sched/numa: Track NUMA hinting faults on per-node basis
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299
300
301 /*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 __acquires(rq->lock)
306 {
307 struct rq *rq;
308
309 lockdep_assert_held(&p->pi_lock);
310
311 for (;;) {
312 rq = task_rq(p);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
315 return rq;
316 raw_spin_unlock(&rq->lock);
317 }
318 }
319
320 /*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
325 __acquires(rq->lock)
326 {
327 struct rq *rq;
328
329 for (;;) {
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 rq = task_rq(p);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
334 return rq;
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 }
338 }
339
340 static void __task_rq_unlock(struct rq *rq)
341 __releases(rq->lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 }
345
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 __releases(rq->lock)
349 __releases(p->pi_lock)
350 {
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354
355 /*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358 static struct rq *this_rq_lock(void)
359 __acquires(rq->lock)
360 {
361 struct rq *rq;
362
363 local_irq_disable();
364 rq = this_rq();
365 raw_spin_lock(&rq->lock);
366
367 return rq;
368 }
369
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372 * Use HR-timers to deliver accurate preemption points.
373 */
374
375 static void hrtick_clear(struct rq *rq)
376 {
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379 }
380
381 /*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385 static enum hrtimer_restart hrtick(struct hrtimer *timer)
386 {
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
391 raw_spin_lock(&rq->lock);
392 update_rq_clock(rq);
393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394 raw_spin_unlock(&rq->lock);
395
396 return HRTIMER_NORESTART;
397 }
398
399 #ifdef CONFIG_SMP
400
401 static int __hrtick_restart(struct rq *rq)
402 {
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407 }
408
409 /*
410 * called from hardirq (IPI) context
411 */
412 static void __hrtick_start(void *arg)
413 {
414 struct rq *rq = arg;
415
416 raw_spin_lock(&rq->lock);
417 __hrtick_restart(rq);
418 rq->hrtick_csd_pending = 0;
419 raw_spin_unlock(&rq->lock);
420 }
421
422 /*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
427 void hrtick_start(struct rq *rq, u64 delay)
428 {
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431
432 hrtimer_set_expires(timer, time);
433
434 if (rq == this_rq()) {
435 __hrtick_restart(rq);
436 } else if (!rq->hrtick_csd_pending) {
437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438 rq->hrtick_csd_pending = 1;
439 }
440 }
441
442 static int
443 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444 {
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
454 hrtick_clear(cpu_rq(cpu));
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459 }
460
461 static __init void init_hrtick(void)
462 {
463 hotcpu_notifier(hotplug_hrtick, 0);
464 }
465 #else
466 /*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
471 void hrtick_start(struct rq *rq, u64 delay)
472 {
473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474 HRTIMER_MODE_REL_PINNED, 0);
475 }
476
477 static inline void init_hrtick(void)
478 {
479 }
480 #endif /* CONFIG_SMP */
481
482 static void init_rq_hrtick(struct rq *rq)
483 {
484 #ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
486
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490 #endif
491
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
494 }
495 #else /* CONFIG_SCHED_HRTICK */
496 static inline void hrtick_clear(struct rq *rq)
497 {
498 }
499
500 static inline void init_rq_hrtick(struct rq *rq)
501 {
502 }
503
504 static inline void init_hrtick(void)
505 {
506 }
507 #endif /* CONFIG_SCHED_HRTICK */
508
509 /*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
516 void resched_task(struct task_struct *p)
517 {
518 int cpu;
519
520 lockdep_assert_held(&task_rq(p)->lock);
521
522 if (test_tsk_need_resched(p))
523 return;
524
525 set_tsk_need_resched(p);
526
527 cpu = task_cpu(p);
528 if (cpu == smp_processor_id()) {
529 set_preempt_need_resched();
530 return;
531 }
532
533 /* NEED_RESCHED must be visible before we test polling */
534 smp_mb();
535 if (!tsk_is_polling(p))
536 smp_send_reschedule(cpu);
537 }
538
539 void resched_cpu(int cpu)
540 {
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
544 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
545 return;
546 resched_task(cpu_curr(cpu));
547 raw_spin_unlock_irqrestore(&rq->lock, flags);
548 }
549
550 #ifdef CONFIG_SMP
551 #ifdef CONFIG_NO_HZ_COMMON
552 /*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560 int get_nohz_timer_target(void)
561 {
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
566 rcu_read_lock();
567 for_each_domain(cpu, sd) {
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
574 }
575 unlock:
576 rcu_read_unlock();
577 return cpu;
578 }
579 /*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
589 static void wake_up_idle_cpu(int cpu)
590 {
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
605
606 /*
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
610 */
611 set_tsk_need_resched(rq->idle);
612
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
617 }
618
619 static bool wake_up_full_nohz_cpu(int cpu)
620 {
621 if (tick_nohz_full_cpu(cpu)) {
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 smp_send_reschedule(cpu);
625 return true;
626 }
627
628 return false;
629 }
630
631 void wake_up_nohz_cpu(int cpu)
632 {
633 if (!wake_up_full_nohz_cpu(cpu))
634 wake_up_idle_cpu(cpu);
635 }
636
637 static inline bool got_nohz_idle_kick(void)
638 {
639 int cpu = smp_processor_id();
640
641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 return false;
643
644 if (idle_cpu(cpu) && !need_resched())
645 return true;
646
647 /*
648 * We can't run Idle Load Balance on this CPU for this time so we
649 * cancel it and clear NOHZ_BALANCE_KICK
650 */
651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 return false;
653 }
654
655 #else /* CONFIG_NO_HZ_COMMON */
656
657 static inline bool got_nohz_idle_kick(void)
658 {
659 return false;
660 }
661
662 #endif /* CONFIG_NO_HZ_COMMON */
663
664 #ifdef CONFIG_NO_HZ_FULL
665 bool sched_can_stop_tick(void)
666 {
667 struct rq *rq;
668
669 rq = this_rq();
670
671 /* Make sure rq->nr_running update is visible after the IPI */
672 smp_rmb();
673
674 /* More than one running task need preemption */
675 if (rq->nr_running > 1)
676 return false;
677
678 return true;
679 }
680 #endif /* CONFIG_NO_HZ_FULL */
681
682 void sched_avg_update(struct rq *rq)
683 {
684 s64 period = sched_avg_period();
685
686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
696 }
697
698 #endif /* CONFIG_SMP */
699
700 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702 /*
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
707 */
708 int walk_tg_tree_from(struct task_group *from,
709 tg_visitor down, tg_visitor up, void *data)
710 {
711 struct task_group *parent, *child;
712 int ret;
713
714 parent = from;
715
716 down:
717 ret = (*down)(parent, data);
718 if (ret)
719 goto out;
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724 up:
725 continue;
726 }
727 ret = (*up)(parent, data);
728 if (ret || parent == from)
729 goto out;
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
735 out:
736 return ret;
737 }
738
739 int tg_nop(struct task_group *tg, void *data)
740 {
741 return 0;
742 }
743 #endif
744
745 static void set_load_weight(struct task_struct *p)
746 {
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
754 load->weight = scale_load(WEIGHT_IDLEPRIO);
755 load->inv_weight = WMULT_IDLEPRIO;
756 return;
757 }
758
759 load->weight = scale_load(prio_to_weight[prio]);
760 load->inv_weight = prio_to_wmult[prio];
761 }
762
763 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 update_rq_clock(rq);
766 sched_info_queued(rq, p);
767 p->sched_class->enqueue_task(rq, p, flags);
768 }
769
770 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771 {
772 update_rq_clock(rq);
773 sched_info_dequeued(rq, p);
774 p->sched_class->dequeue_task(rq, p, flags);
775 }
776
777 void activate_task(struct rq *rq, struct task_struct *p, int flags)
778 {
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
782 enqueue_task(rq, p, flags);
783 }
784
785 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
786 {
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
790 dequeue_task(rq, p, flags);
791 }
792
793 static void update_rq_clock_task(struct rq *rq, s64 delta)
794 {
795 /*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801 #endif
802 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
825 #endif
826 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
827 if (static_key_false((&paravirt_steal_rq_enabled))) {
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843 #endif
844
845 rq->clock_task += delta;
846
847 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850 #endif
851 }
852
853 void sched_set_stop_task(int cpu, struct task_struct *stop)
854 {
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881 }
882
883 /*
884 * __normal_prio - return the priority that is based on the static prio
885 */
886 static inline int __normal_prio(struct task_struct *p)
887 {
888 return p->static_prio;
889 }
890
891 /*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
898 static inline int normal_prio(struct task_struct *p)
899 {
900 int prio;
901
902 if (task_has_rt_policy(p))
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907 }
908
909 /*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916 static int effective_prio(struct task_struct *p)
917 {
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927 }
928
929 /**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935 inline int task_curr(const struct task_struct *p)
936 {
937 return cpu_curr(task_cpu(p)) == p;
938 }
939
940 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
942 int oldprio)
943 {
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
950 }
951
952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 {
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 rq->skip_clock_update = 1;
975 }
976
977 #ifdef CONFIG_SMP
978 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979 {
980 #ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988 #ifdef CONFIG_LOCKDEP
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
994 * see task_group().
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001 #endif
1002 #endif
1003
1004 trace_sched_migrate_task(p, new_cpu);
1005
1006 if (task_cpu(p) != new_cpu) {
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
1009 p->se.nr_migrations++;
1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011 }
1012
1013 __set_task_cpu(p, new_cpu);
1014 }
1015
1016 struct migration_arg {
1017 struct task_struct *task;
1018 int dest_cpu;
1019 };
1020
1021 static int migration_cpu_stop(void *data);
1022
1023 /*
1024 * wait_task_inactive - wait for a thread to unschedule.
1025 *
1026 * If @match_state is nonzero, it's the @p->state value just checked and
1027 * not expected to change. If it changes, i.e. @p might have woken up,
1028 * then return zero. When we succeed in waiting for @p to be off its CPU,
1029 * we return a positive number (its total switch count). If a second call
1030 * a short while later returns the same number, the caller can be sure that
1031 * @p has remained unscheduled the whole time.
1032 *
1033 * The caller must ensure that the task *will* unschedule sometime soon,
1034 * else this function might spin for a *long* time. This function can't
1035 * be called with interrupts off, or it may introduce deadlock with
1036 * smp_call_function() if an IPI is sent by the same process we are
1037 * waiting to become inactive.
1038 */
1039 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1040 {
1041 unsigned long flags;
1042 int running, on_rq;
1043 unsigned long ncsw;
1044 struct rq *rq;
1045
1046 for (;;) {
1047 /*
1048 * We do the initial early heuristics without holding
1049 * any task-queue locks at all. We'll only try to get
1050 * the runqueue lock when things look like they will
1051 * work out!
1052 */
1053 rq = task_rq(p);
1054
1055 /*
1056 * If the task is actively running on another CPU
1057 * still, just relax and busy-wait without holding
1058 * any locks.
1059 *
1060 * NOTE! Since we don't hold any locks, it's not
1061 * even sure that "rq" stays as the right runqueue!
1062 * But we don't care, since "task_running()" will
1063 * return false if the runqueue has changed and p
1064 * is actually now running somewhere else!
1065 */
1066 while (task_running(rq, p)) {
1067 if (match_state && unlikely(p->state != match_state))
1068 return 0;
1069 cpu_relax();
1070 }
1071
1072 /*
1073 * Ok, time to look more closely! We need the rq
1074 * lock now, to be *sure*. If we're wrong, we'll
1075 * just go back and repeat.
1076 */
1077 rq = task_rq_lock(p, &flags);
1078 trace_sched_wait_task(p);
1079 running = task_running(rq, p);
1080 on_rq = p->on_rq;
1081 ncsw = 0;
1082 if (!match_state || p->state == match_state)
1083 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1084 task_rq_unlock(rq, p, &flags);
1085
1086 /*
1087 * If it changed from the expected state, bail out now.
1088 */
1089 if (unlikely(!ncsw))
1090 break;
1091
1092 /*
1093 * Was it really running after all now that we
1094 * checked with the proper locks actually held?
1095 *
1096 * Oops. Go back and try again..
1097 */
1098 if (unlikely(running)) {
1099 cpu_relax();
1100 continue;
1101 }
1102
1103 /*
1104 * It's not enough that it's not actively running,
1105 * it must be off the runqueue _entirely_, and not
1106 * preempted!
1107 *
1108 * So if it was still runnable (but just not actively
1109 * running right now), it's preempted, and we should
1110 * yield - it could be a while.
1111 */
1112 if (unlikely(on_rq)) {
1113 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1114
1115 set_current_state(TASK_UNINTERRUPTIBLE);
1116 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1117 continue;
1118 }
1119
1120 /*
1121 * Ahh, all good. It wasn't running, and it wasn't
1122 * runnable, which means that it will never become
1123 * running in the future either. We're all done!
1124 */
1125 break;
1126 }
1127
1128 return ncsw;
1129 }
1130
1131 /***
1132 * kick_process - kick a running thread to enter/exit the kernel
1133 * @p: the to-be-kicked thread
1134 *
1135 * Cause a process which is running on another CPU to enter
1136 * kernel-mode, without any delay. (to get signals handled.)
1137 *
1138 * NOTE: this function doesn't have to take the runqueue lock,
1139 * because all it wants to ensure is that the remote task enters
1140 * the kernel. If the IPI races and the task has been migrated
1141 * to another CPU then no harm is done and the purpose has been
1142 * achieved as well.
1143 */
1144 void kick_process(struct task_struct *p)
1145 {
1146 int cpu;
1147
1148 preempt_disable();
1149 cpu = task_cpu(p);
1150 if ((cpu != smp_processor_id()) && task_curr(p))
1151 smp_send_reschedule(cpu);
1152 preempt_enable();
1153 }
1154 EXPORT_SYMBOL_GPL(kick_process);
1155 #endif /* CONFIG_SMP */
1156
1157 #ifdef CONFIG_SMP
1158 /*
1159 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1160 */
1161 static int select_fallback_rq(int cpu, struct task_struct *p)
1162 {
1163 int nid = cpu_to_node(cpu);
1164 const struct cpumask *nodemask = NULL;
1165 enum { cpuset, possible, fail } state = cpuset;
1166 int dest_cpu;
1167
1168 /*
1169 * If the node that the cpu is on has been offlined, cpu_to_node()
1170 * will return -1. There is no cpu on the node, and we should
1171 * select the cpu on the other node.
1172 */
1173 if (nid != -1) {
1174 nodemask = cpumask_of_node(nid);
1175
1176 /* Look for allowed, online CPU in same node. */
1177 for_each_cpu(dest_cpu, nodemask) {
1178 if (!cpu_online(dest_cpu))
1179 continue;
1180 if (!cpu_active(dest_cpu))
1181 continue;
1182 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1183 return dest_cpu;
1184 }
1185 }
1186
1187 for (;;) {
1188 /* Any allowed, online CPU? */
1189 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1190 if (!cpu_online(dest_cpu))
1191 continue;
1192 if (!cpu_active(dest_cpu))
1193 continue;
1194 goto out;
1195 }
1196
1197 switch (state) {
1198 case cpuset:
1199 /* No more Mr. Nice Guy. */
1200 cpuset_cpus_allowed_fallback(p);
1201 state = possible;
1202 break;
1203
1204 case possible:
1205 do_set_cpus_allowed(p, cpu_possible_mask);
1206 state = fail;
1207 break;
1208
1209 case fail:
1210 BUG();
1211 break;
1212 }
1213 }
1214
1215 out:
1216 if (state != cpuset) {
1217 /*
1218 * Don't tell them about moving exiting tasks or
1219 * kernel threads (both mm NULL), since they never
1220 * leave kernel.
1221 */
1222 if (p->mm && printk_ratelimit()) {
1223 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1224 task_pid_nr(p), p->comm, cpu);
1225 }
1226 }
1227
1228 return dest_cpu;
1229 }
1230
1231 /*
1232 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1233 */
1234 static inline
1235 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1236 {
1237 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1238
1239 /*
1240 * In order not to call set_task_cpu() on a blocking task we need
1241 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1242 * cpu.
1243 *
1244 * Since this is common to all placement strategies, this lives here.
1245 *
1246 * [ this allows ->select_task() to simply return task_cpu(p) and
1247 * not worry about this generic constraint ]
1248 */
1249 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1250 !cpu_online(cpu)))
1251 cpu = select_fallback_rq(task_cpu(p), p);
1252
1253 return cpu;
1254 }
1255
1256 static void update_avg(u64 *avg, u64 sample)
1257 {
1258 s64 diff = sample - *avg;
1259 *avg += diff >> 3;
1260 }
1261 #endif
1262
1263 static void
1264 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1265 {
1266 #ifdef CONFIG_SCHEDSTATS
1267 struct rq *rq = this_rq();
1268
1269 #ifdef CONFIG_SMP
1270 int this_cpu = smp_processor_id();
1271
1272 if (cpu == this_cpu) {
1273 schedstat_inc(rq, ttwu_local);
1274 schedstat_inc(p, se.statistics.nr_wakeups_local);
1275 } else {
1276 struct sched_domain *sd;
1277
1278 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1279 rcu_read_lock();
1280 for_each_domain(this_cpu, sd) {
1281 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1282 schedstat_inc(sd, ttwu_wake_remote);
1283 break;
1284 }
1285 }
1286 rcu_read_unlock();
1287 }
1288
1289 if (wake_flags & WF_MIGRATED)
1290 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1291
1292 #endif /* CONFIG_SMP */
1293
1294 schedstat_inc(rq, ttwu_count);
1295 schedstat_inc(p, se.statistics.nr_wakeups);
1296
1297 if (wake_flags & WF_SYNC)
1298 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1299
1300 #endif /* CONFIG_SCHEDSTATS */
1301 }
1302
1303 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1304 {
1305 activate_task(rq, p, en_flags);
1306 p->on_rq = 1;
1307
1308 /* if a worker is waking up, notify workqueue */
1309 if (p->flags & PF_WQ_WORKER)
1310 wq_worker_waking_up(p, cpu_of(rq));
1311 }
1312
1313 /*
1314 * Mark the task runnable and perform wakeup-preemption.
1315 */
1316 static void
1317 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1318 {
1319 check_preempt_curr(rq, p, wake_flags);
1320 trace_sched_wakeup(p, true);
1321
1322 p->state = TASK_RUNNING;
1323 #ifdef CONFIG_SMP
1324 if (p->sched_class->task_woken)
1325 p->sched_class->task_woken(rq, p);
1326
1327 if (rq->idle_stamp) {
1328 u64 delta = rq_clock(rq) - rq->idle_stamp;
1329 u64 max = 2*rq->max_idle_balance_cost;
1330
1331 update_avg(&rq->avg_idle, delta);
1332
1333 if (rq->avg_idle > max)
1334 rq->avg_idle = max;
1335
1336 rq->idle_stamp = 0;
1337 }
1338 #endif
1339 }
1340
1341 static void
1342 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1343 {
1344 #ifdef CONFIG_SMP
1345 if (p->sched_contributes_to_load)
1346 rq->nr_uninterruptible--;
1347 #endif
1348
1349 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1350 ttwu_do_wakeup(rq, p, wake_flags);
1351 }
1352
1353 /*
1354 * Called in case the task @p isn't fully descheduled from its runqueue,
1355 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1356 * since all we need to do is flip p->state to TASK_RUNNING, since
1357 * the task is still ->on_rq.
1358 */
1359 static int ttwu_remote(struct task_struct *p, int wake_flags)
1360 {
1361 struct rq *rq;
1362 int ret = 0;
1363
1364 rq = __task_rq_lock(p);
1365 if (p->on_rq) {
1366 /* check_preempt_curr() may use rq clock */
1367 update_rq_clock(rq);
1368 ttwu_do_wakeup(rq, p, wake_flags);
1369 ret = 1;
1370 }
1371 __task_rq_unlock(rq);
1372
1373 return ret;
1374 }
1375
1376 #ifdef CONFIG_SMP
1377 static void sched_ttwu_pending(void)
1378 {
1379 struct rq *rq = this_rq();
1380 struct llist_node *llist = llist_del_all(&rq->wake_list);
1381 struct task_struct *p;
1382
1383 raw_spin_lock(&rq->lock);
1384
1385 while (llist) {
1386 p = llist_entry(llist, struct task_struct, wake_entry);
1387 llist = llist_next(llist);
1388 ttwu_do_activate(rq, p, 0);
1389 }
1390
1391 raw_spin_unlock(&rq->lock);
1392 }
1393
1394 void scheduler_ipi(void)
1395 {
1396 /*
1397 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1398 * TIF_NEED_RESCHED remotely (for the first time) will also send
1399 * this IPI.
1400 */
1401 if (tif_need_resched())
1402 set_preempt_need_resched();
1403
1404 if (llist_empty(&this_rq()->wake_list)
1405 && !tick_nohz_full_cpu(smp_processor_id())
1406 && !got_nohz_idle_kick())
1407 return;
1408
1409 /*
1410 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1411 * traditionally all their work was done from the interrupt return
1412 * path. Now that we actually do some work, we need to make sure
1413 * we do call them.
1414 *
1415 * Some archs already do call them, luckily irq_enter/exit nest
1416 * properly.
1417 *
1418 * Arguably we should visit all archs and update all handlers,
1419 * however a fair share of IPIs are still resched only so this would
1420 * somewhat pessimize the simple resched case.
1421 */
1422 irq_enter();
1423 tick_nohz_full_check();
1424 sched_ttwu_pending();
1425
1426 /*
1427 * Check if someone kicked us for doing the nohz idle load balance.
1428 */
1429 if (unlikely(got_nohz_idle_kick())) {
1430 this_rq()->idle_balance = 1;
1431 raise_softirq_irqoff(SCHED_SOFTIRQ);
1432 }
1433 irq_exit();
1434 }
1435
1436 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1437 {
1438 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1439 smp_send_reschedule(cpu);
1440 }
1441
1442 bool cpus_share_cache(int this_cpu, int that_cpu)
1443 {
1444 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1445 }
1446 #endif /* CONFIG_SMP */
1447
1448 static void ttwu_queue(struct task_struct *p, int cpu)
1449 {
1450 struct rq *rq = cpu_rq(cpu);
1451
1452 #if defined(CONFIG_SMP)
1453 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1454 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1455 ttwu_queue_remote(p, cpu);
1456 return;
1457 }
1458 #endif
1459
1460 raw_spin_lock(&rq->lock);
1461 ttwu_do_activate(rq, p, 0);
1462 raw_spin_unlock(&rq->lock);
1463 }
1464
1465 /**
1466 * try_to_wake_up - wake up a thread
1467 * @p: the thread to be awakened
1468 * @state: the mask of task states that can be woken
1469 * @wake_flags: wake modifier flags (WF_*)
1470 *
1471 * Put it on the run-queue if it's not already there. The "current"
1472 * thread is always on the run-queue (except when the actual
1473 * re-schedule is in progress), and as such you're allowed to do
1474 * the simpler "current->state = TASK_RUNNING" to mark yourself
1475 * runnable without the overhead of this.
1476 *
1477 * Return: %true if @p was woken up, %false if it was already running.
1478 * or @state didn't match @p's state.
1479 */
1480 static int
1481 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1482 {
1483 unsigned long flags;
1484 int cpu, success = 0;
1485
1486 /*
1487 * If we are going to wake up a thread waiting for CONDITION we
1488 * need to ensure that CONDITION=1 done by the caller can not be
1489 * reordered with p->state check below. This pairs with mb() in
1490 * set_current_state() the waiting thread does.
1491 */
1492 smp_mb__before_spinlock();
1493 raw_spin_lock_irqsave(&p->pi_lock, flags);
1494 if (!(p->state & state))
1495 goto out;
1496
1497 success = 1; /* we're going to change ->state */
1498 cpu = task_cpu(p);
1499
1500 if (p->on_rq && ttwu_remote(p, wake_flags))
1501 goto stat;
1502
1503 #ifdef CONFIG_SMP
1504 /*
1505 * If the owning (remote) cpu is still in the middle of schedule() with
1506 * this task as prev, wait until its done referencing the task.
1507 */
1508 while (p->on_cpu)
1509 cpu_relax();
1510 /*
1511 * Pairs with the smp_wmb() in finish_lock_switch().
1512 */
1513 smp_rmb();
1514
1515 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1516 p->state = TASK_WAKING;
1517
1518 if (p->sched_class->task_waking)
1519 p->sched_class->task_waking(p);
1520
1521 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1522 if (task_cpu(p) != cpu) {
1523 wake_flags |= WF_MIGRATED;
1524 set_task_cpu(p, cpu);
1525 }
1526 #endif /* CONFIG_SMP */
1527
1528 ttwu_queue(p, cpu);
1529 stat:
1530 ttwu_stat(p, cpu, wake_flags);
1531 out:
1532 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1533
1534 return success;
1535 }
1536
1537 /**
1538 * try_to_wake_up_local - try to wake up a local task with rq lock held
1539 * @p: the thread to be awakened
1540 *
1541 * Put @p on the run-queue if it's not already there. The caller must
1542 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1543 * the current task.
