Merge branches 'bigrtm.2012.07.04a', 'doctorture.2012.07.02a', 'fixes.2012.07.06a...
[deliverable/linux.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28
29 #define RCU_KTHREAD_PRIO 1
30
31 #ifdef CONFIG_RCU_BOOST
32 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
33 #else
34 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
35 #endif
36
37 /*
38 * Check the RCU kernel configuration parameters and print informative
39 * messages about anything out of the ordinary. If you like #ifdef, you
40 * will love this function.
41 */
42 static void __init rcu_bootup_announce_oddness(void)
43 {
44 #ifdef CONFIG_RCU_TRACE
45 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
46 #endif
47 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
48 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
49 CONFIG_RCU_FANOUT);
50 #endif
51 #ifdef CONFIG_RCU_FANOUT_EXACT
52 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
53 #endif
54 #ifdef CONFIG_RCU_FAST_NO_HZ
55 printk(KERN_INFO
56 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
57 #endif
58 #ifdef CONFIG_PROVE_RCU
59 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
60 #endif
61 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
62 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
63 #endif
64 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
65 printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
66 #endif
67 #if defined(CONFIG_RCU_CPU_STALL_INFO)
68 printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
69 #endif
70 #if NUM_RCU_LVL_4 != 0
71 printk(KERN_INFO "\tFour-level hierarchy is enabled.\n");
72 #endif
73 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
74 printk(KERN_INFO "\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
75 if (nr_cpu_ids != NR_CPUS)
76 printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
77 }
78
79 #ifdef CONFIG_TREE_PREEMPT_RCU
80
81 struct rcu_state rcu_preempt_state =
82 RCU_STATE_INITIALIZER(rcu_preempt, call_rcu);
83 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
84 static struct rcu_state *rcu_state = &rcu_preempt_state;
85
86 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
87
88 /*
89 * Tell them what RCU they are running.
90 */
91 static void __init rcu_bootup_announce(void)
92 {
93 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
94 rcu_bootup_announce_oddness();
95 }
96
97 /*
98 * Return the number of RCU-preempt batches processed thus far
99 * for debug and statistics.
100 */
101 long rcu_batches_completed_preempt(void)
102 {
103 return rcu_preempt_state.completed;
104 }
105 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
106
107 /*
108 * Return the number of RCU batches processed thus far for debug & stats.
109 */
110 long rcu_batches_completed(void)
111 {
112 return rcu_batches_completed_preempt();
113 }
114 EXPORT_SYMBOL_GPL(rcu_batches_completed);
115
116 /*
117 * Force a quiescent state for preemptible RCU.
118 */
119 void rcu_force_quiescent_state(void)
120 {
121 force_quiescent_state(&rcu_preempt_state, 0);
122 }
123 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
124
125 /*
126 * Record a preemptible-RCU quiescent state for the specified CPU. Note
127 * that this just means that the task currently running on the CPU is
128 * not in a quiescent state. There might be any number of tasks blocked
129 * while in an RCU read-side critical section.
130 *
131 * Unlike the other rcu_*_qs() functions, callers to this function
132 * must disable irqs in order to protect the assignment to
133 * ->rcu_read_unlock_special.
134 */
135 static void rcu_preempt_qs(int cpu)
136 {
137 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
138
139 rdp->passed_quiesce_gpnum = rdp->gpnum;
140 barrier();
141 if (rdp->passed_quiesce == 0)
142 trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
143 rdp->passed_quiesce = 1;
144 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
145 }
146
147 /*
148 * We have entered the scheduler, and the current task might soon be
149 * context-switched away from. If this task is in an RCU read-side
150 * critical section, we will no longer be able to rely on the CPU to
151 * record that fact, so we enqueue the task on the blkd_tasks list.
152 * The task will dequeue itself when it exits the outermost enclosing
153 * RCU read-side critical section. Therefore, the current grace period
154 * cannot be permitted to complete until the blkd_tasks list entries
155 * predating the current grace period drain, in other words, until
156 * rnp->gp_tasks becomes NULL.
157 *
158 * Caller must disable preemption.
159 */
160 static void rcu_preempt_note_context_switch(int cpu)
161 {
162 struct task_struct *t = current;
163 unsigned long flags;
164 struct rcu_data *rdp;
165 struct rcu_node *rnp;
166
167 if (t->rcu_read_lock_nesting > 0 &&
168 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
169
170 /* Possibly blocking in an RCU read-side critical section. */
171 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
172 rnp = rdp->mynode;
173 raw_spin_lock_irqsave(&rnp->lock, flags);
174 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
175 t->rcu_blocked_node = rnp;
176
177 /*
178 * If this CPU has already checked in, then this task
179 * will hold up the next grace period rather than the
180 * current grace period. Queue the task accordingly.
181 * If the task is queued for the current grace period
182 * (i.e., this CPU has not yet passed through a quiescent
183 * state for the current grace period), then as long
184 * as that task remains queued, the current grace period
185 * cannot end. Note that there is some uncertainty as
186 * to exactly when the current grace period started.
187 * We take a conservative approach, which can result
188 * in unnecessarily waiting on tasks that started very
189 * slightly after the current grace period began. C'est
190 * la vie!!!
191 *
192 * But first, note that the current CPU must still be
193 * on line!
194 */
195 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
196 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
197 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
198 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
199 rnp->gp_tasks = &t->rcu_node_entry;
200 #ifdef CONFIG_RCU_BOOST
201 if (rnp->boost_tasks != NULL)
202 rnp->boost_tasks = rnp->gp_tasks;
203 #endif /* #ifdef CONFIG_RCU_BOOST */
204 } else {
205 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
206 if (rnp->qsmask & rdp->grpmask)
207 rnp->gp_tasks = &t->rcu_node_entry;
208 }
209 trace_rcu_preempt_task(rdp->rsp->name,
210 t->pid,
211 (rnp->qsmask & rdp->grpmask)
212 ? rnp->gpnum
213 : rnp->gpnum + 1);
214 raw_spin_unlock_irqrestore(&rnp->lock, flags);
215 } else if (t->rcu_read_lock_nesting < 0 &&
216 t->rcu_read_unlock_special) {
217
218 /*
219 * Complete exit from RCU read-side critical section on
220 * behalf of preempted instance of __rcu_read_unlock().
221 */
222 rcu_read_unlock_special(t);
223 }
224
225 /*
226 * Either we were not in an RCU read-side critical section to
227 * begin with, or we have now recorded that critical section
228 * globally. Either way, we can now note a quiescent state
229 * for this CPU. Again, if we were in an RCU read-side critical
230 * section, and if that critical section was blocking the current
231 * grace period, then the fact that the task has been enqueued
232 * means that we continue to block the current grace period.
233 */
234 local_irq_save(flags);
235 rcu_preempt_qs(cpu);
236 local_irq_restore(flags);
237 }
238
239 /*
240 * Check for preempted RCU readers blocking the current grace period
241 * for the specified rcu_node structure. If the caller needs a reliable
242 * answer, it must hold the rcu_node's ->lock.
243 */
244 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
245 {
246 return rnp->gp_tasks != NULL;
247 }
248
249 /*
250 * Record a quiescent state for all tasks that were previously queued
251 * on the specified rcu_node structure and that were blocking the current
252 * RCU grace period. The caller must hold the specified rnp->lock with
253 * irqs disabled, and this lock is released upon return, but irqs remain
254 * disabled.
255 */
256 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
257 __releases(rnp->lock)
258 {
259 unsigned long mask;
260 struct rcu_node *rnp_p;
261
262 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
263 raw_spin_unlock_irqrestore(&rnp->lock, flags);
264 return; /* Still need more quiescent states! */
265 }
266
267 rnp_p = rnp->parent;
268 if (rnp_p == NULL) {
269 /*
270 * Either there is only one rcu_node in the tree,
271 * or tasks were kicked up to root rcu_node due to
272 * CPUs going offline.
273 */
274 rcu_report_qs_rsp(&rcu_preempt_state, flags);
275 return;
276 }
277
278 /* Report up the rest of the hierarchy. */
279 mask = rnp->grpmask;
280 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
281 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
282 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
283 }
284
285 /*
286 * Advance a ->blkd_tasks-list pointer to the next entry, instead
287 * returning NULL if at the end of the list.
288 */
289 static struct list_head *rcu_next_node_entry(struct task_struct *t,
290 struct rcu_node *rnp)
291 {
292 struct list_head *np;
293
294 np = t->rcu_node_entry.next;
295 if (np == &rnp->blkd_tasks)
296 np = NULL;
297 return np;
298 }
299
300 /*
301 * Handle special cases during rcu_read_unlock(), such as needing to
302 * notify RCU core processing or task having blocked during the RCU
303 * read-side critical section.
