Merge branch 'stacking-fixes' (vfs stacking fixes from Jann)
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 /*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
133 /*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
141 /*
142 * period over which we measure -rt task cpu usage in us.
143 * default: 1s
144 */
145 unsigned int sysctl_sched_rt_period = 1000000;
146
147 __read_mostly int scheduler_running;
148
149 /*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153 int sysctl_sched_rt_runtime = 950000;
154
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157
158 /*
159 * this_rq_lock - lock this runqueue and disable interrupts.
160 */
161 static struct rq *this_rq_lock(void)
162 __acquires(rq->lock)
163 {
164 struct rq *rq;
165
166 local_irq_disable();
167 rq = this_rq();
168 raw_spin_lock(&rq->lock);
169
170 return rq;
171 }
172
173 /*
174 * __task_rq_lock - lock the rq @p resides on.
175 */
176 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
177 __acquires(rq->lock)
178 {
179 struct rq *rq;
180
181 lockdep_assert_held(&p->pi_lock);
182
183 for (;;) {
184 rq = task_rq(p);
185 raw_spin_lock(&rq->lock);
186 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
187 rf->cookie = lockdep_pin_lock(&rq->lock);
188 return rq;
189 }
190 raw_spin_unlock(&rq->lock);
191
192 while (unlikely(task_on_rq_migrating(p)))
193 cpu_relax();
194 }
195 }
196
197 /*
198 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
199 */
200 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
201 __acquires(p->pi_lock)
202 __acquires(rq->lock)
203 {
204 struct rq *rq;
205
206 for (;;) {
207 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
208 rq = task_rq(p);
209 raw_spin_lock(&rq->lock);
210 /*
211 * move_queued_task() task_rq_lock()
212 *
213 * ACQUIRE (rq->lock)
214 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
215 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
216 * [S] ->cpu = new_cpu [L] task_rq()
217 * [L] ->on_rq
218 * RELEASE (rq->lock)
219 *
220 * If we observe the old cpu in task_rq_lock, the acquire of
221 * the old rq->lock will fully serialize against the stores.
222 *
223 * If we observe the new cpu in task_rq_lock, the acquire will
224 * pair with the WMB to ensure we must then also see migrating.
225 */
226 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
227 rf->cookie = lockdep_pin_lock(&rq->lock);
228 return rq;
229 }
230 raw_spin_unlock(&rq->lock);
231 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
232
233 while (unlikely(task_on_rq_migrating(p)))
234 cpu_relax();
235 }
236 }
237
238 #ifdef CONFIG_SCHED_HRTICK
239 /*
240 * Use HR-timers to deliver accurate preemption points.
241 */
242
243 static void hrtick_clear(struct rq *rq)
244 {
245 if (hrtimer_active(&rq->hrtick_timer))
246 hrtimer_cancel(&rq->hrtick_timer);
247 }
248
249 /*
250 * High-resolution timer tick.
251 * Runs from hardirq context with interrupts disabled.
252 */
253 static enum hrtimer_restart hrtick(struct hrtimer *timer)
254 {
255 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256
257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258
259 raw_spin_lock(&rq->lock);
260 update_rq_clock(rq);
261 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262 raw_spin_unlock(&rq->lock);
263
264 return HRTIMER_NORESTART;
265 }
266
267 #ifdef CONFIG_SMP
268
269 static void __hrtick_restart(struct rq *rq)
270 {
271 struct hrtimer *timer = &rq->hrtick_timer;
272
273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275
276 /*
277 * called from hardirq (IPI) context
278 */
279 static void __hrtick_start(void *arg)
280 {
281 struct rq *rq = arg;
282
283 raw_spin_lock(&rq->lock);
284 __hrtick_restart(rq);
285 rq->hrtick_csd_pending = 0;
286 raw_spin_unlock(&rq->lock);
287 }
288
289 /*
290 * Called to set the hrtick timer state.
291 *
292 * called with rq->lock held and irqs disabled
293 */
294 void hrtick_start(struct rq *rq, u64 delay)
295 {
296 struct hrtimer *timer = &rq->hrtick_timer;
297 ktime_t time;
298 s64 delta;
299
300 /*
301 * Don't schedule slices shorter than 10000ns, that just
302 * doesn't make sense and can cause timer DoS.
303 */
304 delta = max_t(s64, delay, 10000LL);
305 time = ktime_add_ns(timer->base->get_time(), delta);
306
307 hrtimer_set_expires(timer, time);
308
309 if (rq == this_rq()) {
310 __hrtick_restart(rq);
311 } else if (!rq->hrtick_csd_pending) {
312 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313 rq->hrtick_csd_pending = 1;
314 }
315 }
316
317 #else
318 /*
319 * Called to set the hrtick timer state.
320 *
321 * called with rq->lock held and irqs disabled
322 */
323 void hrtick_start(struct rq *rq, u64 delay)
324 {
325 /*
326 * Don't schedule slices shorter than 10000ns, that just
327 * doesn't make sense. Rely on vruntime for fairness.
328 */
329 delay = max_t(u64, delay, 10000LL);
330 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331 HRTIMER_MODE_REL_PINNED);
332 }
333 #endif /* CONFIG_SMP */
334
335 static void init_rq_hrtick(struct rq *rq)
336 {
337 #ifdef CONFIG_SMP
338 rq->hrtick_csd_pending = 0;
339
340 rq->hrtick_csd.flags = 0;
341 rq->hrtick_csd.func = __hrtick_start;
342 rq->hrtick_csd.info = rq;
343 #endif
344
345 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346 rq->hrtick_timer.function = hrtick;
347 }
348 #else /* CONFIG_SCHED_HRTICK */
349 static inline void hrtick_clear(struct rq *rq)
350 {
351 }
352
353 static inline void init_rq_hrtick(struct rq *rq)
354 {
355 }
356 #endif /* CONFIG_SCHED_HRTICK */
357
358 /*
359 * cmpxchg based fetch_or, macro so it works for different integer types
360 */
361 #define fetch_or(ptr, mask) \
362 ({ \
363 typeof(ptr) _ptr = (ptr); \
364 typeof(mask) _mask = (mask); \
365 typeof(*_ptr) _old, _val = *_ptr; \
366 \
367 for (;;) { \
368 _old = cmpxchg(_ptr, _val, _val | _mask); \
369 if (_old == _val) \
370 break; \
371 _val = _old; \
372 } \
373 _old; \
374 })
375
376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 /*
378 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379 * this avoids any races wrt polling state changes and thereby avoids
380 * spurious IPIs.
381 */
382 static bool set_nr_and_not_polling(struct task_struct *p)
383 {
384 struct thread_info *ti = task_thread_info(p);
385 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386 }
387
388 /*
389 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390 *
391 * If this returns true, then the idle task promises to call
392 * sched_ttwu_pending() and reschedule soon.
393 */
394 static bool set_nr_if_polling(struct task_struct *p)
395 {
396 struct thread_info *ti = task_thread_info(p);
397 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
398
399 for (;;) {
400 if (!(val & _TIF_POLLING_NRFLAG))
401 return false;
402 if (val & _TIF_NEED_RESCHED)
403 return true;
404 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405 if (old == val)
406 break;
407 val = old;
408 }
409 return true;
410 }
411
412 #else
413 static bool set_nr_and_not_polling(struct task_struct *p)
414 {
415 set_tsk_need_resched(p);
416 return true;
417 }
418
419 #ifdef CONFIG_SMP
420 static bool set_nr_if_polling(struct task_struct *p)
421 {
422 return false;
423 }
424 #endif
425 #endif
426
427 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428 {
429 struct wake_q_node *node = &task->wake_q;
430
431 /*
432 * Atomically grab the task, if ->wake_q is !nil already it means
433 * its already queued (either by us or someone else) and will get the
434 * wakeup due to that.
435 *
436 * This cmpxchg() implies a full barrier, which pairs with the write
437 * barrier implied by the wakeup in wake_up_q().
438 */
439 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
440 return;
441
442 get_task_struct(task);
443
444 /*
445 * The head is context local, there can be no concurrency.
446 */
447 *head->lastp = node;
448 head->lastp = &node->next;
449 }
450
451 void wake_up_q(struct wake_q_head *head)
452 {
453 struct wake_q_node *node = head->first;
454
455 while (node != WAKE_Q_TAIL) {
456 struct task_struct *task;
457
458 task = container_of(node, struct task_struct, wake_q);
459 BUG_ON(!task);
460 /* task can safely be re-inserted now */
461 node = node->next;
462 task->wake_q.next = NULL;
463
464 /*
465 * wake_up_process() implies a wmb() to pair with the queueing
466 * in wake_q_add() so as not to miss wakeups.
467 */
468 wake_up_process(task);
469 put_task_struct(task);
470 }
471 }
472
473 /*
474 * resched_curr - mark rq's current task 'to be rescheduled now'.
475 *
476 * On UP this means the setting of the need_resched flag, on SMP it
477 * might also involve a cross-CPU call to trigger the scheduler on
478 * the target CPU.
479 */
480 void resched_curr(struct rq *rq)
481 {
482 struct task_struct *curr = rq->curr;
483 int cpu;
484
485 lockdep_assert_held(&rq->lock);
486
487 if (test_tsk_need_resched(curr))
488 return;
489
490 cpu = cpu_of(rq);
491
492 if (cpu == smp_processor_id()) {
493 set_tsk_need_resched(curr);
494 set_preempt_need_resched();
495 return;
496 }
497
498 if (set_nr_and_not_polling(curr))
499 smp_send_reschedule(cpu);
500 else
501 trace_sched_wake_idle_without_ipi(cpu);
502 }
503
504 void resched_cpu(int cpu)
505 {
506 struct rq *rq = cpu_rq(cpu);
507 unsigned long flags;
508
509 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
510 return;
511 resched_curr(rq);
512 raw_spin_unlock_irqrestore(&rq->lock, flags);
513 }
514
515 #ifdef CONFIG_SMP
516 #ifdef CONFIG_NO_HZ_COMMON
517 /*
518 * In the semi idle case, use the nearest busy cpu for migrating timers
519 * from an idle cpu. This is good for power-savings.
520 *
521 * We don't do similar optimization for completely idle system, as
522 * selecting an idle cpu will add more delays to the timers than intended
523 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
524 */
525 int get_nohz_timer_target(void)
526 {
527 int i, cpu = smp_processor_id();
528 struct sched_domain *sd;
529
530 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
531 return cpu;
532
533 rcu_read_lock();
534 for_each_domain(cpu, sd) {
535 for_each_cpu(i, sched_domain_span(sd)) {
536 if (cpu == i)
537 continue;
538
539 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
540 cpu = i;
541 goto unlock;
542 }
543 }
544 }
545
546 if (!is_housekeeping_cpu(cpu))
547 cpu = housekeeping_any_cpu();
548 unlock:
549 rcu_read_unlock();
550 return cpu;
551 }
552 /*
553 * When add_timer_on() enqueues a timer into the timer wheel of an
554 * idle CPU then this timer might expire before the next timer event
555 * which is scheduled to wake up that CPU. In case of a completely
556 * idle system the next event might even be infinite time into the
557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558 * leaves the inner idle loop so the newly added timer is taken into
559 * account when the CPU goes back to idle and evaluates the timer
560 * wheel for the next timer event.
561 */
562 static void wake_up_idle_cpu(int cpu)
563 {
564 struct rq *rq = cpu_rq(cpu);
565
566 if (cpu == smp_processor_id())
567 return;
568
569 if (set_nr_and_not_polling(rq->idle))
570 smp_send_reschedule(cpu);
571 else
572 trace_sched_wake_idle_without_ipi(cpu);
573 }
574
575 static bool wake_up_full_nohz_cpu(int cpu)
576 {
577 /*
578 * We just need the target to call irq_exit() and re-evaluate
579 * the next tick. The nohz full kick at least implies that.
580 * If needed we can still optimize that later with an
581 * empty IRQ.
582 */
583 if (tick_nohz_full_cpu(cpu)) {
584 if (cpu != smp_processor_id() ||
585 tick_nohz_tick_stopped())
586 tick_nohz_full_kick_cpu(cpu);
587 return true;
588 }
589
590 return false;
591 }
592
593 void wake_up_nohz_cpu(int cpu)
594 {
595 if (!wake_up_full_nohz_cpu(cpu))
596 wake_up_idle_cpu(cpu);
597 }
598
599 static inline bool got_nohz_idle_kick(void)
600 {
601 int cpu = smp_processor_id();
602
603 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
604 return false;
605
606 if (idle_cpu(cpu) && !need_resched())
607 return true;
608
609 /*
610 * We can't run Idle Load Balance on this CPU for this time so we
611 * cancel it and clear NOHZ_BALANCE_KICK
612 */
613 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
614 return false;
615 }
616
617 #else /* CONFIG_NO_HZ_COMMON */
618
619 static inline bool got_nohz_idle_kick(void)
620 {
621 return false;
622 }
623
624 #endif /* CONFIG_NO_HZ_COMMON */
625
626 #ifdef CONFIG_NO_HZ_FULL
627 bool sched_can_stop_tick(struct rq *rq)
628 {
629 int fifo_nr_running;
630
631 /* Deadline tasks, even if single, need the tick */
632 if (rq->dl.dl_nr_running)
633 return false;
634
635 /*
636 * If there are more than one RR tasks, we need the tick to effect the
637 * actual RR behaviour.
638 */
639 if (rq->rt.rr_nr_running) {
640 if (rq->rt.rr_nr_running == 1)
641 return true;
642 else
643 return false;
644 }
645
646 /*
647 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
648 * forced preemption between FIFO tasks.
649 */
650 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
651 if (fifo_nr_running)
652 return true;
653
654 /*
655 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
656 * if there's more than one we need the tick for involuntary
657 * preemption.
658 */
659 if (rq->nr_running > 1)
660 return false;
661
662 return true;
663 }
664 #endif /* CONFIG_NO_HZ_FULL */
665
666 void sched_avg_update(struct rq *rq)
667 {
668 s64 period = sched_avg_period();
669
670 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
671 /*
672 * Inline assembly required to prevent the compiler
673 * optimising this loop into a divmod call.
674 * See __iter_div_u64_rem() for another example of this.
675 */
676 asm("" : "+rm" (rq->age_stamp));
677 rq->age_stamp += period;
678 rq->rt_avg /= 2;
679 }
680 }
681
682 #endif /* CONFIG_SMP */
683
684 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
685 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
686 /*
687 * Iterate task_group tree rooted at *from, calling @down when first entering a
688 * node and @up when leaving it for the final time.
689 *
690 * Caller must hold rcu_lock or sufficient equivalent.
691 */
692 int walk_tg_tree_from(struct task_group *from,
693 tg_visitor down, tg_visitor up, void *data)
694 {
695 struct task_group *parent, *child;
696 int ret;
697
698 parent = from;
699
700 down:
701 ret = (*down)(parent, data);
702 if (ret)
703 goto out;
704 list_for_each_entry_rcu(child, &parent->children, siblings) {
705 parent = child;
706 goto down;
707
708 up:
709 continue;
710 }
711 ret = (*up)(parent, data);
712 if (ret || parent == from)
713 goto out;
714
715 child = parent;
716 parent = parent->parent;
717 if (parent)
718 goto up;
719 out:
720 return ret;
721 }
722
723 int tg_nop(struct task_group *tg, void *data)
724 {
725 return 0;
726 }
727 #endif
728
729 static void set_load_weight(struct task_struct *p)
730 {
731 int prio = p->static_prio - MAX_RT_PRIO;
732 struct load_weight *load = &p->se.load;
733
734 /*
735 * SCHED_IDLE tasks get minimal weight:
736 */
737 if (idle_policy(p->policy)) {
738 load->weight = scale_load(WEIGHT_IDLEPRIO);
739 load->inv_weight = WMULT_IDLEPRIO;
740 return;
741 }
742
743 load->weight = scale_load(sched_prio_to_weight[prio]);
744 load->inv_weight = sched_prio_to_wmult[prio];
745 }
746
747 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
748 {
749 update_rq_clock(rq);
750 if (!(flags & ENQUEUE_RESTORE))
751 sched_info_queued(rq, p);
752 p->sched_class->enqueue_task(rq, p, flags);
753 }
754
755 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 update_rq_clock(rq);
758 if (!(flags & DEQUEUE_SAVE))
759 sched_info_dequeued(rq, p);
760 p->sched_class->dequeue_task(rq, p, flags);
761 }
762
763 void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 if (task_contributes_to_load(p))
766 rq->nr_uninterruptible--;
767
768 enqueue_task(rq, p, flags);
769 }
770
771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible++;
775
776 dequeue_task(rq, p, flags);
777 }
778
779 static void update_rq_clock_task(struct rq *rq, s64 delta)
780 {
781 /*
782 * In theory, the compile should just see 0 here, and optimize out the call
783 * to sched_rt_avg_update. But I don't trust it...
784 */
785 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
786 s64 steal = 0, irq_delta = 0;
787 #endif
788 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
789 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
790
791 /*
792 * Since irq_time is only updated on {soft,}irq_exit, we might run into
793 * this case when a previous update_rq_clock() happened inside a
794 * {soft,}irq region.
795 *
796 * When this happens, we stop ->clock_task and only update the
797 * prev_irq_time stamp to account for the part that fit, so that a next
798 * update will consume the rest. This ensures ->clock_task is
799 * monotonic.
800 *
801 * It does however cause some slight miss-attribution of {soft,}irq
802 * time, a more accurate solution would be to update the irq_time using
803 * the current rq->clock timestamp, except that would require using
804 * atomic ops.
805 */
806 if (irq_delta > delta)
807 irq_delta = delta;
808
809 rq->prev_irq_time += irq_delta;
810 delta -= irq_delta;
811 #endif
812 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
813 if (static_key_false((&paravirt_steal_rq_enabled))) {
814 steal = paravirt_steal_clock(cpu_of(rq));
815 steal -= rq->prev_steal_time_rq;
816
817 if (unlikely(steal > delta))
818 steal = delta;
819
820 rq->prev_steal_time_rq += steal;
821 delta -= steal;
822 }
823 #endif
824
825 rq->clock_task += delta;
826
827 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
828 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
829 sched_rt_avg_update(rq, irq_delta + steal);
830 #endif
831 }
832
833 void sched_set_stop_task(int cpu, struct task_struct *stop)
834 {
835 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
836 struct task_struct *old_stop = cpu_rq(cpu)->stop;
837
838 if (stop) {
839 /*
840 * Make it appear like a SCHED_FIFO task, its something
841 * userspace knows about and won't get confused about.
842 *
843 * Also, it will make PI more or less work without too
844 * much confusion -- but then, stop work should not
845 * rely on PI working anyway.
846 */
847 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
848
849 stop->sched_class = &stop_sched_class;
850 }
851
852 cpu_rq(cpu)->stop = stop;
853
854 if (old_stop) {
855 /*
856 * Reset it back to a normal scheduling class so that
857 * it can die in pieces.
858 */
859 old_stop->sched_class = &rt_sched_class;
860 }
861 }
862
863 /*
864 * __normal_prio - return the priority that is based on the static prio
865 */
866 static inline int __normal_prio(struct task_struct *p)
867 {
868 return p->static_prio;
869 }
870
871 /*
872 * Calculate the expected normal priority: i.e. priority
873 * without taking RT-inheritance into account. Might be
874 * boosted by interactivity modifiers. Changes upon fork,
875 * setprio syscalls, and whenever the interactivity
876 * estimator recalculates.
877 */
878 static inline int normal_prio(struct task_struct *p)
879 {
880 int prio;
881
882 if (task_has_dl_policy(p))
883 prio = MAX_DL_PRIO-1;
884 else if (task_has_rt_policy(p))
885 prio = MAX_RT_PRIO-1 - p->rt_priority;
886 else
887 prio = __normal_prio(p);
888 return prio;
889 }
890
891 /*
892 * Calculate the current priority, i.e. the priority
893 * taken into account by the scheduler. This value might
894 * be boosted by RT tasks, or might be boosted by
895 * interactivity modifiers. Will be RT if the task got
896 * RT-boosted. If not then it returns p->normal_prio.
897 */
898 static int effective_prio(struct task_struct *p)
899 {
900 p->normal_prio = normal_prio(p);
901 /*
902 * If we are RT tasks or we were boosted to RT priority,
903 * keep the priority unchanged. Otherwise, update priority
904 * to the normal priority:
905 */
906 if (!rt_prio(p->prio))
907 return p->normal_prio;
908 return p->prio;
909 }
910
911 /**
912 * task_curr - is this task currently executing on a CPU?
913 * @p: the task in question.
914 *
915 * Return: 1 if the task is currently executing. 0 otherwise.
916 */
917 inline int task_curr(const struct task_struct *p)
918 {
919 return cpu_curr(task_cpu(p)) == p;
920 }
921
922 /*
923 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
924 * use the balance_callback list if you want balancing.
925 *
926 * this means any call to check_class_changed() must be followed by a call to
927 * balance_callback().
928 */
929 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
930 const struct sched_class *prev_class,
931 int oldprio)
932 {
933 if (prev_class != p->sched_class) {
934 if (prev_class->switched_from)
935 prev_class->switched_from(rq, p);
936
937 p->sched_class->switched_to(rq, p);
938 } else if (oldprio != p->prio || dl_task(p))
939 p->sched_class->prio_changed(rq, p, oldprio);
940 }
941
942 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
943 {
944 const struct sched_class *class;
945
946 if (p->sched_class == rq->curr->sched_class) {
947 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
948 } else {
949 for_each_class(class) {
950 if (class == rq->curr->sched_class)
951 break;
952 if (class == p->sched_class) {
953 resched_curr(rq);
954 break;
955 }
956 }
957 }
958
959 /*
960 * A queue event has occurred, and we're going to schedule. In
961 * this case, we can save a useless back to back clock update.
962 */
963 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
964 rq_clock_skip_update(rq, true);
965 }
966
967 #ifdef CONFIG_SMP
968 /*
969 * This is how migration works:
970 *
971 * 1) we invoke migration_cpu_stop() on the target CPU using
972 * stop_one_cpu().
973 * 2) stopper starts to run (implicitly forcing the migrated thread
974 * off the CPU)
975 * 3) it checks whether the migrated task is still in the wrong runqueue.
976 * 4) if it's in the wrong runqueue then the migration thread removes
977 * it and puts it into the right queue.
978 * 5) stopper completes and stop_one_cpu() returns and the migration
979 * is done.
980 */
981
982 /*
983 * move_queued_task - move a queued task to new rq.
984 *
985 * Returns (locked) new rq. Old rq's lock is released.
986 */
987 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
988 {
989 lockdep_assert_held(&rq->lock);
990
991 p->on_rq = TASK_ON_RQ_MIGRATING;
992 dequeue_task(rq, p, 0);
993 set_task_cpu(p, new_cpu);
994 raw_spin_unlock(&rq->lock);
995
996 rq = cpu_rq(new_cpu);
997
998 raw_spin_lock(&rq->lock);
999 BUG_ON(task_cpu(p) != new_cpu);
1000 enqueue_task(rq, p, 0);
1001 p->on_rq = TASK_ON_RQ_QUEUED;
1002 check_preempt_curr(rq, p, 0);
1003
1004 return rq;
1005 }
1006
1007 struct migration_arg {
1008 struct task_struct *task;
1009 int dest_cpu;
1010 };
1011
1012 /*
1013 * Move (not current) task off this cpu, onto dest cpu. We're doing
1014 * this because either it can't run here any more (set_cpus_allowed()
1015 * away from this CPU, or CPU going down), or because we're
1016 * attempting to rebalance this task on exec (sched_exec).
1017 *
1018 * So we race with normal scheduler movements, but that's OK, as long
1019 * as the task is no longer on this CPU.
1020 */
1021 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1022 {
1023 if (unlikely(!cpu_active(dest_cpu)))
1024 return rq;
1025
1026 /* Affinity changed (again). */
1027 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1028 return rq;
1029
1030 rq = move_queued_task(rq, p, dest_cpu);
1031
1032 return rq;
1033 }
1034
1035 /*
1036 * migration_cpu_stop - this will be executed by a highprio stopper thread
1037 * and performs thread migration by bumping thread off CPU then
1038 * 'pushing' onto another runqueue.
1039 */
1040 static int migration_cpu_stop(void *data)
1041 {
1042 struct migration_arg *arg = data;
1043 struct task_struct *p = arg->task;
1044 struct rq *rq = this_rq();
1045
1046 /*
1047 * The original target cpu might have gone down and we might
1048 * be on another cpu but it doesn't matter.
1049 */
1050 local_irq_disable();
1051 /*
1052 * We need to explicitly wake pending tasks before running
1053 * __migrate_task() such that we will not miss enforcing cpus_allowed
1054 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1055 */
1056 sched_ttwu_pending();
1057
1058 raw_spin_lock(&p->pi_lock);
1059 raw_spin_lock(&rq->lock);
1060 /*
1061 * If task_rq(p) != rq, it cannot be migrated here, because we're
1062 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1063 * we're holding p->pi_lock.
1064 */
1065 if (task_rq(p) == rq && task_on_rq_queued(p))
1066 rq = __migrate_task(rq, p, arg->dest_cpu);
1067 raw_spin_unlock(&rq->lock);
1068 raw_spin_unlock(&p->pi_lock);
1069
1070 local_irq_enable();
1071 return 0;
1072 }
1073
1074 /*
1075 * sched_class::set_cpus_allowed must do the below, but is not required to
1076 * actually call this function.
1077 */
1078 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1079 {
1080 cpumask_copy(&p->cpus_allowed, new_mask);
1081 p->nr_cpus_allowed = cpumask_weight(new_mask);
1082 }
1083
1084 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1085 {
1086 struct rq *rq = task_rq(p);
1087 bool queued, running;
1088
1089 lockdep_assert_held(&p->pi_lock);
1090
1091 queued = task_on_rq_queued(p);
1092 running = task_current(rq, p);
1093
1094 if (queued) {
1095 /*
1096 * Because __kthread_bind() calls this on blocked tasks without
1097 * holding rq->lock.
1098 */
1099 lockdep_assert_held(&rq->lock);
1100 dequeue_task(rq, p, DEQUEUE_SAVE);
1101 }
1102 if (running)
1103 put_prev_task(rq, p);
1104
1105 p->sched_class->set_cpus_allowed(p, new_mask);
1106
1107 if (running)
1108 p->sched_class->set_curr_task(rq);
1109 if (queued)
1110 enqueue_task(rq, p, ENQUEUE_RESTORE);
1111 }
1112
1113 /*
1114 * Change a given task's CPU affinity. Migrate the thread to a
1115 * proper CPU and schedule it away if the CPU it's executing on
1116 * is removed from the allowed bitmask.
1117 *
1118 * NOTE: the caller must have a valid reference to the task, the
1119 * task must not exit() & deallocate itself prematurely. The
1120 * call is not atomic; no spinlocks may be held.
1121 */
1122 static int __set_cpus_allowed_ptr(struct task_struct *p,
1123 const struct cpumask *new_mask, bool check)
1124 {
1125 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1126 unsigned int dest_cpu;
1127 struct rq_flags rf;
1128 struct rq *rq;
1129 int ret = 0;
1130
1131 rq = task_rq_lock(p, &rf);
1132
1133 if (p->flags & PF_KTHREAD) {
1134 /*
1135 * Kernel threads are allowed on online && !active CPUs
1136 */
1137 cpu_valid_mask = cpu_online_mask;
1138 }
1139
1140 /*
1141 * Must re-check here, to close a race against __kthread_bind(),
1142 * sched_setaffinity() is not guaranteed to observe the flag.
1143 */
1144 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1145 ret = -EINVAL;
1146 goto out;
1147 }
1148
1149 if (cpumask_equal(&p->cpus_allowed, new_mask))
1150 goto out;
1151
1152 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1153 ret = -EINVAL;
1154 goto out;
1155 }
1156
1157 do_set_cpus_allowed(p, new_mask);
1158
1159 if (p->flags & PF_KTHREAD) {
1160 /*
1161 * For kernel threads that do indeed end up on online &&
1162 * !active we want to ensure they are strict per-cpu threads.
1163 */
1164 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1165 !cpumask_intersects(new_mask, cpu_active_mask) &&
1166 p->nr_cpus_allowed != 1);
1167 }
1168
1169 /* Can the task run on the task's current CPU? If so, we're done */
1170 if (cpumask_test_cpu(task_cpu(p), new_mask))
1171 goto out;
1172
1173 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1174 if (task_running(rq, p) || p->state == TASK_WAKING) {
1175 struct migration_arg arg = { p, dest_cpu };
1176 /* Need help from migration thread: drop lock and wait. */
1177 task_rq_unlock(rq, p, &rf);
1178 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1179 tlb_migrate_finish(p->mm);
1180 return 0;
1181 } else if (task_on_rq_queued(p)) {
1182 /*
1183 * OK, since we're going to drop the lock immediately
1184 * afterwards anyway.
1185 */
1186 lockdep_unpin_lock(&rq->lock, rf.cookie);
1187 rq = move_queued_task(rq, p, dest_cpu);
1188 lockdep_repin_lock(&rq->lock, rf.cookie);
1189 }
1190 out:
1191 task_rq_unlock(rq, p, &rf);
1192
1193 return ret;
1194 }
1195
1196 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1197 {
1198 return __set_cpus_allowed_ptr(p, new_mask, false);
1199 }
1200 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1201
1202 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1203 {
1204 #ifdef CONFIG_SCHED_DEBUG
1205 /*
1206 * We should never call set_task_cpu() on a blocked task,
1207 * ttwu() will sort out the placement.
1208 */
1209 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1210 !p->on_rq);
1211
1212 /*
1213 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1214 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1215 * time relying on p->on_rq.
1216 */
1217 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1218 p->sched_class == &fair_sched_class &&
1219 (p->on_rq && !task_on_rq_migrating(p)));
1220
1221 #ifdef CONFIG_LOCKDEP
1222 /*
1223 * The caller should hold either p->pi_lock or rq->lock, when changing
1224 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1225 *
1226 * sched_move_task() holds both and thus holding either pins the cgroup,
1227 * see task_group().
1228 *
1229 * Furthermore, all task_rq users should acquire both locks, see
1230 * task_rq_lock().
1231 */
1232 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1233 lockdep_is_held(&task_rq(p)->lock)));
1234 #endif
1235 #endif
1236
1237 trace_sched_migrate_task(p, new_cpu);
1238
1239 if (task_cpu(p) != new_cpu) {
1240 if (p->sched_class->migrate_task_rq)
1241 p->sched_class->migrate_task_rq(p);
1242 p->se.nr_migrations++;
1243 perf_event_task_migrate(p);
1244 }
1245
1246 __set_task_cpu(p, new_cpu);
1247 }
1248
1249 static void __migrate_swap_task(struct task_struct *p, int cpu)
1250 {
1251 if (task_on_rq_queued(p)) {
1252 struct rq *src_rq, *dst_rq;
1253
1254 src_rq = task_rq(p);
1255 dst_rq = cpu_rq(cpu);
1256
1257 p->on_rq = TASK_ON_RQ_MIGRATING;
1258 deactivate_task(src_rq, p, 0);
1259 set_task_cpu(p, cpu);
1260 activate_task(dst_rq, p, 0);
1261 p->on_rq = TASK_ON_RQ_QUEUED;
1262 check_preempt_curr(dst_rq, p, 0);
1263 } else {
1264 /*
1265 * Task isn't running anymore; make it appear like we migrated
1266 * it before it went to sleep. This means on wakeup we make the
1267 * previous cpu our targer instead of where it really is.
