Merge commit 'v2.6.26' into core/locking
[deliverable/linux.git] / kernel / relay.c
1 /*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relay.txt for an overview.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31 * close() vm_op implementation for relay file mapping.
32 */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 struct rchan_buf *buf = vma->vm_private_data;
36 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38
39 /*
40 * fault() vm_op implementation for relay file mapping.
41 */
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44 struct page *page;
45 struct rchan_buf *buf = vma->vm_private_data;
46 pgoff_t pgoff = vmf->pgoff;
47
48 if (!buf)
49 return VM_FAULT_OOM;
50
51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 if (!page)
53 return VM_FAULT_SIGBUS;
54 get_page(page);
55 vmf->page = page;
56
57 return 0;
58 }
59
60 /*
61 * vm_ops for relay file mappings.
62 */
63 static struct vm_operations_struct relay_file_mmap_ops = {
64 .fault = relay_buf_fault,
65 .close = relay_file_mmap_close,
66 };
67
68 /*
69 * allocate an array of pointers of struct page
70 */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 struct page **array;
74 size_t pa_size = n_pages * sizeof(struct page *);
75
76 if (pa_size > PAGE_SIZE) {
77 array = vmalloc(pa_size);
78 if (array)
79 memset(array, 0, pa_size);
80 } else {
81 array = kzalloc(pa_size, GFP_KERNEL);
82 }
83 return array;
84 }
85
86 /*
87 * free an array of pointers of struct page
88 */
89 static void relay_free_page_array(struct page **array)
90 {
91 if (is_vmalloc_addr(array))
92 vfree(array);
93 else
94 kfree(array);
95 }
96
97 /**
98 * relay_mmap_buf: - mmap channel buffer to process address space
99 * @buf: relay channel buffer
100 * @vma: vm_area_struct describing memory to be mapped
101 *
102 * Returns 0 if ok, negative on error
103 *
104 * Caller should already have grabbed mmap_sem.
105 */
106 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
107 {
108 unsigned long length = vma->vm_end - vma->vm_start;
109 struct file *filp = vma->vm_file;
110
111 if (!buf)
112 return -EBADF;
113
114 if (length != (unsigned long)buf->chan->alloc_size)
115 return -EINVAL;
116
117 vma->vm_ops = &relay_file_mmap_ops;
118 vma->vm_flags |= VM_DONTEXPAND;
119 vma->vm_private_data = buf;
120 buf->chan->cb->buf_mapped(buf, filp);
121
122 return 0;
123 }
124
125 /**
126 * relay_alloc_buf - allocate a channel buffer
127 * @buf: the buffer struct
128 * @size: total size of the buffer
129 *
130 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
131 * passed in size will get page aligned, if it isn't already.
132 */
133 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
134 {
135 void *mem;
136 unsigned int i, j, n_pages;
137
138 *size = PAGE_ALIGN(*size);
139 n_pages = *size >> PAGE_SHIFT;
140
141 buf->page_array = relay_alloc_page_array(n_pages);
142 if (!buf->page_array)
143 return NULL;
144
145 for (i = 0; i < n_pages; i++) {
146 buf->page_array[i] = alloc_page(GFP_KERNEL);
147 if (unlikely(!buf->page_array[i]))
148 goto depopulate;
149 set_page_private(buf->page_array[i], (unsigned long)buf);
150 }
151 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
152 if (!mem)
153 goto depopulate;
154
155 memset(mem, 0, *size);
156 buf->page_count = n_pages;
157 return mem;
158
159 depopulate:
160 for (j = 0; j < i; j++)
161 __free_page(buf->page_array[j]);
162 relay_free_page_array(buf->page_array);
163 return NULL;
164 }
165
166 /**
167 * relay_create_buf - allocate and initialize a channel buffer
168 * @chan: the relay channel
169 *
170 * Returns channel buffer if successful, %NULL otherwise.
171 */
172 static struct rchan_buf *relay_create_buf(struct rchan *chan)
173 {
174 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
175 if (!buf)
176 return NULL;
177
178 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
179 if (!buf->padding)
180 goto free_buf;
181
182 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
183 if (!buf->start)
184 goto free_buf;
185
186 buf->chan = chan;
187 kref_get(&buf->chan->kref);
188 return buf;
189
190 free_buf:
191 kfree(buf->padding);
192 kfree(buf);
193 return NULL;
194 }
195
196 /**
197 * relay_destroy_channel - free the channel struct
198 * @kref: target kernel reference that contains the relay channel
199 *
200 * Should only be called from kref_put().
