sched/core: Remove unused argument from sched_class::task_move_group
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
129 #name ,
130
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134
135 #undef SCHED_FEAT
136
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 int i;
140
141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
145 }
146 seq_puts(m, "\n");
147
148 return 0;
149 }
150
151 #ifdef HAVE_JUMP_LABEL
152
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162
163 #undef SCHED_FEAT
164
165 static void sched_feat_disable(int i)
166 {
167 static_key_disable(&sched_feat_keys[i]);
168 }
169
170 static void sched_feat_enable(int i)
171 {
172 static_key_enable(&sched_feat_keys[i]);
173 }
174 #else
175 static void sched_feat_disable(int i) { };
176 static void sched_feat_enable(int i) { };
177 #endif /* HAVE_JUMP_LABEL */
178
179 static int sched_feat_set(char *cmp)
180 {
181 int i;
182 int neg = 0;
183
184 if (strncmp(cmp, "NO_", 3) == 0) {
185 neg = 1;
186 cmp += 3;
187 }
188
189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
191 if (neg) {
192 sysctl_sched_features &= ~(1UL << i);
193 sched_feat_disable(i);
194 } else {
195 sysctl_sched_features |= (1UL << i);
196 sched_feat_enable(i);
197 }
198 break;
199 }
200 }
201
202 return i;
203 }
204
205 static ssize_t
206 sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208 {
209 char buf[64];
210 char *cmp;
211 int i;
212 struct inode *inode;
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
226 i = sched_feat_set(cmp);
227 mutex_unlock(&inode->i_mutex);
228 if (i == __SCHED_FEAT_NR)
229 return -EINVAL;
230
231 *ppos += cnt;
232
233 return cnt;
234 }
235
236 static int sched_feat_open(struct inode *inode, struct file *filp)
237 {
238 return single_open(filp, sched_feat_show, NULL);
239 }
240
241 static const struct file_operations sched_feat_fops = {
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
247 };
248
249 static __init int sched_init_debug(void)
250 {
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255 }
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
258
259 /*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
265 /*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
273 /*
274 * period over which we measure -rt task cpu usage in us.
275 * default: 1s
276 */
277 unsigned int sysctl_sched_rt_period = 1000000;
278
279 __read_mostly int scheduler_running;
280
281 /*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285 int sysctl_sched_rt_runtime = 950000;
286
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map;
289
290 /*
291 * this_rq_lock - lock this runqueue and disable interrupts.
292 */
293 static struct rq *this_rq_lock(void)
294 __acquires(rq->lock)
295 {
296 struct rq *rq;
297
298 local_irq_disable();
299 rq = this_rq();
300 raw_spin_lock(&rq->lock);
301
302 return rq;
303 }
304
305 #ifdef CONFIG_SCHED_HRTICK
306 /*
307 * Use HR-timers to deliver accurate preemption points.
308 */
309
310 static void hrtick_clear(struct rq *rq)
311 {
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314 }
315
316 /*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320 static enum hrtimer_restart hrtick(struct hrtimer *timer)
321 {
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
326 raw_spin_lock(&rq->lock);
327 update_rq_clock(rq);
328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329 raw_spin_unlock(&rq->lock);
330
331 return HRTIMER_NORESTART;
332 }
333
334 #ifdef CONFIG_SMP
335
336 static void __hrtick_restart(struct rq *rq)
337 {
338 struct hrtimer *timer = &rq->hrtick_timer;
339
340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
341 }
342
343 /*
344 * called from hardirq (IPI) context
345 */
346 static void __hrtick_start(void *arg)
347 {
348 struct rq *rq = arg;
349
350 raw_spin_lock(&rq->lock);
351 __hrtick_restart(rq);
352 rq->hrtick_csd_pending = 0;
353 raw_spin_unlock(&rq->lock);
354 }
355
356 /*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
361 void hrtick_start(struct rq *rq, u64 delay)
362 {
363 struct hrtimer *timer = &rq->hrtick_timer;
364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
373
374 hrtimer_set_expires(timer, time);
375
376 if (rq == this_rq()) {
377 __hrtick_restart(rq);
378 } else if (!rq->hrtick_csd_pending) {
379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 rq->hrtick_csd_pending = 1;
381 }
382 }
383
384 static int
385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386 {
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
396 hrtick_clear(cpu_rq(cpu));
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401 }
402
403 static __init void init_hrtick(void)
404 {
405 hotcpu_notifier(hotplug_hrtick, 0);
406 }
407 #else
408 /*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
413 void hrtick_start(struct rq *rq, u64 delay)
414 {
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
422 }
423
424 static inline void init_hrtick(void)
425 {
426 }
427 #endif /* CONFIG_SMP */
428
429 static void init_rq_hrtick(struct rq *rq)
430 {
431 #ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
433
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437 #endif
438
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
441 }
442 #else /* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq *rq)
444 {
445 }
446
447 static inline void init_rq_hrtick(struct rq *rq)
448 {
449 }
450
451 static inline void init_hrtick(void)
452 {
453 }
454 #endif /* CONFIG_SCHED_HRTICK */
455
456 /*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459 #define fetch_or(ptr, val) \
460 ({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468 })
469
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 /*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476 static bool set_nr_and_not_polling(struct task_struct *p)
477 {
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480 }
481
482 /*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488 static bool set_nr_if_polling(struct task_struct *p)
489 {
490 struct thread_info *ti = task_thread_info(p);
491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504 }
505
506 #else
507 static bool set_nr_and_not_polling(struct task_struct *p)
508 {
509 set_tsk_need_resched(p);
510 return true;
511 }
512
513 #ifdef CONFIG_SMP
514 static bool set_nr_if_polling(struct task_struct *p)
515 {
516 return false;
517 }
518 #endif
519 #endif
520
521 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522 {
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543 }
544
545 void wake_up_q(struct wake_q_head *head)
546 {
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565 }
566
567 /*
568 * resched_curr - mark rq's current task 'to be rescheduled now'.
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
574 void resched_curr(struct rq *rq)
575 {
576 struct task_struct *curr = rq->curr;
577 int cpu;
578
579 lockdep_assert_held(&rq->lock);
580
581 if (test_tsk_need_resched(curr))
582 return;
583
584 cpu = cpu_of(rq);
585
586 if (cpu == smp_processor_id()) {
587 set_tsk_need_resched(curr);
588 set_preempt_need_resched();
589 return;
590 }
591
592 if (set_nr_and_not_polling(curr))
593 smp_send_reschedule(cpu);
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
596 }
597
598 void resched_cpu(int cpu)
599 {
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
604 return;
605 resched_curr(rq);
606 raw_spin_unlock_irqrestore(&rq->lock, flags);
607 }
608
609 #ifdef CONFIG_SMP
610 #ifdef CONFIG_NO_HZ_COMMON
611 /*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
619 int get_nohz_timer_target(void)
620 {
621 int i, cpu = smp_processor_id();
622 struct sched_domain *sd;
623
624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 return cpu;
626
627 rcu_read_lock();
628 for_each_domain(cpu, sd) {
629 for_each_cpu(i, sched_domain_span(sd)) {
630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 cpu = i;
632 goto unlock;
633 }
634 }
635 }
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
639 unlock:
640 rcu_read_unlock();
641 return cpu;
642 }
643 /*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
653 static void wake_up_idle_cpu(int cpu)
654 {
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
660 if (set_nr_and_not_polling(rq->idle))
661 smp_send_reschedule(cpu);
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
664 }
665
666 static bool wake_up_full_nohz_cpu(int cpu)
667 {
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
674 if (tick_nohz_full_cpu(cpu)) {
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
677 tick_nohz_full_kick_cpu(cpu);
678 return true;
679 }
680
681 return false;
682 }
683
684 void wake_up_nohz_cpu(int cpu)
685 {
686 if (!wake_up_full_nohz_cpu(cpu))
687 wake_up_idle_cpu(cpu);
688 }
689
690 static inline bool got_nohz_idle_kick(void)
691 {
692 int cpu = smp_processor_id();
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
706 }
707
708 #else /* CONFIG_NO_HZ_COMMON */
709
710 static inline bool got_nohz_idle_kick(void)
711 {
712 return false;
713 }
714
715 #endif /* CONFIG_NO_HZ_COMMON */
716
717 #ifdef CONFIG_NO_HZ_FULL
718 bool sched_can_stop_tick(void)
719 {
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
742 if (this_rq()->nr_running > 1)
743 return false;
744
745 return true;
746 }
747 #endif /* CONFIG_NO_HZ_FULL */
748
749 void sched_avg_update(struct rq *rq)
750 {
751 s64 period = sched_avg_period();
752
753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
763 }
764
765 #endif /* CONFIG_SMP */
766
767 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 /*
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
774 */
775 int walk_tg_tree_from(struct task_group *from,
776 tg_visitor down, tg_visitor up, void *data)
777 {
778 struct task_group *parent, *child;
779 int ret;
780
781 parent = from;
782
783 down:
784 ret = (*down)(parent, data);
785 if (ret)
786 goto out;
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791 up:
792 continue;
793 }
794 ret = (*up)(parent, data);
795 if (ret || parent == from)
796 goto out;
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
802 out:
803 return ret;
804 }
805
806 int tg_nop(struct task_group *tg, void *data)
807 {
808 return 0;
809 }
810 #endif
811
812 static void set_load_weight(struct task_struct *p)
813 {
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
820 if (p->policy == SCHED_IDLE) {
821 load->weight = scale_load(WEIGHT_IDLEPRIO);
822 load->inv_weight = WMULT_IDLEPRIO;
823 return;
824 }
825
826 load->weight = scale_load(prio_to_weight[prio]);
827 load->inv_weight = prio_to_wmult[prio];
828 }
829
830 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831 {
832 update_rq_clock(rq);
833 sched_info_queued(rq, p);
834 p->sched_class->enqueue_task(rq, p, flags);
835 }
836
837 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
838 {
839 update_rq_clock(rq);
840 sched_info_dequeued(rq, p);
841 p->sched_class->dequeue_task(rq, p, flags);
842 }
843
844 void activate_task(struct rq *rq, struct task_struct *p, int flags)
845 {
846 if (task_contributes_to_load(p))
847 rq->nr_uninterruptible--;
848
849 enqueue_task(rq, p, flags);
850 }
851
852 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
853 {
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible++;
856
857 dequeue_task(rq, p, flags);
858 }
859
860 static void update_rq_clock_task(struct rq *rq, s64 delta)
861 {
862 /*
863 * In theory, the compile should just see 0 here, and optimize out the call
864 * to sched_rt_avg_update. But I don't trust it...
865 */
866 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 s64 steal = 0, irq_delta = 0;
868 #endif
869 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
870 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
871
872 /*
873 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 * this case when a previous update_rq_clock() happened inside a
875 * {soft,}irq region.
876 *
877 * When this happens, we stop ->clock_task and only update the
878 * prev_irq_time stamp to account for the part that fit, so that a next
879 * update will consume the rest. This ensures ->clock_task is
880 * monotonic.
881 *
882 * It does however cause some slight miss-attribution of {soft,}irq
883 * time, a more accurate solution would be to update the irq_time using
884 * the current rq->clock timestamp, except that would require using
885 * atomic ops.
886 */
887 if (irq_delta > delta)
888 irq_delta = delta;
889
890 rq->prev_irq_time += irq_delta;
891 delta -= irq_delta;
892 #endif
893 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
894 if (static_key_false((&paravirt_steal_rq_enabled))) {
895 steal = paravirt_steal_clock(cpu_of(rq));
896 steal -= rq->prev_steal_time_rq;
897
898 if (unlikely(steal > delta))
899 steal = delta;
900
901 rq->prev_steal_time_rq += steal;
902 delta -= steal;
903 }
904 #endif
905
906 rq->clock_task += delta;
907
908 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
909 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
910 sched_rt_avg_update(rq, irq_delta + steal);
911 #endif
912 }
913
914 void sched_set_stop_task(int cpu, struct task_struct *stop)
915 {
916 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 struct task_struct *old_stop = cpu_rq(cpu)->stop;
918
919 if (stop) {
920 /*
921 * Make it appear like a SCHED_FIFO task, its something
922 * userspace knows about and won't get confused about.
923 *
924 * Also, it will make PI more or less work without too
925 * much confusion -- but then, stop work should not
926 * rely on PI working anyway.
927 */
928 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929
930 stop->sched_class = &stop_sched_class;
931 }
932
933 cpu_rq(cpu)->stop = stop;
934
935 if (old_stop) {
936 /*
937 * Reset it back to a normal scheduling class so that
938 * it can die in pieces.
