rcu: Permit rt_mutex_unlock() with irqs disabled
[deliverable/linux.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/stop_machine.h>
29
30 /*
31 * Check the RCU kernel configuration parameters and print informative
32 * messages about anything out of the ordinary. If you like #ifdef, you
33 * will love this function.
34 */
35 static void __init rcu_bootup_announce_oddness(void)
36 {
37 #ifdef CONFIG_RCU_TRACE
38 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
39 #endif
40 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
41 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
42 CONFIG_RCU_FANOUT);
43 #endif
44 #ifdef CONFIG_RCU_FANOUT_EXACT
45 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
46 #endif
47 #ifdef CONFIG_RCU_FAST_NO_HZ
48 printk(KERN_INFO
49 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
50 #endif
51 #ifdef CONFIG_PROVE_RCU
52 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
53 #endif
54 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
55 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
56 #endif
57 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
58 printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
59 #endif
60 #if NUM_RCU_LVL_4 != 0
61 printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
62 #endif
63 }
64
65 #ifdef CONFIG_TREE_PREEMPT_RCU
66
67 struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt);
68 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
69 static struct rcu_state *rcu_state = &rcu_preempt_state;
70
71 static void rcu_read_unlock_special(struct task_struct *t);
72 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
73
74 /*
75 * Tell them what RCU they are running.
76 */
77 static void __init rcu_bootup_announce(void)
78 {
79 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
80 rcu_bootup_announce_oddness();
81 }
82
83 /*
84 * Return the number of RCU-preempt batches processed thus far
85 * for debug and statistics.
86 */
87 long rcu_batches_completed_preempt(void)
88 {
89 return rcu_preempt_state.completed;
90 }
91 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
92
93 /*
94 * Return the number of RCU batches processed thus far for debug & stats.
95 */
96 long rcu_batches_completed(void)
97 {
98 return rcu_batches_completed_preempt();
99 }
100 EXPORT_SYMBOL_GPL(rcu_batches_completed);
101
102 /*
103 * Force a quiescent state for preemptible RCU.
104 */
105 void rcu_force_quiescent_state(void)
106 {
107 force_quiescent_state(&rcu_preempt_state, 0);
108 }
109 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
110
111 /*
112 * Record a preemptible-RCU quiescent state for the specified CPU. Note
113 * that this just means that the task currently running on the CPU is
114 * not in a quiescent state. There might be any number of tasks blocked
115 * while in an RCU read-side critical section.
116 *
117 * Unlike the other rcu_*_qs() functions, callers to this function
118 * must disable irqs in order to protect the assignment to
119 * ->rcu_read_unlock_special.
120 */
121 static void rcu_preempt_qs(int cpu)
122 {
123 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
124
125 rdp->passed_quiesce_gpnum = rdp->gpnum;
126 barrier();
127 if (rdp->passed_quiesce == 0)
128 trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
129 rdp->passed_quiesce = 1;
130 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
131 }
132
133 /*
134 * We have entered the scheduler, and the current task might soon be
135 * context-switched away from. If this task is in an RCU read-side
136 * critical section, we will no longer be able to rely on the CPU to
137 * record that fact, so we enqueue the task on the blkd_tasks list.
138 * The task will dequeue itself when it exits the outermost enclosing
139 * RCU read-side critical section. Therefore, the current grace period
140 * cannot be permitted to complete until the blkd_tasks list entries
141 * predating the current grace period drain, in other words, until
142 * rnp->gp_tasks becomes NULL.
143 *
144 * Caller must disable preemption.
145 */
146 static void rcu_preempt_note_context_switch(int cpu)
147 {
148 struct task_struct *t = current;
149 unsigned long flags;
150 struct rcu_data *rdp;
151 struct rcu_node *rnp;
152
153 if (t->rcu_read_lock_nesting > 0 &&
154 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
155
156 /* Possibly blocking in an RCU read-side critical section. */
157 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
158 rnp = rdp->mynode;
159 raw_spin_lock_irqsave(&rnp->lock, flags);
160 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
161 t->rcu_blocked_node = rnp;
162
163 /*
164 * If this CPU has already checked in, then this task
165 * will hold up the next grace period rather than the
166 * current grace period. Queue the task accordingly.
167 * If the task is queued for the current grace period
168 * (i.e., this CPU has not yet passed through a quiescent
169 * state for the current grace period), then as long
170 * as that task remains queued, the current grace period
171 * cannot end. Note that there is some uncertainty as
172 * to exactly when the current grace period started.
173 * We take a conservative approach, which can result
174 * in unnecessarily waiting on tasks that started very
175 * slightly after the current grace period began. C'est
176 * la vie!!!
177 *
178 * But first, note that the current CPU must still be
179 * on line!
180 */
181 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
182 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
183 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
184 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
185 rnp->gp_tasks = &t->rcu_node_entry;
186 #ifdef CONFIG_RCU_BOOST
187 if (rnp->boost_tasks != NULL)
188 rnp->boost_tasks = rnp->gp_tasks;
189 #endif /* #ifdef CONFIG_RCU_BOOST */
190 } else {
191 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
192 if (rnp->qsmask & rdp->grpmask)
193 rnp->gp_tasks = &t->rcu_node_entry;
194 }
195 trace_rcu_preempt_task(rdp->rsp->name,
196 t->pid,
197 (rnp->qsmask & rdp->grpmask)
198 ? rnp->gpnum
199 : rnp->gpnum + 1);
200 raw_spin_unlock_irqrestore(&rnp->lock, flags);
201 } else if (t->rcu_read_lock_nesting < 0 &&
202 t->rcu_read_unlock_special) {
203
204 /*
205 * Complete exit from RCU read-side critical section on
206 * behalf of preempted instance of __rcu_read_unlock().
207 */
208 rcu_read_unlock_special(t);
209 }
210
211 /*
212 * Either we were not in an RCU read-side critical section to
213 * begin with, or we have now recorded that critical section
214 * globally. Either way, we can now note a quiescent state
215 * for this CPU. Again, if we were in an RCU read-side critical
216 * section, and if that critical section was blocking the current
217 * grace period, then the fact that the task has been enqueued
218 * means that we continue to block the current grace period.
219 */
220 local_irq_save(flags);
221 rcu_preempt_qs(cpu);
222 local_irq_restore(flags);
223 }
224
225 /*
226 * Tree-preemptible RCU implementation for rcu_read_lock().
227 * Just increment ->rcu_read_lock_nesting, shared state will be updated
228 * if we block.
229 */
230 void __rcu_read_lock(void)
231 {
232 current->rcu_read_lock_nesting++;
233 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
234 }
235 EXPORT_SYMBOL_GPL(__rcu_read_lock);
236
237 /*
238 * Check for preempted RCU readers blocking the current grace period
239 * for the specified rcu_node structure. If the caller needs a reliable
240 * answer, it must hold the rcu_node's ->lock.
241 */
242 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
243 {
244 return rnp->gp_tasks != NULL;
245 }
246
247 /*
248 * Record a quiescent state for all tasks that were previously queued
249 * on the specified rcu_node structure and that were blocking the current
250 * RCU grace period. The caller must hold the specified rnp->lock with
251 * irqs disabled, and this lock is released upon return, but irqs remain
252 * disabled.
253 */
254 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
255 __releases(rnp->lock)
256 {
257 unsigned long mask;
258 struct rcu_node *rnp_p;
259
260 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
261 raw_spin_unlock_irqrestore(&rnp->lock, flags);
262 return; /* Still need more quiescent states! */
263 }
264
265 rnp_p = rnp->parent;
266 if (rnp_p == NULL) {
267 /*
268 * Either there is only one rcu_node in the tree,
269 * or tasks were kicked up to root rcu_node due to
270 * CPUs going offline.
271 */
272 rcu_report_qs_rsp(&rcu_preempt_state, flags);
273 return;
274 }
275
276 /* Report up the rest of the hierarchy. */
277 mask = rnp->grpmask;
278 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
279 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
280 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
281 }
282
283 /*
284 * Advance a ->blkd_tasks-list pointer to the next entry, instead
285 * returning NULL if at the end of the list.