201 */
202 static void relay_destroy_channel(struct kref *kref)
203 {
204 struct rchan *chan = container_of(kref, struct rchan, kref);
205 kfree(chan);
206 }
207
208 /**
209 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
210 * @buf: the buffer struct
211 */
212 static void relay_destroy_buf(struct rchan_buf *buf)
213 {
214 struct rchan *chan = buf->chan;
215 unsigned int i;
216
217 if (likely(buf->start)) {
218 vunmap(buf->start);
219 for (i = 0; i < buf->page_count; i++)
220 __free_page(buf->page_array[i]);
221 relay_free_page_array(buf->page_array);
222 }
223 chan->buf[buf->cpu] = NULL;
224 kfree(buf->padding);
225 kfree(buf);
226 kref_put(&chan->kref, relay_destroy_channel);
227 }
228
229 /**
230 * relay_remove_buf - remove a channel buffer
231 * @kref: target kernel reference that contains the relay buffer
232 *
233 * Removes the file from the fileystem, which also frees the
234 * rchan_buf_struct and the channel buffer. Should only be called from
235 * kref_put().
236 */
237 static void relay_remove_buf(struct kref *kref)
238 {
239 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
240 buf->chan->cb->remove_buf_file(buf->dentry);
241 relay_destroy_buf(buf);
242 }
243
244 /**
245 * relay_buf_empty - boolean, is the channel buffer empty?
246 * @buf: channel buffer
247 *
248 * Returns 1 if the buffer is empty, 0 otherwise.
249 */
250 static int relay_buf_empty(struct rchan_buf *buf)
251 {
252 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
253 }
254
255 /**
256 * relay_buf_full - boolean, is the channel buffer full?
257 * @buf: channel buffer
258 *
259 * Returns 1 if the buffer is full, 0 otherwise.
260 */
261 int relay_buf_full(struct rchan_buf *buf)
262 {
263 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
264 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
265 }
266 EXPORT_SYMBOL_GPL(relay_buf_full);
267
268 /*
269 * High-level relay kernel API and associated functions.
270 */
271
272 /*
273 * rchan_callback implementations defining default channel behavior. Used
274 * in place of corresponding NULL values in client callback struct.
275 */
276
277 /*
278 * subbuf_start() default callback. Does nothing.
279 */
280 static int subbuf_start_default_callback (struct rchan_buf *buf,
281 void *subbuf,
282 void *prev_subbuf,
283 size_t prev_padding)
284 {
285 if (relay_buf_full(buf))
286 return 0;
287
288 return 1;
289 }
290
291 /*
292 * buf_mapped() default callback. Does nothing.
293 */
294 static void buf_mapped_default_callback(struct rchan_buf *buf,
295 struct file *filp)
296 {
297 }
298
299 /*
300 * buf_unmapped() default callback. Does nothing.
301 */
302 static void buf_unmapped_default_callback(struct rchan_buf *buf,
303 struct file *filp)
304 {
305 }
306
307 /*
308 * create_buf_file_create() default callback. Does nothing.
309 */
310 static struct dentry *create_buf_file_default_callback(const char *filename,
311 struct dentry *parent,
312 int mode,
313 struct rchan_buf *buf,
314 int *is_global)
315 {
316 return NULL;
317 }
318
319 /*
320 * remove_buf_file() default callback. Does nothing.
321 */
322 static int remove_buf_file_default_callback(struct dentry *dentry)
323 {
324 return -EINVAL;
325 }
326
327 /* relay channel default callbacks */
328 static struct rchan_callbacks default_channel_callbacks = {
329 .subbuf_start = subbuf_start_default_callback,
330 .buf_mapped = buf_mapped_default_callback,
331 .buf_unmapped = buf_unmapped_default_callback,
332 .create_buf_file = create_buf_file_default_callback,
333 .remove_buf_file = remove_buf_file_default_callback,
334 };
335
336 /**
337 * wakeup_readers - wake up readers waiting on a channel
338 * @data: contains the channel buffer
339 *
340 * This is the timer function used to defer reader waking.
341 */
342 static void wakeup_readers(unsigned long data)
343 {
344 struct rchan_buf *buf = (struct rchan_buf *)data;
345 wake_up_interruptible(&buf->read_wait);
346 }
347
348 /**
349 * __relay_reset - reset a channel buffer
350 * @buf: the channel buffer
351 * @init: 1 if this is a first-time initialization
352 *
353 * See relay_reset() for description of effect.
