69f71335984f42463c48f4b9e3d81e9b23297d55
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299
300
301 /*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 __acquires(rq->lock)
306 {
307 struct rq *rq;
308
309 lockdep_assert_held(&p->pi_lock);
310
311 for (;;) {
312 rq = task_rq(p);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
315 return rq;
316 raw_spin_unlock(&rq->lock);
317 }
318 }
319
320 /*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
325 __acquires(rq->lock)
326 {
327 struct rq *rq;
328
329 for (;;) {
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 rq = task_rq(p);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
334 return rq;
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 }
338 }
339
340 static void __task_rq_unlock(struct rq *rq)
341 __releases(rq->lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 }
345
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 __releases(rq->lock)
349 __releases(p->pi_lock)
350 {
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354
355 /*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358 static struct rq *this_rq_lock(void)
359 __acquires(rq->lock)
360 {
361 struct rq *rq;
362
363 local_irq_disable();
364 rq = this_rq();
365 raw_spin_lock(&rq->lock);
366
367 return rq;
368 }
369
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382 static void hrtick_clear(struct rq *rq)
383 {
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386 }
387
388 /*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398 raw_spin_lock(&rq->lock);
399 update_rq_clock(rq);
400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 raw_spin_unlock(&rq->lock);
402
403 return HRTIMER_NORESTART;
404 }
405
406 #ifdef CONFIG_SMP
407 /*
408 * called from hardirq (IPI) context
409 */
410 static void __hrtick_start(void *arg)
411 {
412 struct rq *rq = arg;
413
414 raw_spin_lock(&rq->lock);
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
418 }
419
420 /*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430 hrtimer_set_expires(timer, time);
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
437 }
438 }
439
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457 }
458
459 static __init void init_hrtick(void)
460 {
461 hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
473 }
474
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
484
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488 #endif
489
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
492 }
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif /* CONFIG_SCHED_HRTICK */
506
507 /*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514 #ifdef CONFIG_SMP
515
516 #ifndef tsk_is_polling
517 #define tsk_is_polling(t) 0
518 #endif
519
520 void resched_task(struct task_struct *p)
521 {
522 int cpu;
523
524 assert_raw_spin_locked(&task_rq(p)->lock);
525
526 if (test_tsk_need_resched(p))
527 return;
528
529 set_tsk_need_resched(p);
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539 }
540
541 void resched_cpu(int cpu)
542 {
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547 return;
548 resched_task(cpu_curr(cpu));
549 raw_spin_unlock_irqrestore(&rq->lock, flags);
550 }
551
552 #ifdef CONFIG_NO_HZ_COMMON
553 /*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561 int get_nohz_timer_target(void)
562 {
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
567 rcu_read_lock();
568 for_each_domain(cpu, sd) {
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
575 }
576 unlock:
577 rcu_read_unlock();
578 return cpu;
579 }
580 /*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590 static void wake_up_idle_cpu(int cpu)
591 {
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
606
607 /*
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
611 */
612 set_tsk_need_resched(rq->idle);
613
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
618 }
619
620 static bool wake_up_full_nohz_cpu(int cpu)
621 {
622 if (tick_nohz_full_cpu(cpu)) {
623 if (cpu != smp_processor_id() ||
624 tick_nohz_tick_stopped())
625 smp_send_reschedule(cpu);
626 return true;
627 }
628
629 return false;
630 }
631
632 void wake_up_nohz_cpu(int cpu)
633 {
634 if (!wake_up_full_nohz_cpu(cpu))
635 wake_up_idle_cpu(cpu);
636 }
637
638 static inline bool got_nohz_idle_kick(void)
639 {
640 int cpu = smp_processor_id();
641 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
642 }
643
644 #else /* CONFIG_NO_HZ_COMMON */
645
646 static inline bool got_nohz_idle_kick(void)
647 {
648 return false;
649 }
650
651 #endif /* CONFIG_NO_HZ_COMMON */
652
653 #ifdef CONFIG_NO_HZ_FULL
654 bool sched_can_stop_tick(void)
655 {
656 struct rq *rq;
657
658 rq = this_rq();
659
660 /* Make sure rq->nr_running update is visible after the IPI */
661 smp_rmb();
662
663 /* More than one running task need preemption */
664 if (rq->nr_running > 1)
665 return false;
666
667 return true;
668 }
669 #endif /* CONFIG_NO_HZ_FULL */
670
671 void sched_avg_update(struct rq *rq)
672 {
673 s64 period = sched_avg_period();
674
675 while ((s64)(rq->clock - rq->age_stamp) > period) {
676 /*
677 * Inline assembly required to prevent the compiler
678 * optimising this loop into a divmod call.
679 * See __iter_div_u64_rem() for another example of this.
680 */
681 asm("" : "+rm" (rq->age_stamp));
682 rq->age_stamp += period;
683 rq->rt_avg /= 2;
684 }
685 }
686
687 #else /* !CONFIG_SMP */
688 void resched_task(struct task_struct *p)
689 {
690 assert_raw_spin_locked(&task_rq(p)->lock);
691 set_tsk_need_resched(p);
692 }
693 #endif /* CONFIG_SMP */
694
695 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
696 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
697 /*
698 * Iterate task_group tree rooted at *from, calling @down when first entering a
699 * node and @up when leaving it for the final time.
700 *
701 * Caller must hold rcu_lock or sufficient equivalent.
702 */
703 int walk_tg_tree_from(struct task_group *from,
704 tg_visitor down, tg_visitor up, void *data)
705 {
706 struct task_group *parent, *child;
707 int ret;
708
709 parent = from;
710
711 down:
712 ret = (*down)(parent, data);
713 if (ret)
714 goto out;
715 list_for_each_entry_rcu(child, &parent->children, siblings) {
716 parent = child;
717 goto down;
718
719 up:
720 continue;
721 }
722 ret = (*up)(parent, data);
723 if (ret || parent == from)
724 goto out;
725
726 child = parent;
727 parent = parent->parent;
728 if (parent)
729 goto up;
730 out:
731 return ret;
732 }
733
734 int tg_nop(struct task_group *tg, void *data)
735 {
736 return 0;
737 }
738 #endif
739
740 static void set_load_weight(struct task_struct *p)
741 {
742 int prio = p->static_prio - MAX_RT_PRIO;
743 struct load_weight *load = &p->se.load;
744
745 /*
746 * SCHED_IDLE tasks get minimal weight:
747 */
748 if (p->policy == SCHED_IDLE) {
749 load->weight = scale_load(WEIGHT_IDLEPRIO);
750 load->inv_weight = WMULT_IDLEPRIO;
751 return;
752 }
753
754 load->weight = scale_load(prio_to_weight[prio]);
755 load->inv_weight = prio_to_wmult[prio];
756 }
757
758 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
759 {
760 update_rq_clock(rq);
761 sched_info_queued(p);
762 p->sched_class->enqueue_task(rq, p, flags);
763 }
764
765 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
766 {
767 update_rq_clock(rq);
768 sched_info_dequeued(p);
769 p->sched_class->dequeue_task(rq, p, flags);
770 }
771
772 void activate_task(struct rq *rq, struct task_struct *p, int flags)
773 {
774 if (task_contributes_to_load(p))
775 rq->nr_uninterruptible--;
776
777 enqueue_task(rq, p, flags);
778 }
779
780 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
781 {
782 if (task_contributes_to_load(p))
783 rq->nr_uninterruptible++;
784
785 dequeue_task(rq, p, flags);
786 }
787
788 static void update_rq_clock_task(struct rq *rq, s64 delta)
789 {
790 /*
791 * In theory, the compile should just see 0 here, and optimize out the call
792 * to sched_rt_avg_update. But I don't trust it...
793 */
794 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
795 s64 steal = 0, irq_delta = 0;
796 #endif
797 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
798 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
799
800 /*
801 * Since irq_time is only updated on {soft,}irq_exit, we might run into
802 * this case when a previous update_rq_clock() happened inside a
803 * {soft,}irq region.
804 *
805 * When this happens, we stop ->clock_task and only update the
806 * prev_irq_time stamp to account for the part that fit, so that a next
807 * update will consume the rest. This ensures ->clock_task is
808 * monotonic.
809 *
810 * It does however cause some slight miss-attribution of {soft,}irq
811 * time, a more accurate solution would be to update the irq_time using
812 * the current rq->clock timestamp, except that would require using
813 * atomic ops.
814 */
815 if (irq_delta > delta)
816 irq_delta = delta;
817
818 rq->prev_irq_time += irq_delta;
819 delta -= irq_delta;
820 #endif
821 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
822 if (static_key_false((&paravirt_steal_rq_enabled))) {
823 u64 st;
824
825 steal = paravirt_steal_clock(cpu_of(rq));
826 steal -= rq->prev_steal_time_rq;
827
828 if (unlikely(steal > delta))
829 steal = delta;
830
831 st = steal_ticks(steal);
832 steal = st * TICK_NSEC;
833
834 rq->prev_steal_time_rq += steal;
835
836 delta -= steal;
837 }
838 #endif
839
840 rq->clock_task += delta;
841
842 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
843 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
844 sched_rt_avg_update(rq, irq_delta + steal);
845 #endif
846 }
847
848 void sched_set_stop_task(int cpu, struct task_struct *stop)
849 {
850 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
851 struct task_struct *old_stop = cpu_rq(cpu)->stop;
852
853 if (stop) {
854 /*
855 * Make it appear like a SCHED_FIFO task, its something
856 * userspace knows about and won't get confused about.
857 *
858 * Also, it will make PI more or less work without too
859 * much confusion -- but then, stop work should not
860 * rely on PI working anyway.
861 */
862 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
863
864 stop->sched_class = &stop_sched_class;
865 }
866
867 cpu_rq(cpu)->stop = stop;
868
869 if (old_stop) {
870 /*
871 * Reset it back to a normal scheduling class so that
872 * it can die in pieces.
873 */
874 old_stop->sched_class = &rt_sched_class;
875 }
876 }
877
878 /*
879 * __normal_prio - return the priority that is based on the static prio
880 */
881 static inline int __normal_prio(struct task_struct *p)
882 {
883 return p->static_prio;
884 }
885
886 /*
887 * Calculate the expected normal priority: i.e. priority
888 * without taking RT-inheritance into account. Might be
889 * boosted by interactivity modifiers. Changes upon fork,
890 * setprio syscalls, and whenever the interactivity
891 * estimator recalculates.
892 */
893 static inline int normal_prio(struct task_struct *p)
894 {
895 int prio;
896
897 if (task_has_rt_policy(p))
898 prio = MAX_RT_PRIO-1 - p->rt_priority;
899 else
900 prio = __normal_prio(p);
901 return prio;
902 }
903
904 /*
905 * Calculate the current priority, i.e. the priority
906 * taken into account by the scheduler. This value might
907 * be boosted by RT tasks, or might be boosted by
908 * interactivity modifiers. Will be RT if the task got
909 * RT-boosted. If not then it returns p->normal_prio.
910 */
911 static int effective_prio(struct task_struct *p)
912 {
913 p->normal_prio = normal_prio(p);
914 /*
915 * If we are RT tasks or we were boosted to RT priority,
916 * keep the priority unchanged. Otherwise, update priority
917 * to the normal priority:
918 */
919 if (!rt_prio(p->prio))
920 return p->normal_prio;
921 return p->prio;
922 }
923
924 /**
925 * task_curr - is this task currently executing on a CPU?
926 * @p: the task in question.
927 */
928 inline int task_curr(const struct task_struct *p)
929 {
930 return cpu_curr(task_cpu(p)) == p;
931 }
932
933 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
934 const struct sched_class *prev_class,
935 int oldprio)
936 {
937 if (prev_class != p->sched_class) {
938 if (prev_class->switched_from)
939 prev_class->switched_from(rq, p);
940 p->sched_class->switched_to(rq, p);
941 } else if (oldprio != p->prio)
942 p->sched_class->prio_changed(rq, p, oldprio);
943 }
944
945 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
946 {
947 const struct sched_class *class;
948
949 if (p->sched_class == rq->curr->sched_class) {
950 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
951 } else {
952 for_each_class(class) {
953 if (class == rq->curr->sched_class)
954 break;
955 if (class == p->sched_class) {
956 resched_task(rq->curr);
957 break;
958 }
959 }
960 }
961
962 /*
963 * A queue event has occurred, and we're going to schedule. In
964 * this case, we can save a useless back to back clock update.
965 */
966 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
967 rq->skip_clock_update = 1;
968 }
969
970 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
971
972 void register_task_migration_notifier(struct notifier_block *n)
973 {
974 atomic_notifier_chain_register(&task_migration_notifier, n);
975 }
976
977 #ifdef CONFIG_SMP
978 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979 {
980 #ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
987
988 #ifdef CONFIG_LOCKDEP
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
994 * see task_group().
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001 #endif
1002 #endif
1003
1004 trace_sched_migrate_task(p, new_cpu);
1005
1006 if (task_cpu(p) != new_cpu) {
1007 struct task_migration_notifier tmn;
1008
1009 if (p->sched_class->migrate_task_rq)
1010 p->sched_class->migrate_task_rq(p, new_cpu);
1011 p->se.nr_migrations++;
1012 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1013
1014 tmn.task = p;
1015 tmn.from_cpu = task_cpu(p);
1016 tmn.to_cpu = new_cpu;
1017
1018 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1019 }
1020
1021 __set_task_cpu(p, new_cpu);
1022 }
1023
1024 struct migration_arg {
1025 struct task_struct *task;
1026 int dest_cpu;
1027 };
1028
1029 static int migration_cpu_stop(void *data);
1030
1031 /*
1032 * wait_task_inactive - wait for a thread to unschedule.
1033 *
1034 * If @match_state is nonzero, it's the @p->state value just checked and
1035 * not expected to change. If it changes, i.e. @p might have woken up,
1036 * then return zero. When we succeed in waiting for @p to be off its CPU,
1037 * we return a positive number (its total switch count). If a second call
1038 * a short while later returns the same number, the caller can be sure that
1039 * @p has remained unscheduled the whole time.
1040 *
1041 * The caller must ensure that the task *will* unschedule sometime soon,
1042 * else this function might spin for a *long* time. This function can't
1043 * be called with interrupts off, or it may introduce deadlock with
1044 * smp_call_function() if an IPI is sent by the same process we are
1045 * waiting to become inactive.
1046 */
1047 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1048 {
1049 unsigned long flags;
1050 int running, on_rq;
1051 unsigned long ncsw;
1052 struct rq *rq;
1053
1054 for (;;) {
1055 /*
1056 * We do the initial early heuristics without holding
1057 * any task-queue locks at all. We'll only try to get
1058 * the runqueue lock when things look like they will
1059 * work out!
1060 */
1061 rq = task_rq(p);
1062
1063 /*
1064 * If the task is actively running on another CPU
1065 * still, just relax and busy-wait without holding
1066 * any locks.
1067 *
1068 * NOTE! Since we don't hold any locks, it's not
1069 * even sure that "rq" stays as the right runqueue!
1070 * But we don't care, since "task_running()" will
1071 * return false if the runqueue has changed and p
1072 * is actually now running somewhere else!
1073 */
1074 while (task_running(rq, p)) {
1075 if (match_state && unlikely(p->state != match_state))
1076 return 0;
1077 cpu_relax();
1078 }
1079
1080 /*
1081 * Ok, time to look more closely! We need the rq
1082 * lock now, to be *sure*. If we're wrong, we'll
1083 * just go back and repeat.
1084 */
1085 rq = task_rq_lock(p, &flags);
1086 trace_sched_wait_task(p);
1087 running = task_running(rq, p);
1088 on_rq = p->on_rq;
1089 ncsw = 0;
1090 if (!match_state || p->state == match_state)
1091 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1092 task_rq_unlock(rq, p, &flags);
1093
1094 /*
1095 * If it changed from the expected state, bail out now.
1096 */
1097 if (unlikely(!ncsw))
1098 break;
1099
1100 /*
1101 * Was it really running after all now that we
1102 * checked with the proper locks actually held?
1103 *
1104 * Oops. Go back and try again..
1105 */
1106 if (unlikely(running)) {
1107 cpu_relax();
1108 continue;
1109 }
1110
1111 /*
1112 * It's not enough that it's not actively running,
1113 * it must be off the runqueue _entirely_, and not
1114 * preempted!
1115 *
1116 * So if it was still runnable (but just not actively
1117 * running right now), it's preempted, and we should
1118 * yield - it could be a while.
1119 */
1120 if (unlikely(on_rq)) {
1121 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1122
1123 set_current_state(TASK_UNINTERRUPTIBLE);
1124 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1125 continue;
1126 }
1127
1128 /*
1129 * Ahh, all good. It wasn't running, and it wasn't
1130 * runnable, which means that it will never become
1131 * running in the future either. We're all done!
1132 */
1133 break;
1134 }
1135
1136 return ncsw;
1137 }
1138
1139 /***
1140 * kick_process - kick a running thread to enter/exit the kernel
1141 * @p: the to-be-kicked thread
1142 *
1143 * Cause a process which is running on another CPU to enter
1144 * kernel-mode, without any delay. (to get signals handled.)
1145 *
1146 * NOTE: this function doesn't have to take the runqueue lock,
1147 * because all it wants to ensure is that the remote task enters
1148 * the kernel. If the IPI races and the task has been migrated
1149 * to another CPU then no harm is done and the purpose has been
1150 * achieved as well.
1151 */
1152 void kick_process(struct task_struct *p)
1153 {
1154 int cpu;
1155
1156 preempt_disable();
1157 cpu = task_cpu(p);
1158 if ((cpu != smp_processor_id()) && task_curr(p))
1159 smp_send_reschedule(cpu);
1160 preempt_enable();
1161 }
1162 EXPORT_SYMBOL_GPL(kick_process);
1163 #endif /* CONFIG_SMP */
1164
1165 #ifdef CONFIG_SMP
1166 /*
1167 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1168 */
1169 static int select_fallback_rq(int cpu, struct task_struct *p)
1170 {
1171 int nid = cpu_to_node(cpu);
1172 const struct cpumask *nodemask = NULL;
1173 enum { cpuset, possible, fail } state = cpuset;
1174 int dest_cpu;
1175
1176 /*
1177 * If the node that the cpu is on has been offlined, cpu_to_node()
1178 * will return -1. There is no cpu on the node, and we should
1179 * select the cpu on the other node.
1180 */
1181 if (nid != -1) {
1182 nodemask = cpumask_of_node(nid);
1183
1184 /* Look for allowed, online CPU in same node. */
1185 for_each_cpu(dest_cpu, nodemask) {
1186 if (!cpu_online(dest_cpu))
1187 continue;
1188 if (!cpu_active(dest_cpu))
1189 continue;
1190 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1191 return dest_cpu;
1192 }
1193 }
1194
1195 for (;;) {
1196 /* Any allowed, online CPU? */
1197 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1198 if (!cpu_online(dest_cpu))
1199 continue;
1200 if (!cpu_active(dest_cpu))
1201 continue;
1202 goto out;
1203 }
1204
1205 switch (state) {
1206 case cpuset:
1207 /* No more Mr. Nice Guy. */
1208 cpuset_cpus_allowed_fallback(p);
1209 state = possible;
1210 break;
1211
1212 case possible:
1213 do_set_cpus_allowed(p, cpu_possible_mask);
1214 state = fail;
1215 break;
1216
1217 case fail:
1218 BUG();
1219 break;
1220 }
1221 }
1222
1223 out:
1224 if (state != cpuset) {
1225 /*
1226 * Don't tell them about moving exiting tasks or
1227 * kernel threads (both mm NULL), since they never
1228 * leave kernel.
1229 */
1230 if (p->mm && printk_ratelimit()) {
1231 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1232 task_pid_nr(p), p->comm, cpu);
1233 }
1234 }
1235
1236 return dest_cpu;
1237 }
1238
1239 /*
1240 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1241 */
1242 static inline
1243 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1244 {
1245 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1246
1247 /*
1248 * In order not to call set_task_cpu() on a blocking task we need
1249 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1250 * cpu.
1251 *
1252 * Since this is common to all placement strategies, this lives here.
1253 *
1254 * [ this allows ->select_task() to simply return task_cpu(p) and
1255 * not worry about this generic constraint ]
1256 */
1257 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1258 !cpu_online(cpu)))
1259 cpu = select_fallback_rq(task_cpu(p), p);
1260
1261 return cpu;
1262 }
1263
1264 static void update_avg(u64 *avg, u64 sample)
1265 {
1266 s64 diff = sample - *avg;
1267 *avg += diff >> 3;
1268 }
1269 #endif
1270
1271 static void
1272 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1273 {
1274 #ifdef CONFIG_SCHEDSTATS
1275 struct rq *rq = this_rq();
1276
1277 #ifdef CONFIG_SMP
1278 int this_cpu = smp_processor_id();
1279
1280 if (cpu == this_cpu) {
1281 schedstat_inc(rq, ttwu_local);
1282 schedstat_inc(p, se.statistics.nr_wakeups_local);
1283 } else {
1284 struct sched_domain *sd;
1285
1286 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1287 rcu_read_lock();
1288 for_each_domain(this_cpu, sd) {
1289 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1290 schedstat_inc(sd, ttwu_wake_remote);
1291 break;
1292 }
1293 }
1294 rcu_read_unlock();
1295 }
1296
1297 if (wake_flags & WF_MIGRATED)
1298 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1299
1300 #endif /* CONFIG_SMP */
1301
1302 schedstat_inc(rq, ttwu_count);
1303 schedstat_inc(p, se.statistics.nr_wakeups);
1304
1305 if (wake_flags & WF_SYNC)
1306 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1307
1308 #endif /* CONFIG_SCHEDSTATS */
1309 }
1310
1311 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1312 {
1313 activate_task(rq, p, en_flags);
1314 p->on_rq = 1;
1315
1316 /* if a worker is waking up, notify workqueue */
1317 if (p->flags & PF_WQ_WORKER)
1318 wq_worker_waking_up(p, cpu_of(rq));
1319 }
1320
1321 /*
1322 * Mark the task runnable and perform wakeup-preemption.
1323 */
1324 static void
1325 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1326 {
1327 check_preempt_curr(rq, p, wake_flags);
1328 trace_sched_wakeup(p, true);
1329
1330 p->state = TASK_RUNNING;
1331 #ifdef CONFIG_SMP
1332 if (p->sched_class->task_woken)
1333 p->sched_class->task_woken(rq, p);
1334
1335 if (rq->idle_stamp) {
1336 u64 delta = rq->clock - rq->idle_stamp;
1337 u64 max = 2*sysctl_sched_migration_cost;
1338
1339 if (delta > max)
1340 rq->avg_idle = max;
1341 else
1342 update_avg(&rq->avg_idle, delta);
1343 rq->idle_stamp = 0;
1344 }
1345 #endif
1346 }
1347
1348 static void
1349 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1350 {
1351 #ifdef CONFIG_SMP
1352 if (p->sched_contributes_to_load)
1353 rq->nr_uninterruptible--;
1354 #endif
1355
1356 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1357 ttwu_do_wakeup(rq, p, wake_flags);
1358 }
1359
1360 /*
1361 * Called in case the task @p isn't fully descheduled from its runqueue,
1362 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1363 * since all we need to do is flip p->state to TASK_RUNNING, since
1364 * the task is still ->on_rq.
1365 */
1366 static int ttwu_remote(struct task_struct *p, int wake_flags)
1367 {
1368 struct rq *rq;
1369 int ret = 0;
1370
1371 rq = __task_rq_lock(p);
1372 if (p->on_rq) {
1373 ttwu_do_wakeup(rq, p, wake_flags);
1374 ret = 1;
1375 }
1376 __task_rq_unlock(rq);
1377
1378 return ret;
1379 }
1380
1381 #ifdef CONFIG_SMP
1382 static void sched_ttwu_pending(void)
1383 {
1384 struct rq *rq = this_rq();
1385 struct llist_node *llist = llist_del_all(&rq->wake_list);
1386 struct task_struct *p;
1387
1388 raw_spin_lock(&rq->lock);
1389
1390 while (llist) {
1391 p = llist_entry(llist, struct task_struct, wake_entry);
1392 llist = llist_next(llist);
1393 ttwu_do_activate(rq, p, 0);
1394 }
1395
1396 raw_spin_unlock(&rq->lock);
1397 }
1398
1399 void scheduler_ipi(void)
1400 {
1401 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1402 return;
1403
1404 /*
1405 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1406 * traditionally all their work was done from the interrupt return
1407 * path. Now that we actually do some work, we need to make sure
1408 * we do call them.
1409 *
1410 * Some archs already do call them, luckily irq_enter/exit nest
1411 * properly.
1412 *
1413 * Arguably we should visit all archs and update all handlers,
1414 * however a fair share of IPIs are still resched only so this would
1415 * somewhat pessimize the simple resched case.
1416 */
1417 irq_enter();
1418 sched_ttwu_pending();
1419
1420 /*
1421 * Check if someone kicked us for doing the nohz idle load balance.
1422 */
1423 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1424 this_rq()->idle_balance = 1;
1425 raise_softirq_irqoff(SCHED_SOFTIRQ);
1426 }
1427 irq_exit();
1428 }
1429
1430 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1431 {
1432 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1433 smp_send_reschedule(cpu);
1434 }
1435
1436 bool cpus_share_cache(int this_cpu, int that_cpu)
1437 {
1438 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1439 }
1440 #endif /* CONFIG_SMP */
1441
1442 static void ttwu_queue(struct task_struct *p, int cpu)
1443 {
1444 struct rq *rq = cpu_rq(cpu);
1445
1446 #if defined(CONFIG_SMP)
1447 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1448 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1449 ttwu_queue_remote(p, cpu);
1450 return;
1451 }
1452 #endif
1453
1454 raw_spin_lock(&rq->lock);
1455 ttwu_do_activate(rq, p, 0);
1456 raw_spin_unlock(&rq->lock);
1457 }
1458
1459 /**
1460 * try_to_wake_up - wake up a thread
1461 * @p: the thread to be awakened
1462 * @state: the mask of task states that can be woken
1463 * @wake_flags: wake modifier flags (WF_*)
1464 *
1465 * Put it on the run-queue if it's not already there. The "current"
1466 * thread is always on the run-queue (except when the actual
1467 * re-schedule is in progress), and as such you're allowed to do
1468 * the simpler "current->state = TASK_RUNNING" to mark yourself
1469 * runnable without the overhead of this.
1470 *
1471 * Returns %true if @p was woken up, %false if it was already running
1472 * or @state didn't match @p's state.
1473 */
1474 static int
1475 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1476 {
1477 unsigned long flags;
1478 int cpu, success = 0;
1479
1480 smp_wmb();
1481 raw_spin_lock_irqsave(&p->pi_lock, flags);
1482 if (!(p->state & state))
1483 goto out;
1484
1485 success = 1; /* we're going to change ->state */
1486 cpu = task_cpu(p);
1487
1488 if (p->on_rq && ttwu_remote(p, wake_flags))
1489 goto stat;
1490
1491 #ifdef CONFIG_SMP
1492 /*
1493 * If the owning (remote) cpu is still in the middle of schedule() with
1494 * this task as prev, wait until its done referencing the task.
1495 */
1496 while (p->on_cpu)
1497 cpu_relax();
1498 /*
1499 * Pairs with the smp_wmb() in finish_lock_switch().
1500 */
1501 smp_rmb();
1502
1503 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1504 p->state = TASK_WAKING;
1505
1506 if (p->sched_class->task_waking)
1507 p->sched_class->task_waking(p);
1508
1509 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1510 if (task_cpu(p) != cpu) {
1511 wake_flags |= WF_MIGRATED;
1512 set_task_cpu(p, cpu);
1513 }
1514 #endif /* CONFIG_SMP */
1515
1516 ttwu_queue(p, cpu);
1517 stat:
1518 ttwu_stat(p, cpu, wake_flags);
1519 out:
1520 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1521
1522 return success;
1523 }
1524
1525 /**
1526 * try_to_wake_up_local - try to wake up a local task with rq lock held
1527 * @p: the thread to be awakened
1528 *
1529 * Put @p on the run-queue if it's not already there. The caller must
1530 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1531 * the current task.