1544 */
1545 static void try_to_wake_up_local(struct task_struct *p)
1546 {
1547 struct rq *rq = task_rq(p);
1548
1549 if (WARN_ON_ONCE(rq != this_rq()) ||
1550 WARN_ON_ONCE(p == current))
1551 return;
1552
1553 lockdep_assert_held(&rq->lock);
1554
1555 if (!raw_spin_trylock(&p->pi_lock)) {
1556 raw_spin_unlock(&rq->lock);
1557 raw_spin_lock(&p->pi_lock);
1558 raw_spin_lock(&rq->lock);
1559 }
1560
1561 if (!(p->state & TASK_NORMAL))
1562 goto out;
1563
1564 if (!p->on_rq)
1565 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1566
1567 ttwu_do_wakeup(rq, p, 0);
1568 ttwu_stat(p, smp_processor_id(), 0);
1569 out:
1570 raw_spin_unlock(&p->pi_lock);
1571 }
1572
1573 /**
1574 * wake_up_process - Wake up a specific process
1575 * @p: The process to be woken up.
1576 *
1577 * Attempt to wake up the nominated process and move it to the set of runnable
1578 * processes.
1579 *
1580 * Return: 1 if the process was woken up, 0 if it was already running.
1581 *
1582 * It may be assumed that this function implies a write memory barrier before
1583 * changing the task state if and only if any tasks are woken up.
1584 */
1585 int wake_up_process(struct task_struct *p)
1586 {
1587 WARN_ON(task_is_stopped_or_traced(p));
1588 return try_to_wake_up(p, TASK_NORMAL, 0);
1589 }
1590 EXPORT_SYMBOL(wake_up_process);
1591
1592 int wake_up_state(struct task_struct *p, unsigned int state)
1593 {
1594 return try_to_wake_up(p, state, 0);
1595 }
1596
1597 /*
1598 * Perform scheduler related setup for a newly forked process p.
1599 * p is forked by current.
1600 *
1601 * __sched_fork() is basic setup used by init_idle() too:
1602 */
1603 static void __sched_fork(struct task_struct *p)
1604 {
1605 p->on_rq = 0;
1606
1607 p->se.on_rq = 0;
1608 p->se.exec_start = 0;
1609 p->se.sum_exec_runtime = 0;
1610 p->se.prev_sum_exec_runtime = 0;
1611 p->se.nr_migrations = 0;
1612 p->se.vruntime = 0;
1613 INIT_LIST_HEAD(&p->se.group_node);
1614
1615 #ifdef CONFIG_SCHEDSTATS
1616 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1617 #endif
1618
1619 INIT_LIST_HEAD(&p->rt.run_list);
1620
1621 #ifdef CONFIG_PREEMPT_NOTIFIERS
1622 INIT_HLIST_HEAD(&p->preempt_notifiers);
1623 #endif
1624
1625 #ifdef CONFIG_NUMA_BALANCING
1626 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1627 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1628 p->mm->numa_next_reset = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1629 p->mm->numa_scan_seq = 0;
1630 }
1631
1632 p->node_stamp = 0ULL;
1633 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1634 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1635 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1636 p->numa_work.next = &p->numa_work;
1637 p->numa_faults = NULL;
1638 #endif /* CONFIG_NUMA_BALANCING */
1639 }
1640
1641 #ifdef CONFIG_NUMA_BALANCING
1642 #ifdef CONFIG_SCHED_DEBUG
1643 void set_numabalancing_state(bool enabled)
1644 {
1645 if (enabled)
1646 sched_feat_set("NUMA");
1647 else
1648 sched_feat_set("NO_NUMA");
1649 }
1650 #else
1651 __read_mostly bool numabalancing_enabled;
1652
1653 void set_numabalancing_state(bool enabled)
1654 {
1655 numabalancing_enabled = enabled;
1656 }
1657 #endif /* CONFIG_SCHED_DEBUG */
1658 #endif /* CONFIG_NUMA_BALANCING */
1659
1660 /*
1661 * fork()/clone()-time setup:
1662 */
1663 void sched_fork(struct task_struct *p)
1664 {
1665 unsigned long flags;
1666 int cpu = get_cpu();
1667
1668 __sched_fork(p);
1669 /*
1670 * We mark the process as running here. This guarantees that
1671 * nobody will actually run it, and a signal or other external
1672 * event cannot wake it up and insert it on the runqueue either.
1673 */
1674 p->state = TASK_RUNNING;
1675
1676 /*
1677 * Make sure we do not leak PI boosting priority to the child.
1678 */
1679 p->prio = current->normal_prio;
1680
1681 /*
1682 * Revert to default priority/policy on fork if requested.
1683 */
1684 if (unlikely(p->sched_reset_on_fork)) {
1685 if (task_has_rt_policy(p)) {
1686 p->policy = SCHED_NORMAL;
1687 p->static_prio = NICE_TO_PRIO(0);
1688 p->rt_priority = 0;
1689 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1690 p->static_prio = NICE_TO_PRIO(0);
1691
1692 p->prio = p->normal_prio = __normal_prio(p);
1693 set_load_weight(p);
1694
1695 /*
1696 * We don't need the reset flag anymore after the fork. It has
1697 * fulfilled its duty:
1698 */
1699 p->sched_reset_on_fork = 0;
1700 }
1701
1702 if (!rt_prio(p->prio))
1703 p->sched_class = &fair_sched_class;
1704
1705 if (p->sched_class->task_fork)
1706 p->sched_class->task_fork(p);
1707
1708 /*
1709 * The child is not yet in the pid-hash so no cgroup attach races,
1710 * and the cgroup is pinned to this child due to cgroup_fork()
1711 * is ran before sched_fork().
1712 *
1713 * Silence PROVE_RCU.
1714 */
1715 raw_spin_lock_irqsave(&p->pi_lock, flags);
1716 set_task_cpu(p, cpu);
1717 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1718
1719 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1720 if (likely(sched_info_on()))
1721 memset(&p->sched_info, 0, sizeof(p->sched_info));
1722 #endif
1723 #if defined(CONFIG_SMP)
1724 p->on_cpu = 0;
1725 #endif
1726 init_task_preempt_count(p);
1727 #ifdef CONFIG_SMP
1728 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1729 #endif
1730
1731 put_cpu();
1732 }
1733
1734 /*
1735 * wake_up_new_task - wake up a newly created task for the first time.
1736 *
1737 * This function will do some initial scheduler statistics housekeeping
1738 * that must be done for every newly created context, then puts the task
1739 * on the runqueue and wakes it.
1740 */
1741 void wake_up_new_task(struct task_struct *p)
1742 {
1743 unsigned long flags;
1744 struct rq *rq;
1745
1746 raw_spin_lock_irqsave(&p->pi_lock, flags);
1747 #ifdef CONFIG_SMP
1748 /*
1749 * Fork balancing, do it here and not earlier because:
1750 * - cpus_allowed can change in the fork path
1751 * - any previously selected cpu might disappear through hotplug
1752 */
1753 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1754 #endif
1755
1756 /* Initialize new task's runnable average */
1757 init_task_runnable_average(p);
1758 rq = __task_rq_lock(p);
1759 activate_task(rq, p, 0);
1760 p->on_rq = 1;
1761 trace_sched_wakeup_new(p, true);
1762 check_preempt_curr(rq, p, WF_FORK);
1763 #ifdef CONFIG_SMP
1764 if (p->sched_class->task_woken)
1765 p->sched_class->task_woken(rq, p);
1766 #endif
1767 task_rq_unlock(rq, p, &flags);
1768 }
1769
1770 #ifdef CONFIG_PREEMPT_NOTIFIERS
1771
1772 /**
1773 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1774 * @notifier: notifier struct to register
1775 */
1776 void preempt_notifier_register(struct preempt_notifier *notifier)
1777 {
1778 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1779 }
1780 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1781
1782 /**
1783 * preempt_notifier_unregister - no longer interested in preemption notifications
1784 * @notifier: notifier struct to unregister
1785 *
1786 * This is safe to call from within a preemption notifier.
1787 */
1788 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1789 {
1790 hlist_del(&notifier->link);
1791 }
1792 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1793
1794 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1795 {
1796 struct preempt_notifier *notifier;
1797
1798 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1799 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1800 }
1801
1802 static void
1803 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1804 struct task_struct *next)
1805 {
1806 struct preempt_notifier *notifier;
1807
1808 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1809 notifier->ops->sched_out(notifier, next);
1810 }
1811
1812 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1813
1814 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1815 {
1816 }
1817
1818 static void
1819 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1820 struct task_struct *next)
1821 {
1822 }
1823
1824 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1825
1826 /**
1827 * prepare_task_switch - prepare to switch tasks
1828 * @rq: the runqueue preparing to switch
1829 * @prev: the current task that is being switched out
1830 * @next: the task we are going to switch to.
1831 *
1832 * This is called with the rq lock held and interrupts off. It must
1833 * be paired with a subsequent finish_task_switch after the context
1834 * switch.
1835 *
1836 * prepare_task_switch sets up locking and calls architecture specific
1837 * hooks.
1838 */
1839 static inline void
1840 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1841 struct task_struct *next)
1842 {
1843 trace_sched_switch(prev, next);
1844 sched_info_switch(rq, prev, next);
1845 perf_event_task_sched_out(prev, next);
1846 fire_sched_out_preempt_notifiers(prev, next);
1847 prepare_lock_switch(rq, next);
1848 prepare_arch_switch(next);
1849 }
1850
1851 /**
1852 * finish_task_switch - clean up after a task-switch
1853 * @rq: runqueue associated with task-switch
1854 * @prev: the thread we just switched away from.
1855 *
1856 * finish_task_switch must be called after the context switch, paired
1857 * with a prepare_task_switch call before the context switch.
1858 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1859 * and do any other architecture-specific cleanup actions.
1860 *
1861 * Note that we may have delayed dropping an mm in context_switch(). If
1862 * so, we finish that here outside of the runqueue lock. (Doing it
1863 * with the lock held can cause deadlocks; see schedule() for
1864 * details.)
1865 */
1866 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1867 __releases(rq->lock)
1868 {
1869 struct mm_struct *mm = rq->prev_mm;
1870 long prev_state;
1871
1872 rq->prev_mm = NULL;
1873
1874 /*
1875 * A task struct has one reference for the use as "current".
1876 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1877 * schedule one last time. The schedule call will never return, and
1878 * the scheduled task must drop that reference.
1879 * The test for TASK_DEAD must occur while the runqueue locks are
1880 * still held, otherwise prev could be scheduled on another cpu, die
1881 * there before we look at prev->state, and then the reference would
1882 * be dropped twice.
1883 * Manfred Spraul <manfred@colorfullife.com>
1884 */
1885 prev_state = prev->state;
1886 vtime_task_switch(prev);
1887 finish_arch_switch(prev);
1888 perf_event_task_sched_in(prev, current);
1889 finish_lock_switch(rq, prev);
1890 finish_arch_post_lock_switch();
1891
1892 fire_sched_in_preempt_notifiers(current);
1893 if (mm)
1894 mmdrop(mm);
1895 if (unlikely(prev_state == TASK_DEAD)) {
1896 task_numa_free(prev);
1897
1898 /*
1899 * Remove function-return probe instances associated with this
1900 * task and put them back on the free list.
1901 */
1902 kprobe_flush_task(prev);
1903 put_task_struct(prev);
1904 }
1905
1906 tick_nohz_task_switch(current);
1907 }
1908
1909 #ifdef CONFIG_SMP
1910
1911 /* assumes rq->lock is held */
1912 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1913 {
1914 if (prev->sched_class->pre_schedule)
1915 prev->sched_class->pre_schedule(rq, prev);
1916 }
1917
1918 /* rq->lock is NOT held, but preemption is disabled */
1919 static inline void post_schedule(struct rq *rq)
1920 {
1921 if (rq->post_schedule) {
1922 unsigned long flags;
1923
1924 raw_spin_lock_irqsave(&rq->lock, flags);
1925 if (rq->curr->sched_class->post_schedule)
1926 rq->curr->sched_class->post_schedule(rq);
1927 raw_spin_unlock_irqrestore(&rq->lock, flags);
1928
1929 rq->post_schedule = 0;
1930 }
1931 }
1932
1933 #else
1934
1935 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1936 {
1937 }
1938
1939 static inline void post_schedule(struct rq *rq)
1940 {
1941 }
1942
1943 #endif
1944
1945 /**
1946 * schedule_tail - first thing a freshly forked thread must call.
1947 * @prev: the thread we just switched away from.
1948 */
1949 asmlinkage void schedule_tail(struct task_struct *prev)
1950 __releases(rq->lock)
1951 {
1952 struct rq *rq = this_rq();
1953
1954 finish_task_switch(rq, prev);
1955
1956 /*
1957 * FIXME: do we need to worry about rq being invalidated by the
1958 * task_switch?
1959 */
1960 post_schedule(rq);
1961
1962 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1963 /* In this case, finish_task_switch does not reenable preemption */
1964 preempt_enable();
1965 #endif
1966 if (current->set_child_tid)
1967 put_user(task_pid_vnr(current), current->set_child_tid);
1968 }
1969
1970 /*
1971 * context_switch - switch to the new MM and the new
1972 * thread's register state.
1973 */
1974 static inline void
1975 context_switch(struct rq *rq, struct task_struct *prev,
1976 struct task_struct *next)
1977 {
1978 struct mm_struct *mm, *oldmm;
1979
1980 prepare_task_switch(rq, prev, next);
1981
1982 mm = next->mm;
1983 oldmm = prev->active_mm;
1984 /*
1985 * For paravirt, this is coupled with an exit in switch_to to
1986 * combine the page table reload and the switch backend into
1987 * one hypercall.
1988 */
1989 arch_start_context_switch(prev);
1990
1991 if (!mm) {
1992 next->active_mm = oldmm;
1993 atomic_inc(&oldmm->mm_count);
1994 enter_lazy_tlb(oldmm, next);
1995 } else
1996 switch_mm(oldmm, mm, next);
1997
1998 if (!prev->mm) {
1999 prev->active_mm = NULL;
2000 rq->prev_mm = oldmm;
2001 }
2002 /*
2003 * Since the runqueue lock will be released by the next
2004 * task (which is an invalid locking op but in the case
2005 * of the scheduler it's an obvious special-case), so we
2006 * do an early lockdep release here:
2007 */
2008 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2009 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2010 #endif
2011
2012 context_tracking_task_switch(prev, next);
2013 /* Here we just switch the register state and the stack. */
2014 switch_to(prev, next, prev);
2015
2016 barrier();
2017 /*
2018 * this_rq must be evaluated again because prev may have moved
2019 * CPUs since it called schedule(), thus the 'rq' on its stack
2020 * frame will be invalid.
2021 */
2022 finish_task_switch(this_rq(), prev);
2023 }
2024
2025 /*
2026 * nr_running and nr_context_switches:
2027 *
2028 * externally visible scheduler statistics: current number of runnable
2029 * threads, total number of context switches performed since bootup.
2030 */
2031 unsigned long nr_running(void)
2032 {
2033 unsigned long i, sum = 0;
2034
2035 for_each_online_cpu(i)
2036 sum += cpu_rq(i)->nr_running;
2037
2038 return sum;
2039 }
2040
2041 unsigned long long nr_context_switches(void)
2042 {
2043 int i;
2044 unsigned long long sum = 0;
2045
2046 for_each_possible_cpu(i)
2047 sum += cpu_rq(i)->nr_switches;
2048
2049 return sum;
2050 }
2051
2052 unsigned long nr_iowait(void)
2053 {
2054 unsigned long i, sum = 0;
2055
2056 for_each_possible_cpu(i)
2057 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2058
2059 return sum;
2060 }
2061
2062 unsigned long nr_iowait_cpu(int cpu)
2063 {
2064 struct rq *this = cpu_rq(cpu);
2065 return atomic_read(&this->nr_iowait);
2066 }
2067
2068 #ifdef CONFIG_SMP
2069
2070 /*
2071 * sched_exec - execve() is a valuable balancing opportunity, because at
2072 * this point the task has the smallest effective memory and cache footprint.
2073 */
2074 void sched_exec(void)
2075 {
2076 struct task_struct *p = current;
2077 unsigned long flags;
2078 int dest_cpu;
2079
2080 raw_spin_lock_irqsave(&p->pi_lock, flags);
2081 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2082 if (dest_cpu == smp_processor_id())
2083 goto unlock;
2084
2085 if (likely(cpu_active(dest_cpu))) {
2086 struct migration_arg arg = { p, dest_cpu };
2087
2088 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2089 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2090 return;
2091 }
2092 unlock:
2093 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2094 }
2095
2096 #endif
2097
2098 DEFINE_PER_CPU(struct kernel_stat, kstat);
2099 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2100
2101 EXPORT_PER_CPU_SYMBOL(kstat);
2102 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2103
2104 /*
2105 * Return any ns on the sched_clock that have not yet been accounted in
2106 * @p in case that task is currently running.
2107 *
2108 * Called with task_rq_lock() held on @rq.
2109 */
2110 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2111 {
2112 u64 ns = 0;
2113
2114 if (task_current(rq, p)) {
2115 update_rq_clock(rq);
2116 ns = rq_clock_task(rq) - p->se.exec_start;
2117 if ((s64)ns < 0)
2118 ns = 0;
2119 }
2120
2121 return ns;
2122 }
2123
2124 unsigned long long task_delta_exec(struct task_struct *p)
2125 {
2126 unsigned long flags;
2127 struct rq *rq;
2128 u64 ns = 0;
2129
2130 rq = task_rq_lock(p, &flags);
2131 ns = do_task_delta_exec(p, rq);
2132 task_rq_unlock(rq, p, &flags);
2133
2134 return ns;
2135 }
2136
2137 /*
2138 * Return accounted runtime for the task.
2139 * In case the task is currently running, return the runtime plus current's
2140 * pending runtime that have not been accounted yet.
2141 */
2142 unsigned long long task_sched_runtime(struct task_struct *p)
2143 {
2144 unsigned long flags;
2145 struct rq *rq;
2146 u64 ns = 0;
2147
2148 rq = task_rq_lock(p, &flags);
2149 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2150 task_rq_unlock(rq, p, &flags);
2151
2152 return ns;
2153 }
2154
2155 /*
2156 * This function gets called by the timer code, with HZ frequency.
2157 * We call it with interrupts disabled.
2158 */
2159 void scheduler_tick(void)
2160 {
2161 int cpu = smp_processor_id();
2162 struct rq *rq = cpu_rq(cpu);
2163 struct task_struct *curr = rq->curr;
2164
2165 sched_clock_tick();
2166
2167 raw_spin_lock(&rq->lock);
2168 update_rq_clock(rq);
2169 curr->sched_class->task_tick(rq, curr, 0);
2170 update_cpu_load_active(rq);
2171 raw_spin_unlock(&rq->lock);
2172
2173 perf_event_task_tick();
2174
2175 #ifdef CONFIG_SMP
2176 rq->idle_balance = idle_cpu(cpu);
2177 trigger_load_balance(rq, cpu);
2178 #endif
2179 rq_last_tick_reset(rq);
2180 }
2181
2182 #ifdef CONFIG_NO_HZ_FULL
2183 /**
2184 * scheduler_tick_max_deferment
2185 *
2186 * Keep at least one tick per second when a single
2187 * active task is running because the scheduler doesn't
2188 * yet completely support full dynticks environment.
2189 *
2190 * This makes sure that uptime, CFS vruntime, load
2191 * balancing, etc... continue to move forward, even
2192 * with a very low granularity.
2193 *
2194 * Return: Maximum deferment in nanoseconds.
2195 */
2196 u64 scheduler_tick_max_deferment(void)
2197 {
2198 struct rq *rq = this_rq();
2199 unsigned long next, now = ACCESS_ONCE(jiffies);
2200
2201 next = rq->last_sched_tick + HZ;
2202
2203 if (time_before_eq(next, now))
2204 return 0;
2205
2206 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2207 }
2208 #endif
2209
2210 notrace unsigned long get_parent_ip(unsigned long addr)
2211 {
2212 if (in_lock_functions(addr)) {
2213 addr = CALLER_ADDR2;
2214 if (in_lock_functions(addr))
2215 addr = CALLER_ADDR3;
2216 }
2217 return addr;
2218 }
2219
2220 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2221 defined(CONFIG_PREEMPT_TRACER))
2222
2223 void __kprobes preempt_count_add(int val)
2224 {
2225 #ifdef CONFIG_DEBUG_PREEMPT
2226 /*
2227 * Underflow?
2228 */
2229 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2230 return;
2231 #endif
2232 __preempt_count_add(val);
2233 #ifdef CONFIG_DEBUG_PREEMPT
2234 /*
2235 * Spinlock count overflowing soon?
2236 */
2237 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2238 PREEMPT_MASK - 10);
2239 #endif
2240 if (preempt_count() == val)
2241 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2242 }
2243 EXPORT_SYMBOL(preempt_count_add);
2244
2245 void __kprobes preempt_count_sub(int val)
2246 {
2247 #ifdef CONFIG_DEBUG_PREEMPT
2248 /*
2249 * Underflow?
2250 */
2251 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2252 return;
2253 /*
2254 * Is the spinlock portion underflowing?
2255 */
2256 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2257 !(preempt_count() & PREEMPT_MASK)))
2258 return;
2259 #endif
2260
2261 if (preempt_count() == val)
2262 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2263 __preempt_count_sub(val);
2264 }
2265 EXPORT_SYMBOL(preempt_count_sub);
2266
2267 #endif
2268
2269 /*
2270 * Print scheduling while atomic bug:
2271 */
2272 static noinline void __schedule_bug(struct task_struct *prev)
2273 {
2274 if (oops_in_progress)
2275 return;
2276
2277 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2278 prev->comm, prev->pid, preempt_count());
2279
2280 debug_show_held_locks(prev);
2281 print_modules();
2282 if (irqs_disabled())
2283 print_irqtrace_events(prev);
2284 dump_stack();
2285 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2286 }
2287
2288 /*
2289 * Various schedule()-time debugging checks and statistics:
2290 */
2291 static inline void schedule_debug(struct task_struct *prev)
2292 {
2293 /*
2294 * Test if we are atomic. Since do_exit() needs to call into
2295 * schedule() atomically, we ignore that path for now.
2296 * Otherwise, whine if we are scheduling when we should not be.
2297 */
2298 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2299 __schedule_bug(prev);
2300 rcu_sleep_check();
2301
2302 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2303
2304 schedstat_inc(this_rq(), sched_count);
2305 }
2306
2307 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2308 {
2309 if (prev->on_rq || rq->skip_clock_update < 0)
2310 update_rq_clock(rq);
2311 prev->sched_class->put_prev_task(rq, prev);
2312 }
2313
2314 /*
2315 * Pick up the highest-prio task:
2316 */
2317 static inline struct task_struct *
2318 pick_next_task(struct rq *rq)
2319 {
2320 const struct sched_class *class;
2321 struct task_struct *p;
2322
2323 /*
2324 * Optimization: we know that if all tasks are in
2325 * the fair class we can call that function directly:
2326 */
2327 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2328 p = fair_sched_class.pick_next_task(rq);
2329 if (likely(p))
2330 return p;
2331 }
2332
2333 for_each_class(class) {
2334 p = class->pick_next_task(rq);
2335 if (p)
2336 return p;
2337 }
2338
2339 BUG(); /* the idle class will always have a runnable task */
2340 }
2341
2342 /*
2343 * __schedule() is the main scheduler function.
2344 *
2345 * The main means of driving the scheduler and thus entering this function are:
2346 *
2347 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2348 *
2349 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2350 * paths. For example, see arch/x86/entry_64.S.
2351 *
2352 * To drive preemption between tasks, the scheduler sets the flag in timer
2353 * interrupt handler scheduler_tick().
2354 *
2355 * 3. Wakeups don't really cause entry into schedule(). They add a
2356 * task to the run-queue and that's it.
2357 *
2358 * Now, if the new task added to the run-queue preempts the current
2359 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2360 * called on the nearest possible occasion:
2361 *
2362 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2363 *
2364 * - in syscall or exception context, at the next outmost
2365 * preempt_enable(). (this might be as soon as the wake_up()'s
2366 * spin_unlock()!)
2367 *
2368 * - in IRQ context, return from interrupt-handler to
2369 * preemptible context
2370 *
2371 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2372 * then at the next:
2373 *
2374 * - cond_resched() call
2375 * - explicit schedule() call
2376 * - return from syscall or exception to user-space
2377 * - return from interrupt-handler to user-space
2378 */
2379 static void __sched __schedule(void)
2380 {
2381 struct task_struct *prev, *next;
2382 unsigned long *switch_count;
2383 struct rq *rq;
2384 int cpu;
2385
2386 need_resched:
2387 preempt_disable();
2388 cpu = smp_processor_id();
2389 rq = cpu_rq(cpu);
2390 rcu_note_context_switch(cpu);
2391 prev = rq->curr;
2392
2393 schedule_debug(prev);
2394
2395 if (sched_feat(HRTICK))
2396 hrtick_clear(rq);
2397
2398 /*
2399 * Make sure that signal_pending_state()->signal_pending() below
2400 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2401 * done by the caller to avoid the race with signal_wake_up().
2402 */
2403 smp_mb__before_spinlock();
2404 raw_spin_lock_irq(&rq->lock);
2405
2406 switch_count = &prev->nivcsw;
2407 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2408 if (unlikely(signal_pending_state(prev->state, prev))) {
2409 prev->state = TASK_RUNNING;
2410 } else {
2411 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2412 prev->on_rq = 0;
2413
2414 /*
2415 * If a worker went to sleep, notify and ask workqueue
2416 * whether it wants to wake up a task to maintain
2417 * concurrency.