1268 */
1269 p->wake_cpu = cpu;
1270 }
1271 }
1272
1273 struct migration_swap_arg {
1274 struct task_struct *src_task, *dst_task;
1275 int src_cpu, dst_cpu;
1276 };
1277
1278 static int migrate_swap_stop(void *data)
1279 {
1280 struct migration_swap_arg *arg = data;
1281 struct rq *src_rq, *dst_rq;
1282 int ret = -EAGAIN;
1283
1284 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1285 return -EAGAIN;
1286
1287 src_rq = cpu_rq(arg->src_cpu);
1288 dst_rq = cpu_rq(arg->dst_cpu);
1289
1290 double_raw_lock(&arg->src_task->pi_lock,
1291 &arg->dst_task->pi_lock);
1292 double_rq_lock(src_rq, dst_rq);
1293
1294 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1295 goto unlock;
1296
1297 if (task_cpu(arg->src_task) != arg->src_cpu)
1298 goto unlock;
1299
1300 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1301 goto unlock;
1302
1303 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1304 goto unlock;
1305
1306 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1307 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1308
1309 ret = 0;
1310
1311 unlock:
1312 double_rq_unlock(src_rq, dst_rq);
1313 raw_spin_unlock(&arg->dst_task->pi_lock);
1314 raw_spin_unlock(&arg->src_task->pi_lock);
1315
1316 return ret;
1317 }
1318
1319 /*
1320 * Cross migrate two tasks
1321 */
1322 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1323 {
1324 struct migration_swap_arg arg;
1325 int ret = -EINVAL;
1326
1327 arg = (struct migration_swap_arg){
1328 .src_task = cur,
1329 .src_cpu = task_cpu(cur),
1330 .dst_task = p,
1331 .dst_cpu = task_cpu(p),
1332 };
1333
1334 if (arg.src_cpu == arg.dst_cpu)
1335 goto out;
1336
1337 /*
1338 * These three tests are all lockless; this is OK since all of them
1339 * will be re-checked with proper locks held further down the line.
1340 */
1341 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1342 goto out;
1343
1344 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1345 goto out;
1346
1347 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1348 goto out;
1349
1350 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1351 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1352
1353 out:
1354 return ret;
1355 }
1356
1357 /*
1358 * wait_task_inactive - wait for a thread to unschedule.
1359 *
1360 * If @match_state is nonzero, it's the @p->state value just checked and
1361 * not expected to change. If it changes, i.e. @p might have woken up,
1362 * then return zero. When we succeed in waiting for @p to be off its CPU,
1363 * we return a positive number (its total switch count). If a second call
1364 * a short while later returns the same number, the caller can be sure that
1365 * @p has remained unscheduled the whole time.
1366 *
1367 * The caller must ensure that the task *will* unschedule sometime soon,
1368 * else this function might spin for a *long* time. This function can't
1369 * be called with interrupts off, or it may introduce deadlock with
1370 * smp_call_function() if an IPI is sent by the same process we are
1371 * waiting to become inactive.
1372 */
1373 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1374 {
1375 int running, queued;
1376 struct rq_flags rf;
1377 unsigned long ncsw;
1378 struct rq *rq;
1379
1380 for (;;) {
1381 /*
1382 * We do the initial early heuristics without holding
1383 * any task-queue locks at all. We'll only try to get
1384 * the runqueue lock when things look like they will
1385 * work out!
1386 */
1387 rq = task_rq(p);
1388
1389 /*
1390 * If the task is actively running on another CPU
1391 * still, just relax and busy-wait without holding
1392 * any locks.
1393 *
1394 * NOTE! Since we don't hold any locks, it's not
1395 * even sure that "rq" stays as the right runqueue!
1396 * But we don't care, since "task_running()" will
1397 * return false if the runqueue has changed and p
1398 * is actually now running somewhere else!
1399 */
1400 while (task_running(rq, p)) {
1401 if (match_state && unlikely(p->state != match_state))
1402 return 0;
1403 cpu_relax();
1404 }
1405
1406 /*
1407 * Ok, time to look more closely! We need the rq
1408 * lock now, to be *sure*. If we're wrong, we'll
1409 * just go back and repeat.
1410 */
1411 rq = task_rq_lock(p, &rf);
1412 trace_sched_wait_task(p);
1413 running = task_running(rq, p);
1414 queued = task_on_rq_queued(p);
1415 ncsw = 0;
1416 if (!match_state || p->state == match_state)
1417 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1418 task_rq_unlock(rq, p, &rf);
1419
1420 /*
1421 * If it changed from the expected state, bail out now.
1422 */
1423 if (unlikely(!ncsw))
1424 break;
1425
1426 /*
1427 * Was it really running after all now that we
1428 * checked with the proper locks actually held?
1429 *
1430 * Oops. Go back and try again..
1431 */
1432 if (unlikely(running)) {
1433 cpu_relax();
1434 continue;
1435 }
1436
1437 /*
1438 * It's not enough that it's not actively running,
1439 * it must be off the runqueue _entirely_, and not
1440 * preempted!
1441 *
1442 * So if it was still runnable (but just not actively
1443 * running right now), it's preempted, and we should
1444 * yield - it could be a while.
1445 */
1446 if (unlikely(queued)) {
1447 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1448
1449 set_current_state(TASK_UNINTERRUPTIBLE);
1450 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1451 continue;
1452 }
1453
1454 /*
1455 * Ahh, all good. It wasn't running, and it wasn't
1456 * runnable, which means that it will never become
1457 * running in the future either. We're all done!
1458 */
1459 break;
1460 }
1461
1462 return ncsw;
1463 }
1464
1465 /***
1466 * kick_process - kick a running thread to enter/exit the kernel
1467 * @p: the to-be-kicked thread
1468 *
1469 * Cause a process which is running on another CPU to enter
1470 * kernel-mode, without any delay. (to get signals handled.)
1471 *
1472 * NOTE: this function doesn't have to take the runqueue lock,
1473 * because all it wants to ensure is that the remote task enters
1474 * the kernel. If the IPI races and the task has been migrated
1475 * to another CPU then no harm is done and the purpose has been
1476 * achieved as well.
1477 */
1478 void kick_process(struct task_struct *p)
1479 {
1480 int cpu;
1481
1482 preempt_disable();
1483 cpu = task_cpu(p);
1484 if ((cpu != smp_processor_id()) && task_curr(p))
1485 smp_send_reschedule(cpu);
1486 preempt_enable();
1487 }
1488 EXPORT_SYMBOL_GPL(kick_process);
1489
1490 /*
1491 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1492 *
1493 * A few notes on cpu_active vs cpu_online:
1494 *
1495 * - cpu_active must be a subset of cpu_online
1496 *
1497 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1498 * see __set_cpus_allowed_ptr(). At this point the newly online
1499 * cpu isn't yet part of the sched domains, and balancing will not
1500 * see it.
1501 *
1502 * - on cpu-down we clear cpu_active() to mask the sched domains and
1503 * avoid the load balancer to place new tasks on the to be removed
1504 * cpu. Existing tasks will remain running there and will be taken
1505 * off.
1506 *
1507 * This means that fallback selection must not select !active CPUs.
1508 * And can assume that any active CPU must be online. Conversely
1509 * select_task_rq() below may allow selection of !active CPUs in order
1510 * to satisfy the above rules.
1511 */
1512 static int select_fallback_rq(int cpu, struct task_struct *p)
1513 {
1514 int nid = cpu_to_node(cpu);
1515 const struct cpumask *nodemask = NULL;
1516 enum { cpuset, possible, fail } state = cpuset;
1517 int dest_cpu;
1518
1519 /*
1520 * If the node that the cpu is on has been offlined, cpu_to_node()
1521 * will return -1. There is no cpu on the node, and we should
1522 * select the cpu on the other node.
1523 */
1524 if (nid != -1) {
1525 nodemask = cpumask_of_node(nid);
1526
1527 /* Look for allowed, online CPU in same node. */
1528 for_each_cpu(dest_cpu, nodemask) {
1529 if (!cpu_active(dest_cpu))
1530 continue;
1531 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1532 return dest_cpu;
1533 }
1534 }
1535
1536 for (;;) {
1537 /* Any allowed, online CPU? */
1538 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1539 if (!cpu_active(dest_cpu))
1540 continue;
1541 goto out;
1542 }
1543
1544 /* No more Mr. Nice Guy. */
1545 switch (state) {
1546 case cpuset:
1547 if (IS_ENABLED(CONFIG_CPUSETS)) {
1548 cpuset_cpus_allowed_fallback(p);
1549 state = possible;
1550 break;
1551 }
1552 /* fall-through */
1553 case possible:
1554 do_set_cpus_allowed(p, cpu_possible_mask);
1555 state = fail;
1556 break;
1557
1558 case fail:
1559 BUG();
1560 break;
1561 }
1562 }
1563
1564 out:
1565 if (state != cpuset) {
1566 /*
1567 * Don't tell them about moving exiting tasks or
1568 * kernel threads (both mm NULL), since they never
1569 * leave kernel.
1570 */
1571 if (p->mm && printk_ratelimit()) {
1572 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1573 task_pid_nr(p), p->comm, cpu);
1574 }
1575 }
1576
1577 return dest_cpu;
1578 }
1579
1580 /*
1581 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1582 */
1583 static inline
1584 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1585 {
1586 lockdep_assert_held(&p->pi_lock);
1587
1588 if (tsk_nr_cpus_allowed(p) > 1)
1589 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1590 else
1591 cpu = cpumask_any(tsk_cpus_allowed(p));
1592
1593 /*
1594 * In order not to call set_task_cpu() on a blocking task we need
1595 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1596 * cpu.
1597 *
1598 * Since this is common to all placement strategies, this lives here.
1599 *
1600 * [ this allows ->select_task() to simply return task_cpu(p) and
1601 * not worry about this generic constraint ]
1602 */
1603 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1604 !cpu_online(cpu)))
1605 cpu = select_fallback_rq(task_cpu(p), p);
1606
1607 return cpu;
1608 }
1609
1610 static void update_avg(u64 *avg, u64 sample)
1611 {
1612 s64 diff = sample - *avg;
1613 *avg += diff >> 3;
1614 }
1615
1616 #else
1617
1618 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1619 const struct cpumask *new_mask, bool check)
1620 {
1621 return set_cpus_allowed_ptr(p, new_mask);
1622 }
1623
1624 #endif /* CONFIG_SMP */
1625
1626 static void
1627 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1628 {
1629 #ifdef CONFIG_SCHEDSTATS
1630 struct rq *rq = this_rq();
1631
1632 #ifdef CONFIG_SMP
1633 int this_cpu = smp_processor_id();
1634
1635 if (cpu == this_cpu) {
1636 schedstat_inc(rq, ttwu_local);
1637 schedstat_inc(p, se.statistics.nr_wakeups_local);
1638 } else {
1639 struct sched_domain *sd;
1640
1641 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1642 rcu_read_lock();
1643 for_each_domain(this_cpu, sd) {
1644 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1645 schedstat_inc(sd, ttwu_wake_remote);
1646 break;
1647 }
1648 }
1649 rcu_read_unlock();
1650 }
1651
1652 if (wake_flags & WF_MIGRATED)
1653 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1654
1655 #endif /* CONFIG_SMP */
1656
1657 schedstat_inc(rq, ttwu_count);
1658 schedstat_inc(p, se.statistics.nr_wakeups);
1659
1660 if (wake_flags & WF_SYNC)
1661 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1662
1663 #endif /* CONFIG_SCHEDSTATS */
1664 }
1665
1666 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1667 {
1668 activate_task(rq, p, en_flags);
1669 p->on_rq = TASK_ON_RQ_QUEUED;
1670
1671 /* if a worker is waking up, notify workqueue */
1672 if (p->flags & PF_WQ_WORKER)
1673 wq_worker_waking_up(p, cpu_of(rq));
1674 }
1675
1676 /*
1677 * Mark the task runnable and perform wakeup-preemption.
1678 */
1679 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1680 struct pin_cookie cookie)
1681 {
1682 check_preempt_curr(rq, p, wake_flags);
1683 p->state = TASK_RUNNING;
1684 trace_sched_wakeup(p);
1685
1686 #ifdef CONFIG_SMP
1687 if (p->sched_class->task_woken) {
1688 /*
1689 * Our task @p is fully woken up and running; so its safe to
1690 * drop the rq->lock, hereafter rq is only used for statistics.
1691 */
1692 lockdep_unpin_lock(&rq->lock, cookie);
1693 p->sched_class->task_woken(rq, p);
1694 lockdep_repin_lock(&rq->lock, cookie);
1695 }
1696
1697 if (rq->idle_stamp) {
1698 u64 delta = rq_clock(rq) - rq->idle_stamp;
1699 u64 max = 2*rq->max_idle_balance_cost;
1700
1701 update_avg(&rq->avg_idle, delta);
1702
1703 if (rq->avg_idle > max)
1704 rq->avg_idle = max;
1705
1706 rq->idle_stamp = 0;
1707 }
1708 #endif
1709 }
1710
1711 static void
1712 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1713 struct pin_cookie cookie)
1714 {
1715 int en_flags = ENQUEUE_WAKEUP;
1716
1717 lockdep_assert_held(&rq->lock);
1718
1719 #ifdef CONFIG_SMP
1720 if (p->sched_contributes_to_load)
1721 rq->nr_uninterruptible--;
1722
1723 if (wake_flags & WF_MIGRATED)
1724 en_flags |= ENQUEUE_MIGRATED;
1725 #endif
1726
1727 ttwu_activate(rq, p, en_flags);
1728 ttwu_do_wakeup(rq, p, wake_flags, cookie);
1729 }
1730
1731 /*
1732 * Called in case the task @p isn't fully descheduled from its runqueue,
1733 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1734 * since all we need to do is flip p->state to TASK_RUNNING, since
1735 * the task is still ->on_rq.
1736 */
1737 static int ttwu_remote(struct task_struct *p, int wake_flags)
1738 {
1739 struct rq_flags rf;
1740 struct rq *rq;
1741 int ret = 0;
1742
1743 rq = __task_rq_lock(p, &rf);
1744 if (task_on_rq_queued(p)) {
1745 /* check_preempt_curr() may use rq clock */
1746 update_rq_clock(rq);
1747 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1748 ret = 1;
1749 }
1750 __task_rq_unlock(rq, &rf);
1751
1752 return ret;
1753 }
1754
1755 #ifdef CONFIG_SMP
1756 void sched_ttwu_pending(void)
1757 {
1758 struct rq *rq = this_rq();
1759 struct llist_node *llist = llist_del_all(&rq->wake_list);
1760 struct pin_cookie cookie;
1761 struct task_struct *p;
1762 unsigned long flags;
1763
1764 if (!llist)
1765 return;
1766
1767 raw_spin_lock_irqsave(&rq->lock, flags);
1768 cookie = lockdep_pin_lock(&rq->lock);
1769
1770 while (llist) {
1771 int wake_flags = 0;
1772
1773 p = llist_entry(llist, struct task_struct, wake_entry);
1774 llist = llist_next(llist);
1775
1776 if (p->sched_remote_wakeup)
1777 wake_flags = WF_MIGRATED;
1778
1779 ttwu_do_activate(rq, p, wake_flags, cookie);
1780 }
1781
1782 lockdep_unpin_lock(&rq->lock, cookie);
1783 raw_spin_unlock_irqrestore(&rq->lock, flags);
1784 }
1785
1786 void scheduler_ipi(void)
1787 {
1788 /*
1789 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1790 * TIF_NEED_RESCHED remotely (for the first time) will also send
1791 * this IPI.
1792 */
1793 preempt_fold_need_resched();
1794
1795 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1796 return;
1797
1798 /*
1799 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1800 * traditionally all their work was done from the interrupt return
1801 * path. Now that we actually do some work, we need to make sure
1802 * we do call them.
1803 *
1804 * Some archs already do call them, luckily irq_enter/exit nest
1805 * properly.
1806 *
1807 * Arguably we should visit all archs and update all handlers,
1808 * however a fair share of IPIs are still resched only so this would
1809 * somewhat pessimize the simple resched case.
1810 */
1811 irq_enter();
1812 sched_ttwu_pending();
1813
1814 /*
1815 * Check if someone kicked us for doing the nohz idle load balance.
1816 */
1817 if (unlikely(got_nohz_idle_kick())) {
1818 this_rq()->idle_balance = 1;
1819 raise_softirq_irqoff(SCHED_SOFTIRQ);
1820 }
1821 irq_exit();
1822 }
1823
1824 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1825 {
1826 struct rq *rq = cpu_rq(cpu);
1827
1828 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1829
1830 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1831 if (!set_nr_if_polling(rq->idle))
1832 smp_send_reschedule(cpu);
1833 else
1834 trace_sched_wake_idle_without_ipi(cpu);
1835 }
1836 }
1837
1838 void wake_up_if_idle(int cpu)
1839 {
1840 struct rq *rq = cpu_rq(cpu);
1841 unsigned long flags;
1842
1843 rcu_read_lock();
1844
1845 if (!is_idle_task(rcu_dereference(rq->curr)))
1846 goto out;
1847
1848 if (set_nr_if_polling(rq->idle)) {
1849 trace_sched_wake_idle_without_ipi(cpu);
1850 } else {
1851 raw_spin_lock_irqsave(&rq->lock, flags);
1852 if (is_idle_task(rq->curr))
1853 smp_send_reschedule(cpu);
1854 /* Else cpu is not in idle, do nothing here */
1855 raw_spin_unlock_irqrestore(&rq->lock, flags);
1856 }
1857
1858 out:
1859 rcu_read_unlock();
1860 }
1861
1862 bool cpus_share_cache(int this_cpu, int that_cpu)
1863 {
1864 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1865 }
1866 #endif /* CONFIG_SMP */
1867
1868 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1869 {
1870 struct rq *rq = cpu_rq(cpu);
1871 struct pin_cookie cookie;
1872
1873 #if defined(CONFIG_SMP)
1874 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1875 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1876 ttwu_queue_remote(p, cpu, wake_flags);
1877 return;
1878 }
1879 #endif
1880
1881 raw_spin_lock(&rq->lock);
1882 cookie = lockdep_pin_lock(&rq->lock);
1883 ttwu_do_activate(rq, p, wake_flags, cookie);
1884 lockdep_unpin_lock(&rq->lock, cookie);
1885 raw_spin_unlock(&rq->lock);
1886 }
1887
1888 /*
1889 * Notes on Program-Order guarantees on SMP systems.
1890 *
1891 * MIGRATION
1892 *
1893 * The basic program-order guarantee on SMP systems is that when a task [t]
1894 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1895 * execution on its new cpu [c1].
1896 *
1897 * For migration (of runnable tasks) this is provided by the following means:
1898 *
1899 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1900 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1901 * rq(c1)->lock (if not at the same time, then in that order).
1902 * C) LOCK of the rq(c1)->lock scheduling in task
1903 *
1904 * Transitivity guarantees that B happens after A and C after B.
1905 * Note: we only require RCpc transitivity.
1906 * Note: the cpu doing B need not be c0 or c1
1907 *
1908 * Example:
1909 *
1910 * CPU0 CPU1 CPU2
1911 *
1912 * LOCK rq(0)->lock
1913 * sched-out X
1914 * sched-in Y
1915 * UNLOCK rq(0)->lock
1916 *
1917 * LOCK rq(0)->lock // orders against CPU0
1918 * dequeue X
1919 * UNLOCK rq(0)->lock
1920 *
1921 * LOCK rq(1)->lock
1922 * enqueue X
1923 * UNLOCK rq(1)->lock
1924 *
1925 * LOCK rq(1)->lock // orders against CPU2
1926 * sched-out Z
1927 * sched-in X
1928 * UNLOCK rq(1)->lock
1929 *
1930 *
1931 * BLOCKING -- aka. SLEEP + WAKEUP
1932 *
1933 * For blocking we (obviously) need to provide the same guarantee as for
1934 * migration. However the means are completely different as there is no lock
1935 * chain to provide order. Instead we do:
1936 *
1937 * 1) smp_store_release(X->on_cpu, 0)
1938 * 2) smp_cond_acquire(!X->on_cpu)
1939 *
1940 * Example:
1941 *
1942 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1943 *
1944 * LOCK rq(0)->lock LOCK X->pi_lock
1945 * dequeue X
1946 * sched-out X
1947 * smp_store_release(X->on_cpu, 0);
1948 *
1949 * smp_cond_acquire(!X->on_cpu);
1950 * X->state = WAKING
1951 * set_task_cpu(X,2)
1952 *
1953 * LOCK rq(2)->lock
1954 * enqueue X
1955 * X->state = RUNNING
1956 * UNLOCK rq(2)->lock
1957 *
1958 * LOCK rq(2)->lock // orders against CPU1
1959 * sched-out Z
1960 * sched-in X
1961 * UNLOCK rq(2)->lock
1962 *
1963 * UNLOCK X->pi_lock
1964 * UNLOCK rq(0)->lock
1965 *
1966 *
1967 * However; for wakeups there is a second guarantee we must provide, namely we
1968 * must observe the state that lead to our wakeup. That is, not only must our
1969 * task observe its own prior state, it must also observe the stores prior to
1970 * its wakeup.
1971 *
1972 * This means that any means of doing remote wakeups must order the CPU doing
1973 * the wakeup against the CPU the task is going to end up running on. This,
1974 * however, is already required for the regular Program-Order guarantee above,
1975 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1976 *
1977 */
1978
1979 /**
1980 * try_to_wake_up - wake up a thread
1981 * @p: the thread to be awakened
1982 * @state: the mask of task states that can be woken
1983 * @wake_flags: wake modifier flags (WF_*)
1984 *
1985 * Put it on the run-queue if it's not already there. The "current"
1986 * thread is always on the run-queue (except when the actual
1987 * re-schedule is in progress), and as such you're allowed to do
1988 * the simpler "current->state = TASK_RUNNING" to mark yourself
1989 * runnable without the overhead of this.
1990 *
1991 * Return: %true if @p was woken up, %false if it was already running.
1992 * or @state didn't match @p's state.
1993 */
1994 static int
1995 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1996 {
1997 unsigned long flags;
1998 int cpu, success = 0;
1999
2000 /*
2001 * If we are going to wake up a thread waiting for CONDITION we
2002 * need to ensure that CONDITION=1 done by the caller can not be
2003 * reordered with p->state check below. This pairs with mb() in
2004 * set_current_state() the waiting thread does.
2005 */
2006 smp_mb__before_spinlock();
2007 raw_spin_lock_irqsave(&p->pi_lock, flags);
2008 if (!(p->state & state))
2009 goto out;
2010
2011 trace_sched_waking(p);
2012
2013 success = 1; /* we're going to change ->state */
2014 cpu = task_cpu(p);
2015
2016 if (p->on_rq && ttwu_remote(p, wake_flags))
2017 goto stat;
2018
2019 #ifdef CONFIG_SMP
2020 /*
2021 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2022 * possible to, falsely, observe p->on_cpu == 0.
2023 *
2024 * One must be running (->on_cpu == 1) in order to remove oneself
2025 * from the runqueue.
2026 *
2027 * [S] ->on_cpu = 1; [L] ->on_rq
2028 * UNLOCK rq->lock
2029 * RMB
2030 * LOCK rq->lock
2031 * [S] ->on_rq = 0; [L] ->on_cpu
2032 *
2033 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2034 * from the consecutive calls to schedule(); the first switching to our
2035 * task, the second putting it to sleep.
2036 */
2037 smp_rmb();
2038
2039 /*
2040 * If the owning (remote) cpu is still in the middle of schedule() with
2041 * this task as prev, wait until its done referencing the task.
2042 *
2043 * Pairs with the smp_store_release() in finish_lock_switch().
2044 *
2045 * This ensures that tasks getting woken will be fully ordered against
2046 * their previous state and preserve Program Order.
2047 */
2048 smp_cond_acquire(!p->on_cpu);
2049
2050 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2051 p->state = TASK_WAKING;
2052
2053 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2054 if (task_cpu(p) != cpu) {
2055 wake_flags |= WF_MIGRATED;
2056 set_task_cpu(p, cpu);
2057 }
2058 #endif /* CONFIG_SMP */
2059
2060 ttwu_queue(p, cpu, wake_flags);
2061 stat:
2062 if (schedstat_enabled())
2063 ttwu_stat(p, cpu, wake_flags);
2064 out:
2065 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2066
2067 return success;
2068 }
2069
2070 /**
2071 * try_to_wake_up_local - try to wake up a local task with rq lock held
2072 * @p: the thread to be awakened
2073 *
2074 * Put @p on the run-queue if it's not already there. The caller must
2075 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2076 * the current task.
2077 */
2078 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2079 {
2080 struct rq *rq = task_rq(p);
2081
2082 if (WARN_ON_ONCE(rq != this_rq()) ||
2083 WARN_ON_ONCE(p == current))
2084 return;
2085
2086 lockdep_assert_held(&rq->lock);
2087
2088 if (!raw_spin_trylock(&p->pi_lock)) {
2089 /*
2090 * This is OK, because current is on_cpu, which avoids it being
2091 * picked for load-balance and preemption/IRQs are still
2092 * disabled avoiding further scheduler activity on it and we've
2093 * not yet picked a replacement task.
2094 */
2095 lockdep_unpin_lock(&rq->lock, cookie);
2096 raw_spin_unlock(&rq->lock);
2097 raw_spin_lock(&p->pi_lock);
2098 raw_spin_lock(&rq->lock);
2099 lockdep_repin_lock(&rq->lock, cookie);
2100 }
2101
2102 if (!(p->state & TASK_NORMAL))
2103 goto out;
2104
2105 trace_sched_waking(p);
2106
2107 if (!task_on_rq_queued(p))
2108 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2109
2110 ttwu_do_wakeup(rq, p, 0, cookie);
2111 if (schedstat_enabled())
2112 ttwu_stat(p, smp_processor_id(), 0);
2113 out:
2114 raw_spin_unlock(&p->pi_lock);
2115 }
2116
2117 /**
2118 * wake_up_process - Wake up a specific process
2119 * @p: The process to be woken up.
2120 *
2121 * Attempt to wake up the nominated process and move it to the set of runnable
2122 * processes.
2123 *
2124 * Return: 1 if the process was woken up, 0 if it was already running.
2125 *
2126 * It may be assumed that this function implies a write memory barrier before
2127 * changing the task state if and only if any tasks are woken up.
2128 */
2129 int wake_up_process(struct task_struct *p)
2130 {
2131 return try_to_wake_up(p, TASK_NORMAL, 0);
2132 }
2133 EXPORT_SYMBOL(wake_up_process);
2134
2135 int wake_up_state(struct task_struct *p, unsigned int state)
2136 {
2137 return try_to_wake_up(p, state, 0);
2138 }
2139
2140 /*
2141 * This function clears the sched_dl_entity static params.
2142 */
2143 void __dl_clear_params(struct task_struct *p)
2144 {
2145 struct sched_dl_entity *dl_se = &p->dl;
2146
2147 dl_se->dl_runtime = 0;
2148 dl_se->dl_deadline = 0;
2149 dl_se->dl_period = 0;
2150 dl_se->flags = 0;
2151 dl_se->dl_bw = 0;
2152
2153 dl_se->dl_throttled = 0;
2154 dl_se->dl_yielded = 0;
2155 }
2156
2157 /*
2158 * Perform scheduler related setup for a newly forked process p.
2159 * p is forked by current.
2160 *
2161 * __sched_fork() is basic setup used by init_idle() too:
2162 */
2163 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2164 {
2165 p->on_rq = 0;
2166
2167 p->se.on_rq = 0;
2168 p->se.exec_start = 0;
2169 p->se.sum_exec_runtime = 0;
2170 p->se.prev_sum_exec_runtime = 0;
2171 p->se.nr_migrations = 0;
2172 p->se.vruntime = 0;
2173 INIT_LIST_HEAD(&p->se.group_node);
2174
2175 #ifdef CONFIG_FAIR_GROUP_SCHED
2176 p->se.cfs_rq = NULL;
2177 #endif
2178
2179 #ifdef CONFIG_SCHEDSTATS
2180 /* Even if schedstat is disabled, there should not be garbage */
2181 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2182 #endif
2183
2184 RB_CLEAR_NODE(&p->dl.rb_node);
2185 init_dl_task_timer(&p->dl);
2186 __dl_clear_params(p);
2187
2188 INIT_LIST_HEAD(&p->rt.run_list);
2189 p->rt.timeout = 0;
2190 p->rt.time_slice = sched_rr_timeslice;
2191 p->rt.on_rq = 0;
2192 p->rt.on_list = 0;
2193
2194 #ifdef CONFIG_PREEMPT_NOTIFIERS
2195 INIT_HLIST_HEAD(&p->preempt_notifiers);
2196 #endif
2197
2198 #ifdef CONFIG_NUMA_BALANCING
2199 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2200 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2201 p->mm->numa_scan_seq = 0;
2202 }
2203
2204 if (clone_flags & CLONE_VM)
2205 p->numa_preferred_nid = current->numa_preferred_nid;
2206 else
2207 p->numa_preferred_nid = -1;
2208
2209 p->node_stamp = 0ULL;
2210 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2211 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2212 p->numa_work.next = &p->numa_work;
2213 p->numa_faults = NULL;
2214 p->last_task_numa_placement = 0;
2215 p->last_sum_exec_runtime = 0;
2216
2217 p->numa_group = NULL;
2218 #endif /* CONFIG_NUMA_BALANCING */
2219 }
2220
2221 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2222
2223 #ifdef CONFIG_NUMA_BALANCING
2224
2225 void set_numabalancing_state(bool enabled)
2226 {
2227 if (enabled)
2228 static_branch_enable(&sched_numa_balancing);
2229 else
2230 static_branch_disable(&sched_numa_balancing);
2231 }
2232
2233 #ifdef CONFIG_PROC_SYSCTL
2234 int sysctl_numa_balancing(struct ctl_table *table, int write,
2235 void __user *buffer, size_t *lenp, loff_t *ppos)
2236 {
2237 struct ctl_table t;
2238 int err;
2239 int state = static_branch_likely(&sched_numa_balancing);
2240
2241 if (write && !capable(CAP_SYS_ADMIN))
2242 return -EPERM;
2243
2244 t = *table;
2245 t.data = &state;
2246 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2247 if (err < 0)
2248 return err;
2249 if (write)
2250 set_numabalancing_state(state);
2251 return err;
2252 }
2253 #endif
2254 #endif
2255
2256 #ifdef CONFIG_SCHEDSTATS
2257
2258 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2259 static bool __initdata __sched_schedstats = false;
2260
2261 static void set_schedstats(bool enabled)
2262 {
2263 if (enabled)
2264 static_branch_enable(&sched_schedstats);
2265 else
2266 static_branch_disable(&sched_schedstats);
2267 }
2268
2269 void force_schedstat_enabled(void)
2270 {
2271 if (!schedstat_enabled()) {
2272 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2273 static_branch_enable(&sched_schedstats);
2274 }
2275 }
2276
2277 static int __init setup_schedstats(char *str)
2278 {
2279 int ret = 0;
2280 if (!str)
2281 goto out;
2282
2283 /*
2284 * This code is called before jump labels have been set up, so we can't
2285 * change the static branch directly just yet. Instead set a temporary
2286 * variable so init_schedstats() can do it later.
