c9616e48379b7fbd00e1523509f812f19aac649d
[deliverable/linux.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27
28 #ifdef CONFIG_TREE_PREEMPT_RCU
29
30 struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
31 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
32
33 /*
34 * Tell them what RCU they are running.
35 */
36 static inline void rcu_bootup_announce(void)
37 {
38 printk(KERN_INFO
39 "Experimental preemptable hierarchical RCU implementation.\n");
40 }
41
42 /*
43 * Return the number of RCU-preempt batches processed thus far
44 * for debug and statistics.
45 */
46 long rcu_batches_completed_preempt(void)
47 {
48 return rcu_preempt_state.completed;
49 }
50 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
51
52 /*
53 * Return the number of RCU batches processed thus far for debug & stats.
54 */
55 long rcu_batches_completed(void)
56 {
57 return rcu_batches_completed_preempt();
58 }
59 EXPORT_SYMBOL_GPL(rcu_batches_completed);
60
61 /*
62 * Record a preemptable-RCU quiescent state for the specified CPU. Note
63 * that this just means that the task currently running on the CPU is
64 * not in a quiescent state. There might be any number of tasks blocked
65 * while in an RCU read-side critical section.
66 */
67 static void rcu_preempt_qs(int cpu)
68 {
69 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
70 rdp->passed_quiesc_completed = rdp->completed;
71 barrier();
72 rdp->passed_quiesc = 1;
73 }
74
75 /*
76 * We have entered the scheduler, and the current task might soon be
77 * context-switched away from. If this task is in an RCU read-side
78 * critical section, we will no longer be able to rely on the CPU to
79 * record that fact, so we enqueue the task on the appropriate entry
80 * of the blocked_tasks[] array. The task will dequeue itself when
81 * it exits the outermost enclosing RCU read-side critical section.
82 * Therefore, the current grace period cannot be permitted to complete
83 * until the blocked_tasks[] entry indexed by the low-order bit of
84 * rnp->gpnum empties.
85 *
86 * Caller must disable preemption.
87 */
88 static void rcu_preempt_note_context_switch(int cpu)
89 {
90 struct task_struct *t = current;
91 unsigned long flags;
92 int phase;
93 struct rcu_data *rdp;
94 struct rcu_node *rnp;
95
96 if (t->rcu_read_lock_nesting &&
97 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
98
99 /* Possibly blocking in an RCU read-side critical section. */
100 rdp = rcu_preempt_state.rda[cpu];
101 rnp = rdp->mynode;
102 spin_lock_irqsave(&rnp->lock, flags);
103 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
104 t->rcu_blocked_node = rnp;
105
106 /*
107 * If this CPU has already checked in, then this task
108 * will hold up the next grace period rather than the
109 * current grace period. Queue the task accordingly.
110 * If the task is queued for the current grace period
111 * (i.e., this CPU has not yet passed through a quiescent
112 * state for the current grace period), then as long
113 * as that task remains queued, the current grace period
114 * cannot end.
115 *
116 * But first, note that the current CPU must still be
117 * on line!
118 */
119 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
120 phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1);
121 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
122 smp_mb(); /* Ensure later ctxt swtch seen after above. */
123 spin_unlock_irqrestore(&rnp->lock, flags);
124 }
125
126 /*
127 * Either we were not in an RCU read-side critical section to
128 * begin with, or we have now recorded that critical section
129 * globally. Either way, we can now note a quiescent state
130 * for this CPU. Again, if we were in an RCU read-side critical
131 * section, and if that critical section was blocking the current
132 * grace period, then the fact that the task has been enqueued
133 * means that we continue to block the current grace period.
134 */
135 rcu_preempt_qs(cpu);
136 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
137 }
138
139 /*
140 * Tree-preemptable RCU implementation for rcu_read_lock().
141 * Just increment ->rcu_read_lock_nesting, shared state will be updated
142 * if we block.
