sched/rt: Add schedule_preempt_disabled()
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 #ifdef CONFIG_PARAVIRT
79 #include <asm/paravirt.h>
80 #endif
81
82 #include "sched.h"
83 #include "../workqueue_sched.h"
84
85 #define CREATE_TRACE_POINTS
86 #include <trace/events/sched.h>
87
88 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
89 {
90 unsigned long delta;
91 ktime_t soft, hard, now;
92
93 for (;;) {
94 if (hrtimer_active(period_timer))
95 break;
96
97 now = hrtimer_cb_get_time(period_timer);
98 hrtimer_forward(period_timer, now, period);
99
100 soft = hrtimer_get_softexpires(period_timer);
101 hard = hrtimer_get_expires(period_timer);
102 delta = ktime_to_ns(ktime_sub(hard, soft));
103 __hrtimer_start_range_ns(period_timer, soft, delta,
104 HRTIMER_MODE_ABS_PINNED, 0);
105 }
106 }
107
108 DEFINE_MUTEX(sched_domains_mutex);
109 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
110
111 static void update_rq_clock_task(struct rq *rq, s64 delta);
112
113 void update_rq_clock(struct rq *rq)
114 {
115 s64 delta;
116
117 if (rq->skip_clock_update > 0)
118 return;
119
120 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
121 rq->clock += delta;
122 update_rq_clock_task(rq, delta);
123 }
124
125 /*
126 * Debugging: various feature bits
127 */
128
129 #define SCHED_FEAT(name, enabled) \
130 (1UL << __SCHED_FEAT_##name) * enabled |
131
132 const_debug unsigned int sysctl_sched_features =
133 #include "features.h"
134 0;
135
136 #undef SCHED_FEAT
137
138 #ifdef CONFIG_SCHED_DEBUG
139 #define SCHED_FEAT(name, enabled) \
140 #name ,
141
142 static __read_mostly char *sched_feat_names[] = {
143 #include "features.h"
144 NULL
145 };
146
147 #undef SCHED_FEAT
148
149 static int sched_feat_show(struct seq_file *m, void *v)
150 {
151 int i;
152
153 for (i = 0; i < __SCHED_FEAT_NR; i++) {
154 if (!(sysctl_sched_features & (1UL << i)))
155 seq_puts(m, "NO_");
156 seq_printf(m, "%s ", sched_feat_names[i]);
157 }
158 seq_puts(m, "\n");
159
160 return 0;
161 }
162
163 #ifdef HAVE_JUMP_LABEL
164
165 #define jump_label_key__true jump_label_key_enabled
166 #define jump_label_key__false jump_label_key_disabled
167
168 #define SCHED_FEAT(name, enabled) \
169 jump_label_key__##enabled ,
170
171 struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
172 #include "features.h"
173 };
174
175 #undef SCHED_FEAT
176
177 static void sched_feat_disable(int i)
178 {
179 if (jump_label_enabled(&sched_feat_keys[i]))
180 jump_label_dec(&sched_feat_keys[i]);
181 }
182
183 static void sched_feat_enable(int i)
184 {
185 if (!jump_label_enabled(&sched_feat_keys[i]))
186 jump_label_inc(&sched_feat_keys[i]);
187 }
188 #else
189 static void sched_feat_disable(int i) { };
190 static void sched_feat_enable(int i) { };
191 #endif /* HAVE_JUMP_LABEL */
192
193 static ssize_t
194 sched_feat_write(struct file *filp, const char __user *ubuf,
195 size_t cnt, loff_t *ppos)
196 {
197 char buf[64];
198 char *cmp;
199 int neg = 0;
200 int i;
201
202 if (cnt > 63)
203 cnt = 63;
204
205 if (copy_from_user(&buf, ubuf, cnt))
206 return -EFAULT;
207
208 buf[cnt] = 0;
209 cmp = strstrip(buf);
210
211 if (strncmp(cmp, "NO_", 3) == 0) {
212 neg = 1;
213 cmp += 3;
214 }
215
216 for (i = 0; i < __SCHED_FEAT_NR; i++) {
217 if (strcmp(cmp, sched_feat_names[i]) == 0) {
218 if (neg) {
219 sysctl_sched_features &= ~(1UL << i);
220 sched_feat_disable(i);
221 } else {
222 sysctl_sched_features |= (1UL << i);
223 sched_feat_enable(i);
224 }
225 break;
226 }
227 }
228
229 if (i == __SCHED_FEAT_NR)
230 return -EINVAL;
231
232 *ppos += cnt;
233
234 return cnt;
235 }
236
237 static int sched_feat_open(struct inode *inode, struct file *filp)
238 {
239 return single_open(filp, sched_feat_show, NULL);
240 }
241
242 static const struct file_operations sched_feat_fops = {
243 .open = sched_feat_open,
244 .write = sched_feat_write,
245 .read = seq_read,
246 .llseek = seq_lseek,
247 .release = single_release,
248 };
249
250 static __init int sched_init_debug(void)
251 {
252 debugfs_create_file("sched_features", 0644, NULL, NULL,
253 &sched_feat_fops);
254
255 return 0;
256 }
257 late_initcall(sched_init_debug);
258 #endif /* CONFIG_SCHED_DEBUG */
259
260 /*
261 * Number of tasks to iterate in a single balance run.
262 * Limited because this is done with IRQs disabled.
263 */
264 const_debug unsigned int sysctl_sched_nr_migrate = 32;
265
266 /*
267 * period over which we average the RT time consumption, measured
268 * in ms.
269 *
270 * default: 1s
271 */
272 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
273
274 /*
275 * period over which we measure -rt task cpu usage in us.
276 * default: 1s
277 */
278 unsigned int sysctl_sched_rt_period = 1000000;
279
280 __read_mostly int scheduler_running;
281
282 /*
283 * part of the period that we allow rt tasks to run in us.
284 * default: 0.95s
285 */
286 int sysctl_sched_rt_runtime = 950000;
287
288
289
290 /*
291 * __task_rq_lock - lock the rq @p resides on.
292 */
293 static inline struct rq *__task_rq_lock(struct task_struct *p)
294 __acquires(rq->lock)
295 {
296 struct rq *rq;
297
298 lockdep_assert_held(&p->pi_lock);
299
300 for (;;) {
301 rq = task_rq(p);
302 raw_spin_lock(&rq->lock);
303 if (likely(rq == task_rq(p)))
304 return rq;
305 raw_spin_unlock(&rq->lock);
306 }
307 }
308
309 /*
310 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
311 */
312 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
313 __acquires(p->pi_lock)
314 __acquires(rq->lock)
315 {
316 struct rq *rq;
317
318 for (;;) {
319 raw_spin_lock_irqsave(&p->pi_lock, *flags);
320 rq = task_rq(p);
321 raw_spin_lock(&rq->lock);
322 if (likely(rq == task_rq(p)))
323 return rq;
324 raw_spin_unlock(&rq->lock);
325 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
326 }
327 }
328
329 static void __task_rq_unlock(struct rq *rq)
330 __releases(rq->lock)
331 {
332 raw_spin_unlock(&rq->lock);
333 }
334
335 static inline void
336 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
337 __releases(rq->lock)
338 __releases(p->pi_lock)
339 {
340 raw_spin_unlock(&rq->lock);
341 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
342 }
343
344 /*
345 * this_rq_lock - lock this runqueue and disable interrupts.
346 */
347 static struct rq *this_rq_lock(void)
348 __acquires(rq->lock)
349 {
350 struct rq *rq;
351
352 local_irq_disable();
353 rq = this_rq();
354 raw_spin_lock(&rq->lock);
355
356 return rq;
357 }
358
359 #ifdef CONFIG_SCHED_HRTICK
360 /*
361 * Use HR-timers to deliver accurate preemption points.
362 *
363 * Its all a bit involved since we cannot program an hrt while holding the
364 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
365 * reschedule event.
366 *
367 * When we get rescheduled we reprogram the hrtick_timer outside of the
368 * rq->lock.
369 */
370
371 static void hrtick_clear(struct rq *rq)
372 {
373 if (hrtimer_active(&rq->hrtick_timer))
374 hrtimer_cancel(&rq->hrtick_timer);
375 }
376
377 /*
378 * High-resolution timer tick.
379 * Runs from hardirq context with interrupts disabled.
380 */
381 static enum hrtimer_restart hrtick(struct hrtimer *timer)
382 {
383 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
384
385 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
386
387 raw_spin_lock(&rq->lock);
388 update_rq_clock(rq);
389 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
390 raw_spin_unlock(&rq->lock);
391
392 return HRTIMER_NORESTART;
393 }
394
395 #ifdef CONFIG_SMP
396 /*
397 * called from hardirq (IPI) context
398 */
399 static void __hrtick_start(void *arg)
400 {
401 struct rq *rq = arg;
402
403 raw_spin_lock(&rq->lock);
404 hrtimer_restart(&rq->hrtick_timer);
405 rq->hrtick_csd_pending = 0;
406 raw_spin_unlock(&rq->lock);
407 }
408
409 /*
410 * Called to set the hrtick timer state.
411 *
412 * called with rq->lock held and irqs disabled
413 */
414 void hrtick_start(struct rq *rq, u64 delay)
415 {
416 struct hrtimer *timer = &rq->hrtick_timer;
417 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
418
419 hrtimer_set_expires(timer, time);
420
421 if (rq == this_rq()) {
422 hrtimer_restart(timer);
423 } else if (!rq->hrtick_csd_pending) {
424 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
425 rq->hrtick_csd_pending = 1;
426 }
427 }
428
429 static int
430 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
431 {
432 int cpu = (int)(long)hcpu;
433
434 switch (action) {
435 case CPU_UP_CANCELED:
436 case CPU_UP_CANCELED_FROZEN:
437 case CPU_DOWN_PREPARE:
438 case CPU_DOWN_PREPARE_FROZEN:
439 case CPU_DEAD:
440 case CPU_DEAD_FROZEN:
441 hrtick_clear(cpu_rq(cpu));
442 return NOTIFY_OK;
443 }
444
445 return NOTIFY_DONE;
446 }
447
448 static __init void init_hrtick(void)
449 {
450 hotcpu_notifier(hotplug_hrtick, 0);
451 }
452 #else
453 /*
454 * Called to set the hrtick timer state.
455 *
456 * called with rq->lock held and irqs disabled
457 */
458 void hrtick_start(struct rq *rq, u64 delay)
459 {
460 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
461 HRTIMER_MODE_REL_PINNED, 0);
462 }
463
464 static inline void init_hrtick(void)
465 {
466 }
467 #endif /* CONFIG_SMP */
468
469 static void init_rq_hrtick(struct rq *rq)
470 {
471 #ifdef CONFIG_SMP
472 rq->hrtick_csd_pending = 0;
473
474 rq->hrtick_csd.flags = 0;
475 rq->hrtick_csd.func = __hrtick_start;
476 rq->hrtick_csd.info = rq;
477 #endif
478
479 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
480 rq->hrtick_timer.function = hrtick;
481 }
482 #else /* CONFIG_SCHED_HRTICK */
483 static inline void hrtick_clear(struct rq *rq)
484 {
485 }
486
487 static inline void init_rq_hrtick(struct rq *rq)
488 {
489 }
490
491 static inline void init_hrtick(void)
492 {
493 }
494 #endif /* CONFIG_SCHED_HRTICK */
495
496 /*
497 * resched_task - mark a task 'to be rescheduled now'.
498 *
499 * On UP this means the setting of the need_resched flag, on SMP it
500 * might also involve a cross-CPU call to trigger the scheduler on
501 * the target CPU.
502 */
503 #ifdef CONFIG_SMP
504
505 #ifndef tsk_is_polling
506 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
507 #endif
508
509 void resched_task(struct task_struct *p)
510 {
511 int cpu;
512
513 assert_raw_spin_locked(&task_rq(p)->lock);
514
515 if (test_tsk_need_resched(p))
516 return;
517
518 set_tsk_need_resched(p);
519
520 cpu = task_cpu(p);
521 if (cpu == smp_processor_id())
522 return;
523
524 /* NEED_RESCHED must be visible before we test polling */
525 smp_mb();
526 if (!tsk_is_polling(p))
527 smp_send_reschedule(cpu);
528 }
529
530 void resched_cpu(int cpu)
531 {
532 struct rq *rq = cpu_rq(cpu);
533 unsigned long flags;
534
535 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
536 return;
537 resched_task(cpu_curr(cpu));
538 raw_spin_unlock_irqrestore(&rq->lock, flags);
539 }
540
541 #ifdef CONFIG_NO_HZ
542 /*
543 * In the semi idle case, use the nearest busy cpu for migrating timers
544 * from an idle cpu. This is good for power-savings.
545 *
546 * We don't do similar optimization for completely idle system, as
547 * selecting an idle cpu will add more delays to the timers than intended
548 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
549 */
550 int get_nohz_timer_target(void)
551 {
552 int cpu = smp_processor_id();
553 int i;
554 struct sched_domain *sd;
555
556 rcu_read_lock();
557 for_each_domain(cpu, sd) {
558 for_each_cpu(i, sched_domain_span(sd)) {
559 if (!idle_cpu(i)) {
560 cpu = i;
561 goto unlock;
562 }
563 }
564 }
565 unlock:
566 rcu_read_unlock();
567 return cpu;
568 }
569 /*
570 * When add_timer_on() enqueues a timer into the timer wheel of an
571 * idle CPU then this timer might expire before the next timer event
572 * which is scheduled to wake up that CPU. In case of a completely
573 * idle system the next event might even be infinite time into the
574 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
575 * leaves the inner idle loop so the newly added timer is taken into
576 * account when the CPU goes back to idle and evaluates the timer
577 * wheel for the next timer event.
578 */
579 void wake_up_idle_cpu(int cpu)
580 {
581 struct rq *rq = cpu_rq(cpu);
582
583 if (cpu == smp_processor_id())
584 return;
585
586 /*
587 * This is safe, as this function is called with the timer
588 * wheel base lock of (cpu) held. When the CPU is on the way
589 * to idle and has not yet set rq->curr to idle then it will
590 * be serialized on the timer wheel base lock and take the new
591 * timer into account automatically.
592 */
593 if (rq->curr != rq->idle)
594 return;
595
596 /*
597 * We can set TIF_RESCHED on the idle task of the other CPU
598 * lockless. The worst case is that the other CPU runs the
599 * idle task through an additional NOOP schedule()
600 */
601 set_tsk_need_resched(rq->idle);
602
603 /* NEED_RESCHED must be visible before we test polling */
604 smp_mb();
605 if (!tsk_is_polling(rq->idle))
606 smp_send_reschedule(cpu);
607 }
608
609 static inline bool got_nohz_idle_kick(void)
610 {
611 int cpu = smp_processor_id();
612 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
613 }
614
615 #else /* CONFIG_NO_HZ */
616
617 static inline bool got_nohz_idle_kick(void)
618 {
619 return false;
620 }
621
622 #endif /* CONFIG_NO_HZ */
623
624 void sched_avg_update(struct rq *rq)
625 {
626 s64 period = sched_avg_period();
627
628 while ((s64)(rq->clock - rq->age_stamp) > period) {
629 /*
630 * Inline assembly required to prevent the compiler
631 * optimising this loop into a divmod call.
632 * See __iter_div_u64_rem() for another example of this.
633 */
634 asm("" : "+rm" (rq->age_stamp));
635 rq->age_stamp += period;
636 rq->rt_avg /= 2;
637 }
638 }
639
640 #else /* !CONFIG_SMP */
641 void resched_task(struct task_struct *p)
642 {
643 assert_raw_spin_locked(&task_rq(p)->lock);
644 set_tsk_need_resched(p);
645 }
646 #endif /* CONFIG_SMP */
647
648 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
650 /*
651 * Iterate task_group tree rooted at *from, calling @down when first entering a
652 * node and @up when leaving it for the final time.
653 *
654 * Caller must hold rcu_lock or sufficient equivalent.
655 */
656 int walk_tg_tree_from(struct task_group *from,
657 tg_visitor down, tg_visitor up, void *data)
658 {
659 struct task_group *parent, *child;
660 int ret;
661
662 parent = from;
663
664 down:
665 ret = (*down)(parent, data);
666 if (ret)
667 goto out;
668 list_for_each_entry_rcu(child, &parent->children, siblings) {
669 parent = child;
670 goto down;
671
672 up:
673 continue;
674 }
675 ret = (*up)(parent, data);
676 if (ret || parent == from)
677 goto out;
678
679 child = parent;
680 parent = parent->parent;
681 if (parent)
682 goto up;
683 out:
684 return ret;
685 }
686
687 int tg_nop(struct task_group *tg, void *data)
688 {
689 return 0;
690 }
691 #endif
692
693 void update_cpu_load(struct rq *this_rq);
694
695 static void set_load_weight(struct task_struct *p)
696 {
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
704 load->weight = scale_load(WEIGHT_IDLEPRIO);
705 load->inv_weight = WMULT_IDLEPRIO;
706 return;
707 }
708
709 load->weight = scale_load(prio_to_weight[prio]);
710 load->inv_weight = prio_to_wmult[prio];
711 }
712
713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714 {
715 update_rq_clock(rq);
716 sched_info_queued(p);
717 p->sched_class->enqueue_task(rq, p, flags);
718 }
719
720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721 {
722 update_rq_clock(rq);
723 sched_info_dequeued(p);
724 p->sched_class->dequeue_task(rq, p, flags);
725 }
726
727 void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 {
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
732 enqueue_task(rq, p, flags);
733 }
734
735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 {
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
740 dequeue_task(rq, p, flags);
741 }
742
743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
745 /*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
755 */
756 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757 static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759 static DEFINE_PER_CPU(u64, irq_start_time);
760 static int sched_clock_irqtime;
761
762 void enable_sched_clock_irqtime(void)
763 {
764 sched_clock_irqtime = 1;
765 }
766
767 void disable_sched_clock_irqtime(void)
768 {
769 sched_clock_irqtime = 0;
770 }
771
772 #ifndef CONFIG_64BIT
773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775 static inline void irq_time_write_begin(void)
776 {
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
779 }
780
781 static inline void irq_time_write_end(void)
782 {
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
785 }
786
787 static inline u64 irq_time_read(int cpu)
788 {
789 u64 irq_time;
790 unsigned seq;
791
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798 return irq_time;
799 }
800 #else /* CONFIG_64BIT */
801 static inline void irq_time_write_begin(void)
802 {
803 }
804
805 static inline void irq_time_write_end(void)
806 {
807 }
808
809 static inline u64 irq_time_read(int cpu)
810 {
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812 }
813 #endif /* CONFIG_64BIT */
814
815 /*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
819 void account_system_vtime(struct task_struct *curr)
820 {
821 unsigned long flags;
822 s64 delta;
823 int cpu;
824
825 if (!sched_clock_irqtime)
826 return;
827
828 local_irq_save(flags);
829
830 cpu = smp_processor_id();
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
833
834 irq_time_write_begin();
835 /*
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
840 */
841 if (hardirq_count())
842 __this_cpu_add(cpu_hardirq_time, delta);
843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844 __this_cpu_add(cpu_softirq_time, delta);
845
846 irq_time_write_end();
847 local_irq_restore(flags);
848 }
849 EXPORT_SYMBOL_GPL(account_system_vtime);
850
851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853 #ifdef CONFIG_PARAVIRT
854 static inline u64 steal_ticks(u64 steal)
855 {
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
858
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860 }
861 #endif
862
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
864 {
865 /*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_branch((&paravirt_steal_rq_enabled))) {
898 u64 st;
899
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
908
909 rq->prev_steal_time_rq += steal;
910
911 delta -= steal;
912 }
913 #endif
914
915 rq->clock_task += delta;
916
917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920 #endif
921 }
922
923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 static int irqtime_account_hi_update(void)
925 {
926 u64 *cpustat = kcpustat_this_cpu->cpustat;
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
930
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
937 }
938
939 static int irqtime_account_si_update(void)
940 {
941 u64 *cpustat = kcpustat_this_cpu->cpustat;
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
945
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
952 }
953
954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
955
956 #define sched_clock_irqtime (0)
957
958 #endif
959
960 void sched_set_stop_task(int cpu, struct task_struct *stop)
961 {
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965 if (stop) {
966 /*
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
969 *
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
973 */
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976 stop->sched_class = &stop_sched_class;
977 }
978
979 cpu_rq(cpu)->stop = stop;
980
981 if (old_stop) {
982 /*
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
985 */
986 old_stop->sched_class = &rt_sched_class;
987 }
988 }
989
990 /*
991 * __normal_prio - return the priority that is based on the static prio
992 */
993 static inline int __normal_prio(struct task_struct *p)
994 {
995 return p->static_prio;
996 }
997
998 /*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
1005 static inline int normal_prio(struct task_struct *p)
1006 {
1007 int prio;
1008
1009 if (task_has_rt_policy(p))
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1014 }
1015
1016 /*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
1023 static int effective_prio(struct task_struct *p)
1024 {
1025 p->normal_prio = normal_prio(p);
1026 /*
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1030 */
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1034 }
1035
1036 /**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
1040 inline int task_curr(const struct task_struct *p)
1041 {
1042 return cpu_curr(task_cpu(p)) == p;
1043 }
1044
1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
1047 int oldprio)
1048 {
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
1055 }
1056
1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058 {
1059 const struct sched_class *class;
1060
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1077 */
1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 rq->skip_clock_update = 1;
1080 }
1081
1082 #ifdef CONFIG_SMP
1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1084 {
1085 #ifdef CONFIG_SCHED_DEBUG
1086 /*
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1089 */
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092
1093 #ifdef CONFIG_LOCKDEP
1094 /*
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 *
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1100 *
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1103 */
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106 #endif
1107 #endif
1108
1109 trace_sched_migrate_task(p, new_cpu);
1110
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114 }
1115
1116 __set_task_cpu(p, new_cpu);
1117 }
1118
1119 struct migration_arg {
1120 struct task_struct *task;
1121 int dest_cpu;
1122 };
1123
1124 static int migration_cpu_stop(void *data);
1125
1126 /*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143 {
1144 unsigned long flags;
1145 int running, on_rq;
1146 unsigned long ncsw;
1147 struct rq *rq;
1148
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
1157
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
1172 cpu_relax();
1173 }
1174
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
1181 trace_sched_wait_task(p);
1182 running = task_running(rq, p);
1183 on_rq = p->on_rq;
1184 ncsw = 0;
1185 if (!match_state || p->state == match_state)
1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187 task_rq_unlock(rq, p, &flags);
1188
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
1205
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
1211 * So if it was still runnable (but just not actively
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 continue;
1221 }
1222
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
1230
1231 return ncsw;
1232 }
1233
1234 /***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
1247 void kick_process(struct task_struct *p)
1248 {
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256 }
1257 EXPORT_SYMBOL_GPL(kick_process);
1258 #endif /* CONFIG_SMP */
1259
1260 #ifdef CONFIG_SMP
1261 /*
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263 */
1264 static int select_fallback_rq(int cpu, struct task_struct *p)
1265 {
1266 int dest_cpu;
1267 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1268
1269 /* Look for allowed, online CPU in same node. */
1270 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1271 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1272 return dest_cpu;
1273
1274 /* Any allowed, online CPU? */
1275 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1276 if (dest_cpu < nr_cpu_ids)
1277 return dest_cpu;
1278
1279 /* No more Mr. Nice Guy. */
1280 dest_cpu = cpuset_cpus_allowed_fallback(p);
1281 /*
1282 * Don't tell them about moving exiting tasks or
1283 * kernel threads (both mm NULL), since they never
1284 * leave kernel.
1285 */
1286 if (p->mm && printk_ratelimit()) {
1287 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
1288 task_pid_nr(p), p->comm, cpu);
1289 }
1290
1291 return dest_cpu;
1292 }
1293
1294 /*
1295 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1296 */
1297 static inline
1298 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1299 {
1300 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1301
1302 /*
1303 * In order not to call set_task_cpu() on a blocking task we need
1304 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1305 * cpu.
1306 *
1307 * Since this is common to all placement strategies, this lives here.
1308 *
1309 * [ this allows ->select_task() to simply return task_cpu(p) and
1310 * not worry about this generic constraint ]
1311 */
1312 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1313 !cpu_online(cpu)))
1314 cpu = select_fallback_rq(task_cpu(p), p);
1315
1316 return cpu;
1317 }
1318
1319 static void update_avg(u64 *avg, u64 sample)
1320 {
1321 s64 diff = sample - *avg;
1322 *avg += diff >> 3;
1323 }
1324 #endif
1325
1326 static void
1327 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1328 {
1329 #ifdef CONFIG_SCHEDSTATS
1330 struct rq *rq = this_rq();
1331
1332 #ifdef CONFIG_SMP
1333 int this_cpu = smp_processor_id();
1334
1335 if (cpu == this_cpu) {
1336 schedstat_inc(rq, ttwu_local);
1337 schedstat_inc(p, se.statistics.nr_wakeups_local);
1338 } else {
1339 struct sched_domain *sd;
1340
1341 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1342 rcu_read_lock();
1343 for_each_domain(this_cpu, sd) {
1344 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1345 schedstat_inc(sd, ttwu_wake_remote);
1346 break;
1347 }
1348 }
1349 rcu_read_unlock();
1350 }
1351
1352 if (wake_flags & WF_MIGRATED)
1353 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1354
1355 #endif /* CONFIG_SMP */
1356
1357 schedstat_inc(rq, ttwu_count);
1358 schedstat_inc(p, se.statistics.nr_wakeups);
1359
1360 if (wake_flags & WF_SYNC)
1361 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1362
1363 #endif /* CONFIG_SCHEDSTATS */
1364 }
1365
1366 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1367 {
1368 activate_task(rq, p, en_flags);
1369 p->on_rq = 1;
1370
1371 /* if a worker is waking up, notify workqueue */
1372 if (p->flags & PF_WQ_WORKER)
1373 wq_worker_waking_up(p, cpu_of(rq));
1374 }
1375
1376 /*
1377 * Mark the task runnable and perform wakeup-preemption.
1378 */
1379 static void
1380 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1381 {
1382 trace_sched_wakeup(p, true);
1383 check_preempt_curr(rq, p, wake_flags);
1384
1385 p->state = TASK_RUNNING;
1386 #ifdef CONFIG_SMP
1387 if (p->sched_class->task_woken)
1388 p->sched_class->task_woken(rq, p);
1389
1390 if (rq->idle_stamp) {
1391 u64 delta = rq->clock - rq->idle_stamp;
1392 u64 max = 2*sysctl_sched_migration_cost;
1393
1394 if (delta > max)
1395 rq->avg_idle = max;
1396 else
1397 update_avg(&rq->avg_idle, delta);
1398 rq->idle_stamp = 0;
1399 }
1400 #endif
1401 }
1402
1403 static void
1404 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1405 {
1406 #ifdef CONFIG_SMP
1407 if (p->sched_contributes_to_load)
1408 rq->nr_uninterruptible--;
1409 #endif
1410
1411 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1412 ttwu_do_wakeup(rq, p, wake_flags);
1413 }
1414
1415 /*
1416 * Called in case the task @p isn't fully descheduled from its runqueue,
1417 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1418 * since all we need to do is flip p->state to TASK_RUNNING, since
1419 * the task is still ->on_rq.