2287 */
2288 if (!strcmp(str, "enable")) {
2289 __sched_schedstats = true;
2290 ret = 1;
2291 } else if (!strcmp(str, "disable")) {
2292 __sched_schedstats = false;
2293 ret = 1;
2294 }
2295 out:
2296 if (!ret)
2297 pr_warn("Unable to parse schedstats=\n");
2298
2299 return ret;
2300 }
2301 __setup("schedstats=", setup_schedstats);
2302
2303 static void __init init_schedstats(void)
2304 {
2305 set_schedstats(__sched_schedstats);
2306 }
2307
2308 #ifdef CONFIG_PROC_SYSCTL
2309 int sysctl_schedstats(struct ctl_table *table, int write,
2310 void __user *buffer, size_t *lenp, loff_t *ppos)
2311 {
2312 struct ctl_table t;
2313 int err;
2314 int state = static_branch_likely(&sched_schedstats);
2315
2316 if (write && !capable(CAP_SYS_ADMIN))
2317 return -EPERM;
2318
2319 t = *table;
2320 t.data = &state;
2321 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2322 if (err < 0)
2323 return err;
2324 if (write)
2325 set_schedstats(state);
2326 return err;
2327 }
2328 #endif /* CONFIG_PROC_SYSCTL */
2329 #else /* !CONFIG_SCHEDSTATS */
2330 static inline void init_schedstats(void) {}
2331 #endif /* CONFIG_SCHEDSTATS */
2332
2333 /*
2334 * fork()/clone()-time setup:
2335 */
2336 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2337 {
2338 unsigned long flags;
2339 int cpu = get_cpu();
2340
2341 __sched_fork(clone_flags, p);
2342 /*
2343 * We mark the process as running here. This guarantees that
2344 * nobody will actually run it, and a signal or other external
2345 * event cannot wake it up and insert it on the runqueue either.
2346 */
2347 p->state = TASK_RUNNING;
2348
2349 /*
2350 * Make sure we do not leak PI boosting priority to the child.
2351 */
2352 p->prio = current->normal_prio;
2353
2354 /*
2355 * Revert to default priority/policy on fork if requested.
2356 */
2357 if (unlikely(p->sched_reset_on_fork)) {
2358 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2359 p->policy = SCHED_NORMAL;
2360 p->static_prio = NICE_TO_PRIO(0);
2361 p->rt_priority = 0;
2362 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2363 p->static_prio = NICE_TO_PRIO(0);
2364
2365 p->prio = p->normal_prio = __normal_prio(p);
2366 set_load_weight(p);
2367
2368 /*
2369 * We don't need the reset flag anymore after the fork. It has
2370 * fulfilled its duty:
2371 */
2372 p->sched_reset_on_fork = 0;
2373 }
2374
2375 if (dl_prio(p->prio)) {
2376 put_cpu();
2377 return -EAGAIN;
2378 } else if (rt_prio(p->prio)) {
2379 p->sched_class = &rt_sched_class;
2380 } else {
2381 p->sched_class = &fair_sched_class;
2382 }
2383
2384 if (p->sched_class->task_fork)
2385 p->sched_class->task_fork(p);
2386
2387 /*
2388 * The child is not yet in the pid-hash so no cgroup attach races,
2389 * and the cgroup is pinned to this child due to cgroup_fork()
2390 * is ran before sched_fork().
2391 *
2392 * Silence PROVE_RCU.
2393 */
2394 raw_spin_lock_irqsave(&p->pi_lock, flags);
2395 set_task_cpu(p, cpu);
2396 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2397
2398 #ifdef CONFIG_SCHED_INFO
2399 if (likely(sched_info_on()))
2400 memset(&p->sched_info, 0, sizeof(p->sched_info));
2401 #endif
2402 #if defined(CONFIG_SMP)
2403 p->on_cpu = 0;
2404 #endif
2405 init_task_preempt_count(p);
2406 #ifdef CONFIG_SMP
2407 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2408 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2409 #endif
2410
2411 put_cpu();
2412 return 0;
2413 }
2414
2415 unsigned long to_ratio(u64 period, u64 runtime)
2416 {
2417 if (runtime == RUNTIME_INF)
2418 return 1ULL << 20;
2419
2420 /*
2421 * Doing this here saves a lot of checks in all
2422 * the calling paths, and returning zero seems
2423 * safe for them anyway.
2424 */
2425 if (period == 0)
2426 return 0;
2427
2428 return div64_u64(runtime << 20, period);
2429 }
2430
2431 #ifdef CONFIG_SMP
2432 inline struct dl_bw *dl_bw_of(int i)
2433 {
2434 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2435 "sched RCU must be held");
2436 return &cpu_rq(i)->rd->dl_bw;
2437 }
2438
2439 static inline int dl_bw_cpus(int i)
2440 {
2441 struct root_domain *rd = cpu_rq(i)->rd;
2442 int cpus = 0;
2443
2444 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2445 "sched RCU must be held");
2446 for_each_cpu_and(i, rd->span, cpu_active_mask)
2447 cpus++;
2448
2449 return cpus;
2450 }
2451 #else
2452 inline struct dl_bw *dl_bw_of(int i)
2453 {
2454 return &cpu_rq(i)->dl.dl_bw;
2455 }
2456
2457 static inline int dl_bw_cpus(int i)
2458 {
2459 return 1;
2460 }
2461 #endif
2462
2463 /*
2464 * We must be sure that accepting a new task (or allowing changing the
2465 * parameters of an existing one) is consistent with the bandwidth
2466 * constraints. If yes, this function also accordingly updates the currently
2467 * allocated bandwidth to reflect the new situation.
2468 *
2469 * This function is called while holding p's rq->lock.
2470 *
2471 * XXX we should delay bw change until the task's 0-lag point, see
2472 * __setparam_dl().
2473 */
2474 static int dl_overflow(struct task_struct *p, int policy,
2475 const struct sched_attr *attr)
2476 {
2477
2478 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2479 u64 period = attr->sched_period ?: attr->sched_deadline;
2480 u64 runtime = attr->sched_runtime;
2481 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2482 int cpus, err = -1;
2483
2484 /* !deadline task may carry old deadline bandwidth */
2485 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2486 return 0;
2487
2488 /*
2489 * Either if a task, enters, leave, or stays -deadline but changes
2490 * its parameters, we may need to update accordingly the total
2491 * allocated bandwidth of the container.
2492 */
2493 raw_spin_lock(&dl_b->lock);
2494 cpus = dl_bw_cpus(task_cpu(p));
2495 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2496 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2497 __dl_add(dl_b, new_bw);
2498 err = 0;
2499 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2500 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2501 __dl_clear(dl_b, p->dl.dl_bw);
2502 __dl_add(dl_b, new_bw);
2503 err = 0;
2504 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2505 __dl_clear(dl_b, p->dl.dl_bw);
2506 err = 0;
2507 }
2508 raw_spin_unlock(&dl_b->lock);
2509
2510 return err;
2511 }
2512
2513 extern void init_dl_bw(struct dl_bw *dl_b);
2514
2515 /*
2516 * wake_up_new_task - wake up a newly created task for the first time.
2517 *
2518 * This function will do some initial scheduler statistics housekeeping
2519 * that must be done for every newly created context, then puts the task
2520 * on the runqueue and wakes it.
2521 */
2522 void wake_up_new_task(struct task_struct *p)
2523 {
2524 struct rq_flags rf;
2525 struct rq *rq;
2526
2527 /* Initialize new task's runnable average */
2528 init_entity_runnable_average(&p->se);
2529 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2530 #ifdef CONFIG_SMP
2531 /*
2532 * Fork balancing, do it here and not earlier because:
2533 * - cpus_allowed can change in the fork path
2534 * - any previously selected cpu might disappear through hotplug
2535 */
2536 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2537 #endif
2538 /* Post initialize new task's util average when its cfs_rq is set */
2539 post_init_entity_util_avg(&p->se);
2540
2541 rq = __task_rq_lock(p, &rf);
2542 activate_task(rq, p, 0);
2543 p->on_rq = TASK_ON_RQ_QUEUED;
2544 trace_sched_wakeup_new(p);
2545 check_preempt_curr(rq, p, WF_FORK);
2546 #ifdef CONFIG_SMP
2547 if (p->sched_class->task_woken) {
2548 /*
2549 * Nothing relies on rq->lock after this, so its fine to
2550 * drop it.
2551 */
2552 lockdep_unpin_lock(&rq->lock, rf.cookie);
2553 p->sched_class->task_woken(rq, p);
2554 lockdep_repin_lock(&rq->lock, rf.cookie);
2555 }
2556 #endif
2557 task_rq_unlock(rq, p, &rf);
2558 }
2559
2560 #ifdef CONFIG_PREEMPT_NOTIFIERS
2561
2562 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2563
2564 void preempt_notifier_inc(void)
2565 {
2566 static_key_slow_inc(&preempt_notifier_key);
2567 }
2568 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2569
2570 void preempt_notifier_dec(void)
2571 {
2572 static_key_slow_dec(&preempt_notifier_key);
2573 }
2574 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2575
2576 /**
2577 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2578 * @notifier: notifier struct to register
2579 */
2580 void preempt_notifier_register(struct preempt_notifier *notifier)
2581 {
2582 if (!static_key_false(&preempt_notifier_key))
2583 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2584
2585 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2586 }
2587 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2588
2589 /**
2590 * preempt_notifier_unregister - no longer interested in preemption notifications
2591 * @notifier: notifier struct to unregister
2592 *
2593 * This is *not* safe to call from within a preemption notifier.
2594 */
2595 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2596 {
2597 hlist_del(&notifier->link);
2598 }
2599 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2600
2601 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2602 {
2603 struct preempt_notifier *notifier;
2604
2605 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2606 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2607 }
2608
2609 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2610 {
2611 if (static_key_false(&preempt_notifier_key))
2612 __fire_sched_in_preempt_notifiers(curr);
2613 }
2614
2615 static void
2616 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2617 struct task_struct *next)
2618 {
2619 struct preempt_notifier *notifier;
2620
2621 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2622 notifier->ops->sched_out(notifier, next);
2623 }
2624
2625 static __always_inline void
2626 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2627 struct task_struct *next)
2628 {
2629 if (static_key_false(&preempt_notifier_key))
2630 __fire_sched_out_preempt_notifiers(curr, next);
2631 }
2632
2633 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2634
2635 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2636 {
2637 }
2638
2639 static inline void
2640 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2641 struct task_struct *next)
2642 {
2643 }
2644
2645 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2646
2647 /**
2648 * prepare_task_switch - prepare to switch tasks
2649 * @rq: the runqueue preparing to switch
2650 * @prev: the current task that is being switched out
2651 * @next: the task we are going to switch to.
2652 *
2653 * This is called with the rq lock held and interrupts off. It must
2654 * be paired with a subsequent finish_task_switch after the context
2655 * switch.
2656 *
2657 * prepare_task_switch sets up locking and calls architecture specific
2658 * hooks.
2659 */
2660 static inline void
2661 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2662 struct task_struct *next)
2663 {
2664 sched_info_switch(rq, prev, next);
2665 perf_event_task_sched_out(prev, next);
2666 fire_sched_out_preempt_notifiers(prev, next);
2667 prepare_lock_switch(rq, next);
2668 prepare_arch_switch(next);
2669 }
2670
2671 /**
2672 * finish_task_switch - clean up after a task-switch
2673 * @prev: the thread we just switched away from.
2674 *
2675 * finish_task_switch must be called after the context switch, paired
2676 * with a prepare_task_switch call before the context switch.
2677 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2678 * and do any other architecture-specific cleanup actions.
2679 *
2680 * Note that we may have delayed dropping an mm in context_switch(). If
2681 * so, we finish that here outside of the runqueue lock. (Doing it
2682 * with the lock held can cause deadlocks; see schedule() for
2683 * details.)
2684 *
2685 * The context switch have flipped the stack from under us and restored the
2686 * local variables which were saved when this task called schedule() in the
2687 * past. prev == current is still correct but we need to recalculate this_rq
2688 * because prev may have moved to another CPU.
2689 */
2690 static struct rq *finish_task_switch(struct task_struct *prev)
2691 __releases(rq->lock)
2692 {
2693 struct rq *rq = this_rq();
2694 struct mm_struct *mm = rq->prev_mm;
2695 long prev_state;
2696
2697 /*
2698 * The previous task will have left us with a preempt_count of 2
2699 * because it left us after:
2700 *
2701 * schedule()
2702 * preempt_disable(); // 1
2703 * __schedule()
2704 * raw_spin_lock_irq(&rq->lock) // 2
2705 *
2706 * Also, see FORK_PREEMPT_COUNT.
2707 */
2708 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2709 "corrupted preempt_count: %s/%d/0x%x\n",
2710 current->comm, current->pid, preempt_count()))
2711 preempt_count_set(FORK_PREEMPT_COUNT);
2712
2713 rq->prev_mm = NULL;
2714
2715 /*
2716 * A task struct has one reference for the use as "current".
2717 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2718 * schedule one last time. The schedule call will never return, and
2719 * the scheduled task must drop that reference.
2720 *
2721 * We must observe prev->state before clearing prev->on_cpu (in
2722 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2723 * running on another CPU and we could rave with its RUNNING -> DEAD
2724 * transition, resulting in a double drop.
2725 */
2726 prev_state = prev->state;
2727 vtime_task_switch(prev);
2728 perf_event_task_sched_in(prev, current);
2729 finish_lock_switch(rq, prev);
2730 finish_arch_post_lock_switch();
2731
2732 fire_sched_in_preempt_notifiers(current);
2733 if (mm)
2734 mmdrop(mm);
2735 if (unlikely(prev_state == TASK_DEAD)) {
2736 if (prev->sched_class->task_dead)
2737 prev->sched_class->task_dead(prev);
2738
2739 /*
2740 * Remove function-return probe instances associated with this
2741 * task and put them back on the free list.
2742 */
2743 kprobe_flush_task(prev);
2744 put_task_struct(prev);
2745 }
2746
2747 tick_nohz_task_switch();
2748 return rq;
2749 }
2750
2751 #ifdef CONFIG_SMP
2752
2753 /* rq->lock is NOT held, but preemption is disabled */
2754 static void __balance_callback(struct rq *rq)
2755 {
2756 struct callback_head *head, *next;
2757 void (*func)(struct rq *rq);
2758 unsigned long flags;
2759
2760 raw_spin_lock_irqsave(&rq->lock, flags);
2761 head = rq->balance_callback;
2762 rq->balance_callback = NULL;
2763 while (head) {
2764 func = (void (*)(struct rq *))head->func;
2765 next = head->next;
2766 head->next = NULL;
2767 head = next;
2768
2769 func(rq);
2770 }
2771 raw_spin_unlock_irqrestore(&rq->lock, flags);
2772 }
2773
2774 static inline void balance_callback(struct rq *rq)
2775 {
2776 if (unlikely(rq->balance_callback))
2777 __balance_callback(rq);
2778 }
2779
2780 #else
2781
2782 static inline void balance_callback(struct rq *rq)
2783 {
2784 }
2785
2786 #endif
2787
2788 /**
2789 * schedule_tail - first thing a freshly forked thread must call.
2790 * @prev: the thread we just switched away from.
2791 */
2792 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2793 __releases(rq->lock)
2794 {
2795 struct rq *rq;
2796
2797 /*
2798 * New tasks start with FORK_PREEMPT_COUNT, see there and
2799 * finish_task_switch() for details.
2800 *
2801 * finish_task_switch() will drop rq->lock() and lower preempt_count
2802 * and the preempt_enable() will end up enabling preemption (on
2803 * PREEMPT_COUNT kernels).
2804 */
2805
2806 rq = finish_task_switch(prev);
2807 balance_callback(rq);
2808 preempt_enable();
2809
2810 if (current->set_child_tid)
2811 put_user(task_pid_vnr(current), current->set_child_tid);
2812 }
2813
2814 /*
2815 * context_switch - switch to the new MM and the new thread's register state.
2816 */
2817 static __always_inline struct rq *
2818 context_switch(struct rq *rq, struct task_struct *prev,
2819 struct task_struct *next, struct pin_cookie cookie)
2820 {
2821 struct mm_struct *mm, *oldmm;
2822
2823 prepare_task_switch(rq, prev, next);
2824
2825 mm = next->mm;
2826 oldmm = prev->active_mm;
2827 /*
2828 * For paravirt, this is coupled with an exit in switch_to to
2829 * combine the page table reload and the switch backend into
2830 * one hypercall.
2831 */
2832 arch_start_context_switch(prev);
2833
2834 if (!mm) {
2835 next->active_mm = oldmm;
2836 atomic_inc(&oldmm->mm_count);
2837 enter_lazy_tlb(oldmm, next);
2838 } else
2839 switch_mm_irqs_off(oldmm, mm, next);
2840
2841 if (!prev->mm) {
2842 prev->active_mm = NULL;
2843 rq->prev_mm = oldmm;
2844 }
2845 /*
2846 * Since the runqueue lock will be released by the next
2847 * task (which is an invalid locking op but in the case
2848 * of the scheduler it's an obvious special-case), so we
2849 * do an early lockdep release here:
2850 */
2851 lockdep_unpin_lock(&rq->lock, cookie);
2852 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2853
2854 /* Here we just switch the register state and the stack. */
2855 switch_to(prev, next, prev);
2856 barrier();
2857
2858 return finish_task_switch(prev);
2859 }
2860
2861 /*
2862 * nr_running and nr_context_switches:
2863 *
2864 * externally visible scheduler statistics: current number of runnable
2865 * threads, total number of context switches performed since bootup.
2866 */
2867 unsigned long nr_running(void)
2868 {
2869 unsigned long i, sum = 0;
2870
2871 for_each_online_cpu(i)
2872 sum += cpu_rq(i)->nr_running;
2873
2874 return sum;
2875 }
2876
2877 /*
2878 * Check if only the current task is running on the cpu.
2879 *
2880 * Caution: this function does not check that the caller has disabled
2881 * preemption, thus the result might have a time-of-check-to-time-of-use
2882 * race. The caller is responsible to use it correctly, for example:
2883 *
2884 * - from a non-preemptable section (of course)
2885 *
2886 * - from a thread that is bound to a single CPU
2887 *
2888 * - in a loop with very short iterations (e.g. a polling loop)
2889 */
2890 bool single_task_running(void)
2891 {
2892 return raw_rq()->nr_running == 1;
2893 }
2894 EXPORT_SYMBOL(single_task_running);
2895
2896 unsigned long long nr_context_switches(void)
2897 {
2898 int i;
2899 unsigned long long sum = 0;
2900
2901 for_each_possible_cpu(i)
2902 sum += cpu_rq(i)->nr_switches;
2903
2904 return sum;
2905 }
2906
2907 unsigned long nr_iowait(void)
2908 {
2909 unsigned long i, sum = 0;
2910
2911 for_each_possible_cpu(i)
2912 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2913
2914 return sum;
2915 }
2916
2917 unsigned long nr_iowait_cpu(int cpu)
2918 {
2919 struct rq *this = cpu_rq(cpu);
2920 return atomic_read(&this->nr_iowait);
2921 }
2922
2923 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2924 {
2925 struct rq *rq = this_rq();
2926 *nr_waiters = atomic_read(&rq->nr_iowait);
2927 *load = rq->load.weight;
2928 }
2929
2930 #ifdef CONFIG_SMP
2931
2932 /*
2933 * sched_exec - execve() is a valuable balancing opportunity, because at
2934 * this point the task has the smallest effective memory and cache footprint.
2935 */
2936 void sched_exec(void)
2937 {
2938 struct task_struct *p = current;
2939 unsigned long flags;
2940 int dest_cpu;
2941
2942 raw_spin_lock_irqsave(&p->pi_lock, flags);
2943 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2944 if (dest_cpu == smp_processor_id())
2945 goto unlock;
2946
2947 if (likely(cpu_active(dest_cpu))) {
2948 struct migration_arg arg = { p, dest_cpu };
2949
2950 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2951 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2952 return;
2953 }
2954 unlock:
2955 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2956 }
2957
2958 #endif
2959
2960 DEFINE_PER_CPU(struct kernel_stat, kstat);
2961 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2962
2963 EXPORT_PER_CPU_SYMBOL(kstat);
2964 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2965
2966 /*
2967 * Return accounted runtime for the task.
2968 * In case the task is currently running, return the runtime plus current's
2969 * pending runtime that have not been accounted yet.
2970 */
2971 unsigned long long task_sched_runtime(struct task_struct *p)
2972 {
2973 struct rq_flags rf;
2974 struct rq *rq;
2975 u64 ns;
2976
2977 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2978 /*
2979 * 64-bit doesn't need locks to atomically read a 64bit value.
2980 * So we have a optimization chance when the task's delta_exec is 0.
2981 * Reading ->on_cpu is racy, but this is ok.
2982 *
2983 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2984 * If we race with it entering cpu, unaccounted time is 0. This is
2985 * indistinguishable from the read occurring a few cycles earlier.
2986 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2987 * been accounted, so we're correct here as well.
2988 */
2989 if (!p->on_cpu || !task_on_rq_queued(p))
2990 return p->se.sum_exec_runtime;
2991 #endif
2992
2993 rq = task_rq_lock(p, &rf);
2994 /*
2995 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2996 * project cycles that may never be accounted to this
2997 * thread, breaking clock_gettime().
2998 */
2999 if (task_current(rq, p) && task_on_rq_queued(p)) {
3000 update_rq_clock(rq);
3001 p->sched_class->update_curr(rq);
3002 }
3003 ns = p->se.sum_exec_runtime;
3004 task_rq_unlock(rq, p, &rf);
3005
3006 return ns;
3007 }
3008
3009 /*
3010 * This function gets called by the timer code, with HZ frequency.
3011 * We call it with interrupts disabled.
3012 */
3013 void scheduler_tick(void)
3014 {
3015 int cpu = smp_processor_id();
3016 struct rq *rq = cpu_rq(cpu);
3017 struct task_struct *curr = rq->curr;
3018
3019 sched_clock_tick();
3020
3021 raw_spin_lock(&rq->lock);
3022 update_rq_clock(rq);
3023 curr->sched_class->task_tick(rq, curr, 0);
3024 cpu_load_update_active(rq);
3025 calc_global_load_tick(rq);
3026 raw_spin_unlock(&rq->lock);
3027
3028 perf_event_task_tick();
3029
3030 #ifdef CONFIG_SMP
3031 rq->idle_balance = idle_cpu(cpu);
3032 trigger_load_balance(rq);
3033 #endif
3034 rq_last_tick_reset(rq);
3035 }
3036
3037 #ifdef CONFIG_NO_HZ_FULL
3038 /**
3039 * scheduler_tick_max_deferment
3040 *
3041 * Keep at least one tick per second when a single
3042 * active task is running because the scheduler doesn't
3043 * yet completely support full dynticks environment.
3044 *
3045 * This makes sure that uptime, CFS vruntime, load
3046 * balancing, etc... continue to move forward, even
3047 * with a very low granularity.
3048 *
3049 * Return: Maximum deferment in nanoseconds.
3050 */
3051 u64 scheduler_tick_max_deferment(void)
3052 {
3053 struct rq *rq = this_rq();
3054 unsigned long next, now = READ_ONCE(jiffies);
3055
3056 next = rq->last_sched_tick + HZ;
3057
3058 if (time_before_eq(next, now))
3059 return 0;
3060
3061 return jiffies_to_nsecs(next - now);
3062 }
3063 #endif
3064
3065 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3066 defined(CONFIG_PREEMPT_TRACER))
3067 /*
3068 * If the value passed in is equal to the current preempt count
3069 * then we just disabled preemption. Start timing the latency.
3070 */
3071 static inline void preempt_latency_start(int val)
3072 {
3073 if (preempt_count() == val) {
3074 unsigned long ip = get_lock_parent_ip();
3075 #ifdef CONFIG_DEBUG_PREEMPT
3076 current->preempt_disable_ip = ip;
3077 #endif
3078 trace_preempt_off(CALLER_ADDR0, ip);
3079 }
3080 }
3081
3082 void preempt_count_add(int val)
3083 {
3084 #ifdef CONFIG_DEBUG_PREEMPT
3085 /*
3086 * Underflow?
3087 */
3088 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3089 return;
3090 #endif
3091 __preempt_count_add(val);
3092 #ifdef CONFIG_DEBUG_PREEMPT
3093 /*
3094 * Spinlock count overflowing soon?
3095 */
3096 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3097 PREEMPT_MASK - 10);
3098 #endif
3099 preempt_latency_start(val);
3100 }
3101 EXPORT_SYMBOL(preempt_count_add);
3102 NOKPROBE_SYMBOL(preempt_count_add);
3103
3104 /*
3105 * If the value passed in equals to the current preempt count
3106 * then we just enabled preemption. Stop timing the latency.
3107 */
3108 static inline void preempt_latency_stop(int val)
3109 {
3110 if (preempt_count() == val)
3111 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3112 }
3113
3114 void preempt_count_sub(int val)
3115 {
3116 #ifdef CONFIG_DEBUG_PREEMPT
3117 /*
3118 * Underflow?
3119 */
3120 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3121 return;
3122 /*
3123 * Is the spinlock portion underflowing?
3124 */
3125 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3126 !(preempt_count() & PREEMPT_MASK)))
3127 return;
3128 #endif
3129
3130 preempt_latency_stop(val);
3131 __preempt_count_sub(val);
3132 }
3133 EXPORT_SYMBOL(preempt_count_sub);
3134 NOKPROBE_SYMBOL(preempt_count_sub);
3135
3136 #else
3137 static inline void preempt_latency_start(int val) { }
3138 static inline void preempt_latency_stop(int val) { }
3139 #endif
3140
3141 /*
3142 * Print scheduling while atomic bug:
3143 */
3144 static noinline void __schedule_bug(struct task_struct *prev)
3145 {
3146 if (oops_in_progress)
3147 return;
3148
3149 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3150 prev->comm, prev->pid, preempt_count());
3151
3152 debug_show_held_locks(prev);
3153 print_modules();
3154 if (irqs_disabled())
3155 print_irqtrace_events(prev);
3156 #ifdef CONFIG_DEBUG_PREEMPT
3157 if (in_atomic_preempt_off()) {
3158 pr_err("Preemption disabled at:");
3159 print_ip_sym(current->preempt_disable_ip);
3160 pr_cont("\n");
3161 }
3162 #endif
3163 dump_stack();
3164 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3165 }
3166
3167 /*
3168 * Various schedule()-time debugging checks and statistics:
3169 */
3170 static inline void schedule_debug(struct task_struct *prev)
3171 {
3172 #ifdef CONFIG_SCHED_STACK_END_CHECK
3173 if (task_stack_end_corrupted(prev))
3174 panic("corrupted stack end detected inside scheduler\n");
3175 #endif
3176
3177 if (unlikely(in_atomic_preempt_off())) {
3178 __schedule_bug(prev);
3179 preempt_count_set(PREEMPT_DISABLED);
3180 }
3181 rcu_sleep_check();
3182
3183 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3184
3185 schedstat_inc(this_rq(), sched_count);
3186 }
3187
3188 /*
3189 * Pick up the highest-prio task:
3190 */
3191 static inline struct task_struct *
3192 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3193 {
3194 const struct sched_class *class = &fair_sched_class;
3195 struct task_struct *p;
3196
3197 /*
3198 * Optimization: we know that if all tasks are in
3199 * the fair class we can call that function directly:
3200 */
3201 if (likely(prev->sched_class == class &&
3202 rq->nr_running == rq->cfs.h_nr_running)) {
3203 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3204 if (unlikely(p == RETRY_TASK))
3205 goto again;
3206
3207 /* assumes fair_sched_class->next == idle_sched_class */
3208 if (unlikely(!p))
3209 p = idle_sched_class.pick_next_task(rq, prev, cookie);
3210
3211 return p;
3212 }
3213
3214 again:
3215 for_each_class(class) {
3216 p = class->pick_next_task(rq, prev, cookie);
3217 if (p) {
3218 if (unlikely(p == RETRY_TASK))
3219 goto again;
3220 return p;
3221 }
3222 }
3223
3224 BUG(); /* the idle class will always have a runnable task */
3225 }
3226
3227 /*
3228 * __schedule() is the main scheduler function.
3229 *
3230 * The main means of driving the scheduler and thus entering this function are:
3231 *
3232 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3233 *
3234 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3235 * paths. For example, see arch/x86/entry_64.S.
3236 *
3237 * To drive preemption between tasks, the scheduler sets the flag in timer
3238 * interrupt handler scheduler_tick().
3239 *
3240 * 3. Wakeups don't really cause entry into schedule(). They add a
3241 * task to the run-queue and that's it.
3242 *
3243 * Now, if the new task added to the run-queue preempts the current
3244 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3245 * called on the nearest possible occasion:
3246 *
3247 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3248 *
3249 * - in syscall or exception context, at the next outmost
3250 * preempt_enable(). (this might be as soon as the wake_up()'s
3251 * spin_unlock()!)
3252 *
3253 * - in IRQ context, return from interrupt-handler to
3254 * preemptible context
3255 *
3256 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3257 * then at the next:
3258 *
3259 * - cond_resched() call
3260 * - explicit schedule() call
3261 * - return from syscall or exception to user-space
3262 * - return from interrupt-handler to user-space
3263 *
3264 * WARNING: must be called with preemption disabled!
3265 */
3266 static void __sched notrace __schedule(bool preempt)
3267 {
3268 struct task_struct *prev, *next;
3269 unsigned long *switch_count;
3270 struct pin_cookie cookie;
3271 struct rq *rq;
3272 int cpu;
3273
3274 cpu = smp_processor_id();
3275 rq = cpu_rq(cpu);
3276 prev = rq->curr;
3277
3278 /*
3279 * do_exit() calls schedule() with preemption disabled as an exception;
3280 * however we must fix that up, otherwise the next task will see an
3281 * inconsistent (higher) preempt count.
3282 *
3283 * It also avoids the below schedule_debug() test from complaining
3284 * about this.
3285 */
3286 if (unlikely(prev->state == TASK_DEAD))
3287 preempt_enable_no_resched_notrace();
3288
3289 schedule_debug(prev);
3290
3291 if (sched_feat(HRTICK))
3292 hrtick_clear(rq);
3293
3294 local_irq_disable();
3295 rcu_note_context_switch();
3296
3297 /*
3298 * Make sure that signal_pending_state()->signal_pending() below
3299 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3300 * done by the caller to avoid the race with signal_wake_up().
3301 */
3302 smp_mb__before_spinlock();
3303 raw_spin_lock(&rq->lock);
3304 cookie = lockdep_pin_lock(&rq->lock);
3305
3306 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3307
3308 switch_count = &prev->nivcsw;
3309 if (!preempt && prev->state) {
3310 if (unlikely(signal_pending_state(prev->state, prev))) {
3311 prev->state = TASK_RUNNING;
3312 } else {
3313 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3314 prev->on_rq = 0;
3315
3316 /*
3317 * If a worker went to sleep, notify and ask workqueue
3318 * whether it wants to wake up a task to maintain
3319 * concurrency.
