sched: Add function single_task_running to let a task check if it is the only task...
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 #ifdef smp_mb__before_atomic
94 void __smp_mb__before_atomic(void)
95 {
96 smp_mb__before_atomic();
97 }
98 EXPORT_SYMBOL(__smp_mb__before_atomic);
99 #endif
100
101 #ifdef smp_mb__after_atomic
102 void __smp_mb__after_atomic(void)
103 {
104 smp_mb__after_atomic();
105 }
106 EXPORT_SYMBOL(__smp_mb__after_atomic);
107 #endif
108
109 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110 {
111 unsigned long delta;
112 ktime_t soft, hard, now;
113
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
117
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
120
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
126 }
127 }
128
129 DEFINE_MUTEX(sched_domains_mutex);
130 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131
132 static void update_rq_clock_task(struct rq *rq, s64 delta);
133
134 void update_rq_clock(struct rq *rq)
135 {
136 s64 delta;
137
138 if (rq->skip_clock_update > 0)
139 return;
140
141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142 if (delta < 0)
143 return;
144 rq->clock += delta;
145 update_rq_clock_task(rq, delta);
146 }
147
148 /*
149 * Debugging: various feature bits
150 */
151
152 #define SCHED_FEAT(name, enabled) \
153 (1UL << __SCHED_FEAT_##name) * enabled |
154
155 const_debug unsigned int sysctl_sched_features =
156 #include "features.h"
157 0;
158
159 #undef SCHED_FEAT
160
161 #ifdef CONFIG_SCHED_DEBUG
162 #define SCHED_FEAT(name, enabled) \
163 #name ,
164
165 static const char * const sched_feat_names[] = {
166 #include "features.h"
167 };
168
169 #undef SCHED_FEAT
170
171 static int sched_feat_show(struct seq_file *m, void *v)
172 {
173 int i;
174
175 for (i = 0; i < __SCHED_FEAT_NR; i++) {
176 if (!(sysctl_sched_features & (1UL << i)))
177 seq_puts(m, "NO_");
178 seq_printf(m, "%s ", sched_feat_names[i]);
179 }
180 seq_puts(m, "\n");
181
182 return 0;
183 }
184
185 #ifdef HAVE_JUMP_LABEL
186
187 #define jump_label_key__true STATIC_KEY_INIT_TRUE
188 #define jump_label_key__false STATIC_KEY_INIT_FALSE
189
190 #define SCHED_FEAT(name, enabled) \
191 jump_label_key__##enabled ,
192
193 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
194 #include "features.h"
195 };
196
197 #undef SCHED_FEAT
198
199 static void sched_feat_disable(int i)
200 {
201 if (static_key_enabled(&sched_feat_keys[i]))
202 static_key_slow_dec(&sched_feat_keys[i]);
203 }
204
205 static void sched_feat_enable(int i)
206 {
207 if (!static_key_enabled(&sched_feat_keys[i]))
208 static_key_slow_inc(&sched_feat_keys[i]);
209 }
210 #else
211 static void sched_feat_disable(int i) { };
212 static void sched_feat_enable(int i) { };
213 #endif /* HAVE_JUMP_LABEL */
214
215 static int sched_feat_set(char *cmp)
216 {
217 int i;
218 int neg = 0;
219
220 if (strncmp(cmp, "NO_", 3) == 0) {
221 neg = 1;
222 cmp += 3;
223 }
224
225 for (i = 0; i < __SCHED_FEAT_NR; i++) {
226 if (strcmp(cmp, sched_feat_names[i]) == 0) {
227 if (neg) {
228 sysctl_sched_features &= ~(1UL << i);
229 sched_feat_disable(i);
230 } else {
231 sysctl_sched_features |= (1UL << i);
232 sched_feat_enable(i);
233 }
234 break;
235 }
236 }
237
238 return i;
239 }
240
241 static ssize_t
242 sched_feat_write(struct file *filp, const char __user *ubuf,
243 size_t cnt, loff_t *ppos)
244 {
245 char buf[64];
246 char *cmp;
247 int i;
248 struct inode *inode;
249
250 if (cnt > 63)
251 cnt = 63;
252
253 if (copy_from_user(&buf, ubuf, cnt))
254 return -EFAULT;
255
256 buf[cnt] = 0;
257 cmp = strstrip(buf);
258
259 /* Ensure the static_key remains in a consistent state */
260 inode = file_inode(filp);
261 mutex_lock(&inode->i_mutex);
262 i = sched_feat_set(cmp);
263 mutex_unlock(&inode->i_mutex);
264 if (i == __SCHED_FEAT_NR)
265 return -EINVAL;
266
267 *ppos += cnt;
268
269 return cnt;
270 }
271
272 static int sched_feat_open(struct inode *inode, struct file *filp)
273 {
274 return single_open(filp, sched_feat_show, NULL);
275 }
276
277 static const struct file_operations sched_feat_fops = {
278 .open = sched_feat_open,
279 .write = sched_feat_write,
280 .read = seq_read,
281 .llseek = seq_lseek,
282 .release = single_release,
283 };
284
285 static __init int sched_init_debug(void)
286 {
287 debugfs_create_file("sched_features", 0644, NULL, NULL,
288 &sched_feat_fops);
289
290 return 0;
291 }
292 late_initcall(sched_init_debug);
293 #endif /* CONFIG_SCHED_DEBUG */
294
295 /*
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
298 */
299 const_debug unsigned int sysctl_sched_nr_migrate = 32;
300
301 /*
302 * period over which we average the RT time consumption, measured
303 * in ms.
304 *
305 * default: 1s
306 */
307 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308
309 /*
310 * period over which we measure -rt task cpu usage in us.
311 * default: 1s
312 */
313 unsigned int sysctl_sched_rt_period = 1000000;
314
315 __read_mostly int scheduler_running;
316
317 /*
318 * part of the period that we allow rt tasks to run in us.
319 * default: 0.95s
320 */
321 int sysctl_sched_rt_runtime = 950000;
322
323 /*
324 * __task_rq_lock - lock the rq @p resides on.
325 */
326 static inline struct rq *__task_rq_lock(struct task_struct *p)
327 __acquires(rq->lock)
328 {
329 struct rq *rq;
330
331 lockdep_assert_held(&p->pi_lock);
332
333 for (;;) {
334 rq = task_rq(p);
335 raw_spin_lock(&rq->lock);
336 if (likely(rq == task_rq(p)))
337 return rq;
338 raw_spin_unlock(&rq->lock);
339 }
340 }
341
342 /*
343 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
344 */
345 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
346 __acquires(p->pi_lock)
347 __acquires(rq->lock)
348 {
349 struct rq *rq;
350
351 for (;;) {
352 raw_spin_lock_irqsave(&p->pi_lock, *flags);
353 rq = task_rq(p);
354 raw_spin_lock(&rq->lock);
355 if (likely(rq == task_rq(p)))
356 return rq;
357 raw_spin_unlock(&rq->lock);
358 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
359 }
360 }
361
362 static void __task_rq_unlock(struct rq *rq)
363 __releases(rq->lock)
364 {
365 raw_spin_unlock(&rq->lock);
366 }
367
368 static inline void
369 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
370 __releases(rq->lock)
371 __releases(p->pi_lock)
372 {
373 raw_spin_unlock(&rq->lock);
374 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
375 }
376
377 /*
378 * this_rq_lock - lock this runqueue and disable interrupts.
379 */
380 static struct rq *this_rq_lock(void)
381 __acquires(rq->lock)
382 {
383 struct rq *rq;
384
385 local_irq_disable();
386 rq = this_rq();
387 raw_spin_lock(&rq->lock);
388
389 return rq;
390 }
391
392 #ifdef CONFIG_SCHED_HRTICK
393 /*
394 * Use HR-timers to deliver accurate preemption points.
395 */
396
397 static void hrtick_clear(struct rq *rq)
398 {
399 if (hrtimer_active(&rq->hrtick_timer))
400 hrtimer_cancel(&rq->hrtick_timer);
401 }
402
403 /*
404 * High-resolution timer tick.
405 * Runs from hardirq context with interrupts disabled.
406 */
407 static enum hrtimer_restart hrtick(struct hrtimer *timer)
408 {
409 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
410
411 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
412
413 raw_spin_lock(&rq->lock);
414 update_rq_clock(rq);
415 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
416 raw_spin_unlock(&rq->lock);
417
418 return HRTIMER_NORESTART;
419 }
420
421 #ifdef CONFIG_SMP
422
423 static int __hrtick_restart(struct rq *rq)
424 {
425 struct hrtimer *timer = &rq->hrtick_timer;
426 ktime_t time = hrtimer_get_softexpires(timer);
427
428 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
429 }
430
431 /*
432 * called from hardirq (IPI) context
433 */
434 static void __hrtick_start(void *arg)
435 {
436 struct rq *rq = arg;
437
438 raw_spin_lock(&rq->lock);
439 __hrtick_restart(rq);
440 rq->hrtick_csd_pending = 0;
441 raw_spin_unlock(&rq->lock);
442 }
443
444 /*
445 * Called to set the hrtick timer state.
446 *
447 * called with rq->lock held and irqs disabled
448 */
449 void hrtick_start(struct rq *rq, u64 delay)
450 {
451 struct hrtimer *timer = &rq->hrtick_timer;
452 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
453
454 hrtimer_set_expires(timer, time);
455
456 if (rq == this_rq()) {
457 __hrtick_restart(rq);
458 } else if (!rq->hrtick_csd_pending) {
459 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
460 rq->hrtick_csd_pending = 1;
461 }
462 }
463
464 static int
465 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
466 {
467 int cpu = (int)(long)hcpu;
468
469 switch (action) {
470 case CPU_UP_CANCELED:
471 case CPU_UP_CANCELED_FROZEN:
472 case CPU_DOWN_PREPARE:
473 case CPU_DOWN_PREPARE_FROZEN:
474 case CPU_DEAD:
475 case CPU_DEAD_FROZEN:
476 hrtick_clear(cpu_rq(cpu));
477 return NOTIFY_OK;
478 }
479
480 return NOTIFY_DONE;
481 }
482
483 static __init void init_hrtick(void)
484 {
485 hotcpu_notifier(hotplug_hrtick, 0);
486 }
487 #else
488 /*
489 * Called to set the hrtick timer state.
490 *
491 * called with rq->lock held and irqs disabled
492 */
493 void hrtick_start(struct rq *rq, u64 delay)
494 {
495 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
496 HRTIMER_MODE_REL_PINNED, 0);
497 }
498
499 static inline void init_hrtick(void)
500 {
501 }
502 #endif /* CONFIG_SMP */
503
504 static void init_rq_hrtick(struct rq *rq)
505 {
506 #ifdef CONFIG_SMP
507 rq->hrtick_csd_pending = 0;
508
509 rq->hrtick_csd.flags = 0;
510 rq->hrtick_csd.func = __hrtick_start;
511 rq->hrtick_csd.info = rq;
512 #endif
513
514 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
515 rq->hrtick_timer.function = hrtick;
516 }
517 #else /* CONFIG_SCHED_HRTICK */
518 static inline void hrtick_clear(struct rq *rq)
519 {
520 }
521
522 static inline void init_rq_hrtick(struct rq *rq)
523 {
524 }
525
526 static inline void init_hrtick(void)
527 {
528 }
529 #endif /* CONFIG_SCHED_HRTICK */
530
531 /*
532 * cmpxchg based fetch_or, macro so it works for different integer types
533 */
534 #define fetch_or(ptr, val) \
535 ({ typeof(*(ptr)) __old, __val = *(ptr); \
536 for (;;) { \
537 __old = cmpxchg((ptr), __val, __val | (val)); \
538 if (__old == __val) \
539 break; \
540 __val = __old; \
541 } \
542 __old; \
543 })
544
545 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
546 /*
547 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
548 * this avoids any races wrt polling state changes and thereby avoids
549 * spurious IPIs.
550 */
551 static bool set_nr_and_not_polling(struct task_struct *p)
552 {
553 struct thread_info *ti = task_thread_info(p);
554 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
555 }
556
557 /*
558 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
559 *
560 * If this returns true, then the idle task promises to call
561 * sched_ttwu_pending() and reschedule soon.
562 */
563 static bool set_nr_if_polling(struct task_struct *p)
564 {
565 struct thread_info *ti = task_thread_info(p);
566 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
567
568 for (;;) {
569 if (!(val & _TIF_POLLING_NRFLAG))
570 return false;
571 if (val & _TIF_NEED_RESCHED)
572 return true;
573 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
574 if (old == val)
575 break;
576 val = old;
577 }
578 return true;
579 }
580
581 #else
582 static bool set_nr_and_not_polling(struct task_struct *p)
583 {
584 set_tsk_need_resched(p);
585 return true;
586 }
587
588 #ifdef CONFIG_SMP
589 static bool set_nr_if_polling(struct task_struct *p)
590 {
591 return false;
592 }
593 #endif
594 #endif
595
596 /*
597 * resched_curr - mark rq's current task 'to be rescheduled now'.
598 *
599 * On UP this means the setting of the need_resched flag, on SMP it
600 * might also involve a cross-CPU call to trigger the scheduler on
601 * the target CPU.
602 */
603 void resched_curr(struct rq *rq)
604 {
605 struct task_struct *curr = rq->curr;
606 int cpu;
607
608 lockdep_assert_held(&rq->lock);
609
610 if (test_tsk_need_resched(curr))
611 return;
612
613 cpu = cpu_of(rq);
614
615 if (cpu == smp_processor_id()) {
616 set_tsk_need_resched(curr);
617 set_preempt_need_resched();
618 return;
619 }
620
621 if (set_nr_and_not_polling(curr))
622 smp_send_reschedule(cpu);
623 else
624 trace_sched_wake_idle_without_ipi(cpu);
625 }
626
627 void resched_cpu(int cpu)
628 {
629 struct rq *rq = cpu_rq(cpu);
630 unsigned long flags;
631
632 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
633 return;
634 resched_curr(rq);
635 raw_spin_unlock_irqrestore(&rq->lock, flags);
636 }
637
638 #ifdef CONFIG_SMP
639 #ifdef CONFIG_NO_HZ_COMMON
640 /*
641 * In the semi idle case, use the nearest busy cpu for migrating timers
642 * from an idle cpu. This is good for power-savings.
643 *
644 * We don't do similar optimization for completely idle system, as
645 * selecting an idle cpu will add more delays to the timers than intended
646 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
647 */
648 int get_nohz_timer_target(int pinned)
649 {
650 int cpu = smp_processor_id();
651 int i;
652 struct sched_domain *sd;
653
654 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
655 return cpu;
656
657 rcu_read_lock();
658 for_each_domain(cpu, sd) {
659 for_each_cpu(i, sched_domain_span(sd)) {
660 if (!idle_cpu(i)) {
661 cpu = i;
662 goto unlock;
663 }
664 }
665 }
666 unlock:
667 rcu_read_unlock();
668 return cpu;
669 }
670 /*
671 * When add_timer_on() enqueues a timer into the timer wheel of an
672 * idle CPU then this timer might expire before the next timer event
673 * which is scheduled to wake up that CPU. In case of a completely
674 * idle system the next event might even be infinite time into the
675 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
676 * leaves the inner idle loop so the newly added timer is taken into
677 * account when the CPU goes back to idle and evaluates the timer
678 * wheel for the next timer event.
679 */
680 static void wake_up_idle_cpu(int cpu)
681 {
682 struct rq *rq = cpu_rq(cpu);
683
684 if (cpu == smp_processor_id())
685 return;
686
687 if (set_nr_and_not_polling(rq->idle))
688 smp_send_reschedule(cpu);
689 else
690 trace_sched_wake_idle_without_ipi(cpu);
691 }
692
693 static bool wake_up_full_nohz_cpu(int cpu)
694 {
695 /*
696 * We just need the target to call irq_exit() and re-evaluate
697 * the next tick. The nohz full kick at least implies that.
698 * If needed we can still optimize that later with an
699 * empty IRQ.
700 */
701 if (tick_nohz_full_cpu(cpu)) {
702 if (cpu != smp_processor_id() ||
703 tick_nohz_tick_stopped())
704 tick_nohz_full_kick_cpu(cpu);
705 return true;
706 }
707
708 return false;
709 }
710
711 void wake_up_nohz_cpu(int cpu)
712 {
713 if (!wake_up_full_nohz_cpu(cpu))
714 wake_up_idle_cpu(cpu);
715 }
716
717 static inline bool got_nohz_idle_kick(void)
718 {
719 int cpu = smp_processor_id();
720
721 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
722 return false;
723
724 if (idle_cpu(cpu) && !need_resched())
725 return true;
726
727 /*
728 * We can't run Idle Load Balance on this CPU for this time so we
729 * cancel it and clear NOHZ_BALANCE_KICK
730 */
731 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
732 return false;
733 }
734
735 #else /* CONFIG_NO_HZ_COMMON */
736
737 static inline bool got_nohz_idle_kick(void)
738 {
739 return false;
740 }
741
742 #endif /* CONFIG_NO_HZ_COMMON */
743
744 #ifdef CONFIG_NO_HZ_FULL
745 bool sched_can_stop_tick(void)
746 {
747 /*
748 * More than one running task need preemption.
749 * nr_running update is assumed to be visible
750 * after IPI is sent from wakers.
751 */
752 if (this_rq()->nr_running > 1)
753 return false;
754
755 return true;
756 }
757 #endif /* CONFIG_NO_HZ_FULL */
758
759 void sched_avg_update(struct rq *rq)
760 {
761 s64 period = sched_avg_period();
762
763 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
764 /*
765 * Inline assembly required to prevent the compiler
766 * optimising this loop into a divmod call.
767 * See __iter_div_u64_rem() for another example of this.
768 */
769 asm("" : "+rm" (rq->age_stamp));
770 rq->age_stamp += period;
771 rq->rt_avg /= 2;
772 }
773 }
774
775 #endif /* CONFIG_SMP */
776
777 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
778 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
779 /*
780 * Iterate task_group tree rooted at *from, calling @down when first entering a
781 * node and @up when leaving it for the final time.
782 *
783 * Caller must hold rcu_lock or sufficient equivalent.
784 */
785 int walk_tg_tree_from(struct task_group *from,
786 tg_visitor down, tg_visitor up, void *data)
787 {
788 struct task_group *parent, *child;
789 int ret;
790
791 parent = from;
792
793 down:
794 ret = (*down)(parent, data);
795 if (ret)
796 goto out;
797 list_for_each_entry_rcu(child, &parent->children, siblings) {
798 parent = child;
799 goto down;
800
801 up:
802 continue;
803 }
804 ret = (*up)(parent, data);
805 if (ret || parent == from)
806 goto out;
807
808 child = parent;
809 parent = parent->parent;
810 if (parent)
811 goto up;
812 out:
813 return ret;
814 }
815
816 int tg_nop(struct task_group *tg, void *data)
817 {
818 return 0;
819 }
820 #endif
821
822 static void set_load_weight(struct task_struct *p)
823 {
824 int prio = p->static_prio - MAX_RT_PRIO;
825 struct load_weight *load = &p->se.load;
826
827 /*
828 * SCHED_IDLE tasks get minimal weight:
829 */
830 if (p->policy == SCHED_IDLE) {
831 load->weight = scale_load(WEIGHT_IDLEPRIO);
832 load->inv_weight = WMULT_IDLEPRIO;
833 return;
834 }
835
836 load->weight = scale_load(prio_to_weight[prio]);
837 load->inv_weight = prio_to_wmult[prio];
838 }
839
840 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
841 {
842 update_rq_clock(rq);
843 sched_info_queued(rq, p);
844 p->sched_class->enqueue_task(rq, p, flags);
845 }
846
847 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
848 {
849 update_rq_clock(rq);
850 sched_info_dequeued(rq, p);
851 p->sched_class->dequeue_task(rq, p, flags);
852 }
853
854 void activate_task(struct rq *rq, struct task_struct *p, int flags)
855 {
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible--;
858
859 enqueue_task(rq, p, flags);
860 }
861
862 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
863 {
864 if (task_contributes_to_load(p))
865 rq->nr_uninterruptible++;
866
867 dequeue_task(rq, p, flags);
868 }
869
870 static void update_rq_clock_task(struct rq *rq, s64 delta)
871 {
872 /*
873 * In theory, the compile should just see 0 here, and optimize out the call
874 * to sched_rt_avg_update. But I don't trust it...
875 */
876 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
877 s64 steal = 0, irq_delta = 0;
878 #endif
879 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
880 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
881
882 /*
883 * Since irq_time is only updated on {soft,}irq_exit, we might run into
884 * this case when a previous update_rq_clock() happened inside a
885 * {soft,}irq region.
886 *
887 * When this happens, we stop ->clock_task and only update the
888 * prev_irq_time stamp to account for the part that fit, so that a next
889 * update will consume the rest. This ensures ->clock_task is
890 * monotonic.
891 *
892 * It does however cause some slight miss-attribution of {soft,}irq
893 * time, a more accurate solution would be to update the irq_time using
894 * the current rq->clock timestamp, except that would require using
895 * atomic ops.
896 */
897 if (irq_delta > delta)
898 irq_delta = delta;
899
900 rq->prev_irq_time += irq_delta;
901 delta -= irq_delta;
902 #endif
903 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
904 if (static_key_false((&paravirt_steal_rq_enabled))) {
905 steal = paravirt_steal_clock(cpu_of(rq));
906 steal -= rq->prev_steal_time_rq;
907
908 if (unlikely(steal > delta))
909 steal = delta;
910
911 rq->prev_steal_time_rq += steal;
912 delta -= steal;
913 }
914 #endif
915
916 rq->clock_task += delta;
917
918 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
919 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
920 sched_rt_avg_update(rq, irq_delta + steal);
921 #endif
922 }
923
924 void sched_set_stop_task(int cpu, struct task_struct *stop)
925 {
926 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
927 struct task_struct *old_stop = cpu_rq(cpu)->stop;
928
929 if (stop) {
930 /*
931 * Make it appear like a SCHED_FIFO task, its something
932 * userspace knows about and won't get confused about.
933 *
934 * Also, it will make PI more or less work without too
935 * much confusion -- but then, stop work should not
936 * rely on PI working anyway.
937 */
938 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
939
940 stop->sched_class = &stop_sched_class;
941 }
942
943 cpu_rq(cpu)->stop = stop;
944
945 if (old_stop) {
946 /*
947 * Reset it back to a normal scheduling class so that
948 * it can die in pieces.
949 */
950 old_stop->sched_class = &rt_sched_class;
951 }
952 }
953
954 /*
955 * __normal_prio - return the priority that is based on the static prio
956 */
957 static inline int __normal_prio(struct task_struct *p)
958 {
959 return p->static_prio;
960 }
961
962 /*
963 * Calculate the expected normal priority: i.e. priority
964 * without taking RT-inheritance into account. Might be
965 * boosted by interactivity modifiers. Changes upon fork,
966 * setprio syscalls, and whenever the interactivity
967 * estimator recalculates.
968 */
969 static inline int normal_prio(struct task_struct *p)
970 {
971 int prio;
972
973 if (task_has_dl_policy(p))
974 prio = MAX_DL_PRIO-1;
975 else if (task_has_rt_policy(p))
976 prio = MAX_RT_PRIO-1 - p->rt_priority;
977 else
978 prio = __normal_prio(p);
979 return prio;
980 }
981
982 /*
983 * Calculate the current priority, i.e. the priority
984 * taken into account by the scheduler. This value might
985 * be boosted by RT tasks, or might be boosted by
986 * interactivity modifiers. Will be RT if the task got
987 * RT-boosted. If not then it returns p->normal_prio.
988 */
989 static int effective_prio(struct task_struct *p)
990 {
991 p->normal_prio = normal_prio(p);
992 /*
993 * If we are RT tasks or we were boosted to RT priority,
994 * keep the priority unchanged. Otherwise, update priority
995 * to the normal priority:
996 */
997 if (!rt_prio(p->prio))
998 return p->normal_prio;
999 return p->prio;
1000 }
1001
1002 /**
1003 * task_curr - is this task currently executing on a CPU?
1004 * @p: the task in question.
1005 *
1006 * Return: 1 if the task is currently executing. 0 otherwise.
1007 */
1008 inline int task_curr(const struct task_struct *p)
1009 {
1010 return cpu_curr(task_cpu(p)) == p;
1011 }
1012
1013 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1014 const struct sched_class *prev_class,
1015 int oldprio)
1016 {
1017 if (prev_class != p->sched_class) {
1018 if (prev_class->switched_from)
1019 prev_class->switched_from(rq, p);
1020 p->sched_class->switched_to(rq, p);
1021 } else if (oldprio != p->prio || dl_task(p))
1022 p->sched_class->prio_changed(rq, p, oldprio);
1023 }
1024
1025 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026 {
1027 const struct sched_class *class;
1028
1029 if (p->sched_class == rq->curr->sched_class) {
1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 } else {
1032 for_each_class(class) {
1033 if (class == rq->curr->sched_class)
1034 break;
1035 if (class == p->sched_class) {
1036 resched_curr(rq);
1037 break;
1038 }
1039 }
1040 }
1041
1042 /*
1043 * A queue event has occurred, and we're going to schedule. In
1044 * this case, we can save a useless back to back clock update.
1045 */
1046 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1047 rq->skip_clock_update = 1;
1048 }
1049
1050 #ifdef CONFIG_SMP
1051 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1052 {
1053 #ifdef CONFIG_SCHED_DEBUG
1054 /*
1055 * We should never call set_task_cpu() on a blocked task,
1056 * ttwu() will sort out the placement.
1057 */
1058 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1059 !(task_preempt_count(p) & PREEMPT_ACTIVE));
1060
1061 #ifdef CONFIG_LOCKDEP
1062 /*
1063 * The caller should hold either p->pi_lock or rq->lock, when changing
1064 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1065 *
1066 * sched_move_task() holds both and thus holding either pins the cgroup,
1067 * see task_group().
1068 *
1069 * Furthermore, all task_rq users should acquire both locks, see
1070 * task_rq_lock().
1071 */
1072 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1073 lockdep_is_held(&task_rq(p)->lock)));
1074 #endif
1075 #endif
1076
1077 trace_sched_migrate_task(p, new_cpu);
1078
1079 if (task_cpu(p) != new_cpu) {
1080 if (p->sched_class->migrate_task_rq)
1081 p->sched_class->migrate_task_rq(p, new_cpu);
1082 p->se.nr_migrations++;
1083 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1084 }
1085
1086 __set_task_cpu(p, new_cpu);
1087 }
1088
1089 static void __migrate_swap_task(struct task_struct *p, int cpu)
1090 {
1091 if (p->on_rq) {
1092 struct rq *src_rq, *dst_rq;
1093
1094 src_rq = task_rq(p);
1095 dst_rq = cpu_rq(cpu);
1096
1097 deactivate_task(src_rq, p, 0);
1098 set_task_cpu(p, cpu);
1099 activate_task(dst_rq, p, 0);
1100 check_preempt_curr(dst_rq, p, 0);
1101 } else {
1102 /*
1103 * Task isn't running anymore; make it appear like we migrated
1104 * it before it went to sleep. This means on wakeup we make the
1105 * previous cpu our targer instead of where it really is.
1106 */
1107 p->wake_cpu = cpu;
1108 }
1109 }
1110
1111 struct migration_swap_arg {
1112 struct task_struct *src_task, *dst_task;
1113 int src_cpu, dst_cpu;
1114 };
1115
1116 static int migrate_swap_stop(void *data)
1117 {
1118 struct migration_swap_arg *arg = data;
1119 struct rq *src_rq, *dst_rq;
1120 int ret = -EAGAIN;
1121
1122 src_rq = cpu_rq(arg->src_cpu);
1123 dst_rq = cpu_rq(arg->dst_cpu);
1124
1125 double_raw_lock(&arg->src_task->pi_lock,
1126 &arg->dst_task->pi_lock);
1127 double_rq_lock(src_rq, dst_rq);
1128 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1129 goto unlock;
1130
1131 if (task_cpu(arg->src_task) != arg->src_cpu)
1132 goto unlock;
1133
1134 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1135 goto unlock;
1136
1137 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1138 goto unlock;
1139
1140 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1141 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1142
1143 ret = 0;
1144
1145 unlock:
1146 double_rq_unlock(src_rq, dst_rq);
1147 raw_spin_unlock(&arg->dst_task->pi_lock);
1148 raw_spin_unlock(&arg->src_task->pi_lock);
1149
1150 return ret;
1151 }
1152
1153 /*
1154 * Cross migrate two tasks
1155 */
1156 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1157 {
1158 struct migration_swap_arg arg;
1159 int ret = -EINVAL;
1160
1161 arg = (struct migration_swap_arg){
1162 .src_task = cur,
1163 .src_cpu = task_cpu(cur),
1164 .dst_task = p,
1165 .dst_cpu = task_cpu(p),
1166 };
1167
1168 if (arg.src_cpu == arg.dst_cpu)
1169 goto out;
1170
1171 /*
1172 * These three tests are all lockless; this is OK since all of them
1173 * will be re-checked with proper locks held further down the line.
1174 */
1175 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1176 goto out;
1177
1178 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1179 goto out;
1180
1181 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1182 goto out;
1183
1184 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1185 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1186
1187 out:
1188 return ret;
1189 }
1190
1191 struct migration_arg {
1192 struct task_struct *task;
1193 int dest_cpu;
1194 };
1195
1196 static int migration_cpu_stop(void *data);
1197
1198 /*
1199 * wait_task_inactive - wait for a thread to unschedule.
