Merge tag 'samsung-fixes-v3.18' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 unsigned long delta;
96 ktime_t soft, hard, now;
97
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
104
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111 }
112
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118 void update_rq_clock(struct rq *rq)
119 {
120 s64 delta;
121
122 if (rq->skip_clock_update > 0)
123 return;
124
125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 if (delta < 0)
127 return;
128 rq->clock += delta;
129 update_rq_clock_task(rq, delta);
130 }
131
132 /*
133 * Debugging: various feature bits
134 */
135
136 #define SCHED_FEAT(name, enabled) \
137 (1UL << __SCHED_FEAT_##name) * enabled |
138
139 const_debug unsigned int sysctl_sched_features =
140 #include "features.h"
141 0;
142
143 #undef SCHED_FEAT
144
145 #ifdef CONFIG_SCHED_DEBUG
146 #define SCHED_FEAT(name, enabled) \
147 #name ,
148
149 static const char * const sched_feat_names[] = {
150 #include "features.h"
151 };
152
153 #undef SCHED_FEAT
154
155 static int sched_feat_show(struct seq_file *m, void *v)
156 {
157 int i;
158
159 for (i = 0; i < __SCHED_FEAT_NR; i++) {
160 if (!(sysctl_sched_features & (1UL << i)))
161 seq_puts(m, "NO_");
162 seq_printf(m, "%s ", sched_feat_names[i]);
163 }
164 seq_puts(m, "\n");
165
166 return 0;
167 }
168
169 #ifdef HAVE_JUMP_LABEL
170
171 #define jump_label_key__true STATIC_KEY_INIT_TRUE
172 #define jump_label_key__false STATIC_KEY_INIT_FALSE
173
174 #define SCHED_FEAT(name, enabled) \
175 jump_label_key__##enabled ,
176
177 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
178 #include "features.h"
179 };
180
181 #undef SCHED_FEAT
182
183 static void sched_feat_disable(int i)
184 {
185 if (static_key_enabled(&sched_feat_keys[i]))
186 static_key_slow_dec(&sched_feat_keys[i]);
187 }
188
189 static void sched_feat_enable(int i)
190 {
191 if (!static_key_enabled(&sched_feat_keys[i]))
192 static_key_slow_inc(&sched_feat_keys[i]);
193 }
194 #else
195 static void sched_feat_disable(int i) { };
196 static void sched_feat_enable(int i) { };
197 #endif /* HAVE_JUMP_LABEL */
198
199 static int sched_feat_set(char *cmp)
200 {
201 int i;
202 int neg = 0;
203
204 if (strncmp(cmp, "NO_", 3) == 0) {
205 neg = 1;
206 cmp += 3;
207 }
208
209 for (i = 0; i < __SCHED_FEAT_NR; i++) {
210 if (strcmp(cmp, sched_feat_names[i]) == 0) {
211 if (neg) {
212 sysctl_sched_features &= ~(1UL << i);
213 sched_feat_disable(i);
214 } else {
215 sysctl_sched_features |= (1UL << i);
216 sched_feat_enable(i);
217 }
218 break;
219 }
220 }
221
222 return i;
223 }
224
225 static ssize_t
226 sched_feat_write(struct file *filp, const char __user *ubuf,
227 size_t cnt, loff_t *ppos)
228 {
229 char buf[64];
230 char *cmp;
231 int i;
232 struct inode *inode;
233
234 if (cnt > 63)
235 cnt = 63;
236
237 if (copy_from_user(&buf, ubuf, cnt))
238 return -EFAULT;
239
240 buf[cnt] = 0;
241 cmp = strstrip(buf);
242
243 /* Ensure the static_key remains in a consistent state */
244 inode = file_inode(filp);
245 mutex_lock(&inode->i_mutex);
246 i = sched_feat_set(cmp);
247 mutex_unlock(&inode->i_mutex);
248 if (i == __SCHED_FEAT_NR)
249 return -EINVAL;
250
251 *ppos += cnt;
252
253 return cnt;
254 }
255
256 static int sched_feat_open(struct inode *inode, struct file *filp)
257 {
258 return single_open(filp, sched_feat_show, NULL);
259 }
260
261 static const struct file_operations sched_feat_fops = {
262 .open = sched_feat_open,
263 .write = sched_feat_write,
264 .read = seq_read,
265 .llseek = seq_lseek,
266 .release = single_release,
267 };
268
269 static __init int sched_init_debug(void)
270 {
271 debugfs_create_file("sched_features", 0644, NULL, NULL,
272 &sched_feat_fops);
273
274 return 0;
275 }
276 late_initcall(sched_init_debug);
277 #endif /* CONFIG_SCHED_DEBUG */
278
279 /*
280 * Number of tasks to iterate in a single balance run.
281 * Limited because this is done with IRQs disabled.
282 */
283 const_debug unsigned int sysctl_sched_nr_migrate = 32;
284
285 /*
286 * period over which we average the RT time consumption, measured
287 * in ms.
288 *
289 * default: 1s
290 */
291 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292
293 /*
294 * period over which we measure -rt task cpu usage in us.
295 * default: 1s
296 */
297 unsigned int sysctl_sched_rt_period = 1000000;
298
299 __read_mostly int scheduler_running;
300
301 /*
302 * part of the period that we allow rt tasks to run in us.
303 * default: 0.95s
304 */
305 int sysctl_sched_rt_runtime = 950000;
306
307 /*
308 * __task_rq_lock - lock the rq @p resides on.
309 */
310 static inline struct rq *__task_rq_lock(struct task_struct *p)
311 __acquires(rq->lock)
312 {
313 struct rq *rq;
314
315 lockdep_assert_held(&p->pi_lock);
316
317 for (;;) {
318 rq = task_rq(p);
319 raw_spin_lock(&rq->lock);
320 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
321 return rq;
322 raw_spin_unlock(&rq->lock);
323
324 while (unlikely(task_on_rq_migrating(p)))
325 cpu_relax();
326 }
327 }
328
329 /*
330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
331 */
332 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
333 __acquires(p->pi_lock)
334 __acquires(rq->lock)
335 {
336 struct rq *rq;
337
338 for (;;) {
339 raw_spin_lock_irqsave(&p->pi_lock, *flags);
340 rq = task_rq(p);
341 raw_spin_lock(&rq->lock);
342 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
343 return rq;
344 raw_spin_unlock(&rq->lock);
345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
346
347 while (unlikely(task_on_rq_migrating(p)))
348 cpu_relax();
349 }
350 }
351
352 static void __task_rq_unlock(struct rq *rq)
353 __releases(rq->lock)
354 {
355 raw_spin_unlock(&rq->lock);
356 }
357
358 static inline void
359 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
360 __releases(rq->lock)
361 __releases(p->pi_lock)
362 {
363 raw_spin_unlock(&rq->lock);
364 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
365 }
366
367 /*
368 * this_rq_lock - lock this runqueue and disable interrupts.
369 */
370 static struct rq *this_rq_lock(void)
371 __acquires(rq->lock)
372 {
373 struct rq *rq;
374
375 local_irq_disable();
376 rq = this_rq();
377 raw_spin_lock(&rq->lock);
378
379 return rq;
380 }
381
382 #ifdef CONFIG_SCHED_HRTICK
383 /*
384 * Use HR-timers to deliver accurate preemption points.
385 */
386
387 static void hrtick_clear(struct rq *rq)
388 {
389 if (hrtimer_active(&rq->hrtick_timer))
390 hrtimer_cancel(&rq->hrtick_timer);
391 }
392
393 /*
394 * High-resolution timer tick.
395 * Runs from hardirq context with interrupts disabled.
396 */
397 static enum hrtimer_restart hrtick(struct hrtimer *timer)
398 {
399 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400
401 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402
403 raw_spin_lock(&rq->lock);
404 update_rq_clock(rq);
405 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
406 raw_spin_unlock(&rq->lock);
407
408 return HRTIMER_NORESTART;
409 }
410
411 #ifdef CONFIG_SMP
412
413 static int __hrtick_restart(struct rq *rq)
414 {
415 struct hrtimer *timer = &rq->hrtick_timer;
416 ktime_t time = hrtimer_get_softexpires(timer);
417
418 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419 }
420
421 /*
422 * called from hardirq (IPI) context
423 */
424 static void __hrtick_start(void *arg)
425 {
426 struct rq *rq = arg;
427
428 raw_spin_lock(&rq->lock);
429 __hrtick_restart(rq);
430 rq->hrtick_csd_pending = 0;
431 raw_spin_unlock(&rq->lock);
432 }
433
434 /*
435 * Called to set the hrtick timer state.
436 *
437 * called with rq->lock held and irqs disabled
438 */
439 void hrtick_start(struct rq *rq, u64 delay)
440 {
441 struct hrtimer *timer = &rq->hrtick_timer;
442 ktime_t time;
443 s64 delta;
444
445 /*
446 * Don't schedule slices shorter than 10000ns, that just
447 * doesn't make sense and can cause timer DoS.
448 */
449 delta = max_t(s64, delay, 10000LL);
450 time = ktime_add_ns(timer->base->get_time(), delta);
451
452 hrtimer_set_expires(timer, time);
453
454 if (rq == this_rq()) {
455 __hrtick_restart(rq);
456 } else if (!rq->hrtick_csd_pending) {
457 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
458 rq->hrtick_csd_pending = 1;
459 }
460 }
461
462 static int
463 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464 {
465 int cpu = (int)(long)hcpu;
466
467 switch (action) {
468 case CPU_UP_CANCELED:
469 case CPU_UP_CANCELED_FROZEN:
470 case CPU_DOWN_PREPARE:
471 case CPU_DOWN_PREPARE_FROZEN:
472 case CPU_DEAD:
473 case CPU_DEAD_FROZEN:
474 hrtick_clear(cpu_rq(cpu));
475 return NOTIFY_OK;
476 }
477
478 return NOTIFY_DONE;
479 }
480
481 static __init void init_hrtick(void)
482 {
483 hotcpu_notifier(hotplug_hrtick, 0);
484 }
485 #else
486 /*
487 * Called to set the hrtick timer state.
488 *
489 * called with rq->lock held and irqs disabled
490 */
491 void hrtick_start(struct rq *rq, u64 delay)
492 {
493 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
494 HRTIMER_MODE_REL_PINNED, 0);
495 }
496
497 static inline void init_hrtick(void)
498 {
499 }
500 #endif /* CONFIG_SMP */
501
502 static void init_rq_hrtick(struct rq *rq)
503 {
504 #ifdef CONFIG_SMP
505 rq->hrtick_csd_pending = 0;
506
507 rq->hrtick_csd.flags = 0;
508 rq->hrtick_csd.func = __hrtick_start;
509 rq->hrtick_csd.info = rq;
510 #endif
511
512 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 rq->hrtick_timer.function = hrtick;
514 }
515 #else /* CONFIG_SCHED_HRTICK */
516 static inline void hrtick_clear(struct rq *rq)
517 {
518 }
519
520 static inline void init_rq_hrtick(struct rq *rq)
521 {
522 }
523
524 static inline void init_hrtick(void)
525 {
526 }
527 #endif /* CONFIG_SCHED_HRTICK */
528
529 /*
530 * cmpxchg based fetch_or, macro so it works for different integer types
531 */
532 #define fetch_or(ptr, val) \
533 ({ typeof(*(ptr)) __old, __val = *(ptr); \
534 for (;;) { \
535 __old = cmpxchg((ptr), __val, __val | (val)); \
536 if (__old == __val) \
537 break; \
538 __val = __old; \
539 } \
540 __old; \
541 })
542
543 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
544 /*
545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546 * this avoids any races wrt polling state changes and thereby avoids
547 * spurious IPIs.
548 */
549 static bool set_nr_and_not_polling(struct task_struct *p)
550 {
551 struct thread_info *ti = task_thread_info(p);
552 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553 }
554
555 /*
556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557 *
558 * If this returns true, then the idle task promises to call
559 * sched_ttwu_pending() and reschedule soon.
560 */
561 static bool set_nr_if_polling(struct task_struct *p)
562 {
563 struct thread_info *ti = task_thread_info(p);
564 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565
566 for (;;) {
567 if (!(val & _TIF_POLLING_NRFLAG))
568 return false;
569 if (val & _TIF_NEED_RESCHED)
570 return true;
571 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 if (old == val)
573 break;
574 val = old;
575 }
576 return true;
577 }
578
579 #else
580 static bool set_nr_and_not_polling(struct task_struct *p)
581 {
582 set_tsk_need_resched(p);
583 return true;
584 }
585
586 #ifdef CONFIG_SMP
587 static bool set_nr_if_polling(struct task_struct *p)
588 {
589 return false;
590 }
591 #endif
592 #endif
593
594 /*
595 * resched_curr - mark rq's current task 'to be rescheduled now'.
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
601 void resched_curr(struct rq *rq)
602 {
603 struct task_struct *curr = rq->curr;
604 int cpu;
605
606 lockdep_assert_held(&rq->lock);
607
608 if (test_tsk_need_resched(curr))
609 return;
610
611 cpu = cpu_of(rq);
612
613 if (cpu == smp_processor_id()) {
614 set_tsk_need_resched(curr);
615 set_preempt_need_resched();
616 return;
617 }
618
619 if (set_nr_and_not_polling(curr))
620 smp_send_reschedule(cpu);
621 else
622 trace_sched_wake_idle_without_ipi(cpu);
623 }
624
625 void resched_cpu(int cpu)
626 {
627 struct rq *rq = cpu_rq(cpu);
628 unsigned long flags;
629
630 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
631 return;
632 resched_curr(rq);
633 raw_spin_unlock_irqrestore(&rq->lock, flags);
634 }
635
636 #ifdef CONFIG_SMP
637 #ifdef CONFIG_NO_HZ_COMMON
638 /*
639 * In the semi idle case, use the nearest busy cpu for migrating timers
640 * from an idle cpu. This is good for power-savings.
641 *
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle cpu will add more delays to the timers than intended
644 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645 */
646 int get_nohz_timer_target(int pinned)
647 {
648 int cpu = smp_processor_id();
649 int i;
650 struct sched_domain *sd;
651
652 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 return cpu;
654
655 rcu_read_lock();
656 for_each_domain(cpu, sd) {
657 for_each_cpu(i, sched_domain_span(sd)) {
658 if (!idle_cpu(i)) {
659 cpu = i;
660 goto unlock;
661 }
662 }
663 }
664 unlock:
665 rcu_read_unlock();
666 return cpu;
667 }
668 /*
669 * When add_timer_on() enqueues a timer into the timer wheel of an
670 * idle CPU then this timer might expire before the next timer event
671 * which is scheduled to wake up that CPU. In case of a completely
672 * idle system the next event might even be infinite time into the
673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674 * leaves the inner idle loop so the newly added timer is taken into
675 * account when the CPU goes back to idle and evaluates the timer
676 * wheel for the next timer event.
677 */
678 static void wake_up_idle_cpu(int cpu)
679 {
680 struct rq *rq = cpu_rq(cpu);
681
682 if (cpu == smp_processor_id())
683 return;
684
685 if (set_nr_and_not_polling(rq->idle))
686 smp_send_reschedule(cpu);
687 else
688 trace_sched_wake_idle_without_ipi(cpu);
689 }
690
691 static bool wake_up_full_nohz_cpu(int cpu)
692 {
693 /*
694 * We just need the target to call irq_exit() and re-evaluate
695 * the next tick. The nohz full kick at least implies that.
696 * If needed we can still optimize that later with an
697 * empty IRQ.
698 */
699 if (tick_nohz_full_cpu(cpu)) {
700 if (cpu != smp_processor_id() ||
701 tick_nohz_tick_stopped())
702 tick_nohz_full_kick_cpu(cpu);
703 return true;
704 }
705
706 return false;
707 }
708
709 void wake_up_nohz_cpu(int cpu)
710 {
711 if (!wake_up_full_nohz_cpu(cpu))
712 wake_up_idle_cpu(cpu);
713 }
714
715 static inline bool got_nohz_idle_kick(void)
716 {
717 int cpu = smp_processor_id();
718
719 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 return false;
721
722 if (idle_cpu(cpu) && !need_resched())
723 return true;
724
725 /*
726 * We can't run Idle Load Balance on this CPU for this time so we
727 * cancel it and clear NOHZ_BALANCE_KICK
728 */
729 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 return false;
731 }
732
733 #else /* CONFIG_NO_HZ_COMMON */
734
735 static inline bool got_nohz_idle_kick(void)
736 {
737 return false;
738 }
739
740 #endif /* CONFIG_NO_HZ_COMMON */
741
742 #ifdef CONFIG_NO_HZ_FULL
743 bool sched_can_stop_tick(void)
744 {
745 /*
746 * More than one running task need preemption.
747 * nr_running update is assumed to be visible
748 * after IPI is sent from wakers.
749 */
750 if (this_rq()->nr_running > 1)
751 return false;
752
753 return true;
754 }
755 #endif /* CONFIG_NO_HZ_FULL */
756
757 void sched_avg_update(struct rq *rq)
758 {
759 s64 period = sched_avg_period();
760
761 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
762 /*
763 * Inline assembly required to prevent the compiler
764 * optimising this loop into a divmod call.
765 * See __iter_div_u64_rem() for another example of this.
766 */
767 asm("" : "+rm" (rq->age_stamp));
768 rq->age_stamp += period;
769 rq->rt_avg /= 2;
770 }
771 }
772
773 #endif /* CONFIG_SMP */
774
775 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
777 /*
778 * Iterate task_group tree rooted at *from, calling @down when first entering a
779 * node and @up when leaving it for the final time.
780 *
781 * Caller must hold rcu_lock or sufficient equivalent.
782 */
783 int walk_tg_tree_from(struct task_group *from,
784 tg_visitor down, tg_visitor up, void *data)
785 {
786 struct task_group *parent, *child;
787 int ret;
788
789 parent = from;
790
791 down:
792 ret = (*down)(parent, data);
793 if (ret)
794 goto out;
795 list_for_each_entry_rcu(child, &parent->children, siblings) {
796 parent = child;
797 goto down;
798
799 up:
800 continue;
801 }
802 ret = (*up)(parent, data);
803 if (ret || parent == from)
804 goto out;
805
806 child = parent;
807 parent = parent->parent;
808 if (parent)
809 goto up;
810 out:
811 return ret;
812 }
813
814 int tg_nop(struct task_group *tg, void *data)
815 {
816 return 0;
817 }
818 #endif
819
820 static void set_load_weight(struct task_struct *p)
821 {
822 int prio = p->static_prio - MAX_RT_PRIO;
823 struct load_weight *load = &p->se.load;
824
825 /*
826 * SCHED_IDLE tasks get minimal weight:
827 */
828 if (p->policy == SCHED_IDLE) {
829 load->weight = scale_load(WEIGHT_IDLEPRIO);
830 load->inv_weight = WMULT_IDLEPRIO;
831 return;
832 }
833
834 load->weight = scale_load(prio_to_weight[prio]);
835 load->inv_weight = prio_to_wmult[prio];
836 }
837
838 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
839 {
840 update_rq_clock(rq);
841 sched_info_queued(rq, p);
842 p->sched_class->enqueue_task(rq, p, flags);
843 }
844
845 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
846 {
847 update_rq_clock(rq);
848 sched_info_dequeued(rq, p);
849 p->sched_class->dequeue_task(rq, p, flags);
850 }
851
852 void activate_task(struct rq *rq, struct task_struct *p, int flags)
853 {
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible--;
856
857 enqueue_task(rq, p, flags);
858 }
859
860 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
861 {
862 if (task_contributes_to_load(p))
863 rq->nr_uninterruptible++;
864
865 dequeue_task(rq, p, flags);
866 }
867
868 static void update_rq_clock_task(struct rq *rq, s64 delta)
869 {
870 /*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal = 0, irq_delta = 0;
876 #endif
877 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879
880 /*
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
883 * {soft,}irq region.
884 *
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
888 * monotonic.
889 *
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
893 * atomic ops.
894 */
895 if (irq_delta > delta)
896 irq_delta = delta;
897
898 rq->prev_irq_time += irq_delta;
899 delta -= irq_delta;
900 #endif
901 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902 if (static_key_false((&paravirt_steal_rq_enabled))) {
903 steal = paravirt_steal_clock(cpu_of(rq));
904 steal -= rq->prev_steal_time_rq;
905
906 if (unlikely(steal > delta))
907 steal = delta;
908
909 rq->prev_steal_time_rq += steal;
910 delta -= steal;
911 }
912 #endif
913
914 rq->clock_task += delta;
915
916 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
917 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
918 sched_rt_avg_update(rq, irq_delta + steal);
919 #endif
920 }
921
922 void sched_set_stop_task(int cpu, struct task_struct *stop)
923 {
924 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 struct task_struct *old_stop = cpu_rq(cpu)->stop;
926
927 if (stop) {
928 /*
929 * Make it appear like a SCHED_FIFO task, its something
930 * userspace knows about and won't get confused about.
931 *
932 * Also, it will make PI more or less work without too
933 * much confusion -- but then, stop work should not
934 * rely on PI working anyway.
935 */
936 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937
938 stop->sched_class = &stop_sched_class;
939 }
940
941 cpu_rq(cpu)->stop = stop;
942
943 if (old_stop) {
944 /*
945 * Reset it back to a normal scheduling class so that
946 * it can die in pieces.
947 */
948 old_stop->sched_class = &rt_sched_class;
949 }
950 }
951
952 /*
953 * __normal_prio - return the priority that is based on the static prio
954 */
955 static inline int __normal_prio(struct task_struct *p)
956 {
957 return p->static_prio;
958 }
959
960 /*
961 * Calculate the expected normal priority: i.e. priority
962 * without taking RT-inheritance into account. Might be
963 * boosted by interactivity modifiers. Changes upon fork,
964 * setprio syscalls, and whenever the interactivity
965 * estimator recalculates.
966 */
967 static inline int normal_prio(struct task_struct *p)
968 {
969 int prio;
970
971 if (task_has_dl_policy(p))
972 prio = MAX_DL_PRIO-1;
973 else if (task_has_rt_policy(p))
974 prio = MAX_RT_PRIO-1 - p->rt_priority;
975 else
976 prio = __normal_prio(p);
977 return prio;
978 }
979
980 /*
981 * Calculate the current priority, i.e. the priority
982 * taken into account by the scheduler. This value might
983 * be boosted by RT tasks, or might be boosted by
984 * interactivity modifiers. Will be RT if the task got
985 * RT-boosted. If not then it returns p->normal_prio.
986 */
987 static int effective_prio(struct task_struct *p)
988 {
989 p->normal_prio = normal_prio(p);
990 /*
991 * If we are RT tasks or we were boosted to RT priority,
992 * keep the priority unchanged. Otherwise, update priority
993 * to the normal priority:
994 */
995 if (!rt_prio(p->prio))
996 return p->normal_prio;
997 return p->prio;
998 }
999
1000 /**
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
1003 *
1004 * Return: 1 if the task is currently executing. 0 otherwise.
1005 */
1006 inline int task_curr(const struct task_struct *p)
1007 {
1008 return cpu_curr(task_cpu(p)) == p;
1009 }
1010
1011 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1012 const struct sched_class *prev_class,
1013 int oldprio)
1014 {
1015 if (prev_class != p->sched_class) {
1016 if (prev_class->switched_from)
1017 prev_class->switched_from(rq, p);
1018 p->sched_class->switched_to(rq, p);
1019 } else if (oldprio != p->prio || dl_task(p))
1020 p->sched_class->prio_changed(rq, p, oldprio);
1021 }
1022
1023 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 {
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
1034 resched_curr(rq);
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045 rq->skip_clock_update = 1;
1046 }
1047
1048 #ifdef CONFIG_SMP
1049 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1050 {
1051 #ifdef CONFIG_SCHED_DEBUG
1052 /*
1053 * We should never call set_task_cpu() on a blocked task,
1054 * ttwu() will sort out the placement.
1055 */
1056 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1057 !(task_preempt_count(p) & PREEMPT_ACTIVE));
1058
1059 #ifdef CONFIG_LOCKDEP
1060 /*
1061 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063 *
1064 * sched_move_task() holds both and thus holding either pins the cgroup,
1065 * see task_group().
1066 *
1067 * Furthermore, all task_rq users should acquire both locks, see
1068 * task_rq_lock().
1069 */
1070 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071 lockdep_is_held(&task_rq(p)->lock)));
1072 #endif
1073 #endif
1074
1075 trace_sched_migrate_task(p, new_cpu);
1076
1077 if (task_cpu(p) != new_cpu) {
1078 if (p->sched_class->migrate_task_rq)
1079 p->sched_class->migrate_task_rq(p, new_cpu);
1080 p->se.nr_migrations++;
1081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1082 }
1083
1084 __set_task_cpu(p, new_cpu);
1085 }
1086
1087 static void __migrate_swap_task(struct task_struct *p, int cpu)
1088 {
1089 if (task_on_rq_queued(p)) {
1090 struct rq *src_rq, *dst_rq;
1091
1092 src_rq = task_rq(p);
1093 dst_rq = cpu_rq(cpu);
1094
1095 deactivate_task(src_rq, p, 0);
1096 set_task_cpu(p, cpu);
1097 activate_task(dst_rq, p, 0);
1098 check_preempt_curr(dst_rq, p, 0);
1099 } else {
1100 /*
1101 * Task isn't running anymore; make it appear like we migrated
1102 * it before it went to sleep. This means on wakeup we make the
1103 * previous cpu our targer instead of where it really is.
1104 */
1105 p->wake_cpu = cpu;
1106 }
1107 }
1108
1109 struct migration_swap_arg {
1110 struct task_struct *src_task, *dst_task;
1111 int src_cpu, dst_cpu;
1112 };
1113
1114 static int migrate_swap_stop(void *data)
1115 {
1116 struct migration_swap_arg *arg = data;
1117 struct rq *src_rq, *dst_rq;
1118 int ret = -EAGAIN;
1119
1120 src_rq = cpu_rq(arg->src_cpu);
1121 dst_rq = cpu_rq(arg->dst_cpu);
1122
1123 double_raw_lock(&arg->src_task->pi_lock,
1124 &arg->dst_task->pi_lock);
1125 double_rq_lock(src_rq, dst_rq);
1126 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127 goto unlock;
1128
1129 if (task_cpu(arg->src_task) != arg->src_cpu)
1130 goto unlock;
1131
1132 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133 goto unlock;
1134
1135 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136 goto unlock;
1137
1138 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1139 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1140
1141 ret = 0;
1142
1143 unlock:
1144 double_rq_unlock(src_rq, dst_rq);
1145 raw_spin_unlock(&arg->dst_task->pi_lock);
1146 raw_spin_unlock(&arg->src_task->pi_lock);
1147
1148 return ret;
1149 }
1150
1151 /*
1152 * Cross migrate two tasks
1153 */
1154 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155 {
1156 struct migration_swap_arg arg;
1157 int ret = -EINVAL;
1158
1159 arg = (struct migration_swap_arg){
1160 .src_task = cur,
1161 .src_cpu = task_cpu(cur),
1162 .dst_task = p,
1163 .dst_cpu = task_cpu(p),
1164 };
1165
1166 if (arg.src_cpu == arg.dst_cpu)
1167 goto out;
1168
1169 /*
1170 * These three tests are all lockless; this is OK since all of them
1171 * will be re-checked with proper locks held further down the line.
1172 */
1173 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174 goto out;
1175
1176 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177 goto out;
1178
1179 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180 goto out;
1181
1182 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1183 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184
1185 out:
1186 return ret;
1187 }
1188
1189 struct migration_arg {
1190 struct task_struct *task;
1191 int dest_cpu;
1192 };
1193
1194 static int migration_cpu_stop(void *data);
1195
1196 /*
1197 * wait_task_inactive - wait for a thread to unschedule.
1198 *
1199 * If @match_state is nonzero, it's the @p->state value just checked and
1200 * not expected to change. If it changes, i.e. @p might have woken up,
1201 * then return zero. When we succeed in waiting for @p to be off its CPU,
1202 * we return a positive number (its total switch count). If a second call
1203 * a short while later returns the same number, the caller can be sure that
1204 * @p has remained unscheduled the whole time.
1205 *
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
1212 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1213 {
1214 unsigned long flags;
1215 int running, queued;
1216 unsigned long ncsw;
1217 struct rq *rq;
1218
1219 for (;;) {
1220 /*
1221 * We do the initial early heuristics without holding
1222 * any task-queue locks at all. We'll only try to get
1223 * the runqueue lock when things look like they will
1224 * work out!
1225 */
1226 rq = task_rq(p);
1227
1228 /*
1229 * If the task is actively running on another CPU
1230 * still, just relax and busy-wait without holding
1231 * any locks.
1232 *
1233 * NOTE! Since we don't hold any locks, it's not
1234 * even sure that "rq" stays as the right runqueue!
1235 * But we don't care, since "task_running()" will
1236 * return false if the runqueue has changed and p
1237 * is actually now running somewhere else!
1238 */
1239 while (task_running(rq, p)) {
1240 if (match_state && unlikely(p->state != match_state))
1241 return 0;
1242 cpu_relax();
1243 }
1244
1245 /*
1246 * Ok, time to look more closely! We need the rq
1247 * lock now, to be *sure*. If we're wrong, we'll
1248 * just go back and repeat.
1249 */
1250 rq = task_rq_lock(p, &flags);
1251 trace_sched_wait_task(p);
1252 running = task_running(rq, p);
1253 queued = task_on_rq_queued(p);
1254 ncsw = 0;
1255 if (!match_state || p->state == match_state)
1256 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1257 task_rq_unlock(rq, p, &flags);
1258
1259 /*
1260 * If it changed from the expected state, bail out now.