2418 */
2419 if (prev->flags & PF_WQ_WORKER) {
2420 struct task_struct *to_wakeup;
2421
2422 to_wakeup = wq_worker_sleeping(prev, cpu);
2423 if (to_wakeup)
2424 try_to_wake_up_local(to_wakeup);
2425 }
2426 }
2427 switch_count = &prev->nvcsw;
2428 }
2429
2430 pre_schedule(rq, prev);
2431
2432 if (unlikely(!rq->nr_running))
2433 idle_balance(cpu, rq);
2434
2435 put_prev_task(rq, prev);
2436 next = pick_next_task(rq);
2437 clear_tsk_need_resched(prev);
2438 clear_preempt_need_resched();
2439 rq->skip_clock_update = 0;
2440
2441 if (likely(prev != next)) {
2442 rq->nr_switches++;
2443 rq->curr = next;
2444 ++*switch_count;
2445
2446 context_switch(rq, prev, next); /* unlocks the rq */
2447 /*
2448 * The context switch have flipped the stack from under us
2449 * and restored the local variables which were saved when
2450 * this task called schedule() in the past. prev == current
2451 * is still correct, but it can be moved to another cpu/rq.
2452 */
2453 cpu = smp_processor_id();
2454 rq = cpu_rq(cpu);
2455 } else
2456 raw_spin_unlock_irq(&rq->lock);
2457
2458 post_schedule(rq);
2459
2460 sched_preempt_enable_no_resched();
2461 if (need_resched())
2462 goto need_resched;
2463 }
2464
2465 static inline void sched_submit_work(struct task_struct *tsk)
2466 {
2467 if (!tsk->state || tsk_is_pi_blocked(tsk))
2468 return;
2469 /*
2470 * If we are going to sleep and we have plugged IO queued,
2471 * make sure to submit it to avoid deadlocks.
2472 */
2473 if (blk_needs_flush_plug(tsk))
2474 blk_schedule_flush_plug(tsk);
2475 }
2476
2477 asmlinkage void __sched schedule(void)
2478 {
2479 struct task_struct *tsk = current;
2480
2481 sched_submit_work(tsk);
2482 __schedule();
2483 }
2484 EXPORT_SYMBOL(schedule);
2485
2486 #ifdef CONFIG_CONTEXT_TRACKING
2487 asmlinkage void __sched schedule_user(void)
2488 {
2489 /*
2490 * If we come here after a random call to set_need_resched(),
2491 * or we have been woken up remotely but the IPI has not yet arrived,
2492 * we haven't yet exited the RCU idle mode. Do it here manually until
2493 * we find a better solution.
2494 */
2495 user_exit();
2496 schedule();
2497 user_enter();
2498 }
2499 #endif
2500
2501 /**
2502 * schedule_preempt_disabled - called with preemption disabled
2503 *
2504 * Returns with preemption disabled. Note: preempt_count must be 1
2505 */
2506 void __sched schedule_preempt_disabled(void)
2507 {
2508 sched_preempt_enable_no_resched();
2509 schedule();
2510 preempt_disable();
2511 }
2512
2513 #ifdef CONFIG_PREEMPT
2514 /*
2515 * this is the entry point to schedule() from in-kernel preemption
2516 * off of preempt_enable. Kernel preemptions off return from interrupt
2517 * occur there and call schedule directly.
2518 */
2519 asmlinkage void __sched notrace preempt_schedule(void)
2520 {
2521 /*
2522 * If there is a non-zero preempt_count or interrupts are disabled,
2523 * we do not want to preempt the current task. Just return..
2524 */
2525 if (likely(!preemptible()))
2526 return;
2527
2528 do {
2529 __preempt_count_add(PREEMPT_ACTIVE);
2530 __schedule();
2531 __preempt_count_sub(PREEMPT_ACTIVE);
2532
2533 /*
2534 * Check again in case we missed a preemption opportunity
2535 * between schedule and now.
2536 */
2537 barrier();
2538 } while (need_resched());
2539 }
2540 EXPORT_SYMBOL(preempt_schedule);
2541
2542 /*
2543 * this is the entry point to schedule() from kernel preemption
2544 * off of irq context.
2545 * Note, that this is called and return with irqs disabled. This will
2546 * protect us against recursive calling from irq.
2547 */
2548 asmlinkage void __sched preempt_schedule_irq(void)
2549 {
2550 enum ctx_state prev_state;
2551
2552 /* Catch callers which need to be fixed */
2553 BUG_ON(preempt_count() || !irqs_disabled());
2554
2555 prev_state = exception_enter();
2556
2557 do {
2558 __preempt_count_add(PREEMPT_ACTIVE);
2559 local_irq_enable();
2560 __schedule();
2561 local_irq_disable();
2562 __preempt_count_sub(PREEMPT_ACTIVE);
2563
2564 /*
2565 * Check again in case we missed a preemption opportunity
2566 * between schedule and now.
2567 */
2568 barrier();
2569 } while (need_resched());
2570
2571 exception_exit(prev_state);
2572 }
2573
2574 #endif /* CONFIG_PREEMPT */
2575
2576 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2577 void *key)
2578 {
2579 return try_to_wake_up(curr->private, mode, wake_flags);
2580 }
2581 EXPORT_SYMBOL(default_wake_function);
2582
2583 /*
2584 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2585 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2586 * number) then we wake all the non-exclusive tasks and one exclusive task.
2587 *
2588 * There are circumstances in which we can try to wake a task which has already
2589 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2590 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2591 */
2592 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2593 int nr_exclusive, int wake_flags, void *key)
2594 {
2595 wait_queue_t *curr, *next;
2596
2597 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2598 unsigned flags = curr->flags;
2599
2600 if (curr->func(curr, mode, wake_flags, key) &&
2601 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2602 break;
2603 }
2604 }
2605
2606 /**
2607 * __wake_up - wake up threads blocked on a waitqueue.
2608 * @q: the waitqueue
2609 * @mode: which threads
2610 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2611 * @key: is directly passed to the wakeup function
2612 *
2613 * It may be assumed that this function implies a write memory barrier before
2614 * changing the task state if and only if any tasks are woken up.
2615 */
2616 void __wake_up(wait_queue_head_t *q, unsigned int mode,
2617 int nr_exclusive, void *key)
2618 {
2619 unsigned long flags;
2620
2621 spin_lock_irqsave(&q->lock, flags);
2622 __wake_up_common(q, mode, nr_exclusive, 0, key);
2623 spin_unlock_irqrestore(&q->lock, flags);
2624 }
2625 EXPORT_SYMBOL(__wake_up);
2626
2627 /*
2628 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2629 */
2630 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2631 {
2632 __wake_up_common(q, mode, nr, 0, NULL);
2633 }
2634 EXPORT_SYMBOL_GPL(__wake_up_locked);
2635
2636 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2637 {
2638 __wake_up_common(q, mode, 1, 0, key);
2639 }
2640 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2641
2642 /**
2643 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2644 * @q: the waitqueue
2645 * @mode: which threads
2646 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2647 * @key: opaque value to be passed to wakeup targets
2648 *
2649 * The sync wakeup differs that the waker knows that it will schedule
2650 * away soon, so while the target thread will be woken up, it will not
2651 * be migrated to another CPU - ie. the two threads are 'synchronized'
2652 * with each other. This can prevent needless bouncing between CPUs.
2653 *
2654 * On UP it can prevent extra preemption.
2655 *
2656 * It may be assumed that this function implies a write memory barrier before
2657 * changing the task state if and only if any tasks are woken up.
2658 */
2659 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2660 int nr_exclusive, void *key)
2661 {
2662 unsigned long flags;
2663 int wake_flags = WF_SYNC;
2664
2665 if (unlikely(!q))
2666 return;
2667
2668 if (unlikely(nr_exclusive != 1))
2669 wake_flags = 0;
2670
2671 spin_lock_irqsave(&q->lock, flags);
2672 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2673 spin_unlock_irqrestore(&q->lock, flags);
2674 }
2675 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2676
2677 /*
2678 * __wake_up_sync - see __wake_up_sync_key()
2679 */
2680 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2681 {
2682 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2683 }
2684 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2685
2686 /**
2687 * complete: - signals a single thread waiting on this completion
2688 * @x: holds the state of this particular completion
2689 *
2690 * This will wake up a single thread waiting on this completion. Threads will be
2691 * awakened in the same order in which they were queued.
2692 *
2693 * See also complete_all(), wait_for_completion() and related routines.
2694 *
2695 * It may be assumed that this function implies a write memory barrier before
2696 * changing the task state if and only if any tasks are woken up.
2697 */
2698 void complete(struct completion *x)
2699 {
2700 unsigned long flags;
2701
2702 spin_lock_irqsave(&x->wait.lock, flags);
2703 x->done++;
2704 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2705 spin_unlock_irqrestore(&x->wait.lock, flags);
2706 }
2707 EXPORT_SYMBOL(complete);
2708
2709 /**
2710 * complete_all: - signals all threads waiting on this completion
2711 * @x: holds the state of this particular completion
2712 *
2713 * This will wake up all threads waiting on this particular completion event.
2714 *
2715 * It may be assumed that this function implies a write memory barrier before
2716 * changing the task state if and only if any tasks are woken up.
2717 */
2718 void complete_all(struct completion *x)
2719 {
2720 unsigned long flags;
2721
2722 spin_lock_irqsave(&x->wait.lock, flags);
2723 x->done += UINT_MAX/2;
2724 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2725 spin_unlock_irqrestore(&x->wait.lock, flags);
2726 }
2727 EXPORT_SYMBOL(complete_all);
2728
2729 static inline long __sched
2730 do_wait_for_common(struct completion *x,
2731 long (*action)(long), long timeout, int state)
2732 {
2733 if (!x->done) {
2734 DECLARE_WAITQUEUE(wait, current);
2735
2736 __add_wait_queue_tail_exclusive(&x->wait, &wait);
2737 do {
2738 if (signal_pending_state(state, current)) {
2739 timeout = -ERESTARTSYS;
2740 break;
2741 }
2742 __set_current_state(state);
2743 spin_unlock_irq(&x->wait.lock);
2744 timeout = action(timeout);
2745 spin_lock_irq(&x->wait.lock);
2746 } while (!x->done && timeout);
2747 __remove_wait_queue(&x->wait, &wait);
2748 if (!x->done)
2749 return timeout;
2750 }
2751 x->done--;
2752 return timeout ?: 1;
2753 }
2754
2755 static inline long __sched
2756 __wait_for_common(struct completion *x,
2757 long (*action)(long), long timeout, int state)
2758 {
2759 might_sleep();
2760
2761 spin_lock_irq(&x->wait.lock);
2762 timeout = do_wait_for_common(x, action, timeout, state);
2763 spin_unlock_irq(&x->wait.lock);
2764 return timeout;
2765 }
2766
2767 static long __sched
2768 wait_for_common(struct completion *x, long timeout, int state)
2769 {
2770 return __wait_for_common(x, schedule_timeout, timeout, state);
2771 }
2772
2773 static long __sched
2774 wait_for_common_io(struct completion *x, long timeout, int state)
2775 {
2776 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2777 }
2778
2779 /**
2780 * wait_for_completion: - waits for completion of a task
2781 * @x: holds the state of this particular completion
2782 *
2783 * This waits to be signaled for completion of a specific task. It is NOT
2784 * interruptible and there is no timeout.
2785 *
2786 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2787 * and interrupt capability. Also see complete().
2788 */
2789 void __sched wait_for_completion(struct completion *x)
2790 {
2791 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2792 }
2793 EXPORT_SYMBOL(wait_for_completion);
2794
2795 /**
2796 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2797 * @x: holds the state of this particular completion
2798 * @timeout: timeout value in jiffies
2799 *
2800 * This waits for either a completion of a specific task to be signaled or for a
2801 * specified timeout to expire. The timeout is in jiffies. It is not
2802 * interruptible.
2803 *
2804 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2805 * till timeout) if completed.
2806 */
2807 unsigned long __sched
2808 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2809 {
2810 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2811 }
2812 EXPORT_SYMBOL(wait_for_completion_timeout);
2813
2814 /**
2815 * wait_for_completion_io: - waits for completion of a task
2816 * @x: holds the state of this particular completion
2817 *
2818 * This waits to be signaled for completion of a specific task. It is NOT
2819 * interruptible and there is no timeout. The caller is accounted as waiting
2820 * for IO.
2821 */
2822 void __sched wait_for_completion_io(struct completion *x)
2823 {
2824 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2825 }
2826 EXPORT_SYMBOL(wait_for_completion_io);
2827
2828 /**
2829 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2830 * @x: holds the state of this particular completion
2831 * @timeout: timeout value in jiffies
2832 *
2833 * This waits for either a completion of a specific task to be signaled or for a
2834 * specified timeout to expire. The timeout is in jiffies. It is not
2835 * interruptible. The caller is accounted as waiting for IO.
2836 *
2837 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2838 * till timeout) if completed.
2839 */
2840 unsigned long __sched
2841 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2842 {
2843 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2844 }
2845 EXPORT_SYMBOL(wait_for_completion_io_timeout);
2846
2847 /**
2848 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2849 * @x: holds the state of this particular completion
2850 *
2851 * This waits for completion of a specific task to be signaled. It is
2852 * interruptible.
2853 *
2854 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2855 */
2856 int __sched wait_for_completion_interruptible(struct completion *x)
2857 {
2858 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2859 if (t == -ERESTARTSYS)
2860 return t;
2861 return 0;
2862 }
2863 EXPORT_SYMBOL(wait_for_completion_interruptible);
2864
2865 /**
2866 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2867 * @x: holds the state of this particular completion
2868 * @timeout: timeout value in jiffies
2869 *
2870 * This waits for either a completion of a specific task to be signaled or for a
2871 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2872 *
2873 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2874 * or number of jiffies left till timeout) if completed.
2875 */
2876 long __sched
2877 wait_for_completion_interruptible_timeout(struct completion *x,
2878 unsigned long timeout)
2879 {
2880 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2881 }
2882 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2883
2884 /**
2885 * wait_for_completion_killable: - waits for completion of a task (killable)
2886 * @x: holds the state of this particular completion
2887 *
2888 * This waits to be signaled for completion of a specific task. It can be
2889 * interrupted by a kill signal.
2890 *
2891 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2892 */
2893 int __sched wait_for_completion_killable(struct completion *x)
2894 {
2895 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2896 if (t == -ERESTARTSYS)
2897 return t;
2898 return 0;
2899 }
2900 EXPORT_SYMBOL(wait_for_completion_killable);
2901
2902 /**
2903 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2904 * @x: holds the state of this particular completion
2905 * @timeout: timeout value in jiffies
2906 *
2907 * This waits for either a completion of a specific task to be
2908 * signaled or for a specified timeout to expire. It can be
2909 * interrupted by a kill signal. The timeout is in jiffies.
2910 *
2911 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2912 * or number of jiffies left till timeout) if completed.
2913 */
2914 long __sched
2915 wait_for_completion_killable_timeout(struct completion *x,
2916 unsigned long timeout)
2917 {
2918 return wait_for_common(x, timeout, TASK_KILLABLE);
2919 }
2920 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2921
2922 /**
2923 * try_wait_for_completion - try to decrement a completion without blocking
2924 * @x: completion structure
2925 *
2926 * Return: 0 if a decrement cannot be done without blocking
2927 * 1 if a decrement succeeded.
2928 *
2929 * If a completion is being used as a counting completion,
2930 * attempt to decrement the counter without blocking. This
2931 * enables us to avoid waiting if the resource the completion
2932 * is protecting is not available.
2933 */
2934 bool try_wait_for_completion(struct completion *x)
2935 {
2936 unsigned long flags;
2937 int ret = 1;
2938
2939 spin_lock_irqsave(&x->wait.lock, flags);
2940 if (!x->done)
2941 ret = 0;
2942 else
2943 x->done--;
2944 spin_unlock_irqrestore(&x->wait.lock, flags);
2945 return ret;
2946 }
2947 EXPORT_SYMBOL(try_wait_for_completion);
2948
2949 /**
2950 * completion_done - Test to see if a completion has any waiters
2951 * @x: completion structure
2952 *
2953 * Return: 0 if there are waiters (wait_for_completion() in progress)
2954 * 1 if there are no waiters.
2955 *
2956 */
2957 bool completion_done(struct completion *x)
2958 {
2959 unsigned long flags;
2960 int ret = 1;
2961
2962 spin_lock_irqsave(&x->wait.lock, flags);
2963 if (!x->done)
2964 ret = 0;
2965 spin_unlock_irqrestore(&x->wait.lock, flags);
2966 return ret;
2967 }
2968 EXPORT_SYMBOL(completion_done);
2969
2970 static long __sched
2971 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2972 {
2973 unsigned long flags;
2974 wait_queue_t wait;
2975
2976 init_waitqueue_entry(&wait, current);
2977
2978 __set_current_state(state);
2979
2980 spin_lock_irqsave(&q->lock, flags);
2981 __add_wait_queue(q, &wait);
2982 spin_unlock(&q->lock);
2983 timeout = schedule_timeout(timeout);
2984 spin_lock_irq(&q->lock);
2985 __remove_wait_queue(q, &wait);
2986 spin_unlock_irqrestore(&q->lock, flags);
2987
2988 return timeout;
2989 }
2990
2991 void __sched interruptible_sleep_on(wait_queue_head_t *q)
2992 {
2993 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2994 }
2995 EXPORT_SYMBOL(interruptible_sleep_on);
2996
2997 long __sched
2998 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2999 {
3000 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3001 }
3002 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3003
3004 void __sched sleep_on(wait_queue_head_t *q)
3005 {
3006 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3007 }
3008 EXPORT_SYMBOL(sleep_on);
3009
3010 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3011 {
3012 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3013 }
3014 EXPORT_SYMBOL(sleep_on_timeout);
3015
3016 #ifdef CONFIG_RT_MUTEXES
3017
3018 /*
3019 * rt_mutex_setprio - set the current priority of a task
3020 * @p: task
3021 * @prio: prio value (kernel-internal form)
3022 *
3023 * This function changes the 'effective' priority of a task. It does
3024 * not touch ->normal_prio like __setscheduler().
3025 *
3026 * Used by the rt_mutex code to implement priority inheritance logic.
3027 */
3028 void rt_mutex_setprio(struct task_struct *p, int prio)
3029 {
3030 int oldprio, on_rq, running;
3031 struct rq *rq;
3032 const struct sched_class *prev_class;
3033
3034 BUG_ON(prio < 0 || prio > MAX_PRIO);
3035
3036 rq = __task_rq_lock(p);
3037
3038 /*
3039 * Idle task boosting is a nono in general. There is one
3040 * exception, when PREEMPT_RT and NOHZ is active:
3041 *
3042 * The idle task calls get_next_timer_interrupt() and holds
3043 * the timer wheel base->lock on the CPU and another CPU wants
3044 * to access the timer (probably to cancel it). We can safely
3045 * ignore the boosting request, as the idle CPU runs this code
3046 * with interrupts disabled and will complete the lock
3047 * protected section without being interrupted. So there is no
3048 * real need to boost.
3049 */
3050 if (unlikely(p == rq->idle)) {
3051 WARN_ON(p != rq->curr);
3052 WARN_ON(p->pi_blocked_on);
3053 goto out_unlock;
3054 }
3055
3056 trace_sched_pi_setprio(p, prio);
3057 oldprio = p->prio;
3058 prev_class = p->sched_class;
3059 on_rq = p->on_rq;
3060 running = task_current(rq, p);
3061 if (on_rq)
3062 dequeue_task(rq, p, 0);
3063 if (running)
3064 p->sched_class->put_prev_task(rq, p);
3065
3066 if (rt_prio(prio))
3067 p->sched_class = &rt_sched_class;
3068 else
3069 p->sched_class = &fair_sched_class;
3070
3071 p->prio = prio;
3072
3073 if (running)
3074 p->sched_class->set_curr_task(rq);
3075 if (on_rq)
3076 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3077
3078 check_class_changed(rq, p, prev_class, oldprio);
3079 out_unlock:
3080 __task_rq_unlock(rq);
3081 }
3082 #endif
3083 void set_user_nice(struct task_struct *p, long nice)
3084 {
3085 int old_prio, delta, on_rq;
3086 unsigned long flags;
3087 struct rq *rq;
3088
3089 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3090 return;
3091 /*
3092 * We have to be careful, if called from sys_setpriority(),
3093 * the task might be in the middle of scheduling on another CPU.
3094 */
3095 rq = task_rq_lock(p, &flags);
3096 /*
3097 * The RT priorities are set via sched_setscheduler(), but we still
3098 * allow the 'normal' nice value to be set - but as expected
3099 * it wont have any effect on scheduling until the task is
3100 * SCHED_FIFO/SCHED_RR:
3101 */
3102 if (task_has_rt_policy(p)) {
3103 p->static_prio = NICE_TO_PRIO(nice);
3104 goto out_unlock;
3105 }
3106 on_rq = p->on_rq;
3107 if (on_rq)
3108 dequeue_task(rq, p, 0);
3109
3110 p->static_prio = NICE_TO_PRIO(nice);
3111 set_load_weight(p);
3112 old_prio = p->prio;
3113 p->prio = effective_prio(p);
3114 delta = p->prio - old_prio;
3115
3116 if (on_rq) {
3117 enqueue_task(rq, p, 0);
3118 /*
3119 * If the task increased its priority or is running and
3120 * lowered its priority, then reschedule its CPU:
3121 */
3122 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3123 resched_task(rq->curr);
3124 }
3125 out_unlock:
3126 task_rq_unlock(rq, p, &flags);
3127 }
3128 EXPORT_SYMBOL(set_user_nice);
3129
3130 /*
3131 * can_nice - check if a task can reduce its nice value
3132 * @p: task
3133 * @nice: nice value
3134 */
3135 int can_nice(const struct task_struct *p, const int nice)
3136 {
3137 /* convert nice value [19,-20] to rlimit style value [1,40] */
3138 int nice_rlim = 20 - nice;
3139
3140 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3141 capable(CAP_SYS_NICE));
3142 }
3143
3144 #ifdef __ARCH_WANT_SYS_NICE
3145
3146 /*
3147 * sys_nice - change the priority of the current process.
3148 * @increment: priority increment
3149 *
3150 * sys_setpriority is a more generic, but much slower function that
3151 * does similar things.
3152 */
3153 SYSCALL_DEFINE1(nice, int, increment)
3154 {
3155 long nice, retval;
3156
3157 /*
3158 * Setpriority might change our priority at the same moment.
3159 * We don't have to worry. Conceptually one call occurs first
3160 * and we have a single winner.
3161 */
3162 if (increment < -40)
3163 increment = -40;
3164 if (increment > 40)
3165 increment = 40;
3166
3167 nice = TASK_NICE(current) + increment;
3168 if (nice < -20)
3169 nice = -20;
3170 if (nice > 19)
3171 nice = 19;
3172
3173 if (increment < 0 && !can_nice(current, nice))
3174 return -EPERM;
3175
3176 retval = security_task_setnice(current, nice);
3177 if (retval)
3178 return retval;
3179
3180 set_user_nice(current, nice);
3181 return 0;
3182 }
3183
3184 #endif
3185
3186 /**
3187 * task_prio - return the priority value of a given task.
3188 * @p: the task in question.
3189 *
3190 * Return: The priority value as seen by users in /proc.
3191 * RT tasks are offset by -200. Normal tasks are centered
3192 * around 0, value goes from -16 to +15.
3193 */
3194 int task_prio(const struct task_struct *p)
3195 {
3196 return p->prio - MAX_RT_PRIO;
3197 }
3198
3199 /**
3200 * task_nice - return the nice value of a given task.
3201 * @p: the task in question.
3202 *
3203 * Return: The nice value [ -20 ... 0 ... 19 ].
3204 */
3205 int task_nice(const struct task_struct *p)
3206 {
3207 return TASK_NICE(p);
3208 }
3209 EXPORT_SYMBOL(task_nice);
3210
3211 /**
3212 * idle_cpu - is a given cpu idle currently?
3213 * @cpu: the processor in question.
3214 *
3215 * Return: 1 if the CPU is currently idle. 0 otherwise.
3216 */
3217 int idle_cpu(int cpu)
3218 {
3219 struct rq *rq = cpu_rq(cpu);
3220
3221 if (rq->curr != rq->idle)
3222 return 0;
3223
3224 if (rq->nr_running)
3225 return 0;
3226
3227 #ifdef CONFIG_SMP
3228 if (!llist_empty(&rq->wake_list))
3229 return 0;
3230 #endif
3231
3232 return 1;
3233 }
3234
3235 /**
3236 * idle_task - return the idle task for a given cpu.
3237 * @cpu: the processor in question.
3238 *
3239 * Return: The idle task for the cpu @cpu.
3240 */
3241 struct task_struct *idle_task(int cpu)
3242 {
3243 return cpu_rq(cpu)->idle;
3244 }
3245
3246 /**
3247 * find_process_by_pid - find a process with a matching PID value.
3248 * @pid: the pid in question.
3249 *
3250 * The task of @pid, if found. %NULL otherwise.