3320 */
3321 if (prev->flags & PF_WQ_WORKER) {
3322 struct task_struct *to_wakeup;
3323
3324 to_wakeup = wq_worker_sleeping(prev);
3325 if (to_wakeup)
3326 try_to_wake_up_local(to_wakeup, cookie);
3327 }
3328 }
3329 switch_count = &prev->nvcsw;
3330 }
3331
3332 if (task_on_rq_queued(prev))
3333 update_rq_clock(rq);
3334
3335 next = pick_next_task(rq, prev, cookie);
3336 clear_tsk_need_resched(prev);
3337 clear_preempt_need_resched();
3338 rq->clock_skip_update = 0;
3339
3340 if (likely(prev != next)) {
3341 rq->nr_switches++;
3342 rq->curr = next;
3343 ++*switch_count;
3344
3345 trace_sched_switch(preempt, prev, next);
3346 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3347 } else {
3348 lockdep_unpin_lock(&rq->lock, cookie);
3349 raw_spin_unlock_irq(&rq->lock);
3350 }
3351
3352 balance_callback(rq);
3353 }
3354 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3355
3356 static inline void sched_submit_work(struct task_struct *tsk)
3357 {
3358 if (!tsk->state || tsk_is_pi_blocked(tsk))
3359 return;
3360 /*
3361 * If we are going to sleep and we have plugged IO queued,
3362 * make sure to submit it to avoid deadlocks.
3363 */
3364 if (blk_needs_flush_plug(tsk))
3365 blk_schedule_flush_plug(tsk);
3366 }
3367
3368 asmlinkage __visible void __sched schedule(void)
3369 {
3370 struct task_struct *tsk = current;
3371
3372 sched_submit_work(tsk);
3373 do {
3374 preempt_disable();
3375 __schedule(false);
3376 sched_preempt_enable_no_resched();
3377 } while (need_resched());
3378 }
3379 EXPORT_SYMBOL(schedule);
3380
3381 #ifdef CONFIG_CONTEXT_TRACKING
3382 asmlinkage __visible void __sched schedule_user(void)
3383 {
3384 /*
3385 * If we come here after a random call to set_need_resched(),
3386 * or we have been woken up remotely but the IPI has not yet arrived,
3387 * we haven't yet exited the RCU idle mode. Do it here manually until
3388 * we find a better solution.
3389 *
3390 * NB: There are buggy callers of this function. Ideally we
3391 * should warn if prev_state != CONTEXT_USER, but that will trigger
3392 * too frequently to make sense yet.
3393 */
3394 enum ctx_state prev_state = exception_enter();
3395 schedule();
3396 exception_exit(prev_state);
3397 }
3398 #endif
3399
3400 /**
3401 * schedule_preempt_disabled - called with preemption disabled
3402 *
3403 * Returns with preemption disabled. Note: preempt_count must be 1
3404 */
3405 void __sched schedule_preempt_disabled(void)
3406 {
3407 sched_preempt_enable_no_resched();
3408 schedule();
3409 preempt_disable();
3410 }
3411
3412 static void __sched notrace preempt_schedule_common(void)
3413 {
3414 do {
3415 /*
3416 * Because the function tracer can trace preempt_count_sub()
3417 * and it also uses preempt_enable/disable_notrace(), if
3418 * NEED_RESCHED is set, the preempt_enable_notrace() called
3419 * by the function tracer will call this function again and
3420 * cause infinite recursion.
3421 *
3422 * Preemption must be disabled here before the function
3423 * tracer can trace. Break up preempt_disable() into two
3424 * calls. One to disable preemption without fear of being
3425 * traced. The other to still record the preemption latency,
3426 * which can also be traced by the function tracer.
3427 */
3428 preempt_disable_notrace();
3429 preempt_latency_start(1);
3430 __schedule(true);
3431 preempt_latency_stop(1);
3432 preempt_enable_no_resched_notrace();
3433
3434 /*
3435 * Check again in case we missed a preemption opportunity
3436 * between schedule and now.
3437 */
3438 } while (need_resched());
3439 }
3440
3441 #ifdef CONFIG_PREEMPT
3442 /*
3443 * this is the entry point to schedule() from in-kernel preemption
3444 * off of preempt_enable. Kernel preemptions off return from interrupt
3445 * occur there and call schedule directly.
3446 */
3447 asmlinkage __visible void __sched notrace preempt_schedule(void)
3448 {
3449 /*
3450 * If there is a non-zero preempt_count or interrupts are disabled,
3451 * we do not want to preempt the current task. Just return..
3452 */
3453 if (likely(!preemptible()))
3454 return;
3455
3456 preempt_schedule_common();
3457 }
3458 NOKPROBE_SYMBOL(preempt_schedule);
3459 EXPORT_SYMBOL(preempt_schedule);
3460
3461 /**
3462 * preempt_schedule_notrace - preempt_schedule called by tracing
3463 *
3464 * The tracing infrastructure uses preempt_enable_notrace to prevent
3465 * recursion and tracing preempt enabling caused by the tracing
3466 * infrastructure itself. But as tracing can happen in areas coming
3467 * from userspace or just about to enter userspace, a preempt enable
3468 * can occur before user_exit() is called. This will cause the scheduler
3469 * to be called when the system is still in usermode.
3470 *
3471 * To prevent this, the preempt_enable_notrace will use this function
3472 * instead of preempt_schedule() to exit user context if needed before
3473 * calling the scheduler.
3474 */
3475 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3476 {
3477 enum ctx_state prev_ctx;
3478
3479 if (likely(!preemptible()))
3480 return;
3481
3482 do {
3483 /*
3484 * Because the function tracer can trace preempt_count_sub()
3485 * and it also uses preempt_enable/disable_notrace(), if
3486 * NEED_RESCHED is set, the preempt_enable_notrace() called
3487 * by the function tracer will call this function again and
3488 * cause infinite recursion.
3489 *
3490 * Preemption must be disabled here before the function
3491 * tracer can trace. Break up preempt_disable() into two
3492 * calls. One to disable preemption without fear of being
3493 * traced. The other to still record the preemption latency,
3494 * which can also be traced by the function tracer.
3495 */
3496 preempt_disable_notrace();
3497 preempt_latency_start(1);
3498 /*
3499 * Needs preempt disabled in case user_exit() is traced
3500 * and the tracer calls preempt_enable_notrace() causing
3501 * an infinite recursion.
3502 */
3503 prev_ctx = exception_enter();
3504 __schedule(true);
3505 exception_exit(prev_ctx);
3506
3507 preempt_latency_stop(1);
3508 preempt_enable_no_resched_notrace();
3509 } while (need_resched());
3510 }
3511 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3512
3513 #endif /* CONFIG_PREEMPT */
3514
3515 /*
3516 * this is the entry point to schedule() from kernel preemption
3517 * off of irq context.
3518 * Note, that this is called and return with irqs disabled. This will
3519 * protect us against recursive calling from irq.
3520 */
3521 asmlinkage __visible void __sched preempt_schedule_irq(void)
3522 {
3523 enum ctx_state prev_state;
3524
3525 /* Catch callers which need to be fixed */
3526 BUG_ON(preempt_count() || !irqs_disabled());
3527
3528 prev_state = exception_enter();
3529
3530 do {
3531 preempt_disable();
3532 local_irq_enable();
3533 __schedule(true);
3534 local_irq_disable();
3535 sched_preempt_enable_no_resched();
3536 } while (need_resched());
3537
3538 exception_exit(prev_state);
3539 }
3540
3541 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3542 void *key)
3543 {
3544 return try_to_wake_up(curr->private, mode, wake_flags);
3545 }
3546 EXPORT_SYMBOL(default_wake_function);
3547
3548 #ifdef CONFIG_RT_MUTEXES
3549
3550 /*
3551 * rt_mutex_setprio - set the current priority of a task
3552 * @p: task
3553 * @prio: prio value (kernel-internal form)
3554 *
3555 * This function changes the 'effective' priority of a task. It does
3556 * not touch ->normal_prio like __setscheduler().
3557 *
3558 * Used by the rt_mutex code to implement priority inheritance
3559 * logic. Call site only calls if the priority of the task changed.
3560 */
3561 void rt_mutex_setprio(struct task_struct *p, int prio)
3562 {
3563 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3564 const struct sched_class *prev_class;
3565 struct rq_flags rf;
3566 struct rq *rq;
3567
3568 BUG_ON(prio > MAX_PRIO);
3569
3570 rq = __task_rq_lock(p, &rf);
3571
3572 /*
3573 * Idle task boosting is a nono in general. There is one
3574 * exception, when PREEMPT_RT and NOHZ is active:
3575 *
3576 * The idle task calls get_next_timer_interrupt() and holds
3577 * the timer wheel base->lock on the CPU and another CPU wants
3578 * to access the timer (probably to cancel it). We can safely
3579 * ignore the boosting request, as the idle CPU runs this code
3580 * with interrupts disabled and will complete the lock
3581 * protected section without being interrupted. So there is no
3582 * real need to boost.
3583 */
3584 if (unlikely(p == rq->idle)) {
3585 WARN_ON(p != rq->curr);
3586 WARN_ON(p->pi_blocked_on);
3587 goto out_unlock;
3588 }
3589
3590 trace_sched_pi_setprio(p, prio);
3591 oldprio = p->prio;
3592
3593 if (oldprio == prio)
3594 queue_flag &= ~DEQUEUE_MOVE;
3595
3596 prev_class = p->sched_class;
3597 queued = task_on_rq_queued(p);
3598 running = task_current(rq, p);
3599 if (queued)
3600 dequeue_task(rq, p, queue_flag);
3601 if (running)
3602 put_prev_task(rq, p);
3603
3604 /*
3605 * Boosting condition are:
3606 * 1. -rt task is running and holds mutex A
3607 * --> -dl task blocks on mutex A
3608 *
3609 * 2. -dl task is running and holds mutex A
3610 * --> -dl task blocks on mutex A and could preempt the
3611 * running task
3612 */
3613 if (dl_prio(prio)) {
3614 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3615 if (!dl_prio(p->normal_prio) ||
3616 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3617 p->dl.dl_boosted = 1;
3618 queue_flag |= ENQUEUE_REPLENISH;
3619 } else
3620 p->dl.dl_boosted = 0;
3621 p->sched_class = &dl_sched_class;
3622 } else if (rt_prio(prio)) {
3623 if (dl_prio(oldprio))
3624 p->dl.dl_boosted = 0;
3625 if (oldprio < prio)
3626 queue_flag |= ENQUEUE_HEAD;
3627 p->sched_class = &rt_sched_class;
3628 } else {
3629 if (dl_prio(oldprio))
3630 p->dl.dl_boosted = 0;
3631 if (rt_prio(oldprio))
3632 p->rt.timeout = 0;
3633 p->sched_class = &fair_sched_class;
3634 }
3635
3636 p->prio = prio;
3637
3638 if (running)
3639 p->sched_class->set_curr_task(rq);
3640 if (queued)
3641 enqueue_task(rq, p, queue_flag);
3642
3643 check_class_changed(rq, p, prev_class, oldprio);
3644 out_unlock:
3645 preempt_disable(); /* avoid rq from going away on us */
3646 __task_rq_unlock(rq, &rf);
3647
3648 balance_callback(rq);
3649 preempt_enable();
3650 }
3651 #endif
3652
3653 void set_user_nice(struct task_struct *p, long nice)
3654 {
3655 int old_prio, delta, queued;
3656 struct rq_flags rf;
3657 struct rq *rq;
3658
3659 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3660 return;
3661 /*
3662 * We have to be careful, if called from sys_setpriority(),
3663 * the task might be in the middle of scheduling on another CPU.
3664 */
3665 rq = task_rq_lock(p, &rf);
3666 /*
3667 * The RT priorities are set via sched_setscheduler(), but we still
3668 * allow the 'normal' nice value to be set - but as expected
3669 * it wont have any effect on scheduling until the task is
3670 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3671 */
3672 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3673 p->static_prio = NICE_TO_PRIO(nice);
3674 goto out_unlock;
3675 }
3676 queued = task_on_rq_queued(p);
3677 if (queued)
3678 dequeue_task(rq, p, DEQUEUE_SAVE);
3679
3680 p->static_prio = NICE_TO_PRIO(nice);
3681 set_load_weight(p);
3682 old_prio = p->prio;
3683 p->prio = effective_prio(p);
3684 delta = p->prio - old_prio;
3685
3686 if (queued) {
3687 enqueue_task(rq, p, ENQUEUE_RESTORE);
3688 /*
3689 * If the task increased its priority or is running and
3690 * lowered its priority, then reschedule its CPU:
3691 */
3692 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3693 resched_curr(rq);
3694 }
3695 out_unlock:
3696 task_rq_unlock(rq, p, &rf);
3697 }
3698 EXPORT_SYMBOL(set_user_nice);
3699
3700 /*
3701 * can_nice - check if a task can reduce its nice value
3702 * @p: task
3703 * @nice: nice value
3704 */
3705 int can_nice(const struct task_struct *p, const int nice)
3706 {
3707 /* convert nice value [19,-20] to rlimit style value [1,40] */
3708 int nice_rlim = nice_to_rlimit(nice);
3709
3710 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3711 capable(CAP_SYS_NICE));
3712 }
3713
3714 #ifdef __ARCH_WANT_SYS_NICE
3715
3716 /*
3717 * sys_nice - change the priority of the current process.
3718 * @increment: priority increment
3719 *
3720 * sys_setpriority is a more generic, but much slower function that
3721 * does similar things.
3722 */
3723 SYSCALL_DEFINE1(nice, int, increment)
3724 {
3725 long nice, retval;
3726
3727 /*
3728 * Setpriority might change our priority at the same moment.
3729 * We don't have to worry. Conceptually one call occurs first
3730 * and we have a single winner.
3731 */
3732 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3733 nice = task_nice(current) + increment;
3734
3735 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3736 if (increment < 0 && !can_nice(current, nice))
3737 return -EPERM;
3738
3739 retval = security_task_setnice(current, nice);
3740 if (retval)
3741 return retval;
3742
3743 set_user_nice(current, nice);
3744 return 0;
3745 }
3746
3747 #endif
3748
3749 /**
3750 * task_prio - return the priority value of a given task.
3751 * @p: the task in question.
3752 *
3753 * Return: The priority value as seen by users in /proc.
3754 * RT tasks are offset by -200. Normal tasks are centered
3755 * around 0, value goes from -16 to +15.
3756 */
3757 int task_prio(const struct task_struct *p)
3758 {
3759 return p->prio - MAX_RT_PRIO;
3760 }
3761
3762 /**
3763 * idle_cpu - is a given cpu idle currently?
3764 * @cpu: the processor in question.
3765 *
3766 * Return: 1 if the CPU is currently idle. 0 otherwise.
3767 */
3768 int idle_cpu(int cpu)
3769 {
3770 struct rq *rq = cpu_rq(cpu);
3771
3772 if (rq->curr != rq->idle)
3773 return 0;
3774
3775 if (rq->nr_running)
3776 return 0;
3777
3778 #ifdef CONFIG_SMP
3779 if (!llist_empty(&rq->wake_list))
3780 return 0;
3781 #endif
3782
3783 return 1;
3784 }
3785
3786 /**
3787 * idle_task - return the idle task for a given cpu.
3788 * @cpu: the processor in question.
3789 *
3790 * Return: The idle task for the cpu @cpu.
3791 */
3792 struct task_struct *idle_task(int cpu)
3793 {
3794 return cpu_rq(cpu)->idle;
3795 }
3796
3797 /**
3798 * find_process_by_pid - find a process with a matching PID value.
3799 * @pid: the pid in question.
3800 *
3801 * The task of @pid, if found. %NULL otherwise.
3802 */
3803 static struct task_struct *find_process_by_pid(pid_t pid)
3804 {
3805 return pid ? find_task_by_vpid(pid) : current;
3806 }
3807
3808 /*
3809 * This function initializes the sched_dl_entity of a newly becoming
3810 * SCHED_DEADLINE task.
3811 *
3812 * Only the static values are considered here, the actual runtime and the
3813 * absolute deadline will be properly calculated when the task is enqueued
3814 * for the first time with its new policy.
3815 */
3816 static void
3817 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3818 {
3819 struct sched_dl_entity *dl_se = &p->dl;
3820
3821 dl_se->dl_runtime = attr->sched_runtime;
3822 dl_se->dl_deadline = attr->sched_deadline;
3823 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3824 dl_se->flags = attr->sched_flags;
3825 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3826
3827 /*
3828 * Changing the parameters of a task is 'tricky' and we're not doing
3829 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3830 *
3831 * What we SHOULD do is delay the bandwidth release until the 0-lag
3832 * point. This would include retaining the task_struct until that time
3833 * and change dl_overflow() to not immediately decrement the current
3834 * amount.
3835 *
3836 * Instead we retain the current runtime/deadline and let the new
3837 * parameters take effect after the current reservation period lapses.
3838 * This is safe (albeit pessimistic) because the 0-lag point is always
3839 * before the current scheduling deadline.
3840 *
3841 * We can still have temporary overloads because we do not delay the
3842 * change in bandwidth until that time; so admission control is
3843 * not on the safe side. It does however guarantee tasks will never
3844 * consume more than promised.
3845 */
3846 }
3847
3848 /*
3849 * sched_setparam() passes in -1 for its policy, to let the functions
3850 * it calls know not to change it.
3851 */
3852 #define SETPARAM_POLICY -1
3853
3854 static void __setscheduler_params(struct task_struct *p,
3855 const struct sched_attr *attr)
3856 {
3857 int policy = attr->sched_policy;
3858
3859 if (policy == SETPARAM_POLICY)
3860 policy = p->policy;
3861
3862 p->policy = policy;
3863
3864 if (dl_policy(policy))
3865 __setparam_dl(p, attr);
3866 else if (fair_policy(policy))
3867 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3868
3869 /*
3870 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3871 * !rt_policy. Always setting this ensures that things like
3872 * getparam()/getattr() don't report silly values for !rt tasks.
3873 */
3874 p->rt_priority = attr->sched_priority;
3875 p->normal_prio = normal_prio(p);
3876 set_load_weight(p);
3877 }
3878
3879 /* Actually do priority change: must hold pi & rq lock. */
3880 static void __setscheduler(struct rq *rq, struct task_struct *p,
3881 const struct sched_attr *attr, bool keep_boost)
3882 {
3883 __setscheduler_params(p, attr);
3884
3885 /*
3886 * Keep a potential priority boosting if called from
3887 * sched_setscheduler().
3888 */
3889 if (keep_boost)
3890 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3891 else
3892 p->prio = normal_prio(p);
3893
3894 if (dl_prio(p->prio))
3895 p->sched_class = &dl_sched_class;
3896 else if (rt_prio(p->prio))
3897 p->sched_class = &rt_sched_class;
3898 else
3899 p->sched_class = &fair_sched_class;
3900 }
3901
3902 static void
3903 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3904 {
3905 struct sched_dl_entity *dl_se = &p->dl;
3906
3907 attr->sched_priority = p->rt_priority;
3908 attr->sched_runtime = dl_se->dl_runtime;
3909 attr->sched_deadline = dl_se->dl_deadline;
3910 attr->sched_period = dl_se->dl_period;
3911 attr->sched_flags = dl_se->flags;
3912 }
3913
3914 /*
3915 * This function validates the new parameters of a -deadline task.
3916 * We ask for the deadline not being zero, and greater or equal
3917 * than the runtime, as well as the period of being zero or
3918 * greater than deadline. Furthermore, we have to be sure that
3919 * user parameters are above the internal resolution of 1us (we
3920 * check sched_runtime only since it is always the smaller one) and
3921 * below 2^63 ns (we have to check both sched_deadline and
3922 * sched_period, as the latter can be zero).
3923 */
3924 static bool
3925 __checkparam_dl(const struct sched_attr *attr)
3926 {
3927 /* deadline != 0 */
3928 if (attr->sched_deadline == 0)
3929 return false;
3930
3931 /*
3932 * Since we truncate DL_SCALE bits, make sure we're at least
3933 * that big.
3934 */
3935 if (attr->sched_runtime < (1ULL << DL_SCALE))
3936 return false;
3937
3938 /*
3939 * Since we use the MSB for wrap-around and sign issues, make
3940 * sure it's not set (mind that period can be equal to zero).
3941 */
3942 if (attr->sched_deadline & (1ULL << 63) ||
3943 attr->sched_period & (1ULL << 63))
3944 return false;
3945
3946 /* runtime <= deadline <= period (if period != 0) */
3947 if ((attr->sched_period != 0 &&
3948 attr->sched_period < attr->sched_deadline) ||
3949 attr->sched_deadline < attr->sched_runtime)
3950 return false;
3951
3952 return true;
3953 }
3954
3955 /*
3956 * check the target process has a UID that matches the current process's
3957 */
3958 static bool check_same_owner(struct task_struct *p)
3959 {
3960 const struct cred *cred = current_cred(), *pcred;
3961 bool match;
3962
3963 rcu_read_lock();
3964 pcred = __task_cred(p);
3965 match = (uid_eq(cred->euid, pcred->euid) ||
3966 uid_eq(cred->euid, pcred->uid));
3967 rcu_read_unlock();
3968 return match;
3969 }
3970
3971 static bool dl_param_changed(struct task_struct *p,
3972 const struct sched_attr *attr)
3973 {
3974 struct sched_dl_entity *dl_se = &p->dl;
3975
3976 if (dl_se->dl_runtime != attr->sched_runtime ||
3977 dl_se->dl_deadline != attr->sched_deadline ||
3978 dl_se->dl_period != attr->sched_period ||
3979 dl_se->flags != attr->sched_flags)
3980 return true;
3981
3982 return false;
3983 }
3984
3985 static int __sched_setscheduler(struct task_struct *p,
3986 const struct sched_attr *attr,
3987 bool user, bool pi)
3988 {
3989 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3990 MAX_RT_PRIO - 1 - attr->sched_priority;
3991 int retval, oldprio, oldpolicy = -1, queued, running;
3992 int new_effective_prio, policy = attr->sched_policy;
3993 const struct sched_class *prev_class;
3994 struct rq_flags rf;
3995 int reset_on_fork;
3996 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3997 struct rq *rq;
3998
3999 /* may grab non-irq protected spin_locks */
4000 BUG_ON(in_interrupt());
4001 recheck:
4002 /* double check policy once rq lock held */
4003 if (policy < 0) {
4004 reset_on_fork = p->sched_reset_on_fork;
4005 policy = oldpolicy = p->policy;
4006 } else {
4007 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4008
4009 if (!valid_policy(policy))
4010 return -EINVAL;
4011 }
4012
4013 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4014 return -EINVAL;
4015
4016 /*
4017 * Valid priorities for SCHED_FIFO and SCHED_RR are
4018 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4019 * SCHED_BATCH and SCHED_IDLE is 0.
4020 */
4021 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4022 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4023 return -EINVAL;
4024 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4025 (rt_policy(policy) != (attr->sched_priority != 0)))
4026 return -EINVAL;
4027
4028 /*
4029 * Allow unprivileged RT tasks to decrease priority:
4030 */
4031 if (user && !capable(CAP_SYS_NICE)) {
4032 if (fair_policy(policy)) {
4033 if (attr->sched_nice < task_nice(p) &&
4034 !can_nice(p, attr->sched_nice))
4035 return -EPERM;
4036 }
4037
4038 if (rt_policy(policy)) {
4039 unsigned long rlim_rtprio =
4040 task_rlimit(p, RLIMIT_RTPRIO);
4041
4042 /* can't set/change the rt policy */
4043 if (policy != p->policy && !rlim_rtprio)
4044 return -EPERM;
4045
4046 /* can't increase priority */
4047 if (attr->sched_priority > p->rt_priority &&
4048 attr->sched_priority > rlim_rtprio)
4049 return -EPERM;
4050 }
4051
4052 /*
4053 * Can't set/change SCHED_DEADLINE policy at all for now
4054 * (safest behavior); in the future we would like to allow
4055 * unprivileged DL tasks to increase their relative deadline
4056 * or reduce their runtime (both ways reducing utilization)
4057 */
4058 if (dl_policy(policy))
4059 return -EPERM;
4060
4061 /*
4062 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4063 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4064 */
4065 if (idle_policy(p->policy) && !idle_policy(policy)) {
4066 if (!can_nice(p, task_nice(p)))
4067 return -EPERM;
4068 }
4069
4070 /* can't change other user's priorities */
4071 if (!check_same_owner(p))
4072 return -EPERM;
4073
4074 /* Normal users shall not reset the sched_reset_on_fork flag */
4075 if (p->sched_reset_on_fork && !reset_on_fork)
4076 return -EPERM;
4077 }
4078
4079 if (user) {
4080 retval = security_task_setscheduler(p);
4081 if (retval)
4082 return retval;
4083 }
4084
4085 /*
4086 * make sure no PI-waiters arrive (or leave) while we are
4087 * changing the priority of the task:
4088 *
4089 * To be able to change p->policy safely, the appropriate
4090 * runqueue lock must be held.
4091 */
4092 rq = task_rq_lock(p, &rf);
4093
4094 /*
4095 * Changing the policy of the stop threads its a very bad idea
4096 */
4097 if (p == rq->stop) {
4098 task_rq_unlock(rq, p, &rf);
4099 return -EINVAL;
4100 }
4101
4102 /*
4103 * If not changing anything there's no need to proceed further,
4104 * but store a possible modification of reset_on_fork.
4105 */
4106 if (unlikely(policy == p->policy)) {
4107 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4108 goto change;
4109 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4110 goto change;
4111 if (dl_policy(policy) && dl_param_changed(p, attr))
4112 goto change;
4113
4114 p->sched_reset_on_fork = reset_on_fork;
4115 task_rq_unlock(rq, p, &rf);
4116 return 0;
4117 }
4118 change:
4119
4120 if (user) {
4121 #ifdef CONFIG_RT_GROUP_SCHED
4122 /*
4123 * Do not allow realtime tasks into groups that have no runtime
4124 * assigned.
4125 */
4126 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4127 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4128 !task_group_is_autogroup(task_group(p))) {
4129 task_rq_unlock(rq, p, &rf);
4130 return -EPERM;
4131 }
4132 #endif
4133 #ifdef CONFIG_SMP
4134 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4135 cpumask_t *span = rq->rd->span;
4136
4137 /*
4138 * Don't allow tasks with an affinity mask smaller than
4139 * the entire root_domain to become SCHED_DEADLINE. We
4140 * will also fail if there's no bandwidth available.
4141 */
4142 if (!cpumask_subset(span, &p->cpus_allowed) ||
4143 rq->rd->dl_bw.bw == 0) {
4144 task_rq_unlock(rq, p, &rf);
4145 return -EPERM;
4146 }
4147 }
4148 #endif
4149 }
4150
4151 /* recheck policy now with rq lock held */
4152 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4153 policy = oldpolicy = -1;
4154 task_rq_unlock(rq, p, &rf);
4155 goto recheck;
4156 }
4157
4158 /*
4159 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4160 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4161 * is available.
4162 */
4163 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4164 task_rq_unlock(rq, p, &rf);
4165 return -EBUSY;
4166 }
4167
4168 p->sched_reset_on_fork = reset_on_fork;
4169 oldprio = p->prio;
4170
4171 if (pi) {
4172 /*
4173 * Take priority boosted tasks into account. If the new
4174 * effective priority is unchanged, we just store the new
4175 * normal parameters and do not touch the scheduler class and
4176 * the runqueue. This will be done when the task deboost
4177 * itself.
4178 */
4179 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4180 if (new_effective_prio == oldprio)
4181 queue_flags &= ~DEQUEUE_MOVE;
4182 }
4183
4184 queued = task_on_rq_queued(p);
4185 running = task_current(rq, p);
4186 if (queued)
4187 dequeue_task(rq, p, queue_flags);
4188 if (running)
4189 put_prev_task(rq, p);
4190
4191 prev_class = p->sched_class;
4192 __setscheduler(rq, p, attr, pi);
4193
4194 if (running)
4195 p->sched_class->set_curr_task(rq);
4196 if (queued) {
4197 /*
4198 * We enqueue to tail when the priority of a task is
4199 * increased (user space view).
4200 */
4201 if (oldprio < p->prio)
4202 queue_flags |= ENQUEUE_HEAD;
4203
4204 enqueue_task(rq, p, queue_flags);
4205 }
4206
4207 check_class_changed(rq, p, prev_class, oldprio);
4208 preempt_disable(); /* avoid rq from going away on us */
4209 task_rq_unlock(rq, p, &rf);
4210
4211 if (pi)
4212 rt_mutex_adjust_pi(p);
4213
4214 /*
4215 * Run balance callbacks after we've adjusted the PI chain.
4216 */
4217 balance_callback(rq);
4218 preempt_enable();
4219
4220 return 0;
4221 }
4222
4223 static int _sched_setscheduler(struct task_struct *p, int policy,
4224 const struct sched_param *param, bool check)
4225 {
4226 struct sched_attr attr = {
4227 .sched_policy = policy,
4228 .sched_priority = param->sched_priority,
4229 .sched_nice = PRIO_TO_NICE(p->static_prio),
4230 };
4231
4232 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4233 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4234 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4235 policy &= ~SCHED_RESET_ON_FORK;
4236 attr.sched_policy = policy;
4237 }
4238
4239 return __sched_setscheduler(p, &attr, check, true);
4240 }
4241 /**
4242 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4243 * @p: the task in question.
4244 * @policy: new policy.
4245 * @param: structure containing the new RT priority.
4246 *
4247 * Return: 0 on success. An error code otherwise.
4248 *
4249 * NOTE that the task may be already dead.
4250 */
4251 int sched_setscheduler(struct task_struct *p, int policy,
4252 const struct sched_param *param)
4253 {
4254 return _sched_setscheduler(p, policy, param, true);
4255 }
4256 EXPORT_SYMBOL_GPL(sched_setscheduler);
4257
4258 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4259 {
4260 return __sched_setscheduler(p, attr, true, true);
4261 }
4262 EXPORT_SYMBOL_GPL(sched_setattr);
4263
4264 /**
4265 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4266 * @p: the task in question.
4267 * @policy: new policy.
4268 * @param: structure containing the new RT priority.
4269 *
4270 * Just like sched_setscheduler, only don't bother checking if the
4271 * current context has permission. For example, this is needed in
4272 * stop_machine(): we create temporary high priority worker threads,
4273 * but our caller might not have that capability.
4274 *
4275 * Return: 0 on success. An error code otherwise.
4276 */
4277 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4278 const struct sched_param *param)
4279 {
4280 return _sched_setscheduler(p, policy, param, false);
4281 }
4282 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4283
4284 static int
4285 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4286 {
4287 struct sched_param lparam;
4288 struct task_struct *p;
4289 int retval;
4290
4291 if (!param || pid < 0)
4292 return -EINVAL;
4293 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4294 return -EFAULT;
4295
4296 rcu_read_lock();
4297 retval = -ESRCH;
4298 p = find_process_by_pid(pid);
4299 if (p != NULL)
4300 retval = sched_setscheduler(p, policy, &lparam);
4301 rcu_read_unlock();
4302
4303 return retval;
4304 }
4305
4306 /*
4307 * Mimics kernel/events/core.c perf_copy_attr().
4308 */
4309 static int sched_copy_attr(struct sched_attr __user *uattr,
4310 struct sched_attr *attr)
4311 {
4312 u32 size;
4313 int ret;
4314
4315 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4316 return -EFAULT;
4317
4318 /*
4319 * zero the full structure, so that a short copy will be nice.
