Merge tag 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon/linux...
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 unsigned long delta;
96 ktime_t soft, hard, now;
97
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
104
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111 }
112
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118 void update_rq_clock(struct rq *rq)
119 {
120 s64 delta;
121
122 lockdep_assert_held(&rq->lock);
123
124 if (rq->clock_skip_update & RQCF_ACT_SKIP)
125 return;
126
127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128 if (delta < 0)
129 return;
130 rq->clock += delta;
131 update_rq_clock_task(rq, delta);
132 }
133
134 /*
135 * Debugging: various feature bits
136 */
137
138 #define SCHED_FEAT(name, enabled) \
139 (1UL << __SCHED_FEAT_##name) * enabled |
140
141 const_debug unsigned int sysctl_sched_features =
142 #include "features.h"
143 0;
144
145 #undef SCHED_FEAT
146
147 #ifdef CONFIG_SCHED_DEBUG
148 #define SCHED_FEAT(name, enabled) \
149 #name ,
150
151 static const char * const sched_feat_names[] = {
152 #include "features.h"
153 };
154
155 #undef SCHED_FEAT
156
157 static int sched_feat_show(struct seq_file *m, void *v)
158 {
159 int i;
160
161 for (i = 0; i < __SCHED_FEAT_NR; i++) {
162 if (!(sysctl_sched_features & (1UL << i)))
163 seq_puts(m, "NO_");
164 seq_printf(m, "%s ", sched_feat_names[i]);
165 }
166 seq_puts(m, "\n");
167
168 return 0;
169 }
170
171 #ifdef HAVE_JUMP_LABEL
172
173 #define jump_label_key__true STATIC_KEY_INIT_TRUE
174 #define jump_label_key__false STATIC_KEY_INIT_FALSE
175
176 #define SCHED_FEAT(name, enabled) \
177 jump_label_key__##enabled ,
178
179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 #include "features.h"
181 };
182
183 #undef SCHED_FEAT
184
185 static void sched_feat_disable(int i)
186 {
187 if (static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_dec(&sched_feat_keys[i]);
189 }
190
191 static void sched_feat_enable(int i)
192 {
193 if (!static_key_enabled(&sched_feat_keys[i]))
194 static_key_slow_inc(&sched_feat_keys[i]);
195 }
196 #else
197 static void sched_feat_disable(int i) { };
198 static void sched_feat_enable(int i) { };
199 #endif /* HAVE_JUMP_LABEL */
200
201 static int sched_feat_set(char *cmp)
202 {
203 int i;
204 int neg = 0;
205
206 if (strncmp(cmp, "NO_", 3) == 0) {
207 neg = 1;
208 cmp += 3;
209 }
210
211 for (i = 0; i < __SCHED_FEAT_NR; i++) {
212 if (strcmp(cmp, sched_feat_names[i]) == 0) {
213 if (neg) {
214 sysctl_sched_features &= ~(1UL << i);
215 sched_feat_disable(i);
216 } else {
217 sysctl_sched_features |= (1UL << i);
218 sched_feat_enable(i);
219 }
220 break;
221 }
222 }
223
224 return i;
225 }
226
227 static ssize_t
228 sched_feat_write(struct file *filp, const char __user *ubuf,
229 size_t cnt, loff_t *ppos)
230 {
231 char buf[64];
232 char *cmp;
233 int i;
234 struct inode *inode;
235
236 if (cnt > 63)
237 cnt = 63;
238
239 if (copy_from_user(&buf, ubuf, cnt))
240 return -EFAULT;
241
242 buf[cnt] = 0;
243 cmp = strstrip(buf);
244
245 /* Ensure the static_key remains in a consistent state */
246 inode = file_inode(filp);
247 mutex_lock(&inode->i_mutex);
248 i = sched_feat_set(cmp);
249 mutex_unlock(&inode->i_mutex);
250 if (i == __SCHED_FEAT_NR)
251 return -EINVAL;
252
253 *ppos += cnt;
254
255 return cnt;
256 }
257
258 static int sched_feat_open(struct inode *inode, struct file *filp)
259 {
260 return single_open(filp, sched_feat_show, NULL);
261 }
262
263 static const struct file_operations sched_feat_fops = {
264 .open = sched_feat_open,
265 .write = sched_feat_write,
266 .read = seq_read,
267 .llseek = seq_lseek,
268 .release = single_release,
269 };
270
271 static __init int sched_init_debug(void)
272 {
273 debugfs_create_file("sched_features", 0644, NULL, NULL,
274 &sched_feat_fops);
275
276 return 0;
277 }
278 late_initcall(sched_init_debug);
279 #endif /* CONFIG_SCHED_DEBUG */
280
281 /*
282 * Number of tasks to iterate in a single balance run.
283 * Limited because this is done with IRQs disabled.
284 */
285 const_debug unsigned int sysctl_sched_nr_migrate = 32;
286
287 /*
288 * period over which we average the RT time consumption, measured
289 * in ms.
290 *
291 * default: 1s
292 */
293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294
295 /*
296 * period over which we measure -rt task cpu usage in us.
297 * default: 1s
298 */
299 unsigned int sysctl_sched_rt_period = 1000000;
300
301 __read_mostly int scheduler_running;
302
303 /*
304 * part of the period that we allow rt tasks to run in us.
305 * default: 0.95s
306 */
307 int sysctl_sched_rt_runtime = 950000;
308
309 /*
310 * this_rq_lock - lock this runqueue and disable interrupts.
311 */
312 static struct rq *this_rq_lock(void)
313 __acquires(rq->lock)
314 {
315 struct rq *rq;
316
317 local_irq_disable();
318 rq = this_rq();
319 raw_spin_lock(&rq->lock);
320
321 return rq;
322 }
323
324 #ifdef CONFIG_SCHED_HRTICK
325 /*
326 * Use HR-timers to deliver accurate preemption points.
327 */
328
329 static void hrtick_clear(struct rq *rq)
330 {
331 if (hrtimer_active(&rq->hrtick_timer))
332 hrtimer_cancel(&rq->hrtick_timer);
333 }
334
335 /*
336 * High-resolution timer tick.
337 * Runs from hardirq context with interrupts disabled.
338 */
339 static enum hrtimer_restart hrtick(struct hrtimer *timer)
340 {
341 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
342
343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344
345 raw_spin_lock(&rq->lock);
346 update_rq_clock(rq);
347 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 raw_spin_unlock(&rq->lock);
349
350 return HRTIMER_NORESTART;
351 }
352
353 #ifdef CONFIG_SMP
354
355 static int __hrtick_restart(struct rq *rq)
356 {
357 struct hrtimer *timer = &rq->hrtick_timer;
358 ktime_t time = hrtimer_get_softexpires(timer);
359
360 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
361 }
362
363 /*
364 * called from hardirq (IPI) context
365 */
366 static void __hrtick_start(void *arg)
367 {
368 struct rq *rq = arg;
369
370 raw_spin_lock(&rq->lock);
371 __hrtick_restart(rq);
372 rq->hrtick_csd_pending = 0;
373 raw_spin_unlock(&rq->lock);
374 }
375
376 /*
377 * Called to set the hrtick timer state.
378 *
379 * called with rq->lock held and irqs disabled
380 */
381 void hrtick_start(struct rq *rq, u64 delay)
382 {
383 struct hrtimer *timer = &rq->hrtick_timer;
384 ktime_t time;
385 s64 delta;
386
387 /*
388 * Don't schedule slices shorter than 10000ns, that just
389 * doesn't make sense and can cause timer DoS.
390 */
391 delta = max_t(s64, delay, 10000LL);
392 time = ktime_add_ns(timer->base->get_time(), delta);
393
394 hrtimer_set_expires(timer, time);
395
396 if (rq == this_rq()) {
397 __hrtick_restart(rq);
398 } else if (!rq->hrtick_csd_pending) {
399 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
400 rq->hrtick_csd_pending = 1;
401 }
402 }
403
404 static int
405 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
406 {
407 int cpu = (int)(long)hcpu;
408
409 switch (action) {
410 case CPU_UP_CANCELED:
411 case CPU_UP_CANCELED_FROZEN:
412 case CPU_DOWN_PREPARE:
413 case CPU_DOWN_PREPARE_FROZEN:
414 case CPU_DEAD:
415 case CPU_DEAD_FROZEN:
416 hrtick_clear(cpu_rq(cpu));
417 return NOTIFY_OK;
418 }
419
420 return NOTIFY_DONE;
421 }
422
423 static __init void init_hrtick(void)
424 {
425 hotcpu_notifier(hotplug_hrtick, 0);
426 }
427 #else
428 /*
429 * Called to set the hrtick timer state.
430 *
431 * called with rq->lock held and irqs disabled
432 */
433 void hrtick_start(struct rq *rq, u64 delay)
434 {
435 /*
436 * Don't schedule slices shorter than 10000ns, that just
437 * doesn't make sense. Rely on vruntime for fairness.
438 */
439 delay = max_t(u64, delay, 10000LL);
440 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
441 HRTIMER_MODE_REL_PINNED, 0);
442 }
443
444 static inline void init_hrtick(void)
445 {
446 }
447 #endif /* CONFIG_SMP */
448
449 static void init_rq_hrtick(struct rq *rq)
450 {
451 #ifdef CONFIG_SMP
452 rq->hrtick_csd_pending = 0;
453
454 rq->hrtick_csd.flags = 0;
455 rq->hrtick_csd.func = __hrtick_start;
456 rq->hrtick_csd.info = rq;
457 #endif
458
459 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
460 rq->hrtick_timer.function = hrtick;
461 }
462 #else /* CONFIG_SCHED_HRTICK */
463 static inline void hrtick_clear(struct rq *rq)
464 {
465 }
466
467 static inline void init_rq_hrtick(struct rq *rq)
468 {
469 }
470
471 static inline void init_hrtick(void)
472 {
473 }
474 #endif /* CONFIG_SCHED_HRTICK */
475
476 /*
477 * cmpxchg based fetch_or, macro so it works for different integer types
478 */
479 #define fetch_or(ptr, val) \
480 ({ typeof(*(ptr)) __old, __val = *(ptr); \
481 for (;;) { \
482 __old = cmpxchg((ptr), __val, __val | (val)); \
483 if (__old == __val) \
484 break; \
485 __val = __old; \
486 } \
487 __old; \
488 })
489
490 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
491 /*
492 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
493 * this avoids any races wrt polling state changes and thereby avoids
494 * spurious IPIs.
495 */
496 static bool set_nr_and_not_polling(struct task_struct *p)
497 {
498 struct thread_info *ti = task_thread_info(p);
499 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
500 }
501
502 /*
503 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
504 *
505 * If this returns true, then the idle task promises to call
506 * sched_ttwu_pending() and reschedule soon.
507 */
508 static bool set_nr_if_polling(struct task_struct *p)
509 {
510 struct thread_info *ti = task_thread_info(p);
511 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
512
513 for (;;) {
514 if (!(val & _TIF_POLLING_NRFLAG))
515 return false;
516 if (val & _TIF_NEED_RESCHED)
517 return true;
518 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
519 if (old == val)
520 break;
521 val = old;
522 }
523 return true;
524 }
525
526 #else
527 static bool set_nr_and_not_polling(struct task_struct *p)
528 {
529 set_tsk_need_resched(p);
530 return true;
531 }
532
533 #ifdef CONFIG_SMP
534 static bool set_nr_if_polling(struct task_struct *p)
535 {
536 return false;
537 }
538 #endif
539 #endif
540
541 /*
542 * resched_curr - mark rq's current task 'to be rescheduled now'.
543 *
544 * On UP this means the setting of the need_resched flag, on SMP it
545 * might also involve a cross-CPU call to trigger the scheduler on
546 * the target CPU.
547 */
548 void resched_curr(struct rq *rq)
549 {
550 struct task_struct *curr = rq->curr;
551 int cpu;
552
553 lockdep_assert_held(&rq->lock);
554
555 if (test_tsk_need_resched(curr))
556 return;
557
558 cpu = cpu_of(rq);
559
560 if (cpu == smp_processor_id()) {
561 set_tsk_need_resched(curr);
562 set_preempt_need_resched();
563 return;
564 }
565
566 if (set_nr_and_not_polling(curr))
567 smp_send_reschedule(cpu);
568 else
569 trace_sched_wake_idle_without_ipi(cpu);
570 }
571
572 void resched_cpu(int cpu)
573 {
574 struct rq *rq = cpu_rq(cpu);
575 unsigned long flags;
576
577 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
578 return;
579 resched_curr(rq);
580 raw_spin_unlock_irqrestore(&rq->lock, flags);
581 }
582
583 #ifdef CONFIG_SMP
584 #ifdef CONFIG_NO_HZ_COMMON
585 /*
586 * In the semi idle case, use the nearest busy cpu for migrating timers
587 * from an idle cpu. This is good for power-savings.
588 *
589 * We don't do similar optimization for completely idle system, as
590 * selecting an idle cpu will add more delays to the timers than intended
591 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
592 */
593 int get_nohz_timer_target(int pinned)
594 {
595 int cpu = smp_processor_id();
596 int i;
597 struct sched_domain *sd;
598
599 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
600 return cpu;
601
602 rcu_read_lock();
603 for_each_domain(cpu, sd) {
604 for_each_cpu(i, sched_domain_span(sd)) {
605 if (!idle_cpu(i)) {
606 cpu = i;
607 goto unlock;
608 }
609 }
610 }
611 unlock:
612 rcu_read_unlock();
613 return cpu;
614 }
615 /*
616 * When add_timer_on() enqueues a timer into the timer wheel of an
617 * idle CPU then this timer might expire before the next timer event
618 * which is scheduled to wake up that CPU. In case of a completely
619 * idle system the next event might even be infinite time into the
620 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
621 * leaves the inner idle loop so the newly added timer is taken into
622 * account when the CPU goes back to idle and evaluates the timer
623 * wheel for the next timer event.
624 */
625 static void wake_up_idle_cpu(int cpu)
626 {
627 struct rq *rq = cpu_rq(cpu);
628
629 if (cpu == smp_processor_id())
630 return;
631
632 if (set_nr_and_not_polling(rq->idle))
633 smp_send_reschedule(cpu);
634 else
635 trace_sched_wake_idle_without_ipi(cpu);
636 }
637
638 static bool wake_up_full_nohz_cpu(int cpu)
639 {
640 /*
641 * We just need the target to call irq_exit() and re-evaluate
642 * the next tick. The nohz full kick at least implies that.
643 * If needed we can still optimize that later with an
644 * empty IRQ.
645 */
646 if (tick_nohz_full_cpu(cpu)) {
647 if (cpu != smp_processor_id() ||
648 tick_nohz_tick_stopped())
649 tick_nohz_full_kick_cpu(cpu);
650 return true;
651 }
652
653 return false;
654 }
655
656 void wake_up_nohz_cpu(int cpu)
657 {
658 if (!wake_up_full_nohz_cpu(cpu))
659 wake_up_idle_cpu(cpu);
660 }
661
662 static inline bool got_nohz_idle_kick(void)
663 {
664 int cpu = smp_processor_id();
665
666 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
667 return false;
668
669 if (idle_cpu(cpu) && !need_resched())
670 return true;
671
672 /*
673 * We can't run Idle Load Balance on this CPU for this time so we
674 * cancel it and clear NOHZ_BALANCE_KICK
675 */
676 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
677 return false;
678 }
679
680 #else /* CONFIG_NO_HZ_COMMON */
681
682 static inline bool got_nohz_idle_kick(void)
683 {
684 return false;
685 }
686
687 #endif /* CONFIG_NO_HZ_COMMON */
688
689 #ifdef CONFIG_NO_HZ_FULL
690 bool sched_can_stop_tick(void)
691 {
692 /*
693 * More than one running task need preemption.
694 * nr_running update is assumed to be visible
695 * after IPI is sent from wakers.
696 */
697 if (this_rq()->nr_running > 1)
698 return false;
699
700 return true;
701 }
702 #endif /* CONFIG_NO_HZ_FULL */
703
704 void sched_avg_update(struct rq *rq)
705 {
706 s64 period = sched_avg_period();
707
708 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
709 /*
710 * Inline assembly required to prevent the compiler
711 * optimising this loop into a divmod call.
712 * See __iter_div_u64_rem() for another example of this.
713 */
714 asm("" : "+rm" (rq->age_stamp));
715 rq->age_stamp += period;
716 rq->rt_avg /= 2;
717 }
718 }
719
720 #endif /* CONFIG_SMP */
721
722 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
723 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
724 /*
725 * Iterate task_group tree rooted at *from, calling @down when first entering a
726 * node and @up when leaving it for the final time.
727 *
728 * Caller must hold rcu_lock or sufficient equivalent.
729 */
730 int walk_tg_tree_from(struct task_group *from,
731 tg_visitor down, tg_visitor up, void *data)
732 {
733 struct task_group *parent, *child;
734 int ret;
735
736 parent = from;
737
738 down:
739 ret = (*down)(parent, data);
740 if (ret)
741 goto out;
742 list_for_each_entry_rcu(child, &parent->children, siblings) {
743 parent = child;
744 goto down;
745
746 up:
747 continue;
748 }
749 ret = (*up)(parent, data);
750 if (ret || parent == from)
751 goto out;
752
753 child = parent;
754 parent = parent->parent;
755 if (parent)
756 goto up;
757 out:
758 return ret;
759 }
760
761 int tg_nop(struct task_group *tg, void *data)
762 {
763 return 0;
764 }
765 #endif
766
767 static void set_load_weight(struct task_struct *p)
768 {
769 int prio = p->static_prio - MAX_RT_PRIO;
770 struct load_weight *load = &p->se.load;
771
772 /*
773 * SCHED_IDLE tasks get minimal weight:
774 */
775 if (p->policy == SCHED_IDLE) {
776 load->weight = scale_load(WEIGHT_IDLEPRIO);
777 load->inv_weight = WMULT_IDLEPRIO;
778 return;
779 }
780
781 load->weight = scale_load(prio_to_weight[prio]);
782 load->inv_weight = prio_to_wmult[prio];
783 }
784
785 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
786 {
787 update_rq_clock(rq);
788 sched_info_queued(rq, p);
789 p->sched_class->enqueue_task(rq, p, flags);
790 }
791
792 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
793 {
794 update_rq_clock(rq);
795 sched_info_dequeued(rq, p);
796 p->sched_class->dequeue_task(rq, p, flags);
797 }
798
799 void activate_task(struct rq *rq, struct task_struct *p, int flags)
800 {
801 if (task_contributes_to_load(p))
802 rq->nr_uninterruptible--;
803
804 enqueue_task(rq, p, flags);
805 }
806
807 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
808 {
809 if (task_contributes_to_load(p))
810 rq->nr_uninterruptible++;
811
812 dequeue_task(rq, p, flags);
813 }
814
815 static void update_rq_clock_task(struct rq *rq, s64 delta)
816 {
817 /*
818 * In theory, the compile should just see 0 here, and optimize out the call
819 * to sched_rt_avg_update. But I don't trust it...
820 */
821 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
822 s64 steal = 0, irq_delta = 0;
823 #endif
824 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
825 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
826
827 /*
828 * Since irq_time is only updated on {soft,}irq_exit, we might run into
829 * this case when a previous update_rq_clock() happened inside a
830 * {soft,}irq region.
831 *
832 * When this happens, we stop ->clock_task and only update the
833 * prev_irq_time stamp to account for the part that fit, so that a next
834 * update will consume the rest. This ensures ->clock_task is
835 * monotonic.
836 *
837 * It does however cause some slight miss-attribution of {soft,}irq
838 * time, a more accurate solution would be to update the irq_time using
839 * the current rq->clock timestamp, except that would require using
840 * atomic ops.
841 */
842 if (irq_delta > delta)
843 irq_delta = delta;
844
845 rq->prev_irq_time += irq_delta;
846 delta -= irq_delta;
847 #endif
848 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
849 if (static_key_false((&paravirt_steal_rq_enabled))) {
850 steal = paravirt_steal_clock(cpu_of(rq));
851 steal -= rq->prev_steal_time_rq;
852
853 if (unlikely(steal > delta))
854 steal = delta;
855
856 rq->prev_steal_time_rq += steal;
857 delta -= steal;
858 }
859 #endif
860
861 rq->clock_task += delta;
862
863 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
864 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
865 sched_rt_avg_update(rq, irq_delta + steal);
866 #endif
867 }
868
869 void sched_set_stop_task(int cpu, struct task_struct *stop)
870 {
871 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
872 struct task_struct *old_stop = cpu_rq(cpu)->stop;
873
874 if (stop) {
875 /*
876 * Make it appear like a SCHED_FIFO task, its something
877 * userspace knows about and won't get confused about.
878 *
879 * Also, it will make PI more or less work without too
880 * much confusion -- but then, stop work should not
881 * rely on PI working anyway.
882 */
883 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
884
885 stop->sched_class = &stop_sched_class;
886 }
887
888 cpu_rq(cpu)->stop = stop;
889
890 if (old_stop) {
891 /*
892 * Reset it back to a normal scheduling class so that
893 * it can die in pieces.
894 */
895 old_stop->sched_class = &rt_sched_class;
896 }
897 }
898
899 /*
900 * __normal_prio - return the priority that is based on the static prio
901 */
902 static inline int __normal_prio(struct task_struct *p)
903 {
904 return p->static_prio;
905 }
906
907 /*
908 * Calculate the expected normal priority: i.e. priority
909 * without taking RT-inheritance into account. Might be
910 * boosted by interactivity modifiers. Changes upon fork,
911 * setprio syscalls, and whenever the interactivity
912 * estimator recalculates.
913 */
914 static inline int normal_prio(struct task_struct *p)
915 {
916 int prio;
917
918 if (task_has_dl_policy(p))
919 prio = MAX_DL_PRIO-1;
920 else if (task_has_rt_policy(p))
921 prio = MAX_RT_PRIO-1 - p->rt_priority;
922 else
923 prio = __normal_prio(p);
924 return prio;
925 }
926
927 /*
928 * Calculate the current priority, i.e. the priority
929 * taken into account by the scheduler. This value might
930 * be boosted by RT tasks, or might be boosted by
931 * interactivity modifiers. Will be RT if the task got
932 * RT-boosted. If not then it returns p->normal_prio.
933 */
934 static int effective_prio(struct task_struct *p)
935 {
936 p->normal_prio = normal_prio(p);
937 /*
938 * If we are RT tasks or we were boosted to RT priority,
939 * keep the priority unchanged. Otherwise, update priority
940 * to the normal priority:
941 */
942 if (!rt_prio(p->prio))
943 return p->normal_prio;
944 return p->prio;
945 }
946
947 /**
948 * task_curr - is this task currently executing on a CPU?
949 * @p: the task in question.
950 *
951 * Return: 1 if the task is currently executing. 0 otherwise.
952 */
953 inline int task_curr(const struct task_struct *p)
954 {
955 return cpu_curr(task_cpu(p)) == p;
956 }
957
958 /*
959 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
960 */
961 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
962 const struct sched_class *prev_class,
963 int oldprio)
964 {
965 if (prev_class != p->sched_class) {
966 if (prev_class->switched_from)
967 prev_class->switched_from(rq, p);
968 /* Possble rq->lock 'hole'. */
969 p->sched_class->switched_to(rq, p);
970 } else if (oldprio != p->prio || dl_task(p))
971 p->sched_class->prio_changed(rq, p, oldprio);
972 }
973
974 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
975 {
976 const struct sched_class *class;
977
978 if (p->sched_class == rq->curr->sched_class) {
979 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
980 } else {
981 for_each_class(class) {
982 if (class == rq->curr->sched_class)
983 break;
984 if (class == p->sched_class) {
985 resched_curr(rq);
986 break;
987 }
988 }
989 }
990
991 /*
992 * A queue event has occurred, and we're going to schedule. In
993 * this case, we can save a useless back to back clock update.
994 */
995 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
996 rq_clock_skip_update(rq, true);
997 }
998
999 #ifdef CONFIG_SMP
1000 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1001 {
1002 #ifdef CONFIG_SCHED_DEBUG
1003 /*
1004 * We should never call set_task_cpu() on a blocked task,
1005 * ttwu() will sort out the placement.
1006 */
1007 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1008 !p->on_rq);
1009
1010 #ifdef CONFIG_LOCKDEP
1011 /*
1012 * The caller should hold either p->pi_lock or rq->lock, when changing
1013 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1014 *
1015 * sched_move_task() holds both and thus holding either pins the cgroup,
1016 * see task_group().
1017 *
1018 * Furthermore, all task_rq users should acquire both locks, see
1019 * task_rq_lock().
1020 */
1021 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1022 lockdep_is_held(&task_rq(p)->lock)));
1023 #endif
1024 #endif
1025
1026 trace_sched_migrate_task(p, new_cpu);
1027
1028 if (task_cpu(p) != new_cpu) {
1029 if (p->sched_class->migrate_task_rq)
1030 p->sched_class->migrate_task_rq(p, new_cpu);
1031 p->se.nr_migrations++;
1032 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1033 }
1034
1035 __set_task_cpu(p, new_cpu);
1036 }
1037
1038 static void __migrate_swap_task(struct task_struct *p, int cpu)
1039 {
1040 if (task_on_rq_queued(p)) {
1041 struct rq *src_rq, *dst_rq;
1042
1043 src_rq = task_rq(p);
1044 dst_rq = cpu_rq(cpu);
1045
1046 deactivate_task(src_rq, p, 0);
1047 set_task_cpu(p, cpu);
1048 activate_task(dst_rq, p, 0);
1049 check_preempt_curr(dst_rq, p, 0);
1050 } else {
1051 /*
1052 * Task isn't running anymore; make it appear like we migrated
1053 * it before it went to sleep. This means on wakeup we make the
1054 * previous cpu our targer instead of where it really is.
1055 */
1056 p->wake_cpu = cpu;
1057 }
1058 }
1059
1060 struct migration_swap_arg {
1061 struct task_struct *src_task, *dst_task;
1062 int src_cpu, dst_cpu;
1063 };
1064
1065 static int migrate_swap_stop(void *data)
1066 {
1067 struct migration_swap_arg *arg = data;
1068 struct rq *src_rq, *dst_rq;
1069 int ret = -EAGAIN;
1070
1071 src_rq = cpu_rq(arg->src_cpu);
1072 dst_rq = cpu_rq(arg->dst_cpu);
1073
1074 double_raw_lock(&arg->src_task->pi_lock,
1075 &arg->dst_task->pi_lock);
1076 double_rq_lock(src_rq, dst_rq);
1077 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1078 goto unlock;
1079
1080 if (task_cpu(arg->src_task) != arg->src_cpu)
1081 goto unlock;
1082
1083 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1084 goto unlock;
1085
1086 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1087 goto unlock;
1088
1089 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1090 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1091
1092 ret = 0;
1093
1094 unlock:
1095 double_rq_unlock(src_rq, dst_rq);
1096 raw_spin_unlock(&arg->dst_task->pi_lock);
1097 raw_spin_unlock(&arg->src_task->pi_lock);
1098
1099 return ret;
1100 }
1101
1102 /*
1103 * Cross migrate two tasks
1104 */
1105 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1106 {
1107 struct migration_swap_arg arg;
1108 int ret = -EINVAL;
1109
1110 arg = (struct migration_swap_arg){
1111 .src_task = cur,
1112 .src_cpu = task_cpu(cur),
1113 .dst_task = p,
1114 .dst_cpu = task_cpu(p),
1115 };
1116
1117 if (arg.src_cpu == arg.dst_cpu)
1118 goto out;
1119
1120 /*
1121 * These three tests are all lockless; this is OK since all of them
1122 * will be re-checked with proper locks held further down the line.
1123 */
1124 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1125 goto out;
1126
1127 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1128 goto out;
1129
1130 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1131 goto out;
1132
1133 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1134 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1135
1136 out:
1137 return ret;
1138 }
1139
1140 struct migration_arg {
1141 struct task_struct *task;
1142 int dest_cpu;
1143 };
1144
1145 static int migration_cpu_stop(void *data);
1146
1147 /*
1148 * wait_task_inactive - wait for a thread to unschedule.
1149 *
1150 * If @match_state is nonzero, it's the @p->state value just checked and
1151 * not expected to change. If it changes, i.e. @p might have woken up,
1152 * then return zero. When we succeed in waiting for @p to be off its CPU,
1153 * we return a positive number (its total switch count). If a second call
1154 * a short while later returns the same number, the caller can be sure that
1155 * @p has remained unscheduled the whole time.
1156 *
1157 * The caller must ensure that the task *will* unschedule sometime soon,
1158 * else this function might spin for a *long* time. This function can't
1159 * be called with interrupts off, or it may introduce deadlock with
1160 * smp_call_function() if an IPI is sent by the same process we are
1161 * waiting to become inactive.
1162 */
1163 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1164 {
1165 unsigned long flags;
1166 int running, queued;
1167 unsigned long ncsw;
1168 struct rq *rq;
1169
1170 for (;;) {
1171 /*
1172 * We do the initial early heuristics without holding
1173 * any task-queue locks at all. We'll only try to get
1174 * the runqueue lock when things look like they will
1175 * work out!
1176 */
1177 rq = task_rq(p);
1178
1179 /*
1180 * If the task is actively running on another CPU
1181 * still, just relax and busy-wait without holding
1182 * any locks.
1183 *
1184 * NOTE! Since we don't hold any locks, it's not
1185 * even sure that "rq" stays as the right runqueue!
1186 * But we don't care, since "task_running()" will
1187 * return false if the runqueue has changed and p
1188 * is actually now running somewhere else!
1189 */
1190 while (task_running(rq, p)) {
1191 if (match_state && unlikely(p->state != match_state))
1192 return 0;
1193 cpu_relax();
1194 }
1195
1196 /*
1197 * Ok, time to look more closely! We need the rq
1198 * lock now, to be *sure*. If we're wrong, we'll
1199 * just go back and repeat.
1200 */
1201 rq = task_rq_lock(p, &flags);
1202 trace_sched_wait_task(p);
1203 running = task_running(rq, p);
1204 queued = task_on_rq_queued(p);
1205 ncsw = 0;
1206 if (!match_state || p->state == match_state)
1207 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1208 task_rq_unlock(rq, p, &flags);
1209
1210 /*
1211 * If it changed from the expected state, bail out now.
1212 */
1213 if (unlikely(!ncsw))
1214 break;
1215
1216 /*
1217 * Was it really running after all now that we
1218 * checked with the proper locks actually held?