286 */
287 static struct list_head *rcu_next_node_entry(struct task_struct *t,
288 struct rcu_node *rnp)
289 {
290 struct list_head *np;
291
292 np = t->rcu_node_entry.next;
293 if (np == &rnp->blkd_tasks)
294 np = NULL;
295 return np;
296 }
297
298 /*
299 * Handle special cases during rcu_read_unlock(), such as needing to
300 * notify RCU core processing or task having blocked during the RCU
301 * read-side critical section.
302 */
303 static noinline void rcu_read_unlock_special(struct task_struct *t)
304 {
305 int empty;
306 int empty_exp;
307 unsigned long flags;
308 struct list_head *np;
309 #ifdef CONFIG_RCU_BOOST
310 struct rt_mutex *rbmp = NULL;
311 #endif /* #ifdef CONFIG_RCU_BOOST */
312 struct rcu_node *rnp;
313 int special;
314
315 /* NMI handlers cannot block and cannot safely manipulate state. */
316 if (in_nmi())
317 return;
318
319 local_irq_save(flags);
320
321 /*
322 * If RCU core is waiting for this CPU to exit critical section,
323 * let it know that we have done so.
324 */
325 special = t->rcu_read_unlock_special;
326 if (special & RCU_READ_UNLOCK_NEED_QS) {
327 rcu_preempt_qs(smp_processor_id());
328 }
329
330 /* Hardware IRQ handlers cannot block. */
331 if (in_irq() || in_serving_softirq()) {
332 local_irq_restore(flags);
333 return;
334 }
335
336 /* Clean up if blocked during RCU read-side critical section. */
337 if (special & RCU_READ_UNLOCK_BLOCKED) {
338 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
339
340 /*
341 * Remove this task from the list it blocked on. The
342 * task can migrate while we acquire the lock, but at
343 * most one time. So at most two passes through loop.
344 */
345 for (;;) {
346 rnp = t->rcu_blocked_node;
347 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
348 if (rnp == t->rcu_blocked_node)
349 break;
350 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
351 }
352 empty = !rcu_preempt_blocked_readers_cgp(rnp);
353 empty_exp = !rcu_preempted_readers_exp(rnp);
354 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
355 np = rcu_next_node_entry(t, rnp);
356 list_del_init(&t->rcu_node_entry);
357 t->rcu_blocked_node = NULL;
358 trace_rcu_unlock_preempted_task("rcu_preempt",
359 rnp->gpnum, t->pid);
360 if (&t->rcu_node_entry == rnp->gp_tasks)
361 rnp->gp_tasks = np;
362 if (&t->rcu_node_entry == rnp->exp_tasks)
363 rnp->exp_tasks = np;
364 #ifdef CONFIG_RCU_BOOST
365 if (&t->rcu_node_entry == rnp->boost_tasks)
366 rnp->boost_tasks = np;
367 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
368 if (t->rcu_boost_mutex) {
369 rbmp = t->rcu_boost_mutex;
370 t->rcu_boost_mutex = NULL;
371 }
372 #endif /* #ifdef CONFIG_RCU_BOOST */
373
374 /*
375 * If this was the last task on the current list, and if
376 * we aren't waiting on any CPUs, report the quiescent state.
377 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
378 */
379 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
380 trace_rcu_quiescent_state_report("preempt_rcu",
381 rnp->gpnum,
382 0, rnp->qsmask,
383 rnp->level,
384 rnp->grplo,
385 rnp->grphi,
386 !!rnp->gp_tasks);
387 rcu_report_unblock_qs_rnp(rnp, flags);
388 } else
389 raw_spin_unlock_irqrestore(&rnp->lock, flags);
390
391 #ifdef CONFIG_RCU_BOOST
392 /* Unboost if we were boosted. */
393 if (rbmp)
394 rt_mutex_unlock(rbmp);
395 #endif /* #ifdef CONFIG_RCU_BOOST */
396
397 /*
398 * If this was the last task on the expedited lists,
399 * then we need to report up the rcu_node hierarchy.
400 */
401 if (!empty_exp && !rcu_preempted_readers_exp(rnp))
402 rcu_report_exp_rnp(&rcu_preempt_state, rnp);
403 } else {
404 local_irq_restore(flags);
405 }
406 }
407
408 /*
409 * Tree-preemptible RCU implementation for rcu_read_unlock().
410 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
411 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
412 * invoke rcu_read_unlock_special() to clean up after a context switch
413 * in an RCU read-side critical section and other special cases.
414 */
415 void __rcu_read_unlock(void)
416 {
417 struct task_struct *t = current;
418
419 if (t->rcu_read_lock_nesting != 1)
420 --t->rcu_read_lock_nesting;
421 else {
422 barrier(); /* critical section before exit code. */
423 t->rcu_read_lock_nesting = INT_MIN;
424 barrier(); /* assign before ->rcu_read_unlock_special load */
425 if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
426 rcu_read_unlock_special(t);
427 barrier(); /* ->rcu_read_unlock_special load before assign */
428 t->rcu_read_lock_nesting = 0;
429 }
430 #ifdef CONFIG_PROVE_LOCKING
431 {
432 int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
433
434 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
435 }
436 #endif /* #ifdef CONFIG_PROVE_LOCKING */
437 }
438 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
439
440 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
441
442 /*
443 * Dump detailed information for all tasks blocking the current RCU
444 * grace period on the specified rcu_node structure.
445 */
446 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
447 {
448 unsigned long flags;
449 struct task_struct *t;
450
451 if (!rcu_preempt_blocked_readers_cgp(rnp))
452 return;
453 raw_spin_lock_irqsave(&rnp->lock, flags);
454 t = list_entry(rnp->gp_tasks,
455 struct task_struct, rcu_node_entry);
456 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
457 sched_show_task(t);
458 raw_spin_unlock_irqrestore(&rnp->lock, flags);
459 }
460
461 /*
462 * Dump detailed information for all tasks blocking the current RCU
463 * grace period.
464 */
465 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
466 {
467 struct rcu_node *rnp = rcu_get_root(rsp);
468
469 rcu_print_detail_task_stall_rnp(rnp);
470 rcu_for_each_leaf_node(rsp, rnp)
471 rcu_print_detail_task_stall_rnp(rnp);
472 }
473
474 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
475
476 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
477 {
478 }
479
480 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
481
482 /*
483 * Scan the current list of tasks blocked within RCU read-side critical
484 * sections, printing out the tid of each.
485 */
486 static int rcu_print_task_stall(struct rcu_node *rnp)
487 {
488 struct task_struct *t;
489 int ndetected = 0;
490
491 if (!rcu_preempt_blocked_readers_cgp(rnp))
492 return 0;
493 t = list_entry(rnp->gp_tasks,
494 struct task_struct, rcu_node_entry);
495 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
496 printk(" P%d", t->pid);
497 ndetected++;
498 }
499 return ndetected;
500 }
501
502 /*
503 * Suppress preemptible RCU's CPU stall warnings by pushing the
504 * time of the next stall-warning message comfortably far into the
505 * future.
506 */
507 static void rcu_preempt_stall_reset(void)
508 {
509 rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
510 }
511
512 /*
513 * Check that the list of blocked tasks for the newly completed grace
514 * period is in fact empty. It is a serious bug to complete a grace
515 * period that still has RCU readers blocked! This function must be
516 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
517 * must be held by the caller.
518 *
519 * Also, if there are blocked tasks on the list, they automatically
520 * block the newly created grace period, so set up ->gp_tasks accordingly.
521 */
522 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
523 {
524 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
525 if (!list_empty(&rnp->blkd_tasks))
526 rnp->gp_tasks = rnp->blkd_tasks.next;
527 WARN_ON_ONCE(rnp->qsmask);
528 }
529
530 #ifdef CONFIG_HOTPLUG_CPU
531
532 /*
533 * Handle tasklist migration for case in which all CPUs covered by the
534 * specified rcu_node have gone offline. Move them up to the root
535 * rcu_node. The reason for not just moving them to the immediate
536 * parent is to remove the need for rcu_read_unlock_special() to
537 * make more than two attempts to acquire the target rcu_node's lock.