4320 */
4321 memset(attr, 0, sizeof(*attr));
4322
4323 ret = get_user(size, &uattr->size);
4324 if (ret)
4325 return ret;
4326
4327 if (size > PAGE_SIZE) /* silly large */
4328 goto err_size;
4329
4330 if (!size) /* abi compat */
4331 size = SCHED_ATTR_SIZE_VER0;
4332
4333 if (size < SCHED_ATTR_SIZE_VER0)
4334 goto err_size;
4335
4336 /*
4337 * If we're handed a bigger struct than we know of,
4338 * ensure all the unknown bits are 0 - i.e. new
4339 * user-space does not rely on any kernel feature
4340 * extensions we dont know about yet.
4341 */
4342 if (size > sizeof(*attr)) {
4343 unsigned char __user *addr;
4344 unsigned char __user *end;
4345 unsigned char val;
4346
4347 addr = (void __user *)uattr + sizeof(*attr);
4348 end = (void __user *)uattr + size;
4349
4350 for (; addr < end; addr++) {
4351 ret = get_user(val, addr);
4352 if (ret)
4353 return ret;
4354 if (val)
4355 goto err_size;
4356 }
4357 size = sizeof(*attr);
4358 }
4359
4360 ret = copy_from_user(attr, uattr, size);
4361 if (ret)
4362 return -EFAULT;
4363
4364 /*
4365 * XXX: do we want to be lenient like existing syscalls; or do we want
4366 * to be strict and return an error on out-of-bounds values?
4367 */
4368 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4369
4370 return 0;
4371
4372 err_size:
4373 put_user(sizeof(*attr), &uattr->size);
4374 return -E2BIG;
4375 }
4376
4377 /**
4378 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4379 * @pid: the pid in question.
4380 * @policy: new policy.
4381 * @param: structure containing the new RT priority.
4382 *
4383 * Return: 0 on success. An error code otherwise.
4384 */
4385 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4386 struct sched_param __user *, param)
4387 {
4388 /* negative values for policy are not valid */
4389 if (policy < 0)
4390 return -EINVAL;
4391
4392 return do_sched_setscheduler(pid, policy, param);
4393 }
4394
4395 /**
4396 * sys_sched_setparam - set/change the RT priority of a thread
4397 * @pid: the pid in question.
4398 * @param: structure containing the new RT priority.
4399 *
4400 * Return: 0 on success. An error code otherwise.
4401 */
4402 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4403 {
4404 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4405 }
4406
4407 /**
4408 * sys_sched_setattr - same as above, but with extended sched_attr
4409 * @pid: the pid in question.
4410 * @uattr: structure containing the extended parameters.
4411 * @flags: for future extension.
4412 */
4413 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4414 unsigned int, flags)
4415 {
4416 struct sched_attr attr;
4417 struct task_struct *p;
4418 int retval;
4419
4420 if (!uattr || pid < 0 || flags)
4421 return -EINVAL;
4422
4423 retval = sched_copy_attr(uattr, &attr);
4424 if (retval)
4425 return retval;
4426
4427 if ((int)attr.sched_policy < 0)
4428 return -EINVAL;
4429
4430 rcu_read_lock();
4431 retval = -ESRCH;
4432 p = find_process_by_pid(pid);
4433 if (p != NULL)
4434 retval = sched_setattr(p, &attr);
4435 rcu_read_unlock();
4436
4437 return retval;
4438 }
4439
4440 /**
4441 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4442 * @pid: the pid in question.
4443 *
4444 * Return: On success, the policy of the thread. Otherwise, a negative error
4445 * code.
4446 */
4447 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4448 {
4449 struct task_struct *p;
4450 int retval;
4451
4452 if (pid < 0)
4453 return -EINVAL;
4454
4455 retval = -ESRCH;
4456 rcu_read_lock();
4457 p = find_process_by_pid(pid);
4458 if (p) {
4459 retval = security_task_getscheduler(p);
4460 if (!retval)
4461 retval = p->policy
4462 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4463 }
4464 rcu_read_unlock();
4465 return retval;
4466 }
4467
4468 /**
4469 * sys_sched_getparam - get the RT priority of a thread
4470 * @pid: the pid in question.
4471 * @param: structure containing the RT priority.
4472 *
4473 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4474 * code.
4475 */
4476 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4477 {
4478 struct sched_param lp = { .sched_priority = 0 };
4479 struct task_struct *p;
4480 int retval;
4481
4482 if (!param || pid < 0)
4483 return -EINVAL;
4484
4485 rcu_read_lock();
4486 p = find_process_by_pid(pid);
4487 retval = -ESRCH;
4488 if (!p)
4489 goto out_unlock;
4490
4491 retval = security_task_getscheduler(p);
4492 if (retval)
4493 goto out_unlock;
4494
4495 if (task_has_rt_policy(p))
4496 lp.sched_priority = p->rt_priority;
4497 rcu_read_unlock();
4498
4499 /*
4500 * This one might sleep, we cannot do it with a spinlock held ...
4501 */
4502 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4503
4504 return retval;
4505
4506 out_unlock:
4507 rcu_read_unlock();
4508 return retval;
4509 }
4510
4511 static int sched_read_attr(struct sched_attr __user *uattr,
4512 struct sched_attr *attr,
4513 unsigned int usize)
4514 {
4515 int ret;
4516
4517 if (!access_ok(VERIFY_WRITE, uattr, usize))
4518 return -EFAULT;
4519
4520 /*
4521 * If we're handed a smaller struct than we know of,
4522 * ensure all the unknown bits are 0 - i.e. old
4523 * user-space does not get uncomplete information.
4524 */
4525 if (usize < sizeof(*attr)) {
4526 unsigned char *addr;
4527 unsigned char *end;
4528
4529 addr = (void *)attr + usize;
4530 end = (void *)attr + sizeof(*attr);
4531
4532 for (; addr < end; addr++) {
4533 if (*addr)
4534 return -EFBIG;
4535 }
4536
4537 attr->size = usize;
4538 }
4539
4540 ret = copy_to_user(uattr, attr, attr->size);
4541 if (ret)
4542 return -EFAULT;
4543
4544 return 0;
4545 }
4546
4547 /**
4548 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4549 * @pid: the pid in question.
4550 * @uattr: structure containing the extended parameters.
4551 * @size: sizeof(attr) for fwd/bwd comp.
4552 * @flags: for future extension.
4553 */
4554 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4555 unsigned int, size, unsigned int, flags)
4556 {
4557 struct sched_attr attr = {
4558 .size = sizeof(struct sched_attr),
4559 };
4560 struct task_struct *p;
4561 int retval;
4562
4563 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4564 size < SCHED_ATTR_SIZE_VER0 || flags)
4565 return -EINVAL;
4566
4567 rcu_read_lock();
4568 p = find_process_by_pid(pid);
4569 retval = -ESRCH;
4570 if (!p)
4571 goto out_unlock;
4572
4573 retval = security_task_getscheduler(p);
4574 if (retval)
4575 goto out_unlock;
4576
4577 attr.sched_policy = p->policy;
4578 if (p->sched_reset_on_fork)
4579 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4580 if (task_has_dl_policy(p))
4581 __getparam_dl(p, &attr);
4582 else if (task_has_rt_policy(p))
4583 attr.sched_priority = p->rt_priority;
4584 else
4585 attr.sched_nice = task_nice(p);
4586
4587 rcu_read_unlock();
4588
4589 retval = sched_read_attr(uattr, &attr, size);
4590 return retval;
4591
4592 out_unlock:
4593 rcu_read_unlock();
4594 return retval;
4595 }
4596
4597 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4598 {
4599 cpumask_var_t cpus_allowed, new_mask;
4600 struct task_struct *p;
4601 int retval;
4602
4603 rcu_read_lock();
4604
4605 p = find_process_by_pid(pid);
4606 if (!p) {
4607 rcu_read_unlock();
4608 return -ESRCH;
4609 }
4610
4611 /* Prevent p going away */
4612 get_task_struct(p);
4613 rcu_read_unlock();
4614
4615 if (p->flags & PF_NO_SETAFFINITY) {
4616 retval = -EINVAL;
4617 goto out_put_task;
4618 }
4619 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4620 retval = -ENOMEM;
4621 goto out_put_task;
4622 }
4623 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4624 retval = -ENOMEM;
4625 goto out_free_cpus_allowed;
4626 }
4627 retval = -EPERM;
4628 if (!check_same_owner(p)) {
4629 rcu_read_lock();
4630 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4631 rcu_read_unlock();
4632 goto out_free_new_mask;
4633 }
4634 rcu_read_unlock();
4635 }
4636
4637 retval = security_task_setscheduler(p);
4638 if (retval)
4639 goto out_free_new_mask;
4640
4641
4642 cpuset_cpus_allowed(p, cpus_allowed);
4643 cpumask_and(new_mask, in_mask, cpus_allowed);
4644
4645 /*
4646 * Since bandwidth control happens on root_domain basis,
4647 * if admission test is enabled, we only admit -deadline
4648 * tasks allowed to run on all the CPUs in the task's
4649 * root_domain.
4650 */
4651 #ifdef CONFIG_SMP
4652 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4653 rcu_read_lock();
4654 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4655 retval = -EBUSY;
4656 rcu_read_unlock();
4657 goto out_free_new_mask;
4658 }
4659 rcu_read_unlock();
4660 }
4661 #endif
4662 again:
4663 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4664
4665 if (!retval) {
4666 cpuset_cpus_allowed(p, cpus_allowed);
4667 if (!cpumask_subset(new_mask, cpus_allowed)) {
4668 /*
4669 * We must have raced with a concurrent cpuset
4670 * update. Just reset the cpus_allowed to the
4671 * cpuset's cpus_allowed
4672 */
4673 cpumask_copy(new_mask, cpus_allowed);
4674 goto again;
4675 }
4676 }
4677 out_free_new_mask:
4678 free_cpumask_var(new_mask);
4679 out_free_cpus_allowed:
4680 free_cpumask_var(cpus_allowed);
4681 out_put_task:
4682 put_task_struct(p);
4683 return retval;
4684 }
4685
4686 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4687 struct cpumask *new_mask)
4688 {
4689 if (len < cpumask_size())
4690 cpumask_clear(new_mask);
4691 else if (len > cpumask_size())
4692 len = cpumask_size();
4693
4694 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4695 }
4696
4697 /**
4698 * sys_sched_setaffinity - set the cpu affinity of a process
4699 * @pid: pid of the process
4700 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4701 * @user_mask_ptr: user-space pointer to the new cpu mask
4702 *
4703 * Return: 0 on success. An error code otherwise.
4704 */
4705 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4706 unsigned long __user *, user_mask_ptr)
4707 {
4708 cpumask_var_t new_mask;
4709 int retval;
4710
4711 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4712 return -ENOMEM;
4713
4714 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4715 if (retval == 0)
4716 retval = sched_setaffinity(pid, new_mask);
4717 free_cpumask_var(new_mask);
4718 return retval;
4719 }
4720
4721 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4722 {
4723 struct task_struct *p;
4724 unsigned long flags;
4725 int retval;
4726
4727 rcu_read_lock();
4728
4729 retval = -ESRCH;
4730 p = find_process_by_pid(pid);
4731 if (!p)
4732 goto out_unlock;
4733
4734 retval = security_task_getscheduler(p);
4735 if (retval)
4736 goto out_unlock;
4737
4738 raw_spin_lock_irqsave(&p->pi_lock, flags);
4739 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4740 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4741
4742 out_unlock:
4743 rcu_read_unlock();
4744
4745 return retval;
4746 }
4747
4748 /**
4749 * sys_sched_getaffinity - get the cpu affinity of a process
4750 * @pid: pid of the process
4751 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4752 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4753 *
4754 * Return: 0 on success. An error code otherwise.
4755 */
4756 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4757 unsigned long __user *, user_mask_ptr)
4758 {
4759 int ret;
4760 cpumask_var_t mask;
4761
4762 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4763 return -EINVAL;
4764 if (len & (sizeof(unsigned long)-1))
4765 return -EINVAL;
4766
4767 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4768 return -ENOMEM;
4769
4770 ret = sched_getaffinity(pid, mask);
4771 if (ret == 0) {
4772 size_t retlen = min_t(size_t, len, cpumask_size());
4773
4774 if (copy_to_user(user_mask_ptr, mask, retlen))
4775 ret = -EFAULT;
4776 else
4777 ret = retlen;
4778 }
4779 free_cpumask_var(mask);
4780
4781 return ret;
4782 }
4783
4784 /**
4785 * sys_sched_yield - yield the current processor to other threads.
4786 *
4787 * This function yields the current CPU to other tasks. If there are no
4788 * other threads running on this CPU then this function will return.
4789 *
4790 * Return: 0.
4791 */
4792 SYSCALL_DEFINE0(sched_yield)
4793 {
4794 struct rq *rq = this_rq_lock();
4795
4796 schedstat_inc(rq, yld_count);
4797 current->sched_class->yield_task(rq);
4798
4799 /*
4800 * Since we are going to call schedule() anyway, there's
4801 * no need to preempt or enable interrupts:
4802 */
4803 __release(rq->lock);
4804 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4805 do_raw_spin_unlock(&rq->lock);
4806 sched_preempt_enable_no_resched();
4807
4808 schedule();
4809
4810 return 0;
4811 }
4812
4813 int __sched _cond_resched(void)
4814 {
4815 if (should_resched(0)) {
4816 preempt_schedule_common();
4817 return 1;
4818 }
4819 return 0;
4820 }
4821 EXPORT_SYMBOL(_cond_resched);
4822
4823 /*
4824 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4825 * call schedule, and on return reacquire the lock.
4826 *
4827 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4828 * operations here to prevent schedule() from being called twice (once via
4829 * spin_unlock(), once by hand).
4830 */
4831 int __cond_resched_lock(spinlock_t *lock)
4832 {
4833 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4834 int ret = 0;
4835
4836 lockdep_assert_held(lock);
4837
4838 if (spin_needbreak(lock) || resched) {
4839 spin_unlock(lock);
4840 if (resched)
4841 preempt_schedule_common();
4842 else
4843 cpu_relax();
4844 ret = 1;
4845 spin_lock(lock);
4846 }
4847 return ret;
4848 }
4849 EXPORT_SYMBOL(__cond_resched_lock);
4850
4851 int __sched __cond_resched_softirq(void)
4852 {
4853 BUG_ON(!in_softirq());
4854
4855 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4856 local_bh_enable();
4857 preempt_schedule_common();
4858 local_bh_disable();
4859 return 1;
4860 }
4861 return 0;
4862 }
4863 EXPORT_SYMBOL(__cond_resched_softirq);
4864
4865 /**
4866 * yield - yield the current processor to other threads.
4867 *
4868 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4869 *
4870 * The scheduler is at all times free to pick the calling task as the most
4871 * eligible task to run, if removing the yield() call from your code breaks
4872 * it, its already broken.
4873 *
4874 * Typical broken usage is:
4875 *
4876 * while (!event)
4877 * yield();
4878 *
4879 * where one assumes that yield() will let 'the other' process run that will
4880 * make event true. If the current task is a SCHED_FIFO task that will never
4881 * happen. Never use yield() as a progress guarantee!!
4882 *
4883 * If you want to use yield() to wait for something, use wait_event().
4884 * If you want to use yield() to be 'nice' for others, use cond_resched().
4885 * If you still want to use yield(), do not!
4886 */
4887 void __sched yield(void)
4888 {
4889 set_current_state(TASK_RUNNING);
4890 sys_sched_yield();
4891 }
4892 EXPORT_SYMBOL(yield);
4893
4894 /**
4895 * yield_to - yield the current processor to another thread in
4896 * your thread group, or accelerate that thread toward the
4897 * processor it's on.
4898 * @p: target task
4899 * @preempt: whether task preemption is allowed or not
4900 *
4901 * It's the caller's job to ensure that the target task struct
4902 * can't go away on us before we can do any checks.
4903 *
4904 * Return:
4905 * true (>0) if we indeed boosted the target task.
4906 * false (0) if we failed to boost the target.
4907 * -ESRCH if there's no task to yield to.
4908 */
4909 int __sched yield_to(struct task_struct *p, bool preempt)
4910 {
4911 struct task_struct *curr = current;
4912 struct rq *rq, *p_rq;
4913 unsigned long flags;
4914 int yielded = 0;
4915
4916 local_irq_save(flags);
4917 rq = this_rq();
4918
4919 again:
4920 p_rq = task_rq(p);
4921 /*
4922 * If we're the only runnable task on the rq and target rq also
4923 * has only one task, there's absolutely no point in yielding.
4924 */
4925 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4926 yielded = -ESRCH;
4927 goto out_irq;
4928 }
4929
4930 double_rq_lock(rq, p_rq);
4931 if (task_rq(p) != p_rq) {
4932 double_rq_unlock(rq, p_rq);
4933 goto again;
4934 }
4935
4936 if (!curr->sched_class->yield_to_task)
4937 goto out_unlock;
4938
4939 if (curr->sched_class != p->sched_class)
4940 goto out_unlock;
4941
4942 if (task_running(p_rq, p) || p->state)
4943 goto out_unlock;
4944
4945 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4946 if (yielded) {
4947 schedstat_inc(rq, yld_count);
4948 /*
4949 * Make p's CPU reschedule; pick_next_entity takes care of
4950 * fairness.
4951 */
4952 if (preempt && rq != p_rq)
4953 resched_curr(p_rq);
4954 }
4955
4956 out_unlock:
4957 double_rq_unlock(rq, p_rq);
4958 out_irq:
4959 local_irq_restore(flags);
4960
4961 if (yielded > 0)
4962 schedule();
4963
4964 return yielded;
4965 }
4966 EXPORT_SYMBOL_GPL(yield_to);
4967
4968 /*
4969 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4970 * that process accounting knows that this is a task in IO wait state.
4971 */
4972 long __sched io_schedule_timeout(long timeout)
4973 {
4974 int old_iowait = current->in_iowait;
4975 struct rq *rq;
4976 long ret;
4977
4978 current->in_iowait = 1;
4979 blk_schedule_flush_plug(current);
4980
4981 delayacct_blkio_start();
4982 rq = raw_rq();
4983 atomic_inc(&rq->nr_iowait);
4984 ret = schedule_timeout(timeout);
4985 current->in_iowait = old_iowait;
4986 atomic_dec(&rq->nr_iowait);
4987 delayacct_blkio_end();
4988
4989 return ret;
4990 }
4991 EXPORT_SYMBOL(io_schedule_timeout);
4992
4993 /**
4994 * sys_sched_get_priority_max - return maximum RT priority.
4995 * @policy: scheduling class.
4996 *
4997 * Return: On success, this syscall returns the maximum
4998 * rt_priority that can be used by a given scheduling class.
4999 * On failure, a negative error code is returned.
5000 */
5001 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5002 {
5003 int ret = -EINVAL;
5004
5005 switch (policy) {
5006 case SCHED_FIFO:
5007 case SCHED_RR:
5008 ret = MAX_USER_RT_PRIO-1;
5009 break;
5010 case SCHED_DEADLINE:
5011 case SCHED_NORMAL:
5012 case SCHED_BATCH:
5013 case SCHED_IDLE:
5014 ret = 0;
5015 break;
5016 }
5017 return ret;
5018 }
5019
5020 /**
5021 * sys_sched_get_priority_min - return minimum RT priority.
5022 * @policy: scheduling class.
5023 *
5024 * Return: On success, this syscall returns the minimum
5025 * rt_priority that can be used by a given scheduling class.
5026 * On failure, a negative error code is returned.
5027 */
5028 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5029 {
5030 int ret = -EINVAL;
5031
5032 switch (policy) {
5033 case SCHED_FIFO:
5034 case SCHED_RR:
5035 ret = 1;
5036 break;
5037 case SCHED_DEADLINE:
5038 case SCHED_NORMAL:
5039 case SCHED_BATCH:
5040 case SCHED_IDLE:
5041 ret = 0;
5042 }
5043 return ret;
5044 }
5045
5046 /**
5047 * sys_sched_rr_get_interval - return the default timeslice of a process.
5048 * @pid: pid of the process.
5049 * @interval: userspace pointer to the timeslice value.
5050 *
5051 * this syscall writes the default timeslice value of a given process
5052 * into the user-space timespec buffer. A value of '0' means infinity.
5053 *
5054 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5055 * an error code.
5056 */
5057 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5058 struct timespec __user *, interval)
5059 {
5060 struct task_struct *p;
5061 unsigned int time_slice;
5062 struct rq_flags rf;
5063 struct timespec t;
5064 struct rq *rq;
5065 int retval;
5066
5067 if (pid < 0)
5068 return -EINVAL;
5069
5070 retval = -ESRCH;
5071 rcu_read_lock();
5072 p = find_process_by_pid(pid);
5073 if (!p)
5074 goto out_unlock;
5075
5076 retval = security_task_getscheduler(p);
5077 if (retval)
5078 goto out_unlock;
5079
5080 rq = task_rq_lock(p, &rf);
5081 time_slice = 0;
5082 if (p->sched_class->get_rr_interval)
5083 time_slice = p->sched_class->get_rr_interval(rq, p);
5084 task_rq_unlock(rq, p, &rf);
5085
5086 rcu_read_unlock();
5087 jiffies_to_timespec(time_slice, &t);
5088 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5089 return retval;
5090
5091 out_unlock:
5092 rcu_read_unlock();
5093 return retval;
5094 }
5095
5096 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5097
5098 void sched_show_task(struct task_struct *p)
5099 {
5100 unsigned long free = 0;
5101 int ppid;
5102 unsigned long state = p->state;
5103
5104 if (state)
5105 state = __ffs(state) + 1;
5106 printk(KERN_INFO "%-15.15s %c", p->comm,
5107 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5108 #if BITS_PER_LONG == 32
5109 if (state == TASK_RUNNING)
5110 printk(KERN_CONT " running ");
5111 else
5112 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5113 #else
5114 if (state == TASK_RUNNING)
5115 printk(KERN_CONT " running task ");
5116 else
5117 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5118 #endif
5119 #ifdef CONFIG_DEBUG_STACK_USAGE
5120 free = stack_not_used(p);
5121 #endif
5122 ppid = 0;
5123 rcu_read_lock();
5124 if (pid_alive(p))
5125 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5126 rcu_read_unlock();
5127 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5128 task_pid_nr(p), ppid,
5129 (unsigned long)task_thread_info(p)->flags);
5130
5131 print_worker_info(KERN_INFO, p);
5132 show_stack(p, NULL);
5133 }
5134
5135 void show_state_filter(unsigned long state_filter)
5136 {
5137 struct task_struct *g, *p;
5138
5139 #if BITS_PER_LONG == 32
5140 printk(KERN_INFO
5141 " task PC stack pid father\n");
5142 #else
5143 printk(KERN_INFO
5144 " task PC stack pid father\n");
5145 #endif
5146 rcu_read_lock();
5147 for_each_process_thread(g, p) {
5148 /*
5149 * reset the NMI-timeout, listing all files on a slow
5150 * console might take a lot of time:
5151 */
5152 touch_nmi_watchdog();
5153 if (!state_filter || (p->state & state_filter))
5154 sched_show_task(p);
5155 }
5156
5157 touch_all_softlockup_watchdogs();
5158
5159 #ifdef CONFIG_SCHED_DEBUG
5160 if (!state_filter)
5161 sysrq_sched_debug_show();
5162 #endif
5163 rcu_read_unlock();
5164 /*
5165 * Only show locks if all tasks are dumped:
5166 */
5167 if (!state_filter)
5168 debug_show_all_locks();
5169 }
5170
5171 void init_idle_bootup_task(struct task_struct *idle)
5172 {
5173 idle->sched_class = &idle_sched_class;
5174 }
5175
5176 /**
5177 * init_idle - set up an idle thread for a given CPU
5178 * @idle: task in question
5179 * @cpu: cpu the idle task belongs to
5180 *
5181 * NOTE: this function does not set the idle thread's NEED_RESCHED
5182 * flag, to make booting more robust.
5183 */
5184 void init_idle(struct task_struct *idle, int cpu)
5185 {
5186 struct rq *rq = cpu_rq(cpu);
5187 unsigned long flags;
5188
5189 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5190 raw_spin_lock(&rq->lock);
5191
5192 __sched_fork(0, idle);
5193 idle->state = TASK_RUNNING;
5194 idle->se.exec_start = sched_clock();
5195
5196 kasan_unpoison_task_stack(idle);
5197
5198 #ifdef CONFIG_SMP
5199 /*
5200 * Its possible that init_idle() gets called multiple times on a task,
5201 * in that case do_set_cpus_allowed() will not do the right thing.
5202 *
5203 * And since this is boot we can forgo the serialization.
5204 */
5205 set_cpus_allowed_common(idle, cpumask_of(cpu));
5206 #endif
5207 /*
5208 * We're having a chicken and egg problem, even though we are
5209 * holding rq->lock, the cpu isn't yet set to this cpu so the
5210 * lockdep check in task_group() will fail.
5211 *
5212 * Similar case to sched_fork(). / Alternatively we could
5213 * use task_rq_lock() here and obtain the other rq->lock.
5214 *
5215 * Silence PROVE_RCU
5216 */
5217 rcu_read_lock();
5218 __set_task_cpu(idle, cpu);
5219 rcu_read_unlock();
5220
5221 rq->curr = rq->idle = idle;
5222 idle->on_rq = TASK_ON_RQ_QUEUED;
5223 #ifdef CONFIG_SMP
5224 idle->on_cpu = 1;
5225 #endif
5226 raw_spin_unlock(&rq->lock);
5227 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5228
5229 /* Set the preempt count _outside_ the spinlocks! */
5230 init_idle_preempt_count(idle, cpu);
5231
5232 /*
5233 * The idle tasks have their own, simple scheduling class:
5234 */
5235 idle->sched_class = &idle_sched_class;
5236 ftrace_graph_init_idle_task(idle, cpu);
5237 vtime_init_idle(idle, cpu);
5238 #ifdef CONFIG_SMP
5239 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5240 #endif
5241 }
5242
5243 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5244 const struct cpumask *trial)
5245 {
5246 int ret = 1, trial_cpus;
5247 struct dl_bw *cur_dl_b;
5248 unsigned long flags;
5249
5250 if (!cpumask_weight(cur))
5251 return ret;
5252
5253 rcu_read_lock_sched();
5254 cur_dl_b = dl_bw_of(cpumask_any(cur));
5255 trial_cpus = cpumask_weight(trial);
5256
5257 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5258 if (cur_dl_b->bw != -1 &&
5259 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5260 ret = 0;
5261 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5262 rcu_read_unlock_sched();
5263
5264 return ret;
5265 }
5266
5267 int task_can_attach(struct task_struct *p,
5268 const struct cpumask *cs_cpus_allowed)
5269 {
5270 int ret = 0;
5271
5272 /*
5273 * Kthreads which disallow setaffinity shouldn't be moved
5274 * to a new cpuset; we don't want to change their cpu
5275 * affinity and isolating such threads by their set of
5276 * allowed nodes is unnecessary. Thus, cpusets are not
5277 * applicable for such threads. This prevents checking for
5278 * success of set_cpus_allowed_ptr() on all attached tasks
5279 * before cpus_allowed may be changed.
5280 */
5281 if (p->flags & PF_NO_SETAFFINITY) {
5282 ret = -EINVAL;
5283 goto out;
5284 }
5285
5286 #ifdef CONFIG_SMP
5287 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5288 cs_cpus_allowed)) {
5289 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5290 cs_cpus_allowed);
5291 struct dl_bw *dl_b;
5292 bool overflow;
5293 int cpus;
5294 unsigned long flags;
5295
5296 rcu_read_lock_sched();
5297 dl_b = dl_bw_of(dest_cpu);
5298 raw_spin_lock_irqsave(&dl_b->lock, flags);
5299 cpus = dl_bw_cpus(dest_cpu);
5300 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5301 if (overflow)
5302 ret = -EBUSY;
5303 else {
5304 /*
5305 * We reserve space for this task in the destination
5306 * root_domain, as we can't fail after this point.
5307 * We will free resources in the source root_domain
5308 * later on (see set_cpus_allowed_dl()).
5309 */
5310 __dl_add(dl_b, p->dl.dl_bw);
5311 }
5312 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5313 rcu_read_unlock_sched();
5314
5315 }
5316 #endif
5317 out:
5318 return ret;
5319 }
5320
5321 #ifdef CONFIG_SMP
5322
5323 static bool sched_smp_initialized __read_mostly;
5324
5325 #ifdef CONFIG_NUMA_BALANCING
5326 /* Migrate current task p to target_cpu */
5327 int migrate_task_to(struct task_struct *p, int target_cpu)
5328 {
5329 struct migration_arg arg = { p, target_cpu };
5330 int curr_cpu = task_cpu(p);
5331
5332 if (curr_cpu == target_cpu)
5333 return 0;
5334
5335 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5336 return -EINVAL;
5337
5338 /* TODO: This is not properly updating schedstats */
5339
5340 trace_sched_move_numa(p, curr_cpu, target_cpu);
5341 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5342 }
5343
5344 /*
5345 * Requeue a task on a given node and accurately track the number of NUMA
5346 * tasks on the runqueues
5347 */
5348 void sched_setnuma(struct task_struct *p, int nid)
5349 {
5350 bool queued, running;
5351 struct rq_flags rf;
5352 struct rq *rq;
5353
5354 rq = task_rq_lock(p, &rf);
5355 queued = task_on_rq_queued(p);
5356 running = task_current(rq, p);
5357
5358 if (queued)
5359 dequeue_task(rq, p, DEQUEUE_SAVE);
5360 if (running)
5361 put_prev_task(rq, p);
5362
5363 p->numa_preferred_nid = nid;
5364
5365 if (running)
5366 p->sched_class->set_curr_task(rq);
5367 if (queued)
5368 enqueue_task(rq, p, ENQUEUE_RESTORE);
5369 task_rq_unlock(rq, p, &rf);
5370 }
5371 #endif /* CONFIG_NUMA_BALANCING */
5372
5373 #ifdef CONFIG_HOTPLUG_CPU
5374 /*
5375 * Ensures that the idle task is using init_mm right before its cpu goes
5376 * offline.
5377 */
5378 void idle_task_exit(void)
5379 {
5380 struct mm_struct *mm = current->active_mm;
5381
5382 BUG_ON(cpu_online(smp_processor_id()));
5383
5384 if (mm != &init_mm) {
5385 switch_mm_irqs_off(mm, &init_mm, current);
5386 finish_arch_post_lock_switch();
5387 }
5388 mmdrop(mm);
5389 }
5390
5391 /*
5392 * Since this CPU is going 'away' for a while, fold any nr_active delta
5393 * we might have. Assumes we're called after migrate_tasks() so that the
5394 * nr_active count is stable.
5395 *
5396 * Also see the comment "Global load-average calculations".
5397 */
5398 static void calc_load_migrate(struct rq *rq)
5399 {
5400 long delta = calc_load_fold_active(rq);
5401 if (delta)
5402 atomic_long_add(delta, &calc_load_tasks);
5403 }
5404
5405 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5406 {
5407 }
5408
5409 static const struct sched_class fake_sched_class = {
5410 .put_prev_task = put_prev_task_fake,
5411 };
5412
5413 static struct task_struct fake_task = {
5414 /*
5415 * Avoid pull_{rt,dl}_task()
5416 */
5417 .prio = MAX_PRIO + 1,
5418 .sched_class = &fake_sched_class,
5419 };
5420
5421 /*
5422 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5423 * try_to_wake_up()->select_task_rq().
