71dffbb27ce61ebacf3bbdbfcecdbc86771724ec
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 /*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
133 /*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
141 /*
142 * period over which we measure -rt task cpu usage in us.
143 * default: 1s
144 */
145 unsigned int sysctl_sched_rt_period = 1000000;
146
147 __read_mostly int scheduler_running;
148
149 /*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153 int sysctl_sched_rt_runtime = 950000;
154
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157
158 /*
159 * this_rq_lock - lock this runqueue and disable interrupts.
160 */
161 static struct rq *this_rq_lock(void)
162 __acquires(rq->lock)
163 {
164 struct rq *rq;
165
166 local_irq_disable();
167 rq = this_rq();
168 raw_spin_lock(&rq->lock);
169
170 return rq;
171 }
172
173 #ifdef CONFIG_SCHED_HRTICK
174 /*
175 * Use HR-timers to deliver accurate preemption points.
176 */
177
178 static void hrtick_clear(struct rq *rq)
179 {
180 if (hrtimer_active(&rq->hrtick_timer))
181 hrtimer_cancel(&rq->hrtick_timer);
182 }
183
184 /*
185 * High-resolution timer tick.
186 * Runs from hardirq context with interrupts disabled.
187 */
188 static enum hrtimer_restart hrtick(struct hrtimer *timer)
189 {
190 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191
192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193
194 raw_spin_lock(&rq->lock);
195 update_rq_clock(rq);
196 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
197 raw_spin_unlock(&rq->lock);
198
199 return HRTIMER_NORESTART;
200 }
201
202 #ifdef CONFIG_SMP
203
204 static void __hrtick_restart(struct rq *rq)
205 {
206 struct hrtimer *timer = &rq->hrtick_timer;
207
208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
209 }
210
211 /*
212 * called from hardirq (IPI) context
213 */
214 static void __hrtick_start(void *arg)
215 {
216 struct rq *rq = arg;
217
218 raw_spin_lock(&rq->lock);
219 __hrtick_restart(rq);
220 rq->hrtick_csd_pending = 0;
221 raw_spin_unlock(&rq->lock);
222 }
223
224 /*
225 * Called to set the hrtick timer state.
226 *
227 * called with rq->lock held and irqs disabled
228 */
229 void hrtick_start(struct rq *rq, u64 delay)
230 {
231 struct hrtimer *timer = &rq->hrtick_timer;
232 ktime_t time;
233 s64 delta;
234
235 /*
236 * Don't schedule slices shorter than 10000ns, that just
237 * doesn't make sense and can cause timer DoS.
238 */
239 delta = max_t(s64, delay, 10000LL);
240 time = ktime_add_ns(timer->base->get_time(), delta);
241
242 hrtimer_set_expires(timer, time);
243
244 if (rq == this_rq()) {
245 __hrtick_restart(rq);
246 } else if (!rq->hrtick_csd_pending) {
247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
248 rq->hrtick_csd_pending = 1;
249 }
250 }
251
252 static int
253 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254 {
255 int cpu = (int)(long)hcpu;
256
257 switch (action) {
258 case CPU_UP_CANCELED:
259 case CPU_UP_CANCELED_FROZEN:
260 case CPU_DOWN_PREPARE:
261 case CPU_DOWN_PREPARE_FROZEN:
262 case CPU_DEAD:
263 case CPU_DEAD_FROZEN:
264 hrtick_clear(cpu_rq(cpu));
265 return NOTIFY_OK;
266 }
267
268 return NOTIFY_DONE;
269 }
270
271 static __init void init_hrtick(void)
272 {
273 hotcpu_notifier(hotplug_hrtick, 0);
274 }
275 #else
276 /*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
281 void hrtick_start(struct rq *rq, u64 delay)
282 {
283 /*
284 * Don't schedule slices shorter than 10000ns, that just
285 * doesn't make sense. Rely on vruntime for fairness.
286 */
287 delay = max_t(u64, delay, 10000LL);
288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 HRTIMER_MODE_REL_PINNED);
290 }
291
292 static inline void init_hrtick(void)
293 {
294 }
295 #endif /* CONFIG_SMP */
296
297 static void init_rq_hrtick(struct rq *rq)
298 {
299 #ifdef CONFIG_SMP
300 rq->hrtick_csd_pending = 0;
301
302 rq->hrtick_csd.flags = 0;
303 rq->hrtick_csd.func = __hrtick_start;
304 rq->hrtick_csd.info = rq;
305 #endif
306
307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 rq->hrtick_timer.function = hrtick;
309 }
310 #else /* CONFIG_SCHED_HRTICK */
311 static inline void hrtick_clear(struct rq *rq)
312 {
313 }
314
315 static inline void init_rq_hrtick(struct rq *rq)
316 {
317 }
318
319 static inline void init_hrtick(void)
320 {
321 }
322 #endif /* CONFIG_SCHED_HRTICK */
323
324 /*
325 * cmpxchg based fetch_or, macro so it works for different integer types
326 */
327 #define fetch_or(ptr, mask) \
328 ({ \
329 typeof(ptr) _ptr = (ptr); \
330 typeof(mask) _mask = (mask); \
331 typeof(*_ptr) _old, _val = *_ptr; \
332 \
333 for (;;) { \
334 _old = cmpxchg(_ptr, _val, _val | _mask); \
335 if (_old == _val) \
336 break; \
337 _val = _old; \
338 } \
339 _old; \
340 })
341
342 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
343 /*
344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345 * this avoids any races wrt polling state changes and thereby avoids
346 * spurious IPIs.
347 */
348 static bool set_nr_and_not_polling(struct task_struct *p)
349 {
350 struct thread_info *ti = task_thread_info(p);
351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352 }
353
354 /*
355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356 *
357 * If this returns true, then the idle task promises to call
358 * sched_ttwu_pending() and reschedule soon.
359 */
360 static bool set_nr_if_polling(struct task_struct *p)
361 {
362 struct thread_info *ti = task_thread_info(p);
363 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
364
365 for (;;) {
366 if (!(val & _TIF_POLLING_NRFLAG))
367 return false;
368 if (val & _TIF_NEED_RESCHED)
369 return true;
370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 if (old == val)
372 break;
373 val = old;
374 }
375 return true;
376 }
377
378 #else
379 static bool set_nr_and_not_polling(struct task_struct *p)
380 {
381 set_tsk_need_resched(p);
382 return true;
383 }
384
385 #ifdef CONFIG_SMP
386 static bool set_nr_if_polling(struct task_struct *p)
387 {
388 return false;
389 }
390 #endif
391 #endif
392
393 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394 {
395 struct wake_q_node *node = &task->wake_q;
396
397 /*
398 * Atomically grab the task, if ->wake_q is !nil already it means
399 * its already queued (either by us or someone else) and will get the
400 * wakeup due to that.
401 *
402 * This cmpxchg() implies a full barrier, which pairs with the write
403 * barrier implied by the wakeup in wake_up_list().
404 */
405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 return;
407
408 get_task_struct(task);
409
410 /*
411 * The head is context local, there can be no concurrency.
412 */
413 *head->lastp = node;
414 head->lastp = &node->next;
415 }
416
417 void wake_up_q(struct wake_q_head *head)
418 {
419 struct wake_q_node *node = head->first;
420
421 while (node != WAKE_Q_TAIL) {
422 struct task_struct *task;
423
424 task = container_of(node, struct task_struct, wake_q);
425 BUG_ON(!task);
426 /* task can safely be re-inserted now */
427 node = node->next;
428 task->wake_q.next = NULL;
429
430 /*
431 * wake_up_process() implies a wmb() to pair with the queueing
432 * in wake_q_add() so as not to miss wakeups.
433 */
434 wake_up_process(task);
435 put_task_struct(task);
436 }
437 }
438
439 /*
440 * resched_curr - mark rq's current task 'to be rescheduled now'.
441 *
442 * On UP this means the setting of the need_resched flag, on SMP it
443 * might also involve a cross-CPU call to trigger the scheduler on
444 * the target CPU.
445 */
446 void resched_curr(struct rq *rq)
447 {
448 struct task_struct *curr = rq->curr;
449 int cpu;
450
451 lockdep_assert_held(&rq->lock);
452
453 if (test_tsk_need_resched(curr))
454 return;
455
456 cpu = cpu_of(rq);
457
458 if (cpu == smp_processor_id()) {
459 set_tsk_need_resched(curr);
460 set_preempt_need_resched();
461 return;
462 }
463
464 if (set_nr_and_not_polling(curr))
465 smp_send_reschedule(cpu);
466 else
467 trace_sched_wake_idle_without_ipi(cpu);
468 }
469
470 void resched_cpu(int cpu)
471 {
472 struct rq *rq = cpu_rq(cpu);
473 unsigned long flags;
474
475 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
476 return;
477 resched_curr(rq);
478 raw_spin_unlock_irqrestore(&rq->lock, flags);
479 }
480
481 #ifdef CONFIG_SMP
482 #ifdef CONFIG_NO_HZ_COMMON
483 /*
484 * In the semi idle case, use the nearest busy cpu for migrating timers
485 * from an idle cpu. This is good for power-savings.
486 *
487 * We don't do similar optimization for completely idle system, as
488 * selecting an idle cpu will add more delays to the timers than intended
489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490 */
491 int get_nohz_timer_target(void)
492 {
493 int i, cpu = smp_processor_id();
494 struct sched_domain *sd;
495
496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
497 return cpu;
498
499 rcu_read_lock();
500 for_each_domain(cpu, sd) {
501 for_each_cpu(i, sched_domain_span(sd)) {
502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
503 cpu = i;
504 goto unlock;
505 }
506 }
507 }
508
509 if (!is_housekeeping_cpu(cpu))
510 cpu = housekeeping_any_cpu();
511 unlock:
512 rcu_read_unlock();
513 return cpu;
514 }
515 /*
516 * When add_timer_on() enqueues a timer into the timer wheel of an
517 * idle CPU then this timer might expire before the next timer event
518 * which is scheduled to wake up that CPU. In case of a completely
519 * idle system the next event might even be infinite time into the
520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521 * leaves the inner idle loop so the newly added timer is taken into
522 * account when the CPU goes back to idle and evaluates the timer
523 * wheel for the next timer event.
524 */
525 static void wake_up_idle_cpu(int cpu)
526 {
527 struct rq *rq = cpu_rq(cpu);
528
529 if (cpu == smp_processor_id())
530 return;
531
532 if (set_nr_and_not_polling(rq->idle))
533 smp_send_reschedule(cpu);
534 else
535 trace_sched_wake_idle_without_ipi(cpu);
536 }
537
538 static bool wake_up_full_nohz_cpu(int cpu)
539 {
540 /*
541 * We just need the target to call irq_exit() and re-evaluate
542 * the next tick. The nohz full kick at least implies that.
543 * If needed we can still optimize that later with an
544 * empty IRQ.
545 */
546 if (tick_nohz_full_cpu(cpu)) {
547 if (cpu != smp_processor_id() ||
548 tick_nohz_tick_stopped())
549 tick_nohz_full_kick_cpu(cpu);
550 return true;
551 }
552
553 return false;
554 }
555
556 void wake_up_nohz_cpu(int cpu)
557 {
558 if (!wake_up_full_nohz_cpu(cpu))
559 wake_up_idle_cpu(cpu);
560 }
561
562 static inline bool got_nohz_idle_kick(void)
563 {
564 int cpu = smp_processor_id();
565
566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 return false;
568
569 if (idle_cpu(cpu) && !need_resched())
570 return true;
571
572 /*
573 * We can't run Idle Load Balance on this CPU for this time so we
574 * cancel it and clear NOHZ_BALANCE_KICK
575 */
576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 return false;
578 }
579
580 #else /* CONFIG_NO_HZ_COMMON */
581
582 static inline bool got_nohz_idle_kick(void)
583 {
584 return false;
585 }
586
587 #endif /* CONFIG_NO_HZ_COMMON */
588
589 #ifdef CONFIG_NO_HZ_FULL
590 bool sched_can_stop_tick(struct rq *rq)
591 {
592 int fifo_nr_running;
593
594 /* Deadline tasks, even if single, need the tick */
595 if (rq->dl.dl_nr_running)
596 return false;
597
598 /*
599 * FIFO realtime policy runs the highest priority task (after DEADLINE).
600 * Other runnable tasks are of a lower priority. The scheduler tick
601 * isn't needed.
602 */
603 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
604 if (fifo_nr_running)
605 return true;
606
607 /*
608 * Round-robin realtime tasks time slice with other tasks at the same
609 * realtime priority.
610 */
611 if (rq->rt.rr_nr_running) {
612 if (rq->rt.rr_nr_running == 1)
613 return true;
614 else
615 return false;
616 }
617
618 /* Normal multitasking need periodic preemption checks */
619 if (rq->cfs.nr_running > 1)
620 return false;
621
622 return true;
623 }
624 #endif /* CONFIG_NO_HZ_FULL */
625
626 void sched_avg_update(struct rq *rq)
627 {
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
640 }
641
642 #endif /* CONFIG_SMP */
643
644 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
645 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
646 /*
647 * Iterate task_group tree rooted at *from, calling @down when first entering a
648 * node and @up when leaving it for the final time.
649 *
650 * Caller must hold rcu_lock or sufficient equivalent.
651 */
652 int walk_tg_tree_from(struct task_group *from,
653 tg_visitor down, tg_visitor up, void *data)
654 {
655 struct task_group *parent, *child;
656 int ret;
657
658 parent = from;
659
660 down:
661 ret = (*down)(parent, data);
662 if (ret)
663 goto out;
664 list_for_each_entry_rcu(child, &parent->children, siblings) {
665 parent = child;
666 goto down;
667
668 up:
669 continue;
670 }
671 ret = (*up)(parent, data);
672 if (ret || parent == from)
673 goto out;
674
675 child = parent;
676 parent = parent->parent;
677 if (parent)
678 goto up;
679 out:
680 return ret;
681 }
682
683 int tg_nop(struct task_group *tg, void *data)
684 {
685 return 0;
686 }
687 #endif
688
689 static void set_load_weight(struct task_struct *p)
690 {
691 int prio = p->static_prio - MAX_RT_PRIO;
692 struct load_weight *load = &p->se.load;
693
694 /*
695 * SCHED_IDLE tasks get minimal weight:
696 */
697 if (idle_policy(p->policy)) {
698 load->weight = scale_load(WEIGHT_IDLEPRIO);
699 load->inv_weight = WMULT_IDLEPRIO;
700 return;
701 }
702
703 load->weight = scale_load(sched_prio_to_weight[prio]);
704 load->inv_weight = sched_prio_to_wmult[prio];
705 }
706
707 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
708 {
709 update_rq_clock(rq);
710 if (!(flags & ENQUEUE_RESTORE))
711 sched_info_queued(rq, p);
712 p->sched_class->enqueue_task(rq, p, flags);
713 }
714
715 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
716 {
717 update_rq_clock(rq);
718 if (!(flags & DEQUEUE_SAVE))
719 sched_info_dequeued(rq, p);
720 p->sched_class->dequeue_task(rq, p, flags);
721 }
722
723 void activate_task(struct rq *rq, struct task_struct *p, int flags)
724 {
725 if (task_contributes_to_load(p))
726 rq->nr_uninterruptible--;
727
728 enqueue_task(rq, p, flags);
729 }
730
731 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
732 {
733 if (task_contributes_to_load(p))
734 rq->nr_uninterruptible++;
735
736 dequeue_task(rq, p, flags);
737 }
738
739 static void update_rq_clock_task(struct rq *rq, s64 delta)
740 {
741 /*
742 * In theory, the compile should just see 0 here, and optimize out the call
743 * to sched_rt_avg_update. But I don't trust it...
744 */
745 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
746 s64 steal = 0, irq_delta = 0;
747 #endif
748 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
749 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
750
751 /*
752 * Since irq_time is only updated on {soft,}irq_exit, we might run into
753 * this case when a previous update_rq_clock() happened inside a
754 * {soft,}irq region.
755 *
756 * When this happens, we stop ->clock_task and only update the
757 * prev_irq_time stamp to account for the part that fit, so that a next
758 * update will consume the rest. This ensures ->clock_task is
759 * monotonic.
760 *
761 * It does however cause some slight miss-attribution of {soft,}irq
762 * time, a more accurate solution would be to update the irq_time using
763 * the current rq->clock timestamp, except that would require using
764 * atomic ops.
765 */
766 if (irq_delta > delta)
767 irq_delta = delta;
768
769 rq->prev_irq_time += irq_delta;
770 delta -= irq_delta;
771 #endif
772 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
773 if (static_key_false((&paravirt_steal_rq_enabled))) {
774 steal = paravirt_steal_clock(cpu_of(rq));
775 steal -= rq->prev_steal_time_rq;
776
777 if (unlikely(steal > delta))
778 steal = delta;
779
780 rq->prev_steal_time_rq += steal;
781 delta -= steal;
782 }
783 #endif
784
785 rq->clock_task += delta;
786
787 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
788 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
789 sched_rt_avg_update(rq, irq_delta + steal);
790 #endif
791 }
792
793 void sched_set_stop_task(int cpu, struct task_struct *stop)
794 {
795 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
796 struct task_struct *old_stop = cpu_rq(cpu)->stop;
797
798 if (stop) {
799 /*
800 * Make it appear like a SCHED_FIFO task, its something
801 * userspace knows about and won't get confused about.
802 *
803 * Also, it will make PI more or less work without too
804 * much confusion -- but then, stop work should not
805 * rely on PI working anyway.
806 */
807 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
808
809 stop->sched_class = &stop_sched_class;
810 }
811
812 cpu_rq(cpu)->stop = stop;
813
814 if (old_stop) {
815 /*
816 * Reset it back to a normal scheduling class so that
817 * it can die in pieces.
818 */
819 old_stop->sched_class = &rt_sched_class;
820 }
821 }
822
823 /*
824 * __normal_prio - return the priority that is based on the static prio
825 */
826 static inline int __normal_prio(struct task_struct *p)
827 {
828 return p->static_prio;
829 }
830
831 /*
832 * Calculate the expected normal priority: i.e. priority
833 * without taking RT-inheritance into account. Might be
834 * boosted by interactivity modifiers. Changes upon fork,
835 * setprio syscalls, and whenever the interactivity
836 * estimator recalculates.
837 */
838 static inline int normal_prio(struct task_struct *p)
839 {
840 int prio;
841
842 if (task_has_dl_policy(p))
843 prio = MAX_DL_PRIO-1;
844 else if (task_has_rt_policy(p))
845 prio = MAX_RT_PRIO-1 - p->rt_priority;
846 else
847 prio = __normal_prio(p);
848 return prio;
849 }
850
851 /*
852 * Calculate the current priority, i.e. the priority
853 * taken into account by the scheduler. This value might
854 * be boosted by RT tasks, or might be boosted by
855 * interactivity modifiers. Will be RT if the task got
856 * RT-boosted. If not then it returns p->normal_prio.
857 */
858 static int effective_prio(struct task_struct *p)
859 {
860 p->normal_prio = normal_prio(p);
861 /*
862 * If we are RT tasks or we were boosted to RT priority,
863 * keep the priority unchanged. Otherwise, update priority
864 * to the normal priority:
865 */
866 if (!rt_prio(p->prio))
867 return p->normal_prio;
868 return p->prio;
869 }
870
871 /**
872 * task_curr - is this task currently executing on a CPU?
873 * @p: the task in question.
874 *
875 * Return: 1 if the task is currently executing. 0 otherwise.
876 */
877 inline int task_curr(const struct task_struct *p)
878 {
879 return cpu_curr(task_cpu(p)) == p;
880 }
881
882 /*
883 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
884 * use the balance_callback list if you want balancing.
885 *
886 * this means any call to check_class_changed() must be followed by a call to
887 * balance_callback().
888 */
889 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
890 const struct sched_class *prev_class,
891 int oldprio)
892 {
893 if (prev_class != p->sched_class) {
894 if (prev_class->switched_from)
895 prev_class->switched_from(rq, p);
896
897 p->sched_class->switched_to(rq, p);
898 } else if (oldprio != p->prio || dl_task(p))
899 p->sched_class->prio_changed(rq, p, oldprio);
900 }
901
902 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
903 {
904 const struct sched_class *class;
905
906 if (p->sched_class == rq->curr->sched_class) {
907 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
908 } else {
909 for_each_class(class) {
910 if (class == rq->curr->sched_class)
911 break;
912 if (class == p->sched_class) {
913 resched_curr(rq);
914 break;
915 }
916 }
917 }
918
919 /*
920 * A queue event has occurred, and we're going to schedule. In
921 * this case, we can save a useless back to back clock update.
922 */
923 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
924 rq_clock_skip_update(rq, true);
925 }
926
927 #ifdef CONFIG_SMP
928 /*
929 * This is how migration works:
930 *
931 * 1) we invoke migration_cpu_stop() on the target CPU using
932 * stop_one_cpu().
933 * 2) stopper starts to run (implicitly forcing the migrated thread
934 * off the CPU)
935 * 3) it checks whether the migrated task is still in the wrong runqueue.
936 * 4) if it's in the wrong runqueue then the migration thread removes
937 * it and puts it into the right queue.
938 * 5) stopper completes and stop_one_cpu() returns and the migration
939 * is done.
940 */
941
942 /*
943 * move_queued_task - move a queued task to new rq.
944 *
945 * Returns (locked) new rq. Old rq's lock is released.
946 */
947 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
948 {
949 lockdep_assert_held(&rq->lock);
950
951 p->on_rq = TASK_ON_RQ_MIGRATING;
952 dequeue_task(rq, p, 0);
953 set_task_cpu(p, new_cpu);
954 raw_spin_unlock(&rq->lock);
955
956 rq = cpu_rq(new_cpu);
957
958 raw_spin_lock(&rq->lock);
959 BUG_ON(task_cpu(p) != new_cpu);
960 enqueue_task(rq, p, 0);
961 p->on_rq = TASK_ON_RQ_QUEUED;
962 check_preempt_curr(rq, p, 0);
963
964 return rq;
965 }
966
967 struct migration_arg {
968 struct task_struct *task;
969 int dest_cpu;
970 };
971
972 /*
973 * Move (not current) task off this cpu, onto dest cpu. We're doing
974 * this because either it can't run here any more (set_cpus_allowed()
975 * away from this CPU, or CPU going down), or because we're
976 * attempting to rebalance this task on exec (sched_exec).
977 *
978 * So we race with normal scheduler movements, but that's OK, as long
979 * as the task is no longer on this CPU.
980 */
981 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
982 {
983 if (unlikely(!cpu_active(dest_cpu)))
984 return rq;
985
986 /* Affinity changed (again). */
987 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
988 return rq;
989
990 rq = move_queued_task(rq, p, dest_cpu);
991
992 return rq;
993 }
994
995 /*
996 * migration_cpu_stop - this will be executed by a highprio stopper thread
997 * and performs thread migration by bumping thread off CPU then
998 * 'pushing' onto another runqueue.
999 */
1000 static int migration_cpu_stop(void *data)
1001 {
1002 struct migration_arg *arg = data;
1003 struct task_struct *p = arg->task;
1004 struct rq *rq = this_rq();
1005
1006 /*
1007 * The original target cpu might have gone down and we might
1008 * be on another cpu but it doesn't matter.
1009 */
1010 local_irq_disable();
1011 /*
1012 * We need to explicitly wake pending tasks before running
1013 * __migrate_task() such that we will not miss enforcing cpus_allowed
1014 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1015 */
1016 sched_ttwu_pending();
1017
1018 raw_spin_lock(&p->pi_lock);
1019 raw_spin_lock(&rq->lock);
1020 /*
1021 * If task_rq(p) != rq, it cannot be migrated here, because we're
1022 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1023 * we're holding p->pi_lock.
1024 */
1025 if (task_rq(p) == rq && task_on_rq_queued(p))
1026 rq = __migrate_task(rq, p, arg->dest_cpu);
1027 raw_spin_unlock(&rq->lock);
1028 raw_spin_unlock(&p->pi_lock);
1029
1030 local_irq_enable();
1031 return 0;
1032 }
1033
1034 /*
1035 * sched_class::set_cpus_allowed must do the below, but is not required to
1036 * actually call this function.
1037 */
1038 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1039 {
1040 cpumask_copy(&p->cpus_allowed, new_mask);
1041 p->nr_cpus_allowed = cpumask_weight(new_mask);
1042 }
1043
1044 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1045 {
1046 struct rq *rq = task_rq(p);
1047 bool queued, running;
1048
1049 lockdep_assert_held(&p->pi_lock);
1050
1051 queued = task_on_rq_queued(p);
1052 running = task_current(rq, p);
1053
1054 if (queued) {
1055 /*
1056 * Because __kthread_bind() calls this on blocked tasks without
1057 * holding rq->lock.
1058 */
1059 lockdep_assert_held(&rq->lock);
1060 dequeue_task(rq, p, DEQUEUE_SAVE);
1061 }
1062 if (running)
1063 put_prev_task(rq, p);
1064
1065 p->sched_class->set_cpus_allowed(p, new_mask);
1066
1067 if (running)
1068 p->sched_class->set_curr_task(rq);
1069 if (queued)
1070 enqueue_task(rq, p, ENQUEUE_RESTORE);
1071 }
1072
1073 /*
1074 * Change a given task's CPU affinity. Migrate the thread to a
1075 * proper CPU and schedule it away if the CPU it's executing on
1076 * is removed from the allowed bitmask.
1077 *
1078 * NOTE: the caller must have a valid reference to the task, the
1079 * task must not exit() & deallocate itself prematurely. The
1080 * call is not atomic; no spinlocks may be held.
1081 */
1082 static int __set_cpus_allowed_ptr(struct task_struct *p,
1083 const struct cpumask *new_mask, bool check)
1084 {
1085 unsigned long flags;
1086 struct rq *rq;
1087 unsigned int dest_cpu;
1088 int ret = 0;
1089
1090 rq = task_rq_lock(p, &flags);
1091
1092 /*
1093 * Must re-check here, to close a race against __kthread_bind(),
1094 * sched_setaffinity() is not guaranteed to observe the flag.
1095 */
1096 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1097 ret = -EINVAL;
1098 goto out;
1099 }
1100
1101 if (cpumask_equal(&p->cpus_allowed, new_mask))
1102 goto out;
1103
1104 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1105 ret = -EINVAL;
1106 goto out;
1107 }
1108
1109 do_set_cpus_allowed(p, new_mask);
1110
1111 /* Can the task run on the task's current CPU? If so, we're done */
1112 if (cpumask_test_cpu(task_cpu(p), new_mask))
1113 goto out;
1114
1115 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1116 if (task_running(rq, p) || p->state == TASK_WAKING) {
1117 struct migration_arg arg = { p, dest_cpu };
1118 /* Need help from migration thread: drop lock and wait. */
1119 task_rq_unlock(rq, p, &flags);
1120 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1121 tlb_migrate_finish(p->mm);
1122 return 0;
1123 } else if (task_on_rq_queued(p)) {
1124 /*
1125 * OK, since we're going to drop the lock immediately
1126 * afterwards anyway.
1127 */
1128 lockdep_unpin_lock(&rq->lock);
1129 rq = move_queued_task(rq, p, dest_cpu);
1130 lockdep_pin_lock(&rq->lock);
1131 }
1132 out:
1133 task_rq_unlock(rq, p, &flags);
1134
1135 return ret;
1136 }
1137
1138 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1139 {
1140 return __set_cpus_allowed_ptr(p, new_mask, false);
1141 }
1142 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1143
1144 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1145 {
1146 #ifdef CONFIG_SCHED_DEBUG
1147 /*
1148 * We should never call set_task_cpu() on a blocked task,
1149 * ttwu() will sort out the placement.
1150 */
1151 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1152 !p->on_rq);
1153
1154 /*
1155 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1156 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1157 * time relying on p->on_rq.
1158 */
1159 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1160 p->sched_class == &fair_sched_class &&
1161 (p->on_rq && !task_on_rq_migrating(p)));
1162
1163 #ifdef CONFIG_LOCKDEP
1164 /*
1165 * The caller should hold either p->pi_lock or rq->lock, when changing
1166 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1167 *
1168 * sched_move_task() holds both and thus holding either pins the cgroup,
1169 * see task_group().
1170 *
1171 * Furthermore, all task_rq users should acquire both locks, see
1172 * task_rq_lock().
1173 */
1174 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1175 lockdep_is_held(&task_rq(p)->lock)));
1176 #endif
1177 #endif
1178
1179 trace_sched_migrate_task(p, new_cpu);
1180
1181 if (task_cpu(p) != new_cpu) {
1182 if (p->sched_class->migrate_task_rq)
1183 p->sched_class->migrate_task_rq(p);
1184 p->se.nr_migrations++;
1185 perf_event_task_migrate(p);
1186 }
1187
1188 __set_task_cpu(p, new_cpu);
1189 }
1190
1191 static void __migrate_swap_task(struct task_struct *p, int cpu)
1192 {
1193 if (task_on_rq_queued(p)) {
1194 struct rq *src_rq, *dst_rq;
1195
1196 src_rq = task_rq(p);
1197 dst_rq = cpu_rq(cpu);
1198
1199 p->on_rq = TASK_ON_RQ_MIGRATING;
1200 deactivate_task(src_rq, p, 0);
1201 set_task_cpu(p, cpu);
1202 activate_task(dst_rq, p, 0);
1203 p->on_rq = TASK_ON_RQ_QUEUED;
1204 check_preempt_curr(dst_rq, p, 0);
1205 } else {
1206 /*
1207 * Task isn't running anymore; make it appear like we migrated
1208 * it before it went to sleep. This means on wakeup we make the
1209 * previous cpu our targer instead of where it really is.
1210 */
1211 p->wake_cpu = cpu;
1212 }
1213 }
1214
1215 struct migration_swap_arg {
1216 struct task_struct *src_task, *dst_task;
1217 int src_cpu, dst_cpu;
1218 };
1219
1220 static int migrate_swap_stop(void *data)
1221 {
1222 struct migration_swap_arg *arg = data;
1223 struct rq *src_rq, *dst_rq;
1224 int ret = -EAGAIN;
1225
1226 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1227 return -EAGAIN;
1228
1229 src_rq = cpu_rq(arg->src_cpu);
1230 dst_rq = cpu_rq(arg->dst_cpu);
1231
1232 double_raw_lock(&arg->src_task->pi_lock,
1233 &arg->dst_task->pi_lock);
1234 double_rq_lock(src_rq, dst_rq);
1235
1236 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1237 goto unlock;
1238
1239 if (task_cpu(arg->src_task) != arg->src_cpu)
1240 goto unlock;
1241
1242 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1243 goto unlock;
1244
1245 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1246 goto unlock;
1247
1248 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1249 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1250
1251 ret = 0;
1252
1253 unlock:
1254 double_rq_unlock(src_rq, dst_rq);
1255 raw_spin_unlock(&arg->dst_task->pi_lock);
1256 raw_spin_unlock(&arg->src_task->pi_lock);
1257
1258 return ret;
1259 }
1260
1261 /*
1262 * Cross migrate two tasks
1263 */
1264 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1265 {
1266 struct migration_swap_arg arg;
1267 int ret = -EINVAL;
1268
1269 arg = (struct migration_swap_arg){
1270 .src_task = cur,
1271 .src_cpu = task_cpu(cur),
1272 .dst_task = p,
1273 .dst_cpu = task_cpu(p),
1274 };
1275
1276 if (arg.src_cpu == arg.dst_cpu)
1277 goto out;
1278
1279 /*
1280 * These three tests are all lockless; this is OK since all of them
1281 * will be re-checked with proper locks held further down the line.
