sched/fair: Reorder cgroup creation code
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 /*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
133 /*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
141 /*
142 * period over which we measure -rt task cpu usage in us.
143 * default: 1s
144 */
145 unsigned int sysctl_sched_rt_period = 1000000;
146
147 __read_mostly int scheduler_running;
148
149 /*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153 int sysctl_sched_rt_runtime = 950000;
154
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157
158 /*
159 * this_rq_lock - lock this runqueue and disable interrupts.
160 */
161 static struct rq *this_rq_lock(void)
162 __acquires(rq->lock)
163 {
164 struct rq *rq;
165
166 local_irq_disable();
167 rq = this_rq();
168 raw_spin_lock(&rq->lock);
169
170 return rq;
171 }
172
173 /*
174 * __task_rq_lock - lock the rq @p resides on.
175 */
176 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
177 __acquires(rq->lock)
178 {
179 struct rq *rq;
180
181 lockdep_assert_held(&p->pi_lock);
182
183 for (;;) {
184 rq = task_rq(p);
185 raw_spin_lock(&rq->lock);
186 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
187 rf->cookie = lockdep_pin_lock(&rq->lock);
188 return rq;
189 }
190 raw_spin_unlock(&rq->lock);
191
192 while (unlikely(task_on_rq_migrating(p)))
193 cpu_relax();
194 }
195 }
196
197 /*
198 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
199 */
200 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
201 __acquires(p->pi_lock)
202 __acquires(rq->lock)
203 {
204 struct rq *rq;
205
206 for (;;) {
207 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
208 rq = task_rq(p);
209 raw_spin_lock(&rq->lock);
210 /*
211 * move_queued_task() task_rq_lock()
212 *
213 * ACQUIRE (rq->lock)
214 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
215 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
216 * [S] ->cpu = new_cpu [L] task_rq()
217 * [L] ->on_rq
218 * RELEASE (rq->lock)
219 *
220 * If we observe the old cpu in task_rq_lock, the acquire of
221 * the old rq->lock will fully serialize against the stores.
222 *
223 * If we observe the new cpu in task_rq_lock, the acquire will
224 * pair with the WMB to ensure we must then also see migrating.
225 */
226 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
227 rf->cookie = lockdep_pin_lock(&rq->lock);
228 return rq;
229 }
230 raw_spin_unlock(&rq->lock);
231 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
232
233 while (unlikely(task_on_rq_migrating(p)))
234 cpu_relax();
235 }
236 }
237
238 #ifdef CONFIG_SCHED_HRTICK
239 /*
240 * Use HR-timers to deliver accurate preemption points.
241 */
242
243 static void hrtick_clear(struct rq *rq)
244 {
245 if (hrtimer_active(&rq->hrtick_timer))
246 hrtimer_cancel(&rq->hrtick_timer);
247 }
248
249 /*
250 * High-resolution timer tick.
251 * Runs from hardirq context with interrupts disabled.
252 */
253 static enum hrtimer_restart hrtick(struct hrtimer *timer)
254 {
255 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256
257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258
259 raw_spin_lock(&rq->lock);
260 update_rq_clock(rq);
261 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262 raw_spin_unlock(&rq->lock);
263
264 return HRTIMER_NORESTART;
265 }
266
267 #ifdef CONFIG_SMP
268
269 static void __hrtick_restart(struct rq *rq)
270 {
271 struct hrtimer *timer = &rq->hrtick_timer;
272
273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275
276 /*
277 * called from hardirq (IPI) context
278 */
279 static void __hrtick_start(void *arg)
280 {
281 struct rq *rq = arg;
282
283 raw_spin_lock(&rq->lock);
284 __hrtick_restart(rq);
285 rq->hrtick_csd_pending = 0;
286 raw_spin_unlock(&rq->lock);
287 }
288
289 /*
290 * Called to set the hrtick timer state.
291 *
292 * called with rq->lock held and irqs disabled
293 */
294 void hrtick_start(struct rq *rq, u64 delay)
295 {
296 struct hrtimer *timer = &rq->hrtick_timer;
297 ktime_t time;
298 s64 delta;
299
300 /*
301 * Don't schedule slices shorter than 10000ns, that just
302 * doesn't make sense and can cause timer DoS.
303 */
304 delta = max_t(s64, delay, 10000LL);
305 time = ktime_add_ns(timer->base->get_time(), delta);
306
307 hrtimer_set_expires(timer, time);
308
309 if (rq == this_rq()) {
310 __hrtick_restart(rq);
311 } else if (!rq->hrtick_csd_pending) {
312 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313 rq->hrtick_csd_pending = 1;
314 }
315 }
316
317 #else
318 /*
319 * Called to set the hrtick timer state.
320 *
321 * called with rq->lock held and irqs disabled
322 */
323 void hrtick_start(struct rq *rq, u64 delay)
324 {
325 /*
326 * Don't schedule slices shorter than 10000ns, that just
327 * doesn't make sense. Rely on vruntime for fairness.
328 */
329 delay = max_t(u64, delay, 10000LL);
330 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331 HRTIMER_MODE_REL_PINNED);
332 }
333 #endif /* CONFIG_SMP */
334
335 static void init_rq_hrtick(struct rq *rq)
336 {
337 #ifdef CONFIG_SMP
338 rq->hrtick_csd_pending = 0;
339
340 rq->hrtick_csd.flags = 0;
341 rq->hrtick_csd.func = __hrtick_start;
342 rq->hrtick_csd.info = rq;
343 #endif
344
345 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346 rq->hrtick_timer.function = hrtick;
347 }
348 #else /* CONFIG_SCHED_HRTICK */
349 static inline void hrtick_clear(struct rq *rq)
350 {
351 }
352
353 static inline void init_rq_hrtick(struct rq *rq)
354 {
355 }
356 #endif /* CONFIG_SCHED_HRTICK */
357
358 /*
359 * cmpxchg based fetch_or, macro so it works for different integer types
360 */
361 #define fetch_or(ptr, mask) \
362 ({ \
363 typeof(ptr) _ptr = (ptr); \
364 typeof(mask) _mask = (mask); \
365 typeof(*_ptr) _old, _val = *_ptr; \
366 \
367 for (;;) { \
368 _old = cmpxchg(_ptr, _val, _val | _mask); \
369 if (_old == _val) \
370 break; \
371 _val = _old; \
372 } \
373 _old; \
374 })
375
376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 /*
378 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379 * this avoids any races wrt polling state changes and thereby avoids
380 * spurious IPIs.
381 */
382 static bool set_nr_and_not_polling(struct task_struct *p)
383 {
384 struct thread_info *ti = task_thread_info(p);
385 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386 }
387
388 /*
389 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390 *
391 * If this returns true, then the idle task promises to call
392 * sched_ttwu_pending() and reschedule soon.
393 */
394 static bool set_nr_if_polling(struct task_struct *p)
395 {
396 struct thread_info *ti = task_thread_info(p);
397 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
398
399 for (;;) {
400 if (!(val & _TIF_POLLING_NRFLAG))
401 return false;
402 if (val & _TIF_NEED_RESCHED)
403 return true;
404 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405 if (old == val)
406 break;
407 val = old;
408 }
409 return true;
410 }
411
412 #else
413 static bool set_nr_and_not_polling(struct task_struct *p)
414 {
415 set_tsk_need_resched(p);
416 return true;
417 }
418
419 #ifdef CONFIG_SMP
420 static bool set_nr_if_polling(struct task_struct *p)
421 {
422 return false;
423 }
424 #endif
425 #endif
426
427 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428 {
429 struct wake_q_node *node = &task->wake_q;
430
431 /*
432 * Atomically grab the task, if ->wake_q is !nil already it means
433 * its already queued (either by us or someone else) and will get the
434 * wakeup due to that.
435 *
436 * This cmpxchg() implies a full barrier, which pairs with the write
437 * barrier implied by the wakeup in wake_up_q().
438 */
439 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
440 return;
441
442 get_task_struct(task);
443
444 /*
445 * The head is context local, there can be no concurrency.
446 */
447 *head->lastp = node;
448 head->lastp = &node->next;
449 }
450
451 void wake_up_q(struct wake_q_head *head)
452 {
453 struct wake_q_node *node = head->first;
454
455 while (node != WAKE_Q_TAIL) {
456 struct task_struct *task;
457
458 task = container_of(node, struct task_struct, wake_q);
459 BUG_ON(!task);
460 /* task can safely be re-inserted now */
461 node = node->next;
462 task->wake_q.next = NULL;
463
464 /*
465 * wake_up_process() implies a wmb() to pair with the queueing
466 * in wake_q_add() so as not to miss wakeups.
467 */
468 wake_up_process(task);
469 put_task_struct(task);
470 }
471 }
472
473 /*
474 * resched_curr - mark rq's current task 'to be rescheduled now'.
475 *
476 * On UP this means the setting of the need_resched flag, on SMP it
477 * might also involve a cross-CPU call to trigger the scheduler on
478 * the target CPU.
479 */
480 void resched_curr(struct rq *rq)
481 {
482 struct task_struct *curr = rq->curr;
483 int cpu;
484
485 lockdep_assert_held(&rq->lock);
486
487 if (test_tsk_need_resched(curr))
488 return;
489
490 cpu = cpu_of(rq);
491
492 if (cpu == smp_processor_id()) {
493 set_tsk_need_resched(curr);
494 set_preempt_need_resched();
495 return;
496 }
497
498 if (set_nr_and_not_polling(curr))
499 smp_send_reschedule(cpu);
500 else
501 trace_sched_wake_idle_without_ipi(cpu);
502 }
503
504 void resched_cpu(int cpu)
505 {
506 struct rq *rq = cpu_rq(cpu);
507 unsigned long flags;
508
509 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
510 return;
511 resched_curr(rq);
512 raw_spin_unlock_irqrestore(&rq->lock, flags);
513 }
514
515 #ifdef CONFIG_SMP
516 #ifdef CONFIG_NO_HZ_COMMON
517 /*
518 * In the semi idle case, use the nearest busy cpu for migrating timers
519 * from an idle cpu. This is good for power-savings.
520 *
521 * We don't do similar optimization for completely idle system, as
522 * selecting an idle cpu will add more delays to the timers than intended
523 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
524 */
525 int get_nohz_timer_target(void)
526 {
527 int i, cpu = smp_processor_id();
528 struct sched_domain *sd;
529
530 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
531 return cpu;
532
533 rcu_read_lock();
534 for_each_domain(cpu, sd) {
535 for_each_cpu(i, sched_domain_span(sd)) {
536 if (cpu == i)
537 continue;
538
539 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
540 cpu = i;
541 goto unlock;
542 }
543 }
544 }
545
546 if (!is_housekeeping_cpu(cpu))
547 cpu = housekeeping_any_cpu();
548 unlock:
549 rcu_read_unlock();
550 return cpu;
551 }
552 /*
553 * When add_timer_on() enqueues a timer into the timer wheel of an
554 * idle CPU then this timer might expire before the next timer event
555 * which is scheduled to wake up that CPU. In case of a completely
556 * idle system the next event might even be infinite time into the
557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558 * leaves the inner idle loop so the newly added timer is taken into
559 * account when the CPU goes back to idle and evaluates the timer
560 * wheel for the next timer event.
561 */
562 static void wake_up_idle_cpu(int cpu)
563 {
564 struct rq *rq = cpu_rq(cpu);
565
566 if (cpu == smp_processor_id())
567 return;
568
569 if (set_nr_and_not_polling(rq->idle))
570 smp_send_reschedule(cpu);
571 else
572 trace_sched_wake_idle_without_ipi(cpu);
573 }
574
575 static bool wake_up_full_nohz_cpu(int cpu)
576 {
577 /*
578 * We just need the target to call irq_exit() and re-evaluate
579 * the next tick. The nohz full kick at least implies that.
580 * If needed we can still optimize that later with an
581 * empty IRQ.
582 */
583 if (tick_nohz_full_cpu(cpu)) {
584 if (cpu != smp_processor_id() ||
585 tick_nohz_tick_stopped())
586 tick_nohz_full_kick_cpu(cpu);
587 return true;
588 }
589
590 return false;
591 }
592
593 void wake_up_nohz_cpu(int cpu)
594 {
595 if (!wake_up_full_nohz_cpu(cpu))
596 wake_up_idle_cpu(cpu);
597 }
598
599 static inline bool got_nohz_idle_kick(void)
600 {
601 int cpu = smp_processor_id();
602
603 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
604 return false;
605
606 if (idle_cpu(cpu) && !need_resched())
607 return true;
608
609 /*
610 * We can't run Idle Load Balance on this CPU for this time so we
611 * cancel it and clear NOHZ_BALANCE_KICK
612 */
613 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
614 return false;
615 }
616
617 #else /* CONFIG_NO_HZ_COMMON */
618
619 static inline bool got_nohz_idle_kick(void)
620 {
621 return false;
622 }
623
624 #endif /* CONFIG_NO_HZ_COMMON */
625
626 #ifdef CONFIG_NO_HZ_FULL
627 bool sched_can_stop_tick(struct rq *rq)
628 {
629 int fifo_nr_running;
630
631 /* Deadline tasks, even if single, need the tick */
632 if (rq->dl.dl_nr_running)
633 return false;
634
635 /*
636 * If there are more than one RR tasks, we need the tick to effect the
637 * actual RR behaviour.
638 */
639 if (rq->rt.rr_nr_running) {
640 if (rq->rt.rr_nr_running == 1)
641 return true;
642 else
643 return false;
644 }
645
646 /*
647 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
648 * forced preemption between FIFO tasks.
649 */
650 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
651 if (fifo_nr_running)
652 return true;
653
654 /*
655 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
656 * if there's more than one we need the tick for involuntary
657 * preemption.
658 */
659 if (rq->nr_running > 1)
660 return false;
661
662 return true;
663 }
664 #endif /* CONFIG_NO_HZ_FULL */
665
666 void sched_avg_update(struct rq *rq)
667 {
668 s64 period = sched_avg_period();
669
670 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
671 /*
672 * Inline assembly required to prevent the compiler
673 * optimising this loop into a divmod call.
674 * See __iter_div_u64_rem() for another example of this.
675 */
676 asm("" : "+rm" (rq->age_stamp));
677 rq->age_stamp += period;
678 rq->rt_avg /= 2;
679 }
680 }
681
682 #endif /* CONFIG_SMP */
683
684 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
685 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
686 /*
687 * Iterate task_group tree rooted at *from, calling @down when first entering a
688 * node and @up when leaving it for the final time.
689 *
690 * Caller must hold rcu_lock or sufficient equivalent.
691 */
692 int walk_tg_tree_from(struct task_group *from,
693 tg_visitor down, tg_visitor up, void *data)
694 {
695 struct task_group *parent, *child;
696 int ret;
697
698 parent = from;
699
700 down:
701 ret = (*down)(parent, data);
702 if (ret)
703 goto out;
704 list_for_each_entry_rcu(child, &parent->children, siblings) {
705 parent = child;
706 goto down;
707
708 up:
709 continue;
710 }
711 ret = (*up)(parent, data);
712 if (ret || parent == from)
713 goto out;
714
715 child = parent;
716 parent = parent->parent;
717 if (parent)
718 goto up;
719 out:
720 return ret;
721 }
722
723 int tg_nop(struct task_group *tg, void *data)
724 {
725 return 0;
726 }
727 #endif
728
729 static void set_load_weight(struct task_struct *p)
730 {
731 int prio = p->static_prio - MAX_RT_PRIO;
732 struct load_weight *load = &p->se.load;
733
734 /*
735 * SCHED_IDLE tasks get minimal weight:
736 */
737 if (idle_policy(p->policy)) {
738 load->weight = scale_load(WEIGHT_IDLEPRIO);
739 load->inv_weight = WMULT_IDLEPRIO;
740 return;
741 }
742
743 load->weight = scale_load(sched_prio_to_weight[prio]);
744 load->inv_weight = sched_prio_to_wmult[prio];
745 }
746
747 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
748 {
749 update_rq_clock(rq);
750 if (!(flags & ENQUEUE_RESTORE))
751 sched_info_queued(rq, p);
752 p->sched_class->enqueue_task(rq, p, flags);
753 }
754
755 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 update_rq_clock(rq);
758 if (!(flags & DEQUEUE_SAVE))
759 sched_info_dequeued(rq, p);
760 p->sched_class->dequeue_task(rq, p, flags);
761 }
762
763 void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 if (task_contributes_to_load(p))
766 rq->nr_uninterruptible--;
767
768 enqueue_task(rq, p, flags);
769 }
770
771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible++;
775
776 dequeue_task(rq, p, flags);
777 }
778
779 static void update_rq_clock_task(struct rq *rq, s64 delta)
780 {
781 /*
782 * In theory, the compile should just see 0 here, and optimize out the call
783 * to sched_rt_avg_update. But I don't trust it...
784 */
785 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
786 s64 steal = 0, irq_delta = 0;
787 #endif
788 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
789 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
790
791 /*
792 * Since irq_time is only updated on {soft,}irq_exit, we might run into
793 * this case when a previous update_rq_clock() happened inside a
794 * {soft,}irq region.
795 *
796 * When this happens, we stop ->clock_task and only update the
797 * prev_irq_time stamp to account for the part that fit, so that a next
798 * update will consume the rest. This ensures ->clock_task is
799 * monotonic.
800 *
801 * It does however cause some slight miss-attribution of {soft,}irq
802 * time, a more accurate solution would be to update the irq_time using
803 * the current rq->clock timestamp, except that would require using
804 * atomic ops.
805 */
806 if (irq_delta > delta)
807 irq_delta = delta;
808
809 rq->prev_irq_time += irq_delta;
810 delta -= irq_delta;
811 #endif
812 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
813 if (static_key_false((&paravirt_steal_rq_enabled))) {
814 steal = paravirt_steal_clock(cpu_of(rq));
815 steal -= rq->prev_steal_time_rq;
816
817 if (unlikely(steal > delta))
818 steal = delta;
819
820 rq->prev_steal_time_rq += steal;
821 delta -= steal;
822 }
823 #endif
824
825 rq->clock_task += delta;
826
827 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
828 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
829 sched_rt_avg_update(rq, irq_delta + steal);
830 #endif
831 }
832
833 void sched_set_stop_task(int cpu, struct task_struct *stop)
834 {
835 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
836 struct task_struct *old_stop = cpu_rq(cpu)->stop;
837
838 if (stop) {
839 /*
840 * Make it appear like a SCHED_FIFO task, its something
841 * userspace knows about and won't get confused about.
842 *
843 * Also, it will make PI more or less work without too
844 * much confusion -- but then, stop work should not
845 * rely on PI working anyway.
846 */
847 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
848
849 stop->sched_class = &stop_sched_class;
850 }
851
852 cpu_rq(cpu)->stop = stop;
853
854 if (old_stop) {
855 /*
856 * Reset it back to a normal scheduling class so that
857 * it can die in pieces.
858 */
859 old_stop->sched_class = &rt_sched_class;
860 }
861 }
862
863 /*
864 * __normal_prio - return the priority that is based on the static prio
865 */
866 static inline int __normal_prio(struct task_struct *p)
867 {
868 return p->static_prio;
869 }
870
871 /*
872 * Calculate the expected normal priority: i.e. priority
873 * without taking RT-inheritance into account. Might be
874 * boosted by interactivity modifiers. Changes upon fork,
875 * setprio syscalls, and whenever the interactivity
876 * estimator recalculates.
877 */
878 static inline int normal_prio(struct task_struct *p)
879 {
880 int prio;
881
882 if (task_has_dl_policy(p))
883 prio = MAX_DL_PRIO-1;
884 else if (task_has_rt_policy(p))
885 prio = MAX_RT_PRIO-1 - p->rt_priority;
886 else
887 prio = __normal_prio(p);
888 return prio;
889 }
890
891 /*
892 * Calculate the current priority, i.e. the priority
893 * taken into account by the scheduler. This value might
894 * be boosted by RT tasks, or might be boosted by
895 * interactivity modifiers. Will be RT if the task got
896 * RT-boosted. If not then it returns p->normal_prio.
897 */
898 static int effective_prio(struct task_struct *p)
899 {
900 p->normal_prio = normal_prio(p);
901 /*
902 * If we are RT tasks or we were boosted to RT priority,
903 * keep the priority unchanged. Otherwise, update priority
904 * to the normal priority:
905 */
906 if (!rt_prio(p->prio))
907 return p->normal_prio;
908 return p->prio;
909 }
910
911 /**
912 * task_curr - is this task currently executing on a CPU?
913 * @p: the task in question.
914 *
915 * Return: 1 if the task is currently executing. 0 otherwise.
916 */
917 inline int task_curr(const struct task_struct *p)
918 {
919 return cpu_curr(task_cpu(p)) == p;
920 }
921
922 /*
923 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
924 * use the balance_callback list if you want balancing.
925 *
926 * this means any call to check_class_changed() must be followed by a call to
927 * balance_callback().
928 */
929 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
930 const struct sched_class *prev_class,
931 int oldprio)
932 {
933 if (prev_class != p->sched_class) {
934 if (prev_class->switched_from)
935 prev_class->switched_from(rq, p);
936
937 p->sched_class->switched_to(rq, p);
938 } else if (oldprio != p->prio || dl_task(p))
939 p->sched_class->prio_changed(rq, p, oldprio);
940 }
941
942 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
943 {
944 const struct sched_class *class;
945
946 if (p->sched_class == rq->curr->sched_class) {
947 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
948 } else {
949 for_each_class(class) {
950 if (class == rq->curr->sched_class)
951 break;
952 if (class == p->sched_class) {
953 resched_curr(rq);
954 break;
955 }
956 }
957 }
958
959 /*
960 * A queue event has occurred, and we're going to schedule. In
961 * this case, we can save a useless back to back clock update.
962 */
963 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
964 rq_clock_skip_update(rq, true);
965 }
966
967 #ifdef CONFIG_SMP
968 /*
969 * This is how migration works:
970 *
971 * 1) we invoke migration_cpu_stop() on the target CPU using
972 * stop_one_cpu().
973 * 2) stopper starts to run (implicitly forcing the migrated thread
974 * off the CPU)
975 * 3) it checks whether the migrated task is still in the wrong runqueue.
976 * 4) if it's in the wrong runqueue then the migration thread removes
977 * it and puts it into the right queue.
978 * 5) stopper completes and stop_one_cpu() returns and the migration
979 * is done.
980 */
981
982 /*
983 * move_queued_task - move a queued task to new rq.
984 *
985 * Returns (locked) new rq. Old rq's lock is released.
986 */
987 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
988 {
989 lockdep_assert_held(&rq->lock);
990
991 p->on_rq = TASK_ON_RQ_MIGRATING;
992 dequeue_task(rq, p, 0);
993 set_task_cpu(p, new_cpu);
994 raw_spin_unlock(&rq->lock);
995
996 rq = cpu_rq(new_cpu);
997
998 raw_spin_lock(&rq->lock);
999 BUG_ON(task_cpu(p) != new_cpu);
1000 enqueue_task(rq, p, 0);
1001 p->on_rq = TASK_ON_RQ_QUEUED;
1002 check_preempt_curr(rq, p, 0);
1003
1004 return rq;
1005 }
1006
1007 struct migration_arg {
1008 struct task_struct *task;
1009 int dest_cpu;
1010 };
1011
1012 /*
1013 * Move (not current) task off this cpu, onto dest cpu. We're doing
1014 * this because either it can't run here any more (set_cpus_allowed()
1015 * away from this CPU, or CPU going down), or because we're
1016 * attempting to rebalance this task on exec (sched_exec).
1017 *
1018 * So we race with normal scheduler movements, but that's OK, as long
1019 * as the task is no longer on this CPU.
1020 */
1021 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1022 {
1023 if (unlikely(!cpu_active(dest_cpu)))
1024 return rq;
1025
1026 /* Affinity changed (again). */
1027 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1028 return rq;
1029
1030 rq = move_queued_task(rq, p, dest_cpu);
1031
1032 return rq;
1033 }
1034
1035 /*
1036 * migration_cpu_stop - this will be executed by a highprio stopper thread
1037 * and performs thread migration by bumping thread off CPU then
1038 * 'pushing' onto another runqueue.
1039 */
1040 static int migration_cpu_stop(void *data)
1041 {
1042 struct migration_arg *arg = data;
1043 struct task_struct *p = arg->task;
1044 struct rq *rq = this_rq();
1045
1046 /*
1047 * The original target cpu might have gone down and we might
1048 * be on another cpu but it doesn't matter.
1049 */
1050 local_irq_disable();
1051 /*
1052 * We need to explicitly wake pending tasks before running
1053 * __migrate_task() such that we will not miss enforcing cpus_allowed
1054 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1055 */
1056 sched_ttwu_pending();
1057
1058 raw_spin_lock(&p->pi_lock);
1059 raw_spin_lock(&rq->lock);
1060 /*
1061 * If task_rq(p) != rq, it cannot be migrated here, because we're
1062 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1063 * we're holding p->pi_lock.
1064 */
1065 if (task_rq(p) == rq && task_on_rq_queued(p))
1066 rq = __migrate_task(rq, p, arg->dest_cpu);
1067 raw_spin_unlock(&rq->lock);
1068 raw_spin_unlock(&p->pi_lock);
1069
1070 local_irq_enable();
1071 return 0;
1072 }
1073
1074 /*
1075 * sched_class::set_cpus_allowed must do the below, but is not required to
1076 * actually call this function.
1077 */
1078 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1079 {
1080 cpumask_copy(&p->cpus_allowed, new_mask);
1081 p->nr_cpus_allowed = cpumask_weight(new_mask);
1082 }
1083
1084 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1085 {
1086 struct rq *rq = task_rq(p);
1087 bool queued, running;
1088
1089 lockdep_assert_held(&p->pi_lock);
1090
1091 queued = task_on_rq_queued(p);
1092 running = task_current(rq, p);
1093
1094 if (queued) {
1095 /*
1096 * Because __kthread_bind() calls this on blocked tasks without
1097 * holding rq->lock.
1098 */
1099 lockdep_assert_held(&rq->lock);
1100 dequeue_task(rq, p, DEQUEUE_SAVE);
1101 }
1102 if (running)
1103 put_prev_task(rq, p);
1104
1105 p->sched_class->set_cpus_allowed(p, new_mask);
1106
1107 if (running)
1108 p->sched_class->set_curr_task(rq);
1109 if (queued)
1110 enqueue_task(rq, p, ENQUEUE_RESTORE);
1111 }
1112
1113 /*
1114 * Change a given task's CPU affinity. Migrate the thread to a
1115 * proper CPU and schedule it away if the CPU it's executing on
1116 * is removed from the allowed bitmask.
1117 *
1118 * NOTE: the caller must have a valid reference to the task, the
1119 * task must not exit() & deallocate itself prematurely. The
1120 * call is not atomic; no spinlocks may be held.
1121 */
1122 static int __set_cpus_allowed_ptr(struct task_struct *p,
1123 const struct cpumask *new_mask, bool check)
1124 {
1125 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1126 unsigned int dest_cpu;
1127 struct rq_flags rf;
1128 struct rq *rq;
1129 int ret = 0;
1130
1131 rq = task_rq_lock(p, &rf);
1132
1133 if (p->flags & PF_KTHREAD) {
1134 /*
1135 * Kernel threads are allowed on online && !active CPUs
1136 */
1137 cpu_valid_mask = cpu_online_mask;
1138 }
1139
1140 /*
1141 * Must re-check here, to close a race against __kthread_bind(),
1142 * sched_setaffinity() is not guaranteed to observe the flag.
1143 */
1144 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1145 ret = -EINVAL;
1146 goto out;
1147 }
1148
1149 if (cpumask_equal(&p->cpus_allowed, new_mask))
1150 goto out;
1151
1152 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1153 ret = -EINVAL;
1154 goto out;
1155 }
1156
1157 do_set_cpus_allowed(p, new_mask);
1158
1159 if (p->flags & PF_KTHREAD) {
1160 /*
1161 * For kernel threads that do indeed end up on online &&
1162 * !active we want to ensure they are strict per-cpu threads.
1163 */
1164 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1165 !cpumask_intersects(new_mask, cpu_active_mask) &&
1166 p->nr_cpus_allowed != 1);
1167 }
1168
1169 /* Can the task run on the task's current CPU? If so, we're done */
1170 if (cpumask_test_cpu(task_cpu(p), new_mask))
1171 goto out;
1172
1173 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1174 if (task_running(rq, p) || p->state == TASK_WAKING) {
1175 struct migration_arg arg = { p, dest_cpu };
1176 /* Need help from migration thread: drop lock and wait. */
1177 task_rq_unlock(rq, p, &rf);
1178 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1179 tlb_migrate_finish(p->mm);
1180 return 0;
1181 } else if (task_on_rq_queued(p)) {
1182 /*
1183 * OK, since we're going to drop the lock immediately
1184 * afterwards anyway.
1185 */
1186 lockdep_unpin_lock(&rq->lock, rf.cookie);
1187 rq = move_queued_task(rq, p, dest_cpu);
1188 lockdep_repin_lock(&rq->lock, rf.cookie);
1189 }
1190 out:
1191 task_rq_unlock(rq, p, &rf);
1192
1193 return ret;
1194 }
1195
1196 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1197 {
1198 return __set_cpus_allowed_ptr(p, new_mask, false);
1199 }
1200 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1201
1202 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1203 {
1204 #ifdef CONFIG_SCHED_DEBUG
1205 /*
1206 * We should never call set_task_cpu() on a blocked task,
1207 * ttwu() will sort out the placement.
1208 */
1209 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1210 !p->on_rq);
1211
1212 /*
1213 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1214 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1215 * time relying on p->on_rq.
1216 */
1217 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1218 p->sched_class == &fair_sched_class &&
1219 (p->on_rq && !task_on_rq_migrating(p)));
1220
1221 #ifdef CONFIG_LOCKDEP
1222 /*
1223 * The caller should hold either p->pi_lock or rq->lock, when changing
1224 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1225 *
1226 * sched_move_task() holds both and thus holding either pins the cgroup,
1227 * see task_group().
1228 *
1229 * Furthermore, all task_rq users should acquire both locks, see
1230 * task_rq_lock().
1231 */
1232 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1233 lockdep_is_held(&task_rq(p)->lock)));
1234 #endif
1235 #endif
1236
1237 trace_sched_migrate_task(p, new_cpu);
1238
1239 if (task_cpu(p) != new_cpu) {
1240 if (p->sched_class->migrate_task_rq)
1241 p->sched_class->migrate_task_rq(p);
1242 p->se.nr_migrations++;
1243 perf_event_task_migrate(p);
1244 }
1245
1246 __set_task_cpu(p, new_cpu);
1247 }
1248
1249 static void __migrate_swap_task(struct task_struct *p, int cpu)
1250 {
1251 if (task_on_rq_queued(p)) {
1252 struct rq *src_rq, *dst_rq;
1253
1254 src_rq = task_rq(p);
1255 dst_rq = cpu_rq(cpu);
1256
1257 p->on_rq = TASK_ON_RQ_MIGRATING;
1258 deactivate_task(src_rq, p, 0);
1259 set_task_cpu(p, cpu);
1260 activate_task(dst_rq, p, 0);
1261 p->on_rq = TASK_ON_RQ_QUEUED;
1262 check_preempt_curr(dst_rq, p, 0);
1263 } else {
1264 /*
1265 * Task isn't running anymore; make it appear like we migrated
1266 * it before it went to sleep. This means on wakeup we make the
1267 * previous cpu our targer instead of where it really is.