3251 */
3252 static struct task_struct *find_process_by_pid(pid_t pid)
3253 {
3254 return pid ? find_task_by_vpid(pid) : current;
3255 }
3256
3257 /* Actually do priority change: must hold rq lock. */
3258 static void
3259 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3260 {
3261 p->policy = policy;
3262 p->rt_priority = prio;
3263 p->normal_prio = normal_prio(p);
3264 /* we are holding p->pi_lock already */
3265 p->prio = rt_mutex_getprio(p);
3266 if (rt_prio(p->prio))
3267 p->sched_class = &rt_sched_class;
3268 else
3269 p->sched_class = &fair_sched_class;
3270 set_load_weight(p);
3271 }
3272
3273 /*
3274 * check the target process has a UID that matches the current process's
3275 */
3276 static bool check_same_owner(struct task_struct *p)
3277 {
3278 const struct cred *cred = current_cred(), *pcred;
3279 bool match;
3280
3281 rcu_read_lock();
3282 pcred = __task_cred(p);
3283 match = (uid_eq(cred->euid, pcred->euid) ||
3284 uid_eq(cred->euid, pcred->uid));
3285 rcu_read_unlock();
3286 return match;
3287 }
3288
3289 static int __sched_setscheduler(struct task_struct *p, int policy,
3290 const struct sched_param *param, bool user)
3291 {
3292 int retval, oldprio, oldpolicy = -1, on_rq, running;
3293 unsigned long flags;
3294 const struct sched_class *prev_class;
3295 struct rq *rq;
3296 int reset_on_fork;
3297
3298 /* may grab non-irq protected spin_locks */
3299 BUG_ON(in_interrupt());
3300 recheck:
3301 /* double check policy once rq lock held */
3302 if (policy < 0) {
3303 reset_on_fork = p->sched_reset_on_fork;
3304 policy = oldpolicy = p->policy;
3305 } else {
3306 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3307 policy &= ~SCHED_RESET_ON_FORK;
3308
3309 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3310 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3311 policy != SCHED_IDLE)
3312 return -EINVAL;
3313 }
3314
3315 /*
3316 * Valid priorities for SCHED_FIFO and SCHED_RR are
3317 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3318 * SCHED_BATCH and SCHED_IDLE is 0.
3319 */
3320 if (param->sched_priority < 0 ||
3321 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3322 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3323 return -EINVAL;
3324 if (rt_policy(policy) != (param->sched_priority != 0))
3325 return -EINVAL;
3326
3327 /*
3328 * Allow unprivileged RT tasks to decrease priority:
3329 */
3330 if (user && !capable(CAP_SYS_NICE)) {
3331 if (rt_policy(policy)) {
3332 unsigned long rlim_rtprio =
3333 task_rlimit(p, RLIMIT_RTPRIO);
3334
3335 /* can't set/change the rt policy */
3336 if (policy != p->policy && !rlim_rtprio)
3337 return -EPERM;
3338
3339 /* can't increase priority */
3340 if (param->sched_priority > p->rt_priority &&
3341 param->sched_priority > rlim_rtprio)
3342 return -EPERM;
3343 }
3344
3345 /*
3346 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3347 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3348 */
3349 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3350 if (!can_nice(p, TASK_NICE(p)))
3351 return -EPERM;
3352 }
3353
3354 /* can't change other user's priorities */
3355 if (!check_same_owner(p))
3356 return -EPERM;
3357
3358 /* Normal users shall not reset the sched_reset_on_fork flag */
3359 if (p->sched_reset_on_fork && !reset_on_fork)
3360 return -EPERM;
3361 }
3362
3363 if (user) {
3364 retval = security_task_setscheduler(p);
3365 if (retval)
3366 return retval;
3367 }
3368
3369 /*
3370 * make sure no PI-waiters arrive (or leave) while we are
3371 * changing the priority of the task:
3372 *
3373 * To be able to change p->policy safely, the appropriate
3374 * runqueue lock must be held.
3375 */
3376 rq = task_rq_lock(p, &flags);
3377
3378 /*
3379 * Changing the policy of the stop threads its a very bad idea
3380 */
3381 if (p == rq->stop) {
3382 task_rq_unlock(rq, p, &flags);
3383 return -EINVAL;
3384 }
3385
3386 /*
3387 * If not changing anything there's no need to proceed further:
3388 */
3389 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3390 param->sched_priority == p->rt_priority))) {
3391 task_rq_unlock(rq, p, &flags);
3392 return 0;
3393 }
3394
3395 #ifdef CONFIG_RT_GROUP_SCHED
3396 if (user) {
3397 /*
3398 * Do not allow realtime tasks into groups that have no runtime
3399 * assigned.
3400 */
3401 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3402 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3403 !task_group_is_autogroup(task_group(p))) {
3404 task_rq_unlock(rq, p, &flags);
3405 return -EPERM;
3406 }
3407 }
3408 #endif
3409
3410 /* recheck policy now with rq lock held */
3411 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3412 policy = oldpolicy = -1;
3413 task_rq_unlock(rq, p, &flags);
3414 goto recheck;
3415 }
3416 on_rq = p->on_rq;
3417 running = task_current(rq, p);
3418 if (on_rq)
3419 dequeue_task(rq, p, 0);
3420 if (running)
3421 p->sched_class->put_prev_task(rq, p);
3422
3423 p->sched_reset_on_fork = reset_on_fork;
3424
3425 oldprio = p->prio;
3426 prev_class = p->sched_class;
3427 __setscheduler(rq, p, policy, param->sched_priority);
3428
3429 if (running)
3430 p->sched_class->set_curr_task(rq);
3431 if (on_rq)
3432 enqueue_task(rq, p, 0);
3433
3434 check_class_changed(rq, p, prev_class, oldprio);
3435 task_rq_unlock(rq, p, &flags);
3436
3437 rt_mutex_adjust_pi(p);
3438
3439 return 0;
3440 }
3441
3442 /**
3443 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3444 * @p: the task in question.
3445 * @policy: new policy.
3446 * @param: structure containing the new RT priority.
3447 *
3448 * Return: 0 on success. An error code otherwise.
3449 *
3450 * NOTE that the task may be already dead.
3451 */
3452 int sched_setscheduler(struct task_struct *p, int policy,
3453 const struct sched_param *param)
3454 {
3455 return __sched_setscheduler(p, policy, param, true);
3456 }
3457 EXPORT_SYMBOL_GPL(sched_setscheduler);
3458
3459 /**
3460 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3461 * @p: the task in question.
3462 * @policy: new policy.
3463 * @param: structure containing the new RT priority.
3464 *
3465 * Just like sched_setscheduler, only don't bother checking if the
3466 * current context has permission. For example, this is needed in
3467 * stop_machine(): we create temporary high priority worker threads,
3468 * but our caller might not have that capability.
3469 *
3470 * Return: 0 on success. An error code otherwise.
3471 */
3472 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3473 const struct sched_param *param)
3474 {
3475 return __sched_setscheduler(p, policy, param, false);
3476 }
3477
3478 static int
3479 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3480 {
3481 struct sched_param lparam;
3482 struct task_struct *p;
3483 int retval;
3484
3485 if (!param || pid < 0)
3486 return -EINVAL;
3487 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3488 return -EFAULT;
3489
3490 rcu_read_lock();
3491 retval = -ESRCH;
3492 p = find_process_by_pid(pid);
3493 if (p != NULL)
3494 retval = sched_setscheduler(p, policy, &lparam);
3495 rcu_read_unlock();
3496
3497 return retval;
3498 }
3499
3500 /**
3501 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3502 * @pid: the pid in question.
3503 * @policy: new policy.
3504 * @param: structure containing the new RT priority.
3505 *
3506 * Return: 0 on success. An error code otherwise.
3507 */
3508 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3509 struct sched_param __user *, param)
3510 {
3511 /* negative values for policy are not valid */
3512 if (policy < 0)
3513 return -EINVAL;
3514
3515 return do_sched_setscheduler(pid, policy, param);
3516 }
3517
3518 /**
3519 * sys_sched_setparam - set/change the RT priority of a thread
3520 * @pid: the pid in question.
3521 * @param: structure containing the new RT priority.
3522 *
3523 * Return: 0 on success. An error code otherwise.
3524 */
3525 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3526 {
3527 return do_sched_setscheduler(pid, -1, param);
3528 }
3529
3530 /**
3531 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3532 * @pid: the pid in question.
3533 *
3534 * Return: On success, the policy of the thread. Otherwise, a negative error
3535 * code.
3536 */
3537 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3538 {
3539 struct task_struct *p;
3540 int retval;
3541
3542 if (pid < 0)
3543 return -EINVAL;
3544
3545 retval = -ESRCH;
3546 rcu_read_lock();
3547 p = find_process_by_pid(pid);
3548 if (p) {
3549 retval = security_task_getscheduler(p);
3550 if (!retval)
3551 retval = p->policy
3552 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3553 }
3554 rcu_read_unlock();
3555 return retval;
3556 }
3557
3558 /**
3559 * sys_sched_getparam - get the RT priority of a thread
3560 * @pid: the pid in question.
3561 * @param: structure containing the RT priority.
3562 *
3563 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3564 * code.
3565 */
3566 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3567 {
3568 struct sched_param lp;
3569 struct task_struct *p;
3570 int retval;
3571
3572 if (!param || pid < 0)
3573 return -EINVAL;
3574
3575 rcu_read_lock();
3576 p = find_process_by_pid(pid);
3577 retval = -ESRCH;
3578 if (!p)
3579 goto out_unlock;
3580
3581 retval = security_task_getscheduler(p);
3582 if (retval)
3583 goto out_unlock;
3584
3585 lp.sched_priority = p->rt_priority;
3586 rcu_read_unlock();
3587
3588 /*
3589 * This one might sleep, we cannot do it with a spinlock held ...
3590 */
3591 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3592
3593 return retval;
3594
3595 out_unlock:
3596 rcu_read_unlock();
3597 return retval;
3598 }
3599
3600 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3601 {
3602 cpumask_var_t cpus_allowed, new_mask;
3603 struct task_struct *p;
3604 int retval;
3605
3606 get_online_cpus();
3607 rcu_read_lock();
3608
3609 p = find_process_by_pid(pid);
3610 if (!p) {
3611 rcu_read_unlock();
3612 put_online_cpus();
3613 return -ESRCH;
3614 }
3615
3616 /* Prevent p going away */
3617 get_task_struct(p);
3618 rcu_read_unlock();
3619
3620 if (p->flags & PF_NO_SETAFFINITY) {
3621 retval = -EINVAL;
3622 goto out_put_task;
3623 }
3624 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3625 retval = -ENOMEM;
3626 goto out_put_task;
3627 }
3628 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3629 retval = -ENOMEM;
3630 goto out_free_cpus_allowed;
3631 }
3632 retval = -EPERM;
3633 if (!check_same_owner(p)) {
3634 rcu_read_lock();
3635 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3636 rcu_read_unlock();
3637 goto out_unlock;
3638 }
3639 rcu_read_unlock();
3640 }
3641
3642 retval = security_task_setscheduler(p);
3643 if (retval)
3644 goto out_unlock;
3645
3646 cpuset_cpus_allowed(p, cpus_allowed);
3647 cpumask_and(new_mask, in_mask, cpus_allowed);
3648 again:
3649 retval = set_cpus_allowed_ptr(p, new_mask);
3650
3651 if (!retval) {
3652 cpuset_cpus_allowed(p, cpus_allowed);
3653 if (!cpumask_subset(new_mask, cpus_allowed)) {
3654 /*
3655 * We must have raced with a concurrent cpuset
3656 * update. Just reset the cpus_allowed to the
3657 * cpuset's cpus_allowed
3658 */
3659 cpumask_copy(new_mask, cpus_allowed);
3660 goto again;
3661 }
3662 }
3663 out_unlock:
3664 free_cpumask_var(new_mask);
3665 out_free_cpus_allowed:
3666 free_cpumask_var(cpus_allowed);
3667 out_put_task:
3668 put_task_struct(p);
3669 put_online_cpus();
3670 return retval;
3671 }
3672
3673 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3674 struct cpumask *new_mask)
3675 {
3676 if (len < cpumask_size())
3677 cpumask_clear(new_mask);
3678 else if (len > cpumask_size())
3679 len = cpumask_size();
3680
3681 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3682 }
3683
3684 /**
3685 * sys_sched_setaffinity - set the cpu affinity of a process
3686 * @pid: pid of the process
3687 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3688 * @user_mask_ptr: user-space pointer to the new cpu mask
3689 *
3690 * Return: 0 on success. An error code otherwise.
3691 */
3692 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3693 unsigned long __user *, user_mask_ptr)
3694 {
3695 cpumask_var_t new_mask;
3696 int retval;
3697
3698 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3699 return -ENOMEM;
3700
3701 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3702 if (retval == 0)
3703 retval = sched_setaffinity(pid, new_mask);
3704 free_cpumask_var(new_mask);
3705 return retval;
3706 }
3707
3708 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3709 {
3710 struct task_struct *p;
3711 unsigned long flags;
3712 int retval;
3713
3714 get_online_cpus();
3715 rcu_read_lock();
3716
3717 retval = -ESRCH;
3718 p = find_process_by_pid(pid);
3719 if (!p)
3720 goto out_unlock;
3721
3722 retval = security_task_getscheduler(p);
3723 if (retval)
3724 goto out_unlock;
3725
3726 raw_spin_lock_irqsave(&p->pi_lock, flags);
3727 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3728 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3729
3730 out_unlock:
3731 rcu_read_unlock();
3732 put_online_cpus();
3733
3734 return retval;
3735 }
3736
3737 /**
3738 * sys_sched_getaffinity - get the cpu affinity of a process
3739 * @pid: pid of the process
3740 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3741 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3742 *
3743 * Return: 0 on success. An error code otherwise.
3744 */
3745 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3746 unsigned long __user *, user_mask_ptr)
3747 {
3748 int ret;
3749 cpumask_var_t mask;
3750
3751 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3752 return -EINVAL;
3753 if (len & (sizeof(unsigned long)-1))
3754 return -EINVAL;
3755
3756 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3757 return -ENOMEM;
3758
3759 ret = sched_getaffinity(pid, mask);
3760 if (ret == 0) {
3761 size_t retlen = min_t(size_t, len, cpumask_size());
3762
3763 if (copy_to_user(user_mask_ptr, mask, retlen))
3764 ret = -EFAULT;
3765 else
3766 ret = retlen;
3767 }
3768 free_cpumask_var(mask);
3769
3770 return ret;
3771 }
3772
3773 /**
3774 * sys_sched_yield - yield the current processor to other threads.
3775 *
3776 * This function yields the current CPU to other tasks. If there are no
3777 * other threads running on this CPU then this function will return.
3778 *
3779 * Return: 0.
3780 */
3781 SYSCALL_DEFINE0(sched_yield)
3782 {
3783 struct rq *rq = this_rq_lock();
3784
3785 schedstat_inc(rq, yld_count);
3786 current->sched_class->yield_task(rq);
3787
3788 /*
3789 * Since we are going to call schedule() anyway, there's
3790 * no need to preempt or enable interrupts:
3791 */
3792 __release(rq->lock);
3793 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3794 do_raw_spin_unlock(&rq->lock);
3795 sched_preempt_enable_no_resched();
3796
3797 schedule();
3798
3799 return 0;
3800 }
3801
3802 static void __cond_resched(void)
3803 {
3804 __preempt_count_add(PREEMPT_ACTIVE);
3805 __schedule();
3806 __preempt_count_sub(PREEMPT_ACTIVE);
3807 }
3808
3809 int __sched _cond_resched(void)
3810 {
3811 if (should_resched()) {
3812 __cond_resched();
3813 return 1;
3814 }
3815 return 0;
3816 }
3817 EXPORT_SYMBOL(_cond_resched);
3818
3819 /*
3820 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3821 * call schedule, and on return reacquire the lock.
3822 *
3823 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3824 * operations here to prevent schedule() from being called twice (once via
3825 * spin_unlock(), once by hand).
3826 */
3827 int __cond_resched_lock(spinlock_t *lock)
3828 {
3829 int resched = should_resched();
3830 int ret = 0;
3831
3832 lockdep_assert_held(lock);
3833
3834 if (spin_needbreak(lock) || resched) {
3835 spin_unlock(lock);
3836 if (resched)
3837 __cond_resched();
3838 else
3839 cpu_relax();
3840 ret = 1;
3841 spin_lock(lock);
3842 }
3843 return ret;
3844 }
3845 EXPORT_SYMBOL(__cond_resched_lock);
3846
3847 int __sched __cond_resched_softirq(void)
3848 {
3849 BUG_ON(!in_softirq());
3850
3851 if (should_resched()) {
3852 local_bh_enable();
3853 __cond_resched();
3854 local_bh_disable();
3855 return 1;
3856 }
3857 return 0;
3858 }
3859 EXPORT_SYMBOL(__cond_resched_softirq);
3860
3861 /**
3862 * yield - yield the current processor to other threads.
3863 *
3864 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3865 *
3866 * The scheduler is at all times free to pick the calling task as the most
3867 * eligible task to run, if removing the yield() call from your code breaks
3868 * it, its already broken.
3869 *
3870 * Typical broken usage is:
3871 *
3872 * while (!event)
3873 * yield();
3874 *
3875 * where one assumes that yield() will let 'the other' process run that will
3876 * make event true. If the current task is a SCHED_FIFO task that will never
3877 * happen. Never use yield() as a progress guarantee!!
3878 *
3879 * If you want to use yield() to wait for something, use wait_event().
3880 * If you want to use yield() to be 'nice' for others, use cond_resched().
3881 * If you still want to use yield(), do not!
3882 */
3883 void __sched yield(void)
3884 {
3885 set_current_state(TASK_RUNNING);
3886 sys_sched_yield();
3887 }
3888 EXPORT_SYMBOL(yield);
3889
3890 /**
3891 * yield_to - yield the current processor to another thread in
3892 * your thread group, or accelerate that thread toward the
3893 * processor it's on.
3894 * @p: target task
3895 * @preempt: whether task preemption is allowed or not
3896 *
3897 * It's the caller's job to ensure that the target task struct
3898 * can't go away on us before we can do any checks.
3899 *
3900 * Return:
3901 * true (>0) if we indeed boosted the target task.
3902 * false (0) if we failed to boost the target.
3903 * -ESRCH if there's no task to yield to.
3904 */
3905 bool __sched yield_to(struct task_struct *p, bool preempt)
3906 {
3907 struct task_struct *curr = current;
3908 struct rq *rq, *p_rq;
3909 unsigned long flags;
3910 int yielded = 0;
3911
3912 local_irq_save(flags);
3913 rq = this_rq();
3914
3915 again:
3916 p_rq = task_rq(p);
3917 /*
3918 * If we're the only runnable task on the rq and target rq also
3919 * has only one task, there's absolutely no point in yielding.
3920 */
3921 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3922 yielded = -ESRCH;
3923 goto out_irq;
3924 }
3925
3926 double_rq_lock(rq, p_rq);
3927 while (task_rq(p) != p_rq) {
3928 double_rq_unlock(rq, p_rq);
3929 goto again;
3930 }
3931
3932 if (!curr->sched_class->yield_to_task)
3933 goto out_unlock;
3934
3935 if (curr->sched_class != p->sched_class)
3936 goto out_unlock;
3937
3938 if (task_running(p_rq, p) || p->state)
3939 goto out_unlock;
3940
3941 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3942 if (yielded) {
3943 schedstat_inc(rq, yld_count);
3944 /*
3945 * Make p's CPU reschedule; pick_next_entity takes care of
3946 * fairness.
3947 */
3948 if (preempt && rq != p_rq)
3949 resched_task(p_rq->curr);
3950 }
3951
3952 out_unlock:
3953 double_rq_unlock(rq, p_rq);
3954 out_irq:
3955 local_irq_restore(flags);
3956
3957 if (yielded > 0)
3958 schedule();
3959
3960 return yielded;
3961 }
3962 EXPORT_SYMBOL_GPL(yield_to);
3963
3964 /*
3965 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3966 * that process accounting knows that this is a task in IO wait state.
3967 */
3968 void __sched io_schedule(void)
3969 {
3970 struct rq *rq = raw_rq();
3971
3972 delayacct_blkio_start();
3973 atomic_inc(&rq->nr_iowait);
3974 blk_flush_plug(current);
3975 current->in_iowait = 1;
3976 schedule();
3977 current->in_iowait = 0;
3978 atomic_dec(&rq->nr_iowait);
3979 delayacct_blkio_end();
3980 }
3981 EXPORT_SYMBOL(io_schedule);
3982
3983 long __sched io_schedule_timeout(long timeout)
3984 {
3985 struct rq *rq = raw_rq();
3986 long ret;
3987
3988 delayacct_blkio_start();
3989 atomic_inc(&rq->nr_iowait);
3990 blk_flush_plug(current);
3991 current->in_iowait = 1;
3992 ret = schedule_timeout(timeout);
3993 current->in_iowait = 0;
3994 atomic_dec(&rq->nr_iowait);
3995 delayacct_blkio_end();
3996 return ret;
3997 }
3998
3999 /**
4000 * sys_sched_get_priority_max - return maximum RT priority.
4001 * @policy: scheduling class.
4002 *
4003 * Return: On success, this syscall returns the maximum
4004 * rt_priority that can be used by a given scheduling class.
4005 * On failure, a negative error code is returned.
4006 */
4007 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4008 {
4009 int ret = -EINVAL;
4010
4011 switch (policy) {
4012 case SCHED_FIFO:
4013 case SCHED_RR:
4014 ret = MAX_USER_RT_PRIO-1;
4015 break;
4016 case SCHED_NORMAL:
4017 case SCHED_BATCH:
4018 case SCHED_IDLE:
4019 ret = 0;
4020 break;
4021 }
4022 return ret;
4023 }
4024
4025 /**
4026 * sys_sched_get_priority_min - return minimum RT priority.
4027 * @policy: scheduling class.
4028 *
4029 * Return: On success, this syscall returns the minimum
4030 * rt_priority that can be used by a given scheduling class.
4031 * On failure, a negative error code is returned.
4032 */
4033 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4034 {
4035 int ret = -EINVAL;
4036
4037 switch (policy) {
4038 case SCHED_FIFO:
4039 case SCHED_RR:
4040 ret = 1;
4041 break;
4042 case SCHED_NORMAL:
4043 case SCHED_BATCH:
4044 case SCHED_IDLE:
4045 ret = 0;
4046 }
4047 return ret;
4048 }
4049
4050 /**
4051 * sys_sched_rr_get_interval - return the default timeslice of a process.
4052 * @pid: pid of the process.
4053 * @interval: userspace pointer to the timeslice value.
4054 *
4055 * this syscall writes the default timeslice value of a given process
4056 * into the user-space timespec buffer. A value of '0' means infinity.
4057 *
4058 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4059 * an error code.
4060 */
4061 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4062 struct timespec __user *, interval)
4063 {
4064 struct task_struct *p;
4065 unsigned int time_slice;
4066 unsigned long flags;
4067 struct rq *rq;
4068 int retval;
4069 struct timespec t;
4070
4071 if (pid < 0)
4072 return -EINVAL;
4073
4074 retval = -ESRCH;
4075 rcu_read_lock();
4076 p = find_process_by_pid(pid);
4077 if (!p)
4078 goto out_unlock;
4079
4080 retval = security_task_getscheduler(p);
4081 if (retval)
4082 goto out_unlock;
4083
4084 rq = task_rq_lock(p, &flags);
4085 time_slice = p->sched_class->get_rr_interval(rq, p);
4086 task_rq_unlock(rq, p, &flags);
4087
4088 rcu_read_unlock();
4089 jiffies_to_timespec(time_slice, &t);
4090 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4091 return retval;
4092
4093 out_unlock:
4094 rcu_read_unlock();
4095 return retval;
4096 }
4097
4098 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4099
4100 void sched_show_task(struct task_struct *p)
4101 {
4102 unsigned long free = 0;
4103 int ppid;
4104 unsigned state;
4105
4106 state = p->state ? __ffs(p->state) + 1 : 0;
4107 printk(KERN_INFO "%-15.15s %c", p->comm,
4108 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4109 #if BITS_PER_LONG == 32
4110 if (state == TASK_RUNNING)
4111 printk(KERN_CONT " running ");
4112 else
4113 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4114 #else
4115 if (state == TASK_RUNNING)
4116 printk(KERN_CONT " running task ");
4117 else
4118 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4119 #endif
4120 #ifdef CONFIG_DEBUG_STACK_USAGE
4121 free = stack_not_used(p);
4122 #endif
4123 rcu_read_lock();
4124 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4125 rcu_read_unlock();
4126 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4127 task_pid_nr(p), ppid,
4128 (unsigned long)task_thread_info(p)->flags);
4129
4130 print_worker_info(KERN_INFO, p);
4131 show_stack(p, NULL);
4132 }
4133
4134 void show_state_filter(unsigned long state_filter)
4135 {
4136 struct task_struct *g, *p;
4137
4138 #if BITS_PER_LONG == 32
4139 printk(KERN_INFO
4140 " task PC stack pid father\n");
4141 #else
4142 printk(KERN_INFO
4143 " task PC stack pid father\n");
4144 #endif
4145 rcu_read_lock();
4146 do_each_thread(g, p) {
4147 /*
4148 * reset the NMI-timeout, listing all files on a slow
4149 * console might take a lot of time:
4150 */
4151 touch_nmi_watchdog();
4152 if (!state_filter || (p->state & state_filter))
4153 sched_show_task(p);
4154 } while_each_thread(g, p);
4155
4156 touch_all_softlockup_watchdogs();
4157
4158 #ifdef CONFIG_SCHED_DEBUG
4159 sysrq_sched_debug_show();
4160 #endif
4161 rcu_read_unlock();
4162 /*
4163 * Only show locks if all tasks are dumped:
4164 */
4165 if (!state_filter)
4166 debug_show_all_locks();
4167 }
4168
4169 void init_idle_bootup_task(struct task_struct *idle)
4170 {
4171 idle->sched_class = &idle_sched_class;
4172 }
4173
4174 /**
4175 * init_idle - set up an idle thread for a given CPU
4176 * @idle: task in question
4177 * @cpu: cpu the idle task belongs to
4178 *
4179 * NOTE: this function does not set the idle thread's NEED_RESCHED
4180 * flag, to make booting more robust.