1282 */
1283 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1284 goto out;
1285
1286 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1287 goto out;
1288
1289 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1290 goto out;
1291
1292 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1293 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1294
1295 out:
1296 return ret;
1297 }
1298
1299 /*
1300 * wait_task_inactive - wait for a thread to unschedule.
1301 *
1302 * If @match_state is nonzero, it's the @p->state value just checked and
1303 * not expected to change. If it changes, i.e. @p might have woken up,
1304 * then return zero. When we succeed in waiting for @p to be off its CPU,
1305 * we return a positive number (its total switch count). If a second call
1306 * a short while later returns the same number, the caller can be sure that
1307 * @p has remained unscheduled the whole time.
1308 *
1309 * The caller must ensure that the task *will* unschedule sometime soon,
1310 * else this function might spin for a *long* time. This function can't
1311 * be called with interrupts off, or it may introduce deadlock with
1312 * smp_call_function() if an IPI is sent by the same process we are
1313 * waiting to become inactive.
1314 */
1315 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1316 {
1317 unsigned long flags;
1318 int running, queued;
1319 unsigned long ncsw;
1320 struct rq *rq;
1321
1322 for (;;) {
1323 /*
1324 * We do the initial early heuristics without holding
1325 * any task-queue locks at all. We'll only try to get
1326 * the runqueue lock when things look like they will
1327 * work out!
1328 */
1329 rq = task_rq(p);
1330
1331 /*
1332 * If the task is actively running on another CPU
1333 * still, just relax and busy-wait without holding
1334 * any locks.
1335 *
1336 * NOTE! Since we don't hold any locks, it's not
1337 * even sure that "rq" stays as the right runqueue!
1338 * But we don't care, since "task_running()" will
1339 * return false if the runqueue has changed and p
1340 * is actually now running somewhere else!
1341 */
1342 while (task_running(rq, p)) {
1343 if (match_state && unlikely(p->state != match_state))
1344 return 0;
1345 cpu_relax();
1346 }
1347
1348 /*
1349 * Ok, time to look more closely! We need the rq
1350 * lock now, to be *sure*. If we're wrong, we'll
1351 * just go back and repeat.
1352 */
1353 rq = task_rq_lock(p, &flags);
1354 trace_sched_wait_task(p);
1355 running = task_running(rq, p);
1356 queued = task_on_rq_queued(p);
1357 ncsw = 0;
1358 if (!match_state || p->state == match_state)
1359 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1360 task_rq_unlock(rq, p, &flags);
1361
1362 /*
1363 * If it changed from the expected state, bail out now.
1364 */
1365 if (unlikely(!ncsw))
1366 break;
1367
1368 /*
1369 * Was it really running after all now that we
1370 * checked with the proper locks actually held?
1371 *
1372 * Oops. Go back and try again..
1373 */
1374 if (unlikely(running)) {
1375 cpu_relax();
1376 continue;
1377 }
1378
1379 /*
1380 * It's not enough that it's not actively running,
1381 * it must be off the runqueue _entirely_, and not
1382 * preempted!
1383 *
1384 * So if it was still runnable (but just not actively
1385 * running right now), it's preempted, and we should
1386 * yield - it could be a while.
1387 */
1388 if (unlikely(queued)) {
1389 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1390
1391 set_current_state(TASK_UNINTERRUPTIBLE);
1392 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1393 continue;
1394 }
1395
1396 /*
1397 * Ahh, all good. It wasn't running, and it wasn't
1398 * runnable, which means that it will never become
1399 * running in the future either. We're all done!
1400 */
1401 break;
1402 }
1403
1404 return ncsw;
1405 }
1406
1407 /***
1408 * kick_process - kick a running thread to enter/exit the kernel
1409 * @p: the to-be-kicked thread
1410 *
1411 * Cause a process which is running on another CPU to enter
1412 * kernel-mode, without any delay. (to get signals handled.)
1413 *
1414 * NOTE: this function doesn't have to take the runqueue lock,
1415 * because all it wants to ensure is that the remote task enters
1416 * the kernel. If the IPI races and the task has been migrated
1417 * to another CPU then no harm is done and the purpose has been
1418 * achieved as well.
1419 */
1420 void kick_process(struct task_struct *p)
1421 {
1422 int cpu;
1423
1424 preempt_disable();
1425 cpu = task_cpu(p);
1426 if ((cpu != smp_processor_id()) && task_curr(p))
1427 smp_send_reschedule(cpu);
1428 preempt_enable();
1429 }
1430 EXPORT_SYMBOL_GPL(kick_process);
1431
1432 /*
1433 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1434 */
1435 static int select_fallback_rq(int cpu, struct task_struct *p)
1436 {
1437 int nid = cpu_to_node(cpu);
1438 const struct cpumask *nodemask = NULL;
1439 enum { cpuset, possible, fail } state = cpuset;
1440 int dest_cpu;
1441
1442 /*
1443 * If the node that the cpu is on has been offlined, cpu_to_node()
1444 * will return -1. There is no cpu on the node, and we should
1445 * select the cpu on the other node.
1446 */
1447 if (nid != -1) {
1448 nodemask = cpumask_of_node(nid);
1449
1450 /* Look for allowed, online CPU in same node. */
1451 for_each_cpu(dest_cpu, nodemask) {
1452 if (!cpu_online(dest_cpu))
1453 continue;
1454 if (!cpu_active(dest_cpu))
1455 continue;
1456 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1457 return dest_cpu;
1458 }
1459 }
1460
1461 for (;;) {
1462 /* Any allowed, online CPU? */
1463 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1464 if (!cpu_online(dest_cpu))
1465 continue;
1466 if (!cpu_active(dest_cpu))
1467 continue;
1468 goto out;
1469 }
1470
1471 /* No more Mr. Nice Guy. */
1472 switch (state) {
1473 case cpuset:
1474 if (IS_ENABLED(CONFIG_CPUSETS)) {
1475 cpuset_cpus_allowed_fallback(p);
1476 state = possible;
1477 break;
1478 }
1479 /* fall-through */
1480 case possible:
1481 do_set_cpus_allowed(p, cpu_possible_mask);
1482 state = fail;
1483 break;
1484
1485 case fail:
1486 BUG();
1487 break;
1488 }
1489 }
1490
1491 out:
1492 if (state != cpuset) {
1493 /*
1494 * Don't tell them about moving exiting tasks or
1495 * kernel threads (both mm NULL), since they never
1496 * leave kernel.
1497 */
1498 if (p->mm && printk_ratelimit()) {
1499 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1500 task_pid_nr(p), p->comm, cpu);
1501 }
1502 }
1503
1504 return dest_cpu;
1505 }
1506
1507 /*
1508 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1509 */
1510 static inline
1511 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1512 {
1513 lockdep_assert_held(&p->pi_lock);
1514
1515 if (p->nr_cpus_allowed > 1)
1516 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1517
1518 /*
1519 * In order not to call set_task_cpu() on a blocking task we need
1520 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1521 * cpu.
1522 *
1523 * Since this is common to all placement strategies, this lives here.
1524 *
1525 * [ this allows ->select_task() to simply return task_cpu(p) and
1526 * not worry about this generic constraint ]
1527 */
1528 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1529 !cpu_online(cpu)))
1530 cpu = select_fallback_rq(task_cpu(p), p);
1531
1532 return cpu;
1533 }
1534
1535 static void update_avg(u64 *avg, u64 sample)
1536 {
1537 s64 diff = sample - *avg;
1538 *avg += diff >> 3;
1539 }
1540
1541 #else
1542
1543 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1544 const struct cpumask *new_mask, bool check)
1545 {
1546 return set_cpus_allowed_ptr(p, new_mask);
1547 }
1548
1549 #endif /* CONFIG_SMP */
1550
1551 static void
1552 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1553 {
1554 #ifdef CONFIG_SCHEDSTATS
1555 struct rq *rq = this_rq();
1556
1557 #ifdef CONFIG_SMP
1558 int this_cpu = smp_processor_id();
1559
1560 if (cpu == this_cpu) {
1561 schedstat_inc(rq, ttwu_local);
1562 schedstat_inc(p, se.statistics.nr_wakeups_local);
1563 } else {
1564 struct sched_domain *sd;
1565
1566 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1567 rcu_read_lock();
1568 for_each_domain(this_cpu, sd) {
1569 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1570 schedstat_inc(sd, ttwu_wake_remote);
1571 break;
1572 }
1573 }
1574 rcu_read_unlock();
1575 }
1576
1577 if (wake_flags & WF_MIGRATED)
1578 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1579
1580 #endif /* CONFIG_SMP */
1581
1582 schedstat_inc(rq, ttwu_count);
1583 schedstat_inc(p, se.statistics.nr_wakeups);
1584
1585 if (wake_flags & WF_SYNC)
1586 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1587
1588 #endif /* CONFIG_SCHEDSTATS */
1589 }
1590
1591 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1592 {
1593 activate_task(rq, p, en_flags);
1594 p->on_rq = TASK_ON_RQ_QUEUED;
1595
1596 /* if a worker is waking up, notify workqueue */
1597 if (p->flags & PF_WQ_WORKER)
1598 wq_worker_waking_up(p, cpu_of(rq));
1599 }
1600
1601 /*
1602 * Mark the task runnable and perform wakeup-preemption.
1603 */
1604 static void
1605 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1606 {
1607 check_preempt_curr(rq, p, wake_flags);
1608 p->state = TASK_RUNNING;
1609 trace_sched_wakeup(p);
1610
1611 #ifdef CONFIG_SMP
1612 if (p->sched_class->task_woken) {
1613 /*
1614 * Our task @p is fully woken up and running; so its safe to
1615 * drop the rq->lock, hereafter rq is only used for statistics.
1616 */
1617 lockdep_unpin_lock(&rq->lock);
1618 p->sched_class->task_woken(rq, p);
1619 lockdep_pin_lock(&rq->lock);
1620 }
1621
1622 if (rq->idle_stamp) {
1623 u64 delta = rq_clock(rq) - rq->idle_stamp;
1624 u64 max = 2*rq->max_idle_balance_cost;
1625
1626 update_avg(&rq->avg_idle, delta);
1627
1628 if (rq->avg_idle > max)
1629 rq->avg_idle = max;
1630
1631 rq->idle_stamp = 0;
1632 }
1633 #endif
1634 }
1635
1636 static void
1637 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1638 {
1639 lockdep_assert_held(&rq->lock);
1640
1641 #ifdef CONFIG_SMP
1642 if (p->sched_contributes_to_load)
1643 rq->nr_uninterruptible--;
1644 #endif
1645
1646 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1647 ttwu_do_wakeup(rq, p, wake_flags);
1648 }
1649
1650 /*
1651 * Called in case the task @p isn't fully descheduled from its runqueue,
1652 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1653 * since all we need to do is flip p->state to TASK_RUNNING, since
1654 * the task is still ->on_rq.
1655 */
1656 static int ttwu_remote(struct task_struct *p, int wake_flags)
1657 {
1658 struct rq *rq;
1659 int ret = 0;
1660
1661 rq = __task_rq_lock(p);
1662 if (task_on_rq_queued(p)) {
1663 /* check_preempt_curr() may use rq clock */
1664 update_rq_clock(rq);
1665 ttwu_do_wakeup(rq, p, wake_flags);
1666 ret = 1;
1667 }
1668 __task_rq_unlock(rq);
1669
1670 return ret;
1671 }
1672
1673 #ifdef CONFIG_SMP
1674 void sched_ttwu_pending(void)
1675 {
1676 struct rq *rq = this_rq();
1677 struct llist_node *llist = llist_del_all(&rq->wake_list);
1678 struct task_struct *p;
1679 unsigned long flags;
1680
1681 if (!llist)
1682 return;
1683
1684 raw_spin_lock_irqsave(&rq->lock, flags);
1685 lockdep_pin_lock(&rq->lock);
1686
1687 while (llist) {
1688 p = llist_entry(llist, struct task_struct, wake_entry);
1689 llist = llist_next(llist);
1690 ttwu_do_activate(rq, p, 0);
1691 }
1692
1693 lockdep_unpin_lock(&rq->lock);
1694 raw_spin_unlock_irqrestore(&rq->lock, flags);
1695 }
1696
1697 void scheduler_ipi(void)
1698 {
1699 /*
1700 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1701 * TIF_NEED_RESCHED remotely (for the first time) will also send
1702 * this IPI.
1703 */
1704 preempt_fold_need_resched();
1705
1706 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1707 return;
1708
1709 /*
1710 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1711 * traditionally all their work was done from the interrupt return
1712 * path. Now that we actually do some work, we need to make sure
1713 * we do call them.
1714 *
1715 * Some archs already do call them, luckily irq_enter/exit nest
1716 * properly.
1717 *
1718 * Arguably we should visit all archs and update all handlers,
1719 * however a fair share of IPIs are still resched only so this would
1720 * somewhat pessimize the simple resched case.
1721 */
1722 irq_enter();
1723 sched_ttwu_pending();
1724
1725 /*
1726 * Check if someone kicked us for doing the nohz idle load balance.
1727 */
1728 if (unlikely(got_nohz_idle_kick())) {
1729 this_rq()->idle_balance = 1;
1730 raise_softirq_irqoff(SCHED_SOFTIRQ);
1731 }
1732 irq_exit();
1733 }
1734
1735 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1736 {
1737 struct rq *rq = cpu_rq(cpu);
1738
1739 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1740 if (!set_nr_if_polling(rq->idle))
1741 smp_send_reschedule(cpu);
1742 else
1743 trace_sched_wake_idle_without_ipi(cpu);
1744 }
1745 }
1746
1747 void wake_up_if_idle(int cpu)
1748 {
1749 struct rq *rq = cpu_rq(cpu);
1750 unsigned long flags;
1751
1752 rcu_read_lock();
1753
1754 if (!is_idle_task(rcu_dereference(rq->curr)))
1755 goto out;
1756
1757 if (set_nr_if_polling(rq->idle)) {
1758 trace_sched_wake_idle_without_ipi(cpu);
1759 } else {
1760 raw_spin_lock_irqsave(&rq->lock, flags);
1761 if (is_idle_task(rq->curr))
1762 smp_send_reschedule(cpu);
1763 /* Else cpu is not in idle, do nothing here */
1764 raw_spin_unlock_irqrestore(&rq->lock, flags);
1765 }
1766
1767 out:
1768 rcu_read_unlock();
1769 }
1770
1771 bool cpus_share_cache(int this_cpu, int that_cpu)
1772 {
1773 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1774 }
1775 #endif /* CONFIG_SMP */
1776
1777 static void ttwu_queue(struct task_struct *p, int cpu)
1778 {
1779 struct rq *rq = cpu_rq(cpu);
1780
1781 #if defined(CONFIG_SMP)
1782 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1783 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1784 ttwu_queue_remote(p, cpu);
1785 return;
1786 }
1787 #endif
1788
1789 raw_spin_lock(&rq->lock);
1790 lockdep_pin_lock(&rq->lock);
1791 ttwu_do_activate(rq, p, 0);
1792 lockdep_unpin_lock(&rq->lock);
1793 raw_spin_unlock(&rq->lock);
1794 }
1795
1796 /*
1797 * Notes on Program-Order guarantees on SMP systems.
1798 *
1799 * MIGRATION
1800 *
1801 * The basic program-order guarantee on SMP systems is that when a task [t]
1802 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1803 * execution on its new cpu [c1].
1804 *
1805 * For migration (of runnable tasks) this is provided by the following means:
1806 *
1807 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1808 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1809 * rq(c1)->lock (if not at the same time, then in that order).
1810 * C) LOCK of the rq(c1)->lock scheduling in task
1811 *
1812 * Transitivity guarantees that B happens after A and C after B.
1813 * Note: we only require RCpc transitivity.
1814 * Note: the cpu doing B need not be c0 or c1
1815 *
1816 * Example:
1817 *
1818 * CPU0 CPU1 CPU2
1819 *
1820 * LOCK rq(0)->lock
1821 * sched-out X
1822 * sched-in Y
1823 * UNLOCK rq(0)->lock
1824 *
1825 * LOCK rq(0)->lock // orders against CPU0
1826 * dequeue X
1827 * UNLOCK rq(0)->lock
1828 *
1829 * LOCK rq(1)->lock
1830 * enqueue X
1831 * UNLOCK rq(1)->lock
1832 *
1833 * LOCK rq(1)->lock // orders against CPU2
1834 * sched-out Z
1835 * sched-in X
1836 * UNLOCK rq(1)->lock
1837 *
1838 *
1839 * BLOCKING -- aka. SLEEP + WAKEUP
1840 *
1841 * For blocking we (obviously) need to provide the same guarantee as for
1842 * migration. However the means are completely different as there is no lock
1843 * chain to provide order. Instead we do:
1844 *
1845 * 1) smp_store_release(X->on_cpu, 0)
1846 * 2) smp_cond_acquire(!X->on_cpu)
1847 *
1848 * Example:
1849 *
1850 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1851 *
1852 * LOCK rq(0)->lock LOCK X->pi_lock
1853 * dequeue X
1854 * sched-out X
1855 * smp_store_release(X->on_cpu, 0);
1856 *
1857 * smp_cond_acquire(!X->on_cpu);
1858 * X->state = WAKING
1859 * set_task_cpu(X,2)
1860 *
1861 * LOCK rq(2)->lock
1862 * enqueue X
1863 * X->state = RUNNING
1864 * UNLOCK rq(2)->lock
1865 *
1866 * LOCK rq(2)->lock // orders against CPU1
1867 * sched-out Z
1868 * sched-in X
1869 * UNLOCK rq(2)->lock
1870 *
1871 * UNLOCK X->pi_lock
1872 * UNLOCK rq(0)->lock
1873 *
1874 *
1875 * However; for wakeups there is a second guarantee we must provide, namely we
1876 * must observe the state that lead to our wakeup. That is, not only must our
1877 * task observe its own prior state, it must also observe the stores prior to
1878 * its wakeup.
1879 *
1880 * This means that any means of doing remote wakeups must order the CPU doing
1881 * the wakeup against the CPU the task is going to end up running on. This,
1882 * however, is already required for the regular Program-Order guarantee above,
1883 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1884 *
1885 */
1886
1887 /**
1888 * try_to_wake_up - wake up a thread
1889 * @p: the thread to be awakened
1890 * @state: the mask of task states that can be woken
1891 * @wake_flags: wake modifier flags (WF_*)
1892 *
1893 * Put it on the run-queue if it's not already there. The "current"
1894 * thread is always on the run-queue (except when the actual
1895 * re-schedule is in progress), and as such you're allowed to do
1896 * the simpler "current->state = TASK_RUNNING" to mark yourself
1897 * runnable without the overhead of this.
1898 *
1899 * Return: %true if @p was woken up, %false if it was already running.
1900 * or @state didn't match @p's state.
1901 */
1902 static int
1903 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1904 {
1905 unsigned long flags;
1906 int cpu, success = 0;
1907
1908 /*
1909 * If we are going to wake up a thread waiting for CONDITION we
1910 * need to ensure that CONDITION=1 done by the caller can not be
1911 * reordered with p->state check below. This pairs with mb() in
1912 * set_current_state() the waiting thread does.
1913 */
1914 smp_mb__before_spinlock();
1915 raw_spin_lock_irqsave(&p->pi_lock, flags);
1916 if (!(p->state & state))
1917 goto out;
1918
1919 trace_sched_waking(p);
1920
1921 success = 1; /* we're going to change ->state */
1922 cpu = task_cpu(p);
1923
1924 if (p->on_rq && ttwu_remote(p, wake_flags))
1925 goto stat;
1926
1927 #ifdef CONFIG_SMP
1928 /*
1929 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1930 * possible to, falsely, observe p->on_cpu == 0.
1931 *
1932 * One must be running (->on_cpu == 1) in order to remove oneself
1933 * from the runqueue.
1934 *
1935 * [S] ->on_cpu = 1; [L] ->on_rq
1936 * UNLOCK rq->lock
1937 * RMB
1938 * LOCK rq->lock
1939 * [S] ->on_rq = 0; [L] ->on_cpu
1940 *
1941 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1942 * from the consecutive calls to schedule(); the first switching to our
1943 * task, the second putting it to sleep.
1944 */
1945 smp_rmb();
1946
1947 /*
1948 * If the owning (remote) cpu is still in the middle of schedule() with
1949 * this task as prev, wait until its done referencing the task.
1950 *
1951 * Pairs with the smp_store_release() in finish_lock_switch().
1952 *
1953 * This ensures that tasks getting woken will be fully ordered against
1954 * their previous state and preserve Program Order.
1955 */
1956 smp_cond_acquire(!p->on_cpu);
1957
1958 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1959 p->state = TASK_WAKING;
1960
1961 if (p->sched_class->task_waking)
1962 p->sched_class->task_waking(p);
1963
1964 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1965 if (task_cpu(p) != cpu) {
1966 wake_flags |= WF_MIGRATED;
1967 set_task_cpu(p, cpu);
1968 }
1969 #endif /* CONFIG_SMP */
1970
1971 ttwu_queue(p, cpu);
1972 stat:
1973 if (schedstat_enabled())
1974 ttwu_stat(p, cpu, wake_flags);
1975 out:
1976 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1977
1978 return success;
1979 }
1980
1981 /**
1982 * try_to_wake_up_local - try to wake up a local task with rq lock held
1983 * @p: the thread to be awakened
1984 *
1985 * Put @p on the run-queue if it's not already there. The caller must
1986 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1987 * the current task.
1988 */
1989 static void try_to_wake_up_local(struct task_struct *p)
1990 {
1991 struct rq *rq = task_rq(p);
1992
1993 if (WARN_ON_ONCE(rq != this_rq()) ||
1994 WARN_ON_ONCE(p == current))
1995 return;
1996
1997 lockdep_assert_held(&rq->lock);
1998
1999 if (!raw_spin_trylock(&p->pi_lock)) {
2000 /*
2001 * This is OK, because current is on_cpu, which avoids it being
2002 * picked for load-balance and preemption/IRQs are still
2003 * disabled avoiding further scheduler activity on it and we've
2004 * not yet picked a replacement task.
2005 */
2006 lockdep_unpin_lock(&rq->lock);
2007 raw_spin_unlock(&rq->lock);
2008 raw_spin_lock(&p->pi_lock);
2009 raw_spin_lock(&rq->lock);
2010 lockdep_pin_lock(&rq->lock);
2011 }
2012
2013 if (!(p->state & TASK_NORMAL))
2014 goto out;
2015
2016 trace_sched_waking(p);
2017
2018 if (!task_on_rq_queued(p))
2019 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2020
2021 ttwu_do_wakeup(rq, p, 0);
2022 if (schedstat_enabled())
2023 ttwu_stat(p, smp_processor_id(), 0);
2024 out:
2025 raw_spin_unlock(&p->pi_lock);
2026 }
2027
2028 /**
2029 * wake_up_process - Wake up a specific process
2030 * @p: The process to be woken up.
2031 *
2032 * Attempt to wake up the nominated process and move it to the set of runnable
2033 * processes.
2034 *
2035 * Return: 1 if the process was woken up, 0 if it was already running.
2036 *
2037 * It may be assumed that this function implies a write memory barrier before
2038 * changing the task state if and only if any tasks are woken up.
2039 */
2040 int wake_up_process(struct task_struct *p)
2041 {
2042 return try_to_wake_up(p, TASK_NORMAL, 0);
2043 }
2044 EXPORT_SYMBOL(wake_up_process);
2045
2046 int wake_up_state(struct task_struct *p, unsigned int state)
2047 {
2048 return try_to_wake_up(p, state, 0);
2049 }
2050
2051 /*
2052 * This function clears the sched_dl_entity static params.
2053 */
2054 void __dl_clear_params(struct task_struct *p)
2055 {
2056 struct sched_dl_entity *dl_se = &p->dl;
2057
2058 dl_se->dl_runtime = 0;
2059 dl_se->dl_deadline = 0;
2060 dl_se->dl_period = 0;
2061 dl_se->flags = 0;
2062 dl_se->dl_bw = 0;
2063
2064 dl_se->dl_throttled = 0;
2065 dl_se->dl_yielded = 0;
2066 }
2067
2068 /*
2069 * Perform scheduler related setup for a newly forked process p.
2070 * p is forked by current.
2071 *
2072 * __sched_fork() is basic setup used by init_idle() too:
2073 */
2074 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2075 {
2076 p->on_rq = 0;
2077
2078 p->se.on_rq = 0;
2079 p->se.exec_start = 0;
2080 p->se.sum_exec_runtime = 0;
2081 p->se.prev_sum_exec_runtime = 0;
2082 p->se.nr_migrations = 0;
2083 p->se.vruntime = 0;
2084 INIT_LIST_HEAD(&p->se.group_node);
2085
2086 #ifdef CONFIG_FAIR_GROUP_SCHED
2087 p->se.cfs_rq = NULL;
2088 #endif
2089
2090 #ifdef CONFIG_SCHEDSTATS
2091 /* Even if schedstat is disabled, there should not be garbage */
2092 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2093 #endif
2094
2095 RB_CLEAR_NODE(&p->dl.rb_node);
2096 init_dl_task_timer(&p->dl);
2097 __dl_clear_params(p);
2098
2099 INIT_LIST_HEAD(&p->rt.run_list);
2100 p->rt.timeout = 0;
2101 p->rt.time_slice = sched_rr_timeslice;
2102 p->rt.on_rq = 0;
2103 p->rt.on_list = 0;
2104
2105 #ifdef CONFIG_PREEMPT_NOTIFIERS
2106 INIT_HLIST_HEAD(&p->preempt_notifiers);
2107 #endif
2108
2109 #ifdef CONFIG_NUMA_BALANCING
2110 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2111 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2112 p->mm->numa_scan_seq = 0;
2113 }
2114
2115 if (clone_flags & CLONE_VM)
2116 p->numa_preferred_nid = current->numa_preferred_nid;
2117 else
2118 p->numa_preferred_nid = -1;
2119
2120 p->node_stamp = 0ULL;
2121 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2122 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2123 p->numa_work.next = &p->numa_work;
2124 p->numa_faults = NULL;
2125 p->last_task_numa_placement = 0;
2126 p->last_sum_exec_runtime = 0;
2127
2128 p->numa_group = NULL;
2129 #endif /* CONFIG_NUMA_BALANCING */
2130 }
2131
2132 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2133
2134 #ifdef CONFIG_NUMA_BALANCING
2135
2136 void set_numabalancing_state(bool enabled)
2137 {
2138 if (enabled)
2139 static_branch_enable(&sched_numa_balancing);
2140 else
2141 static_branch_disable(&sched_numa_balancing);
2142 }
2143
2144 #ifdef CONFIG_PROC_SYSCTL
2145 int sysctl_numa_balancing(struct ctl_table *table, int write,
2146 void __user *buffer, size_t *lenp, loff_t *ppos)
2147 {
2148 struct ctl_table t;
2149 int err;
2150 int state = static_branch_likely(&sched_numa_balancing);
2151
2152 if (write && !capable(CAP_SYS_ADMIN))
2153 return -EPERM;
2154
2155 t = *table;
2156 t.data = &state;
2157 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2158 if (err < 0)
2159 return err;
2160 if (write)
2161 set_numabalancing_state(state);
2162 return err;
2163 }
2164 #endif
2165 #endif
2166
2167 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2168
2169 #ifdef CONFIG_SCHEDSTATS
2170 static void set_schedstats(bool enabled)
2171 {
2172 if (enabled)
2173 static_branch_enable(&sched_schedstats);
2174 else
2175 static_branch_disable(&sched_schedstats);
2176 }
2177
2178 void force_schedstat_enabled(void)
2179 {
2180 if (!schedstat_enabled()) {
2181 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2182 static_branch_enable(&sched_schedstats);
2183 }
2184 }
2185
2186 static int __init setup_schedstats(char *str)
2187 {
2188 int ret = 0;
2189 if (!str)
2190 goto out;
2191
2192 if (!strcmp(str, "enable")) {
2193 set_schedstats(true);
2194 ret = 1;
2195 } else if (!strcmp(str, "disable")) {
2196 set_schedstats(false);
2197 ret = 1;
2198 }
2199 out:
2200 if (!ret)
2201 pr_warn("Unable to parse schedstats=\n");
2202
2203 return ret;
2204 }
2205 __setup("schedstats=", setup_schedstats);
2206
2207 #ifdef CONFIG_PROC_SYSCTL
2208 int sysctl_schedstats(struct ctl_table *table, int write,
2209 void __user *buffer, size_t *lenp, loff_t *ppos)
2210 {
2211 struct ctl_table t;
2212 int err;
2213 int state = static_branch_likely(&sched_schedstats);
2214
2215 if (write && !capable(CAP_SYS_ADMIN))
2216 return -EPERM;
2217
2218 t = *table;
2219 t.data = &state;
2220 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2221 if (err < 0)
2222 return err;
2223 if (write)
2224 set_schedstats(state);
2225 return err;
2226 }
2227 #endif
2228 #endif
2229
2230 /*
2231 * fork()/clone()-time setup:
2232 */
2233 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2234 {
2235 unsigned long flags;
2236 int cpu = get_cpu();
2237
2238 __sched_fork(clone_flags, p);
2239 /*
2240 * We mark the process as running here. This guarantees that
2241 * nobody will actually run it, and a signal or other external
2242 * event cannot wake it up and insert it on the runqueue either.
2243 */
2244 p->state = TASK_RUNNING;
2245
2246 /*
2247 * Make sure we do not leak PI boosting priority to the child.
2248 */
2249 p->prio = current->normal_prio;
2250
2251 /*
2252 * Revert to default priority/policy on fork if requested.
2253 */
2254 if (unlikely(p->sched_reset_on_fork)) {
2255 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2256 p->policy = SCHED_NORMAL;
2257 p->static_prio = NICE_TO_PRIO(0);
2258 p->rt_priority = 0;
2259 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2260 p->static_prio = NICE_TO_PRIO(0);
2261
2262 p->prio = p->normal_prio = __normal_prio(p);
2263 set_load_weight(p);
2264
2265 /*
2266 * We don't need the reset flag anymore after the fork. It has
2267 * fulfilled its duty:
2268 */
2269 p->sched_reset_on_fork = 0;
2270 }
2271
2272 if (dl_prio(p->prio)) {
2273 put_cpu();
2274 return -EAGAIN;
2275 } else if (rt_prio(p->prio)) {
2276 p->sched_class = &rt_sched_class;
2277 } else {
2278 p->sched_class = &fair_sched_class;
2279 }
2280
2281 if (p->sched_class->task_fork)
2282 p->sched_class->task_fork(p);
2283
2284 /*
2285 * The child is not yet in the pid-hash so no cgroup attach races,
2286 * and the cgroup is pinned to this child due to cgroup_fork()
2287 * is ran before sched_fork().