5424 *
5425 * Called with rq->lock held even though we'er in stop_machine() and
5426 * there's no concurrency possible, we hold the required locks anyway
5427 * because of lock validation efforts.
5428 */
5429 static void migrate_tasks(struct rq *dead_rq)
5430 {
5431 struct rq *rq = dead_rq;
5432 struct task_struct *next, *stop = rq->stop;
5433 struct pin_cookie cookie;
5434 int dest_cpu;
5435
5436 /*
5437 * Fudge the rq selection such that the below task selection loop
5438 * doesn't get stuck on the currently eligible stop task.
5439 *
5440 * We're currently inside stop_machine() and the rq is either stuck
5441 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5442 * either way we should never end up calling schedule() until we're
5443 * done here.
5444 */
5445 rq->stop = NULL;
5446
5447 /*
5448 * put_prev_task() and pick_next_task() sched
5449 * class method both need to have an up-to-date
5450 * value of rq->clock[_task]
5451 */
5452 update_rq_clock(rq);
5453
5454 for (;;) {
5455 /*
5456 * There's this thread running, bail when that's the only
5457 * remaining thread.
5458 */
5459 if (rq->nr_running == 1)
5460 break;
5461
5462 /*
5463 * pick_next_task assumes pinned rq->lock.
5464 */
5465 cookie = lockdep_pin_lock(&rq->lock);
5466 next = pick_next_task(rq, &fake_task, cookie);
5467 BUG_ON(!next);
5468 next->sched_class->put_prev_task(rq, next);
5469
5470 /*
5471 * Rules for changing task_struct::cpus_allowed are holding
5472 * both pi_lock and rq->lock, such that holding either
5473 * stabilizes the mask.
5474 *
5475 * Drop rq->lock is not quite as disastrous as it usually is
5476 * because !cpu_active at this point, which means load-balance
5477 * will not interfere. Also, stop-machine.
5478 */
5479 lockdep_unpin_lock(&rq->lock, cookie);
5480 raw_spin_unlock(&rq->lock);
5481 raw_spin_lock(&next->pi_lock);
5482 raw_spin_lock(&rq->lock);
5483
5484 /*
5485 * Since we're inside stop-machine, _nothing_ should have
5486 * changed the task, WARN if weird stuff happened, because in
5487 * that case the above rq->lock drop is a fail too.
5488 */
5489 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5490 raw_spin_unlock(&next->pi_lock);
5491 continue;
5492 }
5493
5494 /* Find suitable destination for @next, with force if needed. */
5495 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5496
5497 rq = __migrate_task(rq, next, dest_cpu);
5498 if (rq != dead_rq) {
5499 raw_spin_unlock(&rq->lock);
5500 rq = dead_rq;
5501 raw_spin_lock(&rq->lock);
5502 }
5503 raw_spin_unlock(&next->pi_lock);
5504 }
5505
5506 rq->stop = stop;
5507 }
5508 #endif /* CONFIG_HOTPLUG_CPU */
5509
5510 static void set_rq_online(struct rq *rq)
5511 {
5512 if (!rq->online) {
5513 const struct sched_class *class;
5514
5515 cpumask_set_cpu(rq->cpu, rq->rd->online);
5516 rq->online = 1;
5517
5518 for_each_class(class) {
5519 if (class->rq_online)
5520 class->rq_online(rq);
5521 }
5522 }
5523 }
5524
5525 static void set_rq_offline(struct rq *rq)
5526 {
5527 if (rq->online) {
5528 const struct sched_class *class;
5529
5530 for_each_class(class) {
5531 if (class->rq_offline)
5532 class->rq_offline(rq);
5533 }
5534
5535 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5536 rq->online = 0;
5537 }
5538 }
5539
5540 static void set_cpu_rq_start_time(unsigned int cpu)
5541 {
5542 struct rq *rq = cpu_rq(cpu);
5543
5544 rq->age_stamp = sched_clock_cpu(cpu);
5545 }
5546
5547 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5548
5549 #ifdef CONFIG_SCHED_DEBUG
5550
5551 static __read_mostly int sched_debug_enabled;
5552
5553 static int __init sched_debug_setup(char *str)
5554 {
5555 sched_debug_enabled = 1;
5556
5557 return 0;
5558 }
5559 early_param("sched_debug", sched_debug_setup);
5560
5561 static inline bool sched_debug(void)
5562 {
5563 return sched_debug_enabled;
5564 }
5565
5566 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5567 struct cpumask *groupmask)
5568 {
5569 struct sched_group *group = sd->groups;
5570
5571 cpumask_clear(groupmask);
5572
5573 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5574
5575 if (!(sd->flags & SD_LOAD_BALANCE)) {
5576 printk("does not load-balance\n");
5577 if (sd->parent)
5578 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5579 " has parent");
5580 return -1;
5581 }
5582
5583 printk(KERN_CONT "span %*pbl level %s\n",
5584 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5585
5586 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5587 printk(KERN_ERR "ERROR: domain->span does not contain "
5588 "CPU%d\n", cpu);
5589 }
5590 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5591 printk(KERN_ERR "ERROR: domain->groups does not contain"
5592 " CPU%d\n", cpu);
5593 }
5594
5595 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5596 do {
5597 if (!group) {
5598 printk("\n");
5599 printk(KERN_ERR "ERROR: group is NULL\n");
5600 break;
5601 }
5602
5603 if (!cpumask_weight(sched_group_cpus(group))) {
5604 printk(KERN_CONT "\n");
5605 printk(KERN_ERR "ERROR: empty group\n");
5606 break;
5607 }
5608
5609 if (!(sd->flags & SD_OVERLAP) &&
5610 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5611 printk(KERN_CONT "\n");
5612 printk(KERN_ERR "ERROR: repeated CPUs\n");
5613 break;
5614 }
5615
5616 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5617
5618 printk(KERN_CONT " %*pbl",
5619 cpumask_pr_args(sched_group_cpus(group)));
5620 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5621 printk(KERN_CONT " (cpu_capacity = %d)",
5622 group->sgc->capacity);
5623 }
5624
5625 group = group->next;
5626 } while (group != sd->groups);
5627 printk(KERN_CONT "\n");
5628
5629 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5630 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5631
5632 if (sd->parent &&
5633 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5634 printk(KERN_ERR "ERROR: parent span is not a superset "
5635 "of domain->span\n");
5636 return 0;
5637 }
5638
5639 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5640 {
5641 int level = 0;
5642
5643 if (!sched_debug_enabled)
5644 return;
5645
5646 if (!sd) {
5647 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5648 return;
5649 }
5650
5651 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5652
5653 for (;;) {
5654 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5655 break;
5656 level++;
5657 sd = sd->parent;
5658 if (!sd)
5659 break;
5660 }
5661 }
5662 #else /* !CONFIG_SCHED_DEBUG */
5663 # define sched_domain_debug(sd, cpu) do { } while (0)
5664 static inline bool sched_debug(void)
5665 {
5666 return false;
5667 }
5668 #endif /* CONFIG_SCHED_DEBUG */
5669
5670 static int sd_degenerate(struct sched_domain *sd)
5671 {
5672 if (cpumask_weight(sched_domain_span(sd)) == 1)
5673 return 1;
5674
5675 /* Following flags need at least 2 groups */
5676 if (sd->flags & (SD_LOAD_BALANCE |
5677 SD_BALANCE_NEWIDLE |
5678 SD_BALANCE_FORK |
5679 SD_BALANCE_EXEC |
5680 SD_SHARE_CPUCAPACITY |
5681 SD_SHARE_PKG_RESOURCES |
5682 SD_SHARE_POWERDOMAIN)) {
5683 if (sd->groups != sd->groups->next)
5684 return 0;
5685 }
5686
5687 /* Following flags don't use groups */
5688 if (sd->flags & (SD_WAKE_AFFINE))
5689 return 0;
5690
5691 return 1;
5692 }
5693
5694 static int
5695 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5696 {
5697 unsigned long cflags = sd->flags, pflags = parent->flags;
5698
5699 if (sd_degenerate(parent))
5700 return 1;
5701
5702 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5703 return 0;
5704
5705 /* Flags needing groups don't count if only 1 group in parent */
5706 if (parent->groups == parent->groups->next) {
5707 pflags &= ~(SD_LOAD_BALANCE |
5708 SD_BALANCE_NEWIDLE |
5709 SD_BALANCE_FORK |
5710 SD_BALANCE_EXEC |
5711 SD_SHARE_CPUCAPACITY |
5712 SD_SHARE_PKG_RESOURCES |
5713 SD_PREFER_SIBLING |
5714 SD_SHARE_POWERDOMAIN);
5715 if (nr_node_ids == 1)
5716 pflags &= ~SD_SERIALIZE;
5717 }
5718 if (~cflags & pflags)
5719 return 0;
5720
5721 return 1;
5722 }
5723
5724 static void free_rootdomain(struct rcu_head *rcu)
5725 {
5726 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5727
5728 cpupri_cleanup(&rd->cpupri);
5729 cpudl_cleanup(&rd->cpudl);
5730 free_cpumask_var(rd->dlo_mask);
5731 free_cpumask_var(rd->rto_mask);
5732 free_cpumask_var(rd->online);
5733 free_cpumask_var(rd->span);
5734 kfree(rd);
5735 }
5736
5737 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5738 {
5739 struct root_domain *old_rd = NULL;
5740 unsigned long flags;
5741
5742 raw_spin_lock_irqsave(&rq->lock, flags);
5743
5744 if (rq->rd) {
5745 old_rd = rq->rd;
5746
5747 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5748 set_rq_offline(rq);
5749
5750 cpumask_clear_cpu(rq->cpu, old_rd->span);
5751
5752 /*
5753 * If we dont want to free the old_rd yet then
5754 * set old_rd to NULL to skip the freeing later
5755 * in this function:
5756 */
5757 if (!atomic_dec_and_test(&old_rd->refcount))
5758 old_rd = NULL;
5759 }
5760
5761 atomic_inc(&rd->refcount);
5762 rq->rd = rd;
5763
5764 cpumask_set_cpu(rq->cpu, rd->span);
5765 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5766 set_rq_online(rq);
5767
5768 raw_spin_unlock_irqrestore(&rq->lock, flags);
5769
5770 if (old_rd)
5771 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5772 }
5773
5774 static int init_rootdomain(struct root_domain *rd)
5775 {
5776 memset(rd, 0, sizeof(*rd));
5777
5778 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5779 goto out;
5780 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5781 goto free_span;
5782 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5783 goto free_online;
5784 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5785 goto free_dlo_mask;
5786
5787 init_dl_bw(&rd->dl_bw);
5788 if (cpudl_init(&rd->cpudl) != 0)
5789 goto free_dlo_mask;
5790
5791 if (cpupri_init(&rd->cpupri) != 0)
5792 goto free_rto_mask;
5793 return 0;
5794
5795 free_rto_mask:
5796 free_cpumask_var(rd->rto_mask);
5797 free_dlo_mask:
5798 free_cpumask_var(rd->dlo_mask);
5799 free_online:
5800 free_cpumask_var(rd->online);
5801 free_span:
5802 free_cpumask_var(rd->span);
5803 out:
5804 return -ENOMEM;
5805 }
5806
5807 /*
5808 * By default the system creates a single root-domain with all cpus as
5809 * members (mimicking the global state we have today).
5810 */
5811 struct root_domain def_root_domain;
5812
5813 static void init_defrootdomain(void)
5814 {
5815 init_rootdomain(&def_root_domain);
5816
5817 atomic_set(&def_root_domain.refcount, 1);
5818 }
5819
5820 static struct root_domain *alloc_rootdomain(void)
5821 {
5822 struct root_domain *rd;
5823
5824 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5825 if (!rd)
5826 return NULL;
5827
5828 if (init_rootdomain(rd) != 0) {
5829 kfree(rd);
5830 return NULL;
5831 }
5832
5833 return rd;
5834 }
5835
5836 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5837 {
5838 struct sched_group *tmp, *first;
5839
5840 if (!sg)
5841 return;
5842
5843 first = sg;
5844 do {
5845 tmp = sg->next;
5846
5847 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5848 kfree(sg->sgc);
5849
5850 kfree(sg);
5851 sg = tmp;
5852 } while (sg != first);
5853 }
5854
5855 static void free_sched_domain(struct rcu_head *rcu)
5856 {
5857 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5858
5859 /*
5860 * If its an overlapping domain it has private groups, iterate and
5861 * nuke them all.
5862 */
5863 if (sd->flags & SD_OVERLAP) {
5864 free_sched_groups(sd->groups, 1);
5865 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5866 kfree(sd->groups->sgc);
5867 kfree(sd->groups);
5868 }
5869 kfree(sd);
5870 }
5871
5872 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5873 {
5874 call_rcu(&sd->rcu, free_sched_domain);
5875 }
5876
5877 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5878 {
5879 for (; sd; sd = sd->parent)
5880 destroy_sched_domain(sd, cpu);
5881 }
5882
5883 /*
5884 * Keep a special pointer to the highest sched_domain that has
5885 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5886 * allows us to avoid some pointer chasing select_idle_sibling().
5887 *
5888 * Also keep a unique ID per domain (we use the first cpu number in
5889 * the cpumask of the domain), this allows us to quickly tell if
5890 * two cpus are in the same cache domain, see cpus_share_cache().
5891 */
5892 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5893 DEFINE_PER_CPU(int, sd_llc_size);
5894 DEFINE_PER_CPU(int, sd_llc_id);
5895 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5896 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5897 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5898
5899 static void update_top_cache_domain(int cpu)
5900 {
5901 struct sched_domain *sd;
5902 struct sched_domain *busy_sd = NULL;
5903 int id = cpu;
5904 int size = 1;
5905
5906 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5907 if (sd) {
5908 id = cpumask_first(sched_domain_span(sd));
5909 size = cpumask_weight(sched_domain_span(sd));
5910 busy_sd = sd->parent; /* sd_busy */
5911 }
5912 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5913
5914 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5915 per_cpu(sd_llc_size, cpu) = size;
5916 per_cpu(sd_llc_id, cpu) = id;
5917
5918 sd = lowest_flag_domain(cpu, SD_NUMA);
5919 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5920
5921 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5922 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5923 }
5924
5925 /*
5926 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5927 * hold the hotplug lock.
5928 */
5929 static void
5930 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5931 {
5932 struct rq *rq = cpu_rq(cpu);
5933 struct sched_domain *tmp;
5934
5935 /* Remove the sched domains which do not contribute to scheduling. */
5936 for (tmp = sd; tmp; ) {
5937 struct sched_domain *parent = tmp->parent;
5938 if (!parent)
5939 break;
5940
5941 if (sd_parent_degenerate(tmp, parent)) {
5942 tmp->parent = parent->parent;
5943 if (parent->parent)
5944 parent->parent->child = tmp;
5945 /*
5946 * Transfer SD_PREFER_SIBLING down in case of a
5947 * degenerate parent; the spans match for this
5948 * so the property transfers.
5949 */
5950 if (parent->flags & SD_PREFER_SIBLING)
5951 tmp->flags |= SD_PREFER_SIBLING;
5952 destroy_sched_domain(parent, cpu);
5953 } else
5954 tmp = tmp->parent;
5955 }
5956
5957 if (sd && sd_degenerate(sd)) {
5958 tmp = sd;
5959 sd = sd->parent;
5960 destroy_sched_domain(tmp, cpu);
5961 if (sd)
5962 sd->child = NULL;
5963 }
5964
5965 sched_domain_debug(sd, cpu);
5966
5967 rq_attach_root(rq, rd);
5968 tmp = rq->sd;
5969 rcu_assign_pointer(rq->sd, sd);
5970 destroy_sched_domains(tmp, cpu);
5971
5972 update_top_cache_domain(cpu);
5973 }
5974
5975 /* Setup the mask of cpus configured for isolated domains */
5976 static int __init isolated_cpu_setup(char *str)
5977 {
5978 int ret;
5979
5980 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5981 ret = cpulist_parse(str, cpu_isolated_map);
5982 if (ret) {
5983 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5984 return 0;
5985 }
5986 return 1;
5987 }
5988 __setup("isolcpus=", isolated_cpu_setup);
5989
5990 struct s_data {
5991 struct sched_domain ** __percpu sd;
5992 struct root_domain *rd;
5993 };
5994
5995 enum s_alloc {
5996 sa_rootdomain,
5997 sa_sd,
5998 sa_sd_storage,
5999 sa_none,
6000 };
6001
6002 /*
6003 * Build an iteration mask that can exclude certain CPUs from the upwards
6004 * domain traversal.
6005 *
6006 * Asymmetric node setups can result in situations where the domain tree is of
6007 * unequal depth, make sure to skip domains that already cover the entire
6008 * range.
6009 *
6010 * In that case build_sched_domains() will have terminated the iteration early
6011 * and our sibling sd spans will be empty. Domains should always include the
6012 * cpu they're built on, so check that.
6013 *
6014 */
6015 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6016 {
6017 const struct cpumask *span = sched_domain_span(sd);
6018 struct sd_data *sdd = sd->private;
6019 struct sched_domain *sibling;
6020 int i;
6021
6022 for_each_cpu(i, span) {
6023 sibling = *per_cpu_ptr(sdd->sd, i);
6024 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6025 continue;
6026
6027 cpumask_set_cpu(i, sched_group_mask(sg));
6028 }
6029 }
6030
6031 /*
6032 * Return the canonical balance cpu for this group, this is the first cpu
6033 * of this group that's also in the iteration mask.
6034 */
6035 int group_balance_cpu(struct sched_group *sg)
6036 {
6037 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6038 }
6039
6040 static int
6041 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6042 {
6043 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6044 const struct cpumask *span = sched_domain_span(sd);
6045 struct cpumask *covered = sched_domains_tmpmask;
6046 struct sd_data *sdd = sd->private;
6047 struct sched_domain *sibling;
6048 int i;
6049
6050 cpumask_clear(covered);
6051
6052 for_each_cpu(i, span) {
6053 struct cpumask *sg_span;
6054
6055 if (cpumask_test_cpu(i, covered))
6056 continue;
6057
6058 sibling = *per_cpu_ptr(sdd->sd, i);
6059
6060 /* See the comment near build_group_mask(). */
6061 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6062 continue;
6063
6064 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6065 GFP_KERNEL, cpu_to_node(cpu));
6066
6067 if (!sg)
6068 goto fail;
6069
6070 sg_span = sched_group_cpus(sg);
6071 if (sibling->child)
6072 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6073 else
6074 cpumask_set_cpu(i, sg_span);
6075
6076 cpumask_or(covered, covered, sg_span);
6077
6078 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6079 if (atomic_inc_return(&sg->sgc->ref) == 1)
6080 build_group_mask(sd, sg);
6081
6082 /*
6083 * Initialize sgc->capacity such that even if we mess up the
6084 * domains and no possible iteration will get us here, we won't
6085 * die on a /0 trap.
6086 */
6087 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6088
6089 /*
6090 * Make sure the first group of this domain contains the
6091 * canonical balance cpu. Otherwise the sched_domain iteration
6092 * breaks. See update_sg_lb_stats().
6093 */
6094 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6095 group_balance_cpu(sg) == cpu)
6096 groups = sg;
6097
6098 if (!first)
6099 first = sg;
6100 if (last)
6101 last->next = sg;
6102 last = sg;
6103 last->next = first;
6104 }
6105 sd->groups = groups;
6106
6107 return 0;
6108
6109 fail:
6110 free_sched_groups(first, 0);
6111
6112 return -ENOMEM;
6113 }
6114
6115 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6116 {
6117 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6118 struct sched_domain *child = sd->child;
6119
6120 if (child)
6121 cpu = cpumask_first(sched_domain_span(child));
6122
6123 if (sg) {
6124 *sg = *per_cpu_ptr(sdd->sg, cpu);
6125 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6126 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6127 }
6128
6129 return cpu;
6130 }
6131
6132 /*
6133 * build_sched_groups will build a circular linked list of the groups
6134 * covered by the given span, and will set each group's ->cpumask correctly,
6135 * and ->cpu_capacity to 0.
6136 *
6137 * Assumes the sched_domain tree is fully constructed
6138 */
6139 static int
6140 build_sched_groups(struct sched_domain *sd, int cpu)
6141 {
6142 struct sched_group *first = NULL, *last = NULL;
6143 struct sd_data *sdd = sd->private;
6144 const struct cpumask *span = sched_domain_span(sd);
6145 struct cpumask *covered;
6146 int i;
6147
6148 get_group(cpu, sdd, &sd->groups);
6149 atomic_inc(&sd->groups->ref);
6150
6151 if (cpu != cpumask_first(span))
6152 return 0;
6153
6154 lockdep_assert_held(&sched_domains_mutex);
6155 covered = sched_domains_tmpmask;
6156
6157 cpumask_clear(covered);
6158
6159 for_each_cpu(i, span) {
6160 struct sched_group *sg;
6161 int group, j;
6162
6163 if (cpumask_test_cpu(i, covered))
6164 continue;
6165
6166 group = get_group(i, sdd, &sg);
6167 cpumask_setall(sched_group_mask(sg));
6168
6169 for_each_cpu(j, span) {
6170 if (get_group(j, sdd, NULL) != group)
6171 continue;
6172
6173 cpumask_set_cpu(j, covered);
6174 cpumask_set_cpu(j, sched_group_cpus(sg));
6175 }
6176
6177 if (!first)
6178 first = sg;
6179 if (last)
6180 last->next = sg;
6181 last = sg;
6182 }
6183 last->next = first;
6184
6185 return 0;
6186 }
6187
6188 /*
6189 * Initialize sched groups cpu_capacity.
6190 *
6191 * cpu_capacity indicates the capacity of sched group, which is used while
6192 * distributing the load between different sched groups in a sched domain.
6193 * Typically cpu_capacity for all the groups in a sched domain will be same
6194 * unless there are asymmetries in the topology. If there are asymmetries,
6195 * group having more cpu_capacity will pickup more load compared to the
6196 * group having less cpu_capacity.
6197 */
6198 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6199 {
6200 struct sched_group *sg = sd->groups;
6201
6202 WARN_ON(!sg);
6203
6204 do {
6205 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6206 sg = sg->next;
6207 } while (sg != sd->groups);
6208
6209 if (cpu != group_balance_cpu(sg))
6210 return;
6211
6212 update_group_capacity(sd, cpu);
6213 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6214 }
6215
6216 /*
6217 * Initializers for schedule domains
6218 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6219 */
6220
6221 static int default_relax_domain_level = -1;
6222 int sched_domain_level_max;
6223
6224 static int __init setup_relax_domain_level(char *str)
6225 {
6226 if (kstrtoint(str, 0, &default_relax_domain_level))
6227 pr_warn("Unable to set relax_domain_level\n");
6228
6229 return 1;
6230 }
6231 __setup("relax_domain_level=", setup_relax_domain_level);
6232
6233 static void set_domain_attribute(struct sched_domain *sd,
6234 struct sched_domain_attr *attr)
6235 {
6236 int request;
6237
6238 if (!attr || attr->relax_domain_level < 0) {
6239 if (default_relax_domain_level < 0)
6240 return;
6241 else
6242 request = default_relax_domain_level;
6243 } else
6244 request = attr->relax_domain_level;
6245 if (request < sd->level) {
6246 /* turn off idle balance on this domain */
6247 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6248 } else {
6249 /* turn on idle balance on this domain */
6250 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6251 }
6252 }
6253
6254 static void __sdt_free(const struct cpumask *cpu_map);
6255 static int __sdt_alloc(const struct cpumask *cpu_map);
6256
6257 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6258 const struct cpumask *cpu_map)
6259 {
6260 switch (what) {
6261 case sa_rootdomain:
6262 if (!atomic_read(&d->rd->refcount))
6263 free_rootdomain(&d->rd->rcu); /* fall through */
6264 case sa_sd:
6265 free_percpu(d->sd); /* fall through */
6266 case sa_sd_storage:
6267 __sdt_free(cpu_map); /* fall through */
6268 case sa_none:
6269 break;
6270 }
6271 }
6272
6273 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6274 const struct cpumask *cpu_map)
6275 {
6276 memset(d, 0, sizeof(*d));
6277
6278 if (__sdt_alloc(cpu_map))
6279 return sa_sd_storage;
6280 d->sd = alloc_percpu(struct sched_domain *);
6281 if (!d->sd)
6282 return sa_sd_storage;
6283 d->rd = alloc_rootdomain();
6284 if (!d->rd)
6285 return sa_sd;
6286 return sa_rootdomain;
6287 }
6288
6289 /*
6290 * NULL the sd_data elements we've used to build the sched_domain and
6291 * sched_group structure so that the subsequent __free_domain_allocs()
6292 * will not free the data we're using.
6293 */
6294 static void claim_allocations(int cpu, struct sched_domain *sd)
6295 {
6296 struct sd_data *sdd = sd->private;
6297
6298 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6299 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6300
6301 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6302 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6303
6304 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6305 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6306 }
6307
6308 #ifdef CONFIG_NUMA
6309 static int sched_domains_numa_levels;
6310 enum numa_topology_type sched_numa_topology_type;
6311 static int *sched_domains_numa_distance;
6312 int sched_max_numa_distance;
6313 static struct cpumask ***sched_domains_numa_masks;
6314 static int sched_domains_curr_level;
6315 #endif
6316
6317 /*
6318 * SD_flags allowed in topology descriptions.
6319 *
6320 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6321 * SD_SHARE_PKG_RESOURCES - describes shared caches
6322 * SD_NUMA - describes NUMA topologies
6323 * SD_SHARE_POWERDOMAIN - describes shared power domain
6324 *
6325 * Odd one out:
6326 * SD_ASYM_PACKING - describes SMT quirks
6327 */
6328 #define TOPOLOGY_SD_FLAGS \
6329 (SD_SHARE_CPUCAPACITY | \
6330 SD_SHARE_PKG_RESOURCES | \
6331 SD_NUMA | \
6332 SD_ASYM_PACKING | \
6333 SD_SHARE_POWERDOMAIN)
6334
6335 static struct sched_domain *
6336 sd_init(struct sched_domain_topology_level *tl, int cpu)
6337 {
6338 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6339 int sd_weight, sd_flags = 0;
6340
6341 #ifdef CONFIG_NUMA
6342 /*
6343 * Ugly hack to pass state to sd_numa_mask()...
6344 */
6345 sched_domains_curr_level = tl->numa_level;
6346 #endif
6347
6348 sd_weight = cpumask_weight(tl->mask(cpu));
6349
6350 if (tl->sd_flags)
6351 sd_flags = (*tl->sd_flags)();
6352 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6353 "wrong sd_flags in topology description\n"))
6354 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6355
6356 *sd = (struct sched_domain){
6357 .min_interval = sd_weight,
6358 .max_interval = 2*sd_weight,
6359 .busy_factor = 32,
6360 .imbalance_pct = 125,
6361
6362 .cache_nice_tries = 0,
6363 .busy_idx = 0,
6364 .idle_idx = 0,
6365 .newidle_idx = 0,
6366 .wake_idx = 0,
6367 .forkexec_idx = 0,
6368
6369 .flags = 1*SD_LOAD_BALANCE
6370 | 1*SD_BALANCE_NEWIDLE
6371 | 1*SD_BALANCE_EXEC
6372 | 1*SD_BALANCE_FORK
6373 | 0*SD_BALANCE_WAKE
6374 | 1*SD_WAKE_AFFINE
6375 | 0*SD_SHARE_CPUCAPACITY
6376 | 0*SD_SHARE_PKG_RESOURCES
6377 | 0*SD_SERIALIZE
6378 | 0*SD_PREFER_SIBLING
6379 | 0*SD_NUMA
6380 | sd_flags
6381 ,
6382
6383 .last_balance = jiffies,
6384 .balance_interval = sd_weight,
6385 .smt_gain = 0,
6386 .max_newidle_lb_cost = 0,
6387 .next_decay_max_lb_cost = jiffies,
6388 #ifdef CONFIG_SCHED_DEBUG
6389 .name = tl->name,
6390 #endif
6391 };
6392
6393 /*
6394 * Convert topological properties into behaviour.
6395 */
6396
6397 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6398 sd->flags |= SD_PREFER_SIBLING;
6399 sd->imbalance_pct = 110;
6400 sd->smt_gain = 1178; /* ~15% */
6401
6402 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6403 sd->imbalance_pct = 117;
6404 sd->cache_nice_tries = 1;
6405 sd->busy_idx = 2;
6406
6407 #ifdef CONFIG_NUMA
6408 } else if (sd->flags & SD_NUMA) {
6409 sd->cache_nice_tries = 2;
6410 sd->busy_idx = 3;
6411 sd->idle_idx = 2;
6412
6413 sd->flags |= SD_SERIALIZE;
6414 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6415 sd->flags &= ~(SD_BALANCE_EXEC |
6416 SD_BALANCE_FORK |
6417 SD_WAKE_AFFINE);
6418 }
6419
6420 #endif
6421 } else {
6422 sd->flags |= SD_PREFER_SIBLING;
6423 sd->cache_nice_tries = 1;
6424 sd->busy_idx = 2;
6425 sd->idle_idx = 1;
6426 }
6427
6428 sd->private = &tl->data;
6429
6430 return sd;
6431 }
6432
6433 /*
6434 * Topology list, bottom-up.
6435 */
6436 static struct sched_domain_topology_level default_topology[] = {
6437 #ifdef CONFIG_SCHED_SMT
6438 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6439 #endif
6440 #ifdef CONFIG_SCHED_MC
6441 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6442 #endif
6443 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6444 { NULL, },
6445 };
6446
6447 static struct sched_domain_topology_level *sched_domain_topology =
6448 default_topology;
6449
6450 #define for_each_sd_topology(tl) \
6451 for (tl = sched_domain_topology; tl->mask; tl++)
6452
6453 void set_sched_topology(struct sched_domain_topology_level *tl)
6454 {
6455 sched_domain_topology = tl;
6456 }
6457
6458 #ifdef CONFIG_NUMA
6459
6460 static const struct cpumask *sd_numa_mask(int cpu)
6461 {
6462 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6463 }
6464
6465 static void sched_numa_warn(const char *str)
6466 {
6467 static int done = false;
6468 int i,j;
6469
6470 if (done)
6471 return;
6472
6473 done = true;
6474
6475 printk(KERN_WARNING "ERROR: %s\n\n", str);
6476
6477 for (i = 0; i < nr_node_ids; i++) {
6478 printk(KERN_WARNING " ");
6479 for (j = 0; j < nr_node_ids; j++)
6480 printk(KERN_CONT "%02d ", node_distance(i,j));
6481 printk(KERN_CONT "\n");
6482 }
6483 printk(KERN_WARNING "\n");
6484 }
6485
6486 bool find_numa_distance(int distance)
6487 {
6488 int i;
6489
6490 if (distance == node_distance(0, 0))
6491 return true;
6492
6493 for (i = 0; i < sched_domains_numa_levels; i++) {
6494 if (sched_domains_numa_distance[i] == distance)
6495 return true;
6496 }
6497
6498 return false;
6499 }
6500
6501 /*
6502 * A system can have three types of NUMA topology:
6503 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6504 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6505 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6506 *
6507 * The difference between a glueless mesh topology and a backplane
6508 * topology lies in whether communication between not directly
6509 * connected nodes goes through intermediary nodes (where programs
6510 * could run), or through backplane controllers. This affects
6511 * placement of programs.
