Merge tag 'stable/for-linus-3.12-rc0-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299
300
301 /*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 __acquires(rq->lock)
306 {
307 struct rq *rq;
308
309 lockdep_assert_held(&p->pi_lock);
310
311 for (;;) {
312 rq = task_rq(p);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
315 return rq;
316 raw_spin_unlock(&rq->lock);
317 }
318 }
319
320 /*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
325 __acquires(rq->lock)
326 {
327 struct rq *rq;
328
329 for (;;) {
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 rq = task_rq(p);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
334 return rq;
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 }
338 }
339
340 static void __task_rq_unlock(struct rq *rq)
341 __releases(rq->lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 }
345
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 __releases(rq->lock)
349 __releases(p->pi_lock)
350 {
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354
355 /*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358 static struct rq *this_rq_lock(void)
359 __acquires(rq->lock)
360 {
361 struct rq *rq;
362
363 local_irq_disable();
364 rq = this_rq();
365 raw_spin_lock(&rq->lock);
366
367 return rq;
368 }
369
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372 * Use HR-timers to deliver accurate preemption points.
373 */
374
375 static void hrtick_clear(struct rq *rq)
376 {
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379 }
380
381 /*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385 static enum hrtimer_restart hrtick(struct hrtimer *timer)
386 {
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
391 raw_spin_lock(&rq->lock);
392 update_rq_clock(rq);
393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394 raw_spin_unlock(&rq->lock);
395
396 return HRTIMER_NORESTART;
397 }
398
399 #ifdef CONFIG_SMP
400
401 static int __hrtick_restart(struct rq *rq)
402 {
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407 }
408
409 /*
410 * called from hardirq (IPI) context
411 */
412 static void __hrtick_start(void *arg)
413 {
414 struct rq *rq = arg;
415
416 raw_spin_lock(&rq->lock);
417 __hrtick_restart(rq);
418 rq->hrtick_csd_pending = 0;
419 raw_spin_unlock(&rq->lock);
420 }
421
422 /*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
427 void hrtick_start(struct rq *rq, u64 delay)
428 {
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431
432 hrtimer_set_expires(timer, time);
433
434 if (rq == this_rq()) {
435 __hrtick_restart(rq);
436 } else if (!rq->hrtick_csd_pending) {
437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438 rq->hrtick_csd_pending = 1;
439 }
440 }
441
442 static int
443 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444 {
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
454 hrtick_clear(cpu_rq(cpu));
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459 }
460
461 static __init void init_hrtick(void)
462 {
463 hotcpu_notifier(hotplug_hrtick, 0);
464 }
465 #else
466 /*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
471 void hrtick_start(struct rq *rq, u64 delay)
472 {
473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474 HRTIMER_MODE_REL_PINNED, 0);
475 }
476
477 static inline void init_hrtick(void)
478 {
479 }
480 #endif /* CONFIG_SMP */
481
482 static void init_rq_hrtick(struct rq *rq)
483 {
484 #ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
486
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490 #endif
491
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
494 }
495 #else /* CONFIG_SCHED_HRTICK */
496 static inline void hrtick_clear(struct rq *rq)
497 {
498 }
499
500 static inline void init_rq_hrtick(struct rq *rq)
501 {
502 }
503
504 static inline void init_hrtick(void)
505 {
506 }
507 #endif /* CONFIG_SCHED_HRTICK */
508
509 /*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
516 #ifdef CONFIG_SMP
517 void resched_task(struct task_struct *p)
518 {
519 int cpu;
520
521 assert_raw_spin_locked(&task_rq(p)->lock);
522
523 if (test_tsk_need_resched(p))
524 return;
525
526 set_tsk_need_resched(p);
527
528 cpu = task_cpu(p);
529 if (cpu == smp_processor_id())
530 return;
531
532 /* NEED_RESCHED must be visible before we test polling */
533 smp_mb();
534 if (!tsk_is_polling(p))
535 smp_send_reschedule(cpu);
536 }
537
538 void resched_cpu(int cpu)
539 {
540 struct rq *rq = cpu_rq(cpu);
541 unsigned long flags;
542
543 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
544 return;
545 resched_task(cpu_curr(cpu));
546 raw_spin_unlock_irqrestore(&rq->lock, flags);
547 }
548
549 #ifdef CONFIG_NO_HZ_COMMON
550 /*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558 int get_nohz_timer_target(void)
559 {
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
564 rcu_read_lock();
565 for_each_domain(cpu, sd) {
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
572 }
573 unlock:
574 rcu_read_unlock();
575 return cpu;
576 }
577 /*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
587 static void wake_up_idle_cpu(int cpu)
588 {
589 struct rq *rq = cpu_rq(cpu);
590
591 if (cpu == smp_processor_id())
592 return;
593
594 /*
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
600 */
601 if (rq->curr != rq->idle)
602 return;
603
604 /*
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
608 */
609 set_tsk_need_resched(rq->idle);
610
611 /* NEED_RESCHED must be visible before we test polling */
612 smp_mb();
613 if (!tsk_is_polling(rq->idle))
614 smp_send_reschedule(cpu);
615 }
616
617 static bool wake_up_full_nohz_cpu(int cpu)
618 {
619 if (tick_nohz_full_cpu(cpu)) {
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu);
623 return true;
624 }
625
626 return false;
627 }
628
629 void wake_up_nohz_cpu(int cpu)
630 {
631 if (!wake_up_full_nohz_cpu(cpu))
632 wake_up_idle_cpu(cpu);
633 }
634
635 static inline bool got_nohz_idle_kick(void)
636 {
637 int cpu = smp_processor_id();
638
639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 return false;
651 }
652
653 #else /* CONFIG_NO_HZ_COMMON */
654
655 static inline bool got_nohz_idle_kick(void)
656 {
657 return false;
658 }
659
660 #endif /* CONFIG_NO_HZ_COMMON */
661
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(void)
664 {
665 struct rq *rq;
666
667 rq = this_rq();
668
669 /* Make sure rq->nr_running update is visible after the IPI */
670 smp_rmb();
671
672 /* More than one running task need preemption */
673 if (rq->nr_running > 1)
674 return false;
675
676 return true;
677 }
678 #endif /* CONFIG_NO_HZ_FULL */
679
680 void sched_avg_update(struct rq *rq)
681 {
682 s64 period = sched_avg_period();
683
684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685 /*
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
689 */
690 asm("" : "+rm" (rq->age_stamp));
691 rq->age_stamp += period;
692 rq->rt_avg /= 2;
693 }
694 }
695
696 #else /* !CONFIG_SMP */
697 void resched_task(struct task_struct *p)
698 {
699 assert_raw_spin_locked(&task_rq(p)->lock);
700 set_tsk_need_resched(p);
701 }
702 #endif /* CONFIG_SMP */
703
704 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
705 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
706 /*
707 * Iterate task_group tree rooted at *from, calling @down when first entering a
708 * node and @up when leaving it for the final time.
709 *
710 * Caller must hold rcu_lock or sufficient equivalent.
711 */
712 int walk_tg_tree_from(struct task_group *from,
713 tg_visitor down, tg_visitor up, void *data)
714 {
715 struct task_group *parent, *child;
716 int ret;
717
718 parent = from;
719
720 down:
721 ret = (*down)(parent, data);
722 if (ret)
723 goto out;
724 list_for_each_entry_rcu(child, &parent->children, siblings) {
725 parent = child;
726 goto down;
727
728 up:
729 continue;
730 }
731 ret = (*up)(parent, data);
732 if (ret || parent == from)
733 goto out;
734
735 child = parent;
736 parent = parent->parent;
737 if (parent)
738 goto up;
739 out:
740 return ret;
741 }
742
743 int tg_nop(struct task_group *tg, void *data)
744 {
745 return 0;
746 }
747 #endif
748
749 static void set_load_weight(struct task_struct *p)
750 {
751 int prio = p->static_prio - MAX_RT_PRIO;
752 struct load_weight *load = &p->se.load;
753
754 /*
755 * SCHED_IDLE tasks get minimal weight:
756 */
757 if (p->policy == SCHED_IDLE) {
758 load->weight = scale_load(WEIGHT_IDLEPRIO);
759 load->inv_weight = WMULT_IDLEPRIO;
760 return;
761 }
762
763 load->weight = scale_load(prio_to_weight[prio]);
764 load->inv_weight = prio_to_wmult[prio];
765 }
766
767 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
768 {
769 update_rq_clock(rq);
770 sched_info_queued(p);
771 p->sched_class->enqueue_task(rq, p, flags);
772 }
773
774 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
775 {
776 update_rq_clock(rq);
777 sched_info_dequeued(p);
778 p->sched_class->dequeue_task(rq, p, flags);
779 }
780
781 void activate_task(struct rq *rq, struct task_struct *p, int flags)
782 {
783 if (task_contributes_to_load(p))
784 rq->nr_uninterruptible--;
785
786 enqueue_task(rq, p, flags);
787 }
788
789 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
790 {
791 if (task_contributes_to_load(p))
792 rq->nr_uninterruptible++;
793
794 dequeue_task(rq, p, flags);
795 }
796
797 static void update_rq_clock_task(struct rq *rq, s64 delta)
798 {
799 /*
800 * In theory, the compile should just see 0 here, and optimize out the call
801 * to sched_rt_avg_update. But I don't trust it...
802 */
803 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
804 s64 steal = 0, irq_delta = 0;
805 #endif
806 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
807 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
808
809 /*
810 * Since irq_time is only updated on {soft,}irq_exit, we might run into
811 * this case when a previous update_rq_clock() happened inside a
812 * {soft,}irq region.
813 *
814 * When this happens, we stop ->clock_task and only update the
815 * prev_irq_time stamp to account for the part that fit, so that a next
816 * update will consume the rest. This ensures ->clock_task is
817 * monotonic.
818 *
819 * It does however cause some slight miss-attribution of {soft,}irq
820 * time, a more accurate solution would be to update the irq_time using
821 * the current rq->clock timestamp, except that would require using
822 * atomic ops.
823 */
824 if (irq_delta > delta)
825 irq_delta = delta;
826
827 rq->prev_irq_time += irq_delta;
828 delta -= irq_delta;
829 #endif
830 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
831 if (static_key_false((&paravirt_steal_rq_enabled))) {
832 u64 st;
833
834 steal = paravirt_steal_clock(cpu_of(rq));
835 steal -= rq->prev_steal_time_rq;
836
837 if (unlikely(steal > delta))
838 steal = delta;
839
840 st = steal_ticks(steal);
841 steal = st * TICK_NSEC;
842
843 rq->prev_steal_time_rq += steal;
844
845 delta -= steal;
846 }
847 #endif
848
849 rq->clock_task += delta;
850
851 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
852 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
853 sched_rt_avg_update(rq, irq_delta + steal);
854 #endif
855 }
856
857 void sched_set_stop_task(int cpu, struct task_struct *stop)
858 {
859 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
860 struct task_struct *old_stop = cpu_rq(cpu)->stop;
861
862 if (stop) {
863 /*
864 * Make it appear like a SCHED_FIFO task, its something
865 * userspace knows about and won't get confused about.
866 *
867 * Also, it will make PI more or less work without too
868 * much confusion -- but then, stop work should not
869 * rely on PI working anyway.
870 */
871 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
872
873 stop->sched_class = &stop_sched_class;
874 }
875
876 cpu_rq(cpu)->stop = stop;
877
878 if (old_stop) {
879 /*
880 * Reset it back to a normal scheduling class so that
881 * it can die in pieces.
882 */
883 old_stop->sched_class = &rt_sched_class;
884 }
885 }
886
887 /*
888 * __normal_prio - return the priority that is based on the static prio
889 */
890 static inline int __normal_prio(struct task_struct *p)
891 {
892 return p->static_prio;
893 }
894
895 /*
896 * Calculate the expected normal priority: i.e. priority
897 * without taking RT-inheritance into account. Might be
898 * boosted by interactivity modifiers. Changes upon fork,
899 * setprio syscalls, and whenever the interactivity
900 * estimator recalculates.
901 */
902 static inline int normal_prio(struct task_struct *p)
903 {
904 int prio;
905
906 if (task_has_rt_policy(p))
907 prio = MAX_RT_PRIO-1 - p->rt_priority;
908 else
909 prio = __normal_prio(p);
910 return prio;
911 }
912
913 /*
914 * Calculate the current priority, i.e. the priority
915 * taken into account by the scheduler. This value might
916 * be boosted by RT tasks, or might be boosted by
917 * interactivity modifiers. Will be RT if the task got
918 * RT-boosted. If not then it returns p->normal_prio.
919 */
920 static int effective_prio(struct task_struct *p)
921 {
922 p->normal_prio = normal_prio(p);
923 /*
924 * If we are RT tasks or we were boosted to RT priority,
925 * keep the priority unchanged. Otherwise, update priority
926 * to the normal priority:
927 */
928 if (!rt_prio(p->prio))
929 return p->normal_prio;
930 return p->prio;
931 }
932
933 /**
934 * task_curr - is this task currently executing on a CPU?
935 * @p: the task in question.
936 *
937 * Return: 1 if the task is currently executing. 0 otherwise.
938 */
939 inline int task_curr(const struct task_struct *p)
940 {
941 return cpu_curr(task_cpu(p)) == p;
942 }
943
944 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
945 const struct sched_class *prev_class,
946 int oldprio)
947 {
948 if (prev_class != p->sched_class) {
949 if (prev_class->switched_from)
950 prev_class->switched_from(rq, p);
951 p->sched_class->switched_to(rq, p);
952 } else if (oldprio != p->prio)
953 p->sched_class->prio_changed(rq, p, oldprio);
954 }
955
956 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
957 {
958 const struct sched_class *class;
959
960 if (p->sched_class == rq->curr->sched_class) {
961 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
962 } else {
963 for_each_class(class) {
964 if (class == rq->curr->sched_class)
965 break;
966 if (class == p->sched_class) {
967 resched_task(rq->curr);
968 break;
969 }
970 }
971 }
972
973 /*
974 * A queue event has occurred, and we're going to schedule. In
975 * this case, we can save a useless back to back clock update.
976 */
977 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
978 rq->skip_clock_update = 1;
979 }
980
981 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
982
983 void register_task_migration_notifier(struct notifier_block *n)
984 {
985 atomic_notifier_chain_register(&task_migration_notifier, n);
986 }
987
988 #ifdef CONFIG_SMP
989 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
990 {
991 #ifdef CONFIG_SCHED_DEBUG
992 /*
993 * We should never call set_task_cpu() on a blocked task,
994 * ttwu() will sort out the placement.
995 */
996 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
997 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
998
999 #ifdef CONFIG_LOCKDEP
1000 /*
1001 * The caller should hold either p->pi_lock or rq->lock, when changing
1002 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1003 *
1004 * sched_move_task() holds both and thus holding either pins the cgroup,
1005 * see task_group().
1006 *
1007 * Furthermore, all task_rq users should acquire both locks, see
1008 * task_rq_lock().
1009 */
1010 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1011 lockdep_is_held(&task_rq(p)->lock)));
1012 #endif
1013 #endif
1014
1015 trace_sched_migrate_task(p, new_cpu);
1016
1017 if (task_cpu(p) != new_cpu) {
1018 struct task_migration_notifier tmn;
1019
1020 if (p->sched_class->migrate_task_rq)
1021 p->sched_class->migrate_task_rq(p, new_cpu);
1022 p->se.nr_migrations++;
1023 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1024
1025 tmn.task = p;
1026 tmn.from_cpu = task_cpu(p);
1027 tmn.to_cpu = new_cpu;
1028
1029 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1030 }
1031
1032 __set_task_cpu(p, new_cpu);
1033 }
1034
1035 struct migration_arg {
1036 struct task_struct *task;
1037 int dest_cpu;
1038 };
1039
1040 static int migration_cpu_stop(void *data);
1041
1042 /*
1043 * wait_task_inactive - wait for a thread to unschedule.
1044 *
1045 * If @match_state is nonzero, it's the @p->state value just checked and
1046 * not expected to change. If it changes, i.e. @p might have woken up,
1047 * then return zero. When we succeed in waiting for @p to be off its CPU,
1048 * we return a positive number (its total switch count). If a second call
1049 * a short while later returns the same number, the caller can be sure that
1050 * @p has remained unscheduled the whole time.
1051 *
1052 * The caller must ensure that the task *will* unschedule sometime soon,
1053 * else this function might spin for a *long* time. This function can't
1054 * be called with interrupts off, or it may introduce deadlock with
1055 * smp_call_function() if an IPI is sent by the same process we are
1056 * waiting to become inactive.
1057 */
1058 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1059 {
1060 unsigned long flags;
1061 int running, on_rq;
1062 unsigned long ncsw;
1063 struct rq *rq;
1064
1065 for (;;) {
1066 /*
1067 * We do the initial early heuristics without holding
1068 * any task-queue locks at all. We'll only try to get
1069 * the runqueue lock when things look like they will
1070 * work out!
1071 */
1072 rq = task_rq(p);
1073
1074 /*
1075 * If the task is actively running on another CPU
1076 * still, just relax and busy-wait without holding
1077 * any locks.
1078 *
1079 * NOTE! Since we don't hold any locks, it's not
1080 * even sure that "rq" stays as the right runqueue!
1081 * But we don't care, since "task_running()" will
1082 * return false if the runqueue has changed and p
1083 * is actually now running somewhere else!
1084 */
1085 while (task_running(rq, p)) {
1086 if (match_state && unlikely(p->state != match_state))
1087 return 0;
1088 cpu_relax();
1089 }
1090
1091 /*
1092 * Ok, time to look more closely! We need the rq
1093 * lock now, to be *sure*. If we're wrong, we'll
1094 * just go back and repeat.
1095 */
1096 rq = task_rq_lock(p, &flags);
1097 trace_sched_wait_task(p);
1098 running = task_running(rq, p);
1099 on_rq = p->on_rq;
1100 ncsw = 0;
1101 if (!match_state || p->state == match_state)
1102 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1103 task_rq_unlock(rq, p, &flags);
1104
1105 /*
1106 * If it changed from the expected state, bail out now.
1107 */
1108 if (unlikely(!ncsw))
1109 break;
1110
1111 /*
1112 * Was it really running after all now that we
1113 * checked with the proper locks actually held?
1114 *
1115 * Oops. Go back and try again..
1116 */
1117 if (unlikely(running)) {
1118 cpu_relax();
1119 continue;
1120 }
1121
1122 /*
1123 * It's not enough that it's not actively running,
1124 * it must be off the runqueue _entirely_, and not
1125 * preempted!
1126 *
1127 * So if it was still runnable (but just not actively
1128 * running right now), it's preempted, and we should
1129 * yield - it could be a while.
1130 */
1131 if (unlikely(on_rq)) {
1132 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1133
1134 set_current_state(TASK_UNINTERRUPTIBLE);
1135 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1136 continue;
1137 }
1138
1139 /*
1140 * Ahh, all good. It wasn't running, and it wasn't
1141 * runnable, which means that it will never become
1142 * running in the future either. We're all done!
1143 */
1144 break;
1145 }
1146
1147 return ncsw;
1148 }
1149
1150 /***
1151 * kick_process - kick a running thread to enter/exit the kernel
1152 * @p: the to-be-kicked thread
1153 *
1154 * Cause a process which is running on another CPU to enter
1155 * kernel-mode, without any delay. (to get signals handled.)
1156 *
1157 * NOTE: this function doesn't have to take the runqueue lock,
1158 * because all it wants to ensure is that the remote task enters
1159 * the kernel. If the IPI races and the task has been migrated
1160 * to another CPU then no harm is done and the purpose has been
1161 * achieved as well.
1162 */
1163 void kick_process(struct task_struct *p)
1164 {
1165 int cpu;
1166
1167 preempt_disable();
1168 cpu = task_cpu(p);
1169 if ((cpu != smp_processor_id()) && task_curr(p))
1170 smp_send_reschedule(cpu);
1171 preempt_enable();
1172 }
1173 EXPORT_SYMBOL_GPL(kick_process);
1174 #endif /* CONFIG_SMP */
1175
1176 #ifdef CONFIG_SMP
1177 /*
1178 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1179 */
1180 static int select_fallback_rq(int cpu, struct task_struct *p)
1181 {
1182 int nid = cpu_to_node(cpu);
1183 const struct cpumask *nodemask = NULL;
1184 enum { cpuset, possible, fail } state = cpuset;
1185 int dest_cpu;
1186
1187 /*
1188 * If the node that the cpu is on has been offlined, cpu_to_node()
1189 * will return -1. There is no cpu on the node, and we should
1190 * select the cpu on the other node.
1191 */
1192 if (nid != -1) {
1193 nodemask = cpumask_of_node(nid);
1194
1195 /* Look for allowed, online CPU in same node. */
1196 for_each_cpu(dest_cpu, nodemask) {
1197 if (!cpu_online(dest_cpu))
1198 continue;
1199 if (!cpu_active(dest_cpu))
1200 continue;
1201 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1202 return dest_cpu;
1203 }
1204 }
1205
1206 for (;;) {
1207 /* Any allowed, online CPU? */
1208 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1209 if (!cpu_online(dest_cpu))
1210 continue;
1211 if (!cpu_active(dest_cpu))
1212 continue;
1213 goto out;
1214 }
1215
1216 switch (state) {
1217 case cpuset:
1218 /* No more Mr. Nice Guy. */
1219 cpuset_cpus_allowed_fallback(p);
1220 state = possible;
1221 break;
1222
1223 case possible:
1224 do_set_cpus_allowed(p, cpu_possible_mask);
1225 state = fail;
1226 break;
1227
1228 case fail:
1229 BUG();
1230 break;
1231 }
1232 }
1233
1234 out:
1235 if (state != cpuset) {
1236 /*
1237 * Don't tell them about moving exiting tasks or
1238 * kernel threads (both mm NULL), since they never
1239 * leave kernel.
1240 */
1241 if (p->mm && printk_ratelimit()) {
1242 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1243 task_pid_nr(p), p->comm, cpu);
1244 }
1245 }
1246
1247 return dest_cpu;
1248 }
1249
1250 /*
1251 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1252 */
1253 static inline
1254 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1255 {
1256 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1257
1258 /*
1259 * In order not to call set_task_cpu() on a blocking task we need
1260 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1261 * cpu.
1262 *
1263 * Since this is common to all placement strategies, this lives here.
1264 *
1265 * [ this allows ->select_task() to simply return task_cpu(p) and
1266 * not worry about this generic constraint ]
1267 */
1268 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1269 !cpu_online(cpu)))
1270 cpu = select_fallback_rq(task_cpu(p), p);
1271
1272 return cpu;
1273 }
1274
1275 static void update_avg(u64 *avg, u64 sample)
1276 {
1277 s64 diff = sample - *avg;
1278 *avg += diff >> 3;
1279 }
1280 #endif
1281
1282 static void
1283 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1284 {
1285 #ifdef CONFIG_SCHEDSTATS
1286 struct rq *rq = this_rq();
1287
1288 #ifdef CONFIG_SMP
1289 int this_cpu = smp_processor_id();
1290
1291 if (cpu == this_cpu) {
1292 schedstat_inc(rq, ttwu_local);
1293 schedstat_inc(p, se.statistics.nr_wakeups_local);
1294 } else {
1295 struct sched_domain *sd;
1296
1297 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1298 rcu_read_lock();
1299 for_each_domain(this_cpu, sd) {
1300 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1301 schedstat_inc(sd, ttwu_wake_remote);
1302 break;
1303 }
1304 }
1305 rcu_read_unlock();
1306 }
1307
1308 if (wake_flags & WF_MIGRATED)
1309 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1310
1311 #endif /* CONFIG_SMP */
1312
1313 schedstat_inc(rq, ttwu_count);
1314 schedstat_inc(p, se.statistics.nr_wakeups);
1315
1316 if (wake_flags & WF_SYNC)
1317 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1318
1319 #endif /* CONFIG_SCHEDSTATS */
1320 }
1321
1322 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1323 {
1324 activate_task(rq, p, en_flags);
1325 p->on_rq = 1;
1326
1327 /* if a worker is waking up, notify workqueue */
1328 if (p->flags & PF_WQ_WORKER)
1329 wq_worker_waking_up(p, cpu_of(rq));
1330 }
1331
1332 /*
1333 * Mark the task runnable and perform wakeup-preemption.
1334 */
1335 static void
1336 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1337 {
1338 check_preempt_curr(rq, p, wake_flags);
1339 trace_sched_wakeup(p, true);
1340
1341 p->state = TASK_RUNNING;
1342 #ifdef CONFIG_SMP
1343 if (p->sched_class->task_woken)
1344 p->sched_class->task_woken(rq, p);
1345
1346 if (rq->idle_stamp) {
1347 u64 delta = rq_clock(rq) - rq->idle_stamp;
1348 u64 max = 2*sysctl_sched_migration_cost;
1349
1350 if (delta > max)
1351 rq->avg_idle = max;
1352 else
1353 update_avg(&rq->avg_idle, delta);
1354 rq->idle_stamp = 0;
1355 }
1356 #endif
1357 }
1358
1359 static void
1360 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1361 {
1362 #ifdef CONFIG_SMP
1363 if (p->sched_contributes_to_load)
1364 rq->nr_uninterruptible--;
1365 #endif
1366
1367 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1368 ttwu_do_wakeup(rq, p, wake_flags);
1369 }
1370
1371 /*
1372 * Called in case the task @p isn't fully descheduled from its runqueue,
1373 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1374 * since all we need to do is flip p->state to TASK_RUNNING, since
1375 * the task is still ->on_rq.