1219 *
1220 * Oops. Go back and try again..
1221 */
1222 if (unlikely(running)) {
1223 cpu_relax();
1224 continue;
1225 }
1226
1227 /*
1228 * It's not enough that it's not actively running,
1229 * it must be off the runqueue _entirely_, and not
1230 * preempted!
1231 *
1232 * So if it was still runnable (but just not actively
1233 * running right now), it's preempted, and we should
1234 * yield - it could be a while.
1235 */
1236 if (unlikely(queued)) {
1237 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1238
1239 set_current_state(TASK_UNINTERRUPTIBLE);
1240 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1241 continue;
1242 }
1243
1244 /*
1245 * Ahh, all good. It wasn't running, and it wasn't
1246 * runnable, which means that it will never become
1247 * running in the future either. We're all done!
1248 */
1249 break;
1250 }
1251
1252 return ncsw;
1253 }
1254
1255 /***
1256 * kick_process - kick a running thread to enter/exit the kernel
1257 * @p: the to-be-kicked thread
1258 *
1259 * Cause a process which is running on another CPU to enter
1260 * kernel-mode, without any delay. (to get signals handled.)
1261 *
1262 * NOTE: this function doesn't have to take the runqueue lock,
1263 * because all it wants to ensure is that the remote task enters
1264 * the kernel. If the IPI races and the task has been migrated
1265 * to another CPU then no harm is done and the purpose has been
1266 * achieved as well.
1267 */
1268 void kick_process(struct task_struct *p)
1269 {
1270 int cpu;
1271
1272 preempt_disable();
1273 cpu = task_cpu(p);
1274 if ((cpu != smp_processor_id()) && task_curr(p))
1275 smp_send_reschedule(cpu);
1276 preempt_enable();
1277 }
1278 EXPORT_SYMBOL_GPL(kick_process);
1279 #endif /* CONFIG_SMP */
1280
1281 #ifdef CONFIG_SMP
1282 /*
1283 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1284 */
1285 static int select_fallback_rq(int cpu, struct task_struct *p)
1286 {
1287 int nid = cpu_to_node(cpu);
1288 const struct cpumask *nodemask = NULL;
1289 enum { cpuset, possible, fail } state = cpuset;
1290 int dest_cpu;
1291
1292 /*
1293 * If the node that the cpu is on has been offlined, cpu_to_node()
1294 * will return -1. There is no cpu on the node, and we should
1295 * select the cpu on the other node.
1296 */
1297 if (nid != -1) {
1298 nodemask = cpumask_of_node(nid);
1299
1300 /* Look for allowed, online CPU in same node. */
1301 for_each_cpu(dest_cpu, nodemask) {
1302 if (!cpu_online(dest_cpu))
1303 continue;
1304 if (!cpu_active(dest_cpu))
1305 continue;
1306 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1307 return dest_cpu;
1308 }
1309 }
1310
1311 for (;;) {
1312 /* Any allowed, online CPU? */
1313 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1314 if (!cpu_online(dest_cpu))
1315 continue;
1316 if (!cpu_active(dest_cpu))
1317 continue;
1318 goto out;
1319 }
1320
1321 switch (state) {
1322 case cpuset:
1323 /* No more Mr. Nice Guy. */
1324 cpuset_cpus_allowed_fallback(p);
1325 state = possible;
1326 break;
1327
1328 case possible:
1329 do_set_cpus_allowed(p, cpu_possible_mask);
1330 state = fail;
1331 break;
1332
1333 case fail:
1334 BUG();
1335 break;
1336 }
1337 }
1338
1339 out:
1340 if (state != cpuset) {
1341 /*
1342 * Don't tell them about moving exiting tasks or
1343 * kernel threads (both mm NULL), since they never
1344 * leave kernel.
1345 */
1346 if (p->mm && printk_ratelimit()) {
1347 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1348 task_pid_nr(p), p->comm, cpu);
1349 }
1350 }
1351
1352 return dest_cpu;
1353 }
1354
1355 /*
1356 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1357 */
1358 static inline
1359 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1360 {
1361 if (p->nr_cpus_allowed > 1)
1362 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1363
1364 /*
1365 * In order not to call set_task_cpu() on a blocking task we need
1366 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1367 * cpu.
1368 *
1369 * Since this is common to all placement strategies, this lives here.
1370 *
1371 * [ this allows ->select_task() to simply return task_cpu(p) and
1372 * not worry about this generic constraint ]
1373 */
1374 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1375 !cpu_online(cpu)))
1376 cpu = select_fallback_rq(task_cpu(p), p);
1377
1378 return cpu;
1379 }
1380
1381 static void update_avg(u64 *avg, u64 sample)
1382 {
1383 s64 diff = sample - *avg;
1384 *avg += diff >> 3;
1385 }
1386 #endif
1387
1388 static void
1389 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1390 {
1391 #ifdef CONFIG_SCHEDSTATS
1392 struct rq *rq = this_rq();
1393
1394 #ifdef CONFIG_SMP
1395 int this_cpu = smp_processor_id();
1396
1397 if (cpu == this_cpu) {
1398 schedstat_inc(rq, ttwu_local);
1399 schedstat_inc(p, se.statistics.nr_wakeups_local);
1400 } else {
1401 struct sched_domain *sd;
1402
1403 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1404 rcu_read_lock();
1405 for_each_domain(this_cpu, sd) {
1406 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1407 schedstat_inc(sd, ttwu_wake_remote);
1408 break;
1409 }
1410 }
1411 rcu_read_unlock();
1412 }
1413
1414 if (wake_flags & WF_MIGRATED)
1415 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1416
1417 #endif /* CONFIG_SMP */
1418
1419 schedstat_inc(rq, ttwu_count);
1420 schedstat_inc(p, se.statistics.nr_wakeups);
1421
1422 if (wake_flags & WF_SYNC)
1423 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1424
1425 #endif /* CONFIG_SCHEDSTATS */
1426 }
1427
1428 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1429 {
1430 activate_task(rq, p, en_flags);
1431 p->on_rq = TASK_ON_RQ_QUEUED;
1432
1433 /* if a worker is waking up, notify workqueue */
1434 if (p->flags & PF_WQ_WORKER)
1435 wq_worker_waking_up(p, cpu_of(rq));
1436 }
1437
1438 /*
1439 * Mark the task runnable and perform wakeup-preemption.
1440 */
1441 static void
1442 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1443 {
1444 check_preempt_curr(rq, p, wake_flags);
1445 trace_sched_wakeup(p, true);
1446
1447 p->state = TASK_RUNNING;
1448 #ifdef CONFIG_SMP
1449 if (p->sched_class->task_woken)
1450 p->sched_class->task_woken(rq, p);
1451
1452 if (rq->idle_stamp) {
1453 u64 delta = rq_clock(rq) - rq->idle_stamp;
1454 u64 max = 2*rq->max_idle_balance_cost;
1455
1456 update_avg(&rq->avg_idle, delta);
1457
1458 if (rq->avg_idle > max)
1459 rq->avg_idle = max;
1460
1461 rq->idle_stamp = 0;
1462 }
1463 #endif
1464 }
1465
1466 static void
1467 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1468 {
1469 #ifdef CONFIG_SMP
1470 if (p->sched_contributes_to_load)
1471 rq->nr_uninterruptible--;
1472 #endif
1473
1474 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1475 ttwu_do_wakeup(rq, p, wake_flags);
1476 }
1477
1478 /*
1479 * Called in case the task @p isn't fully descheduled from its runqueue,
1480 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1481 * since all we need to do is flip p->state to TASK_RUNNING, since
1482 * the task is still ->on_rq.
1483 */
1484 static int ttwu_remote(struct task_struct *p, int wake_flags)
1485 {
1486 struct rq *rq;
1487 int ret = 0;
1488
1489 rq = __task_rq_lock(p);
1490 if (task_on_rq_queued(p)) {
1491 /* check_preempt_curr() may use rq clock */
1492 update_rq_clock(rq);
1493 ttwu_do_wakeup(rq, p, wake_flags);
1494 ret = 1;
1495 }
1496 __task_rq_unlock(rq);
1497
1498 return ret;
1499 }
1500
1501 #ifdef CONFIG_SMP
1502 void sched_ttwu_pending(void)
1503 {
1504 struct rq *rq = this_rq();
1505 struct llist_node *llist = llist_del_all(&rq->wake_list);
1506 struct task_struct *p;
1507 unsigned long flags;
1508
1509 if (!llist)
1510 return;
1511
1512 raw_spin_lock_irqsave(&rq->lock, flags);
1513
1514 while (llist) {
1515 p = llist_entry(llist, struct task_struct, wake_entry);
1516 llist = llist_next(llist);
1517 ttwu_do_activate(rq, p, 0);
1518 }
1519
1520 raw_spin_unlock_irqrestore(&rq->lock, flags);
1521 }
1522
1523 void scheduler_ipi(void)
1524 {
1525 /*
1526 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1527 * TIF_NEED_RESCHED remotely (for the first time) will also send
1528 * this IPI.
1529 */
1530 preempt_fold_need_resched();
1531
1532 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1533 return;
1534
1535 /*
1536 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1537 * traditionally all their work was done from the interrupt return
1538 * path. Now that we actually do some work, we need to make sure
1539 * we do call them.
1540 *
1541 * Some archs already do call them, luckily irq_enter/exit nest
1542 * properly.
1543 *
1544 * Arguably we should visit all archs and update all handlers,
1545 * however a fair share of IPIs are still resched only so this would
1546 * somewhat pessimize the simple resched case.
1547 */
1548 irq_enter();
1549 sched_ttwu_pending();
1550
1551 /*
1552 * Check if someone kicked us for doing the nohz idle load balance.
1553 */
1554 if (unlikely(got_nohz_idle_kick())) {
1555 this_rq()->idle_balance = 1;
1556 raise_softirq_irqoff(SCHED_SOFTIRQ);
1557 }
1558 irq_exit();
1559 }
1560
1561 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1562 {
1563 struct rq *rq = cpu_rq(cpu);
1564
1565 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1566 if (!set_nr_if_polling(rq->idle))
1567 smp_send_reschedule(cpu);
1568 else
1569 trace_sched_wake_idle_without_ipi(cpu);
1570 }
1571 }
1572
1573 void wake_up_if_idle(int cpu)
1574 {
1575 struct rq *rq = cpu_rq(cpu);
1576 unsigned long flags;
1577
1578 rcu_read_lock();
1579
1580 if (!is_idle_task(rcu_dereference(rq->curr)))
1581 goto out;
1582
1583 if (set_nr_if_polling(rq->idle)) {
1584 trace_sched_wake_idle_without_ipi(cpu);
1585 } else {
1586 raw_spin_lock_irqsave(&rq->lock, flags);
1587 if (is_idle_task(rq->curr))
1588 smp_send_reschedule(cpu);
1589 /* Else cpu is not in idle, do nothing here */
1590 raw_spin_unlock_irqrestore(&rq->lock, flags);
1591 }
1592
1593 out:
1594 rcu_read_unlock();
1595 }
1596
1597 bool cpus_share_cache(int this_cpu, int that_cpu)
1598 {
1599 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1600 }
1601 #endif /* CONFIG_SMP */
1602
1603 static void ttwu_queue(struct task_struct *p, int cpu)
1604 {
1605 struct rq *rq = cpu_rq(cpu);
1606
1607 #if defined(CONFIG_SMP)
1608 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1609 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1610 ttwu_queue_remote(p, cpu);
1611 return;
1612 }
1613 #endif
1614
1615 raw_spin_lock(&rq->lock);
1616 ttwu_do_activate(rq, p, 0);
1617 raw_spin_unlock(&rq->lock);
1618 }
1619
1620 /**
1621 * try_to_wake_up - wake up a thread
1622 * @p: the thread to be awakened
1623 * @state: the mask of task states that can be woken
1624 * @wake_flags: wake modifier flags (WF_*)
1625 *
1626 * Put it on the run-queue if it's not already there. The "current"
1627 * thread is always on the run-queue (except when the actual
1628 * re-schedule is in progress), and as such you're allowed to do
1629 * the simpler "current->state = TASK_RUNNING" to mark yourself
1630 * runnable without the overhead of this.
1631 *
1632 * Return: %true if @p was woken up, %false if it was already running.
1633 * or @state didn't match @p's state.
1634 */
1635 static int
1636 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1637 {
1638 unsigned long flags;
1639 int cpu, success = 0;
1640
1641 /*
1642 * If we are going to wake up a thread waiting for CONDITION we
1643 * need to ensure that CONDITION=1 done by the caller can not be
1644 * reordered with p->state check below. This pairs with mb() in
1645 * set_current_state() the waiting thread does.
1646 */
1647 smp_mb__before_spinlock();
1648 raw_spin_lock_irqsave(&p->pi_lock, flags);
1649 if (!(p->state & state))
1650 goto out;
1651
1652 success = 1; /* we're going to change ->state */
1653 cpu = task_cpu(p);
1654
1655 if (p->on_rq && ttwu_remote(p, wake_flags))
1656 goto stat;
1657
1658 #ifdef CONFIG_SMP
1659 /*
1660 * If the owning (remote) cpu is still in the middle of schedule() with
1661 * this task as prev, wait until its done referencing the task.
1662 */
1663 while (p->on_cpu)
1664 cpu_relax();
1665 /*
1666 * Pairs with the smp_wmb() in finish_lock_switch().
1667 */
1668 smp_rmb();
1669
1670 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1671 p->state = TASK_WAKING;
1672
1673 if (p->sched_class->task_waking)
1674 p->sched_class->task_waking(p);
1675
1676 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1677 if (task_cpu(p) != cpu) {
1678 wake_flags |= WF_MIGRATED;
1679 set_task_cpu(p, cpu);
1680 }
1681 #endif /* CONFIG_SMP */
1682
1683 ttwu_queue(p, cpu);
1684 stat:
1685 ttwu_stat(p, cpu, wake_flags);
1686 out:
1687 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1688
1689 return success;
1690 }
1691
1692 /**
1693 * try_to_wake_up_local - try to wake up a local task with rq lock held
1694 * @p: the thread to be awakened
1695 *
1696 * Put @p on the run-queue if it's not already there. The caller must
1697 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1698 * the current task.
1699 */
1700 static void try_to_wake_up_local(struct task_struct *p)
1701 {
1702 struct rq *rq = task_rq(p);
1703
1704 if (WARN_ON_ONCE(rq != this_rq()) ||
1705 WARN_ON_ONCE(p == current))
1706 return;
1707
1708 lockdep_assert_held(&rq->lock);
1709
1710 if (!raw_spin_trylock(&p->pi_lock)) {
1711 raw_spin_unlock(&rq->lock);
1712 raw_spin_lock(&p->pi_lock);
1713 raw_spin_lock(&rq->lock);
1714 }
1715
1716 if (!(p->state & TASK_NORMAL))
1717 goto out;
1718
1719 if (!task_on_rq_queued(p))
1720 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1721
1722 ttwu_do_wakeup(rq, p, 0);
1723 ttwu_stat(p, smp_processor_id(), 0);
1724 out:
1725 raw_spin_unlock(&p->pi_lock);
1726 }
1727
1728 /**
1729 * wake_up_process - Wake up a specific process
1730 * @p: The process to be woken up.
1731 *
1732 * Attempt to wake up the nominated process and move it to the set of runnable
1733 * processes.
1734 *
1735 * Return: 1 if the process was woken up, 0 if it was already running.
1736 *
1737 * It may be assumed that this function implies a write memory barrier before
1738 * changing the task state if and only if any tasks are woken up.
1739 */
1740 int wake_up_process(struct task_struct *p)
1741 {
1742 WARN_ON(task_is_stopped_or_traced(p));
1743 return try_to_wake_up(p, TASK_NORMAL, 0);
1744 }
1745 EXPORT_SYMBOL(wake_up_process);
1746
1747 int wake_up_state(struct task_struct *p, unsigned int state)
1748 {
1749 return try_to_wake_up(p, state, 0);
1750 }
1751
1752 /*
1753 * This function clears the sched_dl_entity static params.
1754 */
1755 void __dl_clear_params(struct task_struct *p)
1756 {
1757 struct sched_dl_entity *dl_se = &p->dl;
1758
1759 dl_se->dl_runtime = 0;
1760 dl_se->dl_deadline = 0;
1761 dl_se->dl_period = 0;
1762 dl_se->flags = 0;
1763 dl_se->dl_bw = 0;
1764
1765 dl_se->dl_throttled = 0;
1766 dl_se->dl_new = 1;
1767 dl_se->dl_yielded = 0;
1768 }
1769
1770 /*
1771 * Perform scheduler related setup for a newly forked process p.
1772 * p is forked by current.
1773 *
1774 * __sched_fork() is basic setup used by init_idle() too:
1775 */
1776 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1777 {
1778 p->on_rq = 0;
1779
1780 p->se.on_rq = 0;
1781 p->se.exec_start = 0;
1782 p->se.sum_exec_runtime = 0;
1783 p->se.prev_sum_exec_runtime = 0;
1784 p->se.nr_migrations = 0;
1785 p->se.vruntime = 0;
1786 #ifdef CONFIG_SMP
1787 p->se.avg.decay_count = 0;
1788 #endif
1789 INIT_LIST_HEAD(&p->se.group_node);
1790
1791 #ifdef CONFIG_SCHEDSTATS
1792 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1793 #endif
1794
1795 RB_CLEAR_NODE(&p->dl.rb_node);
1796 init_dl_task_timer(&p->dl);
1797 __dl_clear_params(p);
1798
1799 INIT_LIST_HEAD(&p->rt.run_list);
1800
1801 #ifdef CONFIG_PREEMPT_NOTIFIERS
1802 INIT_HLIST_HEAD(&p->preempt_notifiers);
1803 #endif
1804
1805 #ifdef CONFIG_NUMA_BALANCING
1806 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1807 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1808 p->mm->numa_scan_seq = 0;
1809 }
1810
1811 if (clone_flags & CLONE_VM)
1812 p->numa_preferred_nid = current->numa_preferred_nid;
1813 else
1814 p->numa_preferred_nid = -1;
1815
1816 p->node_stamp = 0ULL;
1817 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1818 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1819 p->numa_work.next = &p->numa_work;
1820 p->numa_faults = NULL;
1821 p->last_task_numa_placement = 0;
1822 p->last_sum_exec_runtime = 0;
1823
1824 p->numa_group = NULL;
1825 #endif /* CONFIG_NUMA_BALANCING */
1826 }
1827
1828 #ifdef CONFIG_NUMA_BALANCING
1829 #ifdef CONFIG_SCHED_DEBUG
1830 void set_numabalancing_state(bool enabled)
1831 {
1832 if (enabled)
1833 sched_feat_set("NUMA");
1834 else
1835 sched_feat_set("NO_NUMA");
1836 }
1837 #else
1838 __read_mostly bool numabalancing_enabled;
1839
1840 void set_numabalancing_state(bool enabled)
1841 {
1842 numabalancing_enabled = enabled;
1843 }
1844 #endif /* CONFIG_SCHED_DEBUG */
1845
1846 #ifdef CONFIG_PROC_SYSCTL
1847 int sysctl_numa_balancing(struct ctl_table *table, int write,
1848 void __user *buffer, size_t *lenp, loff_t *ppos)
1849 {
1850 struct ctl_table t;
1851 int err;
1852 int state = numabalancing_enabled;
1853
1854 if (write && !capable(CAP_SYS_ADMIN))
1855 return -EPERM;
1856
1857 t = *table;
1858 t.data = &state;
1859 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1860 if (err < 0)
1861 return err;
1862 if (write)
1863 set_numabalancing_state(state);
1864 return err;
1865 }
1866 #endif
1867 #endif
1868
1869 /*
1870 * fork()/clone()-time setup:
1871 */
1872 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1873 {
1874 unsigned long flags;
1875 int cpu = get_cpu();
1876
1877 __sched_fork(clone_flags, p);
1878 /*
1879 * We mark the process as running here. This guarantees that
1880 * nobody will actually run it, and a signal or other external
1881 * event cannot wake it up and insert it on the runqueue either.
1882 */
1883 p->state = TASK_RUNNING;
1884
1885 /*
1886 * Make sure we do not leak PI boosting priority to the child.
1887 */
1888 p->prio = current->normal_prio;
1889
1890 /*
1891 * Revert to default priority/policy on fork if requested.
1892 */
1893 if (unlikely(p->sched_reset_on_fork)) {
1894 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1895 p->policy = SCHED_NORMAL;
1896 p->static_prio = NICE_TO_PRIO(0);
1897 p->rt_priority = 0;
1898 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1899 p->static_prio = NICE_TO_PRIO(0);
1900
1901 p->prio = p->normal_prio = __normal_prio(p);
1902 set_load_weight(p);
1903
1904 /*
1905 * We don't need the reset flag anymore after the fork. It has
1906 * fulfilled its duty:
1907 */
1908 p->sched_reset_on_fork = 0;
1909 }
1910
1911 if (dl_prio(p->prio)) {
1912 put_cpu();
1913 return -EAGAIN;
1914 } else if (rt_prio(p->prio)) {
1915 p->sched_class = &rt_sched_class;
1916 } else {
1917 p->sched_class = &fair_sched_class;
1918 }
1919
1920 if (p->sched_class->task_fork)
1921 p->sched_class->task_fork(p);
1922
1923 /*
1924 * The child is not yet in the pid-hash so no cgroup attach races,
1925 * and the cgroup is pinned to this child due to cgroup_fork()
1926 * is ran before sched_fork().
1927 *
1928 * Silence PROVE_RCU.
1929 */
1930 raw_spin_lock_irqsave(&p->pi_lock, flags);
1931 set_task_cpu(p, cpu);
1932 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1933
1934 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1935 if (likely(sched_info_on()))
1936 memset(&p->sched_info, 0, sizeof(p->sched_info));
1937 #endif
1938 #if defined(CONFIG_SMP)
1939 p->on_cpu = 0;
1940 #endif
1941 init_task_preempt_count(p);
1942 #ifdef CONFIG_SMP
1943 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1944 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1945 #endif
1946
1947 put_cpu();
1948 return 0;
1949 }
1950
1951 unsigned long to_ratio(u64 period, u64 runtime)
1952 {
1953 if (runtime == RUNTIME_INF)
1954 return 1ULL << 20;
1955
1956 /*
1957 * Doing this here saves a lot of checks in all
1958 * the calling paths, and returning zero seems
1959 * safe for them anyway.
1960 */
1961 if (period == 0)
1962 return 0;
1963
1964 return div64_u64(runtime << 20, period);
1965 }
1966
1967 #ifdef CONFIG_SMP
1968 inline struct dl_bw *dl_bw_of(int i)
1969 {
1970 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1971 "sched RCU must be held");
1972 return &cpu_rq(i)->rd->dl_bw;
1973 }
1974
1975 static inline int dl_bw_cpus(int i)
1976 {
1977 struct root_domain *rd = cpu_rq(i)->rd;
1978 int cpus = 0;
1979
1980 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1981 "sched RCU must be held");
1982 for_each_cpu_and(i, rd->span, cpu_active_mask)
1983 cpus++;
1984
1985 return cpus;
1986 }
1987 #else
1988 inline struct dl_bw *dl_bw_of(int i)
1989 {
1990 return &cpu_rq(i)->dl.dl_bw;
1991 }
1992
1993 static inline int dl_bw_cpus(int i)
1994 {
1995 return 1;
1996 }
1997 #endif
1998
1999 /*
2000 * We must be sure that accepting a new task (or allowing changing the
2001 * parameters of an existing one) is consistent with the bandwidth
2002 * constraints. If yes, this function also accordingly updates the currently
2003 * allocated bandwidth to reflect the new situation.
2004 *
2005 * This function is called while holding p's rq->lock.
2006 *
2007 * XXX we should delay bw change until the task's 0-lag point, see
2008 * __setparam_dl().
2009 */
2010 static int dl_overflow(struct task_struct *p, int policy,
2011 const struct sched_attr *attr)
2012 {
2013
2014 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2015 u64 period = attr->sched_period ?: attr->sched_deadline;
2016 u64 runtime = attr->sched_runtime;
2017 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2018 int cpus, err = -1;
2019
2020 if (new_bw == p->dl.dl_bw)
2021 return 0;
2022
2023 /*
2024 * Either if a task, enters, leave, or stays -deadline but changes
2025 * its parameters, we may need to update accordingly the total
2026 * allocated bandwidth of the container.
2027 */
2028 raw_spin_lock(&dl_b->lock);
2029 cpus = dl_bw_cpus(task_cpu(p));
2030 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2031 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2032 __dl_add(dl_b, new_bw);
2033 err = 0;
2034 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2035 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2036 __dl_clear(dl_b, p->dl.dl_bw);
2037 __dl_add(dl_b, new_bw);
2038 err = 0;
2039 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2040 __dl_clear(dl_b, p->dl.dl_bw);
2041 err = 0;
2042 }
2043 raw_spin_unlock(&dl_b->lock);
2044
2045 return err;
2046 }
2047
2048 extern void init_dl_bw(struct dl_bw *dl_b);
2049
2050 /*
2051 * wake_up_new_task - wake up a newly created task for the first time.
2052 *
2053 * This function will do some initial scheduler statistics housekeeping
2054 * that must be done for every newly created context, then puts the task
2055 * on the runqueue and wakes it.
2056 */
2057 void wake_up_new_task(struct task_struct *p)
2058 {
2059 unsigned long flags;
2060 struct rq *rq;
2061
2062 raw_spin_lock_irqsave(&p->pi_lock, flags);
2063 #ifdef CONFIG_SMP
2064 /*
2065 * Fork balancing, do it here and not earlier because:
2066 * - cpus_allowed can change in the fork path
2067 * - any previously selected cpu might disappear through hotplug
2068 */
2069 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2070 #endif
2071
2072 /* Initialize new task's runnable average */
2073 init_task_runnable_average(p);
2074 rq = __task_rq_lock(p);
2075 activate_task(rq, p, 0);
2076 p->on_rq = TASK_ON_RQ_QUEUED;
2077 trace_sched_wakeup_new(p, true);
2078 check_preempt_curr(rq, p, WF_FORK);
2079 #ifdef CONFIG_SMP
2080 if (p->sched_class->task_woken)
2081 p->sched_class->task_woken(rq, p);
2082 #endif
2083 task_rq_unlock(rq, p, &flags);
2084 }
2085
2086 #ifdef CONFIG_PREEMPT_NOTIFIERS
2087
2088 /**
2089 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2090 * @notifier: notifier struct to register
2091 */
2092 void preempt_notifier_register(struct preempt_notifier *notifier)
2093 {
2094 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2095 }
2096 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2097
2098 /**
2099 * preempt_notifier_unregister - no longer interested in preemption notifications
2100 * @notifier: notifier struct to unregister
2101 *
2102 * This is safe to call from within a preemption notifier.
2103 */
2104 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2105 {
2106 hlist_del(&notifier->link);
2107 }
2108 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2109
2110 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2111 {
2112 struct preempt_notifier *notifier;
2113
2114 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2115 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2116 }
2117
2118 static void
2119 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2120 struct task_struct *next)
2121 {
2122 struct preempt_notifier *notifier;
2123
2124 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2125 notifier->ops->sched_out(notifier, next);
2126 }
2127
2128 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2129
2130 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2131 {
2132 }
2133
2134 static void
2135 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2136 struct task_struct *next)
2137 {
2138 }
2139
2140 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2141
2142 /**
2143 * prepare_task_switch - prepare to switch tasks
2144 * @rq: the runqueue preparing to switch
2145 * @prev: the current task that is being switched out
2146 * @next: the task we are going to switch to.
2147 *
2148 * This is called with the rq lock held and interrupts off. It must
2149 * be paired with a subsequent finish_task_switch after the context
2150 * switch.
2151 *
2152 * prepare_task_switch sets up locking and calls architecture specific
2153 * hooks.
2154 */
2155 static inline void
2156 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2157 struct task_struct *next)
2158 {
2159 trace_sched_switch(prev, next);
2160 sched_info_switch(rq, prev, next);
2161 perf_event_task_sched_out(prev, next);
2162 fire_sched_out_preempt_notifiers(prev, next);
2163 prepare_lock_switch(rq, next);
2164 prepare_arch_switch(next);
2165 }
2166
2167 /**
2168 * finish_task_switch - clean up after a task-switch
2169 * @prev: the thread we just switched away from.
2170 *
2171 * finish_task_switch must be called after the context switch, paired
2172 * with a prepare_task_switch call before the context switch.
2173 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2174 * and do any other architecture-specific cleanup actions.
2175 *
2176 * Note that we may have delayed dropping an mm in context_switch(). If
2177 * so, we finish that here outside of the runqueue lock. (Doing it
2178 * with the lock held can cause deadlocks; see schedule() for
2179 * details.)
2180 *
2181 * The context switch have flipped the stack from under us and restored the
2182 * local variables which were saved when this task called schedule() in the
2183 * past. prev == current is still correct but we need to recalculate this_rq
2184 * because prev may have moved to another CPU.
2185 */
2186 static struct rq *finish_task_switch(struct task_struct *prev)
2187 __releases(rq->lock)
2188 {
2189 struct rq *rq = this_rq();
2190 struct mm_struct *mm = rq->prev_mm;
2191 long prev_state;
2192
2193 rq->prev_mm = NULL;
2194
2195 /*
2196 * A task struct has one reference for the use as "current".
2197 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2198 * schedule one last time. The schedule call will never return, and
2199 * the scheduled task must drop that reference.
2200 * The test for TASK_DEAD must occur while the runqueue locks are
2201 * still held, otherwise prev could be scheduled on another cpu, die
2202 * there before we look at prev->state, and then the reference would
2203 * be dropped twice.
2204 * Manfred Spraul <manfred@colorfullife.com>
2205 */
2206 prev_state = prev->state;
2207 vtime_task_switch(prev);
2208 finish_arch_switch(prev);
2209 perf_event_task_sched_in(prev, current);
2210 finish_lock_switch(rq, prev);
2211 finish_arch_post_lock_switch();
2212
2213 fire_sched_in_preempt_notifiers(current);
2214 if (mm)
2215 mmdrop(mm);
2216 if (unlikely(prev_state == TASK_DEAD)) {
2217 if (prev->sched_class->task_dead)
2218 prev->sched_class->task_dead(prev);
2219
2220 /*
2221 * Remove function-return probe instances associated with this
2222 * task and put them back on the free list.
