Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 #include "../smpboot.h"
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/sched.h>
90
91 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92 {
93 unsigned long delta;
94 ktime_t soft, hard, now;
95
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
102
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109 }
110
111 DEFINE_MUTEX(sched_domains_mutex);
112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113
114 static void update_rq_clock_task(struct rq *rq, s64 delta);
115
116 void update_rq_clock(struct rq *rq)
117 {
118 s64 delta;
119
120 if (rq->skip_clock_update > 0)
121 return;
122
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
126 }
127
128 /*
129 * Debugging: various feature bits
130 */
131
132 #define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
135 const_debug unsigned int sysctl_sched_features =
136 #include "features.h"
137 0;
138
139 #undef SCHED_FEAT
140
141 #ifdef CONFIG_SCHED_DEBUG
142 #define SCHED_FEAT(name, enabled) \
143 #name ,
144
145 static const char * const sched_feat_names[] = {
146 #include "features.h"
147 };
148
149 #undef SCHED_FEAT
150
151 static int sched_feat_show(struct seq_file *m, void *v)
152 {
153 int i;
154
155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
159 }
160 seq_puts(m, "\n");
161
162 return 0;
163 }
164
165 #ifdef HAVE_JUMP_LABEL
166
167 #define jump_label_key__true STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170 #define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
175 };
176
177 #undef SCHED_FEAT
178
179 static void sched_feat_disable(int i)
180 {
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
183 }
184
185 static void sched_feat_enable(int i)
186 {
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
189 }
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
194
195 static ssize_t
196 sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198 {
199 char buf[64];
200 char *cmp;
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
211 cmp = strstrip(buf);
212
213 if (strncmp(cmp, "NO_", 3) == 0) {
214 neg = 1;
215 cmp += 3;
216 }
217
218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 if (neg) {
221 sysctl_sched_features &= ~(1UL << i);
222 sched_feat_disable(i);
223 } else {
224 sysctl_sched_features |= (1UL << i);
225 sched_feat_enable(i);
226 }
227 break;
228 }
229 }
230
231 if (i == __SCHED_FEAT_NR)
232 return -EINVAL;
233
234 *ppos += cnt;
235
236 return cnt;
237 }
238
239 static int sched_feat_open(struct inode *inode, struct file *filp)
240 {
241 return single_open(filp, sched_feat_show, NULL);
242 }
243
244 static const struct file_operations sched_feat_fops = {
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
250 };
251
252 static __init int sched_init_debug(void)
253 {
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258 }
259 late_initcall(sched_init_debug);
260 #endif /* CONFIG_SCHED_DEBUG */
261
262 /*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266 const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
268 /*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
276 /*
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
279 */
280 unsigned int sysctl_sched_rt_period = 1000000;
281
282 __read_mostly int scheduler_running;
283
284 /*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288 int sysctl_sched_rt_runtime = 950000;
289
290
291
292 /*
293 * __task_rq_lock - lock the rq @p resides on.
294 */
295 static inline struct rq *__task_rq_lock(struct task_struct *p)
296 __acquires(rq->lock)
297 {
298 struct rq *rq;
299
300 lockdep_assert_held(&p->pi_lock);
301
302 for (;;) {
303 rq = task_rq(p);
304 raw_spin_lock(&rq->lock);
305 if (likely(rq == task_rq(p)))
306 return rq;
307 raw_spin_unlock(&rq->lock);
308 }
309 }
310
311 /*
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313 */
314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 __acquires(p->pi_lock)
316 __acquires(rq->lock)
317 {
318 struct rq *rq;
319
320 for (;;) {
321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 rq = task_rq(p);
323 raw_spin_lock(&rq->lock);
324 if (likely(rq == task_rq(p)))
325 return rq;
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328 }
329 }
330
331 static void __task_rq_unlock(struct rq *rq)
332 __releases(rq->lock)
333 {
334 raw_spin_unlock(&rq->lock);
335 }
336
337 static inline void
338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 __releases(rq->lock)
340 __releases(p->pi_lock)
341 {
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344 }
345
346 /*
347 * this_rq_lock - lock this runqueue and disable interrupts.
348 */
349 static struct rq *this_rq_lock(void)
350 __acquires(rq->lock)
351 {
352 struct rq *rq;
353
354 local_irq_disable();
355 rq = this_rq();
356 raw_spin_lock(&rq->lock);
357
358 return rq;
359 }
360
361 #ifdef CONFIG_SCHED_HRTICK
362 /*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
372
373 static void hrtick_clear(struct rq *rq)
374 {
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377 }
378
379 /*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389 raw_spin_lock(&rq->lock);
390 update_rq_clock(rq);
391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 raw_spin_unlock(&rq->lock);
393
394 return HRTIMER_NORESTART;
395 }
396
397 #ifdef CONFIG_SMP
398 /*
399 * called from hardirq (IPI) context
400 */
401 static void __hrtick_start(void *arg)
402 {
403 struct rq *rq = arg;
404
405 raw_spin_lock(&rq->lock);
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
408 raw_spin_unlock(&rq->lock);
409 }
410
411 /*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
416 void hrtick_start(struct rq *rq, u64 delay)
417 {
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420
421 hrtimer_set_expires(timer, time);
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 rq->hrtick_csd_pending = 1;
428 }
429 }
430
431 static int
432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433 {
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
443 hrtick_clear(cpu_rq(cpu));
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448 }
449
450 static __init void init_hrtick(void)
451 {
452 hotcpu_notifier(hotplug_hrtick, 0);
453 }
454 #else
455 /*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
460 void hrtick_start(struct rq *rq, u64 delay)
461 {
462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 HRTIMER_MODE_REL_PINNED, 0);
464 }
465
466 static inline void init_hrtick(void)
467 {
468 }
469 #endif /* CONFIG_SMP */
470
471 static void init_rq_hrtick(struct rq *rq)
472 {
473 #ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
475
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479 #endif
480
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
483 }
484 #else /* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq *rq)
486 {
487 }
488
489 static inline void init_rq_hrtick(struct rq *rq)
490 {
491 }
492
493 static inline void init_hrtick(void)
494 {
495 }
496 #endif /* CONFIG_SCHED_HRTICK */
497
498 /*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505 #ifdef CONFIG_SMP
506
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509 #endif
510
511 void resched_task(struct task_struct *p)
512 {
513 int cpu;
514
515 assert_raw_spin_locked(&task_rq(p)->lock);
516
517 if (test_tsk_need_resched(p))
518 return;
519
520 set_tsk_need_resched(p);
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530 }
531
532 void resched_cpu(int cpu)
533 {
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 return;
539 resched_task(cpu_curr(cpu));
540 raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542
543 #ifdef CONFIG_NO_HZ
544 /*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552 int get_nohz_timer_target(void)
553 {
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
558 rcu_read_lock();
559 for_each_domain(cpu, sd) {
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
566 }
567 unlock:
568 rcu_read_unlock();
569 return cpu;
570 }
571 /*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581 void wake_up_idle_cpu(int cpu)
582 {
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
597
598 /*
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
602 */
603 set_tsk_need_resched(rq->idle);
604
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
609 }
610
611 static inline bool got_nohz_idle_kick(void)
612 {
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 }
616
617 #else /* CONFIG_NO_HZ */
618
619 static inline bool got_nohz_idle_kick(void)
620 {
621 return false;
622 }
623
624 #endif /* CONFIG_NO_HZ */
625
626 void sched_avg_update(struct rq *rq)
627 {
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
640 }
641
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct *p)
644 {
645 assert_raw_spin_locked(&task_rq(p)->lock);
646 set_tsk_need_resched(p);
647 }
648 #endif /* CONFIG_SMP */
649
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652 /*
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
657 */
658 int walk_tg_tree_from(struct task_group *from,
659 tg_visitor down, tg_visitor up, void *data)
660 {
661 struct task_group *parent, *child;
662 int ret;
663
664 parent = from;
665
666 down:
667 ret = (*down)(parent, data);
668 if (ret)
669 goto out;
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674 up:
675 continue;
676 }
677 ret = (*up)(parent, data);
678 if (ret || parent == from)
679 goto out;
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
685 out:
686 return ret;
687 }
688
689 int tg_nop(struct task_group *tg, void *data)
690 {
691 return 0;
692 }
693 #endif
694
695 static void set_load_weight(struct task_struct *p)
696 {
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
704 load->weight = scale_load(WEIGHT_IDLEPRIO);
705 load->inv_weight = WMULT_IDLEPRIO;
706 return;
707 }
708
709 load->weight = scale_load(prio_to_weight[prio]);
710 load->inv_weight = prio_to_wmult[prio];
711 }
712
713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714 {
715 update_rq_clock(rq);
716 sched_info_queued(p);
717 p->sched_class->enqueue_task(rq, p, flags);
718 }
719
720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721 {
722 update_rq_clock(rq);
723 sched_info_dequeued(p);
724 p->sched_class->dequeue_task(rq, p, flags);
725 }
726
727 void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 {
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
732 enqueue_task(rq, p, flags);
733 }
734
735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 {
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
740 dequeue_task(rq, p, flags);
741 }
742
743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
745 /*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
755 */
756 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757 static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759 static DEFINE_PER_CPU(u64, irq_start_time);
760 static int sched_clock_irqtime;
761
762 void enable_sched_clock_irqtime(void)
763 {
764 sched_clock_irqtime = 1;
765 }
766
767 void disable_sched_clock_irqtime(void)
768 {
769 sched_clock_irqtime = 0;
770 }
771
772 #ifndef CONFIG_64BIT
773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775 static inline void irq_time_write_begin(void)
776 {
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
779 }
780
781 static inline void irq_time_write_end(void)
782 {
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
785 }
786
787 static inline u64 irq_time_read(int cpu)
788 {
789 u64 irq_time;
790 unsigned seq;
791
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798 return irq_time;
799 }
800 #else /* CONFIG_64BIT */
801 static inline void irq_time_write_begin(void)
802 {
803 }
804
805 static inline void irq_time_write_end(void)
806 {
807 }
808
809 static inline u64 irq_time_read(int cpu)
810 {
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812 }
813 #endif /* CONFIG_64BIT */
814
815 /*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
819 void account_system_vtime(struct task_struct *curr)
820 {
821 unsigned long flags;
822 s64 delta;
823 int cpu;
824
825 if (!sched_clock_irqtime)
826 return;
827
828 local_irq_save(flags);
829
830 cpu = smp_processor_id();
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
833
834 irq_time_write_begin();
835 /*
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
840 */
841 if (hardirq_count())
842 __this_cpu_add(cpu_hardirq_time, delta);
843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844 __this_cpu_add(cpu_softirq_time, delta);
845
846 irq_time_write_end();
847 local_irq_restore(flags);
848 }
849 EXPORT_SYMBOL_GPL(account_system_vtime);
850
851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853 #ifdef CONFIG_PARAVIRT
854 static inline u64 steal_ticks(u64 steal)
855 {
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
858
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860 }
861 #endif
862
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
864 {
865 /*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_key_false((&paravirt_steal_rq_enabled))) {
898 u64 st;
899
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
908
909 rq->prev_steal_time_rq += steal;
910
911 delta -= steal;
912 }
913 #endif
914
915 rq->clock_task += delta;
916
917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920 #endif
921 }
922
923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 static int irqtime_account_hi_update(void)
925 {
926 u64 *cpustat = kcpustat_this_cpu->cpustat;
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
930
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
937 }
938
939 static int irqtime_account_si_update(void)
940 {
941 u64 *cpustat = kcpustat_this_cpu->cpustat;
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
945
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
952 }
953
954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
955
956 #define sched_clock_irqtime (0)
957
958 #endif
959
960 void sched_set_stop_task(int cpu, struct task_struct *stop)
961 {
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965 if (stop) {
966 /*
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
969 *
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
973 */
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976 stop->sched_class = &stop_sched_class;
977 }
978
979 cpu_rq(cpu)->stop = stop;
980
981 if (old_stop) {
982 /*
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
985 */
986 old_stop->sched_class = &rt_sched_class;
987 }
988 }
989
990 /*
991 * __normal_prio - return the priority that is based on the static prio
992 */
993 static inline int __normal_prio(struct task_struct *p)
994 {
995 return p->static_prio;
996 }
997
998 /*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
1005 static inline int normal_prio(struct task_struct *p)
1006 {
1007 int prio;
1008
1009 if (task_has_rt_policy(p))
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1014 }
1015
1016 /*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
1023 static int effective_prio(struct task_struct *p)
1024 {
1025 p->normal_prio = normal_prio(p);
1026 /*
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1030 */
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1034 }
1035
1036 /**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
1040 inline int task_curr(const struct task_struct *p)
1041 {
1042 return cpu_curr(task_cpu(p)) == p;
1043 }
1044
1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
1047 int oldprio)
1048 {
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
1055 }
1056
1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058 {
1059 const struct sched_class *class;
1060
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1077 */
1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 rq->skip_clock_update = 1;
1080 }
1081
1082 #ifdef CONFIG_SMP
1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1084 {
1085 #ifdef CONFIG_SCHED_DEBUG
1086 /*
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1089 */
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092
1093 #ifdef CONFIG_LOCKDEP
1094 /*
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 *
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1100 *
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1103 */
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106 #endif
1107 #endif
1108
1109 trace_sched_migrate_task(p, new_cpu);
1110
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114 }
1115
1116 __set_task_cpu(p, new_cpu);
1117 }
1118
1119 struct migration_arg {
1120 struct task_struct *task;
1121 int dest_cpu;
1122 };
1123
1124 static int migration_cpu_stop(void *data);
1125
1126 /*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143 {
1144 unsigned long flags;
1145 int running, on_rq;
1146 unsigned long ncsw;
1147 struct rq *rq;
1148
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
1157
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
1172 cpu_relax();
1173 }
1174
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
1181 trace_sched_wait_task(p);
1182 running = task_running(rq, p);
1183 on_rq = p->on_rq;
1184 ncsw = 0;
1185 if (!match_state || p->state == match_state)
1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187 task_rq_unlock(rq, p, &flags);
1188
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
1205
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
1211 * So if it was still runnable (but just not actively
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 continue;
1221 }
1222
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
1230
1231 return ncsw;
1232 }
1233
1234 /***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
1247 void kick_process(struct task_struct *p)
1248 {
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256 }
1257 EXPORT_SYMBOL_GPL(kick_process);
1258 #endif /* CONFIG_SMP */
1259
1260 #ifdef CONFIG_SMP
1261 /*
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263 */
1264 static int select_fallback_rq(int cpu, struct task_struct *p)
1265 {
1266 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
1269
1270 /* Look for allowed, online CPU in same node. */
1271 for_each_cpu(dest_cpu, nodemask) {
1272 if (!cpu_online(dest_cpu))
1273 continue;
1274 if (!cpu_active(dest_cpu))
1275 continue;
1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277 return dest_cpu;
1278 }
1279
1280 for (;;) {
1281 /* Any allowed, online CPU? */
1282 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1283 if (!cpu_online(dest_cpu))
1284 continue;
1285 if (!cpu_active(dest_cpu))
1286 continue;
1287 goto out;
1288 }
1289
1290 switch (state) {
1291 case cpuset:
1292 /* No more Mr. Nice Guy. */
1293 cpuset_cpus_allowed_fallback(p);
1294 state = possible;
1295 break;
1296
1297 case possible:
1298 do_set_cpus_allowed(p, cpu_possible_mask);
1299 state = fail;
1300 break;
1301
1302 case fail:
1303 BUG();
1304 break;
1305 }
1306 }
1307
1308 out:
1309 if (state != cpuset) {
1310 /*
1311 * Don't tell them about moving exiting tasks or
1312 * kernel threads (both mm NULL), since they never
1313 * leave kernel.
1314 */
1315 if (p->mm && printk_ratelimit()) {
1316 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317 task_pid_nr(p), p->comm, cpu);
1318 }
1319 }
1320
1321 return dest_cpu;
1322 }
1323
1324 /*
1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1326 */
1327 static inline
1328 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1329 {
1330 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1331
1332 /*
1333 * In order not to call set_task_cpu() on a blocking task we need
1334 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335 * cpu.
1336 *
1337 * Since this is common to all placement strategies, this lives here.
1338 *
1339 * [ this allows ->select_task() to simply return task_cpu(p) and
1340 * not worry about this generic constraint ]
1341 */
1342 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1343 !cpu_online(cpu)))
1344 cpu = select_fallback_rq(task_cpu(p), p);
1345
1346 return cpu;
1347 }
1348
1349 static void update_avg(u64 *avg, u64 sample)
1350 {
1351 s64 diff = sample - *avg;
1352 *avg += diff >> 3;
1353 }
1354 #endif
1355
1356 static void
1357 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1358 {
1359 #ifdef CONFIG_SCHEDSTATS
1360 struct rq *rq = this_rq();
1361
1362 #ifdef CONFIG_SMP
1363 int this_cpu = smp_processor_id();
1364
1365 if (cpu == this_cpu) {
1366 schedstat_inc(rq, ttwu_local);
1367 schedstat_inc(p, se.statistics.nr_wakeups_local);
1368 } else {
1369 struct sched_domain *sd;
1370
1371 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1372 rcu_read_lock();
1373 for_each_domain(this_cpu, sd) {
1374 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375 schedstat_inc(sd, ttwu_wake_remote);
1376 break;
1377 }
1378 }
1379 rcu_read_unlock();
1380 }
1381
1382 if (wake_flags & WF_MIGRATED)
1383 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384
1385 #endif /* CONFIG_SMP */
1386
1387 schedstat_inc(rq, ttwu_count);
1388 schedstat_inc(p, se.statistics.nr_wakeups);
1389
1390 if (wake_flags & WF_SYNC)
1391 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1392
1393 #endif /* CONFIG_SCHEDSTATS */
1394 }
1395
1396 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397 {
1398 activate_task(rq, p, en_flags);
1399 p->on_rq = 1;
1400
1401 /* if a worker is waking up, notify workqueue */
1402 if (p->flags & PF_WQ_WORKER)
1403 wq_worker_waking_up(p, cpu_of(rq));
1404 }
1405
1406 /*
1407 * Mark the task runnable and perform wakeup-preemption.
1408 */
1409 static void
1410 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1411 {
1412 trace_sched_wakeup(p, true);
1413 check_preempt_curr(rq, p, wake_flags);
1414
1415 p->state = TASK_RUNNING;
1416 #ifdef CONFIG_SMP
1417 if (p->sched_class->task_woken)
1418 p->sched_class->task_woken(rq, p);
1419
1420 if (rq->idle_stamp) {
1421 u64 delta = rq->clock - rq->idle_stamp;
1422 u64 max = 2*sysctl_sched_migration_cost;
1423
1424 if (delta > max)
1425 rq->avg_idle = max;
1426 else
1427 update_avg(&rq->avg_idle, delta);
1428 rq->idle_stamp = 0;
1429 }
1430 #endif
1431 }
1432
1433 static void
1434 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1435 {
1436 #ifdef CONFIG_SMP
1437 if (p->sched_contributes_to_load)
1438 rq->nr_uninterruptible--;
1439 #endif
1440
1441 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442 ttwu_do_wakeup(rq, p, wake_flags);
1443 }
1444
1445 /*
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1450 */
1451 static int ttwu_remote(struct task_struct *p, int wake_flags)
1452 {
1453 struct rq *rq;
1454 int ret = 0;
1455
1456 rq = __task_rq_lock(p);
1457 if (p->on_rq) {
1458 ttwu_do_wakeup(rq, p, wake_flags);
1459 ret = 1;
1460 }
1461 __task_rq_unlock(rq);
1462
1463 return ret;
1464 }
1465
1466 #ifdef CONFIG_SMP
1467 static void sched_ttwu_pending(void)
1468 {
1469 struct rq *rq = this_rq();
1470 struct llist_node *llist = llist_del_all(&rq->wake_list);
1471 struct task_struct *p;
1472
1473 raw_spin_lock(&rq->lock);
1474
1475 while (llist) {
1476 p = llist_entry(llist, struct task_struct, wake_entry);
1477 llist = llist_next(llist);
1478 ttwu_do_activate(rq, p, 0);
1479 }
1480
1481 raw_spin_unlock(&rq->lock);
1482 }
1483
1484 void scheduler_ipi(void)
1485 {
1486 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1487 return;
1488
1489 /*
1490 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491 * traditionally all their work was done from the interrupt return
1492 * path. Now that we actually do some work, we need to make sure
1493 * we do call them.
1494 *
1495 * Some archs already do call them, luckily irq_enter/exit nest
1496 * properly.
1497 *
1498 * Arguably we should visit all archs and update all handlers,
1499 * however a fair share of IPIs are still resched only so this would
1500 * somewhat pessimize the simple resched case.
1501 */
1502 irq_enter();
1503 sched_ttwu_pending();
1504
1505 /*
1506 * Check if someone kicked us for doing the nohz idle load balance.
1507 */
1508 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509 this_rq()->idle_balance = 1;
1510 raise_softirq_irqoff(SCHED_SOFTIRQ);
1511 }
1512 irq_exit();
1513 }
1514
1515 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516 {
1517 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1518 smp_send_reschedule(cpu);
1519 }
1520
1521 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523 {
1524 struct rq *rq;
1525 int ret = 0;
1526
1527 rq = __task_rq_lock(p);
1528 if (p->on_cpu) {
1529 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530 ttwu_do_wakeup(rq, p, wake_flags);
1531 ret = 1;
1532 }
1533 __task_rq_unlock(rq);
1534
1535 return ret;
1536
1537 }
1538 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1539
1540 bool cpus_share_cache(int this_cpu, int that_cpu)
1541 {
1542 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543 }
1544 #endif /* CONFIG_SMP */
1545
1546 static void ttwu_queue(struct task_struct *p, int cpu)
1547 {
1548 struct rq *rq = cpu_rq(cpu);
1549
1550 #if defined(CONFIG_SMP)
1551 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553 ttwu_queue_remote(p, cpu);
1554 return;
1555 }
1556 #endif
1557
1558 raw_spin_lock(&rq->lock);
1559 ttwu_do_activate(rq, p, 0);
1560 raw_spin_unlock(&rq->lock);
1561 }
1562
1563 /**
1564 * try_to_wake_up - wake up a thread
1565 * @p: the thread to be awakened
1566 * @state: the mask of task states that can be woken
1567 * @wake_flags: wake modifier flags (WF_*)
1568 *
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1574 *
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
1577 */
1578 static int
1579 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1580 {
1581 unsigned long flags;
1582 int cpu, success = 0;
1583
1584 smp_wmb();
1585 raw_spin_lock_irqsave(&p->pi_lock, flags);
1586 if (!(p->state & state))
1587 goto out;
1588
1589 success = 1; /* we're going to change ->state */
1590 cpu = task_cpu(p);
1591
1592 if (p->on_rq && ttwu_remote(p, wake_flags))
1593 goto stat;
1594
1595 #ifdef CONFIG_SMP
1596 /*
1597 * If the owning (remote) cpu is still in the middle of schedule() with
1598 * this task as prev, wait until its done referencing the task.
1599 */
1600 while (p->on_cpu) {
1601 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602 /*
1603 * In case the architecture enables interrupts in
1604 * context_switch(), we cannot busy wait, since that
1605 * would lead to deadlocks when an interrupt hits and
1606 * tries to wake up @prev. So bail and do a complete
1607 * remote wakeup.
1608 */
1609 if (ttwu_activate_remote(p, wake_flags))
1610 goto stat;
1611 #else
1612 cpu_relax();
1613 #endif
1614 }
1615 /*
1616 * Pairs with the smp_wmb() in finish_lock_switch().
1617 */
1618 smp_rmb();
1619
1620 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1621 p->state = TASK_WAKING;
1622
1623 if (p->sched_class->task_waking)
1624 p->sched_class->task_waking(p);
1625
1626 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1627 if (task_cpu(p) != cpu) {
1628 wake_flags |= WF_MIGRATED;
1629 set_task_cpu(p, cpu);
1630 }
1631 #endif /* CONFIG_SMP */
1632
1633 ttwu_queue(p, cpu);
1634 stat:
1635 ttwu_stat(p, cpu, wake_flags);
1636 out:
1637 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1638
1639 return success;
1640 }
1641
1642 /**
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
1645 *
1646 * Put @p on the run-queue if it's not already there. The caller must
1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1648 * the current task.
1649 */
1650 static void try_to_wake_up_local(struct task_struct *p)
1651 {
1652 struct rq *rq = task_rq(p);
1653
1654 BUG_ON(rq != this_rq());
1655 BUG_ON(p == current);
1656 lockdep_assert_held(&rq->lock);
1657
1658 if (!raw_spin_trylock(&p->pi_lock)) {
1659 raw_spin_unlock(&rq->lock);
1660 raw_spin_lock(&p->pi_lock);
1661 raw_spin_lock(&rq->lock);
1662 }
1663
1664 if (!(p->state & TASK_NORMAL))
1665 goto out;
1666
1667 if (!p->on_rq)
1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
1670 ttwu_do_wakeup(rq, p, 0);
1671 ttwu_stat(p, smp_processor_id(), 0);
1672 out:
1673 raw_spin_unlock(&p->pi_lock);
1674 }
1675
1676 /**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes. Returns 1 if the process was woken up, 0 if it was already
1682 * running.
1683 *
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
1686 */
1687 int wake_up_process(struct task_struct *p)
1688 {
1689 return try_to_wake_up(p, TASK_ALL, 0);
1690 }
1691 EXPORT_SYMBOL(wake_up_process);
1692
1693 int wake_up_state(struct task_struct *p, unsigned int state)
1694 {
1695 return try_to_wake_up(p, state, 0);
1696 }
1697
1698 /*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704 static void __sched_fork(struct task_struct *p)
1705 {
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
1711 p->se.prev_sum_exec_runtime = 0;
1712 p->se.nr_migrations = 0;
1713 p->se.vruntime = 0;
1714 INIT_LIST_HEAD(&p->se.group_node);
1715
1716 #ifdef CONFIG_SCHEDSTATS
1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718 #endif
1719
1720 INIT_LIST_HEAD(&p->rt.run_list);
1721
1722 #ifdef CONFIG_PREEMPT_NOTIFIERS
1723 INIT_HLIST_HEAD(&p->preempt_notifiers);
1724 #endif
1725 }
1726
1727 /*
1728 * fork()/clone()-time setup:
1729 */
1730 void sched_fork(struct task_struct *p)
1731 {
1732 unsigned long flags;
1733 int cpu = get_cpu();
1734
1735 __sched_fork(p);
1736 /*
1737 * We mark the process as running here. This guarantees that
1738 * nobody will actually run it, and a signal or other external
1739 * event cannot wake it up and insert it on the runqueue either.
1740 */
1741 p->state = TASK_RUNNING;
1742
1743 /*
1744 * Make sure we do not leak PI boosting priority to the child.
1745 */
1746 p->prio = current->normal_prio;
1747
1748 /*
1749 * Revert to default priority/policy on fork if requested.
1750 */
1751 if (unlikely(p->sched_reset_on_fork)) {
1752 if (task_has_rt_policy(p)) {
1753 p->policy = SCHED_NORMAL;
1754 p->static_prio = NICE_TO_PRIO(0);
1755 p->rt_priority = 0;
1756 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1757 p->static_prio = NICE_TO_PRIO(0);
1758
1759 p->prio = p->normal_prio = __normal_prio(p);
1760 set_load_weight(p);
1761
1762 /*
1763 * We don't need the reset flag anymore after the fork. It has
1764 * fulfilled its duty:
1765 */
1766 p->sched_reset_on_fork = 0;
1767 }
1768
1769 if (!rt_prio(p->prio))
1770 p->sched_class = &fair_sched_class;
1771
1772 if (p->sched_class->task_fork)
1773 p->sched_class->task_fork(p);
1774
1775 /*
1776 * The child is not yet in the pid-hash so no cgroup attach races,
1777 * and the cgroup is pinned to this child due to cgroup_fork()
1778 * is ran before sched_fork().