1261 */
1262 if (unlikely(!ncsw))
1263 break;
1264
1265 /*
1266 * Was it really running after all now that we
1267 * checked with the proper locks actually held?
1268 *
1269 * Oops. Go back and try again..
1270 */
1271 if (unlikely(running)) {
1272 cpu_relax();
1273 continue;
1274 }
1275
1276 /*
1277 * It's not enough that it's not actively running,
1278 * it must be off the runqueue _entirely_, and not
1279 * preempted!
1280 *
1281 * So if it was still runnable (but just not actively
1282 * running right now), it's preempted, and we should
1283 * yield - it could be a while.
1284 */
1285 if (unlikely(queued)) {
1286 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287
1288 set_current_state(TASK_UNINTERRUPTIBLE);
1289 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1290 continue;
1291 }
1292
1293 /*
1294 * Ahh, all good. It wasn't running, and it wasn't
1295 * runnable, which means that it will never become
1296 * running in the future either. We're all done!
1297 */
1298 break;
1299 }
1300
1301 return ncsw;
1302 }
1303
1304 /***
1305 * kick_process - kick a running thread to enter/exit the kernel
1306 * @p: the to-be-kicked thread
1307 *
1308 * Cause a process which is running on another CPU to enter
1309 * kernel-mode, without any delay. (to get signals handled.)
1310 *
1311 * NOTE: this function doesn't have to take the runqueue lock,
1312 * because all it wants to ensure is that the remote task enters
1313 * the kernel. If the IPI races and the task has been migrated
1314 * to another CPU then no harm is done and the purpose has been
1315 * achieved as well.
1316 */
1317 void kick_process(struct task_struct *p)
1318 {
1319 int cpu;
1320
1321 preempt_disable();
1322 cpu = task_cpu(p);
1323 if ((cpu != smp_processor_id()) && task_curr(p))
1324 smp_send_reschedule(cpu);
1325 preempt_enable();
1326 }
1327 EXPORT_SYMBOL_GPL(kick_process);
1328 #endif /* CONFIG_SMP */
1329
1330 #ifdef CONFIG_SMP
1331 /*
1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1333 */
1334 static int select_fallback_rq(int cpu, struct task_struct *p)
1335 {
1336 int nid = cpu_to_node(cpu);
1337 const struct cpumask *nodemask = NULL;
1338 enum { cpuset, possible, fail } state = cpuset;
1339 int dest_cpu;
1340
1341 /*
1342 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 * will return -1. There is no cpu on the node, and we should
1344 * select the cpu on the other node.
1345 */
1346 if (nid != -1) {
1347 nodemask = cpumask_of_node(nid);
1348
1349 /* Look for allowed, online CPU in same node. */
1350 for_each_cpu(dest_cpu, nodemask) {
1351 if (!cpu_online(dest_cpu))
1352 continue;
1353 if (!cpu_active(dest_cpu))
1354 continue;
1355 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356 return dest_cpu;
1357 }
1358 }
1359
1360 for (;;) {
1361 /* Any allowed, online CPU? */
1362 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1363 if (!cpu_online(dest_cpu))
1364 continue;
1365 if (!cpu_active(dest_cpu))
1366 continue;
1367 goto out;
1368 }
1369
1370 switch (state) {
1371 case cpuset:
1372 /* No more Mr. Nice Guy. */
1373 cpuset_cpus_allowed_fallback(p);
1374 state = possible;
1375 break;
1376
1377 case possible:
1378 do_set_cpus_allowed(p, cpu_possible_mask);
1379 state = fail;
1380 break;
1381
1382 case fail:
1383 BUG();
1384 break;
1385 }
1386 }
1387
1388 out:
1389 if (state != cpuset) {
1390 /*
1391 * Don't tell them about moving exiting tasks or
1392 * kernel threads (both mm NULL), since they never
1393 * leave kernel.
1394 */
1395 if (p->mm && printk_ratelimit()) {
1396 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1397 task_pid_nr(p), p->comm, cpu);
1398 }
1399 }
1400
1401 return dest_cpu;
1402 }
1403
1404 /*
1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1406 */
1407 static inline
1408 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1409 {
1410 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1411
1412 /*
1413 * In order not to call set_task_cpu() on a blocking task we need
1414 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1415 * cpu.
1416 *
1417 * Since this is common to all placement strategies, this lives here.
1418 *
1419 * [ this allows ->select_task() to simply return task_cpu(p) and
1420 * not worry about this generic constraint ]
1421 */
1422 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1423 !cpu_online(cpu)))
1424 cpu = select_fallback_rq(task_cpu(p), p);
1425
1426 return cpu;
1427 }
1428
1429 static void update_avg(u64 *avg, u64 sample)
1430 {
1431 s64 diff = sample - *avg;
1432 *avg += diff >> 3;
1433 }
1434 #endif
1435
1436 static void
1437 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1438 {
1439 #ifdef CONFIG_SCHEDSTATS
1440 struct rq *rq = this_rq();
1441
1442 #ifdef CONFIG_SMP
1443 int this_cpu = smp_processor_id();
1444
1445 if (cpu == this_cpu) {
1446 schedstat_inc(rq, ttwu_local);
1447 schedstat_inc(p, se.statistics.nr_wakeups_local);
1448 } else {
1449 struct sched_domain *sd;
1450
1451 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1452 rcu_read_lock();
1453 for_each_domain(this_cpu, sd) {
1454 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1455 schedstat_inc(sd, ttwu_wake_remote);
1456 break;
1457 }
1458 }
1459 rcu_read_unlock();
1460 }
1461
1462 if (wake_flags & WF_MIGRATED)
1463 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1464
1465 #endif /* CONFIG_SMP */
1466
1467 schedstat_inc(rq, ttwu_count);
1468 schedstat_inc(p, se.statistics.nr_wakeups);
1469
1470 if (wake_flags & WF_SYNC)
1471 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1472
1473 #endif /* CONFIG_SCHEDSTATS */
1474 }
1475
1476 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1477 {
1478 activate_task(rq, p, en_flags);
1479 p->on_rq = TASK_ON_RQ_QUEUED;
1480
1481 /* if a worker is waking up, notify workqueue */
1482 if (p->flags & PF_WQ_WORKER)
1483 wq_worker_waking_up(p, cpu_of(rq));
1484 }
1485
1486 /*
1487 * Mark the task runnable and perform wakeup-preemption.
1488 */
1489 static void
1490 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1491 {
1492 check_preempt_curr(rq, p, wake_flags);
1493 trace_sched_wakeup(p, true);
1494
1495 p->state = TASK_RUNNING;
1496 #ifdef CONFIG_SMP
1497 if (p->sched_class->task_woken)
1498 p->sched_class->task_woken(rq, p);
1499
1500 if (rq->idle_stamp) {
1501 u64 delta = rq_clock(rq) - rq->idle_stamp;
1502 u64 max = 2*rq->max_idle_balance_cost;
1503
1504 update_avg(&rq->avg_idle, delta);
1505
1506 if (rq->avg_idle > max)
1507 rq->avg_idle = max;
1508
1509 rq->idle_stamp = 0;
1510 }
1511 #endif
1512 }
1513
1514 static void
1515 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1516 {
1517 #ifdef CONFIG_SMP
1518 if (p->sched_contributes_to_load)
1519 rq->nr_uninterruptible--;
1520 #endif
1521
1522 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1523 ttwu_do_wakeup(rq, p, wake_flags);
1524 }
1525
1526 /*
1527 * Called in case the task @p isn't fully descheduled from its runqueue,
1528 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529 * since all we need to do is flip p->state to TASK_RUNNING, since
1530 * the task is still ->on_rq.
1531 */
1532 static int ttwu_remote(struct task_struct *p, int wake_flags)
1533 {
1534 struct rq *rq;
1535 int ret = 0;
1536
1537 rq = __task_rq_lock(p);
1538 if (task_on_rq_queued(p)) {
1539 /* check_preempt_curr() may use rq clock */
1540 update_rq_clock(rq);
1541 ttwu_do_wakeup(rq, p, wake_flags);
1542 ret = 1;
1543 }
1544 __task_rq_unlock(rq);
1545
1546 return ret;
1547 }
1548
1549 #ifdef CONFIG_SMP
1550 void sched_ttwu_pending(void)
1551 {
1552 struct rq *rq = this_rq();
1553 struct llist_node *llist = llist_del_all(&rq->wake_list);
1554 struct task_struct *p;
1555 unsigned long flags;
1556
1557 if (!llist)
1558 return;
1559
1560 raw_spin_lock_irqsave(&rq->lock, flags);
1561
1562 while (llist) {
1563 p = llist_entry(llist, struct task_struct, wake_entry);
1564 llist = llist_next(llist);
1565 ttwu_do_activate(rq, p, 0);
1566 }
1567
1568 raw_spin_unlock_irqrestore(&rq->lock, flags);
1569 }
1570
1571 void scheduler_ipi(void)
1572 {
1573 /*
1574 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575 * TIF_NEED_RESCHED remotely (for the first time) will also send
1576 * this IPI.
1577 */
1578 preempt_fold_need_resched();
1579
1580 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1581 return;
1582
1583 /*
1584 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585 * traditionally all their work was done from the interrupt return
1586 * path. Now that we actually do some work, we need to make sure
1587 * we do call them.
1588 *
1589 * Some archs already do call them, luckily irq_enter/exit nest
1590 * properly.
1591 *
1592 * Arguably we should visit all archs and update all handlers,
1593 * however a fair share of IPIs are still resched only so this would
1594 * somewhat pessimize the simple resched case.
1595 */
1596 irq_enter();
1597 sched_ttwu_pending();
1598
1599 /*
1600 * Check if someone kicked us for doing the nohz idle load balance.
1601 */
1602 if (unlikely(got_nohz_idle_kick())) {
1603 this_rq()->idle_balance = 1;
1604 raise_softirq_irqoff(SCHED_SOFTIRQ);
1605 }
1606 irq_exit();
1607 }
1608
1609 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1610 {
1611 struct rq *rq = cpu_rq(cpu);
1612
1613 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1614 if (!set_nr_if_polling(rq->idle))
1615 smp_send_reschedule(cpu);
1616 else
1617 trace_sched_wake_idle_without_ipi(cpu);
1618 }
1619 }
1620
1621 void wake_up_if_idle(int cpu)
1622 {
1623 struct rq *rq = cpu_rq(cpu);
1624 unsigned long flags;
1625
1626 if (!is_idle_task(rq->curr))
1627 return;
1628
1629 if (set_nr_if_polling(rq->idle)) {
1630 trace_sched_wake_idle_without_ipi(cpu);
1631 } else {
1632 raw_spin_lock_irqsave(&rq->lock, flags);
1633 if (is_idle_task(rq->curr))
1634 smp_send_reschedule(cpu);
1635 /* Else cpu is not in idle, do nothing here */
1636 raw_spin_unlock_irqrestore(&rq->lock, flags);
1637 }
1638 }
1639
1640 bool cpus_share_cache(int this_cpu, int that_cpu)
1641 {
1642 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1643 }
1644 #endif /* CONFIG_SMP */
1645
1646 static void ttwu_queue(struct task_struct *p, int cpu)
1647 {
1648 struct rq *rq = cpu_rq(cpu);
1649
1650 #if defined(CONFIG_SMP)
1651 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1652 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1653 ttwu_queue_remote(p, cpu);
1654 return;
1655 }
1656 #endif
1657
1658 raw_spin_lock(&rq->lock);
1659 ttwu_do_activate(rq, p, 0);
1660 raw_spin_unlock(&rq->lock);
1661 }
1662
1663 /**
1664 * try_to_wake_up - wake up a thread
1665 * @p: the thread to be awakened
1666 * @state: the mask of task states that can be woken
1667 * @wake_flags: wake modifier flags (WF_*)
1668 *
1669 * Put it on the run-queue if it's not already there. The "current"
1670 * thread is always on the run-queue (except when the actual
1671 * re-schedule is in progress), and as such you're allowed to do
1672 * the simpler "current->state = TASK_RUNNING" to mark yourself
1673 * runnable without the overhead of this.
1674 *
1675 * Return: %true if @p was woken up, %false if it was already running.
1676 * or @state didn't match @p's state.
1677 */
1678 static int
1679 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1680 {
1681 unsigned long flags;
1682 int cpu, success = 0;
1683
1684 /*
1685 * If we are going to wake up a thread waiting for CONDITION we
1686 * need to ensure that CONDITION=1 done by the caller can not be
1687 * reordered with p->state check below. This pairs with mb() in
1688 * set_current_state() the waiting thread does.
1689 */
1690 smp_mb__before_spinlock();
1691 raw_spin_lock_irqsave(&p->pi_lock, flags);
1692 if (!(p->state & state))
1693 goto out;
1694
1695 success = 1; /* we're going to change ->state */
1696 cpu = task_cpu(p);
1697
1698 if (p->on_rq && ttwu_remote(p, wake_flags))
1699 goto stat;
1700
1701 #ifdef CONFIG_SMP
1702 /*
1703 * If the owning (remote) cpu is still in the middle of schedule() with
1704 * this task as prev, wait until its done referencing the task.
1705 */
1706 while (p->on_cpu)
1707 cpu_relax();
1708 /*
1709 * Pairs with the smp_wmb() in finish_lock_switch().
1710 */
1711 smp_rmb();
1712
1713 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1714 p->state = TASK_WAKING;
1715
1716 if (p->sched_class->task_waking)
1717 p->sched_class->task_waking(p);
1718
1719 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1720 if (task_cpu(p) != cpu) {
1721 wake_flags |= WF_MIGRATED;
1722 set_task_cpu(p, cpu);
1723 }
1724 #endif /* CONFIG_SMP */
1725
1726 ttwu_queue(p, cpu);
1727 stat:
1728 ttwu_stat(p, cpu, wake_flags);
1729 out:
1730 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1731
1732 return success;
1733 }
1734
1735 /**
1736 * try_to_wake_up_local - try to wake up a local task with rq lock held
1737 * @p: the thread to be awakened
1738 *
1739 * Put @p on the run-queue if it's not already there. The caller must
1740 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1741 * the current task.
1742 */
1743 static void try_to_wake_up_local(struct task_struct *p)
1744 {
1745 struct rq *rq = task_rq(p);
1746
1747 if (WARN_ON_ONCE(rq != this_rq()) ||
1748 WARN_ON_ONCE(p == current))
1749 return;
1750
1751 lockdep_assert_held(&rq->lock);
1752
1753 if (!raw_spin_trylock(&p->pi_lock)) {
1754 raw_spin_unlock(&rq->lock);
1755 raw_spin_lock(&p->pi_lock);
1756 raw_spin_lock(&rq->lock);
1757 }
1758
1759 if (!(p->state & TASK_NORMAL))
1760 goto out;
1761
1762 if (!task_on_rq_queued(p))
1763 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1764
1765 ttwu_do_wakeup(rq, p, 0);
1766 ttwu_stat(p, smp_processor_id(), 0);
1767 out:
1768 raw_spin_unlock(&p->pi_lock);
1769 }
1770
1771 /**
1772 * wake_up_process - Wake up a specific process
1773 * @p: The process to be woken up.
1774 *
1775 * Attempt to wake up the nominated process and move it to the set of runnable
1776 * processes.
1777 *
1778 * Return: 1 if the process was woken up, 0 if it was already running.
1779 *
1780 * It may be assumed that this function implies a write memory barrier before
1781 * changing the task state if and only if any tasks are woken up.
1782 */
1783 int wake_up_process(struct task_struct *p)
1784 {
1785 WARN_ON(task_is_stopped_or_traced(p));
1786 return try_to_wake_up(p, TASK_NORMAL, 0);
1787 }
1788 EXPORT_SYMBOL(wake_up_process);
1789
1790 int wake_up_state(struct task_struct *p, unsigned int state)
1791 {
1792 return try_to_wake_up(p, state, 0);
1793 }
1794
1795 /*
1796 * This function clears the sched_dl_entity static params.
1797 */
1798 void __dl_clear_params(struct task_struct *p)
1799 {
1800 struct sched_dl_entity *dl_se = &p->dl;
1801
1802 dl_se->dl_runtime = 0;
1803 dl_se->dl_deadline = 0;
1804 dl_se->dl_period = 0;
1805 dl_se->flags = 0;
1806 dl_se->dl_bw = 0;
1807 }
1808
1809 /*
1810 * Perform scheduler related setup for a newly forked process p.
1811 * p is forked by current.
1812 *
1813 * __sched_fork() is basic setup used by init_idle() too:
1814 */
1815 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1816 {
1817 p->on_rq = 0;
1818
1819 p->se.on_rq = 0;
1820 p->se.exec_start = 0;
1821 p->se.sum_exec_runtime = 0;
1822 p->se.prev_sum_exec_runtime = 0;
1823 p->se.nr_migrations = 0;
1824 p->se.vruntime = 0;
1825 INIT_LIST_HEAD(&p->se.group_node);
1826
1827 #ifdef CONFIG_SCHEDSTATS
1828 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1829 #endif
1830
1831 RB_CLEAR_NODE(&p->dl.rb_node);
1832 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1833 __dl_clear_params(p);
1834
1835 INIT_LIST_HEAD(&p->rt.run_list);
1836
1837 #ifdef CONFIG_PREEMPT_NOTIFIERS
1838 INIT_HLIST_HEAD(&p->preempt_notifiers);
1839 #endif
1840
1841 #ifdef CONFIG_NUMA_BALANCING
1842 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1843 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1844 p->mm->numa_scan_seq = 0;
1845 }
1846
1847 if (clone_flags & CLONE_VM)
1848 p->numa_preferred_nid = current->numa_preferred_nid;
1849 else
1850 p->numa_preferred_nid = -1;
1851
1852 p->node_stamp = 0ULL;
1853 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1854 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1855 p->numa_work.next = &p->numa_work;
1856 p->numa_faults_memory = NULL;
1857 p->numa_faults_buffer_memory = NULL;
1858 p->last_task_numa_placement = 0;
1859 p->last_sum_exec_runtime = 0;
1860
1861 INIT_LIST_HEAD(&p->numa_entry);
1862 p->numa_group = NULL;
1863 #endif /* CONFIG_NUMA_BALANCING */
1864 }
1865
1866 #ifdef CONFIG_NUMA_BALANCING
1867 #ifdef CONFIG_SCHED_DEBUG
1868 void set_numabalancing_state(bool enabled)
1869 {
1870 if (enabled)
1871 sched_feat_set("NUMA");
1872 else
1873 sched_feat_set("NO_NUMA");
1874 }
1875 #else
1876 __read_mostly bool numabalancing_enabled;
1877
1878 void set_numabalancing_state(bool enabled)
1879 {
1880 numabalancing_enabled = enabled;
1881 }
1882 #endif /* CONFIG_SCHED_DEBUG */
1883
1884 #ifdef CONFIG_PROC_SYSCTL
1885 int sysctl_numa_balancing(struct ctl_table *table, int write,
1886 void __user *buffer, size_t *lenp, loff_t *ppos)
1887 {
1888 struct ctl_table t;
1889 int err;
1890 int state = numabalancing_enabled;
1891
1892 if (write && !capable(CAP_SYS_ADMIN))
1893 return -EPERM;
1894
1895 t = *table;
1896 t.data = &state;
1897 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1898 if (err < 0)
1899 return err;
1900 if (write)
1901 set_numabalancing_state(state);
1902 return err;
1903 }
1904 #endif
1905 #endif
1906
1907 /*
1908 * fork()/clone()-time setup:
1909 */
1910 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1911 {
1912 unsigned long flags;
1913 int cpu = get_cpu();
1914
1915 __sched_fork(clone_flags, p);
1916 /*
1917 * We mark the process as running here. This guarantees that
1918 * nobody will actually run it, and a signal or other external
1919 * event cannot wake it up and insert it on the runqueue either.
1920 */
1921 p->state = TASK_RUNNING;
1922
1923 /*
1924 * Make sure we do not leak PI boosting priority to the child.
1925 */
1926 p->prio = current->normal_prio;
1927
1928 /*
1929 * Revert to default priority/policy on fork if requested.
1930 */
1931 if (unlikely(p->sched_reset_on_fork)) {
1932 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1933 p->policy = SCHED_NORMAL;
1934 p->static_prio = NICE_TO_PRIO(0);
1935 p->rt_priority = 0;
1936 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1937 p->static_prio = NICE_TO_PRIO(0);
1938
1939 p->prio = p->normal_prio = __normal_prio(p);
1940 set_load_weight(p);
1941
1942 /*
1943 * We don't need the reset flag anymore after the fork. It has
1944 * fulfilled its duty:
1945 */
1946 p->sched_reset_on_fork = 0;
1947 }
1948
1949 if (dl_prio(p->prio)) {
1950 put_cpu();
1951 return -EAGAIN;
1952 } else if (rt_prio(p->prio)) {
1953 p->sched_class = &rt_sched_class;
1954 } else {
1955 p->sched_class = &fair_sched_class;
1956 }
1957
1958 if (p->sched_class->task_fork)
1959 p->sched_class->task_fork(p);
1960
1961 /*
1962 * The child is not yet in the pid-hash so no cgroup attach races,
1963 * and the cgroup is pinned to this child due to cgroup_fork()
1964 * is ran before sched_fork().
1965 *
1966 * Silence PROVE_RCU.
1967 */
1968 raw_spin_lock_irqsave(&p->pi_lock, flags);
1969 set_task_cpu(p, cpu);
1970 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1971
1972 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1973 if (likely(sched_info_on()))
1974 memset(&p->sched_info, 0, sizeof(p->sched_info));
1975 #endif
1976 #if defined(CONFIG_SMP)
1977 p->on_cpu = 0;
1978 #endif
1979 init_task_preempt_count(p);
1980 #ifdef CONFIG_SMP
1981 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1982 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1983 #endif
1984
1985 put_cpu();
1986 return 0;
1987 }
1988
1989 unsigned long to_ratio(u64 period, u64 runtime)
1990 {
1991 if (runtime == RUNTIME_INF)
1992 return 1ULL << 20;
1993
1994 /*
1995 * Doing this here saves a lot of checks in all
1996 * the calling paths, and returning zero seems
1997 * safe for them anyway.
1998 */
1999 if (period == 0)
2000 return 0;
2001
2002 return div64_u64(runtime << 20, period);
2003 }
2004
2005 #ifdef CONFIG_SMP
2006 inline struct dl_bw *dl_bw_of(int i)
2007 {
2008 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009 "sched RCU must be held");
2010 return &cpu_rq(i)->rd->dl_bw;
2011 }
2012
2013 static inline int dl_bw_cpus(int i)
2014 {
2015 struct root_domain *rd = cpu_rq(i)->rd;
2016 int cpus = 0;
2017
2018 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019 "sched RCU must be held");
2020 for_each_cpu_and(i, rd->span, cpu_active_mask)
2021 cpus++;
2022
2023 return cpus;
2024 }
2025 #else
2026 inline struct dl_bw *dl_bw_of(int i)
2027 {
2028 return &cpu_rq(i)->dl.dl_bw;
2029 }
2030
2031 static inline int dl_bw_cpus(int i)
2032 {
2033 return 1;
2034 }
2035 #endif
2036
2037 static inline
2038 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2039 {
2040 dl_b->total_bw -= tsk_bw;
2041 }
2042
2043 static inline
2044 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2045 {
2046 dl_b->total_bw += tsk_bw;
2047 }
2048
2049 static inline
2050 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2051 {
2052 return dl_b->bw != -1 &&
2053 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2054 }
2055
2056 /*
2057 * We must be sure that accepting a new task (or allowing changing the
2058 * parameters of an existing one) is consistent with the bandwidth
2059 * constraints. If yes, this function also accordingly updates the currently
2060 * allocated bandwidth to reflect the new situation.
2061 *
2062 * This function is called while holding p's rq->lock.
2063 */
2064 static int dl_overflow(struct task_struct *p, int policy,
2065 const struct sched_attr *attr)
2066 {
2067
2068 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2069 u64 period = attr->sched_period ?: attr->sched_deadline;
2070 u64 runtime = attr->sched_runtime;
2071 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2072 int cpus, err = -1;
2073
2074 if (new_bw == p->dl.dl_bw)
2075 return 0;
2076
2077 /*
2078 * Either if a task, enters, leave, or stays -deadline but changes
2079 * its parameters, we may need to update accordingly the total
2080 * allocated bandwidth of the container.
2081 */
2082 raw_spin_lock(&dl_b->lock);
2083 cpus = dl_bw_cpus(task_cpu(p));
2084 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2085 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2086 __dl_add(dl_b, new_bw);
2087 err = 0;
2088 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2089 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2090 __dl_clear(dl_b, p->dl.dl_bw);
2091 __dl_add(dl_b, new_bw);
2092 err = 0;
2093 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2094 __dl_clear(dl_b, p->dl.dl_bw);
2095 err = 0;
2096 }
2097 raw_spin_unlock(&dl_b->lock);
2098
2099 return err;
2100 }
2101
2102 extern void init_dl_bw(struct dl_bw *dl_b);
2103
2104 /*
2105 * wake_up_new_task - wake up a newly created task for the first time.
2106 *
2107 * This function will do some initial scheduler statistics housekeeping
2108 * that must be done for every newly created context, then puts the task
2109 * on the runqueue and wakes it.
2110 */
2111 void wake_up_new_task(struct task_struct *p)
2112 {
2113 unsigned long flags;
2114 struct rq *rq;
2115
2116 raw_spin_lock_irqsave(&p->pi_lock, flags);
2117 #ifdef CONFIG_SMP
2118 /*
2119 * Fork balancing, do it here and not earlier because:
2120 * - cpus_allowed can change in the fork path
2121 * - any previously selected cpu might disappear through hotplug
2122 */
2123 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2124 #endif
2125
2126 /* Initialize new task's runnable average */
2127 init_task_runnable_average(p);
2128 rq = __task_rq_lock(p);
2129 activate_task(rq, p, 0);
2130 p->on_rq = TASK_ON_RQ_QUEUED;
2131 trace_sched_wakeup_new(p, true);
2132 check_preempt_curr(rq, p, WF_FORK);
2133 #ifdef CONFIG_SMP
2134 if (p->sched_class->task_woken)
2135 p->sched_class->task_woken(rq, p);
2136 #endif
2137 task_rq_unlock(rq, p, &flags);
2138 }
2139
2140 #ifdef CONFIG_PREEMPT_NOTIFIERS
2141
2142 /**
2143 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2144 * @notifier: notifier struct to register
2145 */
2146 void preempt_notifier_register(struct preempt_notifier *notifier)
2147 {
2148 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2149 }
2150 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2151
2152 /**
2153 * preempt_notifier_unregister - no longer interested in preemption notifications
2154 * @notifier: notifier struct to unregister
2155 *
2156 * This is safe to call from within a preemption notifier.
2157 */
2158 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2159 {
2160 hlist_del(&notifier->link);
2161 }
2162 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2163
2164 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2165 {
2166 struct preempt_notifier *notifier;
2167
2168 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2169 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2170 }
2171
2172 static void
2173 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2174 struct task_struct *next)
2175 {
2176 struct preempt_notifier *notifier;
2177
2178 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2179 notifier->ops->sched_out(notifier, next);
2180 }
2181
2182 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2183
2184 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2185 {
2186 }
2187
2188 static void
2189 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190 struct task_struct *next)
2191 {
2192 }
2193
2194 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2195
2196 /**
2197 * prepare_task_switch - prepare to switch tasks
2198 * @rq: the runqueue preparing to switch
2199 * @prev: the current task that is being switched out
2200 * @next: the task we are going to switch to.
2201 *
2202 * This is called with the rq lock held and interrupts off. It must
2203 * be paired with a subsequent finish_task_switch after the context
2204 * switch.
2205 *
2206 * prepare_task_switch sets up locking and calls architecture specific
2207 * hooks.
2208 */
2209 static inline void
2210 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2211 struct task_struct *next)
2212 {
2213 trace_sched_switch(prev, next);
2214 sched_info_switch(rq, prev, next);
2215 perf_event_task_sched_out(prev, next);
2216 fire_sched_out_preempt_notifiers(prev, next);
2217 prepare_lock_switch(rq, next);
2218 prepare_arch_switch(next);
2219 }
2220
2221 /**
2222 * finish_task_switch - clean up after a task-switch
2223 * @rq: runqueue associated with task-switch
2224 * @prev: the thread we just switched away from.
2225 *
2226 * finish_task_switch must be called after the context switch, paired
2227 * with a prepare_task_switch call before the context switch.
2228 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2229 * and do any other architecture-specific cleanup actions.
2230 *
2231 * Note that we may have delayed dropping an mm in context_switch(). If
2232 * so, we finish that here outside of the runqueue lock. (Doing it
2233 * with the lock held can cause deadlocks; see schedule() for
2234 * details.)
2235 */
2236 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2237 __releases(rq->lock)
2238 {
2239 struct mm_struct *mm = rq->prev_mm;
2240 long prev_state;
2241
2242 rq->prev_mm = NULL;
2243
2244 /*
2245 * A task struct has one reference for the use as "current".
2246 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2247 * schedule one last time. The schedule call will never return, and
2248 * the scheduled task must drop that reference.
2249 * The test for TASK_DEAD must occur while the runqueue locks are
2250 * still held, otherwise prev could be scheduled on another cpu, die
2251 * there before we look at prev->state, and then the reference would
2252 * be dropped twice.