304 */
305 void rcu_read_unlock_special(struct task_struct *t)
306 {
307 int empty;
308 int empty_exp;
309 int empty_exp_now;
310 unsigned long flags;
311 struct list_head *np;
312 #ifdef CONFIG_RCU_BOOST
313 struct rt_mutex *rbmp = NULL;
314 #endif /* #ifdef CONFIG_RCU_BOOST */
315 struct rcu_node *rnp;
316 int special;
317
318 /* NMI handlers cannot block and cannot safely manipulate state. */
319 if (in_nmi())
320 return;
321
322 local_irq_save(flags);
323
324 /*
325 * If RCU core is waiting for this CPU to exit critical section,
326 * let it know that we have done so.
327 */
328 special = t->rcu_read_unlock_special;
329 if (special & RCU_READ_UNLOCK_NEED_QS) {
330 rcu_preempt_qs(smp_processor_id());
331 }
332
333 /* Hardware IRQ handlers cannot block. */
334 if (in_irq() || in_serving_softirq()) {
335 local_irq_restore(flags);
336 return;
337 }
338
339 /* Clean up if blocked during RCU read-side critical section. */
340 if (special & RCU_READ_UNLOCK_BLOCKED) {
341 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
342
343 /*
344 * Remove this task from the list it blocked on. The
345 * task can migrate while we acquire the lock, but at
346 * most one time. So at most two passes through loop.
347 */
348 for (;;) {
349 rnp = t->rcu_blocked_node;
350 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
351 if (rnp == t->rcu_blocked_node)
352 break;
353 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
354 }
355 empty = !rcu_preempt_blocked_readers_cgp(rnp);
356 empty_exp = !rcu_preempted_readers_exp(rnp);
357 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
358 np = rcu_next_node_entry(t, rnp);
359 list_del_init(&t->rcu_node_entry);
360 t->rcu_blocked_node = NULL;
361 trace_rcu_unlock_preempted_task("rcu_preempt",
362 rnp->gpnum, t->pid);
363 if (&t->rcu_node_entry == rnp->gp_tasks)
364 rnp->gp_tasks = np;
365 if (&t->rcu_node_entry == rnp->exp_tasks)
366 rnp->exp_tasks = np;
367 #ifdef CONFIG_RCU_BOOST
368 if (&t->rcu_node_entry == rnp->boost_tasks)
369 rnp->boost_tasks = np;
370 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
371 if (t->rcu_boost_mutex) {
372 rbmp = t->rcu_boost_mutex;
373 t->rcu_boost_mutex = NULL;
374 }
375 #endif /* #ifdef CONFIG_RCU_BOOST */
376
377 /*
378 * If this was the last task on the current list, and if
379 * we aren't waiting on any CPUs, report the quiescent state.
380 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
381 * so we must take a snapshot of the expedited state.
382 */
383 empty_exp_now = !rcu_preempted_readers_exp(rnp);
384 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
385 trace_rcu_quiescent_state_report("preempt_rcu",
386 rnp->gpnum,
387 0, rnp->qsmask,
388 rnp->level,
389 rnp->grplo,
390 rnp->grphi,
391 !!rnp->gp_tasks);
392 rcu_report_unblock_qs_rnp(rnp, flags);
393 } else
394 raw_spin_unlock_irqrestore(&rnp->lock, flags);
395
396 #ifdef CONFIG_RCU_BOOST
397 /* Unboost if we were boosted. */
398 if (rbmp)
399 rt_mutex_unlock(rbmp);
400 #endif /* #ifdef CONFIG_RCU_BOOST */
401
402 /*
403 * If this was the last task on the expedited lists,
404 * then we need to report up the rcu_node hierarchy.
405 */
406 if (!empty_exp && empty_exp_now)
407 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
408 } else {
409 local_irq_restore(flags);
410 }
411 }
412
413 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
414
415 /*
416 * Dump detailed information for all tasks blocking the current RCU
417 * grace period on the specified rcu_node structure.
418 */
419 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
420 {
421 unsigned long flags;
422 struct task_struct *t;
423
424 if (!rcu_preempt_blocked_readers_cgp(rnp))
425 return;
426 raw_spin_lock_irqsave(&rnp->lock, flags);
427 t = list_entry(rnp->gp_tasks,
428 struct task_struct, rcu_node_entry);
429 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
430 sched_show_task(t);
431 raw_spin_unlock_irqrestore(&rnp->lock, flags);
432 }
433
434 /*
435 * Dump detailed information for all tasks blocking the current RCU
436 * grace period.
437 */
438 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
439 {
440 struct rcu_node *rnp = rcu_get_root(rsp);
441
442 rcu_print_detail_task_stall_rnp(rnp);
443 rcu_for_each_leaf_node(rsp, rnp)
444 rcu_print_detail_task_stall_rnp(rnp);
445 }
446
447 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
448
449 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
450 {
451 }
452
453 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
454
455 #ifdef CONFIG_RCU_CPU_STALL_INFO
456
457 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
458 {
459 printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
460 rnp->level, rnp->grplo, rnp->grphi);
461 }
462
463 static void rcu_print_task_stall_end(void)
464 {
465 printk(KERN_CONT "\n");
466 }
467
468 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
469
470 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
471 {
472 }
473
474 static void rcu_print_task_stall_end(void)
475 {
476 }
477
478 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
479
480 /*
481 * Scan the current list of tasks blocked within RCU read-side critical
482 * sections, printing out the tid of each.
483 */
484 static int rcu_print_task_stall(struct rcu_node *rnp)
485 {
486 struct task_struct *t;
487 int ndetected = 0;
488
489 if (!rcu_preempt_blocked_readers_cgp(rnp))
490 return 0;
491 rcu_print_task_stall_begin(rnp);
492 t = list_entry(rnp->gp_tasks,
493 struct task_struct, rcu_node_entry);
494 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
495 printk(KERN_CONT " P%d", t->pid);
496 ndetected++;
497 }
498 rcu_print_task_stall_end();
499 return ndetected;
500 }
501
502 /*
503 * Check that the list of blocked tasks for the newly completed grace
504 * period is in fact empty. It is a serious bug to complete a grace
505 * period that still has RCU readers blocked! This function must be
506 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
507 * must be held by the caller.
508 *
509 * Also, if there are blocked tasks on the list, they automatically
510 * block the newly created grace period, so set up ->gp_tasks accordingly.
511 */
512 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
513 {
514 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
515 if (!list_empty(&rnp->blkd_tasks))
516 rnp->gp_tasks = rnp->blkd_tasks.next;
517 WARN_ON_ONCE(rnp->qsmask);
518 }
519
520 #ifdef CONFIG_HOTPLUG_CPU
521
522 /*
523 * Handle tasklist migration for case in which all CPUs covered by the
524 * specified rcu_node have gone offline. Move them up to the root
525 * rcu_node. The reason for not just moving them to the immediate
526 * parent is to remove the need for rcu_read_unlock_special() to
527 * make more than two attempts to acquire the target rcu_node's lock.
528 * Returns true if there were tasks blocking the current RCU grace
529 * period.
530 *
531 * Returns 1 if there was previously a task blocking the current grace
532 * period on the specified rcu_node structure.
533 *
534 * The caller must hold rnp->lock with irqs disabled.
535 */
536 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
537 struct rcu_node *rnp,
538 struct rcu_data *rdp)
539 {
540 struct list_head *lp;
541 struct list_head *lp_root;
542 int retval = 0;
543 struct rcu_node *rnp_root = rcu_get_root(rsp);
544 struct task_struct *t;
545
546 if (rnp == rnp_root) {
547 WARN_ONCE(1, "Last CPU thought to be offlined?");
548 return 0; /* Shouldn't happen: at least one CPU online. */
549 }
550
551 /* If we are on an internal node, complain bitterly. */
552 WARN_ON_ONCE(rnp != rdp->mynode);
553
554 /*
555 * Move tasks up to root rcu_node. Don't try to get fancy for
556 * this corner-case operation -- just put this node's tasks
557 * at the head of the root node's list, and update the root node's
558 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
559 * if non-NULL. This might result in waiting for more tasks than
560 * absolutely necessary, but this is a good performance/complexity
561 * tradeoff.