1779 *
1780 * Silence PROVE_RCU.
1781 */
1782 raw_spin_lock_irqsave(&p->pi_lock, flags);
1783 set_task_cpu(p, cpu);
1784 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1785
1786 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1787 if (likely(sched_info_on()))
1788 memset(&p->sched_info, 0, sizeof(p->sched_info));
1789 #endif
1790 #if defined(CONFIG_SMP)
1791 p->on_cpu = 0;
1792 #endif
1793 #ifdef CONFIG_PREEMPT_COUNT
1794 /* Want to start with kernel preemption disabled. */
1795 task_thread_info(p)->preempt_count = 1;
1796 #endif
1797 #ifdef CONFIG_SMP
1798 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1799 #endif
1800
1801 put_cpu();
1802 }
1803
1804 /*
1805 * wake_up_new_task - wake up a newly created task for the first time.
1806 *
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1810 */
1811 void wake_up_new_task(struct task_struct *p)
1812 {
1813 unsigned long flags;
1814 struct rq *rq;
1815
1816 raw_spin_lock_irqsave(&p->pi_lock, flags);
1817 #ifdef CONFIG_SMP
1818 /*
1819 * Fork balancing, do it here and not earlier because:
1820 * - cpus_allowed can change in the fork path
1821 * - any previously selected cpu might disappear through hotplug
1822 */
1823 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1824 #endif
1825
1826 rq = __task_rq_lock(p);
1827 activate_task(rq, p, 0);
1828 p->on_rq = 1;
1829 trace_sched_wakeup_new(p, true);
1830 check_preempt_curr(rq, p, WF_FORK);
1831 #ifdef CONFIG_SMP
1832 if (p->sched_class->task_woken)
1833 p->sched_class->task_woken(rq, p);
1834 #endif
1835 task_rq_unlock(rq, p, &flags);
1836 }
1837
1838 #ifdef CONFIG_PREEMPT_NOTIFIERS
1839
1840 /**
1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1842 * @notifier: notifier struct to register
1843 */
1844 void preempt_notifier_register(struct preempt_notifier *notifier)
1845 {
1846 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847 }
1848 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849
1850 /**
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
1852 * @notifier: notifier struct to unregister
1853 *
1854 * This is safe to call from within a preemption notifier.
1855 */
1856 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857 {
1858 hlist_del(&notifier->link);
1859 }
1860 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861
1862 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863 {
1864 struct preempt_notifier *notifier;
1865 struct hlist_node *node;
1866
1867 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869 }
1870
1871 static void
1872 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 struct task_struct *next)
1874 {
1875 struct preempt_notifier *notifier;
1876 struct hlist_node *node;
1877
1878 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 notifier->ops->sched_out(notifier, next);
1880 }
1881
1882 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1883
1884 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885 {
1886 }
1887
1888 static void
1889 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 struct task_struct *next)
1891 {
1892 }
1893
1894 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1895
1896 /**
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
1899 * @prev: the current task that is being switched out
1900 * @next: the task we are going to switch to.
1901 *
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1905 *
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1908 */
1909 static inline void
1910 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 struct task_struct *next)
1912 {
1913 sched_info_switch(prev, next);
1914 perf_event_task_sched_out(prev, next);
1915 fire_sched_out_preempt_notifiers(prev, next);
1916 prepare_lock_switch(rq, next);
1917 prepare_arch_switch(next);
1918 trace_sched_switch(prev, next);
1919 }
1920
1921 /**
1922 * finish_task_switch - clean up after a task-switch
1923 * @rq: runqueue associated with task-switch
1924 * @prev: the thread we just switched away from.
1925 *
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1930 *
1931 * Note that we may have delayed dropping an mm in context_switch(). If
1932 * so, we finish that here outside of the runqueue lock. (Doing it
1933 * with the lock held can cause deadlocks; see schedule() for
1934 * details.)
1935 */
1936 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1937 __releases(rq->lock)
1938 {
1939 struct mm_struct *mm = rq->prev_mm;
1940 long prev_state;
1941
1942 rq->prev_mm = NULL;
1943
1944 /*
1945 * A task struct has one reference for the use as "current".
1946 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1947 * schedule one last time. The schedule call will never return, and
1948 * the scheduled task must drop that reference.
1949 * The test for TASK_DEAD must occur while the runqueue locks are
1950 * still held, otherwise prev could be scheduled on another cpu, die
1951 * there before we look at prev->state, and then the reference would
1952 * be dropped twice.
1953 * Manfred Spraul <manfred@colorfullife.com>
1954 */
1955 prev_state = prev->state;
1956 finish_arch_switch(prev);
1957 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958 local_irq_disable();
1959 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960 perf_event_task_sched_in(prev, current);
1961 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962 local_irq_enable();
1963 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964 finish_lock_switch(rq, prev);
1965 finish_arch_post_lock_switch();
1966
1967 fire_sched_in_preempt_notifiers(current);
1968 if (mm)
1969 mmdrop(mm);
1970 if (unlikely(prev_state == TASK_DEAD)) {
1971 /*
1972 * Remove function-return probe instances associated with this
1973 * task and put them back on the free list.
1974 */
1975 kprobe_flush_task(prev);
1976 put_task_struct(prev);
1977 }
1978 }
1979
1980 #ifdef CONFIG_SMP
1981
1982 /* assumes rq->lock is held */
1983 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1984 {
1985 if (prev->sched_class->pre_schedule)
1986 prev->sched_class->pre_schedule(rq, prev);
1987 }
1988
1989 /* rq->lock is NOT held, but preemption is disabled */
1990 static inline void post_schedule(struct rq *rq)
1991 {
1992 if (rq->post_schedule) {
1993 unsigned long flags;
1994
1995 raw_spin_lock_irqsave(&rq->lock, flags);
1996 if (rq->curr->sched_class->post_schedule)
1997 rq->curr->sched_class->post_schedule(rq);
1998 raw_spin_unlock_irqrestore(&rq->lock, flags);
1999
2000 rq->post_schedule = 0;
2001 }
2002 }
2003
2004 #else
2005
2006 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2007 {
2008 }
2009
2010 static inline void post_schedule(struct rq *rq)
2011 {
2012 }
2013
2014 #endif
2015
2016 /**
2017 * schedule_tail - first thing a freshly forked thread must call.
2018 * @prev: the thread we just switched away from.
2019 */
2020 asmlinkage void schedule_tail(struct task_struct *prev)
2021 __releases(rq->lock)
2022 {
2023 struct rq *rq = this_rq();
2024
2025 finish_task_switch(rq, prev);
2026
2027 /*
2028 * FIXME: do we need to worry about rq being invalidated by the
2029 * task_switch?
2030 */
2031 post_schedule(rq);
2032
2033 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034 /* In this case, finish_task_switch does not reenable preemption */
2035 preempt_enable();
2036 #endif
2037 if (current->set_child_tid)
2038 put_user(task_pid_vnr(current), current->set_child_tid);
2039 }
2040
2041 /*
2042 * context_switch - switch to the new MM and the new
2043 * thread's register state.
2044 */
2045 static inline void
2046 context_switch(struct rq *rq, struct task_struct *prev,
2047 struct task_struct *next)
2048 {
2049 struct mm_struct *mm, *oldmm;
2050
2051 prepare_task_switch(rq, prev, next);
2052
2053 mm = next->mm;
2054 oldmm = prev->active_mm;
2055 /*
2056 * For paravirt, this is coupled with an exit in switch_to to
2057 * combine the page table reload and the switch backend into
2058 * one hypercall.
2059 */
2060 arch_start_context_switch(prev);
2061
2062 if (!mm) {
2063 next->active_mm = oldmm;
2064 atomic_inc(&oldmm->mm_count);
2065 enter_lazy_tlb(oldmm, next);
2066 } else
2067 switch_mm(oldmm, mm, next);
2068
2069 if (!prev->mm) {
2070 prev->active_mm = NULL;
2071 rq->prev_mm = oldmm;
2072 }
2073 /*
2074 * Since the runqueue lock will be released by the next
2075 * task (which is an invalid locking op but in the case
2076 * of the scheduler it's an obvious special-case), so we
2077 * do an early lockdep release here:
2078 */
2079 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2081 #endif
2082
2083 /* Here we just switch the register state and the stack. */
2084 switch_to(prev, next, prev);
2085
2086 barrier();
2087 /*
2088 * this_rq must be evaluated again because prev may have moved
2089 * CPUs since it called schedule(), thus the 'rq' on its stack
2090 * frame will be invalid.
2091 */
2092 finish_task_switch(this_rq(), prev);
2093 }
2094
2095 /*
2096 * nr_running, nr_uninterruptible and nr_context_switches:
2097 *
2098 * externally visible scheduler statistics: current number of runnable
2099 * threads, current number of uninterruptible-sleeping threads, total
2100 * number of context switches performed since bootup.
2101 */
2102 unsigned long nr_running(void)
2103 {
2104 unsigned long i, sum = 0;
2105
2106 for_each_online_cpu(i)
2107 sum += cpu_rq(i)->nr_running;
2108
2109 return sum;
2110 }
2111
2112 unsigned long nr_uninterruptible(void)
2113 {
2114 unsigned long i, sum = 0;
2115
2116 for_each_possible_cpu(i)
2117 sum += cpu_rq(i)->nr_uninterruptible;
2118
2119 /*
2120 * Since we read the counters lockless, it might be slightly
2121 * inaccurate. Do not allow it to go below zero though:
2122 */
2123 if (unlikely((long)sum < 0))
2124 sum = 0;
2125
2126 return sum;
2127 }
2128
2129 unsigned long long nr_context_switches(void)
2130 {
2131 int i;
2132 unsigned long long sum = 0;
2133
2134 for_each_possible_cpu(i)
2135 sum += cpu_rq(i)->nr_switches;
2136
2137 return sum;
2138 }
2139
2140 unsigned long nr_iowait(void)
2141 {
2142 unsigned long i, sum = 0;
2143
2144 for_each_possible_cpu(i)
2145 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2146
2147 return sum;
2148 }
2149
2150 unsigned long nr_iowait_cpu(int cpu)
2151 {
2152 struct rq *this = cpu_rq(cpu);
2153 return atomic_read(&this->nr_iowait);
2154 }
2155
2156 unsigned long this_cpu_load(void)
2157 {
2158 struct rq *this = this_rq();
2159 return this->cpu_load[0];
2160 }
2161
2162
2163 /*
2164 * Global load-average calculations
2165 *
2166 * We take a distributed and async approach to calculating the global load-avg
2167 * in order to minimize overhead.
2168 *
2169 * The global load average is an exponentially decaying average of nr_running +
2170 * nr_uninterruptible.
2171 *
2172 * Once every LOAD_FREQ:
2173 *
2174 * nr_active = 0;
2175 * for_each_possible_cpu(cpu)
2176 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2177 *
2178 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2179 *
2180 * Due to a number of reasons the above turns in the mess below:
2181 *
2182 * - for_each_possible_cpu() is prohibitively expensive on machines with
2183 * serious number of cpus, therefore we need to take a distributed approach
2184 * to calculating nr_active.
2185 *
2186 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2187 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2188 *
2189 * So assuming nr_active := 0 when we start out -- true per definition, we
2190 * can simply take per-cpu deltas and fold those into a global accumulate
2191 * to obtain the same result. See calc_load_fold_active().
2192 *
2193 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2194 * across the machine, we assume 10 ticks is sufficient time for every
2195 * cpu to have completed this task.
2196 *
2197 * This places an upper-bound on the IRQ-off latency of the machine. Then
2198 * again, being late doesn't loose the delta, just wrecks the sample.
2199 *
2200 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2201 * this would add another cross-cpu cacheline miss and atomic operation
2202 * to the wakeup path. Instead we increment on whatever cpu the task ran
2203 * when it went into uninterruptible state and decrement on whatever cpu
2204 * did the wakeup. This means that only the sum of nr_uninterruptible over
2205 * all cpus yields the correct result.
2206 *
2207 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2208 */
2209
2210 /* Variables and functions for calc_load */
2211 static atomic_long_t calc_load_tasks;
2212 static unsigned long calc_load_update;
2213 unsigned long avenrun[3];
2214 EXPORT_SYMBOL(avenrun); /* should be removed */
2215
2216 /**
2217 * get_avenrun - get the load average array
2218 * @loads: pointer to dest load array
2219 * @offset: offset to add
2220 * @shift: shift count to shift the result left
2221 *
2222 * These values are estimates at best, so no need for locking.
2223 */
2224 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2225 {
2226 loads[0] = (avenrun[0] + offset) << shift;
2227 loads[1] = (avenrun[1] + offset) << shift;
2228 loads[2] = (avenrun[2] + offset) << shift;
2229 }
2230
2231 static long calc_load_fold_active(struct rq *this_rq)
2232 {
2233 long nr_active, delta = 0;
2234
2235 nr_active = this_rq->nr_running;
2236 nr_active += (long) this_rq->nr_uninterruptible;
2237
2238 if (nr_active != this_rq->calc_load_active) {
2239 delta = nr_active - this_rq->calc_load_active;
2240 this_rq->calc_load_active = nr_active;
2241 }
2242
2243 return delta;
2244 }
2245
2246 /*
2247 * a1 = a0 * e + a * (1 - e)
2248 */
2249 static unsigned long
2250 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2251 {
2252 load *= exp;
2253 load += active * (FIXED_1 - exp);
2254 load += 1UL << (FSHIFT - 1);
2255 return load >> FSHIFT;
2256 }
2257
2258 #ifdef CONFIG_NO_HZ
2259 /*
2260 * Handle NO_HZ for the global load-average.
2261 *
2262 * Since the above described distributed algorithm to compute the global
2263 * load-average relies on per-cpu sampling from the tick, it is affected by
2264 * NO_HZ.
2265 *
2266 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2267 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2268 * when we read the global state.
2269 *
2270 * Obviously reality has to ruin such a delightfully simple scheme:
2271 *
2272 * - When we go NO_HZ idle during the window, we can negate our sample
2273 * contribution, causing under-accounting.
2274 *
2275 * We avoid this by keeping two idle-delta counters and flipping them
2276 * when the window starts, thus separating old and new NO_HZ load.
2277 *
2278 * The only trick is the slight shift in index flip for read vs write.
2279 *
2280 * 0s 5s 10s 15s
2281 * +10 +10 +10 +10
2282 * |-|-----------|-|-----------|-|-----------|-|
2283 * r:0 0 1 1 0 0 1 1 0
2284 * w:0 1 1 0 0 1 1 0 0
2285 *
2286 * This ensures we'll fold the old idle contribution in this window while
2287 * accumlating the new one.
2288 *
2289 * - When we wake up from NO_HZ idle during the window, we push up our
2290 * contribution, since we effectively move our sample point to a known
2291 * busy state.
2292 *
2293 * This is solved by pushing the window forward, and thus skipping the
2294 * sample, for this cpu (effectively using the idle-delta for this cpu which
2295 * was in effect at the time the window opened). This also solves the issue
2296 * of having to deal with a cpu having been in NOHZ idle for multiple
2297 * LOAD_FREQ intervals.
2298 *
2299 * When making the ILB scale, we should try to pull this in as well.
2300 */
2301 static atomic_long_t calc_load_idle[2];
2302 static int calc_load_idx;
2303
2304 static inline int calc_load_write_idx(void)
2305 {
2306 int idx = calc_load_idx;
2307
2308 /*
2309 * See calc_global_nohz(), if we observe the new index, we also
2310 * need to observe the new update time.
2311 */
2312 smp_rmb();
2313
2314 /*
2315 * If the folding window started, make sure we start writing in the
2316 * next idle-delta.
2317 */
2318 if (!time_before(jiffies, calc_load_update))
2319 idx++;
2320
2321 return idx & 1;
2322 }
2323
2324 static inline int calc_load_read_idx(void)
2325 {
2326 return calc_load_idx & 1;
2327 }
2328
2329 void calc_load_enter_idle(void)
2330 {
2331 struct rq *this_rq = this_rq();
2332 long delta;
2333
2334 /*
2335 * We're going into NOHZ mode, if there's any pending delta, fold it
2336 * into the pending idle delta.
2337 */
2338 delta = calc_load_fold_active(this_rq);
2339 if (delta) {
2340 int idx = calc_load_write_idx();
2341 atomic_long_add(delta, &calc_load_idle[idx]);
2342 }
2343 }
2344
2345 void calc_load_exit_idle(void)
2346 {
2347 struct rq *this_rq = this_rq();
2348
2349 /*
2350 * If we're still before the sample window, we're done.
2351 */
2352 if (time_before(jiffies, this_rq->calc_load_update))
2353 return;
2354
2355 /*
2356 * We woke inside or after the sample window, this means we're already
2357 * accounted through the nohz accounting, so skip the entire deal and
2358 * sync up for the next window.
2359 */
2360 this_rq->calc_load_update = calc_load_update;
2361 if (time_before(jiffies, this_rq->calc_load_update + 10))
2362 this_rq->calc_load_update += LOAD_FREQ;
2363 }
2364
2365 static long calc_load_fold_idle(void)
2366 {
2367 int idx = calc_load_read_idx();
2368 long delta = 0;
2369
2370 if (atomic_long_read(&calc_load_idle[idx]))
2371 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2372
2373 return delta;
2374 }
2375
2376 /**
2377 * fixed_power_int - compute: x^n, in O(log n) time
2378 *
2379 * @x: base of the power
2380 * @frac_bits: fractional bits of @x
2381 * @n: power to raise @x to.
2382 *
2383 * By exploiting the relation between the definition of the natural power
2384 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2385 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2386 * (where: n_i \elem {0, 1}, the binary vector representing n),
2387 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2388 * of course trivially computable in O(log_2 n), the length of our binary
2389 * vector.
2390 */
2391 static unsigned long
2392 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2393 {
2394 unsigned long result = 1UL << frac_bits;
2395
2396 if (n) for (;;) {
2397 if (n & 1) {
2398 result *= x;
2399 result += 1UL << (frac_bits - 1);
2400 result >>= frac_bits;
2401 }
2402 n >>= 1;
2403 if (!n)
2404 break;
2405 x *= x;
2406 x += 1UL << (frac_bits - 1);
2407 x >>= frac_bits;
2408 }
2409
2410 return result;
2411 }
2412
2413 /*
2414 * a1 = a0 * e + a * (1 - e)
2415 *
2416 * a2 = a1 * e + a * (1 - e)
2417 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2418 * = a0 * e^2 + a * (1 - e) * (1 + e)
2419 *
2420 * a3 = a2 * e + a * (1 - e)
2421 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2422 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2423 *
2424 * ...
2425 *
2426 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2427 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2428 * = a0 * e^n + a * (1 - e^n)
2429 *
2430 * [1] application of the geometric series:
2431 *
2432 * n 1 - x^(n+1)
2433 * S_n := \Sum x^i = -------------
2434 * i=0 1 - x
2435 */
2436 static unsigned long
2437 calc_load_n(unsigned long load, unsigned long exp,
2438 unsigned long active, unsigned int n)
2439 {
2440
2441 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2442 }
2443
2444 /*
2445 * NO_HZ can leave us missing all per-cpu ticks calling
2446 * calc_load_account_active(), but since an idle CPU folds its delta into
2447 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2448 * in the pending idle delta if our idle period crossed a load cycle boundary.
2449 *
2450 * Once we've updated the global active value, we need to apply the exponential
2451 * weights adjusted to the number of cycles missed.
2452 */
2453 static void calc_global_nohz(void)
2454 {
2455 long delta, active, n;
2456
2457 if (!time_before(jiffies, calc_load_update + 10)) {
2458 /*
2459 * Catch-up, fold however many we are behind still
2460 */
2461 delta = jiffies - calc_load_update - 10;
2462 n = 1 + (delta / LOAD_FREQ);
2463
2464 active = atomic_long_read(&calc_load_tasks);
2465 active = active > 0 ? active * FIXED_1 : 0;
2466
2467 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2468 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2469 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2470
2471 calc_load_update += n * LOAD_FREQ;
2472 }
2473
2474 /*
2475 * Flip the idle index...
2476 *
2477 * Make sure we first write the new time then flip the index, so that
2478 * calc_load_write_idx() will see the new time when it reads the new
2479 * index, this avoids a double flip messing things up.
2480 */
2481 smp_wmb();
2482 calc_load_idx++;
2483 }
2484 #else /* !CONFIG_NO_HZ */
2485
2486 static inline long calc_load_fold_idle(void) { return 0; }
2487 static inline void calc_global_nohz(void) { }
2488
2489 #endif /* CONFIG_NO_HZ */
2490
2491 /*
2492 * calc_load - update the avenrun load estimates 10 ticks after the
2493 * CPUs have updated calc_load_tasks.
2494 */
2495 void calc_global_load(unsigned long ticks)
2496 {
2497 long active, delta;
2498
2499 if (time_before(jiffies, calc_load_update + 10))
2500 return;
2501
2502 /*
2503 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2504 */
2505 delta = calc_load_fold_idle();
2506 if (delta)
2507 atomic_long_add(delta, &calc_load_tasks);
2508
2509 active = atomic_long_read(&calc_load_tasks);
2510 active = active > 0 ? active * FIXED_1 : 0;
2511
2512 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2513 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2514 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2515
2516 calc_load_update += LOAD_FREQ;
2517
2518 /*
2519 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2520 */
2521 calc_global_nohz();
2522 }
2523
2524 /*
2525 * Called from update_cpu_load() to periodically update this CPU's
2526 * active count.
2527 */
2528 static void calc_load_account_active(struct rq *this_rq)
2529 {
2530 long delta;
2531
2532 if (time_before(jiffies, this_rq->calc_load_update))
2533 return;
2534
2535 delta = calc_load_fold_active(this_rq);
2536 if (delta)
2537 atomic_long_add(delta, &calc_load_tasks);
2538
2539 this_rq->calc_load_update += LOAD_FREQ;
2540 }
2541
2542 /*
2543 * End of global load-average stuff
2544 */
2545
2546 /*
2547 * The exact cpuload at various idx values, calculated at every tick would be
2548 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2549 *
2550 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2551 * on nth tick when cpu may be busy, then we have:
2552 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2553 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2554 *
2555 * decay_load_missed() below does efficient calculation of
2556 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2557 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2558 *
2559 * The calculation is approximated on a 128 point scale.
2560 * degrade_zero_ticks is the number of ticks after which load at any
2561 * particular idx is approximated to be zero.
2562 * degrade_factor is a precomputed table, a row for each load idx.
2563 * Each column corresponds to degradation factor for a power of two ticks,
2564 * based on 128 point scale.
2565 * Example:
2566 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2567 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2568 *
2569 * With this power of 2 load factors, we can degrade the load n times
2570 * by looking at 1 bits in n and doing as many mult/shift instead of
2571 * n mult/shifts needed by the exact degradation.
2572 */
2573 #define DEGRADE_SHIFT 7
2574 static const unsigned char
2575 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2576 static const unsigned char
2577 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2578 {0, 0, 0, 0, 0, 0, 0, 0},
2579 {64, 32, 8, 0, 0, 0, 0, 0},
2580 {96, 72, 40, 12, 1, 0, 0},
2581 {112, 98, 75, 43, 15, 1, 0},
2582 {120, 112, 98, 76, 45, 16, 2} };
2583
2584 /*
2585 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2586 * would be when CPU is idle and so we just decay the old load without
2587 * adding any new load.
2588 */
2589 static unsigned long
2590 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2591 {
2592 int j = 0;
2593
2594 if (!missed_updates)
2595 return load;
2596
2597 if (missed_updates >= degrade_zero_ticks[idx])
2598 return 0;
2599
2600 if (idx == 1)
2601 return load >> missed_updates;
2602
2603 while (missed_updates) {
2604 if (missed_updates % 2)
2605 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2606
2607 missed_updates >>= 1;
2608 j++;
2609 }
2610 return load;
2611 }
2612
2613 /*
2614 * Update rq->cpu_load[] statistics. This function is usually called every
2615 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2616 * every tick. We fix it up based on jiffies.
2617 */
2618 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2619 unsigned long pending_updates)
2620 {
2621 int i, scale;
2622
2623 this_rq->nr_load_updates++;
2624
2625 /* Update our load: */
2626 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2627 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2628 unsigned long old_load, new_load;
2629
2630 /* scale is effectively 1 << i now, and >> i divides by scale */
2631
2632 old_load = this_rq->cpu_load[i];
2633 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2634 new_load = this_load;
2635 /*
2636 * Round up the averaging division if load is increasing. This
2637 * prevents us from getting stuck on 9 if the load is 10, for
2638 * example.
2639 */
2640 if (new_load > old_load)
2641 new_load += scale - 1;
2642
2643 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2644 }
2645
2646 sched_avg_update(this_rq);
2647 }
2648
2649 #ifdef CONFIG_NO_HZ
2650 /*
2651 * There is no sane way to deal with nohz on smp when using jiffies because the
2652 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2653 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2654 *
2655 * Therefore we cannot use the delta approach from the regular tick since that
2656 * would seriously skew the load calculation. However we'll make do for those
2657 * updates happening while idle (nohz_idle_balance) or coming out of idle
2658 * (tick_nohz_idle_exit).
2659 *
2660 * This means we might still be one tick off for nohz periods.
2661 */
2662
2663 /*
2664 * Called from nohz_idle_balance() to update the load ratings before doing the
2665 * idle balance.
2666 */
2667 void update_idle_cpu_load(struct rq *this_rq)
2668 {
2669 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2670 unsigned long load = this_rq->load.weight;
2671 unsigned long pending_updates;
2672
2673 /*
2674 * bail if there's load or we're actually up-to-date.
2675 */
2676 if (load || curr_jiffies == this_rq->last_load_update_tick)
2677 return;
2678
2679 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2680 this_rq->last_load_update_tick = curr_jiffies;
2681
2682 __update_cpu_load(this_rq, load, pending_updates);
2683 }
2684
2685 /*
2686 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2687 */
2688 void update_cpu_load_nohz(void)
2689 {
2690 struct rq *this_rq = this_rq();
2691 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2692 unsigned long pending_updates;
2693
2694 if (curr_jiffies == this_rq->last_load_update_tick)
2695 return;
2696
2697 raw_spin_lock(&this_rq->lock);
2698 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2699 if (pending_updates) {
2700 this_rq->last_load_update_tick = curr_jiffies;
2701 /*
2702 * We were idle, this means load 0, the current load might be
2703 * !0 due to remote wakeups and the sort.
2704 */
2705 __update_cpu_load(this_rq, 0, pending_updates);
2706 }
2707 raw_spin_unlock(&this_rq->lock);
2708 }
2709 #endif /* CONFIG_NO_HZ */
2710
2711 /*
2712 * Called from scheduler_tick()
2713 */
2714 static void update_cpu_load_active(struct rq *this_rq)
2715 {
2716 /*
2717 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2718 */
2719 this_rq->last_load_update_tick = jiffies;
2720 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2721
2722 calc_load_account_active(this_rq);
2723 }
2724
2725 #ifdef CONFIG_SMP
2726
2727 /*
2728 * sched_exec - execve() is a valuable balancing opportunity, because at
2729 * this point the task has the smallest effective memory and cache footprint.
2730 */
2731 void sched_exec(void)
2732 {
2733 struct task_struct *p = current;
2734 unsigned long flags;
2735 int dest_cpu;
2736
2737 raw_spin_lock_irqsave(&p->pi_lock, flags);
2738 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2739 if (dest_cpu == smp_processor_id())
2740 goto unlock;
2741
2742 if (likely(cpu_active(dest_cpu))) {
2743 struct migration_arg arg = { p, dest_cpu };
2744
2745 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2746 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2747 return;
2748 }
2749 unlock:
2750 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2751 }
2752
2753 #endif
2754
2755 DEFINE_PER_CPU(struct kernel_stat, kstat);
2756 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2757
2758 EXPORT_PER_CPU_SYMBOL(kstat);
2759 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2760
2761 /*
2762 * Return any ns on the sched_clock that have not yet been accounted in
2763 * @p in case that task is currently running.