2253 * Manfred Spraul <manfred@colorfullife.com>
2254 */
2255 prev_state = prev->state;
2256 vtime_task_switch(prev);
2257 finish_arch_switch(prev);
2258 perf_event_task_sched_in(prev, current);
2259 finish_lock_switch(rq, prev);
2260 finish_arch_post_lock_switch();
2261
2262 fire_sched_in_preempt_notifiers(current);
2263 if (mm)
2264 mmdrop(mm);
2265 if (unlikely(prev_state == TASK_DEAD)) {
2266 if (prev->sched_class->task_dead)
2267 prev->sched_class->task_dead(prev);
2268
2269 /*
2270 * Remove function-return probe instances associated with this
2271 * task and put them back on the free list.
2272 */
2273 kprobe_flush_task(prev);
2274 put_task_struct(prev);
2275 }
2276
2277 tick_nohz_task_switch(current);
2278 }
2279
2280 #ifdef CONFIG_SMP
2281
2282 /* rq->lock is NOT held, but preemption is disabled */
2283 static inline void post_schedule(struct rq *rq)
2284 {
2285 if (rq->post_schedule) {
2286 unsigned long flags;
2287
2288 raw_spin_lock_irqsave(&rq->lock, flags);
2289 if (rq->curr->sched_class->post_schedule)
2290 rq->curr->sched_class->post_schedule(rq);
2291 raw_spin_unlock_irqrestore(&rq->lock, flags);
2292
2293 rq->post_schedule = 0;
2294 }
2295 }
2296
2297 #else
2298
2299 static inline void post_schedule(struct rq *rq)
2300 {
2301 }
2302
2303 #endif
2304
2305 /**
2306 * schedule_tail - first thing a freshly forked thread must call.
2307 * @prev: the thread we just switched away from.
2308 */
2309 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2310 __releases(rq->lock)
2311 {
2312 struct rq *rq = this_rq();
2313
2314 finish_task_switch(rq, prev);
2315
2316 /*
2317 * FIXME: do we need to worry about rq being invalidated by the
2318 * task_switch?
2319 */
2320 post_schedule(rq);
2321
2322 if (current->set_child_tid)
2323 put_user(task_pid_vnr(current), current->set_child_tid);
2324 }
2325
2326 /*
2327 * context_switch - switch to the new MM and the new
2328 * thread's register state.
2329 */
2330 static inline void
2331 context_switch(struct rq *rq, struct task_struct *prev,
2332 struct task_struct *next)
2333 {
2334 struct mm_struct *mm, *oldmm;
2335
2336 prepare_task_switch(rq, prev, next);
2337
2338 mm = next->mm;
2339 oldmm = prev->active_mm;
2340 /*
2341 * For paravirt, this is coupled with an exit in switch_to to
2342 * combine the page table reload and the switch backend into
2343 * one hypercall.
2344 */
2345 arch_start_context_switch(prev);
2346
2347 if (!mm) {
2348 next->active_mm = oldmm;
2349 atomic_inc(&oldmm->mm_count);
2350 enter_lazy_tlb(oldmm, next);
2351 } else
2352 switch_mm(oldmm, mm, next);
2353
2354 if (!prev->mm) {
2355 prev->active_mm = NULL;
2356 rq->prev_mm = oldmm;
2357 }
2358 /*
2359 * Since the runqueue lock will be released by the next
2360 * task (which is an invalid locking op but in the case
2361 * of the scheduler it's an obvious special-case), so we
2362 * do an early lockdep release here:
2363 */
2364 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2365
2366 context_tracking_task_switch(prev, next);
2367 /* Here we just switch the register state and the stack. */
2368 switch_to(prev, next, prev);
2369
2370 barrier();
2371 /*
2372 * this_rq must be evaluated again because prev may have moved
2373 * CPUs since it called schedule(), thus the 'rq' on its stack
2374 * frame will be invalid.
2375 */
2376 finish_task_switch(this_rq(), prev);
2377 }
2378
2379 /*
2380 * nr_running and nr_context_switches:
2381 *
2382 * externally visible scheduler statistics: current number of runnable
2383 * threads, total number of context switches performed since bootup.
2384 */
2385 unsigned long nr_running(void)
2386 {
2387 unsigned long i, sum = 0;
2388
2389 for_each_online_cpu(i)
2390 sum += cpu_rq(i)->nr_running;
2391
2392 return sum;
2393 }
2394
2395 /*
2396 * Check if only the current task is running on the cpu.
2397 */
2398 bool single_task_running(void)
2399 {
2400 if (cpu_rq(smp_processor_id())->nr_running == 1)
2401 return true;
2402 else
2403 return false;
2404 }
2405 EXPORT_SYMBOL(single_task_running);
2406
2407 unsigned long long nr_context_switches(void)
2408 {
2409 int i;
2410 unsigned long long sum = 0;
2411
2412 for_each_possible_cpu(i)
2413 sum += cpu_rq(i)->nr_switches;
2414
2415 return sum;
2416 }
2417
2418 unsigned long nr_iowait(void)
2419 {
2420 unsigned long i, sum = 0;
2421
2422 for_each_possible_cpu(i)
2423 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2424
2425 return sum;
2426 }
2427
2428 unsigned long nr_iowait_cpu(int cpu)
2429 {
2430 struct rq *this = cpu_rq(cpu);
2431 return atomic_read(&this->nr_iowait);
2432 }
2433
2434 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2435 {
2436 struct rq *this = this_rq();
2437 *nr_waiters = atomic_read(&this->nr_iowait);
2438 *load = this->cpu_load[0];
2439 }
2440
2441 #ifdef CONFIG_SMP
2442
2443 /*
2444 * sched_exec - execve() is a valuable balancing opportunity, because at
2445 * this point the task has the smallest effective memory and cache footprint.
2446 */
2447 void sched_exec(void)
2448 {
2449 struct task_struct *p = current;
2450 unsigned long flags;
2451 int dest_cpu;
2452
2453 raw_spin_lock_irqsave(&p->pi_lock, flags);
2454 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2455 if (dest_cpu == smp_processor_id())
2456 goto unlock;
2457
2458 if (likely(cpu_active(dest_cpu))) {
2459 struct migration_arg arg = { p, dest_cpu };
2460
2461 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2462 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2463 return;
2464 }
2465 unlock:
2466 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2467 }
2468
2469 #endif
2470
2471 DEFINE_PER_CPU(struct kernel_stat, kstat);
2472 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2473
2474 EXPORT_PER_CPU_SYMBOL(kstat);
2475 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2476
2477 /*
2478 * Return accounted runtime for the task.
2479 * In case the task is currently running, return the runtime plus current's
2480 * pending runtime that have not been accounted yet.
2481 */
2482 unsigned long long task_sched_runtime(struct task_struct *p)
2483 {
2484 unsigned long flags;
2485 struct rq *rq;
2486 u64 ns;
2487
2488 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2489 /*
2490 * 64-bit doesn't need locks to atomically read a 64bit value.
2491 * So we have a optimization chance when the task's delta_exec is 0.
2492 * Reading ->on_cpu is racy, but this is ok.
2493 *
2494 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2495 * If we race with it entering cpu, unaccounted time is 0. This is
2496 * indistinguishable from the read occurring a few cycles earlier.
2497 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2498 * been accounted, so we're correct here as well.
2499 */
2500 if (!p->on_cpu || !task_on_rq_queued(p))
2501 return p->se.sum_exec_runtime;
2502 #endif
2503
2504 rq = task_rq_lock(p, &flags);
2505 /*
2506 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2507 * project cycles that may never be accounted to this
2508 * thread, breaking clock_gettime().
2509 */
2510 if (task_current(rq, p) && task_on_rq_queued(p)) {
2511 update_rq_clock(rq);
2512 p->sched_class->update_curr(rq);
2513 }
2514 ns = p->se.sum_exec_runtime;
2515 task_rq_unlock(rq, p, &flags);
2516
2517 return ns;
2518 }
2519
2520 /*
2521 * This function gets called by the timer code, with HZ frequency.
2522 * We call it with interrupts disabled.
2523 */
2524 void scheduler_tick(void)
2525 {
2526 int cpu = smp_processor_id();
2527 struct rq *rq = cpu_rq(cpu);
2528 struct task_struct *curr = rq->curr;
2529
2530 sched_clock_tick();
2531
2532 raw_spin_lock(&rq->lock);
2533 update_rq_clock(rq);
2534 curr->sched_class->task_tick(rq, curr, 0);
2535 update_cpu_load_active(rq);
2536 raw_spin_unlock(&rq->lock);
2537
2538 perf_event_task_tick();
2539
2540 #ifdef CONFIG_SMP
2541 rq->idle_balance = idle_cpu(cpu);
2542 trigger_load_balance(rq);
2543 #endif
2544 rq_last_tick_reset(rq);
2545 }
2546
2547 #ifdef CONFIG_NO_HZ_FULL
2548 /**
2549 * scheduler_tick_max_deferment
2550 *
2551 * Keep at least one tick per second when a single
2552 * active task is running because the scheduler doesn't
2553 * yet completely support full dynticks environment.
2554 *
2555 * This makes sure that uptime, CFS vruntime, load
2556 * balancing, etc... continue to move forward, even
2557 * with a very low granularity.
2558 *
2559 * Return: Maximum deferment in nanoseconds.
2560 */
2561 u64 scheduler_tick_max_deferment(void)
2562 {
2563 struct rq *rq = this_rq();
2564 unsigned long next, now = ACCESS_ONCE(jiffies);
2565
2566 next = rq->last_sched_tick + HZ;
2567
2568 if (time_before_eq(next, now))
2569 return 0;
2570
2571 return jiffies_to_nsecs(next - now);
2572 }
2573 #endif
2574
2575 notrace unsigned long get_parent_ip(unsigned long addr)
2576 {
2577 if (in_lock_functions(addr)) {
2578 addr = CALLER_ADDR2;
2579 if (in_lock_functions(addr))
2580 addr = CALLER_ADDR3;
2581 }
2582 return addr;
2583 }
2584
2585 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2586 defined(CONFIG_PREEMPT_TRACER))
2587
2588 void preempt_count_add(int val)
2589 {
2590 #ifdef CONFIG_DEBUG_PREEMPT
2591 /*
2592 * Underflow?
2593 */
2594 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2595 return;
2596 #endif
2597 __preempt_count_add(val);
2598 #ifdef CONFIG_DEBUG_PREEMPT
2599 /*
2600 * Spinlock count overflowing soon?
2601 */
2602 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2603 PREEMPT_MASK - 10);
2604 #endif
2605 if (preempt_count() == val) {
2606 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2607 #ifdef CONFIG_DEBUG_PREEMPT
2608 current->preempt_disable_ip = ip;
2609 #endif
2610 trace_preempt_off(CALLER_ADDR0, ip);
2611 }
2612 }
2613 EXPORT_SYMBOL(preempt_count_add);
2614 NOKPROBE_SYMBOL(preempt_count_add);
2615
2616 void preempt_count_sub(int val)
2617 {
2618 #ifdef CONFIG_DEBUG_PREEMPT
2619 /*
2620 * Underflow?
2621 */
2622 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2623 return;
2624 /*
2625 * Is the spinlock portion underflowing?
2626 */
2627 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2628 !(preempt_count() & PREEMPT_MASK)))
2629 return;
2630 #endif
2631
2632 if (preempt_count() == val)
2633 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2634 __preempt_count_sub(val);
2635 }
2636 EXPORT_SYMBOL(preempt_count_sub);
2637 NOKPROBE_SYMBOL(preempt_count_sub);
2638
2639 #endif
2640
2641 /*
2642 * Print scheduling while atomic bug:
2643 */
2644 static noinline void __schedule_bug(struct task_struct *prev)
2645 {
2646 if (oops_in_progress)
2647 return;
2648
2649 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2650 prev->comm, prev->pid, preempt_count());
2651
2652 debug_show_held_locks(prev);
2653 print_modules();
2654 if (irqs_disabled())
2655 print_irqtrace_events(prev);
2656 #ifdef CONFIG_DEBUG_PREEMPT
2657 if (in_atomic_preempt_off()) {
2658 pr_err("Preemption disabled at:");
2659 print_ip_sym(current->preempt_disable_ip);
2660 pr_cont("\n");
2661 }
2662 #endif
2663 dump_stack();
2664 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2665 }
2666
2667 /*
2668 * Various schedule()-time debugging checks and statistics:
2669 */
2670 static inline void schedule_debug(struct task_struct *prev)
2671 {
2672 #ifdef CONFIG_SCHED_STACK_END_CHECK
2673 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2674 #endif
2675 /*
2676 * Test if we are atomic. Since do_exit() needs to call into
2677 * schedule() atomically, we ignore that path. Otherwise whine
2678 * if we are scheduling when we should not.
2679 */
2680 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2681 __schedule_bug(prev);
2682 rcu_sleep_check();
2683
2684 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2685
2686 schedstat_inc(this_rq(), sched_count);
2687 }
2688
2689 /*
2690 * Pick up the highest-prio task:
2691 */
2692 static inline struct task_struct *
2693 pick_next_task(struct rq *rq, struct task_struct *prev)
2694 {
2695 const struct sched_class *class = &fair_sched_class;
2696 struct task_struct *p;
2697
2698 /*
2699 * Optimization: we know that if all tasks are in
2700 * the fair class we can call that function directly:
2701 */
2702 if (likely(prev->sched_class == class &&
2703 rq->nr_running == rq->cfs.h_nr_running)) {
2704 p = fair_sched_class.pick_next_task(rq, prev);
2705 if (unlikely(p == RETRY_TASK))
2706 goto again;
2707
2708 /* assumes fair_sched_class->next == idle_sched_class */
2709 if (unlikely(!p))
2710 p = idle_sched_class.pick_next_task(rq, prev);
2711
2712 return p;
2713 }
2714
2715 again:
2716 for_each_class(class) {
2717 p = class->pick_next_task(rq, prev);
2718 if (p) {
2719 if (unlikely(p == RETRY_TASK))
2720 goto again;
2721 return p;
2722 }
2723 }
2724
2725 BUG(); /* the idle class will always have a runnable task */
2726 }
2727
2728 /*
2729 * __schedule() is the main scheduler function.
2730 *
2731 * The main means of driving the scheduler and thus entering this function are:
2732 *
2733 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2734 *
2735 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2736 * paths. For example, see arch/x86/entry_64.S.
2737 *
2738 * To drive preemption between tasks, the scheduler sets the flag in timer
2739 * interrupt handler scheduler_tick().
2740 *
2741 * 3. Wakeups don't really cause entry into schedule(). They add a
2742 * task to the run-queue and that's it.
2743 *
2744 * Now, if the new task added to the run-queue preempts the current
2745 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2746 * called on the nearest possible occasion:
2747 *
2748 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2749 *
2750 * - in syscall or exception context, at the next outmost
2751 * preempt_enable(). (this might be as soon as the wake_up()'s
2752 * spin_unlock()!)
2753 *
2754 * - in IRQ context, return from interrupt-handler to
2755 * preemptible context
2756 *
2757 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2758 * then at the next:
2759 *
2760 * - cond_resched() call
2761 * - explicit schedule() call
2762 * - return from syscall or exception to user-space
2763 * - return from interrupt-handler to user-space
2764 */
2765 static void __sched __schedule(void)
2766 {
2767 struct task_struct *prev, *next;
2768 unsigned long *switch_count;
2769 struct rq *rq;
2770 int cpu;
2771
2772 need_resched:
2773 preempt_disable();
2774 cpu = smp_processor_id();
2775 rq = cpu_rq(cpu);
2776 rcu_note_context_switch(cpu);
2777 prev = rq->curr;
2778
2779 schedule_debug(prev);
2780
2781 if (sched_feat(HRTICK))
2782 hrtick_clear(rq);
2783
2784 /*
2785 * Make sure that signal_pending_state()->signal_pending() below
2786 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2787 * done by the caller to avoid the race with signal_wake_up().
2788 */
2789 smp_mb__before_spinlock();
2790 raw_spin_lock_irq(&rq->lock);
2791
2792 switch_count = &prev->nivcsw;
2793 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2794 if (unlikely(signal_pending_state(prev->state, prev))) {
2795 prev->state = TASK_RUNNING;
2796 } else {
2797 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2798 prev->on_rq = 0;
2799
2800 /*
2801 * If a worker went to sleep, notify and ask workqueue
2802 * whether it wants to wake up a task to maintain
2803 * concurrency.
2804 */
2805 if (prev->flags & PF_WQ_WORKER) {
2806 struct task_struct *to_wakeup;
2807
2808 to_wakeup = wq_worker_sleeping(prev, cpu);
2809 if (to_wakeup)
2810 try_to_wake_up_local(to_wakeup);
2811 }
2812 }
2813 switch_count = &prev->nvcsw;
2814 }
2815
2816 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2817 update_rq_clock(rq);
2818
2819 next = pick_next_task(rq, prev);
2820 clear_tsk_need_resched(prev);
2821 clear_preempt_need_resched();
2822 rq->skip_clock_update = 0;
2823
2824 if (likely(prev != next)) {
2825 rq->nr_switches++;
2826 rq->curr = next;
2827 ++*switch_count;
2828
2829 context_switch(rq, prev, next); /* unlocks the rq */
2830 /*
2831 * The context switch have flipped the stack from under us
2832 * and restored the local variables which were saved when
2833 * this task called schedule() in the past. prev == current
2834 * is still correct, but it can be moved to another cpu/rq.
2835 */
2836 cpu = smp_processor_id();
2837 rq = cpu_rq(cpu);
2838 } else
2839 raw_spin_unlock_irq(&rq->lock);
2840
2841 post_schedule(rq);
2842
2843 sched_preempt_enable_no_resched();
2844 if (need_resched())
2845 goto need_resched;
2846 }
2847
2848 static inline void sched_submit_work(struct task_struct *tsk)
2849 {
2850 if (!tsk->state || tsk_is_pi_blocked(tsk))
2851 return;
2852 /*
2853 * If we are going to sleep and we have plugged IO queued,
2854 * make sure to submit it to avoid deadlocks.
2855 */
2856 if (blk_needs_flush_plug(tsk))
2857 blk_schedule_flush_plug(tsk);
2858 }
2859
2860 asmlinkage __visible void __sched schedule(void)
2861 {
2862 struct task_struct *tsk = current;
2863
2864 sched_submit_work(tsk);
2865 __schedule();
2866 }
2867 EXPORT_SYMBOL(schedule);
2868
2869 #ifdef CONFIG_CONTEXT_TRACKING
2870 asmlinkage __visible void __sched schedule_user(void)
2871 {
2872 /*
2873 * If we come here after a random call to set_need_resched(),
2874 * or we have been woken up remotely but the IPI has not yet arrived,
2875 * we haven't yet exited the RCU idle mode. Do it here manually until
2876 * we find a better solution.
2877 */
2878 user_exit();
2879 schedule();
2880 user_enter();
2881 }
2882 #endif
2883
2884 /**
2885 * schedule_preempt_disabled - called with preemption disabled
2886 *
2887 * Returns with preemption disabled. Note: preempt_count must be 1
2888 */
2889 void __sched schedule_preempt_disabled(void)
2890 {
2891 sched_preempt_enable_no_resched();
2892 schedule();
2893 preempt_disable();
2894 }
2895
2896 #ifdef CONFIG_PREEMPT
2897 /*
2898 * this is the entry point to schedule() from in-kernel preemption
2899 * off of preempt_enable. Kernel preemptions off return from interrupt
2900 * occur there and call schedule directly.
2901 */
2902 asmlinkage __visible void __sched notrace preempt_schedule(void)
2903 {
2904 /*
2905 * If there is a non-zero preempt_count or interrupts are disabled,
2906 * we do not want to preempt the current task. Just return..
2907 */
2908 if (likely(!preemptible()))
2909 return;
2910
2911 do {
2912 __preempt_count_add(PREEMPT_ACTIVE);
2913 __schedule();
2914 __preempt_count_sub(PREEMPT_ACTIVE);
2915
2916 /*
2917 * Check again in case we missed a preemption opportunity
2918 * between schedule and now.
2919 */
2920 barrier();
2921 } while (need_resched());
2922 }
2923 NOKPROBE_SYMBOL(preempt_schedule);
2924 EXPORT_SYMBOL(preempt_schedule);
2925
2926 #ifdef CONFIG_CONTEXT_TRACKING
2927 /**
2928 * preempt_schedule_context - preempt_schedule called by tracing
2929 *
2930 * The tracing infrastructure uses preempt_enable_notrace to prevent
2931 * recursion and tracing preempt enabling caused by the tracing
2932 * infrastructure itself. But as tracing can happen in areas coming
2933 * from userspace or just about to enter userspace, a preempt enable
2934 * can occur before user_exit() is called. This will cause the scheduler
2935 * to be called when the system is still in usermode.
2936 *
2937 * To prevent this, the preempt_enable_notrace will use this function
2938 * instead of preempt_schedule() to exit user context if needed before
2939 * calling the scheduler.
2940 */
2941 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2942 {
2943 enum ctx_state prev_ctx;
2944
2945 if (likely(!preemptible()))
2946 return;
2947
2948 do {
2949 __preempt_count_add(PREEMPT_ACTIVE);
2950 /*
2951 * Needs preempt disabled in case user_exit() is traced
2952 * and the tracer calls preempt_enable_notrace() causing
2953 * an infinite recursion.
2954 */
2955 prev_ctx = exception_enter();
2956 __schedule();
2957 exception_exit(prev_ctx);
2958
2959 __preempt_count_sub(PREEMPT_ACTIVE);
2960 barrier();
2961 } while (need_resched());
2962 }
2963 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2964 #endif /* CONFIG_CONTEXT_TRACKING */
2965
2966 #endif /* CONFIG_PREEMPT */
2967
2968 /*
2969 * this is the entry point to schedule() from kernel preemption
2970 * off of irq context.
2971 * Note, that this is called and return with irqs disabled. This will
2972 * protect us against recursive calling from irq.
2973 */
2974 asmlinkage __visible void __sched preempt_schedule_irq(void)
2975 {
2976 enum ctx_state prev_state;
2977
2978 /* Catch callers which need to be fixed */
2979 BUG_ON(preempt_count() || !irqs_disabled());
2980
2981 prev_state = exception_enter();
2982
2983 do {
2984 __preempt_count_add(PREEMPT_ACTIVE);
2985 local_irq_enable();
2986 __schedule();
2987 local_irq_disable();
2988 __preempt_count_sub(PREEMPT_ACTIVE);
2989
2990 /*
2991 * Check again in case we missed a preemption opportunity
2992 * between schedule and now.
2993 */
2994 barrier();
2995 } while (need_resched());
2996
2997 exception_exit(prev_state);
2998 }
2999
3000 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3001 void *key)
3002 {
3003 return try_to_wake_up(curr->private, mode, wake_flags);
3004 }
3005 EXPORT_SYMBOL(default_wake_function);
3006
3007 #ifdef CONFIG_RT_MUTEXES
3008
3009 /*
3010 * rt_mutex_setprio - set the current priority of a task
3011 * @p: task
3012 * @prio: prio value (kernel-internal form)
3013 *
3014 * This function changes the 'effective' priority of a task. It does
3015 * not touch ->normal_prio like __setscheduler().
3016 *
3017 * Used by the rt_mutex code to implement priority inheritance
3018 * logic. Call site only calls if the priority of the task changed.
3019 */
3020 void rt_mutex_setprio(struct task_struct *p, int prio)
3021 {
3022 int oldprio, queued, running, enqueue_flag = 0;
3023 struct rq *rq;
3024 const struct sched_class *prev_class;
3025
3026 BUG_ON(prio > MAX_PRIO);
3027
3028 rq = __task_rq_lock(p);
3029
3030 /*
3031 * Idle task boosting is a nono in general. There is one
3032 * exception, when PREEMPT_RT and NOHZ is active:
3033 *
3034 * The idle task calls get_next_timer_interrupt() and holds
3035 * the timer wheel base->lock on the CPU and another CPU wants
3036 * to access the timer (probably to cancel it). We can safely
3037 * ignore the boosting request, as the idle CPU runs this code
3038 * with interrupts disabled and will complete the lock
3039 * protected section without being interrupted. So there is no
3040 * real need to boost.
3041 */
3042 if (unlikely(p == rq->idle)) {
3043 WARN_ON(p != rq->curr);
3044 WARN_ON(p->pi_blocked_on);
3045 goto out_unlock;
3046 }
3047
3048 trace_sched_pi_setprio(p, prio);
3049 oldprio = p->prio;
3050 prev_class = p->sched_class;
3051 queued = task_on_rq_queued(p);
3052 running = task_current(rq, p);
3053 if (queued)
3054 dequeue_task(rq, p, 0);
3055 if (running)
3056 put_prev_task(rq, p);
3057
3058 /*
3059 * Boosting condition are:
3060 * 1. -rt task is running and holds mutex A
3061 * --> -dl task blocks on mutex A
3062 *
3063 * 2. -dl task is running and holds mutex A
3064 * --> -dl task blocks on mutex A and could preempt the
3065 * running task
3066 */
3067 if (dl_prio(prio)) {
3068 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3069 if (!dl_prio(p->normal_prio) ||
3070 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3071 p->dl.dl_boosted = 1;
3072 p->dl.dl_throttled = 0;
3073 enqueue_flag = ENQUEUE_REPLENISH;
3074 } else
3075 p->dl.dl_boosted = 0;
3076 p->sched_class = &dl_sched_class;
3077 } else if (rt_prio(prio)) {
3078 if (dl_prio(oldprio))
3079 p->dl.dl_boosted = 0;
3080 if (oldprio < prio)
3081 enqueue_flag = ENQUEUE_HEAD;
3082 p->sched_class = &rt_sched_class;
3083 } else {
3084 if (dl_prio(oldprio))
3085 p->dl.dl_boosted = 0;
3086 p->sched_class = &fair_sched_class;
3087 }
3088
3089 p->prio = prio;
3090
3091 if (running)
3092 p->sched_class->set_curr_task(rq);
3093 if (queued)
3094 enqueue_task(rq, p, enqueue_flag);
3095
3096 check_class_changed(rq, p, prev_class, oldprio);
3097 out_unlock:
3098 __task_rq_unlock(rq);
3099 }
3100 #endif
3101
3102 void set_user_nice(struct task_struct *p, long nice)
3103 {
3104 int old_prio, delta, queued;
3105 unsigned long flags;
3106 struct rq *rq;
3107
3108 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3109 return;
3110 /*
3111 * We have to be careful, if called from sys_setpriority(),
3112 * the task might be in the middle of scheduling on another CPU.
3113 */
3114 rq = task_rq_lock(p, &flags);
3115 /*
3116 * The RT priorities are set via sched_setscheduler(), but we still
3117 * allow the 'normal' nice value to be set - but as expected
3118 * it wont have any effect on scheduling until the task is
3119 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3120 */
3121 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3122 p->static_prio = NICE_TO_PRIO(nice);
3123 goto out_unlock;
3124 }
3125 queued = task_on_rq_queued(p);
3126 if (queued)
3127 dequeue_task(rq, p, 0);
3128
3129 p->static_prio = NICE_TO_PRIO(nice);
3130 set_load_weight(p);
3131 old_prio = p->prio;
3132 p->prio = effective_prio(p);
3133 delta = p->prio - old_prio;
3134
3135 if (queued) {
3136 enqueue_task(rq, p, 0);
3137 /*
3138 * If the task increased its priority or is running and
3139 * lowered its priority, then reschedule its CPU:
3140 */
3141 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3142 resched_curr(rq);
3143 }
3144 out_unlock:
3145 task_rq_unlock(rq, p, &flags);
3146 }
3147 EXPORT_SYMBOL(set_user_nice);
3148
3149 /*
3150 * can_nice - check if a task can reduce its nice value
3151 * @p: task
3152 * @nice: nice value
3153 */
3154 int can_nice(const struct task_struct *p, const int nice)
3155 {
3156 /* convert nice value [19,-20] to rlimit style value [1,40] */
3157 int nice_rlim = nice_to_rlimit(nice);
3158
3159 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3160 capable(CAP_SYS_NICE));
3161 }
3162
3163 #ifdef __ARCH_WANT_SYS_NICE
3164
3165 /*
3166 * sys_nice - change the priority of the current process.
3167 * @increment: priority increment
3168 *
3169 * sys_setpriority is a more generic, but much slower function that
3170 * does similar things.
3171 */
3172 SYSCALL_DEFINE1(nice, int, increment)
3173 {
3174 long nice, retval;
3175
3176 /*
3177 * Setpriority might change our priority at the same moment.
3178 * We don't have to worry. Conceptually one call occurs first
3179 * and we have a single winner.
3180 */
3181 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3182 nice = task_nice(current) + increment;
3183
3184 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3185 if (increment < 0 && !can_nice(current, nice))
3186 return -EPERM;
3187
3188 retval = security_task_setnice(current, nice);
3189 if (retval)
3190 return retval;
3191
3192 set_user_nice(current, nice);
3193 return 0;
3194 }
3195
3196 #endif
3197
3198 /**
3199 * task_prio - return the priority value of a given task.
3200 * @p: the task in question.
3201 *
3202 * Return: The priority value as seen by users in /proc.
3203 * RT tasks are offset by -200. Normal tasks are centered
3204 * around 0, value goes from -16 to +15.
3205 */
3206 int task_prio(const struct task_struct *p)
3207 {
3208 return p->prio - MAX_RT_PRIO;
3209 }
3210
3211 /**
3212 * idle_cpu - is a given cpu idle currently?
3213 * @cpu: the processor in question.
3214 *
3215 * Return: 1 if the CPU is currently idle. 0 otherwise.