939 */
940 old_stop->sched_class = &rt_sched_class;
941 }
942 }
943
944 /*
945 * __normal_prio - return the priority that is based on the static prio
946 */
947 static inline int __normal_prio(struct task_struct *p)
948 {
949 return p->static_prio;
950 }
951
952 /*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
959 static inline int normal_prio(struct task_struct *p)
960 {
961 int prio;
962
963 if (task_has_dl_policy(p))
964 prio = MAX_DL_PRIO-1;
965 else if (task_has_rt_policy(p))
966 prio = MAX_RT_PRIO-1 - p->rt_priority;
967 else
968 prio = __normal_prio(p);
969 return prio;
970 }
971
972 /*
973 * Calculate the current priority, i.e. the priority
974 * taken into account by the scheduler. This value might
975 * be boosted by RT tasks, or might be boosted by
976 * interactivity modifiers. Will be RT if the task got
977 * RT-boosted. If not then it returns p->normal_prio.
978 */
979 static int effective_prio(struct task_struct *p)
980 {
981 p->normal_prio = normal_prio(p);
982 /*
983 * If we are RT tasks or we were boosted to RT priority,
984 * keep the priority unchanged. Otherwise, update priority
985 * to the normal priority:
986 */
987 if (!rt_prio(p->prio))
988 return p->normal_prio;
989 return p->prio;
990 }
991
992 /**
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
995 *
996 * Return: 1 if the task is currently executing. 0 otherwise.
997 */
998 inline int task_curr(const struct task_struct *p)
999 {
1000 return cpu_curr(task_cpu(p)) == p;
1001 }
1002
1003 /*
1004 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1005 * use the balance_callback list if you want balancing.
1006 *
1007 * this means any call to check_class_changed() must be followed by a call to
1008 * balance_callback().
1009 */
1010 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1011 const struct sched_class *prev_class,
1012 int oldprio)
1013 {
1014 if (prev_class != p->sched_class) {
1015 if (prev_class->switched_from)
1016 prev_class->switched_from(rq, p);
1017
1018 p->sched_class->switched_to(rq, p);
1019 } else if (oldprio != p->prio || dl_task(p))
1020 p->sched_class->prio_changed(rq, p, oldprio);
1021 }
1022
1023 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 {
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
1034 resched_curr(rq);
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045 rq_clock_skip_update(rq, true);
1046 }
1047
1048 #ifdef CONFIG_SMP
1049 /*
1050 * This is how migration works:
1051 *
1052 * 1) we invoke migration_cpu_stop() on the target CPU using
1053 * stop_one_cpu().
1054 * 2) stopper starts to run (implicitly forcing the migrated thread
1055 * off the CPU)
1056 * 3) it checks whether the migrated task is still in the wrong runqueue.
1057 * 4) if it's in the wrong runqueue then the migration thread removes
1058 * it and puts it into the right queue.
1059 * 5) stopper completes and stop_one_cpu() returns and the migration
1060 * is done.
1061 */
1062
1063 /*
1064 * move_queued_task - move a queued task to new rq.
1065 *
1066 * Returns (locked) new rq. Old rq's lock is released.
1067 */
1068 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1069 {
1070 lockdep_assert_held(&rq->lock);
1071
1072 dequeue_task(rq, p, 0);
1073 p->on_rq = TASK_ON_RQ_MIGRATING;
1074 set_task_cpu(p, new_cpu);
1075 raw_spin_unlock(&rq->lock);
1076
1077 rq = cpu_rq(new_cpu);
1078
1079 raw_spin_lock(&rq->lock);
1080 BUG_ON(task_cpu(p) != new_cpu);
1081 p->on_rq = TASK_ON_RQ_QUEUED;
1082 enqueue_task(rq, p, 0);
1083 check_preempt_curr(rq, p, 0);
1084
1085 return rq;
1086 }
1087
1088 struct migration_arg {
1089 struct task_struct *task;
1090 int dest_cpu;
1091 };
1092
1093 /*
1094 * Move (not current) task off this cpu, onto dest cpu. We're doing
1095 * this because either it can't run here any more (set_cpus_allowed()
1096 * away from this CPU, or CPU going down), or because we're
1097 * attempting to rebalance this task on exec (sched_exec).
1098 *
1099 * So we race with normal scheduler movements, but that's OK, as long
1100 * as the task is no longer on this CPU.
1101 */
1102 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1103 {
1104 if (unlikely(!cpu_active(dest_cpu)))
1105 return rq;
1106
1107 /* Affinity changed (again). */
1108 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1109 return rq;
1110
1111 rq = move_queued_task(rq, p, dest_cpu);
1112
1113 return rq;
1114 }
1115
1116 /*
1117 * migration_cpu_stop - this will be executed by a highprio stopper thread
1118 * and performs thread migration by bumping thread off CPU then
1119 * 'pushing' onto another runqueue.
1120 */
1121 static int migration_cpu_stop(void *data)
1122 {
1123 struct migration_arg *arg = data;
1124 struct task_struct *p = arg->task;
1125 struct rq *rq = this_rq();
1126
1127 /*
1128 * The original target cpu might have gone down and we might
1129 * be on another cpu but it doesn't matter.
1130 */
1131 local_irq_disable();
1132 /*
1133 * We need to explicitly wake pending tasks before running
1134 * __migrate_task() such that we will not miss enforcing cpus_allowed
1135 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1136 */
1137 sched_ttwu_pending();
1138
1139 raw_spin_lock(&p->pi_lock);
1140 raw_spin_lock(&rq->lock);
1141 /*
1142 * If task_rq(p) != rq, it cannot be migrated here, because we're
1143 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1144 * we're holding p->pi_lock.
1145 */
1146 if (task_rq(p) == rq && task_on_rq_queued(p))
1147 rq = __migrate_task(rq, p, arg->dest_cpu);
1148 raw_spin_unlock(&rq->lock);
1149 raw_spin_unlock(&p->pi_lock);
1150
1151 local_irq_enable();
1152 return 0;
1153 }
1154
1155 /*
1156 * sched_class::set_cpus_allowed must do the below, but is not required to
1157 * actually call this function.
1158 */
1159 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1160 {
1161 cpumask_copy(&p->cpus_allowed, new_mask);
1162 p->nr_cpus_allowed = cpumask_weight(new_mask);
1163 }
1164
1165 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1166 {
1167 struct rq *rq = task_rq(p);
1168 bool queued, running;
1169
1170 lockdep_assert_held(&p->pi_lock);
1171
1172 queued = task_on_rq_queued(p);
1173 running = task_current(rq, p);
1174
1175 if (queued) {
1176 /*
1177 * Because __kthread_bind() calls this on blocked tasks without
1178 * holding rq->lock.
1179 */
1180 lockdep_assert_held(&rq->lock);
1181 dequeue_task(rq, p, 0);
1182 }
1183 if (running)
1184 put_prev_task(rq, p);
1185
1186 p->sched_class->set_cpus_allowed(p, new_mask);
1187
1188 if (running)
1189 p->sched_class->set_curr_task(rq);
1190 if (queued)
1191 enqueue_task(rq, p, 0);
1192 }
1193
1194 /*
1195 * Change a given task's CPU affinity. Migrate the thread to a
1196 * proper CPU and schedule it away if the CPU it's executing on
1197 * is removed from the allowed bitmask.
1198 *
1199 * NOTE: the caller must have a valid reference to the task, the
1200 * task must not exit() & deallocate itself prematurely. The
1201 * call is not atomic; no spinlocks may be held.
1202 */
1203 static int __set_cpus_allowed_ptr(struct task_struct *p,
1204 const struct cpumask *new_mask, bool check)
1205 {
1206 unsigned long flags;
1207 struct rq *rq;
1208 unsigned int dest_cpu;
1209 int ret = 0;
1210
1211 rq = task_rq_lock(p, &flags);
1212
1213 /*
1214 * Must re-check here, to close a race against __kthread_bind(),
1215 * sched_setaffinity() is not guaranteed to observe the flag.
1216 */
1217 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1218 ret = -EINVAL;
1219 goto out;
1220 }
1221
1222 if (cpumask_equal(&p->cpus_allowed, new_mask))
1223 goto out;
1224
1225 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1226 ret = -EINVAL;
1227 goto out;
1228 }
1229
1230 do_set_cpus_allowed(p, new_mask);
1231
1232 /* Can the task run on the task's current CPU? If so, we're done */
1233 if (cpumask_test_cpu(task_cpu(p), new_mask))
1234 goto out;
1235
1236 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1237 if (task_running(rq, p) || p->state == TASK_WAKING) {
1238 struct migration_arg arg = { p, dest_cpu };
1239 /* Need help from migration thread: drop lock and wait. */
1240 task_rq_unlock(rq, p, &flags);
1241 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1242 tlb_migrate_finish(p->mm);
1243 return 0;
1244 } else if (task_on_rq_queued(p)) {
1245 /*
1246 * OK, since we're going to drop the lock immediately
1247 * afterwards anyway.
1248 */
1249 lockdep_unpin_lock(&rq->lock);
1250 rq = move_queued_task(rq, p, dest_cpu);
1251 lockdep_pin_lock(&rq->lock);
1252 }
1253 out:
1254 task_rq_unlock(rq, p, &flags);
1255
1256 return ret;
1257 }
1258
1259 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1260 {
1261 return __set_cpus_allowed_ptr(p, new_mask, false);
1262 }
1263 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1264
1265 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1266 {
1267 #ifdef CONFIG_SCHED_DEBUG
1268 /*
1269 * We should never call set_task_cpu() on a blocked task,
1270 * ttwu() will sort out the placement.
1271 */
1272 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1273 !p->on_rq);
1274
1275 #ifdef CONFIG_LOCKDEP
1276 /*
1277 * The caller should hold either p->pi_lock or rq->lock, when changing
1278 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1279 *
1280 * sched_move_task() holds both and thus holding either pins the cgroup,
1281 * see task_group().
1282 *
1283 * Furthermore, all task_rq users should acquire both locks, see
1284 * task_rq_lock().
1285 */
1286 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1287 lockdep_is_held(&task_rq(p)->lock)));
1288 #endif
1289 #endif
1290
1291 trace_sched_migrate_task(p, new_cpu);
1292
1293 if (task_cpu(p) != new_cpu) {
1294 if (p->sched_class->migrate_task_rq)
1295 p->sched_class->migrate_task_rq(p, new_cpu);
1296 p->se.nr_migrations++;
1297 perf_event_task_migrate(p);
1298 }
1299
1300 __set_task_cpu(p, new_cpu);
1301 }
1302
1303 static void __migrate_swap_task(struct task_struct *p, int cpu)
1304 {
1305 if (task_on_rq_queued(p)) {
1306 struct rq *src_rq, *dst_rq;
1307
1308 src_rq = task_rq(p);
1309 dst_rq = cpu_rq(cpu);
1310
1311 deactivate_task(src_rq, p, 0);
1312 set_task_cpu(p, cpu);
1313 activate_task(dst_rq, p, 0);
1314 check_preempt_curr(dst_rq, p, 0);
1315 } else {
1316 /*
1317 * Task isn't running anymore; make it appear like we migrated
1318 * it before it went to sleep. This means on wakeup we make the
1319 * previous cpu our targer instead of where it really is.
1320 */
1321 p->wake_cpu = cpu;
1322 }
1323 }
1324
1325 struct migration_swap_arg {
1326 struct task_struct *src_task, *dst_task;
1327 int src_cpu, dst_cpu;
1328 };
1329
1330 static int migrate_swap_stop(void *data)
1331 {
1332 struct migration_swap_arg *arg = data;
1333 struct rq *src_rq, *dst_rq;
1334 int ret = -EAGAIN;
1335
1336 src_rq = cpu_rq(arg->src_cpu);
1337 dst_rq = cpu_rq(arg->dst_cpu);
1338
1339 double_raw_lock(&arg->src_task->pi_lock,
1340 &arg->dst_task->pi_lock);
1341 double_rq_lock(src_rq, dst_rq);
1342 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1343 goto unlock;
1344
1345 if (task_cpu(arg->src_task) != arg->src_cpu)
1346 goto unlock;
1347
1348 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1349 goto unlock;
1350
1351 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1352 goto unlock;
1353
1354 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1355 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1356
1357 ret = 0;
1358
1359 unlock:
1360 double_rq_unlock(src_rq, dst_rq);
1361 raw_spin_unlock(&arg->dst_task->pi_lock);
1362 raw_spin_unlock(&arg->src_task->pi_lock);
1363
1364 return ret;
1365 }
1366
1367 /*
1368 * Cross migrate two tasks
1369 */
1370 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1371 {
1372 struct migration_swap_arg arg;
1373 int ret = -EINVAL;
1374
1375 arg = (struct migration_swap_arg){
1376 .src_task = cur,
1377 .src_cpu = task_cpu(cur),
1378 .dst_task = p,
1379 .dst_cpu = task_cpu(p),
1380 };
1381
1382 if (arg.src_cpu == arg.dst_cpu)
1383 goto out;
1384
1385 /*
1386 * These three tests are all lockless; this is OK since all of them
1387 * will be re-checked with proper locks held further down the line.