1268 */
1269 p->wake_cpu = cpu;
1270 }
1271 }
1272
1273 struct migration_swap_arg {
1274 struct task_struct *src_task, *dst_task;
1275 int src_cpu, dst_cpu;
1276 };
1277
1278 static int migrate_swap_stop(void *data)
1279 {
1280 struct migration_swap_arg *arg = data;
1281 struct rq *src_rq, *dst_rq;
1282 int ret = -EAGAIN;
1283
1284 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1285 return -EAGAIN;
1286
1287 src_rq = cpu_rq(arg->src_cpu);
1288 dst_rq = cpu_rq(arg->dst_cpu);
1289
1290 double_raw_lock(&arg->src_task->pi_lock,
1291 &arg->dst_task->pi_lock);
1292 double_rq_lock(src_rq, dst_rq);
1293
1294 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1295 goto unlock;
1296
1297 if (task_cpu(arg->src_task) != arg->src_cpu)
1298 goto unlock;
1299
1300 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1301 goto unlock;
1302
1303 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1304 goto unlock;
1305
1306 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1307 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1308
1309 ret = 0;
1310
1311 unlock:
1312 double_rq_unlock(src_rq, dst_rq);
1313 raw_spin_unlock(&arg->dst_task->pi_lock);
1314 raw_spin_unlock(&arg->src_task->pi_lock);
1315
1316 return ret;
1317 }
1318
1319 /*
1320 * Cross migrate two tasks
1321 */
1322 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1323 {
1324 struct migration_swap_arg arg;
1325 int ret = -EINVAL;
1326
1327 arg = (struct migration_swap_arg){
1328 .src_task = cur,
1329 .src_cpu = task_cpu(cur),
1330 .dst_task = p,
1331 .dst_cpu = task_cpu(p),
1332 };
1333
1334 if (arg.src_cpu == arg.dst_cpu)
1335 goto out;
1336
1337 /*
1338 * These three tests are all lockless; this is OK since all of them
1339 * will be re-checked with proper locks held further down the line.
1340 */
1341 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1342 goto out;
1343
1344 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1345 goto out;
1346
1347 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1348 goto out;
1349
1350 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1351 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1352
1353 out:
1354 return ret;
1355 }
1356
1357 /*
1358 * wait_task_inactive - wait for a thread to unschedule.
1359 *
1360 * If @match_state is nonzero, it's the @p->state value just checked and
1361 * not expected to change. If it changes, i.e. @p might have woken up,
1362 * then return zero. When we succeed in waiting for @p to be off its CPU,
1363 * we return a positive number (its total switch count). If a second call
1364 * a short while later returns the same number, the caller can be sure that
1365 * @p has remained unscheduled the whole time.
1366 *
1367 * The caller must ensure that the task *will* unschedule sometime soon,
1368 * else this function might spin for a *long* time. This function can't
1369 * be called with interrupts off, or it may introduce deadlock with
1370 * smp_call_function() if an IPI is sent by the same process we are
1371 * waiting to become inactive.
1372 */
1373 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1374 {
1375 int running, queued;
1376 struct rq_flags rf;
1377 unsigned long ncsw;
1378 struct rq *rq;
1379
1380 for (;;) {
1381 /*
1382 * We do the initial early heuristics without holding
1383 * any task-queue locks at all. We'll only try to get
1384 * the runqueue lock when things look like they will
1385 * work out!
1386 */
1387 rq = task_rq(p);
1388
1389 /*
1390 * If the task is actively running on another CPU
1391 * still, just relax and busy-wait without holding
1392 * any locks.
1393 *
1394 * NOTE! Since we don't hold any locks, it's not
1395 * even sure that "rq" stays as the right runqueue!
1396 * But we don't care, since "task_running()" will
1397 * return false if the runqueue has changed and p
1398 * is actually now running somewhere else!
1399 */
1400 while (task_running(rq, p)) {
1401 if (match_state && unlikely(p->state != match_state))
1402 return 0;
1403 cpu_relax();
1404 }
1405
1406 /*
1407 * Ok, time to look more closely! We need the rq
1408 * lock now, to be *sure*. If we're wrong, we'll
1409 * just go back and repeat.
1410 */
1411 rq = task_rq_lock(p, &rf);
1412 trace_sched_wait_task(p);
1413 running = task_running(rq, p);
1414 queued = task_on_rq_queued(p);
1415 ncsw = 0;
1416 if (!match_state || p->state == match_state)
1417 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1418 task_rq_unlock(rq, p, &rf);
1419
1420 /*
1421 * If it changed from the expected state, bail out now.
1422 */
1423 if (unlikely(!ncsw))
1424 break;
1425
1426 /*
1427 * Was it really running after all now that we
1428 * checked with the proper locks actually held?
1429 *
1430 * Oops. Go back and try again..
1431 */
1432 if (unlikely(running)) {
1433 cpu_relax();
1434 continue;
1435 }
1436
1437 /*
1438 * It's not enough that it's not actively running,
1439 * it must be off the runqueue _entirely_, and not
1440 * preempted!
1441 *
1442 * So if it was still runnable (but just not actively
1443 * running right now), it's preempted, and we should
1444 * yield - it could be a while.
1445 */
1446 if (unlikely(queued)) {
1447 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1448
1449 set_current_state(TASK_UNINTERRUPTIBLE);
1450 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1451 continue;
1452 }
1453
1454 /*
1455 * Ahh, all good. It wasn't running, and it wasn't
1456 * runnable, which means that it will never become
1457 * running in the future either. We're all done!
1458 */
1459 break;
1460 }
1461
1462 return ncsw;
1463 }
1464
1465 /***
1466 * kick_process - kick a running thread to enter/exit the kernel
1467 * @p: the to-be-kicked thread
1468 *
1469 * Cause a process which is running on another CPU to enter
1470 * kernel-mode, without any delay. (to get signals handled.)
1471 *
1472 * NOTE: this function doesn't have to take the runqueue lock,
1473 * because all it wants to ensure is that the remote task enters
1474 * the kernel. If the IPI races and the task has been migrated
1475 * to another CPU then no harm is done and the purpose has been
1476 * achieved as well.
1477 */
1478 void kick_process(struct task_struct *p)
1479 {
1480 int cpu;
1481
1482 preempt_disable();
1483 cpu = task_cpu(p);
1484 if ((cpu != smp_processor_id()) && task_curr(p))
1485 smp_send_reschedule(cpu);
1486 preempt_enable();
1487 }
1488 EXPORT_SYMBOL_GPL(kick_process);
1489
1490 /*
1491 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1492 *
1493 * A few notes on cpu_active vs cpu_online:
1494 *
1495 * - cpu_active must be a subset of cpu_online
1496 *
1497 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1498 * see __set_cpus_allowed_ptr(). At this point the newly online
1499 * cpu isn't yet part of the sched domains, and balancing will not
1500 * see it.
1501 *
1502 * - on cpu-down we clear cpu_active() to mask the sched domains and
1503 * avoid the load balancer to place new tasks on the to be removed
1504 * cpu. Existing tasks will remain running there and will be taken
1505 * off.
1506 *
1507 * This means that fallback selection must not select !active CPUs.
1508 * And can assume that any active CPU must be online. Conversely
1509 * select_task_rq() below may allow selection of !active CPUs in order
1510 * to satisfy the above rules.
1511 */
1512 static int select_fallback_rq(int cpu, struct task_struct *p)
1513 {
1514 int nid = cpu_to_node(cpu);
1515 const struct cpumask *nodemask = NULL;
1516 enum { cpuset, possible, fail } state = cpuset;
1517 int dest_cpu;
1518
1519 /*
1520 * If the node that the cpu is on has been offlined, cpu_to_node()
1521 * will return -1. There is no cpu on the node, and we should
1522 * select the cpu on the other node.
1523 */
1524 if (nid != -1) {
1525 nodemask = cpumask_of_node(nid);
1526
1527 /* Look for allowed, online CPU in same node. */
1528 for_each_cpu(dest_cpu, nodemask) {
1529 if (!cpu_active(dest_cpu))
1530 continue;
1531 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1532 return dest_cpu;
1533 }
1534 }
1535
1536 for (;;) {
1537 /* Any allowed, online CPU? */
1538 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1539 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1540 continue;
1541 if (!cpu_online(dest_cpu))
1542 continue;
1543 goto out;
1544 }
1545
1546 /* No more Mr. Nice Guy. */
1547 switch (state) {
1548 case cpuset:
1549 if (IS_ENABLED(CONFIG_CPUSETS)) {
1550 cpuset_cpus_allowed_fallback(p);
1551 state = possible;
1552 break;
1553 }
1554 /* fall-through */
1555 case possible:
1556 do_set_cpus_allowed(p, cpu_possible_mask);
1557 state = fail;
1558 break;
1559
1560 case fail:
1561 BUG();
1562 break;
1563 }
1564 }
1565
1566 out:
1567 if (state != cpuset) {
1568 /*
1569 * Don't tell them about moving exiting tasks or
1570 * kernel threads (both mm NULL), since they never
1571 * leave kernel.
1572 */
1573 if (p->mm && printk_ratelimit()) {
1574 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1575 task_pid_nr(p), p->comm, cpu);
1576 }
1577 }
1578
1579 return dest_cpu;
1580 }
1581
1582 /*
1583 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1584 */
1585 static inline
1586 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1587 {
1588 lockdep_assert_held(&p->pi_lock);
1589
1590 if (tsk_nr_cpus_allowed(p) > 1)
1591 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1592 else
1593 cpu = cpumask_any(tsk_cpus_allowed(p));
1594
1595 /*
1596 * In order not to call set_task_cpu() on a blocking task we need
1597 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1598 * cpu.
1599 *
1600 * Since this is common to all placement strategies, this lives here.
1601 *
1602 * [ this allows ->select_task() to simply return task_cpu(p) and
1603 * not worry about this generic constraint ]
1604 */
1605 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1606 !cpu_online(cpu)))
1607 cpu = select_fallback_rq(task_cpu(p), p);
1608
1609 return cpu;
1610 }
1611
1612 static void update_avg(u64 *avg, u64 sample)
1613 {
1614 s64 diff = sample - *avg;
1615 *avg += diff >> 3;
1616 }
1617
1618 #else
1619
1620 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1621 const struct cpumask *new_mask, bool check)
1622 {
1623 return set_cpus_allowed_ptr(p, new_mask);
1624 }
1625
1626 #endif /* CONFIG_SMP */
1627
1628 static void
1629 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1630 {
1631 #ifdef CONFIG_SCHEDSTATS
1632 struct rq *rq = this_rq();
1633
1634 #ifdef CONFIG_SMP
1635 int this_cpu = smp_processor_id();
1636
1637 if (cpu == this_cpu) {
1638 schedstat_inc(rq, ttwu_local);
1639 schedstat_inc(p, se.statistics.nr_wakeups_local);
1640 } else {
1641 struct sched_domain *sd;
1642
1643 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1644 rcu_read_lock();
1645 for_each_domain(this_cpu, sd) {
1646 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1647 schedstat_inc(sd, ttwu_wake_remote);
1648 break;
1649 }
1650 }
1651 rcu_read_unlock();
1652 }
1653
1654 if (wake_flags & WF_MIGRATED)
1655 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1656
1657 #endif /* CONFIG_SMP */
1658
1659 schedstat_inc(rq, ttwu_count);
1660 schedstat_inc(p, se.statistics.nr_wakeups);
1661
1662 if (wake_flags & WF_SYNC)
1663 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1664
1665 #endif /* CONFIG_SCHEDSTATS */
1666 }
1667
1668 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1669 {
1670 activate_task(rq, p, en_flags);
1671 p->on_rq = TASK_ON_RQ_QUEUED;
1672
1673 /* if a worker is waking up, notify workqueue */
1674 if (p->flags & PF_WQ_WORKER)
1675 wq_worker_waking_up(p, cpu_of(rq));
1676 }
1677
1678 /*
1679 * Mark the task runnable and perform wakeup-preemption.
1680 */
1681 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1682 struct pin_cookie cookie)
1683 {
1684 check_preempt_curr(rq, p, wake_flags);
1685 p->state = TASK_RUNNING;
1686 trace_sched_wakeup(p);
1687
1688 #ifdef CONFIG_SMP
1689 if (p->sched_class->task_woken) {
1690 /*
1691 * Our task @p is fully woken up and running; so its safe to
1692 * drop the rq->lock, hereafter rq is only used for statistics.
1693 */
1694 lockdep_unpin_lock(&rq->lock, cookie);
1695 p->sched_class->task_woken(rq, p);
1696 lockdep_repin_lock(&rq->lock, cookie);
1697 }
1698
1699 if (rq->idle_stamp) {
1700 u64 delta = rq_clock(rq) - rq->idle_stamp;
1701 u64 max = 2*rq->max_idle_balance_cost;
1702
1703 update_avg(&rq->avg_idle, delta);
1704
1705 if (rq->avg_idle > max)
1706 rq->avg_idle = max;
1707
1708 rq->idle_stamp = 0;
1709 }
1710 #endif
1711 }
1712
1713 static void
1714 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1715 struct pin_cookie cookie)
1716 {
1717 int en_flags = ENQUEUE_WAKEUP;
1718
1719 lockdep_assert_held(&rq->lock);
1720
1721 #ifdef CONFIG_SMP
1722 if (p->sched_contributes_to_load)
1723 rq->nr_uninterruptible--;
1724
1725 if (wake_flags & WF_MIGRATED)
1726 en_flags |= ENQUEUE_MIGRATED;
1727 #endif
1728
1729 ttwu_activate(rq, p, en_flags);
1730 ttwu_do_wakeup(rq, p, wake_flags, cookie);
1731 }
1732
1733 /*
1734 * Called in case the task @p isn't fully descheduled from its runqueue,
1735 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1736 * since all we need to do is flip p->state to TASK_RUNNING, since
1737 * the task is still ->on_rq.
1738 */
1739 static int ttwu_remote(struct task_struct *p, int wake_flags)
1740 {
1741 struct rq_flags rf;
1742 struct rq *rq;
1743 int ret = 0;
1744
1745 rq = __task_rq_lock(p, &rf);
1746 if (task_on_rq_queued(p)) {
1747 /* check_preempt_curr() may use rq clock */
1748 update_rq_clock(rq);
1749 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1750 ret = 1;
1751 }
1752 __task_rq_unlock(rq, &rf);
1753
1754 return ret;
1755 }
1756
1757 #ifdef CONFIG_SMP
1758 void sched_ttwu_pending(void)
1759 {
1760 struct rq *rq = this_rq();
1761 struct llist_node *llist = llist_del_all(&rq->wake_list);
1762 struct pin_cookie cookie;
1763 struct task_struct *p;
1764 unsigned long flags;
1765
1766 if (!llist)
1767 return;
1768
1769 raw_spin_lock_irqsave(&rq->lock, flags);
1770 cookie = lockdep_pin_lock(&rq->lock);
1771
1772 while (llist) {
1773 int wake_flags = 0;
1774
1775 p = llist_entry(llist, struct task_struct, wake_entry);
1776 llist = llist_next(llist);
1777
1778 if (p->sched_remote_wakeup)
1779 wake_flags = WF_MIGRATED;
1780
1781 ttwu_do_activate(rq, p, wake_flags, cookie);
1782 }
1783
1784 lockdep_unpin_lock(&rq->lock, cookie);
1785 raw_spin_unlock_irqrestore(&rq->lock, flags);
1786 }
1787
1788 void scheduler_ipi(void)
1789 {
1790 /*
1791 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1792 * TIF_NEED_RESCHED remotely (for the first time) will also send
1793 * this IPI.
1794 */
1795 preempt_fold_need_resched();
1796
1797 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1798 return;
1799
1800 /*
1801 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1802 * traditionally all their work was done from the interrupt return
1803 * path. Now that we actually do some work, we need to make sure
1804 * we do call them.
1805 *
1806 * Some archs already do call them, luckily irq_enter/exit nest
1807 * properly.
1808 *
1809 * Arguably we should visit all archs and update all handlers,
1810 * however a fair share of IPIs are still resched only so this would
1811 * somewhat pessimize the simple resched case.
1812 */
1813 irq_enter();
1814 sched_ttwu_pending();
1815
1816 /*
1817 * Check if someone kicked us for doing the nohz idle load balance.
1818 */
1819 if (unlikely(got_nohz_idle_kick())) {
1820 this_rq()->idle_balance = 1;
1821 raise_softirq_irqoff(SCHED_SOFTIRQ);
1822 }
1823 irq_exit();
1824 }
1825
1826 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1827 {
1828 struct rq *rq = cpu_rq(cpu);
1829
1830 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1831
1832 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1833 if (!set_nr_if_polling(rq->idle))
1834 smp_send_reschedule(cpu);
1835 else
1836 trace_sched_wake_idle_without_ipi(cpu);
1837 }
1838 }
1839
1840 void wake_up_if_idle(int cpu)
1841 {
1842 struct rq *rq = cpu_rq(cpu);
1843 unsigned long flags;
1844
1845 rcu_read_lock();
1846
1847 if (!is_idle_task(rcu_dereference(rq->curr)))
1848 goto out;
1849
1850 if (set_nr_if_polling(rq->idle)) {
1851 trace_sched_wake_idle_without_ipi(cpu);
1852 } else {
1853 raw_spin_lock_irqsave(&rq->lock, flags);
1854 if (is_idle_task(rq->curr))
1855 smp_send_reschedule(cpu);
1856 /* Else cpu is not in idle, do nothing here */
1857 raw_spin_unlock_irqrestore(&rq->lock, flags);
1858 }
1859
1860 out:
1861 rcu_read_unlock();
1862 }
1863
1864 bool cpus_share_cache(int this_cpu, int that_cpu)
1865 {
1866 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1867 }
1868 #endif /* CONFIG_SMP */
1869
1870 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1871 {
1872 struct rq *rq = cpu_rq(cpu);
1873 struct pin_cookie cookie;
1874
1875 #if defined(CONFIG_SMP)
1876 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1877 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1878 ttwu_queue_remote(p, cpu, wake_flags);
1879 return;
1880 }
1881 #endif
1882
1883 raw_spin_lock(&rq->lock);
1884 cookie = lockdep_pin_lock(&rq->lock);
1885 ttwu_do_activate(rq, p, wake_flags, cookie);
1886 lockdep_unpin_lock(&rq->lock, cookie);
1887 raw_spin_unlock(&rq->lock);
1888 }
1889
1890 /*
1891 * Notes on Program-Order guarantees on SMP systems.
1892 *
1893 * MIGRATION
1894 *
1895 * The basic program-order guarantee on SMP systems is that when a task [t]
1896 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1897 * execution on its new cpu [c1].
1898 *
1899 * For migration (of runnable tasks) this is provided by the following means:
1900 *
1901 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1902 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1903 * rq(c1)->lock (if not at the same time, then in that order).
1904 * C) LOCK of the rq(c1)->lock scheduling in task
1905 *
1906 * Transitivity guarantees that B happens after A and C after B.
1907 * Note: we only require RCpc transitivity.
1908 * Note: the cpu doing B need not be c0 or c1
1909 *
1910 * Example:
1911 *
1912 * CPU0 CPU1 CPU2
1913 *
1914 * LOCK rq(0)->lock
1915 * sched-out X
1916 * sched-in Y
1917 * UNLOCK rq(0)->lock
1918 *
1919 * LOCK rq(0)->lock // orders against CPU0
1920 * dequeue X
1921 * UNLOCK rq(0)->lock
1922 *
1923 * LOCK rq(1)->lock
1924 * enqueue X
1925 * UNLOCK rq(1)->lock
1926 *
1927 * LOCK rq(1)->lock // orders against CPU2
1928 * sched-out Z
1929 * sched-in X
1930 * UNLOCK rq(1)->lock
1931 *
1932 *
1933 * BLOCKING -- aka. SLEEP + WAKEUP
1934 *
1935 * For blocking we (obviously) need to provide the same guarantee as for
1936 * migration. However the means are completely different as there is no lock
1937 * chain to provide order. Instead we do:
1938 *
1939 * 1) smp_store_release(X->on_cpu, 0)
1940 * 2) smp_cond_acquire(!X->on_cpu)
1941 *
1942 * Example:
1943 *
1944 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1945 *
1946 * LOCK rq(0)->lock LOCK X->pi_lock
1947 * dequeue X
1948 * sched-out X
1949 * smp_store_release(X->on_cpu, 0);
1950 *
1951 * smp_cond_acquire(!X->on_cpu);
1952 * X->state = WAKING
1953 * set_task_cpu(X,2)
1954 *
1955 * LOCK rq(2)->lock
1956 * enqueue X
1957 * X->state = RUNNING
1958 * UNLOCK rq(2)->lock
1959 *
1960 * LOCK rq(2)->lock // orders against CPU1
1961 * sched-out Z
1962 * sched-in X
1963 * UNLOCK rq(2)->lock
1964 *
1965 * UNLOCK X->pi_lock
1966 * UNLOCK rq(0)->lock
1967 *
1968 *
1969 * However; for wakeups there is a second guarantee we must provide, namely we
1970 * must observe the state that lead to our wakeup. That is, not only must our
1971 * task observe its own prior state, it must also observe the stores prior to
1972 * its wakeup.
1973 *
1974 * This means that any means of doing remote wakeups must order the CPU doing
1975 * the wakeup against the CPU the task is going to end up running on. This,
1976 * however, is already required for the regular Program-Order guarantee above,
1977 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1978 *
1979 */
1980
1981 /**
1982 * try_to_wake_up - wake up a thread
1983 * @p: the thread to be awakened
1984 * @state: the mask of task states that can be woken
1985 * @wake_flags: wake modifier flags (WF_*)
1986 *
1987 * Put it on the run-queue if it's not already there. The "current"
1988 * thread is always on the run-queue (except when the actual
1989 * re-schedule is in progress), and as such you're allowed to do
1990 * the simpler "current->state = TASK_RUNNING" to mark yourself
1991 * runnable without the overhead of this.
1992 *
1993 * Return: %true if @p was woken up, %false if it was already running.
1994 * or @state didn't match @p's state.
1995 */
1996 static int
1997 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1998 {
1999 unsigned long flags;
2000 int cpu, success = 0;
2001
2002 /*
2003 * If we are going to wake up a thread waiting for CONDITION we
2004 * need to ensure that CONDITION=1 done by the caller can not be
2005 * reordered with p->state check below. This pairs with mb() in
2006 * set_current_state() the waiting thread does.
2007 */
2008 smp_mb__before_spinlock();
2009 raw_spin_lock_irqsave(&p->pi_lock, flags);
2010 if (!(p->state & state))
2011 goto out;
2012
2013 trace_sched_waking(p);
2014
2015 success = 1; /* we're going to change ->state */
2016 cpu = task_cpu(p);
2017
2018 if (p->on_rq && ttwu_remote(p, wake_flags))
2019 goto stat;
2020
2021 #ifdef CONFIG_SMP
2022 /*
2023 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2024 * possible to, falsely, observe p->on_cpu == 0.
2025 *
2026 * One must be running (->on_cpu == 1) in order to remove oneself
2027 * from the runqueue.
2028 *
2029 * [S] ->on_cpu = 1; [L] ->on_rq
2030 * UNLOCK rq->lock
2031 * RMB
2032 * LOCK rq->lock
2033 * [S] ->on_rq = 0; [L] ->on_cpu
2034 *
2035 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2036 * from the consecutive calls to schedule(); the first switching to our
2037 * task, the second putting it to sleep.
2038 */
2039 smp_rmb();
2040
2041 /*
2042 * If the owning (remote) cpu is still in the middle of schedule() with
2043 * this task as prev, wait until its done referencing the task.
2044 *
2045 * Pairs with the smp_store_release() in finish_lock_switch().
2046 *
2047 * This ensures that tasks getting woken will be fully ordered against
2048 * their previous state and preserve Program Order.
2049 */
2050 smp_cond_acquire(!p->on_cpu);
2051
2052 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2053 p->state = TASK_WAKING;
2054
2055 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2056 if (task_cpu(p) != cpu) {
2057 wake_flags |= WF_MIGRATED;
2058 set_task_cpu(p, cpu);
2059 }
2060 #endif /* CONFIG_SMP */
2061
2062 ttwu_queue(p, cpu, wake_flags);
2063 stat:
2064 if (schedstat_enabled())
2065 ttwu_stat(p, cpu, wake_flags);
2066 out:
2067 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2068
2069 return success;
2070 }
2071
2072 /**
2073 * try_to_wake_up_local - try to wake up a local task with rq lock held
2074 * @p: the thread to be awakened
2075 *
2076 * Put @p on the run-queue if it's not already there. The caller must
2077 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2078 * the current task.
2079 */
2080 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2081 {
2082 struct rq *rq = task_rq(p);
2083
2084 if (WARN_ON_ONCE(rq != this_rq()) ||
2085 WARN_ON_ONCE(p == current))
2086 return;
2087
2088 lockdep_assert_held(&rq->lock);
2089
2090 if (!raw_spin_trylock(&p->pi_lock)) {
2091 /*
2092 * This is OK, because current is on_cpu, which avoids it being
2093 * picked for load-balance and preemption/IRQs are still
2094 * disabled avoiding further scheduler activity on it and we've
2095 * not yet picked a replacement task.
2096 */
2097 lockdep_unpin_lock(&rq->lock, cookie);
2098 raw_spin_unlock(&rq->lock);
2099 raw_spin_lock(&p->pi_lock);
2100 raw_spin_lock(&rq->lock);
2101 lockdep_repin_lock(&rq->lock, cookie);
2102 }
2103
2104 if (!(p->state & TASK_NORMAL))
2105 goto out;
2106
2107 trace_sched_waking(p);
2108
2109 if (!task_on_rq_queued(p))
2110 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2111
2112 ttwu_do_wakeup(rq, p, 0, cookie);
2113 if (schedstat_enabled())
2114 ttwu_stat(p, smp_processor_id(), 0);
2115 out:
2116 raw_spin_unlock(&p->pi_lock);
2117 }
2118
2119 /**
2120 * wake_up_process - Wake up a specific process
2121 * @p: The process to be woken up.
2122 *
2123 * Attempt to wake up the nominated process and move it to the set of runnable
2124 * processes.
2125 *
2126 * Return: 1 if the process was woken up, 0 if it was already running.
2127 *
2128 * It may be assumed that this function implies a write memory barrier before
2129 * changing the task state if and only if any tasks are woken up.
2130 */
2131 int wake_up_process(struct task_struct *p)
2132 {
2133 return try_to_wake_up(p, TASK_NORMAL, 0);
2134 }
2135 EXPORT_SYMBOL(wake_up_process);
2136
2137 int wake_up_state(struct task_struct *p, unsigned int state)
2138 {
2139 return try_to_wake_up(p, state, 0);
2140 }
2141
2142 /*
2143 * This function clears the sched_dl_entity static params.
2144 */
2145 void __dl_clear_params(struct task_struct *p)
2146 {
2147 struct sched_dl_entity *dl_se = &p->dl;
2148
2149 dl_se->dl_runtime = 0;
2150 dl_se->dl_deadline = 0;
2151 dl_se->dl_period = 0;
2152 dl_se->flags = 0;
2153 dl_se->dl_bw = 0;
2154
2155 dl_se->dl_throttled = 0;
2156 dl_se->dl_yielded = 0;
2157 }
2158
2159 /*
2160 * Perform scheduler related setup for a newly forked process p.
2161 * p is forked by current.
2162 *
2163 * __sched_fork() is basic setup used by init_idle() too:
2164 */
2165 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2166 {
2167 p->on_rq = 0;
2168
2169 p->se.on_rq = 0;
2170 p->se.exec_start = 0;
2171 p->se.sum_exec_runtime = 0;
2172 p->se.prev_sum_exec_runtime = 0;
2173 p->se.nr_migrations = 0;
2174 p->se.vruntime = 0;
2175 INIT_LIST_HEAD(&p->se.group_node);
2176
2177 #ifdef CONFIG_FAIR_GROUP_SCHED
2178 p->se.cfs_rq = NULL;
2179 #endif
2180
2181 #ifdef CONFIG_SCHEDSTATS
2182 /* Even if schedstat is disabled, there should not be garbage */
2183 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2184 #endif
2185
2186 RB_CLEAR_NODE(&p->dl.rb_node);
2187 init_dl_task_timer(&p->dl);
2188 __dl_clear_params(p);
2189
2190 INIT_LIST_HEAD(&p->rt.run_list);
2191 p->rt.timeout = 0;
2192 p->rt.time_slice = sched_rr_timeslice;
2193 p->rt.on_rq = 0;
2194 p->rt.on_list = 0;
2195
2196 #ifdef CONFIG_PREEMPT_NOTIFIERS
2197 INIT_HLIST_HEAD(&p->preempt_notifiers);
2198 #endif
2199
2200 #ifdef CONFIG_NUMA_BALANCING
2201 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2202 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2203 p->mm->numa_scan_seq = 0;
2204 }
2205
2206 if (clone_flags & CLONE_VM)
2207 p->numa_preferred_nid = current->numa_preferred_nid;
2208 else
2209 p->numa_preferred_nid = -1;
2210
2211 p->node_stamp = 0ULL;
2212 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2213 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2214 p->numa_work.next = &p->numa_work;
2215 p->numa_faults = NULL;
2216 p->last_task_numa_placement = 0;
2217 p->last_sum_exec_runtime = 0;
2218
2219 p->numa_group = NULL;
2220 #endif /* CONFIG_NUMA_BALANCING */
2221 }
2222
2223 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2224
2225 #ifdef CONFIG_NUMA_BALANCING
2226
2227 void set_numabalancing_state(bool enabled)
2228 {
2229 if (enabled)
2230 static_branch_enable(&sched_numa_balancing);
2231 else
2232 static_branch_disable(&sched_numa_balancing);
2233 }
2234
2235 #ifdef CONFIG_PROC_SYSCTL
2236 int sysctl_numa_balancing(struct ctl_table *table, int write,
2237 void __user *buffer, size_t *lenp, loff_t *ppos)
2238 {
2239 struct ctl_table t;
2240 int err;
2241 int state = static_branch_likely(&sched_numa_balancing);
2242
2243 if (write && !capable(CAP_SYS_ADMIN))
2244 return -EPERM;
2245
2246 t = *table;
2247 t.data = &state;
2248 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2249 if (err < 0)
2250 return err;
2251 if (write)
2252 set_numabalancing_state(state);
2253 return err;
2254 }
2255 #endif
2256 #endif
2257
2258 #ifdef CONFIG_SCHEDSTATS
2259
2260 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2261 static bool __initdata __sched_schedstats = false;
2262
2263 static void set_schedstats(bool enabled)
2264 {
2265 if (enabled)
2266 static_branch_enable(&sched_schedstats);
2267 else
2268 static_branch_disable(&sched_schedstats);
2269 }
2270
2271 void force_schedstat_enabled(void)
2272 {
2273 if (!schedstat_enabled()) {
2274 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2275 static_branch_enable(&sched_schedstats);
2276 }
2277 }
2278
2279 static int __init setup_schedstats(char *str)
2280 {
2281 int ret = 0;
2282 if (!str)
2283 goto out;
2284
2285 /*
2286 * This code is called before jump labels have been set up, so we can't
2287 * change the static branch directly just yet. Instead set a temporary
2288 * variable so init_schedstats() can do it later.