354 */
355 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
356 {
357 size_t i;
358
359 if (init) {
360 init_waitqueue_head(&buf->read_wait);
361 kref_init(&buf->kref);
362 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
363 } else
364 del_timer_sync(&buf->timer);
365
366 buf->subbufs_produced = 0;
367 buf->subbufs_consumed = 0;
368 buf->bytes_consumed = 0;
369 buf->finalized = 0;
370 buf->data = buf->start;
371 buf->offset = 0;
372
373 for (i = 0; i < buf->chan->n_subbufs; i++)
374 buf->padding[i] = 0;
375
376 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
377 }
378
379 /**
380 * relay_reset - reset the channel
381 * @chan: the channel
382 *
383 * This has the effect of erasing all data from all channel buffers
384 * and restarting the channel in its initial state. The buffers
385 * are not freed, so any mappings are still in effect.
386 *
387 * NOTE. Care should be taken that the channel isn't actually
388 * being used by anything when this call is made.
389 */
390 void relay_reset(struct rchan *chan)
391 {
392 unsigned int i;
393
394 if (!chan)
395 return;
396
397 if (chan->is_global && chan->buf[0]) {
398 __relay_reset(chan->buf[0], 0);
399 return;
400 }
401
402 mutex_lock(&relay_channels_mutex);
403 for_each_online_cpu(i)
404 if (chan->buf[i])
405 __relay_reset(chan->buf[i], 0);
406 mutex_unlock(&relay_channels_mutex);
407 }
408 EXPORT_SYMBOL_GPL(relay_reset);
409
410 /*
411 * relay_open_buf - create a new relay channel buffer
412 *
413 * used by relay_open() and CPU hotplug.
414 */
415 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
416 {
417 struct rchan_buf *buf = NULL;
418 struct dentry *dentry;
419 char *tmpname;
420
421 if (chan->is_global)
422 return chan->buf[0];
423
424 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
425 if (!tmpname)
426 goto end;
427 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
428
429 buf = relay_create_buf(chan);
430 if (!buf)
431 goto free_name;
432
433 buf->cpu = cpu;
434 __relay_reset(buf, 1);
435
436 /* Create file in fs */
437 dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
438 buf, &chan->is_global);
439 if (!dentry)
440 goto free_buf;
441
442 buf->dentry = dentry;
443
444 if(chan->is_global) {
445 chan->buf[0] = buf;
446 buf->cpu = 0;
447 }
448
449 goto free_name;
450
451 free_buf:
452 relay_destroy_buf(buf);
453 buf = NULL;
454 free_name:
455 kfree(tmpname);
456 end:
457 return buf;
458 }
459
460 /**
461 * relay_close_buf - close a channel buffer
462 * @buf: channel buffer
463 *
464 * Marks the buffer finalized and restores the default callbacks.
465 * The channel buffer and channel buffer data structure are then freed
466 * automatically when the last reference is given up.
467 */
468 static void relay_close_buf(struct rchan_buf *buf)
469 {
470 buf->finalized = 1;
471 del_timer_sync(&buf->timer);
472 kref_put(&buf->kref, relay_remove_buf);
473 }
474
475 static void setup_callbacks(struct rchan *chan,
476 struct rchan_callbacks *cb)
477 {
478 if (!cb) {
479 chan->cb = &default_channel_callbacks;
480 return;
481 }
482
483 if (!cb->subbuf_start)
484 cb->subbuf_start = subbuf_start_default_callback;
485 if (!cb->buf_mapped)
486 cb->buf_mapped = buf_mapped_default_callback;
487 if (!cb->buf_unmapped)
488 cb->buf_unmapped = buf_unmapped_default_callback;
489 if (!cb->create_buf_file)
490 cb->create_buf_file = create_buf_file_default_callback;
491 if (!cb->remove_buf_file)
492 cb->remove_buf_file = remove_buf_file_default_callback;
493 chan->cb = cb;
494 }
495
496 /**
497 * relay_hotcpu_callback - CPU hotplug callback
498 * @nb: notifier block
499 * @action: hotplug action to take
500 * @hcpu: CPU number
501 *
502 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
503 */
504 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
505 unsigned long action,
506 void *hcpu)
507 {