1388 */
1389 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1390 goto out;
1391
1392 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1393 goto out;
1394
1395 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1396 goto out;
1397
1398 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1399 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1400
1401 out:
1402 return ret;
1403 }
1404
1405 /*
1406 * wait_task_inactive - wait for a thread to unschedule.
1407 *
1408 * If @match_state is nonzero, it's the @p->state value just checked and
1409 * not expected to change. If it changes, i.e. @p might have woken up,
1410 * then return zero. When we succeed in waiting for @p to be off its CPU,
1411 * we return a positive number (its total switch count). If a second call
1412 * a short while later returns the same number, the caller can be sure that
1413 * @p has remained unscheduled the whole time.
1414 *
1415 * The caller must ensure that the task *will* unschedule sometime soon,
1416 * else this function might spin for a *long* time. This function can't
1417 * be called with interrupts off, or it may introduce deadlock with
1418 * smp_call_function() if an IPI is sent by the same process we are
1419 * waiting to become inactive.
1420 */
1421 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1422 {
1423 unsigned long flags;
1424 int running, queued;
1425 unsigned long ncsw;
1426 struct rq *rq;
1427
1428 for (;;) {
1429 /*
1430 * We do the initial early heuristics without holding
1431 * any task-queue locks at all. We'll only try to get
1432 * the runqueue lock when things look like they will
1433 * work out!
1434 */
1435 rq = task_rq(p);
1436
1437 /*
1438 * If the task is actively running on another CPU
1439 * still, just relax and busy-wait without holding
1440 * any locks.
1441 *
1442 * NOTE! Since we don't hold any locks, it's not
1443 * even sure that "rq" stays as the right runqueue!
1444 * But we don't care, since "task_running()" will
1445 * return false if the runqueue has changed and p
1446 * is actually now running somewhere else!
1447 */
1448 while (task_running(rq, p)) {
1449 if (match_state && unlikely(p->state != match_state))
1450 return 0;
1451 cpu_relax();
1452 }
1453
1454 /*
1455 * Ok, time to look more closely! We need the rq
1456 * lock now, to be *sure*. If we're wrong, we'll
1457 * just go back and repeat.
1458 */
1459 rq = task_rq_lock(p, &flags);
1460 trace_sched_wait_task(p);
1461 running = task_running(rq, p);
1462 queued = task_on_rq_queued(p);
1463 ncsw = 0;
1464 if (!match_state || p->state == match_state)
1465 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1466 task_rq_unlock(rq, p, &flags);
1467
1468 /*
1469 * If it changed from the expected state, bail out now.
1470 */
1471 if (unlikely(!ncsw))
1472 break;
1473
1474 /*
1475 * Was it really running after all now that we
1476 * checked with the proper locks actually held?
1477 *
1478 * Oops. Go back and try again..
1479 */
1480 if (unlikely(running)) {
1481 cpu_relax();
1482 continue;
1483 }
1484
1485 /*
1486 * It's not enough that it's not actively running,
1487 * it must be off the runqueue _entirely_, and not
1488 * preempted!
1489 *
1490 * So if it was still runnable (but just not actively
1491 * running right now), it's preempted, and we should
1492 * yield - it could be a while.
1493 */
1494 if (unlikely(queued)) {
1495 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1496
1497 set_current_state(TASK_UNINTERRUPTIBLE);
1498 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1499 continue;
1500 }
1501
1502 /*
1503 * Ahh, all good. It wasn't running, and it wasn't
1504 * runnable, which means that it will never become
1505 * running in the future either. We're all done!
1506 */
1507 break;
1508 }
1509
1510 return ncsw;
1511 }
1512
1513 /***
1514 * kick_process - kick a running thread to enter/exit the kernel
1515 * @p: the to-be-kicked thread
1516 *
1517 * Cause a process which is running on another CPU to enter
1518 * kernel-mode, without any delay. (to get signals handled.)
1519 *
1520 * NOTE: this function doesn't have to take the runqueue lock,
1521 * because all it wants to ensure is that the remote task enters
1522 * the kernel. If the IPI races and the task has been migrated
1523 * to another CPU then no harm is done and the purpose has been
1524 * achieved as well.
1525 */
1526 void kick_process(struct task_struct *p)
1527 {
1528 int cpu;
1529
1530 preempt_disable();
1531 cpu = task_cpu(p);
1532 if ((cpu != smp_processor_id()) && task_curr(p))
1533 smp_send_reschedule(cpu);
1534 preempt_enable();
1535 }
1536 EXPORT_SYMBOL_GPL(kick_process);
1537
1538 /*
1539 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1540 */
1541 static int select_fallback_rq(int cpu, struct task_struct *p)
1542 {
1543 int nid = cpu_to_node(cpu);
1544 const struct cpumask *nodemask = NULL;
1545 enum { cpuset, possible, fail } state = cpuset;
1546 int dest_cpu;
1547
1548 /*
1549 * If the node that the cpu is on has been offlined, cpu_to_node()
1550 * will return -1. There is no cpu on the node, and we should
1551 * select the cpu on the other node.
1552 */
1553 if (nid != -1) {
1554 nodemask = cpumask_of_node(nid);
1555
1556 /* Look for allowed, online CPU in same node. */
1557 for_each_cpu(dest_cpu, nodemask) {
1558 if (!cpu_online(dest_cpu))
1559 continue;
1560 if (!cpu_active(dest_cpu))
1561 continue;
1562 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1563 return dest_cpu;
1564 }
1565 }
1566
1567 for (;;) {
1568 /* Any allowed, online CPU? */
1569 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1570 if (!cpu_online(dest_cpu))
1571 continue;
1572 if (!cpu_active(dest_cpu))
1573 continue;
1574 goto out;
1575 }
1576
1577 switch (state) {
1578 case cpuset:
1579 /* No more Mr. Nice Guy. */
1580 cpuset_cpus_allowed_fallback(p);
1581 state = possible;
1582 break;
1583
1584 case possible:
1585 do_set_cpus_allowed(p, cpu_possible_mask);
1586 state = fail;
1587 break;
1588
1589 case fail:
1590 BUG();
1591 break;
1592 }
1593 }
1594
1595 out:
1596 if (state != cpuset) {
1597 /*
1598 * Don't tell them about moving exiting tasks or
1599 * kernel threads (both mm NULL), since they never
1600 * leave kernel.
1601 */
1602 if (p->mm && printk_ratelimit()) {
1603 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1604 task_pid_nr(p), p->comm, cpu);
1605 }
1606 }
1607
1608 return dest_cpu;
1609 }
1610
1611 /*
1612 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1613 */
1614 static inline
1615 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1616 {
1617 lockdep_assert_held(&p->pi_lock);
1618
1619 if (p->nr_cpus_allowed > 1)
1620 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1621
1622 /*
1623 * In order not to call set_task_cpu() on a blocking task we need
1624 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1625 * cpu.
1626 *
1627 * Since this is common to all placement strategies, this lives here.
1628 *
1629 * [ this allows ->select_task() to simply return task_cpu(p) and
1630 * not worry about this generic constraint ]
1631 */
1632 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1633 !cpu_online(cpu)))
1634 cpu = select_fallback_rq(task_cpu(p), p);
1635
1636 return cpu;
1637 }
1638
1639 static void update_avg(u64 *avg, u64 sample)
1640 {
1641 s64 diff = sample - *avg;
1642 *avg += diff >> 3;
1643 }
1644
1645 #else
1646
1647 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1648 const struct cpumask *new_mask, bool check)
1649 {
1650 return set_cpus_allowed_ptr(p, new_mask);
1651 }
1652
1653 #endif /* CONFIG_SMP */
1654
1655 static void
1656 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1657 {
1658 #ifdef CONFIG_SCHEDSTATS
1659 struct rq *rq = this_rq();
1660
1661 #ifdef CONFIG_SMP
1662 int this_cpu = smp_processor_id();
1663
1664 if (cpu == this_cpu) {
1665 schedstat_inc(rq, ttwu_local);
1666 schedstat_inc(p, se.statistics.nr_wakeups_local);
1667 } else {
1668 struct sched_domain *sd;
1669
1670 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1671 rcu_read_lock();
1672 for_each_domain(this_cpu, sd) {
1673 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1674 schedstat_inc(sd, ttwu_wake_remote);
1675 break;
1676 }
1677 }
1678 rcu_read_unlock();
1679 }
1680
1681 if (wake_flags & WF_MIGRATED)
1682 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1683
1684 #endif /* CONFIG_SMP */
1685
1686 schedstat_inc(rq, ttwu_count);
1687 schedstat_inc(p, se.statistics.nr_wakeups);
1688
1689 if (wake_flags & WF_SYNC)
1690 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1691
1692 #endif /* CONFIG_SCHEDSTATS */
1693 }
1694
1695 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1696 {
1697 activate_task(rq, p, en_flags);
1698 p->on_rq = TASK_ON_RQ_QUEUED;
1699
1700 /* if a worker is waking up, notify workqueue */
1701 if (p->flags & PF_WQ_WORKER)
1702 wq_worker_waking_up(p, cpu_of(rq));
1703 }
1704
1705 /*
1706 * Mark the task runnable and perform wakeup-preemption.
1707 */
1708 static void
1709 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1710 {
1711 check_preempt_curr(rq, p, wake_flags);
1712 p->state = TASK_RUNNING;
1713 trace_sched_wakeup(p);
1714
1715 #ifdef CONFIG_SMP
1716 if (p->sched_class->task_woken) {
1717 /*
1718 * Our task @p is fully woken up and running; so its safe to
1719 * drop the rq->lock, hereafter rq is only used for statistics.
1720 */
1721 lockdep_unpin_lock(&rq->lock);
1722 p->sched_class->task_woken(rq, p);
1723 lockdep_pin_lock(&rq->lock);
1724 }
1725
1726 if (rq->idle_stamp) {
1727 u64 delta = rq_clock(rq) - rq->idle_stamp;
1728 u64 max = 2*rq->max_idle_balance_cost;
1729
1730 update_avg(&rq->avg_idle, delta);
1731
1732 if (rq->avg_idle > max)
1733 rq->avg_idle = max;
1734
1735 rq->idle_stamp = 0;
1736 }
1737 #endif
1738 }
1739
1740 static void
1741 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1742 {
1743 lockdep_assert_held(&rq->lock);
1744
1745 #ifdef CONFIG_SMP
1746 if (p->sched_contributes_to_load)
1747 rq->nr_uninterruptible--;
1748 #endif
1749
1750 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1751 ttwu_do_wakeup(rq, p, wake_flags);
1752 }
1753
1754 /*
1755 * Called in case the task @p isn't fully descheduled from its runqueue,
1756 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1757 * since all we need to do is flip p->state to TASK_RUNNING, since
1758 * the task is still ->on_rq.
1759 */
1760 static int ttwu_remote(struct task_struct *p, int wake_flags)
1761 {
1762 struct rq *rq;
1763 int ret = 0;
1764
1765 rq = __task_rq_lock(p);
1766 if (task_on_rq_queued(p)) {
1767 /* check_preempt_curr() may use rq clock */
1768 update_rq_clock(rq);
1769 ttwu_do_wakeup(rq, p, wake_flags);
1770 ret = 1;
1771 }
1772 __task_rq_unlock(rq);
1773
1774 return ret;
1775 }
1776
1777 #ifdef CONFIG_SMP
1778 void sched_ttwu_pending(void)
1779 {
1780 struct rq *rq = this_rq();
1781 struct llist_node *llist = llist_del_all(&rq->wake_list);
1782 struct task_struct *p;
1783 unsigned long flags;
1784
1785 if (!llist)
1786 return;
1787
1788 raw_spin_lock_irqsave(&rq->lock, flags);
1789 lockdep_pin_lock(&rq->lock);
1790
1791 while (llist) {
1792 p = llist_entry(llist, struct task_struct, wake_entry);
1793 llist = llist_next(llist);
1794 ttwu_do_activate(rq, p, 0);
1795 }
1796
1797 lockdep_unpin_lock(&rq->lock);
1798 raw_spin_unlock_irqrestore(&rq->lock, flags);
1799 }
1800
1801 void scheduler_ipi(void)
1802 {
1803 /*
1804 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1805 * TIF_NEED_RESCHED remotely (for the first time) will also send
1806 * this IPI.
1807 */
1808 preempt_fold_need_resched();
1809
1810 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1811 return;
1812
1813 /*
1814 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1815 * traditionally all their work was done from the interrupt return
1816 * path. Now that we actually do some work, we need to make sure
1817 * we do call them.
1818 *
1819 * Some archs already do call them, luckily irq_enter/exit nest
1820 * properly.
1821 *
1822 * Arguably we should visit all archs and update all handlers,
1823 * however a fair share of IPIs are still resched only so this would
1824 * somewhat pessimize the simple resched case.