2288 *
2289 * Silence PROVE_RCU.
2290 */
2291 raw_spin_lock_irqsave(&p->pi_lock, flags);
2292 set_task_cpu(p, cpu);
2293 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2294
2295 #ifdef CONFIG_SCHED_INFO
2296 if (likely(sched_info_on()))
2297 memset(&p->sched_info, 0, sizeof(p->sched_info));
2298 #endif
2299 #if defined(CONFIG_SMP)
2300 p->on_cpu = 0;
2301 #endif
2302 init_task_preempt_count(p);
2303 #ifdef CONFIG_SMP
2304 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2305 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2306 #endif
2307
2308 put_cpu();
2309 return 0;
2310 }
2311
2312 unsigned long to_ratio(u64 period, u64 runtime)
2313 {
2314 if (runtime == RUNTIME_INF)
2315 return 1ULL << 20;
2316
2317 /*
2318 * Doing this here saves a lot of checks in all
2319 * the calling paths, and returning zero seems
2320 * safe for them anyway.
2321 */
2322 if (period == 0)
2323 return 0;
2324
2325 return div64_u64(runtime << 20, period);
2326 }
2327
2328 #ifdef CONFIG_SMP
2329 inline struct dl_bw *dl_bw_of(int i)
2330 {
2331 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2332 "sched RCU must be held");
2333 return &cpu_rq(i)->rd->dl_bw;
2334 }
2335
2336 static inline int dl_bw_cpus(int i)
2337 {
2338 struct root_domain *rd = cpu_rq(i)->rd;
2339 int cpus = 0;
2340
2341 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2342 "sched RCU must be held");
2343 for_each_cpu_and(i, rd->span, cpu_active_mask)
2344 cpus++;
2345
2346 return cpus;
2347 }
2348 #else
2349 inline struct dl_bw *dl_bw_of(int i)
2350 {
2351 return &cpu_rq(i)->dl.dl_bw;
2352 }
2353
2354 static inline int dl_bw_cpus(int i)
2355 {
2356 return 1;
2357 }
2358 #endif
2359
2360 /*
2361 * We must be sure that accepting a new task (or allowing changing the
2362 * parameters of an existing one) is consistent with the bandwidth
2363 * constraints. If yes, this function also accordingly updates the currently
2364 * allocated bandwidth to reflect the new situation.
2365 *
2366 * This function is called while holding p's rq->lock.
2367 *
2368 * XXX we should delay bw change until the task's 0-lag point, see
2369 * __setparam_dl().
2370 */
2371 static int dl_overflow(struct task_struct *p, int policy,
2372 const struct sched_attr *attr)
2373 {
2374
2375 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2376 u64 period = attr->sched_period ?: attr->sched_deadline;
2377 u64 runtime = attr->sched_runtime;
2378 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2379 int cpus, err = -1;
2380
2381 if (new_bw == p->dl.dl_bw)
2382 return 0;
2383
2384 /*
2385 * Either if a task, enters, leave, or stays -deadline but changes
2386 * its parameters, we may need to update accordingly the total
2387 * allocated bandwidth of the container.
2388 */
2389 raw_spin_lock(&dl_b->lock);
2390 cpus = dl_bw_cpus(task_cpu(p));
2391 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2392 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2393 __dl_add(dl_b, new_bw);
2394 err = 0;
2395 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2396 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2397 __dl_clear(dl_b, p->dl.dl_bw);
2398 __dl_add(dl_b, new_bw);
2399 err = 0;
2400 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2401 __dl_clear(dl_b, p->dl.dl_bw);
2402 err = 0;
2403 }
2404 raw_spin_unlock(&dl_b->lock);
2405
2406 return err;
2407 }
2408
2409 extern void init_dl_bw(struct dl_bw *dl_b);
2410
2411 /*
2412 * wake_up_new_task - wake up a newly created task for the first time.
2413 *
2414 * This function will do some initial scheduler statistics housekeeping
2415 * that must be done for every newly created context, then puts the task
2416 * on the runqueue and wakes it.
2417 */
2418 void wake_up_new_task(struct task_struct *p)
2419 {
2420 unsigned long flags;
2421 struct rq *rq;
2422
2423 raw_spin_lock_irqsave(&p->pi_lock, flags);
2424 /* Initialize new task's runnable average */
2425 init_entity_runnable_average(&p->se);
2426 #ifdef CONFIG_SMP
2427 /*
2428 * Fork balancing, do it here and not earlier because:
2429 * - cpus_allowed can change in the fork path
2430 * - any previously selected cpu might disappear through hotplug
2431 */
2432 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2433 #endif
2434 /* Post initialize new task's util average when its cfs_rq is set */
2435 post_init_entity_util_avg(&p->se);
2436
2437 rq = __task_rq_lock(p);
2438 activate_task(rq, p, 0);
2439 p->on_rq = TASK_ON_RQ_QUEUED;
2440 trace_sched_wakeup_new(p);
2441 check_preempt_curr(rq, p, WF_FORK);
2442 #ifdef CONFIG_SMP
2443 if (p->sched_class->task_woken) {
2444 /*
2445 * Nothing relies on rq->lock after this, so its fine to
2446 * drop it.
2447 */
2448 lockdep_unpin_lock(&rq->lock);
2449 p->sched_class->task_woken(rq, p);
2450 lockdep_pin_lock(&rq->lock);
2451 }
2452 #endif
2453 task_rq_unlock(rq, p, &flags);
2454 }
2455
2456 #ifdef CONFIG_PREEMPT_NOTIFIERS
2457
2458 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2459
2460 void preempt_notifier_inc(void)
2461 {
2462 static_key_slow_inc(&preempt_notifier_key);
2463 }
2464 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2465
2466 void preempt_notifier_dec(void)
2467 {
2468 static_key_slow_dec(&preempt_notifier_key);
2469 }
2470 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2471
2472 /**
2473 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2474 * @notifier: notifier struct to register
2475 */
2476 void preempt_notifier_register(struct preempt_notifier *notifier)
2477 {
2478 if (!static_key_false(&preempt_notifier_key))
2479 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2480
2481 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2482 }
2483 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2484
2485 /**
2486 * preempt_notifier_unregister - no longer interested in preemption notifications
2487 * @notifier: notifier struct to unregister
2488 *
2489 * This is *not* safe to call from within a preemption notifier.
2490 */
2491 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2492 {
2493 hlist_del(&notifier->link);
2494 }
2495 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2496
2497 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2498 {
2499 struct preempt_notifier *notifier;
2500
2501 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2502 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2503 }
2504
2505 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2506 {
2507 if (static_key_false(&preempt_notifier_key))
2508 __fire_sched_in_preempt_notifiers(curr);
2509 }
2510
2511 static void
2512 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2513 struct task_struct *next)
2514 {
2515 struct preempt_notifier *notifier;
2516
2517 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2518 notifier->ops->sched_out(notifier, next);
2519 }
2520
2521 static __always_inline void
2522 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2523 struct task_struct *next)
2524 {
2525 if (static_key_false(&preempt_notifier_key))
2526 __fire_sched_out_preempt_notifiers(curr, next);
2527 }
2528
2529 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2530
2531 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2532 {
2533 }
2534
2535 static inline void
2536 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2537 struct task_struct *next)
2538 {
2539 }
2540
2541 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2542
2543 /**
2544 * prepare_task_switch - prepare to switch tasks
2545 * @rq: the runqueue preparing to switch
2546 * @prev: the current task that is being switched out
2547 * @next: the task we are going to switch to.
2548 *
2549 * This is called with the rq lock held and interrupts off. It must
2550 * be paired with a subsequent finish_task_switch after the context
2551 * switch.
2552 *
2553 * prepare_task_switch sets up locking and calls architecture specific
2554 * hooks.
2555 */
2556 static inline void
2557 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2558 struct task_struct *next)
2559 {
2560 sched_info_switch(rq, prev, next);
2561 perf_event_task_sched_out(prev, next);
2562 fire_sched_out_preempt_notifiers(prev, next);
2563 prepare_lock_switch(rq, next);
2564 prepare_arch_switch(next);
2565 }
2566
2567 /**
2568 * finish_task_switch - clean up after a task-switch
2569 * @prev: the thread we just switched away from.
2570 *
2571 * finish_task_switch must be called after the context switch, paired
2572 * with a prepare_task_switch call before the context switch.
2573 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2574 * and do any other architecture-specific cleanup actions.
2575 *
2576 * Note that we may have delayed dropping an mm in context_switch(). If
2577 * so, we finish that here outside of the runqueue lock. (Doing it
2578 * with the lock held can cause deadlocks; see schedule() for
2579 * details.)
2580 *
2581 * The context switch have flipped the stack from under us and restored the
2582 * local variables which were saved when this task called schedule() in the
2583 * past. prev == current is still correct but we need to recalculate this_rq
2584 * because prev may have moved to another CPU.
2585 */
2586 static struct rq *finish_task_switch(struct task_struct *prev)
2587 __releases(rq->lock)
2588 {
2589 struct rq *rq = this_rq();
2590 struct mm_struct *mm = rq->prev_mm;
2591 long prev_state;
2592
2593 /*
2594 * The previous task will have left us with a preempt_count of 2
2595 * because it left us after:
2596 *
2597 * schedule()
2598 * preempt_disable(); // 1
2599 * __schedule()
2600 * raw_spin_lock_irq(&rq->lock) // 2
2601 *
2602 * Also, see FORK_PREEMPT_COUNT.
2603 */
2604 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2605 "corrupted preempt_count: %s/%d/0x%x\n",
2606 current->comm, current->pid, preempt_count()))
2607 preempt_count_set(FORK_PREEMPT_COUNT);
2608
2609 rq->prev_mm = NULL;
2610
2611 /*
2612 * A task struct has one reference for the use as "current".
2613 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2614 * schedule one last time. The schedule call will never return, and
2615 * the scheduled task must drop that reference.
2616 *
2617 * We must observe prev->state before clearing prev->on_cpu (in
2618 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2619 * running on another CPU and we could rave with its RUNNING -> DEAD
2620 * transition, resulting in a double drop.
2621 */
2622 prev_state = prev->state;
2623 vtime_task_switch(prev);
2624 perf_event_task_sched_in(prev, current);
2625 finish_lock_switch(rq, prev);
2626 finish_arch_post_lock_switch();
2627
2628 fire_sched_in_preempt_notifiers(current);
2629 if (mm)
2630 mmdrop(mm);
2631 if (unlikely(prev_state == TASK_DEAD)) {
2632 if (prev->sched_class->task_dead)
2633 prev->sched_class->task_dead(prev);
2634
2635 /*
2636 * Remove function-return probe instances associated with this
2637 * task and put them back on the free list.
2638 */
2639 kprobe_flush_task(prev);
2640 put_task_struct(prev);
2641 }
2642
2643 tick_nohz_task_switch();
2644 return rq;
2645 }
2646
2647 #ifdef CONFIG_SMP
2648
2649 /* rq->lock is NOT held, but preemption is disabled */
2650 static void __balance_callback(struct rq *rq)
2651 {
2652 struct callback_head *head, *next;
2653 void (*func)(struct rq *rq);
2654 unsigned long flags;
2655
2656 raw_spin_lock_irqsave(&rq->lock, flags);
2657 head = rq->balance_callback;
2658 rq->balance_callback = NULL;
2659 while (head) {
2660 func = (void (*)(struct rq *))head->func;
2661 next = head->next;
2662 head->next = NULL;
2663 head = next;
2664
2665 func(rq);
2666 }
2667 raw_spin_unlock_irqrestore(&rq->lock, flags);
2668 }
2669
2670 static inline void balance_callback(struct rq *rq)
2671 {
2672 if (unlikely(rq->balance_callback))
2673 __balance_callback(rq);
2674 }
2675
2676 #else
2677
2678 static inline void balance_callback(struct rq *rq)
2679 {
2680 }
2681
2682 #endif
2683
2684 /**
2685 * schedule_tail - first thing a freshly forked thread must call.
2686 * @prev: the thread we just switched away from.
2687 */
2688 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2689 __releases(rq->lock)
2690 {
2691 struct rq *rq;
2692
2693 /*
2694 * New tasks start with FORK_PREEMPT_COUNT, see there and
2695 * finish_task_switch() for details.
2696 *
2697 * finish_task_switch() will drop rq->lock() and lower preempt_count
2698 * and the preempt_enable() will end up enabling preemption (on
2699 * PREEMPT_COUNT kernels).
2700 */
2701
2702 rq = finish_task_switch(prev);
2703 balance_callback(rq);
2704 preempt_enable();
2705
2706 if (current->set_child_tid)
2707 put_user(task_pid_vnr(current), current->set_child_tid);
2708 }
2709
2710 /*
2711 * context_switch - switch to the new MM and the new thread's register state.
2712 */
2713 static __always_inline struct rq *
2714 context_switch(struct rq *rq, struct task_struct *prev,
2715 struct task_struct *next)
2716 {
2717 struct mm_struct *mm, *oldmm;
2718
2719 prepare_task_switch(rq, prev, next);
2720
2721 mm = next->mm;
2722 oldmm = prev->active_mm;
2723 /*
2724 * For paravirt, this is coupled with an exit in switch_to to
2725 * combine the page table reload and the switch backend into
2726 * one hypercall.
2727 */
2728 arch_start_context_switch(prev);
2729
2730 if (!mm) {
2731 next->active_mm = oldmm;
2732 atomic_inc(&oldmm->mm_count);
2733 enter_lazy_tlb(oldmm, next);
2734 } else
2735 switch_mm(oldmm, mm, next);
2736
2737 if (!prev->mm) {
2738 prev->active_mm = NULL;
2739 rq->prev_mm = oldmm;
2740 }
2741 /*
2742 * Since the runqueue lock will be released by the next
2743 * task (which is an invalid locking op but in the case
2744 * of the scheduler it's an obvious special-case), so we
2745 * do an early lockdep release here:
2746 */
2747 lockdep_unpin_lock(&rq->lock);
2748 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2749
2750 /* Here we just switch the register state and the stack. */
2751 switch_to(prev, next, prev);
2752 barrier();
2753
2754 return finish_task_switch(prev);
2755 }
2756
2757 /*
2758 * nr_running and nr_context_switches:
2759 *
2760 * externally visible scheduler statistics: current number of runnable
2761 * threads, total number of context switches performed since bootup.
2762 */
2763 unsigned long nr_running(void)
2764 {
2765 unsigned long i, sum = 0;
2766
2767 for_each_online_cpu(i)
2768 sum += cpu_rq(i)->nr_running;
2769
2770 return sum;
2771 }
2772
2773 /*
2774 * Check if only the current task is running on the cpu.
2775 *
2776 * Caution: this function does not check that the caller has disabled
2777 * preemption, thus the result might have a time-of-check-to-time-of-use
2778 * race. The caller is responsible to use it correctly, for example:
2779 *
2780 * - from a non-preemptable section (of course)
2781 *
2782 * - from a thread that is bound to a single CPU
2783 *
2784 * - in a loop with very short iterations (e.g. a polling loop)
2785 */
2786 bool single_task_running(void)
2787 {
2788 return raw_rq()->nr_running == 1;
2789 }
2790 EXPORT_SYMBOL(single_task_running);
2791
2792 unsigned long long nr_context_switches(void)
2793 {
2794 int i;
2795 unsigned long long sum = 0;
2796
2797 for_each_possible_cpu(i)
2798 sum += cpu_rq(i)->nr_switches;
2799
2800 return sum;
2801 }
2802
2803 unsigned long nr_iowait(void)
2804 {
2805 unsigned long i, sum = 0;
2806
2807 for_each_possible_cpu(i)
2808 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2809
2810 return sum;
2811 }
2812
2813 unsigned long nr_iowait_cpu(int cpu)
2814 {
2815 struct rq *this = cpu_rq(cpu);
2816 return atomic_read(&this->nr_iowait);
2817 }
2818
2819 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2820 {
2821 struct rq *rq = this_rq();
2822 *nr_waiters = atomic_read(&rq->nr_iowait);
2823 *load = rq->load.weight;
2824 }
2825
2826 #ifdef CONFIG_SMP
2827
2828 /*
2829 * sched_exec - execve() is a valuable balancing opportunity, because at
2830 * this point the task has the smallest effective memory and cache footprint.
2831 */
2832 void sched_exec(void)
2833 {
2834 struct task_struct *p = current;
2835 unsigned long flags;
2836 int dest_cpu;
2837
2838 raw_spin_lock_irqsave(&p->pi_lock, flags);
2839 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2840 if (dest_cpu == smp_processor_id())
2841 goto unlock;
2842
2843 if (likely(cpu_active(dest_cpu))) {
2844 struct migration_arg arg = { p, dest_cpu };
2845
2846 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2847 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2848 return;
2849 }
2850 unlock:
2851 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2852 }
2853
2854 #endif
2855
2856 DEFINE_PER_CPU(struct kernel_stat, kstat);
2857 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2858
2859 EXPORT_PER_CPU_SYMBOL(kstat);
2860 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2861
2862 /*
2863 * Return accounted runtime for the task.
2864 * In case the task is currently running, return the runtime plus current's
2865 * pending runtime that have not been accounted yet.
2866 */
2867 unsigned long long task_sched_runtime(struct task_struct *p)
2868 {
2869 unsigned long flags;
2870 struct rq *rq;
2871 u64 ns;
2872
2873 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2874 /*
2875 * 64-bit doesn't need locks to atomically read a 64bit value.
2876 * So we have a optimization chance when the task's delta_exec is 0.
2877 * Reading ->on_cpu is racy, but this is ok.
2878 *
2879 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2880 * If we race with it entering cpu, unaccounted time is 0. This is
2881 * indistinguishable from the read occurring a few cycles earlier.
2882 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2883 * been accounted, so we're correct here as well.
2884 */
2885 if (!p->on_cpu || !task_on_rq_queued(p))
2886 return p->se.sum_exec_runtime;
2887 #endif
2888
2889 rq = task_rq_lock(p, &flags);
2890 /*
2891 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2892 * project cycles that may never be accounted to this
2893 * thread, breaking clock_gettime().
2894 */
2895 if (task_current(rq, p) && task_on_rq_queued(p)) {
2896 update_rq_clock(rq);
2897 p->sched_class->update_curr(rq);
2898 }
2899 ns = p->se.sum_exec_runtime;
2900 task_rq_unlock(rq, p, &flags);
2901
2902 return ns;
2903 }
2904
2905 /*
2906 * This function gets called by the timer code, with HZ frequency.
2907 * We call it with interrupts disabled.
2908 */
2909 void scheduler_tick(void)
2910 {
2911 int cpu = smp_processor_id();
2912 struct rq *rq = cpu_rq(cpu);
2913 struct task_struct *curr = rq->curr;
2914
2915 sched_clock_tick();
2916
2917 raw_spin_lock(&rq->lock);
2918 update_rq_clock(rq);
2919 curr->sched_class->task_tick(rq, curr, 0);
2920 cpu_load_update_active(rq);
2921 calc_global_load_tick(rq);
2922 raw_spin_unlock(&rq->lock);
2923
2924 perf_event_task_tick();
2925
2926 #ifdef CONFIG_SMP
2927 rq->idle_balance = idle_cpu(cpu);
2928 trigger_load_balance(rq);
2929 #endif
2930 rq_last_tick_reset(rq);
2931 }
2932
2933 #ifdef CONFIG_NO_HZ_FULL
2934 /**
2935 * scheduler_tick_max_deferment
2936 *
2937 * Keep at least one tick per second when a single
2938 * active task is running because the scheduler doesn't
2939 * yet completely support full dynticks environment.
2940 *
2941 * This makes sure that uptime, CFS vruntime, load
2942 * balancing, etc... continue to move forward, even
2943 * with a very low granularity.
2944 *
2945 * Return: Maximum deferment in nanoseconds.
2946 */
2947 u64 scheduler_tick_max_deferment(void)
2948 {
2949 struct rq *rq = this_rq();
2950 unsigned long next, now = READ_ONCE(jiffies);
2951
2952 next = rq->last_sched_tick + HZ;
2953
2954 if (time_before_eq(next, now))
2955 return 0;
2956
2957 return jiffies_to_nsecs(next - now);
2958 }
2959 #endif
2960
2961 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2962 defined(CONFIG_PREEMPT_TRACER))
2963 /*
2964 * If the value passed in is equal to the current preempt count
2965 * then we just disabled preemption. Start timing the latency.
2966 */
2967 static inline void preempt_latency_start(int val)
2968 {
2969 if (preempt_count() == val) {
2970 unsigned long ip = get_lock_parent_ip();
2971 #ifdef CONFIG_DEBUG_PREEMPT
2972 current->preempt_disable_ip = ip;
2973 #endif
2974 trace_preempt_off(CALLER_ADDR0, ip);
2975 }
2976 }
2977
2978 void preempt_count_add(int val)
2979 {
2980 #ifdef CONFIG_DEBUG_PREEMPT
2981 /*
2982 * Underflow?
2983 */
2984 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2985 return;
2986 #endif
2987 __preempt_count_add(val);
2988 #ifdef CONFIG_DEBUG_PREEMPT
2989 /*
2990 * Spinlock count overflowing soon?
2991 */
2992 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2993 PREEMPT_MASK - 10);
2994 #endif
2995 preempt_latency_start(val);
2996 }
2997 EXPORT_SYMBOL(preempt_count_add);
2998 NOKPROBE_SYMBOL(preempt_count_add);
2999
3000 /*
3001 * If the value passed in equals to the current preempt count
3002 * then we just enabled preemption. Stop timing the latency.
3003 */
3004 static inline void preempt_latency_stop(int val)
3005 {
3006 if (preempt_count() == val)
3007 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3008 }
3009
3010 void preempt_count_sub(int val)
3011 {
3012 #ifdef CONFIG_DEBUG_PREEMPT
3013 /*
3014 * Underflow?
3015 */
3016 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3017 return;
3018 /*
3019 * Is the spinlock portion underflowing?
3020 */
3021 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3022 !(preempt_count() & PREEMPT_MASK)))
3023 return;
3024 #endif
3025
3026 preempt_latency_stop(val);
3027 __preempt_count_sub(val);
3028 }
3029 EXPORT_SYMBOL(preempt_count_sub);
3030 NOKPROBE_SYMBOL(preempt_count_sub);
3031
3032 #else
3033 static inline void preempt_latency_start(int val) { }
3034 static inline void preempt_latency_stop(int val) { }
3035 #endif
3036
3037 /*
3038 * Print scheduling while atomic bug:
3039 */
3040 static noinline void __schedule_bug(struct task_struct *prev)
3041 {
3042 if (oops_in_progress)
3043 return;
3044
3045 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3046 prev->comm, prev->pid, preempt_count());
3047
3048 debug_show_held_locks(prev);
3049 print_modules();
3050 if (irqs_disabled())
3051 print_irqtrace_events(prev);
3052 #ifdef CONFIG_DEBUG_PREEMPT
3053 if (in_atomic_preempt_off()) {
3054 pr_err("Preemption disabled at:");
3055 print_ip_sym(current->preempt_disable_ip);
3056 pr_cont("\n");
3057 }
3058 #endif
3059 dump_stack();
3060 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3061 }
3062
3063 /*
3064 * Various schedule()-time debugging checks and statistics:
3065 */
3066 static inline void schedule_debug(struct task_struct *prev)
3067 {
3068 #ifdef CONFIG_SCHED_STACK_END_CHECK
3069 BUG_ON(task_stack_end_corrupted(prev));
3070 #endif
3071
3072 if (unlikely(in_atomic_preempt_off())) {
3073 __schedule_bug(prev);
3074 preempt_count_set(PREEMPT_DISABLED);
3075 }
3076 rcu_sleep_check();
3077
3078 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3079
3080 schedstat_inc(this_rq(), sched_count);
3081 }
3082
3083 /*
3084 * Pick up the highest-prio task:
3085 */
3086 static inline struct task_struct *
3087 pick_next_task(struct rq *rq, struct task_struct *prev)
3088 {
3089 const struct sched_class *class = &fair_sched_class;
3090 struct task_struct *p;
3091
3092 /*
3093 * Optimization: we know that if all tasks are in
3094 * the fair class we can call that function directly:
3095 */
3096 if (likely(prev->sched_class == class &&
3097 rq->nr_running == rq->cfs.h_nr_running)) {
3098 p = fair_sched_class.pick_next_task(rq, prev);
3099 if (unlikely(p == RETRY_TASK))
3100 goto again;
3101
3102 /* assumes fair_sched_class->next == idle_sched_class */
3103 if (unlikely(!p))
3104 p = idle_sched_class.pick_next_task(rq, prev);
3105
3106 return p;
3107 }
3108
3109 again:
3110 for_each_class(class) {
3111 p = class->pick_next_task(rq, prev);
3112 if (p) {
3113 if (unlikely(p == RETRY_TASK))
3114 goto again;
3115 return p;
3116 }
3117 }
3118
3119 BUG(); /* the idle class will always have a runnable task */
3120 }
3121
3122 /*
3123 * __schedule() is the main scheduler function.
3124 *
3125 * The main means of driving the scheduler and thus entering this function are:
3126 *
3127 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3128 *
3129 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3130 * paths. For example, see arch/x86/entry_64.S.
3131 *
3132 * To drive preemption between tasks, the scheduler sets the flag in timer
3133 * interrupt handler scheduler_tick().
3134 *
3135 * 3. Wakeups don't really cause entry into schedule(). They add a
3136 * task to the run-queue and that's it.
3137 *
3138 * Now, if the new task added to the run-queue preempts the current
3139 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3140 * called on the nearest possible occasion:
3141 *
3142 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3143 *
3144 * - in syscall or exception context, at the next outmost
3145 * preempt_enable(). (this might be as soon as the wake_up()'s
3146 * spin_unlock()!)
3147 *
3148 * - in IRQ context, return from interrupt-handler to
3149 * preemptible context
3150 *
3151 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3152 * then at the next:
3153 *
3154 * - cond_resched() call
3155 * - explicit schedule() call
3156 * - return from syscall or exception to user-space
3157 * - return from interrupt-handler to user-space
3158 *
3159 * WARNING: must be called with preemption disabled!
3160 */
3161 static void __sched notrace __schedule(bool preempt)
3162 {
3163 struct task_struct *prev, *next;
3164 unsigned long *switch_count;
3165 struct rq *rq;
3166 int cpu;
3167
3168 cpu = smp_processor_id();
3169 rq = cpu_rq(cpu);
3170 prev = rq->curr;
3171
3172 /*
3173 * do_exit() calls schedule() with preemption disabled as an exception;
3174 * however we must fix that up, otherwise the next task will see an
3175 * inconsistent (higher) preempt count.
3176 *
3177 * It also avoids the below schedule_debug() test from complaining
3178 * about this.
3179 */
3180 if (unlikely(prev->state == TASK_DEAD))
3181 preempt_enable_no_resched_notrace();
3182
3183 schedule_debug(prev);
3184
3185 if (sched_feat(HRTICK))
3186 hrtick_clear(rq);
3187
3188 local_irq_disable();
3189 rcu_note_context_switch();
3190
3191 /*
3192 * Make sure that signal_pending_state()->signal_pending() below
3193 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3194 * done by the caller to avoid the race with signal_wake_up().
3195 */
3196 smp_mb__before_spinlock();
3197 raw_spin_lock(&rq->lock);
3198 lockdep_pin_lock(&rq->lock);
3199
3200 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3201
3202 switch_count = &prev->nivcsw;
3203 if (!preempt && prev->state) {
3204 if (unlikely(signal_pending_state(prev->state, prev))) {
3205 prev->state = TASK_RUNNING;
3206 } else {
3207 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3208 prev->on_rq = 0;
3209
3210 /*
3211 * If a worker went to sleep, notify and ask workqueue
3212 * whether it wants to wake up a task to maintain
3213 * concurrency.
3214 */
3215 if (prev->flags & PF_WQ_WORKER) {
3216 struct task_struct *to_wakeup;
3217
3218 to_wakeup = wq_worker_sleeping(prev);
3219 if (to_wakeup)
3220 try_to_wake_up_local(to_wakeup);
3221 }
3222 }
3223 switch_count = &prev->nvcsw;
3224 }
3225
3226 if (task_on_rq_queued(prev))
3227 update_rq_clock(rq);
3228
3229 next = pick_next_task(rq, prev);
3230 clear_tsk_need_resched(prev);
3231 clear_preempt_need_resched();
3232 rq->clock_skip_update = 0;
3233
3234 if (likely(prev != next)) {
3235 rq->nr_switches++;
3236 rq->curr = next;
3237 ++*switch_count;
3238
3239 trace_sched_switch(preempt, prev, next);
3240 rq = context_switch(rq, prev, next); /* unlocks the rq */
3241 } else {
3242 lockdep_unpin_lock(&rq->lock);
3243 raw_spin_unlock_irq(&rq->lock);
3244 }
3245
3246 balance_callback(rq);
3247 }
3248 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3249
3250 static inline void sched_submit_work(struct task_struct *tsk)
3251 {
3252 if (!tsk->state || tsk_is_pi_blocked(tsk))
3253 return;
3254 /*
3255 * If we are going to sleep and we have plugged IO queued,
3256 * make sure to submit it to avoid deadlocks.
3257 */
3258 if (blk_needs_flush_plug(tsk))
3259 blk_schedule_flush_plug(tsk);
3260 }
3261
3262 asmlinkage __visible void __sched schedule(void)
3263 {
3264 struct task_struct *tsk = current;
3265
3266 sched_submit_work(tsk);
3267 do {
3268 preempt_disable();
3269 __schedule(false);
3270 sched_preempt_enable_no_resched();
3271 } while (need_resched());
3272 }
3273 EXPORT_SYMBOL(schedule);
3274
3275 #ifdef CONFIG_CONTEXT_TRACKING
3276 asmlinkage __visible void __sched schedule_user(void)
3277 {
3278 /*
3279 * If we come here after a random call to set_need_resched(),
3280 * or we have been woken up remotely but the IPI has not yet arrived,
3281 * we haven't yet exited the RCU idle mode. Do it here manually until
3282 * we find a better solution.
3283 *
3284 * NB: There are buggy callers of this function. Ideally we
3285 * should warn if prev_state != CONTEXT_USER, but that will trigger
3286 * too frequently to make sense yet.
3287 */
3288 enum ctx_state prev_state = exception_enter();
3289 schedule();
3290 exception_exit(prev_state);
3291 }
3292 #endif
3293
3294 /**
3295 * schedule_preempt_disabled - called with preemption disabled
3296 *
3297 * Returns with preemption disabled. Note: preempt_count must be 1
3298 */
3299 void __sched schedule_preempt_disabled(void)
3300 {
3301 sched_preempt_enable_no_resched();
3302 schedule();
3303 preempt_disable();
3304 }
3305
3306 static void __sched notrace preempt_schedule_common(void)
3307 {
3308 do {
3309 /*
3310 * Because the function tracer can trace preempt_count_sub()
3311 * and it also uses preempt_enable/disable_notrace(), if
3312 * NEED_RESCHED is set, the preempt_enable_notrace() called
3313 * by the function tracer will call this function again and
3314 * cause infinite recursion.
