.sched_priority = RCU_KTHREAD_PRIO;
1576 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1577 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1578 wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1579 return 0;
1580 }
1581
1582 /*
1583 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1584 * kthreads when needed. We ignore requests to wake up kthreads
1585 * for offline CPUs, which is OK because force_quiescent_state()
1586 * takes care of this case.
1587 */
1588 static int rcu_node_kthread(void *arg)
1589 {
1590 int cpu;
1591 unsigned long flags;
1592 unsigned long mask;
1593 struct rcu_node *rnp = (struct rcu_node *)arg;
1594 struct sched_param sp;
1595 struct task_struct *t;
1596
1597 for (;;) {
1598 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1599 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1600 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1601 raw_spin_lock_irqsave(&rnp->lock, flags);
1602 mask = atomic_xchg(&rnp->wakemask, 0);
1603 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1604 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1605 if ((mask & 0x1) == 0)
1606 continue;
1607 preempt_disable();
1608 t = per_cpu(rcu_cpu_kthread_task, cpu);
1609 if (!cpu_online(cpu) || t == NULL) {
1610 preempt_enable();
1611 continue;
1612 }
1613 per_cpu(rcu_cpu_has_work, cpu) = 1;
1614 sp.sched_priority = RCU_KTHREAD_PRIO;
1615 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1616 preempt_enable();
1617 }
1618 }
1619 /* NOTREACHED */
1620 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1621 return 0;
1622 }
1623
1624 /*
1625 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1626 * served by the rcu_node in question. The CPU hotplug lock is still
1627 * held, so the value of rnp->qsmaskinit will be stable.
1628 *
1629 * We don't include outgoingcpu in the affinity set, use -1 if there is
1630 * no outgoing CPU. If there are no CPUs left in the affinity set,
1631 * this function allows the kthread to execute on any CPU.
1632 */
1633 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1634 {
1635 cpumask_var_t cm;
1636 int cpu;
1637 unsigned long mask = rnp->qsmaskinit;
1638
1639 if (rnp->node_kthread_task == NULL)
1640 return;
1641 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1642 return;
1643 cpumask_clear(cm);
1644 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1645 if ((mask & 0x1) && cpu != outgoingcpu)
1646 cpumask_set_cpu(cpu, cm);
1647 if (cpumask_weight(cm) == 0) {
1648 cpumask_setall(cm);
1649 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1650 cpumask_clear_cpu(cpu, cm);
1651 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1652 }
1653 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1654 rcu_boost_kthread_setaffinity(rnp, cm);
1655 free_cpumask_var(cm);
1656 }
1657
1658 /*
1659 * Spawn a per-rcu_node kthread, setting priority and affinity.
1660 * Called during boot before online/offline can happen, or, if
1661 * during runtime, with the main CPU-hotplug locks held. So only
1662 * one of these can be executing at a time.
1663 */
1664 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1665 struct rcu_node *rnp)
1666 {
1667 unsigned long flags;
1668 int rnp_index = rnp - &rsp->node[0];
1669 struct sched_param sp;
1670 struct task_struct *t;
1671
1672 if (!rcu_scheduler_fully_active ||
1673 rnp->qsmaskinit == 0)
1674 return 0;
1675 if (rnp->node_kthread_task == NULL) {
1676 t = kthread_create(rcu_node_kthread, (void *)rnp,
1677 "rcun%d", rnp_index);
1678 if (IS_ERR(t))
1679 return PTR_ERR(t);
1680 raw_spin_lock_irqsave(&rnp->lock, flags);
1681 rnp->node_kthread_task = t;
1682 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1683 sp.sched_priority = 99;
1684 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1685 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1686 }
1687 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1688 }
1689
1690 /*
1691 * Spawn all kthreads -- called as soon as the scheduler is running.