2764 *
2765 * Called with task_rq_lock() held on @rq.
2766 */
2767 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2768 {
2769 u64 ns = 0;
2770
2771 if (task_current(rq, p)) {
2772 update_rq_clock(rq);
2773 ns = rq->clock_task - p->se.exec_start;
2774 if ((s64)ns < 0)
2775 ns = 0;
2776 }
2777
2778 return ns;
2779 }
2780
2781 unsigned long long task_delta_exec(struct task_struct *p)
2782 {
2783 unsigned long flags;
2784 struct rq *rq;
2785 u64 ns = 0;
2786
2787 rq = task_rq_lock(p, &flags);
2788 ns = do_task_delta_exec(p, rq);
2789 task_rq_unlock(rq, p, &flags);
2790
2791 return ns;
2792 }
2793
2794 /*
2795 * Return accounted runtime for the task.
2796 * In case the task is currently running, return the runtime plus current's
2797 * pending runtime that have not been accounted yet.
2798 */
2799 unsigned long long task_sched_runtime(struct task_struct *p)
2800 {
2801 unsigned long flags;
2802 struct rq *rq;
2803 u64 ns = 0;
2804
2805 rq = task_rq_lock(p, &flags);
2806 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2807 task_rq_unlock(rq, p, &flags);
2808
2809 return ns;
2810 }
2811
2812 #ifdef CONFIG_CGROUP_CPUACCT
2813 struct cgroup_subsys cpuacct_subsys;
2814 struct cpuacct root_cpuacct;
2815 #endif
2816
2817 static inline void task_group_account_field(struct task_struct *p, int index,
2818 u64 tmp)
2819 {
2820 #ifdef CONFIG_CGROUP_CPUACCT
2821 struct kernel_cpustat *kcpustat;
2822 struct cpuacct *ca;
2823 #endif
2824 /*
2825 * Since all updates are sure to touch the root cgroup, we
2826 * get ourselves ahead and touch it first. If the root cgroup
2827 * is the only cgroup, then nothing else should be necessary.
2828 *
2829 */
2830 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2831
2832 #ifdef CONFIG_CGROUP_CPUACCT
2833 if (unlikely(!cpuacct_subsys.active))
2834 return;
2835
2836 rcu_read_lock();
2837 ca = task_ca(p);
2838 while (ca && (ca != &root_cpuacct)) {
2839 kcpustat = this_cpu_ptr(ca->cpustat);
2840 kcpustat->cpustat[index] += tmp;
2841 ca = parent_ca(ca);
2842 }
2843 rcu_read_unlock();
2844 #endif
2845 }
2846
2847
2848 /*
2849 * Account user cpu time to a process.
2850 * @p: the process that the cpu time gets accounted to
2851 * @cputime: the cpu time spent in user space since the last update
2852 * @cputime_scaled: cputime scaled by cpu frequency
2853 */
2854 void account_user_time(struct task_struct *p, cputime_t cputime,
2855 cputime_t cputime_scaled)
2856 {
2857 int index;
2858
2859 /* Add user time to process. */
2860 p->utime += cputime;
2861 p->utimescaled += cputime_scaled;
2862 account_group_user_time(p, cputime);
2863
2864 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2865
2866 /* Add user time to cpustat. */
2867 task_group_account_field(p, index, (__force u64) cputime);
2868
2869 /* Account for user time used */
2870 acct_update_integrals(p);
2871 }
2872
2873 /*
2874 * Account guest cpu time to a process.
2875 * @p: the process that the cpu time gets accounted to
2876 * @cputime: the cpu time spent in virtual machine since the last update
2877 * @cputime_scaled: cputime scaled by cpu frequency
2878 */
2879 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2880 cputime_t cputime_scaled)
2881 {
2882 u64 *cpustat = kcpustat_this_cpu->cpustat;
2883
2884 /* Add guest time to process. */
2885 p->utime += cputime;
2886 p->utimescaled += cputime_scaled;
2887 account_group_user_time(p, cputime);
2888 p->gtime += cputime;
2889
2890 /* Add guest time to cpustat. */
2891 if (TASK_NICE(p) > 0) {
2892 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2893 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2894 } else {
2895 cpustat[CPUTIME_USER] += (__force u64) cputime;
2896 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2897 }
2898 }
2899
2900 /*
2901 * Account system cpu time to a process and desired cpustat field
2902 * @p: the process that the cpu time gets accounted to
2903 * @cputime: the cpu time spent in kernel space since the last update
2904 * @cputime_scaled: cputime scaled by cpu frequency
2905 * @target_cputime64: pointer to cpustat field that has to be updated
2906 */
2907 static inline
2908 void __account_system_time(struct task_struct *p, cputime_t cputime,
2909 cputime_t cputime_scaled, int index)
2910 {
2911 /* Add system time to process. */
2912 p->stime += cputime;
2913 p->stimescaled += cputime_scaled;
2914 account_group_system_time(p, cputime);
2915
2916 /* Add system time to cpustat. */
2917 task_group_account_field(p, index, (__force u64) cputime);
2918
2919 /* Account for system time used */
2920 acct_update_integrals(p);
2921 }
2922
2923 /*
2924 * Account system cpu time to a process.
2925 * @p: the process that the cpu time gets accounted to
2926 * @hardirq_offset: the offset to subtract from hardirq_count()
2927 * @cputime: the cpu time spent in kernel space since the last update
2928 * @cputime_scaled: cputime scaled by cpu frequency
2929 */
2930 void account_system_time(struct task_struct *p, int hardirq_offset,
2931 cputime_t cputime, cputime_t cputime_scaled)
2932 {
2933 int index;
2934
2935 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2936 account_guest_time(p, cputime, cputime_scaled);
2937 return;
2938 }
2939
2940 if (hardirq_count() - hardirq_offset)
2941 index = CPUTIME_IRQ;
2942 else if (in_serving_softirq())
2943 index = CPUTIME_SOFTIRQ;
2944 else
2945 index = CPUTIME_SYSTEM;
2946
2947 __account_system_time(p, cputime, cputime_scaled, index);
2948 }
2949
2950 /*
2951 * Account for involuntary wait time.
2952 * @cputime: the cpu time spent in involuntary wait
2953 */
2954 void account_steal_time(cputime_t cputime)
2955 {
2956 u64 *cpustat = kcpustat_this_cpu->cpustat;
2957
2958 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2959 }
2960
2961 /*
2962 * Account for idle time.
2963 * @cputime: the cpu time spent in idle wait
2964 */
2965 void account_idle_time(cputime_t cputime)
2966 {
2967 u64 *cpustat = kcpustat_this_cpu->cpustat;
2968 struct rq *rq = this_rq();
2969
2970 if (atomic_read(&rq->nr_iowait) > 0)
2971 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2972 else
2973 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2974 }
2975
2976 static __always_inline bool steal_account_process_tick(void)
2977 {
2978 #ifdef CONFIG_PARAVIRT
2979 if (static_key_false(&paravirt_steal_enabled)) {
2980 u64 steal, st = 0;
2981
2982 steal = paravirt_steal_clock(smp_processor_id());
2983 steal -= this_rq()->prev_steal_time;
2984
2985 st = steal_ticks(steal);
2986 this_rq()->prev_steal_time += st * TICK_NSEC;
2987
2988 account_steal_time(st);
2989 return st;
2990 }
2991 #endif
2992 return false;
2993 }
2994
2995 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2996
2997 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2998 /*
2999 * Account a tick to a process and cpustat
3000 * @p: the process that the cpu time gets accounted to
3001 * @user_tick: is the tick from userspace
3002 * @rq: the pointer to rq
3003 *
3004 * Tick demultiplexing follows the order
3005 * - pending hardirq update
3006 * - pending softirq update
3007 * - user_time
3008 * - idle_time
3009 * - system time
3010 * - check for guest_time
3011 * - else account as system_time
3012 *
3013 * Check for hardirq is done both for system and user time as there is
3014 * no timer going off while we are on hardirq and hence we may never get an
3015 * opportunity to update it solely in system time.
3016 * p->stime and friends are only updated on system time and not on irq
3017 * softirq as those do not count in task exec_runtime any more.
3018 */
3019 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3020 struct rq *rq)
3021 {
3022 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3023 u64 *cpustat = kcpustat_this_cpu->cpustat;
3024
3025 if (steal_account_process_tick())
3026 return;
3027
3028 if (irqtime_account_hi_update()) {
3029 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
3030 } else if (irqtime_account_si_update()) {
3031 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
3032 } else if (this_cpu_ksoftirqd() == p) {
3033 /*
3034 * ksoftirqd time do not get accounted in cpu_softirq_time.
3035 * So, we have to handle it separately here.
3036 * Also, p->stime needs to be updated for ksoftirqd.
3037 */
3038 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3039 CPUTIME_SOFTIRQ);
3040 } else if (user_tick) {
3041 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3042 } else if (p == rq->idle) {
3043 account_idle_time(cputime_one_jiffy);
3044 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3045 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3046 } else {
3047 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3048 CPUTIME_SYSTEM);
3049 }
3050 }
3051
3052 static void irqtime_account_idle_ticks(int ticks)
3053 {
3054 int i;
3055 struct rq *rq = this_rq();
3056
3057 for (i = 0; i < ticks; i++)
3058 irqtime_account_process_tick(current, 0, rq);
3059 }
3060 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3061 static void irqtime_account_idle_ticks(int ticks) {}
3062 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3063 struct rq *rq) {}
3064 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3065
3066 /*
3067 * Account a single tick of cpu time.
3068 * @p: the process that the cpu time gets accounted to
3069 * @user_tick: indicates if the tick is a user or a system tick
3070 */
3071 void account_process_tick(struct task_struct *p, int user_tick)
3072 {
3073 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3074 struct rq *rq = this_rq();
3075
3076 if (sched_clock_irqtime) {
3077 irqtime_account_process_tick(p, user_tick, rq);
3078 return;
3079 }
3080
3081 if (steal_account_process_tick())
3082 return;
3083
3084 if (user_tick)
3085 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3086 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3087 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3088 one_jiffy_scaled);
3089 else
3090 account_idle_time(cputime_one_jiffy);
3091 }
3092
3093 /*
3094 * Account multiple ticks of steal time.
3095 * @p: the process from which the cpu time has been stolen
3096 * @ticks: number of stolen ticks
3097 */
3098 void account_steal_ticks(unsigned long ticks)
3099 {
3100 account_steal_time(jiffies_to_cputime(ticks));
3101 }
3102
3103 /*
3104 * Account multiple ticks of idle time.
3105 * @ticks: number of stolen ticks
3106 */
3107 void account_idle_ticks(unsigned long ticks)
3108 {
3109
3110 if (sched_clock_irqtime) {
3111 irqtime_account_idle_ticks(ticks);
3112 return;
3113 }
3114
3115 account_idle_time(jiffies_to_cputime(ticks));
3116 }
3117
3118 #endif
3119
3120 /*
3121 * Use precise platform statistics if available:
3122 */
3123 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3124 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3125 {
3126 *ut = p->utime;
3127 *st = p->stime;
3128 }
3129
3130 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3131 {
3132 struct task_cputime cputime;
3133
3134 thread_group_cputime(p, &cputime);
3135
3136 *ut = cputime.utime;
3137 *st = cputime.stime;
3138 }
3139 #else
3140
3141 #ifndef nsecs_to_cputime
3142 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3143 #endif
3144
3145 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3146 {
3147 cputime_t rtime, utime = p->utime, total = utime + p->stime;
3148
3149 /*
3150 * Use CFS's precise accounting:
3151 */
3152 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3153
3154 if (total) {
3155 u64 temp = (__force u64) rtime;
3156
3157 temp *= (__force u64) utime;
3158 do_div(temp, (__force u32) total);
3159 utime = (__force cputime_t) temp;
3160 } else
3161 utime = rtime;
3162
3163 /*
3164 * Compare with previous values, to keep monotonicity:
3165 */
3166 p->prev_utime = max(p->prev_utime, utime);
3167 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3168
3169 *ut = p->prev_utime;
3170 *st = p->prev_stime;
3171 }
3172
3173 /*
3174 * Must be called with siglock held.
3175 */
3176 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3177 {
3178 struct signal_struct *sig = p->signal;
3179 struct task_cputime cputime;
3180 cputime_t rtime, utime, total;
3181
3182 thread_group_cputime(p, &cputime);
3183
3184 total = cputime.utime + cputime.stime;
3185 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3186
3187 if (total) {
3188 u64 temp = (__force u64) rtime;
3189
3190 temp *= (__force u64) cputime.utime;
3191 do_div(temp, (__force u32) total);
3192 utime = (__force cputime_t) temp;
3193 } else
3194 utime = rtime;
3195
3196 sig->prev_utime = max(sig->prev_utime, utime);
3197 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3198
3199 *ut = sig->prev_utime;
3200 *st = sig->prev_stime;
3201 }
3202 #endif
3203
3204 /*
3205 * This function gets called by the timer code, with HZ frequency.
3206 * We call it with interrupts disabled.
3207 */
3208 void scheduler_tick(void)
3209 {
3210 int cpu = smp_processor_id();
3211 struct rq *rq = cpu_rq(cpu);
3212 struct task_struct *curr = rq->curr;
3213
3214 sched_clock_tick();
3215
3216 raw_spin_lock(&rq->lock);
3217 update_rq_clock(rq);
3218 update_cpu_load_active(rq);
3219 curr->sched_class->task_tick(rq, curr, 0);
3220 raw_spin_unlock(&rq->lock);
3221
3222 perf_event_task_tick();
3223
3224 #ifdef CONFIG_SMP
3225 rq->idle_balance = idle_cpu(cpu);
3226 trigger_load_balance(rq, cpu);
3227 #endif
3228 }
3229
3230 notrace unsigned long get_parent_ip(unsigned long addr)
3231 {
3232 if (in_lock_functions(addr)) {
3233 addr = CALLER_ADDR2;
3234 if (in_lock_functions(addr))
3235 addr = CALLER_ADDR3;
3236 }
3237 return addr;
3238 }
3239
3240 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3241 defined(CONFIG_PREEMPT_TRACER))
3242
3243 void __kprobes add_preempt_count(int val)
3244 {
3245 #ifdef CONFIG_DEBUG_PREEMPT
3246 /*
3247 * Underflow?
3248 */
3249 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3250 return;
3251 #endif
3252 preempt_count() += val;
3253 #ifdef CONFIG_DEBUG_PREEMPT
3254 /*
3255 * Spinlock count overflowing soon?
3256 */
3257 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3258 PREEMPT_MASK - 10);
3259 #endif
3260 if (preempt_count() == val)
3261 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3262 }
3263 EXPORT_SYMBOL(add_preempt_count);
3264
3265 void __kprobes sub_preempt_count(int val)
3266 {
3267 #ifdef CONFIG_DEBUG_PREEMPT
3268 /*
3269 * Underflow?
3270 */
3271 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3272 return;
3273 /*
3274 * Is the spinlock portion underflowing?
3275 */
3276 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3277 !(preempt_count() & PREEMPT_MASK)))
3278 return;
3279 #endif
3280
3281 if (preempt_count() == val)
3282 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3283 preempt_count() -= val;
3284 }
3285 EXPORT_SYMBOL(sub_preempt_count);
3286
3287 #endif
3288
3289 /*
3290 * Print scheduling while atomic bug:
3291 */
3292 static noinline void __schedule_bug(struct task_struct *prev)
3293 {
3294 if (oops_in_progress)
3295 return;
3296
3297 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3298 prev->comm, prev->pid, preempt_count());
3299
3300 debug_show_held_locks(prev);
3301 print_modules();
3302 if (irqs_disabled())
3303 print_irqtrace_events(prev);
3304 dump_stack();
3305 add_taint(TAINT_WARN);
3306 }
3307
3308 /*
3309 * Various schedule()-time debugging checks and statistics:
3310 */
3311 static inline void schedule_debug(struct task_struct *prev)
3312 {
3313 /*
3314 * Test if we are atomic. Since do_exit() needs to call into
3315 * schedule() atomically, we ignore that path for now.
3316 * Otherwise, whine if we are scheduling when we should not be.
3317 */
3318 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3319 __schedule_bug(prev);
3320 rcu_sleep_check();
3321
3322 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3323
3324 schedstat_inc(this_rq(), sched_count);
3325 }
3326
3327 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3328 {
3329 if (prev->on_rq || rq->skip_clock_update < 0)
3330 update_rq_clock(rq);
3331 prev->sched_class->put_prev_task(rq, prev);
3332 }
3333
3334 /*
3335 * Pick up the highest-prio task:
3336 */
3337 static inline struct task_struct *
3338 pick_next_task(struct rq *rq)
3339 {
3340 const struct sched_class *class;
3341 struct task_struct *p;
3342
3343 /*
3344 * Optimization: we know that if all tasks are in
3345 * the fair class we can call that function directly:
3346 */
3347 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3348 p = fair_sched_class.pick_next_task(rq);
3349 if (likely(p))
3350 return p;
3351 }
3352
3353 for_each_class(class) {
3354 p = class->pick_next_task(rq);
3355 if (p)
3356 return p;
3357 }
3358
3359 BUG(); /* the idle class will always have a runnable task */
3360 }
3361
3362 /*
3363 * __schedule() is the main scheduler function.
3364 */
3365 static void __sched __schedule(void)
3366 {
3367 struct task_struct *prev, *next;
3368 unsigned long *switch_count;
3369 struct rq *rq;
3370 int cpu;
3371
3372 need_resched:
3373 preempt_disable();
3374 cpu = smp_processor_id();
3375 rq = cpu_rq(cpu);
3376 rcu_note_context_switch(cpu);
3377 prev = rq->curr;
3378
3379 schedule_debug(prev);
3380
3381 if (sched_feat(HRTICK))
3382 hrtick_clear(rq);
3383
3384 raw_spin_lock_irq(&rq->lock);
3385
3386 switch_count = &prev->nivcsw;
3387 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3388 if (unlikely(signal_pending_state(prev->state, prev))) {
3389 prev->state = TASK_RUNNING;
3390 } else {
3391 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3392 prev->on_rq = 0;
3393
3394 /*
3395 * If a worker went to sleep, notify and ask workqueue
3396 * whether it wants to wake up a task to maintain
3397 * concurrency.
3398 */
3399 if (prev->flags & PF_WQ_WORKER) {
3400 struct task_struct *to_wakeup;
3401
3402 to_wakeup = wq_worker_sleeping(prev, cpu);
3403 if (to_wakeup)
3404 try_to_wake_up_local(to_wakeup);
3405 }
3406 }
3407 switch_count = &prev->nvcsw;
3408 }
3409
3410 pre_schedule(rq, prev);
3411
3412 if (unlikely(!rq->nr_running))
3413 idle_balance(cpu, rq);
3414
3415 put_prev_task(rq, prev);
3416 next = pick_next_task(rq);
3417 clear_tsk_need_resched(prev);
3418 rq->skip_clock_update = 0;
3419
3420 if (likely(prev != next)) {
3421 rq->nr_switches++;
3422 rq->curr = next;
3423 ++*switch_count;
3424
3425 context_switch(rq, prev, next); /* unlocks the rq */
3426 /*
3427 * The context switch have flipped the stack from under us
3428 * and restored the local variables which were saved when
3429 * this task called schedule() in the past. prev == current
3430 * is still correct, but it can be moved to another cpu/rq.
3431 */
3432 cpu = smp_processor_id();
3433 rq = cpu_rq(cpu);
3434 } else
3435 raw_spin_unlock_irq(&rq->lock);
3436
3437 post_schedule(rq);
3438
3439 sched_preempt_enable_no_resched();
3440 if (need_resched())
3441 goto need_resched;
3442 }
3443
3444 static inline void sched_submit_work(struct task_struct *tsk)
3445 {
3446 if (!tsk->state || tsk_is_pi_blocked(tsk))
3447 return;
3448 /*
3449 * If we are going to sleep and we have plugged IO queued,
3450 * make sure to submit it to avoid deadlocks.
3451 */
3452 if (blk_needs_flush_plug(tsk))
3453 blk_schedule_flush_plug(tsk);
3454 }
3455
3456 asmlinkage void __sched schedule(void)
3457 {
3458 struct task_struct *tsk = current;
3459
3460 sched_submit_work(tsk);
3461 __schedule();
3462 }
3463 EXPORT_SYMBOL(schedule);
3464
3465 /**
3466 * schedule_preempt_disabled - called with preemption disabled
3467 *
3468 * Returns with preemption disabled. Note: preempt_count must be 1
3469 */
3470 void __sched schedule_preempt_disabled(void)
3471 {
3472 sched_preempt_enable_no_resched();
3473 schedule();
3474 preempt_disable();
3475 }
3476
3477 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3478
3479 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3480 {
3481 if (lock->owner != owner)
3482 return false;
3483
3484 /*
3485 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3486 * lock->owner still matches owner, if that fails, owner might
3487 * point to free()d memory, if it still matches, the rcu_read_lock()
3488 * ensures the memory stays valid.
3489 */
3490 barrier();
3491
3492 return owner->on_cpu;
3493 }
3494
3495 /*
3496 * Look out! "owner" is an entirely speculative pointer
3497 * access and not reliable.
3498 */
3499 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3500 {
3501 if (!sched_feat(OWNER_SPIN))
3502 return 0;
3503
3504 rcu_read_lock();
3505 while (owner_running(lock, owner)) {
3506 if (need_resched())
3507 break;
3508
3509 arch_mutex_cpu_relax();
3510 }
3511 rcu_read_unlock();
3512
3513 /*
3514 * We break out the loop above on need_resched() and when the
3515 * owner changed, which is a sign for heavy contention. Return
3516 * success only when lock->owner is NULL.
3517 */
3518 return lock->owner == NULL;
3519 }
3520 #endif
3521
3522 #ifdef CONFIG_PREEMPT
3523 /*
3524 * this is the entry point to schedule() from in-kernel preemption
3525 * off of preempt_enable. Kernel preemptions off return from interrupt
3526 * occur there and call schedule directly.
3527 */
3528 asmlinkage void __sched notrace preempt_schedule(void)
3529 {
3530 struct thread_info *ti = current_thread_info();
3531
3532 /*
3533 * If there is a non-zero preempt_count or interrupts are disabled,
3534 * we do not want to preempt the current task. Just return..
3535 */
3536 if (likely(ti->preempt_count || irqs_disabled()))
3537 return;
3538
3539 do {
3540 add_preempt_count_notrace(PREEMPT_ACTIVE);
3541 __schedule();
3542 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3543
3544 /*
3545 * Check again in case we missed a preemption opportunity
3546 * between schedule and now.
3547 */
3548 barrier();
3549 } while (need_resched());
3550 }
3551 EXPORT_SYMBOL(preempt_schedule);
3552
3553 /*
3554 * this is the entry point to schedule() from kernel preemption
3555 * off of irq context.
3556 * Note, that this is called and return with irqs disabled. This will
3557 * protect us against recursive calling from irq.
3558 */
3559 asmlinkage void __sched preempt_schedule_irq(void)
3560 {
3561 struct thread_info *ti = current_thread_info();
3562
3563 /* Catch callers which need to be fixed */
3564 BUG_ON(ti->preempt_count || !irqs_disabled());
3565
3566 do {
3567 add_preempt_count(PREEMPT_ACTIVE);
3568 local_irq_enable();
3569 __schedule();
3570 local_irq_disable();
3571 sub_preempt_count(PREEMPT_ACTIVE);
3572
3573 /*
3574 * Check again in case we missed a preemption opportunity
3575 * between schedule and now.
3576 */
3577 barrier();
3578 } while (need_resched());
3579 }
3580
3581 #endif /* CONFIG_PREEMPT */
3582
3583 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3584 void *key)
3585 {
3586 return try_to_wake_up(curr->private, mode, wake_flags);
3587 }
3588 EXPORT_SYMBOL(default_wake_function);
3589
3590 /*
3591 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3592 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3593 * number) then we wake all the non-exclusive tasks and one exclusive task.
3594 *
3595 * There are circumstances in which we can try to wake a task which has already
3596 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3597 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3598 */
3599 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3600 int nr_exclusive, int wake_flags, void *key)
3601 {
3602 wait_queue_t *curr, *next;
3603
3604 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3605 unsigned flags = curr->flags;
3606
3607 if (curr->func(curr, mode, wake_flags, key) &&
3608 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3609 break;
3610 }
3611 }
3612
3613 /**
3614 * __wake_up - wake up threads blocked on a waitqueue.
3615 * @q: the waitqueue
3616 * @mode: which threads
3617 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3618 * @key: is directly passed to the wakeup function
3619 *
3620 * It may be assumed that this function implies a write memory barrier before
3621 * changing the task state if and only if any tasks are woken up.
3622 */
3623 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3624 int nr_exclusive, void *key)
3625 {
3626 unsigned long flags;
3627
3628 spin_lock_irqsave(&q->lock, flags);
3629 __wake_up_common(q, mode, nr_exclusive, 0, key);
3630 spin_unlock_irqrestore(&q->lock, flags);
3631 }
3632 EXPORT_SYMBOL(__wake_up);
3633
3634 /*
3635 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3636 */
3637 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3638 {
3639 __wake_up_common(q, mode, nr, 0, NULL);
3640 }
3641 EXPORT_SYMBOL_GPL(__wake_up_locked);
3642
3643 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3644 {
3645 __wake_up_common(q, mode, 1, 0, key);
3646 }
3647 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3648
3649 /**
3650 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3651 * @q: the waitqueue
3652 * @mode: which threads
3653 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3654 * @key: opaque value to be passed to wakeup targets
3655 *
3656 * The sync wakeup differs that the waker knows that it will schedule
3657 * away soon, so while the target thread will be woken up, it will not
3658 * be migrated to another CPU - ie. the two threads are 'synchronized'
3659 * with each other. This can prevent needless bouncing between CPUs.
3660 *
3661 * On UP it can prevent extra preemption.
3662 *
3663 * It may be assumed that this function implies a write memory barrier before
3664 * changing the task state if and only if any tasks are woken up.
3665 */
3666 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3667 int nr_exclusive, void *key)
3668 {
3669 unsigned long flags;
3670 int wake_flags = WF_SYNC;
3671
3672 if (unlikely(!q))
3673 return;
3674
3675 if (unlikely(!nr_exclusive))
3676 wake_flags = 0;
3677
3678 spin_lock_irqsave(&q->lock, flags);
3679 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3680 spin_unlock_irqrestore(&q->lock, flags);
3681 }
3682 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3683
3684 /*
3685 * __wake_up_sync - see __wake_up_sync_key()
3686 */
3687 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3688 {
3689 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3690 }
3691 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3692
3693 /**
3694 * complete: - signals a single thread waiting on this completion
3695 * @x: holds the state of this particular completion
3696 *
3697 * This will wake up a single thread waiting on this completion. Threads will be
3698 * awakened in the same order in which they were queued.
3699 *
3700 * See also complete_all(), wait_for_completion() and related routines.
3701 *
3702 * It may be assumed that this function implies a write memory barrier before
3703 * changing the task state if and only if any tasks are woken up.
3704 */
3705 void complete(struct completion *x)
3706 {
3707 unsigned long flags;
3708
3709 spin_lock_irqsave(&x->wait.lock, flags);
3710 x->done++;
3711 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3712 spin_unlock_irqrestore(&x->wait.lock, flags);
3713 }
3714 EXPORT_SYMBOL(complete);
3715
3716 /**
3717 * complete_all: - signals all threads waiting on this completion
3718 * @x: holds the state of this particular completion
3719 *
3720 * This will wake up all threads waiting on this particular completion event.
3721 *
3722 * It may be assumed that this function implies a write memory barrier before
3723 * changing the task state if and only if any tasks are woken up.