3315 *
3316 * Preemption must be disabled here before the function
3317 * tracer can trace. Break up preempt_disable() into two
3318 * calls. One to disable preemption without fear of being
3319 * traced. The other to still record the preemption latency,
3320 * which can also be traced by the function tracer.
3321 */
3322 preempt_disable_notrace();
3323 preempt_latency_start(1);
3324 __schedule(true);
3325 preempt_latency_stop(1);
3326 preempt_enable_no_resched_notrace();
3327
3328 /*
3329 * Check again in case we missed a preemption opportunity
3330 * between schedule and now.
3331 */
3332 } while (need_resched());
3333 }
3334
3335 #ifdef CONFIG_PREEMPT
3336 /*
3337 * this is the entry point to schedule() from in-kernel preemption
3338 * off of preempt_enable. Kernel preemptions off return from interrupt
3339 * occur there and call schedule directly.
3340 */
3341 asmlinkage __visible void __sched notrace preempt_schedule(void)
3342 {
3343 /*
3344 * If there is a non-zero preempt_count or interrupts are disabled,
3345 * we do not want to preempt the current task. Just return..
3346 */
3347 if (likely(!preemptible()))
3348 return;
3349
3350 preempt_schedule_common();
3351 }
3352 NOKPROBE_SYMBOL(preempt_schedule);
3353 EXPORT_SYMBOL(preempt_schedule);
3354
3355 /**
3356 * preempt_schedule_notrace - preempt_schedule called by tracing
3357 *
3358 * The tracing infrastructure uses preempt_enable_notrace to prevent
3359 * recursion and tracing preempt enabling caused by the tracing
3360 * infrastructure itself. But as tracing can happen in areas coming
3361 * from userspace or just about to enter userspace, a preempt enable
3362 * can occur before user_exit() is called. This will cause the scheduler
3363 * to be called when the system is still in usermode.
3364 *
3365 * To prevent this, the preempt_enable_notrace will use this function
3366 * instead of preempt_schedule() to exit user context if needed before
3367 * calling the scheduler.
3368 */
3369 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3370 {
3371 enum ctx_state prev_ctx;
3372
3373 if (likely(!preemptible()))
3374 return;
3375
3376 do {
3377 /*
3378 * Because the function tracer can trace preempt_count_sub()
3379 * and it also uses preempt_enable/disable_notrace(), if
3380 * NEED_RESCHED is set, the preempt_enable_notrace() called
3381 * by the function tracer will call this function again and
3382 * cause infinite recursion.
3383 *
3384 * Preemption must be disabled here before the function
3385 * tracer can trace. Break up preempt_disable() into two
3386 * calls. One to disable preemption without fear of being
3387 * traced. The other to still record the preemption latency,
3388 * which can also be traced by the function tracer.
3389 */
3390 preempt_disable_notrace();
3391 preempt_latency_start(1);
3392 /*
3393 * Needs preempt disabled in case user_exit() is traced
3394 * and the tracer calls preempt_enable_notrace() causing
3395 * an infinite recursion.
3396 */
3397 prev_ctx = exception_enter();
3398 __schedule(true);
3399 exception_exit(prev_ctx);
3400
3401 preempt_latency_stop(1);
3402 preempt_enable_no_resched_notrace();
3403 } while (need_resched());
3404 }
3405 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3406
3407 #endif /* CONFIG_PREEMPT */
3408
3409 /*
3410 * this is the entry point to schedule() from kernel preemption
3411 * off of irq context.
3412 * Note, that this is called and return with irqs disabled. This will
3413 * protect us against recursive calling from irq.
3414 */
3415 asmlinkage __visible void __sched preempt_schedule_irq(void)
3416 {
3417 enum ctx_state prev_state;
3418
3419 /* Catch callers which need to be fixed */
3420 BUG_ON(preempt_count() || !irqs_disabled());
3421
3422 prev_state = exception_enter();
3423
3424 do {
3425 preempt_disable();
3426 local_irq_enable();
3427 __schedule(true);
3428 local_irq_disable();
3429 sched_preempt_enable_no_resched();
3430 } while (need_resched());
3431
3432 exception_exit(prev_state);
3433 }
3434
3435 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3436 void *key)
3437 {
3438 return try_to_wake_up(curr->private, mode, wake_flags);
3439 }
3440 EXPORT_SYMBOL(default_wake_function);
3441
3442 #ifdef CONFIG_RT_MUTEXES
3443
3444 /*
3445 * rt_mutex_setprio - set the current priority of a task
3446 * @p: task
3447 * @prio: prio value (kernel-internal form)
3448 *
3449 * This function changes the 'effective' priority of a task. It does
3450 * not touch ->normal_prio like __setscheduler().
3451 *
3452 * Used by the rt_mutex code to implement priority inheritance
3453 * logic. Call site only calls if the priority of the task changed.
3454 */
3455 void rt_mutex_setprio(struct task_struct *p, int prio)
3456 {
3457 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3458 struct rq *rq;
3459 const struct sched_class *prev_class;
3460
3461 BUG_ON(prio > MAX_PRIO);
3462
3463 rq = __task_rq_lock(p);
3464
3465 /*
3466 * Idle task boosting is a nono in general. There is one
3467 * exception, when PREEMPT_RT and NOHZ is active:
3468 *
3469 * The idle task calls get_next_timer_interrupt() and holds
3470 * the timer wheel base->lock on the CPU and another CPU wants
3471 * to access the timer (probably to cancel it). We can safely
3472 * ignore the boosting request, as the idle CPU runs this code
3473 * with interrupts disabled and will complete the lock
3474 * protected section without being interrupted. So there is no
3475 * real need to boost.
3476 */
3477 if (unlikely(p == rq->idle)) {
3478 WARN_ON(p != rq->curr);
3479 WARN_ON(p->pi_blocked_on);
3480 goto out_unlock;
3481 }
3482
3483 trace_sched_pi_setprio(p, prio);
3484 oldprio = p->prio;
3485
3486 if (oldprio == prio)
3487 queue_flag &= ~DEQUEUE_MOVE;
3488
3489 prev_class = p->sched_class;
3490 queued = task_on_rq_queued(p);
3491 running = task_current(rq, p);
3492 if (queued)
3493 dequeue_task(rq, p, queue_flag);
3494 if (running)
3495 put_prev_task(rq, p);
3496
3497 /*
3498 * Boosting condition are:
3499 * 1. -rt task is running and holds mutex A
3500 * --> -dl task blocks on mutex A
3501 *
3502 * 2. -dl task is running and holds mutex A
3503 * --> -dl task blocks on mutex A and could preempt the
3504 * running task
3505 */
3506 if (dl_prio(prio)) {
3507 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3508 if (!dl_prio(p->normal_prio) ||
3509 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3510 p->dl.dl_boosted = 1;
3511 queue_flag |= ENQUEUE_REPLENISH;
3512 } else
3513 p->dl.dl_boosted = 0;
3514 p->sched_class = &dl_sched_class;
3515 } else if (rt_prio(prio)) {
3516 if (dl_prio(oldprio))
3517 p->dl.dl_boosted = 0;
3518 if (oldprio < prio)
3519 queue_flag |= ENQUEUE_HEAD;
3520 p->sched_class = &rt_sched_class;
3521 } else {
3522 if (dl_prio(oldprio))
3523 p->dl.dl_boosted = 0;
3524 if (rt_prio(oldprio))
3525 p->rt.timeout = 0;
3526 p->sched_class = &fair_sched_class;
3527 }
3528
3529 p->prio = prio;
3530
3531 if (running)
3532 p->sched_class->set_curr_task(rq);
3533 if (queued)
3534 enqueue_task(rq, p, queue_flag);
3535
3536 check_class_changed(rq, p, prev_class, oldprio);
3537 out_unlock:
3538 preempt_disable(); /* avoid rq from going away on us */
3539 __task_rq_unlock(rq);
3540
3541 balance_callback(rq);
3542 preempt_enable();
3543 }
3544 #endif
3545
3546 void set_user_nice(struct task_struct *p, long nice)
3547 {
3548 int old_prio, delta, queued;
3549 unsigned long flags;
3550 struct rq *rq;
3551
3552 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3553 return;
3554 /*
3555 * We have to be careful, if called from sys_setpriority(),
3556 * the task might be in the middle of scheduling on another CPU.
3557 */
3558 rq = task_rq_lock(p, &flags);
3559 /*
3560 * The RT priorities are set via sched_setscheduler(), but we still
3561 * allow the 'normal' nice value to be set - but as expected
3562 * it wont have any effect on scheduling until the task is
3563 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3564 */
3565 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3566 p->static_prio = NICE_TO_PRIO(nice);
3567 goto out_unlock;
3568 }
3569 queued = task_on_rq_queued(p);
3570 if (queued)
3571 dequeue_task(rq, p, DEQUEUE_SAVE);
3572
3573 p->static_prio = NICE_TO_PRIO(nice);
3574 set_load_weight(p);
3575 old_prio = p->prio;
3576 p->prio = effective_prio(p);
3577 delta = p->prio - old_prio;
3578
3579 if (queued) {
3580 enqueue_task(rq, p, ENQUEUE_RESTORE);
3581 /*
3582 * If the task increased its priority or is running and
3583 * lowered its priority, then reschedule its CPU:
3584 */
3585 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3586 resched_curr(rq);
3587 }
3588 out_unlock:
3589 task_rq_unlock(rq, p, &flags);
3590 }
3591 EXPORT_SYMBOL(set_user_nice);
3592
3593 /*
3594 * can_nice - check if a task can reduce its nice value
3595 * @p: task
3596 * @nice: nice value
3597 */
3598 int can_nice(const struct task_struct *p, const int nice)
3599 {
3600 /* convert nice value [19,-20] to rlimit style value [1,40] */
3601 int nice_rlim = nice_to_rlimit(nice);
3602
3603 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3604 capable(CAP_SYS_NICE));
3605 }
3606
3607 #ifdef __ARCH_WANT_SYS_NICE
3608
3609 /*
3610 * sys_nice - change the priority of the current process.
3611 * @increment: priority increment
3612 *
3613 * sys_setpriority is a more generic, but much slower function that
3614 * does similar things.
3615 */
3616 SYSCALL_DEFINE1(nice, int, increment)
3617 {
3618 long nice, retval;
3619
3620 /*
3621 * Setpriority might change our priority at the same moment.
3622 * We don't have to worry. Conceptually one call occurs first
3623 * and we have a single winner.
3624 */
3625 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3626 nice = task_nice(current) + increment;
3627
3628 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3629 if (increment < 0 && !can_nice(current, nice))
3630 return -EPERM;
3631
3632 retval = security_task_setnice(current, nice);
3633 if (retval)
3634 return retval;
3635
3636 set_user_nice(current, nice);
3637 return 0;
3638 }
3639
3640 #endif
3641
3642 /**
3643 * task_prio - return the priority value of a given task.
3644 * @p: the task in question.
3645 *
3646 * Return: The priority value as seen by users in /proc.
3647 * RT tasks are offset by -200. Normal tasks are centered
3648 * around 0, value goes from -16 to +15.
3649 */
3650 int task_prio(const struct task_struct *p)
3651 {
3652 return p->prio - MAX_RT_PRIO;
3653 }
3654
3655 /**
3656 * idle_cpu - is a given cpu idle currently?
3657 * @cpu: the processor in question.
3658 *
3659 * Return: 1 if the CPU is currently idle. 0 otherwise.
3660 */
3661 int idle_cpu(int cpu)
3662 {
3663 struct rq *rq = cpu_rq(cpu);
3664
3665 if (rq->curr != rq->idle)
3666 return 0;
3667
3668 if (rq->nr_running)
3669 return 0;
3670
3671 #ifdef CONFIG_SMP
3672 if (!llist_empty(&rq->wake_list))
3673 return 0;
3674 #endif
3675
3676 return 1;
3677 }
3678
3679 /**
3680 * idle_task - return the idle task for a given cpu.
3681 * @cpu: the processor in question.
3682 *
3683 * Return: The idle task for the cpu @cpu.
3684 */
3685 struct task_struct *idle_task(int cpu)
3686 {
3687 return cpu_rq(cpu)->idle;
3688 }
3689
3690 /**
3691 * find_process_by_pid - find a process with a matching PID value.
3692 * @pid: the pid in question.
3693 *
3694 * The task of @pid, if found. %NULL otherwise.
3695 */
3696 static struct task_struct *find_process_by_pid(pid_t pid)
3697 {
3698 return pid ? find_task_by_vpid(pid) : current;
3699 }
3700
3701 /*
3702 * This function initializes the sched_dl_entity of a newly becoming
3703 * SCHED_DEADLINE task.
3704 *
3705 * Only the static values are considered here, the actual runtime and the
3706 * absolute deadline will be properly calculated when the task is enqueued
3707 * for the first time with its new policy.
3708 */
3709 static void
3710 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3711 {
3712 struct sched_dl_entity *dl_se = &p->dl;
3713
3714 dl_se->dl_runtime = attr->sched_runtime;
3715 dl_se->dl_deadline = attr->sched_deadline;
3716 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3717 dl_se->flags = attr->sched_flags;
3718 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3719
3720 /*
3721 * Changing the parameters of a task is 'tricky' and we're not doing
3722 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3723 *
3724 * What we SHOULD do is delay the bandwidth release until the 0-lag
3725 * point. This would include retaining the task_struct until that time
3726 * and change dl_overflow() to not immediately decrement the current
3727 * amount.
3728 *
3729 * Instead we retain the current runtime/deadline and let the new
3730 * parameters take effect after the current reservation period lapses.
3731 * This is safe (albeit pessimistic) because the 0-lag point is always
3732 * before the current scheduling deadline.
3733 *
3734 * We can still have temporary overloads because we do not delay the
3735 * change in bandwidth until that time; so admission control is
3736 * not on the safe side. It does however guarantee tasks will never
3737 * consume more than promised.
3738 */
3739 }
3740
3741 /*
3742 * sched_setparam() passes in -1 for its policy, to let the functions
3743 * it calls know not to change it.
3744 */
3745 #define SETPARAM_POLICY -1
3746
3747 static void __setscheduler_params(struct task_struct *p,
3748 const struct sched_attr *attr)
3749 {
3750 int policy = attr->sched_policy;
3751
3752 if (policy == SETPARAM_POLICY)
3753 policy = p->policy;
3754
3755 p->policy = policy;
3756
3757 if (dl_policy(policy))
3758 __setparam_dl(p, attr);
3759 else if (fair_policy(policy))
3760 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3761
3762 /*
3763 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3764 * !rt_policy. Always setting this ensures that things like
3765 * getparam()/getattr() don't report silly values for !rt tasks.
3766 */
3767 p->rt_priority = attr->sched_priority;
3768 p->normal_prio = normal_prio(p);
3769 set_load_weight(p);
3770 }
3771
3772 /* Actually do priority change: must hold pi & rq lock. */
3773 static void __setscheduler(struct rq *rq, struct task_struct *p,
3774 const struct sched_attr *attr, bool keep_boost)
3775 {
3776 __setscheduler_params(p, attr);
3777
3778 /*
3779 * Keep a potential priority boosting if called from
3780 * sched_setscheduler().
3781 */
3782 if (keep_boost)
3783 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3784 else
3785 p->prio = normal_prio(p);
3786
3787 if (dl_prio(p->prio))
3788 p->sched_class = &dl_sched_class;
3789 else if (rt_prio(p->prio))
3790 p->sched_class = &rt_sched_class;
3791 else
3792 p->sched_class = &fair_sched_class;
3793 }
3794
3795 static void
3796 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3797 {
3798 struct sched_dl_entity *dl_se = &p->dl;
3799
3800 attr->sched_priority = p->rt_priority;
3801 attr->sched_runtime = dl_se->dl_runtime;
3802 attr->sched_deadline = dl_se->dl_deadline;
3803 attr->sched_period = dl_se->dl_period;
3804 attr->sched_flags = dl_se->flags;
3805 }
3806
3807 /*
3808 * This function validates the new parameters of a -deadline task.
3809 * We ask for the deadline not being zero, and greater or equal
3810 * than the runtime, as well as the period of being zero or
3811 * greater than deadline. Furthermore, we have to be sure that
3812 * user parameters are above the internal resolution of 1us (we
3813 * check sched_runtime only since it is always the smaller one) and
3814 * below 2^63 ns (we have to check both sched_deadline and
3815 * sched_period, as the latter can be zero).
3816 */
3817 static bool
3818 __checkparam_dl(const struct sched_attr *attr)
3819 {
3820 /* deadline != 0 */
3821 if (attr->sched_deadline == 0)
3822 return false;
3823
3824 /*
3825 * Since we truncate DL_SCALE bits, make sure we're at least
3826 * that big.
3827 */
3828 if (attr->sched_runtime < (1ULL << DL_SCALE))
3829 return false;
3830
3831 /*
3832 * Since we use the MSB for wrap-around and sign issues, make
3833 * sure it's not set (mind that period can be equal to zero).
3834 */
3835 if (attr->sched_deadline & (1ULL << 63) ||
3836 attr->sched_period & (1ULL << 63))
3837 return false;
3838
3839 /* runtime <= deadline <= period (if period != 0) */
3840 if ((attr->sched_period != 0 &&
3841 attr->sched_period < attr->sched_deadline) ||
3842 attr->sched_deadline < attr->sched_runtime)
3843 return false;
3844
3845 return true;
3846 }
3847
3848 /*
3849 * check the target process has a UID that matches the current process's
3850 */
3851 static bool check_same_owner(struct task_struct *p)
3852 {
3853 const struct cred *cred = current_cred(), *pcred;
3854 bool match;
3855
3856 rcu_read_lock();
3857 pcred = __task_cred(p);
3858 match = (uid_eq(cred->euid, pcred->euid) ||
3859 uid_eq(cred->euid, pcred->uid));
3860 rcu_read_unlock();
3861 return match;
3862 }
3863
3864 static bool dl_param_changed(struct task_struct *p,
3865 const struct sched_attr *attr)
3866 {
3867 struct sched_dl_entity *dl_se = &p->dl;
3868
3869 if (dl_se->dl_runtime != attr->sched_runtime ||
3870 dl_se->dl_deadline != attr->sched_deadline ||
3871 dl_se->dl_period != attr->sched_period ||
3872 dl_se->flags != attr->sched_flags)
3873 return true;
3874
3875 return false;
3876 }
3877
3878 static int __sched_setscheduler(struct task_struct *p,
3879 const struct sched_attr *attr,
3880 bool user, bool pi)
3881 {
3882 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3883 MAX_RT_PRIO - 1 - attr->sched_priority;
3884 int retval, oldprio, oldpolicy = -1, queued, running;
3885 int new_effective_prio, policy = attr->sched_policy;
3886 unsigned long flags;
3887 const struct sched_class *prev_class;
3888 struct rq *rq;
3889 int reset_on_fork;
3890 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3891
3892 /* may grab non-irq protected spin_locks */
3893 BUG_ON(in_interrupt());
3894 recheck:
3895 /* double check policy once rq lock held */
3896 if (policy < 0) {
3897 reset_on_fork = p->sched_reset_on_fork;
3898 policy = oldpolicy = p->policy;
3899 } else {
3900 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3901
3902 if (!valid_policy(policy))
3903 return -EINVAL;
3904 }
3905
3906 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3907 return -EINVAL;
3908
3909 /*
3910 * Valid priorities for SCHED_FIFO and SCHED_RR are
3911 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3912 * SCHED_BATCH and SCHED_IDLE is 0.
3913 */
3914 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3915 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3916 return -EINVAL;
3917 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3918 (rt_policy(policy) != (attr->sched_priority != 0)))
3919 return -EINVAL;
3920
3921 /*
3922 * Allow unprivileged RT tasks to decrease priority:
3923 */
3924 if (user && !capable(CAP_SYS_NICE)) {
3925 if (fair_policy(policy)) {
3926 if (attr->sched_nice < task_nice(p) &&
3927 !can_nice(p, attr->sched_nice))
3928 return -EPERM;
3929 }
3930
3931 if (rt_policy(policy)) {
3932 unsigned long rlim_rtprio =
3933 task_rlimit(p, RLIMIT_RTPRIO);
3934
3935 /* can't set/change the rt policy */
3936 if (policy != p->policy && !rlim_rtprio)
3937 return -EPERM;
3938
3939 /* can't increase priority */
3940 if (attr->sched_priority > p->rt_priority &&
3941 attr->sched_priority > rlim_rtprio)
3942 return -EPERM;
3943 }
3944
3945 /*
3946 * Can't set/change SCHED_DEADLINE policy at all for now
3947 * (safest behavior); in the future we would like to allow
3948 * unprivileged DL tasks to increase their relative deadline
3949 * or reduce their runtime (both ways reducing utilization)
3950 */
3951 if (dl_policy(policy))
3952 return -EPERM;
3953
3954 /*
3955 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3956 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3957 */
3958 if (idle_policy(p->policy) && !idle_policy(policy)) {
3959 if (!can_nice(p, task_nice(p)))
3960 return -EPERM;
3961 }
3962
3963 /* can't change other user's priorities */
3964 if (!check_same_owner(p))
3965 return -EPERM;
3966
3967 /* Normal users shall not reset the sched_reset_on_fork flag */
3968 if (p->sched_reset_on_fork && !reset_on_fork)
3969 return -EPERM;
3970 }
3971
3972 if (user) {
3973 retval = security_task_setscheduler(p);
3974 if (retval)
3975 return retval;
3976 }
3977
3978 /*
3979 * make sure no PI-waiters arrive (or leave) while we are
3980 * changing the priority of the task:
3981 *
3982 * To be able to change p->policy safely, the appropriate
3983 * runqueue lock must be held.
3984 */
3985 rq = task_rq_lock(p, &flags);
3986
3987 /*
3988 * Changing the policy of the stop threads its a very bad idea
3989 */
3990 if (p == rq->stop) {
3991 task_rq_unlock(rq, p, &flags);
3992 return -EINVAL;
3993 }
3994
3995 /*
3996 * If not changing anything there's no need to proceed further,
3997 * but store a possible modification of reset_on_fork.
3998 */
3999 if (unlikely(policy == p->policy)) {
4000 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4001 goto change;
4002 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4003 goto change;
4004 if (dl_policy(policy) && dl_param_changed(p, attr))
4005 goto change;
4006
4007 p->sched_reset_on_fork = reset_on_fork;
4008 task_rq_unlock(rq, p, &flags);
4009 return 0;
4010 }
4011 change:
4012
4013 if (user) {
4014 #ifdef CONFIG_RT_GROUP_SCHED
4015 /*
4016 * Do not allow realtime tasks into groups that have no runtime
4017 * assigned.
4018 */
4019 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4020 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4021 !task_group_is_autogroup(task_group(p))) {
4022 task_rq_unlock(rq, p, &flags);
4023 return -EPERM;
4024 }
4025 #endif
4026 #ifdef CONFIG_SMP
4027 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4028 cpumask_t *span = rq->rd->span;
4029
4030 /*
4031 * Don't allow tasks with an affinity mask smaller than
4032 * the entire root_domain to become SCHED_DEADLINE. We
4033 * will also fail if there's no bandwidth available.
4034 */
4035 if (!cpumask_subset(span, &p->cpus_allowed) ||
4036 rq->rd->dl_bw.bw == 0) {
4037 task_rq_unlock(rq, p, &flags);
4038 return -EPERM;
4039 }
4040 }
4041 #endif
4042 }
4043
4044 /* recheck policy now with rq lock held */
4045 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4046 policy = oldpolicy = -1;
4047 task_rq_unlock(rq, p, &flags);
4048 goto recheck;
4049 }
4050
4051 /*
4052 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4053 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4054 * is available.
4055 */
4056 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4057 task_rq_unlock(rq, p, &flags);
4058 return -EBUSY;
4059 }
4060
4061 p->sched_reset_on_fork = reset_on_fork;
4062 oldprio = p->prio;
4063
4064 if (pi) {
4065 /*
4066 * Take priority boosted tasks into account. If the new
4067 * effective priority is unchanged, we just store the new
4068 * normal parameters and do not touch the scheduler class and
4069 * the runqueue. This will be done when the task deboost
4070 * itself.
4071 */
4072 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4073 if (new_effective_prio == oldprio)
4074 queue_flags &= ~DEQUEUE_MOVE;
4075 }
4076
4077 queued = task_on_rq_queued(p);
4078 running = task_current(rq, p);
4079 if (queued)
4080 dequeue_task(rq, p, queue_flags);
4081 if (running)
4082 put_prev_task(rq, p);
4083
4084 prev_class = p->sched_class;
4085 __setscheduler(rq, p, attr, pi);
4086
4087 if (running)
4088 p->sched_class->set_curr_task(rq);
4089 if (queued) {
4090 /*
4091 * We enqueue to tail when the priority of a task is
4092 * increased (user space view).
4093 */
4094 if (oldprio < p->prio)
4095 queue_flags |= ENQUEUE_HEAD;
4096
4097 enqueue_task(rq, p, queue_flags);
4098 }
4099
4100 check_class_changed(rq, p, prev_class, oldprio);
4101 preempt_disable(); /* avoid rq from going away on us */
4102 task_rq_unlock(rq, p, &flags);
4103
4104 if (pi)
4105 rt_mutex_adjust_pi(p);
4106
4107 /*
4108 * Run balance callbacks after we've adjusted the PI chain.
4109 */
4110 balance_callback(rq);
4111 preempt_enable();
4112
4113 return 0;
4114 }
4115
4116 static int _sched_setscheduler(struct task_struct *p, int policy,
4117 const struct sched_param *param, bool check)
4118 {
4119 struct sched_attr attr = {
4120 .sched_policy = policy,
4121 .sched_priority = param->sched_priority,
4122 .sched_nice = PRIO_TO_NICE(p->static_prio),
4123 };
4124
4125 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4126 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4127 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4128 policy &= ~SCHED_RESET_ON_FORK;
4129 attr.sched_policy = policy;
4130 }
4131
4132 return __sched_setscheduler(p, &attr, check, true);
4133 }
4134 /**
4135 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4136 * @p: the task in question.
4137 * @policy: new policy.
4138 * @param: structure containing the new RT priority.
4139 *
4140 * Return: 0 on success. An error code otherwise.
4141 *
4142 * NOTE that the task may be already dead.
4143 */
4144 int sched_setscheduler(struct task_struct *p, int policy,
4145 const struct sched_param *param)
4146 {
4147 return _sched_setscheduler(p, policy, param, true);
4148 }
4149 EXPORT_SYMBOL_GPL(sched_setscheduler);
4150
4151 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4152 {
4153 return __sched_setscheduler(p, attr, true, true);
4154 }
4155 EXPORT_SYMBOL_GPL(sched_setattr);
4156
4157 /**
4158 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4159 * @p: the task in question.
4160 * @policy: new policy.
4161 * @param: structure containing the new RT priority.
4162 *
4163 * Just like sched_setscheduler, only don't bother checking if the
4164 * current context has permission. For example, this is needed in
4165 * stop_machine(): we create temporary high priority worker threads,
4166 * but our caller might not have that capability.
4167 *
4168 * Return: 0 on success. An error code otherwise.
4169 */
4170 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4171 const struct sched_param *param)
4172 {
4173 return _sched_setscheduler(p, policy, param, false);
4174 }
4175 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4176
4177 static int
4178 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4179 {
4180 struct sched_param lparam;
4181 struct task_struct *p;
4182 int retval;
4183
4184 if (!param || pid < 0)
4185 return -EINVAL;
4186 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4187 return -EFAULT;
4188
4189 rcu_read_lock();
4190 retval = -ESRCH;
4191 p = find_process_by_pid(pid);
4192 if (p != NULL)
4193 retval = sched_setscheduler(p, policy, &lparam);
4194 rcu_read_unlock();
4195
4196 return retval;
4197 }
4198
4199 /*
4200 * Mimics kernel/events/core.c perf_copy_attr().
4201 */
4202 static int sched_copy_attr(struct sched_attr __user *uattr,
4203 struct sched_attr *attr)
4204 {
4205 u32 size;
4206 int ret;
4207
4208 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4209 return -EFAULT;
4210
4211 /*
4212 * zero the full structure, so that a short copy will be nice.
4213 */
4214 memset(attr, 0, sizeof(*attr));
4215
4216 ret = get_user(size, &uattr->size);
4217 if (ret)
4218 return ret;
4219
4220 if (size > PAGE_SIZE) /* silly large */
4221 goto err_size;
4222
4223 if (!size) /* abi compat */
4224 size = SCHED_ATTR_SIZE_VER0;
4225
4226 if (size < SCHED_ATTR_SIZE_VER0)
4227 goto err_size;
4228
4229 /*
4230 * If we're handed a bigger struct than we know of,
4231 * ensure all the unknown bits are 0 - i.e. new
4232 * user-space does not rely on any kernel feature
4233 * extensions we dont know about yet.
4234 */
4235 if (size > sizeof(*attr)) {
4236 unsigned char __user *addr;
4237 unsigned char __user *end;
4238 unsigned char val;
4239
4240 addr = (void __user *)uattr + sizeof(*attr);
4241 end = (void __user *)uattr + size;
4242
4243 for (; addr < end; addr++) {
4244 ret = get_user(val, addr);
4245 if (ret)
4246 return ret;
4247 if (val)
4248 goto err_size;
4249 }
4250 size = sizeof(*attr);
4251 }
4252
4253 ret = copy_from_user(attr, uattr, size);
4254 if (ret)
4255 return -EFAULT;
4256
4257 /*
4258 * XXX: do we want to be lenient like existing syscalls; or do we want
4259 * to be strict and return an error on out-of-bounds values?
4260 */
4261 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4262
4263 return 0;
4264
4265 err_size:
4266 put_user(sizeof(*attr), &uattr->size);
4267 return -E2BIG;
4268 }
4269
4270 /**
4271 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4272 * @pid: the pid in question.
4273 * @policy: new policy.
4274 * @param: structure containing the new RT priority.
4275 *
4276 * Return: 0 on success. An error code otherwise.
4277 */
4278 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4279 struct sched_param __user *, param)
4280 {
4281 /* negative values for policy are not valid */
4282 if (policy < 0)
4283 return -EINVAL;
4284
4285 return do_sched_setscheduler(pid, policy, param);
4286 }
4287
4288 /**
4289 * sys_sched_setparam - set/change the RT priority of a thread
4290 * @pid: the pid in question.
4291 * @param: structure containing the new RT priority.
4292 *
4293 * Return: 0 on success. An error code otherwise.
4294 */
4295 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4296 {
4297 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4298 }
4299
4300 /**
4301 * sys_sched_setattr - same as above, but with extended sched_attr
4302 * @pid: the pid in question.
4303 * @uattr: structure containing the extended parameters.
4304 * @flags: for future extension.
