Merge ath-next from ath.git
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 unsigned long delta;
96 ktime_t soft, hard, now;
97
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
104
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111 }
112
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118 void update_rq_clock(struct rq *rq)
119 {
120 s64 delta;
121
122 lockdep_assert_held(&rq->lock);
123
124 if (rq->clock_skip_update & RQCF_ACT_SKIP)
125 return;
126
127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128 if (delta < 0)
129 return;
130 rq->clock += delta;
131 update_rq_clock_task(rq, delta);
132 }
133
134 /*
135 * Debugging: various feature bits
136 */
137
138 #define SCHED_FEAT(name, enabled) \
139 (1UL << __SCHED_FEAT_##name) * enabled |
140
141 const_debug unsigned int sysctl_sched_features =
142 #include "features.h"
143 0;
144
145 #undef SCHED_FEAT
146
147 #ifdef CONFIG_SCHED_DEBUG
148 #define SCHED_FEAT(name, enabled) \
149 #name ,
150
151 static const char * const sched_feat_names[] = {
152 #include "features.h"
153 };
154
155 #undef SCHED_FEAT
156
157 static int sched_feat_show(struct seq_file *m, void *v)
158 {
159 int i;
160
161 for (i = 0; i < __SCHED_FEAT_NR; i++) {
162 if (!(sysctl_sched_features & (1UL << i)))
163 seq_puts(m, "NO_");
164 seq_printf(m, "%s ", sched_feat_names[i]);
165 }
166 seq_puts(m, "\n");
167
168 return 0;
169 }
170
171 #ifdef HAVE_JUMP_LABEL
172
173 #define jump_label_key__true STATIC_KEY_INIT_TRUE
174 #define jump_label_key__false STATIC_KEY_INIT_FALSE
175
176 #define SCHED_FEAT(name, enabled) \
177 jump_label_key__##enabled ,
178
179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 #include "features.h"
181 };
182
183 #undef SCHED_FEAT
184
185 static void sched_feat_disable(int i)
186 {
187 if (static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_dec(&sched_feat_keys[i]);
189 }
190
191 static void sched_feat_enable(int i)
192 {
193 if (!static_key_enabled(&sched_feat_keys[i]))
194 static_key_slow_inc(&sched_feat_keys[i]);
195 }
196 #else
197 static void sched_feat_disable(int i) { };
198 static void sched_feat_enable(int i) { };
199 #endif /* HAVE_JUMP_LABEL */
200
201 static int sched_feat_set(char *cmp)
202 {
203 int i;
204 int neg = 0;
205
206 if (strncmp(cmp, "NO_", 3) == 0) {
207 neg = 1;
208 cmp += 3;
209 }
210
211 for (i = 0; i < __SCHED_FEAT_NR; i++) {
212 if (strcmp(cmp, sched_feat_names[i]) == 0) {
213 if (neg) {
214 sysctl_sched_features &= ~(1UL << i);
215 sched_feat_disable(i);
216 } else {
217 sysctl_sched_features |= (1UL << i);
218 sched_feat_enable(i);
219 }
220 break;
221 }
222 }
223
224 return i;
225 }
226
227 static ssize_t
228 sched_feat_write(struct file *filp, const char __user *ubuf,
229 size_t cnt, loff_t *ppos)
230 {
231 char buf[64];
232 char *cmp;
233 int i;
234 struct inode *inode;
235
236 if (cnt > 63)
237 cnt = 63;
238
239 if (copy_from_user(&buf, ubuf, cnt))
240 return -EFAULT;
241
242 buf[cnt] = 0;
243 cmp = strstrip(buf);
244
245 /* Ensure the static_key remains in a consistent state */
246 inode = file_inode(filp);
247 mutex_lock(&inode->i_mutex);
248 i = sched_feat_set(cmp);
249 mutex_unlock(&inode->i_mutex);
250 if (i == __SCHED_FEAT_NR)
251 return -EINVAL;
252
253 *ppos += cnt;
254
255 return cnt;
256 }
257
258 static int sched_feat_open(struct inode *inode, struct file *filp)
259 {
260 return single_open(filp, sched_feat_show, NULL);
261 }
262
263 static const struct file_operations sched_feat_fops = {
264 .open = sched_feat_open,
265 .write = sched_feat_write,
266 .read = seq_read,
267 .llseek = seq_lseek,
268 .release = single_release,
269 };
270
271 static __init int sched_init_debug(void)
272 {
273 debugfs_create_file("sched_features", 0644, NULL, NULL,
274 &sched_feat_fops);
275
276 return 0;
277 }
278 late_initcall(sched_init_debug);
279 #endif /* CONFIG_SCHED_DEBUG */
280
281 /*
282 * Number of tasks to iterate in a single balance run.
283 * Limited because this is done with IRQs disabled.
284 */
285 const_debug unsigned int sysctl_sched_nr_migrate = 32;
286
287 /*
288 * period over which we average the RT time consumption, measured
289 * in ms.
290 *
291 * default: 1s
292 */
293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294
295 /*
296 * period over which we measure -rt task cpu usage in us.
297 * default: 1s
298 */
299 unsigned int sysctl_sched_rt_period = 1000000;
300
301 __read_mostly int scheduler_running;
302
303 /*
304 * part of the period that we allow rt tasks to run in us.
305 * default: 0.95s
306 */
307 int sysctl_sched_rt_runtime = 950000;
308
309 /*
310 * __task_rq_lock - lock the rq @p resides on.
311 */
312 static inline struct rq *__task_rq_lock(struct task_struct *p)
313 __acquires(rq->lock)
314 {
315 struct rq *rq;
316
317 lockdep_assert_held(&p->pi_lock);
318
319 for (;;) {
320 rq = task_rq(p);
321 raw_spin_lock(&rq->lock);
322 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
323 return rq;
324 raw_spin_unlock(&rq->lock);
325
326 while (unlikely(task_on_rq_migrating(p)))
327 cpu_relax();
328 }
329 }
330
331 /*
332 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
333 */
334 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
335 __acquires(p->pi_lock)
336 __acquires(rq->lock)
337 {
338 struct rq *rq;
339
340 for (;;) {
341 raw_spin_lock_irqsave(&p->pi_lock, *flags);
342 rq = task_rq(p);
343 raw_spin_lock(&rq->lock);
344 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
345 return rq;
346 raw_spin_unlock(&rq->lock);
347 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
348
349 while (unlikely(task_on_rq_migrating(p)))
350 cpu_relax();
351 }
352 }
353
354 static void __task_rq_unlock(struct rq *rq)
355 __releases(rq->lock)
356 {
357 raw_spin_unlock(&rq->lock);
358 }
359
360 static inline void
361 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
362 __releases(rq->lock)
363 __releases(p->pi_lock)
364 {
365 raw_spin_unlock(&rq->lock);
366 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
367 }
368
369 /*
370 * this_rq_lock - lock this runqueue and disable interrupts.
371 */
372 static struct rq *this_rq_lock(void)
373 __acquires(rq->lock)
374 {
375 struct rq *rq;
376
377 local_irq_disable();
378 rq = this_rq();
379 raw_spin_lock(&rq->lock);
380
381 return rq;
382 }
383
384 #ifdef CONFIG_SCHED_HRTICK
385 /*
386 * Use HR-timers to deliver accurate preemption points.
387 */
388
389 static void hrtick_clear(struct rq *rq)
390 {
391 if (hrtimer_active(&rq->hrtick_timer))
392 hrtimer_cancel(&rq->hrtick_timer);
393 }
394
395 /*
396 * High-resolution timer tick.
397 * Runs from hardirq context with interrupts disabled.
398 */
399 static enum hrtimer_restart hrtick(struct hrtimer *timer)
400 {
401 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
402
403 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
404
405 raw_spin_lock(&rq->lock);
406 update_rq_clock(rq);
407 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
408 raw_spin_unlock(&rq->lock);
409
410 return HRTIMER_NORESTART;
411 }
412
413 #ifdef CONFIG_SMP
414
415 static int __hrtick_restart(struct rq *rq)
416 {
417 struct hrtimer *timer = &rq->hrtick_timer;
418 ktime_t time = hrtimer_get_softexpires(timer);
419
420 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
421 }
422
423 /*
424 * called from hardirq (IPI) context
425 */
426 static void __hrtick_start(void *arg)
427 {
428 struct rq *rq = arg;
429
430 raw_spin_lock(&rq->lock);
431 __hrtick_restart(rq);
432 rq->hrtick_csd_pending = 0;
433 raw_spin_unlock(&rq->lock);
434 }
435
436 /*
437 * Called to set the hrtick timer state.
438 *
439 * called with rq->lock held and irqs disabled
440 */
441 void hrtick_start(struct rq *rq, u64 delay)
442 {
443 struct hrtimer *timer = &rq->hrtick_timer;
444 ktime_t time;
445 s64 delta;
446
447 /*
448 * Don't schedule slices shorter than 10000ns, that just
449 * doesn't make sense and can cause timer DoS.
450 */
451 delta = max_t(s64, delay, 10000LL);
452 time = ktime_add_ns(timer->base->get_time(), delta);
453
454 hrtimer_set_expires(timer, time);
455
456 if (rq == this_rq()) {
457 __hrtick_restart(rq);
458 } else if (!rq->hrtick_csd_pending) {
459 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
460 rq->hrtick_csd_pending = 1;
461 }
462 }
463
464 static int
465 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
466 {
467 int cpu = (int)(long)hcpu;
468
469 switch (action) {
470 case CPU_UP_CANCELED:
471 case CPU_UP_CANCELED_FROZEN:
472 case CPU_DOWN_PREPARE:
473 case CPU_DOWN_PREPARE_FROZEN:
474 case CPU_DEAD:
475 case CPU_DEAD_FROZEN:
476 hrtick_clear(cpu_rq(cpu));
477 return NOTIFY_OK;
478 }
479
480 return NOTIFY_DONE;
481 }
482
483 static __init void init_hrtick(void)
484 {
485 hotcpu_notifier(hotplug_hrtick, 0);
486 }
487 #else
488 /*
489 * Called to set the hrtick timer state.
490 *
491 * called with rq->lock held and irqs disabled
492 */
493 void hrtick_start(struct rq *rq, u64 delay)
494 {
495 /*
496 * Don't schedule slices shorter than 10000ns, that just
497 * doesn't make sense. Rely on vruntime for fairness.
498 */
499 delay = max_t(u64, delay, 10000LL);
500 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
501 HRTIMER_MODE_REL_PINNED, 0);
502 }
503
504 static inline void init_hrtick(void)
505 {
506 }
507 #endif /* CONFIG_SMP */
508
509 static void init_rq_hrtick(struct rq *rq)
510 {
511 #ifdef CONFIG_SMP
512 rq->hrtick_csd_pending = 0;
513
514 rq->hrtick_csd.flags = 0;
515 rq->hrtick_csd.func = __hrtick_start;
516 rq->hrtick_csd.info = rq;
517 #endif
518
519 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
520 rq->hrtick_timer.function = hrtick;
521 }
522 #else /* CONFIG_SCHED_HRTICK */
523 static inline void hrtick_clear(struct rq *rq)
524 {
525 }
526
527 static inline void init_rq_hrtick(struct rq *rq)
528 {
529 }
530
531 static inline void init_hrtick(void)
532 {
533 }
534 #endif /* CONFIG_SCHED_HRTICK */
535
536 /*
537 * cmpxchg based fetch_or, macro so it works for different integer types
538 */
539 #define fetch_or(ptr, val) \
540 ({ typeof(*(ptr)) __old, __val = *(ptr); \
541 for (;;) { \
542 __old = cmpxchg((ptr), __val, __val | (val)); \
543 if (__old == __val) \
544 break; \
545 __val = __old; \
546 } \
547 __old; \
548 })
549
550 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
551 /*
552 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
553 * this avoids any races wrt polling state changes and thereby avoids
554 * spurious IPIs.
555 */
556 static bool set_nr_and_not_polling(struct task_struct *p)
557 {
558 struct thread_info *ti = task_thread_info(p);
559 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
560 }
561
562 /*
563 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
564 *
565 * If this returns true, then the idle task promises to call
566 * sched_ttwu_pending() and reschedule soon.
567 */
568 static bool set_nr_if_polling(struct task_struct *p)
569 {
570 struct thread_info *ti = task_thread_info(p);
571 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
572
573 for (;;) {
574 if (!(val & _TIF_POLLING_NRFLAG))
575 return false;
576 if (val & _TIF_NEED_RESCHED)
577 return true;
578 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
579 if (old == val)
580 break;
581 val = old;
582 }
583 return true;
584 }
585
586 #else
587 static bool set_nr_and_not_polling(struct task_struct *p)
588 {
589 set_tsk_need_resched(p);
590 return true;
591 }
592
593 #ifdef CONFIG_SMP
594 static bool set_nr_if_polling(struct task_struct *p)
595 {
596 return false;
597 }
598 #endif
599 #endif
600
601 /*
602 * resched_curr - mark rq's current task 'to be rescheduled now'.
603 *
604 * On UP this means the setting of the need_resched flag, on SMP it
605 * might also involve a cross-CPU call to trigger the scheduler on
606 * the target CPU.
607 */
608 void resched_curr(struct rq *rq)
609 {
610 struct task_struct *curr = rq->curr;
611 int cpu;
612
613 lockdep_assert_held(&rq->lock);
614
615 if (test_tsk_need_resched(curr))
616 return;
617
618 cpu = cpu_of(rq);
619
620 if (cpu == smp_processor_id()) {
621 set_tsk_need_resched(curr);
622 set_preempt_need_resched();
623 return;
624 }
625
626 if (set_nr_and_not_polling(curr))
627 smp_send_reschedule(cpu);
628 else
629 trace_sched_wake_idle_without_ipi(cpu);
630 }
631
632 void resched_cpu(int cpu)
633 {
634 struct rq *rq = cpu_rq(cpu);
635 unsigned long flags;
636
637 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
638 return;
639 resched_curr(rq);
640 raw_spin_unlock_irqrestore(&rq->lock, flags);
641 }
642
643 #ifdef CONFIG_SMP
644 #ifdef CONFIG_NO_HZ_COMMON
645 /*
646 * In the semi idle case, use the nearest busy cpu for migrating timers
647 * from an idle cpu. This is good for power-savings.
648 *
649 * We don't do similar optimization for completely idle system, as
650 * selecting an idle cpu will add more delays to the timers than intended
651 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
652 */
653 int get_nohz_timer_target(int pinned)
654 {
655 int cpu = smp_processor_id();
656 int i;
657 struct sched_domain *sd;
658
659 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
660 return cpu;
661
662 rcu_read_lock();
663 for_each_domain(cpu, sd) {
664 for_each_cpu(i, sched_domain_span(sd)) {
665 if (!idle_cpu(i)) {
666 cpu = i;
667 goto unlock;
668 }
669 }
670 }
671 unlock:
672 rcu_read_unlock();
673 return cpu;
674 }
675 /*
676 * When add_timer_on() enqueues a timer into the timer wheel of an
677 * idle CPU then this timer might expire before the next timer event
678 * which is scheduled to wake up that CPU. In case of a completely
679 * idle system the next event might even be infinite time into the
680 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
681 * leaves the inner idle loop so the newly added timer is taken into
682 * account when the CPU goes back to idle and evaluates the timer
683 * wheel for the next timer event.
684 */
685 static void wake_up_idle_cpu(int cpu)
686 {
687 struct rq *rq = cpu_rq(cpu);
688
689 if (cpu == smp_processor_id())
690 return;
691
692 if (set_nr_and_not_polling(rq->idle))
693 smp_send_reschedule(cpu);
694 else
695 trace_sched_wake_idle_without_ipi(cpu);
696 }
697
698 static bool wake_up_full_nohz_cpu(int cpu)
699 {
700 /*
701 * We just need the target to call irq_exit() and re-evaluate
702 * the next tick. The nohz full kick at least implies that.
703 * If needed we can still optimize that later with an
704 * empty IRQ.
705 */
706 if (tick_nohz_full_cpu(cpu)) {
707 if (cpu != smp_processor_id() ||
708 tick_nohz_tick_stopped())
709 tick_nohz_full_kick_cpu(cpu);
710 return true;
711 }
712
713 return false;
714 }
715
716 void wake_up_nohz_cpu(int cpu)
717 {
718 if (!wake_up_full_nohz_cpu(cpu))
719 wake_up_idle_cpu(cpu);
720 }
721
722 static inline bool got_nohz_idle_kick(void)
723 {
724 int cpu = smp_processor_id();
725
726 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
727 return false;
728
729 if (idle_cpu(cpu) && !need_resched())
730 return true;
731
732 /*
733 * We can't run Idle Load Balance on this CPU for this time so we
734 * cancel it and clear NOHZ_BALANCE_KICK
735 */
736 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
737 return false;
738 }
739
740 #else /* CONFIG_NO_HZ_COMMON */
741
742 static inline bool got_nohz_idle_kick(void)
743 {
744 return false;
745 }
746
747 #endif /* CONFIG_NO_HZ_COMMON */
748
749 #ifdef CONFIG_NO_HZ_FULL
750 bool sched_can_stop_tick(void)
751 {
752 /*
753 * More than one running task need preemption.
754 * nr_running update is assumed to be visible
755 * after IPI is sent from wakers.
756 */
757 if (this_rq()->nr_running > 1)
758 return false;
759
760 return true;
761 }
762 #endif /* CONFIG_NO_HZ_FULL */
763
764 void sched_avg_update(struct rq *rq)
765 {
766 s64 period = sched_avg_period();
767
768 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
769 /*
770 * Inline assembly required to prevent the compiler
771 * optimising this loop into a divmod call.
772 * See __iter_div_u64_rem() for another example of this.
773 */
774 asm("" : "+rm" (rq->age_stamp));
775 rq->age_stamp += period;
776 rq->rt_avg /= 2;
777 }
778 }
779
780 #endif /* CONFIG_SMP */
781
782 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
783 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
784 /*
785 * Iterate task_group tree rooted at *from, calling @down when first entering a
786 * node and @up when leaving it for the final time.
787 *
788 * Caller must hold rcu_lock or sufficient equivalent.
789 */
790 int walk_tg_tree_from(struct task_group *from,
791 tg_visitor down, tg_visitor up, void *data)
792 {
793 struct task_group *parent, *child;
794 int ret;
795
796 parent = from;
797
798 down:
799 ret = (*down)(parent, data);
800 if (ret)
801 goto out;
802 list_for_each_entry_rcu(child, &parent->children, siblings) {
803 parent = child;
804 goto down;
805
806 up:
807 continue;
808 }
809 ret = (*up)(parent, data);
810 if (ret || parent == from)
811 goto out;
812
813 child = parent;
814 parent = parent->parent;
815 if (parent)
816 goto up;
817 out:
818 return ret;
819 }
820
821 int tg_nop(struct task_group *tg, void *data)
822 {
823 return 0;
824 }
825 #endif
826
827 static void set_load_weight(struct task_struct *p)
828 {
829 int prio = p->static_prio - MAX_RT_PRIO;
830 struct load_weight *load = &p->se.load;
831
832 /*
833 * SCHED_IDLE tasks get minimal weight:
834 */
835 if (p->policy == SCHED_IDLE) {
836 load->weight = scale_load(WEIGHT_IDLEPRIO);
837 load->inv_weight = WMULT_IDLEPRIO;
838 return;
839 }
840
841 load->weight = scale_load(prio_to_weight[prio]);
842 load->inv_weight = prio_to_wmult[prio];
843 }
844
845 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
846 {
847 update_rq_clock(rq);
848 sched_info_queued(rq, p);
849 p->sched_class->enqueue_task(rq, p, flags);
850 }
851
852 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
853 {
854 update_rq_clock(rq);
855 sched_info_dequeued(rq, p);
856 p->sched_class->dequeue_task(rq, p, flags);
857 }
858
859 void activate_task(struct rq *rq, struct task_struct *p, int flags)
860 {
861 if (task_contributes_to_load(p))
862 rq->nr_uninterruptible--;
863
864 enqueue_task(rq, p, flags);
865 }
866
867 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
868 {
869 if (task_contributes_to_load(p))
870 rq->nr_uninterruptible++;
871
872 dequeue_task(rq, p, flags);
873 }
874
875 static void update_rq_clock_task(struct rq *rq, s64 delta)
876 {
877 /*
878 * In theory, the compile should just see 0 here, and optimize out the call
879 * to sched_rt_avg_update. But I don't trust it...
880 */
881 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
882 s64 steal = 0, irq_delta = 0;
883 #endif
884 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
885 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
886
887 /*
888 * Since irq_time is only updated on {soft,}irq_exit, we might run into
889 * this case when a previous update_rq_clock() happened inside a
890 * {soft,}irq region.
891 *
892 * When this happens, we stop ->clock_task and only update the
893 * prev_irq_time stamp to account for the part that fit, so that a next
894 * update will consume the rest. This ensures ->clock_task is
895 * monotonic.
896 *
897 * It does however cause some slight miss-attribution of {soft,}irq
898 * time, a more accurate solution would be to update the irq_time using
899 * the current rq->clock timestamp, except that would require using
900 * atomic ops.
901 */
902 if (irq_delta > delta)
903 irq_delta = delta;
904
905 rq->prev_irq_time += irq_delta;
906 delta -= irq_delta;
907 #endif
908 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
909 if (static_key_false((&paravirt_steal_rq_enabled))) {
910 steal = paravirt_steal_clock(cpu_of(rq));
911 steal -= rq->prev_steal_time_rq;
912
913 if (unlikely(steal > delta))
914 steal = delta;
915
916 rq->prev_steal_time_rq += steal;
917 delta -= steal;
918 }
919 #endif
920
921 rq->clock_task += delta;
922
923 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
924 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
925 sched_rt_avg_update(rq, irq_delta + steal);
926 #endif
927 }
928
929 void sched_set_stop_task(int cpu, struct task_struct *stop)
930 {
931 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
932 struct task_struct *old_stop = cpu_rq(cpu)->stop;
933
934 if (stop) {
935 /*
936 * Make it appear like a SCHED_FIFO task, its something
937 * userspace knows about and won't get confused about.
938 *
939 * Also, it will make PI more or less work without too
940 * much confusion -- but then, stop work should not
941 * rely on PI working anyway.
942 */
943 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
944
945 stop->sched_class = &stop_sched_class;
946 }
947
948 cpu_rq(cpu)->stop = stop;
949
950 if (old_stop) {
951 /*
952 * Reset it back to a normal scheduling class so that
953 * it can die in pieces.
954 */
955 old_stop->sched_class = &rt_sched_class;
956 }
957 }
958
959 /*
960 * __normal_prio - return the priority that is based on the static prio
961 */
962 static inline int __normal_prio(struct task_struct *p)
963 {
964 return p->static_prio;
965 }
966
967 /*
968 * Calculate the expected normal priority: i.e. priority
969 * without taking RT-inheritance into account. Might be
970 * boosted by interactivity modifiers. Changes upon fork,
971 * setprio syscalls, and whenever the interactivity
972 * estimator recalculates.
973 */
974 static inline int normal_prio(struct task_struct *p)
975 {
976 int prio;
977
978 if (task_has_dl_policy(p))
979 prio = MAX_DL_PRIO-1;
980 else if (task_has_rt_policy(p))
981 prio = MAX_RT_PRIO-1 - p->rt_priority;
982 else
983 prio = __normal_prio(p);
984 return prio;
985 }
986
987 /*
988 * Calculate the current priority, i.e. the priority
989 * taken into account by the scheduler. This value might
990 * be boosted by RT tasks, or might be boosted by
991 * interactivity modifiers. Will be RT if the task got
992 * RT-boosted. If not then it returns p->normal_prio.
993 */
994 static int effective_prio(struct task_struct *p)
995 {
996 p->normal_prio = normal_prio(p);
997 /*
998 * If we are RT tasks or we were boosted to RT priority,
999 * keep the priority unchanged. Otherwise, update priority
1000 * to the normal priority:
1001 */
1002 if (!rt_prio(p->prio))
1003 return p->normal_prio;
1004 return p->prio;
1005 }
1006
1007 /**
1008 * task_curr - is this task currently executing on a CPU?
1009 * @p: the task in question.
1010 *
1011 * Return: 1 if the task is currently executing. 0 otherwise.
1012 */
1013 inline int task_curr(const struct task_struct *p)
1014 {
1015 return cpu_curr(task_cpu(p)) == p;
1016 }
1017
1018 /*
1019 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
1020 */
1021 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1022 const struct sched_class *prev_class,
1023 int oldprio)
1024 {
1025 if (prev_class != p->sched_class) {
1026 if (prev_class->switched_from)
1027 prev_class->switched_from(rq, p);
1028 /* Possble rq->lock 'hole'. */
1029 p->sched_class->switched_to(rq, p);
1030 } else if (oldprio != p->prio || dl_task(p))
1031 p->sched_class->prio_changed(rq, p, oldprio);
1032 }
1033
1034 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1035 {
1036 const struct sched_class *class;
1037
1038 if (p->sched_class == rq->curr->sched_class) {
1039 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1040 } else {
1041 for_each_class(class) {
1042 if (class == rq->curr->sched_class)
1043 break;
1044 if (class == p->sched_class) {
1045 resched_curr(rq);
1046 break;
1047 }
1048 }
1049 }
1050
1051 /*
1052 * A queue event has occurred, and we're going to schedule. In
1053 * this case, we can save a useless back to back clock update.
1054 */
1055 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1056 rq_clock_skip_update(rq, true);
1057 }
1058
1059 #ifdef CONFIG_SMP
1060 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1061 {
1062 #ifdef CONFIG_SCHED_DEBUG
1063 /*
1064 * We should never call set_task_cpu() on a blocked task,
1065 * ttwu() will sort out the placement.
1066 */
1067 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1068 !p->on_rq);
1069
1070 #ifdef CONFIG_LOCKDEP
1071 /*
1072 * The caller should hold either p->pi_lock or rq->lock, when changing
1073 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1074 *
1075 * sched_move_task() holds both and thus holding either pins the cgroup,
1076 * see task_group().
1077 *
1078 * Furthermore, all task_rq users should acquire both locks, see
1079 * task_rq_lock().
1080 */
1081 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1082 lockdep_is_held(&task_rq(p)->lock)));
1083 #endif
1084 #endif
1085
1086 trace_sched_migrate_task(p, new_cpu);
1087
1088 if (task_cpu(p) != new_cpu) {
1089 if (p->sched_class->migrate_task_rq)
1090 p->sched_class->migrate_task_rq(p, new_cpu);
1091 p->se.nr_migrations++;
1092 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1093 }
1094
1095 __set_task_cpu(p, new_cpu);
1096 }
1097
1098 static void __migrate_swap_task(struct task_struct *p, int cpu)
1099 {
1100 if (task_on_rq_queued(p)) {
1101 struct rq *src_rq, *dst_rq;
1102
1103 src_rq = task_rq(p);
1104 dst_rq = cpu_rq(cpu);
1105
1106 deactivate_task(src_rq, p, 0);
1107 set_task_cpu(p, cpu);
1108 activate_task(dst_rq, p, 0);
1109 check_preempt_curr(dst_rq, p, 0);
1110 } else {
1111 /*
1112 * Task isn't running anymore; make it appear like we migrated
1113 * it before it went to sleep. This means on wakeup we make the
1114 * previous cpu our targer instead of where it really is.
1115 */
1116 p->wake_cpu = cpu;
1117 }
1118 }
1119
1120 struct migration_swap_arg {
1121 struct task_struct *src_task, *dst_task;
1122 int src_cpu, dst_cpu;
1123 };
1124
1125 static int migrate_swap_stop(void *data)
1126 {
1127 struct migration_swap_arg *arg = data;
1128 struct rq *src_rq, *dst_rq;
1129 int ret = -EAGAIN;
1130
1131 src_rq = cpu_rq(arg->src_cpu);
1132 dst_rq = cpu_rq(arg->dst_cpu);
1133
1134 double_raw_lock(&arg->src_task->pi_lock,
1135 &arg->dst_task->pi_lock);
1136 double_rq_lock(src_rq, dst_rq);
1137 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1138 goto unlock;
1139
1140 if (task_cpu(arg->src_task) != arg->src_cpu)
1141 goto unlock;
1142
1143 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1144 goto unlock;
1145
1146 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1147 goto unlock;
1148
1149 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1150 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1151
1152 ret = 0;
1153
1154 unlock:
1155 double_rq_unlock(src_rq, dst_rq);
1156 raw_spin_unlock(&arg->dst_task->pi_lock);
1157 raw_spin_unlock(&arg->src_task->pi_lock);
1158
1159 return ret;
1160 }
1161
1162 /*
1163 * Cross migrate two tasks
1164 */
1165 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1166 {
1167 struct migration_swap_arg arg;
1168 int ret = -EINVAL;
1169
1170 arg = (struct migration_swap_arg){
1171 .src_task = cur,
1172 .src_cpu = task_cpu(cur),
1173 .dst_task = p,
1174 .dst_cpu = task_cpu(p),
1175 };
1176
1177 if (arg.src_cpu == arg.dst_cpu)
1178 goto out;
1179
1180 /*
1181 * These three tests are all lockless; this is OK since all of them
1182 * will be re-checked with proper locks held further down the line.
1183 */
1184 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1185 goto out;
1186
1187 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1188 goto out;
1189
1190 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1191 goto out;
1192
1193 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1194 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1195
1196 out:
1197 return ret;
1198 }
1199
1200 struct migration_arg {
1201 struct task_struct *task;
1202 int dest_cpu;
1203 };
1204
1205 static int migration_cpu_stop(void *data);
1206
1207 /*
1208 * wait_task_inactive - wait for a thread to unschedule.
1209 *
1210 * If @match_state is nonzero, it's the @p->state value just checked and
1211 * not expected to change. If it changes, i.e. @p might have woken up,
1212 * then return zero. When we succeed in waiting for @p to be off its CPU,
1213 * we return a positive number (its total switch count). If a second call
1214 * a short while later returns the same number, the caller can be sure that
1215 * @p has remained unscheduled the whole time.
1216 *
1217 * The caller must ensure that the task *will* unschedule sometime soon,
1218 * else this function might spin for a *long* time. This function can't
1219 * be called with interrupts off, or it may introduce deadlock with
1220 * smp_call_function() if an IPI is sent by the same process we are
1221 * waiting to become inactive.
1222 */
1223 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1224 {
1225 unsigned long flags;
1226 int running, queued;
1227 unsigned long ncsw;
1228 struct rq *rq;
1229
1230 for (;;) {
1231 /*
1232 * We do the initial early heuristics without holding
1233 * any task-queue locks at all. We'll only try to get
1234 * the runqueue lock when things look like they will
1235 * work out!
