rcu: Place pointer to call_rcu() in rcu_data structure
[deliverable/linux.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28
29 #define RCU_KTHREAD_PRIO 1
30
31 #ifdef CONFIG_RCU_BOOST
32 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
33 #else
34 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
35 #endif
36
37 /*
38 * Check the RCU kernel configuration parameters and print informative
39 * messages about anything out of the ordinary. If you like #ifdef, you
40 * will love this function.
41 */
42 static void __init rcu_bootup_announce_oddness(void)
43 {
44 #ifdef CONFIG_RCU_TRACE
45 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
46 #endif
47 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
48 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
49 CONFIG_RCU_FANOUT);
50 #endif
51 #ifdef CONFIG_RCU_FANOUT_EXACT
52 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
53 #endif
54 #ifdef CONFIG_RCU_FAST_NO_HZ
55 printk(KERN_INFO
56 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
57 #endif
58 #ifdef CONFIG_PROVE_RCU
59 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
60 #endif
61 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
62 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
63 #endif
64 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
65 printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
66 #endif
67 #if defined(CONFIG_RCU_CPU_STALL_INFO)
68 printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
69 #endif
70 #if NUM_RCU_LVL_4 != 0
71 printk(KERN_INFO "\tFour-level hierarchy is enabled.\n");
72 #endif
73 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
74 printk(KERN_INFO "\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
75 if (nr_cpu_ids != NR_CPUS)
76 printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
77 }
78
79 #ifdef CONFIG_TREE_PREEMPT_RCU
80
81 struct rcu_state rcu_preempt_state =
82 RCU_STATE_INITIALIZER(rcu_preempt, call_rcu);
83 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
84 static struct rcu_state *rcu_state = &rcu_preempt_state;
85
86 static void rcu_read_unlock_special(struct task_struct *t);
87 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
88
89 /*
90 * Tell them what RCU they are running.
91 */
92 static void __init rcu_bootup_announce(void)
93 {
94 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
95 rcu_bootup_announce_oddness();
96 }
97
98 /*
99 * Return the number of RCU-preempt batches processed thus far
100 * for debug and statistics.
101 */
102 long rcu_batches_completed_preempt(void)
103 {
104 return rcu_preempt_state.completed;
105 }
106 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
107
108 /*
109 * Return the number of RCU batches processed thus far for debug & stats.
110 */
111 long rcu_batches_completed(void)
112 {
113 return rcu_batches_completed_preempt();
114 }
115 EXPORT_SYMBOL_GPL(rcu_batches_completed);
116
117 /*
118 * Force a quiescent state for preemptible RCU.
119 */
120 void rcu_force_quiescent_state(void)
121 {
122 force_quiescent_state(&rcu_preempt_state, 0);
123 }
124 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
125
126 /*
127 * Record a preemptible-RCU quiescent state for the specified CPU. Note
128 * that this just means that the task currently running on the CPU is
129 * not in a quiescent state. There might be any number of tasks blocked
130 * while in an RCU read-side critical section.
131 *
132 * Unlike the other rcu_*_qs() functions, callers to this function
133 * must disable irqs in order to protect the assignment to
134 * ->rcu_read_unlock_special.
135 */
136 static void rcu_preempt_qs(int cpu)
137 {
138 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
139
140 rdp->passed_quiesce_gpnum = rdp->gpnum;
141 barrier();
142 if (rdp->passed_quiesce == 0)
143 trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
144 rdp->passed_quiesce = 1;
145 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
146 }
147
148 /*
149 * We have entered the scheduler, and the current task might soon be
150 * context-switched away from. If this task is in an RCU read-side
151 * critical section, we will no longer be able to rely on the CPU to
152 * record that fact, so we enqueue the task on the blkd_tasks list.
153 * The task will dequeue itself when it exits the outermost enclosing
154 * RCU read-side critical section. Therefore, the current grace period
155 * cannot be permitted to complete until the blkd_tasks list entries
156 * predating the current grace period drain, in other words, until
157 * rnp->gp_tasks becomes NULL.
158 *
159 * Caller must disable preemption.
160 */
161 static void rcu_preempt_note_context_switch(int cpu)
162 {
163 struct task_struct *t = current;
164 unsigned long flags;
165 struct rcu_data *rdp;
166 struct rcu_node *rnp;
167
168 if (t->rcu_read_lock_nesting > 0 &&
169 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
170
171 /* Possibly blocking in an RCU read-side critical section. */
172 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
173 rnp = rdp->mynode;
174 raw_spin_lock_irqsave(&rnp->lock, flags);
175 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
176 t->rcu_blocked_node = rnp;
177
178 /*
179 * If this CPU has already checked in, then this task
180 * will hold up the next grace period rather than the
181 * current grace period. Queue the task accordingly.
182 * If the task is queued for the current grace period
183 * (i.e., this CPU has not yet passed through a quiescent
184 * state for the current grace period), then as long
185 * as that task remains queued, the current grace period
186 * cannot end. Note that there is some uncertainty as
187 * to exactly when the current grace period started.
188 * We take a conservative approach, which can result
189 * in unnecessarily waiting on tasks that started very
190 * slightly after the current grace period began. C'est
191 * la vie!!!
192 *
193 * But first, note that the current CPU must still be
194 * on line!
195 */
196 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
197 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
198 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
199 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
200 rnp->gp_tasks = &t->rcu_node_entry;
201 #ifdef CONFIG_RCU_BOOST
202 if (rnp->boost_tasks != NULL)
203 rnp->boost_tasks = rnp->gp_tasks;
204 #endif /* #ifdef CONFIG_RCU_BOOST */
205 } else {
206 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
207 if (rnp->qsmask & rdp->grpmask)
208 rnp->gp_tasks = &t->rcu_node_entry;
209 }
210 trace_rcu_preempt_task(rdp->rsp->name,
211 t->pid,
212 (rnp->qsmask & rdp->grpmask)
213 ? rnp->gpnum
214 : rnp->gpnum + 1);
215 raw_spin_unlock_irqrestore(&rnp->lock, flags);
216 } else if (t->rcu_read_lock_nesting < 0 &&
217 t->rcu_read_unlock_special) {
218
219 /*
220 * Complete exit from RCU read-side critical section on
221 * behalf of preempted instance of __rcu_read_unlock().
222 */
223 rcu_read_unlock_special(t);
224 }
225
226 /*
227 * Either we were not in an RCU read-side critical section to
228 * begin with, or we have now recorded that critical section
229 * globally. Either way, we can now note a quiescent state
230 * for this CPU. Again, if we were in an RCU read-side critical
231 * section, and if that critical section was blocking the current
232 * grace period, then the fact that the task has been enqueued
233 * means that we continue to block the current grace period.
234 */
235 local_irq_save(flags);
236 rcu_preempt_qs(cpu);
237 local_irq_restore(flags);
238 }
239
240 /*
241 * Tree-preemptible RCU implementation for rcu_read_lock().
242 * Just increment ->rcu_read_lock_nesting, shared state will be updated
243 * if we block.
244 */
245 void __rcu_read_lock(void)
246 {
247 current->rcu_read_lock_nesting++;
248 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
249 }
250 EXPORT_SYMBOL_GPL(__rcu_read_lock);
251
252 /*
253 * Check for preempted RCU readers blocking the current grace period
254 * for the specified rcu_node structure. If the caller needs a reliable
255 * answer, it must hold the rcu_node's ->lock.
256 */
257 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
258 {
259 return rnp->gp_tasks != NULL;
260 }
261
262 /*
263 * Record a quiescent state for all tasks that were previously queued
264 * on the specified rcu_node structure and that were blocking the current
265 * RCU grace period. The caller must hold the specified rnp->lock with
266 * irqs disabled, and this lock is released upon return, but irqs remain
267 * disabled.
268 */
269 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
270 __releases(rnp->lock)
271 {
272 unsigned long mask;
273 struct rcu_node *rnp_p;
274
275 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
276 raw_spin_unlock_irqrestore(&rnp->lock, flags);
277 return; /* Still need more quiescent states! */
278 }
279
280 rnp_p = rnp->parent;
281 if (rnp_p == NULL) {
282 /*
283 * Either there is only one rcu_node in the tree,
284 * or tasks were kicked up to root rcu_node due to
285 * CPUs going offline.
286 */
287 rcu_report_qs_rsp(&rcu_preempt_state, flags);
288 return;
289 }
290
291 /* Report up the rest of the hierarchy. */
292 mask = rnp->grpmask;
293 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
294 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
295 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
296 }
297
298 /*
299 * Advance a ->blkd_tasks-list pointer to the next entry, instead
300 * returning NULL if at the end of the list.
301 */
302 static struct list_head *rcu_next_node_entry(struct task_struct *t,
303 struct rcu_node *rnp)
304 {
305 struct list_head *np;
306
307 np = t->rcu_node_entry.next;
308 if (np == &rnp->blkd_tasks)
309 np = NULL;
310 return np;
311 }
312
313 /*
314 * Handle special cases during rcu_read_unlock(), such as needing to
315 * notify RCU core processing or task having blocked during the RCU
316 * read-side critical section.