2223 */
2224 kprobe_flush_task(prev);
2225 put_task_struct(prev);
2226 }
2227
2228 tick_nohz_task_switch(current);
2229 return rq;
2230 }
2231
2232 #ifdef CONFIG_SMP
2233
2234 /* rq->lock is NOT held, but preemption is disabled */
2235 static inline void post_schedule(struct rq *rq)
2236 {
2237 if (rq->post_schedule) {
2238 unsigned long flags;
2239
2240 raw_spin_lock_irqsave(&rq->lock, flags);
2241 if (rq->curr->sched_class->post_schedule)
2242 rq->curr->sched_class->post_schedule(rq);
2243 raw_spin_unlock_irqrestore(&rq->lock, flags);
2244
2245 rq->post_schedule = 0;
2246 }
2247 }
2248
2249 #else
2250
2251 static inline void post_schedule(struct rq *rq)
2252 {
2253 }
2254
2255 #endif
2256
2257 /**
2258 * schedule_tail - first thing a freshly forked thread must call.
2259 * @prev: the thread we just switched away from.
2260 */
2261 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2262 __releases(rq->lock)
2263 {
2264 struct rq *rq;
2265
2266 /* finish_task_switch() drops rq->lock and enables preemtion */
2267 preempt_disable();
2268 rq = finish_task_switch(prev);
2269 post_schedule(rq);
2270 preempt_enable();
2271
2272 if (current->set_child_tid)
2273 put_user(task_pid_vnr(current), current->set_child_tid);
2274 }
2275
2276 /*
2277 * context_switch - switch to the new MM and the new thread's register state.
2278 */
2279 static inline struct rq *
2280 context_switch(struct rq *rq, struct task_struct *prev,
2281 struct task_struct *next)
2282 {
2283 struct mm_struct *mm, *oldmm;
2284
2285 prepare_task_switch(rq, prev, next);
2286
2287 mm = next->mm;
2288 oldmm = prev->active_mm;
2289 /*
2290 * For paravirt, this is coupled with an exit in switch_to to
2291 * combine the page table reload and the switch backend into
2292 * one hypercall.
2293 */
2294 arch_start_context_switch(prev);
2295
2296 if (!mm) {
2297 next->active_mm = oldmm;
2298 atomic_inc(&oldmm->mm_count);
2299 enter_lazy_tlb(oldmm, next);
2300 } else
2301 switch_mm(oldmm, mm, next);
2302
2303 if (!prev->mm) {
2304 prev->active_mm = NULL;
2305 rq->prev_mm = oldmm;
2306 }
2307 /*
2308 * Since the runqueue lock will be released by the next
2309 * task (which is an invalid locking op but in the case
2310 * of the scheduler it's an obvious special-case), so we
2311 * do an early lockdep release here:
2312 */
2313 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2314
2315 context_tracking_task_switch(prev, next);
2316 /* Here we just switch the register state and the stack. */
2317 switch_to(prev, next, prev);
2318 barrier();
2319
2320 return finish_task_switch(prev);
2321 }
2322
2323 /*
2324 * nr_running and nr_context_switches:
2325 *
2326 * externally visible scheduler statistics: current number of runnable
2327 * threads, total number of context switches performed since bootup.
2328 */
2329 unsigned long nr_running(void)
2330 {
2331 unsigned long i, sum = 0;
2332
2333 for_each_online_cpu(i)
2334 sum += cpu_rq(i)->nr_running;
2335
2336 return sum;
2337 }
2338
2339 /*
2340 * Check if only the current task is running on the cpu.
2341 */
2342 bool single_task_running(void)
2343 {
2344 if (cpu_rq(smp_processor_id())->nr_running == 1)
2345 return true;
2346 else
2347 return false;
2348 }
2349 EXPORT_SYMBOL(single_task_running);
2350
2351 unsigned long long nr_context_switches(void)
2352 {
2353 int i;
2354 unsigned long long sum = 0;
2355
2356 for_each_possible_cpu(i)
2357 sum += cpu_rq(i)->nr_switches;
2358
2359 return sum;
2360 }
2361
2362 unsigned long nr_iowait(void)
2363 {
2364 unsigned long i, sum = 0;
2365
2366 for_each_possible_cpu(i)
2367 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2368
2369 return sum;
2370 }
2371
2372 unsigned long nr_iowait_cpu(int cpu)
2373 {
2374 struct rq *this = cpu_rq(cpu);
2375 return atomic_read(&this->nr_iowait);
2376 }
2377
2378 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2379 {
2380 struct rq *this = this_rq();
2381 *nr_waiters = atomic_read(&this->nr_iowait);
2382 *load = this->cpu_load[0];
2383 }
2384
2385 #ifdef CONFIG_SMP
2386
2387 /*
2388 * sched_exec - execve() is a valuable balancing opportunity, because at
2389 * this point the task has the smallest effective memory and cache footprint.
2390 */
2391 void sched_exec(void)
2392 {
2393 struct task_struct *p = current;
2394 unsigned long flags;
2395 int dest_cpu;
2396
2397 raw_spin_lock_irqsave(&p->pi_lock, flags);
2398 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2399 if (dest_cpu == smp_processor_id())
2400 goto unlock;
2401
2402 if (likely(cpu_active(dest_cpu))) {
2403 struct migration_arg arg = { p, dest_cpu };
2404
2405 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2406 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2407 return;
2408 }
2409 unlock:
2410 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2411 }
2412
2413 #endif
2414
2415 DEFINE_PER_CPU(struct kernel_stat, kstat);
2416 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2417
2418 EXPORT_PER_CPU_SYMBOL(kstat);
2419 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2420
2421 /*
2422 * Return accounted runtime for the task.
2423 * In case the task is currently running, return the runtime plus current's
2424 * pending runtime that have not been accounted yet.
2425 */
2426 unsigned long long task_sched_runtime(struct task_struct *p)
2427 {
2428 unsigned long flags;
2429 struct rq *rq;
2430 u64 ns;
2431
2432 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2433 /*
2434 * 64-bit doesn't need locks to atomically read a 64bit value.
2435 * So we have a optimization chance when the task's delta_exec is 0.
2436 * Reading ->on_cpu is racy, but this is ok.
2437 *
2438 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2439 * If we race with it entering cpu, unaccounted time is 0. This is
2440 * indistinguishable from the read occurring a few cycles earlier.
2441 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2442 * been accounted, so we're correct here as well.
2443 */
2444 if (!p->on_cpu || !task_on_rq_queued(p))
2445 return p->se.sum_exec_runtime;
2446 #endif
2447
2448 rq = task_rq_lock(p, &flags);
2449 /*
2450 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2451 * project cycles that may never be accounted to this
2452 * thread, breaking clock_gettime().
2453 */
2454 if (task_current(rq, p) && task_on_rq_queued(p)) {
2455 update_rq_clock(rq);
2456 p->sched_class->update_curr(rq);
2457 }
2458 ns = p->se.sum_exec_runtime;
2459 task_rq_unlock(rq, p, &flags);
2460
2461 return ns;
2462 }
2463
2464 /*
2465 * This function gets called by the timer code, with HZ frequency.
2466 * We call it with interrupts disabled.
2467 */
2468 void scheduler_tick(void)
2469 {
2470 int cpu = smp_processor_id();
2471 struct rq *rq = cpu_rq(cpu);
2472 struct task_struct *curr = rq->curr;
2473
2474 sched_clock_tick();
2475
2476 raw_spin_lock(&rq->lock);
2477 update_rq_clock(rq);
2478 curr->sched_class->task_tick(rq, curr, 0);
2479 update_cpu_load_active(rq);
2480 raw_spin_unlock(&rq->lock);
2481
2482 perf_event_task_tick();
2483
2484 #ifdef CONFIG_SMP
2485 rq->idle_balance = idle_cpu(cpu);
2486 trigger_load_balance(rq);
2487 #endif
2488 rq_last_tick_reset(rq);
2489 }
2490
2491 #ifdef CONFIG_NO_HZ_FULL
2492 /**
2493 * scheduler_tick_max_deferment
2494 *
2495 * Keep at least one tick per second when a single
2496 * active task is running because the scheduler doesn't
2497 * yet completely support full dynticks environment.
2498 *
2499 * This makes sure that uptime, CFS vruntime, load
2500 * balancing, etc... continue to move forward, even
2501 * with a very low granularity.
2502 *
2503 * Return: Maximum deferment in nanoseconds.
2504 */
2505 u64 scheduler_tick_max_deferment(void)
2506 {
2507 struct rq *rq = this_rq();
2508 unsigned long next, now = ACCESS_ONCE(jiffies);
2509
2510 next = rq->last_sched_tick + HZ;
2511
2512 if (time_before_eq(next, now))
2513 return 0;
2514
2515 return jiffies_to_nsecs(next - now);
2516 }
2517 #endif
2518
2519 notrace unsigned long get_parent_ip(unsigned long addr)
2520 {
2521 if (in_lock_functions(addr)) {
2522 addr = CALLER_ADDR2;
2523 if (in_lock_functions(addr))
2524 addr = CALLER_ADDR3;
2525 }
2526 return addr;
2527 }
2528
2529 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2530 defined(CONFIG_PREEMPT_TRACER))
2531
2532 void preempt_count_add(int val)
2533 {
2534 #ifdef CONFIG_DEBUG_PREEMPT
2535 /*
2536 * Underflow?
2537 */
2538 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2539 return;
2540 #endif
2541 __preempt_count_add(val);
2542 #ifdef CONFIG_DEBUG_PREEMPT
2543 /*
2544 * Spinlock count overflowing soon?
2545 */
2546 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2547 PREEMPT_MASK - 10);
2548 #endif
2549 if (preempt_count() == val) {
2550 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2551 #ifdef CONFIG_DEBUG_PREEMPT
2552 current->preempt_disable_ip = ip;
2553 #endif
2554 trace_preempt_off(CALLER_ADDR0, ip);
2555 }
2556 }
2557 EXPORT_SYMBOL(preempt_count_add);
2558 NOKPROBE_SYMBOL(preempt_count_add);
2559
2560 void preempt_count_sub(int val)
2561 {
2562 #ifdef CONFIG_DEBUG_PREEMPT
2563 /*
2564 * Underflow?
2565 */
2566 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2567 return;
2568 /*
2569 * Is the spinlock portion underflowing?
2570 */
2571 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2572 !(preempt_count() & PREEMPT_MASK)))
2573 return;
2574 #endif
2575
2576 if (preempt_count() == val)
2577 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2578 __preempt_count_sub(val);
2579 }
2580 EXPORT_SYMBOL(preempt_count_sub);
2581 NOKPROBE_SYMBOL(preempt_count_sub);
2582
2583 #endif
2584
2585 /*
2586 * Print scheduling while atomic bug:
2587 */
2588 static noinline void __schedule_bug(struct task_struct *prev)
2589 {
2590 if (oops_in_progress)
2591 return;
2592
2593 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2594 prev->comm, prev->pid, preempt_count());
2595
2596 debug_show_held_locks(prev);
2597 print_modules();
2598 if (irqs_disabled())
2599 print_irqtrace_events(prev);
2600 #ifdef CONFIG_DEBUG_PREEMPT
2601 if (in_atomic_preempt_off()) {
2602 pr_err("Preemption disabled at:");
2603 print_ip_sym(current->preempt_disable_ip);
2604 pr_cont("\n");
2605 }
2606 #endif
2607 dump_stack();
2608 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2609 }
2610
2611 /*
2612 * Various schedule()-time debugging checks and statistics:
2613 */
2614 static inline void schedule_debug(struct task_struct *prev)
2615 {
2616 #ifdef CONFIG_SCHED_STACK_END_CHECK
2617 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2618 #endif
2619 /*
2620 * Test if we are atomic. Since do_exit() needs to call into
2621 * schedule() atomically, we ignore that path. Otherwise whine
2622 * if we are scheduling when we should not.
2623 */
2624 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2625 __schedule_bug(prev);
2626 rcu_sleep_check();
2627
2628 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2629
2630 schedstat_inc(this_rq(), sched_count);
2631 }
2632
2633 /*
2634 * Pick up the highest-prio task:
2635 */
2636 static inline struct task_struct *
2637 pick_next_task(struct rq *rq, struct task_struct *prev)
2638 {
2639 const struct sched_class *class = &fair_sched_class;
2640 struct task_struct *p;
2641
2642 /*
2643 * Optimization: we know that if all tasks are in
2644 * the fair class we can call that function directly:
2645 */
2646 if (likely(prev->sched_class == class &&
2647 rq->nr_running == rq->cfs.h_nr_running)) {
2648 p = fair_sched_class.pick_next_task(rq, prev);
2649 if (unlikely(p == RETRY_TASK))
2650 goto again;
2651
2652 /* assumes fair_sched_class->next == idle_sched_class */
2653 if (unlikely(!p))
2654 p = idle_sched_class.pick_next_task(rq, prev);
2655
2656 return p;
2657 }
2658
2659 again:
2660 for_each_class(class) {
2661 p = class->pick_next_task(rq, prev);
2662 if (p) {
2663 if (unlikely(p == RETRY_TASK))
2664 goto again;
2665 return p;
2666 }
2667 }
2668
2669 BUG(); /* the idle class will always have a runnable task */
2670 }
2671
2672 /*
2673 * __schedule() is the main scheduler function.
2674 *
2675 * The main means of driving the scheduler and thus entering this function are:
2676 *
2677 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2678 *
2679 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2680 * paths. For example, see arch/x86/entry_64.S.
2681 *
2682 * To drive preemption between tasks, the scheduler sets the flag in timer
2683 * interrupt handler scheduler_tick().
2684 *
2685 * 3. Wakeups don't really cause entry into schedule(). They add a
2686 * task to the run-queue and that's it.
2687 *
2688 * Now, if the new task added to the run-queue preempts the current
2689 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2690 * called on the nearest possible occasion:
2691 *
2692 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2693 *
2694 * - in syscall or exception context, at the next outmost
2695 * preempt_enable(). (this might be as soon as the wake_up()'s
2696 * spin_unlock()!)
2697 *
2698 * - in IRQ context, return from interrupt-handler to
2699 * preemptible context
2700 *
2701 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2702 * then at the next:
2703 *
2704 * - cond_resched() call
2705 * - explicit schedule() call
2706 * - return from syscall or exception to user-space
2707 * - return from interrupt-handler to user-space
2708 *
2709 * WARNING: all callers must re-check need_resched() afterward and reschedule
2710 * accordingly in case an event triggered the need for rescheduling (such as
2711 * an interrupt waking up a task) while preemption was disabled in __schedule().
2712 */
2713 static void __sched __schedule(void)
2714 {
2715 struct task_struct *prev, *next;
2716 unsigned long *switch_count;
2717 struct rq *rq;
2718 int cpu;
2719
2720 preempt_disable();
2721 cpu = smp_processor_id();
2722 rq = cpu_rq(cpu);
2723 rcu_note_context_switch();
2724 prev = rq->curr;
2725
2726 schedule_debug(prev);
2727
2728 if (sched_feat(HRTICK))
2729 hrtick_clear(rq);
2730
2731 /*
2732 * Make sure that signal_pending_state()->signal_pending() below
2733 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2734 * done by the caller to avoid the race with signal_wake_up().
2735 */
2736 smp_mb__before_spinlock();
2737 raw_spin_lock_irq(&rq->lock);
2738
2739 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2740
2741 switch_count = &prev->nivcsw;
2742 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2743 if (unlikely(signal_pending_state(prev->state, prev))) {
2744 prev->state = TASK_RUNNING;
2745 } else {
2746 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2747 prev->on_rq = 0;
2748
2749 /*
2750 * If a worker went to sleep, notify and ask workqueue
2751 * whether it wants to wake up a task to maintain
2752 * concurrency.
2753 */
2754 if (prev->flags & PF_WQ_WORKER) {
2755 struct task_struct *to_wakeup;
2756
2757 to_wakeup = wq_worker_sleeping(prev, cpu);
2758 if (to_wakeup)
2759 try_to_wake_up_local(to_wakeup);
2760 }
2761 }
2762 switch_count = &prev->nvcsw;
2763 }
2764
2765 if (task_on_rq_queued(prev))
2766 update_rq_clock(rq);
2767
2768 next = pick_next_task(rq, prev);
2769 clear_tsk_need_resched(prev);
2770 clear_preempt_need_resched();
2771 rq->clock_skip_update = 0;
2772
2773 if (likely(prev != next)) {
2774 rq->nr_switches++;
2775 rq->curr = next;
2776 ++*switch_count;
2777
2778 rq = context_switch(rq, prev, next); /* unlocks the rq */
2779 cpu = cpu_of(rq);
2780 } else
2781 raw_spin_unlock_irq(&rq->lock);
2782
2783 post_schedule(rq);
2784
2785 sched_preempt_enable_no_resched();
2786 }
2787
2788 static inline void sched_submit_work(struct task_struct *tsk)
2789 {
2790 if (!tsk->state || tsk_is_pi_blocked(tsk))
2791 return;
2792 /*
2793 * If we are going to sleep and we have plugged IO queued,
2794 * make sure to submit it to avoid deadlocks.
2795 */
2796 if (blk_needs_flush_plug(tsk))
2797 blk_schedule_flush_plug(tsk);
2798 }
2799
2800 asmlinkage __visible void __sched schedule(void)
2801 {
2802 struct task_struct *tsk = current;
2803
2804 sched_submit_work(tsk);
2805 do {
2806 __schedule();
2807 } while (need_resched());
2808 }
2809 EXPORT_SYMBOL(schedule);
2810
2811 #ifdef CONFIG_CONTEXT_TRACKING
2812 asmlinkage __visible void __sched schedule_user(void)
2813 {
2814 /*
2815 * If we come here after a random call to set_need_resched(),
2816 * or we have been woken up remotely but the IPI has not yet arrived,
2817 * we haven't yet exited the RCU idle mode. Do it here manually until
2818 * we find a better solution.
2819 *
2820 * NB: There are buggy callers of this function. Ideally we
2821 * should warn if prev_state != IN_USER, but that will trigger
2822 * too frequently to make sense yet.
2823 */
2824 enum ctx_state prev_state = exception_enter();
2825 schedule();
2826 exception_exit(prev_state);
2827 }
2828 #endif
2829
2830 /**
2831 * schedule_preempt_disabled - called with preemption disabled
2832 *
2833 * Returns with preemption disabled. Note: preempt_count must be 1
2834 */
2835 void __sched schedule_preempt_disabled(void)
2836 {
2837 sched_preempt_enable_no_resched();
2838 schedule();
2839 preempt_disable();
2840 }
2841
2842 static void __sched notrace preempt_schedule_common(void)
2843 {
2844 do {
2845 __preempt_count_add(PREEMPT_ACTIVE);
2846 __schedule();
2847 __preempt_count_sub(PREEMPT_ACTIVE);
2848
2849 /*
2850 * Check again in case we missed a preemption opportunity
2851 * between schedule and now.
2852 */
2853 barrier();
2854 } while (need_resched());
2855 }
2856
2857 #ifdef CONFIG_PREEMPT
2858 /*
2859 * this is the entry point to schedule() from in-kernel preemption
2860 * off of preempt_enable. Kernel preemptions off return from interrupt
2861 * occur there and call schedule directly.
2862 */
2863 asmlinkage __visible void __sched notrace preempt_schedule(void)
2864 {
2865 /*
2866 * If there is a non-zero preempt_count or interrupts are disabled,
2867 * we do not want to preempt the current task. Just return..
2868 */
2869 if (likely(!preemptible()))
2870 return;
2871
2872 preempt_schedule_common();
2873 }
2874 NOKPROBE_SYMBOL(preempt_schedule);
2875 EXPORT_SYMBOL(preempt_schedule);
2876
2877 #ifdef CONFIG_CONTEXT_TRACKING
2878 /**
2879 * preempt_schedule_context - preempt_schedule called by tracing
2880 *
2881 * The tracing infrastructure uses preempt_enable_notrace to prevent
2882 * recursion and tracing preempt enabling caused by the tracing
2883 * infrastructure itself. But as tracing can happen in areas coming
2884 * from userspace or just about to enter userspace, a preempt enable
2885 * can occur before user_exit() is called. This will cause the scheduler
2886 * to be called when the system is still in usermode.
2887 *
2888 * To prevent this, the preempt_enable_notrace will use this function
2889 * instead of preempt_schedule() to exit user context if needed before
2890 * calling the scheduler.
2891 */
2892 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2893 {
2894 enum ctx_state prev_ctx;
2895
2896 if (likely(!preemptible()))
2897 return;
2898
2899 do {
2900 __preempt_count_add(PREEMPT_ACTIVE);
2901 /*
2902 * Needs preempt disabled in case user_exit() is traced
2903 * and the tracer calls preempt_enable_notrace() causing
2904 * an infinite recursion.
2905 */
2906 prev_ctx = exception_enter();
2907 __schedule();
2908 exception_exit(prev_ctx);
2909
2910 __preempt_count_sub(PREEMPT_ACTIVE);
2911 barrier();
2912 } while (need_resched());
2913 }
2914 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2915 #endif /* CONFIG_CONTEXT_TRACKING */
2916
2917 #endif /* CONFIG_PREEMPT */
2918
2919 /*
2920 * this is the entry point to schedule() from kernel preemption
2921 * off of irq context.
2922 * Note, that this is called and return with irqs disabled. This will
2923 * protect us against recursive calling from irq.
2924 */
2925 asmlinkage __visible void __sched preempt_schedule_irq(void)
2926 {
2927 enum ctx_state prev_state;
2928
2929 /* Catch callers which need to be fixed */
2930 BUG_ON(preempt_count() || !irqs_disabled());
2931
2932 prev_state = exception_enter();
2933
2934 do {
2935 __preempt_count_add(PREEMPT_ACTIVE);
2936 local_irq_enable();
2937 __schedule();
2938 local_irq_disable();
2939 __preempt_count_sub(PREEMPT_ACTIVE);
2940
2941 /*
2942 * Check again in case we missed a preemption opportunity
2943 * between schedule and now.
2944 */
2945 barrier();
2946 } while (need_resched());
2947
2948 exception_exit(prev_state);
2949 }
2950
2951 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2952 void *key)
2953 {
2954 return try_to_wake_up(curr->private, mode, wake_flags);
2955 }
2956 EXPORT_SYMBOL(default_wake_function);
2957
2958 #ifdef CONFIG_RT_MUTEXES
2959
2960 /*
2961 * rt_mutex_setprio - set the current priority of a task
2962 * @p: task
2963 * @prio: prio value (kernel-internal form)
2964 *
2965 * This function changes the 'effective' priority of a task. It does
2966 * not touch ->normal_prio like __setscheduler().
2967 *
2968 * Used by the rt_mutex code to implement priority inheritance
2969 * logic. Call site only calls if the priority of the task changed.
2970 */
2971 void rt_mutex_setprio(struct task_struct *p, int prio)
2972 {
2973 int oldprio, queued, running, enqueue_flag = 0;
2974 struct rq *rq;
2975 const struct sched_class *prev_class;
2976
2977 BUG_ON(prio > MAX_PRIO);
2978
2979 rq = __task_rq_lock(p);
2980
2981 /*
2982 * Idle task boosting is a nono in general. There is one
2983 * exception, when PREEMPT_RT and NOHZ is active:
2984 *
2985 * The idle task calls get_next_timer_interrupt() and holds
2986 * the timer wheel base->lock on the CPU and another CPU wants
2987 * to access the timer (probably to cancel it). We can safely
2988 * ignore the boosting request, as the idle CPU runs this code
2989 * with interrupts disabled and will complete the lock
2990 * protected section without being interrupted. So there is no
2991 * real need to boost.
2992 */
2993 if (unlikely(p == rq->idle)) {
2994 WARN_ON(p != rq->curr);
2995 WARN_ON(p->pi_blocked_on);
2996 goto out_unlock;
2997 }
2998
2999 trace_sched_pi_setprio(p, prio);
3000 oldprio = p->prio;
3001 prev_class = p->sched_class;
3002 queued = task_on_rq_queued(p);
3003 running = task_current(rq, p);
3004 if (queued)
3005 dequeue_task(rq, p, 0);
3006 if (running)
3007 put_prev_task(rq, p);
3008
3009 /*
3010 * Boosting condition are:
3011 * 1. -rt task is running and holds mutex A
3012 * --> -dl task blocks on mutex A
3013 *
3014 * 2. -dl task is running and holds mutex A
3015 * --> -dl task blocks on mutex A and could preempt the
3016 * running task
3017 */
3018 if (dl_prio(prio)) {
3019 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3020 if (!dl_prio(p->normal_prio) ||
3021 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3022 p->dl.dl_boosted = 1;
3023 p->dl.dl_throttled = 0;
3024 enqueue_flag = ENQUEUE_REPLENISH;
3025 } else
3026 p->dl.dl_boosted = 0;
3027 p->sched_class = &dl_sched_class;
3028 } else if (rt_prio(prio)) {
3029 if (dl_prio(oldprio))
3030 p->dl.dl_boosted = 0;
3031 if (oldprio < prio)
3032 enqueue_flag = ENQUEUE_HEAD;
3033 p->sched_class = &rt_sched_class;
3034 } else {
3035 if (dl_prio(oldprio))
3036 p->dl.dl_boosted = 0;
3037 if (rt_prio(oldprio))
3038 p->rt.timeout = 0;
3039 p->sched_class = &fair_sched_class;
3040 }
3041
3042 p->prio = prio;
3043
3044 if (running)
3045 p->sched_class->set_curr_task(rq);
3046 if (queued)
3047 enqueue_task(rq, p, enqueue_flag);
3048
3049 check_class_changed(rq, p, prev_class, oldprio);
3050 out_unlock:
3051 __task_rq_unlock(rq);
3052 }
3053 #endif
3054
3055 void set_user_nice(struct task_struct *p, long nice)
3056 {
3057 int old_prio, delta, queued;
3058 unsigned long flags;
3059 struct rq *rq;
3060
3061 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3062 return;
3063 /*
3064 * We have to be careful, if called from sys_setpriority(),
3065 * the task might be in the middle of scheduling on another CPU.
3066 */
3067 rq = task_rq_lock(p, &flags);
3068 /*
3069 * The RT priorities are set via sched_setscheduler(), but we still
3070 * allow the 'normal' nice value to be set - but as expected
3071 * it wont have any effect on scheduling until the task is
3072 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3073 */
3074 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3075 p->static_prio = NICE_TO_PRIO(nice);
3076 goto out_unlock;
3077 }
3078 queued = task_on_rq_queued(p);
3079 if (queued)
3080 dequeue_task(rq, p, 0);
3081
3082 p->static_prio = NICE_TO_PRIO(nice);
3083 set_load_weight(p);
3084 old_prio = p->prio;
3085 p->prio = effective_prio(p);
3086 delta = p->prio - old_prio;
3087
3088 if (queued) {
3089 enqueue_task(rq, p, 0);
3090 /*
3091 * If the task increased its priority or is running and
3092 * lowered its priority, then reschedule its CPU:
3093 */
3094 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3095 resched_curr(rq);
3096 }
3097 out_unlock:
3098 task_rq_unlock(rq, p, &flags);
3099 }
3100 EXPORT_SYMBOL(set_user_nice);
3101
3102 /*
3103 * can_nice - check if a task can reduce its nice value
3104 * @p: task
3105 * @nice: nice value
3106 */
3107 int can_nice(const struct task_struct *p, const int nice)
3108 {
3109 /* convert nice value [19,-20] to rlimit style value [1,40] */
3110 int nice_rlim = nice_to_rlimit(nice);
3111
3112 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3113 capable(CAP_SYS_NICE));
3114 }
3115
3116 #ifdef __ARCH_WANT_SYS_NICE
3117
3118 /*
3119 * sys_nice - change the priority of the current process.
3120 * @increment: priority increment
3121 *
3122 * sys_setpriority is a more generic, but much slower function that
3123 * does similar things.
3124 */
3125 SYSCALL_DEFINE1(nice, int, increment)
3126 {
3127 long nice, retval;
3128
3129 /*
3130 * Setpriority might change our priority at the same moment.
3131 * We don't have to worry. Conceptually one call occurs first
3132 * and we have a single winner.
3133 */
3134 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3135 nice = task_nice(current) + increment;
3136
3137 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3138 if (increment < 0 && !can_nice(current, nice))
3139 return -EPERM;
3140
3141 retval = security_task_setnice(current, nice);
3142 if (retval)
3143 return retval;
3144
3145 set_user_nice(current, nice);
3146 return 0;
3147 }
3148
3149 #endif
3150
3151 /**
3152 * task_prio - return the priority value of a given task.
3153 * @p: the task in question.
3154 *
3155 * Return: The priority value as seen by users in /proc.
3156 * RT tasks are offset by -200. Normal tasks are centered
3157 * around 0, value goes from -16 to +15.
3158 */
3159 int task_prio(const struct task_struct *p)
3160 {
3161 return p->prio - MAX_RT_PRIO;
3162 }
3163
3164 /**
3165 * idle_cpu - is a given cpu idle currently?
3166 * @cpu: the processor in question.
3167 *
3168 * Return: 1 if the CPU is currently idle. 0 otherwise.
3169 */
3170 int idle_cpu(int cpu)
3171 {
3172 struct rq *rq = cpu_rq(cpu);
3173
3174 if (rq->curr != rq->idle)
3175 return 0;
3176
3177 if (rq->nr_running)
3178 return 0;
3179
3180 #ifdef CONFIG_SMP
3181 if (!llist_empty(&rq->wake_list))
3182 return 0;
3183 #endif
3184
3185 return 1;
3186 }
3187
3188 /**
3189 * idle_task - return the idle task for a given cpu.
3190 * @cpu: the processor in question.
3191 *
3192 * Return: The idle task for the cpu @cpu.
3193 */
3194 struct task_struct *idle_task(int cpu)
3195 {
3196 return cpu_rq(cpu)->idle;
3197 }
3198
3199 /**
3200 * find_process_by_pid - find a process with a matching PID value.
3201 * @pid: the pid in question.
3202 *
3203 * The task of @pid, if found. %NULL otherwise.
3204 */
3205 static struct task_struct *find_process_by_pid(pid_t pid)
3206 {
3207 return pid ? find_task_by_vpid(pid) : current;
3208 }
3209
3210 /*
3211 * This function initializes the sched_dl_entity of a newly becoming
3212 * SCHED_DEADLINE task.
3213 *
3214 * Only the static values are considered here, the actual runtime and the
3215 * absolute deadline will be properly calculated when the task is enqueued
3216 * for the first time with its new policy.