1200 *
1201 * If @match_state is nonzero, it's the @p->state value just checked and
1202 * not expected to change. If it changes, i.e. @p might have woken up,
1203 * then return zero. When we succeed in waiting for @p to be off its CPU,
1204 * we return a positive number (its total switch count). If a second call
1205 * a short while later returns the same number, the caller can be sure that
1206 * @p has remained unscheduled the whole time.
1207 *
1208 * The caller must ensure that the task *will* unschedule sometime soon,
1209 * else this function might spin for a *long* time. This function can't
1210 * be called with interrupts off, or it may introduce deadlock with
1211 * smp_call_function() if an IPI is sent by the same process we are
1212 * waiting to become inactive.
1213 */
1214 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1215 {
1216 unsigned long flags;
1217 int running, on_rq;
1218 unsigned long ncsw;
1219 struct rq *rq;
1220
1221 for (;;) {
1222 /*
1223 * We do the initial early heuristics without holding
1224 * any task-queue locks at all. We'll only try to get
1225 * the runqueue lock when things look like they will
1226 * work out!
1227 */
1228 rq = task_rq(p);
1229
1230 /*
1231 * If the task is actively running on another CPU
1232 * still, just relax and busy-wait without holding
1233 * any locks.
1234 *
1235 * NOTE! Since we don't hold any locks, it's not
1236 * even sure that "rq" stays as the right runqueue!
1237 * But we don't care, since "task_running()" will
1238 * return false if the runqueue has changed and p
1239 * is actually now running somewhere else!
1240 */
1241 while (task_running(rq, p)) {
1242 if (match_state && unlikely(p->state != match_state))
1243 return 0;
1244 cpu_relax();
1245 }
1246
1247 /*
1248 * Ok, time to look more closely! We need the rq
1249 * lock now, to be *sure*. If we're wrong, we'll
1250 * just go back and repeat.
1251 */
1252 rq = task_rq_lock(p, &flags);
1253 trace_sched_wait_task(p);
1254 running = task_running(rq, p);
1255 on_rq = p->on_rq;
1256 ncsw = 0;
1257 if (!match_state || p->state == match_state)
1258 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1259 task_rq_unlock(rq, p, &flags);
1260
1261 /*
1262 * If it changed from the expected state, bail out now.
1263 */
1264 if (unlikely(!ncsw))
1265 break;
1266
1267 /*
1268 * Was it really running after all now that we
1269 * checked with the proper locks actually held?
1270 *
1271 * Oops. Go back and try again..
1272 */
1273 if (unlikely(running)) {
1274 cpu_relax();
1275 continue;
1276 }
1277
1278 /*
1279 * It's not enough that it's not actively running,
1280 * it must be off the runqueue _entirely_, and not
1281 * preempted!
1282 *
1283 * So if it was still runnable (but just not actively
1284 * running right now), it's preempted, and we should
1285 * yield - it could be a while.
1286 */
1287 if (unlikely(on_rq)) {
1288 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1289
1290 set_current_state(TASK_UNINTERRUPTIBLE);
1291 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1292 continue;
1293 }
1294
1295 /*
1296 * Ahh, all good. It wasn't running, and it wasn't
1297 * runnable, which means that it will never become
1298 * running in the future either. We're all done!
1299 */
1300 break;
1301 }
1302
1303 return ncsw;
1304 }
1305
1306 /***
1307 * kick_process - kick a running thread to enter/exit the kernel
1308 * @p: the to-be-kicked thread
1309 *
1310 * Cause a process which is running on another CPU to enter
1311 * kernel-mode, without any delay. (to get signals handled.)
1312 *
1313 * NOTE: this function doesn't have to take the runqueue lock,
1314 * because all it wants to ensure is that the remote task enters
1315 * the kernel. If the IPI races and the task has been migrated
1316 * to another CPU then no harm is done and the purpose has been
1317 * achieved as well.
1318 */
1319 void kick_process(struct task_struct *p)
1320 {
1321 int cpu;
1322
1323 preempt_disable();
1324 cpu = task_cpu(p);
1325 if ((cpu != smp_processor_id()) && task_curr(p))
1326 smp_send_reschedule(cpu);
1327 preempt_enable();
1328 }
1329 EXPORT_SYMBOL_GPL(kick_process);
1330 #endif /* CONFIG_SMP */
1331
1332 #ifdef CONFIG_SMP
1333 /*
1334 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1335 */
1336 static int select_fallback_rq(int cpu, struct task_struct *p)
1337 {
1338 int nid = cpu_to_node(cpu);
1339 const struct cpumask *nodemask = NULL;
1340 enum { cpuset, possible, fail } state = cpuset;
1341 int dest_cpu;
1342
1343 /*
1344 * If the node that the cpu is on has been offlined, cpu_to_node()
1345 * will return -1. There is no cpu on the node, and we should
1346 * select the cpu on the other node.
1347 */
1348 if (nid != -1) {
1349 nodemask = cpumask_of_node(nid);
1350
1351 /* Look for allowed, online CPU in same node. */
1352 for_each_cpu(dest_cpu, nodemask) {
1353 if (!cpu_online(dest_cpu))
1354 continue;
1355 if (!cpu_active(dest_cpu))
1356 continue;
1357 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1358 return dest_cpu;
1359 }
1360 }
1361
1362 for (;;) {
1363 /* Any allowed, online CPU? */
1364 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1365 if (!cpu_online(dest_cpu))
1366 continue;
1367 if (!cpu_active(dest_cpu))
1368 continue;
1369 goto out;
1370 }
1371
1372 switch (state) {
1373 case cpuset:
1374 /* No more Mr. Nice Guy. */
1375 cpuset_cpus_allowed_fallback(p);
1376 state = possible;
1377 break;
1378
1379 case possible:
1380 do_set_cpus_allowed(p, cpu_possible_mask);
1381 state = fail;
1382 break;
1383
1384 case fail:
1385 BUG();
1386 break;
1387 }
1388 }
1389
1390 out:
1391 if (state != cpuset) {
1392 /*
1393 * Don't tell them about moving exiting tasks or
1394 * kernel threads (both mm NULL), since they never
1395 * leave kernel.
1396 */
1397 if (p->mm && printk_ratelimit()) {
1398 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1399 task_pid_nr(p), p->comm, cpu);
1400 }
1401 }
1402
1403 return dest_cpu;
1404 }
1405
1406 /*
1407 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1408 */
1409 static inline
1410 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1411 {
1412 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1413
1414 /*
1415 * In order not to call set_task_cpu() on a blocking task we need
1416 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1417 * cpu.
1418 *
1419 * Since this is common to all placement strategies, this lives here.
1420 *
1421 * [ this allows ->select_task() to simply return task_cpu(p) and
1422 * not worry about this generic constraint ]
1423 */
1424 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1425 !cpu_online(cpu)))
1426 cpu = select_fallback_rq(task_cpu(p), p);
1427
1428 return cpu;
1429 }
1430
1431 static void update_avg(u64 *avg, u64 sample)
1432 {
1433 s64 diff = sample - *avg;
1434 *avg += diff >> 3;
1435 }
1436 #endif
1437
1438 static void
1439 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1440 {
1441 #ifdef CONFIG_SCHEDSTATS
1442 struct rq *rq = this_rq();
1443
1444 #ifdef CONFIG_SMP
1445 int this_cpu = smp_processor_id();
1446
1447 if (cpu == this_cpu) {
1448 schedstat_inc(rq, ttwu_local);
1449 schedstat_inc(p, se.statistics.nr_wakeups_local);
1450 } else {
1451 struct sched_domain *sd;
1452
1453 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1454 rcu_read_lock();
1455 for_each_domain(this_cpu, sd) {
1456 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1457 schedstat_inc(sd, ttwu_wake_remote);
1458 break;
1459 }
1460 }
1461 rcu_read_unlock();
1462 }
1463
1464 if (wake_flags & WF_MIGRATED)
1465 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1466
1467 #endif /* CONFIG_SMP */
1468
1469 schedstat_inc(rq, ttwu_count);
1470 schedstat_inc(p, se.statistics.nr_wakeups);
1471
1472 if (wake_flags & WF_SYNC)
1473 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1474
1475 #endif /* CONFIG_SCHEDSTATS */
1476 }
1477
1478 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1479 {
1480 activate_task(rq, p, en_flags);
1481 p->on_rq = 1;
1482
1483 /* if a worker is waking up, notify workqueue */
1484 if (p->flags & PF_WQ_WORKER)
1485 wq_worker_waking_up(p, cpu_of(rq));
1486 }
1487
1488 /*
1489 * Mark the task runnable and perform wakeup-preemption.
1490 */
1491 static void
1492 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1493 {
1494 check_preempt_curr(rq, p, wake_flags);
1495 trace_sched_wakeup(p, true);
1496
1497 p->state = TASK_RUNNING;
1498 #ifdef CONFIG_SMP
1499 if (p->sched_class->task_woken)
1500 p->sched_class->task_woken(rq, p);
1501
1502 if (rq->idle_stamp) {
1503 u64 delta = rq_clock(rq) - rq->idle_stamp;
1504 u64 max = 2*rq->max_idle_balance_cost;
1505
1506 update_avg(&rq->avg_idle, delta);
1507
1508 if (rq->avg_idle > max)
1509 rq->avg_idle = max;
1510
1511 rq->idle_stamp = 0;
1512 }
1513 #endif
1514 }
1515
1516 static void
1517 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1518 {
1519 #ifdef CONFIG_SMP
1520 if (p->sched_contributes_to_load)
1521 rq->nr_uninterruptible--;
1522 #endif
1523
1524 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1525 ttwu_do_wakeup(rq, p, wake_flags);
1526 }
1527
1528 /*
1529 * Called in case the task @p isn't fully descheduled from its runqueue,
1530 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1531 * since all we need to do is flip p->state to TASK_RUNNING, since
1532 * the task is still ->on_rq.
1533 */
1534 static int ttwu_remote(struct task_struct *p, int wake_flags)
1535 {
1536 struct rq *rq;
1537 int ret = 0;
1538
1539 rq = __task_rq_lock(p);
1540 if (p->on_rq) {
1541 /* check_preempt_curr() may use rq clock */
1542 update_rq_clock(rq);
1543 ttwu_do_wakeup(rq, p, wake_flags);
1544 ret = 1;
1545 }
1546 __task_rq_unlock(rq);
1547
1548 return ret;
1549 }
1550
1551 #ifdef CONFIG_SMP
1552 void sched_ttwu_pending(void)
1553 {
1554 struct rq *rq = this_rq();
1555 struct llist_node *llist = llist_del_all(&rq->wake_list);
1556 struct task_struct *p;
1557 unsigned long flags;
1558
1559 if (!llist)
1560 return;
1561
1562 raw_spin_lock_irqsave(&rq->lock, flags);
1563
1564 while (llist) {
1565 p = llist_entry(llist, struct task_struct, wake_entry);
1566 llist = llist_next(llist);
1567 ttwu_do_activate(rq, p, 0);
1568 }
1569
1570 raw_spin_unlock_irqrestore(&rq->lock, flags);
1571 }
1572
1573 void scheduler_ipi(void)
1574 {
1575 /*
1576 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1577 * TIF_NEED_RESCHED remotely (for the first time) will also send
1578 * this IPI.
1579 */
1580 preempt_fold_need_resched();
1581
1582 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1583 return;
1584
1585 /*
1586 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1587 * traditionally all their work was done from the interrupt return
1588 * path. Now that we actually do some work, we need to make sure
1589 * we do call them.
1590 *
1591 * Some archs already do call them, luckily irq_enter/exit nest
1592 * properly.
1593 *
1594 * Arguably we should visit all archs and update all handlers,
1595 * however a fair share of IPIs are still resched only so this would
1596 * somewhat pessimize the simple resched case.
1597 */
1598 irq_enter();
1599 sched_ttwu_pending();
1600
1601 /*
1602 * Check if someone kicked us for doing the nohz idle load balance.
1603 */
1604 if (unlikely(got_nohz_idle_kick())) {
1605 this_rq()->idle_balance = 1;
1606 raise_softirq_irqoff(SCHED_SOFTIRQ);
1607 }
1608 irq_exit();
1609 }
1610
1611 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1612 {
1613 struct rq *rq = cpu_rq(cpu);
1614
1615 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1616 if (!set_nr_if_polling(rq->idle))
1617 smp_send_reschedule(cpu);
1618 else
1619 trace_sched_wake_idle_without_ipi(cpu);
1620 }
1621 }
1622
1623 bool cpus_share_cache(int this_cpu, int that_cpu)
1624 {
1625 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1626 }
1627 #endif /* CONFIG_SMP */
1628
1629 static void ttwu_queue(struct task_struct *p, int cpu)
1630 {
1631 struct rq *rq = cpu_rq(cpu);
1632
1633 #if defined(CONFIG_SMP)
1634 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1635 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1636 ttwu_queue_remote(p, cpu);
1637 return;
1638 }
1639 #endif
1640
1641 raw_spin_lock(&rq->lock);
1642 ttwu_do_activate(rq, p, 0);
1643 raw_spin_unlock(&rq->lock);
1644 }
1645
1646 /**
1647 * try_to_wake_up - wake up a thread
1648 * @p: the thread to be awakened
1649 * @state: the mask of task states that can be woken
1650 * @wake_flags: wake modifier flags (WF_*)
1651 *
1652 * Put it on the run-queue if it's not already there. The "current"
1653 * thread is always on the run-queue (except when the actual
1654 * re-schedule is in progress), and as such you're allowed to do
1655 * the simpler "current->state = TASK_RUNNING" to mark yourself
1656 * runnable without the overhead of this.
1657 *
1658 * Return: %true if @p was woken up, %false if it was already running.
1659 * or @state didn't match @p's state.
1660 */
1661 static int
1662 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1663 {
1664 unsigned long flags;
1665 int cpu, success = 0;
1666
1667 /*
1668 * If we are going to wake up a thread waiting for CONDITION we
1669 * need to ensure that CONDITION=1 done by the caller can not be
1670 * reordered with p->state check below. This pairs with mb() in
1671 * set_current_state() the waiting thread does.
1672 */
1673 smp_mb__before_spinlock();
1674 raw_spin_lock_irqsave(&p->pi_lock, flags);
1675 if (!(p->state & state))
1676 goto out;
1677
1678 success = 1; /* we're going to change ->state */
1679 cpu = task_cpu(p);
1680
1681 if (p->on_rq && ttwu_remote(p, wake_flags))
1682 goto stat;
1683
1684 #ifdef CONFIG_SMP
1685 /*
1686 * If the owning (remote) cpu is still in the middle of schedule() with
1687 * this task as prev, wait until its done referencing the task.
1688 */
1689 while (p->on_cpu)
1690 cpu_relax();
1691 /*
1692 * Pairs with the smp_wmb() in finish_lock_switch().
1693 */
1694 smp_rmb();
1695
1696 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1697 p->state = TASK_WAKING;
1698
1699 if (p->sched_class->task_waking)
1700 p->sched_class->task_waking(p);
1701
1702 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1703 if (task_cpu(p) != cpu) {
1704 wake_flags |= WF_MIGRATED;
1705 set_task_cpu(p, cpu);
1706 }
1707 #endif /* CONFIG_SMP */
1708
1709 ttwu_queue(p, cpu);
1710 stat:
1711 ttwu_stat(p, cpu, wake_flags);
1712 out:
1713 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1714
1715 return success;
1716 }
1717
1718 /**
1719 * try_to_wake_up_local - try to wake up a local task with rq lock held
1720 * @p: the thread to be awakened
1721 *
1722 * Put @p on the run-queue if it's not already there. The caller must
1723 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1724 * the current task.
1725 */
1726 static void try_to_wake_up_local(struct task_struct *p)
1727 {
1728 struct rq *rq = task_rq(p);
1729
1730 if (WARN_ON_ONCE(rq != this_rq()) ||
1731 WARN_ON_ONCE(p == current))
1732 return;
1733
1734 lockdep_assert_held(&rq->lock);
1735
1736 if (!raw_spin_trylock(&p->pi_lock)) {
1737 raw_spin_unlock(&rq->lock);
1738 raw_spin_lock(&p->pi_lock);
1739 raw_spin_lock(&rq->lock);
1740 }
1741
1742 if (!(p->state & TASK_NORMAL))
1743 goto out;
1744
1745 if (!p->on_rq)
1746 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1747
1748 ttwu_do_wakeup(rq, p, 0);
1749 ttwu_stat(p, smp_processor_id(), 0);
1750 out:
1751 raw_spin_unlock(&p->pi_lock);
1752 }
1753
1754 /**
1755 * wake_up_process - Wake up a specific process
1756 * @p: The process to be woken up.
1757 *
1758 * Attempt to wake up the nominated process and move it to the set of runnable
1759 * processes.
1760 *
1761 * Return: 1 if the process was woken up, 0 if it was already running.
1762 *
1763 * It may be assumed that this function implies a write memory barrier before
1764 * changing the task state if and only if any tasks are woken up.
1765 */
1766 int wake_up_process(struct task_struct *p)
1767 {
1768 WARN_ON(task_is_stopped_or_traced(p));
1769 return try_to_wake_up(p, TASK_NORMAL, 0);
1770 }
1771 EXPORT_SYMBOL(wake_up_process);
1772
1773 int wake_up_state(struct task_struct *p, unsigned int state)
1774 {
1775 return try_to_wake_up(p, state, 0);
1776 }
1777
1778 /*
1779 * Perform scheduler related setup for a newly forked process p.
1780 * p is forked by current.
1781 *
1782 * __sched_fork() is basic setup used by init_idle() too:
1783 */
1784 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1785 {
1786 p->on_rq = 0;
1787
1788 p->se.on_rq = 0;
1789 p->se.exec_start = 0;
1790 p->se.sum_exec_runtime = 0;
1791 p->se.prev_sum_exec_runtime = 0;
1792 p->se.nr_migrations = 0;
1793 p->se.vruntime = 0;
1794 INIT_LIST_HEAD(&p->se.group_node);
1795
1796 #ifdef CONFIG_SCHEDSTATS
1797 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1798 #endif
1799
1800 RB_CLEAR_NODE(&p->dl.rb_node);
1801 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1802 p->dl.dl_runtime = p->dl.runtime = 0;
1803 p->dl.dl_deadline = p->dl.deadline = 0;
1804 p->dl.dl_period = 0;
1805 p->dl.flags = 0;
1806
1807 INIT_LIST_HEAD(&p->rt.run_list);
1808
1809 #ifdef CONFIG_PREEMPT_NOTIFIERS
1810 INIT_HLIST_HEAD(&p->preempt_notifiers);
1811 #endif
1812
1813 #ifdef CONFIG_NUMA_BALANCING
1814 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1815 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1816 p->mm->numa_scan_seq = 0;
1817 }
1818
1819 if (clone_flags & CLONE_VM)
1820 p->numa_preferred_nid = current->numa_preferred_nid;
1821 else
1822 p->numa_preferred_nid = -1;
1823
1824 p->node_stamp = 0ULL;
1825 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1826 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1827 p->numa_work.next = &p->numa_work;
1828 p->numa_faults_memory = NULL;
1829 p->numa_faults_buffer_memory = NULL;
1830 p->last_task_numa_placement = 0;
1831 p->last_sum_exec_runtime = 0;
1832
1833 INIT_LIST_HEAD(&p->numa_entry);
1834 p->numa_group = NULL;
1835 #endif /* CONFIG_NUMA_BALANCING */
1836 }
1837
1838 #ifdef CONFIG_NUMA_BALANCING
1839 #ifdef CONFIG_SCHED_DEBUG
1840 void set_numabalancing_state(bool enabled)
1841 {
1842 if (enabled)
1843 sched_feat_set("NUMA");
1844 else
1845 sched_feat_set("NO_NUMA");
1846 }
1847 #else
1848 __read_mostly bool numabalancing_enabled;
1849
1850 void set_numabalancing_state(bool enabled)
1851 {
1852 numabalancing_enabled = enabled;
1853 }
1854 #endif /* CONFIG_SCHED_DEBUG */
1855
1856 #ifdef CONFIG_PROC_SYSCTL
1857 int sysctl_numa_balancing(struct ctl_table *table, int write,
1858 void __user *buffer, size_t *lenp, loff_t *ppos)
1859 {
1860 struct ctl_table t;
1861 int err;
1862 int state = numabalancing_enabled;
1863
1864 if (write && !capable(CAP_SYS_ADMIN))
1865 return -EPERM;
1866
1867 t = *table;
1868 t.data = &state;
1869 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1870 if (err < 0)
1871 return err;
1872 if (write)
1873 set_numabalancing_state(state);
1874 return err;
1875 }
1876 #endif
1877 #endif
1878
1879 /*
1880 * fork()/clone()-time setup:
1881 */
1882 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1883 {
1884 unsigned long flags;
1885 int cpu = get_cpu();
1886
1887 __sched_fork(clone_flags, p);
1888 /*
1889 * We mark the process as running here. This guarantees that
1890 * nobody will actually run it, and a signal or other external
1891 * event cannot wake it up and insert it on the runqueue either.
1892 */
1893 p->state = TASK_RUNNING;
1894
1895 /*
1896 * Make sure we do not leak PI boosting priority to the child.
1897 */
1898 p->prio = current->normal_prio;
1899
1900 /*
1901 * Revert to default priority/policy on fork if requested.
1902 */
1903 if (unlikely(p->sched_reset_on_fork)) {
1904 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1905 p->policy = SCHED_NORMAL;
1906 p->static_prio = NICE_TO_PRIO(0);
1907 p->rt_priority = 0;
1908 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1909 p->static_prio = NICE_TO_PRIO(0);
1910
1911 p->prio = p->normal_prio = __normal_prio(p);
1912 set_load_weight(p);
1913
1914 /*
1915 * We don't need the reset flag anymore after the fork. It has
1916 * fulfilled its duty:
1917 */
1918 p->sched_reset_on_fork = 0;
1919 }
1920
1921 if (dl_prio(p->prio)) {
1922 put_cpu();
1923 return -EAGAIN;
1924 } else if (rt_prio(p->prio)) {
1925 p->sched_class = &rt_sched_class;
1926 } else {
1927 p->sched_class = &fair_sched_class;
1928 }
1929
1930 if (p->sched_class->task_fork)
1931 p->sched_class->task_fork(p);
1932
1933 /*
1934 * The child is not yet in the pid-hash so no cgroup attach races,
1935 * and the cgroup is pinned to this child due to cgroup_fork()
1936 * is ran before sched_fork().
1937 *
1938 * Silence PROVE_RCU.
1939 */
1940 raw_spin_lock_irqsave(&p->pi_lock, flags);
1941 set_task_cpu(p, cpu);
1942 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1943
1944 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1945 if (likely(sched_info_on()))
1946 memset(&p->sched_info, 0, sizeof(p->sched_info));
1947 #endif
1948 #if defined(CONFIG_SMP)
1949 p->on_cpu = 0;
1950 #endif
1951 init_task_preempt_count(p);
1952 #ifdef CONFIG_SMP
1953 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1954 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1955 #endif
1956
1957 put_cpu();
1958 return 0;
1959 }
1960
1961 unsigned long to_ratio(u64 period, u64 runtime)
1962 {
1963 if (runtime == RUNTIME_INF)
1964 return 1ULL << 20;
1965
1966 /*
1967 * Doing this here saves a lot of checks in all
1968 * the calling paths, and returning zero seems
1969 * safe for them anyway.
1970 */
1971 if (period == 0)
1972 return 0;
1973
1974 return div64_u64(runtime << 20, period);
1975 }
1976
1977 #ifdef CONFIG_SMP
1978 inline struct dl_bw *dl_bw_of(int i)
1979 {
1980 return &cpu_rq(i)->rd->dl_bw;
1981 }
1982
1983 static inline int dl_bw_cpus(int i)
1984 {
1985 struct root_domain *rd = cpu_rq(i)->rd;
1986 int cpus = 0;
1987
1988 for_each_cpu_and(i, rd->span, cpu_active_mask)
1989 cpus++;
1990
1991 return cpus;
1992 }
1993 #else
1994 inline struct dl_bw *dl_bw_of(int i)
1995 {
1996 return &cpu_rq(i)->dl.dl_bw;
1997 }
1998
1999 static inline int dl_bw_cpus(int i)
2000 {
2001 return 1;
2002 }
2003 #endif
2004
2005 static inline
2006 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2007 {
2008 dl_b->total_bw -= tsk_bw;
2009 }
2010
2011 static inline
2012 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2013 {
2014 dl_b->total_bw += tsk_bw;
2015 }
2016
2017 static inline
2018 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2019 {
2020 return dl_b->bw != -1 &&
2021 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2022 }
2023
2024 /*
2025 * We must be sure that accepting a new task (or allowing changing the
2026 * parameters of an existing one) is consistent with the bandwidth
2027 * constraints. If yes, this function also accordingly updates the currently
2028 * allocated bandwidth to reflect the new situation.
2029 *
2030 * This function is called while holding p's rq->lock.
2031 */
2032 static int dl_overflow(struct task_struct *p, int policy,
2033 const struct sched_attr *attr)
2034 {
2035
2036 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2037 u64 period = attr->sched_period ?: attr->sched_deadline;
2038 u64 runtime = attr->sched_runtime;
2039 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2040 int cpus, err = -1;
2041
2042 if (new_bw == p->dl.dl_bw)
2043 return 0;
2044
2045 /*
2046 * Either if a task, enters, leave, or stays -deadline but changes
2047 * its parameters, we may need to update accordingly the total
2048 * allocated bandwidth of the container.
2049 */
2050 raw_spin_lock(&dl_b->lock);
2051 cpus = dl_bw_cpus(task_cpu(p));
2052 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2053 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2054 __dl_add(dl_b, new_bw);
2055 err = 0;
2056 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2057 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2058 __dl_clear(dl_b, p->dl.dl_bw);
2059 __dl_add(dl_b, new_bw);
2060 err = 0;
2061 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2062 __dl_clear(dl_b, p->dl.dl_bw);
2063 err = 0;
2064 }
2065 raw_spin_unlock(&dl_b->lock);
2066
2067 return err;
2068 }
2069
2070 extern void init_dl_bw(struct dl_bw *dl_b);
2071
2072 /*
2073 * wake_up_new_task - wake up a newly created task for the first time.
2074 *
2075 * This function will do some initial scheduler statistics housekeeping
2076 * that must be done for every newly created context, then puts the task
2077 * on the runqueue and wakes it.
2078 */
2079 void wake_up_new_task(struct task_struct *p)
2080 {
2081 unsigned long flags;
2082 struct rq *rq;
2083
2084 raw_spin_lock_irqsave(&p->pi_lock, flags);
2085 #ifdef CONFIG_SMP
2086 /*
2087 * Fork balancing, do it here and not earlier because:
2088 * - cpus_allowed can change in the fork path
2089 * - any previously selected cpu might disappear through hotplug
2090 */
2091 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2092 #endif
2093
2094 /* Initialize new task's runnable average */
2095 init_task_runnable_average(p);
2096 rq = __task_rq_lock(p);
2097 activate_task(rq, p, 0);
2098 p->on_rq = 1;
2099 trace_sched_wakeup_new(p, true);
2100 check_preempt_curr(rq, p, WF_FORK);
2101 #ifdef CONFIG_SMP
2102 if (p->sched_class->task_woken)
2103 p->sched_class->task_woken(rq, p);
2104 #endif
2105 task_rq_unlock(rq, p, &flags);
2106 }
2107
2108 #ifdef CONFIG_PREEMPT_NOTIFIERS
2109
2110 /**
2111 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2112 * @notifier: notifier struct to register
2113 */
2114 void preempt_notifier_register(struct preempt_notifier *notifier)
2115 {
2116 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2117 }
2118 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2119
2120 /**
2121 * preempt_notifier_unregister - no longer interested in preemption notifications
2122 * @notifier: notifier struct to unregister
2123 *
2124 * This is safe to call from within a preemption notifier.
2125 */
2126 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2127 {
2128 hlist_del(&notifier->link);
2129 }
2130 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2131
2132 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2133 {
2134 struct preempt_notifier *notifier;
2135
2136 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2137 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2138 }
2139
2140 static void
2141 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2142 struct task_struct *next)
2143 {
2144 struct preempt_notifier *notifier;
2145
2146 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2147 notifier->ops->sched_out(notifier, next);
2148 }
2149
2150 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2151
2152 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2153 {
2154 }
2155
2156 static void
2157 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2158 struct task_struct *next)
2159 {
2160 }
2161
2162 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2163
2164 /**
2165 * prepare_task_switch - prepare to switch tasks
2166 * @rq: the runqueue preparing to switch
2167 * @prev: the current task that is being switched out
2168 * @next: the task we are going to switch to.
2169 *
2170 * This is called with the rq lock held and interrupts off. It must
2171 * be paired with a subsequent finish_task_switch after the context
2172 * switch.
2173 *
2174 * prepare_task_switch sets up locking and calls architecture specific
2175 * hooks.
2176 */
2177 static inline void
2178 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2179 struct task_struct *next)
2180 {
2181 trace_sched_switch(prev, next);
2182 sched_info_switch(rq, prev, next);
2183 perf_event_task_sched_out(prev, next);
2184 fire_sched_out_preempt_notifiers(prev, next);
2185 prepare_lock_switch(rq, next);
2186 prepare_arch_switch(next);
2187 }
2188
2189 /**
2190 * finish_task_switch - clean up after a task-switch
2191 * @rq: runqueue associated with task-switch
2192 * @prev: the thread we just switched away from.