317 */
318 static noinline void rcu_read_unlock_special(struct task_struct *t)
319 {
320 int empty;
321 int empty_exp;
322 int empty_exp_now;
323 unsigned long flags;
324 struct list_head *np;
325 #ifdef CONFIG_RCU_BOOST
326 struct rt_mutex *rbmp = NULL;
327 #endif /* #ifdef CONFIG_RCU_BOOST */
328 struct rcu_node *rnp;
329 int special;
330
331 /* NMI handlers cannot block and cannot safely manipulate state. */
332 if (in_nmi())
333 return;
334
335 local_irq_save(flags);
336
337 /*
338 * If RCU core is waiting for this CPU to exit critical section,
339 * let it know that we have done so.
340 */
341 special = t->rcu_read_unlock_special;
342 if (special & RCU_READ_UNLOCK_NEED_QS) {
343 rcu_preempt_qs(smp_processor_id());
344 }
345
346 /* Hardware IRQ handlers cannot block. */
347 if (in_irq() || in_serving_softirq()) {
348 local_irq_restore(flags);
349 return;
350 }
351
352 /* Clean up if blocked during RCU read-side critical section. */
353 if (special & RCU_READ_UNLOCK_BLOCKED) {
354 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
355
356 /*
357 * Remove this task from the list it blocked on. The
358 * task can migrate while we acquire the lock, but at
359 * most one time. So at most two passes through loop.
360 */
361 for (;;) {
362 rnp = t->rcu_blocked_node;
363 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
364 if (rnp == t->rcu_blocked_node)
365 break;
366 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
367 }
368 empty = !rcu_preempt_blocked_readers_cgp(rnp);
369 empty_exp = !rcu_preempted_readers_exp(rnp);
370 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
371 np = rcu_next_node_entry(t, rnp);
372 list_del_init(&t->rcu_node_entry);
373 t->rcu_blocked_node = NULL;
374 trace_rcu_unlock_preempted_task("rcu_preempt",
375 rnp->gpnum, t->pid);
376 if (&t->rcu_node_entry == rnp->gp_tasks)
377 rnp->gp_tasks = np;
378 if (&t->rcu_node_entry == rnp->exp_tasks)
379 rnp->exp_tasks = np;
380 #ifdef CONFIG_RCU_BOOST
381 if (&t->rcu_node_entry == rnp->boost_tasks)
382 rnp->boost_tasks = np;
383 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
384 if (t->rcu_boost_mutex) {
385 rbmp = t->rcu_boost_mutex;
386 t->rcu_boost_mutex = NULL;
387 }
388 #endif /* #ifdef CONFIG_RCU_BOOST */
389
390 /*
391 * If this was the last task on the current list, and if
392 * we aren't waiting on any CPUs, report the quiescent state.
393 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
394 * so we must take a snapshot of the expedited state.
395 */
396 empty_exp_now = !rcu_preempted_readers_exp(rnp);
397 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
398 trace_rcu_quiescent_state_report("preempt_rcu",
399 rnp->gpnum,
400 0, rnp->qsmask,
401 rnp->level,
402 rnp->grplo,
403 rnp->grphi,
404 !!rnp->gp_tasks);
405 rcu_report_unblock_qs_rnp(rnp, flags);
406 } else
407 raw_spin_unlock_irqrestore(&rnp->lock, flags);
408
409 #ifdef CONFIG_RCU_BOOST
410 /* Unboost if we were boosted. */
411 if (rbmp)
412 rt_mutex_unlock(rbmp);
413 #endif /* #ifdef CONFIG_RCU_BOOST */
414
415 /*
416 * If this was the last task on the expedited lists,
417 * then we need to report up the rcu_node hierarchy.
418 */
419 if (!empty_exp && empty_exp_now)
420 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
421 } else {
422 local_irq_restore(flags);
423 }
424 }
425
426 /*
427 * Tree-preemptible RCU implementation for rcu_read_unlock().
428 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
429 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
430 * invoke rcu_read_unlock_special() to clean up after a context switch
431 * in an RCU read-side critical section and other special cases.
432 */
433 void __rcu_read_unlock(void)
434 {
435 struct task_struct *t = current;
436
437 if (t->rcu_read_lock_nesting != 1)
438 --t->rcu_read_lock_nesting;
439 else {
440 barrier(); /* critical section before exit code. */
441 t->rcu_read_lock_nesting = INT_MIN;
442 barrier(); /* assign before ->rcu_read_unlock_special load */
443 if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
444 rcu_read_unlock_special(t);
445 barrier(); /* ->rcu_read_unlock_special load before assign */
446 t->rcu_read_lock_nesting = 0;
447 }
448 #ifdef CONFIG_PROVE_LOCKING
449 {
450 int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
451
452 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
453 }
454 #endif /* #ifdef CONFIG_PROVE_LOCKING */
455 }
456 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
457
458 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
459
460 /*
461 * Dump detailed information for all tasks blocking the current RCU
462 * grace period on the specified rcu_node structure.
463 */
464 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
465 {
466 unsigned long flags;
467 struct task_struct *t;
468
469 if (!rcu_preempt_blocked_readers_cgp(rnp))
470 return;
471 raw_spin_lock_irqsave(&rnp->lock, flags);
472 t = list_entry(rnp->gp_tasks,
473 struct task_struct, rcu_node_entry);
474 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
475 sched_show_task(t);
476 raw_spin_unlock_irqrestore(&rnp->lock, flags);
477 }
478
479 /*
480 * Dump detailed information for all tasks blocking the current RCU
481 * grace period.
482 */
483 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
484 {
485 struct rcu_node *rnp = rcu_get_root(rsp);
486
487 rcu_print_detail_task_stall_rnp(rnp);
488 rcu_for_each_leaf_node(rsp, rnp)
489 rcu_print_detail_task_stall_rnp(rnp);
490 }
491
492 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
493
494 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
495 {
496 }
497
498 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
499
500 #ifdef CONFIG_RCU_CPU_STALL_INFO
501
502 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
503 {
504 printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
505 rnp->level, rnp->grplo, rnp->grphi);
506 }
507
508 static void rcu_print_task_stall_end(void)
509 {
510 printk(KERN_CONT "\n");
511 }
512
513 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
514
515 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
516 {
517 }
518
519 static void rcu_print_task_stall_end(void)
520 {
521 }
522
523 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
524
525 /*
526 * Scan the current list of tasks blocked within RCU read-side critical
527 * sections, printing out the tid of each.
528 */
529 static int rcu_print_task_stall(struct rcu_node *rnp)
530 {
531 struct task_struct *t;
532 int ndetected = 0;
533
534 if (!rcu_preempt_blocked_readers_cgp(rnp))
535 return 0;
536 rcu_print_task_stall_begin(rnp);
537 t = list_entry(rnp->gp_tasks,
538 struct task_struct, rcu_node_entry);
539 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
540 printk(KERN_CONT " P%d", t->pid);
541 ndetected++;
542 }
543 rcu_print_task_stall_end();
544 return ndetected;
545 }
546
547 /*
548 * Suppress preemptible RCU's CPU stall warnings by pushing the
549 * time of the next stall-warning message comfortably far into the
550 * future.
551 */
552 static void rcu_preempt_stall_reset(void)
553 {
554 rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
555 }
556
557 /*
558 * Check that the list of blocked tasks for the newly completed grace
559 * period is in fact empty. It is a serious bug to complete a grace
560 * period that still has RCU readers blocked! This function must be
561 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
562 * must be held by the caller.
563 *
564 * Also, if there are blocked tasks on the list, they automatically
565 * block the newly created grace period, so set up ->gp_tasks accordingly.
566 */
567 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
568 {
569 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
570 if (!list_empty(&rnp->blkd_tasks))
571 rnp->gp_tasks = rnp->blkd_tasks.next;
572 WARN_ON_ONCE(rnp->qsmask);
573 }
574
575 #ifdef CONFIG_HOTPLUG_CPU
576
577 /*
578 * Handle tasklist migration for case in which all CPUs covered by the
579 * specified rcu_node have gone offline. Move them up to the root
580 * rcu_node. The reason for not just moving them to the immediate
581 * parent is to remove the need for rcu_read_unlock_special() to
582 * make more than two attempts to acquire the target rcu_node's lock.
583 * Returns true if there were tasks blocking the current RCU grace
584 * period.
585 *
586 * Returns 1 if there was previously a task blocking the current grace
587 * period on the specified rcu_node structure.
588 *
589 * The caller must hold rnp->lock with irqs disabled.
590 */
591 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
592 struct rcu_node *rnp,
593 struct rcu_data *rdp)
594 {
595 struct list_head *lp;
596 struct list_head *lp_root;
597 int retval = 0;
598 struct rcu_node *rnp_root = rcu_get_root(rsp);
599 struct task_struct *t;
600
601 if (rnp == rnp_root) {
602 WARN_ONCE(1, "Last CPU thought to be offlined?");
603 return 0; /* Shouldn't happen: at least one CPU online. */
604 }
605
606 /* If we are on an internal node, complain bitterly. */
607 WARN_ON_ONCE(rnp != rdp->mynode);
608
609 /*
610 * Move tasks up to root rcu_node. Don't try to get fancy for
611 * this corner-case operation -- just put this node's tasks
612 * at the head of the root node's list, and update the root node's
613 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
614 * if non-NULL. This might result in waiting for more tasks than
615 * absolutely necessary, but this is a good performance/complexity
616 * tradeoff.