3217 */
3218 static void
3219 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3220 {
3221 struct sched_dl_entity *dl_se = &p->dl;
3222
3223 dl_se->dl_runtime = attr->sched_runtime;
3224 dl_se->dl_deadline = attr->sched_deadline;
3225 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3226 dl_se->flags = attr->sched_flags;
3227 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3228
3229 /*
3230 * Changing the parameters of a task is 'tricky' and we're not doing
3231 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3232 *
3233 * What we SHOULD do is delay the bandwidth release until the 0-lag
3234 * point. This would include retaining the task_struct until that time
3235 * and change dl_overflow() to not immediately decrement the current
3236 * amount.
3237 *
3238 * Instead we retain the current runtime/deadline and let the new
3239 * parameters take effect after the current reservation period lapses.
3240 * This is safe (albeit pessimistic) because the 0-lag point is always
3241 * before the current scheduling deadline.
3242 *
3243 * We can still have temporary overloads because we do not delay the
3244 * change in bandwidth until that time; so admission control is
3245 * not on the safe side. It does however guarantee tasks will never
3246 * consume more than promised.
3247 */
3248 }
3249
3250 /*
3251 * sched_setparam() passes in -1 for its policy, to let the functions
3252 * it calls know not to change it.
3253 */
3254 #define SETPARAM_POLICY -1
3255
3256 static void __setscheduler_params(struct task_struct *p,
3257 const struct sched_attr *attr)
3258 {
3259 int policy = attr->sched_policy;
3260
3261 if (policy == SETPARAM_POLICY)
3262 policy = p->policy;
3263
3264 p->policy = policy;
3265
3266 if (dl_policy(policy))
3267 __setparam_dl(p, attr);
3268 else if (fair_policy(policy))
3269 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3270
3271 /*
3272 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3273 * !rt_policy. Always setting this ensures that things like
3274 * getparam()/getattr() don't report silly values for !rt tasks.
3275 */
3276 p->rt_priority = attr->sched_priority;
3277 p->normal_prio = normal_prio(p);
3278 set_load_weight(p);
3279 }
3280
3281 /* Actually do priority change: must hold pi & rq lock. */
3282 static void __setscheduler(struct rq *rq, struct task_struct *p,
3283 const struct sched_attr *attr)
3284 {
3285 __setscheduler_params(p, attr);
3286
3287 /*
3288 * If we get here, there was no pi waiters boosting the
3289 * task. It is safe to use the normal prio.
3290 */
3291 p->prio = normal_prio(p);
3292
3293 if (dl_prio(p->prio))
3294 p->sched_class = &dl_sched_class;
3295 else if (rt_prio(p->prio))
3296 p->sched_class = &rt_sched_class;
3297 else
3298 p->sched_class = &fair_sched_class;
3299 }
3300
3301 static void
3302 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3303 {
3304 struct sched_dl_entity *dl_se = &p->dl;
3305
3306 attr->sched_priority = p->rt_priority;
3307 attr->sched_runtime = dl_se->dl_runtime;
3308 attr->sched_deadline = dl_se->dl_deadline;
3309 attr->sched_period = dl_se->dl_period;
3310 attr->sched_flags = dl_se->flags;
3311 }
3312
3313 /*
3314 * This function validates the new parameters of a -deadline task.
3315 * We ask for the deadline not being zero, and greater or equal
3316 * than the runtime, as well as the period of being zero or
3317 * greater than deadline. Furthermore, we have to be sure that
3318 * user parameters are above the internal resolution of 1us (we
3319 * check sched_runtime only since it is always the smaller one) and
3320 * below 2^63 ns (we have to check both sched_deadline and
3321 * sched_period, as the latter can be zero).
3322 */
3323 static bool
3324 __checkparam_dl(const struct sched_attr *attr)
3325 {
3326 /* deadline != 0 */
3327 if (attr->sched_deadline == 0)
3328 return false;
3329
3330 /*
3331 * Since we truncate DL_SCALE bits, make sure we're at least
3332 * that big.
3333 */
3334 if (attr->sched_runtime < (1ULL << DL_SCALE))
3335 return false;
3336
3337 /*
3338 * Since we use the MSB for wrap-around and sign issues, make
3339 * sure it's not set (mind that period can be equal to zero).
3340 */
3341 if (attr->sched_deadline & (1ULL << 63) ||
3342 attr->sched_period & (1ULL << 63))
3343 return false;
3344
3345 /* runtime <= deadline <= period (if period != 0) */
3346 if ((attr->sched_period != 0 &&
3347 attr->sched_period < attr->sched_deadline) ||
3348 attr->sched_deadline < attr->sched_runtime)
3349 return false;
3350
3351 return true;
3352 }
3353
3354 /*
3355 * check the target process has a UID that matches the current process's
3356 */
3357 static bool check_same_owner(struct task_struct *p)
3358 {
3359 const struct cred *cred = current_cred(), *pcred;
3360 bool match;
3361
3362 rcu_read_lock();
3363 pcred = __task_cred(p);
3364 match = (uid_eq(cred->euid, pcred->euid) ||
3365 uid_eq(cred->euid, pcred->uid));
3366 rcu_read_unlock();
3367 return match;
3368 }
3369
3370 static bool dl_param_changed(struct task_struct *p,
3371 const struct sched_attr *attr)
3372 {
3373 struct sched_dl_entity *dl_se = &p->dl;
3374
3375 if (dl_se->dl_runtime != attr->sched_runtime ||
3376 dl_se->dl_deadline != attr->sched_deadline ||
3377 dl_se->dl_period != attr->sched_period ||
3378 dl_se->flags != attr->sched_flags)
3379 return true;
3380
3381 return false;
3382 }
3383
3384 static int __sched_setscheduler(struct task_struct *p,
3385 const struct sched_attr *attr,
3386 bool user)
3387 {
3388 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3389 MAX_RT_PRIO - 1 - attr->sched_priority;
3390 int retval, oldprio, oldpolicy = -1, queued, running;
3391 int policy = attr->sched_policy;
3392 unsigned long flags;
3393 const struct sched_class *prev_class;
3394 struct rq *rq;
3395 int reset_on_fork;
3396
3397 /* may grab non-irq protected spin_locks */
3398 BUG_ON(in_interrupt());
3399 recheck:
3400 /* double check policy once rq lock held */
3401 if (policy < 0) {
3402 reset_on_fork = p->sched_reset_on_fork;
3403 policy = oldpolicy = p->policy;
3404 } else {
3405 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3406
3407 if (policy != SCHED_DEADLINE &&
3408 policy != SCHED_FIFO && policy != SCHED_RR &&
3409 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3410 policy != SCHED_IDLE)
3411 return -EINVAL;
3412 }
3413
3414 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3415 return -EINVAL;
3416
3417 /*
3418 * Valid priorities for SCHED_FIFO and SCHED_RR are
3419 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3420 * SCHED_BATCH and SCHED_IDLE is 0.
3421 */
3422 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3423 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3424 return -EINVAL;
3425 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3426 (rt_policy(policy) != (attr->sched_priority != 0)))
3427 return -EINVAL;
3428
3429 /*
3430 * Allow unprivileged RT tasks to decrease priority:
3431 */
3432 if (user && !capable(CAP_SYS_NICE)) {
3433 if (fair_policy(policy)) {
3434 if (attr->sched_nice < task_nice(p) &&
3435 !can_nice(p, attr->sched_nice))
3436 return -EPERM;
3437 }
3438
3439 if (rt_policy(policy)) {
3440 unsigned long rlim_rtprio =
3441 task_rlimit(p, RLIMIT_RTPRIO);
3442
3443 /* can't set/change the rt policy */
3444 if (policy != p->policy && !rlim_rtprio)
3445 return -EPERM;
3446
3447 /* can't increase priority */
3448 if (attr->sched_priority > p->rt_priority &&
3449 attr->sched_priority > rlim_rtprio)
3450 return -EPERM;
3451 }
3452
3453 /*
3454 * Can't set/change SCHED_DEADLINE policy at all for now
3455 * (safest behavior); in the future we would like to allow
3456 * unprivileged DL tasks to increase their relative deadline
3457 * or reduce their runtime (both ways reducing utilization)
3458 */
3459 if (dl_policy(policy))
3460 return -EPERM;
3461
3462 /*
3463 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3464 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3465 */
3466 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3467 if (!can_nice(p, task_nice(p)))
3468 return -EPERM;
3469 }
3470
3471 /* can't change other user's priorities */
3472 if (!check_same_owner(p))
3473 return -EPERM;
3474
3475 /* Normal users shall not reset the sched_reset_on_fork flag */
3476 if (p->sched_reset_on_fork && !reset_on_fork)
3477 return -EPERM;
3478 }
3479
3480 if (user) {
3481 retval = security_task_setscheduler(p);
3482 if (retval)
3483 return retval;
3484 }
3485
3486 /*
3487 * make sure no PI-waiters arrive (or leave) while we are
3488 * changing the priority of the task:
3489 *
3490 * To be able to change p->policy safely, the appropriate
3491 * runqueue lock must be held.
3492 */
3493 rq = task_rq_lock(p, &flags);
3494
3495 /*
3496 * Changing the policy of the stop threads its a very bad idea
3497 */
3498 if (p == rq->stop) {
3499 task_rq_unlock(rq, p, &flags);
3500 return -EINVAL;
3501 }
3502
3503 /*
3504 * If not changing anything there's no need to proceed further,
3505 * but store a possible modification of reset_on_fork.
3506 */
3507 if (unlikely(policy == p->policy)) {
3508 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3509 goto change;
3510 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3511 goto change;
3512 if (dl_policy(policy) && dl_param_changed(p, attr))
3513 goto change;
3514
3515 p->sched_reset_on_fork = reset_on_fork;
3516 task_rq_unlock(rq, p, &flags);
3517 return 0;
3518 }
3519 change:
3520
3521 if (user) {
3522 #ifdef CONFIG_RT_GROUP_SCHED
3523 /*
3524 * Do not allow realtime tasks into groups that have no runtime
3525 * assigned.
3526 */
3527 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3528 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3529 !task_group_is_autogroup(task_group(p))) {
3530 task_rq_unlock(rq, p, &flags);
3531 return -EPERM;
3532 }
3533 #endif
3534 #ifdef CONFIG_SMP
3535 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3536 cpumask_t *span = rq->rd->span;
3537
3538 /*
3539 * Don't allow tasks with an affinity mask smaller than
3540 * the entire root_domain to become SCHED_DEADLINE. We
3541 * will also fail if there's no bandwidth available.
3542 */
3543 if (!cpumask_subset(span, &p->cpus_allowed) ||
3544 rq->rd->dl_bw.bw == 0) {
3545 task_rq_unlock(rq, p, &flags);
3546 return -EPERM;
3547 }
3548 }
3549 #endif
3550 }
3551
3552 /* recheck policy now with rq lock held */
3553 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3554 policy = oldpolicy = -1;
3555 task_rq_unlock(rq, p, &flags);
3556 goto recheck;
3557 }
3558
3559 /*
3560 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3561 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3562 * is available.
3563 */
3564 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3565 task_rq_unlock(rq, p, &flags);
3566 return -EBUSY;
3567 }
3568
3569 p->sched_reset_on_fork = reset_on_fork;
3570 oldprio = p->prio;
3571
3572 /*
3573 * Special case for priority boosted tasks.
3574 *
3575 * If the new priority is lower or equal (user space view)
3576 * than the current (boosted) priority, we just store the new
3577 * normal parameters and do not touch the scheduler class and
3578 * the runqueue. This will be done when the task deboost
3579 * itself.
3580 */
3581 if (rt_mutex_check_prio(p, newprio)) {
3582 __setscheduler_params(p, attr);
3583 task_rq_unlock(rq, p, &flags);
3584 return 0;
3585 }
3586
3587 queued = task_on_rq_queued(p);
3588 running = task_current(rq, p);
3589 if (queued)
3590 dequeue_task(rq, p, 0);
3591 if (running)
3592 put_prev_task(rq, p);
3593
3594 prev_class = p->sched_class;
3595 __setscheduler(rq, p, attr);
3596
3597 if (running)
3598 p->sched_class->set_curr_task(rq);
3599 if (queued) {
3600 /*
3601 * We enqueue to tail when the priority of a task is
3602 * increased (user space view).
3603 */
3604 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3605 }
3606
3607 check_class_changed(rq, p, prev_class, oldprio);
3608 task_rq_unlock(rq, p, &flags);
3609
3610 rt_mutex_adjust_pi(p);
3611
3612 return 0;
3613 }
3614
3615 static int _sched_setscheduler(struct task_struct *p, int policy,
3616 const struct sched_param *param, bool check)
3617 {
3618 struct sched_attr attr = {
3619 .sched_policy = policy,
3620 .sched_priority = param->sched_priority,
3621 .sched_nice = PRIO_TO_NICE(p->static_prio),
3622 };
3623
3624 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3625 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3626 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3627 policy &= ~SCHED_RESET_ON_FORK;
3628 attr.sched_policy = policy;
3629 }
3630
3631 return __sched_setscheduler(p, &attr, check);
3632 }
3633 /**
3634 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3635 * @p: the task in question.
3636 * @policy: new policy.
3637 * @param: structure containing the new RT priority.
3638 *
3639 * Return: 0 on success. An error code otherwise.
3640 *
3641 * NOTE that the task may be already dead.
3642 */
3643 int sched_setscheduler(struct task_struct *p, int policy,
3644 const struct sched_param *param)
3645 {
3646 return _sched_setscheduler(p, policy, param, true);
3647 }
3648 EXPORT_SYMBOL_GPL(sched_setscheduler);
3649
3650 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3651 {
3652 return __sched_setscheduler(p, attr, true);
3653 }
3654 EXPORT_SYMBOL_GPL(sched_setattr);
3655
3656 /**
3657 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3658 * @p: the task in question.
3659 * @policy: new policy.
3660 * @param: structure containing the new RT priority.
3661 *
3662 * Just like sched_setscheduler, only don't bother checking if the
3663 * current context has permission. For example, this is needed in
3664 * stop_machine(): we create temporary high priority worker threads,
3665 * but our caller might not have that capability.
3666 *
3667 * Return: 0 on success. An error code otherwise.
3668 */
3669 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3670 const struct sched_param *param)
3671 {
3672 return _sched_setscheduler(p, policy, param, false);
3673 }
3674
3675 static int
3676 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3677 {
3678 struct sched_param lparam;
3679 struct task_struct *p;
3680 int retval;
3681
3682 if (!param || pid < 0)
3683 return -EINVAL;
3684 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3685 return -EFAULT;
3686
3687 rcu_read_lock();
3688 retval = -ESRCH;
3689 p = find_process_by_pid(pid);
3690 if (p != NULL)
3691 retval = sched_setscheduler(p, policy, &lparam);
3692 rcu_read_unlock();
3693
3694 return retval;
3695 }
3696
3697 /*
3698 * Mimics kernel/events/core.c perf_copy_attr().
3699 */
3700 static int sched_copy_attr(struct sched_attr __user *uattr,
3701 struct sched_attr *attr)
3702 {
3703 u32 size;
3704 int ret;
3705
3706 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3707 return -EFAULT;
3708
3709 /*
3710 * zero the full structure, so that a short copy will be nice.
3711 */
3712 memset(attr, 0, sizeof(*attr));
3713
3714 ret = get_user(size, &uattr->size);
3715 if (ret)
3716 return ret;
3717
3718 if (size > PAGE_SIZE) /* silly large */
3719 goto err_size;
3720
3721 if (!size) /* abi compat */
3722 size = SCHED_ATTR_SIZE_VER0;
3723
3724 if (size < SCHED_ATTR_SIZE_VER0)
3725 goto err_size;
3726
3727 /*
3728 * If we're handed a bigger struct than we know of,
3729 * ensure all the unknown bits are 0 - i.e. new
3730 * user-space does not rely on any kernel feature
3731 * extensions we dont know about yet.
3732 */
3733 if (size > sizeof(*attr)) {
3734 unsigned char __user *addr;
3735 unsigned char __user *end;
3736 unsigned char val;
3737
3738 addr = (void __user *)uattr + sizeof(*attr);
3739 end = (void __user *)uattr + size;
3740
3741 for (; addr < end; addr++) {
3742 ret = get_user(val, addr);
3743 if (ret)
3744 return ret;
3745 if (val)
3746 goto err_size;
3747 }
3748 size = sizeof(*attr);
3749 }
3750
3751 ret = copy_from_user(attr, uattr, size);
3752 if (ret)
3753 return -EFAULT;
3754
3755 /*
3756 * XXX: do we want to be lenient like existing syscalls; or do we want
3757 * to be strict and return an error on out-of-bounds values?
3758 */
3759 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3760
3761 return 0;
3762
3763 err_size:
3764 put_user(sizeof(*attr), &uattr->size);
3765 return -E2BIG;
3766 }
3767
3768 /**
3769 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3770 * @pid: the pid in question.
3771 * @policy: new policy.
3772 * @param: structure containing the new RT priority.
3773 *
3774 * Return: 0 on success. An error code otherwise.
3775 */
3776 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3777 struct sched_param __user *, param)
3778 {
3779 /* negative values for policy are not valid */
3780 if (policy < 0)
3781 return -EINVAL;
3782
3783 return do_sched_setscheduler(pid, policy, param);
3784 }
3785
3786 /**
3787 * sys_sched_setparam - set/change the RT priority of a thread
3788 * @pid: the pid in question.
3789 * @param: structure containing the new RT priority.
3790 *
3791 * Return: 0 on success. An error code otherwise.
3792 */
3793 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3794 {
3795 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3796 }
3797
3798 /**
3799 * sys_sched_setattr - same as above, but with extended sched_attr
3800 * @pid: the pid in question.
3801 * @uattr: structure containing the extended parameters.
3802 * @flags: for future extension.
3803 */
3804 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3805 unsigned int, flags)
3806 {
3807 struct sched_attr attr;
3808 struct task_struct *p;
3809 int retval;
3810
3811 if (!uattr || pid < 0 || flags)
3812 return -EINVAL;
3813
3814 retval = sched_copy_attr(uattr, &attr);
3815 if (retval)
3816 return retval;
3817
3818 if ((int)attr.sched_policy < 0)
3819 return -EINVAL;
3820
3821 rcu_read_lock();
3822 retval = -ESRCH;
3823 p = find_process_by_pid(pid);
3824 if (p != NULL)
3825 retval = sched_setattr(p, &attr);
3826 rcu_read_unlock();
3827
3828 return retval;
3829 }
3830
3831 /**
3832 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3833 * @pid: the pid in question.
3834 *
3835 * Return: On success, the policy of the thread. Otherwise, a negative error
3836 * code.
3837 */
3838 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3839 {
3840 struct task_struct *p;
3841 int retval;
3842
3843 if (pid < 0)
3844 return -EINVAL;
3845
3846 retval = -ESRCH;
3847 rcu_read_lock();
3848 p = find_process_by_pid(pid);
3849 if (p) {
3850 retval = security_task_getscheduler(p);
3851 if (!retval)
3852 retval = p->policy
3853 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3854 }
3855 rcu_read_unlock();
3856 return retval;
3857 }
3858
3859 /**
3860 * sys_sched_getparam - get the RT priority of a thread
3861 * @pid: the pid in question.
3862 * @param: structure containing the RT priority.
3863 *
3864 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3865 * code.
3866 */
3867 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3868 {
3869 struct sched_param lp = { .sched_priority = 0 };
3870 struct task_struct *p;
3871 int retval;
3872
3873 if (!param || pid < 0)
3874 return -EINVAL;
3875
3876 rcu_read_lock();
3877 p = find_process_by_pid(pid);
3878 retval = -ESRCH;
3879 if (!p)
3880 goto out_unlock;
3881
3882 retval = security_task_getscheduler(p);
3883 if (retval)
3884 goto out_unlock;
3885
3886 if (task_has_rt_policy(p))
3887 lp.sched_priority = p->rt_priority;
3888 rcu_read_unlock();
3889
3890 /*
3891 * This one might sleep, we cannot do it with a spinlock held ...
3892 */
3893 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3894
3895 return retval;
3896
3897 out_unlock:
3898 rcu_read_unlock();
3899 return retval;
3900 }
3901
3902 static int sched_read_attr(struct sched_attr __user *uattr,
3903 struct sched_attr *attr,
3904 unsigned int usize)
3905 {
3906 int ret;
3907
3908 if (!access_ok(VERIFY_WRITE, uattr, usize))
3909 return -EFAULT;
3910
3911 /*
3912 * If we're handed a smaller struct than we know of,
3913 * ensure all the unknown bits are 0 - i.e. old
3914 * user-space does not get uncomplete information.
3915 */
3916 if (usize < sizeof(*attr)) {
3917 unsigned char *addr;
3918 unsigned char *end;
3919
3920 addr = (void *)attr + usize;
3921 end = (void *)attr + sizeof(*attr);
3922
3923 for (; addr < end; addr++) {
3924 if (*addr)
3925 return -EFBIG;
3926 }
3927
3928 attr->size = usize;
3929 }
3930
3931 ret = copy_to_user(uattr, attr, attr->size);
3932 if (ret)
3933 return -EFAULT;
3934
3935 return 0;
3936 }
3937
3938 /**
3939 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3940 * @pid: the pid in question.
3941 * @uattr: structure containing the extended parameters.
3942 * @size: sizeof(attr) for fwd/bwd comp.
3943 * @flags: for future extension.
3944 */
3945 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3946 unsigned int, size, unsigned int, flags)
3947 {
3948 struct sched_attr attr = {
3949 .size = sizeof(struct sched_attr),
3950 };
3951 struct task_struct *p;
3952 int retval;
3953
3954 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3955 size < SCHED_ATTR_SIZE_VER0 || flags)
3956 return -EINVAL;
3957
3958 rcu_read_lock();
3959 p = find_process_by_pid(pid);
3960 retval = -ESRCH;
3961 if (!p)
3962 goto out_unlock;
3963
3964 retval = security_task_getscheduler(p);
3965 if (retval)
3966 goto out_unlock;
3967
3968 attr.sched_policy = p->policy;
3969 if (p->sched_reset_on_fork)
3970 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3971 if (task_has_dl_policy(p))
3972 __getparam_dl(p, &attr);
3973 else if (task_has_rt_policy(p))
3974 attr.sched_priority = p->rt_priority;
3975 else
3976 attr.sched_nice = task_nice(p);
3977
3978 rcu_read_unlock();
3979
3980 retval = sched_read_attr(uattr, &attr, size);
3981 return retval;
3982
3983 out_unlock:
3984 rcu_read_unlock();
3985 return retval;
3986 }
3987
3988 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3989 {
3990 cpumask_var_t cpus_allowed, new_mask;
3991 struct task_struct *p;
3992 int retval;
3993
3994 rcu_read_lock();
3995
3996 p = find_process_by_pid(pid);
3997 if (!p) {
3998 rcu_read_unlock();
3999 return -ESRCH;
4000 }
4001
4002 /* Prevent p going away */
4003 get_task_struct(p);
4004 rcu_read_unlock();
4005
4006 if (p->flags & PF_NO_SETAFFINITY) {
4007 retval = -EINVAL;
4008 goto out_put_task;
4009 }
4010 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4011 retval = -ENOMEM;
4012 goto out_put_task;
4013 }
4014 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4015 retval = -ENOMEM;
4016 goto out_free_cpus_allowed;
4017 }
4018 retval = -EPERM;
4019 if (!check_same_owner(p)) {
4020 rcu_read_lock();
4021 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4022 rcu_read_unlock();
4023 goto out_free_new_mask;
4024 }
4025 rcu_read_unlock();
4026 }
4027
4028 retval = security_task_setscheduler(p);
4029 if (retval)
4030 goto out_free_new_mask;
4031
4032
4033 cpuset_cpus_allowed(p, cpus_allowed);
4034 cpumask_and(new_mask, in_mask, cpus_allowed);
4035
4036 /*
4037 * Since bandwidth control happens on root_domain basis,
4038 * if admission test is enabled, we only admit -deadline
4039 * tasks allowed to run on all the CPUs in the task's
4040 * root_domain.
4041 */
4042 #ifdef CONFIG_SMP
4043 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4044 rcu_read_lock();
4045 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4046 retval = -EBUSY;
4047 rcu_read_unlock();
4048 goto out_free_new_mask;
4049 }
4050 rcu_read_unlock();
4051 }
4052 #endif
4053 again:
4054 retval = set_cpus_allowed_ptr(p, new_mask);
4055
4056 if (!retval) {
4057 cpuset_cpus_allowed(p, cpus_allowed);
4058 if (!cpumask_subset(new_mask, cpus_allowed)) {
4059 /*
4060 * We must have raced with a concurrent cpuset
4061 * update. Just reset the cpus_allowed to the
4062 * cpuset's cpus_allowed
4063 */
4064 cpumask_copy(new_mask, cpus_allowed);
4065 goto again;
4066 }
4067 }
4068 out_free_new_mask:
4069 free_cpumask_var(new_mask);
4070 out_free_cpus_allowed:
4071 free_cpumask_var(cpus_allowed);
4072 out_put_task:
4073 put_task_struct(p);
4074 return retval;
4075 }
4076
4077 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4078 struct cpumask *new_mask)
4079 {
4080 if (len < cpumask_size())
4081 cpumask_clear(new_mask);
4082 else if (len > cpumask_size())
4083 len = cpumask_size();
4084
4085 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4086 }
4087
4088 /**
4089 * sys_sched_setaffinity - set the cpu affinity of a process
4090 * @pid: pid of the process
4091 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4092 * @user_mask_ptr: user-space pointer to the new cpu mask
4093 *
4094 * Return: 0 on success. An error code otherwise.
4095 */
4096 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4097 unsigned long __user *, user_mask_ptr)
4098 {
4099 cpumask_var_t new_mask;
4100 int retval;
4101
4102 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4103 return -ENOMEM;
4104
4105 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4106 if (retval == 0)
4107 retval = sched_setaffinity(pid, new_mask);
4108 free_cpumask_var(new_mask);
4109 return retval;
4110 }
4111
4112 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4113 {
4114 struct task_struct *p;
4115 unsigned long flags;
4116 int retval;
4117
4118 rcu_read_lock();
4119
4120 retval = -ESRCH;
4121 p = find_process_by_pid(pid);
4122 if (!p)
4123 goto out_unlock;
4124
4125 retval = security_task_getscheduler(p);
4126 if (retval)
4127 goto out_unlock;
4128
4129 raw_spin_lock_irqsave(&p->pi_lock, flags);
4130 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4131 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4132
4133 out_unlock:
4134 rcu_read_unlock();
4135
4136 return retval;
4137 }
4138
4139 /**
4140 * sys_sched_getaffinity - get the cpu affinity of a process
4141 * @pid: pid of the process
4142 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4143 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4144 *
4145 * Return: 0 on success. An error code otherwise.
4146 */
4147 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4148 unsigned long __user *, user_mask_ptr)
4149 {
4150 int ret;
4151 cpumask_var_t mask;
4152
4153 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4154 return -EINVAL;
4155 if (len & (sizeof(unsigned long)-1))
4156 return -EINVAL;
4157
4158 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4159 return -ENOMEM;
4160
4161 ret = sched_getaffinity(pid, mask);
4162 if (ret == 0) {
4163 size_t retlen = min_t(size_t, len, cpumask_size());
4164
4165 if (copy_to_user(user_mask_ptr, mask, retlen))
4166 ret = -EFAULT;
4167 else
4168 ret = retlen;
4169 }
4170 free_cpumask_var(mask);
4171
4172 return ret;
4173 }
4174
4175 /**
4176 * sys_sched_yield - yield the current processor to other threads.
4177 *
4178 * This function yields the current CPU to other tasks. If there are no
4179 * other threads running on this CPU then this function will return.
4180 *
4181 * Return: 0.
4182 */
4183 SYSCALL_DEFINE0(sched_yield)
4184 {
4185 struct rq *rq = this_rq_lock();
4186
4187 schedstat_inc(rq, yld_count);
4188 current->sched_class->yield_task(rq);
4189
4190 /*
4191 * Since we are going to call schedule() anyway, there's
4192 * no need to preempt or enable interrupts:
4193 */
4194 __release(rq->lock);
4195 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4196 do_raw_spin_unlock(&rq->lock);
4197 sched_preempt_enable_no_resched();
4198
4199 schedule();
4200
4201 return 0;
4202 }
4203
4204 int __sched _cond_resched(void)
4205 {
4206 if (should_resched()) {
4207 preempt_schedule_common();
4208 return 1;
4209 }
4210 return 0;
4211 }
4212 EXPORT_SYMBOL(_cond_resched);
4213
4214 /*
4215 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4216 * call schedule, and on return reacquire the lock.
4217 *
4218 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4219 * operations here to prevent schedule() from being called twice (once via
4220 * spin_unlock(), once by hand).
4221 */
4222 int __cond_resched_lock(spinlock_t *lock)
4223 {
4224 int resched = should_resched();
4225 int ret = 0;
4226
4227 lockdep_assert_held(lock);
4228
4229 if (spin_needbreak(lock) || resched) {
4230 spin_unlock(lock);
4231 if (resched)
4232 preempt_schedule_common();
4233 else
4234 cpu_relax();
4235 ret = 1;
4236 spin_lock(lock);
4237 }
4238 return ret;
4239 }
4240 EXPORT_SYMBOL(__cond_resched_lock);
4241
4242 int __sched __cond_resched_softirq(void)
4243 {
4244 BUG_ON(!in_softirq());
4245
4246 if (should_resched()) {
4247 local_bh_enable();
4248 preempt_schedule_common();
4249 local_bh_disable();
4250 return 1;
4251 }
4252 return 0;
4253 }
4254 EXPORT_SYMBOL(__cond_resched_softirq);
4255
4256 /**
4257 * yield - yield the current processor to other threads.
4258 *
4259 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4260 *
4261 * The scheduler is at all times free to pick the calling task as the most
4262 * eligible task to run, if removing the yield() call from your code breaks
4263 * it, its already broken.
4264 *
4265 * Typical broken usage is:
4266 *
4267 * while (!event)
4268 * yield();
4269 *
4270 * where one assumes that yield() will let 'the other' process run that will
4271 * make event true. If the current task is a SCHED_FIFO task that will never
4272 * happen. Never use yield() as a progress guarantee!!
4273 *
4274 * If you want to use yield() to wait for something, use wait_event().
4275 * If you want to use yield() to be 'nice' for others, use cond_resched().