1420 */
1421 static int ttwu_remote(struct task_struct *p, int wake_flags)
1422 {
1423 struct rq *rq;
1424 int ret = 0;
1425
1426 rq = __task_rq_lock(p);
1427 if (p->on_rq) {
1428 ttwu_do_wakeup(rq, p, wake_flags);
1429 ret = 1;
1430 }
1431 __task_rq_unlock(rq);
1432
1433 return ret;
1434 }
1435
1436 #ifdef CONFIG_SMP
1437 static void sched_ttwu_pending(void)
1438 {
1439 struct rq *rq = this_rq();
1440 struct llist_node *llist = llist_del_all(&rq->wake_list);
1441 struct task_struct *p;
1442
1443 raw_spin_lock(&rq->lock);
1444
1445 while (llist) {
1446 p = llist_entry(llist, struct task_struct, wake_entry);
1447 llist = llist_next(llist);
1448 ttwu_do_activate(rq, p, 0);
1449 }
1450
1451 raw_spin_unlock(&rq->lock);
1452 }
1453
1454 void scheduler_ipi(void)
1455 {
1456 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1457 return;
1458
1459 /*
1460 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1461 * traditionally all their work was done from the interrupt return
1462 * path. Now that we actually do some work, we need to make sure
1463 * we do call them.
1464 *
1465 * Some archs already do call them, luckily irq_enter/exit nest
1466 * properly.
1467 *
1468 * Arguably we should visit all archs and update all handlers,
1469 * however a fair share of IPIs are still resched only so this would
1470 * somewhat pessimize the simple resched case.
1471 */
1472 irq_enter();
1473 sched_ttwu_pending();
1474
1475 /*
1476 * Check if someone kicked us for doing the nohz idle load balance.
1477 */
1478 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1479 this_rq()->idle_balance = 1;
1480 raise_softirq_irqoff(SCHED_SOFTIRQ);
1481 }
1482 irq_exit();
1483 }
1484
1485 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1486 {
1487 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1488 smp_send_reschedule(cpu);
1489 }
1490
1491 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1492 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1493 {
1494 struct rq *rq;
1495 int ret = 0;
1496
1497 rq = __task_rq_lock(p);
1498 if (p->on_cpu) {
1499 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1500 ttwu_do_wakeup(rq, p, wake_flags);
1501 ret = 1;
1502 }
1503 __task_rq_unlock(rq);
1504
1505 return ret;
1506
1507 }
1508 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1509
1510 bool cpus_share_cache(int this_cpu, int that_cpu)
1511 {
1512 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1513 }
1514 #endif /* CONFIG_SMP */
1515
1516 static void ttwu_queue(struct task_struct *p, int cpu)
1517 {
1518 struct rq *rq = cpu_rq(cpu);
1519
1520 #if defined(CONFIG_SMP)
1521 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1522 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1523 ttwu_queue_remote(p, cpu);
1524 return;
1525 }
1526 #endif
1527
1528 raw_spin_lock(&rq->lock);
1529 ttwu_do_activate(rq, p, 0);
1530 raw_spin_unlock(&rq->lock);
1531 }
1532
1533 /**
1534 * try_to_wake_up - wake up a thread
1535 * @p: the thread to be awakened
1536 * @state: the mask of task states that can be woken
1537 * @wake_flags: wake modifier flags (WF_*)
1538 *
1539 * Put it on the run-queue if it's not already there. The "current"
1540 * thread is always on the run-queue (except when the actual
1541 * re-schedule is in progress), and as such you're allowed to do
1542 * the simpler "current->state = TASK_RUNNING" to mark yourself
1543 * runnable without the overhead of this.
1544 *
1545 * Returns %true if @p was woken up, %false if it was already running
1546 * or @state didn't match @p's state.
1547 */
1548 static int
1549 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1550 {
1551 unsigned long flags;
1552 int cpu, success = 0;
1553
1554 smp_wmb();
1555 raw_spin_lock_irqsave(&p->pi_lock, flags);
1556 if (!(p->state & state))
1557 goto out;
1558
1559 success = 1; /* we're going to change ->state */
1560 cpu = task_cpu(p);
1561
1562 if (p->on_rq && ttwu_remote(p, wake_flags))
1563 goto stat;
1564
1565 #ifdef CONFIG_SMP
1566 /*
1567 * If the owning (remote) cpu is still in the middle of schedule() with
1568 * this task as prev, wait until its done referencing the task.
1569 */
1570 while (p->on_cpu) {
1571 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1572 /*
1573 * In case the architecture enables interrupts in
1574 * context_switch(), we cannot busy wait, since that
1575 * would lead to deadlocks when an interrupt hits and
1576 * tries to wake up @prev. So bail and do a complete
1577 * remote wakeup.
1578 */
1579 if (ttwu_activate_remote(p, wake_flags))
1580 goto stat;
1581 #else
1582 cpu_relax();
1583 #endif
1584 }
1585 /*
1586 * Pairs with the smp_wmb() in finish_lock_switch().
1587 */
1588 smp_rmb();
1589
1590 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1591 p->state = TASK_WAKING;
1592
1593 if (p->sched_class->task_waking)
1594 p->sched_class->task_waking(p);
1595
1596 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1597 if (task_cpu(p) != cpu) {
1598 wake_flags |= WF_MIGRATED;
1599 set_task_cpu(p, cpu);
1600 }
1601 #endif /* CONFIG_SMP */
1602
1603 ttwu_queue(p, cpu);
1604 stat:
1605 ttwu_stat(p, cpu, wake_flags);
1606 out:
1607 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1608
1609 return success;
1610 }
1611
1612 /**
1613 * try_to_wake_up_local - try to wake up a local task with rq lock held
1614 * @p: the thread to be awakened
1615 *
1616 * Put @p on the run-queue if it's not already there. The caller must
1617 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1618 * the current task.
1619 */
1620 static void try_to_wake_up_local(struct task_struct *p)
1621 {
1622 struct rq *rq = task_rq(p);
1623
1624 BUG_ON(rq != this_rq());
1625 BUG_ON(p == current);
1626 lockdep_assert_held(&rq->lock);
1627
1628 if (!raw_spin_trylock(&p->pi_lock)) {
1629 raw_spin_unlock(&rq->lock);
1630 raw_spin_lock(&p->pi_lock);
1631 raw_spin_lock(&rq->lock);
1632 }
1633
1634 if (!(p->state & TASK_NORMAL))
1635 goto out;
1636
1637 if (!p->on_rq)
1638 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1639
1640 ttwu_do_wakeup(rq, p, 0);
1641 ttwu_stat(p, smp_processor_id(), 0);
1642 out:
1643 raw_spin_unlock(&p->pi_lock);
1644 }
1645
1646 /**
1647 * wake_up_process - Wake up a specific process
1648 * @p: The process to be woken up.
1649 *
1650 * Attempt to wake up the nominated process and move it to the set of runnable
1651 * processes. Returns 1 if the process was woken up, 0 if it was already
1652 * running.
1653 *
1654 * It may be assumed that this function implies a write memory barrier before
1655 * changing the task state if and only if any tasks are woken up.
1656 */
1657 int wake_up_process(struct task_struct *p)
1658 {
1659 return try_to_wake_up(p, TASK_ALL, 0);
1660 }
1661 EXPORT_SYMBOL(wake_up_process);
1662
1663 int wake_up_state(struct task_struct *p, unsigned int state)
1664 {
1665 return try_to_wake_up(p, state, 0);
1666 }
1667
1668 /*
1669 * Perform scheduler related setup for a newly forked process p.
1670 * p is forked by current.
1671 *
1672 * __sched_fork() is basic setup used by init_idle() too:
1673 */
1674 static void __sched_fork(struct task_struct *p)
1675 {
1676 p->on_rq = 0;
1677
1678 p->se.on_rq = 0;
1679 p->se.exec_start = 0;
1680 p->se.sum_exec_runtime = 0;
1681 p->se.prev_sum_exec_runtime = 0;
1682 p->se.nr_migrations = 0;
1683 p->se.vruntime = 0;
1684 INIT_LIST_HEAD(&p->se.group_node);
1685
1686 #ifdef CONFIG_SCHEDSTATS
1687 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1688 #endif
1689
1690 INIT_LIST_HEAD(&p->rt.run_list);
1691
1692 #ifdef CONFIG_PREEMPT_NOTIFIERS
1693 INIT_HLIST_HEAD(&p->preempt_notifiers);
1694 #endif
1695 }
1696
1697 /*
1698 * fork()/clone()-time setup:
1699 */
1700 void sched_fork(struct task_struct *p)
1701 {
1702 unsigned long flags;
1703 int cpu = get_cpu();
1704
1705 __sched_fork(p);
1706 /*
1707 * We mark the process as running here. This guarantees that
1708 * nobody will actually run it, and a signal or other external
1709 * event cannot wake it up and insert it on the runqueue either.
1710 */
1711 p->state = TASK_RUNNING;
1712
1713 /*
1714 * Make sure we do not leak PI boosting priority to the child.
1715 */
1716 p->prio = current->normal_prio;
1717
1718 /*
1719 * Revert to default priority/policy on fork if requested.
1720 */
1721 if (unlikely(p->sched_reset_on_fork)) {
1722 if (task_has_rt_policy(p)) {
1723 p->policy = SCHED_NORMAL;
1724 p->static_prio = NICE_TO_PRIO(0);
1725 p->rt_priority = 0;
1726 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1727 p->static_prio = NICE_TO_PRIO(0);
1728
1729 p->prio = p->normal_prio = __normal_prio(p);
1730 set_load_weight(p);
1731
1732 /*
1733 * We don't need the reset flag anymore after the fork. It has
1734 * fulfilled its duty:
1735 */
1736 p->sched_reset_on_fork = 0;
1737 }
1738
1739 if (!rt_prio(p->prio))
1740 p->sched_class = &fair_sched_class;
1741
1742 if (p->sched_class->task_fork)
1743 p->sched_class->task_fork(p);
1744
1745 /*
1746 * The child is not yet in the pid-hash so no cgroup attach races,
1747 * and the cgroup is pinned to this child due to cgroup_fork()
1748 * is ran before sched_fork().
1749 *
1750 * Silence PROVE_RCU.
1751 */
1752 raw_spin_lock_irqsave(&p->pi_lock, flags);
1753 set_task_cpu(p, cpu);
1754 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1755
1756 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1757 if (likely(sched_info_on()))
1758 memset(&p->sched_info, 0, sizeof(p->sched_info));
1759 #endif
1760 #if defined(CONFIG_SMP)
1761 p->on_cpu = 0;
1762 #endif
1763 #ifdef CONFIG_PREEMPT_COUNT
1764 /* Want to start with kernel preemption disabled. */
1765 task_thread_info(p)->preempt_count = 1;
1766 #endif
1767 #ifdef CONFIG_SMP
1768 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1769 #endif
1770
1771 put_cpu();
1772 }
1773
1774 /*
1775 * wake_up_new_task - wake up a newly created task for the first time.
1776 *
1777 * This function will do some initial scheduler statistics housekeeping
1778 * that must be done for every newly created context, then puts the task
1779 * on the runqueue and wakes it.
1780 */
1781 void wake_up_new_task(struct task_struct *p)
1782 {
1783 unsigned long flags;
1784 struct rq *rq;
1785
1786 raw_spin_lock_irqsave(&p->pi_lock, flags);
1787 #ifdef CONFIG_SMP
1788 /*
1789 * Fork balancing, do it here and not earlier because:
1790 * - cpus_allowed can change in the fork path
1791 * - any previously selected cpu might disappear through hotplug
1792 */
1793 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1794 #endif
1795
1796 rq = __task_rq_lock(p);
1797 activate_task(rq, p, 0);
1798 p->on_rq = 1;
1799 trace_sched_wakeup_new(p, true);
1800 check_preempt_curr(rq, p, WF_FORK);
1801 #ifdef CONFIG_SMP
1802 if (p->sched_class->task_woken)
1803 p->sched_class->task_woken(rq, p);
1804 #endif
1805 task_rq_unlock(rq, p, &flags);
1806 }
1807
1808 #ifdef CONFIG_PREEMPT_NOTIFIERS
1809
1810 /**
1811 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1812 * @notifier: notifier struct to register
1813 */
1814 void preempt_notifier_register(struct preempt_notifier *notifier)
1815 {
1816 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1817 }
1818 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1819
1820 /**
1821 * preempt_notifier_unregister - no longer interested in preemption notifications
1822 * @notifier: notifier struct to unregister
1823 *
1824 * This is safe to call from within a preemption notifier.
1825 */
1826 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1827 {
1828 hlist_del(&notifier->link);
1829 }
1830 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1831
1832 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1833 {
1834 struct preempt_notifier *notifier;
1835 struct hlist_node *node;
1836
1837 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1838 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1839 }
1840
1841 static void
1842 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1843 struct task_struct *next)
1844 {
1845 struct preempt_notifier *notifier;
1846 struct hlist_node *node;
1847
1848 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1849 notifier->ops->sched_out(notifier, next);
1850 }
1851
1852 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1853
1854 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1855 {
1856 }
1857
1858 static void
1859 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1860 struct task_struct *next)
1861 {
1862 }
1863
1864 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1865
1866 /**
1867 * prepare_task_switch - prepare to switch tasks
1868 * @rq: the runqueue preparing to switch
1869 * @prev: the current task that is being switched out
1870 * @next: the task we are going to switch to.
1871 *
1872 * This is called with the rq lock held and interrupts off. It must
1873 * be paired with a subsequent finish_task_switch after the context
1874 * switch.
1875 *
1876 * prepare_task_switch sets up locking and calls architecture specific
1877 * hooks.
1878 */
1879 static inline void
1880 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1881 struct task_struct *next)
1882 {
1883 sched_info_switch(prev, next);
1884 perf_event_task_sched_out(prev, next);
1885 fire_sched_out_preempt_notifiers(prev, next);
1886 prepare_lock_switch(rq, next);
1887 prepare_arch_switch(next);
1888 trace_sched_switch(prev, next);
1889 }
1890
1891 /**
1892 * finish_task_switch - clean up after a task-switch
1893 * @rq: runqueue associated with task-switch
1894 * @prev: the thread we just switched away from.
1895 *
1896 * finish_task_switch must be called after the context switch, paired
1897 * with a prepare_task_switch call before the context switch.
1898 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1899 * and do any other architecture-specific cleanup actions.
1900 *
1901 * Note that we may have delayed dropping an mm in context_switch(). If
1902 * so, we finish that here outside of the runqueue lock. (Doing it
1903 * with the lock held can cause deadlocks; see schedule() for
1904 * details.)
1905 */
1906 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1907 __releases(rq->lock)
1908 {
1909 struct mm_struct *mm = rq->prev_mm;
1910 long prev_state;
1911
1912 rq->prev_mm = NULL;
1913
1914 /*
1915 * A task struct has one reference for the use as "current".
1916 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1917 * schedule one last time. The schedule call will never return, and
1918 * the scheduled task must drop that reference.
1919 * The test for TASK_DEAD must occur while the runqueue locks are
1920 * still held, otherwise prev could be scheduled on another cpu, die
1921 * there before we look at prev->state, and then the reference would
1922 * be dropped twice.
1923 * Manfred Spraul <manfred@colorfullife.com>
1924 */
1925 prev_state = prev->state;
1926 finish_arch_switch(prev);
1927 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1928 local_irq_disable();
1929 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1930 perf_event_task_sched_in(prev, current);
1931 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1932 local_irq_enable();
1933 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1934 finish_lock_switch(rq, prev);
1935
1936 fire_sched_in_preempt_notifiers(current);
1937 if (mm)
1938 mmdrop(mm);
1939 if (unlikely(prev_state == TASK_DEAD)) {
1940 /*
1941 * Remove function-return probe instances associated with this
1942 * task and put them back on the free list.
1943 */
1944 kprobe_flush_task(prev);
1945 put_task_struct(prev);
1946 }
1947 }
1948
1949 #ifdef CONFIG_SMP
1950
1951 /* assumes rq->lock is held */
1952 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1953 {
1954 if (prev->sched_class->pre_schedule)
1955 prev->sched_class->pre_schedule(rq, prev);
1956 }
1957
1958 /* rq->lock is NOT held, but preemption is disabled */
1959 static inline void post_schedule(struct rq *rq)
1960 {
1961 if (rq->post_schedule) {
1962 unsigned long flags;
1963
1964 raw_spin_lock_irqsave(&rq->lock, flags);
1965 if (rq->curr->sched_class->post_schedule)
1966 rq->curr->sched_class->post_schedule(rq);
1967 raw_spin_unlock_irqrestore(&rq->lock, flags);
1968
1969 rq->post_schedule = 0;
1970 }
1971 }
1972
1973 #else
1974
1975 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1976 {
1977 }
1978
1979 static inline void post_schedule(struct rq *rq)
1980 {
1981 }
1982
1983 #endif
1984
1985 /**
1986 * schedule_tail - first thing a freshly forked thread must call.
1987 * @prev: the thread we just switched away from.
1988 */
1989 asmlinkage void schedule_tail(struct task_struct *prev)
1990 __releases(rq->lock)
1991 {
1992 struct rq *rq = this_rq();
1993
1994 finish_task_switch(rq, prev);
1995
1996 /*
1997 * FIXME: do we need to worry about rq being invalidated by the
1998 * task_switch?
1999 */
2000 post_schedule(rq);
2001
2002 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2003 /* In this case, finish_task_switch does not reenable preemption */
2004 preempt_enable();
2005 #endif
2006 if (current->set_child_tid)
2007 put_user(task_pid_vnr(current), current->set_child_tid);
2008 }
2009
2010 /*
2011 * context_switch - switch to the new MM and the new
2012 * thread's register state.
2013 */
2014 static inline void
2015 context_switch(struct rq *rq, struct task_struct *prev,
2016 struct task_struct *next)
2017 {
2018 struct mm_struct *mm, *oldmm;
2019
2020 prepare_task_switch(rq, prev, next);
2021
2022 mm = next->mm;
2023 oldmm = prev->active_mm;
2024 /*
2025 * For paravirt, this is coupled with an exit in switch_to to
2026 * combine the page table reload and the switch backend into
2027 * one hypercall.
2028 */
2029 arch_start_context_switch(prev);
2030
2031 if (!mm) {
2032 next->active_mm = oldmm;
2033 atomic_inc(&oldmm->mm_count);
2034 enter_lazy_tlb(oldmm, next);
2035 } else
2036 switch_mm(oldmm, mm, next);
2037
2038 if (!prev->mm) {
2039 prev->active_mm = NULL;
2040 rq->prev_mm = oldmm;
2041 }
2042 /*
2043 * Since the runqueue lock will be released by the next
2044 * task (which is an invalid locking op but in the case
2045 * of the scheduler it's an obvious special-case), so we
2046 * do an early lockdep release here:
2047 */
2048 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2049 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2050 #endif
2051
2052 /* Here we just switch the register state and the stack. */
2053 switch_to(prev, next, prev);
2054
2055 barrier();
2056 /*
2057 * this_rq must be evaluated again because prev may have moved
2058 * CPUs since it called schedule(), thus the 'rq' on its stack
2059 * frame will be invalid.
2060 */
2061 finish_task_switch(this_rq(), prev);
2062 }
2063
2064 /*
2065 * nr_running, nr_uninterruptible and nr_context_switches:
2066 *
2067 * externally visible scheduler statistics: current number of runnable
2068 * threads, current number of uninterruptible-sleeping threads, total
2069 * number of context switches performed since bootup.
2070 */
2071 unsigned long nr_running(void)
2072 {
2073 unsigned long i, sum = 0;
2074
2075 for_each_online_cpu(i)
2076 sum += cpu_rq(i)->nr_running;
2077
2078 return sum;
2079 }
2080
2081 unsigned long nr_uninterruptible(void)
2082 {
2083 unsigned long i, sum = 0;
2084
2085 for_each_possible_cpu(i)
2086 sum += cpu_rq(i)->nr_uninterruptible;
2087
2088 /*
2089 * Since we read the counters lockless, it might be slightly
2090 * inaccurate. Do not allow it to go below zero though:
2091 */
2092 if (unlikely((long)sum < 0))
2093 sum = 0;
2094
2095 return sum;
2096 }
2097
2098 unsigned long long nr_context_switches(void)
2099 {
2100 int i;
2101 unsigned long long sum = 0;
2102
2103 for_each_possible_cpu(i)
2104 sum += cpu_rq(i)->nr_switches;
2105
2106 return sum;
2107 }
2108
2109 unsigned long nr_iowait(void)
2110 {
2111 unsigned long i, sum = 0;
2112
2113 for_each_possible_cpu(i)
2114 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2115
2116 return sum;
2117 }
2118
2119 unsigned long nr_iowait_cpu(int cpu)
2120 {
2121 struct rq *this = cpu_rq(cpu);
2122 return atomic_read(&this->nr_iowait);
2123 }
2124
2125 unsigned long this_cpu_load(void)
2126 {
2127 struct rq *this = this_rq();
2128 return this->cpu_load[0];
2129 }
2130
2131
2132 /* Variables and functions for calc_load */
2133 static atomic_long_t calc_load_tasks;
2134 static unsigned long calc_load_update;
2135 unsigned long avenrun[3];
2136 EXPORT_SYMBOL(avenrun);
2137
2138 static long calc_load_fold_active(struct rq *this_rq)
2139 {
2140 long nr_active, delta = 0;
2141
2142 nr_active = this_rq->nr_running;
2143 nr_active += (long) this_rq->nr_uninterruptible;
2144
2145 if (nr_active != this_rq->calc_load_active) {
2146 delta = nr_active - this_rq->calc_load_active;
2147 this_rq->calc_load_active = nr_active;
2148 }
2149
2150 return delta;
2151 }
2152
2153 static unsigned long
2154 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2155 {
2156 load *= exp;
2157 load += active * (FIXED_1 - exp);
2158 load += 1UL << (FSHIFT - 1);
2159 return load >> FSHIFT;
2160 }
2161
2162 #ifdef CONFIG_NO_HZ
2163 /*
2164 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2165 *
2166 * When making the ILB scale, we should try to pull this in as well.
2167 */
2168 static atomic_long_t calc_load_tasks_idle;
2169
2170 void calc_load_account_idle(struct rq *this_rq)
2171 {
2172 long delta;
2173
2174 delta = calc_load_fold_active(this_rq);
2175 if (delta)
2176 atomic_long_add(delta, &calc_load_tasks_idle);
2177 }
2178
2179 static long calc_load_fold_idle(void)
2180 {
2181 long delta = 0;
2182
2183 /*
2184 * Its got a race, we don't care...
2185 */
2186 if (atomic_long_read(&calc_load_tasks_idle))
2187 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2188
2189 return delta;
2190 }
2191
2192 /**
2193 * fixed_power_int - compute: x^n, in O(log n) time
2194 *
2195 * @x: base of the power
2196 * @frac_bits: fractional bits of @x
2197 * @n: power to raise @x to.
2198 *
2199 * By exploiting the relation between the definition of the natural power
2200 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2201 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2202 * (where: n_i \elem {0, 1}, the binary vector representing n),
2203 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2204 * of course trivially computable in O(log_2 n), the length of our binary
2205 * vector.
2206 */
2207 static unsigned long
2208 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2209 {
2210 unsigned long result = 1UL << frac_bits;
2211
2212 if (n) for (;;) {
2213 if (n & 1) {
2214 result *= x;
2215 result += 1UL << (frac_bits - 1);
2216 result >>= frac_bits;
2217 }
2218 n >>= 1;
2219 if (!n)
2220 break;
2221 x *= x;
2222 x += 1UL << (frac_bits - 1);
2223 x >>= frac_bits;
2224 }
2225
2226 return result;
2227 }
2228
2229 /*
2230 * a1 = a0 * e + a * (1 - e)
2231 *
2232 * a2 = a1 * e + a * (1 - e)
2233 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2234 * = a0 * e^2 + a * (1 - e) * (1 + e)
2235 *
2236 * a3 = a2 * e + a * (1 - e)
2237 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2238 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2239 *
2240 * ...
2241 *
2242 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2243 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2244 * = a0 * e^n + a * (1 - e^n)
2245 *
2246 * [1] application of the geometric series:
2247 *
2248 * n 1 - x^(n+1)
2249 * S_n := \Sum x^i = -------------
2250 * i=0 1 - x
2251 */
2252 static unsigned long
2253 calc_load_n(unsigned long load, unsigned long exp,
2254 unsigned long active, unsigned int n)
2255 {
2256
2257 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2258 }
2259
2260 /*
2261 * NO_HZ can leave us missing all per-cpu ticks calling
2262 * calc_load_account_active(), but since an idle CPU folds its delta into
2263 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2264 * in the pending idle delta if our idle period crossed a load cycle boundary.
2265 *
2266 * Once we've updated the global active value, we need to apply the exponential
2267 * weights adjusted to the number of cycles missed.
2268 */
2269 static void calc_global_nohz(unsigned long ticks)
2270 {
2271 long delta, active, n;
2272
2273 if (time_before(jiffies, calc_load_update))
2274 return;
2275
2276 /*
2277 * If we crossed a calc_load_update boundary, make sure to fold
2278 * any pending idle changes, the respective CPUs might have
2279 * missed the tick driven calc_load_account_active() update
2280 * due to NO_HZ.
2281 */
2282 delta = calc_load_fold_idle();
2283 if (delta)
2284 atomic_long_add(delta, &calc_load_tasks);
2285
2286 /*
2287 * If we were idle for multiple load cycles, apply them.
2288 */
2289 if (ticks >= LOAD_FREQ) {
2290 n = ticks / LOAD_FREQ;
2291
2292 active = atomic_long_read(&calc_load_tasks);
2293 active = active > 0 ? active * FIXED_1 : 0;
2294
2295 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2296 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2297 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2298
2299 calc_load_update += n * LOAD_FREQ;
2300 }
2301
2302 /*
2303 * Its possible the remainder of the above division also crosses
2304 * a LOAD_FREQ period, the regular check in calc_global_load()
2305 * which comes after this will take care of that.
2306 *
2307 * Consider us being 11 ticks before a cycle completion, and us
2308 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
2309 * age us 4 cycles, and the test in calc_global_load() will
2310 * pick up the final one.
2311 */
2312 }
2313 #else
2314 void calc_load_account_idle(struct rq *this_rq)
2315 {
2316 }
2317
2318 static inline long calc_load_fold_idle(void)
2319 {
2320 return 0;
2321 }
2322
2323 static void calc_global_nohz(unsigned long ticks)
2324 {
2325 }
2326 #endif
2327
2328 /**
2329 * get_avenrun - get the load average array
2330 * @loads: pointer to dest load array
2331 * @offset: offset to add
2332 * @shift: shift count to shift the result left
2333 *
2334 * These values are estimates at best, so no need for locking.
2335 */
2336 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2337 {
2338 loads[0] = (avenrun[0] + offset) << shift;
2339 loads[1] = (avenrun[1] + offset) << shift;
2340 loads[2] = (avenrun[2] + offset) << shift;
2341 }
2342
2343 /*
2344 * calc_load - update the avenrun load estimates 10 ticks after the
2345 * CPUs have updated calc_load_tasks.
2346 */
2347 void calc_global_load(unsigned long ticks)
2348 {
2349 long active;
2350
2351 calc_global_nohz(ticks);
2352
2353 if (time_before(jiffies, calc_load_update + 10))
2354 return;
2355
2356 active = atomic_long_read(&calc_load_tasks);
2357 active = active > 0 ? active * FIXED_1 : 0;
2358
2359 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2360 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2361 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2362
2363 calc_load_update += LOAD_FREQ;
2364 }
2365
2366 /*
2367 * Called from update_cpu_load() to periodically update this CPU's
2368 * active count.
2369 */
2370 static void calc_load_account_active(struct rq *this_rq)
2371 {
2372 long delta;
2373
2374 if (time_before(jiffies, this_rq->calc_load_update))
2375 return;
2376
2377 delta = calc_load_fold_active(this_rq);
2378 delta += calc_load_fold_idle();
2379 if (delta)
2380 atomic_long_add(delta, &calc_load_tasks);
2381
2382 this_rq->calc_load_update += LOAD_FREQ;
2383 }
2384
2385 /*
2386 * The exact cpuload at various idx values, calculated at every tick would be
2387 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2388 *
2389 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2390 * on nth tick when cpu may be busy, then we have:
2391 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2392 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2393 *
2394 * decay_load_missed() below does efficient calculation of
2395 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2396 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2397 *
2398 * The calculation is approximated on a 128 point scale.