3724 */
3725 void complete_all(struct completion *x)
3726 {
3727 unsigned long flags;
3728
3729 spin_lock_irqsave(&x->wait.lock, flags);
3730 x->done += UINT_MAX/2;
3731 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3732 spin_unlock_irqrestore(&x->wait.lock, flags);
3733 }
3734 EXPORT_SYMBOL(complete_all);
3735
3736 static inline long __sched
3737 do_wait_for_common(struct completion *x, long timeout, int state)
3738 {
3739 if (!x->done) {
3740 DECLARE_WAITQUEUE(wait, current);
3741
3742 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3743 do {
3744 if (signal_pending_state(state, current)) {
3745 timeout = -ERESTARTSYS;
3746 break;
3747 }
3748 __set_current_state(state);
3749 spin_unlock_irq(&x->wait.lock);
3750 timeout = schedule_timeout(timeout);
3751 spin_lock_irq(&x->wait.lock);
3752 } while (!x->done && timeout);
3753 __remove_wait_queue(&x->wait, &wait);
3754 if (!x->done)
3755 return timeout;
3756 }
3757 x->done--;
3758 return timeout ?: 1;
3759 }
3760
3761 static long __sched
3762 wait_for_common(struct completion *x, long timeout, int state)
3763 {
3764 might_sleep();
3765
3766 spin_lock_irq(&x->wait.lock);
3767 timeout = do_wait_for_common(x, timeout, state);
3768 spin_unlock_irq(&x->wait.lock);
3769 return timeout;
3770 }
3771
3772 /**
3773 * wait_for_completion: - waits for completion of a task
3774 * @x: holds the state of this particular completion
3775 *
3776 * This waits to be signaled for completion of a specific task. It is NOT
3777 * interruptible and there is no timeout.
3778 *
3779 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3780 * and interrupt capability. Also see complete().
3781 */
3782 void __sched wait_for_completion(struct completion *x)
3783 {
3784 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3785 }
3786 EXPORT_SYMBOL(wait_for_completion);
3787
3788 /**
3789 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3790 * @x: holds the state of this particular completion
3791 * @timeout: timeout value in jiffies
3792 *
3793 * This waits for either a completion of a specific task to be signaled or for a
3794 * specified timeout to expire. The timeout is in jiffies. It is not
3795 * interruptible.
3796 *
3797 * The return value is 0 if timed out, and positive (at least 1, or number of
3798 * jiffies left till timeout) if completed.
3799 */
3800 unsigned long __sched
3801 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3802 {
3803 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3804 }
3805 EXPORT_SYMBOL(wait_for_completion_timeout);
3806
3807 /**
3808 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3809 * @x: holds the state of this particular completion
3810 *
3811 * This waits for completion of a specific task to be signaled. It is
3812 * interruptible.
3813 *
3814 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3815 */
3816 int __sched wait_for_completion_interruptible(struct completion *x)
3817 {
3818 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3819 if (t == -ERESTARTSYS)
3820 return t;
3821 return 0;
3822 }
3823 EXPORT_SYMBOL(wait_for_completion_interruptible);
3824
3825 /**
3826 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3827 * @x: holds the state of this particular completion
3828 * @timeout: timeout value in jiffies
3829 *
3830 * This waits for either a completion of a specific task to be signaled or for a
3831 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3832 *
3833 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3834 * positive (at least 1, or number of jiffies left till timeout) if completed.
3835 */
3836 long __sched
3837 wait_for_completion_interruptible_timeout(struct completion *x,
3838 unsigned long timeout)
3839 {
3840 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3841 }
3842 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3843
3844 /**
3845 * wait_for_completion_killable: - waits for completion of a task (killable)
3846 * @x: holds the state of this particular completion
3847 *
3848 * This waits to be signaled for completion of a specific task. It can be
3849 * interrupted by a kill signal.
3850 *
3851 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3852 */
3853 int __sched wait_for_completion_killable(struct completion *x)
3854 {
3855 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3856 if (t == -ERESTARTSYS)
3857 return t;
3858 return 0;
3859 }
3860 EXPORT_SYMBOL(wait_for_completion_killable);
3861
3862 /**
3863 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3864 * @x: holds the state of this particular completion
3865 * @timeout: timeout value in jiffies
3866 *
3867 * This waits for either a completion of a specific task to be
3868 * signaled or for a specified timeout to expire. It can be
3869 * interrupted by a kill signal. The timeout is in jiffies.
3870 *
3871 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3872 * positive (at least 1, or number of jiffies left till timeout) if completed.
3873 */
3874 long __sched
3875 wait_for_completion_killable_timeout(struct completion *x,
3876 unsigned long timeout)
3877 {
3878 return wait_for_common(x, timeout, TASK_KILLABLE);
3879 }
3880 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3881
3882 /**
3883 * try_wait_for_completion - try to decrement a completion without blocking
3884 * @x: completion structure
3885 *
3886 * Returns: 0 if a decrement cannot be done without blocking
3887 * 1 if a decrement succeeded.
3888 *
3889 * If a completion is being used as a counting completion,
3890 * attempt to decrement the counter without blocking. This
3891 * enables us to avoid waiting if the resource the completion
3892 * is protecting is not available.
3893 */
3894 bool try_wait_for_completion(struct completion *x)
3895 {
3896 unsigned long flags;
3897 int ret = 1;
3898
3899 spin_lock_irqsave(&x->wait.lock, flags);
3900 if (!x->done)
3901 ret = 0;
3902 else
3903 x->done--;
3904 spin_unlock_irqrestore(&x->wait.lock, flags);
3905 return ret;
3906 }
3907 EXPORT_SYMBOL(try_wait_for_completion);
3908
3909 /**
3910 * completion_done - Test to see if a completion has any waiters
3911 * @x: completion structure
3912 *
3913 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3914 * 1 if there are no waiters.
3915 *
3916 */
3917 bool completion_done(struct completion *x)
3918 {
3919 unsigned long flags;
3920 int ret = 1;
3921
3922 spin_lock_irqsave(&x->wait.lock, flags);
3923 if (!x->done)
3924 ret = 0;
3925 spin_unlock_irqrestore(&x->wait.lock, flags);
3926 return ret;
3927 }
3928 EXPORT_SYMBOL(completion_done);
3929
3930 static long __sched
3931 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3932 {
3933 unsigned long flags;
3934 wait_queue_t wait;
3935
3936 init_waitqueue_entry(&wait, current);
3937
3938 __set_current_state(state);
3939
3940 spin_lock_irqsave(&q->lock, flags);
3941 __add_wait_queue(q, &wait);
3942 spin_unlock(&q->lock);
3943 timeout = schedule_timeout(timeout);
3944 spin_lock_irq(&q->lock);
3945 __remove_wait_queue(q, &wait);
3946 spin_unlock_irqrestore(&q->lock, flags);
3947
3948 return timeout;
3949 }
3950
3951 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3952 {
3953 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3954 }
3955 EXPORT_SYMBOL(interruptible_sleep_on);
3956
3957 long __sched
3958 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3959 {
3960 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3961 }
3962 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3963
3964 void __sched sleep_on(wait_queue_head_t *q)
3965 {
3966 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3967 }
3968 EXPORT_SYMBOL(sleep_on);
3969
3970 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3971 {
3972 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3973 }
3974 EXPORT_SYMBOL(sleep_on_timeout);
3975
3976 #ifdef CONFIG_RT_MUTEXES
3977
3978 /*
3979 * rt_mutex_setprio - set the current priority of a task
3980 * @p: task
3981 * @prio: prio value (kernel-internal form)
3982 *
3983 * This function changes the 'effective' priority of a task. It does
3984 * not touch ->normal_prio like __setscheduler().
3985 *
3986 * Used by the rt_mutex code to implement priority inheritance logic.
3987 */
3988 void rt_mutex_setprio(struct task_struct *p, int prio)
3989 {
3990 int oldprio, on_rq, running;
3991 struct rq *rq;
3992 const struct sched_class *prev_class;
3993
3994 BUG_ON(prio < 0 || prio > MAX_PRIO);
3995
3996 rq = __task_rq_lock(p);
3997
3998 /*
3999 * Idle task boosting is a nono in general. There is one
4000 * exception, when PREEMPT_RT and NOHZ is active:
4001 *
4002 * The idle task calls get_next_timer_interrupt() and holds
4003 * the timer wheel base->lock on the CPU and another CPU wants
4004 * to access the timer (probably to cancel it). We can safely
4005 * ignore the boosting request, as the idle CPU runs this code
4006 * with interrupts disabled and will complete the lock
4007 * protected section without being interrupted. So there is no
4008 * real need to boost.
4009 */
4010 if (unlikely(p == rq->idle)) {
4011 WARN_ON(p != rq->curr);
4012 WARN_ON(p->pi_blocked_on);
4013 goto out_unlock;
4014 }
4015
4016 trace_sched_pi_setprio(p, prio);
4017 oldprio = p->prio;
4018 prev_class = p->sched_class;
4019 on_rq = p->on_rq;
4020 running = task_current(rq, p);
4021 if (on_rq)
4022 dequeue_task(rq, p, 0);
4023 if (running)
4024 p->sched_class->put_prev_task(rq, p);
4025
4026 if (rt_prio(prio))
4027 p->sched_class = &rt_sched_class;
4028 else
4029 p->sched_class = &fair_sched_class;
4030
4031 p->prio = prio;
4032
4033 if (running)
4034 p->sched_class->set_curr_task(rq);
4035 if (on_rq)
4036 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4037
4038 check_class_changed(rq, p, prev_class, oldprio);
4039 out_unlock:
4040 __task_rq_unlock(rq);
4041 }
4042 #endif
4043 void set_user_nice(struct task_struct *p, long nice)
4044 {
4045 int old_prio, delta, on_rq;
4046 unsigned long flags;
4047 struct rq *rq;
4048
4049 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4050 return;
4051 /*
4052 * We have to be careful, if called from sys_setpriority(),
4053 * the task might be in the middle of scheduling on another CPU.
4054 */
4055 rq = task_rq_lock(p, &flags);
4056 /*
4057 * The RT priorities are set via sched_setscheduler(), but we still
4058 * allow the 'normal' nice value to be set - but as expected
4059 * it wont have any effect on scheduling until the task is
4060 * SCHED_FIFO/SCHED_RR:
4061 */
4062 if (task_has_rt_policy(p)) {
4063 p->static_prio = NICE_TO_PRIO(nice);
4064 goto out_unlock;
4065 }
4066 on_rq = p->on_rq;
4067 if (on_rq)
4068 dequeue_task(rq, p, 0);
4069
4070 p->static_prio = NICE_TO_PRIO(nice);
4071 set_load_weight(p);
4072 old_prio = p->prio;
4073 p->prio = effective_prio(p);
4074 delta = p->prio - old_prio;
4075
4076 if (on_rq) {
4077 enqueue_task(rq, p, 0);
4078 /*
4079 * If the task increased its priority or is running and
4080 * lowered its priority, then reschedule its CPU:
4081 */
4082 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4083 resched_task(rq->curr);
4084 }
4085 out_unlock:
4086 task_rq_unlock(rq, p, &flags);
4087 }
4088 EXPORT_SYMBOL(set_user_nice);
4089
4090 /*
4091 * can_nice - check if a task can reduce its nice value
4092 * @p: task
4093 * @nice: nice value
4094 */
4095 int can_nice(const struct task_struct *p, const int nice)
4096 {
4097 /* convert nice value [19,-20] to rlimit style value [1,40] */
4098 int nice_rlim = 20 - nice;
4099
4100 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4101 capable(CAP_SYS_NICE));
4102 }
4103
4104 #ifdef __ARCH_WANT_SYS_NICE
4105
4106 /*
4107 * sys_nice - change the priority of the current process.
4108 * @increment: priority increment
4109 *
4110 * sys_setpriority is a more generic, but much slower function that
4111 * does similar things.
4112 */
4113 SYSCALL_DEFINE1(nice, int, increment)
4114 {
4115 long nice, retval;
4116
4117 /*
4118 * Setpriority might change our priority at the same moment.
4119 * We don't have to worry. Conceptually one call occurs first
4120 * and we have a single winner.
4121 */
4122 if (increment < -40)
4123 increment = -40;
4124 if (increment > 40)
4125 increment = 40;
4126
4127 nice = TASK_NICE(current) + increment;
4128 if (nice < -20)
4129 nice = -20;
4130 if (nice > 19)
4131 nice = 19;
4132
4133 if (increment < 0 && !can_nice(current, nice))
4134 return -EPERM;
4135
4136 retval = security_task_setnice(current, nice);
4137 if (retval)
4138 return retval;
4139
4140 set_user_nice(current, nice);
4141 return 0;
4142 }
4143
4144 #endif
4145
4146 /**
4147 * task_prio - return the priority value of a given task.
4148 * @p: the task in question.
4149 *
4150 * This is the priority value as seen by users in /proc.
4151 * RT tasks are offset by -200. Normal tasks are centered
4152 * around 0, value goes from -16 to +15.
4153 */
4154 int task_prio(const struct task_struct *p)
4155 {
4156 return p->prio - MAX_RT_PRIO;
4157 }
4158
4159 /**
4160 * task_nice - return the nice value of a given task.
4161 * @p: the task in question.
4162 */
4163 int task_nice(const struct task_struct *p)
4164 {
4165 return TASK_NICE(p);
4166 }
4167 EXPORT_SYMBOL(task_nice);
4168
4169 /**
4170 * idle_cpu - is a given cpu idle currently?
4171 * @cpu: the processor in question.
4172 */
4173 int idle_cpu(int cpu)
4174 {
4175 struct rq *rq = cpu_rq(cpu);
4176
4177 if (rq->curr != rq->idle)
4178 return 0;
4179
4180 if (rq->nr_running)
4181 return 0;
4182
4183 #ifdef CONFIG_SMP
4184 if (!llist_empty(&rq->wake_list))
4185 return 0;
4186 #endif
4187
4188 return 1;
4189 }
4190
4191 /**
4192 * idle_task - return the idle task for a given cpu.
4193 * @cpu: the processor in question.
4194 */
4195 struct task_struct *idle_task(int cpu)
4196 {
4197 return cpu_rq(cpu)->idle;
4198 }
4199
4200 /**
4201 * find_process_by_pid - find a process with a matching PID value.
4202 * @pid: the pid in question.
4203 */
4204 static struct task_struct *find_process_by_pid(pid_t pid)
4205 {
4206 return pid ? find_task_by_vpid(pid) : current;
4207 }
4208
4209 /* Actually do priority change: must hold rq lock. */
4210 static void
4211 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4212 {
4213 p->policy = policy;
4214 p->rt_priority = prio;
4215 p->normal_prio = normal_prio(p);
4216 /* we are holding p->pi_lock already */
4217 p->prio = rt_mutex_getprio(p);
4218 if (rt_prio(p->prio))
4219 p->sched_class = &rt_sched_class;
4220 else
4221 p->sched_class = &fair_sched_class;
4222 set_load_weight(p);
4223 }
4224
4225 /*
4226 * check the target process has a UID that matches the current process's
4227 */
4228 static bool check_same_owner(struct task_struct *p)
4229 {
4230 const struct cred *cred = current_cred(), *pcred;
4231 bool match;
4232
4233 rcu_read_lock();
4234 pcred = __task_cred(p);
4235 match = (uid_eq(cred->euid, pcred->euid) ||
4236 uid_eq(cred->euid, pcred->uid));
4237 rcu_read_unlock();
4238 return match;
4239 }
4240
4241 static int __sched_setscheduler(struct task_struct *p, int policy,
4242 const struct sched_param *param, bool user)
4243 {
4244 int retval, oldprio, oldpolicy = -1, on_rq, running;
4245 unsigned long flags;
4246 const struct sched_class *prev_class;
4247 struct rq *rq;
4248 int reset_on_fork;
4249
4250 /* may grab non-irq protected spin_locks */
4251 BUG_ON(in_interrupt());
4252 recheck:
4253 /* double check policy once rq lock held */
4254 if (policy < 0) {
4255 reset_on_fork = p->sched_reset_on_fork;
4256 policy = oldpolicy = p->policy;
4257 } else {
4258 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4259 policy &= ~SCHED_RESET_ON_FORK;
4260
4261 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4262 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4263 policy != SCHED_IDLE)
4264 return -EINVAL;
4265 }
4266
4267 /*
4268 * Valid priorities for SCHED_FIFO and SCHED_RR are
4269 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4270 * SCHED_BATCH and SCHED_IDLE is 0.
4271 */
4272 if (param->sched_priority < 0 ||
4273 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4274 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4275 return -EINVAL;
4276 if (rt_policy(policy) != (param->sched_priority != 0))
4277 return -EINVAL;
4278
4279 /*
4280 * Allow unprivileged RT tasks to decrease priority:
4281 */
4282 if (user && !capable(CAP_SYS_NICE)) {
4283 if (rt_policy(policy)) {
4284 unsigned long rlim_rtprio =
4285 task_rlimit(p, RLIMIT_RTPRIO);
4286
4287 /* can't set/change the rt policy */
4288 if (policy != p->policy && !rlim_rtprio)
4289 return -EPERM;
4290
4291 /* can't increase priority */
4292 if (param->sched_priority > p->rt_priority &&
4293 param->sched_priority > rlim_rtprio)
4294 return -EPERM;
4295 }
4296
4297 /*
4298 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4299 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4300 */
4301 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4302 if (!can_nice(p, TASK_NICE(p)))
4303 return -EPERM;
4304 }
4305
4306 /* can't change other user's priorities */
4307 if (!check_same_owner(p))
4308 return -EPERM;
4309
4310 /* Normal users shall not reset the sched_reset_on_fork flag */
4311 if (p->sched_reset_on_fork && !reset_on_fork)
4312 return -EPERM;
4313 }
4314
4315 if (user) {
4316 retval = security_task_setscheduler(p);
4317 if (retval)
4318 return retval;
4319 }
4320
4321 /*
4322 * make sure no PI-waiters arrive (or leave) while we are
4323 * changing the priority of the task:
4324 *
4325 * To be able to change p->policy safely, the appropriate
4326 * runqueue lock must be held.
4327 */
4328 rq = task_rq_lock(p, &flags);
4329
4330 /*
4331 * Changing the policy of the stop threads its a very bad idea
4332 */
4333 if (p == rq->stop) {
4334 task_rq_unlock(rq, p, &flags);
4335 return -EINVAL;
4336 }
4337
4338 /*
4339 * If not changing anything there's no need to proceed further:
4340 */
4341 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4342 param->sched_priority == p->rt_priority))) {
4343
4344 __task_rq_unlock(rq);
4345 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4346 return 0;
4347 }
4348
4349 #ifdef CONFIG_RT_GROUP_SCHED
4350 if (user) {
4351 /*
4352 * Do not allow realtime tasks into groups that have no runtime
4353 * assigned.
4354 */
4355 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4356 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4357 !task_group_is_autogroup(task_group(p))) {
4358 task_rq_unlock(rq, p, &flags);
4359 return -EPERM;
4360 }
4361 }
4362 #endif
4363
4364 /* recheck policy now with rq lock held */
4365 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4366 policy = oldpolicy = -1;
4367 task_rq_unlock(rq, p, &flags);
4368 goto recheck;
4369 }
4370 on_rq = p->on_rq;
4371 running = task_current(rq, p);
4372 if (on_rq)
4373 dequeue_task(rq, p, 0);
4374 if (running)
4375 p->sched_class->put_prev_task(rq, p);
4376
4377 p->sched_reset_on_fork = reset_on_fork;
4378
4379 oldprio = p->prio;
4380 prev_class = p->sched_class;
4381 __setscheduler(rq, p, policy, param->sched_priority);
4382
4383 if (running)
4384 p->sched_class->set_curr_task(rq);
4385 if (on_rq)
4386 enqueue_task(rq, p, 0);
4387
4388 check_class_changed(rq, p, prev_class, oldprio);
4389 task_rq_unlock(rq, p, &flags);
4390
4391 rt_mutex_adjust_pi(p);
4392
4393 return 0;
4394 }
4395
4396 /**
4397 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4398 * @p: the task in question.
4399 * @policy: new policy.
4400 * @param: structure containing the new RT priority.
4401 *
4402 * NOTE that the task may be already dead.
4403 */
4404 int sched_setscheduler(struct task_struct *p, int policy,
4405 const struct sched_param *param)
4406 {
4407 return __sched_setscheduler(p, policy, param, true);
4408 }
4409 EXPORT_SYMBOL_GPL(sched_setscheduler);
4410
4411 /**
4412 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4413 * @p: the task in question.
4414 * @policy: new policy.
4415 * @param: structure containing the new RT priority.
4416 *
4417 * Just like sched_setscheduler, only don't bother checking if the
4418 * current context has permission. For example, this is needed in
4419 * stop_machine(): we create temporary high priority worker threads,
4420 * but our caller might not have that capability.
4421 */
4422 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4423 const struct sched_param *param)
4424 {
4425 return __sched_setscheduler(p, policy, param, false);
4426 }
4427
4428 static int
4429 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4430 {
4431 struct sched_param lparam;
4432 struct task_struct *p;
4433 int retval;
4434
4435 if (!param || pid < 0)
4436 return -EINVAL;
4437 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4438 return -EFAULT;
4439
4440 rcu_read_lock();
4441 retval = -ESRCH;
4442 p = find_process_by_pid(pid);
4443 if (p != NULL)
4444 retval = sched_setscheduler(p, policy, &lparam);
4445 rcu_read_unlock();
4446
4447 return retval;
4448 }
4449
4450 /**
4451 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4452 * @pid: the pid in question.
4453 * @policy: new policy.
4454 * @param: structure containing the new RT priority.
4455 */
4456 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4457 struct sched_param __user *, param)
4458 {
4459 /* negative values for policy are not valid */
4460 if (policy < 0)
4461 return -EINVAL;
4462
4463 return do_sched_setscheduler(pid, policy, param);
4464 }
4465
4466 /**
4467 * sys_sched_setparam - set/change the RT priority of a thread
4468 * @pid: the pid in question.
4469 * @param: structure containing the new RT priority.
4470 */
4471 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4472 {
4473 return do_sched_setscheduler(pid, -1, param);
4474 }
4475
4476 /**
4477 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4478 * @pid: the pid in question.
4479 */
4480 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4481 {
4482 struct task_struct *p;
4483 int retval;
4484
4485 if (pid < 0)
4486 return -EINVAL;
4487
4488 retval = -ESRCH;
4489 rcu_read_lock();
4490 p = find_process_by_pid(pid);
4491 if (p) {
4492 retval = security_task_getscheduler(p);
4493 if (!retval)
4494 retval = p->policy
4495 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4496 }
4497 rcu_read_unlock();
4498 return retval;
4499 }
4500
4501 /**
4502 * sys_sched_getparam - get the RT priority of a thread
4503 * @pid: the pid in question.
4504 * @param: structure containing the RT priority.
4505 */
4506 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4507 {
4508 struct sched_param lp;
4509 struct task_struct *p;
4510 int retval;
4511
4512 if (!param || pid < 0)
4513 return -EINVAL;
4514
4515 rcu_read_lock();
4516 p = find_process_by_pid(pid);
4517 retval = -ESRCH;
4518 if (!p)
4519 goto out_unlock;
4520
4521 retval = security_task_getscheduler(p);
4522 if (retval)
4523 goto out_unlock;
4524
4525 lp.sched_priority = p->rt_priority;
4526 rcu_read_unlock();
4527
4528 /*
4529 * This one might sleep, we cannot do it with a spinlock held ...
4530 */
4531 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4532
4533 return retval;
4534
4535 out_unlock:
4536 rcu_read_unlock();
4537 return retval;
4538 }
4539
4540 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4541 {
4542 cpumask_var_t cpus_allowed, new_mask;
4543 struct task_struct *p;
4544 int retval;
4545
4546 get_online_cpus();
4547 rcu_read_lock();
4548
4549 p = find_process_by_pid(pid);
4550 if (!p) {
4551 rcu_read_unlock();
4552 put_online_cpus();
4553 return -ESRCH;
4554 }
4555
4556 /* Prevent p going away */
4557 get_task_struct(p);
4558 rcu_read_unlock();
4559
4560 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4561 retval = -ENOMEM;
4562 goto out_put_task;
4563 }
4564 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4565 retval = -ENOMEM;
4566 goto out_free_cpus_allowed;
4567 }
4568 retval = -EPERM;
4569 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4570 goto out_unlock;
4571
4572 retval = security_task_setscheduler(p);
4573 if (retval)
4574 goto out_unlock;
4575
4576 cpuset_cpus_allowed(p, cpus_allowed);
4577 cpumask_and(new_mask, in_mask, cpus_allowed);
4578 again:
4579 retval = set_cpus_allowed_ptr(p, new_mask);
4580
4581 if (!retval) {
4582 cpuset_cpus_allowed(p, cpus_allowed);
4583 if (!cpumask_subset(new_mask, cpus_allowed)) {
4584 /*
4585 * We must have raced with a concurrent cpuset
4586 * update. Just reset the cpus_allowed to the
4587 * cpuset's cpus_allowed
4588 */
4589 cpumask_copy(new_mask, cpus_allowed);
4590 goto again;
4591 }
4592 }
4593 out_unlock:
4594 free_cpumask_var(new_mask);
4595 out_free_cpus_allowed:
4596 free_cpumask_var(cpus_allowed);
4597 out_put_task:
4598 put_task_struct(p);
4599 put_online_cpus();
4600 return retval;
4601 }
4602
4603 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4604 struct cpumask *new_mask)
4605 {
4606 if (len < cpumask_size())
4607 cpumask_clear(new_mask);
4608 else if (len > cpumask_size())
4609 len = cpumask_size();
4610
4611 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4612 }
4613
4614 /**
4615 * sys_sched_setaffinity - set the cpu affinity of a process
4616 * @pid: pid of the process
4617 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4618 * @user_mask_ptr: user-space pointer to the new cpu mask
4619 */
4620 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4621 unsigned long __user *, user_mask_ptr)
4622 {
4623 cpumask_var_t new_mask;
4624 int retval;
4625
4626 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4627 return -ENOMEM;
4628
4629 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4630 if (retval == 0)
4631 retval = sched_setaffinity(pid, new_mask);
4632 free_cpumask_var(new_mask);
4633 return retval;
4634 }
4635
4636 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4637 {
4638 struct task_struct *p;
4639 unsigned long flags;
4640 int retval;
4641
4642 get_online_cpus();
4643 rcu_read_lock();
4644
4645 retval = -ESRCH;
4646 p = find_process_by_pid(pid);
4647 if (!p)
4648 goto out_unlock;
4649
4650 retval = security_task_getscheduler(p);
4651 if (retval)
4652 goto out_unlock;
4653
4654 raw_spin_lock_irqsave(&p->pi_lock, flags);
4655 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4656 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4657
4658 out_unlock:
4659 rcu_read_unlock();
4660 put_online_cpus();
4661
4662 return retval;
4663 }
4664
4665 /**
4666 * sys_sched_getaffinity - get the cpu affinity of a process
4667 * @pid: pid of the process
4668 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4669 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4670 */
4671 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4672 unsigned long __user *, user_mask_ptr)
4673 {
4674 int ret;
4675 cpumask_var_t mask;
4676
4677 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4678 return -EINVAL;
4679 if (len & (sizeof(unsigned long)-1))
4680 return -EINVAL;
4681
4682 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4683 return -ENOMEM;
4684
4685 ret = sched_getaffinity(pid, mask);
4686 if (ret == 0) {
4687 size_t retlen = min_t(size_t, len, cpumask_size());
4688
4689 if (copy_to_user(user_mask_ptr, mask, retlen))
4690 ret = -EFAULT;
4691 else
4692 ret = retlen;
4693 }
4694 free_cpumask_var(mask);
4695
4696 return ret;
4697 }
4698
4699 /**
4700 * sys_sched_yield - yield the current processor to other threads.