538 * Returns true if there were tasks blocking the current RCU grace
539 * period.
540 *
541 * Returns 1 if there was previously a task blocking the current grace
542 * period on the specified rcu_node structure.
543 *
544 * The caller must hold rnp->lock with irqs disabled.
545 */
546 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
547 struct rcu_node *rnp,
548 struct rcu_data *rdp)
549 {
550 struct list_head *lp;
551 struct list_head *lp_root;
552 int retval = 0;
553 struct rcu_node *rnp_root = rcu_get_root(rsp);
554 struct task_struct *t;
555
556 if (rnp == rnp_root) {
557 WARN_ONCE(1, "Last CPU thought to be offlined?");
558 return 0; /* Shouldn't happen: at least one CPU online. */
559 }
560
561 /* If we are on an internal node, complain bitterly. */
562 WARN_ON_ONCE(rnp != rdp->mynode);
563
564 /*
565 * Move tasks up to root rcu_node. Don't try to get fancy for
566 * this corner-case operation -- just put this node's tasks
567 * at the head of the root node's list, and update the root node's
568 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
569 * if non-NULL. This might result in waiting for more tasks than
570 * absolutely necessary, but this is a good performance/complexity
571 * tradeoff.
572 */
573 if (rcu_preempt_blocked_readers_cgp(rnp))
574 retval |= RCU_OFL_TASKS_NORM_GP;
575 if (rcu_preempted_readers_exp(rnp))
576 retval |= RCU_OFL_TASKS_EXP_GP;
577 lp = &rnp->blkd_tasks;
578 lp_root = &rnp_root->blkd_tasks;
579 while (!list_empty(lp)) {
580 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
581 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
582 list_del(&t->rcu_node_entry);
583 t->rcu_blocked_node = rnp_root;
584 list_add(&t->rcu_node_entry, lp_root);
585 if (&t->rcu_node_entry == rnp->gp_tasks)
586 rnp_root->gp_tasks = rnp->gp_tasks;
587 if (&t->rcu_node_entry == rnp->exp_tasks)
588 rnp_root->exp_tasks = rnp->exp_tasks;
589 #ifdef CONFIG_RCU_BOOST
590 if (&t->rcu_node_entry == rnp->boost_tasks)
591 rnp_root->boost_tasks = rnp->boost_tasks;
592 #endif /* #ifdef CONFIG_RCU_BOOST */
593 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
594 }
595
596 #ifdef CONFIG_RCU_BOOST
597 /* In case root is being boosted and leaf is not. */
598 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
599 if (rnp_root->boost_tasks != NULL &&
600 rnp_root->boost_tasks != rnp_root->gp_tasks)
601 rnp_root->boost_tasks = rnp_root->gp_tasks;
602 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
603 #endif /* #ifdef CONFIG_RCU_BOOST */
604
605 rnp->gp_tasks = NULL;
606 rnp->exp_tasks = NULL;
607 return retval;
608 }
609
610 /*
611 * Do CPU-offline processing for preemptible RCU.
612 */
613 static void rcu_preempt_offline_cpu(int cpu)
614 {
615 __rcu_offline_cpu(cpu, &rcu_preempt_state);
616 }
617
618 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
619
620 /*
621 * Check for a quiescent state from the current CPU. When a task blocks,
622 * the task is recorded in the corresponding CPU's rcu_node structure,
623 * which is checked elsewhere.
624 *
625 * Caller must disable hard irqs.
626 */
627 static void rcu_preempt_check_callbacks(int cpu)
628 {
629 struct task_struct *t = current;
630
631 if (t->rcu_read_lock_nesting == 0) {
632 rcu_preempt_qs(cpu);
633 return;
634 }
635 if (t->rcu_read_lock_nesting > 0 &&
636 per_cpu(rcu_preempt_data, cpu).qs_pending)
637 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
638 }
639
640 /*
641 * Process callbacks for preemptible RCU.
642 */
643 static void rcu_preempt_process_callbacks(void)
644 {
645 __rcu_process_callbacks(&rcu_preempt_state,
646 &__get_cpu_var(rcu_preempt_data));
647 }
648
649 #ifdef CONFIG_RCU_BOOST
650
651 static void rcu_preempt_do_callbacks(void)
652 {
653 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
654 }
655
656 #endif /* #ifdef CONFIG_RCU_BOOST */
657
658 /*
659 * Queue a preemptible-RCU callback for invocation after a grace period.
660 */
661 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
662 {
663 __call_rcu(head, func, &rcu_preempt_state);
664 }
665 EXPORT_SYMBOL_GPL(call_rcu);
666
667 /**
668 * synchronize_rcu - wait until a grace period has elapsed.
669 *
670 * Control will return to the caller some time after a full grace
671 * period has elapsed, in other words after all currently executing RCU
672 * read-side critical sections have completed. Note, however, that
673 * upon return from synchronize_rcu(), the caller might well be executing
674 * concurrently with new RCU read-side critical sections that began while
675 * synchronize_rcu() was waiting. RCU read-side critical sections are
676 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
677 */
678 void synchronize_rcu(void)
679 {
680 if (!rcu_scheduler_active)
681 return;
682 wait_rcu_gp(call_rcu);
683 }
684 EXPORT_SYMBOL_GPL(synchronize_rcu);
685
686 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
687 static long sync_rcu_preempt_exp_count;
688 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
689
690 /*
691 * Return non-zero if there are any tasks in RCU read-side critical
692 * sections blocking the current preemptible-RCU expedited grace period.
693 * If there is no preemptible-RCU expedited grace period currently in
694 * progress, returns zero unconditionally.
695 */
696 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
697 {
698 return rnp->exp_tasks != NULL;
699 }
700
701 /*
702 * return non-zero if there is no RCU expedited grace period in progress
703 * for the specified rcu_node structure, in other words, if all CPUs and
704 * tasks covered by the specified rcu_node structure have done their bit
705 * for the current expedited grace period. Works only for preemptible
706 * RCU -- other RCU implementation use other means.
707 *
708 * Caller must hold sync_rcu_preempt_exp_mutex.
709 */
710 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
711 {
712 return !rcu_preempted_readers_exp(rnp) &&
713 ACCESS_ONCE(rnp->expmask) == 0;
714 }
715
716 /*
717 * Report the exit from RCU read-side critical section for the last task
718 * that queued itself during or before the current expedited preemptible-RCU
719 * grace period. This event is reported either to the rcu_node structure on
720 * which the task was queued or to one of that rcu_node structure's ancestors,
721 * recursively up the tree. (Calm down, calm down, we do the recursion
722 * iteratively!)
723 *
724 * Caller must hold sync_rcu_preempt_exp_mutex.
725 */
726 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
727 {
728 unsigned long flags;
729 unsigned long mask;
730
731 raw_spin_lock_irqsave(&rnp->lock, flags);
732 for (;;) {
733 if (!sync_rcu_preempt_exp_done(rnp)) {
734 raw_spin_unlock_irqrestore(&rnp->lock, flags);
735 break;
736 }
737 if (rnp->parent == NULL) {
738 raw_spin_unlock_irqrestore(&rnp->lock, flags);
739 wake_up(&sync_rcu_preempt_exp_wq);
740 break;
741 }
742 mask = rnp->grpmask;
743 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
744 rnp = rnp->parent;
745 raw_spin_lock(&rnp->lock); /* irqs already disabled */
746 rnp->expmask &= ~mask;
747 }
748 }
749
750 /*
751 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
752 * grace period for the specified rcu_node structure. If there are no such
753 * tasks, report it up the rcu_node hierarchy.