2399 * degrade_zero_ticks is the number of ticks after which load at any
2400 * particular idx is approximated to be zero.
2401 * degrade_factor is a precomputed table, a row for each load idx.
2402 * Each column corresponds to degradation factor for a power of two ticks,
2403 * based on 128 point scale.
2404 * Example:
2405 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2406 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2407 *
2408 * With this power of 2 load factors, we can degrade the load n times
2409 * by looking at 1 bits in n and doing as many mult/shift instead of
2410 * n mult/shifts needed by the exact degradation.
2411 */
2412 #define DEGRADE_SHIFT 7
2413 static const unsigned char
2414 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2415 static const unsigned char
2416 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2417 {0, 0, 0, 0, 0, 0, 0, 0},
2418 {64, 32, 8, 0, 0, 0, 0, 0},
2419 {96, 72, 40, 12, 1, 0, 0},
2420 {112, 98, 75, 43, 15, 1, 0},
2421 {120, 112, 98, 76, 45, 16, 2} };
2422
2423 /*
2424 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2425 * would be when CPU is idle and so we just decay the old load without
2426 * adding any new load.
2427 */
2428 static unsigned long
2429 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2430 {
2431 int j = 0;
2432
2433 if (!missed_updates)
2434 return load;
2435
2436 if (missed_updates >= degrade_zero_ticks[idx])
2437 return 0;
2438
2439 if (idx == 1)
2440 return load >> missed_updates;
2441
2442 while (missed_updates) {
2443 if (missed_updates % 2)
2444 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2445
2446 missed_updates >>= 1;
2447 j++;
2448 }
2449 return load;
2450 }
2451
2452 /*
2453 * Update rq->cpu_load[] statistics. This function is usually called every
2454 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2455 * every tick. We fix it up based on jiffies.
2456 */
2457 void update_cpu_load(struct rq *this_rq)
2458 {
2459 unsigned long this_load = this_rq->load.weight;
2460 unsigned long curr_jiffies = jiffies;
2461 unsigned long pending_updates;
2462 int i, scale;
2463
2464 this_rq->nr_load_updates++;
2465
2466 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2467 if (curr_jiffies == this_rq->last_load_update_tick)
2468 return;
2469
2470 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2471 this_rq->last_load_update_tick = curr_jiffies;
2472
2473 /* Update our load: */
2474 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2475 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2476 unsigned long old_load, new_load;
2477
2478 /* scale is effectively 1 << i now, and >> i divides by scale */
2479
2480 old_load = this_rq->cpu_load[i];
2481 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2482 new_load = this_load;
2483 /*
2484 * Round up the averaging division if load is increasing. This
2485 * prevents us from getting stuck on 9 if the load is 10, for
2486 * example.
2487 */
2488 if (new_load > old_load)
2489 new_load += scale - 1;
2490
2491 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2492 }
2493
2494 sched_avg_update(this_rq);
2495 }
2496
2497 static void update_cpu_load_active(struct rq *this_rq)
2498 {
2499 update_cpu_load(this_rq);
2500
2501 calc_load_account_active(this_rq);
2502 }
2503
2504 #ifdef CONFIG_SMP
2505
2506 /*
2507 * sched_exec - execve() is a valuable balancing opportunity, because at
2508 * this point the task has the smallest effective memory and cache footprint.
2509 */
2510 void sched_exec(void)
2511 {
2512 struct task_struct *p = current;
2513 unsigned long flags;
2514 int dest_cpu;
2515
2516 raw_spin_lock_irqsave(&p->pi_lock, flags);
2517 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2518 if (dest_cpu == smp_processor_id())
2519 goto unlock;
2520
2521 if (likely(cpu_active(dest_cpu))) {
2522 struct migration_arg arg = { p, dest_cpu };
2523
2524 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2525 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2526 return;
2527 }
2528 unlock:
2529 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2530 }
2531
2532 #endif
2533
2534 DEFINE_PER_CPU(struct kernel_stat, kstat);
2535 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2536
2537 EXPORT_PER_CPU_SYMBOL(kstat);
2538 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2539
2540 /*
2541 * Return any ns on the sched_clock that have not yet been accounted in
2542 * @p in case that task is currently running.
2543 *
2544 * Called with task_rq_lock() held on @rq.
2545 */
2546 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2547 {
2548 u64 ns = 0;
2549
2550 if (task_current(rq, p)) {
2551 update_rq_clock(rq);
2552 ns = rq->clock_task - p->se.exec_start;
2553 if ((s64)ns < 0)
2554 ns = 0;
2555 }
2556
2557 return ns;
2558 }
2559
2560 unsigned long long task_delta_exec(struct task_struct *p)
2561 {
2562 unsigned long flags;
2563 struct rq *rq;
2564 u64 ns = 0;
2565
2566 rq = task_rq_lock(p, &flags);
2567 ns = do_task_delta_exec(p, rq);
2568 task_rq_unlock(rq, p, &flags);
2569
2570 return ns;
2571 }
2572
2573 /*
2574 * Return accounted runtime for the task.
2575 * In case the task is currently running, return the runtime plus current's
2576 * pending runtime that have not been accounted yet.
2577 */
2578 unsigned long long task_sched_runtime(struct task_struct *p)
2579 {
2580 unsigned long flags;
2581 struct rq *rq;
2582 u64 ns = 0;
2583
2584 rq = task_rq_lock(p, &flags);
2585 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2586 task_rq_unlock(rq, p, &flags);
2587
2588 return ns;
2589 }
2590
2591 #ifdef CONFIG_CGROUP_CPUACCT
2592 struct cgroup_subsys cpuacct_subsys;
2593 struct cpuacct root_cpuacct;
2594 #endif
2595
2596 static inline void task_group_account_field(struct task_struct *p, int index,
2597 u64 tmp)
2598 {
2599 #ifdef CONFIG_CGROUP_CPUACCT
2600 struct kernel_cpustat *kcpustat;
2601 struct cpuacct *ca;
2602 #endif
2603 /*
2604 * Since all updates are sure to touch the root cgroup, we
2605 * get ourselves ahead and touch it first. If the root cgroup
2606 * is the only cgroup, then nothing else should be necessary.
2607 *
2608 */
2609 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2610
2611 #ifdef CONFIG_CGROUP_CPUACCT
2612 if (unlikely(!cpuacct_subsys.active))
2613 return;
2614
2615 rcu_read_lock();
2616 ca = task_ca(p);
2617 while (ca && (ca != &root_cpuacct)) {
2618 kcpustat = this_cpu_ptr(ca->cpustat);
2619 kcpustat->cpustat[index] += tmp;
2620 ca = parent_ca(ca);
2621 }
2622 rcu_read_unlock();
2623 #endif
2624 }
2625
2626
2627 /*
2628 * Account user cpu time to a process.
2629 * @p: the process that the cpu time gets accounted to
2630 * @cputime: the cpu time spent in user space since the last update
2631 * @cputime_scaled: cputime scaled by cpu frequency
2632 */
2633 void account_user_time(struct task_struct *p, cputime_t cputime,
2634 cputime_t cputime_scaled)
2635 {
2636 int index;
2637
2638 /* Add user time to process. */
2639 p->utime += cputime;
2640 p->utimescaled += cputime_scaled;
2641 account_group_user_time(p, cputime);
2642
2643 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2644
2645 /* Add user time to cpustat. */
2646 task_group_account_field(p, index, (__force u64) cputime);
2647
2648 /* Account for user time used */
2649 acct_update_integrals(p);
2650 }
2651
2652 /*
2653 * Account guest cpu time to a process.
2654 * @p: the process that the cpu time gets accounted to
2655 * @cputime: the cpu time spent in virtual machine since the last update
2656 * @cputime_scaled: cputime scaled by cpu frequency
2657 */
2658 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2659 cputime_t cputime_scaled)
2660 {
2661 u64 *cpustat = kcpustat_this_cpu->cpustat;
2662
2663 /* Add guest time to process. */
2664 p->utime += cputime;
2665 p->utimescaled += cputime_scaled;
2666 account_group_user_time(p, cputime);
2667 p->gtime += cputime;
2668
2669 /* Add guest time to cpustat. */
2670 if (TASK_NICE(p) > 0) {
2671 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2672 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2673 } else {
2674 cpustat[CPUTIME_USER] += (__force u64) cputime;
2675 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2676 }
2677 }
2678
2679 /*
2680 * Account system cpu time to a process and desired cpustat field
2681 * @p: the process that the cpu time gets accounted to
2682 * @cputime: the cpu time spent in kernel space since the last update
2683 * @cputime_scaled: cputime scaled by cpu frequency
2684 * @target_cputime64: pointer to cpustat field that has to be updated
2685 */
2686 static inline
2687 void __account_system_time(struct task_struct *p, cputime_t cputime,
2688 cputime_t cputime_scaled, int index)
2689 {
2690 /* Add system time to process. */
2691 p->stime += cputime;
2692 p->stimescaled += cputime_scaled;
2693 account_group_system_time(p, cputime);
2694
2695 /* Add system time to cpustat. */
2696 task_group_account_field(p, index, (__force u64) cputime);
2697
2698 /* Account for system time used */
2699 acct_update_integrals(p);
2700 }
2701
2702 /*
2703 * Account system cpu time to a process.
2704 * @p: the process that the cpu time gets accounted to
2705 * @hardirq_offset: the offset to subtract from hardirq_count()
2706 * @cputime: the cpu time spent in kernel space since the last update
2707 * @cputime_scaled: cputime scaled by cpu frequency
2708 */
2709 void account_system_time(struct task_struct *p, int hardirq_offset,
2710 cputime_t cputime, cputime_t cputime_scaled)
2711 {
2712 int index;
2713
2714 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2715 account_guest_time(p, cputime, cputime_scaled);
2716 return;
2717 }
2718
2719 if (hardirq_count() - hardirq_offset)
2720 index = CPUTIME_IRQ;
2721 else if (in_serving_softirq())
2722 index = CPUTIME_SOFTIRQ;
2723 else
2724 index = CPUTIME_SYSTEM;
2725
2726 __account_system_time(p, cputime, cputime_scaled, index);
2727 }
2728
2729 /*
2730 * Account for involuntary wait time.
2731 * @cputime: the cpu time spent in involuntary wait
2732 */
2733 void account_steal_time(cputime_t cputime)
2734 {
2735 u64 *cpustat = kcpustat_this_cpu->cpustat;
2736
2737 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2738 }
2739
2740 /*
2741 * Account for idle time.
2742 * @cputime: the cpu time spent in idle wait
2743 */
2744 void account_idle_time(cputime_t cputime)
2745 {
2746 u64 *cpustat = kcpustat_this_cpu->cpustat;
2747 struct rq *rq = this_rq();
2748
2749 if (atomic_read(&rq->nr_iowait) > 0)
2750 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2751 else
2752 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2753 }
2754
2755 static __always_inline bool steal_account_process_tick(void)
2756 {
2757 #ifdef CONFIG_PARAVIRT
2758 if (static_branch(&paravirt_steal_enabled)) {
2759 u64 steal, st = 0;
2760
2761 steal = paravirt_steal_clock(smp_processor_id());
2762 steal -= this_rq()->prev_steal_time;
2763
2764 st = steal_ticks(steal);
2765 this_rq()->prev_steal_time += st * TICK_NSEC;
2766
2767 account_steal_time(st);
2768 return st;
2769 }
2770 #endif
2771 return false;
2772 }
2773
2774 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2775
2776 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2777 /*
2778 * Account a tick to a process and cpustat
2779 * @p: the process that the cpu time gets accounted to
2780 * @user_tick: is the tick from userspace
2781 * @rq: the pointer to rq
2782 *
2783 * Tick demultiplexing follows the order
2784 * - pending hardirq update
2785 * - pending softirq update
2786 * - user_time
2787 * - idle_time
2788 * - system time
2789 * - check for guest_time
2790 * - else account as system_time
2791 *
2792 * Check for hardirq is done both for system and user time as there is
2793 * no timer going off while we are on hardirq and hence we may never get an
2794 * opportunity to update it solely in system time.
2795 * p->stime and friends are only updated on system time and not on irq
2796 * softirq as those do not count in task exec_runtime any more.
2797 */
2798 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2799 struct rq *rq)
2800 {
2801 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2802 u64 *cpustat = kcpustat_this_cpu->cpustat;
2803
2804 if (steal_account_process_tick())
2805 return;
2806
2807 if (irqtime_account_hi_update()) {
2808 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2809 } else if (irqtime_account_si_update()) {
2810 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2811 } else if (this_cpu_ksoftirqd() == p) {
2812 /*
2813 * ksoftirqd time do not get accounted in cpu_softirq_time.
2814 * So, we have to handle it separately here.
2815 * Also, p->stime needs to be updated for ksoftirqd.
2816 */
2817 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2818 CPUTIME_SOFTIRQ);
2819 } else if (user_tick) {
2820 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2821 } else if (p == rq->idle) {
2822 account_idle_time(cputime_one_jiffy);
2823 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2824 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2825 } else {
2826 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2827 CPUTIME_SYSTEM);
2828 }
2829 }
2830
2831 static void irqtime_account_idle_ticks(int ticks)
2832 {
2833 int i;
2834 struct rq *rq = this_rq();
2835
2836 for (i = 0; i < ticks; i++)
2837 irqtime_account_process_tick(current, 0, rq);
2838 }
2839 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2840 static void irqtime_account_idle_ticks(int ticks) {}
2841 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2842 struct rq *rq) {}
2843 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2844
2845 /*
2846 * Account a single tick of cpu time.
2847 * @p: the process that the cpu time gets accounted to
2848 * @user_tick: indicates if the tick is a user or a system tick
2849 */
2850 void account_process_tick(struct task_struct *p, int user_tick)
2851 {
2852 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2853 struct rq *rq = this_rq();
2854
2855 if (sched_clock_irqtime) {
2856 irqtime_account_process_tick(p, user_tick, rq);
2857 return;
2858 }
2859
2860 if (steal_account_process_tick())
2861 return;
2862
2863 if (user_tick)
2864 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2865 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2866 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2867 one_jiffy_scaled);
2868 else
2869 account_idle_time(cputime_one_jiffy);
2870 }
2871
2872 /*
2873 * Account multiple ticks of steal time.
2874 * @p: the process from which the cpu time has been stolen
2875 * @ticks: number of stolen ticks
2876 */
2877 void account_steal_ticks(unsigned long ticks)
2878 {
2879 account_steal_time(jiffies_to_cputime(ticks));
2880 }
2881
2882 /*
2883 * Account multiple ticks of idle time.
2884 * @ticks: number of stolen ticks
2885 */
2886 void account_idle_ticks(unsigned long ticks)
2887 {
2888
2889 if (sched_clock_irqtime) {
2890 irqtime_account_idle_ticks(ticks);
2891 return;
2892 }
2893
2894 account_idle_time(jiffies_to_cputime(ticks));
2895 }
2896
2897 #endif
2898
2899 /*
2900 * Use precise platform statistics if available:
2901 */
2902 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2903 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2904 {
2905 *ut = p->utime;
2906 *st = p->stime;
2907 }
2908
2909 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2910 {
2911 struct task_cputime cputime;
2912
2913 thread_group_cputime(p, &cputime);
2914
2915 *ut = cputime.utime;
2916 *st = cputime.stime;
2917 }
2918 #else
2919
2920 #ifndef nsecs_to_cputime
2921 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
2922 #endif
2923
2924 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2925 {
2926 cputime_t rtime, utime = p->utime, total = utime + p->stime;
2927
2928 /*
2929 * Use CFS's precise accounting:
2930 */
2931 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2932
2933 if (total) {
2934 u64 temp = (__force u64) rtime;
2935
2936 temp *= (__force u64) utime;
2937 do_div(temp, (__force u32) total);
2938 utime = (__force cputime_t) temp;
2939 } else
2940 utime = rtime;
2941
2942 /*
2943 * Compare with previous values, to keep monotonicity:
2944 */
2945 p->prev_utime = max(p->prev_utime, utime);
2946 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2947
2948 *ut = p->prev_utime;
2949 *st = p->prev_stime;
2950 }
2951
2952 /*
2953 * Must be called with siglock held.
2954 */
2955 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2956 {
2957 struct signal_struct *sig = p->signal;
2958 struct task_cputime cputime;
2959 cputime_t rtime, utime, total;
2960
2961 thread_group_cputime(p, &cputime);
2962
2963 total = cputime.utime + cputime.stime;
2964 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2965
2966 if (total) {
2967 u64 temp = (__force u64) rtime;
2968
2969 temp *= (__force u64) cputime.utime;
2970 do_div(temp, (__force u32) total);
2971 utime = (__force cputime_t) temp;
2972 } else
2973 utime = rtime;
2974
2975 sig->prev_utime = max(sig->prev_utime, utime);
2976 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2977
2978 *ut = sig->prev_utime;
2979 *st = sig->prev_stime;
2980 }
2981 #endif
2982
2983 /*
2984 * This function gets called by the timer code, with HZ frequency.
2985 * We call it with interrupts disabled.
2986 */
2987 void scheduler_tick(void)
2988 {
2989 int cpu = smp_processor_id();
2990 struct rq *rq = cpu_rq(cpu);
2991 struct task_struct *curr = rq->curr;
2992
2993 sched_clock_tick();
2994
2995 raw_spin_lock(&rq->lock);
2996 update_rq_clock(rq);
2997 update_cpu_load_active(rq);
2998 curr->sched_class->task_tick(rq, curr, 0);
2999 raw_spin_unlock(&rq->lock);
3000
3001 perf_event_task_tick();
3002
3003 #ifdef CONFIG_SMP
3004 rq->idle_balance = idle_cpu(cpu);
3005 trigger_load_balance(rq, cpu);
3006 #endif
3007 }
3008
3009 notrace unsigned long get_parent_ip(unsigned long addr)
3010 {
3011 if (in_lock_functions(addr)) {
3012 addr = CALLER_ADDR2;
3013 if (in_lock_functions(addr))
3014 addr = CALLER_ADDR3;
3015 }
3016 return addr;
3017 }
3018
3019 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3020 defined(CONFIG_PREEMPT_TRACER))
3021
3022 void __kprobes add_preempt_count(int val)
3023 {
3024 #ifdef CONFIG_DEBUG_PREEMPT
3025 /*
3026 * Underflow?
3027 */
3028 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3029 return;
3030 #endif
3031 preempt_count() += val;
3032 #ifdef CONFIG_DEBUG_PREEMPT
3033 /*
3034 * Spinlock count overflowing soon?
3035 */
3036 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3037 PREEMPT_MASK - 10);
3038 #endif
3039 if (preempt_count() == val)
3040 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3041 }
3042 EXPORT_SYMBOL(add_preempt_count);
3043
3044 void __kprobes sub_preempt_count(int val)
3045 {
3046 #ifdef CONFIG_DEBUG_PREEMPT
3047 /*
3048 * Underflow?
3049 */
3050 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3051 return;
3052 /*
3053 * Is the spinlock portion underflowing?
3054 */
3055 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3056 !(preempt_count() & PREEMPT_MASK)))
3057 return;
3058 #endif
3059
3060 if (preempt_count() == val)
3061 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3062 preempt_count() -= val;
3063 }
3064 EXPORT_SYMBOL(sub_preempt_count);
3065
3066 #endif
3067
3068 /*
3069 * Print scheduling while atomic bug:
3070 */
3071 static noinline void __schedule_bug(struct task_struct *prev)
3072 {
3073 struct pt_regs *regs = get_irq_regs();
3074
3075 if (oops_in_progress)
3076 return;
3077
3078 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3079 prev->comm, prev->pid, preempt_count());
3080
3081 debug_show_held_locks(prev);
3082 print_modules();
3083 if (irqs_disabled())
3084 print_irqtrace_events(prev);
3085
3086 if (regs)
3087 show_regs(regs);
3088 else
3089 dump_stack();
3090 }
3091
3092 /*
3093 * Various schedule()-time debugging checks and statistics:
3094 */
3095 static inline void schedule_debug(struct task_struct *prev)
3096 {
3097 /*
3098 * Test if we are atomic. Since do_exit() needs to call into
3099 * schedule() atomically, we ignore that path for now.
3100 * Otherwise, whine if we are scheduling when we should not be.
3101 */
3102 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3103 __schedule_bug(prev);
3104 rcu_sleep_check();
3105
3106 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3107
3108 schedstat_inc(this_rq(), sched_count);
3109 }
3110
3111 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3112 {
3113 if (prev->on_rq || rq->skip_clock_update < 0)
3114 update_rq_clock(rq);
3115 prev->sched_class->put_prev_task(rq, prev);
3116 }
3117
3118 /*
3119 * Pick up the highest-prio task:
3120 */
3121 static inline struct task_struct *
3122 pick_next_task(struct rq *rq)
3123 {
3124 const struct sched_class *class;
3125 struct task_struct *p;
3126
3127 /*
3128 * Optimization: we know that if all tasks are in
3129 * the fair class we can call that function directly:
3130 */
3131 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3132 p = fair_sched_class.pick_next_task(rq);
3133 if (likely(p))
3134 return p;
3135 }
3136
3137 for_each_class(class) {
3138 p = class->pick_next_task(rq);
3139 if (p)
3140 return p;
3141 }
3142
3143 BUG(); /* the idle class will always have a runnable task */
3144 }
3145
3146 /*
3147 * __schedule() is the main scheduler function.
3148 */
3149 static void __sched __schedule(void)
3150 {
3151 struct task_struct *prev, *next;
3152 unsigned long *switch_count;
3153 struct rq *rq;
3154 int cpu;
3155
3156 need_resched:
3157 preempt_disable();
3158 cpu = smp_processor_id();
3159 rq = cpu_rq(cpu);
3160 rcu_note_context_switch(cpu);
3161 prev = rq->curr;
3162
3163 schedule_debug(prev);
3164
3165 if (sched_feat(HRTICK))
3166 hrtick_clear(rq);
3167
3168 raw_spin_lock_irq(&rq->lock);
3169
3170 switch_count = &prev->nivcsw;
3171 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3172 if (unlikely(signal_pending_state(prev->state, prev))) {
3173 prev->state = TASK_RUNNING;
3174 } else {
3175 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3176 prev->on_rq = 0;
3177
3178 /*
3179 * If a worker went to sleep, notify and ask workqueue
3180 * whether it wants to wake up a task to maintain
3181 * concurrency.
3182 */
3183 if (prev->flags & PF_WQ_WORKER) {
3184 struct task_struct *to_wakeup;
3185
3186 to_wakeup = wq_worker_sleeping(prev, cpu);
3187 if (to_wakeup)
3188 try_to_wake_up_local(to_wakeup);
3189 }
3190 }
3191 switch_count = &prev->nvcsw;
3192 }
3193
3194 pre_schedule(rq, prev);
3195
3196 if (unlikely(!rq->nr_running))
3197 idle_balance(cpu, rq);
3198
3199 put_prev_task(rq, prev);
3200 next = pick_next_task(rq);
3201 clear_tsk_need_resched(prev);
3202 rq->skip_clock_update = 0;
3203
3204 if (likely(prev != next)) {
3205 rq->nr_switches++;
3206 rq->curr = next;
3207 ++*switch_count;
3208
3209 context_switch(rq, prev, next); /* unlocks the rq */
3210 /*
3211 * The context switch have flipped the stack from under us
3212 * and restored the local variables which were saved when
3213 * this task called schedule() in the past. prev == current
3214 * is still correct, but it can be moved to another cpu/rq.
3215 */
3216 cpu = smp_processor_id();
3217 rq = cpu_rq(cpu);
3218 } else
3219 raw_spin_unlock_irq(&rq->lock);
3220
3221 post_schedule(rq);
3222
3223 preempt_enable_no_resched();
3224 if (need_resched())
3225 goto need_resched;
3226 }
3227
3228 static inline void sched_submit_work(struct task_struct *tsk)
3229 {
3230 if (!tsk->state)
3231 return;
3232 /*
3233 * If we are going to sleep and we have plugged IO queued,
3234 * make sure to submit it to avoid deadlocks.
3235 */
3236 if (blk_needs_flush_plug(tsk))
3237 blk_schedule_flush_plug(tsk);
3238 }
3239
3240 asmlinkage void __sched schedule(void)
3241 {
3242 struct task_struct *tsk = current;
3243
3244 sched_submit_work(tsk);
3245 __schedule();
3246 }
3247 EXPORT_SYMBOL(schedule);
3248
3249 /**
3250 * schedule_preempt_disabled - called with preemption disabled
3251 *
3252 * Returns with preemption disabled. Note: preempt_count must be 1
3253 */
3254 void __sched schedule_preempt_disabled(void)
3255 {
3256 preempt_enable_no_resched();
3257 schedule();
3258 preempt_disable();
3259 }
3260
3261 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3262
3263 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3264 {
3265 if (lock->owner != owner)
3266 return false;
3267
3268 /*
3269 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3270 * lock->owner still matches owner, if that fails, owner might
3271 * point to free()d memory, if it still matches, the rcu_read_lock()
3272 * ensures the memory stays valid.
3273 */
3274 barrier();
3275
3276 return owner->on_cpu;
3277 }
3278
3279 /*
3280 * Look out! "owner" is an entirely speculative pointer
3281 * access and not reliable.
3282 */
3283 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3284 {
3285 if (!sched_feat(OWNER_SPIN))
3286 return 0;
3287
3288 rcu_read_lock();
3289 while (owner_running(lock, owner)) {
3290 if (need_resched())
3291 break;
3292
3293 arch_mutex_cpu_relax();
3294 }
3295 rcu_read_unlock();
3296
3297 /*
3298 * We break out the loop above on need_resched() and when the
3299 * owner changed, which is a sign for heavy contention. Return
3300 * success only when lock->owner is NULL.
3301 */
3302 return lock->owner == NULL;
3303 }
3304 #endif
3305
3306 #ifdef CONFIG_PREEMPT
3307 /*
3308 * this is the entry point to schedule() from in-kernel preemption
3309 * off of preempt_enable. Kernel preemptions off return from interrupt
3310 * occur there and call schedule directly.
3311 */
3312 asmlinkage void __sched notrace preempt_schedule(void)
3313 {
3314 struct thread_info *ti = current_thread_info();
3315
3316 /*
3317 * If there is a non-zero preempt_count or interrupts are disabled,
3318 * we do not want to preempt the current task. Just return..
3319 */
3320 if (likely(ti->preempt_count || irqs_disabled()))
3321 return;
3322
3323 do {
3324 add_preempt_count_notrace(PREEMPT_ACTIVE);
3325 __schedule();
3326 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3327
3328 /*
3329 * Check again in case we missed a preemption opportunity
3330 * between schedule and now.
3331 */
3332 barrier();
3333 } while (need_resched());
3334 }
3335 EXPORT_SYMBOL(preempt_schedule);
3336
3337 /*
3338 * this is the entry point to schedule() from kernel preemption
3339 * off of irq context.
3340 * Note, that this is called and return with irqs disabled. This will
3341 * protect us against recursive calling from irq.
3342 */
3343 asmlinkage void __sched preempt_schedule_irq(void)
3344 {
3345 struct thread_info *ti = current_thread_info();
3346
3347 /* Catch callers which need to be fixed */
3348 BUG_ON(ti->preempt_count || !irqs_disabled());
3349
3350 do {
3351 add_preempt_count(PREEMPT_ACTIVE);
3352 local_irq_enable();
3353 __schedule();
3354 local_irq_disable();
3355 sub_preempt_count(PREEMPT_ACTIVE);
3356
3357 /*
3358 * Check again in case we missed a preemption opportunity
3359 * between schedule and now.