3216 */
3217 int idle_cpu(int cpu)
3218 {
3219 struct rq *rq = cpu_rq(cpu);
3220
3221 if (rq->curr != rq->idle)
3222 return 0;
3223
3224 if (rq->nr_running)
3225 return 0;
3226
3227 #ifdef CONFIG_SMP
3228 if (!llist_empty(&rq->wake_list))
3229 return 0;
3230 #endif
3231
3232 return 1;
3233 }
3234
3235 /**
3236 * idle_task - return the idle task for a given cpu.
3237 * @cpu: the processor in question.
3238 *
3239 * Return: The idle task for the cpu @cpu.
3240 */
3241 struct task_struct *idle_task(int cpu)
3242 {
3243 return cpu_rq(cpu)->idle;
3244 }
3245
3246 /**
3247 * find_process_by_pid - find a process with a matching PID value.
3248 * @pid: the pid in question.
3249 *
3250 * The task of @pid, if found. %NULL otherwise.
3251 */
3252 static struct task_struct *find_process_by_pid(pid_t pid)
3253 {
3254 return pid ? find_task_by_vpid(pid) : current;
3255 }
3256
3257 /*
3258 * This function initializes the sched_dl_entity of a newly becoming
3259 * SCHED_DEADLINE task.
3260 *
3261 * Only the static values are considered here, the actual runtime and the
3262 * absolute deadline will be properly calculated when the task is enqueued
3263 * for the first time with its new policy.
3264 */
3265 static void
3266 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3267 {
3268 struct sched_dl_entity *dl_se = &p->dl;
3269
3270 init_dl_task_timer(dl_se);
3271 dl_se->dl_runtime = attr->sched_runtime;
3272 dl_se->dl_deadline = attr->sched_deadline;
3273 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3274 dl_se->flags = attr->sched_flags;
3275 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3276 dl_se->dl_throttled = 0;
3277 dl_se->dl_new = 1;
3278 dl_se->dl_yielded = 0;
3279 }
3280
3281 /*
3282 * sched_setparam() passes in -1 for its policy, to let the functions
3283 * it calls know not to change it.
3284 */
3285 #define SETPARAM_POLICY -1
3286
3287 static void __setscheduler_params(struct task_struct *p,
3288 const struct sched_attr *attr)
3289 {
3290 int policy = attr->sched_policy;
3291
3292 if (policy == SETPARAM_POLICY)
3293 policy = p->policy;
3294
3295 p->policy = policy;
3296
3297 if (dl_policy(policy))
3298 __setparam_dl(p, attr);
3299 else if (fair_policy(policy))
3300 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3301
3302 /*
3303 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3304 * !rt_policy. Always setting this ensures that things like
3305 * getparam()/getattr() don't report silly values for !rt tasks.
3306 */
3307 p->rt_priority = attr->sched_priority;
3308 p->normal_prio = normal_prio(p);
3309 set_load_weight(p);
3310 }
3311
3312 /* Actually do priority change: must hold pi & rq lock. */
3313 static void __setscheduler(struct rq *rq, struct task_struct *p,
3314 const struct sched_attr *attr)
3315 {
3316 __setscheduler_params(p, attr);
3317
3318 /*
3319 * If we get here, there was no pi waiters boosting the
3320 * task. It is safe to use the normal prio.
3321 */
3322 p->prio = normal_prio(p);
3323
3324 if (dl_prio(p->prio))
3325 p->sched_class = &dl_sched_class;
3326 else if (rt_prio(p->prio))
3327 p->sched_class = &rt_sched_class;
3328 else
3329 p->sched_class = &fair_sched_class;
3330 }
3331
3332 static void
3333 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3334 {
3335 struct sched_dl_entity *dl_se = &p->dl;
3336
3337 attr->sched_priority = p->rt_priority;
3338 attr->sched_runtime = dl_se->dl_runtime;
3339 attr->sched_deadline = dl_se->dl_deadline;
3340 attr->sched_period = dl_se->dl_period;
3341 attr->sched_flags = dl_se->flags;
3342 }
3343
3344 /*
3345 * This function validates the new parameters of a -deadline task.
3346 * We ask for the deadline not being zero, and greater or equal
3347 * than the runtime, as well as the period of being zero or
3348 * greater than deadline. Furthermore, we have to be sure that
3349 * user parameters are above the internal resolution of 1us (we
3350 * check sched_runtime only since it is always the smaller one) and
3351 * below 2^63 ns (we have to check both sched_deadline and
3352 * sched_period, as the latter can be zero).
3353 */
3354 static bool
3355 __checkparam_dl(const struct sched_attr *attr)
3356 {
3357 /* deadline != 0 */
3358 if (attr->sched_deadline == 0)
3359 return false;
3360
3361 /*
3362 * Since we truncate DL_SCALE bits, make sure we're at least
3363 * that big.
3364 */
3365 if (attr->sched_runtime < (1ULL << DL_SCALE))
3366 return false;
3367
3368 /*
3369 * Since we use the MSB for wrap-around and sign issues, make
3370 * sure it's not set (mind that period can be equal to zero).
3371 */
3372 if (attr->sched_deadline & (1ULL << 63) ||
3373 attr->sched_period & (1ULL << 63))
3374 return false;
3375
3376 /* runtime <= deadline <= period (if period != 0) */
3377 if ((attr->sched_period != 0 &&
3378 attr->sched_period < attr->sched_deadline) ||
3379 attr->sched_deadline < attr->sched_runtime)
3380 return false;
3381
3382 return true;
3383 }
3384
3385 /*
3386 * check the target process has a UID that matches the current process's
3387 */
3388 static bool check_same_owner(struct task_struct *p)
3389 {
3390 const struct cred *cred = current_cred(), *pcred;
3391 bool match;
3392
3393 rcu_read_lock();
3394 pcred = __task_cred(p);
3395 match = (uid_eq(cred->euid, pcred->euid) ||
3396 uid_eq(cred->euid, pcred->uid));
3397 rcu_read_unlock();
3398 return match;
3399 }
3400
3401 static int __sched_setscheduler(struct task_struct *p,
3402 const struct sched_attr *attr,
3403 bool user)
3404 {
3405 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3406 MAX_RT_PRIO - 1 - attr->sched_priority;
3407 int retval, oldprio, oldpolicy = -1, queued, running;
3408 int policy = attr->sched_policy;
3409 unsigned long flags;
3410 const struct sched_class *prev_class;
3411 struct rq *rq;
3412 int reset_on_fork;
3413
3414 /* may grab non-irq protected spin_locks */
3415 BUG_ON(in_interrupt());
3416 recheck:
3417 /* double check policy once rq lock held */
3418 if (policy < 0) {
3419 reset_on_fork = p->sched_reset_on_fork;
3420 policy = oldpolicy = p->policy;
3421 } else {
3422 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3423
3424 if (policy != SCHED_DEADLINE &&
3425 policy != SCHED_FIFO && policy != SCHED_RR &&
3426 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3427 policy != SCHED_IDLE)
3428 return -EINVAL;
3429 }
3430
3431 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3432 return -EINVAL;
3433
3434 /*
3435 * Valid priorities for SCHED_FIFO and SCHED_RR are
3436 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3437 * SCHED_BATCH and SCHED_IDLE is 0.
3438 */
3439 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3440 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3441 return -EINVAL;
3442 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3443 (rt_policy(policy) != (attr->sched_priority != 0)))
3444 return -EINVAL;
3445
3446 /*
3447 * Allow unprivileged RT tasks to decrease priority:
3448 */
3449 if (user && !capable(CAP_SYS_NICE)) {
3450 if (fair_policy(policy)) {
3451 if (attr->sched_nice < task_nice(p) &&
3452 !can_nice(p, attr->sched_nice))
3453 return -EPERM;
3454 }
3455
3456 if (rt_policy(policy)) {
3457 unsigned long rlim_rtprio =
3458 task_rlimit(p, RLIMIT_RTPRIO);
3459
3460 /* can't set/change the rt policy */
3461 if (policy != p->policy && !rlim_rtprio)
3462 return -EPERM;
3463
3464 /* can't increase priority */
3465 if (attr->sched_priority > p->rt_priority &&
3466 attr->sched_priority > rlim_rtprio)
3467 return -EPERM;
3468 }
3469
3470 /*
3471 * Can't set/change SCHED_DEADLINE policy at all for now
3472 * (safest behavior); in the future we would like to allow
3473 * unprivileged DL tasks to increase their relative deadline
3474 * or reduce their runtime (both ways reducing utilization)
3475 */
3476 if (dl_policy(policy))
3477 return -EPERM;
3478
3479 /*
3480 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3481 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3482 */
3483 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3484 if (!can_nice(p, task_nice(p)))
3485 return -EPERM;
3486 }
3487
3488 /* can't change other user's priorities */
3489 if (!check_same_owner(p))
3490 return -EPERM;
3491
3492 /* Normal users shall not reset the sched_reset_on_fork flag */
3493 if (p->sched_reset_on_fork && !reset_on_fork)
3494 return -EPERM;
3495 }
3496
3497 if (user) {
3498 retval = security_task_setscheduler(p);
3499 if (retval)
3500 return retval;
3501 }
3502
3503 /*
3504 * make sure no PI-waiters arrive (or leave) while we are
3505 * changing the priority of the task:
3506 *
3507 * To be able to change p->policy safely, the appropriate
3508 * runqueue lock must be held.
3509 */
3510 rq = task_rq_lock(p, &flags);
3511
3512 /*
3513 * Changing the policy of the stop threads its a very bad idea
3514 */
3515 if (p == rq->stop) {
3516 task_rq_unlock(rq, p, &flags);
3517 return -EINVAL;
3518 }
3519
3520 /*
3521 * If not changing anything there's no need to proceed further,
3522 * but store a possible modification of reset_on_fork.
3523 */
3524 if (unlikely(policy == p->policy)) {
3525 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3526 goto change;
3527 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3528 goto change;
3529 if (dl_policy(policy))
3530 goto change;
3531
3532 p->sched_reset_on_fork = reset_on_fork;
3533 task_rq_unlock(rq, p, &flags);
3534 return 0;
3535 }
3536 change:
3537
3538 if (user) {
3539 #ifdef CONFIG_RT_GROUP_SCHED
3540 /*
3541 * Do not allow realtime tasks into groups that have no runtime
3542 * assigned.
3543 */
3544 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3545 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3546 !task_group_is_autogroup(task_group(p))) {
3547 task_rq_unlock(rq, p, &flags);
3548 return -EPERM;
3549 }
3550 #endif
3551 #ifdef CONFIG_SMP
3552 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3553 cpumask_t *span = rq->rd->span;
3554
3555 /*
3556 * Don't allow tasks with an affinity mask smaller than
3557 * the entire root_domain to become SCHED_DEADLINE. We
3558 * will also fail if there's no bandwidth available.
3559 */
3560 if (!cpumask_subset(span, &p->cpus_allowed) ||
3561 rq->rd->dl_bw.bw == 0) {
3562 task_rq_unlock(rq, p, &flags);
3563 return -EPERM;
3564 }
3565 }
3566 #endif
3567 }
3568
3569 /* recheck policy now with rq lock held */
3570 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3571 policy = oldpolicy = -1;
3572 task_rq_unlock(rq, p, &flags);
3573 goto recheck;
3574 }
3575
3576 /*
3577 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3578 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3579 * is available.
3580 */
3581 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3582 task_rq_unlock(rq, p, &flags);
3583 return -EBUSY;
3584 }
3585
3586 p->sched_reset_on_fork = reset_on_fork;
3587 oldprio = p->prio;
3588
3589 /*
3590 * Special case for priority boosted tasks.
3591 *
3592 * If the new priority is lower or equal (user space view)
3593 * than the current (boosted) priority, we just store the new
3594 * normal parameters and do not touch the scheduler class and
3595 * the runqueue. This will be done when the task deboost
3596 * itself.
3597 */
3598 if (rt_mutex_check_prio(p, newprio)) {
3599 __setscheduler_params(p, attr);
3600 task_rq_unlock(rq, p, &flags);
3601 return 0;
3602 }
3603
3604 queued = task_on_rq_queued(p);
3605 running = task_current(rq, p);
3606 if (queued)
3607 dequeue_task(rq, p, 0);
3608 if (running)
3609 put_prev_task(rq, p);
3610
3611 prev_class = p->sched_class;
3612 __setscheduler(rq, p, attr);
3613
3614 if (running)
3615 p->sched_class->set_curr_task(rq);
3616 if (queued) {
3617 /*
3618 * We enqueue to tail when the priority of a task is
3619 * increased (user space view).
3620 */
3621 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3622 }
3623
3624 check_class_changed(rq, p, prev_class, oldprio);
3625 task_rq_unlock(rq, p, &flags);
3626
3627 rt_mutex_adjust_pi(p);
3628
3629 return 0;
3630 }
3631
3632 static int _sched_setscheduler(struct task_struct *p, int policy,
3633 const struct sched_param *param, bool check)
3634 {
3635 struct sched_attr attr = {
3636 .sched_policy = policy,
3637 .sched_priority = param->sched_priority,
3638 .sched_nice = PRIO_TO_NICE(p->static_prio),
3639 };
3640
3641 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3642 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3643 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3644 policy &= ~SCHED_RESET_ON_FORK;
3645 attr.sched_policy = policy;
3646 }
3647
3648 return __sched_setscheduler(p, &attr, check);
3649 }
3650 /**
3651 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3652 * @p: the task in question.
3653 * @policy: new policy.
3654 * @param: structure containing the new RT priority.
3655 *
3656 * Return: 0 on success. An error code otherwise.
3657 *
3658 * NOTE that the task may be already dead.
3659 */
3660 int sched_setscheduler(struct task_struct *p, int policy,
3661 const struct sched_param *param)
3662 {
3663 return _sched_setscheduler(p, policy, param, true);
3664 }
3665 EXPORT_SYMBOL_GPL(sched_setscheduler);
3666
3667 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3668 {
3669 return __sched_setscheduler(p, attr, true);
3670 }
3671 EXPORT_SYMBOL_GPL(sched_setattr);
3672
3673 /**
3674 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3675 * @p: the task in question.
3676 * @policy: new policy.
3677 * @param: structure containing the new RT priority.
3678 *
3679 * Just like sched_setscheduler, only don't bother checking if the
3680 * current context has permission. For example, this is needed in
3681 * stop_machine(): we create temporary high priority worker threads,
3682 * but our caller might not have that capability.
3683 *
3684 * Return: 0 on success. An error code otherwise.
3685 */
3686 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3687 const struct sched_param *param)
3688 {
3689 return _sched_setscheduler(p, policy, param, false);
3690 }
3691
3692 static int
3693 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3694 {
3695 struct sched_param lparam;
3696 struct task_struct *p;
3697 int retval;
3698
3699 if (!param || pid < 0)
3700 return -EINVAL;
3701 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3702 return -EFAULT;
3703
3704 rcu_read_lock();
3705 retval = -ESRCH;
3706 p = find_process_by_pid(pid);
3707 if (p != NULL)
3708 retval = sched_setscheduler(p, policy, &lparam);
3709 rcu_read_unlock();
3710
3711 return retval;
3712 }
3713
3714 /*
3715 * Mimics kernel/events/core.c perf_copy_attr().
3716 */
3717 static int sched_copy_attr(struct sched_attr __user *uattr,
3718 struct sched_attr *attr)
3719 {
3720 u32 size;
3721 int ret;
3722
3723 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3724 return -EFAULT;
3725
3726 /*
3727 * zero the full structure, so that a short copy will be nice.
3728 */
3729 memset(attr, 0, sizeof(*attr));
3730
3731 ret = get_user(size, &uattr->size);
3732 if (ret)
3733 return ret;
3734
3735 if (size > PAGE_SIZE) /* silly large */
3736 goto err_size;
3737
3738 if (!size) /* abi compat */
3739 size = SCHED_ATTR_SIZE_VER0;
3740
3741 if (size < SCHED_ATTR_SIZE_VER0)
3742 goto err_size;
3743
3744 /*
3745 * If we're handed a bigger struct than we know of,
3746 * ensure all the unknown bits are 0 - i.e. new
3747 * user-space does not rely on any kernel feature
3748 * extensions we dont know about yet.
3749 */
3750 if (size > sizeof(*attr)) {
3751 unsigned char __user *addr;
3752 unsigned char __user *end;
3753 unsigned char val;
3754
3755 addr = (void __user *)uattr + sizeof(*attr);
3756 end = (void __user *)uattr + size;
3757
3758 for (; addr < end; addr++) {
3759 ret = get_user(val, addr);
3760 if (ret)
3761 return ret;
3762 if (val)
3763 goto err_size;
3764 }
3765 size = sizeof(*attr);
3766 }
3767
3768 ret = copy_from_user(attr, uattr, size);
3769 if (ret)
3770 return -EFAULT;
3771
3772 /*
3773 * XXX: do we want to be lenient like existing syscalls; or do we want
3774 * to be strict and return an error on out-of-bounds values?
3775 */
3776 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3777
3778 return 0;
3779
3780 err_size:
3781 put_user(sizeof(*attr), &uattr->size);
3782 return -E2BIG;
3783 }
3784
3785 /**
3786 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3787 * @pid: the pid in question.
3788 * @policy: new policy.
3789 * @param: structure containing the new RT priority.
3790 *
3791 * Return: 0 on success. An error code otherwise.
3792 */
3793 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3794 struct sched_param __user *, param)
3795 {
3796 /* negative values for policy are not valid */
3797 if (policy < 0)
3798 return -EINVAL;
3799
3800 return do_sched_setscheduler(pid, policy, param);
3801 }
3802
3803 /**
3804 * sys_sched_setparam - set/change the RT priority of a thread
3805 * @pid: the pid in question.
3806 * @param: structure containing the new RT priority.
3807 *
3808 * Return: 0 on success. An error code otherwise.
3809 */
3810 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3811 {
3812 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3813 }
3814
3815 /**
3816 * sys_sched_setattr - same as above, but with extended sched_attr
3817 * @pid: the pid in question.
3818 * @uattr: structure containing the extended parameters.
3819 * @flags: for future extension.
3820 */
3821 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3822 unsigned int, flags)
3823 {
3824 struct sched_attr attr;
3825 struct task_struct *p;
3826 int retval;
3827
3828 if (!uattr || pid < 0 || flags)
3829 return -EINVAL;
3830
3831 retval = sched_copy_attr(uattr, &attr);
3832 if (retval)
3833 return retval;
3834
3835 if ((int)attr.sched_policy < 0)
3836 return -EINVAL;
3837
3838 rcu_read_lock();
3839 retval = -ESRCH;
3840 p = find_process_by_pid(pid);
3841 if (p != NULL)
3842 retval = sched_setattr(p, &attr);
3843 rcu_read_unlock();
3844
3845 return retval;
3846 }
3847
3848 /**
3849 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3850 * @pid: the pid in question.
3851 *
3852 * Return: On success, the policy of the thread. Otherwise, a negative error
3853 * code.
3854 */
3855 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3856 {
3857 struct task_struct *p;
3858 int retval;
3859
3860 if (pid < 0)
3861 return -EINVAL;
3862
3863 retval = -ESRCH;
3864 rcu_read_lock();
3865 p = find_process_by_pid(pid);
3866 if (p) {
3867 retval = security_task_getscheduler(p);
3868 if (!retval)
3869 retval = p->policy
3870 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3871 }
3872 rcu_read_unlock();
3873 return retval;
3874 }
3875
3876 /**
3877 * sys_sched_getparam - get the RT priority of a thread
3878 * @pid: the pid in question.
3879 * @param: structure containing the RT priority.
3880 *
3881 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3882 * code.
3883 */
3884 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3885 {
3886 struct sched_param lp = { .sched_priority = 0 };
3887 struct task_struct *p;
3888 int retval;
3889
3890 if (!param || pid < 0)
3891 return -EINVAL;
3892
3893 rcu_read_lock();
3894 p = find_process_by_pid(pid);
3895 retval = -ESRCH;
3896 if (!p)
3897 goto out_unlock;
3898
3899 retval = security_task_getscheduler(p);
3900 if (retval)
3901 goto out_unlock;
3902
3903 if (task_has_rt_policy(p))
3904 lp.sched_priority = p->rt_priority;
3905 rcu_read_unlock();
3906
3907 /*
3908 * This one might sleep, we cannot do it with a spinlock held ...
3909 */
3910 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3911
3912 return retval;
3913
3914 out_unlock:
3915 rcu_read_unlock();
3916 return retval;
3917 }
3918
3919 static int sched_read_attr(struct sched_attr __user *uattr,
3920 struct sched_attr *attr,
3921 unsigned int usize)
3922 {
3923 int ret;
3924
3925 if (!access_ok(VERIFY_WRITE, uattr, usize))
3926 return -EFAULT;
3927
3928 /*
3929 * If we're handed a smaller struct than we know of,
3930 * ensure all the unknown bits are 0 - i.e. old
3931 * user-space does not get uncomplete information.
3932 */
3933 if (usize < sizeof(*attr)) {
3934 unsigned char *addr;
3935 unsigned char *end;
3936
3937 addr = (void *)attr + usize;
3938 end = (void *)attr + sizeof(*attr);
3939
3940 for (; addr < end; addr++) {
3941 if (*addr)
3942 return -EFBIG;
3943 }
3944
3945 attr->size = usize;
3946 }
3947
3948 ret = copy_to_user(uattr, attr, attr->size);
3949 if (ret)
3950 return -EFAULT;
3951
3952 return 0;
3953 }
3954
3955 /**
3956 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3957 * @pid: the pid in question.
3958 * @uattr: structure containing the extended parameters.
3959 * @size: sizeof(attr) for fwd/bwd comp.
3960 * @flags: for future extension.
3961 */
3962 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3963 unsigned int, size, unsigned int, flags)
3964 {
3965 struct sched_attr attr = {
3966 .size = sizeof(struct sched_attr),
3967 };
3968 struct task_struct *p;
3969 int retval;
3970
3971 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3972 size < SCHED_ATTR_SIZE_VER0 || flags)
3973 return -EINVAL;
3974
3975 rcu_read_lock();
3976 p = find_process_by_pid(pid);
3977 retval = -ESRCH;
3978 if (!p)
3979 goto out_unlock;
3980
3981 retval = security_task_getscheduler(p);
3982 if (retval)
3983 goto out_unlock;
3984
3985 attr.sched_policy = p->policy;
3986 if (p->sched_reset_on_fork)
3987 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3988 if (task_has_dl_policy(p))
3989 __getparam_dl(p, &attr);
3990 else if (task_has_rt_policy(p))
3991 attr.sched_priority = p->rt_priority;
3992 else
3993 attr.sched_nice = task_nice(p);
3994
3995 rcu_read_unlock();
3996
3997 retval = sched_read_attr(uattr, &attr, size);
3998 return retval;
3999
4000 out_unlock:
4001 rcu_read_unlock();
4002 return retval;
4003 }
4004
4005 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4006 {
4007 cpumask_var_t cpus_allowed, new_mask;
4008 struct task_struct *p;
4009 int retval;
4010
4011 rcu_read_lock();
4012
4013 p = find_process_by_pid(pid);
4014 if (!p) {
4015 rcu_read_unlock();
4016 return -ESRCH;
4017 }
4018
4019 /* Prevent p going away */
4020 get_task_struct(p);
4021 rcu_read_unlock();
4022
4023 if (p->flags & PF_NO_SETAFFINITY) {
4024 retval = -EINVAL;
4025 goto out_put_task;
4026 }
4027 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4028 retval = -ENOMEM;
4029 goto out_put_task;
4030 }
4031 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4032 retval = -ENOMEM;
4033 goto out_free_cpus_allowed;
4034 }
4035 retval = -EPERM;
4036 if (!check_same_owner(p)) {
4037 rcu_read_lock();
4038 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4039 rcu_read_unlock();
4040 goto out_free_new_mask;
4041 }
4042 rcu_read_unlock();
4043 }
4044
4045 retval = security_task_setscheduler(p);
4046 if (retval)
4047 goto out_free_new_mask;
4048
4049
4050 cpuset_cpus_allowed(p, cpus_allowed);
4051 cpumask_and(new_mask, in_mask, cpus_allowed);
4052
4053 /*
4054 * Since bandwidth control happens on root_domain basis,
4055 * if admission test is enabled, we only admit -deadline
4056 * tasks allowed to run on all the CPUs in the task's
4057 * root_domain.
4058 */
4059 #ifdef CONFIG_SMP
4060 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4061 rcu_read_lock();
4062 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4063 retval = -EBUSY;
4064 rcu_read_unlock();
4065 goto out_free_new_mask;
4066 }
4067 rcu_read_unlock();
4068 }
4069 #endif
4070 again:
4071 retval = set_cpus_allowed_ptr(p, new_mask);
4072
4073 if (!retval) {
4074 cpuset_cpus_allowed(p, cpus_allowed);
4075 if (!cpumask_subset(new_mask, cpus_allowed)) {
4076 /*
4077 * We must have raced with a concurrent cpuset
4078 * update. Just reset the cpus_allowed to the
4079 * cpuset's cpus_allowed
4080 */
4081 cpumask_copy(new_mask, cpus_allowed);
4082 goto again;
4083 }
4084 }
4085 out_free_new_mask:
4086 free_cpumask_var(new_mask);
4087 out_free_cpus_allowed:
4088 free_cpumask_var(cpus_allowed);
4089 out_put_task:
4090 put_task_struct(p);
4091 return retval;
4092 }
4093
4094 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4095 struct cpumask *new_mask)
4096 {
4097 if (len < cpumask_size())
4098 cpumask_clear(new_mask);
4099 else if (len > cpumask_size())
4100 len = cpumask_size();
4101
4102 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4103 }
4104
4105 /**
4106 * sys_sched_setaffinity - set the cpu affinity of a process
4107 * @pid: pid of the process
4108 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4109 * @user_mask_ptr: user-space pointer to the new cpu mask
4110 *
4111 * Return: 0 on success. An error code otherwise.
4112 */
4113 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4114 unsigned long __user *, user_mask_ptr)
4115 {
4116 cpumask_var_t new_mask;
4117 int retval;
4118
4119 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4120 return -ENOMEM;
4121
4122 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4123 if (retval == 0)
4124 retval = sched_setaffinity(pid, new_mask);
4125 free_cpumask_var(new_mask);
4126 return retval;
4127 }
4128
4129 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4130 {
4131 struct task_struct *p;
4132 unsigned long flags;
4133 int retval;
4134
4135 rcu_read_lock();
4136
4137 retval = -ESRCH;
4138 p = find_process_by_pid(pid);
4139 if (!p)
4140 goto out_unlock;
4141
4142 retval = security_task_getscheduler(p);
4143 if (retval)
4144 goto out_unlock;
4145
4146 raw_spin_lock_irqsave(&p->pi_lock, flags);
4147 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4148 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4149
4150 out_unlock:
4151 rcu_read_unlock();
4152
4153 return retval;
4154 }
4155
4156 /**
4157 * sys_sched_getaffinity - get the cpu affinity of a process
4158 * @pid: pid of the process
4159 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4160 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4161 *
4162 * Return: 0 on success. An error code otherwise.
4163 */
4164 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4165 unsigned long __user *, user_mask_ptr)
4166 {
4167 int ret;
4168 cpumask_var_t mask;
4169
4170 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4171 return -EINVAL;
4172 if (len & (sizeof(unsigned long)-1))
4173 return -EINVAL;
4174
4175 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4176 return -ENOMEM;
4177
4178 ret = sched_getaffinity(pid, mask);
4179 if (ret == 0) {
4180 size_t retlen = min_t(size_t, len, cpumask_size());
4181
4182 if (copy_to_user(user_mask_ptr, mask, retlen))
4183 ret = -EFAULT;
4184 else
4185 ret = retlen;
4186 }
4187 free_cpumask_var(mask);
4188
4189 return ret;
4190 }
4191
4192 /**
4193 * sys_sched_yield - yield the current processor to other threads.
4194 *
4195 * This function yields the current CPU to other tasks. If there are no
4196 * other threads running on this CPU then this function will return.
4197 *
4198 * Return: 0.
4199 */
4200 SYSCALL_DEFINE0(sched_yield)
4201 {
4202 struct rq *rq = this_rq_lock();
4203
4204 schedstat_inc(rq, yld_count);
4205 current->sched_class->yield_task(rq);
4206
4207 /*
4208 * Since we are going to call schedule() anyway, there's
4209 * no need to preempt or enable interrupts:
4210 */
4211 __release(rq->lock);
4212 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4213 do_raw_spin_unlock(&rq->lock);
4214 sched_preempt_enable_no_resched();
4215
4216 schedule();
4217
4218 return 0;
4219 }
4220
4221 static void __cond_resched(void)
4222 {
4223 __preempt_count_add(PREEMPT_ACTIVE);
4224 __schedule();
4225 __preempt_count_sub(PREEMPT_ACTIVE);
4226 }
4227
4228 int __sched _cond_resched(void)
4229 {
4230 if (should_resched()) {
4231 __cond_resched();
4232 return 1;
4233 }
4234 return 0;
4235 }
4236 EXPORT_SYMBOL(_cond_resched);
4237
4238 /*
4239 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4240 * call schedule, and on return reacquire the lock.
4241 *
4242 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4243 * operations here to prevent schedule() from being called twice (once via
4244 * spin_unlock(), once by hand).