754 *
755 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
756 */
757 static void
758 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
759 {
760 unsigned long flags;
761 int must_wait = 0;
762
763 raw_spin_lock_irqsave(&rnp->lock, flags);
764 if (list_empty(&rnp->blkd_tasks))
765 raw_spin_unlock_irqrestore(&rnp->lock, flags);
766 else {
767 rnp->exp_tasks = rnp->blkd_tasks.next;
768 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
769 must_wait = 1;
770 }
771 if (!must_wait)
772 rcu_report_exp_rnp(rsp, rnp);
773 }
774
775 /*
776 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
777 * is to invoke synchronize_sched_expedited() to push all the tasks to
778 * the ->blkd_tasks lists and wait for this list to drain.
779 */
780 void synchronize_rcu_expedited(void)
781 {
782 unsigned long flags;
783 struct rcu_node *rnp;
784 struct rcu_state *rsp = &rcu_preempt_state;
785 long snap;
786 int trycount = 0;
787
788 smp_mb(); /* Caller's modifications seen first by other CPUs. */
789 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
790 smp_mb(); /* Above access cannot bleed into critical section. */
791
792 /*
793 * Acquire lock, falling back to synchronize_rcu() if too many
794 * lock-acquisition failures. Of course, if someone does the
795 * expedited grace period for us, just leave.
796 */
797 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
798 if (trycount++ < 10)
799 udelay(trycount * num_online_cpus());
800 else {
801 synchronize_rcu();
802 return;
803 }
804 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
805 goto mb_ret; /* Others did our work for us. */
806 }
807 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
808 goto unlock_mb_ret; /* Others did our work for us. */
809
810 /* force all RCU readers onto ->blkd_tasks lists. */
811 synchronize_sched_expedited();
812
813 raw_spin_lock_irqsave(&rsp->onofflock, flags);
814
815 /* Initialize ->expmask for all non-leaf rcu_node structures. */
816 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
817 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
818 rnp->expmask = rnp->qsmaskinit;
819 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
820 }
821
822 /* Snapshot current state of ->blkd_tasks lists. */
823 rcu_for_each_leaf_node(rsp, rnp)
824 sync_rcu_preempt_exp_init(rsp, rnp);
825 if (NUM_RCU_NODES > 1)
826 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
827
828 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
829
830 /* Wait for snapshotted ->blkd_tasks lists to drain. */
831 rnp = rcu_get_root(rsp);
832 wait_event(sync_rcu_preempt_exp_wq,
833 sync_rcu_preempt_exp_done(rnp));
834
835 /* Clean up and exit. */
836 smp_mb(); /* ensure expedited GP seen before counter increment. */
837 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
838 unlock_mb_ret:
839 mutex_unlock(&sync_rcu_preempt_exp_mutex);
840 mb_ret:
841 smp_mb(); /* ensure subsequent action seen after grace period. */
842 }
843 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
844
845 /*
846 * Check to see if there is any immediate preemptible-RCU-related work
847 * to be done.
848 */
849 static int rcu_preempt_pending(int cpu)
850 {
851 return __rcu_pending(&rcu_preempt_state,
852 &per_cpu(rcu_preempt_data, cpu));
853 }
854
855 /*
856 * Does preemptible RCU need the CPU to stay out of dynticks mode?
857 */
858 static int rcu_preempt_needs_cpu(int cpu)
859 {
860 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
861 }
862
863 /**
864 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
865 */
866 void rcu_barrier(void)
867 {
868 _rcu_barrier(&rcu_preempt_state, call_rcu);
869 }
870 EXPORT_SYMBOL_GPL(rcu_barrier);
871
872 /*
873 * Initialize preemptible RCU's per-CPU data.
874 */
875 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
876 {
877 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
878 }
879
880 /*
881 * Move preemptible RCU's callbacks from dying CPU to other online CPU.
882 */
883 static void rcu_preempt_send_cbs_to_online(void)
884 {
885 rcu_send_cbs_to_online(&rcu_preempt_state);
886 }
887
888 /*
889 * Initialize preemptible RCU's state structures.
890 */
891 static void __init __rcu_init_preempt(void)
892 {
893 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
894 }
895
896 /*
897 * Check for a task exiting while in a preemptible-RCU read-side
898 * critical section, clean up if so. No need to issue warnings,
899 * as debug_check_no_locks_held() already does this if lockdep
900 * is enabled.
901 */
902 void exit_rcu(void)
903 {
904 struct task_struct *t = current;
905
906 if (t->rcu_read_lock_nesting == 0)
907 return;
908 t->rcu_read_lock_nesting = 1;
909 __rcu_read_unlock();
910 }
911
912 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
913
914 static struct rcu_state *rcu_state = &rcu_sched_state;
915
916 /*
917 * Tell them what RCU they are running.
918 */
919 static void __init rcu_bootup_announce(void)
920 {
921 printk(KERN_INFO "Hierarchical RCU implementation.\n");
922 rcu_bootup_announce_oddness();
923 }
924
925 /*
926 * Return the number of RCU batches processed thus far for debug & stats.
927 */
928 long rcu_batches_completed(void)
929 {
930 return rcu_batches_completed_sched();
931 }
932 EXPORT_SYMBOL_GPL(rcu_batches_completed);
933
934 /*
935 * Force a quiescent state for RCU, which, because there is no preemptible
936 * RCU, becomes the same as rcu-sched.
937 */
938 void rcu_force_quiescent_state(void)
939 {
940 rcu_sched_force_quiescent_state();
941 }
942 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
943
944 /*
945 * Because preemptible RCU does not exist, we never have to check for
946 * CPUs being in quiescent states.
947 */
948 static void rcu_preempt_note_context_switch(int cpu)
949 {
950 }
951
952 /*
953 * Because preemptible RCU does not exist, there are never any preempted
954 * RCU readers.
955 */
956 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
957 {
958 return 0;
959 }
960
961 #ifdef CONFIG_HOTPLUG_CPU
962
963 /* Because preemptible RCU does not exist, no quieting of tasks. */
964 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
965 {
966 raw_spin_unlock_irqrestore(&rnp->lock, flags);
967 }
968
969 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
970
971 /*
972 * Because preemptible RCU does not exist, we never have to check for
973 * tasks blocked within RCU read-side critical sections.
974 */
975 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
976 {
977 }
978
979 /*
980 * Because preemptible RCU does not exist, we never have to check for
981 * tasks blocked within RCU read-side critical sections.
982 */
983 static int rcu_print_task_stall(struct rcu_node *rnp)
984 {
985 return 0;
986 }
987
988 /*
989 * Because preemptible RCU does not exist, there is no need to suppress
990 * its CPU stall warnings.
991 */
992 static void rcu_preempt_stall_reset(void)
993 {
994 }
995
996 /*
997 * Because there is no preemptible RCU, there can be no readers blocked,
998 * so there is no need to check for blocked tasks. So check only for
999 * bogus qsmask values.
1000 */
1001 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1002 {
1003 WARN_ON_ONCE(rnp->qsmask);
1004 }
1005
1006 #ifdef CONFIG_HOTPLUG_CPU
1007
1008 /*
1009 * Because preemptible RCU does not exist, it never needs to migrate
1010 * tasks that were blocked within RCU read-side critical sections, and
1011 * such non-existent tasks cannot possibly have been blocking the current
1012 * grace period.
1013 */
1014 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1015 struct rcu_node *rnp,
1016 struct rcu_data *rdp)
1017 {
1018 return 0;
1019 }
1020
1021 /*
1022 * Because preemptible RCU does not exist, it never needs CPU-offline
1023 * processing.
1024 */
1025 static void rcu_preempt_offline_cpu(int cpu)
1026 {
1027 }
1028
1029 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1030
1031 /*
1032 * Because preemptible RCU does not exist, it never has any callbacks
1033 * to check.
1034 */
1035 static void rcu_preempt_check_callbacks(int cpu)
1036 {
1037 }
1038
1039 /*
1040 * Because preemptible RCU does not exist, it never has any callbacks
1041 * to process.
1042 */
1043 static void rcu_preempt_process_callbacks(void)
1044 {
1045 }
1046
1047 /*
1048 * Wait for an rcu-preempt grace period, but make it happen quickly.
1049 * But because preemptible RCU does not exist, map to rcu-sched.