617 */
618 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
619 retval |= RCU_OFL_TASKS_NORM_GP;
620 if (rcu_preempted_readers_exp(rnp))
621 retval |= RCU_OFL_TASKS_EXP_GP;
622 lp = &rnp->blkd_tasks;
623 lp_root = &rnp_root->blkd_tasks;
624 while (!list_empty(lp)) {
625 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
626 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
627 list_del(&t->rcu_node_entry);
628 t->rcu_blocked_node = rnp_root;
629 list_add(&t->rcu_node_entry, lp_root);
630 if (&t->rcu_node_entry == rnp->gp_tasks)
631 rnp_root->gp_tasks = rnp->gp_tasks;
632 if (&t->rcu_node_entry == rnp->exp_tasks)
633 rnp_root->exp_tasks = rnp->exp_tasks;
634 #ifdef CONFIG_RCU_BOOST
635 if (&t->rcu_node_entry == rnp->boost_tasks)
636 rnp_root->boost_tasks = rnp->boost_tasks;
637 #endif /* #ifdef CONFIG_RCU_BOOST */
638 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
639 }
640
641 #ifdef CONFIG_RCU_BOOST
642 /* In case root is being boosted and leaf is not. */
643 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
644 if (rnp_root->boost_tasks != NULL &&
645 rnp_root->boost_tasks != rnp_root->gp_tasks)
646 rnp_root->boost_tasks = rnp_root->gp_tasks;
647 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
648 #endif /* #ifdef CONFIG_RCU_BOOST */
649
650 rnp->gp_tasks = NULL;
651 rnp->exp_tasks = NULL;
652 return retval;
653 }
654
655 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
656
657 /*
658 * Do CPU-offline processing for preemptible RCU.
659 */
660 static void rcu_preempt_cleanup_dead_cpu(int cpu)
661 {
662 rcu_cleanup_dead_cpu(cpu, &rcu_preempt_state);
663 }
664
665 /*
666 * Check for a quiescent state from the current CPU. When a task blocks,
667 * the task is recorded in the corresponding CPU's rcu_node structure,
668 * which is checked elsewhere.
669 *
670 * Caller must disable hard irqs.
671 */
672 static void rcu_preempt_check_callbacks(int cpu)
673 {
674 struct task_struct *t = current;
675
676 if (t->rcu_read_lock_nesting == 0) {
677 rcu_preempt_qs(cpu);
678 return;
679 }
680 if (t->rcu_read_lock_nesting > 0 &&
681 per_cpu(rcu_preempt_data, cpu).qs_pending)
682 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
683 }
684
685 /*
686 * Process callbacks for preemptible RCU.
687 */
688 static void rcu_preempt_process_callbacks(void)
689 {
690 __rcu_process_callbacks(&rcu_preempt_state,
691 &__get_cpu_var(rcu_preempt_data));
692 }
693
694 #ifdef CONFIG_RCU_BOOST
695
696 static void rcu_preempt_do_callbacks(void)
697 {
698 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
699 }
700
701 #endif /* #ifdef CONFIG_RCU_BOOST */
702
703 /*
704 * Queue a preemptible-RCU callback for invocation after a grace period.
705 */
706 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
707 {
708 __call_rcu(head, func, &rcu_preempt_state, 0);
709 }
710 EXPORT_SYMBOL_GPL(call_rcu);
711
712 /*
713 * Queue an RCU callback for lazy invocation after a grace period.
714 * This will likely be later named something like "call_rcu_lazy()",
715 * but this change will require some way of tagging the lazy RCU
716 * callbacks in the list of pending callbacks. Until then, this
717 * function may only be called from __kfree_rcu().
718 */
719 void kfree_call_rcu(struct rcu_head *head,
720 void (*func)(struct rcu_head *rcu))
721 {
722 __call_rcu(head, func, &rcu_preempt_state, 1);
723 }
724 EXPORT_SYMBOL_GPL(kfree_call_rcu);
725
726 /**
727 * synchronize_rcu - wait until a grace period has elapsed.
728 *
729 * Control will return to the caller some time after a full grace
730 * period has elapsed, in other words after all currently executing RCU
731 * read-side critical sections have completed. Note, however, that
732 * upon return from synchronize_rcu(), the caller might well be executing
733 * concurrently with new RCU read-side critical sections that began while
734 * synchronize_rcu() was waiting. RCU read-side critical sections are
735 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
736 */
737 void synchronize_rcu(void)
738 {
739 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
740 !lock_is_held(&rcu_lock_map) &&
741 !lock_is_held(&rcu_sched_lock_map),
742 "Illegal synchronize_rcu() in RCU read-side critical section");
743 if (!rcu_scheduler_active)
744 return;
745 wait_rcu_gp(call_rcu);
746 }
747 EXPORT_SYMBOL_GPL(synchronize_rcu);
748
749 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
750 static long sync_rcu_preempt_exp_count;
751 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
752
753 /*
754 * Return non-zero if there are any tasks in RCU read-side critical
755 * sections blocking the current preemptible-RCU expedited grace period.
756 * If there is no preemptible-RCU expedited grace period currently in
757 * progress, returns zero unconditionally.
758 */
759 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
760 {
761 return rnp->exp_tasks != NULL;
762 }
763
764 /*
765 * return non-zero if there is no RCU expedited grace period in progress
766 * for the specified rcu_node structure, in other words, if all CPUs and
767 * tasks covered by the specified rcu_node structure have done their bit
768 * for the current expedited grace period. Works only for preemptible
769 * RCU -- other RCU implementation use other means.
770 *
771 * Caller must hold sync_rcu_preempt_exp_mutex.
772 */
773 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
774 {
775 return !rcu_preempted_readers_exp(rnp) &&
776 ACCESS_ONCE(rnp->expmask) == 0;
777 }
778
779 /*
780 * Report the exit from RCU read-side critical section for the last task
781 * that queued itself during or before the current expedited preemptible-RCU
782 * grace period. This event is reported either to the rcu_node structure on
783 * which the task was queued or to one of that rcu_node structure's ancestors,
784 * recursively up the tree. (Calm down, calm down, we do the recursion
785 * iteratively!)
786 *
787 * Most callers will set the "wake" flag, but the task initiating the
788 * expedited grace period need not wake itself.
789 *
790 * Caller must hold sync_rcu_preempt_exp_mutex.
791 */
792 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
793 bool wake)
794 {
795 unsigned long flags;
796 unsigned long mask;
797
798 raw_spin_lock_irqsave(&rnp->lock, flags);
799 for (;;) {
800 if (!sync_rcu_preempt_exp_done(rnp)) {
801 raw_spin_unlock_irqrestore(&rnp->lock, flags);
802 break;
803 }
804 if (rnp->parent == NULL) {
805 raw_spin_unlock_irqrestore(&rnp->lock, flags);
806 if (wake)
807 wake_up(&sync_rcu_preempt_exp_wq);
808 break;
809 }
810 mask = rnp->grpmask;
811 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
812 rnp = rnp->parent;
813 raw_spin_lock(&rnp->lock); /* irqs already disabled */
814 rnp->expmask &= ~mask;
815 }
816 }
817
818 /*
819 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
820 * grace period for the specified rcu_node structure. If there are no such
821 * tasks, report it up the rcu_node hierarchy.
822 *
823 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
824 */
825 static void
826 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
827 {
828 unsigned long flags;
829 int must_wait = 0;
830
831 raw_spin_lock_irqsave(&rnp->lock, flags);
832 if (list_empty(&rnp->blkd_tasks))
833 raw_spin_unlock_irqrestore(&rnp->lock, flags);
834 else {
835 rnp->exp_tasks = rnp->blkd_tasks.next;
836 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
837 must_wait = 1;
838 }
839 if (!must_wait)
840 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
841 }
842
843 /**
844 * synchronize_rcu_expedited - Brute-force RCU grace period
845 *
846 * Wait for an RCU-preempt grace period, but expedite it. The basic
847 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
848 * the ->blkd_tasks lists and wait for this list to drain. This consumes
849 * significant time on all CPUs and is unfriendly to real-time workloads,
850 * so is thus not recommended for any sort of common-case code.
851 * In fact, if you are using synchronize_rcu_expedited() in a loop,
852 * please restructure your code to batch your updates, and then Use a
853 * single synchronize_rcu() instead.
854 *
855 * Note that it is illegal to call this function while holding any lock
856 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
857 * to call this function from a CPU-hotplug notifier. Failing to observe
858 * these restriction will result in deadlock.
859 */
860 void synchronize_rcu_expedited(void)
861 {
862 unsigned long flags;
863 struct rcu_node *rnp;
864 struct rcu_state *rsp = &rcu_preempt_state;
865 long snap;
866 int trycount = 0;
867
868 smp_mb(); /* Caller's modifications seen first by other CPUs. */
869 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
870 smp_mb(); /* Above access cannot bleed into critical section. */
871
872 /*
873 * Acquire lock, falling back to synchronize_rcu() if too many
874 * lock-acquisition failures. Of course, if someone does the
875 * expedited grace period for us, just leave.