4276 * If you still want to use yield(), do not!
4277 */
4278 void __sched yield(void)
4279 {
4280 set_current_state(TASK_RUNNING);
4281 sys_sched_yield();
4282 }
4283 EXPORT_SYMBOL(yield);
4284
4285 /**
4286 * yield_to - yield the current processor to another thread in
4287 * your thread group, or accelerate that thread toward the
4288 * processor it's on.
4289 * @p: target task
4290 * @preempt: whether task preemption is allowed or not
4291 *
4292 * It's the caller's job to ensure that the target task struct
4293 * can't go away on us before we can do any checks.
4294 *
4295 * Return:
4296 * true (>0) if we indeed boosted the target task.
4297 * false (0) if we failed to boost the target.
4298 * -ESRCH if there's no task to yield to.
4299 */
4300 int __sched yield_to(struct task_struct *p, bool preempt)
4301 {
4302 struct task_struct *curr = current;
4303 struct rq *rq, *p_rq;
4304 unsigned long flags;
4305 int yielded = 0;
4306
4307 local_irq_save(flags);
4308 rq = this_rq();
4309
4310 again:
4311 p_rq = task_rq(p);
4312 /*
4313 * If we're the only runnable task on the rq and target rq also
4314 * has only one task, there's absolutely no point in yielding.
4315 */
4316 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4317 yielded = -ESRCH;
4318 goto out_irq;
4319 }
4320
4321 double_rq_lock(rq, p_rq);
4322 if (task_rq(p) != p_rq) {
4323 double_rq_unlock(rq, p_rq);
4324 goto again;
4325 }
4326
4327 if (!curr->sched_class->yield_to_task)
4328 goto out_unlock;
4329
4330 if (curr->sched_class != p->sched_class)
4331 goto out_unlock;
4332
4333 if (task_running(p_rq, p) || p->state)
4334 goto out_unlock;
4335
4336 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4337 if (yielded) {
4338 schedstat_inc(rq, yld_count);
4339 /*
4340 * Make p's CPU reschedule; pick_next_entity takes care of
4341 * fairness.
4342 */
4343 if (preempt && rq != p_rq)
4344 resched_curr(p_rq);
4345 }
4346
4347 out_unlock:
4348 double_rq_unlock(rq, p_rq);
4349 out_irq:
4350 local_irq_restore(flags);
4351
4352 if (yielded > 0)
4353 schedule();
4354
4355 return yielded;
4356 }
4357 EXPORT_SYMBOL_GPL(yield_to);
4358
4359 /*
4360 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4361 * that process accounting knows that this is a task in IO wait state.
4362 */
4363 long __sched io_schedule_timeout(long timeout)
4364 {
4365 int old_iowait = current->in_iowait;
4366 struct rq *rq;
4367 long ret;
4368
4369 current->in_iowait = 1;
4370 if (old_iowait)
4371 blk_schedule_flush_plug(current);
4372 else
4373 blk_flush_plug(current);
4374
4375 delayacct_blkio_start();
4376 rq = raw_rq();
4377 atomic_inc(&rq->nr_iowait);
4378 ret = schedule_timeout(timeout);
4379 current->in_iowait = old_iowait;
4380 atomic_dec(&rq->nr_iowait);
4381 delayacct_blkio_end();
4382
4383 return ret;
4384 }
4385 EXPORT_SYMBOL(io_schedule_timeout);
4386
4387 /**
4388 * sys_sched_get_priority_max - return maximum RT priority.
4389 * @policy: scheduling class.
4390 *
4391 * Return: On success, this syscall returns the maximum
4392 * rt_priority that can be used by a given scheduling class.
4393 * On failure, a negative error code is returned.
4394 */
4395 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4396 {
4397 int ret = -EINVAL;
4398
4399 switch (policy) {
4400 case SCHED_FIFO:
4401 case SCHED_RR:
4402 ret = MAX_USER_RT_PRIO-1;
4403 break;
4404 case SCHED_DEADLINE:
4405 case SCHED_NORMAL:
4406 case SCHED_BATCH:
4407 case SCHED_IDLE:
4408 ret = 0;
4409 break;
4410 }
4411 return ret;
4412 }
4413
4414 /**
4415 * sys_sched_get_priority_min - return minimum RT priority.
4416 * @policy: scheduling class.
4417 *
4418 * Return: On success, this syscall returns the minimum
4419 * rt_priority that can be used by a given scheduling class.
4420 * On failure, a negative error code is returned.
4421 */
4422 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4423 {
4424 int ret = -EINVAL;
4425
4426 switch (policy) {
4427 case SCHED_FIFO:
4428 case SCHED_RR:
4429 ret = 1;
4430 break;
4431 case SCHED_DEADLINE:
4432 case SCHED_NORMAL:
4433 case SCHED_BATCH:
4434 case SCHED_IDLE:
4435 ret = 0;
4436 }
4437 return ret;
4438 }
4439
4440 /**
4441 * sys_sched_rr_get_interval - return the default timeslice of a process.
4442 * @pid: pid of the process.
4443 * @interval: userspace pointer to the timeslice value.
4444 *
4445 * this syscall writes the default timeslice value of a given process
4446 * into the user-space timespec buffer. A value of '0' means infinity.
4447 *
4448 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4449 * an error code.
4450 */
4451 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4452 struct timespec __user *, interval)
4453 {
4454 struct task_struct *p;
4455 unsigned int time_slice;
4456 unsigned long flags;
4457 struct rq *rq;
4458 int retval;
4459 struct timespec t;
4460
4461 if (pid < 0)
4462 return -EINVAL;
4463
4464 retval = -ESRCH;
4465 rcu_read_lock();
4466 p = find_process_by_pid(pid);
4467 if (!p)
4468 goto out_unlock;
4469
4470 retval = security_task_getscheduler(p);
4471 if (retval)
4472 goto out_unlock;
4473
4474 rq = task_rq_lock(p, &flags);
4475 time_slice = 0;
4476 if (p->sched_class->get_rr_interval)
4477 time_slice = p->sched_class->get_rr_interval(rq, p);
4478 task_rq_unlock(rq, p, &flags);
4479
4480 rcu_read_unlock();
4481 jiffies_to_timespec(time_slice, &t);
4482 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4483 return retval;
4484
4485 out_unlock:
4486 rcu_read_unlock();
4487 return retval;
4488 }
4489
4490 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4491
4492 void sched_show_task(struct task_struct *p)
4493 {
4494 unsigned long free = 0;
4495 int ppid;
4496 unsigned long state = p->state;
4497
4498 if (state)
4499 state = __ffs(state) + 1;
4500 printk(KERN_INFO "%-15.15s %c", p->comm,
4501 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4502 #if BITS_PER_LONG == 32
4503 if (state == TASK_RUNNING)
4504 printk(KERN_CONT " running ");
4505 else
4506 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4507 #else
4508 if (state == TASK_RUNNING)
4509 printk(KERN_CONT " running task ");
4510 else
4511 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4512 #endif
4513 #ifdef CONFIG_DEBUG_STACK_USAGE
4514 free = stack_not_used(p);
4515 #endif
4516 ppid = 0;
4517 rcu_read_lock();
4518 if (pid_alive(p))
4519 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4520 rcu_read_unlock();
4521 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4522 task_pid_nr(p), ppid,
4523 (unsigned long)task_thread_info(p)->flags);
4524
4525 print_worker_info(KERN_INFO, p);
4526 show_stack(p, NULL);
4527 }
4528
4529 void show_state_filter(unsigned long state_filter)
4530 {
4531 struct task_struct *g, *p;
4532
4533 #if BITS_PER_LONG == 32
4534 printk(KERN_INFO
4535 " task PC stack pid father\n");
4536 #else
4537 printk(KERN_INFO
4538 " task PC stack pid father\n");
4539 #endif
4540 rcu_read_lock();
4541 for_each_process_thread(g, p) {
4542 /*
4543 * reset the NMI-timeout, listing all files on a slow
4544 * console might take a lot of time:
4545 */
4546 touch_nmi_watchdog();
4547 if (!state_filter || (p->state & state_filter))
4548 sched_show_task(p);
4549 }
4550
4551 touch_all_softlockup_watchdogs();
4552
4553 #ifdef CONFIG_SCHED_DEBUG
4554 sysrq_sched_debug_show();
4555 #endif
4556 rcu_read_unlock();
4557 /*
4558 * Only show locks if all tasks are dumped:
4559 */
4560 if (!state_filter)
4561 debug_show_all_locks();
4562 }
4563
4564 void init_idle_bootup_task(struct task_struct *idle)
4565 {
4566 idle->sched_class = &idle_sched_class;
4567 }
4568
4569 /**
4570 * init_idle - set up an idle thread for a given CPU
4571 * @idle: task in question
4572 * @cpu: cpu the idle task belongs to
4573 *
4574 * NOTE: this function does not set the idle thread's NEED_RESCHED
4575 * flag, to make booting more robust.
4576 */
4577 void init_idle(struct task_struct *idle, int cpu)
4578 {
4579 struct rq *rq = cpu_rq(cpu);
4580 unsigned long flags;
4581
4582 raw_spin_lock_irqsave(&rq->lock, flags);
4583
4584 __sched_fork(0, idle);
4585 idle->state = TASK_RUNNING;
4586 idle->se.exec_start = sched_clock();
4587
4588 do_set_cpus_allowed(idle, cpumask_of(cpu));
4589 /*
4590 * We're having a chicken and egg problem, even though we are
4591 * holding rq->lock, the cpu isn't yet set to this cpu so the
4592 * lockdep check in task_group() will fail.
4593 *
4594 * Similar case to sched_fork(). / Alternatively we could
4595 * use task_rq_lock() here and obtain the other rq->lock.
4596 *
4597 * Silence PROVE_RCU
4598 */
4599 rcu_read_lock();
4600 __set_task_cpu(idle, cpu);
4601 rcu_read_unlock();
4602
4603 rq->curr = rq->idle = idle;
4604 idle->on_rq = TASK_ON_RQ_QUEUED;
4605 #if defined(CONFIG_SMP)
4606 idle->on_cpu = 1;
4607 #endif
4608 raw_spin_unlock_irqrestore(&rq->lock, flags);
4609
4610 /* Set the preempt count _outside_ the spinlocks! */
4611 init_idle_preempt_count(idle, cpu);
4612
4613 /*
4614 * The idle tasks have their own, simple scheduling class:
4615 */
4616 idle->sched_class = &idle_sched_class;
4617 ftrace_graph_init_idle_task(idle, cpu);
4618 vtime_init_idle(idle, cpu);
4619 #if defined(CONFIG_SMP)
4620 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4621 #endif
4622 }
4623
4624 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4625 const struct cpumask *trial)
4626 {
4627 int ret = 1, trial_cpus;
4628 struct dl_bw *cur_dl_b;
4629 unsigned long flags;
4630
4631 if (!cpumask_weight(cur))
4632 return ret;
4633
4634 rcu_read_lock_sched();
4635 cur_dl_b = dl_bw_of(cpumask_any(cur));
4636 trial_cpus = cpumask_weight(trial);
4637
4638 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4639 if (cur_dl_b->bw != -1 &&
4640 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4641 ret = 0;
4642 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4643 rcu_read_unlock_sched();
4644
4645 return ret;
4646 }
4647
4648 int task_can_attach(struct task_struct *p,
4649 const struct cpumask *cs_cpus_allowed)
4650 {
4651 int ret = 0;
4652
4653 /*
4654 * Kthreads which disallow setaffinity shouldn't be moved
4655 * to a new cpuset; we don't want to change their cpu
4656 * affinity and isolating such threads by their set of
4657 * allowed nodes is unnecessary. Thus, cpusets are not
4658 * applicable for such threads. This prevents checking for
4659 * success of set_cpus_allowed_ptr() on all attached tasks
4660 * before cpus_allowed may be changed.
4661 */
4662 if (p->flags & PF_NO_SETAFFINITY) {
4663 ret = -EINVAL;
4664 goto out;
4665 }
4666
4667 #ifdef CONFIG_SMP
4668 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4669 cs_cpus_allowed)) {
4670 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4671 cs_cpus_allowed);
4672 struct dl_bw *dl_b;
4673 bool overflow;
4674 int cpus;
4675 unsigned long flags;
4676
4677 rcu_read_lock_sched();
4678 dl_b = dl_bw_of(dest_cpu);
4679 raw_spin_lock_irqsave(&dl_b->lock, flags);
4680 cpus = dl_bw_cpus(dest_cpu);
4681 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4682 if (overflow)
4683 ret = -EBUSY;
4684 else {
4685 /*
4686 * We reserve space for this task in the destination
4687 * root_domain, as we can't fail after this point.
4688 * We will free resources in the source root_domain
4689 * later on (see set_cpus_allowed_dl()).
4690 */
4691 __dl_add(dl_b, p->dl.dl_bw);
4692 }
4693 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4694 rcu_read_unlock_sched();
4695
4696 }
4697 #endif
4698 out:
4699 return ret;
4700 }
4701
4702 #ifdef CONFIG_SMP
4703 /*
4704 * move_queued_task - move a queued task to new rq.
4705 *
4706 * Returns (locked) new rq. Old rq's lock is released.
4707 */
4708 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4709 {
4710 struct rq *rq = task_rq(p);
4711
4712 lockdep_assert_held(&rq->lock);
4713
4714 dequeue_task(rq, p, 0);
4715 p->on_rq = TASK_ON_RQ_MIGRATING;
4716 set_task_cpu(p, new_cpu);
4717 raw_spin_unlock(&rq->lock);
4718
4719 rq = cpu_rq(new_cpu);
4720
4721 raw_spin_lock(&rq->lock);
4722 BUG_ON(task_cpu(p) != new_cpu);
4723 p->on_rq = TASK_ON_RQ_QUEUED;
4724 enqueue_task(rq, p, 0);
4725 check_preempt_curr(rq, p, 0);
4726
4727 return rq;
4728 }
4729
4730 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4731 {
4732 if (p->sched_class->set_cpus_allowed)
4733 p->sched_class->set_cpus_allowed(p, new_mask);
4734
4735 cpumask_copy(&p->cpus_allowed, new_mask);
4736 p->nr_cpus_allowed = cpumask_weight(new_mask);
4737 }
4738
4739 /*
4740 * This is how migration works:
4741 *
4742 * 1) we invoke migration_cpu_stop() on the target CPU using
4743 * stop_one_cpu().
4744 * 2) stopper starts to run (implicitly forcing the migrated thread
4745 * off the CPU)
4746 * 3) it checks whether the migrated task is still in the wrong runqueue.
4747 * 4) if it's in the wrong runqueue then the migration thread removes
4748 * it and puts it into the right queue.
4749 * 5) stopper completes and stop_one_cpu() returns and the migration
4750 * is done.
4751 */
4752
4753 /*
4754 * Change a given task's CPU affinity. Migrate the thread to a
4755 * proper CPU and schedule it away if the CPU it's executing on
4756 * is removed from the allowed bitmask.
4757 *
4758 * NOTE: the caller must have a valid reference to the task, the
4759 * task must not exit() & deallocate itself prematurely. The
4760 * call is not atomic; no spinlocks may be held.
4761 */
4762 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4763 {
4764 unsigned long flags;
4765 struct rq *rq;
4766 unsigned int dest_cpu;
4767 int ret = 0;
4768
4769 rq = task_rq_lock(p, &flags);
4770
4771 if (cpumask_equal(&p->cpus_allowed, new_mask))
4772 goto out;
4773
4774 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4775 ret = -EINVAL;
4776 goto out;
4777 }
4778
4779 do_set_cpus_allowed(p, new_mask);
4780
4781 /* Can the task run on the task's current CPU? If so, we're done */
4782 if (cpumask_test_cpu(task_cpu(p), new_mask))
4783 goto out;
4784
4785 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4786 if (task_running(rq, p) || p->state == TASK_WAKING) {
4787 struct migration_arg arg = { p, dest_cpu };
4788 /* Need help from migration thread: drop lock and wait. */
4789 task_rq_unlock(rq, p, &flags);
4790 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4791 tlb_migrate_finish(p->mm);
4792 return 0;
4793 } else if (task_on_rq_queued(p))
4794 rq = move_queued_task(p, dest_cpu);
4795 out:
4796 task_rq_unlock(rq, p, &flags);
4797
4798 return ret;
4799 }
4800 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4801
4802 /*
4803 * Move (not current) task off this cpu, onto dest cpu. We're doing
4804 * this because either it can't run here any more (set_cpus_allowed()
4805 * away from this CPU, or CPU going down), or because we're
4806 * attempting to rebalance this task on exec (sched_exec).
4807 *
4808 * So we race with normal scheduler movements, but that's OK, as long
4809 * as the task is no longer on this CPU.
4810 *
4811 * Returns non-zero if task was successfully migrated.
4812 */
4813 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4814 {
4815 struct rq *rq;
4816 int ret = 0;
4817
4818 if (unlikely(!cpu_active(dest_cpu)))
4819 return ret;
4820
4821 rq = cpu_rq(src_cpu);
4822
4823 raw_spin_lock(&p->pi_lock);
4824 raw_spin_lock(&rq->lock);
4825 /* Already moved. */
4826 if (task_cpu(p) != src_cpu)
4827 goto done;
4828
4829 /* Affinity changed (again). */
4830 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4831 goto fail;
4832
4833 /*
4834 * If we're not on a rq, the next wake-up will ensure we're
4835 * placed properly.
4836 */
4837 if (task_on_rq_queued(p))
4838 rq = move_queued_task(p, dest_cpu);
4839 done:
4840 ret = 1;
4841 fail:
4842 raw_spin_unlock(&rq->lock);
4843 raw_spin_unlock(&p->pi_lock);
4844 return ret;
4845 }
4846
4847 #ifdef CONFIG_NUMA_BALANCING
4848 /* Migrate current task p to target_cpu */
4849 int migrate_task_to(struct task_struct *p, int target_cpu)
4850 {
4851 struct migration_arg arg = { p, target_cpu };
4852 int curr_cpu = task_cpu(p);
4853
4854 if (curr_cpu == target_cpu)
4855 return 0;
4856
4857 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4858 return -EINVAL;
4859
4860 /* TODO: This is not properly updating schedstats */
4861
4862 trace_sched_move_numa(p, curr_cpu, target_cpu);
4863 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4864 }
4865
4866 /*
4867 * Requeue a task on a given node and accurately track the number of NUMA
4868 * tasks on the runqueues
4869 */
4870 void sched_setnuma(struct task_struct *p, int nid)
4871 {
4872 struct rq *rq;
4873 unsigned long flags;
4874 bool queued, running;
4875
4876 rq = task_rq_lock(p, &flags);
4877 queued = task_on_rq_queued(p);
4878 running = task_current(rq, p);
4879
4880 if (queued)
4881 dequeue_task(rq, p, 0);
4882 if (running)
4883 put_prev_task(rq, p);
4884
4885 p->numa_preferred_nid = nid;
4886
4887 if (running)
4888 p->sched_class->set_curr_task(rq);
4889 if (queued)
4890 enqueue_task(rq, p, 0);
4891 task_rq_unlock(rq, p, &flags);
4892 }
4893 #endif
4894
4895 /*
4896 * migration_cpu_stop - this will be executed by a highprio stopper thread
4897 * and performs thread migration by bumping thread off CPU then
4898 * 'pushing' onto another runqueue.
4899 */
4900 static int migration_cpu_stop(void *data)
4901 {
4902 struct migration_arg *arg = data;
4903
4904 /*
4905 * The original target cpu might have gone down and we might
4906 * be on another cpu but it doesn't matter.
4907 */
4908 local_irq_disable();
4909 /*
4910 * We need to explicitly wake pending tasks before running
4911 * __migrate_task() such that we will not miss enforcing cpus_allowed
4912 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4913 */
4914 sched_ttwu_pending();
4915 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4916 local_irq_enable();
4917 return 0;
4918 }
4919
4920 #ifdef CONFIG_HOTPLUG_CPU
4921
4922 /*
4923 * Ensures that the idle task is using init_mm right before its cpu goes
4924 * offline.
4925 */
4926 void idle_task_exit(void)
4927 {
4928 struct mm_struct *mm = current->active_mm;
4929
4930 BUG_ON(cpu_online(smp_processor_id()));
4931
4932 if (mm != &init_mm) {
4933 switch_mm(mm, &init_mm, current);
4934 finish_arch_post_lock_switch();
4935 }
4936 mmdrop(mm);
4937 }
4938
4939 /*
4940 * Since this CPU is going 'away' for a while, fold any nr_active delta
4941 * we might have. Assumes we're called after migrate_tasks() so that the
4942 * nr_active count is stable.
4943 *
4944 * Also see the comment "Global load-average calculations".
4945 */
4946 static void calc_load_migrate(struct rq *rq)
4947 {
4948 long delta = calc_load_fold_active(rq);
4949 if (delta)
4950 atomic_long_add(delta, &calc_load_tasks);
4951 }
4952
4953 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4954 {
4955 }
4956
4957 static const struct sched_class fake_sched_class = {
4958 .put_prev_task = put_prev_task_fake,
4959 };
4960
4961 static struct task_struct fake_task = {
4962 /*
4963 * Avoid pull_{rt,dl}_task()
4964 */
4965 .prio = MAX_PRIO + 1,
4966 .sched_class = &fake_sched_class,
4967 };
4968
4969 /*
4970 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4971 * try_to_wake_up()->select_task_rq().
4972 *
4973 * Called with rq->lock held even though we'er in stop_machine() and
4974 * there's no concurrency possible, we hold the required locks anyway
4975 * because of lock validation efforts.
4976 */
4977 static void migrate_tasks(unsigned int dead_cpu)
4978 {
4979 struct rq *rq = cpu_rq(dead_cpu);
4980 struct task_struct *next, *stop = rq->stop;
4981 int dest_cpu;
4982
4983 /*
4984 * Fudge the rq selection such that the below task selection loop
4985 * doesn't get stuck on the currently eligible stop task.
4986 *
4987 * We're currently inside stop_machine() and the rq is either stuck
4988 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4989 * either way we should never end up calling schedule() until we're
4990 * done here.
4991 */
4992 rq->stop = NULL;
4993
4994 /*
4995 * put_prev_task() and pick_next_task() sched
4996 * class method both need to have an up-to-date
4997 * value of rq->clock[_task]
4998 */
4999 update_rq_clock(rq);
5000
5001 for ( ; ; ) {
5002 /*
5003 * There's this thread running, bail when that's the only
5004 * remaining thread.
5005 */
5006 if (rq->nr_running == 1)
5007 break;
5008
5009 next = pick_next_task(rq, &fake_task);
5010 BUG_ON(!next);
5011 next->sched_class->put_prev_task(rq, next);
5012
5013 /* Find suitable destination for @next, with force if needed. */
5014 dest_cpu = select_fallback_rq(dead_cpu, next);
5015 raw_spin_unlock(&rq->lock);
5016
5017 __migrate_task(next, dead_cpu, dest_cpu);
5018
5019 raw_spin_lock(&rq->lock);
5020 }
5021
5022 rq->stop = stop;
5023 }
5024
5025 #endif /* CONFIG_HOTPLUG_CPU */
5026
5027 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5028
5029 static struct ctl_table sd_ctl_dir[] = {
5030 {
5031 .procname = "sched_domain",
5032 .mode = 0555,
5033 },
5034 {}
5035 };
5036
5037 static struct ctl_table sd_ctl_root[] = {
5038 {
5039 .procname = "kernel",
5040 .mode = 0555,
5041 .child = sd_ctl_dir,
5042 },
5043 {}
5044 };
5045
5046 static struct ctl_table *sd_alloc_ctl_entry(int n)
5047 {
5048 struct ctl_table *entry =
5049 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5050
5051 return entry;
5052 }
5053
5054 static void sd_free_ctl_entry(struct ctl_table **tablep)
5055 {
5056 struct ctl_table *entry;
5057
5058 /*
5059 * In the intermediate directories, both the child directory and
5060 * procname are dynamically allocated and could fail but the mode
5061 * will always be set. In the lowest directory the names are
5062 * static strings and all have proc handlers.
5063 */
5064 for (entry = *tablep; entry->mode; entry++) {
5065 if (entry->child)
5066 sd_free_ctl_entry(&entry->child);
5067 if (entry->proc_handler == NULL)
5068 kfree(entry->procname);
5069 }
5070
5071 kfree(*tablep);
5072 *tablep = NULL;
5073 }
5074
5075 static int min_load_idx = 0;
5076 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5077
5078 static void
5079 set_table_entry(struct ctl_table *entry,
5080 const char *procname, void *data, int maxlen,
5081 umode_t mode, proc_handler *proc_handler,
5082 bool load_idx)
5083 {
5084 entry->procname = procname;
5085 entry->data = data;
5086 entry->maxlen = maxlen;
5087 entry->mode = mode;
5088 entry->proc_handler = proc_handler;
5089
5090 if (load_idx) {
5091 entry->extra1 = &min_load_idx;
5092 entry->extra2 = &max_load_idx;
5093 }
5094 }
5095
5096 static struct ctl_table *
5097 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5098 {
5099 struct ctl_table *table = sd_alloc_ctl_entry(14);
5100
5101 if (table == NULL)
5102 return NULL;
5103
5104 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5105 sizeof(long), 0644, proc_doulongvec_minmax, false);
5106 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5107 sizeof(long), 0644, proc_doulongvec_minmax, false);
5108 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5109 sizeof(int), 0644, proc_dointvec_minmax, true);
5110 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5111 sizeof(int), 0644, proc_dointvec_minmax, true);
5112 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5113 sizeof(int), 0644, proc_dointvec_minmax, true);
5114 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5115 sizeof(int), 0644, proc_dointvec_minmax, true);
5116 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5117 sizeof(int), 0644, proc_dointvec_minmax, true);
5118 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5119 sizeof(int), 0644, proc_dointvec_minmax, false);
5120 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5121 sizeof(int), 0644, proc_dointvec_minmax, false);
5122 set_table_entry(&table[9], "cache_nice_tries",
5123 &sd->cache_nice_tries,
5124 sizeof(int), 0644, proc_dointvec_minmax, false);
5125 set_table_entry(&table[10], "flags", &sd->flags,
5126 sizeof(int), 0644, proc_dointvec_minmax, false);
5127 set_table_entry(&table[11], "max_newidle_lb_cost",
5128 &sd->max_newidle_lb_cost,
5129 sizeof(long), 0644, proc_doulongvec_minmax, false);
5130 set_table_entry(&table[12], "name", sd->name,
5131 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5132 /* &table[13] is terminator */
5133
5134 return table;
5135 }
5136
5137 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5138 {
5139 struct ctl_table *entry, *table;
5140 struct sched_domain *sd;
5141 int domain_num = 0, i;
5142 char buf[32];
5143
5144 for_each_domain(cpu, sd)
5145 domain_num++;
5146 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5147 if (table == NULL)
5148 return NULL;
5149
5150 i = 0;
5151 for_each_domain(cpu, sd) {
5152 snprintf(buf, 32, "domain%d", i);
5153 entry->procname = kstrdup(buf, GFP_KERNEL);
5154 entry->mode = 0555;
5155 entry->child = sd_alloc_ctl_domain_table(sd);
5156 entry++;
5157 i++;
5158 }
5159 return table;
5160 }
5161
5162 static struct ctl_table_header *sd_sysctl_header;
5163 static void register_sched_domain_sysctl(void)
5164 {
5165 int i, cpu_num = num_possible_cpus();
5166 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5167 char buf[32];
5168
5169 WARN_ON(sd_ctl_dir[0].child);
5170 sd_ctl_dir[0].child = entry;
5171
5172 if (entry == NULL)
5173 return;
5174
5175 for_each_possible_cpu(i) {
5176 snprintf(buf, 32, "cpu%d", i);
5177 entry->procname = kstrdup(buf, GFP_KERNEL);
5178 entry->mode = 0555;
5179 entry->child = sd_alloc_ctl_cpu_table(i);
5180 entry++;
5181 }
5182
5183 WARN_ON(sd_sysctl_header);
5184 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5185 }
5186
5187 /* may be called multiple times per register */
5188 static void unregister_sched_domain_sysctl(void)
5189 {
5190 if (sd_sysctl_header)
5191 unregister_sysctl_table(sd_sysctl_header);
5192 sd_sysctl_header = NULL;
5193 if (sd_ctl_dir[0].child)
5194 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5195 }
5196 #else
5197 static void register_sched_domain_sysctl(void)
5198 {
5199 }
5200 static void unregister_sched_domain_sysctl(void)
5201 {
5202 }
5203 #endif
5204
5205 static void set_rq_online(struct rq *rq)
5206 {
5207 if (!rq->online) {
5208 const struct sched_class *class;
5209
5210 cpumask_set_cpu(rq->cpu, rq->rd->online);
5211 rq->online = 1;
5212
5213 for_each_class(class) {
5214 if (class->rq_online)
5215 class->rq_online(rq);
5216 }
5217 }
5218 }
5219
5220 static void set_rq_offline(struct rq *rq)
5221 {
5222 if (rq->online) {
5223 const struct sched_class *class;
5224
5225 for_each_class(class) {
5226 if (class->rq_offline)
5227 class->rq_offline(rq);
5228 }
5229
5230 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5231 rq->online = 0;
5232 }
5233 }
5234
5235 /*
5236 * migration_call - callback that gets triggered when a CPU is added.
5237 * Here we can start up the necessary migration thread for the new CPU.
5238 */
5239 static int
5240 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5241 {
5242 int cpu = (long)hcpu;
5243 unsigned long flags;
5244 struct rq *rq = cpu_rq(cpu);
5245
5246 switch (action & ~CPU_TASKS_FROZEN) {
5247
5248 case CPU_UP_PREPARE:
5249 rq->calc_load_update = calc_load_update;
5250 break;
5251
5252 case CPU_ONLINE:
5253 /* Update our root-domain */
5254 raw_spin_lock_irqsave(&rq->lock, flags);
5255 if (rq->rd) {
5256 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5257
5258 set_rq_online(rq);
5259 }
5260 raw_spin_unlock_irqrestore(&rq->lock, flags);
5261 break;
5262
5263 #ifdef CONFIG_HOTPLUG_CPU
5264 case CPU_DYING:
5265 sched_ttwu_pending();
5266 /* Update our root-domain */
5267 raw_spin_lock_irqsave(&rq->lock, flags);
5268 if (rq->rd) {
5269 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5270 set_rq_offline(rq);
5271 }
5272 migrate_tasks(cpu);
5273 BUG_ON(rq->nr_running != 1); /* the migration thread */
5274 raw_spin_unlock_irqrestore(&rq->lock, flags);
5275 break;
5276
5277 case CPU_DEAD:
5278 calc_load_migrate(rq);
5279 break;
5280 #endif
5281 }
5282
5283 update_max_interval();
5284
5285 return NOTIFY_OK;
5286 }
5287
5288 /*
5289 * Register at high priority so that task migration (migrate_all_tasks)
5290 * happens before everything else. This has to be lower priority than
5291 * the notifier in the perf_event subsystem, though.