1050 */
1051 void synchronize_rcu_expedited(void)
1052 {
1053 synchronize_sched_expedited();
1054 }
1055 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1056
1057 #ifdef CONFIG_HOTPLUG_CPU
1058
1059 /*
1060 * Because preemptible RCU does not exist, there is never any need to
1061 * report on tasks preempted in RCU read-side critical sections during
1062 * expedited RCU grace periods.
1063 */
1064 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
1065 {
1066 return;
1067 }
1068
1069 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1070
1071 /*
1072 * Because preemptible RCU does not exist, it never has any work to do.
1073 */
1074 static int rcu_preempt_pending(int cpu)
1075 {
1076 return 0;
1077 }
1078
1079 /*
1080 * Because preemptible RCU does not exist, it never needs any CPU.
1081 */
1082 static int rcu_preempt_needs_cpu(int cpu)
1083 {
1084 return 0;
1085 }
1086
1087 /*
1088 * Because preemptible RCU does not exist, rcu_barrier() is just
1089 * another name for rcu_barrier_sched().
1090 */
1091 void rcu_barrier(void)
1092 {
1093 rcu_barrier_sched();
1094 }
1095 EXPORT_SYMBOL_GPL(rcu_barrier);
1096
1097 /*
1098 * Because preemptible RCU does not exist, there is no per-CPU
1099 * data to initialize.
1100 */
1101 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
1102 {
1103 }
1104
1105 /*
1106 * Because there is no preemptible RCU, there are no callbacks to move.
1107 */
1108 static void rcu_preempt_send_cbs_to_online(void)
1109 {
1110 }
1111
1112 /*
1113 * Because preemptible RCU does not exist, it need not be initialized.
1114 */
1115 static void __init __rcu_init_preempt(void)
1116 {
1117 }
1118
1119 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1120
1121 #ifdef CONFIG_RCU_BOOST
1122
1123 #include "rtmutex_common.h"
1124
1125 #ifdef CONFIG_RCU_TRACE
1126
1127 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1128 {
1129 if (list_empty(&rnp->blkd_tasks))
1130 rnp->n_balk_blkd_tasks++;
1131 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1132 rnp->n_balk_exp_gp_tasks++;
1133 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1134 rnp->n_balk_boost_tasks++;
1135 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1136 rnp->n_balk_notblocked++;
1137 else if (rnp->gp_tasks != NULL &&
1138 ULONG_CMP_LT(jiffies, rnp->boost_time))
1139 rnp->n_balk_notyet++;
1140 else
1141 rnp->n_balk_nos++;
1142 }
1143
1144 #else /* #ifdef CONFIG_RCU_TRACE */
1145
1146 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1147 {
1148 }
1149
1150 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1151
1152 static struct lock_class_key rcu_boost_class;
1153
1154 /*
1155 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1156 * or ->boost_tasks, advancing the pointer to the next task in the
1157 * ->blkd_tasks list.
1158 *
1159 * Note that irqs must be enabled: boosting the task can block.
1160 * Returns 1 if there are more tasks needing to be boosted.
1161 */
1162 static int rcu_boost(struct rcu_node *rnp)
1163 {
1164 unsigned long flags;
1165 struct rt_mutex mtx;
1166 struct task_struct *t;
1167 struct list_head *tb;
1168
1169 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1170 return 0; /* Nothing left to boost. */
1171
1172 raw_spin_lock_irqsave(&rnp->lock, flags);
1173
1174 /*
1175 * Recheck under the lock: all tasks in need of boosting
1176 * might exit their RCU read-side critical sections on their own.
1177 */
1178 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1179 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1180 return 0;
1181 }
1182
1183 /*
1184 * Preferentially boost tasks blocking expedited grace periods.
1185 * This cannot starve the normal grace periods because a second
1186 * expedited grace period must boost all blocked tasks, including
1187 * those blocking the pre-existing normal grace period.
1188 */
1189 if (rnp->exp_tasks != NULL) {
1190 tb = rnp->exp_tasks;
1191 rnp->n_exp_boosts++;
1192 } else {
1193 tb = rnp->boost_tasks;
1194 rnp->n_normal_boosts++;
1195 }
1196 rnp->n_tasks_boosted++;
1197
1198 /*
1199 * We boost task t by manufacturing an rt_mutex that appears to
1200 * be held by task t. We leave a pointer to that rt_mutex where
1201 * task t can find it, and task t will release the mutex when it
1202 * exits its outermost RCU read-side critical section. Then
1203 * simply acquiring this artificial rt_mutex will boost task
1204 * t's priority. (Thanks to tglx for suggesting this approach!)
1205 *
1206 * Note that task t must acquire rnp->lock to remove itself from
1207 * the ->blkd_tasks list, which it will do from exit() if from
1208 * nowhere else. We therefore are guaranteed that task t will
1209 * stay around at least until we drop rnp->lock. Note that
1210 * rnp->lock also resolves races between our priority boosting
1211 * and task t's exiting its outermost RCU read-side critical
1212 * section.
1213 */
1214 t = container_of(tb, struct task_struct, rcu_node_entry);
1215 rt_mutex_init_proxy_locked(&mtx, t);
1216 /* Avoid lockdep false positives. This rt_mutex is its own thing. */
1217 lockdep_set_class_and_name(&mtx.wait_lock, &rcu_boost_class,
1218 "rcu_boost_mutex");
1219 t->rcu_boost_mutex = &mtx;
1220 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1221 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1222 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1223
1224 return rnp->exp_tasks != NULL || rnp->boost_tasks != NULL;
1225 }
1226
1227 /*
1228 * Timer handler to initiate waking up of boost kthreads that
1229 * have yielded the CPU due to excessive numbers of tasks to
1230 * boost. We wake up the per-rcu_node kthread, which in turn
1231 * will wake up the booster kthread.
1232 */
1233 static void rcu_boost_kthread_timer(unsigned long arg)
1234 {
1235 invoke_rcu_node_kthread((struct rcu_node *)arg);
1236 }
1237
1238 /*
1239 * Priority-boosting kthread. One per leaf rcu_node and one for the
1240 * root rcu_node.
1241 */
1242 static int rcu_boost_kthread(void *arg)
1243 {
1244 struct rcu_node *rnp = (struct rcu_node *)arg;
1245 int spincnt = 0;
1246 int more2boost;
1247
1248 trace_rcu_utilization("Start boost kthread@init");
1249 for (;;) {
1250 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1251 trace_rcu_utilization("End boost kthread@rcu_wait");
1252 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1253 trace_rcu_utilization("Start boost kthread@rcu_wait");
1254 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1255 more2boost = rcu_boost(rnp);
1256 if (more2boost)
1257 spincnt++;
1258 else
1259 spincnt = 0;
1260 if (spincnt > 10) {
1261 trace_rcu_utilization("End boost kthread@rcu_yield");
1262 rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
1263 trace_rcu_utilization("Start boost kthread@rcu_yield");
1264 spincnt = 0;
1265 }
1266 }
1267 /* NOTREACHED */
1268 trace_rcu_utilization("End boost kthread@notreached");
1269 return 0;
1270 }
1271
1272 /*
1273 * Check to see if it is time to start boosting RCU readers that are
1274 * blocking the current grace period, and, if so, tell the per-rcu_node
1275 * kthread to start boosting them. If there is an expedited grace
1276 * period in progress, it is always time to boost.
1277 *
1278 * The caller must hold rnp->lock, which this function releases,
1279 * but irqs remain disabled. The ->boost_kthread_task is immortal,
1280 * so we don't need to worry about it going away.
1281 */
1282 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1283 {
1284 struct task_struct *t;
1285
1286 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1287 rnp->n_balk_exp_gp_tasks++;
1288 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1289 return;
1290 }
1291 if (rnp->exp_tasks != NULL ||
1292 (rnp->gp_tasks != NULL &&
1293 rnp->boost_tasks == NULL &&
1294 rnp->qsmask == 0 &&
1295 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1296 if (rnp->exp_tasks == NULL)
1297 rnp->boost_tasks = rnp->gp_tasks;
1298 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1299 t = rnp->boost_kthread_task;
1300 if (t != NULL)
1301 wake_up_process(t);
1302 } else {
1303 rcu_initiate_boost_trace(rnp);
1304 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1305 }
1306 }
1307
1308 /*
1309 * Wake up the per-CPU kthread to invoke RCU callbacks.