2289 */
2290 if (!strcmp(str, "enable")) {
2291 __sched_schedstats = true;
2292 ret = 1;
2293 } else if (!strcmp(str, "disable")) {
2294 __sched_schedstats = false;
2295 ret = 1;
2296 }
2297 out:
2298 if (!ret)
2299 pr_warn("Unable to parse schedstats=\n");
2300
2301 return ret;
2302 }
2303 __setup("schedstats=", setup_schedstats);
2304
2305 static void __init init_schedstats(void)
2306 {
2307 set_schedstats(__sched_schedstats);
2308 }
2309
2310 #ifdef CONFIG_PROC_SYSCTL
2311 int sysctl_schedstats(struct ctl_table *table, int write,
2312 void __user *buffer, size_t *lenp, loff_t *ppos)
2313 {
2314 struct ctl_table t;
2315 int err;
2316 int state = static_branch_likely(&sched_schedstats);
2317
2318 if (write && !capable(CAP_SYS_ADMIN))
2319 return -EPERM;
2320
2321 t = *table;
2322 t.data = &state;
2323 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2324 if (err < 0)
2325 return err;
2326 if (write)
2327 set_schedstats(state);
2328 return err;
2329 }
2330 #endif /* CONFIG_PROC_SYSCTL */
2331 #else /* !CONFIG_SCHEDSTATS */
2332 static inline void init_schedstats(void) {}
2333 #endif /* CONFIG_SCHEDSTATS */
2334
2335 /*
2336 * fork()/clone()-time setup:
2337 */
2338 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2339 {
2340 unsigned long flags;
2341 int cpu = get_cpu();
2342
2343 __sched_fork(clone_flags, p);
2344 /*
2345 * We mark the process as NEW here. This guarantees that
2346 * nobody will actually run it, and a signal or other external
2347 * event cannot wake it up and insert it on the runqueue either.
2348 */
2349 p->state = TASK_NEW;
2350
2351 /*
2352 * Make sure we do not leak PI boosting priority to the child.
2353 */
2354 p->prio = current->normal_prio;
2355
2356 /*
2357 * Revert to default priority/policy on fork if requested.
2358 */
2359 if (unlikely(p->sched_reset_on_fork)) {
2360 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2361 p->policy = SCHED_NORMAL;
2362 p->static_prio = NICE_TO_PRIO(0);
2363 p->rt_priority = 0;
2364 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2365 p->static_prio = NICE_TO_PRIO(0);
2366
2367 p->prio = p->normal_prio = __normal_prio(p);
2368 set_load_weight(p);
2369
2370 /*
2371 * We don't need the reset flag anymore after the fork. It has
2372 * fulfilled its duty:
2373 */
2374 p->sched_reset_on_fork = 0;
2375 }
2376
2377 if (dl_prio(p->prio)) {
2378 put_cpu();
2379 return -EAGAIN;
2380 } else if (rt_prio(p->prio)) {
2381 p->sched_class = &rt_sched_class;
2382 } else {
2383 p->sched_class = &fair_sched_class;
2384 }
2385
2386 init_entity_runnable_average(&p->se);
2387
2388 /*
2389 * The child is not yet in the pid-hash so no cgroup attach races,
2390 * and the cgroup is pinned to this child due to cgroup_fork()
2391 * is ran before sched_fork().
2392 *
2393 * Silence PROVE_RCU.
2394 */
2395 raw_spin_lock_irqsave(&p->pi_lock, flags);
2396 /*
2397 * We're setting the cpu for the first time, we don't migrate,
2398 * so use __set_task_cpu().
2399 */
2400 __set_task_cpu(p, cpu);
2401 if (p->sched_class->task_fork)
2402 p->sched_class->task_fork(p);
2403 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2404
2405 #ifdef CONFIG_SCHED_INFO
2406 if (likely(sched_info_on()))
2407 memset(&p->sched_info, 0, sizeof(p->sched_info));
2408 #endif
2409 #if defined(CONFIG_SMP)
2410 p->on_cpu = 0;
2411 #endif
2412 init_task_preempt_count(p);
2413 #ifdef CONFIG_SMP
2414 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2415 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2416 #endif
2417
2418 put_cpu();
2419 return 0;
2420 }
2421
2422 unsigned long to_ratio(u64 period, u64 runtime)
2423 {
2424 if (runtime == RUNTIME_INF)
2425 return 1ULL << 20;
2426
2427 /*
2428 * Doing this here saves a lot of checks in all
2429 * the calling paths, and returning zero seems
2430 * safe for them anyway.
2431 */
2432 if (period == 0)
2433 return 0;
2434
2435 return div64_u64(runtime << 20, period);
2436 }
2437
2438 #ifdef CONFIG_SMP
2439 inline struct dl_bw *dl_bw_of(int i)
2440 {
2441 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2442 "sched RCU must be held");
2443 return &cpu_rq(i)->rd->dl_bw;
2444 }
2445
2446 static inline int dl_bw_cpus(int i)
2447 {
2448 struct root_domain *rd = cpu_rq(i)->rd;
2449 int cpus = 0;
2450
2451 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2452 "sched RCU must be held");
2453 for_each_cpu_and(i, rd->span, cpu_active_mask)
2454 cpus++;
2455
2456 return cpus;
2457 }
2458 #else
2459 inline struct dl_bw *dl_bw_of(int i)
2460 {
2461 return &cpu_rq(i)->dl.dl_bw;
2462 }
2463
2464 static inline int dl_bw_cpus(int i)
2465 {
2466 return 1;
2467 }
2468 #endif
2469
2470 /*
2471 * We must be sure that accepting a new task (or allowing changing the
2472 * parameters of an existing one) is consistent with the bandwidth
2473 * constraints. If yes, this function also accordingly updates the currently
2474 * allocated bandwidth to reflect the new situation.
2475 *
2476 * This function is called while holding p's rq->lock.
2477 *
2478 * XXX we should delay bw change until the task's 0-lag point, see
2479 * __setparam_dl().
2480 */
2481 static int dl_overflow(struct task_struct *p, int policy,
2482 const struct sched_attr *attr)
2483 {
2484
2485 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2486 u64 period = attr->sched_period ?: attr->sched_deadline;
2487 u64 runtime = attr->sched_runtime;
2488 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2489 int cpus, err = -1;
2490
2491 /* !deadline task may carry old deadline bandwidth */
2492 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2493 return 0;
2494
2495 /*
2496 * Either if a task, enters, leave, or stays -deadline but changes
2497 * its parameters, we may need to update accordingly the total
2498 * allocated bandwidth of the container.
2499 */
2500 raw_spin_lock(&dl_b->lock);
2501 cpus = dl_bw_cpus(task_cpu(p));
2502 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2503 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2504 __dl_add(dl_b, new_bw);
2505 err = 0;
2506 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2507 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2508 __dl_clear(dl_b, p->dl.dl_bw);
2509 __dl_add(dl_b, new_bw);
2510 err = 0;
2511 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2512 __dl_clear(dl_b, p->dl.dl_bw);
2513 err = 0;
2514 }
2515 raw_spin_unlock(&dl_b->lock);
2516
2517 return err;
2518 }
2519
2520 extern void init_dl_bw(struct dl_bw *dl_b);
2521
2522 /*
2523 * wake_up_new_task - wake up a newly created task for the first time.
2524 *
2525 * This function will do some initial scheduler statistics housekeeping
2526 * that must be done for every newly created context, then puts the task
2527 * on the runqueue and wakes it.
2528 */
2529 void wake_up_new_task(struct task_struct *p)
2530 {
2531 struct rq_flags rf;
2532 struct rq *rq;
2533
2534 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2535 p->state = TASK_RUNNING;
2536 #ifdef CONFIG_SMP
2537 /*
2538 * Fork balancing, do it here and not earlier because:
2539 * - cpus_allowed can change in the fork path
2540 * - any previously selected cpu might disappear through hotplug
2541 *
2542 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2543 * as we're not fully set-up yet.
2544 */
2545 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2546 #endif
2547 rq = __task_rq_lock(p, &rf);
2548 post_init_entity_util_avg(&p->se);
2549
2550 activate_task(rq, p, 0);
2551 p->on_rq = TASK_ON_RQ_QUEUED;
2552 trace_sched_wakeup_new(p);
2553 check_preempt_curr(rq, p, WF_FORK);
2554 #ifdef CONFIG_SMP
2555 if (p->sched_class->task_woken) {
2556 /*
2557 * Nothing relies on rq->lock after this, so its fine to
2558 * drop it.
2559 */
2560 lockdep_unpin_lock(&rq->lock, rf.cookie);
2561 p->sched_class->task_woken(rq, p);
2562 lockdep_repin_lock(&rq->lock, rf.cookie);
2563 }
2564 #endif
2565 task_rq_unlock(rq, p, &rf);
2566 }
2567
2568 #ifdef CONFIG_PREEMPT_NOTIFIERS
2569
2570 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2571
2572 void preempt_notifier_inc(void)
2573 {
2574 static_key_slow_inc(&preempt_notifier_key);
2575 }
2576 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2577
2578 void preempt_notifier_dec(void)
2579 {
2580 static_key_slow_dec(&preempt_notifier_key);
2581 }
2582 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2583
2584 /**
2585 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2586 * @notifier: notifier struct to register
2587 */
2588 void preempt_notifier_register(struct preempt_notifier *notifier)
2589 {
2590 if (!static_key_false(&preempt_notifier_key))
2591 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2592
2593 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2594 }
2595 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2596
2597 /**
2598 * preempt_notifier_unregister - no longer interested in preemption notifications
2599 * @notifier: notifier struct to unregister
2600 *
2601 * This is *not* safe to call from within a preemption notifier.
2602 */
2603 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2604 {
2605 hlist_del(&notifier->link);
2606 }
2607 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2608
2609 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2610 {
2611 struct preempt_notifier *notifier;
2612
2613 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2614 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2615 }
2616
2617 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2618 {
2619 if (static_key_false(&preempt_notifier_key))
2620 __fire_sched_in_preempt_notifiers(curr);
2621 }
2622
2623 static void
2624 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2625 struct task_struct *next)
2626 {
2627 struct preempt_notifier *notifier;
2628
2629 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2630 notifier->ops->sched_out(notifier, next);
2631 }
2632
2633 static __always_inline void
2634 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2635 struct task_struct *next)
2636 {
2637 if (static_key_false(&preempt_notifier_key))
2638 __fire_sched_out_preempt_notifiers(curr, next);
2639 }
2640
2641 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2642
2643 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2644 {
2645 }
2646
2647 static inline void
2648 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2649 struct task_struct *next)
2650 {
2651 }
2652
2653 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2654
2655 /**
2656 * prepare_task_switch - prepare to switch tasks
2657 * @rq: the runqueue preparing to switch
2658 * @prev: the current task that is being switched out
2659 * @next: the task we are going to switch to.
2660 *
2661 * This is called with the rq lock held and interrupts off. It must
2662 * be paired with a subsequent finish_task_switch after the context
2663 * switch.
2664 *
2665 * prepare_task_switch sets up locking and calls architecture specific
2666 * hooks.
2667 */
2668 static inline void
2669 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2670 struct task_struct *next)
2671 {
2672 sched_info_switch(rq, prev, next);
2673 perf_event_task_sched_out(prev, next);
2674 fire_sched_out_preempt_notifiers(prev, next);
2675 prepare_lock_switch(rq, next);
2676 prepare_arch_switch(next);
2677 }
2678
2679 /**
2680 * finish_task_switch - clean up after a task-switch
2681 * @prev: the thread we just switched away from.
2682 *
2683 * finish_task_switch must be called after the context switch, paired
2684 * with a prepare_task_switch call before the context switch.
2685 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2686 * and do any other architecture-specific cleanup actions.
2687 *
2688 * Note that we may have delayed dropping an mm in context_switch(). If
2689 * so, we finish that here outside of the runqueue lock. (Doing it
2690 * with the lock held can cause deadlocks; see schedule() for
2691 * details.)
2692 *
2693 * The context switch have flipped the stack from under us and restored the
2694 * local variables which were saved when this task called schedule() in the
2695 * past. prev == current is still correct but we need to recalculate this_rq
2696 * because prev may have moved to another CPU.
2697 */
2698 static struct rq *finish_task_switch(struct task_struct *prev)
2699 __releases(rq->lock)
2700 {
2701 struct rq *rq = this_rq();
2702 struct mm_struct *mm = rq->prev_mm;
2703 long prev_state;
2704
2705 /*
2706 * The previous task will have left us with a preempt_count of 2
2707 * because it left us after:
2708 *
2709 * schedule()
2710 * preempt_disable(); // 1
2711 * __schedule()
2712 * raw_spin_lock_irq(&rq->lock) // 2
2713 *
2714 * Also, see FORK_PREEMPT_COUNT.
2715 */
2716 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2717 "corrupted preempt_count: %s/%d/0x%x\n",
2718 current->comm, current->pid, preempt_count()))
2719 preempt_count_set(FORK_PREEMPT_COUNT);
2720
2721 rq->prev_mm = NULL;
2722
2723 /*
2724 * A task struct has one reference for the use as "current".
2725 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2726 * schedule one last time. The schedule call will never return, and
2727 * the scheduled task must drop that reference.
2728 *
2729 * We must observe prev->state before clearing prev->on_cpu (in
2730 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2731 * running on another CPU and we could rave with its RUNNING -> DEAD
2732 * transition, resulting in a double drop.
2733 */
2734 prev_state = prev->state;
2735 vtime_task_switch(prev);
2736 perf_event_task_sched_in(prev, current);
2737 finish_lock_switch(rq, prev);
2738 finish_arch_post_lock_switch();
2739
2740 fire_sched_in_preempt_notifiers(current);
2741 if (mm)
2742 mmdrop(mm);
2743 if (unlikely(prev_state == TASK_DEAD)) {
2744 if (prev->sched_class->task_dead)
2745 prev->sched_class->task_dead(prev);
2746
2747 /*
2748 * Remove function-return probe instances associated with this
2749 * task and put them back on the free list.
2750 */
2751 kprobe_flush_task(prev);
2752 put_task_struct(prev);
2753 }
2754
2755 tick_nohz_task_switch();
2756 return rq;
2757 }
2758
2759 #ifdef CONFIG_SMP
2760
2761 /* rq->lock is NOT held, but preemption is disabled */
2762 static void __balance_callback(struct rq *rq)
2763 {
2764 struct callback_head *head, *next;
2765 void (*func)(struct rq *rq);
2766 unsigned long flags;
2767
2768 raw_spin_lock_irqsave(&rq->lock, flags);
2769 head = rq->balance_callback;
2770 rq->balance_callback = NULL;
2771 while (head) {
2772 func = (void (*)(struct rq *))head->func;
2773 next = head->next;
2774 head->next = NULL;
2775 head = next;
2776
2777 func(rq);
2778 }
2779 raw_spin_unlock_irqrestore(&rq->lock, flags);
2780 }
2781
2782 static inline void balance_callback(struct rq *rq)
2783 {
2784 if (unlikely(rq->balance_callback))
2785 __balance_callback(rq);
2786 }
2787
2788 #else
2789
2790 static inline void balance_callback(struct rq *rq)
2791 {
2792 }
2793
2794 #endif
2795
2796 /**
2797 * schedule_tail - first thing a freshly forked thread must call.
2798 * @prev: the thread we just switched away from.
2799 */
2800 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2801 __releases(rq->lock)
2802 {
2803 struct rq *rq;
2804
2805 /*
2806 * New tasks start with FORK_PREEMPT_COUNT, see there and
2807 * finish_task_switch() for details.
2808 *
2809 * finish_task_switch() will drop rq->lock() and lower preempt_count
2810 * and the preempt_enable() will end up enabling preemption (on
2811 * PREEMPT_COUNT kernels).
2812 */
2813
2814 rq = finish_task_switch(prev);
2815 balance_callback(rq);
2816 preempt_enable();
2817
2818 if (current->set_child_tid)
2819 put_user(task_pid_vnr(current), current->set_child_tid);
2820 }
2821
2822 /*
2823 * context_switch - switch to the new MM and the new thread's register state.
2824 */
2825 static __always_inline struct rq *
2826 context_switch(struct rq *rq, struct task_struct *prev,
2827 struct task_struct *next, struct pin_cookie cookie)
2828 {
2829 struct mm_struct *mm, *oldmm;
2830
2831 prepare_task_switch(rq, prev, next);
2832
2833 mm = next->mm;
2834 oldmm = prev->active_mm;
2835 /*
2836 * For paravirt, this is coupled with an exit in switch_to to
2837 * combine the page table reload and the switch backend into
2838 * one hypercall.
2839 */
2840 arch_start_context_switch(prev);
2841
2842 if (!mm) {
2843 next->active_mm = oldmm;
2844 atomic_inc(&oldmm->mm_count);
2845 enter_lazy_tlb(oldmm, next);
2846 } else
2847 switch_mm_irqs_off(oldmm, mm, next);
2848
2849 if (!prev->mm) {
2850 prev->active_mm = NULL;
2851 rq->prev_mm = oldmm;
2852 }
2853 /*
2854 * Since the runqueue lock will be released by the next
2855 * task (which is an invalid locking op but in the case
2856 * of the scheduler it's an obvious special-case), so we
2857 * do an early lockdep release here:
2858 */
2859 lockdep_unpin_lock(&rq->lock, cookie);
2860 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2861
2862 /* Here we just switch the register state and the stack. */
2863 switch_to(prev, next, prev);
2864 barrier();
2865
2866 return finish_task_switch(prev);
2867 }
2868
2869 /*
2870 * nr_running and nr_context_switches:
2871 *
2872 * externally visible scheduler statistics: current number of runnable
2873 * threads, total number of context switches performed since bootup.
2874 */
2875 unsigned long nr_running(void)
2876 {
2877 unsigned long i, sum = 0;
2878
2879 for_each_online_cpu(i)
2880 sum += cpu_rq(i)->nr_running;
2881
2882 return sum;
2883 }
2884
2885 /*
2886 * Check if only the current task is running on the cpu.
2887 *
2888 * Caution: this function does not check that the caller has disabled
2889 * preemption, thus the result might have a time-of-check-to-time-of-use
2890 * race. The caller is responsible to use it correctly, for example:
2891 *
2892 * - from a non-preemptable section (of course)
2893 *
2894 * - from a thread that is bound to a single CPU
2895 *
2896 * - in a loop with very short iterations (e.g. a polling loop)
2897 */
2898 bool single_task_running(void)
2899 {
2900 return raw_rq()->nr_running == 1;
2901 }
2902 EXPORT_SYMBOL(single_task_running);
2903
2904 unsigned long long nr_context_switches(void)
2905 {
2906 int i;
2907 unsigned long long sum = 0;
2908
2909 for_each_possible_cpu(i)
2910 sum += cpu_rq(i)->nr_switches;
2911
2912 return sum;
2913 }
2914
2915 unsigned long nr_iowait(void)
2916 {
2917 unsigned long i, sum = 0;
2918
2919 for_each_possible_cpu(i)
2920 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2921
2922 return sum;
2923 }
2924
2925 unsigned long nr_iowait_cpu(int cpu)
2926 {
2927 struct rq *this = cpu_rq(cpu);
2928 return atomic_read(&this->nr_iowait);
2929 }
2930
2931 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2932 {
2933 struct rq *rq = this_rq();
2934 *nr_waiters = atomic_read(&rq->nr_iowait);
2935 *load = rq->load.weight;
2936 }
2937
2938 #ifdef CONFIG_SMP
2939
2940 /*
2941 * sched_exec - execve() is a valuable balancing opportunity, because at
2942 * this point the task has the smallest effective memory and cache footprint.
2943 */
2944 void sched_exec(void)
2945 {
2946 struct task_struct *p = current;
2947 unsigned long flags;
2948 int dest_cpu;
2949
2950 raw_spin_lock_irqsave(&p->pi_lock, flags);
2951 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2952 if (dest_cpu == smp_processor_id())
2953 goto unlock;
2954
2955 if (likely(cpu_active(dest_cpu))) {
2956 struct migration_arg arg = { p, dest_cpu };
2957
2958 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2959 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2960 return;
2961 }
2962 unlock:
2963 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2964 }
2965
2966 #endif
2967
2968 DEFINE_PER_CPU(struct kernel_stat, kstat);
2969 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2970
2971 EXPORT_PER_CPU_SYMBOL(kstat);
2972 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2973
2974 /*
2975 * Return accounted runtime for the task.
2976 * In case the task is currently running, return the runtime plus current's
2977 * pending runtime that have not been accounted yet.
2978 */
2979 unsigned long long task_sched_runtime(struct task_struct *p)
2980 {
2981 struct rq_flags rf;
2982 struct rq *rq;
2983 u64 ns;
2984
2985 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2986 /*
2987 * 64-bit doesn't need locks to atomically read a 64bit value.
2988 * So we have a optimization chance when the task's delta_exec is 0.
2989 * Reading ->on_cpu is racy, but this is ok.
2990 *
2991 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2992 * If we race with it entering cpu, unaccounted time is 0. This is
2993 * indistinguishable from the read occurring a few cycles earlier.
2994 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2995 * been accounted, so we're correct here as well.
2996 */
2997 if (!p->on_cpu || !task_on_rq_queued(p))
2998 return p->se.sum_exec_runtime;
2999 #endif
3000
3001 rq = task_rq_lock(p, &rf);
3002 /*
3003 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3004 * project cycles that may never be accounted to this
3005 * thread, breaking clock_gettime().
3006 */
3007 if (task_current(rq, p) && task_on_rq_queued(p)) {
3008 update_rq_clock(rq);
3009 p->sched_class->update_curr(rq);
3010 }
3011 ns = p->se.sum_exec_runtime;
3012 task_rq_unlock(rq, p, &rf);
3013
3014 return ns;
3015 }
3016
3017 /*
3018 * This function gets called by the timer code, with HZ frequency.
3019 * We call it with interrupts disabled.
3020 */
3021 void scheduler_tick(void)
3022 {
3023 int cpu = smp_processor_id();
3024 struct rq *rq = cpu_rq(cpu);
3025 struct task_struct *curr = rq->curr;
3026
3027 sched_clock_tick();
3028
3029 raw_spin_lock(&rq->lock);
3030 update_rq_clock(rq);
3031 curr->sched_class->task_tick(rq, curr, 0);
3032 cpu_load_update_active(rq);
3033 calc_global_load_tick(rq);
3034 raw_spin_unlock(&rq->lock);
3035
3036 perf_event_task_tick();
3037
3038 #ifdef CONFIG_SMP
3039 rq->idle_balance = idle_cpu(cpu);
3040 trigger_load_balance(rq);
3041 #endif
3042 rq_last_tick_reset(rq);
3043 }
3044
3045 #ifdef CONFIG_NO_HZ_FULL
3046 /**
3047 * scheduler_tick_max_deferment
3048 *
3049 * Keep at least one tick per second when a single
3050 * active task is running because the scheduler doesn't
3051 * yet completely support full dynticks environment.
3052 *
3053 * This makes sure that uptime, CFS vruntime, load
3054 * balancing, etc... continue to move forward, even
3055 * with a very low granularity.
3056 *
3057 * Return: Maximum deferment in nanoseconds.
3058 */
3059 u64 scheduler_tick_max_deferment(void)
3060 {
3061 struct rq *rq = this_rq();
3062 unsigned long next, now = READ_ONCE(jiffies);
3063
3064 next = rq->last_sched_tick + HZ;
3065
3066 if (time_before_eq(next, now))
3067 return 0;
3068
3069 return jiffies_to_nsecs(next - now);
3070 }
3071 #endif
3072
3073 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3074 defined(CONFIG_PREEMPT_TRACER))
3075 /*
3076 * If the value passed in is equal to the current preempt count
3077 * then we just disabled preemption. Start timing the latency.
3078 */
3079 static inline void preempt_latency_start(int val)
3080 {
3081 if (preempt_count() == val) {
3082 unsigned long ip = get_lock_parent_ip();
3083 #ifdef CONFIG_DEBUG_PREEMPT
3084 current->preempt_disable_ip = ip;
3085 #endif
3086 trace_preempt_off(CALLER_ADDR0, ip);
3087 }
3088 }
3089
3090 void preempt_count_add(int val)
3091 {
3092 #ifdef CONFIG_DEBUG_PREEMPT
3093 /*
3094 * Underflow?
3095 */
3096 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3097 return;
3098 #endif
3099 __preempt_count_add(val);
3100 #ifdef CONFIG_DEBUG_PREEMPT
3101 /*
3102 * Spinlock count overflowing soon?
3103 */
3104 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3105 PREEMPT_MASK - 10);
3106 #endif
3107 preempt_latency_start(val);
3108 }
3109 EXPORT_SYMBOL(preempt_count_add);
3110 NOKPROBE_SYMBOL(preempt_count_add);
3111
3112 /*
3113 * If the value passed in equals to the current preempt count
3114 * then we just enabled preemption. Stop timing the latency.
3115 */
3116 static inline void preempt_latency_stop(int val)
3117 {
3118 if (preempt_count() == val)
3119 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3120 }
3121
3122 void preempt_count_sub(int val)
3123 {
3124 #ifdef CONFIG_DEBUG_PREEMPT
3125 /*
3126 * Underflow?
3127 */
3128 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3129 return;
3130 /*
3131 * Is the spinlock portion underflowing?
3132 */
3133 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3134 !(preempt_count() & PREEMPT_MASK)))
3135 return;
3136 #endif
3137
3138 preempt_latency_stop(val);
3139 __preempt_count_sub(val);
3140 }
3141 EXPORT_SYMBOL(preempt_count_sub);
3142 NOKPROBE_SYMBOL(preempt_count_sub);
3143
3144 #else
3145 static inline void preempt_latency_start(int val) { }
3146 static inline void preempt_latency_stop(int val) { }
3147 #endif
3148
3149 /*
3150 * Print scheduling while atomic bug:
3151 */
3152 static noinline void __schedule_bug(struct task_struct *prev)
3153 {
3154 if (oops_in_progress)
3155 return;
3156
3157 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3158 prev->comm, prev->pid, preempt_count());
3159
3160 debug_show_held_locks(prev);
3161 print_modules();
3162 if (irqs_disabled())
3163 print_irqtrace_events(prev);
3164 #ifdef CONFIG_DEBUG_PREEMPT
3165 if (in_atomic_preempt_off()) {
3166 pr_err("Preemption disabled at:");
3167 print_ip_sym(current->preempt_disable_ip);
3168 pr_cont("\n");
3169 }
3170 #endif
3171 dump_stack();
3172 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3173 }
3174
3175 /*
3176 * Various schedule()-time debugging checks and statistics:
3177 */
3178 static inline void schedule_debug(struct task_struct *prev)
3179 {
3180 #ifdef CONFIG_SCHED_STACK_END_CHECK
3181 if (task_stack_end_corrupted(prev))
3182 panic("corrupted stack end detected inside scheduler\n");
3183 #endif
3184
3185 if (unlikely(in_atomic_preempt_off())) {
3186 __schedule_bug(prev);
3187 preempt_count_set(PREEMPT_DISABLED);
3188 }
3189 rcu_sleep_check();
3190
3191 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3192
3193 schedstat_inc(this_rq(), sched_count);
3194 }
3195
3196 /*
3197 * Pick up the highest-prio task:
3198 */
3199 static inline struct task_struct *
3200 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3201 {
3202 const struct sched_class *class = &fair_sched_class;
3203 struct task_struct *p;
3204
3205 /*
3206 * Optimization: we know that if all tasks are in
3207 * the fair class we can call that function directly:
3208 */
3209 if (likely(prev->sched_class == class &&
3210 rq->nr_running == rq->cfs.h_nr_running)) {
3211 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3212 if (unlikely(p == RETRY_TASK))
3213 goto again;
3214
3215 /* assumes fair_sched_class->next == idle_sched_class */
3216 if (unlikely(!p))
3217 p = idle_sched_class.pick_next_task(rq, prev, cookie);
3218
3219 return p;
3220 }
3221
3222 again:
3223 for_each_class(class) {
3224 p = class->pick_next_task(rq, prev, cookie);
3225 if (p) {
3226 if (unlikely(p == RETRY_TASK))
3227 goto again;
3228 return p;
3229 }
3230 }
3231
3232 BUG(); /* the idle class will always have a runnable task */
3233 }
3234
3235 /*
3236 * __schedule() is the main scheduler function.
3237 *
3238 * The main means of driving the scheduler and thus entering this function are:
3239 *
3240 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3241 *
3242 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3243 * paths. For example, see arch/x86/entry_64.S.
3244 *
3245 * To drive preemption between tasks, the scheduler sets the flag in timer
3246 * interrupt handler scheduler_tick().
3247 *
3248 * 3. Wakeups don't really cause entry into schedule(). They add a
3249 * task to the run-queue and that's it.
3250 *
3251 * Now, if the new task added to the run-queue preempts the current
3252 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3253 * called on the nearest possible occasion:
3254 *
3255 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3256 *
3257 * - in syscall or exception context, at the next outmost
3258 * preempt_enable(). (this might be as soon as the wake_up()'s
3259 * spin_unlock()!)
3260 *
3261 * - in IRQ context, return from interrupt-handler to
3262 * preemptible context
3263 *
3264 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3265 * then at the next:
3266 *
3267 * - cond_resched() call
3268 * - explicit schedule() call
3269 * - return from syscall or exception to user-space
3270 * - return from interrupt-handler to user-space
3271 *
3272 * WARNING: must be called with preemption disabled!
3273 */
3274 static void __sched notrace __schedule(bool preempt)
3275 {
3276 struct task_struct *prev, *next;
3277 unsigned long *switch_count;
3278 struct pin_cookie cookie;
3279 struct rq *rq;
3280 int cpu;
3281
3282 cpu = smp_processor_id();
3283 rq = cpu_rq(cpu);
3284 prev = rq->curr;
3285
3286 /*
3287 * do_exit() calls schedule() with preemption disabled as an exception;
3288 * however we must fix that up, otherwise the next task will see an
3289 * inconsistent (higher) preempt count.
3290 *
3291 * It also avoids the below schedule_debug() test from complaining
3292 * about this.
3293 */
3294 if (unlikely(prev->state == TASK_DEAD))
3295 preempt_enable_no_resched_notrace();
3296
3297 schedule_debug(prev);
3298
3299 if (sched_feat(HRTICK))
3300 hrtick_clear(rq);
3301
3302 local_irq_disable();
3303 rcu_note_context_switch();
3304
3305 /*
3306 * Make sure that signal_pending_state()->signal_pending() below
3307 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3308 * done by the caller to avoid the race with signal_wake_up().
3309 */
3310 smp_mb__before_spinlock();
3311 raw_spin_lock(&rq->lock);
3312 cookie = lockdep_pin_lock(&rq->lock);
3313
3314 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3315
3316 switch_count = &prev->nivcsw;
3317 if (!preempt && prev->state) {
3318 if (unlikely(signal_pending_state(prev->state, prev))) {
3319 prev->state = TASK_RUNNING;
3320 } else {
3321 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3322 prev->on_rq = 0;
3323
3324 /*
3325 * If a worker went to sleep, notify and ask workqueue
3326 * whether it wants to wake up a task to maintain
3327 * concurrency.