2193 *
2194 * finish_task_switch must be called after the context switch, paired
2195 * with a prepare_task_switch call before the context switch.
2196 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2197 * and do any other architecture-specific cleanup actions.
2198 *
2199 * Note that we may have delayed dropping an mm in context_switch(). If
2200 * so, we finish that here outside of the runqueue lock. (Doing it
2201 * with the lock held can cause deadlocks; see schedule() for
2202 * details.)
2203 */
2204 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2205 __releases(rq->lock)
2206 {
2207 struct mm_struct *mm = rq->prev_mm;
2208 long prev_state;
2209
2210 rq->prev_mm = NULL;
2211
2212 /*
2213 * A task struct has one reference for the use as "current".
2214 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2215 * schedule one last time. The schedule call will never return, and
2216 * the scheduled task must drop that reference.
2217 * The test for TASK_DEAD must occur while the runqueue locks are
2218 * still held, otherwise prev could be scheduled on another cpu, die
2219 * there before we look at prev->state, and then the reference would
2220 * be dropped twice.
2221 * Manfred Spraul <manfred@colorfullife.com>
2222 */
2223 prev_state = prev->state;
2224 vtime_task_switch(prev);
2225 finish_arch_switch(prev);
2226 perf_event_task_sched_in(prev, current);
2227 finish_lock_switch(rq, prev);
2228 finish_arch_post_lock_switch();
2229
2230 fire_sched_in_preempt_notifiers(current);
2231 if (mm)
2232 mmdrop(mm);
2233 if (unlikely(prev_state == TASK_DEAD)) {
2234 if (prev->sched_class->task_dead)
2235 prev->sched_class->task_dead(prev);
2236
2237 /*
2238 * Remove function-return probe instances associated with this
2239 * task and put them back on the free list.
2240 */
2241 kprobe_flush_task(prev);
2242 put_task_struct(prev);
2243 }
2244
2245 tick_nohz_task_switch(current);
2246 }
2247
2248 #ifdef CONFIG_SMP
2249
2250 /* rq->lock is NOT held, but preemption is disabled */
2251 static inline void post_schedule(struct rq *rq)
2252 {
2253 if (rq->post_schedule) {
2254 unsigned long flags;
2255
2256 raw_spin_lock_irqsave(&rq->lock, flags);
2257 if (rq->curr->sched_class->post_schedule)
2258 rq->curr->sched_class->post_schedule(rq);
2259 raw_spin_unlock_irqrestore(&rq->lock, flags);
2260
2261 rq->post_schedule = 0;
2262 }
2263 }
2264
2265 #else
2266
2267 static inline void post_schedule(struct rq *rq)
2268 {
2269 }
2270
2271 #endif
2272
2273 /**
2274 * schedule_tail - first thing a freshly forked thread must call.
2275 * @prev: the thread we just switched away from.
2276 */
2277 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2278 __releases(rq->lock)
2279 {
2280 struct rq *rq = this_rq();
2281
2282 finish_task_switch(rq, prev);
2283
2284 /*
2285 * FIXME: do we need to worry about rq being invalidated by the
2286 * task_switch?
2287 */
2288 post_schedule(rq);
2289
2290 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2291 /* In this case, finish_task_switch does not reenable preemption */
2292 preempt_enable();
2293 #endif
2294 if (current->set_child_tid)
2295 put_user(task_pid_vnr(current), current->set_child_tid);
2296 }
2297
2298 /*
2299 * context_switch - switch to the new MM and the new
2300 * thread's register state.
2301 */
2302 static inline void
2303 context_switch(struct rq *rq, struct task_struct *prev,
2304 struct task_struct *next)
2305 {
2306 struct mm_struct *mm, *oldmm;
2307
2308 prepare_task_switch(rq, prev, next);
2309
2310 mm = next->mm;
2311 oldmm = prev->active_mm;
2312 /*
2313 * For paravirt, this is coupled with an exit in switch_to to
2314 * combine the page table reload and the switch backend into
2315 * one hypercall.
2316 */
2317 arch_start_context_switch(prev);
2318
2319 if (!mm) {
2320 next->active_mm = oldmm;
2321 atomic_inc(&oldmm->mm_count);
2322 enter_lazy_tlb(oldmm, next);
2323 } else
2324 switch_mm(oldmm, mm, next);
2325
2326 if (!prev->mm) {
2327 prev->active_mm = NULL;
2328 rq->prev_mm = oldmm;
2329 }
2330 /*
2331 * Since the runqueue lock will be released by the next
2332 * task (which is an invalid locking op but in the case
2333 * of the scheduler it's an obvious special-case), so we
2334 * do an early lockdep release here:
2335 */
2336 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2337 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2338 #endif
2339
2340 context_tracking_task_switch(prev, next);
2341 /* Here we just switch the register state and the stack. */
2342 switch_to(prev, next, prev);
2343
2344 barrier();
2345 /*
2346 * this_rq must be evaluated again because prev may have moved
2347 * CPUs since it called schedule(), thus the 'rq' on its stack
2348 * frame will be invalid.
2349 */
2350 finish_task_switch(this_rq(), prev);
2351 }
2352
2353 /*
2354 * nr_running and nr_context_switches:
2355 *
2356 * externally visible scheduler statistics: current number of runnable
2357 * threads, total number of context switches performed since bootup.
2358 */
2359 unsigned long nr_running(void)
2360 {
2361 unsigned long i, sum = 0;
2362
2363 for_each_online_cpu(i)
2364 sum += cpu_rq(i)->nr_running;
2365
2366 return sum;
2367 }
2368
2369 /*
2370 * Check if only the current task is running on the cpu.
2371 */
2372 bool single_task_running(void)
2373 {
2374 if (cpu_rq(smp_processor_id())->nr_running == 1)
2375 return true;
2376 else
2377 return false;
2378 }
2379 EXPORT_SYMBOL(single_task_running);
2380
2381 unsigned long long nr_context_switches(void)
2382 {
2383 int i;
2384 unsigned long long sum = 0;
2385
2386 for_each_possible_cpu(i)
2387 sum += cpu_rq(i)->nr_switches;
2388
2389 return sum;
2390 }
2391
2392 unsigned long nr_iowait(void)
2393 {
2394 unsigned long i, sum = 0;
2395
2396 for_each_possible_cpu(i)
2397 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2398
2399 return sum;
2400 }
2401
2402 unsigned long nr_iowait_cpu(int cpu)
2403 {
2404 struct rq *this = cpu_rq(cpu);
2405 return atomic_read(&this->nr_iowait);
2406 }
2407
2408 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2409 {
2410 struct rq *this = this_rq();
2411 *nr_waiters = atomic_read(&this->nr_iowait);
2412 *load = this->cpu_load[0];
2413 }
2414
2415 #ifdef CONFIG_SMP
2416
2417 /*
2418 * sched_exec - execve() is a valuable balancing opportunity, because at
2419 * this point the task has the smallest effective memory and cache footprint.
2420 */
2421 void sched_exec(void)
2422 {
2423 struct task_struct *p = current;
2424 unsigned long flags;
2425 int dest_cpu;
2426
2427 raw_spin_lock_irqsave(&p->pi_lock, flags);
2428 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2429 if (dest_cpu == smp_processor_id())
2430 goto unlock;
2431
2432 if (likely(cpu_active(dest_cpu))) {
2433 struct migration_arg arg = { p, dest_cpu };
2434
2435 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2436 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2437 return;
2438 }
2439 unlock:
2440 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2441 }
2442
2443 #endif
2444
2445 DEFINE_PER_CPU(struct kernel_stat, kstat);
2446 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2447
2448 EXPORT_PER_CPU_SYMBOL(kstat);
2449 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2450
2451 /*
2452 * Return any ns on the sched_clock that have not yet been accounted in
2453 * @p in case that task is currently running.
2454 *
2455 * Called with task_rq_lock() held on @rq.
2456 */
2457 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2458 {
2459 u64 ns = 0;
2460
2461 /*
2462 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2463 * project cycles that may never be accounted to this
2464 * thread, breaking clock_gettime().
2465 */
2466 if (task_current(rq, p) && p->on_rq) {
2467 update_rq_clock(rq);
2468 ns = rq_clock_task(rq) - p->se.exec_start;
2469 if ((s64)ns < 0)
2470 ns = 0;
2471 }
2472
2473 return ns;
2474 }
2475
2476 unsigned long long task_delta_exec(struct task_struct *p)
2477 {
2478 unsigned long flags;
2479 struct rq *rq;
2480 u64 ns = 0;
2481
2482 rq = task_rq_lock(p, &flags);
2483 ns = do_task_delta_exec(p, rq);
2484 task_rq_unlock(rq, p, &flags);
2485
2486 return ns;
2487 }
2488
2489 /*
2490 * Return accounted runtime for the task.
2491 * In case the task is currently running, return the runtime plus current's
2492 * pending runtime that have not been accounted yet.
2493 */
2494 unsigned long long task_sched_runtime(struct task_struct *p)
2495 {
2496 unsigned long flags;
2497 struct rq *rq;
2498 u64 ns = 0;
2499
2500 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2501 /*
2502 * 64-bit doesn't need locks to atomically read a 64bit value.
2503 * So we have a optimization chance when the task's delta_exec is 0.
2504 * Reading ->on_cpu is racy, but this is ok.
2505 *
2506 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2507 * If we race with it entering cpu, unaccounted time is 0. This is
2508 * indistinguishable from the read occurring a few cycles earlier.
2509 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2510 * been accounted, so we're correct here as well.
2511 */
2512 if (!p->on_cpu || !p->on_rq)
2513 return p->se.sum_exec_runtime;
2514 #endif
2515
2516 rq = task_rq_lock(p, &flags);
2517 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2518 task_rq_unlock(rq, p, &flags);
2519
2520 return ns;
2521 }
2522
2523 /*
2524 * This function gets called by the timer code, with HZ frequency.
2525 * We call it with interrupts disabled.
2526 */
2527 void scheduler_tick(void)
2528 {
2529 int cpu = smp_processor_id();
2530 struct rq *rq = cpu_rq(cpu);
2531 struct task_struct *curr = rq->curr;
2532
2533 sched_clock_tick();
2534
2535 raw_spin_lock(&rq->lock);
2536 update_rq_clock(rq);
2537 curr->sched_class->task_tick(rq, curr, 0);
2538 update_cpu_load_active(rq);
2539 raw_spin_unlock(&rq->lock);
2540
2541 perf_event_task_tick();
2542
2543 #ifdef CONFIG_SMP
2544 rq->idle_balance = idle_cpu(cpu);
2545 trigger_load_balance(rq);
2546 #endif
2547 rq_last_tick_reset(rq);
2548 }
2549
2550 #ifdef CONFIG_NO_HZ_FULL
2551 /**
2552 * scheduler_tick_max_deferment
2553 *
2554 * Keep at least one tick per second when a single
2555 * active task is running because the scheduler doesn't
2556 * yet completely support full dynticks environment.
2557 *
2558 * This makes sure that uptime, CFS vruntime, load
2559 * balancing, etc... continue to move forward, even
2560 * with a very low granularity.
2561 *
2562 * Return: Maximum deferment in nanoseconds.
2563 */
2564 u64 scheduler_tick_max_deferment(void)
2565 {
2566 struct rq *rq = this_rq();
2567 unsigned long next, now = ACCESS_ONCE(jiffies);
2568
2569 next = rq->last_sched_tick + HZ;
2570
2571 if (time_before_eq(next, now))
2572 return 0;
2573
2574 return jiffies_to_nsecs(next - now);
2575 }
2576 #endif
2577
2578 notrace unsigned long get_parent_ip(unsigned long addr)
2579 {
2580 if (in_lock_functions(addr)) {
2581 addr = CALLER_ADDR2;
2582 if (in_lock_functions(addr))
2583 addr = CALLER_ADDR3;
2584 }
2585 return addr;
2586 }
2587
2588 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2589 defined(CONFIG_PREEMPT_TRACER))
2590
2591 void preempt_count_add(int val)
2592 {
2593 #ifdef CONFIG_DEBUG_PREEMPT
2594 /*
2595 * Underflow?
2596 */
2597 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2598 return;
2599 #endif
2600 __preempt_count_add(val);
2601 #ifdef CONFIG_DEBUG_PREEMPT
2602 /*
2603 * Spinlock count overflowing soon?
2604 */
2605 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2606 PREEMPT_MASK - 10);
2607 #endif
2608 if (preempt_count() == val) {
2609 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2610 #ifdef CONFIG_DEBUG_PREEMPT
2611 current->preempt_disable_ip = ip;
2612 #endif
2613 trace_preempt_off(CALLER_ADDR0, ip);
2614 }
2615 }
2616 EXPORT_SYMBOL(preempt_count_add);
2617 NOKPROBE_SYMBOL(preempt_count_add);
2618
2619 void preempt_count_sub(int val)
2620 {
2621 #ifdef CONFIG_DEBUG_PREEMPT
2622 /*
2623 * Underflow?
2624 */
2625 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2626 return;
2627 /*
2628 * Is the spinlock portion underflowing?
2629 */
2630 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2631 !(preempt_count() & PREEMPT_MASK)))
2632 return;
2633 #endif
2634
2635 if (preempt_count() == val)
2636 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2637 __preempt_count_sub(val);
2638 }
2639 EXPORT_SYMBOL(preempt_count_sub);
2640 NOKPROBE_SYMBOL(preempt_count_sub);
2641
2642 #endif
2643
2644 /*
2645 * Print scheduling while atomic bug:
2646 */
2647 static noinline void __schedule_bug(struct task_struct *prev)
2648 {
2649 if (oops_in_progress)
2650 return;
2651
2652 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2653 prev->comm, prev->pid, preempt_count());
2654
2655 debug_show_held_locks(prev);
2656 print_modules();
2657 if (irqs_disabled())
2658 print_irqtrace_events(prev);
2659 #ifdef CONFIG_DEBUG_PREEMPT
2660 if (in_atomic_preempt_off()) {
2661 pr_err("Preemption disabled at:");
2662 print_ip_sym(current->preempt_disable_ip);
2663 pr_cont("\n");
2664 }
2665 #endif
2666 dump_stack();
2667 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2668 }
2669
2670 /*
2671 * Various schedule()-time debugging checks and statistics:
2672 */
2673 static inline void schedule_debug(struct task_struct *prev)
2674 {
2675 /*
2676 * Test if we are atomic. Since do_exit() needs to call into
2677 * schedule() atomically, we ignore that path. Otherwise whine
2678 * if we are scheduling when we should not.
2679 */
2680 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2681 __schedule_bug(prev);
2682 rcu_sleep_check();
2683
2684 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2685
2686 schedstat_inc(this_rq(), sched_count);
2687 }
2688
2689 /*
2690 * Pick up the highest-prio task:
2691 */
2692 static inline struct task_struct *
2693 pick_next_task(struct rq *rq, struct task_struct *prev)
2694 {
2695 const struct sched_class *class = &fair_sched_class;
2696 struct task_struct *p;
2697
2698 /*
2699 * Optimization: we know that if all tasks are in
2700 * the fair class we can call that function directly:
2701 */
2702 if (likely(prev->sched_class == class &&
2703 rq->nr_running == rq->cfs.h_nr_running)) {
2704 p = fair_sched_class.pick_next_task(rq, prev);
2705 if (unlikely(p == RETRY_TASK))
2706 goto again;
2707
2708 /* assumes fair_sched_class->next == idle_sched_class */
2709 if (unlikely(!p))
2710 p = idle_sched_class.pick_next_task(rq, prev);
2711
2712 return p;
2713 }
2714
2715 again:
2716 for_each_class(class) {
2717 p = class->pick_next_task(rq, prev);
2718 if (p) {
2719 if (unlikely(p == RETRY_TASK))
2720 goto again;
2721 return p;
2722 }
2723 }
2724
2725 BUG(); /* the idle class will always have a runnable task */
2726 }
2727
2728 /*
2729 * __schedule() is the main scheduler function.
2730 *
2731 * The main means of driving the scheduler and thus entering this function are:
2732 *
2733 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2734 *
2735 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2736 * paths. For example, see arch/x86/entry_64.S.
2737 *
2738 * To drive preemption between tasks, the scheduler sets the flag in timer
2739 * interrupt handler scheduler_tick().
2740 *
2741 * 3. Wakeups don't really cause entry into schedule(). They add a
2742 * task to the run-queue and that's it.
2743 *
2744 * Now, if the new task added to the run-queue preempts the current
2745 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2746 * called on the nearest possible occasion:
2747 *
2748 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2749 *
2750 * - in syscall or exception context, at the next outmost
2751 * preempt_enable(). (this might be as soon as the wake_up()'s
2752 * spin_unlock()!)
2753 *
2754 * - in IRQ context, return from interrupt-handler to
2755 * preemptible context
2756 *
2757 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2758 * then at the next:
2759 *
2760 * - cond_resched() call
2761 * - explicit schedule() call
2762 * - return from syscall or exception to user-space
2763 * - return from interrupt-handler to user-space
2764 */
2765 static void __sched __schedule(void)
2766 {
2767 struct task_struct *prev, *next;
2768 unsigned long *switch_count;
2769 struct rq *rq;
2770 int cpu;
2771
2772 need_resched:
2773 preempt_disable();
2774 cpu = smp_processor_id();
2775 rq = cpu_rq(cpu);
2776 rcu_note_context_switch(cpu);
2777 prev = rq->curr;
2778
2779 schedule_debug(prev);
2780
2781 if (sched_feat(HRTICK))
2782 hrtick_clear(rq);
2783
2784 /*
2785 * Make sure that signal_pending_state()->signal_pending() below
2786 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2787 * done by the caller to avoid the race with signal_wake_up().
2788 */
2789 smp_mb__before_spinlock();
2790 raw_spin_lock_irq(&rq->lock);
2791
2792 switch_count = &prev->nivcsw;
2793 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2794 if (unlikely(signal_pending_state(prev->state, prev))) {
2795 prev->state = TASK_RUNNING;
2796 } else {
2797 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2798 prev->on_rq = 0;
2799
2800 /*
2801 * If a worker went to sleep, notify and ask workqueue
2802 * whether it wants to wake up a task to maintain
2803 * concurrency.
2804 */
2805 if (prev->flags & PF_WQ_WORKER) {
2806 struct task_struct *to_wakeup;
2807
2808 to_wakeup = wq_worker_sleeping(prev, cpu);
2809 if (to_wakeup)
2810 try_to_wake_up_local(to_wakeup);
2811 }
2812 }
2813 switch_count = &prev->nvcsw;
2814 }
2815
2816 if (prev->on_rq || rq->skip_clock_update < 0)
2817 update_rq_clock(rq);
2818
2819 next = pick_next_task(rq, prev);
2820 clear_tsk_need_resched(prev);
2821 clear_preempt_need_resched();
2822 rq->skip_clock_update = 0;
2823
2824 if (likely(prev != next)) {
2825 rq->nr_switches++;
2826 rq->curr = next;
2827 ++*switch_count;
2828
2829 context_switch(rq, prev, next); /* unlocks the rq */
2830 /*
2831 * The context switch have flipped the stack from under us
2832 * and restored the local variables which were saved when
2833 * this task called schedule() in the past. prev == current
2834 * is still correct, but it can be moved to another cpu/rq.
2835 */
2836 cpu = smp_processor_id();
2837 rq = cpu_rq(cpu);
2838 } else
2839 raw_spin_unlock_irq(&rq->lock);
2840
2841 post_schedule(rq);
2842
2843 sched_preempt_enable_no_resched();
2844 if (need_resched())
2845 goto need_resched;
2846 }
2847
2848 static inline void sched_submit_work(struct task_struct *tsk)
2849 {
2850 if (!tsk->state || tsk_is_pi_blocked(tsk))
2851 return;
2852 /*
2853 * If we are going to sleep and we have plugged IO queued,
2854 * make sure to submit it to avoid deadlocks.
2855 */
2856 if (blk_needs_flush_plug(tsk))
2857 blk_schedule_flush_plug(tsk);
2858 }
2859
2860 asmlinkage __visible void __sched schedule(void)
2861 {
2862 struct task_struct *tsk = current;
2863
2864 sched_submit_work(tsk);
2865 __schedule();
2866 }
2867 EXPORT_SYMBOL(schedule);
2868
2869 #ifdef CONFIG_CONTEXT_TRACKING
2870 asmlinkage __visible void __sched schedule_user(void)
2871 {
2872 /*
2873 * If we come here after a random call to set_need_resched(),
2874 * or we have been woken up remotely but the IPI has not yet arrived,
2875 * we haven't yet exited the RCU idle mode. Do it here manually until
2876 * we find a better solution.
2877 */
2878 user_exit();
2879 schedule();
2880 user_enter();
2881 }
2882 #endif
2883
2884 /**
2885 * schedule_preempt_disabled - called with preemption disabled
2886 *
2887 * Returns with preemption disabled. Note: preempt_count must be 1
2888 */
2889 void __sched schedule_preempt_disabled(void)
2890 {
2891 sched_preempt_enable_no_resched();
2892 schedule();
2893 preempt_disable();
2894 }
2895
2896 #ifdef CONFIG_PREEMPT
2897 /*
2898 * this is the entry point to schedule() from in-kernel preemption
2899 * off of preempt_enable. Kernel preemptions off return from interrupt
2900 * occur there and call schedule directly.
2901 */
2902 asmlinkage __visible void __sched notrace preempt_schedule(void)
2903 {
2904 /*
2905 * If there is a non-zero preempt_count or interrupts are disabled,
2906 * we do not want to preempt the current task. Just return..
2907 */
2908 if (likely(!preemptible()))
2909 return;
2910
2911 do {
2912 __preempt_count_add(PREEMPT_ACTIVE);
2913 __schedule();
2914 __preempt_count_sub(PREEMPT_ACTIVE);
2915
2916 /*
2917 * Check again in case we missed a preemption opportunity
2918 * between schedule and now.
2919 */
2920 barrier();
2921 } while (need_resched());
2922 }
2923 NOKPROBE_SYMBOL(preempt_schedule);
2924 EXPORT_SYMBOL(preempt_schedule);
2925 #endif /* CONFIG_PREEMPT */
2926
2927 /*
2928 * this is the entry point to schedule() from kernel preemption
2929 * off of irq context.
2930 * Note, that this is called and return with irqs disabled. This will
2931 * protect us against recursive calling from irq.
2932 */
2933 asmlinkage __visible void __sched preempt_schedule_irq(void)
2934 {
2935 enum ctx_state prev_state;
2936
2937 /* Catch callers which need to be fixed */
2938 BUG_ON(preempt_count() || !irqs_disabled());
2939
2940 prev_state = exception_enter();
2941
2942 do {
2943 __preempt_count_add(PREEMPT_ACTIVE);
2944 local_irq_enable();
2945 __schedule();
2946 local_irq_disable();
2947 __preempt_count_sub(PREEMPT_ACTIVE);
2948
2949 /*
2950 * Check again in case we missed a preemption opportunity
2951 * between schedule and now.
2952 */
2953 barrier();
2954 } while (need_resched());
2955
2956 exception_exit(prev_state);
2957 }
2958
2959 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2960 void *key)
2961 {
2962 return try_to_wake_up(curr->private, mode, wake_flags);
2963 }
2964 EXPORT_SYMBOL(default_wake_function);
2965
2966 #ifdef CONFIG_RT_MUTEXES
2967
2968 /*
2969 * rt_mutex_setprio - set the current priority of a task
2970 * @p: task
2971 * @prio: prio value (kernel-internal form)
2972 *
2973 * This function changes the 'effective' priority of a task. It does
2974 * not touch ->normal_prio like __setscheduler().
2975 *
2976 * Used by the rt_mutex code to implement priority inheritance
2977 * logic. Call site only calls if the priority of the task changed.
2978 */
2979 void rt_mutex_setprio(struct task_struct *p, int prio)
2980 {
2981 int oldprio, on_rq, running, enqueue_flag = 0;
2982 struct rq *rq;
2983 const struct sched_class *prev_class;
2984
2985 BUG_ON(prio > MAX_PRIO);
2986
2987 rq = __task_rq_lock(p);
2988
2989 /*
2990 * Idle task boosting is a nono in general. There is one
2991 * exception, when PREEMPT_RT and NOHZ is active:
2992 *
2993 * The idle task calls get_next_timer_interrupt() and holds
2994 * the timer wheel base->lock on the CPU and another CPU wants
2995 * to access the timer (probably to cancel it). We can safely
2996 * ignore the boosting request, as the idle CPU runs this code
2997 * with interrupts disabled and will complete the lock
2998 * protected section without being interrupted. So there is no
2999 * real need to boost.
3000 */
3001 if (unlikely(p == rq->idle)) {
3002 WARN_ON(p != rq->curr);
3003 WARN_ON(p->pi_blocked_on);
3004 goto out_unlock;
3005 }
3006
3007 trace_sched_pi_setprio(p, prio);
3008 oldprio = p->prio;
3009 prev_class = p->sched_class;
3010 on_rq = p->on_rq;
3011 running = task_current(rq, p);
3012 if (on_rq)
3013 dequeue_task(rq, p, 0);
3014 if (running)
3015 p->sched_class->put_prev_task(rq, p);
3016
3017 /*
3018 * Boosting condition are:
3019 * 1. -rt task is running and holds mutex A
3020 * --> -dl task blocks on mutex A
3021 *
3022 * 2. -dl task is running and holds mutex A
3023 * --> -dl task blocks on mutex A and could preempt the
3024 * running task
3025 */
3026 if (dl_prio(prio)) {
3027 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3028 if (!dl_prio(p->normal_prio) ||
3029 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3030 p->dl.dl_boosted = 1;
3031 p->dl.dl_throttled = 0;
3032 enqueue_flag = ENQUEUE_REPLENISH;
3033 } else
3034 p->dl.dl_boosted = 0;
3035 p->sched_class = &dl_sched_class;
3036 } else if (rt_prio(prio)) {
3037 if (dl_prio(oldprio))
3038 p->dl.dl_boosted = 0;
3039 if (oldprio < prio)
3040 enqueue_flag = ENQUEUE_HEAD;
3041 p->sched_class = &rt_sched_class;
3042 } else {
3043 if (dl_prio(oldprio))
3044 p->dl.dl_boosted = 0;
3045 p->sched_class = &fair_sched_class;
3046 }
3047
3048 p->prio = prio;
3049
3050 if (running)
3051 p->sched_class->set_curr_task(rq);
3052 if (on_rq)
3053 enqueue_task(rq, p, enqueue_flag);
3054
3055 check_class_changed(rq, p, prev_class, oldprio);
3056 out_unlock:
3057 __task_rq_unlock(rq);
3058 }
3059 #endif
3060
3061 void set_user_nice(struct task_struct *p, long nice)
3062 {
3063 int old_prio, delta, on_rq;
3064 unsigned long flags;
3065 struct rq *rq;
3066
3067 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3068 return;
3069 /*
3070 * We have to be careful, if called from sys_setpriority(),
3071 * the task might be in the middle of scheduling on another CPU.
3072 */
3073 rq = task_rq_lock(p, &flags);
3074 /*
3075 * The RT priorities are set via sched_setscheduler(), but we still
3076 * allow the 'normal' nice value to be set - but as expected
3077 * it wont have any effect on scheduling until the task is
3078 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3079 */
3080 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3081 p->static_prio = NICE_TO_PRIO(nice);
3082 goto out_unlock;
3083 }
3084 on_rq = p->on_rq;
3085 if (on_rq)
3086 dequeue_task(rq, p, 0);
3087
3088 p->static_prio = NICE_TO_PRIO(nice);
3089 set_load_weight(p);
3090 old_prio = p->prio;
3091 p->prio = effective_prio(p);
3092 delta = p->prio - old_prio;
3093
3094 if (on_rq) {
3095 enqueue_task(rq, p, 0);
3096 /*
3097 * If the task increased its priority or is running and
3098 * lowered its priority, then reschedule its CPU:
3099 */
3100 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3101 resched_curr(rq);
3102 }
3103 out_unlock:
3104 task_rq_unlock(rq, p, &flags);
3105 }
3106 EXPORT_SYMBOL(set_user_nice);
3107
3108 /*
3109 * can_nice - check if a task can reduce its nice value
3110 * @p: task
3111 * @nice: nice value
3112 */
3113 int can_nice(const struct task_struct *p, const int nice)
3114 {
3115 /* convert nice value [19,-20] to rlimit style value [1,40] */
3116 int nice_rlim = nice_to_rlimit(nice);
3117
3118 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3119 capable(CAP_SYS_NICE));
3120 }
3121
3122 #ifdef __ARCH_WANT_SYS_NICE
3123
3124 /*
3125 * sys_nice - change the priority of the current process.
3126 * @increment: priority increment
3127 *
3128 * sys_setpriority is a more generic, but much slower function that
3129 * does similar things.
3130 */
3131 SYSCALL_DEFINE1(nice, int, increment)
3132 {
3133 long nice, retval;
3134
3135 /*
3136 * Setpriority might change our priority at the same moment.
3137 * We don't have to worry. Conceptually one call occurs first
3138 * and we have a single winner.
3139 */
3140 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3141 nice = task_nice(current) + increment;
3142
3143 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3144 if (increment < 0 && !can_nice(current, nice))
3145 return -EPERM;
3146
3147 retval = security_task_setnice(current, nice);
3148 if (retval)
3149 return retval;
3150
3151 set_user_nice(current, nice);
3152 return 0;
3153 }
3154
3155 #endif
3156
3157 /**
3158 * task_prio - return the priority value of a given task.