4181 */
4182 void init_idle(struct task_struct *idle, int cpu)
4183 {
4184 struct rq *rq = cpu_rq(cpu);
4185 unsigned long flags;
4186
4187 raw_spin_lock_irqsave(&rq->lock, flags);
4188
4189 __sched_fork(idle);
4190 idle->state = TASK_RUNNING;
4191 idle->se.exec_start = sched_clock();
4192
4193 do_set_cpus_allowed(idle, cpumask_of(cpu));
4194 /*
4195 * We're having a chicken and egg problem, even though we are
4196 * holding rq->lock, the cpu isn't yet set to this cpu so the
4197 * lockdep check in task_group() will fail.
4198 *
4199 * Similar case to sched_fork(). / Alternatively we could
4200 * use task_rq_lock() here and obtain the other rq->lock.
4201 *
4202 * Silence PROVE_RCU
4203 */
4204 rcu_read_lock();
4205 __set_task_cpu(idle, cpu);
4206 rcu_read_unlock();
4207
4208 rq->curr = rq->idle = idle;
4209 #if defined(CONFIG_SMP)
4210 idle->on_cpu = 1;
4211 #endif
4212 raw_spin_unlock_irqrestore(&rq->lock, flags);
4213
4214 /* Set the preempt count _outside_ the spinlocks! */
4215 init_idle_preempt_count(idle, cpu);
4216
4217 /*
4218 * The idle tasks have their own, simple scheduling class:
4219 */
4220 idle->sched_class = &idle_sched_class;
4221 ftrace_graph_init_idle_task(idle, cpu);
4222 vtime_init_idle(idle, cpu);
4223 #if defined(CONFIG_SMP)
4224 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4225 #endif
4226 }
4227
4228 #ifdef CONFIG_SMP
4229 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4230 {
4231 if (p->sched_class && p->sched_class->set_cpus_allowed)
4232 p->sched_class->set_cpus_allowed(p, new_mask);
4233
4234 cpumask_copy(&p->cpus_allowed, new_mask);
4235 p->nr_cpus_allowed = cpumask_weight(new_mask);
4236 }
4237
4238 /*
4239 * This is how migration works:
4240 *
4241 * 1) we invoke migration_cpu_stop() on the target CPU using
4242 * stop_one_cpu().
4243 * 2) stopper starts to run (implicitly forcing the migrated thread
4244 * off the CPU)
4245 * 3) it checks whether the migrated task is still in the wrong runqueue.
4246 * 4) if it's in the wrong runqueue then the migration thread removes
4247 * it and puts it into the right queue.
4248 * 5) stopper completes and stop_one_cpu() returns and the migration
4249 * is done.
4250 */
4251
4252 /*
4253 * Change a given task's CPU affinity. Migrate the thread to a
4254 * proper CPU and schedule it away if the CPU it's executing on
4255 * is removed from the allowed bitmask.
4256 *
4257 * NOTE: the caller must have a valid reference to the task, the
4258 * task must not exit() & deallocate itself prematurely. The
4259 * call is not atomic; no spinlocks may be held.
4260 */
4261 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4262 {
4263 unsigned long flags;
4264 struct rq *rq;
4265 unsigned int dest_cpu;
4266 int ret = 0;
4267
4268 rq = task_rq_lock(p, &flags);
4269
4270 if (cpumask_equal(&p->cpus_allowed, new_mask))
4271 goto out;
4272
4273 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4274 ret = -EINVAL;
4275 goto out;
4276 }
4277
4278 do_set_cpus_allowed(p, new_mask);
4279
4280 /* Can the task run on the task's current CPU? If so, we're done */
4281 if (cpumask_test_cpu(task_cpu(p), new_mask))
4282 goto out;
4283
4284 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4285 if (p->on_rq) {
4286 struct migration_arg arg = { p, dest_cpu };
4287 /* Need help from migration thread: drop lock and wait. */
4288 task_rq_unlock(rq, p, &flags);
4289 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4290 tlb_migrate_finish(p->mm);
4291 return 0;
4292 }
4293 out:
4294 task_rq_unlock(rq, p, &flags);
4295
4296 return ret;
4297 }
4298 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4299
4300 /*
4301 * Move (not current) task off this cpu, onto dest cpu. We're doing
4302 * this because either it can't run here any more (set_cpus_allowed()
4303 * away from this CPU, or CPU going down), or because we're
4304 * attempting to rebalance this task on exec (sched_exec).
4305 *
4306 * So we race with normal scheduler movements, but that's OK, as long
4307 * as the task is no longer on this CPU.
4308 *
4309 * Returns non-zero if task was successfully migrated.
4310 */
4311 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4312 {
4313 struct rq *rq_dest, *rq_src;
4314 int ret = 0;
4315
4316 if (unlikely(!cpu_active(dest_cpu)))
4317 return ret;
4318
4319 rq_src = cpu_rq(src_cpu);
4320 rq_dest = cpu_rq(dest_cpu);
4321
4322 raw_spin_lock(&p->pi_lock);
4323 double_rq_lock(rq_src, rq_dest);
4324 /* Already moved. */
4325 if (task_cpu(p) != src_cpu)
4326 goto done;
4327 /* Affinity changed (again). */
4328 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4329 goto fail;
4330
4331 /*
4332 * If we're not on a rq, the next wake-up will ensure we're
4333 * placed properly.
4334 */
4335 if (p->on_rq) {
4336 dequeue_task(rq_src, p, 0);
4337 set_task_cpu(p, dest_cpu);
4338 enqueue_task(rq_dest, p, 0);
4339 check_preempt_curr(rq_dest, p, 0);
4340 }
4341 done:
4342 ret = 1;
4343 fail:
4344 double_rq_unlock(rq_src, rq_dest);
4345 raw_spin_unlock(&p->pi_lock);
4346 return ret;
4347 }
4348
4349 /*
4350 * migration_cpu_stop - this will be executed by a highprio stopper thread
4351 * and performs thread migration by bumping thread off CPU then
4352 * 'pushing' onto another runqueue.
4353 */
4354 static int migration_cpu_stop(void *data)
4355 {
4356 struct migration_arg *arg = data;
4357
4358 /*
4359 * The original target cpu might have gone down and we might
4360 * be on another cpu but it doesn't matter.
4361 */
4362 local_irq_disable();
4363 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4364 local_irq_enable();
4365 return 0;
4366 }
4367
4368 #ifdef CONFIG_HOTPLUG_CPU
4369
4370 /*
4371 * Ensures that the idle task is using init_mm right before its cpu goes
4372 * offline.
4373 */
4374 void idle_task_exit(void)
4375 {
4376 struct mm_struct *mm = current->active_mm;
4377
4378 BUG_ON(cpu_online(smp_processor_id()));
4379
4380 if (mm != &init_mm)
4381 switch_mm(mm, &init_mm, current);
4382 mmdrop(mm);
4383 }
4384
4385 /*
4386 * Since this CPU is going 'away' for a while, fold any nr_active delta
4387 * we might have. Assumes we're called after migrate_tasks() so that the
4388 * nr_active count is stable.
4389 *
4390 * Also see the comment "Global load-average calculations".
4391 */
4392 static void calc_load_migrate(struct rq *rq)
4393 {
4394 long delta = calc_load_fold_active(rq);
4395 if (delta)
4396 atomic_long_add(delta, &calc_load_tasks);
4397 }
4398
4399 /*
4400 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4401 * try_to_wake_up()->select_task_rq().
4402 *
4403 * Called with rq->lock held even though we'er in stop_machine() and
4404 * there's no concurrency possible, we hold the required locks anyway
4405 * because of lock validation efforts.
4406 */
4407 static void migrate_tasks(unsigned int dead_cpu)
4408 {
4409 struct rq *rq = cpu_rq(dead_cpu);
4410 struct task_struct *next, *stop = rq->stop;
4411 int dest_cpu;
4412
4413 /*
4414 * Fudge the rq selection such that the below task selection loop
4415 * doesn't get stuck on the currently eligible stop task.
4416 *
4417 * We're currently inside stop_machine() and the rq is either stuck
4418 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4419 * either way we should never end up calling schedule() until we're
4420 * done here.
4421 */
4422 rq->stop = NULL;
4423
4424 /*
4425 * put_prev_task() and pick_next_task() sched
4426 * class method both need to have an up-to-date
4427 * value of rq->clock[_task]
4428 */
4429 update_rq_clock(rq);
4430
4431 for ( ; ; ) {
4432 /*
4433 * There's this thread running, bail when that's the only
4434 * remaining thread.
4435 */
4436 if (rq->nr_running == 1)
4437 break;
4438
4439 next = pick_next_task(rq);
4440 BUG_ON(!next);
4441 next->sched_class->put_prev_task(rq, next);
4442
4443 /* Find suitable destination for @next, with force if needed. */
4444 dest_cpu = select_fallback_rq(dead_cpu, next);
4445 raw_spin_unlock(&rq->lock);
4446
4447 __migrate_task(next, dead_cpu, dest_cpu);
4448
4449 raw_spin_lock(&rq->lock);
4450 }
4451
4452 rq->stop = stop;
4453 }
4454
4455 #endif /* CONFIG_HOTPLUG_CPU */
4456
4457 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4458
4459 static struct ctl_table sd_ctl_dir[] = {
4460 {
4461 .procname = "sched_domain",
4462 .mode = 0555,
4463 },
4464 {}
4465 };
4466
4467 static struct ctl_table sd_ctl_root[] = {
4468 {
4469 .procname = "kernel",
4470 .mode = 0555,
4471 .child = sd_ctl_dir,
4472 },
4473 {}
4474 };
4475
4476 static struct ctl_table *sd_alloc_ctl_entry(int n)
4477 {
4478 struct ctl_table *entry =
4479 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4480
4481 return entry;
4482 }
4483
4484 static void sd_free_ctl_entry(struct ctl_table **tablep)
4485 {
4486 struct ctl_table *entry;
4487
4488 /*
4489 * In the intermediate directories, both the child directory and
4490 * procname are dynamically allocated and could fail but the mode
4491 * will always be set. In the lowest directory the names are
4492 * static strings and all have proc handlers.
4493 */
4494 for (entry = *tablep; entry->mode; entry++) {
4495 if (entry->child)
4496 sd_free_ctl_entry(&entry->child);
4497 if (entry->proc_handler == NULL)
4498 kfree(entry->procname);
4499 }
4500
4501 kfree(*tablep);
4502 *tablep = NULL;
4503 }
4504
4505 static int min_load_idx = 0;
4506 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4507
4508 static void
4509 set_table_entry(struct ctl_table *entry,
4510 const char *procname, void *data, int maxlen,
4511 umode_t mode, proc_handler *proc_handler,
4512 bool load_idx)
4513 {
4514 entry->procname = procname;
4515 entry->data = data;
4516 entry->maxlen = maxlen;
4517 entry->mode = mode;
4518 entry->proc_handler = proc_handler;
4519
4520 if (load_idx) {
4521 entry->extra1 = &min_load_idx;
4522 entry->extra2 = &max_load_idx;
4523 }
4524 }
4525
4526 static struct ctl_table *
4527 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4528 {
4529 struct ctl_table *table = sd_alloc_ctl_entry(13);
4530
4531 if (table == NULL)
4532 return NULL;
4533
4534 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4535 sizeof(long), 0644, proc_doulongvec_minmax, false);
4536 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4537 sizeof(long), 0644, proc_doulongvec_minmax, false);
4538 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4539 sizeof(int), 0644, proc_dointvec_minmax, true);
4540 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4541 sizeof(int), 0644, proc_dointvec_minmax, true);
4542 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4543 sizeof(int), 0644, proc_dointvec_minmax, true);
4544 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4545 sizeof(int), 0644, proc_dointvec_minmax, true);
4546 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4547 sizeof(int), 0644, proc_dointvec_minmax, true);
4548 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4549 sizeof(int), 0644, proc_dointvec_minmax, false);
4550 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4551 sizeof(int), 0644, proc_dointvec_minmax, false);
4552 set_table_entry(&table[9], "cache_nice_tries",
4553 &sd->cache_nice_tries,
4554 sizeof(int), 0644, proc_dointvec_minmax, false);
4555 set_table_entry(&table[10], "flags", &sd->flags,
4556 sizeof(int), 0644, proc_dointvec_minmax, false);
4557 set_table_entry(&table[11], "name", sd->name,
4558 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4559 /* &table[12] is terminator */
4560
4561 return table;
4562 }
4563
4564 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4565 {
4566 struct ctl_table *entry, *table;
4567 struct sched_domain *sd;
4568 int domain_num = 0, i;
4569 char buf[32];
4570
4571 for_each_domain(cpu, sd)
4572 domain_num++;
4573 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4574 if (table == NULL)
4575 return NULL;
4576
4577 i = 0;
4578 for_each_domain(cpu, sd) {
4579 snprintf(buf, 32, "domain%d", i);
4580 entry->procname = kstrdup(buf, GFP_KERNEL);
4581 entry->mode = 0555;
4582 entry->child = sd_alloc_ctl_domain_table(sd);
4583 entry++;
4584 i++;
4585 }
4586 return table;
4587 }
4588
4589 static struct ctl_table_header *sd_sysctl_header;
4590 static void register_sched_domain_sysctl(void)
4591 {
4592 int i, cpu_num = num_possible_cpus();
4593 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4594 char buf[32];
4595
4596 WARN_ON(sd_ctl_dir[0].child);
4597 sd_ctl_dir[0].child = entry;
4598
4599 if (entry == NULL)
4600 return;
4601
4602 for_each_possible_cpu(i) {
4603 snprintf(buf, 32, "cpu%d", i);
4604 entry->procname = kstrdup(buf, GFP_KERNEL);
4605 entry->mode = 0555;
4606 entry->child = sd_alloc_ctl_cpu_table(i);
4607 entry++;
4608 }
4609
4610 WARN_ON(sd_sysctl_header);
4611 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4612 }
4613
4614 /* may be called multiple times per register */
4615 static void unregister_sched_domain_sysctl(void)
4616 {
4617 if (sd_sysctl_header)
4618 unregister_sysctl_table(sd_sysctl_header);
4619 sd_sysctl_header = NULL;
4620 if (sd_ctl_dir[0].child)
4621 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4622 }
4623 #else
4624 static void register_sched_domain_sysctl(void)
4625 {
4626 }
4627 static void unregister_sched_domain_sysctl(void)
4628 {
4629 }
4630 #endif
4631
4632 static void set_rq_online(struct rq *rq)
4633 {
4634 if (!rq->online) {
4635 const struct sched_class *class;
4636
4637 cpumask_set_cpu(rq->cpu, rq->rd->online);
4638 rq->online = 1;
4639
4640 for_each_class(class) {
4641 if (class->rq_online)
4642 class->rq_online(rq);
4643 }
4644 }
4645 }
4646
4647 static void set_rq_offline(struct rq *rq)
4648 {
4649 if (rq->online) {
4650 const struct sched_class *class;
4651
4652 for_each_class(class) {
4653 if (class->rq_offline)
4654 class->rq_offline(rq);
4655 }
4656
4657 cpumask_clear_cpu(rq->cpu, rq->rd->online);
4658 rq->online = 0;
4659 }
4660 }
4661
4662 /*
4663 * migration_call - callback that gets triggered when a CPU is added.
4664 * Here we can start up the necessary migration thread for the new CPU.
4665 */
4666 static int
4667 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4668 {
4669 int cpu = (long)hcpu;
4670 unsigned long flags;
4671 struct rq *rq = cpu_rq(cpu);
4672
4673 switch (action & ~CPU_TASKS_FROZEN) {
4674
4675 case CPU_UP_PREPARE:
4676 rq->calc_load_update = calc_load_update;
4677 break;
4678
4679 case CPU_ONLINE:
4680 /* Update our root-domain */
4681 raw_spin_lock_irqsave(&rq->lock, flags);
4682 if (rq->rd) {
4683 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4684
4685 set_rq_online(rq);
4686 }
4687 raw_spin_unlock_irqrestore(&rq->lock, flags);
4688 break;
4689
4690 #ifdef CONFIG_HOTPLUG_CPU
4691 case CPU_DYING:
4692 sched_ttwu_pending();
4693 /* Update our root-domain */
4694 raw_spin_lock_irqsave(&rq->lock, flags);
4695 if (rq->rd) {
4696 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4697 set_rq_offline(rq);
4698 }
4699 migrate_tasks(cpu);
4700 BUG_ON(rq->nr_running != 1); /* the migration thread */
4701 raw_spin_unlock_irqrestore(&rq->lock, flags);
4702 break;
4703
4704 case CPU_DEAD:
4705 calc_load_migrate(rq);
4706 break;
4707 #endif
4708 }
4709
4710 update_max_interval();
4711
4712 return NOTIFY_OK;
4713 }
4714
4715 /*
4716 * Register at high priority so that task migration (migrate_all_tasks)
4717 * happens before everything else. This has to be lower priority than
4718 * the notifier in the perf_event subsystem, though.
4719 */
4720 static struct notifier_block migration_notifier = {
4721 .notifier_call = migration_call,
4722 .priority = CPU_PRI_MIGRATION,
4723 };
4724
4725 static int sched_cpu_active(struct notifier_block *nfb,
4726 unsigned long action, void *hcpu)
4727 {
4728 switch (action & ~CPU_TASKS_FROZEN) {
4729 case CPU_STARTING:
4730 case CPU_DOWN_FAILED:
4731 set_cpu_active((long)hcpu, true);
4732 return NOTIFY_OK;
4733 default:
4734 return NOTIFY_DONE;
4735 }
4736 }
4737
4738 static int sched_cpu_inactive(struct notifier_block *nfb,
4739 unsigned long action, void *hcpu)
4740 {
4741 switch (action & ~CPU_TASKS_FROZEN) {
4742 case CPU_DOWN_PREPARE:
4743 set_cpu_active((long)hcpu, false);
4744 return NOTIFY_OK;
4745 default:
4746 return NOTIFY_DONE;
4747 }
4748 }
4749
4750 static int __init migration_init(void)
4751 {
4752 void *cpu = (void *)(long)smp_processor_id();
4753 int err;
4754
4755 /* Initialize migration for the boot CPU */
4756 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4757 BUG_ON(err == NOTIFY_BAD);
4758 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4759 register_cpu_notifier(&migration_notifier);
4760
4761 /* Register cpu active notifiers */
4762 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4763 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4764
4765 return 0;
4766 }
4767 early_initcall(migration_init);
4768 #endif
4769
4770 #ifdef CONFIG_SMP
4771
4772 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4773
4774 #ifdef CONFIG_SCHED_DEBUG
4775
4776 static __read_mostly int sched_debug_enabled;
4777
4778 static int __init sched_debug_setup(char *str)
4779 {
4780 sched_debug_enabled = 1;
4781
4782 return 0;
4783 }
4784 early_param("sched_debug", sched_debug_setup);
4785
4786 static inline bool sched_debug(void)
4787 {
4788 return sched_debug_enabled;
4789 }
4790
4791 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4792 struct cpumask *groupmask)
4793 {
4794 struct sched_group *group = sd->groups;
4795 char str[256];
4796
4797 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4798 cpumask_clear(groupmask);
4799
4800 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4801
4802 if (!(sd->flags & SD_LOAD_BALANCE)) {
4803 printk("does not load-balance\n");
4804 if (sd->parent)
4805 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4806 " has parent");
4807 return -1;
4808 }
4809
4810 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4811
4812 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4813 printk(KERN_ERR "ERROR: domain->span does not contain "
4814 "CPU%d\n", cpu);
4815 }
4816 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4817 printk(KERN_ERR "ERROR: domain->groups does not contain"
4818 " CPU%d\n", cpu);
4819 }
4820
4821 printk(KERN_DEBUG "%*s groups:", level + 1, "");
4822 do {
4823 if (!group) {
4824 printk("\n");
4825 printk(KERN_ERR "ERROR: group is NULL\n");
4826 break;
4827 }
4828
4829 /*
4830 * Even though we initialize ->power to something semi-sane,
4831 * we leave power_orig unset. This allows us to detect if
4832 * domain iteration is still funny without causing /0 traps.
4833 */
4834 if (!group->sgp->power_orig) {
4835 printk(KERN_CONT "\n");
4836 printk(KERN_ERR "ERROR: domain->cpu_power not "
4837 "set\n");
4838 break;
4839 }
4840
4841 if (!cpumask_weight(sched_group_cpus(group))) {
4842 printk(KERN_CONT "\n");
4843 printk(KERN_ERR "ERROR: empty group\n");
4844 break;
4845 }
4846
4847 if (!(sd->flags & SD_OVERLAP) &&
4848 cpumask_intersects(groupmask, sched_group_cpus(group))) {
4849 printk(KERN_CONT "\n");
4850 printk(KERN_ERR "ERROR: repeated CPUs\n");
4851 break;
4852 }
4853
4854 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4855
4856 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4857
4858 printk(KERN_CONT " %s", str);
4859 if (group->sgp->power != SCHED_POWER_SCALE) {
4860 printk(KERN_CONT " (cpu_power = %d)",
4861 group->sgp->power);
4862 }
4863
4864 group = group->next;
4865 } while (group != sd->groups);
4866 printk(KERN_CONT "\n");
4867
4868 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4869 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4870
4871 if (sd->parent &&
4872 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4873 printk(KERN_ERR "ERROR: parent span is not a superset "
4874 "of domain->span\n");
4875 return 0;
4876 }
4877
4878 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4879 {
4880 int level = 0;
4881
4882 if (!sched_debug_enabled)
4883 return;
4884
4885 if (!sd) {
4886 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4887 return;
4888 }
4889
4890 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4891
4892 for (;;) {
4893 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4894 break;
4895 level++;
4896 sd = sd->parent;
4897 if (!sd)
4898 break;
4899 }
4900 }
4901 #else /* !CONFIG_SCHED_DEBUG */
4902 # define sched_domain_debug(sd, cpu) do { } while (0)
4903 static inline bool sched_debug(void)
4904 {
4905 return false;
4906 }
4907 #endif /* CONFIG_SCHED_DEBUG */
4908
4909 static int sd_degenerate(struct sched_domain *sd)
4910 {
4911 if (cpumask_weight(sched_domain_span(sd)) == 1)
4912 return 1;
4913
4914 /* Following flags need at least 2 groups */
4915 if (sd->flags & (SD_LOAD_BALANCE |
4916 SD_BALANCE_NEWIDLE |
4917 SD_BALANCE_FORK |
4918 SD_BALANCE_EXEC |
4919 SD_SHARE_CPUPOWER |
4920 SD_SHARE_PKG_RESOURCES)) {
4921 if (sd->groups != sd->groups->next)
4922 return 0;
4923 }
4924
4925 /* Following flags don't use groups */
4926 if (sd->flags & (SD_WAKE_AFFINE))
4927 return 0;
4928
4929 return 1;
4930 }
4931
4932 static int
4933 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4934 {
4935 unsigned long cflags = sd->flags, pflags = parent->flags;
4936
4937 if (sd_degenerate(parent))
4938 return 1;
4939
4940 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4941 return 0;
4942
4943 /* Flags needing groups don't count if only 1 group in parent */
4944 if (parent->groups == parent->groups->next) {
4945 pflags &= ~(SD_LOAD_BALANCE |
4946 SD_BALANCE_NEWIDLE |
4947 SD_BALANCE_FORK |
4948 SD_BALANCE_EXEC |
4949 SD_SHARE_CPUPOWER |
4950 SD_SHARE_PKG_RESOURCES |
4951 SD_PREFER_SIBLING);
4952 if (nr_node_ids == 1)
4953 pflags &= ~SD_SERIALIZE;
4954 }
4955 if (~cflags & pflags)
4956 return 0;
4957
4958 return 1;
4959 }
4960
4961 static void free_rootdomain(struct rcu_head *rcu)
4962 {
4963 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4964
4965 cpupri_cleanup(&rd->cpupri);
4966 free_cpumask_var(rd->rto_mask);
4967 free_cpumask_var(rd->online);
4968 free_cpumask_var(rd->span);
4969 kfree(rd);
4970 }
4971
4972 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4973 {
4974 struct root_domain *old_rd = NULL;
4975 unsigned long flags;
4976
4977 raw_spin_lock_irqsave(&rq->lock, flags);
4978
4979 if (rq->rd) {
4980 old_rd = rq->rd;
4981
4982 if (cpumask_test_cpu(rq->cpu, old_rd->online))
4983 set_rq_offline(rq);
4984
4985 cpumask_clear_cpu(rq->cpu, old_rd->span);
4986
4987 /*
4988 * If we dont want to free the old_rt yet then
4989 * set old_rd to NULL to skip the freeing later
4990 * in this function:
4991 */
4992 if (!atomic_dec_and_test(&old_rd->refcount))
4993 old_rd = NULL;
4994 }
4995
4996 atomic_inc(&rd->refcount);
4997 rq->rd = rd;
4998
4999 cpumask_set_cpu(rq->cpu, rd->span);
5000 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5001 set_rq_online(rq);
5002
5003 raw_spin_unlock_irqrestore(&rq->lock, flags);
5004
5005 if (old_rd)
5006 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5007 }
5008
5009 static int init_rootdomain(struct root_domain *rd)
5010 {
5011 memset(rd, 0, sizeof(*rd));
5012
5013 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5014 goto out;
5015 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5016 goto free_span;
5017 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5018 goto free_online;
5019
5020 if (cpupri_init(&rd->cpupri) != 0)
5021 goto free_rto_mask;
5022 return 0;
5023
5024 free_rto_mask:
5025 free_cpumask_var(rd->rto_mask);
5026 free_online:
5027 free_cpumask_var(rd->online);
5028 free_span:
5029 free_cpumask_var(rd->span);
5030 out:
5031 return -ENOMEM;
5032 }
5033
5034 /*
5035 * By default the system creates a single root-domain with all cpus as
5036 * members (mimicking the global state we have today).