6512 *
6513 * The type of topology can be discerned with the following tests:
6514 * - If the maximum distance between any nodes is 1 hop, the system
6515 * is directly connected.
6516 * - If for two nodes A and B, located N > 1 hops away from each other,
6517 * there is an intermediary node C, which is < N hops away from both
6518 * nodes A and B, the system is a glueless mesh.
6519 */
6520 static void init_numa_topology_type(void)
6521 {
6522 int a, b, c, n;
6523
6524 n = sched_max_numa_distance;
6525
6526 if (sched_domains_numa_levels <= 1) {
6527 sched_numa_topology_type = NUMA_DIRECT;
6528 return;
6529 }
6530
6531 for_each_online_node(a) {
6532 for_each_online_node(b) {
6533 /* Find two nodes furthest removed from each other. */
6534 if (node_distance(a, b) < n)
6535 continue;
6536
6537 /* Is there an intermediary node between a and b? */
6538 for_each_online_node(c) {
6539 if (node_distance(a, c) < n &&
6540 node_distance(b, c) < n) {
6541 sched_numa_topology_type =
6542 NUMA_GLUELESS_MESH;
6543 return;
6544 }
6545 }
6546
6547 sched_numa_topology_type = NUMA_BACKPLANE;
6548 return;
6549 }
6550 }
6551 }
6552
6553 static void sched_init_numa(void)
6554 {
6555 int next_distance, curr_distance = node_distance(0, 0);
6556 struct sched_domain_topology_level *tl;
6557 int level = 0;
6558 int i, j, k;
6559
6560 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6561 if (!sched_domains_numa_distance)
6562 return;
6563
6564 /*
6565 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6566 * unique distances in the node_distance() table.
6567 *
6568 * Assumes node_distance(0,j) includes all distances in
6569 * node_distance(i,j) in order to avoid cubic time.
6570 */
6571 next_distance = curr_distance;
6572 for (i = 0; i < nr_node_ids; i++) {
6573 for (j = 0; j < nr_node_ids; j++) {
6574 for (k = 0; k < nr_node_ids; k++) {
6575 int distance = node_distance(i, k);
6576
6577 if (distance > curr_distance &&
6578 (distance < next_distance ||
6579 next_distance == curr_distance))
6580 next_distance = distance;
6581
6582 /*
6583 * While not a strong assumption it would be nice to know
6584 * about cases where if node A is connected to B, B is not
6585 * equally connected to A.
6586 */
6587 if (sched_debug() && node_distance(k, i) != distance)
6588 sched_numa_warn("Node-distance not symmetric");
6589
6590 if (sched_debug() && i && !find_numa_distance(distance))
6591 sched_numa_warn("Node-0 not representative");
6592 }
6593 if (next_distance != curr_distance) {
6594 sched_domains_numa_distance[level++] = next_distance;
6595 sched_domains_numa_levels = level;
6596 curr_distance = next_distance;
6597 } else break;
6598 }
6599
6600 /*
6601 * In case of sched_debug() we verify the above assumption.
6602 */
6603 if (!sched_debug())
6604 break;
6605 }
6606
6607 if (!level)
6608 return;
6609
6610 /*
6611 * 'level' contains the number of unique distances, excluding the
6612 * identity distance node_distance(i,i).
6613 *
6614 * The sched_domains_numa_distance[] array includes the actual distance
6615 * numbers.
6616 */
6617
6618 /*
6619 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6620 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6621 * the array will contain less then 'level' members. This could be
6622 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6623 * in other functions.
6624 *
6625 * We reset it to 'level' at the end of this function.
6626 */
6627 sched_domains_numa_levels = 0;
6628
6629 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6630 if (!sched_domains_numa_masks)
6631 return;
6632
6633 /*
6634 * Now for each level, construct a mask per node which contains all
6635 * cpus of nodes that are that many hops away from us.
6636 */
6637 for (i = 0; i < level; i++) {
6638 sched_domains_numa_masks[i] =
6639 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6640 if (!sched_domains_numa_masks[i])
6641 return;
6642
6643 for (j = 0; j < nr_node_ids; j++) {
6644 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6645 if (!mask)
6646 return;
6647
6648 sched_domains_numa_masks[i][j] = mask;
6649
6650 for_each_node(k) {
6651 if (node_distance(j, k) > sched_domains_numa_distance[i])
6652 continue;
6653
6654 cpumask_or(mask, mask, cpumask_of_node(k));
6655 }
6656 }
6657 }
6658
6659 /* Compute default topology size */
6660 for (i = 0; sched_domain_topology[i].mask; i++);
6661
6662 tl = kzalloc((i + level + 1) *
6663 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6664 if (!tl)
6665 return;
6666
6667 /*
6668 * Copy the default topology bits..
6669 */
6670 for (i = 0; sched_domain_topology[i].mask; i++)
6671 tl[i] = sched_domain_topology[i];
6672
6673 /*
6674 * .. and append 'j' levels of NUMA goodness.
6675 */
6676 for (j = 0; j < level; i++, j++) {
6677 tl[i] = (struct sched_domain_topology_level){
6678 .mask = sd_numa_mask,
6679 .sd_flags = cpu_numa_flags,
6680 .flags = SDTL_OVERLAP,
6681 .numa_level = j,
6682 SD_INIT_NAME(NUMA)
6683 };
6684 }
6685
6686 sched_domain_topology = tl;
6687
6688 sched_domains_numa_levels = level;
6689 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6690
6691 init_numa_topology_type();
6692 }
6693
6694 static void sched_domains_numa_masks_set(unsigned int cpu)
6695 {
6696 int node = cpu_to_node(cpu);
6697 int i, j;
6698
6699 for (i = 0; i < sched_domains_numa_levels; i++) {
6700 for (j = 0; j < nr_node_ids; j++) {
6701 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6702 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6703 }
6704 }
6705 }
6706
6707 static void sched_domains_numa_masks_clear(unsigned int cpu)
6708 {
6709 int i, j;
6710
6711 for (i = 0; i < sched_domains_numa_levels; i++) {
6712 for (j = 0; j < nr_node_ids; j++)
6713 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6714 }
6715 }
6716
6717 #else
6718 static inline void sched_init_numa(void) { }
6719 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6720 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6721 #endif /* CONFIG_NUMA */
6722
6723 static int __sdt_alloc(const struct cpumask *cpu_map)
6724 {
6725 struct sched_domain_topology_level *tl;
6726 int j;
6727
6728 for_each_sd_topology(tl) {
6729 struct sd_data *sdd = &tl->data;
6730
6731 sdd->sd = alloc_percpu(struct sched_domain *);
6732 if (!sdd->sd)
6733 return -ENOMEM;
6734
6735 sdd->sg = alloc_percpu(struct sched_group *);
6736 if (!sdd->sg)
6737 return -ENOMEM;
6738
6739 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6740 if (!sdd->sgc)
6741 return -ENOMEM;
6742
6743 for_each_cpu(j, cpu_map) {
6744 struct sched_domain *sd;
6745 struct sched_group *sg;
6746 struct sched_group_capacity *sgc;
6747
6748 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6749 GFP_KERNEL, cpu_to_node(j));
6750 if (!sd)
6751 return -ENOMEM;
6752
6753 *per_cpu_ptr(sdd->sd, j) = sd;
6754
6755 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6756 GFP_KERNEL, cpu_to_node(j));
6757 if (!sg)
6758 return -ENOMEM;
6759
6760 sg->next = sg;
6761
6762 *per_cpu_ptr(sdd->sg, j) = sg;
6763
6764 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6765 GFP_KERNEL, cpu_to_node(j));
6766 if (!sgc)
6767 return -ENOMEM;
6768
6769 *per_cpu_ptr(sdd->sgc, j) = sgc;
6770 }
6771 }
6772
6773 return 0;
6774 }
6775
6776 static void __sdt_free(const struct cpumask *cpu_map)
6777 {
6778 struct sched_domain_topology_level *tl;
6779 int j;
6780
6781 for_each_sd_topology(tl) {
6782 struct sd_data *sdd = &tl->data;
6783
6784 for_each_cpu(j, cpu_map) {
6785 struct sched_domain *sd;
6786
6787 if (sdd->sd) {
6788 sd = *per_cpu_ptr(sdd->sd, j);
6789 if (sd && (sd->flags & SD_OVERLAP))
6790 free_sched_groups(sd->groups, 0);
6791 kfree(*per_cpu_ptr(sdd->sd, j));
6792 }
6793
6794 if (sdd->sg)
6795 kfree(*per_cpu_ptr(sdd->sg, j));
6796 if (sdd->sgc)
6797 kfree(*per_cpu_ptr(sdd->sgc, j));
6798 }
6799 free_percpu(sdd->sd);
6800 sdd->sd = NULL;
6801 free_percpu(sdd->sg);
6802 sdd->sg = NULL;
6803 free_percpu(sdd->sgc);
6804 sdd->sgc = NULL;
6805 }
6806 }
6807
6808 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6809 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6810 struct sched_domain *child, int cpu)
6811 {
6812 struct sched_domain *sd = sd_init(tl, cpu);
6813 if (!sd)
6814 return child;
6815
6816 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6817 if (child) {
6818 sd->level = child->level + 1;
6819 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6820 child->parent = sd;
6821 sd->child = child;
6822
6823 if (!cpumask_subset(sched_domain_span(child),
6824 sched_domain_span(sd))) {
6825 pr_err("BUG: arch topology borken\n");
6826 #ifdef CONFIG_SCHED_DEBUG
6827 pr_err(" the %s domain not a subset of the %s domain\n",
6828 child->name, sd->name);
6829 #endif
6830 /* Fixup, ensure @sd has at least @child cpus. */
6831 cpumask_or(sched_domain_span(sd),
6832 sched_domain_span(sd),
6833 sched_domain_span(child));
6834 }
6835
6836 }
6837 set_domain_attribute(sd, attr);
6838
6839 return sd;
6840 }
6841
6842 /*
6843 * Build sched domains for a given set of cpus and attach the sched domains
6844 * to the individual cpus
6845 */
6846 static int build_sched_domains(const struct cpumask *cpu_map,
6847 struct sched_domain_attr *attr)
6848 {
6849 enum s_alloc alloc_state;
6850 struct sched_domain *sd;
6851 struct s_data d;
6852 int i, ret = -ENOMEM;
6853
6854 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6855 if (alloc_state != sa_rootdomain)
6856 goto error;
6857
6858 /* Set up domains for cpus specified by the cpu_map. */
6859 for_each_cpu(i, cpu_map) {
6860 struct sched_domain_topology_level *tl;
6861
6862 sd = NULL;
6863 for_each_sd_topology(tl) {
6864 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6865 if (tl == sched_domain_topology)
6866 *per_cpu_ptr(d.sd, i) = sd;
6867 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6868 sd->flags |= SD_OVERLAP;
6869 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6870 break;
6871 }
6872 }
6873
6874 /* Build the groups for the domains */
6875 for_each_cpu(i, cpu_map) {
6876 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6877 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6878 if (sd->flags & SD_OVERLAP) {
6879 if (build_overlap_sched_groups(sd, i))
6880 goto error;
6881 } else {
6882 if (build_sched_groups(sd, i))
6883 goto error;
6884 }
6885 }
6886 }
6887
6888 /* Calculate CPU capacity for physical packages and nodes */
6889 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6890 if (!cpumask_test_cpu(i, cpu_map))
6891 continue;
6892
6893 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6894 claim_allocations(i, sd);
6895 init_sched_groups_capacity(i, sd);
6896 }
6897 }
6898
6899 /* Attach the domains */
6900 rcu_read_lock();
6901 for_each_cpu(i, cpu_map) {
6902 sd = *per_cpu_ptr(d.sd, i);
6903 cpu_attach_domain(sd, d.rd, i);
6904 }
6905 rcu_read_unlock();
6906
6907 ret = 0;
6908 error:
6909 __free_domain_allocs(&d, alloc_state, cpu_map);
6910 return ret;
6911 }
6912
6913 static cpumask_var_t *doms_cur; /* current sched domains */
6914 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6915 static struct sched_domain_attr *dattr_cur;
6916 /* attribues of custom domains in 'doms_cur' */
6917
6918 /*
6919 * Special case: If a kmalloc of a doms_cur partition (array of
6920 * cpumask) fails, then fallback to a single sched domain,
6921 * as determined by the single cpumask fallback_doms.
6922 */
6923 static cpumask_var_t fallback_doms;
6924
6925 /*
6926 * arch_update_cpu_topology lets virtualized architectures update the
6927 * cpu core maps. It is supposed to return 1 if the topology changed
6928 * or 0 if it stayed the same.
6929 */
6930 int __weak arch_update_cpu_topology(void)
6931 {
6932 return 0;
6933 }
6934
6935 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6936 {
6937 int i;
6938 cpumask_var_t *doms;
6939
6940 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6941 if (!doms)
6942 return NULL;
6943 for (i = 0; i < ndoms; i++) {
6944 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6945 free_sched_domains(doms, i);
6946 return NULL;
6947 }
6948 }
6949 return doms;
6950 }
6951
6952 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6953 {
6954 unsigned int i;
6955 for (i = 0; i < ndoms; i++)
6956 free_cpumask_var(doms[i]);
6957 kfree(doms);
6958 }
6959
6960 /*
6961 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6962 * For now this just excludes isolated cpus, but could be used to
6963 * exclude other special cases in the future.
6964 */
6965 static int init_sched_domains(const struct cpumask *cpu_map)
6966 {
6967 int err;
6968
6969 arch_update_cpu_topology();
6970 ndoms_cur = 1;
6971 doms_cur = alloc_sched_domains(ndoms_cur);
6972 if (!doms_cur)
6973 doms_cur = &fallback_doms;
6974 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6975 err = build_sched_domains(doms_cur[0], NULL);
6976 register_sched_domain_sysctl();
6977
6978 return err;
6979 }
6980
6981 /*
6982 * Detach sched domains from a group of cpus specified in cpu_map
6983 * These cpus will now be attached to the NULL domain
6984 */
6985 static void detach_destroy_domains(const struct cpumask *cpu_map)
6986 {
6987 int i;
6988
6989 rcu_read_lock();
6990 for_each_cpu(i, cpu_map)
6991 cpu_attach_domain(NULL, &def_root_domain, i);
6992 rcu_read_unlock();
6993 }
6994
6995 /* handle null as "default" */
6996 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6997 struct sched_domain_attr *new, int idx_new)
6998 {
6999 struct sched_domain_attr tmp;
7000
7001 /* fast path */
7002 if (!new && !cur)
7003 return 1;
7004
7005 tmp = SD_ATTR_INIT;
7006 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7007 new ? (new + idx_new) : &tmp,
7008 sizeof(struct sched_domain_attr));
7009 }
7010
7011 /*
7012 * Partition sched domains as specified by the 'ndoms_new'
7013 * cpumasks in the array doms_new[] of cpumasks. This compares
7014 * doms_new[] to the current sched domain partitioning, doms_cur[].
7015 * It destroys each deleted domain and builds each new domain.
7016 *
7017 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7018 * The masks don't intersect (don't overlap.) We should setup one
7019 * sched domain for each mask. CPUs not in any of the cpumasks will
7020 * not be load balanced. If the same cpumask appears both in the
7021 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7022 * it as it is.
7023 *
7024 * The passed in 'doms_new' should be allocated using
7025 * alloc_sched_domains. This routine takes ownership of it and will
7026 * free_sched_domains it when done with it. If the caller failed the
7027 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7028 * and partition_sched_domains() will fallback to the single partition
7029 * 'fallback_doms', it also forces the domains to be rebuilt.
7030 *
7031 * If doms_new == NULL it will be replaced with cpu_online_mask.
7032 * ndoms_new == 0 is a special case for destroying existing domains,
7033 * and it will not create the default domain.
7034 *
7035 * Call with hotplug lock held
7036 */
7037 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7038 struct sched_domain_attr *dattr_new)
7039 {
7040 int i, j, n;
7041 int new_topology;
7042
7043 mutex_lock(&sched_domains_mutex);
7044
7045 /* always unregister in case we don't destroy any domains */
7046 unregister_sched_domain_sysctl();
7047
7048 /* Let architecture update cpu core mappings. */
7049 new_topology = arch_update_cpu_topology();
7050
7051 n = doms_new ? ndoms_new : 0;
7052
7053 /* Destroy deleted domains */
7054 for (i = 0; i < ndoms_cur; i++) {
7055 for (j = 0; j < n && !new_topology; j++) {
7056 if (cpumask_equal(doms_cur[i], doms_new[j])
7057 && dattrs_equal(dattr_cur, i, dattr_new, j))
7058 goto match1;
7059 }
7060 /* no match - a current sched domain not in new doms_new[] */
7061 detach_destroy_domains(doms_cur[i]);
7062 match1:
7063 ;
7064 }
7065
7066 n = ndoms_cur;
7067 if (doms_new == NULL) {
7068 n = 0;
7069 doms_new = &fallback_doms;
7070 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7071 WARN_ON_ONCE(dattr_new);
7072 }
7073
7074 /* Build new domains */
7075 for (i = 0; i < ndoms_new; i++) {
7076 for (j = 0; j < n && !new_topology; j++) {
7077 if (cpumask_equal(doms_new[i], doms_cur[j])
7078 && dattrs_equal(dattr_new, i, dattr_cur, j))
7079 goto match2;
7080 }
7081 /* no match - add a new doms_new */
7082 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7083 match2:
7084 ;
7085 }
7086
7087 /* Remember the new sched domains */
7088 if (doms_cur != &fallback_doms)
7089 free_sched_domains(doms_cur, ndoms_cur);
7090 kfree(dattr_cur); /* kfree(NULL) is safe */
7091 doms_cur = doms_new;
7092 dattr_cur = dattr_new;
7093 ndoms_cur = ndoms_new;
7094
7095 register_sched_domain_sysctl();
7096
7097 mutex_unlock(&sched_domains_mutex);
7098 }
7099
7100 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7101
7102 /*
7103 * Update cpusets according to cpu_active mask. If cpusets are
7104 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7105 * around partition_sched_domains().
7106 *
7107 * If we come here as part of a suspend/resume, don't touch cpusets because we
7108 * want to restore it back to its original state upon resume anyway.
7109 */
7110 static void cpuset_cpu_active(void)
7111 {
7112 if (cpuhp_tasks_frozen) {
7113 /*
7114 * num_cpus_frozen tracks how many CPUs are involved in suspend
7115 * resume sequence. As long as this is not the last online
7116 * operation in the resume sequence, just build a single sched
7117 * domain, ignoring cpusets.
7118 */
7119 num_cpus_frozen--;
7120 if (likely(num_cpus_frozen)) {
7121 partition_sched_domains(1, NULL, NULL);
7122 return;
7123 }
7124 /*
7125 * This is the last CPU online operation. So fall through and
7126 * restore the original sched domains by considering the
7127 * cpuset configurations.
7128 */
7129 }
7130 cpuset_update_active_cpus(true);
7131 }
7132
7133 static int cpuset_cpu_inactive(unsigned int cpu)
7134 {
7135 unsigned long flags;
7136 struct dl_bw *dl_b;
7137 bool overflow;
7138 int cpus;
7139
7140 if (!cpuhp_tasks_frozen) {
7141 rcu_read_lock_sched();
7142 dl_b = dl_bw_of(cpu);
7143
7144 raw_spin_lock_irqsave(&dl_b->lock, flags);
7145 cpus = dl_bw_cpus(cpu);
7146 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7147 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7148
7149 rcu_read_unlock_sched();
7150
7151 if (overflow)
7152 return -EBUSY;
7153 cpuset_update_active_cpus(false);
7154 } else {
7155 num_cpus_frozen++;
7156 partition_sched_domains(1, NULL, NULL);
7157 }
7158 return 0;
7159 }
7160
7161 int sched_cpu_activate(unsigned int cpu)
7162 {
7163 struct rq *rq = cpu_rq(cpu);
7164 unsigned long flags;
7165
7166 set_cpu_active(cpu, true);
7167
7168 if (sched_smp_initialized) {
7169 sched_domains_numa_masks_set(cpu);
7170 cpuset_cpu_active();
7171 }
7172
7173 /*
7174 * Put the rq online, if not already. This happens:
7175 *
7176 * 1) In the early boot process, because we build the real domains
7177 * after all cpus have been brought up.
7178 *
7179 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7180 * domains.
7181 */
7182 raw_spin_lock_irqsave(&rq->lock, flags);
7183 if (rq->rd) {
7184 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7185 set_rq_online(rq);
7186 }
7187 raw_spin_unlock_irqrestore(&rq->lock, flags);
7188
7189 update_max_interval();
7190
7191 return 0;
7192 }
7193
7194 int sched_cpu_deactivate(unsigned int cpu)
7195 {
7196 int ret;
7197
7198 set_cpu_active(cpu, false);
7199 /*
7200 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7201 * users of this state to go away such that all new such users will
7202 * observe it.
7203 *
7204 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7205 * not imply sync_sched(), so wait for both.
7206 *
7207 * Do sync before park smpboot threads to take care the rcu boost case.
7208 */
7209 if (IS_ENABLED(CONFIG_PREEMPT))
7210 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7211 else
7212 synchronize_rcu();
7213
7214 if (!sched_smp_initialized)
7215 return 0;
7216
7217 ret = cpuset_cpu_inactive(cpu);
7218 if (ret) {
7219 set_cpu_active(cpu, true);
7220 return ret;
7221 }
7222 sched_domains_numa_masks_clear(cpu);
7223 return 0;
7224 }
7225
7226 static void sched_rq_cpu_starting(unsigned int cpu)
7227 {
7228 struct rq *rq = cpu_rq(cpu);
7229
7230 rq->calc_load_update = calc_load_update;
7231 account_reset_rq(rq);
7232 update_max_interval();
7233 }
7234
7235 int sched_cpu_starting(unsigned int cpu)
7236 {
7237 set_cpu_rq_start_time(cpu);
7238 sched_rq_cpu_starting(cpu);
7239 return 0;
7240 }
7241
7242 #ifdef CONFIG_HOTPLUG_CPU
7243 int sched_cpu_dying(unsigned int cpu)
7244 {
7245 struct rq *rq = cpu_rq(cpu);
7246 unsigned long flags;
7247
7248 /* Handle pending wakeups and then migrate everything off */
7249 sched_ttwu_pending();
7250 raw_spin_lock_irqsave(&rq->lock, flags);
7251 if (rq->rd) {
7252 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7253 set_rq_offline(rq);
7254 }
7255 migrate_tasks(rq);
7256 BUG_ON(rq->nr_running != 1);
7257 raw_spin_unlock_irqrestore(&rq->lock, flags);
7258 calc_load_migrate(rq);
7259 update_max_interval();
7260 nohz_balance_exit_idle(cpu);
7261 hrtick_clear(rq);
7262 return 0;
7263 }
7264 #endif
7265
7266 void __init sched_init_smp(void)
7267 {
7268 cpumask_var_t non_isolated_cpus;
7269
7270 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7271 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7272
7273 sched_init_numa();
7274
7275 /*
7276 * There's no userspace yet to cause hotplug operations; hence all the
7277 * cpu masks are stable and all blatant races in the below code cannot
7278 * happen.
7279 */
7280 mutex_lock(&sched_domains_mutex);
7281 init_sched_domains(cpu_active_mask);
7282 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7283 if (cpumask_empty(non_isolated_cpus))
7284 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7285 mutex_unlock(&sched_domains_mutex);
7286
7287 /* Move init over to a non-isolated CPU */
7288 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7289 BUG();
7290 sched_init_granularity();
7291 free_cpumask_var(non_isolated_cpus);
7292
7293 init_sched_rt_class();
7294 init_sched_dl_class();
7295 sched_smp_initialized = true;
7296 }
7297
7298 static int __init migration_init(void)
7299 {
7300 sched_rq_cpu_starting(smp_processor_id());
7301 return 0;
7302 }
7303 early_initcall(migration_init);
7304
7305 #else
7306 void __init sched_init_smp(void)
7307 {
7308 sched_init_granularity();
7309 }
7310 #endif /* CONFIG_SMP */
7311
7312 int in_sched_functions(unsigned long addr)
7313 {
7314 return in_lock_functions(addr) ||
7315 (addr >= (unsigned long)__sched_text_start
7316 && addr < (unsigned long)__sched_text_end);
7317 }
7318
7319 #ifdef CONFIG_CGROUP_SCHED
7320 /*
7321 * Default task group.
7322 * Every task in system belongs to this group at bootup.
7323 */
7324 struct task_group root_task_group;
7325 LIST_HEAD(task_groups);
7326
7327 /* Cacheline aligned slab cache for task_group */
7328 static struct kmem_cache *task_group_cache __read_mostly;
7329 #endif
7330
7331 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7332
7333 void __init sched_init(void)
7334 {
7335 int i, j;
7336 unsigned long alloc_size = 0, ptr;
7337
7338 #ifdef CONFIG_FAIR_GROUP_SCHED
7339 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7340 #endif
7341 #ifdef CONFIG_RT_GROUP_SCHED
7342 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7343 #endif
7344 if (alloc_size) {
7345 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7346
7347 #ifdef CONFIG_FAIR_GROUP_SCHED
7348 root_task_group.se = (struct sched_entity **)ptr;
7349 ptr += nr_cpu_ids * sizeof(void **);
7350
7351 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7352 ptr += nr_cpu_ids * sizeof(void **);
7353
7354 #endif /* CONFIG_FAIR_GROUP_SCHED */
7355 #ifdef CONFIG_RT_GROUP_SCHED
7356 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7357 ptr += nr_cpu_ids * sizeof(void **);
7358
7359 root_task_group.rt_rq = (struct rt_rq **)ptr;
7360 ptr += nr_cpu_ids * sizeof(void **);
7361
7362 #endif /* CONFIG_RT_GROUP_SCHED */
7363 }
7364 #ifdef CONFIG_CPUMASK_OFFSTACK
7365 for_each_possible_cpu(i) {
7366 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7367 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7368 }
7369 #endif /* CONFIG_CPUMASK_OFFSTACK */
7370
7371 init_rt_bandwidth(&def_rt_bandwidth,
7372 global_rt_period(), global_rt_runtime());
7373 init_dl_bandwidth(&def_dl_bandwidth,
7374 global_rt_period(), global_rt_runtime());
7375
7376 #ifdef CONFIG_SMP
7377 init_defrootdomain();
7378 #endif
7379
7380 #ifdef CONFIG_RT_GROUP_SCHED
7381 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7382 global_rt_period(), global_rt_runtime());
7383 #endif /* CONFIG_RT_GROUP_SCHED */
7384
7385 #ifdef CONFIG_CGROUP_SCHED
7386 task_group_cache = KMEM_CACHE(task_group, 0);
7387
7388 list_add(&root_task_group.list, &task_groups);
7389 INIT_LIST_HEAD(&root_task_group.children);
7390 INIT_LIST_HEAD(&root_task_group.siblings);
7391 autogroup_init(&init_task);
7392 #endif /* CONFIG_CGROUP_SCHED */
7393
7394 for_each_possible_cpu(i) {
7395 struct rq *rq;
7396
7397 rq = cpu_rq(i);
7398 raw_spin_lock_init(&rq->lock);
7399 rq->nr_running = 0;
7400 rq->calc_load_active = 0;
7401 rq->calc_load_update = jiffies + LOAD_FREQ;
7402 init_cfs_rq(&rq->cfs);
7403 init_rt_rq(&rq->rt);
7404 init_dl_rq(&rq->dl);
7405 #ifdef CONFIG_FAIR_GROUP_SCHED
7406 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7407 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7408 /*
7409 * How much cpu bandwidth does root_task_group get?
7410 *
7411 * In case of task-groups formed thr' the cgroup filesystem, it
7412 * gets 100% of the cpu resources in the system. This overall
7413 * system cpu resource is divided among the tasks of
7414 * root_task_group and its child task-groups in a fair manner,
7415 * based on each entity's (task or task-group's) weight
7416 * (se->load.weight).
7417 *
7418 * In other words, if root_task_group has 10 tasks of weight
7419 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7420 * then A0's share of the cpu resource is:
7421 *
7422 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7423 *
7424 * We achieve this by letting root_task_group's tasks sit
7425 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7426 */
7427 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7428 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7429 #endif /* CONFIG_FAIR_GROUP_SCHED */
7430
7431 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7432 #ifdef CONFIG_RT_GROUP_SCHED
7433 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7434 #endif
7435
7436 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7437 rq->cpu_load[j] = 0;
7438
7439 #ifdef CONFIG_SMP
7440 rq->sd = NULL;
7441 rq->rd = NULL;
7442 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7443 rq->balance_callback = NULL;
7444 rq->active_balance = 0;
7445 rq->next_balance = jiffies;
7446 rq->push_cpu = 0;
7447 rq->cpu = i;
7448 rq->online = 0;
7449 rq->idle_stamp = 0;
7450 rq->avg_idle = 2*sysctl_sched_migration_cost;
7451 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7452
7453 INIT_LIST_HEAD(&rq->cfs_tasks);
7454
7455 rq_attach_root(rq, &def_root_domain);
7456 #ifdef CONFIG_NO_HZ_COMMON
7457 rq->last_load_update_tick = jiffies;
7458 rq->nohz_flags = 0;
7459 #endif
7460 #ifdef CONFIG_NO_HZ_FULL
7461 rq->last_sched_tick = 0;
7462 #endif
7463 #endif /* CONFIG_SMP */
7464 init_rq_hrtick(rq);
7465 atomic_set(&rq->nr_iowait, 0);
7466 }
7467
7468 set_load_weight(&init_task);
7469
7470 #ifdef CONFIG_PREEMPT_NOTIFIERS
7471 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7472 #endif
7473
7474 /*
7475 * The boot idle thread does lazy MMU switching as well:
7476 */
7477 atomic_inc(&init_mm.mm_count);
7478 enter_lazy_tlb(&init_mm, current);
7479
7480 /*
7481 * During early bootup we pretend to be a normal task:
7482 */
7483 current->sched_class = &fair_sched_class;
7484
7485 /*
7486 * Make us the idle thread. Technically, schedule() should not be
7487 * called from this thread, however somewhere below it might be,
7488 * but because we are the idle thread, we just pick up running again
7489 * when this runqueue becomes "idle".
7490 */
7491 init_idle(current, smp_processor_id());
7492
7493 calc_load_update = jiffies + LOAD_FREQ;
7494
7495 #ifdef CONFIG_SMP
7496 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7497 /* May be allocated at isolcpus cmdline parse time */
7498 if (cpu_isolated_map == NULL)
7499 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7500 idle_thread_set_boot_cpu();
7501 set_cpu_rq_start_time(smp_processor_id());
7502 #endif
7503 init_sched_fair_class();
7504
7505 init_schedstats();
7506
7507 scheduler_running = 1;
7508 }
7509
7510 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7511 static inline int preempt_count_equals(int preempt_offset)
7512 {
7513 int nested = preempt_count() + rcu_preempt_depth();
7514
7515 return (nested == preempt_offset);
7516 }
7517
7518 void __might_sleep(const char *file, int line, int preempt_offset)
7519 {
7520 /*
7521 * Blocking primitives will set (and therefore destroy) current->state,
7522 * since we will exit with TASK_RUNNING make sure we enter with it,
7523 * otherwise we will destroy state.