3360 */
3361 barrier();
3362 } while (need_resched());
3363 }
3364
3365 #endif /* CONFIG_PREEMPT */
3366
3367 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3368 void *key)
3369 {
3370 return try_to_wake_up(curr->private, mode, wake_flags);
3371 }
3372 EXPORT_SYMBOL(default_wake_function);
3373
3374 /*
3375 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3376 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3377 * number) then we wake all the non-exclusive tasks and one exclusive task.
3378 *
3379 * There are circumstances in which we can try to wake a task which has already
3380 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3381 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3382 */
3383 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3384 int nr_exclusive, int wake_flags, void *key)
3385 {
3386 wait_queue_t *curr, *next;
3387
3388 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3389 unsigned flags = curr->flags;
3390
3391 if (curr->func(curr, mode, wake_flags, key) &&
3392 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3393 break;
3394 }
3395 }
3396
3397 /**
3398 * __wake_up - wake up threads blocked on a waitqueue.
3399 * @q: the waitqueue
3400 * @mode: which threads
3401 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3402 * @key: is directly passed to the wakeup function
3403 *
3404 * It may be assumed that this function implies a write memory barrier before
3405 * changing the task state if and only if any tasks are woken up.
3406 */
3407 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3408 int nr_exclusive, void *key)
3409 {
3410 unsigned long flags;
3411
3412 spin_lock_irqsave(&q->lock, flags);
3413 __wake_up_common(q, mode, nr_exclusive, 0, key);
3414 spin_unlock_irqrestore(&q->lock, flags);
3415 }
3416 EXPORT_SYMBOL(__wake_up);
3417
3418 /*
3419 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3420 */
3421 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3422 {
3423 __wake_up_common(q, mode, 1, 0, NULL);
3424 }
3425 EXPORT_SYMBOL_GPL(__wake_up_locked);
3426
3427 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3428 {
3429 __wake_up_common(q, mode, 1, 0, key);
3430 }
3431 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3432
3433 /**
3434 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3435 * @q: the waitqueue
3436 * @mode: which threads
3437 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3438 * @key: opaque value to be passed to wakeup targets
3439 *
3440 * The sync wakeup differs that the waker knows that it will schedule
3441 * away soon, so while the target thread will be woken up, it will not
3442 * be migrated to another CPU - ie. the two threads are 'synchronized'
3443 * with each other. This can prevent needless bouncing between CPUs.
3444 *
3445 * On UP it can prevent extra preemption.
3446 *
3447 * It may be assumed that this function implies a write memory barrier before
3448 * changing the task state if and only if any tasks are woken up.
3449 */
3450 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3451 int nr_exclusive, void *key)
3452 {
3453 unsigned long flags;
3454 int wake_flags = WF_SYNC;
3455
3456 if (unlikely(!q))
3457 return;
3458
3459 if (unlikely(!nr_exclusive))
3460 wake_flags = 0;
3461
3462 spin_lock_irqsave(&q->lock, flags);
3463 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3464 spin_unlock_irqrestore(&q->lock, flags);
3465 }
3466 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3467
3468 /*
3469 * __wake_up_sync - see __wake_up_sync_key()
3470 */
3471 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3472 {
3473 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3474 }
3475 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3476
3477 /**
3478 * complete: - signals a single thread waiting on this completion
3479 * @x: holds the state of this particular completion
3480 *
3481 * This will wake up a single thread waiting on this completion. Threads will be
3482 * awakened in the same order in which they were queued.
3483 *
3484 * See also complete_all(), wait_for_completion() and related routines.
3485 *
3486 * It may be assumed that this function implies a write memory barrier before
3487 * changing the task state if and only if any tasks are woken up.
3488 */
3489 void complete(struct completion *x)
3490 {
3491 unsigned long flags;
3492
3493 spin_lock_irqsave(&x->wait.lock, flags);
3494 x->done++;
3495 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3496 spin_unlock_irqrestore(&x->wait.lock, flags);
3497 }
3498 EXPORT_SYMBOL(complete);
3499
3500 /**
3501 * complete_all: - signals all threads waiting on this completion
3502 * @x: holds the state of this particular completion
3503 *
3504 * This will wake up all threads waiting on this particular completion event.
3505 *
3506 * It may be assumed that this function implies a write memory barrier before
3507 * changing the task state if and only if any tasks are woken up.
3508 */
3509 void complete_all(struct completion *x)
3510 {
3511 unsigned long flags;
3512
3513 spin_lock_irqsave(&x->wait.lock, flags);
3514 x->done += UINT_MAX/2;
3515 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3516 spin_unlock_irqrestore(&x->wait.lock, flags);
3517 }
3518 EXPORT_SYMBOL(complete_all);
3519
3520 static inline long __sched
3521 do_wait_for_common(struct completion *x, long timeout, int state)
3522 {
3523 if (!x->done) {
3524 DECLARE_WAITQUEUE(wait, current);
3525
3526 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3527 do {
3528 if (signal_pending_state(state, current)) {
3529 timeout = -ERESTARTSYS;
3530 break;
3531 }
3532 __set_current_state(state);
3533 spin_unlock_irq(&x->wait.lock);
3534 timeout = schedule_timeout(timeout);
3535 spin_lock_irq(&x->wait.lock);
3536 } while (!x->done && timeout);
3537 __remove_wait_queue(&x->wait, &wait);
3538 if (!x->done)
3539 return timeout;
3540 }
3541 x->done--;
3542 return timeout ?: 1;
3543 }
3544
3545 static long __sched
3546 wait_for_common(struct completion *x, long timeout, int state)
3547 {
3548 might_sleep();
3549
3550 spin_lock_irq(&x->wait.lock);
3551 timeout = do_wait_for_common(x, timeout, state);
3552 spin_unlock_irq(&x->wait.lock);
3553 return timeout;
3554 }
3555
3556 /**
3557 * wait_for_completion: - waits for completion of a task
3558 * @x: holds the state of this particular completion
3559 *
3560 * This waits to be signaled for completion of a specific task. It is NOT
3561 * interruptible and there is no timeout.
3562 *
3563 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3564 * and interrupt capability. Also see complete().
3565 */
3566 void __sched wait_for_completion(struct completion *x)
3567 {
3568 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3569 }
3570 EXPORT_SYMBOL(wait_for_completion);
3571
3572 /**
3573 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3574 * @x: holds the state of this particular completion
3575 * @timeout: timeout value in jiffies
3576 *
3577 * This waits for either a completion of a specific task to be signaled or for a
3578 * specified timeout to expire. The timeout is in jiffies. It is not
3579 * interruptible.
3580 *
3581 * The return value is 0 if timed out, and positive (at least 1, or number of
3582 * jiffies left till timeout) if completed.
3583 */
3584 unsigned long __sched
3585 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3586 {
3587 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3588 }
3589 EXPORT_SYMBOL(wait_for_completion_timeout);
3590
3591 /**
3592 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3593 * @x: holds the state of this particular completion
3594 *
3595 * This waits for completion of a specific task to be signaled. It is
3596 * interruptible.
3597 *
3598 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3599 */
3600 int __sched wait_for_completion_interruptible(struct completion *x)
3601 {
3602 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3603 if (t == -ERESTARTSYS)
3604 return t;
3605 return 0;
3606 }
3607 EXPORT_SYMBOL(wait_for_completion_interruptible);
3608
3609 /**
3610 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3611 * @x: holds the state of this particular completion
3612 * @timeout: timeout value in jiffies
3613 *
3614 * This waits for either a completion of a specific task to be signaled or for a
3615 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3616 *
3617 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3618 * positive (at least 1, or number of jiffies left till timeout) if completed.
3619 */
3620 long __sched
3621 wait_for_completion_interruptible_timeout(struct completion *x,
3622 unsigned long timeout)
3623 {
3624 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3625 }
3626 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3627
3628 /**
3629 * wait_for_completion_killable: - waits for completion of a task (killable)
3630 * @x: holds the state of this particular completion
3631 *
3632 * This waits to be signaled for completion of a specific task. It can be
3633 * interrupted by a kill signal.
3634 *
3635 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3636 */
3637 int __sched wait_for_completion_killable(struct completion *x)
3638 {
3639 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3640 if (t == -ERESTARTSYS)
3641 return t;
3642 return 0;
3643 }
3644 EXPORT_SYMBOL(wait_for_completion_killable);
3645
3646 /**
3647 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3648 * @x: holds the state of this particular completion
3649 * @timeout: timeout value in jiffies
3650 *
3651 * This waits for either a completion of a specific task to be
3652 * signaled or for a specified timeout to expire. It can be
3653 * interrupted by a kill signal. The timeout is in jiffies.
3654 *
3655 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3656 * positive (at least 1, or number of jiffies left till timeout) if completed.
3657 */
3658 long __sched
3659 wait_for_completion_killable_timeout(struct completion *x,
3660 unsigned long timeout)
3661 {
3662 return wait_for_common(x, timeout, TASK_KILLABLE);
3663 }
3664 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3665
3666 /**
3667 * try_wait_for_completion - try to decrement a completion without blocking
3668 * @x: completion structure
3669 *
3670 * Returns: 0 if a decrement cannot be done without blocking
3671 * 1 if a decrement succeeded.
3672 *
3673 * If a completion is being used as a counting completion,
3674 * attempt to decrement the counter without blocking. This
3675 * enables us to avoid waiting if the resource the completion
3676 * is protecting is not available.
3677 */
3678 bool try_wait_for_completion(struct completion *x)
3679 {
3680 unsigned long flags;
3681 int ret = 1;
3682
3683 spin_lock_irqsave(&x->wait.lock, flags);
3684 if (!x->done)
3685 ret = 0;
3686 else
3687 x->done--;
3688 spin_unlock_irqrestore(&x->wait.lock, flags);
3689 return ret;
3690 }
3691 EXPORT_SYMBOL(try_wait_for_completion);
3692
3693 /**
3694 * completion_done - Test to see if a completion has any waiters
3695 * @x: completion structure
3696 *
3697 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3698 * 1 if there are no waiters.
3699 *
3700 */
3701 bool completion_done(struct completion *x)
3702 {
3703 unsigned long flags;
3704 int ret = 1;
3705
3706 spin_lock_irqsave(&x->wait.lock, flags);
3707 if (!x->done)
3708 ret = 0;
3709 spin_unlock_irqrestore(&x->wait.lock, flags);
3710 return ret;
3711 }
3712 EXPORT_SYMBOL(completion_done);
3713
3714 static long __sched
3715 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3716 {
3717 unsigned long flags;
3718 wait_queue_t wait;
3719
3720 init_waitqueue_entry(&wait, current);
3721
3722 __set_current_state(state);
3723
3724 spin_lock_irqsave(&q->lock, flags);
3725 __add_wait_queue(q, &wait);
3726 spin_unlock(&q->lock);
3727 timeout = schedule_timeout(timeout);
3728 spin_lock_irq(&q->lock);
3729 __remove_wait_queue(q, &wait);
3730 spin_unlock_irqrestore(&q->lock, flags);
3731
3732 return timeout;
3733 }
3734
3735 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3736 {
3737 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3738 }
3739 EXPORT_SYMBOL(interruptible_sleep_on);
3740
3741 long __sched
3742 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3743 {
3744 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3745 }
3746 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3747
3748 void __sched sleep_on(wait_queue_head_t *q)
3749 {
3750 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3751 }
3752 EXPORT_SYMBOL(sleep_on);
3753
3754 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3755 {
3756 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3757 }
3758 EXPORT_SYMBOL(sleep_on_timeout);
3759
3760 #ifdef CONFIG_RT_MUTEXES
3761
3762 /*
3763 * rt_mutex_setprio - set the current priority of a task
3764 * @p: task
3765 * @prio: prio value (kernel-internal form)
3766 *
3767 * This function changes the 'effective' priority of a task. It does
3768 * not touch ->normal_prio like __setscheduler().
3769 *
3770 * Used by the rt_mutex code to implement priority inheritance logic.
3771 */
3772 void rt_mutex_setprio(struct task_struct *p, int prio)
3773 {
3774 int oldprio, on_rq, running;
3775 struct rq *rq;
3776 const struct sched_class *prev_class;
3777
3778 BUG_ON(prio < 0 || prio > MAX_PRIO);
3779
3780 rq = __task_rq_lock(p);
3781
3782 trace_sched_pi_setprio(p, prio);
3783 oldprio = p->prio;
3784 prev_class = p->sched_class;
3785 on_rq = p->on_rq;
3786 running = task_current(rq, p);
3787 if (on_rq)
3788 dequeue_task(rq, p, 0);
3789 if (running)
3790 p->sched_class->put_prev_task(rq, p);
3791
3792 if (rt_prio(prio))
3793 p->sched_class = &rt_sched_class;
3794 else
3795 p->sched_class = &fair_sched_class;
3796
3797 p->prio = prio;
3798
3799 if (running)
3800 p->sched_class->set_curr_task(rq);
3801 if (on_rq)
3802 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3803
3804 check_class_changed(rq, p, prev_class, oldprio);
3805 __task_rq_unlock(rq);
3806 }
3807
3808 #endif
3809
3810 void set_user_nice(struct task_struct *p, long nice)
3811 {
3812 int old_prio, delta, on_rq;
3813 unsigned long flags;
3814 struct rq *rq;
3815
3816 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3817 return;
3818 /*
3819 * We have to be careful, if called from sys_setpriority(),
3820 * the task might be in the middle of scheduling on another CPU.
3821 */
3822 rq = task_rq_lock(p, &flags);
3823 /*
3824 * The RT priorities are set via sched_setscheduler(), but we still
3825 * allow the 'normal' nice value to be set - but as expected
3826 * it wont have any effect on scheduling until the task is
3827 * SCHED_FIFO/SCHED_RR:
3828 */
3829 if (task_has_rt_policy(p)) {
3830 p->static_prio = NICE_TO_PRIO(nice);
3831 goto out_unlock;
3832 }
3833 on_rq = p->on_rq;
3834 if (on_rq)
3835 dequeue_task(rq, p, 0);
3836
3837 p->static_prio = NICE_TO_PRIO(nice);
3838 set_load_weight(p);
3839 old_prio = p->prio;
3840 p->prio = effective_prio(p);
3841 delta = p->prio - old_prio;
3842
3843 if (on_rq) {
3844 enqueue_task(rq, p, 0);
3845 /*
3846 * If the task increased its priority or is running and
3847 * lowered its priority, then reschedule its CPU:
3848 */
3849 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3850 resched_task(rq->curr);
3851 }
3852 out_unlock:
3853 task_rq_unlock(rq, p, &flags);
3854 }
3855 EXPORT_SYMBOL(set_user_nice);
3856
3857 /*
3858 * can_nice - check if a task can reduce its nice value
3859 * @p: task
3860 * @nice: nice value
3861 */
3862 int can_nice(const struct task_struct *p, const int nice)
3863 {
3864 /* convert nice value [19,-20] to rlimit style value [1,40] */
3865 int nice_rlim = 20 - nice;
3866
3867 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3868 capable(CAP_SYS_NICE));
3869 }
3870
3871 #ifdef __ARCH_WANT_SYS_NICE
3872
3873 /*
3874 * sys_nice - change the priority of the current process.
3875 * @increment: priority increment
3876 *
3877 * sys_setpriority is a more generic, but much slower function that
3878 * does similar things.
3879 */
3880 SYSCALL_DEFINE1(nice, int, increment)
3881 {
3882 long nice, retval;
3883
3884 /*
3885 * Setpriority might change our priority at the same moment.
3886 * We don't have to worry. Conceptually one call occurs first
3887 * and we have a single winner.
3888 */
3889 if (increment < -40)
3890 increment = -40;
3891 if (increment > 40)
3892 increment = 40;
3893
3894 nice = TASK_NICE(current) + increment;
3895 if (nice < -20)
3896 nice = -20;
3897 if (nice > 19)
3898 nice = 19;
3899
3900 if (increment < 0 && !can_nice(current, nice))
3901 return -EPERM;
3902
3903 retval = security_task_setnice(current, nice);
3904 if (retval)
3905 return retval;
3906
3907 set_user_nice(current, nice);
3908 return 0;
3909 }
3910
3911 #endif
3912
3913 /**
3914 * task_prio - return the priority value of a given task.
3915 * @p: the task in question.
3916 *
3917 * This is the priority value as seen by users in /proc.
3918 * RT tasks are offset by -200. Normal tasks are centered
3919 * around 0, value goes from -16 to +15.
3920 */
3921 int task_prio(const struct task_struct *p)
3922 {
3923 return p->prio - MAX_RT_PRIO;
3924 }
3925
3926 /**
3927 * task_nice - return the nice value of a given task.
3928 * @p: the task in question.
3929 */
3930 int task_nice(const struct task_struct *p)
3931 {
3932 return TASK_NICE(p);
3933 }
3934 EXPORT_SYMBOL(task_nice);
3935
3936 /**
3937 * idle_cpu - is a given cpu idle currently?
3938 * @cpu: the processor in question.
3939 */
3940 int idle_cpu(int cpu)
3941 {
3942 struct rq *rq = cpu_rq(cpu);
3943
3944 if (rq->curr != rq->idle)
3945 return 0;
3946
3947 if (rq->nr_running)
3948 return 0;
3949
3950 #ifdef CONFIG_SMP
3951 if (!llist_empty(&rq->wake_list))
3952 return 0;
3953 #endif
3954
3955 return 1;
3956 }
3957
3958 /**
3959 * idle_task - return the idle task for a given cpu.
3960 * @cpu: the processor in question.
3961 */
3962 struct task_struct *idle_task(int cpu)
3963 {
3964 return cpu_rq(cpu)->idle;
3965 }
3966
3967 /**
3968 * find_process_by_pid - find a process with a matching PID value.
3969 * @pid: the pid in question.
3970 */
3971 static struct task_struct *find_process_by_pid(pid_t pid)
3972 {
3973 return pid ? find_task_by_vpid(pid) : current;
3974 }
3975
3976 /* Actually do priority change: must hold rq lock. */
3977 static void
3978 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3979 {
3980 p->policy = policy;
3981 p->rt_priority = prio;
3982 p->normal_prio = normal_prio(p);
3983 /* we are holding p->pi_lock already */
3984 p->prio = rt_mutex_getprio(p);
3985 if (rt_prio(p->prio))
3986 p->sched_class = &rt_sched_class;
3987 else
3988 p->sched_class = &fair_sched_class;
3989 set_load_weight(p);
3990 }
3991
3992 /*
3993 * check the target process has a UID that matches the current process's
3994 */
3995 static bool check_same_owner(struct task_struct *p)
3996 {
3997 const struct cred *cred = current_cred(), *pcred;
3998 bool match;
3999
4000 rcu_read_lock();
4001 pcred = __task_cred(p);
4002 if (cred->user->user_ns == pcred->user->user_ns)
4003 match = (cred->euid == pcred->euid ||
4004 cred->euid == pcred->uid);
4005 else
4006 match = false;
4007 rcu_read_unlock();
4008 return match;
4009 }
4010
4011 static int __sched_setscheduler(struct task_struct *p, int policy,
4012 const struct sched_param *param, bool user)
4013 {
4014 int retval, oldprio, oldpolicy = -1, on_rq, running;
4015 unsigned long flags;
4016 const struct sched_class *prev_class;
4017 struct rq *rq;
4018 int reset_on_fork;
4019
4020 /* may grab non-irq protected spin_locks */
4021 BUG_ON(in_interrupt());
4022 recheck:
4023 /* double check policy once rq lock held */
4024 if (policy < 0) {
4025 reset_on_fork = p->sched_reset_on_fork;
4026 policy = oldpolicy = p->policy;
4027 } else {
4028 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4029 policy &= ~SCHED_RESET_ON_FORK;
4030
4031 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4032 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4033 policy != SCHED_IDLE)
4034 return -EINVAL;
4035 }
4036
4037 /*
4038 * Valid priorities for SCHED_FIFO and SCHED_RR are
4039 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4040 * SCHED_BATCH and SCHED_IDLE is 0.
4041 */
4042 if (param->sched_priority < 0 ||
4043 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4044 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4045 return -EINVAL;
4046 if (rt_policy(policy) != (param->sched_priority != 0))
4047 return -EINVAL;
4048
4049 /*
4050 * Allow unprivileged RT tasks to decrease priority:
4051 */
4052 if (user && !capable(CAP_SYS_NICE)) {
4053 if (rt_policy(policy)) {
4054 unsigned long rlim_rtprio =
4055 task_rlimit(p, RLIMIT_RTPRIO);
4056
4057 /* can't set/change the rt policy */
4058 if (policy != p->policy && !rlim_rtprio)
4059 return -EPERM;
4060
4061 /* can't increase priority */
4062 if (param->sched_priority > p->rt_priority &&
4063 param->sched_priority > rlim_rtprio)
4064 return -EPERM;
4065 }
4066
4067 /*
4068 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4069 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4070 */
4071 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4072 if (!can_nice(p, TASK_NICE(p)))
4073 return -EPERM;
4074 }
4075
4076 /* can't change other user's priorities */
4077 if (!check_same_owner(p))
4078 return -EPERM;
4079
4080 /* Normal users shall not reset the sched_reset_on_fork flag */
4081 if (p->sched_reset_on_fork && !reset_on_fork)
4082 return -EPERM;
4083 }
4084
4085 if (user) {
4086 retval = security_task_setscheduler(p);
4087 if (retval)
4088 return retval;
4089 }
4090
4091 /*
4092 * make sure no PI-waiters arrive (or leave) while we are
4093 * changing the priority of the task:
4094 *
4095 * To be able to change p->policy safely, the appropriate
4096 * runqueue lock must be held.
4097 */
4098 rq = task_rq_lock(p, &flags);
4099
4100 /*
4101 * Changing the policy of the stop threads its a very bad idea
4102 */
4103 if (p == rq->stop) {
4104 task_rq_unlock(rq, p, &flags);
4105 return -EINVAL;
4106 }
4107
4108 /*
4109 * If not changing anything there's no need to proceed further:
4110 */
4111 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4112 param->sched_priority == p->rt_priority))) {
4113
4114 __task_rq_unlock(rq);
4115 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4116 return 0;
4117 }
4118
4119 #ifdef CONFIG_RT_GROUP_SCHED
4120 if (user) {
4121 /*
4122 * Do not allow realtime tasks into groups that have no runtime
4123 * assigned.
4124 */
4125 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4126 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4127 !task_group_is_autogroup(task_group(p))) {
4128 task_rq_unlock(rq, p, &flags);
4129 return -EPERM;
4130 }
4131 }
4132 #endif
4133
4134 /* recheck policy now with rq lock held */
4135 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4136 policy = oldpolicy = -1;
4137 task_rq_unlock(rq, p, &flags);
4138 goto recheck;
4139 }
4140 on_rq = p->on_rq;
4141 running = task_current(rq, p);
4142 if (on_rq)
4143 dequeue_task(rq, p, 0);
4144 if (running)
4145 p->sched_class->put_prev_task(rq, p);
4146
4147 p->sched_reset_on_fork = reset_on_fork;
4148
4149 oldprio = p->prio;
4150 prev_class = p->sched_class;
4151 __setscheduler(rq, p, policy, param->sched_priority);
4152
4153 if (running)
4154 p->sched_class->set_curr_task(rq);
4155 if (on_rq)
4156 enqueue_task(rq, p, 0);
4157
4158 check_class_changed(rq, p, prev_class, oldprio);
4159 task_rq_unlock(rq, p, &flags);
4160
4161 rt_mutex_adjust_pi(p);
4162
4163 return 0;
4164 }
4165
4166 /**
4167 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4168 * @p: the task in question.
4169 * @policy: new policy.
4170 * @param: structure containing the new RT priority.
4171 *
4172 * NOTE that the task may be already dead.
4173 */
4174 int sched_setscheduler(struct task_struct *p, int policy,
4175 const struct sched_param *param)
4176 {
4177 return __sched_setscheduler(p, policy, param, true);
4178 }
4179 EXPORT_SYMBOL_GPL(sched_setscheduler);
4180
4181 /**
4182 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4183 * @p: the task in question.
4184 * @policy: new policy.
4185 * @param: structure containing the new RT priority.
4186 *
4187 * Just like sched_setscheduler, only don't bother checking if the
4188 * current context has permission. For example, this is needed in
4189 * stop_machine(): we create temporary high priority worker threads,
4190 * but our caller might not have that capability.
4191 */
4192 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4193 const struct sched_param *param)
4194 {
4195 return __sched_setscheduler(p, policy, param, false);
4196 }
4197
4198 static int
4199 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4200 {
4201 struct sched_param lparam;
4202 struct task_struct *p;
4203 int retval;
4204
4205 if (!param || pid < 0)
4206 return -EINVAL;
4207 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4208 return -EFAULT;
4209
4210 rcu_read_lock();
4211 retval = -ESRCH;
4212 p = find_process_by_pid(pid);
4213 if (p != NULL)
4214 retval = sched_setscheduler(p, policy, &lparam);
4215 rcu_read_unlock();
4216
4217 return retval;
4218 }
4219
4220 /**
4221 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4222 * @pid: the pid in question.
4223 * @policy: new policy.
4224 * @param: structure containing the new RT priority.
4225 */
4226 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4227 struct sched_param __user *, param)
4228 {
4229 /* negative values for policy are not valid */
4230 if (policy < 0)
4231 return -EINVAL;
4232
4233 return do_sched_setscheduler(pid, policy, param);
4234 }
4235
4236 /**
4237 * sys_sched_setparam - set/change the RT priority of a thread
4238 * @pid: the pid in question.
4239 * @param: structure containing the new RT priority.
4240 */
4241 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4242 {
4243 return do_sched_setscheduler(pid, -1, param);
4244 }
4245
4246 /**
4247 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4248 * @pid: the pid in question.
4249 */
4250 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4251 {
4252 struct task_struct *p;
4253 int retval;
4254
4255 if (pid < 0)
4256 return -EINVAL;
4257
4258 retval = -ESRCH;
4259 rcu_read_lock();
4260 p = find_process_by_pid(pid);
4261 if (p) {
4262 retval = security_task_getscheduler(p);
4263 if (!retval)
4264 retval = p->policy
4265 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4266 }
4267 rcu_read_unlock();
4268 return retval;
4269 }
4270
4271 /**
4272 * sys_sched_getparam - get the RT priority of a thread
4273 * @pid: the pid in question.
4274 * @param: structure containing the RT priority.
4275 */
4276 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4277 {
4278 struct sched_param lp;
4279 struct task_struct *p;
4280 int retval;
4281
4282 if (!param || pid < 0)
4283 return -EINVAL;
4284
4285 rcu_read_lock();
4286 p = find_process_by_pid(pid);
4287 retval = -ESRCH;
4288 if (!p)
4289 goto out_unlock;
4290
4291 retval = security_task_getscheduler(p);
4292 if (retval)
4293 goto out_unlock;
4294
4295 lp.sched_priority = p->rt_priority;
4296 rcu_read_unlock();
4297
4298 /*
4299 * This one might sleep, we cannot do it with a spinlock held ...