1236 */
1237 rq = task_rq(p);
1238
1239 /*
1240 * If the task is actively running on another CPU
1241 * still, just relax and busy-wait without holding
1242 * any locks.
1243 *
1244 * NOTE! Since we don't hold any locks, it's not
1245 * even sure that "rq" stays as the right runqueue!
1246 * But we don't care, since "task_running()" will
1247 * return false if the runqueue has changed and p
1248 * is actually now running somewhere else!
1249 */
1250 while (task_running(rq, p)) {
1251 if (match_state && unlikely(p->state != match_state))
1252 return 0;
1253 cpu_relax();
1254 }
1255
1256 /*
1257 * Ok, time to look more closely! We need the rq
1258 * lock now, to be *sure*. If we're wrong, we'll
1259 * just go back and repeat.
1260 */
1261 rq = task_rq_lock(p, &flags);
1262 trace_sched_wait_task(p);
1263 running = task_running(rq, p);
1264 queued = task_on_rq_queued(p);
1265 ncsw = 0;
1266 if (!match_state || p->state == match_state)
1267 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1268 task_rq_unlock(rq, p, &flags);
1269
1270 /*
1271 * If it changed from the expected state, bail out now.
1272 */
1273 if (unlikely(!ncsw))
1274 break;
1275
1276 /*
1277 * Was it really running after all now that we
1278 * checked with the proper locks actually held?
1279 *
1280 * Oops. Go back and try again..
1281 */
1282 if (unlikely(running)) {
1283 cpu_relax();
1284 continue;
1285 }
1286
1287 /*
1288 * It's not enough that it's not actively running,
1289 * it must be off the runqueue _entirely_, and not
1290 * preempted!
1291 *
1292 * So if it was still runnable (but just not actively
1293 * running right now), it's preempted, and we should
1294 * yield - it could be a while.
1295 */
1296 if (unlikely(queued)) {
1297 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1298
1299 set_current_state(TASK_UNINTERRUPTIBLE);
1300 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1301 continue;
1302 }
1303
1304 /*
1305 * Ahh, all good. It wasn't running, and it wasn't
1306 * runnable, which means that it will never become
1307 * running in the future either. We're all done!
1308 */
1309 break;
1310 }
1311
1312 return ncsw;
1313 }
1314
1315 /***
1316 * kick_process - kick a running thread to enter/exit the kernel
1317 * @p: the to-be-kicked thread
1318 *
1319 * Cause a process which is running on another CPU to enter
1320 * kernel-mode, without any delay. (to get signals handled.)
1321 *
1322 * NOTE: this function doesn't have to take the runqueue lock,
1323 * because all it wants to ensure is that the remote task enters
1324 * the kernel. If the IPI races and the task has been migrated
1325 * to another CPU then no harm is done and the purpose has been
1326 * achieved as well.
1327 */
1328 void kick_process(struct task_struct *p)
1329 {
1330 int cpu;
1331
1332 preempt_disable();
1333 cpu = task_cpu(p);
1334 if ((cpu != smp_processor_id()) && task_curr(p))
1335 smp_send_reschedule(cpu);
1336 preempt_enable();
1337 }
1338 EXPORT_SYMBOL_GPL(kick_process);
1339 #endif /* CONFIG_SMP */
1340
1341 #ifdef CONFIG_SMP
1342 /*
1343 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1344 */
1345 static int select_fallback_rq(int cpu, struct task_struct *p)
1346 {
1347 int nid = cpu_to_node(cpu);
1348 const struct cpumask *nodemask = NULL;
1349 enum { cpuset, possible, fail } state = cpuset;
1350 int dest_cpu;
1351
1352 /*
1353 * If the node that the cpu is on has been offlined, cpu_to_node()
1354 * will return -1. There is no cpu on the node, and we should
1355 * select the cpu on the other node.
1356 */
1357 if (nid != -1) {
1358 nodemask = cpumask_of_node(nid);
1359
1360 /* Look for allowed, online CPU in same node. */
1361 for_each_cpu(dest_cpu, nodemask) {
1362 if (!cpu_online(dest_cpu))
1363 continue;
1364 if (!cpu_active(dest_cpu))
1365 continue;
1366 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1367 return dest_cpu;
1368 }
1369 }
1370
1371 for (;;) {
1372 /* Any allowed, online CPU? */
1373 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1374 if (!cpu_online(dest_cpu))
1375 continue;
1376 if (!cpu_active(dest_cpu))
1377 continue;
1378 goto out;
1379 }
1380
1381 switch (state) {
1382 case cpuset:
1383 /* No more Mr. Nice Guy. */
1384 cpuset_cpus_allowed_fallback(p);
1385 state = possible;
1386 break;
1387
1388 case possible:
1389 do_set_cpus_allowed(p, cpu_possible_mask);
1390 state = fail;
1391 break;
1392
1393 case fail:
1394 BUG();
1395 break;
1396 }
1397 }
1398
1399 out:
1400 if (state != cpuset) {
1401 /*
1402 * Don't tell them about moving exiting tasks or
1403 * kernel threads (both mm NULL), since they never
1404 * leave kernel.
1405 */
1406 if (p->mm && printk_ratelimit()) {
1407 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1408 task_pid_nr(p), p->comm, cpu);
1409 }
1410 }
1411
1412 return dest_cpu;
1413 }
1414
1415 /*
1416 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1417 */
1418 static inline
1419 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1420 {
1421 if (p->nr_cpus_allowed > 1)
1422 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1423
1424 /*
1425 * In order not to call set_task_cpu() on a blocking task we need
1426 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1427 * cpu.
1428 *
1429 * Since this is common to all placement strategies, this lives here.
1430 *
1431 * [ this allows ->select_task() to simply return task_cpu(p) and
1432 * not worry about this generic constraint ]
1433 */
1434 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1435 !cpu_online(cpu)))
1436 cpu = select_fallback_rq(task_cpu(p), p);
1437
1438 return cpu;
1439 }
1440
1441 static void update_avg(u64 *avg, u64 sample)
1442 {
1443 s64 diff = sample - *avg;
1444 *avg += diff >> 3;
1445 }
1446 #endif
1447
1448 static void
1449 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1450 {
1451 #ifdef CONFIG_SCHEDSTATS
1452 struct rq *rq = this_rq();
1453
1454 #ifdef CONFIG_SMP
1455 int this_cpu = smp_processor_id();
1456
1457 if (cpu == this_cpu) {
1458 schedstat_inc(rq, ttwu_local);
1459 schedstat_inc(p, se.statistics.nr_wakeups_local);
1460 } else {
1461 struct sched_domain *sd;
1462
1463 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1464 rcu_read_lock();
1465 for_each_domain(this_cpu, sd) {
1466 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1467 schedstat_inc(sd, ttwu_wake_remote);
1468 break;
1469 }
1470 }
1471 rcu_read_unlock();
1472 }
1473
1474 if (wake_flags & WF_MIGRATED)
1475 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1476
1477 #endif /* CONFIG_SMP */
1478
1479 schedstat_inc(rq, ttwu_count);
1480 schedstat_inc(p, se.statistics.nr_wakeups);
1481
1482 if (wake_flags & WF_SYNC)
1483 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1484
1485 #endif /* CONFIG_SCHEDSTATS */
1486 }
1487
1488 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1489 {
1490 activate_task(rq, p, en_flags);
1491 p->on_rq = TASK_ON_RQ_QUEUED;
1492
1493 /* if a worker is waking up, notify workqueue */
1494 if (p->flags & PF_WQ_WORKER)
1495 wq_worker_waking_up(p, cpu_of(rq));
1496 }
1497
1498 /*
1499 * Mark the task runnable and perform wakeup-preemption.
1500 */
1501 static void
1502 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1503 {
1504 check_preempt_curr(rq, p, wake_flags);
1505 trace_sched_wakeup(p, true);
1506
1507 p->state = TASK_RUNNING;
1508 #ifdef CONFIG_SMP
1509 if (p->sched_class->task_woken)
1510 p->sched_class->task_woken(rq, p);
1511
1512 if (rq->idle_stamp) {
1513 u64 delta = rq_clock(rq) - rq->idle_stamp;
1514 u64 max = 2*rq->max_idle_balance_cost;
1515
1516 update_avg(&rq->avg_idle, delta);
1517
1518 if (rq->avg_idle > max)
1519 rq->avg_idle = max;
1520
1521 rq->idle_stamp = 0;
1522 }
1523 #endif
1524 }
1525
1526 static void
1527 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1528 {
1529 #ifdef CONFIG_SMP
1530 if (p->sched_contributes_to_load)
1531 rq->nr_uninterruptible--;
1532 #endif
1533
1534 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1535 ttwu_do_wakeup(rq, p, wake_flags);
1536 }
1537
1538 /*
1539 * Called in case the task @p isn't fully descheduled from its runqueue,
1540 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1541 * since all we need to do is flip p->state to TASK_RUNNING, since
1542 * the task is still ->on_rq.
1543 */
1544 static int ttwu_remote(struct task_struct *p, int wake_flags)
1545 {
1546 struct rq *rq;
1547 int ret = 0;
1548
1549 rq = __task_rq_lock(p);
1550 if (task_on_rq_queued(p)) {
1551 /* check_preempt_curr() may use rq clock */
1552 update_rq_clock(rq);
1553 ttwu_do_wakeup(rq, p, wake_flags);
1554 ret = 1;
1555 }
1556 __task_rq_unlock(rq);
1557
1558 return ret;
1559 }
1560
1561 #ifdef CONFIG_SMP
1562 void sched_ttwu_pending(void)
1563 {
1564 struct rq *rq = this_rq();
1565 struct llist_node *llist = llist_del_all(&rq->wake_list);
1566 struct task_struct *p;
1567 unsigned long flags;
1568
1569 if (!llist)
1570 return;
1571
1572 raw_spin_lock_irqsave(&rq->lock, flags);
1573
1574 while (llist) {
1575 p = llist_entry(llist, struct task_struct, wake_entry);
1576 llist = llist_next(llist);
1577 ttwu_do_activate(rq, p, 0);
1578 }
1579
1580 raw_spin_unlock_irqrestore(&rq->lock, flags);
1581 }
1582
1583 void scheduler_ipi(void)
1584 {
1585 /*
1586 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1587 * TIF_NEED_RESCHED remotely (for the first time) will also send
1588 * this IPI.
1589 */
1590 preempt_fold_need_resched();
1591
1592 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1593 return;
1594
1595 /*
1596 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1597 * traditionally all their work was done from the interrupt return
1598 * path. Now that we actually do some work, we need to make sure
1599 * we do call them.
1600 *
1601 * Some archs already do call them, luckily irq_enter/exit nest
1602 * properly.
1603 *
1604 * Arguably we should visit all archs and update all handlers,
1605 * however a fair share of IPIs are still resched only so this would
1606 * somewhat pessimize the simple resched case.
1607 */
1608 irq_enter();
1609 sched_ttwu_pending();
1610
1611 /*
1612 * Check if someone kicked us for doing the nohz idle load balance.
1613 */
1614 if (unlikely(got_nohz_idle_kick())) {
1615 this_rq()->idle_balance = 1;
1616 raise_softirq_irqoff(SCHED_SOFTIRQ);
1617 }
1618 irq_exit();
1619 }
1620
1621 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1622 {
1623 struct rq *rq = cpu_rq(cpu);
1624
1625 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1626 if (!set_nr_if_polling(rq->idle))
1627 smp_send_reschedule(cpu);
1628 else
1629 trace_sched_wake_idle_without_ipi(cpu);
1630 }
1631 }
1632
1633 void wake_up_if_idle(int cpu)
1634 {
1635 struct rq *rq = cpu_rq(cpu);
1636 unsigned long flags;
1637
1638 rcu_read_lock();
1639
1640 if (!is_idle_task(rcu_dereference(rq->curr)))
1641 goto out;
1642
1643 if (set_nr_if_polling(rq->idle)) {
1644 trace_sched_wake_idle_without_ipi(cpu);
1645 } else {
1646 raw_spin_lock_irqsave(&rq->lock, flags);
1647 if (is_idle_task(rq->curr))
1648 smp_send_reschedule(cpu);
1649 /* Else cpu is not in idle, do nothing here */
1650 raw_spin_unlock_irqrestore(&rq->lock, flags);
1651 }
1652
1653 out:
1654 rcu_read_unlock();
1655 }
1656
1657 bool cpus_share_cache(int this_cpu, int that_cpu)
1658 {
1659 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1660 }
1661 #endif /* CONFIG_SMP */
1662
1663 static void ttwu_queue(struct task_struct *p, int cpu)
1664 {
1665 struct rq *rq = cpu_rq(cpu);
1666
1667 #if defined(CONFIG_SMP)
1668 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1669 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1670 ttwu_queue_remote(p, cpu);
1671 return;
1672 }
1673 #endif
1674
1675 raw_spin_lock(&rq->lock);
1676 ttwu_do_activate(rq, p, 0);
1677 raw_spin_unlock(&rq->lock);
1678 }
1679
1680 /**
1681 * try_to_wake_up - wake up a thread
1682 * @p: the thread to be awakened
1683 * @state: the mask of task states that can be woken
1684 * @wake_flags: wake modifier flags (WF_*)
1685 *
1686 * Put it on the run-queue if it's not already there. The "current"
1687 * thread is always on the run-queue (except when the actual
1688 * re-schedule is in progress), and as such you're allowed to do
1689 * the simpler "current->state = TASK_RUNNING" to mark yourself
1690 * runnable without the overhead of this.
1691 *
1692 * Return: %true if @p was woken up, %false if it was already running.
1693 * or @state didn't match @p's state.
1694 */
1695 static int
1696 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1697 {
1698 unsigned long flags;
1699 int cpu, success = 0;
1700
1701 /*
1702 * If we are going to wake up a thread waiting for CONDITION we
1703 * need to ensure that CONDITION=1 done by the caller can not be
1704 * reordered with p->state check below. This pairs with mb() in
1705 * set_current_state() the waiting thread does.
1706 */
1707 smp_mb__before_spinlock();
1708 raw_spin_lock_irqsave(&p->pi_lock, flags);
1709 if (!(p->state & state))
1710 goto out;
1711
1712 success = 1; /* we're going to change ->state */
1713 cpu = task_cpu(p);
1714
1715 if (p->on_rq && ttwu_remote(p, wake_flags))
1716 goto stat;
1717
1718 #ifdef CONFIG_SMP
1719 /*
1720 * If the owning (remote) cpu is still in the middle of schedule() with
1721 * this task as prev, wait until its done referencing the task.
1722 */
1723 while (p->on_cpu)
1724 cpu_relax();
1725 /*
1726 * Pairs with the smp_wmb() in finish_lock_switch().
1727 */
1728 smp_rmb();
1729
1730 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1731 p->state = TASK_WAKING;
1732
1733 if (p->sched_class->task_waking)
1734 p->sched_class->task_waking(p);
1735
1736 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1737 if (task_cpu(p) != cpu) {
1738 wake_flags |= WF_MIGRATED;
1739 set_task_cpu(p, cpu);
1740 }
1741 #endif /* CONFIG_SMP */
1742
1743 ttwu_queue(p, cpu);
1744 stat:
1745 ttwu_stat(p, cpu, wake_flags);
1746 out:
1747 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1748
1749 return success;
1750 }
1751
1752 /**
1753 * try_to_wake_up_local - try to wake up a local task with rq lock held
1754 * @p: the thread to be awakened
1755 *
1756 * Put @p on the run-queue if it's not already there. The caller must
1757 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1758 * the current task.
1759 */
1760 static void try_to_wake_up_local(struct task_struct *p)
1761 {
1762 struct rq *rq = task_rq(p);
1763
1764 if (WARN_ON_ONCE(rq != this_rq()) ||
1765 WARN_ON_ONCE(p == current))
1766 return;
1767
1768 lockdep_assert_held(&rq->lock);
1769
1770 if (!raw_spin_trylock(&p->pi_lock)) {
1771 raw_spin_unlock(&rq->lock);
1772 raw_spin_lock(&p->pi_lock);
1773 raw_spin_lock(&rq->lock);
1774 }
1775
1776 if (!(p->state & TASK_NORMAL))
1777 goto out;
1778
1779 if (!task_on_rq_queued(p))
1780 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1781
1782 ttwu_do_wakeup(rq, p, 0);
1783 ttwu_stat(p, smp_processor_id(), 0);
1784 out:
1785 raw_spin_unlock(&p->pi_lock);
1786 }
1787
1788 /**
1789 * wake_up_process - Wake up a specific process
1790 * @p: The process to be woken up.
1791 *
1792 * Attempt to wake up the nominated process and move it to the set of runnable
1793 * processes.
1794 *
1795 * Return: 1 if the process was woken up, 0 if it was already running.
1796 *
1797 * It may be assumed that this function implies a write memory barrier before
1798 * changing the task state if and only if any tasks are woken up.
1799 */
1800 int wake_up_process(struct task_struct *p)
1801 {
1802 WARN_ON(task_is_stopped_or_traced(p));
1803 return try_to_wake_up(p, TASK_NORMAL, 0);
1804 }
1805 EXPORT_SYMBOL(wake_up_process);
1806
1807 int wake_up_state(struct task_struct *p, unsigned int state)
1808 {
1809 return try_to_wake_up(p, state, 0);
1810 }
1811
1812 /*
1813 * This function clears the sched_dl_entity static params.
1814 */
1815 void __dl_clear_params(struct task_struct *p)
1816 {
1817 struct sched_dl_entity *dl_se = &p->dl;
1818
1819 dl_se->dl_runtime = 0;
1820 dl_se->dl_deadline = 0;
1821 dl_se->dl_period = 0;
1822 dl_se->flags = 0;
1823 dl_se->dl_bw = 0;
1824
1825 dl_se->dl_throttled = 0;
1826 dl_se->dl_new = 1;
1827 dl_se->dl_yielded = 0;
1828 }
1829
1830 /*
1831 * Perform scheduler related setup for a newly forked process p.
1832 * p is forked by current.
1833 *
1834 * __sched_fork() is basic setup used by init_idle() too:
1835 */
1836 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1837 {
1838 p->on_rq = 0;
1839
1840 p->se.on_rq = 0;
1841 p->se.exec_start = 0;
1842 p->se.sum_exec_runtime = 0;
1843 p->se.prev_sum_exec_runtime = 0;
1844 p->se.nr_migrations = 0;
1845 p->se.vruntime = 0;
1846 #ifdef CONFIG_SMP
1847 p->se.avg.decay_count = 0;
1848 #endif
1849 INIT_LIST_HEAD(&p->se.group_node);
1850
1851 #ifdef CONFIG_SCHEDSTATS
1852 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1853 #endif
1854
1855 RB_CLEAR_NODE(&p->dl.rb_node);
1856 init_dl_task_timer(&p->dl);
1857 __dl_clear_params(p);
1858
1859 INIT_LIST_HEAD(&p->rt.run_list);
1860
1861 #ifdef CONFIG_PREEMPT_NOTIFIERS
1862 INIT_HLIST_HEAD(&p->preempt_notifiers);
1863 #endif
1864
1865 #ifdef CONFIG_NUMA_BALANCING
1866 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1867 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1868 p->mm->numa_scan_seq = 0;
1869 }
1870
1871 if (clone_flags & CLONE_VM)
1872 p->numa_preferred_nid = current->numa_preferred_nid;
1873 else
1874 p->numa_preferred_nid = -1;
1875
1876 p->node_stamp = 0ULL;
1877 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1878 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1879 p->numa_work.next = &p->numa_work;
1880 p->numa_faults = NULL;
1881 p->last_task_numa_placement = 0;
1882 p->last_sum_exec_runtime = 0;
1883
1884 p->numa_group = NULL;
1885 #endif /* CONFIG_NUMA_BALANCING */
1886 }
1887
1888 #ifdef CONFIG_NUMA_BALANCING
1889 #ifdef CONFIG_SCHED_DEBUG
1890 void set_numabalancing_state(bool enabled)
1891 {
1892 if (enabled)
1893 sched_feat_set("NUMA");
1894 else
1895 sched_feat_set("NO_NUMA");
1896 }
1897 #else
1898 __read_mostly bool numabalancing_enabled;
1899
1900 void set_numabalancing_state(bool enabled)
1901 {
1902 numabalancing_enabled = enabled;
1903 }
1904 #endif /* CONFIG_SCHED_DEBUG */
1905
1906 #ifdef CONFIG_PROC_SYSCTL
1907 int sysctl_numa_balancing(struct ctl_table *table, int write,
1908 void __user *buffer, size_t *lenp, loff_t *ppos)
1909 {
1910 struct ctl_table t;
1911 int err;
1912 int state = numabalancing_enabled;
1913
1914 if (write && !capable(CAP_SYS_ADMIN))
1915 return -EPERM;
1916
1917 t = *table;
1918 t.data = &state;
1919 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1920 if (err < 0)
1921 return err;
1922 if (write)
1923 set_numabalancing_state(state);
1924 return err;
1925 }
1926 #endif
1927 #endif
1928
1929 /*
1930 * fork()/clone()-time setup:
1931 */
1932 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1933 {
1934 unsigned long flags;
1935 int cpu = get_cpu();
1936
1937 __sched_fork(clone_flags, p);
1938 /*
1939 * We mark the process as running here. This guarantees that
1940 * nobody will actually run it, and a signal or other external
1941 * event cannot wake it up and insert it on the runqueue either.
1942 */
1943 p->state = TASK_RUNNING;
1944
1945 /*
1946 * Make sure we do not leak PI boosting priority to the child.
1947 */
1948 p->prio = current->normal_prio;
1949
1950 /*
1951 * Revert to default priority/policy on fork if requested.
1952 */
1953 if (unlikely(p->sched_reset_on_fork)) {
1954 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1955 p->policy = SCHED_NORMAL;
1956 p->static_prio = NICE_TO_PRIO(0);
1957 p->rt_priority = 0;
1958 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1959 p->static_prio = NICE_TO_PRIO(0);
1960
1961 p->prio = p->normal_prio = __normal_prio(p);
1962 set_load_weight(p);
1963
1964 /*
1965 * We don't need the reset flag anymore after the fork. It has
1966 * fulfilled its duty:
1967 */
1968 p->sched_reset_on_fork = 0;
1969 }
1970
1971 if (dl_prio(p->prio)) {
1972 put_cpu();
1973 return -EAGAIN;
1974 } else if (rt_prio(p->prio)) {
1975 p->sched_class = &rt_sched_class;
1976 } else {
1977 p->sched_class = &fair_sched_class;
1978 }
1979
1980 if (p->sched_class->task_fork)
1981 p->sched_class->task_fork(p);
1982
1983 /*
1984 * The child is not yet in the pid-hash so no cgroup attach races,
1985 * and the cgroup is pinned to this child due to cgroup_fork()
1986 * is ran before sched_fork().
1987 *
1988 * Silence PROVE_RCU.
1989 */
1990 raw_spin_lock_irqsave(&p->pi_lock, flags);
1991 set_task_cpu(p, cpu);
1992 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1993
1994 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1995 if (likely(sched_info_on()))
1996 memset(&p->sched_info, 0, sizeof(p->sched_info));
1997 #endif
1998 #if defined(CONFIG_SMP)
1999 p->on_cpu = 0;
2000 #endif
2001 init_task_preempt_count(p);
2002 #ifdef CONFIG_SMP
2003 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2004 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2005 #endif
2006
2007 put_cpu();
2008 return 0;
2009 }
2010
2011 unsigned long to_ratio(u64 period, u64 runtime)
2012 {
2013 if (runtime == RUNTIME_INF)
2014 return 1ULL << 20;
2015
2016 /*
2017 * Doing this here saves a lot of checks in all
2018 * the calling paths, and returning zero seems
2019 * safe for them anyway.
2020 */
2021 if (period == 0)
2022 return 0;
2023
2024 return div64_u64(runtime << 20, period);
2025 }
2026
2027 #ifdef CONFIG_SMP
2028 inline struct dl_bw *dl_bw_of(int i)
2029 {
2030 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2031 "sched RCU must be held");
2032 return &cpu_rq(i)->rd->dl_bw;
2033 }
2034
2035 static inline int dl_bw_cpus(int i)
2036 {
2037 struct root_domain *rd = cpu_rq(i)->rd;
2038 int cpus = 0;
2039
2040 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2041 "sched RCU must be held");
2042 for_each_cpu_and(i, rd->span, cpu_active_mask)
2043 cpus++;
2044
2045 return cpus;
2046 }
2047 #else
2048 inline struct dl_bw *dl_bw_of(int i)
2049 {
2050 return &cpu_rq(i)->dl.dl_bw;
2051 }
2052
2053 static inline int dl_bw_cpus(int i)
2054 {
2055 return 1;
2056 }
2057 #endif
2058
2059 /*
2060 * We must be sure that accepting a new task (or allowing changing the
2061 * parameters of an existing one) is consistent with the bandwidth
2062 * constraints. If yes, this function also accordingly updates the currently
2063 * allocated bandwidth to reflect the new situation.
2064 *
2065 * This function is called while holding p's rq->lock.
2066 *
2067 * XXX we should delay bw change until the task's 0-lag point, see
2068 * __setparam_dl().
2069 */
2070 static int dl_overflow(struct task_struct *p, int policy,
2071 const struct sched_attr *attr)
2072 {
2073
2074 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2075 u64 period = attr->sched_period ?: attr->sched_deadline;
2076 u64 runtime = attr->sched_runtime;
2077 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2078 int cpus, err = -1;
2079
2080 if (new_bw == p->dl.dl_bw)
2081 return 0;
2082
2083 /*
2084 * Either if a task, enters, leave, or stays -deadline but changes
2085 * its parameters, we may need to update accordingly the total
2086 * allocated bandwidth of the container.
2087 */
2088 raw_spin_lock(&dl_b->lock);
2089 cpus = dl_bw_cpus(task_cpu(p));
2090 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2091 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2092 __dl_add(dl_b, new_bw);
2093 err = 0;
2094 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2095 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2096 __dl_clear(dl_b, p->dl.dl_bw);
2097 __dl_add(dl_b, new_bw);
2098 err = 0;
2099 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2100 __dl_clear(dl_b, p->dl.dl_bw);
2101 err = 0;
2102 }
2103 raw_spin_unlock(&dl_b->lock);
2104
2105 return err;
2106 }
2107
2108 extern void init_dl_bw(struct dl_bw *dl_b);
2109
2110 /*
2111 * wake_up_new_task - wake up a newly created task for the first time.
2112 *
2113 * This function will do some initial scheduler statistics housekeeping
2114 * that must be done for every newly created context, then puts the task
2115 * on the runqueue and wakes it.
2116 */
2117 void wake_up_new_task(struct task_struct *p)
2118 {
2119 unsigned long flags;
2120 struct rq *rq;
2121
2122 raw_spin_lock_irqsave(&p->pi_lock, flags);
2123 #ifdef CONFIG_SMP
2124 /*
2125 * Fork balancing, do it here and not earlier because:
2126 * - cpus_allowed can change in the fork path
2127 * - any previously selected cpu might disappear through hotplug
2128 */
2129 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2130 #endif
2131
2132 /* Initialize new task's runnable average */
2133 init_task_runnable_average(p);
2134 rq = __task_rq_lock(p);
2135 activate_task(rq, p, 0);
2136 p->on_rq = TASK_ON_RQ_QUEUED;
2137 trace_sched_wakeup_new(p, true);
2138 check_preempt_curr(rq, p, WF_FORK);
2139 #ifdef CONFIG_SMP
2140 if (p->sched_class->task_woken)
2141 p->sched_class->task_woken(rq, p);
2142 #endif
2143 task_rq_unlock(rq, p, &flags);
2144 }
2145
2146 #ifdef CONFIG_PREEMPT_NOTIFIERS
2147
2148 /**
2149 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2150 * @notifier: notifier struct to register
2151 */
2152 void preempt_notifier_register(struct preempt_notifier *notifier)
2153 {
2154 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2155 }
2156 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2157
2158 /**
2159 * preempt_notifier_unregister - no longer interested in preemption notifications
2160 * @notifier: notifier struct to unregister
2161 *
2162 * This is safe to call from within a preemption notifier.
2163 */
2164 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2165 {
2166 hlist_del(&notifier->link);
2167 }
2168 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2169
2170 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2171 {
2172 struct preempt_notifier *notifier;
2173
2174 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2175 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2176 }
2177
2178 static void
2179 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2180 struct task_struct *next)
2181 {
2182 struct preempt_notifier *notifier;
2183
2184 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2185 notifier->ops->sched_out(notifier, next);
2186 }
2187
2188 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2189
2190 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2191 {
2192 }
2193
2194 static void
2195 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2196 struct task_struct *next)
2197 {
2198 }
2199
2200 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2201
2202 /**
2203 * prepare_task_switch - prepare to switch tasks
2204 * @rq: the runqueue preparing to switch
2205 * @prev: the current task that is being switched out
2206 * @next: the task we are going to switch to.
2207 *
2208 * This is called with the rq lock held and interrupts off. It must
2209 * be paired with a subsequent finish_task_switch after the context
2210 * switch.
2211 *
2212 * prepare_task_switch sets up locking and calls architecture specific
2213 * hooks.
2214 */
2215 static inline void
2216 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2217 struct task_struct *next)
2218 {
2219 trace_sched_switch(prev, next);
2220 sched_info_switch(rq, prev, next);
2221 perf_event_task_sched_out(prev, next);
2222 fire_sched_out_preempt_notifiers(prev, next);
2223 prepare_lock_switch(rq, next);
2224 prepare_arch_switch(next);
2225 }
2226
2227 /**
2228 * finish_task_switch - clean up after a task-switch
2229 * @prev: the thread we just switched away from.
2230 *
2231 * finish_task_switch must be called after the context switch, paired
2232 * with a prepare_task_switch call before the context switch.
2233 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2234 * and do any other architecture-specific cleanup actions.
2235 *
2236 * Note that we may have delayed dropping an mm in context_switch(). If
2237 * so, we finish that here outside of the runqueue lock. (Doing it
2238 * with the lock held can cause deadlocks; see schedule() for
2239 * details.)
2240 *
2241 * The context switch have flipped the stack from under us and restored the
2242 * local variables which were saved when this task called schedule() in the
2243 * past. prev == current is still correct but we need to recalculate this_rq
2244 * because prev may have moved to another CPU.
2245 */
2246 static struct rq *finish_task_switch(struct task_struct *prev)
2247 __releases(rq->lock)
2248 {
2249 struct rq *rq = this_rq();
2250 struct mm_struct *mm = rq->prev_mm;
2251 long prev_state;
2252
2253 rq->prev_mm = NULL;
2254
2255 /*
2256 * A task struct has one reference for the use as "current".