3159 * @p: the task in question.
3160 *
3161 * Return: The priority value as seen by users in /proc.
3162 * RT tasks are offset by -200. Normal tasks are centered
3163 * around 0, value goes from -16 to +15.
3164 */
3165 int task_prio(const struct task_struct *p)
3166 {
3167 return p->prio - MAX_RT_PRIO;
3168 }
3169
3170 /**
3171 * idle_cpu - is a given cpu idle currently?
3172 * @cpu: the processor in question.
3173 *
3174 * Return: 1 if the CPU is currently idle. 0 otherwise.
3175 */
3176 int idle_cpu(int cpu)
3177 {
3178 struct rq *rq = cpu_rq(cpu);
3179
3180 if (rq->curr != rq->idle)
3181 return 0;
3182
3183 if (rq->nr_running)
3184 return 0;
3185
3186 #ifdef CONFIG_SMP
3187 if (!llist_empty(&rq->wake_list))
3188 return 0;
3189 #endif
3190
3191 return 1;
3192 }
3193
3194 /**
3195 * idle_task - return the idle task for a given cpu.
3196 * @cpu: the processor in question.
3197 *
3198 * Return: The idle task for the cpu @cpu.
3199 */
3200 struct task_struct *idle_task(int cpu)
3201 {
3202 return cpu_rq(cpu)->idle;
3203 }
3204
3205 /**
3206 * find_process_by_pid - find a process with a matching PID value.
3207 * @pid: the pid in question.
3208 *
3209 * The task of @pid, if found. %NULL otherwise.
3210 */
3211 static struct task_struct *find_process_by_pid(pid_t pid)
3212 {
3213 return pid ? find_task_by_vpid(pid) : current;
3214 }
3215
3216 /*
3217 * This function initializes the sched_dl_entity of a newly becoming
3218 * SCHED_DEADLINE task.
3219 *
3220 * Only the static values are considered here, the actual runtime and the
3221 * absolute deadline will be properly calculated when the task is enqueued
3222 * for the first time with its new policy.
3223 */
3224 static void
3225 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3226 {
3227 struct sched_dl_entity *dl_se = &p->dl;
3228
3229 init_dl_task_timer(dl_se);
3230 dl_se->dl_runtime = attr->sched_runtime;
3231 dl_se->dl_deadline = attr->sched_deadline;
3232 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3233 dl_se->flags = attr->sched_flags;
3234 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3235 dl_se->dl_throttled = 0;
3236 dl_se->dl_new = 1;
3237 dl_se->dl_yielded = 0;
3238 }
3239
3240 /*
3241 * sched_setparam() passes in -1 for its policy, to let the functions
3242 * it calls know not to change it.
3243 */
3244 #define SETPARAM_POLICY -1
3245
3246 static void __setscheduler_params(struct task_struct *p,
3247 const struct sched_attr *attr)
3248 {
3249 int policy = attr->sched_policy;
3250
3251 if (policy == SETPARAM_POLICY)
3252 policy = p->policy;
3253
3254 p->policy = policy;
3255
3256 if (dl_policy(policy))
3257 __setparam_dl(p, attr);
3258 else if (fair_policy(policy))
3259 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3260
3261 /*
3262 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3263 * !rt_policy. Always setting this ensures that things like
3264 * getparam()/getattr() don't report silly values for !rt tasks.
3265 */
3266 p->rt_priority = attr->sched_priority;
3267 p->normal_prio = normal_prio(p);
3268 set_load_weight(p);
3269 }
3270
3271 /* Actually do priority change: must hold pi & rq lock. */
3272 static void __setscheduler(struct rq *rq, struct task_struct *p,
3273 const struct sched_attr *attr)
3274 {
3275 __setscheduler_params(p, attr);
3276
3277 /*
3278 * If we get here, there was no pi waiters boosting the
3279 * task. It is safe to use the normal prio.
3280 */
3281 p->prio = normal_prio(p);
3282
3283 if (dl_prio(p->prio))
3284 p->sched_class = &dl_sched_class;
3285 else if (rt_prio(p->prio))
3286 p->sched_class = &rt_sched_class;
3287 else
3288 p->sched_class = &fair_sched_class;
3289 }
3290
3291 static void
3292 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3293 {
3294 struct sched_dl_entity *dl_se = &p->dl;
3295
3296 attr->sched_priority = p->rt_priority;
3297 attr->sched_runtime = dl_se->dl_runtime;
3298 attr->sched_deadline = dl_se->dl_deadline;
3299 attr->sched_period = dl_se->dl_period;
3300 attr->sched_flags = dl_se->flags;
3301 }
3302
3303 /*
3304 * This function validates the new parameters of a -deadline task.
3305 * We ask for the deadline not being zero, and greater or equal
3306 * than the runtime, as well as the period of being zero or
3307 * greater than deadline. Furthermore, we have to be sure that
3308 * user parameters are above the internal resolution of 1us (we
3309 * check sched_runtime only since it is always the smaller one) and
3310 * below 2^63 ns (we have to check both sched_deadline and
3311 * sched_period, as the latter can be zero).
3312 */
3313 static bool
3314 __checkparam_dl(const struct sched_attr *attr)
3315 {
3316 /* deadline != 0 */
3317 if (attr->sched_deadline == 0)
3318 return false;
3319
3320 /*
3321 * Since we truncate DL_SCALE bits, make sure we're at least
3322 * that big.
3323 */
3324 if (attr->sched_runtime < (1ULL << DL_SCALE))
3325 return false;
3326
3327 /*
3328 * Since we use the MSB for wrap-around and sign issues, make
3329 * sure it's not set (mind that period can be equal to zero).
3330 */
3331 if (attr->sched_deadline & (1ULL << 63) ||
3332 attr->sched_period & (1ULL << 63))
3333 return false;
3334
3335 /* runtime <= deadline <= period (if period != 0) */
3336 if ((attr->sched_period != 0 &&
3337 attr->sched_period < attr->sched_deadline) ||
3338 attr->sched_deadline < attr->sched_runtime)
3339 return false;
3340
3341 return true;
3342 }
3343
3344 /*
3345 * check the target process has a UID that matches the current process's
3346 */
3347 static bool check_same_owner(struct task_struct *p)
3348 {
3349 const struct cred *cred = current_cred(), *pcred;
3350 bool match;
3351
3352 rcu_read_lock();
3353 pcred = __task_cred(p);
3354 match = (uid_eq(cred->euid, pcred->euid) ||
3355 uid_eq(cred->euid, pcred->uid));
3356 rcu_read_unlock();
3357 return match;
3358 }
3359
3360 static int __sched_setscheduler(struct task_struct *p,
3361 const struct sched_attr *attr,
3362 bool user)
3363 {
3364 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3365 MAX_RT_PRIO - 1 - attr->sched_priority;
3366 int retval, oldprio, oldpolicy = -1, on_rq, running;
3367 int policy = attr->sched_policy;
3368 unsigned long flags;
3369 const struct sched_class *prev_class;
3370 struct rq *rq;
3371 int reset_on_fork;
3372
3373 /* may grab non-irq protected spin_locks */
3374 BUG_ON(in_interrupt());
3375 recheck:
3376 /* double check policy once rq lock held */
3377 if (policy < 0) {
3378 reset_on_fork = p->sched_reset_on_fork;
3379 policy = oldpolicy = p->policy;
3380 } else {
3381 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3382
3383 if (policy != SCHED_DEADLINE &&
3384 policy != SCHED_FIFO && policy != SCHED_RR &&
3385 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3386 policy != SCHED_IDLE)
3387 return -EINVAL;
3388 }
3389
3390 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3391 return -EINVAL;
3392
3393 /*
3394 * Valid priorities for SCHED_FIFO and SCHED_RR are
3395 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3396 * SCHED_BATCH and SCHED_IDLE is 0.
3397 */
3398 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3399 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3400 return -EINVAL;
3401 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3402 (rt_policy(policy) != (attr->sched_priority != 0)))
3403 return -EINVAL;
3404
3405 /*
3406 * Allow unprivileged RT tasks to decrease priority:
3407 */
3408 if (user && !capable(CAP_SYS_NICE)) {
3409 if (fair_policy(policy)) {
3410 if (attr->sched_nice < task_nice(p) &&
3411 !can_nice(p, attr->sched_nice))
3412 return -EPERM;
3413 }
3414
3415 if (rt_policy(policy)) {
3416 unsigned long rlim_rtprio =
3417 task_rlimit(p, RLIMIT_RTPRIO);
3418
3419 /* can't set/change the rt policy */
3420 if (policy != p->policy && !rlim_rtprio)
3421 return -EPERM;
3422
3423 /* can't increase priority */
3424 if (attr->sched_priority > p->rt_priority &&
3425 attr->sched_priority > rlim_rtprio)
3426 return -EPERM;
3427 }
3428
3429 /*
3430 * Can't set/change SCHED_DEADLINE policy at all for now
3431 * (safest behavior); in the future we would like to allow
3432 * unprivileged DL tasks to increase their relative deadline
3433 * or reduce their runtime (both ways reducing utilization)
3434 */
3435 if (dl_policy(policy))
3436 return -EPERM;
3437
3438 /*
3439 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3440 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3441 */
3442 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3443 if (!can_nice(p, task_nice(p)))
3444 return -EPERM;
3445 }
3446
3447 /* can't change other user's priorities */
3448 if (!check_same_owner(p))
3449 return -EPERM;
3450
3451 /* Normal users shall not reset the sched_reset_on_fork flag */
3452 if (p->sched_reset_on_fork && !reset_on_fork)
3453 return -EPERM;
3454 }
3455
3456 if (user) {
3457 retval = security_task_setscheduler(p);
3458 if (retval)
3459 return retval;
3460 }
3461
3462 /*
3463 * make sure no PI-waiters arrive (or leave) while we are
3464 * changing the priority of the task:
3465 *
3466 * To be able to change p->policy safely, the appropriate
3467 * runqueue lock must be held.
3468 */
3469 rq = task_rq_lock(p, &flags);
3470
3471 /*
3472 * Changing the policy of the stop threads its a very bad idea
3473 */
3474 if (p == rq->stop) {
3475 task_rq_unlock(rq, p, &flags);
3476 return -EINVAL;
3477 }
3478
3479 /*
3480 * If not changing anything there's no need to proceed further,
3481 * but store a possible modification of reset_on_fork.
3482 */
3483 if (unlikely(policy == p->policy)) {
3484 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3485 goto change;
3486 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3487 goto change;
3488 if (dl_policy(policy))
3489 goto change;
3490
3491 p->sched_reset_on_fork = reset_on_fork;
3492 task_rq_unlock(rq, p, &flags);
3493 return 0;
3494 }
3495 change:
3496
3497 if (user) {
3498 #ifdef CONFIG_RT_GROUP_SCHED
3499 /*
3500 * Do not allow realtime tasks into groups that have no runtime
3501 * assigned.
3502 */
3503 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3504 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3505 !task_group_is_autogroup(task_group(p))) {
3506 task_rq_unlock(rq, p, &flags);
3507 return -EPERM;
3508 }
3509 #endif
3510 #ifdef CONFIG_SMP
3511 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3512 cpumask_t *span = rq->rd->span;
3513
3514 /*
3515 * Don't allow tasks with an affinity mask smaller than
3516 * the entire root_domain to become SCHED_DEADLINE. We
3517 * will also fail if there's no bandwidth available.
3518 */
3519 if (!cpumask_subset(span, &p->cpus_allowed) ||
3520 rq->rd->dl_bw.bw == 0) {
3521 task_rq_unlock(rq, p, &flags);
3522 return -EPERM;
3523 }
3524 }
3525 #endif
3526 }
3527
3528 /* recheck policy now with rq lock held */
3529 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3530 policy = oldpolicy = -1;
3531 task_rq_unlock(rq, p, &flags);
3532 goto recheck;
3533 }
3534
3535 /*
3536 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3537 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3538 * is available.
3539 */
3540 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3541 task_rq_unlock(rq, p, &flags);
3542 return -EBUSY;
3543 }
3544
3545 p->sched_reset_on_fork = reset_on_fork;
3546 oldprio = p->prio;
3547
3548 /*
3549 * Special case for priority boosted tasks.
3550 *
3551 * If the new priority is lower or equal (user space view)
3552 * than the current (boosted) priority, we just store the new
3553 * normal parameters and do not touch the scheduler class and
3554 * the runqueue. This will be done when the task deboost
3555 * itself.
3556 */
3557 if (rt_mutex_check_prio(p, newprio)) {
3558 __setscheduler_params(p, attr);
3559 task_rq_unlock(rq, p, &flags);
3560 return 0;
3561 }
3562
3563 on_rq = p->on_rq;
3564 running = task_current(rq, p);
3565 if (on_rq)
3566 dequeue_task(rq, p, 0);
3567 if (running)
3568 p->sched_class->put_prev_task(rq, p);
3569
3570 prev_class = p->sched_class;
3571 __setscheduler(rq, p, attr);
3572
3573 if (running)
3574 p->sched_class->set_curr_task(rq);
3575 if (on_rq) {
3576 /*
3577 * We enqueue to tail when the priority of a task is
3578 * increased (user space view).
3579 */
3580 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3581 }
3582
3583 check_class_changed(rq, p, prev_class, oldprio);
3584 task_rq_unlock(rq, p, &flags);
3585
3586 rt_mutex_adjust_pi(p);
3587
3588 return 0;
3589 }
3590
3591 static int _sched_setscheduler(struct task_struct *p, int policy,
3592 const struct sched_param *param, bool check)
3593 {
3594 struct sched_attr attr = {
3595 .sched_policy = policy,
3596 .sched_priority = param->sched_priority,
3597 .sched_nice = PRIO_TO_NICE(p->static_prio),
3598 };
3599
3600 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3601 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3602 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3603 policy &= ~SCHED_RESET_ON_FORK;
3604 attr.sched_policy = policy;
3605 }
3606
3607 return __sched_setscheduler(p, &attr, check);
3608 }
3609 /**
3610 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3611 * @p: the task in question.
3612 * @policy: new policy.
3613 * @param: structure containing the new RT priority.
3614 *
3615 * Return: 0 on success. An error code otherwise.
3616 *
3617 * NOTE that the task may be already dead.
3618 */
3619 int sched_setscheduler(struct task_struct *p, int policy,
3620 const struct sched_param *param)
3621 {
3622 return _sched_setscheduler(p, policy, param, true);
3623 }
3624 EXPORT_SYMBOL_GPL(sched_setscheduler);
3625
3626 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3627 {
3628 return __sched_setscheduler(p, attr, true);
3629 }
3630 EXPORT_SYMBOL_GPL(sched_setattr);
3631
3632 /**
3633 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3634 * @p: the task in question.
3635 * @policy: new policy.
3636 * @param: structure containing the new RT priority.
3637 *
3638 * Just like sched_setscheduler, only don't bother checking if the
3639 * current context has permission. For example, this is needed in
3640 * stop_machine(): we create temporary high priority worker threads,
3641 * but our caller might not have that capability.
3642 *
3643 * Return: 0 on success. An error code otherwise.
3644 */
3645 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3646 const struct sched_param *param)
3647 {
3648 return _sched_setscheduler(p, policy, param, false);
3649 }
3650
3651 static int
3652 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3653 {
3654 struct sched_param lparam;
3655 struct task_struct *p;
3656 int retval;
3657
3658 if (!param || pid < 0)
3659 return -EINVAL;
3660 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3661 return -EFAULT;
3662
3663 rcu_read_lock();
3664 retval = -ESRCH;
3665 p = find_process_by_pid(pid);
3666 if (p != NULL)
3667 retval = sched_setscheduler(p, policy, &lparam);
3668 rcu_read_unlock();
3669
3670 return retval;
3671 }
3672
3673 /*
3674 * Mimics kernel/events/core.c perf_copy_attr().
3675 */
3676 static int sched_copy_attr(struct sched_attr __user *uattr,
3677 struct sched_attr *attr)
3678 {
3679 u32 size;
3680 int ret;
3681
3682 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3683 return -EFAULT;
3684
3685 /*
3686 * zero the full structure, so that a short copy will be nice.
3687 */
3688 memset(attr, 0, sizeof(*attr));
3689
3690 ret = get_user(size, &uattr->size);
3691 if (ret)
3692 return ret;
3693
3694 if (size > PAGE_SIZE) /* silly large */
3695 goto err_size;
3696
3697 if (!size) /* abi compat */
3698 size = SCHED_ATTR_SIZE_VER0;
3699
3700 if (size < SCHED_ATTR_SIZE_VER0)
3701 goto err_size;
3702
3703 /*
3704 * If we're handed a bigger struct than we know of,
3705 * ensure all the unknown bits are 0 - i.e. new
3706 * user-space does not rely on any kernel feature
3707 * extensions we dont know about yet.
3708 */
3709 if (size > sizeof(*attr)) {
3710 unsigned char __user *addr;
3711 unsigned char __user *end;
3712 unsigned char val;
3713
3714 addr = (void __user *)uattr + sizeof(*attr);
3715 end = (void __user *)uattr + size;
3716
3717 for (; addr < end; addr++) {
3718 ret = get_user(val, addr);
3719 if (ret)
3720 return ret;
3721 if (val)
3722 goto err_size;
3723 }
3724 size = sizeof(*attr);
3725 }
3726
3727 ret = copy_from_user(attr, uattr, size);
3728 if (ret)
3729 return -EFAULT;
3730
3731 /*
3732 * XXX: do we want to be lenient like existing syscalls; or do we want
3733 * to be strict and return an error on out-of-bounds values?
3734 */
3735 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3736
3737 return 0;
3738
3739 err_size:
3740 put_user(sizeof(*attr), &uattr->size);
3741 return -E2BIG;
3742 }
3743
3744 /**
3745 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3746 * @pid: the pid in question.
3747 * @policy: new policy.
3748 * @param: structure containing the new RT priority.
3749 *
3750 * Return: 0 on success. An error code otherwise.
3751 */
3752 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3753 struct sched_param __user *, param)
3754 {
3755 /* negative values for policy are not valid */
3756 if (policy < 0)
3757 return -EINVAL;
3758
3759 return do_sched_setscheduler(pid, policy, param);
3760 }
3761
3762 /**
3763 * sys_sched_setparam - set/change the RT priority of a thread
3764 * @pid: the pid in question.
3765 * @param: structure containing the new RT priority.
3766 *
3767 * Return: 0 on success. An error code otherwise.
3768 */
3769 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3770 {
3771 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3772 }
3773
3774 /**
3775 * sys_sched_setattr - same as above, but with extended sched_attr
3776 * @pid: the pid in question.
3777 * @uattr: structure containing the extended parameters.
3778 * @flags: for future extension.
3779 */
3780 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3781 unsigned int, flags)
3782 {
3783 struct sched_attr attr;
3784 struct task_struct *p;
3785 int retval;
3786
3787 if (!uattr || pid < 0 || flags)
3788 return -EINVAL;
3789
3790 retval = sched_copy_attr(uattr, &attr);
3791 if (retval)
3792 return retval;
3793
3794 if ((int)attr.sched_policy < 0)
3795 return -EINVAL;
3796
3797 rcu_read_lock();
3798 retval = -ESRCH;
3799 p = find_process_by_pid(pid);
3800 if (p != NULL)
3801 retval = sched_setattr(p, &attr);
3802 rcu_read_unlock();
3803
3804 return retval;
3805 }
3806
3807 /**
3808 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3809 * @pid: the pid in question.
3810 *
3811 * Return: On success, the policy of the thread. Otherwise, a negative error
3812 * code.
3813 */
3814 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3815 {
3816 struct task_struct *p;
3817 int retval;
3818
3819 if (pid < 0)
3820 return -EINVAL;
3821
3822 retval = -ESRCH;
3823 rcu_read_lock();
3824 p = find_process_by_pid(pid);
3825 if (p) {
3826 retval = security_task_getscheduler(p);
3827 if (!retval)
3828 retval = p->policy
3829 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3830 }
3831 rcu_read_unlock();
3832 return retval;
3833 }
3834
3835 /**
3836 * sys_sched_getparam - get the RT priority of a thread
3837 * @pid: the pid in question.
3838 * @param: structure containing the RT priority.
3839 *
3840 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3841 * code.
3842 */
3843 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3844 {
3845 struct sched_param lp = { .sched_priority = 0 };
3846 struct task_struct *p;
3847 int retval;
3848
3849 if (!param || pid < 0)
3850 return -EINVAL;
3851
3852 rcu_read_lock();
3853 p = find_process_by_pid(pid);
3854 retval = -ESRCH;
3855 if (!p)
3856 goto out_unlock;
3857
3858 retval = security_task_getscheduler(p);
3859 if (retval)
3860 goto out_unlock;
3861
3862 if (task_has_rt_policy(p))
3863 lp.sched_priority = p->rt_priority;
3864 rcu_read_unlock();
3865
3866 /*
3867 * This one might sleep, we cannot do it with a spinlock held ...
3868 */
3869 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3870
3871 return retval;
3872
3873 out_unlock:
3874 rcu_read_unlock();
3875 return retval;
3876 }
3877
3878 static int sched_read_attr(struct sched_attr __user *uattr,
3879 struct sched_attr *attr,
3880 unsigned int usize)
3881 {
3882 int ret;
3883
3884 if (!access_ok(VERIFY_WRITE, uattr, usize))
3885 return -EFAULT;
3886
3887 /*
3888 * If we're handed a smaller struct than we know of,
3889 * ensure all the unknown bits are 0 - i.e. old
3890 * user-space does not get uncomplete information.
3891 */
3892 if (usize < sizeof(*attr)) {
3893 unsigned char *addr;
3894 unsigned char *end;
3895
3896 addr = (void *)attr + usize;
3897 end = (void *)attr + sizeof(*attr);
3898
3899 for (; addr < end; addr++) {
3900 if (*addr)
3901 return -EFBIG;
3902 }
3903
3904 attr->size = usize;
3905 }
3906
3907 ret = copy_to_user(uattr, attr, attr->size);
3908 if (ret)
3909 return -EFAULT;
3910
3911 return 0;
3912 }
3913
3914 /**
3915 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3916 * @pid: the pid in question.
3917 * @uattr: structure containing the extended parameters.
3918 * @size: sizeof(attr) for fwd/bwd comp.
3919 * @flags: for future extension.
3920 */
3921 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3922 unsigned int, size, unsigned int, flags)
3923 {
3924 struct sched_attr attr = {
3925 .size = sizeof(struct sched_attr),
3926 };
3927 struct task_struct *p;
3928 int retval;
3929
3930 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3931 size < SCHED_ATTR_SIZE_VER0 || flags)
3932 return -EINVAL;
3933
3934 rcu_read_lock();
3935 p = find_process_by_pid(pid);
3936 retval = -ESRCH;
3937 if (!p)
3938 goto out_unlock;
3939
3940 retval = security_task_getscheduler(p);
3941 if (retval)
3942 goto out_unlock;
3943
3944 attr.sched_policy = p->policy;
3945 if (p->sched_reset_on_fork)
3946 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3947 if (task_has_dl_policy(p))
3948 __getparam_dl(p, &attr);
3949 else if (task_has_rt_policy(p))
3950 attr.sched_priority = p->rt_priority;
3951 else
3952 attr.sched_nice = task_nice(p);
3953
3954 rcu_read_unlock();
3955
3956 retval = sched_read_attr(uattr, &attr, size);
3957 return retval;
3958
3959 out_unlock:
3960 rcu_read_unlock();
3961 return retval;
3962 }
3963
3964 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3965 {
3966 cpumask_var_t cpus_allowed, new_mask;
3967 struct task_struct *p;
3968 int retval;
3969
3970 rcu_read_lock();
3971
3972 p = find_process_by_pid(pid);
3973 if (!p) {
3974 rcu_read_unlock();
3975 return -ESRCH;
3976 }
3977
3978 /* Prevent p going away */
3979 get_task_struct(p);
3980 rcu_read_unlock();
3981
3982 if (p->flags & PF_NO_SETAFFINITY) {
3983 retval = -EINVAL;
3984 goto out_put_task;
3985 }
3986 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3987 retval = -ENOMEM;
3988 goto out_put_task;
3989 }
3990 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3991 retval = -ENOMEM;
3992 goto out_free_cpus_allowed;
3993 }
3994 retval = -EPERM;
3995 if (!check_same_owner(p)) {
3996 rcu_read_lock();
3997 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3998 rcu_read_unlock();
3999 goto out_unlock;
4000 }
4001 rcu_read_unlock();
4002 }
4003
4004 retval = security_task_setscheduler(p);
4005 if (retval)
4006 goto out_unlock;
4007
4008
4009 cpuset_cpus_allowed(p, cpus_allowed);
4010 cpumask_and(new_mask, in_mask, cpus_allowed);
4011
4012 /*
4013 * Since bandwidth control happens on root_domain basis,
4014 * if admission test is enabled, we only admit -deadline
4015 * tasks allowed to run on all the CPUs in the task's
4016 * root_domain.
4017 */
4018 #ifdef CONFIG_SMP
4019 if (task_has_dl_policy(p)) {
4020 const struct cpumask *span = task_rq(p)->rd->span;
4021
4022 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
4023 retval = -EBUSY;
4024 goto out_unlock;
4025 }
4026 }
4027 #endif
4028 again:
4029 retval = set_cpus_allowed_ptr(p, new_mask);
4030
4031 if (!retval) {
4032 cpuset_cpus_allowed(p, cpus_allowed);
4033 if (!cpumask_subset(new_mask, cpus_allowed)) {
4034 /*
4035 * We must have raced with a concurrent cpuset
4036 * update. Just reset the cpus_allowed to the
4037 * cpuset's cpus_allowed
4038 */
4039 cpumask_copy(new_mask, cpus_allowed);
4040 goto again;
4041 }
4042 }
4043 out_unlock:
4044 free_cpumask_var(new_mask);
4045 out_free_cpus_allowed:
4046 free_cpumask_var(cpus_allowed);
4047 out_put_task:
4048 put_task_struct(p);
4049 return retval;
4050 }
4051
4052 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4053 struct cpumask *new_mask)
4054 {
4055 if (len < cpumask_size())
4056 cpumask_clear(new_mask);
4057 else if (len > cpumask_size())
4058 len = cpumask_size();
4059
4060 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4061 }
4062
4063 /**
4064 * sys_sched_setaffinity - set the cpu affinity of a process
4065 * @pid: pid of the process
4066 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4067 * @user_mask_ptr: user-space pointer to the new cpu mask
4068 *
4069 * Return: 0 on success. An error code otherwise.
4070 */
4071 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4072 unsigned long __user *, user_mask_ptr)
4073 {
4074 cpumask_var_t new_mask;
4075 int retval;
4076
4077 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4078 return -ENOMEM;
4079
4080 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4081 if (retval == 0)
4082 retval = sched_setaffinity(pid, new_mask);
4083 free_cpumask_var(new_mask);
4084 return retval;
4085 }
4086
4087 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4088 {
4089 struct task_struct *p;
4090 unsigned long flags;
4091 int retval;
4092
4093 rcu_read_lock();
4094
4095 retval = -ESRCH;
4096 p = find_process_by_pid(pid);
4097 if (!p)
4098 goto out_unlock;
4099
4100 retval = security_task_getscheduler(p);
4101 if (retval)
4102 goto out_unlock;
4103
4104 raw_spin_lock_irqsave(&p->pi_lock, flags);
4105 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4106 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4107
4108 out_unlock:
4109 rcu_read_unlock();
4110
4111 return retval;
4112 }
4113
4114 /**
4115 * sys_sched_getaffinity - get the cpu affinity of a process
4116 * @pid: pid of the process
4117 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4118 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4119 *
4120 * Return: 0 on success. An error code otherwise.
4121 */
4122 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4123 unsigned long __user *, user_mask_ptr)
4124 {
4125 int ret;
4126 cpumask_var_t mask;
4127
4128 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4129 return -EINVAL;
4130 if (len & (sizeof(unsigned long)-1))
4131 return -EINVAL;
4132
4133 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4134 return -ENOMEM;
4135
4136 ret = sched_getaffinity(pid, mask);
4137 if (ret == 0) {
4138 size_t retlen = min_t(size_t, len, cpumask_size());
4139
4140 if (copy_to_user(user_mask_ptr, mask, retlen))
4141 ret = -EFAULT;
4142 else
4143 ret = retlen;
4144 }
4145 free_cpumask_var(mask);
4146
4147 return ret;
4148 }
4149
4150 /**
4151 * sys_sched_yield - yield the current processor to other threads.
4152 *
4153 * This function yields the current CPU to other tasks. If there are no
4154 * other threads running on this CPU then this function will return.
4155 *
4156 * Return: 0.
4157 */
4158 SYSCALL_DEFINE0(sched_yield)
4159 {
4160 struct rq *rq = this_rq_lock();
4161
4162 schedstat_inc(rq, yld_count);
4163 current->sched_class->yield_task(rq);
4164
4165 /*
4166 * Since we are going to call schedule() anyway, there's
4167 * no need to preempt or enable interrupts:
4168 */
4169 __release(rq->lock);
4170 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4171 do_raw_spin_unlock(&rq->lock);
4172 sched_preempt_enable_no_resched();
4173
4174 schedule();
4175
4176 return 0;
4177 }
4178
4179 static void __cond_resched(void)
4180 {
4181 __preempt_count_add(PREEMPT_ACTIVE);
4182 __schedule();
4183 __preempt_count_sub(PREEMPT_ACTIVE);
4184 }
4185
4186 int __sched _cond_resched(void)
4187 {
4188 if (should_resched()) {
4189 __cond_resched();
4190 return 1;
4191 }
4192 return 0;
4193 }
4194 EXPORT_SYMBOL(_cond_resched);
4195
4196 /*
4197 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4198 * call schedule, and on return reacquire the lock.