4300 */
4301 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4302
4303 return retval;
4304
4305 out_unlock:
4306 rcu_read_unlock();
4307 return retval;
4308 }
4309
4310 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4311 {
4312 cpumask_var_t cpus_allowed, new_mask;
4313 struct task_struct *p;
4314 int retval;
4315
4316 get_online_cpus();
4317 rcu_read_lock();
4318
4319 p = find_process_by_pid(pid);
4320 if (!p) {
4321 rcu_read_unlock();
4322 put_online_cpus();
4323 return -ESRCH;
4324 }
4325
4326 /* Prevent p going away */
4327 get_task_struct(p);
4328 rcu_read_unlock();
4329
4330 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4331 retval = -ENOMEM;
4332 goto out_put_task;
4333 }
4334 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4335 retval = -ENOMEM;
4336 goto out_free_cpus_allowed;
4337 }
4338 retval = -EPERM;
4339 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4340 goto out_unlock;
4341
4342 retval = security_task_setscheduler(p);
4343 if (retval)
4344 goto out_unlock;
4345
4346 cpuset_cpus_allowed(p, cpus_allowed);
4347 cpumask_and(new_mask, in_mask, cpus_allowed);
4348 again:
4349 retval = set_cpus_allowed_ptr(p, new_mask);
4350
4351 if (!retval) {
4352 cpuset_cpus_allowed(p, cpus_allowed);
4353 if (!cpumask_subset(new_mask, cpus_allowed)) {
4354 /*
4355 * We must have raced with a concurrent cpuset
4356 * update. Just reset the cpus_allowed to the
4357 * cpuset's cpus_allowed
4358 */
4359 cpumask_copy(new_mask, cpus_allowed);
4360 goto again;
4361 }
4362 }
4363 out_unlock:
4364 free_cpumask_var(new_mask);
4365 out_free_cpus_allowed:
4366 free_cpumask_var(cpus_allowed);
4367 out_put_task:
4368 put_task_struct(p);
4369 put_online_cpus();
4370 return retval;
4371 }
4372
4373 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4374 struct cpumask *new_mask)
4375 {
4376 if (len < cpumask_size())
4377 cpumask_clear(new_mask);
4378 else if (len > cpumask_size())
4379 len = cpumask_size();
4380
4381 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4382 }
4383
4384 /**
4385 * sys_sched_setaffinity - set the cpu affinity of a process
4386 * @pid: pid of the process
4387 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4388 * @user_mask_ptr: user-space pointer to the new cpu mask
4389 */
4390 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4391 unsigned long __user *, user_mask_ptr)
4392 {
4393 cpumask_var_t new_mask;
4394 int retval;
4395
4396 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4397 return -ENOMEM;
4398
4399 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4400 if (retval == 0)
4401 retval = sched_setaffinity(pid, new_mask);
4402 free_cpumask_var(new_mask);
4403 return retval;
4404 }
4405
4406 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4407 {
4408 struct task_struct *p;
4409 unsigned long flags;
4410 int retval;
4411
4412 get_online_cpus();
4413 rcu_read_lock();
4414
4415 retval = -ESRCH;
4416 p = find_process_by_pid(pid);
4417 if (!p)
4418 goto out_unlock;
4419
4420 retval = security_task_getscheduler(p);
4421 if (retval)
4422 goto out_unlock;
4423
4424 raw_spin_lock_irqsave(&p->pi_lock, flags);
4425 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4426 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4427
4428 out_unlock:
4429 rcu_read_unlock();
4430 put_online_cpus();
4431
4432 return retval;
4433 }
4434
4435 /**
4436 * sys_sched_getaffinity - get the cpu affinity of a process
4437 * @pid: pid of the process
4438 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4439 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4440 */
4441 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4442 unsigned long __user *, user_mask_ptr)
4443 {
4444 int ret;
4445 cpumask_var_t mask;
4446
4447 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4448 return -EINVAL;
4449 if (len & (sizeof(unsigned long)-1))
4450 return -EINVAL;
4451
4452 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4453 return -ENOMEM;
4454
4455 ret = sched_getaffinity(pid, mask);
4456 if (ret == 0) {
4457 size_t retlen = min_t(size_t, len, cpumask_size());
4458
4459 if (copy_to_user(user_mask_ptr, mask, retlen))
4460 ret = -EFAULT;
4461 else
4462 ret = retlen;
4463 }
4464 free_cpumask_var(mask);
4465
4466 return ret;
4467 }
4468
4469 /**
4470 * sys_sched_yield - yield the current processor to other threads.
4471 *
4472 * This function yields the current CPU to other tasks. If there are no
4473 * other threads running on this CPU then this function will return.
4474 */
4475 SYSCALL_DEFINE0(sched_yield)
4476 {
4477 struct rq *rq = this_rq_lock();
4478
4479 schedstat_inc(rq, yld_count);
4480 current->sched_class->yield_task(rq);
4481
4482 /*
4483 * Since we are going to call schedule() anyway, there's
4484 * no need to preempt or enable interrupts:
4485 */
4486 __release(rq->lock);
4487 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4488 do_raw_spin_unlock(&rq->lock);
4489 preempt_enable_no_resched();
4490
4491 schedule();
4492
4493 return 0;
4494 }
4495
4496 static inline int should_resched(void)
4497 {
4498 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4499 }
4500
4501 static void __cond_resched(void)
4502 {
4503 add_preempt_count(PREEMPT_ACTIVE);
4504 __schedule();
4505 sub_preempt_count(PREEMPT_ACTIVE);
4506 }
4507
4508 int __sched _cond_resched(void)
4509 {
4510 if (should_resched()) {
4511 __cond_resched();
4512 return 1;
4513 }
4514 return 0;
4515 }
4516 EXPORT_SYMBOL(_cond_resched);
4517
4518 /*
4519 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4520 * call schedule, and on return reacquire the lock.
4521 *
4522 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4523 * operations here to prevent schedule() from being called twice (once via
4524 * spin_unlock(), once by hand).
4525 */
4526 int __cond_resched_lock(spinlock_t *lock)
4527 {
4528 int resched = should_resched();
4529 int ret = 0;
4530
4531 lockdep_assert_held(lock);
4532
4533 if (spin_needbreak(lock) || resched) {
4534 spin_unlock(lock);
4535 if (resched)
4536 __cond_resched();
4537 else
4538 cpu_relax();
4539 ret = 1;
4540 spin_lock(lock);
4541 }
4542 return ret;
4543 }
4544 EXPORT_SYMBOL(__cond_resched_lock);
4545
4546 int __sched __cond_resched_softirq(void)
4547 {
4548 BUG_ON(!in_softirq());
4549
4550 if (should_resched()) {
4551 local_bh_enable();
4552 __cond_resched();
4553 local_bh_disable();
4554 return 1;
4555 }
4556 return 0;
4557 }
4558 EXPORT_SYMBOL(__cond_resched_softirq);
4559
4560 /**
4561 * yield - yield the current processor to other threads.
4562 *
4563 * This is a shortcut for kernel-space yielding - it marks the
4564 * thread runnable and calls sys_sched_yield().
4565 */
4566 void __sched yield(void)
4567 {
4568 set_current_state(TASK_RUNNING);
4569 sys_sched_yield();
4570 }
4571 EXPORT_SYMBOL(yield);
4572
4573 /**
4574 * yield_to - yield the current processor to another thread in
4575 * your thread group, or accelerate that thread toward the
4576 * processor it's on.
4577 * @p: target task
4578 * @preempt: whether task preemption is allowed or not
4579 *
4580 * It's the caller's job to ensure that the target task struct
4581 * can't go away on us before we can do any checks.
4582 *
4583 * Returns true if we indeed boosted the target task.
4584 */
4585 bool __sched yield_to(struct task_struct *p, bool preempt)
4586 {
4587 struct task_struct *curr = current;
4588 struct rq *rq, *p_rq;
4589 unsigned long flags;
4590 bool yielded = 0;
4591
4592 local_irq_save(flags);
4593 rq = this_rq();
4594
4595 again:
4596 p_rq = task_rq(p);
4597 double_rq_lock(rq, p_rq);
4598 while (task_rq(p) != p_rq) {
4599 double_rq_unlock(rq, p_rq);
4600 goto again;
4601 }
4602
4603 if (!curr->sched_class->yield_to_task)
4604 goto out;
4605
4606 if (curr->sched_class != p->sched_class)
4607 goto out;
4608
4609 if (task_running(p_rq, p) || p->state)
4610 goto out;
4611
4612 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4613 if (yielded) {
4614 schedstat_inc(rq, yld_count);
4615 /*
4616 * Make p's CPU reschedule; pick_next_entity takes care of
4617 * fairness.
4618 */
4619 if (preempt && rq != p_rq)
4620 resched_task(p_rq->curr);
4621 } else {
4622 /*
4623 * We might have set it in task_yield_fair(), but are
4624 * not going to schedule(), so don't want to skip
4625 * the next update.
4626 */
4627 rq->skip_clock_update = 0;
4628 }
4629
4630 out:
4631 double_rq_unlock(rq, p_rq);
4632 local_irq_restore(flags);
4633
4634 if (yielded)
4635 schedule();
4636
4637 return yielded;
4638 }
4639 EXPORT_SYMBOL_GPL(yield_to);
4640
4641 /*
4642 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4643 * that process accounting knows that this is a task in IO wait state.
4644 */
4645 void __sched io_schedule(void)
4646 {
4647 struct rq *rq = raw_rq();
4648
4649 delayacct_blkio_start();
4650 atomic_inc(&rq->nr_iowait);
4651 blk_flush_plug(current);
4652 current->in_iowait = 1;
4653 schedule();
4654 current->in_iowait = 0;
4655 atomic_dec(&rq->nr_iowait);
4656 delayacct_blkio_end();
4657 }
4658 EXPORT_SYMBOL(io_schedule);
4659
4660 long __sched io_schedule_timeout(long timeout)
4661 {
4662 struct rq *rq = raw_rq();
4663 long ret;
4664
4665 delayacct_blkio_start();
4666 atomic_inc(&rq->nr_iowait);
4667 blk_flush_plug(current);
4668 current->in_iowait = 1;
4669 ret = schedule_timeout(timeout);
4670 current->in_iowait = 0;
4671 atomic_dec(&rq->nr_iowait);
4672 delayacct_blkio_end();
4673 return ret;
4674 }
4675
4676 /**
4677 * sys_sched_get_priority_max - return maximum RT priority.
4678 * @policy: scheduling class.
4679 *
4680 * this syscall returns the maximum rt_priority that can be used
4681 * by a given scheduling class.
4682 */
4683 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4684 {
4685 int ret = -EINVAL;
4686
4687 switch (policy) {
4688 case SCHED_FIFO:
4689 case SCHED_RR:
4690 ret = MAX_USER_RT_PRIO-1;
4691 break;
4692 case SCHED_NORMAL:
4693 case SCHED_BATCH:
4694 case SCHED_IDLE:
4695 ret = 0;
4696 break;
4697 }
4698 return ret;
4699 }
4700
4701 /**
4702 * sys_sched_get_priority_min - return minimum RT priority.
4703 * @policy: scheduling class.
4704 *
4705 * this syscall returns the minimum rt_priority that can be used
4706 * by a given scheduling class.
4707 */
4708 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4709 {
4710 int ret = -EINVAL;
4711
4712 switch (policy) {
4713 case SCHED_FIFO:
4714 case SCHED_RR:
4715 ret = 1;
4716 break;
4717 case SCHED_NORMAL:
4718 case SCHED_BATCH:
4719 case SCHED_IDLE:
4720 ret = 0;
4721 }
4722 return ret;
4723 }
4724
4725 /**
4726 * sys_sched_rr_get_interval - return the default timeslice of a process.
4727 * @pid: pid of the process.
4728 * @interval: userspace pointer to the timeslice value.
4729 *
4730 * this syscall writes the default timeslice value of a given process
4731 * into the user-space timespec buffer. A value of '0' means infinity.
4732 */
4733 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4734 struct timespec __user *, interval)
4735 {
4736 struct task_struct *p;
4737 unsigned int time_slice;
4738 unsigned long flags;
4739 struct rq *rq;
4740 int retval;
4741 struct timespec t;
4742
4743 if (pid < 0)
4744 return -EINVAL;
4745
4746 retval = -ESRCH;
4747 rcu_read_lock();
4748 p = find_process_by_pid(pid);
4749 if (!p)
4750 goto out_unlock;
4751
4752 retval = security_task_getscheduler(p);
4753 if (retval)
4754 goto out_unlock;
4755
4756 rq = task_rq_lock(p, &flags);
4757 time_slice = p->sched_class->get_rr_interval(rq, p);
4758 task_rq_unlock(rq, p, &flags);
4759
4760 rcu_read_unlock();
4761 jiffies_to_timespec(time_slice, &t);
4762 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4763 return retval;
4764
4765 out_unlock:
4766 rcu_read_unlock();
4767 return retval;
4768 }
4769
4770 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4771
4772 void sched_show_task(struct task_struct *p)
4773 {
4774 unsigned long free = 0;
4775 unsigned state;
4776
4777 state = p->state ? __ffs(p->state) + 1 : 0;
4778 printk(KERN_INFO "%-15.15s %c", p->comm,
4779 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4780 #if BITS_PER_LONG == 32
4781 if (state == TASK_RUNNING)
4782 printk(KERN_CONT " running ");
4783 else
4784 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4785 #else
4786 if (state == TASK_RUNNING)
4787 printk(KERN_CONT " running task ");
4788 else
4789 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4790 #endif
4791 #ifdef CONFIG_DEBUG_STACK_USAGE
4792 free = stack_not_used(p);
4793 #endif
4794 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4795 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4796 (unsigned long)task_thread_info(p)->flags);
4797
4798 show_stack(p, NULL);
4799 }
4800
4801 void show_state_filter(unsigned long state_filter)
4802 {
4803 struct task_struct *g, *p;
4804
4805 #if BITS_PER_LONG == 32
4806 printk(KERN_INFO
4807 " task PC stack pid father\n");
4808 #else
4809 printk(KERN_INFO
4810 " task PC stack pid father\n");
4811 #endif
4812 rcu_read_lock();
4813 do_each_thread(g, p) {
4814 /*
4815 * reset the NMI-timeout, listing all files on a slow
4816 * console might take a lot of time:
4817 */
4818 touch_nmi_watchdog();
4819 if (!state_filter || (p->state & state_filter))
4820 sched_show_task(p);
4821 } while_each_thread(g, p);
4822
4823 touch_all_softlockup_watchdogs();
4824
4825 #ifdef CONFIG_SCHED_DEBUG
4826 sysrq_sched_debug_show();
4827 #endif
4828 rcu_read_unlock();
4829 /*
4830 * Only show locks if all tasks are dumped:
4831 */
4832 if (!state_filter)
4833 debug_show_all_locks();
4834 }
4835
4836 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4837 {
4838 idle->sched_class = &idle_sched_class;
4839 }
4840
4841 /**
4842 * init_idle - set up an idle thread for a given CPU
4843 * @idle: task in question
4844 * @cpu: cpu the idle task belongs to
4845 *
4846 * NOTE: this function does not set the idle thread's NEED_RESCHED
4847 * flag, to make booting more robust.
4848 */
4849 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4850 {
4851 struct rq *rq = cpu_rq(cpu);
4852 unsigned long flags;
4853
4854 raw_spin_lock_irqsave(&rq->lock, flags);
4855
4856 __sched_fork(idle);
4857 idle->state = TASK_RUNNING;
4858 idle->se.exec_start = sched_clock();
4859
4860 do_set_cpus_allowed(idle, cpumask_of(cpu));
4861 /*
4862 * We're having a chicken and egg problem, even though we are
4863 * holding rq->lock, the cpu isn't yet set to this cpu so the
4864 * lockdep check in task_group() will fail.
4865 *
4866 * Similar case to sched_fork(). / Alternatively we could
4867 * use task_rq_lock() here and obtain the other rq->lock.
4868 *
4869 * Silence PROVE_RCU
4870 */
4871 rcu_read_lock();
4872 __set_task_cpu(idle, cpu);
4873 rcu_read_unlock();
4874
4875 rq->curr = rq->idle = idle;
4876 #if defined(CONFIG_SMP)
4877 idle->on_cpu = 1;
4878 #endif
4879 raw_spin_unlock_irqrestore(&rq->lock, flags);
4880
4881 /* Set the preempt count _outside_ the spinlocks! */
4882 task_thread_info(idle)->preempt_count = 0;
4883
4884 /*
4885 * The idle tasks have their own, simple scheduling class:
4886 */
4887 idle->sched_class = &idle_sched_class;
4888 ftrace_graph_init_idle_task(idle, cpu);
4889 #if defined(CONFIG_SMP)
4890 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4891 #endif
4892 }
4893
4894 #ifdef CONFIG_SMP
4895 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4896 {
4897 if (p->sched_class && p->sched_class->set_cpus_allowed)
4898 p->sched_class->set_cpus_allowed(p, new_mask);
4899
4900 cpumask_copy(&p->cpus_allowed, new_mask);
4901 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4902 }
4903
4904 /*
4905 * This is how migration works:
4906 *
4907 * 1) we invoke migration_cpu_stop() on the target CPU using
4908 * stop_one_cpu().
4909 * 2) stopper starts to run (implicitly forcing the migrated thread
4910 * off the CPU)
4911 * 3) it checks whether the migrated task is still in the wrong runqueue.
4912 * 4) if it's in the wrong runqueue then the migration thread removes
4913 * it and puts it into the right queue.
4914 * 5) stopper completes and stop_one_cpu() returns and the migration
4915 * is done.
4916 */
4917
4918 /*
4919 * Change a given task's CPU affinity. Migrate the thread to a
4920 * proper CPU and schedule it away if the CPU it's executing on
4921 * is removed from the allowed bitmask.
4922 *
4923 * NOTE: the caller must have a valid reference to the task, the
4924 * task must not exit() & deallocate itself prematurely. The
4925 * call is not atomic; no spinlocks may be held.
4926 */
4927 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4928 {
4929 unsigned long flags;
4930 struct rq *rq;
4931 unsigned int dest_cpu;
4932 int ret = 0;
4933
4934 rq = task_rq_lock(p, &flags);
4935
4936 if (cpumask_equal(&p->cpus_allowed, new_mask))
4937 goto out;
4938
4939 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4940 ret = -EINVAL;
4941 goto out;
4942 }
4943
4944 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4945 ret = -EINVAL;
4946 goto out;
4947 }
4948
4949 do_set_cpus_allowed(p, new_mask);
4950
4951 /* Can the task run on the task's current CPU? If so, we're done */
4952 if (cpumask_test_cpu(task_cpu(p), new_mask))
4953 goto out;
4954
4955 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4956 if (p->on_rq) {
4957 struct migration_arg arg = { p, dest_cpu };
4958 /* Need help from migration thread: drop lock and wait. */
4959 task_rq_unlock(rq, p, &flags);
4960 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4961 tlb_migrate_finish(p->mm);
4962 return 0;
4963 }
4964 out:
4965 task_rq_unlock(rq, p, &flags);
4966
4967 return ret;
4968 }
4969 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4970
4971 /*
4972 * Move (not current) task off this cpu, onto dest cpu. We're doing
4973 * this because either it can't run here any more (set_cpus_allowed()
4974 * away from this CPU, or CPU going down), or because we're
4975 * attempting to rebalance this task on exec (sched_exec).
4976 *
4977 * So we race with normal scheduler movements, but that's OK, as long
4978 * as the task is no longer on this CPU.
4979 *
4980 * Returns non-zero if task was successfully migrated.
4981 */
4982 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4983 {
4984 struct rq *rq_dest, *rq_src;
4985 int ret = 0;
4986
4987 if (unlikely(!cpu_active(dest_cpu)))
4988 return ret;
4989
4990 rq_src = cpu_rq(src_cpu);
4991 rq_dest = cpu_rq(dest_cpu);
4992
4993 raw_spin_lock(&p->pi_lock);
4994 double_rq_lock(rq_src, rq_dest);
4995 /* Already moved. */
4996 if (task_cpu(p) != src_cpu)
4997 goto done;
4998 /* Affinity changed (again). */
4999 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5000 goto fail;
5001
5002 /*
5003 * If we're not on a rq, the next wake-up will ensure we're
5004 * placed properly.
5005 */
5006 if (p->on_rq) {
5007 dequeue_task(rq_src, p, 0);
5008 set_task_cpu(p, dest_cpu);
5009 enqueue_task(rq_dest, p, 0);
5010 check_preempt_curr(rq_dest, p, 0);
5011 }
5012 done:
5013 ret = 1;
5014 fail:
5015 double_rq_unlock(rq_src, rq_dest);
5016 raw_spin_unlock(&p->pi_lock);
5017 return ret;
5018 }
5019
5020 /*
5021 * migration_cpu_stop - this will be executed by a highprio stopper thread
5022 * and performs thread migration by bumping thread off CPU then
5023 * 'pushing' onto another runqueue.
5024 */
5025 static int migration_cpu_stop(void *data)
5026 {
5027 struct migration_arg *arg = data;
5028
5029 /*
5030 * The original target cpu might have gone down and we might
5031 * be on another cpu but it doesn't matter.
5032 */
5033 local_irq_disable();
5034 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5035 local_irq_enable();
5036 return 0;
5037 }
5038
5039 #ifdef CONFIG_HOTPLUG_CPU
5040
5041 /*
5042 * Ensures that the idle task is using init_mm right before its cpu goes
5043 * offline.
5044 */
5045 void idle_task_exit(void)
5046 {
5047 struct mm_struct *mm = current->active_mm;
5048
5049 BUG_ON(cpu_online(smp_processor_id()));
5050
5051 if (mm != &init_mm)
5052 switch_mm(mm, &init_mm, current);
5053 mmdrop(mm);
5054 }
5055
5056 /*
5057 * While a dead CPU has no uninterruptible tasks queued at this point,
5058 * it might still have a nonzero ->nr_uninterruptible counter, because
5059 * for performance reasons the counter is not stricly tracking tasks to
5060 * their home CPUs. So we just add the counter to another CPU's counter,
5061 * to keep the global sum constant after CPU-down:
5062 */
5063 static void migrate_nr_uninterruptible(struct rq *rq_src)
5064 {
5065 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5066
5067 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5068 rq_src->nr_uninterruptible = 0;
5069 }
5070
5071 /*
5072 * remove the tasks which were accounted by rq from calc_load_tasks.
5073 */
5074 static void calc_global_load_remove(struct rq *rq)
5075 {
5076 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5077 rq->calc_load_active = 0;
5078 }
5079
5080 /*
5081 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5082 * try_to_wake_up()->select_task_rq().
5083 *
5084 * Called with rq->lock held even though we'er in stop_machine() and
5085 * there's no concurrency possible, we hold the required locks anyway
5086 * because of lock validation efforts.
5087 */
5088 static void migrate_tasks(unsigned int dead_cpu)
5089 {
5090 struct rq *rq = cpu_rq(dead_cpu);
5091 struct task_struct *next, *stop = rq->stop;
5092 int dest_cpu;
5093
5094 /*
5095 * Fudge the rq selection such that the below task selection loop
5096 * doesn't get stuck on the currently eligible stop task.
5097 *
5098 * We're currently inside stop_machine() and the rq is either stuck
5099 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5100 * either way we should never end up calling schedule() until we're
5101 * done here.
5102 */
5103 rq->stop = NULL;
5104
5105 /* Ensure any throttled groups are reachable by pick_next_task */
5106 unthrottle_offline_cfs_rqs(rq);
5107
5108 for ( ; ; ) {
5109 /*
5110 * There's this thread running, bail when that's the only
5111 * remaining thread.
5112 */
5113 if (rq->nr_running == 1)
5114 break;
5115
5116 next = pick_next_task(rq);
5117 BUG_ON(!next);
5118 next->sched_class->put_prev_task(rq, next);
5119
5120 /* Find suitable destination for @next, with force if needed. */
5121 dest_cpu = select_fallback_rq(dead_cpu, next);
5122 raw_spin_unlock(&rq->lock);
5123
5124 __migrate_task(next, dead_cpu, dest_cpu);
5125
5126 raw_spin_lock(&rq->lock);
5127 }
5128
5129 rq->stop = stop;
5130 }
5131
5132 #endif /* CONFIG_HOTPLUG_CPU */
5133
5134 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5135
5136 static struct ctl_table sd_ctl_dir[] = {
5137 {
5138 .procname = "sched_domain",
5139 .mode = 0555,
5140 },
5141 {}
5142 };
5143
5144 static struct ctl_table sd_ctl_root[] = {
5145 {
5146 .procname = "kernel",
5147 .mode = 0555,
5148 .child = sd_ctl_dir,
5149 },
5150 {}
5151 };
5152
5153 static struct ctl_table *sd_alloc_ctl_entry(int n)
5154 {
5155 struct ctl_table *entry =
5156 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5157
5158 return entry;
5159 }
5160
5161 static void sd_free_ctl_entry(struct ctl_table **tablep)
5162 {
5163 struct ctl_table *entry;
5164
5165 /*
5166 * In the intermediate directories, both the child directory and
5167 * procname are dynamically allocated and could fail but the mode
5168 * will always be set. In the lowest directory the names are
5169 * static strings and all have proc handlers.
5170 */
5171 for (entry = *tablep; entry->mode; entry++) {
5172 if (entry->child)
5173 sd_free_ctl_entry(&entry->child);
5174 if (entry->proc_handler == NULL)
5175 kfree(entry->procname);
5176 }
5177
5178 kfree(*tablep);
5179 *tablep = NULL;
5180 }
5181
5182 static void
5183 set_table_entry(struct ctl_table *entry,
5184 const char *procname, void *data, int maxlen,
5185 umode_t mode, proc_handler *proc_handler)
5186 {
5187 entry->procname = procname;
5188 entry->data = data;
5189 entry->maxlen = maxlen;
5190 entry->mode = mode;
5191 entry->proc_handler = proc_handler;
5192 }
5193
5194 static struct ctl_table *
5195 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5196 {
5197 struct ctl_table *table = sd_alloc_ctl_entry(13);
5198
5199 if (table == NULL)
5200 return NULL;
5201
5202 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5203 sizeof(long), 0644, proc_doulongvec_minmax);
5204 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5205 sizeof(long), 0644, proc_doulongvec_minmax);
5206 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5207 sizeof(int), 0644, proc_dointvec_minmax);
5208 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5209 sizeof(int), 0644, proc_dointvec_minmax);
5210 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5211 sizeof(int), 0644, proc_dointvec_minmax);
5212 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5213 sizeof(int), 0644, proc_dointvec_minmax);
5214 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5215 sizeof(int), 0644, proc_dointvec_minmax);
5216 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5217 sizeof(int), 0644, proc_dointvec_minmax);
5218 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5219 sizeof(int), 0644, proc_dointvec_minmax);
5220 set_table_entry(&table[9], "cache_nice_tries",
5221 &sd->cache_nice_tries,
5222 sizeof(int), 0644, proc_dointvec_minmax);
5223 set_table_entry(&table[10], "flags", &sd->flags,
5224 sizeof(int), 0644, proc_dointvec_minmax);
5225 set_table_entry(&table[11], "name", sd->name,
5226 CORENAME_MAX_SIZE, 0444, proc_dostring);
5227 /* &table[12] is terminator */
5228
5229 return table;
5230 }
5231
5232 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5233 {
5234 struct ctl_table *entry, *table;
5235 struct sched_domain *sd;
5236 int domain_num = 0, i;
5237 char buf[32];
5238
5239 for_each_domain(cpu, sd)
5240 domain_num++;
5241 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5242 if (table == NULL)
5243 return NULL;
5244
5245 i = 0;
5246 for_each_domain(cpu, sd) {
5247 snprintf(buf, 32, "domain%d", i);
5248 entry->procname = kstrdup(buf, GFP_KERNEL);
5249 entry->mode = 0555;
5250 entry->child = sd_alloc_ctl_domain_table(sd);
5251 entry++;
5252 i++;
5253 }
5254 return table;
5255 }
5256
5257 static struct ctl_table_header *sd_sysctl_header;
5258 static void register_sched_domain_sysctl(void)
5259 {
5260 int i, cpu_num = num_possible_cpus();
5261 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5262 char buf[32];
5263
5264 WARN_ON(sd_ctl_dir[0].child);
5265 sd_ctl_dir[0].child = entry;
5266
5267 if (entry == NULL)
5268 return;
5269
5270 for_each_possible_cpu(i) {
5271 snprintf(buf, 32, "cpu%d", i);
5272 entry->procname = kstrdup(buf, GFP_KERNEL);
5273 entry->mode = 0555;
5274 entry->child = sd_alloc_ctl_cpu_table(i);
5275 entry++;
5276 }
5277
5278 WARN_ON(sd_sysctl_header);
5279 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5280 }
5281
5282 /* may be called multiple times per register */
5283 static void unregister_sched_domain_sysctl(void)
5284 {
5285 if (sd_sysctl_header)
5286 unregister_sysctl_table(sd_sysctl_header);
5287 sd_sysctl_header = NULL;
5288 if (sd_ctl_dir[0].child)
5289 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5290 }
5291 #else
5292 static void register_sched_domain_sysctl(void)
5293 {
5294 }
5295 static void unregister_sched_domain_sysctl(void)
5296 {
5297 }
5298 #endif
5299
5300 static void set_rq_online(struct rq *rq)
5301 {
5302 if (!rq->online) {
5303 const struct sched_class *class;
5304
5305 cpumask_set_cpu(rq->cpu, rq->rd->online);
5306 rq->online = 1;
5307
5308 for_each_class(class) {
5309 if (class->rq_online)
5310 class->rq_online(rq);
5311 }
5312 }
5313 }
5314
5315 static void set_rq_offline(struct rq *rq)
5316 {
5317 if (rq->online) {
5318 const struct sched_class *class;
5319
5320 for_each_class(class) {
5321 if (class->rq_offline)
5322 class->rq_offline(rq);
5323 }
5324
5325 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5326 rq->online = 0;
5327 }
5328 }
5329
5330 /*
5331 * migration_call - callback that gets triggered when a CPU is added.