5037 */
5038 struct root_domain def_root_domain;
5039
5040 static void init_defrootdomain(void)
5041 {
5042 init_rootdomain(&def_root_domain);
5043
5044 atomic_set(&def_root_domain.refcount, 1);
5045 }
5046
5047 static struct root_domain *alloc_rootdomain(void)
5048 {
5049 struct root_domain *rd;
5050
5051 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5052 if (!rd)
5053 return NULL;
5054
5055 if (init_rootdomain(rd) != 0) {
5056 kfree(rd);
5057 return NULL;
5058 }
5059
5060 return rd;
5061 }
5062
5063 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5064 {
5065 struct sched_group *tmp, *first;
5066
5067 if (!sg)
5068 return;
5069
5070 first = sg;
5071 do {
5072 tmp = sg->next;
5073
5074 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5075 kfree(sg->sgp);
5076
5077 kfree(sg);
5078 sg = tmp;
5079 } while (sg != first);
5080 }
5081
5082 static void free_sched_domain(struct rcu_head *rcu)
5083 {
5084 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5085
5086 /*
5087 * If its an overlapping domain it has private groups, iterate and
5088 * nuke them all.
5089 */
5090 if (sd->flags & SD_OVERLAP) {
5091 free_sched_groups(sd->groups, 1);
5092 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5093 kfree(sd->groups->sgp);
5094 kfree(sd->groups);
5095 }
5096 kfree(sd);
5097 }
5098
5099 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5100 {
5101 call_rcu(&sd->rcu, free_sched_domain);
5102 }
5103
5104 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5105 {
5106 for (; sd; sd = sd->parent)
5107 destroy_sched_domain(sd, cpu);
5108 }
5109
5110 /*
5111 * Keep a special pointer to the highest sched_domain that has
5112 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5113 * allows us to avoid some pointer chasing select_idle_sibling().
5114 *
5115 * Also keep a unique ID per domain (we use the first cpu number in
5116 * the cpumask of the domain), this allows us to quickly tell if
5117 * two cpus are in the same cache domain, see cpus_share_cache().
5118 */
5119 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5120 DEFINE_PER_CPU(int, sd_llc_size);
5121 DEFINE_PER_CPU(int, sd_llc_id);
5122
5123 static void update_top_cache_domain(int cpu)
5124 {
5125 struct sched_domain *sd;
5126 int id = cpu;
5127 int size = 1;
5128
5129 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5130 if (sd) {
5131 id = cpumask_first(sched_domain_span(sd));
5132 size = cpumask_weight(sched_domain_span(sd));
5133 }
5134
5135 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5136 per_cpu(sd_llc_size, cpu) = size;
5137 per_cpu(sd_llc_id, cpu) = id;
5138 }
5139
5140 /*
5141 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5142 * hold the hotplug lock.
5143 */
5144 static void
5145 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5146 {
5147 struct rq *rq = cpu_rq(cpu);
5148 struct sched_domain *tmp;
5149
5150 /* Remove the sched domains which do not contribute to scheduling. */
5151 for (tmp = sd; tmp; ) {
5152 struct sched_domain *parent = tmp->parent;
5153 if (!parent)
5154 break;
5155
5156 if (sd_parent_degenerate(tmp, parent)) {
5157 tmp->parent = parent->parent;
5158 if (parent->parent)
5159 parent->parent->child = tmp;
5160 /*
5161 * Transfer SD_PREFER_SIBLING down in case of a
5162 * degenerate parent; the spans match for this
5163 * so the property transfers.
5164 */
5165 if (parent->flags & SD_PREFER_SIBLING)
5166 tmp->flags |= SD_PREFER_SIBLING;
5167 destroy_sched_domain(parent, cpu);
5168 } else
5169 tmp = tmp->parent;
5170 }
5171
5172 if (sd && sd_degenerate(sd)) {
5173 tmp = sd;
5174 sd = sd->parent;
5175 destroy_sched_domain(tmp, cpu);
5176 if (sd)
5177 sd->child = NULL;
5178 }
5179
5180 sched_domain_debug(sd, cpu);
5181
5182 rq_attach_root(rq, rd);
5183 tmp = rq->sd;
5184 rcu_assign_pointer(rq->sd, sd);
5185 destroy_sched_domains(tmp, cpu);
5186
5187 update_top_cache_domain(cpu);
5188 }
5189
5190 /* cpus with isolated domains */
5191 static cpumask_var_t cpu_isolated_map;
5192
5193 /* Setup the mask of cpus configured for isolated domains */
5194 static int __init isolated_cpu_setup(char *str)
5195 {
5196 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5197 cpulist_parse(str, cpu_isolated_map);
5198 return 1;
5199 }
5200
5201 __setup("isolcpus=", isolated_cpu_setup);
5202
5203 static const struct cpumask *cpu_cpu_mask(int cpu)
5204 {
5205 return cpumask_of_node(cpu_to_node(cpu));
5206 }
5207
5208 struct sd_data {
5209 struct sched_domain **__percpu sd;
5210 struct sched_group **__percpu sg;
5211 struct sched_group_power **__percpu sgp;
5212 };
5213
5214 struct s_data {
5215 struct sched_domain ** __percpu sd;
5216 struct root_domain *rd;
5217 };
5218
5219 enum s_alloc {
5220 sa_rootdomain,
5221 sa_sd,
5222 sa_sd_storage,
5223 sa_none,
5224 };
5225
5226 struct sched_domain_topology_level;
5227
5228 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5229 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5230
5231 #define SDTL_OVERLAP 0x01
5232
5233 struct sched_domain_topology_level {
5234 sched_domain_init_f init;
5235 sched_domain_mask_f mask;
5236 int flags;
5237 int numa_level;
5238 struct sd_data data;
5239 };
5240
5241 /*
5242 * Build an iteration mask that can exclude certain CPUs from the upwards
5243 * domain traversal.
5244 *
5245 * Asymmetric node setups can result in situations where the domain tree is of
5246 * unequal depth, make sure to skip domains that already cover the entire
5247 * range.
5248 *
5249 * In that case build_sched_domains() will have terminated the iteration early
5250 * and our sibling sd spans will be empty. Domains should always include the
5251 * cpu they're built on, so check that.
5252 *
5253 */
5254 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5255 {
5256 const struct cpumask *span = sched_domain_span(sd);
5257 struct sd_data *sdd = sd->private;
5258 struct sched_domain *sibling;
5259 int i;
5260
5261 for_each_cpu(i, span) {
5262 sibling = *per_cpu_ptr(sdd->sd, i);
5263 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5264 continue;
5265
5266 cpumask_set_cpu(i, sched_group_mask(sg));
5267 }
5268 }
5269
5270 /*
5271 * Return the canonical balance cpu for this group, this is the first cpu
5272 * of this group that's also in the iteration mask.
5273 */
5274 int group_balance_cpu(struct sched_group *sg)
5275 {
5276 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5277 }
5278
5279 static int
5280 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5281 {
5282 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5283 const struct cpumask *span = sched_domain_span(sd);
5284 struct cpumask *covered = sched_domains_tmpmask;
5285 struct sd_data *sdd = sd->private;
5286 struct sched_domain *child;
5287 int i;
5288
5289 cpumask_clear(covered);
5290
5291 for_each_cpu(i, span) {
5292 struct cpumask *sg_span;
5293
5294 if (cpumask_test_cpu(i, covered))
5295 continue;
5296
5297 child = *per_cpu_ptr(sdd->sd, i);
5298
5299 /* See the comment near build_group_mask(). */
5300 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5301 continue;
5302
5303 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5304 GFP_KERNEL, cpu_to_node(cpu));
5305
5306 if (!sg)
5307 goto fail;
5308
5309 sg_span = sched_group_cpus(sg);
5310 if (child->child) {
5311 child = child->child;
5312 cpumask_copy(sg_span, sched_domain_span(child));
5313 } else
5314 cpumask_set_cpu(i, sg_span);
5315
5316 cpumask_or(covered, covered, sg_span);
5317
5318 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5319 if (atomic_inc_return(&sg->sgp->ref) == 1)
5320 build_group_mask(sd, sg);
5321
5322 /*
5323 * Initialize sgp->power such that even if we mess up the
5324 * domains and no possible iteration will get us here, we won't
5325 * die on a /0 trap.
5326 */
5327 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5328
5329 /*
5330 * Make sure the first group of this domain contains the
5331 * canonical balance cpu. Otherwise the sched_domain iteration
5332 * breaks. See update_sg_lb_stats().
5333 */
5334 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5335 group_balance_cpu(sg) == cpu)
5336 groups = sg;
5337
5338 if (!first)
5339 first = sg;
5340 if (last)
5341 last->next = sg;
5342 last = sg;
5343 last->next = first;
5344 }
5345 sd->groups = groups;
5346
5347 return 0;
5348
5349 fail:
5350 free_sched_groups(first, 0);
5351
5352 return -ENOMEM;
5353 }
5354
5355 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5356 {
5357 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5358 struct sched_domain *child = sd->child;
5359
5360 if (child)
5361 cpu = cpumask_first(sched_domain_span(child));
5362
5363 if (sg) {
5364 *sg = *per_cpu_ptr(sdd->sg, cpu);
5365 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5366 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5367 }
5368
5369 return cpu;
5370 }
5371
5372 /*
5373 * build_sched_groups will build a circular linked list of the groups
5374 * covered by the given span, and will set each group's ->cpumask correctly,
5375 * and ->cpu_power to 0.
5376 *
5377 * Assumes the sched_domain tree is fully constructed
5378 */
5379 static int
5380 build_sched_groups(struct sched_domain *sd, int cpu)
5381 {
5382 struct sched_group *first = NULL, *last = NULL;
5383 struct sd_data *sdd = sd->private;
5384 const struct cpumask *span = sched_domain_span(sd);
5385 struct cpumask *covered;
5386 int i;
5387
5388 get_group(cpu, sdd, &sd->groups);
5389 atomic_inc(&sd->groups->ref);
5390
5391 if (cpu != cpumask_first(span))
5392 return 0;
5393
5394 lockdep_assert_held(&sched_domains_mutex);
5395 covered = sched_domains_tmpmask;
5396
5397 cpumask_clear(covered);
5398
5399 for_each_cpu(i, span) {
5400 struct sched_group *sg;
5401 int group, j;
5402
5403 if (cpumask_test_cpu(i, covered))
5404 continue;
5405
5406 group = get_group(i, sdd, &sg);
5407 cpumask_clear(sched_group_cpus(sg));
5408 sg->sgp->power = 0;
5409 cpumask_setall(sched_group_mask(sg));
5410
5411 for_each_cpu(j, span) {
5412 if (get_group(j, sdd, NULL) != group)
5413 continue;
5414
5415 cpumask_set_cpu(j, covered);
5416 cpumask_set_cpu(j, sched_group_cpus(sg));
5417 }
5418
5419 if (!first)
5420 first = sg;
5421 if (last)
5422 last->next = sg;
5423 last = sg;
5424 }
5425 last->next = first;
5426
5427 return 0;
5428 }
5429
5430 /*
5431 * Initialize sched groups cpu_power.
5432 *
5433 * cpu_power indicates the capacity of sched group, which is used while
5434 * distributing the load between different sched groups in a sched domain.
5435 * Typically cpu_power for all the groups in a sched domain will be same unless
5436 * there are asymmetries in the topology. If there are asymmetries, group
5437 * having more cpu_power will pickup more load compared to the group having
5438 * less cpu_power.
5439 */
5440 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5441 {
5442 struct sched_group *sg = sd->groups;
5443
5444 WARN_ON(!sg);
5445
5446 do {
5447 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5448 sg = sg->next;
5449 } while (sg != sd->groups);
5450
5451 if (cpu != group_balance_cpu(sg))
5452 return;
5453
5454 update_group_power(sd, cpu);
5455 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5456 }
5457
5458 int __weak arch_sd_sibling_asym_packing(void)
5459 {
5460 return 0*SD_ASYM_PACKING;
5461 }
5462
5463 /*
5464 * Initializers for schedule domains
5465 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5466 */
5467
5468 #ifdef CONFIG_SCHED_DEBUG
5469 # define SD_INIT_NAME(sd, type) sd->name = #type
5470 #else
5471 # define SD_INIT_NAME(sd, type) do { } while (0)
5472 #endif
5473
5474 #define SD_INIT_FUNC(type) \
5475 static noinline struct sched_domain * \
5476 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5477 { \
5478 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5479 *sd = SD_##type##_INIT; \
5480 SD_INIT_NAME(sd, type); \
5481 sd->private = &tl->data; \
5482 return sd; \
5483 }
5484
5485 SD_INIT_FUNC(CPU)
5486 #ifdef CONFIG_SCHED_SMT
5487 SD_INIT_FUNC(SIBLING)
5488 #endif
5489 #ifdef CONFIG_SCHED_MC
5490 SD_INIT_FUNC(MC)
5491 #endif
5492 #ifdef CONFIG_SCHED_BOOK
5493 SD_INIT_FUNC(BOOK)
5494 #endif
5495
5496 static int default_relax_domain_level = -1;
5497 int sched_domain_level_max;
5498
5499 static int __init setup_relax_domain_level(char *str)
5500 {
5501 if (kstrtoint(str, 0, &default_relax_domain_level))
5502 pr_warn("Unable to set relax_domain_level\n");
5503
5504 return 1;
5505 }
5506 __setup("relax_domain_level=", setup_relax_domain_level);
5507
5508 static void set_domain_attribute(struct sched_domain *sd,
5509 struct sched_domain_attr *attr)
5510 {
5511 int request;
5512
5513 if (!attr || attr->relax_domain_level < 0) {
5514 if (default_relax_domain_level < 0)
5515 return;
5516 else
5517 request = default_relax_domain_level;
5518 } else
5519 request = attr->relax_domain_level;
5520 if (request < sd->level) {
5521 /* turn off idle balance on this domain */
5522 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5523 } else {
5524 /* turn on idle balance on this domain */
5525 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5526 }
5527 }
5528
5529 static void __sdt_free(const struct cpumask *cpu_map);
5530 static int __sdt_alloc(const struct cpumask *cpu_map);
5531
5532 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5533 const struct cpumask *cpu_map)
5534 {
5535 switch (what) {
5536 case sa_rootdomain:
5537 if (!atomic_read(&d->rd->refcount))
5538 free_rootdomain(&d->rd->rcu); /* fall through */
5539 case sa_sd:
5540 free_percpu(d->sd); /* fall through */
5541 case sa_sd_storage:
5542 __sdt_free(cpu_map); /* fall through */
5543 case sa_none:
5544 break;
5545 }
5546 }
5547
5548 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5549 const struct cpumask *cpu_map)
5550 {
5551 memset(d, 0, sizeof(*d));
5552
5553 if (__sdt_alloc(cpu_map))
5554 return sa_sd_storage;
5555 d->sd = alloc_percpu(struct sched_domain *);
5556 if (!d->sd)
5557 return sa_sd_storage;
5558 d->rd = alloc_rootdomain();
5559 if (!d->rd)
5560 return sa_sd;
5561 return sa_rootdomain;
5562 }
5563
5564 /*
5565 * NULL the sd_data elements we've used to build the sched_domain and
5566 * sched_group structure so that the subsequent __free_domain_allocs()
5567 * will not free the data we're using.
5568 */
5569 static void claim_allocations(int cpu, struct sched_domain *sd)
5570 {
5571 struct sd_data *sdd = sd->private;
5572
5573 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5574 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5575
5576 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5577 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5578
5579 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5580 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5581 }
5582
5583 #ifdef CONFIG_SCHED_SMT
5584 static const struct cpumask *cpu_smt_mask(int cpu)
5585 {
5586 return topology_thread_cpumask(cpu);
5587 }
5588 #endif
5589
5590 /*
5591 * Topology list, bottom-up.
5592 */
5593 static struct sched_domain_topology_level default_topology[] = {
5594 #ifdef CONFIG_SCHED_SMT
5595 { sd_init_SIBLING, cpu_smt_mask, },
5596 #endif
5597 #ifdef CONFIG_SCHED_MC
5598 { sd_init_MC, cpu_coregroup_mask, },
5599 #endif
5600 #ifdef CONFIG_SCHED_BOOK
5601 { sd_init_BOOK, cpu_book_mask, },
5602 #endif
5603 { sd_init_CPU, cpu_cpu_mask, },
5604 { NULL, },
5605 };
5606
5607 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5608
5609 #define for_each_sd_topology(tl) \
5610 for (tl = sched_domain_topology; tl->init; tl++)
5611
5612 #ifdef CONFIG_NUMA
5613
5614 static int sched_domains_numa_levels;
5615 static int *sched_domains_numa_distance;
5616 static struct cpumask ***sched_domains_numa_masks;
5617 static int sched_domains_curr_level;
5618
5619 static inline int sd_local_flags(int level)
5620 {
5621 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5622 return 0;
5623
5624 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5625 }
5626
5627 static struct sched_domain *
5628 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5629 {
5630 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5631 int level = tl->numa_level;
5632 int sd_weight = cpumask_weight(
5633 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5634
5635 *sd = (struct sched_domain){
5636 .min_interval = sd_weight,
5637 .max_interval = 2*sd_weight,
5638 .busy_factor = 32,
5639 .imbalance_pct = 125,
5640 .cache_nice_tries = 2,
5641 .busy_idx = 3,
5642 .idle_idx = 2,
5643 .newidle_idx = 0,
5644 .wake_idx = 0,
5645 .forkexec_idx = 0,
5646
5647 .flags = 1*SD_LOAD_BALANCE
5648 | 1*SD_BALANCE_NEWIDLE
5649 | 0*SD_BALANCE_EXEC
5650 | 0*SD_BALANCE_FORK
5651 | 0*SD_BALANCE_WAKE
5652 | 0*SD_WAKE_AFFINE
5653 | 0*SD_SHARE_CPUPOWER
5654 | 0*SD_SHARE_PKG_RESOURCES
5655 | 1*SD_SERIALIZE
5656 | 0*SD_PREFER_SIBLING
5657 | sd_local_flags(level)
5658 ,
5659 .last_balance = jiffies,
5660 .balance_interval = sd_weight,
5661 };
5662 SD_INIT_NAME(sd, NUMA);
5663 sd->private = &tl->data;
5664
5665 /*
5666 * Ugly hack to pass state to sd_numa_mask()...
5667 */
5668 sched_domains_curr_level = tl->numa_level;
5669
5670 return sd;
5671 }
5672
5673 static const struct cpumask *sd_numa_mask(int cpu)
5674 {
5675 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5676 }
5677
5678 static void sched_numa_warn(const char *str)
5679 {
5680 static int done = false;
5681 int i,j;
5682
5683 if (done)
5684 return;
5685
5686 done = true;
5687
5688 printk(KERN_WARNING "ERROR: %s\n\n", str);
5689
5690 for (i = 0; i < nr_node_ids; i++) {
5691 printk(KERN_WARNING " ");
5692 for (j = 0; j < nr_node_ids; j++)
5693 printk(KERN_CONT "%02d ", node_distance(i,j));
5694 printk(KERN_CONT "\n");
5695 }
5696 printk(KERN_WARNING "\n");
5697 }
5698
5699 static bool find_numa_distance(int distance)
5700 {
5701 int i;
5702
5703 if (distance == node_distance(0, 0))
5704 return true;
5705
5706 for (i = 0; i < sched_domains_numa_levels; i++) {
5707 if (sched_domains_numa_distance[i] == distance)
5708 return true;
5709 }
5710
5711 return false;
5712 }
5713
5714 static void sched_init_numa(void)
5715 {
5716 int next_distance, curr_distance = node_distance(0, 0);
5717 struct sched_domain_topology_level *tl;
5718 int level = 0;
5719 int i, j, k;
5720
5721 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5722 if (!sched_domains_numa_distance)
5723 return;
5724
5725 /*
5726 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5727 * unique distances in the node_distance() table.
5728 *
5729 * Assumes node_distance(0,j) includes all distances in
5730 * node_distance(i,j) in order to avoid cubic time.
5731 */
5732 next_distance = curr_distance;
5733 for (i = 0; i < nr_node_ids; i++) {
5734 for (j = 0; j < nr_node_ids; j++) {
5735 for (k = 0; k < nr_node_ids; k++) {
5736 int distance = node_distance(i, k);
5737
5738 if (distance > curr_distance &&
5739 (distance < next_distance ||
5740 next_distance == curr_distance))
5741 next_distance = distance;
5742
5743 /*
5744 * While not a strong assumption it would be nice to know
5745 * about cases where if node A is connected to B, B is not
5746 * equally connected to A.
5747 */
5748 if (sched_debug() && node_distance(k, i) != distance)
5749 sched_numa_warn("Node-distance not symmetric");
5750
5751 if (sched_debug() && i && !find_numa_distance(distance))
5752 sched_numa_warn("Node-0 not representative");
5753 }
5754 if (next_distance != curr_distance) {
5755 sched_domains_numa_distance[level++] = next_distance;
5756 sched_domains_numa_levels = level;
5757 curr_distance = next_distance;
5758 } else break;
5759 }
5760
5761 /*
5762 * In case of sched_debug() we verify the above assumption.
5763 */
5764 if (!sched_debug())
5765 break;
5766 }
5767 /*
5768 * 'level' contains the number of unique distances, excluding the
5769 * identity distance node_distance(i,i).
5770 *
5771 * The sched_domains_numa_distance[] array includes the actual distance
5772 * numbers.
5773 */
5774
5775 /*
5776 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5777 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5778 * the array will contain less then 'level' members. This could be
5779 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5780 * in other functions.
5781 *
5782 * We reset it to 'level' at the end of this function.
5783 */
5784 sched_domains_numa_levels = 0;
5785
5786 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5787 if (!sched_domains_numa_masks)
5788 return;
5789
5790 /*
5791 * Now for each level, construct a mask per node which contains all
5792 * cpus of nodes that are that many hops away from us.
5793 */
5794 for (i = 0; i < level; i++) {
5795 sched_domains_numa_masks[i] =
5796 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5797 if (!sched_domains_numa_masks[i])
5798 return;
5799
5800 for (j = 0; j < nr_node_ids; j++) {
5801 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5802 if (!mask)
5803 return;
5804
5805 sched_domains_numa_masks[i][j] = mask;
5806
5807 for (k = 0; k < nr_node_ids; k++) {
5808 if (node_distance(j, k) > sched_domains_numa_distance[i])
5809 continue;
5810
5811 cpumask_or(mask, mask, cpumask_of_node(k));
5812 }
5813 }
5814 }
5815
5816 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5817 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5818 if (!tl)
5819 return;
5820
5821 /*
5822 * Copy the default topology bits..
5823 */
5824 for (i = 0; default_topology[i].init; i++)
5825 tl[i] = default_topology[i];
5826
5827 /*
5828 * .. and append 'j' levels of NUMA goodness.
5829 */
5830 for (j = 0; j < level; i++, j++) {
5831 tl[i] = (struct sched_domain_topology_level){
5832 .init = sd_numa_init,
5833 .mask = sd_numa_mask,
5834 .flags = SDTL_OVERLAP,
5835 .numa_level = j,
5836 };
5837 }
5838
5839 sched_domain_topology = tl;
5840
5841 sched_domains_numa_levels = level;
5842 }
5843
5844 static void sched_domains_numa_masks_set(int cpu)
5845 {
5846 int i, j;
5847 int node = cpu_to_node(cpu);
5848
5849 for (i = 0; i < sched_domains_numa_levels; i++) {
5850 for (j = 0; j < nr_node_ids; j++) {
5851 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5852 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5853 }
5854 }
5855 }
5856
5857 static void sched_domains_numa_masks_clear(int cpu)
5858 {
5859 int i, j;
5860 for (i = 0; i < sched_domains_numa_levels; i++) {
5861 for (j = 0; j < nr_node_ids; j++)
5862 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5863 }
5864 }
5865
5866 /*
5867 * Update sched_domains_numa_masks[level][node] array when new cpus
5868 * are onlined.