2257 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2258 * schedule one last time. The schedule call will never return, and
2259 * the scheduled task must drop that reference.
2260 * The test for TASK_DEAD must occur while the runqueue locks are
2261 * still held, otherwise prev could be scheduled on another cpu, die
2262 * there before we look at prev->state, and then the reference would
2263 * be dropped twice.
2264 * Manfred Spraul <manfred@colorfullife.com>
2265 */
2266 prev_state = prev->state;
2267 vtime_task_switch(prev);
2268 finish_arch_switch(prev);
2269 perf_event_task_sched_in(prev, current);
2270 finish_lock_switch(rq, prev);
2271 finish_arch_post_lock_switch();
2272
2273 fire_sched_in_preempt_notifiers(current);
2274 if (mm)
2275 mmdrop(mm);
2276 if (unlikely(prev_state == TASK_DEAD)) {
2277 if (prev->sched_class->task_dead)
2278 prev->sched_class->task_dead(prev);
2279
2280 /*
2281 * Remove function-return probe instances associated with this
2282 * task and put them back on the free list.
2283 */
2284 kprobe_flush_task(prev);
2285 put_task_struct(prev);
2286 }
2287
2288 tick_nohz_task_switch(current);
2289 return rq;
2290 }
2291
2292 #ifdef CONFIG_SMP
2293
2294 /* rq->lock is NOT held, but preemption is disabled */
2295 static inline void post_schedule(struct rq *rq)
2296 {
2297 if (rq->post_schedule) {
2298 unsigned long flags;
2299
2300 raw_spin_lock_irqsave(&rq->lock, flags);
2301 if (rq->curr->sched_class->post_schedule)
2302 rq->curr->sched_class->post_schedule(rq);
2303 raw_spin_unlock_irqrestore(&rq->lock, flags);
2304
2305 rq->post_schedule = 0;
2306 }
2307 }
2308
2309 #else
2310
2311 static inline void post_schedule(struct rq *rq)
2312 {
2313 }
2314
2315 #endif
2316
2317 /**
2318 * schedule_tail - first thing a freshly forked thread must call.
2319 * @prev: the thread we just switched away from.
2320 */
2321 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2322 __releases(rq->lock)
2323 {
2324 struct rq *rq;
2325
2326 /* finish_task_switch() drops rq->lock and enables preemtion */
2327 preempt_disable();
2328 rq = finish_task_switch(prev);
2329 post_schedule(rq);
2330 preempt_enable();
2331
2332 if (current->set_child_tid)
2333 put_user(task_pid_vnr(current), current->set_child_tid);
2334 }
2335
2336 /*
2337 * context_switch - switch to the new MM and the new thread's register state.
2338 */
2339 static inline struct rq *
2340 context_switch(struct rq *rq, struct task_struct *prev,
2341 struct task_struct *next)
2342 {
2343 struct mm_struct *mm, *oldmm;
2344
2345 prepare_task_switch(rq, prev, next);
2346
2347 mm = next->mm;
2348 oldmm = prev->active_mm;
2349 /*
2350 * For paravirt, this is coupled with an exit in switch_to to
2351 * combine the page table reload and the switch backend into
2352 * one hypercall.
2353 */
2354 arch_start_context_switch(prev);
2355
2356 if (!mm) {
2357 next->active_mm = oldmm;
2358 atomic_inc(&oldmm->mm_count);
2359 enter_lazy_tlb(oldmm, next);
2360 } else
2361 switch_mm(oldmm, mm, next);
2362
2363 if (!prev->mm) {
2364 prev->active_mm = NULL;
2365 rq->prev_mm = oldmm;
2366 }
2367 /*
2368 * Since the runqueue lock will be released by the next
2369 * task (which is an invalid locking op but in the case
2370 * of the scheduler it's an obvious special-case), so we
2371 * do an early lockdep release here:
2372 */
2373 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2374
2375 context_tracking_task_switch(prev, next);
2376 /* Here we just switch the register state and the stack. */
2377 switch_to(prev, next, prev);
2378 barrier();
2379
2380 return finish_task_switch(prev);
2381 }
2382
2383 /*
2384 * nr_running and nr_context_switches:
2385 *
2386 * externally visible scheduler statistics: current number of runnable
2387 * threads, total number of context switches performed since bootup.
2388 */
2389 unsigned long nr_running(void)
2390 {
2391 unsigned long i, sum = 0;
2392
2393 for_each_online_cpu(i)
2394 sum += cpu_rq(i)->nr_running;
2395
2396 return sum;
2397 }
2398
2399 /*
2400 * Check if only the current task is running on the cpu.
2401 */
2402 bool single_task_running(void)
2403 {
2404 if (cpu_rq(smp_processor_id())->nr_running == 1)
2405 return true;
2406 else
2407 return false;
2408 }
2409 EXPORT_SYMBOL(single_task_running);
2410
2411 unsigned long long nr_context_switches(void)
2412 {
2413 int i;
2414 unsigned long long sum = 0;
2415
2416 for_each_possible_cpu(i)
2417 sum += cpu_rq(i)->nr_switches;
2418
2419 return sum;
2420 }
2421
2422 unsigned long nr_iowait(void)
2423 {
2424 unsigned long i, sum = 0;
2425
2426 for_each_possible_cpu(i)
2427 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2428
2429 return sum;
2430 }
2431
2432 unsigned long nr_iowait_cpu(int cpu)
2433 {
2434 struct rq *this = cpu_rq(cpu);
2435 return atomic_read(&this->nr_iowait);
2436 }
2437
2438 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2439 {
2440 struct rq *this = this_rq();
2441 *nr_waiters = atomic_read(&this->nr_iowait);
2442 *load = this->cpu_load[0];
2443 }
2444
2445 #ifdef CONFIG_SMP
2446
2447 /*
2448 * sched_exec - execve() is a valuable balancing opportunity, because at
2449 * this point the task has the smallest effective memory and cache footprint.
2450 */
2451 void sched_exec(void)
2452 {
2453 struct task_struct *p = current;
2454 unsigned long flags;
2455 int dest_cpu;
2456
2457 raw_spin_lock_irqsave(&p->pi_lock, flags);
2458 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2459 if (dest_cpu == smp_processor_id())
2460 goto unlock;
2461
2462 if (likely(cpu_active(dest_cpu))) {
2463 struct migration_arg arg = { p, dest_cpu };
2464
2465 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2466 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2467 return;
2468 }
2469 unlock:
2470 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2471 }
2472
2473 #endif
2474
2475 DEFINE_PER_CPU(struct kernel_stat, kstat);
2476 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2477
2478 EXPORT_PER_CPU_SYMBOL(kstat);
2479 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2480
2481 /*
2482 * Return accounted runtime for the task.
2483 * In case the task is currently running, return the runtime plus current's
2484 * pending runtime that have not been accounted yet.
2485 */
2486 unsigned long long task_sched_runtime(struct task_struct *p)
2487 {
2488 unsigned long flags;
2489 struct rq *rq;
2490 u64 ns;
2491
2492 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2493 /*
2494 * 64-bit doesn't need locks to atomically read a 64bit value.
2495 * So we have a optimization chance when the task's delta_exec is 0.
2496 * Reading ->on_cpu is racy, but this is ok.
2497 *
2498 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2499 * If we race with it entering cpu, unaccounted time is 0. This is
2500 * indistinguishable from the read occurring a few cycles earlier.
2501 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2502 * been accounted, so we're correct here as well.
2503 */
2504 if (!p->on_cpu || !task_on_rq_queued(p))
2505 return p->se.sum_exec_runtime;
2506 #endif
2507
2508 rq = task_rq_lock(p, &flags);
2509 /*
2510 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2511 * project cycles that may never be accounted to this
2512 * thread, breaking clock_gettime().
2513 */
2514 if (task_current(rq, p) && task_on_rq_queued(p)) {
2515 update_rq_clock(rq);
2516 p->sched_class->update_curr(rq);
2517 }
2518 ns = p->se.sum_exec_runtime;
2519 task_rq_unlock(rq, p, &flags);
2520
2521 return ns;
2522 }
2523
2524 /*
2525 * This function gets called by the timer code, with HZ frequency.
2526 * We call it with interrupts disabled.
2527 */
2528 void scheduler_tick(void)
2529 {
2530 int cpu = smp_processor_id();
2531 struct rq *rq = cpu_rq(cpu);
2532 struct task_struct *curr = rq->curr;
2533
2534 sched_clock_tick();
2535
2536 raw_spin_lock(&rq->lock);
2537 update_rq_clock(rq);
2538 curr->sched_class->task_tick(rq, curr, 0);
2539 update_cpu_load_active(rq);
2540 raw_spin_unlock(&rq->lock);
2541
2542 perf_event_task_tick();
2543
2544 #ifdef CONFIG_SMP
2545 rq->idle_balance = idle_cpu(cpu);
2546 trigger_load_balance(rq);
2547 #endif
2548 rq_last_tick_reset(rq);
2549 }
2550
2551 #ifdef CONFIG_NO_HZ_FULL
2552 /**
2553 * scheduler_tick_max_deferment
2554 *
2555 * Keep at least one tick per second when a single
2556 * active task is running because the scheduler doesn't
2557 * yet completely support full dynticks environment.
2558 *
2559 * This makes sure that uptime, CFS vruntime, load
2560 * balancing, etc... continue to move forward, even
2561 * with a very low granularity.
2562 *
2563 * Return: Maximum deferment in nanoseconds.
2564 */
2565 u64 scheduler_tick_max_deferment(void)
2566 {
2567 struct rq *rq = this_rq();
2568 unsigned long next, now = ACCESS_ONCE(jiffies);
2569
2570 next = rq->last_sched_tick + HZ;
2571
2572 if (time_before_eq(next, now))
2573 return 0;
2574
2575 return jiffies_to_nsecs(next - now);
2576 }
2577 #endif
2578
2579 notrace unsigned long get_parent_ip(unsigned long addr)
2580 {
2581 if (in_lock_functions(addr)) {
2582 addr = CALLER_ADDR2;
2583 if (in_lock_functions(addr))
2584 addr = CALLER_ADDR3;
2585 }
2586 return addr;
2587 }
2588
2589 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2590 defined(CONFIG_PREEMPT_TRACER))
2591
2592 void preempt_count_add(int val)
2593 {
2594 #ifdef CONFIG_DEBUG_PREEMPT
2595 /*
2596 * Underflow?
2597 */
2598 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2599 return;
2600 #endif
2601 __preempt_count_add(val);
2602 #ifdef CONFIG_DEBUG_PREEMPT
2603 /*
2604 * Spinlock count overflowing soon?
2605 */
2606 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2607 PREEMPT_MASK - 10);
2608 #endif
2609 if (preempt_count() == val) {
2610 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2611 #ifdef CONFIG_DEBUG_PREEMPT
2612 current->preempt_disable_ip = ip;
2613 #endif
2614 trace_preempt_off(CALLER_ADDR0, ip);
2615 }
2616 }
2617 EXPORT_SYMBOL(preempt_count_add);
2618 NOKPROBE_SYMBOL(preempt_count_add);
2619
2620 void preempt_count_sub(int val)
2621 {
2622 #ifdef CONFIG_DEBUG_PREEMPT
2623 /*
2624 * Underflow?
2625 */
2626 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2627 return;
2628 /*
2629 * Is the spinlock portion underflowing?
2630 */
2631 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2632 !(preempt_count() & PREEMPT_MASK)))
2633 return;
2634 #endif
2635
2636 if (preempt_count() == val)
2637 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2638 __preempt_count_sub(val);
2639 }
2640 EXPORT_SYMBOL(preempt_count_sub);
2641 NOKPROBE_SYMBOL(preempt_count_sub);
2642
2643 #endif
2644
2645 /*
2646 * Print scheduling while atomic bug:
2647 */
2648 static noinline void __schedule_bug(struct task_struct *prev)
2649 {
2650 if (oops_in_progress)
2651 return;
2652
2653 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2654 prev->comm, prev->pid, preempt_count());
2655
2656 debug_show_held_locks(prev);
2657 print_modules();
2658 if (irqs_disabled())
2659 print_irqtrace_events(prev);
2660 #ifdef CONFIG_DEBUG_PREEMPT
2661 if (in_atomic_preempt_off()) {
2662 pr_err("Preemption disabled at:");
2663 print_ip_sym(current->preempt_disable_ip);
2664 pr_cont("\n");
2665 }
2666 #endif
2667 dump_stack();
2668 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2669 }
2670
2671 /*
2672 * Various schedule()-time debugging checks and statistics:
2673 */
2674 static inline void schedule_debug(struct task_struct *prev)
2675 {
2676 #ifdef CONFIG_SCHED_STACK_END_CHECK
2677 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2678 #endif
2679 /*
2680 * Test if we are atomic. Since do_exit() needs to call into
2681 * schedule() atomically, we ignore that path. Otherwise whine
2682 * if we are scheduling when we should not.
2683 */
2684 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2685 __schedule_bug(prev);
2686 rcu_sleep_check();
2687
2688 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2689
2690 schedstat_inc(this_rq(), sched_count);
2691 }
2692
2693 /*
2694 * Pick up the highest-prio task:
2695 */
2696 static inline struct task_struct *
2697 pick_next_task(struct rq *rq, struct task_struct *prev)
2698 {
2699 const struct sched_class *class = &fair_sched_class;
2700 struct task_struct *p;
2701
2702 /*
2703 * Optimization: we know that if all tasks are in
2704 * the fair class we can call that function directly:
2705 */
2706 if (likely(prev->sched_class == class &&
2707 rq->nr_running == rq->cfs.h_nr_running)) {
2708 p = fair_sched_class.pick_next_task(rq, prev);
2709 if (unlikely(p == RETRY_TASK))
2710 goto again;
2711
2712 /* assumes fair_sched_class->next == idle_sched_class */
2713 if (unlikely(!p))
2714 p = idle_sched_class.pick_next_task(rq, prev);
2715
2716 return p;
2717 }
2718
2719 again:
2720 for_each_class(class) {
2721 p = class->pick_next_task(rq, prev);
2722 if (p) {
2723 if (unlikely(p == RETRY_TASK))
2724 goto again;
2725 return p;
2726 }
2727 }
2728
2729 BUG(); /* the idle class will always have a runnable task */
2730 }
2731
2732 /*
2733 * __schedule() is the main scheduler function.
2734 *
2735 * The main means of driving the scheduler and thus entering this function are:
2736 *
2737 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2738 *
2739 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2740 * paths. For example, see arch/x86/entry_64.S.
2741 *
2742 * To drive preemption between tasks, the scheduler sets the flag in timer
2743 * interrupt handler scheduler_tick().
2744 *
2745 * 3. Wakeups don't really cause entry into schedule(). They add a
2746 * task to the run-queue and that's it.
2747 *
2748 * Now, if the new task added to the run-queue preempts the current
2749 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2750 * called on the nearest possible occasion:
2751 *
2752 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2753 *
2754 * - in syscall or exception context, at the next outmost
2755 * preempt_enable(). (this might be as soon as the wake_up()'s
2756 * spin_unlock()!)
2757 *
2758 * - in IRQ context, return from interrupt-handler to
2759 * preemptible context
2760 *
2761 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2762 * then at the next:
2763 *
2764 * - cond_resched() call
2765 * - explicit schedule() call
2766 * - return from syscall or exception to user-space
2767 * - return from interrupt-handler to user-space
2768 *
2769 * WARNING: all callers must re-check need_resched() afterward and reschedule
2770 * accordingly in case an event triggered the need for rescheduling (such as
2771 * an interrupt waking up a task) while preemption was disabled in __schedule().
2772 */
2773 static void __sched __schedule(void)
2774 {
2775 struct task_struct *prev, *next;
2776 unsigned long *switch_count;
2777 struct rq *rq;
2778 int cpu;
2779
2780 preempt_disable();
2781 cpu = smp_processor_id();
2782 rq = cpu_rq(cpu);
2783 rcu_note_context_switch();
2784 prev = rq->curr;
2785
2786 schedule_debug(prev);
2787
2788 if (sched_feat(HRTICK))
2789 hrtick_clear(rq);
2790
2791 /*
2792 * Make sure that signal_pending_state()->signal_pending() below
2793 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2794 * done by the caller to avoid the race with signal_wake_up().
2795 */
2796 smp_mb__before_spinlock();
2797 raw_spin_lock_irq(&rq->lock);
2798
2799 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2800
2801 switch_count = &prev->nivcsw;
2802 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2803 if (unlikely(signal_pending_state(prev->state, prev))) {
2804 prev->state = TASK_RUNNING;
2805 } else {
2806 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2807 prev->on_rq = 0;
2808
2809 /*
2810 * If a worker went to sleep, notify and ask workqueue
2811 * whether it wants to wake up a task to maintain
2812 * concurrency.
2813 */
2814 if (prev->flags & PF_WQ_WORKER) {
2815 struct task_struct *to_wakeup;
2816
2817 to_wakeup = wq_worker_sleeping(prev, cpu);
2818 if (to_wakeup)
2819 try_to_wake_up_local(to_wakeup);
2820 }
2821 }
2822 switch_count = &prev->nvcsw;
2823 }
2824
2825 if (task_on_rq_queued(prev))
2826 update_rq_clock(rq);
2827
2828 next = pick_next_task(rq, prev);
2829 clear_tsk_need_resched(prev);
2830 clear_preempt_need_resched();
2831 rq->clock_skip_update = 0;
2832
2833 if (likely(prev != next)) {
2834 rq->nr_switches++;
2835 rq->curr = next;
2836 ++*switch_count;
2837
2838 rq = context_switch(rq, prev, next); /* unlocks the rq */
2839 cpu = cpu_of(rq);
2840 } else
2841 raw_spin_unlock_irq(&rq->lock);
2842
2843 post_schedule(rq);
2844
2845 sched_preempt_enable_no_resched();
2846 }
2847
2848 static inline void sched_submit_work(struct task_struct *tsk)
2849 {
2850 if (!tsk->state || tsk_is_pi_blocked(tsk))
2851 return;
2852 /*
2853 * If we are going to sleep and we have plugged IO queued,
2854 * make sure to submit it to avoid deadlocks.
2855 */
2856 if (blk_needs_flush_plug(tsk))
2857 blk_schedule_flush_plug(tsk);
2858 }
2859
2860 asmlinkage __visible void __sched schedule(void)
2861 {
2862 struct task_struct *tsk = current;
2863
2864 sched_submit_work(tsk);
2865 do {
2866 __schedule();
2867 } while (need_resched());
2868 }
2869 EXPORT_SYMBOL(schedule);
2870
2871 #ifdef CONFIG_CONTEXT_TRACKING
2872 asmlinkage __visible void __sched schedule_user(void)
2873 {
2874 /*
2875 * If we come here after a random call to set_need_resched(),
2876 * or we have been woken up remotely but the IPI has not yet arrived,
2877 * we haven't yet exited the RCU idle mode. Do it here manually until
2878 * we find a better solution.
2879 *
2880 * NB: There are buggy callers of this function. Ideally we
2881 * should warn if prev_state != IN_USER, but that will trigger
2882 * too frequently to make sense yet.
2883 */
2884 enum ctx_state prev_state = exception_enter();
2885 schedule();
2886 exception_exit(prev_state);
2887 }
2888 #endif
2889
2890 /**
2891 * schedule_preempt_disabled - called with preemption disabled
2892 *
2893 * Returns with preemption disabled. Note: preempt_count must be 1
2894 */
2895 void __sched schedule_preempt_disabled(void)
2896 {
2897 sched_preempt_enable_no_resched();
2898 schedule();
2899 preempt_disable();
2900 }
2901
2902 static void preempt_schedule_common(void)
2903 {
2904 do {
2905 __preempt_count_add(PREEMPT_ACTIVE);
2906 __schedule();
2907 __preempt_count_sub(PREEMPT_ACTIVE);
2908
2909 /*
2910 * Check again in case we missed a preemption opportunity
2911 * between schedule and now.
2912 */
2913 barrier();
2914 } while (need_resched());
2915 }
2916
2917 #ifdef CONFIG_PREEMPT
2918 /*
2919 * this is the entry point to schedule() from in-kernel preemption
2920 * off of preempt_enable. Kernel preemptions off return from interrupt
2921 * occur there and call schedule directly.
2922 */
2923 asmlinkage __visible void __sched notrace preempt_schedule(void)
2924 {
2925 /*
2926 * If there is a non-zero preempt_count or interrupts are disabled,
2927 * we do not want to preempt the current task. Just return..
2928 */
2929 if (likely(!preemptible()))
2930 return;
2931
2932 preempt_schedule_common();
2933 }
2934 NOKPROBE_SYMBOL(preempt_schedule);
2935 EXPORT_SYMBOL(preempt_schedule);
2936
2937 #ifdef CONFIG_CONTEXT_TRACKING
2938 /**
2939 * preempt_schedule_context - preempt_schedule called by tracing
2940 *
2941 * The tracing infrastructure uses preempt_enable_notrace to prevent
2942 * recursion and tracing preempt enabling caused by the tracing
2943 * infrastructure itself. But as tracing can happen in areas coming
2944 * from userspace or just about to enter userspace, a preempt enable
2945 * can occur before user_exit() is called. This will cause the scheduler
2946 * to be called when the system is still in usermode.
2947 *
2948 * To prevent this, the preempt_enable_notrace will use this function
2949 * instead of preempt_schedule() to exit user context if needed before
2950 * calling the scheduler.
2951 */
2952 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2953 {
2954 enum ctx_state prev_ctx;
2955
2956 if (likely(!preemptible()))
2957 return;
2958
2959 do {
2960 __preempt_count_add(PREEMPT_ACTIVE);
2961 /*
2962 * Needs preempt disabled in case user_exit() is traced
2963 * and the tracer calls preempt_enable_notrace() causing
2964 * an infinite recursion.
2965 */
2966 prev_ctx = exception_enter();
2967 __schedule();
2968 exception_exit(prev_ctx);
2969
2970 __preempt_count_sub(PREEMPT_ACTIVE);
2971 barrier();
2972 } while (need_resched());
2973 }
2974 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2975 #endif /* CONFIG_CONTEXT_TRACKING */
2976
2977 #endif /* CONFIG_PREEMPT */
2978
2979 /*
2980 * this is the entry point to schedule() from kernel preemption
2981 * off of irq context.
2982 * Note, that this is called and return with irqs disabled. This will
2983 * protect us against recursive calling from irq.
2984 */
2985 asmlinkage __visible void __sched preempt_schedule_irq(void)
2986 {
2987 enum ctx_state prev_state;
2988
2989 /* Catch callers which need to be fixed */
2990 BUG_ON(preempt_count() || !irqs_disabled());
2991
2992 prev_state = exception_enter();
2993
2994 do {
2995 __preempt_count_add(PREEMPT_ACTIVE);
2996 local_irq_enable();
2997 __schedule();
2998 local_irq_disable();
2999 __preempt_count_sub(PREEMPT_ACTIVE);
3000
3001 /*
3002 * Check again in case we missed a preemption opportunity
3003 * between schedule and now.
3004 */
3005 barrier();
3006 } while (need_resched());
3007
3008 exception_exit(prev_state);
3009 }
3010
3011 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3012 void *key)
3013 {
3014 return try_to_wake_up(curr->private, mode, wake_flags);
3015 }
3016 EXPORT_SYMBOL(default_wake_function);
3017
3018 #ifdef CONFIG_RT_MUTEXES
3019
3020 /*
3021 * rt_mutex_setprio - set the current priority of a task
3022 * @p: task
3023 * @prio: prio value (kernel-internal form)
3024 *
3025 * This function changes the 'effective' priority of a task. It does
3026 * not touch ->normal_prio like __setscheduler().
3027 *
3028 * Used by the rt_mutex code to implement priority inheritance
3029 * logic. Call site only calls if the priority of the task changed.
3030 */
3031 void rt_mutex_setprio(struct task_struct *p, int prio)
3032 {
3033 int oldprio, queued, running, enqueue_flag = 0;
3034 struct rq *rq;
3035 const struct sched_class *prev_class;
3036
3037 BUG_ON(prio > MAX_PRIO);
3038
3039 rq = __task_rq_lock(p);
3040
3041 /*
3042 * Idle task boosting is a nono in general. There is one
3043 * exception, when PREEMPT_RT and NOHZ is active:
3044 *
3045 * The idle task calls get_next_timer_interrupt() and holds
3046 * the timer wheel base->lock on the CPU and another CPU wants
3047 * to access the timer (probably to cancel it). We can safely
3048 * ignore the boosting request, as the idle CPU runs this code
3049 * with interrupts disabled and will complete the lock
3050 * protected section without being interrupted. So there is no
3051 * real need to boost.
3052 */
3053 if (unlikely(p == rq->idle)) {
3054 WARN_ON(p != rq->curr);
3055 WARN_ON(p->pi_blocked_on);
3056 goto out_unlock;
3057 }
3058
3059 trace_sched_pi_setprio(p, prio);
3060 oldprio = p->prio;
3061 prev_class = p->sched_class;
3062 queued = task_on_rq_queued(p);
3063 running = task_current(rq, p);
3064 if (queued)
3065 dequeue_task(rq, p, 0);
3066 if (running)
3067 put_prev_task(rq, p);
3068
3069 /*
3070 * Boosting condition are:
3071 * 1. -rt task is running and holds mutex A
3072 * --> -dl task blocks on mutex A
3073 *
3074 * 2. -dl task is running and holds mutex A
3075 * --> -dl task blocks on mutex A and could preempt the
3076 * running task
3077 */
3078 if (dl_prio(prio)) {
3079 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3080 if (!dl_prio(p->normal_prio) ||
3081 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3082 p->dl.dl_boosted = 1;
3083 p->dl.dl_throttled = 0;
3084 enqueue_flag = ENQUEUE_REPLENISH;
3085 } else
3086 p->dl.dl_boosted = 0;
3087 p->sched_class = &dl_sched_class;
3088 } else if (rt_prio(prio)) {
3089 if (dl_prio(oldprio))
3090 p->dl.dl_boosted = 0;
3091 if (oldprio < prio)
3092 enqueue_flag = ENQUEUE_HEAD;
3093 p->sched_class = &rt_sched_class;
3094 } else {
3095 if (dl_prio(oldprio))
3096 p->dl.dl_boosted = 0;
3097 p->sched_class = &fair_sched_class;
3098 }
3099
3100 p->prio = prio;
3101
3102 if (running)
3103 p->sched_class->set_curr_task(rq);
3104 if (queued)
3105 enqueue_task(rq, p, enqueue_flag);
3106
3107 check_class_changed(rq, p, prev_class, oldprio);
3108 out_unlock:
3109 __task_rq_unlock(rq);
3110 }
3111 #endif
3112
3113 void set_user_nice(struct task_struct *p, long nice)
3114 {
3115 int old_prio, delta, queued;
3116 unsigned long flags;
3117 struct rq *rq;
3118
3119 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3120 return;
3121 /*
3122 * We have to be careful, if called from sys_setpriority(),
3123 * the task might be in the middle of scheduling on another CPU.
3124 */
3125 rq = task_rq_lock(p, &flags);
3126 /*
3127 * The RT priorities are set via sched_setscheduler(), but we still
3128 * allow the 'normal' nice value to be set - but as expected
3129 * it wont have any effect on scheduling until the task is
3130 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3131 */
3132 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3133 p->static_prio = NICE_TO_PRIO(nice);
3134 goto out_unlock;
3135 }
3136 queued = task_on_rq_queued(p);
3137 if (queued)
3138 dequeue_task(rq, p, 0);
3139
3140 p->static_prio = NICE_TO_PRIO(nice);
3141 set_load_weight(p);
3142 old_prio = p->prio;
3143 p->prio = effective_prio(p);
3144 delta = p->prio - old_prio;
3145
3146 if (queued) {
3147 enqueue_task(rq, p, 0);
3148 /*
3149 * If the task increased its priority or is running and
3150 * lowered its priority, then reschedule its CPU:
3151 */
3152 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3153 resched_curr(rq);
3154 }
3155 out_unlock:
3156 task_rq_unlock(rq, p, &flags);
3157 }
3158 EXPORT_SYMBOL(set_user_nice);
3159
3160 /*
3161 * can_nice - check if a task can reduce its nice value
3162 * @p: task
3163 * @nice: nice value
3164 */
3165 int can_nice(const struct task_struct *p, const int nice)
3166 {
3167 /* convert nice value [19,-20] to rlimit style value [1,40] */
3168 int nice_rlim = nice_to_rlimit(nice);
3169
3170 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3171 capable(CAP_SYS_NICE));
3172 }
3173
3174 #ifdef __ARCH_WANT_SYS_NICE
3175
3176 /*
3177 * sys_nice - change the priority of the current process.
3178 * @increment: priority increment
3179 *
3180 * sys_setpriority is a more generic, but much slower function that
3181 * does similar things.
3182 */
3183 SYSCALL_DEFINE1(nice, int, increment)
3184 {
3185 long nice, retval;
3186
3187 /*
3188 * Setpriority might change our priority at the same moment.
3189 * We don't have to worry. Conceptually one call occurs first
3190 * and we have a single winner.
3191 */
3192 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3193 nice = task_nice(current) + increment;
3194
3195 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3196 if (increment < 0 && !can_nice(current, nice))
3197 return -EPERM;
3198
3199 retval = security_task_setnice(current, nice);
3200 if (retval)
3201 return retval;
3202
3203 set_user_nice(current, nice);
3204 return 0;
3205 }
3206
3207 #endif
3208
3209 /**
3210 * task_prio - return the priority value of a given task.
3211 * @p: the task in question.
3212 *
3213 * Return: The priority value as seen by users in /proc.
3214 * RT tasks are offset by -200. Normal tasks are centered
3215 * around 0, value goes from -16 to +15.
3216 */
3217 int task_prio(const struct task_struct *p)
3218 {
3219 return p->prio - MAX_RT_PRIO;
3220 }
3221
3222 /**
3223 * idle_cpu - is a given cpu idle currently?
3224 * @cpu: the processor in question.
3225 *
3226 * Return: 1 if the CPU is currently idle. 0 otherwise.
3227 */
3228 int idle_cpu(int cpu)
3229 {
3230 struct rq *rq = cpu_rq(cpu);
3231
3232 if (rq->curr != rq->idle)
3233 return 0;
3234
3235 if (rq->nr_running)
3236 return 0;
3237
3238 #ifdef CONFIG_SMP
3239 if (!llist_empty(&rq->wake_list))
3240 return 0;
3241 #endif
3242
3243 return 1;
3244 }
3245
3246 /**
3247 * idle_task - return the idle task for a given cpu.