5332 * Here we can start up the necessary migration thread for the new CPU.
5333 */
5334 static int __cpuinit
5335 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5336 {
5337 int cpu = (long)hcpu;
5338 unsigned long flags;
5339 struct rq *rq = cpu_rq(cpu);
5340
5341 switch (action & ~CPU_TASKS_FROZEN) {
5342
5343 case CPU_UP_PREPARE:
5344 rq->calc_load_update = calc_load_update;
5345 break;
5346
5347 case CPU_ONLINE:
5348 /* Update our root-domain */
5349 raw_spin_lock_irqsave(&rq->lock, flags);
5350 if (rq->rd) {
5351 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5352
5353 set_rq_online(rq);
5354 }
5355 raw_spin_unlock_irqrestore(&rq->lock, flags);
5356 break;
5357
5358 #ifdef CONFIG_HOTPLUG_CPU
5359 case CPU_DYING:
5360 sched_ttwu_pending();
5361 /* Update our root-domain */
5362 raw_spin_lock_irqsave(&rq->lock, flags);
5363 if (rq->rd) {
5364 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5365 set_rq_offline(rq);
5366 }
5367 migrate_tasks(cpu);
5368 BUG_ON(rq->nr_running != 1); /* the migration thread */
5369 raw_spin_unlock_irqrestore(&rq->lock, flags);
5370
5371 migrate_nr_uninterruptible(rq);
5372 calc_global_load_remove(rq);
5373 break;
5374 #endif
5375 }
5376
5377 update_max_interval();
5378
5379 return NOTIFY_OK;
5380 }
5381
5382 /*
5383 * Register at high priority so that task migration (migrate_all_tasks)
5384 * happens before everything else. This has to be lower priority than
5385 * the notifier in the perf_event subsystem, though.
5386 */
5387 static struct notifier_block __cpuinitdata migration_notifier = {
5388 .notifier_call = migration_call,
5389 .priority = CPU_PRI_MIGRATION,
5390 };
5391
5392 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5393 unsigned long action, void *hcpu)
5394 {
5395 switch (action & ~CPU_TASKS_FROZEN) {
5396 case CPU_ONLINE:
5397 case CPU_DOWN_FAILED:
5398 set_cpu_active((long)hcpu, true);
5399 return NOTIFY_OK;
5400 default:
5401 return NOTIFY_DONE;
5402 }
5403 }
5404
5405 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5406 unsigned long action, void *hcpu)
5407 {
5408 switch (action & ~CPU_TASKS_FROZEN) {
5409 case CPU_DOWN_PREPARE:
5410 set_cpu_active((long)hcpu, false);
5411 return NOTIFY_OK;
5412 default:
5413 return NOTIFY_DONE;
5414 }
5415 }
5416
5417 static int __init migration_init(void)
5418 {
5419 void *cpu = (void *)(long)smp_processor_id();
5420 int err;
5421
5422 /* Initialize migration for the boot CPU */
5423 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5424 BUG_ON(err == NOTIFY_BAD);
5425 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5426 register_cpu_notifier(&migration_notifier);
5427
5428 /* Register cpu active notifiers */
5429 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5430 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5431
5432 return 0;
5433 }
5434 early_initcall(migration_init);
5435 #endif
5436
5437 #ifdef CONFIG_SMP
5438
5439 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5440
5441 #ifdef CONFIG_SCHED_DEBUG
5442
5443 static __read_mostly int sched_domain_debug_enabled;
5444
5445 static int __init sched_domain_debug_setup(char *str)
5446 {
5447 sched_domain_debug_enabled = 1;
5448
5449 return 0;
5450 }
5451 early_param("sched_debug", sched_domain_debug_setup);
5452
5453 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5454 struct cpumask *groupmask)
5455 {
5456 struct sched_group *group = sd->groups;
5457 char str[256];
5458
5459 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5460 cpumask_clear(groupmask);
5461
5462 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5463
5464 if (!(sd->flags & SD_LOAD_BALANCE)) {
5465 printk("does not load-balance\n");
5466 if (sd->parent)
5467 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5468 " has parent");
5469 return -1;
5470 }
5471
5472 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5473
5474 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5475 printk(KERN_ERR "ERROR: domain->span does not contain "
5476 "CPU%d\n", cpu);
5477 }
5478 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5479 printk(KERN_ERR "ERROR: domain->groups does not contain"
5480 " CPU%d\n", cpu);
5481 }
5482
5483 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5484 do {
5485 if (!group) {
5486 printk("\n");
5487 printk(KERN_ERR "ERROR: group is NULL\n");
5488 break;
5489 }
5490
5491 if (!group->sgp->power) {
5492 printk(KERN_CONT "\n");
5493 printk(KERN_ERR "ERROR: domain->cpu_power not "
5494 "set\n");
5495 break;
5496 }
5497
5498 if (!cpumask_weight(sched_group_cpus(group))) {
5499 printk(KERN_CONT "\n");
5500 printk(KERN_ERR "ERROR: empty group\n");
5501 break;
5502 }
5503
5504 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5505 printk(KERN_CONT "\n");
5506 printk(KERN_ERR "ERROR: repeated CPUs\n");
5507 break;
5508 }
5509
5510 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5511
5512 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5513
5514 printk(KERN_CONT " %s", str);
5515 if (group->sgp->power != SCHED_POWER_SCALE) {
5516 printk(KERN_CONT " (cpu_power = %d)",
5517 group->sgp->power);
5518 }
5519
5520 group = group->next;
5521 } while (group != sd->groups);
5522 printk(KERN_CONT "\n");
5523
5524 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5525 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5526
5527 if (sd->parent &&
5528 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5529 printk(KERN_ERR "ERROR: parent span is not a superset "
5530 "of domain->span\n");
5531 return 0;
5532 }
5533
5534 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5535 {
5536 int level = 0;
5537
5538 if (!sched_domain_debug_enabled)
5539 return;
5540
5541 if (!sd) {
5542 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5543 return;
5544 }
5545
5546 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5547
5548 for (;;) {
5549 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5550 break;
5551 level++;
5552 sd = sd->parent;
5553 if (!sd)
5554 break;
5555 }
5556 }
5557 #else /* !CONFIG_SCHED_DEBUG */
5558 # define sched_domain_debug(sd, cpu) do { } while (0)
5559 #endif /* CONFIG_SCHED_DEBUG */
5560
5561 static int sd_degenerate(struct sched_domain *sd)
5562 {
5563 if (cpumask_weight(sched_domain_span(sd)) == 1)
5564 return 1;
5565
5566 /* Following flags need at least 2 groups */
5567 if (sd->flags & (SD_LOAD_BALANCE |
5568 SD_BALANCE_NEWIDLE |
5569 SD_BALANCE_FORK |
5570 SD_BALANCE_EXEC |
5571 SD_SHARE_CPUPOWER |
5572 SD_SHARE_PKG_RESOURCES)) {
5573 if (sd->groups != sd->groups->next)
5574 return 0;
5575 }
5576
5577 /* Following flags don't use groups */
5578 if (sd->flags & (SD_WAKE_AFFINE))
5579 return 0;
5580
5581 return 1;
5582 }
5583
5584 static int
5585 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5586 {
5587 unsigned long cflags = sd->flags, pflags = parent->flags;
5588
5589 if (sd_degenerate(parent))
5590 return 1;
5591
5592 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5593 return 0;
5594
5595 /* Flags needing groups don't count if only 1 group in parent */
5596 if (parent->groups == parent->groups->next) {
5597 pflags &= ~(SD_LOAD_BALANCE |
5598 SD_BALANCE_NEWIDLE |
5599 SD_BALANCE_FORK |
5600 SD_BALANCE_EXEC |
5601 SD_SHARE_CPUPOWER |
5602 SD_SHARE_PKG_RESOURCES);
5603 if (nr_node_ids == 1)
5604 pflags &= ~SD_SERIALIZE;
5605 }
5606 if (~cflags & pflags)
5607 return 0;
5608
5609 return 1;
5610 }
5611
5612 static void free_rootdomain(struct rcu_head *rcu)
5613 {
5614 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5615
5616 cpupri_cleanup(&rd->cpupri);
5617 free_cpumask_var(rd->rto_mask);
5618 free_cpumask_var(rd->online);
5619 free_cpumask_var(rd->span);
5620 kfree(rd);
5621 }
5622
5623 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5624 {
5625 struct root_domain *old_rd = NULL;
5626 unsigned long flags;
5627
5628 raw_spin_lock_irqsave(&rq->lock, flags);
5629
5630 if (rq->rd) {
5631 old_rd = rq->rd;
5632
5633 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5634 set_rq_offline(rq);
5635
5636 cpumask_clear_cpu(rq->cpu, old_rd->span);
5637
5638 /*
5639 * If we dont want to free the old_rt yet then
5640 * set old_rd to NULL to skip the freeing later
5641 * in this function:
5642 */
5643 if (!atomic_dec_and_test(&old_rd->refcount))
5644 old_rd = NULL;
5645 }
5646
5647 atomic_inc(&rd->refcount);
5648 rq->rd = rd;
5649
5650 cpumask_set_cpu(rq->cpu, rd->span);
5651 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5652 set_rq_online(rq);
5653
5654 raw_spin_unlock_irqrestore(&rq->lock, flags);
5655
5656 if (old_rd)
5657 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5658 }
5659
5660 static int init_rootdomain(struct root_domain *rd)
5661 {
5662 memset(rd, 0, sizeof(*rd));
5663
5664 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5665 goto out;
5666 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5667 goto free_span;
5668 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5669 goto free_online;
5670
5671 if (cpupri_init(&rd->cpupri) != 0)
5672 goto free_rto_mask;
5673 return 0;
5674
5675 free_rto_mask:
5676 free_cpumask_var(rd->rto_mask);
5677 free_online:
5678 free_cpumask_var(rd->online);
5679 free_span:
5680 free_cpumask_var(rd->span);
5681 out:
5682 return -ENOMEM;
5683 }
5684
5685 /*
5686 * By default the system creates a single root-domain with all cpus as
5687 * members (mimicking the global state we have today).
5688 */
5689 struct root_domain def_root_domain;
5690
5691 static void init_defrootdomain(void)
5692 {
5693 init_rootdomain(&def_root_domain);
5694
5695 atomic_set(&def_root_domain.refcount, 1);
5696 }
5697
5698 static struct root_domain *alloc_rootdomain(void)
5699 {
5700 struct root_domain *rd;
5701
5702 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5703 if (!rd)
5704 return NULL;
5705
5706 if (init_rootdomain(rd) != 0) {
5707 kfree(rd);
5708 return NULL;
5709 }
5710
5711 return rd;
5712 }
5713
5714 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5715 {
5716 struct sched_group *tmp, *first;
5717
5718 if (!sg)
5719 return;
5720
5721 first = sg;
5722 do {
5723 tmp = sg->next;
5724
5725 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5726 kfree(sg->sgp);
5727
5728 kfree(sg);
5729 sg = tmp;
5730 } while (sg != first);
5731 }
5732
5733 static void free_sched_domain(struct rcu_head *rcu)
5734 {
5735 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5736
5737 /*
5738 * If its an overlapping domain it has private groups, iterate and
5739 * nuke them all.
5740 */
5741 if (sd->flags & SD_OVERLAP) {
5742 free_sched_groups(sd->groups, 1);
5743 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5744 kfree(sd->groups->sgp);
5745 kfree(sd->groups);
5746 }
5747 kfree(sd);
5748 }
5749
5750 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5751 {
5752 call_rcu(&sd->rcu, free_sched_domain);
5753 }
5754
5755 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5756 {
5757 for (; sd; sd = sd->parent)
5758 destroy_sched_domain(sd, cpu);
5759 }
5760
5761 /*
5762 * Keep a special pointer to the highest sched_domain that has
5763 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5764 * allows us to avoid some pointer chasing select_idle_sibling().
5765 *
5766 * Also keep a unique ID per domain (we use the first cpu number in
5767 * the cpumask of the domain), this allows us to quickly tell if
5768 * two cpus are in the same cache domain, see cpus_share_cache().
5769 */
5770 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5771 DEFINE_PER_CPU(int, sd_llc_id);
5772
5773 static void update_top_cache_domain(int cpu)
5774 {
5775 struct sched_domain *sd;
5776 int id = cpu;
5777
5778 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5779 if (sd)
5780 id = cpumask_first(sched_domain_span(sd));
5781
5782 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5783 per_cpu(sd_llc_id, cpu) = id;
5784 }
5785
5786 /*
5787 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5788 * hold the hotplug lock.
5789 */
5790 static void
5791 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5792 {
5793 struct rq *rq = cpu_rq(cpu);
5794 struct sched_domain *tmp;
5795
5796 /* Remove the sched domains which do not contribute to scheduling. */
5797 for (tmp = sd; tmp; ) {
5798 struct sched_domain *parent = tmp->parent;
5799 if (!parent)
5800 break;
5801
5802 if (sd_parent_degenerate(tmp, parent)) {
5803 tmp->parent = parent->parent;
5804 if (parent->parent)
5805 parent->parent->child = tmp;
5806 destroy_sched_domain(parent, cpu);
5807 } else
5808 tmp = tmp->parent;
5809 }
5810
5811 if (sd && sd_degenerate(sd)) {
5812 tmp = sd;
5813 sd = sd->parent;
5814 destroy_sched_domain(tmp, cpu);
5815 if (sd)
5816 sd->child = NULL;
5817 }
5818
5819 sched_domain_debug(sd, cpu);
5820
5821 rq_attach_root(rq, rd);
5822 tmp = rq->sd;
5823 rcu_assign_pointer(rq->sd, sd);
5824 destroy_sched_domains(tmp, cpu);
5825
5826 update_top_cache_domain(cpu);
5827 }
5828
5829 /* cpus with isolated domains */
5830 static cpumask_var_t cpu_isolated_map;
5831
5832 /* Setup the mask of cpus configured for isolated domains */
5833 static int __init isolated_cpu_setup(char *str)
5834 {
5835 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5836 cpulist_parse(str, cpu_isolated_map);
5837 return 1;
5838 }
5839
5840 __setup("isolcpus=", isolated_cpu_setup);
5841
5842 #ifdef CONFIG_NUMA
5843
5844 /**
5845 * find_next_best_node - find the next node to include in a sched_domain
5846 * @node: node whose sched_domain we're building
5847 * @used_nodes: nodes already in the sched_domain
5848 *
5849 * Find the next node to include in a given scheduling domain. Simply
5850 * finds the closest node not already in the @used_nodes map.
5851 *
5852 * Should use nodemask_t.
5853 */
5854 static int find_next_best_node(int node, nodemask_t *used_nodes)
5855 {
5856 int i, n, val, min_val, best_node = -1;
5857
5858 min_val = INT_MAX;
5859
5860 for (i = 0; i < nr_node_ids; i++) {
5861 /* Start at @node */
5862 n = (node + i) % nr_node_ids;
5863
5864 if (!nr_cpus_node(n))
5865 continue;
5866
5867 /* Skip already used nodes */
5868 if (node_isset(n, *used_nodes))
5869 continue;
5870
5871 /* Simple min distance search */
5872 val = node_distance(node, n);
5873
5874 if (val < min_val) {
5875 min_val = val;
5876 best_node = n;
5877 }
5878 }
5879
5880 if (best_node != -1)
5881 node_set(best_node, *used_nodes);
5882 return best_node;
5883 }
5884
5885 /**
5886 * sched_domain_node_span - get a cpumask for a node's sched_domain
5887 * @node: node whose cpumask we're constructing
5888 * @span: resulting cpumask
5889 *
5890 * Given a node, construct a good cpumask for its sched_domain to span. It
5891 * should be one that prevents unnecessary balancing, but also spreads tasks
5892 * out optimally.
5893 */
5894 static void sched_domain_node_span(int node, struct cpumask *span)
5895 {
5896 nodemask_t used_nodes;
5897 int i;
5898
5899 cpumask_clear(span);
5900 nodes_clear(used_nodes);
5901
5902 cpumask_or(span, span, cpumask_of_node(node));
5903 node_set(node, used_nodes);
5904
5905 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5906 int next_node = find_next_best_node(node, &used_nodes);
5907 if (next_node < 0)
5908 break;
5909 cpumask_or(span, span, cpumask_of_node(next_node));
5910 }
5911 }
5912
5913 static const struct cpumask *cpu_node_mask(int cpu)
5914 {
5915 lockdep_assert_held(&sched_domains_mutex);
5916
5917 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5918
5919 return sched_domains_tmpmask;
5920 }
5921
5922 static const struct cpumask *cpu_allnodes_mask(int cpu)
5923 {
5924 return cpu_possible_mask;
5925 }
5926 #endif /* CONFIG_NUMA */
5927
5928 static const struct cpumask *cpu_cpu_mask(int cpu)
5929 {
5930 return cpumask_of_node(cpu_to_node(cpu));
5931 }
5932
5933 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5934
5935 struct sd_data {
5936 struct sched_domain **__percpu sd;
5937 struct sched_group **__percpu sg;
5938 struct sched_group_power **__percpu sgp;
5939 };
5940
5941 struct s_data {
5942 struct sched_domain ** __percpu sd;
5943 struct root_domain *rd;
5944 };
5945
5946 enum s_alloc {
5947 sa_rootdomain,
5948 sa_sd,
5949 sa_sd_storage,
5950 sa_none,
5951 };
5952
5953 struct sched_domain_topology_level;
5954
5955 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5956 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5957
5958 #define SDTL_OVERLAP 0x01
5959
5960 struct sched_domain_topology_level {
5961 sched_domain_init_f init;
5962 sched_domain_mask_f mask;
5963 int flags;
5964 struct sd_data data;
5965 };
5966
5967 static int
5968 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5969 {
5970 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5971 const struct cpumask *span = sched_domain_span(sd);
5972 struct cpumask *covered = sched_domains_tmpmask;
5973 struct sd_data *sdd = sd->private;
5974 struct sched_domain *child;
5975 int i;
5976
5977 cpumask_clear(covered);
5978
5979 for_each_cpu(i, span) {
5980 struct cpumask *sg_span;
5981
5982 if (cpumask_test_cpu(i, covered))
5983 continue;
5984
5985 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5986 GFP_KERNEL, cpu_to_node(cpu));
5987
5988 if (!sg)
5989 goto fail;
5990
5991 sg_span = sched_group_cpus(sg);
5992
5993 child = *per_cpu_ptr(sdd->sd, i);
5994 if (child->child) {
5995 child = child->child;
5996 cpumask_copy(sg_span, sched_domain_span(child));
5997 } else
5998 cpumask_set_cpu(i, sg_span);
5999
6000 cpumask_or(covered, covered, sg_span);
6001
6002 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6003 atomic_inc(&sg->sgp->ref);
6004
6005 if (cpumask_test_cpu(cpu, sg_span))
6006 groups = sg;
6007
6008 if (!first)
6009 first = sg;
6010 if (last)
6011 last->next = sg;
6012 last = sg;
6013 last->next = first;
6014 }
6015 sd->groups = groups;
6016
6017 return 0;
6018
6019 fail:
6020 free_sched_groups(first, 0);
6021
6022 return -ENOMEM;
6023 }
6024
6025 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6026 {
6027 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6028 struct sched_domain *child = sd->child;
6029
6030 if (child)
6031 cpu = cpumask_first(sched_domain_span(child));
6032
6033 if (sg) {
6034 *sg = *per_cpu_ptr(sdd->sg, cpu);
6035 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6036 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6037 }
6038
6039 return cpu;
6040 }
6041
6042 /*
6043 * build_sched_groups will build a circular linked list of the groups
6044 * covered by the given span, and will set each group's ->cpumask correctly,
6045 * and ->cpu_power to 0.
6046 *
6047 * Assumes the sched_domain tree is fully constructed
6048 */
6049 static int
6050 build_sched_groups(struct sched_domain *sd, int cpu)
6051 {
6052 struct sched_group *first = NULL, *last = NULL;
6053 struct sd_data *sdd = sd->private;
6054 const struct cpumask *span = sched_domain_span(sd);
6055 struct cpumask *covered;
6056 int i;
6057
6058 get_group(cpu, sdd, &sd->groups);
6059 atomic_inc(&sd->groups->ref);
6060
6061 if (cpu != cpumask_first(sched_domain_span(sd)))
6062 return 0;
6063
6064 lockdep_assert_held(&sched_domains_mutex);
6065 covered = sched_domains_tmpmask;
6066
6067 cpumask_clear(covered);
6068
6069 for_each_cpu(i, span) {
6070 struct sched_group *sg;
6071 int group = get_group(i, sdd, &sg);
6072 int j;
6073
6074 if (cpumask_test_cpu(i, covered))
6075 continue;
6076
6077 cpumask_clear(sched_group_cpus(sg));
6078 sg->sgp->power = 0;
6079
6080 for_each_cpu(j, span) {
6081 if (get_group(j, sdd, NULL) != group)
6082 continue;
6083
6084 cpumask_set_cpu(j, covered);
6085 cpumask_set_cpu(j, sched_group_cpus(sg));
6086 }
6087
6088 if (!first)
6089 first = sg;
6090 if (last)
6091 last->next = sg;
6092 last = sg;
6093 }
6094 last->next = first;
6095
6096 return 0;
6097 }
6098
6099 /*
6100 * Initialize sched groups cpu_power.
6101 *
6102 * cpu_power indicates the capacity of sched group, which is used while
6103 * distributing the load between different sched groups in a sched domain.
6104 * Typically cpu_power for all the groups in a sched domain will be same unless
6105 * there are asymmetries in the topology. If there are asymmetries, group
6106 * having more cpu_power will pickup more load compared to the group having
6107 * less cpu_power.
6108 */
6109 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6110 {
6111 struct sched_group *sg = sd->groups;
6112
6113 WARN_ON(!sd || !sg);
6114
6115 do {
6116 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6117 sg = sg->next;
6118 } while (sg != sd->groups);
6119
6120 if (cpu != group_first_cpu(sg))
6121 return;
6122
6123 update_group_power(sd, cpu);
6124 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6125 }
6126
6127 int __weak arch_sd_sibling_asym_packing(void)
6128 {
6129 return 0*SD_ASYM_PACKING;
6130 }
6131
6132 /*
6133 * Initializers for schedule domains
6134 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6135 */
6136
6137 #ifdef CONFIG_SCHED_DEBUG
6138 # define SD_INIT_NAME(sd, type) sd->name = #type
6139 #else
6140 # define SD_INIT_NAME(sd, type) do { } while (0)
6141 #endif
6142
6143 #define SD_INIT_FUNC(type) \
6144 static noinline struct sched_domain * \
6145 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6146 { \
6147 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6148 *sd = SD_##type##_INIT; \
6149 SD_INIT_NAME(sd, type); \
6150 sd->private = &tl->data; \
6151 return sd; \
6152 }
6153
6154 SD_INIT_FUNC(CPU)
6155 #ifdef CONFIG_NUMA
6156 SD_INIT_FUNC(ALLNODES)
6157 SD_INIT_FUNC(NODE)
6158 #endif
6159 #ifdef CONFIG_SCHED_SMT
6160 SD_INIT_FUNC(SIBLING)
6161 #endif
6162 #ifdef CONFIG_SCHED_MC
6163 SD_INIT_FUNC(MC)
6164 #endif
6165 #ifdef CONFIG_SCHED_BOOK
6166 SD_INIT_FUNC(BOOK)
6167 #endif
6168
6169 static int default_relax_domain_level = -1;
6170 int sched_domain_level_max;
6171
6172 static int __init setup_relax_domain_level(char *str)
6173 {
6174 unsigned long val;
6175
6176 val = simple_strtoul(str, NULL, 0);
6177 if (val < sched_domain_level_max)
6178 default_relax_domain_level = val;
6179
6180 return 1;
6181 }
6182 __setup("relax_domain_level=", setup_relax_domain_level);
6183
6184 static void set_domain_attribute(struct sched_domain *sd,
6185 struct sched_domain_attr *attr)
6186 {
6187 int request;
6188
6189 if (!attr || attr->relax_domain_level < 0) {
6190 if (default_relax_domain_level < 0)
6191 return;
6192 else
6193 request = default_relax_domain_level;
6194 } else
6195 request = attr->relax_domain_level;
6196 if (request < sd->level) {
6197 /* turn off idle balance on this domain */
6198 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6199 } else {
6200 /* turn on idle balance on this domain */
6201 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6202 }
6203 }
6204
6205 static void __sdt_free(const struct cpumask *cpu_map);
6206 static int __sdt_alloc(const struct cpumask *cpu_map);
6207
6208 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6209 const struct cpumask *cpu_map)
6210 {
6211 switch (what) {
6212 case sa_rootdomain:
6213 if (!atomic_read(&d->rd->refcount))
6214 free_rootdomain(&d->rd->rcu); /* fall through */
6215 case sa_sd:
6216 free_percpu(d->sd); /* fall through */
6217 case sa_sd_storage:
6218 __sdt_free(cpu_map); /* fall through */
6219 case sa_none:
6220 break;
6221 }
6222 }
6223
6224 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6225 const struct cpumask *cpu_map)
6226 {
6227 memset(d, 0, sizeof(*d));
6228
6229 if (__sdt_alloc(cpu_map))
6230 return sa_sd_storage;
6231 d->sd = alloc_percpu(struct sched_domain *);
6232 if (!d->sd)
6233 return sa_sd_storage;
6234 d->rd = alloc_rootdomain();
6235 if (!d->rd)
6236 return sa_sd;
6237 return sa_rootdomain;
6238 }
6239
6240 /*
6241 * NULL the sd_data elements we've used to build the sched_domain and
6242 * sched_group structure so that the subsequent __free_domain_allocs()
6243 * will not free the data we're using.