4199 *
4200 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4201 * operations here to prevent schedule() from being called twice (once via
4202 * spin_unlock(), once by hand).
4203 */
4204 int __cond_resched_lock(spinlock_t *lock)
4205 {
4206 int resched = should_resched();
4207 int ret = 0;
4208
4209 lockdep_assert_held(lock);
4210
4211 if (spin_needbreak(lock) || resched) {
4212 spin_unlock(lock);
4213 if (resched)
4214 __cond_resched();
4215 else
4216 cpu_relax();
4217 ret = 1;
4218 spin_lock(lock);
4219 }
4220 return ret;
4221 }
4222 EXPORT_SYMBOL(__cond_resched_lock);
4223
4224 int __sched __cond_resched_softirq(void)
4225 {
4226 BUG_ON(!in_softirq());
4227
4228 if (should_resched()) {
4229 local_bh_enable();
4230 __cond_resched();
4231 local_bh_disable();
4232 return 1;
4233 }
4234 return 0;
4235 }
4236 EXPORT_SYMBOL(__cond_resched_softirq);
4237
4238 /**
4239 * yield - yield the current processor to other threads.
4240 *
4241 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4242 *
4243 * The scheduler is at all times free to pick the calling task as the most
4244 * eligible task to run, if removing the yield() call from your code breaks
4245 * it, its already broken.
4246 *
4247 * Typical broken usage is:
4248 *
4249 * while (!event)
4250 * yield();
4251 *
4252 * where one assumes that yield() will let 'the other' process run that will
4253 * make event true. If the current task is a SCHED_FIFO task that will never
4254 * happen. Never use yield() as a progress guarantee!!
4255 *
4256 * If you want to use yield() to wait for something, use wait_event().
4257 * If you want to use yield() to be 'nice' for others, use cond_resched().
4258 * If you still want to use yield(), do not!
4259 */
4260 void __sched yield(void)
4261 {
4262 set_current_state(TASK_RUNNING);
4263 sys_sched_yield();
4264 }
4265 EXPORT_SYMBOL(yield);
4266
4267 /**
4268 * yield_to - yield the current processor to another thread in
4269 * your thread group, or accelerate that thread toward the
4270 * processor it's on.
4271 * @p: target task
4272 * @preempt: whether task preemption is allowed or not
4273 *
4274 * It's the caller's job to ensure that the target task struct
4275 * can't go away on us before we can do any checks.
4276 *
4277 * Return:
4278 * true (>0) if we indeed boosted the target task.
4279 * false (0) if we failed to boost the target.
4280 * -ESRCH if there's no task to yield to.
4281 */
4282 int __sched yield_to(struct task_struct *p, bool preempt)
4283 {
4284 struct task_struct *curr = current;
4285 struct rq *rq, *p_rq;
4286 unsigned long flags;
4287 int yielded = 0;
4288
4289 local_irq_save(flags);
4290 rq = this_rq();
4291
4292 again:
4293 p_rq = task_rq(p);
4294 /*
4295 * If we're the only runnable task on the rq and target rq also
4296 * has only one task, there's absolutely no point in yielding.
4297 */
4298 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4299 yielded = -ESRCH;
4300 goto out_irq;
4301 }
4302
4303 double_rq_lock(rq, p_rq);
4304 if (task_rq(p) != p_rq) {
4305 double_rq_unlock(rq, p_rq);
4306 goto again;
4307 }
4308
4309 if (!curr->sched_class->yield_to_task)
4310 goto out_unlock;
4311
4312 if (curr->sched_class != p->sched_class)
4313 goto out_unlock;
4314
4315 if (task_running(p_rq, p) || p->state)
4316 goto out_unlock;
4317
4318 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4319 if (yielded) {
4320 schedstat_inc(rq, yld_count);
4321 /*
4322 * Make p's CPU reschedule; pick_next_entity takes care of
4323 * fairness.
4324 */
4325 if (preempt && rq != p_rq)
4326 resched_curr(p_rq);
4327 }
4328
4329 out_unlock:
4330 double_rq_unlock(rq, p_rq);
4331 out_irq:
4332 local_irq_restore(flags);
4333
4334 if (yielded > 0)
4335 schedule();
4336
4337 return yielded;
4338 }
4339 EXPORT_SYMBOL_GPL(yield_to);
4340
4341 /*
4342 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4343 * that process accounting knows that this is a task in IO wait state.
4344 */
4345 void __sched io_schedule(void)
4346 {
4347 struct rq *rq = raw_rq();
4348
4349 delayacct_blkio_start();
4350 atomic_inc(&rq->nr_iowait);
4351 blk_flush_plug(current);
4352 current->in_iowait = 1;
4353 schedule();
4354 current->in_iowait = 0;
4355 atomic_dec(&rq->nr_iowait);
4356 delayacct_blkio_end();
4357 }
4358 EXPORT_SYMBOL(io_schedule);
4359
4360 long __sched io_schedule_timeout(long timeout)
4361 {
4362 struct rq *rq = raw_rq();
4363 long ret;
4364
4365 delayacct_blkio_start();
4366 atomic_inc(&rq->nr_iowait);
4367 blk_flush_plug(current);
4368 current->in_iowait = 1;
4369 ret = schedule_timeout(timeout);
4370 current->in_iowait = 0;
4371 atomic_dec(&rq->nr_iowait);
4372 delayacct_blkio_end();
4373 return ret;
4374 }
4375
4376 /**
4377 * sys_sched_get_priority_max - return maximum RT priority.
4378 * @policy: scheduling class.
4379 *
4380 * Return: On success, this syscall returns the maximum
4381 * rt_priority that can be used by a given scheduling class.
4382 * On failure, a negative error code is returned.
4383 */
4384 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4385 {
4386 int ret = -EINVAL;
4387
4388 switch (policy) {
4389 case SCHED_FIFO:
4390 case SCHED_RR:
4391 ret = MAX_USER_RT_PRIO-1;
4392 break;
4393 case SCHED_DEADLINE:
4394 case SCHED_NORMAL:
4395 case SCHED_BATCH:
4396 case SCHED_IDLE:
4397 ret = 0;
4398 break;
4399 }
4400 return ret;
4401 }
4402
4403 /**
4404 * sys_sched_get_priority_min - return minimum RT priority.
4405 * @policy: scheduling class.
4406 *
4407 * Return: On success, this syscall returns the minimum
4408 * rt_priority that can be used by a given scheduling class.
4409 * On failure, a negative error code is returned.
4410 */
4411 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4412 {
4413 int ret = -EINVAL;
4414
4415 switch (policy) {
4416 case SCHED_FIFO:
4417 case SCHED_RR:
4418 ret = 1;
4419 break;
4420 case SCHED_DEADLINE:
4421 case SCHED_NORMAL:
4422 case SCHED_BATCH:
4423 case SCHED_IDLE:
4424 ret = 0;
4425 }
4426 return ret;
4427 }
4428
4429 /**
4430 * sys_sched_rr_get_interval - return the default timeslice of a process.
4431 * @pid: pid of the process.
4432 * @interval: userspace pointer to the timeslice value.
4433 *
4434 * this syscall writes the default timeslice value of a given process
4435 * into the user-space timespec buffer. A value of '0' means infinity.
4436 *
4437 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4438 * an error code.
4439 */
4440 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4441 struct timespec __user *, interval)
4442 {
4443 struct task_struct *p;
4444 unsigned int time_slice;
4445 unsigned long flags;
4446 struct rq *rq;
4447 int retval;
4448 struct timespec t;
4449
4450 if (pid < 0)
4451 return -EINVAL;
4452
4453 retval = -ESRCH;
4454 rcu_read_lock();
4455 p = find_process_by_pid(pid);
4456 if (!p)
4457 goto out_unlock;
4458
4459 retval = security_task_getscheduler(p);
4460 if (retval)
4461 goto out_unlock;
4462
4463 rq = task_rq_lock(p, &flags);
4464 time_slice = 0;
4465 if (p->sched_class->get_rr_interval)
4466 time_slice = p->sched_class->get_rr_interval(rq, p);
4467 task_rq_unlock(rq, p, &flags);
4468
4469 rcu_read_unlock();
4470 jiffies_to_timespec(time_slice, &t);
4471 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4472 return retval;
4473
4474 out_unlock:
4475 rcu_read_unlock();
4476 return retval;
4477 }
4478
4479 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4480
4481 void sched_show_task(struct task_struct *p)
4482 {
4483 unsigned long free = 0;
4484 int ppid;
4485 unsigned state;
4486
4487 state = p->state ? __ffs(p->state) + 1 : 0;
4488 printk(KERN_INFO "%-15.15s %c", p->comm,
4489 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4490 #if BITS_PER_LONG == 32
4491 if (state == TASK_RUNNING)
4492 printk(KERN_CONT " running ");
4493 else
4494 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4495 #else
4496 if (state == TASK_RUNNING)
4497 printk(KERN_CONT " running task ");
4498 else
4499 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4500 #endif
4501 #ifdef CONFIG_DEBUG_STACK_USAGE
4502 free = stack_not_used(p);
4503 #endif
4504 rcu_read_lock();
4505 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4506 rcu_read_unlock();
4507 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4508 task_pid_nr(p), ppid,
4509 (unsigned long)task_thread_info(p)->flags);
4510
4511 print_worker_info(KERN_INFO, p);
4512 show_stack(p, NULL);
4513 }
4514
4515 void show_state_filter(unsigned long state_filter)
4516 {
4517 struct task_struct *g, *p;
4518
4519 #if BITS_PER_LONG == 32
4520 printk(KERN_INFO
4521 " task PC stack pid father\n");
4522 #else
4523 printk(KERN_INFO
4524 " task PC stack pid father\n");
4525 #endif
4526 rcu_read_lock();
4527 do_each_thread(g, p) {
4528 /*
4529 * reset the NMI-timeout, listing all files on a slow
4530 * console might take a lot of time:
4531 */
4532 touch_nmi_watchdog();
4533 if (!state_filter || (p->state & state_filter))
4534 sched_show_task(p);
4535 } while_each_thread(g, p);
4536
4537 touch_all_softlockup_watchdogs();
4538
4539 #ifdef CONFIG_SCHED_DEBUG
4540 sysrq_sched_debug_show();
4541 #endif
4542 rcu_read_unlock();
4543 /*
4544 * Only show locks if all tasks are dumped:
4545 */
4546 if (!state_filter)
4547 debug_show_all_locks();
4548 }
4549
4550 void init_idle_bootup_task(struct task_struct *idle)
4551 {
4552 idle->sched_class = &idle_sched_class;
4553 }
4554
4555 /**
4556 * init_idle - set up an idle thread for a given CPU
4557 * @idle: task in question
4558 * @cpu: cpu the idle task belongs to
4559 *
4560 * NOTE: this function does not set the idle thread's NEED_RESCHED
4561 * flag, to make booting more robust.
4562 */
4563 void init_idle(struct task_struct *idle, int cpu)
4564 {
4565 struct rq *rq = cpu_rq(cpu);
4566 unsigned long flags;
4567
4568 raw_spin_lock_irqsave(&rq->lock, flags);
4569
4570 __sched_fork(0, idle);
4571 idle->state = TASK_RUNNING;
4572 idle->se.exec_start = sched_clock();
4573
4574 do_set_cpus_allowed(idle, cpumask_of(cpu));
4575 /*
4576 * We're having a chicken and egg problem, even though we are
4577 * holding rq->lock, the cpu isn't yet set to this cpu so the
4578 * lockdep check in task_group() will fail.
4579 *
4580 * Similar case to sched_fork(). / Alternatively we could
4581 * use task_rq_lock() here and obtain the other rq->lock.
4582 *
4583 * Silence PROVE_RCU
4584 */
4585 rcu_read_lock();
4586 __set_task_cpu(idle, cpu);
4587 rcu_read_unlock();
4588
4589 rq->curr = rq->idle = idle;
4590 idle->on_rq = 1;
4591 #if defined(CONFIG_SMP)
4592 idle->on_cpu = 1;
4593 #endif
4594 raw_spin_unlock_irqrestore(&rq->lock, flags);
4595
4596 /* Set the preempt count _outside_ the spinlocks! */
4597 init_idle_preempt_count(idle, cpu);
4598
4599 /*
4600 * The idle tasks have their own, simple scheduling class:
4601 */
4602 idle->sched_class = &idle_sched_class;
4603 ftrace_graph_init_idle_task(idle, cpu);
4604 vtime_init_idle(idle, cpu);
4605 #if defined(CONFIG_SMP)
4606 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4607 #endif
4608 }
4609
4610 #ifdef CONFIG_SMP
4611 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4612 {
4613 if (p->sched_class && p->sched_class->set_cpus_allowed)
4614 p->sched_class->set_cpus_allowed(p, new_mask);
4615
4616 cpumask_copy(&p->cpus_allowed, new_mask);
4617 p->nr_cpus_allowed = cpumask_weight(new_mask);
4618 }
4619
4620 /*
4621 * This is how migration works:
4622 *
4623 * 1) we invoke migration_cpu_stop() on the target CPU using
4624 * stop_one_cpu().
4625 * 2) stopper starts to run (implicitly forcing the migrated thread
4626 * off the CPU)
4627 * 3) it checks whether the migrated task is still in the wrong runqueue.
4628 * 4) if it's in the wrong runqueue then the migration thread removes
4629 * it and puts it into the right queue.
4630 * 5) stopper completes and stop_one_cpu() returns and the migration
4631 * is done.
4632 */
4633
4634 /*
4635 * Change a given task's CPU affinity. Migrate the thread to a
4636 * proper CPU and schedule it away if the CPU it's executing on
4637 * is removed from the allowed bitmask.
4638 *
4639 * NOTE: the caller must have a valid reference to the task, the
4640 * task must not exit() & deallocate itself prematurely. The
4641 * call is not atomic; no spinlocks may be held.
4642 */
4643 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4644 {
4645 unsigned long flags;
4646 struct rq *rq;
4647 unsigned int dest_cpu;
4648 int ret = 0;
4649
4650 rq = task_rq_lock(p, &flags);
4651
4652 if (cpumask_equal(&p->cpus_allowed, new_mask))
4653 goto out;
4654
4655 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4656 ret = -EINVAL;
4657 goto out;
4658 }
4659
4660 do_set_cpus_allowed(p, new_mask);
4661
4662 /* Can the task run on the task's current CPU? If so, we're done */
4663 if (cpumask_test_cpu(task_cpu(p), new_mask))
4664 goto out;
4665
4666 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4667 if (p->on_rq) {
4668 struct migration_arg arg = { p, dest_cpu };
4669 /* Need help from migration thread: drop lock and wait. */
4670 task_rq_unlock(rq, p, &flags);
4671 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4672 tlb_migrate_finish(p->mm);
4673 return 0;
4674 }
4675 out:
4676 task_rq_unlock(rq, p, &flags);
4677
4678 return ret;
4679 }
4680 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4681
4682 /*
4683 * Move (not current) task off this cpu, onto dest cpu. We're doing
4684 * this because either it can't run here any more (set_cpus_allowed()
4685 * away from this CPU, or CPU going down), or because we're
4686 * attempting to rebalance this task on exec (sched_exec).
4687 *
4688 * So we race with normal scheduler movements, but that's OK, as long
4689 * as the task is no longer on this CPU.
4690 *
4691 * Returns non-zero if task was successfully migrated.
4692 */
4693 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4694 {
4695 struct rq *rq_dest, *rq_src;
4696 int ret = 0;
4697
4698 if (unlikely(!cpu_active(dest_cpu)))
4699 return ret;
4700
4701 rq_src = cpu_rq(src_cpu);
4702 rq_dest = cpu_rq(dest_cpu);
4703
4704 raw_spin_lock(&p->pi_lock);
4705 double_rq_lock(rq_src, rq_dest);
4706 /* Already moved. */
4707 if (task_cpu(p) != src_cpu)
4708 goto done;
4709 /* Affinity changed (again). */
4710 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4711 goto fail;
4712
4713 /*
4714 * If we're not on a rq, the next wake-up will ensure we're
4715 * placed properly.
4716 */
4717 if (p->on_rq) {
4718 dequeue_task(rq_src, p, 0);
4719 set_task_cpu(p, dest_cpu);
4720 enqueue_task(rq_dest, p, 0);
4721 check_preempt_curr(rq_dest, p, 0);
4722 }
4723 done:
4724 ret = 1;
4725 fail:
4726 double_rq_unlock(rq_src, rq_dest);
4727 raw_spin_unlock(&p->pi_lock);
4728 return ret;
4729 }
4730
4731 #ifdef CONFIG_NUMA_BALANCING
4732 /* Migrate current task p to target_cpu */
4733 int migrate_task_to(struct task_struct *p, int target_cpu)
4734 {
4735 struct migration_arg arg = { p, target_cpu };
4736 int curr_cpu = task_cpu(p);
4737
4738 if (curr_cpu == target_cpu)
4739 return 0;
4740
4741 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4742 return -EINVAL;
4743
4744 /* TODO: This is not properly updating schedstats */
4745
4746 trace_sched_move_numa(p, curr_cpu, target_cpu);
4747 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4748 }
4749
4750 /*
4751 * Requeue a task on a given node and accurately track the number of NUMA
4752 * tasks on the runqueues
4753 */
4754 void sched_setnuma(struct task_struct *p, int nid)
4755 {
4756 struct rq *rq;
4757 unsigned long flags;
4758 bool on_rq, running;
4759
4760 rq = task_rq_lock(p, &flags);
4761 on_rq = p->on_rq;
4762 running = task_current(rq, p);
4763
4764 if (on_rq)
4765 dequeue_task(rq, p, 0);
4766 if (running)
4767 p->sched_class->put_prev_task(rq, p);
4768
4769 p->numa_preferred_nid = nid;
4770
4771 if (running)
4772 p->sched_class->set_curr_task(rq);
4773 if (on_rq)
4774 enqueue_task(rq, p, 0);
4775 task_rq_unlock(rq, p, &flags);
4776 }
4777 #endif
4778
4779 /*
4780 * migration_cpu_stop - this will be executed by a highprio stopper thread
4781 * and performs thread migration by bumping thread off CPU then
4782 * 'pushing' onto another runqueue.
4783 */
4784 static int migration_cpu_stop(void *data)
4785 {
4786 struct migration_arg *arg = data;
4787
4788 /*
4789 * The original target cpu might have gone down and we might
4790 * be on another cpu but it doesn't matter.
4791 */
4792 local_irq_disable();
4793 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4794 local_irq_enable();
4795 return 0;
4796 }
4797
4798 #ifdef CONFIG_HOTPLUG_CPU
4799
4800 /*
4801 * Ensures that the idle task is using init_mm right before its cpu goes
4802 * offline.
4803 */
4804 void idle_task_exit(void)
4805 {
4806 struct mm_struct *mm = current->active_mm;
4807
4808 BUG_ON(cpu_online(smp_processor_id()));
4809
4810 if (mm != &init_mm) {
4811 switch_mm(mm, &init_mm, current);
4812 finish_arch_post_lock_switch();
4813 }
4814 mmdrop(mm);
4815 }
4816
4817 /*
4818 * Since this CPU is going 'away' for a while, fold any nr_active delta
4819 * we might have. Assumes we're called after migrate_tasks() so that the
4820 * nr_active count is stable.
4821 *
4822 * Also see the comment "Global load-average calculations".
4823 */
4824 static void calc_load_migrate(struct rq *rq)
4825 {
4826 long delta = calc_load_fold_active(rq);
4827 if (delta)
4828 atomic_long_add(delta, &calc_load_tasks);
4829 }
4830
4831 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4832 {
4833 }
4834
4835 static const struct sched_class fake_sched_class = {
4836 .put_prev_task = put_prev_task_fake,
4837 };
4838
4839 static struct task_struct fake_task = {
4840 /*
4841 * Avoid pull_{rt,dl}_task()
4842 */
4843 .prio = MAX_PRIO + 1,
4844 .sched_class = &fake_sched_class,
4845 };
4846
4847 /*
4848 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4849 * try_to_wake_up()->select_task_rq().
4850 *
4851 * Called with rq->lock held even though we'er in stop_machine() and
4852 * there's no concurrency possible, we hold the required locks anyway
4853 * because of lock validation efforts.
4854 */
4855 static void migrate_tasks(unsigned int dead_cpu)
4856 {
4857 struct rq *rq = cpu_rq(dead_cpu);
4858 struct task_struct *next, *stop = rq->stop;
4859 int dest_cpu;
4860
4861 /*
4862 * Fudge the rq selection such that the below task selection loop
4863 * doesn't get stuck on the currently eligible stop task.
4864 *
4865 * We're currently inside stop_machine() and the rq is either stuck
4866 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4867 * either way we should never end up calling schedule() until we're
4868 * done here.
4869 */
4870 rq->stop = NULL;
4871
4872 /*
4873 * put_prev_task() and pick_next_task() sched
4874 * class method both need to have an up-to-date
4875 * value of rq->clock[_task]
4876 */
4877 update_rq_clock(rq);
4878
4879 for ( ; ; ) {
4880 /*
4881 * There's this thread running, bail when that's the only
4882 * remaining thread.
4883 */
4884 if (rq->nr_running == 1)
4885 break;
4886
4887 next = pick_next_task(rq, &fake_task);
4888 BUG_ON(!next);
4889 next->sched_class->put_prev_task(rq, next);
4890
4891 /* Find suitable destination for @next, with force if needed. */
4892 dest_cpu = select_fallback_rq(dead_cpu, next);
4893 raw_spin_unlock(&rq->lock);
4894
4895 __migrate_task(next, dead_cpu, dest_cpu);
4896
4897 raw_spin_lock(&rq->lock);
4898 }
4899
4900 rq->stop = stop;
4901 }
4902
4903 #endif /* CONFIG_HOTPLUG_CPU */
4904
4905 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4906
4907 static struct ctl_table sd_ctl_dir[] = {
4908 {
4909 .procname = "sched_domain",
4910 .mode = 0555,
4911 },
4912 {}
4913 };
4914
4915 static struct ctl_table sd_ctl_root[] = {
4916 {
4917 .procname = "kernel",
4918 .mode = 0555,
4919 .child = sd_ctl_dir,
4920 },
4921 {}
4922 };
4923
4924 static struct ctl_table *sd_alloc_ctl_entry(int n)
4925 {
4926 struct ctl_table *entry =
4927 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4928
4929 return entry;
4930 }
4931
4932 static void sd_free_ctl_entry(struct ctl_table **tablep)
4933 {
4934 struct ctl_table *entry;
4935
4936 /*
4937 * In the intermediate directories, both the child directory and
4938 * procname are dynamically allocated and could fail but the mode
4939 * will always be set. In the lowest directory the names are
4940 * static strings and all have proc handlers.
4941 */
4942 for (entry = *tablep; entry->mode; entry++) {
4943 if (entry->child)
4944 sd_free_ctl_entry(&entry->child);
4945 if (entry->proc_handler == NULL)
4946 kfree(entry->procname);
4947 }
4948
4949 kfree(*tablep);
4950 *tablep = NULL;
4951 }
4952
4953 static int min_load_idx = 0;
4954 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4955
4956 static void
4957 set_table_entry(struct ctl_table *entry,
4958 const char *procname, void *data, int maxlen,
4959 umode_t mode, proc_handler *proc_handler,
4960 bool load_idx)
4961 {
4962 entry->procname = procname;
4963 entry->data = data;
4964 entry->maxlen = maxlen;
4965 entry->mode = mode;
4966 entry->proc_handler = proc_handler;
4967
4968 if (load_idx) {
4969 entry->extra1 = &min_load_idx;
4970 entry->extra2 = &max_load_idx;
4971 }
4972 }
4973
4974 static struct ctl_table *
4975 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4976 {
4977 struct ctl_table *table = sd_alloc_ctl_entry(14);
4978
4979 if (table == NULL)
4980 return NULL;
4981
4982 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4983 sizeof(long), 0644, proc_doulongvec_minmax, false);
4984 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4985 sizeof(long), 0644, proc_doulongvec_minmax, false);
4986 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4987 sizeof(int), 0644, proc_dointvec_minmax, true);
4988 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4989 sizeof(int), 0644, proc_dointvec_minmax, true);
4990 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4991 sizeof(int), 0644, proc_dointvec_minmax, true);
4992 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4993 sizeof(int), 0644, proc_dointvec_minmax, true);
4994 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4995 sizeof(int), 0644, proc_dointvec_minmax, true);
4996 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4997 sizeof(int), 0644, proc_dointvec_minmax, false);
4998 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4999 sizeof(int), 0644, proc_dointvec_minmax, false);
5000 set_table_entry(&table[9], "cache_nice_tries",
5001 &sd->cache_nice_tries,
5002 sizeof(int), 0644, proc_dointvec_minmax, false);
5003 set_table_entry(&table[10], "flags", &sd->flags,
5004 sizeof(int), 0644, proc_dointvec_minmax, false);
5005 set_table_entry(&table[11], "max_newidle_lb_cost",
5006 &sd->max_newidle_lb_cost,
5007 sizeof(long), 0644, proc_doulongvec_minmax, false);
5008 set_table_entry(&table[12], "name", sd->name,
5009 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5010 /* &table[13] is terminator */
5011
5012 return table;
5013 }
5014
5015 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5016 {
5017 struct ctl_table *entry, *table;
5018 struct sched_domain *sd;
5019 int domain_num = 0, i;
5020 char buf[32];
5021
5022 for_each_domain(cpu, sd)
5023 domain_num++;
5024 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5025 if (table == NULL)
5026 return NULL;
5027
5028 i = 0;
5029 for_each_domain(cpu, sd) {
5030 snprintf(buf, 32, "domain%d", i);
5031 entry->procname = kstrdup(buf, GFP_KERNEL);
5032 entry->mode = 0555;
5033 entry->child = sd_alloc_ctl_domain_table(sd);
5034 entry++;
5035 i++;
5036 }
5037 return table;
5038 }
5039
5040 static struct ctl_table_header *sd_sysctl_header;
5041 static void register_sched_domain_sysctl(void)
5042 {
5043 int i, cpu_num = num_possible_cpus();
5044 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5045 char buf[32];
5046
5047 WARN_ON(sd_ctl_dir[0].child);
5048 sd_ctl_dir[0].child = entry;
5049
5050 if (entry == NULL)
5051 return;
5052
5053 for_each_possible_cpu(i) {
5054 snprintf(buf, 32, "cpu%d", i);
5055 entry->procname = kstrdup(buf, GFP_KERNEL);
5056 entry->mode = 0555;
5057 entry->child = sd_alloc_ctl_cpu_table(i);
5058 entry++;
5059 }
5060
5061 WARN_ON(sd_sysctl_header);
5062 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5063 }
5064
5065 /* may be called multiple times per register */
5066 static void unregister_sched_domain_sysctl(void)
5067 {
5068 if (sd_sysctl_header)
5069 unregister_sysctl_table(sd_sysctl_header);
5070 sd_sysctl_header = NULL;
5071 if (sd_ctl_dir[0].child)
5072 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5073 }
5074 #else
5075 static void register_sched_domain_sysctl(void)
5076 {
5077 }
5078 static void unregister_sched_domain_sysctl(void)
5079 {
5080 }
5081 #endif
5082
5083 static void set_rq_online(struct rq *rq)
5084 {
5085 if (!rq->online) {
5086 const struct sched_class *class;
5087
5088 cpumask_set_cpu(rq->cpu, rq->rd->online);
5089 rq->online = 1;
5090
5091 for_each_class(class) {
5092 if (class->rq_online)
5093 class->rq_online(rq);
5094 }
5095 }
5096 }
5097
5098 static void set_rq_offline(struct rq *rq)
5099 {
5100 if (rq->online) {
5101 const struct sched_class *class;
5102
5103 for_each_class(class) {
5104 if (class->rq_offline)
5105 class->rq_offline(rq);
5106 }
5107
5108 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5109 rq->online = 0;
5110 }
5111 }
5112
5113 /*
5114 * migration_call - callback that gets triggered when a CPU is added.
5115 * Here we can start up the necessary migration thread for the new CPU.
5116 */
5117 static int
5118 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5119 {
5120 int cpu = (long)hcpu;
5121 unsigned long flags;
5122 struct rq *rq = cpu_rq(cpu);
5123
5124 switch (action & ~CPU_TASKS_FROZEN) {
5125
5126 case CPU_UP_PREPARE:
5127 rq->calc_load_update = calc_load_update;
5128 break;
5129
5130 case CPU_ONLINE:
5131 /* Update our root-domain */
5132 raw_spin_lock_irqsave(&rq->lock, flags);
5133 if (rq->rd) {
5134 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5135
5136 set_rq_online(rq);
5137 }
5138 raw_spin_unlock_irqrestore(&rq->lock, flags);
5139 break;
5140
5141 #ifdef CONFIG_HOTPLUG_CPU
5142 case CPU_DYING:
5143 sched_ttwu_pending();
5144 /* Update our root-domain */
5145 raw_spin_lock_irqsave(&rq->lock, flags);
5146 if (rq->rd) {
5147 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5148 set_rq_offline(rq);
5149 }
5150 migrate_tasks(cpu);
5151 BUG_ON(rq->nr_running != 1); /* the migration thread */
5152 raw_spin_unlock_irqrestore(&rq->lock, flags);
5153 break;
5154
5155 case CPU_DEAD:
5156 calc_load_migrate(rq);
5157 break;
5158 #endif
5159 }
5160
5161 update_max_interval();
5162
5163 return NOTIFY_OK;
5164 }
5165
5166 /*
5167 * Register at high priority so that task migration (migrate_all_tasks)
5168 * happens before everything else. This has to be lower priority than
5169 * the notifier in the perf_event subsystem, though.