876 */
877 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
878 if (trycount++ < 10)
879 udelay(trycount * num_online_cpus());
880 else {
881 synchronize_rcu();
882 return;
883 }
884 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
885 goto mb_ret; /* Others did our work for us. */
886 }
887 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
888 goto unlock_mb_ret; /* Others did our work for us. */
889
890 /* force all RCU readers onto ->blkd_tasks lists. */
891 synchronize_sched_expedited();
892
893 raw_spin_lock_irqsave(&rsp->onofflock, flags);
894
895 /* Initialize ->expmask for all non-leaf rcu_node structures. */
896 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
897 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
898 rnp->expmask = rnp->qsmaskinit;
899 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
900 }
901
902 /* Snapshot current state of ->blkd_tasks lists. */
903 rcu_for_each_leaf_node(rsp, rnp)
904 sync_rcu_preempt_exp_init(rsp, rnp);
905 if (NUM_RCU_NODES > 1)
906 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
907
908 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
909
910 /* Wait for snapshotted ->blkd_tasks lists to drain. */
911 rnp = rcu_get_root(rsp);
912 wait_event(sync_rcu_preempt_exp_wq,
913 sync_rcu_preempt_exp_done(rnp));
914
915 /* Clean up and exit. */
916 smp_mb(); /* ensure expedited GP seen before counter increment. */
917 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
918 unlock_mb_ret:
919 mutex_unlock(&sync_rcu_preempt_exp_mutex);
920 mb_ret:
921 smp_mb(); /* ensure subsequent action seen after grace period. */
922 }
923 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
924
925 /*
926 * Check to see if there is any immediate preemptible-RCU-related work
927 * to be done.
928 */
929 static int rcu_preempt_pending(int cpu)
930 {
931 return __rcu_pending(&rcu_preempt_state,
932 &per_cpu(rcu_preempt_data, cpu));
933 }
934
935 /*
936 * Does preemptible RCU have callbacks on this CPU?
937 */
938 static int rcu_preempt_cpu_has_callbacks(int cpu)
939 {
940 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
941 }
942
943 /**
944 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
945 */
946 void rcu_barrier(void)
947 {
948 _rcu_barrier(&rcu_preempt_state);
949 }
950 EXPORT_SYMBOL_GPL(rcu_barrier);
951
952 /*
953 * Initialize preemptible RCU's per-CPU data.
954 */
955 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
956 {
957 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
958 }
959
960 /*
961 * Move preemptible RCU's callbacks from dying CPU to other online CPU
962 * and record a quiescent state.
963 */
964 static void rcu_preempt_cleanup_dying_cpu(void)
965 {
966 rcu_cleanup_dying_cpu(&rcu_preempt_state);
967 }
968
969 /*
970 * Initialize preemptible RCU's state structures.
971 */
972 static void __init __rcu_init_preempt(void)
973 {
974 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
975 }
976
977 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
978
979 static struct rcu_state *rcu_state = &rcu_sched_state;
980
981 /*
982 * Tell them what RCU they are running.
983 */
984 static void __init rcu_bootup_announce(void)
985 {
986 printk(KERN_INFO "Hierarchical RCU implementation.\n");
987 rcu_bootup_announce_oddness();
988 }
989
990 /*
991 * Return the number of RCU batches processed thus far for debug & stats.
992 */
993 long rcu_batches_completed(void)
994 {
995 return rcu_batches_completed_sched();
996 }
997 EXPORT_SYMBOL_GPL(rcu_batches_completed);
998
999 /*
1000 * Force a quiescent state for RCU, which, because there is no preemptible
1001 * RCU, becomes the same as rcu-sched.
1002 */
1003 void rcu_force_quiescent_state(void)
1004 {
1005 rcu_sched_force_quiescent_state();
1006 }
1007 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
1008
1009 /*
1010 * Because preemptible RCU does not exist, we never have to check for
1011 * CPUs being in quiescent states.
1012 */
1013 static void rcu_preempt_note_context_switch(int cpu)
1014 {
1015 }
1016
1017 /*
1018 * Because preemptible RCU does not exist, there are never any preempted
1019 * RCU readers.
1020 */
1021 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
1022 {
1023 return 0;
1024 }
1025
1026 #ifdef CONFIG_HOTPLUG_CPU
1027
1028 /* Because preemptible RCU does not exist, no quieting of tasks. */
1029 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1030 {
1031 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1032 }
1033
1034 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1035
1036 /*
1037 * Because preemptible RCU does not exist, we never have to check for
1038 * tasks blocked within RCU read-side critical sections.
1039 */
1040 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1041 {
1042 }
1043
1044 /*
1045 * Because preemptible RCU does not exist, we never have to check for
1046 * tasks blocked within RCU read-side critical sections.
1047 */
1048 static int rcu_print_task_stall(struct rcu_node *rnp)
1049 {
1050 return 0;
1051 }
1052
1053 /*
1054 * Because preemptible RCU does not exist, there is no need to suppress
1055 * its CPU stall warnings.
1056 */
1057 static void rcu_preempt_stall_reset(void)
1058 {
1059 }
1060
1061 /*
1062 * Because there is no preemptible RCU, there can be no readers blocked,
1063 * so there is no need to check for blocked tasks. So check only for
1064 * bogus qsmask values.
1065 */
1066 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1067 {
1068 WARN_ON_ONCE(rnp->qsmask);
1069 }
1070
1071 #ifdef CONFIG_HOTPLUG_CPU
1072
1073 /*
1074 * Because preemptible RCU does not exist, it never needs to migrate
1075 * tasks that were blocked within RCU read-side critical sections, and
1076 * such non-existent tasks cannot possibly have been blocking the current
1077 * grace period.
1078 */
1079 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1080 struct rcu_node *rnp,
1081 struct rcu_data *rdp)
1082 {
1083 return 0;
1084 }
1085
1086 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1087
1088 /*
1089 * Because preemptible RCU does not exist, it never needs CPU-offline
1090 * processing.
1091 */
1092 static void rcu_preempt_cleanup_dead_cpu(int cpu)
1093 {
1094 }
1095
1096 /*
1097 * Because preemptible RCU does not exist, it never has any callbacks
1098 * to check.
1099 */
1100 static void rcu_preempt_check_callbacks(int cpu)
1101 {
1102 }
1103
1104 /*
1105 * Because preemptible RCU does not exist, it never has any callbacks
1106 * to process.
1107 */
1108 static void rcu_preempt_process_callbacks(void)
1109 {
1110 }
1111
1112 /*
1113 * Queue an RCU callback for lazy invocation after a grace period.
1114 * This will likely be later named something like "call_rcu_lazy()",
1115 * but this change will require some way of tagging the lazy RCU
1116 * callbacks in the list of pending callbacks. Until then, this
1117 * function may only be called from __kfree_rcu().
1118 *
1119 * Because there is no preemptible RCU, we use RCU-sched instead.
1120 */
1121 void kfree_call_rcu(struct rcu_head *head,
1122 void (*func)(struct rcu_head *rcu))
1123 {
1124 __call_rcu(head, func, &rcu_sched_state, 1);
1125 }
1126 EXPORT_SYMBOL_GPL(kfree_call_rcu);
1127
1128 /*
1129 * Wait for an rcu-preempt grace period, but make it happen quickly.
1130 * But because preemptible RCU does not exist, map to rcu-sched.
1131 */
1132 void synchronize_rcu_expedited(void)
1133 {
1134 synchronize_sched_expedited();
1135 }
1136 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1137
1138 #ifdef CONFIG_HOTPLUG_CPU
1139
1140 /*
1141 * Because preemptible RCU does not exist, there is never any need to
1142 * report on tasks preempted in RCU read-side critical sections during
1143 * expedited RCU grace periods.
1144 */
1145 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1146 bool wake)
1147 {
1148 }
1149
1150 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1151
1152 /*
1153 * Because preemptible RCU does not exist, it never has any work to do.
1154 */
1155 static int rcu_preempt_pending(int cpu)
1156 {
1157 return 0;
1158 }
1159
1160 /*
1161 * Because preemptible RCU does not exist, it never has callbacks
1162 */
1163 static int rcu_preempt_cpu_has_callbacks(int cpu)
1164 {
1165 return 0;
1166 }
1167
1168 /*
1169 * Because preemptible RCU does not exist, rcu_barrier() is just
1170 * another name for rcu_barrier_sched().
1171 */
1172 void rcu_barrier(void)
1173 {
1174 rcu_barrier_sched();
1175 }
1176 EXPORT_SYMBOL_GPL(rcu_barrier);
1177
1178 /*
1179 * Because preemptible RCU does not exist, there is no per-CPU
1180 * data to initialize.
1181 */
1182 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
1183 {
1184 }
1185
1186 /*
1187 * Because there is no preemptible RCU, there is no cleanup to do.
1188 */
1189 static void rcu_preempt_cleanup_dying_cpu(void)
1190 {
1191 }
1192
1193 /*
1194 * Because preemptible RCU does not exist, it need not be initialized.
1195 */
1196 static void __init __rcu_init_preempt(void)
1197 {
1198 }
1199
1200 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1201
1202 #ifdef CONFIG_RCU_BOOST
1203
1204 #include "rtmutex_common.h"
1205
1206 #ifdef CONFIG_RCU_TRACE
1207
1208 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1209 {
1210 if (list_empty(&rnp->blkd_tasks))
1211 rnp->n_balk_blkd_tasks++;
1212 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1213 rnp->n_balk_exp_gp_tasks++;
1214 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1215 rnp->n_balk_boost_tasks++;
1216 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1217 rnp->n_balk_notblocked++;
1218 else if (rnp->gp_tasks != NULL &&
1219 ULONG_CMP_LT(jiffies, rnp->boost_time))
1220 rnp->n_balk_notyet++;
1221 else
1222 rnp->n_balk_nos++;
1223 }
1224
1225 #else /* #ifdef CONFIG_RCU_TRACE */
1226
1227 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1228 {
1229 }
1230
1231 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1232
1233 /*
1234 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1235 * or ->boost_tasks, advancing the pointer to the next task in the
1236 * ->blkd_tasks list.