3248 * @cpu: the processor in question.
3249 *
3250 * Return: The idle task for the cpu @cpu.
3251 */
3252 struct task_struct *idle_task(int cpu)
3253 {
3254 return cpu_rq(cpu)->idle;
3255 }
3256
3257 /**
3258 * find_process_by_pid - find a process with a matching PID value.
3259 * @pid: the pid in question.
3260 *
3261 * The task of @pid, if found. %NULL otherwise.
3262 */
3263 static struct task_struct *find_process_by_pid(pid_t pid)
3264 {
3265 return pid ? find_task_by_vpid(pid) : current;
3266 }
3267
3268 /*
3269 * This function initializes the sched_dl_entity of a newly becoming
3270 * SCHED_DEADLINE task.
3271 *
3272 * Only the static values are considered here, the actual runtime and the
3273 * absolute deadline will be properly calculated when the task is enqueued
3274 * for the first time with its new policy.
3275 */
3276 static void
3277 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3278 {
3279 struct sched_dl_entity *dl_se = &p->dl;
3280
3281 dl_se->dl_runtime = attr->sched_runtime;
3282 dl_se->dl_deadline = attr->sched_deadline;
3283 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3284 dl_se->flags = attr->sched_flags;
3285 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3286
3287 /*
3288 * Changing the parameters of a task is 'tricky' and we're not doing
3289 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3290 *
3291 * What we SHOULD do is delay the bandwidth release until the 0-lag
3292 * point. This would include retaining the task_struct until that time
3293 * and change dl_overflow() to not immediately decrement the current
3294 * amount.
3295 *
3296 * Instead we retain the current runtime/deadline and let the new
3297 * parameters take effect after the current reservation period lapses.
3298 * This is safe (albeit pessimistic) because the 0-lag point is always
3299 * before the current scheduling deadline.
3300 *
3301 * We can still have temporary overloads because we do not delay the
3302 * change in bandwidth until that time; so admission control is
3303 * not on the safe side. It does however guarantee tasks will never
3304 * consume more than promised.
3305 */
3306 }
3307
3308 /*
3309 * sched_setparam() passes in -1 for its policy, to let the functions
3310 * it calls know not to change it.
3311 */
3312 #define SETPARAM_POLICY -1
3313
3314 static void __setscheduler_params(struct task_struct *p,
3315 const struct sched_attr *attr)
3316 {
3317 int policy = attr->sched_policy;
3318
3319 if (policy == SETPARAM_POLICY)
3320 policy = p->policy;
3321
3322 p->policy = policy;
3323
3324 if (dl_policy(policy))
3325 __setparam_dl(p, attr);
3326 else if (fair_policy(policy))
3327 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3328
3329 /*
3330 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3331 * !rt_policy. Always setting this ensures that things like
3332 * getparam()/getattr() don't report silly values for !rt tasks.
3333 */
3334 p->rt_priority = attr->sched_priority;
3335 p->normal_prio = normal_prio(p);
3336 set_load_weight(p);
3337 }
3338
3339 /* Actually do priority change: must hold pi & rq lock. */
3340 static void __setscheduler(struct rq *rq, struct task_struct *p,
3341 const struct sched_attr *attr)
3342 {
3343 __setscheduler_params(p, attr);
3344
3345 /*
3346 * If we get here, there was no pi waiters boosting the
3347 * task. It is safe to use the normal prio.
3348 */
3349 p->prio = normal_prio(p);
3350
3351 if (dl_prio(p->prio))
3352 p->sched_class = &dl_sched_class;
3353 else if (rt_prio(p->prio))
3354 p->sched_class = &rt_sched_class;
3355 else
3356 p->sched_class = &fair_sched_class;
3357 }
3358
3359 static void
3360 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3361 {
3362 struct sched_dl_entity *dl_se = &p->dl;
3363
3364 attr->sched_priority = p->rt_priority;
3365 attr->sched_runtime = dl_se->dl_runtime;
3366 attr->sched_deadline = dl_se->dl_deadline;
3367 attr->sched_period = dl_se->dl_period;
3368 attr->sched_flags = dl_se->flags;
3369 }
3370
3371 /*
3372 * This function validates the new parameters of a -deadline task.
3373 * We ask for the deadline not being zero, and greater or equal
3374 * than the runtime, as well as the period of being zero or
3375 * greater than deadline. Furthermore, we have to be sure that
3376 * user parameters are above the internal resolution of 1us (we
3377 * check sched_runtime only since it is always the smaller one) and
3378 * below 2^63 ns (we have to check both sched_deadline and
3379 * sched_period, as the latter can be zero).
3380 */
3381 static bool
3382 __checkparam_dl(const struct sched_attr *attr)
3383 {
3384 /* deadline != 0 */
3385 if (attr->sched_deadline == 0)
3386 return false;
3387
3388 /*
3389 * Since we truncate DL_SCALE bits, make sure we're at least
3390 * that big.
3391 */
3392 if (attr->sched_runtime < (1ULL << DL_SCALE))
3393 return false;
3394
3395 /*
3396 * Since we use the MSB for wrap-around and sign issues, make
3397 * sure it's not set (mind that period can be equal to zero).
3398 */
3399 if (attr->sched_deadline & (1ULL << 63) ||
3400 attr->sched_period & (1ULL << 63))
3401 return false;
3402
3403 /* runtime <= deadline <= period (if period != 0) */
3404 if ((attr->sched_period != 0 &&
3405 attr->sched_period < attr->sched_deadline) ||
3406 attr->sched_deadline < attr->sched_runtime)
3407 return false;
3408
3409 return true;
3410 }
3411
3412 /*
3413 * check the target process has a UID that matches the current process's
3414 */
3415 static bool check_same_owner(struct task_struct *p)
3416 {
3417 const struct cred *cred = current_cred(), *pcred;
3418 bool match;
3419
3420 rcu_read_lock();
3421 pcred = __task_cred(p);
3422 match = (uid_eq(cred->euid, pcred->euid) ||
3423 uid_eq(cred->euid, pcred->uid));
3424 rcu_read_unlock();
3425 return match;
3426 }
3427
3428 static bool dl_param_changed(struct task_struct *p,
3429 const struct sched_attr *attr)
3430 {
3431 struct sched_dl_entity *dl_se = &p->dl;
3432
3433 if (dl_se->dl_runtime != attr->sched_runtime ||
3434 dl_se->dl_deadline != attr->sched_deadline ||
3435 dl_se->dl_period != attr->sched_period ||
3436 dl_se->flags != attr->sched_flags)
3437 return true;
3438
3439 return false;
3440 }
3441
3442 static int __sched_setscheduler(struct task_struct *p,
3443 const struct sched_attr *attr,
3444 bool user)
3445 {
3446 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3447 MAX_RT_PRIO - 1 - attr->sched_priority;
3448 int retval, oldprio, oldpolicy = -1, queued, running;
3449 int policy = attr->sched_policy;
3450 unsigned long flags;
3451 const struct sched_class *prev_class;
3452 struct rq *rq;
3453 int reset_on_fork;
3454
3455 /* may grab non-irq protected spin_locks */
3456 BUG_ON(in_interrupt());
3457 recheck:
3458 /* double check policy once rq lock held */
3459 if (policy < 0) {
3460 reset_on_fork = p->sched_reset_on_fork;
3461 policy = oldpolicy = p->policy;
3462 } else {
3463 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3464
3465 if (policy != SCHED_DEADLINE &&
3466 policy != SCHED_FIFO && policy != SCHED_RR &&
3467 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3468 policy != SCHED_IDLE)
3469 return -EINVAL;
3470 }
3471
3472 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3473 return -EINVAL;
3474
3475 /*
3476 * Valid priorities for SCHED_FIFO and SCHED_RR are
3477 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3478 * SCHED_BATCH and SCHED_IDLE is 0.
3479 */
3480 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3481 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3482 return -EINVAL;
3483 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3484 (rt_policy(policy) != (attr->sched_priority != 0)))
3485 return -EINVAL;
3486
3487 /*
3488 * Allow unprivileged RT tasks to decrease priority:
3489 */
3490 if (user && !capable(CAP_SYS_NICE)) {
3491 if (fair_policy(policy)) {
3492 if (attr->sched_nice < task_nice(p) &&
3493 !can_nice(p, attr->sched_nice))
3494 return -EPERM;
3495 }
3496
3497 if (rt_policy(policy)) {
3498 unsigned long rlim_rtprio =
3499 task_rlimit(p, RLIMIT_RTPRIO);
3500
3501 /* can't set/change the rt policy */
3502 if (policy != p->policy && !rlim_rtprio)
3503 return -EPERM;
3504
3505 /* can't increase priority */
3506 if (attr->sched_priority > p->rt_priority &&
3507 attr->sched_priority > rlim_rtprio)
3508 return -EPERM;
3509 }
3510
3511 /*
3512 * Can't set/change SCHED_DEADLINE policy at all for now
3513 * (safest behavior); in the future we would like to allow
3514 * unprivileged DL tasks to increase their relative deadline
3515 * or reduce their runtime (both ways reducing utilization)
3516 */
3517 if (dl_policy(policy))
3518 return -EPERM;
3519
3520 /*
3521 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3522 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3523 */
3524 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3525 if (!can_nice(p, task_nice(p)))
3526 return -EPERM;
3527 }
3528
3529 /* can't change other user's priorities */
3530 if (!check_same_owner(p))
3531 return -EPERM;
3532
3533 /* Normal users shall not reset the sched_reset_on_fork flag */
3534 if (p->sched_reset_on_fork && !reset_on_fork)
3535 return -EPERM;
3536 }
3537
3538 if (user) {
3539 retval = security_task_setscheduler(p);
3540 if (retval)
3541 return retval;
3542 }
3543
3544 /*
3545 * make sure no PI-waiters arrive (or leave) while we are
3546 * changing the priority of the task:
3547 *
3548 * To be able to change p->policy safely, the appropriate
3549 * runqueue lock must be held.
3550 */
3551 rq = task_rq_lock(p, &flags);
3552
3553 /*
3554 * Changing the policy of the stop threads its a very bad idea
3555 */
3556 if (p == rq->stop) {
3557 task_rq_unlock(rq, p, &flags);
3558 return -EINVAL;
3559 }
3560
3561 /*
3562 * If not changing anything there's no need to proceed further,
3563 * but store a possible modification of reset_on_fork.
3564 */
3565 if (unlikely(policy == p->policy)) {
3566 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3567 goto change;
3568 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3569 goto change;
3570 if (dl_policy(policy) && dl_param_changed(p, attr))
3571 goto change;
3572
3573 p->sched_reset_on_fork = reset_on_fork;
3574 task_rq_unlock(rq, p, &flags);
3575 return 0;
3576 }
3577 change:
3578
3579 if (user) {
3580 #ifdef CONFIG_RT_GROUP_SCHED
3581 /*
3582 * Do not allow realtime tasks into groups that have no runtime
3583 * assigned.
3584 */
3585 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3586 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3587 !task_group_is_autogroup(task_group(p))) {
3588 task_rq_unlock(rq, p, &flags);
3589 return -EPERM;
3590 }
3591 #endif
3592 #ifdef CONFIG_SMP
3593 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3594 cpumask_t *span = rq->rd->span;
3595
3596 /*
3597 * Don't allow tasks with an affinity mask smaller than
3598 * the entire root_domain to become SCHED_DEADLINE. We
3599 * will also fail if there's no bandwidth available.
3600 */
3601 if (!cpumask_subset(span, &p->cpus_allowed) ||
3602 rq->rd->dl_bw.bw == 0) {
3603 task_rq_unlock(rq, p, &flags);
3604 return -EPERM;
3605 }
3606 }
3607 #endif
3608 }
3609
3610 /* recheck policy now with rq lock held */
3611 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3612 policy = oldpolicy = -1;
3613 task_rq_unlock(rq, p, &flags);
3614 goto recheck;
3615 }
3616
3617 /*
3618 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3619 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3620 * is available.
3621 */
3622 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3623 task_rq_unlock(rq, p, &flags);
3624 return -EBUSY;
3625 }
3626
3627 p->sched_reset_on_fork = reset_on_fork;
3628 oldprio = p->prio;
3629
3630 /*
3631 * Special case for priority boosted tasks.
3632 *
3633 * If the new priority is lower or equal (user space view)
3634 * than the current (boosted) priority, we just store the new
3635 * normal parameters and do not touch the scheduler class and
3636 * the runqueue. This will be done when the task deboost
3637 * itself.
3638 */
3639 if (rt_mutex_check_prio(p, newprio)) {
3640 __setscheduler_params(p, attr);
3641 task_rq_unlock(rq, p, &flags);
3642 return 0;
3643 }
3644
3645 queued = task_on_rq_queued(p);
3646 running = task_current(rq, p);
3647 if (queued)
3648 dequeue_task(rq, p, 0);
3649 if (running)
3650 put_prev_task(rq, p);
3651
3652 prev_class = p->sched_class;
3653 __setscheduler(rq, p, attr);
3654
3655 if (running)
3656 p->sched_class->set_curr_task(rq);
3657 if (queued) {
3658 /*
3659 * We enqueue to tail when the priority of a task is
3660 * increased (user space view).
3661 */
3662 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3663 }
3664
3665 check_class_changed(rq, p, prev_class, oldprio);
3666 task_rq_unlock(rq, p, &flags);
3667
3668 rt_mutex_adjust_pi(p);
3669
3670 return 0;
3671 }
3672
3673 static int _sched_setscheduler(struct task_struct *p, int policy,
3674 const struct sched_param *param, bool check)
3675 {
3676 struct sched_attr attr = {
3677 .sched_policy = policy,
3678 .sched_priority = param->sched_priority,
3679 .sched_nice = PRIO_TO_NICE(p->static_prio),
3680 };
3681
3682 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3683 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3684 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3685 policy &= ~SCHED_RESET_ON_FORK;
3686 attr.sched_policy = policy;
3687 }
3688
3689 return __sched_setscheduler(p, &attr, check);
3690 }
3691 /**
3692 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3693 * @p: the task in question.
3694 * @policy: new policy.
3695 * @param: structure containing the new RT priority.
3696 *
3697 * Return: 0 on success. An error code otherwise.
3698 *
3699 * NOTE that the task may be already dead.
3700 */
3701 int sched_setscheduler(struct task_struct *p, int policy,
3702 const struct sched_param *param)
3703 {
3704 return _sched_setscheduler(p, policy, param, true);
3705 }
3706 EXPORT_SYMBOL_GPL(sched_setscheduler);
3707
3708 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3709 {
3710 return __sched_setscheduler(p, attr, true);
3711 }
3712 EXPORT_SYMBOL_GPL(sched_setattr);
3713
3714 /**
3715 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3716 * @p: the task in question.
3717 * @policy: new policy.
3718 * @param: structure containing the new RT priority.
3719 *
3720 * Just like sched_setscheduler, only don't bother checking if the
3721 * current context has permission. For example, this is needed in
3722 * stop_machine(): we create temporary high priority worker threads,
3723 * but our caller might not have that capability.
3724 *
3725 * Return: 0 on success. An error code otherwise.
3726 */
3727 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3728 const struct sched_param *param)
3729 {
3730 return _sched_setscheduler(p, policy, param, false);
3731 }
3732
3733 static int
3734 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3735 {
3736 struct sched_param lparam;
3737 struct task_struct *p;
3738 int retval;
3739
3740 if (!param || pid < 0)
3741 return -EINVAL;
3742 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3743 return -EFAULT;
3744
3745 rcu_read_lock();
3746 retval = -ESRCH;
3747 p = find_process_by_pid(pid);
3748 if (p != NULL)
3749 retval = sched_setscheduler(p, policy, &lparam);
3750 rcu_read_unlock();
3751
3752 return retval;
3753 }
3754
3755 /*
3756 * Mimics kernel/events/core.c perf_copy_attr().
3757 */
3758 static int sched_copy_attr(struct sched_attr __user *uattr,
3759 struct sched_attr *attr)
3760 {
3761 u32 size;
3762 int ret;
3763
3764 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3765 return -EFAULT;
3766
3767 /*
3768 * zero the full structure, so that a short copy will be nice.
3769 */
3770 memset(attr, 0, sizeof(*attr));
3771
3772 ret = get_user(size, &uattr->size);
3773 if (ret)
3774 return ret;
3775
3776 if (size > PAGE_SIZE) /* silly large */
3777 goto err_size;
3778
3779 if (!size) /* abi compat */
3780 size = SCHED_ATTR_SIZE_VER0;
3781
3782 if (size < SCHED_ATTR_SIZE_VER0)
3783 goto err_size;
3784
3785 /*
3786 * If we're handed a bigger struct than we know of,
3787 * ensure all the unknown bits are 0 - i.e. new
3788 * user-space does not rely on any kernel feature
3789 * extensions we dont know about yet.
3790 */
3791 if (size > sizeof(*attr)) {
3792 unsigned char __user *addr;
3793 unsigned char __user *end;
3794 unsigned char val;
3795
3796 addr = (void __user *)uattr + sizeof(*attr);
3797 end = (void __user *)uattr + size;
3798
3799 for (; addr < end; addr++) {
3800 ret = get_user(val, addr);
3801 if (ret)
3802 return ret;
3803 if (val)
3804 goto err_size;
3805 }
3806 size = sizeof(*attr);
3807 }
3808
3809 ret = copy_from_user(attr, uattr, size);
3810 if (ret)
3811 return -EFAULT;
3812
3813 /*
3814 * XXX: do we want to be lenient like existing syscalls; or do we want
3815 * to be strict and return an error on out-of-bounds values?
3816 */
3817 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3818
3819 return 0;
3820
3821 err_size:
3822 put_user(sizeof(*attr), &uattr->size);
3823 return -E2BIG;
3824 }
3825
3826 /**
3827 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3828 * @pid: the pid in question.
3829 * @policy: new policy.
3830 * @param: structure containing the new RT priority.
3831 *
3832 * Return: 0 on success. An error code otherwise.
3833 */
3834 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3835 struct sched_param __user *, param)
3836 {
3837 /* negative values for policy are not valid */
3838 if (policy < 0)
3839 return -EINVAL;
3840
3841 return do_sched_setscheduler(pid, policy, param);
3842 }
3843
3844 /**
3845 * sys_sched_setparam - set/change the RT priority of a thread
3846 * @pid: the pid in question.
3847 * @param: structure containing the new RT priority.
3848 *
3849 * Return: 0 on success. An error code otherwise.
3850 */
3851 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3852 {
3853 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3854 }
3855
3856 /**
3857 * sys_sched_setattr - same as above, but with extended sched_attr
3858 * @pid: the pid in question.
3859 * @uattr: structure containing the extended parameters.
3860 * @flags: for future extension.
3861 */
3862 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3863 unsigned int, flags)
3864 {
3865 struct sched_attr attr;
3866 struct task_struct *p;
3867 int retval;
3868
3869 if (!uattr || pid < 0 || flags)
3870 return -EINVAL;
3871
3872 retval = sched_copy_attr(uattr, &attr);
3873 if (retval)
3874 return retval;
3875
3876 if ((int)attr.sched_policy < 0)
3877 return -EINVAL;
3878
3879 rcu_read_lock();
3880 retval = -ESRCH;
3881 p = find_process_by_pid(pid);
3882 if (p != NULL)
3883 retval = sched_setattr(p, &attr);
3884 rcu_read_unlock();
3885
3886 return retval;
3887 }
3888
3889 /**
3890 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3891 * @pid: the pid in question.
3892 *
3893 * Return: On success, the policy of the thread. Otherwise, a negative error
3894 * code.
3895 */
3896 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3897 {
3898 struct task_struct *p;
3899 int retval;
3900
3901 if (pid < 0)
3902 return -EINVAL;
3903
3904 retval = -ESRCH;
3905 rcu_read_lock();
3906 p = find_process_by_pid(pid);
3907 if (p) {
3908 retval = security_task_getscheduler(p);
3909 if (!retval)
3910 retval = p->policy
3911 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3912 }
3913 rcu_read_unlock();
3914 return retval;
3915 }
3916
3917 /**
3918 * sys_sched_getparam - get the RT priority of a thread
3919 * @pid: the pid in question.
3920 * @param: structure containing the RT priority.
3921 *
3922 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3923 * code.
3924 */
3925 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3926 {
3927 struct sched_param lp = { .sched_priority = 0 };
3928 struct task_struct *p;
3929 int retval;
3930
3931 if (!param || pid < 0)
3932 return -EINVAL;
3933
3934 rcu_read_lock();
3935 p = find_process_by_pid(pid);
3936 retval = -ESRCH;
3937 if (!p)
3938 goto out_unlock;
3939
3940 retval = security_task_getscheduler(p);
3941 if (retval)
3942 goto out_unlock;
3943
3944 if (task_has_rt_policy(p))
3945 lp.sched_priority = p->rt_priority;
3946 rcu_read_unlock();
3947
3948 /*
3949 * This one might sleep, we cannot do it with a spinlock held ...
3950 */
3951 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3952
3953 return retval;
3954
3955 out_unlock:
3956 rcu_read_unlock();
3957 return retval;
3958 }
3959
3960 static int sched_read_attr(struct sched_attr __user *uattr,
3961 struct sched_attr *attr,
3962 unsigned int usize)
3963 {
3964 int ret;
3965
3966 if (!access_ok(VERIFY_WRITE, uattr, usize))
3967 return -EFAULT;
3968
3969 /*
3970 * If we're handed a smaller struct than we know of,
3971 * ensure all the unknown bits are 0 - i.e. old
3972 * user-space does not get uncomplete information.
3973 */
3974 if (usize < sizeof(*attr)) {
3975 unsigned char *addr;
3976 unsigned char *end;
3977
3978 addr = (void *)attr + usize;
3979 end = (void *)attr + sizeof(*attr);
3980
3981 for (; addr < end; addr++) {
3982 if (*addr)
3983 return -EFBIG;
3984 }
3985
3986 attr->size = usize;
3987 }
3988
3989 ret = copy_to_user(uattr, attr, attr->size);
3990 if (ret)
3991 return -EFAULT;
3992
3993 return 0;
3994 }
3995
3996 /**
3997 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3998 * @pid: the pid in question.
3999 * @uattr: structure containing the extended parameters.
4000 * @size: sizeof(attr) for fwd/bwd comp.
4001 * @flags: for future extension.
4002 */
4003 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4004 unsigned int, size, unsigned int, flags)
4005 {
4006 struct sched_attr attr = {
4007 .size = sizeof(struct sched_attr),
4008 };
4009 struct task_struct *p;
4010 int retval;
4011
4012 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4013 size < SCHED_ATTR_SIZE_VER0 || flags)
4014 return -EINVAL;
4015
4016 rcu_read_lock();
4017 p = find_process_by_pid(pid);
4018 retval = -ESRCH;
4019 if (!p)
4020 goto out_unlock;
4021
4022 retval = security_task_getscheduler(p);
4023 if (retval)
4024 goto out_unlock;
4025
4026 attr.sched_policy = p->policy;
4027 if (p->sched_reset_on_fork)
4028 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4029 if (task_has_dl_policy(p))
4030 __getparam_dl(p, &attr);
4031 else if (task_has_rt_policy(p))
4032 attr.sched_priority = p->rt_priority;
4033 else
4034 attr.sched_nice = task_nice(p);
4035
4036 rcu_read_unlock();
4037
4038 retval = sched_read_attr(uattr, &attr, size);
4039 return retval;
4040
4041 out_unlock:
4042 rcu_read_unlock();
4043 return retval;
4044 }
4045
4046 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4047 {
4048 cpumask_var_t cpus_allowed, new_mask;
4049 struct task_struct *p;
4050 int retval;
4051
4052 rcu_read_lock();
4053
4054 p = find_process_by_pid(pid);
4055 if (!p) {
4056 rcu_read_unlock();
4057 return -ESRCH;
4058 }
4059
4060 /* Prevent p going away */
4061 get_task_struct(p);
4062 rcu_read_unlock();
4063
4064 if (p->flags & PF_NO_SETAFFINITY) {
4065 retval = -EINVAL;
4066 goto out_put_task;
4067 }
4068 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4069 retval = -ENOMEM;
4070 goto out_put_task;
4071 }
4072 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4073 retval = -ENOMEM;
4074 goto out_free_cpus_allowed;
4075 }
4076 retval = -EPERM;
4077 if (!check_same_owner(p)) {
4078 rcu_read_lock();
4079 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4080 rcu_read_unlock();
4081 goto out_free_new_mask;
4082 }
4083 rcu_read_unlock();
4084 }
4085
4086 retval = security_task_setscheduler(p);
4087 if (retval)
4088 goto out_free_new_mask;
4089
4090
4091 cpuset_cpus_allowed(p, cpus_allowed);
4092 cpumask_and(new_mask, in_mask, cpus_allowed);
4093
4094 /*
4095 * Since bandwidth control happens on root_domain basis,
4096 * if admission test is enabled, we only admit -deadline
4097 * tasks allowed to run on all the CPUs in the task's
4098 * root_domain.
4099 */
4100 #ifdef CONFIG_SMP
4101 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4102 rcu_read_lock();
4103 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4104 retval = -EBUSY;
4105 rcu_read_unlock();
4106 goto out_free_new_mask;
4107 }
4108 rcu_read_unlock();
4109 }
4110 #endif
4111 again:
4112 retval = set_cpus_allowed_ptr(p, new_mask);
4113
4114 if (!retval) {
4115 cpuset_cpus_allowed(p, cpus_allowed);
4116 if (!cpumask_subset(new_mask, cpus_allowed)) {
4117 /*
4118 * We must have raced with a concurrent cpuset
4119 * update. Just reset the cpus_allowed to the
4120 * cpuset's cpus_allowed
4121 */
4122 cpumask_copy(new_mask, cpus_allowed);
4123 goto again;
4124 }
4125 }
4126 out_free_new_mask:
4127 free_cpumask_var(new_mask);
4128 out_free_cpus_allowed:
4129 free_cpumask_var(cpus_allowed);
4130 out_put_task:
4131 put_task_struct(p);
4132 return retval;
4133 }
4134
4135 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4136 struct cpumask *new_mask)
4137 {
4138 if (len < cpumask_size())
4139 cpumask_clear(new_mask);
4140 else if (len > cpumask_size())
4141 len = cpumask_size();
4142
4143 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4144 }
4145
4146 /**
4147 * sys_sched_setaffinity - set the cpu affinity of a process
4148 * @pid: pid of the process
4149 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4150 * @user_mask_ptr: user-space pointer to the new cpu mask
4151 *
4152 * Return: 0 on success. An error code otherwise.
4153 */
4154 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4155 unsigned long __user *, user_mask_ptr)
4156 {
4157 cpumask_var_t new_mask;
4158 int retval;
4159
4160 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4161 return -ENOMEM;
4162
4163 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4164 if (retval == 0)
4165 retval = sched_setaffinity(pid, new_mask);
4166 free_cpumask_var(new_mask);
4167 return retval;
4168 }
4169
4170 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4171 {
4172 struct task_struct *p;
4173 unsigned long flags;
4174 int retval;
4175
4176 rcu_read_lock();
4177
4178 retval = -ESRCH;
4179 p = find_process_by_pid(pid);
4180 if (!p)
4181 goto out_unlock;
4182
4183 retval = security_task_getscheduler(p);
4184 if (retval)
4185 goto out_unlock;
4186
4187 raw_spin_lock_irqsave(&p->pi_lock, flags);
4188 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4189 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4190
4191 out_unlock:
4192 rcu_read_unlock();
4193
4194 return retval;
4195 }
4196
4197 /**
4198 * sys_sched_getaffinity - get the cpu affinity of a process
4199 * @pid: pid of the process
4200 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4201 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4202 *
4203 * Return: 0 on success. An error code otherwise.
4204 */
4205 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4206 unsigned long __user *, user_mask_ptr)
4207 {
4208 int ret;
4209 cpumask_var_t mask;
4210
4211 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4212 return -EINVAL;
4213 if (len & (sizeof(unsigned long)-1))
4214 return -EINVAL;
4215
4216 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4217 return -ENOMEM;
4218
4219 ret = sched_getaffinity(pid, mask);
4220 if (ret == 0) {
4221 size_t retlen = min_t(size_t, len, cpumask_size());
4222
4223 if (copy_to_user(user_mask_ptr, mask, retlen))
4224 ret = -EFAULT;
4225 else
4226 ret = retlen;
4227 }
4228 free_cpumask_var(mask);
4229
4230 return ret;
4231 }
4232
4233 /**
4234 * sys_sched_yield - yield the current processor to other threads.
4235 *
4236 * This function yields the current CPU to other tasks. If there are no
4237 * other threads running on this CPU then this function will return.
4238 *
4239 * Return: 0.
4240 */
4241 SYSCALL_DEFINE0(sched_yield)
4242 {
4243 struct rq *rq = this_rq_lock();
4244
4245 schedstat_inc(rq, yld_count);
4246 current->sched_class->yield_task(rq);
4247
4248 /*
4249 * Since we are going to call schedule() anyway, there's
4250 * no need to preempt or enable interrupts:
4251 */
4252 __release(rq->lock);
4253 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4254 do_raw_spin_unlock(&rq->lock);
4255 sched_preempt_enable_no_resched();
4256
4257 schedule();
4258
4259 return 0;
4260 }
4261
4262 int __sched _cond_resched(void)
4263 {
4264 if (should_resched()) {
4265 preempt_schedule_common();
4266 return 1;
4267 }
4268 return 0;
4269 }
4270 EXPORT_SYMBOL(_cond_resched);
4271
4272 /*
4273 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4274 * call schedule, and on return reacquire the lock.
4275 *
4276 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4277 * operations here to prevent schedule() from being called twice (once via
4278 * spin_unlock(), once by hand).
4279 */
4280 int __cond_resched_lock(spinlock_t *lock)
4281 {
4282 int resched = should_resched();
4283 int ret = 0;
4284
4285 lockdep_assert_held(lock);
4286
4287 if (spin_needbreak(lock) || resched) {
4288 spin_unlock(lock);
4289 if (resched)
4290 preempt_schedule_common();
4291 else
4292 cpu_relax();
4293 ret = 1;
4294 spin_lock(lock);
4295 }
4296 return ret;
4297 }
4298 EXPORT_SYMBOL(__cond_resched_lock);
4299
4300 int __sched __cond_resched_softirq(void)
4301 {
4302 BUG_ON(!in_softirq());
4303
4304 if (should_resched()) {
4305 local_bh_enable();
4306 preempt_schedule_common();
4307 local_bh_disable();
4308 return 1;
4309 }
4310 return 0;
4311 }
4312 EXPORT_SYMBOL(__cond_resched_softirq);
4313
4314 /**
4315 * yield - yield the current processor to other threads.