1825 */
1826 irq_enter();
1827 sched_ttwu_pending();
1828
1829 /*
1830 * Check if someone kicked us for doing the nohz idle load balance.
1831 */
1832 if (unlikely(got_nohz_idle_kick())) {
1833 this_rq()->idle_balance = 1;
1834 raise_softirq_irqoff(SCHED_SOFTIRQ);
1835 }
1836 irq_exit();
1837 }
1838
1839 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1840 {
1841 struct rq *rq = cpu_rq(cpu);
1842
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
1849 }
1850
1851 void wake_up_if_idle(int cpu)
1852 {
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
1870
1871 out:
1872 rcu_read_unlock();
1873 }
1874
1875 bool cpus_share_cache(int this_cpu, int that_cpu)
1876 {
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878 }
1879 #endif /* CONFIG_SMP */
1880
1881 static void ttwu_queue(struct task_struct *p, int cpu)
1882 {
1883 struct rq *rq = cpu_rq(cpu);
1884
1885 #if defined(CONFIG_SMP)
1886 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1887 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1888 ttwu_queue_remote(p, cpu);
1889 return;
1890 }
1891 #endif
1892
1893 raw_spin_lock(&rq->lock);
1894 lockdep_pin_lock(&rq->lock);
1895 ttwu_do_activate(rq, p, 0);
1896 lockdep_unpin_lock(&rq->lock);
1897 raw_spin_unlock(&rq->lock);
1898 }
1899
1900 /**
1901 * try_to_wake_up - wake up a thread
1902 * @p: the thread to be awakened
1903 * @state: the mask of task states that can be woken
1904 * @wake_flags: wake modifier flags (WF_*)
1905 *
1906 * Put it on the run-queue if it's not already there. The "current"
1907 * thread is always on the run-queue (except when the actual
1908 * re-schedule is in progress), and as such you're allowed to do
1909 * the simpler "current->state = TASK_RUNNING" to mark yourself
1910 * runnable without the overhead of this.
1911 *
1912 * Return: %true if @p was woken up, %false if it was already running.
1913 * or @state didn't match @p's state.
1914 */
1915 static int
1916 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1917 {
1918 unsigned long flags;
1919 int cpu, success = 0;
1920
1921 /*
1922 * If we are going to wake up a thread waiting for CONDITION we
1923 * need to ensure that CONDITION=1 done by the caller can not be
1924 * reordered with p->state check below. This pairs with mb() in
1925 * set_current_state() the waiting thread does.
1926 */
1927 smp_mb__before_spinlock();
1928 raw_spin_lock_irqsave(&p->pi_lock, flags);
1929 if (!(p->state & state))
1930 goto out;
1931
1932 trace_sched_waking(p);
1933
1934 success = 1; /* we're going to change ->state */
1935 cpu = task_cpu(p);
1936
1937 if (p->on_rq && ttwu_remote(p, wake_flags))
1938 goto stat;
1939
1940 #ifdef CONFIG_SMP
1941 /*
1942 * If the owning (remote) cpu is still in the middle of schedule() with
1943 * this task as prev, wait until its done referencing the task.
1944 */
1945 while (p->on_cpu)
1946 cpu_relax();
1947 /*
1948 * Pairs with the smp_wmb() in finish_lock_switch().
1949 */
1950 smp_rmb();
1951
1952 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1953 p->state = TASK_WAKING;
1954
1955 if (p->sched_class->task_waking)
1956 p->sched_class->task_waking(p);
1957
1958 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1959 if (task_cpu(p) != cpu) {
1960 wake_flags |= WF_MIGRATED;
1961 set_task_cpu(p, cpu);
1962 }
1963 #endif /* CONFIG_SMP */
1964
1965 ttwu_queue(p, cpu);
1966 stat:
1967 ttwu_stat(p, cpu, wake_flags);
1968 out:
1969 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1970
1971 return success;
1972 }
1973
1974 /**
1975 * try_to_wake_up_local - try to wake up a local task with rq lock held
1976 * @p: the thread to be awakened
1977 *
1978 * Put @p on the run-queue if it's not already there. The caller must
1979 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1980 * the current task.
1981 */
1982 static void try_to_wake_up_local(struct task_struct *p)
1983 {
1984 struct rq *rq = task_rq(p);
1985
1986 if (WARN_ON_ONCE(rq != this_rq()) ||
1987 WARN_ON_ONCE(p == current))
1988 return;
1989
1990 lockdep_assert_held(&rq->lock);
1991
1992 if (!raw_spin_trylock(&p->pi_lock)) {
1993 /*
1994 * This is OK, because current is on_cpu, which avoids it being
1995 * picked for load-balance and preemption/IRQs are still
1996 * disabled avoiding further scheduler activity on it and we've
1997 * not yet picked a replacement task.
1998 */
1999 lockdep_unpin_lock(&rq->lock);
2000 raw_spin_unlock(&rq->lock);
2001 raw_spin_lock(&p->pi_lock);
2002 raw_spin_lock(&rq->lock);
2003 lockdep_pin_lock(&rq->lock);
2004 }
2005
2006 if (!(p->state & TASK_NORMAL))
2007 goto out;
2008
2009 trace_sched_waking(p);
2010
2011 if (!task_on_rq_queued(p))
2012 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2013
2014 ttwu_do_wakeup(rq, p, 0);
2015 ttwu_stat(p, smp_processor_id(), 0);
2016 out:
2017 raw_spin_unlock(&p->pi_lock);
2018 }
2019
2020 /**
2021 * wake_up_process - Wake up a specific process
2022 * @p: The process to be woken up.
2023 *
2024 * Attempt to wake up the nominated process and move it to the set of runnable
2025 * processes.
2026 *
2027 * Return: 1 if the process was woken up, 0 if it was already running.
2028 *
2029 * It may be assumed that this function implies a write memory barrier before
2030 * changing the task state if and only if any tasks are woken up.
2031 */
2032 int wake_up_process(struct task_struct *p)
2033 {
2034 WARN_ON(task_is_stopped_or_traced(p));
2035 return try_to_wake_up(p, TASK_NORMAL, 0);
2036 }
2037 EXPORT_SYMBOL(wake_up_process);
2038
2039 int wake_up_state(struct task_struct *p, unsigned int state)
2040 {
2041 return try_to_wake_up(p, state, 0);
2042 }
2043
2044 /*
2045 * This function clears the sched_dl_entity static params.
2046 */
2047 void __dl_clear_params(struct task_struct *p)
2048 {
2049 struct sched_dl_entity *dl_se = &p->dl;
2050
2051 dl_se->dl_runtime = 0;
2052 dl_se->dl_deadline = 0;
2053 dl_se->dl_period = 0;
2054 dl_se->flags = 0;
2055 dl_se->dl_bw = 0;
2056
2057 dl_se->dl_throttled = 0;
2058 dl_se->dl_new = 1;
2059 dl_se->dl_yielded = 0;
2060 }
2061
2062 /*
2063 * Perform scheduler related setup for a newly forked process p.
2064 * p is forked by current.
2065 *
2066 * __sched_fork() is basic setup used by init_idle() too:
2067 */
2068 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2069 {
2070 p->on_rq = 0;
2071
2072 p->se.on_rq = 0;
2073 p->se.exec_start = 0;
2074 p->se.sum_exec_runtime = 0;
2075 p->se.prev_sum_exec_runtime = 0;
2076 p->se.nr_migrations = 0;
2077 p->se.vruntime = 0;
2078 INIT_LIST_HEAD(&p->se.group_node);
2079
2080 #ifdef CONFIG_SCHEDSTATS
2081 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2082 #endif
2083
2084 RB_CLEAR_NODE(&p->dl.rb_node);
2085 init_dl_task_timer(&p->dl);
2086 __dl_clear_params(p);
2087
2088 INIT_LIST_HEAD(&p->rt.run_list);
2089
2090 #ifdef CONFIG_PREEMPT_NOTIFIERS
2091 INIT_HLIST_HEAD(&p->preempt_notifiers);
2092 #endif
2093
2094 #ifdef CONFIG_NUMA_BALANCING
2095 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2096 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2097 p->mm->numa_scan_seq = 0;
2098 }
2099
2100 if (clone_flags & CLONE_VM)
2101 p->numa_preferred_nid = current->numa_preferred_nid;
2102 else
2103 p->numa_preferred_nid = -1;
2104
2105 p->node_stamp = 0ULL;
2106 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2107 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2108 p->numa_work.next = &p->numa_work;
2109 p->numa_faults = NULL;
2110 p->last_task_numa_placement = 0;
2111 p->last_sum_exec_runtime = 0;
2112
2113 p->numa_group = NULL;
2114 #endif /* CONFIG_NUMA_BALANCING */
2115 }
2116
2117 #ifdef CONFIG_NUMA_BALANCING
2118 #ifdef CONFIG_SCHED_DEBUG
2119 void set_numabalancing_state(bool enabled)
2120 {
2121 if (enabled)
2122 sched_feat_set("NUMA");
2123 else
2124 sched_feat_set("NO_NUMA");
2125 }
2126 #else
2127 __read_mostly bool numabalancing_enabled;
2128
2129 void set_numabalancing_state(bool enabled)
2130 {
2131 numabalancing_enabled = enabled;
2132 }
2133 #endif /* CONFIG_SCHED_DEBUG */
2134
2135 #ifdef CONFIG_PROC_SYSCTL
2136 int sysctl_numa_balancing(struct ctl_table *table, int write,
2137 void __user *buffer, size_t *lenp, loff_t *ppos)
2138 {
2139 struct ctl_table t;
2140 int err;
2141 int state = numabalancing_enabled;
2142
2143 if (write && !capable(CAP_SYS_ADMIN))
2144 return -EPERM;
2145
2146 t = *table;
2147 t.data = &state;
2148 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2149 if (err < 0)
2150 return err;
2151 if (write)
2152 set_numabalancing_state(state);
2153 return err;
2154 }
2155 #endif
2156 #endif
2157
2158 /*
2159 * fork()/clone()-time setup:
2160 */
2161 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2162 {
2163 unsigned long flags;
2164 int cpu = get_cpu();
2165
2166 __sched_fork(clone_flags, p);
2167 /*
2168 * We mark the process as running here. This guarantees that
2169 * nobody will actually run it, and a signal or other external
2170 * event cannot wake it up and insert it on the runqueue either.
2171 */
2172 p->state = TASK_RUNNING;
2173
2174 /*
2175 * Make sure we do not leak PI boosting priority to the child.
2176 */
2177 p->prio = current->normal_prio;
2178
2179 /*
2180 * Revert to default priority/policy on fork if requested.
2181 */
2182 if (unlikely(p->sched_reset_on_fork)) {
2183 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2184 p->policy = SCHED_NORMAL;
2185 p->static_prio = NICE_TO_PRIO(0);
2186 p->rt_priority = 0;
2187 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2188 p->static_prio = NICE_TO_PRIO(0);
2189
2190 p->prio = p->normal_prio = __normal_prio(p);
2191 set_load_weight(p);
2192
2193 /*
2194 * We don't need the reset flag anymore after the fork. It has
2195 * fulfilled its duty:
2196 */
2197 p->sched_reset_on_fork = 0;
2198 }
2199
2200 if (dl_prio(p->prio)) {
2201 put_cpu();
2202 return -EAGAIN;
2203 } else if (rt_prio(p->prio)) {
2204 p->sched_class = &rt_sched_class;
2205 } else {
2206 p->sched_class = &fair_sched_class;
2207 }
2208
2209 if (p->sched_class->task_fork)
2210 p->sched_class->task_fork(p);
2211
2212 /*
2213 * The child is not yet in the pid-hash so no cgroup attach races,
2214 * and the cgroup is pinned to this child due to cgroup_fork()
2215 * is ran before sched_fork().
2216 *
2217 * Silence PROVE_RCU.
2218 */
2219 raw_spin_lock_irqsave(&p->pi_lock, flags);
2220 set_task_cpu(p, cpu);
2221 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2222
2223 #ifdef CONFIG_SCHED_INFO
2224 if (likely(sched_info_on()))
2225 memset(&p->sched_info, 0, sizeof(p->sched_info));
2226 #endif
2227 #if defined(CONFIG_SMP)
2228 p->on_cpu = 0;
2229 #endif
2230 init_task_preempt_count(p);
2231 #ifdef CONFIG_SMP
2232 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2233 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2234 #endif
2235
2236 put_cpu();
2237 return 0;
2238 }
2239
2240 unsigned long to_ratio(u64 period, u64 runtime)
2241 {
2242 if (runtime == RUNTIME_INF)
2243 return 1ULL << 20;
2244
2245 /*
2246 * Doing this here saves a lot of checks in all
2247 * the calling paths, and returning zero seems
2248 * safe for them anyway.