1692 */
1693 static int __init rcu_spawn_kthreads(void)
1694 {
1695 int cpu;
1696 struct rcu_node *rnp;
1697
1698 rcu_scheduler_fully_active = 1;
1699 for_each_possible_cpu(cpu) {
1700 per_cpu(rcu_cpu_has_work, cpu) = 0;
1701 if (cpu_online(cpu))
1702 (void)rcu_spawn_one_cpu_kthread(cpu);
1703 }
1704 rnp = rcu_get_root(rcu_state);
1705 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1706 if (NUM_RCU_NODES > 1) {
1707 rcu_for_each_leaf_node(rcu_state, rnp)
1708 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1709 }
1710 return 0;
1711 }
1712 early_initcall(rcu_spawn_kthreads);
1713
1714 static void __cpuinit rcu_prepare_kthreads(int cpu)
1715 {
1716 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1717 struct rcu_node *rnp = rdp->mynode;
1718
1719 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1720 if (rcu_scheduler_fully_active) {
1721 (void)rcu_spawn_one_cpu_kthread(cpu);
1722 if (rnp->node_kthread_task == NULL)
1723 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1724 }
1725 }
1726
1727 #else /* #ifdef CONFIG_RCU_BOOST */
1728
1729 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1730 {
1731 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1732 }
1733
1734 static void invoke_rcu_callbacks_kthread(void)
1735 {
1736 WARN_ON_ONCE(1);
1737 }
1738
1739 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1740 {
1741 }
1742
1743 #ifdef CONFIG_HOTPLUG_CPU
1744
1745 static void rcu_stop_cpu_kthread(int cpu)
1746 {
1747 }
1748
1749 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1750
1751 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1752 {
1753 }
1754
1755 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1756 {
1757 }
1758
1759 static int __init rcu_scheduler_really_started(void)
1760 {
1761 rcu_scheduler_fully_active = 1;
1762 return 0;
1763 }
1764 early_initcall(rcu_scheduler_really_started);
1765
1766 static void __cpuinit rcu_prepare_kthreads(int cpu)
1767 {
1768 }
1769
1770 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1771
1772 #ifndef CONFIG_SMP
1773
1774 void synchronize_sched_expedited(void)
1775 {
1776 cond_resched();
1777 }
1778 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1779
1780 #else /* #ifndef CONFIG_SMP */
1781
1782 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1783 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1784
1785 static int synchronize_sched_expedited_cpu_stop(void *data)
1786 {
1787 /*
1788 * There must be a full memory barrier on each affected CPU
1789 * between the time that try_stop_cpus() is called and the
1790 * time that it returns.
1791 *
1792 * In the current initial implementation of cpu_stop, the
1793 * above condition is already met when the control reaches
1794 * this point and the following smp_mb() is not strictly
1795 * necessary. Do smp_mb() anyway for documentation and
1796 * robustness against future implementation changes.
1797 */
1798 smp_mb(); /* See above comment block. */
1799 return 0;
1800 }
1801
1802 /*
1803 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
1804 * approach to force grace period to end quickly. This consumes
1805 * significant time on all CPUs, and is thus not recommended for
1806 * any sort of common-case code.
1807 *
1808 * Note that it is illegal to call this function while holding any
1809 * lock that is acquired by a CPU-hotplug notifier. Failing to
1810 * observe this restriction will result in deadlock.
1811 *
1812 * This implementation can be thought of as an application of ticket
1813 * locking to RCU, with sync_sched_expedited_started and
1814 * sync_sched_expedited_done taking on the roles of the halves
1815 * of the ticket-lock word. Each task atomically increments
1816 * sync_sched_expedited_started upon entry, snapshotting the old value,
1817 * then attempts to stop all the CPUs. If this succeeds, then each
1818 * CPU will have executed a context switch, resulting in an RCU-sched
1819 * grace period. We are then done, so we use atomic_cmpxchg() to
1820 * update sync_sched_expedited_done to match our snapshot -- but
1821 * only if someone else has not already advanced past our snapshot.
1822 *
1823 * On the other hand, if try_stop_cpus() fails, we check the value
1824 * of sync_sched_expedited_done. If it has advanced past our
1825 * initial snapshot, then someone else must have forced a grace period
1826 * some time after we took our snapshot. In this case, our work is
1827 * done for us, and we can simply return. Otherwise, we try again,
1828 * but keep our initial snapshot for purposes of checking for someone
1829 * doing our work for us.
1830 *
1831 * If we fail too many times in a row, we fall back to synchronize_sched().
1832 */
1833 void synchronize_sched_expedited(void)
1834 {
1835 int firstsnap, s, snap, trycount = 0;
1836
1837 /* Note that atomic_inc_return() implies full memory barrier. */
1838 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
1839 get_online_cpus();
1840
1841 /*
1842 * Each pass through the following loop attempts to force a
1843 * context switch on each CPU.
1844 */
1845 while (try_stop_cpus(cpu_online_mask,
1846 synchronize_sched_expedited_cpu_stop,
1847 NULL) == -EAGAIN) {
1848 put_online_cpus();
1849
1850 /* No joy, try again later. Or just synchronize_sched(). */
1851 if (trycount++ < 10)
1852 udelay(trycount * num_online_cpus());
1853 else {
1854 synchronize_sched();
1855 return;
1856 }
1857
1858 /* Check to see if someone else did our work for us. */
1859 s = atomic_read(&sync_sched_expedited_done);
1860 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
1861 smp_mb(); /* ensure test happens before caller kfree */
1862 return;
1863 }
1864
1865 /*
1866 * Refetching sync_sched_expedited_started allows later
1867 * callers to piggyback on our grace period. We subtract
1868 * 1 to get the same token that the last incrementer got.
1869 * We retry after they started, so our grace period works
1870 * for them, and they started after our first try, so their
1871 * grace period works for us.
1872 */
1873 get_online_cpus();
1874 snap = atomic_read(&sync_sched_expedited_started) - 1;
1875 smp_mb(); /* ensure read is before try_stop_cpus(). */
1876 }
1877
1878 /*
1879 * Everyone up to our most recent fetch is covered by our grace
1880 * period. Update the counter, but only if our work is still
1881 * relevant -- which it won't be if someone who started later
1882 * than we did beat us to the punch.