4316 *
4317 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4318 *
4319 * The scheduler is at all times free to pick the calling task as the most
4320 * eligible task to run, if removing the yield() call from your code breaks
4321 * it, its already broken.
4322 *
4323 * Typical broken usage is:
4324 *
4325 * while (!event)
4326 * yield();
4327 *
4328 * where one assumes that yield() will let 'the other' process run that will
4329 * make event true. If the current task is a SCHED_FIFO task that will never
4330 * happen. Never use yield() as a progress guarantee!!
4331 *
4332 * If you want to use yield() to wait for something, use wait_event().
4333 * If you want to use yield() to be 'nice' for others, use cond_resched().
4334 * If you still want to use yield(), do not!
4335 */
4336 void __sched yield(void)
4337 {
4338 set_current_state(TASK_RUNNING);
4339 sys_sched_yield();
4340 }
4341 EXPORT_SYMBOL(yield);
4342
4343 /**
4344 * yield_to - yield the current processor to another thread in
4345 * your thread group, or accelerate that thread toward the
4346 * processor it's on.
4347 * @p: target task
4348 * @preempt: whether task preemption is allowed or not
4349 *
4350 * It's the caller's job to ensure that the target task struct
4351 * can't go away on us before we can do any checks.
4352 *
4353 * Return:
4354 * true (>0) if we indeed boosted the target task.
4355 * false (0) if we failed to boost the target.
4356 * -ESRCH if there's no task to yield to.
4357 */
4358 int __sched yield_to(struct task_struct *p, bool preempt)
4359 {
4360 struct task_struct *curr = current;
4361 struct rq *rq, *p_rq;
4362 unsigned long flags;
4363 int yielded = 0;
4364
4365 local_irq_save(flags);
4366 rq = this_rq();
4367
4368 again:
4369 p_rq = task_rq(p);
4370 /*
4371 * If we're the only runnable task on the rq and target rq also
4372 * has only one task, there's absolutely no point in yielding.
4373 */
4374 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4375 yielded = -ESRCH;
4376 goto out_irq;
4377 }
4378
4379 double_rq_lock(rq, p_rq);
4380 if (task_rq(p) != p_rq) {
4381 double_rq_unlock(rq, p_rq);
4382 goto again;
4383 }
4384
4385 if (!curr->sched_class->yield_to_task)
4386 goto out_unlock;
4387
4388 if (curr->sched_class != p->sched_class)
4389 goto out_unlock;
4390
4391 if (task_running(p_rq, p) || p->state)
4392 goto out_unlock;
4393
4394 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4395 if (yielded) {
4396 schedstat_inc(rq, yld_count);
4397 /*
4398 * Make p's CPU reschedule; pick_next_entity takes care of
4399 * fairness.
4400 */
4401 if (preempt && rq != p_rq)
4402 resched_curr(p_rq);
4403 }
4404
4405 out_unlock:
4406 double_rq_unlock(rq, p_rq);
4407 out_irq:
4408 local_irq_restore(flags);
4409
4410 if (yielded > 0)
4411 schedule();
4412
4413 return yielded;
4414 }
4415 EXPORT_SYMBOL_GPL(yield_to);
4416
4417 /*
4418 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4419 * that process accounting knows that this is a task in IO wait state.
4420 */
4421 void __sched io_schedule(void)
4422 {
4423 struct rq *rq = raw_rq();
4424
4425 delayacct_blkio_start();
4426 atomic_inc(&rq->nr_iowait);
4427 blk_flush_plug(current);
4428 current->in_iowait = 1;
4429 schedule();
4430 current->in_iowait = 0;
4431 atomic_dec(&rq->nr_iowait);
4432 delayacct_blkio_end();
4433 }
4434 EXPORT_SYMBOL(io_schedule);
4435
4436 long __sched io_schedule_timeout(long timeout)
4437 {
4438 struct rq *rq = raw_rq();
4439 long ret;
4440
4441 delayacct_blkio_start();
4442 atomic_inc(&rq->nr_iowait);
4443 blk_flush_plug(current);
4444 current->in_iowait = 1;
4445 ret = schedule_timeout(timeout);
4446 current->in_iowait = 0;
4447 atomic_dec(&rq->nr_iowait);
4448 delayacct_blkio_end();
4449 return ret;
4450 }
4451
4452 /**
4453 * sys_sched_get_priority_max - return maximum RT priority.
4454 * @policy: scheduling class.
4455 *
4456 * Return: On success, this syscall returns the maximum
4457 * rt_priority that can be used by a given scheduling class.
4458 * On failure, a negative error code is returned.
4459 */
4460 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4461 {
4462 int ret = -EINVAL;
4463
4464 switch (policy) {
4465 case SCHED_FIFO:
4466 case SCHED_RR:
4467 ret = MAX_USER_RT_PRIO-1;
4468 break;
4469 case SCHED_DEADLINE:
4470 case SCHED_NORMAL:
4471 case SCHED_BATCH:
4472 case SCHED_IDLE:
4473 ret = 0;
4474 break;
4475 }
4476 return ret;
4477 }
4478
4479 /**
4480 * sys_sched_get_priority_min - return minimum RT priority.
4481 * @policy: scheduling class.
4482 *
4483 * Return: On success, this syscall returns the minimum
4484 * rt_priority that can be used by a given scheduling class.
4485 * On failure, a negative error code is returned.
4486 */
4487 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4488 {
4489 int ret = -EINVAL;
4490
4491 switch (policy) {
4492 case SCHED_FIFO:
4493 case SCHED_RR:
4494 ret = 1;
4495 break;
4496 case SCHED_DEADLINE:
4497 case SCHED_NORMAL:
4498 case SCHED_BATCH:
4499 case SCHED_IDLE:
4500 ret = 0;
4501 }
4502 return ret;
4503 }
4504
4505 /**
4506 * sys_sched_rr_get_interval - return the default timeslice of a process.
4507 * @pid: pid of the process.
4508 * @interval: userspace pointer to the timeslice value.
4509 *
4510 * this syscall writes the default timeslice value of a given process
4511 * into the user-space timespec buffer. A value of '0' means infinity.
4512 *
4513 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4514 * an error code.
4515 */
4516 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4517 struct timespec __user *, interval)
4518 {
4519 struct task_struct *p;
4520 unsigned int time_slice;
4521 unsigned long flags;
4522 struct rq *rq;
4523 int retval;
4524 struct timespec t;
4525
4526 if (pid < 0)
4527 return -EINVAL;
4528
4529 retval = -ESRCH;
4530 rcu_read_lock();
4531 p = find_process_by_pid(pid);
4532 if (!p)
4533 goto out_unlock;
4534
4535 retval = security_task_getscheduler(p);
4536 if (retval)
4537 goto out_unlock;
4538
4539 rq = task_rq_lock(p, &flags);
4540 time_slice = 0;
4541 if (p->sched_class->get_rr_interval)
4542 time_slice = p->sched_class->get_rr_interval(rq, p);
4543 task_rq_unlock(rq, p, &flags);
4544
4545 rcu_read_unlock();
4546 jiffies_to_timespec(time_slice, &t);
4547 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4548 return retval;
4549
4550 out_unlock:
4551 rcu_read_unlock();
4552 return retval;
4553 }
4554
4555 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4556
4557 void sched_show_task(struct task_struct *p)
4558 {
4559 unsigned long free = 0;
4560 int ppid;
4561 unsigned long state = p->state;
4562
4563 if (state)
4564 state = __ffs(state) + 1;
4565 printk(KERN_INFO "%-15.15s %c", p->comm,
4566 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4567 #if BITS_PER_LONG == 32
4568 if (state == TASK_RUNNING)
4569 printk(KERN_CONT " running ");
4570 else
4571 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4572 #else
4573 if (state == TASK_RUNNING)
4574 printk(KERN_CONT " running task ");
4575 else
4576 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4577 #endif
4578 #ifdef CONFIG_DEBUG_STACK_USAGE
4579 free = stack_not_used(p);
4580 #endif
4581 ppid = 0;
4582 rcu_read_lock();
4583 if (pid_alive(p))
4584 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4585 rcu_read_unlock();
4586 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4587 task_pid_nr(p), ppid,
4588 (unsigned long)task_thread_info(p)->flags);
4589
4590 print_worker_info(KERN_INFO, p);
4591 show_stack(p, NULL);
4592 }
4593
4594 void show_state_filter(unsigned long state_filter)
4595 {
4596 struct task_struct *g, *p;
4597
4598 #if BITS_PER_LONG == 32
4599 printk(KERN_INFO
4600 " task PC stack pid father\n");
4601 #else
4602 printk(KERN_INFO
4603 " task PC stack pid father\n");
4604 #endif
4605 rcu_read_lock();
4606 for_each_process_thread(g, p) {
4607 /*
4608 * reset the NMI-timeout, listing all files on a slow
4609 * console might take a lot of time:
4610 */
4611 touch_nmi_watchdog();
4612 if (!state_filter || (p->state & state_filter))
4613 sched_show_task(p);
4614 }
4615
4616 touch_all_softlockup_watchdogs();
4617
4618 #ifdef CONFIG_SCHED_DEBUG
4619 sysrq_sched_debug_show();
4620 #endif
4621 rcu_read_unlock();
4622 /*
4623 * Only show locks if all tasks are dumped:
4624 */
4625 if (!state_filter)
4626 debug_show_all_locks();
4627 }
4628
4629 void init_idle_bootup_task(struct task_struct *idle)
4630 {
4631 idle->sched_class = &idle_sched_class;
4632 }
4633
4634 /**
4635 * init_idle - set up an idle thread for a given CPU
4636 * @idle: task in question
4637 * @cpu: cpu the idle task belongs to
4638 *
4639 * NOTE: this function does not set the idle thread's NEED_RESCHED
4640 * flag, to make booting more robust.
4641 */
4642 void init_idle(struct task_struct *idle, int cpu)
4643 {
4644 struct rq *rq = cpu_rq(cpu);
4645 unsigned long flags;
4646
4647 raw_spin_lock_irqsave(&rq->lock, flags);
4648
4649 __sched_fork(0, idle);
4650 idle->state = TASK_RUNNING;
4651 idle->se.exec_start = sched_clock();
4652
4653 do_set_cpus_allowed(idle, cpumask_of(cpu));
4654 /*
4655 * We're having a chicken and egg problem, even though we are
4656 * holding rq->lock, the cpu isn't yet set to this cpu so the
4657 * lockdep check in task_group() will fail.
4658 *
4659 * Similar case to sched_fork(). / Alternatively we could
4660 * use task_rq_lock() here and obtain the other rq->lock.
4661 *
4662 * Silence PROVE_RCU
4663 */
4664 rcu_read_lock();
4665 __set_task_cpu(idle, cpu);
4666 rcu_read_unlock();
4667
4668 rq->curr = rq->idle = idle;
4669 idle->on_rq = TASK_ON_RQ_QUEUED;
4670 #if defined(CONFIG_SMP)
4671 idle->on_cpu = 1;
4672 #endif
4673 raw_spin_unlock_irqrestore(&rq->lock, flags);
4674
4675 /* Set the preempt count _outside_ the spinlocks! */
4676 init_idle_preempt_count(idle, cpu);
4677
4678 /*
4679 * The idle tasks have their own, simple scheduling class:
4680 */
4681 idle->sched_class = &idle_sched_class;
4682 ftrace_graph_init_idle_task(idle, cpu);
4683 vtime_init_idle(idle, cpu);
4684 #if defined(CONFIG_SMP)
4685 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4686 #endif
4687 }
4688
4689 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4690 const struct cpumask *trial)
4691 {
4692 int ret = 1, trial_cpus;
4693 struct dl_bw *cur_dl_b;
4694 unsigned long flags;
4695
4696 if (!cpumask_weight(cur))
4697 return ret;
4698
4699 rcu_read_lock_sched();
4700 cur_dl_b = dl_bw_of(cpumask_any(cur));
4701 trial_cpus = cpumask_weight(trial);
4702
4703 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4704 if (cur_dl_b->bw != -1 &&
4705 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4706 ret = 0;
4707 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4708 rcu_read_unlock_sched();
4709
4710 return ret;
4711 }
4712
4713 int task_can_attach(struct task_struct *p,
4714 const struct cpumask *cs_cpus_allowed)
4715 {
4716 int ret = 0;
4717
4718 /*
4719 * Kthreads which disallow setaffinity shouldn't be moved
4720 * to a new cpuset; we don't want to change their cpu
4721 * affinity and isolating such threads by their set of
4722 * allowed nodes is unnecessary. Thus, cpusets are not
4723 * applicable for such threads. This prevents checking for
4724 * success of set_cpus_allowed_ptr() on all attached tasks
4725 * before cpus_allowed may be changed.
4726 */
4727 if (p->flags & PF_NO_SETAFFINITY) {
4728 ret = -EINVAL;
4729 goto out;
4730 }
4731
4732 #ifdef CONFIG_SMP
4733 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4734 cs_cpus_allowed)) {
4735 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4736 cs_cpus_allowed);
4737 struct dl_bw *dl_b;
4738 bool overflow;
4739 int cpus;
4740 unsigned long flags;
4741
4742 rcu_read_lock_sched();
4743 dl_b = dl_bw_of(dest_cpu);
4744 raw_spin_lock_irqsave(&dl_b->lock, flags);
4745 cpus = dl_bw_cpus(dest_cpu);
4746 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4747 if (overflow)
4748 ret = -EBUSY;
4749 else {
4750 /*
4751 * We reserve space for this task in the destination
4752 * root_domain, as we can't fail after this point.
4753 * We will free resources in the source root_domain
4754 * later on (see set_cpus_allowed_dl()).
4755 */
4756 __dl_add(dl_b, p->dl.dl_bw);
4757 }
4758 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4759 rcu_read_unlock_sched();
4760
4761 }
4762 #endif
4763 out:
4764 return ret;
4765 }
4766
4767 #ifdef CONFIG_SMP
4768 /*
4769 * move_queued_task - move a queued task to new rq.
4770 *
4771 * Returns (locked) new rq. Old rq's lock is released.
4772 */
4773 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4774 {
4775 struct rq *rq = task_rq(p);
4776
4777 lockdep_assert_held(&rq->lock);
4778
4779 dequeue_task(rq, p, 0);
4780 p->on_rq = TASK_ON_RQ_MIGRATING;
4781 set_task_cpu(p, new_cpu);
4782 raw_spin_unlock(&rq->lock);
4783
4784 rq = cpu_rq(new_cpu);
4785
4786 raw_spin_lock(&rq->lock);
4787 BUG_ON(task_cpu(p) != new_cpu);
4788 p->on_rq = TASK_ON_RQ_QUEUED;
4789 enqueue_task(rq, p, 0);
4790 check_preempt_curr(rq, p, 0);
4791
4792 return rq;
4793 }
4794
4795 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4796 {
4797 if (p->sched_class->set_cpus_allowed)
4798 p->sched_class->set_cpus_allowed(p, new_mask);
4799
4800 cpumask_copy(&p->cpus_allowed, new_mask);
4801 p->nr_cpus_allowed = cpumask_weight(new_mask);
4802 }
4803
4804 /*
4805 * This is how migration works:
4806 *
4807 * 1) we invoke migration_cpu_stop() on the target CPU using
4808 * stop_one_cpu().
4809 * 2) stopper starts to run (implicitly forcing the migrated thread
4810 * off the CPU)
4811 * 3) it checks whether the migrated task is still in the wrong runqueue.
4812 * 4) if it's in the wrong runqueue then the migration thread removes
4813 * it and puts it into the right queue.
4814 * 5) stopper completes and stop_one_cpu() returns and the migration
4815 * is done.
4816 */
4817
4818 /*
4819 * Change a given task's CPU affinity. Migrate the thread to a
4820 * proper CPU and schedule it away if the CPU it's executing on
4821 * is removed from the allowed bitmask.
4822 *
4823 * NOTE: the caller must have a valid reference to the task, the
4824 * task must not exit() & deallocate itself prematurely. The
4825 * call is not atomic; no spinlocks may be held.
4826 */
4827 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4828 {
4829 unsigned long flags;
4830 struct rq *rq;
4831 unsigned int dest_cpu;
4832 int ret = 0;
4833
4834 rq = task_rq_lock(p, &flags);
4835
4836 if (cpumask_equal(&p->cpus_allowed, new_mask))
4837 goto out;
4838
4839 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4840 ret = -EINVAL;
4841 goto out;
4842 }
4843
4844 do_set_cpus_allowed(p, new_mask);
4845
4846 /* Can the task run on the task's current CPU? If so, we're done */
4847 if (cpumask_test_cpu(task_cpu(p), new_mask))
4848 goto out;
4849
4850 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4851 if (task_running(rq, p) || p->state == TASK_WAKING) {
4852 struct migration_arg arg = { p, dest_cpu };
4853 /* Need help from migration thread: drop lock and wait. */
4854 task_rq_unlock(rq, p, &flags);
4855 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4856 tlb_migrate_finish(p->mm);
4857 return 0;
4858 } else if (task_on_rq_queued(p))
4859 rq = move_queued_task(p, dest_cpu);
4860 out:
4861 task_rq_unlock(rq, p, &flags);
4862
4863 return ret;
4864 }
4865 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4866
4867 /*
4868 * Move (not current) task off this cpu, onto dest cpu. We're doing
4869 * this because either it can't run here any more (set_cpus_allowed()
4870 * away from this CPU, or CPU going down), or because we're
4871 * attempting to rebalance this task on exec (sched_exec).
4872 *
4873 * So we race with normal scheduler movements, but that's OK, as long
4874 * as the task is no longer on this CPU.
4875 *
4876 * Returns non-zero if task was successfully migrated.
4877 */
4878 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4879 {
4880 struct rq *rq;
4881 int ret = 0;
4882
4883 if (unlikely(!cpu_active(dest_cpu)))
4884 return ret;
4885
4886 rq = cpu_rq(src_cpu);
4887
4888 raw_spin_lock(&p->pi_lock);
4889 raw_spin_lock(&rq->lock);
4890 /* Already moved. */
4891 if (task_cpu(p) != src_cpu)
4892 goto done;
4893
4894 /* Affinity changed (again). */
4895 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4896 goto fail;
4897
4898 /*
4899 * If we're not on a rq, the next wake-up will ensure we're
4900 * placed properly.
4901 */
4902 if (task_on_rq_queued(p))
4903 rq = move_queued_task(p, dest_cpu);
4904 done:
4905 ret = 1;
4906 fail:
4907 raw_spin_unlock(&rq->lock);
4908 raw_spin_unlock(&p->pi_lock);
4909 return ret;
4910 }
4911
4912 #ifdef CONFIG_NUMA_BALANCING
4913 /* Migrate current task p to target_cpu */
4914 int migrate_task_to(struct task_struct *p, int target_cpu)
4915 {
4916 struct migration_arg arg = { p, target_cpu };
4917 int curr_cpu = task_cpu(p);
4918
4919 if (curr_cpu == target_cpu)
4920 return 0;
4921
4922 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4923 return -EINVAL;
4924
4925 /* TODO: This is not properly updating schedstats */
4926
4927 trace_sched_move_numa(p, curr_cpu, target_cpu);
4928 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4929 }
4930
4931 /*
4932 * Requeue a task on a given node and accurately track the number of NUMA
4933 * tasks on the runqueues
4934 */
4935 void sched_setnuma(struct task_struct *p, int nid)
4936 {
4937 struct rq *rq;
4938 unsigned long flags;
4939 bool queued, running;
4940
4941 rq = task_rq_lock(p, &flags);
4942 queued = task_on_rq_queued(p);
4943 running = task_current(rq, p);
4944
4945 if (queued)
4946 dequeue_task(rq, p, 0);
4947 if (running)
4948 put_prev_task(rq, p);
4949
4950 p->numa_preferred_nid = nid;
4951
4952 if (running)
4953 p->sched_class->set_curr_task(rq);
4954 if (queued)
4955 enqueue_task(rq, p, 0);
4956 task_rq_unlock(rq, p, &flags);
4957 }
4958 #endif
4959
4960 /*
4961 * migration_cpu_stop - this will be executed by a highprio stopper thread
4962 * and performs thread migration by bumping thread off CPU then
4963 * 'pushing' onto another runqueue.
4964 */
4965 static int migration_cpu_stop(void *data)
4966 {
4967 struct migration_arg *arg = data;
4968
4969 /*
4970 * The original target cpu might have gone down and we might
4971 * be on another cpu but it doesn't matter.
4972 */
4973 local_irq_disable();
4974 /*
4975 * We need to explicitly wake pending tasks before running
4976 * __migrate_task() such that we will not miss enforcing cpus_allowed
4977 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4978 */
4979 sched_ttwu_pending();
4980 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4981 local_irq_enable();
4982 return 0;
4983 }
4984
4985 #ifdef CONFIG_HOTPLUG_CPU
4986
4987 /*
4988 * Ensures that the idle task is using init_mm right before its cpu goes
4989 * offline.
4990 */
4991 void idle_task_exit(void)
4992 {
4993 struct mm_struct *mm = current->active_mm;
4994
4995 BUG_ON(cpu_online(smp_processor_id()));
4996
4997 if (mm != &init_mm) {
4998 switch_mm(mm, &init_mm, current);
4999 finish_arch_post_lock_switch();
5000 }
5001 mmdrop(mm);
5002 }
5003
5004 /*
5005 * Since this CPU is going 'away' for a while, fold any nr_active delta
5006 * we might have. Assumes we're called after migrate_tasks() so that the
5007 * nr_active count is stable.
5008 *
5009 * Also see the comment "Global load-average calculations".
5010 */
5011 static void calc_load_migrate(struct rq *rq)
5012 {
5013 long delta = calc_load_fold_active(rq);
5014 if (delta)
5015 atomic_long_add(delta, &calc_load_tasks);
5016 }
5017
5018 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5019 {
5020 }
5021
5022 static const struct sched_class fake_sched_class = {
5023 .put_prev_task = put_prev_task_fake,
5024 };
5025
5026 static struct task_struct fake_task = {
5027 /*
5028 * Avoid pull_{rt,dl}_task()
5029 */
5030 .prio = MAX_PRIO + 1,
5031 .sched_class = &fake_sched_class,
5032 };
5033
5034 /*
5035 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5036 * try_to_wake_up()->select_task_rq().
5037 *
5038 * Called with rq->lock held even though we'er in stop_machine() and
5039 * there's no concurrency possible, we hold the required locks anyway
5040 * because of lock validation efforts.
5041 */
5042 static void migrate_tasks(unsigned int dead_cpu)
5043 {
5044 struct rq *rq = cpu_rq(dead_cpu);
5045 struct task_struct *next, *stop = rq->stop;
5046 int dest_cpu;
5047
5048 /*
5049 * Fudge the rq selection such that the below task selection loop
5050 * doesn't get stuck on the currently eligible stop task.
5051 *
5052 * We're currently inside stop_machine() and the rq is either stuck
5053 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5054 * either way we should never end up calling schedule() until we're
5055 * done here.
5056 */
5057 rq->stop = NULL;
5058
5059 /*
5060 * put_prev_task() and pick_next_task() sched
5061 * class method both need to have an up-to-date
5062 * value of rq->clock[_task]
5063 */
5064 update_rq_clock(rq);
5065
5066 for ( ; ; ) {
5067 /*
5068 * There's this thread running, bail when that's the only
5069 * remaining thread.
5070 */
5071 if (rq->nr_running == 1)
5072 break;
5073
5074 next = pick_next_task(rq, &fake_task);
5075 BUG_ON(!next);
5076 next->sched_class->put_prev_task(rq, next);
5077
5078 /* Find suitable destination for @next, with force if needed. */
5079 dest_cpu = select_fallback_rq(dead_cpu, next);
5080 raw_spin_unlock(&rq->lock);
5081
5082 __migrate_task(next, dead_cpu, dest_cpu);
5083
5084 raw_spin_lock(&rq->lock);
5085 }
5086
5087 rq->stop = stop;
5088 }
5089
5090 #endif /* CONFIG_HOTPLUG_CPU */
5091
5092 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5093
5094 static struct ctl_table sd_ctl_dir[] = {
5095 {
5096 .procname = "sched_domain",
5097 .mode = 0555,
5098 },
5099 {}
5100 };
5101
5102 static struct ctl_table sd_ctl_root[] = {
5103 {
5104 .procname = "kernel",
5105 .mode = 0555,
5106 .child = sd_ctl_dir,
5107 },
5108 {}
5109 };
5110
5111 static struct ctl_table *sd_alloc_ctl_entry(int n)
5112 {
5113 struct ctl_table *entry =
5114 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5115
5116 return entry;
5117 }
5118
5119 static void sd_free_ctl_entry(struct ctl_table **tablep)
5120 {
5121 struct ctl_table *entry;
5122
5123 /*
5124 * In the intermediate directories, both the child directory and
5125 * procname are dynamically allocated and could fail but the mode
5126 * will always be set. In the lowest directory the names are
5127 * static strings and all have proc handlers.
5128 */
5129 for (entry = *tablep; entry->mode; entry++) {
5130 if (entry->child)
5131 sd_free_ctl_entry(&entry->child);
5132 if (entry->proc_handler == NULL)
5133 kfree(entry->procname);
5134 }
5135
5136 kfree(*tablep);
5137 *tablep = NULL;
5138 }
5139
5140 static int min_load_idx = 0;
5141 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5142
5143 static void
5144 set_table_entry(struct ctl_table *entry,
5145 const char *procname, void *data, int maxlen,
5146 umode_t mode, proc_handler *proc_handler,
5147 bool load_idx)
5148 {
5149 entry->procname = procname;
5150 entry->data = data;
5151 entry->maxlen = maxlen;
5152 entry->mode = mode;
5153 entry->proc_handler = proc_handler;
5154
5155 if (load_idx) {
5156 entry->extra1 = &min_load_idx;
5157 entry->extra2 = &max_load_idx;
5158 }
5159 }
5160
5161 static struct ctl_table *
5162 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5163 {
5164 struct ctl_table *table = sd_alloc_ctl_entry(14);
5165
5166 if (table == NULL)
5167 return NULL;
5168
5169 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5170 sizeof(long), 0644, proc_doulongvec_minmax, false);
5171 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5172 sizeof(long), 0644, proc_doulongvec_minmax, false);
5173 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5174 sizeof(int), 0644, proc_dointvec_minmax, true);
5175 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5176 sizeof(int), 0644, proc_dointvec_minmax, true);
5177 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5178 sizeof(int), 0644, proc_dointvec_minmax, true);
5179 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5180 sizeof(int), 0644, proc_dointvec_minmax, true);
5181 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5182 sizeof(int), 0644, proc_dointvec_minmax, true);
5183 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5184 sizeof(int), 0644, proc_dointvec_minmax, false);
5185 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5186 sizeof(int), 0644, proc_dointvec_minmax, false);
5187 set_table_entry(&table[9], "cache_nice_tries",
5188 &sd->cache_nice_tries,
5189 sizeof(int), 0644, proc_dointvec_minmax, false);
5190 set_table_entry(&table[10], "flags", &sd->flags,
5191 sizeof(int), 0644, proc_dointvec_minmax, false);
5192 set_table_entry(&table[11], "max_newidle_lb_cost",
5193 &sd->max_newidle_lb_cost,
5194 sizeof(long), 0644, proc_doulongvec_minmax, false);
5195 set_table_entry(&table[12], "name", sd->name,
5196 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5197 /* &table[13] is terminator */
5198
5199 return table;
5200 }
5201
5202 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5203 {
5204 struct ctl_table *entry, *table;
5205 struct sched_domain *sd;
5206 int domain_num = 0, i;
5207 char buf[32];
5208
5209 for_each_domain(cpu, sd)
5210 domain_num++;
5211 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5212 if (table == NULL)
5213 return NULL;
5214
5215 i = 0;
5216 for_each_domain(cpu, sd) {
5217 snprintf(buf, 32, "domain%d", i);
5218 entry->procname = kstrdup(buf, GFP_KERNEL);
5219 entry->mode = 0555;
5220 entry->child = sd_alloc_ctl_domain_table(sd);
5221 entry++;
5222 i++;
5223 }
5224 return table;
5225 }
5226
5227 static struct ctl_table_header *sd_sysctl_header;
5228 static void register_sched_domain_sysctl(void)
5229 {
5230 int i, cpu_num = num_possible_cpus();
5231 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5232 char buf[32];
5233
5234 WARN_ON(sd_ctl_dir[0].child);
5235 sd_ctl_dir[0].child = entry;
5236
5237 if (entry == NULL)
5238 return;
5239
5240 for_each_possible_cpu(i) {
5241 snprintf(buf, 32, "cpu%d", i);
5242 entry->procname = kstrdup(buf, GFP_KERNEL);
5243 entry->mode = 0555;
5244 entry->child = sd_alloc_ctl_cpu_table(i);
5245 entry++;
5246 }
5247
5248 WARN_ON(sd_sysctl_header);
5249 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5250 }
5251
5252 /* may be called multiple times per register */
5253 static void unregister_sched_domain_sysctl(void)
5254 {
5255 if (sd_sysctl_header)
5256 unregister_sysctl_table(sd_sysctl_header);
5257 sd_sysctl_header = NULL;
5258 if (sd_ctl_dir[0].child)
5259 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5260 }
5261 #else
5262 static void register_sched_domain_sysctl(void)
5263 {
5264 }
5265 static void unregister_sched_domain_sysctl(void)
5266 {
5267 }
5268 #endif
5269
5270 static void set_rq_online(struct rq *rq)
5271 {
5272 if (!rq->online) {
5273 const struct sched_class *class;
5274
5275 cpumask_set_cpu(rq->cpu, rq->rd->online);
5276 rq->online = 1;
5277
5278 for_each_class(class) {
5279 if (class->rq_online)
5280 class->rq_online(rq);
5281 }
5282 }
5283 }
5284
5285 static void set_rq_offline(struct rq *rq)
5286 {
5287 if (rq->online) {
5288 const struct sched_class *class;
5289
5290 for_each_class(class) {
5291 if (class->rq_offline)
5292 class->rq_offline(rq);
5293 }
5294
5295 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5296 rq->online = 0;
5297 }
5298 }
5299
5300 /*
5301 * migration_call - callback that gets triggered when a CPU is added.
5302 * Here we can start up the necessary migration thread for the new CPU.