508 unsigned int hotcpu = (unsigned long)hcpu;
509 struct rchan *chan;
510
511 switch(action) {
512 case CPU_UP_PREPARE:
513 case CPU_UP_PREPARE_FROZEN:
514 mutex_lock(&relay_channels_mutex);
515 list_for_each_entry(chan, &relay_channels, list) {
516 if (chan->buf[hotcpu])
517 continue;
518 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
519 if(!chan->buf[hotcpu]) {
520 printk(KERN_ERR
521 "relay_hotcpu_callback: cpu %d buffer "
522 "creation failed\n", hotcpu);
523 mutex_unlock(&relay_channels_mutex);
524 return NOTIFY_BAD;
525 }
526 }
527 mutex_unlock(&relay_channels_mutex);
528 break;
529 case CPU_DEAD:
530 case CPU_DEAD_FROZEN:
531 /* No need to flush the cpu : will be flushed upon
532 * final relay_flush() call. */
533 break;
534 }
535 return NOTIFY_OK;
536 }
537
538 /**
539 * relay_open - create a new relay channel
540 * @base_filename: base name of files to create
541 * @parent: dentry of parent directory, %NULL for root directory
542 * @subbuf_size: size of sub-buffers
543 * @n_subbufs: number of sub-buffers
544 * @cb: client callback functions
545 * @private_data: user-defined data
546 *
547 * Returns channel pointer if successful, %NULL otherwise.
548 *
549 * Creates a channel buffer for each cpu using the sizes and
550 * attributes specified. The created channel buffer files
551 * will be named base_filename0...base_filenameN-1. File
552 * permissions will be %S_IRUSR.
553 */
554 struct rchan *relay_open(const char *base_filename,
555 struct dentry *parent,
556 size_t subbuf_size,
557 size_t n_subbufs,
558 struct rchan_callbacks *cb,
559 void *private_data)
560 {
561 unsigned int i;
562 struct rchan *chan;
563 if (!base_filename)
564 return NULL;
565
566 if (!(subbuf_size && n_subbufs))
567 return NULL;
568
569 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
570 if (!chan)
571 return NULL;
572
573 chan->version = RELAYFS_CHANNEL_VERSION;
574 chan->n_subbufs = n_subbufs;
575 chan->subbuf_size = subbuf_size;
576 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
577 chan->parent = parent;
578 chan->private_data = private_data;
579 strlcpy(chan->base_filename, base_filename, NAME_MAX);
580 setup_callbacks(chan, cb);
581 kref_init(&chan->kref);
582
583 mutex_lock(&relay_channels_mutex);
584 for_each_online_cpu(i) {
585 chan->buf[i] = relay_open_buf(chan, i);
586 if (!chan->buf[i])
587 goto free_bufs;
588 }
589 list_add(&chan->list, &relay_channels);
590 mutex_unlock(&relay_channels_mutex);
591
592 return chan;
593
594 free_bufs:
595 for_each_online_cpu(i) {
596 if (!chan->buf[i])
597 break;
598 relay_close_buf(chan->buf[i]);
599 }
600
601 kref_put(&chan->kref, relay_destroy_channel);
602 mutex_unlock(&relay_channels_mutex);
603 return NULL;
604 }
605 EXPORT_SYMBOL_GPL(relay_open);
606
607 /**
608 * relay_switch_subbuf - switch to a new sub-buffer
609 * @buf: channel buffer
610 * @length: size of current event
611 *
612 * Returns either the length passed in or 0 if full.
613 *
614 * Performs sub-buffer-switch tasks such as invoking callbacks,
615 * updating padding counts, waking up readers, etc.
616 */
617 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
618 {
619 void *old, *new;
620 size_t old_subbuf, new_subbuf;
621
622 if (unlikely(length > buf->chan->subbuf_size))
623 goto toobig;
624
625 if (buf->offset != buf->chan->subbuf_size + 1) {
626 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
627 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
628 buf->padding[old_subbuf] = buf->prev_padding;
629 buf->subbufs_produced++;
630 buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
631 buf->padding[old_subbuf];
632 smp_mb();
633 if (waitqueue_active(&buf->read_wait))
634 /*
635 * Calling wake_up_interruptible() from here
636 * will deadlock if we happen to be logging
637 * from the scheduler (trying to re-grab
638 * rq->lock), so defer it.