1883 */
1884 do {
1885 s = atomic_read(&sync_sched_expedited_done);
1886 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
1887 smp_mb(); /* ensure test happens before caller kfree */
1888 break;
1889 }
1890 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
1891
1892 put_online_cpus();
1893 }
1894 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1895
1896 #endif /* #else #ifndef CONFIG_SMP */
1897
1898 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1899
1900 /*
1901 * Check to see if any future RCU-related work will need to be done
1902 * by the current CPU, even if none need be done immediately, returning
1903 * 1 if so. This function is part of the RCU implementation; it is -not-
1904 * an exported member of the RCU API.
1905 *
1906 * Because we have preemptible RCU, just check whether this CPU needs
1907 * any flavor of RCU. Do not chew up lots of CPU cycles with preemption
1908 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
1909 */
1910 int rcu_needs_cpu(int cpu)
1911 {
1912 return rcu_needs_cpu_quick_check(cpu);
1913 }
1914
1915 /*
1916 * Check to see if we need to continue a callback-flush operations to
1917 * allow the last CPU to enter dyntick-idle mode. But fast dyntick-idle
1918 * entry is not configured, so we never do need to.
1919 */
1920 static void rcu_needs_cpu_flush(void)
1921 {
1922 }
1923
1924 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1925
1926 #define RCU_NEEDS_CPU_FLUSHES 5
1927 static DEFINE_PER_CPU(int, rcu_dyntick_drain);
1928 static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
1929
1930 /*
1931 * Check to see if any future RCU-related work will need to be done
1932 * by the current CPU, even if none need be done immediately, returning
1933 * 1 if so. This function is part of the RCU implementation; it is -not-
1934 * an exported member of the RCU API.
1935 *
1936 * Because we are not supporting preemptible RCU, attempt to accelerate
1937 * any current grace periods so that RCU no longer needs this CPU, but
1938 * only if all other CPUs are already in dynticks-idle mode. This will
1939 * allow the CPU cores to be powered down immediately, as opposed to after
1940 * waiting many milliseconds for grace periods to elapse.
1941 *
1942 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1943 * disabled, we do one pass of force_quiescent_state(), then do a
1944 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1945 * later. The per-cpu rcu_dyntick_drain variable controls the sequencing.
1946 */
1947 int rcu_needs_cpu(int cpu)
1948 {
1949 int c = 0;
1950 int snap;
1951 int thatcpu;
1952
1953 /* Check for being in the holdoff period. */
1954 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
1955 return rcu_needs_cpu_quick_check(cpu);
1956
1957 /* Don't bother unless we are the last non-dyntick-idle CPU. */
1958 for_each_online_cpu(thatcpu) {
1959 if (thatcpu == cpu)
1960 continue;
1961 snap = atomic_add_return(0, &per_cpu(rcu_dynticks,
1962 thatcpu).dynticks);
1963 smp_mb(); /* Order sampling of snap with end of grace period. */
1964 if ((snap & 0x1) != 0) {
1965 per_cpu(rcu_dyntick_drain, cpu) = 0;
1966 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
1967 return rcu_needs_cpu_quick_check(cpu);
1968 }
1969 }
1970
1971 /* Check and update the rcu_dyntick_drain sequencing. */
1972 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1973 /* First time through, initialize the counter. */
1974 per_cpu(rcu_dyntick_drain, cpu) = RCU_NEEDS_CPU_FLUSHES;
1975 } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1976 /* We have hit the limit, so time to give up. */
1977 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
1978 return rcu_needs_cpu_quick_check(cpu);
1979 }
1980
1981 /* Do one step pushing remaining RCU callbacks through. */
1982 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
1983 rcu_sched_qs(cpu);
1984 force_quiescent_state(&rcu_sched_state, 0);
1985 c = c || per_cpu(rcu_sched_data, cpu).nxtlist;
1986 }
1987 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
1988 rcu_bh_qs(cpu);
1989 force_quiescent_state(&rcu_bh_state, 0);
1990 c = c || per_cpu(rcu_bh_data, cpu).nxtlist;
1991 }
1992
1993 /* If RCU callbacks are still pending, RCU still needs this CPU. */
1994 if (c)
1995 invoke_rcu_core();
1996 return c;
1997 }
1998
1999 /*
2000 * Check to see if we need to continue a callback-flush operations to
2001 * allow the last CPU to enter dyntick-idle mode.
2002 */
2003 static void rcu_needs_cpu_flush(void)
2004 {
2005 int cpu = smp_processor_id();
2006 unsigned long flags;
2007
2008 if (per_cpu(rcu_dyntick_drain, cpu) <= 0)
2009 return;
2010 local_irq_save(flags);
2011 (void)rcu_needs_cpu(cpu);
2012 local_irq_restore(flags);
2013 }
2014
2015 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
This page took 0.251687 seconds and 5 git commands to generate.