5170 */
5171 static struct notifier_block migration_notifier = {
5172 .notifier_call = migration_call,
5173 .priority = CPU_PRI_MIGRATION,
5174 };
5175
5176 static void __cpuinit set_cpu_rq_start_time(void)
5177 {
5178 int cpu = smp_processor_id();
5179 struct rq *rq = cpu_rq(cpu);
5180 rq->age_stamp = sched_clock_cpu(cpu);
5181 }
5182
5183 static int sched_cpu_active(struct notifier_block *nfb,
5184 unsigned long action, void *hcpu)
5185 {
5186 switch (action & ~CPU_TASKS_FROZEN) {
5187 case CPU_STARTING:
5188 set_cpu_rq_start_time();
5189 return NOTIFY_OK;
5190 case CPU_DOWN_FAILED:
5191 set_cpu_active((long)hcpu, true);
5192 return NOTIFY_OK;
5193 default:
5194 return NOTIFY_DONE;
5195 }
5196 }
5197
5198 static int sched_cpu_inactive(struct notifier_block *nfb,
5199 unsigned long action, void *hcpu)
5200 {
5201 unsigned long flags;
5202 long cpu = (long)hcpu;
5203
5204 switch (action & ~CPU_TASKS_FROZEN) {
5205 case CPU_DOWN_PREPARE:
5206 set_cpu_active(cpu, false);
5207
5208 /* explicitly allow suspend */
5209 if (!(action & CPU_TASKS_FROZEN)) {
5210 struct dl_bw *dl_b = dl_bw_of(cpu);
5211 bool overflow;
5212 int cpus;
5213
5214 raw_spin_lock_irqsave(&dl_b->lock, flags);
5215 cpus = dl_bw_cpus(cpu);
5216 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5217 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5218
5219 if (overflow)
5220 return notifier_from_errno(-EBUSY);
5221 }
5222 return NOTIFY_OK;
5223 }
5224
5225 return NOTIFY_DONE;
5226 }
5227
5228 static int __init migration_init(void)
5229 {
5230 void *cpu = (void *)(long)smp_processor_id();
5231 int err;
5232
5233 /* Initialize migration for the boot CPU */
5234 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5235 BUG_ON(err == NOTIFY_BAD);
5236 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5237 register_cpu_notifier(&migration_notifier);
5238
5239 /* Register cpu active notifiers */
5240 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5241 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5242
5243 return 0;
5244 }
5245 early_initcall(migration_init);
5246 #endif
5247
5248 #ifdef CONFIG_SMP
5249
5250 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5251
5252 #ifdef CONFIG_SCHED_DEBUG
5253
5254 static __read_mostly int sched_debug_enabled;
5255
5256 static int __init sched_debug_setup(char *str)
5257 {
5258 sched_debug_enabled = 1;
5259
5260 return 0;
5261 }
5262 early_param("sched_debug", sched_debug_setup);
5263
5264 static inline bool sched_debug(void)
5265 {
5266 return sched_debug_enabled;
5267 }
5268
5269 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5270 struct cpumask *groupmask)
5271 {
5272 struct sched_group *group = sd->groups;
5273 char str[256];
5274
5275 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5276 cpumask_clear(groupmask);
5277
5278 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5279
5280 if (!(sd->flags & SD_LOAD_BALANCE)) {
5281 printk("does not load-balance\n");
5282 if (sd->parent)
5283 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5284 " has parent");
5285 return -1;
5286 }
5287
5288 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5289
5290 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5291 printk(KERN_ERR "ERROR: domain->span does not contain "
5292 "CPU%d\n", cpu);
5293 }
5294 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5295 printk(KERN_ERR "ERROR: domain->groups does not contain"
5296 " CPU%d\n", cpu);
5297 }
5298
5299 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5300 do {
5301 if (!group) {
5302 printk("\n");
5303 printk(KERN_ERR "ERROR: group is NULL\n");
5304 break;
5305 }
5306
5307 /*
5308 * Even though we initialize ->capacity to something semi-sane,
5309 * we leave capacity_orig unset. This allows us to detect if
5310 * domain iteration is still funny without causing /0 traps.
5311 */
5312 if (!group->sgc->capacity_orig) {
5313 printk(KERN_CONT "\n");
5314 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5315 break;
5316 }
5317
5318 if (!cpumask_weight(sched_group_cpus(group))) {
5319 printk(KERN_CONT "\n");
5320 printk(KERN_ERR "ERROR: empty group\n");
5321 break;
5322 }
5323
5324 if (!(sd->flags & SD_OVERLAP) &&
5325 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5326 printk(KERN_CONT "\n");
5327 printk(KERN_ERR "ERROR: repeated CPUs\n");
5328 break;
5329 }
5330
5331 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5332
5333 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5334
5335 printk(KERN_CONT " %s", str);
5336 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5337 printk(KERN_CONT " (cpu_capacity = %d)",
5338 group->sgc->capacity);
5339 }
5340
5341 group = group->next;
5342 } while (group != sd->groups);
5343 printk(KERN_CONT "\n");
5344
5345 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5346 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5347
5348 if (sd->parent &&
5349 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5350 printk(KERN_ERR "ERROR: parent span is not a superset "
5351 "of domain->span\n");
5352 return 0;
5353 }
5354
5355 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5356 {
5357 int level = 0;
5358
5359 if (!sched_debug_enabled)
5360 return;
5361
5362 if (!sd) {
5363 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5364 return;
5365 }
5366
5367 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5368
5369 for (;;) {
5370 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5371 break;
5372 level++;
5373 sd = sd->parent;
5374 if (!sd)
5375 break;
5376 }
5377 }
5378 #else /* !CONFIG_SCHED_DEBUG */
5379 # define sched_domain_debug(sd, cpu) do { } while (0)
5380 static inline bool sched_debug(void)
5381 {
5382 return false;
5383 }
5384 #endif /* CONFIG_SCHED_DEBUG */
5385
5386 static int sd_degenerate(struct sched_domain *sd)
5387 {
5388 if (cpumask_weight(sched_domain_span(sd)) == 1)
5389 return 1;
5390
5391 /* Following flags need at least 2 groups */
5392 if (sd->flags & (SD_LOAD_BALANCE |
5393 SD_BALANCE_NEWIDLE |
5394 SD_BALANCE_FORK |
5395 SD_BALANCE_EXEC |
5396 SD_SHARE_CPUCAPACITY |
5397 SD_SHARE_PKG_RESOURCES |
5398 SD_SHARE_POWERDOMAIN)) {
5399 if (sd->groups != sd->groups->next)
5400 return 0;
5401 }
5402
5403 /* Following flags don't use groups */
5404 if (sd->flags & (SD_WAKE_AFFINE))
5405 return 0;
5406
5407 return 1;
5408 }
5409
5410 static int
5411 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5412 {
5413 unsigned long cflags = sd->flags, pflags = parent->flags;
5414
5415 if (sd_degenerate(parent))
5416 return 1;
5417
5418 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5419 return 0;
5420
5421 /* Flags needing groups don't count if only 1 group in parent */
5422 if (parent->groups == parent->groups->next) {
5423 pflags &= ~(SD_LOAD_BALANCE |
5424 SD_BALANCE_NEWIDLE |
5425 SD_BALANCE_FORK |
5426 SD_BALANCE_EXEC |
5427 SD_SHARE_CPUCAPACITY |
5428 SD_SHARE_PKG_RESOURCES |
5429 SD_PREFER_SIBLING |
5430 SD_SHARE_POWERDOMAIN);
5431 if (nr_node_ids == 1)
5432 pflags &= ~SD_SERIALIZE;
5433 }
5434 if (~cflags & pflags)
5435 return 0;
5436
5437 return 1;
5438 }
5439
5440 static void free_rootdomain(struct rcu_head *rcu)
5441 {
5442 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5443
5444 cpupri_cleanup(&rd->cpupri);
5445 cpudl_cleanup(&rd->cpudl);
5446 free_cpumask_var(rd->dlo_mask);
5447 free_cpumask_var(rd->rto_mask);
5448 free_cpumask_var(rd->online);
5449 free_cpumask_var(rd->span);
5450 kfree(rd);
5451 }
5452
5453 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5454 {
5455 struct root_domain *old_rd = NULL;
5456 unsigned long flags;
5457
5458 raw_spin_lock_irqsave(&rq->lock, flags);
5459
5460 if (rq->rd) {
5461 old_rd = rq->rd;
5462
5463 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5464 set_rq_offline(rq);
5465
5466 cpumask_clear_cpu(rq->cpu, old_rd->span);
5467
5468 /*
5469 * If we dont want to free the old_rd yet then
5470 * set old_rd to NULL to skip the freeing later
5471 * in this function:
5472 */
5473 if (!atomic_dec_and_test(&old_rd->refcount))
5474 old_rd = NULL;
5475 }
5476
5477 atomic_inc(&rd->refcount);
5478 rq->rd = rd;
5479
5480 cpumask_set_cpu(rq->cpu, rd->span);
5481 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5482 set_rq_online(rq);
5483
5484 raw_spin_unlock_irqrestore(&rq->lock, flags);
5485
5486 if (old_rd)
5487 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5488 }
5489
5490 static int init_rootdomain(struct root_domain *rd)
5491 {
5492 memset(rd, 0, sizeof(*rd));
5493
5494 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5495 goto out;
5496 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5497 goto free_span;
5498 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5499 goto free_online;
5500 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5501 goto free_dlo_mask;
5502
5503 init_dl_bw(&rd->dl_bw);
5504 if (cpudl_init(&rd->cpudl) != 0)
5505 goto free_dlo_mask;
5506
5507 if (cpupri_init(&rd->cpupri) != 0)
5508 goto free_rto_mask;
5509 return 0;
5510
5511 free_rto_mask:
5512 free_cpumask_var(rd->rto_mask);
5513 free_dlo_mask:
5514 free_cpumask_var(rd->dlo_mask);
5515 free_online:
5516 free_cpumask_var(rd->online);
5517 free_span:
5518 free_cpumask_var(rd->span);
5519 out:
5520 return -ENOMEM;
5521 }
5522
5523 /*
5524 * By default the system creates a single root-domain with all cpus as
5525 * members (mimicking the global state we have today).
5526 */
5527 struct root_domain def_root_domain;
5528
5529 static void init_defrootdomain(void)
5530 {
5531 init_rootdomain(&def_root_domain);
5532
5533 atomic_set(&def_root_domain.refcount, 1);
5534 }
5535
5536 static struct root_domain *alloc_rootdomain(void)
5537 {
5538 struct root_domain *rd;
5539
5540 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5541 if (!rd)
5542 return NULL;
5543
5544 if (init_rootdomain(rd) != 0) {
5545 kfree(rd);
5546 return NULL;
5547 }
5548
5549 return rd;
5550 }
5551
5552 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5553 {
5554 struct sched_group *tmp, *first;
5555
5556 if (!sg)
5557 return;
5558
5559 first = sg;
5560 do {
5561 tmp = sg->next;
5562
5563 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5564 kfree(sg->sgc);
5565
5566 kfree(sg);
5567 sg = tmp;
5568 } while (sg != first);
5569 }
5570
5571 static void free_sched_domain(struct rcu_head *rcu)
5572 {
5573 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5574
5575 /*
5576 * If its an overlapping domain it has private groups, iterate and
5577 * nuke them all.
5578 */
5579 if (sd->flags & SD_OVERLAP) {
5580 free_sched_groups(sd->groups, 1);
5581 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5582 kfree(sd->groups->sgc);
5583 kfree(sd->groups);
5584 }
5585 kfree(sd);
5586 }
5587
5588 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5589 {
5590 call_rcu(&sd->rcu, free_sched_domain);
5591 }
5592
5593 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5594 {
5595 for (; sd; sd = sd->parent)
5596 destroy_sched_domain(sd, cpu);
5597 }
5598
5599 /*
5600 * Keep a special pointer to the highest sched_domain that has
5601 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5602 * allows us to avoid some pointer chasing select_idle_sibling().
5603 *
5604 * Also keep a unique ID per domain (we use the first cpu number in
5605 * the cpumask of the domain), this allows us to quickly tell if
5606 * two cpus are in the same cache domain, see cpus_share_cache().
5607 */
5608 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5609 DEFINE_PER_CPU(int, sd_llc_size);
5610 DEFINE_PER_CPU(int, sd_llc_id);
5611 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5612 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5613 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5614
5615 static void update_top_cache_domain(int cpu)
5616 {
5617 struct sched_domain *sd;
5618 struct sched_domain *busy_sd = NULL;
5619 int id = cpu;
5620 int size = 1;
5621
5622 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5623 if (sd) {
5624 id = cpumask_first(sched_domain_span(sd));
5625 size = cpumask_weight(sched_domain_span(sd));
5626 busy_sd = sd->parent; /* sd_busy */
5627 }
5628 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5629
5630 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5631 per_cpu(sd_llc_size, cpu) = size;
5632 per_cpu(sd_llc_id, cpu) = id;
5633
5634 sd = lowest_flag_domain(cpu, SD_NUMA);
5635 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5636
5637 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5638 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5639 }
5640
5641 /*
5642 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5643 * hold the hotplug lock.
5644 */
5645 static void
5646 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5647 {
5648 struct rq *rq = cpu_rq(cpu);
5649 struct sched_domain *tmp;
5650
5651 /* Remove the sched domains which do not contribute to scheduling. */
5652 for (tmp = sd; tmp; ) {
5653 struct sched_domain *parent = tmp->parent;
5654 if (!parent)
5655 break;
5656
5657 if (sd_parent_degenerate(tmp, parent)) {
5658 tmp->parent = parent->parent;
5659 if (parent->parent)
5660 parent->parent->child = tmp;
5661 /*
5662 * Transfer SD_PREFER_SIBLING down in case of a
5663 * degenerate parent; the spans match for this
5664 * so the property transfers.
5665 */
5666 if (parent->flags & SD_PREFER_SIBLING)
5667 tmp->flags |= SD_PREFER_SIBLING;
5668 destroy_sched_domain(parent, cpu);
5669 } else
5670 tmp = tmp->parent;
5671 }
5672
5673 if (sd && sd_degenerate(sd)) {
5674 tmp = sd;
5675 sd = sd->parent;
5676 destroy_sched_domain(tmp, cpu);
5677 if (sd)
5678 sd->child = NULL;
5679 }
5680
5681 sched_domain_debug(sd, cpu);
5682
5683 rq_attach_root(rq, rd);
5684 tmp = rq->sd;
5685 rcu_assign_pointer(rq->sd, sd);
5686 destroy_sched_domains(tmp, cpu);
5687
5688 update_top_cache_domain(cpu);
5689 }
5690
5691 /* cpus with isolated domains */
5692 static cpumask_var_t cpu_isolated_map;
5693
5694 /* Setup the mask of cpus configured for isolated domains */
5695 static int __init isolated_cpu_setup(char *str)
5696 {
5697 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5698 cpulist_parse(str, cpu_isolated_map);
5699 return 1;
5700 }
5701
5702 __setup("isolcpus=", isolated_cpu_setup);
5703
5704 struct s_data {
5705 struct sched_domain ** __percpu sd;
5706 struct root_domain *rd;
5707 };
5708
5709 enum s_alloc {
5710 sa_rootdomain,
5711 sa_sd,
5712 sa_sd_storage,
5713 sa_none,
5714 };
5715
5716 /*
5717 * Build an iteration mask that can exclude certain CPUs from the upwards
5718 * domain traversal.
5719 *
5720 * Asymmetric node setups can result in situations where the domain tree is of
5721 * unequal depth, make sure to skip domains that already cover the entire
5722 * range.
5723 *
5724 * In that case build_sched_domains() will have terminated the iteration early
5725 * and our sibling sd spans will be empty. Domains should always include the
5726 * cpu they're built on, so check that.
5727 *
5728 */
5729 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5730 {
5731 const struct cpumask *span = sched_domain_span(sd);
5732 struct sd_data *sdd = sd->private;
5733 struct sched_domain *sibling;
5734 int i;
5735
5736 for_each_cpu(i, span) {
5737 sibling = *per_cpu_ptr(sdd->sd, i);
5738 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5739 continue;
5740
5741 cpumask_set_cpu(i, sched_group_mask(sg));
5742 }
5743 }
5744
5745 /*
5746 * Return the canonical balance cpu for this group, this is the first cpu
5747 * of this group that's also in the iteration mask.
5748 */
5749 int group_balance_cpu(struct sched_group *sg)
5750 {
5751 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5752 }
5753
5754 static int
5755 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5756 {
5757 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5758 const struct cpumask *span = sched_domain_span(sd);
5759 struct cpumask *covered = sched_domains_tmpmask;
5760 struct sd_data *sdd = sd->private;
5761 struct sched_domain *child;
5762 int i;
5763
5764 cpumask_clear(covered);
5765
5766 for_each_cpu(i, span) {
5767 struct cpumask *sg_span;
5768
5769 if (cpumask_test_cpu(i, covered))
5770 continue;
5771
5772 child = *per_cpu_ptr(sdd->sd, i);
5773
5774 /* See the comment near build_group_mask(). */
5775 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5776 continue;
5777
5778 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5779 GFP_KERNEL, cpu_to_node(cpu));
5780
5781 if (!sg)
5782 goto fail;
5783
5784 sg_span = sched_group_cpus(sg);
5785 if (child->child) {
5786 child = child->child;
5787 cpumask_copy(sg_span, sched_domain_span(child));
5788 } else
5789 cpumask_set_cpu(i, sg_span);
5790
5791 cpumask_or(covered, covered, sg_span);
5792
5793 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5794 if (atomic_inc_return(&sg->sgc->ref) == 1)
5795 build_group_mask(sd, sg);
5796
5797 /*
5798 * Initialize sgc->capacity such that even if we mess up the
5799 * domains and no possible iteration will get us here, we won't
5800 * die on a /0 trap.
5801 */
5802 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5803 sg->sgc->capacity_orig = sg->sgc->capacity;
5804
5805 /*
5806 * Make sure the first group of this domain contains the
5807 * canonical balance cpu. Otherwise the sched_domain iteration
5808 * breaks. See update_sg_lb_stats().
5809 */
5810 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5811 group_balance_cpu(sg) == cpu)
5812 groups = sg;
5813
5814 if (!first)
5815 first = sg;
5816 if (last)
5817 last->next = sg;
5818 last = sg;
5819 last->next = first;
5820 }
5821 sd->groups = groups;
5822
5823 return 0;
5824
5825 fail:
5826 free_sched_groups(first, 0);
5827
5828 return -ENOMEM;
5829 }
5830
5831 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5832 {
5833 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5834 struct sched_domain *child = sd->child;
5835
5836 if (child)
5837 cpu = cpumask_first(sched_domain_span(child));
5838
5839 if (sg) {
5840 *sg = *per_cpu_ptr(sdd->sg, cpu);
5841 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5842 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5843 }
5844
5845 return cpu;
5846 }
5847
5848 /*
5849 * build_sched_groups will build a circular linked list of the groups
5850 * covered by the given span, and will set each group's ->cpumask correctly,
5851 * and ->cpu_capacity to 0.
5852 *
5853 * Assumes the sched_domain tree is fully constructed
5854 */
5855 static int
5856 build_sched_groups(struct sched_domain *sd, int cpu)
5857 {
5858 struct sched_group *first = NULL, *last = NULL;
5859 struct sd_data *sdd = sd->private;
5860 const struct cpumask *span = sched_domain_span(sd);
5861 struct cpumask *covered;
5862 int i;
5863
5864 get_group(cpu, sdd, &sd->groups);
5865 atomic_inc(&sd->groups->ref);
5866
5867 if (cpu != cpumask_first(span))
5868 return 0;
5869
5870 lockdep_assert_held(&sched_domains_mutex);
5871 covered = sched_domains_tmpmask;
5872
5873 cpumask_clear(covered);
5874
5875 for_each_cpu(i, span) {
5876 struct sched_group *sg;
5877 int group, j;
5878
5879 if (cpumask_test_cpu(i, covered))
5880 continue;
5881
5882 group = get_group(i, sdd, &sg);
5883 cpumask_setall(sched_group_mask(sg));
5884
5885 for_each_cpu(j, span) {
5886 if (get_group(j, sdd, NULL) != group)
5887 continue;
5888
5889 cpumask_set_cpu(j, covered);
5890 cpumask_set_cpu(j, sched_group_cpus(sg));
5891 }
5892
5893 if (!first)
5894 first = sg;
5895 if (last)
5896 last->next = sg;
5897 last = sg;
5898 }
5899 last->next = first;
5900
5901 return 0;
5902 }
5903
5904 /*
5905 * Initialize sched groups cpu_capacity.
5906 *
5907 * cpu_capacity indicates the capacity of sched group, which is used while
5908 * distributing the load between different sched groups in a sched domain.
5909 * Typically cpu_capacity for all the groups in a sched domain will be same
5910 * unless there are asymmetries in the topology. If there are asymmetries,
5911 * group having more cpu_capacity will pickup more load compared to the
5912 * group having less cpu_capacity.
5913 */
5914 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5915 {
5916 struct sched_group *sg = sd->groups;
5917
5918 WARN_ON(!sg);
5919
5920 do {
5921 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5922 sg = sg->next;
5923 } while (sg != sd->groups);
5924
5925 if (cpu != group_balance_cpu(sg))
5926 return;
5927
5928 update_group_capacity(sd, cpu);
5929 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5930 }
5931
5932 /*
5933 * Initializers for schedule domains
5934 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5935 */
5936
5937 static int default_relax_domain_level = -1;
5938 int sched_domain_level_max;
5939
5940 static int __init setup_relax_domain_level(char *str)
5941 {
5942 if (kstrtoint(str, 0, &default_relax_domain_level))
5943 pr_warn("Unable to set relax_domain_level\n");
5944
5945 return 1;
5946 }
5947 __setup("relax_domain_level=", setup_relax_domain_level);
5948
5949 static void set_domain_attribute(struct sched_domain *sd,
5950 struct sched_domain_attr *attr)
5951 {
5952 int request;
5953
5954 if (!attr || attr->relax_domain_level < 0) {
5955 if (default_relax_domain_level < 0)
5956 return;
5957 else
5958 request = default_relax_domain_level;
5959 } else
5960 request = attr->relax_domain_level;
5961 if (request < sd->level) {
5962 /* turn off idle balance on this domain */
5963 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5964 } else {
5965 /* turn on idle balance on this domain */
5966 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5967 }
5968 }
5969
5970 static void __sdt_free(const struct cpumask *cpu_map);
5971 static int __sdt_alloc(const struct cpumask *cpu_map);
5972
5973 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5974 const struct cpumask *cpu_map)
5975 {
5976 switch (what) {
5977 case sa_rootdomain:
5978 if (!atomic_read(&d->rd->refcount))
5979 free_rootdomain(&d->rd->rcu); /* fall through */
5980 case sa_sd:
5981 free_percpu(d->sd); /* fall through */
5982 case sa_sd_storage:
5983 __sdt_free(cpu_map); /* fall through */
5984 case sa_none:
5985 break;
5986 }
5987 }
5988
5989 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5990 const struct cpumask *cpu_map)
5991 {
5992 memset(d, 0, sizeof(*d));
5993
5994 if (__sdt_alloc(cpu_map))
5995 return sa_sd_storage;
5996 d->sd = alloc_percpu(struct sched_domain *);
5997 if (!d->sd)
5998 return sa_sd_storage;
5999 d->rd = alloc_rootdomain();
6000 if (!d->rd)
6001 return sa_sd;
6002 return sa_rootdomain;
6003 }
6004
6005 /*
6006 * NULL the sd_data elements we've used to build the sched_domain and
6007 * sched_group structure so that the subsequent __free_domain_allocs()
6008 * will not free the data we're using.
6009 */
6010 static void claim_allocations(int cpu, struct sched_domain *sd)
6011 {
6012 struct sd_data *sdd = sd->private;
6013
6014 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6015 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6016
6017 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6018 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6019
6020 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6021 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6022 }
6023
6024 #ifdef CONFIG_NUMA
6025 static int sched_domains_numa_levels;
6026 static int *sched_domains_numa_distance;
6027 static struct cpumask ***sched_domains_numa_masks;
6028 static int sched_domains_curr_level;
6029 #endif
6030
6031 /*
6032 * SD_flags allowed in topology descriptions.
6033 *
6034 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6035 * SD_SHARE_PKG_RESOURCES - describes shared caches
6036 * SD_NUMA - describes NUMA topologies
6037 * SD_SHARE_POWERDOMAIN - describes shared power domain
6038 *
6039 * Odd one out:
6040 * SD_ASYM_PACKING - describes SMT quirks
6041 */
6042 #define TOPOLOGY_SD_FLAGS \
6043 (SD_SHARE_CPUCAPACITY | \
6044 SD_SHARE_PKG_RESOURCES | \
6045 SD_NUMA | \
6046 SD_ASYM_PACKING | \
6047 SD_SHARE_POWERDOMAIN)
6048
6049 static struct sched_domain *
6050 sd_init(struct sched_domain_topology_level *tl, int cpu)
6051 {
6052 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6053 int sd_weight, sd_flags = 0;
6054
6055 #ifdef CONFIG_NUMA
6056 /*
6057 * Ugly hack to pass state to sd_numa_mask()...
6058 */
6059 sched_domains_curr_level = tl->numa_level;
6060 #endif
6061
6062 sd_weight = cpumask_weight(tl->mask(cpu));
6063
6064 if (tl->sd_flags)
6065 sd_flags = (*tl->sd_flags)();
6066 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6067 "wrong sd_flags in topology description\n"))
6068 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6069
6070 *sd = (struct sched_domain){
6071 .min_interval = sd_weight,
6072 .max_interval = 2*sd_weight,
6073 .busy_factor = 32,
6074 .imbalance_pct = 125,
6075
6076 .cache_nice_tries = 0,
6077 .busy_idx = 0,
6078 .idle_idx = 0,
6079 .newidle_idx = 0,
6080 .wake_idx = 0,
6081 .forkexec_idx = 0,
6082
6083 .flags = 1*SD_LOAD_BALANCE
6084 | 1*SD_BALANCE_NEWIDLE
6085 | 1*SD_BALANCE_EXEC
6086 | 1*SD_BALANCE_FORK
6087 | 0*SD_BALANCE_WAKE
6088 | 1*SD_WAKE_AFFINE
6089 | 0*SD_SHARE_CPUCAPACITY
6090 | 0*SD_SHARE_PKG_RESOURCES
6091 | 0*SD_SERIALIZE
6092 | 0*SD_PREFER_SIBLING
6093 | 0*SD_NUMA
6094 | sd_flags
6095 ,
6096
6097 .last_balance = jiffies,
6098 .balance_interval = sd_weight,
6099 .smt_gain = 0,
6100 .max_newidle_lb_cost = 0,
6101 .next_decay_max_lb_cost = jiffies,
6102 #ifdef CONFIG_SCHED_DEBUG
6103 .name = tl->name,
6104 #endif
6105 };
6106
6107 /*
6108 * Convert topological properties into behaviour.
6109 */
6110
6111 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6112 sd->imbalance_pct = 110;
6113 sd->smt_gain = 1178; /* ~15% */
6114
6115 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6116 sd->imbalance_pct = 117;
6117 sd->cache_nice_tries = 1;
6118 sd->busy_idx = 2;
6119
6120 #ifdef CONFIG_NUMA
6121 } else if (sd->flags & SD_NUMA) {
6122 sd->cache_nice_tries = 2;
6123 sd->busy_idx = 3;
6124 sd->idle_idx = 2;
6125
6126 sd->flags |= SD_SERIALIZE;
6127 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6128 sd->flags &= ~(SD_BALANCE_EXEC |
6129 SD_BALANCE_FORK |
6130 SD_WAKE_AFFINE);
6131 }
6132
6133 #endif
6134 } else {
6135 sd->flags |= SD_PREFER_SIBLING;
6136 sd->cache_nice_tries = 1;
6137 sd->busy_idx = 2;
6138 sd->idle_idx = 1;
6139 }
6140
6141 sd->private = &tl->data;
6142
6143 return sd;
6144 }
6145
6146 /*
6147 * Topology list, bottom-up.