6244 */
6245 static void claim_allocations(int cpu, struct sched_domain *sd)
6246 {
6247 struct sd_data *sdd = sd->private;
6248
6249 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6250 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6251
6252 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6253 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6254
6255 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6256 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6257 }
6258
6259 #ifdef CONFIG_SCHED_SMT
6260 static const struct cpumask *cpu_smt_mask(int cpu)
6261 {
6262 return topology_thread_cpumask(cpu);
6263 }
6264 #endif
6265
6266 /*
6267 * Topology list, bottom-up.
6268 */
6269 static struct sched_domain_topology_level default_topology[] = {
6270 #ifdef CONFIG_SCHED_SMT
6271 { sd_init_SIBLING, cpu_smt_mask, },
6272 #endif
6273 #ifdef CONFIG_SCHED_MC
6274 { sd_init_MC, cpu_coregroup_mask, },
6275 #endif
6276 #ifdef CONFIG_SCHED_BOOK
6277 { sd_init_BOOK, cpu_book_mask, },
6278 #endif
6279 { sd_init_CPU, cpu_cpu_mask, },
6280 #ifdef CONFIG_NUMA
6281 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6282 { sd_init_ALLNODES, cpu_allnodes_mask, },
6283 #endif
6284 { NULL, },
6285 };
6286
6287 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6288
6289 static int __sdt_alloc(const struct cpumask *cpu_map)
6290 {
6291 struct sched_domain_topology_level *tl;
6292 int j;
6293
6294 for (tl = sched_domain_topology; tl->init; tl++) {
6295 struct sd_data *sdd = &tl->data;
6296
6297 sdd->sd = alloc_percpu(struct sched_domain *);
6298 if (!sdd->sd)
6299 return -ENOMEM;
6300
6301 sdd->sg = alloc_percpu(struct sched_group *);
6302 if (!sdd->sg)
6303 return -ENOMEM;
6304
6305 sdd->sgp = alloc_percpu(struct sched_group_power *);
6306 if (!sdd->sgp)
6307 return -ENOMEM;
6308
6309 for_each_cpu(j, cpu_map) {
6310 struct sched_domain *sd;
6311 struct sched_group *sg;
6312 struct sched_group_power *sgp;
6313
6314 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6315 GFP_KERNEL, cpu_to_node(j));
6316 if (!sd)
6317 return -ENOMEM;
6318
6319 *per_cpu_ptr(sdd->sd, j) = sd;
6320
6321 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6322 GFP_KERNEL, cpu_to_node(j));
6323 if (!sg)
6324 return -ENOMEM;
6325
6326 *per_cpu_ptr(sdd->sg, j) = sg;
6327
6328 sgp = kzalloc_node(sizeof(struct sched_group_power),
6329 GFP_KERNEL, cpu_to_node(j));
6330 if (!sgp)
6331 return -ENOMEM;
6332
6333 *per_cpu_ptr(sdd->sgp, j) = sgp;
6334 }
6335 }
6336
6337 return 0;
6338 }
6339
6340 static void __sdt_free(const struct cpumask *cpu_map)
6341 {
6342 struct sched_domain_topology_level *tl;
6343 int j;
6344
6345 for (tl = sched_domain_topology; tl->init; tl++) {
6346 struct sd_data *sdd = &tl->data;
6347
6348 for_each_cpu(j, cpu_map) {
6349 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6350 if (sd && (sd->flags & SD_OVERLAP))
6351 free_sched_groups(sd->groups, 0);
6352 kfree(*per_cpu_ptr(sdd->sd, j));
6353 kfree(*per_cpu_ptr(sdd->sg, j));
6354 kfree(*per_cpu_ptr(sdd->sgp, j));
6355 }
6356 free_percpu(sdd->sd);
6357 free_percpu(sdd->sg);
6358 free_percpu(sdd->sgp);
6359 }
6360 }
6361
6362 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6363 struct s_data *d, const struct cpumask *cpu_map,
6364 struct sched_domain_attr *attr, struct sched_domain *child,
6365 int cpu)
6366 {
6367 struct sched_domain *sd = tl->init(tl, cpu);
6368 if (!sd)
6369 return child;
6370
6371 set_domain_attribute(sd, attr);
6372 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6373 if (child) {
6374 sd->level = child->level + 1;
6375 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6376 child->parent = sd;
6377 }
6378 sd->child = child;
6379
6380 return sd;
6381 }
6382
6383 /*
6384 * Build sched domains for a given set of cpus and attach the sched domains
6385 * to the individual cpus
6386 */
6387 static int build_sched_domains(const struct cpumask *cpu_map,
6388 struct sched_domain_attr *attr)
6389 {
6390 enum s_alloc alloc_state = sa_none;
6391 struct sched_domain *sd;
6392 struct s_data d;
6393 int i, ret = -ENOMEM;
6394
6395 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6396 if (alloc_state != sa_rootdomain)
6397 goto error;
6398
6399 /* Set up domains for cpus specified by the cpu_map. */
6400 for_each_cpu(i, cpu_map) {
6401 struct sched_domain_topology_level *tl;
6402
6403 sd = NULL;
6404 for (tl = sched_domain_topology; tl->init; tl++) {
6405 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6406 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6407 sd->flags |= SD_OVERLAP;
6408 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6409 break;
6410 }
6411
6412 while (sd->child)
6413 sd = sd->child;
6414
6415 *per_cpu_ptr(d.sd, i) = sd;
6416 }
6417
6418 /* Build the groups for the domains */
6419 for_each_cpu(i, cpu_map) {
6420 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6421 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6422 if (sd->flags & SD_OVERLAP) {
6423 if (build_overlap_sched_groups(sd, i))
6424 goto error;
6425 } else {
6426 if (build_sched_groups(sd, i))
6427 goto error;
6428 }
6429 }
6430 }
6431
6432 /* Calculate CPU power for physical packages and nodes */
6433 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6434 if (!cpumask_test_cpu(i, cpu_map))
6435 continue;
6436
6437 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6438 claim_allocations(i, sd);
6439 init_sched_groups_power(i, sd);
6440 }
6441 }
6442
6443 /* Attach the domains */
6444 rcu_read_lock();
6445 for_each_cpu(i, cpu_map) {
6446 sd = *per_cpu_ptr(d.sd, i);
6447 cpu_attach_domain(sd, d.rd, i);
6448 }
6449 rcu_read_unlock();
6450
6451 ret = 0;
6452 error:
6453 __free_domain_allocs(&d, alloc_state, cpu_map);
6454 return ret;
6455 }
6456
6457 static cpumask_var_t *doms_cur; /* current sched domains */
6458 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6459 static struct sched_domain_attr *dattr_cur;
6460 /* attribues of custom domains in 'doms_cur' */
6461
6462 /*
6463 * Special case: If a kmalloc of a doms_cur partition (array of
6464 * cpumask) fails, then fallback to a single sched domain,
6465 * as determined by the single cpumask fallback_doms.
6466 */
6467 static cpumask_var_t fallback_doms;
6468
6469 /*
6470 * arch_update_cpu_topology lets virtualized architectures update the
6471 * cpu core maps. It is supposed to return 1 if the topology changed
6472 * or 0 if it stayed the same.
6473 */
6474 int __attribute__((weak)) arch_update_cpu_topology(void)
6475 {
6476 return 0;
6477 }
6478
6479 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6480 {
6481 int i;
6482 cpumask_var_t *doms;
6483
6484 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6485 if (!doms)
6486 return NULL;
6487 for (i = 0; i < ndoms; i++) {
6488 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6489 free_sched_domains(doms, i);
6490 return NULL;
6491 }
6492 }
6493 return doms;
6494 }
6495
6496 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6497 {
6498 unsigned int i;
6499 for (i = 0; i < ndoms; i++)
6500 free_cpumask_var(doms[i]);
6501 kfree(doms);
6502 }
6503
6504 /*
6505 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6506 * For now this just excludes isolated cpus, but could be used to
6507 * exclude other special cases in the future.
6508 */
6509 static int init_sched_domains(const struct cpumask *cpu_map)
6510 {
6511 int err;
6512
6513 arch_update_cpu_topology();
6514 ndoms_cur = 1;
6515 doms_cur = alloc_sched_domains(ndoms_cur);
6516 if (!doms_cur)
6517 doms_cur = &fallback_doms;
6518 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6519 dattr_cur = NULL;
6520 err = build_sched_domains(doms_cur[0], NULL);
6521 register_sched_domain_sysctl();
6522
6523 return err;
6524 }
6525
6526 /*
6527 * Detach sched domains from a group of cpus specified in cpu_map
6528 * These cpus will now be attached to the NULL domain
6529 */
6530 static void detach_destroy_domains(const struct cpumask *cpu_map)
6531 {
6532 int i;
6533
6534 rcu_read_lock();
6535 for_each_cpu(i, cpu_map)
6536 cpu_attach_domain(NULL, &def_root_domain, i);
6537 rcu_read_unlock();
6538 }
6539
6540 /* handle null as "default" */
6541 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6542 struct sched_domain_attr *new, int idx_new)
6543 {
6544 struct sched_domain_attr tmp;
6545
6546 /* fast path */
6547 if (!new && !cur)
6548 return 1;
6549
6550 tmp = SD_ATTR_INIT;
6551 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6552 new ? (new + idx_new) : &tmp,
6553 sizeof(struct sched_domain_attr));
6554 }
6555
6556 /*
6557 * Partition sched domains as specified by the 'ndoms_new'
6558 * cpumasks in the array doms_new[] of cpumasks. This compares
6559 * doms_new[] to the current sched domain partitioning, doms_cur[].
6560 * It destroys each deleted domain and builds each new domain.
6561 *
6562 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6563 * The masks don't intersect (don't overlap.) We should setup one
6564 * sched domain for each mask. CPUs not in any of the cpumasks will
6565 * not be load balanced. If the same cpumask appears both in the
6566 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6567 * it as it is.
6568 *
6569 * The passed in 'doms_new' should be allocated using
6570 * alloc_sched_domains. This routine takes ownership of it and will
6571 * free_sched_domains it when done with it. If the caller failed the
6572 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6573 * and partition_sched_domains() will fallback to the single partition
6574 * 'fallback_doms', it also forces the domains to be rebuilt.
6575 *
6576 * If doms_new == NULL it will be replaced with cpu_online_mask.
6577 * ndoms_new == 0 is a special case for destroying existing domains,
6578 * and it will not create the default domain.
6579 *
6580 * Call with hotplug lock held
6581 */
6582 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6583 struct sched_domain_attr *dattr_new)
6584 {
6585 int i, j, n;
6586 int new_topology;
6587
6588 mutex_lock(&sched_domains_mutex);
6589
6590 /* always unregister in case we don't destroy any domains */
6591 unregister_sched_domain_sysctl();
6592
6593 /* Let architecture update cpu core mappings. */
6594 new_topology = arch_update_cpu_topology();
6595
6596 n = doms_new ? ndoms_new : 0;
6597
6598 /* Destroy deleted domains */
6599 for (i = 0; i < ndoms_cur; i++) {
6600 for (j = 0; j < n && !new_topology; j++) {
6601 if (cpumask_equal(doms_cur[i], doms_new[j])
6602 && dattrs_equal(dattr_cur, i, dattr_new, j))
6603 goto match1;
6604 }
6605 /* no match - a current sched domain not in new doms_new[] */
6606 detach_destroy_domains(doms_cur[i]);
6607 match1:
6608 ;
6609 }
6610
6611 if (doms_new == NULL) {
6612 ndoms_cur = 0;
6613 doms_new = &fallback_doms;
6614 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6615 WARN_ON_ONCE(dattr_new);
6616 }
6617
6618 /* Build new domains */
6619 for (i = 0; i < ndoms_new; i++) {
6620 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6621 if (cpumask_equal(doms_new[i], doms_cur[j])
6622 && dattrs_equal(dattr_new, i, dattr_cur, j))
6623 goto match2;
6624 }
6625 /* no match - add a new doms_new */
6626 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6627 match2:
6628 ;
6629 }
6630
6631 /* Remember the new sched domains */
6632 if (doms_cur != &fallback_doms)
6633 free_sched_domains(doms_cur, ndoms_cur);
6634 kfree(dattr_cur); /* kfree(NULL) is safe */
6635 doms_cur = doms_new;
6636 dattr_cur = dattr_new;
6637 ndoms_cur = ndoms_new;
6638
6639 register_sched_domain_sysctl();
6640
6641 mutex_unlock(&sched_domains_mutex);
6642 }
6643
6644 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6645 static void reinit_sched_domains(void)
6646 {
6647 get_online_cpus();
6648
6649 /* Destroy domains first to force the rebuild */
6650 partition_sched_domains(0, NULL, NULL);
6651
6652 rebuild_sched_domains();
6653 put_online_cpus();
6654 }
6655
6656 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6657 {
6658 unsigned int level = 0;
6659
6660 if (sscanf(buf, "%u", &level) != 1)
6661 return -EINVAL;
6662
6663 /*
6664 * level is always be positive so don't check for
6665 * level < POWERSAVINGS_BALANCE_NONE which is 0
6666 * What happens on 0 or 1 byte write,
6667 * need to check for count as well?
6668 */
6669
6670 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6671 return -EINVAL;
6672
6673 if (smt)
6674 sched_smt_power_savings = level;
6675 else
6676 sched_mc_power_savings = level;
6677
6678 reinit_sched_domains();
6679
6680 return count;
6681 }
6682
6683 #ifdef CONFIG_SCHED_MC
6684 static ssize_t sched_mc_power_savings_show(struct device *dev,
6685 struct device_attribute *attr,
6686 char *buf)
6687 {
6688 return sprintf(buf, "%u\n", sched_mc_power_savings);
6689 }
6690 static ssize_t sched_mc_power_savings_store(struct device *dev,
6691 struct device_attribute *attr,
6692 const char *buf, size_t count)
6693 {
6694 return sched_power_savings_store(buf, count, 0);
6695 }
6696 static DEVICE_ATTR(sched_mc_power_savings, 0644,
6697 sched_mc_power_savings_show,
6698 sched_mc_power_savings_store);
6699 #endif
6700
6701 #ifdef CONFIG_SCHED_SMT
6702 static ssize_t sched_smt_power_savings_show(struct device *dev,
6703 struct device_attribute *attr,
6704 char *buf)
6705 {
6706 return sprintf(buf, "%u\n", sched_smt_power_savings);
6707 }
6708 static ssize_t sched_smt_power_savings_store(struct device *dev,
6709 struct device_attribute *attr,
6710 const char *buf, size_t count)
6711 {
6712 return sched_power_savings_store(buf, count, 1);
6713 }
6714 static DEVICE_ATTR(sched_smt_power_savings, 0644,
6715 sched_smt_power_savings_show,
6716 sched_smt_power_savings_store);
6717 #endif
6718
6719 int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6720 {
6721 int err = 0;
6722
6723 #ifdef CONFIG_SCHED_SMT
6724 if (smt_capable())
6725 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6726 #endif
6727 #ifdef CONFIG_SCHED_MC
6728 if (!err && mc_capable())
6729 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6730 #endif
6731 return err;
6732 }
6733 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6734
6735 /*
6736 * Update cpusets according to cpu_active mask. If cpusets are
6737 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6738 * around partition_sched_domains().
6739 */
6740 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6741 void *hcpu)
6742 {
6743 switch (action & ~CPU_TASKS_FROZEN) {
6744 case CPU_ONLINE:
6745 case CPU_DOWN_FAILED:
6746 cpuset_update_active_cpus();
6747 return NOTIFY_OK;
6748 default:
6749 return NOTIFY_DONE;
6750 }
6751 }
6752
6753 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6754 void *hcpu)
6755 {
6756 switch (action & ~CPU_TASKS_FROZEN) {
6757 case CPU_DOWN_PREPARE:
6758 cpuset_update_active_cpus();
6759 return NOTIFY_OK;
6760 default:
6761 return NOTIFY_DONE;
6762 }
6763 }
6764
6765 void __init sched_init_smp(void)
6766 {
6767 cpumask_var_t non_isolated_cpus;
6768
6769 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6770 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6771
6772 get_online_cpus();
6773 mutex_lock(&sched_domains_mutex);
6774 init_sched_domains(cpu_active_mask);
6775 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6776 if (cpumask_empty(non_isolated_cpus))
6777 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6778 mutex_unlock(&sched_domains_mutex);
6779 put_online_cpus();
6780
6781 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6782 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6783
6784 /* RT runtime code needs to handle some hotplug events */
6785 hotcpu_notifier(update_runtime, 0);
6786
6787 init_hrtick();
6788
6789 /* Move init over to a non-isolated CPU */
6790 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6791 BUG();
6792 sched_init_granularity();
6793 free_cpumask_var(non_isolated_cpus);
6794
6795 init_sched_rt_class();
6796 }
6797 #else
6798 void __init sched_init_smp(void)
6799 {
6800 sched_init_granularity();
6801 }
6802 #endif /* CONFIG_SMP */
6803
6804 const_debug unsigned int sysctl_timer_migration = 1;
6805
6806 int in_sched_functions(unsigned long addr)
6807 {
6808 return in_lock_functions(addr) ||
6809 (addr >= (unsigned long)__sched_text_start
6810 && addr < (unsigned long)__sched_text_end);
6811 }
6812
6813 #ifdef CONFIG_CGROUP_SCHED
6814 struct task_group root_task_group;
6815 #endif
6816
6817 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6818
6819 void __init sched_init(void)
6820 {
6821 int i, j;
6822 unsigned long alloc_size = 0, ptr;
6823
6824 #ifdef CONFIG_FAIR_GROUP_SCHED
6825 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6826 #endif
6827 #ifdef CONFIG_RT_GROUP_SCHED
6828 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6829 #endif
6830 #ifdef CONFIG_CPUMASK_OFFSTACK
6831 alloc_size += num_possible_cpus() * cpumask_size();
6832 #endif
6833 if (alloc_size) {
6834 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6835
6836 #ifdef CONFIG_FAIR_GROUP_SCHED
6837 root_task_group.se = (struct sched_entity **)ptr;
6838 ptr += nr_cpu_ids * sizeof(void **);
6839
6840 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6841 ptr += nr_cpu_ids * sizeof(void **);
6842
6843 #endif /* CONFIG_FAIR_GROUP_SCHED */
6844 #ifdef CONFIG_RT_GROUP_SCHED
6845 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6846 ptr += nr_cpu_ids * sizeof(void **);
6847
6848 root_task_group.rt_rq = (struct rt_rq **)ptr;
6849 ptr += nr_cpu_ids * sizeof(void **);
6850
6851 #endif /* CONFIG_RT_GROUP_SCHED */
6852 #ifdef CONFIG_CPUMASK_OFFSTACK
6853 for_each_possible_cpu(i) {
6854 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6855 ptr += cpumask_size();
6856 }
6857 #endif /* CONFIG_CPUMASK_OFFSTACK */
6858 }
6859
6860 #ifdef CONFIG_SMP
6861 init_defrootdomain();
6862 #endif
6863
6864 init_rt_bandwidth(&def_rt_bandwidth,
6865 global_rt_period(), global_rt_runtime());
6866
6867 #ifdef CONFIG_RT_GROUP_SCHED
6868 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6869 global_rt_period(), global_rt_runtime());
6870 #endif /* CONFIG_RT_GROUP_SCHED */
6871
6872 #ifdef CONFIG_CGROUP_SCHED
6873 list_add(&root_task_group.list, &task_groups);
6874 INIT_LIST_HEAD(&root_task_group.children);
6875 INIT_LIST_HEAD(&root_task_group.siblings);
6876 autogroup_init(&init_task);
6877
6878 #endif /* CONFIG_CGROUP_SCHED */
6879
6880 #ifdef CONFIG_CGROUP_CPUACCT
6881 root_cpuacct.cpustat = &kernel_cpustat;
6882 root_cpuacct.cpuusage = alloc_percpu(u64);
6883 /* Too early, not expected to fail */
6884 BUG_ON(!root_cpuacct.cpuusage);
6885 #endif
6886 for_each_possible_cpu(i) {
6887 struct rq *rq;
6888
6889 rq = cpu_rq(i);
6890 raw_spin_lock_init(&rq->lock);
6891 rq->nr_running = 0;
6892 rq->calc_load_active = 0;
6893 rq->calc_load_update = jiffies + LOAD_FREQ;
6894 init_cfs_rq(&rq->cfs);
6895 init_rt_rq(&rq->rt, rq);
6896 #ifdef CONFIG_FAIR_GROUP_SCHED
6897 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6898 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6899 /*
6900 * How much cpu bandwidth does root_task_group get?
6901 *
6902 * In case of task-groups formed thr' the cgroup filesystem, it
6903 * gets 100% of the cpu resources in the system. This overall
6904 * system cpu resource is divided among the tasks of
6905 * root_task_group and its child task-groups in a fair manner,
6906 * based on each entity's (task or task-group's) weight
6907 * (se->load.weight).
6908 *
6909 * In other words, if root_task_group has 10 tasks of weight
6910 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6911 * then A0's share of the cpu resource is:
6912 *
6913 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6914 *
6915 * We achieve this by letting root_task_group's tasks sit
6916 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6917 */
6918 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6919 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6920 #endif /* CONFIG_FAIR_GROUP_SCHED */
6921
6922 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6923 #ifdef CONFIG_RT_GROUP_SCHED
6924 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6925 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6926 #endif
6927
6928 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6929 rq->cpu_load[j] = 0;
6930
6931 rq->last_load_update_tick = jiffies;
6932
6933 #ifdef CONFIG_SMP
6934 rq->sd = NULL;
6935 rq->rd = NULL;
6936 rq->cpu_power = SCHED_POWER_SCALE;
6937 rq->post_schedule = 0;
6938 rq->active_balance = 0;
6939 rq->next_balance = jiffies;
6940 rq->push_cpu = 0;
6941 rq->cpu = i;
6942 rq->online = 0;
6943 rq->idle_stamp = 0;
6944 rq->avg_idle = 2*sysctl_sched_migration_cost;
6945 rq_attach_root(rq, &def_root_domain);
6946 #ifdef CONFIG_NO_HZ
6947 rq->nohz_flags = 0;
6948 #endif
6949 #endif
6950 init_rq_hrtick(rq);
6951 atomic_set(&rq->nr_iowait, 0);
6952 }
6953
6954 set_load_weight(&init_task);
6955
6956 #ifdef CONFIG_PREEMPT_NOTIFIERS
6957 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6958 #endif
6959
6960 #ifdef CONFIG_RT_MUTEXES
6961 plist_head_init(&init_task.pi_waiters);
6962 #endif
6963
6964 /*
6965 * The boot idle thread does lazy MMU switching as well:
6966 */
6967 atomic_inc(&init_mm.mm_count);
6968 enter_lazy_tlb(&init_mm, current);
6969
6970 /*
6971 * Make us the idle thread. Technically, schedule() should not be
6972 * called from this thread, however somewhere below it might be,
6973 * but because we are the idle thread, we just pick up running again
6974 * when this runqueue becomes "idle".
6975 */
6976 init_idle(current, smp_processor_id());
6977
6978 calc_load_update = jiffies + LOAD_FREQ;
6979
6980 /*
6981 * During early bootup we pretend to be a normal task:
6982 */
6983 current->sched_class = &fair_sched_class;
6984
6985 #ifdef CONFIG_SMP
6986 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6987 /* May be allocated at isolcpus cmdline parse time */
6988 if (cpu_isolated_map == NULL)
6989 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6990 #endif
6991 init_sched_fair_class();
6992
6993 scheduler_running = 1;
6994 }
6995
6996 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6997 static inline int preempt_count_equals(int preempt_offset)
6998 {
6999 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7000
7001 return (nested == preempt_offset);
7002 }
7003
7004 void __might_sleep(const char *file, int line, int preempt_offset)
7005 {
7006 static unsigned long prev_jiffy; /* ratelimiting */
7007
7008 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7009 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7010 system_state != SYSTEM_RUNNING || oops_in_progress)
7011 return;
7012 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7013 return;
7014 prev_jiffy = jiffies;
7015
7016 printk(KERN_ERR
7017 "BUG: sleeping function called from invalid context at %s:%d\n",
7018 file, line);
7019 printk(KERN_ERR
7020 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7021 in_atomic(), irqs_disabled(),
7022 current->pid, current->comm);
7023
7024 debug_show_held_locks(current);
7025 if (irqs_disabled())
7026 print_irqtrace_events(current);
7027 dump_stack();
7028 }
7029 EXPORT_SYMBOL(__might_sleep);
7030 #endif
7031
7032 #ifdef CONFIG_MAGIC_SYSRQ
7033 static void normalize_task(struct rq *rq, struct task_struct *p)
7034 {
7035 const struct sched_class *prev_class = p->sched_class;
7036 int old_prio = p->prio;
7037 int on_rq;
7038
7039 on_rq = p->on_rq;
7040 if (on_rq)
7041 dequeue_task(rq, p, 0);
7042 __setscheduler(rq, p, SCHED_NORMAL, 0);
7043 if (on_rq) {
7044 enqueue_task(rq, p, 0);
7045 resched_task(rq->curr);
7046 }
7047
7048 check_class_changed(rq, p, prev_class, old_prio);
7049 }
7050
7051 void normalize_rt_tasks(void)
7052 {
7053 struct task_struct *g, *p;
7054 unsigned long flags;
7055 struct rq *rq;
7056
7057 read_lock_irqsave(&tasklist_lock, flags);
7058 do_each_thread(g, p) {
7059 /*
7060 * Only normalize user tasks:
7061 */
7062 if (!p->mm)
7063 continue;
7064
7065 p->se.exec_start = 0;
7066 #ifdef CONFIG_SCHEDSTATS
7067 p->se.statistics.wait_start = 0;
7068 p->se.statistics.sleep_start = 0;
7069 p->se.statistics.block_start = 0;
7070 #endif
7071
7072 if (!rt_task(p)) {
7073 /*
7074 * Renice negative nice level userspace
7075 * tasks back to 0:
7076 */
7077 if (TASK_NICE(p) < 0 && p->mm)
7078 set_user_nice(p, 0);
7079 continue;
7080 }
7081
7082 raw_spin_lock(&p->pi_lock);
7083 rq = __task_rq_lock(p);
7084
7085 normalize_task(rq, p);
7086
7087 __task_rq_unlock(rq);
7088 raw_spin_unlock(&p->pi_lock);
7089 } while_each_thread(g, p);
7090
7091 read_unlock_irqrestore(&tasklist_lock, flags);
7092 }
7093
7094 #endif /* CONFIG_MAGIC_SYSRQ */
7095
7096 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7097 /*
7098 * These functions are only useful for the IA64 MCA handling, or kdb.
7099 *
7100 * They can only be called when the whole system has been
7101 * stopped - every CPU needs to be quiescent, and no scheduling
7102 * activity can take place. Using them for anything else would
7103 * be a serious bug, and as a result, they aren't even visible
7104 * under any other configuration.
7105 */
7106
7107 /**
7108 * curr_task - return the current task for a given cpu.
7109 * @cpu: the processor in question.
7110 *
7111 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7112 */
7113 struct task_struct *curr_task(int cpu)
7114 {
7115 return cpu_curr(cpu);
7116 }
7117
7118 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7119
7120 #ifdef CONFIG_IA64
7121 /**
7122 * set_curr_task - set the current task for a given cpu.
7123 * @cpu: the processor in question.
7124 * @p: the task pointer to set.
7125 *
7126 * Description: This function must only be used when non-maskable interrupts
7127 * are serviced on a separate stack. It allows the architecture to switch the
7128 * notion of the current task on a cpu in a non-blocking manner. This function
7129 * must be called with all CPU's synchronized, and interrupts disabled, the
7130 * and caller must save the original value of the current task (see
7131 * curr_task() above) and restore that value before reenabling interrupts and
7132 * re-starting the system.