4245 */
4246 int __cond_resched_lock(spinlock_t *lock)
4247 {
4248 int resched = should_resched();
4249 int ret = 0;
4250
4251 lockdep_assert_held(lock);
4252
4253 if (spin_needbreak(lock) || resched) {
4254 spin_unlock(lock);
4255 if (resched)
4256 __cond_resched();
4257 else
4258 cpu_relax();
4259 ret = 1;
4260 spin_lock(lock);
4261 }
4262 return ret;
4263 }
4264 EXPORT_SYMBOL(__cond_resched_lock);
4265
4266 int __sched __cond_resched_softirq(void)
4267 {
4268 BUG_ON(!in_softirq());
4269
4270 if (should_resched()) {
4271 local_bh_enable();
4272 __cond_resched();
4273 local_bh_disable();
4274 return 1;
4275 }
4276 return 0;
4277 }
4278 EXPORT_SYMBOL(__cond_resched_softirq);
4279
4280 /**
4281 * yield - yield the current processor to other threads.
4282 *
4283 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4284 *
4285 * The scheduler is at all times free to pick the calling task as the most
4286 * eligible task to run, if removing the yield() call from your code breaks
4287 * it, its already broken.
4288 *
4289 * Typical broken usage is:
4290 *
4291 * while (!event)
4292 * yield();
4293 *
4294 * where one assumes that yield() will let 'the other' process run that will
4295 * make event true. If the current task is a SCHED_FIFO task that will never
4296 * happen. Never use yield() as a progress guarantee!!
4297 *
4298 * If you want to use yield() to wait for something, use wait_event().
4299 * If you want to use yield() to be 'nice' for others, use cond_resched().
4300 * If you still want to use yield(), do not!
4301 */
4302 void __sched yield(void)
4303 {
4304 set_current_state(TASK_RUNNING);
4305 sys_sched_yield();
4306 }
4307 EXPORT_SYMBOL(yield);
4308
4309 /**
4310 * yield_to - yield the current processor to another thread in
4311 * your thread group, or accelerate that thread toward the
4312 * processor it's on.
4313 * @p: target task
4314 * @preempt: whether task preemption is allowed or not
4315 *
4316 * It's the caller's job to ensure that the target task struct
4317 * can't go away on us before we can do any checks.
4318 *
4319 * Return:
4320 * true (>0) if we indeed boosted the target task.
4321 * false (0) if we failed to boost the target.
4322 * -ESRCH if there's no task to yield to.
4323 */
4324 int __sched yield_to(struct task_struct *p, bool preempt)
4325 {
4326 struct task_struct *curr = current;
4327 struct rq *rq, *p_rq;
4328 unsigned long flags;
4329 int yielded = 0;
4330
4331 local_irq_save(flags);
4332 rq = this_rq();
4333
4334 again:
4335 p_rq = task_rq(p);
4336 /*
4337 * If we're the only runnable task on the rq and target rq also
4338 * has only one task, there's absolutely no point in yielding.
4339 */
4340 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4341 yielded = -ESRCH;
4342 goto out_irq;
4343 }
4344
4345 double_rq_lock(rq, p_rq);
4346 if (task_rq(p) != p_rq) {
4347 double_rq_unlock(rq, p_rq);
4348 goto again;
4349 }
4350
4351 if (!curr->sched_class->yield_to_task)
4352 goto out_unlock;
4353
4354 if (curr->sched_class != p->sched_class)
4355 goto out_unlock;
4356
4357 if (task_running(p_rq, p) || p->state)
4358 goto out_unlock;
4359
4360 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4361 if (yielded) {
4362 schedstat_inc(rq, yld_count);
4363 /*
4364 * Make p's CPU reschedule; pick_next_entity takes care of
4365 * fairness.
4366 */
4367 if (preempt && rq != p_rq)
4368 resched_curr(p_rq);
4369 }
4370
4371 out_unlock:
4372 double_rq_unlock(rq, p_rq);
4373 out_irq:
4374 local_irq_restore(flags);
4375
4376 if (yielded > 0)
4377 schedule();
4378
4379 return yielded;
4380 }
4381 EXPORT_SYMBOL_GPL(yield_to);
4382
4383 /*
4384 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4385 * that process accounting knows that this is a task in IO wait state.
4386 */
4387 void __sched io_schedule(void)
4388 {
4389 struct rq *rq = raw_rq();
4390
4391 delayacct_blkio_start();
4392 atomic_inc(&rq->nr_iowait);
4393 blk_flush_plug(current);
4394 current->in_iowait = 1;
4395 schedule();
4396 current->in_iowait = 0;
4397 atomic_dec(&rq->nr_iowait);
4398 delayacct_blkio_end();
4399 }
4400 EXPORT_SYMBOL(io_schedule);
4401
4402 long __sched io_schedule_timeout(long timeout)
4403 {
4404 struct rq *rq = raw_rq();
4405 long ret;
4406
4407 delayacct_blkio_start();
4408 atomic_inc(&rq->nr_iowait);
4409 blk_flush_plug(current);
4410 current->in_iowait = 1;
4411 ret = schedule_timeout(timeout);
4412 current->in_iowait = 0;
4413 atomic_dec(&rq->nr_iowait);
4414 delayacct_blkio_end();
4415 return ret;
4416 }
4417
4418 /**
4419 * sys_sched_get_priority_max - return maximum RT priority.
4420 * @policy: scheduling class.
4421 *
4422 * Return: On success, this syscall returns the maximum
4423 * rt_priority that can be used by a given scheduling class.
4424 * On failure, a negative error code is returned.
4425 */
4426 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4427 {
4428 int ret = -EINVAL;
4429
4430 switch (policy) {
4431 case SCHED_FIFO:
4432 case SCHED_RR:
4433 ret = MAX_USER_RT_PRIO-1;
4434 break;
4435 case SCHED_DEADLINE:
4436 case SCHED_NORMAL:
4437 case SCHED_BATCH:
4438 case SCHED_IDLE:
4439 ret = 0;
4440 break;
4441 }
4442 return ret;
4443 }
4444
4445 /**
4446 * sys_sched_get_priority_min - return minimum RT priority.
4447 * @policy: scheduling class.
4448 *
4449 * Return: On success, this syscall returns the minimum
4450 * rt_priority that can be used by a given scheduling class.
4451 * On failure, a negative error code is returned.
4452 */
4453 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4454 {
4455 int ret = -EINVAL;
4456
4457 switch (policy) {
4458 case SCHED_FIFO:
4459 case SCHED_RR:
4460 ret = 1;
4461 break;
4462 case SCHED_DEADLINE:
4463 case SCHED_NORMAL:
4464 case SCHED_BATCH:
4465 case SCHED_IDLE:
4466 ret = 0;
4467 }
4468 return ret;
4469 }
4470
4471 /**
4472 * sys_sched_rr_get_interval - return the default timeslice of a process.
4473 * @pid: pid of the process.
4474 * @interval: userspace pointer to the timeslice value.
4475 *
4476 * this syscall writes the default timeslice value of a given process
4477 * into the user-space timespec buffer. A value of '0' means infinity.
4478 *
4479 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4480 * an error code.
4481 */
4482 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4483 struct timespec __user *, interval)
4484 {
4485 struct task_struct *p;
4486 unsigned int time_slice;
4487 unsigned long flags;
4488 struct rq *rq;
4489 int retval;
4490 struct timespec t;
4491
4492 if (pid < 0)
4493 return -EINVAL;
4494
4495 retval = -ESRCH;
4496 rcu_read_lock();
4497 p = find_process_by_pid(pid);
4498 if (!p)
4499 goto out_unlock;
4500
4501 retval = security_task_getscheduler(p);
4502 if (retval)
4503 goto out_unlock;
4504
4505 rq = task_rq_lock(p, &flags);
4506 time_slice = 0;
4507 if (p->sched_class->get_rr_interval)
4508 time_slice = p->sched_class->get_rr_interval(rq, p);
4509 task_rq_unlock(rq, p, &flags);
4510
4511 rcu_read_unlock();
4512 jiffies_to_timespec(time_slice, &t);
4513 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4514 return retval;
4515
4516 out_unlock:
4517 rcu_read_unlock();
4518 return retval;
4519 }
4520
4521 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4522
4523 void sched_show_task(struct task_struct *p)
4524 {
4525 unsigned long free = 0;
4526 int ppid;
4527 unsigned state;
4528
4529 state = p->state ? __ffs(p->state) + 1 : 0;
4530 printk(KERN_INFO "%-15.15s %c", p->comm,
4531 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4532 #if BITS_PER_LONG == 32
4533 if (state == TASK_RUNNING)
4534 printk(KERN_CONT " running ");
4535 else
4536 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4537 #else
4538 if (state == TASK_RUNNING)
4539 printk(KERN_CONT " running task ");
4540 else
4541 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4542 #endif
4543 #ifdef CONFIG_DEBUG_STACK_USAGE
4544 free = stack_not_used(p);
4545 #endif
4546 rcu_read_lock();
4547 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4548 rcu_read_unlock();
4549 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4550 task_pid_nr(p), ppid,
4551 (unsigned long)task_thread_info(p)->flags);
4552
4553 print_worker_info(KERN_INFO, p);
4554 show_stack(p, NULL);
4555 }
4556
4557 void show_state_filter(unsigned long state_filter)
4558 {
4559 struct task_struct *g, *p;
4560
4561 #if BITS_PER_LONG == 32
4562 printk(KERN_INFO
4563 " task PC stack pid father\n");
4564 #else
4565 printk(KERN_INFO
4566 " task PC stack pid father\n");
4567 #endif
4568 rcu_read_lock();
4569 for_each_process_thread(g, p) {
4570 /*
4571 * reset the NMI-timeout, listing all files on a slow
4572 * console might take a lot of time:
4573 */
4574 touch_nmi_watchdog();
4575 if (!state_filter || (p->state & state_filter))
4576 sched_show_task(p);
4577 }
4578
4579 touch_all_softlockup_watchdogs();
4580
4581 #ifdef CONFIG_SCHED_DEBUG
4582 sysrq_sched_debug_show();
4583 #endif
4584 rcu_read_unlock();
4585 /*
4586 * Only show locks if all tasks are dumped:
4587 */
4588 if (!state_filter)
4589 debug_show_all_locks();
4590 }
4591
4592 void init_idle_bootup_task(struct task_struct *idle)
4593 {
4594 idle->sched_class = &idle_sched_class;
4595 }
4596
4597 /**
4598 * init_idle - set up an idle thread for a given CPU
4599 * @idle: task in question
4600 * @cpu: cpu the idle task belongs to
4601 *
4602 * NOTE: this function does not set the idle thread's NEED_RESCHED
4603 * flag, to make booting more robust.
4604 */
4605 void init_idle(struct task_struct *idle, int cpu)
4606 {
4607 struct rq *rq = cpu_rq(cpu);
4608 unsigned long flags;
4609
4610 raw_spin_lock_irqsave(&rq->lock, flags);
4611
4612 __sched_fork(0, idle);
4613 idle->state = TASK_RUNNING;
4614 idle->se.exec_start = sched_clock();
4615
4616 do_set_cpus_allowed(idle, cpumask_of(cpu));
4617 /*
4618 * We're having a chicken and egg problem, even though we are
4619 * holding rq->lock, the cpu isn't yet set to this cpu so the
4620 * lockdep check in task_group() will fail.
4621 *
4622 * Similar case to sched_fork(). / Alternatively we could
4623 * use task_rq_lock() here and obtain the other rq->lock.
4624 *
4625 * Silence PROVE_RCU
4626 */
4627 rcu_read_lock();
4628 __set_task_cpu(idle, cpu);
4629 rcu_read_unlock();
4630
4631 rq->curr = rq->idle = idle;
4632 idle->on_rq = TASK_ON_RQ_QUEUED;
4633 #if defined(CONFIG_SMP)
4634 idle->on_cpu = 1;
4635 #endif
4636 raw_spin_unlock_irqrestore(&rq->lock, flags);
4637
4638 /* Set the preempt count _outside_ the spinlocks! */
4639 init_idle_preempt_count(idle, cpu);
4640
4641 /*
4642 * The idle tasks have their own, simple scheduling class:
4643 */
4644 idle->sched_class = &idle_sched_class;
4645 ftrace_graph_init_idle_task(idle, cpu);
4646 vtime_init_idle(idle, cpu);
4647 #if defined(CONFIG_SMP)
4648 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4649 #endif
4650 }
4651
4652 #ifdef CONFIG_SMP
4653 /*
4654 * move_queued_task - move a queued task to new rq.
4655 *
4656 * Returns (locked) new rq. Old rq's lock is released.
4657 */
4658 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4659 {
4660 struct rq *rq = task_rq(p);
4661
4662 lockdep_assert_held(&rq->lock);
4663
4664 dequeue_task(rq, p, 0);
4665 p->on_rq = TASK_ON_RQ_MIGRATING;
4666 set_task_cpu(p, new_cpu);
4667 raw_spin_unlock(&rq->lock);
4668
4669 rq = cpu_rq(new_cpu);
4670
4671 raw_spin_lock(&rq->lock);
4672 BUG_ON(task_cpu(p) != new_cpu);
4673 p->on_rq = TASK_ON_RQ_QUEUED;
4674 enqueue_task(rq, p, 0);
4675 check_preempt_curr(rq, p, 0);
4676
4677 return rq;
4678 }
4679
4680 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4681 {
4682 if (p->sched_class && p->sched_class->set_cpus_allowed)
4683 p->sched_class->set_cpus_allowed(p, new_mask);
4684
4685 cpumask_copy(&p->cpus_allowed, new_mask);
4686 p->nr_cpus_allowed = cpumask_weight(new_mask);
4687 }
4688
4689 /*
4690 * This is how migration works:
4691 *
4692 * 1) we invoke migration_cpu_stop() on the target CPU using
4693 * stop_one_cpu().
4694 * 2) stopper starts to run (implicitly forcing the migrated thread
4695 * off the CPU)
4696 * 3) it checks whether the migrated task is still in the wrong runqueue.
4697 * 4) if it's in the wrong runqueue then the migration thread removes
4698 * it and puts it into the right queue.
4699 * 5) stopper completes and stop_one_cpu() returns and the migration
4700 * is done.
4701 */
4702
4703 /*
4704 * Change a given task's CPU affinity. Migrate the thread to a
4705 * proper CPU and schedule it away if the CPU it's executing on
4706 * is removed from the allowed bitmask.
4707 *
4708 * NOTE: the caller must have a valid reference to the task, the
4709 * task must not exit() & deallocate itself prematurely. The
4710 * call is not atomic; no spinlocks may be held.
4711 */
4712 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4713 {
4714 unsigned long flags;
4715 struct rq *rq;
4716 unsigned int dest_cpu;
4717 int ret = 0;
4718
4719 rq = task_rq_lock(p, &flags);
4720
4721 if (cpumask_equal(&p->cpus_allowed, new_mask))
4722 goto out;
4723
4724 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4725 ret = -EINVAL;
4726 goto out;
4727 }
4728
4729 do_set_cpus_allowed(p, new_mask);
4730
4731 /* Can the task run on the task's current CPU? If so, we're done */
4732 if (cpumask_test_cpu(task_cpu(p), new_mask))
4733 goto out;
4734
4735 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4736 if (task_running(rq, p) || p->state == TASK_WAKING) {
4737 struct migration_arg arg = { p, dest_cpu };
4738 /* Need help from migration thread: drop lock and wait. */
4739 task_rq_unlock(rq, p, &flags);
4740 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4741 tlb_migrate_finish(p->mm);
4742 return 0;
4743 } else if (task_on_rq_queued(p))
4744 rq = move_queued_task(p, dest_cpu);
4745 out:
4746 task_rq_unlock(rq, p, &flags);
4747
4748 return ret;
4749 }
4750 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4751
4752 /*
4753 * Move (not current) task off this cpu, onto dest cpu. We're doing
4754 * this because either it can't run here any more (set_cpus_allowed()
4755 * away from this CPU, or CPU going down), or because we're
4756 * attempting to rebalance this task on exec (sched_exec).
4757 *
4758 * So we race with normal scheduler movements, but that's OK, as long
4759 * as the task is no longer on this CPU.
4760 *
4761 * Returns non-zero if task was successfully migrated.
4762 */
4763 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4764 {
4765 struct rq *rq;
4766 int ret = 0;
4767
4768 if (unlikely(!cpu_active(dest_cpu)))
4769 return ret;
4770
4771 rq = cpu_rq(src_cpu);
4772
4773 raw_spin_lock(&p->pi_lock);
4774 raw_spin_lock(&rq->lock);
4775 /* Already moved. */
4776 if (task_cpu(p) != src_cpu)
4777 goto done;
4778
4779 /* Affinity changed (again). */
4780 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4781 goto fail;
4782
4783 /*
4784 * If we're not on a rq, the next wake-up will ensure we're
4785 * placed properly.
4786 */
4787 if (task_on_rq_queued(p))
4788 rq = move_queued_task(p, dest_cpu);
4789 done:
4790 ret = 1;
4791 fail:
4792 raw_spin_unlock(&rq->lock);
4793 raw_spin_unlock(&p->pi_lock);
4794 return ret;
4795 }
4796
4797 #ifdef CONFIG_NUMA_BALANCING
4798 /* Migrate current task p to target_cpu */
4799 int migrate_task_to(struct task_struct *p, int target_cpu)
4800 {
4801 struct migration_arg arg = { p, target_cpu };
4802 int curr_cpu = task_cpu(p);
4803
4804 if (curr_cpu == target_cpu)
4805 return 0;
4806
4807 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4808 return -EINVAL;
4809
4810 /* TODO: This is not properly updating schedstats */
4811
4812 trace_sched_move_numa(p, curr_cpu, target_cpu);
4813 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4814 }
4815
4816 /*
4817 * Requeue a task on a given node and accurately track the number of NUMA
4818 * tasks on the runqueues
4819 */
4820 void sched_setnuma(struct task_struct *p, int nid)
4821 {
4822 struct rq *rq;
4823 unsigned long flags;
4824 bool queued, running;
4825
4826 rq = task_rq_lock(p, &flags);
4827 queued = task_on_rq_queued(p);
4828 running = task_current(rq, p);
4829
4830 if (queued)
4831 dequeue_task(rq, p, 0);
4832 if (running)
4833 put_prev_task(rq, p);
4834
4835 p->numa_preferred_nid = nid;
4836
4837 if (running)
4838 p->sched_class->set_curr_task(rq);
4839 if (queued)
4840 enqueue_task(rq, p, 0);
4841 task_rq_unlock(rq, p, &flags);
4842 }
4843 #endif
4844
4845 /*
4846 * migration_cpu_stop - this will be executed by a highprio stopper thread
4847 * and performs thread migration by bumping thread off CPU then
4848 * 'pushing' onto another runqueue.
4849 */
4850 static int migration_cpu_stop(void *data)
4851 {
4852 struct migration_arg *arg = data;
4853
4854 /*
4855 * The original target cpu might have gone down and we might
4856 * be on another cpu but it doesn't matter.
4857 */
4858 local_irq_disable();
4859 /*
4860 * We need to explicitly wake pending tasks before running
4861 * __migrate_task() such that we will not miss enforcing cpus_allowed
4862 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4863 */
4864 sched_ttwu_pending();
4865 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4866 local_irq_enable();
4867 return 0;
4868 }
4869
4870 #ifdef CONFIG_HOTPLUG_CPU
4871
4872 /*
4873 * Ensures that the idle task is using init_mm right before its cpu goes
4874 * offline.
4875 */
4876 void idle_task_exit(void)
4877 {
4878 struct mm_struct *mm = current->active_mm;
4879
4880 BUG_ON(cpu_online(smp_processor_id()));
4881
4882 if (mm != &init_mm) {
4883 switch_mm(mm, &init_mm, current);
4884 finish_arch_post_lock_switch();
4885 }
4886 mmdrop(mm);
4887 }
4888
4889 /*
4890 * Since this CPU is going 'away' for a while, fold any nr_active delta
4891 * we might have. Assumes we're called after migrate_tasks() so that the
4892 * nr_active count is stable.
4893 *
4894 * Also see the comment "Global load-average calculations".
4895 */
4896 static void calc_load_migrate(struct rq *rq)
4897 {
4898 long delta = calc_load_fold_active(rq);
4899 if (delta)
4900 atomic_long_add(delta, &calc_load_tasks);
4901 }
4902
4903 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4904 {
4905 }
4906
4907 static const struct sched_class fake_sched_class = {
4908 .put_prev_task = put_prev_task_fake,
4909 };
4910
4911 static struct task_struct fake_task = {
4912 /*
4913 * Avoid pull_{rt,dl}_task()
4914 */
4915 .prio = MAX_PRIO + 1,
4916 .sched_class = &fake_sched_class,
4917 };
4918
4919 /*
4920 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4921 * try_to_wake_up()->select_task_rq().
4922 *
4923 * Called with rq->lock held even though we'er in stop_machine() and
4924 * there's no concurrency possible, we hold the required locks anyway
4925 * because of lock validation efforts.
4926 */
4927 static void migrate_tasks(unsigned int dead_cpu)
4928 {
4929 struct rq *rq = cpu_rq(dead_cpu);
4930 struct task_struct *next, *stop = rq->stop;
4931 int dest_cpu;
4932
4933 /*
4934 * Fudge the rq selection such that the below task selection loop
4935 * doesn't get stuck on the currently eligible stop task.
4936 *
4937 * We're currently inside stop_machine() and the rq is either stuck
4938 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4939 * either way we should never end up calling schedule() until we're
4940 * done here.
4941 */
4942 rq->stop = NULL;
4943
4944 /*
4945 * put_prev_task() and pick_next_task() sched
4946 * class method both need to have an up-to-date
4947 * value of rq->clock[_task]
4948 */
4949 update_rq_clock(rq);
4950
4951 for ( ; ; ) {
4952 /*
4953 * There's this thread running, bail when that's the only
4954 * remaining thread.
4955 */
4956 if (rq->nr_running == 1)
4957 break;
4958
4959 next = pick_next_task(rq, &fake_task);
4960 BUG_ON(!next);
4961 next->sched_class->put_prev_task(rq, next);
4962
4963 /* Find suitable destination for @next, with force if needed. */
4964 dest_cpu = select_fallback_rq(dead_cpu, next);
4965 raw_spin_unlock(&rq->lock);
4966
4967 __migrate_task(next, dead_cpu, dest_cpu);
4968
4969 raw_spin_lock(&rq->lock);
4970 }
4971
4972 rq->stop = stop;
4973 }
4974
4975 #endif /* CONFIG_HOTPLUG_CPU */
4976
4977 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4978
4979 static struct ctl_table sd_ctl_dir[] = {
4980 {
4981 .procname = "sched_domain",
4982 .mode = 0555,
4983 },
4984 {}
4985 };
4986
4987 static struct ctl_table sd_ctl_root[] = {
4988 {
4989 .procname = "kernel",
4990 .mode = 0555,
4991 .child = sd_ctl_dir,
4992 },
4993 {}
4994 };
4995
4996 static struct ctl_table *sd_alloc_ctl_entry(int n)
4997 {
4998 struct ctl_table *entry =
4999 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5000
5001 return entry;
5002 }
5003
5004 static void sd_free_ctl_entry(struct ctl_table **tablep)
5005 {
5006 struct ctl_table *entry;
5007
5008 /*
5009 * In the intermediate directories, both the child directory and
5010 * procname are dynamically allocated and could fail but the mode
5011 * will always be set. In the lowest directory the names are
5012 * static strings and all have proc handlers.
5013 */
5014 for (entry = *tablep; entry->mode; entry++) {
5015 if (entry->child)
5016 sd_free_ctl_entry(&entry->child);
5017 if (entry->proc_handler == NULL)
5018 kfree(entry->procname);
5019 }
5020
5021 kfree(*tablep);
5022 *tablep = NULL;
5023 }
5024
5025 static int min_load_idx = 0;
5026 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5027
5028 static void
5029 set_table_entry(struct ctl_table *entry,
5030 const char *procname, void *data, int maxlen,
5031 umode_t mode, proc_handler *proc_handler,
5032 bool load_idx)
5033 {
5034 entry->procname = procname;
5035 entry->data = data;
5036 entry->maxlen = maxlen;
5037 entry->mode = mode;
5038 entry->proc_handler = proc_handler;
5039
5040 if (load_idx) {
5041 entry->extra1 = &min_load_idx;
5042 entry->extra2 = &max_load_idx;
5043 }
5044 }
5045
5046 static struct ctl_table *
5047 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5048 {
5049 struct ctl_table *table = sd_alloc_ctl_entry(14);
5050
5051 if (table == NULL)
5052 return NULL;
5053
5054 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5055 sizeof(long), 0644, proc_doulongvec_minmax, false);
5056 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5057 sizeof(long), 0644, proc_doulongvec_minmax, false);
5058 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5059 sizeof(int), 0644, proc_dointvec_minmax, true);
5060 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5061 sizeof(int), 0644, proc_dointvec_minmax, true);
5062 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5063 sizeof(int), 0644, proc_dointvec_minmax, true);
5064 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5065 sizeof(int), 0644, proc_dointvec_minmax, true);
5066 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5067 sizeof(int), 0644, proc_dointvec_minmax, true);
5068 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5069 sizeof(int), 0644, proc_dointvec_minmax, false);
5070 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5071 sizeof(int), 0644, proc_dointvec_minmax, false);
5072 set_table_entry(&table[9], "cache_nice_tries",
5073 &sd->cache_nice_tries,
5074 sizeof(int), 0644, proc_dointvec_minmax, false);
5075 set_table_entry(&table[10], "flags", &sd->flags,
5076 sizeof(int), 0644, proc_dointvec_minmax, false);
5077 set_table_entry(&table[11], "max_newidle_lb_cost",
5078 &sd->max_newidle_lb_cost,
5079 sizeof(long), 0644, proc_doulongvec_minmax, false);
5080 set_table_entry(&table[12], "name", sd->name,
5081 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5082 /* &table[13] is terminator */
5083
5084 return table;
5085 }
5086
5087 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5088 {
5089 struct ctl_table *entry, *table;
5090 struct sched_domain *sd;
5091 int domain_num = 0, i;
5092 char buf[32];
5093
5094 for_each_domain(cpu, sd)
5095 domain_num++;
5096 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5097 if (table == NULL)
5098 return NULL;
5099
5100 i = 0;
5101 for_each_domain(cpu, sd) {
5102 snprintf(buf, 32, "domain%d", i);
5103 entry->procname = kstrdup(buf, GFP_KERNEL);
5104 entry->mode = 0555;
5105 entry->child = sd_alloc_ctl_domain_table(sd);
5106 entry++;
5107 i++;
5108 }
5109 return table;
5110 }
5111
5112 static struct ctl_table_header *sd_sysctl_header;
5113 static void register_sched_domain_sysctl(void)
5114 {
5115 int i, cpu_num = num_possible_cpus();
5116 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5117 char buf[32];
5118
5119 WARN_ON(sd_ctl_dir[0].child);
5120 sd_ctl_dir[0].child = entry;
5121
5122 if (entry == NULL)
5123 return;
5124
5125 for_each_possible_cpu(i) {
5126 snprintf(buf, 32, "cpu%d", i);
5127 entry->procname = kstrdup(buf, GFP_KERNEL);
5128 entry->mode = 0555;
5129 entry->child = sd_alloc_ctl_cpu_table(i);
5130 entry++;
5131 }
5132
5133 WARN_ON(sd_sysctl_header);
5134 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5135 }
5136
5137 /* may be called multiple times per register */
5138 static void unregister_sched_domain_sysctl(void)
5139 {
5140 if (sd_sysctl_header)
5141 unregister_sysctl_table(sd_sysctl_header);
5142 sd_sysctl_header = NULL;
5143 if (sd_ctl_dir[0].child)
5144 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5145 }
5146 #else
5147 static void register_sched_domain_sysctl(void)
5148 {
5149 }
5150 static void unregister_sched_domain_sysctl(void)
5151 {
5152 }
5153 #endif
5154
5155 static void set_rq_online(struct rq *rq)
5156 {
5157 if (!rq->online) {
5158 const struct sched_class *class;
5159
5160 cpumask_set_cpu(rq->cpu, rq->rd->online);
5161 rq->online = 1;
5162
5163 for_each_class(class) {
5164 if (class->rq_online)
5165 class->rq_online(rq);
5166 }
5167 }
5168 }
5169
5170 static void set_rq_offline(struct rq *rq)
5171 {
5172 if (rq->online) {
5173 const struct sched_class *class;
5174
5175 for_each_class(class) {
5176 if (class->rq_offline)
5177 class->rq_offline(rq);
5178 }
5179
5180 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5181 rq->online = 0;
5182 }
5183 }
5184
5185 /*
5186 * migration_call - callback that gets triggered when a CPU is added.
5187 * Here we can start up the necessary migration thread for the new CPU.
5188 */
5189 static int
5190 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5191 {
5192 int cpu = (long)hcpu;
5193 unsigned long flags;
5194 struct rq *rq = cpu_rq(cpu);
5195
5196 switch (action & ~CPU_TASKS_FROZEN) {
5197
5198 case CPU_UP_PREPARE:
5199 rq->calc_load_update = calc_load_update;
5200 break;
5201
5202 case CPU_ONLINE:
5203 /* Update our root-domain */
5204 raw_spin_lock_irqsave(&rq->lock, flags);
5205 if (rq->rd) {
5206 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5207
5208 set_rq_online(rq);
5209 }
5210 raw_spin_unlock_irqrestore(&rq->lock, flags);
5211 break;
5212
5213 #ifdef CONFIG_HOTPLUG_CPU
5214 case CPU_DYING:
5215 sched_ttwu_pending();
5216 /* Update our root-domain */
5217 raw_spin_lock_irqsave(&rq->lock, flags);
5218 if (rq->rd) {
5219 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5220 set_rq_offline(rq);
5221 }
5222 migrate_tasks(cpu);
5223 BUG_ON(rq->nr_running != 1); /* the migration thread */
5224 raw_spin_unlock_irqrestore(&rq->lock, flags);
5225 break;
5226
5227 case CPU_DEAD:
5228 calc_load_migrate(rq);
5229 break;
5230 #endif
5231 }
5232
5233 update_max_interval();
5234
5235 return NOTIFY_OK;
5236 }
5237
5238 /*
5239 * Register at high priority so that task migration (migrate_all_tasks)
5240 * happens before everything else. This has to be lower priority than
5241 * the notifier in the perf_event subsystem, though.