1532 */
1533 static void try_to_wake_up_local(struct task_struct *p)
1534 {
1535 struct rq *rq = task_rq(p);
1536
1537 BUG_ON(rq != this_rq());
1538 BUG_ON(p == current);
1539 lockdep_assert_held(&rq->lock);
1540
1541 if (!raw_spin_trylock(&p->pi_lock)) {
1542 raw_spin_unlock(&rq->lock);
1543 raw_spin_lock(&p->pi_lock);
1544 raw_spin_lock(&rq->lock);
1545 }
1546
1547 if (!(p->state & TASK_NORMAL))
1548 goto out;
1549
1550 if (!p->on_rq)
1551 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1552
1553 ttwu_do_wakeup(rq, p, 0);
1554 ttwu_stat(p, smp_processor_id(), 0);
1555 out:
1556 raw_spin_unlock(&p->pi_lock);
1557 }
1558
1559 /**
1560 * wake_up_process - Wake up a specific process
1561 * @p: The process to be woken up.
1562 *
1563 * Attempt to wake up the nominated process and move it to the set of runnable
1564 * processes. Returns 1 if the process was woken up, 0 if it was already
1565 * running.
1566 *
1567 * It may be assumed that this function implies a write memory barrier before
1568 * changing the task state if and only if any tasks are woken up.
1569 */
1570 int wake_up_process(struct task_struct *p)
1571 {
1572 WARN_ON(task_is_stopped_or_traced(p));
1573 return try_to_wake_up(p, TASK_NORMAL, 0);
1574 }
1575 EXPORT_SYMBOL(wake_up_process);
1576
1577 int wake_up_state(struct task_struct *p, unsigned int state)
1578 {
1579 return try_to_wake_up(p, state, 0);
1580 }
1581
1582 /*
1583 * Perform scheduler related setup for a newly forked process p.
1584 * p is forked by current.
1585 *
1586 * __sched_fork() is basic setup used by init_idle() too:
1587 */
1588 static void __sched_fork(struct task_struct *p)
1589 {
1590 p->on_rq = 0;
1591
1592 p->se.on_rq = 0;
1593 p->se.exec_start = 0;
1594 p->se.sum_exec_runtime = 0;
1595 p->se.prev_sum_exec_runtime = 0;
1596 p->se.nr_migrations = 0;
1597 p->se.vruntime = 0;
1598 INIT_LIST_HEAD(&p->se.group_node);
1599
1600 /*
1601 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1602 * removed when useful for applications beyond shares distribution (e.g.
1603 * load-balance).
1604 */
1605 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1606 p->se.avg.runnable_avg_period = 0;
1607 p->se.avg.runnable_avg_sum = 0;
1608 #endif
1609 #ifdef CONFIG_SCHEDSTATS
1610 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1611 #endif
1612
1613 INIT_LIST_HEAD(&p->rt.run_list);
1614
1615 #ifdef CONFIG_PREEMPT_NOTIFIERS
1616 INIT_HLIST_HEAD(&p->preempt_notifiers);
1617 #endif
1618
1619 #ifdef CONFIG_NUMA_BALANCING
1620 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1621 p->mm->numa_next_scan = jiffies;
1622 p->mm->numa_next_reset = jiffies;
1623 p->mm->numa_scan_seq = 0;
1624 }
1625
1626 p->node_stamp = 0ULL;
1627 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1628 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1629 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1630 p->numa_work.next = &p->numa_work;
1631 #endif /* CONFIG_NUMA_BALANCING */
1632 }
1633
1634 #ifdef CONFIG_NUMA_BALANCING
1635 #ifdef CONFIG_SCHED_DEBUG
1636 void set_numabalancing_state(bool enabled)
1637 {
1638 if (enabled)
1639 sched_feat_set("NUMA");
1640 else
1641 sched_feat_set("NO_NUMA");
1642 }
1643 #else
1644 __read_mostly bool numabalancing_enabled;
1645
1646 void set_numabalancing_state(bool enabled)
1647 {
1648 numabalancing_enabled = enabled;
1649 }
1650 #endif /* CONFIG_SCHED_DEBUG */
1651 #endif /* CONFIG_NUMA_BALANCING */
1652
1653 /*
1654 * fork()/clone()-time setup:
1655 */
1656 void sched_fork(struct task_struct *p)
1657 {
1658 unsigned long flags;
1659 int cpu = get_cpu();
1660
1661 __sched_fork(p);
1662 /*
1663 * We mark the process as running here. This guarantees that
1664 * nobody will actually run it, and a signal or other external
1665 * event cannot wake it up and insert it on the runqueue either.
1666 */
1667 p->state = TASK_RUNNING;
1668
1669 /*
1670 * Make sure we do not leak PI boosting priority to the child.
1671 */
1672 p->prio = current->normal_prio;
1673
1674 /*
1675 * Revert to default priority/policy on fork if requested.
1676 */
1677 if (unlikely(p->sched_reset_on_fork)) {
1678 if (task_has_rt_policy(p)) {
1679 p->policy = SCHED_NORMAL;
1680 p->static_prio = NICE_TO_PRIO(0);
1681 p->rt_priority = 0;
1682 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1683 p->static_prio = NICE_TO_PRIO(0);
1684
1685 p->prio = p->normal_prio = __normal_prio(p);
1686 set_load_weight(p);
1687
1688 /*
1689 * We don't need the reset flag anymore after the fork. It has
1690 * fulfilled its duty:
1691 */
1692 p->sched_reset_on_fork = 0;
1693 }
1694
1695 if (!rt_prio(p->prio))
1696 p->sched_class = &fair_sched_class;
1697
1698 if (p->sched_class->task_fork)
1699 p->sched_class->task_fork(p);
1700
1701 /*
1702 * The child is not yet in the pid-hash so no cgroup attach races,
1703 * and the cgroup is pinned to this child due to cgroup_fork()
1704 * is ran before sched_fork().
1705 *
1706 * Silence PROVE_RCU.
1707 */
1708 raw_spin_lock_irqsave(&p->pi_lock, flags);
1709 set_task_cpu(p, cpu);
1710 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1711
1712 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1713 if (likely(sched_info_on()))
1714 memset(&p->sched_info, 0, sizeof(p->sched_info));
1715 #endif
1716 #if defined(CONFIG_SMP)
1717 p->on_cpu = 0;
1718 #endif
1719 #ifdef CONFIG_PREEMPT_COUNT
1720 /* Want to start with kernel preemption disabled. */
1721 task_thread_info(p)->preempt_count = 1;
1722 #endif
1723 #ifdef CONFIG_SMP
1724 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1725 #endif
1726
1727 put_cpu();
1728 }
1729
1730 /*
1731 * wake_up_new_task - wake up a newly created task for the first time.
1732 *
1733 * This function will do some initial scheduler statistics housekeeping
1734 * that must be done for every newly created context, then puts the task
1735 * on the runqueue and wakes it.
1736 */
1737 void wake_up_new_task(struct task_struct *p)
1738 {
1739 unsigned long flags;
1740 struct rq *rq;
1741
1742 raw_spin_lock_irqsave(&p->pi_lock, flags);
1743 #ifdef CONFIG_SMP
1744 /*
1745 * Fork balancing, do it here and not earlier because:
1746 * - cpus_allowed can change in the fork path
1747 * - any previously selected cpu might disappear through hotplug
1748 */
1749 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1750 #endif
1751
1752 rq = __task_rq_lock(p);
1753 activate_task(rq, p, 0);
1754 p->on_rq = 1;
1755 trace_sched_wakeup_new(p, true);
1756 check_preempt_curr(rq, p, WF_FORK);
1757 #ifdef CONFIG_SMP
1758 if (p->sched_class->task_woken)
1759 p->sched_class->task_woken(rq, p);
1760 #endif
1761 task_rq_unlock(rq, p, &flags);
1762 }
1763
1764 #ifdef CONFIG_PREEMPT_NOTIFIERS
1765
1766 /**
1767 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1768 * @notifier: notifier struct to register
1769 */
1770 void preempt_notifier_register(struct preempt_notifier *notifier)
1771 {
1772 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1773 }
1774 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1775
1776 /**
1777 * preempt_notifier_unregister - no longer interested in preemption notifications
1778 * @notifier: notifier struct to unregister
1779 *
1780 * This is safe to call from within a preemption notifier.
1781 */
1782 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1783 {
1784 hlist_del(&notifier->link);
1785 }
1786 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1787
1788 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1789 {
1790 struct preempt_notifier *notifier;
1791
1792 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1793 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1794 }
1795
1796 static void
1797 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1798 struct task_struct *next)
1799 {
1800 struct preempt_notifier *notifier;
1801
1802 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1803 notifier->ops->sched_out(notifier, next);
1804 }
1805
1806 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1807
1808 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1809 {
1810 }
1811
1812 static void
1813 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1814 struct task_struct *next)
1815 {
1816 }
1817
1818 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1819
1820 /**
1821 * prepare_task_switch - prepare to switch tasks
1822 * @rq: the runqueue preparing to switch
1823 * @prev: the current task that is being switched out
1824 * @next: the task we are going to switch to.
1825 *
1826 * This is called with the rq lock held and interrupts off. It must
1827 * be paired with a subsequent finish_task_switch after the context
1828 * switch.
1829 *
1830 * prepare_task_switch sets up locking and calls architecture specific
1831 * hooks.
1832 */
1833 static inline void
1834 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1835 struct task_struct *next)
1836 {
1837 trace_sched_switch(prev, next);
1838 sched_info_switch(prev, next);
1839 perf_event_task_sched_out(prev, next);
1840 fire_sched_out_preempt_notifiers(prev, next);
1841 prepare_lock_switch(rq, next);
1842 prepare_arch_switch(next);
1843 }
1844
1845 /**
1846 * finish_task_switch - clean up after a task-switch
1847 * @rq: runqueue associated with task-switch
1848 * @prev: the thread we just switched away from.
1849 *
1850 * finish_task_switch must be called after the context switch, paired
1851 * with a prepare_task_switch call before the context switch.
1852 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1853 * and do any other architecture-specific cleanup actions.
1854 *
1855 * Note that we may have delayed dropping an mm in context_switch(). If
1856 * so, we finish that here outside of the runqueue lock. (Doing it
1857 * with the lock held can cause deadlocks; see schedule() for
1858 * details.)
1859 */
1860 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1861 __releases(rq->lock)
1862 {
1863 struct mm_struct *mm = rq->prev_mm;
1864 long prev_state;
1865
1866 rq->prev_mm = NULL;
1867
1868 /*
1869 * A task struct has one reference for the use as "current".
1870 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1871 * schedule one last time. The schedule call will never return, and
1872 * the scheduled task must drop that reference.
1873 * The test for TASK_DEAD must occur while the runqueue locks are
1874 * still held, otherwise prev could be scheduled on another cpu, die
1875 * there before we look at prev->state, and then the reference would
1876 * be dropped twice.
1877 * Manfred Spraul <manfred@colorfullife.com>
1878 */
1879 prev_state = prev->state;
1880 vtime_task_switch(prev);
1881 finish_arch_switch(prev);
1882 perf_event_task_sched_in(prev, current);
1883 finish_lock_switch(rq, prev);
1884 finish_arch_post_lock_switch();
1885
1886 fire_sched_in_preempt_notifiers(current);
1887 if (mm)
1888 mmdrop(mm);
1889 if (unlikely(prev_state == TASK_DEAD)) {
1890 /*
1891 * Remove function-return probe instances associated with this
1892 * task and put them back on the free list.
1893 */
1894 kprobe_flush_task(prev);
1895 put_task_struct(prev);
1896 }
1897 }
1898
1899 #ifdef CONFIG_SMP
1900
1901 /* assumes rq->lock is held */
1902 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1903 {
1904 if (prev->sched_class->pre_schedule)
1905 prev->sched_class->pre_schedule(rq, prev);
1906 }
1907
1908 /* rq->lock is NOT held, but preemption is disabled */
1909 static inline void post_schedule(struct rq *rq)
1910 {
1911 if (rq->post_schedule) {
1912 unsigned long flags;
1913
1914 raw_spin_lock_irqsave(&rq->lock, flags);
1915 if (rq->curr->sched_class->post_schedule)
1916 rq->curr->sched_class->post_schedule(rq);
1917 raw_spin_unlock_irqrestore(&rq->lock, flags);
1918
1919 rq->post_schedule = 0;
1920 }
1921 }
1922
1923 #else
1924
1925 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1926 {
1927 }
1928
1929 static inline void post_schedule(struct rq *rq)
1930 {
1931 }
1932
1933 #endif
1934
1935 /**
1936 * schedule_tail - first thing a freshly forked thread must call.
1937 * @prev: the thread we just switched away from.
1938 */
1939 asmlinkage void schedule_tail(struct task_struct *prev)
1940 __releases(rq->lock)
1941 {
1942 struct rq *rq = this_rq();
1943
1944 finish_task_switch(rq, prev);
1945
1946 /*
1947 * FIXME: do we need to worry about rq being invalidated by the
1948 * task_switch?
1949 */
1950 post_schedule(rq);
1951
1952 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1953 /* In this case, finish_task_switch does not reenable preemption */
1954 preempt_enable();
1955 #endif
1956 if (current->set_child_tid)
1957 put_user(task_pid_vnr(current), current->set_child_tid);
1958 }
1959
1960 /*
1961 * context_switch - switch to the new MM and the new
1962 * thread's register state.
1963 */
1964 static inline void
1965 context_switch(struct rq *rq, struct task_struct *prev,
1966 struct task_struct *next)
1967 {
1968 struct mm_struct *mm, *oldmm;
1969
1970 prepare_task_switch(rq, prev, next);
1971
1972 mm = next->mm;
1973 oldmm = prev->active_mm;
1974 /*
1975 * For paravirt, this is coupled with an exit in switch_to to
1976 * combine the page table reload and the switch backend into
1977 * one hypercall.
1978 */
1979 arch_start_context_switch(prev);
1980
1981 if (!mm) {
1982 next->active_mm = oldmm;
1983 atomic_inc(&oldmm->mm_count);
1984 enter_lazy_tlb(oldmm, next);
1985 } else
1986 switch_mm(oldmm, mm, next);
1987
1988 if (!prev->mm) {
1989 prev->active_mm = NULL;
1990 rq->prev_mm = oldmm;
1991 }
1992 /*
1993 * Since the runqueue lock will be released by the next
1994 * task (which is an invalid locking op but in the case
1995 * of the scheduler it's an obvious special-case), so we
1996 * do an early lockdep release here:
1997 */
1998 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1999 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2000 #endif
2001
2002 context_tracking_task_switch(prev, next);
2003 /* Here we just switch the register state and the stack. */
2004 switch_to(prev, next, prev);
2005
2006 barrier();
2007 /*
2008 * this_rq must be evaluated again because prev may have moved
2009 * CPUs since it called schedule(), thus the 'rq' on its stack
2010 * frame will be invalid.
2011 */
2012 finish_task_switch(this_rq(), prev);
2013 }
2014
2015 /*
2016 * nr_running and nr_context_switches:
2017 *
2018 * externally visible scheduler statistics: current number of runnable
2019 * threads, total number of context switches performed since bootup.
2020 */
2021 unsigned long nr_running(void)
2022 {
2023 unsigned long i, sum = 0;
2024
2025 for_each_online_cpu(i)
2026 sum += cpu_rq(i)->nr_running;
2027
2028 return sum;
2029 }
2030
2031 unsigned long long nr_context_switches(void)
2032 {
2033 int i;
2034 unsigned long long sum = 0;
2035
2036 for_each_possible_cpu(i)
2037 sum += cpu_rq(i)->nr_switches;
2038
2039 return sum;
2040 }
2041
2042 unsigned long nr_iowait(void)
2043 {
2044 unsigned long i, sum = 0;
2045
2046 for_each_possible_cpu(i)
2047 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2048
2049 return sum;
2050 }
2051
2052 unsigned long nr_iowait_cpu(int cpu)
2053 {
2054 struct rq *this = cpu_rq(cpu);
2055 return atomic_read(&this->nr_iowait);
2056 }
2057
2058 unsigned long this_cpu_load(void)
2059 {
2060 struct rq *this = this_rq();
2061 return this->cpu_load[0];
2062 }
2063
2064
2065 /*
2066 * Global load-average calculations
2067 *
2068 * We take a distributed and async approach to calculating the global load-avg
2069 * in order to minimize overhead.
2070 *
2071 * The global load average is an exponentially decaying average of nr_running +
2072 * nr_uninterruptible.
2073 *
2074 * Once every LOAD_FREQ:
2075 *
2076 * nr_active = 0;
2077 * for_each_possible_cpu(cpu)
2078 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2079 *
2080 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2081 *
2082 * Due to a number of reasons the above turns in the mess below:
2083 *
2084 * - for_each_possible_cpu() is prohibitively expensive on machines with
2085 * serious number of cpus, therefore we need to take a distributed approach
2086 * to calculating nr_active.
2087 *
2088 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2089 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2090 *
2091 * So assuming nr_active := 0 when we start out -- true per definition, we
2092 * can simply take per-cpu deltas and fold those into a global accumulate
2093 * to obtain the same result. See calc_load_fold_active().
2094 *
2095 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2096 * across the machine, we assume 10 ticks is sufficient time for every
2097 * cpu to have completed this task.
2098 *
2099 * This places an upper-bound on the IRQ-off latency of the machine. Then
2100 * again, being late doesn't loose the delta, just wrecks the sample.
2101 *
2102 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2103 * this would add another cross-cpu cacheline miss and atomic operation
2104 * to the wakeup path. Instead we increment on whatever cpu the task ran
2105 * when it went into uninterruptible state and decrement on whatever cpu
2106 * did the wakeup. This means that only the sum of nr_uninterruptible over
2107 * all cpus yields the correct result.
2108 *
2109 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2110 */
2111
2112 /* Variables and functions for calc_load */
2113 static atomic_long_t calc_load_tasks;
2114 static unsigned long calc_load_update;
2115 unsigned long avenrun[3];
2116 EXPORT_SYMBOL(avenrun); /* should be removed */
2117
2118 /**
2119 * get_avenrun - get the load average array
2120 * @loads: pointer to dest load array
2121 * @offset: offset to add
2122 * @shift: shift count to shift the result left
2123 *
2124 * These values are estimates at best, so no need for locking.
2125 */
2126 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2127 {
2128 loads[0] = (avenrun[0] + offset) << shift;
2129 loads[1] = (avenrun[1] + offset) << shift;
2130 loads[2] = (avenrun[2] + offset) << shift;
2131 }
2132
2133 static long calc_load_fold_active(struct rq *this_rq)
2134 {
2135 long nr_active, delta = 0;
2136
2137 nr_active = this_rq->nr_running;
2138 nr_active += (long) this_rq->nr_uninterruptible;
2139
2140 if (nr_active != this_rq->calc_load_active) {
2141 delta = nr_active - this_rq->calc_load_active;
2142 this_rq->calc_load_active = nr_active;
2143 }
2144
2145 return delta;
2146 }
2147
2148 /*
2149 * a1 = a0 * e + a * (1 - e)
2150 */
2151 static unsigned long
2152 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2153 {
2154 load *= exp;
2155 load += active * (FIXED_1 - exp);
2156 load += 1UL << (FSHIFT - 1);
2157 return load >> FSHIFT;
2158 }
2159
2160 #ifdef CONFIG_NO_HZ_COMMON
2161 /*
2162 * Handle NO_HZ for the global load-average.
2163 *
2164 * Since the above described distributed algorithm to compute the global
2165 * load-average relies on per-cpu sampling from the tick, it is affected by
2166 * NO_HZ.
2167 *
2168 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2169 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2170 * when we read the global state.
2171 *
2172 * Obviously reality has to ruin such a delightfully simple scheme:
2173 *
2174 * - When we go NO_HZ idle during the window, we can negate our sample
2175 * contribution, causing under-accounting.
2176 *
2177 * We avoid this by keeping two idle-delta counters and flipping them
2178 * when the window starts, thus separating old and new NO_HZ load.
2179 *
2180 * The only trick is the slight shift in index flip for read vs write.
2181 *
2182 * 0s 5s 10s 15s
2183 * +10 +10 +10 +10
2184 * |-|-----------|-|-----------|-|-----------|-|
2185 * r:0 0 1 1 0 0 1 1 0
2186 * w:0 1 1 0 0 1 1 0 0
2187 *
2188 * This ensures we'll fold the old idle contribution in this window while
2189 * accumlating the new one.
2190 *
2191 * - When we wake up from NO_HZ idle during the window, we push up our
2192 * contribution, since we effectively move our sample point to a known
2193 * busy state.
2194 *
2195 * This is solved by pushing the window forward, and thus skipping the
2196 * sample, for this cpu (effectively using the idle-delta for this cpu which
2197 * was in effect at the time the window opened). This also solves the issue
2198 * of having to deal with a cpu having been in NOHZ idle for multiple
2199 * LOAD_FREQ intervals.
2200 *
2201 * When making the ILB scale, we should try to pull this in as well.
2202 */
2203 static atomic_long_t calc_load_idle[2];
2204 static int calc_load_idx;
2205
2206 static inline int calc_load_write_idx(void)
2207 {
2208 int idx = calc_load_idx;
2209
2210 /*
2211 * See calc_global_nohz(), if we observe the new index, we also
2212 * need to observe the new update time.
2213 */
2214 smp_rmb();
2215
2216 /*
2217 * If the folding window started, make sure we start writing in the
2218 * next idle-delta.
2219 */
2220 if (!time_before(jiffies, calc_load_update))
2221 idx++;
2222
2223 return idx & 1;
2224 }
2225
2226 static inline int calc_load_read_idx(void)
2227 {
2228 return calc_load_idx & 1;
2229 }
2230
2231 void calc_load_enter_idle(void)
2232 {
2233 struct rq *this_rq = this_rq();
2234 long delta;
2235
2236 /*
2237 * We're going into NOHZ mode, if there's any pending delta, fold it
2238 * into the pending idle delta.
2239 */
2240 delta = calc_load_fold_active(this_rq);
2241 if (delta) {
2242 int idx = calc_load_write_idx();
2243 atomic_long_add(delta, &calc_load_idle[idx]);
2244 }
2245 }
2246
2247 void calc_load_exit_idle(void)
2248 {
2249 struct rq *this_rq = this_rq();
2250
2251 /*
2252 * If we're still before the sample window, we're done.
2253 */
2254 if (time_before(jiffies, this_rq->calc_load_update))
2255 return;
2256
2257 /*
2258 * We woke inside or after the sample window, this means we're already
2259 * accounted through the nohz accounting, so skip the entire deal and
2260 * sync up for the next window.
2261 */
2262 this_rq->calc_load_update = calc_load_update;
2263 if (time_before(jiffies, this_rq->calc_load_update + 10))
2264 this_rq->calc_load_update += LOAD_FREQ;
2265 }
2266
2267 static long calc_load_fold_idle(void)
2268 {
2269 int idx = calc_load_read_idx();
2270 long delta = 0;
2271
2272 if (atomic_long_read(&calc_load_idle[idx]))
2273 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2274
2275 return delta;
2276 }
2277
2278 /**
2279 * fixed_power_int - compute: x^n, in O(log n) time
2280 *
2281 * @x: base of the power
2282 * @frac_bits: fractional bits of @x
2283 * @n: power to raise @x to.
2284 *
2285 * By exploiting the relation between the definition of the natural power
2286 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2287 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2288 * (where: n_i \elem {0, 1}, the binary vector representing n),
2289 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2290 * of course trivially computable in O(log_2 n), the length of our binary
2291 * vector.
2292 */
2293 static unsigned long
2294 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2295 {
2296 unsigned long result = 1UL << frac_bits;
2297
2298 if (n) for (;;) {
2299 if (n & 1) {
2300 result *= x;
2301 result += 1UL << (frac_bits - 1);
2302 result >>= frac_bits;
2303 }
2304 n >>= 1;
2305 if (!n)
2306 break;
2307 x *= x;
2308 x += 1UL << (frac_bits - 1);
2309 x >>= frac_bits;
2310 }
2311
2312 return result;
2313 }
2314
2315 /*
2316 * a1 = a0 * e + a * (1 - e)
2317 *
2318 * a2 = a1 * e + a * (1 - e)
2319 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2320 * = a0 * e^2 + a * (1 - e) * (1 + e)
2321 *
2322 * a3 = a2 * e + a * (1 - e)
2323 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2324 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2325 *
2326 * ...
2327 *
2328 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2329 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2330 * = a0 * e^n + a * (1 - e^n)
2331 *
2332 * [1] application of the geometric series:
2333 *
2334 * n 1 - x^(n+1)
2335 * S_n := \Sum x^i = -------------
2336 * i=0 1 - x
2337 */
2338 static unsigned long
2339 calc_load_n(unsigned long load, unsigned long exp,
2340 unsigned long active, unsigned int n)
2341 {
2342
2343 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2344 }
2345
2346 /*
2347 * NO_HZ can leave us missing all per-cpu ticks calling
2348 * calc_load_account_active(), but since an idle CPU folds its delta into
2349 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2350 * in the pending idle delta if our idle period crossed a load cycle boundary.
2351 *
2352 * Once we've updated the global active value, we need to apply the exponential
2353 * weights adjusted to the number of cycles missed.
2354 */
2355 static void calc_global_nohz(void)
2356 {
2357 long delta, active, n;
2358
2359 if (!time_before(jiffies, calc_load_update + 10)) {
2360 /*
2361 * Catch-up, fold however many we are behind still
2362 */
2363 delta = jiffies - calc_load_update - 10;
2364 n = 1 + (delta / LOAD_FREQ);
2365
2366 active = atomic_long_read(&calc_load_tasks);
2367 active = active > 0 ? active * FIXED_1 : 0;
2368
2369 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2370 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2371 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2372
2373 calc_load_update += n * LOAD_FREQ;
2374 }
2375
2376 /*
2377 * Flip the idle index...
2378 *
2379 * Make sure we first write the new time then flip the index, so that
2380 * calc_load_write_idx() will see the new time when it reads the new
2381 * index, this avoids a double flip messing things up.
2382 */
2383 smp_wmb();
2384 calc_load_idx++;
2385 }
2386 #else /* !CONFIG_NO_HZ_COMMON */
2387
2388 static inline long calc_load_fold_idle(void) { return 0; }
2389 static inline void calc_global_nohz(void) { }
2390
2391 #endif /* CONFIG_NO_HZ_COMMON */
2392
2393 /*
2394 * calc_load - update the avenrun load estimates 10 ticks after the
2395 * CPUs have updated calc_load_tasks.
2396 */
2397 void calc_global_load(unsigned long ticks)
2398 {
2399 long active, delta;
2400
2401 if (time_before(jiffies, calc_load_update + 10))
2402 return;
2403
2404 /*
2405 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2406 */
2407 delta = calc_load_fold_idle();
2408 if (delta)
2409 atomic_long_add(delta, &calc_load_tasks);
2410
2411 active = atomic_long_read(&calc_load_tasks);
2412 active = active > 0 ? active * FIXED_1 : 0;
2413
2414 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2415 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2416 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2417
2418 calc_load_update += LOAD_FREQ;
2419
2420 /*
2421 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2422 */
2423 calc_global_nohz();
2424 }
2425
2426 /*
2427 * Called from update_cpu_load() to periodically update this CPU's
2428 * active count.
2429 */
2430 static void calc_load_account_active(struct rq *this_rq)
2431 {
2432 long delta;
2433
2434 if (time_before(jiffies, this_rq->calc_load_update))
2435 return;
2436
2437 delta = calc_load_fold_active(this_rq);
2438 if (delta)
2439 atomic_long_add(delta, &calc_load_tasks);
2440
2441 this_rq->calc_load_update += LOAD_FREQ;
2442 }
2443
2444 /*
2445 * End of global load-average stuff
2446 */
2447
2448 /*
2449 * The exact cpuload at various idx values, calculated at every tick would be
2450 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2451 *
2452 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2453 * on nth tick when cpu may be busy, then we have:
2454 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2455 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2456 *
2457 * decay_load_missed() below does efficient calculation of
2458 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2459 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2460 *
2461 * The calculation is approximated on a 128 point scale.
2462 * degrade_zero_ticks is the number of ticks after which load at any
2463 * particular idx is approximated to be zero.