562 */
563 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
564 retval |= RCU_OFL_TASKS_NORM_GP;
565 if (rcu_preempted_readers_exp(rnp))
566 retval |= RCU_OFL_TASKS_EXP_GP;
567 lp = &rnp->blkd_tasks;
568 lp_root = &rnp_root->blkd_tasks;
569 while (!list_empty(lp)) {
570 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
571 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
572 list_del(&t->rcu_node_entry);
573 t->rcu_blocked_node = rnp_root;
574 list_add(&t->rcu_node_entry, lp_root);
575 if (&t->rcu_node_entry == rnp->gp_tasks)
576 rnp_root->gp_tasks = rnp->gp_tasks;
577 if (&t->rcu_node_entry == rnp->exp_tasks)
578 rnp_root->exp_tasks = rnp->exp_tasks;
579 #ifdef CONFIG_RCU_BOOST
580 if (&t->rcu_node_entry == rnp->boost_tasks)
581 rnp_root->boost_tasks = rnp->boost_tasks;
582 #endif /* #ifdef CONFIG_RCU_BOOST */
583 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
584 }
585
586 #ifdef CONFIG_RCU_BOOST
587 /* In case root is being boosted and leaf is not. */
588 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
589 if (rnp_root->boost_tasks != NULL &&
590 rnp_root->boost_tasks != rnp_root->gp_tasks)
591 rnp_root->boost_tasks = rnp_root->gp_tasks;
592 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
593 #endif /* #ifdef CONFIG_RCU_BOOST */
594
595 rnp->gp_tasks = NULL;
596 rnp->exp_tasks = NULL;
597 return retval;
598 }
599
600 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
601
602 /*
603 * Check for a quiescent state from the current CPU. When a task blocks,
604 * the task is recorded in the corresponding CPU's rcu_node structure,
605 * which is checked elsewhere.
606 *
607 * Caller must disable hard irqs.
608 */
609 static void rcu_preempt_check_callbacks(int cpu)
610 {
611 struct task_struct *t = current;
612
613 if (t->rcu_read_lock_nesting == 0) {
614 rcu_preempt_qs(cpu);
615 return;
616 }
617 if (t->rcu_read_lock_nesting > 0 &&
618 per_cpu(rcu_preempt_data, cpu).qs_pending)
619 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
620 }
621
622 #ifdef CONFIG_RCU_BOOST
623
624 static void rcu_preempt_do_callbacks(void)
625 {
626 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
627 }
628
629 #endif /* #ifdef CONFIG_RCU_BOOST */
630
631 /*
632 * Queue a preemptible-RCU callback for invocation after a grace period.
633 */
634 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
635 {
636 __call_rcu(head, func, &rcu_preempt_state, 0);
637 }
638 EXPORT_SYMBOL_GPL(call_rcu);
639
640 /*
641 * Queue an RCU callback for lazy invocation after a grace period.
642 * This will likely be later named something like "call_rcu_lazy()",
643 * but this change will require some way of tagging the lazy RCU
644 * callbacks in the list of pending callbacks. Until then, this
645 * function may only be called from __kfree_rcu().
646 */
647 void kfree_call_rcu(struct rcu_head *head,
648 void (*func)(struct rcu_head *rcu))
649 {
650 __call_rcu(head, func, &rcu_preempt_state, 1);
651 }
652 EXPORT_SYMBOL_GPL(kfree_call_rcu);
653
654 /**
655 * synchronize_rcu - wait until a grace period has elapsed.
656 *
657 * Control will return to the caller some time after a full grace
658 * period has elapsed, in other words after all currently executing RCU
659 * read-side critical sections have completed. Note, however, that
660 * upon return from synchronize_rcu(), the caller might well be executing
661 * concurrently with new RCU read-side critical sections that began while
662 * synchronize_rcu() was waiting. RCU read-side critical sections are
663 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
664 */
665 void synchronize_rcu(void)
666 {
667 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
668 !lock_is_held(&rcu_lock_map) &&
669 !lock_is_held(&rcu_sched_lock_map),
670 "Illegal synchronize_rcu() in RCU read-side critical section");
671 if (!rcu_scheduler_active)
672 return;
673 wait_rcu_gp(call_rcu);
674 }
675 EXPORT_SYMBOL_GPL(synchronize_rcu);
676
677 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
678 static long sync_rcu_preempt_exp_count;
679 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
680
681 /*
682 * Return non-zero if there are any tasks in RCU read-side critical
683 * sections blocking the current preemptible-RCU expedited grace period.
684 * If there is no preemptible-RCU expedited grace period currently in
685 * progress, returns zero unconditionally.
686 */
687 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
688 {
689 return rnp->exp_tasks != NULL;
690 }
691
692 /*
693 * return non-zero if there is no RCU expedited grace period in progress
694 * for the specified rcu_node structure, in other words, if all CPUs and
695 * tasks covered by the specified rcu_node structure have done their bit
696 * for the current expedited grace period. Works only for preemptible
697 * RCU -- other RCU implementation use other means.
698 *
699 * Caller must hold sync_rcu_preempt_exp_mutex.
700 */
701 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
702 {
703 return !rcu_preempted_readers_exp(rnp) &&
704 ACCESS_ONCE(rnp->expmask) == 0;
705 }
706
707 /*
708 * Report the exit from RCU read-side critical section for the last task
709 * that queued itself during or before the current expedited preemptible-RCU
710 * grace period. This event is reported either to the rcu_node structure on
711 * which the task was queued or to one of that rcu_node structure's ancestors,
712 * recursively up the tree. (Calm down, calm down, we do the recursion
713 * iteratively!)
714 *
715 * Most callers will set the "wake" flag, but the task initiating the
716 * expedited grace period need not wake itself.
717 *
718 * Caller must hold sync_rcu_preempt_exp_mutex.
719 */
720 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
721 bool wake)
722 {
723 unsigned long flags;
724 unsigned long mask;
725
726 raw_spin_lock_irqsave(&rnp->lock, flags);
727 for (;;) {
728 if (!sync_rcu_preempt_exp_done(rnp)) {
729 raw_spin_unlock_irqrestore(&rnp->lock, flags);
730 break;
731 }
732 if (rnp->parent == NULL) {
733 raw_spin_unlock_irqrestore(&rnp->lock, flags);
734 if (wake)
735 wake_up(&sync_rcu_preempt_exp_wq);
736 break;
737 }
738 mask = rnp->grpmask;
739 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
740 rnp = rnp->parent;
741 raw_spin_lock(&rnp->lock); /* irqs already disabled */
742 rnp->expmask &= ~mask;
743 }
744 }
745
746 /*
747 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
748 * grace period for the specified rcu_node structure. If there are no such
749 * tasks, report it up the rcu_node hierarchy.
750 *
751 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
752 */
753 static void
754 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
755 {
756 unsigned long flags;
757 int must_wait = 0;
758
759 raw_spin_lock_irqsave(&rnp->lock, flags);
760 if (list_empty(&rnp->blkd_tasks))
761 raw_spin_unlock_irqrestore(&rnp->lock, flags);
762 else {
763 rnp->exp_tasks = rnp->blkd_tasks.next;
764 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
765 must_wait = 1;
766 }
767 if (!must_wait)
768 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
769 }
770
771 /**
772 * synchronize_rcu_expedited - Brute-force RCU grace period
773 *
774 * Wait for an RCU-preempt grace period, but expedite it. The basic
775 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
776 * the ->blkd_tasks lists and wait for this list to drain. This consumes
777 * significant time on all CPUs and is unfriendly to real-time workloads,
778 * so is thus not recommended for any sort of common-case code.
779 * In fact, if you are using synchronize_rcu_expedited() in a loop,
780 * please restructure your code to batch your updates, and then Use a
781 * single synchronize_rcu() instead.
782 *
783 * Note that it is illegal to call this function while holding any lock
784 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
785 * to call this function from a CPU-hotplug notifier. Failing to observe
786 * these restriction will result in deadlock.
787 */
788 void synchronize_rcu_expedited(void)
789 {
790 unsigned long flags;
791 struct rcu_node *rnp;
792 struct rcu_state *rsp = &rcu_preempt_state;
793 long snap;
794 int trycount = 0;
795
796 smp_mb(); /* Caller's modifications seen first by other CPUs. */
797 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
798 smp_mb(); /* Above access cannot bleed into critical section. */
799
800 /*
801 * Acquire lock, falling back to synchronize_rcu() if too many
802 * lock-acquisition failures. Of course, if someone does the
803 * expedited grace period for us, just leave.
804 */
805 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
806 if (trycount++ < 10)
807 udelay(trycount * num_online_cpus());
808 else {
809 synchronize_rcu();
810 return;
811 }
812 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
813 goto mb_ret; /* Others did our work for us. */
814 }
815 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
816 goto unlock_mb_ret; /* Others did our work for us. */
817
818 /* force all RCU readers onto ->blkd_tasks lists. */
819 synchronize_sched_expedited();
820
821 raw_spin_lock_irqsave(&rsp->onofflock, flags);
822
823 /* Initialize ->expmask for all non-leaf rcu_node structures. */
824 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
825 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
826 rnp->expmask = rnp->qsmaskinit;
827 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
828 }
829
830 /* Snapshot current state of ->blkd_tasks lists. */
831 rcu_for_each_leaf_node(rsp, rnp)
832 sync_rcu_preempt_exp_init(rsp, rnp);
833 if (NUM_RCU_NODES > 1)
834 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
835
836 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
837
838 /* Wait for snapshotted ->blkd_tasks lists to drain. */
839 rnp = rcu_get_root(rsp);
840 wait_event(sync_rcu_preempt_exp_wq,
841 sync_rcu_preempt_exp_done(rnp));
842
843 /* Clean up and exit. */
844 smp_mb(); /* ensure expedited GP seen before counter increment. */
845 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
846 unlock_mb_ret:
847 mutex_unlock(&sync_rcu_preempt_exp_mutex);
848 mb_ret:
849 smp_mb(); /* ensure subsequent action seen after grace period. */
850 }
851 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
852
853 /**
854 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
855 */
856 void rcu_barrier(void)
857 {
858 _rcu_barrier(&rcu_preempt_state);
859 }
860 EXPORT_SYMBOL_GPL(rcu_barrier);
861
862 /*
863 * Initialize preemptible RCU's state structures.