5242 */
5243 static struct notifier_block migration_notifier = {
5244 .notifier_call = migration_call,
5245 .priority = CPU_PRI_MIGRATION,
5246 };
5247
5248 static void __cpuinit set_cpu_rq_start_time(void)
5249 {
5250 int cpu = smp_processor_id();
5251 struct rq *rq = cpu_rq(cpu);
5252 rq->age_stamp = sched_clock_cpu(cpu);
5253 }
5254
5255 static int sched_cpu_active(struct notifier_block *nfb,
5256 unsigned long action, void *hcpu)
5257 {
5258 switch (action & ~CPU_TASKS_FROZEN) {
5259 case CPU_STARTING:
5260 set_cpu_rq_start_time();
5261 return NOTIFY_OK;
5262 case CPU_DOWN_FAILED:
5263 set_cpu_active((long)hcpu, true);
5264 return NOTIFY_OK;
5265 default:
5266 return NOTIFY_DONE;
5267 }
5268 }
5269
5270 static int sched_cpu_inactive(struct notifier_block *nfb,
5271 unsigned long action, void *hcpu)
5272 {
5273 unsigned long flags;
5274 long cpu = (long)hcpu;
5275 struct dl_bw *dl_b;
5276
5277 switch (action & ~CPU_TASKS_FROZEN) {
5278 case CPU_DOWN_PREPARE:
5279 set_cpu_active(cpu, false);
5280
5281 /* explicitly allow suspend */
5282 if (!(action & CPU_TASKS_FROZEN)) {
5283 bool overflow;
5284 int cpus;
5285
5286 rcu_read_lock_sched();
5287 dl_b = dl_bw_of(cpu);
5288
5289 raw_spin_lock_irqsave(&dl_b->lock, flags);
5290 cpus = dl_bw_cpus(cpu);
5291 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5292 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5293
5294 rcu_read_unlock_sched();
5295
5296 if (overflow)
5297 return notifier_from_errno(-EBUSY);
5298 }
5299 return NOTIFY_OK;
5300 }
5301
5302 return NOTIFY_DONE;
5303 }
5304
5305 static int __init migration_init(void)
5306 {
5307 void *cpu = (void *)(long)smp_processor_id();
5308 int err;
5309
5310 /* Initialize migration for the boot CPU */
5311 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5312 BUG_ON(err == NOTIFY_BAD);
5313 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5314 register_cpu_notifier(&migration_notifier);
5315
5316 /* Register cpu active notifiers */
5317 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5318 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5319
5320 return 0;
5321 }
5322 early_initcall(migration_init);
5323 #endif
5324
5325 #ifdef CONFIG_SMP
5326
5327 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5328
5329 #ifdef CONFIG_SCHED_DEBUG
5330
5331 static __read_mostly int sched_debug_enabled;
5332
5333 static int __init sched_debug_setup(char *str)
5334 {
5335 sched_debug_enabled = 1;
5336
5337 return 0;
5338 }
5339 early_param("sched_debug", sched_debug_setup);
5340
5341 static inline bool sched_debug(void)
5342 {
5343 return sched_debug_enabled;
5344 }
5345
5346 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5347 struct cpumask *groupmask)
5348 {
5349 struct sched_group *group = sd->groups;
5350 char str[256];
5351
5352 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5353 cpumask_clear(groupmask);
5354
5355 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5356
5357 if (!(sd->flags & SD_LOAD_BALANCE)) {
5358 printk("does not load-balance\n");
5359 if (sd->parent)
5360 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5361 " has parent");
5362 return -1;
5363 }
5364
5365 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5366
5367 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5368 printk(KERN_ERR "ERROR: domain->span does not contain "
5369 "CPU%d\n", cpu);
5370 }
5371 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5372 printk(KERN_ERR "ERROR: domain->groups does not contain"
5373 " CPU%d\n", cpu);
5374 }
5375
5376 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5377 do {
5378 if (!group) {
5379 printk("\n");
5380 printk(KERN_ERR "ERROR: group is NULL\n");
5381 break;
5382 }
5383
5384 /*
5385 * Even though we initialize ->capacity to something semi-sane,
5386 * we leave capacity_orig unset. This allows us to detect if
5387 * domain iteration is still funny without causing /0 traps.
5388 */
5389 if (!group->sgc->capacity_orig) {
5390 printk(KERN_CONT "\n");
5391 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5392 break;
5393 }
5394
5395 if (!cpumask_weight(sched_group_cpus(group))) {
5396 printk(KERN_CONT "\n");
5397 printk(KERN_ERR "ERROR: empty group\n");
5398 break;
5399 }
5400
5401 if (!(sd->flags & SD_OVERLAP) &&
5402 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5403 printk(KERN_CONT "\n");
5404 printk(KERN_ERR "ERROR: repeated CPUs\n");
5405 break;
5406 }
5407
5408 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5409
5410 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5411
5412 printk(KERN_CONT " %s", str);
5413 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5414 printk(KERN_CONT " (cpu_capacity = %d)",
5415 group->sgc->capacity);
5416 }
5417
5418 group = group->next;
5419 } while (group != sd->groups);
5420 printk(KERN_CONT "\n");
5421
5422 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5423 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5424
5425 if (sd->parent &&
5426 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5427 printk(KERN_ERR "ERROR: parent span is not a superset "
5428 "of domain->span\n");
5429 return 0;
5430 }
5431
5432 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5433 {
5434 int level = 0;
5435
5436 if (!sched_debug_enabled)
5437 return;
5438
5439 if (!sd) {
5440 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5441 return;
5442 }
5443
5444 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5445
5446 for (;;) {
5447 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5448 break;
5449 level++;
5450 sd = sd->parent;
5451 if (!sd)
5452 break;
5453 }
5454 }
5455 #else /* !CONFIG_SCHED_DEBUG */
5456 # define sched_domain_debug(sd, cpu) do { } while (0)
5457 static inline bool sched_debug(void)
5458 {
5459 return false;
5460 }
5461 #endif /* CONFIG_SCHED_DEBUG */
5462
5463 static int sd_degenerate(struct sched_domain *sd)
5464 {
5465 if (cpumask_weight(sched_domain_span(sd)) == 1)
5466 return 1;
5467
5468 /* Following flags need at least 2 groups */
5469 if (sd->flags & (SD_LOAD_BALANCE |
5470 SD_BALANCE_NEWIDLE |
5471 SD_BALANCE_FORK |
5472 SD_BALANCE_EXEC |
5473 SD_SHARE_CPUCAPACITY |
5474 SD_SHARE_PKG_RESOURCES |
5475 SD_SHARE_POWERDOMAIN)) {
5476 if (sd->groups != sd->groups->next)
5477 return 0;
5478 }
5479
5480 /* Following flags don't use groups */
5481 if (sd->flags & (SD_WAKE_AFFINE))
5482 return 0;
5483
5484 return 1;
5485 }
5486
5487 static int
5488 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5489 {
5490 unsigned long cflags = sd->flags, pflags = parent->flags;
5491
5492 if (sd_degenerate(parent))
5493 return 1;
5494
5495 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5496 return 0;
5497
5498 /* Flags needing groups don't count if only 1 group in parent */
5499 if (parent->groups == parent->groups->next) {
5500 pflags &= ~(SD_LOAD_BALANCE |
5501 SD_BALANCE_NEWIDLE |
5502 SD_BALANCE_FORK |
5503 SD_BALANCE_EXEC |
5504 SD_SHARE_CPUCAPACITY |
5505 SD_SHARE_PKG_RESOURCES |
5506 SD_PREFER_SIBLING |
5507 SD_SHARE_POWERDOMAIN);
5508 if (nr_node_ids == 1)
5509 pflags &= ~SD_SERIALIZE;
5510 }
5511 if (~cflags & pflags)
5512 return 0;
5513
5514 return 1;
5515 }
5516
5517 static void free_rootdomain(struct rcu_head *rcu)
5518 {
5519 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5520
5521 cpupri_cleanup(&rd->cpupri);
5522 cpudl_cleanup(&rd->cpudl);
5523 free_cpumask_var(rd->dlo_mask);
5524 free_cpumask_var(rd->rto_mask);
5525 free_cpumask_var(rd->online);
5526 free_cpumask_var(rd->span);
5527 kfree(rd);
5528 }
5529
5530 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5531 {
5532 struct root_domain *old_rd = NULL;
5533 unsigned long flags;
5534
5535 raw_spin_lock_irqsave(&rq->lock, flags);
5536
5537 if (rq->rd) {
5538 old_rd = rq->rd;
5539
5540 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5541 set_rq_offline(rq);
5542
5543 cpumask_clear_cpu(rq->cpu, old_rd->span);
5544
5545 /*
5546 * If we dont want to free the old_rd yet then
5547 * set old_rd to NULL to skip the freeing later
5548 * in this function:
5549 */
5550 if (!atomic_dec_and_test(&old_rd->refcount))
5551 old_rd = NULL;
5552 }
5553
5554 atomic_inc(&rd->refcount);
5555 rq->rd = rd;
5556
5557 cpumask_set_cpu(rq->cpu, rd->span);
5558 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5559 set_rq_online(rq);
5560
5561 raw_spin_unlock_irqrestore(&rq->lock, flags);
5562
5563 if (old_rd)
5564 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5565 }
5566
5567 static int init_rootdomain(struct root_domain *rd)
5568 {
5569 memset(rd, 0, sizeof(*rd));
5570
5571 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5572 goto out;
5573 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5574 goto free_span;
5575 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5576 goto free_online;
5577 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5578 goto free_dlo_mask;
5579
5580 init_dl_bw(&rd->dl_bw);
5581 if (cpudl_init(&rd->cpudl) != 0)
5582 goto free_dlo_mask;
5583
5584 if (cpupri_init(&rd->cpupri) != 0)
5585 goto free_rto_mask;
5586 return 0;
5587
5588 free_rto_mask:
5589 free_cpumask_var(rd->rto_mask);
5590 free_dlo_mask:
5591 free_cpumask_var(rd->dlo_mask);
5592 free_online:
5593 free_cpumask_var(rd->online);
5594 free_span:
5595 free_cpumask_var(rd->span);
5596 out:
5597 return -ENOMEM;
5598 }
5599
5600 /*
5601 * By default the system creates a single root-domain with all cpus as
5602 * members (mimicking the global state we have today).
5603 */
5604 struct root_domain def_root_domain;
5605
5606 static void init_defrootdomain(void)
5607 {
5608 init_rootdomain(&def_root_domain);
5609
5610 atomic_set(&def_root_domain.refcount, 1);
5611 }
5612
5613 static struct root_domain *alloc_rootdomain(void)
5614 {
5615 struct root_domain *rd;
5616
5617 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5618 if (!rd)
5619 return NULL;
5620
5621 if (init_rootdomain(rd) != 0) {
5622 kfree(rd);
5623 return NULL;
5624 }
5625
5626 return rd;
5627 }
5628
5629 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5630 {
5631 struct sched_group *tmp, *first;
5632
5633 if (!sg)
5634 return;
5635
5636 first = sg;
5637 do {
5638 tmp = sg->next;
5639
5640 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5641 kfree(sg->sgc);
5642
5643 kfree(sg);
5644 sg = tmp;
5645 } while (sg != first);
5646 }
5647
5648 static void free_sched_domain(struct rcu_head *rcu)
5649 {
5650 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5651
5652 /*
5653 * If its an overlapping domain it has private groups, iterate and
5654 * nuke them all.
5655 */
5656 if (sd->flags & SD_OVERLAP) {
5657 free_sched_groups(sd->groups, 1);
5658 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5659 kfree(sd->groups->sgc);
5660 kfree(sd->groups);
5661 }
5662 kfree(sd);
5663 }
5664
5665 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5666 {
5667 call_rcu(&sd->rcu, free_sched_domain);
5668 }
5669
5670 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5671 {
5672 for (; sd; sd = sd->parent)
5673 destroy_sched_domain(sd, cpu);
5674 }
5675
5676 /*
5677 * Keep a special pointer to the highest sched_domain that has
5678 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5679 * allows us to avoid some pointer chasing select_idle_sibling().
5680 *
5681 * Also keep a unique ID per domain (we use the first cpu number in
5682 * the cpumask of the domain), this allows us to quickly tell if
5683 * two cpus are in the same cache domain, see cpus_share_cache().
5684 */
5685 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5686 DEFINE_PER_CPU(int, sd_llc_size);
5687 DEFINE_PER_CPU(int, sd_llc_id);
5688 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5689 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5690 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5691
5692 static void update_top_cache_domain(int cpu)
5693 {
5694 struct sched_domain *sd;
5695 struct sched_domain *busy_sd = NULL;
5696 int id = cpu;
5697 int size = 1;
5698
5699 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5700 if (sd) {
5701 id = cpumask_first(sched_domain_span(sd));
5702 size = cpumask_weight(sched_domain_span(sd));
5703 busy_sd = sd->parent; /* sd_busy */
5704 }
5705 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5706
5707 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5708 per_cpu(sd_llc_size, cpu) = size;
5709 per_cpu(sd_llc_id, cpu) = id;
5710
5711 sd = lowest_flag_domain(cpu, SD_NUMA);
5712 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5713
5714 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5715 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5716 }
5717
5718 /*
5719 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5720 * hold the hotplug lock.
5721 */
5722 static void
5723 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5724 {
5725 struct rq *rq = cpu_rq(cpu);
5726 struct sched_domain *tmp;
5727
5728 /* Remove the sched domains which do not contribute to scheduling. */
5729 for (tmp = sd; tmp; ) {
5730 struct sched_domain *parent = tmp->parent;
5731 if (!parent)
5732 break;
5733
5734 if (sd_parent_degenerate(tmp, parent)) {
5735 tmp->parent = parent->parent;
5736 if (parent->parent)
5737 parent->parent->child = tmp;
5738 /*
5739 * Transfer SD_PREFER_SIBLING down in case of a
5740 * degenerate parent; the spans match for this
5741 * so the property transfers.
5742 */
5743 if (parent->flags & SD_PREFER_SIBLING)
5744 tmp->flags |= SD_PREFER_SIBLING;
5745 destroy_sched_domain(parent, cpu);
5746 } else
5747 tmp = tmp->parent;
5748 }
5749
5750 if (sd && sd_degenerate(sd)) {
5751 tmp = sd;
5752 sd = sd->parent;
5753 destroy_sched_domain(tmp, cpu);
5754 if (sd)
5755 sd->child = NULL;
5756 }
5757
5758 sched_domain_debug(sd, cpu);
5759
5760 rq_attach_root(rq, rd);
5761 tmp = rq->sd;
5762 rcu_assign_pointer(rq->sd, sd);
5763 destroy_sched_domains(tmp, cpu);
5764
5765 update_top_cache_domain(cpu);
5766 }
5767
5768 /* cpus with isolated domains */
5769 static cpumask_var_t cpu_isolated_map;
5770
5771 /* Setup the mask of cpus configured for isolated domains */
5772 static int __init isolated_cpu_setup(char *str)
5773 {
5774 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5775 cpulist_parse(str, cpu_isolated_map);
5776 return 1;
5777 }
5778
5779 __setup("isolcpus=", isolated_cpu_setup);
5780
5781 struct s_data {
5782 struct sched_domain ** __percpu sd;
5783 struct root_domain *rd;
5784 };
5785
5786 enum s_alloc {
5787 sa_rootdomain,
5788 sa_sd,
5789 sa_sd_storage,
5790 sa_none,
5791 };
5792
5793 /*
5794 * Build an iteration mask that can exclude certain CPUs from the upwards
5795 * domain traversal.
5796 *
5797 * Asymmetric node setups can result in situations where the domain tree is of
5798 * unequal depth, make sure to skip domains that already cover the entire
5799 * range.
5800 *
5801 * In that case build_sched_domains() will have terminated the iteration early
5802 * and our sibling sd spans will be empty. Domains should always include the
5803 * cpu they're built on, so check that.
5804 *
5805 */
5806 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5807 {
5808 const struct cpumask *span = sched_domain_span(sd);
5809 struct sd_data *sdd = sd->private;
5810 struct sched_domain *sibling;
5811 int i;
5812
5813 for_each_cpu(i, span) {
5814 sibling = *per_cpu_ptr(sdd->sd, i);
5815 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5816 continue;
5817
5818 cpumask_set_cpu(i, sched_group_mask(sg));
5819 }
5820 }
5821
5822 /*
5823 * Return the canonical balance cpu for this group, this is the first cpu
5824 * of this group that's also in the iteration mask.
5825 */
5826 int group_balance_cpu(struct sched_group *sg)
5827 {
5828 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5829 }
5830
5831 static int
5832 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5833 {
5834 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5835 const struct cpumask *span = sched_domain_span(sd);
5836 struct cpumask *covered = sched_domains_tmpmask;
5837 struct sd_data *sdd = sd->private;
5838 struct sched_domain *sibling;
5839 int i;
5840
5841 cpumask_clear(covered);
5842
5843 for_each_cpu(i, span) {
5844 struct cpumask *sg_span;
5845
5846 if (cpumask_test_cpu(i, covered))
5847 continue;
5848
5849 sibling = *per_cpu_ptr(sdd->sd, i);
5850
5851 /* See the comment near build_group_mask(). */
5852 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5853 continue;
5854
5855 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5856 GFP_KERNEL, cpu_to_node(cpu));
5857
5858 if (!sg)
5859 goto fail;
5860
5861 sg_span = sched_group_cpus(sg);
5862 if (sibling->child)
5863 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5864 else
5865 cpumask_set_cpu(i, sg_span);
5866
5867 cpumask_or(covered, covered, sg_span);
5868
5869 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5870 if (atomic_inc_return(&sg->sgc->ref) == 1)
5871 build_group_mask(sd, sg);
5872
5873 /*
5874 * Initialize sgc->capacity such that even if we mess up the
5875 * domains and no possible iteration will get us here, we won't
5876 * die on a /0 trap.
5877 */
5878 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5879 sg->sgc->capacity_orig = sg->sgc->capacity;
5880
5881 /*
5882 * Make sure the first group of this domain contains the
5883 * canonical balance cpu. Otherwise the sched_domain iteration
5884 * breaks. See update_sg_lb_stats().
5885 */
5886 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5887 group_balance_cpu(sg) == cpu)
5888 groups = sg;
5889
5890 if (!first)
5891 first = sg;
5892 if (last)
5893 last->next = sg;
5894 last = sg;
5895 last->next = first;
5896 }
5897 sd->groups = groups;
5898
5899 return 0;
5900
5901 fail:
5902 free_sched_groups(first, 0);
5903
5904 return -ENOMEM;
5905 }
5906
5907 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5908 {
5909 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5910 struct sched_domain *child = sd->child;
5911
5912 if (child)
5913 cpu = cpumask_first(sched_domain_span(child));
5914
5915 if (sg) {
5916 *sg = *per_cpu_ptr(sdd->sg, cpu);
5917 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5918 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5919 }
5920
5921 return cpu;
5922 }
5923
5924 /*
5925 * build_sched_groups will build a circular linked list of the groups
5926 * covered by the given span, and will set each group's ->cpumask correctly,
5927 * and ->cpu_capacity to 0.
5928 *
5929 * Assumes the sched_domain tree is fully constructed
5930 */
5931 static int
5932 build_sched_groups(struct sched_domain *sd, int cpu)
5933 {
5934 struct sched_group *first = NULL, *last = NULL;
5935 struct sd_data *sdd = sd->private;
5936 const struct cpumask *span = sched_domain_span(sd);
5937 struct cpumask *covered;
5938 int i;
5939
5940 get_group(cpu, sdd, &sd->groups);
5941 atomic_inc(&sd->groups->ref);
5942
5943 if (cpu != cpumask_first(span))
5944 return 0;
5945
5946 lockdep_assert_held(&sched_domains_mutex);
5947 covered = sched_domains_tmpmask;
5948
5949 cpumask_clear(covered);
5950
5951 for_each_cpu(i, span) {
5952 struct sched_group *sg;
5953 int group, j;
5954
5955 if (cpumask_test_cpu(i, covered))
5956 continue;
5957
5958 group = get_group(i, sdd, &sg);
5959 cpumask_setall(sched_group_mask(sg));
5960
5961 for_each_cpu(j, span) {
5962 if (get_group(j, sdd, NULL) != group)
5963 continue;
5964
5965 cpumask_set_cpu(j, covered);
5966 cpumask_set_cpu(j, sched_group_cpus(sg));
5967 }
5968
5969 if (!first)
5970 first = sg;
5971 if (last)
5972 last->next = sg;
5973 last = sg;
5974 }
5975 last->next = first;
5976
5977 return 0;
5978 }
5979
5980 /*
5981 * Initialize sched groups cpu_capacity.
5982 *
5983 * cpu_capacity indicates the capacity of sched group, which is used while
5984 * distributing the load between different sched groups in a sched domain.
5985 * Typically cpu_capacity for all the groups in a sched domain will be same
5986 * unless there are asymmetries in the topology. If there are asymmetries,
5987 * group having more cpu_capacity will pickup more load compared to the
5988 * group having less cpu_capacity.
5989 */
5990 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5991 {
5992 struct sched_group *sg = sd->groups;
5993
5994 WARN_ON(!sg);
5995
5996 do {
5997 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5998 sg = sg->next;
5999 } while (sg != sd->groups);
6000
6001 if (cpu != group_balance_cpu(sg))
6002 return;
6003
6004 update_group_capacity(sd, cpu);
6005 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6006 }
6007
6008 /*
6009 * Initializers for schedule domains
6010 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6011 */
6012
6013 static int default_relax_domain_level = -1;
6014 int sched_domain_level_max;
6015
6016 static int __init setup_relax_domain_level(char *str)
6017 {
6018 if (kstrtoint(str, 0, &default_relax_domain_level))
6019 pr_warn("Unable to set relax_domain_level\n");
6020
6021 return 1;
6022 }
6023 __setup("relax_domain_level=", setup_relax_domain_level);
6024
6025 static void set_domain_attribute(struct sched_domain *sd,
6026 struct sched_domain_attr *attr)
6027 {
6028 int request;
6029
6030 if (!attr || attr->relax_domain_level < 0) {
6031 if (default_relax_domain_level < 0)
6032 return;
6033 else
6034 request = default_relax_domain_level;
6035 } else
6036 request = attr->relax_domain_level;
6037 if (request < sd->level) {
6038 /* turn off idle balance on this domain */
6039 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6040 } else {
6041 /* turn on idle balance on this domain */
6042 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6043 }
6044 }
6045
6046 static void __sdt_free(const struct cpumask *cpu_map);
6047 static int __sdt_alloc(const struct cpumask *cpu_map);
6048
6049 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6050 const struct cpumask *cpu_map)
6051 {
6052 switch (what) {
6053 case sa_rootdomain:
6054 if (!atomic_read(&d->rd->refcount))
6055 free_rootdomain(&d->rd->rcu); /* fall through */
6056 case sa_sd:
6057 free_percpu(d->sd); /* fall through */
6058 case sa_sd_storage:
6059 __sdt_free(cpu_map); /* fall through */
6060 case sa_none:
6061 break;
6062 }
6063 }
6064
6065 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6066 const struct cpumask *cpu_map)
6067 {
6068 memset(d, 0, sizeof(*d));
6069
6070 if (__sdt_alloc(cpu_map))
6071 return sa_sd_storage;
6072 d->sd = alloc_percpu(struct sched_domain *);
6073 if (!d->sd)
6074 return sa_sd_storage;
6075 d->rd = alloc_rootdomain();
6076 if (!d->rd)
6077 return sa_sd;
6078 return sa_rootdomain;
6079 }
6080
6081 /*
6082 * NULL the sd_data elements we've used to build the sched_domain and
6083 * sched_group structure so that the subsequent __free_domain_allocs()
6084 * will not free the data we're using.
6085 */
6086 static void claim_allocations(int cpu, struct sched_domain *sd)
6087 {
6088 struct sd_data *sdd = sd->private;
6089
6090 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6091 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6092
6093 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6094 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6095
6096 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6097 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6098 }
6099
6100 #ifdef CONFIG_NUMA
6101 static int sched_domains_numa_levels;
6102 static int *sched_domains_numa_distance;
6103 static struct cpumask ***sched_domains_numa_masks;
6104 static int sched_domains_curr_level;
6105 #endif
6106
6107 /*
6108 * SD_flags allowed in topology descriptions.
6109 *
6110 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6111 * SD_SHARE_PKG_RESOURCES - describes shared caches
6112 * SD_NUMA - describes NUMA topologies
6113 * SD_SHARE_POWERDOMAIN - describes shared power domain
6114 *
6115 * Odd one out:
6116 * SD_ASYM_PACKING - describes SMT quirks
6117 */
6118 #define TOPOLOGY_SD_FLAGS \
6119 (SD_SHARE_CPUCAPACITY | \
6120 SD_SHARE_PKG_RESOURCES | \
6121 SD_NUMA | \
6122 SD_ASYM_PACKING | \
6123 SD_SHARE_POWERDOMAIN)
6124
6125 static struct sched_domain *
6126 sd_init(struct sched_domain_topology_level *tl, int cpu)
6127 {
6128 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6129 int sd_weight, sd_flags = 0;
6130
6131 #ifdef CONFIG_NUMA
6132 /*
6133 * Ugly hack to pass state to sd_numa_mask()...
6134 */
6135 sched_domains_curr_level = tl->numa_level;
6136 #endif
6137
6138 sd_weight = cpumask_weight(tl->mask(cpu));
6139
6140 if (tl->sd_flags)
6141 sd_flags = (*tl->sd_flags)();
6142 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6143 "wrong sd_flags in topology description\n"))
6144 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6145
6146 *sd = (struct sched_domain){
6147 .min_interval = sd_weight,
6148 .max_interval = 2*sd_weight,
6149 .busy_factor = 32,
6150 .imbalance_pct = 125,
6151
6152 .cache_nice_tries = 0,
6153 .busy_idx = 0,
6154 .idle_idx = 0,
6155 .newidle_idx = 0,
6156 .wake_idx = 0,
6157 .forkexec_idx = 0,
6158
6159 .flags = 1*SD_LOAD_BALANCE
6160 | 1*SD_BALANCE_NEWIDLE
6161 | 1*SD_BALANCE_EXEC
6162 | 1*SD_BALANCE_FORK
6163 | 0*SD_BALANCE_WAKE
6164 | 1*SD_WAKE_AFFINE
6165 | 0*SD_SHARE_CPUCAPACITY
6166 | 0*SD_SHARE_PKG_RESOURCES
6167 | 0*SD_SERIALIZE
6168 | 0*SD_PREFER_SIBLING
6169 | 0*SD_NUMA
6170 | sd_flags
6171 ,
6172
6173 .last_balance = jiffies,
6174 .balance_interval = sd_weight,
6175 .smt_gain = 0,
6176 .max_newidle_lb_cost = 0,
6177 .next_decay_max_lb_cost = jiffies,
6178 #ifdef CONFIG_SCHED_DEBUG
6179 .name = tl->name,
6180 #endif
6181 };
6182
6183 /*
6184 * Convert topological properties into behaviour.
6185 */
6186
6187 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6188 sd->imbalance_pct = 110;
6189 sd->smt_gain = 1178; /* ~15% */
6190
6191 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6192 sd->imbalance_pct = 117;
6193 sd->cache_nice_tries = 1;
6194 sd->busy_idx = 2;
6195
6196 #ifdef CONFIG_NUMA
6197 } else if (sd->flags & SD_NUMA) {
6198 sd->cache_nice_tries = 2;
6199 sd->busy_idx = 3;
6200 sd->idle_idx = 2;
6201
6202 sd->flags |= SD_SERIALIZE;
6203 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6204 sd->flags &= ~(SD_BALANCE_EXEC |
6205 SD_BALANCE_FORK |
6206 SD_WAKE_AFFINE);
6207 }
6208
6209 #endif
6210 } else {
6211 sd->flags |= SD_PREFER_SIBLING;
6212 sd->cache_nice_tries = 1;
6213 sd->busy_idx = 2;
6214 sd->idle_idx = 1;
6215 }
6216
6217 sd->private = &tl->data;
6218
6219 return sd;
6220 }
6221
6222 /*
6223 * Topology list, bottom-up.