3328 */
3329 if (prev->flags & PF_WQ_WORKER) {
3330 struct task_struct *to_wakeup;
3331
3332 to_wakeup = wq_worker_sleeping(prev);
3333 if (to_wakeup)
3334 try_to_wake_up_local(to_wakeup, cookie);
3335 }
3336 }
3337 switch_count = &prev->nvcsw;
3338 }
3339
3340 if (task_on_rq_queued(prev))
3341 update_rq_clock(rq);
3342
3343 next = pick_next_task(rq, prev, cookie);
3344 clear_tsk_need_resched(prev);
3345 clear_preempt_need_resched();
3346 rq->clock_skip_update = 0;
3347
3348 if (likely(prev != next)) {
3349 rq->nr_switches++;
3350 rq->curr = next;
3351 ++*switch_count;
3352
3353 trace_sched_switch(preempt, prev, next);
3354 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3355 } else {
3356 lockdep_unpin_lock(&rq->lock, cookie);
3357 raw_spin_unlock_irq(&rq->lock);
3358 }
3359
3360 balance_callback(rq);
3361 }
3362 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3363
3364 static inline void sched_submit_work(struct task_struct *tsk)
3365 {
3366 if (!tsk->state || tsk_is_pi_blocked(tsk))
3367 return;
3368 /*
3369 * If we are going to sleep and we have plugged IO queued,
3370 * make sure to submit it to avoid deadlocks.
3371 */
3372 if (blk_needs_flush_plug(tsk))
3373 blk_schedule_flush_plug(tsk);
3374 }
3375
3376 asmlinkage __visible void __sched schedule(void)
3377 {
3378 struct task_struct *tsk = current;
3379
3380 sched_submit_work(tsk);
3381 do {
3382 preempt_disable();
3383 __schedule(false);
3384 sched_preempt_enable_no_resched();
3385 } while (need_resched());
3386 }
3387 EXPORT_SYMBOL(schedule);
3388
3389 #ifdef CONFIG_CONTEXT_TRACKING
3390 asmlinkage __visible void __sched schedule_user(void)
3391 {
3392 /*
3393 * If we come here after a random call to set_need_resched(),
3394 * or we have been woken up remotely but the IPI has not yet arrived,
3395 * we haven't yet exited the RCU idle mode. Do it here manually until
3396 * we find a better solution.
3397 *
3398 * NB: There are buggy callers of this function. Ideally we
3399 * should warn if prev_state != CONTEXT_USER, but that will trigger
3400 * too frequently to make sense yet.
3401 */
3402 enum ctx_state prev_state = exception_enter();
3403 schedule();
3404 exception_exit(prev_state);
3405 }
3406 #endif
3407
3408 /**
3409 * schedule_preempt_disabled - called with preemption disabled
3410 *
3411 * Returns with preemption disabled. Note: preempt_count must be 1
3412 */
3413 void __sched schedule_preempt_disabled(void)
3414 {
3415 sched_preempt_enable_no_resched();
3416 schedule();
3417 preempt_disable();
3418 }
3419
3420 static void __sched notrace preempt_schedule_common(void)
3421 {
3422 do {
3423 /*
3424 * Because the function tracer can trace preempt_count_sub()
3425 * and it also uses preempt_enable/disable_notrace(), if
3426 * NEED_RESCHED is set, the preempt_enable_notrace() called
3427 * by the function tracer will call this function again and
3428 * cause infinite recursion.
3429 *
3430 * Preemption must be disabled here before the function
3431 * tracer can trace. Break up preempt_disable() into two
3432 * calls. One to disable preemption without fear of being
3433 * traced. The other to still record the preemption latency,
3434 * which can also be traced by the function tracer.
3435 */
3436 preempt_disable_notrace();
3437 preempt_latency_start(1);
3438 __schedule(true);
3439 preempt_latency_stop(1);
3440 preempt_enable_no_resched_notrace();
3441
3442 /*
3443 * Check again in case we missed a preemption opportunity
3444 * between schedule and now.
3445 */
3446 } while (need_resched());
3447 }
3448
3449 #ifdef CONFIG_PREEMPT
3450 /*
3451 * this is the entry point to schedule() from in-kernel preemption
3452 * off of preempt_enable. Kernel preemptions off return from interrupt
3453 * occur there and call schedule directly.
3454 */
3455 asmlinkage __visible void __sched notrace preempt_schedule(void)
3456 {
3457 /*
3458 * If there is a non-zero preempt_count or interrupts are disabled,
3459 * we do not want to preempt the current task. Just return..
3460 */
3461 if (likely(!preemptible()))
3462 return;
3463
3464 preempt_schedule_common();
3465 }
3466 NOKPROBE_SYMBOL(preempt_schedule);
3467 EXPORT_SYMBOL(preempt_schedule);
3468
3469 /**
3470 * preempt_schedule_notrace - preempt_schedule called by tracing
3471 *
3472 * The tracing infrastructure uses preempt_enable_notrace to prevent
3473 * recursion and tracing preempt enabling caused by the tracing
3474 * infrastructure itself. But as tracing can happen in areas coming
3475 * from userspace or just about to enter userspace, a preempt enable
3476 * can occur before user_exit() is called. This will cause the scheduler
3477 * to be called when the system is still in usermode.
3478 *
3479 * To prevent this, the preempt_enable_notrace will use this function
3480 * instead of preempt_schedule() to exit user context if needed before
3481 * calling the scheduler.
3482 */
3483 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3484 {
3485 enum ctx_state prev_ctx;
3486
3487 if (likely(!preemptible()))
3488 return;
3489
3490 do {
3491 /*
3492 * Because the function tracer can trace preempt_count_sub()
3493 * and it also uses preempt_enable/disable_notrace(), if
3494 * NEED_RESCHED is set, the preempt_enable_notrace() called
3495 * by the function tracer will call this function again and
3496 * cause infinite recursion.
3497 *
3498 * Preemption must be disabled here before the function
3499 * tracer can trace. Break up preempt_disable() into two
3500 * calls. One to disable preemption without fear of being
3501 * traced. The other to still record the preemption latency,
3502 * which can also be traced by the function tracer.
3503 */
3504 preempt_disable_notrace();
3505 preempt_latency_start(1);
3506 /*
3507 * Needs preempt disabled in case user_exit() is traced
3508 * and the tracer calls preempt_enable_notrace() causing
3509 * an infinite recursion.
3510 */
3511 prev_ctx = exception_enter();
3512 __schedule(true);
3513 exception_exit(prev_ctx);
3514
3515 preempt_latency_stop(1);
3516 preempt_enable_no_resched_notrace();
3517 } while (need_resched());
3518 }
3519 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3520
3521 #endif /* CONFIG_PREEMPT */
3522
3523 /*
3524 * this is the entry point to schedule() from kernel preemption
3525 * off of irq context.
3526 * Note, that this is called and return with irqs disabled. This will
3527 * protect us against recursive calling from irq.
3528 */
3529 asmlinkage __visible void __sched preempt_schedule_irq(void)
3530 {
3531 enum ctx_state prev_state;
3532
3533 /* Catch callers which need to be fixed */
3534 BUG_ON(preempt_count() || !irqs_disabled());
3535
3536 prev_state = exception_enter();
3537
3538 do {
3539 preempt_disable();
3540 local_irq_enable();
3541 __schedule(true);
3542 local_irq_disable();
3543 sched_preempt_enable_no_resched();
3544 } while (need_resched());
3545
3546 exception_exit(prev_state);
3547 }
3548
3549 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3550 void *key)
3551 {
3552 return try_to_wake_up(curr->private, mode, wake_flags);
3553 }
3554 EXPORT_SYMBOL(default_wake_function);
3555
3556 #ifdef CONFIG_RT_MUTEXES
3557
3558 /*
3559 * rt_mutex_setprio - set the current priority of a task
3560 * @p: task
3561 * @prio: prio value (kernel-internal form)
3562 *
3563 * This function changes the 'effective' priority of a task. It does
3564 * not touch ->normal_prio like __setscheduler().
3565 *
3566 * Used by the rt_mutex code to implement priority inheritance
3567 * logic. Call site only calls if the priority of the task changed.
3568 */
3569 void rt_mutex_setprio(struct task_struct *p, int prio)
3570 {
3571 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3572 const struct sched_class *prev_class;
3573 struct rq_flags rf;
3574 struct rq *rq;
3575
3576 BUG_ON(prio > MAX_PRIO);
3577
3578 rq = __task_rq_lock(p, &rf);
3579
3580 /*
3581 * Idle task boosting is a nono in general. There is one
3582 * exception, when PREEMPT_RT and NOHZ is active:
3583 *
3584 * The idle task calls get_next_timer_interrupt() and holds
3585 * the timer wheel base->lock on the CPU and another CPU wants
3586 * to access the timer (probably to cancel it). We can safely
3587 * ignore the boosting request, as the idle CPU runs this code
3588 * with interrupts disabled and will complete the lock
3589 * protected section without being interrupted. So there is no
3590 * real need to boost.
3591 */
3592 if (unlikely(p == rq->idle)) {
3593 WARN_ON(p != rq->curr);
3594 WARN_ON(p->pi_blocked_on);
3595 goto out_unlock;
3596 }
3597
3598 trace_sched_pi_setprio(p, prio);
3599 oldprio = p->prio;
3600
3601 if (oldprio == prio)
3602 queue_flag &= ~DEQUEUE_MOVE;
3603
3604 prev_class = p->sched_class;
3605 queued = task_on_rq_queued(p);
3606 running = task_current(rq, p);
3607 if (queued)
3608 dequeue_task(rq, p, queue_flag);
3609 if (running)
3610 put_prev_task(rq, p);
3611
3612 /*
3613 * Boosting condition are:
3614 * 1. -rt task is running and holds mutex A
3615 * --> -dl task blocks on mutex A
3616 *
3617 * 2. -dl task is running and holds mutex A
3618 * --> -dl task blocks on mutex A and could preempt the
3619 * running task
3620 */
3621 if (dl_prio(prio)) {
3622 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3623 if (!dl_prio(p->normal_prio) ||
3624 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3625 p->dl.dl_boosted = 1;
3626 queue_flag |= ENQUEUE_REPLENISH;
3627 } else
3628 p->dl.dl_boosted = 0;
3629 p->sched_class = &dl_sched_class;
3630 } else if (rt_prio(prio)) {
3631 if (dl_prio(oldprio))
3632 p->dl.dl_boosted = 0;
3633 if (oldprio < prio)
3634 queue_flag |= ENQUEUE_HEAD;
3635 p->sched_class = &rt_sched_class;
3636 } else {
3637 if (dl_prio(oldprio))
3638 p->dl.dl_boosted = 0;
3639 if (rt_prio(oldprio))
3640 p->rt.timeout = 0;
3641 p->sched_class = &fair_sched_class;
3642 }
3643
3644 p->prio = prio;
3645
3646 if (running)
3647 p->sched_class->set_curr_task(rq);
3648 if (queued)
3649 enqueue_task(rq, p, queue_flag);
3650
3651 check_class_changed(rq, p, prev_class, oldprio);
3652 out_unlock:
3653 preempt_disable(); /* avoid rq from going away on us */
3654 __task_rq_unlock(rq, &rf);
3655
3656 balance_callback(rq);
3657 preempt_enable();
3658 }
3659 #endif
3660
3661 void set_user_nice(struct task_struct *p, long nice)
3662 {
3663 int old_prio, delta, queued;
3664 struct rq_flags rf;
3665 struct rq *rq;
3666
3667 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3668 return;
3669 /*
3670 * We have to be careful, if called from sys_setpriority(),
3671 * the task might be in the middle of scheduling on another CPU.
3672 */
3673 rq = task_rq_lock(p, &rf);
3674 /*
3675 * The RT priorities are set via sched_setscheduler(), but we still
3676 * allow the 'normal' nice value to be set - but as expected
3677 * it wont have any effect on scheduling until the task is
3678 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3679 */
3680 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3681 p->static_prio = NICE_TO_PRIO(nice);
3682 goto out_unlock;
3683 }
3684 queued = task_on_rq_queued(p);
3685 if (queued)
3686 dequeue_task(rq, p, DEQUEUE_SAVE);
3687
3688 p->static_prio = NICE_TO_PRIO(nice);
3689 set_load_weight(p);
3690 old_prio = p->prio;
3691 p->prio = effective_prio(p);
3692 delta = p->prio - old_prio;
3693
3694 if (queued) {
3695 enqueue_task(rq, p, ENQUEUE_RESTORE);
3696 /*
3697 * If the task increased its priority or is running and
3698 * lowered its priority, then reschedule its CPU:
3699 */
3700 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3701 resched_curr(rq);
3702 }
3703 out_unlock:
3704 task_rq_unlock(rq, p, &rf);
3705 }
3706 EXPORT_SYMBOL(set_user_nice);
3707
3708 /*
3709 * can_nice - check if a task can reduce its nice value
3710 * @p: task
3711 * @nice: nice value
3712 */
3713 int can_nice(const struct task_struct *p, const int nice)
3714 {
3715 /* convert nice value [19,-20] to rlimit style value [1,40] */
3716 int nice_rlim = nice_to_rlimit(nice);
3717
3718 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3719 capable(CAP_SYS_NICE));
3720 }
3721
3722 #ifdef __ARCH_WANT_SYS_NICE
3723
3724 /*
3725 * sys_nice - change the priority of the current process.
3726 * @increment: priority increment
3727 *
3728 * sys_setpriority is a more generic, but much slower function that
3729 * does similar things.
3730 */
3731 SYSCALL_DEFINE1(nice, int, increment)
3732 {
3733 long nice, retval;
3734
3735 /*
3736 * Setpriority might change our priority at the same moment.
3737 * We don't have to worry. Conceptually one call occurs first
3738 * and we have a single winner.
3739 */
3740 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3741 nice = task_nice(current) + increment;
3742
3743 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3744 if (increment < 0 && !can_nice(current, nice))
3745 return -EPERM;
3746
3747 retval = security_task_setnice(current, nice);
3748 if (retval)
3749 return retval;
3750
3751 set_user_nice(current, nice);
3752 return 0;
3753 }
3754
3755 #endif
3756
3757 /**
3758 * task_prio - return the priority value of a given task.
3759 * @p: the task in question.
3760 *
3761 * Return: The priority value as seen by users in /proc.
3762 * RT tasks are offset by -200. Normal tasks are centered
3763 * around 0, value goes from -16 to +15.
3764 */
3765 int task_prio(const struct task_struct *p)
3766 {
3767 return p->prio - MAX_RT_PRIO;
3768 }
3769
3770 /**
3771 * idle_cpu - is a given cpu idle currently?
3772 * @cpu: the processor in question.
3773 *
3774 * Return: 1 if the CPU is currently idle. 0 otherwise.
3775 */
3776 int idle_cpu(int cpu)
3777 {
3778 struct rq *rq = cpu_rq(cpu);
3779
3780 if (rq->curr != rq->idle)
3781 return 0;
3782
3783 if (rq->nr_running)
3784 return 0;
3785
3786 #ifdef CONFIG_SMP
3787 if (!llist_empty(&rq->wake_list))
3788 return 0;
3789 #endif
3790
3791 return 1;
3792 }
3793
3794 /**
3795 * idle_task - return the idle task for a given cpu.
3796 * @cpu: the processor in question.
3797 *
3798 * Return: The idle task for the cpu @cpu.
3799 */
3800 struct task_struct *idle_task(int cpu)
3801 {
3802 return cpu_rq(cpu)->idle;
3803 }
3804
3805 /**
3806 * find_process_by_pid - find a process with a matching PID value.
3807 * @pid: the pid in question.
3808 *
3809 * The task of @pid, if found. %NULL otherwise.
3810 */
3811 static struct task_struct *find_process_by_pid(pid_t pid)
3812 {
3813 return pid ? find_task_by_vpid(pid) : current;
3814 }
3815
3816 /*
3817 * This function initializes the sched_dl_entity of a newly becoming
3818 * SCHED_DEADLINE task.
3819 *
3820 * Only the static values are considered here, the actual runtime and the
3821 * absolute deadline will be properly calculated when the task is enqueued
3822 * for the first time with its new policy.
3823 */
3824 static void
3825 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3826 {
3827 struct sched_dl_entity *dl_se = &p->dl;
3828
3829 dl_se->dl_runtime = attr->sched_runtime;
3830 dl_se->dl_deadline = attr->sched_deadline;
3831 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3832 dl_se->flags = attr->sched_flags;
3833 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3834
3835 /*
3836 * Changing the parameters of a task is 'tricky' and we're not doing
3837 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3838 *
3839 * What we SHOULD do is delay the bandwidth release until the 0-lag
3840 * point. This would include retaining the task_struct until that time
3841 * and change dl_overflow() to not immediately decrement the current
3842 * amount.
3843 *
3844 * Instead we retain the current runtime/deadline and let the new
3845 * parameters take effect after the current reservation period lapses.
3846 * This is safe (albeit pessimistic) because the 0-lag point is always
3847 * before the current scheduling deadline.
3848 *
3849 * We can still have temporary overloads because we do not delay the
3850 * change in bandwidth until that time; so admission control is
3851 * not on the safe side. It does however guarantee tasks will never
3852 * consume more than promised.
3853 */
3854 }
3855
3856 /*
3857 * sched_setparam() passes in -1 for its policy, to let the functions
3858 * it calls know not to change it.
3859 */
3860 #define SETPARAM_POLICY -1
3861
3862 static void __setscheduler_params(struct task_struct *p,
3863 const struct sched_attr *attr)
3864 {
3865 int policy = attr->sched_policy;
3866
3867 if (policy == SETPARAM_POLICY)
3868 policy = p->policy;
3869
3870 p->policy = policy;
3871
3872 if (dl_policy(policy))
3873 __setparam_dl(p, attr);
3874 else if (fair_policy(policy))
3875 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3876
3877 /*
3878 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3879 * !rt_policy. Always setting this ensures that things like
3880 * getparam()/getattr() don't report silly values for !rt tasks.
3881 */
3882 p->rt_priority = attr->sched_priority;
3883 p->normal_prio = normal_prio(p);
3884 set_load_weight(p);
3885 }
3886
3887 /* Actually do priority change: must hold pi & rq lock. */
3888 static void __setscheduler(struct rq *rq, struct task_struct *p,
3889 const struct sched_attr *attr, bool keep_boost)
3890 {
3891 __setscheduler_params(p, attr);
3892
3893 /*
3894 * Keep a potential priority boosting if called from
3895 * sched_setscheduler().
3896 */
3897 if (keep_boost)
3898 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3899 else
3900 p->prio = normal_prio(p);
3901
3902 if (dl_prio(p->prio))
3903 p->sched_class = &dl_sched_class;
3904 else if (rt_prio(p->prio))
3905 p->sched_class = &rt_sched_class;
3906 else
3907 p->sched_class = &fair_sched_class;
3908 }
3909
3910 static void
3911 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3912 {
3913 struct sched_dl_entity *dl_se = &p->dl;
3914
3915 attr->sched_priority = p->rt_priority;
3916 attr->sched_runtime = dl_se->dl_runtime;
3917 attr->sched_deadline = dl_se->dl_deadline;
3918 attr->sched_period = dl_se->dl_period;
3919 attr->sched_flags = dl_se->flags;
3920 }
3921
3922 /*
3923 * This function validates the new parameters of a -deadline task.
3924 * We ask for the deadline not being zero, and greater or equal
3925 * than the runtime, as well as the period of being zero or
3926 * greater than deadline. Furthermore, we have to be sure that
3927 * user parameters are above the internal resolution of 1us (we
3928 * check sched_runtime only since it is always the smaller one) and
3929 * below 2^63 ns (we have to check both sched_deadline and
3930 * sched_period, as the latter can be zero).
3931 */
3932 static bool
3933 __checkparam_dl(const struct sched_attr *attr)
3934 {
3935 /* deadline != 0 */
3936 if (attr->sched_deadline == 0)
3937 return false;
3938
3939 /*
3940 * Since we truncate DL_SCALE bits, make sure we're at least
3941 * that big.
3942 */
3943 if (attr->sched_runtime < (1ULL << DL_SCALE))
3944 return false;
3945
3946 /*
3947 * Since we use the MSB for wrap-around and sign issues, make
3948 * sure it's not set (mind that period can be equal to zero).
3949 */
3950 if (attr->sched_deadline & (1ULL << 63) ||
3951 attr->sched_period & (1ULL << 63))
3952 return false;
3953
3954 /* runtime <= deadline <= period (if period != 0) */
3955 if ((attr->sched_period != 0 &&
3956 attr->sched_period < attr->sched_deadline) ||
3957 attr->sched_deadline < attr->sched_runtime)
3958 return false;
3959
3960 return true;
3961 }
3962
3963 /*
3964 * check the target process has a UID that matches the current process's
3965 */
3966 static bool check_same_owner(struct task_struct *p)
3967 {
3968 const struct cred *cred = current_cred(), *pcred;
3969 bool match;
3970
3971 rcu_read_lock();
3972 pcred = __task_cred(p);
3973 match = (uid_eq(cred->euid, pcred->euid) ||
3974 uid_eq(cred->euid, pcred->uid));
3975 rcu_read_unlock();
3976 return match;
3977 }
3978
3979 static bool dl_param_changed(struct task_struct *p,
3980 const struct sched_attr *attr)
3981 {
3982 struct sched_dl_entity *dl_se = &p->dl;
3983
3984 if (dl_se->dl_runtime != attr->sched_runtime ||
3985 dl_se->dl_deadline != attr->sched_deadline ||
3986 dl_se->dl_period != attr->sched_period ||
3987 dl_se->flags != attr->sched_flags)
3988 return true;
3989
3990 return false;
3991 }
3992
3993 static int __sched_setscheduler(struct task_struct *p,
3994 const struct sched_attr *attr,
3995 bool user, bool pi)
3996 {
3997 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3998 MAX_RT_PRIO - 1 - attr->sched_priority;
3999 int retval, oldprio, oldpolicy = -1, queued, running;
4000 int new_effective_prio, policy = attr->sched_policy;
4001 const struct sched_class *prev_class;
4002 struct rq_flags rf;
4003 int reset_on_fork;
4004 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4005 struct rq *rq;
4006
4007 /* may grab non-irq protected spin_locks */
4008 BUG_ON(in_interrupt());
4009 recheck:
4010 /* double check policy once rq lock held */
4011 if (policy < 0) {
4012 reset_on_fork = p->sched_reset_on_fork;
4013 policy = oldpolicy = p->policy;
4014 } else {
4015 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4016
4017 if (!valid_policy(policy))
4018 return -EINVAL;
4019 }
4020
4021 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4022 return -EINVAL;
4023
4024 /*
4025 * Valid priorities for SCHED_FIFO and SCHED_RR are
4026 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4027 * SCHED_BATCH and SCHED_IDLE is 0.
4028 */
4029 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4030 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4031 return -EINVAL;
4032 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4033 (rt_policy(policy) != (attr->sched_priority != 0)))
4034 return -EINVAL;
4035
4036 /*
4037 * Allow unprivileged RT tasks to decrease priority:
4038 */
4039 if (user && !capable(CAP_SYS_NICE)) {
4040 if (fair_policy(policy)) {
4041 if (attr->sched_nice < task_nice(p) &&
4042 !can_nice(p, attr->sched_nice))
4043 return -EPERM;
4044 }
4045
4046 if (rt_policy(policy)) {
4047 unsigned long rlim_rtprio =
4048 task_rlimit(p, RLIMIT_RTPRIO);
4049
4050 /* can't set/change the rt policy */
4051 if (policy != p->policy && !rlim_rtprio)
4052 return -EPERM;
4053
4054 /* can't increase priority */
4055 if (attr->sched_priority > p->rt_priority &&
4056 attr->sched_priority > rlim_rtprio)
4057 return -EPERM;
4058 }
4059
4060 /*
4061 * Can't set/change SCHED_DEADLINE policy at all for now
4062 * (safest behavior); in the future we would like to allow
4063 * unprivileged DL tasks to increase their relative deadline
4064 * or reduce their runtime (both ways reducing utilization)
4065 */
4066 if (dl_policy(policy))
4067 return -EPERM;
4068
4069 /*
4070 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4071 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4072 */
4073 if (idle_policy(p->policy) && !idle_policy(policy)) {
4074 if (!can_nice(p, task_nice(p)))
4075 return -EPERM;
4076 }
4077
4078 /* can't change other user's priorities */
4079 if (!check_same_owner(p))
4080 return -EPERM;
4081
4082 /* Normal users shall not reset the sched_reset_on_fork flag */
4083 if (p->sched_reset_on_fork && !reset_on_fork)
4084 return -EPERM;
4085 }
4086
4087 if (user) {
4088 retval = security_task_setscheduler(p);
4089 if (retval)
4090 return retval;
4091 }
4092
4093 /*
4094 * make sure no PI-waiters arrive (or leave) while we are
4095 * changing the priority of the task:
4096 *
4097 * To be able to change p->policy safely, the appropriate
4098 * runqueue lock must be held.
4099 */
4100 rq = task_rq_lock(p, &rf);
4101
4102 /*
4103 * Changing the policy of the stop threads its a very bad idea
4104 */
4105 if (p == rq->stop) {
4106 task_rq_unlock(rq, p, &rf);
4107 return -EINVAL;
4108 }
4109
4110 /*
4111 * If not changing anything there's no need to proceed further,
4112 * but store a possible modification of reset_on_fork.
4113 */
4114 if (unlikely(policy == p->policy)) {
4115 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4116 goto change;
4117 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4118 goto change;
4119 if (dl_policy(policy) && dl_param_changed(p, attr))
4120 goto change;
4121
4122 p->sched_reset_on_fork = reset_on_fork;
4123 task_rq_unlock(rq, p, &rf);
4124 return 0;
4125 }
4126 change:
4127
4128 if (user) {
4129 #ifdef CONFIG_RT_GROUP_SCHED
4130 /*
4131 * Do not allow realtime tasks into groups that have no runtime
4132 * assigned.
4133 */
4134 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4135 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4136 !task_group_is_autogroup(task_group(p))) {
4137 task_rq_unlock(rq, p, &rf);
4138 return -EPERM;
4139 }
4140 #endif
4141 #ifdef CONFIG_SMP
4142 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4143 cpumask_t *span = rq->rd->span;
4144
4145 /*
4146 * Don't allow tasks with an affinity mask smaller than
4147 * the entire root_domain to become SCHED_DEADLINE. We
4148 * will also fail if there's no bandwidth available.
4149 */
4150 if (!cpumask_subset(span, &p->cpus_allowed) ||
4151 rq->rd->dl_bw.bw == 0) {
4152 task_rq_unlock(rq, p, &rf);
4153 return -EPERM;
4154 }
4155 }
4156 #endif
4157 }
4158
4159 /* recheck policy now with rq lock held */
4160 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4161 policy = oldpolicy = -1;
4162 task_rq_unlock(rq, p, &rf);
4163 goto recheck;
4164 }
4165
4166 /*
4167 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4168 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4169 * is available.
4170 */
4171 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4172 task_rq_unlock(rq, p, &rf);
4173 return -EBUSY;
4174 }
4175
4176 p->sched_reset_on_fork = reset_on_fork;
4177 oldprio = p->prio;
4178
4179 if (pi) {
4180 /*
4181 * Take priority boosted tasks into account. If the new
4182 * effective priority is unchanged, we just store the new
4183 * normal parameters and do not touch the scheduler class and
4184 * the runqueue. This will be done when the task deboost
4185 * itself.
4186 */
4187 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4188 if (new_effective_prio == oldprio)
4189 queue_flags &= ~DEQUEUE_MOVE;
4190 }
4191
4192 queued = task_on_rq_queued(p);
4193 running = task_current(rq, p);
4194 if (queued)
4195 dequeue_task(rq, p, queue_flags);
4196 if (running)
4197 put_prev_task(rq, p);
4198
4199 prev_class = p->sched_class;
4200 __setscheduler(rq, p, attr, pi);
4201
4202 if (running)
4203 p->sched_class->set_curr_task(rq);
4204 if (queued) {
4205 /*
4206 * We enqueue to tail when the priority of a task is
4207 * increased (user space view).
4208 */
4209 if (oldprio < p->prio)
4210 queue_flags |= ENQUEUE_HEAD;
4211
4212 enqueue_task(rq, p, queue_flags);
4213 }
4214
4215 check_class_changed(rq, p, prev_class, oldprio);
4216 preempt_disable(); /* avoid rq from going away on us */
4217 task_rq_unlock(rq, p, &rf);
4218
4219 if (pi)
4220 rt_mutex_adjust_pi(p);
4221
4222 /*
4223 * Run balance callbacks after we've adjusted the PI chain.
4224 */
4225 balance_callback(rq);
4226 preempt_enable();
4227
4228 return 0;
4229 }
4230
4231 static int _sched_setscheduler(struct task_struct *p, int policy,
4232 const struct sched_param *param, bool check)
4233 {
4234 struct sched_attr attr = {
4235 .sched_policy = policy,
4236 .sched_priority = param->sched_priority,
4237 .sched_nice = PRIO_TO_NICE(p->static_prio),
4238 };
4239
4240 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4241 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4242 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4243 policy &= ~SCHED_RESET_ON_FORK;
4244 attr.sched_policy = policy;
4245 }
4246
4247 return __sched_setscheduler(p, &attr, check, true);
4248 }
4249 /**
4250 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4251 * @p: the task in question.
4252 * @policy: new policy.
4253 * @param: structure containing the new RT priority.
4254 *
4255 * Return: 0 on success. An error code otherwise.
4256 *
4257 * NOTE that the task may be already dead.
4258 */
4259 int sched_setscheduler(struct task_struct *p, int policy,
4260 const struct sched_param *param)
4261 {
4262 return _sched_setscheduler(p, policy, param, true);
4263 }
4264 EXPORT_SYMBOL_GPL(sched_setscheduler);
4265
4266 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4267 {
4268 return __sched_setscheduler(p, attr, true, true);
4269 }
4270 EXPORT_SYMBOL_GPL(sched_setattr);
4271
4272 /**
4273 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4274 * @p: the task in question.
4275 * @policy: new policy.
4276 * @param: structure containing the new RT priority.
4277 *
4278 * Just like sched_setscheduler, only don't bother checking if the
4279 * current context has permission. For example, this is needed in
4280 * stop_machine(): we create temporary high priority worker threads,
4281 * but our caller might not have that capability.
4282 *
4283 * Return: 0 on success. An error code otherwise.
4284 */
4285 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4286 const struct sched_param *param)
4287 {
4288 return _sched_setscheduler(p, policy, param, false);
4289 }
4290 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4291
4292 static int
4293 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4294 {
4295 struct sched_param lparam;
4296 struct task_struct *p;
4297 int retval;
4298
4299 if (!param || pid < 0)
4300 return -EINVAL;
4301 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4302 return -EFAULT;
4303
4304 rcu_read_lock();
4305 retval = -ESRCH;
4306 p = find_process_by_pid(pid);
4307 if (p != NULL)
4308 retval = sched_setscheduler(p, policy, &lparam);
4309 rcu_read_unlock();
4310
4311 return retval;
4312 }
4313
4314 /*
4315 * Mimics kernel/events/core.c perf_copy_attr().
4316 */
4317 static int sched_copy_attr(struct sched_attr __user *uattr,
4318 struct sched_attr *attr)
4319 {
4320 u32 size;
4321 int ret;
4322
4323 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4324 return -EFAULT;
4325
4326 /*
4327 * zero the full structure, so that a short copy will be nice.
4328 */
4329 memset(attr, 0, sizeof(*attr));
4330
4331 ret = get_user(size, &uattr->size);
4332 if (ret)
4333 return ret;
4334
4335 if (size > PAGE_SIZE) /* silly large */
4336 goto err_size;
4337
4338 if (!size) /* abi compat */
4339 size = SCHED_ATTR_SIZE_VER0;
4340
4341 if (size < SCHED_ATTR_SIZE_VER0)
4342 goto err_size;
4343
4344 /*
4345 * If we're handed a bigger struct than we know of,
4346 * ensure all the unknown bits are 0 - i.e. new
4347 * user-space does not rely on any kernel feature
4348 * extensions we dont know about yet.