4701 *
4702 * This function yields the current CPU to other tasks. If there are no
4703 * other threads running on this CPU then this function will return.
4704 */
4705 SYSCALL_DEFINE0(sched_yield)
4706 {
4707 struct rq *rq = this_rq_lock();
4708
4709 schedstat_inc(rq, yld_count);
4710 current->sched_class->yield_task(rq);
4711
4712 /*
4713 * Since we are going to call schedule() anyway, there's
4714 * no need to preempt or enable interrupts:
4715 */
4716 __release(rq->lock);
4717 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4718 do_raw_spin_unlock(&rq->lock);
4719 sched_preempt_enable_no_resched();
4720
4721 schedule();
4722
4723 return 0;
4724 }
4725
4726 static inline int should_resched(void)
4727 {
4728 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4729 }
4730
4731 static void __cond_resched(void)
4732 {
4733 add_preempt_count(PREEMPT_ACTIVE);
4734 __schedule();
4735 sub_preempt_count(PREEMPT_ACTIVE);
4736 }
4737
4738 int __sched _cond_resched(void)
4739 {
4740 if (should_resched()) {
4741 __cond_resched();
4742 return 1;
4743 }
4744 return 0;
4745 }
4746 EXPORT_SYMBOL(_cond_resched);
4747
4748 /*
4749 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4750 * call schedule, and on return reacquire the lock.
4751 *
4752 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4753 * operations here to prevent schedule() from being called twice (once via
4754 * spin_unlock(), once by hand).
4755 */
4756 int __cond_resched_lock(spinlock_t *lock)
4757 {
4758 int resched = should_resched();
4759 int ret = 0;
4760
4761 lockdep_assert_held(lock);
4762
4763 if (spin_needbreak(lock) || resched) {
4764 spin_unlock(lock);
4765 if (resched)
4766 __cond_resched();
4767 else
4768 cpu_relax();
4769 ret = 1;
4770 spin_lock(lock);
4771 }
4772 return ret;
4773 }
4774 EXPORT_SYMBOL(__cond_resched_lock);
4775
4776 int __sched __cond_resched_softirq(void)
4777 {
4778 BUG_ON(!in_softirq());
4779
4780 if (should_resched()) {
4781 local_bh_enable();
4782 __cond_resched();
4783 local_bh_disable();
4784 return 1;
4785 }
4786 return 0;
4787 }
4788 EXPORT_SYMBOL(__cond_resched_softirq);
4789
4790 /**
4791 * yield - yield the current processor to other threads.
4792 *
4793 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4794 *
4795 * The scheduler is at all times free to pick the calling task as the most
4796 * eligible task to run, if removing the yield() call from your code breaks
4797 * it, its already broken.
4798 *
4799 * Typical broken usage is:
4800 *
4801 * while (!event)
4802 * yield();
4803 *
4804 * where one assumes that yield() will let 'the other' process run that will
4805 * make event true. If the current task is a SCHED_FIFO task that will never
4806 * happen. Never use yield() as a progress guarantee!!
4807 *
4808 * If you want to use yield() to wait for something, use wait_event().
4809 * If you want to use yield() to be 'nice' for others, use cond_resched().
4810 * If you still want to use yield(), do not!
4811 */
4812 void __sched yield(void)
4813 {
4814 set_current_state(TASK_RUNNING);
4815 sys_sched_yield();
4816 }
4817 EXPORT_SYMBOL(yield);
4818
4819 /**
4820 * yield_to - yield the current processor to another thread in
4821 * your thread group, or accelerate that thread toward the
4822 * processor it's on.
4823 * @p: target task
4824 * @preempt: whether task preemption is allowed or not
4825 *
4826 * It's the caller's job to ensure that the target task struct
4827 * can't go away on us before we can do any checks.
4828 *
4829 * Returns true if we indeed boosted the target task.
4830 */
4831 bool __sched yield_to(struct task_struct *p, bool preempt)
4832 {
4833 struct task_struct *curr = current;
4834 struct rq *rq, *p_rq;
4835 unsigned long flags;
4836 bool yielded = 0;
4837
4838 local_irq_save(flags);
4839 rq = this_rq();
4840
4841 again:
4842 p_rq = task_rq(p);
4843 double_rq_lock(rq, p_rq);
4844 while (task_rq(p) != p_rq) {
4845 double_rq_unlock(rq, p_rq);
4846 goto again;
4847 }
4848
4849 if (!curr->sched_class->yield_to_task)
4850 goto out;
4851
4852 if (curr->sched_class != p->sched_class)
4853 goto out;
4854
4855 if (task_running(p_rq, p) || p->state)
4856 goto out;
4857
4858 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4859 if (yielded) {
4860 schedstat_inc(rq, yld_count);
4861 /*
4862 * Make p's CPU reschedule; pick_next_entity takes care of
4863 * fairness.
4864 */
4865 if (preempt && rq != p_rq)
4866 resched_task(p_rq->curr);
4867 } else {
4868 /*
4869 * We might have set it in task_yield_fair(), but are
4870 * not going to schedule(), so don't want to skip
4871 * the next update.
4872 */
4873 rq->skip_clock_update = 0;
4874 }
4875
4876 out:
4877 double_rq_unlock(rq, p_rq);
4878 local_irq_restore(flags);
4879
4880 if (yielded)
4881 schedule();
4882
4883 return yielded;
4884 }
4885 EXPORT_SYMBOL_GPL(yield_to);
4886
4887 /*
4888 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4889 * that process accounting knows that this is a task in IO wait state.
4890 */
4891 void __sched io_schedule(void)
4892 {
4893 struct rq *rq = raw_rq();
4894
4895 delayacct_blkio_start();
4896 atomic_inc(&rq->nr_iowait);
4897 blk_flush_plug(current);
4898 current->in_iowait = 1;
4899 schedule();
4900 current->in_iowait = 0;
4901 atomic_dec(&rq->nr_iowait);
4902 delayacct_blkio_end();
4903 }
4904 EXPORT_SYMBOL(io_schedule);
4905
4906 long __sched io_schedule_timeout(long timeout)
4907 {
4908 struct rq *rq = raw_rq();
4909 long ret;
4910
4911 delayacct_blkio_start();
4912 atomic_inc(&rq->nr_iowait);
4913 blk_flush_plug(current);
4914 current->in_iowait = 1;
4915 ret = schedule_timeout(timeout);
4916 current->in_iowait = 0;
4917 atomic_dec(&rq->nr_iowait);
4918 delayacct_blkio_end();
4919 return ret;
4920 }
4921
4922 /**
4923 * sys_sched_get_priority_max - return maximum RT priority.
4924 * @policy: scheduling class.
4925 *
4926 * this syscall returns the maximum rt_priority that can be used
4927 * by a given scheduling class.
4928 */
4929 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4930 {
4931 int ret = -EINVAL;
4932
4933 switch (policy) {
4934 case SCHED_FIFO:
4935 case SCHED_RR:
4936 ret = MAX_USER_RT_PRIO-1;
4937 break;
4938 case SCHED_NORMAL:
4939 case SCHED_BATCH:
4940 case SCHED_IDLE:
4941 ret = 0;
4942 break;
4943 }
4944 return ret;
4945 }
4946
4947 /**
4948 * sys_sched_get_priority_min - return minimum RT priority.
4949 * @policy: scheduling class.
4950 *
4951 * this syscall returns the minimum rt_priority that can be used
4952 * by a given scheduling class.
4953 */
4954 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4955 {
4956 int ret = -EINVAL;
4957
4958 switch (policy) {
4959 case SCHED_FIFO:
4960 case SCHED_RR:
4961 ret = 1;
4962 break;
4963 case SCHED_NORMAL:
4964 case SCHED_BATCH:
4965 case SCHED_IDLE:
4966 ret = 0;
4967 }
4968 return ret;
4969 }
4970
4971 /**
4972 * sys_sched_rr_get_interval - return the default timeslice of a process.
4973 * @pid: pid of the process.
4974 * @interval: userspace pointer to the timeslice value.
4975 *
4976 * this syscall writes the default timeslice value of a given process
4977 * into the user-space timespec buffer. A value of '0' means infinity.
4978 */
4979 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4980 struct timespec __user *, interval)
4981 {
4982 struct task_struct *p;
4983 unsigned int time_slice;
4984 unsigned long flags;
4985 struct rq *rq;
4986 int retval;
4987 struct timespec t;
4988
4989 if (pid < 0)
4990 return -EINVAL;
4991
4992 retval = -ESRCH;
4993 rcu_read_lock();
4994 p = find_process_by_pid(pid);
4995 if (!p)
4996 goto out_unlock;
4997
4998 retval = security_task_getscheduler(p);
4999 if (retval)
5000 goto out_unlock;
5001
5002 rq = task_rq_lock(p, &flags);
5003 time_slice = p->sched_class->get_rr_interval(rq, p);
5004 task_rq_unlock(rq, p, &flags);
5005
5006 rcu_read_unlock();
5007 jiffies_to_timespec(time_slice, &t);
5008 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5009 return retval;
5010
5011 out_unlock:
5012 rcu_read_unlock();
5013 return retval;
5014 }
5015
5016 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5017
5018 void sched_show_task(struct task_struct *p)
5019 {
5020 unsigned long free = 0;
5021 unsigned state;
5022
5023 state = p->state ? __ffs(p->state) + 1 : 0;
5024 printk(KERN_INFO "%-15.15s %c", p->comm,
5025 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5026 #if BITS_PER_LONG == 32
5027 if (state == TASK_RUNNING)
5028 printk(KERN_CONT " running ");
5029 else
5030 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5031 #else
5032 if (state == TASK_RUNNING)
5033 printk(KERN_CONT " running task ");
5034 else
5035 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5036 #endif
5037 #ifdef CONFIG_DEBUG_STACK_USAGE
5038 free = stack_not_used(p);
5039 #endif
5040 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5041 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
5042 (unsigned long)task_thread_info(p)->flags);
5043
5044 show_stack(p, NULL);
5045 }
5046
5047 void show_state_filter(unsigned long state_filter)
5048 {
5049 struct task_struct *g, *p;
5050
5051 #if BITS_PER_LONG == 32
5052 printk(KERN_INFO
5053 " task PC stack pid father\n");
5054 #else
5055 printk(KERN_INFO
5056 " task PC stack pid father\n");
5057 #endif
5058 rcu_read_lock();
5059 do_each_thread(g, p) {
5060 /*
5061 * reset the NMI-timeout, listing all files on a slow
5062 * console might take a lot of time:
5063 */
5064 touch_nmi_watchdog();
5065 if (!state_filter || (p->state & state_filter))
5066 sched_show_task(p);
5067 } while_each_thread(g, p);
5068
5069 touch_all_softlockup_watchdogs();
5070
5071 #ifdef CONFIG_SCHED_DEBUG
5072 sysrq_sched_debug_show();
5073 #endif
5074 rcu_read_unlock();
5075 /*
5076 * Only show locks if all tasks are dumped:
5077 */
5078 if (!state_filter)
5079 debug_show_all_locks();
5080 }
5081
5082 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5083 {
5084 idle->sched_class = &idle_sched_class;
5085 }
5086
5087 /**
5088 * init_idle - set up an idle thread for a given CPU
5089 * @idle: task in question
5090 * @cpu: cpu the idle task belongs to
5091 *
5092 * NOTE: this function does not set the idle thread's NEED_RESCHED
5093 * flag, to make booting more robust.
5094 */
5095 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5096 {
5097 struct rq *rq = cpu_rq(cpu);
5098 unsigned long flags;
5099
5100 raw_spin_lock_irqsave(&rq->lock, flags);
5101
5102 __sched_fork(idle);
5103 idle->state = TASK_RUNNING;
5104 idle->se.exec_start = sched_clock();
5105
5106 do_set_cpus_allowed(idle, cpumask_of(cpu));
5107 /*
5108 * We're having a chicken and egg problem, even though we are
5109 * holding rq->lock, the cpu isn't yet set to this cpu so the
5110 * lockdep check in task_group() will fail.
5111 *
5112 * Similar case to sched_fork(). / Alternatively we could
5113 * use task_rq_lock() here and obtain the other rq->lock.
5114 *
5115 * Silence PROVE_RCU
5116 */
5117 rcu_read_lock();
5118 __set_task_cpu(idle, cpu);
5119 rcu_read_unlock();
5120
5121 rq->curr = rq->idle = idle;
5122 #if defined(CONFIG_SMP)
5123 idle->on_cpu = 1;
5124 #endif
5125 raw_spin_unlock_irqrestore(&rq->lock, flags);
5126
5127 /* Set the preempt count _outside_ the spinlocks! */
5128 task_thread_info(idle)->preempt_count = 0;
5129
5130 /*
5131 * The idle tasks have their own, simple scheduling class:
5132 */
5133 idle->sched_class = &idle_sched_class;
5134 ftrace_graph_init_idle_task(idle, cpu);
5135 #if defined(CONFIG_SMP)
5136 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5137 #endif
5138 }
5139
5140 #ifdef CONFIG_SMP
5141 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5142 {
5143 if (p->sched_class && p->sched_class->set_cpus_allowed)
5144 p->sched_class->set_cpus_allowed(p, new_mask);
5145
5146 cpumask_copy(&p->cpus_allowed, new_mask);
5147 p->nr_cpus_allowed = cpumask_weight(new_mask);
5148 }
5149
5150 /*
5151 * This is how migration works:
5152 *
5153 * 1) we invoke migration_cpu_stop() on the target CPU using
5154 * stop_one_cpu().
5155 * 2) stopper starts to run (implicitly forcing the migrated thread
5156 * off the CPU)
5157 * 3) it checks whether the migrated task is still in the wrong runqueue.
5158 * 4) if it's in the wrong runqueue then the migration thread removes
5159 * it and puts it into the right queue.
5160 * 5) stopper completes and stop_one_cpu() returns and the migration
5161 * is done.
5162 */
5163
5164 /*
5165 * Change a given task's CPU affinity. Migrate the thread to a
5166 * proper CPU and schedule it away if the CPU it's executing on
5167 * is removed from the allowed bitmask.
5168 *
5169 * NOTE: the caller must have a valid reference to the task, the
5170 * task must not exit() & deallocate itself prematurely. The
5171 * call is not atomic; no spinlocks may be held.
5172 */
5173 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5174 {
5175 unsigned long flags;
5176 struct rq *rq;
5177 unsigned int dest_cpu;
5178 int ret = 0;
5179
5180 rq = task_rq_lock(p, &flags);
5181
5182 if (cpumask_equal(&p->cpus_allowed, new_mask))
5183 goto out;
5184
5185 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5186 ret = -EINVAL;
5187 goto out;
5188 }
5189
5190 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5191 ret = -EINVAL;
5192 goto out;
5193 }
5194
5195 do_set_cpus_allowed(p, new_mask);
5196
5197 /* Can the task run on the task's current CPU? If so, we're done */
5198 if (cpumask_test_cpu(task_cpu(p), new_mask))
5199 goto out;
5200
5201 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5202 if (p->on_rq) {
5203 struct migration_arg arg = { p, dest_cpu };
5204 /* Need help from migration thread: drop lock and wait. */
5205 task_rq_unlock(rq, p, &flags);
5206 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5207 tlb_migrate_finish(p->mm);
5208 return 0;
5209 }
5210 out:
5211 task_rq_unlock(rq, p, &flags);
5212
5213 return ret;
5214 }
5215 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5216
5217 /*
5218 * Move (not current) task off this cpu, onto dest cpu. We're doing
5219 * this because either it can't run here any more (set_cpus_allowed()
5220 * away from this CPU, or CPU going down), or because we're
5221 * attempting to rebalance this task on exec (sched_exec).
5222 *
5223 * So we race with normal scheduler movements, but that's OK, as long
5224 * as the task is no longer on this CPU.
5225 *
5226 * Returns non-zero if task was successfully migrated.
5227 */
5228 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5229 {
5230 struct rq *rq_dest, *rq_src;
5231 int ret = 0;
5232
5233 if (unlikely(!cpu_active(dest_cpu)))
5234 return ret;
5235
5236 rq_src = cpu_rq(src_cpu);
5237 rq_dest = cpu_rq(dest_cpu);
5238
5239 raw_spin_lock(&p->pi_lock);
5240 double_rq_lock(rq_src, rq_dest);
5241 /* Already moved. */
5242 if (task_cpu(p) != src_cpu)
5243 goto done;
5244 /* Affinity changed (again). */
5245 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5246 goto fail;
5247
5248 /*
5249 * If we're not on a rq, the next wake-up will ensure we're
5250 * placed properly.
5251 */
5252 if (p->on_rq) {
5253 dequeue_task(rq_src, p, 0);
5254 set_task_cpu(p, dest_cpu);
5255 enqueue_task(rq_dest, p, 0);
5256 check_preempt_curr(rq_dest, p, 0);
5257 }
5258 done:
5259 ret = 1;
5260 fail:
5261 double_rq_unlock(rq_src, rq_dest);
5262 raw_spin_unlock(&p->pi_lock);
5263 return ret;
5264 }
5265
5266 /*
5267 * migration_cpu_stop - this will be executed by a highprio stopper thread
5268 * and performs thread migration by bumping thread off CPU then
5269 * 'pushing' onto another runqueue.
5270 */
5271 static int migration_cpu_stop(void *data)
5272 {
5273 struct migration_arg *arg = data;
5274
5275 /*
5276 * The original target cpu might have gone down and we might
5277 * be on another cpu but it doesn't matter.
5278 */
5279 local_irq_disable();
5280 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5281 local_irq_enable();
5282 return 0;
5283 }
5284
5285 #ifdef CONFIG_HOTPLUG_CPU
5286
5287 /*
5288 * Ensures that the idle task is using init_mm right before its cpu goes
5289 * offline.
5290 */
5291 void idle_task_exit(void)
5292 {
5293 struct mm_struct *mm = current->active_mm;
5294
5295 BUG_ON(cpu_online(smp_processor_id()));
5296
5297 if (mm != &init_mm)
5298 switch_mm(mm, &init_mm, current);
5299 mmdrop(mm);
5300 }
5301
5302 /*
5303 * While a dead CPU has no uninterruptible tasks queued at this point,
5304 * it might still have a nonzero ->nr_uninterruptible counter, because
5305 * for performance reasons the counter is not stricly tracking tasks to
5306 * their home CPUs. So we just add the counter to another CPU's counter,
5307 * to keep the global sum constant after CPU-down:
5308 */
5309 static void migrate_nr_uninterruptible(struct rq *rq_src)
5310 {
5311 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5312
5313 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5314 rq_src->nr_uninterruptible = 0;
5315 }
5316
5317 /*
5318 * remove the tasks which were accounted by rq from calc_load_tasks.
5319 */
5320 static void calc_global_load_remove(struct rq *rq)
5321 {
5322 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5323 rq->calc_load_active = 0;
5324 }
5325
5326 /*
5327 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5328 * try_to_wake_up()->select_task_rq().
5329 *
5330 * Called with rq->lock held even though we'er in stop_machine() and
5331 * there's no concurrency possible, we hold the required locks anyway
5332 * because of lock validation efforts.
5333 */
5334 static void migrate_tasks(unsigned int dead_cpu)
5335 {
5336 struct rq *rq = cpu_rq(dead_cpu);
5337 struct task_struct *next, *stop = rq->stop;
5338 int dest_cpu;
5339
5340 /*
5341 * Fudge the rq selection such that the below task selection loop
5342 * doesn't get stuck on the currently eligible stop task.
5343 *
5344 * We're currently inside stop_machine() and the rq is either stuck
5345 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5346 * either way we should never end up calling schedule() until we're
5347 * done here.
5348 */
5349 rq->stop = NULL;
5350
5351 /* Ensure any throttled groups are reachable by pick_next_task */
5352 unthrottle_offline_cfs_rqs(rq);
5353
5354 for ( ; ; ) {
5355 /*
5356 * There's this thread running, bail when that's the only
5357 * remaining thread.
5358 */
5359 if (rq->nr_running == 1)
5360 break;
5361
5362 next = pick_next_task(rq);
5363 BUG_ON(!next);
5364 next->sched_class->put_prev_task(rq, next);
5365
5366 /* Find suitable destination for @next, with force if needed. */
5367 dest_cpu = select_fallback_rq(dead_cpu, next);
5368 raw_spin_unlock(&rq->lock);
5369
5370 __migrate_task(next, dead_cpu, dest_cpu);
5371
5372 raw_spin_lock(&rq->lock);
5373 }
5374
5375 rq->stop = stop;
5376 }
5377
5378 #endif /* CONFIG_HOTPLUG_CPU */
5379
5380 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5381
5382 static struct ctl_table sd_ctl_dir[] = {
5383 {
5384 .procname = "sched_domain",
5385 .mode = 0555,
5386 },
5387 {}
5388 };
5389
5390 static struct ctl_table sd_ctl_root[] = {
5391 {
5392 .procname = "kernel",
5393 .mode = 0555,
5394 .child = sd_ctl_dir,
5395 },
5396 {}
5397 };
5398
5399 static struct ctl_table *sd_alloc_ctl_entry(int n)
5400 {
5401 struct ctl_table *entry =
5402 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5403
5404 return entry;
5405 }
5406
5407 static void sd_free_ctl_entry(struct ctl_table **tablep)
5408 {
5409 struct ctl_table *entry;
5410
5411 /*
5412 * In the intermediate directories, both the child directory and
5413 * procname are dynamically allocated and could fail but the mode
5414 * will always be set. In the lowest directory the names are
5415 * static strings and all have proc handlers.
5416 */
5417 for (entry = *tablep; entry->mode; entry++) {
5418 if (entry->child)
5419 sd_free_ctl_entry(&entry->child);
5420 if (entry->proc_handler == NULL)
5421 kfree(entry->procname);
5422 }
5423
5424 kfree(*tablep);
5425 *tablep = NULL;
5426 }
5427
5428 static void
5429 set_table_entry(struct ctl_table *entry,
5430 const char *procname, void *data, int maxlen,
5431 umode_t mode, proc_handler *proc_handler)
5432 {
5433 entry->procname = procname;
5434 entry->data = data;
5435 entry->maxlen = maxlen;
5436 entry->mode = mode;
5437 entry->proc_handler = proc_handler;
5438 }
5439
5440 static struct ctl_table *
5441 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5442 {
5443 struct ctl_table *table = sd_alloc_ctl_entry(13);
5444
5445 if (table == NULL)
5446 return NULL;
5447
5448 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5449 sizeof(long), 0644, proc_doulongvec_minmax);
5450 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5451 sizeof(long), 0644, proc_doulongvec_minmax);
5452 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5453 sizeof(int), 0644, proc_dointvec_minmax);
5454 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5455 sizeof(int), 0644, proc_dointvec_minmax);
5456 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5457 sizeof(int), 0644, proc_dointvec_minmax);
5458 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5459 sizeof(int), 0644, proc_dointvec_minmax);
5460 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5461 sizeof(int), 0644, proc_dointvec_minmax);
5462 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5463 sizeof(int), 0644, proc_dointvec_minmax);
5464 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5465 sizeof(int), 0644, proc_dointvec_minmax);
5466 set_table_entry(&table[9], "cache_nice_tries",
5467 &sd->cache_nice_tries,
5468 sizeof(int), 0644, proc_dointvec_minmax);
5469 set_table_entry(&table[10], "flags", &sd->flags,
5470 sizeof(int), 0644, proc_dointvec_minmax);
5471 set_table_entry(&table[11], "name", sd->name,
5472 CORENAME_MAX_SIZE, 0444, proc_dostring);
5473 /* &table[12] is terminator */
5474
5475 return table;
5476 }
5477
5478 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5479 {
5480 struct ctl_table *entry, *table;
5481 struct sched_domain *sd;
5482 int domain_num = 0, i;
5483 char buf[32];
5484
5485 for_each_domain(cpu, sd)
5486 domain_num++;
5487 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5488 if (table == NULL)
5489 return NULL;
5490
5491 i = 0;
5492 for_each_domain(cpu, sd) {
5493 snprintf(buf, 32, "domain%d", i);
5494 entry->procname = kstrdup(buf, GFP_KERNEL);
5495 entry->mode = 0555;
5496 entry->child = sd_alloc_ctl_domain_table(sd);
5497 entry++;
5498 i++;
5499 }
5500 return table;
5501 }
5502
5503 static struct ctl_table_header *sd_sysctl_header;
5504 static void register_sched_domain_sysctl(void)
5505 {
5506 int i, cpu_num = num_possible_cpus();
5507 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5508 char buf[32];
5509
5510 WARN_ON(sd_ctl_dir[0].child);
5511 sd_ctl_dir[0].child = entry;
5512
5513 if (entry == NULL)
5514 return;
5515
5516 for_each_possible_cpu(i) {
5517 snprintf(buf, 32, "cpu%d", i);
5518 entry->procname = kstrdup(buf, GFP_KERNEL);
5519 entry->mode = 0555;
5520 entry->child = sd_alloc_ctl_cpu_table(i);
5521 entry++;
5522 }
5523
5524 WARN_ON(sd_sysctl_header);
5525 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5526 }
5527
5528 /* may be called multiple times per register */
5529 static void unregister_sched_domain_sysctl(void)
5530 {
5531 if (sd_sysctl_header)
5532 unregister_sysctl_table(sd_sysctl_header);
5533 sd_sysctl_header = NULL;
5534 if (sd_ctl_dir[0].child)
5535 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5536 }
5537 #else
5538 static void register_sched_domain_sysctl(void)
5539 {
5540 }
5541 static void unregister_sched_domain_sysctl(void)
5542 {
5543 }
5544 #endif
5545
5546 static void set_rq_online(struct rq *rq)
5547 {
5548 if (!rq->online) {
5549 const struct sched_class *class;
5550
5551 cpumask_set_cpu(rq->cpu, rq->rd->online);
5552 rq->online = 1;
5553
5554 for_each_class(class) {
5555 if (class->rq_online)
5556 class->rq_online(rq);
5557 }
5558 }
5559 }
5560
5561 static void set_rq_offline(struct rq *rq)
5562 {
5563 if (rq->online) {
5564 const struct sched_class *class;
5565
5566 for_each_class(class) {
5567 if (class->rq_offline)
5568 class->rq_offline(rq);
5569 }
5570
5571 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5572 rq->online = 0;
5573 }
5574 }
5575
5576 /*
5577 * migration_call - callback that gets triggered when a CPU is added.
5578 * Here we can start up the necessary migration thread for the new CPU.
5579 */
5580 static int __cpuinit
5581 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5582 {
5583 int cpu = (long)hcpu;
5584 unsigned long flags;
5585 struct rq *rq = cpu_rq(cpu);
5586
5587 switch (action & ~CPU_TASKS_FROZEN) {
5588
5589 case CPU_UP_PREPARE:
5590 rq->calc_load_update = calc_load_update;
5591 break;
5592
5593 case CPU_ONLINE:
5594 /* Update our root-domain */
5595 raw_spin_lock_irqsave(&rq->lock, flags);
5596 if (rq->rd) {
5597 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5598
5599 set_rq_online(rq);
5600 }
5601 raw_spin_unlock_irqrestore(&rq->lock, flags);
5602 break;
5603
5604 #ifdef CONFIG_HOTPLUG_CPU
5605 case CPU_DYING:
5606 sched_ttwu_pending();
5607 /* Update our root-domain */
5608 raw_spin_lock_irqsave(&rq->lock, flags);
5609 if (rq->rd) {
5610 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5611 set_rq_offline(rq);
5612 }
5613 migrate_tasks(cpu);
5614 BUG_ON(rq->nr_running != 1); /* the migration thread */
5615 raw_spin_unlock_irqrestore(&rq->lock, flags);
5616
5617 migrate_nr_uninterruptible(rq);
5618 calc_global_load_remove(rq);
5619 break;
5620 #endif
5621 }
5622
5623 update_max_interval();
5624
5625 return NOTIFY_OK;
5626 }
5627
5628 /*
5629 * Register at high priority so that task migration (migrate_all_tasks)
5630 * happens before everything else. This has to be lower priority than
5631 * the notifier in the perf_event subsystem, though.