2464 * degrade_factor is a precomputed table, a row for each load idx.
2465 * Each column corresponds to degradation factor for a power of two ticks,
2466 * based on 128 point scale.
2467 * Example:
2468 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2469 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2470 *
2471 * With this power of 2 load factors, we can degrade the load n times
2472 * by looking at 1 bits in n and doing as many mult/shift instead of
2473 * n mult/shifts needed by the exact degradation.
2474 */
2475 #define DEGRADE_SHIFT 7
2476 static const unsigned char
2477 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2478 static const unsigned char
2479 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2480 {0, 0, 0, 0, 0, 0, 0, 0},
2481 {64, 32, 8, 0, 0, 0, 0, 0},
2482 {96, 72, 40, 12, 1, 0, 0},
2483 {112, 98, 75, 43, 15, 1, 0},
2484 {120, 112, 98, 76, 45, 16, 2} };
2485
2486 /*
2487 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2488 * would be when CPU is idle and so we just decay the old load without
2489 * adding any new load.
2490 */
2491 static unsigned long
2492 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2493 {
2494 int j = 0;
2495
2496 if (!missed_updates)
2497 return load;
2498
2499 if (missed_updates >= degrade_zero_ticks[idx])
2500 return 0;
2501
2502 if (idx == 1)
2503 return load >> missed_updates;
2504
2505 while (missed_updates) {
2506 if (missed_updates % 2)
2507 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2508
2509 missed_updates >>= 1;
2510 j++;
2511 }
2512 return load;
2513 }
2514
2515 /*
2516 * Update rq->cpu_load[] statistics. This function is usually called every
2517 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2518 * every tick. We fix it up based on jiffies.
2519 */
2520 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2521 unsigned long pending_updates)
2522 {
2523 int i, scale;
2524
2525 this_rq->nr_load_updates++;
2526
2527 /* Update our load: */
2528 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2529 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2530 unsigned long old_load, new_load;
2531
2532 /* scale is effectively 1 << i now, and >> i divides by scale */
2533
2534 old_load = this_rq->cpu_load[i];
2535 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2536 new_load = this_load;
2537 /*
2538 * Round up the averaging division if load is increasing. This
2539 * prevents us from getting stuck on 9 if the load is 10, for
2540 * example.
2541 */
2542 if (new_load > old_load)
2543 new_load += scale - 1;
2544
2545 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2546 }
2547
2548 sched_avg_update(this_rq);
2549 }
2550
2551 #ifdef CONFIG_NO_HZ_COMMON
2552 /*
2553 * There is no sane way to deal with nohz on smp when using jiffies because the
2554 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2555 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2556 *
2557 * Therefore we cannot use the delta approach from the regular tick since that
2558 * would seriously skew the load calculation. However we'll make do for those
2559 * updates happening while idle (nohz_idle_balance) or coming out of idle
2560 * (tick_nohz_idle_exit).
2561 *
2562 * This means we might still be one tick off for nohz periods.
2563 */
2564
2565 /*
2566 * Called from nohz_idle_balance() to update the load ratings before doing the
2567 * idle balance.
2568 */
2569 void update_idle_cpu_load(struct rq *this_rq)
2570 {
2571 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2572 unsigned long load = this_rq->load.weight;
2573 unsigned long pending_updates;
2574
2575 /*
2576 * bail if there's load or we're actually up-to-date.
2577 */
2578 if (load || curr_jiffies == this_rq->last_load_update_tick)
2579 return;
2580
2581 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2582 this_rq->last_load_update_tick = curr_jiffies;
2583
2584 __update_cpu_load(this_rq, load, pending_updates);
2585 }
2586
2587 /*
2588 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2589 */
2590 void update_cpu_load_nohz(void)
2591 {
2592 struct rq *this_rq = this_rq();
2593 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2594 unsigned long pending_updates;
2595
2596 if (curr_jiffies == this_rq->last_load_update_tick)
2597 return;
2598
2599 raw_spin_lock(&this_rq->lock);
2600 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2601 if (pending_updates) {
2602 this_rq->last_load_update_tick = curr_jiffies;
2603 /*
2604 * We were idle, this means load 0, the current load might be
2605 * !0 due to remote wakeups and the sort.
2606 */
2607 __update_cpu_load(this_rq, 0, pending_updates);
2608 }
2609 raw_spin_unlock(&this_rq->lock);
2610 }
2611 #endif /* CONFIG_NO_HZ_COMMON */
2612
2613 /*
2614 * Called from scheduler_tick()
2615 */
2616 static void update_cpu_load_active(struct rq *this_rq)
2617 {
2618 /*
2619 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2620 */
2621 this_rq->last_load_update_tick = jiffies;
2622 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2623
2624 calc_load_account_active(this_rq);
2625 }
2626
2627 #ifdef CONFIG_SMP
2628
2629 /*
2630 * sched_exec - execve() is a valuable balancing opportunity, because at
2631 * this point the task has the smallest effective memory and cache footprint.
2632 */
2633 void sched_exec(void)
2634 {
2635 struct task_struct *p = current;
2636 unsigned long flags;
2637 int dest_cpu;
2638
2639 raw_spin_lock_irqsave(&p->pi_lock, flags);
2640 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2641 if (dest_cpu == smp_processor_id())
2642 goto unlock;
2643
2644 if (likely(cpu_active(dest_cpu))) {
2645 struct migration_arg arg = { p, dest_cpu };
2646
2647 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2648 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2649 return;
2650 }
2651 unlock:
2652 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2653 }
2654
2655 #endif
2656
2657 DEFINE_PER_CPU(struct kernel_stat, kstat);
2658 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2659
2660 EXPORT_PER_CPU_SYMBOL(kstat);
2661 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2662
2663 /*
2664 * Return any ns on the sched_clock that have not yet been accounted in
2665 * @p in case that task is currently running.
2666 *
2667 * Called with task_rq_lock() held on @rq.
2668 */
2669 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2670 {
2671 u64 ns = 0;
2672
2673 if (task_current(rq, p)) {
2674 update_rq_clock(rq);
2675 ns = rq->clock_task - p->se.exec_start;
2676 if ((s64)ns < 0)
2677 ns = 0;
2678 }
2679
2680 return ns;
2681 }
2682
2683 unsigned long long task_delta_exec(struct task_struct *p)
2684 {
2685 unsigned long flags;
2686 struct rq *rq;
2687 u64 ns = 0;
2688
2689 rq = task_rq_lock(p, &flags);
2690 ns = do_task_delta_exec(p, rq);
2691 task_rq_unlock(rq, p, &flags);
2692
2693 return ns;
2694 }
2695
2696 /*
2697 * Return accounted runtime for the task.
2698 * In case the task is currently running, return the runtime plus current's
2699 * pending runtime that have not been accounted yet.
2700 */
2701 unsigned long long task_sched_runtime(struct task_struct *p)
2702 {
2703 unsigned long flags;
2704 struct rq *rq;
2705 u64 ns = 0;
2706
2707 rq = task_rq_lock(p, &flags);
2708 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2709 task_rq_unlock(rq, p, &flags);
2710
2711 return ns;
2712 }
2713
2714 /*
2715 * This function gets called by the timer code, with HZ frequency.
2716 * We call it with interrupts disabled.
2717 */
2718 void scheduler_tick(void)
2719 {
2720 int cpu = smp_processor_id();
2721 struct rq *rq = cpu_rq(cpu);
2722 struct task_struct *curr = rq->curr;
2723
2724 sched_clock_tick();
2725
2726 raw_spin_lock(&rq->lock);
2727 update_rq_clock(rq);
2728 update_cpu_load_active(rq);
2729 curr->sched_class->task_tick(rq, curr, 0);
2730 raw_spin_unlock(&rq->lock);
2731
2732 perf_event_task_tick();
2733
2734 #ifdef CONFIG_SMP
2735 rq->idle_balance = idle_cpu(cpu);
2736 trigger_load_balance(rq, cpu);
2737 #endif
2738 }
2739
2740 notrace unsigned long get_parent_ip(unsigned long addr)
2741 {
2742 if (in_lock_functions(addr)) {
2743 addr = CALLER_ADDR2;
2744 if (in_lock_functions(addr))
2745 addr = CALLER_ADDR3;
2746 }
2747 return addr;
2748 }
2749
2750 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2751 defined(CONFIG_PREEMPT_TRACER))
2752
2753 void __kprobes add_preempt_count(int val)
2754 {
2755 #ifdef CONFIG_DEBUG_PREEMPT
2756 /*
2757 * Underflow?
2758 */
2759 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2760 return;
2761 #endif
2762 preempt_count() += val;
2763 #ifdef CONFIG_DEBUG_PREEMPT
2764 /*
2765 * Spinlock count overflowing soon?
2766 */
2767 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2768 PREEMPT_MASK - 10);
2769 #endif
2770 if (preempt_count() == val)
2771 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2772 }
2773 EXPORT_SYMBOL(add_preempt_count);
2774
2775 void __kprobes sub_preempt_count(int val)
2776 {
2777 #ifdef CONFIG_DEBUG_PREEMPT
2778 /*
2779 * Underflow?
2780 */
2781 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2782 return;
2783 /*
2784 * Is the spinlock portion underflowing?
2785 */
2786 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2787 !(preempt_count() & PREEMPT_MASK)))
2788 return;
2789 #endif
2790
2791 if (preempt_count() == val)
2792 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2793 preempt_count() -= val;
2794 }
2795 EXPORT_SYMBOL(sub_preempt_count);
2796
2797 #endif
2798
2799 /*
2800 * Print scheduling while atomic bug:
2801 */
2802 static noinline void __schedule_bug(struct task_struct *prev)
2803 {
2804 if (oops_in_progress)
2805 return;
2806
2807 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2808 prev->comm, prev->pid, preempt_count());
2809
2810 debug_show_held_locks(prev);
2811 print_modules();
2812 if (irqs_disabled())
2813 print_irqtrace_events(prev);
2814 dump_stack();
2815 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2816 }
2817
2818 /*
2819 * Various schedule()-time debugging checks and statistics:
2820 */
2821 static inline void schedule_debug(struct task_struct *prev)
2822 {
2823 /*
2824 * Test if we are atomic. Since do_exit() needs to call into
2825 * schedule() atomically, we ignore that path for now.
2826 * Otherwise, whine if we are scheduling when we should not be.
2827 */
2828 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2829 __schedule_bug(prev);
2830 rcu_sleep_check();
2831
2832 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2833
2834 schedstat_inc(this_rq(), sched_count);
2835 }
2836
2837 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2838 {
2839 if (prev->on_rq || rq->skip_clock_update < 0)
2840 update_rq_clock(rq);
2841 prev->sched_class->put_prev_task(rq, prev);
2842 }
2843
2844 /*
2845 * Pick up the highest-prio task:
2846 */
2847 static inline struct task_struct *
2848 pick_next_task(struct rq *rq)
2849 {
2850 const struct sched_class *class;
2851 struct task_struct *p;
2852
2853 /*
2854 * Optimization: we know that if all tasks are in
2855 * the fair class we can call that function directly:
2856 */
2857 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2858 p = fair_sched_class.pick_next_task(rq);
2859 if (likely(p))
2860 return p;
2861 }
2862
2863 for_each_class(class) {
2864 p = class->pick_next_task(rq);
2865 if (p)
2866 return p;
2867 }
2868
2869 BUG(); /* the idle class will always have a runnable task */
2870 }
2871
2872 /*
2873 * __schedule() is the main scheduler function.
2874 *
2875 * The main means of driving the scheduler and thus entering this function are:
2876 *
2877 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2878 *
2879 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2880 * paths. For example, see arch/x86/entry_64.S.
2881 *
2882 * To drive preemption between tasks, the scheduler sets the flag in timer
2883 * interrupt handler scheduler_tick().
2884 *
2885 * 3. Wakeups don't really cause entry into schedule(). They add a
2886 * task to the run-queue and that's it.
2887 *
2888 * Now, if the new task added to the run-queue preempts the current
2889 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2890 * called on the nearest possible occasion:
2891 *
2892 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2893 *
2894 * - in syscall or exception context, at the next outmost
2895 * preempt_enable(). (this might be as soon as the wake_up()'s
2896 * spin_unlock()!)
2897 *
2898 * - in IRQ context, return from interrupt-handler to
2899 * preemptible context
2900 *
2901 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2902 * then at the next:
2903 *
2904 * - cond_resched() call
2905 * - explicit schedule() call
2906 * - return from syscall or exception to user-space
2907 * - return from interrupt-handler to user-space
2908 */
2909 static void __sched __schedule(void)
2910 {
2911 struct task_struct *prev, *next;
2912 unsigned long *switch_count;
2913 struct rq *rq;
2914 int cpu;
2915
2916 need_resched:
2917 preempt_disable();
2918 cpu = smp_processor_id();
2919 rq = cpu_rq(cpu);
2920 rcu_note_context_switch(cpu);
2921 prev = rq->curr;
2922
2923 schedule_debug(prev);
2924
2925 if (sched_feat(HRTICK))
2926 hrtick_clear(rq);
2927
2928 raw_spin_lock_irq(&rq->lock);
2929
2930 switch_count = &prev->nivcsw;
2931 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2932 if (unlikely(signal_pending_state(prev->state, prev))) {
2933 prev->state = TASK_RUNNING;
2934 } else {
2935 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2936 prev->on_rq = 0;
2937
2938 /*
2939 * If a worker went to sleep, notify and ask workqueue
2940 * whether it wants to wake up a task to maintain
2941 * concurrency.
2942 */
2943 if (prev->flags & PF_WQ_WORKER) {
2944 struct task_struct *to_wakeup;
2945
2946 to_wakeup = wq_worker_sleeping(prev, cpu);
2947 if (to_wakeup)
2948 try_to_wake_up_local(to_wakeup);
2949 }
2950 }
2951 switch_count = &prev->nvcsw;
2952 }
2953
2954 pre_schedule(rq, prev);
2955
2956 if (unlikely(!rq->nr_running))
2957 idle_balance(cpu, rq);
2958
2959 put_prev_task(rq, prev);
2960 next = pick_next_task(rq);
2961 clear_tsk_need_resched(prev);
2962 rq->skip_clock_update = 0;
2963
2964 if (likely(prev != next)) {
2965 rq->nr_switches++;
2966 rq->curr = next;
2967 ++*switch_count;
2968
2969 context_switch(rq, prev, next); /* unlocks the rq */
2970 /*
2971 * The context switch have flipped the stack from under us
2972 * and restored the local variables which were saved when
2973 * this task called schedule() in the past. prev == current
2974 * is still correct, but it can be moved to another cpu/rq.
2975 */
2976 cpu = smp_processor_id();
2977 rq = cpu_rq(cpu);
2978 } else
2979 raw_spin_unlock_irq(&rq->lock);
2980
2981 post_schedule(rq);
2982
2983 sched_preempt_enable_no_resched();
2984 if (need_resched())
2985 goto need_resched;
2986 }
2987
2988 static inline void sched_submit_work(struct task_struct *tsk)
2989 {
2990 if (!tsk->state || tsk_is_pi_blocked(tsk))
2991 return;
2992 /*
2993 * If we are going to sleep and we have plugged IO queued,
2994 * make sure to submit it to avoid deadlocks.
2995 */
2996 if (blk_needs_flush_plug(tsk))
2997 blk_schedule_flush_plug(tsk);
2998 }
2999
3000 asmlinkage void __sched schedule(void)
3001 {
3002 struct task_struct *tsk = current;
3003
3004 sched_submit_work(tsk);
3005 __schedule();
3006 }
3007 EXPORT_SYMBOL(schedule);
3008
3009 #ifdef CONFIG_CONTEXT_TRACKING
3010 asmlinkage void __sched schedule_user(void)
3011 {
3012 /*
3013 * If we come here after a random call to set_need_resched(),
3014 * or we have been woken up remotely but the IPI has not yet arrived,
3015 * we haven't yet exited the RCU idle mode. Do it here manually until
3016 * we find a better solution.
3017 */
3018 user_exit();
3019 schedule();
3020 user_enter();
3021 }
3022 #endif
3023
3024 /**
3025 * schedule_preempt_disabled - called with preemption disabled
3026 *
3027 * Returns with preemption disabled. Note: preempt_count must be 1
3028 */
3029 void __sched schedule_preempt_disabled(void)
3030 {
3031 sched_preempt_enable_no_resched();
3032 schedule();
3033 preempt_disable();
3034 }
3035
3036 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3037
3038 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3039 {
3040 if (lock->owner != owner)
3041 return false;
3042
3043 /*
3044 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3045 * lock->owner still matches owner, if that fails, owner might
3046 * point to free()d memory, if it still matches, the rcu_read_lock()
3047 * ensures the memory stays valid.
3048 */
3049 barrier();
3050
3051 return owner->on_cpu;
3052 }
3053
3054 /*
3055 * Look out! "owner" is an entirely speculative pointer
3056 * access and not reliable.
3057 */
3058 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3059 {
3060 if (!sched_feat(OWNER_SPIN))
3061 return 0;
3062
3063 rcu_read_lock();
3064 while (owner_running(lock, owner)) {
3065 if (need_resched())
3066 break;
3067
3068 arch_mutex_cpu_relax();
3069 }
3070 rcu_read_unlock();
3071
3072 /*
3073 * We break out the loop above on need_resched() and when the
3074 * owner changed, which is a sign for heavy contention. Return
3075 * success only when lock->owner is NULL.
3076 */
3077 return lock->owner == NULL;
3078 }
3079 #endif
3080
3081 #ifdef CONFIG_PREEMPT
3082 /*
3083 * this is the entry point to schedule() from in-kernel preemption
3084 * off of preempt_enable. Kernel preemptions off return from interrupt
3085 * occur there and call schedule directly.
3086 */
3087 asmlinkage void __sched notrace preempt_schedule(void)
3088 {
3089 struct thread_info *ti = current_thread_info();
3090
3091 /*
3092 * If there is a non-zero preempt_count or interrupts are disabled,
3093 * we do not want to preempt the current task. Just return..
3094 */
3095 if (likely(ti->preempt_count || irqs_disabled()))
3096 return;
3097
3098 do {
3099 add_preempt_count_notrace(PREEMPT_ACTIVE);
3100 __schedule();
3101 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3102
3103 /*
3104 * Check again in case we missed a preemption opportunity
3105 * between schedule and now.
3106 */
3107 barrier();
3108 } while (need_resched());
3109 }
3110 EXPORT_SYMBOL(preempt_schedule);
3111
3112 /*
3113 * this is the entry point to schedule() from kernel preemption
3114 * off of irq context.
3115 * Note, that this is called and return with irqs disabled. This will
3116 * protect us against recursive calling from irq.
3117 */
3118 asmlinkage void __sched preempt_schedule_irq(void)
3119 {
3120 struct thread_info *ti = current_thread_info();
3121 enum ctx_state prev_state;
3122
3123 /* Catch callers which need to be fixed */
3124 BUG_ON(ti->preempt_count || !irqs_disabled());
3125
3126 prev_state = exception_enter();
3127
3128 do {
3129 add_preempt_count(PREEMPT_ACTIVE);
3130 local_irq_enable();
3131 __schedule();
3132 local_irq_disable();
3133 sub_preempt_count(PREEMPT_ACTIVE);
3134
3135 /*
3136 * Check again in case we missed a preemption opportunity
3137 * between schedule and now.
3138 */
3139 barrier();
3140 } while (need_resched());
3141
3142 exception_exit(prev_state);
3143 }
3144
3145 #endif /* CONFIG_PREEMPT */
3146
3147 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3148 void *key)
3149 {
3150 return try_to_wake_up(curr->private, mode, wake_flags);
3151 }
3152 EXPORT_SYMBOL(default_wake_function);
3153
3154 /*
3155 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3156 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3157 * number) then we wake all the non-exclusive tasks and one exclusive task.
3158 *
3159 * There are circumstances in which we can try to wake a task which has already
3160 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3161 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3162 */
3163 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3164 int nr_exclusive, int wake_flags, void *key)
3165 {
3166 wait_queue_t *curr, *next;
3167
3168 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3169 unsigned flags = curr->flags;
3170
3171 if (curr->func(curr, mode, wake_flags, key) &&
3172 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3173 break;
3174 }
3175 }
3176
3177 /**
3178 * __wake_up - wake up threads blocked on a waitqueue.
3179 * @q: the waitqueue
3180 * @mode: which threads
3181 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3182 * @key: is directly passed to the wakeup function
3183 *
3184 * It may be assumed that this function implies a write memory barrier before
3185 * changing the task state if and only if any tasks are woken up.
3186 */
3187 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3188 int nr_exclusive, void *key)
3189 {
3190 unsigned long flags;
3191
3192 spin_lock_irqsave(&q->lock, flags);
3193 __wake_up_common(q, mode, nr_exclusive, 0, key);
3194 spin_unlock_irqrestore(&q->lock, flags);
3195 }
3196 EXPORT_SYMBOL(__wake_up);
3197
3198 /*
3199 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3200 */
3201 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3202 {
3203 __wake_up_common(q, mode, nr, 0, NULL);
3204 }
3205 EXPORT_SYMBOL_GPL(__wake_up_locked);
3206
3207 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3208 {
3209 __wake_up_common(q, mode, 1, 0, key);
3210 }
3211 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3212
3213 /**
3214 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3215 * @q: the waitqueue
3216 * @mode: which threads
3217 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3218 * @key: opaque value to be passed to wakeup targets
3219 *
3220 * The sync wakeup differs that the waker knows that it will schedule
3221 * away soon, so while the target thread will be woken up, it will not
3222 * be migrated to another CPU - ie. the two threads are 'synchronized'
3223 * with each other. This can prevent needless bouncing between CPUs.
3224 *
3225 * On UP it can prevent extra preemption.
3226 *
3227 * It may be assumed that this function implies a write memory barrier before
3228 * changing the task state if and only if any tasks are woken up.
3229 */
3230 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3231 int nr_exclusive, void *key)
3232 {
3233 unsigned long flags;
3234 int wake_flags = WF_SYNC;
3235
3236 if (unlikely(!q))
3237 return;
3238
3239 if (unlikely(!nr_exclusive))
3240 wake_flags = 0;
3241
3242 spin_lock_irqsave(&q->lock, flags);
3243 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3244 spin_unlock_irqrestore(&q->lock, flags);
3245 }
3246 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3247
3248 /*
3249 * __wake_up_sync - see __wake_up_sync_key()
3250 */
3251 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3252 {
3253 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3254 }
3255 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3256
3257 /**
3258 * complete: - signals a single thread waiting on this completion
3259 * @x: holds the state of this particular completion
3260 *
3261 * This will wake up a single thread waiting on this completion. Threads will be
3262 * awakened in the same order in which they were queued.
3263 *
3264 * See also complete_all(), wait_for_completion() and related routines.
3265 *
3266 * It may be assumed that this function implies a write memory barrier before
3267 * changing the task state if and only if any tasks are woken up.
3268 */
3269 void complete(struct completion *x)
3270 {
3271 unsigned long flags;
3272
3273 spin_lock_irqsave(&x->wait.lock, flags);
3274 x->done++;
3275 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3276 spin_unlock_irqrestore(&x->wait.lock, flags);
3277 }
3278 EXPORT_SYMBOL(complete);
3279
3280 /**
3281 * complete_all: - signals all threads waiting on this completion
3282 * @x: holds the state of this particular completion
3283 *
3284 * This will wake up all threads waiting on this particular completion event.
3285 *
3286 * It may be assumed that this function implies a write memory barrier before
3287 * changing the task state if and only if any tasks are woken up.
3288 */
3289 void complete_all(struct completion *x)
3290 {
3291 unsigned long flags;
3292
3293 spin_lock_irqsave(&x->wait.lock, flags);
3294 x->done += UINT_MAX/2;
3295 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3296 spin_unlock_irqrestore(&x->wait.lock, flags);
3297 }
3298 EXPORT_SYMBOL(complete_all);
3299
3300 static inline long __sched
3301 do_wait_for_common(struct completion *x,
3302 long (*action)(long), long timeout, int state)
3303 {
3304 if (!x->done) {
3305 DECLARE_WAITQUEUE(wait, current);
3306
3307 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3308 do {
3309 if (signal_pending_state(state, current)) {
3310 timeout = -ERESTARTSYS;
3311 break;
3312 }
3313 __set_current_state(state);
3314 spin_unlock_irq(&x->wait.lock);
3315 timeout = action(timeout);
3316 spin_lock_irq(&x->wait.lock);
3317 } while (!x->done && timeout);
3318 __remove_wait_queue(&x->wait, &wait);
3319 if (!x->done)
3320 return timeout;
3321 }
3322 x->done--;
3323 return timeout ?: 1;
3324 }
3325
3326 static inline long __sched
3327 __wait_for_common(struct completion *x,
3328 long (*action)(long), long timeout, int state)
3329 {
3330 might_sleep();
3331
3332 spin_lock_irq(&x->wait.lock);
3333 timeout = do_wait_for_common(x, action, timeout, state);
3334 spin_unlock_irq(&x->wait.lock);
3335 return timeout;
3336 }
3337
3338 static long __sched
3339 wait_for_common(struct completion *x, long timeout, int state)
3340 {
3341 return __wait_for_common(x, schedule_timeout, timeout, state);
3342 }
3343
3344 static long __sched
3345 wait_for_common_io(struct completion *x, long timeout, int state)
3346 {
3347 return __wait_for_common(x, io_schedule_timeout, timeout, state);
3348 }
3349
3350 /**
3351 * wait_for_completion: - waits for completion of a task
3352 * @x: holds the state of this particular completion
3353 *
3354 * This waits to be signaled for completion of a specific task. It is NOT
3355 * interruptible and there is no timeout.
3356 *
3357 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3358 * and interrupt capability. Also see complete().
3359 */
3360 void __sched wait_for_completion(struct completion *x)
3361 {
3362 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3363 }
3364 EXPORT_SYMBOL(wait_for_completion);
3365
3366 /**
3367 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3368 * @x: holds the state of this particular completion
3369 * @timeout: timeout value in jiffies
3370 *
3371 * This waits for either a completion of a specific task to be signaled or for a
3372 * specified timeout to expire. The timeout is in jiffies. It is not
3373 * interruptible.
3374 *
3375 * The return value is 0 if timed out, and positive (at least 1, or number of
3376 * jiffies left till timeout) if completed.
3377 */
3378 unsigned long __sched
3379 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3380 {
3381 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3382 }
3383 EXPORT_SYMBOL(wait_for_completion_timeout);
3384
3385 /**
3386 * wait_for_completion_io: - waits for completion of a task
3387 * @x: holds the state of this particular completion
3388 *
3389 * This waits to be signaled for completion of a specific task. It is NOT
3390 * interruptible and there is no timeout. The caller is accounted as waiting
3391 * for IO.
3392 */
3393 void __sched wait_for_completion_io(struct completion *x)
3394 {
3395 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3396 }
3397 EXPORT_SYMBOL(wait_for_completion_io);
3398
3399 /**
3400 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3401 * @x: holds the state of this particular completion
3402 * @timeout: timeout value in jiffies
3403 *
3404 * This waits for either a completion of a specific task to be signaled or for a
3405 * specified timeout to expire. The timeout is in jiffies. It is not
3406 * interruptible. The caller is accounted as waiting for IO.
3407 *
3408 * The return value is 0 if timed out, and positive (at least 1, or number of
3409 * jiffies left till timeout) if completed.
3410 */
3411 unsigned long __sched
3412 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3413 {
3414 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3415 }
3416 EXPORT_SYMBOL(wait_for_completion_io_timeout);
3417
3418 /**
3419 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3420 * @x: holds the state of this particular completion
3421 *
3422 * This waits for completion of a specific task to be signaled. It is
3423 * interruptible.
3424 *
3425 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3426 */
3427 int __sched wait_for_completion_interruptible(struct completion *x)
3428 {
3429 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3430 if (t == -ERESTARTSYS)
3431 return t;
3432 return 0;
3433 }
3434 EXPORT_SYMBOL(wait_for_completion_interruptible);
3435
3436 /**
3437 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3438 * @x: holds the state of this particular completion
3439 * @timeout: timeout value in jiffies
3440 *
3441 * This waits for either a completion of a specific task to be signaled or for a
3442 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3443 *
3444 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3445 * positive (at least 1, or number of jiffies left till timeout) if completed.