5869 */
5870 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5871 unsigned long action,
5872 void *hcpu)
5873 {
5874 int cpu = (long)hcpu;
5875
5876 switch (action & ~CPU_TASKS_FROZEN) {
5877 case CPU_ONLINE:
5878 sched_domains_numa_masks_set(cpu);
5879 break;
5880
5881 case CPU_DEAD:
5882 sched_domains_numa_masks_clear(cpu);
5883 break;
5884
5885 default:
5886 return NOTIFY_DONE;
5887 }
5888
5889 return NOTIFY_OK;
5890 }
5891 #else
5892 static inline void sched_init_numa(void)
5893 {
5894 }
5895
5896 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5897 unsigned long action,
5898 void *hcpu)
5899 {
5900 return 0;
5901 }
5902 #endif /* CONFIG_NUMA */
5903
5904 static int __sdt_alloc(const struct cpumask *cpu_map)
5905 {
5906 struct sched_domain_topology_level *tl;
5907 int j;
5908
5909 for_each_sd_topology(tl) {
5910 struct sd_data *sdd = &tl->data;
5911
5912 sdd->sd = alloc_percpu(struct sched_domain *);
5913 if (!sdd->sd)
5914 return -ENOMEM;
5915
5916 sdd->sg = alloc_percpu(struct sched_group *);
5917 if (!sdd->sg)
5918 return -ENOMEM;
5919
5920 sdd->sgp = alloc_percpu(struct sched_group_power *);
5921 if (!sdd->sgp)
5922 return -ENOMEM;
5923
5924 for_each_cpu(j, cpu_map) {
5925 struct sched_domain *sd;
5926 struct sched_group *sg;
5927 struct sched_group_power *sgp;
5928
5929 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5930 GFP_KERNEL, cpu_to_node(j));
5931 if (!sd)
5932 return -ENOMEM;
5933
5934 *per_cpu_ptr(sdd->sd, j) = sd;
5935
5936 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5937 GFP_KERNEL, cpu_to_node(j));
5938 if (!sg)
5939 return -ENOMEM;
5940
5941 sg->next = sg;
5942
5943 *per_cpu_ptr(sdd->sg, j) = sg;
5944
5945 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5946 GFP_KERNEL, cpu_to_node(j));
5947 if (!sgp)
5948 return -ENOMEM;
5949
5950 *per_cpu_ptr(sdd->sgp, j) = sgp;
5951 }
5952 }
5953
5954 return 0;
5955 }
5956
5957 static void __sdt_free(const struct cpumask *cpu_map)
5958 {
5959 struct sched_domain_topology_level *tl;
5960 int j;
5961
5962 for_each_sd_topology(tl) {
5963 struct sd_data *sdd = &tl->data;
5964
5965 for_each_cpu(j, cpu_map) {
5966 struct sched_domain *sd;
5967
5968 if (sdd->sd) {
5969 sd = *per_cpu_ptr(sdd->sd, j);
5970 if (sd && (sd->flags & SD_OVERLAP))
5971 free_sched_groups(sd->groups, 0);
5972 kfree(*per_cpu_ptr(sdd->sd, j));
5973 }
5974
5975 if (sdd->sg)
5976 kfree(*per_cpu_ptr(sdd->sg, j));
5977 if (sdd->sgp)
5978 kfree(*per_cpu_ptr(sdd->sgp, j));
5979 }
5980 free_percpu(sdd->sd);
5981 sdd->sd = NULL;
5982 free_percpu(sdd->sg);
5983 sdd->sg = NULL;
5984 free_percpu(sdd->sgp);
5985 sdd->sgp = NULL;
5986 }
5987 }
5988
5989 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5990 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5991 struct sched_domain *child, int cpu)
5992 {
5993 struct sched_domain *sd = tl->init(tl, cpu);
5994 if (!sd)
5995 return child;
5996
5997 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5998 if (child) {
5999 sd->level = child->level + 1;
6000 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6001 child->parent = sd;
6002 sd->child = child;
6003 }
6004 set_domain_attribute(sd, attr);
6005
6006 return sd;
6007 }
6008
6009 /*
6010 * Build sched domains for a given set of cpus and attach the sched domains
6011 * to the individual cpus
6012 */
6013 static int build_sched_domains(const struct cpumask *cpu_map,
6014 struct sched_domain_attr *attr)
6015 {
6016 enum s_alloc alloc_state;
6017 struct sched_domain *sd;
6018 struct s_data d;
6019 int i, ret = -ENOMEM;
6020
6021 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6022 if (alloc_state != sa_rootdomain)
6023 goto error;
6024
6025 /* Set up domains for cpus specified by the cpu_map. */
6026 for_each_cpu(i, cpu_map) {
6027 struct sched_domain_topology_level *tl;
6028
6029 sd = NULL;
6030 for_each_sd_topology(tl) {
6031 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6032 if (tl == sched_domain_topology)
6033 *per_cpu_ptr(d.sd, i) = sd;
6034 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6035 sd->flags |= SD_OVERLAP;
6036 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6037 break;
6038 }
6039 }
6040
6041 /* Build the groups for the domains */
6042 for_each_cpu(i, cpu_map) {
6043 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6044 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6045 if (sd->flags & SD_OVERLAP) {
6046 if (build_overlap_sched_groups(sd, i))
6047 goto error;
6048 } else {
6049 if (build_sched_groups(sd, i))
6050 goto error;
6051 }
6052 }
6053 }
6054
6055 /* Calculate CPU power for physical packages and nodes */
6056 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6057 if (!cpumask_test_cpu(i, cpu_map))
6058 continue;
6059
6060 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6061 claim_allocations(i, sd);
6062 init_sched_groups_power(i, sd);
6063 }
6064 }
6065
6066 /* Attach the domains */
6067 rcu_read_lock();
6068 for_each_cpu(i, cpu_map) {
6069 sd = *per_cpu_ptr(d.sd, i);
6070 cpu_attach_domain(sd, d.rd, i);
6071 }
6072 rcu_read_unlock();
6073
6074 ret = 0;
6075 error:
6076 __free_domain_allocs(&d, alloc_state, cpu_map);
6077 return ret;
6078 }
6079
6080 static cpumask_var_t *doms_cur; /* current sched domains */
6081 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6082 static struct sched_domain_attr *dattr_cur;
6083 /* attribues of custom domains in 'doms_cur' */
6084
6085 /*
6086 * Special case: If a kmalloc of a doms_cur partition (array of
6087 * cpumask) fails, then fallback to a single sched domain,
6088 * as determined by the single cpumask fallback_doms.
6089 */
6090 static cpumask_var_t fallback_doms;
6091
6092 /*
6093 * arch_update_cpu_topology lets virtualized architectures update the
6094 * cpu core maps. It is supposed to return 1 if the topology changed
6095 * or 0 if it stayed the same.
6096 */
6097 int __attribute__((weak)) arch_update_cpu_topology(void)
6098 {
6099 return 0;
6100 }
6101
6102 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6103 {
6104 int i;
6105 cpumask_var_t *doms;
6106
6107 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6108 if (!doms)
6109 return NULL;
6110 for (i = 0; i < ndoms; i++) {
6111 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6112 free_sched_domains(doms, i);
6113 return NULL;
6114 }
6115 }
6116 return doms;
6117 }
6118
6119 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6120 {
6121 unsigned int i;
6122 for (i = 0; i < ndoms; i++)
6123 free_cpumask_var(doms[i]);
6124 kfree(doms);
6125 }
6126
6127 /*
6128 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6129 * For now this just excludes isolated cpus, but could be used to
6130 * exclude other special cases in the future.
6131 */
6132 static int init_sched_domains(const struct cpumask *cpu_map)
6133 {
6134 int err;
6135
6136 arch_update_cpu_topology();
6137 ndoms_cur = 1;
6138 doms_cur = alloc_sched_domains(ndoms_cur);
6139 if (!doms_cur)
6140 doms_cur = &fallback_doms;
6141 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6142 err = build_sched_domains(doms_cur[0], NULL);
6143 register_sched_domain_sysctl();
6144
6145 return err;
6146 }
6147
6148 /*
6149 * Detach sched domains from a group of cpus specified in cpu_map
6150 * These cpus will now be attached to the NULL domain
6151 */
6152 static void detach_destroy_domains(const struct cpumask *cpu_map)
6153 {
6154 int i;
6155
6156 rcu_read_lock();
6157 for_each_cpu(i, cpu_map)
6158 cpu_attach_domain(NULL, &def_root_domain, i);
6159 rcu_read_unlock();
6160 }
6161
6162 /* handle null as "default" */
6163 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6164 struct sched_domain_attr *new, int idx_new)
6165 {
6166 struct sched_domain_attr tmp;
6167
6168 /* fast path */
6169 if (!new && !cur)
6170 return 1;
6171
6172 tmp = SD_ATTR_INIT;
6173 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6174 new ? (new + idx_new) : &tmp,
6175 sizeof(struct sched_domain_attr));
6176 }
6177
6178 /*
6179 * Partition sched domains as specified by the 'ndoms_new'
6180 * cpumasks in the array doms_new[] of cpumasks. This compares
6181 * doms_new[] to the current sched domain partitioning, doms_cur[].
6182 * It destroys each deleted domain and builds each new domain.
6183 *
6184 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6185 * The masks don't intersect (don't overlap.) We should setup one
6186 * sched domain for each mask. CPUs not in any of the cpumasks will
6187 * not be load balanced. If the same cpumask appears both in the
6188 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6189 * it as it is.
6190 *
6191 * The passed in 'doms_new' should be allocated using
6192 * alloc_sched_domains. This routine takes ownership of it and will
6193 * free_sched_domains it when done with it. If the caller failed the
6194 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6195 * and partition_sched_domains() will fallback to the single partition
6196 * 'fallback_doms', it also forces the domains to be rebuilt.
6197 *
6198 * If doms_new == NULL it will be replaced with cpu_online_mask.
6199 * ndoms_new == 0 is a special case for destroying existing domains,
6200 * and it will not create the default domain.
6201 *
6202 * Call with hotplug lock held
6203 */
6204 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6205 struct sched_domain_attr *dattr_new)
6206 {
6207 int i, j, n;
6208 int new_topology;
6209
6210 mutex_lock(&sched_domains_mutex);
6211
6212 /* always unregister in case we don't destroy any domains */
6213 unregister_sched_domain_sysctl();
6214
6215 /* Let architecture update cpu core mappings. */
6216 new_topology = arch_update_cpu_topology();
6217
6218 n = doms_new ? ndoms_new : 0;
6219
6220 /* Destroy deleted domains */
6221 for (i = 0; i < ndoms_cur; i++) {
6222 for (j = 0; j < n && !new_topology; j++) {
6223 if (cpumask_equal(doms_cur[i], doms_new[j])
6224 && dattrs_equal(dattr_cur, i, dattr_new, j))
6225 goto match1;
6226 }
6227 /* no match - a current sched domain not in new doms_new[] */
6228 detach_destroy_domains(doms_cur[i]);
6229 match1:
6230 ;
6231 }
6232
6233 n = ndoms_cur;
6234 if (doms_new == NULL) {
6235 n = 0;
6236 doms_new = &fallback_doms;
6237 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6238 WARN_ON_ONCE(dattr_new);
6239 }
6240
6241 /* Build new domains */
6242 for (i = 0; i < ndoms_new; i++) {
6243 for (j = 0; j < n && !new_topology; j++) {
6244 if (cpumask_equal(doms_new[i], doms_cur[j])
6245 && dattrs_equal(dattr_new, i, dattr_cur, j))
6246 goto match2;
6247 }
6248 /* no match - add a new doms_new */
6249 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6250 match2:
6251 ;
6252 }
6253
6254 /* Remember the new sched domains */
6255 if (doms_cur != &fallback_doms)
6256 free_sched_domains(doms_cur, ndoms_cur);
6257 kfree(dattr_cur); /* kfree(NULL) is safe */
6258 doms_cur = doms_new;
6259 dattr_cur = dattr_new;
6260 ndoms_cur = ndoms_new;
6261
6262 register_sched_domain_sysctl();
6263
6264 mutex_unlock(&sched_domains_mutex);
6265 }
6266
6267 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6268
6269 /*
6270 * Update cpusets according to cpu_active mask. If cpusets are
6271 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6272 * around partition_sched_domains().
6273 *
6274 * If we come here as part of a suspend/resume, don't touch cpusets because we
6275 * want to restore it back to its original state upon resume anyway.
6276 */
6277 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6278 void *hcpu)
6279 {
6280 switch (action) {
6281 case CPU_ONLINE_FROZEN:
6282 case CPU_DOWN_FAILED_FROZEN:
6283
6284 /*
6285 * num_cpus_frozen tracks how many CPUs are involved in suspend
6286 * resume sequence. As long as this is not the last online
6287 * operation in the resume sequence, just build a single sched
6288 * domain, ignoring cpusets.
6289 */
6290 num_cpus_frozen--;
6291 if (likely(num_cpus_frozen)) {
6292 partition_sched_domains(1, NULL, NULL);
6293 break;
6294 }
6295
6296 /*
6297 * This is the last CPU online operation. So fall through and
6298 * restore the original sched domains by considering the
6299 * cpuset configurations.
6300 */
6301
6302 case CPU_ONLINE:
6303 case CPU_DOWN_FAILED:
6304 cpuset_update_active_cpus(true);
6305 break;
6306 default:
6307 return NOTIFY_DONE;
6308 }
6309 return NOTIFY_OK;
6310 }
6311
6312 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6313 void *hcpu)
6314 {
6315 switch (action) {
6316 case CPU_DOWN_PREPARE:
6317 cpuset_update_active_cpus(false);
6318 break;
6319 case CPU_DOWN_PREPARE_FROZEN:
6320 num_cpus_frozen++;
6321 partition_sched_domains(1, NULL, NULL);
6322 break;
6323 default:
6324 return NOTIFY_DONE;
6325 }
6326 return NOTIFY_OK;
6327 }
6328
6329 void __init sched_init_smp(void)
6330 {
6331 cpumask_var_t non_isolated_cpus;
6332
6333 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6334 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6335
6336 sched_init_numa();
6337
6338 get_online_cpus();
6339 mutex_lock(&sched_domains_mutex);
6340 init_sched_domains(cpu_active_mask);
6341 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6342 if (cpumask_empty(non_isolated_cpus))
6343 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6344 mutex_unlock(&sched_domains_mutex);
6345 put_online_cpus();
6346
6347 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6348 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6349 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6350
6351 init_hrtick();
6352
6353 /* Move init over to a non-isolated CPU */
6354 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6355 BUG();
6356 sched_init_granularity();
6357 free_cpumask_var(non_isolated_cpus);
6358
6359 init_sched_rt_class();
6360 }
6361 #else
6362 void __init sched_init_smp(void)
6363 {
6364 sched_init_granularity();
6365 }
6366 #endif /* CONFIG_SMP */
6367
6368 const_debug unsigned int sysctl_timer_migration = 1;
6369
6370 int in_sched_functions(unsigned long addr)
6371 {
6372 return in_lock_functions(addr) ||
6373 (addr >= (unsigned long)__sched_text_start
6374 && addr < (unsigned long)__sched_text_end);
6375 }
6376
6377 #ifdef CONFIG_CGROUP_SCHED
6378 /*
6379 * Default task group.
6380 * Every task in system belongs to this group at bootup.
6381 */
6382 struct task_group root_task_group;
6383 LIST_HEAD(task_groups);
6384 #endif
6385
6386 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6387
6388 void __init sched_init(void)
6389 {
6390 int i, j;
6391 unsigned long alloc_size = 0, ptr;
6392
6393 #ifdef CONFIG_FAIR_GROUP_SCHED
6394 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6395 #endif
6396 #ifdef CONFIG_RT_GROUP_SCHED
6397 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6398 #endif
6399 #ifdef CONFIG_CPUMASK_OFFSTACK
6400 alloc_size += num_possible_cpus() * cpumask_size();
6401 #endif
6402 if (alloc_size) {
6403 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6404
6405 #ifdef CONFIG_FAIR_GROUP_SCHED
6406 root_task_group.se = (struct sched_entity **)ptr;
6407 ptr += nr_cpu_ids * sizeof(void **);
6408
6409 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6410 ptr += nr_cpu_ids * sizeof(void **);
6411
6412 #endif /* CONFIG_FAIR_GROUP_SCHED */
6413 #ifdef CONFIG_RT_GROUP_SCHED
6414 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6415 ptr += nr_cpu_ids * sizeof(void **);
6416
6417 root_task_group.rt_rq = (struct rt_rq **)ptr;
6418 ptr += nr_cpu_ids * sizeof(void **);
6419
6420 #endif /* CONFIG_RT_GROUP_SCHED */
6421 #ifdef CONFIG_CPUMASK_OFFSTACK
6422 for_each_possible_cpu(i) {
6423 per_cpu(load_balance_mask, i) = (void *)ptr;
6424 ptr += cpumask_size();
6425 }
6426 #endif /* CONFIG_CPUMASK_OFFSTACK */
6427 }
6428
6429 #ifdef CONFIG_SMP
6430 init_defrootdomain();
6431 #endif
6432
6433 init_rt_bandwidth(&def_rt_bandwidth,
6434 global_rt_period(), global_rt_runtime());
6435
6436 #ifdef CONFIG_RT_GROUP_SCHED
6437 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6438 global_rt_period(), global_rt_runtime());
6439 #endif /* CONFIG_RT_GROUP_SCHED */
6440
6441 #ifdef CONFIG_CGROUP_SCHED
6442 list_add(&root_task_group.list, &task_groups);
6443 INIT_LIST_HEAD(&root_task_group.children);
6444 INIT_LIST_HEAD(&root_task_group.siblings);
6445 autogroup_init(&init_task);
6446
6447 #endif /* CONFIG_CGROUP_SCHED */
6448
6449 for_each_possible_cpu(i) {
6450 struct rq *rq;
6451
6452 rq = cpu_rq(i);
6453 raw_spin_lock_init(&rq->lock);
6454 rq->nr_running = 0;
6455 rq->calc_load_active = 0;
6456 rq->calc_load_update = jiffies + LOAD_FREQ;
6457 init_cfs_rq(&rq->cfs);
6458 init_rt_rq(&rq->rt, rq);
6459 #ifdef CONFIG_FAIR_GROUP_SCHED
6460 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6461 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6462 /*
6463 * How much cpu bandwidth does root_task_group get?
6464 *
6465 * In case of task-groups formed thr' the cgroup filesystem, it
6466 * gets 100% of the cpu resources in the system. This overall
6467 * system cpu resource is divided among the tasks of
6468 * root_task_group and its child task-groups in a fair manner,
6469 * based on each entity's (task or task-group's) weight
6470 * (se->load.weight).
6471 *
6472 * In other words, if root_task_group has 10 tasks of weight
6473 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6474 * then A0's share of the cpu resource is:
6475 *
6476 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6477 *
6478 * We achieve this by letting root_task_group's tasks sit
6479 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6480 */
6481 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6482 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6483 #endif /* CONFIG_FAIR_GROUP_SCHED */
6484
6485 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6486 #ifdef CONFIG_RT_GROUP_SCHED
6487 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6488 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6489 #endif
6490
6491 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6492 rq->cpu_load[j] = 0;
6493
6494 rq->last_load_update_tick = jiffies;
6495
6496 #ifdef CONFIG_SMP
6497 rq->sd = NULL;
6498 rq->rd = NULL;
6499 rq->cpu_power = SCHED_POWER_SCALE;
6500 rq->post_schedule = 0;
6501 rq->active_balance = 0;
6502 rq->next_balance = jiffies;
6503 rq->push_cpu = 0;
6504 rq->cpu = i;
6505 rq->online = 0;
6506 rq->idle_stamp = 0;
6507 rq->avg_idle = 2*sysctl_sched_migration_cost;
6508 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6509
6510 INIT_LIST_HEAD(&rq->cfs_tasks);
6511
6512 rq_attach_root(rq, &def_root_domain);
6513 #ifdef CONFIG_NO_HZ_COMMON
6514 rq->nohz_flags = 0;
6515 #endif
6516 #ifdef CONFIG_NO_HZ_FULL
6517 rq->last_sched_tick = 0;
6518 #endif
6519 #endif
6520 init_rq_hrtick(rq);
6521 atomic_set(&rq->nr_iowait, 0);
6522 }
6523
6524 set_load_weight(&init_task);
6525
6526 #ifdef CONFIG_PREEMPT_NOTIFIERS
6527 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6528 #endif
6529
6530 #ifdef CONFIG_RT_MUTEXES
6531 plist_head_init(&init_task.pi_waiters);
6532 #endif
6533
6534 /*
6535 * The boot idle thread does lazy MMU switching as well:
6536 */
6537 atomic_inc(&init_mm.mm_count);
6538 enter_lazy_tlb(&init_mm, current);
6539
6540 /*
6541 * Make us the idle thread. Technically, schedule() should not be
6542 * called from this thread, however somewhere below it might be,
6543 * but because we are the idle thread, we just pick up running again
6544 * when this runqueue becomes "idle".
6545 */
6546 init_idle(current, smp_processor_id());
6547
6548 calc_load_update = jiffies + LOAD_FREQ;
6549
6550 /*
6551 * During early bootup we pretend to be a normal task:
6552 */
6553 current->sched_class = &fair_sched_class;
6554
6555 #ifdef CONFIG_SMP
6556 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6557 /* May be allocated at isolcpus cmdline parse time */
6558 if (cpu_isolated_map == NULL)
6559 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6560 idle_thread_set_boot_cpu();
6561 #endif
6562 init_sched_fair_class();
6563
6564 scheduler_running = 1;
6565 }
6566
6567 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6568 static inline int preempt_count_equals(int preempt_offset)
6569 {
6570 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6571
6572 return (nested == preempt_offset);
6573 }
6574
6575 void __might_sleep(const char *file, int line, int preempt_offset)
6576 {
6577 static unsigned long prev_jiffy; /* ratelimiting */
6578
6579 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6580 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6581 system_state != SYSTEM_RUNNING || oops_in_progress)
6582 return;
6583 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6584 return;
6585 prev_jiffy = jiffies;
6586
6587 printk(KERN_ERR
6588 "BUG: sleeping function called from invalid context at %s:%d\n",
6589 file, line);
6590 printk(KERN_ERR
6591 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6592 in_atomic(), irqs_disabled(),
6593 current->pid, current->comm);
6594
6595 debug_show_held_locks(current);
6596 if (irqs_disabled())
6597 print_irqtrace_events(current);
6598 dump_stack();
6599 }
6600 EXPORT_SYMBOL(__might_sleep);
6601 #endif
6602
6603 #ifdef CONFIG_MAGIC_SYSRQ
6604 static void normalize_task(struct rq *rq, struct task_struct *p)
6605 {
6606 const struct sched_class *prev_class = p->sched_class;
6607 int old_prio = p->prio;
6608 int on_rq;
6609
6610 on_rq = p->on_rq;
6611 if (on_rq)
6612 dequeue_task(rq, p, 0);
6613 __setscheduler(rq, p, SCHED_NORMAL, 0);
6614 if (on_rq) {
6615 enqueue_task(rq, p, 0);
6616 resched_task(rq->curr);
6617 }
6618
6619 check_class_changed(rq, p, prev_class, old_prio);
6620 }
6621
6622 void normalize_rt_tasks(void)
6623 {
6624 struct task_struct *g, *p;
6625 unsigned long flags;
6626 struct rq *rq;
6627
6628 read_lock_irqsave(&tasklist_lock, flags);
6629 do_each_thread(g, p) {
6630 /*
6631 * Only normalize user tasks:
6632 */
6633 if (!p->mm)
6634 continue;
6635
6636 p->se.exec_start = 0;
6637 #ifdef CONFIG_SCHEDSTATS
6638 p->se.statistics.wait_start = 0;
6639 p->se.statistics.sleep_start = 0;
6640 p->se.statistics.block_start = 0;
6641 #endif
6642
6643 if (!rt_task(p)) {
6644 /*
6645 * Renice negative nice level userspace
6646 * tasks back to 0:
6647 */
6648 if (TASK_NICE(p) < 0 && p->mm)
6649 set_user_nice(p, 0);
6650 continue;
6651 }
6652
6653 raw_spin_lock(&p->pi_lock);
6654 rq = __task_rq_lock(p);
6655
6656 normalize_task(rq, p);
6657
6658 __task_rq_unlock(rq);
6659 raw_spin_unlock(&p->pi_lock);
6660 } while_each_thread(g, p);
6661
6662 read_unlock_irqrestore(&tasklist_lock, flags);
6663 }
6664
6665 #endif /* CONFIG_MAGIC_SYSRQ */
6666
6667 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6668 /*
6669 * These functions are only useful for the IA64 MCA handling, or kdb.
6670 *
6671 * They can only be called when the whole system has been
6672 * stopped - every CPU needs to be quiescent, and no scheduling
6673 * activity can take place. Using them for anything else would
6674 * be a serious bug, and as a result, they aren't even visible
6675 * under any other configuration.
6676 */
6677
6678 /**
6679 * curr_task - return the current task for a given cpu.