143 */
144 void __rcu_read_lock(void)
145 {
146 ACCESS_ONCE(current->rcu_read_lock_nesting)++;
147 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
148 }
149 EXPORT_SYMBOL_GPL(__rcu_read_lock);
150
151 static void rcu_read_unlock_special(struct task_struct *t)
152 {
153 int empty;
154 unsigned long flags;
155 unsigned long mask;
156 struct rcu_node *rnp;
157 int special;
158
159 /* NMI handlers cannot block and cannot safely manipulate state. */
160 if (in_nmi())
161 return;
162
163 local_irq_save(flags);
164
165 /*
166 * If RCU core is waiting for this CPU to exit critical section,
167 * let it know that we have done so.
168 */
169 special = t->rcu_read_unlock_special;
170 if (special & RCU_READ_UNLOCK_NEED_QS) {
171 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
172 rcu_preempt_qs(smp_processor_id());
173 }
174
175 /* Hardware IRQ handlers cannot block. */
176 if (in_irq()) {
177 local_irq_restore(flags);
178 return;
179 }
180
181 /* Clean up if blocked during RCU read-side critical section. */
182 if (special & RCU_READ_UNLOCK_BLOCKED) {
183 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
184
185 /*
186 * Remove this task from the list it blocked on. The
187 * task can migrate while we acquire the lock, but at
188 * most one time. So at most two passes through loop.
189 */
190 for (;;) {
191 rnp = t->rcu_blocked_node;
192 spin_lock(&rnp->lock);
193 if (rnp == t->rcu_blocked_node)
194 break;
195 spin_unlock(&rnp->lock);
196 }
197 empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
198 list_del_init(&t->rcu_node_entry);
199 t->rcu_blocked_node = NULL;
200
201 /*
202 * If this was the last task on the current list, and if
203 * we aren't waiting on any CPUs, report the quiescent state.
204 * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk()
205 * drop rnp->lock and restore irq.
206 */
207 if (!empty && rnp->qsmask == 0 &&
208 list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) {
209 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
210 if (rnp->parent == NULL) {
211 /* Only one rcu_node in the tree. */
212 cpu_quiet_msk_finish(&rcu_preempt_state, flags);
213 return;
214 }
215 /* Report up the rest of the hierarchy. */
216 mask = rnp->grpmask;
217 spin_unlock_irqrestore(&rnp->lock, flags);
218 rnp = rnp->parent;
219 spin_lock_irqsave(&rnp->lock, flags);
220 cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags);
221 return;
222 }
223 spin_unlock(&rnp->lock);
224 }
225 local_irq_restore(flags);
226 }
227
228 /*
229 * Tree-preemptable RCU implementation for rcu_read_unlock().
230 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
231 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
232 * invoke rcu_read_unlock_special() to clean up after a context switch
233 * in an RCU read-side critical section and other special cases.
234 */
235 void __rcu_read_unlock(void)
236 {
237 struct task_struct *t = current;
238
239 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
240 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
241 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
242 rcu_read_unlock_special(t);
243 }
244 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
245
246 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
247
248 /*
249 * Scan the current list of tasks blocked within RCU read-side critical
250 * sections, printing out the tid of each.
251 */
252 static void rcu_print_task_stall(struct rcu_node *rnp)
253 {
254 unsigned long flags;
255 struct list_head *lp;
256 int phase = rnp->gpnum & 0x1;
257 struct task_struct *t;
258
259 if (!list_empty(&rnp->blocked_tasks[phase])) {
260 spin_lock_irqsave(&rnp->lock, flags);
261 phase = rnp->gpnum & 0x1; /* re-read under lock. */
262 lp = &rnp->blocked_tasks[phase];
263 list_for_each_entry(t, lp, rcu_node_entry)
264 printk(" P%d", t->pid);
265 spin_unlock_irqrestore(&rnp->lock, flags);
266 }
267 }
268
269 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
270
271 /*
272 * Check that the list of blocked tasks for the newly completed grace
273 * period is in fact empty. It is a serious bug to complete a grace
274 * period that still has RCU readers blocked! This function must be
275 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
276 * must be held by the caller.