864 */
865 static void __init __rcu_init_preempt(void)
866 {
867 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
868 }
869
870 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
871
872 static struct rcu_state *rcu_state = &rcu_sched_state;
873
874 /*
875 * Tell them what RCU they are running.
876 */
877 static void __init rcu_bootup_announce(void)
878 {
879 printk(KERN_INFO "Hierarchical RCU implementation.\n");
880 rcu_bootup_announce_oddness();
881 }
882
883 /*
884 * Return the number of RCU batches processed thus far for debug & stats.
885 */
886 long rcu_batches_completed(void)
887 {
888 return rcu_batches_completed_sched();
889 }
890 EXPORT_SYMBOL_GPL(rcu_batches_completed);
891
892 /*
893 * Force a quiescent state for RCU, which, because there is no preemptible
894 * RCU, becomes the same as rcu-sched.
895 */
896 void rcu_force_quiescent_state(void)
897 {
898 rcu_sched_force_quiescent_state();
899 }
900 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
901
902 /*
903 * Because preemptible RCU does not exist, we never have to check for
904 * CPUs being in quiescent states.
905 */
906 static void rcu_preempt_note_context_switch(int cpu)
907 {
908 }
909
910 /*
911 * Because preemptible RCU does not exist, there are never any preempted
912 * RCU readers.
913 */
914 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
915 {
916 return 0;
917 }
918
919 #ifdef CONFIG_HOTPLUG_CPU
920
921 /* Because preemptible RCU does not exist, no quieting of tasks. */
922 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
923 {
924 raw_spin_unlock_irqrestore(&rnp->lock, flags);
925 }
926
927 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
928
929 /*
930 * Because preemptible RCU does not exist, we never have to check for
931 * tasks blocked within RCU read-side critical sections.
932 */
933 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
934 {
935 }
936
937 /*
938 * Because preemptible RCU does not exist, we never have to check for
939 * tasks blocked within RCU read-side critical sections.
940 */
941 static int rcu_print_task_stall(struct rcu_node *rnp)
942 {
943 return 0;
944 }
945
946 /*
947 * Because there is no preemptible RCU, there can be no readers blocked,
948 * so there is no need to check for blocked tasks. So check only for
949 * bogus qsmask values.
950 */
951 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
952 {
953 WARN_ON_ONCE(rnp->qsmask);
954 }
955
956 #ifdef CONFIG_HOTPLUG_CPU
957
958 /*
959 * Because preemptible RCU does not exist, it never needs to migrate
960 * tasks that were blocked within RCU read-side critical sections, and
961 * such non-existent tasks cannot possibly have been blocking the current
962 * grace period.
963 */
964 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
965 struct rcu_node *rnp,
966 struct rcu_data *rdp)
967 {
968 return 0;
969 }
970
971 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
972
973 /*
974 * Because preemptible RCU does not exist, it never has any callbacks
975 * to check.
976 */
977 static void rcu_preempt_check_callbacks(int cpu)
978 {
979 }
980
981 /*
982 * Queue an RCU callback for lazy invocation after a grace period.
983 * This will likely be later named something like "call_rcu_lazy()",
984 * but this change will require some way of tagging the lazy RCU
985 * callbacks in the list of pending callbacks. Until then, this
986 * function may only be called from __kfree_rcu().
987 *
988 * Because there is no preemptible RCU, we use RCU-sched instead.
989 */
990 void kfree_call_rcu(struct rcu_head *head,
991 void (*func)(struct rcu_head *rcu))
992 {
993 __call_rcu(head, func, &rcu_sched_state, 1);
994 }
995 EXPORT_SYMBOL_GPL(kfree_call_rcu);
996
997 /*
998 * Wait for an rcu-preempt grace period, but make it happen quickly.
999 * But because preemptible RCU does not exist, map to rcu-sched.
1000 */
1001 void synchronize_rcu_expedited(void)
1002 {
1003 synchronize_sched_expedited();
1004 }
1005 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1006
1007 #ifdef CONFIG_HOTPLUG_CPU
1008
1009 /*
1010 * Because preemptible RCU does not exist, there is never any need to
1011 * report on tasks preempted in RCU read-side critical sections during
1012 * expedited RCU grace periods.
1013 */
1014 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1015 bool wake)
1016 {
1017 }
1018
1019 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1020
1021 /*
1022 * Because preemptible RCU does not exist, rcu_barrier() is just
1023 * another name for rcu_barrier_sched().
1024 */
1025 void rcu_barrier(void)
1026 {
1027 rcu_barrier_sched();
1028 }
1029 EXPORT_SYMBOL_GPL(rcu_barrier);
1030
1031 /*
1032 * Because preemptible RCU does not exist, it need not be initialized.
1033 */
1034 static void __init __rcu_init_preempt(void)
1035 {
1036 }
1037
1038 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1039
1040 #ifdef CONFIG_RCU_BOOST
1041
1042 #include "rtmutex_common.h"
1043
1044 #ifdef CONFIG_RCU_TRACE
1045
1046 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1047 {
1048 if (list_empty(&rnp->blkd_tasks))
1049 rnp->n_balk_blkd_tasks++;
1050 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1051 rnp->n_balk_exp_gp_tasks++;
1052 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1053 rnp->n_balk_boost_tasks++;
1054 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1055 rnp->n_balk_notblocked++;
1056 else if (rnp->gp_tasks != NULL &&
1057 ULONG_CMP_LT(jiffies, rnp->boost_time))
1058 rnp->n_balk_notyet++;
1059 else
1060 rnp->n_balk_nos++;
1061 }
1062
1063 #else /* #ifdef CONFIG_RCU_TRACE */
1064
1065 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1066 {
1067 }
1068
1069 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1070
1071 /*
1072 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1073 * or ->boost_tasks, advancing the pointer to the next task in the
1074 * ->blkd_tasks list.
1075 *
1076 * Note that irqs must be enabled: boosting the task can block.
1077 * Returns 1 if there are more tasks needing to be boosted.
1078 */
1079 static int rcu_boost(struct rcu_node *rnp)
1080 {
1081 unsigned long flags;
1082 struct rt_mutex mtx;
1083 struct task_struct *t;
1084 struct list_head *tb;
1085
1086 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1087 return 0; /* Nothing left to boost. */
1088
1089 raw_spin_lock_irqsave(&rnp->lock, flags);
1090
1091 /*
1092 * Recheck under the lock: all tasks in need of boosting
1093 * might exit their RCU read-side critical sections on their own.
1094 */
1095 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1096 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1097 return 0;
1098 }
1099
1100 /*
1101 * Preferentially boost tasks blocking expedited grace periods.
1102 * This cannot starve the normal grace periods because a second
1103 * expedited grace period must boost all blocked tasks, including
1104 * those blocking the pre-existing normal grace period.
1105 */
1106 if (rnp->exp_tasks != NULL) {
1107 tb = rnp->exp_tasks;
1108 rnp->n_exp_boosts++;
1109 } else {
1110 tb = rnp->boost_tasks;
1111 rnp->n_normal_boosts++;
1112 }
1113 rnp->n_tasks_boosted++;
1114
1115 /*
1116 * We boost task t by manufacturing an rt_mutex that appears to
1117 * be held by task t. We leave a pointer to that rt_mutex where
1118 * task t can find it, and task t will release the mutex when it
1119 * exits its outermost RCU read-side critical section. Then
1120 * simply acquiring this artificial rt_mutex will boost task
1121 * t's priority. (Thanks to tglx for suggesting this approach!)
1122 *
1123 * Note that task t must acquire rnp->lock to remove itself from
1124 * the ->blkd_tasks list, which it will do from exit() if from
1125 * nowhere else. We therefore are guaranteed that task t will
1126 * stay around at least until we drop rnp->lock. Note that
1127 * rnp->lock also resolves races between our priority boosting
1128 * and task t's exiting its outermost RCU read-side critical
1129 * section.
1130 */
1131 t = container_of(tb, struct task_struct, rcu_node_entry);
1132 rt_mutex_init_proxy_locked(&mtx, t);
1133 t->rcu_boost_mutex = &mtx;
1134 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1135 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1136 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1137
1138 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1139 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1140 }
1141
1142 /*
1143 * Timer handler to initiate waking up of boost kthreads that
1144 * have yielded the CPU due to excessive numbers of tasks to
1145 * boost. We wake up the per-rcu_node kthread, which in turn
1146 * will wake up the booster kthread.