3446 */
3447 long __sched
3448 wait_for_completion_interruptible_timeout(struct completion *x,
3449 unsigned long timeout)
3450 {
3451 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3452 }
3453 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3454
3455 /**
3456 * wait_for_completion_killable: - waits for completion of a task (killable)
3457 * @x: holds the state of this particular completion
3458 *
3459 * This waits to be signaled for completion of a specific task. It can be
3460 * interrupted by a kill signal.
3461 *
3462 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3463 */
3464 int __sched wait_for_completion_killable(struct completion *x)
3465 {
3466 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3467 if (t == -ERESTARTSYS)
3468 return t;
3469 return 0;
3470 }
3471 EXPORT_SYMBOL(wait_for_completion_killable);
3472
3473 /**
3474 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3475 * @x: holds the state of this particular completion
3476 * @timeout: timeout value in jiffies
3477 *
3478 * This waits for either a completion of a specific task to be
3479 * signaled or for a specified timeout to expire. It can be
3480 * interrupted by a kill signal. The timeout is in jiffies.
3481 *
3482 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3483 * positive (at least 1, or number of jiffies left till timeout) if completed.
3484 */
3485 long __sched
3486 wait_for_completion_killable_timeout(struct completion *x,
3487 unsigned long timeout)
3488 {
3489 return wait_for_common(x, timeout, TASK_KILLABLE);
3490 }
3491 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3492
3493 /**
3494 * try_wait_for_completion - try to decrement a completion without blocking
3495 * @x: completion structure
3496 *
3497 * Returns: 0 if a decrement cannot be done without blocking
3498 * 1 if a decrement succeeded.
3499 *
3500 * If a completion is being used as a counting completion,
3501 * attempt to decrement the counter without blocking. This
3502 * enables us to avoid waiting if the resource the completion
3503 * is protecting is not available.
3504 */
3505 bool try_wait_for_completion(struct completion *x)
3506 {
3507 unsigned long flags;
3508 int ret = 1;
3509
3510 spin_lock_irqsave(&x->wait.lock, flags);
3511 if (!x->done)
3512 ret = 0;
3513 else
3514 x->done--;
3515 spin_unlock_irqrestore(&x->wait.lock, flags);
3516 return ret;
3517 }
3518 EXPORT_SYMBOL(try_wait_for_completion);
3519
3520 /**
3521 * completion_done - Test to see if a completion has any waiters
3522 * @x: completion structure
3523 *
3524 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3525 * 1 if there are no waiters.
3526 *
3527 */
3528 bool completion_done(struct completion *x)
3529 {
3530 unsigned long flags;
3531 int ret = 1;
3532
3533 spin_lock_irqsave(&x->wait.lock, flags);
3534 if (!x->done)
3535 ret = 0;
3536 spin_unlock_irqrestore(&x->wait.lock, flags);
3537 return ret;
3538 }
3539 EXPORT_SYMBOL(completion_done);
3540
3541 static long __sched
3542 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3543 {
3544 unsigned long flags;
3545 wait_queue_t wait;
3546
3547 init_waitqueue_entry(&wait, current);
3548
3549 __set_current_state(state);
3550
3551 spin_lock_irqsave(&q->lock, flags);
3552 __add_wait_queue(q, &wait);
3553 spin_unlock(&q->lock);
3554 timeout = schedule_timeout(timeout);
3555 spin_lock_irq(&q->lock);
3556 __remove_wait_queue(q, &wait);
3557 spin_unlock_irqrestore(&q->lock, flags);
3558
3559 return timeout;
3560 }
3561
3562 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3563 {
3564 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3565 }
3566 EXPORT_SYMBOL(interruptible_sleep_on);
3567
3568 long __sched
3569 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3570 {
3571 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3572 }
3573 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3574
3575 void __sched sleep_on(wait_queue_head_t *q)
3576 {
3577 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3578 }
3579 EXPORT_SYMBOL(sleep_on);
3580
3581 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3582 {
3583 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3584 }
3585 EXPORT_SYMBOL(sleep_on_timeout);
3586
3587 #ifdef CONFIG_RT_MUTEXES
3588
3589 /*
3590 * rt_mutex_setprio - set the current priority of a task
3591 * @p: task
3592 * @prio: prio value (kernel-internal form)
3593 *
3594 * This function changes the 'effective' priority of a task. It does
3595 * not touch ->normal_prio like __setscheduler().
3596 *
3597 * Used by the rt_mutex code to implement priority inheritance logic.
3598 */
3599 void rt_mutex_setprio(struct task_struct *p, int prio)
3600 {
3601 int oldprio, on_rq, running;
3602 struct rq *rq;
3603 const struct sched_class *prev_class;
3604
3605 BUG_ON(prio < 0 || prio > MAX_PRIO);
3606
3607 rq = __task_rq_lock(p);
3608
3609 /*
3610 * Idle task boosting is a nono in general. There is one
3611 * exception, when PREEMPT_RT and NOHZ is active:
3612 *
3613 * The idle task calls get_next_timer_interrupt() and holds
3614 * the timer wheel base->lock on the CPU and another CPU wants
3615 * to access the timer (probably to cancel it). We can safely
3616 * ignore the boosting request, as the idle CPU runs this code
3617 * with interrupts disabled and will complete the lock
3618 * protected section without being interrupted. So there is no
3619 * real need to boost.
3620 */
3621 if (unlikely(p == rq->idle)) {
3622 WARN_ON(p != rq->curr);
3623 WARN_ON(p->pi_blocked_on);
3624 goto out_unlock;
3625 }
3626
3627 trace_sched_pi_setprio(p, prio);
3628 oldprio = p->prio;
3629 prev_class = p->sched_class;
3630 on_rq = p->on_rq;
3631 running = task_current(rq, p);
3632 if (on_rq)
3633 dequeue_task(rq, p, 0);
3634 if (running)
3635 p->sched_class->put_prev_task(rq, p);
3636
3637 if (rt_prio(prio))
3638 p->sched_class = &rt_sched_class;
3639 else
3640 p->sched_class = &fair_sched_class;
3641
3642 p->prio = prio;
3643
3644 if (running)
3645 p->sched_class->set_curr_task(rq);
3646 if (on_rq)
3647 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3648
3649 check_class_changed(rq, p, prev_class, oldprio);
3650 out_unlock:
3651 __task_rq_unlock(rq);
3652 }
3653 #endif
3654 void set_user_nice(struct task_struct *p, long nice)
3655 {
3656 int old_prio, delta, on_rq;
3657 unsigned long flags;
3658 struct rq *rq;
3659
3660 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3661 return;
3662 /*
3663 * We have to be careful, if called from sys_setpriority(),
3664 * the task might be in the middle of scheduling on another CPU.
3665 */
3666 rq = task_rq_lock(p, &flags);
3667 /*
3668 * The RT priorities are set via sched_setscheduler(), but we still
3669 * allow the 'normal' nice value to be set - but as expected
3670 * it wont have any effect on scheduling until the task is
3671 * SCHED_FIFO/SCHED_RR:
3672 */
3673 if (task_has_rt_policy(p)) {
3674 p->static_prio = NICE_TO_PRIO(nice);
3675 goto out_unlock;
3676 }
3677 on_rq = p->on_rq;
3678 if (on_rq)
3679 dequeue_task(rq, p, 0);
3680
3681 p->static_prio = NICE_TO_PRIO(nice);
3682 set_load_weight(p);
3683 old_prio = p->prio;
3684 p->prio = effective_prio(p);
3685 delta = p->prio - old_prio;
3686
3687 if (on_rq) {
3688 enqueue_task(rq, p, 0);
3689 /*
3690 * If the task increased its priority or is running and
3691 * lowered its priority, then reschedule its CPU:
3692 */
3693 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3694 resched_task(rq->curr);
3695 }
3696 out_unlock:
3697 task_rq_unlock(rq, p, &flags);
3698 }
3699 EXPORT_SYMBOL(set_user_nice);
3700
3701 /*
3702 * can_nice - check if a task can reduce its nice value
3703 * @p: task
3704 * @nice: nice value
3705 */
3706 int can_nice(const struct task_struct *p, const int nice)
3707 {
3708 /* convert nice value [19,-20] to rlimit style value [1,40] */
3709 int nice_rlim = 20 - nice;
3710
3711 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3712 capable(CAP_SYS_NICE));
3713 }
3714
3715 #ifdef __ARCH_WANT_SYS_NICE
3716
3717 /*
3718 * sys_nice - change the priority of the current process.
3719 * @increment: priority increment
3720 *
3721 * sys_setpriority is a more generic, but much slower function that
3722 * does similar things.
3723 */
3724 SYSCALL_DEFINE1(nice, int, increment)
3725 {
3726 long nice, retval;
3727
3728 /*
3729 * Setpriority might change our priority at the same moment.
3730 * We don't have to worry. Conceptually one call occurs first
3731 * and we have a single winner.
3732 */
3733 if (increment < -40)
3734 increment = -40;
3735 if (increment > 40)
3736 increment = 40;
3737
3738 nice = TASK_NICE(current) + increment;
3739 if (nice < -20)
3740 nice = -20;
3741 if (nice > 19)
3742 nice = 19;
3743
3744 if (increment < 0 && !can_nice(current, nice))
3745 return -EPERM;
3746
3747 retval = security_task_setnice(current, nice);
3748 if (retval)
3749 return retval;
3750
3751 set_user_nice(current, nice);
3752 return 0;
3753 }
3754
3755 #endif
3756
3757 /**
3758 * task_prio - return the priority value of a given task.
3759 * @p: the task in question.
3760 *
3761 * This is the priority value as seen by users in /proc.
3762 * RT tasks are offset by -200. Normal tasks are centered
3763 * around 0, value goes from -16 to +15.
3764 */
3765 int task_prio(const struct task_struct *p)
3766 {
3767 return p->prio - MAX_RT_PRIO;
3768 }
3769
3770 /**
3771 * task_nice - return the nice value of a given task.
3772 * @p: the task in question.
3773 */
3774 int task_nice(const struct task_struct *p)
3775 {
3776 return TASK_NICE(p);
3777 }
3778 EXPORT_SYMBOL(task_nice);
3779
3780 /**
3781 * idle_cpu - is a given cpu idle currently?
3782 * @cpu: the processor in question.
3783 */
3784 int idle_cpu(int cpu)
3785 {
3786 struct rq *rq = cpu_rq(cpu);
3787
3788 if (rq->curr != rq->idle)
3789 return 0;
3790
3791 if (rq->nr_running)
3792 return 0;
3793
3794 #ifdef CONFIG_SMP
3795 if (!llist_empty(&rq->wake_list))
3796 return 0;
3797 #endif
3798
3799 return 1;
3800 }
3801
3802 /**
3803 * idle_task - return the idle task for a given cpu.
3804 * @cpu: the processor in question.
3805 */
3806 struct task_struct *idle_task(int cpu)
3807 {
3808 return cpu_rq(cpu)->idle;
3809 }
3810
3811 /**
3812 * find_process_by_pid - find a process with a matching PID value.
3813 * @pid: the pid in question.
3814 */
3815 static struct task_struct *find_process_by_pid(pid_t pid)
3816 {
3817 return pid ? find_task_by_vpid(pid) : current;
3818 }
3819
3820 /* Actually do priority change: must hold rq lock. */
3821 static void
3822 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3823 {
3824 p->policy = policy;
3825 p->rt_priority = prio;
3826 p->normal_prio = normal_prio(p);
3827 /* we are holding p->pi_lock already */
3828 p->prio = rt_mutex_getprio(p);
3829 if (rt_prio(p->prio))
3830 p->sched_class = &rt_sched_class;
3831 else
3832 p->sched_class = &fair_sched_class;
3833 set_load_weight(p);
3834 }
3835
3836 /*
3837 * check the target process has a UID that matches the current process's
3838 */
3839 static bool check_same_owner(struct task_struct *p)
3840 {
3841 const struct cred *cred = current_cred(), *pcred;
3842 bool match;
3843
3844 rcu_read_lock();
3845 pcred = __task_cred(p);
3846 match = (uid_eq(cred->euid, pcred->euid) ||
3847 uid_eq(cred->euid, pcred->uid));
3848 rcu_read_unlock();
3849 return match;
3850 }
3851
3852 static int __sched_setscheduler(struct task_struct *p, int policy,
3853 const struct sched_param *param, bool user)
3854 {
3855 int retval, oldprio, oldpolicy = -1, on_rq, running;
3856 unsigned long flags;
3857 const struct sched_class *prev_class;
3858 struct rq *rq;
3859 int reset_on_fork;
3860
3861 /* may grab non-irq protected spin_locks */
3862 BUG_ON(in_interrupt());
3863 recheck:
3864 /* double check policy once rq lock held */
3865 if (policy < 0) {
3866 reset_on_fork = p->sched_reset_on_fork;
3867 policy = oldpolicy = p->policy;
3868 } else {
3869 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3870 policy &= ~SCHED_RESET_ON_FORK;
3871
3872 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3873 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3874 policy != SCHED_IDLE)
3875 return -EINVAL;
3876 }
3877
3878 /*
3879 * Valid priorities for SCHED_FIFO and SCHED_RR are
3880 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3881 * SCHED_BATCH and SCHED_IDLE is 0.
3882 */
3883 if (param->sched_priority < 0 ||
3884 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3885 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3886 return -EINVAL;
3887 if (rt_policy(policy) != (param->sched_priority != 0))
3888 return -EINVAL;
3889
3890 /*
3891 * Allow unprivileged RT tasks to decrease priority:
3892 */
3893 if (user && !capable(CAP_SYS_NICE)) {
3894 if (rt_policy(policy)) {
3895 unsigned long rlim_rtprio =
3896 task_rlimit(p, RLIMIT_RTPRIO);
3897
3898 /* can't set/change the rt policy */
3899 if (policy != p->policy && !rlim_rtprio)
3900 return -EPERM;
3901
3902 /* can't increase priority */
3903 if (param->sched_priority > p->rt_priority &&
3904 param->sched_priority > rlim_rtprio)
3905 return -EPERM;
3906 }
3907
3908 /*
3909 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3910 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3911 */
3912 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3913 if (!can_nice(p, TASK_NICE(p)))
3914 return -EPERM;
3915 }
3916
3917 /* can't change other user's priorities */
3918 if (!check_same_owner(p))
3919 return -EPERM;
3920
3921 /* Normal users shall not reset the sched_reset_on_fork flag */
3922 if (p->sched_reset_on_fork && !reset_on_fork)
3923 return -EPERM;
3924 }
3925
3926 if (user) {
3927 retval = security_task_setscheduler(p);
3928 if (retval)
3929 return retval;
3930 }
3931
3932 /*
3933 * make sure no PI-waiters arrive (or leave) while we are
3934 * changing the priority of the task:
3935 *
3936 * To be able to change p->policy safely, the appropriate
3937 * runqueue lock must be held.
3938 */
3939 rq = task_rq_lock(p, &flags);
3940
3941 /*
3942 * Changing the policy of the stop threads its a very bad idea
3943 */
3944 if (p == rq->stop) {
3945 task_rq_unlock(rq, p, &flags);
3946 return -EINVAL;
3947 }
3948
3949 /*
3950 * If not changing anything there's no need to proceed further:
3951 */
3952 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3953 param->sched_priority == p->rt_priority))) {
3954 task_rq_unlock(rq, p, &flags);
3955 return 0;
3956 }
3957
3958 #ifdef CONFIG_RT_GROUP_SCHED
3959 if (user) {
3960 /*
3961 * Do not allow realtime tasks into groups that have no runtime
3962 * assigned.
3963 */
3964 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3965 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3966 !task_group_is_autogroup(task_group(p))) {
3967 task_rq_unlock(rq, p, &flags);
3968 return -EPERM;
3969 }
3970 }
3971 #endif
3972
3973 /* recheck policy now with rq lock held */
3974 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3975 policy = oldpolicy = -1;
3976 task_rq_unlock(rq, p, &flags);
3977 goto recheck;
3978 }
3979 on_rq = p->on_rq;
3980 running = task_current(rq, p);
3981 if (on_rq)
3982 dequeue_task(rq, p, 0);
3983 if (running)
3984 p->sched_class->put_prev_task(rq, p);
3985
3986 p->sched_reset_on_fork = reset_on_fork;
3987
3988 oldprio = p->prio;
3989 prev_class = p->sched_class;
3990 __setscheduler(rq, p, policy, param->sched_priority);
3991
3992 if (running)
3993 p->sched_class->set_curr_task(rq);
3994 if (on_rq)
3995 enqueue_task(rq, p, 0);
3996
3997 check_class_changed(rq, p, prev_class, oldprio);
3998 task_rq_unlock(rq, p, &flags);
3999
4000 rt_mutex_adjust_pi(p);
4001
4002 return 0;
4003 }
4004
4005 /**
4006 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4007 * @p: the task in question.
4008 * @policy: new policy.
4009 * @param: structure containing the new RT priority.
4010 *
4011 * NOTE that the task may be already dead.
4012 */
4013 int sched_setscheduler(struct task_struct *p, int policy,
4014 const struct sched_param *param)
4015 {
4016 return __sched_setscheduler(p, policy, param, true);
4017 }
4018 EXPORT_SYMBOL_GPL(sched_setscheduler);
4019
4020 /**
4021 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4022 * @p: the task in question.
4023 * @policy: new policy.
4024 * @param: structure containing the new RT priority.
4025 *
4026 * Just like sched_setscheduler, only don't bother checking if the
4027 * current context has permission. For example, this is needed in
4028 * stop_machine(): we create temporary high priority worker threads,
4029 * but our caller might not have that capability.
4030 */
4031 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4032 const struct sched_param *param)
4033 {
4034 return __sched_setscheduler(p, policy, param, false);
4035 }
4036
4037 static int
4038 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4039 {
4040 struct sched_param lparam;
4041 struct task_struct *p;
4042 int retval;
4043
4044 if (!param || pid < 0)
4045 return -EINVAL;
4046 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4047 return -EFAULT;
4048
4049 rcu_read_lock();
4050 retval = -ESRCH;
4051 p = find_process_by_pid(pid);
4052 if (p != NULL)
4053 retval = sched_setscheduler(p, policy, &lparam);
4054 rcu_read_unlock();
4055
4056 return retval;
4057 }
4058
4059 /**
4060 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4061 * @pid: the pid in question.
4062 * @policy: new policy.
4063 * @param: structure containing the new RT priority.
4064 */
4065 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4066 struct sched_param __user *, param)
4067 {
4068 /* negative values for policy are not valid */
4069 if (policy < 0)
4070 return -EINVAL;
4071
4072 return do_sched_setscheduler(pid, policy, param);
4073 }
4074
4075 /**
4076 * sys_sched_setparam - set/change the RT priority of a thread
4077 * @pid: the pid in question.
4078 * @param: structure containing the new RT priority.
4079 */
4080 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4081 {
4082 return do_sched_setscheduler(pid, -1, param);
4083 }
4084
4085 /**
4086 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4087 * @pid: the pid in question.
4088 */
4089 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4090 {
4091 struct task_struct *p;
4092 int retval;
4093
4094 if (pid < 0)
4095 return -EINVAL;
4096
4097 retval = -ESRCH;
4098 rcu_read_lock();
4099 p = find_process_by_pid(pid);
4100 if (p) {
4101 retval = security_task_getscheduler(p);
4102 if (!retval)
4103 retval = p->policy
4104 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4105 }
4106 rcu_read_unlock();
4107 return retval;
4108 }
4109
4110 /**
4111 * sys_sched_getparam - get the RT priority of a thread
4112 * @pid: the pid in question.
4113 * @param: structure containing the RT priority.
4114 */
4115 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4116 {
4117 struct sched_param lp;
4118 struct task_struct *p;
4119 int retval;
4120
4121 if (!param || pid < 0)
4122 return -EINVAL;
4123
4124 rcu_read_lock();
4125 p = find_process_by_pid(pid);
4126 retval = -ESRCH;
4127 if (!p)
4128 goto out_unlock;
4129
4130 retval = security_task_getscheduler(p);
4131 if (retval)
4132 goto out_unlock;
4133
4134 lp.sched_priority = p->rt_priority;
4135 rcu_read_unlock();
4136
4137 /*
4138 * This one might sleep, we cannot do it with a spinlock held ...
4139 */
4140 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4141
4142 return retval;
4143
4144 out_unlock:
4145 rcu_read_unlock();
4146 return retval;
4147 }
4148
4149 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4150 {
4151 cpumask_var_t cpus_allowed, new_mask;
4152 struct task_struct *p;
4153 int retval;
4154
4155 get_online_cpus();
4156 rcu_read_lock();
4157
4158 p = find_process_by_pid(pid);
4159 if (!p) {
4160 rcu_read_unlock();
4161 put_online_cpus();
4162 return -ESRCH;
4163 }
4164
4165 /* Prevent p going away */
4166 get_task_struct(p);
4167 rcu_read_unlock();
4168
4169 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4170 retval = -ENOMEM;
4171 goto out_put_task;
4172 }
4173 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4174 retval = -ENOMEM;
4175 goto out_free_cpus_allowed;
4176 }
4177 retval = -EPERM;
4178 if (!check_same_owner(p)) {
4179 rcu_read_lock();
4180 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4181 rcu_read_unlock();
4182 goto out_unlock;
4183 }
4184 rcu_read_unlock();
4185 }
4186
4187 retval = security_task_setscheduler(p);
4188 if (retval)
4189 goto out_unlock;
4190
4191 cpuset_cpus_allowed(p, cpus_allowed);
4192 cpumask_and(new_mask, in_mask, cpus_allowed);
4193 again:
4194 retval = set_cpus_allowed_ptr(p, new_mask);
4195
4196 if (!retval) {
4197 cpuset_cpus_allowed(p, cpus_allowed);
4198 if (!cpumask_subset(new_mask, cpus_allowed)) {
4199 /*
4200 * We must have raced with a concurrent cpuset
4201 * update. Just reset the cpus_allowed to the
4202 * cpuset's cpus_allowed
4203 */
4204 cpumask_copy(new_mask, cpus_allowed);
4205 goto again;
4206 }
4207 }
4208 out_unlock:
4209 free_cpumask_var(new_mask);
4210 out_free_cpus_allowed:
4211 free_cpumask_var(cpus_allowed);
4212 out_put_task:
4213 put_task_struct(p);
4214 put_online_cpus();
4215 return retval;
4216 }
4217
4218 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4219 struct cpumask *new_mask)
4220 {
4221 if (len < cpumask_size())
4222 cpumask_clear(new_mask);
4223 else if (len > cpumask_size())
4224 len = cpumask_size();
4225
4226 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4227 }
4228
4229 /**
4230 * sys_sched_setaffinity - set the cpu affinity of a process
4231 * @pid: pid of the process
4232 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4233 * @user_mask_ptr: user-space pointer to the new cpu mask
4234 */
4235 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4236 unsigned long __user *, user_mask_ptr)
4237 {
4238 cpumask_var_t new_mask;
4239 int retval;
4240
4241 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4242 return -ENOMEM;
4243
4244 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4245 if (retval == 0)
4246 retval = sched_setaffinity(pid, new_mask);
4247 free_cpumask_var(new_mask);
4248 return retval;
4249 }
4250
4251 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4252 {
4253 struct task_struct *p;
4254 unsigned long flags;
4255 int retval;
4256
4257 get_online_cpus();
4258 rcu_read_lock();
4259
4260 retval = -ESRCH;
4261 p = find_process_by_pid(pid);
4262 if (!p)
4263 goto out_unlock;
4264
4265 retval = security_task_getscheduler(p);
4266 if (retval)
4267 goto out_unlock;
4268
4269 raw_spin_lock_irqsave(&p->pi_lock, flags);
4270 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4271 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4272
4273 out_unlock:
4274 rcu_read_unlock();
4275 put_online_cpus();
4276
4277 return retval;
4278 }
4279
4280 /**
4281 * sys_sched_getaffinity - get the cpu affinity of a process
4282 * @pid: pid of the process
4283 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4284 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4285 */
4286 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4287 unsigned long __user *, user_mask_ptr)
4288 {
4289 int ret;
4290 cpumask_var_t mask;
4291
4292 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4293 return -EINVAL;
4294 if (len & (sizeof(unsigned long)-1))
4295 return -EINVAL;
4296
4297 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4298 return -ENOMEM;
4299
4300 ret = sched_getaffinity(pid, mask);
4301 if (ret == 0) {
4302 size_t retlen = min_t(size_t, len, cpumask_size());
4303
4304 if (copy_to_user(user_mask_ptr, mask, retlen))
4305 ret = -EFAULT;
4306 else
4307 ret = retlen;
4308 }
4309 free_cpumask_var(mask);
4310
4311 return ret;
4312 }
4313
4314 /**
4315 * sys_sched_yield - yield the current processor to other threads.
4316 *
4317 * This function yields the current CPU to other tasks. If there are no
4318 * other threads running on this CPU then this function will return.
4319 */
4320 SYSCALL_DEFINE0(sched_yield)
4321 {
4322 struct rq *rq = this_rq_lock();
4323
4324 schedstat_inc(rq, yld_count);
4325 current->sched_class->yield_task(rq);
4326
4327 /*
4328 * Since we are going to call schedule() anyway, there's
4329 * no need to preempt or enable interrupts:
4330 */
4331 __release(rq->lock);
4332 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4333 do_raw_spin_unlock(&rq->lock);
4334 sched_preempt_enable_no_resched();
4335
4336 schedule();
4337
4338 return 0;
4339 }
4340
4341 static inline int should_resched(void)
4342 {
4343 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4344 }
4345
4346 static void __cond_resched(void)
4347 {
4348 add_preempt_count(PREEMPT_ACTIVE);
4349 __schedule();
4350 sub_preempt_count(PREEMPT_ACTIVE);
4351 }
4352
4353 int __sched _cond_resched(void)
4354 {
4355 if (should_resched()) {
4356 __cond_resched();
4357 return 1;
4358 }
4359 return 0;
4360 }
4361 EXPORT_SYMBOL(_cond_resched);
4362
4363 /*
4364 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4365 * call schedule, and on return reacquire the lock.
4366 *
4367 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4368 * operations here to prevent schedule() from being called twice (once via
4369 * spin_unlock(), once by hand).
4370 */
4371 int __cond_resched_lock(spinlock_t *lock)
4372 {
4373 int resched = should_resched();
4374 int ret = 0;
4375
4376 lockdep_assert_held(lock);
4377
4378 if (spin_needbreak(lock) || resched) {
4379 spin_unlock(lock);
4380 if (resched)
4381 __cond_resched();
4382 else
4383 cpu_relax();
4384 ret = 1;
4385 spin_lock(lock);
4386 }
4387 return ret;
4388 }
4389 EXPORT_SYMBOL(__cond_resched_lock);
4390
4391 int __sched __cond_resched_softirq(void)
4392 {
4393 BUG_ON(!in_softirq());
4394
4395 if (should_resched()) {
4396 local_bh_enable();
4397 __cond_resched();
4398 local_bh_disable();
4399 return 1;
4400 }
4401 return 0;
4402 }
4403 EXPORT_SYMBOL(__cond_resched_softirq);
4404
4405 /**
4406 * yield - yield the current processor to other threads.
4407 *
4408 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4409 *
4410 * The scheduler is at all times free to pick the calling task as the most
4411 * eligible task to run, if removing the yield() call from your code breaks
4412 * it, its already broken.
4413 *
4414 * Typical broken usage is:
4415 *
4416 * while (!event)
4417 * yield();
4418 *
4419 * where one assumes that yield() will let 'the other' process run that will
4420 * make event true. If the current task is a SCHED_FIFO task that will never
4421 * happen. Never use yield() as a progress guarantee!!
4422 *
4423 * If you want to use yield() to wait for something, use wait_event().
4424 * If you want to use yield() to be 'nice' for others, use cond_resched().
4425 * If you still want to use yield(), do not!
4426 */
4427 void __sched yield(void)
4428 {
4429 set_current_state(TASK_RUNNING);
4430 sys_sched_yield();
4431 }
4432 EXPORT_SYMBOL(yield);
4433
4434 /**
4435 * yield_to - yield the current processor to another thread in
4436 * your thread group, or accelerate that thread toward the
4437 * processor it's on.