1237 *
1238 * Note that irqs must be enabled: boosting the task can block.
1239 * Returns 1 if there are more tasks needing to be boosted.
1240 */
1241 static int rcu_boost(struct rcu_node *rnp)
1242 {
1243 unsigned long flags;
1244 struct rt_mutex mtx;
1245 struct task_struct *t;
1246 struct list_head *tb;
1247
1248 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1249 return 0; /* Nothing left to boost. */
1250
1251 raw_spin_lock_irqsave(&rnp->lock, flags);
1252
1253 /*
1254 * Recheck under the lock: all tasks in need of boosting
1255 * might exit their RCU read-side critical sections on their own.
1256 */
1257 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1258 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1259 return 0;
1260 }
1261
1262 /*
1263 * Preferentially boost tasks blocking expedited grace periods.
1264 * This cannot starve the normal grace periods because a second
1265 * expedited grace period must boost all blocked tasks, including
1266 * those blocking the pre-existing normal grace period.
1267 */
1268 if (rnp->exp_tasks != NULL) {
1269 tb = rnp->exp_tasks;
1270 rnp->n_exp_boosts++;
1271 } else {
1272 tb = rnp->boost_tasks;
1273 rnp->n_normal_boosts++;
1274 }
1275 rnp->n_tasks_boosted++;
1276
1277 /*
1278 * We boost task t by manufacturing an rt_mutex that appears to
1279 * be held by task t. We leave a pointer to that rt_mutex where
1280 * task t can find it, and task t will release the mutex when it
1281 * exits its outermost RCU read-side critical section. Then
1282 * simply acquiring this artificial rt_mutex will boost task
1283 * t's priority. (Thanks to tglx for suggesting this approach!)
1284 *
1285 * Note that task t must acquire rnp->lock to remove itself from
1286 * the ->blkd_tasks list, which it will do from exit() if from
1287 * nowhere else. We therefore are guaranteed that task t will
1288 * stay around at least until we drop rnp->lock. Note that
1289 * rnp->lock also resolves races between our priority boosting
1290 * and task t's exiting its outermost RCU read-side critical
1291 * section.
1292 */
1293 t = container_of(tb, struct task_struct, rcu_node_entry);
1294 rt_mutex_init_proxy_locked(&mtx, t);
1295 t->rcu_boost_mutex = &mtx;
1296 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1297 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1298 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1299
1300 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1301 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1302 }
1303
1304 /*
1305 * Timer handler to initiate waking up of boost kthreads that
1306 * have yielded the CPU due to excessive numbers of tasks to
1307 * boost. We wake up the per-rcu_node kthread, which in turn
1308 * will wake up the booster kthread.
1309 */
1310 static void rcu_boost_kthread_timer(unsigned long arg)
1311 {
1312 invoke_rcu_node_kthread((struct rcu_node *)arg);
1313 }
1314
1315 /*
1316 * Priority-boosting kthread. One per leaf rcu_node and one for the
1317 * root rcu_node.
1318 */
1319 static int rcu_boost_kthread(void *arg)
1320 {
1321 struct rcu_node *rnp = (struct rcu_node *)arg;
1322 int spincnt = 0;
1323 int more2boost;
1324
1325 trace_rcu_utilization("Start boost kthread@init");
1326 for (;;) {
1327 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1328 trace_rcu_utilization("End boost kthread@rcu_wait");
1329 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1330 trace_rcu_utilization("Start boost kthread@rcu_wait");
1331 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1332 more2boost = rcu_boost(rnp);
1333 if (more2boost)
1334 spincnt++;
1335 else
1336 spincnt = 0;
1337 if (spincnt > 10) {
1338 trace_rcu_utilization("End boost kthread@rcu_yield");
1339 rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
1340 trace_rcu_utilization("Start boost kthread@rcu_yield");
1341 spincnt = 0;
1342 }
1343 }
1344 /* NOTREACHED */
1345 trace_rcu_utilization("End boost kthread@notreached");
1346 return 0;
1347 }
1348
1349 /*
1350 * Check to see if it is time to start boosting RCU readers that are
1351 * blocking the current grace period, and, if so, tell the per-rcu_node
1352 * kthread to start boosting them. If there is an expedited grace
1353 * period in progress, it is always time to boost.
1354 *
1355 * The caller must hold rnp->lock, which this function releases,
1356 * but irqs remain disabled. The ->boost_kthread_task is immortal,
1357 * so we don't need to worry about it going away.
1358 */
1359 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1360 {
1361 struct task_struct *t;
1362
1363 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1364 rnp->n_balk_exp_gp_tasks++;
1365 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1366 return;
1367 }
1368 if (rnp->exp_tasks != NULL ||
1369 (rnp->gp_tasks != NULL &&
1370 rnp->boost_tasks == NULL &&
1371 rnp->qsmask == 0 &&
1372 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1373 if (rnp->exp_tasks == NULL)
1374 rnp->boost_tasks = rnp->gp_tasks;
1375 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1376 t = rnp->boost_kthread_task;
1377 if (t != NULL)
1378 wake_up_process(t);
1379 } else {
1380 rcu_initiate_boost_trace(rnp);
1381 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1382 }
1383 }
1384
1385 /*
1386 * Wake up the per-CPU kthread to invoke RCU callbacks.
1387 */
1388 static void invoke_rcu_callbacks_kthread(void)
1389 {
1390 unsigned long flags;
1391
1392 local_irq_save(flags);
1393 __this_cpu_write(rcu_cpu_has_work, 1);
1394 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1395 current != __this_cpu_read(rcu_cpu_kthread_task))
1396 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
1397 local_irq_restore(flags);
1398 }
1399
1400 /*
1401 * Is the current CPU running the RCU-callbacks kthread?
1402 * Caller must have preemption disabled.
1403 */
1404 static bool rcu_is_callbacks_kthread(void)
1405 {
1406 return __get_cpu_var(rcu_cpu_kthread_task) == current;
1407 }
1408
1409 /*
1410 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1411 * held, so no one should be messing with the existence of the boost
1412 * kthread.
1413 */
1414 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1415 cpumask_var_t cm)
1416 {
1417 struct task_struct *t;
1418
1419 t = rnp->boost_kthread_task;
1420 if (t != NULL)
1421 set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
1422 }
1423
1424 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1425
1426 /*
1427 * Do priority-boost accounting for the start of a new grace period.
1428 */
1429 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1430 {
1431 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1432 }
1433
1434 /*
1435 * Create an RCU-boost kthread for the specified node if one does not
1436 * already exist. We only create this kthread for preemptible RCU.
1437 * Returns zero if all is well, a negated errno otherwise.
1438 */
1439 static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1440 struct rcu_node *rnp,
1441 int rnp_index)
1442 {
1443 unsigned long flags;
1444 struct sched_param sp;
1445 struct task_struct *t;
1446
1447 if (&rcu_preempt_state != rsp)
1448 return 0;
1449 rsp->boost = 1;
1450 if (rnp->boost_kthread_task != NULL)
1451 return 0;
1452 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1453 "rcub/%d", rnp_index);
1454 if (IS_ERR(t))
1455 return PTR_ERR(t);
1456 raw_spin_lock_irqsave(&rnp->lock, flags);
1457 rnp->boost_kthread_task = t;
1458 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1459 sp.sched_priority = RCU_BOOST_PRIO;
1460 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1461 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1462 return 0;
1463 }
1464
1465 #ifdef CONFIG_HOTPLUG_CPU
1466
1467 /*
1468 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1469 */
1470 static void rcu_stop_cpu_kthread(int cpu)
1471 {
1472 struct task_struct *t;
1473
1474 /* Stop the CPU's kthread. */
1475 t = per_cpu(rcu_cpu_kthread_task, cpu);
1476 if (t != NULL) {
1477 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1478 kthread_stop(t);
1479 }
1480 }
1481
1482 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1483
1484 static void rcu_kthread_do_work(void)
1485 {
1486 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1487 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1488 rcu_preempt_do_callbacks();
1489 }
1490
1491 /*
1492 * Wake up the specified per-rcu_node-structure kthread.
1493 * Because the per-rcu_node kthreads are immortal, we don't need
1494 * to do anything to keep them alive.
1495 */
1496 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1497 {
1498 struct task_struct *t;
1499
1500 t = rnp->node_kthread_task;
1501 if (t != NULL)
1502 wake_up_process(t);
1503 }
1504
1505 /*
1506 * Set the specified CPU's kthread to run RT or not, as specified by
1507 * the to_rt argument. The CPU-hotplug locks are held, so the task
1508 * is not going away.
1509 */
1510 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1511 {
1512 int policy;
1513 struct sched_param sp;
1514 struct task_struct *t;
1515
1516 t = per_cpu(rcu_cpu_kthread_task, cpu);
1517 if (t == NULL)
1518 return;
1519 if (to_rt) {
1520 policy = SCHED_FIFO;
1521 sp.sched_priority = RCU_KTHREAD_PRIO;
1522 } else {
1523 policy = SCHED_NORMAL;
1524 sp.sched_priority = 0;
1525 }
1526 sched_setscheduler_nocheck(t, policy, &sp);
1527 }
1528
1529 /*
1530 * Timer handler to initiate the waking up of per-CPU kthreads that
1531 * have yielded the CPU due to excess numbers of RCU callbacks.