5303 */
5304 static int
5305 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5306 {
5307 int cpu = (long)hcpu;
5308 unsigned long flags;
5309 struct rq *rq = cpu_rq(cpu);
5310
5311 switch (action & ~CPU_TASKS_FROZEN) {
5312
5313 case CPU_UP_PREPARE:
5314 rq->calc_load_update = calc_load_update;
5315 break;
5316
5317 case CPU_ONLINE:
5318 /* Update our root-domain */
5319 raw_spin_lock_irqsave(&rq->lock, flags);
5320 if (rq->rd) {
5321 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5322
5323 set_rq_online(rq);
5324 }
5325 raw_spin_unlock_irqrestore(&rq->lock, flags);
5326 break;
5327
5328 #ifdef CONFIG_HOTPLUG_CPU
5329 case CPU_DYING:
5330 sched_ttwu_pending();
5331 /* Update our root-domain */
5332 raw_spin_lock_irqsave(&rq->lock, flags);
5333 if (rq->rd) {
5334 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5335 set_rq_offline(rq);
5336 }
5337 migrate_tasks(cpu);
5338 BUG_ON(rq->nr_running != 1); /* the migration thread */
5339 raw_spin_unlock_irqrestore(&rq->lock, flags);
5340 break;
5341
5342 case CPU_DEAD:
5343 calc_load_migrate(rq);
5344 break;
5345 #endif
5346 }
5347
5348 update_max_interval();
5349
5350 return NOTIFY_OK;
5351 }
5352
5353 /*
5354 * Register at high priority so that task migration (migrate_all_tasks)
5355 * happens before everything else. This has to be lower priority than
5356 * the notifier in the perf_event subsystem, though.
5357 */
5358 static struct notifier_block migration_notifier = {
5359 .notifier_call = migration_call,
5360 .priority = CPU_PRI_MIGRATION,
5361 };
5362
5363 static void __cpuinit set_cpu_rq_start_time(void)
5364 {
5365 int cpu = smp_processor_id();
5366 struct rq *rq = cpu_rq(cpu);
5367 rq->age_stamp = sched_clock_cpu(cpu);
5368 }
5369
5370 static int sched_cpu_active(struct notifier_block *nfb,
5371 unsigned long action, void *hcpu)
5372 {
5373 switch (action & ~CPU_TASKS_FROZEN) {
5374 case CPU_STARTING:
5375 set_cpu_rq_start_time();
5376 return NOTIFY_OK;
5377 case CPU_DOWN_FAILED:
5378 set_cpu_active((long)hcpu, true);
5379 return NOTIFY_OK;
5380 default:
5381 return NOTIFY_DONE;
5382 }
5383 }
5384
5385 static int sched_cpu_inactive(struct notifier_block *nfb,
5386 unsigned long action, void *hcpu)
5387 {
5388 unsigned long flags;
5389 long cpu = (long)hcpu;
5390 struct dl_bw *dl_b;
5391
5392 switch (action & ~CPU_TASKS_FROZEN) {
5393 case CPU_DOWN_PREPARE:
5394 set_cpu_active(cpu, false);
5395
5396 /* explicitly allow suspend */
5397 if (!(action & CPU_TASKS_FROZEN)) {
5398 bool overflow;
5399 int cpus;
5400
5401 rcu_read_lock_sched();
5402 dl_b = dl_bw_of(cpu);
5403
5404 raw_spin_lock_irqsave(&dl_b->lock, flags);
5405 cpus = dl_bw_cpus(cpu);
5406 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5407 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5408
5409 rcu_read_unlock_sched();
5410
5411 if (overflow)
5412 return notifier_from_errno(-EBUSY);
5413 }
5414 return NOTIFY_OK;
5415 }
5416
5417 return NOTIFY_DONE;
5418 }
5419
5420 static int __init migration_init(void)
5421 {
5422 void *cpu = (void *)(long)smp_processor_id();
5423 int err;
5424
5425 /* Initialize migration for the boot CPU */
5426 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5427 BUG_ON(err == NOTIFY_BAD);
5428 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5429 register_cpu_notifier(&migration_notifier);
5430
5431 /* Register cpu active notifiers */
5432 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5433 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5434
5435 return 0;
5436 }
5437 early_initcall(migration_init);
5438 #endif
5439
5440 #ifdef CONFIG_SMP
5441
5442 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5443
5444 #ifdef CONFIG_SCHED_DEBUG
5445
5446 static __read_mostly int sched_debug_enabled;
5447
5448 static int __init sched_debug_setup(char *str)
5449 {
5450 sched_debug_enabled = 1;
5451
5452 return 0;
5453 }
5454 early_param("sched_debug", sched_debug_setup);
5455
5456 static inline bool sched_debug(void)
5457 {
5458 return sched_debug_enabled;
5459 }
5460
5461 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5462 struct cpumask *groupmask)
5463 {
5464 struct sched_group *group = sd->groups;
5465
5466 cpumask_clear(groupmask);
5467
5468 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5469
5470 if (!(sd->flags & SD_LOAD_BALANCE)) {
5471 printk("does not load-balance\n");
5472 if (sd->parent)
5473 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5474 " has parent");
5475 return -1;
5476 }
5477
5478 printk(KERN_CONT "span %*pbl level %s\n",
5479 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5480
5481 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5482 printk(KERN_ERR "ERROR: domain->span does not contain "
5483 "CPU%d\n", cpu);
5484 }
5485 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5486 printk(KERN_ERR "ERROR: domain->groups does not contain"
5487 " CPU%d\n", cpu);
5488 }
5489
5490 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5491 do {
5492 if (!group) {
5493 printk("\n");
5494 printk(KERN_ERR "ERROR: group is NULL\n");
5495 break;
5496 }
5497
5498 /*
5499 * Even though we initialize ->capacity to something semi-sane,
5500 * we leave capacity_orig unset. This allows us to detect if
5501 * domain iteration is still funny without causing /0 traps.
5502 */
5503 if (!group->sgc->capacity_orig) {
5504 printk(KERN_CONT "\n");
5505 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5506 break;
5507 }
5508
5509 if (!cpumask_weight(sched_group_cpus(group))) {
5510 printk(KERN_CONT "\n");
5511 printk(KERN_ERR "ERROR: empty group\n");
5512 break;
5513 }
5514
5515 if (!(sd->flags & SD_OVERLAP) &&
5516 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5517 printk(KERN_CONT "\n");
5518 printk(KERN_ERR "ERROR: repeated CPUs\n");
5519 break;
5520 }
5521
5522 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5523
5524 printk(KERN_CONT " %*pbl",
5525 cpumask_pr_args(sched_group_cpus(group)));
5526 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5527 printk(KERN_CONT " (cpu_capacity = %d)",
5528 group->sgc->capacity);
5529 }
5530
5531 group = group->next;
5532 } while (group != sd->groups);
5533 printk(KERN_CONT "\n");
5534
5535 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5536 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5537
5538 if (sd->parent &&
5539 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5540 printk(KERN_ERR "ERROR: parent span is not a superset "
5541 "of domain->span\n");
5542 return 0;
5543 }
5544
5545 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5546 {
5547 int level = 0;
5548
5549 if (!sched_debug_enabled)
5550 return;
5551
5552 if (!sd) {
5553 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5554 return;
5555 }
5556
5557 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5558
5559 for (;;) {
5560 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5561 break;
5562 level++;
5563 sd = sd->parent;
5564 if (!sd)
5565 break;
5566 }
5567 }
5568 #else /* !CONFIG_SCHED_DEBUG */
5569 # define sched_domain_debug(sd, cpu) do { } while (0)
5570 static inline bool sched_debug(void)
5571 {
5572 return false;
5573 }
5574 #endif /* CONFIG_SCHED_DEBUG */
5575
5576 static int sd_degenerate(struct sched_domain *sd)
5577 {
5578 if (cpumask_weight(sched_domain_span(sd)) == 1)
5579 return 1;
5580
5581 /* Following flags need at least 2 groups */
5582 if (sd->flags & (SD_LOAD_BALANCE |
5583 SD_BALANCE_NEWIDLE |
5584 SD_BALANCE_FORK |
5585 SD_BALANCE_EXEC |
5586 SD_SHARE_CPUCAPACITY |
5587 SD_SHARE_PKG_RESOURCES |
5588 SD_SHARE_POWERDOMAIN)) {
5589 if (sd->groups != sd->groups->next)
5590 return 0;
5591 }
5592
5593 /* Following flags don't use groups */
5594 if (sd->flags & (SD_WAKE_AFFINE))
5595 return 0;
5596
5597 return 1;
5598 }
5599
5600 static int
5601 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5602 {
5603 unsigned long cflags = sd->flags, pflags = parent->flags;
5604
5605 if (sd_degenerate(parent))
5606 return 1;
5607
5608 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5609 return 0;
5610
5611 /* Flags needing groups don't count if only 1 group in parent */
5612 if (parent->groups == parent->groups->next) {
5613 pflags &= ~(SD_LOAD_BALANCE |
5614 SD_BALANCE_NEWIDLE |
5615 SD_BALANCE_FORK |
5616 SD_BALANCE_EXEC |
5617 SD_SHARE_CPUCAPACITY |
5618 SD_SHARE_PKG_RESOURCES |
5619 SD_PREFER_SIBLING |
5620 SD_SHARE_POWERDOMAIN);
5621 if (nr_node_ids == 1)
5622 pflags &= ~SD_SERIALIZE;
5623 }
5624 if (~cflags & pflags)
5625 return 0;
5626
5627 return 1;
5628 }
5629
5630 static void free_rootdomain(struct rcu_head *rcu)
5631 {
5632 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5633
5634 cpupri_cleanup(&rd->cpupri);
5635 cpudl_cleanup(&rd->cpudl);
5636 free_cpumask_var(rd->dlo_mask);
5637 free_cpumask_var(rd->rto_mask);
5638 free_cpumask_var(rd->online);
5639 free_cpumask_var(rd->span);
5640 kfree(rd);
5641 }
5642
5643 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5644 {
5645 struct root_domain *old_rd = NULL;
5646 unsigned long flags;
5647
5648 raw_spin_lock_irqsave(&rq->lock, flags);
5649
5650 if (rq->rd) {
5651 old_rd = rq->rd;
5652
5653 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5654 set_rq_offline(rq);
5655
5656 cpumask_clear_cpu(rq->cpu, old_rd->span);
5657
5658 /*
5659 * If we dont want to free the old_rd yet then
5660 * set old_rd to NULL to skip the freeing later
5661 * in this function:
5662 */
5663 if (!atomic_dec_and_test(&old_rd->refcount))
5664 old_rd = NULL;
5665 }
5666
5667 atomic_inc(&rd->refcount);
5668 rq->rd = rd;
5669
5670 cpumask_set_cpu(rq->cpu, rd->span);
5671 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5672 set_rq_online(rq);
5673
5674 raw_spin_unlock_irqrestore(&rq->lock, flags);
5675
5676 if (old_rd)
5677 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5678 }
5679
5680 static int init_rootdomain(struct root_domain *rd)
5681 {
5682 memset(rd, 0, sizeof(*rd));
5683
5684 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5685 goto out;
5686 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5687 goto free_span;
5688 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5689 goto free_online;
5690 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5691 goto free_dlo_mask;
5692
5693 init_dl_bw(&rd->dl_bw);
5694 if (cpudl_init(&rd->cpudl) != 0)
5695 goto free_dlo_mask;
5696
5697 if (cpupri_init(&rd->cpupri) != 0)
5698 goto free_rto_mask;
5699 return 0;
5700
5701 free_rto_mask:
5702 free_cpumask_var(rd->rto_mask);
5703 free_dlo_mask:
5704 free_cpumask_var(rd->dlo_mask);
5705 free_online:
5706 free_cpumask_var(rd->online);
5707 free_span:
5708 free_cpumask_var(rd->span);
5709 out:
5710 return -ENOMEM;
5711 }
5712
5713 /*
5714 * By default the system creates a single root-domain with all cpus as
5715 * members (mimicking the global state we have today).
5716 */
5717 struct root_domain def_root_domain;
5718
5719 static void init_defrootdomain(void)
5720 {
5721 init_rootdomain(&def_root_domain);
5722
5723 atomic_set(&def_root_domain.refcount, 1);
5724 }
5725
5726 static struct root_domain *alloc_rootdomain(void)
5727 {
5728 struct root_domain *rd;
5729
5730 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5731 if (!rd)
5732 return NULL;
5733
5734 if (init_rootdomain(rd) != 0) {
5735 kfree(rd);
5736 return NULL;
5737 }
5738
5739 return rd;
5740 }
5741
5742 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5743 {
5744 struct sched_group *tmp, *first;
5745
5746 if (!sg)
5747 return;
5748
5749 first = sg;
5750 do {
5751 tmp = sg->next;
5752
5753 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5754 kfree(sg->sgc);
5755
5756 kfree(sg);
5757 sg = tmp;
5758 } while (sg != first);
5759 }
5760
5761 static void free_sched_domain(struct rcu_head *rcu)
5762 {
5763 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5764
5765 /*
5766 * If its an overlapping domain it has private groups, iterate and
5767 * nuke them all.
5768 */
5769 if (sd->flags & SD_OVERLAP) {
5770 free_sched_groups(sd->groups, 1);
5771 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5772 kfree(sd->groups->sgc);
5773 kfree(sd->groups);
5774 }
5775 kfree(sd);
5776 }
5777
5778 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5779 {
5780 call_rcu(&sd->rcu, free_sched_domain);
5781 }
5782
5783 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5784 {
5785 for (; sd; sd = sd->parent)
5786 destroy_sched_domain(sd, cpu);
5787 }
5788
5789 /*
5790 * Keep a special pointer to the highest sched_domain that has
5791 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5792 * allows us to avoid some pointer chasing select_idle_sibling().
5793 *
5794 * Also keep a unique ID per domain (we use the first cpu number in
5795 * the cpumask of the domain), this allows us to quickly tell if
5796 * two cpus are in the same cache domain, see cpus_share_cache().
5797 */
5798 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5799 DEFINE_PER_CPU(int, sd_llc_size);
5800 DEFINE_PER_CPU(int, sd_llc_id);
5801 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5802 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5803 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5804
5805 static void update_top_cache_domain(int cpu)
5806 {
5807 struct sched_domain *sd;
5808 struct sched_domain *busy_sd = NULL;
5809 int id = cpu;
5810 int size = 1;
5811
5812 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5813 if (sd) {
5814 id = cpumask_first(sched_domain_span(sd));
5815 size = cpumask_weight(sched_domain_span(sd));
5816 busy_sd = sd->parent; /* sd_busy */
5817 }
5818 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5819
5820 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5821 per_cpu(sd_llc_size, cpu) = size;
5822 per_cpu(sd_llc_id, cpu) = id;
5823
5824 sd = lowest_flag_domain(cpu, SD_NUMA);
5825 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5826
5827 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5828 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5829 }
5830
5831 /*
5832 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5833 * hold the hotplug lock.
5834 */
5835 static void
5836 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5837 {
5838 struct rq *rq = cpu_rq(cpu);
5839 struct sched_domain *tmp;
5840
5841 /* Remove the sched domains which do not contribute to scheduling. */
5842 for (tmp = sd; tmp; ) {
5843 struct sched_domain *parent = tmp->parent;
5844 if (!parent)
5845 break;
5846
5847 if (sd_parent_degenerate(tmp, parent)) {
5848 tmp->parent = parent->parent;
5849 if (parent->parent)
5850 parent->parent->child = tmp;
5851 /*
5852 * Transfer SD_PREFER_SIBLING down in case of a
5853 * degenerate parent; the spans match for this
5854 * so the property transfers.
5855 */
5856 if (parent->flags & SD_PREFER_SIBLING)
5857 tmp->flags |= SD_PREFER_SIBLING;
5858 destroy_sched_domain(parent, cpu);
5859 } else
5860 tmp = tmp->parent;
5861 }
5862
5863 if (sd && sd_degenerate(sd)) {
5864 tmp = sd;
5865 sd = sd->parent;
5866 destroy_sched_domain(tmp, cpu);
5867 if (sd)
5868 sd->child = NULL;
5869 }
5870
5871 sched_domain_debug(sd, cpu);
5872
5873 rq_attach_root(rq, rd);
5874 tmp = rq->sd;
5875 rcu_assign_pointer(rq->sd, sd);
5876 destroy_sched_domains(tmp, cpu);
5877
5878 update_top_cache_domain(cpu);
5879 }
5880
5881 /* cpus with isolated domains */
5882 static cpumask_var_t cpu_isolated_map;
5883
5884 /* Setup the mask of cpus configured for isolated domains */
5885 static int __init isolated_cpu_setup(char *str)
5886 {
5887 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5888 cpulist_parse(str, cpu_isolated_map);
5889 return 1;
5890 }
5891
5892 __setup("isolcpus=", isolated_cpu_setup);
5893
5894 struct s_data {
5895 struct sched_domain ** __percpu sd;
5896 struct root_domain *rd;
5897 };
5898
5899 enum s_alloc {
5900 sa_rootdomain,
5901 sa_sd,
5902 sa_sd_storage,
5903 sa_none,
5904 };
5905
5906 /*
5907 * Build an iteration mask that can exclude certain CPUs from the upwards
5908 * domain traversal.
5909 *
5910 * Asymmetric node setups can result in situations where the domain tree is of
5911 * unequal depth, make sure to skip domains that already cover the entire
5912 * range.
5913 *
5914 * In that case build_sched_domains() will have terminated the iteration early
5915 * and our sibling sd spans will be empty. Domains should always include the
5916 * cpu they're built on, so check that.
5917 *
5918 */
5919 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5920 {
5921 const struct cpumask *span = sched_domain_span(sd);
5922 struct sd_data *sdd = sd->private;
5923 struct sched_domain *sibling;
5924 int i;
5925
5926 for_each_cpu(i, span) {
5927 sibling = *per_cpu_ptr(sdd->sd, i);
5928 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5929 continue;
5930
5931 cpumask_set_cpu(i, sched_group_mask(sg));
5932 }
5933 }
5934
5935 /*
5936 * Return the canonical balance cpu for this group, this is the first cpu
5937 * of this group that's also in the iteration mask.
5938 */
5939 int group_balance_cpu(struct sched_group *sg)
5940 {
5941 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5942 }
5943
5944 static int
5945 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5946 {
5947 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5948 const struct cpumask *span = sched_domain_span(sd);
5949 struct cpumask *covered = sched_domains_tmpmask;
5950 struct sd_data *sdd = sd->private;
5951 struct sched_domain *sibling;
5952 int i;
5953
5954 cpumask_clear(covered);
5955
5956 for_each_cpu(i, span) {
5957 struct cpumask *sg_span;
5958
5959 if (cpumask_test_cpu(i, covered))
5960 continue;
5961
5962 sibling = *per_cpu_ptr(sdd->sd, i);
5963
5964 /* See the comment near build_group_mask(). */
5965 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5966 continue;
5967
5968 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5969 GFP_KERNEL, cpu_to_node(cpu));
5970
5971 if (!sg)
5972 goto fail;
5973
5974 sg_span = sched_group_cpus(sg);
5975 if (sibling->child)
5976 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5977 else
5978 cpumask_set_cpu(i, sg_span);
5979
5980 cpumask_or(covered, covered, sg_span);
5981
5982 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5983 if (atomic_inc_return(&sg->sgc->ref) == 1)
5984 build_group_mask(sd, sg);
5985
5986 /*
5987 * Initialize sgc->capacity such that even if we mess up the
5988 * domains and no possible iteration will get us here, we won't
5989 * die on a /0 trap.
5990 */
5991 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5992 sg->sgc->capacity_orig = sg->sgc->capacity;
5993
5994 /*
5995 * Make sure the first group of this domain contains the
5996 * canonical balance cpu. Otherwise the sched_domain iteration
5997 * breaks. See update_sg_lb_stats().
5998 */
5999 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6000 group_balance_cpu(sg) == cpu)
6001 groups = sg;
6002
6003 if (!first)
6004 first = sg;
6005 if (last)
6006 last->next = sg;
6007 last = sg;
6008 last->next = first;
6009 }
6010 sd->groups = groups;
6011
6012 return 0;
6013
6014 fail:
6015 free_sched_groups(first, 0);
6016
6017 return -ENOMEM;
6018 }
6019
6020 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6021 {
6022 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6023 struct sched_domain *child = sd->child;
6024
6025 if (child)
6026 cpu = cpumask_first(sched_domain_span(child));
6027
6028 if (sg) {
6029 *sg = *per_cpu_ptr(sdd->sg, cpu);
6030 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6031 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6032 }
6033
6034 return cpu;
6035 }
6036
6037 /*
6038 * build_sched_groups will build a circular linked list of the groups
6039 * covered by the given span, and will set each group's ->cpumask correctly,
6040 * and ->cpu_capacity to 0.
6041 *
6042 * Assumes the sched_domain tree is fully constructed
6043 */
6044 static int
6045 build_sched_groups(struct sched_domain *sd, int cpu)
6046 {
6047 struct sched_group *first = NULL, *last = NULL;
6048 struct sd_data *sdd = sd->private;
6049 const struct cpumask *span = sched_domain_span(sd);
6050 struct cpumask *covered;
6051 int i;
6052
6053 get_group(cpu, sdd, &sd->groups);
6054 atomic_inc(&sd->groups->ref);
6055
6056 if (cpu != cpumask_first(span))
6057 return 0;
6058
6059 lockdep_assert_held(&sched_domains_mutex);
6060 covered = sched_domains_tmpmask;
6061
6062 cpumask_clear(covered);
6063
6064 for_each_cpu(i, span) {
6065 struct sched_group *sg;
6066 int group, j;
6067
6068 if (cpumask_test_cpu(i, covered))
6069 continue;
6070
6071 group = get_group(i, sdd, &sg);
6072 cpumask_setall(sched_group_mask(sg));
6073
6074 for_each_cpu(j, span) {
6075 if (get_group(j, sdd, NULL) != group)
6076 continue;
6077
6078 cpumask_set_cpu(j, covered);
6079 cpumask_set_cpu(j, sched_group_cpus(sg));
6080 }
6081
6082 if (!first)
6083 first = sg;
6084 if (last)
6085 last->next = sg;
6086 last = sg;
6087 }
6088 last->next = first;
6089
6090 return 0;
6091 }
6092
6093 /*
6094 * Initialize sched groups cpu_capacity.
6095 *
6096 * cpu_capacity indicates the capacity of sched group, which is used while
6097 * distributing the load between different sched groups in a sched domain.
6098 * Typically cpu_capacity for all the groups in a sched domain will be same
6099 * unless there are asymmetries in the topology. If there are asymmetries,
6100 * group having more cpu_capacity will pickup more load compared to the
6101 * group having less cpu_capacity.
6102 */
6103 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6104 {
6105 struct sched_group *sg = sd->groups;
6106
6107 WARN_ON(!sg);
6108
6109 do {
6110 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6111 sg = sg->next;
6112 } while (sg != sd->groups);
6113
6114 if (cpu != group_balance_cpu(sg))
6115 return;
6116
6117 update_group_capacity(sd, cpu);
6118 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6119 }
6120
6121 /*
6122 * Initializers for schedule domains
6123 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6124 */
6125
6126 static int default_relax_domain_level = -1;
6127 int sched_domain_level_max;
6128
6129 static int __init setup_relax_domain_level(char *str)
6130 {
6131 if (kstrtoint(str, 0, &default_relax_domain_level))
6132 pr_warn("Unable to set relax_domain_level\n");
6133
6134 return 1;
6135 }
6136 __setup("relax_domain_level=", setup_relax_domain_level);
6137
6138 static void set_domain_attribute(struct sched_domain *sd,
6139 struct sched_domain_attr *attr)
6140 {
6141 int request;
6142
6143 if (!attr || attr->relax_domain_level < 0) {
6144 if (default_relax_domain_level < 0)
6145 return;
6146 else
6147 request = default_relax_domain_level;
6148 } else
6149 request = attr->relax_domain_level;
6150 if (request < sd->level) {
6151 /* turn off idle balance on this domain */
6152 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6153 } else {
6154 /* turn on idle balance on this domain */
6155 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6156 }
6157 }
6158
6159 static void __sdt_free(const struct cpumask *cpu_map);
6160 static int __sdt_alloc(const struct cpumask *cpu_map);
6161
6162 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6163 const struct cpumask *cpu_map)
6164 {
6165 switch (what) {
6166 case sa_rootdomain:
6167 if (!atomic_read(&d->rd->refcount))
6168 free_rootdomain(&d->rd->rcu); /* fall through */
6169 case sa_sd:
6170 free_percpu(d->sd); /* fall through */
6171 case sa_sd_storage:
6172 __sdt_free(cpu_map); /* fall through */
6173 case sa_none:
6174 break;
6175 }
6176 }
6177
6178 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6179 const struct cpumask *cpu_map)
6180 {
6181 memset(d, 0, sizeof(*d));
6182
6183 if (__sdt_alloc(cpu_map))
6184 return sa_sd_storage;
6185 d->sd = alloc_percpu(struct sched_domain *);
6186 if (!d->sd)
6187 return sa_sd_storage;
6188 d->rd = alloc_rootdomain();
6189 if (!d->rd)
6190 return sa_sd;
6191 return sa_rootdomain;
6192 }
6193
6194 /*
6195 * NULL the sd_data elements we've used to build the sched_domain and
6196 * sched_group structure so that the subsequent __free_domain_allocs()
6197 * will not free the data we're using.
6198 */
6199 static void claim_allocations(int cpu, struct sched_domain *sd)
6200 {
6201 struct sd_data *sdd = sd->private;
6202
6203 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6204 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6205
6206 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6207 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6208
6209 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6210 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6211 }
6212
6213 #ifdef CONFIG_NUMA
6214 static int sched_domains_numa_levels;
6215 enum numa_topology_type sched_numa_topology_type;
6216 static int *sched_domains_numa_distance;
6217 int sched_max_numa_distance;
6218 static struct cpumask ***sched_domains_numa_masks;
6219 static int sched_domains_curr_level;
6220 #endif
6221
6222 /*
6223 * SD_flags allowed in topology descriptions.
6224 *
6225 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6226 * SD_SHARE_PKG_RESOURCES - describes shared caches
6227 * SD_NUMA - describes NUMA topologies
6228 * SD_SHARE_POWERDOMAIN - describes shared power domain
6229 *
6230 * Odd one out:
6231 * SD_ASYM_PACKING - describes SMT quirks
6232 */
6233 #define TOPOLOGY_SD_FLAGS \
6234 (SD_SHARE_CPUCAPACITY | \
6235 SD_SHARE_PKG_RESOURCES | \
6236 SD_NUMA | \
6237 SD_ASYM_PACKING | \
6238 SD_SHARE_POWERDOMAIN)
6239
6240 static struct sched_domain *
6241 sd_init(struct sched_domain_topology_level *tl, int cpu)
6242 {
6243 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6244 int sd_weight, sd_flags = 0;
6245
6246 #ifdef CONFIG_NUMA
6247 /*
6248 * Ugly hack to pass state to sd_numa_mask()...
6249 */
6250 sched_domains_curr_level = tl->numa_level;
6251 #endif
6252
6253 sd_weight = cpumask_weight(tl->mask(cpu));
6254
6255 if (tl->sd_flags)
6256 sd_flags = (*tl->sd_flags)();
6257 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6258 "wrong sd_flags in topology description\n"))
6259 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6260
6261 *sd = (struct sched_domain){
6262 .min_interval = sd_weight,
6263 .max_interval = 2*sd_weight,
6264 .busy_factor = 32,
6265 .imbalance_pct = 125,
6266
6267 .cache_nice_tries = 0,
6268 .busy_idx = 0,
6269 .idle_idx = 0,
6270 .newidle_idx = 0,
6271 .wake_idx = 0,
6272 .forkexec_idx = 0,
6273
6274 .flags = 1*SD_LOAD_BALANCE
6275 | 1*SD_BALANCE_NEWIDLE
6276 | 1*SD_BALANCE_EXEC
6277 | 1*SD_BALANCE_FORK
6278 | 0*SD_BALANCE_WAKE
6279 | 1*SD_WAKE_AFFINE
6280 | 0*SD_SHARE_CPUCAPACITY
6281 | 0*SD_SHARE_PKG_RESOURCES
6282 | 0*SD_SERIALIZE
6283 | 0*SD_PREFER_SIBLING
6284 | 0*SD_NUMA
6285 | sd_flags
6286 ,
6287
6288 .last_balance = jiffies,
6289 .balance_interval = sd_weight,
6290 .smt_gain = 0,
6291 .max_newidle_lb_cost = 0,
6292 .next_decay_max_lb_cost = jiffies,
6293 #ifdef CONFIG_SCHED_DEBUG
6294 .name = tl->name,
6295 #endif
6296 };
6297
6298 /*
6299 * Convert topological properties into behaviour.
6300 */
6301
6302 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6303 sd->imbalance_pct = 110;
6304 sd->smt_gain = 1178; /* ~15% */
6305
6306 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6307 sd->imbalance_pct = 117;
6308 sd->cache_nice_tries = 1;
6309 sd->busy_idx = 2;
6310
6311 #ifdef CONFIG_NUMA
6312 } else if (sd->flags & SD_NUMA) {
6313 sd->cache_nice_tries = 2;
6314 sd->busy_idx = 3;
6315 sd->idle_idx = 2;
6316
6317 sd->flags |= SD_SERIALIZE;
6318 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6319 sd->flags &= ~(SD_BALANCE_EXEC |
6320 SD_BALANCE_FORK |
6321 SD_WAKE_AFFINE);
6322 }
6323
6324 #endif
6325 } else {
6326 sd->flags |= SD_PREFER_SIBLING;
6327 sd->cache_nice_tries = 1;
6328 sd->busy_idx = 2;
6329 sd->idle_idx = 1;
6330 }
6331
6332 sd->private = &tl->data;
6333
6334 return sd;
6335 }
6336
6337 /*
6338 * Topology list, bottom-up.