4438 * @p: target task
4439 * @preempt: whether task preemption is allowed or not
4440 *
4441 * It's the caller's job to ensure that the target task struct
4442 * can't go away on us before we can do any checks.
4443 *
4444 * Returns:
4445 * true (>0) if we indeed boosted the target task.
4446 * false (0) if we failed to boost the target.
4447 * -ESRCH if there's no task to yield to.
4448 */
4449 bool __sched yield_to(struct task_struct *p, bool preempt)
4450 {
4451 struct task_struct *curr = current;
4452 struct rq *rq, *p_rq;
4453 unsigned long flags;
4454 int yielded = 0;
4455
4456 local_irq_save(flags);
4457 rq = this_rq();
4458
4459 again:
4460 p_rq = task_rq(p);
4461 /*
4462 * If we're the only runnable task on the rq and target rq also
4463 * has only one task, there's absolutely no point in yielding.
4464 */
4465 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4466 yielded = -ESRCH;
4467 goto out_irq;
4468 }
4469
4470 double_rq_lock(rq, p_rq);
4471 while (task_rq(p) != p_rq) {
4472 double_rq_unlock(rq, p_rq);
4473 goto again;
4474 }
4475
4476 if (!curr->sched_class->yield_to_task)
4477 goto out_unlock;
4478
4479 if (curr->sched_class != p->sched_class)
4480 goto out_unlock;
4481
4482 if (task_running(p_rq, p) || p->state)
4483 goto out_unlock;
4484
4485 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4486 if (yielded) {
4487 schedstat_inc(rq, yld_count);
4488 /*
4489 * Make p's CPU reschedule; pick_next_entity takes care of
4490 * fairness.
4491 */
4492 if (preempt && rq != p_rq)
4493 resched_task(p_rq->curr);
4494 }
4495
4496 out_unlock:
4497 double_rq_unlock(rq, p_rq);
4498 out_irq:
4499 local_irq_restore(flags);
4500
4501 if (yielded > 0)
4502 schedule();
4503
4504 return yielded;
4505 }
4506 EXPORT_SYMBOL_GPL(yield_to);
4507
4508 /*
4509 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4510 * that process accounting knows that this is a task in IO wait state.
4511 */
4512 void __sched io_schedule(void)
4513 {
4514 struct rq *rq = raw_rq();
4515
4516 delayacct_blkio_start();
4517 atomic_inc(&rq->nr_iowait);
4518 blk_flush_plug(current);
4519 current->in_iowait = 1;
4520 schedule();
4521 current->in_iowait = 0;
4522 atomic_dec(&rq->nr_iowait);
4523 delayacct_blkio_end();
4524 }
4525 EXPORT_SYMBOL(io_schedule);
4526
4527 long __sched io_schedule_timeout(long timeout)
4528 {
4529 struct rq *rq = raw_rq();
4530 long ret;
4531
4532 delayacct_blkio_start();
4533 atomic_inc(&rq->nr_iowait);
4534 blk_flush_plug(current);
4535 current->in_iowait = 1;
4536 ret = schedule_timeout(timeout);
4537 current->in_iowait = 0;
4538 atomic_dec(&rq->nr_iowait);
4539 delayacct_blkio_end();
4540 return ret;
4541 }
4542
4543 /**
4544 * sys_sched_get_priority_max - return maximum RT priority.
4545 * @policy: scheduling class.
4546 *
4547 * this syscall returns the maximum rt_priority that can be used
4548 * by a given scheduling class.
4549 */
4550 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4551 {
4552 int ret = -EINVAL;
4553
4554 switch (policy) {
4555 case SCHED_FIFO:
4556 case SCHED_RR:
4557 ret = MAX_USER_RT_PRIO-1;
4558 break;
4559 case SCHED_NORMAL:
4560 case SCHED_BATCH:
4561 case SCHED_IDLE:
4562 ret = 0;
4563 break;
4564 }
4565 return ret;
4566 }
4567
4568 /**
4569 * sys_sched_get_priority_min - return minimum RT priority.
4570 * @policy: scheduling class.
4571 *
4572 * this syscall returns the minimum rt_priority that can be used
4573 * by a given scheduling class.
4574 */
4575 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4576 {
4577 int ret = -EINVAL;
4578
4579 switch (policy) {
4580 case SCHED_FIFO:
4581 case SCHED_RR:
4582 ret = 1;
4583 break;
4584 case SCHED_NORMAL:
4585 case SCHED_BATCH:
4586 case SCHED_IDLE:
4587 ret = 0;
4588 }
4589 return ret;
4590 }
4591
4592 /**
4593 * sys_sched_rr_get_interval - return the default timeslice of a process.
4594 * @pid: pid of the process.
4595 * @interval: userspace pointer to the timeslice value.
4596 *
4597 * this syscall writes the default timeslice value of a given process
4598 * into the user-space timespec buffer. A value of '0' means infinity.
4599 */
4600 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4601 struct timespec __user *, interval)
4602 {
4603 struct task_struct *p;
4604 unsigned int time_slice;
4605 unsigned long flags;
4606 struct rq *rq;
4607 int retval;
4608 struct timespec t;
4609
4610 if (pid < 0)
4611 return -EINVAL;
4612
4613 retval = -ESRCH;
4614 rcu_read_lock();
4615 p = find_process_by_pid(pid);
4616 if (!p)
4617 goto out_unlock;
4618
4619 retval = security_task_getscheduler(p);
4620 if (retval)
4621 goto out_unlock;
4622
4623 rq = task_rq_lock(p, &flags);
4624 time_slice = p->sched_class->get_rr_interval(rq, p);
4625 task_rq_unlock(rq, p, &flags);
4626
4627 rcu_read_unlock();
4628 jiffies_to_timespec(time_slice, &t);
4629 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4630 return retval;
4631
4632 out_unlock:
4633 rcu_read_unlock();
4634 return retval;
4635 }
4636
4637 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4638
4639 void sched_show_task(struct task_struct *p)
4640 {
4641 unsigned long free = 0;
4642 int ppid;
4643 unsigned state;
4644
4645 state = p->state ? __ffs(p->state) + 1 : 0;
4646 printk(KERN_INFO "%-15.15s %c", p->comm,
4647 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4648 #if BITS_PER_LONG == 32
4649 if (state == TASK_RUNNING)
4650 printk(KERN_CONT " running ");
4651 else
4652 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4653 #else
4654 if (state == TASK_RUNNING)
4655 printk(KERN_CONT " running task ");
4656 else
4657 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4658 #endif
4659 #ifdef CONFIG_DEBUG_STACK_USAGE
4660 free = stack_not_used(p);
4661 #endif
4662 rcu_read_lock();
4663 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4664 rcu_read_unlock();
4665 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4666 task_pid_nr(p), ppid,
4667 (unsigned long)task_thread_info(p)->flags);
4668
4669 show_stack(p, NULL);
4670 }
4671
4672 void show_state_filter(unsigned long state_filter)
4673 {
4674 struct task_struct *g, *p;
4675
4676 #if BITS_PER_LONG == 32
4677 printk(KERN_INFO
4678 " task PC stack pid father\n");
4679 #else
4680 printk(KERN_INFO
4681 " task PC stack pid father\n");
4682 #endif
4683 rcu_read_lock();
4684 do_each_thread(g, p) {
4685 /*
4686 * reset the NMI-timeout, listing all files on a slow
4687 * console might take a lot of time:
4688 */
4689 touch_nmi_watchdog();
4690 if (!state_filter || (p->state & state_filter))
4691 sched_show_task(p);
4692 } while_each_thread(g, p);
4693
4694 touch_all_softlockup_watchdogs();
4695
4696 #ifdef CONFIG_SCHED_DEBUG
4697 sysrq_sched_debug_show();
4698 #endif
4699 rcu_read_unlock();
4700 /*
4701 * Only show locks if all tasks are dumped:
4702 */
4703 if (!state_filter)
4704 debug_show_all_locks();
4705 }
4706
4707 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4708 {
4709 idle->sched_class = &idle_sched_class;
4710 }
4711
4712 /**
4713 * init_idle - set up an idle thread for a given CPU
4714 * @idle: task in question
4715 * @cpu: cpu the idle task belongs to
4716 *
4717 * NOTE: this function does not set the idle thread's NEED_RESCHED
4718 * flag, to make booting more robust.
4719 */
4720 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4721 {
4722 struct rq *rq = cpu_rq(cpu);
4723 unsigned long flags;
4724
4725 raw_spin_lock_irqsave(&rq->lock, flags);
4726
4727 __sched_fork(idle);
4728 idle->state = TASK_RUNNING;
4729 idle->se.exec_start = sched_clock();
4730
4731 do_set_cpus_allowed(idle, cpumask_of(cpu));
4732 /*
4733 * We're having a chicken and egg problem, even though we are
4734 * holding rq->lock, the cpu isn't yet set to this cpu so the
4735 * lockdep check in task_group() will fail.
4736 *
4737 * Similar case to sched_fork(). / Alternatively we could
4738 * use task_rq_lock() here and obtain the other rq->lock.
4739 *
4740 * Silence PROVE_RCU
4741 */
4742 rcu_read_lock();
4743 __set_task_cpu(idle, cpu);
4744 rcu_read_unlock();
4745
4746 rq->curr = rq->idle = idle;
4747 #if defined(CONFIG_SMP)
4748 idle->on_cpu = 1;
4749 #endif
4750 raw_spin_unlock_irqrestore(&rq->lock, flags);
4751
4752 /* Set the preempt count _outside_ the spinlocks! */
4753 task_thread_info(idle)->preempt_count = 0;
4754
4755 /*
4756 * The idle tasks have their own, simple scheduling class:
4757 */
4758 idle->sched_class = &idle_sched_class;
4759 ftrace_graph_init_idle_task(idle, cpu);
4760 vtime_init_idle(idle);
4761 #if defined(CONFIG_SMP)
4762 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4763 #endif
4764 }
4765
4766 #ifdef CONFIG_SMP
4767 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4768 {
4769 if (p->sched_class && p->sched_class->set_cpus_allowed)
4770 p->sched_class->set_cpus_allowed(p, new_mask);
4771
4772 cpumask_copy(&p->cpus_allowed, new_mask);
4773 p->nr_cpus_allowed = cpumask_weight(new_mask);
4774 }
4775
4776 /*
4777 * This is how migration works:
4778 *
4779 * 1) we invoke migration_cpu_stop() on the target CPU using
4780 * stop_one_cpu().
4781 * 2) stopper starts to run (implicitly forcing the migrated thread
4782 * off the CPU)
4783 * 3) it checks whether the migrated task is still in the wrong runqueue.
4784 * 4) if it's in the wrong runqueue then the migration thread removes
4785 * it and puts it into the right queue.
4786 * 5) stopper completes and stop_one_cpu() returns and the migration
4787 * is done.
4788 */
4789
4790 /*
4791 * Change a given task's CPU affinity. Migrate the thread to a
4792 * proper CPU and schedule it away if the CPU it's executing on
4793 * is removed from the allowed bitmask.
4794 *
4795 * NOTE: the caller must have a valid reference to the task, the
4796 * task must not exit() & deallocate itself prematurely. The
4797 * call is not atomic; no spinlocks may be held.
4798 */
4799 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4800 {
4801 unsigned long flags;
4802 struct rq *rq;
4803 unsigned int dest_cpu;
4804 int ret = 0;
4805
4806 rq = task_rq_lock(p, &flags);
4807
4808 if (cpumask_equal(&p->cpus_allowed, new_mask))
4809 goto out;
4810
4811 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4812 ret = -EINVAL;
4813 goto out;
4814 }
4815
4816 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4817 ret = -EINVAL;
4818 goto out;
4819 }
4820
4821 do_set_cpus_allowed(p, new_mask);
4822
4823 /* Can the task run on the task's current CPU? If so, we're done */
4824 if (cpumask_test_cpu(task_cpu(p), new_mask))
4825 goto out;
4826
4827 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4828 if (p->on_rq) {
4829 struct migration_arg arg = { p, dest_cpu };
4830 /* Need help from migration thread: drop lock and wait. */
4831 task_rq_unlock(rq, p, &flags);
4832 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4833 tlb_migrate_finish(p->mm);
4834 return 0;
4835 }
4836 out:
4837 task_rq_unlock(rq, p, &flags);
4838
4839 return ret;
4840 }
4841 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4842
4843 /*
4844 * Move (not current) task off this cpu, onto dest cpu. We're doing
4845 * this because either it can't run here any more (set_cpus_allowed()
4846 * away from this CPU, or CPU going down), or because we're
4847 * attempting to rebalance this task on exec (sched_exec).
4848 *
4849 * So we race with normal scheduler movements, but that's OK, as long
4850 * as the task is no longer on this CPU.
4851 *
4852 * Returns non-zero if task was successfully migrated.
4853 */
4854 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4855 {
4856 struct rq *rq_dest, *rq_src;
4857 int ret = 0;
4858
4859 if (unlikely(!cpu_active(dest_cpu)))
4860 return ret;
4861
4862 rq_src = cpu_rq(src_cpu);
4863 rq_dest = cpu_rq(dest_cpu);
4864
4865 raw_spin_lock(&p->pi_lock);
4866 double_rq_lock(rq_src, rq_dest);
4867 /* Already moved. */
4868 if (task_cpu(p) != src_cpu)
4869 goto done;
4870 /* Affinity changed (again). */
4871 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4872 goto fail;
4873
4874 /*
4875 * If we're not on a rq, the next wake-up will ensure we're
4876 * placed properly.
4877 */
4878 if (p->on_rq) {
4879 dequeue_task(rq_src, p, 0);
4880 set_task_cpu(p, dest_cpu);
4881 enqueue_task(rq_dest, p, 0);
4882 check_preempt_curr(rq_dest, p, 0);
4883 }
4884 done:
4885 ret = 1;
4886 fail:
4887 double_rq_unlock(rq_src, rq_dest);
4888 raw_spin_unlock(&p->pi_lock);
4889 return ret;
4890 }
4891
4892 /*
4893 * migration_cpu_stop - this will be executed by a highprio stopper thread
4894 * and performs thread migration by bumping thread off CPU then
4895 * 'pushing' onto another runqueue.
4896 */
4897 static int migration_cpu_stop(void *data)
4898 {
4899 struct migration_arg *arg = data;
4900
4901 /*
4902 * The original target cpu might have gone down and we might
4903 * be on another cpu but it doesn't matter.
4904 */
4905 local_irq_disable();
4906 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4907 local_irq_enable();
4908 return 0;
4909 }
4910
4911 #ifdef CONFIG_HOTPLUG_CPU
4912
4913 /*
4914 * Ensures that the idle task is using init_mm right before its cpu goes
4915 * offline.
4916 */
4917 void idle_task_exit(void)
4918 {
4919 struct mm_struct *mm = current->active_mm;
4920
4921 BUG_ON(cpu_online(smp_processor_id()));
4922
4923 if (mm != &init_mm)
4924 switch_mm(mm, &init_mm, current);
4925 mmdrop(mm);
4926 }
4927
4928 /*
4929 * Since this CPU is going 'away' for a while, fold any nr_active delta
4930 * we might have. Assumes we're called after migrate_tasks() so that the
4931 * nr_active count is stable.
4932 *
4933 * Also see the comment "Global load-average calculations".
4934 */
4935 static void calc_load_migrate(struct rq *rq)
4936 {
4937 long delta = calc_load_fold_active(rq);
4938 if (delta)
4939 atomic_long_add(delta, &calc_load_tasks);
4940 }
4941
4942 /*
4943 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4944 * try_to_wake_up()->select_task_rq().
4945 *
4946 * Called with rq->lock held even though we'er in stop_machine() and
4947 * there's no concurrency possible, we hold the required locks anyway
4948 * because of lock validation efforts.
4949 */
4950 static void migrate_tasks(unsigned int dead_cpu)
4951 {
4952 struct rq *rq = cpu_rq(dead_cpu);
4953 struct task_struct *next, *stop = rq->stop;
4954 int dest_cpu;
4955
4956 /*
4957 * Fudge the rq selection such that the below task selection loop
4958 * doesn't get stuck on the currently eligible stop task.
4959 *
4960 * We're currently inside stop_machine() and the rq is either stuck
4961 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4962 * either way we should never end up calling schedule() until we're
4963 * done here.
4964 */
4965 rq->stop = NULL;
4966
4967 for ( ; ; ) {
4968 /*
4969 * There's this thread running, bail when that's the only
4970 * remaining thread.
4971 */
4972 if (rq->nr_running == 1)
4973 break;
4974
4975 next = pick_next_task(rq);
4976 BUG_ON(!next);
4977 next->sched_class->put_prev_task(rq, next);
4978
4979 /* Find suitable destination for @next, with force if needed. */
4980 dest_cpu = select_fallback_rq(dead_cpu, next);
4981 raw_spin_unlock(&rq->lock);
4982
4983 __migrate_task(next, dead_cpu, dest_cpu);
4984
4985 raw_spin_lock(&rq->lock);
4986 }
4987
4988 rq->stop = stop;
4989 }
4990
4991 #endif /* CONFIG_HOTPLUG_CPU */
4992
4993 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4994
4995 static struct ctl_table sd_ctl_dir[] = {
4996 {
4997 .procname = "sched_domain",
4998 .mode = 0555,
4999 },
5000 {}
5001 };
5002
5003 static struct ctl_table sd_ctl_root[] = {
5004 {
5005 .procname = "kernel",
5006 .mode = 0555,
5007 .child = sd_ctl_dir,
5008 },
5009 {}
5010 };
5011
5012 static struct ctl_table *sd_alloc_ctl_entry(int n)
5013 {
5014 struct ctl_table *entry =
5015 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5016
5017 return entry;
5018 }
5019
5020 static void sd_free_ctl_entry(struct ctl_table **tablep)
5021 {
5022 struct ctl_table *entry;
5023
5024 /*
5025 * In the intermediate directories, both the child directory and
5026 * procname are dynamically allocated and could fail but the mode
5027 * will always be set. In the lowest directory the names are
5028 * static strings and all have proc handlers.
5029 */
5030 for (entry = *tablep; entry->mode; entry++) {
5031 if (entry->child)
5032 sd_free_ctl_entry(&entry->child);
5033 if (entry->proc_handler == NULL)
5034 kfree(entry->procname);
5035 }
5036
5037 kfree(*tablep);
5038 *tablep = NULL;
5039 }
5040
5041 static int min_load_idx = 0;
5042 static int max_load_idx = CPU_LOAD_IDX_MAX;
5043
5044 static void
5045 set_table_entry(struct ctl_table *entry,
5046 const char *procname, void *data, int maxlen,
5047 umode_t mode, proc_handler *proc_handler,
5048 bool load_idx)
5049 {
5050 entry->procname = procname;
5051 entry->data = data;
5052 entry->maxlen = maxlen;
5053 entry->mode = mode;
5054 entry->proc_handler = proc_handler;
5055
5056 if (load_idx) {
5057 entry->extra1 = &min_load_idx;
5058 entry->extra2 = &max_load_idx;
5059 }
5060 }
5061
5062 static struct ctl_table *
5063 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5064 {
5065 struct ctl_table *table = sd_alloc_ctl_entry(13);
5066
5067 if (table == NULL)
5068 return NULL;
5069
5070 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5071 sizeof(long), 0644, proc_doulongvec_minmax, false);
5072 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5073 sizeof(long), 0644, proc_doulongvec_minmax, false);
5074 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5075 sizeof(int), 0644, proc_dointvec_minmax, true);
5076 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5077 sizeof(int), 0644, proc_dointvec_minmax, true);
5078 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5079 sizeof(int), 0644, proc_dointvec_minmax, true);
5080 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5081 sizeof(int), 0644, proc_dointvec_minmax, true);
5082 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5083 sizeof(int), 0644, proc_dointvec_minmax, true);
5084 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5085 sizeof(int), 0644, proc_dointvec_minmax, false);
5086 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5087 sizeof(int), 0644, proc_dointvec_minmax, false);
5088 set_table_entry(&table[9], "cache_nice_tries",
5089 &sd->cache_nice_tries,
5090 sizeof(int), 0644, proc_dointvec_minmax, false);
5091 set_table_entry(&table[10], "flags", &sd->flags,
5092 sizeof(int), 0644, proc_dointvec_minmax, false);
5093 set_table_entry(&table[11], "name", sd->name,
5094 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5095 /* &table[12] is terminator */
5096
5097 return table;
5098 }
5099
5100 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5101 {
5102 struct ctl_table *entry, *table;
5103 struct sched_domain *sd;
5104 int domain_num = 0, i;
5105 char buf[32];
5106
5107 for_each_domain(cpu, sd)
5108 domain_num++;
5109 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5110 if (table == NULL)
5111 return NULL;
5112
5113 i = 0;
5114 for_each_domain(cpu, sd) {
5115 snprintf(buf, 32, "domain%d", i);
5116 entry->procname = kstrdup(buf, GFP_KERNEL);
5117 entry->mode = 0555;
5118 entry->child = sd_alloc_ctl_domain_table(sd);
5119 entry++;
5120 i++;
5121 }
5122 return table;
5123 }
5124
5125 static struct ctl_table_header *sd_sysctl_header;
5126 static void register_sched_domain_sysctl(void)
5127 {
5128 int i, cpu_num = num_possible_cpus();
5129 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5130 char buf[32];
5131
5132 WARN_ON(sd_ctl_dir[0].child);
5133 sd_ctl_dir[0].child = entry;
5134
5135 if (entry == NULL)
5136 return;
5137
5138 for_each_possible_cpu(i) {
5139 snprintf(buf, 32, "cpu%d", i);
5140 entry->procname = kstrdup(buf, GFP_KERNEL);
5141 entry->mode = 0555;
5142 entry->child = sd_alloc_ctl_cpu_table(i);
5143 entry++;
5144 }
5145
5146 WARN_ON(sd_sysctl_header);
5147 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5148 }
5149
5150 /* may be called multiple times per register */
5151 static void unregister_sched_domain_sysctl(void)
5152 {
5153 if (sd_sysctl_header)
5154 unregister_sysctl_table(sd_sysctl_header);
5155 sd_sysctl_header = NULL;
5156 if (sd_ctl_dir[0].child)
5157 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5158 }
5159 #else
5160 static void register_sched_domain_sysctl(void)
5161 {
5162 }
5163 static void unregister_sched_domain_sysctl(void)
5164 {
5165 }
5166 #endif
5167
5168 static void set_rq_online(struct rq *rq)
5169 {
5170 if (!rq->online) {
5171 const struct sched_class *class;
5172
5173 cpumask_set_cpu(rq->cpu, rq->rd->online);
5174 rq->online = 1;
5175
5176 for_each_class(class) {
5177 if (class->rq_online)
5178 class->rq_online(rq);
5179 }
5180 }
5181 }
5182
5183 static void set_rq_offline(struct rq *rq)
5184 {
5185 if (rq->online) {
5186 const struct sched_class *class;
5187
5188 for_each_class(class) {
5189 if (class->rq_offline)
5190 class->rq_offline(rq);
5191 }
5192
5193 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5194 rq->online = 0;
5195 }
5196 }
5197
5198 /*
5199 * migration_call - callback that gets triggered when a CPU is added.
5200 * Here we can start up the necessary migration thread for the new CPU.
5201 */
5202 static int __cpuinit
5203 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5204 {
5205 int cpu = (long)hcpu;
5206 unsigned long flags;
5207 struct rq *rq = cpu_rq(cpu);
5208
5209 switch (action & ~CPU_TASKS_FROZEN) {
5210
5211 case CPU_UP_PREPARE:
5212 rq->calc_load_update = calc_load_update;
5213 break;
5214
5215 case CPU_ONLINE:
5216 /* Update our root-domain */
5217 raw_spin_lock_irqsave(&rq->lock, flags);
5218 if (rq->rd) {
5219 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5220
5221 set_rq_online(rq);
5222 }
5223 raw_spin_unlock_irqrestore(&rq->lock, flags);
5224 break;
5225
5226 #ifdef CONFIG_HOTPLUG_CPU
5227 case CPU_DYING:
5228 sched_ttwu_pending();
5229 /* Update our root-domain */
5230 raw_spin_lock_irqsave(&rq->lock, flags);
5231 if (rq->rd) {
5232 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5233 set_rq_offline(rq);
5234 }
5235 migrate_tasks(cpu);
5236 BUG_ON(rq->nr_running != 1); /* the migration thread */
5237 raw_spin_unlock_irqrestore(&rq->lock, flags);
5238 break;
5239
5240 case CPU_DEAD:
5241 calc_load_migrate(rq);
5242 break;
5243 #endif
5244 }
5245
5246 update_max_interval();
5247
5248 return NOTIFY_OK;
5249 }
5250
5251 /*
5252 * Register at high priority so that task migration (migrate_all_tasks)
5253 * happens before everything else. This has to be lower priority than
5254 * the notifier in the perf_event subsystem, though.
5255 */
5256 static struct notifier_block __cpuinitdata migration_notifier = {
5257 .notifier_call = migration_call,
5258 .priority = CPU_PRI_MIGRATION,
5259 };
5260
5261 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5262 unsigned long action, void *hcpu)
5263 {
5264 switch (action & ~CPU_TASKS_FROZEN) {
5265 case CPU_STARTING:
5266 case CPU_DOWN_FAILED:
5267 set_cpu_active((long)hcpu, true);
5268 return NOTIFY_OK;
5269 default:
5270 return NOTIFY_DONE;
5271 }
5272 }
5273
5274 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5275 unsigned long action, void *hcpu)
5276 {
5277 switch (action & ~CPU_TASKS_FROZEN) {
5278 case CPU_DOWN_PREPARE:
5279 set_cpu_active((long)hcpu, false);
5280 return NOTIFY_OK;
5281 default:
5282 return NOTIFY_DONE;
5283 }
5284 }
5285
5286 static int __init migration_init(void)
5287 {
5288 void *cpu = (void *)(long)smp_processor_id();
5289 int err;
5290
5291 /* Initialize migration for the boot CPU */
5292 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5293 BUG_ON(err == NOTIFY_BAD);
5294 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5295 register_cpu_notifier(&migration_notifier);
5296
5297 /* Register cpu active notifiers */
5298 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5299 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5300
5301 return 0;
5302 }
5303 early_initcall(migration_init);
5304 #endif
5305
5306 #ifdef CONFIG_SMP
5307
5308 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5309
5310 #ifdef CONFIG_SCHED_DEBUG
5311
5312 static __read_mostly int sched_debug_enabled;
5313
5314 static int __init sched_debug_setup(char *str)
5315 {
5316 sched_debug_enabled = 1;
5317
5318 return 0;
5319 }
5320 early_param("sched_debug", sched_debug_setup);
5321
5322 static inline bool sched_debug(void)
5323 {
5324 return sched_debug_enabled;
5325 }
5326
5327 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5328 struct cpumask *groupmask)
5329 {
5330 struct sched_group *group = sd->groups;
5331 char str[256];
5332
5333 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5334 cpumask_clear(groupmask);
5335
5336 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5337
5338 if (!(sd->flags & SD_LOAD_BALANCE)) {
5339 printk("does not load-balance\n");
5340 if (sd->parent)
5341 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5342 " has parent");
5343 return -1;
5344 }
5345
5346 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5347
5348 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5349 printk(KERN_ERR "ERROR: domain->span does not contain "
5350 "CPU%d\n", cpu);
5351 }
5352 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5353 printk(KERN_ERR "ERROR: domain->groups does not contain"
5354 " CPU%d\n", cpu);
5355 }
5356
5357 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5358 do {
5359 if (!group) {
5360 printk("\n");
5361 printk(KERN_ERR "ERROR: group is NULL\n");
5362 break;
5363 }
5364
5365 /*
5366 * Even though we initialize ->power to something semi-sane,
5367 * we leave power_orig unset. This allows us to detect if
5368 * domain iteration is still funny without causing /0 traps.