1376 */
1377 static int ttwu_remote(struct task_struct *p, int wake_flags)
1378 {
1379 struct rq *rq;
1380 int ret = 0;
1381
1382 rq = __task_rq_lock(p);
1383 if (p->on_rq) {
1384 /* check_preempt_curr() may use rq clock */
1385 update_rq_clock(rq);
1386 ttwu_do_wakeup(rq, p, wake_flags);
1387 ret = 1;
1388 }
1389 __task_rq_unlock(rq);
1390
1391 return ret;
1392 }
1393
1394 #ifdef CONFIG_SMP
1395 static void sched_ttwu_pending(void)
1396 {
1397 struct rq *rq = this_rq();
1398 struct llist_node *llist = llist_del_all(&rq->wake_list);
1399 struct task_struct *p;
1400
1401 raw_spin_lock(&rq->lock);
1402
1403 while (llist) {
1404 p = llist_entry(llist, struct task_struct, wake_entry);
1405 llist = llist_next(llist);
1406 ttwu_do_activate(rq, p, 0);
1407 }
1408
1409 raw_spin_unlock(&rq->lock);
1410 }
1411
1412 void scheduler_ipi(void)
1413 {
1414 if (llist_empty(&this_rq()->wake_list)
1415 && !tick_nohz_full_cpu(smp_processor_id())
1416 && !got_nohz_idle_kick())
1417 return;
1418
1419 /*
1420 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1421 * traditionally all their work was done from the interrupt return
1422 * path. Now that we actually do some work, we need to make sure
1423 * we do call them.
1424 *
1425 * Some archs already do call them, luckily irq_enter/exit nest
1426 * properly.
1427 *
1428 * Arguably we should visit all archs and update all handlers,
1429 * however a fair share of IPIs are still resched only so this would
1430 * somewhat pessimize the simple resched case.
1431 */
1432 irq_enter();
1433 tick_nohz_full_check();
1434 sched_ttwu_pending();
1435
1436 /*
1437 * Check if someone kicked us for doing the nohz idle load balance.
1438 */
1439 if (unlikely(got_nohz_idle_kick())) {
1440 this_rq()->idle_balance = 1;
1441 raise_softirq_irqoff(SCHED_SOFTIRQ);
1442 }
1443 irq_exit();
1444 }
1445
1446 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1447 {
1448 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1449 smp_send_reschedule(cpu);
1450 }
1451
1452 bool cpus_share_cache(int this_cpu, int that_cpu)
1453 {
1454 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1455 }
1456 #endif /* CONFIG_SMP */
1457
1458 static void ttwu_queue(struct task_struct *p, int cpu)
1459 {
1460 struct rq *rq = cpu_rq(cpu);
1461
1462 #if defined(CONFIG_SMP)
1463 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1464 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1465 ttwu_queue_remote(p, cpu);
1466 return;
1467 }
1468 #endif
1469
1470 raw_spin_lock(&rq->lock);
1471 ttwu_do_activate(rq, p, 0);
1472 raw_spin_unlock(&rq->lock);
1473 }
1474
1475 /**
1476 * try_to_wake_up - wake up a thread
1477 * @p: the thread to be awakened
1478 * @state: the mask of task states that can be woken
1479 * @wake_flags: wake modifier flags (WF_*)
1480 *
1481 * Put it on the run-queue if it's not already there. The "current"
1482 * thread is always on the run-queue (except when the actual
1483 * re-schedule is in progress), and as such you're allowed to do
1484 * the simpler "current->state = TASK_RUNNING" to mark yourself
1485 * runnable without the overhead of this.
1486 *
1487 * Return: %true if @p was woken up, %false if it was already running.
1488 * or @state didn't match @p's state.
1489 */
1490 static int
1491 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1492 {
1493 unsigned long flags;
1494 int cpu, success = 0;
1495
1496 /*
1497 * If we are going to wake up a thread waiting for CONDITION we
1498 * need to ensure that CONDITION=1 done by the caller can not be
1499 * reordered with p->state check below. This pairs with mb() in
1500 * set_current_state() the waiting thread does.
1501 */
1502 smp_mb__before_spinlock();
1503 raw_spin_lock_irqsave(&p->pi_lock, flags);
1504 if (!(p->state & state))
1505 goto out;
1506
1507 success = 1; /* we're going to change ->state */
1508 cpu = task_cpu(p);
1509
1510 if (p->on_rq && ttwu_remote(p, wake_flags))
1511 goto stat;
1512
1513 #ifdef CONFIG_SMP
1514 /*
1515 * If the owning (remote) cpu is still in the middle of schedule() with
1516 * this task as prev, wait until its done referencing the task.
1517 */
1518 while (p->on_cpu)
1519 cpu_relax();
1520 /*
1521 * Pairs with the smp_wmb() in finish_lock_switch().
1522 */
1523 smp_rmb();
1524
1525 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1526 p->state = TASK_WAKING;
1527
1528 if (p->sched_class->task_waking)
1529 p->sched_class->task_waking(p);
1530
1531 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1532 if (task_cpu(p) != cpu) {
1533 wake_flags |= WF_MIGRATED;
1534 set_task_cpu(p, cpu);
1535 }
1536 #endif /* CONFIG_SMP */
1537
1538 ttwu_queue(p, cpu);
1539 stat:
1540 ttwu_stat(p, cpu, wake_flags);
1541 out:
1542 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1543
1544 return success;
1545 }
1546
1547 /**
1548 * try_to_wake_up_local - try to wake up a local task with rq lock held
1549 * @p: the thread to be awakened
1550 *
1551 * Put @p on the run-queue if it's not already there. The caller must
1552 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1553 * the current task.
1554 */
1555 static void try_to_wake_up_local(struct task_struct *p)
1556 {
1557 struct rq *rq = task_rq(p);
1558
1559 if (WARN_ON_ONCE(rq != this_rq()) ||
1560 WARN_ON_ONCE(p == current))
1561 return;
1562
1563 lockdep_assert_held(&rq->lock);
1564
1565 if (!raw_spin_trylock(&p->pi_lock)) {
1566 raw_spin_unlock(&rq->lock);
1567 raw_spin_lock(&p->pi_lock);
1568 raw_spin_lock(&rq->lock);
1569 }
1570
1571 if (!(p->state & TASK_NORMAL))
1572 goto out;
1573
1574 if (!p->on_rq)
1575 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1576
1577 ttwu_do_wakeup(rq, p, 0);
1578 ttwu_stat(p, smp_processor_id(), 0);
1579 out:
1580 raw_spin_unlock(&p->pi_lock);
1581 }
1582
1583 /**
1584 * wake_up_process - Wake up a specific process
1585 * @p: The process to be woken up.
1586 *
1587 * Attempt to wake up the nominated process and move it to the set of runnable
1588 * processes.
1589 *
1590 * Return: 1 if the process was woken up, 0 if it was already running.
1591 *
1592 * It may be assumed that this function implies a write memory barrier before
1593 * changing the task state if and only if any tasks are woken up.
1594 */
1595 int wake_up_process(struct task_struct *p)
1596 {
1597 WARN_ON(task_is_stopped_or_traced(p));
1598 return try_to_wake_up(p, TASK_NORMAL, 0);
1599 }
1600 EXPORT_SYMBOL(wake_up_process);
1601
1602 int wake_up_state(struct task_struct *p, unsigned int state)
1603 {
1604 return try_to_wake_up(p, state, 0);
1605 }
1606
1607 /*
1608 * Perform scheduler related setup for a newly forked process p.
1609 * p is forked by current.
1610 *
1611 * __sched_fork() is basic setup used by init_idle() too:
1612 */
1613 static void __sched_fork(struct task_struct *p)
1614 {
1615 p->on_rq = 0;
1616
1617 p->se.on_rq = 0;
1618 p->se.exec_start = 0;
1619 p->se.sum_exec_runtime = 0;
1620 p->se.prev_sum_exec_runtime = 0;
1621 p->se.nr_migrations = 0;
1622 p->se.vruntime = 0;
1623 INIT_LIST_HEAD(&p->se.group_node);
1624
1625 #ifdef CONFIG_SCHEDSTATS
1626 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1627 #endif
1628
1629 INIT_LIST_HEAD(&p->rt.run_list);
1630
1631 #ifdef CONFIG_PREEMPT_NOTIFIERS
1632 INIT_HLIST_HEAD(&p->preempt_notifiers);
1633 #endif
1634
1635 #ifdef CONFIG_NUMA_BALANCING
1636 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1637 p->mm->numa_next_scan = jiffies;
1638 p->mm->numa_next_reset = jiffies;
1639 p->mm->numa_scan_seq = 0;
1640 }
1641
1642 p->node_stamp = 0ULL;
1643 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1644 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1645 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1646 p->numa_work.next = &p->numa_work;
1647 #endif /* CONFIG_NUMA_BALANCING */
1648 }
1649
1650 #ifdef CONFIG_NUMA_BALANCING
1651 #ifdef CONFIG_SCHED_DEBUG
1652 void set_numabalancing_state(bool enabled)
1653 {
1654 if (enabled)
1655 sched_feat_set("NUMA");
1656 else
1657 sched_feat_set("NO_NUMA");
1658 }
1659 #else
1660 __read_mostly bool numabalancing_enabled;
1661
1662 void set_numabalancing_state(bool enabled)
1663 {
1664 numabalancing_enabled = enabled;
1665 }
1666 #endif /* CONFIG_SCHED_DEBUG */
1667 #endif /* CONFIG_NUMA_BALANCING */
1668
1669 /*
1670 * fork()/clone()-time setup:
1671 */
1672 void sched_fork(struct task_struct *p)
1673 {
1674 unsigned long flags;
1675 int cpu = get_cpu();
1676
1677 __sched_fork(p);
1678 /*
1679 * We mark the process as running here. This guarantees that
1680 * nobody will actually run it, and a signal or other external
1681 * event cannot wake it up and insert it on the runqueue either.
1682 */
1683 p->state = TASK_RUNNING;
1684
1685 /*
1686 * Make sure we do not leak PI boosting priority to the child.
1687 */
1688 p->prio = current->normal_prio;
1689
1690 /*
1691 * Revert to default priority/policy on fork if requested.
1692 */
1693 if (unlikely(p->sched_reset_on_fork)) {
1694 if (task_has_rt_policy(p)) {
1695 p->policy = SCHED_NORMAL;
1696 p->static_prio = NICE_TO_PRIO(0);
1697 p->rt_priority = 0;
1698 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1699 p->static_prio = NICE_TO_PRIO(0);
1700
1701 p->prio = p->normal_prio = __normal_prio(p);
1702 set_load_weight(p);
1703
1704 /*
1705 * We don't need the reset flag anymore after the fork. It has
1706 * fulfilled its duty:
1707 */
1708 p->sched_reset_on_fork = 0;
1709 }
1710
1711 if (!rt_prio(p->prio))
1712 p->sched_class = &fair_sched_class;
1713
1714 if (p->sched_class->task_fork)
1715 p->sched_class->task_fork(p);
1716
1717 /*
1718 * The child is not yet in the pid-hash so no cgroup attach races,
1719 * and the cgroup is pinned to this child due to cgroup_fork()
1720 * is ran before sched_fork().
1721 *
1722 * Silence PROVE_RCU.
1723 */
1724 raw_spin_lock_irqsave(&p->pi_lock, flags);
1725 set_task_cpu(p, cpu);
1726 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1727
1728 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1729 if (likely(sched_info_on()))
1730 memset(&p->sched_info, 0, sizeof(p->sched_info));
1731 #endif
1732 #if defined(CONFIG_SMP)
1733 p->on_cpu = 0;
1734 #endif
1735 #ifdef CONFIG_PREEMPT_COUNT
1736 /* Want to start with kernel preemption disabled. */
1737 task_thread_info(p)->preempt_count = 1;
1738 #endif
1739 #ifdef CONFIG_SMP
1740 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1741 #endif
1742
1743 put_cpu();
1744 }
1745
1746 /*
1747 * wake_up_new_task - wake up a newly created task for the first time.
1748 *
1749 * This function will do some initial scheduler statistics housekeeping
1750 * that must be done for every newly created context, then puts the task
1751 * on the runqueue and wakes it.
1752 */
1753 void wake_up_new_task(struct task_struct *p)
1754 {
1755 unsigned long flags;
1756 struct rq *rq;
1757
1758 raw_spin_lock_irqsave(&p->pi_lock, flags);
1759 #ifdef CONFIG_SMP
1760 /*
1761 * Fork balancing, do it here and not earlier because:
1762 * - cpus_allowed can change in the fork path
1763 * - any previously selected cpu might disappear through hotplug
1764 */
1765 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1766 #endif
1767
1768 /* Initialize new task's runnable average */
1769 init_task_runnable_average(p);
1770 rq = __task_rq_lock(p);
1771 activate_task(rq, p, 0);
1772 p->on_rq = 1;
1773 trace_sched_wakeup_new(p, true);
1774 check_preempt_curr(rq, p, WF_FORK);
1775 #ifdef CONFIG_SMP
1776 if (p->sched_class->task_woken)
1777 p->sched_class->task_woken(rq, p);
1778 #endif
1779 task_rq_unlock(rq, p, &flags);
1780 }
1781
1782 #ifdef CONFIG_PREEMPT_NOTIFIERS
1783
1784 /**
1785 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1786 * @notifier: notifier struct to register
1787 */
1788 void preempt_notifier_register(struct preempt_notifier *notifier)
1789 {
1790 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1791 }
1792 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1793
1794 /**
1795 * preempt_notifier_unregister - no longer interested in preemption notifications
1796 * @notifier: notifier struct to unregister
1797 *
1798 * This is safe to call from within a preemption notifier.
1799 */
1800 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1801 {
1802 hlist_del(&notifier->link);
1803 }
1804 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1805
1806 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1807 {
1808 struct preempt_notifier *notifier;
1809
1810 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1811 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1812 }
1813
1814 static void
1815 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1816 struct task_struct *next)
1817 {
1818 struct preempt_notifier *notifier;
1819
1820 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1821 notifier->ops->sched_out(notifier, next);
1822 }
1823
1824 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1825
1826 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1827 {
1828 }
1829
1830 static void
1831 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1832 struct task_struct *next)
1833 {
1834 }
1835
1836 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1837
1838 /**
1839 * prepare_task_switch - prepare to switch tasks
1840 * @rq: the runqueue preparing to switch
1841 * @prev: the current task that is being switched out
1842 * @next: the task we are going to switch to.
1843 *
1844 * This is called with the rq lock held and interrupts off. It must
1845 * be paired with a subsequent finish_task_switch after the context
1846 * switch.
1847 *
1848 * prepare_task_switch sets up locking and calls architecture specific
1849 * hooks.
1850 */
1851 static inline void
1852 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1853 struct task_struct *next)
1854 {
1855 trace_sched_switch(prev, next);
1856 sched_info_switch(prev, next);
1857 perf_event_task_sched_out(prev, next);
1858 fire_sched_out_preempt_notifiers(prev, next);
1859 prepare_lock_switch(rq, next);
1860 prepare_arch_switch(next);
1861 }
1862
1863 /**
1864 * finish_task_switch - clean up after a task-switch
1865 * @rq: runqueue associated with task-switch
1866 * @prev: the thread we just switched away from.
1867 *
1868 * finish_task_switch must be called after the context switch, paired
1869 * with a prepare_task_switch call before the context switch.
1870 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1871 * and do any other architecture-specific cleanup actions.
1872 *
1873 * Note that we may have delayed dropping an mm in context_switch(). If
1874 * so, we finish that here outside of the runqueue lock. (Doing it
1875 * with the lock held can cause deadlocks; see schedule() for
1876 * details.)
1877 */
1878 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1879 __releases(rq->lock)
1880 {
1881 struct mm_struct *mm = rq->prev_mm;
1882 long prev_state;
1883
1884 rq->prev_mm = NULL;
1885
1886 /*
1887 * A task struct has one reference for the use as "current".
1888 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1889 * schedule one last time. The schedule call will never return, and
1890 * the scheduled task must drop that reference.
1891 * The test for TASK_DEAD must occur while the runqueue locks are
1892 * still held, otherwise prev could be scheduled on another cpu, die
1893 * there before we look at prev->state, and then the reference would
1894 * be dropped twice.
1895 * Manfred Spraul <manfred@colorfullife.com>
1896 */
1897 prev_state = prev->state;
1898 vtime_task_switch(prev);
1899 finish_arch_switch(prev);
1900 perf_event_task_sched_in(prev, current);
1901 finish_lock_switch(rq, prev);
1902 finish_arch_post_lock_switch();
1903
1904 fire_sched_in_preempt_notifiers(current);
1905 if (mm)
1906 mmdrop(mm);
1907 if (unlikely(prev_state == TASK_DEAD)) {
1908 /*
1909 * Remove function-return probe instances associated with this
1910 * task and put them back on the free list.
1911 */
1912 kprobe_flush_task(prev);
1913 put_task_struct(prev);
1914 }
1915
1916 tick_nohz_task_switch(current);
1917 }
1918
1919 #ifdef CONFIG_SMP
1920
1921 /* assumes rq->lock is held */
1922 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1923 {
1924 if (prev->sched_class->pre_schedule)
1925 prev->sched_class->pre_schedule(rq, prev);
1926 }
1927
1928 /* rq->lock is NOT held, but preemption is disabled */
1929 static inline void post_schedule(struct rq *rq)
1930 {
1931 if (rq->post_schedule) {
1932 unsigned long flags;
1933
1934 raw_spin_lock_irqsave(&rq->lock, flags);
1935 if (rq->curr->sched_class->post_schedule)
1936 rq->curr->sched_class->post_schedule(rq);
1937 raw_spin_unlock_irqrestore(&rq->lock, flags);
1938
1939 rq->post_schedule = 0;
1940 }
1941 }
1942
1943 #else
1944
1945 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1946 {
1947 }
1948
1949 static inline void post_schedule(struct rq *rq)
1950 {
1951 }
1952
1953 #endif
1954
1955 /**
1956 * schedule_tail - first thing a freshly forked thread must call.
1957 * @prev: the thread we just switched away from.
1958 */
1959 asmlinkage void schedule_tail(struct task_struct *prev)
1960 __releases(rq->lock)
1961 {
1962 struct rq *rq = this_rq();
1963
1964 finish_task_switch(rq, prev);
1965
1966 /*
1967 * FIXME: do we need to worry about rq being invalidated by the
1968 * task_switch?
1969 */
1970 post_schedule(rq);
1971
1972 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1973 /* In this case, finish_task_switch does not reenable preemption */
1974 preempt_enable();
1975 #endif
1976 if (current->set_child_tid)
1977 put_user(task_pid_vnr(current), current->set_child_tid);
1978 }
1979
1980 /*
1981 * context_switch - switch to the new MM and the new
1982 * thread's register state.
1983 */
1984 static inline void
1985 context_switch(struct rq *rq, struct task_struct *prev,
1986 struct task_struct *next)
1987 {
1988 struct mm_struct *mm, *oldmm;
1989
1990 prepare_task_switch(rq, prev, next);
1991
1992 mm = next->mm;
1993 oldmm = prev->active_mm;
1994 /*
1995 * For paravirt, this is coupled with an exit in switch_to to
1996 * combine the page table reload and the switch backend into
1997 * one hypercall.
1998 */
1999 arch_start_context_switch(prev);
2000
2001 if (!mm) {
2002 next->active_mm = oldmm;
2003 atomic_inc(&oldmm->mm_count);
2004 enter_lazy_tlb(oldmm, next);
2005 } else
2006 switch_mm(oldmm, mm, next);
2007
2008 if (!prev->mm) {
2009 prev->active_mm = NULL;
2010 rq->prev_mm = oldmm;
2011 }
2012 /*
2013 * Since the runqueue lock will be released by the next
2014 * task (which is an invalid locking op but in the case
2015 * of the scheduler it's an obvious special-case), so we
2016 * do an early lockdep release here:
2017 */
2018 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2019 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2020 #endif
2021
2022 context_tracking_task_switch(prev, next);
2023 /* Here we just switch the register state and the stack. */
2024 switch_to(prev, next, prev);
2025
2026 barrier();
2027 /*
2028 * this_rq must be evaluated again because prev may have moved
2029 * CPUs since it called schedule(), thus the 'rq' on its stack
2030 * frame will be invalid.
2031 */
2032 finish_task_switch(this_rq(), prev);
2033 }
2034
2035 /*
2036 * nr_running and nr_context_switches:
2037 *
2038 * externally visible scheduler statistics: current number of runnable
2039 * threads, total number of context switches performed since bootup.
2040 */
2041 unsigned long nr_running(void)
2042 {
2043 unsigned long i, sum = 0;
2044
2045 for_each_online_cpu(i)
2046 sum += cpu_rq(i)->nr_running;
2047
2048 return sum;
2049 }
2050
2051 unsigned long long nr_context_switches(void)
2052 {
2053 int i;
2054 unsigned long long sum = 0;
2055
2056 for_each_possible_cpu(i)
2057 sum += cpu_rq(i)->nr_switches;
2058
2059 return sum;
2060 }
2061
2062 unsigned long nr_iowait(void)
2063 {
2064 unsigned long i, sum = 0;
2065
2066 for_each_possible_cpu(i)
2067 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2068
2069 return sum;
2070 }
2071
2072 unsigned long nr_iowait_cpu(int cpu)
2073 {
2074 struct rq *this = cpu_rq(cpu);
2075 return atomic_read(&this->nr_iowait);
2076 }
2077
2078 #ifdef CONFIG_SMP
2079
2080 /*
2081 * sched_exec - execve() is a valuable balancing opportunity, because at
2082 * this point the task has the smallest effective memory and cache footprint.
2083 */
2084 void sched_exec(void)
2085 {
2086 struct task_struct *p = current;
2087 unsigned long flags;
2088 int dest_cpu;
2089
2090 raw_spin_lock_irqsave(&p->pi_lock, flags);
2091 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2092 if (dest_cpu == smp_processor_id())
2093 goto unlock;
2094
2095 if (likely(cpu_active(dest_cpu))) {
2096 struct migration_arg arg = { p, dest_cpu };
2097
2098 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2099 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2100 return;
2101 }
2102 unlock:
2103 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2104 }
2105
2106 #endif
2107
2108 DEFINE_PER_CPU(struct kernel_stat, kstat);
2109 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2110
2111 EXPORT_PER_CPU_SYMBOL(kstat);
2112 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2113
2114 /*
2115 * Return any ns on the sched_clock that have not yet been accounted in
2116 * @p in case that task is currently running.
2117 *
2118 * Called with task_rq_lock() held on @rq.
2119 */
2120 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2121 {
2122 u64 ns = 0;
2123
2124 if (task_current(rq, p)) {
2125 update_rq_clock(rq);
2126 ns = rq_clock_task(rq) - p->se.exec_start;
2127 if ((s64)ns < 0)
2128 ns = 0;
2129 }
2130
2131 return ns;
2132 }
2133
2134 unsigned long long task_delta_exec(struct task_struct *p)
2135 {
2136 unsigned long flags;
2137 struct rq *rq;
2138 u64 ns = 0;
2139
2140 rq = task_rq_lock(p, &flags);
2141 ns = do_task_delta_exec(p, rq);
2142 task_rq_unlock(rq, p, &flags);
2143
2144 return ns;
2145 }
2146
2147 /*
2148 * Return accounted runtime for the task.
2149 * In case the task is currently running, return the runtime plus current's
2150 * pending runtime that have not been accounted yet.
2151 */
2152 unsigned long long task_sched_runtime(struct task_struct *p)
2153 {
2154 unsigned long flags;
2155 struct rq *rq;
2156 u64 ns = 0;
2157
2158 rq = task_rq_lock(p, &flags);
2159 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2160 task_rq_unlock(rq, p, &flags);
2161
2162 return ns;
2163 }
2164
2165 /*
2166 * This function gets called by the timer code, with HZ frequency.
2167 * We call it with interrupts disabled.
2168 */
2169 void scheduler_tick(void)
2170 {
2171 int cpu = smp_processor_id();
2172 struct rq *rq = cpu_rq(cpu);
2173 struct task_struct *curr = rq->curr;
2174
2175 sched_clock_tick();
2176
2177 raw_spin_lock(&rq->lock);
2178 update_rq_clock(rq);
2179 curr->sched_class->task_tick(rq, curr, 0);
2180 update_cpu_load_active(rq);
2181 raw_spin_unlock(&rq->lock);
2182
2183 perf_event_task_tick();
2184
2185 #ifdef CONFIG_SMP
2186 rq->idle_balance = idle_cpu(cpu);
2187 trigger_load_balance(rq, cpu);
2188 #endif
2189 rq_last_tick_reset(rq);
2190 }
2191
2192 #ifdef CONFIG_NO_HZ_FULL
2193 /**
2194 * scheduler_tick_max_deferment
2195 *
2196 * Keep at least one tick per second when a single
2197 * active task is running because the scheduler doesn't
2198 * yet completely support full dynticks environment.
2199 *
2200 * This makes sure that uptime, CFS vruntime, load
2201 * balancing, etc... continue to move forward, even
2202 * with a very low granularity.
2203 *
2204 * Return: Maximum deferment in nanoseconds.
2205 */
2206 u64 scheduler_tick_max_deferment(void)
2207 {
2208 struct rq *rq = this_rq();
2209 unsigned long next, now = ACCESS_ONCE(jiffies);
2210
2211 next = rq->last_sched_tick + HZ;
2212
2213 if (time_before_eq(next, now))
2214 return 0;
2215
2216 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2217 }
2218 #endif
2219
2220 notrace unsigned long get_parent_ip(unsigned long addr)
2221 {
2222 if (in_lock_functions(addr)) {
2223 addr = CALLER_ADDR2;
2224 if (in_lock_functions(addr))
2225 addr = CALLER_ADDR3;
2226 }
2227 return addr;
2228 }
2229
2230 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2231 defined(CONFIG_PREEMPT_TRACER))
2232
2233 void __kprobes add_preempt_count(int val)
2234 {
2235 #ifdef CONFIG_DEBUG_PREEMPT
2236 /*
2237 * Underflow?
2238 */
2239 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2240 return;
2241 #endif
2242 preempt_count() += val;
2243 #ifdef CONFIG_DEBUG_PREEMPT
2244 /*
2245 * Spinlock count overflowing soon?
2246 */
2247 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2248 PREEMPT_MASK - 10);
2249 #endif
2250 if (preempt_count() == val)
2251 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2252 }
2253 EXPORT_SYMBOL(add_preempt_count);
2254
2255 void __kprobes sub_preempt_count(int val)
2256 {
2257 #ifdef CONFIG_DEBUG_PREEMPT
2258 /*
2259 * Underflow?