639 */
640 __mod_timer(&buf->timer, jiffies + 1);
641 }
642
643 old = buf->data;
644 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
645 new = buf->start + new_subbuf * buf->chan->subbuf_size;
646 buf->offset = 0;
647 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
648 buf->offset = buf->chan->subbuf_size + 1;
649 return 0;
650 }
651 buf->data = new;
652 buf->padding[new_subbuf] = 0;
653
654 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
655 goto toobig;
656
657 return length;
658
659 toobig:
660 buf->chan->last_toobig = length;
661 return 0;
662 }
663 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
664
665 /**
666 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
667 * @chan: the channel
668 * @cpu: the cpu associated with the channel buffer to update
669 * @subbufs_consumed: number of sub-buffers to add to current buf's count
670 *
671 * Adds to the channel buffer's consumed sub-buffer count.
672 * subbufs_consumed should be the number of sub-buffers newly consumed,
673 * not the total consumed.
674 *
675 * NOTE. Kernel clients don't need to call this function if the channel
676 * mode is 'overwrite'.
677 */
678 void relay_subbufs_consumed(struct rchan *chan,
679 unsigned int cpu,
680 size_t subbufs_consumed)
681 {
682 struct rchan_buf *buf;
683
684 if (!chan)
685 return;
686
687 if (cpu >= NR_CPUS || !chan->buf[cpu])
688 return;
689
690 buf = chan->buf[cpu];
691 buf->subbufs_consumed += subbufs_consumed;
692 if (buf->subbufs_consumed > buf->subbufs_produced)
693 buf->subbufs_consumed = buf->subbufs_produced;
694 }
695 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
696
697 /**
698 * relay_close - close the channel
699 * @chan: the channel
700 *
701 * Closes all channel buffers and frees the channel.
702 */
703 void relay_close(struct rchan *chan)
704 {
705 unsigned int i;
706
707 if (!chan)
708 return;
709
710 mutex_lock(&relay_channels_mutex);
711 if (chan->is_global && chan->buf[0])
712 relay_close_buf(chan->buf[0]);
713 else
714 for_each_possible_cpu(i)
715 if (chan->buf[i])
716 relay_close_buf(chan->buf[i]);
717
718 if (chan->last_toobig)
719 printk(KERN_WARNING "relay: one or more items not logged "
720 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
721 chan->last_toobig, chan->subbuf_size);
722
723 list_del(&chan->list);
724 kref_put(&chan->kref, relay_destroy_channel);
725 mutex_unlock(&relay_channels_mutex);
726 }
727 EXPORT_SYMBOL_GPL(relay_close);
728
729 /**
730 * relay_flush - close the channel
731 * @chan: the channel
732 *
733 * Flushes all channel buffers, i.e. forces buffer switch.
734 */
735 void relay_flush(struct rchan *chan)
736 {
737 unsigned int i;
738
739 if (!chan)
740 return;
741
742 if (chan->is_global && chan->buf[0]) {
743 relay_switch_subbuf(chan->buf[0], 0);
744 return;
745 }
746
747 mutex_lock(&relay_channels_mutex);
748 for_each_possible_cpu(i)
749 if (chan->buf[i])
750 relay_switch_subbuf(chan->buf[i], 0);
751 mutex_unlock(&relay_channels_mutex);
752 }
753 EXPORT_SYMBOL_GPL(relay_flush);
754
755 /**
756 * relay_file_open - open file op for relay files
757 * @inode: the inode
758 * @filp: the file
759 *
760 * Increments the channel buffer refcount.
761 */
762 static int relay_file_open(struct inode *inode, struct file *filp)
763 {
764 struct rchan_buf *buf = inode->i_private;
765 kref_get(&buf->kref);
766 filp->private_data = buf;
767
768 return nonseekable_open(inode, filp);
769 }
770
771 /**
772 * relay_file_mmap - mmap file op for relay files
773 * @filp: the file
774 * @vma: the vma describing what to map
775 *
776 * Calls upon relay_mmap_buf() to map the file into user space.
777 */
778 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
779 {
780 struct rchan_buf *buf = filp->private_data;
781 return relay_mmap_buf(buf, vma);
782 }
783
784 /**
785 * relay_file_poll - poll file op for relay files
786 * @filp: the file
787 * @wait: poll table
788 *
789 * Poll implemention.