5369 */
5370 if (!group->sgp->power_orig) {
5371 printk(KERN_CONT "\n");
5372 printk(KERN_ERR "ERROR: domain->cpu_power not "
5373 "set\n");
5374 break;
5375 }
5376
5377 if (!cpumask_weight(sched_group_cpus(group))) {
5378 printk(KERN_CONT "\n");
5379 printk(KERN_ERR "ERROR: empty group\n");
5380 break;
5381 }
5382
5383 if (!(sd->flags & SD_OVERLAP) &&
5384 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5385 printk(KERN_CONT "\n");
5386 printk(KERN_ERR "ERROR: repeated CPUs\n");
5387 break;
5388 }
5389
5390 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5391
5392 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5393
5394 printk(KERN_CONT " %s", str);
5395 if (group->sgp->power != SCHED_POWER_SCALE) {
5396 printk(KERN_CONT " (cpu_power = %d)",
5397 group->sgp->power);
5398 }
5399
5400 group = group->next;
5401 } while (group != sd->groups);
5402 printk(KERN_CONT "\n");
5403
5404 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5405 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5406
5407 if (sd->parent &&
5408 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5409 printk(KERN_ERR "ERROR: parent span is not a superset "
5410 "of domain->span\n");
5411 return 0;
5412 }
5413
5414 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5415 {
5416 int level = 0;
5417
5418 if (!sched_debug_enabled)
5419 return;
5420
5421 if (!sd) {
5422 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5423 return;
5424 }
5425
5426 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5427
5428 for (;;) {
5429 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5430 break;
5431 level++;
5432 sd = sd->parent;
5433 if (!sd)
5434 break;
5435 }
5436 }
5437 #else /* !CONFIG_SCHED_DEBUG */
5438 # define sched_domain_debug(sd, cpu) do { } while (0)
5439 static inline bool sched_debug(void)
5440 {
5441 return false;
5442 }
5443 #endif /* CONFIG_SCHED_DEBUG */
5444
5445 static int sd_degenerate(struct sched_domain *sd)
5446 {
5447 if (cpumask_weight(sched_domain_span(sd)) == 1)
5448 return 1;
5449
5450 /* Following flags need at least 2 groups */
5451 if (sd->flags & (SD_LOAD_BALANCE |
5452 SD_BALANCE_NEWIDLE |
5453 SD_BALANCE_FORK |
5454 SD_BALANCE_EXEC |
5455 SD_SHARE_CPUPOWER |
5456 SD_SHARE_PKG_RESOURCES)) {
5457 if (sd->groups != sd->groups->next)
5458 return 0;
5459 }
5460
5461 /* Following flags don't use groups */
5462 if (sd->flags & (SD_WAKE_AFFINE))
5463 return 0;
5464
5465 return 1;
5466 }
5467
5468 static int
5469 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5470 {
5471 unsigned long cflags = sd->flags, pflags = parent->flags;
5472
5473 if (sd_degenerate(parent))
5474 return 1;
5475
5476 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5477 return 0;
5478
5479 /* Flags needing groups don't count if only 1 group in parent */
5480 if (parent->groups == parent->groups->next) {
5481 pflags &= ~(SD_LOAD_BALANCE |
5482 SD_BALANCE_NEWIDLE |
5483 SD_BALANCE_FORK |
5484 SD_BALANCE_EXEC |
5485 SD_SHARE_CPUPOWER |
5486 SD_SHARE_PKG_RESOURCES);
5487 if (nr_node_ids == 1)
5488 pflags &= ~SD_SERIALIZE;
5489 }
5490 if (~cflags & pflags)
5491 return 0;
5492
5493 return 1;
5494 }
5495
5496 static void free_rootdomain(struct rcu_head *rcu)
5497 {
5498 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5499
5500 cpupri_cleanup(&rd->cpupri);
5501 free_cpumask_var(rd->rto_mask);
5502 free_cpumask_var(rd->online);
5503 free_cpumask_var(rd->span);
5504 kfree(rd);
5505 }
5506
5507 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5508 {
5509 struct root_domain *old_rd = NULL;
5510 unsigned long flags;
5511
5512 raw_spin_lock_irqsave(&rq->lock, flags);
5513
5514 if (rq->rd) {
5515 old_rd = rq->rd;
5516
5517 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5518 set_rq_offline(rq);
5519
5520 cpumask_clear_cpu(rq->cpu, old_rd->span);
5521
5522 /*
5523 * If we dont want to free the old_rt yet then
5524 * set old_rd to NULL to skip the freeing later
5525 * in this function:
5526 */
5527 if (!atomic_dec_and_test(&old_rd->refcount))
5528 old_rd = NULL;
5529 }
5530
5531 atomic_inc(&rd->refcount);
5532 rq->rd = rd;
5533
5534 cpumask_set_cpu(rq->cpu, rd->span);
5535 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5536 set_rq_online(rq);
5537
5538 raw_spin_unlock_irqrestore(&rq->lock, flags);
5539
5540 if (old_rd)
5541 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5542 }
5543
5544 static int init_rootdomain(struct root_domain *rd)
5545 {
5546 memset(rd, 0, sizeof(*rd));
5547
5548 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5549 goto out;
5550 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5551 goto free_span;
5552 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5553 goto free_online;
5554
5555 if (cpupri_init(&rd->cpupri) != 0)
5556 goto free_rto_mask;
5557 return 0;
5558
5559 free_rto_mask:
5560 free_cpumask_var(rd->rto_mask);
5561 free_online:
5562 free_cpumask_var(rd->online);
5563 free_span:
5564 free_cpumask_var(rd->span);
5565 out:
5566 return -ENOMEM;
5567 }
5568
5569 /*
5570 * By default the system creates a single root-domain with all cpus as
5571 * members (mimicking the global state we have today).
5572 */
5573 struct root_domain def_root_domain;
5574
5575 static void init_defrootdomain(void)
5576 {
5577 init_rootdomain(&def_root_domain);
5578
5579 atomic_set(&def_root_domain.refcount, 1);
5580 }
5581
5582 static struct root_domain *alloc_rootdomain(void)
5583 {
5584 struct root_domain *rd;
5585
5586 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5587 if (!rd)
5588 return NULL;
5589
5590 if (init_rootdomain(rd) != 0) {
5591 kfree(rd);
5592 return NULL;
5593 }
5594
5595 return rd;
5596 }
5597
5598 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5599 {
5600 struct sched_group *tmp, *first;
5601
5602 if (!sg)
5603 return;
5604
5605 first = sg;
5606 do {
5607 tmp = sg->next;
5608
5609 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5610 kfree(sg->sgp);
5611
5612 kfree(sg);
5613 sg = tmp;
5614 } while (sg != first);
5615 }
5616
5617 static void free_sched_domain(struct rcu_head *rcu)
5618 {
5619 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5620
5621 /*
5622 * If its an overlapping domain it has private groups, iterate and
5623 * nuke them all.
5624 */
5625 if (sd->flags & SD_OVERLAP) {
5626 free_sched_groups(sd->groups, 1);
5627 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5628 kfree(sd->groups->sgp);
5629 kfree(sd->groups);
5630 }
5631 kfree(sd);
5632 }
5633
5634 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5635 {
5636 call_rcu(&sd->rcu, free_sched_domain);
5637 }
5638
5639 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5640 {
5641 for (; sd; sd = sd->parent)
5642 destroy_sched_domain(sd, cpu);
5643 }
5644
5645 /*
5646 * Keep a special pointer to the highest sched_domain that has
5647 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5648 * allows us to avoid some pointer chasing select_idle_sibling().
5649 *
5650 * Also keep a unique ID per domain (we use the first cpu number in
5651 * the cpumask of the domain), this allows us to quickly tell if
5652 * two cpus are in the same cache domain, see cpus_share_cache().
5653 */
5654 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5655 DEFINE_PER_CPU(int, sd_llc_id);
5656
5657 static void update_top_cache_domain(int cpu)
5658 {
5659 struct sched_domain *sd;
5660 int id = cpu;
5661
5662 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5663 if (sd)
5664 id = cpumask_first(sched_domain_span(sd));
5665
5666 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5667 per_cpu(sd_llc_id, cpu) = id;
5668 }
5669
5670 /*
5671 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5672 * hold the hotplug lock.
5673 */
5674 static void
5675 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5676 {
5677 struct rq *rq = cpu_rq(cpu);
5678 struct sched_domain *tmp;
5679
5680 /* Remove the sched domains which do not contribute to scheduling. */
5681 for (tmp = sd; tmp; ) {
5682 struct sched_domain *parent = tmp->parent;
5683 if (!parent)
5684 break;
5685
5686 if (sd_parent_degenerate(tmp, parent)) {
5687 tmp->parent = parent->parent;
5688 if (parent->parent)
5689 parent->parent->child = tmp;
5690 destroy_sched_domain(parent, cpu);
5691 } else
5692 tmp = tmp->parent;
5693 }
5694
5695 if (sd && sd_degenerate(sd)) {
5696 tmp = sd;
5697 sd = sd->parent;
5698 destroy_sched_domain(tmp, cpu);
5699 if (sd)
5700 sd->child = NULL;
5701 }
5702
5703 sched_domain_debug(sd, cpu);
5704
5705 rq_attach_root(rq, rd);
5706 tmp = rq->sd;
5707 rcu_assign_pointer(rq->sd, sd);
5708 destroy_sched_domains(tmp, cpu);
5709
5710 update_top_cache_domain(cpu);
5711 }
5712
5713 /* cpus with isolated domains */
5714 static cpumask_var_t cpu_isolated_map;
5715
5716 /* Setup the mask of cpus configured for isolated domains */
5717 static int __init isolated_cpu_setup(char *str)
5718 {
5719 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5720 cpulist_parse(str, cpu_isolated_map);
5721 return 1;
5722 }
5723
5724 __setup("isolcpus=", isolated_cpu_setup);
5725
5726 static const struct cpumask *cpu_cpu_mask(int cpu)
5727 {
5728 return cpumask_of_node(cpu_to_node(cpu));
5729 }
5730
5731 struct sd_data {
5732 struct sched_domain **__percpu sd;
5733 struct sched_group **__percpu sg;
5734 struct sched_group_power **__percpu sgp;
5735 };
5736
5737 struct s_data {
5738 struct sched_domain ** __percpu sd;
5739 struct root_domain *rd;
5740 };
5741
5742 enum s_alloc {
5743 sa_rootdomain,
5744 sa_sd,
5745 sa_sd_storage,
5746 sa_none,
5747 };
5748
5749 struct sched_domain_topology_level;
5750
5751 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5752 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5753
5754 #define SDTL_OVERLAP 0x01
5755
5756 struct sched_domain_topology_level {
5757 sched_domain_init_f init;
5758 sched_domain_mask_f mask;
5759 int flags;
5760 int numa_level;
5761 struct sd_data data;
5762 };
5763
5764 /*
5765 * Build an iteration mask that can exclude certain CPUs from the upwards
5766 * domain traversal.
5767 *
5768 * Asymmetric node setups can result in situations where the domain tree is of
5769 * unequal depth, make sure to skip domains that already cover the entire
5770 * range.
5771 *
5772 * In that case build_sched_domains() will have terminated the iteration early
5773 * and our sibling sd spans will be empty. Domains should always include the
5774 * cpu they're built on, so check that.
5775 *
5776 */
5777 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5778 {
5779 const struct cpumask *span = sched_domain_span(sd);
5780 struct sd_data *sdd = sd->private;
5781 struct sched_domain *sibling;
5782 int i;
5783
5784 for_each_cpu(i, span) {
5785 sibling = *per_cpu_ptr(sdd->sd, i);
5786 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5787 continue;
5788
5789 cpumask_set_cpu(i, sched_group_mask(sg));
5790 }
5791 }
5792
5793 /*
5794 * Return the canonical balance cpu for this group, this is the first cpu
5795 * of this group that's also in the iteration mask.
5796 */
5797 int group_balance_cpu(struct sched_group *sg)
5798 {
5799 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5800 }
5801
5802 static int
5803 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5804 {
5805 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5806 const struct cpumask *span = sched_domain_span(sd);
5807 struct cpumask *covered = sched_domains_tmpmask;
5808 struct sd_data *sdd = sd->private;
5809 struct sched_domain *child;
5810 int i;
5811
5812 cpumask_clear(covered);
5813
5814 for_each_cpu(i, span) {
5815 struct cpumask *sg_span;
5816
5817 if (cpumask_test_cpu(i, covered))
5818 continue;
5819
5820 child = *per_cpu_ptr(sdd->sd, i);
5821
5822 /* See the comment near build_group_mask(). */
5823 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5824 continue;
5825
5826 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5827 GFP_KERNEL, cpu_to_node(cpu));
5828
5829 if (!sg)
5830 goto fail;
5831
5832 sg_span = sched_group_cpus(sg);
5833 if (child->child) {
5834 child = child->child;
5835 cpumask_copy(sg_span, sched_domain_span(child));
5836 } else
5837 cpumask_set_cpu(i, sg_span);
5838
5839 cpumask_or(covered, covered, sg_span);
5840
5841 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5842 if (atomic_inc_return(&sg->sgp->ref) == 1)
5843 build_group_mask(sd, sg);
5844
5845 /*
5846 * Initialize sgp->power such that even if we mess up the
5847 * domains and no possible iteration will get us here, we won't
5848 * die on a /0 trap.
5849 */
5850 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5851
5852 /*
5853 * Make sure the first group of this domain contains the
5854 * canonical balance cpu. Otherwise the sched_domain iteration
5855 * breaks. See update_sg_lb_stats().
5856 */
5857 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5858 group_balance_cpu(sg) == cpu)
5859 groups = sg;
5860
5861 if (!first)
5862 first = sg;
5863 if (last)
5864 last->next = sg;
5865 last = sg;
5866 last->next = first;
5867 }
5868 sd->groups = groups;
5869
5870 return 0;
5871
5872 fail:
5873 free_sched_groups(first, 0);
5874
5875 return -ENOMEM;
5876 }
5877
5878 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5879 {
5880 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5881 struct sched_domain *child = sd->child;
5882
5883 if (child)
5884 cpu = cpumask_first(sched_domain_span(child));
5885
5886 if (sg) {
5887 *sg = *per_cpu_ptr(sdd->sg, cpu);
5888 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5889 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5890 }
5891
5892 return cpu;
5893 }
5894
5895 /*
5896 * build_sched_groups will build a circular linked list of the groups
5897 * covered by the given span, and will set each group's ->cpumask correctly,
5898 * and ->cpu_power to 0.
5899 *
5900 * Assumes the sched_domain tree is fully constructed
5901 */
5902 static int
5903 build_sched_groups(struct sched_domain *sd, int cpu)
5904 {
5905 struct sched_group *first = NULL, *last = NULL;
5906 struct sd_data *sdd = sd->private;
5907 const struct cpumask *span = sched_domain_span(sd);
5908 struct cpumask *covered;
5909 int i;
5910
5911 get_group(cpu, sdd, &sd->groups);
5912 atomic_inc(&sd->groups->ref);
5913
5914 if (cpu != cpumask_first(sched_domain_span(sd)))
5915 return 0;
5916
5917 lockdep_assert_held(&sched_domains_mutex);
5918 covered = sched_domains_tmpmask;
5919
5920 cpumask_clear(covered);
5921
5922 for_each_cpu(i, span) {
5923 struct sched_group *sg;
5924 int group = get_group(i, sdd, &sg);
5925 int j;
5926
5927 if (cpumask_test_cpu(i, covered))
5928 continue;
5929
5930 cpumask_clear(sched_group_cpus(sg));
5931 sg->sgp->power = 0;
5932 cpumask_setall(sched_group_mask(sg));
5933
5934 for_each_cpu(j, span) {
5935 if (get_group(j, sdd, NULL) != group)
5936 continue;
5937
5938 cpumask_set_cpu(j, covered);
5939 cpumask_set_cpu(j, sched_group_cpus(sg));
5940 }
5941
5942 if (!first)
5943 first = sg;
5944 if (last)
5945 last->next = sg;
5946 last = sg;
5947 }
5948 last->next = first;
5949
5950 return 0;
5951 }
5952
5953 /*
5954 * Initialize sched groups cpu_power.
5955 *
5956 * cpu_power indicates the capacity of sched group, which is used while
5957 * distributing the load between different sched groups in a sched domain.
5958 * Typically cpu_power for all the groups in a sched domain will be same unless
5959 * there are asymmetries in the topology. If there are asymmetries, group
5960 * having more cpu_power will pickup more load compared to the group having
5961 * less cpu_power.
5962 */
5963 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5964 {
5965 struct sched_group *sg = sd->groups;
5966
5967 WARN_ON(!sd || !sg);
5968
5969 do {
5970 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5971 sg = sg->next;
5972 } while (sg != sd->groups);
5973
5974 if (cpu != group_balance_cpu(sg))
5975 return;
5976
5977 update_group_power(sd, cpu);
5978 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5979 }
5980
5981 int __weak arch_sd_sibling_asym_packing(void)
5982 {
5983 return 0*SD_ASYM_PACKING;
5984 }
5985
5986 /*
5987 * Initializers for schedule domains
5988 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5989 */
5990
5991 #ifdef CONFIG_SCHED_DEBUG
5992 # define SD_INIT_NAME(sd, type) sd->name = #type
5993 #else
5994 # define SD_INIT_NAME(sd, type) do { } while (0)
5995 #endif
5996
5997 #define SD_INIT_FUNC(type) \
5998 static noinline struct sched_domain * \
5999 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6000 { \
6001 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6002 *sd = SD_##type##_INIT; \
6003 SD_INIT_NAME(sd, type); \
6004 sd->private = &tl->data; \
6005 return sd; \
6006 }
6007
6008 SD_INIT_FUNC(CPU)
6009 #ifdef CONFIG_SCHED_SMT
6010 SD_INIT_FUNC(SIBLING)
6011 #endif
6012 #ifdef CONFIG_SCHED_MC
6013 SD_INIT_FUNC(MC)
6014 #endif
6015 #ifdef CONFIG_SCHED_BOOK
6016 SD_INIT_FUNC(BOOK)
6017 #endif
6018
6019 static int default_relax_domain_level = -1;
6020 int sched_domain_level_max;
6021
6022 static int __init setup_relax_domain_level(char *str)
6023 {
6024 if (kstrtoint(str, 0, &default_relax_domain_level))
6025 pr_warn("Unable to set relax_domain_level\n");
6026
6027 return 1;
6028 }
6029 __setup("relax_domain_level=", setup_relax_domain_level);
6030
6031 static void set_domain_attribute(struct sched_domain *sd,
6032 struct sched_domain_attr *attr)
6033 {
6034 int request;
6035
6036 if (!attr || attr->relax_domain_level < 0) {
6037 if (default_relax_domain_level < 0)
6038 return;
6039 else
6040 request = default_relax_domain_level;
6041 } else
6042 request = attr->relax_domain_level;
6043 if (request < sd->level) {
6044 /* turn off idle balance on this domain */
6045 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6046 } else {
6047 /* turn on idle balance on this domain */
6048 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6049 }
6050 }
6051
6052 static void __sdt_free(const struct cpumask *cpu_map);
6053 static int __sdt_alloc(const struct cpumask *cpu_map);
6054
6055 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6056 const struct cpumask *cpu_map)
6057 {
6058 switch (what) {
6059 case sa_rootdomain:
6060 if (!atomic_read(&d->rd->refcount))
6061 free_rootdomain(&d->rd->rcu); /* fall through */
6062 case sa_sd:
6063 free_percpu(d->sd); /* fall through */
6064 case sa_sd_storage:
6065 __sdt_free(cpu_map); /* fall through */
6066 case sa_none:
6067 break;
6068 }
6069 }
6070
6071 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6072 const struct cpumask *cpu_map)
6073 {
6074 memset(d, 0, sizeof(*d));
6075
6076 if (__sdt_alloc(cpu_map))
6077 return sa_sd_storage;
6078 d->sd = alloc_percpu(struct sched_domain *);
6079 if (!d->sd)
6080 return sa_sd_storage;
6081 d->rd = alloc_rootdomain();
6082 if (!d->rd)
6083 return sa_sd;
6084 return sa_rootdomain;
6085 }
6086
6087 /*
6088 * NULL the sd_data elements we've used to build the sched_domain and
6089 * sched_group structure so that the subsequent __free_domain_allocs()
6090 * will not free the data we're using.
6091 */
6092 static void claim_allocations(int cpu, struct sched_domain *sd)
6093 {
6094 struct sd_data *sdd = sd->private;
6095
6096 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6097 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6098
6099 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6100 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6101
6102 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6103 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6104 }
6105
6106 #ifdef CONFIG_SCHED_SMT
6107 static const struct cpumask *cpu_smt_mask(int cpu)
6108 {
6109 return topology_thread_cpumask(cpu);
6110 }
6111 #endif
6112
6113 /*
6114 * Topology list, bottom-up.
6115 */
6116 static struct sched_domain_topology_level default_topology[] = {
6117 #ifdef CONFIG_SCHED_SMT
6118 { sd_init_SIBLING, cpu_smt_mask, },
6119 #endif
6120 #ifdef CONFIG_SCHED_MC
6121 { sd_init_MC, cpu_coregroup_mask, },
6122 #endif
6123 #ifdef CONFIG_SCHED_BOOK
6124 { sd_init_BOOK, cpu_book_mask, },
6125 #endif
6126 { sd_init_CPU, cpu_cpu_mask, },
6127 { NULL, },
6128 };
6129
6130 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6131
6132 #ifdef CONFIG_NUMA
6133
6134 static int sched_domains_numa_levels;
6135 static int *sched_domains_numa_distance;
6136 static struct cpumask ***sched_domains_numa_masks;
6137 static int sched_domains_curr_level;
6138
6139 static inline int sd_local_flags(int level)
6140 {
6141 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6142 return 0;
6143
6144 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6145 }
6146
6147 static struct sched_domain *
6148 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6149 {
6150 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6151 int level = tl->numa_level;
6152 int sd_weight = cpumask_weight(
6153 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6154
6155 *sd = (struct sched_domain){
6156 .min_interval = sd_weight,
6157 .max_interval = 2*sd_weight,
6158 .busy_factor = 32,
6159 .imbalance_pct = 125,
6160 .cache_nice_tries = 2,
6161 .busy_idx = 3,
6162 .idle_idx = 2,
6163 .newidle_idx = 0,
6164 .wake_idx = 0,
6165 .forkexec_idx = 0,
6166
6167 .flags = 1*SD_LOAD_BALANCE
6168 | 1*SD_BALANCE_NEWIDLE
6169 | 0*SD_BALANCE_EXEC
6170 | 0*SD_BALANCE_FORK
6171 | 0*SD_BALANCE_WAKE
6172 | 0*SD_WAKE_AFFINE
6173 | 0*SD_SHARE_CPUPOWER
6174 | 0*SD_SHARE_PKG_RESOURCES
6175 | 1*SD_SERIALIZE
6176 | 0*SD_PREFER_SIBLING
6177 | sd_local_flags(level)
6178 ,
6179 .last_balance = jiffies,
6180 .balance_interval = sd_weight,
6181 };
6182 SD_INIT_NAME(sd, NUMA);
6183 sd->private = &tl->data;
6184
6185 /*
6186 * Ugly hack to pass state to sd_numa_mask()...
6187 */
6188 sched_domains_curr_level = tl->numa_level;
6189
6190 return sd;
6191 }
6192
6193 static const struct cpumask *sd_numa_mask(int cpu)
6194 {
6195 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6196 }
6197
6198 static void sched_numa_warn(const char *str)
6199 {
6200 static int done = false;
6201 int i,j;
6202
6203 if (done)
6204 return;
6205
6206 done = true;
6207
6208 printk(KERN_WARNING "ERROR: %s\n\n", str);
6209
6210 for (i = 0; i < nr_node_ids; i++) {
6211 printk(KERN_WARNING " ");
6212 for (j = 0; j < nr_node_ids; j++)
6213 printk(KERN_CONT "%02d ", node_distance(i,j));
6214 printk(KERN_CONT "\n");
6215 }
6216 printk(KERN_WARNING "\n");
6217 }
6218
6219 static bool find_numa_distance(int distance)
6220 {
6221 int i;
6222
6223 if (distance == node_distance(0, 0))
6224 return true;
6225
6226 for (i = 0; i < sched_domains_numa_levels; i++) {
6227 if (sched_domains_numa_distance[i] == distance)
6228 return true;
6229 }
6230
6231 return false;
6232 }
6233
6234 static void sched_init_numa(void)
6235 {
6236 int next_distance, curr_distance = node_distance(0, 0);
6237 struct sched_domain_topology_level *tl;
6238 int level = 0;
6239 int i, j, k;
6240
6241 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6242 if (!sched_domains_numa_distance)
6243 return;
6244
6245 /*
6246 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6247 * unique distances in the node_distance() table.
6248 *
6249 * Assumes node_distance(0,j) includes all distances in
6250 * node_distance(i,j) in order to avoid cubic time.
6251 */
6252 next_distance = curr_distance;
6253 for (i = 0; i < nr_node_ids; i++) {
6254 for (j = 0; j < nr_node_ids; j++) {
6255 for (k = 0; k < nr_node_ids; k++) {
6256 int distance = node_distance(i, k);
6257
6258 if (distance > curr_distance &&
6259 (distance < next_distance ||
6260 next_distance == curr_distance))
6261 next_distance = distance;
6262
6263 /*
6264 * While not a strong assumption it would be nice to know
6265 * about cases where if node A is connected to B, B is not
6266 * equally connected to A.
6267 */
6268 if (sched_debug() && node_distance(k, i) != distance)
6269 sched_numa_warn("Node-distance not symmetric");
6270
6271 if (sched_debug() && i && !find_numa_distance(distance))
6272 sched_numa_warn("Node-0 not representative");
6273 }
6274 if (next_distance != curr_distance) {
6275 sched_domains_numa_distance[level++] = next_distance;
6276 sched_domains_numa_levels = level;
6277 curr_distance = next_distance;
6278 } else break;
6279 }
6280
6281 /*
6282 * In case of sched_debug() we verify the above assumption.
6283 */
6284 if (!sched_debug())
6285 break;
6286 }
6287 /*
6288 * 'level' contains the number of unique distances, excluding the
6289 * identity distance node_distance(i,i).
6290 *
6291 * The sched_domains_nume_distance[] array includes the actual distance
6292 * numbers.
6293 */
6294
6295 /*
6296 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6297 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6298 * the array will contain less then 'level' members. This could be
6299 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6300 * in other functions.
6301 *
6302 * We reset it to 'level' at the end of this function.
6303 */
6304 sched_domains_numa_levels = 0;
6305
6306 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6307 if (!sched_domains_numa_masks)
6308 return;
6309
6310 /*
6311 * Now for each level, construct a mask per node which contains all
6312 * cpus of nodes that are that many hops away from us.
6313 */
6314 for (i = 0; i < level; i++) {
6315 sched_domains_numa_masks[i] =
6316 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6317 if (!sched_domains_numa_masks[i])
6318 return;
6319
6320 for (j = 0; j < nr_node_ids; j++) {
6321 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6322 if (!mask)
6323 return;
6324
6325 sched_domains_numa_masks[i][j] = mask;
6326
6327 for (k = 0; k < nr_node_ids; k++) {
6328 if (node_distance(j, k) > sched_domains_numa_distance[i])
6329 continue;
6330
6331 cpumask_or(mask, mask, cpumask_of_node(k));
6332 }
6333 }
6334 }
6335
6336 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6337 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6338 if (!tl)
6339 return;
6340
6341 /*
6342 * Copy the default topology bits..
6343 */
6344 for (i = 0; default_topology[i].init; i++)
6345 tl[i] = default_topology[i];
6346
6347 /*
6348 * .. and append 'j' levels of NUMA goodness.
6349 */
6350 for (j = 0; j < level; i++, j++) {
6351 tl[i] = (struct sched_domain_topology_level){
6352 .init = sd_numa_init,
6353 .mask = sd_numa_mask,
6354 .flags = SDTL_OVERLAP,
6355 .numa_level = j,
6356 };
6357 }
6358
6359 sched_domain_topology = tl;
6360
6361 sched_domains_numa_levels = level;
6362 }
6363
6364 static void sched_domains_numa_masks_set(int cpu)
6365 {
6366 int i, j;
6367 int node = cpu_to_node(cpu);
6368
6369 for (i = 0; i < sched_domains_numa_levels; i++) {
6370 for (j = 0; j < nr_node_ids; j++) {
6371 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6372 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6373 }
6374 }
6375 }
6376
6377 static void sched_domains_numa_masks_clear(int cpu)
6378 {
6379 int i, j;
6380 for (i = 0; i < sched_domains_numa_levels; i++) {
6381 for (j = 0; j < nr_node_ids; j++)
6382 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6383 }
6384 }
6385
6386 /*
6387 * Update sched_domains_numa_masks[level][node] array when new cpus
6388 * are onlined.