6680 * @cpu: the processor in question.
6681 *
6682 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6683 *
6684 * Return: The current task for @cpu.
6685 */
6686 struct task_struct *curr_task(int cpu)
6687 {
6688 return cpu_curr(cpu);
6689 }
6690
6691 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6692
6693 #ifdef CONFIG_IA64
6694 /**
6695 * set_curr_task - set the current task for a given cpu.
6696 * @cpu: the processor in question.
6697 * @p: the task pointer to set.
6698 *
6699 * Description: This function must only be used when non-maskable interrupts
6700 * are serviced on a separate stack. It allows the architecture to switch the
6701 * notion of the current task on a cpu in a non-blocking manner. This function
6702 * must be called with all CPU's synchronized, and interrupts disabled, the
6703 * and caller must save the original value of the current task (see
6704 * curr_task() above) and restore that value before reenabling interrupts and
6705 * re-starting the system.
6706 *
6707 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6708 */
6709 void set_curr_task(int cpu, struct task_struct *p)
6710 {
6711 cpu_curr(cpu) = p;
6712 }
6713
6714 #endif
6715
6716 #ifdef CONFIG_CGROUP_SCHED
6717 /* task_group_lock serializes the addition/removal of task groups */
6718 static DEFINE_SPINLOCK(task_group_lock);
6719
6720 static void free_sched_group(struct task_group *tg)
6721 {
6722 free_fair_sched_group(tg);
6723 free_rt_sched_group(tg);
6724 autogroup_free(tg);
6725 kfree(tg);
6726 }
6727
6728 /* allocate runqueue etc for a new task group */
6729 struct task_group *sched_create_group(struct task_group *parent)
6730 {
6731 struct task_group *tg;
6732
6733 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6734 if (!tg)
6735 return ERR_PTR(-ENOMEM);
6736
6737 if (!alloc_fair_sched_group(tg, parent))
6738 goto err;
6739
6740 if (!alloc_rt_sched_group(tg, parent))
6741 goto err;
6742
6743 return tg;
6744
6745 err:
6746 free_sched_group(tg);
6747 return ERR_PTR(-ENOMEM);
6748 }
6749
6750 void sched_online_group(struct task_group *tg, struct task_group *parent)
6751 {
6752 unsigned long flags;
6753
6754 spin_lock_irqsave(&task_group_lock, flags);
6755 list_add_rcu(&tg->list, &task_groups);
6756
6757 WARN_ON(!parent); /* root should already exist */
6758
6759 tg->parent = parent;
6760 INIT_LIST_HEAD(&tg->children);
6761 list_add_rcu(&tg->siblings, &parent->children);
6762 spin_unlock_irqrestore(&task_group_lock, flags);
6763 }
6764
6765 /* rcu callback to free various structures associated with a task group */
6766 static void free_sched_group_rcu(struct rcu_head *rhp)
6767 {
6768 /* now it should be safe to free those cfs_rqs */
6769 free_sched_group(container_of(rhp, struct task_group, rcu));
6770 }
6771
6772 /* Destroy runqueue etc associated with a task group */
6773 void sched_destroy_group(struct task_group *tg)
6774 {
6775 /* wait for possible concurrent references to cfs_rqs complete */
6776 call_rcu(&tg->rcu, free_sched_group_rcu);
6777 }
6778
6779 void sched_offline_group(struct task_group *tg)
6780 {
6781 unsigned long flags;
6782 int i;
6783
6784 /* end participation in shares distribution */
6785 for_each_possible_cpu(i)
6786 unregister_fair_sched_group(tg, i);
6787
6788 spin_lock_irqsave(&task_group_lock, flags);
6789 list_del_rcu(&tg->list);
6790 list_del_rcu(&tg->siblings);
6791 spin_unlock_irqrestore(&task_group_lock, flags);
6792 }
6793
6794 /* change task's runqueue when it moves between groups.
6795 * The caller of this function should have put the task in its new group
6796 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6797 * reflect its new group.
6798 */
6799 void sched_move_task(struct task_struct *tsk)
6800 {
6801 struct task_group *tg;
6802 int on_rq, running;
6803 unsigned long flags;
6804 struct rq *rq;
6805
6806 rq = task_rq_lock(tsk, &flags);
6807
6808 running = task_current(rq, tsk);
6809 on_rq = tsk->on_rq;
6810
6811 if (on_rq)
6812 dequeue_task(rq, tsk, 0);
6813 if (unlikely(running))
6814 tsk->sched_class->put_prev_task(rq, tsk);
6815
6816 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6817 lockdep_is_held(&tsk->sighand->siglock)),
6818 struct task_group, css);
6819 tg = autogroup_task_group(tsk, tg);
6820 tsk->sched_task_group = tg;
6821
6822 #ifdef CONFIG_FAIR_GROUP_SCHED
6823 if (tsk->sched_class->task_move_group)
6824 tsk->sched_class->task_move_group(tsk, on_rq);
6825 else
6826 #endif
6827 set_task_rq(tsk, task_cpu(tsk));
6828
6829 if (unlikely(running))
6830 tsk->sched_class->set_curr_task(rq);
6831 if (on_rq)
6832 enqueue_task(rq, tsk, 0);
6833
6834 task_rq_unlock(rq, tsk, &flags);
6835 }
6836 #endif /* CONFIG_CGROUP_SCHED */
6837
6838 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6839 static unsigned long to_ratio(u64 period, u64 runtime)
6840 {
6841 if (runtime == RUNTIME_INF)
6842 return 1ULL << 20;
6843
6844 return div64_u64(runtime << 20, period);
6845 }
6846 #endif
6847
6848 #ifdef CONFIG_RT_GROUP_SCHED
6849 /*
6850 * Ensure that the real time constraints are schedulable.
6851 */
6852 static DEFINE_MUTEX(rt_constraints_mutex);
6853
6854 /* Must be called with tasklist_lock held */
6855 static inline int tg_has_rt_tasks(struct task_group *tg)
6856 {
6857 struct task_struct *g, *p;
6858
6859 do_each_thread(g, p) {
6860 if (rt_task(p) && task_rq(p)->rt.tg == tg)
6861 return 1;
6862 } while_each_thread(g, p);
6863
6864 return 0;
6865 }
6866
6867 struct rt_schedulable_data {
6868 struct task_group *tg;
6869 u64 rt_period;
6870 u64 rt_runtime;
6871 };
6872
6873 static int tg_rt_schedulable(struct task_group *tg, void *data)
6874 {
6875 struct rt_schedulable_data *d = data;
6876 struct task_group *child;
6877 unsigned long total, sum = 0;
6878 u64 period, runtime;
6879
6880 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6881 runtime = tg->rt_bandwidth.rt_runtime;
6882
6883 if (tg == d->tg) {
6884 period = d->rt_period;
6885 runtime = d->rt_runtime;
6886 }
6887
6888 /*
6889 * Cannot have more runtime than the period.
6890 */
6891 if (runtime > period && runtime != RUNTIME_INF)
6892 return -EINVAL;
6893
6894 /*
6895 * Ensure we don't starve existing RT tasks.
6896 */
6897 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6898 return -EBUSY;
6899
6900 total = to_ratio(period, runtime);
6901
6902 /*
6903 * Nobody can have more than the global setting allows.
6904 */
6905 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6906 return -EINVAL;
6907
6908 /*
6909 * The sum of our children's runtime should not exceed our own.
6910 */
6911 list_for_each_entry_rcu(child, &tg->children, siblings) {
6912 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6913 runtime = child->rt_bandwidth.rt_runtime;
6914
6915 if (child == d->tg) {
6916 period = d->rt_period;
6917 runtime = d->rt_runtime;
6918 }
6919
6920 sum += to_ratio(period, runtime);
6921 }
6922
6923 if (sum > total)
6924 return -EINVAL;
6925
6926 return 0;
6927 }
6928
6929 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6930 {
6931 int ret;
6932
6933 struct rt_schedulable_data data = {
6934 .tg = tg,
6935 .rt_period = period,
6936 .rt_runtime = runtime,
6937 };
6938
6939 rcu_read_lock();
6940 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6941 rcu_read_unlock();
6942
6943 return ret;
6944 }
6945
6946 static int tg_set_rt_bandwidth(struct task_group *tg,
6947 u64 rt_period, u64 rt_runtime)
6948 {
6949 int i, err = 0;
6950
6951 mutex_lock(&rt_constraints_mutex);
6952 read_lock(&tasklist_lock);
6953 err = __rt_schedulable(tg, rt_period, rt_runtime);
6954 if (err)
6955 goto unlock;
6956
6957 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6958 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6959 tg->rt_bandwidth.rt_runtime = rt_runtime;
6960
6961 for_each_possible_cpu(i) {
6962 struct rt_rq *rt_rq = tg->rt_rq[i];
6963
6964 raw_spin_lock(&rt_rq->rt_runtime_lock);
6965 rt_rq->rt_runtime = rt_runtime;
6966 raw_spin_unlock(&rt_rq->rt_runtime_lock);
6967 }
6968 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6969 unlock:
6970 read_unlock(&tasklist_lock);
6971 mutex_unlock(&rt_constraints_mutex);
6972
6973 return err;
6974 }
6975
6976 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6977 {
6978 u64 rt_runtime, rt_period;
6979
6980 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6981 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6982 if (rt_runtime_us < 0)
6983 rt_runtime = RUNTIME_INF;
6984
6985 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6986 }
6987
6988 static long sched_group_rt_runtime(struct task_group *tg)
6989 {
6990 u64 rt_runtime_us;
6991
6992 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6993 return -1;
6994
6995 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6996 do_div(rt_runtime_us, NSEC_PER_USEC);
6997 return rt_runtime_us;
6998 }
6999
7000 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7001 {
7002 u64 rt_runtime, rt_period;
7003
7004 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7005 rt_runtime = tg->rt_bandwidth.rt_runtime;
7006
7007 if (rt_period == 0)
7008 return -EINVAL;
7009
7010 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7011 }
7012
7013 static long sched_group_rt_period(struct task_group *tg)
7014 {
7015 u64 rt_period_us;
7016
7017 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7018 do_div(rt_period_us, NSEC_PER_USEC);
7019 return rt_period_us;
7020 }
7021
7022 static int sched_rt_global_constraints(void)
7023 {
7024 u64 runtime, period;
7025 int ret = 0;
7026
7027 if (sysctl_sched_rt_period <= 0)
7028 return -EINVAL;
7029
7030 runtime = global_rt_runtime();
7031 period = global_rt_period();
7032
7033 /*
7034 * Sanity check on the sysctl variables.
7035 */
7036 if (runtime > period && runtime != RUNTIME_INF)
7037 return -EINVAL;
7038
7039 mutex_lock(&rt_constraints_mutex);
7040 read_lock(&tasklist_lock);
7041 ret = __rt_schedulable(NULL, 0, 0);
7042 read_unlock(&tasklist_lock);
7043 mutex_unlock(&rt_constraints_mutex);
7044
7045 return ret;
7046 }
7047
7048 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7049 {
7050 /* Don't accept realtime tasks when there is no way for them to run */
7051 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7052 return 0;
7053
7054 return 1;
7055 }
7056
7057 #else /* !CONFIG_RT_GROUP_SCHED */
7058 static int sched_rt_global_constraints(void)
7059 {
7060 unsigned long flags;
7061 int i;
7062
7063 if (sysctl_sched_rt_period <= 0)
7064 return -EINVAL;
7065
7066 /*
7067 * There's always some RT tasks in the root group
7068 * -- migration, kstopmachine etc..
7069 */
7070 if (sysctl_sched_rt_runtime == 0)
7071 return -EBUSY;
7072
7073 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7074 for_each_possible_cpu(i) {
7075 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7076
7077 raw_spin_lock(&rt_rq->rt_runtime_lock);
7078 rt_rq->rt_runtime = global_rt_runtime();
7079 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7080 }
7081 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7082
7083 return 0;
7084 }
7085 #endif /* CONFIG_RT_GROUP_SCHED */
7086
7087 int sched_rr_handler(struct ctl_table *table, int write,
7088 void __user *buffer, size_t *lenp,
7089 loff_t *ppos)
7090 {
7091 int ret;
7092 static DEFINE_MUTEX(mutex);
7093
7094 mutex_lock(&mutex);
7095 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7096 /* make sure that internally we keep jiffies */
7097 /* also, writing zero resets timeslice to default */
7098 if (!ret && write) {
7099 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7100 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7101 }
7102 mutex_unlock(&mutex);
7103 return ret;
7104 }
7105
7106 int sched_rt_handler(struct ctl_table *table, int write,
7107 void __user *buffer, size_t *lenp,
7108 loff_t *ppos)
7109 {
7110 int ret;
7111 int old_period, old_runtime;
7112 static DEFINE_MUTEX(mutex);
7113
7114 mutex_lock(&mutex);
7115 old_period = sysctl_sched_rt_period;
7116 old_runtime = sysctl_sched_rt_runtime;
7117
7118 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7119
7120 if (!ret && write) {
7121 ret = sched_rt_global_constraints();
7122 if (ret) {
7123 sysctl_sched_rt_period = old_period;
7124 sysctl_sched_rt_runtime = old_runtime;
7125 } else {
7126 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7127 def_rt_bandwidth.rt_period =
7128 ns_to_ktime(global_rt_period());
7129 }
7130 }
7131 mutex_unlock(&mutex);
7132
7133 return ret;
7134 }
7135
7136 #ifdef CONFIG_CGROUP_SCHED
7137
7138 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7139 {
7140 return css ? container_of(css, struct task_group, css) : NULL;
7141 }
7142
7143 static struct cgroup_subsys_state *
7144 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7145 {
7146 struct task_group *parent = css_tg(parent_css);
7147 struct task_group *tg;
7148
7149 if (!parent) {
7150 /* This is early initialization for the top cgroup */
7151 return &root_task_group.css;
7152 }
7153
7154 tg = sched_create_group(parent);
7155 if (IS_ERR(tg))
7156 return ERR_PTR(-ENOMEM);
7157
7158 return &tg->css;
7159 }
7160
7161 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7162 {
7163 struct task_group *tg = css_tg(css);
7164 struct task_group *parent = css_tg(css_parent(css));
7165
7166 if (parent)
7167 sched_online_group(tg, parent);
7168 return 0;
7169 }
7170
7171 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7172 {
7173 struct task_group *tg = css_tg(css);
7174
7175 sched_destroy_group(tg);
7176 }
7177
7178 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7179 {
7180 struct task_group *tg = css_tg(css);
7181
7182 sched_offline_group(tg);
7183 }
7184
7185 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7186 struct cgroup_taskset *tset)
7187 {
7188 struct task_struct *task;
7189
7190 cgroup_taskset_for_each(task, css, tset) {
7191 #ifdef CONFIG_RT_GROUP_SCHED
7192 if (!sched_rt_can_attach(css_tg(css), task))
7193 return -EINVAL;
7194 #else
7195 /* We don't support RT-tasks being in separate groups */
7196 if (task->sched_class != &fair_sched_class)
7197 return -EINVAL;
7198 #endif
7199 }
7200 return 0;
7201 }
7202
7203 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7204 struct cgroup_taskset *tset)
7205 {
7206 struct task_struct *task;
7207
7208 cgroup_taskset_for_each(task, css, tset)
7209 sched_move_task(task);
7210 }
7211
7212 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7213 struct cgroup_subsys_state *old_css,
7214 struct task_struct *task)
7215 {
7216 /*
7217 * cgroup_exit() is called in the copy_process() failure path.
7218 * Ignore this case since the task hasn't ran yet, this avoids
7219 * trying to poke a half freed task state from generic code.
7220 */
7221 if (!(task->flags & PF_EXITING))
7222 return;
7223
7224 sched_move_task(task);
7225 }
7226
7227 #ifdef CONFIG_FAIR_GROUP_SCHED
7228 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7229 struct cftype *cftype, u64 shareval)
7230 {
7231 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7232 }
7233
7234 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7235 struct cftype *cft)
7236 {
7237 struct task_group *tg = css_tg(css);
7238
7239 return (u64) scale_load_down(tg->shares);
7240 }
7241
7242 #ifdef CONFIG_CFS_BANDWIDTH
7243 static DEFINE_MUTEX(cfs_constraints_mutex);
7244
7245 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7246 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7247
7248 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7249
7250 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7251 {
7252 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7253 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7254
7255 if (tg == &root_task_group)
7256 return -EINVAL;
7257
7258 /*
7259 * Ensure we have at some amount of bandwidth every period. This is
7260 * to prevent reaching a state of large arrears when throttled via
7261 * entity_tick() resulting in prolonged exit starvation.
7262 */
7263 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7264 return -EINVAL;
7265
7266 /*
7267 * Likewise, bound things on the otherside by preventing insane quota
7268 * periods. This also allows us to normalize in computing quota
7269 * feasibility.
7270 */
7271 if (period > max_cfs_quota_period)
7272 return -EINVAL;
7273
7274 mutex_lock(&cfs_constraints_mutex);
7275 ret = __cfs_schedulable(tg, period, quota);
7276 if (ret)
7277 goto out_unlock;
7278
7279 runtime_enabled = quota != RUNTIME_INF;
7280 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7281 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7282 raw_spin_lock_irq(&cfs_b->lock);
7283 cfs_b->period = ns_to_ktime(period);
7284 cfs_b->quota = quota;
7285
7286 __refill_cfs_bandwidth_runtime(cfs_b);
7287 /* restart the period timer (if active) to handle new period expiry */
7288 if (runtime_enabled && cfs_b->timer_active) {
7289 /* force a reprogram */
7290 cfs_b->timer_active = 0;
7291 __start_cfs_bandwidth(cfs_b);
7292 }
7293 raw_spin_unlock_irq(&cfs_b->lock);
7294
7295 for_each_possible_cpu(i) {
7296 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7297 struct rq *rq = cfs_rq->rq;
7298
7299 raw_spin_lock_irq(&rq->lock);
7300 cfs_rq->runtime_enabled = runtime_enabled;
7301 cfs_rq->runtime_remaining = 0;
7302
7303 if (cfs_rq->throttled)
7304 unthrottle_cfs_rq(cfs_rq);
7305 raw_spin_unlock_irq(&rq->lock);
7306 }
7307 out_unlock:
7308 mutex_unlock(&cfs_constraints_mutex);
7309
7310 return ret;
7311 }
7312
7313 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7314 {
7315 u64 quota, period;
7316
7317 period = ktime_to_ns(tg->cfs_bandwidth.period);
7318 if (cfs_quota_us < 0)
7319 quota = RUNTIME_INF;
7320 else
7321 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7322
7323 return tg_set_cfs_bandwidth(tg, period, quota);
7324 }
7325
7326 long tg_get_cfs_quota(struct task_group *tg)
7327 {
7328 u64 quota_us;
7329
7330 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7331 return -1;
7332
7333 quota_us = tg->cfs_bandwidth.quota;
7334 do_div(quota_us, NSEC_PER_USEC);
7335
7336 return quota_us;
7337 }
7338
7339 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7340 {
7341 u64 quota, period;
7342
7343 period = (u64)cfs_period_us * NSEC_PER_USEC;
7344 quota = tg->cfs_bandwidth.quota;
7345
7346 return tg_set_cfs_bandwidth(tg, period, quota);
7347 }
7348
7349 long tg_get_cfs_period(struct task_group *tg)
7350 {
7351 u64 cfs_period_us;
7352
7353 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7354 do_div(cfs_period_us, NSEC_PER_USEC);
7355
7356 return cfs_period_us;
7357 }
7358
7359 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7360 struct cftype *cft)
7361 {
7362 return tg_get_cfs_quota(css_tg(css));
7363 }
7364
7365 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7366 struct cftype *cftype, s64 cfs_quota_us)
7367 {
7368 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7369 }
7370
7371 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7372 struct cftype *cft)
7373 {
7374 return tg_get_cfs_period(css_tg(css));
7375 }
7376
7377 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7378 struct cftype *cftype, u64 cfs_period_us)
7379 {
7380 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7381 }
7382
7383 struct cfs_schedulable_data {
7384 struct task_group *tg;
7385 u64 period, quota;
7386 };
7387
7388 /*
7389 * normalize group quota/period to be quota/max_period
7390 * note: units are usecs
7391 */
7392 static u64 normalize_cfs_quota(struct task_group *tg,
7393 struct cfs_schedulable_data *d)
7394 {
7395 u64 quota, period;
7396
7397 if (tg == d->tg) {
7398 period = d->period;
7399 quota = d->quota;
7400 } else {
7401 period = tg_get_cfs_period(tg);
7402 quota = tg_get_cfs_quota(tg);
7403 }
7404
7405 /* note: these should typically be equivalent */
7406 if (quota == RUNTIME_INF || quota == -1)
7407 return RUNTIME_INF;
7408
7409 return to_ratio(period, quota);
7410 }
7411
7412 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7413 {
7414 struct cfs_schedulable_data *d = data;
7415 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7416 s64 quota = 0, parent_quota = -1;
7417
7418 if (!tg->parent) {
7419 quota = RUNTIME_INF;
7420 } else {
7421 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7422
7423 quota = normalize_cfs_quota(tg, d);
7424 parent_quota = parent_b->hierarchal_quota;
7425
7426 /*
7427 * ensure max(child_quota) <= parent_quota, inherit when no
7428 * limit is set
7429 */
7430 if (quota == RUNTIME_INF)
7431 quota = parent_quota;
7432 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7433 return -EINVAL;
7434 }
7435 cfs_b->hierarchal_quota = quota;
7436
7437 return 0;
7438 }
7439
7440 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7441 {
7442 int ret;
7443 struct cfs_schedulable_data data = {
7444 .tg = tg,
7445 .period = period,
7446 .quota = quota,
7447 };
7448
7449 if (quota != RUNTIME_INF) {
7450 do_div(data.period, NSEC_PER_USEC);
7451 do_div(data.quota, NSEC_PER_USEC);
7452 }
7453
7454 rcu_read_lock();
7455 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7456 rcu_read_unlock();
7457
7458 return ret;
7459 }
7460
7461 static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7462 struct cgroup_map_cb *cb)
7463 {
7464 struct task_group *tg = css_tg(css);
7465 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7466
7467 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7468 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7469 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7470
7471 return 0;
7472 }
7473 #endif /* CONFIG_CFS_BANDWIDTH */
7474 #endif /* CONFIG_FAIR_GROUP_SCHED */
7475
7476 #ifdef CONFIG_RT_GROUP_SCHED
7477 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7478 struct cftype *cft, s64 val)
7479 {
7480 return sched_group_set_rt_runtime(css_tg(css), val);
7481 }
7482
7483 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7484 struct cftype *cft)
7485 {
7486 return sched_group_rt_runtime(css_tg(css));
7487 }
7488
7489 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7490 struct cftype *cftype, u64 rt_period_us)
7491 {
7492 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7493 }
7494
7495 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7496 struct cftype *cft)
7497 {
7498 return sched_group_rt_period(css_tg(css));
7499 }
7500 #endif /* CONFIG_RT_GROUP_SCHED */
7501
7502 static struct cftype cpu_files[] = {
7503 #ifdef CONFIG_FAIR_GROUP_SCHED
7504 {
7505 .name = "shares",
7506 .read_u64 = cpu_shares_read_u64,
7507 .write_u64 = cpu_shares_write_u64,
7508 },
7509 #endif
7510 #ifdef CONFIG_CFS_BANDWIDTH
7511 {
7512 .name = "cfs_quota_us",
7513 .read_s64 = cpu_cfs_quota_read_s64,
7514 .write_s64 = cpu_cfs_quota_write_s64,
7515 },
7516 {
7517 .name = "cfs_period_us",
7518 .read_u64 = cpu_cfs_period_read_u64,
7519 .write_u64 = cpu_cfs_period_write_u64,
7520 },
7521 {
7522 .name = "stat",
7523 .read_map = cpu_stats_show,
7524 },
7525 #endif
7526 #ifdef CONFIG_RT_GROUP_SCHED
7527 {
7528 .name = "rt_runtime_us",
7529 .read_s64 = cpu_rt_runtime_read,
7530 .write_s64 = cpu_rt_runtime_write,
7531 },
7532 {
7533 .name = "rt_period_us",
7534 .read_u64 = cpu_rt_period_read_uint,
7535 .write_u64 = cpu_rt_period_write_uint,
7536 },
7537 #endif
7538 { } /* terminate */
7539 };
7540
7541 struct cgroup_subsys cpu_cgroup_subsys = {
7542 .name = "cpu",
7543 .css_alloc = cpu_cgroup_css_alloc,
7544 .css_free = cpu_cgroup_css_free,
7545 .css_online = cpu_cgroup_css_online,
7546 .css_offline = cpu_cgroup_css_offline,
7547 .can_attach = cpu_cgroup_can_attach,
7548 .attach = cpu_cgroup_attach,
7549 .exit = cpu_cgroup_exit,
7550 .subsys_id = cpu_cgroup_subsys_id,
7551 .base_cftypes = cpu_files,
7552 .early_init = 1,
7553 };
7554
7555 #endif /* CONFIG_CGROUP_SCHED */
7556
7557 void dump_cpu_task(int cpu)
7558 {
7559 pr_info("Task dump for CPU %d:\n", cpu);
7560 sched_show_task(cpu_curr(cpu));
7561 }
This page took 0.197305 seconds and 5 git commands to generate.