2249 */
2250 if (period == 0)
2251 return 0;
2252
2253 return div64_u64(runtime << 20, period);
2254 }
2255
2256 #ifdef CONFIG_SMP
2257 inline struct dl_bw *dl_bw_of(int i)
2258 {
2259 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2260 "sched RCU must be held");
2261 return &cpu_rq(i)->rd->dl_bw;
2262 }
2263
2264 static inline int dl_bw_cpus(int i)
2265 {
2266 struct root_domain *rd = cpu_rq(i)->rd;
2267 int cpus = 0;
2268
2269 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2270 "sched RCU must be held");
2271 for_each_cpu_and(i, rd->span, cpu_active_mask)
2272 cpus++;
2273
2274 return cpus;
2275 }
2276 #else
2277 inline struct dl_bw *dl_bw_of(int i)
2278 {
2279 return &cpu_rq(i)->dl.dl_bw;
2280 }
2281
2282 static inline int dl_bw_cpus(int i)
2283 {
2284 return 1;
2285 }
2286 #endif
2287
2288 /*
2289 * We must be sure that accepting a new task (or allowing changing the
2290 * parameters of an existing one) is consistent with the bandwidth
2291 * constraints. If yes, this function also accordingly updates the currently
2292 * allocated bandwidth to reflect the new situation.
2293 *
2294 * This function is called while holding p's rq->lock.
2295 *
2296 * XXX we should delay bw change until the task's 0-lag point, see
2297 * __setparam_dl().
2298 */
2299 static int dl_overflow(struct task_struct *p, int policy,
2300 const struct sched_attr *attr)
2301 {
2302
2303 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2304 u64 period = attr->sched_period ?: attr->sched_deadline;
2305 u64 runtime = attr->sched_runtime;
2306 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2307 int cpus, err = -1;
2308
2309 if (new_bw == p->dl.dl_bw)
2310 return 0;
2311
2312 /*
2313 * Either if a task, enters, leave, or stays -deadline but changes
2314 * its parameters, we may need to update accordingly the total
2315 * allocated bandwidth of the container.
2316 */
2317 raw_spin_lock(&dl_b->lock);
2318 cpus = dl_bw_cpus(task_cpu(p));
2319 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2320 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2321 __dl_add(dl_b, new_bw);
2322 err = 0;
2323 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2324 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2325 __dl_clear(dl_b, p->dl.dl_bw);
2326 __dl_add(dl_b, new_bw);
2327 err = 0;
2328 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2329 __dl_clear(dl_b, p->dl.dl_bw);
2330 err = 0;
2331 }
2332 raw_spin_unlock(&dl_b->lock);
2333
2334 return err;
2335 }
2336
2337 extern void init_dl_bw(struct dl_bw *dl_b);
2338
2339 /*
2340 * wake_up_new_task - wake up a newly created task for the first time.
2341 *
2342 * This function will do some initial scheduler statistics housekeeping
2343 * that must be done for every newly created context, then puts the task
2344 * on the runqueue and wakes it.
2345 */
2346 void wake_up_new_task(struct task_struct *p)
2347 {
2348 unsigned long flags;
2349 struct rq *rq;
2350
2351 raw_spin_lock_irqsave(&p->pi_lock, flags);
2352 #ifdef CONFIG_SMP
2353 /*
2354 * Fork balancing, do it here and not earlier because:
2355 * - cpus_allowed can change in the fork path
2356 * - any previously selected cpu might disappear through hotplug
2357 */
2358 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2359 #endif
2360
2361 /* Initialize new task's runnable average */
2362 init_entity_runnable_average(&p->se);
2363 rq = __task_rq_lock(p);
2364 activate_task(rq, p, 0);
2365 p->on_rq = TASK_ON_RQ_QUEUED;
2366 trace_sched_wakeup_new(p);
2367 check_preempt_curr(rq, p, WF_FORK);
2368 #ifdef CONFIG_SMP
2369 if (p->sched_class->task_woken)
2370 p->sched_class->task_woken(rq, p);
2371 #endif
2372 task_rq_unlock(rq, p, &flags);
2373 }
2374
2375 #ifdef CONFIG_PREEMPT_NOTIFIERS
2376
2377 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2378
2379 void preempt_notifier_inc(void)
2380 {
2381 static_key_slow_inc(&preempt_notifier_key);
2382 }
2383 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2384
2385 void preempt_notifier_dec(void)
2386 {
2387 static_key_slow_dec(&preempt_notifier_key);
2388 }
2389 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2390
2391 /**
2392 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2393 * @notifier: notifier struct to register
2394 */
2395 void preempt_notifier_register(struct preempt_notifier *notifier)
2396 {
2397 if (!static_key_false(&preempt_notifier_key))
2398 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2399
2400 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2401 }
2402 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2403
2404 /**
2405 * preempt_notifier_unregister - no longer interested in preemption notifications
2406 * @notifier: notifier struct to unregister
2407 *
2408 * This is *not* safe to call from within a preemption notifier.
2409 */
2410 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2411 {
2412 hlist_del(&notifier->link);
2413 }
2414 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2415
2416 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2417 {
2418 struct preempt_notifier *notifier;
2419
2420 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2421 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2422 }
2423
2424 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2425 {
2426 if (static_key_false(&preempt_notifier_key))
2427 __fire_sched_in_preempt_notifiers(curr);
2428 }
2429
2430 static void
2431 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2432 struct task_struct *next)
2433 {
2434 struct preempt_notifier *notifier;
2435
2436 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2437 notifier->ops->sched_out(notifier, next);
2438 }
2439
2440 static __always_inline void
2441 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2442 struct task_struct *next)
2443 {
2444 if (static_key_false(&preempt_notifier_key))
2445 __fire_sched_out_preempt_notifiers(curr, next);
2446 }
2447
2448 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2449
2450 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2451 {
2452 }
2453
2454 static inline void
2455 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2456 struct task_struct *next)
2457 {
2458 }
2459
2460 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2461
2462 /**
2463 * prepare_task_switch - prepare to switch tasks
2464 * @rq: the runqueue preparing to switch
2465 * @prev: the current task that is being switched out
2466 * @next: the task we are going to switch to.
2467 *
2468 * This is called with the rq lock held and interrupts off. It must
2469 * be paired with a subsequent finish_task_switch after the context
2470 * switch.
2471 *
2472 * prepare_task_switch sets up locking and calls architecture specific
2473 * hooks.
2474 */
2475 static inline void
2476 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2477 struct task_struct *next)
2478 {
2479 trace_sched_switch(prev, next);
2480 sched_info_switch(rq, prev, next);
2481 perf_event_task_sched_out(prev, next);
2482 fire_sched_out_preempt_notifiers(prev, next);
2483 prepare_lock_switch(rq, next);
2484 prepare_arch_switch(next);
2485 }
2486
2487 /**
2488 * finish_task_switch - clean up after a task-switch
2489 * @prev: the thread we just switched away from.
2490 *
2491 * finish_task_switch must be called after the context switch, paired
2492 * with a prepare_task_switch call before the context switch.
2493 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2494 * and do any other architecture-specific cleanup actions.
2495 *
2496 * Note that we may have delayed dropping an mm in context_switch(). If
2497 * so, we finish that here outside of the runqueue lock. (Doing it
2498 * with the lock held can cause deadlocks; see schedule() for
2499 * details.)
2500 *
2501 * The context switch have flipped the stack from under us and restored the
2502 * local variables which were saved when this task called schedule() in the
2503 * past. prev == current is still correct but we need to recalculate this_rq
2504 * because prev may have moved to another CPU.
2505 */
2506 static struct rq *finish_task_switch(struct task_struct *prev)
2507 __releases(rq->lock)
2508 {
2509 struct rq *rq = this_rq();
2510 struct mm_struct *mm = rq->prev_mm;
2511 long prev_state;
2512
2513 rq->prev_mm = NULL;
2514
2515 /*
2516 * A task struct has one reference for the use as "current".
2517 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2518 * schedule one last time. The schedule call will never return, and
2519 * the scheduled task must drop that reference.
2520 * The test for TASK_DEAD must occur while the runqueue locks are
2521 * still held, otherwise prev could be scheduled on another cpu, die
2522 * there before we look at prev->state, and then the reference would
2523 * be dropped twice.
2524 * Manfred Spraul <manfred@colorfullife.com>
2525 */
2526 prev_state = prev->state;
2527 vtime_task_switch(prev);
2528 perf_event_task_sched_in(prev, current);
2529 finish_lock_switch(rq, prev);
2530 finish_arch_post_lock_switch();
2531
2532 fire_sched_in_preempt_notifiers(current);
2533 if (mm)
2534 mmdrop(mm);
2535 if (unlikely(prev_state == TASK_DEAD)) {
2536 if (prev->sched_class->task_dead)
2537 prev->sched_class->task_dead(prev);
2538
2539 /*
2540 * Remove function-return probe instances associated with this
2541 * task and put them back on the free list.
2542 */
2543 kprobe_flush_task(prev);
2544 put_task_struct(prev);
2545 }
2546
2547 tick_nohz_task_switch();
2548 return rq;
2549 }
2550
2551 #ifdef CONFIG_SMP
2552
2553 /* rq->lock is NOT held, but preemption is disabled */
2554 static void __balance_callback(struct rq *rq)
2555 {
2556 struct callback_head *head, *next;
2557 void (*func)(struct rq *rq);
2558 unsigned long flags;
2559
2560 raw_spin_lock_irqsave(&rq->lock, flags);
2561 head = rq->balance_callback;
2562 rq->balance_callback = NULL;
2563 while (head) {
2564 func = (void (*)(struct rq *))head->func;
2565 next = head->next;
2566 head->next = NULL;
2567 head = next;
2568
2569 func(rq);
2570 }
2571 raw_spin_unlock_irqrestore(&rq->lock, flags);
2572 }
2573
2574 static inline void balance_callback(struct rq *rq)
2575 {
2576 if (unlikely(rq->balance_callback))
2577 __balance_callback(rq);
2578 }
2579
2580 #else
2581
2582 static inline void balance_callback(struct rq *rq)
2583 {
2584 }
2585
2586 #endif
2587
2588 /**
2589 * schedule_tail - first thing a freshly forked thread must call.
2590 * @prev: the thread we just switched away from.
2591 */
2592 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2593 __releases(rq->lock)
2594 {
2595 struct rq *rq;
2596
2597 /* finish_task_switch() drops rq->lock and enables preemtion */
2598 preempt_disable();
2599 rq = finish_task_switch(prev);
2600 balance_callback(rq);
2601 preempt_enable();
2602
2603 if (current->set_child_tid)
2604 put_user(task_pid_vnr(current), current->set_child_tid);
2605 }
2606
2607 /*
2608 * context_switch - switch to the new MM and the new thread's register state.
2609 */
2610 static inline struct rq *
2611 context_switch(struct rq *rq, struct task_struct *prev,
2612 struct task_struct *next)
2613 {
2614 struct mm_struct *mm, *oldmm;
2615
2616 prepare_task_switch(rq, prev, next);
2617
2618 mm = next->mm;
2619 oldmm = prev->active_mm;
2620 /*
2621 * For paravirt, this is coupled with an exit in switch_to to
2622 * combine the page table reload and the switch backend into
2623 * one hypercall.
2624 */
2625 arch_start_context_switch(prev);
2626
2627 if (!mm) {
2628 next->active_mm = oldmm;
2629 atomic_inc(&oldmm->mm_count);
2630 enter_lazy_tlb(oldmm, next);
2631 } else
2632 switch_mm(oldmm, mm, next);
2633
2634 if (!prev->mm) {
2635 prev->active_mm = NULL;
2636 rq->prev_mm = oldmm;
2637 }
2638 /*
2639 * Since the runqueue lock will be released by the next
2640 * task (which is an invalid locking op but in the case
2641 * of the scheduler it's an obvious special-case), so we
2642 * do an early lockdep release here:
2643 */
2644 lockdep_unpin_lock(&rq->lock);
2645 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2646
2647 /* Here we just switch the register state and the stack. */
2648 switch_to(prev, next, prev);
2649 barrier();
2650
2651 return finish_task_switch(prev);
2652 }
2653
2654 /*
2655 * nr_running and nr_context_switches:
2656 *
2657 * externally visible scheduler statistics: current number of runnable
2658 * threads, total number of context switches performed since bootup.
2659 */
2660 unsigned long nr_running(void)
2661 {
2662 unsigned long i, sum = 0;
2663
2664 for_each_online_cpu(i)
2665 sum += cpu_rq(i)->nr_running;
2666
2667 return sum;
2668 }
2669
2670 /*
2671 * Check if only the current task is running on the cpu.