6339 */
6340 static struct sched_domain_topology_level default_topology[] = {
6341 #ifdef CONFIG_SCHED_SMT
6342 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6343 #endif
6344 #ifdef CONFIG_SCHED_MC
6345 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6346 #endif
6347 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6348 { NULL, },
6349 };
6350
6351 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6352
6353 #define for_each_sd_topology(tl) \
6354 for (tl = sched_domain_topology; tl->mask; tl++)
6355
6356 void set_sched_topology(struct sched_domain_topology_level *tl)
6357 {
6358 sched_domain_topology = tl;
6359 }
6360
6361 #ifdef CONFIG_NUMA
6362
6363 static const struct cpumask *sd_numa_mask(int cpu)
6364 {
6365 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6366 }
6367
6368 static void sched_numa_warn(const char *str)
6369 {
6370 static int done = false;
6371 int i,j;
6372
6373 if (done)
6374 return;
6375
6376 done = true;
6377
6378 printk(KERN_WARNING "ERROR: %s\n\n", str);
6379
6380 for (i = 0; i < nr_node_ids; i++) {
6381 printk(KERN_WARNING " ");
6382 for (j = 0; j < nr_node_ids; j++)
6383 printk(KERN_CONT "%02d ", node_distance(i,j));
6384 printk(KERN_CONT "\n");
6385 }
6386 printk(KERN_WARNING "\n");
6387 }
6388
6389 bool find_numa_distance(int distance)
6390 {
6391 int i;
6392
6393 if (distance == node_distance(0, 0))
6394 return true;
6395
6396 for (i = 0; i < sched_domains_numa_levels; i++) {
6397 if (sched_domains_numa_distance[i] == distance)
6398 return true;
6399 }
6400
6401 return false;
6402 }
6403
6404 /*
6405 * A system can have three types of NUMA topology:
6406 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6407 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6408 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6409 *
6410 * The difference between a glueless mesh topology and a backplane
6411 * topology lies in whether communication between not directly
6412 * connected nodes goes through intermediary nodes (where programs
6413 * could run), or through backplane controllers. This affects
6414 * placement of programs.
6415 *
6416 * The type of topology can be discerned with the following tests:
6417 * - If the maximum distance between any nodes is 1 hop, the system
6418 * is directly connected.
6419 * - If for two nodes A and B, located N > 1 hops away from each other,
6420 * there is an intermediary node C, which is < N hops away from both
6421 * nodes A and B, the system is a glueless mesh.
6422 */
6423 static void init_numa_topology_type(void)
6424 {
6425 int a, b, c, n;
6426
6427 n = sched_max_numa_distance;
6428
6429 if (n <= 1)
6430 sched_numa_topology_type = NUMA_DIRECT;
6431
6432 for_each_online_node(a) {
6433 for_each_online_node(b) {
6434 /* Find two nodes furthest removed from each other. */
6435 if (node_distance(a, b) < n)
6436 continue;
6437
6438 /* Is there an intermediary node between a and b? */
6439 for_each_online_node(c) {
6440 if (node_distance(a, c) < n &&
6441 node_distance(b, c) < n) {
6442 sched_numa_topology_type =
6443 NUMA_GLUELESS_MESH;
6444 return;
6445 }
6446 }
6447
6448 sched_numa_topology_type = NUMA_BACKPLANE;
6449 return;
6450 }
6451 }
6452 }
6453
6454 static void sched_init_numa(void)
6455 {
6456 int next_distance, curr_distance = node_distance(0, 0);
6457 struct sched_domain_topology_level *tl;
6458 int level = 0;
6459 int i, j, k;
6460
6461 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6462 if (!sched_domains_numa_distance)
6463 return;
6464
6465 /*
6466 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6467 * unique distances in the node_distance() table.
6468 *
6469 * Assumes node_distance(0,j) includes all distances in
6470 * node_distance(i,j) in order to avoid cubic time.
6471 */
6472 next_distance = curr_distance;
6473 for (i = 0; i < nr_node_ids; i++) {
6474 for (j = 0; j < nr_node_ids; j++) {
6475 for (k = 0; k < nr_node_ids; k++) {
6476 int distance = node_distance(i, k);
6477
6478 if (distance > curr_distance &&
6479 (distance < next_distance ||
6480 next_distance == curr_distance))
6481 next_distance = distance;
6482
6483 /*
6484 * While not a strong assumption it would be nice to know
6485 * about cases where if node A is connected to B, B is not
6486 * equally connected to A.
6487 */
6488 if (sched_debug() && node_distance(k, i) != distance)
6489 sched_numa_warn("Node-distance not symmetric");
6490
6491 if (sched_debug() && i && !find_numa_distance(distance))
6492 sched_numa_warn("Node-0 not representative");
6493 }
6494 if (next_distance != curr_distance) {
6495 sched_domains_numa_distance[level++] = next_distance;
6496 sched_domains_numa_levels = level;
6497 curr_distance = next_distance;
6498 } else break;
6499 }
6500
6501 /*
6502 * In case of sched_debug() we verify the above assumption.
6503 */
6504 if (!sched_debug())
6505 break;
6506 }
6507
6508 if (!level)
6509 return;
6510
6511 /*
6512 * 'level' contains the number of unique distances, excluding the
6513 * identity distance node_distance(i,i).
6514 *
6515 * The sched_domains_numa_distance[] array includes the actual distance
6516 * numbers.
6517 */
6518
6519 /*
6520 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6521 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6522 * the array will contain less then 'level' members. This could be
6523 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6524 * in other functions.
6525 *
6526 * We reset it to 'level' at the end of this function.
6527 */
6528 sched_domains_numa_levels = 0;
6529
6530 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6531 if (!sched_domains_numa_masks)
6532 return;
6533
6534 /*
6535 * Now for each level, construct a mask per node which contains all
6536 * cpus of nodes that are that many hops away from us.
6537 */
6538 for (i = 0; i < level; i++) {
6539 sched_domains_numa_masks[i] =
6540 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6541 if (!sched_domains_numa_masks[i])
6542 return;
6543
6544 for (j = 0; j < nr_node_ids; j++) {
6545 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6546 if (!mask)
6547 return;
6548
6549 sched_domains_numa_masks[i][j] = mask;
6550
6551 for (k = 0; k < nr_node_ids; k++) {
6552 if (node_distance(j, k) > sched_domains_numa_distance[i])
6553 continue;
6554
6555 cpumask_or(mask, mask, cpumask_of_node(k));
6556 }
6557 }
6558 }
6559
6560 /* Compute default topology size */
6561 for (i = 0; sched_domain_topology[i].mask; i++);
6562
6563 tl = kzalloc((i + level + 1) *
6564 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6565 if (!tl)
6566 return;
6567
6568 /*
6569 * Copy the default topology bits..
6570 */
6571 for (i = 0; sched_domain_topology[i].mask; i++)
6572 tl[i] = sched_domain_topology[i];
6573
6574 /*
6575 * .. and append 'j' levels of NUMA goodness.
6576 */
6577 for (j = 0; j < level; i++, j++) {
6578 tl[i] = (struct sched_domain_topology_level){
6579 .mask = sd_numa_mask,
6580 .sd_flags = cpu_numa_flags,
6581 .flags = SDTL_OVERLAP,
6582 .numa_level = j,
6583 SD_INIT_NAME(NUMA)
6584 };
6585 }
6586
6587 sched_domain_topology = tl;
6588
6589 sched_domains_numa_levels = level;
6590 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6591
6592 init_numa_topology_type();
6593 }
6594
6595 static void sched_domains_numa_masks_set(int cpu)
6596 {
6597 int i, j;
6598 int node = cpu_to_node(cpu);
6599
6600 for (i = 0; i < sched_domains_numa_levels; i++) {
6601 for (j = 0; j < nr_node_ids; j++) {
6602 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6603 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6604 }
6605 }
6606 }
6607
6608 static void sched_domains_numa_masks_clear(int cpu)
6609 {
6610 int i, j;
6611 for (i = 0; i < sched_domains_numa_levels; i++) {
6612 for (j = 0; j < nr_node_ids; j++)
6613 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6614 }
6615 }
6616
6617 /*
6618 * Update sched_domains_numa_masks[level][node] array when new cpus
6619 * are onlined.
6620 */
6621 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6622 unsigned long action,
6623 void *hcpu)
6624 {
6625 int cpu = (long)hcpu;
6626
6627 switch (action & ~CPU_TASKS_FROZEN) {
6628 case CPU_ONLINE:
6629 sched_domains_numa_masks_set(cpu);
6630 break;
6631
6632 case CPU_DEAD:
6633 sched_domains_numa_masks_clear(cpu);
6634 break;
6635
6636 default:
6637 return NOTIFY_DONE;
6638 }
6639
6640 return NOTIFY_OK;
6641 }
6642 #else
6643 static inline void sched_init_numa(void)
6644 {
6645 }
6646
6647 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6648 unsigned long action,
6649 void *hcpu)
6650 {
6651 return 0;
6652 }
6653 #endif /* CONFIG_NUMA */
6654
6655 static int __sdt_alloc(const struct cpumask *cpu_map)
6656 {
6657 struct sched_domain_topology_level *tl;
6658 int j;
6659
6660 for_each_sd_topology(tl) {
6661 struct sd_data *sdd = &tl->data;
6662
6663 sdd->sd = alloc_percpu(struct sched_domain *);
6664 if (!sdd->sd)
6665 return -ENOMEM;
6666
6667 sdd->sg = alloc_percpu(struct sched_group *);
6668 if (!sdd->sg)
6669 return -ENOMEM;
6670
6671 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6672 if (!sdd->sgc)
6673 return -ENOMEM;
6674
6675 for_each_cpu(j, cpu_map) {
6676 struct sched_domain *sd;
6677 struct sched_group *sg;
6678 struct sched_group_capacity *sgc;
6679
6680 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6681 GFP_KERNEL, cpu_to_node(j));
6682 if (!sd)
6683 return -ENOMEM;
6684
6685 *per_cpu_ptr(sdd->sd, j) = sd;
6686
6687 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6688 GFP_KERNEL, cpu_to_node(j));
6689 if (!sg)
6690 return -ENOMEM;
6691
6692 sg->next = sg;
6693
6694 *per_cpu_ptr(sdd->sg, j) = sg;
6695
6696 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6697 GFP_KERNEL, cpu_to_node(j));
6698 if (!sgc)
6699 return -ENOMEM;
6700
6701 *per_cpu_ptr(sdd->sgc, j) = sgc;
6702 }
6703 }
6704
6705 return 0;
6706 }
6707
6708 static void __sdt_free(const struct cpumask *cpu_map)
6709 {
6710 struct sched_domain_topology_level *tl;
6711 int j;
6712
6713 for_each_sd_topology(tl) {
6714 struct sd_data *sdd = &tl->data;
6715
6716 for_each_cpu(j, cpu_map) {
6717 struct sched_domain *sd;
6718
6719 if (sdd->sd) {
6720 sd = *per_cpu_ptr(sdd->sd, j);
6721 if (sd && (sd->flags & SD_OVERLAP))
6722 free_sched_groups(sd->groups, 0);
6723 kfree(*per_cpu_ptr(sdd->sd, j));
6724 }
6725
6726 if (sdd->sg)
6727 kfree(*per_cpu_ptr(sdd->sg, j));
6728 if (sdd->sgc)
6729 kfree(*per_cpu_ptr(sdd->sgc, j));
6730 }
6731 free_percpu(sdd->sd);
6732 sdd->sd = NULL;
6733 free_percpu(sdd->sg);
6734 sdd->sg = NULL;
6735 free_percpu(sdd->sgc);
6736 sdd->sgc = NULL;
6737 }
6738 }
6739
6740 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6741 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6742 struct sched_domain *child, int cpu)
6743 {
6744 struct sched_domain *sd = sd_init(tl, cpu);
6745 if (!sd)
6746 return child;
6747
6748 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6749 if (child) {
6750 sd->level = child->level + 1;
6751 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6752 child->parent = sd;
6753 sd->child = child;
6754
6755 if (!cpumask_subset(sched_domain_span(child),
6756 sched_domain_span(sd))) {
6757 pr_err("BUG: arch topology borken\n");
6758 #ifdef CONFIG_SCHED_DEBUG
6759 pr_err(" the %s domain not a subset of the %s domain\n",
6760 child->name, sd->name);
6761 #endif
6762 /* Fixup, ensure @sd has at least @child cpus. */
6763 cpumask_or(sched_domain_span(sd),
6764 sched_domain_span(sd),
6765 sched_domain_span(child));
6766 }
6767
6768 }
6769 set_domain_attribute(sd, attr);
6770
6771 return sd;
6772 }
6773
6774 /*
6775 * Build sched domains for a given set of cpus and attach the sched domains
6776 * to the individual cpus
6777 */
6778 static int build_sched_domains(const struct cpumask *cpu_map,
6779 struct sched_domain_attr *attr)
6780 {
6781 enum s_alloc alloc_state;
6782 struct sched_domain *sd;
6783 struct s_data d;
6784 int i, ret = -ENOMEM;
6785
6786 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6787 if (alloc_state != sa_rootdomain)
6788 goto error;
6789
6790 /* Set up domains for cpus specified by the cpu_map. */
6791 for_each_cpu(i, cpu_map) {
6792 struct sched_domain_topology_level *tl;
6793
6794 sd = NULL;
6795 for_each_sd_topology(tl) {
6796 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6797 if (tl == sched_domain_topology)
6798 *per_cpu_ptr(d.sd, i) = sd;
6799 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6800 sd->flags |= SD_OVERLAP;
6801 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6802 break;
6803 }
6804 }
6805
6806 /* Build the groups for the domains */
6807 for_each_cpu(i, cpu_map) {
6808 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6809 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6810 if (sd->flags & SD_OVERLAP) {
6811 if (build_overlap_sched_groups(sd, i))
6812 goto error;
6813 } else {
6814 if (build_sched_groups(sd, i))
6815 goto error;
6816 }
6817 }
6818 }
6819
6820 /* Calculate CPU capacity for physical packages and nodes */
6821 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6822 if (!cpumask_test_cpu(i, cpu_map))
6823 continue;
6824
6825 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6826 claim_allocations(i, sd);
6827 init_sched_groups_capacity(i, sd);
6828 }
6829 }
6830
6831 /* Attach the domains */
6832 rcu_read_lock();
6833 for_each_cpu(i, cpu_map) {
6834 sd = *per_cpu_ptr(d.sd, i);
6835 cpu_attach_domain(sd, d.rd, i);
6836 }
6837 rcu_read_unlock();
6838
6839 ret = 0;
6840 error:
6841 __free_domain_allocs(&d, alloc_state, cpu_map);
6842 return ret;
6843 }
6844
6845 static cpumask_var_t *doms_cur; /* current sched domains */
6846 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6847 static struct sched_domain_attr *dattr_cur;
6848 /* attribues of custom domains in 'doms_cur' */
6849
6850 /*
6851 * Special case: If a kmalloc of a doms_cur partition (array of
6852 * cpumask) fails, then fallback to a single sched domain,
6853 * as determined by the single cpumask fallback_doms.
6854 */
6855 static cpumask_var_t fallback_doms;
6856
6857 /*
6858 * arch_update_cpu_topology lets virtualized architectures update the
6859 * cpu core maps. It is supposed to return 1 if the topology changed
6860 * or 0 if it stayed the same.
6861 */
6862 int __weak arch_update_cpu_topology(void)
6863 {
6864 return 0;
6865 }
6866
6867 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6868 {
6869 int i;
6870 cpumask_var_t *doms;
6871
6872 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6873 if (!doms)
6874 return NULL;
6875 for (i = 0; i < ndoms; i++) {
6876 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6877 free_sched_domains(doms, i);
6878 return NULL;
6879 }
6880 }
6881 return doms;
6882 }
6883
6884 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6885 {
6886 unsigned int i;
6887 for (i = 0; i < ndoms; i++)
6888 free_cpumask_var(doms[i]);
6889 kfree(doms);
6890 }
6891
6892 /*
6893 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6894 * For now this just excludes isolated cpus, but could be used to
6895 * exclude other special cases in the future.
6896 */
6897 static int init_sched_domains(const struct cpumask *cpu_map)
6898 {
6899 int err;
6900
6901 arch_update_cpu_topology();
6902 ndoms_cur = 1;
6903 doms_cur = alloc_sched_domains(ndoms_cur);
6904 if (!doms_cur)
6905 doms_cur = &fallback_doms;
6906 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6907 err = build_sched_domains(doms_cur[0], NULL);
6908 register_sched_domain_sysctl();
6909
6910 return err;
6911 }
6912
6913 /*
6914 * Detach sched domains from a group of cpus specified in cpu_map
6915 * These cpus will now be attached to the NULL domain
6916 */
6917 static void detach_destroy_domains(const struct cpumask *cpu_map)
6918 {
6919 int i;
6920
6921 rcu_read_lock();
6922 for_each_cpu(i, cpu_map)
6923 cpu_attach_domain(NULL, &def_root_domain, i);
6924 rcu_read_unlock();
6925 }
6926
6927 /* handle null as "default" */
6928 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6929 struct sched_domain_attr *new, int idx_new)
6930 {
6931 struct sched_domain_attr tmp;
6932
6933 /* fast path */
6934 if (!new && !cur)
6935 return 1;
6936
6937 tmp = SD_ATTR_INIT;
6938 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6939 new ? (new + idx_new) : &tmp,
6940 sizeof(struct sched_domain_attr));
6941 }
6942
6943 /*
6944 * Partition sched domains as specified by the 'ndoms_new'
6945 * cpumasks in the array doms_new[] of cpumasks. This compares
6946 * doms_new[] to the current sched domain partitioning, doms_cur[].
6947 * It destroys each deleted domain and builds each new domain.
6948 *
6949 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6950 * The masks don't intersect (don't overlap.) We should setup one
6951 * sched domain for each mask. CPUs not in any of the cpumasks will
6952 * not be load balanced. If the same cpumask appears both in the
6953 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6954 * it as it is.
6955 *
6956 * The passed in 'doms_new' should be allocated using
6957 * alloc_sched_domains. This routine takes ownership of it and will
6958 * free_sched_domains it when done with it. If the caller failed the
6959 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6960 * and partition_sched_domains() will fallback to the single partition
6961 * 'fallback_doms', it also forces the domains to be rebuilt.
6962 *
6963 * If doms_new == NULL it will be replaced with cpu_online_mask.
6964 * ndoms_new == 0 is a special case for destroying existing domains,
6965 * and it will not create the default domain.
6966 *
6967 * Call with hotplug lock held
6968 */
6969 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6970 struct sched_domain_attr *dattr_new)
6971 {
6972 int i, j, n;
6973 int new_topology;
6974
6975 mutex_lock(&sched_domains_mutex);
6976
6977 /* always unregister in case we don't destroy any domains */
6978 unregister_sched_domain_sysctl();
6979
6980 /* Let architecture update cpu core mappings. */
6981 new_topology = arch_update_cpu_topology();
6982
6983 n = doms_new ? ndoms_new : 0;
6984
6985 /* Destroy deleted domains */
6986 for (i = 0; i < ndoms_cur; i++) {
6987 for (j = 0; j < n && !new_topology; j++) {
6988 if (cpumask_equal(doms_cur[i], doms_new[j])
6989 && dattrs_equal(dattr_cur, i, dattr_new, j))
6990 goto match1;
6991 }
6992 /* no match - a current sched domain not in new doms_new[] */
6993 detach_destroy_domains(doms_cur[i]);
6994 match1:
6995 ;
6996 }
6997
6998 n = ndoms_cur;
6999 if (doms_new == NULL) {
7000 n = 0;
7001 doms_new = &fallback_doms;
7002 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7003 WARN_ON_ONCE(dattr_new);
7004 }
7005
7006 /* Build new domains */
7007 for (i = 0; i < ndoms_new; i++) {
7008 for (j = 0; j < n && !new_topology; j++) {
7009 if (cpumask_equal(doms_new[i], doms_cur[j])
7010 && dattrs_equal(dattr_new, i, dattr_cur, j))
7011 goto match2;
7012 }
7013 /* no match - add a new doms_new */
7014 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7015 match2:
7016 ;
7017 }
7018
7019 /* Remember the new sched domains */
7020 if (doms_cur != &fallback_doms)
7021 free_sched_domains(doms_cur, ndoms_cur);
7022 kfree(dattr_cur); /* kfree(NULL) is safe */
7023 doms_cur = doms_new;
7024 dattr_cur = dattr_new;
7025 ndoms_cur = ndoms_new;
7026
7027 register_sched_domain_sysctl();
7028
7029 mutex_unlock(&sched_domains_mutex);
7030 }
7031
7032 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7033
7034 /*
7035 * Update cpusets according to cpu_active mask. If cpusets are
7036 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7037 * around partition_sched_domains().
7038 *
7039 * If we come here as part of a suspend/resume, don't touch cpusets because we
7040 * want to restore it back to its original state upon resume anyway.
7041 */
7042 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7043 void *hcpu)
7044 {
7045 switch (action) {
7046 case CPU_ONLINE_FROZEN:
7047 case CPU_DOWN_FAILED_FROZEN:
7048
7049 /*
7050 * num_cpus_frozen tracks how many CPUs are involved in suspend
7051 * resume sequence. As long as this is not the last online
7052 * operation in the resume sequence, just build a single sched
7053 * domain, ignoring cpusets.
7054 */
7055 num_cpus_frozen--;
7056 if (likely(num_cpus_frozen)) {
7057 partition_sched_domains(1, NULL, NULL);
7058 break;
7059 }
7060
7061 /*
7062 * This is the last CPU online operation. So fall through and
7063 * restore the original sched domains by considering the
7064 * cpuset configurations.
7065 */
7066
7067 case CPU_ONLINE:
7068 case CPU_DOWN_FAILED:
7069 cpuset_update_active_cpus(true);
7070 break;
7071 default:
7072 return NOTIFY_DONE;
7073 }
7074 return NOTIFY_OK;
7075 }
7076
7077 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7078 void *hcpu)
7079 {
7080 switch (action) {
7081 case CPU_DOWN_PREPARE:
7082 cpuset_update_active_cpus(false);
7083 break;
7084 case CPU_DOWN_PREPARE_FROZEN:
7085 num_cpus_frozen++;
7086 partition_sched_domains(1, NULL, NULL);
7087 break;
7088 default:
7089 return NOTIFY_DONE;
7090 }
7091 return NOTIFY_OK;
7092 }
7093
7094 void __init sched_init_smp(void)
7095 {
7096 cpumask_var_t non_isolated_cpus;
7097
7098 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7099 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7100
7101 sched_init_numa();
7102
7103 /*
7104 * There's no userspace yet to cause hotplug operations; hence all the
7105 * cpu masks are stable and all blatant races in the below code cannot
7106 * happen.
7107 */
7108 mutex_lock(&sched_domains_mutex);
7109 init_sched_domains(cpu_active_mask);
7110 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7111 if (cpumask_empty(non_isolated_cpus))
7112 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7113 mutex_unlock(&sched_domains_mutex);
7114
7115 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7116 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7117 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7118
7119 init_hrtick();
7120
7121 /* Move init over to a non-isolated CPU */
7122 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7123 BUG();
7124 sched_init_granularity();
7125 free_cpumask_var(non_isolated_cpus);
7126
7127 init_sched_rt_class();
7128 init_sched_dl_class();
7129 }
7130 #else
7131 void __init sched_init_smp(void)
7132 {
7133 sched_init_granularity();
7134 }
7135 #endif /* CONFIG_SMP */
7136
7137 const_debug unsigned int sysctl_timer_migration = 1;
7138
7139 int in_sched_functions(unsigned long addr)
7140 {
7141 return in_lock_functions(addr) ||
7142 (addr >= (unsigned long)__sched_text_start
7143 && addr < (unsigned long)__sched_text_end);
7144 }
7145
7146 #ifdef CONFIG_CGROUP_SCHED
7147 /*
7148 * Default task group.
7149 * Every task in system belongs to this group at bootup.
7150 */
7151 struct task_group root_task_group;
7152 LIST_HEAD(task_groups);
7153 #endif
7154
7155 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7156
7157 void __init sched_init(void)
7158 {
7159 int i, j;
7160 unsigned long alloc_size = 0, ptr;
7161
7162 #ifdef CONFIG_FAIR_GROUP_SCHED
7163 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7164 #endif
7165 #ifdef CONFIG_RT_GROUP_SCHED
7166 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7167 #endif
7168 if (alloc_size) {
7169 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7170
7171 #ifdef CONFIG_FAIR_GROUP_SCHED
7172 root_task_group.se = (struct sched_entity **)ptr;
7173 ptr += nr_cpu_ids * sizeof(void **);
7174
7175 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7176 ptr += nr_cpu_ids * sizeof(void **);
7177
7178 #endif /* CONFIG_FAIR_GROUP_SCHED */
7179 #ifdef CONFIG_RT_GROUP_SCHED
7180 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7181 ptr += nr_cpu_ids * sizeof(void **);
7182
7183 root_task_group.rt_rq = (struct rt_rq **)ptr;
7184 ptr += nr_cpu_ids * sizeof(void **);
7185
7186 #endif /* CONFIG_RT_GROUP_SCHED */
7187 }
7188 #ifdef CONFIG_CPUMASK_OFFSTACK
7189 for_each_possible_cpu(i) {
7190 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7191 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7192 }
7193 #endif /* CONFIG_CPUMASK_OFFSTACK */
7194
7195 init_rt_bandwidth(&def_rt_bandwidth,
7196 global_rt_period(), global_rt_runtime());
7197 init_dl_bandwidth(&def_dl_bandwidth,
7198 global_rt_period(), global_rt_runtime());
7199
7200 #ifdef CONFIG_SMP
7201 init_defrootdomain();
7202 #endif
7203
7204 #ifdef CONFIG_RT_GROUP_SCHED
7205 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7206 global_rt_period(), global_rt_runtime());
7207 #endif /* CONFIG_RT_GROUP_SCHED */
7208
7209 #ifdef CONFIG_CGROUP_SCHED
7210 list_add(&root_task_group.list, &task_groups);
7211 INIT_LIST_HEAD(&root_task_group.children);
7212 INIT_LIST_HEAD(&root_task_group.siblings);
7213 autogroup_init(&init_task);
7214
7215 #endif /* CONFIG_CGROUP_SCHED */
7216
7217 for_each_possible_cpu(i) {
7218 struct rq *rq;
7219
7220 rq = cpu_rq(i);
7221 raw_spin_lock_init(&rq->lock);
7222 rq->nr_running = 0;
7223 rq->calc_load_active = 0;
7224 rq->calc_load_update = jiffies + LOAD_FREQ;
7225 init_cfs_rq(&rq->cfs);
7226 init_rt_rq(&rq->rt, rq);
7227 init_dl_rq(&rq->dl, rq);
7228 #ifdef CONFIG_FAIR_GROUP_SCHED
7229 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7230 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7231 /*
7232 * How much cpu bandwidth does root_task_group get?
7233 *
7234 * In case of task-groups formed thr' the cgroup filesystem, it
7235 * gets 100% of the cpu resources in the system. This overall
7236 * system cpu resource is divided among the tasks of
7237 * root_task_group and its child task-groups in a fair manner,
7238 * based on each entity's (task or task-group's) weight
7239 * (se->load.weight).
7240 *
7241 * In other words, if root_task_group has 10 tasks of weight
7242 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7243 * then A0's share of the cpu resource is:
7244 *
7245 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7246 *
7247 * We achieve this by letting root_task_group's tasks sit
7248 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7249 */
7250 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7251 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7252 #endif /* CONFIG_FAIR_GROUP_SCHED */
7253
7254 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7255 #ifdef CONFIG_RT_GROUP_SCHED
7256 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7257 #endif
7258
7259 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7260 rq->cpu_load[j] = 0;
7261
7262 rq->last_load_update_tick = jiffies;
7263
7264 #ifdef CONFIG_SMP
7265 rq->sd = NULL;
7266 rq->rd = NULL;
7267 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7268 rq->post_schedule = 0;
7269 rq->active_balance = 0;
7270 rq->next_balance = jiffies;
7271 rq->push_cpu = 0;
7272 rq->cpu = i;
7273 rq->online = 0;
7274 rq->idle_stamp = 0;
7275 rq->avg_idle = 2*sysctl_sched_migration_cost;
7276 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7277
7278 INIT_LIST_HEAD(&rq->cfs_tasks);
7279
7280 rq_attach_root(rq, &def_root_domain);
7281 #ifdef CONFIG_NO_HZ_COMMON
7282 rq->nohz_flags = 0;
7283 #endif
7284 #ifdef CONFIG_NO_HZ_FULL
7285 rq->last_sched_tick = 0;
7286 #endif
7287 #endif
7288 init_rq_hrtick(rq);
7289 atomic_set(&rq->nr_iowait, 0);
7290 }
7291
7292 set_load_weight(&init_task);
7293
7294 #ifdef CONFIG_PREEMPT_NOTIFIERS
7295 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7296 #endif
7297
7298 /*
7299 * The boot idle thread does lazy MMU switching as well:
7300 */
7301 atomic_inc(&init_mm.mm_count);
7302 enter_lazy_tlb(&init_mm, current);
7303
7304 /*
7305 * During early bootup we pretend to be a normal task:
7306 */
7307 current->sched_class = &fair_sched_class;
7308
7309 /*
7310 * Make us the idle thread. Technically, schedule() should not be
7311 * called from this thread, however somewhere below it might be,
7312 * but because we are the idle thread, we just pick up running again
7313 * when this runqueue becomes "idle".
7314 */
7315 init_idle(current, smp_processor_id());
7316
7317 calc_load_update = jiffies + LOAD_FREQ;
7318
7319 #ifdef CONFIG_SMP
7320 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7321 /* May be allocated at isolcpus cmdline parse time */
7322 if (cpu_isolated_map == NULL)
7323 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7324 idle_thread_set_boot_cpu();
7325 set_cpu_rq_start_time();
7326 #endif
7327 init_sched_fair_class();
7328
7329 scheduler_running = 1;
7330 }
7331
7332 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7333 static inline int preempt_count_equals(int preempt_offset)
7334 {
7335 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7336
7337 return (nested == preempt_offset);
7338 }
7339
7340 void __might_sleep(const char *file, int line, int preempt_offset)
7341 {
7342 /*
7343 * Blocking primitives will set (and therefore destroy) current->state,
7344 * since we will exit with TASK_RUNNING make sure we enter with it,
7345 * otherwise we will destroy state.