5292 */
5293 static struct notifier_block migration_notifier = {
5294 .notifier_call = migration_call,
5295 .priority = CPU_PRI_MIGRATION,
5296 };
5297
5298 static void __cpuinit set_cpu_rq_start_time(void)
5299 {
5300 int cpu = smp_processor_id();
5301 struct rq *rq = cpu_rq(cpu);
5302 rq->age_stamp = sched_clock_cpu(cpu);
5303 }
5304
5305 static int sched_cpu_active(struct notifier_block *nfb,
5306 unsigned long action, void *hcpu)
5307 {
5308 switch (action & ~CPU_TASKS_FROZEN) {
5309 case CPU_STARTING:
5310 set_cpu_rq_start_time();
5311 return NOTIFY_OK;
5312 case CPU_DOWN_FAILED:
5313 set_cpu_active((long)hcpu, true);
5314 return NOTIFY_OK;
5315 default:
5316 return NOTIFY_DONE;
5317 }
5318 }
5319
5320 static int sched_cpu_inactive(struct notifier_block *nfb,
5321 unsigned long action, void *hcpu)
5322 {
5323 unsigned long flags;
5324 long cpu = (long)hcpu;
5325 struct dl_bw *dl_b;
5326
5327 switch (action & ~CPU_TASKS_FROZEN) {
5328 case CPU_DOWN_PREPARE:
5329 set_cpu_active(cpu, false);
5330
5331 /* explicitly allow suspend */
5332 if (!(action & CPU_TASKS_FROZEN)) {
5333 bool overflow;
5334 int cpus;
5335
5336 rcu_read_lock_sched();
5337 dl_b = dl_bw_of(cpu);
5338
5339 raw_spin_lock_irqsave(&dl_b->lock, flags);
5340 cpus = dl_bw_cpus(cpu);
5341 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5342 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5343
5344 rcu_read_unlock_sched();
5345
5346 if (overflow)
5347 return notifier_from_errno(-EBUSY);
5348 }
5349 return NOTIFY_OK;
5350 }
5351
5352 return NOTIFY_DONE;
5353 }
5354
5355 static int __init migration_init(void)
5356 {
5357 void *cpu = (void *)(long)smp_processor_id();
5358 int err;
5359
5360 /* Initialize migration for the boot CPU */
5361 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5362 BUG_ON(err == NOTIFY_BAD);
5363 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5364 register_cpu_notifier(&migration_notifier);
5365
5366 /* Register cpu active notifiers */
5367 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5368 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5369
5370 return 0;
5371 }
5372 early_initcall(migration_init);
5373 #endif
5374
5375 #ifdef CONFIG_SMP
5376
5377 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5378
5379 #ifdef CONFIG_SCHED_DEBUG
5380
5381 static __read_mostly int sched_debug_enabled;
5382
5383 static int __init sched_debug_setup(char *str)
5384 {
5385 sched_debug_enabled = 1;
5386
5387 return 0;
5388 }
5389 early_param("sched_debug", sched_debug_setup);
5390
5391 static inline bool sched_debug(void)
5392 {
5393 return sched_debug_enabled;
5394 }
5395
5396 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5397 struct cpumask *groupmask)
5398 {
5399 struct sched_group *group = sd->groups;
5400
5401 cpumask_clear(groupmask);
5402
5403 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5404
5405 if (!(sd->flags & SD_LOAD_BALANCE)) {
5406 printk("does not load-balance\n");
5407 if (sd->parent)
5408 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5409 " has parent");
5410 return -1;
5411 }
5412
5413 printk(KERN_CONT "span %*pbl level %s\n",
5414 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5415
5416 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5417 printk(KERN_ERR "ERROR: domain->span does not contain "
5418 "CPU%d\n", cpu);
5419 }
5420 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5421 printk(KERN_ERR "ERROR: domain->groups does not contain"
5422 " CPU%d\n", cpu);
5423 }
5424
5425 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5426 do {
5427 if (!group) {
5428 printk("\n");
5429 printk(KERN_ERR "ERROR: group is NULL\n");
5430 break;
5431 }
5432
5433 /*
5434 * Even though we initialize ->capacity to something semi-sane,
5435 * we leave capacity_orig unset. This allows us to detect if
5436 * domain iteration is still funny without causing /0 traps.
5437 */
5438 if (!group->sgc->capacity_orig) {
5439 printk(KERN_CONT "\n");
5440 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5441 break;
5442 }
5443
5444 if (!cpumask_weight(sched_group_cpus(group))) {
5445 printk(KERN_CONT "\n");
5446 printk(KERN_ERR "ERROR: empty group\n");
5447 break;
5448 }
5449
5450 if (!(sd->flags & SD_OVERLAP) &&
5451 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5452 printk(KERN_CONT "\n");
5453 printk(KERN_ERR "ERROR: repeated CPUs\n");
5454 break;
5455 }
5456
5457 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5458
5459 printk(KERN_CONT " %*pbl",
5460 cpumask_pr_args(sched_group_cpus(group)));
5461 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5462 printk(KERN_CONT " (cpu_capacity = %d)",
5463 group->sgc->capacity);
5464 }
5465
5466 group = group->next;
5467 } while (group != sd->groups);
5468 printk(KERN_CONT "\n");
5469
5470 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5471 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5472
5473 if (sd->parent &&
5474 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5475 printk(KERN_ERR "ERROR: parent span is not a superset "
5476 "of domain->span\n");
5477 return 0;
5478 }
5479
5480 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5481 {
5482 int level = 0;
5483
5484 if (!sched_debug_enabled)
5485 return;
5486
5487 if (!sd) {
5488 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5489 return;
5490 }
5491
5492 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5493
5494 for (;;) {
5495 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5496 break;
5497 level++;
5498 sd = sd->parent;
5499 if (!sd)
5500 break;
5501 }
5502 }
5503 #else /* !CONFIG_SCHED_DEBUG */
5504 # define sched_domain_debug(sd, cpu) do { } while (0)
5505 static inline bool sched_debug(void)
5506 {
5507 return false;
5508 }
5509 #endif /* CONFIG_SCHED_DEBUG */
5510
5511 static int sd_degenerate(struct sched_domain *sd)
5512 {
5513 if (cpumask_weight(sched_domain_span(sd)) == 1)
5514 return 1;
5515
5516 /* Following flags need at least 2 groups */
5517 if (sd->flags & (SD_LOAD_BALANCE |
5518 SD_BALANCE_NEWIDLE |
5519 SD_BALANCE_FORK |
5520 SD_BALANCE_EXEC |
5521 SD_SHARE_CPUCAPACITY |
5522 SD_SHARE_PKG_RESOURCES |
5523 SD_SHARE_POWERDOMAIN)) {
5524 if (sd->groups != sd->groups->next)
5525 return 0;
5526 }
5527
5528 /* Following flags don't use groups */
5529 if (sd->flags & (SD_WAKE_AFFINE))
5530 return 0;
5531
5532 return 1;
5533 }
5534
5535 static int
5536 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5537 {
5538 unsigned long cflags = sd->flags, pflags = parent->flags;
5539
5540 if (sd_degenerate(parent))
5541 return 1;
5542
5543 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5544 return 0;
5545
5546 /* Flags needing groups don't count if only 1 group in parent */
5547 if (parent->groups == parent->groups->next) {
5548 pflags &= ~(SD_LOAD_BALANCE |
5549 SD_BALANCE_NEWIDLE |
5550 SD_BALANCE_FORK |
5551 SD_BALANCE_EXEC |
5552 SD_SHARE_CPUCAPACITY |
5553 SD_SHARE_PKG_RESOURCES |
5554 SD_PREFER_SIBLING |
5555 SD_SHARE_POWERDOMAIN);
5556 if (nr_node_ids == 1)
5557 pflags &= ~SD_SERIALIZE;
5558 }
5559 if (~cflags & pflags)
5560 return 0;
5561
5562 return 1;
5563 }
5564
5565 static void free_rootdomain(struct rcu_head *rcu)
5566 {
5567 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5568
5569 cpupri_cleanup(&rd->cpupri);
5570 cpudl_cleanup(&rd->cpudl);
5571 free_cpumask_var(rd->dlo_mask);
5572 free_cpumask_var(rd->rto_mask);
5573 free_cpumask_var(rd->online);
5574 free_cpumask_var(rd->span);
5575 kfree(rd);
5576 }
5577
5578 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5579 {
5580 struct root_domain *old_rd = NULL;
5581 unsigned long flags;
5582
5583 raw_spin_lock_irqsave(&rq->lock, flags);
5584
5585 if (rq->rd) {
5586 old_rd = rq->rd;
5587
5588 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5589 set_rq_offline(rq);
5590
5591 cpumask_clear_cpu(rq->cpu, old_rd->span);
5592
5593 /*
5594 * If we dont want to free the old_rd yet then
5595 * set old_rd to NULL to skip the freeing later
5596 * in this function:
5597 */
5598 if (!atomic_dec_and_test(&old_rd->refcount))
5599 old_rd = NULL;
5600 }
5601
5602 atomic_inc(&rd->refcount);
5603 rq->rd = rd;
5604
5605 cpumask_set_cpu(rq->cpu, rd->span);
5606 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5607 set_rq_online(rq);
5608
5609 raw_spin_unlock_irqrestore(&rq->lock, flags);
5610
5611 if (old_rd)
5612 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5613 }
5614
5615 static int init_rootdomain(struct root_domain *rd)
5616 {
5617 memset(rd, 0, sizeof(*rd));
5618
5619 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5620 goto out;
5621 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5622 goto free_span;
5623 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5624 goto free_online;
5625 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5626 goto free_dlo_mask;
5627
5628 init_dl_bw(&rd->dl_bw);
5629 if (cpudl_init(&rd->cpudl) != 0)
5630 goto free_dlo_mask;
5631
5632 if (cpupri_init(&rd->cpupri) != 0)
5633 goto free_rto_mask;
5634 return 0;
5635
5636 free_rto_mask:
5637 free_cpumask_var(rd->rto_mask);
5638 free_dlo_mask:
5639 free_cpumask_var(rd->dlo_mask);
5640 free_online:
5641 free_cpumask_var(rd->online);
5642 free_span:
5643 free_cpumask_var(rd->span);
5644 out:
5645 return -ENOMEM;
5646 }
5647
5648 /*
5649 * By default the system creates a single root-domain with all cpus as
5650 * members (mimicking the global state we have today).
5651 */
5652 struct root_domain def_root_domain;
5653
5654 static void init_defrootdomain(void)
5655 {
5656 init_rootdomain(&def_root_domain);
5657
5658 atomic_set(&def_root_domain.refcount, 1);
5659 }
5660
5661 static struct root_domain *alloc_rootdomain(void)
5662 {
5663 struct root_domain *rd;
5664
5665 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5666 if (!rd)
5667 return NULL;
5668
5669 if (init_rootdomain(rd) != 0) {
5670 kfree(rd);
5671 return NULL;
5672 }
5673
5674 return rd;
5675 }
5676
5677 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5678 {
5679 struct sched_group *tmp, *first;
5680
5681 if (!sg)
5682 return;
5683
5684 first = sg;
5685 do {
5686 tmp = sg->next;
5687
5688 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5689 kfree(sg->sgc);
5690
5691 kfree(sg);
5692 sg = tmp;
5693 } while (sg != first);
5694 }
5695
5696 static void free_sched_domain(struct rcu_head *rcu)
5697 {
5698 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5699
5700 /*
5701 * If its an overlapping domain it has private groups, iterate and
5702 * nuke them all.
5703 */
5704 if (sd->flags & SD_OVERLAP) {
5705 free_sched_groups(sd->groups, 1);
5706 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5707 kfree(sd->groups->sgc);
5708 kfree(sd->groups);
5709 }
5710 kfree(sd);
5711 }
5712
5713 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5714 {
5715 call_rcu(&sd->rcu, free_sched_domain);
5716 }
5717
5718 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5719 {
5720 for (; sd; sd = sd->parent)
5721 destroy_sched_domain(sd, cpu);
5722 }
5723
5724 /*
5725 * Keep a special pointer to the highest sched_domain that has
5726 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5727 * allows us to avoid some pointer chasing select_idle_sibling().
5728 *
5729 * Also keep a unique ID per domain (we use the first cpu number in
5730 * the cpumask of the domain), this allows us to quickly tell if
5731 * two cpus are in the same cache domain, see cpus_share_cache().
5732 */
5733 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5734 DEFINE_PER_CPU(int, sd_llc_size);
5735 DEFINE_PER_CPU(int, sd_llc_id);
5736 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5737 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5738 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5739
5740 static void update_top_cache_domain(int cpu)
5741 {
5742 struct sched_domain *sd;
5743 struct sched_domain *busy_sd = NULL;
5744 int id = cpu;
5745 int size = 1;
5746
5747 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5748 if (sd) {
5749 id = cpumask_first(sched_domain_span(sd));
5750 size = cpumask_weight(sched_domain_span(sd));
5751 busy_sd = sd->parent; /* sd_busy */
5752 }
5753 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5754
5755 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5756 per_cpu(sd_llc_size, cpu) = size;
5757 per_cpu(sd_llc_id, cpu) = id;
5758
5759 sd = lowest_flag_domain(cpu, SD_NUMA);
5760 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5761
5762 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5763 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5764 }
5765
5766 /*
5767 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5768 * hold the hotplug lock.
5769 */
5770 static void
5771 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5772 {
5773 struct rq *rq = cpu_rq(cpu);
5774 struct sched_domain *tmp;
5775
5776 /* Remove the sched domains which do not contribute to scheduling. */
5777 for (tmp = sd; tmp; ) {
5778 struct sched_domain *parent = tmp->parent;
5779 if (!parent)
5780 break;
5781
5782 if (sd_parent_degenerate(tmp, parent)) {
5783 tmp->parent = parent->parent;
5784 if (parent->parent)
5785 parent->parent->child = tmp;
5786 /*
5787 * Transfer SD_PREFER_SIBLING down in case of a
5788 * degenerate parent; the spans match for this
5789 * so the property transfers.
5790 */
5791 if (parent->flags & SD_PREFER_SIBLING)
5792 tmp->flags |= SD_PREFER_SIBLING;
5793 destroy_sched_domain(parent, cpu);
5794 } else
5795 tmp = tmp->parent;
5796 }
5797
5798 if (sd && sd_degenerate(sd)) {
5799 tmp = sd;
5800 sd = sd->parent;
5801 destroy_sched_domain(tmp, cpu);
5802 if (sd)
5803 sd->child = NULL;
5804 }
5805
5806 sched_domain_debug(sd, cpu);
5807
5808 rq_attach_root(rq, rd);
5809 tmp = rq->sd;
5810 rcu_assign_pointer(rq->sd, sd);
5811 destroy_sched_domains(tmp, cpu);
5812
5813 update_top_cache_domain(cpu);
5814 }
5815
5816 /* cpus with isolated domains */
5817 static cpumask_var_t cpu_isolated_map;
5818
5819 /* Setup the mask of cpus configured for isolated domains */
5820 static int __init isolated_cpu_setup(char *str)
5821 {
5822 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5823 cpulist_parse(str, cpu_isolated_map);
5824 return 1;
5825 }
5826
5827 __setup("isolcpus=", isolated_cpu_setup);
5828
5829 struct s_data {
5830 struct sched_domain ** __percpu sd;
5831 struct root_domain *rd;
5832 };
5833
5834 enum s_alloc {
5835 sa_rootdomain,
5836 sa_sd,
5837 sa_sd_storage,
5838 sa_none,
5839 };
5840
5841 /*
5842 * Build an iteration mask that can exclude certain CPUs from the upwards
5843 * domain traversal.
5844 *
5845 * Asymmetric node setups can result in situations where the domain tree is of
5846 * unequal depth, make sure to skip domains that already cover the entire
5847 * range.
5848 *
5849 * In that case build_sched_domains() will have terminated the iteration early
5850 * and our sibling sd spans will be empty. Domains should always include the
5851 * cpu they're built on, so check that.
5852 *
5853 */
5854 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5855 {
5856 const struct cpumask *span = sched_domain_span(sd);
5857 struct sd_data *sdd = sd->private;
5858 struct sched_domain *sibling;
5859 int i;
5860
5861 for_each_cpu(i, span) {
5862 sibling = *per_cpu_ptr(sdd->sd, i);
5863 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5864 continue;
5865
5866 cpumask_set_cpu(i, sched_group_mask(sg));
5867 }
5868 }
5869
5870 /*
5871 * Return the canonical balance cpu for this group, this is the first cpu
5872 * of this group that's also in the iteration mask.
5873 */
5874 int group_balance_cpu(struct sched_group *sg)
5875 {
5876 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5877 }
5878
5879 static int
5880 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5881 {
5882 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5883 const struct cpumask *span = sched_domain_span(sd);
5884 struct cpumask *covered = sched_domains_tmpmask;
5885 struct sd_data *sdd = sd->private;
5886 struct sched_domain *sibling;
5887 int i;
5888
5889 cpumask_clear(covered);
5890
5891 for_each_cpu(i, span) {
5892 struct cpumask *sg_span;
5893
5894 if (cpumask_test_cpu(i, covered))
5895 continue;
5896
5897 sibling = *per_cpu_ptr(sdd->sd, i);
5898
5899 /* See the comment near build_group_mask(). */
5900 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5901 continue;
5902
5903 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5904 GFP_KERNEL, cpu_to_node(cpu));
5905
5906 if (!sg)
5907 goto fail;
5908
5909 sg_span = sched_group_cpus(sg);
5910 if (sibling->child)
5911 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5912 else
5913 cpumask_set_cpu(i, sg_span);
5914
5915 cpumask_or(covered, covered, sg_span);
5916
5917 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5918 if (atomic_inc_return(&sg->sgc->ref) == 1)
5919 build_group_mask(sd, sg);
5920
5921 /*
5922 * Initialize sgc->capacity such that even if we mess up the
5923 * domains and no possible iteration will get us here, we won't
5924 * die on a /0 trap.
5925 */
5926 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5927 sg->sgc->capacity_orig = sg->sgc->capacity;
5928
5929 /*
5930 * Make sure the first group of this domain contains the
5931 * canonical balance cpu. Otherwise the sched_domain iteration
5932 * breaks. See update_sg_lb_stats().
5933 */
5934 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5935 group_balance_cpu(sg) == cpu)
5936 groups = sg;
5937
5938 if (!first)
5939 first = sg;
5940 if (last)
5941 last->next = sg;
5942 last = sg;
5943 last->next = first;
5944 }
5945 sd->groups = groups;
5946
5947 return 0;
5948
5949 fail:
5950 free_sched_groups(first, 0);
5951
5952 return -ENOMEM;
5953 }
5954
5955 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5956 {
5957 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5958 struct sched_domain *child = sd->child;
5959
5960 if (child)
5961 cpu = cpumask_first(sched_domain_span(child));
5962
5963 if (sg) {
5964 *sg = *per_cpu_ptr(sdd->sg, cpu);
5965 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5966 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5967 }
5968
5969 return cpu;
5970 }
5971
5972 /*
5973 * build_sched_groups will build a circular linked list of the groups
5974 * covered by the given span, and will set each group's ->cpumask correctly,
5975 * and ->cpu_capacity to 0.
5976 *
5977 * Assumes the sched_domain tree is fully constructed
5978 */
5979 static int
5980 build_sched_groups(struct sched_domain *sd, int cpu)
5981 {
5982 struct sched_group *first = NULL, *last = NULL;
5983 struct sd_data *sdd = sd->private;
5984 const struct cpumask *span = sched_domain_span(sd);
5985 struct cpumask *covered;
5986 int i;
5987
5988 get_group(cpu, sdd, &sd->groups);
5989 atomic_inc(&sd->groups->ref);
5990
5991 if (cpu != cpumask_first(span))
5992 return 0;
5993
5994 lockdep_assert_held(&sched_domains_mutex);
5995 covered = sched_domains_tmpmask;
5996
5997 cpumask_clear(covered);
5998
5999 for_each_cpu(i, span) {
6000 struct sched_group *sg;
6001 int group, j;
6002
6003 if (cpumask_test_cpu(i, covered))
6004 continue;
6005
6006 group = get_group(i, sdd, &sg);
6007 cpumask_setall(sched_group_mask(sg));
6008
6009 for_each_cpu(j, span) {
6010 if (get_group(j, sdd, NULL) != group)
6011 continue;
6012
6013 cpumask_set_cpu(j, covered);
6014 cpumask_set_cpu(j, sched_group_cpus(sg));
6015 }
6016
6017 if (!first)
6018 first = sg;
6019 if (last)
6020 last->next = sg;
6021 last = sg;
6022 }
6023 last->next = first;
6024
6025 return 0;
6026 }
6027
6028 /*
6029 * Initialize sched groups cpu_capacity.
6030 *
6031 * cpu_capacity indicates the capacity of sched group, which is used while
6032 * distributing the load between different sched groups in a sched domain.
6033 * Typically cpu_capacity for all the groups in a sched domain will be same
6034 * unless there are asymmetries in the topology. If there are asymmetries,
6035 * group having more cpu_capacity will pickup more load compared to the
6036 * group having less cpu_capacity.
6037 */
6038 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6039 {
6040 struct sched_group *sg = sd->groups;
6041
6042 WARN_ON(!sg);
6043
6044 do {
6045 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6046 sg = sg->next;
6047 } while (sg != sd->groups);
6048
6049 if (cpu != group_balance_cpu(sg))
6050 return;
6051
6052 update_group_capacity(sd, cpu);
6053 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6054 }
6055
6056 /*
6057 * Initializers for schedule domains
6058 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6059 */
6060
6061 static int default_relax_domain_level = -1;
6062 int sched_domain_level_max;
6063
6064 static int __init setup_relax_domain_level(char *str)
6065 {
6066 if (kstrtoint(str, 0, &default_relax_domain_level))
6067 pr_warn("Unable to set relax_domain_level\n");
6068
6069 return 1;
6070 }
6071 __setup("relax_domain_level=", setup_relax_domain_level);
6072
6073 static void set_domain_attribute(struct sched_domain *sd,
6074 struct sched_domain_attr *attr)
6075 {
6076 int request;
6077
6078 if (!attr || attr->relax_domain_level < 0) {
6079 if (default_relax_domain_level < 0)
6080 return;
6081 else
6082 request = default_relax_domain_level;
6083 } else
6084 request = attr->relax_domain_level;
6085 if (request < sd->level) {
6086 /* turn off idle balance on this domain */
6087 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6088 } else {
6089 /* turn on idle balance on this domain */
6090 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6091 }
6092 }
6093
6094 static void __sdt_free(const struct cpumask *cpu_map);
6095 static int __sdt_alloc(const struct cpumask *cpu_map);
6096
6097 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6098 const struct cpumask *cpu_map)
6099 {
6100 switch (what) {
6101 case sa_rootdomain:
6102 if (!atomic_read(&d->rd->refcount))
6103 free_rootdomain(&d->rd->rcu); /* fall through */
6104 case sa_sd:
6105 free_percpu(d->sd); /* fall through */
6106 case sa_sd_storage:
6107 __sdt_free(cpu_map); /* fall through */
6108 case sa_none:
6109 break;
6110 }
6111 }
6112
6113 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6114 const struct cpumask *cpu_map)
6115 {
6116 memset(d, 0, sizeof(*d));
6117
6118 if (__sdt_alloc(cpu_map))
6119 return sa_sd_storage;
6120 d->sd = alloc_percpu(struct sched_domain *);
6121 if (!d->sd)
6122 return sa_sd_storage;
6123 d->rd = alloc_rootdomain();
6124 if (!d->rd)
6125 return sa_sd;
6126 return sa_rootdomain;
6127 }
6128
6129 /*
6130 * NULL the sd_data elements we've used to build the sched_domain and
6131 * sched_group structure so that the subsequent __free_domain_allocs()
6132 * will not free the data we're using.
6133 */
6134 static void claim_allocations(int cpu, struct sched_domain *sd)
6135 {
6136 struct sd_data *sdd = sd->private;
6137
6138 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6139 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6140
6141 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6142 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6143
6144 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6145 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6146 }
6147
6148 #ifdef CONFIG_NUMA
6149 static int sched_domains_numa_levels;
6150 enum numa_topology_type sched_numa_topology_type;
6151 static int *sched_domains_numa_distance;
6152 int sched_max_numa_distance;
6153 static struct cpumask ***sched_domains_numa_masks;
6154 static int sched_domains_curr_level;
6155 #endif
6156
6157 /*
6158 * SD_flags allowed in topology descriptions.
6159 *
6160 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6161 * SD_SHARE_PKG_RESOURCES - describes shared caches
6162 * SD_NUMA - describes NUMA topologies
6163 * SD_SHARE_POWERDOMAIN - describes shared power domain
6164 *
6165 * Odd one out:
6166 * SD_ASYM_PACKING - describes SMT quirks
6167 */
6168 #define TOPOLOGY_SD_FLAGS \
6169 (SD_SHARE_CPUCAPACITY | \
6170 SD_SHARE_PKG_RESOURCES | \
6171 SD_NUMA | \
6172 SD_ASYM_PACKING | \
6173 SD_SHARE_POWERDOMAIN)
6174
6175 static struct sched_domain *
6176 sd_init(struct sched_domain_topology_level *tl, int cpu)
6177 {
6178 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6179 int sd_weight, sd_flags = 0;
6180
6181 #ifdef CONFIG_NUMA
6182 /*
6183 * Ugly hack to pass state to sd_numa_mask()...
6184 */
6185 sched_domains_curr_level = tl->numa_level;
6186 #endif
6187
6188 sd_weight = cpumask_weight(tl->mask(cpu));
6189
6190 if (tl->sd_flags)
6191 sd_flags = (*tl->sd_flags)();
6192 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6193 "wrong sd_flags in topology description\n"))
6194 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6195
6196 *sd = (struct sched_domain){
6197 .min_interval = sd_weight,
6198 .max_interval = 2*sd_weight,
6199 .busy_factor = 32,
6200 .imbalance_pct = 125,
6201
6202 .cache_nice_tries = 0,
6203 .busy_idx = 0,
6204 .idle_idx = 0,
6205 .newidle_idx = 0,
6206 .wake_idx = 0,
6207 .forkexec_idx = 0,
6208
6209 .flags = 1*SD_LOAD_BALANCE
6210 | 1*SD_BALANCE_NEWIDLE
6211 | 1*SD_BALANCE_EXEC
6212 | 1*SD_BALANCE_FORK
6213 | 0*SD_BALANCE_WAKE
6214 | 1*SD_WAKE_AFFINE
6215 | 0*SD_SHARE_CPUCAPACITY
6216 | 0*SD_SHARE_PKG_RESOURCES
6217 | 0*SD_SERIALIZE
6218 | 0*SD_PREFER_SIBLING
6219 | 0*SD_NUMA
6220 | sd_flags
6221 ,
6222
6223 .last_balance = jiffies,
6224 .balance_interval = sd_weight,
6225 .smt_gain = 0,
6226 .max_newidle_lb_cost = 0,
6227 .next_decay_max_lb_cost = jiffies,
6228 #ifdef CONFIG_SCHED_DEBUG
6229 .name = tl->name,
6230 #endif
6231 };
6232
6233 /*
6234 * Convert topological properties into behaviour.
6235 */
6236
6237 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6238 sd->imbalance_pct = 110;
6239 sd->smt_gain = 1178; /* ~15% */
6240
6241 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6242 sd->imbalance_pct = 117;
6243 sd->cache_nice_tries = 1;
6244 sd->busy_idx = 2;
6245
6246 #ifdef CONFIG_NUMA
6247 } else if (sd->flags & SD_NUMA) {
6248 sd->cache_nice_tries = 2;
6249 sd->busy_idx = 3;
6250 sd->idle_idx = 2;
6251
6252 sd->flags |= SD_SERIALIZE;
6253 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6254 sd->flags &= ~(SD_BALANCE_EXEC |
6255 SD_BALANCE_FORK |
6256 SD_WAKE_AFFINE);
6257 }
6258
6259 #endif
6260 } else {
6261 sd->flags |= SD_PREFER_SIBLING;
6262 sd->cache_nice_tries = 1;
6263 sd->busy_idx = 2;
6264 sd->idle_idx = 1;
6265 }
6266
6267 sd->private = &tl->data;
6268
6269 return sd;
6270 }
6271
6272 /*
6273 * Topology list, bottom-up.
6274 */
6275 static struct sched_domain_topology_level default_topology[] = {
6276 #ifdef CONFIG_SCHED_SMT
6277 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6278 #endif
6279 #ifdef CONFIG_SCHED_MC
6280 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6281 #endif
6282 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6283 { NULL, },
6284 };
6285
6286 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6287
6288 #define for_each_sd_topology(tl) \
6289 for (tl = sched_domain_topology; tl->mask; tl++)
6290
6291 void set_sched_topology(struct sched_domain_topology_level *tl)
6292 {
6293 sched_domain_topology = tl;
6294 }
6295
6296 #ifdef CONFIG_NUMA
6297
6298 static const struct cpumask *sd_numa_mask(int cpu)
6299 {
6300 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6301 }
6302
6303 static void sched_numa_warn(const char *str)
6304 {
6305 static int done = false;
6306 int i,j;
6307
6308 if (done)
6309 return;
6310
6311 done = true;
6312
6313 printk(KERN_WARNING "ERROR: %s\n\n", str);
6314
6315 for (i = 0; i < nr_node_ids; i++) {
6316 printk(KERN_WARNING " ");
6317 for (j = 0; j < nr_node_ids; j++)
6318 printk(KERN_CONT "%02d ", node_distance(i,j));
6319 printk(KERN_CONT "\n");
6320 }
6321 printk(KERN_WARNING "\n");
6322 }
6323
6324 bool find_numa_distance(int distance)
6325 {
6326 int i;
6327
6328 if (distance == node_distance(0, 0))
6329 return true;
6330
6331 for (i = 0; i < sched_domains_numa_levels; i++) {
6332 if (sched_domains_numa_distance[i] == distance)
6333 return true;
6334 }
6335
6336 return false;
6337 }
6338
6339 /*
6340 * A system can have three types of NUMA topology:
6341 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6342 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6343 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6344 *
6345 * The difference between a glueless mesh topology and a backplane
6346 * topology lies in whether communication between not directly
6347 * connected nodes goes through intermediary nodes (where programs
6348 * could run), or through backplane controllers. This affects
6349 * placement of programs.