5632 */
5633 static struct notifier_block __cpuinitdata migration_notifier = {
5634 .notifier_call = migration_call,
5635 .priority = CPU_PRI_MIGRATION,
5636 };
5637
5638 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5639 unsigned long action, void *hcpu)
5640 {
5641 switch (action & ~CPU_TASKS_FROZEN) {
5642 case CPU_STARTING:
5643 case CPU_DOWN_FAILED:
5644 set_cpu_active((long)hcpu, true);
5645 return NOTIFY_OK;
5646 default:
5647 return NOTIFY_DONE;
5648 }
5649 }
5650
5651 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5652 unsigned long action, void *hcpu)
5653 {
5654 switch (action & ~CPU_TASKS_FROZEN) {
5655 case CPU_DOWN_PREPARE:
5656 set_cpu_active((long)hcpu, false);
5657 return NOTIFY_OK;
5658 default:
5659 return NOTIFY_DONE;
5660 }
5661 }
5662
5663 static int __init migration_init(void)
5664 {
5665 void *cpu = (void *)(long)smp_processor_id();
5666 int err;
5667
5668 /* Initialize migration for the boot CPU */
5669 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5670 BUG_ON(err == NOTIFY_BAD);
5671 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5672 register_cpu_notifier(&migration_notifier);
5673
5674 /* Register cpu active notifiers */
5675 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5676 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5677
5678 return 0;
5679 }
5680 early_initcall(migration_init);
5681 #endif
5682
5683 #ifdef CONFIG_SMP
5684
5685 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5686
5687 #ifdef CONFIG_SCHED_DEBUG
5688
5689 static __read_mostly int sched_debug_enabled;
5690
5691 static int __init sched_debug_setup(char *str)
5692 {
5693 sched_debug_enabled = 1;
5694
5695 return 0;
5696 }
5697 early_param("sched_debug", sched_debug_setup);
5698
5699 static inline bool sched_debug(void)
5700 {
5701 return sched_debug_enabled;
5702 }
5703
5704 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5705 struct cpumask *groupmask)
5706 {
5707 struct sched_group *group = sd->groups;
5708 char str[256];
5709
5710 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5711 cpumask_clear(groupmask);
5712
5713 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5714
5715 if (!(sd->flags & SD_LOAD_BALANCE)) {
5716 printk("does not load-balance\n");
5717 if (sd->parent)
5718 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5719 " has parent");
5720 return -1;
5721 }
5722
5723 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5724
5725 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5726 printk(KERN_ERR "ERROR: domain->span does not contain "
5727 "CPU%d\n", cpu);
5728 }
5729 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5730 printk(KERN_ERR "ERROR: domain->groups does not contain"
5731 " CPU%d\n", cpu);
5732 }
5733
5734 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5735 do {
5736 if (!group) {
5737 printk("\n");
5738 printk(KERN_ERR "ERROR: group is NULL\n");
5739 break;
5740 }
5741
5742 /*
5743 * Even though we initialize ->power to something semi-sane,
5744 * we leave power_orig unset. This allows us to detect if
5745 * domain iteration is still funny without causing /0 traps.
5746 */
5747 if (!group->sgp->power_orig) {
5748 printk(KERN_CONT "\n");
5749 printk(KERN_ERR "ERROR: domain->cpu_power not "
5750 "set\n");
5751 break;
5752 }
5753
5754 if (!cpumask_weight(sched_group_cpus(group))) {
5755 printk(KERN_CONT "\n");
5756 printk(KERN_ERR "ERROR: empty group\n");
5757 break;
5758 }
5759
5760 if (!(sd->flags & SD_OVERLAP) &&
5761 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5762 printk(KERN_CONT "\n");
5763 printk(KERN_ERR "ERROR: repeated CPUs\n");
5764 break;
5765 }
5766
5767 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5768
5769 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5770
5771 printk(KERN_CONT " %s", str);
5772 if (group->sgp->power != SCHED_POWER_SCALE) {
5773 printk(KERN_CONT " (cpu_power = %d)",
5774 group->sgp->power);
5775 }
5776
5777 group = group->next;
5778 } while (group != sd->groups);
5779 printk(KERN_CONT "\n");
5780
5781 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5782 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5783
5784 if (sd->parent &&
5785 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5786 printk(KERN_ERR "ERROR: parent span is not a superset "
5787 "of domain->span\n");
5788 return 0;
5789 }
5790
5791 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5792 {
5793 int level = 0;
5794
5795 if (!sched_debug_enabled)
5796 return;
5797
5798 if (!sd) {
5799 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5800 return;
5801 }
5802
5803 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5804
5805 for (;;) {
5806 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5807 break;
5808 level++;
5809 sd = sd->parent;
5810 if (!sd)
5811 break;
5812 }
5813 }
5814 #else /* !CONFIG_SCHED_DEBUG */
5815 # define sched_domain_debug(sd, cpu) do { } while (0)
5816 static inline bool sched_debug(void)
5817 {
5818 return false;
5819 }
5820 #endif /* CONFIG_SCHED_DEBUG */
5821
5822 static int sd_degenerate(struct sched_domain *sd)
5823 {
5824 if (cpumask_weight(sched_domain_span(sd)) == 1)
5825 return 1;
5826
5827 /* Following flags need at least 2 groups */
5828 if (sd->flags & (SD_LOAD_BALANCE |
5829 SD_BALANCE_NEWIDLE |
5830 SD_BALANCE_FORK |
5831 SD_BALANCE_EXEC |
5832 SD_SHARE_CPUPOWER |
5833 SD_SHARE_PKG_RESOURCES)) {
5834 if (sd->groups != sd->groups->next)
5835 return 0;
5836 }
5837
5838 /* Following flags don't use groups */
5839 if (sd->flags & (SD_WAKE_AFFINE))
5840 return 0;
5841
5842 return 1;
5843 }
5844
5845 static int
5846 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5847 {
5848 unsigned long cflags = sd->flags, pflags = parent->flags;
5849
5850 if (sd_degenerate(parent))
5851 return 1;
5852
5853 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5854 return 0;
5855
5856 /* Flags needing groups don't count if only 1 group in parent */
5857 if (parent->groups == parent->groups->next) {
5858 pflags &= ~(SD_LOAD_BALANCE |
5859 SD_BALANCE_NEWIDLE |
5860 SD_BALANCE_FORK |
5861 SD_BALANCE_EXEC |
5862 SD_SHARE_CPUPOWER |
5863 SD_SHARE_PKG_RESOURCES);
5864 if (nr_node_ids == 1)
5865 pflags &= ~SD_SERIALIZE;
5866 }
5867 if (~cflags & pflags)
5868 return 0;
5869
5870 return 1;
5871 }
5872
5873 static void free_rootdomain(struct rcu_head *rcu)
5874 {
5875 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5876
5877 cpupri_cleanup(&rd->cpupri);
5878 free_cpumask_var(rd->rto_mask);
5879 free_cpumask_var(rd->online);
5880 free_cpumask_var(rd->span);
5881 kfree(rd);
5882 }
5883
5884 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5885 {
5886 struct root_domain *old_rd = NULL;
5887 unsigned long flags;
5888
5889 raw_spin_lock_irqsave(&rq->lock, flags);
5890
5891 if (rq->rd) {
5892 old_rd = rq->rd;
5893
5894 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5895 set_rq_offline(rq);
5896
5897 cpumask_clear_cpu(rq->cpu, old_rd->span);
5898
5899 /*
5900 * If we dont want to free the old_rt yet then
5901 * set old_rd to NULL to skip the freeing later
5902 * in this function:
5903 */
5904 if (!atomic_dec_and_test(&old_rd->refcount))
5905 old_rd = NULL;
5906 }
5907
5908 atomic_inc(&rd->refcount);
5909 rq->rd = rd;
5910
5911 cpumask_set_cpu(rq->cpu, rd->span);
5912 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5913 set_rq_online(rq);
5914
5915 raw_spin_unlock_irqrestore(&rq->lock, flags);
5916
5917 if (old_rd)
5918 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5919 }
5920
5921 static int init_rootdomain(struct root_domain *rd)
5922 {
5923 memset(rd, 0, sizeof(*rd));
5924
5925 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5926 goto out;
5927 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5928 goto free_span;
5929 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5930 goto free_online;
5931
5932 if (cpupri_init(&rd->cpupri) != 0)
5933 goto free_rto_mask;
5934 return 0;
5935
5936 free_rto_mask:
5937 free_cpumask_var(rd->rto_mask);
5938 free_online:
5939 free_cpumask_var(rd->online);
5940 free_span:
5941 free_cpumask_var(rd->span);
5942 out:
5943 return -ENOMEM;
5944 }
5945
5946 /*
5947 * By default the system creates a single root-domain with all cpus as
5948 * members (mimicking the global state we have today).
5949 */
5950 struct root_domain def_root_domain;
5951
5952 static void init_defrootdomain(void)
5953 {
5954 init_rootdomain(&def_root_domain);
5955
5956 atomic_set(&def_root_domain.refcount, 1);
5957 }
5958
5959 static struct root_domain *alloc_rootdomain(void)
5960 {
5961 struct root_domain *rd;
5962
5963 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5964 if (!rd)
5965 return NULL;
5966
5967 if (init_rootdomain(rd) != 0) {
5968 kfree(rd);
5969 return NULL;
5970 }
5971
5972 return rd;
5973 }
5974
5975 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5976 {
5977 struct sched_group *tmp, *first;
5978
5979 if (!sg)
5980 return;
5981
5982 first = sg;
5983 do {
5984 tmp = sg->next;
5985
5986 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5987 kfree(sg->sgp);
5988
5989 kfree(sg);
5990 sg = tmp;
5991 } while (sg != first);
5992 }
5993
5994 static void free_sched_domain(struct rcu_head *rcu)
5995 {
5996 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5997
5998 /*
5999 * If its an overlapping domain it has private groups, iterate and
6000 * nuke them all.
6001 */
6002 if (sd->flags & SD_OVERLAP) {
6003 free_sched_groups(sd->groups, 1);
6004 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6005 kfree(sd->groups->sgp);
6006 kfree(sd->groups);
6007 }
6008 kfree(sd);
6009 }
6010
6011 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6012 {
6013 call_rcu(&sd->rcu, free_sched_domain);
6014 }
6015
6016 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6017 {
6018 for (; sd; sd = sd->parent)
6019 destroy_sched_domain(sd, cpu);
6020 }
6021
6022 /*
6023 * Keep a special pointer to the highest sched_domain that has
6024 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6025 * allows us to avoid some pointer chasing select_idle_sibling().
6026 *
6027 * Also keep a unique ID per domain (we use the first cpu number in
6028 * the cpumask of the domain), this allows us to quickly tell if
6029 * two cpus are in the same cache domain, see cpus_share_cache().
6030 */
6031 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6032 DEFINE_PER_CPU(int, sd_llc_id);
6033
6034 static void update_top_cache_domain(int cpu)
6035 {
6036 struct sched_domain *sd;
6037 int id = cpu;
6038
6039 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6040 if (sd)
6041 id = cpumask_first(sched_domain_span(sd));
6042
6043 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6044 per_cpu(sd_llc_id, cpu) = id;
6045 }
6046
6047 /*
6048 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6049 * hold the hotplug lock.
6050 */
6051 static void
6052 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6053 {
6054 struct rq *rq = cpu_rq(cpu);
6055 struct sched_domain *tmp;
6056
6057 /* Remove the sched domains which do not contribute to scheduling. */
6058 for (tmp = sd; tmp; ) {
6059 struct sched_domain *parent = tmp->parent;
6060 if (!parent)
6061 break;
6062
6063 if (sd_parent_degenerate(tmp, parent)) {
6064 tmp->parent = parent->parent;
6065 if (parent->parent)
6066 parent->parent->child = tmp;
6067 destroy_sched_domain(parent, cpu);
6068 } else
6069 tmp = tmp->parent;
6070 }
6071
6072 if (sd && sd_degenerate(sd)) {
6073 tmp = sd;
6074 sd = sd->parent;
6075 destroy_sched_domain(tmp, cpu);
6076 if (sd)
6077 sd->child = NULL;
6078 }
6079
6080 sched_domain_debug(sd, cpu);
6081
6082 rq_attach_root(rq, rd);
6083 tmp = rq->sd;
6084 rcu_assign_pointer(rq->sd, sd);
6085 destroy_sched_domains(tmp, cpu);
6086
6087 update_top_cache_domain(cpu);
6088 }
6089
6090 /* cpus with isolated domains */
6091 static cpumask_var_t cpu_isolated_map;
6092
6093 /* Setup the mask of cpus configured for isolated domains */
6094 static int __init isolated_cpu_setup(char *str)
6095 {
6096 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6097 cpulist_parse(str, cpu_isolated_map);
6098 return 1;
6099 }
6100
6101 __setup("isolcpus=", isolated_cpu_setup);
6102
6103 static const struct cpumask *cpu_cpu_mask(int cpu)
6104 {
6105 return cpumask_of_node(cpu_to_node(cpu));
6106 }
6107
6108 struct sd_data {
6109 struct sched_domain **__percpu sd;
6110 struct sched_group **__percpu sg;
6111 struct sched_group_power **__percpu sgp;
6112 };
6113
6114 struct s_data {
6115 struct sched_domain ** __percpu sd;
6116 struct root_domain *rd;
6117 };
6118
6119 enum s_alloc {
6120 sa_rootdomain,
6121 sa_sd,
6122 sa_sd_storage,
6123 sa_none,
6124 };
6125
6126 struct sched_domain_topology_level;
6127
6128 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6129 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6130
6131 #define SDTL_OVERLAP 0x01
6132
6133 struct sched_domain_topology_level {
6134 sched_domain_init_f init;
6135 sched_domain_mask_f mask;
6136 int flags;
6137 int numa_level;
6138 struct sd_data data;
6139 };
6140
6141 /*
6142 * Build an iteration mask that can exclude certain CPUs from the upwards
6143 * domain traversal.
6144 *
6145 * Asymmetric node setups can result in situations where the domain tree is of
6146 * unequal depth, make sure to skip domains that already cover the entire
6147 * range.
6148 *
6149 * In that case build_sched_domains() will have terminated the iteration early
6150 * and our sibling sd spans will be empty. Domains should always include the
6151 * cpu they're built on, so check that.
6152 *
6153 */
6154 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6155 {
6156 const struct cpumask *span = sched_domain_span(sd);
6157 struct sd_data *sdd = sd->private;
6158 struct sched_domain *sibling;
6159 int i;
6160
6161 for_each_cpu(i, span) {
6162 sibling = *per_cpu_ptr(sdd->sd, i);
6163 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6164 continue;
6165
6166 cpumask_set_cpu(i, sched_group_mask(sg));
6167 }
6168 }
6169
6170 /*
6171 * Return the canonical balance cpu for this group, this is the first cpu
6172 * of this group that's also in the iteration mask.
6173 */
6174 int group_balance_cpu(struct sched_group *sg)
6175 {
6176 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6177 }
6178
6179 static int
6180 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6181 {
6182 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6183 const struct cpumask *span = sched_domain_span(sd);
6184 struct cpumask *covered = sched_domains_tmpmask;
6185 struct sd_data *sdd = sd->private;
6186 struct sched_domain *child;
6187 int i;
6188
6189 cpumask_clear(covered);
6190
6191 for_each_cpu(i, span) {
6192 struct cpumask *sg_span;
6193
6194 if (cpumask_test_cpu(i, covered))
6195 continue;
6196
6197 child = *per_cpu_ptr(sdd->sd, i);
6198
6199 /* See the comment near build_group_mask(). */
6200 if (!cpumask_test_cpu(i, sched_domain_span(child)))
6201 continue;
6202
6203 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6204 GFP_KERNEL, cpu_to_node(cpu));
6205
6206 if (!sg)
6207 goto fail;
6208
6209 sg_span = sched_group_cpus(sg);
6210 if (child->child) {
6211 child = child->child;
6212 cpumask_copy(sg_span, sched_domain_span(child));
6213 } else
6214 cpumask_set_cpu(i, sg_span);
6215
6216 cpumask_or(covered, covered, sg_span);
6217
6218 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
6219 if (atomic_inc_return(&sg->sgp->ref) == 1)
6220 build_group_mask(sd, sg);
6221
6222 /*
6223 * Initialize sgp->power such that even if we mess up the
6224 * domains and no possible iteration will get us here, we won't
6225 * die on a /0 trap.
6226 */
6227 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
6228
6229 /*
6230 * Make sure the first group of this domain contains the
6231 * canonical balance cpu. Otherwise the sched_domain iteration
6232 * breaks. See update_sg_lb_stats().
6233 */
6234 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6235 group_balance_cpu(sg) == cpu)
6236 groups = sg;
6237
6238 if (!first)
6239 first = sg;
6240 if (last)
6241 last->next = sg;
6242 last = sg;
6243 last->next = first;
6244 }
6245 sd->groups = groups;
6246
6247 return 0;
6248
6249 fail:
6250 free_sched_groups(first, 0);
6251
6252 return -ENOMEM;
6253 }
6254
6255 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6256 {
6257 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6258 struct sched_domain *child = sd->child;
6259
6260 if (child)
6261 cpu = cpumask_first(sched_domain_span(child));
6262
6263 if (sg) {
6264 *sg = *per_cpu_ptr(sdd->sg, cpu);
6265 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6266 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6267 }
6268
6269 return cpu;
6270 }
6271
6272 /*
6273 * build_sched_groups will build a circular linked list of the groups
6274 * covered by the given span, and will set each group's ->cpumask correctly,
6275 * and ->cpu_power to 0.
6276 *
6277 * Assumes the sched_domain tree is fully constructed
6278 */
6279 static int
6280 build_sched_groups(struct sched_domain *sd, int cpu)
6281 {
6282 struct sched_group *first = NULL, *last = NULL;
6283 struct sd_data *sdd = sd->private;
6284 const struct cpumask *span = sched_domain_span(sd);
6285 struct cpumask *covered;
6286 int i;
6287
6288 get_group(cpu, sdd, &sd->groups);
6289 atomic_inc(&sd->groups->ref);
6290
6291 if (cpu != cpumask_first(sched_domain_span(sd)))
6292 return 0;
6293
6294 lockdep_assert_held(&sched_domains_mutex);
6295 covered = sched_domains_tmpmask;
6296
6297 cpumask_clear(covered);
6298
6299 for_each_cpu(i, span) {
6300 struct sched_group *sg;
6301 int group = get_group(i, sdd, &sg);
6302 int j;
6303
6304 if (cpumask_test_cpu(i, covered))
6305 continue;
6306
6307 cpumask_clear(sched_group_cpus(sg));
6308 sg->sgp->power = 0;
6309 cpumask_setall(sched_group_mask(sg));
6310
6311 for_each_cpu(j, span) {
6312 if (get_group(j, sdd, NULL) != group)
6313 continue;
6314
6315 cpumask_set_cpu(j, covered);
6316 cpumask_set_cpu(j, sched_group_cpus(sg));
6317 }
6318
6319 if (!first)
6320 first = sg;
6321 if (last)
6322 last->next = sg;
6323 last = sg;
6324 }
6325 last->next = first;
6326
6327 return 0;
6328 }
6329
6330 /*
6331 * Initialize sched groups cpu_power.
6332 *
6333 * cpu_power indicates the capacity of sched group, which is used while
6334 * distributing the load between different sched groups in a sched domain.
6335 * Typically cpu_power for all the groups in a sched domain will be same unless
6336 * there are asymmetries in the topology. If there are asymmetries, group
6337 * having more cpu_power will pickup more load compared to the group having
6338 * less cpu_power.
6339 */
6340 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6341 {
6342 struct sched_group *sg = sd->groups;
6343
6344 WARN_ON(!sd || !sg);
6345
6346 do {
6347 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6348 sg = sg->next;
6349 } while (sg != sd->groups);
6350
6351 if (cpu != group_balance_cpu(sg))
6352 return;
6353
6354 update_group_power(sd, cpu);
6355 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6356 }
6357
6358 int __weak arch_sd_sibling_asym_packing(void)
6359 {
6360 return 0*SD_ASYM_PACKING;
6361 }
6362
6363 /*
6364 * Initializers for schedule domains
6365 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6366 */
6367
6368 #ifdef CONFIG_SCHED_DEBUG
6369 # define SD_INIT_NAME(sd, type) sd->name = #type
6370 #else
6371 # define SD_INIT_NAME(sd, type) do { } while (0)
6372 #endif
6373
6374 #define SD_INIT_FUNC(type) \
6375 static noinline struct sched_domain * \
6376 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6377 { \
6378 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6379 *sd = SD_##type##_INIT; \
6380 SD_INIT_NAME(sd, type); \
6381 sd->private = &tl->data; \
6382 return sd; \
6383 }
6384
6385 SD_INIT_FUNC(CPU)
6386 #ifdef CONFIG_SCHED_SMT
6387 SD_INIT_FUNC(SIBLING)
6388 #endif
6389 #ifdef CONFIG_SCHED_MC
6390 SD_INIT_FUNC(MC)
6391 #endif
6392 #ifdef CONFIG_SCHED_BOOK
6393 SD_INIT_FUNC(BOOK)
6394 #endif
6395
6396 static int default_relax_domain_level = -1;
6397 int sched_domain_level_max;
6398
6399 static int __init setup_relax_domain_level(char *str)
6400 {
6401 if (kstrtoint(str, 0, &default_relax_domain_level))
6402 pr_warn("Unable to set relax_domain_level\n");
6403
6404 return 1;
6405 }
6406 __setup("relax_domain_level=", setup_relax_domain_level);
6407
6408 static void set_domain_attribute(struct sched_domain *sd,
6409 struct sched_domain_attr *attr)
6410 {
6411 int request;
6412
6413 if (!attr || attr->relax_domain_level < 0) {
6414 if (default_relax_domain_level < 0)
6415 return;
6416 else
6417 request = default_relax_domain_level;
6418 } else
6419 request = attr->relax_domain_level;
6420 if (request < sd->level) {
6421 /* turn off idle balance on this domain */
6422 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6423 } else {
6424 /* turn on idle balance on this domain */
6425 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6426 }
6427 }
6428
6429 static void __sdt_free(const struct cpumask *cpu_map);
6430 static int __sdt_alloc(const struct cpumask *cpu_map);
6431
6432 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6433 const struct cpumask *cpu_map)
6434 {
6435 switch (what) {
6436 case sa_rootdomain:
6437 if (!atomic_read(&d->rd->refcount))
6438 free_rootdomain(&d->rd->rcu); /* fall through */
6439 case sa_sd:
6440 free_percpu(d->sd); /* fall through */
6441 case sa_sd_storage:
6442 __sdt_free(cpu_map); /* fall through */
6443 case sa_none:
6444 break;
6445 }
6446 }
6447
6448 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6449 const struct cpumask *cpu_map)
6450 {
6451 memset(d, 0, sizeof(*d));
6452
6453 if (__sdt_alloc(cpu_map))
6454 return sa_sd_storage;
6455 d->sd = alloc_percpu(struct sched_domain *);
6456 if (!d->sd)
6457 return sa_sd_storage;
6458 d->rd = alloc_rootdomain();
6459 if (!d->rd)
6460 return sa_sd;
6461 return sa_rootdomain;
6462 }
6463
6464 /*
6465 * NULL the sd_data elements we've used to build the sched_domain and
6466 * sched_group structure so that the subsequent __free_domain_allocs()
6467 * will not free the data we're using.
6468 */
6469 static void claim_allocations(int cpu, struct sched_domain *sd)
6470 {
6471 struct sd_data *sdd = sd->private;
6472
6473 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6474 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6475
6476 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6477 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6478
6479 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6480 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6481 }
6482
6483 #ifdef CONFIG_SCHED_SMT
6484 static const struct cpumask *cpu_smt_mask(int cpu)
6485 {
6486 return topology_thread_cpumask(cpu);
6487 }
6488 #endif
6489
6490 /*
6491 * Topology list, bottom-up.
6492 */
6493 static struct sched_domain_topology_level default_topology[] = {
6494 #ifdef CONFIG_SCHED_SMT
6495 { sd_init_SIBLING, cpu_smt_mask, },
6496 #endif
6497 #ifdef CONFIG_SCHED_MC
6498 { sd_init_MC, cpu_coregroup_mask, },
6499 #endif
6500 #ifdef CONFIG_SCHED_BOOK
6501 { sd_init_BOOK, cpu_book_mask, },
6502 #endif
6503 { sd_init_CPU, cpu_cpu_mask, },
6504 { NULL, },
6505 };
6506
6507 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6508
6509 #ifdef CONFIG_NUMA
6510
6511 static int sched_domains_numa_levels;
6512 static int *sched_domains_numa_distance;
6513 static struct cpumask ***sched_domains_numa_masks;
6514 static int sched_domains_curr_level;
6515
6516 static inline int sd_local_flags(int level)
6517 {
6518 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6519 return 0;
6520
6521 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6522 }
6523
6524 static struct sched_domain *
6525 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6526 {
6527 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6528 int level = tl->numa_level;
6529 int sd_weight = cpumask_weight(
6530 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6531
6532 *sd = (struct sched_domain){
6533 .min_interval = sd_weight,
6534 .max_interval = 2*sd_weight,
6535 .busy_factor = 32,
6536 .imbalance_pct = 125,
6537 .cache_nice_tries = 2,
6538 .busy_idx = 3,
6539 .idle_idx = 2,
6540 .newidle_idx = 0,
6541 .wake_idx = 0,
6542 .forkexec_idx = 0,
6543
6544 .flags = 1*SD_LOAD_BALANCE
6545 | 1*SD_BALANCE_NEWIDLE
6546 | 0*SD_BALANCE_EXEC
6547 | 0*SD_BALANCE_FORK
6548 | 0*SD_BALANCE_WAKE
6549 | 0*SD_WAKE_AFFINE
6550 | 0*SD_PREFER_LOCAL
6551 | 0*SD_SHARE_CPUPOWER
6552 | 0*SD_SHARE_PKG_RESOURCES
6553 | 1*SD_SERIALIZE
6554 | 0*SD_PREFER_SIBLING
6555 | sd_local_flags(level)
6556 ,
6557 .last_balance = jiffies,
6558 .balance_interval = sd_weight,
6559 };
6560 SD_INIT_NAME(sd, NUMA);
6561 sd->private = &tl->data;
6562
6563 /*
6564 * Ugly hack to pass state to sd_numa_mask()...
6565 */
6566 sched_domains_curr_level = tl->numa_level;
6567
6568 return sd;
6569 }
6570
6571 static const struct cpumask *sd_numa_mask(int cpu)
6572 {
6573 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6574 }
6575
6576 static void sched_numa_warn(const char *str)
6577 {
6578 static int done = false;
6579 int i,j;
6580
6581 if (done)
6582 return;
6583
6584 done = true;
6585
6586 printk(KERN_WARNING "ERROR: %s\n\n", str);
6587
6588 for (i = 0; i < nr_node_ids; i++) {
6589 printk(KERN_WARNING " ");
6590 for (j = 0; j < nr_node_ids; j++)
6591 printk(KERN_CONT "%02d ", node_distance(i,j));
6592 printk(KERN_CONT "\n");
6593 }
6594 printk(KERN_WARNING "\n");
6595 }
6596
6597 static bool find_numa_distance(int distance)
6598 {
6599 int i;
6600
6601 if (distance == node_distance(0, 0))
6602 return true;
6603
6604 for (i = 0; i < sched_domains_numa_levels; i++) {
6605 if (sched_domains_numa_distance[i] == distance)
6606 return true;
6607 }
6608
6609 return false;
6610 }
6611
6612 static void sched_init_numa(void)
6613 {
6614 int next_distance, curr_distance = node_distance(0, 0);
6615 struct sched_domain_topology_level *tl;
6616 int level = 0;
6617 int i, j, k;
6618
6619 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6620 if (!sched_domains_numa_distance)
6621 return;
6622
6623 /*
6624 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6625 * unique distances in the node_distance() table.