2260 */
2261 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2262 return;
2263 /*
2264 * Is the spinlock portion underflowing?
2265 */
2266 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2267 !(preempt_count() & PREEMPT_MASK)))
2268 return;
2269 #endif
2270
2271 if (preempt_count() == val)
2272 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2273 preempt_count() -= val;
2274 }
2275 EXPORT_SYMBOL(sub_preempt_count);
2276
2277 #endif
2278
2279 /*
2280 * Print scheduling while atomic bug:
2281 */
2282 static noinline void __schedule_bug(struct task_struct *prev)
2283 {
2284 if (oops_in_progress)
2285 return;
2286
2287 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2288 prev->comm, prev->pid, preempt_count());
2289
2290 debug_show_held_locks(prev);
2291 print_modules();
2292 if (irqs_disabled())
2293 print_irqtrace_events(prev);
2294 dump_stack();
2295 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2296 }
2297
2298 /*
2299 * Various schedule()-time debugging checks and statistics:
2300 */
2301 static inline void schedule_debug(struct task_struct *prev)
2302 {
2303 /*
2304 * Test if we are atomic. Since do_exit() needs to call into
2305 * schedule() atomically, we ignore that path for now.
2306 * Otherwise, whine if we are scheduling when we should not be.
2307 */
2308 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2309 __schedule_bug(prev);
2310 rcu_sleep_check();
2311
2312 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2313
2314 schedstat_inc(this_rq(), sched_count);
2315 }
2316
2317 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2318 {
2319 if (prev->on_rq || rq->skip_clock_update < 0)
2320 update_rq_clock(rq);
2321 prev->sched_class->put_prev_task(rq, prev);
2322 }
2323
2324 /*
2325 * Pick up the highest-prio task:
2326 */
2327 static inline struct task_struct *
2328 pick_next_task(struct rq *rq)
2329 {
2330 const struct sched_class *class;
2331 struct task_struct *p;
2332
2333 /*
2334 * Optimization: we know that if all tasks are in
2335 * the fair class we can call that function directly:
2336 */
2337 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2338 p = fair_sched_class.pick_next_task(rq);
2339 if (likely(p))
2340 return p;
2341 }
2342
2343 for_each_class(class) {
2344 p = class->pick_next_task(rq);
2345 if (p)
2346 return p;
2347 }
2348
2349 BUG(); /* the idle class will always have a runnable task */
2350 }
2351
2352 /*
2353 * __schedule() is the main scheduler function.
2354 *
2355 * The main means of driving the scheduler and thus entering this function are:
2356 *
2357 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2358 *
2359 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2360 * paths. For example, see arch/x86/entry_64.S.
2361 *
2362 * To drive preemption between tasks, the scheduler sets the flag in timer
2363 * interrupt handler scheduler_tick().
2364 *
2365 * 3. Wakeups don't really cause entry into schedule(). They add a
2366 * task to the run-queue and that's it.
2367 *
2368 * Now, if the new task added to the run-queue preempts the current
2369 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2370 * called on the nearest possible occasion:
2371 *
2372 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2373 *
2374 * - in syscall or exception context, at the next outmost
2375 * preempt_enable(). (this might be as soon as the wake_up()'s
2376 * spin_unlock()!)
2377 *
2378 * - in IRQ context, return from interrupt-handler to
2379 * preemptible context
2380 *
2381 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2382 * then at the next:
2383 *
2384 * - cond_resched() call
2385 * - explicit schedule() call
2386 * - return from syscall or exception to user-space
2387 * - return from interrupt-handler to user-space
2388 */
2389 static void __sched __schedule(void)
2390 {
2391 struct task_struct *prev, *next;
2392 unsigned long *switch_count;
2393 struct rq *rq;
2394 int cpu;
2395
2396 need_resched:
2397 preempt_disable();
2398 cpu = smp_processor_id();
2399 rq = cpu_rq(cpu);
2400 rcu_note_context_switch(cpu);
2401 prev = rq->curr;
2402
2403 schedule_debug(prev);
2404
2405 if (sched_feat(HRTICK))
2406 hrtick_clear(rq);
2407
2408 /*
2409 * Make sure that signal_pending_state()->signal_pending() below
2410 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2411 * done by the caller to avoid the race with signal_wake_up().
2412 */
2413 smp_mb__before_spinlock();
2414 raw_spin_lock_irq(&rq->lock);
2415
2416 switch_count = &prev->nivcsw;
2417 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2418 if (unlikely(signal_pending_state(prev->state, prev))) {
2419 prev->state = TASK_RUNNING;
2420 } else {
2421 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2422 prev->on_rq = 0;
2423
2424 /*
2425 * If a worker went to sleep, notify and ask workqueue
2426 * whether it wants to wake up a task to maintain
2427 * concurrency.
2428 */
2429 if (prev->flags & PF_WQ_WORKER) {
2430 struct task_struct *to_wakeup;
2431
2432 to_wakeup = wq_worker_sleeping(prev, cpu);
2433 if (to_wakeup)
2434 try_to_wake_up_local(to_wakeup);
2435 }
2436 }
2437 switch_count = &prev->nvcsw;
2438 }
2439
2440 pre_schedule(rq, prev);
2441
2442 if (unlikely(!rq->nr_running))
2443 idle_balance(cpu, rq);
2444
2445 put_prev_task(rq, prev);
2446 next = pick_next_task(rq);
2447 clear_tsk_need_resched(prev);
2448 rq->skip_clock_update = 0;
2449
2450 if (likely(prev != next)) {
2451 rq->nr_switches++;
2452 rq->curr = next;
2453 ++*switch_count;
2454
2455 context_switch(rq, prev, next); /* unlocks the rq */
2456 /*
2457 * The context switch have flipped the stack from under us
2458 * and restored the local variables which were saved when
2459 * this task called schedule() in the past. prev == current
2460 * is still correct, but it can be moved to another cpu/rq.
2461 */
2462 cpu = smp_processor_id();
2463 rq = cpu_rq(cpu);
2464 } else
2465 raw_spin_unlock_irq(&rq->lock);
2466
2467 post_schedule(rq);
2468
2469 sched_preempt_enable_no_resched();
2470 if (need_resched())
2471 goto need_resched;
2472 }
2473
2474 static inline void sched_submit_work(struct task_struct *tsk)
2475 {
2476 if (!tsk->state || tsk_is_pi_blocked(tsk))
2477 return;
2478 /*
2479 * If we are going to sleep and we have plugged IO queued,
2480 * make sure to submit it to avoid deadlocks.
2481 */
2482 if (blk_needs_flush_plug(tsk))
2483 blk_schedule_flush_plug(tsk);
2484 }
2485
2486 asmlinkage void __sched schedule(void)
2487 {
2488 struct task_struct *tsk = current;
2489
2490 sched_submit_work(tsk);
2491 __schedule();
2492 }
2493 EXPORT_SYMBOL(schedule);
2494
2495 #ifdef CONFIG_CONTEXT_TRACKING
2496 asmlinkage void __sched schedule_user(void)
2497 {
2498 /*
2499 * If we come here after a random call to set_need_resched(),
2500 * or we have been woken up remotely but the IPI has not yet arrived,
2501 * we haven't yet exited the RCU idle mode. Do it here manually until
2502 * we find a better solution.
2503 */
2504 user_exit();
2505 schedule();
2506 user_enter();
2507 }
2508 #endif
2509
2510 /**
2511 * schedule_preempt_disabled - called with preemption disabled
2512 *
2513 * Returns with preemption disabled. Note: preempt_count must be 1
2514 */
2515 void __sched schedule_preempt_disabled(void)
2516 {
2517 sched_preempt_enable_no_resched();
2518 schedule();
2519 preempt_disable();
2520 }
2521
2522 #ifdef CONFIG_PREEMPT
2523 /*
2524 * this is the entry point to schedule() from in-kernel preemption
2525 * off of preempt_enable. Kernel preemptions off return from interrupt
2526 * occur there and call schedule directly.
2527 */
2528 asmlinkage void __sched notrace preempt_schedule(void)
2529 {
2530 /*
2531 * If there is a non-zero preempt_count or interrupts are disabled,
2532 * we do not want to preempt the current task. Just return..
2533 */
2534 if (likely(!preemptible()))
2535 return;
2536
2537 do {
2538 add_preempt_count_notrace(PREEMPT_ACTIVE);
2539 __schedule();
2540 sub_preempt_count_notrace(PREEMPT_ACTIVE);
2541
2542 /*
2543 * Check again in case we missed a preemption opportunity
2544 * between schedule and now.
2545 */
2546 barrier();
2547 } while (need_resched());
2548 }
2549 EXPORT_SYMBOL(preempt_schedule);
2550
2551 /*
2552 * this is the entry point to schedule() from kernel preemption
2553 * off of irq context.
2554 * Note, that this is called and return with irqs disabled. This will
2555 * protect us against recursive calling from irq.
2556 */
2557 asmlinkage void __sched preempt_schedule_irq(void)
2558 {
2559 struct thread_info *ti = current_thread_info();
2560 enum ctx_state prev_state;
2561
2562 /* Catch callers which need to be fixed */
2563 BUG_ON(ti->preempt_count || !irqs_disabled());
2564
2565 prev_state = exception_enter();
2566
2567 do {
2568 add_preempt_count(PREEMPT_ACTIVE);
2569 local_irq_enable();
2570 __schedule();
2571 local_irq_disable();
2572 sub_preempt_count(PREEMPT_ACTIVE);
2573
2574 /*
2575 * Check again in case we missed a preemption opportunity
2576 * between schedule and now.
2577 */
2578 barrier();
2579 } while (need_resched());
2580
2581 exception_exit(prev_state);
2582 }
2583
2584 #endif /* CONFIG_PREEMPT */
2585
2586 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2587 void *key)
2588 {
2589 return try_to_wake_up(curr->private, mode, wake_flags);
2590 }
2591 EXPORT_SYMBOL(default_wake_function);
2592
2593 /*
2594 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2595 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2596 * number) then we wake all the non-exclusive tasks and one exclusive task.
2597 *
2598 * There are circumstances in which we can try to wake a task which has already
2599 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2600 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2601 */
2602 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2603 int nr_exclusive, int wake_flags, void *key)
2604 {
2605 wait_queue_t *curr, *next;
2606
2607 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2608 unsigned flags = curr->flags;
2609
2610 if (curr->func(curr, mode, wake_flags, key) &&
2611 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2612 break;
2613 }
2614 }
2615
2616 /**
2617 * __wake_up - wake up threads blocked on a waitqueue.
2618 * @q: the waitqueue
2619 * @mode: which threads
2620 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2621 * @key: is directly passed to the wakeup function
2622 *
2623 * It may be assumed that this function implies a write memory barrier before
2624 * changing the task state if and only if any tasks are woken up.
2625 */
2626 void __wake_up(wait_queue_head_t *q, unsigned int mode,
2627 int nr_exclusive, void *key)
2628 {
2629 unsigned long flags;
2630
2631 spin_lock_irqsave(&q->lock, flags);
2632 __wake_up_common(q, mode, nr_exclusive, 0, key);
2633 spin_unlock_irqrestore(&q->lock, flags);
2634 }
2635 EXPORT_SYMBOL(__wake_up);
2636
2637 /*
2638 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2639 */
2640 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2641 {
2642 __wake_up_common(q, mode, nr, 0, NULL);
2643 }
2644 EXPORT_SYMBOL_GPL(__wake_up_locked);
2645
2646 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2647 {
2648 __wake_up_common(q, mode, 1, 0, key);
2649 }
2650 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2651
2652 /**
2653 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2654 * @q: the waitqueue
2655 * @mode: which threads
2656 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2657 * @key: opaque value to be passed to wakeup targets
2658 *
2659 * The sync wakeup differs that the waker knows that it will schedule
2660 * away soon, so while the target thread will be woken up, it will not
2661 * be migrated to another CPU - ie. the two threads are 'synchronized'
2662 * with each other. This can prevent needless bouncing between CPUs.
2663 *
2664 * On UP it can prevent extra preemption.
2665 *
2666 * It may be assumed that this function implies a write memory barrier before
2667 * changing the task state if and only if any tasks are woken up.
2668 */
2669 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2670 int nr_exclusive, void *key)
2671 {
2672 unsigned long flags;
2673 int wake_flags = WF_SYNC;
2674
2675 if (unlikely(!q))
2676 return;
2677
2678 if (unlikely(nr_exclusive != 1))
2679 wake_flags = 0;
2680
2681 spin_lock_irqsave(&q->lock, flags);
2682 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2683 spin_unlock_irqrestore(&q->lock, flags);
2684 }
2685 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2686
2687 /*
2688 * __wake_up_sync - see __wake_up_sync_key()
2689 */
2690 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2691 {
2692 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2693 }
2694 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2695
2696 /**
2697 * complete: - signals a single thread waiting on this completion
2698 * @x: holds the state of this particular completion
2699 *
2700 * This will wake up a single thread waiting on this completion. Threads will be
2701 * awakened in the same order in which they were queued.
2702 *
2703 * See also complete_all(), wait_for_completion() and related routines.
2704 *
2705 * It may be assumed that this function implies a write memory barrier before
2706 * changing the task state if and only if any tasks are woken up.
2707 */
2708 void complete(struct completion *x)
2709 {
2710 unsigned long flags;
2711
2712 spin_lock_irqsave(&x->wait.lock, flags);
2713 x->done++;
2714 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2715 spin_unlock_irqrestore(&x->wait.lock, flags);
2716 }
2717 EXPORT_SYMBOL(complete);
2718
2719 /**
2720 * complete_all: - signals all threads waiting on this completion
2721 * @x: holds the state of this particular completion
2722 *
2723 * This will wake up all threads waiting on this particular completion event.
2724 *
2725 * It may be assumed that this function implies a write memory barrier before
2726 * changing the task state if and only if any tasks are woken up.
2727 */
2728 void complete_all(struct completion *x)
2729 {
2730 unsigned long flags;
2731
2732 spin_lock_irqsave(&x->wait.lock, flags);
2733 x->done += UINT_MAX/2;
2734 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2735 spin_unlock_irqrestore(&x->wait.lock, flags);
2736 }
2737 EXPORT_SYMBOL(complete_all);
2738
2739 static inline long __sched
2740 do_wait_for_common(struct completion *x,
2741 long (*action)(long), long timeout, int state)
2742 {
2743 if (!x->done) {
2744 DECLARE_WAITQUEUE(wait, current);
2745
2746 __add_wait_queue_tail_exclusive(&x->wait, &wait);
2747 do {
2748 if (signal_pending_state(state, current)) {
2749 timeout = -ERESTARTSYS;
2750 break;
2751 }
2752 __set_current_state(state);
2753 spin_unlock_irq(&x->wait.lock);
2754 timeout = action(timeout);
2755 spin_lock_irq(&x->wait.lock);
2756 } while (!x->done && timeout);
2757 __remove_wait_queue(&x->wait, &wait);
2758 if (!x->done)
2759 return timeout;
2760 }
2761 x->done--;
2762 return timeout ?: 1;
2763 }
2764
2765 static inline long __sched
2766 __wait_for_common(struct completion *x,
2767 long (*action)(long), long timeout, int state)
2768 {
2769 might_sleep();
2770
2771 spin_lock_irq(&x->wait.lock);
2772 timeout = do_wait_for_common(x, action, timeout, state);
2773 spin_unlock_irq(&x->wait.lock);
2774 return timeout;
2775 }
2776
2777 static long __sched
2778 wait_for_common(struct completion *x, long timeout, int state)
2779 {
2780 return __wait_for_common(x, schedule_timeout, timeout, state);
2781 }
2782
2783 static long __sched
2784 wait_for_common_io(struct completion *x, long timeout, int state)
2785 {
2786 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2787 }
2788
2789 /**
2790 * wait_for_completion: - waits for completion of a task
2791 * @x: holds the state of this particular completion
2792 *
2793 * This waits to be signaled for completion of a specific task. It is NOT
2794 * interruptible and there is no timeout.
2795 *
2796 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2797 * and interrupt capability. Also see complete().
2798 */
2799 void __sched wait_for_completion(struct completion *x)
2800 {
2801 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2802 }
2803 EXPORT_SYMBOL(wait_for_completion);
2804
2805 /**
2806 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2807 * @x: holds the state of this particular completion
2808 * @timeout: timeout value in jiffies
2809 *
2810 * This waits for either a completion of a specific task to be signaled or for a
2811 * specified timeout to expire. The timeout is in jiffies. It is not
2812 * interruptible.
2813 *
2814 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2815 * till timeout) if completed.
2816 */
2817 unsigned long __sched
2818 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2819 {
2820 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2821 }
2822 EXPORT_SYMBOL(wait_for_completion_timeout);
2823
2824 /**
2825 * wait_for_completion_io: - waits for completion of a task
2826 * @x: holds the state of this particular completion
2827 *
2828 * This waits to be signaled for completion of a specific task. It is NOT
2829 * interruptible and there is no timeout. The caller is accounted as waiting
2830 * for IO.
2831 */
2832 void __sched wait_for_completion_io(struct completion *x)
2833 {
2834 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2835 }
2836 EXPORT_SYMBOL(wait_for_completion_io);
2837
2838 /**
2839 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2840 * @x: holds the state of this particular completion
2841 * @timeout: timeout value in jiffies
2842 *
2843 * This waits for either a completion of a specific task to be signaled or for a
2844 * specified timeout to expire. The timeout is in jiffies. It is not
2845 * interruptible. The caller is accounted as waiting for IO.
2846 *
2847 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2848 * till timeout) if completed.
2849 */
2850 unsigned long __sched
2851 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2852 {
2853 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2854 }
2855 EXPORT_SYMBOL(wait_for_completion_io_timeout);
2856
2857 /**
2858 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2859 * @x: holds the state of this particular completion
2860 *
2861 * This waits for completion of a specific task to be signaled. It is
2862 * interruptible.
2863 *
2864 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2865 */
2866 int __sched wait_for_completion_interruptible(struct completion *x)
2867 {
2868 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2869 if (t == -ERESTARTSYS)
2870 return t;
2871 return 0;
2872 }
2873 EXPORT_SYMBOL(wait_for_completion_interruptible);
2874
2875 /**
2876 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2877 * @x: holds the state of this particular completion
2878 * @timeout: timeout value in jiffies
2879 *
2880 * This waits for either a completion of a specific task to be signaled or for a
2881 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2882 *
2883 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2884 * or number of jiffies left till timeout) if completed.
2885 */
2886 long __sched
2887 wait_for_completion_interruptible_timeout(struct completion *x,
2888 unsigned long timeout)
2889 {
2890 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2891 }
2892 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2893
2894 /**
2895 * wait_for_completion_killable: - waits for completion of a task (killable)
2896 * @x: holds the state of this particular completion
2897 *
2898 * This waits to be signaled for completion of a specific task. It can be
2899 * interrupted by a kill signal.
2900 *
2901 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2902 */
2903 int __sched wait_for_completion_killable(struct completion *x)
2904 {
2905 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2906 if (t == -ERESTARTSYS)
2907 return t;
2908 return 0;
2909 }
2910 EXPORT_SYMBOL(wait_for_completion_killable);
2911
2912 /**
2913 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2914 * @x: holds the state of this particular completion
2915 * @timeout: timeout value in jiffies
2916 *
2917 * This waits for either a completion of a specific task to be
2918 * signaled or for a specified timeout to expire. It can be
2919 * interrupted by a kill signal. The timeout is in jiffies.
2920 *
2921 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2922 * or number of jiffies left till timeout) if completed.
2923 */
2924 long __sched
2925 wait_for_completion_killable_timeout(struct completion *x,
2926 unsigned long timeout)
2927 {
2928 return wait_for_common(x, timeout, TASK_KILLABLE);
2929 }
2930 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2931
2932 /**
2933 * try_wait_for_completion - try to decrement a completion without blocking
2934 * @x: completion structure
2935 *
2936 * Return: 0 if a decrement cannot be done without blocking
2937 * 1 if a decrement succeeded.
2938 *
2939 * If a completion is being used as a counting completion,
2940 * attempt to decrement the counter without blocking. This
2941 * enables us to avoid waiting if the resource the completion
2942 * is protecting is not available.
2943 */
2944 bool try_wait_for_completion(struct completion *x)
2945 {
2946 unsigned long flags;
2947 int ret = 1;
2948
2949 spin_lock_irqsave(&x->wait.lock, flags);
2950 if (!x->done)
2951 ret = 0;
2952 else
2953 x->done--;
2954 spin_unlock_irqrestore(&x->wait.lock, flags);
2955 return ret;
2956 }
2957 EXPORT_SYMBOL(try_wait_for_completion);
2958
2959 /**
2960 * completion_done - Test to see if a completion has any waiters
2961 * @x: completion structure
2962 *
2963 * Return: 0 if there are waiters (wait_for_completion() in progress)
2964 * 1 if there are no waiters.
2965 *
2966 */
2967 bool completion_done(struct completion *x)
2968 {
2969 unsigned long flags;
2970 int ret = 1;
2971
2972 spin_lock_irqsave(&x->wait.lock, flags);
2973 if (!x->done)
2974 ret = 0;
2975 spin_unlock_irqrestore(&x->wait.lock, flags);
2976 return ret;
2977 }
2978 EXPORT_SYMBOL(completion_done);
2979
2980 static long __sched
2981 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2982 {
2983 unsigned long flags;
2984 wait_queue_t wait;
2985
2986 init_waitqueue_entry(&wait, current);
2987
2988 __set_current_state(state);
2989
2990 spin_lock_irqsave(&q->lock, flags);
2991 __add_wait_queue(q, &wait);
2992 spin_unlock(&q->lock);
2993 timeout = schedule_timeout(timeout);
2994 spin_lock_irq(&q->lock);
2995 __remove_wait_queue(q, &wait);
2996 spin_unlock_irqrestore(&q->lock, flags);
2997
2998 return timeout;
2999 }
3000
3001 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3002 {
3003 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3004 }
3005 EXPORT_SYMBOL(interruptible_sleep_on);
3006
3007 long __sched
3008 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3009 {
3010 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3011 }
3012 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3013
3014 void __sched sleep_on(wait_queue_head_t *q)
3015 {
3016 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3017 }
3018 EXPORT_SYMBOL(sleep_on);
3019
3020 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3021 {
3022 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3023 }
3024 EXPORT_SYMBOL(sleep_on_timeout);
3025
3026 #ifdef CONFIG_RT_MUTEXES
3027
3028 /*
3029 * rt_mutex_setprio - set the current priority of a task
3030 * @p: task
3031 * @prio: prio value (kernel-internal form)
3032 *
3033 * This function changes the 'effective' priority of a task. It does
3034 * not touch ->normal_prio like __setscheduler().
3035 *
3036 * Used by the rt_mutex code to implement priority inheritance logic.
3037 */
3038 void rt_mutex_setprio(struct task_struct *p, int prio)
3039 {
3040 int oldprio, on_rq, running;
3041 struct rq *rq;
3042 const struct sched_class *prev_class;
3043
3044 BUG_ON(prio < 0 || prio > MAX_PRIO);
3045
3046 rq = __task_rq_lock(p);
3047
3048 /*
3049 * Idle task boosting is a nono in general. There is one
3050 * exception, when PREEMPT_RT and NOHZ is active:
3051 *
3052 * The idle task calls get_next_timer_interrupt() and holds
3053 * the timer wheel base->lock on the CPU and another CPU wants
3054 * to access the timer (probably to cancel it). We can safely
3055 * ignore the boosting request, as the idle CPU runs this code
3056 * with interrupts disabled and will complete the lock
3057 * protected section without being interrupted. So there is no
3058 * real need to boost.
3059 */
3060 if (unlikely(p == rq->idle)) {
3061 WARN_ON(p != rq->curr);
3062 WARN_ON(p->pi_blocked_on);
3063 goto out_unlock;
3064 }
3065
3066 trace_sched_pi_setprio(p, prio);
3067 oldprio = p->prio;
3068 prev_class = p->sched_class;
3069 on_rq = p->on_rq;
3070 running = task_current(rq, p);
3071 if (on_rq)
3072 dequeue_task(rq, p, 0);
3073 if (running)
3074 p->sched_class->put_prev_task(rq, p);
3075
3076 if (rt_prio(prio))
3077 p->sched_class = &rt_sched_class;
3078 else
3079 p->sched_class = &fair_sched_class;
3080
3081 p->prio = prio;
3082
3083 if (running)
3084 p->sched_class->set_curr_task(rq);
3085 if (on_rq)
3086 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3087
3088 check_class_changed(rq, p, prev_class, oldprio);
3089 out_unlock:
3090 __task_rq_unlock(rq);
3091 }
3092 #endif
3093 void set_user_nice(struct task_struct *p, long nice)
3094 {
3095 int old_prio, delta, on_rq;
3096 unsigned long flags;
3097 struct rq *rq;
3098
3099 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3100 return;
3101 /*
3102 * We have to be careful, if called from sys_setpriority(),
3103 * the task might be in the middle of scheduling on another CPU.
3104 */
3105 rq = task_rq_lock(p, &flags);
3106 /*
3107 * The RT priorities are set via sched_setscheduler(), but we still
3108 * allow the 'normal' nice value to be set - but as expected
3109 * it wont have any effect on scheduling until the task is
3110 * SCHED_FIFO/SCHED_RR:
3111 */
3112 if (task_has_rt_policy(p)) {
3113 p->static_prio = NICE_TO_PRIO(nice);
3114 goto out_unlock;
3115 }
3116 on_rq = p->on_rq;
3117 if (on_rq)
3118 dequeue_task(rq, p, 0);
3119
3120 p->static_prio = NICE_TO_PRIO(nice);
3121 set_load_weight(p);
3122 old_prio = p->prio;
3123 p->prio = effective_prio(p);
3124 delta = p->prio - old_prio;
3125
3126 if (on_rq) {
3127 enqueue_task(rq, p, 0);
3128 /*
3129 * If the task increased its priority or is running and
3130 * lowered its priority, then reschedule its CPU:
3131 */
3132 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3133 resched_task(rq->curr);
3134 }
3135 out_unlock:
3136 task_rq_unlock(rq, p, &flags);
3137 }
3138 EXPORT_SYMBOL(set_user_nice);
3139
3140 /*
3141 * can_nice - check if a task can reduce its nice value
3142 * @p: task
3143 * @nice: nice value
3144 */
3145 int can_nice(const struct task_struct *p, const int nice)
3146 {
3147 /* convert nice value [19,-20] to rlimit style value [1,40] */
3148 int nice_rlim = 20 - nice;
3149
3150 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3151 capable(CAP_SYS_NICE));
3152 }
3153
3154 #ifdef __ARCH_WANT_SYS_NICE
3155
3156 /*
3157 * sys_nice - change the priority of the current process.