6350 *
6351 * The type of topology can be discerned with the following tests:
6352 * - If the maximum distance between any nodes is 1 hop, the system
6353 * is directly connected.
6354 * - If for two nodes A and B, located N > 1 hops away from each other,
6355 * there is an intermediary node C, which is < N hops away from both
6356 * nodes A and B, the system is a glueless mesh.
6357 */
6358 static void init_numa_topology_type(void)
6359 {
6360 int a, b, c, n;
6361
6362 n = sched_max_numa_distance;
6363
6364 if (n <= 1)
6365 sched_numa_topology_type = NUMA_DIRECT;
6366
6367 for_each_online_node(a) {
6368 for_each_online_node(b) {
6369 /* Find two nodes furthest removed from each other. */
6370 if (node_distance(a, b) < n)
6371 continue;
6372
6373 /* Is there an intermediary node between a and b? */
6374 for_each_online_node(c) {
6375 if (node_distance(a, c) < n &&
6376 node_distance(b, c) < n) {
6377 sched_numa_topology_type =
6378 NUMA_GLUELESS_MESH;
6379 return;
6380 }
6381 }
6382
6383 sched_numa_topology_type = NUMA_BACKPLANE;
6384 return;
6385 }
6386 }
6387 }
6388
6389 static void sched_init_numa(void)
6390 {
6391 int next_distance, curr_distance = node_distance(0, 0);
6392 struct sched_domain_topology_level *tl;
6393 int level = 0;
6394 int i, j, k;
6395
6396 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6397 if (!sched_domains_numa_distance)
6398 return;
6399
6400 /*
6401 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6402 * unique distances in the node_distance() table.
6403 *
6404 * Assumes node_distance(0,j) includes all distances in
6405 * node_distance(i,j) in order to avoid cubic time.
6406 */
6407 next_distance = curr_distance;
6408 for (i = 0; i < nr_node_ids; i++) {
6409 for (j = 0; j < nr_node_ids; j++) {
6410 for (k = 0; k < nr_node_ids; k++) {
6411 int distance = node_distance(i, k);
6412
6413 if (distance > curr_distance &&
6414 (distance < next_distance ||
6415 next_distance == curr_distance))
6416 next_distance = distance;
6417
6418 /*
6419 * While not a strong assumption it would be nice to know
6420 * about cases where if node A is connected to B, B is not
6421 * equally connected to A.
6422 */
6423 if (sched_debug() && node_distance(k, i) != distance)
6424 sched_numa_warn("Node-distance not symmetric");
6425
6426 if (sched_debug() && i && !find_numa_distance(distance))
6427 sched_numa_warn("Node-0 not representative");
6428 }
6429 if (next_distance != curr_distance) {
6430 sched_domains_numa_distance[level++] = next_distance;
6431 sched_domains_numa_levels = level;
6432 curr_distance = next_distance;
6433 } else break;
6434 }
6435
6436 /*
6437 * In case of sched_debug() we verify the above assumption.
6438 */
6439 if (!sched_debug())
6440 break;
6441 }
6442
6443 if (!level)
6444 return;
6445
6446 /*
6447 * 'level' contains the number of unique distances, excluding the
6448 * identity distance node_distance(i,i).
6449 *
6450 * The sched_domains_numa_distance[] array includes the actual distance
6451 * numbers.
6452 */
6453
6454 /*
6455 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6456 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6457 * the array will contain less then 'level' members. This could be
6458 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6459 * in other functions.
6460 *
6461 * We reset it to 'level' at the end of this function.
6462 */
6463 sched_domains_numa_levels = 0;
6464
6465 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6466 if (!sched_domains_numa_masks)
6467 return;
6468
6469 /*
6470 * Now for each level, construct a mask per node which contains all
6471 * cpus of nodes that are that many hops away from us.
6472 */
6473 for (i = 0; i < level; i++) {
6474 sched_domains_numa_masks[i] =
6475 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6476 if (!sched_domains_numa_masks[i])
6477 return;
6478
6479 for (j = 0; j < nr_node_ids; j++) {
6480 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6481 if (!mask)
6482 return;
6483
6484 sched_domains_numa_masks[i][j] = mask;
6485
6486 for (k = 0; k < nr_node_ids; k++) {
6487 if (node_distance(j, k) > sched_domains_numa_distance[i])
6488 continue;
6489
6490 cpumask_or(mask, mask, cpumask_of_node(k));
6491 }
6492 }
6493 }
6494
6495 /* Compute default topology size */
6496 for (i = 0; sched_domain_topology[i].mask; i++);
6497
6498 tl = kzalloc((i + level + 1) *
6499 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6500 if (!tl)
6501 return;
6502
6503 /*
6504 * Copy the default topology bits..
6505 */
6506 for (i = 0; sched_domain_topology[i].mask; i++)
6507 tl[i] = sched_domain_topology[i];
6508
6509 /*
6510 * .. and append 'j' levels of NUMA goodness.
6511 */
6512 for (j = 0; j < level; i++, j++) {
6513 tl[i] = (struct sched_domain_topology_level){
6514 .mask = sd_numa_mask,
6515 .sd_flags = cpu_numa_flags,
6516 .flags = SDTL_OVERLAP,
6517 .numa_level = j,
6518 SD_INIT_NAME(NUMA)
6519 };
6520 }
6521
6522 sched_domain_topology = tl;
6523
6524 sched_domains_numa_levels = level;
6525 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6526
6527 init_numa_topology_type();
6528 }
6529
6530 static void sched_domains_numa_masks_set(int cpu)
6531 {
6532 int i, j;
6533 int node = cpu_to_node(cpu);
6534
6535 for (i = 0; i < sched_domains_numa_levels; i++) {
6536 for (j = 0; j < nr_node_ids; j++) {
6537 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6538 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6539 }
6540 }
6541 }
6542
6543 static void sched_domains_numa_masks_clear(int cpu)
6544 {
6545 int i, j;
6546 for (i = 0; i < sched_domains_numa_levels; i++) {
6547 for (j = 0; j < nr_node_ids; j++)
6548 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6549 }
6550 }
6551
6552 /*
6553 * Update sched_domains_numa_masks[level][node] array when new cpus
6554 * are onlined.
6555 */
6556 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6557 unsigned long action,
6558 void *hcpu)
6559 {
6560 int cpu = (long)hcpu;
6561
6562 switch (action & ~CPU_TASKS_FROZEN) {
6563 case CPU_ONLINE:
6564 sched_domains_numa_masks_set(cpu);
6565 break;
6566
6567 case CPU_DEAD:
6568 sched_domains_numa_masks_clear(cpu);
6569 break;
6570
6571 default:
6572 return NOTIFY_DONE;
6573 }
6574
6575 return NOTIFY_OK;
6576 }
6577 #else
6578 static inline void sched_init_numa(void)
6579 {
6580 }
6581
6582 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6583 unsigned long action,
6584 void *hcpu)
6585 {
6586 return 0;
6587 }
6588 #endif /* CONFIG_NUMA */
6589
6590 static int __sdt_alloc(const struct cpumask *cpu_map)
6591 {
6592 struct sched_domain_topology_level *tl;
6593 int j;
6594
6595 for_each_sd_topology(tl) {
6596 struct sd_data *sdd = &tl->data;
6597
6598 sdd->sd = alloc_percpu(struct sched_domain *);
6599 if (!sdd->sd)
6600 return -ENOMEM;
6601
6602 sdd->sg = alloc_percpu(struct sched_group *);
6603 if (!sdd->sg)
6604 return -ENOMEM;
6605
6606 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6607 if (!sdd->sgc)
6608 return -ENOMEM;
6609
6610 for_each_cpu(j, cpu_map) {
6611 struct sched_domain *sd;
6612 struct sched_group *sg;
6613 struct sched_group_capacity *sgc;
6614
6615 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6616 GFP_KERNEL, cpu_to_node(j));
6617 if (!sd)
6618 return -ENOMEM;
6619
6620 *per_cpu_ptr(sdd->sd, j) = sd;
6621
6622 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6623 GFP_KERNEL, cpu_to_node(j));
6624 if (!sg)
6625 return -ENOMEM;
6626
6627 sg->next = sg;
6628
6629 *per_cpu_ptr(sdd->sg, j) = sg;
6630
6631 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6632 GFP_KERNEL, cpu_to_node(j));
6633 if (!sgc)
6634 return -ENOMEM;
6635
6636 *per_cpu_ptr(sdd->sgc, j) = sgc;
6637 }
6638 }
6639
6640 return 0;
6641 }
6642
6643 static void __sdt_free(const struct cpumask *cpu_map)
6644 {
6645 struct sched_domain_topology_level *tl;
6646 int j;
6647
6648 for_each_sd_topology(tl) {
6649 struct sd_data *sdd = &tl->data;
6650
6651 for_each_cpu(j, cpu_map) {
6652 struct sched_domain *sd;
6653
6654 if (sdd->sd) {
6655 sd = *per_cpu_ptr(sdd->sd, j);
6656 if (sd && (sd->flags & SD_OVERLAP))
6657 free_sched_groups(sd->groups, 0);
6658 kfree(*per_cpu_ptr(sdd->sd, j));
6659 }
6660
6661 if (sdd->sg)
6662 kfree(*per_cpu_ptr(sdd->sg, j));
6663 if (sdd->sgc)
6664 kfree(*per_cpu_ptr(sdd->sgc, j));
6665 }
6666 free_percpu(sdd->sd);
6667 sdd->sd = NULL;
6668 free_percpu(sdd->sg);
6669 sdd->sg = NULL;
6670 free_percpu(sdd->sgc);
6671 sdd->sgc = NULL;
6672 }
6673 }
6674
6675 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6676 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6677 struct sched_domain *child, int cpu)
6678 {
6679 struct sched_domain *sd = sd_init(tl, cpu);
6680 if (!sd)
6681 return child;
6682
6683 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6684 if (child) {
6685 sd->level = child->level + 1;
6686 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6687 child->parent = sd;
6688 sd->child = child;
6689
6690 if (!cpumask_subset(sched_domain_span(child),
6691 sched_domain_span(sd))) {
6692 pr_err("BUG: arch topology borken\n");
6693 #ifdef CONFIG_SCHED_DEBUG
6694 pr_err(" the %s domain not a subset of the %s domain\n",
6695 child->name, sd->name);
6696 #endif
6697 /* Fixup, ensure @sd has at least @child cpus. */
6698 cpumask_or(sched_domain_span(sd),
6699 sched_domain_span(sd),
6700 sched_domain_span(child));
6701 }
6702
6703 }
6704 set_domain_attribute(sd, attr);
6705
6706 return sd;
6707 }
6708
6709 /*
6710 * Build sched domains for a given set of cpus and attach the sched domains
6711 * to the individual cpus
6712 */
6713 static int build_sched_domains(const struct cpumask *cpu_map,
6714 struct sched_domain_attr *attr)
6715 {
6716 enum s_alloc alloc_state;
6717 struct sched_domain *sd;
6718 struct s_data d;
6719 int i, ret = -ENOMEM;
6720
6721 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6722 if (alloc_state != sa_rootdomain)
6723 goto error;
6724
6725 /* Set up domains for cpus specified by the cpu_map. */
6726 for_each_cpu(i, cpu_map) {
6727 struct sched_domain_topology_level *tl;
6728
6729 sd = NULL;
6730 for_each_sd_topology(tl) {
6731 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6732 if (tl == sched_domain_topology)
6733 *per_cpu_ptr(d.sd, i) = sd;
6734 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6735 sd->flags |= SD_OVERLAP;
6736 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6737 break;
6738 }
6739 }
6740
6741 /* Build the groups for the domains */
6742 for_each_cpu(i, cpu_map) {
6743 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6744 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6745 if (sd->flags & SD_OVERLAP) {
6746 if (build_overlap_sched_groups(sd, i))
6747 goto error;
6748 } else {
6749 if (build_sched_groups(sd, i))
6750 goto error;
6751 }
6752 }
6753 }
6754
6755 /* Calculate CPU capacity for physical packages and nodes */
6756 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6757 if (!cpumask_test_cpu(i, cpu_map))
6758 continue;
6759
6760 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6761 claim_allocations(i, sd);
6762 init_sched_groups_capacity(i, sd);
6763 }
6764 }
6765
6766 /* Attach the domains */
6767 rcu_read_lock();
6768 for_each_cpu(i, cpu_map) {
6769 sd = *per_cpu_ptr(d.sd, i);
6770 cpu_attach_domain(sd, d.rd, i);
6771 }
6772 rcu_read_unlock();
6773
6774 ret = 0;
6775 error:
6776 __free_domain_allocs(&d, alloc_state, cpu_map);
6777 return ret;
6778 }
6779
6780 static cpumask_var_t *doms_cur; /* current sched domains */
6781 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6782 static struct sched_domain_attr *dattr_cur;
6783 /* attribues of custom domains in 'doms_cur' */
6784
6785 /*
6786 * Special case: If a kmalloc of a doms_cur partition (array of
6787 * cpumask) fails, then fallback to a single sched domain,
6788 * as determined by the single cpumask fallback_doms.
6789 */
6790 static cpumask_var_t fallback_doms;
6791
6792 /*
6793 * arch_update_cpu_topology lets virtualized architectures update the
6794 * cpu core maps. It is supposed to return 1 if the topology changed
6795 * or 0 if it stayed the same.
6796 */
6797 int __weak arch_update_cpu_topology(void)
6798 {
6799 return 0;
6800 }
6801
6802 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6803 {
6804 int i;
6805 cpumask_var_t *doms;
6806
6807 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6808 if (!doms)
6809 return NULL;
6810 for (i = 0; i < ndoms; i++) {
6811 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6812 free_sched_domains(doms, i);
6813 return NULL;
6814 }
6815 }
6816 return doms;
6817 }
6818
6819 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6820 {
6821 unsigned int i;
6822 for (i = 0; i < ndoms; i++)
6823 free_cpumask_var(doms[i]);
6824 kfree(doms);
6825 }
6826
6827 /*
6828 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6829 * For now this just excludes isolated cpus, but could be used to
6830 * exclude other special cases in the future.
6831 */
6832 static int init_sched_domains(const struct cpumask *cpu_map)
6833 {
6834 int err;
6835
6836 arch_update_cpu_topology();
6837 ndoms_cur = 1;
6838 doms_cur = alloc_sched_domains(ndoms_cur);
6839 if (!doms_cur)
6840 doms_cur = &fallback_doms;
6841 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6842 err = build_sched_domains(doms_cur[0], NULL);
6843 register_sched_domain_sysctl();
6844
6845 return err;
6846 }
6847
6848 /*
6849 * Detach sched domains from a group of cpus specified in cpu_map
6850 * These cpus will now be attached to the NULL domain
6851 */
6852 static void detach_destroy_domains(const struct cpumask *cpu_map)
6853 {
6854 int i;
6855
6856 rcu_read_lock();
6857 for_each_cpu(i, cpu_map)
6858 cpu_attach_domain(NULL, &def_root_domain, i);
6859 rcu_read_unlock();
6860 }
6861
6862 /* handle null as "default" */
6863 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6864 struct sched_domain_attr *new, int idx_new)
6865 {
6866 struct sched_domain_attr tmp;
6867
6868 /* fast path */
6869 if (!new && !cur)
6870 return 1;
6871
6872 tmp = SD_ATTR_INIT;
6873 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6874 new ? (new + idx_new) : &tmp,
6875 sizeof(struct sched_domain_attr));
6876 }
6877
6878 /*
6879 * Partition sched domains as specified by the 'ndoms_new'
6880 * cpumasks in the array doms_new[] of cpumasks. This compares
6881 * doms_new[] to the current sched domain partitioning, doms_cur[].
6882 * It destroys each deleted domain and builds each new domain.
6883 *
6884 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6885 * The masks don't intersect (don't overlap.) We should setup one
6886 * sched domain for each mask. CPUs not in any of the cpumasks will
6887 * not be load balanced. If the same cpumask appears both in the
6888 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6889 * it as it is.
6890 *
6891 * The passed in 'doms_new' should be allocated using
6892 * alloc_sched_domains. This routine takes ownership of it and will
6893 * free_sched_domains it when done with it. If the caller failed the
6894 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6895 * and partition_sched_domains() will fallback to the single partition
6896 * 'fallback_doms', it also forces the domains to be rebuilt.
6897 *
6898 * If doms_new == NULL it will be replaced with cpu_online_mask.
6899 * ndoms_new == 0 is a special case for destroying existing domains,
6900 * and it will not create the default domain.
6901 *
6902 * Call with hotplug lock held
6903 */
6904 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6905 struct sched_domain_attr *dattr_new)
6906 {
6907 int i, j, n;
6908 int new_topology;
6909
6910 mutex_lock(&sched_domains_mutex);
6911
6912 /* always unregister in case we don't destroy any domains */
6913 unregister_sched_domain_sysctl();
6914
6915 /* Let architecture update cpu core mappings. */
6916 new_topology = arch_update_cpu_topology();
6917
6918 n = doms_new ? ndoms_new : 0;
6919
6920 /* Destroy deleted domains */
6921 for (i = 0; i < ndoms_cur; i++) {
6922 for (j = 0; j < n && !new_topology; j++) {
6923 if (cpumask_equal(doms_cur[i], doms_new[j])
6924 && dattrs_equal(dattr_cur, i, dattr_new, j))
6925 goto match1;
6926 }
6927 /* no match - a current sched domain not in new doms_new[] */
6928 detach_destroy_domains(doms_cur[i]);
6929 match1:
6930 ;
6931 }
6932
6933 n = ndoms_cur;
6934 if (doms_new == NULL) {
6935 n = 0;
6936 doms_new = &fallback_doms;
6937 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6938 WARN_ON_ONCE(dattr_new);
6939 }
6940
6941 /* Build new domains */
6942 for (i = 0; i < ndoms_new; i++) {
6943 for (j = 0; j < n && !new_topology; j++) {
6944 if (cpumask_equal(doms_new[i], doms_cur[j])
6945 && dattrs_equal(dattr_new, i, dattr_cur, j))
6946 goto match2;
6947 }
6948 /* no match - add a new doms_new */
6949 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6950 match2:
6951 ;
6952 }
6953
6954 /* Remember the new sched domains */
6955 if (doms_cur != &fallback_doms)
6956 free_sched_domains(doms_cur, ndoms_cur);
6957 kfree(dattr_cur); /* kfree(NULL) is safe */
6958 doms_cur = doms_new;
6959 dattr_cur = dattr_new;
6960 ndoms_cur = ndoms_new;
6961
6962 register_sched_domain_sysctl();
6963
6964 mutex_unlock(&sched_domains_mutex);
6965 }
6966
6967 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6968
6969 /*
6970 * Update cpusets according to cpu_active mask. If cpusets are
6971 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6972 * around partition_sched_domains().
6973 *
6974 * If we come here as part of a suspend/resume, don't touch cpusets because we
6975 * want to restore it back to its original state upon resume anyway.
6976 */
6977 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6978 void *hcpu)
6979 {
6980 switch (action) {
6981 case CPU_ONLINE_FROZEN:
6982 case CPU_DOWN_FAILED_FROZEN:
6983
6984 /*
6985 * num_cpus_frozen tracks how many CPUs are involved in suspend
6986 * resume sequence. As long as this is not the last online
6987 * operation in the resume sequence, just build a single sched
6988 * domain, ignoring cpusets.
6989 */
6990 num_cpus_frozen--;
6991 if (likely(num_cpus_frozen)) {
6992 partition_sched_domains(1, NULL, NULL);
6993 break;
6994 }
6995
6996 /*
6997 * This is the last CPU online operation. So fall through and
6998 * restore the original sched domains by considering the
6999 * cpuset configurations.
7000 */
7001
7002 case CPU_ONLINE:
7003 case CPU_DOWN_FAILED:
7004 cpuset_update_active_cpus(true);
7005 break;
7006 default:
7007 return NOTIFY_DONE;
7008 }
7009 return NOTIFY_OK;
7010 }
7011
7012 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7013 void *hcpu)
7014 {
7015 switch (action) {
7016 case CPU_DOWN_PREPARE:
7017 cpuset_update_active_cpus(false);
7018 break;
7019 case CPU_DOWN_PREPARE_FROZEN:
7020 num_cpus_frozen++;
7021 partition_sched_domains(1, NULL, NULL);
7022 break;
7023 default:
7024 return NOTIFY_DONE;
7025 }
7026 return NOTIFY_OK;
7027 }
7028
7029 void __init sched_init_smp(void)
7030 {
7031 cpumask_var_t non_isolated_cpus;
7032
7033 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7034 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7035
7036 sched_init_numa();
7037
7038 /*
7039 * There's no userspace yet to cause hotplug operations; hence all the
7040 * cpu masks are stable and all blatant races in the below code cannot
7041 * happen.
7042 */
7043 mutex_lock(&sched_domains_mutex);
7044 init_sched_domains(cpu_active_mask);
7045 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7046 if (cpumask_empty(non_isolated_cpus))
7047 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7048 mutex_unlock(&sched_domains_mutex);
7049
7050 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7051 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7052 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7053
7054 init_hrtick();
7055
7056 /* Move init over to a non-isolated CPU */
7057 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7058 BUG();
7059 sched_init_granularity();
7060 free_cpumask_var(non_isolated_cpus);
7061
7062 init_sched_rt_class();
7063 init_sched_dl_class();
7064 }
7065 #else
7066 void __init sched_init_smp(void)
7067 {
7068 sched_init_granularity();
7069 }
7070 #endif /* CONFIG_SMP */
7071
7072 const_debug unsigned int sysctl_timer_migration = 1;
7073
7074 int in_sched_functions(unsigned long addr)
7075 {
7076 return in_lock_functions(addr) ||
7077 (addr >= (unsigned long)__sched_text_start
7078 && addr < (unsigned long)__sched_text_end);
7079 }
7080
7081 #ifdef CONFIG_CGROUP_SCHED
7082 /*
7083 * Default task group.
7084 * Every task in system belongs to this group at bootup.
7085 */
7086 struct task_group root_task_group;
7087 LIST_HEAD(task_groups);
7088 #endif
7089
7090 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7091
7092 void __init sched_init(void)
7093 {
7094 int i, j;
7095 unsigned long alloc_size = 0, ptr;
7096
7097 #ifdef CONFIG_FAIR_GROUP_SCHED
7098 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7099 #endif
7100 #ifdef CONFIG_RT_GROUP_SCHED
7101 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7102 #endif
7103 if (alloc_size) {
7104 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7105
7106 #ifdef CONFIG_FAIR_GROUP_SCHED
7107 root_task_group.se = (struct sched_entity **)ptr;
7108 ptr += nr_cpu_ids * sizeof(void **);
7109
7110 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7111 ptr += nr_cpu_ids * sizeof(void **);
7112
7113 #endif /* CONFIG_FAIR_GROUP_SCHED */
7114 #ifdef CONFIG_RT_GROUP_SCHED
7115 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7116 ptr += nr_cpu_ids * sizeof(void **);
7117
7118 root_task_group.rt_rq = (struct rt_rq **)ptr;
7119 ptr += nr_cpu_ids * sizeof(void **);
7120
7121 #endif /* CONFIG_RT_GROUP_SCHED */
7122 }
7123 #ifdef CONFIG_CPUMASK_OFFSTACK
7124 for_each_possible_cpu(i) {
7125 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7126 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7127 }
7128 #endif /* CONFIG_CPUMASK_OFFSTACK */
7129
7130 init_rt_bandwidth(&def_rt_bandwidth,
7131 global_rt_period(), global_rt_runtime());
7132 init_dl_bandwidth(&def_dl_bandwidth,
7133 global_rt_period(), global_rt_runtime());
7134
7135 #ifdef CONFIG_SMP
7136 init_defrootdomain();
7137 #endif
7138
7139 #ifdef CONFIG_RT_GROUP_SCHED
7140 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7141 global_rt_period(), global_rt_runtime());
7142 #endif /* CONFIG_RT_GROUP_SCHED */
7143
7144 #ifdef CONFIG_CGROUP_SCHED
7145 list_add(&root_task_group.list, &task_groups);
7146 INIT_LIST_HEAD(&root_task_group.children);
7147 INIT_LIST_HEAD(&root_task_group.siblings);
7148 autogroup_init(&init_task);
7149
7150 #endif /* CONFIG_CGROUP_SCHED */
7151
7152 for_each_possible_cpu(i) {
7153 struct rq *rq;
7154
7155 rq = cpu_rq(i);
7156 raw_spin_lock_init(&rq->lock);
7157 rq->nr_running = 0;
7158 rq->calc_load_active = 0;
7159 rq->calc_load_update = jiffies + LOAD_FREQ;
7160 init_cfs_rq(&rq->cfs);
7161 init_rt_rq(&rq->rt, rq);
7162 init_dl_rq(&rq->dl, rq);
7163 #ifdef CONFIG_FAIR_GROUP_SCHED
7164 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7165 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7166 /*
7167 * How much cpu bandwidth does root_task_group get?
7168 *
7169 * In case of task-groups formed thr' the cgroup filesystem, it
7170 * gets 100% of the cpu resources in the system. This overall
7171 * system cpu resource is divided among the tasks of
7172 * root_task_group and its child task-groups in a fair manner,
7173 * based on each entity's (task or task-group's) weight
7174 * (se->load.weight).
7175 *
7176 * In other words, if root_task_group has 10 tasks of weight
7177 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7178 * then A0's share of the cpu resource is:
7179 *
7180 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7181 *
7182 * We achieve this by letting root_task_group's tasks sit
7183 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7184 */
7185 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7186 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7187 #endif /* CONFIG_FAIR_GROUP_SCHED */
7188
7189 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7190 #ifdef CONFIG_RT_GROUP_SCHED
7191 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7192 #endif
7193
7194 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7195 rq->cpu_load[j] = 0;
7196
7197 rq->last_load_update_tick = jiffies;
7198
7199 #ifdef CONFIG_SMP
7200 rq->sd = NULL;
7201 rq->rd = NULL;
7202 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7203 rq->post_schedule = 0;
7204 rq->active_balance = 0;
7205 rq->next_balance = jiffies;
7206 rq->push_cpu = 0;
7207 rq->cpu = i;
7208 rq->online = 0;
7209 rq->idle_stamp = 0;
7210 rq->avg_idle = 2*sysctl_sched_migration_cost;
7211 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7212
7213 INIT_LIST_HEAD(&rq->cfs_tasks);
7214
7215 rq_attach_root(rq, &def_root_domain);
7216 #ifdef CONFIG_NO_HZ_COMMON
7217 rq->nohz_flags = 0;
7218 #endif
7219 #ifdef CONFIG_NO_HZ_FULL
7220 rq->last_sched_tick = 0;
7221 #endif
7222 #endif
7223 init_rq_hrtick(rq);
7224 atomic_set(&rq->nr_iowait, 0);
7225 }
7226
7227 set_load_weight(&init_task);
7228
7229 #ifdef CONFIG_PREEMPT_NOTIFIERS
7230 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7231 #endif
7232
7233 /*
7234 * The boot idle thread does lazy MMU switching as well:
7235 */
7236 atomic_inc(&init_mm.mm_count);
7237 enter_lazy_tlb(&init_mm, current);
7238
7239 /*
7240 * During early bootup we pretend to be a normal task:
7241 */
7242 current->sched_class = &fair_sched_class;
7243
7244 /*
7245 * Make us the idle thread. Technically, schedule() should not be
7246 * called from this thread, however somewhere below it might be,
7247 * but because we are the idle thread, we just pick up running again
7248 * when this runqueue becomes "idle".
7249 */
7250 init_idle(current, smp_processor_id());
7251
7252 calc_load_update = jiffies + LOAD_FREQ;
7253
7254 #ifdef CONFIG_SMP
7255 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7256 /* May be allocated at isolcpus cmdline parse time */
7257 if (cpu_isolated_map == NULL)
7258 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7259 idle_thread_set_boot_cpu();
7260 set_cpu_rq_start_time();
7261 #endif
7262 init_sched_fair_class();
7263
7264 scheduler_running = 1;
7265 }
7266
7267 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7268 static inline int preempt_count_equals(int preempt_offset)
7269 {
7270 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7271
7272 return (nested == preempt_offset);
7273 }
7274
7275 void __might_sleep(const char *file, int line, int preempt_offset)
7276 {
7277 /*
7278 * Blocking primitives will set (and therefore destroy) current->state,
7279 * since we will exit with TASK_RUNNING make sure we enter with it,
7280 * otherwise we will destroy state.