4305 */
4306 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4307 unsigned int, flags)
4308 {
4309 struct sched_attr attr;
4310 struct task_struct *p;
4311 int retval;
4312
4313 if (!uattr || pid < 0 || flags)
4314 return -EINVAL;
4315
4316 retval = sched_copy_attr(uattr, &attr);
4317 if (retval)
4318 return retval;
4319
4320 if ((int)attr.sched_policy < 0)
4321 return -EINVAL;
4322
4323 rcu_read_lock();
4324 retval = -ESRCH;
4325 p = find_process_by_pid(pid);
4326 if (p != NULL)
4327 retval = sched_setattr(p, &attr);
4328 rcu_read_unlock();
4329
4330 return retval;
4331 }
4332
4333 /**
4334 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4335 * @pid: the pid in question.
4336 *
4337 * Return: On success, the policy of the thread. Otherwise, a negative error
4338 * code.
4339 */
4340 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4341 {
4342 struct task_struct *p;
4343 int retval;
4344
4345 if (pid < 0)
4346 return -EINVAL;
4347
4348 retval = -ESRCH;
4349 rcu_read_lock();
4350 p = find_process_by_pid(pid);
4351 if (p) {
4352 retval = security_task_getscheduler(p);
4353 if (!retval)
4354 retval = p->policy
4355 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4356 }
4357 rcu_read_unlock();
4358 return retval;
4359 }
4360
4361 /**
4362 * sys_sched_getparam - get the RT priority of a thread
4363 * @pid: the pid in question.
4364 * @param: structure containing the RT priority.
4365 *
4366 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4367 * code.
4368 */
4369 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4370 {
4371 struct sched_param lp = { .sched_priority = 0 };
4372 struct task_struct *p;
4373 int retval;
4374
4375 if (!param || pid < 0)
4376 return -EINVAL;
4377
4378 rcu_read_lock();
4379 p = find_process_by_pid(pid);
4380 retval = -ESRCH;
4381 if (!p)
4382 goto out_unlock;
4383
4384 retval = security_task_getscheduler(p);
4385 if (retval)
4386 goto out_unlock;
4387
4388 if (task_has_rt_policy(p))
4389 lp.sched_priority = p->rt_priority;
4390 rcu_read_unlock();
4391
4392 /*
4393 * This one might sleep, we cannot do it with a spinlock held ...
4394 */
4395 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4396
4397 return retval;
4398
4399 out_unlock:
4400 rcu_read_unlock();
4401 return retval;
4402 }
4403
4404 static int sched_read_attr(struct sched_attr __user *uattr,
4405 struct sched_attr *attr,
4406 unsigned int usize)
4407 {
4408 int ret;
4409
4410 if (!access_ok(VERIFY_WRITE, uattr, usize))
4411 return -EFAULT;
4412
4413 /*
4414 * If we're handed a smaller struct than we know of,
4415 * ensure all the unknown bits are 0 - i.e. old
4416 * user-space does not get uncomplete information.
4417 */
4418 if (usize < sizeof(*attr)) {
4419 unsigned char *addr;
4420 unsigned char *end;
4421
4422 addr = (void *)attr + usize;
4423 end = (void *)attr + sizeof(*attr);
4424
4425 for (; addr < end; addr++) {
4426 if (*addr)
4427 return -EFBIG;
4428 }
4429
4430 attr->size = usize;
4431 }
4432
4433 ret = copy_to_user(uattr, attr, attr->size);
4434 if (ret)
4435 return -EFAULT;
4436
4437 return 0;
4438 }
4439
4440 /**
4441 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4442 * @pid: the pid in question.
4443 * @uattr: structure containing the extended parameters.
4444 * @size: sizeof(attr) for fwd/bwd comp.
4445 * @flags: for future extension.
4446 */
4447 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4448 unsigned int, size, unsigned int, flags)
4449 {
4450 struct sched_attr attr = {
4451 .size = sizeof(struct sched_attr),
4452 };
4453 struct task_struct *p;
4454 int retval;
4455
4456 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4457 size < SCHED_ATTR_SIZE_VER0 || flags)
4458 return -EINVAL;
4459
4460 rcu_read_lock();
4461 p = find_process_by_pid(pid);
4462 retval = -ESRCH;
4463 if (!p)
4464 goto out_unlock;
4465
4466 retval = security_task_getscheduler(p);
4467 if (retval)
4468 goto out_unlock;
4469
4470 attr.sched_policy = p->policy;
4471 if (p->sched_reset_on_fork)
4472 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4473 if (task_has_dl_policy(p))
4474 __getparam_dl(p, &attr);
4475 else if (task_has_rt_policy(p))
4476 attr.sched_priority = p->rt_priority;
4477 else
4478 attr.sched_nice = task_nice(p);
4479
4480 rcu_read_unlock();
4481
4482 retval = sched_read_attr(uattr, &attr, size);
4483 return retval;
4484
4485 out_unlock:
4486 rcu_read_unlock();
4487 return retval;
4488 }
4489
4490 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4491 {
4492 cpumask_var_t cpus_allowed, new_mask;
4493 struct task_struct *p;
4494 int retval;
4495
4496 rcu_read_lock();
4497
4498 p = find_process_by_pid(pid);
4499 if (!p) {
4500 rcu_read_unlock();
4501 return -ESRCH;
4502 }
4503
4504 /* Prevent p going away */
4505 get_task_struct(p);
4506 rcu_read_unlock();
4507
4508 if (p->flags & PF_NO_SETAFFINITY) {
4509 retval = -EINVAL;
4510 goto out_put_task;
4511 }
4512 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4513 retval = -ENOMEM;
4514 goto out_put_task;
4515 }
4516 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4517 retval = -ENOMEM;
4518 goto out_free_cpus_allowed;
4519 }
4520 retval = -EPERM;
4521 if (!check_same_owner(p)) {
4522 rcu_read_lock();
4523 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4524 rcu_read_unlock();
4525 goto out_free_new_mask;
4526 }
4527 rcu_read_unlock();
4528 }
4529
4530 retval = security_task_setscheduler(p);
4531 if (retval)
4532 goto out_free_new_mask;
4533
4534
4535 cpuset_cpus_allowed(p, cpus_allowed);
4536 cpumask_and(new_mask, in_mask, cpus_allowed);
4537
4538 /*
4539 * Since bandwidth control happens on root_domain basis,
4540 * if admission test is enabled, we only admit -deadline
4541 * tasks allowed to run on all the CPUs in the task's
4542 * root_domain.
4543 */
4544 #ifdef CONFIG_SMP
4545 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4546 rcu_read_lock();
4547 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4548 retval = -EBUSY;
4549 rcu_read_unlock();
4550 goto out_free_new_mask;
4551 }
4552 rcu_read_unlock();
4553 }
4554 #endif
4555 again:
4556 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4557
4558 if (!retval) {
4559 cpuset_cpus_allowed(p, cpus_allowed);
4560 if (!cpumask_subset(new_mask, cpus_allowed)) {
4561 /*
4562 * We must have raced with a concurrent cpuset
4563 * update. Just reset the cpus_allowed to the
4564 * cpuset's cpus_allowed
4565 */
4566 cpumask_copy(new_mask, cpus_allowed);
4567 goto again;
4568 }
4569 }
4570 out_free_new_mask:
4571 free_cpumask_var(new_mask);
4572 out_free_cpus_allowed:
4573 free_cpumask_var(cpus_allowed);
4574 out_put_task:
4575 put_task_struct(p);
4576 return retval;
4577 }
4578
4579 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4580 struct cpumask *new_mask)
4581 {
4582 if (len < cpumask_size())
4583 cpumask_clear(new_mask);
4584 else if (len > cpumask_size())
4585 len = cpumask_size();
4586
4587 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4588 }
4589
4590 /**
4591 * sys_sched_setaffinity - set the cpu affinity of a process
4592 * @pid: pid of the process
4593 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4594 * @user_mask_ptr: user-space pointer to the new cpu mask
4595 *
4596 * Return: 0 on success. An error code otherwise.
4597 */
4598 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4599 unsigned long __user *, user_mask_ptr)
4600 {
4601 cpumask_var_t new_mask;
4602 int retval;
4603
4604 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4605 return -ENOMEM;
4606
4607 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4608 if (retval == 0)
4609 retval = sched_setaffinity(pid, new_mask);
4610 free_cpumask_var(new_mask);
4611 return retval;
4612 }
4613
4614 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4615 {
4616 struct task_struct *p;
4617 unsigned long flags;
4618 int retval;
4619
4620 rcu_read_lock();
4621
4622 retval = -ESRCH;
4623 p = find_process_by_pid(pid);
4624 if (!p)
4625 goto out_unlock;
4626
4627 retval = security_task_getscheduler(p);
4628 if (retval)
4629 goto out_unlock;
4630
4631 raw_spin_lock_irqsave(&p->pi_lock, flags);
4632 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4634
4635 out_unlock:
4636 rcu_read_unlock();
4637
4638 return retval;
4639 }
4640
4641 /**
4642 * sys_sched_getaffinity - get the cpu affinity of a process
4643 * @pid: pid of the process
4644 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4645 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4646 *
4647 * Return: 0 on success. An error code otherwise.
4648 */
4649 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4650 unsigned long __user *, user_mask_ptr)
4651 {
4652 int ret;
4653 cpumask_var_t mask;
4654
4655 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4656 return -EINVAL;
4657 if (len & (sizeof(unsigned long)-1))
4658 return -EINVAL;
4659
4660 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4661 return -ENOMEM;
4662
4663 ret = sched_getaffinity(pid, mask);
4664 if (ret == 0) {
4665 size_t retlen = min_t(size_t, len, cpumask_size());
4666
4667 if (copy_to_user(user_mask_ptr, mask, retlen))
4668 ret = -EFAULT;
4669 else
4670 ret = retlen;
4671 }
4672 free_cpumask_var(mask);
4673
4674 return ret;
4675 }
4676
4677 /**
4678 * sys_sched_yield - yield the current processor to other threads.
4679 *
4680 * This function yields the current CPU to other tasks. If there are no
4681 * other threads running on this CPU then this function will return.
4682 *
4683 * Return: 0.
4684 */
4685 SYSCALL_DEFINE0(sched_yield)
4686 {
4687 struct rq *rq = this_rq_lock();
4688
4689 schedstat_inc(rq, yld_count);
4690 current->sched_class->yield_task(rq);
4691
4692 /*
4693 * Since we are going to call schedule() anyway, there's
4694 * no need to preempt or enable interrupts:
4695 */
4696 __release(rq->lock);
4697 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4698 do_raw_spin_unlock(&rq->lock);
4699 sched_preempt_enable_no_resched();
4700
4701 schedule();
4702
4703 return 0;
4704 }
4705
4706 int __sched _cond_resched(void)
4707 {
4708 if (should_resched(0)) {
4709 preempt_schedule_common();
4710 return 1;
4711 }
4712 return 0;
4713 }
4714 EXPORT_SYMBOL(_cond_resched);
4715
4716 /*
4717 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4718 * call schedule, and on return reacquire the lock.
4719 *
4720 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4721 * operations here to prevent schedule() from being called twice (once via
4722 * spin_unlock(), once by hand).
4723 */
4724 int __cond_resched_lock(spinlock_t *lock)
4725 {
4726 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4727 int ret = 0;
4728
4729 lockdep_assert_held(lock);
4730
4731 if (spin_needbreak(lock) || resched) {
4732 spin_unlock(lock);
4733 if (resched)
4734 preempt_schedule_common();
4735 else
4736 cpu_relax();
4737 ret = 1;
4738 spin_lock(lock);
4739 }
4740 return ret;
4741 }
4742 EXPORT_SYMBOL(__cond_resched_lock);
4743
4744 int __sched __cond_resched_softirq(void)
4745 {
4746 BUG_ON(!in_softirq());
4747
4748 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4749 local_bh_enable();
4750 preempt_schedule_common();
4751 local_bh_disable();
4752 return 1;
4753 }
4754 return 0;
4755 }
4756 EXPORT_SYMBOL(__cond_resched_softirq);
4757
4758 /**
4759 * yield - yield the current processor to other threads.
4760 *
4761 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4762 *
4763 * The scheduler is at all times free to pick the calling task as the most
4764 * eligible task to run, if removing the yield() call from your code breaks
4765 * it, its already broken.
4766 *
4767 * Typical broken usage is:
4768 *
4769 * while (!event)
4770 * yield();
4771 *
4772 * where one assumes that yield() will let 'the other' process run that will
4773 * make event true. If the current task is a SCHED_FIFO task that will never
4774 * happen. Never use yield() as a progress guarantee!!
4775 *
4776 * If you want to use yield() to wait for something, use wait_event().
4777 * If you want to use yield() to be 'nice' for others, use cond_resched().
4778 * If you still want to use yield(), do not!
4779 */
4780 void __sched yield(void)
4781 {
4782 set_current_state(TASK_RUNNING);
4783 sys_sched_yield();
4784 }
4785 EXPORT_SYMBOL(yield);
4786
4787 /**
4788 * yield_to - yield the current processor to another thread in
4789 * your thread group, or accelerate that thread toward the
4790 * processor it's on.
4791 * @p: target task
4792 * @preempt: whether task preemption is allowed or not
4793 *
4794 * It's the caller's job to ensure that the target task struct
4795 * can't go away on us before we can do any checks.
4796 *
4797 * Return:
4798 * true (>0) if we indeed boosted the target task.
4799 * false (0) if we failed to boost the target.
4800 * -ESRCH if there's no task to yield to.
4801 */
4802 int __sched yield_to(struct task_struct *p, bool preempt)
4803 {
4804 struct task_struct *curr = current;
4805 struct rq *rq, *p_rq;
4806 unsigned long flags;
4807 int yielded = 0;
4808
4809 local_irq_save(flags);
4810 rq = this_rq();
4811
4812 again:
4813 p_rq = task_rq(p);
4814 /*
4815 * If we're the only runnable task on the rq and target rq also
4816 * has only one task, there's absolutely no point in yielding.
4817 */
4818 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4819 yielded = -ESRCH;
4820 goto out_irq;
4821 }
4822
4823 double_rq_lock(rq, p_rq);
4824 if (task_rq(p) != p_rq) {
4825 double_rq_unlock(rq, p_rq);
4826 goto again;
4827 }
4828
4829 if (!curr->sched_class->yield_to_task)
4830 goto out_unlock;
4831
4832 if (curr->sched_class != p->sched_class)
4833 goto out_unlock;
4834
4835 if (task_running(p_rq, p) || p->state)
4836 goto out_unlock;
4837
4838 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4839 if (yielded) {
4840 schedstat_inc(rq, yld_count);
4841 /*
4842 * Make p's CPU reschedule; pick_next_entity takes care of
4843 * fairness.
4844 */
4845 if (preempt && rq != p_rq)
4846 resched_curr(p_rq);
4847 }
4848
4849 out_unlock:
4850 double_rq_unlock(rq, p_rq);
4851 out_irq:
4852 local_irq_restore(flags);
4853
4854 if (yielded > 0)
4855 schedule();
4856
4857 return yielded;
4858 }
4859 EXPORT_SYMBOL_GPL(yield_to);
4860
4861 /*
4862 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4863 * that process accounting knows that this is a task in IO wait state.
4864 */
4865 long __sched io_schedule_timeout(long timeout)
4866 {
4867 int old_iowait = current->in_iowait;
4868 struct rq *rq;
4869 long ret;
4870
4871 current->in_iowait = 1;
4872 blk_schedule_flush_plug(current);
4873
4874 delayacct_blkio_start();
4875 rq = raw_rq();
4876 atomic_inc(&rq->nr_iowait);
4877 ret = schedule_timeout(timeout);
4878 current->in_iowait = old_iowait;
4879 atomic_dec(&rq->nr_iowait);
4880 delayacct_blkio_end();
4881
4882 return ret;
4883 }
4884 EXPORT_SYMBOL(io_schedule_timeout);
4885
4886 /**
4887 * sys_sched_get_priority_max - return maximum RT priority.
4888 * @policy: scheduling class.
4889 *
4890 * Return: On success, this syscall returns the maximum
4891 * rt_priority that can be used by a given scheduling class.
4892 * On failure, a negative error code is returned.
4893 */
4894 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4895 {
4896 int ret = -EINVAL;
4897
4898 switch (policy) {
4899 case SCHED_FIFO:
4900 case SCHED_RR:
4901 ret = MAX_USER_RT_PRIO-1;
4902 break;
4903 case SCHED_DEADLINE:
4904 case SCHED_NORMAL:
4905 case SCHED_BATCH:
4906 case SCHED_IDLE:
4907 ret = 0;
4908 break;
4909 }
4910 return ret;
4911 }
4912
4913 /**
4914 * sys_sched_get_priority_min - return minimum RT priority.
4915 * @policy: scheduling class.
4916 *
4917 * Return: On success, this syscall returns the minimum
4918 * rt_priority that can be used by a given scheduling class.
4919 * On failure, a negative error code is returned.
4920 */
4921 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4922 {
4923 int ret = -EINVAL;
4924
4925 switch (policy) {
4926 case SCHED_FIFO:
4927 case SCHED_RR:
4928 ret = 1;
4929 break;
4930 case SCHED_DEADLINE:
4931 case SCHED_NORMAL:
4932 case SCHED_BATCH:
4933 case SCHED_IDLE:
4934 ret = 0;
4935 }
4936 return ret;
4937 }
4938
4939 /**
4940 * sys_sched_rr_get_interval - return the default timeslice of a process.
4941 * @pid: pid of the process.
4942 * @interval: userspace pointer to the timeslice value.
4943 *
4944 * this syscall writes the default timeslice value of a given process
4945 * into the user-space timespec buffer. A value of '0' means infinity.
4946 *
4947 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4948 * an error code.
4949 */
4950 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4951 struct timespec __user *, interval)
4952 {
4953 struct task_struct *p;
4954 unsigned int time_slice;
4955 unsigned long flags;
4956 struct rq *rq;
4957 int retval;
4958 struct timespec t;
4959
4960 if (pid < 0)
4961 return -EINVAL;
4962
4963 retval = -ESRCH;
4964 rcu_read_lock();
4965 p = find_process_by_pid(pid);
4966 if (!p)
4967 goto out_unlock;
4968
4969 retval = security_task_getscheduler(p);
4970 if (retval)
4971 goto out_unlock;
4972
4973 rq = task_rq_lock(p, &flags);
4974 time_slice = 0;
4975 if (p->sched_class->get_rr_interval)
4976 time_slice = p->sched_class->get_rr_interval(rq, p);
4977 task_rq_unlock(rq, p, &flags);
4978
4979 rcu_read_unlock();
4980 jiffies_to_timespec(time_slice, &t);
4981 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4982 return retval;
4983
4984 out_unlock:
4985 rcu_read_unlock();
4986 return retval;
4987 }
4988
4989 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4990
4991 void sched_show_task(struct task_struct *p)
4992 {
4993 unsigned long free = 0;
4994 int ppid;
4995 unsigned long state = p->state;
4996
4997 if (state)
4998 state = __ffs(state) + 1;
4999 printk(KERN_INFO "%-15.15s %c", p->comm,
5000 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5001 #if BITS_PER_LONG == 32
5002 if (state == TASK_RUNNING)
5003 printk(KERN_CONT " running ");
5004 else
5005 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5006 #else
5007 if (state == TASK_RUNNING)
5008 printk(KERN_CONT " running task ");
5009 else
5010 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5011 #endif
5012 #ifdef CONFIG_DEBUG_STACK_USAGE
5013 free = stack_not_used(p);
5014 #endif
5015 ppid = 0;
5016 rcu_read_lock();
5017 if (pid_alive(p))
5018 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5019 rcu_read_unlock();
5020 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5021 task_pid_nr(p), ppid,
5022 (unsigned long)task_thread_info(p)->flags);
5023
5024 print_worker_info(KERN_INFO, p);
5025 show_stack(p, NULL);
5026 }
5027
5028 void show_state_filter(unsigned long state_filter)
5029 {
5030 struct task_struct *g, *p;
5031
5032 #if BITS_PER_LONG == 32
5033 printk(KERN_INFO
5034 " task PC stack pid father\n");
5035 #else
5036 printk(KERN_INFO
5037 " task PC stack pid father\n");
5038 #endif
5039 rcu_read_lock();
5040 for_each_process_thread(g, p) {
5041 /*
5042 * reset the NMI-timeout, listing all files on a slow
5043 * console might take a lot of time:
5044 */
5045 touch_nmi_watchdog();
5046 if (!state_filter || (p->state & state_filter))
5047 sched_show_task(p);
5048 }
5049
5050 touch_all_softlockup_watchdogs();
5051
5052 #ifdef CONFIG_SCHED_DEBUG
5053 if (!state_filter)
5054 sysrq_sched_debug_show();
5055 #endif
5056 rcu_read_unlock();
5057 /*
5058 * Only show locks if all tasks are dumped:
5059 */
5060 if (!state_filter)
5061 debug_show_all_locks();
5062 }
5063
5064 void init_idle_bootup_task(struct task_struct *idle)
5065 {
5066 idle->sched_class = &idle_sched_class;
5067 }
5068
5069 /**
5070 * init_idle - set up an idle thread for a given CPU
5071 * @idle: task in question
5072 * @cpu: cpu the idle task belongs to
5073 *
5074 * NOTE: this function does not set the idle thread's NEED_RESCHED
5075 * flag, to make booting more robust.
5076 */
5077 void init_idle(struct task_struct *idle, int cpu)
5078 {
5079 struct rq *rq = cpu_rq(cpu);
5080 unsigned long flags;
5081
5082 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5083 raw_spin_lock(&rq->lock);
5084
5085 __sched_fork(0, idle);
5086 idle->state = TASK_RUNNING;
5087 idle->se.exec_start = sched_clock();
5088
5089 kasan_unpoison_task_stack(idle);
5090
5091 #ifdef CONFIG_SMP
5092 /*
5093 * Its possible that init_idle() gets called multiple times on a task,
5094 * in that case do_set_cpus_allowed() will not do the right thing.
5095 *
5096 * And since this is boot we can forgo the serialization.
5097 */
5098 set_cpus_allowed_common(idle, cpumask_of(cpu));
5099 #endif
5100 /*
5101 * We're having a chicken and egg problem, even though we are
5102 * holding rq->lock, the cpu isn't yet set to this cpu so the
5103 * lockdep check in task_group() will fail.
5104 *
5105 * Similar case to sched_fork(). / Alternatively we could
5106 * use task_rq_lock() here and obtain the other rq->lock.
5107 *
5108 * Silence PROVE_RCU
5109 */
5110 rcu_read_lock();
5111 __set_task_cpu(idle, cpu);
5112 rcu_read_unlock();
5113
5114 rq->curr = rq->idle = idle;
5115 idle->on_rq = TASK_ON_RQ_QUEUED;
5116 #ifdef CONFIG_SMP
5117 idle->on_cpu = 1;
5118 #endif
5119 raw_spin_unlock(&rq->lock);
5120 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5121
5122 /* Set the preempt count _outside_ the spinlocks! */
5123 init_idle_preempt_count(idle, cpu);
5124
5125 /*
5126 * The idle tasks have their own, simple scheduling class:
5127 */
5128 idle->sched_class = &idle_sched_class;
5129 ftrace_graph_init_idle_task(idle, cpu);
5130 vtime_init_idle(idle, cpu);
5131 #ifdef CONFIG_SMP
5132 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5133 #endif
5134 }
5135
5136 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5137 const struct cpumask *trial)
5138 {
5139 int ret = 1, trial_cpus;
5140 struct dl_bw *cur_dl_b;
5141 unsigned long flags;
5142
5143 if (!cpumask_weight(cur))
5144 return ret;
5145
5146 rcu_read_lock_sched();
5147 cur_dl_b = dl_bw_of(cpumask_any(cur));
5148 trial_cpus = cpumask_weight(trial);
5149
5150 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5151 if (cur_dl_b->bw != -1 &&
5152 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5153 ret = 0;
5154 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5155 rcu_read_unlock_sched();
5156
5157 return ret;
5158 }
5159
5160 int task_can_attach(struct task_struct *p,
5161 const struct cpumask *cs_cpus_allowed)
5162 {
5163 int ret = 0;
5164
5165 /*
5166 * Kthreads which disallow setaffinity shouldn't be moved
5167 * to a new cpuset; we don't want to change their cpu
5168 * affinity and isolating such threads by their set of
5169 * allowed nodes is unnecessary. Thus, cpusets are not
5170 * applicable for such threads. This prevents checking for
5171 * success of set_cpus_allowed_ptr() on all attached tasks
5172 * before cpus_allowed may be changed.
5173 */
5174 if (p->flags & PF_NO_SETAFFINITY) {
5175 ret = -EINVAL;
5176 goto out;
5177 }
5178
5179 #ifdef CONFIG_SMP
5180 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5181 cs_cpus_allowed)) {
5182 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5183 cs_cpus_allowed);
5184 struct dl_bw *dl_b;
5185 bool overflow;
5186 int cpus;
5187 unsigned long flags;
5188
5189 rcu_read_lock_sched();
5190 dl_b = dl_bw_of(dest_cpu);
5191 raw_spin_lock_irqsave(&dl_b->lock, flags);
5192 cpus = dl_bw_cpus(dest_cpu);
5193 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5194 if (overflow)
5195 ret = -EBUSY;
5196 else {
5197 /*
5198 * We reserve space for this task in the destination
5199 * root_domain, as we can't fail after this point.
5200 * We will free resources in the source root_domain
5201 * later on (see set_cpus_allowed_dl()).
5202 */
5203 __dl_add(dl_b, p->dl.dl_bw);
5204 }
5205 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5206 rcu_read_unlock_sched();
5207
5208 }
5209 #endif
5210 out:
5211 return ret;
5212 }
5213
5214 #ifdef CONFIG_SMP
5215
5216 #ifdef CONFIG_NUMA_BALANCING
5217 /* Migrate current task p to target_cpu */
5218 int migrate_task_to(struct task_struct *p, int target_cpu)
5219 {
5220 struct migration_arg arg = { p, target_cpu };
5221 int curr_cpu = task_cpu(p);
5222
5223 if (curr_cpu == target_cpu)
5224 return 0;
5225
5226 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5227 return -EINVAL;
5228
5229 /* TODO: This is not properly updating schedstats */
5230
5231 trace_sched_move_numa(p, curr_cpu, target_cpu);
5232 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5233 }
5234
5235 /*
5236 * Requeue a task on a given node and accurately track the number of NUMA
5237 * tasks on the runqueues
5238 */
5239 void sched_setnuma(struct task_struct *p, int nid)
5240 {
5241 struct rq *rq;
5242 unsigned long flags;
5243 bool queued, running;
5244
5245 rq = task_rq_lock(p, &flags);
5246 queued = task_on_rq_queued(p);
5247 running = task_current(rq, p);
5248
5249 if (queued)
5250 dequeue_task(rq, p, DEQUEUE_SAVE);
5251 if (running)
5252 put_prev_task(rq, p);
5253
5254 p->numa_preferred_nid = nid;
5255
5256 if (running)
5257 p->sched_class->set_curr_task(rq);
5258 if (queued)
5259 enqueue_task(rq, p, ENQUEUE_RESTORE);
5260 task_rq_unlock(rq, p, &flags);
5261 }
5262 #endif /* CONFIG_NUMA_BALANCING */
5263
5264 #ifdef CONFIG_HOTPLUG_CPU
5265 /*
5266 * Ensures that the idle task is using init_mm right before its cpu goes
5267 * offline.
5268 */
5269 void idle_task_exit(void)
5270 {
5271 struct mm_struct *mm = current->active_mm;
5272
5273 BUG_ON(cpu_online(smp_processor_id()));
5274
5275 if (mm != &init_mm) {
5276 switch_mm(mm, &init_mm, current);
5277 finish_arch_post_lock_switch();
5278 }
5279 mmdrop(mm);
5280 }
5281
5282 /*
5283 * Since this CPU is going 'away' for a while, fold any nr_active delta
5284 * we might have. Assumes we're called after migrate_tasks() so that the
5285 * nr_active count is stable.
5286 *
5287 * Also see the comment "Global load-average calculations".
5288 */
5289 static void calc_load_migrate(struct rq *rq)
5290 {
5291 long delta = calc_load_fold_active(rq);
5292 if (delta)
5293 atomic_long_add(delta, &calc_load_tasks);
5294 }
5295
5296 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5297 {
5298 }
5299
5300 static const struct sched_class fake_sched_class = {
5301 .put_prev_task = put_prev_task_fake,
5302 };
5303
5304 static struct task_struct fake_task = {
5305 /*
5306 * Avoid pull_{rt,dl}_task()
5307 */
5308 .prio = MAX_PRIO + 1,
5309 .sched_class = &fake_sched_class,
5310 };
5311
5312 /*
5313 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5314 * try_to_wake_up()->select_task_rq().
5315 *
5316 * Called with rq->lock held even though we'er in stop_machine() and
5317 * there's no concurrency possible, we hold the required locks anyway
5318 * because of lock validation efforts.
5319 */
5320 static void migrate_tasks(struct rq *dead_rq)
5321 {
5322 struct rq *rq = dead_rq;
5323 struct task_struct *next, *stop = rq->stop;
5324 int dest_cpu;
5325
5326 /*
5327 * Fudge the rq selection such that the below task selection loop
5328 * doesn't get stuck on the currently eligible stop task.
5329 *
5330 * We're currently inside stop_machine() and the rq is either stuck
5331 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5332 * either way we should never end up calling schedule() until we're
5333 * done here.
5334 */
5335 rq->stop = NULL;
5336
5337 /*
5338 * put_prev_task() and pick_next_task() sched
5339 * class method both need to have an up-to-date
5340 * value of rq->clock[_task]
5341 */
5342 update_rq_clock(rq);
5343
5344 for (;;) {
5345 /*
5346 * There's this thread running, bail when that's the only
5347 * remaining thread.
5348 */
5349 if (rq->nr_running == 1)
5350 break;
5351
5352 /*
5353 * pick_next_task assumes pinned rq->lock.
5354 */
5355 lockdep_pin_lock(&rq->lock);
5356 next = pick_next_task(rq, &fake_task);
5357 BUG_ON(!next);
5358 next->sched_class->put_prev_task(rq, next);
5359
5360 /*
5361 * Rules for changing task_struct::cpus_allowed are holding
5362 * both pi_lock and rq->lock, such that holding either
5363 * stabilizes the mask.
5364 *
5365 * Drop rq->lock is not quite as disastrous as it usually is
5366 * because !cpu_active at this point, which means load-balance
5367 * will not interfere. Also, stop-machine.
5368 */
5369 lockdep_unpin_lock(&rq->lock);
5370 raw_spin_unlock(&rq->lock);
5371 raw_spin_lock(&next->pi_lock);
5372 raw_spin_lock(&rq->lock);
5373
5374 /*
5375 * Since we're inside stop-machine, _nothing_ should have
5376 * changed the task, WARN if weird stuff happened, because in
5377 * that case the above rq->lock drop is a fail too.