3158 * @increment: priority increment
3159 *
3160 * sys_setpriority is a more generic, but much slower function that
3161 * does similar things.
3162 */
3163 SYSCALL_DEFINE1(nice, int, increment)
3164 {
3165 long nice, retval;
3166
3167 /*
3168 * Setpriority might change our priority at the same moment.
3169 * We don't have to worry. Conceptually one call occurs first
3170 * and we have a single winner.
3171 */
3172 if (increment < -40)
3173 increment = -40;
3174 if (increment > 40)
3175 increment = 40;
3176
3177 nice = TASK_NICE(current) + increment;
3178 if (nice < -20)
3179 nice = -20;
3180 if (nice > 19)
3181 nice = 19;
3182
3183 if (increment < 0 && !can_nice(current, nice))
3184 return -EPERM;
3185
3186 retval = security_task_setnice(current, nice);
3187 if (retval)
3188 return retval;
3189
3190 set_user_nice(current, nice);
3191 return 0;
3192 }
3193
3194 #endif
3195
3196 /**
3197 * task_prio - return the priority value of a given task.
3198 * @p: the task in question.
3199 *
3200 * Return: The priority value as seen by users in /proc.
3201 * RT tasks are offset by -200. Normal tasks are centered
3202 * around 0, value goes from -16 to +15.
3203 */
3204 int task_prio(const struct task_struct *p)
3205 {
3206 return p->prio - MAX_RT_PRIO;
3207 }
3208
3209 /**
3210 * task_nice - return the nice value of a given task.
3211 * @p: the task in question.
3212 *
3213 * Return: The nice value [ -20 ... 0 ... 19 ].
3214 */
3215 int task_nice(const struct task_struct *p)
3216 {
3217 return TASK_NICE(p);
3218 }
3219 EXPORT_SYMBOL(task_nice);
3220
3221 /**
3222 * idle_cpu - is a given cpu idle currently?
3223 * @cpu: the processor in question.
3224 *
3225 * Return: 1 if the CPU is currently idle. 0 otherwise.
3226 */
3227 int idle_cpu(int cpu)
3228 {
3229 struct rq *rq = cpu_rq(cpu);
3230
3231 if (rq->curr != rq->idle)
3232 return 0;
3233
3234 if (rq->nr_running)
3235 return 0;
3236
3237 #ifdef CONFIG_SMP
3238 if (!llist_empty(&rq->wake_list))
3239 return 0;
3240 #endif
3241
3242 return 1;
3243 }
3244
3245 /**
3246 * idle_task - return the idle task for a given cpu.
3247 * @cpu: the processor in question.
3248 *
3249 * Return: The idle task for the cpu @cpu.
3250 */
3251 struct task_struct *idle_task(int cpu)
3252 {
3253 return cpu_rq(cpu)->idle;
3254 }
3255
3256 /**
3257 * find_process_by_pid - find a process with a matching PID value.
3258 * @pid: the pid in question.
3259 *
3260 * The task of @pid, if found. %NULL otherwise.
3261 */
3262 static struct task_struct *find_process_by_pid(pid_t pid)
3263 {
3264 return pid ? find_task_by_vpid(pid) : current;
3265 }
3266
3267 /* Actually do priority change: must hold rq lock. */
3268 static void
3269 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3270 {
3271 p->policy = policy;
3272 p->rt_priority = prio;
3273 p->normal_prio = normal_prio(p);
3274 /* we are holding p->pi_lock already */
3275 p->prio = rt_mutex_getprio(p);
3276 if (rt_prio(p->prio))
3277 p->sched_class = &rt_sched_class;
3278 else
3279 p->sched_class = &fair_sched_class;
3280 set_load_weight(p);
3281 }
3282
3283 /*
3284 * check the target process has a UID that matches the current process's
3285 */
3286 static bool check_same_owner(struct task_struct *p)
3287 {
3288 const struct cred *cred = current_cred(), *pcred;
3289 bool match;
3290
3291 rcu_read_lock();
3292 pcred = __task_cred(p);
3293 match = (uid_eq(cred->euid, pcred->euid) ||
3294 uid_eq(cred->euid, pcred->uid));
3295 rcu_read_unlock();
3296 return match;
3297 }
3298
3299 static int __sched_setscheduler(struct task_struct *p, int policy,
3300 const struct sched_param *param, bool user)
3301 {
3302 int retval, oldprio, oldpolicy = -1, on_rq, running;
3303 unsigned long flags;
3304 const struct sched_class *prev_class;
3305 struct rq *rq;
3306 int reset_on_fork;
3307
3308 /* may grab non-irq protected spin_locks */
3309 BUG_ON(in_interrupt());
3310 recheck:
3311 /* double check policy once rq lock held */
3312 if (policy < 0) {
3313 reset_on_fork = p->sched_reset_on_fork;
3314 policy = oldpolicy = p->policy;
3315 } else {
3316 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3317 policy &= ~SCHED_RESET_ON_FORK;
3318
3319 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3320 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3321 policy != SCHED_IDLE)
3322 return -EINVAL;
3323 }
3324
3325 /*
3326 * Valid priorities for SCHED_FIFO and SCHED_RR are
3327 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3328 * SCHED_BATCH and SCHED_IDLE is 0.
3329 */
3330 if (param->sched_priority < 0 ||
3331 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3332 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3333 return -EINVAL;
3334 if (rt_policy(policy) != (param->sched_priority != 0))
3335 return -EINVAL;
3336
3337 /*
3338 * Allow unprivileged RT tasks to decrease priority:
3339 */
3340 if (user && !capable(CAP_SYS_NICE)) {
3341 if (rt_policy(policy)) {
3342 unsigned long rlim_rtprio =
3343 task_rlimit(p, RLIMIT_RTPRIO);
3344
3345 /* can't set/change the rt policy */
3346 if (policy != p->policy && !rlim_rtprio)
3347 return -EPERM;
3348
3349 /* can't increase priority */
3350 if (param->sched_priority > p->rt_priority &&
3351 param->sched_priority > rlim_rtprio)
3352 return -EPERM;
3353 }
3354
3355 /*
3356 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3357 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3358 */
3359 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3360 if (!can_nice(p, TASK_NICE(p)))
3361 return -EPERM;
3362 }
3363
3364 /* can't change other user's priorities */
3365 if (!check_same_owner(p))
3366 return -EPERM;
3367
3368 /* Normal users shall not reset the sched_reset_on_fork flag */
3369 if (p->sched_reset_on_fork && !reset_on_fork)
3370 return -EPERM;
3371 }
3372
3373 if (user) {
3374 retval = security_task_setscheduler(p);
3375 if (retval)
3376 return retval;
3377 }
3378
3379 /*
3380 * make sure no PI-waiters arrive (or leave) while we are
3381 * changing the priority of the task:
3382 *
3383 * To be able to change p->policy safely, the appropriate
3384 * runqueue lock must be held.
3385 */
3386 rq = task_rq_lock(p, &flags);
3387
3388 /*
3389 * Changing the policy of the stop threads its a very bad idea
3390 */
3391 if (p == rq->stop) {
3392 task_rq_unlock(rq, p, &flags);
3393 return -EINVAL;
3394 }
3395
3396 /*
3397 * If not changing anything there's no need to proceed further:
3398 */
3399 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3400 param->sched_priority == p->rt_priority))) {
3401 task_rq_unlock(rq, p, &flags);
3402 return 0;
3403 }
3404
3405 #ifdef CONFIG_RT_GROUP_SCHED
3406 if (user) {
3407 /*
3408 * Do not allow realtime tasks into groups that have no runtime
3409 * assigned.
3410 */
3411 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3412 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3413 !task_group_is_autogroup(task_group(p))) {
3414 task_rq_unlock(rq, p, &flags);
3415 return -EPERM;
3416 }
3417 }
3418 #endif
3419
3420 /* recheck policy now with rq lock held */
3421 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3422 policy = oldpolicy = -1;
3423 task_rq_unlock(rq, p, &flags);
3424 goto recheck;
3425 }
3426 on_rq = p->on_rq;
3427 running = task_current(rq, p);
3428 if (on_rq)
3429 dequeue_task(rq, p, 0);
3430 if (running)
3431 p->sched_class->put_prev_task(rq, p);
3432
3433 p->sched_reset_on_fork = reset_on_fork;
3434
3435 oldprio = p->prio;
3436 prev_class = p->sched_class;
3437 __setscheduler(rq, p, policy, param->sched_priority);
3438
3439 if (running)
3440 p->sched_class->set_curr_task(rq);
3441 if (on_rq)
3442 enqueue_task(rq, p, 0);
3443
3444 check_class_changed(rq, p, prev_class, oldprio);
3445 task_rq_unlock(rq, p, &flags);
3446
3447 rt_mutex_adjust_pi(p);
3448
3449 return 0;
3450 }
3451
3452 /**
3453 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3454 * @p: the task in question.
3455 * @policy: new policy.
3456 * @param: structure containing the new RT priority.
3457 *
3458 * Return: 0 on success. An error code otherwise.
3459 *
3460 * NOTE that the task may be already dead.
3461 */
3462 int sched_setscheduler(struct task_struct *p, int policy,
3463 const struct sched_param *param)
3464 {
3465 return __sched_setscheduler(p, policy, param, true);
3466 }
3467 EXPORT_SYMBOL_GPL(sched_setscheduler);
3468
3469 /**
3470 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3471 * @p: the task in question.
3472 * @policy: new policy.
3473 * @param: structure containing the new RT priority.
3474 *
3475 * Just like sched_setscheduler, only don't bother checking if the
3476 * current context has permission. For example, this is needed in
3477 * stop_machine(): we create temporary high priority worker threads,
3478 * but our caller might not have that capability.
3479 *
3480 * Return: 0 on success. An error code otherwise.
3481 */
3482 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3483 const struct sched_param *param)
3484 {
3485 return __sched_setscheduler(p, policy, param, false);
3486 }
3487
3488 static int
3489 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3490 {
3491 struct sched_param lparam;
3492 struct task_struct *p;
3493 int retval;
3494
3495 if (!param || pid < 0)
3496 return -EINVAL;
3497 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3498 return -EFAULT;
3499
3500 rcu_read_lock();
3501 retval = -ESRCH;
3502 p = find_process_by_pid(pid);
3503 if (p != NULL)
3504 retval = sched_setscheduler(p, policy, &lparam);
3505 rcu_read_unlock();
3506
3507 return retval;
3508 }
3509
3510 /**
3511 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3512 * @pid: the pid in question.
3513 * @policy: new policy.
3514 * @param: structure containing the new RT priority.
3515 *
3516 * Return: 0 on success. An error code otherwise.
3517 */
3518 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3519 struct sched_param __user *, param)
3520 {
3521 /* negative values for policy are not valid */
3522 if (policy < 0)
3523 return -EINVAL;
3524
3525 return do_sched_setscheduler(pid, policy, param);
3526 }
3527
3528 /**
3529 * sys_sched_setparam - set/change the RT priority of a thread
3530 * @pid: the pid in question.
3531 * @param: structure containing the new RT priority.
3532 *
3533 * Return: 0 on success. An error code otherwise.
3534 */
3535 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3536 {
3537 return do_sched_setscheduler(pid, -1, param);
3538 }
3539
3540 /**
3541 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3542 * @pid: the pid in question.
3543 *
3544 * Return: On success, the policy of the thread. Otherwise, a negative error
3545 * code.
3546 */
3547 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3548 {
3549 struct task_struct *p;
3550 int retval;
3551
3552 if (pid < 0)
3553 return -EINVAL;
3554
3555 retval = -ESRCH;
3556 rcu_read_lock();
3557 p = find_process_by_pid(pid);
3558 if (p) {
3559 retval = security_task_getscheduler(p);
3560 if (!retval)
3561 retval = p->policy
3562 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3563 }
3564 rcu_read_unlock();
3565 return retval;
3566 }
3567
3568 /**
3569 * sys_sched_getparam - get the RT priority of a thread
3570 * @pid: the pid in question.
3571 * @param: structure containing the RT priority.
3572 *
3573 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3574 * code.
3575 */
3576 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3577 {
3578 struct sched_param lp;
3579 struct task_struct *p;
3580 int retval;
3581
3582 if (!param || pid < 0)
3583 return -EINVAL;
3584
3585 rcu_read_lock();
3586 p = find_process_by_pid(pid);
3587 retval = -ESRCH;
3588 if (!p)
3589 goto out_unlock;
3590
3591 retval = security_task_getscheduler(p);
3592 if (retval)
3593 goto out_unlock;
3594
3595 lp.sched_priority = p->rt_priority;
3596 rcu_read_unlock();
3597
3598 /*
3599 * This one might sleep, we cannot do it with a spinlock held ...
3600 */
3601 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3602
3603 return retval;
3604
3605 out_unlock:
3606 rcu_read_unlock();
3607 return retval;
3608 }
3609
3610 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3611 {
3612 cpumask_var_t cpus_allowed, new_mask;
3613 struct task_struct *p;
3614 int retval;
3615
3616 get_online_cpus();
3617 rcu_read_lock();
3618
3619 p = find_process_by_pid(pid);
3620 if (!p) {
3621 rcu_read_unlock();
3622 put_online_cpus();
3623 return -ESRCH;
3624 }
3625
3626 /* Prevent p going away */
3627 get_task_struct(p);
3628 rcu_read_unlock();
3629
3630 if (p->flags & PF_NO_SETAFFINITY) {
3631 retval = -EINVAL;
3632 goto out_put_task;
3633 }
3634 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3635 retval = -ENOMEM;
3636 goto out_put_task;
3637 }
3638 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3639 retval = -ENOMEM;
3640 goto out_free_cpus_allowed;
3641 }
3642 retval = -EPERM;
3643 if (!check_same_owner(p)) {
3644 rcu_read_lock();
3645 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3646 rcu_read_unlock();
3647 goto out_unlock;
3648 }
3649 rcu_read_unlock();
3650 }
3651
3652 retval = security_task_setscheduler(p);
3653 if (retval)
3654 goto out_unlock;
3655
3656 cpuset_cpus_allowed(p, cpus_allowed);
3657 cpumask_and(new_mask, in_mask, cpus_allowed);
3658 again:
3659 retval = set_cpus_allowed_ptr(p, new_mask);
3660
3661 if (!retval) {
3662 cpuset_cpus_allowed(p, cpus_allowed);
3663 if (!cpumask_subset(new_mask, cpus_allowed)) {
3664 /*
3665 * We must have raced with a concurrent cpuset
3666 * update. Just reset the cpus_allowed to the
3667 * cpuset's cpus_allowed
3668 */
3669 cpumask_copy(new_mask, cpus_allowed);
3670 goto again;
3671 }
3672 }
3673 out_unlock:
3674 free_cpumask_var(new_mask);
3675 out_free_cpus_allowed:
3676 free_cpumask_var(cpus_allowed);
3677 out_put_task:
3678 put_task_struct(p);
3679 put_online_cpus();
3680 return retval;
3681 }
3682
3683 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3684 struct cpumask *new_mask)
3685 {
3686 if (len < cpumask_size())
3687 cpumask_clear(new_mask);
3688 else if (len > cpumask_size())
3689 len = cpumask_size();
3690
3691 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3692 }
3693
3694 /**
3695 * sys_sched_setaffinity - set the cpu affinity of a process
3696 * @pid: pid of the process
3697 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3698 * @user_mask_ptr: user-space pointer to the new cpu mask
3699 *
3700 * Return: 0 on success. An error code otherwise.
3701 */
3702 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3703 unsigned long __user *, user_mask_ptr)
3704 {
3705 cpumask_var_t new_mask;
3706 int retval;
3707
3708 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3709 return -ENOMEM;
3710
3711 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3712 if (retval == 0)
3713 retval = sched_setaffinity(pid, new_mask);
3714 free_cpumask_var(new_mask);
3715 return retval;
3716 }
3717
3718 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3719 {
3720 struct task_struct *p;
3721 unsigned long flags;
3722 int retval;
3723
3724 get_online_cpus();
3725 rcu_read_lock();
3726
3727 retval = -ESRCH;
3728 p = find_process_by_pid(pid);
3729 if (!p)
3730 goto out_unlock;
3731
3732 retval = security_task_getscheduler(p);
3733 if (retval)
3734 goto out_unlock;
3735
3736 raw_spin_lock_irqsave(&p->pi_lock, flags);
3737 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3738 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3739
3740 out_unlock:
3741 rcu_read_unlock();
3742 put_online_cpus();
3743
3744 return retval;
3745 }
3746
3747 /**
3748 * sys_sched_getaffinity - get the cpu affinity of a process
3749 * @pid: pid of the process
3750 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3751 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3752 *
3753 * Return: 0 on success. An error code otherwise.
3754 */
3755 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3756 unsigned long __user *, user_mask_ptr)
3757 {
3758 int ret;
3759 cpumask_var_t mask;
3760
3761 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3762 return -EINVAL;
3763 if (len & (sizeof(unsigned long)-1))
3764 return -EINVAL;
3765
3766 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3767 return -ENOMEM;
3768
3769 ret = sched_getaffinity(pid, mask);
3770 if (ret == 0) {
3771 size_t retlen = min_t(size_t, len, cpumask_size());
3772
3773 if (copy_to_user(user_mask_ptr, mask, retlen))
3774 ret = -EFAULT;
3775 else
3776 ret = retlen;
3777 }
3778 free_cpumask_var(mask);
3779
3780 return ret;
3781 }
3782
3783 /**
3784 * sys_sched_yield - yield the current processor to other threads.
3785 *
3786 * This function yields the current CPU to other tasks. If there are no
3787 * other threads running on this CPU then this function will return.
3788 *
3789 * Return: 0.
3790 */
3791 SYSCALL_DEFINE0(sched_yield)
3792 {
3793 struct rq *rq = this_rq_lock();
3794
3795 schedstat_inc(rq, yld_count);
3796 current->sched_class->yield_task(rq);
3797
3798 /*
3799 * Since we are going to call schedule() anyway, there's
3800 * no need to preempt or enable interrupts:
3801 */
3802 __release(rq->lock);
3803 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3804 do_raw_spin_unlock(&rq->lock);
3805 sched_preempt_enable_no_resched();
3806
3807 schedule();
3808
3809 return 0;
3810 }
3811
3812 static inline int should_resched(void)
3813 {
3814 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3815 }
3816
3817 static void __cond_resched(void)
3818 {
3819 add_preempt_count(PREEMPT_ACTIVE);
3820 __schedule();
3821 sub_preempt_count(PREEMPT_ACTIVE);
3822 }
3823
3824 int __sched _cond_resched(void)
3825 {
3826 if (should_resched()) {
3827 __cond_resched();
3828 return 1;
3829 }
3830 return 0;
3831 }
3832 EXPORT_SYMBOL(_cond_resched);
3833
3834 /*
3835 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3836 * call schedule, and on return reacquire the lock.
3837 *
3838 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3839 * operations here to prevent schedule() from being called twice (once via
3840 * spin_unlock(), once by hand).
3841 */
3842 int __cond_resched_lock(spinlock_t *lock)
3843 {
3844 int resched = should_resched();
3845 int ret = 0;
3846
3847 lockdep_assert_held(lock);
3848
3849 if (spin_needbreak(lock) || resched) {
3850 spin_unlock(lock);
3851 if (resched)
3852 __cond_resched();
3853 else
3854 cpu_relax();
3855 ret = 1;
3856 spin_lock(lock);
3857 }
3858 return ret;
3859 }
3860 EXPORT_SYMBOL(__cond_resched_lock);
3861
3862 int __sched __cond_resched_softirq(void)
3863 {
3864 BUG_ON(!in_softirq());
3865
3866 if (should_resched()) {
3867 local_bh_enable();
3868 __cond_resched();
3869 local_bh_disable();
3870 return 1;
3871 }
3872 return 0;
3873 }
3874 EXPORT_SYMBOL(__cond_resched_softirq);
3875
3876 /**
3877 * yield - yield the current processor to other threads.
3878 *
3879 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3880 *
3881 * The scheduler is at all times free to pick the calling task as the most
3882 * eligible task to run, if removing the yield() call from your code breaks
3883 * it, its already broken.
3884 *
3885 * Typical broken usage is:
3886 *
3887 * while (!event)
3888 * yield();
3889 *
3890 * where one assumes that yield() will let 'the other' process run that will
3891 * make event true. If the current task is a SCHED_FIFO task that will never
3892 * happen. Never use yield() as a progress guarantee!!
3893 *
3894 * If you want to use yield() to wait for something, use wait_event().
3895 * If you want to use yield() to be 'nice' for others, use cond_resched().
3896 * If you still want to use yield(), do not!
3897 */
3898 void __sched yield(void)
3899 {
3900 set_current_state(TASK_RUNNING);
3901 sys_sched_yield();
3902 }
3903 EXPORT_SYMBOL(yield);
3904
3905 /**
3906 * yield_to - yield the current processor to another thread in
3907 * your thread group, or accelerate that thread toward the
3908 * processor it's on.
3909 * @p: target task
3910 * @preempt: whether task preemption is allowed or not
3911 *
3912 * It's the caller's job to ensure that the target task struct
3913 * can't go away on us before we can do any checks.
3914 *
3915 * Return:
3916 * true (>0) if we indeed boosted the target task.
3917 * false (0) if we failed to boost the target.
3918 * -ESRCH if there's no task to yield to.
3919 */
3920 bool __sched yield_to(struct task_struct *p, bool preempt)
3921 {
3922 struct task_struct *curr = current;
3923 struct rq *rq, *p_rq;
3924 unsigned long flags;
3925 int yielded = 0;
3926
3927 local_irq_save(flags);
3928 rq = this_rq();
3929
3930 again:
3931 p_rq = task_rq(p);
3932 /*
3933 * If we're the only runnable task on the rq and target rq also
3934 * has only one task, there's absolutely no point in yielding.
3935 */
3936 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3937 yielded = -ESRCH;
3938 goto out_irq;
3939 }
3940
3941 double_rq_lock(rq, p_rq);
3942 while (task_rq(p) != p_rq) {
3943 double_rq_unlock(rq, p_rq);
3944 goto again;
3945 }
3946
3947 if (!curr->sched_class->yield_to_task)
3948 goto out_unlock;
3949
3950 if (curr->sched_class != p->sched_class)
3951 goto out_unlock;
3952
3953 if (task_running(p_rq, p) || p->state)
3954 goto out_unlock;
3955
3956 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3957 if (yielded) {
3958 schedstat_inc(rq, yld_count);
3959 /*
3960 * Make p's CPU reschedule; pick_next_entity takes care of
3961 * fairness.
3962 */
3963 if (preempt && rq != p_rq)
3964 resched_task(p_rq->curr);
3965 }
3966
3967 out_unlock:
3968 double_rq_unlock(rq, p_rq);
3969 out_irq:
3970 local_irq_restore(flags);
3971
3972 if (yielded > 0)
3973 schedule();
3974
3975 return yielded;
3976 }
3977 EXPORT_SYMBOL_GPL(yield_to);
3978
3979 /*
3980 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3981 * that process accounting knows that this is a task in IO wait state.
3982 */
3983 void __sched io_schedule(void)
3984 {
3985 struct rq *rq = raw_rq();
3986
3987 delayacct_blkio_start();
3988 atomic_inc(&rq->nr_iowait);
3989 blk_flush_plug(current);
3990 current->in_iowait = 1;
3991 schedule();
3992 current->in_iowait = 0;
3993 atomic_dec(&rq->nr_iowait);
3994 delayacct_blkio_end();
3995 }
3996 EXPORT_SYMBOL(io_schedule);
3997
3998 long __sched io_schedule_timeout(long timeout)
3999 {
4000 struct rq *rq = raw_rq();
4001 long ret;
4002
4003 delayacct_blkio_start();
4004 atomic_inc(&rq->nr_iowait);
4005 blk_flush_plug(current);
4006 current->in_iowait = 1;
4007 ret = schedule_timeout(timeout);
4008 current->in_iowait = 0;
4009 atomic_dec(&rq->nr_iowait);
4010 delayacct_blkio_end();
4011 return ret;
4012 }
4013
4014 /**
4015 * sys_sched_get_priority_max - return maximum RT priority.
4016 * @policy: scheduling class.
4017 *
4018 * Return: On success, this syscall returns the maximum
4019 * rt_priority that can be used by a given scheduling class.
4020 * On failure, a negative error code is returned.
4021 */
4022 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4023 {
4024 int ret = -EINVAL;
4025
4026 switch (policy) {
4027 case SCHED_FIFO:
4028 case SCHED_RR:
4029 ret = MAX_USER_RT_PRIO-1;
4030 break;
4031 case SCHED_NORMAL:
4032 case SCHED_BATCH:
4033 case SCHED_IDLE:
4034 ret = 0;
4035 break;
4036 }
4037 return ret;
4038 }
4039
4040 /**
4041 * sys_sched_get_priority_min - return minimum RT priority.
4042 * @policy: scheduling class.
4043 *
4044 * Return: On success, this syscall returns the minimum
4045 * rt_priority that can be used by a given scheduling class.
4046 * On failure, a negative error code is returned.