4349 */
4350 if (size > sizeof(*attr)) {
4351 unsigned char __user *addr;
4352 unsigned char __user *end;
4353 unsigned char val;
4354
4355 addr = (void __user *)uattr + sizeof(*attr);
4356 end = (void __user *)uattr + size;
4357
4358 for (; addr < end; addr++) {
4359 ret = get_user(val, addr);
4360 if (ret)
4361 return ret;
4362 if (val)
4363 goto err_size;
4364 }
4365 size = sizeof(*attr);
4366 }
4367
4368 ret = copy_from_user(attr, uattr, size);
4369 if (ret)
4370 return -EFAULT;
4371
4372 /*
4373 * XXX: do we want to be lenient like existing syscalls; or do we want
4374 * to be strict and return an error on out-of-bounds values?
4375 */
4376 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4377
4378 return 0;
4379
4380 err_size:
4381 put_user(sizeof(*attr), &uattr->size);
4382 return -E2BIG;
4383 }
4384
4385 /**
4386 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4387 * @pid: the pid in question.
4388 * @policy: new policy.
4389 * @param: structure containing the new RT priority.
4390 *
4391 * Return: 0 on success. An error code otherwise.
4392 */
4393 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4394 struct sched_param __user *, param)
4395 {
4396 /* negative values for policy are not valid */
4397 if (policy < 0)
4398 return -EINVAL;
4399
4400 return do_sched_setscheduler(pid, policy, param);
4401 }
4402
4403 /**
4404 * sys_sched_setparam - set/change the RT priority of a thread
4405 * @pid: the pid in question.
4406 * @param: structure containing the new RT priority.
4407 *
4408 * Return: 0 on success. An error code otherwise.
4409 */
4410 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4411 {
4412 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4413 }
4414
4415 /**
4416 * sys_sched_setattr - same as above, but with extended sched_attr
4417 * @pid: the pid in question.
4418 * @uattr: structure containing the extended parameters.
4419 * @flags: for future extension.
4420 */
4421 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4422 unsigned int, flags)
4423 {
4424 struct sched_attr attr;
4425 struct task_struct *p;
4426 int retval;
4427
4428 if (!uattr || pid < 0 || flags)
4429 return -EINVAL;
4430
4431 retval = sched_copy_attr(uattr, &attr);
4432 if (retval)
4433 return retval;
4434
4435 if ((int)attr.sched_policy < 0)
4436 return -EINVAL;
4437
4438 rcu_read_lock();
4439 retval = -ESRCH;
4440 p = find_process_by_pid(pid);
4441 if (p != NULL)
4442 retval = sched_setattr(p, &attr);
4443 rcu_read_unlock();
4444
4445 return retval;
4446 }
4447
4448 /**
4449 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4450 * @pid: the pid in question.
4451 *
4452 * Return: On success, the policy of the thread. Otherwise, a negative error
4453 * code.
4454 */
4455 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4456 {
4457 struct task_struct *p;
4458 int retval;
4459
4460 if (pid < 0)
4461 return -EINVAL;
4462
4463 retval = -ESRCH;
4464 rcu_read_lock();
4465 p = find_process_by_pid(pid);
4466 if (p) {
4467 retval = security_task_getscheduler(p);
4468 if (!retval)
4469 retval = p->policy
4470 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4471 }
4472 rcu_read_unlock();
4473 return retval;
4474 }
4475
4476 /**
4477 * sys_sched_getparam - get the RT priority of a thread
4478 * @pid: the pid in question.
4479 * @param: structure containing the RT priority.
4480 *
4481 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4482 * code.
4483 */
4484 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4485 {
4486 struct sched_param lp = { .sched_priority = 0 };
4487 struct task_struct *p;
4488 int retval;
4489
4490 if (!param || pid < 0)
4491 return -EINVAL;
4492
4493 rcu_read_lock();
4494 p = find_process_by_pid(pid);
4495 retval = -ESRCH;
4496 if (!p)
4497 goto out_unlock;
4498
4499 retval = security_task_getscheduler(p);
4500 if (retval)
4501 goto out_unlock;
4502
4503 if (task_has_rt_policy(p))
4504 lp.sched_priority = p->rt_priority;
4505 rcu_read_unlock();
4506
4507 /*
4508 * This one might sleep, we cannot do it with a spinlock held ...
4509 */
4510 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4511
4512 return retval;
4513
4514 out_unlock:
4515 rcu_read_unlock();
4516 return retval;
4517 }
4518
4519 static int sched_read_attr(struct sched_attr __user *uattr,
4520 struct sched_attr *attr,
4521 unsigned int usize)
4522 {
4523 int ret;
4524
4525 if (!access_ok(VERIFY_WRITE, uattr, usize))
4526 return -EFAULT;
4527
4528 /*
4529 * If we're handed a smaller struct than we know of,
4530 * ensure all the unknown bits are 0 - i.e. old
4531 * user-space does not get uncomplete information.
4532 */
4533 if (usize < sizeof(*attr)) {
4534 unsigned char *addr;
4535 unsigned char *end;
4536
4537 addr = (void *)attr + usize;
4538 end = (void *)attr + sizeof(*attr);
4539
4540 for (; addr < end; addr++) {
4541 if (*addr)
4542 return -EFBIG;
4543 }
4544
4545 attr->size = usize;
4546 }
4547
4548 ret = copy_to_user(uattr, attr, attr->size);
4549 if (ret)
4550 return -EFAULT;
4551
4552 return 0;
4553 }
4554
4555 /**
4556 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4557 * @pid: the pid in question.
4558 * @uattr: structure containing the extended parameters.
4559 * @size: sizeof(attr) for fwd/bwd comp.
4560 * @flags: for future extension.
4561 */
4562 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4563 unsigned int, size, unsigned int, flags)
4564 {
4565 struct sched_attr attr = {
4566 .size = sizeof(struct sched_attr),
4567 };
4568 struct task_struct *p;
4569 int retval;
4570
4571 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4572 size < SCHED_ATTR_SIZE_VER0 || flags)
4573 return -EINVAL;
4574
4575 rcu_read_lock();
4576 p = find_process_by_pid(pid);
4577 retval = -ESRCH;
4578 if (!p)
4579 goto out_unlock;
4580
4581 retval = security_task_getscheduler(p);
4582 if (retval)
4583 goto out_unlock;
4584
4585 attr.sched_policy = p->policy;
4586 if (p->sched_reset_on_fork)
4587 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4588 if (task_has_dl_policy(p))
4589 __getparam_dl(p, &attr);
4590 else if (task_has_rt_policy(p))
4591 attr.sched_priority = p->rt_priority;
4592 else
4593 attr.sched_nice = task_nice(p);
4594
4595 rcu_read_unlock();
4596
4597 retval = sched_read_attr(uattr, &attr, size);
4598 return retval;
4599
4600 out_unlock:
4601 rcu_read_unlock();
4602 return retval;
4603 }
4604
4605 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4606 {
4607 cpumask_var_t cpus_allowed, new_mask;
4608 struct task_struct *p;
4609 int retval;
4610
4611 rcu_read_lock();
4612
4613 p = find_process_by_pid(pid);
4614 if (!p) {
4615 rcu_read_unlock();
4616 return -ESRCH;
4617 }
4618
4619 /* Prevent p going away */
4620 get_task_struct(p);
4621 rcu_read_unlock();
4622
4623 if (p->flags & PF_NO_SETAFFINITY) {
4624 retval = -EINVAL;
4625 goto out_put_task;
4626 }
4627 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4628 retval = -ENOMEM;
4629 goto out_put_task;
4630 }
4631 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4632 retval = -ENOMEM;
4633 goto out_free_cpus_allowed;
4634 }
4635 retval = -EPERM;
4636 if (!check_same_owner(p)) {
4637 rcu_read_lock();
4638 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4639 rcu_read_unlock();
4640 goto out_free_new_mask;
4641 }
4642 rcu_read_unlock();
4643 }
4644
4645 retval = security_task_setscheduler(p);
4646 if (retval)
4647 goto out_free_new_mask;
4648
4649
4650 cpuset_cpus_allowed(p, cpus_allowed);
4651 cpumask_and(new_mask, in_mask, cpus_allowed);
4652
4653 /*
4654 * Since bandwidth control happens on root_domain basis,
4655 * if admission test is enabled, we only admit -deadline
4656 * tasks allowed to run on all the CPUs in the task's
4657 * root_domain.
4658 */
4659 #ifdef CONFIG_SMP
4660 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4661 rcu_read_lock();
4662 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4663 retval = -EBUSY;
4664 rcu_read_unlock();
4665 goto out_free_new_mask;
4666 }
4667 rcu_read_unlock();
4668 }
4669 #endif
4670 again:
4671 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4672
4673 if (!retval) {
4674 cpuset_cpus_allowed(p, cpus_allowed);
4675 if (!cpumask_subset(new_mask, cpus_allowed)) {
4676 /*
4677 * We must have raced with a concurrent cpuset
4678 * update. Just reset the cpus_allowed to the
4679 * cpuset's cpus_allowed
4680 */
4681 cpumask_copy(new_mask, cpus_allowed);
4682 goto again;
4683 }
4684 }
4685 out_free_new_mask:
4686 free_cpumask_var(new_mask);
4687 out_free_cpus_allowed:
4688 free_cpumask_var(cpus_allowed);
4689 out_put_task:
4690 put_task_struct(p);
4691 return retval;
4692 }
4693
4694 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4695 struct cpumask *new_mask)
4696 {
4697 if (len < cpumask_size())
4698 cpumask_clear(new_mask);
4699 else if (len > cpumask_size())
4700 len = cpumask_size();
4701
4702 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4703 }
4704
4705 /**
4706 * sys_sched_setaffinity - set the cpu affinity of a process
4707 * @pid: pid of the process
4708 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4709 * @user_mask_ptr: user-space pointer to the new cpu mask
4710 *
4711 * Return: 0 on success. An error code otherwise.
4712 */
4713 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4714 unsigned long __user *, user_mask_ptr)
4715 {
4716 cpumask_var_t new_mask;
4717 int retval;
4718
4719 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4720 return -ENOMEM;
4721
4722 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4723 if (retval == 0)
4724 retval = sched_setaffinity(pid, new_mask);
4725 free_cpumask_var(new_mask);
4726 return retval;
4727 }
4728
4729 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4730 {
4731 struct task_struct *p;
4732 unsigned long flags;
4733 int retval;
4734
4735 rcu_read_lock();
4736
4737 retval = -ESRCH;
4738 p = find_process_by_pid(pid);
4739 if (!p)
4740 goto out_unlock;
4741
4742 retval = security_task_getscheduler(p);
4743 if (retval)
4744 goto out_unlock;
4745
4746 raw_spin_lock_irqsave(&p->pi_lock, flags);
4747 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4748 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4749
4750 out_unlock:
4751 rcu_read_unlock();
4752
4753 return retval;
4754 }
4755
4756 /**
4757 * sys_sched_getaffinity - get the cpu affinity of a process
4758 * @pid: pid of the process
4759 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4760 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4761 *
4762 * Return: 0 on success. An error code otherwise.
4763 */
4764 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4765 unsigned long __user *, user_mask_ptr)
4766 {
4767 int ret;
4768 cpumask_var_t mask;
4769
4770 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4771 return -EINVAL;
4772 if (len & (sizeof(unsigned long)-1))
4773 return -EINVAL;
4774
4775 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4776 return -ENOMEM;
4777
4778 ret = sched_getaffinity(pid, mask);
4779 if (ret == 0) {
4780 size_t retlen = min_t(size_t, len, cpumask_size());
4781
4782 if (copy_to_user(user_mask_ptr, mask, retlen))
4783 ret = -EFAULT;
4784 else
4785 ret = retlen;
4786 }
4787 free_cpumask_var(mask);
4788
4789 return ret;
4790 }
4791
4792 /**
4793 * sys_sched_yield - yield the current processor to other threads.
4794 *
4795 * This function yields the current CPU to other tasks. If there are no
4796 * other threads running on this CPU then this function will return.
4797 *
4798 * Return: 0.
4799 */
4800 SYSCALL_DEFINE0(sched_yield)
4801 {
4802 struct rq *rq = this_rq_lock();
4803
4804 schedstat_inc(rq, yld_count);
4805 current->sched_class->yield_task(rq);
4806
4807 /*
4808 * Since we are going to call schedule() anyway, there's
4809 * no need to preempt or enable interrupts:
4810 */
4811 __release(rq->lock);
4812 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4813 do_raw_spin_unlock(&rq->lock);
4814 sched_preempt_enable_no_resched();
4815
4816 schedule();
4817
4818 return 0;
4819 }
4820
4821 int __sched _cond_resched(void)
4822 {
4823 if (should_resched(0)) {
4824 preempt_schedule_common();
4825 return 1;
4826 }
4827 return 0;
4828 }
4829 EXPORT_SYMBOL(_cond_resched);
4830
4831 /*
4832 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4833 * call schedule, and on return reacquire the lock.
4834 *
4835 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4836 * operations here to prevent schedule() from being called twice (once via
4837 * spin_unlock(), once by hand).
4838 */
4839 int __cond_resched_lock(spinlock_t *lock)
4840 {
4841 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4842 int ret = 0;
4843
4844 lockdep_assert_held(lock);
4845
4846 if (spin_needbreak(lock) || resched) {
4847 spin_unlock(lock);
4848 if (resched)
4849 preempt_schedule_common();
4850 else
4851 cpu_relax();
4852 ret = 1;
4853 spin_lock(lock);
4854 }
4855 return ret;
4856 }
4857 EXPORT_SYMBOL(__cond_resched_lock);
4858
4859 int __sched __cond_resched_softirq(void)
4860 {
4861 BUG_ON(!in_softirq());
4862
4863 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4864 local_bh_enable();
4865 preempt_schedule_common();
4866 local_bh_disable();
4867 return 1;
4868 }
4869 return 0;
4870 }
4871 EXPORT_SYMBOL(__cond_resched_softirq);
4872
4873 /**
4874 * yield - yield the current processor to other threads.
4875 *
4876 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4877 *
4878 * The scheduler is at all times free to pick the calling task as the most
4879 * eligible task to run, if removing the yield() call from your code breaks
4880 * it, its already broken.
4881 *
4882 * Typical broken usage is:
4883 *
4884 * while (!event)
4885 * yield();
4886 *
4887 * where one assumes that yield() will let 'the other' process run that will
4888 * make event true. If the current task is a SCHED_FIFO task that will never
4889 * happen. Never use yield() as a progress guarantee!!
4890 *
4891 * If you want to use yield() to wait for something, use wait_event().
4892 * If you want to use yield() to be 'nice' for others, use cond_resched().
4893 * If you still want to use yield(), do not!
4894 */
4895 void __sched yield(void)
4896 {
4897 set_current_state(TASK_RUNNING);
4898 sys_sched_yield();
4899 }
4900 EXPORT_SYMBOL(yield);
4901
4902 /**
4903 * yield_to - yield the current processor to another thread in
4904 * your thread group, or accelerate that thread toward the
4905 * processor it's on.
4906 * @p: target task
4907 * @preempt: whether task preemption is allowed or not
4908 *
4909 * It's the caller's job to ensure that the target task struct
4910 * can't go away on us before we can do any checks.
4911 *
4912 * Return:
4913 * true (>0) if we indeed boosted the target task.
4914 * false (0) if we failed to boost the target.
4915 * -ESRCH if there's no task to yield to.
4916 */
4917 int __sched yield_to(struct task_struct *p, bool preempt)
4918 {
4919 struct task_struct *curr = current;
4920 struct rq *rq, *p_rq;
4921 unsigned long flags;
4922 int yielded = 0;
4923
4924 local_irq_save(flags);
4925 rq = this_rq();
4926
4927 again:
4928 p_rq = task_rq(p);
4929 /*
4930 * If we're the only runnable task on the rq and target rq also
4931 * has only one task, there's absolutely no point in yielding.
4932 */
4933 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4934 yielded = -ESRCH;
4935 goto out_irq;
4936 }
4937
4938 double_rq_lock(rq, p_rq);
4939 if (task_rq(p) != p_rq) {
4940 double_rq_unlock(rq, p_rq);
4941 goto again;
4942 }
4943
4944 if (!curr->sched_class->yield_to_task)
4945 goto out_unlock;
4946
4947 if (curr->sched_class != p->sched_class)
4948 goto out_unlock;
4949
4950 if (task_running(p_rq, p) || p->state)
4951 goto out_unlock;
4952
4953 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4954 if (yielded) {
4955 schedstat_inc(rq, yld_count);
4956 /*
4957 * Make p's CPU reschedule; pick_next_entity takes care of
4958 * fairness.
4959 */
4960 if (preempt && rq != p_rq)
4961 resched_curr(p_rq);
4962 }
4963
4964 out_unlock:
4965 double_rq_unlock(rq, p_rq);
4966 out_irq:
4967 local_irq_restore(flags);
4968
4969 if (yielded > 0)
4970 schedule();
4971
4972 return yielded;
4973 }
4974 EXPORT_SYMBOL_GPL(yield_to);
4975
4976 /*
4977 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4978 * that process accounting knows that this is a task in IO wait state.
4979 */
4980 long __sched io_schedule_timeout(long timeout)
4981 {
4982 int old_iowait = current->in_iowait;
4983 struct rq *rq;
4984 long ret;
4985
4986 current->in_iowait = 1;
4987 blk_schedule_flush_plug(current);
4988
4989 delayacct_blkio_start();
4990 rq = raw_rq();
4991 atomic_inc(&rq->nr_iowait);
4992 ret = schedule_timeout(timeout);
4993 current->in_iowait = old_iowait;
4994 atomic_dec(&rq->nr_iowait);
4995 delayacct_blkio_end();
4996
4997 return ret;
4998 }
4999 EXPORT_SYMBOL(io_schedule_timeout);
5000
5001 /**
5002 * sys_sched_get_priority_max - return maximum RT priority.
5003 * @policy: scheduling class.
5004 *
5005 * Return: On success, this syscall returns the maximum
5006 * rt_priority that can be used by a given scheduling class.
5007 * On failure, a negative error code is returned.
5008 */
5009 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5010 {
5011 int ret = -EINVAL;
5012
5013 switch (policy) {
5014 case SCHED_FIFO:
5015 case SCHED_RR:
5016 ret = MAX_USER_RT_PRIO-1;
5017 break;
5018 case SCHED_DEADLINE:
5019 case SCHED_NORMAL:
5020 case SCHED_BATCH:
5021 case SCHED_IDLE:
5022 ret = 0;
5023 break;
5024 }
5025 return ret;
5026 }
5027
5028 /**
5029 * sys_sched_get_priority_min - return minimum RT priority.
5030 * @policy: scheduling class.
5031 *
5032 * Return: On success, this syscall returns the minimum
5033 * rt_priority that can be used by a given scheduling class.
5034 * On failure, a negative error code is returned.
5035 */
5036 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5037 {
5038 int ret = -EINVAL;
5039
5040 switch (policy) {
5041 case SCHED_FIFO:
5042 case SCHED_RR:
5043 ret = 1;
5044 break;
5045 case SCHED_DEADLINE:
5046 case SCHED_NORMAL:
5047 case SCHED_BATCH:
5048 case SCHED_IDLE:
5049 ret = 0;
5050 }
5051 return ret;
5052 }
5053
5054 /**
5055 * sys_sched_rr_get_interval - return the default timeslice of a process.
5056 * @pid: pid of the process.
5057 * @interval: userspace pointer to the timeslice value.
5058 *
5059 * this syscall writes the default timeslice value of a given process
5060 * into the user-space timespec buffer. A value of '0' means infinity.
5061 *
5062 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5063 * an error code.
5064 */
5065 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5066 struct timespec __user *, interval)
5067 {
5068 struct task_struct *p;
5069 unsigned int time_slice;
5070 struct rq_flags rf;
5071 struct timespec t;
5072 struct rq *rq;
5073 int retval;
5074
5075 if (pid < 0)
5076 return -EINVAL;
5077
5078 retval = -ESRCH;
5079 rcu_read_lock();
5080 p = find_process_by_pid(pid);
5081 if (!p)
5082 goto out_unlock;
5083
5084 retval = security_task_getscheduler(p);
5085 if (retval)
5086 goto out_unlock;
5087
5088 rq = task_rq_lock(p, &rf);
5089 time_slice = 0;
5090 if (p->sched_class->get_rr_interval)
5091 time_slice = p->sched_class->get_rr_interval(rq, p);
5092 task_rq_unlock(rq, p, &rf);
5093
5094 rcu_read_unlock();
5095 jiffies_to_timespec(time_slice, &t);
5096 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5097 return retval;
5098
5099 out_unlock:
5100 rcu_read_unlock();
5101 return retval;
5102 }
5103
5104 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5105
5106 void sched_show_task(struct task_struct *p)
5107 {
5108 unsigned long free = 0;
5109 int ppid;
5110 unsigned long state = p->state;
5111
5112 if (state)
5113 state = __ffs(state) + 1;
5114 printk(KERN_INFO "%-15.15s %c", p->comm,
5115 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5116 #if BITS_PER_LONG == 32
5117 if (state == TASK_RUNNING)
5118 printk(KERN_CONT " running ");
5119 else
5120 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5121 #else
5122 if (state == TASK_RUNNING)
5123 printk(KERN_CONT " running task ");
5124 else
5125 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5126 #endif
5127 #ifdef CONFIG_DEBUG_STACK_USAGE
5128 free = stack_not_used(p);
5129 #endif
5130 ppid = 0;
5131 rcu_read_lock();
5132 if (pid_alive(p))
5133 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5134 rcu_read_unlock();
5135 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5136 task_pid_nr(p), ppid,
5137 (unsigned long)task_thread_info(p)->flags);
5138
5139 print_worker_info(KERN_INFO, p);
5140 show_stack(p, NULL);
5141 }
5142
5143 void show_state_filter(unsigned long state_filter)
5144 {
5145 struct task_struct *g, *p;
5146
5147 #if BITS_PER_LONG == 32
5148 printk(KERN_INFO
5149 " task PC stack pid father\n");
5150 #else
5151 printk(KERN_INFO
5152 " task PC stack pid father\n");
5153 #endif
5154 rcu_read_lock();
5155 for_each_process_thread(g, p) {
5156 /*
5157 * reset the NMI-timeout, listing all files on a slow
5158 * console might take a lot of time:
5159 * Also, reset softlockup watchdogs on all CPUs, because
5160 * another CPU might be blocked waiting for us to process
5161 * an IPI.
5162 */
5163 touch_nmi_watchdog();
5164 touch_all_softlockup_watchdogs();
5165 if (!state_filter || (p->state & state_filter))
5166 sched_show_task(p);
5167 }
5168
5169 #ifdef CONFIG_SCHED_DEBUG
5170 if (!state_filter)
5171 sysrq_sched_debug_show();
5172 #endif
5173 rcu_read_unlock();
5174 /*
5175 * Only show locks if all tasks are dumped:
5176 */
5177 if (!state_filter)
5178 debug_show_all_locks();
5179 }
5180
5181 void init_idle_bootup_task(struct task_struct *idle)
5182 {
5183 idle->sched_class = &idle_sched_class;
5184 }
5185
5186 /**
5187 * init_idle - set up an idle thread for a given CPU
5188 * @idle: task in question
5189 * @cpu: cpu the idle task belongs to
5190 *
5191 * NOTE: this function does not set the idle thread's NEED_RESCHED
5192 * flag, to make booting more robust.
5193 */
5194 void init_idle(struct task_struct *idle, int cpu)
5195 {
5196 struct rq *rq = cpu_rq(cpu);
5197 unsigned long flags;
5198
5199 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5200 raw_spin_lock(&rq->lock);
5201
5202 __sched_fork(0, idle);
5203 idle->state = TASK_RUNNING;
5204 idle->se.exec_start = sched_clock();
5205
5206 kasan_unpoison_task_stack(idle);
5207
5208 #ifdef CONFIG_SMP
5209 /*
5210 * Its possible that init_idle() gets called multiple times on a task,
5211 * in that case do_set_cpus_allowed() will not do the right thing.
5212 *
5213 * And since this is boot we can forgo the serialization.
5214 */
5215 set_cpus_allowed_common(idle, cpumask_of(cpu));
5216 #endif
5217 /*
5218 * We're having a chicken and egg problem, even though we are
5219 * holding rq->lock, the cpu isn't yet set to this cpu so the
5220 * lockdep check in task_group() will fail.
5221 *
5222 * Similar case to sched_fork(). / Alternatively we could
5223 * use task_rq_lock() here and obtain the other rq->lock.
5224 *
5225 * Silence PROVE_RCU
5226 */
5227 rcu_read_lock();
5228 __set_task_cpu(idle, cpu);
5229 rcu_read_unlock();
5230
5231 rq->curr = rq->idle = idle;
5232 idle->on_rq = TASK_ON_RQ_QUEUED;
5233 #ifdef CONFIG_SMP
5234 idle->on_cpu = 1;
5235 #endif
5236 raw_spin_unlock(&rq->lock);
5237 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5238
5239 /* Set the preempt count _outside_ the spinlocks! */
5240 init_idle_preempt_count(idle, cpu);
5241
5242 /*
5243 * The idle tasks have their own, simple scheduling class:
5244 */
5245 idle->sched_class = &idle_sched_class;
5246 ftrace_graph_init_idle_task(idle, cpu);
5247 vtime_init_idle(idle, cpu);
5248 #ifdef CONFIG_SMP
5249 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5250 #endif
5251 }
5252
5253 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5254 const struct cpumask *trial)
5255 {
5256 int ret = 1, trial_cpus;
5257 struct dl_bw *cur_dl_b;
5258 unsigned long flags;
5259
5260 if (!cpumask_weight(cur))
5261 return ret;
5262
5263 rcu_read_lock_sched();
5264 cur_dl_b = dl_bw_of(cpumask_any(cur));
5265 trial_cpus = cpumask_weight(trial);
5266
5267 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5268 if (cur_dl_b->bw != -1 &&
5269 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5270 ret = 0;
5271 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5272 rcu_read_unlock_sched();
5273
5274 return ret;
5275 }
5276
5277 int task_can_attach(struct task_struct *p,
5278 const struct cpumask *cs_cpus_allowed)
5279 {
5280 int ret = 0;
5281
5282 /*
5283 * Kthreads which disallow setaffinity shouldn't be moved
5284 * to a new cpuset; we don't want to change their cpu
5285 * affinity and isolating such threads by their set of
5286 * allowed nodes is unnecessary. Thus, cpusets are not
5287 * applicable for such threads. This prevents checking for
5288 * success of set_cpus_allowed_ptr() on all attached tasks
5289 * before cpus_allowed may be changed.
5290 */
5291 if (p->flags & PF_NO_SETAFFINITY) {
5292 ret = -EINVAL;
5293 goto out;
5294 }
5295
5296 #ifdef CONFIG_SMP
5297 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5298 cs_cpus_allowed)) {
5299 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5300 cs_cpus_allowed);
5301 struct dl_bw *dl_b;
5302 bool overflow;
5303 int cpus;
5304 unsigned long flags;
5305
5306 rcu_read_lock_sched();
5307 dl_b = dl_bw_of(dest_cpu);
5308 raw_spin_lock_irqsave(&dl_b->lock, flags);
5309 cpus = dl_bw_cpus(dest_cpu);
5310 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5311 if (overflow)
5312 ret = -EBUSY;
5313 else {
5314 /*
5315 * We reserve space for this task in the destination
5316 * root_domain, as we can't fail after this point.
5317 * We will free resources in the source root_domain
5318 * later on (see set_cpus_allowed_dl()).
5319 */
5320 __dl_add(dl_b, p->dl.dl_bw);
5321 }
5322 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5323 rcu_read_unlock_sched();
5324
5325 }
5326 #endif
5327 out:
5328 return ret;
5329 }
5330
5331 #ifdef CONFIG_SMP
5332
5333 static bool sched_smp_initialized __read_mostly;
5334
5335 #ifdef CONFIG_NUMA_BALANCING
5336 /* Migrate current task p to target_cpu */
5337 int migrate_task_to(struct task_struct *p, int target_cpu)
5338 {
5339 struct migration_arg arg = { p, target_cpu };
5340 int curr_cpu = task_cpu(p);
5341
5342 if (curr_cpu == target_cpu)
5343 return 0;
5344
5345 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5346 return -EINVAL;
5347
5348 /* TODO: This is not properly updating schedstats */
5349
5350 trace_sched_move_numa(p, curr_cpu, target_cpu);
5351 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5352 }
5353
5354 /*
5355 * Requeue a task on a given node and accurately track the number of NUMA
5356 * tasks on the runqueues
5357 */
5358 void sched_setnuma(struct task_struct *p, int nid)
5359 {
5360 bool queued, running;
5361 struct rq_flags rf;
5362 struct rq *rq;
5363
5364 rq = task_rq_lock(p, &rf);
5365 queued = task_on_rq_queued(p);
5366 running = task_current(rq, p);
5367
5368 if (queued)
5369 dequeue_task(rq, p, DEQUEUE_SAVE);
5370 if (running)
5371 put_prev_task(rq, p);
5372
5373 p->numa_preferred_nid = nid;
5374
5375 if (running)
5376 p->sched_class->set_curr_task(rq);
5377 if (queued)
5378 enqueue_task(rq, p, ENQUEUE_RESTORE);
5379 task_rq_unlock(rq, p, &rf);
5380 }
5381 #endif /* CONFIG_NUMA_BALANCING */
5382
5383 #ifdef CONFIG_HOTPLUG_CPU
5384 /*
5385 * Ensures that the idle task is using init_mm right before its cpu goes
5386 * offline.
5387 */
5388 void idle_task_exit(void)
5389 {
5390 struct mm_struct *mm = current->active_mm;
5391
5392 BUG_ON(cpu_online(smp_processor_id()));
5393
5394 if (mm != &init_mm) {
5395 switch_mm_irqs_off(mm, &init_mm, current);
5396 finish_arch_post_lock_switch();
5397 }
5398 mmdrop(mm);
5399 }
5400
5401 /*
5402 * Since this CPU is going 'away' for a while, fold any nr_active delta
5403 * we might have. Assumes we're called after migrate_tasks() so that the
5404 * nr_active count is stable.
5405 *
5406 * Also see the comment "Global load-average calculations".
5407 */
5408 static void calc_load_migrate(struct rq *rq)
5409 {
5410 long delta = calc_load_fold_active(rq);
5411 if (delta)
5412 atomic_long_add(delta, &calc_load_tasks);
5413 }
5414
5415 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5416 {
5417 }
5418
5419 static const struct sched_class fake_sched_class = {
5420 .put_prev_task = put_prev_task_fake,
5421 };
5422
5423 static struct task_struct fake_task = {
5424 /*
5425 * Avoid pull_{rt,dl}_task()
5426 */
5427 .prio = MAX_PRIO + 1,
5428 .sched_class = &fake_sched_class,
5429 };
5430
5431 /*
5432 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5433 * try_to_wake_up()->select_task_rq().
5434 *
5435 * Called with rq->lock held even though we'er in stop_machine() and
5436 * there's no concurrency possible, we hold the required locks anyway
5437 * because of lock validation efforts.
5438 */
5439 static void migrate_tasks(struct rq *dead_rq)
5440 {
5441 struct rq *rq = dead_rq;
5442 struct task_struct *next, *stop = rq->stop;
5443 struct pin_cookie cookie;
5444 int dest_cpu;
5445
5446 /*
5447 * Fudge the rq selection such that the below task selection loop
5448 * doesn't get stuck on the currently eligible stop task.