1310 */
1311 static void invoke_rcu_callbacks_kthread(void)
1312 {
1313 unsigned long flags;
1314
1315 local_irq_save(flags);
1316 __this_cpu_write(rcu_cpu_has_work, 1);
1317 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1318 current != __this_cpu_read(rcu_cpu_kthread_task))
1319 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
1320 local_irq_restore(flags);
1321 }
1322
1323 /*
1324 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1325 * held, so no one should be messing with the existence of the boost
1326 * kthread.
1327 */
1328 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1329 cpumask_var_t cm)
1330 {
1331 struct task_struct *t;
1332
1333 t = rnp->boost_kthread_task;
1334 if (t != NULL)
1335 set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
1336 }
1337
1338 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1339
1340 /*
1341 * Do priority-boost accounting for the start of a new grace period.
1342 */
1343 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1344 {
1345 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1346 }
1347
1348 /*
1349 * Create an RCU-boost kthread for the specified node if one does not
1350 * already exist. We only create this kthread for preemptible RCU.
1351 * Returns zero if all is well, a negated errno otherwise.
1352 */
1353 static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1354 struct rcu_node *rnp,
1355 int rnp_index)
1356 {
1357 unsigned long flags;
1358 struct sched_param sp;
1359 struct task_struct *t;
1360
1361 if (&rcu_preempt_state != rsp)
1362 return 0;
1363 rsp->boost = 1;
1364 if (rnp->boost_kthread_task != NULL)
1365 return 0;
1366 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1367 "rcub%d", rnp_index);
1368 if (IS_ERR(t))
1369 return PTR_ERR(t);
1370 raw_spin_lock_irqsave(&rnp->lock, flags);
1371 rnp->boost_kthread_task = t;
1372 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1373 sp.sched_priority = RCU_KTHREAD_PRIO;
1374 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1375 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1376 return 0;
1377 }
1378
1379 #ifdef CONFIG_HOTPLUG_CPU
1380
1381 /*
1382 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1383 */
1384 static void rcu_stop_cpu_kthread(int cpu)
1385 {
1386 struct task_struct *t;
1387
1388 /* Stop the CPU's kthread. */
1389 t = per_cpu(rcu_cpu_kthread_task, cpu);
1390 if (t != NULL) {
1391 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1392 kthread_stop(t);
1393 }
1394 }
1395
1396 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1397
1398 static void rcu_kthread_do_work(void)
1399 {
1400 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1401 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1402 rcu_preempt_do_callbacks();
1403 }
1404
1405 /*
1406 * Wake up the specified per-rcu_node-structure kthread.
1407 * Because the per-rcu_node kthreads are immortal, we don't need
1408 * to do anything to keep them alive.
1409 */
1410 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1411 {
1412 struct task_struct *t;
1413
1414 t = rnp->node_kthread_task;
1415 if (t != NULL)
1416 wake_up_process(t);
1417 }
1418
1419 /*
1420 * Set the specified CPU's kthread to run RT or not, as specified by
1421 * the to_rt argument. The CPU-hotplug locks are held, so the task
1422 * is not going away.
1423 */
1424 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1425 {
1426 int policy;
1427 struct sched_param sp;
1428 struct task_struct *t;
1429
1430 t = per_cpu(rcu_cpu_kthread_task, cpu);
1431 if (t == NULL)
1432 return;
1433 if (to_rt) {
1434 policy = SCHED_FIFO;
1435 sp.sched_priority = RCU_KTHREAD_PRIO;
1436 } else {
1437 policy = SCHED_NORMAL;
1438 sp.sched_priority = 0;
1439 }
1440 sched_setscheduler_nocheck(t, policy, &sp);
1441 }
1442
1443 /*
1444 * Timer handler to initiate the waking up of per-CPU kthreads that
1445 * have yielded the CPU due to excess numbers of RCU callbacks.
1446 * We wake up the per-rcu_node kthread, which in turn will wake up
1447 * the booster kthread.
1448 */
1449 static void rcu_cpu_kthread_timer(unsigned long arg)
1450 {
1451 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1452 struct rcu_node *rnp = rdp->mynode;
1453
1454 atomic_or(rdp->grpmask, &rnp->wakemask);
1455 invoke_rcu_node_kthread(rnp);
1456 }
1457
1458 /*
1459 * Drop to non-real-time priority and yield, but only after posting a
1460 * timer that will cause us to regain our real-time priority if we
1461 * remain preempted. Either way, we restore our real-time priority
1462 * before returning.
1463 */
1464 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1465 {
1466 struct sched_param sp;
1467 struct timer_list yield_timer;
1468
1469 setup_timer_on_stack(&yield_timer, f, arg);
1470 mod_timer(&yield_timer, jiffies + 2);
1471 sp.sched_priority = 0;
1472 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1473 set_user_nice(current, 19);
1474 schedule();
1475 sp.sched_priority = RCU_KTHREAD_PRIO;
1476 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1477 del_timer(&yield_timer);
1478 }
1479
1480 /*
1481 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1482 * This can happen while the corresponding CPU is either coming online
1483 * or going offline. We cannot wait until the CPU is fully online
1484 * before starting the kthread, because the various notifier functions
1485 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1486 * the corresponding CPU is online.
1487 *
1488 * Return 1 if the kthread needs to stop, 0 otherwise.
1489 *
1490 * Caller must disable bh. This function can momentarily enable it.
1491 */
1492 static int rcu_cpu_kthread_should_stop(int cpu)
1493 {
1494 while (cpu_is_offline(cpu) ||
1495 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1496 smp_processor_id() != cpu) {
1497 if (kthread_should_stop())
1498 return 1;
1499 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1500 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1501 local_bh_enable();
1502 schedule_timeout_uninterruptible(1);
1503 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1504 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1505 local_bh_disable();
1506 }
1507 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1508 return 0;
1509 }
1510
1511 /*
1512 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1513 * RCU softirq used in flavors and configurations of RCU that do not
1514 * support RCU priority boosting.
1515 */
1516 static int rcu_cpu_kthread(void *arg)
1517 {
1518 int cpu = (int)(long)arg;
1519 unsigned long flags;
1520 int spincnt = 0;
1521 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1522 char work;
1523 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1524
1525 trace_rcu_utilization("Start CPU kthread@init");
1526 for (;;) {
1527 *statusp = RCU_KTHREAD_WAITING;
1528 trace_rcu_utilization("End CPU kthread@rcu_wait");
1529 rcu_wait(*workp != 0 || kthread_should_stop());
1530 trace_rcu_utilization("Start CPU kthread@rcu_wait");
1531 local_bh_disable();
1532 if (rcu_cpu_kthread_should_stop(cpu)) {
1533 local_bh_enable();
1534 break;
1535 }
1536 *statusp = RCU_KTHREAD_RUNNING;
1537 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1538 local_irq_save(flags);
1539 work = *workp;
1540 *workp = 0;
1541 local_irq_restore(flags);
1542 if (work)
1543 rcu_kthread_do_work();
1544 local_bh_enable();
1545 if (*workp != 0)
1546 spincnt++;
1547 else
1548 spincnt = 0;
1549 if (spincnt > 10) {
1550 *statusp = RCU_KTHREAD_YIELDING;
1551 trace_rcu_utilization("End CPU kthread@rcu_yield");
1552 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1553 trace_rcu_utilization("Start CPU kthread@rcu_yield");
1554 spincnt = 0;
1555 }
1556 }
1557 *statusp = RCU_KTHREAD_STOPPED;
1558 trace_rcu_utilization("End CPU kthread@term");
1559 return 0;
1560 }
1561
1562 /*
1563 * Spawn a per-CPU kthread, setting up affinity and priority.