6148 */
6149 static struct sched_domain_topology_level default_topology[] = {
6150 #ifdef CONFIG_SCHED_SMT
6151 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6152 #endif
6153 #ifdef CONFIG_SCHED_MC
6154 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6155 #endif
6156 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6157 { NULL, },
6158 };
6159
6160 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6161
6162 #define for_each_sd_topology(tl) \
6163 for (tl = sched_domain_topology; tl->mask; tl++)
6164
6165 void set_sched_topology(struct sched_domain_topology_level *tl)
6166 {
6167 sched_domain_topology = tl;
6168 }
6169
6170 #ifdef CONFIG_NUMA
6171
6172 static const struct cpumask *sd_numa_mask(int cpu)
6173 {
6174 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6175 }
6176
6177 static void sched_numa_warn(const char *str)
6178 {
6179 static int done = false;
6180 int i,j;
6181
6182 if (done)
6183 return;
6184
6185 done = true;
6186
6187 printk(KERN_WARNING "ERROR: %s\n\n", str);
6188
6189 for (i = 0; i < nr_node_ids; i++) {
6190 printk(KERN_WARNING " ");
6191 for (j = 0; j < nr_node_ids; j++)
6192 printk(KERN_CONT "%02d ", node_distance(i,j));
6193 printk(KERN_CONT "\n");
6194 }
6195 printk(KERN_WARNING "\n");
6196 }
6197
6198 static bool find_numa_distance(int distance)
6199 {
6200 int i;
6201
6202 if (distance == node_distance(0, 0))
6203 return true;
6204
6205 for (i = 0; i < sched_domains_numa_levels; i++) {
6206 if (sched_domains_numa_distance[i] == distance)
6207 return true;
6208 }
6209
6210 return false;
6211 }
6212
6213 static void sched_init_numa(void)
6214 {
6215 int next_distance, curr_distance = node_distance(0, 0);
6216 struct sched_domain_topology_level *tl;
6217 int level = 0;
6218 int i, j, k;
6219
6220 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6221 if (!sched_domains_numa_distance)
6222 return;
6223
6224 /*
6225 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6226 * unique distances in the node_distance() table.
6227 *
6228 * Assumes node_distance(0,j) includes all distances in
6229 * node_distance(i,j) in order to avoid cubic time.
6230 */
6231 next_distance = curr_distance;
6232 for (i = 0; i < nr_node_ids; i++) {
6233 for (j = 0; j < nr_node_ids; j++) {
6234 for (k = 0; k < nr_node_ids; k++) {
6235 int distance = node_distance(i, k);
6236
6237 if (distance > curr_distance &&
6238 (distance < next_distance ||
6239 next_distance == curr_distance))
6240 next_distance = distance;
6241
6242 /*
6243 * While not a strong assumption it would be nice to know
6244 * about cases where if node A is connected to B, B is not
6245 * equally connected to A.
6246 */
6247 if (sched_debug() && node_distance(k, i) != distance)
6248 sched_numa_warn("Node-distance not symmetric");
6249
6250 if (sched_debug() && i && !find_numa_distance(distance))
6251 sched_numa_warn("Node-0 not representative");
6252 }
6253 if (next_distance != curr_distance) {
6254 sched_domains_numa_distance[level++] = next_distance;
6255 sched_domains_numa_levels = level;
6256 curr_distance = next_distance;
6257 } else break;
6258 }
6259
6260 /*
6261 * In case of sched_debug() we verify the above assumption.
6262 */
6263 if (!sched_debug())
6264 break;
6265 }
6266 /*
6267 * 'level' contains the number of unique distances, excluding the
6268 * identity distance node_distance(i,i).
6269 *
6270 * The sched_domains_numa_distance[] array includes the actual distance
6271 * numbers.
6272 */
6273
6274 /*
6275 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6276 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6277 * the array will contain less then 'level' members. This could be
6278 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6279 * in other functions.
6280 *
6281 * We reset it to 'level' at the end of this function.
6282 */
6283 sched_domains_numa_levels = 0;
6284
6285 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6286 if (!sched_domains_numa_masks)
6287 return;
6288
6289 /*
6290 * Now for each level, construct a mask per node which contains all
6291 * cpus of nodes that are that many hops away from us.
6292 */
6293 for (i = 0; i < level; i++) {
6294 sched_domains_numa_masks[i] =
6295 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6296 if (!sched_domains_numa_masks[i])
6297 return;
6298
6299 for (j = 0; j < nr_node_ids; j++) {
6300 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6301 if (!mask)
6302 return;
6303
6304 sched_domains_numa_masks[i][j] = mask;
6305
6306 for (k = 0; k < nr_node_ids; k++) {
6307 if (node_distance(j, k) > sched_domains_numa_distance[i])
6308 continue;
6309
6310 cpumask_or(mask, mask, cpumask_of_node(k));
6311 }
6312 }
6313 }
6314
6315 /* Compute default topology size */
6316 for (i = 0; sched_domain_topology[i].mask; i++);
6317
6318 tl = kzalloc((i + level + 1) *
6319 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6320 if (!tl)
6321 return;
6322
6323 /*
6324 * Copy the default topology bits..
6325 */
6326 for (i = 0; sched_domain_topology[i].mask; i++)
6327 tl[i] = sched_domain_topology[i];
6328
6329 /*
6330 * .. and append 'j' levels of NUMA goodness.
6331 */
6332 for (j = 0; j < level; i++, j++) {
6333 tl[i] = (struct sched_domain_topology_level){
6334 .mask = sd_numa_mask,
6335 .sd_flags = cpu_numa_flags,
6336 .flags = SDTL_OVERLAP,
6337 .numa_level = j,
6338 SD_INIT_NAME(NUMA)
6339 };
6340 }
6341
6342 sched_domain_topology = tl;
6343
6344 sched_domains_numa_levels = level;
6345 }
6346
6347 static void sched_domains_numa_masks_set(int cpu)
6348 {
6349 int i, j;
6350 int node = cpu_to_node(cpu);
6351
6352 for (i = 0; i < sched_domains_numa_levels; i++) {
6353 for (j = 0; j < nr_node_ids; j++) {
6354 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6355 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6356 }
6357 }
6358 }
6359
6360 static void sched_domains_numa_masks_clear(int cpu)
6361 {
6362 int i, j;
6363 for (i = 0; i < sched_domains_numa_levels; i++) {
6364 for (j = 0; j < nr_node_ids; j++)
6365 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6366 }
6367 }
6368
6369 /*
6370 * Update sched_domains_numa_masks[level][node] array when new cpus
6371 * are onlined.
6372 */
6373 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6374 unsigned long action,
6375 void *hcpu)
6376 {
6377 int cpu = (long)hcpu;
6378
6379 switch (action & ~CPU_TASKS_FROZEN) {
6380 case CPU_ONLINE:
6381 sched_domains_numa_masks_set(cpu);
6382 break;
6383
6384 case CPU_DEAD:
6385 sched_domains_numa_masks_clear(cpu);
6386 break;
6387
6388 default:
6389 return NOTIFY_DONE;
6390 }
6391
6392 return NOTIFY_OK;
6393 }
6394 #else
6395 static inline void sched_init_numa(void)
6396 {
6397 }
6398
6399 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6400 unsigned long action,
6401 void *hcpu)
6402 {
6403 return 0;
6404 }
6405 #endif /* CONFIG_NUMA */
6406
6407 static int __sdt_alloc(const struct cpumask *cpu_map)
6408 {
6409 struct sched_domain_topology_level *tl;
6410 int j;
6411
6412 for_each_sd_topology(tl) {
6413 struct sd_data *sdd = &tl->data;
6414
6415 sdd->sd = alloc_percpu(struct sched_domain *);
6416 if (!sdd->sd)
6417 return -ENOMEM;
6418
6419 sdd->sg = alloc_percpu(struct sched_group *);
6420 if (!sdd->sg)
6421 return -ENOMEM;
6422
6423 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6424 if (!sdd->sgc)
6425 return -ENOMEM;
6426
6427 for_each_cpu(j, cpu_map) {
6428 struct sched_domain *sd;
6429 struct sched_group *sg;
6430 struct sched_group_capacity *sgc;
6431
6432 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6433 GFP_KERNEL, cpu_to_node(j));
6434 if (!sd)
6435 return -ENOMEM;
6436
6437 *per_cpu_ptr(sdd->sd, j) = sd;
6438
6439 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6440 GFP_KERNEL, cpu_to_node(j));
6441 if (!sg)
6442 return -ENOMEM;
6443
6444 sg->next = sg;
6445
6446 *per_cpu_ptr(sdd->sg, j) = sg;
6447
6448 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6449 GFP_KERNEL, cpu_to_node(j));
6450 if (!sgc)
6451 return -ENOMEM;
6452
6453 *per_cpu_ptr(sdd->sgc, j) = sgc;
6454 }
6455 }
6456
6457 return 0;
6458 }
6459
6460 static void __sdt_free(const struct cpumask *cpu_map)
6461 {
6462 struct sched_domain_topology_level *tl;
6463 int j;
6464
6465 for_each_sd_topology(tl) {
6466 struct sd_data *sdd = &tl->data;
6467
6468 for_each_cpu(j, cpu_map) {
6469 struct sched_domain *sd;
6470
6471 if (sdd->sd) {
6472 sd = *per_cpu_ptr(sdd->sd, j);
6473 if (sd && (sd->flags & SD_OVERLAP))
6474 free_sched_groups(sd->groups, 0);
6475 kfree(*per_cpu_ptr(sdd->sd, j));
6476 }
6477
6478 if (sdd->sg)
6479 kfree(*per_cpu_ptr(sdd->sg, j));
6480 if (sdd->sgc)
6481 kfree(*per_cpu_ptr(sdd->sgc, j));
6482 }
6483 free_percpu(sdd->sd);
6484 sdd->sd = NULL;
6485 free_percpu(sdd->sg);
6486 sdd->sg = NULL;
6487 free_percpu(sdd->sgc);
6488 sdd->sgc = NULL;
6489 }
6490 }
6491
6492 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6493 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6494 struct sched_domain *child, int cpu)
6495 {
6496 struct sched_domain *sd = sd_init(tl, cpu);
6497 if (!sd)
6498 return child;
6499
6500 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6501 if (child) {
6502 sd->level = child->level + 1;
6503 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6504 child->parent = sd;
6505 sd->child = child;
6506
6507 if (!cpumask_subset(sched_domain_span(child),
6508 sched_domain_span(sd))) {
6509 pr_err("BUG: arch topology borken\n");
6510 #ifdef CONFIG_SCHED_DEBUG
6511 pr_err(" the %s domain not a subset of the %s domain\n",
6512 child->name, sd->name);
6513 #endif
6514 /* Fixup, ensure @sd has at least @child cpus. */
6515 cpumask_or(sched_domain_span(sd),
6516 sched_domain_span(sd),
6517 sched_domain_span(child));
6518 }
6519
6520 }
6521 set_domain_attribute(sd, attr);
6522
6523 return sd;
6524 }
6525
6526 /*
6527 * Build sched domains for a given set of cpus and attach the sched domains
6528 * to the individual cpus
6529 */
6530 static int build_sched_domains(const struct cpumask *cpu_map,
6531 struct sched_domain_attr *attr)
6532 {
6533 enum s_alloc alloc_state;
6534 struct sched_domain *sd;
6535 struct s_data d;
6536 int i, ret = -ENOMEM;
6537
6538 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6539 if (alloc_state != sa_rootdomain)
6540 goto error;
6541
6542 /* Set up domains for cpus specified by the cpu_map. */
6543 for_each_cpu(i, cpu_map) {
6544 struct sched_domain_topology_level *tl;
6545
6546 sd = NULL;
6547 for_each_sd_topology(tl) {
6548 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6549 if (tl == sched_domain_topology)
6550 *per_cpu_ptr(d.sd, i) = sd;
6551 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6552 sd->flags |= SD_OVERLAP;
6553 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6554 break;
6555 }
6556 }
6557
6558 /* Build the groups for the domains */
6559 for_each_cpu(i, cpu_map) {
6560 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6561 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6562 if (sd->flags & SD_OVERLAP) {
6563 if (build_overlap_sched_groups(sd, i))
6564 goto error;
6565 } else {
6566 if (build_sched_groups(sd, i))
6567 goto error;
6568 }
6569 }
6570 }
6571
6572 /* Calculate CPU capacity for physical packages and nodes */
6573 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6574 if (!cpumask_test_cpu(i, cpu_map))
6575 continue;
6576
6577 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6578 claim_allocations(i, sd);
6579 init_sched_groups_capacity(i, sd);
6580 }
6581 }
6582
6583 /* Attach the domains */
6584 rcu_read_lock();
6585 for_each_cpu(i, cpu_map) {
6586 sd = *per_cpu_ptr(d.sd, i);
6587 cpu_attach_domain(sd, d.rd, i);
6588 }
6589 rcu_read_unlock();
6590
6591 ret = 0;
6592 error:
6593 __free_domain_allocs(&d, alloc_state, cpu_map);
6594 return ret;
6595 }
6596
6597 static cpumask_var_t *doms_cur; /* current sched domains */
6598 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6599 static struct sched_domain_attr *dattr_cur;
6600 /* attribues of custom domains in 'doms_cur' */
6601
6602 /*
6603 * Special case: If a kmalloc of a doms_cur partition (array of
6604 * cpumask) fails, then fallback to a single sched domain,
6605 * as determined by the single cpumask fallback_doms.
6606 */
6607 static cpumask_var_t fallback_doms;
6608
6609 /*
6610 * arch_update_cpu_topology lets virtualized architectures update the
6611 * cpu core maps. It is supposed to return 1 if the topology changed
6612 * or 0 if it stayed the same.
6613 */
6614 int __weak arch_update_cpu_topology(void)
6615 {
6616 return 0;
6617 }
6618
6619 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6620 {
6621 int i;
6622 cpumask_var_t *doms;
6623
6624 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6625 if (!doms)
6626 return NULL;
6627 for (i = 0; i < ndoms; i++) {
6628 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6629 free_sched_domains(doms, i);
6630 return NULL;
6631 }
6632 }
6633 return doms;
6634 }
6635
6636 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6637 {
6638 unsigned int i;
6639 for (i = 0; i < ndoms; i++)
6640 free_cpumask_var(doms[i]);
6641 kfree(doms);
6642 }
6643
6644 /*
6645 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6646 * For now this just excludes isolated cpus, but could be used to
6647 * exclude other special cases in the future.
6648 */
6649 static int init_sched_domains(const struct cpumask *cpu_map)
6650 {
6651 int err;
6652
6653 arch_update_cpu_topology();
6654 ndoms_cur = 1;
6655 doms_cur = alloc_sched_domains(ndoms_cur);
6656 if (!doms_cur)
6657 doms_cur = &fallback_doms;
6658 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6659 err = build_sched_domains(doms_cur[0], NULL);
6660 register_sched_domain_sysctl();
6661
6662 return err;
6663 }
6664
6665 /*
6666 * Detach sched domains from a group of cpus specified in cpu_map
6667 * These cpus will now be attached to the NULL domain
6668 */
6669 static void detach_destroy_domains(const struct cpumask *cpu_map)
6670 {
6671 int i;
6672
6673 rcu_read_lock();
6674 for_each_cpu(i, cpu_map)
6675 cpu_attach_domain(NULL, &def_root_domain, i);
6676 rcu_read_unlock();
6677 }
6678
6679 /* handle null as "default" */
6680 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6681 struct sched_domain_attr *new, int idx_new)
6682 {
6683 struct sched_domain_attr tmp;
6684
6685 /* fast path */
6686 if (!new && !cur)
6687 return 1;
6688
6689 tmp = SD_ATTR_INIT;
6690 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6691 new ? (new + idx_new) : &tmp,
6692 sizeof(struct sched_domain_attr));
6693 }
6694
6695 /*
6696 * Partition sched domains as specified by the 'ndoms_new'
6697 * cpumasks in the array doms_new[] of cpumasks. This compares
6698 * doms_new[] to the current sched domain partitioning, doms_cur[].
6699 * It destroys each deleted domain and builds each new domain.
6700 *
6701 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6702 * The masks don't intersect (don't overlap.) We should setup one
6703 * sched domain for each mask. CPUs not in any of the cpumasks will
6704 * not be load balanced. If the same cpumask appears both in the
6705 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6706 * it as it is.
6707 *
6708 * The passed in 'doms_new' should be allocated using
6709 * alloc_sched_domains. This routine takes ownership of it and will
6710 * free_sched_domains it when done with it. If the caller failed the
6711 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6712 * and partition_sched_domains() will fallback to the single partition
6713 * 'fallback_doms', it also forces the domains to be rebuilt.
6714 *
6715 * If doms_new == NULL it will be replaced with cpu_online_mask.
6716 * ndoms_new == 0 is a special case for destroying existing domains,
6717 * and it will not create the default domain.
6718 *
6719 * Call with hotplug lock held
6720 */
6721 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6722 struct sched_domain_attr *dattr_new)
6723 {
6724 int i, j, n;
6725 int new_topology;
6726
6727 mutex_lock(&sched_domains_mutex);
6728
6729 /* always unregister in case we don't destroy any domains */
6730 unregister_sched_domain_sysctl();
6731
6732 /* Let architecture update cpu core mappings. */
6733 new_topology = arch_update_cpu_topology();
6734
6735 n = doms_new ? ndoms_new : 0;
6736
6737 /* Destroy deleted domains */
6738 for (i = 0; i < ndoms_cur; i++) {
6739 for (j = 0; j < n && !new_topology; j++) {
6740 if (cpumask_equal(doms_cur[i], doms_new[j])
6741 && dattrs_equal(dattr_cur, i, dattr_new, j))
6742 goto match1;
6743 }
6744 /* no match - a current sched domain not in new doms_new[] */
6745 detach_destroy_domains(doms_cur[i]);
6746 match1:
6747 ;
6748 }
6749
6750 n = ndoms_cur;
6751 if (doms_new == NULL) {
6752 n = 0;
6753 doms_new = &fallback_doms;
6754 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6755 WARN_ON_ONCE(dattr_new);
6756 }
6757
6758 /* Build new domains */
6759 for (i = 0; i < ndoms_new; i++) {
6760 for (j = 0; j < n && !new_topology; j++) {
6761 if (cpumask_equal(doms_new[i], doms_cur[j])
6762 && dattrs_equal(dattr_new, i, dattr_cur, j))
6763 goto match2;
6764 }
6765 /* no match - add a new doms_new */
6766 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6767 match2:
6768 ;
6769 }
6770
6771 /* Remember the new sched domains */
6772 if (doms_cur != &fallback_doms)
6773 free_sched_domains(doms_cur, ndoms_cur);
6774 kfree(dattr_cur); /* kfree(NULL) is safe */
6775 doms_cur = doms_new;
6776 dattr_cur = dattr_new;
6777 ndoms_cur = ndoms_new;
6778
6779 register_sched_domain_sysctl();
6780
6781 mutex_unlock(&sched_domains_mutex);
6782 }
6783
6784 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6785
6786 /*
6787 * Update cpusets according to cpu_active mask. If cpusets are
6788 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6789 * around partition_sched_domains().
6790 *
6791 * If we come here as part of a suspend/resume, don't touch cpusets because we
6792 * want to restore it back to its original state upon resume anyway.
6793 */
6794 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6795 void *hcpu)
6796 {
6797 switch (action) {
6798 case CPU_ONLINE_FROZEN:
6799 case CPU_DOWN_FAILED_FROZEN:
6800
6801 /*
6802 * num_cpus_frozen tracks how many CPUs are involved in suspend
6803 * resume sequence. As long as this is not the last online
6804 * operation in the resume sequence, just build a single sched
6805 * domain, ignoring cpusets.
6806 */
6807 num_cpus_frozen--;
6808 if (likely(num_cpus_frozen)) {
6809 partition_sched_domains(1, NULL, NULL);
6810 break;
6811 }
6812
6813 /*
6814 * This is the last CPU online operation. So fall through and
6815 * restore the original sched domains by considering the
6816 * cpuset configurations.
6817 */
6818
6819 case CPU_ONLINE:
6820 case CPU_DOWN_FAILED:
6821 cpuset_update_active_cpus(true);
6822 break;
6823 default:
6824 return NOTIFY_DONE;
6825 }
6826 return NOTIFY_OK;
6827 }
6828
6829 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6830 void *hcpu)
6831 {
6832 switch (action) {
6833 case CPU_DOWN_PREPARE:
6834 cpuset_update_active_cpus(false);
6835 break;
6836 case CPU_DOWN_PREPARE_FROZEN:
6837 num_cpus_frozen++;
6838 partition_sched_domains(1, NULL, NULL);
6839 break;
6840 default:
6841 return NOTIFY_DONE;
6842 }
6843 return NOTIFY_OK;
6844 }
6845
6846 void __init sched_init_smp(void)
6847 {
6848 cpumask_var_t non_isolated_cpus;
6849
6850 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6851 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6852
6853 sched_init_numa();
6854
6855 /*
6856 * There's no userspace yet to cause hotplug operations; hence all the
6857 * cpu masks are stable and all blatant races in the below code cannot
6858 * happen.
6859 */
6860 mutex_lock(&sched_domains_mutex);
6861 init_sched_domains(cpu_active_mask);
6862 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6863 if (cpumask_empty(non_isolated_cpus))
6864 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6865 mutex_unlock(&sched_domains_mutex);
6866
6867 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6868 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6869 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6870
6871 init_hrtick();
6872
6873 /* Move init over to a non-isolated CPU */
6874 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6875 BUG();
6876 sched_init_granularity();
6877 free_cpumask_var(non_isolated_cpus);
6878
6879 init_sched_rt_class();
6880 init_sched_dl_class();
6881 }
6882 #else
6883 void __init sched_init_smp(void)
6884 {
6885 sched_init_granularity();
6886 }
6887 #endif /* CONFIG_SMP */
6888
6889 const_debug unsigned int sysctl_timer_migration = 1;
6890
6891 int in_sched_functions(unsigned long addr)
6892 {
6893 return in_lock_functions(addr) ||
6894 (addr >= (unsigned long)__sched_text_start
6895 && addr < (unsigned long)__sched_text_end);
6896 }
6897
6898 #ifdef CONFIG_CGROUP_SCHED
6899 /*
6900 * Default task group.
6901 * Every task in system belongs to this group at bootup.
6902 */
6903 struct task_group root_task_group;
6904 LIST_HEAD(task_groups);
6905 #endif
6906
6907 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6908
6909 void __init sched_init(void)
6910 {
6911 int i, j;
6912 unsigned long alloc_size = 0, ptr;
6913
6914 #ifdef CONFIG_FAIR_GROUP_SCHED
6915 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6916 #endif
6917 #ifdef CONFIG_RT_GROUP_SCHED
6918 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6919 #endif
6920 #ifdef CONFIG_CPUMASK_OFFSTACK
6921 alloc_size += num_possible_cpus() * cpumask_size();
6922 #endif
6923 if (alloc_size) {
6924 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6925
6926 #ifdef CONFIG_FAIR_GROUP_SCHED
6927 root_task_group.se = (struct sched_entity **)ptr;
6928 ptr += nr_cpu_ids * sizeof(void **);
6929
6930 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6931 ptr += nr_cpu_ids * sizeof(void **);
6932
6933 #endif /* CONFIG_FAIR_GROUP_SCHED */
6934 #ifdef CONFIG_RT_GROUP_SCHED
6935 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6936 ptr += nr_cpu_ids * sizeof(void **);
6937
6938 root_task_group.rt_rq = (struct rt_rq **)ptr;
6939 ptr += nr_cpu_ids * sizeof(void **);
6940
6941 #endif /* CONFIG_RT_GROUP_SCHED */
6942 #ifdef CONFIG_CPUMASK_OFFSTACK
6943 for_each_possible_cpu(i) {
6944 per_cpu(load_balance_mask, i) = (void *)ptr;
6945 ptr += cpumask_size();
6946 }
6947 #endif /* CONFIG_CPUMASK_OFFSTACK */
6948 }
6949
6950 init_rt_bandwidth(&def_rt_bandwidth,
6951 global_rt_period(), global_rt_runtime());
6952 init_dl_bandwidth(&def_dl_bandwidth,
6953 global_rt_period(), global_rt_runtime());
6954
6955 #ifdef CONFIG_SMP
6956 init_defrootdomain();
6957 #endif
6958
6959 #ifdef CONFIG_RT_GROUP_SCHED
6960 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6961 global_rt_period(), global_rt_runtime());
6962 #endif /* CONFIG_RT_GROUP_SCHED */
6963
6964 #ifdef CONFIG_CGROUP_SCHED
6965 list_add(&root_task_group.list, &task_groups);
6966 INIT_LIST_HEAD(&root_task_group.children);
6967 INIT_LIST_HEAD(&root_task_group.siblings);
6968 autogroup_init(&init_task);
6969
6970 #endif /* CONFIG_CGROUP_SCHED */
6971
6972 for_each_possible_cpu(i) {
6973 struct rq *rq;
6974
6975 rq = cpu_rq(i);
6976 raw_spin_lock_init(&rq->lock);
6977 rq->nr_running = 0;
6978 rq->calc_load_active = 0;
6979 rq->calc_load_update = jiffies + LOAD_FREQ;
6980 init_cfs_rq(&rq->cfs);
6981 init_rt_rq(&rq->rt, rq);
6982 init_dl_rq(&rq->dl, rq);
6983 #ifdef CONFIG_FAIR_GROUP_SCHED
6984 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6985 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6986 /*
6987 * How much cpu bandwidth does root_task_group get?
6988 *
6989 * In case of task-groups formed thr' the cgroup filesystem, it
6990 * gets 100% of the cpu resources in the system. This overall
6991 * system cpu resource is divided among the tasks of
6992 * root_task_group and its child task-groups in a fair manner,
6993 * based on each entity's (task or task-group's) weight
6994 * (se->load.weight).
6995 *
6996 * In other words, if root_task_group has 10 tasks of weight
6997 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6998 * then A0's share of the cpu resource is:
6999 *
7000 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7001 *
7002 * We achieve this by letting root_task_group's tasks sit
7003 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7004 */
7005 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7006 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7007 #endif /* CONFIG_FAIR_GROUP_SCHED */
7008
7009 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7010 #ifdef CONFIG_RT_GROUP_SCHED
7011 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7012 #endif
7013
7014 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7015 rq->cpu_load[j] = 0;
7016
7017 rq->last_load_update_tick = jiffies;
7018
7019 #ifdef CONFIG_SMP
7020 rq->sd = NULL;
7021 rq->rd = NULL;
7022 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7023 rq->post_schedule = 0;
7024 rq->active_balance = 0;
7025 rq->next_balance = jiffies;
7026 rq->push_cpu = 0;
7027 rq->cpu = i;
7028 rq->online = 0;
7029 rq->idle_stamp = 0;
7030 rq->avg_idle = 2*sysctl_sched_migration_cost;
7031 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7032
7033 INIT_LIST_HEAD(&rq->cfs_tasks);
7034
7035 rq_attach_root(rq, &def_root_domain);
7036 #ifdef CONFIG_NO_HZ_COMMON
7037 rq->nohz_flags = 0;
7038 #endif
7039 #ifdef CONFIG_NO_HZ_FULL
7040 rq->last_sched_tick = 0;
7041 #endif
7042 #endif
7043 init_rq_hrtick(rq);
7044 atomic_set(&rq->nr_iowait, 0);
7045 }
7046
7047 set_load_weight(&init_task);
7048
7049 #ifdef CONFIG_PREEMPT_NOTIFIERS
7050 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7051 #endif
7052
7053 /*
7054 * The boot idle thread does lazy MMU switching as well:
7055 */
7056 atomic_inc(&init_mm.mm_count);
7057 enter_lazy_tlb(&init_mm, current);
7058
7059 /*
7060 * Make us the idle thread. Technically, schedule() should not be
7061 * called from this thread, however somewhere below it might be,
7062 * but because we are the idle thread, we just pick up running again
7063 * when this runqueue becomes "idle".