7524 */
7525 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7526 "do not call blocking ops when !TASK_RUNNING; "
7527 "state=%lx set at [<%p>] %pS\n",
7528 current->state,
7529 (void *)current->task_state_change,
7530 (void *)current->task_state_change);
7531
7532 ___might_sleep(file, line, preempt_offset);
7533 }
7534 EXPORT_SYMBOL(__might_sleep);
7535
7536 void ___might_sleep(const char *file, int line, int preempt_offset)
7537 {
7538 static unsigned long prev_jiffy; /* ratelimiting */
7539
7540 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7541 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7542 !is_idle_task(current)) ||
7543 system_state != SYSTEM_RUNNING || oops_in_progress)
7544 return;
7545 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7546 return;
7547 prev_jiffy = jiffies;
7548
7549 printk(KERN_ERR
7550 "BUG: sleeping function called from invalid context at %s:%d\n",
7551 file, line);
7552 printk(KERN_ERR
7553 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7554 in_atomic(), irqs_disabled(),
7555 current->pid, current->comm);
7556
7557 if (task_stack_end_corrupted(current))
7558 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7559
7560 debug_show_held_locks(current);
7561 if (irqs_disabled())
7562 print_irqtrace_events(current);
7563 #ifdef CONFIG_DEBUG_PREEMPT
7564 if (!preempt_count_equals(preempt_offset)) {
7565 pr_err("Preemption disabled at:");
7566 print_ip_sym(current->preempt_disable_ip);
7567 pr_cont("\n");
7568 }
7569 #endif
7570 dump_stack();
7571 }
7572 EXPORT_SYMBOL(___might_sleep);
7573 #endif
7574
7575 #ifdef CONFIG_MAGIC_SYSRQ
7576 void normalize_rt_tasks(void)
7577 {
7578 struct task_struct *g, *p;
7579 struct sched_attr attr = {
7580 .sched_policy = SCHED_NORMAL,
7581 };
7582
7583 read_lock(&tasklist_lock);
7584 for_each_process_thread(g, p) {
7585 /*
7586 * Only normalize user tasks:
7587 */
7588 if (p->flags & PF_KTHREAD)
7589 continue;
7590
7591 p->se.exec_start = 0;
7592 #ifdef CONFIG_SCHEDSTATS
7593 p->se.statistics.wait_start = 0;
7594 p->se.statistics.sleep_start = 0;
7595 p->se.statistics.block_start = 0;
7596 #endif
7597
7598 if (!dl_task(p) && !rt_task(p)) {
7599 /*
7600 * Renice negative nice level userspace
7601 * tasks back to 0:
7602 */
7603 if (task_nice(p) < 0)
7604 set_user_nice(p, 0);
7605 continue;
7606 }
7607
7608 __sched_setscheduler(p, &attr, false, false);
7609 }
7610 read_unlock(&tasklist_lock);
7611 }
7612
7613 #endif /* CONFIG_MAGIC_SYSRQ */
7614
7615 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7616 /*
7617 * These functions are only useful for the IA64 MCA handling, or kdb.
7618 *
7619 * They can only be called when the whole system has been
7620 * stopped - every CPU needs to be quiescent, and no scheduling
7621 * activity can take place. Using them for anything else would
7622 * be a serious bug, and as a result, they aren't even visible
7623 * under any other configuration.
7624 */
7625
7626 /**
7627 * curr_task - return the current task for a given cpu.
7628 * @cpu: the processor in question.
7629 *
7630 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7631 *
7632 * Return: The current task for @cpu.
7633 */
7634 struct task_struct *curr_task(int cpu)
7635 {
7636 return cpu_curr(cpu);
7637 }
7638
7639 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7640
7641 #ifdef CONFIG_IA64
7642 /**
7643 * set_curr_task - set the current task for a given cpu.
7644 * @cpu: the processor in question.
7645 * @p: the task pointer to set.
7646 *
7647 * Description: This function must only be used when non-maskable interrupts
7648 * are serviced on a separate stack. It allows the architecture to switch the
7649 * notion of the current task on a cpu in a non-blocking manner. This function
7650 * must be called with all CPU's synchronized, and interrupts disabled, the
7651 * and caller must save the original value of the current task (see
7652 * curr_task() above) and restore that value before reenabling interrupts and
7653 * re-starting the system.
7654 *
7655 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7656 */
7657 void set_curr_task(int cpu, struct task_struct *p)
7658 {
7659 cpu_curr(cpu) = p;
7660 }
7661
7662 #endif
7663
7664 #ifdef CONFIG_CGROUP_SCHED
7665 /* task_group_lock serializes the addition/removal of task groups */
7666 static DEFINE_SPINLOCK(task_group_lock);
7667
7668 static void sched_free_group(struct task_group *tg)
7669 {
7670 free_fair_sched_group(tg);
7671 free_rt_sched_group(tg);
7672 autogroup_free(tg);
7673 kmem_cache_free(task_group_cache, tg);
7674 }
7675
7676 /* allocate runqueue etc for a new task group */
7677 struct task_group *sched_create_group(struct task_group *parent)
7678 {
7679 struct task_group *tg;
7680
7681 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7682 if (!tg)
7683 return ERR_PTR(-ENOMEM);
7684
7685 if (!alloc_fair_sched_group(tg, parent))
7686 goto err;
7687
7688 if (!alloc_rt_sched_group(tg, parent))
7689 goto err;
7690
7691 return tg;
7692
7693 err:
7694 sched_free_group(tg);
7695 return ERR_PTR(-ENOMEM);
7696 }
7697
7698 void sched_online_group(struct task_group *tg, struct task_group *parent)
7699 {
7700 unsigned long flags;
7701
7702 spin_lock_irqsave(&task_group_lock, flags);
7703 list_add_rcu(&tg->list, &task_groups);
7704
7705 WARN_ON(!parent); /* root should already exist */
7706
7707 tg->parent = parent;
7708 INIT_LIST_HEAD(&tg->children);
7709 list_add_rcu(&tg->siblings, &parent->children);
7710 spin_unlock_irqrestore(&task_group_lock, flags);
7711 }
7712
7713 /* rcu callback to free various structures associated with a task group */
7714 static void sched_free_group_rcu(struct rcu_head *rhp)
7715 {
7716 /* now it should be safe to free those cfs_rqs */
7717 sched_free_group(container_of(rhp, struct task_group, rcu));
7718 }
7719
7720 void sched_destroy_group(struct task_group *tg)
7721 {
7722 /* wait for possible concurrent references to cfs_rqs complete */
7723 call_rcu(&tg->rcu, sched_free_group_rcu);
7724 }
7725
7726 void sched_offline_group(struct task_group *tg)
7727 {
7728 unsigned long flags;
7729
7730 /* end participation in shares distribution */
7731 unregister_fair_sched_group(tg);
7732
7733 spin_lock_irqsave(&task_group_lock, flags);
7734 list_del_rcu(&tg->list);
7735 list_del_rcu(&tg->siblings);
7736 spin_unlock_irqrestore(&task_group_lock, flags);
7737 }
7738
7739 /* change task's runqueue when it moves between groups.
7740 * The caller of this function should have put the task in its new group
7741 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7742 * reflect its new group.
7743 */
7744 void sched_move_task(struct task_struct *tsk)
7745 {
7746 struct task_group *tg;
7747 int queued, running;
7748 struct rq_flags rf;
7749 struct rq *rq;
7750
7751 rq = task_rq_lock(tsk, &rf);
7752
7753 running = task_current(rq, tsk);
7754 queued = task_on_rq_queued(tsk);
7755
7756 if (queued)
7757 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7758 if (unlikely(running))
7759 put_prev_task(rq, tsk);
7760
7761 /*
7762 * All callers are synchronized by task_rq_lock(); we do not use RCU
7763 * which is pointless here. Thus, we pass "true" to task_css_check()
7764 * to prevent lockdep warnings.
7765 */
7766 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7767 struct task_group, css);
7768 tg = autogroup_task_group(tsk, tg);
7769 tsk->sched_task_group = tg;
7770
7771 #ifdef CONFIG_FAIR_GROUP_SCHED
7772 if (tsk->sched_class->task_move_group)
7773 tsk->sched_class->task_move_group(tsk);
7774 else
7775 #endif
7776 set_task_rq(tsk, task_cpu(tsk));
7777
7778 if (unlikely(running))
7779 tsk->sched_class->set_curr_task(rq);
7780 if (queued)
7781 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7782
7783 task_rq_unlock(rq, tsk, &rf);
7784 }
7785 #endif /* CONFIG_CGROUP_SCHED */
7786
7787 #ifdef CONFIG_RT_GROUP_SCHED
7788 /*
7789 * Ensure that the real time constraints are schedulable.
7790 */
7791 static DEFINE_MUTEX(rt_constraints_mutex);
7792
7793 /* Must be called with tasklist_lock held */
7794 static inline int tg_has_rt_tasks(struct task_group *tg)
7795 {
7796 struct task_struct *g, *p;
7797
7798 /*
7799 * Autogroups do not have RT tasks; see autogroup_create().
7800 */
7801 if (task_group_is_autogroup(tg))
7802 return 0;
7803
7804 for_each_process_thread(g, p) {
7805 if (rt_task(p) && task_group(p) == tg)
7806 return 1;
7807 }
7808
7809 return 0;
7810 }
7811
7812 struct rt_schedulable_data {
7813 struct task_group *tg;
7814 u64 rt_period;
7815 u64 rt_runtime;
7816 };
7817
7818 static int tg_rt_schedulable(struct task_group *tg, void *data)
7819 {
7820 struct rt_schedulable_data *d = data;
7821 struct task_group *child;
7822 unsigned long total, sum = 0;
7823 u64 period, runtime;
7824
7825 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7826 runtime = tg->rt_bandwidth.rt_runtime;
7827
7828 if (tg == d->tg) {
7829 period = d->rt_period;
7830 runtime = d->rt_runtime;
7831 }
7832
7833 /*
7834 * Cannot have more runtime than the period.
7835 */
7836 if (runtime > period && runtime != RUNTIME_INF)
7837 return -EINVAL;
7838
7839 /*
7840 * Ensure we don't starve existing RT tasks.
7841 */
7842 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7843 return -EBUSY;
7844
7845 total = to_ratio(period, runtime);
7846
7847 /*
7848 * Nobody can have more than the global setting allows.
7849 */
7850 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7851 return -EINVAL;
7852
7853 /*
7854 * The sum of our children's runtime should not exceed our own.
7855 */
7856 list_for_each_entry_rcu(child, &tg->children, siblings) {
7857 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7858 runtime = child->rt_bandwidth.rt_runtime;
7859
7860 if (child == d->tg) {
7861 period = d->rt_period;
7862 runtime = d->rt_runtime;
7863 }
7864
7865 sum += to_ratio(period, runtime);
7866 }
7867
7868 if (sum > total)
7869 return -EINVAL;
7870
7871 return 0;
7872 }
7873
7874 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7875 {
7876 int ret;
7877
7878 struct rt_schedulable_data data = {
7879 .tg = tg,
7880 .rt_period = period,
7881 .rt_runtime = runtime,
7882 };
7883
7884 rcu_read_lock();
7885 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7886 rcu_read_unlock();
7887
7888 return ret;
7889 }
7890
7891 static int tg_set_rt_bandwidth(struct task_group *tg,
7892 u64 rt_period, u64 rt_runtime)
7893 {
7894 int i, err = 0;
7895
7896 /*
7897 * Disallowing the root group RT runtime is BAD, it would disallow the
7898 * kernel creating (and or operating) RT threads.
7899 */
7900 if (tg == &root_task_group && rt_runtime == 0)
7901 return -EINVAL;
7902
7903 /* No period doesn't make any sense. */
7904 if (rt_period == 0)
7905 return -EINVAL;
7906
7907 mutex_lock(&rt_constraints_mutex);
7908 read_lock(&tasklist_lock);
7909 err = __rt_schedulable(tg, rt_period, rt_runtime);
7910 if (err)
7911 goto unlock;
7912
7913 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7914 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7915 tg->rt_bandwidth.rt_runtime = rt_runtime;
7916
7917 for_each_possible_cpu(i) {
7918 struct rt_rq *rt_rq = tg->rt_rq[i];
7919
7920 raw_spin_lock(&rt_rq->rt_runtime_lock);
7921 rt_rq->rt_runtime = rt_runtime;
7922 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7923 }
7924 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7925 unlock:
7926 read_unlock(&tasklist_lock);
7927 mutex_unlock(&rt_constraints_mutex);
7928
7929 return err;
7930 }
7931
7932 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7933 {
7934 u64 rt_runtime, rt_period;
7935
7936 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7937 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7938 if (rt_runtime_us < 0)
7939 rt_runtime = RUNTIME_INF;
7940
7941 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7942 }
7943
7944 static long sched_group_rt_runtime(struct task_group *tg)
7945 {
7946 u64 rt_runtime_us;
7947
7948 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7949 return -1;
7950
7951 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7952 do_div(rt_runtime_us, NSEC_PER_USEC);
7953 return rt_runtime_us;
7954 }
7955
7956 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7957 {
7958 u64 rt_runtime, rt_period;
7959
7960 rt_period = rt_period_us * NSEC_PER_USEC;
7961 rt_runtime = tg->rt_bandwidth.rt_runtime;
7962
7963 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7964 }
7965
7966 static long sched_group_rt_period(struct task_group *tg)
7967 {
7968 u64 rt_period_us;
7969
7970 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7971 do_div(rt_period_us, NSEC_PER_USEC);
7972 return rt_period_us;
7973 }
7974 #endif /* CONFIG_RT_GROUP_SCHED */
7975
7976 #ifdef CONFIG_RT_GROUP_SCHED
7977 static int sched_rt_global_constraints(void)
7978 {
7979 int ret = 0;
7980
7981 mutex_lock(&rt_constraints_mutex);
7982 read_lock(&tasklist_lock);
7983 ret = __rt_schedulable(NULL, 0, 0);
7984 read_unlock(&tasklist_lock);
7985 mutex_unlock(&rt_constraints_mutex);
7986
7987 return ret;
7988 }
7989
7990 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7991 {
7992 /* Don't accept realtime tasks when there is no way for them to run */
7993 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7994 return 0;
7995
7996 return 1;
7997 }
7998
7999 #else /* !CONFIG_RT_GROUP_SCHED */
8000 static int sched_rt_global_constraints(void)
8001 {
8002 unsigned long flags;
8003 int i;
8004
8005 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8006 for_each_possible_cpu(i) {
8007 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8008
8009 raw_spin_lock(&rt_rq->rt_runtime_lock);
8010 rt_rq->rt_runtime = global_rt_runtime();
8011 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8012 }
8013 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8014
8015 return 0;
8016 }
8017 #endif /* CONFIG_RT_GROUP_SCHED */
8018
8019 static int sched_dl_global_validate(void)
8020 {
8021 u64 runtime = global_rt_runtime();
8022 u64 period = global_rt_period();
8023 u64 new_bw = to_ratio(period, runtime);
8024 struct dl_bw *dl_b;
8025 int cpu, ret = 0;
8026 unsigned long flags;
8027
8028 /*
8029 * Here we want to check the bandwidth not being set to some
8030 * value smaller than the currently allocated bandwidth in
8031 * any of the root_domains.
8032 *
8033 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8034 * cycling on root_domains... Discussion on different/better
8035 * solutions is welcome!
8036 */
8037 for_each_possible_cpu(cpu) {
8038 rcu_read_lock_sched();
8039 dl_b = dl_bw_of(cpu);
8040
8041 raw_spin_lock_irqsave(&dl_b->lock, flags);
8042 if (new_bw < dl_b->total_bw)
8043 ret = -EBUSY;
8044 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8045
8046 rcu_read_unlock_sched();
8047
8048 if (ret)
8049 break;
8050 }
8051
8052 return ret;
8053 }
8054
8055 static void sched_dl_do_global(void)
8056 {
8057 u64 new_bw = -1;
8058 struct dl_bw *dl_b;
8059 int cpu;
8060 unsigned long flags;
8061
8062 def_dl_bandwidth.dl_period = global_rt_period();
8063 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8064
8065 if (global_rt_runtime() != RUNTIME_INF)
8066 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8067
8068 /*
8069 * FIXME: As above...
8070 */
8071 for_each_possible_cpu(cpu) {
8072 rcu_read_lock_sched();
8073 dl_b = dl_bw_of(cpu);
8074
8075 raw_spin_lock_irqsave(&dl_b->lock, flags);
8076 dl_b->bw = new_bw;
8077 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8078
8079 rcu_read_unlock_sched();
8080 }
8081 }
8082
8083 static int sched_rt_global_validate(void)
8084 {
8085 if (sysctl_sched_rt_period <= 0)
8086 return -EINVAL;
8087
8088 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8089 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8090 return -EINVAL;
8091
8092 return 0;
8093 }
8094
8095 static void sched_rt_do_global(void)
8096 {
8097 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8098 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8099 }
8100
8101 int sched_rt_handler(struct ctl_table *table, int write,
8102 void __user *buffer, size_t *lenp,
8103 loff_t *ppos)
8104 {
8105 int old_period, old_runtime;
8106 static DEFINE_MUTEX(mutex);
8107 int ret;
8108
8109 mutex_lock(&mutex);
8110 old_period = sysctl_sched_rt_period;
8111 old_runtime = sysctl_sched_rt_runtime;
8112
8113 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8114
8115 if (!ret && write) {
8116 ret = sched_rt_global_validate();
8117 if (ret)
8118 goto undo;
8119
8120 ret = sched_dl_global_validate();
8121 if (ret)
8122 goto undo;
8123
8124 ret = sched_rt_global_constraints();
8125 if (ret)
8126 goto undo;
8127
8128 sched_rt_do_global();
8129 sched_dl_do_global();
8130 }
8131 if (0) {
8132 undo:
8133 sysctl_sched_rt_period = old_period;
8134 sysctl_sched_rt_runtime = old_runtime;
8135 }
8136 mutex_unlock(&mutex);
8137
8138 return ret;
8139 }
8140
8141 int sched_rr_handler(struct ctl_table *table, int write,
8142 void __user *buffer, size_t *lenp,
8143 loff_t *ppos)
8144 {
8145 int ret;
8146 static DEFINE_MUTEX(mutex);
8147
8148 mutex_lock(&mutex);
8149 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8150 /* make sure that internally we keep jiffies */
8151 /* also, writing zero resets timeslice to default */
8152 if (!ret && write) {
8153 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8154 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8155 }
8156 mutex_unlock(&mutex);
8157 return ret;
8158 }
8159
8160 #ifdef CONFIG_CGROUP_SCHED
8161
8162 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8163 {
8164 return css ? container_of(css, struct task_group, css) : NULL;
8165 }
8166
8167 static struct cgroup_subsys_state *
8168 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8169 {
8170 struct task_group *parent = css_tg(parent_css);
8171 struct task_group *tg;
8172
8173 if (!parent) {
8174 /* This is early initialization for the top cgroup */
8175 return &root_task_group.css;
8176 }
8177
8178 tg = sched_create_group(parent);
8179 if (IS_ERR(tg))
8180 return ERR_PTR(-ENOMEM);
8181
8182 sched_online_group(tg, parent);
8183
8184 return &tg->css;
8185 }
8186
8187 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8188 {
8189 struct task_group *tg = css_tg(css);
8190
8191 sched_offline_group(tg);
8192 }
8193
8194 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8195 {
8196 struct task_group *tg = css_tg(css);
8197
8198 /*
8199 * Relies on the RCU grace period between css_released() and this.
8200 */
8201 sched_free_group(tg);
8202 }
8203
8204 static void cpu_cgroup_fork(struct task_struct *task)
8205 {
8206 sched_move_task(task);
8207 }
8208
8209 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8210 {
8211 struct task_struct *task;
8212 struct cgroup_subsys_state *css;
8213
8214 cgroup_taskset_for_each(task, css, tset) {
8215 #ifdef CONFIG_RT_GROUP_SCHED
8216 if (!sched_rt_can_attach(css_tg(css), task))
8217 return -EINVAL;
8218 #else
8219 /* We don't support RT-tasks being in separate groups */
8220 if (task->sched_class != &fair_sched_class)
8221 return -EINVAL;
8222 #endif
8223 }
8224 return 0;
8225 }
8226
8227 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8228 {
8229 struct task_struct *task;
8230 struct cgroup_subsys_state *css;
8231
8232 cgroup_taskset_for_each(task, css, tset)
8233 sched_move_task(task);
8234 }
8235
8236 #ifdef CONFIG_FAIR_GROUP_SCHED
8237 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8238 struct cftype *cftype, u64 shareval)
8239 {
8240 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8241 }
8242
8243 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8244 struct cftype *cft)
8245 {
8246 struct task_group *tg = css_tg(css);
8247
8248 return (u64) scale_load_down(tg->shares);
8249 }
8250
8251 #ifdef CONFIG_CFS_BANDWIDTH
8252 static DEFINE_MUTEX(cfs_constraints_mutex);
8253
8254 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8255 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8256
8257 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8258
8259 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8260 {
8261 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8262 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8263
8264 if (tg == &root_task_group)
8265 return -EINVAL;
8266
8267 /*
8268 * Ensure we have at some amount of bandwidth every period. This is
8269 * to prevent reaching a state of large arrears when throttled via
8270 * entity_tick() resulting in prolonged exit starvation.
8271 */
8272 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8273 return -EINVAL;
8274
8275 /*
8276 * Likewise, bound things on the otherside by preventing insane quota
8277 * periods. This also allows us to normalize in computing quota
8278 * feasibility.
8279 */
8280 if (period > max_cfs_quota_period)
8281 return -EINVAL;
8282
8283 /*
8284 * Prevent race between setting of cfs_rq->runtime_enabled and
8285 * unthrottle_offline_cfs_rqs().
8286 */
8287 get_online_cpus();
8288 mutex_lock(&cfs_constraints_mutex);
8289 ret = __cfs_schedulable(tg, period, quota);
8290 if (ret)
8291 goto out_unlock;
8292
8293 runtime_enabled = quota != RUNTIME_INF;
8294 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8295 /*
8296 * If we need to toggle cfs_bandwidth_used, off->on must occur
8297 * before making related changes, and on->off must occur afterwards
8298 */
8299 if (runtime_enabled && !runtime_was_enabled)
8300 cfs_bandwidth_usage_inc();
8301 raw_spin_lock_irq(&cfs_b->lock);
8302 cfs_b->period = ns_to_ktime(period);
8303 cfs_b->quota = quota;
8304
8305 __refill_cfs_bandwidth_runtime(cfs_b);
8306 /* restart the period timer (if active) to handle new period expiry */
8307 if (runtime_enabled)
8308 start_cfs_bandwidth(cfs_b);
8309 raw_spin_unlock_irq(&cfs_b->lock);
8310
8311 for_each_online_cpu(i) {
8312 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8313 struct rq *rq = cfs_rq->rq;
8314
8315 raw_spin_lock_irq(&rq->lock);
8316 cfs_rq->runtime_enabled = runtime_enabled;
8317 cfs_rq->runtime_remaining = 0;
8318
8319 if (cfs_rq->throttled)
8320 unthrottle_cfs_rq(cfs_rq);
8321 raw_spin_unlock_irq(&rq->lock);
8322 }
8323 if (runtime_was_enabled && !runtime_enabled)
8324 cfs_bandwidth_usage_dec();
8325 out_unlock:
8326 mutex_unlock(&cfs_constraints_mutex);
8327 put_online_cpus();
8328
8329 return ret;
8330 }
8331
8332 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8333 {
8334 u64 quota, period;
8335
8336 period = ktime_to_ns(tg->cfs_bandwidth.period);
8337 if (cfs_quota_us < 0)
8338 quota = RUNTIME_INF;
8339 else
8340 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8341
8342 return tg_set_cfs_bandwidth(tg, period, quota);
8343 }
8344
8345 long tg_get_cfs_quota(struct task_group *tg)
8346 {
8347 u64 quota_us;
8348
8349 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8350 return -1;
8351
8352 quota_us = tg->cfs_bandwidth.quota;
8353 do_div(quota_us, NSEC_PER_USEC);
8354
8355 return quota_us;
8356 }
8357
8358 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8359 {
8360 u64 quota, period;
8361
8362 period = (u64)cfs_period_us * NSEC_PER_USEC;
8363 quota = tg->cfs_bandwidth.quota;
8364
8365 return tg_set_cfs_bandwidth(tg, period, quota);
8366 }
8367
8368 long tg_get_cfs_period(struct task_group *tg)
8369 {
8370 u64 cfs_period_us;
8371
8372 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8373 do_div(cfs_period_us, NSEC_PER_USEC);
8374
8375 return cfs_period_us;
8376 }
8377
8378 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8379 struct cftype *cft)
8380 {
8381 return tg_get_cfs_quota(css_tg(css));
8382 }
8383
8384 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8385 struct cftype *cftype, s64 cfs_quota_us)
8386 {
8387 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8388 }
8389
8390 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8391 struct cftype *cft)
8392 {
8393 return tg_get_cfs_period(css_tg(css));
8394 }
8395
8396 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8397 struct cftype *cftype, u64 cfs_period_us)
8398 {
8399 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8400 }
8401
8402 struct cfs_schedulable_data {
8403 struct task_group *tg;
8404 u64 period, quota;
8405 };
8406
8407 /*
8408 * normalize group quota/period to be quota/max_period
8409 * note: units are usecs
8410 */
8411 static u64 normalize_cfs_quota(struct task_group *tg,
8412 struct cfs_schedulable_data *d)
8413 {
8414 u64 quota, period;
8415
8416 if (tg == d->tg) {
8417 period = d->period;
8418 quota = d->quota;
8419 } else {
8420 period = tg_get_cfs_period(tg);
8421 quota = tg_get_cfs_quota(tg);
8422 }
8423
8424 /* note: these should typically be equivalent */
8425 if (quota == RUNTIME_INF || quota == -1)
8426 return RUNTIME_INF;
8427
8428 return to_ratio(period, quota);
8429 }
8430
8431 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8432 {
8433 struct cfs_schedulable_data *d = data;
8434 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8435 s64 quota = 0, parent_quota = -1;
8436
8437 if (!tg->parent) {
8438 quota = RUNTIME_INF;
8439 } else {
8440 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8441
8442 quota = normalize_cfs_quota(tg, d);
8443 parent_quota = parent_b->hierarchical_quota;
8444
8445 /*
8446 * ensure max(child_quota) <= parent_quota, inherit when no
8447 * limit is set
8448 */
8449 if (quota == RUNTIME_INF)
8450 quota = parent_quota;
8451 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8452 return -EINVAL;
8453 }
8454 cfs_b->hierarchical_quota = quota;
8455
8456 return 0;
8457 }
8458
8459 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8460 {
8461 int ret;
8462 struct cfs_schedulable_data data = {
8463 .tg = tg,
8464 .period = period,
8465 .quota = quota,
8466 };
8467
8468 if (quota != RUNTIME_INF) {
8469 do_div(data.period, NSEC_PER_USEC);
8470 do_div(data.quota, NSEC_PER_USEC);
8471 }
8472
8473 rcu_read_lock();
8474 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8475 rcu_read_unlock();
8476
8477 return ret;
8478 }
8479
8480 static int cpu_stats_show(struct seq_file *sf, void *v)
8481 {
8482 struct task_group *tg = css_tg(seq_css(sf));
8483 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8484
8485 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8486 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8487 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8488
8489 return 0;
8490 }
8491 #endif /* CONFIG_CFS_BANDWIDTH */
8492 #endif /* CONFIG_FAIR_GROUP_SCHED */
8493
8494 #ifdef CONFIG_RT_GROUP_SCHED
8495 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8496 struct cftype *cft, s64 val)
8497 {
8498 return sched_group_set_rt_runtime(css_tg(css), val);
8499 }
8500
8501 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8502 struct cftype *cft)
8503 {
8504 return sched_group_rt_runtime(css_tg(css));
8505 }
8506
8507 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8508 struct cftype *cftype, u64 rt_period_us)
8509 {
8510 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8511 }
8512
8513 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8514 struct cftype *cft)
8515 {
8516 return sched_group_rt_period(css_tg(css));
8517 }
8518 #endif /* CONFIG_RT_GROUP_SCHED */
8519
8520 static struct cftype cpu_files[] = {
8521 #ifdef CONFIG_FAIR_GROUP_SCHED
8522 {
8523 .name = "shares",
8524 .read_u64 = cpu_shares_read_u64,
8525 .write_u64 = cpu_shares_write_u64,
8526 },
8527 #endif
8528 #ifdef CONFIG_CFS_BANDWIDTH
8529 {
8530 .name = "cfs_quota_us",
8531 .read_s64 = cpu_cfs_quota_read_s64,
8532 .write_s64 = cpu_cfs_quota_write_s64,
8533 },
8534 {
8535 .name = "cfs_period_us",
8536 .read_u64 = cpu_cfs_period_read_u64,
8537 .write_u64 = cpu_cfs_period_write_u64,
8538 },
8539 {
8540 .name = "stat",
8541 .seq_show = cpu_stats_show,
8542 },
8543 #endif
8544 #ifdef CONFIG_RT_GROUP_SCHED
8545 {
8546 .name = "rt_runtime_us",
8547 .read_s64 = cpu_rt_runtime_read,
8548 .write_s64 = cpu_rt_runtime_write,
8549 },
8550 {
8551 .name = "rt_period_us",
8552 .read_u64 = cpu_rt_period_read_uint,
8553 .write_u64 = cpu_rt_period_write_uint,
8554 },
8555 #endif
8556 { } /* terminate */
8557 };
8558
8559 struct cgroup_subsys cpu_cgrp_subsys = {
8560 .css_alloc = cpu_cgroup_css_alloc,
8561 .css_released = cpu_cgroup_css_released,
8562 .css_free = cpu_cgroup_css_free,
8563 .fork = cpu_cgroup_fork,
8564 .can_attach = cpu_cgroup_can_attach,
8565 .attach = cpu_cgroup_attach,
8566 .legacy_cftypes = cpu_files,
8567 .early_init = true,
8568 };
8569
8570 #endif /* CONFIG_CGROUP_SCHED */
8571
8572 void dump_cpu_task(int cpu)
8573 {
8574 pr_info("Task dump for CPU %d:\n", cpu);
8575 sched_show_task(cpu_curr(cpu));
8576 }
8577
8578 /*
8579 * Nice levels are multiplicative, with a gentle 10% change for every
8580 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8581 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8582 * that remained on nice 0.
8583 *
8584 * The "10% effect" is relative and cumulative: from _any_ nice level,
8585 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8586 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8587 * If a task goes up by ~10% and another task goes down by ~10% then
8588 * the relative distance between them is ~25%.)
8589 */
8590 const int sched_prio_to_weight[40] = {
8591 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8592 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8593 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8594 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8595 /* 0 */ 1024, 820, 655, 526, 423,
8596 /* 5 */ 335, 272, 215, 172, 137,
8597 /* 10 */ 110, 87, 70, 56, 45,
8598 /* 15 */ 36, 29, 23, 18, 15,
8599 };
8600
8601 /*
8602 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8603 *
8604 * In cases where the weight does not change often, we can use the
8605 * precalculated inverse to speed up arithmetics by turning divisions
8606 * into multiplications:
8607 */
8608 const u32 sched_prio_to_wmult[40] = {
8609 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8610 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8611 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8612 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8613 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8614 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8615 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8616 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8617 };
This page took 0.252037 seconds and 5 git commands to generate.