1147 */
1148 static void rcu_boost_kthread_timer(unsigned long arg)
1149 {
1150 invoke_rcu_node_kthread((struct rcu_node *)arg);
1151 }
1152
1153 /*
1154 * Priority-boosting kthread. One per leaf rcu_node and one for the
1155 * root rcu_node.
1156 */
1157 static int rcu_boost_kthread(void *arg)
1158 {
1159 struct rcu_node *rnp = (struct rcu_node *)arg;
1160 int spincnt = 0;
1161 int more2boost;
1162
1163 trace_rcu_utilization("Start boost kthread@init");
1164 for (;;) {
1165 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1166 trace_rcu_utilization("End boost kthread@rcu_wait");
1167 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1168 trace_rcu_utilization("Start boost kthread@rcu_wait");
1169 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1170 more2boost = rcu_boost(rnp);
1171 if (more2boost)
1172 spincnt++;
1173 else
1174 spincnt = 0;
1175 if (spincnt > 10) {
1176 trace_rcu_utilization("End boost kthread@rcu_yield");
1177 rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
1178 trace_rcu_utilization("Start boost kthread@rcu_yield");
1179 spincnt = 0;
1180 }
1181 }
1182 /* NOTREACHED */
1183 trace_rcu_utilization("End boost kthread@notreached");
1184 return 0;
1185 }
1186
1187 /*
1188 * Check to see if it is time to start boosting RCU readers that are
1189 * blocking the current grace period, and, if so, tell the per-rcu_node
1190 * kthread to start boosting them. If there is an expedited grace
1191 * period in progress, it is always time to boost.
1192 *
1193 * The caller must hold rnp->lock, which this function releases,
1194 * but irqs remain disabled. The ->boost_kthread_task is immortal,
1195 * so we don't need to worry about it going away.
1196 */
1197 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1198 {
1199 struct task_struct *t;
1200
1201 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1202 rnp->n_balk_exp_gp_tasks++;
1203 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1204 return;
1205 }
1206 if (rnp->exp_tasks != NULL ||
1207 (rnp->gp_tasks != NULL &&
1208 rnp->boost_tasks == NULL &&
1209 rnp->qsmask == 0 &&
1210 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1211 if (rnp->exp_tasks == NULL)
1212 rnp->boost_tasks = rnp->gp_tasks;
1213 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1214 t = rnp->boost_kthread_task;
1215 if (t != NULL)
1216 wake_up_process(t);
1217 } else {
1218 rcu_initiate_boost_trace(rnp);
1219 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1220 }
1221 }
1222
1223 /*
1224 * Wake up the per-CPU kthread to invoke RCU callbacks.
1225 */
1226 static void invoke_rcu_callbacks_kthread(void)
1227 {
1228 unsigned long flags;
1229
1230 local_irq_save(flags);
1231 __this_cpu_write(rcu_cpu_has_work, 1);
1232 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1233 current != __this_cpu_read(rcu_cpu_kthread_task))
1234 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
1235 local_irq_restore(flags);
1236 }
1237
1238 /*
1239 * Is the current CPU running the RCU-callbacks kthread?
1240 * Caller must have preemption disabled.
1241 */
1242 static bool rcu_is_callbacks_kthread(void)
1243 {
1244 return __get_cpu_var(rcu_cpu_kthread_task) == current;
1245 }
1246
1247 /*
1248 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1249 * held, so no one should be messing with the existence of the boost
1250 * kthread.
1251 */
1252 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1253 cpumask_var_t cm)
1254 {
1255 struct task_struct *t;
1256
1257 t = rnp->boost_kthread_task;
1258 if (t != NULL)
1259 set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
1260 }
1261
1262 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1263
1264 /*
1265 * Do priority-boost accounting for the start of a new grace period.
1266 */
1267 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1268 {
1269 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1270 }
1271
1272 /*
1273 * Create an RCU-boost kthread for the specified node if one does not
1274 * already exist. We only create this kthread for preemptible RCU.
1275 * Returns zero if all is well, a negated errno otherwise.
1276 */
1277 static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1278 struct rcu_node *rnp,
1279 int rnp_index)
1280 {
1281 unsigned long flags;
1282 struct sched_param sp;
1283 struct task_struct *t;
1284
1285 if (&rcu_preempt_state != rsp)
1286 return 0;
1287 rsp->boost = 1;
1288 if (rnp->boost_kthread_task != NULL)
1289 return 0;
1290 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1291 "rcub/%d", rnp_index);
1292 if (IS_ERR(t))
1293 return PTR_ERR(t);
1294 raw_spin_lock_irqsave(&rnp->lock, flags);
1295 rnp->boost_kthread_task = t;
1296 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1297 sp.sched_priority = RCU_BOOST_PRIO;
1298 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1299 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1300 return 0;
1301 }
1302
1303 #ifdef CONFIG_HOTPLUG_CPU
1304
1305 /*
1306 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1307 */
1308 static void rcu_stop_cpu_kthread(int cpu)
1309 {
1310 struct task_struct *t;
1311
1312 /* Stop the CPU's kthread. */
1313 t = per_cpu(rcu_cpu_kthread_task, cpu);
1314 if (t != NULL) {
1315 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1316 kthread_stop(t);
1317 }
1318 }
1319
1320 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1321
1322 static void rcu_kthread_do_work(void)
1323 {
1324 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1325 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1326 rcu_preempt_do_callbacks();
1327 }
1328
1329 /*
1330 * Wake up the specified per-rcu_node-structure kthread.
1331 * Because the per-rcu_node kthreads are immortal, we don't need
1332 * to do anything to keep them alive.
1333 */
1334 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1335 {
1336 struct task_struct *t;
1337
1338 t = rnp->node_kthread_task;
1339 if (t != NULL)
1340 wake_up_process(t);
1341 }
1342
1343 /*
1344 * Set the specified CPU's kthread to run RT or not, as specified by
1345 * the to_rt argument. The CPU-hotplug locks are held, so the task
1346 * is not going away.
1347 */
1348 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1349 {
1350 int policy;
1351 struct sched_param sp;
1352 struct task_struct *t;
1353
1354 t = per_cpu(rcu_cpu_kthread_task, cpu);
1355 if (t == NULL)
1356 return;
1357 if (to_rt) {
1358 policy = SCHED_FIFO;
1359 sp.sched_priority = RCU_KTHREAD_PRIO;
1360 } else {
1361 policy = SCHED_NORMAL;
1362 sp.sched_priority = 0;
1363 }
1364 sched_setscheduler_nocheck(t, policy, &sp);
1365 }
1366
1367 /*
1368 * Timer handler to initiate the waking up of per-CPU kthreads that
1369 * have yielded the CPU due to excess numbers of RCU callbacks.
1370 * We wake up the per-rcu_node kthread, which in turn will wake up
1371 * the booster kthread.
1372 */
1373 static void rcu_cpu_kthread_timer(unsigned long arg)
1374 {
1375 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1376 struct rcu_node *rnp = rdp->mynode;
1377
1378 atomic_or(rdp->grpmask, &rnp->wakemask);
1379 invoke_rcu_node_kthread(rnp);
1380 }
1381
1382 /*
1383 * Drop to non-real-time priority and yield, but only after posting a
1384 * timer that will cause us to regain our real-time priority if we
1385 * remain preempted. Either way, we restore our real-time priority
1386 * before returning.
1387 */
1388 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1389 {
1390 struct sched_param sp;
1391 struct timer_list yield_timer;
1392 int prio = current->rt_priority;
1393
1394 setup_timer_on_stack(&yield_timer, f, arg);
1395 mod_timer(&yield_timer, jiffies + 2);
1396 sp.sched_priority = 0;
1397 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1398 set_user_nice(current, 19);
1399 schedule();
1400 set_user_nice(current, 0);
1401 sp.sched_priority = prio;
1402 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1403 del_timer(&yield_timer);
1404 }
1405
1406 /*
1407 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1408 * This can happen while the corresponding CPU is either coming online
1409 * or going offline. We cannot wait until the CPU is fully online
1410 * before starting the kthread, because the various notifier functions
1411 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1412 * the corresponding CPU is online.
1413 *
1414 * Return 1 if the kthread needs to stop, 0 otherwise.
1415 *
1416 * Caller must disable bh. This function can momentarily enable it.
1417 */
1418 static int rcu_cpu_kthread_should_stop(int cpu)
1419 {
1420 while (cpu_is_offline(cpu) ||
1421 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1422 smp_processor_id() != cpu) {
1423 if (kthread_should_stop())
1424 return 1;
1425 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1426 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1427 local_bh_enable();
1428 schedule_timeout_uninterruptible(1);
1429 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1430 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1431 local_bh_disable();
1432 }
1433 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1434 return 0;
1435 }
1436
1437 /*
1438 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1439 * RCU softirq used in flavors and configurations of RCU that do not
1440 * support RCU priority boosting.