5378 */
5379 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5380 raw_spin_unlock(&next->pi_lock);
5381 continue;
5382 }
5383
5384 /* Find suitable destination for @next, with force if needed. */
5385 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5386
5387 rq = __migrate_task(rq, next, dest_cpu);
5388 if (rq != dead_rq) {
5389 raw_spin_unlock(&rq->lock);
5390 rq = dead_rq;
5391 raw_spin_lock(&rq->lock);
5392 }
5393 raw_spin_unlock(&next->pi_lock);
5394 }
5395
5396 rq->stop = stop;
5397 }
5398 #endif /* CONFIG_HOTPLUG_CPU */
5399
5400 static void set_rq_online(struct rq *rq)
5401 {
5402 if (!rq->online) {
5403 const struct sched_class *class;
5404
5405 cpumask_set_cpu(rq->cpu, rq->rd->online);
5406 rq->online = 1;
5407
5408 for_each_class(class) {
5409 if (class->rq_online)
5410 class->rq_online(rq);
5411 }
5412 }
5413 }
5414
5415 static void set_rq_offline(struct rq *rq)
5416 {
5417 if (rq->online) {
5418 const struct sched_class *class;
5419
5420 for_each_class(class) {
5421 if (class->rq_offline)
5422 class->rq_offline(rq);
5423 }
5424
5425 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5426 rq->online = 0;
5427 }
5428 }
5429
5430 /*
5431 * migration_call - callback that gets triggered when a CPU is added.
5432 * Here we can start up the necessary migration thread for the new CPU.
5433 */
5434 static int
5435 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5436 {
5437 int cpu = (long)hcpu;
5438 unsigned long flags;
5439 struct rq *rq = cpu_rq(cpu);
5440
5441 switch (action & ~CPU_TASKS_FROZEN) {
5442
5443 case CPU_UP_PREPARE:
5444 rq->calc_load_update = calc_load_update;
5445 account_reset_rq(rq);
5446 break;
5447
5448 case CPU_ONLINE:
5449 /* Update our root-domain */
5450 raw_spin_lock_irqsave(&rq->lock, flags);
5451 if (rq->rd) {
5452 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5453
5454 set_rq_online(rq);
5455 }
5456 raw_spin_unlock_irqrestore(&rq->lock, flags);
5457 break;
5458
5459 #ifdef CONFIG_HOTPLUG_CPU
5460 case CPU_DYING:
5461 sched_ttwu_pending();
5462 /* Update our root-domain */
5463 raw_spin_lock_irqsave(&rq->lock, flags);
5464 if (rq->rd) {
5465 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5466 set_rq_offline(rq);
5467 }
5468 migrate_tasks(rq);
5469 BUG_ON(rq->nr_running != 1); /* the migration thread */
5470 raw_spin_unlock_irqrestore(&rq->lock, flags);
5471 break;
5472
5473 case CPU_DEAD:
5474 calc_load_migrate(rq);
5475 break;
5476 #endif
5477 }
5478
5479 update_max_interval();
5480
5481 return NOTIFY_OK;
5482 }
5483
5484 /*
5485 * Register at high priority so that task migration (migrate_all_tasks)
5486 * happens before everything else. This has to be lower priority than
5487 * the notifier in the perf_event subsystem, though.
5488 */
5489 static struct notifier_block migration_notifier = {
5490 .notifier_call = migration_call,
5491 .priority = CPU_PRI_MIGRATION,
5492 };
5493
5494 static void set_cpu_rq_start_time(void)
5495 {
5496 int cpu = smp_processor_id();
5497 struct rq *rq = cpu_rq(cpu);
5498 rq->age_stamp = sched_clock_cpu(cpu);
5499 }
5500
5501 static int sched_cpu_active(struct notifier_block *nfb,
5502 unsigned long action, void *hcpu)
5503 {
5504 int cpu = (long)hcpu;
5505
5506 switch (action & ~CPU_TASKS_FROZEN) {
5507 case CPU_STARTING:
5508 set_cpu_rq_start_time();
5509 return NOTIFY_OK;
5510
5511 case CPU_DOWN_FAILED:
5512 set_cpu_active(cpu, true);
5513 return NOTIFY_OK;
5514
5515 default:
5516 return NOTIFY_DONE;
5517 }
5518 }
5519
5520 static int sched_cpu_inactive(struct notifier_block *nfb,
5521 unsigned long action, void *hcpu)
5522 {
5523 switch (action & ~CPU_TASKS_FROZEN) {
5524 case CPU_DOWN_PREPARE:
5525 set_cpu_active((long)hcpu, false);
5526 return NOTIFY_OK;
5527 default:
5528 return NOTIFY_DONE;
5529 }
5530 }
5531
5532 static int __init migration_init(void)
5533 {
5534 void *cpu = (void *)(long)smp_processor_id();
5535 int err;
5536
5537 /* Initialize migration for the boot CPU */
5538 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5539 BUG_ON(err == NOTIFY_BAD);
5540 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5541 register_cpu_notifier(&migration_notifier);
5542
5543 /* Register cpu active notifiers */
5544 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5545 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5546
5547 return 0;
5548 }
5549 early_initcall(migration_init);
5550
5551 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5552
5553 #ifdef CONFIG_SCHED_DEBUG
5554
5555 static __read_mostly int sched_debug_enabled;
5556
5557 static int __init sched_debug_setup(char *str)
5558 {
5559 sched_debug_enabled = 1;
5560
5561 return 0;
5562 }
5563 early_param("sched_debug", sched_debug_setup);
5564
5565 static inline bool sched_debug(void)
5566 {
5567 return sched_debug_enabled;
5568 }
5569
5570 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5571 struct cpumask *groupmask)
5572 {
5573 struct sched_group *group = sd->groups;
5574
5575 cpumask_clear(groupmask);
5576
5577 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5578
5579 if (!(sd->flags & SD_LOAD_BALANCE)) {
5580 printk("does not load-balance\n");
5581 if (sd->parent)
5582 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5583 " has parent");
5584 return -1;
5585 }
5586
5587 printk(KERN_CONT "span %*pbl level %s\n",
5588 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5589
5590 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5591 printk(KERN_ERR "ERROR: domain->span does not contain "
5592 "CPU%d\n", cpu);
5593 }
5594 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5595 printk(KERN_ERR "ERROR: domain->groups does not contain"
5596 " CPU%d\n", cpu);
5597 }
5598
5599 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5600 do {
5601 if (!group) {
5602 printk("\n");
5603 printk(KERN_ERR "ERROR: group is NULL\n");
5604 break;
5605 }
5606
5607 if (!cpumask_weight(sched_group_cpus(group))) {
5608 printk(KERN_CONT "\n");
5609 printk(KERN_ERR "ERROR: empty group\n");
5610 break;
5611 }
5612
5613 if (!(sd->flags & SD_OVERLAP) &&
5614 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5615 printk(KERN_CONT "\n");
5616 printk(KERN_ERR "ERROR: repeated CPUs\n");
5617 break;
5618 }
5619
5620 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5621
5622 printk(KERN_CONT " %*pbl",
5623 cpumask_pr_args(sched_group_cpus(group)));
5624 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5625 printk(KERN_CONT " (cpu_capacity = %d)",
5626 group->sgc->capacity);
5627 }
5628
5629 group = group->next;
5630 } while (group != sd->groups);
5631 printk(KERN_CONT "\n");
5632
5633 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5634 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5635
5636 if (sd->parent &&
5637 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5638 printk(KERN_ERR "ERROR: parent span is not a superset "
5639 "of domain->span\n");
5640 return 0;
5641 }
5642
5643 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5644 {
5645 int level = 0;
5646
5647 if (!sched_debug_enabled)
5648 return;
5649
5650 if (!sd) {
5651 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5652 return;
5653 }
5654
5655 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5656
5657 for (;;) {
5658 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5659 break;
5660 level++;
5661 sd = sd->parent;
5662 if (!sd)
5663 break;
5664 }
5665 }
5666 #else /* !CONFIG_SCHED_DEBUG */
5667 # define sched_domain_debug(sd, cpu) do { } while (0)
5668 static inline bool sched_debug(void)
5669 {
5670 return false;
5671 }
5672 #endif /* CONFIG_SCHED_DEBUG */
5673
5674 static int sd_degenerate(struct sched_domain *sd)
5675 {
5676 if (cpumask_weight(sched_domain_span(sd)) == 1)
5677 return 1;
5678
5679 /* Following flags need at least 2 groups */
5680 if (sd->flags & (SD_LOAD_BALANCE |
5681 SD_BALANCE_NEWIDLE |
5682 SD_BALANCE_FORK |
5683 SD_BALANCE_EXEC |
5684 SD_SHARE_CPUCAPACITY |
5685 SD_SHARE_PKG_RESOURCES |
5686 SD_SHARE_POWERDOMAIN)) {
5687 if (sd->groups != sd->groups->next)
5688 return 0;
5689 }
5690
5691 /* Following flags don't use groups */
5692 if (sd->flags & (SD_WAKE_AFFINE))
5693 return 0;
5694
5695 return 1;
5696 }
5697
5698 static int
5699 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5700 {
5701 unsigned long cflags = sd->flags, pflags = parent->flags;
5702
5703 if (sd_degenerate(parent))
5704 return 1;
5705
5706 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5707 return 0;
5708
5709 /* Flags needing groups don't count if only 1 group in parent */
5710 if (parent->groups == parent->groups->next) {
5711 pflags &= ~(SD_LOAD_BALANCE |
5712 SD_BALANCE_NEWIDLE |
5713 SD_BALANCE_FORK |
5714 SD_BALANCE_EXEC |
5715 SD_SHARE_CPUCAPACITY |
5716 SD_SHARE_PKG_RESOURCES |
5717 SD_PREFER_SIBLING |
5718 SD_SHARE_POWERDOMAIN);
5719 if (nr_node_ids == 1)
5720 pflags &= ~SD_SERIALIZE;
5721 }
5722 if (~cflags & pflags)
5723 return 0;
5724
5725 return 1;
5726 }
5727
5728 static void free_rootdomain(struct rcu_head *rcu)
5729 {
5730 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5731
5732 cpupri_cleanup(&rd->cpupri);
5733 cpudl_cleanup(&rd->cpudl);
5734 free_cpumask_var(rd->dlo_mask);
5735 free_cpumask_var(rd->rto_mask);
5736 free_cpumask_var(rd->online);
5737 free_cpumask_var(rd->span);
5738 kfree(rd);
5739 }
5740
5741 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5742 {
5743 struct root_domain *old_rd = NULL;
5744 unsigned long flags;
5745
5746 raw_spin_lock_irqsave(&rq->lock, flags);
5747
5748 if (rq->rd) {
5749 old_rd = rq->rd;
5750
5751 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5752 set_rq_offline(rq);
5753
5754 cpumask_clear_cpu(rq->cpu, old_rd->span);
5755
5756 /*
5757 * If we dont want to free the old_rd yet then
5758 * set old_rd to NULL to skip the freeing later
5759 * in this function:
5760 */
5761 if (!atomic_dec_and_test(&old_rd->refcount))
5762 old_rd = NULL;
5763 }
5764
5765 atomic_inc(&rd->refcount);
5766 rq->rd = rd;
5767
5768 cpumask_set_cpu(rq->cpu, rd->span);
5769 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5770 set_rq_online(rq);
5771
5772 raw_spin_unlock_irqrestore(&rq->lock, flags);
5773
5774 if (old_rd)
5775 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5776 }
5777
5778 static int init_rootdomain(struct root_domain *rd)
5779 {
5780 memset(rd, 0, sizeof(*rd));
5781
5782 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5783 goto out;
5784 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5785 goto free_span;
5786 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5787 goto free_online;
5788 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5789 goto free_dlo_mask;
5790
5791 init_dl_bw(&rd->dl_bw);
5792 if (cpudl_init(&rd->cpudl) != 0)
5793 goto free_dlo_mask;
5794
5795 if (cpupri_init(&rd->cpupri) != 0)
5796 goto free_rto_mask;
5797 return 0;
5798
5799 free_rto_mask:
5800 free_cpumask_var(rd->rto_mask);
5801 free_dlo_mask:
5802 free_cpumask_var(rd->dlo_mask);
5803 free_online:
5804 free_cpumask_var(rd->online);
5805 free_span:
5806 free_cpumask_var(rd->span);
5807 out:
5808 return -ENOMEM;
5809 }
5810
5811 /*
5812 * By default the system creates a single root-domain with all cpus as
5813 * members (mimicking the global state we have today).
5814 */
5815 struct root_domain def_root_domain;
5816
5817 static void init_defrootdomain(void)
5818 {
5819 init_rootdomain(&def_root_domain);
5820
5821 atomic_set(&def_root_domain.refcount, 1);
5822 }
5823
5824 static struct root_domain *alloc_rootdomain(void)
5825 {
5826 struct root_domain *rd;
5827
5828 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5829 if (!rd)
5830 return NULL;
5831
5832 if (init_rootdomain(rd) != 0) {
5833 kfree(rd);
5834 return NULL;
5835 }
5836
5837 return rd;
5838 }
5839
5840 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5841 {
5842 struct sched_group *tmp, *first;
5843
5844 if (!sg)
5845 return;
5846
5847 first = sg;
5848 do {
5849 tmp = sg->next;
5850
5851 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5852 kfree(sg->sgc);
5853
5854 kfree(sg);
5855 sg = tmp;
5856 } while (sg != first);
5857 }
5858
5859 static void free_sched_domain(struct rcu_head *rcu)
5860 {
5861 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5862
5863 /*
5864 * If its an overlapping domain it has private groups, iterate and
5865 * nuke them all.
5866 */
5867 if (sd->flags & SD_OVERLAP) {
5868 free_sched_groups(sd->groups, 1);
5869 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5870 kfree(sd->groups->sgc);
5871 kfree(sd->groups);
5872 }
5873 kfree(sd);
5874 }
5875
5876 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5877 {
5878 call_rcu(&sd->rcu, free_sched_domain);
5879 }
5880
5881 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5882 {
5883 for (; sd; sd = sd->parent)
5884 destroy_sched_domain(sd, cpu);
5885 }
5886
5887 /*
5888 * Keep a special pointer to the highest sched_domain that has
5889 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5890 * allows us to avoid some pointer chasing select_idle_sibling().
5891 *
5892 * Also keep a unique ID per domain (we use the first cpu number in
5893 * the cpumask of the domain), this allows us to quickly tell if
5894 * two cpus are in the same cache domain, see cpus_share_cache().
5895 */
5896 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5897 DEFINE_PER_CPU(int, sd_llc_size);
5898 DEFINE_PER_CPU(int, sd_llc_id);
5899 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5900 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5901 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5902
5903 static void update_top_cache_domain(int cpu)
5904 {
5905 struct sched_domain *sd;
5906 struct sched_domain *busy_sd = NULL;
5907 int id = cpu;
5908 int size = 1;
5909
5910 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5911 if (sd) {
5912 id = cpumask_first(sched_domain_span(sd));
5913 size = cpumask_weight(sched_domain_span(sd));
5914 busy_sd = sd->parent; /* sd_busy */
5915 }
5916 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5917
5918 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5919 per_cpu(sd_llc_size, cpu) = size;
5920 per_cpu(sd_llc_id, cpu) = id;
5921
5922 sd = lowest_flag_domain(cpu, SD_NUMA);
5923 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5924
5925 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5926 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5927 }
5928
5929 /*
5930 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5931 * hold the hotplug lock.
5932 */
5933 static void
5934 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5935 {
5936 struct rq *rq = cpu_rq(cpu);
5937 struct sched_domain *tmp;
5938
5939 /* Remove the sched domains which do not contribute to scheduling. */
5940 for (tmp = sd; tmp; ) {
5941 struct sched_domain *parent = tmp->parent;
5942 if (!parent)
5943 break;
5944
5945 if (sd_parent_degenerate(tmp, parent)) {
5946 tmp->parent = parent->parent;
5947 if (parent->parent)
5948 parent->parent->child = tmp;
5949 /*
5950 * Transfer SD_PREFER_SIBLING down in case of a
5951 * degenerate parent; the spans match for this
5952 * so the property transfers.
5953 */
5954 if (parent->flags & SD_PREFER_SIBLING)
5955 tmp->flags |= SD_PREFER_SIBLING;
5956 destroy_sched_domain(parent, cpu);
5957 } else
5958 tmp = tmp->parent;
5959 }
5960
5961 if (sd && sd_degenerate(sd)) {
5962 tmp = sd;
5963 sd = sd->parent;
5964 destroy_sched_domain(tmp, cpu);
5965 if (sd)
5966 sd->child = NULL;
5967 }
5968
5969 sched_domain_debug(sd, cpu);
5970
5971 rq_attach_root(rq, rd);
5972 tmp = rq->sd;
5973 rcu_assign_pointer(rq->sd, sd);
5974 destroy_sched_domains(tmp, cpu);
5975
5976 update_top_cache_domain(cpu);
5977 }
5978
5979 /* Setup the mask of cpus configured for isolated domains */
5980 static int __init isolated_cpu_setup(char *str)
5981 {
5982 int ret;
5983
5984 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5985 ret = cpulist_parse(str, cpu_isolated_map);
5986 if (ret) {
5987 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5988 return 0;
5989 }
5990 return 1;
5991 }
5992 __setup("isolcpus=", isolated_cpu_setup);
5993
5994 struct s_data {
5995 struct sched_domain ** __percpu sd;
5996 struct root_domain *rd;
5997 };
5998
5999 enum s_alloc {
6000 sa_rootdomain,
6001 sa_sd,
6002 sa_sd_storage,
6003 sa_none,
6004 };
6005
6006 /*
6007 * Build an iteration mask that can exclude certain CPUs from the upwards
6008 * domain traversal.
6009 *
6010 * Asymmetric node setups can result in situations where the domain tree is of
6011 * unequal depth, make sure to skip domains that already cover the entire
6012 * range.
6013 *
6014 * In that case build_sched_domains() will have terminated the iteration early
6015 * and our sibling sd spans will be empty. Domains should always include the
6016 * cpu they're built on, so check that.
6017 *
6018 */
6019 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6020 {
6021 const struct cpumask *span = sched_domain_span(sd);
6022 struct sd_data *sdd = sd->private;
6023 struct sched_domain *sibling;
6024 int i;
6025
6026 for_each_cpu(i, span) {
6027 sibling = *per_cpu_ptr(sdd->sd, i);
6028 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6029 continue;
6030
6031 cpumask_set_cpu(i, sched_group_mask(sg));
6032 }
6033 }
6034
6035 /*
6036 * Return the canonical balance cpu for this group, this is the first cpu
6037 * of this group that's also in the iteration mask.
6038 */
6039 int group_balance_cpu(struct sched_group *sg)
6040 {
6041 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6042 }
6043
6044 static int
6045 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6046 {
6047 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6048 const struct cpumask *span = sched_domain_span(sd);
6049 struct cpumask *covered = sched_domains_tmpmask;
6050 struct sd_data *sdd = sd->private;
6051 struct sched_domain *sibling;
6052 int i;
6053
6054 cpumask_clear(covered);
6055
6056 for_each_cpu(i, span) {
6057 struct cpumask *sg_span;
6058
6059 if (cpumask_test_cpu(i, covered))
6060 continue;
6061
6062 sibling = *per_cpu_ptr(sdd->sd, i);
6063
6064 /* See the comment near build_group_mask(). */
6065 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6066 continue;
6067
6068 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6069 GFP_KERNEL, cpu_to_node(cpu));
6070
6071 if (!sg)
6072 goto fail;
6073
6074 sg_span = sched_group_cpus(sg);
6075 if (sibling->child)
6076 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6077 else
6078 cpumask_set_cpu(i, sg_span);
6079
6080 cpumask_or(covered, covered, sg_span);
6081
6082 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6083 if (atomic_inc_return(&sg->sgc->ref) == 1)
6084 build_group_mask(sd, sg);
6085
6086 /*
6087 * Initialize sgc->capacity such that even if we mess up the
6088 * domains and no possible iteration will get us here, we won't
6089 * die on a /0 trap.
6090 */
6091 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6092
6093 /*
6094 * Make sure the first group of this domain contains the
6095 * canonical balance cpu. Otherwise the sched_domain iteration
6096 * breaks. See update_sg_lb_stats().
6097 */
6098 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6099 group_balance_cpu(sg) == cpu)
6100 groups = sg;
6101
6102 if (!first)
6103 first = sg;
6104 if (last)
6105 last->next = sg;
6106 last = sg;
6107 last->next = first;
6108 }
6109 sd->groups = groups;
6110
6111 return 0;
6112
6113 fail:
6114 free_sched_groups(first, 0);
6115
6116 return -ENOMEM;
6117 }
6118
6119 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6120 {
6121 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6122 struct sched_domain *child = sd->child;
6123
6124 if (child)
6125 cpu = cpumask_first(sched_domain_span(child));
6126
6127 if (sg) {
6128 *sg = *per_cpu_ptr(sdd->sg, cpu);
6129 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6130 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6131 }
6132
6133 return cpu;
6134 }
6135
6136 /*
6137 * build_sched_groups will build a circular linked list of the groups
6138 * covered by the given span, and will set each group's ->cpumask correctly,
6139 * and ->cpu_capacity to 0.
6140 *
6141 * Assumes the sched_domain tree is fully constructed
6142 */
6143 static int
6144 build_sched_groups(struct sched_domain *sd, int cpu)
6145 {
6146 struct sched_group *first = NULL, *last = NULL;
6147 struct sd_data *sdd = sd->private;
6148 const struct cpumask *span = sched_domain_span(sd);
6149 struct cpumask *covered;
6150 int i;
6151
6152 get_group(cpu, sdd, &sd->groups);
6153 atomic_inc(&sd->groups->ref);
6154
6155 if (cpu != cpumask_first(span))
6156 return 0;
6157
6158 lockdep_assert_held(&sched_domains_mutex);
6159 covered = sched_domains_tmpmask;
6160
6161 cpumask_clear(covered);
6162
6163 for_each_cpu(i, span) {
6164 struct sched_group *sg;
6165 int group, j;
6166
6167 if (cpumask_test_cpu(i, covered))
6168 continue;
6169
6170 group = get_group(i, sdd, &sg);
6171 cpumask_setall(sched_group_mask(sg));
6172
6173 for_each_cpu(j, span) {
6174 if (get_group(j, sdd, NULL) != group)
6175 continue;
6176
6177 cpumask_set_cpu(j, covered);
6178 cpumask_set_cpu(j, sched_group_cpus(sg));
6179 }
6180
6181 if (!first)
6182 first = sg;
6183 if (last)
6184 last->next = sg;
6185 last = sg;
6186 }
6187 last->next = first;
6188
6189 return 0;
6190 }
6191
6192 /*
6193 * Initialize sched groups cpu_capacity.
6194 *
6195 * cpu_capacity indicates the capacity of sched group, which is used while
6196 * distributing the load between different sched groups in a sched domain.
6197 * Typically cpu_capacity for all the groups in a sched domain will be same
6198 * unless there are asymmetries in the topology. If there are asymmetries,
6199 * group having more cpu_capacity will pickup more load compared to the
6200 * group having less cpu_capacity.
6201 */
6202 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6203 {
6204 struct sched_group *sg = sd->groups;
6205
6206 WARN_ON(!sg);
6207
6208 do {
6209 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6210 sg = sg->next;
6211 } while (sg != sd->groups);
6212
6213 if (cpu != group_balance_cpu(sg))
6214 return;
6215
6216 update_group_capacity(sd, cpu);
6217 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6218 }
6219
6220 /*
6221 * Initializers for schedule domains
6222 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6223 */
6224
6225 static int default_relax_domain_level = -1;
6226 int sched_domain_level_max;
6227
6228 static int __init setup_relax_domain_level(char *str)
6229 {
6230 if (kstrtoint(str, 0, &default_relax_domain_level))
6231 pr_warn("Unable to set relax_domain_level\n");
6232
6233 return 1;
6234 }
6235 __setup("relax_domain_level=", setup_relax_domain_level);
6236
6237 static void set_domain_attribute(struct sched_domain *sd,
6238 struct sched_domain_attr *attr)
6239 {
6240 int request;
6241
6242 if (!attr || attr->relax_domain_level < 0) {
6243 if (default_relax_domain_level < 0)
6244 return;
6245 else
6246 request = default_relax_domain_level;
6247 } else
6248 request = attr->relax_domain_level;
6249 if (request < sd->level) {
6250 /* turn off idle balance on this domain */
6251 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6252 } else {
6253 /* turn on idle balance on this domain */
6254 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6255 }
6256 }
6257
6258 static void __sdt_free(const struct cpumask *cpu_map);
6259 static int __sdt_alloc(const struct cpumask *cpu_map);
6260
6261 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6262 const struct cpumask *cpu_map)
6263 {
6264 switch (what) {
6265 case sa_rootdomain:
6266 if (!atomic_read(&d->rd->refcount))
6267 free_rootdomain(&d->rd->rcu); /* fall through */
6268 case sa_sd:
6269 free_percpu(d->sd); /* fall through */
6270 case sa_sd_storage:
6271 __sdt_free(cpu_map); /* fall through */
6272 case sa_none:
6273 break;
6274 }
6275 }
6276
6277 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6278 const struct cpumask *cpu_map)
6279 {
6280 memset(d, 0, sizeof(*d));
6281
6282 if (__sdt_alloc(cpu_map))
6283 return sa_sd_storage;
6284 d->sd = alloc_percpu(struct sched_domain *);
6285 if (!d->sd)
6286 return sa_sd_storage;
6287 d->rd = alloc_rootdomain();
6288 if (!d->rd)
6289 return sa_sd;
6290 return sa_rootdomain;
6291 }
6292
6293 /*
6294 * NULL the sd_data elements we've used to build the sched_domain and
6295 * sched_group structure so that the subsequent __free_domain_allocs()
6296 * will not free the data we're using.
6297 */
6298 static void claim_allocations(int cpu, struct sched_domain *sd)
6299 {
6300 struct sd_data *sdd = sd->private;
6301
6302 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6303 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6304
6305 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6306 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6307
6308 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6309 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6310 }
6311
6312 #ifdef CONFIG_NUMA
6313 static int sched_domains_numa_levels;
6314 enum numa_topology_type sched_numa_topology_type;
6315 static int *sched_domains_numa_distance;
6316 int sched_max_numa_distance;
6317 static struct cpumask ***sched_domains_numa_masks;
6318 static int sched_domains_curr_level;
6319 #endif
6320
6321 /*
6322 * SD_flags allowed in topology descriptions.
6323 *
6324 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6325 * SD_SHARE_PKG_RESOURCES - describes shared caches
6326 * SD_NUMA - describes NUMA topologies
6327 * SD_SHARE_POWERDOMAIN - describes shared power domain
6328 *
6329 * Odd one out:
6330 * SD_ASYM_PACKING - describes SMT quirks
6331 */
6332 #define TOPOLOGY_SD_FLAGS \
6333 (SD_SHARE_CPUCAPACITY | \
6334 SD_SHARE_PKG_RESOURCES | \
6335 SD_NUMA | \
6336 SD_ASYM_PACKING | \
6337 SD_SHARE_POWERDOMAIN)
6338
6339 static struct sched_domain *
6340 sd_init(struct sched_domain_topology_level *tl, int cpu)
6341 {
6342 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6343 int sd_weight, sd_flags = 0;
6344
6345 #ifdef CONFIG_NUMA
6346 /*
6347 * Ugly hack to pass state to sd_numa_mask()...
6348 */
6349 sched_domains_curr_level = tl->numa_level;
6350 #endif
6351
6352 sd_weight = cpumask_weight(tl->mask(cpu));
6353
6354 if (tl->sd_flags)
6355 sd_flags = (*tl->sd_flags)();
6356 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6357 "wrong sd_flags in topology description\n"))
6358 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6359
6360 *sd = (struct sched_domain){
6361 .min_interval = sd_weight,
6362 .max_interval = 2*sd_weight,
6363 .busy_factor = 32,
6364 .imbalance_pct = 125,
6365
6366 .cache_nice_tries = 0,
6367 .busy_idx = 0,
6368 .idle_idx = 0,
6369 .newidle_idx = 0,
6370 .wake_idx = 0,
6371 .forkexec_idx = 0,
6372
6373 .flags = 1*SD_LOAD_BALANCE
6374 | 1*SD_BALANCE_NEWIDLE
6375 | 1*SD_BALANCE_EXEC
6376 | 1*SD_BALANCE_FORK
6377 | 0*SD_BALANCE_WAKE
6378 | 1*SD_WAKE_AFFINE
6379 | 0*SD_SHARE_CPUCAPACITY
6380 | 0*SD_SHARE_PKG_RESOURCES
6381 | 0*SD_SERIALIZE
6382 | 0*SD_PREFER_SIBLING
6383 | 0*SD_NUMA
6384 | sd_flags
6385 ,
6386
6387 .last_balance = jiffies,
6388 .balance_interval = sd_weight,
6389 .smt_gain = 0,
6390 .max_newidle_lb_cost = 0,
6391 .next_decay_max_lb_cost = jiffies,
6392 #ifdef CONFIG_SCHED_DEBUG
6393 .name = tl->name,
6394 #endif
6395 };
6396
6397 /*
6398 * Convert topological properties into behaviour.
6399 */
6400
6401 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6402 sd->flags |= SD_PREFER_SIBLING;
6403 sd->imbalance_pct = 110;
6404 sd->smt_gain = 1178; /* ~15% */
6405
6406 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6407 sd->imbalance_pct = 117;
6408 sd->cache_nice_tries = 1;
6409 sd->busy_idx = 2;
6410
6411 #ifdef CONFIG_NUMA
6412 } else if (sd->flags & SD_NUMA) {
6413 sd->cache_nice_tries = 2;
6414 sd->busy_idx = 3;
6415 sd->idle_idx = 2;
6416
6417 sd->flags |= SD_SERIALIZE;
6418 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6419 sd->flags &= ~(SD_BALANCE_EXEC |
6420 SD_BALANCE_FORK |
6421 SD_WAKE_AFFINE);
6422 }
6423
6424 #endif
6425 } else {
6426 sd->flags |= SD_PREFER_SIBLING;
6427 sd->cache_nice_tries = 1;
6428 sd->busy_idx = 2;
6429 sd->idle_idx = 1;
6430 }
6431
6432 sd->private = &tl->data;
6433
6434 return sd;
6435 }
6436
6437 /*
6438 * Topology list, bottom-up.