790 */
791 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
792 {
793 unsigned int mask = 0;
794 struct rchan_buf *buf = filp->private_data;
795
796 if (buf->finalized)
797 return POLLERR;
798
799 if (filp->f_mode & FMODE_READ) {
800 poll_wait(filp, &buf->read_wait, wait);
801 if (!relay_buf_empty(buf))
802 mask |= POLLIN | POLLRDNORM;
803 }
804
805 return mask;
806 }
807
808 /**
809 * relay_file_release - release file op for relay files
810 * @inode: the inode
811 * @filp: the file
812 *
813 * Decrements the channel refcount, as the filesystem is
814 * no longer using it.
815 */
816 static int relay_file_release(struct inode *inode, struct file *filp)
817 {
818 struct rchan_buf *buf = filp->private_data;
819 kref_put(&buf->kref, relay_remove_buf);
820
821 return 0;
822 }
823
824 /*
825 * relay_file_read_consume - update the consumed count for the buffer
826 */
827 static void relay_file_read_consume(struct rchan_buf *buf,
828 size_t read_pos,
829 size_t bytes_consumed)
830 {
831 size_t subbuf_size = buf->chan->subbuf_size;
832 size_t n_subbufs = buf->chan->n_subbufs;
833 size_t read_subbuf;
834
835 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
836 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
837 buf->bytes_consumed = 0;
838 }
839
840 buf->bytes_consumed += bytes_consumed;
841 if (!read_pos)
842 read_subbuf = buf->subbufs_consumed % n_subbufs;
843 else
844 read_subbuf = read_pos / buf->chan->subbuf_size;
845 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
846 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
847 (buf->offset == subbuf_size))
848 return;
849 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
850 buf->bytes_consumed = 0;
851 }
852 }
853
854 /*
855 * relay_file_read_avail - boolean, are there unconsumed bytes available?
856 */
857 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
858 {
859 size_t subbuf_size = buf->chan->subbuf_size;
860 size_t n_subbufs = buf->chan->n_subbufs;
861 size_t produced = buf->subbufs_produced;
862 size_t consumed = buf->subbufs_consumed;
863
864 relay_file_read_consume(buf, read_pos, 0);
865
866 if (unlikely(buf->offset > subbuf_size)) {
867 if (produced == consumed)
868 return 0;
869 return 1;
870 }
871
872 if (unlikely(produced - consumed >= n_subbufs)) {
873 consumed = produced - n_subbufs + 1;
874 buf->subbufs_consumed = consumed;
875 buf->bytes_consumed = 0;
876 }
877
878 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
879 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
880
881 if (consumed > produced)
882 produced += n_subbufs * subbuf_size;
883
884 if (consumed == produced)
885 return 0;
886
887 return 1;
888 }
889
890 /**
891 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
892 * @read_pos: file read position
893 * @buf: relay channel buffer
894 */
895 static size_t relay_file_read_subbuf_avail(size_t read_pos,
896 struct rchan_buf *buf)
897 {
898 size_t padding, avail = 0;
899 size_t read_subbuf, read_offset, write_subbuf, write_offset;
900 size_t subbuf_size = buf->chan->subbuf_size;
901
902 write_subbuf = (buf->data - buf->start) / subbuf_size;
903 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
904 read_subbuf = read_pos / subbuf_size;
905 read_offset = read_pos % subbuf_size;
906 padding = buf->padding[read_subbuf];
907
908 if (read_subbuf == write_subbuf) {
909 if (read_offset + padding < write_offset)
910 avail = write_offset - (read_offset + padding);
911 } else
912 avail = (subbuf_size - padding) - read_offset;
913
914 return avail;
915 }
916
917 /**
918 * relay_file_read_start_pos - find the first available byte to read
919 * @read_pos: file read position
920 * @buf: relay channel buffer
921 *
922 * If the @read_pos is in the middle of padding, return the
923 * position of the first actually available byte, otherwise
924 * return the original value.