7133 *
7134 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7135 */
7136 void set_curr_task(int cpu, struct task_struct *p)
7137 {
7138 cpu_curr(cpu) = p;
7139 }
7140
7141 #endif
7142
7143 #ifdef CONFIG_CGROUP_SCHED
7144 /* task_group_lock serializes the addition/removal of task groups */
7145 static DEFINE_SPINLOCK(task_group_lock);
7146
7147 static void free_sched_group(struct task_group *tg)
7148 {
7149 free_fair_sched_group(tg);
7150 free_rt_sched_group(tg);
7151 autogroup_free(tg);
7152 kfree(tg);
7153 }
7154
7155 /* allocate runqueue etc for a new task group */
7156 struct task_group *sched_create_group(struct task_group *parent)
7157 {
7158 struct task_group *tg;
7159 unsigned long flags;
7160
7161 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7162 if (!tg)
7163 return ERR_PTR(-ENOMEM);
7164
7165 if (!alloc_fair_sched_group(tg, parent))
7166 goto err;
7167
7168 if (!alloc_rt_sched_group(tg, parent))
7169 goto err;
7170
7171 spin_lock_irqsave(&task_group_lock, flags);
7172 list_add_rcu(&tg->list, &task_groups);
7173
7174 WARN_ON(!parent); /* root should already exist */
7175
7176 tg->parent = parent;
7177 INIT_LIST_HEAD(&tg->children);
7178 list_add_rcu(&tg->siblings, &parent->children);
7179 spin_unlock_irqrestore(&task_group_lock, flags);
7180
7181 return tg;
7182
7183 err:
7184 free_sched_group(tg);
7185 return ERR_PTR(-ENOMEM);
7186 }
7187
7188 /* rcu callback to free various structures associated with a task group */
7189 static void free_sched_group_rcu(struct rcu_head *rhp)
7190 {
7191 /* now it should be safe to free those cfs_rqs */
7192 free_sched_group(container_of(rhp, struct task_group, rcu));
7193 }
7194
7195 /* Destroy runqueue etc associated with a task group */
7196 void sched_destroy_group(struct task_group *tg)
7197 {
7198 unsigned long flags;
7199 int i;
7200
7201 /* end participation in shares distribution */
7202 for_each_possible_cpu(i)
7203 unregister_fair_sched_group(tg, i);
7204
7205 spin_lock_irqsave(&task_group_lock, flags);
7206 list_del_rcu(&tg->list);
7207 list_del_rcu(&tg->siblings);
7208 spin_unlock_irqrestore(&task_group_lock, flags);
7209
7210 /* wait for possible concurrent references to cfs_rqs complete */
7211 call_rcu(&tg->rcu, free_sched_group_rcu);
7212 }
7213
7214 /* change task's runqueue when it moves between groups.
7215 * The caller of this function should have put the task in its new group
7216 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7217 * reflect its new group.
7218 */
7219 void sched_move_task(struct task_struct *tsk)
7220 {
7221 int on_rq, running;
7222 unsigned long flags;
7223 struct rq *rq;
7224
7225 rq = task_rq_lock(tsk, &flags);
7226
7227 running = task_current(rq, tsk);
7228 on_rq = tsk->on_rq;
7229
7230 if (on_rq)
7231 dequeue_task(rq, tsk, 0);
7232 if (unlikely(running))
7233 tsk->sched_class->put_prev_task(rq, tsk);
7234
7235 #ifdef CONFIG_FAIR_GROUP_SCHED
7236 if (tsk->sched_class->task_move_group)
7237 tsk->sched_class->task_move_group(tsk, on_rq);
7238 else
7239 #endif
7240 set_task_rq(tsk, task_cpu(tsk));
7241
7242 if (unlikely(running))
7243 tsk->sched_class->set_curr_task(rq);
7244 if (on_rq)
7245 enqueue_task(rq, tsk, 0);
7246
7247 task_rq_unlock(rq, tsk, &flags);
7248 }
7249 #endif /* CONFIG_CGROUP_SCHED */
7250
7251 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7252 static unsigned long to_ratio(u64 period, u64 runtime)
7253 {
7254 if (runtime == RUNTIME_INF)
7255 return 1ULL << 20;
7256
7257 return div64_u64(runtime << 20, period);
7258 }
7259 #endif
7260
7261 #ifdef CONFIG_RT_GROUP_SCHED
7262 /*
7263 * Ensure that the real time constraints are schedulable.
7264 */
7265 static DEFINE_MUTEX(rt_constraints_mutex);
7266
7267 /* Must be called with tasklist_lock held */
7268 static inline int tg_has_rt_tasks(struct task_group *tg)
7269 {
7270 struct task_struct *g, *p;
7271
7272 do_each_thread(g, p) {
7273 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7274 return 1;
7275 } while_each_thread(g, p);
7276
7277 return 0;
7278 }
7279
7280 struct rt_schedulable_data {
7281 struct task_group *tg;
7282 u64 rt_period;
7283 u64 rt_runtime;
7284 };
7285
7286 static int tg_rt_schedulable(struct task_group *tg, void *data)
7287 {
7288 struct rt_schedulable_data *d = data;
7289 struct task_group *child;
7290 unsigned long total, sum = 0;
7291 u64 period, runtime;
7292
7293 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7294 runtime = tg->rt_bandwidth.rt_runtime;
7295
7296 if (tg == d->tg) {
7297 period = d->rt_period;
7298 runtime = d->rt_runtime;
7299 }
7300
7301 /*
7302 * Cannot have more runtime than the period.
7303 */
7304 if (runtime > period && runtime != RUNTIME_INF)
7305 return -EINVAL;
7306
7307 /*
7308 * Ensure we don't starve existing RT tasks.
7309 */
7310 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7311 return -EBUSY;
7312
7313 total = to_ratio(period, runtime);
7314
7315 /*
7316 * Nobody can have more than the global setting allows.
7317 */
7318 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7319 return -EINVAL;
7320
7321 /*
7322 * The sum of our children's runtime should not exceed our own.
7323 */
7324 list_for_each_entry_rcu(child, &tg->children, siblings) {
7325 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7326 runtime = child->rt_bandwidth.rt_runtime;
7327
7328 if (child == d->tg) {
7329 period = d->rt_period;
7330 runtime = d->rt_runtime;
7331 }
7332
7333 sum += to_ratio(period, runtime);
7334 }
7335
7336 if (sum > total)
7337 return -EINVAL;
7338
7339 return 0;
7340 }
7341
7342 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7343 {
7344 int ret;
7345
7346 struct rt_schedulable_data data = {
7347 .tg = tg,
7348 .rt_period = period,
7349 .rt_runtime = runtime,
7350 };
7351
7352 rcu_read_lock();
7353 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7354 rcu_read_unlock();
7355
7356 return ret;
7357 }
7358
7359 static int tg_set_rt_bandwidth(struct task_group *tg,
7360 u64 rt_period, u64 rt_runtime)
7361 {
7362 int i, err = 0;
7363
7364 mutex_lock(&rt_constraints_mutex);
7365 read_lock(&tasklist_lock);
7366 err = __rt_schedulable(tg, rt_period, rt_runtime);
7367 if (err)
7368 goto unlock;
7369
7370 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7371 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7372 tg->rt_bandwidth.rt_runtime = rt_runtime;
7373
7374 for_each_possible_cpu(i) {
7375 struct rt_rq *rt_rq = tg->rt_rq[i];
7376
7377 raw_spin_lock(&rt_rq->rt_runtime_lock);
7378 rt_rq->rt_runtime = rt_runtime;
7379 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7380 }
7381 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7382 unlock:
7383 read_unlock(&tasklist_lock);
7384 mutex_unlock(&rt_constraints_mutex);
7385
7386 return err;
7387 }
7388
7389 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7390 {
7391 u64 rt_runtime, rt_period;
7392
7393 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7394 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7395 if (rt_runtime_us < 0)
7396 rt_runtime = RUNTIME_INF;
7397
7398 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7399 }
7400
7401 long sched_group_rt_runtime(struct task_group *tg)
7402 {
7403 u64 rt_runtime_us;
7404
7405 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7406 return -1;
7407
7408 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7409 do_div(rt_runtime_us, NSEC_PER_USEC);
7410 return rt_runtime_us;
7411 }
7412
7413 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7414 {
7415 u64 rt_runtime, rt_period;
7416
7417 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7418 rt_runtime = tg->rt_bandwidth.rt_runtime;
7419
7420 if (rt_period == 0)
7421 return -EINVAL;
7422
7423 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7424 }
7425
7426 long sched_group_rt_period(struct task_group *tg)
7427 {
7428 u64 rt_period_us;
7429
7430 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7431 do_div(rt_period_us, NSEC_PER_USEC);
7432 return rt_period_us;
7433 }
7434
7435 static int sched_rt_global_constraints(void)
7436 {
7437 u64 runtime, period;
7438 int ret = 0;
7439
7440 if (sysctl_sched_rt_period <= 0)
7441 return -EINVAL;
7442
7443 runtime = global_rt_runtime();
7444 period = global_rt_period();
7445
7446 /*
7447 * Sanity check on the sysctl variables.
7448 */
7449 if (runtime > period && runtime != RUNTIME_INF)
7450 return -EINVAL;
7451
7452 mutex_lock(&rt_constraints_mutex);
7453 read_lock(&tasklist_lock);
7454 ret = __rt_schedulable(NULL, 0, 0);
7455 read_unlock(&tasklist_lock);
7456 mutex_unlock(&rt_constraints_mutex);
7457
7458 return ret;
7459 }
7460
7461 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7462 {
7463 /* Don't accept realtime tasks when there is no way for them to run */
7464 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7465 return 0;
7466
7467 return 1;
7468 }
7469
7470 #else /* !CONFIG_RT_GROUP_SCHED */
7471 static int sched_rt_global_constraints(void)
7472 {
7473 unsigned long flags;
7474 int i;
7475
7476 if (sysctl_sched_rt_period <= 0)
7477 return -EINVAL;
7478
7479 /*
7480 * There's always some RT tasks in the root group
7481 * -- migration, kstopmachine etc..
7482 */
7483 if (sysctl_sched_rt_runtime == 0)
7484 return -EBUSY;
7485
7486 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7487 for_each_possible_cpu(i) {
7488 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7489
7490 raw_spin_lock(&rt_rq->rt_runtime_lock);
7491 rt_rq->rt_runtime = global_rt_runtime();
7492 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7493 }
7494 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7495
7496 return 0;
7497 }
7498 #endif /* CONFIG_RT_GROUP_SCHED */
7499
7500 int sched_rt_handler(struct ctl_table *table, int write,
7501 void __user *buffer, size_t *lenp,
7502 loff_t *ppos)
7503 {
7504 int ret;
7505 int old_period, old_runtime;
7506 static DEFINE_MUTEX(mutex);
7507
7508 mutex_lock(&mutex);
7509 old_period = sysctl_sched_rt_period;
7510 old_runtime = sysctl_sched_rt_runtime;
7511
7512 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7513
7514 if (!ret && write) {
7515 ret = sched_rt_global_constraints();
7516 if (ret) {
7517 sysctl_sched_rt_period = old_period;
7518 sysctl_sched_rt_runtime = old_runtime;
7519 } else {
7520 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7521 def_rt_bandwidth.rt_period =
7522 ns_to_ktime(global_rt_period());
7523 }
7524 }
7525 mutex_unlock(&mutex);
7526
7527 return ret;
7528 }
7529
7530 #ifdef CONFIG_CGROUP_SCHED
7531
7532 /* return corresponding task_group object of a cgroup */
7533 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7534 {
7535 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7536 struct task_group, css);
7537 }
7538
7539 static struct cgroup_subsys_state *
7540 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7541 {
7542 struct task_group *tg, *parent;
7543
7544 if (!cgrp->parent) {
7545 /* This is early initialization for the top cgroup */
7546 return &root_task_group.css;
7547 }
7548
7549 parent = cgroup_tg(cgrp->parent);
7550 tg = sched_create_group(parent);
7551 if (IS_ERR(tg))
7552 return ERR_PTR(-ENOMEM);
7553
7554 return &tg->css;
7555 }
7556
7557 static void
7558 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7559 {
7560 struct task_group *tg = cgroup_tg(cgrp);
7561
7562 sched_destroy_group(tg);
7563 }
7564
7565 static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7566 struct cgroup_taskset *tset)
7567 {
7568 struct task_struct *task;
7569
7570 cgroup_taskset_for_each(task, cgrp, tset) {
7571 #ifdef CONFIG_RT_GROUP_SCHED
7572 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7573 return -EINVAL;
7574 #else
7575 /* We don't support RT-tasks being in separate groups */
7576 if (task->sched_class != &fair_sched_class)
7577 return -EINVAL;
7578 #endif
7579 }
7580 return 0;
7581 }
7582
7583 static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7584 struct cgroup_taskset *tset)
7585 {
7586 struct task_struct *task;
7587
7588 cgroup_taskset_for_each(task, cgrp, tset)
7589 sched_move_task(task);
7590 }
7591
7592 static void
7593 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7594 struct cgroup *old_cgrp, struct task_struct *task)
7595 {
7596 /*
7597 * cgroup_exit() is called in the copy_process() failure path.
7598 * Ignore this case since the task hasn't ran yet, this avoids
7599 * trying to poke a half freed task state from generic code.
7600 */
7601 if (!(task->flags & PF_EXITING))
7602 return;
7603
7604 sched_move_task(task);
7605 }
7606
7607 #ifdef CONFIG_FAIR_GROUP_SCHED
7608 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7609 u64 shareval)
7610 {
7611 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7612 }
7613
7614 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7615 {
7616 struct task_group *tg = cgroup_tg(cgrp);
7617
7618 return (u64) scale_load_down(tg->shares);
7619 }
7620
7621 #ifdef CONFIG_CFS_BANDWIDTH
7622 static DEFINE_MUTEX(cfs_constraints_mutex);
7623
7624 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7625 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7626
7627 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7628
7629 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7630 {
7631 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7632 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7633
7634 if (tg == &root_task_group)
7635 return -EINVAL;
7636
7637 /*
7638 * Ensure we have at some amount of bandwidth every period. This is
7639 * to prevent reaching a state of large arrears when throttled via
7640 * entity_tick() resulting in prolonged exit starvation.
7641 */
7642 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7643 return -EINVAL;
7644
7645 /*
7646 * Likewise, bound things on the otherside by preventing insane quota
7647 * periods. This also allows us to normalize in computing quota
7648 * feasibility.
7649 */
7650 if (period > max_cfs_quota_period)
7651 return -EINVAL;
7652
7653 mutex_lock(&cfs_constraints_mutex);
7654 ret = __cfs_schedulable(tg, period, quota);
7655 if (ret)
7656 goto out_unlock;
7657
7658 runtime_enabled = quota != RUNTIME_INF;
7659 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7660 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7661 raw_spin_lock_irq(&cfs_b->lock);
7662 cfs_b->period = ns_to_ktime(period);
7663 cfs_b->quota = quota;
7664
7665 __refill_cfs_bandwidth_runtime(cfs_b);
7666 /* restart the period timer (if active) to handle new period expiry */
7667 if (runtime_enabled && cfs_b->timer_active) {
7668 /* force a reprogram */
7669 cfs_b->timer_active = 0;
7670 __start_cfs_bandwidth(cfs_b);
7671 }
7672 raw_spin_unlock_irq(&cfs_b->lock);
7673
7674 for_each_possible_cpu(i) {
7675 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7676 struct rq *rq = cfs_rq->rq;
7677
7678 raw_spin_lock_irq(&rq->lock);
7679 cfs_rq->runtime_enabled = runtime_enabled;
7680 cfs_rq->runtime_remaining = 0;
7681
7682 if (cfs_rq->throttled)
7683 unthrottle_cfs_rq(cfs_rq);
7684 raw_spin_unlock_irq(&rq->lock);
7685 }
7686 out_unlock:
7687 mutex_unlock(&cfs_constraints_mutex);
7688
7689 return ret;
7690 }
7691
7692 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7693 {
7694 u64 quota, period;
7695
7696 period = ktime_to_ns(tg->cfs_bandwidth.period);
7697 if (cfs_quota_us < 0)
7698 quota = RUNTIME_INF;
7699 else
7700 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7701
7702 return tg_set_cfs_bandwidth(tg, period, quota);
7703 }
7704
7705 long tg_get_cfs_quota(struct task_group *tg)
7706 {
7707 u64 quota_us;
7708
7709 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7710 return -1;
7711
7712 quota_us = tg->cfs_bandwidth.quota;
7713 do_div(quota_us, NSEC_PER_USEC);
7714
7715 return quota_us;
7716 }
7717
7718 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7719 {
7720 u64 quota, period;
7721
7722 period = (u64)cfs_period_us * NSEC_PER_USEC;
7723 quota = tg->cfs_bandwidth.quota;
7724
7725 return tg_set_cfs_bandwidth(tg, period, quota);
7726 }
7727
7728 long tg_get_cfs_period(struct task_group *tg)
7729 {
7730 u64 cfs_period_us;
7731
7732 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7733 do_div(cfs_period_us, NSEC_PER_USEC);
7734
7735 return cfs_period_us;
7736 }
7737
7738 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7739 {
7740 return tg_get_cfs_quota(cgroup_tg(cgrp));
7741 }
7742
7743 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7744 s64 cfs_quota_us)
7745 {
7746 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7747 }
7748
7749 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7750 {
7751 return tg_get_cfs_period(cgroup_tg(cgrp));
7752 }
7753
7754 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7755 u64 cfs_period_us)
7756 {
7757 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7758 }
7759
7760 struct cfs_schedulable_data {
7761 struct task_group *tg;
7762 u64 period, quota;
7763 };
7764
7765 /*
7766 * normalize group quota/period to be quota/max_period
7767 * note: units are usecs
7768 */
7769 static u64 normalize_cfs_quota(struct task_group *tg,
7770 struct cfs_schedulable_data *d)
7771 {
7772 u64 quota, period;
7773
7774 if (tg == d->tg) {
7775 period = d->period;
7776 quota = d->quota;
7777 } else {
7778 period = tg_get_cfs_period(tg);
7779 quota = tg_get_cfs_quota(tg);
7780 }
7781
7782 /* note: these should typically be equivalent */
7783 if (quota == RUNTIME_INF || quota == -1)
7784 return RUNTIME_INF;
7785
7786 return to_ratio(period, quota);
7787 }
7788
7789 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7790 {
7791 struct cfs_schedulable_data *d = data;
7792 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7793 s64 quota = 0, parent_quota = -1;
7794
7795 if (!tg->parent) {
7796 quota = RUNTIME_INF;
7797 } else {
7798 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7799
7800 quota = normalize_cfs_quota(tg, d);
7801 parent_quota = parent_b->hierarchal_quota;
7802
7803 /*
7804 * ensure max(child_quota) <= parent_quota, inherit when no
7805 * limit is set
7806 */
7807 if (quota == RUNTIME_INF)
7808 quota = parent_quota;
7809 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7810 return -EINVAL;
7811 }
7812 cfs_b->hierarchal_quota = quota;
7813
7814 return 0;
7815 }
7816
7817 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7818 {
7819 int ret;
7820 struct cfs_schedulable_data data = {
7821 .tg = tg,
7822 .period = period,
7823 .quota = quota,
7824 };
7825
7826 if (quota != RUNTIME_INF) {
7827 do_div(data.period, NSEC_PER_USEC);
7828 do_div(data.quota, NSEC_PER_USEC);
7829 }
7830
7831 rcu_read_lock();
7832 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7833 rcu_read_unlock();
7834
7835 return ret;
7836 }
7837
7838 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7839 struct cgroup_map_cb *cb)
7840 {
7841 struct task_group *tg = cgroup_tg(cgrp);
7842 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7843
7844 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7845 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7846 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7847
7848 return 0;
7849 }
7850 #endif /* CONFIG_CFS_BANDWIDTH */
7851 #endif /* CONFIG_FAIR_GROUP_SCHED */
7852
7853 #ifdef CONFIG_RT_GROUP_SCHED
7854 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7855 s64 val)
7856 {
7857 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7858 }
7859
7860 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7861 {
7862 return sched_group_rt_runtime(cgroup_tg(cgrp));
7863 }
7864
7865 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7866 u64 rt_period_us)
7867 {
7868 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7869 }
7870
7871 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7872 {
7873 return sched_group_rt_period(cgroup_tg(cgrp));
7874 }
7875 #endif /* CONFIG_RT_GROUP_SCHED */
7876
7877 static struct cftype cpu_files[] = {
7878 #ifdef CONFIG_FAIR_GROUP_SCHED
7879 {
7880 .name = "shares",
7881 .read_u64 = cpu_shares_read_u64,
7882 .write_u64 = cpu_shares_write_u64,
7883 },
7884 #endif
7885 #ifdef CONFIG_CFS_BANDWIDTH
7886 {
7887 .name = "cfs_quota_us",
7888 .read_s64 = cpu_cfs_quota_read_s64,
7889 .write_s64 = cpu_cfs_quota_write_s64,
7890 },
7891 {
7892 .name = "cfs_period_us",
7893 .read_u64 = cpu_cfs_period_read_u64,
7894 .write_u64 = cpu_cfs_period_write_u64,
7895 },
7896 {
7897 .name = "stat",
7898 .read_map = cpu_stats_show,
7899 },
7900 #endif
7901 #ifdef CONFIG_RT_GROUP_SCHED
7902 {
7903 .name = "rt_runtime_us",
7904 .read_s64 = cpu_rt_runtime_read,
7905 .write_s64 = cpu_rt_runtime_write,
7906 },
7907 {
7908 .name = "rt_period_us",
7909 .read_u64 = cpu_rt_period_read_uint,
7910 .write_u64 = cpu_rt_period_write_uint,
7911 },
7912 #endif
7913 };
7914
7915 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7916 {
7917 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7918 }
7919
7920 struct cgroup_subsys cpu_cgroup_subsys = {
7921 .name = "cpu",
7922 .create = cpu_cgroup_create,
7923 .destroy = cpu_cgroup_destroy,
7924 .can_attach = cpu_cgroup_can_attach,
7925 .attach = cpu_cgroup_attach,
7926 .exit = cpu_cgroup_exit,
7927 .populate = cpu_cgroup_populate,
7928 .subsys_id = cpu_cgroup_subsys_id,
7929 .early_init = 1,
7930 };
7931
7932 #endif /* CONFIG_CGROUP_SCHED */
7933
7934 #ifdef CONFIG_CGROUP_CPUACCT
7935
7936 /*
7937 * CPU accounting code for task groups.
7938 *
7939 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7940 * (balbir@in.ibm.com).
7941 */
7942
7943 /* create a new cpu accounting group */
7944 static struct cgroup_subsys_state *cpuacct_create(
7945 struct cgroup_subsys *ss, struct cgroup *cgrp)
7946 {
7947 struct cpuacct *ca;
7948
7949 if (!cgrp->parent)
7950 return &root_cpuacct.css;
7951
7952 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7953 if (!ca)
7954 goto out;
7955
7956 ca->cpuusage = alloc_percpu(u64);
7957 if (!ca->cpuusage)
7958 goto out_free_ca;
7959
7960 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7961 if (!ca->cpustat)
7962 goto out_free_cpuusage;
7963
7964 return &ca->css;
7965
7966 out_free_cpuusage:
7967 free_percpu(ca->cpuusage);
7968 out_free_ca:
7969 kfree(ca);
7970 out:
7971 return ERR_PTR(-ENOMEM);
7972 }
7973
7974 /* destroy an existing cpu accounting group */
7975 static void
7976 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7977 {
7978 struct cpuacct *ca = cgroup_ca(cgrp);
7979
7980 free_percpu(ca->cpustat);
7981 free_percpu(ca->cpuusage);
7982 kfree(ca);
7983 }
7984
7985 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7986 {
7987 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7988 u64 data;
7989
7990 #ifndef CONFIG_64BIT
7991 /*
7992 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7993 */
7994 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7995 data = *cpuusage;
7996 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7997 #else
7998 data = *cpuusage;
7999 #endif
8000
8001 return data;
8002 }
8003
8004 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8005 {
8006 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8007
8008 #ifndef CONFIG_64BIT
8009 /*
8010 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8011 */
8012 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8013 *cpuusage = val;
8014 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8015 #else
8016 *cpuusage = val;
8017 #endif
8018 }
8019
8020 /* return total cpu usage (in nanoseconds) of a group */
8021 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8022 {
8023 struct cpuacct *ca = cgroup_ca(cgrp);
8024 u64 totalcpuusage = 0;
8025 int i;
8026
8027 for_each_present_cpu(i)
8028 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8029
8030 return totalcpuusage;
8031 }
8032
8033 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8034 u64 reset)
8035 {
8036 struct cpuacct *ca = cgroup_ca(cgrp);
8037 int err = 0;
8038 int i;
8039
8040 if (reset) {
8041 err = -EINVAL;
8042 goto out;
8043 }
8044
8045 for_each_present_cpu(i)
8046 cpuacct_cpuusage_write(ca, i, 0);
8047
8048 out:
8049 return err;
8050 }
8051
8052 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8053 struct seq_file *m)
8054 {
8055 struct cpuacct *ca = cgroup_ca(cgroup);
8056 u64 percpu;
8057 int i;
8058
8059 for_each_present_cpu(i) {
8060 percpu = cpuacct_cpuusage_read(ca, i);
8061 seq_printf(m, "%llu ", (unsigned long long) percpu);
8062 }
8063 seq_printf(m, "\n");
8064 return 0;
8065 }
8066
8067 static const char *cpuacct_stat_desc[] = {
8068 [CPUACCT_STAT_USER] = "user",
8069 [CPUACCT_STAT_SYSTEM] = "system",
8070 };
8071
8072 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8073 struct cgroup_map_cb *cb)
8074 {
8075 struct cpuacct *ca = cgroup_ca(cgrp);
8076 int cpu;
8077 s64 val = 0;
8078
8079 for_each_online_cpu(cpu) {
8080 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8081 val += kcpustat->cpustat[CPUTIME_USER];
8082 val += kcpustat->cpustat[CPUTIME_NICE];
8083 }
8084 val = cputime64_to_clock_t(val);
8085 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8086
8087 val = 0;
8088 for_each_online_cpu(cpu) {
8089 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8090 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8091 val += kcpustat->cpustat[CPUTIME_IRQ];
8092 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8093 }
8094
8095 val = cputime64_to_clock_t(val);
8096 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8097
8098 return 0;
8099 }
8100
8101 static struct cftype files[] = {
8102 {
8103 .name = "usage",
8104 .read_u64 = cpuusage_read,
8105 .write_u64 = cpuusage_write,
8106 },
8107 {
8108 .name = "usage_percpu",
8109 .read_seq_string = cpuacct_percpu_seq_read,
8110 },
8111 {
8112 .name = "stat",
8113 .read_map = cpuacct_stats_show,
8114 },
8115 };
8116
8117 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8118 {
8119 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8120 }
8121
8122 /*
8123 * charge this task's execution time to its accounting group.
8124 *
8125 * called with rq->lock held.
8126 */
8127 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8128 {
8129 struct cpuacct *ca;
8130 int cpu;
8131
8132 if (unlikely(!cpuacct_subsys.active))
8133 return;
8134
8135 cpu = task_cpu(tsk);
8136
8137 rcu_read_lock();
8138
8139 ca = task_ca(tsk);
8140
8141 for (; ca; ca = parent_ca(ca)) {
8142 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8143 *cpuusage += cputime;
8144 }
8145
8146 rcu_read_unlock();
8147 }
8148
8149 struct cgroup_subsys cpuacct_subsys = {
8150 .name = "cpuacct",
8151 .create = cpuacct_create,
8152 .destroy = cpuacct_destroy,
8153 .populate = cpuacct_populate,
8154 .subsys_id = cpuacct_subsys_id,
8155 };
8156 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.223478 seconds and 5 git commands to generate.