5449 *
5450 * We're currently inside stop_machine() and the rq is either stuck
5451 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5452 * either way we should never end up calling schedule() until we're
5453 * done here.
5454 */
5455 rq->stop = NULL;
5456
5457 /*
5458 * put_prev_task() and pick_next_task() sched
5459 * class method both need to have an up-to-date
5460 * value of rq->clock[_task]
5461 */
5462 update_rq_clock(rq);
5463
5464 for (;;) {
5465 /*
5466 * There's this thread running, bail when that's the only
5467 * remaining thread.
5468 */
5469 if (rq->nr_running == 1)
5470 break;
5471
5472 /*
5473 * pick_next_task assumes pinned rq->lock.
5474 */
5475 cookie = lockdep_pin_lock(&rq->lock);
5476 next = pick_next_task(rq, &fake_task, cookie);
5477 BUG_ON(!next);
5478 next->sched_class->put_prev_task(rq, next);
5479
5480 /*
5481 * Rules for changing task_struct::cpus_allowed are holding
5482 * both pi_lock and rq->lock, such that holding either
5483 * stabilizes the mask.
5484 *
5485 * Drop rq->lock is not quite as disastrous as it usually is
5486 * because !cpu_active at this point, which means load-balance
5487 * will not interfere. Also, stop-machine.
5488 */
5489 lockdep_unpin_lock(&rq->lock, cookie);
5490 raw_spin_unlock(&rq->lock);
5491 raw_spin_lock(&next->pi_lock);
5492 raw_spin_lock(&rq->lock);
5493
5494 /*
5495 * Since we're inside stop-machine, _nothing_ should have
5496 * changed the task, WARN if weird stuff happened, because in
5497 * that case the above rq->lock drop is a fail too.
5498 */
5499 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5500 raw_spin_unlock(&next->pi_lock);
5501 continue;
5502 }
5503
5504 /* Find suitable destination for @next, with force if needed. */
5505 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5506
5507 rq = __migrate_task(rq, next, dest_cpu);
5508 if (rq != dead_rq) {
5509 raw_spin_unlock(&rq->lock);
5510 rq = dead_rq;
5511 raw_spin_lock(&rq->lock);
5512 }
5513 raw_spin_unlock(&next->pi_lock);
5514 }
5515
5516 rq->stop = stop;
5517 }
5518 #endif /* CONFIG_HOTPLUG_CPU */
5519
5520 static void set_rq_online(struct rq *rq)
5521 {
5522 if (!rq->online) {
5523 const struct sched_class *class;
5524
5525 cpumask_set_cpu(rq->cpu, rq->rd->online);
5526 rq->online = 1;
5527
5528 for_each_class(class) {
5529 if (class->rq_online)
5530 class->rq_online(rq);
5531 }
5532 }
5533 }
5534
5535 static void set_rq_offline(struct rq *rq)
5536 {
5537 if (rq->online) {
5538 const struct sched_class *class;
5539
5540 for_each_class(class) {
5541 if (class->rq_offline)
5542 class->rq_offline(rq);
5543 }
5544
5545 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5546 rq->online = 0;
5547 }
5548 }
5549
5550 static void set_cpu_rq_start_time(unsigned int cpu)
5551 {
5552 struct rq *rq = cpu_rq(cpu);
5553
5554 rq->age_stamp = sched_clock_cpu(cpu);
5555 }
5556
5557 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5558
5559 #ifdef CONFIG_SCHED_DEBUG
5560
5561 static __read_mostly int sched_debug_enabled;
5562
5563 static int __init sched_debug_setup(char *str)
5564 {
5565 sched_debug_enabled = 1;
5566
5567 return 0;
5568 }
5569 early_param("sched_debug", sched_debug_setup);
5570
5571 static inline bool sched_debug(void)
5572 {
5573 return sched_debug_enabled;
5574 }
5575
5576 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5577 struct cpumask *groupmask)
5578 {
5579 struct sched_group *group = sd->groups;
5580
5581 cpumask_clear(groupmask);
5582
5583 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5584
5585 if (!(sd->flags & SD_LOAD_BALANCE)) {
5586 printk("does not load-balance\n");
5587 if (sd->parent)
5588 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5589 " has parent");
5590 return -1;
5591 }
5592
5593 printk(KERN_CONT "span %*pbl level %s\n",
5594 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5595
5596 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5597 printk(KERN_ERR "ERROR: domain->span does not contain "
5598 "CPU%d\n", cpu);
5599 }
5600 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5601 printk(KERN_ERR "ERROR: domain->groups does not contain"
5602 " CPU%d\n", cpu);
5603 }
5604
5605 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5606 do {
5607 if (!group) {
5608 printk("\n");
5609 printk(KERN_ERR "ERROR: group is NULL\n");
5610 break;
5611 }
5612
5613 if (!cpumask_weight(sched_group_cpus(group))) {
5614 printk(KERN_CONT "\n");
5615 printk(KERN_ERR "ERROR: empty group\n");
5616 break;
5617 }
5618
5619 if (!(sd->flags & SD_OVERLAP) &&
5620 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5621 printk(KERN_CONT "\n");
5622 printk(KERN_ERR "ERROR: repeated CPUs\n");
5623 break;
5624 }
5625
5626 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5627
5628 printk(KERN_CONT " %*pbl",
5629 cpumask_pr_args(sched_group_cpus(group)));
5630 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5631 printk(KERN_CONT " (cpu_capacity = %d)",
5632 group->sgc->capacity);
5633 }
5634
5635 group = group->next;
5636 } while (group != sd->groups);
5637 printk(KERN_CONT "\n");
5638
5639 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5640 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5641
5642 if (sd->parent &&
5643 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5644 printk(KERN_ERR "ERROR: parent span is not a superset "
5645 "of domain->span\n");
5646 return 0;
5647 }
5648
5649 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5650 {
5651 int level = 0;
5652
5653 if (!sched_debug_enabled)
5654 return;
5655
5656 if (!sd) {
5657 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5658 return;
5659 }
5660
5661 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5662
5663 for (;;) {
5664 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5665 break;
5666 level++;
5667 sd = sd->parent;
5668 if (!sd)
5669 break;
5670 }
5671 }
5672 #else /* !CONFIG_SCHED_DEBUG */
5673 # define sched_domain_debug(sd, cpu) do { } while (0)
5674 static inline bool sched_debug(void)
5675 {
5676 return false;
5677 }
5678 #endif /* CONFIG_SCHED_DEBUG */
5679
5680 static int sd_degenerate(struct sched_domain *sd)
5681 {
5682 if (cpumask_weight(sched_domain_span(sd)) == 1)
5683 return 1;
5684
5685 /* Following flags need at least 2 groups */
5686 if (sd->flags & (SD_LOAD_BALANCE |
5687 SD_BALANCE_NEWIDLE |
5688 SD_BALANCE_FORK |
5689 SD_BALANCE_EXEC |
5690 SD_SHARE_CPUCAPACITY |
5691 SD_SHARE_PKG_RESOURCES |
5692 SD_SHARE_POWERDOMAIN)) {
5693 if (sd->groups != sd->groups->next)
5694 return 0;
5695 }
5696
5697 /* Following flags don't use groups */
5698 if (sd->flags & (SD_WAKE_AFFINE))
5699 return 0;
5700
5701 return 1;
5702 }
5703
5704 static int
5705 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5706 {
5707 unsigned long cflags = sd->flags, pflags = parent->flags;
5708
5709 if (sd_degenerate(parent))
5710 return 1;
5711
5712 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5713 return 0;
5714
5715 /* Flags needing groups don't count if only 1 group in parent */
5716 if (parent->groups == parent->groups->next) {
5717 pflags &= ~(SD_LOAD_BALANCE |
5718 SD_BALANCE_NEWIDLE |
5719 SD_BALANCE_FORK |
5720 SD_BALANCE_EXEC |
5721 SD_SHARE_CPUCAPACITY |
5722 SD_SHARE_PKG_RESOURCES |
5723 SD_PREFER_SIBLING |
5724 SD_SHARE_POWERDOMAIN);
5725 if (nr_node_ids == 1)
5726 pflags &= ~SD_SERIALIZE;
5727 }
5728 if (~cflags & pflags)
5729 return 0;
5730
5731 return 1;
5732 }
5733
5734 static void free_rootdomain(struct rcu_head *rcu)
5735 {
5736 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5737
5738 cpupri_cleanup(&rd->cpupri);
5739 cpudl_cleanup(&rd->cpudl);
5740 free_cpumask_var(rd->dlo_mask);
5741 free_cpumask_var(rd->rto_mask);
5742 free_cpumask_var(rd->online);
5743 free_cpumask_var(rd->span);
5744 kfree(rd);
5745 }
5746
5747 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5748 {
5749 struct root_domain *old_rd = NULL;
5750 unsigned long flags;
5751
5752 raw_spin_lock_irqsave(&rq->lock, flags);
5753
5754 if (rq->rd) {
5755 old_rd = rq->rd;
5756
5757 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5758 set_rq_offline(rq);
5759
5760 cpumask_clear_cpu(rq->cpu, old_rd->span);
5761
5762 /*
5763 * If we dont want to free the old_rd yet then
5764 * set old_rd to NULL to skip the freeing later
5765 * in this function:
5766 */
5767 if (!atomic_dec_and_test(&old_rd->refcount))
5768 old_rd = NULL;
5769 }
5770
5771 atomic_inc(&rd->refcount);
5772 rq->rd = rd;
5773
5774 cpumask_set_cpu(rq->cpu, rd->span);
5775 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5776 set_rq_online(rq);
5777
5778 raw_spin_unlock_irqrestore(&rq->lock, flags);
5779
5780 if (old_rd)
5781 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5782 }
5783
5784 static int init_rootdomain(struct root_domain *rd)
5785 {
5786 memset(rd, 0, sizeof(*rd));
5787
5788 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5789 goto out;
5790 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5791 goto free_span;
5792 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5793 goto free_online;
5794 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5795 goto free_dlo_mask;
5796
5797 init_dl_bw(&rd->dl_bw);
5798 if (cpudl_init(&rd->cpudl) != 0)
5799 goto free_dlo_mask;
5800
5801 if (cpupri_init(&rd->cpupri) != 0)
5802 goto free_rto_mask;
5803 return 0;
5804
5805 free_rto_mask:
5806 free_cpumask_var(rd->rto_mask);
5807 free_dlo_mask:
5808 free_cpumask_var(rd->dlo_mask);
5809 free_online:
5810 free_cpumask_var(rd->online);
5811 free_span:
5812 free_cpumask_var(rd->span);
5813 out:
5814 return -ENOMEM;
5815 }
5816
5817 /*
5818 * By default the system creates a single root-domain with all cpus as
5819 * members (mimicking the global state we have today).
5820 */
5821 struct root_domain def_root_domain;
5822
5823 static void init_defrootdomain(void)
5824 {
5825 init_rootdomain(&def_root_domain);
5826
5827 atomic_set(&def_root_domain.refcount, 1);
5828 }
5829
5830 static struct root_domain *alloc_rootdomain(void)
5831 {
5832 struct root_domain *rd;
5833
5834 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5835 if (!rd)
5836 return NULL;
5837
5838 if (init_rootdomain(rd) != 0) {
5839 kfree(rd);
5840 return NULL;
5841 }
5842
5843 return rd;
5844 }
5845
5846 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5847 {
5848 struct sched_group *tmp, *first;
5849
5850 if (!sg)
5851 return;
5852
5853 first = sg;
5854 do {
5855 tmp = sg->next;
5856
5857 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5858 kfree(sg->sgc);
5859
5860 kfree(sg);
5861 sg = tmp;
5862 } while (sg != first);
5863 }
5864
5865 static void free_sched_domain(struct rcu_head *rcu)
5866 {
5867 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5868
5869 /*
5870 * If its an overlapping domain it has private groups, iterate and
5871 * nuke them all.
5872 */
5873 if (sd->flags & SD_OVERLAP) {
5874 free_sched_groups(sd->groups, 1);
5875 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5876 kfree(sd->groups->sgc);
5877 kfree(sd->groups);
5878 }
5879 kfree(sd);
5880 }
5881
5882 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5883 {
5884 call_rcu(&sd->rcu, free_sched_domain);
5885 }
5886
5887 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5888 {
5889 for (; sd; sd = sd->parent)
5890 destroy_sched_domain(sd, cpu);
5891 }
5892
5893 /*
5894 * Keep a special pointer to the highest sched_domain that has
5895 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5896 * allows us to avoid some pointer chasing select_idle_sibling().
5897 *
5898 * Also keep a unique ID per domain (we use the first cpu number in
5899 * the cpumask of the domain), this allows us to quickly tell if
5900 * two cpus are in the same cache domain, see cpus_share_cache().
5901 */
5902 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5903 DEFINE_PER_CPU(int, sd_llc_size);
5904 DEFINE_PER_CPU(int, sd_llc_id);
5905 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5906 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5907 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5908
5909 static void update_top_cache_domain(int cpu)
5910 {
5911 struct sched_domain *sd;
5912 struct sched_domain *busy_sd = NULL;
5913 int id = cpu;
5914 int size = 1;
5915
5916 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5917 if (sd) {
5918 id = cpumask_first(sched_domain_span(sd));
5919 size = cpumask_weight(sched_domain_span(sd));
5920 busy_sd = sd->parent; /* sd_busy */
5921 }
5922 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5923
5924 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5925 per_cpu(sd_llc_size, cpu) = size;
5926 per_cpu(sd_llc_id, cpu) = id;
5927
5928 sd = lowest_flag_domain(cpu, SD_NUMA);
5929 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5930
5931 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5932 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5933 }
5934
5935 /*
5936 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5937 * hold the hotplug lock.
5938 */
5939 static void
5940 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5941 {
5942 struct rq *rq = cpu_rq(cpu);
5943 struct sched_domain *tmp;
5944
5945 /* Remove the sched domains which do not contribute to scheduling. */
5946 for (tmp = sd; tmp; ) {
5947 struct sched_domain *parent = tmp->parent;
5948 if (!parent)
5949 break;
5950
5951 if (sd_parent_degenerate(tmp, parent)) {
5952 tmp->parent = parent->parent;
5953 if (parent->parent)
5954 parent->parent->child = tmp;
5955 /*
5956 * Transfer SD_PREFER_SIBLING down in case of a
5957 * degenerate parent; the spans match for this
5958 * so the property transfers.
5959 */
5960 if (parent->flags & SD_PREFER_SIBLING)
5961 tmp->flags |= SD_PREFER_SIBLING;
5962 destroy_sched_domain(parent, cpu);
5963 } else
5964 tmp = tmp->parent;
5965 }
5966
5967 if (sd && sd_degenerate(sd)) {
5968 tmp = sd;
5969 sd = sd->parent;
5970 destroy_sched_domain(tmp, cpu);
5971 if (sd)
5972 sd->child = NULL;
5973 }
5974
5975 sched_domain_debug(sd, cpu);
5976
5977 rq_attach_root(rq, rd);
5978 tmp = rq->sd;
5979 rcu_assign_pointer(rq->sd, sd);
5980 destroy_sched_domains(tmp, cpu);
5981
5982 update_top_cache_domain(cpu);
5983 }
5984
5985 /* Setup the mask of cpus configured for isolated domains */
5986 static int __init isolated_cpu_setup(char *str)
5987 {
5988 int ret;
5989
5990 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5991 ret = cpulist_parse(str, cpu_isolated_map);
5992 if (ret) {
5993 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5994 return 0;
5995 }
5996 return 1;
5997 }
5998 __setup("isolcpus=", isolated_cpu_setup);
5999
6000 struct s_data {
6001 struct sched_domain ** __percpu sd;
6002 struct root_domain *rd;
6003 };
6004
6005 enum s_alloc {
6006 sa_rootdomain,
6007 sa_sd,
6008 sa_sd_storage,
6009 sa_none,
6010 };
6011
6012 /*
6013 * Build an iteration mask that can exclude certain CPUs from the upwards
6014 * domain traversal.
6015 *
6016 * Asymmetric node setups can result in situations where the domain tree is of
6017 * unequal depth, make sure to skip domains that already cover the entire
6018 * range.
6019 *
6020 * In that case build_sched_domains() will have terminated the iteration early
6021 * and our sibling sd spans will be empty. Domains should always include the
6022 * cpu they're built on, so check that.
6023 *
6024 */
6025 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6026 {
6027 const struct cpumask *span = sched_domain_span(sd);
6028 struct sd_data *sdd = sd->private;
6029 struct sched_domain *sibling;
6030 int i;
6031
6032 for_each_cpu(i, span) {
6033 sibling = *per_cpu_ptr(sdd->sd, i);
6034 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6035 continue;
6036
6037 cpumask_set_cpu(i, sched_group_mask(sg));
6038 }
6039 }
6040
6041 /*
6042 * Return the canonical balance cpu for this group, this is the first cpu
6043 * of this group that's also in the iteration mask.
6044 */
6045 int group_balance_cpu(struct sched_group *sg)
6046 {
6047 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6048 }
6049
6050 static int
6051 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6052 {
6053 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6054 const struct cpumask *span = sched_domain_span(sd);
6055 struct cpumask *covered = sched_domains_tmpmask;
6056 struct sd_data *sdd = sd->private;
6057 struct sched_domain *sibling;
6058 int i;
6059
6060 cpumask_clear(covered);
6061
6062 for_each_cpu(i, span) {
6063 struct cpumask *sg_span;
6064
6065 if (cpumask_test_cpu(i, covered))
6066 continue;
6067
6068 sibling = *per_cpu_ptr(sdd->sd, i);
6069
6070 /* See the comment near build_group_mask(). */
6071 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6072 continue;
6073
6074 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6075 GFP_KERNEL, cpu_to_node(cpu));
6076
6077 if (!sg)
6078 goto fail;
6079
6080 sg_span = sched_group_cpus(sg);
6081 if (sibling->child)
6082 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6083 else
6084 cpumask_set_cpu(i, sg_span);
6085
6086 cpumask_or(covered, covered, sg_span);
6087
6088 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6089 if (atomic_inc_return(&sg->sgc->ref) == 1)
6090 build_group_mask(sd, sg);
6091
6092 /*
6093 * Initialize sgc->capacity such that even if we mess up the
6094 * domains and no possible iteration will get us here, we won't
6095 * die on a /0 trap.
6096 */
6097 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6098
6099 /*
6100 * Make sure the first group of this domain contains the
6101 * canonical balance cpu. Otherwise the sched_domain iteration
6102 * breaks. See update_sg_lb_stats().
6103 */
6104 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6105 group_balance_cpu(sg) == cpu)
6106 groups = sg;
6107
6108 if (!first)
6109 first = sg;
6110 if (last)
6111 last->next = sg;
6112 last = sg;
6113 last->next = first;
6114 }
6115 sd->groups = groups;
6116
6117 return 0;
6118
6119 fail:
6120 free_sched_groups(first, 0);
6121
6122 return -ENOMEM;
6123 }
6124
6125 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6126 {
6127 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6128 struct sched_domain *child = sd->child;
6129
6130 if (child)
6131 cpu = cpumask_first(sched_domain_span(child));
6132
6133 if (sg) {
6134 *sg = *per_cpu_ptr(sdd->sg, cpu);
6135 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6136 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6137 }
6138
6139 return cpu;
6140 }
6141
6142 /*
6143 * build_sched_groups will build a circular linked list of the groups
6144 * covered by the given span, and will set each group's ->cpumask correctly,
6145 * and ->cpu_capacity to 0.
6146 *
6147 * Assumes the sched_domain tree is fully constructed
6148 */
6149 static int
6150 build_sched_groups(struct sched_domain *sd, int cpu)
6151 {
6152 struct sched_group *first = NULL, *last = NULL;
6153 struct sd_data *sdd = sd->private;
6154 const struct cpumask *span = sched_domain_span(sd);
6155 struct cpumask *covered;
6156 int i;
6157
6158 get_group(cpu, sdd, &sd->groups);
6159 atomic_inc(&sd->groups->ref);
6160
6161 if (cpu != cpumask_first(span))
6162 return 0;
6163
6164 lockdep_assert_held(&sched_domains_mutex);
6165 covered = sched_domains_tmpmask;
6166
6167 cpumask_clear(covered);
6168
6169 for_each_cpu(i, span) {
6170 struct sched_group *sg;
6171 int group, j;
6172
6173 if (cpumask_test_cpu(i, covered))
6174 continue;
6175
6176 group = get_group(i, sdd, &sg);
6177 cpumask_setall(sched_group_mask(sg));
6178
6179 for_each_cpu(j, span) {
6180 if (get_group(j, sdd, NULL) != group)
6181 continue;
6182
6183 cpumask_set_cpu(j, covered);
6184 cpumask_set_cpu(j, sched_group_cpus(sg));
6185 }
6186
6187 if (!first)
6188 first = sg;
6189 if (last)
6190 last->next = sg;
6191 last = sg;
6192 }
6193 last->next = first;
6194
6195 return 0;
6196 }
6197
6198 /*
6199 * Initialize sched groups cpu_capacity.
6200 *
6201 * cpu_capacity indicates the capacity of sched group, which is used while
6202 * distributing the load between different sched groups in a sched domain.
6203 * Typically cpu_capacity for all the groups in a sched domain will be same
6204 * unless there are asymmetries in the topology. If there are asymmetries,
6205 * group having more cpu_capacity will pickup more load compared to the
6206 * group having less cpu_capacity.
6207 */
6208 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6209 {
6210 struct sched_group *sg = sd->groups;
6211
6212 WARN_ON(!sg);
6213
6214 do {
6215 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6216 sg = sg->next;
6217 } while (sg != sd->groups);
6218
6219 if (cpu != group_balance_cpu(sg))
6220 return;
6221
6222 update_group_capacity(sd, cpu);
6223 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6224 }
6225
6226 /*
6227 * Initializers for schedule domains
6228 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6229 */
6230
6231 static int default_relax_domain_level = -1;
6232 int sched_domain_level_max;
6233
6234 static int __init setup_relax_domain_level(char *str)
6235 {
6236 if (kstrtoint(str, 0, &default_relax_domain_level))
6237 pr_warn("Unable to set relax_domain_level\n");
6238
6239 return 1;
6240 }
6241 __setup("relax_domain_level=", setup_relax_domain_level);
6242
6243 static void set_domain_attribute(struct sched_domain *sd,
6244 struct sched_domain_attr *attr)
6245 {
6246 int request;
6247
6248 if (!attr || attr->relax_domain_level < 0) {
6249 if (default_relax_domain_level < 0)
6250 return;
6251 else
6252 request = default_relax_domain_level;
6253 } else
6254 request = attr->relax_domain_level;
6255 if (request < sd->level) {
6256 /* turn off idle balance on this domain */
6257 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6258 } else {
6259 /* turn on idle balance on this domain */
6260 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6261 }
6262 }
6263
6264 static void __sdt_free(const struct cpumask *cpu_map);
6265 static int __sdt_alloc(const struct cpumask *cpu_map);
6266
6267 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6268 const struct cpumask *cpu_map)
6269 {
6270 switch (what) {
6271 case sa_rootdomain:
6272 if (!atomic_read(&d->rd->refcount))
6273 free_rootdomain(&d->rd->rcu); /* fall through */
6274 case sa_sd:
6275 free_percpu(d->sd); /* fall through */
6276 case sa_sd_storage:
6277 __sdt_free(cpu_map); /* fall through */
6278 case sa_none:
6279 break;
6280 }
6281 }
6282
6283 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6284 const struct cpumask *cpu_map)
6285 {
6286 memset(d, 0, sizeof(*d));
6287
6288 if (__sdt_alloc(cpu_map))
6289 return sa_sd_storage;
6290 d->sd = alloc_percpu(struct sched_domain *);
6291 if (!d->sd)
6292 return sa_sd_storage;
6293 d->rd = alloc_rootdomain();
6294 if (!d->rd)
6295 return sa_sd;
6296 return sa_rootdomain;
6297 }
6298
6299 /*
6300 * NULL the sd_data elements we've used to build the sched_domain and
6301 * sched_group structure so that the subsequent __free_domain_allocs()
6302 * will not free the data we're using.
6303 */
6304 static void claim_allocations(int cpu, struct sched_domain *sd)
6305 {
6306 struct sd_data *sdd = sd->private;
6307
6308 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6309 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6310
6311 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6312 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6313
6314 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6315 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6316 }
6317
6318 #ifdef CONFIG_NUMA
6319 static int sched_domains_numa_levels;
6320 enum numa_topology_type sched_numa_topology_type;
6321 static int *sched_domains_numa_distance;
6322 int sched_max_numa_distance;
6323 static struct cpumask ***sched_domains_numa_masks;
6324 static int sched_domains_curr_level;
6325 #endif
6326
6327 /*
6328 * SD_flags allowed in topology descriptions.
6329 *
6330 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6331 * SD_SHARE_PKG_RESOURCES - describes shared caches
6332 * SD_NUMA - describes NUMA topologies
6333 * SD_SHARE_POWERDOMAIN - describes shared power domain
6334 *
6335 * Odd one out:
6336 * SD_ASYM_PACKING - describes SMT quirks
6337 */
6338 #define TOPOLOGY_SD_FLAGS \
6339 (SD_SHARE_CPUCAPACITY | \
6340 SD_SHARE_PKG_RESOURCES | \
6341 SD_NUMA | \
6342 SD_ASYM_PACKING | \
6343 SD_SHARE_POWERDOMAIN)
6344
6345 static struct sched_domain *
6346 sd_init(struct sched_domain_topology_level *tl, int cpu)
6347 {
6348 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6349 int sd_weight, sd_flags = 0;
6350
6351 #ifdef CONFIG_NUMA
6352 /*
6353 * Ugly hack to pass state to sd_numa_mask()...
6354 */
6355 sched_domains_curr_level = tl->numa_level;
6356 #endif
6357
6358 sd_weight = cpumask_weight(tl->mask(cpu));
6359
6360 if (tl->sd_flags)
6361 sd_flags = (*tl->sd_flags)();
6362 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6363 "wrong sd_flags in topology description\n"))
6364 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6365
6366 *sd = (struct sched_domain){
6367 .min_interval = sd_weight,
6368 .max_interval = 2*sd_weight,
6369 .busy_factor = 32,
6370 .imbalance_pct = 125,
6371
6372 .cache_nice_tries = 0,
6373 .busy_idx = 0,
6374 .idle_idx = 0,
6375 .newidle_idx = 0,
6376 .wake_idx = 0,
6377 .forkexec_idx = 0,
6378
6379 .flags = 1*SD_LOAD_BALANCE
6380 | 1*SD_BALANCE_NEWIDLE
6381 | 1*SD_BALANCE_EXEC
6382 | 1*SD_BALANCE_FORK
6383 | 0*SD_BALANCE_WAKE
6384 | 1*SD_WAKE_AFFINE
6385 | 0*SD_SHARE_CPUCAPACITY
6386 | 0*SD_SHARE_PKG_RESOURCES
6387 | 0*SD_SERIALIZE
6388 | 0*SD_PREFER_SIBLING
6389 | 0*SD_NUMA
6390 | sd_flags
6391 ,
6392
6393 .last_balance = jiffies,
6394 .balance_interval = sd_weight,
6395 .smt_gain = 0,
6396 .max_newidle_lb_cost = 0,
6397 .next_decay_max_lb_cost = jiffies,
6398 #ifdef CONFIG_SCHED_DEBUG
6399 .name = tl->name,
6400 #endif
6401 };
6402
6403 /*
6404 * Convert topological properties into behaviour.
6405 */
6406
6407 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6408 sd->flags |= SD_PREFER_SIBLING;
6409 sd->imbalance_pct = 110;
6410 sd->smt_gain = 1178; /* ~15% */
6411
6412 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6413 sd->imbalance_pct = 117;
6414 sd->cache_nice_tries = 1;
6415 sd->busy_idx = 2;
6416
6417 #ifdef CONFIG_NUMA
6418 } else if (sd->flags & SD_NUMA) {
6419 sd->cache_nice_tries = 2;
6420 sd->busy_idx = 3;
6421 sd->idle_idx = 2;
6422
6423 sd->flags |= SD_SERIALIZE;
6424 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6425 sd->flags &= ~(SD_BALANCE_EXEC |
6426 SD_BALANCE_FORK |
6427 SD_WAKE_AFFINE);
6428 }
6429
6430 #endif
6431 } else {
6432 sd->flags |= SD_PREFER_SIBLING;
6433 sd->cache_nice_tries = 1;
6434 sd->busy_idx = 2;
6435 sd->idle_idx = 1;
6436 }
6437
6438 sd->private = &tl->data;
6439
6440 return sd;
6441 }
6442
6443 /*
6444 * Topology list, bottom-up.
6445 */
6446 static struct sched_domain_topology_level default_topology[] = {
6447 #ifdef CONFIG_SCHED_SMT
6448 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6449 #endif
6450 #ifdef CONFIG_SCHED_MC
6451 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6452 #endif
6453 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6454 { NULL, },
6455 };
6456
6457 static struct sched_domain_topology_level *sched_domain_topology =
6458 default_topology;
6459
6460 #define for_each_sd_topology(tl) \
6461 for (tl = sched_domain_topology; tl->mask; tl++)
6462
6463 void set_sched_topology(struct sched_domain_topology_level *tl)
6464 {
6465 sched_domain_topology = tl;
6466 }
6467
6468 #ifdef CONFIG_NUMA
6469
6470 static const struct cpumask *sd_numa_mask(int cpu)
6471 {
6472 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6473 }
6474
6475 static void sched_numa_warn(const char *str)
6476 {
6477 static int done = false;
6478 int i,j;
6479
6480 if (done)
6481 return;
6482
6483 done = true;
6484
6485 printk(KERN_WARNING "ERROR: %s\n\n", str);
6486
6487 for (i = 0; i < nr_node_ids; i++) {
6488 printk(KERN_WARNING " ");
6489 for (j = 0; j < nr_node_ids; j++)
6490 printk(KERN_CONT "%02d ", node_distance(i,j));
6491 printk(KERN_CONT "\n");
6492 }
6493 printk(KERN_WARNING "\n");
6494 }
6495
6496 bool find_numa_distance(int distance)
6497 {
6498 int i;
6499
6500 if (distance == node_distance(0, 0))
6501 return true;
6502
6503 for (i = 0; i < sched_domains_numa_levels; i++) {
6504 if (sched_domains_numa_distance[i] == distance)
6505 return true;
6506 }
6507
6508 return false;
6509 }
6510
6511 /*
6512 * A system can have three types of NUMA topology:
6513 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6514 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6515 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6516 *
6517 * The difference between a glueless mesh topology and a backplane
6518 * topology lies in whether communication between not directly
6519 * connected nodes goes through intermediary nodes (where programs
6520 * could run), or through backplane controllers. This affects
6521 * placement of programs.
6522 *
6523 * The type of topology can be discerned with the following tests:
6524 * - If the maximum distance between any nodes is 1 hop, the system
6525 * is directly connected.
6526 * - If for two nodes A and B, located N > 1 hops away from each other,
6527 * there is an intermediary node C, which is < N hops away from both
6528 * nodes A and B, the system is a glueless mesh.