7281 */
7282 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7283 "do not call blocking ops when !TASK_RUNNING; "
7284 "state=%lx set at [<%p>] %pS\n",
7285 current->state,
7286 (void *)current->task_state_change,
7287 (void *)current->task_state_change);
7288
7289 ___might_sleep(file, line, preempt_offset);
7290 }
7291 EXPORT_SYMBOL(__might_sleep);
7292
7293 void ___might_sleep(const char *file, int line, int preempt_offset)
7294 {
7295 static unsigned long prev_jiffy; /* ratelimiting */
7296
7297 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7298 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7299 !is_idle_task(current)) ||
7300 system_state != SYSTEM_RUNNING || oops_in_progress)
7301 return;
7302 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7303 return;
7304 prev_jiffy = jiffies;
7305
7306 printk(KERN_ERR
7307 "BUG: sleeping function called from invalid context at %s:%d\n",
7308 file, line);
7309 printk(KERN_ERR
7310 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7311 in_atomic(), irqs_disabled(),
7312 current->pid, current->comm);
7313
7314 if (task_stack_end_corrupted(current))
7315 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7316
7317 debug_show_held_locks(current);
7318 if (irqs_disabled())
7319 print_irqtrace_events(current);
7320 #ifdef CONFIG_DEBUG_PREEMPT
7321 if (!preempt_count_equals(preempt_offset)) {
7322 pr_err("Preemption disabled at:");
7323 print_ip_sym(current->preempt_disable_ip);
7324 pr_cont("\n");
7325 }
7326 #endif
7327 dump_stack();
7328 }
7329 EXPORT_SYMBOL(___might_sleep);
7330 #endif
7331
7332 #ifdef CONFIG_MAGIC_SYSRQ
7333 static void normalize_task(struct rq *rq, struct task_struct *p)
7334 {
7335 const struct sched_class *prev_class = p->sched_class;
7336 struct sched_attr attr = {
7337 .sched_policy = SCHED_NORMAL,
7338 };
7339 int old_prio = p->prio;
7340 int queued;
7341
7342 queued = task_on_rq_queued(p);
7343 if (queued)
7344 dequeue_task(rq, p, 0);
7345 __setscheduler(rq, p, &attr);
7346 if (queued) {
7347 enqueue_task(rq, p, 0);
7348 resched_curr(rq);
7349 }
7350
7351 check_class_changed(rq, p, prev_class, old_prio);
7352 }
7353
7354 void normalize_rt_tasks(void)
7355 {
7356 struct task_struct *g, *p;
7357 unsigned long flags;
7358 struct rq *rq;
7359
7360 read_lock(&tasklist_lock);
7361 for_each_process_thread(g, p) {
7362 /*
7363 * Only normalize user tasks:
7364 */
7365 if (p->flags & PF_KTHREAD)
7366 continue;
7367
7368 p->se.exec_start = 0;
7369 #ifdef CONFIG_SCHEDSTATS
7370 p->se.statistics.wait_start = 0;
7371 p->se.statistics.sleep_start = 0;
7372 p->se.statistics.block_start = 0;
7373 #endif
7374
7375 if (!dl_task(p) && !rt_task(p)) {
7376 /*
7377 * Renice negative nice level userspace
7378 * tasks back to 0:
7379 */
7380 if (task_nice(p) < 0)
7381 set_user_nice(p, 0);
7382 continue;
7383 }
7384
7385 rq = task_rq_lock(p, &flags);
7386 normalize_task(rq, p);
7387 task_rq_unlock(rq, p, &flags);
7388 }
7389 read_unlock(&tasklist_lock);
7390 }
7391
7392 #endif /* CONFIG_MAGIC_SYSRQ */
7393
7394 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7395 /*
7396 * These functions are only useful for the IA64 MCA handling, or kdb.
7397 *
7398 * They can only be called when the whole system has been
7399 * stopped - every CPU needs to be quiescent, and no scheduling
7400 * activity can take place. Using them for anything else would
7401 * be a serious bug, and as a result, they aren't even visible
7402 * under any other configuration.
7403 */
7404
7405 /**
7406 * curr_task - return the current task for a given cpu.
7407 * @cpu: the processor in question.
7408 *
7409 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7410 *
7411 * Return: The current task for @cpu.
7412 */
7413 struct task_struct *curr_task(int cpu)
7414 {
7415 return cpu_curr(cpu);
7416 }
7417
7418 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7419
7420 #ifdef CONFIG_IA64
7421 /**
7422 * set_curr_task - set the current task for a given cpu.
7423 * @cpu: the processor in question.
7424 * @p: the task pointer to set.
7425 *
7426 * Description: This function must only be used when non-maskable interrupts
7427 * are serviced on a separate stack. It allows the architecture to switch the
7428 * notion of the current task on a cpu in a non-blocking manner. This function
7429 * must be called with all CPU's synchronized, and interrupts disabled, the
7430 * and caller must save the original value of the current task (see
7431 * curr_task() above) and restore that value before reenabling interrupts and
7432 * re-starting the system.
7433 *
7434 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7435 */
7436 void set_curr_task(int cpu, struct task_struct *p)
7437 {
7438 cpu_curr(cpu) = p;
7439 }
7440
7441 #endif
7442
7443 #ifdef CONFIG_CGROUP_SCHED
7444 /* task_group_lock serializes the addition/removal of task groups */
7445 static DEFINE_SPINLOCK(task_group_lock);
7446
7447 static void free_sched_group(struct task_group *tg)
7448 {
7449 free_fair_sched_group(tg);
7450 free_rt_sched_group(tg);
7451 autogroup_free(tg);
7452 kfree(tg);
7453 }
7454
7455 /* allocate runqueue etc for a new task group */
7456 struct task_group *sched_create_group(struct task_group *parent)
7457 {
7458 struct task_group *tg;
7459
7460 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7461 if (!tg)
7462 return ERR_PTR(-ENOMEM);
7463
7464 if (!alloc_fair_sched_group(tg, parent))
7465 goto err;
7466
7467 if (!alloc_rt_sched_group(tg, parent))
7468 goto err;
7469
7470 return tg;
7471
7472 err:
7473 free_sched_group(tg);
7474 return ERR_PTR(-ENOMEM);
7475 }
7476
7477 void sched_online_group(struct task_group *tg, struct task_group *parent)
7478 {
7479 unsigned long flags;
7480
7481 spin_lock_irqsave(&task_group_lock, flags);
7482 list_add_rcu(&tg->list, &task_groups);
7483
7484 WARN_ON(!parent); /* root should already exist */
7485
7486 tg->parent = parent;
7487 INIT_LIST_HEAD(&tg->children);
7488 list_add_rcu(&tg->siblings, &parent->children);
7489 spin_unlock_irqrestore(&task_group_lock, flags);
7490 }
7491
7492 /* rcu callback to free various structures associated with a task group */
7493 static void free_sched_group_rcu(struct rcu_head *rhp)
7494 {
7495 /* now it should be safe to free those cfs_rqs */
7496 free_sched_group(container_of(rhp, struct task_group, rcu));
7497 }
7498
7499 /* Destroy runqueue etc associated with a task group */
7500 void sched_destroy_group(struct task_group *tg)
7501 {
7502 /* wait for possible concurrent references to cfs_rqs complete */
7503 call_rcu(&tg->rcu, free_sched_group_rcu);
7504 }
7505
7506 void sched_offline_group(struct task_group *tg)
7507 {
7508 unsigned long flags;
7509 int i;
7510
7511 /* end participation in shares distribution */
7512 for_each_possible_cpu(i)
7513 unregister_fair_sched_group(tg, i);
7514
7515 spin_lock_irqsave(&task_group_lock, flags);
7516 list_del_rcu(&tg->list);
7517 list_del_rcu(&tg->siblings);
7518 spin_unlock_irqrestore(&task_group_lock, flags);
7519 }
7520
7521 /* change task's runqueue when it moves between groups.
7522 * The caller of this function should have put the task in its new group
7523 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7524 * reflect its new group.
7525 */
7526 void sched_move_task(struct task_struct *tsk)
7527 {
7528 struct task_group *tg;
7529 int queued, running;
7530 unsigned long flags;
7531 struct rq *rq;
7532
7533 rq = task_rq_lock(tsk, &flags);
7534
7535 running = task_current(rq, tsk);
7536 queued = task_on_rq_queued(tsk);
7537
7538 if (queued)
7539 dequeue_task(rq, tsk, 0);
7540 if (unlikely(running))
7541 put_prev_task(rq, tsk);
7542
7543 /*
7544 * All callers are synchronized by task_rq_lock(); we do not use RCU
7545 * which is pointless here. Thus, we pass "true" to task_css_check()
7546 * to prevent lockdep warnings.
7547 */
7548 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7549 struct task_group, css);
7550 tg = autogroup_task_group(tsk, tg);
7551 tsk->sched_task_group = tg;
7552
7553 #ifdef CONFIG_FAIR_GROUP_SCHED
7554 if (tsk->sched_class->task_move_group)
7555 tsk->sched_class->task_move_group(tsk, queued);
7556 else
7557 #endif
7558 set_task_rq(tsk, task_cpu(tsk));
7559
7560 if (unlikely(running))
7561 tsk->sched_class->set_curr_task(rq);
7562 if (queued)
7563 enqueue_task(rq, tsk, 0);
7564
7565 task_rq_unlock(rq, tsk, &flags);
7566 }
7567 #endif /* CONFIG_CGROUP_SCHED */
7568
7569 #ifdef CONFIG_RT_GROUP_SCHED
7570 /*
7571 * Ensure that the real time constraints are schedulable.
7572 */
7573 static DEFINE_MUTEX(rt_constraints_mutex);
7574
7575 /* Must be called with tasklist_lock held */
7576 static inline int tg_has_rt_tasks(struct task_group *tg)
7577 {
7578 struct task_struct *g, *p;
7579
7580 /*
7581 * Autogroups do not have RT tasks; see autogroup_create().
7582 */
7583 if (task_group_is_autogroup(tg))
7584 return 0;
7585
7586 for_each_process_thread(g, p) {
7587 if (rt_task(p) && task_group(p) == tg)
7588 return 1;
7589 }
7590
7591 return 0;
7592 }
7593
7594 struct rt_schedulable_data {
7595 struct task_group *tg;
7596 u64 rt_period;
7597 u64 rt_runtime;
7598 };
7599
7600 static int tg_rt_schedulable(struct task_group *tg, void *data)
7601 {
7602 struct rt_schedulable_data *d = data;
7603 struct task_group *child;
7604 unsigned long total, sum = 0;
7605 u64 period, runtime;
7606
7607 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7608 runtime = tg->rt_bandwidth.rt_runtime;
7609
7610 if (tg == d->tg) {
7611 period = d->rt_period;
7612 runtime = d->rt_runtime;
7613 }
7614
7615 /*
7616 * Cannot have more runtime than the period.
7617 */
7618 if (runtime > period && runtime != RUNTIME_INF)
7619 return -EINVAL;
7620
7621 /*
7622 * Ensure we don't starve existing RT tasks.
7623 */
7624 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7625 return -EBUSY;
7626
7627 total = to_ratio(period, runtime);
7628
7629 /*
7630 * Nobody can have more than the global setting allows.
7631 */
7632 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7633 return -EINVAL;
7634
7635 /*
7636 * The sum of our children's runtime should not exceed our own.
7637 */
7638 list_for_each_entry_rcu(child, &tg->children, siblings) {
7639 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7640 runtime = child->rt_bandwidth.rt_runtime;
7641
7642 if (child == d->tg) {
7643 period = d->rt_period;
7644 runtime = d->rt_runtime;
7645 }
7646
7647 sum += to_ratio(period, runtime);
7648 }
7649
7650 if (sum > total)
7651 return -EINVAL;
7652
7653 return 0;
7654 }
7655
7656 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7657 {
7658 int ret;
7659
7660 struct rt_schedulable_data data = {
7661 .tg = tg,
7662 .rt_period = period,
7663 .rt_runtime = runtime,
7664 };
7665
7666 rcu_read_lock();
7667 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7668 rcu_read_unlock();
7669
7670 return ret;
7671 }
7672
7673 static int tg_set_rt_bandwidth(struct task_group *tg,
7674 u64 rt_period, u64 rt_runtime)
7675 {
7676 int i, err = 0;
7677
7678 /*
7679 * Disallowing the root group RT runtime is BAD, it would disallow the
7680 * kernel creating (and or operating) RT threads.
7681 */
7682 if (tg == &root_task_group && rt_runtime == 0)
7683 return -EINVAL;
7684
7685 /* No period doesn't make any sense. */
7686 if (rt_period == 0)
7687 return -EINVAL;
7688
7689 mutex_lock(&rt_constraints_mutex);
7690 read_lock(&tasklist_lock);
7691 err = __rt_schedulable(tg, rt_period, rt_runtime);
7692 if (err)
7693 goto unlock;
7694
7695 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7696 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7697 tg->rt_bandwidth.rt_runtime = rt_runtime;
7698
7699 for_each_possible_cpu(i) {
7700 struct rt_rq *rt_rq = tg->rt_rq[i];
7701
7702 raw_spin_lock(&rt_rq->rt_runtime_lock);
7703 rt_rq->rt_runtime = rt_runtime;
7704 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7705 }
7706 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7707 unlock:
7708 read_unlock(&tasklist_lock);
7709 mutex_unlock(&rt_constraints_mutex);
7710
7711 return err;
7712 }
7713
7714 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7715 {
7716 u64 rt_runtime, rt_period;
7717
7718 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7719 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7720 if (rt_runtime_us < 0)
7721 rt_runtime = RUNTIME_INF;
7722
7723 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7724 }
7725
7726 static long sched_group_rt_runtime(struct task_group *tg)
7727 {
7728 u64 rt_runtime_us;
7729
7730 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7731 return -1;
7732
7733 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7734 do_div(rt_runtime_us, NSEC_PER_USEC);
7735 return rt_runtime_us;
7736 }
7737
7738 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7739 {
7740 u64 rt_runtime, rt_period;
7741
7742 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7743 rt_runtime = tg->rt_bandwidth.rt_runtime;
7744
7745 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7746 }
7747
7748 static long sched_group_rt_period(struct task_group *tg)
7749 {
7750 u64 rt_period_us;
7751
7752 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7753 do_div(rt_period_us, NSEC_PER_USEC);
7754 return rt_period_us;
7755 }
7756 #endif /* CONFIG_RT_GROUP_SCHED */
7757
7758 #ifdef CONFIG_RT_GROUP_SCHED
7759 static int sched_rt_global_constraints(void)
7760 {
7761 int ret = 0;
7762
7763 mutex_lock(&rt_constraints_mutex);
7764 read_lock(&tasklist_lock);
7765 ret = __rt_schedulable(NULL, 0, 0);
7766 read_unlock(&tasklist_lock);
7767 mutex_unlock(&rt_constraints_mutex);
7768
7769 return ret;
7770 }
7771
7772 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7773 {
7774 /* Don't accept realtime tasks when there is no way for them to run */
7775 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7776 return 0;
7777
7778 return 1;
7779 }
7780
7781 #else /* !CONFIG_RT_GROUP_SCHED */
7782 static int sched_rt_global_constraints(void)
7783 {
7784 unsigned long flags;
7785 int i, ret = 0;
7786
7787 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7788 for_each_possible_cpu(i) {
7789 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7790
7791 raw_spin_lock(&rt_rq->rt_runtime_lock);
7792 rt_rq->rt_runtime = global_rt_runtime();
7793 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7794 }
7795 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7796
7797 return ret;
7798 }
7799 #endif /* CONFIG_RT_GROUP_SCHED */
7800
7801 static int sched_dl_global_constraints(void)
7802 {
7803 u64 runtime = global_rt_runtime();
7804 u64 period = global_rt_period();
7805 u64 new_bw = to_ratio(period, runtime);
7806 struct dl_bw *dl_b;
7807 int cpu, ret = 0;
7808 unsigned long flags;
7809
7810 /*
7811 * Here we want to check the bandwidth not being set to some
7812 * value smaller than the currently allocated bandwidth in
7813 * any of the root_domains.
7814 *
7815 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7816 * cycling on root_domains... Discussion on different/better
7817 * solutions is welcome!
7818 */
7819 for_each_possible_cpu(cpu) {
7820 rcu_read_lock_sched();
7821 dl_b = dl_bw_of(cpu);
7822
7823 raw_spin_lock_irqsave(&dl_b->lock, flags);
7824 if (new_bw < dl_b->total_bw)
7825 ret = -EBUSY;
7826 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7827
7828 rcu_read_unlock_sched();
7829
7830 if (ret)
7831 break;
7832 }
7833
7834 return ret;
7835 }
7836
7837 static void sched_dl_do_global(void)
7838 {
7839 u64 new_bw = -1;
7840 struct dl_bw *dl_b;
7841 int cpu;
7842 unsigned long flags;
7843
7844 def_dl_bandwidth.dl_period = global_rt_period();
7845 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7846
7847 if (global_rt_runtime() != RUNTIME_INF)
7848 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7849
7850 /*
7851 * FIXME: As above...
7852 */
7853 for_each_possible_cpu(cpu) {
7854 rcu_read_lock_sched();
7855 dl_b = dl_bw_of(cpu);
7856
7857 raw_spin_lock_irqsave(&dl_b->lock, flags);
7858 dl_b->bw = new_bw;
7859 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7860
7861 rcu_read_unlock_sched();
7862 }
7863 }
7864
7865 static int sched_rt_global_validate(void)
7866 {
7867 if (sysctl_sched_rt_period <= 0)
7868 return -EINVAL;
7869
7870 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7871 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7872 return -EINVAL;
7873
7874 return 0;
7875 }
7876
7877 static void sched_rt_do_global(void)
7878 {
7879 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7880 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7881 }
7882
7883 int sched_rt_handler(struct ctl_table *table, int write,
7884 void __user *buffer, size_t *lenp,
7885 loff_t *ppos)
7886 {
7887 int old_period, old_runtime;
7888 static DEFINE_MUTEX(mutex);
7889 int ret;
7890
7891 mutex_lock(&mutex);
7892 old_period = sysctl_sched_rt_period;
7893 old_runtime = sysctl_sched_rt_runtime;
7894
7895 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7896
7897 if (!ret && write) {
7898 ret = sched_rt_global_validate();
7899 if (ret)
7900 goto undo;
7901
7902 ret = sched_rt_global_constraints();
7903 if (ret)
7904 goto undo;
7905
7906 ret = sched_dl_global_constraints();
7907 if (ret)
7908 goto undo;
7909
7910 sched_rt_do_global();
7911 sched_dl_do_global();
7912 }
7913 if (0) {
7914 undo:
7915 sysctl_sched_rt_period = old_period;
7916 sysctl_sched_rt_runtime = old_runtime;
7917 }
7918 mutex_unlock(&mutex);
7919
7920 return ret;
7921 }
7922
7923 int sched_rr_handler(struct ctl_table *table, int write,
7924 void __user *buffer, size_t *lenp,
7925 loff_t *ppos)
7926 {
7927 int ret;
7928 static DEFINE_MUTEX(mutex);
7929
7930 mutex_lock(&mutex);
7931 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7932 /* make sure that internally we keep jiffies */
7933 /* also, writing zero resets timeslice to default */
7934 if (!ret && write) {
7935 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7936 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7937 }
7938 mutex_unlock(&mutex);
7939 return ret;
7940 }
7941
7942 #ifdef CONFIG_CGROUP_SCHED
7943
7944 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7945 {
7946 return css ? container_of(css, struct task_group, css) : NULL;
7947 }
7948
7949 static struct cgroup_subsys_state *
7950 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7951 {
7952 struct task_group *parent = css_tg(parent_css);
7953 struct task_group *tg;
7954
7955 if (!parent) {
7956 /* This is early initialization for the top cgroup */
7957 return &root_task_group.css;
7958 }
7959
7960 tg = sched_create_group(parent);
7961 if (IS_ERR(tg))
7962 return ERR_PTR(-ENOMEM);
7963
7964 return &tg->css;
7965 }
7966
7967 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7968 {
7969 struct task_group *tg = css_tg(css);
7970 struct task_group *parent = css_tg(css->parent);
7971
7972 if (parent)
7973 sched_online_group(tg, parent);
7974 return 0;
7975 }
7976
7977 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7978 {
7979 struct task_group *tg = css_tg(css);
7980
7981 sched_destroy_group(tg);
7982 }
7983
7984 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7985 {
7986 struct task_group *tg = css_tg(css);
7987
7988 sched_offline_group(tg);
7989 }
7990
7991 static void cpu_cgroup_fork(struct task_struct *task)
7992 {
7993 sched_move_task(task);
7994 }
7995
7996 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7997 struct cgroup_taskset *tset)
7998 {
7999 struct task_struct *task;
8000
8001 cgroup_taskset_for_each(task, tset) {
8002 #ifdef CONFIG_RT_GROUP_SCHED
8003 if (!sched_rt_can_attach(css_tg(css), task))
8004 return -EINVAL;
8005 #else
8006 /* We don't support RT-tasks being in separate groups */
8007 if (task->sched_class != &fair_sched_class)
8008 return -EINVAL;
8009 #endif
8010 }
8011 return 0;
8012 }
8013
8014 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8015 struct cgroup_taskset *tset)
8016 {
8017 struct task_struct *task;
8018
8019 cgroup_taskset_for_each(task, tset)
8020 sched_move_task(task);
8021 }
8022
8023 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8024 struct cgroup_subsys_state *old_css,
8025 struct task_struct *task)
8026 {
8027 /*
8028 * cgroup_exit() is called in the copy_process() failure path.
8029 * Ignore this case since the task hasn't ran yet, this avoids
8030 * trying to poke a half freed task state from generic code.
8031 */
8032 if (!(task->flags & PF_EXITING))
8033 return;
8034
8035 sched_move_task(task);
8036 }
8037
8038 #ifdef CONFIG_FAIR_GROUP_SCHED
8039 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8040 struct cftype *cftype, u64 shareval)
8041 {
8042 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8043 }
8044
8045 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8046 struct cftype *cft)
8047 {
8048 struct task_group *tg = css_tg(css);
8049
8050 return (u64) scale_load_down(tg->shares);
8051 }
8052
8053 #ifdef CONFIG_CFS_BANDWIDTH
8054 static DEFINE_MUTEX(cfs_constraints_mutex);
8055
8056 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8057 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8058
8059 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8060
8061 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8062 {
8063 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8064 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8065
8066 if (tg == &root_task_group)
8067 return -EINVAL;
8068
8069 /*
8070 * Ensure we have at some amount of bandwidth every period. This is
8071 * to prevent reaching a state of large arrears when throttled via
8072 * entity_tick() resulting in prolonged exit starvation.
8073 */
8074 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8075 return -EINVAL;
8076
8077 /*
8078 * Likewise, bound things on the otherside by preventing insane quota
8079 * periods. This also allows us to normalize in computing quota
8080 * feasibility.
8081 */
8082 if (period > max_cfs_quota_period)
8083 return -EINVAL;
8084
8085 /*
8086 * Prevent race between setting of cfs_rq->runtime_enabled and
8087 * unthrottle_offline_cfs_rqs().
8088 */
8089 get_online_cpus();
8090 mutex_lock(&cfs_constraints_mutex);
8091 ret = __cfs_schedulable(tg, period, quota);
8092 if (ret)
8093 goto out_unlock;
8094
8095 runtime_enabled = quota != RUNTIME_INF;
8096 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8097 /*
8098 * If we need to toggle cfs_bandwidth_used, off->on must occur
8099 * before making related changes, and on->off must occur afterwards
8100 */
8101 if (runtime_enabled && !runtime_was_enabled)
8102 cfs_bandwidth_usage_inc();
8103 raw_spin_lock_irq(&cfs_b->lock);
8104 cfs_b->period = ns_to_ktime(period);
8105 cfs_b->quota = quota;
8106
8107 __refill_cfs_bandwidth_runtime(cfs_b);
8108 /* restart the period timer (if active) to handle new period expiry */
8109 if (runtime_enabled && cfs_b->timer_active) {
8110 /* force a reprogram */
8111 __start_cfs_bandwidth(cfs_b, true);
8112 }
8113 raw_spin_unlock_irq(&cfs_b->lock);
8114
8115 for_each_online_cpu(i) {
8116 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8117 struct rq *rq = cfs_rq->rq;
8118
8119 raw_spin_lock_irq(&rq->lock);
8120 cfs_rq->runtime_enabled = runtime_enabled;
8121 cfs_rq->runtime_remaining = 0;
8122
8123 if (cfs_rq->throttled)
8124 unthrottle_cfs_rq(cfs_rq);
8125 raw_spin_unlock_irq(&rq->lock);
8126 }
8127 if (runtime_was_enabled && !runtime_enabled)
8128 cfs_bandwidth_usage_dec();
8129 out_unlock:
8130 mutex_unlock(&cfs_constraints_mutex);
8131 put_online_cpus();
8132
8133 return ret;
8134 }
8135
8136 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8137 {
8138 u64 quota, period;
8139
8140 period = ktime_to_ns(tg->cfs_bandwidth.period);
8141 if (cfs_quota_us < 0)
8142 quota = RUNTIME_INF;
8143 else
8144 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8145
8146 return tg_set_cfs_bandwidth(tg, period, quota);
8147 }
8148
8149 long tg_get_cfs_quota(struct task_group *tg)
8150 {
8151 u64 quota_us;
8152
8153 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8154 return -1;
8155
8156 quota_us = tg->cfs_bandwidth.quota;
8157 do_div(quota_us, NSEC_PER_USEC);
8158
8159 return quota_us;
8160 }
8161
8162 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8163 {
8164 u64 quota, period;
8165
8166 period = (u64)cfs_period_us * NSEC_PER_USEC;
8167 quota = tg->cfs_bandwidth.quota;
8168
8169 return tg_set_cfs_bandwidth(tg, period, quota);
8170 }
8171
8172 long tg_get_cfs_period(struct task_group *tg)
8173 {
8174 u64 cfs_period_us;
8175
8176 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8177 do_div(cfs_period_us, NSEC_PER_USEC);
8178
8179 return cfs_period_us;
8180 }
8181
8182 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8183 struct cftype *cft)
8184 {
8185 return tg_get_cfs_quota(css_tg(css));
8186 }
8187
8188 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8189 struct cftype *cftype, s64 cfs_quota_us)
8190 {
8191 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8192 }
8193
8194 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8195 struct cftype *cft)
8196 {
8197 return tg_get_cfs_period(css_tg(css));
8198 }
8199
8200 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8201 struct cftype *cftype, u64 cfs_period_us)
8202 {
8203 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8204 }
8205
8206 struct cfs_schedulable_data {
8207 struct task_group *tg;
8208 u64 period, quota;
8209 };
8210
8211 /*
8212 * normalize group quota/period to be quota/max_period
8213 * note: units are usecs
8214 */
8215 static u64 normalize_cfs_quota(struct task_group *tg,
8216 struct cfs_schedulable_data *d)
8217 {
8218 u64 quota, period;
8219
8220 if (tg == d->tg) {
8221 period = d->period;
8222 quota = d->quota;
8223 } else {
8224 period = tg_get_cfs_period(tg);
8225 quota = tg_get_cfs_quota(tg);
8226 }
8227
8228 /* note: these should typically be equivalent */
8229 if (quota == RUNTIME_INF || quota == -1)
8230 return RUNTIME_INF;
8231
8232 return to_ratio(period, quota);
8233 }
8234
8235 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8236 {
8237 struct cfs_schedulable_data *d = data;
8238 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8239 s64 quota = 0, parent_quota = -1;
8240
8241 if (!tg->parent) {
8242 quota = RUNTIME_INF;
8243 } else {
8244 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8245
8246 quota = normalize_cfs_quota(tg, d);
8247 parent_quota = parent_b->hierarchical_quota;
8248
8249 /*
8250 * ensure max(child_quota) <= parent_quota, inherit when no
8251 * limit is set
8252 */
8253 if (quota == RUNTIME_INF)
8254 quota = parent_quota;
8255 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8256 return -EINVAL;
8257 }
8258 cfs_b->hierarchical_quota = quota;
8259
8260 return 0;
8261 }
8262
8263 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8264 {
8265 int ret;
8266 struct cfs_schedulable_data data = {
8267 .tg = tg,
8268 .period = period,
8269 .quota = quota,
8270 };
8271
8272 if (quota != RUNTIME_INF) {
8273 do_div(data.period, NSEC_PER_USEC);
8274 do_div(data.quota, NSEC_PER_USEC);
8275 }
8276
8277 rcu_read_lock();
8278 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8279 rcu_read_unlock();
8280
8281 return ret;
8282 }
8283
8284 static int cpu_stats_show(struct seq_file *sf, void *v)
8285 {
8286 struct task_group *tg = css_tg(seq_css(sf));
8287 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8288
8289 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8290 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8291 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8292
8293 return 0;
8294 }
8295 #endif /* CONFIG_CFS_BANDWIDTH */
8296 #endif /* CONFIG_FAIR_GROUP_SCHED */
8297
8298 #ifdef CONFIG_RT_GROUP_SCHED
8299 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8300 struct cftype *cft, s64 val)
8301 {
8302 return sched_group_set_rt_runtime(css_tg(css), val);
8303 }
8304
8305 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8306 struct cftype *cft)
8307 {
8308 return sched_group_rt_runtime(css_tg(css));
8309 }
8310
8311 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8312 struct cftype *cftype, u64 rt_period_us)
8313 {
8314 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8315 }
8316
8317 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8318 struct cftype *cft)
8319 {
8320 return sched_group_rt_period(css_tg(css));
8321 }
8322 #endif /* CONFIG_RT_GROUP_SCHED */
8323
8324 static struct cftype cpu_files[] = {
8325 #ifdef CONFIG_FAIR_GROUP_SCHED
8326 {
8327 .name = "shares",
8328 .read_u64 = cpu_shares_read_u64,
8329 .write_u64 = cpu_shares_write_u64,
8330 },
8331 #endif
8332 #ifdef CONFIG_CFS_BANDWIDTH
8333 {
8334 .name = "cfs_quota_us",
8335 .read_s64 = cpu_cfs_quota_read_s64,
8336 .write_s64 = cpu_cfs_quota_write_s64,
8337 },
8338 {
8339 .name = "cfs_period_us",
8340 .read_u64 = cpu_cfs_period_read_u64,
8341 .write_u64 = cpu_cfs_period_write_u64,
8342 },
8343 {
8344 .name = "stat",
8345 .seq_show = cpu_stats_show,
8346 },
8347 #endif
8348 #ifdef CONFIG_RT_GROUP_SCHED
8349 {
8350 .name = "rt_runtime_us",
8351 .read_s64 = cpu_rt_runtime_read,
8352 .write_s64 = cpu_rt_runtime_write,
8353 },
8354 {
8355 .name = "rt_period_us",
8356 .read_u64 = cpu_rt_period_read_uint,
8357 .write_u64 = cpu_rt_period_write_uint,
8358 },
8359 #endif
8360 { } /* terminate */
8361 };
8362
8363 struct cgroup_subsys cpu_cgrp_subsys = {
8364 .css_alloc = cpu_cgroup_css_alloc,
8365 .css_free = cpu_cgroup_css_free,
8366 .css_online = cpu_cgroup_css_online,
8367 .css_offline = cpu_cgroup_css_offline,
8368 .fork = cpu_cgroup_fork,
8369 .can_attach = cpu_cgroup_can_attach,
8370 .attach = cpu_cgroup_attach,
8371 .exit = cpu_cgroup_exit,
8372 .legacy_cftypes = cpu_files,
8373 .early_init = 1,
8374 };
8375
8376 #endif /* CONFIG_CGROUP_SCHED */
8377
8378 void dump_cpu_task(int cpu)
8379 {
8380 pr_info("Task dump for CPU %d:\n", cpu);
8381 sched_show_task(cpu_curr(cpu));
8382 }
This page took 0.220214 seconds and 5 git commands to generate.