1441 */
1442 static int rcu_cpu_kthread(void *arg)
1443 {
1444 int cpu = (int)(long)arg;
1445 unsigned long flags;
1446 int spincnt = 0;
1447 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1448 char work;
1449 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1450
1451 trace_rcu_utilization("Start CPU kthread@init");
1452 for (;;) {
1453 *statusp = RCU_KTHREAD_WAITING;
1454 trace_rcu_utilization("End CPU kthread@rcu_wait");
1455 rcu_wait(*workp != 0 || kthread_should_stop());
1456 trace_rcu_utilization("Start CPU kthread@rcu_wait");
1457 local_bh_disable();
1458 if (rcu_cpu_kthread_should_stop(cpu)) {
1459 local_bh_enable();
1460 break;
1461 }
1462 *statusp = RCU_KTHREAD_RUNNING;
1463 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1464 local_irq_save(flags);
1465 work = *workp;
1466 *workp = 0;
1467 local_irq_restore(flags);
1468 if (work)
1469 rcu_kthread_do_work();
1470 local_bh_enable();
1471 if (*workp != 0)
1472 spincnt++;
1473 else
1474 spincnt = 0;
1475 if (spincnt > 10) {
1476 *statusp = RCU_KTHREAD_YIELDING;
1477 trace_rcu_utilization("End CPU kthread@rcu_yield");
1478 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1479 trace_rcu_utilization("Start CPU kthread@rcu_yield");
1480 spincnt = 0;
1481 }
1482 }
1483 *statusp = RCU_KTHREAD_STOPPED;
1484 trace_rcu_utilization("End CPU kthread@term");
1485 return 0;
1486 }
1487
1488 /*
1489 * Spawn a per-CPU kthread, setting up affinity and priority.
1490 * Because the CPU hotplug lock is held, no other CPU will be attempting
1491 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1492 * attempting to access it during boot, but the locking in kthread_bind()
1493 * will enforce sufficient ordering.
1494 *
1495 * Please note that we cannot simply refuse to wake up the per-CPU
1496 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1497 * which can result in softlockup complaints if the task ends up being
1498 * idle for more than a couple of minutes.
1499 *
1500 * However, please note also that we cannot bind the per-CPU kthread to its
1501 * CPU until that CPU is fully online. We also cannot wait until the
1502 * CPU is fully online before we create its per-CPU kthread, as this would
1503 * deadlock the system when CPU notifiers tried waiting for grace
1504 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1505 * is online. If its CPU is not yet fully online, then the code in
1506 * rcu_cpu_kthread() will wait until it is fully online, and then do
1507 * the binding.
1508 */
1509 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1510 {
1511 struct sched_param sp;
1512 struct task_struct *t;
1513
1514 if (!rcu_scheduler_fully_active ||
1515 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1516 return 0;
1517 t = kthread_create_on_node(rcu_cpu_kthread,
1518 (void *)(long)cpu,
1519 cpu_to_node(cpu),
1520 "rcuc/%d", cpu);
1521 if (IS_ERR(t))
1522 return PTR_ERR(t);
1523 if (cpu_online(cpu))
1524 kthread_bind(t, cpu);
1525 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1526 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1527 sp.sched_priority = RCU_KTHREAD_PRIO;
1528 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1529 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1530 wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1531 return 0;
1532 }
1533
1534 /*
1535 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1536 * kthreads when needed. We ignore requests to wake up kthreads
1537 * for offline CPUs, which is OK because force_quiescent_state()
1538 * takes care of this case.
1539 */
1540 static int rcu_node_kthread(void *arg)
1541 {
1542 int cpu;
1543 unsigned long flags;
1544 unsigned long mask;
1545 struct rcu_node *rnp = (struct rcu_node *)arg;
1546 struct sched_param sp;
1547 struct task_struct *t;
1548
1549 for (;;) {
1550 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1551 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1552 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1553 raw_spin_lock_irqsave(&rnp->lock, flags);
1554 mask = atomic_xchg(&rnp->wakemask, 0);
1555 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1556 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1557 if ((mask & 0x1) == 0)
1558 continue;
1559 preempt_disable();
1560 t = per_cpu(rcu_cpu_kthread_task, cpu);
1561 if (!cpu_online(cpu) || t == NULL) {
1562 preempt_enable();
1563 continue;
1564 }
1565 per_cpu(rcu_cpu_has_work, cpu) = 1;
1566 sp.sched_priority = RCU_KTHREAD_PRIO;
1567 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1568 preempt_enable();
1569 }
1570 }
1571 /* NOTREACHED */
1572 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1573 return 0;
1574 }
1575
1576 /*
1577 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1578 * served by the rcu_node in question. The CPU hotplug lock is still
1579 * held, so the value of rnp->qsmaskinit will be stable.
1580 *
1581 * We don't include outgoingcpu in the affinity set, use -1 if there is
1582 * no outgoing CPU. If there are no CPUs left in the affinity set,
1583 * this function allows the kthread to execute on any CPU.
1584 */
1585 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1586 {
1587 cpumask_var_t cm;
1588 int cpu;
1589 unsigned long mask = rnp->qsmaskinit;
1590
1591 if (rnp->node_kthread_task == NULL)
1592 return;
1593 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1594 return;
1595 cpumask_clear(cm);
1596 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1597 if ((mask & 0x1) && cpu != outgoingcpu)
1598 cpumask_set_cpu(cpu, cm);
1599 if (cpumask_weight(cm) == 0) {
1600 cpumask_setall(cm);
1601 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1602 cpumask_clear_cpu(cpu, cm);
1603 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1604 }
1605 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1606 rcu_boost_kthread_setaffinity(rnp, cm);
1607 free_cpumask_var(cm);
1608 }
1609
1610 /*
1611 * Spawn a per-rcu_node kthread, setting priority and affinity.
1612 * Called during boot before online/offline can happen, or, if
1613 * during runtime, with the main CPU-hotplug locks held. So only
1614 * one of these can be executing at a time.
1615 */
1616 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1617 struct rcu_node *rnp)
1618 {
1619 unsigned long flags;
1620 int rnp_index = rnp - &rsp->node[0];
1621 struct sched_param sp;
1622 struct task_struct *t;
1623
1624 if (!rcu_scheduler_fully_active ||
1625 rnp->qsmaskinit == 0)
1626 return 0;
1627 if (rnp->node_kthread_task == NULL) {
1628 t = kthread_create(rcu_node_kthread, (void *)rnp,
1629 "rcun/%d", rnp_index);
1630 if (IS_ERR(t))
1631 return PTR_ERR(t);
1632 raw_spin_lock_irqsave(&rnp->lock, flags);
1633 rnp->node_kthread_task = t;
1634 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1635 sp.sched_priority = 99;
1636 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1637 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1638 }
1639 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1640 }
1641
1642 /*
1643 * Spawn all kthreads -- called as soon as the scheduler is running.
1644 */
1645 static int __init rcu_spawn_kthreads(void)
1646 {
1647 int cpu;
1648 struct rcu_node *rnp;
1649
1650 rcu_scheduler_fully_active = 1;
1651 for_each_possible_cpu(cpu) {
1652 per_cpu(rcu_cpu_has_work, cpu) = 0;
1653 if (cpu_online(cpu))
1654 (void)rcu_spawn_one_cpu_kthread(cpu);
1655 }
1656 rnp = rcu_get_root(rcu_state);
1657 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1658 if (NUM_RCU_NODES > 1) {
1659 rcu_for_each_leaf_node(rcu_state, rnp)
1660 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1661 }
1662 return 0;
1663 }
1664 early_initcall(rcu_spawn_kthreads);
1665
1666 static void __cpuinit rcu_prepare_kthreads(int cpu)
1667 {
1668 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1669 struct rcu_node *rnp = rdp->mynode;
1670
1671 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1672 if (rcu_scheduler_fully_active) {
1673 (void)rcu_spawn_one_cpu_kthread(cpu);
1674 if (rnp->node_kthread_task == NULL)
1675 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1676 }
1677 }
1678
1679 #else /* #ifdef CONFIG_RCU_BOOST */
1680
1681 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1682 {
1683 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1684 }
1685
1686 static void invoke_rcu_callbacks_kthread(void)
1687 {
1688 WARN_ON_ONCE(1);
1689 }
1690
1691 static bool rcu_is_callbacks_kthread(void)
1692 {
1693 return false;
1694 }
1695
1696 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1697 {
1698 }
1699
1700 #ifdef CONFIG_HOTPLUG_CPU
1701
1702 static void rcu_stop_cpu_kthread(int cpu)
1703 {
1704 }
1705
1706 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1707
1708 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1709 {
1710 }
1711
1712 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1713 {
1714 }
1715
1716 static int __init rcu_scheduler_really_started(void)
1717 {
1718 rcu_scheduler_fully_active = 1;
1719 return 0;
1720 }
1721 early_initcall(rcu_scheduler_really_started);
1722
1723 static void __cpuinit rcu_prepare_kthreads(int cpu)
1724 {
1725 }
1726
1727 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1728
1729 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1730
1731 /*
1732 * Check to see if any future RCU-related work will need to be done
1733 * by the current CPU, even if none need be done immediately, returning
1734 * 1 if so. This function is part of the RCU implementation; it is -not-
1735 * an exported member of the RCU API.