6529 */
6530 static void init_numa_topology_type(void)
6531 {
6532 int a, b, c, n;
6533
6534 n = sched_max_numa_distance;
6535
6536 if (sched_domains_numa_levels <= 1) {
6537 sched_numa_topology_type = NUMA_DIRECT;
6538 return;
6539 }
6540
6541 for_each_online_node(a) {
6542 for_each_online_node(b) {
6543 /* Find two nodes furthest removed from each other. */
6544 if (node_distance(a, b) < n)
6545 continue;
6546
6547 /* Is there an intermediary node between a and b? */
6548 for_each_online_node(c) {
6549 if (node_distance(a, c) < n &&
6550 node_distance(b, c) < n) {
6551 sched_numa_topology_type =
6552 NUMA_GLUELESS_MESH;
6553 return;
6554 }
6555 }
6556
6557 sched_numa_topology_type = NUMA_BACKPLANE;
6558 return;
6559 }
6560 }
6561 }
6562
6563 static void sched_init_numa(void)
6564 {
6565 int next_distance, curr_distance = node_distance(0, 0);
6566 struct sched_domain_topology_level *tl;
6567 int level = 0;
6568 int i, j, k;
6569
6570 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6571 if (!sched_domains_numa_distance)
6572 return;
6573
6574 /*
6575 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6576 * unique distances in the node_distance() table.
6577 *
6578 * Assumes node_distance(0,j) includes all distances in
6579 * node_distance(i,j) in order to avoid cubic time.
6580 */
6581 next_distance = curr_distance;
6582 for (i = 0; i < nr_node_ids; i++) {
6583 for (j = 0; j < nr_node_ids; j++) {
6584 for (k = 0; k < nr_node_ids; k++) {
6585 int distance = node_distance(i, k);
6586
6587 if (distance > curr_distance &&
6588 (distance < next_distance ||
6589 next_distance == curr_distance))
6590 next_distance = distance;
6591
6592 /*
6593 * While not a strong assumption it would be nice to know
6594 * about cases where if node A is connected to B, B is not
6595 * equally connected to A.
6596 */
6597 if (sched_debug() && node_distance(k, i) != distance)
6598 sched_numa_warn("Node-distance not symmetric");
6599
6600 if (sched_debug() && i && !find_numa_distance(distance))
6601 sched_numa_warn("Node-0 not representative");
6602 }
6603 if (next_distance != curr_distance) {
6604 sched_domains_numa_distance[level++] = next_distance;
6605 sched_domains_numa_levels = level;
6606 curr_distance = next_distance;
6607 } else break;
6608 }
6609
6610 /*
6611 * In case of sched_debug() we verify the above assumption.
6612 */
6613 if (!sched_debug())
6614 break;
6615 }
6616
6617 if (!level)
6618 return;
6619
6620 /*
6621 * 'level' contains the number of unique distances, excluding the
6622 * identity distance node_distance(i,i).
6623 *
6624 * The sched_domains_numa_distance[] array includes the actual distance
6625 * numbers.
6626 */
6627
6628 /*
6629 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6630 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6631 * the array will contain less then 'level' members. This could be
6632 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6633 * in other functions.
6634 *
6635 * We reset it to 'level' at the end of this function.
6636 */
6637 sched_domains_numa_levels = 0;
6638
6639 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6640 if (!sched_domains_numa_masks)
6641 return;
6642
6643 /*
6644 * Now for each level, construct a mask per node which contains all
6645 * cpus of nodes that are that many hops away from us.
6646 */
6647 for (i = 0; i < level; i++) {
6648 sched_domains_numa_masks[i] =
6649 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6650 if (!sched_domains_numa_masks[i])
6651 return;
6652
6653 for (j = 0; j < nr_node_ids; j++) {
6654 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6655 if (!mask)
6656 return;
6657
6658 sched_domains_numa_masks[i][j] = mask;
6659
6660 for_each_node(k) {
6661 if (node_distance(j, k) > sched_domains_numa_distance[i])
6662 continue;
6663
6664 cpumask_or(mask, mask, cpumask_of_node(k));
6665 }
6666 }
6667 }
6668
6669 /* Compute default topology size */
6670 for (i = 0; sched_domain_topology[i].mask; i++);
6671
6672 tl = kzalloc((i + level + 1) *
6673 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6674 if (!tl)
6675 return;
6676
6677 /*
6678 * Copy the default topology bits..
6679 */
6680 for (i = 0; sched_domain_topology[i].mask; i++)
6681 tl[i] = sched_domain_topology[i];
6682
6683 /*
6684 * .. and append 'j' levels of NUMA goodness.
6685 */
6686 for (j = 0; j < level; i++, j++) {
6687 tl[i] = (struct sched_domain_topology_level){
6688 .mask = sd_numa_mask,
6689 .sd_flags = cpu_numa_flags,
6690 .flags = SDTL_OVERLAP,
6691 .numa_level = j,
6692 SD_INIT_NAME(NUMA)
6693 };
6694 }
6695
6696 sched_domain_topology = tl;
6697
6698 sched_domains_numa_levels = level;
6699 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6700
6701 init_numa_topology_type();
6702 }
6703
6704 static void sched_domains_numa_masks_set(unsigned int cpu)
6705 {
6706 int node = cpu_to_node(cpu);
6707 int i, j;
6708
6709 for (i = 0; i < sched_domains_numa_levels; i++) {
6710 for (j = 0; j < nr_node_ids; j++) {
6711 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6712 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6713 }
6714 }
6715 }
6716
6717 static void sched_domains_numa_masks_clear(unsigned int cpu)
6718 {
6719 int i, j;
6720
6721 for (i = 0; i < sched_domains_numa_levels; i++) {
6722 for (j = 0; j < nr_node_ids; j++)
6723 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6724 }
6725 }
6726
6727 #else
6728 static inline void sched_init_numa(void) { }
6729 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6730 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6731 #endif /* CONFIG_NUMA */
6732
6733 static int __sdt_alloc(const struct cpumask *cpu_map)
6734 {
6735 struct sched_domain_topology_level *tl;
6736 int j;
6737
6738 for_each_sd_topology(tl) {
6739 struct sd_data *sdd = &tl->data;
6740
6741 sdd->sd = alloc_percpu(struct sched_domain *);
6742 if (!sdd->sd)
6743 return -ENOMEM;
6744
6745 sdd->sg = alloc_percpu(struct sched_group *);
6746 if (!sdd->sg)
6747 return -ENOMEM;
6748
6749 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6750 if (!sdd->sgc)
6751 return -ENOMEM;
6752
6753 for_each_cpu(j, cpu_map) {
6754 struct sched_domain *sd;
6755 struct sched_group *sg;
6756 struct sched_group_capacity *sgc;
6757
6758 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6759 GFP_KERNEL, cpu_to_node(j));
6760 if (!sd)
6761 return -ENOMEM;
6762
6763 *per_cpu_ptr(sdd->sd, j) = sd;
6764
6765 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6766 GFP_KERNEL, cpu_to_node(j));
6767 if (!sg)
6768 return -ENOMEM;
6769
6770 sg->next = sg;
6771
6772 *per_cpu_ptr(sdd->sg, j) = sg;
6773
6774 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6775 GFP_KERNEL, cpu_to_node(j));
6776 if (!sgc)
6777 return -ENOMEM;
6778
6779 *per_cpu_ptr(sdd->sgc, j) = sgc;
6780 }
6781 }
6782
6783 return 0;
6784 }
6785
6786 static void __sdt_free(const struct cpumask *cpu_map)
6787 {
6788 struct sched_domain_topology_level *tl;
6789 int j;
6790
6791 for_each_sd_topology(tl) {
6792 struct sd_data *sdd = &tl->data;
6793
6794 for_each_cpu(j, cpu_map) {
6795 struct sched_domain *sd;
6796
6797 if (sdd->sd) {
6798 sd = *per_cpu_ptr(sdd->sd, j);
6799 if (sd && (sd->flags & SD_OVERLAP))
6800 free_sched_groups(sd->groups, 0);
6801 kfree(*per_cpu_ptr(sdd->sd, j));
6802 }
6803
6804 if (sdd->sg)
6805 kfree(*per_cpu_ptr(sdd->sg, j));
6806 if (sdd->sgc)
6807 kfree(*per_cpu_ptr(sdd->sgc, j));
6808 }
6809 free_percpu(sdd->sd);
6810 sdd->sd = NULL;
6811 free_percpu(sdd->sg);
6812 sdd->sg = NULL;
6813 free_percpu(sdd->sgc);
6814 sdd->sgc = NULL;
6815 }
6816 }
6817
6818 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6819 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6820 struct sched_domain *child, int cpu)
6821 {
6822 struct sched_domain *sd = sd_init(tl, cpu);
6823 if (!sd)
6824 return child;
6825
6826 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6827 if (child) {
6828 sd->level = child->level + 1;
6829 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6830 child->parent = sd;
6831 sd->child = child;
6832
6833 if (!cpumask_subset(sched_domain_span(child),
6834 sched_domain_span(sd))) {
6835 pr_err("BUG: arch topology borken\n");
6836 #ifdef CONFIG_SCHED_DEBUG
6837 pr_err(" the %s domain not a subset of the %s domain\n",
6838 child->name, sd->name);
6839 #endif
6840 /* Fixup, ensure @sd has at least @child cpus. */
6841 cpumask_or(sched_domain_span(sd),
6842 sched_domain_span(sd),
6843 sched_domain_span(child));
6844 }
6845
6846 }
6847 set_domain_attribute(sd, attr);
6848
6849 return sd;
6850 }
6851
6852 /*
6853 * Build sched domains for a given set of cpus and attach the sched domains
6854 * to the individual cpus
6855 */
6856 static int build_sched_domains(const struct cpumask *cpu_map,
6857 struct sched_domain_attr *attr)
6858 {
6859 enum s_alloc alloc_state;
6860 struct sched_domain *sd;
6861 struct s_data d;
6862 int i, ret = -ENOMEM;
6863
6864 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6865 if (alloc_state != sa_rootdomain)
6866 goto error;
6867
6868 /* Set up domains for cpus specified by the cpu_map. */
6869 for_each_cpu(i, cpu_map) {
6870 struct sched_domain_topology_level *tl;
6871
6872 sd = NULL;
6873 for_each_sd_topology(tl) {
6874 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6875 if (tl == sched_domain_topology)
6876 *per_cpu_ptr(d.sd, i) = sd;
6877 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6878 sd->flags |= SD_OVERLAP;
6879 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6880 break;
6881 }
6882 }
6883
6884 /* Build the groups for the domains */
6885 for_each_cpu(i, cpu_map) {
6886 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6887 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6888 if (sd->flags & SD_OVERLAP) {
6889 if (build_overlap_sched_groups(sd, i))
6890 goto error;
6891 } else {
6892 if (build_sched_groups(sd, i))
6893 goto error;
6894 }
6895 }
6896 }
6897
6898 /* Calculate CPU capacity for physical packages and nodes */
6899 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6900 if (!cpumask_test_cpu(i, cpu_map))
6901 continue;
6902
6903 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6904 claim_allocations(i, sd);
6905 init_sched_groups_capacity(i, sd);
6906 }
6907 }
6908
6909 /* Attach the domains */
6910 rcu_read_lock();
6911 for_each_cpu(i, cpu_map) {
6912 sd = *per_cpu_ptr(d.sd, i);
6913 cpu_attach_domain(sd, d.rd, i);
6914 }
6915 rcu_read_unlock();
6916
6917 ret = 0;
6918 error:
6919 __free_domain_allocs(&d, alloc_state, cpu_map);
6920 return ret;
6921 }
6922
6923 static cpumask_var_t *doms_cur; /* current sched domains */
6924 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6925 static struct sched_domain_attr *dattr_cur;
6926 /* attribues of custom domains in 'doms_cur' */
6927
6928 /*
6929 * Special case: If a kmalloc of a doms_cur partition (array of
6930 * cpumask) fails, then fallback to a single sched domain,
6931 * as determined by the single cpumask fallback_doms.
6932 */
6933 static cpumask_var_t fallback_doms;
6934
6935 /*
6936 * arch_update_cpu_topology lets virtualized architectures update the
6937 * cpu core maps. It is supposed to return 1 if the topology changed
6938 * or 0 if it stayed the same.
6939 */
6940 int __weak arch_update_cpu_topology(void)
6941 {
6942 return 0;
6943 }
6944
6945 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6946 {
6947 int i;
6948 cpumask_var_t *doms;
6949
6950 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6951 if (!doms)
6952 return NULL;
6953 for (i = 0; i < ndoms; i++) {
6954 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6955 free_sched_domains(doms, i);
6956 return NULL;
6957 }
6958 }
6959 return doms;
6960 }
6961
6962 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6963 {
6964 unsigned int i;
6965 for (i = 0; i < ndoms; i++)
6966 free_cpumask_var(doms[i]);
6967 kfree(doms);
6968 }
6969
6970 /*
6971 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6972 * For now this just excludes isolated cpus, but could be used to
6973 * exclude other special cases in the future.
6974 */
6975 static int init_sched_domains(const struct cpumask *cpu_map)
6976 {
6977 int err;
6978
6979 arch_update_cpu_topology();
6980 ndoms_cur = 1;
6981 doms_cur = alloc_sched_domains(ndoms_cur);
6982 if (!doms_cur)
6983 doms_cur = &fallback_doms;
6984 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6985 err = build_sched_domains(doms_cur[0], NULL);
6986 register_sched_domain_sysctl();
6987
6988 return err;
6989 }
6990
6991 /*
6992 * Detach sched domains from a group of cpus specified in cpu_map
6993 * These cpus will now be attached to the NULL domain
6994 */
6995 static void detach_destroy_domains(const struct cpumask *cpu_map)
6996 {
6997 int i;
6998
6999 rcu_read_lock();
7000 for_each_cpu(i, cpu_map)
7001 cpu_attach_domain(NULL, &def_root_domain, i);
7002 rcu_read_unlock();
7003 }
7004
7005 /* handle null as "default" */
7006 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7007 struct sched_domain_attr *new, int idx_new)
7008 {
7009 struct sched_domain_attr tmp;
7010
7011 /* fast path */
7012 if (!new && !cur)
7013 return 1;
7014
7015 tmp = SD_ATTR_INIT;
7016 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7017 new ? (new + idx_new) : &tmp,
7018 sizeof(struct sched_domain_attr));
7019 }
7020
7021 /*
7022 * Partition sched domains as specified by the 'ndoms_new'
7023 * cpumasks in the array doms_new[] of cpumasks. This compares
7024 * doms_new[] to the current sched domain partitioning, doms_cur[].
7025 * It destroys each deleted domain and builds each new domain.
7026 *
7027 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7028 * The masks don't intersect (don't overlap.) We should setup one
7029 * sched domain for each mask. CPUs not in any of the cpumasks will
7030 * not be load balanced. If the same cpumask appears both in the
7031 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7032 * it as it is.
7033 *
7034 * The passed in 'doms_new' should be allocated using
7035 * alloc_sched_domains. This routine takes ownership of it and will
7036 * free_sched_domains it when done with it. If the caller failed the
7037 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7038 * and partition_sched_domains() will fallback to the single partition
7039 * 'fallback_doms', it also forces the domains to be rebuilt.
7040 *
7041 * If doms_new == NULL it will be replaced with cpu_online_mask.
7042 * ndoms_new == 0 is a special case for destroying existing domains,
7043 * and it will not create the default domain.
7044 *
7045 * Call with hotplug lock held
7046 */
7047 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7048 struct sched_domain_attr *dattr_new)
7049 {
7050 int i, j, n;
7051 int new_topology;
7052
7053 mutex_lock(&sched_domains_mutex);
7054
7055 /* always unregister in case we don't destroy any domains */
7056 unregister_sched_domain_sysctl();
7057
7058 /* Let architecture update cpu core mappings. */
7059 new_topology = arch_update_cpu_topology();
7060
7061 n = doms_new ? ndoms_new : 0;
7062
7063 /* Destroy deleted domains */
7064 for (i = 0; i < ndoms_cur; i++) {
7065 for (j = 0; j < n && !new_topology; j++) {
7066 if (cpumask_equal(doms_cur[i], doms_new[j])
7067 && dattrs_equal(dattr_cur, i, dattr_new, j))
7068 goto match1;
7069 }
7070 /* no match - a current sched domain not in new doms_new[] */
7071 detach_destroy_domains(doms_cur[i]);
7072 match1:
7073 ;
7074 }
7075
7076 n = ndoms_cur;
7077 if (doms_new == NULL) {
7078 n = 0;
7079 doms_new = &fallback_doms;
7080 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7081 WARN_ON_ONCE(dattr_new);
7082 }
7083
7084 /* Build new domains */
7085 for (i = 0; i < ndoms_new; i++) {
7086 for (j = 0; j < n && !new_topology; j++) {
7087 if (cpumask_equal(doms_new[i], doms_cur[j])
7088 && dattrs_equal(dattr_new, i, dattr_cur, j))
7089 goto match2;
7090 }
7091 /* no match - add a new doms_new */
7092 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7093 match2:
7094 ;
7095 }
7096
7097 /* Remember the new sched domains */
7098 if (doms_cur != &fallback_doms)
7099 free_sched_domains(doms_cur, ndoms_cur);
7100 kfree(dattr_cur); /* kfree(NULL) is safe */
7101 doms_cur = doms_new;
7102 dattr_cur = dattr_new;
7103 ndoms_cur = ndoms_new;
7104
7105 register_sched_domain_sysctl();
7106
7107 mutex_unlock(&sched_domains_mutex);
7108 }
7109
7110 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7111
7112 /*
7113 * Update cpusets according to cpu_active mask. If cpusets are
7114 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7115 * around partition_sched_domains().
7116 *
7117 * If we come here as part of a suspend/resume, don't touch cpusets because we
7118 * want to restore it back to its original state upon resume anyway.
7119 */
7120 static void cpuset_cpu_active(void)
7121 {
7122 if (cpuhp_tasks_frozen) {
7123 /*
7124 * num_cpus_frozen tracks how many CPUs are involved in suspend
7125 * resume sequence. As long as this is not the last online
7126 * operation in the resume sequence, just build a single sched
7127 * domain, ignoring cpusets.
7128 */
7129 num_cpus_frozen--;
7130 if (likely(num_cpus_frozen)) {
7131 partition_sched_domains(1, NULL, NULL);
7132 return;
7133 }
7134 /*
7135 * This is the last CPU online operation. So fall through and
7136 * restore the original sched domains by considering the
7137 * cpuset configurations.
7138 */
7139 }
7140 cpuset_update_active_cpus(true);
7141 }
7142
7143 static int cpuset_cpu_inactive(unsigned int cpu)
7144 {
7145 unsigned long flags;
7146 struct dl_bw *dl_b;
7147 bool overflow;
7148 int cpus;
7149
7150 if (!cpuhp_tasks_frozen) {
7151 rcu_read_lock_sched();
7152 dl_b = dl_bw_of(cpu);
7153
7154 raw_spin_lock_irqsave(&dl_b->lock, flags);
7155 cpus = dl_bw_cpus(cpu);
7156 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7157 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7158
7159 rcu_read_unlock_sched();
7160
7161 if (overflow)
7162 return -EBUSY;
7163 cpuset_update_active_cpus(false);
7164 } else {
7165 num_cpus_frozen++;
7166 partition_sched_domains(1, NULL, NULL);
7167 }
7168 return 0;
7169 }
7170
7171 int sched_cpu_activate(unsigned int cpu)
7172 {
7173 struct rq *rq = cpu_rq(cpu);
7174 unsigned long flags;
7175
7176 set_cpu_active(cpu, true);
7177
7178 if (sched_smp_initialized) {
7179 sched_domains_numa_masks_set(cpu);
7180 cpuset_cpu_active();
7181 }
7182
7183 /*
7184 * Put the rq online, if not already. This happens:
7185 *
7186 * 1) In the early boot process, because we build the real domains
7187 * after all cpus have been brought up.
7188 *
7189 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7190 * domains.
7191 */
7192 raw_spin_lock_irqsave(&rq->lock, flags);
7193 if (rq->rd) {
7194 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7195 set_rq_online(rq);
7196 }
7197 raw_spin_unlock_irqrestore(&rq->lock, flags);
7198
7199 update_max_interval();
7200
7201 return 0;
7202 }
7203
7204 int sched_cpu_deactivate(unsigned int cpu)
7205 {
7206 int ret;
7207
7208 set_cpu_active(cpu, false);
7209 /*
7210 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7211 * users of this state to go away such that all new such users will
7212 * observe it.
7213 *
7214 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7215 * not imply sync_sched(), so wait for both.
7216 *
7217 * Do sync before park smpboot threads to take care the rcu boost case.
7218 */
7219 if (IS_ENABLED(CONFIG_PREEMPT))
7220 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7221 else
7222 synchronize_rcu();
7223
7224 if (!sched_smp_initialized)
7225 return 0;
7226
7227 ret = cpuset_cpu_inactive(cpu);
7228 if (ret) {
7229 set_cpu_active(cpu, true);
7230 return ret;
7231 }
7232 sched_domains_numa_masks_clear(cpu);
7233 return 0;
7234 }
7235
7236 static void sched_rq_cpu_starting(unsigned int cpu)
7237 {
7238 struct rq *rq = cpu_rq(cpu);
7239
7240 rq->calc_load_update = calc_load_update;
7241 update_max_interval();
7242 }
7243
7244 int sched_cpu_starting(unsigned int cpu)
7245 {
7246 set_cpu_rq_start_time(cpu);
7247 sched_rq_cpu_starting(cpu);
7248 return 0;
7249 }
7250
7251 #ifdef CONFIG_HOTPLUG_CPU
7252 int sched_cpu_dying(unsigned int cpu)
7253 {
7254 struct rq *rq = cpu_rq(cpu);
7255 unsigned long flags;
7256
7257 /* Handle pending wakeups and then migrate everything off */
7258 sched_ttwu_pending();
7259 raw_spin_lock_irqsave(&rq->lock, flags);
7260 if (rq->rd) {
7261 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7262 set_rq_offline(rq);
7263 }
7264 migrate_tasks(rq);
7265 BUG_ON(rq->nr_running != 1);
7266 raw_spin_unlock_irqrestore(&rq->lock, flags);
7267 calc_load_migrate(rq);
7268 update_max_interval();
7269 nohz_balance_exit_idle(cpu);
7270 hrtick_clear(rq);
7271 return 0;
7272 }
7273 #endif
7274
7275 void __init sched_init_smp(void)
7276 {
7277 cpumask_var_t non_isolated_cpus;
7278
7279 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7280 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7281
7282 sched_init_numa();
7283
7284 /*
7285 * There's no userspace yet to cause hotplug operations; hence all the
7286 * cpu masks are stable and all blatant races in the below code cannot
7287 * happen.
7288 */
7289 mutex_lock(&sched_domains_mutex);
7290 init_sched_domains(cpu_active_mask);
7291 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7292 if (cpumask_empty(non_isolated_cpus))
7293 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7294 mutex_unlock(&sched_domains_mutex);
7295
7296 /* Move init over to a non-isolated CPU */
7297 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7298 BUG();
7299 sched_init_granularity();
7300 free_cpumask_var(non_isolated_cpus);
7301
7302 init_sched_rt_class();
7303 init_sched_dl_class();
7304 sched_smp_initialized = true;
7305 }
7306
7307 static int __init migration_init(void)
7308 {
7309 sched_rq_cpu_starting(smp_processor_id());
7310 return 0;
7311 }
7312 early_initcall(migration_init);
7313
7314 #else
7315 void __init sched_init_smp(void)
7316 {
7317 sched_init_granularity();
7318 }
7319 #endif /* CONFIG_SMP */
7320
7321 int in_sched_functions(unsigned long addr)
7322 {
7323 return in_lock_functions(addr) ||
7324 (addr >= (unsigned long)__sched_text_start
7325 && addr < (unsigned long)__sched_text_end);
7326 }
7327
7328 #ifdef CONFIG_CGROUP_SCHED
7329 /*
7330 * Default task group.
7331 * Every task in system belongs to this group at bootup.
7332 */
7333 struct task_group root_task_group;
7334 LIST_HEAD(task_groups);
7335
7336 /* Cacheline aligned slab cache for task_group */
7337 static struct kmem_cache *task_group_cache __read_mostly;
7338 #endif
7339
7340 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7341
7342 void __init sched_init(void)
7343 {
7344 int i, j;
7345 unsigned long alloc_size = 0, ptr;
7346
7347 #ifdef CONFIG_FAIR_GROUP_SCHED
7348 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7349 #endif
7350 #ifdef CONFIG_RT_GROUP_SCHED
7351 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7352 #endif
7353 if (alloc_size) {
7354 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7355
7356 #ifdef CONFIG_FAIR_GROUP_SCHED
7357 root_task_group.se = (struct sched_entity **)ptr;
7358 ptr += nr_cpu_ids * sizeof(void **);
7359
7360 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7361 ptr += nr_cpu_ids * sizeof(void **);
7362
7363 #endif /* CONFIG_FAIR_GROUP_SCHED */
7364 #ifdef CONFIG_RT_GROUP_SCHED
7365 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7366 ptr += nr_cpu_ids * sizeof(void **);
7367
7368 root_task_group.rt_rq = (struct rt_rq **)ptr;
7369 ptr += nr_cpu_ids * sizeof(void **);
7370
7371 #endif /* CONFIG_RT_GROUP_SCHED */
7372 }
7373 #ifdef CONFIG_CPUMASK_OFFSTACK
7374 for_each_possible_cpu(i) {
7375 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7376 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7377 }
7378 #endif /* CONFIG_CPUMASK_OFFSTACK */
7379
7380 init_rt_bandwidth(&def_rt_bandwidth,
7381 global_rt_period(), global_rt_runtime());
7382 init_dl_bandwidth(&def_dl_bandwidth,
7383 global_rt_period(), global_rt_runtime());
7384
7385 #ifdef CONFIG_SMP
7386 init_defrootdomain();
7387 #endif
7388
7389 #ifdef CONFIG_RT_GROUP_SCHED
7390 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7391 global_rt_period(), global_rt_runtime());
7392 #endif /* CONFIG_RT_GROUP_SCHED */
7393
7394 #ifdef CONFIG_CGROUP_SCHED
7395 task_group_cache = KMEM_CACHE(task_group, 0);
7396
7397 list_add(&root_task_group.list, &task_groups);
7398 INIT_LIST_HEAD(&root_task_group.children);
7399 INIT_LIST_HEAD(&root_task_group.siblings);
7400 autogroup_init(&init_task);
7401 #endif /* CONFIG_CGROUP_SCHED */
7402
7403 for_each_possible_cpu(i) {
7404 struct rq *rq;
7405
7406 rq = cpu_rq(i);
7407 raw_spin_lock_init(&rq->lock);
7408 rq->nr_running = 0;
7409 rq->calc_load_active = 0;
7410 rq->calc_load_update = jiffies + LOAD_FREQ;
7411 init_cfs_rq(&rq->cfs);
7412 init_rt_rq(&rq->rt);
7413 init_dl_rq(&rq->dl);
7414 #ifdef CONFIG_FAIR_GROUP_SCHED
7415 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7416 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7417 /*
7418 * How much cpu bandwidth does root_task_group get?
7419 *
7420 * In case of task-groups formed thr' the cgroup filesystem, it
7421 * gets 100% of the cpu resources in the system. This overall
7422 * system cpu resource is divided among the tasks of
7423 * root_task_group and its child task-groups in a fair manner,
7424 * based on each entity's (task or task-group's) weight
7425 * (se->load.weight).
7426 *
7427 * In other words, if root_task_group has 10 tasks of weight
7428 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7429 * then A0's share of the cpu resource is:
7430 *
7431 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7432 *
7433 * We achieve this by letting root_task_group's tasks sit
7434 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7435 */
7436 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7437 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7438 #endif /* CONFIG_FAIR_GROUP_SCHED */
7439
7440 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7441 #ifdef CONFIG_RT_GROUP_SCHED
7442 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7443 #endif
7444
7445 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7446 rq->cpu_load[j] = 0;
7447
7448 #ifdef CONFIG_SMP
7449 rq->sd = NULL;
7450 rq->rd = NULL;
7451 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7452 rq->balance_callback = NULL;
7453 rq->active_balance = 0;
7454 rq->next_balance = jiffies;
7455 rq->push_cpu = 0;
7456 rq->cpu = i;
7457 rq->online = 0;
7458 rq->idle_stamp = 0;
7459 rq->avg_idle = 2*sysctl_sched_migration_cost;
7460 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7461
7462 INIT_LIST_HEAD(&rq->cfs_tasks);
7463
7464 rq_attach_root(rq, &def_root_domain);
7465 #ifdef CONFIG_NO_HZ_COMMON
7466 rq->last_load_update_tick = jiffies;
7467 rq->nohz_flags = 0;
7468 #endif
7469 #ifdef CONFIG_NO_HZ_FULL
7470 rq->last_sched_tick = 0;
7471 #endif
7472 #endif /* CONFIG_SMP */
7473 init_rq_hrtick(rq);
7474 atomic_set(&rq->nr_iowait, 0);
7475 }
7476
7477 set_load_weight(&init_task);
7478
7479 #ifdef CONFIG_PREEMPT_NOTIFIERS
7480 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7481 #endif
7482
7483 /*
7484 * The boot idle thread does lazy MMU switching as well:
7485 */
7486 atomic_inc(&init_mm.mm_count);
7487 enter_lazy_tlb(&init_mm, current);
7488
7489 /*
7490 * During early bootup we pretend to be a normal task:
7491 */
7492 current->sched_class = &fair_sched_class;
7493
7494 /*
7495 * Make us the idle thread. Technically, schedule() should not be
7496 * called from this thread, however somewhere below it might be,
7497 * but because we are the idle thread, we just pick up running again
7498 * when this runqueue becomes "idle".
7499 */
7500 init_idle(current, smp_processor_id());
7501
7502 calc_load_update = jiffies + LOAD_FREQ;
7503
7504 #ifdef CONFIG_SMP
7505 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7506 /* May be allocated at isolcpus cmdline parse time */
7507 if (cpu_isolated_map == NULL)
7508 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7509 idle_thread_set_boot_cpu();
7510 set_cpu_rq_start_time(smp_processor_id());
7511 #endif
7512 init_sched_fair_class();
7513
7514 init_schedstats();
7515
7516 scheduler_running = 1;
7517 }
7518
7519 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7520 static inline int preempt_count_equals(int preempt_offset)
7521 {
7522 int nested = preempt_count() + rcu_preempt_depth();
7523
7524 return (nested == preempt_offset);
7525 }
7526
7527 void __might_sleep(const char *file, int line, int preempt_offset)
7528 {
7529 /*
7530 * Blocking primitives will set (and therefore destroy) current->state,
7531 * since we will exit with TASK_RUNNING make sure we enter with it,
7532 * otherwise we will destroy state.