6439 */
6440 static struct sched_domain_topology_level default_topology[] = {
6441 #ifdef CONFIG_SCHED_SMT
6442 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6443 #endif
6444 #ifdef CONFIG_SCHED_MC
6445 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6446 #endif
6447 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6448 { NULL, },
6449 };
6450
6451 static struct sched_domain_topology_level *sched_domain_topology =
6452 default_topology;
6453
6454 #define for_each_sd_topology(tl) \
6455 for (tl = sched_domain_topology; tl->mask; tl++)
6456
6457 void set_sched_topology(struct sched_domain_topology_level *tl)
6458 {
6459 sched_domain_topology = tl;
6460 }
6461
6462 #ifdef CONFIG_NUMA
6463
6464 static const struct cpumask *sd_numa_mask(int cpu)
6465 {
6466 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6467 }
6468
6469 static void sched_numa_warn(const char *str)
6470 {
6471 static int done = false;
6472 int i,j;
6473
6474 if (done)
6475 return;
6476
6477 done = true;
6478
6479 printk(KERN_WARNING "ERROR: %s\n\n", str);
6480
6481 for (i = 0; i < nr_node_ids; i++) {
6482 printk(KERN_WARNING " ");
6483 for (j = 0; j < nr_node_ids; j++)
6484 printk(KERN_CONT "%02d ", node_distance(i,j));
6485 printk(KERN_CONT "\n");
6486 }
6487 printk(KERN_WARNING "\n");
6488 }
6489
6490 bool find_numa_distance(int distance)
6491 {
6492 int i;
6493
6494 if (distance == node_distance(0, 0))
6495 return true;
6496
6497 for (i = 0; i < sched_domains_numa_levels; i++) {
6498 if (sched_domains_numa_distance[i] == distance)
6499 return true;
6500 }
6501
6502 return false;
6503 }
6504
6505 /*
6506 * A system can have three types of NUMA topology:
6507 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6508 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6509 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6510 *
6511 * The difference between a glueless mesh topology and a backplane
6512 * topology lies in whether communication between not directly
6513 * connected nodes goes through intermediary nodes (where programs
6514 * could run), or through backplane controllers. This affects
6515 * placement of programs.
6516 *
6517 * The type of topology can be discerned with the following tests:
6518 * - If the maximum distance between any nodes is 1 hop, the system
6519 * is directly connected.
6520 * - If for two nodes A and B, located N > 1 hops away from each other,
6521 * there is an intermediary node C, which is < N hops away from both
6522 * nodes A and B, the system is a glueless mesh.
6523 */
6524 static void init_numa_topology_type(void)
6525 {
6526 int a, b, c, n;
6527
6528 n = sched_max_numa_distance;
6529
6530 if (sched_domains_numa_levels <= 1) {
6531 sched_numa_topology_type = NUMA_DIRECT;
6532 return;
6533 }
6534
6535 for_each_online_node(a) {
6536 for_each_online_node(b) {
6537 /* Find two nodes furthest removed from each other. */
6538 if (node_distance(a, b) < n)
6539 continue;
6540
6541 /* Is there an intermediary node between a and b? */
6542 for_each_online_node(c) {
6543 if (node_distance(a, c) < n &&
6544 node_distance(b, c) < n) {
6545 sched_numa_topology_type =
6546 NUMA_GLUELESS_MESH;
6547 return;
6548 }
6549 }
6550
6551 sched_numa_topology_type = NUMA_BACKPLANE;
6552 return;
6553 }
6554 }
6555 }
6556
6557 static void sched_init_numa(void)
6558 {
6559 int next_distance, curr_distance = node_distance(0, 0);
6560 struct sched_domain_topology_level *tl;
6561 int level = 0;
6562 int i, j, k;
6563
6564 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6565 if (!sched_domains_numa_distance)
6566 return;
6567
6568 /*
6569 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6570 * unique distances in the node_distance() table.
6571 *
6572 * Assumes node_distance(0,j) includes all distances in
6573 * node_distance(i,j) in order to avoid cubic time.
6574 */
6575 next_distance = curr_distance;
6576 for (i = 0; i < nr_node_ids; i++) {
6577 for (j = 0; j < nr_node_ids; j++) {
6578 for (k = 0; k < nr_node_ids; k++) {
6579 int distance = node_distance(i, k);
6580
6581 if (distance > curr_distance &&
6582 (distance < next_distance ||
6583 next_distance == curr_distance))
6584 next_distance = distance;
6585
6586 /*
6587 * While not a strong assumption it would be nice to know
6588 * about cases where if node A is connected to B, B is not
6589 * equally connected to A.
6590 */
6591 if (sched_debug() && node_distance(k, i) != distance)
6592 sched_numa_warn("Node-distance not symmetric");
6593
6594 if (sched_debug() && i && !find_numa_distance(distance))
6595 sched_numa_warn("Node-0 not representative");
6596 }
6597 if (next_distance != curr_distance) {
6598 sched_domains_numa_distance[level++] = next_distance;
6599 sched_domains_numa_levels = level;
6600 curr_distance = next_distance;
6601 } else break;
6602 }
6603
6604 /*
6605 * In case of sched_debug() we verify the above assumption.
6606 */
6607 if (!sched_debug())
6608 break;
6609 }
6610
6611 if (!level)
6612 return;
6613
6614 /*
6615 * 'level' contains the number of unique distances, excluding the
6616 * identity distance node_distance(i,i).
6617 *
6618 * The sched_domains_numa_distance[] array includes the actual distance
6619 * numbers.
6620 */
6621
6622 /*
6623 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6624 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6625 * the array will contain less then 'level' members. This could be
6626 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6627 * in other functions.
6628 *
6629 * We reset it to 'level' at the end of this function.
6630 */
6631 sched_domains_numa_levels = 0;
6632
6633 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6634 if (!sched_domains_numa_masks)
6635 return;
6636
6637 /*
6638 * Now for each level, construct a mask per node which contains all
6639 * cpus of nodes that are that many hops away from us.
6640 */
6641 for (i = 0; i < level; i++) {
6642 sched_domains_numa_masks[i] =
6643 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6644 if (!sched_domains_numa_masks[i])
6645 return;
6646
6647 for (j = 0; j < nr_node_ids; j++) {
6648 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6649 if (!mask)
6650 return;
6651
6652 sched_domains_numa_masks[i][j] = mask;
6653
6654 for_each_node(k) {
6655 if (node_distance(j, k) > sched_domains_numa_distance[i])
6656 continue;
6657
6658 cpumask_or(mask, mask, cpumask_of_node(k));
6659 }
6660 }
6661 }
6662
6663 /* Compute default topology size */
6664 for (i = 0; sched_domain_topology[i].mask; i++);
6665
6666 tl = kzalloc((i + level + 1) *
6667 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6668 if (!tl)
6669 return;
6670
6671 /*
6672 * Copy the default topology bits..
6673 */
6674 for (i = 0; sched_domain_topology[i].mask; i++)
6675 tl[i] = sched_domain_topology[i];
6676
6677 /*
6678 * .. and append 'j' levels of NUMA goodness.
6679 */
6680 for (j = 0; j < level; i++, j++) {
6681 tl[i] = (struct sched_domain_topology_level){
6682 .mask = sd_numa_mask,
6683 .sd_flags = cpu_numa_flags,
6684 .flags = SDTL_OVERLAP,
6685 .numa_level = j,
6686 SD_INIT_NAME(NUMA)
6687 };
6688 }
6689
6690 sched_domain_topology = tl;
6691
6692 sched_domains_numa_levels = level;
6693 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6694
6695 init_numa_topology_type();
6696 }
6697
6698 static void sched_domains_numa_masks_set(int cpu)
6699 {
6700 int i, j;
6701 int node = cpu_to_node(cpu);
6702
6703 for (i = 0; i < sched_domains_numa_levels; i++) {
6704 for (j = 0; j < nr_node_ids; j++) {
6705 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6706 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6707 }
6708 }
6709 }
6710
6711 static void sched_domains_numa_masks_clear(int cpu)
6712 {
6713 int i, j;
6714 for (i = 0; i < sched_domains_numa_levels; i++) {
6715 for (j = 0; j < nr_node_ids; j++)
6716 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6717 }
6718 }
6719
6720 /*
6721 * Update sched_domains_numa_masks[level][node] array when new cpus
6722 * are onlined.
6723 */
6724 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6725 unsigned long action,
6726 void *hcpu)
6727 {
6728 int cpu = (long)hcpu;
6729
6730 switch (action & ~CPU_TASKS_FROZEN) {
6731 case CPU_ONLINE:
6732 sched_domains_numa_masks_set(cpu);
6733 break;
6734
6735 case CPU_DEAD:
6736 sched_domains_numa_masks_clear(cpu);
6737 break;
6738
6739 default:
6740 return NOTIFY_DONE;
6741 }
6742
6743 return NOTIFY_OK;
6744 }
6745 #else
6746 static inline void sched_init_numa(void)
6747 {
6748 }
6749
6750 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6751 unsigned long action,
6752 void *hcpu)
6753 {
6754 return 0;
6755 }
6756 #endif /* CONFIG_NUMA */
6757
6758 static int __sdt_alloc(const struct cpumask *cpu_map)
6759 {
6760 struct sched_domain_topology_level *tl;
6761 int j;
6762
6763 for_each_sd_topology(tl) {
6764 struct sd_data *sdd = &tl->data;
6765
6766 sdd->sd = alloc_percpu(struct sched_domain *);
6767 if (!sdd->sd)
6768 return -ENOMEM;
6769
6770 sdd->sg = alloc_percpu(struct sched_group *);
6771 if (!sdd->sg)
6772 return -ENOMEM;
6773
6774 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6775 if (!sdd->sgc)
6776 return -ENOMEM;
6777
6778 for_each_cpu(j, cpu_map) {
6779 struct sched_domain *sd;
6780 struct sched_group *sg;
6781 struct sched_group_capacity *sgc;
6782
6783 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6784 GFP_KERNEL, cpu_to_node(j));
6785 if (!sd)
6786 return -ENOMEM;
6787
6788 *per_cpu_ptr(sdd->sd, j) = sd;
6789
6790 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6791 GFP_KERNEL, cpu_to_node(j));
6792 if (!sg)
6793 return -ENOMEM;
6794
6795 sg->next = sg;
6796
6797 *per_cpu_ptr(sdd->sg, j) = sg;
6798
6799 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6800 GFP_KERNEL, cpu_to_node(j));
6801 if (!sgc)
6802 return -ENOMEM;
6803
6804 *per_cpu_ptr(sdd->sgc, j) = sgc;
6805 }
6806 }
6807
6808 return 0;
6809 }
6810
6811 static void __sdt_free(const struct cpumask *cpu_map)
6812 {
6813 struct sched_domain_topology_level *tl;
6814 int j;
6815
6816 for_each_sd_topology(tl) {
6817 struct sd_data *sdd = &tl->data;
6818
6819 for_each_cpu(j, cpu_map) {
6820 struct sched_domain *sd;
6821
6822 if (sdd->sd) {
6823 sd = *per_cpu_ptr(sdd->sd, j);
6824 if (sd && (sd->flags & SD_OVERLAP))
6825 free_sched_groups(sd->groups, 0);
6826 kfree(*per_cpu_ptr(sdd->sd, j));
6827 }
6828
6829 if (sdd->sg)
6830 kfree(*per_cpu_ptr(sdd->sg, j));
6831 if (sdd->sgc)
6832 kfree(*per_cpu_ptr(sdd->sgc, j));
6833 }
6834 free_percpu(sdd->sd);
6835 sdd->sd = NULL;
6836 free_percpu(sdd->sg);
6837 sdd->sg = NULL;
6838 free_percpu(sdd->sgc);
6839 sdd->sgc = NULL;
6840 }
6841 }
6842
6843 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6844 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6845 struct sched_domain *child, int cpu)
6846 {
6847 struct sched_domain *sd = sd_init(tl, cpu);
6848 if (!sd)
6849 return child;
6850
6851 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6852 if (child) {
6853 sd->level = child->level + 1;
6854 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6855 child->parent = sd;
6856 sd->child = child;
6857
6858 if (!cpumask_subset(sched_domain_span(child),
6859 sched_domain_span(sd))) {
6860 pr_err("BUG: arch topology borken\n");
6861 #ifdef CONFIG_SCHED_DEBUG
6862 pr_err(" the %s domain not a subset of the %s domain\n",
6863 child->name, sd->name);
6864 #endif
6865 /* Fixup, ensure @sd has at least @child cpus. */
6866 cpumask_or(sched_domain_span(sd),
6867 sched_domain_span(sd),
6868 sched_domain_span(child));
6869 }
6870
6871 }
6872 set_domain_attribute(sd, attr);
6873
6874 return sd;
6875 }
6876
6877 /*
6878 * Build sched domains for a given set of cpus and attach the sched domains
6879 * to the individual cpus
6880 */
6881 static int build_sched_domains(const struct cpumask *cpu_map,
6882 struct sched_domain_attr *attr)
6883 {
6884 enum s_alloc alloc_state;
6885 struct sched_domain *sd;
6886 struct s_data d;
6887 int i, ret = -ENOMEM;
6888
6889 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6890 if (alloc_state != sa_rootdomain)
6891 goto error;
6892
6893 /* Set up domains for cpus specified by the cpu_map. */
6894 for_each_cpu(i, cpu_map) {
6895 struct sched_domain_topology_level *tl;
6896
6897 sd = NULL;
6898 for_each_sd_topology(tl) {
6899 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6900 if (tl == sched_domain_topology)
6901 *per_cpu_ptr(d.sd, i) = sd;
6902 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6903 sd->flags |= SD_OVERLAP;
6904 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6905 break;
6906 }
6907 }
6908
6909 /* Build the groups for the domains */
6910 for_each_cpu(i, cpu_map) {
6911 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6912 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6913 if (sd->flags & SD_OVERLAP) {
6914 if (build_overlap_sched_groups(sd, i))
6915 goto error;
6916 } else {
6917 if (build_sched_groups(sd, i))
6918 goto error;
6919 }
6920 }
6921 }
6922
6923 /* Calculate CPU capacity for physical packages and nodes */
6924 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6925 if (!cpumask_test_cpu(i, cpu_map))
6926 continue;
6927
6928 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6929 claim_allocations(i, sd);
6930 init_sched_groups_capacity(i, sd);
6931 }
6932 }
6933
6934 /* Attach the domains */
6935 rcu_read_lock();
6936 for_each_cpu(i, cpu_map) {
6937 sd = *per_cpu_ptr(d.sd, i);
6938 cpu_attach_domain(sd, d.rd, i);
6939 }
6940 rcu_read_unlock();
6941
6942 ret = 0;
6943 error:
6944 __free_domain_allocs(&d, alloc_state, cpu_map);
6945 return ret;
6946 }
6947
6948 static cpumask_var_t *doms_cur; /* current sched domains */
6949 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6950 static struct sched_domain_attr *dattr_cur;
6951 /* attribues of custom domains in 'doms_cur' */
6952
6953 /*
6954 * Special case: If a kmalloc of a doms_cur partition (array of
6955 * cpumask) fails, then fallback to a single sched domain,
6956 * as determined by the single cpumask fallback_doms.
6957 */
6958 static cpumask_var_t fallback_doms;
6959
6960 /*
6961 * arch_update_cpu_topology lets virtualized architectures update the
6962 * cpu core maps. It is supposed to return 1 if the topology changed
6963 * or 0 if it stayed the same.
6964 */
6965 int __weak arch_update_cpu_topology(void)
6966 {
6967 return 0;
6968 }
6969
6970 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6971 {
6972 int i;
6973 cpumask_var_t *doms;
6974
6975 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6976 if (!doms)
6977 return NULL;
6978 for (i = 0; i < ndoms; i++) {
6979 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6980 free_sched_domains(doms, i);
6981 return NULL;
6982 }
6983 }
6984 return doms;
6985 }
6986
6987 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6988 {
6989 unsigned int i;
6990 for (i = 0; i < ndoms; i++)
6991 free_cpumask_var(doms[i]);
6992 kfree(doms);
6993 }
6994
6995 /*
6996 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6997 * For now this just excludes isolated cpus, but could be used to
6998 * exclude other special cases in the future.
6999 */
7000 static int init_sched_domains(const struct cpumask *cpu_map)
7001 {
7002 int err;
7003
7004 arch_update_cpu_topology();
7005 ndoms_cur = 1;
7006 doms_cur = alloc_sched_domains(ndoms_cur);
7007 if (!doms_cur)
7008 doms_cur = &fallback_doms;
7009 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7010 err = build_sched_domains(doms_cur[0], NULL);
7011 register_sched_domain_sysctl();
7012
7013 return err;
7014 }
7015
7016 /*
7017 * Detach sched domains from a group of cpus specified in cpu_map
7018 * These cpus will now be attached to the NULL domain
7019 */
7020 static void detach_destroy_domains(const struct cpumask *cpu_map)
7021 {
7022 int i;
7023
7024 rcu_read_lock();
7025 for_each_cpu(i, cpu_map)
7026 cpu_attach_domain(NULL, &def_root_domain, i);
7027 rcu_read_unlock();
7028 }
7029
7030 /* handle null as "default" */
7031 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7032 struct sched_domain_attr *new, int idx_new)
7033 {
7034 struct sched_domain_attr tmp;
7035
7036 /* fast path */
7037 if (!new && !cur)
7038 return 1;
7039
7040 tmp = SD_ATTR_INIT;
7041 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7042 new ? (new + idx_new) : &tmp,
7043 sizeof(struct sched_domain_attr));
7044 }
7045
7046 /*
7047 * Partition sched domains as specified by the 'ndoms_new'
7048 * cpumasks in the array doms_new[] of cpumasks. This compares
7049 * doms_new[] to the current sched domain partitioning, doms_cur[].
7050 * It destroys each deleted domain and builds each new domain.
7051 *
7052 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7053 * The masks don't intersect (don't overlap.) We should setup one
7054 * sched domain for each mask. CPUs not in any of the cpumasks will
7055 * not be load balanced. If the same cpumask appears both in the
7056 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7057 * it as it is.
7058 *
7059 * The passed in 'doms_new' should be allocated using
7060 * alloc_sched_domains. This routine takes ownership of it and will
7061 * free_sched_domains it when done with it. If the caller failed the
7062 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7063 * and partition_sched_domains() will fallback to the single partition
7064 * 'fallback_doms', it also forces the domains to be rebuilt.
7065 *
7066 * If doms_new == NULL it will be replaced with cpu_online_mask.
7067 * ndoms_new == 0 is a special case for destroying existing domains,
7068 * and it will not create the default domain.
7069 *
7070 * Call with hotplug lock held
7071 */
7072 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7073 struct sched_domain_attr *dattr_new)
7074 {
7075 int i, j, n;
7076 int new_topology;
7077
7078 mutex_lock(&sched_domains_mutex);
7079
7080 /* always unregister in case we don't destroy any domains */
7081 unregister_sched_domain_sysctl();
7082
7083 /* Let architecture update cpu core mappings. */
7084 new_topology = arch_update_cpu_topology();
7085
7086 n = doms_new ? ndoms_new : 0;
7087
7088 /* Destroy deleted domains */
7089 for (i = 0; i < ndoms_cur; i++) {
7090 for (j = 0; j < n && !new_topology; j++) {
7091 if (cpumask_equal(doms_cur[i], doms_new[j])
7092 && dattrs_equal(dattr_cur, i, dattr_new, j))
7093 goto match1;
7094 }
7095 /* no match - a current sched domain not in new doms_new[] */
7096 detach_destroy_domains(doms_cur[i]);
7097 match1:
7098 ;
7099 }
7100
7101 n = ndoms_cur;
7102 if (doms_new == NULL) {
7103 n = 0;
7104 doms_new = &fallback_doms;
7105 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7106 WARN_ON_ONCE(dattr_new);
7107 }
7108
7109 /* Build new domains */
7110 for (i = 0; i < ndoms_new; i++) {
7111 for (j = 0; j < n && !new_topology; j++) {
7112 if (cpumask_equal(doms_new[i], doms_cur[j])
7113 && dattrs_equal(dattr_new, i, dattr_cur, j))
7114 goto match2;
7115 }
7116 /* no match - add a new doms_new */
7117 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7118 match2:
7119 ;
7120 }
7121
7122 /* Remember the new sched domains */
7123 if (doms_cur != &fallback_doms)
7124 free_sched_domains(doms_cur, ndoms_cur);
7125 kfree(dattr_cur); /* kfree(NULL) is safe */
7126 doms_cur = doms_new;
7127 dattr_cur = dattr_new;
7128 ndoms_cur = ndoms_new;
7129
7130 register_sched_domain_sysctl();
7131
7132 mutex_unlock(&sched_domains_mutex);
7133 }
7134
7135 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7136
7137 /*
7138 * Update cpusets according to cpu_active mask. If cpusets are
7139 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7140 * around partition_sched_domains().
7141 *
7142 * If we come here as part of a suspend/resume, don't touch cpusets because we
7143 * want to restore it back to its original state upon resume anyway.
7144 */
7145 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7146 void *hcpu)
7147 {
7148 switch (action) {
7149 case CPU_ONLINE_FROZEN:
7150 case CPU_DOWN_FAILED_FROZEN:
7151
7152 /*
7153 * num_cpus_frozen tracks how many CPUs are involved in suspend
7154 * resume sequence. As long as this is not the last online
7155 * operation in the resume sequence, just build a single sched
7156 * domain, ignoring cpusets.
7157 */
7158 num_cpus_frozen--;
7159 if (likely(num_cpus_frozen)) {
7160 partition_sched_domains(1, NULL, NULL);
7161 break;
7162 }
7163
7164 /*
7165 * This is the last CPU online operation. So fall through and
7166 * restore the original sched domains by considering the
7167 * cpuset configurations.
7168 */
7169
7170 case CPU_ONLINE:
7171 cpuset_update_active_cpus(true);
7172 break;
7173 default:
7174 return NOTIFY_DONE;
7175 }
7176 return NOTIFY_OK;
7177 }
7178
7179 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7180 void *hcpu)
7181 {
7182 unsigned long flags;
7183 long cpu = (long)hcpu;
7184 struct dl_bw *dl_b;
7185 bool overflow;
7186 int cpus;
7187
7188 switch (action) {
7189 case CPU_DOWN_PREPARE:
7190 rcu_read_lock_sched();
7191 dl_b = dl_bw_of(cpu);
7192
7193 raw_spin_lock_irqsave(&dl_b->lock, flags);
7194 cpus = dl_bw_cpus(cpu);
7195 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7196 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7197
7198 rcu_read_unlock_sched();
7199
7200 if (overflow)
7201 return notifier_from_errno(-EBUSY);
7202 cpuset_update_active_cpus(false);
7203 break;
7204 case CPU_DOWN_PREPARE_FROZEN:
7205 num_cpus_frozen++;
7206 partition_sched_domains(1, NULL, NULL);
7207 break;
7208 default:
7209 return NOTIFY_DONE;
7210 }
7211 return NOTIFY_OK;
7212 }
7213
7214 void __init sched_init_smp(void)
7215 {
7216 cpumask_var_t non_isolated_cpus;
7217
7218 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7219 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7220
7221 sched_init_numa();
7222
7223 /*
7224 * There's no userspace yet to cause hotplug operations; hence all the
7225 * cpu masks are stable and all blatant races in the below code cannot
7226 * happen.
7227 */
7228 mutex_lock(&sched_domains_mutex);
7229 init_sched_domains(cpu_active_mask);
7230 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7231 if (cpumask_empty(non_isolated_cpus))
7232 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7233 mutex_unlock(&sched_domains_mutex);
7234
7235 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7236 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7237 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7238
7239 init_hrtick();
7240
7241 /* Move init over to a non-isolated CPU */
7242 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7243 BUG();
7244 sched_init_granularity();
7245 free_cpumask_var(non_isolated_cpus);
7246
7247 init_sched_rt_class();
7248 init_sched_dl_class();
7249 }
7250 #else
7251 void __init sched_init_smp(void)
7252 {
7253 sched_init_granularity();
7254 }
7255 #endif /* CONFIG_SMP */
7256
7257 int in_sched_functions(unsigned long addr)
7258 {
7259 return in_lock_functions(addr) ||
7260 (addr >= (unsigned long)__sched_text_start
7261 && addr < (unsigned long)__sched_text_end);
7262 }
7263
7264 #ifdef CONFIG_CGROUP_SCHED
7265 /*
7266 * Default task group.
7267 * Every task in system belongs to this group at bootup.
7268 */
7269 struct task_group root_task_group;
7270 LIST_HEAD(task_groups);
7271
7272 /* Cacheline aligned slab cache for task_group */
7273 static struct kmem_cache *task_group_cache __read_mostly;
7274 #endif
7275
7276 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7277
7278 void __init sched_init(void)
7279 {
7280 int i, j;
7281 unsigned long alloc_size = 0, ptr;
7282
7283 #ifdef CONFIG_FAIR_GROUP_SCHED
7284 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7285 #endif
7286 #ifdef CONFIG_RT_GROUP_SCHED
7287 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7288 #endif
7289 if (alloc_size) {
7290 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7291
7292 #ifdef CONFIG_FAIR_GROUP_SCHED
7293 root_task_group.se = (struct sched_entity **)ptr;
7294 ptr += nr_cpu_ids * sizeof(void **);
7295
7296 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7297 ptr += nr_cpu_ids * sizeof(void **);
7298
7299 #endif /* CONFIG_FAIR_GROUP_SCHED */
7300 #ifdef CONFIG_RT_GROUP_SCHED
7301 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7302 ptr += nr_cpu_ids * sizeof(void **);
7303
7304 root_task_group.rt_rq = (struct rt_rq **)ptr;
7305 ptr += nr_cpu_ids * sizeof(void **);
7306
7307 #endif /* CONFIG_RT_GROUP_SCHED */
7308 }
7309 #ifdef CONFIG_CPUMASK_OFFSTACK
7310 for_each_possible_cpu(i) {
7311 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7312 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7313 }
7314 #endif /* CONFIG_CPUMASK_OFFSTACK */
7315
7316 init_rt_bandwidth(&def_rt_bandwidth,
7317 global_rt_period(), global_rt_runtime());
7318 init_dl_bandwidth(&def_dl_bandwidth,
7319 global_rt_period(), global_rt_runtime());
7320
7321 #ifdef CONFIG_SMP
7322 init_defrootdomain();
7323 #endif
7324
7325 #ifdef CONFIG_RT_GROUP_SCHED
7326 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7327 global_rt_period(), global_rt_runtime());
7328 #endif /* CONFIG_RT_GROUP_SCHED */
7329
7330 #ifdef CONFIG_CGROUP_SCHED
7331 task_group_cache = KMEM_CACHE(task_group, 0);
7332
7333 list_add(&root_task_group.list, &task_groups);
7334 INIT_LIST_HEAD(&root_task_group.children);
7335 INIT_LIST_HEAD(&root_task_group.siblings);
7336 autogroup_init(&init_task);
7337 #endif /* CONFIG_CGROUP_SCHED */
7338
7339 for_each_possible_cpu(i) {
7340 struct rq *rq;
7341
7342 rq = cpu_rq(i);
7343 raw_spin_lock_init(&rq->lock);
7344 rq->nr_running = 0;
7345 rq->calc_load_active = 0;
7346 rq->calc_load_update = jiffies + LOAD_FREQ;
7347 init_cfs_rq(&rq->cfs);
7348 init_rt_rq(&rq->rt);
7349 init_dl_rq(&rq->dl);
7350 #ifdef CONFIG_FAIR_GROUP_SCHED
7351 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7352 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7353 /*
7354 * How much cpu bandwidth does root_task_group get?
7355 *
7356 * In case of task-groups formed thr' the cgroup filesystem, it
7357 * gets 100% of the cpu resources in the system. This overall
7358 * system cpu resource is divided among the tasks of
7359 * root_task_group and its child task-groups in a fair manner,
7360 * based on each entity's (task or task-group's) weight
7361 * (se->load.weight).
7362 *
7363 * In other words, if root_task_group has 10 tasks of weight
7364 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7365 * then A0's share of the cpu resource is:
7366 *
7367 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7368 *
7369 * We achieve this by letting root_task_group's tasks sit
7370 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7371 */
7372 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7373 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7374 #endif /* CONFIG_FAIR_GROUP_SCHED */
7375
7376 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7377 #ifdef CONFIG_RT_GROUP_SCHED
7378 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7379 #endif
7380
7381 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7382 rq->cpu_load[j] = 0;
7383
7384 #ifdef CONFIG_SMP
7385 rq->sd = NULL;
7386 rq->rd = NULL;
7387 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7388 rq->balance_callback = NULL;
7389 rq->active_balance = 0;
7390 rq->next_balance = jiffies;
7391 rq->push_cpu = 0;
7392 rq->cpu = i;
7393 rq->online = 0;
7394 rq->idle_stamp = 0;
7395 rq->avg_idle = 2*sysctl_sched_migration_cost;
7396 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7397
7398 INIT_LIST_HEAD(&rq->cfs_tasks);
7399
7400 rq_attach_root(rq, &def_root_domain);
7401 #ifdef CONFIG_NO_HZ_COMMON
7402 rq->last_load_update_tick = jiffies;
7403 rq->nohz_flags = 0;
7404 #endif
7405 #ifdef CONFIG_NO_HZ_FULL
7406 rq->last_sched_tick = 0;
7407 #endif
7408 #endif /* CONFIG_SMP */
7409 init_rq_hrtick(rq);
7410 atomic_set(&rq->nr_iowait, 0);
7411 }
7412
7413 set_load_weight(&init_task);
7414
7415 #ifdef CONFIG_PREEMPT_NOTIFIERS
7416 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7417 #endif
7418
7419 /*
7420 * The boot idle thread does lazy MMU switching as well:
7421 */
7422 atomic_inc(&init_mm.mm_count);
7423 enter_lazy_tlb(&init_mm, current);
7424
7425 /*
7426 * During early bootup we pretend to be a normal task:
7427 */
7428 current->sched_class = &fair_sched_class;
7429
7430 /*
7431 * Make us the idle thread. Technically, schedule() should not be
7432 * called from this thread, however somewhere below it might be,
7433 * but because we are the idle thread, we just pick up running again
7434 * when this runqueue becomes "idle".
7435 */
7436 init_idle(current, smp_processor_id());
7437
7438 calc_load_update = jiffies + LOAD_FREQ;
7439
7440 #ifdef CONFIG_SMP
7441 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7442 /* May be allocated at isolcpus cmdline parse time */
7443 if (cpu_isolated_map == NULL)
7444 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7445 idle_thread_set_boot_cpu();
7446 set_cpu_rq_start_time();
7447 #endif
7448 init_sched_fair_class();
7449
7450 scheduler_running = 1;
7451 }
7452
7453 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7454 static inline int preempt_count_equals(int preempt_offset)
7455 {
7456 int nested = preempt_count() + rcu_preempt_depth();
7457
7458 return (nested == preempt_offset);
7459 }
7460
7461 void __might_sleep(const char *file, int line, int preempt_offset)
7462 {
7463 /*
7464 * Blocking primitives will set (and therefore destroy) current->state,
7465 * since we will exit with TASK_RUNNING make sure we enter with it,
7466 * otherwise we will destroy state.