1532 * We wake up the per-rcu_node kthread, which in turn will wake up
1533 * the booster kthread.
1534 */
1535 static void rcu_cpu_kthread_timer(unsigned long arg)
1536 {
1537 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1538 struct rcu_node *rnp = rdp->mynode;
1539
1540 atomic_or(rdp->grpmask, &rnp->wakemask);
1541 invoke_rcu_node_kthread(rnp);
1542 }
1543
1544 /*
1545 * Drop to non-real-time priority and yield, but only after posting a
1546 * timer that will cause us to regain our real-time priority if we
1547 * remain preempted. Either way, we restore our real-time priority
1548 * before returning.
1549 */
1550 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1551 {
1552 struct sched_param sp;
1553 struct timer_list yield_timer;
1554 int prio = current->rt_priority;
1555
1556 setup_timer_on_stack(&yield_timer, f, arg);
1557 mod_timer(&yield_timer, jiffies + 2);
1558 sp.sched_priority = 0;
1559 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1560 set_user_nice(current, 19);
1561 schedule();
1562 set_user_nice(current, 0);
1563 sp.sched_priority = prio;
1564 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1565 del_timer(&yield_timer);
1566 }
1567
1568 /*
1569 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1570 * This can happen while the corresponding CPU is either coming online
1571 * or going offline. We cannot wait until the CPU is fully online
1572 * before starting the kthread, because the various notifier functions
1573 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1574 * the corresponding CPU is online.
1575 *
1576 * Return 1 if the kthread needs to stop, 0 otherwise.
1577 *
1578 * Caller must disable bh. This function can momentarily enable it.
1579 */
1580 static int rcu_cpu_kthread_should_stop(int cpu)
1581 {
1582 while (cpu_is_offline(cpu) ||
1583 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1584 smp_processor_id() != cpu) {
1585 if (kthread_should_stop())
1586 return 1;
1587 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1588 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1589 local_bh_enable();
1590 schedule_timeout_uninterruptible(1);
1591 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1592 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1593 local_bh_disable();
1594 }
1595 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1596 return 0;
1597 }
1598
1599 /*
1600 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1601 * RCU softirq used in flavors and configurations of RCU that do not
1602 * support RCU priority boosting.
1603 */
1604 static int rcu_cpu_kthread(void *arg)
1605 {
1606 int cpu = (int)(long)arg;
1607 unsigned long flags;
1608 int spincnt = 0;
1609 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1610 char work;
1611 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1612
1613 trace_rcu_utilization("Start CPU kthread@init");
1614 for (;;) {
1615 *statusp = RCU_KTHREAD_WAITING;
1616 trace_rcu_utilization("End CPU kthread@rcu_wait");
1617 rcu_wait(*workp != 0 || kthread_should_stop());
1618 trace_rcu_utilization("Start CPU kthread@rcu_wait");
1619 local_bh_disable();
1620 if (rcu_cpu_kthread_should_stop(cpu)) {
1621 local_bh_enable();
1622 break;
1623 }
1624 *statusp = RCU_KTHREAD_RUNNING;
1625 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1626 local_irq_save(flags);
1627 work = *workp;
1628 *workp = 0;
1629 local_irq_restore(flags);
1630 if (work)
1631 rcu_kthread_do_work();
1632 local_bh_enable();
1633 if (*workp != 0)
1634 spincnt++;
1635 else
1636 spincnt = 0;
1637 if (spincnt > 10) {
1638 *statusp = RCU_KTHREAD_YIELDING;
1639 trace_rcu_utilization("End CPU kthread@rcu_yield");
1640 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1641 trace_rcu_utilization("Start CPU kthread@rcu_yield");
1642 spincnt = 0;
1643 }
1644 }
1645 *statusp = RCU_KTHREAD_STOPPED;
1646 trace_rcu_utilization("End CPU kthread@term");
1647 return 0;
1648 }
1649
1650 /*
1651 * Spawn a per-CPU kthread, setting up affinity and priority.
1652 * Because the CPU hotplug lock is held, no other CPU will be attempting
1653 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1654 * attempting to access it during boot, but the locking in kthread_bind()
1655 * will enforce sufficient ordering.
1656 *
1657 * Please note that we cannot simply refuse to wake up the per-CPU
1658 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1659 * which can result in softlockup complaints if the task ends up being
1660 * idle for more than a couple of minutes.
1661 *
1662 * However, please note also that we cannot bind the per-CPU kthread to its
1663 * CPU until that CPU is fully online. We also cannot wait until the
1664 * CPU is fully online before we create its per-CPU kthread, as this would
1665 * deadlock the system when CPU notifiers tried waiting for grace
1666 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1667 * is online. If its CPU is not yet fully online, then the code in
1668 * rcu_cpu_kthread() will wait until it is fully online, and then do
1669 * the binding.
1670 */
1671 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1672 {
1673 struct sched_param sp;
1674 struct task_struct *t;
1675
1676 if (!rcu_scheduler_fully_active ||
1677 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1678 return 0;
1679 t = kthread_create_on_node(rcu_cpu_kthread,
1680 (void *)(long)cpu,
1681 cpu_to_node(cpu),
1682 "rcuc/%d", cpu);
1683 if (IS_ERR(t))
1684 return PTR_ERR(t);
1685 if (cpu_online(cpu))
1686 kthread_bind(t, cpu);
1687 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1688 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1689 sp.sched_priority = RCU_KTHREAD_PRIO;
1690 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1691 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1692 wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1693 return 0;
1694 }
1695
1696 /*
1697 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1698 * kthreads when needed. We ignore requests to wake up kthreads
1699 * for offline CPUs, which is OK because force_quiescent_state()
1700 * takes care of this case.
1701 */
1702 static int rcu_node_kthread(void *arg)
1703 {
1704 int cpu;
1705 unsigned long flags;
1706 unsigned long mask;
1707 struct rcu_node *rnp = (struct rcu_node *)arg;
1708 struct sched_param sp;
1709 struct task_struct *t;
1710
1711 for (;;) {
1712 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1713 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1714 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1715 raw_spin_lock_irqsave(&rnp->lock, flags);
1716 mask = atomic_xchg(&rnp->wakemask, 0);
1717 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1718 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1719 if ((mask & 0x1) == 0)
1720 continue;
1721 preempt_disable();
1722 t = per_cpu(rcu_cpu_kthread_task, cpu);
1723 if (!cpu_online(cpu) || t == NULL) {
1724 preempt_enable();
1725 continue;
1726 }
1727 per_cpu(rcu_cpu_has_work, cpu) = 1;
1728 sp.sched_priority = RCU_KTHREAD_PRIO;
1729 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1730 preempt_enable();
1731 }
1732 }
1733 /* NOTREACHED */
1734 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1735 return 0;
1736 }
1737
1738 /*
1739 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1740 * served by the rcu_node in question. The CPU hotplug lock is still
1741 * held, so the value of rnp->qsmaskinit will be stable.
1742 *
1743 * We don't include outgoingcpu in the affinity set, use -1 if there is
1744 * no outgoing CPU. If there are no CPUs left in the affinity set,
1745 * this function allows the kthread to execute on any CPU.
1746 */
1747 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1748 {
1749 cpumask_var_t cm;
1750 int cpu;
1751 unsigned long mask = rnp->qsmaskinit;
1752
1753 if (rnp->node_kthread_task == NULL)
1754 return;
1755 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1756 return;
1757 cpumask_clear(cm);
1758 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1759 if ((mask & 0x1) && cpu != outgoingcpu)
1760 cpumask_set_cpu(cpu, cm);
1761 if (cpumask_weight(cm) == 0) {
1762 cpumask_setall(cm);
1763 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1764 cpumask_clear_cpu(cpu, cm);
1765 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1766 }
1767 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1768 rcu_boost_kthread_setaffinity(rnp, cm);
1769 free_cpumask_var(cm);
1770 }
1771
1772 /*
1773 * Spawn a per-rcu_node kthread, setting priority and affinity.
1774 * Called during boot before online/offline can happen, or, if
1775 * during runtime, with the main CPU-hotplug locks held. So only
1776 * one of these can be executing at a time.
1777 */
1778 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1779 struct rcu_node *rnp)
1780 {
1781 unsigned long flags;
1782 int rnp_index = rnp - &rsp->node[0];
1783 struct sched_param sp;
1784 struct task_struct *t;
1785
1786 if (!rcu_scheduler_fully_active ||
1787 rnp->qsmaskinit == 0)
1788 return 0;
1789 if (rnp->node_kthread_task == NULL) {
1790 t = kthread_create(rcu_node_kthread, (void *)rnp,
1791 "rcun/%d", rnp_index);
1792 if (IS_ERR(t))
1793 return PTR_ERR(t);
1794 raw_spin_lock_irqsave(&rnp->lock, flags);
1795 rnp->node_kthread_task = t;
1796 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1797 sp.sched_priority = 99;
1798 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1799 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1800 }
1801 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1802 }
1803
1804 /*
1805 * Spawn all kthreads -- called as soon as the scheduler is running.