6224 */
6225 static struct sched_domain_topology_level default_topology[] = {
6226 #ifdef CONFIG_SCHED_SMT
6227 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6228 #endif
6229 #ifdef CONFIG_SCHED_MC
6230 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6231 #endif
6232 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6233 { NULL, },
6234 };
6235
6236 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6237
6238 #define for_each_sd_topology(tl) \
6239 for (tl = sched_domain_topology; tl->mask; tl++)
6240
6241 void set_sched_topology(struct sched_domain_topology_level *tl)
6242 {
6243 sched_domain_topology = tl;
6244 }
6245
6246 #ifdef CONFIG_NUMA
6247
6248 static const struct cpumask *sd_numa_mask(int cpu)
6249 {
6250 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6251 }
6252
6253 static void sched_numa_warn(const char *str)
6254 {
6255 static int done = false;
6256 int i,j;
6257
6258 if (done)
6259 return;
6260
6261 done = true;
6262
6263 printk(KERN_WARNING "ERROR: %s\n\n", str);
6264
6265 for (i = 0; i < nr_node_ids; i++) {
6266 printk(KERN_WARNING " ");
6267 for (j = 0; j < nr_node_ids; j++)
6268 printk(KERN_CONT "%02d ", node_distance(i,j));
6269 printk(KERN_CONT "\n");
6270 }
6271 printk(KERN_WARNING "\n");
6272 }
6273
6274 static bool find_numa_distance(int distance)
6275 {
6276 int i;
6277
6278 if (distance == node_distance(0, 0))
6279 return true;
6280
6281 for (i = 0; i < sched_domains_numa_levels; i++) {
6282 if (sched_domains_numa_distance[i] == distance)
6283 return true;
6284 }
6285
6286 return false;
6287 }
6288
6289 static void sched_init_numa(void)
6290 {
6291 int next_distance, curr_distance = node_distance(0, 0);
6292 struct sched_domain_topology_level *tl;
6293 int level = 0;
6294 int i, j, k;
6295
6296 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6297 if (!sched_domains_numa_distance)
6298 return;
6299
6300 /*
6301 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6302 * unique distances in the node_distance() table.
6303 *
6304 * Assumes node_distance(0,j) includes all distances in
6305 * node_distance(i,j) in order to avoid cubic time.
6306 */
6307 next_distance = curr_distance;
6308 for (i = 0; i < nr_node_ids; i++) {
6309 for (j = 0; j < nr_node_ids; j++) {
6310 for (k = 0; k < nr_node_ids; k++) {
6311 int distance = node_distance(i, k);
6312
6313 if (distance > curr_distance &&
6314 (distance < next_distance ||
6315 next_distance == curr_distance))
6316 next_distance = distance;
6317
6318 /*
6319 * While not a strong assumption it would be nice to know
6320 * about cases where if node A is connected to B, B is not
6321 * equally connected to A.
6322 */
6323 if (sched_debug() && node_distance(k, i) != distance)
6324 sched_numa_warn("Node-distance not symmetric");
6325
6326 if (sched_debug() && i && !find_numa_distance(distance))
6327 sched_numa_warn("Node-0 not representative");
6328 }
6329 if (next_distance != curr_distance) {
6330 sched_domains_numa_distance[level++] = next_distance;
6331 sched_domains_numa_levels = level;
6332 curr_distance = next_distance;
6333 } else break;
6334 }
6335
6336 /*
6337 * In case of sched_debug() we verify the above assumption.
6338 */
6339 if (!sched_debug())
6340 break;
6341 }
6342
6343 if (!level)
6344 return;
6345
6346 /*
6347 * 'level' contains the number of unique distances, excluding the
6348 * identity distance node_distance(i,i).
6349 *
6350 * The sched_domains_numa_distance[] array includes the actual distance
6351 * numbers.
6352 */
6353
6354 /*
6355 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6356 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6357 * the array will contain less then 'level' members. This could be
6358 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6359 * in other functions.
6360 *
6361 * We reset it to 'level' at the end of this function.
6362 */
6363 sched_domains_numa_levels = 0;
6364
6365 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6366 if (!sched_domains_numa_masks)
6367 return;
6368
6369 /*
6370 * Now for each level, construct a mask per node which contains all
6371 * cpus of nodes that are that many hops away from us.
6372 */
6373 for (i = 0; i < level; i++) {
6374 sched_domains_numa_masks[i] =
6375 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6376 if (!sched_domains_numa_masks[i])
6377 return;
6378
6379 for (j = 0; j < nr_node_ids; j++) {
6380 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6381 if (!mask)
6382 return;
6383
6384 sched_domains_numa_masks[i][j] = mask;
6385
6386 for (k = 0; k < nr_node_ids; k++) {
6387 if (node_distance(j, k) > sched_domains_numa_distance[i])
6388 continue;
6389
6390 cpumask_or(mask, mask, cpumask_of_node(k));
6391 }
6392 }
6393 }
6394
6395 /* Compute default topology size */
6396 for (i = 0; sched_domain_topology[i].mask; i++);
6397
6398 tl = kzalloc((i + level + 1) *
6399 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6400 if (!tl)
6401 return;
6402
6403 /*
6404 * Copy the default topology bits..
6405 */
6406 for (i = 0; sched_domain_topology[i].mask; i++)
6407 tl[i] = sched_domain_topology[i];
6408
6409 /*
6410 * .. and append 'j' levels of NUMA goodness.
6411 */
6412 for (j = 0; j < level; i++, j++) {
6413 tl[i] = (struct sched_domain_topology_level){
6414 .mask = sd_numa_mask,
6415 .sd_flags = cpu_numa_flags,
6416 .flags = SDTL_OVERLAP,
6417 .numa_level = j,
6418 SD_INIT_NAME(NUMA)
6419 };
6420 }
6421
6422 sched_domain_topology = tl;
6423
6424 sched_domains_numa_levels = level;
6425 }
6426
6427 static void sched_domains_numa_masks_set(int cpu)
6428 {
6429 int i, j;
6430 int node = cpu_to_node(cpu);
6431
6432 for (i = 0; i < sched_domains_numa_levels; i++) {
6433 for (j = 0; j < nr_node_ids; j++) {
6434 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6435 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6436 }
6437 }
6438 }
6439
6440 static void sched_domains_numa_masks_clear(int cpu)
6441 {
6442 int i, j;
6443 for (i = 0; i < sched_domains_numa_levels; i++) {
6444 for (j = 0; j < nr_node_ids; j++)
6445 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6446 }
6447 }
6448
6449 /*
6450 * Update sched_domains_numa_masks[level][node] array when new cpus
6451 * are onlined.
6452 */
6453 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6454 unsigned long action,
6455 void *hcpu)
6456 {
6457 int cpu = (long)hcpu;
6458
6459 switch (action & ~CPU_TASKS_FROZEN) {
6460 case CPU_ONLINE:
6461 sched_domains_numa_masks_set(cpu);
6462 break;
6463
6464 case CPU_DEAD:
6465 sched_domains_numa_masks_clear(cpu);
6466 break;
6467
6468 default:
6469 return NOTIFY_DONE;
6470 }
6471
6472 return NOTIFY_OK;
6473 }
6474 #else
6475 static inline void sched_init_numa(void)
6476 {
6477 }
6478
6479 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6480 unsigned long action,
6481 void *hcpu)
6482 {
6483 return 0;
6484 }
6485 #endif /* CONFIG_NUMA */
6486
6487 static int __sdt_alloc(const struct cpumask *cpu_map)
6488 {
6489 struct sched_domain_topology_level *tl;
6490 int j;
6491
6492 for_each_sd_topology(tl) {
6493 struct sd_data *sdd = &tl->data;
6494
6495 sdd->sd = alloc_percpu(struct sched_domain *);
6496 if (!sdd->sd)
6497 return -ENOMEM;
6498
6499 sdd->sg = alloc_percpu(struct sched_group *);
6500 if (!sdd->sg)
6501 return -ENOMEM;
6502
6503 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6504 if (!sdd->sgc)
6505 return -ENOMEM;
6506
6507 for_each_cpu(j, cpu_map) {
6508 struct sched_domain *sd;
6509 struct sched_group *sg;
6510 struct sched_group_capacity *sgc;
6511
6512 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6513 GFP_KERNEL, cpu_to_node(j));
6514 if (!sd)
6515 return -ENOMEM;
6516
6517 *per_cpu_ptr(sdd->sd, j) = sd;
6518
6519 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6520 GFP_KERNEL, cpu_to_node(j));
6521 if (!sg)
6522 return -ENOMEM;
6523
6524 sg->next = sg;
6525
6526 *per_cpu_ptr(sdd->sg, j) = sg;
6527
6528 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6529 GFP_KERNEL, cpu_to_node(j));
6530 if (!sgc)
6531 return -ENOMEM;
6532
6533 *per_cpu_ptr(sdd->sgc, j) = sgc;
6534 }
6535 }
6536
6537 return 0;
6538 }
6539
6540 static void __sdt_free(const struct cpumask *cpu_map)
6541 {
6542 struct sched_domain_topology_level *tl;
6543 int j;
6544
6545 for_each_sd_topology(tl) {
6546 struct sd_data *sdd = &tl->data;
6547
6548 for_each_cpu(j, cpu_map) {
6549 struct sched_domain *sd;
6550
6551 if (sdd->sd) {
6552 sd = *per_cpu_ptr(sdd->sd, j);
6553 if (sd && (sd->flags & SD_OVERLAP))
6554 free_sched_groups(sd->groups, 0);
6555 kfree(*per_cpu_ptr(sdd->sd, j));
6556 }
6557
6558 if (sdd->sg)
6559 kfree(*per_cpu_ptr(sdd->sg, j));
6560 if (sdd->sgc)
6561 kfree(*per_cpu_ptr(sdd->sgc, j));
6562 }
6563 free_percpu(sdd->sd);
6564 sdd->sd = NULL;
6565 free_percpu(sdd->sg);
6566 sdd->sg = NULL;
6567 free_percpu(sdd->sgc);
6568 sdd->sgc = NULL;
6569 }
6570 }
6571
6572 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6573 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6574 struct sched_domain *child, int cpu)
6575 {
6576 struct sched_domain *sd = sd_init(tl, cpu);
6577 if (!sd)
6578 return child;
6579
6580 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6581 if (child) {
6582 sd->level = child->level + 1;
6583 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6584 child->parent = sd;
6585 sd->child = child;
6586
6587 if (!cpumask_subset(sched_domain_span(child),
6588 sched_domain_span(sd))) {
6589 pr_err("BUG: arch topology borken\n");
6590 #ifdef CONFIG_SCHED_DEBUG
6591 pr_err(" the %s domain not a subset of the %s domain\n",
6592 child->name, sd->name);
6593 #endif
6594 /* Fixup, ensure @sd has at least @child cpus. */
6595 cpumask_or(sched_domain_span(sd),
6596 sched_domain_span(sd),
6597 sched_domain_span(child));
6598 }
6599
6600 }
6601 set_domain_attribute(sd, attr);
6602
6603 return sd;
6604 }
6605
6606 /*
6607 * Build sched domains for a given set of cpus and attach the sched domains
6608 * to the individual cpus
6609 */
6610 static int build_sched_domains(const struct cpumask *cpu_map,
6611 struct sched_domain_attr *attr)
6612 {
6613 enum s_alloc alloc_state;
6614 struct sched_domain *sd;
6615 struct s_data d;
6616 int i, ret = -ENOMEM;
6617
6618 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6619 if (alloc_state != sa_rootdomain)
6620 goto error;
6621
6622 /* Set up domains for cpus specified by the cpu_map. */
6623 for_each_cpu(i, cpu_map) {
6624 struct sched_domain_topology_level *tl;
6625
6626 sd = NULL;
6627 for_each_sd_topology(tl) {
6628 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6629 if (tl == sched_domain_topology)
6630 *per_cpu_ptr(d.sd, i) = sd;
6631 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6632 sd->flags |= SD_OVERLAP;
6633 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6634 break;
6635 }
6636 }
6637
6638 /* Build the groups for the domains */
6639 for_each_cpu(i, cpu_map) {
6640 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6641 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6642 if (sd->flags & SD_OVERLAP) {
6643 if (build_overlap_sched_groups(sd, i))
6644 goto error;
6645 } else {
6646 if (build_sched_groups(sd, i))
6647 goto error;
6648 }
6649 }
6650 }
6651
6652 /* Calculate CPU capacity for physical packages and nodes */
6653 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6654 if (!cpumask_test_cpu(i, cpu_map))
6655 continue;
6656
6657 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6658 claim_allocations(i, sd);
6659 init_sched_groups_capacity(i, sd);
6660 }
6661 }
6662
6663 /* Attach the domains */
6664 rcu_read_lock();
6665 for_each_cpu(i, cpu_map) {
6666 sd = *per_cpu_ptr(d.sd, i);
6667 cpu_attach_domain(sd, d.rd, i);
6668 }
6669 rcu_read_unlock();
6670
6671 ret = 0;
6672 error:
6673 __free_domain_allocs(&d, alloc_state, cpu_map);
6674 return ret;
6675 }
6676
6677 static cpumask_var_t *doms_cur; /* current sched domains */
6678 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6679 static struct sched_domain_attr *dattr_cur;
6680 /* attribues of custom domains in 'doms_cur' */
6681
6682 /*
6683 * Special case: If a kmalloc of a doms_cur partition (array of
6684 * cpumask) fails, then fallback to a single sched domain,
6685 * as determined by the single cpumask fallback_doms.
6686 */
6687 static cpumask_var_t fallback_doms;
6688
6689 /*
6690 * arch_update_cpu_topology lets virtualized architectures update the
6691 * cpu core maps. It is supposed to return 1 if the topology changed
6692 * or 0 if it stayed the same.
6693 */
6694 int __weak arch_update_cpu_topology(void)
6695 {
6696 return 0;
6697 }
6698
6699 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6700 {
6701 int i;
6702 cpumask_var_t *doms;
6703
6704 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6705 if (!doms)
6706 return NULL;
6707 for (i = 0; i < ndoms; i++) {
6708 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6709 free_sched_domains(doms, i);
6710 return NULL;
6711 }
6712 }
6713 return doms;
6714 }
6715
6716 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6717 {
6718 unsigned int i;
6719 for (i = 0; i < ndoms; i++)
6720 free_cpumask_var(doms[i]);
6721 kfree(doms);
6722 }
6723
6724 /*
6725 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6726 * For now this just excludes isolated cpus, but could be used to
6727 * exclude other special cases in the future.
6728 */
6729 static int init_sched_domains(const struct cpumask *cpu_map)
6730 {
6731 int err;
6732
6733 arch_update_cpu_topology();
6734 ndoms_cur = 1;
6735 doms_cur = alloc_sched_domains(ndoms_cur);
6736 if (!doms_cur)
6737 doms_cur = &fallback_doms;
6738 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6739 err = build_sched_domains(doms_cur[0], NULL);
6740 register_sched_domain_sysctl();
6741
6742 return err;
6743 }
6744
6745 /*
6746 * Detach sched domains from a group of cpus specified in cpu_map
6747 * These cpus will now be attached to the NULL domain
6748 */
6749 static void detach_destroy_domains(const struct cpumask *cpu_map)
6750 {
6751 int i;
6752
6753 rcu_read_lock();
6754 for_each_cpu(i, cpu_map)
6755 cpu_attach_domain(NULL, &def_root_domain, i);
6756 rcu_read_unlock();
6757 }
6758
6759 /* handle null as "default" */
6760 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6761 struct sched_domain_attr *new, int idx_new)
6762 {
6763 struct sched_domain_attr tmp;
6764
6765 /* fast path */
6766 if (!new && !cur)
6767 return 1;
6768
6769 tmp = SD_ATTR_INIT;
6770 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6771 new ? (new + idx_new) : &tmp,
6772 sizeof(struct sched_domain_attr));
6773 }
6774
6775 /*
6776 * Partition sched domains as specified by the 'ndoms_new'
6777 * cpumasks in the array doms_new[] of cpumasks. This compares
6778 * doms_new[] to the current sched domain partitioning, doms_cur[].
6779 * It destroys each deleted domain and builds each new domain.
6780 *
6781 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6782 * The masks don't intersect (don't overlap.) We should setup one
6783 * sched domain for each mask. CPUs not in any of the cpumasks will
6784 * not be load balanced. If the same cpumask appears both in the
6785 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6786 * it as it is.
6787 *
6788 * The passed in 'doms_new' should be allocated using
6789 * alloc_sched_domains. This routine takes ownership of it and will
6790 * free_sched_domains it when done with it. If the caller failed the
6791 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6792 * and partition_sched_domains() will fallback to the single partition
6793 * 'fallback_doms', it also forces the domains to be rebuilt.
6794 *
6795 * If doms_new == NULL it will be replaced with cpu_online_mask.
6796 * ndoms_new == 0 is a special case for destroying existing domains,
6797 * and it will not create the default domain.
6798 *
6799 * Call with hotplug lock held
6800 */
6801 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6802 struct sched_domain_attr *dattr_new)
6803 {
6804 int i, j, n;
6805 int new_topology;
6806
6807 mutex_lock(&sched_domains_mutex);
6808
6809 /* always unregister in case we don't destroy any domains */
6810 unregister_sched_domain_sysctl();
6811
6812 /* Let architecture update cpu core mappings. */
6813 new_topology = arch_update_cpu_topology();
6814
6815 n = doms_new ? ndoms_new : 0;
6816
6817 /* Destroy deleted domains */
6818 for (i = 0; i < ndoms_cur; i++) {
6819 for (j = 0; j < n && !new_topology; j++) {
6820 if (cpumask_equal(doms_cur[i], doms_new[j])
6821 && dattrs_equal(dattr_cur, i, dattr_new, j))
6822 goto match1;
6823 }
6824 /* no match - a current sched domain not in new doms_new[] */
6825 detach_destroy_domains(doms_cur[i]);
6826 match1:
6827 ;
6828 }
6829
6830 n = ndoms_cur;
6831 if (doms_new == NULL) {
6832 n = 0;
6833 doms_new = &fallback_doms;
6834 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6835 WARN_ON_ONCE(dattr_new);
6836 }
6837
6838 /* Build new domains */
6839 for (i = 0; i < ndoms_new; i++) {
6840 for (j = 0; j < n && !new_topology; j++) {
6841 if (cpumask_equal(doms_new[i], doms_cur[j])
6842 && dattrs_equal(dattr_new, i, dattr_cur, j))
6843 goto match2;
6844 }
6845 /* no match - add a new doms_new */
6846 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6847 match2:
6848 ;
6849 }
6850
6851 /* Remember the new sched domains */
6852 if (doms_cur != &fallback_doms)
6853 free_sched_domains(doms_cur, ndoms_cur);
6854 kfree(dattr_cur); /* kfree(NULL) is safe */
6855 doms_cur = doms_new;
6856 dattr_cur = dattr_new;
6857 ndoms_cur = ndoms_new;
6858
6859 register_sched_domain_sysctl();
6860
6861 mutex_unlock(&sched_domains_mutex);
6862 }
6863
6864 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6865
6866 /*
6867 * Update cpusets according to cpu_active mask. If cpusets are
6868 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6869 * around partition_sched_domains().
6870 *
6871 * If we come here as part of a suspend/resume, don't touch cpusets because we
6872 * want to restore it back to its original state upon resume anyway.
6873 */
6874 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6875 void *hcpu)
6876 {
6877 switch (action) {
6878 case CPU_ONLINE_FROZEN:
6879 case CPU_DOWN_FAILED_FROZEN:
6880
6881 /*
6882 * num_cpus_frozen tracks how many CPUs are involved in suspend
6883 * resume sequence. As long as this is not the last online
6884 * operation in the resume sequence, just build a single sched
6885 * domain, ignoring cpusets.
6886 */
6887 num_cpus_frozen--;
6888 if (likely(num_cpus_frozen)) {
6889 partition_sched_domains(1, NULL, NULL);
6890 break;
6891 }
6892
6893 /*
6894 * This is the last CPU online operation. So fall through and
6895 * restore the original sched domains by considering the
6896 * cpuset configurations.
6897 */
6898
6899 case CPU_ONLINE:
6900 case CPU_DOWN_FAILED:
6901 cpuset_update_active_cpus(true);
6902 break;
6903 default:
6904 return NOTIFY_DONE;
6905 }
6906 return NOTIFY_OK;
6907 }
6908
6909 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6910 void *hcpu)
6911 {
6912 switch (action) {
6913 case CPU_DOWN_PREPARE:
6914 cpuset_update_active_cpus(false);
6915 break;
6916 case CPU_DOWN_PREPARE_FROZEN:
6917 num_cpus_frozen++;
6918 partition_sched_domains(1, NULL, NULL);
6919 break;
6920 default:
6921 return NOTIFY_DONE;
6922 }
6923 return NOTIFY_OK;
6924 }
6925
6926 void __init sched_init_smp(void)
6927 {
6928 cpumask_var_t non_isolated_cpus;
6929
6930 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6931 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6932
6933 sched_init_numa();
6934
6935 /*
6936 * There's no userspace yet to cause hotplug operations; hence all the
6937 * cpu masks are stable and all blatant races in the below code cannot
6938 * happen.
6939 */
6940 mutex_lock(&sched_domains_mutex);
6941 init_sched_domains(cpu_active_mask);
6942 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6943 if (cpumask_empty(non_isolated_cpus))
6944 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6945 mutex_unlock(&sched_domains_mutex);
6946
6947 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6948 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6949 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6950
6951 init_hrtick();
6952
6953 /* Move init over to a non-isolated CPU */
6954 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6955 BUG();
6956 sched_init_granularity();
6957 free_cpumask_var(non_isolated_cpus);
6958
6959 init_sched_rt_class();
6960 init_sched_dl_class();
6961 }
6962 #else
6963 void __init sched_init_smp(void)
6964 {
6965 sched_init_granularity();
6966 }
6967 #endif /* CONFIG_SMP */
6968
6969 const_debug unsigned int sysctl_timer_migration = 1;
6970
6971 int in_sched_functions(unsigned long addr)
6972 {
6973 return in_lock_functions(addr) ||
6974 (addr >= (unsigned long)__sched_text_start
6975 && addr < (unsigned long)__sched_text_end);
6976 }
6977
6978 #ifdef CONFIG_CGROUP_SCHED
6979 /*
6980 * Default task group.
6981 * Every task in system belongs to this group at bootup.
6982 */
6983 struct task_group root_task_group;
6984 LIST_HEAD(task_groups);
6985 #endif
6986
6987 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6988
6989 void __init sched_init(void)
6990 {
6991 int i, j;
6992 unsigned long alloc_size = 0, ptr;
6993
6994 #ifdef CONFIG_FAIR_GROUP_SCHED
6995 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6996 #endif
6997 #ifdef CONFIG_RT_GROUP_SCHED
6998 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6999 #endif
7000 #ifdef CONFIG_CPUMASK_OFFSTACK
7001 alloc_size += num_possible_cpus() * cpumask_size();
7002 #endif
7003 if (alloc_size) {
7004 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7005
7006 #ifdef CONFIG_FAIR_GROUP_SCHED
7007 root_task_group.se = (struct sched_entity **)ptr;
7008 ptr += nr_cpu_ids * sizeof(void **);
7009
7010 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7011 ptr += nr_cpu_ids * sizeof(void **);
7012
7013 #endif /* CONFIG_FAIR_GROUP_SCHED */
7014 #ifdef CONFIG_RT_GROUP_SCHED
7015 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7016 ptr += nr_cpu_ids * sizeof(void **);
7017
7018 root_task_group.rt_rq = (struct rt_rq **)ptr;
7019 ptr += nr_cpu_ids * sizeof(void **);
7020
7021 #endif /* CONFIG_RT_GROUP_SCHED */
7022 #ifdef CONFIG_CPUMASK_OFFSTACK
7023 for_each_possible_cpu(i) {
7024 per_cpu(load_balance_mask, i) = (void *)ptr;
7025 ptr += cpumask_size();
7026 }
7027 #endif /* CONFIG_CPUMASK_OFFSTACK */
7028 }
7029
7030 init_rt_bandwidth(&def_rt_bandwidth,
7031 global_rt_period(), global_rt_runtime());
7032 init_dl_bandwidth(&def_dl_bandwidth,
7033 global_rt_period(), global_rt_runtime());
7034
7035 #ifdef CONFIG_SMP
7036 init_defrootdomain();
7037 #endif
7038
7039 #ifdef CONFIG_RT_GROUP_SCHED
7040 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7041 global_rt_period(), global_rt_runtime());
7042 #endif /* CONFIG_RT_GROUP_SCHED */
7043
7044 #ifdef CONFIG_CGROUP_SCHED
7045 list_add(&root_task_group.list, &task_groups);
7046 INIT_LIST_HEAD(&root_task_group.children);
7047 INIT_LIST_HEAD(&root_task_group.siblings);
7048 autogroup_init(&init_task);
7049
7050 #endif /* CONFIG_CGROUP_SCHED */
7051
7052 for_each_possible_cpu(i) {
7053 struct rq *rq;
7054
7055 rq = cpu_rq(i);
7056 raw_spin_lock_init(&rq->lock);
7057 rq->nr_running = 0;
7058 rq->calc_load_active = 0;
7059 rq->calc_load_update = jiffies + LOAD_FREQ;
7060 init_cfs_rq(&rq->cfs);
7061 init_rt_rq(&rq->rt, rq);
7062 init_dl_rq(&rq->dl, rq);
7063 #ifdef CONFIG_FAIR_GROUP_SCHED
7064 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7065 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7066 /*
7067 * How much cpu bandwidth does root_task_group get?
7068 *
7069 * In case of task-groups formed thr' the cgroup filesystem, it
7070 * gets 100% of the cpu resources in the system. This overall
7071 * system cpu resource is divided among the tasks of
7072 * root_task_group and its child task-groups in a fair manner,
7073 * based on each entity's (task or task-group's) weight
7074 * (se->load.weight).
7075 *
7076 * In other words, if root_task_group has 10 tasks of weight
7077 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7078 * then A0's share of the cpu resource is:
7079 *
7080 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7081 *
7082 * We achieve this by letting root_task_group's tasks sit
7083 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7084 */
7085 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7086 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7087 #endif /* CONFIG_FAIR_GROUP_SCHED */
7088
7089 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7090 #ifdef CONFIG_RT_GROUP_SCHED
7091 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7092 #endif
7093
7094 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7095 rq->cpu_load[j] = 0;
7096
7097 rq->last_load_update_tick = jiffies;
7098
7099 #ifdef CONFIG_SMP
7100 rq->sd = NULL;
7101 rq->rd = NULL;
7102 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7103 rq->post_schedule = 0;
7104 rq->active_balance = 0;
7105 rq->next_balance = jiffies;
7106 rq->push_cpu = 0;
7107 rq->cpu = i;
7108 rq->online = 0;
7109 rq->idle_stamp = 0;
7110 rq->avg_idle = 2*sysctl_sched_migration_cost;
7111 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7112
7113 INIT_LIST_HEAD(&rq->cfs_tasks);
7114
7115 rq_attach_root(rq, &def_root_domain);
7116 #ifdef CONFIG_NO_HZ_COMMON
7117 rq->nohz_flags = 0;
7118 #endif
7119 #ifdef CONFIG_NO_HZ_FULL
7120 rq->last_sched_tick = 0;
7121 #endif
7122 #endif
7123 init_rq_hrtick(rq);
7124 atomic_set(&rq->nr_iowait, 0);
7125 }
7126
7127 set_load_weight(&init_task);
7128
7129 #ifdef CONFIG_PREEMPT_NOTIFIERS
7130 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7131 #endif
7132
7133 /*
7134 * The boot idle thread does lazy MMU switching as well:
7135 */
7136 atomic_inc(&init_mm.mm_count);
7137 enter_lazy_tlb(&init_mm, current);
7138
7139 /*
7140 * Make us the idle thread. Technically, schedule() should not be
7141 * called from this thread, however somewhere below it might be,
7142 * but because we are the idle thread, we just pick up running again
7143 * when this runqueue becomes "idle".
7144 */
7145 init_idle(current, smp_processor_id());
7146
7147 calc_load_update = jiffies + LOAD_FREQ;
7148
7149 /*
7150 * During early bootup we pretend to be a normal task:
7151 */
7152 current->sched_class = &fair_sched_class;
7153
7154 #ifdef CONFIG_SMP
7155 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7156 /* May be allocated at isolcpus cmdline parse time */
7157 if (cpu_isolated_map == NULL)
7158 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7159 idle_thread_set_boot_cpu();
7160 set_cpu_rq_start_time();
7161 #endif
7162 init_sched_fair_class();
7163
7164 scheduler_running = 1;
7165 }
7166
7167 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7168 static inline int preempt_count_equals(int preempt_offset)
7169 {
7170 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7171
7172 return (nested == preempt_offset);
7173 }
7174
7175 void __might_sleep(const char *file, int line, int preempt_offset)
7176 {
7177 static unsigned long prev_jiffy; /* ratelimiting */
7178
7179 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7180 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7181 !is_idle_task(current)) ||
7182 system_state != SYSTEM_RUNNING || oops_in_progress)
7183 return;
7184 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7185 return;
7186 prev_jiffy = jiffies;
7187
7188 printk(KERN_ERR
7189 "BUG: sleeping function called from invalid context at %s:%d\n",
7190 file, line);
7191 printk(KERN_ERR
7192 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7193 in_atomic(), irqs_disabled(),
7194 current->pid, current->comm);
7195
7196 debug_show_held_locks(current);
7197 if (irqs_disabled())
7198 print_irqtrace_events(current);
7199 #ifdef CONFIG_DEBUG_PREEMPT
7200 if (!preempt_count_equals(preempt_offset)) {
7201 pr_err("Preemption disabled at:");
7202 print_ip_sym(current->preempt_disable_ip);
7203 pr_cont("\n");
7204 }
7205 #endif
7206 dump_stack();
7207 }
7208 EXPORT_SYMBOL(__might_sleep);
7209 #endif
7210
7211 #ifdef CONFIG_MAGIC_SYSRQ
7212 static void normalize_task(struct rq *rq, struct task_struct *p)
7213 {
7214 const struct sched_class *prev_class = p->sched_class;
7215 struct sched_attr attr = {
7216 .sched_policy = SCHED_NORMAL,
7217 };
7218 int old_prio = p->prio;
7219 int queued;
7220
7221 queued = task_on_rq_queued(p);
7222 if (queued)
7223 dequeue_task(rq, p, 0);
7224 __setscheduler(rq, p, &attr);
7225 if (queued) {
7226 enqueue_task(rq, p, 0);
7227 resched_curr(rq);
7228 }
7229
7230 check_class_changed(rq, p, prev_class, old_prio);
7231 }
7232
7233 void normalize_rt_tasks(void)
7234 {
7235 struct task_struct *g, *p;
7236 unsigned long flags;
7237 struct rq *rq;
7238
7239 read_lock(&tasklist_lock);
7240 for_each_process_thread(g, p) {
7241 /*
7242 * Only normalize user tasks:
7243 */
7244 if (p->flags & PF_KTHREAD)
7245 continue;
7246
7247 p->se.exec_start = 0;
7248 #ifdef CONFIG_SCHEDSTATS
7249 p->se.statistics.wait_start = 0;
7250 p->se.statistics.sleep_start = 0;
7251 p->se.statistics.block_start = 0;
7252 #endif
7253
7254 if (!dl_task(p) && !rt_task(p)) {
7255 /*
7256 * Renice negative nice level userspace
7257 * tasks back to 0:
7258 */
7259 if (task_nice(p) < 0)
7260 set_user_nice(p, 0);
7261 continue;
7262 }
7263
7264 rq = task_rq_lock(p, &flags);
7265 normalize_task(rq, p);
7266 task_rq_unlock(rq, p, &flags);
7267 }
7268 read_unlock(&tasklist_lock);
7269 }
7270
7271 #endif /* CONFIG_MAGIC_SYSRQ */
7272
7273 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7274 /*
7275 * These functions are only useful for the IA64 MCA handling, or kdb.