1564 * Because the CPU hotplug lock is held, no other CPU will be attempting
1565 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1566 * attempting to access it during boot, but the locking in kthread_bind()
1567 * will enforce sufficient ordering.
1568 *
1569 * Please note that we cannot simply refuse to wake up the per-CPU
1570 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1571 * which can result in softlockup complaints if the task ends up being
1572 * idle for more than a couple of minutes.
1573 *
1574 * However, please note also that we cannot bind the per-CPU kthread to its
1575 * CPU until that CPU is fully online. We also cannot wait until the
1576 * CPU is fully online before we create its per-CPU kthread, as this would
1577 * deadlock the system when CPU notifiers tried waiting for grace
1578 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1579 * is online. If its CPU is not yet fully online, then the code in
1580 * rcu_cpu_kthread() will wait until it is fully online, and then do
1581 * the binding.
1582 */
1583 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1584 {
1585 struct sched_param sp;
1586 struct task_struct *t;
1587
1588 if (!rcu_scheduler_fully_active ||
1589 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1590 return 0;
1591 t = kthread_create_on_node(rcu_cpu_kthread,
1592 (void *)(long)cpu,
1593 cpu_to_node(cpu),
1594 "rcuc%d", cpu);
1595 if (IS_ERR(t))
1596 return PTR_ERR(t);
1597 if (cpu_online(cpu))
1598 kthread_bind(t, cpu);
1599 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1600 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1601 sp.sched_priority = RCU_KTHREAD_PRIO;
1602 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1603 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1604 wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1605 return 0;
1606 }
1607
1608 /*
1609 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1610 * kthreads when needed. We ignore requests to wake up kthreads
1611 * for offline CPUs, which is OK because force_quiescent_state()
1612 * takes care of this case.
1613 */
1614 static int rcu_node_kthread(void *arg)
1615 {
1616 int cpu;
1617 unsigned long flags;
1618 unsigned long mask;
1619 struct rcu_node *rnp = (struct rcu_node *)arg;
1620 struct sched_param sp;
1621 struct task_struct *t;
1622
1623 for (;;) {
1624 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1625 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1626 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1627 raw_spin_lock_irqsave(&rnp->lock, flags);
1628 mask = atomic_xchg(&rnp->wakemask, 0);
1629 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1630 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1631 if ((mask & 0x1) == 0)
1632 continue;
1633 preempt_disable();
1634 t = per_cpu(rcu_cpu_kthread_task, cpu);
1635 if (!cpu_online(cpu) || t == NULL) {
1636 preempt_enable();
1637 continue;
1638 }
1639 per_cpu(rcu_cpu_has_work, cpu) = 1;
1640 sp.sched_priority = RCU_KTHREAD_PRIO;
1641 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1642 preempt_enable();
1643 }
1644 }
1645 /* NOTREACHED */
1646 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1647 return 0;
1648 }
1649
1650 /*
1651 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1652 * served by the rcu_node in question. The CPU hotplug lock is still
1653 * held, so the value of rnp->qsmaskinit will be stable.
1654 *
1655 * We don't include outgoingcpu in the affinity set, use -1 if there is
1656 * no outgoing CPU. If there are no CPUs left in the affinity set,
1657 * this function allows the kthread to execute on any CPU.
1658 */
1659 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1660 {
1661 cpumask_var_t cm;
1662 int cpu;
1663 unsigned long mask = rnp->qsmaskinit;
1664
1665 if (rnp->node_kthread_task == NULL)
1666 return;
1667 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1668 return;
1669 cpumask_clear(cm);
1670 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1671 if ((mask & 0x1) && cpu != outgoingcpu)
1672 cpumask_set_cpu(cpu, cm);
1673 if (cpumask_weight(cm) == 0) {
1674 cpumask_setall(cm);
1675 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1676 cpumask_clear_cpu(cpu, cm);
1677 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1678 }
1679 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1680 rcu_boost_kthread_setaffinity(rnp, cm);
1681 free_cpumask_var(cm);
1682 }
1683
1684 /*
1685 * Spawn a per-rcu_node kthread, setting priority and affinity.
1686 * Called during boot before online/offline can happen, or, if
1687 * during runtime, with the main CPU-hotplug locks held. So only
1688 * one of these can be executing at a time.
1689 */
1690 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1691 struct rcu_node *rnp)
1692 {
1693 unsigned long flags;
1694 int rnp_index = rnp - &rsp->node[0];
1695 struct sched_param sp;
1696 struct task_struct *t;
1697
1698 if (!rcu_scheduler_fully_active ||
1699 rnp->qsmaskinit == 0)
1700 return 0;
1701 if (rnp->node_kthread_task == NULL) {
1702 t = kthread_create(rcu_node_kthread, (void *)rnp,
1703 "rcun%d", rnp_index);
1704 if (IS_ERR(t))
1705 return PTR_ERR(t);
1706 raw_spin_lock_irqsave(&rnp->lock, flags);
1707 rnp->node_kthread_task = t;
1708 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1709 sp.sched_priority = 99;
1710 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1711 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1712 }
1713 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1714 }
1715
1716 /*
1717 * Spawn all kthreads -- called as soon as the scheduler is running.
1718 */
1719 static int __init rcu_spawn_kthreads(void)
1720 {
1721 int cpu;
1722 struct rcu_node *rnp;
1723
1724 rcu_scheduler_fully_active = 1;
1725 for_each_possible_cpu(cpu) {
1726 per_cpu(rcu_cpu_has_work, cpu) = 0;
1727 if (cpu_online(cpu))
1728 (void)rcu_spawn_one_cpu_kthread(cpu);
1729 }
1730 rnp = rcu_get_root(rcu_state);
1731 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1732 if (NUM_RCU_NODES > 1) {
1733 rcu_for_each_leaf_node(rcu_state, rnp)
1734 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1735 }
1736 return 0;
1737 }
1738 early_initcall(rcu_spawn_kthreads);
1739
1740 static void __cpuinit rcu_prepare_kthreads(int cpu)
1741 {
1742 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1743 struct rcu_node *rnp = rdp->mynode;
1744
1745 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1746 if (rcu_scheduler_fully_active) {
1747 (void)rcu_spawn_one_cpu_kthread(cpu);
1748 if (rnp->node_kthread_task == NULL)
1749 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1750 }
1751 }
1752
1753 #else /* #ifdef CONFIG_RCU_BOOST */
1754
1755 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1756 {
1757 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1758 }
1759
1760 static void invoke_rcu_callbacks_kthread(void)
1761 {
1762 WARN_ON_ONCE(1);
1763 }
1764
1765 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1766 {
1767 }
1768
1769 #ifdef CONFIG_HOTPLUG_CPU
1770
1771 static void rcu_stop_cpu_kthread(int cpu)
1772 {
1773 }
1774
1775 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1776
1777 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1778 {
1779 }
1780
1781 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1782 {
1783 }
1784
1785 static int __init rcu_scheduler_really_started(void)
1786 {
1787 rcu_scheduler_fully_active = 1;
1788 return 0;
1789 }
1790 early_initcall(rcu_scheduler_really_started);
1791
1792 static void __cpuinit rcu_prepare_kthreads(int cpu)
1793 {
1794 }
1795
1796 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1797
1798 #ifndef CONFIG_SMP
1799
1800 void synchronize_sched_expedited(void)
1801 {
1802 cond_resched();
1803 }
1804 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1805
1806 #else /* #ifndef CONFIG_SMP */
1807
1808 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1809 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1810
1811 static int synchronize_sched_expedited_cpu_stop(void *data)
1812 {
1813 /*
1814 * There must be a full memory barrier on each affected CPU
1815 * between the time that try_stop_cpus() is called and the
1816 * time that it returns.
1817 *
1818 * In the current initial implementation of cpu_stop, the
1819 * above condition is already met when the control reaches
1820 * this point and the following smp_mb() is not strictly
1821 * necessary. Do smp_mb() anyway for documentation and
1822 * robustness against future implementation changes.
1823 */
1824 smp_mb(); /* See above comment block. */
1825 return 0;
1826 }
1827
1828 /*
1829 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
1830 * approach to force grace period to end quickly. This consumes
1831 * significant time on all CPUs, and is thus not recommended for
1832 * any sort of common-case code.