1806 */
1807 static int __init rcu_spawn_kthreads(void)
1808 {
1809 int cpu;
1810 struct rcu_node *rnp;
1811
1812 rcu_scheduler_fully_active = 1;
1813 for_each_possible_cpu(cpu) {
1814 per_cpu(rcu_cpu_has_work, cpu) = 0;
1815 if (cpu_online(cpu))
1816 (void)rcu_spawn_one_cpu_kthread(cpu);
1817 }
1818 rnp = rcu_get_root(rcu_state);
1819 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1820 if (NUM_RCU_NODES > 1) {
1821 rcu_for_each_leaf_node(rcu_state, rnp)
1822 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1823 }
1824 return 0;
1825 }
1826 early_initcall(rcu_spawn_kthreads);
1827
1828 static void __cpuinit rcu_prepare_kthreads(int cpu)
1829 {
1830 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1831 struct rcu_node *rnp = rdp->mynode;
1832
1833 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1834 if (rcu_scheduler_fully_active) {
1835 (void)rcu_spawn_one_cpu_kthread(cpu);
1836 if (rnp->node_kthread_task == NULL)
1837 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1838 }
1839 }
1840
1841 #else /* #ifdef CONFIG_RCU_BOOST */
1842
1843 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1844 {
1845 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1846 }
1847
1848 static void invoke_rcu_callbacks_kthread(void)
1849 {
1850 WARN_ON_ONCE(1);
1851 }
1852
1853 static bool rcu_is_callbacks_kthread(void)
1854 {
1855 return false;
1856 }
1857
1858 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1859 {
1860 }
1861
1862 #ifdef CONFIG_HOTPLUG_CPU
1863
1864 static void rcu_stop_cpu_kthread(int cpu)
1865 {
1866 }
1867
1868 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1869
1870 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1871 {
1872 }
1873
1874 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1875 {
1876 }
1877
1878 static int __init rcu_scheduler_really_started(void)
1879 {
1880 rcu_scheduler_fully_active = 1;
1881 return 0;
1882 }
1883 early_initcall(rcu_scheduler_really_started);
1884
1885 static void __cpuinit rcu_prepare_kthreads(int cpu)
1886 {
1887 }
1888
1889 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1890
1891 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1892
1893 /*
1894 * Check to see if any future RCU-related work will need to be done
1895 * by the current CPU, even if none need be done immediately, returning
1896 * 1 if so. This function is part of the RCU implementation; it is -not-
1897 * an exported member of the RCU API.
1898 *
1899 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1900 * any flavor of RCU.
1901 */
1902 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1903 {
1904 *delta_jiffies = ULONG_MAX;
1905 return rcu_cpu_has_callbacks(cpu);
1906 }
1907
1908 /*
1909 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
1910 */
1911 static void rcu_prepare_for_idle_init(int cpu)
1912 {
1913 }
1914
1915 /*
1916 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1917 * after it.
1918 */
1919 static void rcu_cleanup_after_idle(int cpu)
1920 {
1921 }
1922
1923 /*
1924 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1925 * is nothing.
1926 */
1927 static void rcu_prepare_for_idle(int cpu)
1928 {
1929 }
1930
1931 /*
1932 * Don't bother keeping a running count of the number of RCU callbacks
1933 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1934 */
1935 static void rcu_idle_count_callbacks_posted(void)
1936 {
1937 }
1938
1939 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1940
1941 /*
1942 * This code is invoked when a CPU goes idle, at which point we want
1943 * to have the CPU do everything required for RCU so that it can enter
1944 * the energy-efficient dyntick-idle mode. This is handled by a
1945 * state machine implemented by rcu_prepare_for_idle() below.
1946 *
1947 * The following three proprocessor symbols control this state machine:
1948 *
1949 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
1950 * to satisfy RCU. Beyond this point, it is better to incur a periodic
1951 * scheduling-clock interrupt than to loop through the state machine
1952 * at full power.
1953 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
1954 * optional if RCU does not need anything immediately from this
1955 * CPU, even if this CPU still has RCU callbacks queued. The first
1956 * times through the state machine are mandatory: we need to give
1957 * the state machine a chance to communicate a quiescent state
1958 * to the RCU core.
1959 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1960 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1961 * is sized to be roughly one RCU grace period. Those energy-efficiency
1962 * benchmarkers who might otherwise be tempted to set this to a large
1963 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1964 * system. And if you are -that- concerned about energy efficiency,
1965 * just power the system down and be done with it!
1966 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1967 * permitted to sleep in dyntick-idle mode with only lazy RCU
1968 * callbacks pending. Setting this too high can OOM your system.
1969 *
1970 * The values below work well in practice. If future workloads require
1971 * adjustment, they can be converted into kernel config parameters, though
1972 * making the state machine smarter might be a better option.
1973 */
1974 #define RCU_IDLE_FLUSHES 5 /* Number of dyntick-idle tries. */
1975 #define RCU_IDLE_OPT_FLUSHES 3 /* Optional dyntick-idle tries. */
1976 #define RCU_IDLE_GP_DELAY 6 /* Roughly one grace period. */
1977 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1978
1979 /*
1980 * Does the specified flavor of RCU have non-lazy callbacks pending on
1981 * the specified CPU? Both RCU flavor and CPU are specified by the
1982 * rcu_data structure.
1983 */
1984 static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
1985 {
1986 return rdp->qlen != rdp->qlen_lazy;
1987 }
1988
1989 #ifdef CONFIG_TREE_PREEMPT_RCU
1990
1991 /*
1992 * Are there non-lazy RCU-preempt callbacks? (There cannot be if there
1993 * is no RCU-preempt in the kernel.)
1994 */
1995 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
1996 {
1997 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
1998
1999 return __rcu_cpu_has_nonlazy_callbacks(rdp);
2000 }
2001
2002 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2003
2004 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
2005 {
2006 return 0;
2007 }
2008
2009 #endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
2010
2011 /*
2012 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
2013 */
2014 static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
2015 {
2016 return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
2017 __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
2018 rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
2019 }
2020
2021 /*
2022 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
2023 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
2024 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
2025 * enter dyntick-idle mode. Otherwise, if we have recently tried and failed
2026 * to enter dyntick-idle mode, we refuse to try to enter it. After all,
2027 * it is better to incur scheduling-clock interrupts than to spin
2028 * continuously for the same time duration!
2029 *
2030 * The delta_jiffies argument is used to store the time when RCU is
2031 * going to need the CPU again if it still has callbacks. The reason
2032 * for this is that rcu_prepare_for_idle() might need to post a timer,
2033 * but if so, it will do so after tick_nohz_stop_sched_tick() has set
2034 * the wakeup time for this CPU. This means that RCU's timer can be
2035 * delayed until the wakeup time, which defeats the purpose of posting
2036 * a timer.
2037 */
2038 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
2039 {
2040 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
2041
2042 /* Flag a new idle sojourn to the idle-entry state machine. */
2043 rdtp->idle_first_pass = 1;
2044 /* If no callbacks, RCU doesn't need the CPU. */
2045 if (!rcu_cpu_has_callbacks(cpu)) {
2046 *delta_jiffies = ULONG_MAX;
2047 return 0;
2048 }
2049 if (rdtp->dyntick_holdoff == jiffies) {
2050 /* RCU recently tried and failed, so don't try again. */
2051 *delta_jiffies = 1;
2052 return 1;
2053 }
2054 /* Set up for the possibility that RCU will post a timer. */
2055 if (rcu_cpu_has_nonlazy_callbacks(cpu))
2056 *delta_jiffies = RCU_IDLE_GP_DELAY;
2057 else
2058 *delta_jiffies = RCU_IDLE_LAZY_GP_DELAY;
2059 return 0;
2060 }
2061
2062 /*
2063 * Handler for smp_call_function_single(). The only point of this
2064 * handler is to wake the CPU up, so the handler does only tracing.
2065 */
2066 void rcu_idle_demigrate(void *unused)
2067 {
2068 trace_rcu_prep_idle("Demigrate");
2069 }
2070
2071 /*
2072 * Timer handler used to force CPU to start pushing its remaining RCU
2073 * callbacks in the case where it entered dyntick-idle mode with callbacks
2074 * pending. The hander doesn't really need to do anything because the
2075 * real work is done upon re-entry to idle, or by the next scheduling-clock
2076 * interrupt should idle not be re-entered.
2077 *
2078 * One special case: the timer gets migrated without awakening the CPU
2079 * on which the timer was scheduled on. In this case, we must wake up
2080 * that CPU. We do so with smp_call_function_single().
2081 */
2082 static void rcu_idle_gp_timer_func(unsigned long cpu_in)
2083 {
2084 int cpu = (int)cpu_in;
2085
2086 trace_rcu_prep_idle("Timer");
2087 if (cpu != smp_processor_id())
2088 smp_call_function_single(cpu, rcu_idle_demigrate, NULL, 0);
2089 else
2090 WARN_ON_ONCE(1); /* Getting here can hang the system... */
2091 }
2092
2093 /*
2094 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
2095 */
2096 static void rcu_prepare_for_idle_init(int cpu)
2097 {
2098 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
2099
2100 rdtp->dyntick_holdoff = jiffies - 1;
2101 setup_timer(&rdtp->idle_gp_timer, rcu_idle_gp_timer_func, cpu);
2102 rdtp->idle_gp_timer_expires = jiffies - 1;
2103 rdtp->idle_first_pass = 1;
2104 }
2105
2106 /*
2107 * Clean up for exit from idle. Because we are exiting from idle, there
2108 * is no longer any point to ->idle_gp_timer, so cancel it. This will
2109 * do nothing if this timer is not active, so just cancel it unconditionally.