4047 */
4048 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4049 {
4050 int ret = -EINVAL;
4051
4052 switch (policy) {
4053 case SCHED_FIFO:
4054 case SCHED_RR:
4055 ret = 1;
4056 break;
4057 case SCHED_NORMAL:
4058 case SCHED_BATCH:
4059 case SCHED_IDLE:
4060 ret = 0;
4061 }
4062 return ret;
4063 }
4064
4065 /**
4066 * sys_sched_rr_get_interval - return the default timeslice of a process.
4067 * @pid: pid of the process.
4068 * @interval: userspace pointer to the timeslice value.
4069 *
4070 * this syscall writes the default timeslice value of a given process
4071 * into the user-space timespec buffer. A value of '0' means infinity.
4072 *
4073 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4074 * an error code.
4075 */
4076 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4077 struct timespec __user *, interval)
4078 {
4079 struct task_struct *p;
4080 unsigned int time_slice;
4081 unsigned long flags;
4082 struct rq *rq;
4083 int retval;
4084 struct timespec t;
4085
4086 if (pid < 0)
4087 return -EINVAL;
4088
4089 retval = -ESRCH;
4090 rcu_read_lock();
4091 p = find_process_by_pid(pid);
4092 if (!p)
4093 goto out_unlock;
4094
4095 retval = security_task_getscheduler(p);
4096 if (retval)
4097 goto out_unlock;
4098
4099 rq = task_rq_lock(p, &flags);
4100 time_slice = p->sched_class->get_rr_interval(rq, p);
4101 task_rq_unlock(rq, p, &flags);
4102
4103 rcu_read_unlock();
4104 jiffies_to_timespec(time_slice, &t);
4105 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4106 return retval;
4107
4108 out_unlock:
4109 rcu_read_unlock();
4110 return retval;
4111 }
4112
4113 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4114
4115 void sched_show_task(struct task_struct *p)
4116 {
4117 unsigned long free = 0;
4118 int ppid;
4119 unsigned state;
4120
4121 state = p->state ? __ffs(p->state) + 1 : 0;
4122 printk(KERN_INFO "%-15.15s %c", p->comm,
4123 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4124 #if BITS_PER_LONG == 32
4125 if (state == TASK_RUNNING)
4126 printk(KERN_CONT " running ");
4127 else
4128 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4129 #else
4130 if (state == TASK_RUNNING)
4131 printk(KERN_CONT " running task ");
4132 else
4133 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4134 #endif
4135 #ifdef CONFIG_DEBUG_STACK_USAGE
4136 free = stack_not_used(p);
4137 #endif
4138 rcu_read_lock();
4139 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4140 rcu_read_unlock();
4141 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4142 task_pid_nr(p), ppid,
4143 (unsigned long)task_thread_info(p)->flags);
4144
4145 print_worker_info(KERN_INFO, p);
4146 show_stack(p, NULL);
4147 }
4148
4149 void show_state_filter(unsigned long state_filter)
4150 {
4151 struct task_struct *g, *p;
4152
4153 #if BITS_PER_LONG == 32
4154 printk(KERN_INFO
4155 " task PC stack pid father\n");
4156 #else
4157 printk(KERN_INFO
4158 " task PC stack pid father\n");
4159 #endif
4160 rcu_read_lock();
4161 do_each_thread(g, p) {
4162 /*
4163 * reset the NMI-timeout, listing all files on a slow
4164 * console might take a lot of time:
4165 */
4166 touch_nmi_watchdog();
4167 if (!state_filter || (p->state & state_filter))
4168 sched_show_task(p);
4169 } while_each_thread(g, p);
4170
4171 touch_all_softlockup_watchdogs();
4172
4173 #ifdef CONFIG_SCHED_DEBUG
4174 sysrq_sched_debug_show();
4175 #endif
4176 rcu_read_unlock();
4177 /*
4178 * Only show locks if all tasks are dumped:
4179 */
4180 if (!state_filter)
4181 debug_show_all_locks();
4182 }
4183
4184 void init_idle_bootup_task(struct task_struct *idle)
4185 {
4186 idle->sched_class = &idle_sched_class;
4187 }
4188
4189 /**
4190 * init_idle - set up an idle thread for a given CPU
4191 * @idle: task in question
4192 * @cpu: cpu the idle task belongs to
4193 *
4194 * NOTE: this function does not set the idle thread's NEED_RESCHED
4195 * flag, to make booting more robust.
4196 */
4197 void init_idle(struct task_struct *idle, int cpu)
4198 {
4199 struct rq *rq = cpu_rq(cpu);
4200 unsigned long flags;
4201
4202 raw_spin_lock_irqsave(&rq->lock, flags);
4203
4204 __sched_fork(idle);
4205 idle->state = TASK_RUNNING;
4206 idle->se.exec_start = sched_clock();
4207
4208 do_set_cpus_allowed(idle, cpumask_of(cpu));
4209 /*
4210 * We're having a chicken and egg problem, even though we are
4211 * holding rq->lock, the cpu isn't yet set to this cpu so the
4212 * lockdep check in task_group() will fail.
4213 *
4214 * Similar case to sched_fork(). / Alternatively we could
4215 * use task_rq_lock() here and obtain the other rq->lock.
4216 *
4217 * Silence PROVE_RCU
4218 */
4219 rcu_read_lock();
4220 __set_task_cpu(idle, cpu);
4221 rcu_read_unlock();
4222
4223 rq->curr = rq->idle = idle;
4224 #if defined(CONFIG_SMP)
4225 idle->on_cpu = 1;
4226 #endif
4227 raw_spin_unlock_irqrestore(&rq->lock, flags);
4228
4229 /* Set the preempt count _outside_ the spinlocks! */
4230 task_thread_info(idle)->preempt_count = 0;
4231
4232 /*
4233 * The idle tasks have their own, simple scheduling class:
4234 */
4235 idle->sched_class = &idle_sched_class;
4236 ftrace_graph_init_idle_task(idle, cpu);
4237 vtime_init_idle(idle, cpu);
4238 #if defined(CONFIG_SMP)
4239 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4240 #endif
4241 }
4242
4243 #ifdef CONFIG_SMP
4244 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4245 {
4246 if (p->sched_class && p->sched_class->set_cpus_allowed)
4247 p->sched_class->set_cpus_allowed(p, new_mask);
4248
4249 cpumask_copy(&p->cpus_allowed, new_mask);
4250 p->nr_cpus_allowed = cpumask_weight(new_mask);
4251 }
4252
4253 /*
4254 * This is how migration works:
4255 *
4256 * 1) we invoke migration_cpu_stop() on the target CPU using
4257 * stop_one_cpu().
4258 * 2) stopper starts to run (implicitly forcing the migrated thread
4259 * off the CPU)
4260 * 3) it checks whether the migrated task is still in the wrong runqueue.
4261 * 4) if it's in the wrong runqueue then the migration thread removes
4262 * it and puts it into the right queue.
4263 * 5) stopper completes and stop_one_cpu() returns and the migration
4264 * is done.
4265 */
4266
4267 /*
4268 * Change a given task's CPU affinity. Migrate the thread to a
4269 * proper CPU and schedule it away if the CPU it's executing on
4270 * is removed from the allowed bitmask.
4271 *
4272 * NOTE: the caller must have a valid reference to the task, the
4273 * task must not exit() & deallocate itself prematurely. The
4274 * call is not atomic; no spinlocks may be held.
4275 */
4276 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4277 {
4278 unsigned long flags;
4279 struct rq *rq;
4280 unsigned int dest_cpu;
4281 int ret = 0;
4282
4283 rq = task_rq_lock(p, &flags);
4284
4285 if (cpumask_equal(&p->cpus_allowed, new_mask))
4286 goto out;
4287
4288 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4289 ret = -EINVAL;
4290 goto out;
4291 }
4292
4293 do_set_cpus_allowed(p, new_mask);
4294
4295 /* Can the task run on the task's current CPU? If so, we're done */
4296 if (cpumask_test_cpu(task_cpu(p), new_mask))
4297 goto out;
4298
4299 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4300 if (p->on_rq) {
4301 struct migration_arg arg = { p, dest_cpu };
4302 /* Need help from migration thread: drop lock and wait. */
4303 task_rq_unlock(rq, p, &flags);
4304 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4305 tlb_migrate_finish(p->mm);
4306 return 0;
4307 }
4308 out:
4309 task_rq_unlock(rq, p, &flags);
4310
4311 return ret;
4312 }
4313 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4314
4315 /*
4316 * Move (not current) task off this cpu, onto dest cpu. We're doing
4317 * this because either it can't run here any more (set_cpus_allowed()
4318 * away from this CPU, or CPU going down), or because we're
4319 * attempting to rebalance this task on exec (sched_exec).
4320 *
4321 * So we race with normal scheduler movements, but that's OK, as long
4322 * as the task is no longer on this CPU.
4323 *
4324 * Returns non-zero if task was successfully migrated.
4325 */
4326 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4327 {
4328 struct rq *rq_dest, *rq_src;
4329 int ret = 0;
4330
4331 if (unlikely(!cpu_active(dest_cpu)))
4332 return ret;
4333
4334 rq_src = cpu_rq(src_cpu);
4335 rq_dest = cpu_rq(dest_cpu);
4336
4337 raw_spin_lock(&p->pi_lock);
4338 double_rq_lock(rq_src, rq_dest);
4339 /* Already moved. */
4340 if (task_cpu(p) != src_cpu)
4341 goto done;
4342 /* Affinity changed (again). */
4343 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4344 goto fail;
4345
4346 /*
4347 * If we're not on a rq, the next wake-up will ensure we're
4348 * placed properly.
4349 */
4350 if (p->on_rq) {
4351 dequeue_task(rq_src, p, 0);
4352 set_task_cpu(p, dest_cpu);
4353 enqueue_task(rq_dest, p, 0);
4354 check_preempt_curr(rq_dest, p, 0);
4355 }
4356 done:
4357 ret = 1;
4358 fail:
4359 double_rq_unlock(rq_src, rq_dest);
4360 raw_spin_unlock(&p->pi_lock);
4361 return ret;
4362 }
4363
4364 /*
4365 * migration_cpu_stop - this will be executed by a highprio stopper thread
4366 * and performs thread migration by bumping thread off CPU then
4367 * 'pushing' onto another runqueue.
4368 */
4369 static int migration_cpu_stop(void *data)
4370 {
4371 struct migration_arg *arg = data;
4372
4373 /*
4374 * The original target cpu might have gone down and we might
4375 * be on another cpu but it doesn't matter.
4376 */
4377 local_irq_disable();
4378 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4379 local_irq_enable();
4380 return 0;
4381 }
4382
4383 #ifdef CONFIG_HOTPLUG_CPU
4384
4385 /*
4386 * Ensures that the idle task is using init_mm right before its cpu goes
4387 * offline.
4388 */
4389 void idle_task_exit(void)
4390 {
4391 struct mm_struct *mm = current->active_mm;
4392
4393 BUG_ON(cpu_online(smp_processor_id()));
4394
4395 if (mm != &init_mm)
4396 switch_mm(mm, &init_mm, current);
4397 mmdrop(mm);
4398 }
4399
4400 /*
4401 * Since this CPU is going 'away' for a while, fold any nr_active delta
4402 * we might have. Assumes we're called after migrate_tasks() so that the
4403 * nr_active count is stable.
4404 *
4405 * Also see the comment "Global load-average calculations".
4406 */
4407 static void calc_load_migrate(struct rq *rq)
4408 {
4409 long delta = calc_load_fold_active(rq);
4410 if (delta)
4411 atomic_long_add(delta, &calc_load_tasks);
4412 }
4413
4414 /*
4415 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4416 * try_to_wake_up()->select_task_rq().
4417 *
4418 * Called with rq->lock held even though we'er in stop_machine() and
4419 * there's no concurrency possible, we hold the required locks anyway
4420 * because of lock validation efforts.
4421 */
4422 static void migrate_tasks(unsigned int dead_cpu)
4423 {
4424 struct rq *rq = cpu_rq(dead_cpu);
4425 struct task_struct *next, *stop = rq->stop;
4426 int dest_cpu;
4427
4428 /*
4429 * Fudge the rq selection such that the below task selection loop
4430 * doesn't get stuck on the currently eligible stop task.
4431 *
4432 * We're currently inside stop_machine() and the rq is either stuck
4433 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4434 * either way we should never end up calling schedule() until we're
4435 * done here.
4436 */
4437 rq->stop = NULL;
4438
4439 /*
4440 * put_prev_task() and pick_next_task() sched
4441 * class method both need to have an up-to-date
4442 * value of rq->clock[_task]
4443 */
4444 update_rq_clock(rq);
4445
4446 for ( ; ; ) {
4447 /*
4448 * There's this thread running, bail when that's the only
4449 * remaining thread.
4450 */
4451 if (rq->nr_running == 1)
4452 break;
4453
4454 next = pick_next_task(rq);
4455 BUG_ON(!next);
4456 next->sched_class->put_prev_task(rq, next);
4457
4458 /* Find suitable destination for @next, with force if needed. */
4459 dest_cpu = select_fallback_rq(dead_cpu, next);
4460 raw_spin_unlock(&rq->lock);
4461
4462 __migrate_task(next, dead_cpu, dest_cpu);
4463
4464 raw_spin_lock(&rq->lock);
4465 }
4466
4467 rq->stop = stop;
4468 }
4469
4470 #endif /* CONFIG_HOTPLUG_CPU */
4471
4472 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4473
4474 static struct ctl_table sd_ctl_dir[] = {
4475 {
4476 .procname = "sched_domain",
4477 .mode = 0555,
4478 },
4479 {}
4480 };
4481
4482 static struct ctl_table sd_ctl_root[] = {
4483 {
4484 .procname = "kernel",
4485 .mode = 0555,
4486 .child = sd_ctl_dir,
4487 },
4488 {}
4489 };
4490
4491 static struct ctl_table *sd_alloc_ctl_entry(int n)
4492 {
4493 struct ctl_table *entry =
4494 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4495
4496 return entry;
4497 }
4498
4499 static void sd_free_ctl_entry(struct ctl_table **tablep)
4500 {
4501 struct ctl_table *entry;
4502
4503 /*
4504 * In the intermediate directories, both the child directory and
4505 * procname are dynamically allocated and could fail but the mode
4506 * will always be set. In the lowest directory the names are
4507 * static strings and all have proc handlers.
4508 */
4509 for (entry = *tablep; entry->mode; entry++) {
4510 if (entry->child)
4511 sd_free_ctl_entry(&entry->child);
4512 if (entry->proc_handler == NULL)
4513 kfree(entry->procname);
4514 }
4515
4516 kfree(*tablep);
4517 *tablep = NULL;
4518 }
4519
4520 static int min_load_idx = 0;
4521 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4522
4523 static void
4524 set_table_entry(struct ctl_table *entry,
4525 const char *procname, void *data, int maxlen,
4526 umode_t mode, proc_handler *proc_handler,
4527 bool load_idx)
4528 {
4529 entry->procname = procname;
4530 entry->data = data;
4531 entry->maxlen = maxlen;
4532 entry->mode = mode;
4533 entry->proc_handler = proc_handler;
4534
4535 if (load_idx) {
4536 entry->extra1 = &min_load_idx;
4537 entry->extra2 = &max_load_idx;
4538 }
4539 }
4540
4541 static struct ctl_table *
4542 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4543 {
4544 struct ctl_table *table = sd_alloc_ctl_entry(13);
4545
4546 if (table == NULL)
4547 return NULL;
4548
4549 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4550 sizeof(long), 0644, proc_doulongvec_minmax, false);
4551 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4552 sizeof(long), 0644, proc_doulongvec_minmax, false);
4553 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4554 sizeof(int), 0644, proc_dointvec_minmax, true);
4555 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4556 sizeof(int), 0644, proc_dointvec_minmax, true);
4557 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4558 sizeof(int), 0644, proc_dointvec_minmax, true);
4559 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4560 sizeof(int), 0644, proc_dointvec_minmax, true);
4561 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4562 sizeof(int), 0644, proc_dointvec_minmax, true);
4563 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4564 sizeof(int), 0644, proc_dointvec_minmax, false);
4565 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4566 sizeof(int), 0644, proc_dointvec_minmax, false);
4567 set_table_entry(&table[9], "cache_nice_tries",
4568 &sd->cache_nice_tries,
4569 sizeof(int), 0644, proc_dointvec_minmax, false);
4570 set_table_entry(&table[10], "flags", &sd->flags,
4571 sizeof(int), 0644, proc_dointvec_minmax, false);
4572 set_table_entry(&table[11], "name", sd->name,
4573 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4574 /* &table[12] is terminator */
4575
4576 return table;
4577 }
4578
4579 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4580 {
4581 struct ctl_table *entry, *table;
4582 struct sched_domain *sd;
4583 int domain_num = 0, i;
4584 char buf[32];
4585
4586 for_each_domain(cpu, sd)
4587 domain_num++;
4588 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4589 if (table == NULL)
4590 return NULL;
4591
4592 i = 0;
4593 for_each_domain(cpu, sd) {
4594 snprintf(buf, 32, "domain%d", i);
4595 entry->procname = kstrdup(buf, GFP_KERNEL);
4596 entry->mode = 0555;
4597 entry->child = sd_alloc_ctl_domain_table(sd);
4598 entry++;
4599 i++;
4600 }
4601 return table;
4602 }
4603
4604 static struct ctl_table_header *sd_sysctl_header;
4605 static void register_sched_domain_sysctl(void)
4606 {
4607 int i, cpu_num = num_possible_cpus();
4608 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4609 char buf[32];
4610
4611 WARN_ON(sd_ctl_dir[0].child);
4612 sd_ctl_dir[0].child = entry;
4613
4614 if (entry == NULL)
4615 return;
4616
4617 for_each_possible_cpu(i) {
4618 snprintf(buf, 32, "cpu%d", i);
4619 entry->procname = kstrdup(buf, GFP_KERNEL);
4620 entry->mode = 0555;
4621 entry->child = sd_alloc_ctl_cpu_table(i);
4622 entry++;
4623 }
4624
4625 WARN_ON(sd_sysctl_header);
4626 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4627 }
4628
4629 /* may be called multiple times per register */
4630 static void unregister_sched_domain_sysctl(void)
4631 {
4632 if (sd_sysctl_header)
4633 unregister_sysctl_table(sd_sysctl_header);
4634 sd_sysctl_header = NULL;
4635 if (sd_ctl_dir[0].child)
4636 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4637 }
4638 #else
4639 static void register_sched_domain_sysctl(void)
4640 {
4641 }
4642 static void unregister_sched_domain_sysctl(void)
4643 {
4644 }
4645 #endif
4646
4647 static void set_rq_online(struct rq *rq)
4648 {
4649 if (!rq->online) {
4650 const struct sched_class *class;
4651
4652 cpumask_set_cpu(rq->cpu, rq->rd->online);
4653 rq->online = 1;
4654
4655 for_each_class(class) {
4656 if (class->rq_online)
4657 class->rq_online(rq);
4658 }
4659 }
4660 }
4661
4662 static void set_rq_offline(struct rq *rq)
4663 {
4664 if (rq->online) {
4665 const struct sched_class *class;
4666
4667 for_each_class(class) {
4668 if (class->rq_offline)
4669 class->rq_offline(rq);
4670 }
4671
4672 cpumask_clear_cpu(rq->cpu, rq->rd->online);
4673 rq->online = 0;
4674 }
4675 }
4676
4677 /*
4678 * migration_call - callback that gets triggered when a CPU is added.
4679 * Here we can start up the necessary migration thread for the new CPU.
4680 */
4681 static int
4682 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4683 {
4684 int cpu = (long)hcpu;
4685 unsigned long flags;
4686 struct rq *rq = cpu_rq(cpu);
4687
4688 switch (action & ~CPU_TASKS_FROZEN) {
4689
4690 case CPU_UP_PREPARE:
4691 rq->calc_load_update = calc_load_update;
4692 break;
4693
4694 case CPU_ONLINE:
4695 /* Update our root-domain */
4696 raw_spin_lock_irqsave(&rq->lock, flags);
4697 if (rq->rd) {
4698 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4699
4700 set_rq_online(rq);
4701 }
4702 raw_spin_unlock_irqrestore(&rq->lock, flags);
4703 break;
4704
4705 #ifdef CONFIG_HOTPLUG_CPU
4706 case CPU_DYING:
4707 sched_ttwu_pending();
4708 /* Update our root-domain */
4709 raw_spin_lock_irqsave(&rq->lock, flags);
4710 if (rq->rd) {
4711 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4712 set_rq_offline(rq);
4713 }
4714 migrate_tasks(cpu);
4715 BUG_ON(rq->nr_running != 1); /* the migration thread */
4716 raw_spin_unlock_irqrestore(&rq->lock, flags);
4717 break;
4718
4719 case CPU_DEAD:
4720 calc_load_migrate(rq);
4721 break;
4722 #endif
4723 }
4724
4725 update_max_interval();
4726
4727 return NOTIFY_OK;
4728 }
4729
4730 /*
4731 * Register at high priority so that task migration (migrate_all_tasks)
4732 * happens before everything else. This has to be lower priority than
4733 * the notifier in the perf_event subsystem, though.
4734 */
4735 static struct notifier_block migration_notifier = {
4736 .notifier_call = migration_call,
4737 .priority = CPU_PRI_MIGRATION,
4738 };
4739
4740 static int sched_cpu_active(struct notifier_block *nfb,
4741 unsigned long action, void *hcpu)
4742 {
4743 switch (action & ~CPU_TASKS_FROZEN) {
4744 case CPU_STARTING:
4745 case CPU_DOWN_FAILED:
4746 set_cpu_active((long)hcpu, true);
4747 return NOTIFY_OK;
4748 default:
4749 return NOTIFY_DONE;
4750 }
4751 }
4752
4753 static int sched_cpu_inactive(struct notifier_block *nfb,
4754 unsigned long action, void *hcpu)
4755 {
4756 switch (action & ~CPU_TASKS_FROZEN) {
4757 case CPU_DOWN_PREPARE:
4758 set_cpu_active((long)hcpu, false);
4759 return NOTIFY_OK;
4760 default:
4761 return NOTIFY_DONE;
4762 }
4763 }
4764
4765 static int __init migration_init(void)
4766 {
4767 void *cpu = (void *)(long)smp_processor_id();
4768 int err;
4769
4770 /* Initialize migration for the boot CPU */
4771 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4772 BUG_ON(err == NOTIFY_BAD);
4773 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4774 register_cpu_notifier(&migration_notifier);
4775
4776 /* Register cpu active notifiers */
4777 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4778 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4779
4780 return 0;
4781 }
4782 early_initcall(migration_init);
4783 #endif
4784
4785 #ifdef CONFIG_SMP
4786
4787 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4788
4789 #ifdef CONFIG_SCHED_DEBUG
4790
4791 static __read_mostly int sched_debug_enabled;
4792
4793 static int __init sched_debug_setup(char *str)
4794 {
4795 sched_debug_enabled = 1;
4796
4797 return 0;
4798 }
4799 early_param("sched_debug", sched_debug_setup);
4800
4801 static inline bool sched_debug(void)
4802 {
4803 return sched_debug_enabled;
4804 }
4805
4806 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4807 struct cpumask *groupmask)
4808 {
4809 struct sched_group *group = sd->groups;
4810 char str[256];
4811
4812 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4813 cpumask_clear(groupmask);
4814
4815 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4816
4817 if (!(sd->flags & SD_LOAD_BALANCE)) {
4818 printk("does not load-balance\n");
4819 if (sd->parent)
4820 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4821 " has parent");
4822 return -1;
4823 }
4824
4825 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4826
4827 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4828 printk(KERN_ERR "ERROR: domain->span does not contain "
4829 "CPU%d\n", cpu);
4830 }
4831 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4832 printk(KERN_ERR "ERROR: domain->groups does not contain"
4833 " CPU%d\n", cpu);
4834 }
4835
4836 printk(KERN_DEBUG "%*s groups:", level + 1, "");
4837 do {
4838 if (!group) {
4839 printk("\n");
4840 printk(KERN_ERR "ERROR: group is NULL\n");
4841 break;
4842 }
4843
4844 /*
4845 * Even though we initialize ->power to something semi-sane,
4846 * we leave power_orig unset. This allows us to detect if
4847 * domain iteration is still funny without causing /0 traps.