2672 */
2673 bool single_task_running(void)
2674 {
2675 if (cpu_rq(smp_processor_id())->nr_running == 1)
2676 return true;
2677 else
2678 return false;
2679 }
2680 EXPORT_SYMBOL(single_task_running);
2681
2682 unsigned long long nr_context_switches(void)
2683 {
2684 int i;
2685 unsigned long long sum = 0;
2686
2687 for_each_possible_cpu(i)
2688 sum += cpu_rq(i)->nr_switches;
2689
2690 return sum;
2691 }
2692
2693 unsigned long nr_iowait(void)
2694 {
2695 unsigned long i, sum = 0;
2696
2697 for_each_possible_cpu(i)
2698 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2699
2700 return sum;
2701 }
2702
2703 unsigned long nr_iowait_cpu(int cpu)
2704 {
2705 struct rq *this = cpu_rq(cpu);
2706 return atomic_read(&this->nr_iowait);
2707 }
2708
2709 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2710 {
2711 struct rq *rq = this_rq();
2712 *nr_waiters = atomic_read(&rq->nr_iowait);
2713 *load = rq->load.weight;
2714 }
2715
2716 #ifdef CONFIG_SMP
2717
2718 /*
2719 * sched_exec - execve() is a valuable balancing opportunity, because at
2720 * this point the task has the smallest effective memory and cache footprint.
2721 */
2722 void sched_exec(void)
2723 {
2724 struct task_struct *p = current;
2725 unsigned long flags;
2726 int dest_cpu;
2727
2728 raw_spin_lock_irqsave(&p->pi_lock, flags);
2729 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2730 if (dest_cpu == smp_processor_id())
2731 goto unlock;
2732
2733 if (likely(cpu_active(dest_cpu))) {
2734 struct migration_arg arg = { p, dest_cpu };
2735
2736 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2737 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2738 return;
2739 }
2740 unlock:
2741 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2742 }
2743
2744 #endif
2745
2746 DEFINE_PER_CPU(struct kernel_stat, kstat);
2747 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2748
2749 EXPORT_PER_CPU_SYMBOL(kstat);
2750 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2751
2752 /*
2753 * Return accounted runtime for the task.
2754 * In case the task is currently running, return the runtime plus current's
2755 * pending runtime that have not been accounted yet.
2756 */
2757 unsigned long long task_sched_runtime(struct task_struct *p)
2758 {
2759 unsigned long flags;
2760 struct rq *rq;
2761 u64 ns;
2762
2763 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2764 /*
2765 * 64-bit doesn't need locks to atomically read a 64bit value.
2766 * So we have a optimization chance when the task's delta_exec is 0.
2767 * Reading ->on_cpu is racy, but this is ok.
2768 *
2769 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2770 * If we race with it entering cpu, unaccounted time is 0. This is
2771 * indistinguishable from the read occurring a few cycles earlier.
2772 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2773 * been accounted, so we're correct here as well.
2774 */
2775 if (!p->on_cpu || !task_on_rq_queued(p))
2776 return p->se.sum_exec_runtime;
2777 #endif
2778
2779 rq = task_rq_lock(p, &flags);
2780 /*
2781 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2782 * project cycles that may never be accounted to this
2783 * thread, breaking clock_gettime().
2784 */
2785 if (task_current(rq, p) && task_on_rq_queued(p)) {
2786 update_rq_clock(rq);
2787 p->sched_class->update_curr(rq);
2788 }
2789 ns = p->se.sum_exec_runtime;
2790 task_rq_unlock(rq, p, &flags);
2791
2792 return ns;
2793 }
2794
2795 /*
2796 * This function gets called by the timer code, with HZ frequency.
2797 * We call it with interrupts disabled.
2798 */
2799 void scheduler_tick(void)
2800 {
2801 int cpu = smp_processor_id();
2802 struct rq *rq = cpu_rq(cpu);
2803 struct task_struct *curr = rq->curr;
2804
2805 sched_clock_tick();
2806
2807 raw_spin_lock(&rq->lock);
2808 update_rq_clock(rq);
2809 curr->sched_class->task_tick(rq, curr, 0);
2810 update_cpu_load_active(rq);
2811 calc_global_load_tick(rq);
2812 raw_spin_unlock(&rq->lock);
2813
2814 perf_event_task_tick();
2815
2816 #ifdef CONFIG_SMP
2817 rq->idle_balance = idle_cpu(cpu);
2818 trigger_load_balance(rq);
2819 #endif
2820 rq_last_tick_reset(rq);
2821 }
2822
2823 #ifdef CONFIG_NO_HZ_FULL
2824 /**
2825 * scheduler_tick_max_deferment
2826 *
2827 * Keep at least one tick per second when a single
2828 * active task is running because the scheduler doesn't
2829 * yet completely support full dynticks environment.
2830 *
2831 * This makes sure that uptime, CFS vruntime, load
2832 * balancing, etc... continue to move forward, even
2833 * with a very low granularity.
2834 *
2835 * Return: Maximum deferment in nanoseconds.
2836 */
2837 u64 scheduler_tick_max_deferment(void)
2838 {
2839 struct rq *rq = this_rq();
2840 unsigned long next, now = READ_ONCE(jiffies);
2841
2842 next = rq->last_sched_tick + HZ;
2843
2844 if (time_before_eq(next, now))
2845 return 0;
2846
2847 return jiffies_to_nsecs(next - now);
2848 }
2849 #endif
2850
2851 notrace unsigned long get_parent_ip(unsigned long addr)
2852 {
2853 if (in_lock_functions(addr)) {
2854 addr = CALLER_ADDR2;
2855 if (in_lock_functions(addr))
2856 addr = CALLER_ADDR3;
2857 }
2858 return addr;
2859 }
2860
2861 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2862 defined(CONFIG_PREEMPT_TRACER))
2863
2864 void preempt_count_add(int val)
2865 {
2866 #ifdef CONFIG_DEBUG_PREEMPT
2867 /*
2868 * Underflow?
2869 */
2870 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2871 return;
2872 #endif
2873 __preempt_count_add(val);
2874 #ifdef CONFIG_DEBUG_PREEMPT
2875 /*
2876 * Spinlock count overflowing soon?
2877 */
2878 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2879 PREEMPT_MASK - 10);
2880 #endif
2881 if (preempt_count() == val) {
2882 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2883 #ifdef CONFIG_DEBUG_PREEMPT
2884 current->preempt_disable_ip = ip;
2885 #endif
2886 trace_preempt_off(CALLER_ADDR0, ip);
2887 }
2888 }
2889 EXPORT_SYMBOL(preempt_count_add);
2890 NOKPROBE_SYMBOL(preempt_count_add);
2891
2892 void preempt_count_sub(int val)
2893 {
2894 #ifdef CONFIG_DEBUG_PREEMPT
2895 /*
2896 * Underflow?
2897 */
2898 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2899 return;
2900 /*
2901 * Is the spinlock portion underflowing?
2902 */
2903 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2904 !(preempt_count() & PREEMPT_MASK)))
2905 return;
2906 #endif
2907
2908 if (preempt_count() == val)
2909 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2910 __preempt_count_sub(val);
2911 }
2912 EXPORT_SYMBOL(preempt_count_sub);
2913 NOKPROBE_SYMBOL(preempt_count_sub);
2914
2915 #endif
2916
2917 /*
2918 * Print scheduling while atomic bug:
2919 */
2920 static noinline void __schedule_bug(struct task_struct *prev)
2921 {
2922 if (oops_in_progress)
2923 return;
2924
2925 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2926 prev->comm, prev->pid, preempt_count());
2927
2928 debug_show_held_locks(prev);
2929 print_modules();
2930 if (irqs_disabled())
2931 print_irqtrace_events(prev);
2932 #ifdef CONFIG_DEBUG_PREEMPT
2933 if (in_atomic_preempt_off()) {
2934 pr_err("Preemption disabled at:");
2935 print_ip_sym(current->preempt_disable_ip);
2936 pr_cont("\n");
2937 }
2938 #endif
2939 dump_stack();
2940 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2941 }
2942
2943 /*
2944 * Various schedule()-time debugging checks and statistics:
2945 */
2946 static inline void schedule_debug(struct task_struct *prev)
2947 {
2948 #ifdef CONFIG_SCHED_STACK_END_CHECK
2949 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2950 #endif
2951 /*
2952 * Test if we are atomic. Since do_exit() needs to call into
2953 * schedule() atomically, we ignore that path. Otherwise whine
2954 * if we are scheduling when we should not.
2955 */
2956 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2957 __schedule_bug(prev);
2958 rcu_sleep_check();
2959
2960 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2961
2962 schedstat_inc(this_rq(), sched_count);
2963 }
2964
2965 /*
2966 * Pick up the highest-prio task:
2967 */
2968 static inline struct task_struct *
2969 pick_next_task(struct rq *rq, struct task_struct *prev)
2970 {
2971 const struct sched_class *class = &fair_sched_class;
2972 struct task_struct *p;
2973
2974 /*
2975 * Optimization: we know that if all tasks are in
2976 * the fair class we can call that function directly:
2977 */
2978 if (likely(prev->sched_class == class &&
2979 rq->nr_running == rq->cfs.h_nr_running)) {
2980 p = fair_sched_class.pick_next_task(rq, prev);
2981 if (unlikely(p == RETRY_TASK))
2982 goto again;
2983
2984 /* assumes fair_sched_class->next == idle_sched_class */
2985 if (unlikely(!p))
2986 p = idle_sched_class.pick_next_task(rq, prev);
2987
2988 return p;
2989 }
2990
2991 again:
2992 for_each_class(class) {
2993 p = class->pick_next_task(rq, prev);
2994 if (p) {
2995 if (unlikely(p == RETRY_TASK))
2996 goto again;
2997 return p;
2998 }
2999 }
3000
3001 BUG(); /* the idle class will always have a runnable task */
3002 }
3003
3004 /*
3005 * __schedule() is the main scheduler function.
3006 *
3007 * The main means of driving the scheduler and thus entering this function are:
3008 *
3009 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3010 *
3011 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3012 * paths. For example, see arch/x86/entry_64.S.
3013 *
3014 * To drive preemption between tasks, the scheduler sets the flag in timer
3015 * interrupt handler scheduler_tick().
3016 *
3017 * 3. Wakeups don't really cause entry into schedule(). They add a
3018 * task to the run-queue and that's it.
3019 *
3020 * Now, if the new task added to the run-queue preempts the current
3021 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3022 * called on the nearest possible occasion:
3023 *
3024 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3025 *
3026 * - in syscall or exception context, at the next outmost
3027 * preempt_enable(). (this might be as soon as the wake_up()'s
3028 * spin_unlock()!)
3029 *
3030 * - in IRQ context, return from interrupt-handler to
3031 * preemptible context
3032 *
3033 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3034 * then at the next:
3035 *
3036 * - cond_resched() call
3037 * - explicit schedule() call
3038 * - return from syscall or exception to user-space
3039 * - return from interrupt-handler to user-space
3040 *
3041 * WARNING: must be called with preemption disabled!
3042 */
3043 static void __sched __schedule(void)
3044 {
3045 struct task_struct *prev, *next;
3046 unsigned long *switch_count;
3047 struct rq *rq;
3048 int cpu;
3049
3050 cpu = smp_processor_id();
3051 rq = cpu_rq(cpu);
3052 rcu_note_context_switch();
3053 prev = rq->curr;
3054
3055 schedule_debug(prev);
3056
3057 if (sched_feat(HRTICK))
3058 hrtick_clear(rq);
3059
3060 /*
3061 * Make sure that signal_pending_state()->signal_pending() below
3062 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3063 * done by the caller to avoid the race with signal_wake_up().
3064 */
3065 smp_mb__before_spinlock();
3066 raw_spin_lock_irq(&rq->lock);
3067 lockdep_pin_lock(&rq->lock);
3068
3069 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3070
3071 switch_count = &prev->nivcsw;
3072 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3073 if (unlikely(signal_pending_state(prev->state, prev))) {
3074 prev->state = TASK_RUNNING;
3075 } else {
3076 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3077 prev->on_rq = 0;
3078
3079 /*
3080 * If a worker went to sleep, notify and ask workqueue
3081 * whether it wants to wake up a task to maintain
3082 * concurrency.
3083 */
3084 if (prev->flags & PF_WQ_WORKER) {
3085 struct task_struct *to_wakeup;
3086
3087 to_wakeup = wq_worker_sleeping(prev, cpu);
3088 if (to_wakeup)
3089 try_to_wake_up_local(to_wakeup);
3090 }
3091 }
3092 switch_count = &prev->nvcsw;
3093 }
3094
3095 if (task_on_rq_queued(prev))
3096 update_rq_clock(rq);
3097
3098 next = pick_next_task(rq, prev);
3099 clear_tsk_need_resched(prev);
3100 clear_preempt_need_resched();
3101 rq->clock_skip_update = 0;
3102
3103 if (likely(prev != next)) {
3104 rq->nr_switches++;
3105 rq->curr = next;
3106 ++*switch_count;
3107
3108 rq = context_switch(rq, prev, next); /* unlocks the rq */
3109 cpu = cpu_of(rq);
3110 } else {
3111 lockdep_unpin_lock(&rq->lock);
3112 raw_spin_unlock_irq(&rq->lock);
3113 }
3114
3115 balance_callback(rq);
3116 }
3117
3118 static inline void sched_submit_work(struct task_struct *tsk)
3119 {
3120 if (!tsk->state || tsk_is_pi_blocked(tsk))
3121 return;
3122 /*
3123 * If we are going to sleep and we have plugged IO queued,
3124 * make sure to submit it to avoid deadlocks.