7346 */
7347 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7348 "do not call blocking ops when !TASK_RUNNING; "
7349 "state=%lx set at [<%p>] %pS\n",
7350 current->state,
7351 (void *)current->task_state_change,
7352 (void *)current->task_state_change);
7353
7354 ___might_sleep(file, line, preempt_offset);
7355 }
7356 EXPORT_SYMBOL(__might_sleep);
7357
7358 void ___might_sleep(const char *file, int line, int preempt_offset)
7359 {
7360 static unsigned long prev_jiffy; /* ratelimiting */
7361
7362 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7363 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7364 !is_idle_task(current)) ||
7365 system_state != SYSTEM_RUNNING || oops_in_progress)
7366 return;
7367 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7368 return;
7369 prev_jiffy = jiffies;
7370
7371 printk(KERN_ERR
7372 "BUG: sleeping function called from invalid context at %s:%d\n",
7373 file, line);
7374 printk(KERN_ERR
7375 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7376 in_atomic(), irqs_disabled(),
7377 current->pid, current->comm);
7378
7379 if (task_stack_end_corrupted(current))
7380 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7381
7382 debug_show_held_locks(current);
7383 if (irqs_disabled())
7384 print_irqtrace_events(current);
7385 #ifdef CONFIG_DEBUG_PREEMPT
7386 if (!preempt_count_equals(preempt_offset)) {
7387 pr_err("Preemption disabled at:");
7388 print_ip_sym(current->preempt_disable_ip);
7389 pr_cont("\n");
7390 }
7391 #endif
7392 dump_stack();
7393 }
7394 EXPORT_SYMBOL(___might_sleep);
7395 #endif
7396
7397 #ifdef CONFIG_MAGIC_SYSRQ
7398 static void normalize_task(struct rq *rq, struct task_struct *p)
7399 {
7400 const struct sched_class *prev_class = p->sched_class;
7401 struct sched_attr attr = {
7402 .sched_policy = SCHED_NORMAL,
7403 };
7404 int old_prio = p->prio;
7405 int queued;
7406
7407 queued = task_on_rq_queued(p);
7408 if (queued)
7409 dequeue_task(rq, p, 0);
7410 __setscheduler(rq, p, &attr);
7411 if (queued) {
7412 enqueue_task(rq, p, 0);
7413 resched_curr(rq);
7414 }
7415
7416 check_class_changed(rq, p, prev_class, old_prio);
7417 }
7418
7419 void normalize_rt_tasks(void)
7420 {
7421 struct task_struct *g, *p;
7422 unsigned long flags;
7423 struct rq *rq;
7424
7425 read_lock(&tasklist_lock);
7426 for_each_process_thread(g, p) {
7427 /*
7428 * Only normalize user tasks:
7429 */
7430 if (p->flags & PF_KTHREAD)
7431 continue;
7432
7433 p->se.exec_start = 0;
7434 #ifdef CONFIG_SCHEDSTATS
7435 p->se.statistics.wait_start = 0;
7436 p->se.statistics.sleep_start = 0;
7437 p->se.statistics.block_start = 0;
7438 #endif
7439
7440 if (!dl_task(p) && !rt_task(p)) {
7441 /*
7442 * Renice negative nice level userspace
7443 * tasks back to 0:
7444 */
7445 if (task_nice(p) < 0)
7446 set_user_nice(p, 0);
7447 continue;
7448 }
7449
7450 rq = task_rq_lock(p, &flags);
7451 normalize_task(rq, p);
7452 task_rq_unlock(rq, p, &flags);
7453 }
7454 read_unlock(&tasklist_lock);
7455 }
7456
7457 #endif /* CONFIG_MAGIC_SYSRQ */
7458
7459 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7460 /*
7461 * These functions are only useful for the IA64 MCA handling, or kdb.
7462 *
7463 * They can only be called when the whole system has been
7464 * stopped - every CPU needs to be quiescent, and no scheduling
7465 * activity can take place. Using them for anything else would
7466 * be a serious bug, and as a result, they aren't even visible
7467 * under any other configuration.
7468 */
7469
7470 /**
7471 * curr_task - return the current task for a given cpu.
7472 * @cpu: the processor in question.
7473 *
7474 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7475 *
7476 * Return: The current task for @cpu.
7477 */
7478 struct task_struct *curr_task(int cpu)
7479 {
7480 return cpu_curr(cpu);
7481 }
7482
7483 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7484
7485 #ifdef CONFIG_IA64
7486 /**
7487 * set_curr_task - set the current task for a given cpu.
7488 * @cpu: the processor in question.
7489 * @p: the task pointer to set.
7490 *
7491 * Description: This function must only be used when non-maskable interrupts
7492 * are serviced on a separate stack. It allows the architecture to switch the
7493 * notion of the current task on a cpu in a non-blocking manner. This function
7494 * must be called with all CPU's synchronized, and interrupts disabled, the
7495 * and caller must save the original value of the current task (see
7496 * curr_task() above) and restore that value before reenabling interrupts and
7497 * re-starting the system.
7498 *
7499 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7500 */
7501 void set_curr_task(int cpu, struct task_struct *p)
7502 {
7503 cpu_curr(cpu) = p;
7504 }
7505
7506 #endif
7507
7508 #ifdef CONFIG_CGROUP_SCHED
7509 /* task_group_lock serializes the addition/removal of task groups */
7510 static DEFINE_SPINLOCK(task_group_lock);
7511
7512 static void free_sched_group(struct task_group *tg)
7513 {
7514 free_fair_sched_group(tg);
7515 free_rt_sched_group(tg);
7516 autogroup_free(tg);
7517 kfree(tg);
7518 }
7519
7520 /* allocate runqueue etc for a new task group */
7521 struct task_group *sched_create_group(struct task_group *parent)
7522 {
7523 struct task_group *tg;
7524
7525 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7526 if (!tg)
7527 return ERR_PTR(-ENOMEM);
7528
7529 if (!alloc_fair_sched_group(tg, parent))
7530 goto err;
7531
7532 if (!alloc_rt_sched_group(tg, parent))
7533 goto err;
7534
7535 return tg;
7536
7537 err:
7538 free_sched_group(tg);
7539 return ERR_PTR(-ENOMEM);
7540 }
7541
7542 void sched_online_group(struct task_group *tg, struct task_group *parent)
7543 {
7544 unsigned long flags;
7545
7546 spin_lock_irqsave(&task_group_lock, flags);
7547 list_add_rcu(&tg->list, &task_groups);
7548
7549 WARN_ON(!parent); /* root should already exist */
7550
7551 tg->parent = parent;
7552 INIT_LIST_HEAD(&tg->children);
7553 list_add_rcu(&tg->siblings, &parent->children);
7554 spin_unlock_irqrestore(&task_group_lock, flags);
7555 }
7556
7557 /* rcu callback to free various structures associated with a task group */
7558 static void free_sched_group_rcu(struct rcu_head *rhp)
7559 {
7560 /* now it should be safe to free those cfs_rqs */
7561 free_sched_group(container_of(rhp, struct task_group, rcu));
7562 }
7563
7564 /* Destroy runqueue etc associated with a task group */
7565 void sched_destroy_group(struct task_group *tg)
7566 {
7567 /* wait for possible concurrent references to cfs_rqs complete */
7568 call_rcu(&tg->rcu, free_sched_group_rcu);
7569 }
7570
7571 void sched_offline_group(struct task_group *tg)
7572 {
7573 unsigned long flags;
7574 int i;
7575
7576 /* end participation in shares distribution */
7577 for_each_possible_cpu(i)
7578 unregister_fair_sched_group(tg, i);
7579
7580 spin_lock_irqsave(&task_group_lock, flags);
7581 list_del_rcu(&tg->list);
7582 list_del_rcu(&tg->siblings);
7583 spin_unlock_irqrestore(&task_group_lock, flags);
7584 }
7585
7586 /* change task's runqueue when it moves between groups.
7587 * The caller of this function should have put the task in its new group
7588 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7589 * reflect its new group.
7590 */
7591 void sched_move_task(struct task_struct *tsk)
7592 {
7593 struct task_group *tg;
7594 int queued, running;
7595 unsigned long flags;
7596 struct rq *rq;
7597
7598 rq = task_rq_lock(tsk, &flags);
7599
7600 running = task_current(rq, tsk);
7601 queued = task_on_rq_queued(tsk);
7602
7603 if (queued)
7604 dequeue_task(rq, tsk, 0);
7605 if (unlikely(running))
7606 put_prev_task(rq, tsk);
7607
7608 /*
7609 * All callers are synchronized by task_rq_lock(); we do not use RCU
7610 * which is pointless here. Thus, we pass "true" to task_css_check()
7611 * to prevent lockdep warnings.
7612 */
7613 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7614 struct task_group, css);
7615 tg = autogroup_task_group(tsk, tg);
7616 tsk->sched_task_group = tg;
7617
7618 #ifdef CONFIG_FAIR_GROUP_SCHED
7619 if (tsk->sched_class->task_move_group)
7620 tsk->sched_class->task_move_group(tsk, queued);
7621 else
7622 #endif
7623 set_task_rq(tsk, task_cpu(tsk));
7624
7625 if (unlikely(running))
7626 tsk->sched_class->set_curr_task(rq);
7627 if (queued)
7628 enqueue_task(rq, tsk, 0);
7629
7630 task_rq_unlock(rq, tsk, &flags);
7631 }
7632 #endif /* CONFIG_CGROUP_SCHED */
7633
7634 #ifdef CONFIG_RT_GROUP_SCHED
7635 /*
7636 * Ensure that the real time constraints are schedulable.
7637 */
7638 static DEFINE_MUTEX(rt_constraints_mutex);
7639
7640 /* Must be called with tasklist_lock held */
7641 static inline int tg_has_rt_tasks(struct task_group *tg)
7642 {
7643 struct task_struct *g, *p;
7644
7645 for_each_process_thread(g, p) {
7646 if (rt_task(p) && task_group(p) == tg)
7647 return 1;
7648 }
7649
7650 return 0;
7651 }
7652
7653 struct rt_schedulable_data {
7654 struct task_group *tg;
7655 u64 rt_period;
7656 u64 rt_runtime;
7657 };
7658
7659 static int tg_rt_schedulable(struct task_group *tg, void *data)
7660 {
7661 struct rt_schedulable_data *d = data;
7662 struct task_group *child;
7663 unsigned long total, sum = 0;
7664 u64 period, runtime;
7665
7666 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7667 runtime = tg->rt_bandwidth.rt_runtime;
7668
7669 if (tg == d->tg) {
7670 period = d->rt_period;
7671 runtime = d->rt_runtime;
7672 }
7673
7674 /*
7675 * Cannot have more runtime than the period.
7676 */
7677 if (runtime > period && runtime != RUNTIME_INF)
7678 return -EINVAL;
7679
7680 /*
7681 * Ensure we don't starve existing RT tasks.
7682 */
7683 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7684 return -EBUSY;
7685
7686 total = to_ratio(period, runtime);
7687
7688 /*
7689 * Nobody can have more than the global setting allows.
7690 */
7691 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7692 return -EINVAL;
7693
7694 /*
7695 * The sum of our children's runtime should not exceed our own.
7696 */
7697 list_for_each_entry_rcu(child, &tg->children, siblings) {
7698 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7699 runtime = child->rt_bandwidth.rt_runtime;
7700
7701 if (child == d->tg) {
7702 period = d->rt_period;
7703 runtime = d->rt_runtime;
7704 }
7705
7706 sum += to_ratio(period, runtime);
7707 }
7708
7709 if (sum > total)
7710 return -EINVAL;
7711
7712 return 0;
7713 }
7714
7715 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7716 {
7717 int ret;
7718
7719 struct rt_schedulable_data data = {
7720 .tg = tg,
7721 .rt_period = period,
7722 .rt_runtime = runtime,
7723 };
7724
7725 rcu_read_lock();
7726 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7727 rcu_read_unlock();
7728
7729 return ret;
7730 }
7731
7732 static int tg_set_rt_bandwidth(struct task_group *tg,
7733 u64 rt_period, u64 rt_runtime)
7734 {
7735 int i, err = 0;
7736
7737 mutex_lock(&rt_constraints_mutex);
7738 read_lock(&tasklist_lock);
7739 err = __rt_schedulable(tg, rt_period, rt_runtime);
7740 if (err)
7741 goto unlock;
7742
7743 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7744 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7745 tg->rt_bandwidth.rt_runtime = rt_runtime;
7746
7747 for_each_possible_cpu(i) {
7748 struct rt_rq *rt_rq = tg->rt_rq[i];
7749
7750 raw_spin_lock(&rt_rq->rt_runtime_lock);
7751 rt_rq->rt_runtime = rt_runtime;
7752 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7753 }
7754 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7755 unlock:
7756 read_unlock(&tasklist_lock);
7757 mutex_unlock(&rt_constraints_mutex);
7758
7759 return err;
7760 }
7761
7762 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7763 {
7764 u64 rt_runtime, rt_period;
7765
7766 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7767 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7768 if (rt_runtime_us < 0)
7769 rt_runtime = RUNTIME_INF;
7770
7771 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7772 }
7773
7774 static long sched_group_rt_runtime(struct task_group *tg)
7775 {
7776 u64 rt_runtime_us;
7777
7778 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7779 return -1;
7780
7781 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7782 do_div(rt_runtime_us, NSEC_PER_USEC);
7783 return rt_runtime_us;
7784 }
7785
7786 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7787 {
7788 u64 rt_runtime, rt_period;
7789
7790 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7791 rt_runtime = tg->rt_bandwidth.rt_runtime;
7792
7793 if (rt_period == 0)
7794 return -EINVAL;
7795
7796 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7797 }
7798
7799 static long sched_group_rt_period(struct task_group *tg)
7800 {
7801 u64 rt_period_us;
7802
7803 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7804 do_div(rt_period_us, NSEC_PER_USEC);
7805 return rt_period_us;
7806 }
7807 #endif /* CONFIG_RT_GROUP_SCHED */
7808
7809 #ifdef CONFIG_RT_GROUP_SCHED
7810 static int sched_rt_global_constraints(void)
7811 {
7812 int ret = 0;
7813
7814 mutex_lock(&rt_constraints_mutex);
7815 read_lock(&tasklist_lock);
7816 ret = __rt_schedulable(NULL, 0, 0);
7817 read_unlock(&tasklist_lock);
7818 mutex_unlock(&rt_constraints_mutex);
7819
7820 return ret;
7821 }
7822
7823 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7824 {
7825 /* Don't accept realtime tasks when there is no way for them to run */
7826 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7827 return 0;
7828
7829 return 1;
7830 }
7831
7832 #else /* !CONFIG_RT_GROUP_SCHED */
7833 static int sched_rt_global_constraints(void)
7834 {
7835 unsigned long flags;
7836 int i, ret = 0;
7837
7838 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7839 for_each_possible_cpu(i) {
7840 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7841
7842 raw_spin_lock(&rt_rq->rt_runtime_lock);
7843 rt_rq->rt_runtime = global_rt_runtime();
7844 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7845 }
7846 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7847
7848 return ret;
7849 }
7850 #endif /* CONFIG_RT_GROUP_SCHED */
7851
7852 static int sched_dl_global_constraints(void)
7853 {
7854 u64 runtime = global_rt_runtime();
7855 u64 period = global_rt_period();
7856 u64 new_bw = to_ratio(period, runtime);
7857 struct dl_bw *dl_b;
7858 int cpu, ret = 0;
7859 unsigned long flags;
7860
7861 /*
7862 * Here we want to check the bandwidth not being set to some
7863 * value smaller than the currently allocated bandwidth in
7864 * any of the root_domains.
7865 *
7866 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7867 * cycling on root_domains... Discussion on different/better
7868 * solutions is welcome!
7869 */
7870 for_each_possible_cpu(cpu) {
7871 rcu_read_lock_sched();
7872 dl_b = dl_bw_of(cpu);
7873
7874 raw_spin_lock_irqsave(&dl_b->lock, flags);
7875 if (new_bw < dl_b->total_bw)
7876 ret = -EBUSY;
7877 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7878
7879 rcu_read_unlock_sched();
7880
7881 if (ret)
7882 break;
7883 }
7884
7885 return ret;
7886 }
7887
7888 static void sched_dl_do_global(void)
7889 {
7890 u64 new_bw = -1;
7891 struct dl_bw *dl_b;
7892 int cpu;
7893 unsigned long flags;
7894
7895 def_dl_bandwidth.dl_period = global_rt_period();
7896 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7897
7898 if (global_rt_runtime() != RUNTIME_INF)
7899 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7900
7901 /*
7902 * FIXME: As above...
7903 */
7904 for_each_possible_cpu(cpu) {
7905 rcu_read_lock_sched();
7906 dl_b = dl_bw_of(cpu);
7907
7908 raw_spin_lock_irqsave(&dl_b->lock, flags);
7909 dl_b->bw = new_bw;
7910 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7911
7912 rcu_read_unlock_sched();
7913 }
7914 }
7915
7916 static int sched_rt_global_validate(void)
7917 {
7918 if (sysctl_sched_rt_period <= 0)
7919 return -EINVAL;
7920
7921 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7922 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7923 return -EINVAL;
7924
7925 return 0;
7926 }
7927
7928 static void sched_rt_do_global(void)
7929 {
7930 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7931 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7932 }
7933
7934 int sched_rt_handler(struct ctl_table *table, int write,
7935 void __user *buffer, size_t *lenp,
7936 loff_t *ppos)
7937 {
7938 int old_period, old_runtime;
7939 static DEFINE_MUTEX(mutex);
7940 int ret;
7941
7942 mutex_lock(&mutex);
7943 old_period = sysctl_sched_rt_period;
7944 old_runtime = sysctl_sched_rt_runtime;
7945
7946 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7947
7948 if (!ret && write) {
7949 ret = sched_rt_global_validate();
7950 if (ret)
7951 goto undo;
7952
7953 ret = sched_rt_global_constraints();
7954 if (ret)
7955 goto undo;
7956
7957 ret = sched_dl_global_constraints();
7958 if (ret)
7959 goto undo;
7960
7961 sched_rt_do_global();
7962 sched_dl_do_global();
7963 }
7964 if (0) {
7965 undo:
7966 sysctl_sched_rt_period = old_period;
7967 sysctl_sched_rt_runtime = old_runtime;
7968 }
7969 mutex_unlock(&mutex);
7970
7971 return ret;
7972 }
7973
7974 int sched_rr_handler(struct ctl_table *table, int write,
7975 void __user *buffer, size_t *lenp,
7976 loff_t *ppos)
7977 {
7978 int ret;
7979 static DEFINE_MUTEX(mutex);
7980
7981 mutex_lock(&mutex);
7982 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7983 /* make sure that internally we keep jiffies */
7984 /* also, writing zero resets timeslice to default */
7985 if (!ret && write) {
7986 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7987 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7988 }
7989 mutex_unlock(&mutex);
7990 return ret;
7991 }
7992
7993 #ifdef CONFIG_CGROUP_SCHED
7994
7995 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7996 {
7997 return css ? container_of(css, struct task_group, css) : NULL;
7998 }
7999
8000 static struct cgroup_subsys_state *
8001 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8002 {
8003 struct task_group *parent = css_tg(parent_css);
8004 struct task_group *tg;
8005
8006 if (!parent) {
8007 /* This is early initialization for the top cgroup */
8008 return &root_task_group.css;
8009 }
8010
8011 tg = sched_create_group(parent);
8012 if (IS_ERR(tg))
8013 return ERR_PTR(-ENOMEM);
8014
8015 return &tg->css;
8016 }
8017
8018 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8019 {
8020 struct task_group *tg = css_tg(css);
8021 struct task_group *parent = css_tg(css->parent);
8022
8023 if (parent)
8024 sched_online_group(tg, parent);
8025 return 0;
8026 }
8027
8028 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8029 {
8030 struct task_group *tg = css_tg(css);
8031
8032 sched_destroy_group(tg);
8033 }
8034
8035 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8036 {
8037 struct task_group *tg = css_tg(css);
8038
8039 sched_offline_group(tg);
8040 }
8041
8042 static void cpu_cgroup_fork(struct task_struct *task)
8043 {
8044 sched_move_task(task);
8045 }
8046
8047 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8048 struct cgroup_taskset *tset)
8049 {
8050 struct task_struct *task;
8051
8052 cgroup_taskset_for_each(task, tset) {
8053 #ifdef CONFIG_RT_GROUP_SCHED
8054 if (!sched_rt_can_attach(css_tg(css), task))
8055 return -EINVAL;
8056 #else
8057 /* We don't support RT-tasks being in separate groups */
8058 if (task->sched_class != &fair_sched_class)
8059 return -EINVAL;
8060 #endif
8061 }
8062 return 0;
8063 }
8064
8065 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8066 struct cgroup_taskset *tset)
8067 {
8068 struct task_struct *task;
8069
8070 cgroup_taskset_for_each(task, tset)
8071 sched_move_task(task);
8072 }
8073
8074 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8075 struct cgroup_subsys_state *old_css,
8076 struct task_struct *task)
8077 {
8078 /*
8079 * cgroup_exit() is called in the copy_process() failure path.
8080 * Ignore this case since the task hasn't ran yet, this avoids
8081 * trying to poke a half freed task state from generic code.
8082 */
8083 if (!(task->flags & PF_EXITING))
8084 return;
8085
8086 sched_move_task(task);
8087 }
8088
8089 #ifdef CONFIG_FAIR_GROUP_SCHED
8090 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8091 struct cftype *cftype, u64 shareval)
8092 {
8093 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8094 }
8095
8096 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8097 struct cftype *cft)
8098 {
8099 struct task_group *tg = css_tg(css);
8100
8101 return (u64) scale_load_down(tg->shares);
8102 }
8103
8104 #ifdef CONFIG_CFS_BANDWIDTH
8105 static DEFINE_MUTEX(cfs_constraints_mutex);
8106
8107 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8108 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8109
8110 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8111
8112 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8113 {
8114 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8115 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8116
8117 if (tg == &root_task_group)
8118 return -EINVAL;
8119
8120 /*
8121 * Ensure we have at some amount of bandwidth every period. This is
8122 * to prevent reaching a state of large arrears when throttled via
8123 * entity_tick() resulting in prolonged exit starvation.
8124 */
8125 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8126 return -EINVAL;
8127
8128 /*
8129 * Likewise, bound things on the otherside by preventing insane quota
8130 * periods. This also allows us to normalize in computing quota
8131 * feasibility.
8132 */
8133 if (period > max_cfs_quota_period)
8134 return -EINVAL;
8135
8136 /*
8137 * Prevent race between setting of cfs_rq->runtime_enabled and
8138 * unthrottle_offline_cfs_rqs().
8139 */
8140 get_online_cpus();
8141 mutex_lock(&cfs_constraints_mutex);
8142 ret = __cfs_schedulable(tg, period, quota);
8143 if (ret)
8144 goto out_unlock;
8145
8146 runtime_enabled = quota != RUNTIME_INF;
8147 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8148 /*
8149 * If we need to toggle cfs_bandwidth_used, off->on must occur
8150 * before making related changes, and on->off must occur afterwards
8151 */
8152 if (runtime_enabled && !runtime_was_enabled)
8153 cfs_bandwidth_usage_inc();
8154 raw_spin_lock_irq(&cfs_b->lock);
8155 cfs_b->period = ns_to_ktime(period);
8156 cfs_b->quota = quota;
8157
8158 __refill_cfs_bandwidth_runtime(cfs_b);
8159 /* restart the period timer (if active) to handle new period expiry */
8160 if (runtime_enabled && cfs_b->timer_active) {
8161 /* force a reprogram */
8162 __start_cfs_bandwidth(cfs_b, true);
8163 }
8164 raw_spin_unlock_irq(&cfs_b->lock);
8165
8166 for_each_online_cpu(i) {
8167 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8168 struct rq *rq = cfs_rq->rq;
8169
8170 raw_spin_lock_irq(&rq->lock);
8171 cfs_rq->runtime_enabled = runtime_enabled;
8172 cfs_rq->runtime_remaining = 0;
8173
8174 if (cfs_rq->throttled)
8175 unthrottle_cfs_rq(cfs_rq);
8176 raw_spin_unlock_irq(&rq->lock);
8177 }
8178 if (runtime_was_enabled && !runtime_enabled)
8179 cfs_bandwidth_usage_dec();
8180 out_unlock:
8181 mutex_unlock(&cfs_constraints_mutex);
8182 put_online_cpus();
8183
8184 return ret;
8185 }
8186
8187 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8188 {
8189 u64 quota, period;
8190
8191 period = ktime_to_ns(tg->cfs_bandwidth.period);
8192 if (cfs_quota_us < 0)
8193 quota = RUNTIME_INF;
8194 else
8195 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8196
8197 return tg_set_cfs_bandwidth(tg, period, quota);
8198 }
8199
8200 long tg_get_cfs_quota(struct task_group *tg)
8201 {
8202 u64 quota_us;
8203
8204 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8205 return -1;
8206
8207 quota_us = tg->cfs_bandwidth.quota;
8208 do_div(quota_us, NSEC_PER_USEC);
8209
8210 return quota_us;
8211 }
8212
8213 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8214 {
8215 u64 quota, period;
8216
8217 period = (u64)cfs_period_us * NSEC_PER_USEC;
8218 quota = tg->cfs_bandwidth.quota;
8219
8220 return tg_set_cfs_bandwidth(tg, period, quota);
8221 }
8222
8223 long tg_get_cfs_period(struct task_group *tg)
8224 {
8225 u64 cfs_period_us;
8226
8227 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8228 do_div(cfs_period_us, NSEC_PER_USEC);
8229
8230 return cfs_period_us;
8231 }
8232
8233 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8234 struct cftype *cft)
8235 {
8236 return tg_get_cfs_quota(css_tg(css));
8237 }
8238
8239 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8240 struct cftype *cftype, s64 cfs_quota_us)
8241 {
8242 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8243 }
8244
8245 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8246 struct cftype *cft)
8247 {
8248 return tg_get_cfs_period(css_tg(css));
8249 }
8250
8251 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8252 struct cftype *cftype, u64 cfs_period_us)
8253 {
8254 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8255 }
8256
8257 struct cfs_schedulable_data {
8258 struct task_group *tg;
8259 u64 period, quota;
8260 };
8261
8262 /*
8263 * normalize group quota/period to be quota/max_period
8264 * note: units are usecs
8265 */
8266 static u64 normalize_cfs_quota(struct task_group *tg,
8267 struct cfs_schedulable_data *d)
8268 {
8269 u64 quota, period;
8270
8271 if (tg == d->tg) {
8272 period = d->period;
8273 quota = d->quota;
8274 } else {
8275 period = tg_get_cfs_period(tg);
8276 quota = tg_get_cfs_quota(tg);
8277 }
8278
8279 /* note: these should typically be equivalent */
8280 if (quota == RUNTIME_INF || quota == -1)
8281 return RUNTIME_INF;
8282
8283 return to_ratio(period, quota);
8284 }
8285
8286 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8287 {
8288 struct cfs_schedulable_data *d = data;
8289 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8290 s64 quota = 0, parent_quota = -1;
8291
8292 if (!tg->parent) {
8293 quota = RUNTIME_INF;
8294 } else {
8295 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8296
8297 quota = normalize_cfs_quota(tg, d);
8298 parent_quota = parent_b->hierarchical_quota;
8299
8300 /*
8301 * ensure max(child_quota) <= parent_quota, inherit when no
8302 * limit is set
8303 */
8304 if (quota == RUNTIME_INF)
8305 quota = parent_quota;
8306 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8307 return -EINVAL;
8308 }
8309 cfs_b->hierarchical_quota = quota;
8310
8311 return 0;
8312 }
8313
8314 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8315 {
8316 int ret;
8317 struct cfs_schedulable_data data = {
8318 .tg = tg,
8319 .period = period,
8320 .quota = quota,
8321 };
8322
8323 if (quota != RUNTIME_INF) {
8324 do_div(data.period, NSEC_PER_USEC);
8325 do_div(data.quota, NSEC_PER_USEC);
8326 }
8327
8328 rcu_read_lock();
8329 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8330 rcu_read_unlock();
8331
8332 return ret;
8333 }
8334
8335 static int cpu_stats_show(struct seq_file *sf, void *v)
8336 {
8337 struct task_group *tg = css_tg(seq_css(sf));
8338 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8339
8340 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8341 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8342 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8343
8344 return 0;
8345 }
8346 #endif /* CONFIG_CFS_BANDWIDTH */
8347 #endif /* CONFIG_FAIR_GROUP_SCHED */
8348
8349 #ifdef CONFIG_RT_GROUP_SCHED
8350 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8351 struct cftype *cft, s64 val)
8352 {
8353 return sched_group_set_rt_runtime(css_tg(css), val);
8354 }
8355
8356 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8357 struct cftype *cft)
8358 {
8359 return sched_group_rt_runtime(css_tg(css));
8360 }
8361
8362 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8363 struct cftype *cftype, u64 rt_period_us)
8364 {
8365 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8366 }
8367
8368 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8369 struct cftype *cft)
8370 {
8371 return sched_group_rt_period(css_tg(css));
8372 }
8373 #endif /* CONFIG_RT_GROUP_SCHED */
8374
8375 static struct cftype cpu_files[] = {
8376 #ifdef CONFIG_FAIR_GROUP_SCHED
8377 {
8378 .name = "shares",
8379 .read_u64 = cpu_shares_read_u64,
8380 .write_u64 = cpu_shares_write_u64,
8381 },
8382 #endif
8383 #ifdef CONFIG_CFS_BANDWIDTH
8384 {
8385 .name = "cfs_quota_us",
8386 .read_s64 = cpu_cfs_quota_read_s64,
8387 .write_s64 = cpu_cfs_quota_write_s64,
8388 },
8389 {
8390 .name = "cfs_period_us",
8391 .read_u64 = cpu_cfs_period_read_u64,
8392 .write_u64 = cpu_cfs_period_write_u64,
8393 },
8394 {
8395 .name = "stat",
8396 .seq_show = cpu_stats_show,
8397 },
8398 #endif
8399 #ifdef CONFIG_RT_GROUP_SCHED
8400 {
8401 .name = "rt_runtime_us",
8402 .read_s64 = cpu_rt_runtime_read,
8403 .write_s64 = cpu_rt_runtime_write,
8404 },
8405 {
8406 .name = "rt_period_us",
8407 .read_u64 = cpu_rt_period_read_uint,
8408 .write_u64 = cpu_rt_period_write_uint,
8409 },
8410 #endif
8411 { } /* terminate */
8412 };
8413
8414 struct cgroup_subsys cpu_cgrp_subsys = {
8415 .css_alloc = cpu_cgroup_css_alloc,
8416 .css_free = cpu_cgroup_css_free,
8417 .css_online = cpu_cgroup_css_online,
8418 .css_offline = cpu_cgroup_css_offline,
8419 .fork = cpu_cgroup_fork,
8420 .can_attach = cpu_cgroup_can_attach,
8421 .attach = cpu_cgroup_attach,
8422 .exit = cpu_cgroup_exit,
8423 .legacy_cftypes = cpu_files,
8424 .early_init = 1,
8425 };
8426
8427 #endif /* CONFIG_CGROUP_SCHED */
8428
8429 void dump_cpu_task(int cpu)
8430 {
8431 pr_info("Task dump for CPU %d:\n", cpu);
8432 sched_show_task(cpu_curr(cpu));
8433 }
This page took 0.205295 seconds and 5 git commands to generate.