925 */
926 static size_t relay_file_read_start_pos(size_t read_pos,
927 struct rchan_buf *buf)
928 {
929 size_t read_subbuf, padding, padding_start, padding_end;
930 size_t subbuf_size = buf->chan->subbuf_size;
931 size_t n_subbufs = buf->chan->n_subbufs;
932 size_t consumed = buf->subbufs_consumed % n_subbufs;
933
934 if (!read_pos)
935 read_pos = consumed * subbuf_size + buf->bytes_consumed;
936 read_subbuf = read_pos / subbuf_size;
937 padding = buf->padding[read_subbuf];
938 padding_start = (read_subbuf + 1) * subbuf_size - padding;
939 padding_end = (read_subbuf + 1) * subbuf_size;
940 if (read_pos >= padding_start && read_pos < padding_end) {
941 read_subbuf = (read_subbuf + 1) % n_subbufs;
942 read_pos = read_subbuf * subbuf_size;
943 }
944
945 return read_pos;
946 }
947
948 /**
949 * relay_file_read_end_pos - return the new read position
950 * @read_pos: file read position
951 * @buf: relay channel buffer
952 * @count: number of bytes to be read
953 */
954 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
955 size_t read_pos,
956 size_t count)
957 {
958 size_t read_subbuf, padding, end_pos;
959 size_t subbuf_size = buf->chan->subbuf_size;
960 size_t n_subbufs = buf->chan->n_subbufs;
961
962 read_subbuf = read_pos / subbuf_size;
963 padding = buf->padding[read_subbuf];
964 if (read_pos % subbuf_size + count + padding == subbuf_size)
965 end_pos = (read_subbuf + 1) * subbuf_size;
966 else
967 end_pos = read_pos + count;
968 if (end_pos >= subbuf_size * n_subbufs)
969 end_pos = 0;
970
971 return end_pos;
972 }
973
974 /*
975 * subbuf_read_actor - read up to one subbuf's worth of data
976 */
977 static int subbuf_read_actor(size_t read_start,
978 struct rchan_buf *buf,
979 size_t avail,
980 read_descriptor_t *desc,
981 read_actor_t actor)
982 {
983 void *from;
984 int ret = 0;
985
986 from = buf->start + read_start;
987 ret = avail;
988 if (copy_to_user(desc->arg.buf, from, avail)) {
989 desc->error = -EFAULT;
990 ret = 0;
991 }
992 desc->arg.data += ret;
993 desc->written += ret;
994 desc->count -= ret;
995
996 return ret;
997 }
998
999 typedef int (*subbuf_actor_t) (size_t read_start,
1000 struct rchan_buf *buf,
1001 size_t avail,
1002 read_descriptor_t *desc,
1003 read_actor_t actor);
1004
1005 /*
1006 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1007 */
1008 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1009 subbuf_actor_t subbuf_actor,
1010 read_actor_t actor,
1011 read_descriptor_t *desc)
1012 {
1013 struct rchan_buf *buf = filp->private_data;
1014 size_t read_start, avail;
1015 int ret;
1016
1017 if (!desc->count)
1018 return 0;
1019
1020 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1021 do {
1022 if (!relay_file_read_avail(buf, *ppos))
1023 break;
1024
1025 read_start = relay_file_read_start_pos(*ppos, buf);
1026 avail = relay_file_read_subbuf_avail(read_start, buf);
1027 if (!avail)
1028 break;
1029
1030 avail = min(desc->count, avail);
1031 ret = subbuf_actor(read_start, buf, avail, desc, actor);
1032 if (desc->error < 0)
1033 break;
1034
1035 if (ret) {
1036 relay_file_read_consume(buf, read_start, ret);
1037 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1038 }
1039 } while (desc->count && ret);
1040 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1041
1042 return desc->written;
1043 }
1044
1045 static ssize_t relay_file_read(struct file *filp,
1046 char __user *buffer,
1047 size_t count,
1048 loff_t *ppos)
1049 {
1050 read_descriptor_t desc;
1051 desc.written = 0;
1052 desc.count = count;
1053 desc.arg.buf = buffer;
1054 desc.error = 0;
1055 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1056 NULL, &desc);
1057 }
1058
1059 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1060 {
1061 rbuf->bytes_consumed += bytes_consumed;
1062
1063 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1064 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1065 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1066 }
1067 }
1068
1069 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1070 struct pipe_buffer *buf)
1071 {
1072 struct rchan_buf *rbuf;
1073
1074 rbuf = (struct rchan_buf *)page_private(buf->page);
1075 relay_consume_bytes(rbuf, buf->private);
1076 }
1077
1078 static struct pipe_buf_operations relay_pipe_buf_ops = {