6626 *
6627 * Assumes node_distance(0,j) includes all distances in
6628 * node_distance(i,j) in order to avoid cubic time.
6629 */
6630 next_distance = curr_distance;
6631 for (i = 0; i < nr_node_ids; i++) {
6632 for (j = 0; j < nr_node_ids; j++) {
6633 for (k = 0; k < nr_node_ids; k++) {
6634 int distance = node_distance(i, k);
6635
6636 if (distance > curr_distance &&
6637 (distance < next_distance ||
6638 next_distance == curr_distance))
6639 next_distance = distance;
6640
6641 /*
6642 * While not a strong assumption it would be nice to know
6643 * about cases where if node A is connected to B, B is not
6644 * equally connected to A.
6645 */
6646 if (sched_debug() && node_distance(k, i) != distance)
6647 sched_numa_warn("Node-distance not symmetric");
6648
6649 if (sched_debug() && i && !find_numa_distance(distance))
6650 sched_numa_warn("Node-0 not representative");
6651 }
6652 if (next_distance != curr_distance) {
6653 sched_domains_numa_distance[level++] = next_distance;
6654 sched_domains_numa_levels = level;
6655 curr_distance = next_distance;
6656 } else break;
6657 }
6658
6659 /*
6660 * In case of sched_debug() we verify the above assumption.
6661 */
6662 if (!sched_debug())
6663 break;
6664 }
6665 /*
6666 * 'level' contains the number of unique distances, excluding the
6667 * identity distance node_distance(i,i).
6668 *
6669 * The sched_domains_nume_distance[] array includes the actual distance
6670 * numbers.
6671 */
6672
6673 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6674 if (!sched_domains_numa_masks)
6675 return;
6676
6677 /*
6678 * Now for each level, construct a mask per node which contains all
6679 * cpus of nodes that are that many hops away from us.
6680 */
6681 for (i = 0; i < level; i++) {
6682 sched_domains_numa_masks[i] =
6683 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6684 if (!sched_domains_numa_masks[i])
6685 return;
6686
6687 for (j = 0; j < nr_node_ids; j++) {
6688 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6689 if (!mask)
6690 return;
6691
6692 sched_domains_numa_masks[i][j] = mask;
6693
6694 for (k = 0; k < nr_node_ids; k++) {
6695 if (node_distance(j, k) > sched_domains_numa_distance[i])
6696 continue;
6697
6698 cpumask_or(mask, mask, cpumask_of_node(k));
6699 }
6700 }
6701 }
6702
6703 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6704 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6705 if (!tl)
6706 return;
6707
6708 /*
6709 * Copy the default topology bits..
6710 */
6711 for (i = 0; default_topology[i].init; i++)
6712 tl[i] = default_topology[i];
6713
6714 /*
6715 * .. and append 'j' levels of NUMA goodness.
6716 */
6717 for (j = 0; j < level; i++, j++) {
6718 tl[i] = (struct sched_domain_topology_level){
6719 .init = sd_numa_init,
6720 .mask = sd_numa_mask,
6721 .flags = SDTL_OVERLAP,
6722 .numa_level = j,
6723 };
6724 }
6725
6726 sched_domain_topology = tl;
6727 }
6728 #else
6729 static inline void sched_init_numa(void)
6730 {
6731 }
6732 #endif /* CONFIG_NUMA */
6733
6734 static int __sdt_alloc(const struct cpumask *cpu_map)
6735 {
6736 struct sched_domain_topology_level *tl;
6737 int j;
6738
6739 for (tl = sched_domain_topology; tl->init; tl++) {
6740 struct sd_data *sdd = &tl->data;
6741
6742 sdd->sd = alloc_percpu(struct sched_domain *);
6743 if (!sdd->sd)
6744 return -ENOMEM;
6745
6746 sdd->sg = alloc_percpu(struct sched_group *);
6747 if (!sdd->sg)
6748 return -ENOMEM;
6749
6750 sdd->sgp = alloc_percpu(struct sched_group_power *);
6751 if (!sdd->sgp)
6752 return -ENOMEM;
6753
6754 for_each_cpu(j, cpu_map) {
6755 struct sched_domain *sd;
6756 struct sched_group *sg;
6757 struct sched_group_power *sgp;
6758
6759 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6760 GFP_KERNEL, cpu_to_node(j));
6761 if (!sd)
6762 return -ENOMEM;
6763
6764 *per_cpu_ptr(sdd->sd, j) = sd;
6765
6766 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6767 GFP_KERNEL, cpu_to_node(j));
6768 if (!sg)
6769 return -ENOMEM;
6770
6771 sg->next = sg;
6772
6773 *per_cpu_ptr(sdd->sg, j) = sg;
6774
6775 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6776 GFP_KERNEL, cpu_to_node(j));
6777 if (!sgp)
6778 return -ENOMEM;
6779
6780 *per_cpu_ptr(sdd->sgp, j) = sgp;
6781 }
6782 }
6783
6784 return 0;
6785 }
6786
6787 static void __sdt_free(const struct cpumask *cpu_map)
6788 {
6789 struct sched_domain_topology_level *tl;
6790 int j;
6791
6792 for (tl = sched_domain_topology; tl->init; tl++) {
6793 struct sd_data *sdd = &tl->data;
6794
6795 for_each_cpu(j, cpu_map) {
6796 struct sched_domain *sd;
6797
6798 if (sdd->sd) {
6799 sd = *per_cpu_ptr(sdd->sd, j);
6800 if (sd && (sd->flags & SD_OVERLAP))
6801 free_sched_groups(sd->groups, 0);
6802 kfree(*per_cpu_ptr(sdd->sd, j));
6803 }
6804
6805 if (sdd->sg)
6806 kfree(*per_cpu_ptr(sdd->sg, j));
6807 if (sdd->sgp)
6808 kfree(*per_cpu_ptr(sdd->sgp, j));
6809 }
6810 free_percpu(sdd->sd);
6811 sdd->sd = NULL;
6812 free_percpu(sdd->sg);
6813 sdd->sg = NULL;
6814 free_percpu(sdd->sgp);
6815 sdd->sgp = NULL;
6816 }
6817 }
6818
6819 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6820 struct s_data *d, const struct cpumask *cpu_map,
6821 struct sched_domain_attr *attr, struct sched_domain *child,
6822 int cpu)
6823 {
6824 struct sched_domain *sd = tl->init(tl, cpu);
6825 if (!sd)
6826 return child;
6827
6828 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6829 if (child) {
6830 sd->level = child->level + 1;
6831 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6832 child->parent = sd;
6833 }
6834 sd->child = child;
6835 set_domain_attribute(sd, attr);
6836
6837 return sd;
6838 }
6839
6840 /*
6841 * Build sched domains for a given set of cpus and attach the sched domains
6842 * to the individual cpus
6843 */
6844 static int build_sched_domains(const struct cpumask *cpu_map,
6845 struct sched_domain_attr *attr)
6846 {
6847 enum s_alloc alloc_state = sa_none;
6848 struct sched_domain *sd;
6849 struct s_data d;
6850 int i, ret = -ENOMEM;
6851
6852 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6853 if (alloc_state != sa_rootdomain)
6854 goto error;
6855
6856 /* Set up domains for cpus specified by the cpu_map. */
6857 for_each_cpu(i, cpu_map) {
6858 struct sched_domain_topology_level *tl;
6859
6860 sd = NULL;
6861 for (tl = sched_domain_topology; tl->init; tl++) {
6862 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6863 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6864 sd->flags |= SD_OVERLAP;
6865 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6866 break;
6867 }
6868
6869 while (sd->child)
6870 sd = sd->child;
6871
6872 *per_cpu_ptr(d.sd, i) = sd;
6873 }
6874
6875 /* Build the groups for the domains */
6876 for_each_cpu(i, cpu_map) {
6877 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6878 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6879 if (sd->flags & SD_OVERLAP) {
6880 if (build_overlap_sched_groups(sd, i))
6881 goto error;
6882 } else {
6883 if (build_sched_groups(sd, i))
6884 goto error;
6885 }
6886 }
6887 }
6888
6889 /* Calculate CPU power for physical packages and nodes */
6890 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6891 if (!cpumask_test_cpu(i, cpu_map))
6892 continue;
6893
6894 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6895 claim_allocations(i, sd);
6896 init_sched_groups_power(i, sd);
6897 }
6898 }
6899
6900 /* Attach the domains */
6901 rcu_read_lock();
6902 for_each_cpu(i, cpu_map) {
6903 sd = *per_cpu_ptr(d.sd, i);
6904 cpu_attach_domain(sd, d.rd, i);
6905 }
6906 rcu_read_unlock();
6907
6908 ret = 0;
6909 error:
6910 __free_domain_allocs(&d, alloc_state, cpu_map);
6911 return ret;
6912 }
6913
6914 static cpumask_var_t *doms_cur; /* current sched domains */
6915 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6916 static struct sched_domain_attr *dattr_cur;
6917 /* attribues of custom domains in 'doms_cur' */
6918
6919 /*
6920 * Special case: If a kmalloc of a doms_cur partition (array of
6921 * cpumask) fails, then fallback to a single sched domain,
6922 * as determined by the single cpumask fallback_doms.
6923 */
6924 static cpumask_var_t fallback_doms;
6925
6926 /*
6927 * arch_update_cpu_topology lets virtualized architectures update the
6928 * cpu core maps. It is supposed to return 1 if the topology changed
6929 * or 0 if it stayed the same.
6930 */
6931 int __attribute__((weak)) arch_update_cpu_topology(void)
6932 {
6933 return 0;
6934 }
6935
6936 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6937 {
6938 int i;
6939 cpumask_var_t *doms;
6940
6941 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6942 if (!doms)
6943 return NULL;
6944 for (i = 0; i < ndoms; i++) {
6945 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6946 free_sched_domains(doms, i);
6947 return NULL;
6948 }
6949 }
6950 return doms;
6951 }
6952
6953 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6954 {
6955 unsigned int i;
6956 for (i = 0; i < ndoms; i++)
6957 free_cpumask_var(doms[i]);
6958 kfree(doms);
6959 }
6960
6961 /*
6962 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6963 * For now this just excludes isolated cpus, but could be used to
6964 * exclude other special cases in the future.
6965 */
6966 static int init_sched_domains(const struct cpumask *cpu_map)
6967 {
6968 int err;
6969
6970 arch_update_cpu_topology();
6971 ndoms_cur = 1;
6972 doms_cur = alloc_sched_domains(ndoms_cur);
6973 if (!doms_cur)
6974 doms_cur = &fallback_doms;
6975 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6976 err = build_sched_domains(doms_cur[0], NULL);
6977 register_sched_domain_sysctl();
6978
6979 return err;
6980 }
6981
6982 /*
6983 * Detach sched domains from a group of cpus specified in cpu_map
6984 * These cpus will now be attached to the NULL domain
6985 */
6986 static void detach_destroy_domains(const struct cpumask *cpu_map)
6987 {
6988 int i;
6989
6990 rcu_read_lock();
6991 for_each_cpu(i, cpu_map)
6992 cpu_attach_domain(NULL, &def_root_domain, i);
6993 rcu_read_unlock();
6994 }
6995
6996 /* handle null as "default" */
6997 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6998 struct sched_domain_attr *new, int idx_new)
6999 {
7000 struct sched_domain_attr tmp;
7001
7002 /* fast path */
7003 if (!new && !cur)
7004 return 1;
7005
7006 tmp = SD_ATTR_INIT;
7007 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7008 new ? (new + idx_new) : &tmp,
7009 sizeof(struct sched_domain_attr));
7010 }
7011
7012 /*
7013 * Partition sched domains as specified by the 'ndoms_new'
7014 * cpumasks in the array doms_new[] of cpumasks. This compares
7015 * doms_new[] to the current sched domain partitioning, doms_cur[].
7016 * It destroys each deleted domain and builds each new domain.
7017 *
7018 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7019 * The masks don't intersect (don't overlap.) We should setup one
7020 * sched domain for each mask. CPUs not in any of the cpumasks will
7021 * not be load balanced. If the same cpumask appears both in the
7022 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7023 * it as it is.
7024 *
7025 * The passed in 'doms_new' should be allocated using
7026 * alloc_sched_domains. This routine takes ownership of it and will
7027 * free_sched_domains it when done with it. If the caller failed the
7028 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7029 * and partition_sched_domains() will fallback to the single partition
7030 * 'fallback_doms', it also forces the domains to be rebuilt.
7031 *
7032 * If doms_new == NULL it will be replaced with cpu_online_mask.
7033 * ndoms_new == 0 is a special case for destroying existing domains,
7034 * and it will not create the default domain.
7035 *
7036 * Call with hotplug lock held
7037 */
7038 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7039 struct sched_domain_attr *dattr_new)
7040 {
7041 int i, j, n;
7042 int new_topology;
7043
7044 mutex_lock(&sched_domains_mutex);
7045
7046 /* always unregister in case we don't destroy any domains */
7047 unregister_sched_domain_sysctl();
7048
7049 /* Let architecture update cpu core mappings. */
7050 new_topology = arch_update_cpu_topology();
7051
7052 n = doms_new ? ndoms_new : 0;
7053
7054 /* Destroy deleted domains */
7055 for (i = 0; i < ndoms_cur; i++) {
7056 for (j = 0; j < n && !new_topology; j++) {
7057 if (cpumask_equal(doms_cur[i], doms_new[j])
7058 && dattrs_equal(dattr_cur, i, dattr_new, j))
7059 goto match1;
7060 }
7061 /* no match - a current sched domain not in new doms_new[] */
7062 detach_destroy_domains(doms_cur[i]);
7063 match1:
7064 ;
7065 }
7066
7067 if (doms_new == NULL) {
7068 ndoms_cur = 0;
7069 doms_new = &fallback_doms;
7070 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7071 WARN_ON_ONCE(dattr_new);
7072 }
7073
7074 /* Build new domains */
7075 for (i = 0; i < ndoms_new; i++) {
7076 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7077 if (cpumask_equal(doms_new[i], doms_cur[j])
7078 && dattrs_equal(dattr_new, i, dattr_cur, j))
7079 goto match2;
7080 }
7081 /* no match - add a new doms_new */
7082 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7083 match2:
7084 ;
7085 }
7086
7087 /* Remember the new sched domains */
7088 if (doms_cur != &fallback_doms)
7089 free_sched_domains(doms_cur, ndoms_cur);
7090 kfree(dattr_cur); /* kfree(NULL) is safe */
7091 doms_cur = doms_new;
7092 dattr_cur = dattr_new;
7093 ndoms_cur = ndoms_new;
7094
7095 register_sched_domain_sysctl();
7096
7097 mutex_unlock(&sched_domains_mutex);
7098 }
7099
7100 /*
7101 * Update cpusets according to cpu_active mask. If cpusets are
7102 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7103 * around partition_sched_domains().
7104 */
7105 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7106 void *hcpu)
7107 {
7108 switch (action & ~CPU_TASKS_FROZEN) {
7109 case CPU_ONLINE:
7110 case CPU_DOWN_FAILED:
7111 cpuset_update_active_cpus();
7112 return NOTIFY_OK;
7113 default:
7114 return NOTIFY_DONE;
7115 }
7116 }
7117
7118 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7119 void *hcpu)
7120 {
7121 switch (action & ~CPU_TASKS_FROZEN) {
7122 case CPU_DOWN_PREPARE:
7123 cpuset_update_active_cpus();
7124 return NOTIFY_OK;
7125 default:
7126 return NOTIFY_DONE;
7127 }
7128 }
7129
7130 void __init sched_init_smp(void)
7131 {
7132 cpumask_var_t non_isolated_cpus;
7133
7134 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7135 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7136
7137 sched_init_numa();
7138
7139 get_online_cpus();
7140 mutex_lock(&sched_domains_mutex);
7141 init_sched_domains(cpu_active_mask);
7142 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7143 if (cpumask_empty(non_isolated_cpus))
7144 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7145 mutex_unlock(&sched_domains_mutex);
7146 put_online_cpus();
7147
7148 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7149 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7150
7151 /* RT runtime code needs to handle some hotplug events */
7152 hotcpu_notifier(update_runtime, 0);
7153
7154 init_hrtick();
7155
7156 /* Move init over to a non-isolated CPU */
7157 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7158 BUG();
7159 sched_init_granularity();
7160 free_cpumask_var(non_isolated_cpus);
7161
7162 init_sched_rt_class();
7163 }
7164 #else
7165 void __init sched_init_smp(void)
7166 {
7167 sched_init_granularity();
7168 }
7169 #endif /* CONFIG_SMP */
7170
7171 const_debug unsigned int sysctl_timer_migration = 1;
7172
7173 int in_sched_functions(unsigned long addr)
7174 {
7175 return in_lock_functions(addr) ||
7176 (addr >= (unsigned long)__sched_text_start
7177 && addr < (unsigned long)__sched_text_end);
7178 }
7179
7180 #ifdef CONFIG_CGROUP_SCHED
7181 struct task_group root_task_group;
7182 #endif
7183
7184 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
7185
7186 void __init sched_init(void)
7187 {
7188 int i, j;
7189 unsigned long alloc_size = 0, ptr;
7190
7191 #ifdef CONFIG_FAIR_GROUP_SCHED
7192 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7193 #endif
7194 #ifdef CONFIG_RT_GROUP_SCHED
7195 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7196 #endif
7197 #ifdef CONFIG_CPUMASK_OFFSTACK
7198 alloc_size += num_possible_cpus() * cpumask_size();
7199 #endif
7200 if (alloc_size) {
7201 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7202
7203 #ifdef CONFIG_FAIR_GROUP_SCHED
7204 root_task_group.se = (struct sched_entity **)ptr;
7205 ptr += nr_cpu_ids * sizeof(void **);
7206
7207 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7208 ptr += nr_cpu_ids * sizeof(void **);
7209
7210 #endif /* CONFIG_FAIR_GROUP_SCHED */
7211 #ifdef CONFIG_RT_GROUP_SCHED
7212 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7213 ptr += nr_cpu_ids * sizeof(void **);
7214
7215 root_task_group.rt_rq = (struct rt_rq **)ptr;
7216 ptr += nr_cpu_ids * sizeof(void **);
7217
7218 #endif /* CONFIG_RT_GROUP_SCHED */
7219 #ifdef CONFIG_CPUMASK_OFFSTACK
7220 for_each_possible_cpu(i) {
7221 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7222 ptr += cpumask_size();
7223 }
7224 #endif /* CONFIG_CPUMASK_OFFSTACK */
7225 }
7226
7227 #ifdef CONFIG_SMP
7228 init_defrootdomain();
7229 #endif
7230
7231 init_rt_bandwidth(&def_rt_bandwidth,
7232 global_rt_period(), global_rt_runtime());
7233
7234 #ifdef CONFIG_RT_GROUP_SCHED
7235 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7236 global_rt_period(), global_rt_runtime());
7237 #endif /* CONFIG_RT_GROUP_SCHED */
7238
7239 #ifdef CONFIG_CGROUP_SCHED
7240 list_add(&root_task_group.list, &task_groups);
7241 INIT_LIST_HEAD(&root_task_group.children);
7242 INIT_LIST_HEAD(&root_task_group.siblings);
7243 autogroup_init(&init_task);
7244
7245 #endif /* CONFIG_CGROUP_SCHED */
7246
7247 #ifdef CONFIG_CGROUP_CPUACCT
7248 root_cpuacct.cpustat = &kernel_cpustat;
7249 root_cpuacct.cpuusage = alloc_percpu(u64);
7250 /* Too early, not expected to fail */
7251 BUG_ON(!root_cpuacct.cpuusage);
7252 #endif
7253 for_each_possible_cpu(i) {
7254 struct rq *rq;
7255
7256 rq = cpu_rq(i);
7257 raw_spin_lock_init(&rq->lock);
7258 rq->nr_running = 0;
7259 rq->calc_load_active = 0;
7260 rq->calc_load_update = jiffies + LOAD_FREQ;
7261 init_cfs_rq(&rq->cfs);
7262 init_rt_rq(&rq->rt, rq);
7263 #ifdef CONFIG_FAIR_GROUP_SCHED
7264 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7265 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7266 /*
7267 * How much cpu bandwidth does root_task_group get?
7268 *
7269 * In case of task-groups formed thr' the cgroup filesystem, it
7270 * gets 100% of the cpu resources in the system. This overall
7271 * system cpu resource is divided among the tasks of
7272 * root_task_group and its child task-groups in a fair manner,
7273 * based on each entity's (task or task-group's) weight
7274 * (se->load.weight).
7275 *
7276 * In other words, if root_task_group has 10 tasks of weight
7277 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7278 * then A0's share of the cpu resource is:
7279 *
7280 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7281 *
7282 * We achieve this by letting root_task_group's tasks sit
7283 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7284 */
7285 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7286 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7287 #endif /* CONFIG_FAIR_GROUP_SCHED */
7288
7289 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7290 #ifdef CONFIG_RT_GROUP_SCHED
7291 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7292 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7293 #endif
7294
7295 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7296 rq->cpu_load[j] = 0;
7297
7298 rq->last_load_update_tick = jiffies;
7299
7300 #ifdef CONFIG_SMP
7301 rq->sd = NULL;
7302 rq->rd = NULL;
7303 rq->cpu_power = SCHED_POWER_SCALE;
7304 rq->post_schedule = 0;
7305 rq->active_balance = 0;
7306 rq->next_balance = jiffies;
7307 rq->push_cpu = 0;
7308 rq->cpu = i;
7309 rq->online = 0;
7310 rq->idle_stamp = 0;
7311 rq->avg_idle = 2*sysctl_sched_migration_cost;
7312
7313 INIT_LIST_HEAD(&rq->cfs_tasks);
7314
7315 rq_attach_root(rq, &def_root_domain);
7316 #ifdef CONFIG_NO_HZ
7317 rq->nohz_flags = 0;
7318 #endif
7319 #endif
7320 init_rq_hrtick(rq);
7321 atomic_set(&rq->nr_iowait, 0);
7322 }
7323
7324 set_load_weight(&init_task);
7325
7326 #ifdef CONFIG_PREEMPT_NOTIFIERS
7327 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7328 #endif
7329
7330 #ifdef CONFIG_RT_MUTEXES
7331 plist_head_init(&init_task.pi_waiters);
7332 #endif
7333
7334 /*
7335 * The boot idle thread does lazy MMU switching as well:
7336 */
7337 atomic_inc(&init_mm.mm_count);
7338 enter_lazy_tlb(&init_mm, current);
7339
7340 /*
7341 * Make us the idle thread. Technically, schedule() should not be
7342 * called from this thread, however somewhere below it might be,
7343 * but because we are the idle thread, we just pick up running again
7344 * when this runqueue becomes "idle".
7345 */
7346 init_idle(current, smp_processor_id());
7347
7348 calc_load_update = jiffies + LOAD_FREQ;
7349
7350 /*
7351 * During early bootup we pretend to be a normal task:
7352 */
7353 current->sched_class = &fair_sched_class;
7354
7355 #ifdef CONFIG_SMP
7356 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7357 /* May be allocated at isolcpus cmdline parse time */
7358 if (cpu_isolated_map == NULL)
7359 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7360 idle_thread_set_boot_cpu();
7361 #endif
7362 init_sched_fair_class();
7363
7364 scheduler_running = 1;
7365 }
7366
7367 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7368 static inline int preempt_count_equals(int preempt_offset)
7369 {
7370 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7371
7372 return (nested == preempt_offset);
7373 }
7374
7375 void __might_sleep(const char *file, int line, int preempt_offset)
7376 {
7377 static unsigned long prev_jiffy; /* ratelimiting */
7378
7379 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7380 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7381 system_state != SYSTEM_RUNNING || oops_in_progress)
7382 return;
7383 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7384 return;
7385 prev_jiffy = jiffies;
7386
7387 printk(KERN_ERR
7388 "BUG: sleeping function called from invalid context at %s:%d\n",
7389 file, line);
7390 printk(KERN_ERR
7391 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7392 in_atomic(), irqs_disabled(),
7393 current->pid, current->comm);
7394
7395 debug_show_held_locks(current);
7396 if (irqs_disabled())
7397 print_irqtrace_events(current);
7398 dump_stack();
7399 }
7400 EXPORT_SYMBOL(__might_sleep);
7401 #endif
7402
7403 #ifdef CONFIG_MAGIC_SYSRQ
7404 static void normalize_task(struct rq *rq, struct task_struct *p)
7405 {
7406 const struct sched_class *prev_class = p->sched_class;
7407 int old_prio = p->prio;
7408 int on_rq;
7409
7410 on_rq = p->on_rq;
7411 if (on_rq)
7412 dequeue_task(rq, p, 0);
7413 __setscheduler(rq, p, SCHED_NORMAL, 0);
7414 if (on_rq) {
7415 enqueue_task(rq, p, 0);
7416 resched_task(rq->curr);
7417 }
7418
7419 check_class_changed(rq, p, prev_class, old_prio);
7420 }
7421
7422 void normalize_rt_tasks(void)
7423 {
7424 struct task_struct *g, *p;
7425 unsigned long flags;
7426 struct rq *rq;
7427
7428 read_lock_irqsave(&tasklist_lock, flags);
7429 do_each_thread(g, p) {
7430 /*
7431 * Only normalize user tasks:
7432 */
7433 if (!p->mm)
7434 continue;
7435
7436 p->se.exec_start = 0;
7437 #ifdef CONFIG_SCHEDSTATS
7438 p->se.statistics.wait_start = 0;
7439 p->se.statistics.sleep_start = 0;
7440 p->se.statistics.block_start = 0;
7441 #endif
7442
7443 if (!rt_task(p)) {
7444 /*
7445 * Renice negative nice level userspace
7446 * tasks back to 0:
7447 */
7448 if (TASK_NICE(p) < 0 && p->mm)
7449 set_user_nice(p, 0);
7450 continue;
7451 }
7452
7453 raw_spin_lock(&p->pi_lock);
7454 rq = __task_rq_lock(p);
7455
7456 normalize_task(rq, p);
7457
7458 __task_rq_unlock(rq);
7459 raw_spin_unlock(&p->pi_lock);
7460 } while_each_thread(g, p);
7461
7462 read_unlock_irqrestore(&tasklist_lock, flags);
7463 }
7464
7465 #endif /* CONFIG_MAGIC_SYSRQ */
7466
7467 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7468 /*
7469 * These functions are only useful for the IA64 MCA handling, or kdb.
7470 *
7471 * They can only be called when the whole system has been
7472 * stopped - every CPU needs to be quiescent, and no scheduling
7473 * activity can take place. Using them for anything else would
7474 * be a serious bug, and as a result, they aren't even visible
7475 * under any other configuration.
7476 */
7477
7478 /**
7479 * curr_task - return the current task for a given cpu.
7480 * @cpu: the processor in question.
7481 *
7482 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7483 */
7484 struct task_struct *curr_task(int cpu)
7485 {
7486 return cpu_curr(cpu);
7487 }
7488
7489 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7490
7491 #ifdef CONFIG_IA64
7492 /**
7493 * set_curr_task - set the current task for a given cpu.
7494 * @cpu: the processor in question.
7495 * @p: the task pointer to set.
7496 *
7497 * Description: This function must only be used when non-maskable interrupts
7498 * are serviced on a separate stack. It allows the architecture to switch the
7499 * notion of the current task on a cpu in a non-blocking manner. This function
7500 * must be called with all CPU's synchronized, and interrupts disabled, the
7501 * and caller must save the original value of the current task (see
7502 * curr_task() above) and restore that value before reenabling interrupts and
7503 * re-starting the system.