2110 */
2111 static void rcu_cleanup_after_idle(int cpu)
2112 {
2113 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
2114
2115 del_timer(&rdtp->idle_gp_timer);
2116 trace_rcu_prep_idle("Cleanup after idle");
2117 }
2118
2119 /*
2120 * Check to see if any RCU-related work can be done by the current CPU,
2121 * and if so, schedule a softirq to get it done. This function is part
2122 * of the RCU implementation; it is -not- an exported member of the RCU API.
2123 *
2124 * The idea is for the current CPU to clear out all work required by the
2125 * RCU core for the current grace period, so that this CPU can be permitted
2126 * to enter dyntick-idle mode. In some cases, it will need to be awakened
2127 * at the end of the grace period by whatever CPU ends the grace period.
2128 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
2129 * number of wakeups by a modest integer factor.
2130 *
2131 * Because it is not legal to invoke rcu_process_callbacks() with irqs
2132 * disabled, we do one pass of force_quiescent_state(), then do a
2133 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
2134 * later. The ->dyntick_drain field controls the sequencing.
2135 *
2136 * The caller must have disabled interrupts.
2137 */
2138 static void rcu_prepare_for_idle(int cpu)
2139 {
2140 struct timer_list *tp;
2141 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
2142
2143 /*
2144 * If this is an idle re-entry, for example, due to use of
2145 * RCU_NONIDLE() or the new idle-loop tracing API within the idle
2146 * loop, then don't take any state-machine actions, unless the
2147 * momentary exit from idle queued additional non-lazy callbacks.
2148 * Instead, repost the ->idle_gp_timer if this CPU has callbacks
2149 * pending.
2150 */
2151 if (!rdtp->idle_first_pass &&
2152 (rdtp->nonlazy_posted == rdtp->nonlazy_posted_snap)) {
2153 if (rcu_cpu_has_callbacks(cpu)) {
2154 tp = &rdtp->idle_gp_timer;
2155 mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
2156 }
2157 return;
2158 }
2159 rdtp->idle_first_pass = 0;
2160 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted - 1;
2161
2162 /*
2163 * If there are no callbacks on this CPU, enter dyntick-idle mode.
2164 * Also reset state to avoid prejudicing later attempts.
2165 */
2166 if (!rcu_cpu_has_callbacks(cpu)) {
2167 rdtp->dyntick_holdoff = jiffies - 1;
2168 rdtp->dyntick_drain = 0;
2169 trace_rcu_prep_idle("No callbacks");
2170 return;
2171 }
2172
2173 /*
2174 * If in holdoff mode, just return. We will presumably have
2175 * refrained from disabling the scheduling-clock tick.
2176 */
2177 if (rdtp->dyntick_holdoff == jiffies) {
2178 trace_rcu_prep_idle("In holdoff");
2179 return;
2180 }
2181
2182 /* Check and update the ->dyntick_drain sequencing. */
2183 if (rdtp->dyntick_drain <= 0) {
2184 /* First time through, initialize the counter. */
2185 rdtp->dyntick_drain = RCU_IDLE_FLUSHES;
2186 } else if (rdtp->dyntick_drain <= RCU_IDLE_OPT_FLUSHES &&
2187 !rcu_pending(cpu) &&
2188 !local_softirq_pending()) {
2189 /* Can we go dyntick-idle despite still having callbacks? */
2190 rdtp->dyntick_drain = 0;
2191 rdtp->dyntick_holdoff = jiffies;
2192 if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
2193 trace_rcu_prep_idle("Dyntick with callbacks");
2194 rdtp->idle_gp_timer_expires =
2195 jiffies + RCU_IDLE_GP_DELAY;
2196 } else {
2197 rdtp->idle_gp_timer_expires =
2198 jiffies + RCU_IDLE_LAZY_GP_DELAY;
2199 trace_rcu_prep_idle("Dyntick with lazy callbacks");
2200 }
2201 tp = &rdtp->idle_gp_timer;
2202 mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
2203 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
2204 return; /* Nothing more to do immediately. */
2205 } else if (--(rdtp->dyntick_drain) <= 0) {
2206 /* We have hit the limit, so time to give up. */
2207 rdtp->dyntick_holdoff = jiffies;
2208 trace_rcu_prep_idle("Begin holdoff");
2209 invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
2210 return;
2211 }
2212
2213 /*
2214 * Do one step of pushing the remaining RCU callbacks through
2215 * the RCU core state machine.
2216 */
2217 #ifdef CONFIG_TREE_PREEMPT_RCU
2218 if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
2219 rcu_preempt_qs(cpu);
2220 force_quiescent_state(&rcu_preempt_state, 0);
2221 }
2222 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2223 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
2224 rcu_sched_qs(cpu);
2225 force_quiescent_state(&rcu_sched_state, 0);
2226 }
2227 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
2228 rcu_bh_qs(cpu);
2229 force_quiescent_state(&rcu_bh_state, 0);
2230 }
2231
2232 /*
2233 * If RCU callbacks are still pending, RCU still needs this CPU.
2234 * So try forcing the callbacks through the grace period.
2235 */
2236 if (rcu_cpu_has_callbacks(cpu)) {
2237 trace_rcu_prep_idle("More callbacks");
2238 invoke_rcu_core();
2239 } else
2240 trace_rcu_prep_idle("Callbacks drained");
2241 }
2242
2243 /*
2244 * Keep a running count of the number of non-lazy callbacks posted
2245 * on this CPU. This running counter (which is never decremented) allows
2246 * rcu_prepare_for_idle() to detect when something out of the idle loop
2247 * posts a callback, even if an equal number of callbacks are invoked.
2248 * Of course, callbacks should only be posted from within a trace event
2249 * designed to be called from idle or from within RCU_NONIDLE().
2250 */
2251 static void rcu_idle_count_callbacks_posted(void)
2252 {
2253 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
2254 }
2255
2256 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
2257
2258 #ifdef CONFIG_RCU_CPU_STALL_INFO
2259
2260 #ifdef CONFIG_RCU_FAST_NO_HZ
2261
2262 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2263 {
2264 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
2265 struct timer_list *tltp = &rdtp->idle_gp_timer;
2266
2267 sprintf(cp, "drain=%d %c timer=%lu",
2268 rdtp->dyntick_drain,
2269 rdtp->dyntick_holdoff == jiffies ? 'H' : '.',
2270 timer_pending(tltp) ? tltp->expires - jiffies : -1);
2271 }
2272
2273 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
2274
2275 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2276 {
2277 }
2278
2279 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
2280
2281 /* Initiate the stall-info list. */
2282 static void print_cpu_stall_info_begin(void)
2283 {
2284 printk(KERN_CONT "\n");
2285 }
2286
2287 /*
2288 * Print out diagnostic information for the specified stalled CPU.
2289 *
2290 * If the specified CPU is aware of the current RCU grace period
2291 * (flavor specified by rsp), then print the number of scheduling
2292 * clock interrupts the CPU has taken during the time that it has
2293 * been aware. Otherwise, print the number of RCU grace periods
2294 * that this CPU is ignorant of, for example, "1" if the CPU was
2295 * aware of the previous grace period.
2296 *
2297 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
2298 */
2299 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2300 {
2301 char fast_no_hz[72];
2302 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2303 struct rcu_dynticks *rdtp = rdp->dynticks;
2304 char *ticks_title;
2305 unsigned long ticks_value;
2306
2307 if (rsp->gpnum == rdp->gpnum) {
2308 ticks_title = "ticks this GP";
2309 ticks_value = rdp->ticks_this_gp;
2310 } else {
2311 ticks_title = "GPs behind";
2312 ticks_value = rsp->gpnum - rdp->gpnum;
2313 }
2314 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
2315 printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
2316 cpu, ticks_value, ticks_title,
2317 atomic_read(&rdtp->dynticks) & 0xfff,
2318 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
2319 fast_no_hz);
2320 }
2321
2322 /* Terminate the stall-info list. */
2323 static void print_cpu_stall_info_end(void)
2324 {
2325 printk(KERN_ERR "\t");
2326 }
2327
2328 /* Zero ->ticks_this_gp for all flavors of RCU. */
2329 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2330 {
2331 rdp->ticks_this_gp = 0;
2332 }
2333
2334 /* Increment ->ticks_this_gp for all flavors of RCU. */
2335 static void increment_cpu_stall_ticks(void)
2336 {
2337 __get_cpu_var(rcu_sched_data).ticks_this_gp++;
2338 __get_cpu_var(rcu_bh_data).ticks_this_gp++;
2339 #ifdef CONFIG_TREE_PREEMPT_RCU
2340 __get_cpu_var(rcu_preempt_data).ticks_this_gp++;
2341 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2342 }
2343
2344 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2345
2346 static void print_cpu_stall_info_begin(void)
2347 {
2348 printk(KERN_CONT " {");
2349 }
2350
2351 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2352 {
2353 printk(KERN_CONT " %d", cpu);
2354 }
2355
2356 static void print_cpu_stall_info_end(void)
2357 {
2358 printk(KERN_CONT "} ");
2359 }
2360
2361 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2362 {
2363 }
2364
2365 static void increment_cpu_stall_ticks(void)
2366 {
2367 }
2368
2369 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
This page took 0.099213 seconds and 6 git commands to generate.