1079 .can_merge = 0,
1080 .map = generic_pipe_buf_map,
1081 .unmap = generic_pipe_buf_unmap,
1082 .confirm = generic_pipe_buf_confirm,
1083 .release = relay_pipe_buf_release,
1084 .steal = generic_pipe_buf_steal,
1085 .get = generic_pipe_buf_get,
1086 };
1087
1088 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1089 {
1090 }
1091
1092 /*
1093 * subbuf_splice_actor - splice up to one subbuf's worth of data
1094 */
1095 static int subbuf_splice_actor(struct file *in,
1096 loff_t *ppos,
1097 struct pipe_inode_info *pipe,
1098 size_t len,
1099 unsigned int flags,
1100 int *nonpad_ret)
1101 {
1102 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages, ret;
1103 struct rchan_buf *rbuf = in->private_data;
1104 unsigned int subbuf_size = rbuf->chan->subbuf_size;
1105 uint64_t pos = (uint64_t) *ppos;
1106 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1107 size_t read_start = (size_t) do_div(pos, alloc_size);
1108 size_t read_subbuf = read_start / subbuf_size;
1109 size_t padding = rbuf->padding[read_subbuf];
1110 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1111 struct page *pages[PIPE_BUFFERS];
1112 struct partial_page partial[PIPE_BUFFERS];
1113 struct splice_pipe_desc spd = {
1114 .pages = pages,
1115 .nr_pages = 0,
1116 .partial = partial,
1117 .flags = flags,
1118 .ops = &relay_pipe_buf_ops,
1119 .spd_release = relay_page_release,
1120 };
1121
1122 if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1123 return 0;
1124
1125 /*
1126 * Adjust read len, if longer than what is available
1127 */
1128 if (len > (subbuf_size - read_start % subbuf_size))
1129 len = subbuf_size - read_start % subbuf_size;
1130
1131 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1132 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1133 poff = read_start & ~PAGE_MASK;
1134 nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS);
1135
1136 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1137 unsigned int this_len, this_end, private;
1138 unsigned int cur_pos = read_start + total_len;
1139
1140 if (!len)
1141 break;
1142
1143 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1144 private = this_len;
1145
1146 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1147 spd.partial[spd.nr_pages].offset = poff;
1148
1149 this_end = cur_pos + this_len;
1150 if (this_end >= nonpad_end) {
1151 this_len = nonpad_end - cur_pos;
1152 private = this_len + padding;
1153 }
1154 spd.partial[spd.nr_pages].len = this_len;
1155 spd.partial[spd.nr_pages].private = private;
1156
1157 len -= this_len;
1158 total_len += this_len;
1159 poff = 0;
1160 pidx = (pidx + 1) % subbuf_pages;
1161
1162 if (this_end >= nonpad_end) {
1163 spd.nr_pages++;
1164 break;
1165 }
1166 }
1167
1168 if (!spd.nr_pages)
1169 return 0;
1170
1171 ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1172 if (ret < 0 || ret < total_len)
1173 return ret;
1174
1175 if (read_start + ret == nonpad_end)
1176 ret += padding;
1177
1178 return ret;
1179 }
1180
1181 static ssize_t relay_file_splice_read(struct file *in,
1182 loff_t *ppos,
1183 struct pipe_inode_info *pipe,
1184 size_t len,
1185 unsigned int flags)
1186 {
1187 ssize_t spliced;
1188 int ret;
1189 int nonpad_ret = 0;
1190
1191 ret = 0;
1192 spliced = 0;
1193
1194 while (len && !spliced) {
1195 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1196 if (ret < 0)
1197 break;
1198 else if (!ret) {
1199 if (spliced)
1200 break;
1201 if (flags & SPLICE_F_NONBLOCK) {
1202 ret = -EAGAIN;
1203 break;
1204 }
1205 }
1206
1207 *ppos += ret;
1208 if (ret > len)
1209 len = 0;
1210 else
1211 len -= ret;
1212 spliced += nonpad_ret;
1213 nonpad_ret = 0;
1214 }
1215
1216 if (spliced)
1217 return spliced;
1218
1219 return ret;
1220 }
1221
1222 const struct file_operations relay_file_operations = {
1223 .open = relay_file_open,
1224 .poll = relay_file_poll,
1225 .mmap = relay_file_mmap,
1226 .read = relay_file_read,
1227 .llseek = no_llseek,
1228 .release = relay_file_release,
1229 .splice_read = relay_file_splice_read,
1230 };
1231 EXPORT_SYMBOL_GPL(relay_file_operations);
1232
1233 static __init int relay_init(void)
1234 {
1235
1236 hotcpu_notifier(relay_hotcpu_callback, 0);
1237 return 0;
1238 }
1239
1240 module_init(relay_init);
This page took 0.078329 seconds and 6 git commands to generate.