1833 *
1834 * Note that it is illegal to call this function while holding any
1835 * lock that is acquired by a CPU-hotplug notifier. Failing to
1836 * observe this restriction will result in deadlock.
1837 *
1838 * This implementation can be thought of as an application of ticket
1839 * locking to RCU, with sync_sched_expedited_started and
1840 * sync_sched_expedited_done taking on the roles of the halves
1841 * of the ticket-lock word. Each task atomically increments
1842 * sync_sched_expedited_started upon entry, snapshotting the old value,
1843 * then attempts to stop all the CPUs. If this succeeds, then each
1844 * CPU will have executed a context switch, resulting in an RCU-sched
1845 * grace period. We are then done, so we use atomic_cmpxchg() to
1846 * update sync_sched_expedited_done to match our snapshot -- but
1847 * only if someone else has not already advanced past our snapshot.
1848 *
1849 * On the other hand, if try_stop_cpus() fails, we check the value
1850 * of sync_sched_expedited_done. If it has advanced past our
1851 * initial snapshot, then someone else must have forced a grace period
1852 * some time after we took our snapshot. In this case, our work is
1853 * done for us, and we can simply return. Otherwise, we try again,
1854 * but keep our initial snapshot for purposes of checking for someone
1855 * doing our work for us.
1856 *
1857 * If we fail too many times in a row, we fall back to synchronize_sched().
1858 */
1859 void synchronize_sched_expedited(void)
1860 {
1861 int firstsnap, s, snap, trycount = 0;
1862
1863 /* Note that atomic_inc_return() implies full memory barrier. */
1864 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
1865 get_online_cpus();
1866
1867 /*
1868 * Each pass through the following loop attempts to force a
1869 * context switch on each CPU.
1870 */
1871 while (try_stop_cpus(cpu_online_mask,
1872 synchronize_sched_expedited_cpu_stop,
1873 NULL) == -EAGAIN) {
1874 put_online_cpus();
1875
1876 /* No joy, try again later. Or just synchronize_sched(). */
1877 if (trycount++ < 10)
1878 udelay(trycount * num_online_cpus());
1879 else {
1880 synchronize_sched();
1881 return;
1882 }
1883
1884 /* Check to see if someone else did our work for us. */
1885 s = atomic_read(&sync_sched_expedited_done);
1886 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
1887 smp_mb(); /* ensure test happens before caller kfree */
1888 return;
1889 }
1890
1891 /*
1892 * Refetching sync_sched_expedited_started allows later
1893 * callers to piggyback on our grace period. We subtract
1894 * 1 to get the same token that the last incrementer got.
1895 * We retry after they started, so our grace period works
1896 * for them, and they started after our first try, so their
1897 * grace period works for us.
1898 */
1899 get_online_cpus();
1900 snap = atomic_read(&sync_sched_expedited_started) - 1;
1901 smp_mb(); /* ensure read is before try_stop_cpus(). */
1902 }
1903
1904 /*
1905 * Everyone up to our most recent fetch is covered by our grace
1906 * period. Update the counter, but only if our work is still
1907 * relevant -- which it won't be if someone who started later
1908 * than we did beat us to the punch.
1909 */
1910 do {
1911 s = atomic_read(&sync_sched_expedited_done);
1912 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
1913 smp_mb(); /* ensure test happens before caller kfree */
1914 break;
1915 }
1916 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
1917
1918 put_online_cpus();
1919 }
1920 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1921
1922 #endif /* #else #ifndef CONFIG_SMP */
1923
1924 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1925
1926 /*
1927 * Check to see if any future RCU-related work will need to be done
1928 * by the current CPU, even if none need be done immediately, returning
1929 * 1 if so. This function is part of the RCU implementation; it is -not-
1930 * an exported member of the RCU API.
1931 *
1932 * Because we have preemptible RCU, just check whether this CPU needs
1933 * any flavor of RCU. Do not chew up lots of CPU cycles with preemption
1934 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
1935 */
1936 int rcu_needs_cpu(int cpu)
1937 {
1938 return rcu_needs_cpu_quick_check(cpu);
1939 }
1940
1941 /*
1942 * Check to see if we need to continue a callback-flush operations to
1943 * allow the last CPU to enter dyntick-idle mode. But fast dyntick-idle
1944 * entry is not configured, so we never do need to.
1945 */
1946 static void rcu_needs_cpu_flush(void)
1947 {
1948 }
1949
1950 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1951
1952 #define RCU_NEEDS_CPU_FLUSHES 5
1953 static DEFINE_PER_CPU(int, rcu_dyntick_drain);
1954 static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
1955
1956 /*
1957 * Check to see if any future RCU-related work will need to be done
1958 * by the current CPU, even if none need be done immediately, returning
1959 * 1 if so. This function is part of the RCU implementation; it is -not-
1960 * an exported member of the RCU API.
1961 *
1962 * Because we are not supporting preemptible RCU, attempt to accelerate
1963 * any current grace periods so that RCU no longer needs this CPU, but
1964 * only if all other CPUs are already in dynticks-idle mode. This will
1965 * allow the CPU cores to be powered down immediately, as opposed to after
1966 * waiting many milliseconds for grace periods to elapse.
1967 *
1968 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1969 * disabled, we do one pass of force_quiescent_state(), then do a
1970 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1971 * later. The per-cpu rcu_dyntick_drain variable controls the sequencing.
1972 */
1973 int rcu_needs_cpu(int cpu)
1974 {
1975 int c = 0;
1976 int snap;
1977 int thatcpu;
1978
1979 /* Check for being in the holdoff period. */
1980 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
1981 return rcu_needs_cpu_quick_check(cpu);
1982
1983 /* Don't bother unless we are the last non-dyntick-idle CPU. */
1984 for_each_online_cpu(thatcpu) {
1985 if (thatcpu == cpu)
1986 continue;
1987 snap = atomic_add_return(0, &per_cpu(rcu_dynticks,
1988 thatcpu).dynticks);
1989 smp_mb(); /* Order sampling of snap with end of grace period. */
1990 if ((snap & 0x1) != 0) {
1991 per_cpu(rcu_dyntick_drain, cpu) = 0;
1992 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
1993 return rcu_needs_cpu_quick_check(cpu);
1994 }
1995 }
1996
1997 /* Check and update the rcu_dyntick_drain sequencing. */
1998 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1999 /* First time through, initialize the counter. */
2000 per_cpu(rcu_dyntick_drain, cpu) = RCU_NEEDS_CPU_FLUSHES;
2001 } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
2002 /* We have hit the limit, so time to give up. */
2003 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
2004 return rcu_needs_cpu_quick_check(cpu);
2005 }
2006
2007 /* Do one step pushing remaining RCU callbacks through. */
2008 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
2009 rcu_sched_qs(cpu);
2010 force_quiescent_state(&rcu_sched_state, 0);
2011 c = c || per_cpu(rcu_sched_data, cpu).nxtlist;
2012 }
2013 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
2014 rcu_bh_qs(cpu);
2015 force_quiescent_state(&rcu_bh_state, 0);
2016 c = c || per_cpu(rcu_bh_data, cpu).nxtlist;
2017 }
2018
2019 /* If RCU callbacks are still pending, RCU still needs this CPU. */
2020 if (c)
2021 invoke_rcu_core();
2022 return c;
2023 }
2024
2025 /*
2026 * Check to see if we need to continue a callback-flush operations to
2027 * allow the last CPU to enter dyntick-idle mode.
2028 */
2029 static void rcu_needs_cpu_flush(void)
2030 {
2031 int cpu = smp_processor_id();
2032 unsigned long flags;
2033
2034 if (per_cpu(rcu_dyntick_drain, cpu) <= 0)
2035 return;
2036 local_irq_save(flags);
2037 (void)rcu_needs_cpu(cpu);
2038 local_irq_restore(flags);
2039 }
2040
2041 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
This page took 0.073348 seconds and 6 git commands to generate.