7467 */
7468 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7469 "do not call blocking ops when !TASK_RUNNING; "
7470 "state=%lx set at [<%p>] %pS\n",
7471 current->state,
7472 (void *)current->task_state_change,
7473 (void *)current->task_state_change);
7474
7475 ___might_sleep(file, line, preempt_offset);
7476 }
7477 EXPORT_SYMBOL(__might_sleep);
7478
7479 void ___might_sleep(const char *file, int line, int preempt_offset)
7480 {
7481 static unsigned long prev_jiffy; /* ratelimiting */
7482
7483 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7484 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7485 !is_idle_task(current)) ||
7486 system_state != SYSTEM_RUNNING || oops_in_progress)
7487 return;
7488 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7489 return;
7490 prev_jiffy = jiffies;
7491
7492 printk(KERN_ERR
7493 "BUG: sleeping function called from invalid context at %s:%d\n",
7494 file, line);
7495 printk(KERN_ERR
7496 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7497 in_atomic(), irqs_disabled(),
7498 current->pid, current->comm);
7499
7500 if (task_stack_end_corrupted(current))
7501 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7502
7503 debug_show_held_locks(current);
7504 if (irqs_disabled())
7505 print_irqtrace_events(current);
7506 #ifdef CONFIG_DEBUG_PREEMPT
7507 if (!preempt_count_equals(preempt_offset)) {
7508 pr_err("Preemption disabled at:");
7509 print_ip_sym(current->preempt_disable_ip);
7510 pr_cont("\n");
7511 }
7512 #endif
7513 dump_stack();
7514 }
7515 EXPORT_SYMBOL(___might_sleep);
7516 #endif
7517
7518 #ifdef CONFIG_MAGIC_SYSRQ
7519 void normalize_rt_tasks(void)
7520 {
7521 struct task_struct *g, *p;
7522 struct sched_attr attr = {
7523 .sched_policy = SCHED_NORMAL,
7524 };
7525
7526 read_lock(&tasklist_lock);
7527 for_each_process_thread(g, p) {
7528 /*
7529 * Only normalize user tasks:
7530 */
7531 if (p->flags & PF_KTHREAD)
7532 continue;
7533
7534 p->se.exec_start = 0;
7535 #ifdef CONFIG_SCHEDSTATS
7536 p->se.statistics.wait_start = 0;
7537 p->se.statistics.sleep_start = 0;
7538 p->se.statistics.block_start = 0;
7539 #endif
7540
7541 if (!dl_task(p) && !rt_task(p)) {
7542 /*
7543 * Renice negative nice level userspace
7544 * tasks back to 0:
7545 */
7546 if (task_nice(p) < 0)
7547 set_user_nice(p, 0);
7548 continue;
7549 }
7550
7551 __sched_setscheduler(p, &attr, false, false);
7552 }
7553 read_unlock(&tasklist_lock);
7554 }
7555
7556 #endif /* CONFIG_MAGIC_SYSRQ */
7557
7558 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7559 /*
7560 * These functions are only useful for the IA64 MCA handling, or kdb.
7561 *
7562 * They can only be called when the whole system has been
7563 * stopped - every CPU needs to be quiescent, and no scheduling
7564 * activity can take place. Using them for anything else would
7565 * be a serious bug, and as a result, they aren't even visible
7566 * under any other configuration.
7567 */
7568
7569 /**
7570 * curr_task - return the current task for a given cpu.
7571 * @cpu: the processor in question.
7572 *
7573 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7574 *
7575 * Return: The current task for @cpu.
7576 */
7577 struct task_struct *curr_task(int cpu)
7578 {
7579 return cpu_curr(cpu);
7580 }
7581
7582 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7583
7584 #ifdef CONFIG_IA64
7585 /**
7586 * set_curr_task - set the current task for a given cpu.
7587 * @cpu: the processor in question.
7588 * @p: the task pointer to set.
7589 *
7590 * Description: This function must only be used when non-maskable interrupts
7591 * are serviced on a separate stack. It allows the architecture to switch the
7592 * notion of the current task on a cpu in a non-blocking manner. This function
7593 * must be called with all CPU's synchronized, and interrupts disabled, the
7594 * and caller must save the original value of the current task (see
7595 * curr_task() above) and restore that value before reenabling interrupts and
7596 * re-starting the system.
7597 *
7598 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7599 */
7600 void set_curr_task(int cpu, struct task_struct *p)
7601 {
7602 cpu_curr(cpu) = p;
7603 }
7604
7605 #endif
7606
7607 #ifdef CONFIG_CGROUP_SCHED
7608 /* task_group_lock serializes the addition/removal of task groups */
7609 static DEFINE_SPINLOCK(task_group_lock);
7610
7611 static void sched_free_group(struct task_group *tg)
7612 {
7613 free_fair_sched_group(tg);
7614 free_rt_sched_group(tg);
7615 autogroup_free(tg);
7616 kmem_cache_free(task_group_cache, tg);
7617 }
7618
7619 /* allocate runqueue etc for a new task group */
7620 struct task_group *sched_create_group(struct task_group *parent)
7621 {
7622 struct task_group *tg;
7623
7624 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7625 if (!tg)
7626 return ERR_PTR(-ENOMEM);
7627
7628 if (!alloc_fair_sched_group(tg, parent))
7629 goto err;
7630
7631 if (!alloc_rt_sched_group(tg, parent))
7632 goto err;
7633
7634 return tg;
7635
7636 err:
7637 sched_free_group(tg);
7638 return ERR_PTR(-ENOMEM);
7639 }
7640
7641 void sched_online_group(struct task_group *tg, struct task_group *parent)
7642 {
7643 unsigned long flags;
7644
7645 spin_lock_irqsave(&task_group_lock, flags);
7646 list_add_rcu(&tg->list, &task_groups);
7647
7648 WARN_ON(!parent); /* root should already exist */
7649
7650 tg->parent = parent;
7651 INIT_LIST_HEAD(&tg->children);
7652 list_add_rcu(&tg->siblings, &parent->children);
7653 spin_unlock_irqrestore(&task_group_lock, flags);
7654 }
7655
7656 /* rcu callback to free various structures associated with a task group */
7657 static void sched_free_group_rcu(struct rcu_head *rhp)
7658 {
7659 /* now it should be safe to free those cfs_rqs */
7660 sched_free_group(container_of(rhp, struct task_group, rcu));
7661 }
7662
7663 void sched_destroy_group(struct task_group *tg)
7664 {
7665 /* wait for possible concurrent references to cfs_rqs complete */
7666 call_rcu(&tg->rcu, sched_free_group_rcu);
7667 }
7668
7669 void sched_offline_group(struct task_group *tg)
7670 {
7671 unsigned long flags;
7672
7673 /* end participation in shares distribution */
7674 unregister_fair_sched_group(tg);
7675
7676 spin_lock_irqsave(&task_group_lock, flags);
7677 list_del_rcu(&tg->list);
7678 list_del_rcu(&tg->siblings);
7679 spin_unlock_irqrestore(&task_group_lock, flags);
7680 }
7681
7682 /* change task's runqueue when it moves between groups.
7683 * The caller of this function should have put the task in its new group
7684 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7685 * reflect its new group.
7686 */
7687 void sched_move_task(struct task_struct *tsk)
7688 {
7689 struct task_group *tg;
7690 int queued, running;
7691 unsigned long flags;
7692 struct rq *rq;
7693
7694 rq = task_rq_lock(tsk, &flags);
7695
7696 running = task_current(rq, tsk);
7697 queued = task_on_rq_queued(tsk);
7698
7699 if (queued)
7700 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7701 if (unlikely(running))
7702 put_prev_task(rq, tsk);
7703
7704 /*
7705 * All callers are synchronized by task_rq_lock(); we do not use RCU
7706 * which is pointless here. Thus, we pass "true" to task_css_check()
7707 * to prevent lockdep warnings.
7708 */
7709 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7710 struct task_group, css);
7711 tg = autogroup_task_group(tsk, tg);
7712 tsk->sched_task_group = tg;
7713
7714 #ifdef CONFIG_FAIR_GROUP_SCHED
7715 if (tsk->sched_class->task_move_group)
7716 tsk->sched_class->task_move_group(tsk);
7717 else
7718 #endif
7719 set_task_rq(tsk, task_cpu(tsk));
7720
7721 if (unlikely(running))
7722 tsk->sched_class->set_curr_task(rq);
7723 if (queued)
7724 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7725
7726 task_rq_unlock(rq, tsk, &flags);
7727 }
7728 #endif /* CONFIG_CGROUP_SCHED */
7729
7730 #ifdef CONFIG_RT_GROUP_SCHED
7731 /*
7732 * Ensure that the real time constraints are schedulable.
7733 */
7734 static DEFINE_MUTEX(rt_constraints_mutex);
7735
7736 /* Must be called with tasklist_lock held */
7737 static inline int tg_has_rt_tasks(struct task_group *tg)
7738 {
7739 struct task_struct *g, *p;
7740
7741 /*
7742 * Autogroups do not have RT tasks; see autogroup_create().
7743 */
7744 if (task_group_is_autogroup(tg))
7745 return 0;
7746
7747 for_each_process_thread(g, p) {
7748 if (rt_task(p) && task_group(p) == tg)
7749 return 1;
7750 }
7751
7752 return 0;
7753 }
7754
7755 struct rt_schedulable_data {
7756 struct task_group *tg;
7757 u64 rt_period;
7758 u64 rt_runtime;
7759 };
7760
7761 static int tg_rt_schedulable(struct task_group *tg, void *data)
7762 {
7763 struct rt_schedulable_data *d = data;
7764 struct task_group *child;
7765 unsigned long total, sum = 0;
7766 u64 period, runtime;
7767
7768 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7769 runtime = tg->rt_bandwidth.rt_runtime;
7770
7771 if (tg == d->tg) {
7772 period = d->rt_period;
7773 runtime = d->rt_runtime;
7774 }
7775
7776 /*
7777 * Cannot have more runtime than the period.
7778 */
7779 if (runtime > period && runtime != RUNTIME_INF)
7780 return -EINVAL;
7781
7782 /*
7783 * Ensure we don't starve existing RT tasks.
7784 */
7785 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7786 return -EBUSY;
7787
7788 total = to_ratio(period, runtime);
7789
7790 /*
7791 * Nobody can have more than the global setting allows.
7792 */
7793 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7794 return -EINVAL;
7795
7796 /*
7797 * The sum of our children's runtime should not exceed our own.
7798 */
7799 list_for_each_entry_rcu(child, &tg->children, siblings) {
7800 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7801 runtime = child->rt_bandwidth.rt_runtime;
7802
7803 if (child == d->tg) {
7804 period = d->rt_period;
7805 runtime = d->rt_runtime;
7806 }
7807
7808 sum += to_ratio(period, runtime);
7809 }
7810
7811 if (sum > total)
7812 return -EINVAL;
7813
7814 return 0;
7815 }
7816
7817 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7818 {
7819 int ret;
7820
7821 struct rt_schedulable_data data = {
7822 .tg = tg,
7823 .rt_period = period,
7824 .rt_runtime = runtime,
7825 };
7826
7827 rcu_read_lock();
7828 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7829 rcu_read_unlock();
7830
7831 return ret;
7832 }
7833
7834 static int tg_set_rt_bandwidth(struct task_group *tg,
7835 u64 rt_period, u64 rt_runtime)
7836 {
7837 int i, err = 0;
7838
7839 /*
7840 * Disallowing the root group RT runtime is BAD, it would disallow the
7841 * kernel creating (and or operating) RT threads.
7842 */
7843 if (tg == &root_task_group && rt_runtime == 0)
7844 return -EINVAL;
7845
7846 /* No period doesn't make any sense. */
7847 if (rt_period == 0)
7848 return -EINVAL;
7849
7850 mutex_lock(&rt_constraints_mutex);
7851 read_lock(&tasklist_lock);
7852 err = __rt_schedulable(tg, rt_period, rt_runtime);
7853 if (err)
7854 goto unlock;
7855
7856 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7857 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7858 tg->rt_bandwidth.rt_runtime = rt_runtime;
7859
7860 for_each_possible_cpu(i) {
7861 struct rt_rq *rt_rq = tg->rt_rq[i];
7862
7863 raw_spin_lock(&rt_rq->rt_runtime_lock);
7864 rt_rq->rt_runtime = rt_runtime;
7865 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7866 }
7867 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7868 unlock:
7869 read_unlock(&tasklist_lock);
7870 mutex_unlock(&rt_constraints_mutex);
7871
7872 return err;
7873 }
7874
7875 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7876 {
7877 u64 rt_runtime, rt_period;
7878
7879 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7880 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7881 if (rt_runtime_us < 0)
7882 rt_runtime = RUNTIME_INF;
7883
7884 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7885 }
7886
7887 static long sched_group_rt_runtime(struct task_group *tg)
7888 {
7889 u64 rt_runtime_us;
7890
7891 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7892 return -1;
7893
7894 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7895 do_div(rt_runtime_us, NSEC_PER_USEC);
7896 return rt_runtime_us;
7897 }
7898
7899 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7900 {
7901 u64 rt_runtime, rt_period;
7902
7903 rt_period = rt_period_us * NSEC_PER_USEC;
7904 rt_runtime = tg->rt_bandwidth.rt_runtime;
7905
7906 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7907 }
7908
7909 static long sched_group_rt_period(struct task_group *tg)
7910 {
7911 u64 rt_period_us;
7912
7913 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7914 do_div(rt_period_us, NSEC_PER_USEC);
7915 return rt_period_us;
7916 }
7917 #endif /* CONFIG_RT_GROUP_SCHED */
7918
7919 #ifdef CONFIG_RT_GROUP_SCHED
7920 static int sched_rt_global_constraints(void)
7921 {
7922 int ret = 0;
7923
7924 mutex_lock(&rt_constraints_mutex);
7925 read_lock(&tasklist_lock);
7926 ret = __rt_schedulable(NULL, 0, 0);
7927 read_unlock(&tasklist_lock);
7928 mutex_unlock(&rt_constraints_mutex);
7929
7930 return ret;
7931 }
7932
7933 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7934 {
7935 /* Don't accept realtime tasks when there is no way for them to run */
7936 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7937 return 0;
7938
7939 return 1;
7940 }
7941
7942 #else /* !CONFIG_RT_GROUP_SCHED */
7943 static int sched_rt_global_constraints(void)
7944 {
7945 unsigned long flags;
7946 int i, ret = 0;
7947
7948 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7949 for_each_possible_cpu(i) {
7950 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7951
7952 raw_spin_lock(&rt_rq->rt_runtime_lock);
7953 rt_rq->rt_runtime = global_rt_runtime();
7954 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7955 }
7956 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7957
7958 return ret;
7959 }
7960 #endif /* CONFIG_RT_GROUP_SCHED */
7961
7962 static int sched_dl_global_validate(void)
7963 {
7964 u64 runtime = global_rt_runtime();
7965 u64 period = global_rt_period();
7966 u64 new_bw = to_ratio(period, runtime);
7967 struct dl_bw *dl_b;
7968 int cpu, ret = 0;
7969 unsigned long flags;
7970
7971 /*
7972 * Here we want to check the bandwidth not being set to some
7973 * value smaller than the currently allocated bandwidth in
7974 * any of the root_domains.
7975 *
7976 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7977 * cycling on root_domains... Discussion on different/better
7978 * solutions is welcome!
7979 */
7980 for_each_possible_cpu(cpu) {
7981 rcu_read_lock_sched();
7982 dl_b = dl_bw_of(cpu);
7983
7984 raw_spin_lock_irqsave(&dl_b->lock, flags);
7985 if (new_bw < dl_b->total_bw)
7986 ret = -EBUSY;
7987 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7988
7989 rcu_read_unlock_sched();
7990
7991 if (ret)
7992 break;
7993 }
7994
7995 return ret;
7996 }
7997
7998 static void sched_dl_do_global(void)
7999 {
8000 u64 new_bw = -1;
8001 struct dl_bw *dl_b;
8002 int cpu;
8003 unsigned long flags;
8004
8005 def_dl_bandwidth.dl_period = global_rt_period();
8006 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8007
8008 if (global_rt_runtime() != RUNTIME_INF)
8009 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8010
8011 /*
8012 * FIXME: As above...
8013 */
8014 for_each_possible_cpu(cpu) {
8015 rcu_read_lock_sched();
8016 dl_b = dl_bw_of(cpu);
8017
8018 raw_spin_lock_irqsave(&dl_b->lock, flags);
8019 dl_b->bw = new_bw;
8020 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8021
8022 rcu_read_unlock_sched();
8023 }
8024 }
8025
8026 static int sched_rt_global_validate(void)
8027 {
8028 if (sysctl_sched_rt_period <= 0)
8029 return -EINVAL;
8030
8031 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8032 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8033 return -EINVAL;
8034
8035 return 0;
8036 }
8037
8038 static void sched_rt_do_global(void)
8039 {
8040 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8041 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8042 }
8043
8044 int sched_rt_handler(struct ctl_table *table, int write,
8045 void __user *buffer, size_t *lenp,
8046 loff_t *ppos)
8047 {
8048 int old_period, old_runtime;
8049 static DEFINE_MUTEX(mutex);
8050 int ret;
8051
8052 mutex_lock(&mutex);
8053 old_period = sysctl_sched_rt_period;
8054 old_runtime = sysctl_sched_rt_runtime;
8055
8056 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8057
8058 if (!ret && write) {
8059 ret = sched_rt_global_validate();
8060 if (ret)
8061 goto undo;
8062
8063 ret = sched_dl_global_validate();
8064 if (ret)
8065 goto undo;
8066
8067 ret = sched_rt_global_constraints();
8068 if (ret)
8069 goto undo;
8070
8071 sched_rt_do_global();
8072 sched_dl_do_global();
8073 }
8074 if (0) {
8075 undo:
8076 sysctl_sched_rt_period = old_period;
8077 sysctl_sched_rt_runtime = old_runtime;
8078 }
8079 mutex_unlock(&mutex);
8080
8081 return ret;
8082 }
8083
8084 int sched_rr_handler(struct ctl_table *table, int write,
8085 void __user *buffer, size_t *lenp,
8086 loff_t *ppos)
8087 {
8088 int ret;
8089 static DEFINE_MUTEX(mutex);
8090
8091 mutex_lock(&mutex);
8092 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8093 /* make sure that internally we keep jiffies */
8094 /* also, writing zero resets timeslice to default */
8095 if (!ret && write) {
8096 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8097 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8098 }
8099 mutex_unlock(&mutex);
8100 return ret;
8101 }
8102
8103 #ifdef CONFIG_CGROUP_SCHED
8104
8105 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8106 {
8107 return css ? container_of(css, struct task_group, css) : NULL;
8108 }
8109
8110 static struct cgroup_subsys_state *
8111 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8112 {
8113 struct task_group *parent = css_tg(parent_css);
8114 struct task_group *tg;
8115
8116 if (!parent) {
8117 /* This is early initialization for the top cgroup */
8118 return &root_task_group.css;
8119 }
8120
8121 tg = sched_create_group(parent);
8122 if (IS_ERR(tg))
8123 return ERR_PTR(-ENOMEM);
8124
8125 sched_online_group(tg, parent);
8126
8127 return &tg->css;
8128 }
8129
8130 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8131 {
8132 struct task_group *tg = css_tg(css);
8133
8134 sched_offline_group(tg);
8135 }
8136
8137 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8138 {
8139 struct task_group *tg = css_tg(css);
8140
8141 /*
8142 * Relies on the RCU grace period between css_released() and this.
8143 */
8144 sched_free_group(tg);
8145 }
8146
8147 static void cpu_cgroup_fork(struct task_struct *task)
8148 {
8149 sched_move_task(task);
8150 }
8151
8152 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8153 {
8154 struct task_struct *task;
8155 struct cgroup_subsys_state *css;
8156
8157 cgroup_taskset_for_each(task, css, tset) {
8158 #ifdef CONFIG_RT_GROUP_SCHED
8159 if (!sched_rt_can_attach(css_tg(css), task))
8160 return -EINVAL;
8161 #else
8162 /* We don't support RT-tasks being in separate groups */
8163 if (task->sched_class != &fair_sched_class)
8164 return -EINVAL;
8165 #endif
8166 }
8167 return 0;
8168 }
8169
8170 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8171 {
8172 struct task_struct *task;
8173 struct cgroup_subsys_state *css;
8174
8175 cgroup_taskset_for_each(task, css, tset)
8176 sched_move_task(task);
8177 }
8178
8179 #ifdef CONFIG_FAIR_GROUP_SCHED
8180 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8181 struct cftype *cftype, u64 shareval)
8182 {
8183 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8184 }
8185
8186 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8187 struct cftype *cft)
8188 {
8189 struct task_group *tg = css_tg(css);
8190
8191 return (u64) scale_load_down(tg->shares);
8192 }
8193
8194 #ifdef CONFIG_CFS_BANDWIDTH
8195 static DEFINE_MUTEX(cfs_constraints_mutex);
8196
8197 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8198 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8199
8200 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8201
8202 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8203 {
8204 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8205 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8206
8207 if (tg == &root_task_group)
8208 return -EINVAL;
8209
8210 /*
8211 * Ensure we have at some amount of bandwidth every period. This is
8212 * to prevent reaching a state of large arrears when throttled via
8213 * entity_tick() resulting in prolonged exit starvation.
8214 */
8215 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8216 return -EINVAL;
8217
8218 /*
8219 * Likewise, bound things on the otherside by preventing insane quota
8220 * periods. This also allows us to normalize in computing quota
8221 * feasibility.
8222 */
8223 if (period > max_cfs_quota_period)
8224 return -EINVAL;
8225
8226 /*
8227 * Prevent race between setting of cfs_rq->runtime_enabled and
8228 * unthrottle_offline_cfs_rqs().
8229 */
8230 get_online_cpus();
8231 mutex_lock(&cfs_constraints_mutex);
8232 ret = __cfs_schedulable(tg, period, quota);
8233 if (ret)
8234 goto out_unlock;
8235
8236 runtime_enabled = quota != RUNTIME_INF;
8237 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8238 /*
8239 * If we need to toggle cfs_bandwidth_used, off->on must occur
8240 * before making related changes, and on->off must occur afterwards
8241 */
8242 if (runtime_enabled && !runtime_was_enabled)
8243 cfs_bandwidth_usage_inc();
8244 raw_spin_lock_irq(&cfs_b->lock);
8245 cfs_b->period = ns_to_ktime(period);
8246 cfs_b->quota = quota;
8247
8248 __refill_cfs_bandwidth_runtime(cfs_b);
8249 /* restart the period timer (if active) to handle new period expiry */
8250 if (runtime_enabled)
8251 start_cfs_bandwidth(cfs_b);
8252 raw_spin_unlock_irq(&cfs_b->lock);
8253
8254 for_each_online_cpu(i) {
8255 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8256 struct rq *rq = cfs_rq->rq;
8257
8258 raw_spin_lock_irq(&rq->lock);
8259 cfs_rq->runtime_enabled = runtime_enabled;
8260 cfs_rq->runtime_remaining = 0;
8261
8262 if (cfs_rq->throttled)
8263 unthrottle_cfs_rq(cfs_rq);
8264 raw_spin_unlock_irq(&rq->lock);
8265 }
8266 if (runtime_was_enabled && !runtime_enabled)
8267 cfs_bandwidth_usage_dec();
8268 out_unlock:
8269 mutex_unlock(&cfs_constraints_mutex);
8270 put_online_cpus();
8271
8272 return ret;
8273 }
8274
8275 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8276 {
8277 u64 quota, period;
8278
8279 period = ktime_to_ns(tg->cfs_bandwidth.period);
8280 if (cfs_quota_us < 0)
8281 quota = RUNTIME_INF;
8282 else
8283 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8284
8285 return tg_set_cfs_bandwidth(tg, period, quota);
8286 }
8287
8288 long tg_get_cfs_quota(struct task_group *tg)
8289 {
8290 u64 quota_us;
8291
8292 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8293 return -1;
8294
8295 quota_us = tg->cfs_bandwidth.quota;
8296 do_div(quota_us, NSEC_PER_USEC);
8297
8298 return quota_us;
8299 }
8300
8301 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8302 {
8303 u64 quota, period;
8304
8305 period = (u64)cfs_period_us * NSEC_PER_USEC;
8306 quota = tg->cfs_bandwidth.quota;
8307
8308 return tg_set_cfs_bandwidth(tg, period, quota);
8309 }
8310
8311 long tg_get_cfs_period(struct task_group *tg)
8312 {
8313 u64 cfs_period_us;
8314
8315 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8316 do_div(cfs_period_us, NSEC_PER_USEC);
8317
8318 return cfs_period_us;
8319 }
8320
8321 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8322 struct cftype *cft)
8323 {
8324 return tg_get_cfs_quota(css_tg(css));
8325 }
8326
8327 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8328 struct cftype *cftype, s64 cfs_quota_us)
8329 {
8330 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8331 }
8332
8333 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8334 struct cftype *cft)
8335 {
8336 return tg_get_cfs_period(css_tg(css));
8337 }
8338
8339 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8340 struct cftype *cftype, u64 cfs_period_us)
8341 {
8342 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8343 }
8344
8345 struct cfs_schedulable_data {
8346 struct task_group *tg;
8347 u64 period, quota;
8348 };
8349
8350 /*
8351 * normalize group quota/period to be quota/max_period
8352 * note: units are usecs
8353 */
8354 static u64 normalize_cfs_quota(struct task_group *tg,
8355 struct cfs_schedulable_data *d)
8356 {
8357 u64 quota, period;
8358
8359 if (tg == d->tg) {
8360 period = d->period;
8361 quota = d->quota;
8362 } else {
8363 period = tg_get_cfs_period(tg);
8364 quota = tg_get_cfs_quota(tg);
8365 }
8366
8367 /* note: these should typically be equivalent */
8368 if (quota == RUNTIME_INF || quota == -1)
8369 return RUNTIME_INF;
8370
8371 return to_ratio(period, quota);
8372 }
8373
8374 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8375 {
8376 struct cfs_schedulable_data *d = data;
8377 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8378 s64 quota = 0, parent_quota = -1;
8379
8380 if (!tg->parent) {
8381 quota = RUNTIME_INF;
8382 } else {
8383 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8384
8385 quota = normalize_cfs_quota(tg, d);
8386 parent_quota = parent_b->hierarchical_quota;
8387
8388 /*
8389 * ensure max(child_quota) <= parent_quota, inherit when no
8390 * limit is set
8391 */
8392 if (quota == RUNTIME_INF)
8393 quota = parent_quota;
8394 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8395 return -EINVAL;
8396 }
8397 cfs_b->hierarchical_quota = quota;
8398
8399 return 0;
8400 }
8401
8402 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8403 {
8404 int ret;
8405 struct cfs_schedulable_data data = {
8406 .tg = tg,
8407 .period = period,
8408 .quota = quota,
8409 };
8410
8411 if (quota != RUNTIME_INF) {
8412 do_div(data.period, NSEC_PER_USEC);
8413 do_div(data.quota, NSEC_PER_USEC);
8414 }
8415
8416 rcu_read_lock();
8417 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8418 rcu_read_unlock();
8419
8420 return ret;
8421 }
8422
8423 static int cpu_stats_show(struct seq_file *sf, void *v)
8424 {
8425 struct task_group *tg = css_tg(seq_css(sf));
8426 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8427
8428 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8429 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8430 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8431
8432 return 0;
8433 }
8434 #endif /* CONFIG_CFS_BANDWIDTH */
8435 #endif /* CONFIG_FAIR_GROUP_SCHED */
8436
8437 #ifdef CONFIG_RT_GROUP_SCHED
8438 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8439 struct cftype *cft, s64 val)
8440 {
8441 return sched_group_set_rt_runtime(css_tg(css), val);
8442 }
8443
8444 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8445 struct cftype *cft)
8446 {
8447 return sched_group_rt_runtime(css_tg(css));
8448 }
8449
8450 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8451 struct cftype *cftype, u64 rt_period_us)
8452 {
8453 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8454 }
8455
8456 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8457 struct cftype *cft)
8458 {
8459 return sched_group_rt_period(css_tg(css));
8460 }
8461 #endif /* CONFIG_RT_GROUP_SCHED */
8462
8463 static struct cftype cpu_files[] = {
8464 #ifdef CONFIG_FAIR_GROUP_SCHED
8465 {
8466 .name = "shares",
8467 .read_u64 = cpu_shares_read_u64,
8468 .write_u64 = cpu_shares_write_u64,
8469 },
8470 #endif
8471 #ifdef CONFIG_CFS_BANDWIDTH
8472 {
8473 .name = "cfs_quota_us",
8474 .read_s64 = cpu_cfs_quota_read_s64,
8475 .write_s64 = cpu_cfs_quota_write_s64,
8476 },
8477 {
8478 .name = "cfs_period_us",
8479 .read_u64 = cpu_cfs_period_read_u64,
8480 .write_u64 = cpu_cfs_period_write_u64,
8481 },
8482 {
8483 .name = "stat",
8484 .seq_show = cpu_stats_show,
8485 },
8486 #endif
8487 #ifdef CONFIG_RT_GROUP_SCHED
8488 {
8489 .name = "rt_runtime_us",
8490 .read_s64 = cpu_rt_runtime_read,
8491 .write_s64 = cpu_rt_runtime_write,
8492 },
8493 {
8494 .name = "rt_period_us",
8495 .read_u64 = cpu_rt_period_read_uint,
8496 .write_u64 = cpu_rt_period_write_uint,
8497 },
8498 #endif
8499 { } /* terminate */
8500 };
8501
8502 struct cgroup_subsys cpu_cgrp_subsys = {
8503 .css_alloc = cpu_cgroup_css_alloc,
8504 .css_released = cpu_cgroup_css_released,
8505 .css_free = cpu_cgroup_css_free,
8506 .fork = cpu_cgroup_fork,
8507 .can_attach = cpu_cgroup_can_attach,
8508 .attach = cpu_cgroup_attach,
8509 .legacy_cftypes = cpu_files,
8510 .early_init = true,
8511 };
8512
8513 #endif /* CONFIG_CGROUP_SCHED */
8514
8515 void dump_cpu_task(int cpu)
8516 {
8517 pr_info("Task dump for CPU %d:\n", cpu);
8518 sched_show_task(cpu_curr(cpu));
8519 }
8520
8521 /*
8522 * Nice levels are multiplicative, with a gentle 10% change for every
8523 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8524 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8525 * that remained on nice 0.
8526 *
8527 * The "10% effect" is relative and cumulative: from _any_ nice level,
8528 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8529 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8530 * If a task goes up by ~10% and another task goes down by ~10% then
8531 * the relative distance between them is ~25%.)
8532 */
8533 const int sched_prio_to_weight[40] = {
8534 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8535 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8536 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8537 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8538 /* 0 */ 1024, 820, 655, 526, 423,
8539 /* 5 */ 335, 272, 215, 172, 137,
8540 /* 10 */ 110, 87, 70, 56, 45,
8541 /* 15 */ 36, 29, 23, 18, 15,
8542 };
8543
8544 /*
8545 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8546 *
8547 * In cases where the weight does not change often, we can use the
8548 * precalculated inverse to speed up arithmetics by turning divisions
8549 * into multiplications:
8550 */
8551 const u32 sched_prio_to_wmult[40] = {
8552 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8553 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8554 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8555 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8556 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8557 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8558 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8559 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8560 };
This page took 0.260484 seconds and 4 git commands to generate.