1736 *
1737 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1738 * any flavor of RCU.
1739 */
1740 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1741 {
1742 *delta_jiffies = ULONG_MAX;
1743 return rcu_cpu_has_callbacks(cpu);
1744 }
1745
1746 /*
1747 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
1748 */
1749 static void rcu_prepare_for_idle_init(int cpu)
1750 {
1751 }
1752
1753 /*
1754 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1755 * after it.
1756 */
1757 static void rcu_cleanup_after_idle(int cpu)
1758 {
1759 }
1760
1761 /*
1762 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1763 * is nothing.
1764 */
1765 static void rcu_prepare_for_idle(int cpu)
1766 {
1767 }
1768
1769 /*
1770 * Don't bother keeping a running count of the number of RCU callbacks
1771 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1772 */
1773 static void rcu_idle_count_callbacks_posted(void)
1774 {
1775 }
1776
1777 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1778
1779 /*
1780 * This code is invoked when a CPU goes idle, at which point we want
1781 * to have the CPU do everything required for RCU so that it can enter
1782 * the energy-efficient dyntick-idle mode. This is handled by a
1783 * state machine implemented by rcu_prepare_for_idle() below.
1784 *
1785 * The following three proprocessor symbols control this state machine:
1786 *
1787 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
1788 * to satisfy RCU. Beyond this point, it is better to incur a periodic
1789 * scheduling-clock interrupt than to loop through the state machine
1790 * at full power.
1791 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
1792 * optional if RCU does not need anything immediately from this
1793 * CPU, even if this CPU still has RCU callbacks queued. The first
1794 * times through the state machine are mandatory: we need to give
1795 * the state machine a chance to communicate a quiescent state
1796 * to the RCU core.
1797 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1798 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1799 * is sized to be roughly one RCU grace period. Those energy-efficiency
1800 * benchmarkers who might otherwise be tempted to set this to a large
1801 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1802 * system. And if you are -that- concerned about energy efficiency,
1803 * just power the system down and be done with it!
1804 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1805 * permitted to sleep in dyntick-idle mode with only lazy RCU
1806 * callbacks pending. Setting this too high can OOM your system.
1807 *
1808 * The values below work well in practice. If future workloads require
1809 * adjustment, they can be converted into kernel config parameters, though
1810 * making the state machine smarter might be a better option.
1811 */
1812 #define RCU_IDLE_FLUSHES 5 /* Number of dyntick-idle tries. */
1813 #define RCU_IDLE_OPT_FLUSHES 3 /* Optional dyntick-idle tries. */
1814 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1815 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1816
1817 extern int tick_nohz_enabled;
1818
1819 /*
1820 * Does the specified flavor of RCU have non-lazy callbacks pending on
1821 * the specified CPU? Both RCU flavor and CPU are specified by the
1822 * rcu_data structure.
1823 */
1824 static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
1825 {
1826 return rdp->qlen != rdp->qlen_lazy;
1827 }
1828
1829 #ifdef CONFIG_TREE_PREEMPT_RCU
1830
1831 /*
1832 * Are there non-lazy RCU-preempt callbacks? (There cannot be if there
1833 * is no RCU-preempt in the kernel.)
1834 */
1835 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
1836 {
1837 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
1838
1839 return __rcu_cpu_has_nonlazy_callbacks(rdp);
1840 }
1841
1842 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1843
1844 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
1845 {
1846 return 0;
1847 }
1848
1849 #endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
1850
1851 /*
1852 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
1853 */
1854 static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
1855 {
1856 return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
1857 __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
1858 rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
1859 }
1860
1861 /*
1862 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
1863 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
1864 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
1865 * enter dyntick-idle mode. Otherwise, if we have recently tried and failed
1866 * to enter dyntick-idle mode, we refuse to try to enter it. After all,
1867 * it is better to incur scheduling-clock interrupts than to spin
1868 * continuously for the same time duration!
1869 *
1870 * The delta_jiffies argument is used to store the time when RCU is
1871 * going to need the CPU again if it still has callbacks. The reason
1872 * for this is that rcu_prepare_for_idle() might need to post a timer,
1873 * but if so, it will do so after tick_nohz_stop_sched_tick() has set
1874 * the wakeup time for this CPU. This means that RCU's timer can be
1875 * delayed until the wakeup time, which defeats the purpose of posting
1876 * a timer.
1877 */
1878 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1879 {
1880 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1881
1882 /* Flag a new idle sojourn to the idle-entry state machine. */
1883 rdtp->idle_first_pass = 1;
1884 /* If no callbacks, RCU doesn't need the CPU. */
1885 if (!rcu_cpu_has_callbacks(cpu)) {
1886 *delta_jiffies = ULONG_MAX;
1887 return 0;
1888 }
1889 if (rdtp->dyntick_holdoff == jiffies) {
1890 /* RCU recently tried and failed, so don't try again. */
1891 *delta_jiffies = 1;
1892 return 1;
1893 }
1894 /* Set up for the possibility that RCU will post a timer. */
1895 if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
1896 *delta_jiffies = round_up(RCU_IDLE_GP_DELAY + jiffies,
1897 RCU_IDLE_GP_DELAY) - jiffies;
1898 } else {
1899 *delta_jiffies = jiffies + RCU_IDLE_LAZY_GP_DELAY;
1900 *delta_jiffies = round_jiffies(*delta_jiffies) - jiffies;
1901 }
1902 return 0;
1903 }
1904
1905 /*
1906 * Handler for smp_call_function_single(). The only point of this
1907 * handler is to wake the CPU up, so the handler does only tracing.
1908 */
1909 void rcu_idle_demigrate(void *unused)
1910 {
1911 trace_rcu_prep_idle("Demigrate");
1912 }
1913
1914 /*
1915 * Timer handler used to force CPU to start pushing its remaining RCU
1916 * callbacks in the case where it entered dyntick-idle mode with callbacks
1917 * pending. The hander doesn't really need to do anything because the
1918 * real work is done upon re-entry to idle, or by the next scheduling-clock
1919 * interrupt should idle not be re-entered.
1920 *
1921 * One special case: the timer gets migrated without awakening the CPU
1922 * on which the timer was scheduled on. In this case, we must wake up
1923 * that CPU. We do so with smp_call_function_single().
1924 */
1925 static void rcu_idle_gp_timer_func(unsigned long cpu_in)
1926 {
1927 int cpu = (int)cpu_in;
1928
1929 trace_rcu_prep_idle("Timer");
1930 if (cpu != smp_processor_id())
1931 smp_call_function_single(cpu, rcu_idle_demigrate, NULL, 0);
1932 else
1933 WARN_ON_ONCE(1); /* Getting here can hang the system... */
1934 }
1935
1936 /*
1937 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
1938 */
1939 static void rcu_prepare_for_idle_init(int cpu)
1940 {
1941 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1942
1943 rdtp->dyntick_holdoff = jiffies - 1;
1944 setup_timer(&rdtp->idle_gp_timer, rcu_idle_gp_timer_func, cpu);
1945 rdtp->idle_gp_timer_expires = jiffies - 1;
1946 rdtp->idle_first_pass = 1;
1947 }
1948
1949 /*
1950 * Clean up for exit from idle. Because we are exiting from idle, there
1951 * is no longer any point to ->idle_gp_timer, so cancel it. This will
1952 * do nothing if this timer is not active, so just cancel it unconditionally.
1953 */
1954 static void rcu_cleanup_after_idle(int cpu)
1955 {
1956 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1957
1958 del_timer(&rdtp->idle_gp_timer);
1959 trace_rcu_prep_idle("Cleanup after idle");
1960 rdtp->tick_nohz_enabled_snap = ACCESS_ONCE(tick_nohz_enabled);
1961 }
1962
1963 /*
1964 * Check to see if any RCU-related work can be done by the current CPU,
1965 * and if so, schedule a softirq to get it done. This function is part
1966 * of the RCU implementation; it is -not- an exported member of the RCU API.
1967 *
1968 * The idea is for the current CPU to clear out all work required by the
1969 * RCU core for the current grace period, so that this CPU can be permitted
1970 * to enter dyntick-idle mode. In some cases, it will need to be awakened
1971 * at the end of the grace period by whatever CPU ends the grace period.
1972 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
1973 * number of wakeups by a modest integer factor.