3125 */
3126 if (blk_needs_flush_plug(tsk))
3127 blk_schedule_flush_plug(tsk);
3128 }
3129
3130 asmlinkage __visible void __sched schedule(void)
3131 {
3132 struct task_struct *tsk = current;
3133
3134 sched_submit_work(tsk);
3135 do {
3136 preempt_disable();
3137 __schedule();
3138 sched_preempt_enable_no_resched();
3139 } while (need_resched());
3140 }
3141 EXPORT_SYMBOL(schedule);
3142
3143 #ifdef CONFIG_CONTEXT_TRACKING
3144 asmlinkage __visible void __sched schedule_user(void)
3145 {
3146 /*
3147 * If we come here after a random call to set_need_resched(),
3148 * or we have been woken up remotely but the IPI has not yet arrived,
3149 * we haven't yet exited the RCU idle mode. Do it here manually until
3150 * we find a better solution.
3151 *
3152 * NB: There are buggy callers of this function. Ideally we
3153 * should warn if prev_state != CONTEXT_USER, but that will trigger
3154 * too frequently to make sense yet.
3155 */
3156 enum ctx_state prev_state = exception_enter();
3157 schedule();
3158 exception_exit(prev_state);
3159 }
3160 #endif
3161
3162 /**
3163 * schedule_preempt_disabled - called with preemption disabled
3164 *
3165 * Returns with preemption disabled. Note: preempt_count must be 1
3166 */
3167 void __sched schedule_preempt_disabled(void)
3168 {
3169 sched_preempt_enable_no_resched();
3170 schedule();
3171 preempt_disable();
3172 }
3173
3174 static void __sched notrace preempt_schedule_common(void)
3175 {
3176 do {
3177 preempt_active_enter();
3178 __schedule();
3179 preempt_active_exit();
3180
3181 /*
3182 * Check again in case we missed a preemption opportunity
3183 * between schedule and now.
3184 */
3185 } while (need_resched());
3186 }
3187
3188 #ifdef CONFIG_PREEMPT
3189 /*
3190 * this is the entry point to schedule() from in-kernel preemption
3191 * off of preempt_enable. Kernel preemptions off return from interrupt
3192 * occur there and call schedule directly.
3193 */
3194 asmlinkage __visible void __sched notrace preempt_schedule(void)
3195 {
3196 /*
3197 * If there is a non-zero preempt_count or interrupts are disabled,
3198 * we do not want to preempt the current task. Just return..
3199 */
3200 if (likely(!preemptible()))
3201 return;
3202
3203 preempt_schedule_common();
3204 }
3205 NOKPROBE_SYMBOL(preempt_schedule);
3206 EXPORT_SYMBOL(preempt_schedule);
3207
3208 /**
3209 * preempt_schedule_notrace - preempt_schedule called by tracing
3210 *
3211 * The tracing infrastructure uses preempt_enable_notrace to prevent
3212 * recursion and tracing preempt enabling caused by the tracing
3213 * infrastructure itself. But as tracing can happen in areas coming
3214 * from userspace or just about to enter userspace, a preempt enable
3215 * can occur before user_exit() is called. This will cause the scheduler
3216 * to be called when the system is still in usermode.
3217 *
3218 * To prevent this, the preempt_enable_notrace will use this function
3219 * instead of preempt_schedule() to exit user context if needed before
3220 * calling the scheduler.
3221 */
3222 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3223 {
3224 enum ctx_state prev_ctx;
3225
3226 if (likely(!preemptible()))
3227 return;
3228
3229 do {
3230 /*
3231 * Use raw __prempt_count() ops that don't call function.
3232 * We can't call functions before disabling preemption which
3233 * disarm preemption tracing recursions.
3234 */
3235 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3236 barrier();
3237 /*
3238 * Needs preempt disabled in case user_exit() is traced
3239 * and the tracer calls preempt_enable_notrace() causing
3240 * an infinite recursion.
3241 */
3242 prev_ctx = exception_enter();
3243 __schedule();
3244 exception_exit(prev_ctx);
3245
3246 barrier();
3247 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3248 } while (need_resched());
3249 }
3250 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3251
3252 #endif /* CONFIG_PREEMPT */
3253
3254 /*
3255 * this is the entry point to schedule() from kernel preemption
3256 * off of irq context.
3257 * Note, that this is called and return with irqs disabled. This will
3258 * protect us against recursive calling from irq.
3259 */
3260 asmlinkage __visible void __sched preempt_schedule_irq(void)
3261 {
3262 enum ctx_state prev_state;
3263
3264 /* Catch callers which need to be fixed */
3265 BUG_ON(preempt_count() || !irqs_disabled());
3266
3267 prev_state = exception_enter();
3268
3269 do {
3270 preempt_active_enter();
3271 local_irq_enable();
3272 __schedule();
3273 local_irq_disable();
3274 preempt_active_exit();
3275 } while (need_resched());
3276
3277 exception_exit(prev_state);
3278 }
3279
3280 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3281 void *key)
3282 {
3283 return try_to_wake_up(curr->private, mode, wake_flags);
3284 }
3285 EXPORT_SYMBOL(default_wake_function);
3286
3287 #ifdef CONFIG_RT_MUTEXES
3288
3289 /*
3290 * rt_mutex_setprio - set the current priority of a task
3291 * @p: task
3292 * @prio: prio value (kernel-internal form)
3293 *
3294 * This function changes the 'effective' priority of a task. It does
3295 * not touch ->normal_prio like __setscheduler().
3296 *
3297 * Used by the rt_mutex code to implement priority inheritance
3298 * logic. Call site only calls if the priority of the task changed.
3299 */
3300 void rt_mutex_setprio(struct task_struct *p, int prio)
3301 {
3302 int oldprio, queued, running, enqueue_flag = 0;
3303 struct rq *rq;
3304 const struct sched_class *prev_class;
3305
3306 BUG_ON(prio > MAX_PRIO);
3307
3308 rq = __task_rq_lock(p);
3309
3310 /*
3311 * Idle task boosting is a nono in general. There is one
3312 * exception, when PREEMPT_RT and NOHZ is active:
3313 *
3314 * The idle task calls get_next_timer_interrupt() and holds
3315 * the timer wheel base->lock on the CPU and another CPU wants
3316 * to access the timer (probably to cancel it). We can safely
3317 * ignore the boosting request, as the idle CPU runs this code
3318 * with interrupts disabled and will complete the lock
3319 * protected section without being interrupted. So there is no
3320 * real need to boost.
3321 */
3322 if (unlikely(p == rq->idle)) {
3323 WARN_ON(p != rq->curr);
3324 WARN_ON(p->pi_blocked_on);
3325 goto out_unlock;
3326 }
3327
3328 trace_sched_pi_setprio(p, prio);
3329 oldprio = p->prio;
3330 prev_class = p->sched_class;
3331 queued = task_on_rq_queued(p);
3332 running = task_current(rq, p);
3333 if (queued)
3334 dequeue_task(rq, p, 0);
3335 if (running)
3336 put_prev_task(rq, p);
3337
3338 /*
3339 * Boosting condition are:
3340 * 1. -rt task is running and holds mutex A
3341 * --> -dl task blocks on mutex A
3342 *
3343 * 2. -dl task is running and holds mutex A
3344 * --> -dl task blocks on mutex A and could preempt the
3345 * running task
3346 */
3347 if (dl_prio(prio)) {
3348 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3349 if (!dl_prio(p->normal_prio) ||
3350 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3351 p->dl.dl_boosted = 1;
3352 enqueue_flag = ENQUEUE_REPLENISH;
3353 } else
3354 p->dl.dl_boosted = 0;
3355 p->sched_class = &dl_sched_class;
3356 } else if (rt_prio(prio)) {
3357 if (dl_prio(oldprio))
3358 p->dl.dl_boosted = 0;
3359 if (oldprio < prio)
3360 enqueue_flag = ENQUEUE_HEAD;
3361 p->sched_class = &rt_sched_class;
3362 } else {
3363 if (dl_prio(oldprio))
3364 p->dl.dl_boosted = 0;
3365 if (rt_prio(oldprio))
3366 p->rt.timeout = 0;
3367 p->sched_class = &fair_sched_class;
3368 }
3369
3370 p->prio = prio;
3371
3372 if (running)
3373 p->sched_class->set_curr_task(rq);
3374 if (queued)
3375 enqueue_task(rq, p, enqueue_flag);
3376
3377 check_class_changed(rq, p, prev_class, oldprio);
3378 out_unlock:
3379 preempt_disable(); /* avoid rq from going away on us */
3380 __task_rq_unlock(rq);
3381
3382 balance_callback(rq);
3383 preempt_enable();
3384 }
3385 #endif
3386
3387 void set_user_nice(struct task_struct *p, long nice)
3388 {
3389 int old_prio, delta, queued;
3390 unsigned long flags;
3391 struct rq *rq;
3392
3393 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3394 return;
3395 /*
3396 * We have to be careful, if called from sys_setpriority(),
3397 * the task might be in the middle of scheduling on another CPU.
3398 */
3399 rq = task_rq_lock(p, &flags);
3400 /*
3401 * The RT priorities are set via sched_setscheduler(), but we still
3402 * allow the 'normal' nice value to be set - but as expected
3403 * it wont have any effect on scheduling until the task is
3404 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3405 */
3406 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3407 p->static_prio = NICE_TO_PRIO(nice);
3408 goto out_unlock;
3409 }
3410 queued = task_on_rq_queued(p);
3411 if (queued)
3412 dequeue_task(rq, p, 0);
3413
3414 p->static_prio = NICE_TO_PRIO(nice);
3415 set_load_weight(p);
3416 old_prio = p->prio;
3417 p->prio = effective_prio(p);
3418 delta = p->prio - old_prio;
3419
3420 if (queued) {
3421 enqueue_task(rq, p, 0);
3422 /*
3423 * If the task increased its priority or is running and
3424 * lowered its priority, then reschedule its CPU:
3425 */
3426 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3427 resched_curr(rq);
3428 }
3429 out_unlock:
3430 task_rq_unlock(rq, p, &flags);
3431 }
3432 EXPORT_SYMBOL(set_user_nice);
3433
3434 /*
3435 * can_nice - check if a task can reduce its nice value
3436 * @p: task
3437 * @nice: nice value
3438 */
3439 int can_nice(const struct task_struct *p, const int nice)
3440 {
3441 /* convert nice value [19,-20] to rlimit style value [1,40] */
3442 int nice_rlim = nice_to_rlimit(nice);
3443
3444 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3445 capable(CAP_SYS_NICE));
3446 }
3447
3448 #ifdef __ARCH_WANT_SYS_NICE
3449
3450 /*
3451 * sys_nice - change the priority of the current process.
3452 * @increment: priority increment
3453 *
3454 * sys_setpriority is a more generic, but much slower function that
3455 * does similar things.
3456 */
3457 SYSCALL_DEFINE1(nice, int, increment)
3458 {
3459 long nice, retval;
3460
3461 /*
3462 * Setpriority might change our priority at the same moment.
3463 * We don't have to worry. Conceptually one call occurs first
3464 * and we have a single winner.
3465 */
3466 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3467 nice = task_nice(current) + increment;
3468
3469 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3470 if (increment < 0 && !can_nice(current, nice))
3471 return -EPERM;
3472
3473 retval = security_task_setnice(current, nice);
3474 if (retval)
3475 return retval;
3476
3477 set_user_nice(current, nice);
3478 return 0;
3479 }
3480
3481 #endif
3482
3483 /**
3484 * task_prio - return the priority value of a given task.
3485 * @p: the task in question.
3486 *
3487 * Return: The priority value as seen by users in /proc.
3488 * RT tasks are offset by -200. Normal tasks are centered
3489 * around 0, value goes from -16 to +15.
3490 */
3491 int task_prio(const struct task_struct *p)
3492 {
3493 return p->prio - MAX_RT_PRIO;
3494 }
3495
3496 /**
3497 * idle_cpu - is a given cpu idle currently?
3498 * @cpu: the processor in question.
3499 *
3500 * Return: 1 if the CPU is currently idle. 0 otherwise.
3501 */
3502 int idle_cpu(int cpu)
3503 {
3504 struct rq *rq = cpu_rq(cpu);
3505
3506 if (rq->curr != rq->idle)
3507 return 0;
3508
3509 if (rq->nr_running)
3510 return 0;
3511
3512 #ifdef CONFIG_SMP
3513 if (!llist_empty(&rq->wake_list))
3514 return 0;
3515 #endif
3516
3517 return 1;
3518 }
3519
3520 /**
3521 * idle_task - return the idle task for a given cpu.