277 */
278 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
279 {
280 WARN_ON_ONCE(!list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]));
281 }
282
283 /*
284 * Check for preempted RCU readers for the specified rcu_node structure.
285 * If the caller needs a reliable answer, it must hold the rcu_node's
286 * >lock.
287 */
288 static int rcu_preempted_readers(struct rcu_node *rnp)
289 {
290 return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
291 }
292
293 #ifdef CONFIG_HOTPLUG_CPU
294
295 /*
296 * Handle tasklist migration for case in which all CPUs covered by the
297 * specified rcu_node have gone offline. Move them up to the root
298 * rcu_node. The reason for not just moving them to the immediate
299 * parent is to remove the need for rcu_read_unlock_special() to
300 * make more than two attempts to acquire the target rcu_node's lock.
301 *
302 * The caller must hold rnp->lock with irqs disabled.
303 */
304 static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
305 struct rcu_node *rnp)
306 {
307 int i;
308 struct list_head *lp;
309 struct list_head *lp_root;
310 struct rcu_node *rnp_root = rcu_get_root(rsp);
311 struct task_struct *tp;
312
313 if (rnp == rnp_root) {
314 WARN_ONCE(1, "Last CPU thought to be offlined?");
315 return; /* Shouldn't happen: at least one CPU online. */
316 }
317
318 /*
319 * Move tasks up to root rcu_node. Rely on the fact that the
320 * root rcu_node can be at most one ahead of the rest of the
321 * rcu_nodes in terms of gp_num value. This fact allows us to
322 * move the blocked_tasks[] array directly, element by element.
323 */
324 for (i = 0; i < 2; i++) {
325 lp = &rnp->blocked_tasks[i];
326 lp_root = &rnp_root->blocked_tasks[i];
327 while (!list_empty(lp)) {
328 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
329 spin_lock(&rnp_root->lock); /* irqs already disabled */
330 list_del(&tp->rcu_node_entry);
331 tp->rcu_blocked_node = rnp_root;
332 list_add(&tp->rcu_node_entry, lp_root);
333 spin_unlock(&rnp_root->lock); /* irqs remain disabled */
334 }
335 }
336 }
337
338 /*
339 * Do CPU-offline processing for preemptable RCU.
340 */
341 static void rcu_preempt_offline_cpu(int cpu)
342 {
343 __rcu_offline_cpu(cpu, &rcu_preempt_state);
344 }
345
346 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
347
348 /*
349 * Check for a quiescent state from the current CPU. When a task blocks,
350 * the task is recorded in the corresponding CPU's rcu_node structure,
351 * which is checked elsewhere.
352 *
353 * Caller must disable hard irqs.
354 */
355 static void rcu_preempt_check_callbacks(int cpu)
356 {
357 struct task_struct *t = current;
358
359 if (t->rcu_read_lock_nesting == 0) {
360 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
361 rcu_preempt_qs(cpu);
362 return;
363 }
364 if (per_cpu(rcu_preempt_data, cpu).qs_pending) {
365 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
366 }
367 }
368
369 /*
370 * Process callbacks for preemptable RCU.
371 */
372 static void rcu_preempt_process_callbacks(void)
373 {
374 __rcu_process_callbacks(&rcu_preempt_state,
375 &__get_cpu_var(rcu_preempt_data));
376 }
377
378 /*
379 * Queue a preemptable-RCU callback for invocation after a grace period.
380 */
381 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
382 {
383 __call_rcu(head, func, &rcu_preempt_state);
384 }
385 EXPORT_SYMBOL_GPL(call_rcu);
386
387 /*
388 * Check to see if there is any immediate preemptable-RCU-related work
389 * to be done.
390 */
391 static int rcu_preempt_pending(int cpu)
392 {
393 return __rcu_pending(&rcu_preempt_state,
394 &per_cpu(rcu_preempt_data, cpu));
395 }
396
397 /*
398 * Does preemptable RCU need the CPU to stay out of dynticks mode?