1974 *
1975 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1976 * disabled, we do one pass of force_quiescent_state(), then do a
1977 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1978 * later. The ->dyntick_drain field controls the sequencing.
1979 *
1980 * The caller must have disabled interrupts.
1981 */
1982 static void rcu_prepare_for_idle(int cpu)
1983 {
1984 struct timer_list *tp;
1985 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1986 int tne;
1987
1988 /* Handle nohz enablement switches conservatively. */
1989 tne = ACCESS_ONCE(tick_nohz_enabled);
1990 if (tne != rdtp->tick_nohz_enabled_snap) {
1991 if (rcu_cpu_has_callbacks(cpu))
1992 invoke_rcu_core(); /* force nohz to see update. */
1993 rdtp->tick_nohz_enabled_snap = tne;
1994 return;
1995 }
1996 if (!tne)
1997 return;
1998
1999 /*
2000 * If this is an idle re-entry, for example, due to use of
2001 * RCU_NONIDLE() or the new idle-loop tracing API within the idle
2002 * loop, then don't take any state-machine actions, unless the
2003 * momentary exit from idle queued additional non-lazy callbacks.
2004 * Instead, repost the ->idle_gp_timer if this CPU has callbacks
2005 * pending.
2006 */
2007 if (!rdtp->idle_first_pass &&
2008 (rdtp->nonlazy_posted == rdtp->nonlazy_posted_snap)) {
2009 if (rcu_cpu_has_callbacks(cpu)) {
2010 tp = &rdtp->idle_gp_timer;
2011 mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
2012 }
2013 return;
2014 }
2015 rdtp->idle_first_pass = 0;
2016 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted - 1;
2017
2018 /*
2019 * If there are no callbacks on this CPU, enter dyntick-idle mode.
2020 * Also reset state to avoid prejudicing later attempts.
2021 */
2022 if (!rcu_cpu_has_callbacks(cpu)) {
2023 rdtp->dyntick_holdoff = jiffies - 1;
2024 rdtp->dyntick_drain = 0;
2025 trace_rcu_prep_idle("No callbacks");
2026 return;
2027 }
2028
2029 /*
2030 * If in holdoff mode, just return. We will presumably have
2031 * refrained from disabling the scheduling-clock tick.
2032 */
2033 if (rdtp->dyntick_holdoff == jiffies) {
2034 trace_rcu_prep_idle("In holdoff");
2035 return;
2036 }
2037
2038 /* Check and update the ->dyntick_drain sequencing. */
2039 if (rdtp->dyntick_drain <= 0) {
2040 /* First time through, initialize the counter. */
2041 rdtp->dyntick_drain = RCU_IDLE_FLUSHES;
2042 } else if (rdtp->dyntick_drain <= RCU_IDLE_OPT_FLUSHES &&
2043 !rcu_pending(cpu) &&
2044 !local_softirq_pending()) {
2045 /* Can we go dyntick-idle despite still having callbacks? */
2046 rdtp->dyntick_drain = 0;
2047 rdtp->dyntick_holdoff = jiffies;
2048 if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
2049 trace_rcu_prep_idle("Dyntick with callbacks");
2050 rdtp->idle_gp_timer_expires =
2051 round_up(jiffies + RCU_IDLE_GP_DELAY,
2052 RCU_IDLE_GP_DELAY);
2053 } else {
2054 rdtp->idle_gp_timer_expires =
2055 round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
2056 trace_rcu_prep_idle("Dyntick with lazy callbacks");
2057 }
2058 tp = &rdtp->idle_gp_timer;
2059 mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
2060 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
2061 return; /* Nothing more to do immediately. */
2062 } else if (--(rdtp->dyntick_drain) <= 0) {
2063 /* We have hit the limit, so time to give up. */
2064 rdtp->dyntick_holdoff = jiffies;
2065 trace_rcu_prep_idle("Begin holdoff");
2066 invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
2067 return;
2068 }
2069
2070 /*
2071 * Do one step of pushing the remaining RCU callbacks through
2072 * the RCU core state machine.
2073 */
2074 #ifdef CONFIG_TREE_PREEMPT_RCU
2075 if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
2076 rcu_preempt_qs(cpu);
2077 force_quiescent_state(&rcu_preempt_state, 0);
2078 }
2079 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2080 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
2081 rcu_sched_qs(cpu);
2082 force_quiescent_state(&rcu_sched_state, 0);
2083 }
2084 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
2085 rcu_bh_qs(cpu);
2086 force_quiescent_state(&rcu_bh_state, 0);
2087 }
2088
2089 /*
2090 * If RCU callbacks are still pending, RCU still needs this CPU.
2091 * So try forcing the callbacks through the grace period.
2092 */
2093 if (rcu_cpu_has_callbacks(cpu)) {
2094 trace_rcu_prep_idle("More callbacks");
2095 invoke_rcu_core();
2096 } else
2097 trace_rcu_prep_idle("Callbacks drained");
2098 }
2099
2100 /*
2101 * Keep a running count of the number of non-lazy callbacks posted
2102 * on this CPU. This running counter (which is never decremented) allows
2103 * rcu_prepare_for_idle() to detect when something out of the idle loop
2104 * posts a callback, even if an equal number of callbacks are invoked.
2105 * Of course, callbacks should only be posted from within a trace event
2106 * designed to be called from idle or from within RCU_NONIDLE().
2107 */
2108 static void rcu_idle_count_callbacks_posted(void)
2109 {
2110 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
2111 }
2112
2113 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
2114
2115 #ifdef CONFIG_RCU_CPU_STALL_INFO
2116
2117 #ifdef CONFIG_RCU_FAST_NO_HZ
2118
2119 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2120 {
2121 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
2122 struct timer_list *tltp = &rdtp->idle_gp_timer;
2123
2124 sprintf(cp, "drain=%d %c timer=%lu",
2125 rdtp->dyntick_drain,
2126 rdtp->dyntick_holdoff == jiffies ? 'H' : '.',
2127 timer_pending(tltp) ? tltp->expires - jiffies : -1);
2128 }
2129
2130 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
2131
2132 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2133 {
2134 *cp = '\0';
2135 }
2136
2137 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
2138
2139 /* Initiate the stall-info list. */
2140 static void print_cpu_stall_info_begin(void)
2141 {
2142 printk(KERN_CONT "\n");
2143 }
2144
2145 /*
2146 * Print out diagnostic information for the specified stalled CPU.
2147 *
2148 * If the specified CPU is aware of the current RCU grace period
2149 * (flavor specified by rsp), then print the number of scheduling
2150 * clock interrupts the CPU has taken during the time that it has
2151 * been aware. Otherwise, print the number of RCU grace periods
2152 * that this CPU is ignorant of, for example, "1" if the CPU was
2153 * aware of the previous grace period.
2154 *
2155 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
2156 */
2157 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2158 {
2159 char fast_no_hz[72];
2160 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2161 struct rcu_dynticks *rdtp = rdp->dynticks;
2162 char *ticks_title;
2163 unsigned long ticks_value;
2164
2165 if (rsp->gpnum == rdp->gpnum) {
2166 ticks_title = "ticks this GP";
2167 ticks_value = rdp->ticks_this_gp;
2168 } else {
2169 ticks_title = "GPs behind";
2170 ticks_value = rsp->gpnum - rdp->gpnum;
2171 }
2172 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
2173 printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
2174 cpu, ticks_value, ticks_title,
2175 atomic_read(&rdtp->dynticks) & 0xfff,
2176 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
2177 fast_no_hz);
2178 }
2179
2180 /* Terminate the stall-info list. */
2181 static void print_cpu_stall_info_end(void)
2182 {
2183 printk(KERN_ERR "\t");
2184 }
2185
2186 /* Zero ->ticks_this_gp for all flavors of RCU. */
2187 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2188 {
2189 rdp->ticks_this_gp = 0;
2190 }
2191
2192 /* Increment ->ticks_this_gp for all flavors of RCU. */
2193 static void increment_cpu_stall_ticks(void)
2194 {
2195 __get_cpu_var(rcu_sched_data).ticks_this_gp++;
2196 __get_cpu_var(rcu_bh_data).ticks_this_gp++;
2197 #ifdef CONFIG_TREE_PREEMPT_RCU
2198 __get_cpu_var(rcu_preempt_data).ticks_this_gp++;
2199 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2200 }
2201
2202 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2203
2204 static void print_cpu_stall_info_begin(void)
2205 {
2206 printk(KERN_CONT " {");
2207 }
2208
2209 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2210 {
2211 printk(KERN_CONT " %d", cpu);
2212 }
2213
2214 static void print_cpu_stall_info_end(void)
2215 {
2216 printk(KERN_CONT "} ");
2217 }
2218
2219 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2220 {
2221 }
2222
2223 static void increment_cpu_stall_ticks(void)
2224 {
2225 }
2226
2227 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
This page took 0.154571 seconds and 6 git commands to generate.