7504 *
7505 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7506 */
7507 void set_curr_task(int cpu, struct task_struct *p)
7508 {
7509 cpu_curr(cpu) = p;
7510 }
7511
7512 #endif
7513
7514 #ifdef CONFIG_CGROUP_SCHED
7515 /* task_group_lock serializes the addition/removal of task groups */
7516 static DEFINE_SPINLOCK(task_group_lock);
7517
7518 static void free_sched_group(struct task_group *tg)
7519 {
7520 free_fair_sched_group(tg);
7521 free_rt_sched_group(tg);
7522 autogroup_free(tg);
7523 kfree(tg);
7524 }
7525
7526 /* allocate runqueue etc for a new task group */
7527 struct task_group *sched_create_group(struct task_group *parent)
7528 {
7529 struct task_group *tg;
7530 unsigned long flags;
7531
7532 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7533 if (!tg)
7534 return ERR_PTR(-ENOMEM);
7535
7536 if (!alloc_fair_sched_group(tg, parent))
7537 goto err;
7538
7539 if (!alloc_rt_sched_group(tg, parent))
7540 goto err;
7541
7542 spin_lock_irqsave(&task_group_lock, flags);
7543 list_add_rcu(&tg->list, &task_groups);
7544
7545 WARN_ON(!parent); /* root should already exist */
7546
7547 tg->parent = parent;
7548 INIT_LIST_HEAD(&tg->children);
7549 list_add_rcu(&tg->siblings, &parent->children);
7550 spin_unlock_irqrestore(&task_group_lock, flags);
7551
7552 return tg;
7553
7554 err:
7555 free_sched_group(tg);
7556 return ERR_PTR(-ENOMEM);
7557 }
7558
7559 /* rcu callback to free various structures associated with a task group */
7560 static void free_sched_group_rcu(struct rcu_head *rhp)
7561 {
7562 /* now it should be safe to free those cfs_rqs */
7563 free_sched_group(container_of(rhp, struct task_group, rcu));
7564 }
7565
7566 /* Destroy runqueue etc associated with a task group */
7567 void sched_destroy_group(struct task_group *tg)
7568 {
7569 unsigned long flags;
7570 int i;
7571
7572 /* end participation in shares distribution */
7573 for_each_possible_cpu(i)
7574 unregister_fair_sched_group(tg, i);
7575
7576 spin_lock_irqsave(&task_group_lock, flags);
7577 list_del_rcu(&tg->list);
7578 list_del_rcu(&tg->siblings);
7579 spin_unlock_irqrestore(&task_group_lock, flags);
7580
7581 /* wait for possible concurrent references to cfs_rqs complete */
7582 call_rcu(&tg->rcu, free_sched_group_rcu);
7583 }
7584
7585 /* change task's runqueue when it moves between groups.
7586 * The caller of this function should have put the task in its new group
7587 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7588 * reflect its new group.
7589 */
7590 void sched_move_task(struct task_struct *tsk)
7591 {
7592 int on_rq, running;
7593 unsigned long flags;
7594 struct rq *rq;
7595
7596 rq = task_rq_lock(tsk, &flags);
7597
7598 running = task_current(rq, tsk);
7599 on_rq = tsk->on_rq;
7600
7601 if (on_rq)
7602 dequeue_task(rq, tsk, 0);
7603 if (unlikely(running))
7604 tsk->sched_class->put_prev_task(rq, tsk);
7605
7606 #ifdef CONFIG_FAIR_GROUP_SCHED
7607 if (tsk->sched_class->task_move_group)
7608 tsk->sched_class->task_move_group(tsk, on_rq);
7609 else
7610 #endif
7611 set_task_rq(tsk, task_cpu(tsk));
7612
7613 if (unlikely(running))
7614 tsk->sched_class->set_curr_task(rq);
7615 if (on_rq)
7616 enqueue_task(rq, tsk, 0);
7617
7618 task_rq_unlock(rq, tsk, &flags);
7619 }
7620 #endif /* CONFIG_CGROUP_SCHED */
7621
7622 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7623 static unsigned long to_ratio(u64 period, u64 runtime)
7624 {
7625 if (runtime == RUNTIME_INF)
7626 return 1ULL << 20;
7627
7628 return div64_u64(runtime << 20, period);
7629 }
7630 #endif
7631
7632 #ifdef CONFIG_RT_GROUP_SCHED
7633 /*
7634 * Ensure that the real time constraints are schedulable.
7635 */
7636 static DEFINE_MUTEX(rt_constraints_mutex);
7637
7638 /* Must be called with tasklist_lock held */
7639 static inline int tg_has_rt_tasks(struct task_group *tg)
7640 {
7641 struct task_struct *g, *p;
7642
7643 do_each_thread(g, p) {
7644 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7645 return 1;
7646 } while_each_thread(g, p);
7647
7648 return 0;
7649 }
7650
7651 struct rt_schedulable_data {
7652 struct task_group *tg;
7653 u64 rt_period;
7654 u64 rt_runtime;
7655 };
7656
7657 static int tg_rt_schedulable(struct task_group *tg, void *data)
7658 {
7659 struct rt_schedulable_data *d = data;
7660 struct task_group *child;
7661 unsigned long total, sum = 0;
7662 u64 period, runtime;
7663
7664 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7665 runtime = tg->rt_bandwidth.rt_runtime;
7666
7667 if (tg == d->tg) {
7668 period = d->rt_period;
7669 runtime = d->rt_runtime;
7670 }
7671
7672 /*
7673 * Cannot have more runtime than the period.
7674 */
7675 if (runtime > period && runtime != RUNTIME_INF)
7676 return -EINVAL;
7677
7678 /*
7679 * Ensure we don't starve existing RT tasks.
7680 */
7681 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7682 return -EBUSY;
7683
7684 total = to_ratio(period, runtime);
7685
7686 /*
7687 * Nobody can have more than the global setting allows.
7688 */
7689 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7690 return -EINVAL;
7691
7692 /*
7693 * The sum of our children's runtime should not exceed our own.
7694 */
7695 list_for_each_entry_rcu(child, &tg->children, siblings) {
7696 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7697 runtime = child->rt_bandwidth.rt_runtime;
7698
7699 if (child == d->tg) {
7700 period = d->rt_period;
7701 runtime = d->rt_runtime;
7702 }
7703
7704 sum += to_ratio(period, runtime);
7705 }
7706
7707 if (sum > total)
7708 return -EINVAL;
7709
7710 return 0;
7711 }
7712
7713 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7714 {
7715 int ret;
7716
7717 struct rt_schedulable_data data = {
7718 .tg = tg,
7719 .rt_period = period,
7720 .rt_runtime = runtime,
7721 };
7722
7723 rcu_read_lock();
7724 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7725 rcu_read_unlock();
7726
7727 return ret;
7728 }
7729
7730 static int tg_set_rt_bandwidth(struct task_group *tg,
7731 u64 rt_period, u64 rt_runtime)
7732 {
7733 int i, err = 0;
7734
7735 mutex_lock(&rt_constraints_mutex);
7736 read_lock(&tasklist_lock);
7737 err = __rt_schedulable(tg, rt_period, rt_runtime);
7738 if (err)
7739 goto unlock;
7740
7741 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7742 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7743 tg->rt_bandwidth.rt_runtime = rt_runtime;
7744
7745 for_each_possible_cpu(i) {
7746 struct rt_rq *rt_rq = tg->rt_rq[i];
7747
7748 raw_spin_lock(&rt_rq->rt_runtime_lock);
7749 rt_rq->rt_runtime = rt_runtime;
7750 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7751 }
7752 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7753 unlock:
7754 read_unlock(&tasklist_lock);
7755 mutex_unlock(&rt_constraints_mutex);
7756
7757 return err;
7758 }
7759
7760 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7761 {
7762 u64 rt_runtime, rt_period;
7763
7764 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7765 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7766 if (rt_runtime_us < 0)
7767 rt_runtime = RUNTIME_INF;
7768
7769 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7770 }
7771
7772 long sched_group_rt_runtime(struct task_group *tg)
7773 {
7774 u64 rt_runtime_us;
7775
7776 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7777 return -1;
7778
7779 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7780 do_div(rt_runtime_us, NSEC_PER_USEC);
7781 return rt_runtime_us;
7782 }
7783
7784 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7785 {
7786 u64 rt_runtime, rt_period;
7787
7788 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7789 rt_runtime = tg->rt_bandwidth.rt_runtime;
7790
7791 if (rt_period == 0)
7792 return -EINVAL;
7793
7794 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7795 }
7796
7797 long sched_group_rt_period(struct task_group *tg)
7798 {
7799 u64 rt_period_us;
7800
7801 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7802 do_div(rt_period_us, NSEC_PER_USEC);
7803 return rt_period_us;
7804 }
7805
7806 static int sched_rt_global_constraints(void)
7807 {
7808 u64 runtime, period;
7809 int ret = 0;
7810
7811 if (sysctl_sched_rt_period <= 0)
7812 return -EINVAL;
7813
7814 runtime = global_rt_runtime();
7815 period = global_rt_period();
7816
7817 /*
7818 * Sanity check on the sysctl variables.
7819 */
7820 if (runtime > period && runtime != RUNTIME_INF)
7821 return -EINVAL;
7822
7823 mutex_lock(&rt_constraints_mutex);
7824 read_lock(&tasklist_lock);
7825 ret = __rt_schedulable(NULL, 0, 0);
7826 read_unlock(&tasklist_lock);
7827 mutex_unlock(&rt_constraints_mutex);
7828
7829 return ret;
7830 }
7831
7832 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7833 {
7834 /* Don't accept realtime tasks when there is no way for them to run */
7835 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7836 return 0;
7837
7838 return 1;
7839 }
7840
7841 #else /* !CONFIG_RT_GROUP_SCHED */
7842 static int sched_rt_global_constraints(void)
7843 {
7844 unsigned long flags;
7845 int i;
7846
7847 if (sysctl_sched_rt_period <= 0)
7848 return -EINVAL;
7849
7850 /*
7851 * There's always some RT tasks in the root group
7852 * -- migration, kstopmachine etc..
7853 */
7854 if (sysctl_sched_rt_runtime == 0)
7855 return -EBUSY;
7856
7857 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7858 for_each_possible_cpu(i) {
7859 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7860
7861 raw_spin_lock(&rt_rq->rt_runtime_lock);
7862 rt_rq->rt_runtime = global_rt_runtime();
7863 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7864 }
7865 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7866
7867 return 0;
7868 }
7869 #endif /* CONFIG_RT_GROUP_SCHED */
7870
7871 int sched_rt_handler(struct ctl_table *table, int write,
7872 void __user *buffer, size_t *lenp,
7873 loff_t *ppos)
7874 {
7875 int ret;
7876 int old_period, old_runtime;
7877 static DEFINE_MUTEX(mutex);
7878
7879 mutex_lock(&mutex);
7880 old_period = sysctl_sched_rt_period;
7881 old_runtime = sysctl_sched_rt_runtime;
7882
7883 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7884
7885 if (!ret && write) {
7886 ret = sched_rt_global_constraints();
7887 if (ret) {
7888 sysctl_sched_rt_period = old_period;
7889 sysctl_sched_rt_runtime = old_runtime;
7890 } else {
7891 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7892 def_rt_bandwidth.rt_period =
7893 ns_to_ktime(global_rt_period());
7894 }
7895 }
7896 mutex_unlock(&mutex);
7897
7898 return ret;
7899 }
7900
7901 #ifdef CONFIG_CGROUP_SCHED
7902
7903 /* return corresponding task_group object of a cgroup */
7904 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7905 {
7906 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7907 struct task_group, css);
7908 }
7909
7910 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7911 {
7912 struct task_group *tg, *parent;
7913
7914 if (!cgrp->parent) {
7915 /* This is early initialization for the top cgroup */
7916 return &root_task_group.css;
7917 }
7918
7919 parent = cgroup_tg(cgrp->parent);
7920 tg = sched_create_group(parent);
7921 if (IS_ERR(tg))
7922 return ERR_PTR(-ENOMEM);
7923
7924 return &tg->css;
7925 }
7926
7927 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7928 {
7929 struct task_group *tg = cgroup_tg(cgrp);
7930
7931 sched_destroy_group(tg);
7932 }
7933
7934 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7935 struct cgroup_taskset *tset)
7936 {
7937 struct task_struct *task;
7938
7939 cgroup_taskset_for_each(task, cgrp, tset) {
7940 #ifdef CONFIG_RT_GROUP_SCHED
7941 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7942 return -EINVAL;
7943 #else
7944 /* We don't support RT-tasks being in separate groups */
7945 if (task->sched_class != &fair_sched_class)
7946 return -EINVAL;
7947 #endif
7948 }
7949 return 0;
7950 }
7951
7952 static void cpu_cgroup_attach(struct cgroup *cgrp,
7953 struct cgroup_taskset *tset)
7954 {
7955 struct task_struct *task;
7956
7957 cgroup_taskset_for_each(task, cgrp, tset)
7958 sched_move_task(task);
7959 }
7960
7961 static void
7962 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7963 struct task_struct *task)
7964 {
7965 /*
7966 * cgroup_exit() is called in the copy_process() failure path.
7967 * Ignore this case since the task hasn't ran yet, this avoids
7968 * trying to poke a half freed task state from generic code.
7969 */
7970 if (!(task->flags & PF_EXITING))
7971 return;
7972
7973 sched_move_task(task);
7974 }
7975
7976 #ifdef CONFIG_FAIR_GROUP_SCHED
7977 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7978 u64 shareval)
7979 {
7980 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7981 }
7982
7983 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7984 {
7985 struct task_group *tg = cgroup_tg(cgrp);
7986
7987 return (u64) scale_load_down(tg->shares);
7988 }
7989
7990 #ifdef CONFIG_CFS_BANDWIDTH
7991 static DEFINE_MUTEX(cfs_constraints_mutex);
7992
7993 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7994 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7995
7996 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7997
7998 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7999 {
8000 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8001 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8002
8003 if (tg == &root_task_group)
8004 return -EINVAL;
8005
8006 /*
8007 * Ensure we have at some amount of bandwidth every period. This is
8008 * to prevent reaching a state of large arrears when throttled via
8009 * entity_tick() resulting in prolonged exit starvation.
8010 */
8011 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8012 return -EINVAL;
8013
8014 /*
8015 * Likewise, bound things on the otherside by preventing insane quota
8016 * periods. This also allows us to normalize in computing quota
8017 * feasibility.
8018 */
8019 if (period > max_cfs_quota_period)
8020 return -EINVAL;
8021
8022 mutex_lock(&cfs_constraints_mutex);
8023 ret = __cfs_schedulable(tg, period, quota);
8024 if (ret)
8025 goto out_unlock;
8026
8027 runtime_enabled = quota != RUNTIME_INF;
8028 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8029 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
8030 raw_spin_lock_irq(&cfs_b->lock);
8031 cfs_b->period = ns_to_ktime(period);
8032 cfs_b->quota = quota;
8033
8034 __refill_cfs_bandwidth_runtime(cfs_b);
8035 /* restart the period timer (if active) to handle new period expiry */
8036 if (runtime_enabled && cfs_b->timer_active) {
8037 /* force a reprogram */
8038 cfs_b->timer_active = 0;
8039 __start_cfs_bandwidth(cfs_b);
8040 }
8041 raw_spin_unlock_irq(&cfs_b->lock);
8042
8043 for_each_possible_cpu(i) {
8044 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8045 struct rq *rq = cfs_rq->rq;
8046
8047 raw_spin_lock_irq(&rq->lock);
8048 cfs_rq->runtime_enabled = runtime_enabled;
8049 cfs_rq->runtime_remaining = 0;
8050
8051 if (cfs_rq->throttled)
8052 unthrottle_cfs_rq(cfs_rq);
8053 raw_spin_unlock_irq(&rq->lock);
8054 }
8055 out_unlock:
8056 mutex_unlock(&cfs_constraints_mutex);
8057
8058 return ret;
8059 }
8060
8061 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8062 {
8063 u64 quota, period;
8064
8065 period = ktime_to_ns(tg->cfs_bandwidth.period);
8066 if (cfs_quota_us < 0)
8067 quota = RUNTIME_INF;
8068 else
8069 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8070
8071 return tg_set_cfs_bandwidth(tg, period, quota);
8072 }
8073
8074 long tg_get_cfs_quota(struct task_group *tg)
8075 {
8076 u64 quota_us;
8077
8078 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8079 return -1;
8080
8081 quota_us = tg->cfs_bandwidth.quota;
8082 do_div(quota_us, NSEC_PER_USEC);
8083
8084 return quota_us;
8085 }
8086
8087 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8088 {
8089 u64 quota, period;
8090
8091 period = (u64)cfs_period_us * NSEC_PER_USEC;
8092 quota = tg->cfs_bandwidth.quota;
8093
8094 return tg_set_cfs_bandwidth(tg, period, quota);
8095 }
8096
8097 long tg_get_cfs_period(struct task_group *tg)
8098 {
8099 u64 cfs_period_us;
8100
8101 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8102 do_div(cfs_period_us, NSEC_PER_USEC);
8103
8104 return cfs_period_us;
8105 }
8106
8107 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
8108 {
8109 return tg_get_cfs_quota(cgroup_tg(cgrp));
8110 }
8111
8112 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
8113 s64 cfs_quota_us)
8114 {
8115 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
8116 }
8117
8118 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
8119 {
8120 return tg_get_cfs_period(cgroup_tg(cgrp));
8121 }
8122
8123 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8124 u64 cfs_period_us)
8125 {
8126 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
8127 }
8128
8129 struct cfs_schedulable_data {
8130 struct task_group *tg;
8131 u64 period, quota;
8132 };
8133
8134 /*
8135 * normalize group quota/period to be quota/max_period
8136 * note: units are usecs
8137 */
8138 static u64 normalize_cfs_quota(struct task_group *tg,
8139 struct cfs_schedulable_data *d)
8140 {
8141 u64 quota, period;
8142
8143 if (tg == d->tg) {
8144 period = d->period;
8145 quota = d->quota;
8146 } else {
8147 period = tg_get_cfs_period(tg);
8148 quota = tg_get_cfs_quota(tg);
8149 }
8150
8151 /* note: these should typically be equivalent */
8152 if (quota == RUNTIME_INF || quota == -1)
8153 return RUNTIME_INF;
8154
8155 return to_ratio(period, quota);
8156 }
8157
8158 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8159 {
8160 struct cfs_schedulable_data *d = data;
8161 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8162 s64 quota = 0, parent_quota = -1;
8163
8164 if (!tg->parent) {
8165 quota = RUNTIME_INF;
8166 } else {
8167 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8168
8169 quota = normalize_cfs_quota(tg, d);
8170 parent_quota = parent_b->hierarchal_quota;
8171
8172 /*
8173 * ensure max(child_quota) <= parent_quota, inherit when no
8174 * limit is set
8175 */
8176 if (quota == RUNTIME_INF)
8177 quota = parent_quota;
8178 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8179 return -EINVAL;
8180 }
8181 cfs_b->hierarchal_quota = quota;
8182
8183 return 0;
8184 }
8185
8186 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8187 {
8188 int ret;
8189 struct cfs_schedulable_data data = {
8190 .tg = tg,
8191 .period = period,
8192 .quota = quota,
8193 };
8194
8195 if (quota != RUNTIME_INF) {
8196 do_div(data.period, NSEC_PER_USEC);
8197 do_div(data.quota, NSEC_PER_USEC);
8198 }
8199
8200 rcu_read_lock();
8201 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8202 rcu_read_unlock();
8203
8204 return ret;
8205 }
8206
8207 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8208 struct cgroup_map_cb *cb)
8209 {
8210 struct task_group *tg = cgroup_tg(cgrp);
8211 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8212
8213 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8214 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8215 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8216
8217 return 0;
8218 }
8219 #endif /* CONFIG_CFS_BANDWIDTH */
8220 #endif /* CONFIG_FAIR_GROUP_SCHED */
8221
8222 #ifdef CONFIG_RT_GROUP_SCHED
8223 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8224 s64 val)
8225 {
8226 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8227 }
8228
8229 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8230 {
8231 return sched_group_rt_runtime(cgroup_tg(cgrp));
8232 }
8233
8234 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8235 u64 rt_period_us)
8236 {
8237 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8238 }
8239
8240 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8241 {
8242 return sched_group_rt_period(cgroup_tg(cgrp));
8243 }
8244 #endif /* CONFIG_RT_GROUP_SCHED */
8245
8246 static struct cftype cpu_files[] = {
8247 #ifdef CONFIG_FAIR_GROUP_SCHED
8248 {
8249 .name = "shares",
8250 .read_u64 = cpu_shares_read_u64,
8251 .write_u64 = cpu_shares_write_u64,
8252 },
8253 #endif
8254 #ifdef CONFIG_CFS_BANDWIDTH
8255 {
8256 .name = "cfs_quota_us",
8257 .read_s64 = cpu_cfs_quota_read_s64,
8258 .write_s64 = cpu_cfs_quota_write_s64,
8259 },
8260 {
8261 .name = "cfs_period_us",
8262 .read_u64 = cpu_cfs_period_read_u64,
8263 .write_u64 = cpu_cfs_period_write_u64,
8264 },
8265 {
8266 .name = "stat",
8267 .read_map = cpu_stats_show,
8268 },
8269 #endif
8270 #ifdef CONFIG_RT_GROUP_SCHED
8271 {
8272 .name = "rt_runtime_us",
8273 .read_s64 = cpu_rt_runtime_read,
8274 .write_s64 = cpu_rt_runtime_write,
8275 },
8276 {
8277 .name = "rt_period_us",
8278 .read_u64 = cpu_rt_period_read_uint,
8279 .write_u64 = cpu_rt_period_write_uint,
8280 },
8281 #endif
8282 { } /* terminate */
8283 };
8284
8285 struct cgroup_subsys cpu_cgroup_subsys = {
8286 .name = "cpu",
8287 .create = cpu_cgroup_create,
8288 .destroy = cpu_cgroup_destroy,
8289 .can_attach = cpu_cgroup_can_attach,
8290 .attach = cpu_cgroup_attach,
8291 .exit = cpu_cgroup_exit,
8292 .subsys_id = cpu_cgroup_subsys_id,
8293 .base_cftypes = cpu_files,
8294 .early_init = 1,
8295 };
8296
8297 #endif /* CONFIG_CGROUP_SCHED */
8298
8299 #ifdef CONFIG_CGROUP_CPUACCT
8300
8301 /*
8302 * CPU accounting code for task groups.
8303 *
8304 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8305 * (balbir@in.ibm.com).
8306 */
8307
8308 /* create a new cpu accounting group */
8309 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8310 {
8311 struct cpuacct *ca;
8312
8313 if (!cgrp->parent)
8314 return &root_cpuacct.css;
8315
8316 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8317 if (!ca)
8318 goto out;
8319
8320 ca->cpuusage = alloc_percpu(u64);
8321 if (!ca->cpuusage)
8322 goto out_free_ca;
8323
8324 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8325 if (!ca->cpustat)
8326 goto out_free_cpuusage;
8327
8328 return &ca->css;
8329
8330 out_free_cpuusage:
8331 free_percpu(ca->cpuusage);
8332 out_free_ca:
8333 kfree(ca);
8334 out:
8335 return ERR_PTR(-ENOMEM);
8336 }
8337
8338 /* destroy an existing cpu accounting group */
8339 static void cpuacct_destroy(struct cgroup *cgrp)
8340 {
8341 struct cpuacct *ca = cgroup_ca(cgrp);
8342
8343 free_percpu(ca->cpustat);
8344 free_percpu(ca->cpuusage);
8345 kfree(ca);
8346 }
8347
8348 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8349 {
8350 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8351 u64 data;
8352
8353 #ifndef CONFIG_64BIT
8354 /*
8355 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8356 */
8357 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8358 data = *cpuusage;
8359 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8360 #else
8361 data = *cpuusage;
8362 #endif
8363
8364 return data;
8365 }
8366
8367 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8368 {
8369 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8370
8371 #ifndef CONFIG_64BIT
8372 /*
8373 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8374 */
8375 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8376 *cpuusage = val;
8377 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8378 #else
8379 *cpuusage = val;
8380 #endif
8381 }
8382
8383 /* return total cpu usage (in nanoseconds) of a group */
8384 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8385 {
8386 struct cpuacct *ca = cgroup_ca(cgrp);
8387 u64 totalcpuusage = 0;
8388 int i;
8389
8390 for_each_present_cpu(i)
8391 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8392
8393 return totalcpuusage;
8394 }
8395
8396 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8397 u64 reset)
8398 {
8399 struct cpuacct *ca = cgroup_ca(cgrp);
8400 int err = 0;
8401 int i;
8402
8403 if (reset) {
8404 err = -EINVAL;
8405 goto out;
8406 }
8407
8408 for_each_present_cpu(i)
8409 cpuacct_cpuusage_write(ca, i, 0);
8410
8411 out:
8412 return err;
8413 }
8414
8415 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8416 struct seq_file *m)
8417 {
8418 struct cpuacct *ca = cgroup_ca(cgroup);
8419 u64 percpu;
8420 int i;
8421
8422 for_each_present_cpu(i) {
8423 percpu = cpuacct_cpuusage_read(ca, i);
8424 seq_printf(m, "%llu ", (unsigned long long) percpu);
8425 }
8426 seq_printf(m, "\n");
8427 return 0;
8428 }
8429
8430 static const char *cpuacct_stat_desc[] = {
8431 [CPUACCT_STAT_USER] = "user",
8432 [CPUACCT_STAT_SYSTEM] = "system",
8433 };
8434
8435 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8436 struct cgroup_map_cb *cb)
8437 {
8438 struct cpuacct *ca = cgroup_ca(cgrp);
8439 int cpu;
8440 s64 val = 0;
8441
8442 for_each_online_cpu(cpu) {
8443 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8444 val += kcpustat->cpustat[CPUTIME_USER];
8445 val += kcpustat->cpustat[CPUTIME_NICE];
8446 }
8447 val = cputime64_to_clock_t(val);
8448 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8449
8450 val = 0;
8451 for_each_online_cpu(cpu) {
8452 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8453 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8454 val += kcpustat->cpustat[CPUTIME_IRQ];
8455 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8456 }
8457
8458 val = cputime64_to_clock_t(val);
8459 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8460
8461 return 0;
8462 }
8463
8464 static struct cftype files[] = {
8465 {
8466 .name = "usage",
8467 .read_u64 = cpuusage_read,
8468 .write_u64 = cpuusage_write,
8469 },
8470 {
8471 .name = "usage_percpu",
8472 .read_seq_string = cpuacct_percpu_seq_read,
8473 },
8474 {
8475 .name = "stat",
8476 .read_map = cpuacct_stats_show,
8477 },
8478 { } /* terminate */
8479 };
8480
8481 /*
8482 * charge this task's execution time to its accounting group.
8483 *
8484 * called with rq->lock held.
8485 */
8486 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8487 {
8488 struct cpuacct *ca;
8489 int cpu;
8490
8491 if (unlikely(!cpuacct_subsys.active))
8492 return;
8493
8494 cpu = task_cpu(tsk);
8495
8496 rcu_read_lock();
8497
8498 ca = task_ca(tsk);
8499
8500 for (; ca; ca = parent_ca(ca)) {
8501 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8502 *cpuusage += cputime;
8503 }
8504
8505 rcu_read_unlock();
8506 }
8507
8508 struct cgroup_subsys cpuacct_subsys = {
8509 .name = "cpuacct",
8510 .create = cpuacct_create,
8511 .destroy = cpuacct_destroy,
8512 .subsys_id = cpuacct_subsys_id,
8513 .base_cftypes = files,
8514 };
8515 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.21839 seconds and 5 git commands to generate.