399 */
400 static int rcu_preempt_needs_cpu(int cpu)
401 {
402 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
403 }
404
405 /*
406 * Initialize preemptable RCU's per-CPU data.
407 */
408 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
409 {
410 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
411 }
412
413 /*
414 * Check for a task exiting while in a preemptable-RCU read-side
415 * critical section, clean up if so. No need to issue warnings,
416 * as debug_check_no_locks_held() already does this if lockdep
417 * is enabled.
418 */
419 void exit_rcu(void)
420 {
421 struct task_struct *t = current;
422
423 if (t->rcu_read_lock_nesting == 0)
424 return;
425 t->rcu_read_lock_nesting = 1;
426 rcu_read_unlock();
427 }
428
429 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
430
431 /*
432 * Tell them what RCU they are running.
433 */
434 static inline void rcu_bootup_announce(void)
435 {
436 printk(KERN_INFO "Hierarchical RCU implementation.\n");
437 }
438
439 /*
440 * Return the number of RCU batches processed thus far for debug & stats.
441 */
442 long rcu_batches_completed(void)
443 {
444 return rcu_batches_completed_sched();
445 }
446 EXPORT_SYMBOL_GPL(rcu_batches_completed);
447
448 /*
449 * Because preemptable RCU does not exist, we never have to check for
450 * CPUs being in quiescent states.
451 */
452 static void rcu_preempt_note_context_switch(int cpu)
453 {
454 }
455
456 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
457
458 /*
459 * Because preemptable RCU does not exist, we never have to check for
460 * tasks blocked within RCU read-side critical sections.
461 */
462 static void rcu_print_task_stall(struct rcu_node *rnp)
463 {
464 }
465
466 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
467
468 /*
469 * Because there is no preemptable RCU, there can be no readers blocked,
470 * so there is no need to check for blocked tasks.
471 */
472 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
473 {
474 }
475
476 /*
477 * Because preemptable RCU does not exist, there are never any preempted
478 * RCU readers.
479 */
480 static int rcu_preempted_readers(struct rcu_node *rnp)
481 {
482 return 0;
483 }
484
485 #ifdef CONFIG_HOTPLUG_CPU
486
487 /*
488 * Because preemptable RCU does not exist, it never needs to migrate
489 * tasks that were blocked within RCU read-side critical sections.
490 */
491 static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
492 struct rcu_node *rnp)
493 {
494 }
495
496 /*
497 * Because preemptable RCU does not exist, it never needs CPU-offline
498 * processing.
499 */
500 static void rcu_preempt_offline_cpu(int cpu)
501 {
502 }
503
504 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
505
506 /*
507 * Because preemptable RCU does not exist, it never has any callbacks
508 * to check.
509 */
510 void rcu_preempt_check_callbacks(int cpu)
511 {
512 }
513
514 /*
515 * Because preemptable RCU does not exist, it never has any callbacks
516 * to process.
517 */
518 void rcu_preempt_process_callbacks(void)
519 {
520 }
521
522 /*
523 * In classic RCU, call_rcu() is just call_rcu_sched().
524 */
525 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
526 {
527 call_rcu_sched(head, func);
528 }
529 EXPORT_SYMBOL_GPL(call_rcu);
530
531 /*
532 * Because preemptable RCU does not exist, it never has any work to do.
533 */
534 static int rcu_preempt_pending(int cpu)
535 {
536 return 0;
537 }
538
539 /*
540 * Because preemptable RCU does not exist, it never needs any CPU.
541 */
542 static int rcu_preempt_needs_cpu(int cpu)
543 {
544 return 0;
545 }
546
547 /*
548 * Because preemptable RCU does not exist, there is no per-CPU
549 * data to initialize.
550 */
551 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
552 {
553 }
554
555 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
This page took 0.082135 seconds and 4 git commands to generate.