6389 */
6390 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6391 unsigned long action,
6392 void *hcpu)
6393 {
6394 int cpu = (long)hcpu;
6395
6396 switch (action & ~CPU_TASKS_FROZEN) {
6397 case CPU_ONLINE:
6398 sched_domains_numa_masks_set(cpu);
6399 break;
6400
6401 case CPU_DEAD:
6402 sched_domains_numa_masks_clear(cpu);
6403 break;
6404
6405 default:
6406 return NOTIFY_DONE;
6407 }
6408
6409 return NOTIFY_OK;
6410 }
6411 #else
6412 static inline void sched_init_numa(void)
6413 {
6414 }
6415
6416 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6417 unsigned long action,
6418 void *hcpu)
6419 {
6420 return 0;
6421 }
6422 #endif /* CONFIG_NUMA */
6423
6424 static int __sdt_alloc(const struct cpumask *cpu_map)
6425 {
6426 struct sched_domain_topology_level *tl;
6427 int j;
6428
6429 for (tl = sched_domain_topology; tl->init; tl++) {
6430 struct sd_data *sdd = &tl->data;
6431
6432 sdd->sd = alloc_percpu(struct sched_domain *);
6433 if (!sdd->sd)
6434 return -ENOMEM;
6435
6436 sdd->sg = alloc_percpu(struct sched_group *);
6437 if (!sdd->sg)
6438 return -ENOMEM;
6439
6440 sdd->sgp = alloc_percpu(struct sched_group_power *);
6441 if (!sdd->sgp)
6442 return -ENOMEM;
6443
6444 for_each_cpu(j, cpu_map) {
6445 struct sched_domain *sd;
6446 struct sched_group *sg;
6447 struct sched_group_power *sgp;
6448
6449 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6450 GFP_KERNEL, cpu_to_node(j));
6451 if (!sd)
6452 return -ENOMEM;
6453
6454 *per_cpu_ptr(sdd->sd, j) = sd;
6455
6456 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6457 GFP_KERNEL, cpu_to_node(j));
6458 if (!sg)
6459 return -ENOMEM;
6460
6461 sg->next = sg;
6462
6463 *per_cpu_ptr(sdd->sg, j) = sg;
6464
6465 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6466 GFP_KERNEL, cpu_to_node(j));
6467 if (!sgp)
6468 return -ENOMEM;
6469
6470 *per_cpu_ptr(sdd->sgp, j) = sgp;
6471 }
6472 }
6473
6474 return 0;
6475 }
6476
6477 static void __sdt_free(const struct cpumask *cpu_map)
6478 {
6479 struct sched_domain_topology_level *tl;
6480 int j;
6481
6482 for (tl = sched_domain_topology; tl->init; tl++) {
6483 struct sd_data *sdd = &tl->data;
6484
6485 for_each_cpu(j, cpu_map) {
6486 struct sched_domain *sd;
6487
6488 if (sdd->sd) {
6489 sd = *per_cpu_ptr(sdd->sd, j);
6490 if (sd && (sd->flags & SD_OVERLAP))
6491 free_sched_groups(sd->groups, 0);
6492 kfree(*per_cpu_ptr(sdd->sd, j));
6493 }
6494
6495 if (sdd->sg)
6496 kfree(*per_cpu_ptr(sdd->sg, j));
6497 if (sdd->sgp)
6498 kfree(*per_cpu_ptr(sdd->sgp, j));
6499 }
6500 free_percpu(sdd->sd);
6501 sdd->sd = NULL;
6502 free_percpu(sdd->sg);
6503 sdd->sg = NULL;
6504 free_percpu(sdd->sgp);
6505 sdd->sgp = NULL;
6506 }
6507 }
6508
6509 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6510 struct s_data *d, const struct cpumask *cpu_map,
6511 struct sched_domain_attr *attr, struct sched_domain *child,
6512 int cpu)
6513 {
6514 struct sched_domain *sd = tl->init(tl, cpu);
6515 if (!sd)
6516 return child;
6517
6518 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6519 if (child) {
6520 sd->level = child->level + 1;
6521 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6522 child->parent = sd;
6523 }
6524 sd->child = child;
6525 set_domain_attribute(sd, attr);
6526
6527 return sd;
6528 }
6529
6530 /*
6531 * Build sched domains for a given set of cpus and attach the sched domains
6532 * to the individual cpus
6533 */
6534 static int build_sched_domains(const struct cpumask *cpu_map,
6535 struct sched_domain_attr *attr)
6536 {
6537 enum s_alloc alloc_state = sa_none;
6538 struct sched_domain *sd;
6539 struct s_data d;
6540 int i, ret = -ENOMEM;
6541
6542 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6543 if (alloc_state != sa_rootdomain)
6544 goto error;
6545
6546 /* Set up domains for cpus specified by the cpu_map. */
6547 for_each_cpu(i, cpu_map) {
6548 struct sched_domain_topology_level *tl;
6549
6550 sd = NULL;
6551 for (tl = sched_domain_topology; tl->init; tl++) {
6552 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6553 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6554 sd->flags |= SD_OVERLAP;
6555 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6556 break;
6557 }
6558
6559 while (sd->child)
6560 sd = sd->child;
6561
6562 *per_cpu_ptr(d.sd, i) = sd;
6563 }
6564
6565 /* Build the groups for the domains */
6566 for_each_cpu(i, cpu_map) {
6567 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6568 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6569 if (sd->flags & SD_OVERLAP) {
6570 if (build_overlap_sched_groups(sd, i))
6571 goto error;
6572 } else {
6573 if (build_sched_groups(sd, i))
6574 goto error;
6575 }
6576 }
6577 }
6578
6579 /* Calculate CPU power for physical packages and nodes */
6580 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6581 if (!cpumask_test_cpu(i, cpu_map))
6582 continue;
6583
6584 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6585 claim_allocations(i, sd);
6586 init_sched_groups_power(i, sd);
6587 }
6588 }
6589
6590 /* Attach the domains */
6591 rcu_read_lock();
6592 for_each_cpu(i, cpu_map) {
6593 sd = *per_cpu_ptr(d.sd, i);
6594 cpu_attach_domain(sd, d.rd, i);
6595 }
6596 rcu_read_unlock();
6597
6598 ret = 0;
6599 error:
6600 __free_domain_allocs(&d, alloc_state, cpu_map);
6601 return ret;
6602 }
6603
6604 static cpumask_var_t *doms_cur; /* current sched domains */
6605 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6606 static struct sched_domain_attr *dattr_cur;
6607 /* attribues of custom domains in 'doms_cur' */
6608
6609 /*
6610 * Special case: If a kmalloc of a doms_cur partition (array of
6611 * cpumask) fails, then fallback to a single sched domain,
6612 * as determined by the single cpumask fallback_doms.
6613 */
6614 static cpumask_var_t fallback_doms;
6615
6616 /*
6617 * arch_update_cpu_topology lets virtualized architectures update the
6618 * cpu core maps. It is supposed to return 1 if the topology changed
6619 * or 0 if it stayed the same.
6620 */
6621 int __attribute__((weak)) arch_update_cpu_topology(void)
6622 {
6623 return 0;
6624 }
6625
6626 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6627 {
6628 int i;
6629 cpumask_var_t *doms;
6630
6631 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6632 if (!doms)
6633 return NULL;
6634 for (i = 0; i < ndoms; i++) {
6635 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6636 free_sched_domains(doms, i);
6637 return NULL;
6638 }
6639 }
6640 return doms;
6641 }
6642
6643 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6644 {
6645 unsigned int i;
6646 for (i = 0; i < ndoms; i++)
6647 free_cpumask_var(doms[i]);
6648 kfree(doms);
6649 }
6650
6651 /*
6652 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6653 * For now this just excludes isolated cpus, but could be used to
6654 * exclude other special cases in the future.
6655 */
6656 static int init_sched_domains(const struct cpumask *cpu_map)
6657 {
6658 int err;
6659
6660 arch_update_cpu_topology();
6661 ndoms_cur = 1;
6662 doms_cur = alloc_sched_domains(ndoms_cur);
6663 if (!doms_cur)
6664 doms_cur = &fallback_doms;
6665 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6666 err = build_sched_domains(doms_cur[0], NULL);
6667 register_sched_domain_sysctl();
6668
6669 return err;
6670 }
6671
6672 /*
6673 * Detach sched domains from a group of cpus specified in cpu_map
6674 * These cpus will now be attached to the NULL domain
6675 */
6676 static void detach_destroy_domains(const struct cpumask *cpu_map)
6677 {
6678 int i;
6679
6680 rcu_read_lock();
6681 for_each_cpu(i, cpu_map)
6682 cpu_attach_domain(NULL, &def_root_domain, i);
6683 rcu_read_unlock();
6684 }
6685
6686 /* handle null as "default" */
6687 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6688 struct sched_domain_attr *new, int idx_new)
6689 {
6690 struct sched_domain_attr tmp;
6691
6692 /* fast path */
6693 if (!new && !cur)
6694 return 1;
6695
6696 tmp = SD_ATTR_INIT;
6697 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6698 new ? (new + idx_new) : &tmp,
6699 sizeof(struct sched_domain_attr));
6700 }
6701
6702 /*
6703 * Partition sched domains as specified by the 'ndoms_new'
6704 * cpumasks in the array doms_new[] of cpumasks. This compares
6705 * doms_new[] to the current sched domain partitioning, doms_cur[].
6706 * It destroys each deleted domain and builds each new domain.
6707 *
6708 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6709 * The masks don't intersect (don't overlap.) We should setup one
6710 * sched domain for each mask. CPUs not in any of the cpumasks will
6711 * not be load balanced. If the same cpumask appears both in the
6712 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6713 * it as it is.
6714 *
6715 * The passed in 'doms_new' should be allocated using
6716 * alloc_sched_domains. This routine takes ownership of it and will
6717 * free_sched_domains it when done with it. If the caller failed the
6718 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6719 * and partition_sched_domains() will fallback to the single partition
6720 * 'fallback_doms', it also forces the domains to be rebuilt.
6721 *
6722 * If doms_new == NULL it will be replaced with cpu_online_mask.
6723 * ndoms_new == 0 is a special case for destroying existing domains,
6724 * and it will not create the default domain.
6725 *
6726 * Call with hotplug lock held
6727 */
6728 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6729 struct sched_domain_attr *dattr_new)
6730 {
6731 int i, j, n;
6732 int new_topology;
6733
6734 mutex_lock(&sched_domains_mutex);
6735
6736 /* always unregister in case we don't destroy any domains */
6737 unregister_sched_domain_sysctl();
6738
6739 /* Let architecture update cpu core mappings. */
6740 new_topology = arch_update_cpu_topology();
6741
6742 n = doms_new ? ndoms_new : 0;
6743
6744 /* Destroy deleted domains */
6745 for (i = 0; i < ndoms_cur; i++) {
6746 for (j = 0; j < n && !new_topology; j++) {
6747 if (cpumask_equal(doms_cur[i], doms_new[j])
6748 && dattrs_equal(dattr_cur, i, dattr_new, j))
6749 goto match1;
6750 }
6751 /* no match - a current sched domain not in new doms_new[] */
6752 detach_destroy_domains(doms_cur[i]);
6753 match1:
6754 ;
6755 }
6756
6757 if (doms_new == NULL) {
6758 ndoms_cur = 0;
6759 doms_new = &fallback_doms;
6760 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6761 WARN_ON_ONCE(dattr_new);
6762 }
6763
6764 /* Build new domains */
6765 for (i = 0; i < ndoms_new; i++) {
6766 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6767 if (cpumask_equal(doms_new[i], doms_cur[j])
6768 && dattrs_equal(dattr_new, i, dattr_cur, j))
6769 goto match2;
6770 }
6771 /* no match - add a new doms_new */
6772 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6773 match2:
6774 ;
6775 }
6776
6777 /* Remember the new sched domains */
6778 if (doms_cur != &fallback_doms)
6779 free_sched_domains(doms_cur, ndoms_cur);
6780 kfree(dattr_cur); /* kfree(NULL) is safe */
6781 doms_cur = doms_new;
6782 dattr_cur = dattr_new;
6783 ndoms_cur = ndoms_new;
6784
6785 register_sched_domain_sysctl();
6786
6787 mutex_unlock(&sched_domains_mutex);
6788 }
6789
6790 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6791
6792 /*
6793 * Update cpusets according to cpu_active mask. If cpusets are
6794 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6795 * around partition_sched_domains().
6796 *
6797 * If we come here as part of a suspend/resume, don't touch cpusets because we
6798 * want to restore it back to its original state upon resume anyway.
6799 */
6800 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6801 void *hcpu)
6802 {
6803 switch (action) {
6804 case CPU_ONLINE_FROZEN:
6805 case CPU_DOWN_FAILED_FROZEN:
6806
6807 /*
6808 * num_cpus_frozen tracks how many CPUs are involved in suspend
6809 * resume sequence. As long as this is not the last online
6810 * operation in the resume sequence, just build a single sched
6811 * domain, ignoring cpusets.
6812 */
6813 num_cpus_frozen--;
6814 if (likely(num_cpus_frozen)) {
6815 partition_sched_domains(1, NULL, NULL);
6816 break;
6817 }
6818
6819 /*
6820 * This is the last CPU online operation. So fall through and
6821 * restore the original sched domains by considering the
6822 * cpuset configurations.
6823 */
6824
6825 case CPU_ONLINE:
6826 case CPU_DOWN_FAILED:
6827 cpuset_update_active_cpus(true);
6828 break;
6829 default:
6830 return NOTIFY_DONE;
6831 }
6832 return NOTIFY_OK;
6833 }
6834
6835 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6836 void *hcpu)
6837 {
6838 switch (action) {
6839 case CPU_DOWN_PREPARE:
6840 cpuset_update_active_cpus(false);
6841 break;
6842 case CPU_DOWN_PREPARE_FROZEN:
6843 num_cpus_frozen++;
6844 partition_sched_domains(1, NULL, NULL);
6845 break;
6846 default:
6847 return NOTIFY_DONE;
6848 }
6849 return NOTIFY_OK;
6850 }
6851
6852 void __init sched_init_smp(void)
6853 {
6854 cpumask_var_t non_isolated_cpus;
6855
6856 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6857 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6858
6859 sched_init_numa();
6860
6861 get_online_cpus();
6862 mutex_lock(&sched_domains_mutex);
6863 init_sched_domains(cpu_active_mask);
6864 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6865 if (cpumask_empty(non_isolated_cpus))
6866 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6867 mutex_unlock(&sched_domains_mutex);
6868 put_online_cpus();
6869
6870 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6871 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6872 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6873
6874 /* RT runtime code needs to handle some hotplug events */
6875 hotcpu_notifier(update_runtime, 0);
6876
6877 init_hrtick();
6878
6879 /* Move init over to a non-isolated CPU */
6880 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6881 BUG();
6882 sched_init_granularity();
6883 free_cpumask_var(non_isolated_cpus);
6884
6885 init_sched_rt_class();
6886 }
6887 #else
6888 void __init sched_init_smp(void)
6889 {
6890 sched_init_granularity();
6891 }
6892 #endif /* CONFIG_SMP */
6893
6894 const_debug unsigned int sysctl_timer_migration = 1;
6895
6896 int in_sched_functions(unsigned long addr)
6897 {
6898 return in_lock_functions(addr) ||
6899 (addr >= (unsigned long)__sched_text_start
6900 && addr < (unsigned long)__sched_text_end);
6901 }
6902
6903 #ifdef CONFIG_CGROUP_SCHED
6904 /*
6905 * Default task group.
6906 * Every task in system belongs to this group at bootup.
6907 */
6908 struct task_group root_task_group;
6909 LIST_HEAD(task_groups);
6910 #endif
6911
6912 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6913
6914 void __init sched_init(void)
6915 {
6916 int i, j;
6917 unsigned long alloc_size = 0, ptr;
6918
6919 #ifdef CONFIG_FAIR_GROUP_SCHED
6920 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6921 #endif
6922 #ifdef CONFIG_RT_GROUP_SCHED
6923 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6924 #endif
6925 #ifdef CONFIG_CPUMASK_OFFSTACK
6926 alloc_size += num_possible_cpus() * cpumask_size();
6927 #endif
6928 if (alloc_size) {
6929 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6930
6931 #ifdef CONFIG_FAIR_GROUP_SCHED
6932 root_task_group.se = (struct sched_entity **)ptr;
6933 ptr += nr_cpu_ids * sizeof(void **);
6934
6935 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6936 ptr += nr_cpu_ids * sizeof(void **);
6937
6938 #endif /* CONFIG_FAIR_GROUP_SCHED */
6939 #ifdef CONFIG_RT_GROUP_SCHED
6940 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6941 ptr += nr_cpu_ids * sizeof(void **);
6942
6943 root_task_group.rt_rq = (struct rt_rq **)ptr;
6944 ptr += nr_cpu_ids * sizeof(void **);
6945
6946 #endif /* CONFIG_RT_GROUP_SCHED */
6947 #ifdef CONFIG_CPUMASK_OFFSTACK
6948 for_each_possible_cpu(i) {
6949 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6950 ptr += cpumask_size();
6951 }
6952 #endif /* CONFIG_CPUMASK_OFFSTACK */
6953 }
6954
6955 #ifdef CONFIG_SMP
6956 init_defrootdomain();
6957 #endif
6958
6959 init_rt_bandwidth(&def_rt_bandwidth,
6960 global_rt_period(), global_rt_runtime());
6961
6962 #ifdef CONFIG_RT_GROUP_SCHED
6963 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6964 global_rt_period(), global_rt_runtime());
6965 #endif /* CONFIG_RT_GROUP_SCHED */
6966
6967 #ifdef CONFIG_CGROUP_SCHED
6968 list_add(&root_task_group.list, &task_groups);
6969 INIT_LIST_HEAD(&root_task_group.children);
6970 INIT_LIST_HEAD(&root_task_group.siblings);
6971 autogroup_init(&init_task);
6972
6973 #endif /* CONFIG_CGROUP_SCHED */
6974
6975 #ifdef CONFIG_CGROUP_CPUACCT
6976 root_cpuacct.cpustat = &kernel_cpustat;
6977 root_cpuacct.cpuusage = alloc_percpu(u64);
6978 /* Too early, not expected to fail */
6979 BUG_ON(!root_cpuacct.cpuusage);
6980 #endif
6981 for_each_possible_cpu(i) {
6982 struct rq *rq;
6983
6984 rq = cpu_rq(i);
6985 raw_spin_lock_init(&rq->lock);
6986 rq->nr_running = 0;
6987 rq->calc_load_active = 0;
6988 rq->calc_load_update = jiffies + LOAD_FREQ;
6989 init_cfs_rq(&rq->cfs);
6990 init_rt_rq(&rq->rt, rq);
6991 #ifdef CONFIG_FAIR_GROUP_SCHED
6992 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6993 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6994 /*
6995 * How much cpu bandwidth does root_task_group get?
6996 *
6997 * In case of task-groups formed thr' the cgroup filesystem, it
6998 * gets 100% of the cpu resources in the system. This overall
6999 * system cpu resource is divided among the tasks of
7000 * root_task_group and its child task-groups in a fair manner,
7001 * based on each entity's (task or task-group's) weight
7002 * (se->load.weight).
7003 *
7004 * In other words, if root_task_group has 10 tasks of weight
7005 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7006 * then A0's share of the cpu resource is:
7007 *
7008 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7009 *
7010 * We achieve this by letting root_task_group's tasks sit
7011 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7012 */
7013 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7014 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7015 #endif /* CONFIG_FAIR_GROUP_SCHED */
7016
7017 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7018 #ifdef CONFIG_RT_GROUP_SCHED
7019 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7020 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7021 #endif
7022
7023 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7024 rq->cpu_load[j] = 0;
7025
7026 rq->last_load_update_tick = jiffies;
7027
7028 #ifdef CONFIG_SMP
7029 rq->sd = NULL;
7030 rq->rd = NULL;
7031 rq->cpu_power = SCHED_POWER_SCALE;
7032 rq->post_schedule = 0;
7033 rq->active_balance = 0;
7034 rq->next_balance = jiffies;
7035 rq->push_cpu = 0;
7036 rq->cpu = i;
7037 rq->online = 0;
7038 rq->idle_stamp = 0;
7039 rq->avg_idle = 2*sysctl_sched_migration_cost;
7040
7041 INIT_LIST_HEAD(&rq->cfs_tasks);
7042
7043 rq_attach_root(rq, &def_root_domain);
7044 #ifdef CONFIG_NO_HZ_COMMON
7045 rq->nohz_flags = 0;
7046 #endif
7047 #endif
7048 init_rq_hrtick(rq);
7049 atomic_set(&rq->nr_iowait, 0);
7050 }
7051
7052 set_load_weight(&init_task);
7053
7054 #ifdef CONFIG_PREEMPT_NOTIFIERS
7055 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7056 #endif
7057
7058 #ifdef CONFIG_RT_MUTEXES
7059 plist_head_init(&init_task.pi_waiters);
7060 #endif
7061
7062 /*
7063 * The boot idle thread does lazy MMU switching as well:
7064 */
7065 atomic_inc(&init_mm.mm_count);
7066 enter_lazy_tlb(&init_mm, current);
7067
7068 /*
7069 * Make us the idle thread. Technically, schedule() should not be
7070 * called from this thread, however somewhere below it might be,
7071 * but because we are the idle thread, we just pick up running again
7072 * when this runqueue becomes "idle".
7073 */
7074 init_idle(current, smp_processor_id());
7075
7076 calc_load_update = jiffies + LOAD_FREQ;
7077
7078 /*
7079 * During early bootup we pretend to be a normal task:
7080 */
7081 current->sched_class = &fair_sched_class;
7082
7083 #ifdef CONFIG_SMP
7084 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7085 /* May be allocated at isolcpus cmdline parse time */
7086 if (cpu_isolated_map == NULL)
7087 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7088 idle_thread_set_boot_cpu();
7089 #endif
7090 init_sched_fair_class();
7091
7092 scheduler_running = 1;
7093 }
7094
7095 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7096 static inline int preempt_count_equals(int preempt_offset)
7097 {
7098 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7099
7100 return (nested == preempt_offset);
7101 }
7102
7103 void __might_sleep(const char *file, int line, int preempt_offset)
7104 {
7105 static unsigned long prev_jiffy; /* ratelimiting */
7106
7107 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7108 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7109 system_state != SYSTEM_RUNNING || oops_in_progress)
7110 return;
7111 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7112 return;
7113 prev_jiffy = jiffies;
7114
7115 printk(KERN_ERR
7116 "BUG: sleeping function called from invalid context at %s:%d\n",
7117 file, line);
7118 printk(KERN_ERR
7119 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7120 in_atomic(), irqs_disabled(),
7121 current->pid, current->comm);
7122
7123 debug_show_held_locks(current);
7124 if (irqs_disabled())
7125 print_irqtrace_events(current);
7126 dump_stack();
7127 }
7128 EXPORT_SYMBOL(__might_sleep);
7129 #endif
7130
7131 #ifdef CONFIG_MAGIC_SYSRQ
7132 static void normalize_task(struct rq *rq, struct task_struct *p)
7133 {
7134 const struct sched_class *prev_class = p->sched_class;
7135 int old_prio = p->prio;
7136 int on_rq;
7137
7138 on_rq = p->on_rq;
7139 if (on_rq)
7140 dequeue_task(rq, p, 0);
7141 __setscheduler(rq, p, SCHED_NORMAL, 0);
7142 if (on_rq) {
7143 enqueue_task(rq, p, 0);
7144 resched_task(rq->curr);
7145 }
7146
7147 check_class_changed(rq, p, prev_class, old_prio);
7148 }
7149
7150 void normalize_rt_tasks(void)
7151 {
7152 struct task_struct *g, *p;
7153 unsigned long flags;
7154 struct rq *rq;
7155
7156 read_lock_irqsave(&tasklist_lock, flags);
7157 do_each_thread(g, p) {
7158 /*
7159 * Only normalize user tasks:
7160 */
7161 if (!p->mm)
7162 continue;
7163
7164 p->se.exec_start = 0;
7165 #ifdef CONFIG_SCHEDSTATS
7166 p->se.statistics.wait_start = 0;
7167 p->se.statistics.sleep_start = 0;
7168 p->se.statistics.block_start = 0;
7169 #endif
7170
7171 if (!rt_task(p)) {
7172 /*
7173 * Renice negative nice level userspace
7174 * tasks back to 0:
7175 */
7176 if (TASK_NICE(p) < 0 && p->mm)
7177 set_user_nice(p, 0);
7178 continue;
7179 }
7180
7181 raw_spin_lock(&p->pi_lock);
7182 rq = __task_rq_lock(p);
7183
7184 normalize_task(rq, p);
7185
7186 __task_rq_unlock(rq);
7187 raw_spin_unlock(&p->pi_lock);
7188 } while_each_thread(g, p);
7189
7190 read_unlock_irqrestore(&tasklist_lock, flags);
7191 }
7192
7193 #endif /* CONFIG_MAGIC_SYSRQ */
7194
7195 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7196 /*
7197 * These functions are only useful for the IA64 MCA handling, or kdb.
7198 *
7199 * They can only be called when the whole system has been
7200 * stopped - every CPU needs to be quiescent, and no scheduling
7201 * activity can take place. Using them for anything else would
7202 * be a serious bug, and as a result, they aren't even visible
7203 * under any other configuration.
7204 */
7205
7206 /**
7207 * curr_task - return the current task for a given cpu.
7208 * @cpu: the processor in question.
7209 *
7210 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7211 */
7212 struct task_struct *curr_task(int cpu)
7213 {
7214 return cpu_curr(cpu);
7215 }
7216
7217 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7218
7219 #ifdef CONFIG_IA64
7220 /**
7221 * set_curr_task - set the current task for a given cpu.
7222 * @cpu: the processor in question.
7223 * @p: the task pointer to set.
7224 *
7225 * Description: This function must only be used when non-maskable interrupts
7226 * are serviced on a separate stack. It allows the architecture to switch the
7227 * notion of the current task on a cpu in a non-blocking manner. This function
7228 * must be called with all CPU's synchronized, and interrupts disabled, the
7229 * and caller must save the original value of the current task (see
7230 * curr_task() above) and restore that value before reenabling interrupts and
7231 * re-starting the system.