4848 */
4849 if (!group->sgp->power_orig) {
4850 printk(KERN_CONT "\n");
4851 printk(KERN_ERR "ERROR: domain->cpu_power not "
4852 "set\n");
4853 break;
4854 }
4855
4856 if (!cpumask_weight(sched_group_cpus(group))) {
4857 printk(KERN_CONT "\n");
4858 printk(KERN_ERR "ERROR: empty group\n");
4859 break;
4860 }
4861
4862 if (!(sd->flags & SD_OVERLAP) &&
4863 cpumask_intersects(groupmask, sched_group_cpus(group))) {
4864 printk(KERN_CONT "\n");
4865 printk(KERN_ERR "ERROR: repeated CPUs\n");
4866 break;
4867 }
4868
4869 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4870
4871 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4872
4873 printk(KERN_CONT " %s", str);
4874 if (group->sgp->power != SCHED_POWER_SCALE) {
4875 printk(KERN_CONT " (cpu_power = %d)",
4876 group->sgp->power);
4877 }
4878
4879 group = group->next;
4880 } while (group != sd->groups);
4881 printk(KERN_CONT "\n");
4882
4883 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4884 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4885
4886 if (sd->parent &&
4887 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4888 printk(KERN_ERR "ERROR: parent span is not a superset "
4889 "of domain->span\n");
4890 return 0;
4891 }
4892
4893 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4894 {
4895 int level = 0;
4896
4897 if (!sched_debug_enabled)
4898 return;
4899
4900 if (!sd) {
4901 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4902 return;
4903 }
4904
4905 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4906
4907 for (;;) {
4908 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4909 break;
4910 level++;
4911 sd = sd->parent;
4912 if (!sd)
4913 break;
4914 }
4915 }
4916 #else /* !CONFIG_SCHED_DEBUG */
4917 # define sched_domain_debug(sd, cpu) do { } while (0)
4918 static inline bool sched_debug(void)
4919 {
4920 return false;
4921 }
4922 #endif /* CONFIG_SCHED_DEBUG */
4923
4924 static int sd_degenerate(struct sched_domain *sd)
4925 {
4926 if (cpumask_weight(sched_domain_span(sd)) == 1)
4927 return 1;
4928
4929 /* Following flags need at least 2 groups */
4930 if (sd->flags & (SD_LOAD_BALANCE |
4931 SD_BALANCE_NEWIDLE |
4932 SD_BALANCE_FORK |
4933 SD_BALANCE_EXEC |
4934 SD_SHARE_CPUPOWER |
4935 SD_SHARE_PKG_RESOURCES)) {
4936 if (sd->groups != sd->groups->next)
4937 return 0;
4938 }
4939
4940 /* Following flags don't use groups */
4941 if (sd->flags & (SD_WAKE_AFFINE))
4942 return 0;
4943
4944 return 1;
4945 }
4946
4947 static int
4948 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4949 {
4950 unsigned long cflags = sd->flags, pflags = parent->flags;
4951
4952 if (sd_degenerate(parent))
4953 return 1;
4954
4955 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4956 return 0;
4957
4958 /* Flags needing groups don't count if only 1 group in parent */
4959 if (parent->groups == parent->groups->next) {
4960 pflags &= ~(SD_LOAD_BALANCE |
4961 SD_BALANCE_NEWIDLE |
4962 SD_BALANCE_FORK |
4963 SD_BALANCE_EXEC |
4964 SD_SHARE_CPUPOWER |
4965 SD_SHARE_PKG_RESOURCES |
4966 SD_PREFER_SIBLING);
4967 if (nr_node_ids == 1)
4968 pflags &= ~SD_SERIALIZE;
4969 }
4970 if (~cflags & pflags)
4971 return 0;
4972
4973 return 1;
4974 }
4975
4976 static void free_rootdomain(struct rcu_head *rcu)
4977 {
4978 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4979
4980 cpupri_cleanup(&rd->cpupri);
4981 free_cpumask_var(rd->rto_mask);
4982 free_cpumask_var(rd->online);
4983 free_cpumask_var(rd->span);
4984 kfree(rd);
4985 }
4986
4987 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4988 {
4989 struct root_domain *old_rd = NULL;
4990 unsigned long flags;
4991
4992 raw_spin_lock_irqsave(&rq->lock, flags);
4993
4994 if (rq->rd) {
4995 old_rd = rq->rd;
4996
4997 if (cpumask_test_cpu(rq->cpu, old_rd->online))
4998 set_rq_offline(rq);
4999
5000 cpumask_clear_cpu(rq->cpu, old_rd->span);
5001
5002 /*
5003 * If we dont want to free the old_rt yet then
5004 * set old_rd to NULL to skip the freeing later
5005 * in this function:
5006 */
5007 if (!atomic_dec_and_test(&old_rd->refcount))
5008 old_rd = NULL;
5009 }
5010
5011 atomic_inc(&rd->refcount);
5012 rq->rd = rd;
5013
5014 cpumask_set_cpu(rq->cpu, rd->span);
5015 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5016 set_rq_online(rq);
5017
5018 raw_spin_unlock_irqrestore(&rq->lock, flags);
5019
5020 if (old_rd)
5021 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5022 }
5023
5024 static int init_rootdomain(struct root_domain *rd)
5025 {
5026 memset(rd, 0, sizeof(*rd));
5027
5028 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5029 goto out;
5030 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5031 goto free_span;
5032 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5033 goto free_online;
5034
5035 if (cpupri_init(&rd->cpupri) != 0)
5036 goto free_rto_mask;
5037 return 0;
5038
5039 free_rto_mask:
5040 free_cpumask_var(rd->rto_mask);
5041 free_online:
5042 free_cpumask_var(rd->online);
5043 free_span:
5044 free_cpumask_var(rd->span);
5045 out:
5046 return -ENOMEM;
5047 }
5048
5049 /*
5050 * By default the system creates a single root-domain with all cpus as
5051 * members (mimicking the global state we have today).
5052 */
5053 struct root_domain def_root_domain;
5054
5055 static void init_defrootdomain(void)
5056 {
5057 init_rootdomain(&def_root_domain);
5058
5059 atomic_set(&def_root_domain.refcount, 1);
5060 }
5061
5062 static struct root_domain *alloc_rootdomain(void)
5063 {
5064 struct root_domain *rd;
5065
5066 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5067 if (!rd)
5068 return NULL;
5069
5070 if (init_rootdomain(rd) != 0) {
5071 kfree(rd);
5072 return NULL;
5073 }
5074
5075 return rd;
5076 }
5077
5078 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5079 {
5080 struct sched_group *tmp, *first;
5081
5082 if (!sg)
5083 return;
5084
5085 first = sg;
5086 do {
5087 tmp = sg->next;
5088
5089 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5090 kfree(sg->sgp);
5091
5092 kfree(sg);
5093 sg = tmp;
5094 } while (sg != first);
5095 }
5096
5097 static void free_sched_domain(struct rcu_head *rcu)
5098 {
5099 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5100
5101 /*
5102 * If its an overlapping domain it has private groups, iterate and
5103 * nuke them all.
5104 */
5105 if (sd->flags & SD_OVERLAP) {
5106 free_sched_groups(sd->groups, 1);
5107 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5108 kfree(sd->groups->sgp);
5109 kfree(sd->groups);
5110 }
5111 kfree(sd);
5112 }
5113
5114 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5115 {
5116 call_rcu(&sd->rcu, free_sched_domain);
5117 }
5118
5119 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5120 {
5121 for (; sd; sd = sd->parent)
5122 destroy_sched_domain(sd, cpu);
5123 }
5124
5125 /*
5126 * Keep a special pointer to the highest sched_domain that has
5127 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5128 * allows us to avoid some pointer chasing select_idle_sibling().
5129 *
5130 * Also keep a unique ID per domain (we use the first cpu number in
5131 * the cpumask of the domain), this allows us to quickly tell if
5132 * two cpus are in the same cache domain, see cpus_share_cache().
5133 */
5134 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5135 DEFINE_PER_CPU(int, sd_llc_size);
5136 DEFINE_PER_CPU(int, sd_llc_id);
5137
5138 static void update_top_cache_domain(int cpu)
5139 {
5140 struct sched_domain *sd;
5141 int id = cpu;
5142 int size = 1;
5143
5144 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5145 if (sd) {
5146 id = cpumask_first(sched_domain_span(sd));
5147 size = cpumask_weight(sched_domain_span(sd));
5148 }
5149
5150 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5151 per_cpu(sd_llc_size, cpu) = size;
5152 per_cpu(sd_llc_id, cpu) = id;
5153 }
5154
5155 /*
5156 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5157 * hold the hotplug lock.
5158 */
5159 static void
5160 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5161 {
5162 struct rq *rq = cpu_rq(cpu);
5163 struct sched_domain *tmp;
5164
5165 /* Remove the sched domains which do not contribute to scheduling. */
5166 for (tmp = sd; tmp; ) {
5167 struct sched_domain *parent = tmp->parent;
5168 if (!parent)
5169 break;
5170
5171 if (sd_parent_degenerate(tmp, parent)) {
5172 tmp->parent = parent->parent;
5173 if (parent->parent)
5174 parent->parent->child = tmp;
5175 /*
5176 * Transfer SD_PREFER_SIBLING down in case of a
5177 * degenerate parent; the spans match for this
5178 * so the property transfers.
5179 */
5180 if (parent->flags & SD_PREFER_SIBLING)
5181 tmp->flags |= SD_PREFER_SIBLING;
5182 destroy_sched_domain(parent, cpu);
5183 } else
5184 tmp = tmp->parent;
5185 }
5186
5187 if (sd && sd_degenerate(sd)) {
5188 tmp = sd;
5189 sd = sd->parent;
5190 destroy_sched_domain(tmp, cpu);
5191 if (sd)
5192 sd->child = NULL;
5193 }
5194
5195 sched_domain_debug(sd, cpu);
5196
5197 rq_attach_root(rq, rd);
5198 tmp = rq->sd;
5199 rcu_assign_pointer(rq->sd, sd);
5200 destroy_sched_domains(tmp, cpu);
5201
5202 update_top_cache_domain(cpu);
5203 }
5204
5205 /* cpus with isolated domains */
5206 static cpumask_var_t cpu_isolated_map;
5207
5208 /* Setup the mask of cpus configured for isolated domains */
5209 static int __init isolated_cpu_setup(char *str)
5210 {
5211 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5212 cpulist_parse(str, cpu_isolated_map);
5213 return 1;
5214 }
5215
5216 __setup("isolcpus=", isolated_cpu_setup);
5217
5218 static const struct cpumask *cpu_cpu_mask(int cpu)
5219 {
5220 return cpumask_of_node(cpu_to_node(cpu));
5221 }
5222
5223 struct sd_data {
5224 struct sched_domain **__percpu sd;
5225 struct sched_group **__percpu sg;
5226 struct sched_group_power **__percpu sgp;
5227 };
5228
5229 struct s_data {
5230 struct sched_domain ** __percpu sd;
5231 struct root_domain *rd;
5232 };
5233
5234 enum s_alloc {
5235 sa_rootdomain,
5236 sa_sd,
5237 sa_sd_storage,
5238 sa_none,
5239 };
5240
5241 struct sched_domain_topology_level;
5242
5243 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5244 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5245
5246 #define SDTL_OVERLAP 0x01
5247
5248 struct sched_domain_topology_level {
5249 sched_domain_init_f init;
5250 sched_domain_mask_f mask;
5251 int flags;
5252 int numa_level;
5253 struct sd_data data;
5254 };
5255
5256 /*
5257 * Build an iteration mask that can exclude certain CPUs from the upwards
5258 * domain traversal.
5259 *
5260 * Asymmetric node setups can result in situations where the domain tree is of
5261 * unequal depth, make sure to skip domains that already cover the entire
5262 * range.
5263 *
5264 * In that case build_sched_domains() will have terminated the iteration early
5265 * and our sibling sd spans will be empty. Domains should always include the
5266 * cpu they're built on, so check that.
5267 *
5268 */
5269 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5270 {
5271 const struct cpumask *span = sched_domain_span(sd);
5272 struct sd_data *sdd = sd->private;
5273 struct sched_domain *sibling;
5274 int i;
5275
5276 for_each_cpu(i, span) {
5277 sibling = *per_cpu_ptr(sdd->sd, i);
5278 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5279 continue;
5280
5281 cpumask_set_cpu(i, sched_group_mask(sg));
5282 }
5283 }
5284
5285 /*
5286 * Return the canonical balance cpu for this group, this is the first cpu
5287 * of this group that's also in the iteration mask.
5288 */
5289 int group_balance_cpu(struct sched_group *sg)
5290 {
5291 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5292 }
5293
5294 static int
5295 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5296 {
5297 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5298 const struct cpumask *span = sched_domain_span(sd);
5299 struct cpumask *covered = sched_domains_tmpmask;
5300 struct sd_data *sdd = sd->private;
5301 struct sched_domain *child;
5302 int i;
5303
5304 cpumask_clear(covered);
5305
5306 for_each_cpu(i, span) {
5307 struct cpumask *sg_span;
5308
5309 if (cpumask_test_cpu(i, covered))
5310 continue;
5311
5312 child = *per_cpu_ptr(sdd->sd, i);
5313
5314 /* See the comment near build_group_mask(). */
5315 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5316 continue;
5317
5318 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5319 GFP_KERNEL, cpu_to_node(cpu));
5320
5321 if (!sg)
5322 goto fail;
5323
5324 sg_span = sched_group_cpus(sg);
5325 if (child->child) {
5326 child = child->child;
5327 cpumask_copy(sg_span, sched_domain_span(child));
5328 } else
5329 cpumask_set_cpu(i, sg_span);
5330
5331 cpumask_or(covered, covered, sg_span);
5332
5333 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5334 if (atomic_inc_return(&sg->sgp->ref) == 1)
5335 build_group_mask(sd, sg);
5336
5337 /*
5338 * Initialize sgp->power such that even if we mess up the
5339 * domains and no possible iteration will get us here, we won't
5340 * die on a /0 trap.
5341 */
5342 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5343
5344 /*
5345 * Make sure the first group of this domain contains the
5346 * canonical balance cpu. Otherwise the sched_domain iteration
5347 * breaks. See update_sg_lb_stats().
5348 */
5349 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5350 group_balance_cpu(sg) == cpu)
5351 groups = sg;
5352
5353 if (!first)
5354 first = sg;
5355 if (last)
5356 last->next = sg;
5357 last = sg;
5358 last->next = first;
5359 }
5360 sd->groups = groups;
5361
5362 return 0;
5363
5364 fail:
5365 free_sched_groups(first, 0);
5366
5367 return -ENOMEM;
5368 }
5369
5370 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5371 {
5372 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5373 struct sched_domain *child = sd->child;
5374
5375 if (child)
5376 cpu = cpumask_first(sched_domain_span(child));
5377
5378 if (sg) {
5379 *sg = *per_cpu_ptr(sdd->sg, cpu);
5380 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5381 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5382 }
5383
5384 return cpu;
5385 }
5386
5387 /*
5388 * build_sched_groups will build a circular linked list of the groups
5389 * covered by the given span, and will set each group's ->cpumask correctly,
5390 * and ->cpu_power to 0.
5391 *
5392 * Assumes the sched_domain tree is fully constructed
5393 */
5394 static int
5395 build_sched_groups(struct sched_domain *sd, int cpu)
5396 {
5397 struct sched_group *first = NULL, *last = NULL;
5398 struct sd_data *sdd = sd->private;
5399 const struct cpumask *span = sched_domain_span(sd);
5400 struct cpumask *covered;
5401 int i;
5402
5403 get_group(cpu, sdd, &sd->groups);
5404 atomic_inc(&sd->groups->ref);
5405
5406 if (cpu != cpumask_first(span))
5407 return 0;
5408
5409 lockdep_assert_held(&sched_domains_mutex);
5410 covered = sched_domains_tmpmask;
5411
5412 cpumask_clear(covered);
5413
5414 for_each_cpu(i, span) {
5415 struct sched_group *sg;
5416 int group, j;
5417
5418 if (cpumask_test_cpu(i, covered))
5419 continue;
5420
5421 group = get_group(i, sdd, &sg);
5422 cpumask_clear(sched_group_cpus(sg));
5423 sg->sgp->power = 0;
5424 cpumask_setall(sched_group_mask(sg));
5425
5426 for_each_cpu(j, span) {
5427 if (get_group(j, sdd, NULL) != group)
5428 continue;
5429
5430 cpumask_set_cpu(j, covered);
5431 cpumask_set_cpu(j, sched_group_cpus(sg));
5432 }
5433
5434 if (!first)
5435 first = sg;
5436 if (last)
5437 last->next = sg;
5438 last = sg;
5439 }
5440 last->next = first;
5441
5442 return 0;
5443 }
5444
5445 /*
5446 * Initialize sched groups cpu_power.
5447 *
5448 * cpu_power indicates the capacity of sched group, which is used while
5449 * distributing the load between different sched groups in a sched domain.
5450 * Typically cpu_power for all the groups in a sched domain will be same unless
5451 * there are asymmetries in the topology. If there are asymmetries, group
5452 * having more cpu_power will pickup more load compared to the group having
5453 * less cpu_power.
5454 */
5455 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5456 {
5457 struct sched_group *sg = sd->groups;
5458
5459 WARN_ON(!sg);
5460
5461 do {
5462 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5463 sg = sg->next;
5464 } while (sg != sd->groups);
5465
5466 if (cpu != group_balance_cpu(sg))
5467 return;
5468
5469 update_group_power(sd, cpu);
5470 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5471 }
5472
5473 int __weak arch_sd_sibling_asym_packing(void)
5474 {
5475 return 0*SD_ASYM_PACKING;
5476 }
5477
5478 /*
5479 * Initializers for schedule domains
5480 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5481 */
5482
5483 #ifdef CONFIG_SCHED_DEBUG
5484 # define SD_INIT_NAME(sd, type) sd->name = #type
5485 #else
5486 # define SD_INIT_NAME(sd, type) do { } while (0)
5487 #endif
5488
5489 #define SD_INIT_FUNC(type) \
5490 static noinline struct sched_domain * \
5491 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5492 { \
5493 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5494 *sd = SD_##type##_INIT; \
5495 SD_INIT_NAME(sd, type); \
5496 sd->private = &tl->data; \
5497 return sd; \
5498 }
5499
5500 SD_INIT_FUNC(CPU)
5501 #ifdef CONFIG_SCHED_SMT
5502 SD_INIT_FUNC(SIBLING)
5503 #endif
5504 #ifdef CONFIG_SCHED_MC
5505 SD_INIT_FUNC(MC)
5506 #endif
5507 #ifdef CONFIG_SCHED_BOOK
5508 SD_INIT_FUNC(BOOK)
5509 #endif
5510
5511 static int default_relax_domain_level = -1;
5512 int sched_domain_level_max;
5513
5514 static int __init setup_relax_domain_level(char *str)
5515 {
5516 if (kstrtoint(str, 0, &default_relax_domain_level))
5517 pr_warn("Unable to set relax_domain_level\n");
5518
5519 return 1;
5520 }
5521 __setup("relax_domain_level=", setup_relax_domain_level);
5522
5523 static void set_domain_attribute(struct sched_domain *sd,
5524 struct sched_domain_attr *attr)
5525 {
5526 int request;
5527
5528 if (!attr || attr->relax_domain_level < 0) {
5529 if (default_relax_domain_level < 0)
5530 return;
5531 else
5532 request = default_relax_domain_level;
5533 } else
5534 request = attr->relax_domain_level;
5535 if (request < sd->level) {
5536 /* turn off idle balance on this domain */
5537 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5538 } else {
5539 /* turn on idle balance on this domain */
5540 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5541 }
5542 }
5543
5544 static void __sdt_free(const struct cpumask *cpu_map);
5545 static int __sdt_alloc(const struct cpumask *cpu_map);
5546
5547 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5548 const struct cpumask *cpu_map)
5549 {
5550 switch (what) {
5551 case sa_rootdomain:
5552 if (!atomic_read(&d->rd->refcount))
5553 free_rootdomain(&d->rd->rcu); /* fall through */
5554 case sa_sd:
5555 free_percpu(d->sd); /* fall through */
5556 case sa_sd_storage:
5557 __sdt_free(cpu_map); /* fall through */
5558 case sa_none:
5559 break;
5560 }
5561 }
5562
5563 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5564 const struct cpumask *cpu_map)
5565 {
5566 memset(d, 0, sizeof(*d));
5567
5568 if (__sdt_alloc(cpu_map))
5569 return sa_sd_storage;
5570 d->sd = alloc_percpu(struct sched_domain *);
5571 if (!d->sd)
5572 return sa_sd_storage;
5573 d->rd = alloc_rootdomain();
5574 if (!d->rd)
5575 return sa_sd;
5576 return sa_rootdomain;
5577 }
5578
5579 /*
5580 * NULL the sd_data elements we've used to build the sched_domain and
5581 * sched_group structure so that the subsequent __free_domain_allocs()
5582 * will not free the data we're using.
5583 */
5584 static void claim_allocations(int cpu, struct sched_domain *sd)
5585 {
5586 struct sd_data *sdd = sd->private;
5587
5588 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5589 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5590
5591 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5592 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5593
5594 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5595 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5596 }
5597
5598 #ifdef CONFIG_SCHED_SMT
5599 static const struct cpumask *cpu_smt_mask(int cpu)
5600 {
5601 return topology_thread_cpumask(cpu);
5602 }
5603 #endif
5604
5605 /*
5606 * Topology list, bottom-up.
5607 */
5608 static struct sched_domain_topology_level default_topology[] = {
5609 #ifdef CONFIG_SCHED_SMT
5610 { sd_init_SIBLING, cpu_smt_mask, },
5611 #endif
5612 #ifdef CONFIG_SCHED_MC
5613 { sd_init_MC, cpu_coregroup_mask, },
5614 #endif
5615 #ifdef CONFIG_SCHED_BOOK
5616 { sd_init_BOOK, cpu_book_mask, },
5617 #endif
5618 { sd_init_CPU, cpu_cpu_mask, },
5619 { NULL, },
5620 };
5621
5622 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5623
5624 #define for_each_sd_topology(tl) \
5625 for (tl = sched_domain_topology; tl->init; tl++)
5626
5627 #ifdef CONFIG_NUMA
5628
5629 static int sched_domains_numa_levels;
5630 static int *sched_domains_numa_distance;
5631 static struct cpumask ***sched_domains_numa_masks;
5632 static int sched_domains_curr_level;
5633
5634 static inline int sd_local_flags(int level)
5635 {
5636 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5637 return 0;
5638
5639 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5640 }
5641
5642 static struct sched_domain *
5643 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5644 {
5645 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5646 int level = tl->numa_level;
5647 int sd_weight = cpumask_weight(
5648 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5649
5650 *sd = (struct sched_domain){
5651 .min_interval = sd_weight,
5652 .max_interval = 2*sd_weight,
5653 .busy_factor = 32,
5654 .imbalance_pct = 125,
5655 .cache_nice_tries = 2,
5656 .busy_idx = 3,
5657 .idle_idx = 2,
5658 .newidle_idx = 0,
5659 .wake_idx = 0,
5660 .forkexec_idx = 0,
5661
5662 .flags = 1*SD_LOAD_BALANCE
5663 | 1*SD_BALANCE_NEWIDLE
5664 | 0*SD_BALANCE_EXEC
5665 | 0*SD_BALANCE_FORK
5666 | 0*SD_BALANCE_WAKE
5667 | 0*SD_WAKE_AFFINE
5668 | 0*SD_SHARE_CPUPOWER
5669 | 0*SD_SHARE_PKG_RESOURCES
5670 | 1*SD_SERIALIZE
5671 | 0*SD_PREFER_SIBLING
5672 | sd_local_flags(level)
5673 ,
5674 .last_balance = jiffies,
5675 .balance_interval = sd_weight,
5676 };
5677 SD_INIT_NAME(sd, NUMA);
5678 sd->private = &tl->data;
5679
5680 /*
5681 * Ugly hack to pass state to sd_numa_mask()...
5682 */
5683 sched_domains_curr_level = tl->numa_level;
5684
5685 return sd;
5686 }
5687
5688 static const struct cpumask *sd_numa_mask(int cpu)
5689 {
5690 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5691 }
5692
5693 static void sched_numa_warn(const char *str)
5694 {
5695 static int done = false;
5696 int i,j;
5697
5698 if (done)
5699 return;
5700
5701 done = true;
5702
5703 printk(KERN_WARNING "ERROR: %s\n\n", str);
5704
5705 for (i = 0; i < nr_node_ids; i++) {
5706 printk(KERN_WARNING " ");
5707 for (j = 0; j < nr_node_ids; j++)
5708 printk(KERN_CONT "%02d ", node_distance(i,j));
5709 printk(KERN_CONT "\n");
5710 }
5711 printk(KERN_WARNING "\n");
5712 }
5713
5714 static bool find_numa_distance(int distance)
5715 {
5716 int i;
5717
5718 if (distance == node_distance(0, 0))
5719 return true;
5720
5721 for (i = 0; i < sched_domains_numa_levels; i++) {
5722 if (sched_domains_numa_distance[i] == distance)
5723 return true;
5724 }
5725
5726 return false;
5727 }
5728
5729 static void sched_init_numa(void)
5730 {
5731 int next_distance, curr_distance = node_distance(0, 0);
5732 struct sched_domain_topology_level *tl;
5733 int level = 0;
5734 int i, j, k;
5735
5736 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5737 if (!sched_domains_numa_distance)
5738 return;
5739
5740 /*
5741 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5742 * unique distances in the node_distance() table.
5743 *
5744 * Assumes node_distance(0,j) includes all distances in
5745 * node_distance(i,j) in order to avoid cubic time.
5746 */
5747 next_distance = curr_distance;
5748 for (i = 0; i < nr_node_ids; i++) {
5749 for (j = 0; j < nr_node_ids; j++) {
5750 for (k = 0; k < nr_node_ids; k++) {
5751 int distance = node_distance(i, k);
5752
5753 if (distance > curr_distance &&
5754 (distance < next_distance ||
5755 next_distance == curr_distance))
5756 next_distance = distance;
5757
5758 /*
5759 * While not a strong assumption it would be nice to know
5760 * about cases where if node A is connected to B, B is not
5761 * equally connected to A.
5762 */
5763 if (sched_debug() && node_distance(k, i) != distance)
5764 sched_numa_warn("Node-distance not symmetric");
5765
5766 if (sched_debug() && i && !find_numa_distance(distance))
5767 sched_numa_warn("Node-0 not representative");
5768 }
5769 if (next_distance != curr_distance) {
5770 sched_domains_numa_distance[level++] = next_distance;
5771 sched_domains_numa_levels = level;
5772 curr_distance = next_distance;
5773 } else break;
5774 }
5775
5776 /*
5777 * In case of sched_debug() we verify the above assumption.
5778 */
5779 if (!sched_debug())
5780 break;
5781 }
5782 /*
5783 * 'level' contains the number of unique distances, excluding the
5784 * identity distance node_distance(i,i).
5785 *
5786 * The sched_domains_numa_distance[] array includes the actual distance
5787 * numbers.
5788 */
5789
5790 /*
5791 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5792 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5793 * the array will contain less then 'level' members. This could be
5794 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5795 * in other functions.
5796 *
5797 * We reset it to 'level' at the end of this function.
5798 */
5799 sched_domains_numa_levels = 0;
5800
5801 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5802 if (!sched_domains_numa_masks)
5803 return;
5804
5805 /*
5806 * Now for each level, construct a mask per node which contains all
5807 * cpus of nodes that are that many hops away from us.