7533 */
7534 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7535 "do not call blocking ops when !TASK_RUNNING; "
7536 "state=%lx set at [<%p>] %pS\n",
7537 current->state,
7538 (void *)current->task_state_change,
7539 (void *)current->task_state_change);
7540
7541 ___might_sleep(file, line, preempt_offset);
7542 }
7543 EXPORT_SYMBOL(__might_sleep);
7544
7545 void ___might_sleep(const char *file, int line, int preempt_offset)
7546 {
7547 static unsigned long prev_jiffy; /* ratelimiting */
7548
7549 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7550 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7551 !is_idle_task(current)) ||
7552 system_state != SYSTEM_RUNNING || oops_in_progress)
7553 return;
7554 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7555 return;
7556 prev_jiffy = jiffies;
7557
7558 printk(KERN_ERR
7559 "BUG: sleeping function called from invalid context at %s:%d\n",
7560 file, line);
7561 printk(KERN_ERR
7562 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7563 in_atomic(), irqs_disabled(),
7564 current->pid, current->comm);
7565
7566 if (task_stack_end_corrupted(current))
7567 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7568
7569 debug_show_held_locks(current);
7570 if (irqs_disabled())
7571 print_irqtrace_events(current);
7572 #ifdef CONFIG_DEBUG_PREEMPT
7573 if (!preempt_count_equals(preempt_offset)) {
7574 pr_err("Preemption disabled at:");
7575 print_ip_sym(current->preempt_disable_ip);
7576 pr_cont("\n");
7577 }
7578 #endif
7579 dump_stack();
7580 }
7581 EXPORT_SYMBOL(___might_sleep);
7582 #endif
7583
7584 #ifdef CONFIG_MAGIC_SYSRQ
7585 void normalize_rt_tasks(void)
7586 {
7587 struct task_struct *g, *p;
7588 struct sched_attr attr = {
7589 .sched_policy = SCHED_NORMAL,
7590 };
7591
7592 read_lock(&tasklist_lock);
7593 for_each_process_thread(g, p) {
7594 /*
7595 * Only normalize user tasks:
7596 */
7597 if (p->flags & PF_KTHREAD)
7598 continue;
7599
7600 p->se.exec_start = 0;
7601 #ifdef CONFIG_SCHEDSTATS
7602 p->se.statistics.wait_start = 0;
7603 p->se.statistics.sleep_start = 0;
7604 p->se.statistics.block_start = 0;
7605 #endif
7606
7607 if (!dl_task(p) && !rt_task(p)) {
7608 /*
7609 * Renice negative nice level userspace
7610 * tasks back to 0:
7611 */
7612 if (task_nice(p) < 0)
7613 set_user_nice(p, 0);
7614 continue;
7615 }
7616
7617 __sched_setscheduler(p, &attr, false, false);
7618 }
7619 read_unlock(&tasklist_lock);
7620 }
7621
7622 #endif /* CONFIG_MAGIC_SYSRQ */
7623
7624 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7625 /*
7626 * These functions are only useful for the IA64 MCA handling, or kdb.
7627 *
7628 * They can only be called when the whole system has been
7629 * stopped - every CPU needs to be quiescent, and no scheduling
7630 * activity can take place. Using them for anything else would
7631 * be a serious bug, and as a result, they aren't even visible
7632 * under any other configuration.
7633 */
7634
7635 /**
7636 * curr_task - return the current task for a given cpu.
7637 * @cpu: the processor in question.
7638 *
7639 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7640 *
7641 * Return: The current task for @cpu.
7642 */
7643 struct task_struct *curr_task(int cpu)
7644 {
7645 return cpu_curr(cpu);
7646 }
7647
7648 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7649
7650 #ifdef CONFIG_IA64
7651 /**
7652 * set_curr_task - set the current task for a given cpu.
7653 * @cpu: the processor in question.
7654 * @p: the task pointer to set.
7655 *
7656 * Description: This function must only be used when non-maskable interrupts
7657 * are serviced on a separate stack. It allows the architecture to switch the
7658 * notion of the current task on a cpu in a non-blocking manner. This function
7659 * must be called with all CPU's synchronized, and interrupts disabled, the
7660 * and caller must save the original value of the current task (see
7661 * curr_task() above) and restore that value before reenabling interrupts and
7662 * re-starting the system.
7663 *
7664 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7665 */
7666 void set_curr_task(int cpu, struct task_struct *p)
7667 {
7668 cpu_curr(cpu) = p;
7669 }
7670
7671 #endif
7672
7673 #ifdef CONFIG_CGROUP_SCHED
7674 /* task_group_lock serializes the addition/removal of task groups */
7675 static DEFINE_SPINLOCK(task_group_lock);
7676
7677 static void sched_free_group(struct task_group *tg)
7678 {
7679 free_fair_sched_group(tg);
7680 free_rt_sched_group(tg);
7681 autogroup_free(tg);
7682 kmem_cache_free(task_group_cache, tg);
7683 }
7684
7685 /* allocate runqueue etc for a new task group */
7686 struct task_group *sched_create_group(struct task_group *parent)
7687 {
7688 struct task_group *tg;
7689
7690 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7691 if (!tg)
7692 return ERR_PTR(-ENOMEM);
7693
7694 if (!alloc_fair_sched_group(tg, parent))
7695 goto err;
7696
7697 if (!alloc_rt_sched_group(tg, parent))
7698 goto err;
7699
7700 return tg;
7701
7702 err:
7703 sched_free_group(tg);
7704 return ERR_PTR(-ENOMEM);
7705 }
7706
7707 void sched_online_group(struct task_group *tg, struct task_group *parent)
7708 {
7709 unsigned long flags;
7710
7711 spin_lock_irqsave(&task_group_lock, flags);
7712 list_add_rcu(&tg->list, &task_groups);
7713
7714 WARN_ON(!parent); /* root should already exist */
7715
7716 tg->parent = parent;
7717 INIT_LIST_HEAD(&tg->children);
7718 list_add_rcu(&tg->siblings, &parent->children);
7719 spin_unlock_irqrestore(&task_group_lock, flags);
7720
7721 online_fair_sched_group(tg);
7722 }
7723
7724 /* rcu callback to free various structures associated with a task group */
7725 static void sched_free_group_rcu(struct rcu_head *rhp)
7726 {
7727 /* now it should be safe to free those cfs_rqs */
7728 sched_free_group(container_of(rhp, struct task_group, rcu));
7729 }
7730
7731 void sched_destroy_group(struct task_group *tg)
7732 {
7733 /* wait for possible concurrent references to cfs_rqs complete */
7734 call_rcu(&tg->rcu, sched_free_group_rcu);
7735 }
7736
7737 void sched_offline_group(struct task_group *tg)
7738 {
7739 unsigned long flags;
7740
7741 /* end participation in shares distribution */
7742 unregister_fair_sched_group(tg);
7743
7744 spin_lock_irqsave(&task_group_lock, flags);
7745 list_del_rcu(&tg->list);
7746 list_del_rcu(&tg->siblings);
7747 spin_unlock_irqrestore(&task_group_lock, flags);
7748 }
7749
7750 static void sched_change_group(struct task_struct *tsk, int type)
7751 {
7752 struct task_group *tg;
7753
7754 /*
7755 * All callers are synchronized by task_rq_lock(); we do not use RCU
7756 * which is pointless here. Thus, we pass "true" to task_css_check()
7757 * to prevent lockdep warnings.
7758 */
7759 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7760 struct task_group, css);
7761 tg = autogroup_task_group(tsk, tg);
7762 tsk->sched_task_group = tg;
7763
7764 #ifdef CONFIG_FAIR_GROUP_SCHED
7765 if (tsk->sched_class->task_change_group)
7766 tsk->sched_class->task_change_group(tsk, type);
7767 else
7768 #endif
7769 set_task_rq(tsk, task_cpu(tsk));
7770 }
7771
7772 /*
7773 * Change task's runqueue when it moves between groups.
7774 *
7775 * The caller of this function should have put the task in its new group by
7776 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7777 * its new group.
7778 */
7779 void sched_move_task(struct task_struct *tsk)
7780 {
7781 int queued, running;
7782 struct rq_flags rf;
7783 struct rq *rq;
7784
7785 rq = task_rq_lock(tsk, &rf);
7786
7787 running = task_current(rq, tsk);
7788 queued = task_on_rq_queued(tsk);
7789
7790 if (queued)
7791 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7792 if (unlikely(running))
7793 put_prev_task(rq, tsk);
7794
7795 sched_change_group(tsk, TASK_MOVE_GROUP);
7796
7797 if (unlikely(running))
7798 tsk->sched_class->set_curr_task(rq);
7799 if (queued)
7800 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7801
7802 task_rq_unlock(rq, tsk, &rf);
7803 }
7804 #endif /* CONFIG_CGROUP_SCHED */
7805
7806 #ifdef CONFIG_RT_GROUP_SCHED
7807 /*
7808 * Ensure that the real time constraints are schedulable.
7809 */
7810 static DEFINE_MUTEX(rt_constraints_mutex);
7811
7812 /* Must be called with tasklist_lock held */
7813 static inline int tg_has_rt_tasks(struct task_group *tg)
7814 {
7815 struct task_struct *g, *p;
7816
7817 /*
7818 * Autogroups do not have RT tasks; see autogroup_create().
7819 */
7820 if (task_group_is_autogroup(tg))
7821 return 0;
7822
7823 for_each_process_thread(g, p) {
7824 if (rt_task(p) && task_group(p) == tg)
7825 return 1;
7826 }
7827
7828 return 0;
7829 }
7830
7831 struct rt_schedulable_data {
7832 struct task_group *tg;
7833 u64 rt_period;
7834 u64 rt_runtime;
7835 };
7836
7837 static int tg_rt_schedulable(struct task_group *tg, void *data)
7838 {
7839 struct rt_schedulable_data *d = data;
7840 struct task_group *child;
7841 unsigned long total, sum = 0;
7842 u64 period, runtime;
7843
7844 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7845 runtime = tg->rt_bandwidth.rt_runtime;
7846
7847 if (tg == d->tg) {
7848 period = d->rt_period;
7849 runtime = d->rt_runtime;
7850 }
7851
7852 /*
7853 * Cannot have more runtime than the period.
7854 */
7855 if (runtime > period && runtime != RUNTIME_INF)
7856 return -EINVAL;
7857
7858 /*
7859 * Ensure we don't starve existing RT tasks.
7860 */
7861 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7862 return -EBUSY;
7863
7864 total = to_ratio(period, runtime);
7865
7866 /*
7867 * Nobody can have more than the global setting allows.
7868 */
7869 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7870 return -EINVAL;
7871
7872 /*
7873 * The sum of our children's runtime should not exceed our own.
7874 */
7875 list_for_each_entry_rcu(child, &tg->children, siblings) {
7876 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7877 runtime = child->rt_bandwidth.rt_runtime;
7878
7879 if (child == d->tg) {
7880 period = d->rt_period;
7881 runtime = d->rt_runtime;
7882 }
7883
7884 sum += to_ratio(period, runtime);
7885 }
7886
7887 if (sum > total)
7888 return -EINVAL;
7889
7890 return 0;
7891 }
7892
7893 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7894 {
7895 int ret;
7896
7897 struct rt_schedulable_data data = {
7898 .tg = tg,
7899 .rt_period = period,
7900 .rt_runtime = runtime,
7901 };
7902
7903 rcu_read_lock();
7904 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7905 rcu_read_unlock();
7906
7907 return ret;
7908 }
7909
7910 static int tg_set_rt_bandwidth(struct task_group *tg,
7911 u64 rt_period, u64 rt_runtime)
7912 {
7913 int i, err = 0;
7914
7915 /*
7916 * Disallowing the root group RT runtime is BAD, it would disallow the
7917 * kernel creating (and or operating) RT threads.
7918 */
7919 if (tg == &root_task_group && rt_runtime == 0)
7920 return -EINVAL;
7921
7922 /* No period doesn't make any sense. */
7923 if (rt_period == 0)
7924 return -EINVAL;
7925
7926 mutex_lock(&rt_constraints_mutex);
7927 read_lock(&tasklist_lock);
7928 err = __rt_schedulable(tg, rt_period, rt_runtime);
7929 if (err)
7930 goto unlock;
7931
7932 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7933 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7934 tg->rt_bandwidth.rt_runtime = rt_runtime;
7935
7936 for_each_possible_cpu(i) {
7937 struct rt_rq *rt_rq = tg->rt_rq[i];
7938
7939 raw_spin_lock(&rt_rq->rt_runtime_lock);
7940 rt_rq->rt_runtime = rt_runtime;
7941 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7942 }
7943 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7944 unlock:
7945 read_unlock(&tasklist_lock);
7946 mutex_unlock(&rt_constraints_mutex);
7947
7948 return err;
7949 }
7950
7951 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7952 {
7953 u64 rt_runtime, rt_period;
7954
7955 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7956 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7957 if (rt_runtime_us < 0)
7958 rt_runtime = RUNTIME_INF;
7959
7960 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7961 }
7962
7963 static long sched_group_rt_runtime(struct task_group *tg)
7964 {
7965 u64 rt_runtime_us;
7966
7967 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7968 return -1;
7969
7970 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7971 do_div(rt_runtime_us, NSEC_PER_USEC);
7972 return rt_runtime_us;
7973 }
7974
7975 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7976 {
7977 u64 rt_runtime, rt_period;
7978
7979 rt_period = rt_period_us * NSEC_PER_USEC;
7980 rt_runtime = tg->rt_bandwidth.rt_runtime;
7981
7982 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7983 }
7984
7985 static long sched_group_rt_period(struct task_group *tg)
7986 {
7987 u64 rt_period_us;
7988
7989 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7990 do_div(rt_period_us, NSEC_PER_USEC);
7991 return rt_period_us;
7992 }
7993 #endif /* CONFIG_RT_GROUP_SCHED */
7994
7995 #ifdef CONFIG_RT_GROUP_SCHED
7996 static int sched_rt_global_constraints(void)
7997 {
7998 int ret = 0;
7999
8000 mutex_lock(&rt_constraints_mutex);
8001 read_lock(&tasklist_lock);
8002 ret = __rt_schedulable(NULL, 0, 0);
8003 read_unlock(&tasklist_lock);
8004 mutex_unlock(&rt_constraints_mutex);
8005
8006 return ret;
8007 }
8008
8009 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8010 {
8011 /* Don't accept realtime tasks when there is no way for them to run */
8012 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8013 return 0;
8014
8015 return 1;
8016 }
8017
8018 #else /* !CONFIG_RT_GROUP_SCHED */
8019 static int sched_rt_global_constraints(void)
8020 {
8021 unsigned long flags;
8022 int i;
8023
8024 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8025 for_each_possible_cpu(i) {
8026 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8027
8028 raw_spin_lock(&rt_rq->rt_runtime_lock);
8029 rt_rq->rt_runtime = global_rt_runtime();
8030 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8031 }
8032 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8033
8034 return 0;
8035 }
8036 #endif /* CONFIG_RT_GROUP_SCHED */
8037
8038 static int sched_dl_global_validate(void)
8039 {
8040 u64 runtime = global_rt_runtime();
8041 u64 period = global_rt_period();
8042 u64 new_bw = to_ratio(period, runtime);
8043 struct dl_bw *dl_b;
8044 int cpu, ret = 0;
8045 unsigned long flags;
8046
8047 /*
8048 * Here we want to check the bandwidth not being set to some
8049 * value smaller than the currently allocated bandwidth in
8050 * any of the root_domains.
8051 *
8052 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8053 * cycling on root_domains... Discussion on different/better
8054 * solutions is welcome!
8055 */
8056 for_each_possible_cpu(cpu) {
8057 rcu_read_lock_sched();
8058 dl_b = dl_bw_of(cpu);
8059
8060 raw_spin_lock_irqsave(&dl_b->lock, flags);
8061 if (new_bw < dl_b->total_bw)
8062 ret = -EBUSY;
8063 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8064
8065 rcu_read_unlock_sched();
8066
8067 if (ret)
8068 break;
8069 }
8070
8071 return ret;
8072 }
8073
8074 static void sched_dl_do_global(void)
8075 {
8076 u64 new_bw = -1;
8077 struct dl_bw *dl_b;
8078 int cpu;
8079 unsigned long flags;
8080
8081 def_dl_bandwidth.dl_period = global_rt_period();
8082 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8083
8084 if (global_rt_runtime() != RUNTIME_INF)
8085 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8086
8087 /*
8088 * FIXME: As above...
8089 */
8090 for_each_possible_cpu(cpu) {
8091 rcu_read_lock_sched();
8092 dl_b = dl_bw_of(cpu);
8093
8094 raw_spin_lock_irqsave(&dl_b->lock, flags);
8095 dl_b->bw = new_bw;
8096 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8097
8098 rcu_read_unlock_sched();
8099 }
8100 }
8101
8102 static int sched_rt_global_validate(void)
8103 {
8104 if (sysctl_sched_rt_period <= 0)
8105 return -EINVAL;
8106
8107 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8108 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8109 return -EINVAL;
8110
8111 return 0;
8112 }
8113
8114 static void sched_rt_do_global(void)
8115 {
8116 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8117 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8118 }
8119
8120 int sched_rt_handler(struct ctl_table *table, int write,
8121 void __user *buffer, size_t *lenp,
8122 loff_t *ppos)
8123 {
8124 int old_period, old_runtime;
8125 static DEFINE_MUTEX(mutex);
8126 int ret;
8127
8128 mutex_lock(&mutex);
8129 old_period = sysctl_sched_rt_period;
8130 old_runtime = sysctl_sched_rt_runtime;
8131
8132 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8133
8134 if (!ret && write) {
8135 ret = sched_rt_global_validate();
8136 if (ret)
8137 goto undo;
8138
8139 ret = sched_dl_global_validate();
8140 if (ret)
8141 goto undo;
8142
8143 ret = sched_rt_global_constraints();
8144 if (ret)
8145 goto undo;
8146
8147 sched_rt_do_global();
8148 sched_dl_do_global();
8149 }
8150 if (0) {
8151 undo:
8152 sysctl_sched_rt_period = old_period;
8153 sysctl_sched_rt_runtime = old_runtime;
8154 }
8155 mutex_unlock(&mutex);
8156
8157 return ret;
8158 }
8159
8160 int sched_rr_handler(struct ctl_table *table, int write,
8161 void __user *buffer, size_t *lenp,
8162 loff_t *ppos)
8163 {
8164 int ret;
8165 static DEFINE_MUTEX(mutex);
8166
8167 mutex_lock(&mutex);
8168 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8169 /* make sure that internally we keep jiffies */
8170 /* also, writing zero resets timeslice to default */
8171 if (!ret && write) {
8172 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8173 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8174 }
8175 mutex_unlock(&mutex);
8176 return ret;
8177 }
8178
8179 #ifdef CONFIG_CGROUP_SCHED
8180
8181 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8182 {
8183 return css ? container_of(css, struct task_group, css) : NULL;
8184 }
8185
8186 static struct cgroup_subsys_state *
8187 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8188 {
8189 struct task_group *parent = css_tg(parent_css);
8190 struct task_group *tg;
8191
8192 if (!parent) {
8193 /* This is early initialization for the top cgroup */
8194 return &root_task_group.css;
8195 }
8196
8197 tg = sched_create_group(parent);
8198 if (IS_ERR(tg))
8199 return ERR_PTR(-ENOMEM);
8200
8201 sched_online_group(tg, parent);
8202
8203 return &tg->css;
8204 }
8205
8206 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8207 {
8208 struct task_group *tg = css_tg(css);
8209
8210 sched_offline_group(tg);
8211 }
8212
8213 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8214 {
8215 struct task_group *tg = css_tg(css);
8216
8217 /*
8218 * Relies on the RCU grace period between css_released() and this.
8219 */
8220 sched_free_group(tg);
8221 }
8222
8223 /*
8224 * This is called before wake_up_new_task(), therefore we really only
8225 * have to set its group bits, all the other stuff does not apply.
8226 */
8227 static void cpu_cgroup_fork(struct task_struct *task)
8228 {
8229 struct rq_flags rf;
8230 struct rq *rq;
8231
8232 rq = task_rq_lock(task, &rf);
8233
8234 sched_change_group(task, TASK_SET_GROUP);
8235
8236 task_rq_unlock(rq, task, &rf);
8237 }
8238
8239 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8240 {
8241 struct task_struct *task;
8242 struct cgroup_subsys_state *css;
8243 int ret = 0;
8244
8245 cgroup_taskset_for_each(task, css, tset) {
8246 #ifdef CONFIG_RT_GROUP_SCHED
8247 if (!sched_rt_can_attach(css_tg(css), task))
8248 return -EINVAL;
8249 #else
8250 /* We don't support RT-tasks being in separate groups */
8251 if (task->sched_class != &fair_sched_class)
8252 return -EINVAL;
8253 #endif
8254 /*
8255 * Serialize against wake_up_new_task() such that if its
8256 * running, we're sure to observe its full state.
8257 */
8258 raw_spin_lock_irq(&task->pi_lock);
8259 /*
8260 * Avoid calling sched_move_task() before wake_up_new_task()
8261 * has happened. This would lead to problems with PELT, due to
8262 * move wanting to detach+attach while we're not attached yet.
8263 */
8264 if (task->state == TASK_NEW)
8265 ret = -EINVAL;
8266 raw_spin_unlock_irq(&task->pi_lock);
8267
8268 if (ret)
8269 break;
8270 }
8271 return ret;
8272 }
8273
8274 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8275 {
8276 struct task_struct *task;
8277 struct cgroup_subsys_state *css;
8278
8279 cgroup_taskset_for_each(task, css, tset)
8280 sched_move_task(task);
8281 }
8282
8283 #ifdef CONFIG_FAIR_GROUP_SCHED
8284 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8285 struct cftype *cftype, u64 shareval)
8286 {
8287 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8288 }
8289
8290 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8291 struct cftype *cft)
8292 {
8293 struct task_group *tg = css_tg(css);
8294
8295 return (u64) scale_load_down(tg->shares);
8296 }
8297
8298 #ifdef CONFIG_CFS_BANDWIDTH
8299 static DEFINE_MUTEX(cfs_constraints_mutex);
8300
8301 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8302 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8303
8304 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8305
8306 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8307 {
8308 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8309 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8310
8311 if (tg == &root_task_group)
8312 return -EINVAL;
8313
8314 /*
8315 * Ensure we have at some amount of bandwidth every period. This is
8316 * to prevent reaching a state of large arrears when throttled via
8317 * entity_tick() resulting in prolonged exit starvation.
8318 */
8319 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8320 return -EINVAL;
8321
8322 /*
8323 * Likewise, bound things on the otherside by preventing insane quota
8324 * periods. This also allows us to normalize in computing quota
8325 * feasibility.
8326 */
8327 if (period > max_cfs_quota_period)
8328 return -EINVAL;
8329
8330 /*
8331 * Prevent race between setting of cfs_rq->runtime_enabled and
8332 * unthrottle_offline_cfs_rqs().
8333 */
8334 get_online_cpus();
8335 mutex_lock(&cfs_constraints_mutex);
8336 ret = __cfs_schedulable(tg, period, quota);
8337 if (ret)
8338 goto out_unlock;
8339
8340 runtime_enabled = quota != RUNTIME_INF;
8341 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8342 /*
8343 * If we need to toggle cfs_bandwidth_used, off->on must occur
8344 * before making related changes, and on->off must occur afterwards
8345 */
8346 if (runtime_enabled && !runtime_was_enabled)
8347 cfs_bandwidth_usage_inc();
8348 raw_spin_lock_irq(&cfs_b->lock);
8349 cfs_b->period = ns_to_ktime(period);
8350 cfs_b->quota = quota;
8351
8352 __refill_cfs_bandwidth_runtime(cfs_b);
8353 /* restart the period timer (if active) to handle new period expiry */
8354 if (runtime_enabled)
8355 start_cfs_bandwidth(cfs_b);
8356 raw_spin_unlock_irq(&cfs_b->lock);
8357
8358 for_each_online_cpu(i) {
8359 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8360 struct rq *rq = cfs_rq->rq;
8361
8362 raw_spin_lock_irq(&rq->lock);
8363 cfs_rq->runtime_enabled = runtime_enabled;
8364 cfs_rq->runtime_remaining = 0;
8365
8366 if (cfs_rq->throttled)
8367 unthrottle_cfs_rq(cfs_rq);
8368 raw_spin_unlock_irq(&rq->lock);
8369 }
8370 if (runtime_was_enabled && !runtime_enabled)
8371 cfs_bandwidth_usage_dec();
8372 out_unlock:
8373 mutex_unlock(&cfs_constraints_mutex);
8374 put_online_cpus();
8375
8376 return ret;
8377 }
8378
8379 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8380 {
8381 u64 quota, period;
8382
8383 period = ktime_to_ns(tg->cfs_bandwidth.period);
8384 if (cfs_quota_us < 0)
8385 quota = RUNTIME_INF;
8386 else
8387 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8388
8389 return tg_set_cfs_bandwidth(tg, period, quota);
8390 }
8391
8392 long tg_get_cfs_quota(struct task_group *tg)
8393 {
8394 u64 quota_us;
8395
8396 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8397 return -1;
8398
8399 quota_us = tg->cfs_bandwidth.quota;
8400 do_div(quota_us, NSEC_PER_USEC);
8401
8402 return quota_us;
8403 }
8404
8405 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8406 {
8407 u64 quota, period;
8408
8409 period = (u64)cfs_period_us * NSEC_PER_USEC;
8410 quota = tg->cfs_bandwidth.quota;
8411
8412 return tg_set_cfs_bandwidth(tg, period, quota);
8413 }
8414
8415 long tg_get_cfs_period(struct task_group *tg)
8416 {
8417 u64 cfs_period_us;
8418
8419 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8420 do_div(cfs_period_us, NSEC_PER_USEC);
8421
8422 return cfs_period_us;
8423 }
8424
8425 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8426 struct cftype *cft)
8427 {
8428 return tg_get_cfs_quota(css_tg(css));
8429 }
8430
8431 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8432 struct cftype *cftype, s64 cfs_quota_us)
8433 {
8434 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8435 }
8436
8437 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8438 struct cftype *cft)
8439 {
8440 return tg_get_cfs_period(css_tg(css));
8441 }
8442
8443 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8444 struct cftype *cftype, u64 cfs_period_us)
8445 {
8446 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8447 }
8448
8449 struct cfs_schedulable_data {
8450 struct task_group *tg;
8451 u64 period, quota;
8452 };
8453
8454 /*
8455 * normalize group quota/period to be quota/max_period
8456 * note: units are usecs
8457 */
8458 static u64 normalize_cfs_quota(struct task_group *tg,
8459 struct cfs_schedulable_data *d)
8460 {
8461 u64 quota, period;
8462
8463 if (tg == d->tg) {
8464 period = d->period;
8465 quota = d->quota;
8466 } else {
8467 period = tg_get_cfs_period(tg);
8468 quota = tg_get_cfs_quota(tg);
8469 }
8470
8471 /* note: these should typically be equivalent */
8472 if (quota == RUNTIME_INF || quota == -1)
8473 return RUNTIME_INF;
8474
8475 return to_ratio(period, quota);
8476 }
8477
8478 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8479 {
8480 struct cfs_schedulable_data *d = data;
8481 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8482 s64 quota = 0, parent_quota = -1;
8483
8484 if (!tg->parent) {
8485 quota = RUNTIME_INF;
8486 } else {
8487 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8488
8489 quota = normalize_cfs_quota(tg, d);
8490 parent_quota = parent_b->hierarchical_quota;
8491
8492 /*
8493 * ensure max(child_quota) <= parent_quota, inherit when no
8494 * limit is set
8495 */
8496 if (quota == RUNTIME_INF)
8497 quota = parent_quota;
8498 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8499 return -EINVAL;
8500 }
8501 cfs_b->hierarchical_quota = quota;
8502
8503 return 0;
8504 }
8505
8506 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8507 {
8508 int ret;
8509 struct cfs_schedulable_data data = {
8510 .tg = tg,
8511 .period = period,
8512 .quota = quota,
8513 };
8514
8515 if (quota != RUNTIME_INF) {
8516 do_div(data.period, NSEC_PER_USEC);
8517 do_div(data.quota, NSEC_PER_USEC);
8518 }
8519
8520 rcu_read_lock();
8521 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8522 rcu_read_unlock();
8523
8524 return ret;
8525 }
8526
8527 static int cpu_stats_show(struct seq_file *sf, void *v)
8528 {
8529 struct task_group *tg = css_tg(seq_css(sf));
8530 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8531
8532 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8533 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8534 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8535
8536 return 0;
8537 }
8538 #endif /* CONFIG_CFS_BANDWIDTH */
8539 #endif /* CONFIG_FAIR_GROUP_SCHED */
8540
8541 #ifdef CONFIG_RT_GROUP_SCHED
8542 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8543 struct cftype *cft, s64 val)
8544 {
8545 return sched_group_set_rt_runtime(css_tg(css), val);
8546 }
8547
8548 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8549 struct cftype *cft)
8550 {
8551 return sched_group_rt_runtime(css_tg(css));
8552 }
8553
8554 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8555 struct cftype *cftype, u64 rt_period_us)
8556 {
8557 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8558 }
8559
8560 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8561 struct cftype *cft)
8562 {
8563 return sched_group_rt_period(css_tg(css));
8564 }
8565 #endif /* CONFIG_RT_GROUP_SCHED */
8566
8567 static struct cftype cpu_files[] = {
8568 #ifdef CONFIG_FAIR_GROUP_SCHED
8569 {
8570 .name = "shares",
8571 .read_u64 = cpu_shares_read_u64,
8572 .write_u64 = cpu_shares_write_u64,
8573 },
8574 #endif
8575 #ifdef CONFIG_CFS_BANDWIDTH
8576 {
8577 .name = "cfs_quota_us",
8578 .read_s64 = cpu_cfs_quota_read_s64,
8579 .write_s64 = cpu_cfs_quota_write_s64,
8580 },
8581 {
8582 .name = "cfs_period_us",
8583 .read_u64 = cpu_cfs_period_read_u64,
8584 .write_u64 = cpu_cfs_period_write_u64,
8585 },
8586 {
8587 .name = "stat",
8588 .seq_show = cpu_stats_show,
8589 },
8590 #endif
8591 #ifdef CONFIG_RT_GROUP_SCHED
8592 {
8593 .name = "rt_runtime_us",
8594 .read_s64 = cpu_rt_runtime_read,
8595 .write_s64 = cpu_rt_runtime_write,
8596 },
8597 {
8598 .name = "rt_period_us",
8599 .read_u64 = cpu_rt_period_read_uint,
8600 .write_u64 = cpu_rt_period_write_uint,
8601 },
8602 #endif
8603 { } /* terminate */
8604 };
8605
8606 struct cgroup_subsys cpu_cgrp_subsys = {
8607 .css_alloc = cpu_cgroup_css_alloc,
8608 .css_released = cpu_cgroup_css_released,
8609 .css_free = cpu_cgroup_css_free,
8610 .fork = cpu_cgroup_fork,
8611 .can_attach = cpu_cgroup_can_attach,
8612 .attach = cpu_cgroup_attach,
8613 .legacy_cftypes = cpu_files,
8614 .early_init = true,
8615 };
8616
8617 #endif /* CONFIG_CGROUP_SCHED */
8618
8619 void dump_cpu_task(int cpu)
8620 {
8621 pr_info("Task dump for CPU %d:\n", cpu);
8622 sched_show_task(cpu_curr(cpu));
8623 }
8624
8625 /*
8626 * Nice levels are multiplicative, with a gentle 10% change for every
8627 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8628 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8629 * that remained on nice 0.
8630 *
8631 * The "10% effect" is relative and cumulative: from _any_ nice level,
8632 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8633 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8634 * If a task goes up by ~10% and another task goes down by ~10% then
8635 * the relative distance between them is ~25%.)
8636 */
8637 const int sched_prio_to_weight[40] = {
8638 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8639 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8640 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8641 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8642 /* 0 */ 1024, 820, 655, 526, 423,
8643 /* 5 */ 335, 272, 215, 172, 137,
8644 /* 10 */ 110, 87, 70, 56, 45,
8645 /* 15 */ 36, 29, 23, 18, 15,
8646 };
8647
8648 /*
8649 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8650 *
8651 * In cases where the weight does not change often, we can use the
8652 * precalculated inverse to speed up arithmetics by turning divisions
8653 * into multiplications:
8654 */
8655 const u32 sched_prio_to_wmult[40] = {
8656 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8657 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8658 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8659 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8660 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8661 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8662 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8663 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8664 };
This page took 0.218198 seconds and 5 git commands to generate.