7232 *
7233 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7234 */
7235 void set_curr_task(int cpu, struct task_struct *p)
7236 {
7237 cpu_curr(cpu) = p;
7238 }
7239
7240 #endif
7241
7242 #ifdef CONFIG_CGROUP_SCHED
7243 /* task_group_lock serializes the addition/removal of task groups */
7244 static DEFINE_SPINLOCK(task_group_lock);
7245
7246 static void free_sched_group(struct task_group *tg)
7247 {
7248 free_fair_sched_group(tg);
7249 free_rt_sched_group(tg);
7250 autogroup_free(tg);
7251 kfree(tg);
7252 }
7253
7254 /* allocate runqueue etc for a new task group */
7255 struct task_group *sched_create_group(struct task_group *parent)
7256 {
7257 struct task_group *tg;
7258
7259 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7260 if (!tg)
7261 return ERR_PTR(-ENOMEM);
7262
7263 if (!alloc_fair_sched_group(tg, parent))
7264 goto err;
7265
7266 if (!alloc_rt_sched_group(tg, parent))
7267 goto err;
7268
7269 return tg;
7270
7271 err:
7272 free_sched_group(tg);
7273 return ERR_PTR(-ENOMEM);
7274 }
7275
7276 void sched_online_group(struct task_group *tg, struct task_group *parent)
7277 {
7278 unsigned long flags;
7279
7280 spin_lock_irqsave(&task_group_lock, flags);
7281 list_add_rcu(&tg->list, &task_groups);
7282
7283 WARN_ON(!parent); /* root should already exist */
7284
7285 tg->parent = parent;
7286 INIT_LIST_HEAD(&tg->children);
7287 list_add_rcu(&tg->siblings, &parent->children);
7288 spin_unlock_irqrestore(&task_group_lock, flags);
7289 }
7290
7291 /* rcu callback to free various structures associated with a task group */
7292 static void free_sched_group_rcu(struct rcu_head *rhp)
7293 {
7294 /* now it should be safe to free those cfs_rqs */
7295 free_sched_group(container_of(rhp, struct task_group, rcu));
7296 }
7297
7298 /* Destroy runqueue etc associated with a task group */
7299 void sched_destroy_group(struct task_group *tg)
7300 {
7301 /* wait for possible concurrent references to cfs_rqs complete */
7302 call_rcu(&tg->rcu, free_sched_group_rcu);
7303 }
7304
7305 void sched_offline_group(struct task_group *tg)
7306 {
7307 unsigned long flags;
7308 int i;
7309
7310 /* end participation in shares distribution */
7311 for_each_possible_cpu(i)
7312 unregister_fair_sched_group(tg, i);
7313
7314 spin_lock_irqsave(&task_group_lock, flags);
7315 list_del_rcu(&tg->list);
7316 list_del_rcu(&tg->siblings);
7317 spin_unlock_irqrestore(&task_group_lock, flags);
7318 }
7319
7320 /* change task's runqueue when it moves between groups.
7321 * The caller of this function should have put the task in its new group
7322 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7323 * reflect its new group.
7324 */
7325 void sched_move_task(struct task_struct *tsk)
7326 {
7327 struct task_group *tg;
7328 int on_rq, running;
7329 unsigned long flags;
7330 struct rq *rq;
7331
7332 rq = task_rq_lock(tsk, &flags);
7333
7334 running = task_current(rq, tsk);
7335 on_rq = tsk->on_rq;
7336
7337 if (on_rq)
7338 dequeue_task(rq, tsk, 0);
7339 if (unlikely(running))
7340 tsk->sched_class->put_prev_task(rq, tsk);
7341
7342 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7343 lockdep_is_held(&tsk->sighand->siglock)),
7344 struct task_group, css);
7345 tg = autogroup_task_group(tsk, tg);
7346 tsk->sched_task_group = tg;
7347
7348 #ifdef CONFIG_FAIR_GROUP_SCHED
7349 if (tsk->sched_class->task_move_group)
7350 tsk->sched_class->task_move_group(tsk, on_rq);
7351 else
7352 #endif
7353 set_task_rq(tsk, task_cpu(tsk));
7354
7355 if (unlikely(running))
7356 tsk->sched_class->set_curr_task(rq);
7357 if (on_rq)
7358 enqueue_task(rq, tsk, 0);
7359
7360 task_rq_unlock(rq, tsk, &flags);
7361 }
7362 #endif /* CONFIG_CGROUP_SCHED */
7363
7364 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7365 static unsigned long to_ratio(u64 period, u64 runtime)
7366 {
7367 if (runtime == RUNTIME_INF)
7368 return 1ULL << 20;
7369
7370 return div64_u64(runtime << 20, period);
7371 }
7372 #endif
7373
7374 #ifdef CONFIG_RT_GROUP_SCHED
7375 /*
7376 * Ensure that the real time constraints are schedulable.
7377 */
7378 static DEFINE_MUTEX(rt_constraints_mutex);
7379
7380 /* Must be called with tasklist_lock held */
7381 static inline int tg_has_rt_tasks(struct task_group *tg)
7382 {
7383 struct task_struct *g, *p;
7384
7385 do_each_thread(g, p) {
7386 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7387 return 1;
7388 } while_each_thread(g, p);
7389
7390 return 0;
7391 }
7392
7393 struct rt_schedulable_data {
7394 struct task_group *tg;
7395 u64 rt_period;
7396 u64 rt_runtime;
7397 };
7398
7399 static int tg_rt_schedulable(struct task_group *tg, void *data)
7400 {
7401 struct rt_schedulable_data *d = data;
7402 struct task_group *child;
7403 unsigned long total, sum = 0;
7404 u64 period, runtime;
7405
7406 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7407 runtime = tg->rt_bandwidth.rt_runtime;
7408
7409 if (tg == d->tg) {
7410 period = d->rt_period;
7411 runtime = d->rt_runtime;
7412 }
7413
7414 /*
7415 * Cannot have more runtime than the period.
7416 */
7417 if (runtime > period && runtime != RUNTIME_INF)
7418 return -EINVAL;
7419
7420 /*
7421 * Ensure we don't starve existing RT tasks.
7422 */
7423 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7424 return -EBUSY;
7425
7426 total = to_ratio(period, runtime);
7427
7428 /*
7429 * Nobody can have more than the global setting allows.
7430 */
7431 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7432 return -EINVAL;
7433
7434 /*
7435 * The sum of our children's runtime should not exceed our own.
7436 */
7437 list_for_each_entry_rcu(child, &tg->children, siblings) {
7438 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7439 runtime = child->rt_bandwidth.rt_runtime;
7440
7441 if (child == d->tg) {
7442 period = d->rt_period;
7443 runtime = d->rt_runtime;
7444 }
7445
7446 sum += to_ratio(period, runtime);
7447 }
7448
7449 if (sum > total)
7450 return -EINVAL;
7451
7452 return 0;
7453 }
7454
7455 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7456 {
7457 int ret;
7458
7459 struct rt_schedulable_data data = {
7460 .tg = tg,
7461 .rt_period = period,
7462 .rt_runtime = runtime,
7463 };
7464
7465 rcu_read_lock();
7466 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7467 rcu_read_unlock();
7468
7469 return ret;
7470 }
7471
7472 static int tg_set_rt_bandwidth(struct task_group *tg,
7473 u64 rt_period, u64 rt_runtime)
7474 {
7475 int i, err = 0;
7476
7477 mutex_lock(&rt_constraints_mutex);
7478 read_lock(&tasklist_lock);
7479 err = __rt_schedulable(tg, rt_period, rt_runtime);
7480 if (err)
7481 goto unlock;
7482
7483 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7484 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7485 tg->rt_bandwidth.rt_runtime = rt_runtime;
7486
7487 for_each_possible_cpu(i) {
7488 struct rt_rq *rt_rq = tg->rt_rq[i];
7489
7490 raw_spin_lock(&rt_rq->rt_runtime_lock);
7491 rt_rq->rt_runtime = rt_runtime;
7492 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7493 }
7494 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7495 unlock:
7496 read_unlock(&tasklist_lock);
7497 mutex_unlock(&rt_constraints_mutex);
7498
7499 return err;
7500 }
7501
7502 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7503 {
7504 u64 rt_runtime, rt_period;
7505
7506 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7507 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7508 if (rt_runtime_us < 0)
7509 rt_runtime = RUNTIME_INF;
7510
7511 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7512 }
7513
7514 static long sched_group_rt_runtime(struct task_group *tg)
7515 {
7516 u64 rt_runtime_us;
7517
7518 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7519 return -1;
7520
7521 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7522 do_div(rt_runtime_us, NSEC_PER_USEC);
7523 return rt_runtime_us;
7524 }
7525
7526 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7527 {
7528 u64 rt_runtime, rt_period;
7529
7530 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7531 rt_runtime = tg->rt_bandwidth.rt_runtime;
7532
7533 if (rt_period == 0)
7534 return -EINVAL;
7535
7536 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7537 }
7538
7539 static long sched_group_rt_period(struct task_group *tg)
7540 {
7541 u64 rt_period_us;
7542
7543 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7544 do_div(rt_period_us, NSEC_PER_USEC);
7545 return rt_period_us;
7546 }
7547
7548 static int sched_rt_global_constraints(void)
7549 {
7550 u64 runtime, period;
7551 int ret = 0;
7552
7553 if (sysctl_sched_rt_period <= 0)
7554 return -EINVAL;
7555
7556 runtime = global_rt_runtime();
7557 period = global_rt_period();
7558
7559 /*
7560 * Sanity check on the sysctl variables.
7561 */
7562 if (runtime > period && runtime != RUNTIME_INF)
7563 return -EINVAL;
7564
7565 mutex_lock(&rt_constraints_mutex);
7566 read_lock(&tasklist_lock);
7567 ret = __rt_schedulable(NULL, 0, 0);
7568 read_unlock(&tasklist_lock);
7569 mutex_unlock(&rt_constraints_mutex);
7570
7571 return ret;
7572 }
7573
7574 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7575 {
7576 /* Don't accept realtime tasks when there is no way for them to run */
7577 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7578 return 0;
7579
7580 return 1;
7581 }
7582
7583 #else /* !CONFIG_RT_GROUP_SCHED */
7584 static int sched_rt_global_constraints(void)
7585 {
7586 unsigned long flags;
7587 int i;
7588
7589 if (sysctl_sched_rt_period <= 0)
7590 return -EINVAL;
7591
7592 /*
7593 * There's always some RT tasks in the root group
7594 * -- migration, kstopmachine etc..
7595 */
7596 if (sysctl_sched_rt_runtime == 0)
7597 return -EBUSY;
7598
7599 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7600 for_each_possible_cpu(i) {
7601 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7602
7603 raw_spin_lock(&rt_rq->rt_runtime_lock);
7604 rt_rq->rt_runtime = global_rt_runtime();
7605 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7606 }
7607 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7608
7609 return 0;
7610 }
7611 #endif /* CONFIG_RT_GROUP_SCHED */
7612
7613 int sched_rr_handler(struct ctl_table *table, int write,
7614 void __user *buffer, size_t *lenp,
7615 loff_t *ppos)
7616 {
7617 int ret;
7618 static DEFINE_MUTEX(mutex);
7619
7620 mutex_lock(&mutex);
7621 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7622 /* make sure that internally we keep jiffies */
7623 /* also, writing zero resets timeslice to default */
7624 if (!ret && write) {
7625 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7626 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7627 }
7628 mutex_unlock(&mutex);
7629 return ret;
7630 }
7631
7632 int sched_rt_handler(struct ctl_table *table, int write,
7633 void __user *buffer, size_t *lenp,
7634 loff_t *ppos)
7635 {
7636 int ret;
7637 int old_period, old_runtime;
7638 static DEFINE_MUTEX(mutex);
7639
7640 mutex_lock(&mutex);
7641 old_period = sysctl_sched_rt_period;
7642 old_runtime = sysctl_sched_rt_runtime;
7643
7644 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7645
7646 if (!ret && write) {
7647 ret = sched_rt_global_constraints();
7648 if (ret) {
7649 sysctl_sched_rt_period = old_period;
7650 sysctl_sched_rt_runtime = old_runtime;
7651 } else {
7652 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7653 def_rt_bandwidth.rt_period =
7654 ns_to_ktime(global_rt_period());
7655 }
7656 }
7657 mutex_unlock(&mutex);
7658
7659 return ret;
7660 }
7661
7662 #ifdef CONFIG_CGROUP_SCHED
7663
7664 /* return corresponding task_group object of a cgroup */
7665 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7666 {
7667 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7668 struct task_group, css);
7669 }
7670
7671 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7672 {
7673 struct task_group *tg, *parent;
7674
7675 if (!cgrp->parent) {
7676 /* This is early initialization for the top cgroup */
7677 return &root_task_group.css;
7678 }
7679
7680 parent = cgroup_tg(cgrp->parent);
7681 tg = sched_create_group(parent);
7682 if (IS_ERR(tg))
7683 return ERR_PTR(-ENOMEM);
7684
7685 return &tg->css;
7686 }
7687
7688 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7689 {
7690 struct task_group *tg = cgroup_tg(cgrp);
7691 struct task_group *parent;
7692
7693 if (!cgrp->parent)
7694 return 0;
7695
7696 parent = cgroup_tg(cgrp->parent);
7697 sched_online_group(tg, parent);
7698 return 0;
7699 }
7700
7701 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7702 {
7703 struct task_group *tg = cgroup_tg(cgrp);
7704
7705 sched_destroy_group(tg);
7706 }
7707
7708 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7709 {
7710 struct task_group *tg = cgroup_tg(cgrp);
7711
7712 sched_offline_group(tg);
7713 }
7714
7715 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7716 struct cgroup_taskset *tset)
7717 {
7718 struct task_struct *task;
7719
7720 cgroup_taskset_for_each(task, cgrp, tset) {
7721 #ifdef CONFIG_RT_GROUP_SCHED
7722 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7723 return -EINVAL;
7724 #else
7725 /* We don't support RT-tasks being in separate groups */
7726 if (task->sched_class != &fair_sched_class)
7727 return -EINVAL;
7728 #endif
7729 }
7730 return 0;
7731 }
7732
7733 static void cpu_cgroup_attach(struct cgroup *cgrp,
7734 struct cgroup_taskset *tset)
7735 {
7736 struct task_struct *task;
7737
7738 cgroup_taskset_for_each(task, cgrp, tset)
7739 sched_move_task(task);
7740 }
7741
7742 static void
7743 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7744 struct task_struct *task)
7745 {
7746 /*
7747 * cgroup_exit() is called in the copy_process() failure path.
7748 * Ignore this case since the task hasn't ran yet, this avoids
7749 * trying to poke a half freed task state from generic code.
7750 */
7751 if (!(task->flags & PF_EXITING))
7752 return;
7753
7754 sched_move_task(task);
7755 }
7756
7757 #ifdef CONFIG_FAIR_GROUP_SCHED
7758 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7759 u64 shareval)
7760 {
7761 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7762 }
7763
7764 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7765 {
7766 struct task_group *tg = cgroup_tg(cgrp);
7767
7768 return (u64) scale_load_down(tg->shares);
7769 }
7770
7771 #ifdef CONFIG_CFS_BANDWIDTH
7772 static DEFINE_MUTEX(cfs_constraints_mutex);
7773
7774 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7775 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7776
7777 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7778
7779 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7780 {
7781 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7782 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7783
7784 if (tg == &root_task_group)
7785 return -EINVAL;
7786
7787 /*
7788 * Ensure we have at some amount of bandwidth every period. This is
7789 * to prevent reaching a state of large arrears when throttled via
7790 * entity_tick() resulting in prolonged exit starvation.
7791 */
7792 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7793 return -EINVAL;
7794
7795 /*
7796 * Likewise, bound things on the otherside by preventing insane quota
7797 * periods. This also allows us to normalize in computing quota
7798 * feasibility.
7799 */
7800 if (period > max_cfs_quota_period)
7801 return -EINVAL;
7802
7803 mutex_lock(&cfs_constraints_mutex);
7804 ret = __cfs_schedulable(tg, period, quota);
7805 if (ret)
7806 goto out_unlock;
7807
7808 runtime_enabled = quota != RUNTIME_INF;
7809 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7810 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7811 raw_spin_lock_irq(&cfs_b->lock);
7812 cfs_b->period = ns_to_ktime(period);
7813 cfs_b->quota = quota;
7814
7815 __refill_cfs_bandwidth_runtime(cfs_b);
7816 /* restart the period timer (if active) to handle new period expiry */
7817 if (runtime_enabled && cfs_b->timer_active) {
7818 /* force a reprogram */
7819 cfs_b->timer_active = 0;
7820 __start_cfs_bandwidth(cfs_b);
7821 }
7822 raw_spin_unlock_irq(&cfs_b->lock);
7823
7824 for_each_possible_cpu(i) {
7825 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7826 struct rq *rq = cfs_rq->rq;
7827
7828 raw_spin_lock_irq(&rq->lock);
7829 cfs_rq->runtime_enabled = runtime_enabled;
7830 cfs_rq->runtime_remaining = 0;
7831
7832 if (cfs_rq->throttled)
7833 unthrottle_cfs_rq(cfs_rq);
7834 raw_spin_unlock_irq(&rq->lock);
7835 }
7836 out_unlock:
7837 mutex_unlock(&cfs_constraints_mutex);
7838
7839 return ret;
7840 }
7841
7842 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7843 {
7844 u64 quota, period;
7845
7846 period = ktime_to_ns(tg->cfs_bandwidth.period);
7847 if (cfs_quota_us < 0)
7848 quota = RUNTIME_INF;
7849 else
7850 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7851
7852 return tg_set_cfs_bandwidth(tg, period, quota);
7853 }
7854
7855 long tg_get_cfs_quota(struct task_group *tg)
7856 {
7857 u64 quota_us;
7858
7859 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7860 return -1;
7861
7862 quota_us = tg->cfs_bandwidth.quota;
7863 do_div(quota_us, NSEC_PER_USEC);
7864
7865 return quota_us;
7866 }
7867
7868 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7869 {
7870 u64 quota, period;
7871
7872 period = (u64)cfs_period_us * NSEC_PER_USEC;
7873 quota = tg->cfs_bandwidth.quota;
7874
7875 return tg_set_cfs_bandwidth(tg, period, quota);
7876 }
7877
7878 long tg_get_cfs_period(struct task_group *tg)
7879 {
7880 u64 cfs_period_us;
7881
7882 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7883 do_div(cfs_period_us, NSEC_PER_USEC);
7884
7885 return cfs_period_us;
7886 }
7887
7888 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7889 {
7890 return tg_get_cfs_quota(cgroup_tg(cgrp));
7891 }
7892
7893 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7894 s64 cfs_quota_us)
7895 {
7896 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7897 }
7898
7899 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7900 {
7901 return tg_get_cfs_period(cgroup_tg(cgrp));
7902 }
7903
7904 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7905 u64 cfs_period_us)
7906 {
7907 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7908 }
7909
7910 struct cfs_schedulable_data {
7911 struct task_group *tg;
7912 u64 period, quota;
7913 };
7914
7915 /*
7916 * normalize group quota/period to be quota/max_period
7917 * note: units are usecs
7918 */
7919 static u64 normalize_cfs_quota(struct task_group *tg,
7920 struct cfs_schedulable_data *d)
7921 {
7922 u64 quota, period;
7923
7924 if (tg == d->tg) {
7925 period = d->period;
7926 quota = d->quota;
7927 } else {
7928 period = tg_get_cfs_period(tg);
7929 quota = tg_get_cfs_quota(tg);
7930 }
7931
7932 /* note: these should typically be equivalent */
7933 if (quota == RUNTIME_INF || quota == -1)
7934 return RUNTIME_INF;
7935
7936 return to_ratio(period, quota);
7937 }
7938
7939 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7940 {
7941 struct cfs_schedulable_data *d = data;
7942 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7943 s64 quota = 0, parent_quota = -1;
7944
7945 if (!tg->parent) {
7946 quota = RUNTIME_INF;
7947 } else {
7948 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7949
7950 quota = normalize_cfs_quota(tg, d);
7951 parent_quota = parent_b->hierarchal_quota;
7952
7953 /*
7954 * ensure max(child_quota) <= parent_quota, inherit when no
7955 * limit is set
7956 */
7957 if (quota == RUNTIME_INF)
7958 quota = parent_quota;
7959 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7960 return -EINVAL;
7961 }
7962 cfs_b->hierarchal_quota = quota;
7963
7964 return 0;
7965 }
7966
7967 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7968 {
7969 int ret;
7970 struct cfs_schedulable_data data = {
7971 .tg = tg,
7972 .period = period,
7973 .quota = quota,
7974 };
7975
7976 if (quota != RUNTIME_INF) {
7977 do_div(data.period, NSEC_PER_USEC);
7978 do_div(data.quota, NSEC_PER_USEC);
7979 }
7980
7981 rcu_read_lock();
7982 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7983 rcu_read_unlock();
7984
7985 return ret;
7986 }
7987
7988 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7989 struct cgroup_map_cb *cb)
7990 {
7991 struct task_group *tg = cgroup_tg(cgrp);
7992 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7993
7994 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7995 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7996 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7997
7998 return 0;
7999 }
8000 #endif /* CONFIG_CFS_BANDWIDTH */
8001 #endif /* CONFIG_FAIR_GROUP_SCHED */
8002
8003 #ifdef CONFIG_RT_GROUP_SCHED
8004 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8005 s64 val)
8006 {
8007 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8008 }
8009
8010 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8011 {
8012 return sched_group_rt_runtime(cgroup_tg(cgrp));
8013 }
8014
8015 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8016 u64 rt_period_us)
8017 {
8018 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8019 }
8020
8021 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8022 {
8023 return sched_group_rt_period(cgroup_tg(cgrp));
8024 }
8025 #endif /* CONFIG_RT_GROUP_SCHED */
8026
8027 static struct cftype cpu_files[] = {
8028 #ifdef CONFIG_FAIR_GROUP_SCHED
8029 {
8030 .name = "shares",
8031 .read_u64 = cpu_shares_read_u64,
8032 .write_u64 = cpu_shares_write_u64,
8033 },
8034 #endif
8035 #ifdef CONFIG_CFS_BANDWIDTH
8036 {
8037 .name = "cfs_quota_us",
8038 .read_s64 = cpu_cfs_quota_read_s64,
8039 .write_s64 = cpu_cfs_quota_write_s64,
8040 },
8041 {
8042 .name = "cfs_period_us",
8043 .read_u64 = cpu_cfs_period_read_u64,
8044 .write_u64 = cpu_cfs_period_write_u64,
8045 },
8046 {
8047 .name = "stat",
8048 .read_map = cpu_stats_show,
8049 },
8050 #endif
8051 #ifdef CONFIG_RT_GROUP_SCHED
8052 {
8053 .name = "rt_runtime_us",
8054 .read_s64 = cpu_rt_runtime_read,
8055 .write_s64 = cpu_rt_runtime_write,
8056 },
8057 {
8058 .name = "rt_period_us",
8059 .read_u64 = cpu_rt_period_read_uint,
8060 .write_u64 = cpu_rt_period_write_uint,
8061 },
8062 #endif
8063 { } /* terminate */
8064 };
8065
8066 struct cgroup_subsys cpu_cgroup_subsys = {
8067 .name = "cpu",
8068 .css_alloc = cpu_cgroup_css_alloc,
8069 .css_free = cpu_cgroup_css_free,
8070 .css_online = cpu_cgroup_css_online,
8071 .css_offline = cpu_cgroup_css_offline,
8072 .can_attach = cpu_cgroup_can_attach,
8073 .attach = cpu_cgroup_attach,
8074 .exit = cpu_cgroup_exit,
8075 .subsys_id = cpu_cgroup_subsys_id,
8076 .base_cftypes = cpu_files,
8077 .early_init = 1,
8078 };
8079
8080 #endif /* CONFIG_CGROUP_SCHED */
8081
8082 #ifdef CONFIG_CGROUP_CPUACCT
8083
8084 /*
8085 * CPU accounting code for task groups.
8086 *
8087 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8088 * (balbir@in.ibm.com).
8089 */
8090
8091 struct cpuacct root_cpuacct;
8092
8093 /* create a new cpu accounting group */
8094 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8095 {
8096 struct cpuacct *ca;
8097
8098 if (!cgrp->parent)
8099 return &root_cpuacct.css;
8100
8101 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8102 if (!ca)
8103 goto out;
8104
8105 ca->cpuusage = alloc_percpu(u64);
8106 if (!ca->cpuusage)
8107 goto out_free_ca;
8108
8109 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8110 if (!ca->cpustat)
8111 goto out_free_cpuusage;
8112
8113 return &ca->css;
8114
8115 out_free_cpuusage:
8116 free_percpu(ca->cpuusage);
8117 out_free_ca:
8118 kfree(ca);
8119 out:
8120 return ERR_PTR(-ENOMEM);
8121 }
8122
8123 /* destroy an existing cpu accounting group */
8124 static void cpuacct_css_free(struct cgroup *cgrp)
8125 {
8126 struct cpuacct *ca = cgroup_ca(cgrp);
8127
8128 free_percpu(ca->cpustat);
8129 free_percpu(ca->cpuusage);
8130 kfree(ca);
8131 }
8132
8133 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8134 {
8135 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8136 u64 data;
8137
8138 #ifndef CONFIG_64BIT
8139 /*
8140 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8141 */
8142 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8143 data = *cpuusage;
8144 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8145 #else
8146 data = *cpuusage;
8147 #endif
8148
8149 return data;
8150 }
8151
8152 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8153 {
8154 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8155
8156 #ifndef CONFIG_64BIT
8157 /*
8158 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8159 */
8160 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8161 *cpuusage = val;
8162 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8163 #else
8164 *cpuusage = val;
8165 #endif
8166 }
8167
8168 /* return total cpu usage (in nanoseconds) of a group */
8169 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8170 {
8171 struct cpuacct *ca = cgroup_ca(cgrp);
8172 u64 totalcpuusage = 0;
8173 int i;
8174
8175 for_each_present_cpu(i)
8176 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8177
8178 return totalcpuusage;
8179 }
8180
8181 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8182 u64 reset)
8183 {
8184 struct cpuacct *ca = cgroup_ca(cgrp);
8185 int err = 0;
8186 int i;
8187
8188 if (reset) {
8189 err = -EINVAL;
8190 goto out;
8191 }
8192
8193 for_each_present_cpu(i)
8194 cpuacct_cpuusage_write(ca, i, 0);
8195
8196 out:
8197 return err;
8198 }
8199
8200 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8201 struct seq_file *m)
8202 {
8203 struct cpuacct *ca = cgroup_ca(cgroup);
8204 u64 percpu;
8205 int i;
8206
8207 for_each_present_cpu(i) {
8208 percpu = cpuacct_cpuusage_read(ca, i);
8209 seq_printf(m, "%llu ", (unsigned long long) percpu);
8210 }
8211 seq_printf(m, "\n");
8212 return 0;
8213 }
8214
8215 static const char *cpuacct_stat_desc[] = {
8216 [CPUACCT_STAT_USER] = "user",
8217 [CPUACCT_STAT_SYSTEM] = "system",
8218 };
8219
8220 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8221 struct cgroup_map_cb *cb)
8222 {
8223 struct cpuacct *ca = cgroup_ca(cgrp);
8224 int cpu;
8225 s64 val = 0;
8226
8227 for_each_online_cpu(cpu) {
8228 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8229 val += kcpustat->cpustat[CPUTIME_USER];
8230 val += kcpustat->cpustat[CPUTIME_NICE];
8231 }
8232 val = cputime64_to_clock_t(val);
8233 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8234
8235 val = 0;
8236 for_each_online_cpu(cpu) {
8237 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8238 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8239 val += kcpustat->cpustat[CPUTIME_IRQ];
8240 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8241 }
8242
8243 val = cputime64_to_clock_t(val);
8244 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8245
8246 return 0;
8247 }
8248
8249 static struct cftype files[] = {
8250 {
8251 .name = "usage",
8252 .read_u64 = cpuusage_read,
8253 .write_u64 = cpuusage_write,
8254 },
8255 {
8256 .name = "usage_percpu",
8257 .read_seq_string = cpuacct_percpu_seq_read,
8258 },
8259 {
8260 .name = "stat",
8261 .read_map = cpuacct_stats_show,
8262 },
8263 { } /* terminate */
8264 };
8265
8266 /*
8267 * charge this task's execution time to its accounting group.
8268 *
8269 * called with rq->lock held.
8270 */
8271 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8272 {
8273 struct cpuacct *ca;
8274 int cpu;
8275
8276 if (unlikely(!cpuacct_subsys.active))
8277 return;
8278
8279 cpu = task_cpu(tsk);
8280
8281 rcu_read_lock();
8282
8283 ca = task_ca(tsk);
8284
8285 for (; ca; ca = parent_ca(ca)) {
8286 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8287 *cpuusage += cputime;
8288 }
8289
8290 rcu_read_unlock();
8291 }
8292
8293 struct cgroup_subsys cpuacct_subsys = {
8294 .name = "cpuacct",
8295 .css_alloc = cpuacct_css_alloc,
8296 .css_free = cpuacct_css_free,
8297 .subsys_id = cpuacct_subsys_id,
8298 .base_cftypes = files,
8299 };
8300 #endif /* CONFIG_CGROUP_CPUACCT */
8301
8302 void dump_cpu_task(int cpu)
8303 {
8304 pr_info("Task dump for CPU %d:\n", cpu);
8305 sched_show_task(cpu_curr(cpu));
8306 }
This page took 0.215923 seconds and 5 git commands to generate.