5808 */
5809 for (i = 0; i < level; i++) {
5810 sched_domains_numa_masks[i] =
5811 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5812 if (!sched_domains_numa_masks[i])
5813 return;
5814
5815 for (j = 0; j < nr_node_ids; j++) {
5816 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5817 if (!mask)
5818 return;
5819
5820 sched_domains_numa_masks[i][j] = mask;
5821
5822 for (k = 0; k < nr_node_ids; k++) {
5823 if (node_distance(j, k) > sched_domains_numa_distance[i])
5824 continue;
5825
5826 cpumask_or(mask, mask, cpumask_of_node(k));
5827 }
5828 }
5829 }
5830
5831 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5832 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5833 if (!tl)
5834 return;
5835
5836 /*
5837 * Copy the default topology bits..
5838 */
5839 for (i = 0; default_topology[i].init; i++)
5840 tl[i] = default_topology[i];
5841
5842 /*
5843 * .. and append 'j' levels of NUMA goodness.
5844 */
5845 for (j = 0; j < level; i++, j++) {
5846 tl[i] = (struct sched_domain_topology_level){
5847 .init = sd_numa_init,
5848 .mask = sd_numa_mask,
5849 .flags = SDTL_OVERLAP,
5850 .numa_level = j,
5851 };
5852 }
5853
5854 sched_domain_topology = tl;
5855
5856 sched_domains_numa_levels = level;
5857 }
5858
5859 static void sched_domains_numa_masks_set(int cpu)
5860 {
5861 int i, j;
5862 int node = cpu_to_node(cpu);
5863
5864 for (i = 0; i < sched_domains_numa_levels; i++) {
5865 for (j = 0; j < nr_node_ids; j++) {
5866 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5867 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5868 }
5869 }
5870 }
5871
5872 static void sched_domains_numa_masks_clear(int cpu)
5873 {
5874 int i, j;
5875 for (i = 0; i < sched_domains_numa_levels; i++) {
5876 for (j = 0; j < nr_node_ids; j++)
5877 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5878 }
5879 }
5880
5881 /*
5882 * Update sched_domains_numa_masks[level][node] array when new cpus
5883 * are onlined.
5884 */
5885 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5886 unsigned long action,
5887 void *hcpu)
5888 {
5889 int cpu = (long)hcpu;
5890
5891 switch (action & ~CPU_TASKS_FROZEN) {
5892 case CPU_ONLINE:
5893 sched_domains_numa_masks_set(cpu);
5894 break;
5895
5896 case CPU_DEAD:
5897 sched_domains_numa_masks_clear(cpu);
5898 break;
5899
5900 default:
5901 return NOTIFY_DONE;
5902 }
5903
5904 return NOTIFY_OK;
5905 }
5906 #else
5907 static inline void sched_init_numa(void)
5908 {
5909 }
5910
5911 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5912 unsigned long action,
5913 void *hcpu)
5914 {
5915 return 0;
5916 }
5917 #endif /* CONFIG_NUMA */
5918
5919 static int __sdt_alloc(const struct cpumask *cpu_map)
5920 {
5921 struct sched_domain_topology_level *tl;
5922 int j;
5923
5924 for_each_sd_topology(tl) {
5925 struct sd_data *sdd = &tl->data;
5926
5927 sdd->sd = alloc_percpu(struct sched_domain *);
5928 if (!sdd->sd)
5929 return -ENOMEM;
5930
5931 sdd->sg = alloc_percpu(struct sched_group *);
5932 if (!sdd->sg)
5933 return -ENOMEM;
5934
5935 sdd->sgp = alloc_percpu(struct sched_group_power *);
5936 if (!sdd->sgp)
5937 return -ENOMEM;
5938
5939 for_each_cpu(j, cpu_map) {
5940 struct sched_domain *sd;
5941 struct sched_group *sg;
5942 struct sched_group_power *sgp;
5943
5944 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5945 GFP_KERNEL, cpu_to_node(j));
5946 if (!sd)
5947 return -ENOMEM;
5948
5949 *per_cpu_ptr(sdd->sd, j) = sd;
5950
5951 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5952 GFP_KERNEL, cpu_to_node(j));
5953 if (!sg)
5954 return -ENOMEM;
5955
5956 sg->next = sg;
5957
5958 *per_cpu_ptr(sdd->sg, j) = sg;
5959
5960 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5961 GFP_KERNEL, cpu_to_node(j));
5962 if (!sgp)
5963 return -ENOMEM;
5964
5965 *per_cpu_ptr(sdd->sgp, j) = sgp;
5966 }
5967 }
5968
5969 return 0;
5970 }
5971
5972 static void __sdt_free(const struct cpumask *cpu_map)
5973 {
5974 struct sched_domain_topology_level *tl;
5975 int j;
5976
5977 for_each_sd_topology(tl) {
5978 struct sd_data *sdd = &tl->data;
5979
5980 for_each_cpu(j, cpu_map) {
5981 struct sched_domain *sd;
5982
5983 if (sdd->sd) {
5984 sd = *per_cpu_ptr(sdd->sd, j);
5985 if (sd && (sd->flags & SD_OVERLAP))
5986 free_sched_groups(sd->groups, 0);
5987 kfree(*per_cpu_ptr(sdd->sd, j));
5988 }
5989
5990 if (sdd->sg)
5991 kfree(*per_cpu_ptr(sdd->sg, j));
5992 if (sdd->sgp)
5993 kfree(*per_cpu_ptr(sdd->sgp, j));
5994 }
5995 free_percpu(sdd->sd);
5996 sdd->sd = NULL;
5997 free_percpu(sdd->sg);
5998 sdd->sg = NULL;
5999 free_percpu(sdd->sgp);
6000 sdd->sgp = NULL;
6001 }
6002 }
6003
6004 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6005 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6006 struct sched_domain *child, int cpu)
6007 {
6008 struct sched_domain *sd = tl->init(tl, cpu);
6009 if (!sd)
6010 return child;
6011
6012 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6013 if (child) {
6014 sd->level = child->level + 1;
6015 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6016 child->parent = sd;
6017 sd->child = child;
6018 }
6019 set_domain_attribute(sd, attr);
6020
6021 return sd;
6022 }
6023
6024 /*
6025 * Build sched domains for a given set of cpus and attach the sched domains
6026 * to the individual cpus
6027 */
6028 static int build_sched_domains(const struct cpumask *cpu_map,
6029 struct sched_domain_attr *attr)
6030 {
6031 enum s_alloc alloc_state;
6032 struct sched_domain *sd;
6033 struct s_data d;
6034 int i, ret = -ENOMEM;
6035
6036 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6037 if (alloc_state != sa_rootdomain)
6038 goto error;
6039
6040 /* Set up domains for cpus specified by the cpu_map. */
6041 for_each_cpu(i, cpu_map) {
6042 struct sched_domain_topology_level *tl;
6043
6044 sd = NULL;
6045 for_each_sd_topology(tl) {
6046 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6047 if (tl == sched_domain_topology)
6048 *per_cpu_ptr(d.sd, i) = sd;
6049 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6050 sd->flags |= SD_OVERLAP;
6051 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6052 break;
6053 }
6054 }
6055
6056 /* Build the groups for the domains */
6057 for_each_cpu(i, cpu_map) {
6058 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6059 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6060 if (sd->flags & SD_OVERLAP) {
6061 if (build_overlap_sched_groups(sd, i))
6062 goto error;
6063 } else {
6064 if (build_sched_groups(sd, i))
6065 goto error;
6066 }
6067 }
6068 }
6069
6070 /* Calculate CPU power for physical packages and nodes */
6071 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6072 if (!cpumask_test_cpu(i, cpu_map))
6073 continue;
6074
6075 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6076 claim_allocations(i, sd);
6077 init_sched_groups_power(i, sd);
6078 }
6079 }
6080
6081 /* Attach the domains */
6082 rcu_read_lock();
6083 for_each_cpu(i, cpu_map) {
6084 sd = *per_cpu_ptr(d.sd, i);
6085 cpu_attach_domain(sd, d.rd, i);
6086 }
6087 rcu_read_unlock();
6088
6089 ret = 0;
6090 error:
6091 __free_domain_allocs(&d, alloc_state, cpu_map);
6092 return ret;
6093 }
6094
6095 static cpumask_var_t *doms_cur; /* current sched domains */
6096 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6097 static struct sched_domain_attr *dattr_cur;
6098 /* attribues of custom domains in 'doms_cur' */
6099
6100 /*
6101 * Special case: If a kmalloc of a doms_cur partition (array of
6102 * cpumask) fails, then fallback to a single sched domain,
6103 * as determined by the single cpumask fallback_doms.
6104 */
6105 static cpumask_var_t fallback_doms;
6106
6107 /*
6108 * arch_update_cpu_topology lets virtualized architectures update the
6109 * cpu core maps. It is supposed to return 1 if the topology changed
6110 * or 0 if it stayed the same.
6111 */
6112 int __attribute__((weak)) arch_update_cpu_topology(void)
6113 {
6114 return 0;
6115 }
6116
6117 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6118 {
6119 int i;
6120 cpumask_var_t *doms;
6121
6122 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6123 if (!doms)
6124 return NULL;
6125 for (i = 0; i < ndoms; i++) {
6126 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6127 free_sched_domains(doms, i);
6128 return NULL;
6129 }
6130 }
6131 return doms;
6132 }
6133
6134 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6135 {
6136 unsigned int i;
6137 for (i = 0; i < ndoms; i++)
6138 free_cpumask_var(doms[i]);
6139 kfree(doms);
6140 }
6141
6142 /*
6143 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6144 * For now this just excludes isolated cpus, but could be used to
6145 * exclude other special cases in the future.
6146 */
6147 static int init_sched_domains(const struct cpumask *cpu_map)
6148 {
6149 int err;
6150
6151 arch_update_cpu_topology();
6152 ndoms_cur = 1;
6153 doms_cur = alloc_sched_domains(ndoms_cur);
6154 if (!doms_cur)
6155 doms_cur = &fallback_doms;
6156 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6157 err = build_sched_domains(doms_cur[0], NULL);
6158 register_sched_domain_sysctl();
6159
6160 return err;
6161 }
6162
6163 /*
6164 * Detach sched domains from a group of cpus specified in cpu_map
6165 * These cpus will now be attached to the NULL domain
6166 */
6167 static void detach_destroy_domains(const struct cpumask *cpu_map)
6168 {
6169 int i;
6170
6171 rcu_read_lock();
6172 for_each_cpu(i, cpu_map)
6173 cpu_attach_domain(NULL, &def_root_domain, i);
6174 rcu_read_unlock();
6175 }
6176
6177 /* handle null as "default" */
6178 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6179 struct sched_domain_attr *new, int idx_new)
6180 {
6181 struct sched_domain_attr tmp;
6182
6183 /* fast path */
6184 if (!new && !cur)
6185 return 1;
6186
6187 tmp = SD_ATTR_INIT;
6188 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6189 new ? (new + idx_new) : &tmp,
6190 sizeof(struct sched_domain_attr));
6191 }
6192
6193 /*
6194 * Partition sched domains as specified by the 'ndoms_new'
6195 * cpumasks in the array doms_new[] of cpumasks. This compares
6196 * doms_new[] to the current sched domain partitioning, doms_cur[].
6197 * It destroys each deleted domain and builds each new domain.
6198 *
6199 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6200 * The masks don't intersect (don't overlap.) We should setup one
6201 * sched domain for each mask. CPUs not in any of the cpumasks will
6202 * not be load balanced. If the same cpumask appears both in the
6203 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6204 * it as it is.
6205 *
6206 * The passed in 'doms_new' should be allocated using
6207 * alloc_sched_domains. This routine takes ownership of it and will
6208 * free_sched_domains it when done with it. If the caller failed the
6209 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6210 * and partition_sched_domains() will fallback to the single partition
6211 * 'fallback_doms', it also forces the domains to be rebuilt.
6212 *
6213 * If doms_new == NULL it will be replaced with cpu_online_mask.
6214 * ndoms_new == 0 is a special case for destroying existing domains,
6215 * and it will not create the default domain.
6216 *
6217 * Call with hotplug lock held
6218 */
6219 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6220 struct sched_domain_attr *dattr_new)
6221 {
6222 int i, j, n;
6223 int new_topology;
6224
6225 mutex_lock(&sched_domains_mutex);
6226
6227 /* always unregister in case we don't destroy any domains */
6228 unregister_sched_domain_sysctl();
6229
6230 /* Let architecture update cpu core mappings. */
6231 new_topology = arch_update_cpu_topology();
6232
6233 n = doms_new ? ndoms_new : 0;
6234
6235 /* Destroy deleted domains */
6236 for (i = 0; i < ndoms_cur; i++) {
6237 for (j = 0; j < n && !new_topology; j++) {
6238 if (cpumask_equal(doms_cur[i], doms_new[j])
6239 && dattrs_equal(dattr_cur, i, dattr_new, j))
6240 goto match1;
6241 }
6242 /* no match - a current sched domain not in new doms_new[] */
6243 detach_destroy_domains(doms_cur[i]);
6244 match1:
6245 ;
6246 }
6247
6248 n = ndoms_cur;
6249 if (doms_new == NULL) {
6250 n = 0;
6251 doms_new = &fallback_doms;
6252 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6253 WARN_ON_ONCE(dattr_new);
6254 }
6255
6256 /* Build new domains */
6257 for (i = 0; i < ndoms_new; i++) {
6258 for (j = 0; j < n && !new_topology; j++) {
6259 if (cpumask_equal(doms_new[i], doms_cur[j])
6260 && dattrs_equal(dattr_new, i, dattr_cur, j))
6261 goto match2;
6262 }
6263 /* no match - add a new doms_new */
6264 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6265 match2:
6266 ;
6267 }
6268
6269 /* Remember the new sched domains */
6270 if (doms_cur != &fallback_doms)
6271 free_sched_domains(doms_cur, ndoms_cur);
6272 kfree(dattr_cur); /* kfree(NULL) is safe */
6273 doms_cur = doms_new;
6274 dattr_cur = dattr_new;
6275 ndoms_cur = ndoms_new;
6276
6277 register_sched_domain_sysctl();
6278
6279 mutex_unlock(&sched_domains_mutex);
6280 }
6281
6282 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6283
6284 /*
6285 * Update cpusets according to cpu_active mask. If cpusets are
6286 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6287 * around partition_sched_domains().
6288 *
6289 * If we come here as part of a suspend/resume, don't touch cpusets because we
6290 * want to restore it back to its original state upon resume anyway.
6291 */
6292 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6293 void *hcpu)
6294 {
6295 switch (action) {
6296 case CPU_ONLINE_FROZEN:
6297 case CPU_DOWN_FAILED_FROZEN:
6298
6299 /*
6300 * num_cpus_frozen tracks how many CPUs are involved in suspend
6301 * resume sequence. As long as this is not the last online
6302 * operation in the resume sequence, just build a single sched
6303 * domain, ignoring cpusets.
6304 */
6305 num_cpus_frozen--;
6306 if (likely(num_cpus_frozen)) {
6307 partition_sched_domains(1, NULL, NULL);
6308 break;
6309 }
6310
6311 /*
6312 * This is the last CPU online operation. So fall through and
6313 * restore the original sched domains by considering the
6314 * cpuset configurations.
6315 */
6316
6317 case CPU_ONLINE:
6318 case CPU_DOWN_FAILED:
6319 cpuset_update_active_cpus(true);
6320 break;
6321 default:
6322 return NOTIFY_DONE;
6323 }
6324 return NOTIFY_OK;
6325 }
6326
6327 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6328 void *hcpu)
6329 {
6330 switch (action) {
6331 case CPU_DOWN_PREPARE:
6332 cpuset_update_active_cpus(false);
6333 break;
6334 case CPU_DOWN_PREPARE_FROZEN:
6335 num_cpus_frozen++;
6336 partition_sched_domains(1, NULL, NULL);
6337 break;
6338 default:
6339 return NOTIFY_DONE;
6340 }
6341 return NOTIFY_OK;
6342 }
6343
6344 void __init sched_init_smp(void)
6345 {
6346 cpumask_var_t non_isolated_cpus;
6347
6348 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6349 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6350
6351 sched_init_numa();
6352
6353 get_online_cpus();
6354 mutex_lock(&sched_domains_mutex);
6355 init_sched_domains(cpu_active_mask);
6356 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6357 if (cpumask_empty(non_isolated_cpus))
6358 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6359 mutex_unlock(&sched_domains_mutex);
6360 put_online_cpus();
6361
6362 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6363 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6364 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6365
6366 init_hrtick();
6367
6368 /* Move init over to a non-isolated CPU */
6369 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6370 BUG();
6371 sched_init_granularity();
6372 free_cpumask_var(non_isolated_cpus);
6373
6374 init_sched_rt_class();
6375 }
6376 #else
6377 void __init sched_init_smp(void)
6378 {
6379 sched_init_granularity();
6380 }
6381 #endif /* CONFIG_SMP */
6382
6383 const_debug unsigned int sysctl_timer_migration = 1;
6384
6385 int in_sched_functions(unsigned long addr)
6386 {
6387 return in_lock_functions(addr) ||
6388 (addr >= (unsigned long)__sched_text_start
6389 && addr < (unsigned long)__sched_text_end);
6390 }
6391
6392 #ifdef CONFIG_CGROUP_SCHED
6393 /*
6394 * Default task group.
6395 * Every task in system belongs to this group at bootup.
6396 */
6397 struct task_group root_task_group;
6398 LIST_HEAD(task_groups);
6399 #endif
6400
6401 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6402
6403 void __init sched_init(void)
6404 {
6405 int i, j;
6406 unsigned long alloc_size = 0, ptr;
6407
6408 #ifdef CONFIG_FAIR_GROUP_SCHED
6409 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6410 #endif
6411 #ifdef CONFIG_RT_GROUP_SCHED
6412 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6413 #endif
6414 #ifdef CONFIG_CPUMASK_OFFSTACK
6415 alloc_size += num_possible_cpus() * cpumask_size();
6416 #endif
6417 if (alloc_size) {
6418 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6419
6420 #ifdef CONFIG_FAIR_GROUP_SCHED
6421 root_task_group.se = (struct sched_entity **)ptr;
6422 ptr += nr_cpu_ids * sizeof(void **);
6423
6424 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6425 ptr += nr_cpu_ids * sizeof(void **);
6426
6427 #endif /* CONFIG_FAIR_GROUP_SCHED */
6428 #ifdef CONFIG_RT_GROUP_SCHED
6429 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6430 ptr += nr_cpu_ids * sizeof(void **);
6431
6432 root_task_group.rt_rq = (struct rt_rq **)ptr;
6433 ptr += nr_cpu_ids * sizeof(void **);
6434
6435 #endif /* CONFIG_RT_GROUP_SCHED */
6436 #ifdef CONFIG_CPUMASK_OFFSTACK
6437 for_each_possible_cpu(i) {
6438 per_cpu(load_balance_mask, i) = (void *)ptr;
6439 ptr += cpumask_size();
6440 }
6441 #endif /* CONFIG_CPUMASK_OFFSTACK */
6442 }
6443
6444 #ifdef CONFIG_SMP
6445 init_defrootdomain();
6446 #endif
6447
6448 init_rt_bandwidth(&def_rt_bandwidth,
6449 global_rt_period(), global_rt_runtime());
6450
6451 #ifdef CONFIG_RT_GROUP_SCHED
6452 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6453 global_rt_period(), global_rt_runtime());
6454 #endif /* CONFIG_RT_GROUP_SCHED */
6455
6456 #ifdef CONFIG_CGROUP_SCHED
6457 list_add(&root_task_group.list, &task_groups);
6458 INIT_LIST_HEAD(&root_task_group.children);
6459 INIT_LIST_HEAD(&root_task_group.siblings);
6460 autogroup_init(&init_task);
6461
6462 #endif /* CONFIG_CGROUP_SCHED */
6463
6464 for_each_possible_cpu(i) {
6465 struct rq *rq;
6466
6467 rq = cpu_rq(i);
6468 raw_spin_lock_init(&rq->lock);
6469 rq->nr_running = 0;
6470 rq->calc_load_active = 0;
6471 rq->calc_load_update = jiffies + LOAD_FREQ;
6472 init_cfs_rq(&rq->cfs);
6473 init_rt_rq(&rq->rt, rq);
6474 #ifdef CONFIG_FAIR_GROUP_SCHED
6475 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6476 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6477 /*
6478 * How much cpu bandwidth does root_task_group get?
6479 *
6480 * In case of task-groups formed thr' the cgroup filesystem, it
6481 * gets 100% of the cpu resources in the system. This overall
6482 * system cpu resource is divided among the tasks of
6483 * root_task_group and its child task-groups in a fair manner,
6484 * based on each entity's (task or task-group's) weight
6485 * (se->load.weight).
6486 *
6487 * In other words, if root_task_group has 10 tasks of weight
6488 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6489 * then A0's share of the cpu resource is:
6490 *
6491 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6492 *
6493 * We achieve this by letting root_task_group's tasks sit
6494 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6495 */
6496 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6497 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6498 #endif /* CONFIG_FAIR_GROUP_SCHED */
6499
6500 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6501 #ifdef CONFIG_RT_GROUP_SCHED
6502 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6503 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6504 #endif
6505
6506 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6507 rq->cpu_load[j] = 0;
6508
6509 rq->last_load_update_tick = jiffies;
6510
6511 #ifdef CONFIG_SMP
6512 rq->sd = NULL;
6513 rq->rd = NULL;
6514 rq->cpu_power = SCHED_POWER_SCALE;
6515 rq->post_schedule = 0;
6516 rq->active_balance = 0;
6517 rq->next_balance = jiffies;
6518 rq->push_cpu = 0;
6519 rq->cpu = i;
6520 rq->online = 0;
6521 rq->idle_stamp = 0;
6522 rq->avg_idle = 2*sysctl_sched_migration_cost;
6523
6524 INIT_LIST_HEAD(&rq->cfs_tasks);
6525
6526 rq_attach_root(rq, &def_root_domain);
6527 #ifdef CONFIG_NO_HZ_COMMON
6528 rq->nohz_flags = 0;
6529 #endif
6530 #ifdef CONFIG_NO_HZ_FULL
6531 rq->last_sched_tick = 0;
6532 #endif
6533 #endif
6534 init_rq_hrtick(rq);
6535 atomic_set(&rq->nr_iowait, 0);
6536 }
6537
6538 set_load_weight(&init_task);
6539
6540 #ifdef CONFIG_PREEMPT_NOTIFIERS
6541 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6542 #endif
6543
6544 #ifdef CONFIG_RT_MUTEXES
6545 plist_head_init(&init_task.pi_waiters);
6546 #endif
6547
6548 /*
6549 * The boot idle thread does lazy MMU switching as well:
6550 */
6551 atomic_inc(&init_mm.mm_count);
6552 enter_lazy_tlb(&init_mm, current);
6553
6554 /*
6555 * Make us the idle thread. Technically, schedule() should not be
6556 * called from this thread, however somewhere below it might be,
6557 * but because we are the idle thread, we just pick up running again
6558 * when this runqueue becomes "idle".
6559 */
6560 init_idle(current, smp_processor_id());
6561
6562 calc_load_update = jiffies + LOAD_FREQ;
6563
6564 /*
6565 * During early bootup we pretend to be a normal task:
6566 */
6567 current->sched_class = &fair_sched_class;
6568
6569 #ifdef CONFIG_SMP
6570 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6571 /* May be allocated at isolcpus cmdline parse time */
6572 if (cpu_isolated_map == NULL)
6573 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6574 idle_thread_set_boot_cpu();
6575 #endif
6576 init_sched_fair_class();
6577
6578 scheduler_running = 1;
6579 }
6580
6581 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6582 static inline int preempt_count_equals(int preempt_offset)
6583 {
6584 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6585
6586 return (nested == preempt_offset);
6587 }
6588
6589 void __might_sleep(const char *file, int line, int preempt_offset)
6590 {
6591 static unsigned long prev_jiffy; /* ratelimiting */
6592
6593 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6594 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6595 system_state != SYSTEM_RUNNING || oops_in_progress)
6596 return;
6597 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6598 return;
6599 prev_jiffy = jiffies;
6600
6601 printk(KERN_ERR
6602 "BUG: sleeping function called from invalid context at %s:%d\n",
6603 file, line);
6604 printk(KERN_ERR
6605 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6606 in_atomic(), irqs_disabled(),
6607 current->pid, current->comm);
6608
6609 debug_show_held_locks(current);
6610 if (irqs_disabled())
6611 print_irqtrace_events(current);
6612 dump_stack();
6613 }
6614 EXPORT_SYMBOL(__might_sleep);
6615 #endif
6616
6617 #ifdef CONFIG_MAGIC_SYSRQ
6618 static void normalize_task(struct rq *rq, struct task_struct *p)
6619 {
6620 const struct sched_class *prev_class = p->sched_class;
6621 int old_prio = p->prio;
6622 int on_rq;
6623
6624 on_rq = p->on_rq;
6625 if (on_rq)
6626 dequeue_task(rq, p, 0);
6627 __setscheduler(rq, p, SCHED_NORMAL, 0);
6628 if (on_rq) {
6629 enqueue_task(rq, p, 0);
6630 resched_task(rq->curr);
6631 }
6632
6633 check_class_changed(rq, p, prev_class, old_prio);
6634 }
6635
6636 void normalize_rt_tasks(void)
6637 {
6638 struct task_struct *g, *p;
6639 unsigned long flags;
6640 struct rq *rq;
6641
6642 read_lock_irqsave(&tasklist_lock, flags);
6643 do_each_thread(g, p) {
6644 /*
6645 * Only normalize user tasks:
6646 */
6647 if (!p->mm)
6648 continue;
6649
6650 p->se.exec_start = 0;
6651 #ifdef CONFIG_SCHEDSTATS
6652 p->se.statistics.wait_start = 0;
6653 p->se.statistics.sleep_start = 0;
6654 p->se.statistics.block_start = 0;
6655 #endif
6656
6657 if (!rt_task(p)) {
6658 /*
6659 * Renice negative nice level userspace
6660 * tasks back to 0:
6661 */
6662 if (TASK_NICE(p) < 0 && p->mm)
6663 set_user_nice(p, 0);
6664 continue;
6665 }
6666
6667 raw_spin_lock(&p->pi_lock);
6668 rq = __task_rq_lock(p);
6669
6670 normalize_task(rq, p);
6671
6672 __task_rq_unlock(rq);
6673 raw_spin_unlock(&p->pi_lock);
6674 } while_each_thread(g, p);
6675
6676 read_unlock_irqrestore(&tasklist_lock, flags);
6677 }
6678
6679 #endif /* CONFIG_MAGIC_SYSRQ */
6680
6681 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6682 /*
6683 * These functions are only useful for the IA64 MCA handling, or kdb.