7064 */
7065 init_idle(current, smp_processor_id());
7066
7067 calc_load_update = jiffies + LOAD_FREQ;
7068
7069 /*
7070 * During early bootup we pretend to be a normal task:
7071 */
7072 current->sched_class = &fair_sched_class;
7073
7074 #ifdef CONFIG_SMP
7075 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7076 /* May be allocated at isolcpus cmdline parse time */
7077 if (cpu_isolated_map == NULL)
7078 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7079 idle_thread_set_boot_cpu();
7080 set_cpu_rq_start_time();
7081 #endif
7082 init_sched_fair_class();
7083
7084 scheduler_running = 1;
7085 }
7086
7087 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7088 static inline int preempt_count_equals(int preempt_offset)
7089 {
7090 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7091
7092 return (nested == preempt_offset);
7093 }
7094
7095 void __might_sleep(const char *file, int line, int preempt_offset)
7096 {
7097 static unsigned long prev_jiffy; /* ratelimiting */
7098
7099 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7100 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7101 !is_idle_task(current)) ||
7102 system_state != SYSTEM_RUNNING || oops_in_progress)
7103 return;
7104 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7105 return;
7106 prev_jiffy = jiffies;
7107
7108 printk(KERN_ERR
7109 "BUG: sleeping function called from invalid context at %s:%d\n",
7110 file, line);
7111 printk(KERN_ERR
7112 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7113 in_atomic(), irqs_disabled(),
7114 current->pid, current->comm);
7115
7116 debug_show_held_locks(current);
7117 if (irqs_disabled())
7118 print_irqtrace_events(current);
7119 #ifdef CONFIG_DEBUG_PREEMPT
7120 if (!preempt_count_equals(preempt_offset)) {
7121 pr_err("Preemption disabled at:");
7122 print_ip_sym(current->preempt_disable_ip);
7123 pr_cont("\n");
7124 }
7125 #endif
7126 dump_stack();
7127 }
7128 EXPORT_SYMBOL(__might_sleep);
7129 #endif
7130
7131 #ifdef CONFIG_MAGIC_SYSRQ
7132 static void normalize_task(struct rq *rq, struct task_struct *p)
7133 {
7134 const struct sched_class *prev_class = p->sched_class;
7135 struct sched_attr attr = {
7136 .sched_policy = SCHED_NORMAL,
7137 };
7138 int old_prio = p->prio;
7139 int on_rq;
7140
7141 on_rq = p->on_rq;
7142 if (on_rq)
7143 dequeue_task(rq, p, 0);
7144 __setscheduler(rq, p, &attr);
7145 if (on_rq) {
7146 enqueue_task(rq, p, 0);
7147 resched_curr(rq);
7148 }
7149
7150 check_class_changed(rq, p, prev_class, old_prio);
7151 }
7152
7153 void normalize_rt_tasks(void)
7154 {
7155 struct task_struct *g, *p;
7156 unsigned long flags;
7157 struct rq *rq;
7158
7159 read_lock_irqsave(&tasklist_lock, flags);
7160 do_each_thread(g, p) {
7161 /*
7162 * Only normalize user tasks:
7163 */
7164 if (!p->mm)
7165 continue;
7166
7167 p->se.exec_start = 0;
7168 #ifdef CONFIG_SCHEDSTATS
7169 p->se.statistics.wait_start = 0;
7170 p->se.statistics.sleep_start = 0;
7171 p->se.statistics.block_start = 0;
7172 #endif
7173
7174 if (!dl_task(p) && !rt_task(p)) {
7175 /*
7176 * Renice negative nice level userspace
7177 * tasks back to 0:
7178 */
7179 if (task_nice(p) < 0 && p->mm)
7180 set_user_nice(p, 0);
7181 continue;
7182 }
7183
7184 raw_spin_lock(&p->pi_lock);
7185 rq = __task_rq_lock(p);
7186
7187 normalize_task(rq, p);
7188
7189 __task_rq_unlock(rq);
7190 raw_spin_unlock(&p->pi_lock);
7191 } while_each_thread(g, p);
7192
7193 read_unlock_irqrestore(&tasklist_lock, flags);
7194 }
7195
7196 #endif /* CONFIG_MAGIC_SYSRQ */
7197
7198 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7199 /*
7200 * These functions are only useful for the IA64 MCA handling, or kdb.
7201 *
7202 * They can only be called when the whole system has been
7203 * stopped - every CPU needs to be quiescent, and no scheduling
7204 * activity can take place. Using them for anything else would
7205 * be a serious bug, and as a result, they aren't even visible
7206 * under any other configuration.
7207 */
7208
7209 /**
7210 * curr_task - return the current task for a given cpu.
7211 * @cpu: the processor in question.
7212 *
7213 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7214 *
7215 * Return: The current task for @cpu.
7216 */
7217 struct task_struct *curr_task(int cpu)
7218 {
7219 return cpu_curr(cpu);
7220 }
7221
7222 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7223
7224 #ifdef CONFIG_IA64
7225 /**
7226 * set_curr_task - set the current task for a given cpu.
7227 * @cpu: the processor in question.
7228 * @p: the task pointer to set.
7229 *
7230 * Description: This function must only be used when non-maskable interrupts
7231 * are serviced on a separate stack. It allows the architecture to switch the
7232 * notion of the current task on a cpu in a non-blocking manner. This function
7233 * must be called with all CPU's synchronized, and interrupts disabled, the
7234 * and caller must save the original value of the current task (see
7235 * curr_task() above) and restore that value before reenabling interrupts and
7236 * re-starting the system.
7237 *
7238 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7239 */
7240 void set_curr_task(int cpu, struct task_struct *p)
7241 {
7242 cpu_curr(cpu) = p;
7243 }
7244
7245 #endif
7246
7247 #ifdef CONFIG_CGROUP_SCHED
7248 /* task_group_lock serializes the addition/removal of task groups */
7249 static DEFINE_SPINLOCK(task_group_lock);
7250
7251 static void free_sched_group(struct task_group *tg)
7252 {
7253 free_fair_sched_group(tg);
7254 free_rt_sched_group(tg);
7255 autogroup_free(tg);
7256 kfree(tg);
7257 }
7258
7259 /* allocate runqueue etc for a new task group */
7260 struct task_group *sched_create_group(struct task_group *parent)
7261 {
7262 struct task_group *tg;
7263
7264 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7265 if (!tg)
7266 return ERR_PTR(-ENOMEM);
7267
7268 if (!alloc_fair_sched_group(tg, parent))
7269 goto err;
7270
7271 if (!alloc_rt_sched_group(tg, parent))
7272 goto err;
7273
7274 return tg;
7275
7276 err:
7277 free_sched_group(tg);
7278 return ERR_PTR(-ENOMEM);
7279 }
7280
7281 void sched_online_group(struct task_group *tg, struct task_group *parent)
7282 {
7283 unsigned long flags;
7284
7285 spin_lock_irqsave(&task_group_lock, flags);
7286 list_add_rcu(&tg->list, &task_groups);
7287
7288 WARN_ON(!parent); /* root should already exist */
7289
7290 tg->parent = parent;
7291 INIT_LIST_HEAD(&tg->children);
7292 list_add_rcu(&tg->siblings, &parent->children);
7293 spin_unlock_irqrestore(&task_group_lock, flags);
7294 }
7295
7296 /* rcu callback to free various structures associated with a task group */
7297 static void free_sched_group_rcu(struct rcu_head *rhp)
7298 {
7299 /* now it should be safe to free those cfs_rqs */
7300 free_sched_group(container_of(rhp, struct task_group, rcu));
7301 }
7302
7303 /* Destroy runqueue etc associated with a task group */
7304 void sched_destroy_group(struct task_group *tg)
7305 {
7306 /* wait for possible concurrent references to cfs_rqs complete */
7307 call_rcu(&tg->rcu, free_sched_group_rcu);
7308 }
7309
7310 void sched_offline_group(struct task_group *tg)
7311 {
7312 unsigned long flags;
7313 int i;
7314
7315 /* end participation in shares distribution */
7316 for_each_possible_cpu(i)
7317 unregister_fair_sched_group(tg, i);
7318
7319 spin_lock_irqsave(&task_group_lock, flags);
7320 list_del_rcu(&tg->list);
7321 list_del_rcu(&tg->siblings);
7322 spin_unlock_irqrestore(&task_group_lock, flags);
7323 }
7324
7325 /* change task's runqueue when it moves between groups.
7326 * The caller of this function should have put the task in its new group
7327 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7328 * reflect its new group.
7329 */
7330 void sched_move_task(struct task_struct *tsk)
7331 {
7332 struct task_group *tg;
7333 int on_rq, running;
7334 unsigned long flags;
7335 struct rq *rq;
7336
7337 rq = task_rq_lock(tsk, &flags);
7338
7339 running = task_current(rq, tsk);
7340 on_rq = tsk->on_rq;
7341
7342 if (on_rq)
7343 dequeue_task(rq, tsk, 0);
7344 if (unlikely(running))
7345 tsk->sched_class->put_prev_task(rq, tsk);
7346
7347 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7348 lockdep_is_held(&tsk->sighand->siglock)),
7349 struct task_group, css);
7350 tg = autogroup_task_group(tsk, tg);
7351 tsk->sched_task_group = tg;
7352
7353 #ifdef CONFIG_FAIR_GROUP_SCHED
7354 if (tsk->sched_class->task_move_group)
7355 tsk->sched_class->task_move_group(tsk, on_rq);
7356 else
7357 #endif
7358 set_task_rq(tsk, task_cpu(tsk));
7359
7360 if (unlikely(running))
7361 tsk->sched_class->set_curr_task(rq);
7362 if (on_rq)
7363 enqueue_task(rq, tsk, 0);
7364
7365 task_rq_unlock(rq, tsk, &flags);
7366 }
7367 #endif /* CONFIG_CGROUP_SCHED */
7368
7369 #ifdef CONFIG_RT_GROUP_SCHED
7370 /*
7371 * Ensure that the real time constraints are schedulable.
7372 */
7373 static DEFINE_MUTEX(rt_constraints_mutex);
7374
7375 /* Must be called with tasklist_lock held */
7376 static inline int tg_has_rt_tasks(struct task_group *tg)
7377 {
7378 struct task_struct *g, *p;
7379
7380 do_each_thread(g, p) {
7381 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7382 return 1;
7383 } while_each_thread(g, p);
7384
7385 return 0;
7386 }
7387
7388 struct rt_schedulable_data {
7389 struct task_group *tg;
7390 u64 rt_period;
7391 u64 rt_runtime;
7392 };
7393
7394 static int tg_rt_schedulable(struct task_group *tg, void *data)
7395 {
7396 struct rt_schedulable_data *d = data;
7397 struct task_group *child;
7398 unsigned long total, sum = 0;
7399 u64 period, runtime;
7400
7401 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7402 runtime = tg->rt_bandwidth.rt_runtime;
7403
7404 if (tg == d->tg) {
7405 period = d->rt_period;
7406 runtime = d->rt_runtime;
7407 }
7408
7409 /*
7410 * Cannot have more runtime than the period.
7411 */
7412 if (runtime > period && runtime != RUNTIME_INF)
7413 return -EINVAL;
7414
7415 /*
7416 * Ensure we don't starve existing RT tasks.
7417 */
7418 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7419 return -EBUSY;
7420
7421 total = to_ratio(period, runtime);
7422
7423 /*
7424 * Nobody can have more than the global setting allows.
7425 */
7426 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7427 return -EINVAL;
7428
7429 /*
7430 * The sum of our children's runtime should not exceed our own.
7431 */
7432 list_for_each_entry_rcu(child, &tg->children, siblings) {
7433 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7434 runtime = child->rt_bandwidth.rt_runtime;
7435
7436 if (child == d->tg) {
7437 period = d->rt_period;
7438 runtime = d->rt_runtime;
7439 }
7440
7441 sum += to_ratio(period, runtime);
7442 }
7443
7444 if (sum > total)
7445 return -EINVAL;
7446
7447 return 0;
7448 }
7449
7450 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7451 {
7452 int ret;
7453
7454 struct rt_schedulable_data data = {
7455 .tg = tg,
7456 .rt_period = period,
7457 .rt_runtime = runtime,
7458 };
7459
7460 rcu_read_lock();
7461 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7462 rcu_read_unlock();
7463
7464 return ret;
7465 }
7466
7467 static int tg_set_rt_bandwidth(struct task_group *tg,
7468 u64 rt_period, u64 rt_runtime)
7469 {
7470 int i, err = 0;
7471
7472 mutex_lock(&rt_constraints_mutex);
7473 read_lock(&tasklist_lock);
7474 err = __rt_schedulable(tg, rt_period, rt_runtime);
7475 if (err)
7476 goto unlock;
7477
7478 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7479 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7480 tg->rt_bandwidth.rt_runtime = rt_runtime;
7481
7482 for_each_possible_cpu(i) {
7483 struct rt_rq *rt_rq = tg->rt_rq[i];
7484
7485 raw_spin_lock(&rt_rq->rt_runtime_lock);
7486 rt_rq->rt_runtime = rt_runtime;
7487 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7488 }
7489 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7490 unlock:
7491 read_unlock(&tasklist_lock);
7492 mutex_unlock(&rt_constraints_mutex);
7493
7494 return err;
7495 }
7496
7497 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7498 {
7499 u64 rt_runtime, rt_period;
7500
7501 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7502 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7503 if (rt_runtime_us < 0)
7504 rt_runtime = RUNTIME_INF;
7505
7506 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7507 }
7508
7509 static long sched_group_rt_runtime(struct task_group *tg)
7510 {
7511 u64 rt_runtime_us;
7512
7513 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7514 return -1;
7515
7516 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7517 do_div(rt_runtime_us, NSEC_PER_USEC);
7518 return rt_runtime_us;
7519 }
7520
7521 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7522 {
7523 u64 rt_runtime, rt_period;
7524
7525 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7526 rt_runtime = tg->rt_bandwidth.rt_runtime;
7527
7528 if (rt_period == 0)
7529 return -EINVAL;
7530
7531 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7532 }
7533
7534 static long sched_group_rt_period(struct task_group *tg)
7535 {
7536 u64 rt_period_us;
7537
7538 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7539 do_div(rt_period_us, NSEC_PER_USEC);
7540 return rt_period_us;
7541 }
7542 #endif /* CONFIG_RT_GROUP_SCHED */
7543
7544 #ifdef CONFIG_RT_GROUP_SCHED
7545 static int sched_rt_global_constraints(void)
7546 {
7547 int ret = 0;
7548
7549 mutex_lock(&rt_constraints_mutex);
7550 read_lock(&tasklist_lock);
7551 ret = __rt_schedulable(NULL, 0, 0);
7552 read_unlock(&tasklist_lock);
7553 mutex_unlock(&rt_constraints_mutex);
7554
7555 return ret;
7556 }
7557
7558 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7559 {
7560 /* Don't accept realtime tasks when there is no way for them to run */
7561 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7562 return 0;
7563
7564 return 1;
7565 }
7566
7567 #else /* !CONFIG_RT_GROUP_SCHED */
7568 static int sched_rt_global_constraints(void)
7569 {
7570 unsigned long flags;
7571 int i, ret = 0;
7572
7573 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7574 for_each_possible_cpu(i) {
7575 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7576
7577 raw_spin_lock(&rt_rq->rt_runtime_lock);
7578 rt_rq->rt_runtime = global_rt_runtime();
7579 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7580 }
7581 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7582
7583 return ret;
7584 }
7585 #endif /* CONFIG_RT_GROUP_SCHED */
7586
7587 static int sched_dl_global_constraints(void)
7588 {
7589 u64 runtime = global_rt_runtime();
7590 u64 period = global_rt_period();
7591 u64 new_bw = to_ratio(period, runtime);
7592 int cpu, ret = 0;
7593 unsigned long flags;
7594
7595 /*
7596 * Here we want to check the bandwidth not being set to some
7597 * value smaller than the currently allocated bandwidth in
7598 * any of the root_domains.
7599 *
7600 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7601 * cycling on root_domains... Discussion on different/better
7602 * solutions is welcome!
7603 */
7604 for_each_possible_cpu(cpu) {
7605 struct dl_bw *dl_b = dl_bw_of(cpu);
7606
7607 raw_spin_lock_irqsave(&dl_b->lock, flags);
7608 if (new_bw < dl_b->total_bw)
7609 ret = -EBUSY;
7610 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7611
7612 if (ret)
7613 break;
7614 }
7615
7616 return ret;
7617 }
7618
7619 static void sched_dl_do_global(void)
7620 {
7621 u64 new_bw = -1;
7622 int cpu;
7623 unsigned long flags;
7624
7625 def_dl_bandwidth.dl_period = global_rt_period();
7626 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7627
7628 if (global_rt_runtime() != RUNTIME_INF)
7629 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7630
7631 /*
7632 * FIXME: As above...
7633 */
7634 for_each_possible_cpu(cpu) {
7635 struct dl_bw *dl_b = dl_bw_of(cpu);
7636
7637 raw_spin_lock_irqsave(&dl_b->lock, flags);
7638 dl_b->bw = new_bw;
7639 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7640 }
7641 }
7642
7643 static int sched_rt_global_validate(void)
7644 {
7645 if (sysctl_sched_rt_period <= 0)
7646 return -EINVAL;
7647
7648 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7649 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7650 return -EINVAL;
7651
7652 return 0;
7653 }
7654
7655 static void sched_rt_do_global(void)
7656 {
7657 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7658 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7659 }
7660
7661 int sched_rt_handler(struct ctl_table *table, int write,
7662 void __user *buffer, size_t *lenp,
7663 loff_t *ppos)
7664 {
7665 int old_period, old_runtime;
7666 static DEFINE_MUTEX(mutex);
7667 int ret;
7668
7669 mutex_lock(&mutex);
7670 old_period = sysctl_sched_rt_period;
7671 old_runtime = sysctl_sched_rt_runtime;
7672
7673 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7674
7675 if (!ret && write) {
7676 ret = sched_rt_global_validate();
7677 if (ret)
7678 goto undo;
7679
7680 ret = sched_rt_global_constraints();
7681 if (ret)
7682 goto undo;
7683
7684 ret = sched_dl_global_constraints();
7685 if (ret)
7686 goto undo;
7687
7688 sched_rt_do_global();
7689 sched_dl_do_global();
7690 }
7691 if (0) {
7692 undo:
7693 sysctl_sched_rt_period = old_period;
7694 sysctl_sched_rt_runtime = old_runtime;
7695 }
7696 mutex_unlock(&mutex);
7697
7698 return ret;
7699 }
7700
7701 int sched_rr_handler(struct ctl_table *table, int write,
7702 void __user *buffer, size_t *lenp,
7703 loff_t *ppos)
7704 {
7705 int ret;
7706 static DEFINE_MUTEX(mutex);
7707
7708 mutex_lock(&mutex);
7709 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7710 /* make sure that internally we keep jiffies */
7711 /* also, writing zero resets timeslice to default */
7712 if (!ret && write) {
7713 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7714 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7715 }
7716 mutex_unlock(&mutex);
7717 return ret;
7718 }
7719
7720 #ifdef CONFIG_CGROUP_SCHED
7721
7722 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7723 {
7724 return css ? container_of(css, struct task_group, css) : NULL;
7725 }
7726
7727 static struct cgroup_subsys_state *
7728 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7729 {
7730 struct task_group *parent = css_tg(parent_css);
7731 struct task_group *tg;
7732
7733 if (!parent) {
7734 /* This is early initialization for the top cgroup */
7735 return &root_task_group.css;
7736 }
7737
7738 tg = sched_create_group(parent);
7739 if (IS_ERR(tg))
7740 return ERR_PTR(-ENOMEM);
7741
7742 return &tg->css;
7743 }
7744
7745 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7746 {
7747 struct task_group *tg = css_tg(css);
7748 struct task_group *parent = css_tg(css->parent);
7749
7750 if (parent)
7751 sched_online_group(tg, parent);
7752 return 0;
7753 }
7754
7755 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7756 {
7757 struct task_group *tg = css_tg(css);
7758
7759 sched_destroy_group(tg);
7760 }
7761
7762 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7763 {
7764 struct task_group *tg = css_tg(css);
7765
7766 sched_offline_group(tg);
7767 }
7768
7769 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7770 struct cgroup_taskset *tset)
7771 {
7772 struct task_struct *task;
7773
7774 cgroup_taskset_for_each(task, tset) {
7775 #ifdef CONFIG_RT_GROUP_SCHED
7776 if (!sched_rt_can_attach(css_tg(css), task))
7777 return -EINVAL;
7778 #else
7779 /* We don't support RT-tasks being in separate groups */
7780 if (task->sched_class != &fair_sched_class)
7781 return -EINVAL;
7782 #endif
7783 }
7784 return 0;
7785 }
7786
7787 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7788 struct cgroup_taskset *tset)
7789 {
7790 struct task_struct *task;
7791
7792 cgroup_taskset_for_each(task, tset)
7793 sched_move_task(task);
7794 }
7795
7796 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7797 struct cgroup_subsys_state *old_css,
7798 struct task_struct *task)
7799 {
7800 /*
7801 * cgroup_exit() is called in the copy_process() failure path.
7802 * Ignore this case since the task hasn't ran yet, this avoids
7803 * trying to poke a half freed task state from generic code.
7804 */
7805 if (!(task->flags & PF_EXITING))
7806 return;
7807
7808 sched_move_task(task);
7809 }
7810
7811 #ifdef CONFIG_FAIR_GROUP_SCHED
7812 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7813 struct cftype *cftype, u64 shareval)
7814 {
7815 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7816 }
7817
7818 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7819 struct cftype *cft)
7820 {
7821 struct task_group *tg = css_tg(css);
7822
7823 return (u64) scale_load_down(tg->shares);
7824 }
7825
7826 #ifdef CONFIG_CFS_BANDWIDTH
7827 static DEFINE_MUTEX(cfs_constraints_mutex);
7828
7829 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7830 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7831
7832 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7833
7834 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7835 {
7836 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7837 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7838
7839 if (tg == &root_task_group)
7840 return -EINVAL;
7841
7842 /*
7843 * Ensure we have at some amount of bandwidth every period. This is
7844 * to prevent reaching a state of large arrears when throttled via
7845 * entity_tick() resulting in prolonged exit starvation.
7846 */
7847 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7848 return -EINVAL;
7849
7850 /*
7851 * Likewise, bound things on the otherside by preventing insane quota
7852 * periods. This also allows us to normalize in computing quota
7853 * feasibility.
7854 */
7855 if (period > max_cfs_quota_period)
7856 return -EINVAL;
7857
7858 /*
7859 * Prevent race between setting of cfs_rq->runtime_enabled and
7860 * unthrottle_offline_cfs_rqs().
7861 */
7862 get_online_cpus();
7863 mutex_lock(&cfs_constraints_mutex);
7864 ret = __cfs_schedulable(tg, period, quota);
7865 if (ret)
7866 goto out_unlock;
7867
7868 runtime_enabled = quota != RUNTIME_INF;
7869 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7870 /*
7871 * If we need to toggle cfs_bandwidth_used, off->on must occur
7872 * before making related changes, and on->off must occur afterwards
7873 */
7874 if (runtime_enabled && !runtime_was_enabled)
7875 cfs_bandwidth_usage_inc();
7876 raw_spin_lock_irq(&cfs_b->lock);
7877 cfs_b->period = ns_to_ktime(period);
7878 cfs_b->quota = quota;
7879
7880 __refill_cfs_bandwidth_runtime(cfs_b);
7881 /* restart the period timer (if active) to handle new period expiry */
7882 if (runtime_enabled && cfs_b->timer_active) {
7883 /* force a reprogram */
7884 __start_cfs_bandwidth(cfs_b, true);
7885 }
7886 raw_spin_unlock_irq(&cfs_b->lock);
7887
7888 for_each_online_cpu(i) {
7889 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7890 struct rq *rq = cfs_rq->rq;
7891
7892 raw_spin_lock_irq(&rq->lock);
7893 cfs_rq->runtime_enabled = runtime_enabled;
7894 cfs_rq->runtime_remaining = 0;
7895
7896 if (cfs_rq->throttled)
7897 unthrottle_cfs_rq(cfs_rq);
7898 raw_spin_unlock_irq(&rq->lock);
7899 }
7900 if (runtime_was_enabled && !runtime_enabled)
7901 cfs_bandwidth_usage_dec();
7902 out_unlock:
7903 mutex_unlock(&cfs_constraints_mutex);
7904 put_online_cpus();
7905
7906 return ret;
7907 }
7908
7909 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7910 {
7911 u64 quota, period;
7912
7913 period = ktime_to_ns(tg->cfs_bandwidth.period);
7914 if (cfs_quota_us < 0)
7915 quota = RUNTIME_INF;
7916 else
7917 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7918
7919 return tg_set_cfs_bandwidth(tg, period, quota);
7920 }
7921
7922 long tg_get_cfs_quota(struct task_group *tg)
7923 {
7924 u64 quota_us;
7925
7926 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7927 return -1;
7928
7929 quota_us = tg->cfs_bandwidth.quota;
7930 do_div(quota_us, NSEC_PER_USEC);
7931
7932 return quota_us;
7933 }
7934
7935 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7936 {
7937 u64 quota, period;
7938
7939 period = (u64)cfs_period_us * NSEC_PER_USEC;
7940 quota = tg->cfs_bandwidth.quota;
7941
7942 return tg_set_cfs_bandwidth(tg, period, quota);
7943 }
7944
7945 long tg_get_cfs_period(struct task_group *tg)
7946 {
7947 u64 cfs_period_us;
7948
7949 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7950 do_div(cfs_period_us, NSEC_PER_USEC);
7951
7952 return cfs_period_us;
7953 }
7954
7955 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7956 struct cftype *cft)
7957 {
7958 return tg_get_cfs_quota(css_tg(css));
7959 }
7960
7961 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7962 struct cftype *cftype, s64 cfs_quota_us)
7963 {
7964 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7965 }
7966
7967 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7968 struct cftype *cft)
7969 {
7970 return tg_get_cfs_period(css_tg(css));
7971 }
7972
7973 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7974 struct cftype *cftype, u64 cfs_period_us)
7975 {
7976 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7977 }
7978
7979 struct cfs_schedulable_data {
7980 struct task_group *tg;
7981 u64 period, quota;
7982 };
7983
7984 /*
7985 * normalize group quota/period to be quota/max_period
7986 * note: units are usecs
7987 */
7988 static u64 normalize_cfs_quota(struct task_group *tg,
7989 struct cfs_schedulable_data *d)
7990 {
7991 u64 quota, period;
7992
7993 if (tg == d->tg) {
7994 period = d->period;
7995 quota = d->quota;
7996 } else {
7997 period = tg_get_cfs_period(tg);
7998 quota = tg_get_cfs_quota(tg);
7999 }
8000
8001 /* note: these should typically be equivalent */
8002 if (quota == RUNTIME_INF || quota == -1)
8003 return RUNTIME_INF;
8004
8005 return to_ratio(period, quota);
8006 }
8007
8008 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8009 {
8010 struct cfs_schedulable_data *d = data;
8011 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8012 s64 quota = 0, parent_quota = -1;
8013
8014 if (!tg->parent) {
8015 quota = RUNTIME_INF;
8016 } else {
8017 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8018
8019 quota = normalize_cfs_quota(tg, d);
8020 parent_quota = parent_b->hierarchal_quota;
8021
8022 /*
8023 * ensure max(child_quota) <= parent_quota, inherit when no
8024 * limit is set
8025 */
8026 if (quota == RUNTIME_INF)
8027 quota = parent_quota;
8028 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8029 return -EINVAL;
8030 }
8031 cfs_b->hierarchal_quota = quota;
8032
8033 return 0;
8034 }
8035
8036 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8037 {
8038 int ret;
8039 struct cfs_schedulable_data data = {
8040 .tg = tg,
8041 .period = period,
8042 .quota = quota,
8043 };
8044
8045 if (quota != RUNTIME_INF) {
8046 do_div(data.period, NSEC_PER_USEC);
8047 do_div(data.quota, NSEC_PER_USEC);
8048 }
8049
8050 rcu_read_lock();
8051 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8052 rcu_read_unlock();
8053
8054 return ret;
8055 }
8056
8057 static int cpu_stats_show(struct seq_file *sf, void *v)
8058 {
8059 struct task_group *tg = css_tg(seq_css(sf));
8060 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8061
8062 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8063 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8064 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8065
8066 return 0;
8067 }
8068 #endif /* CONFIG_CFS_BANDWIDTH */
8069 #endif /* CONFIG_FAIR_GROUP_SCHED */
8070
8071 #ifdef CONFIG_RT_GROUP_SCHED
8072 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8073 struct cftype *cft, s64 val)
8074 {
8075 return sched_group_set_rt_runtime(css_tg(css), val);
8076 }
8077
8078 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8079 struct cftype *cft)
8080 {
8081 return sched_group_rt_runtime(css_tg(css));
8082 }
8083
8084 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8085 struct cftype *cftype, u64 rt_period_us)
8086 {
8087 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8088 }
8089
8090 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8091 struct cftype *cft)
8092 {
8093 return sched_group_rt_period(css_tg(css));
8094 }
8095 #endif /* CONFIG_RT_GROUP_SCHED */
8096
8097 static struct cftype cpu_files[] = {
8098 #ifdef CONFIG_FAIR_GROUP_SCHED
8099 {
8100 .name = "shares",
8101 .read_u64 = cpu_shares_read_u64,
8102 .write_u64 = cpu_shares_write_u64,
8103 },
8104 #endif
8105 #ifdef CONFIG_CFS_BANDWIDTH
8106 {
8107 .name = "cfs_quota_us",
8108 .read_s64 = cpu_cfs_quota_read_s64,
8109 .write_s64 = cpu_cfs_quota_write_s64,
8110 },
8111 {
8112 .name = "cfs_period_us",
8113 .read_u64 = cpu_cfs_period_read_u64,
8114 .write_u64 = cpu_cfs_period_write_u64,
8115 },
8116 {
8117 .name = "stat",
8118 .seq_show = cpu_stats_show,
8119 },
8120 #endif
8121 #ifdef CONFIG_RT_GROUP_SCHED
8122 {
8123 .name = "rt_runtime_us",
8124 .read_s64 = cpu_rt_runtime_read,
8125 .write_s64 = cpu_rt_runtime_write,
8126 },
8127 {
8128 .name = "rt_period_us",
8129 .read_u64 = cpu_rt_period_read_uint,
8130 .write_u64 = cpu_rt_period_write_uint,
8131 },
8132 #endif
8133 { } /* terminate */
8134 };
8135
8136 struct cgroup_subsys cpu_cgrp_subsys = {
8137 .css_alloc = cpu_cgroup_css_alloc,
8138 .css_free = cpu_cgroup_css_free,
8139 .css_online = cpu_cgroup_css_online,
8140 .css_offline = cpu_cgroup_css_offline,
8141 .can_attach = cpu_cgroup_can_attach,
8142 .attach = cpu_cgroup_attach,
8143 .exit = cpu_cgroup_exit,
8144 .legacy_cftypes = cpu_files,
8145 .early_init = 1,
8146 };
8147
8148 #endif /* CONFIG_CGROUP_SCHED */
8149
8150 void dump_cpu_task(int cpu)
8151 {
8152 pr_info("Task dump for CPU %d:\n", cpu);
8153 sched_show_task(cpu_curr(cpu));
8154 }
This page took 0.226169 seconds and 5 git commands to generate.