7276 *
7277 * They can only be called when the whole system has been
7278 * stopped - every CPU needs to be quiescent, and no scheduling
7279 * activity can take place. Using them for anything else would
7280 * be a serious bug, and as a result, they aren't even visible
7281 * under any other configuration.
7282 */
7283
7284 /**
7285 * curr_task - return the current task for a given cpu.
7286 * @cpu: the processor in question.
7287 *
7288 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7289 *
7290 * Return: The current task for @cpu.
7291 */
7292 struct task_struct *curr_task(int cpu)
7293 {
7294 return cpu_curr(cpu);
7295 }
7296
7297 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7298
7299 #ifdef CONFIG_IA64
7300 /**
7301 * set_curr_task - set the current task for a given cpu.
7302 * @cpu: the processor in question.
7303 * @p: the task pointer to set.
7304 *
7305 * Description: This function must only be used when non-maskable interrupts
7306 * are serviced on a separate stack. It allows the architecture to switch the
7307 * notion of the current task on a cpu in a non-blocking manner. This function
7308 * must be called with all CPU's synchronized, and interrupts disabled, the
7309 * and caller must save the original value of the current task (see
7310 * curr_task() above) and restore that value before reenabling interrupts and
7311 * re-starting the system.
7312 *
7313 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7314 */
7315 void set_curr_task(int cpu, struct task_struct *p)
7316 {
7317 cpu_curr(cpu) = p;
7318 }
7319
7320 #endif
7321
7322 #ifdef CONFIG_CGROUP_SCHED
7323 /* task_group_lock serializes the addition/removal of task groups */
7324 static DEFINE_SPINLOCK(task_group_lock);
7325
7326 static void free_sched_group(struct task_group *tg)
7327 {
7328 free_fair_sched_group(tg);
7329 free_rt_sched_group(tg);
7330 autogroup_free(tg);
7331 kfree(tg);
7332 }
7333
7334 /* allocate runqueue etc for a new task group */
7335 struct task_group *sched_create_group(struct task_group *parent)
7336 {
7337 struct task_group *tg;
7338
7339 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7340 if (!tg)
7341 return ERR_PTR(-ENOMEM);
7342
7343 if (!alloc_fair_sched_group(tg, parent))
7344 goto err;
7345
7346 if (!alloc_rt_sched_group(tg, parent))
7347 goto err;
7348
7349 return tg;
7350
7351 err:
7352 free_sched_group(tg);
7353 return ERR_PTR(-ENOMEM);
7354 }
7355
7356 void sched_online_group(struct task_group *tg, struct task_group *parent)
7357 {
7358 unsigned long flags;
7359
7360 spin_lock_irqsave(&task_group_lock, flags);
7361 list_add_rcu(&tg->list, &task_groups);
7362
7363 WARN_ON(!parent); /* root should already exist */
7364
7365 tg->parent = parent;
7366 INIT_LIST_HEAD(&tg->children);
7367 list_add_rcu(&tg->siblings, &parent->children);
7368 spin_unlock_irqrestore(&task_group_lock, flags);
7369 }
7370
7371 /* rcu callback to free various structures associated with a task group */
7372 static void free_sched_group_rcu(struct rcu_head *rhp)
7373 {
7374 /* now it should be safe to free those cfs_rqs */
7375 free_sched_group(container_of(rhp, struct task_group, rcu));
7376 }
7377
7378 /* Destroy runqueue etc associated with a task group */
7379 void sched_destroy_group(struct task_group *tg)
7380 {
7381 /* wait for possible concurrent references to cfs_rqs complete */
7382 call_rcu(&tg->rcu, free_sched_group_rcu);
7383 }
7384
7385 void sched_offline_group(struct task_group *tg)
7386 {
7387 unsigned long flags;
7388 int i;
7389
7390 /* end participation in shares distribution */
7391 for_each_possible_cpu(i)
7392 unregister_fair_sched_group(tg, i);
7393
7394 spin_lock_irqsave(&task_group_lock, flags);
7395 list_del_rcu(&tg->list);
7396 list_del_rcu(&tg->siblings);
7397 spin_unlock_irqrestore(&task_group_lock, flags);
7398 }
7399
7400 /* change task's runqueue when it moves between groups.
7401 * The caller of this function should have put the task in its new group
7402 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7403 * reflect its new group.
7404 */
7405 void sched_move_task(struct task_struct *tsk)
7406 {
7407 struct task_group *tg;
7408 int queued, running;
7409 unsigned long flags;
7410 struct rq *rq;
7411
7412 rq = task_rq_lock(tsk, &flags);
7413
7414 running = task_current(rq, tsk);
7415 queued = task_on_rq_queued(tsk);
7416
7417 if (queued)
7418 dequeue_task(rq, tsk, 0);
7419 if (unlikely(running))
7420 put_prev_task(rq, tsk);
7421
7422 /*
7423 * All callers are synchronized by task_rq_lock(); we do not use RCU
7424 * which is pointless here. Thus, we pass "true" to task_css_check()
7425 * to prevent lockdep warnings.
7426 */
7427 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7428 struct task_group, css);
7429 tg = autogroup_task_group(tsk, tg);
7430 tsk->sched_task_group = tg;
7431
7432 #ifdef CONFIG_FAIR_GROUP_SCHED
7433 if (tsk->sched_class->task_move_group)
7434 tsk->sched_class->task_move_group(tsk, queued);
7435 else
7436 #endif
7437 set_task_rq(tsk, task_cpu(tsk));
7438
7439 if (unlikely(running))
7440 tsk->sched_class->set_curr_task(rq);
7441 if (queued)
7442 enqueue_task(rq, tsk, 0);
7443
7444 task_rq_unlock(rq, tsk, &flags);
7445 }
7446 #endif /* CONFIG_CGROUP_SCHED */
7447
7448 #ifdef CONFIG_RT_GROUP_SCHED
7449 /*
7450 * Ensure that the real time constraints are schedulable.
7451 */
7452 static DEFINE_MUTEX(rt_constraints_mutex);
7453
7454 /* Must be called with tasklist_lock held */
7455 static inline int tg_has_rt_tasks(struct task_group *tg)
7456 {
7457 struct task_struct *g, *p;
7458
7459 for_each_process_thread(g, p) {
7460 if (rt_task(p) && task_group(p) == tg)
7461 return 1;
7462 }
7463
7464 return 0;
7465 }
7466
7467 struct rt_schedulable_data {
7468 struct task_group *tg;
7469 u64 rt_period;
7470 u64 rt_runtime;
7471 };
7472
7473 static int tg_rt_schedulable(struct task_group *tg, void *data)
7474 {
7475 struct rt_schedulable_data *d = data;
7476 struct task_group *child;
7477 unsigned long total, sum = 0;
7478 u64 period, runtime;
7479
7480 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7481 runtime = tg->rt_bandwidth.rt_runtime;
7482
7483 if (tg == d->tg) {
7484 period = d->rt_period;
7485 runtime = d->rt_runtime;
7486 }
7487
7488 /*
7489 * Cannot have more runtime than the period.
7490 */
7491 if (runtime > period && runtime != RUNTIME_INF)
7492 return -EINVAL;
7493
7494 /*
7495 * Ensure we don't starve existing RT tasks.
7496 */
7497 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7498 return -EBUSY;
7499
7500 total = to_ratio(period, runtime);
7501
7502 /*
7503 * Nobody can have more than the global setting allows.
7504 */
7505 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7506 return -EINVAL;
7507
7508 /*
7509 * The sum of our children's runtime should not exceed our own.
7510 */
7511 list_for_each_entry_rcu(child, &tg->children, siblings) {
7512 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7513 runtime = child->rt_bandwidth.rt_runtime;
7514
7515 if (child == d->tg) {
7516 period = d->rt_period;
7517 runtime = d->rt_runtime;
7518 }
7519
7520 sum += to_ratio(period, runtime);
7521 }
7522
7523 if (sum > total)
7524 return -EINVAL;
7525
7526 return 0;
7527 }
7528
7529 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7530 {
7531 int ret;
7532
7533 struct rt_schedulable_data data = {
7534 .tg = tg,
7535 .rt_period = period,
7536 .rt_runtime = runtime,
7537 };
7538
7539 rcu_read_lock();
7540 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7541 rcu_read_unlock();
7542
7543 return ret;
7544 }
7545
7546 static int tg_set_rt_bandwidth(struct task_group *tg,
7547 u64 rt_period, u64 rt_runtime)
7548 {
7549 int i, err = 0;
7550
7551 mutex_lock(&rt_constraints_mutex);
7552 read_lock(&tasklist_lock);
7553 err = __rt_schedulable(tg, rt_period, rt_runtime);
7554 if (err)
7555 goto unlock;
7556
7557 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7558 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7559 tg->rt_bandwidth.rt_runtime = rt_runtime;
7560
7561 for_each_possible_cpu(i) {
7562 struct rt_rq *rt_rq = tg->rt_rq[i];
7563
7564 raw_spin_lock(&rt_rq->rt_runtime_lock);
7565 rt_rq->rt_runtime = rt_runtime;
7566 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7567 }
7568 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7569 unlock:
7570 read_unlock(&tasklist_lock);
7571 mutex_unlock(&rt_constraints_mutex);
7572
7573 return err;
7574 }
7575
7576 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7577 {
7578 u64 rt_runtime, rt_period;
7579
7580 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7581 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7582 if (rt_runtime_us < 0)
7583 rt_runtime = RUNTIME_INF;
7584
7585 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7586 }
7587
7588 static long sched_group_rt_runtime(struct task_group *tg)
7589 {
7590 u64 rt_runtime_us;
7591
7592 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7593 return -1;
7594
7595 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7596 do_div(rt_runtime_us, NSEC_PER_USEC);
7597 return rt_runtime_us;
7598 }
7599
7600 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7601 {
7602 u64 rt_runtime, rt_period;
7603
7604 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7605 rt_runtime = tg->rt_bandwidth.rt_runtime;
7606
7607 if (rt_period == 0)
7608 return -EINVAL;
7609
7610 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7611 }
7612
7613 static long sched_group_rt_period(struct task_group *tg)
7614 {
7615 u64 rt_period_us;
7616
7617 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7618 do_div(rt_period_us, NSEC_PER_USEC);
7619 return rt_period_us;
7620 }
7621 #endif /* CONFIG_RT_GROUP_SCHED */
7622
7623 #ifdef CONFIG_RT_GROUP_SCHED
7624 static int sched_rt_global_constraints(void)
7625 {
7626 int ret = 0;
7627
7628 mutex_lock(&rt_constraints_mutex);
7629 read_lock(&tasklist_lock);
7630 ret = __rt_schedulable(NULL, 0, 0);
7631 read_unlock(&tasklist_lock);
7632 mutex_unlock(&rt_constraints_mutex);
7633
7634 return ret;
7635 }
7636
7637 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7638 {
7639 /* Don't accept realtime tasks when there is no way for them to run */
7640 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7641 return 0;
7642
7643 return 1;
7644 }
7645
7646 #else /* !CONFIG_RT_GROUP_SCHED */
7647 static int sched_rt_global_constraints(void)
7648 {
7649 unsigned long flags;
7650 int i, ret = 0;
7651
7652 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7653 for_each_possible_cpu(i) {
7654 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7655
7656 raw_spin_lock(&rt_rq->rt_runtime_lock);
7657 rt_rq->rt_runtime = global_rt_runtime();
7658 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7659 }
7660 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7661
7662 return ret;
7663 }
7664 #endif /* CONFIG_RT_GROUP_SCHED */
7665
7666 static int sched_dl_global_constraints(void)
7667 {
7668 u64 runtime = global_rt_runtime();
7669 u64 period = global_rt_period();
7670 u64 new_bw = to_ratio(period, runtime);
7671 struct dl_bw *dl_b;
7672 int cpu, ret = 0;
7673 unsigned long flags;
7674
7675 /*
7676 * Here we want to check the bandwidth not being set to some
7677 * value smaller than the currently allocated bandwidth in
7678 * any of the root_domains.
7679 *
7680 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7681 * cycling on root_domains... Discussion on different/better
7682 * solutions is welcome!
7683 */
7684 for_each_possible_cpu(cpu) {
7685 rcu_read_lock_sched();
7686 dl_b = dl_bw_of(cpu);
7687
7688 raw_spin_lock_irqsave(&dl_b->lock, flags);
7689 if (new_bw < dl_b->total_bw)
7690 ret = -EBUSY;
7691 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7692
7693 rcu_read_unlock_sched();
7694
7695 if (ret)
7696 break;
7697 }
7698
7699 return ret;
7700 }
7701
7702 static void sched_dl_do_global(void)
7703 {
7704 u64 new_bw = -1;
7705 struct dl_bw *dl_b;
7706 int cpu;
7707 unsigned long flags;
7708
7709 def_dl_bandwidth.dl_period = global_rt_period();
7710 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7711
7712 if (global_rt_runtime() != RUNTIME_INF)
7713 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7714
7715 /*
7716 * FIXME: As above...
7717 */
7718 for_each_possible_cpu(cpu) {
7719 rcu_read_lock_sched();
7720 dl_b = dl_bw_of(cpu);
7721
7722 raw_spin_lock_irqsave(&dl_b->lock, flags);
7723 dl_b->bw = new_bw;
7724 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7725
7726 rcu_read_unlock_sched();
7727 }
7728 }
7729
7730 static int sched_rt_global_validate(void)
7731 {
7732 if (sysctl_sched_rt_period <= 0)
7733 return -EINVAL;
7734
7735 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7736 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7737 return -EINVAL;
7738
7739 return 0;
7740 }
7741
7742 static void sched_rt_do_global(void)
7743 {
7744 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7745 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7746 }
7747
7748 int sched_rt_handler(struct ctl_table *table, int write,
7749 void __user *buffer, size_t *lenp,
7750 loff_t *ppos)
7751 {
7752 int old_period, old_runtime;
7753 static DEFINE_MUTEX(mutex);
7754 int ret;
7755
7756 mutex_lock(&mutex);
7757 old_period = sysctl_sched_rt_period;
7758 old_runtime = sysctl_sched_rt_runtime;
7759
7760 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7761
7762 if (!ret && write) {
7763 ret = sched_rt_global_validate();
7764 if (ret)
7765 goto undo;
7766
7767 ret = sched_rt_global_constraints();
7768 if (ret)
7769 goto undo;
7770
7771 ret = sched_dl_global_constraints();
7772 if (ret)
7773 goto undo;
7774
7775 sched_rt_do_global();
7776 sched_dl_do_global();
7777 }
7778 if (0) {
7779 undo:
7780 sysctl_sched_rt_period = old_period;
7781 sysctl_sched_rt_runtime = old_runtime;
7782 }
7783 mutex_unlock(&mutex);
7784
7785 return ret;
7786 }
7787
7788 int sched_rr_handler(struct ctl_table *table, int write,
7789 void __user *buffer, size_t *lenp,
7790 loff_t *ppos)
7791 {
7792 int ret;
7793 static DEFINE_MUTEX(mutex);
7794
7795 mutex_lock(&mutex);
7796 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7797 /* make sure that internally we keep jiffies */
7798 /* also, writing zero resets timeslice to default */
7799 if (!ret && write) {
7800 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7801 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7802 }
7803 mutex_unlock(&mutex);
7804 return ret;
7805 }
7806
7807 #ifdef CONFIG_CGROUP_SCHED
7808
7809 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7810 {
7811 return css ? container_of(css, struct task_group, css) : NULL;
7812 }
7813
7814 static struct cgroup_subsys_state *
7815 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7816 {
7817 struct task_group *parent = css_tg(parent_css);
7818 struct task_group *tg;
7819
7820 if (!parent) {
7821 /* This is early initialization for the top cgroup */
7822 return &root_task_group.css;
7823 }
7824
7825 tg = sched_create_group(parent);
7826 if (IS_ERR(tg))
7827 return ERR_PTR(-ENOMEM);
7828
7829 return &tg->css;
7830 }
7831
7832 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7833 {
7834 struct task_group *tg = css_tg(css);
7835 struct task_group *parent = css_tg(css->parent);
7836
7837 if (parent)
7838 sched_online_group(tg, parent);
7839 return 0;
7840 }
7841
7842 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7843 {
7844 struct task_group *tg = css_tg(css);
7845
7846 sched_destroy_group(tg);
7847 }
7848
7849 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7850 {
7851 struct task_group *tg = css_tg(css);
7852
7853 sched_offline_group(tg);
7854 }
7855
7856 static void cpu_cgroup_fork(struct task_struct *task)
7857 {
7858 sched_move_task(task);
7859 }
7860
7861 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7862 struct cgroup_taskset *tset)
7863 {
7864 struct task_struct *task;
7865
7866 cgroup_taskset_for_each(task, tset) {
7867 #ifdef CONFIG_RT_GROUP_SCHED
7868 if (!sched_rt_can_attach(css_tg(css), task))
7869 return -EINVAL;
7870 #else
7871 /* We don't support RT-tasks being in separate groups */
7872 if (task->sched_class != &fair_sched_class)
7873 return -EINVAL;
7874 #endif
7875 }
7876 return 0;
7877 }
7878
7879 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7880 struct cgroup_taskset *tset)
7881 {
7882 struct task_struct *task;
7883
7884 cgroup_taskset_for_each(task, tset)
7885 sched_move_task(task);
7886 }
7887
7888 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7889 struct cgroup_subsys_state *old_css,
7890 struct task_struct *task)
7891 {
7892 /*
7893 * cgroup_exit() is called in the copy_process() failure path.
7894 * Ignore this case since the task hasn't ran yet, this avoids
7895 * trying to poke a half freed task state from generic code.
7896 */
7897 if (!(task->flags & PF_EXITING))
7898 return;
7899
7900 sched_move_task(task);
7901 }
7902
7903 #ifdef CONFIG_FAIR_GROUP_SCHED
7904 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7905 struct cftype *cftype, u64 shareval)
7906 {
7907 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7908 }
7909
7910 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7911 struct cftype *cft)
7912 {
7913 struct task_group *tg = css_tg(css);
7914
7915 return (u64) scale_load_down(tg->shares);
7916 }
7917
7918 #ifdef CONFIG_CFS_BANDWIDTH
7919 static DEFINE_MUTEX(cfs_constraints_mutex);
7920
7921 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7922 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7923
7924 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7925
7926 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7927 {
7928 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7929 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7930
7931 if (tg == &root_task_group)
7932 return -EINVAL;
7933
7934 /*
7935 * Ensure we have at some amount of bandwidth every period. This is
7936 * to prevent reaching a state of large arrears when throttled via
7937 * entity_tick() resulting in prolonged exit starvation.
7938 */
7939 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7940 return -EINVAL;
7941
7942 /*
7943 * Likewise, bound things on the otherside by preventing insane quota
7944 * periods. This also allows us to normalize in computing quota
7945 * feasibility.
7946 */
7947 if (period > max_cfs_quota_period)
7948 return -EINVAL;
7949
7950 /*
7951 * Prevent race between setting of cfs_rq->runtime_enabled and
7952 * unthrottle_offline_cfs_rqs().
7953 */
7954 get_online_cpus();
7955 mutex_lock(&cfs_constraints_mutex);
7956 ret = __cfs_schedulable(tg, period, quota);
7957 if (ret)
7958 goto out_unlock;
7959
7960 runtime_enabled = quota != RUNTIME_INF;
7961 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7962 /*
7963 * If we need to toggle cfs_bandwidth_used, off->on must occur
7964 * before making related changes, and on->off must occur afterwards
7965 */
7966 if (runtime_enabled && !runtime_was_enabled)
7967 cfs_bandwidth_usage_inc();
7968 raw_spin_lock_irq(&cfs_b->lock);
7969 cfs_b->period = ns_to_ktime(period);
7970 cfs_b->quota = quota;
7971
7972 __refill_cfs_bandwidth_runtime(cfs_b);
7973 /* restart the period timer (if active) to handle new period expiry */
7974 if (runtime_enabled && cfs_b->timer_active) {
7975 /* force a reprogram */
7976 __start_cfs_bandwidth(cfs_b, true);
7977 }
7978 raw_spin_unlock_irq(&cfs_b->lock);
7979
7980 for_each_online_cpu(i) {
7981 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7982 struct rq *rq = cfs_rq->rq;
7983
7984 raw_spin_lock_irq(&rq->lock);
7985 cfs_rq->runtime_enabled = runtime_enabled;
7986 cfs_rq->runtime_remaining = 0;
7987
7988 if (cfs_rq->throttled)
7989 unthrottle_cfs_rq(cfs_rq);
7990 raw_spin_unlock_irq(&rq->lock);
7991 }
7992 if (runtime_was_enabled && !runtime_enabled)
7993 cfs_bandwidth_usage_dec();
7994 out_unlock:
7995 mutex_unlock(&cfs_constraints_mutex);
7996 put_online_cpus();
7997
7998 return ret;
7999 }
8000
8001 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8002 {
8003 u64 quota, period;
8004
8005 period = ktime_to_ns(tg->cfs_bandwidth.period);
8006 if (cfs_quota_us < 0)
8007 quota = RUNTIME_INF;
8008 else
8009 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8010
8011 return tg_set_cfs_bandwidth(tg, period, quota);
8012 }
8013
8014 long tg_get_cfs_quota(struct task_group *tg)
8015 {
8016 u64 quota_us;
8017
8018 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8019 return -1;
8020
8021 quota_us = tg->cfs_bandwidth.quota;
8022 do_div(quota_us, NSEC_PER_USEC);
8023
8024 return quota_us;
8025 }
8026
8027 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8028 {
8029 u64 quota, period;
8030
8031 period = (u64)cfs_period_us * NSEC_PER_USEC;
8032 quota = tg->cfs_bandwidth.quota;
8033
8034 return tg_set_cfs_bandwidth(tg, period, quota);
8035 }
8036
8037 long tg_get_cfs_period(struct task_group *tg)
8038 {
8039 u64 cfs_period_us;
8040
8041 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8042 do_div(cfs_period_us, NSEC_PER_USEC);
8043
8044 return cfs_period_us;
8045 }
8046
8047 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8048 struct cftype *cft)
8049 {
8050 return tg_get_cfs_quota(css_tg(css));
8051 }
8052
8053 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8054 struct cftype *cftype, s64 cfs_quota_us)
8055 {
8056 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8057 }
8058
8059 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8060 struct cftype *cft)
8061 {
8062 return tg_get_cfs_period(css_tg(css));
8063 }
8064
8065 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8066 struct cftype *cftype, u64 cfs_period_us)
8067 {
8068 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8069 }
8070
8071 struct cfs_schedulable_data {
8072 struct task_group *tg;
8073 u64 period, quota;
8074 };
8075
8076 /*
8077 * normalize group quota/period to be quota/max_period
8078 * note: units are usecs
8079 */
8080 static u64 normalize_cfs_quota(struct task_group *tg,
8081 struct cfs_schedulable_data *d)
8082 {
8083 u64 quota, period;
8084
8085 if (tg == d->tg) {
8086 period = d->period;
8087 quota = d->quota;
8088 } else {
8089 period = tg_get_cfs_period(tg);
8090 quota = tg_get_cfs_quota(tg);
8091 }
8092
8093 /* note: these should typically be equivalent */
8094 if (quota == RUNTIME_INF || quota == -1)
8095 return RUNTIME_INF;
8096
8097 return to_ratio(period, quota);
8098 }
8099
8100 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8101 {
8102 struct cfs_schedulable_data *d = data;
8103 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8104 s64 quota = 0, parent_quota = -1;
8105
8106 if (!tg->parent) {
8107 quota = RUNTIME_INF;
8108 } else {
8109 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8110
8111 quota = normalize_cfs_quota(tg, d);
8112 parent_quota = parent_b->hierarchical_quota;
8113
8114 /*
8115 * ensure max(child_quota) <= parent_quota, inherit when no
8116 * limit is set
8117 */
8118 if (quota == RUNTIME_INF)
8119 quota = parent_quota;
8120 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8121 return -EINVAL;
8122 }
8123 cfs_b->hierarchical_quota = quota;
8124
8125 return 0;
8126 }
8127
8128 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8129 {
8130 int ret;
8131 struct cfs_schedulable_data data = {
8132 .tg = tg,
8133 .period = period,
8134 .quota = quota,
8135 };
8136
8137 if (quota != RUNTIME_INF) {
8138 do_div(data.period, NSEC_PER_USEC);
8139 do_div(data.quota, NSEC_PER_USEC);
8140 }
8141
8142 rcu_read_lock();
8143 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8144 rcu_read_unlock();
8145
8146 return ret;
8147 }
8148
8149 static int cpu_stats_show(struct seq_file *sf, void *v)
8150 {
8151 struct task_group *tg = css_tg(seq_css(sf));
8152 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8153
8154 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8155 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8156 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8157
8158 return 0;
8159 }
8160 #endif /* CONFIG_CFS_BANDWIDTH */
8161 #endif /* CONFIG_FAIR_GROUP_SCHED */
8162
8163 #ifdef CONFIG_RT_GROUP_SCHED
8164 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8165 struct cftype *cft, s64 val)
8166 {
8167 return sched_group_set_rt_runtime(css_tg(css), val);
8168 }
8169
8170 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8171 struct cftype *cft)
8172 {
8173 return sched_group_rt_runtime(css_tg(css));
8174 }
8175
8176 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8177 struct cftype *cftype, u64 rt_period_us)
8178 {
8179 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8180 }
8181
8182 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8183 struct cftype *cft)
8184 {
8185 return sched_group_rt_period(css_tg(css));
8186 }
8187 #endif /* CONFIG_RT_GROUP_SCHED */
8188
8189 static struct cftype cpu_files[] = {
8190 #ifdef CONFIG_FAIR_GROUP_SCHED
8191 {
8192 .name = "shares",
8193 .read_u64 = cpu_shares_read_u64,
8194 .write_u64 = cpu_shares_write_u64,
8195 },
8196 #endif
8197 #ifdef CONFIG_CFS_BANDWIDTH
8198 {
8199 .name = "cfs_quota_us",
8200 .read_s64 = cpu_cfs_quota_read_s64,
8201 .write_s64 = cpu_cfs_quota_write_s64,
8202 },
8203 {
8204 .name = "cfs_period_us",
8205 .read_u64 = cpu_cfs_period_read_u64,
8206 .write_u64 = cpu_cfs_period_write_u64,
8207 },
8208 {
8209 .name = "stat",
8210 .seq_show = cpu_stats_show,
8211 },
8212 #endif
8213 #ifdef CONFIG_RT_GROUP_SCHED
8214 {
8215 .name = "rt_runtime_us",
8216 .read_s64 = cpu_rt_runtime_read,
8217 .write_s64 = cpu_rt_runtime_write,
8218 },
8219 {
8220 .name = "rt_period_us",
8221 .read_u64 = cpu_rt_period_read_uint,
8222 .write_u64 = cpu_rt_period_write_uint,
8223 },
8224 #endif
8225 { } /* terminate */
8226 };
8227
8228 struct cgroup_subsys cpu_cgrp_subsys = {
8229 .css_alloc = cpu_cgroup_css_alloc,
8230 .css_free = cpu_cgroup_css_free,
8231 .css_online = cpu_cgroup_css_online,
8232 .css_offline = cpu_cgroup_css_offline,
8233 .fork = cpu_cgroup_fork,
8234 .can_attach = cpu_cgroup_can_attach,
8235 .attach = cpu_cgroup_attach,
8236 .exit = cpu_cgroup_exit,
8237 .legacy_cftypes = cpu_files,
8238 .early_init = 1,
8239 };
8240
8241 #endif /* CONFIG_CGROUP_SCHED */
8242
8243 void dump_cpu_task(int cpu)
8244 {
8245 pr_info("Task dump for CPU %d:\n", cpu);
8246 sched_show_task(cpu_curr(cpu));
8247 }
This page took 0.245876 seconds and 5 git commands to generate.