6684 *
6685 * They can only be called when the whole system has been
6686 * stopped - every CPU needs to be quiescent, and no scheduling
6687 * activity can take place. Using them for anything else would
6688 * be a serious bug, and as a result, they aren't even visible
6689 * under any other configuration.
6690 */
6691
6692 /**
6693 * curr_task - return the current task for a given cpu.
6694 * @cpu: the processor in question.
6695 *
6696 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6697 *
6698 * Return: The current task for @cpu.
6699 */
6700 struct task_struct *curr_task(int cpu)
6701 {
6702 return cpu_curr(cpu);
6703 }
6704
6705 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6706
6707 #ifdef CONFIG_IA64
6708 /**
6709 * set_curr_task - set the current task for a given cpu.
6710 * @cpu: the processor in question.
6711 * @p: the task pointer to set.
6712 *
6713 * Description: This function must only be used when non-maskable interrupts
6714 * are serviced on a separate stack. It allows the architecture to switch the
6715 * notion of the current task on a cpu in a non-blocking manner. This function
6716 * must be called with all CPU's synchronized, and interrupts disabled, the
6717 * and caller must save the original value of the current task (see
6718 * curr_task() above) and restore that value before reenabling interrupts and
6719 * re-starting the system.
6720 *
6721 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6722 */
6723 void set_curr_task(int cpu, struct task_struct *p)
6724 {
6725 cpu_curr(cpu) = p;
6726 }
6727
6728 #endif
6729
6730 #ifdef CONFIG_CGROUP_SCHED
6731 /* task_group_lock serializes the addition/removal of task groups */
6732 static DEFINE_SPINLOCK(task_group_lock);
6733
6734 static void free_sched_group(struct task_group *tg)
6735 {
6736 free_fair_sched_group(tg);
6737 free_rt_sched_group(tg);
6738 autogroup_free(tg);
6739 kfree(tg);
6740 }
6741
6742 /* allocate runqueue etc for a new task group */
6743 struct task_group *sched_create_group(struct task_group *parent)
6744 {
6745 struct task_group *tg;
6746
6747 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6748 if (!tg)
6749 return ERR_PTR(-ENOMEM);
6750
6751 if (!alloc_fair_sched_group(tg, parent))
6752 goto err;
6753
6754 if (!alloc_rt_sched_group(tg, parent))
6755 goto err;
6756
6757 return tg;
6758
6759 err:
6760 free_sched_group(tg);
6761 return ERR_PTR(-ENOMEM);
6762 }
6763
6764 void sched_online_group(struct task_group *tg, struct task_group *parent)
6765 {
6766 unsigned long flags;
6767
6768 spin_lock_irqsave(&task_group_lock, flags);
6769 list_add_rcu(&tg->list, &task_groups);
6770
6771 WARN_ON(!parent); /* root should already exist */
6772
6773 tg->parent = parent;
6774 INIT_LIST_HEAD(&tg->children);
6775 list_add_rcu(&tg->siblings, &parent->children);
6776 spin_unlock_irqrestore(&task_group_lock, flags);
6777 }
6778
6779 /* rcu callback to free various structures associated with a task group */
6780 static void free_sched_group_rcu(struct rcu_head *rhp)
6781 {
6782 /* now it should be safe to free those cfs_rqs */
6783 free_sched_group(container_of(rhp, struct task_group, rcu));
6784 }
6785
6786 /* Destroy runqueue etc associated with a task group */
6787 void sched_destroy_group(struct task_group *tg)
6788 {
6789 /* wait for possible concurrent references to cfs_rqs complete */
6790 call_rcu(&tg->rcu, free_sched_group_rcu);
6791 }
6792
6793 void sched_offline_group(struct task_group *tg)
6794 {
6795 unsigned long flags;
6796 int i;
6797
6798 /* end participation in shares distribution */
6799 for_each_possible_cpu(i)
6800 unregister_fair_sched_group(tg, i);
6801
6802 spin_lock_irqsave(&task_group_lock, flags);
6803 list_del_rcu(&tg->list);
6804 list_del_rcu(&tg->siblings);
6805 spin_unlock_irqrestore(&task_group_lock, flags);
6806 }
6807
6808 /* change task's runqueue when it moves between groups.
6809 * The caller of this function should have put the task in its new group
6810 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6811 * reflect its new group.
6812 */
6813 void sched_move_task(struct task_struct *tsk)
6814 {
6815 struct task_group *tg;
6816 int on_rq, running;
6817 unsigned long flags;
6818 struct rq *rq;
6819
6820 rq = task_rq_lock(tsk, &flags);
6821
6822 running = task_current(rq, tsk);
6823 on_rq = tsk->on_rq;
6824
6825 if (on_rq)
6826 dequeue_task(rq, tsk, 0);
6827 if (unlikely(running))
6828 tsk->sched_class->put_prev_task(rq, tsk);
6829
6830 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6831 lockdep_is_held(&tsk->sighand->siglock)),
6832 struct task_group, css);
6833 tg = autogroup_task_group(tsk, tg);
6834 tsk->sched_task_group = tg;
6835
6836 #ifdef CONFIG_FAIR_GROUP_SCHED
6837 if (tsk->sched_class->task_move_group)
6838 tsk->sched_class->task_move_group(tsk, on_rq);
6839 else
6840 #endif
6841 set_task_rq(tsk, task_cpu(tsk));
6842
6843 if (unlikely(running))
6844 tsk->sched_class->set_curr_task(rq);
6845 if (on_rq)
6846 enqueue_task(rq, tsk, 0);
6847
6848 task_rq_unlock(rq, tsk, &flags);
6849 }
6850 #endif /* CONFIG_CGROUP_SCHED */
6851
6852 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6853 static unsigned long to_ratio(u64 period, u64 runtime)
6854 {
6855 if (runtime == RUNTIME_INF)
6856 return 1ULL << 20;
6857
6858 return div64_u64(runtime << 20, period);
6859 }
6860 #endif
6861
6862 #ifdef CONFIG_RT_GROUP_SCHED
6863 /*
6864 * Ensure that the real time constraints are schedulable.
6865 */
6866 static DEFINE_MUTEX(rt_constraints_mutex);
6867
6868 /* Must be called with tasklist_lock held */
6869 static inline int tg_has_rt_tasks(struct task_group *tg)
6870 {
6871 struct task_struct *g, *p;
6872
6873 do_each_thread(g, p) {
6874 if (rt_task(p) && task_rq(p)->rt.tg == tg)
6875 return 1;
6876 } while_each_thread(g, p);
6877
6878 return 0;
6879 }
6880
6881 struct rt_schedulable_data {
6882 struct task_group *tg;
6883 u64 rt_period;
6884 u64 rt_runtime;
6885 };
6886
6887 static int tg_rt_schedulable(struct task_group *tg, void *data)
6888 {
6889 struct rt_schedulable_data *d = data;
6890 struct task_group *child;
6891 unsigned long total, sum = 0;
6892 u64 period, runtime;
6893
6894 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6895 runtime = tg->rt_bandwidth.rt_runtime;
6896
6897 if (tg == d->tg) {
6898 period = d->rt_period;
6899 runtime = d->rt_runtime;
6900 }
6901
6902 /*
6903 * Cannot have more runtime than the period.
6904 */
6905 if (runtime > period && runtime != RUNTIME_INF)
6906 return -EINVAL;
6907
6908 /*
6909 * Ensure we don't starve existing RT tasks.
6910 */
6911 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6912 return -EBUSY;
6913
6914 total = to_ratio(period, runtime);
6915
6916 /*
6917 * Nobody can have more than the global setting allows.
6918 */
6919 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6920 return -EINVAL;
6921
6922 /*
6923 * The sum of our children's runtime should not exceed our own.
6924 */
6925 list_for_each_entry_rcu(child, &tg->children, siblings) {
6926 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6927 runtime = child->rt_bandwidth.rt_runtime;
6928
6929 if (child == d->tg) {
6930 period = d->rt_period;
6931 runtime = d->rt_runtime;
6932 }
6933
6934 sum += to_ratio(period, runtime);
6935 }
6936
6937 if (sum > total)
6938 return -EINVAL;
6939
6940 return 0;
6941 }
6942
6943 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6944 {
6945 int ret;
6946
6947 struct rt_schedulable_data data = {
6948 .tg = tg,
6949 .rt_period = period,
6950 .rt_runtime = runtime,
6951 };
6952
6953 rcu_read_lock();
6954 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6955 rcu_read_unlock();
6956
6957 return ret;
6958 }
6959
6960 static int tg_set_rt_bandwidth(struct task_group *tg,
6961 u64 rt_period, u64 rt_runtime)
6962 {
6963 int i, err = 0;
6964
6965 mutex_lock(&rt_constraints_mutex);
6966 read_lock(&tasklist_lock);
6967 err = __rt_schedulable(tg, rt_period, rt_runtime);
6968 if (err)
6969 goto unlock;
6970
6971 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6972 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6973 tg->rt_bandwidth.rt_runtime = rt_runtime;
6974
6975 for_each_possible_cpu(i) {
6976 struct rt_rq *rt_rq = tg->rt_rq[i];
6977
6978 raw_spin_lock(&rt_rq->rt_runtime_lock);
6979 rt_rq->rt_runtime = rt_runtime;
6980 raw_spin_unlock(&rt_rq->rt_runtime_lock);
6981 }
6982 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6983 unlock:
6984 read_unlock(&tasklist_lock);
6985 mutex_unlock(&rt_constraints_mutex);
6986
6987 return err;
6988 }
6989
6990 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6991 {
6992 u64 rt_runtime, rt_period;
6993
6994 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6995 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6996 if (rt_runtime_us < 0)
6997 rt_runtime = RUNTIME_INF;
6998
6999 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7000 }
7001
7002 static long sched_group_rt_runtime(struct task_group *tg)
7003 {
7004 u64 rt_runtime_us;
7005
7006 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7007 return -1;
7008
7009 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7010 do_div(rt_runtime_us, NSEC_PER_USEC);
7011 return rt_runtime_us;
7012 }
7013
7014 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7015 {
7016 u64 rt_runtime, rt_period;
7017
7018 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7019 rt_runtime = tg->rt_bandwidth.rt_runtime;
7020
7021 if (rt_period == 0)
7022 return -EINVAL;
7023
7024 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7025 }
7026
7027 static long sched_group_rt_period(struct task_group *tg)
7028 {
7029 u64 rt_period_us;
7030
7031 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7032 do_div(rt_period_us, NSEC_PER_USEC);
7033 return rt_period_us;
7034 }
7035
7036 static int sched_rt_global_constraints(void)
7037 {
7038 u64 runtime, period;
7039 int ret = 0;
7040
7041 if (sysctl_sched_rt_period <= 0)
7042 return -EINVAL;
7043
7044 runtime = global_rt_runtime();
7045 period = global_rt_period();
7046
7047 /*
7048 * Sanity check on the sysctl variables.
7049 */
7050 if (runtime > period && runtime != RUNTIME_INF)
7051 return -EINVAL;
7052
7053 mutex_lock(&rt_constraints_mutex);
7054 read_lock(&tasklist_lock);
7055 ret = __rt_schedulable(NULL, 0, 0);
7056 read_unlock(&tasklist_lock);
7057 mutex_unlock(&rt_constraints_mutex);
7058
7059 return ret;
7060 }
7061
7062 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7063 {
7064 /* Don't accept realtime tasks when there is no way for them to run */
7065 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7066 return 0;
7067
7068 return 1;
7069 }
7070
7071 #else /* !CONFIG_RT_GROUP_SCHED */
7072 static int sched_rt_global_constraints(void)
7073 {
7074 unsigned long flags;
7075 int i;
7076
7077 if (sysctl_sched_rt_period <= 0)
7078 return -EINVAL;
7079
7080 /*
7081 * There's always some RT tasks in the root group
7082 * -- migration, kstopmachine etc..
7083 */
7084 if (sysctl_sched_rt_runtime == 0)
7085 return -EBUSY;
7086
7087 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7088 for_each_possible_cpu(i) {
7089 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7090
7091 raw_spin_lock(&rt_rq->rt_runtime_lock);
7092 rt_rq->rt_runtime = global_rt_runtime();
7093 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7094 }
7095 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7096
7097 return 0;
7098 }
7099 #endif /* CONFIG_RT_GROUP_SCHED */
7100
7101 int sched_rr_handler(struct ctl_table *table, int write,
7102 void __user *buffer, size_t *lenp,
7103 loff_t *ppos)
7104 {
7105 int ret;
7106 static DEFINE_MUTEX(mutex);
7107
7108 mutex_lock(&mutex);
7109 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7110 /* make sure that internally we keep jiffies */
7111 /* also, writing zero resets timeslice to default */
7112 if (!ret && write) {
7113 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7114 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7115 }
7116 mutex_unlock(&mutex);
7117 return ret;
7118 }
7119
7120 int sched_rt_handler(struct ctl_table *table, int write,
7121 void __user *buffer, size_t *lenp,
7122 loff_t *ppos)
7123 {
7124 int ret;
7125 int old_period, old_runtime;
7126 static DEFINE_MUTEX(mutex);
7127
7128 mutex_lock(&mutex);
7129 old_period = sysctl_sched_rt_period;
7130 old_runtime = sysctl_sched_rt_runtime;
7131
7132 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7133
7134 if (!ret && write) {
7135 ret = sched_rt_global_constraints();
7136 if (ret) {
7137 sysctl_sched_rt_period = old_period;
7138 sysctl_sched_rt_runtime = old_runtime;
7139 } else {
7140 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7141 def_rt_bandwidth.rt_period =
7142 ns_to_ktime(global_rt_period());
7143 }
7144 }
7145 mutex_unlock(&mutex);
7146
7147 return ret;
7148 }
7149
7150 #ifdef CONFIG_CGROUP_SCHED
7151
7152 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7153 {
7154 return css ? container_of(css, struct task_group, css) : NULL;
7155 }
7156
7157 static struct cgroup_subsys_state *
7158 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7159 {
7160 struct task_group *parent = css_tg(parent_css);
7161 struct task_group *tg;
7162
7163 if (!parent) {
7164 /* This is early initialization for the top cgroup */
7165 return &root_task_group.css;
7166 }
7167
7168 tg = sched_create_group(parent);
7169 if (IS_ERR(tg))
7170 return ERR_PTR(-ENOMEM);
7171
7172 return &tg->css;
7173 }
7174
7175 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7176 {
7177 struct task_group *tg = css_tg(css);
7178 struct task_group *parent = css_tg(css_parent(css));
7179
7180 if (parent)
7181 sched_online_group(tg, parent);
7182 return 0;
7183 }
7184
7185 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7186 {
7187 struct task_group *tg = css_tg(css);
7188
7189 sched_destroy_group(tg);
7190 }
7191
7192 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7193 {
7194 struct task_group *tg = css_tg(css);
7195
7196 sched_offline_group(tg);
7197 }
7198
7199 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7200 struct cgroup_taskset *tset)
7201 {
7202 struct task_struct *task;
7203
7204 cgroup_taskset_for_each(task, css, tset) {
7205 #ifdef CONFIG_RT_GROUP_SCHED
7206 if (!sched_rt_can_attach(css_tg(css), task))
7207 return -EINVAL;
7208 #else
7209 /* We don't support RT-tasks being in separate groups */
7210 if (task->sched_class != &fair_sched_class)
7211 return -EINVAL;
7212 #endif
7213 }
7214 return 0;
7215 }
7216
7217 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7218 struct cgroup_taskset *tset)
7219 {
7220 struct task_struct *task;
7221
7222 cgroup_taskset_for_each(task, css, tset)
7223 sched_move_task(task);
7224 }
7225
7226 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7227 struct cgroup_subsys_state *old_css,
7228 struct task_struct *task)
7229 {
7230 /*
7231 * cgroup_exit() is called in the copy_process() failure path.
7232 * Ignore this case since the task hasn't ran yet, this avoids
7233 * trying to poke a half freed task state from generic code.
7234 */
7235 if (!(task->flags & PF_EXITING))
7236 return;
7237
7238 sched_move_task(task);
7239 }
7240
7241 #ifdef CONFIG_FAIR_GROUP_SCHED
7242 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7243 struct cftype *cftype, u64 shareval)
7244 {
7245 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7246 }
7247
7248 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7249 struct cftype *cft)
7250 {
7251 struct task_group *tg = css_tg(css);
7252
7253 return (u64) scale_load_down(tg->shares);
7254 }
7255
7256 #ifdef CONFIG_CFS_BANDWIDTH
7257 static DEFINE_MUTEX(cfs_constraints_mutex);
7258
7259 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7260 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7261
7262 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7263
7264 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7265 {
7266 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7267 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7268
7269 if (tg == &root_task_group)
7270 return -EINVAL;
7271
7272 /*
7273 * Ensure we have at some amount of bandwidth every period. This is
7274 * to prevent reaching a state of large arrears when throttled via
7275 * entity_tick() resulting in prolonged exit starvation.
7276 */
7277 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7278 return -EINVAL;
7279
7280 /*
7281 * Likewise, bound things on the otherside by preventing insane quota
7282 * periods. This also allows us to normalize in computing quota
7283 * feasibility.
7284 */
7285 if (period > max_cfs_quota_period)
7286 return -EINVAL;
7287
7288 mutex_lock(&cfs_constraints_mutex);
7289 ret = __cfs_schedulable(tg, period, quota);
7290 if (ret)
7291 goto out_unlock;
7292
7293 runtime_enabled = quota != RUNTIME_INF;
7294 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7295 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7296 raw_spin_lock_irq(&cfs_b->lock);
7297 cfs_b->period = ns_to_ktime(period);
7298 cfs_b->quota = quota;
7299
7300 __refill_cfs_bandwidth_runtime(cfs_b);
7301 /* restart the period timer (if active) to handle new period expiry */
7302 if (runtime_enabled && cfs_b->timer_active) {
7303 /* force a reprogram */
7304 cfs_b->timer_active = 0;
7305 __start_cfs_bandwidth(cfs_b);
7306 }
7307 raw_spin_unlock_irq(&cfs_b->lock);
7308
7309 for_each_possible_cpu(i) {
7310 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7311 struct rq *rq = cfs_rq->rq;
7312
7313 raw_spin_lock_irq(&rq->lock);
7314 cfs_rq->runtime_enabled = runtime_enabled;
7315 cfs_rq->runtime_remaining = 0;
7316
7317 if (cfs_rq->throttled)
7318 unthrottle_cfs_rq(cfs_rq);
7319 raw_spin_unlock_irq(&rq->lock);
7320 }
7321 out_unlock:
7322 mutex_unlock(&cfs_constraints_mutex);
7323
7324 return ret;
7325 }
7326
7327 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7328 {
7329 u64 quota, period;
7330
7331 period = ktime_to_ns(tg->cfs_bandwidth.period);
7332 if (cfs_quota_us < 0)
7333 quota = RUNTIME_INF;
7334 else
7335 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7336
7337 return tg_set_cfs_bandwidth(tg, period, quota);
7338 }
7339
7340 long tg_get_cfs_quota(struct task_group *tg)
7341 {
7342 u64 quota_us;
7343
7344 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7345 return -1;
7346
7347 quota_us = tg->cfs_bandwidth.quota;
7348 do_div(quota_us, NSEC_PER_USEC);
7349
7350 return quota_us;
7351 }
7352
7353 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7354 {
7355 u64 quota, period;
7356
7357 period = (u64)cfs_period_us * NSEC_PER_USEC;
7358 quota = tg->cfs_bandwidth.quota;
7359
7360 return tg_set_cfs_bandwidth(tg, period, quota);
7361 }
7362
7363 long tg_get_cfs_period(struct task_group *tg)
7364 {
7365 u64 cfs_period_us;
7366
7367 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7368 do_div(cfs_period_us, NSEC_PER_USEC);
7369
7370 return cfs_period_us;
7371 }
7372
7373 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7374 struct cftype *cft)
7375 {
7376 return tg_get_cfs_quota(css_tg(css));
7377 }
7378
7379 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7380 struct cftype *cftype, s64 cfs_quota_us)
7381 {
7382 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7383 }
7384
7385 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7386 struct cftype *cft)
7387 {
7388 return tg_get_cfs_period(css_tg(css));
7389 }
7390
7391 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7392 struct cftype *cftype, u64 cfs_period_us)
7393 {
7394 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7395 }
7396
7397 struct cfs_schedulable_data {
7398 struct task_group *tg;
7399 u64 period, quota;
7400 };
7401
7402 /*
7403 * normalize group quota/period to be quota/max_period
7404 * note: units are usecs
7405 */
7406 static u64 normalize_cfs_quota(struct task_group *tg,
7407 struct cfs_schedulable_data *d)
7408 {
7409 u64 quota, period;
7410
7411 if (tg == d->tg) {
7412 period = d->period;
7413 quota = d->quota;
7414 } else {
7415 period = tg_get_cfs_period(tg);
7416 quota = tg_get_cfs_quota(tg);
7417 }
7418
7419 /* note: these should typically be equivalent */
7420 if (quota == RUNTIME_INF || quota == -1)
7421 return RUNTIME_INF;
7422
7423 return to_ratio(period, quota);
7424 }
7425
7426 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7427 {
7428 struct cfs_schedulable_data *d = data;
7429 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7430 s64 quota = 0, parent_quota = -1;
7431
7432 if (!tg->parent) {
7433 quota = RUNTIME_INF;
7434 } else {
7435 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7436
7437 quota = normalize_cfs_quota(tg, d);
7438 parent_quota = parent_b->hierarchal_quota;
7439
7440 /*
7441 * ensure max(child_quota) <= parent_quota, inherit when no
7442 * limit is set
7443 */
7444 if (quota == RUNTIME_INF)
7445 quota = parent_quota;
7446 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7447 return -EINVAL;
7448 }
7449 cfs_b->hierarchal_quota = quota;
7450
7451 return 0;
7452 }
7453
7454 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7455 {
7456 int ret;
7457 struct cfs_schedulable_data data = {
7458 .tg = tg,
7459 .period = period,
7460 .quota = quota,
7461 };
7462
7463 if (quota != RUNTIME_INF) {
7464 do_div(data.period, NSEC_PER_USEC);
7465 do_div(data.quota, NSEC_PER_USEC);
7466 }
7467
7468 rcu_read_lock();
7469 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7470 rcu_read_unlock();
7471
7472 return ret;
7473 }
7474
7475 static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7476 struct cgroup_map_cb *cb)
7477 {
7478 struct task_group *tg = css_tg(css);
7479 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7480
7481 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7482 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7483 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7484
7485 return 0;
7486 }
7487 #endif /* CONFIG_CFS_BANDWIDTH */
7488 #endif /* CONFIG_FAIR_GROUP_SCHED */
7489
7490 #ifdef CONFIG_RT_GROUP_SCHED
7491 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7492 struct cftype *cft, s64 val)
7493 {
7494 return sched_group_set_rt_runtime(css_tg(css), val);
7495 }
7496
7497 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7498 struct cftype *cft)
7499 {
7500 return sched_group_rt_runtime(css_tg(css));
7501 }
7502
7503 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7504 struct cftype *cftype, u64 rt_period_us)
7505 {
7506 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7507 }
7508
7509 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7510 struct cftype *cft)
7511 {
7512 return sched_group_rt_period(css_tg(css));
7513 }
7514 #endif /* CONFIG_RT_GROUP_SCHED */
7515
7516 static struct cftype cpu_files[] = {
7517 #ifdef CONFIG_FAIR_GROUP_SCHED
7518 {
7519 .name = "shares",
7520 .read_u64 = cpu_shares_read_u64,
7521 .write_u64 = cpu_shares_write_u64,
7522 },
7523 #endif
7524 #ifdef CONFIG_CFS_BANDWIDTH
7525 {
7526 .name = "cfs_quota_us",
7527 .read_s64 = cpu_cfs_quota_read_s64,
7528 .write_s64 = cpu_cfs_quota_write_s64,
7529 },
7530 {
7531 .name = "cfs_period_us",
7532 .read_u64 = cpu_cfs_period_read_u64,
7533 .write_u64 = cpu_cfs_period_write_u64,
7534 },
7535 {
7536 .name = "stat",
7537 .read_map = cpu_stats_show,
7538 },
7539 #endif
7540 #ifdef CONFIG_RT_GROUP_SCHED
7541 {
7542 .name = "rt_runtime_us",
7543 .read_s64 = cpu_rt_runtime_read,
7544 .write_s64 = cpu_rt_runtime_write,
7545 },
7546 {
7547 .name = "rt_period_us",
7548 .read_u64 = cpu_rt_period_read_uint,
7549 .write_u64 = cpu_rt_period_write_uint,
7550 },
7551 #endif
7552 { } /* terminate */
7553 };
7554
7555 struct cgroup_subsys cpu_cgroup_subsys = {
7556 .name = "cpu",
7557 .css_alloc = cpu_cgroup_css_alloc,
7558 .css_free = cpu_cgroup_css_free,
7559 .css_online = cpu_cgroup_css_online,
7560 .css_offline = cpu_cgroup_css_offline,
7561 .can_attach = cpu_cgroup_can_attach,
7562 .attach = cpu_cgroup_attach,
7563 .exit = cpu_cgroup_exit,
7564 .subsys_id = cpu_cgroup_subsys_id,
7565 .base_cftypes = cpu_files,
7566 .early_init = 1,
7567 };
7568
7569 #endif /* CONFIG_CGROUP_SCHED */
7570
7571 void dump_cpu_task(int cpu)
7572 {
7573 pr_info("Task dump for CPU %d:\n", cpu);
7574 sched_show_task(cpu_curr(cpu));
7575 }
This page took 0.20316 seconds and 5 git commands to generate.