3522 * @cpu: the processor in question.
3523 *
3524 * Return: The idle task for the cpu @cpu.
3525 */
3526 struct task_struct *idle_task(int cpu)
3527 {
3528 return cpu_rq(cpu)->idle;
3529 }
3530
3531 /**
3532 * find_process_by_pid - find a process with a matching PID value.
3533 * @pid: the pid in question.
3534 *
3535 * The task of @pid, if found. %NULL otherwise.
3536 */
3537 static struct task_struct *find_process_by_pid(pid_t pid)
3538 {
3539 return pid ? find_task_by_vpid(pid) : current;
3540 }
3541
3542 /*
3543 * This function initializes the sched_dl_entity of a newly becoming
3544 * SCHED_DEADLINE task.
3545 *
3546 * Only the static values are considered here, the actual runtime and the
3547 * absolute deadline will be properly calculated when the task is enqueued
3548 * for the first time with its new policy.
3549 */
3550 static void
3551 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3552 {
3553 struct sched_dl_entity *dl_se = &p->dl;
3554
3555 dl_se->dl_runtime = attr->sched_runtime;
3556 dl_se->dl_deadline = attr->sched_deadline;
3557 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3558 dl_se->flags = attr->sched_flags;
3559 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3560
3561 /*
3562 * Changing the parameters of a task is 'tricky' and we're not doing
3563 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3564 *
3565 * What we SHOULD do is delay the bandwidth release until the 0-lag
3566 * point. This would include retaining the task_struct until that time
3567 * and change dl_overflow() to not immediately decrement the current
3568 * amount.
3569 *
3570 * Instead we retain the current runtime/deadline and let the new
3571 * parameters take effect after the current reservation period lapses.
3572 * This is safe (albeit pessimistic) because the 0-lag point is always
3573 * before the current scheduling deadline.
3574 *
3575 * We can still have temporary overloads because we do not delay the
3576 * change in bandwidth until that time; so admission control is
3577 * not on the safe side. It does however guarantee tasks will never
3578 * consume more than promised.
3579 */
3580 }
3581
3582 /*
3583 * sched_setparam() passes in -1 for its policy, to let the functions
3584 * it calls know not to change it.
3585 */
3586 #define SETPARAM_POLICY -1
3587
3588 static void __setscheduler_params(struct task_struct *p,
3589 const struct sched_attr *attr)
3590 {
3591 int policy = attr->sched_policy;
3592
3593 if (policy == SETPARAM_POLICY)
3594 policy = p->policy;
3595
3596 p->policy = policy;
3597
3598 if (dl_policy(policy))
3599 __setparam_dl(p, attr);
3600 else if (fair_policy(policy))
3601 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3602
3603 /*
3604 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3605 * !rt_policy. Always setting this ensures that things like
3606 * getparam()/getattr() don't report silly values for !rt tasks.
3607 */
3608 p->rt_priority = attr->sched_priority;
3609 p->normal_prio = normal_prio(p);
3610 set_load_weight(p);
3611 }
3612
3613 /* Actually do priority change: must hold pi & rq lock. */
3614 static void __setscheduler(struct rq *rq, struct task_struct *p,
3615 const struct sched_attr *attr, bool keep_boost)
3616 {
3617 __setscheduler_params(p, attr);
3618
3619 /*
3620 * Keep a potential priority boosting if called from
3621 * sched_setscheduler().
3622 */
3623 if (keep_boost)
3624 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3625 else
3626 p->prio = normal_prio(p);
3627
3628 if (dl_prio(p->prio))
3629 p->sched_class = &dl_sched_class;
3630 else if (rt_prio(p->prio))
3631 p->sched_class = &rt_sched_class;
3632 else
3633 p->sched_class = &fair_sched_class;
3634 }
3635
3636 static void
3637 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3638 {
3639 struct sched_dl_entity *dl_se = &p->dl;
3640
3641 attr->sched_priority = p->rt_priority;
3642 attr->sched_runtime = dl_se->dl_runtime;
3643 attr->sched_deadline = dl_se->dl_deadline;
3644 attr->sched_period = dl_se->dl_period;
3645 attr->sched_flags = dl_se->flags;
3646 }
3647
3648 /*
3649 * This function validates the new parameters of a -deadline task.
3650 * We ask for the deadline not being zero, and greater or equal
3651 * than the runtime, as well as the period of being zero or
3652 * greater than deadline. Furthermore, we have to be sure that
3653 * user parameters are above the internal resolution of 1us (we
3654 * check sched_runtime only since it is always the smaller one) and
3655 * below 2^63 ns (we have to check both sched_deadline and
3656 * sched_period, as the latter can be zero).
3657 */
3658 static bool
3659 __checkparam_dl(const struct sched_attr *attr)
3660 {
3661 /* deadline != 0 */
3662 if (attr->sched_deadline == 0)
3663 return false;
3664
3665 /*
3666 * Since we truncate DL_SCALE bits, make sure we're at least
3667 * that big.
3668 */
3669 if (attr->sched_runtime < (1ULL << DL_SCALE))
3670 return false;
3671
3672 /*
3673 * Since we use the MSB for wrap-around and sign issues, make
3674 * sure it's not set (mind that period can be equal to zero).
3675 */
3676 if (attr->sched_deadline & (1ULL << 63) ||
3677 attr->sched_period & (1ULL << 63))
3678 return false;
3679
3680 /* runtime <= deadline <= period (if period != 0) */
3681 if ((attr->sched_period != 0 &&
3682 attr->sched_period < attr->sched_deadline) ||
3683 attr->sched_deadline < attr->sched_runtime)
3684 return false;
3685
3686 return true;
3687 }
3688
3689 /*
3690 * check the target process has a UID that matches the current process's
3691 */
3692 static bool check_same_owner(struct task_struct *p)
3693 {
3694 const struct cred *cred = current_cred(), *pcred;
3695 bool match;
3696
3697 rcu_read_lock();
3698 pcred = __task_cred(p);
3699 match = (uid_eq(cred->euid, pcred->euid) ||
3700 uid_eq(cred->euid, pcred->uid));
3701 rcu_read_unlock();
3702 return match;
3703 }
3704
3705 static bool dl_param_changed(struct task_struct *p,
3706 const struct sched_attr *attr)
3707 {
3708 struct sched_dl_entity *dl_se = &p->dl;
3709
3710 if (dl_se->dl_runtime != attr->sched_runtime ||
3711 dl_se->dl_deadline != attr->sched_deadline ||
3712 dl_se->dl_period != attr->sched_period ||
3713 dl_se->flags != attr->sched_flags)
3714 return true;
3715
3716 return false;
3717 }
3718
3719 static int __sched_setscheduler(struct task_struct *p,
3720 const struct sched_attr *attr,
3721 bool user, bool pi)
3722 {
3723 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3724 MAX_RT_PRIO - 1 - attr->sched_priority;
3725 int retval, oldprio, oldpolicy = -1, queued, running;
3726 int new_effective_prio, policy = attr->sched_policy;
3727 unsigned long flags;
3728 const struct sched_class *prev_class;
3729 struct rq *rq;
3730 int reset_on_fork;
3731
3732 /* may grab non-irq protected spin_locks */
3733 BUG_ON(in_interrupt());
3734 recheck:
3735 /* double check policy once rq lock held */
3736 if (policy < 0) {
3737 reset_on_fork = p->sched_reset_on_fork;
3738 policy = oldpolicy = p->policy;
3739 } else {
3740 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3741
3742 if (policy != SCHED_DEADLINE &&
3743 policy != SCHED_FIFO && policy != SCHED_RR &&
3744 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3745 policy != SCHED_IDLE)
3746 return -EINVAL;
3747 }
3748
3749 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3750 return -EINVAL;
3751
3752 /*
3753 * Valid priorities for SCHED_FIFO and SCHED_RR are
3754 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3755 * SCHED_BATCH and SCHED_IDLE is 0.
3756 */
3757 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3758 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3759 return -EINVAL;
3760 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3761 (rt_policy(policy) != (attr->sched_priority != 0)))
3762 return -EINVAL;
3763
3764 /*
3765 * Allow unprivileged RT tasks to decrease priority:
3766 */
3767 if (user && !capable(CAP_SYS_NICE)) {
3768 if (fair_policy(policy)) {
3769 if (attr->sched_nice < task_nice(p) &&
3770 !can_nice(p, attr->sched_nice))
3771 return -EPERM;
3772 }
3773
3774 if (rt_policy(policy)) {
3775 unsigned long rlim_rtprio =
3776 task_rlimit(p, RLIMIT_RTPRIO);
3777
3778 /* can't set/change the rt policy */
3779 if (policy != p->policy && !rlim_rtprio)
3780 return -EPERM;
3781
3782 /* can't increase priority */
3783 if (attr->sched_priority > p->rt_priority &&
3784 attr->sched_priority > rlim_rtprio)
3785 return -EPERM;
3786 }
3787
3788 /*
3789 * Can't set/change SCHED_DEADLINE policy at all for now
3790 * (safest behavior); in the future we would like to allow
3791 * unprivileged DL tasks to increase their relative deadline
3792 * or reduce their runtime (both ways reducing utilization)
3793 */
3794 if (dl_policy(policy))
3795 return -EPERM;
3796
3797 /*
3798 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3799 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3800 */
3801 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3802 if (!can_nice(p, task_nice(p)))
3803 return -EPERM;
3804 }
3805
3806 /* can't change other user's priorities */
3807 if (!check_same_owner(p))
3808 return -EPERM;
3809
3810 /* Normal users shall not reset the sched_reset_on_fork flag */
3811 if (p->sched_reset_on_fork && !reset_on_fork)
3812 return -EPERM;
3813 }
3814
3815 if (user) {
3816 retval = security_task_setscheduler(p);
3817 if (retval)
3818 return retval;
3819 }
3820
3821 /*
3822 * make sure no PI-waiters arrive (or leave) while we are
3823 * changing the priority of the task:
3824 *
3825 * To be able to change p->policy safely, the appropriate
3826 * runqueue lock must be held.
3827 */
3828 rq = task_rq_lock(p, &flags);
3829
3830 /*
3831 * Changing the policy of the stop threads its a very bad idea
3832 */
3833 if (p == rq->stop) {
3834 task_rq_unlock(rq, p, &flags);
3835 return -EINVAL;
3836 }
3837
3838 /*
3839 * If not changing anything there's no need to proceed further,
3840 * but store a possible modification of reset_on_fork.
3841 */
3842 if (unlikely(policy == p->policy)) {
3843 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3844 goto change;
3845 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3846 goto change;
3847 if (dl_policy(policy) && dl_param_changed(p, attr))
3848 goto change;
3849
3850 p->sched_reset_on_fork = reset_on_fork;
3851 task_rq_unlock(rq, p, &flags);
3852 return 0;
3853 }
3854 change:
3855
3856 if (user) {
3857 #ifdef CONFIG_RT_GROUP_SCHED
3858 /*
3859 * Do not allow realtime tasks into groups that have no runtime
3860 * assigned.
3861 */
3862 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3863 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3864 !task_group_is_autogroup(task_group(p))) {
3865 task_rq_unlock(rq, p, &flags);
3866 return -EPERM;
3867 }
3868 #endif
3869 #ifdef CONFIG_SMP
3870 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3871 cpumask_t *span = rq->rd->span;
3872
3873 /*
3874 * Don't allow tasks with an affinity mask smaller than
3875 * the entire root_domain to become SCHED_DEADLINE. We
3876 * will also fail if there's no bandwidth available.
3877 */
3878 if (!cpumask_subset(span, &p->cpus_allowed) ||
3879 rq->rd->dl_bw.bw == 0) {
3880 task_rq_unlock(rq, p, &flags);
3881 return -EPERM;
3882 }
3883 }
3884 #endif
3885 }
3886
3887 /* recheck policy now with rq lock held */
3888 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3889 policy = oldpolicy = -1;
3890 task_rq_unlock(rq, p, &flags);
3891 goto recheck;
3892 }
3893
3894 /*
3895 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3896 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3897 * is available.
3898 */
3899 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3900 task_rq_unlock(rq, p, &flags);
3901 return -EBUSY;
3902 }
3903
3904 p->sched_reset_on_fork = reset_on_fork;
3905 oldprio = p->prio;
3906
3907 if (pi) {
3908 /*
3909 * Take priority boosted tasks into account. If the new
3910 * effective priority is unchanged, we just store the new
3911 * normal parameters and do not touch the scheduler class and
3912 * the runqueue. This will be done when the task deboost
3913 * itself.
3914 */
3915 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3916 if (new_effective_prio == oldprio) {
3917 __setscheduler_params(p, attr);
3918 task_rq_unlock(rq, p, &flags);
3919 return 0;
3920 }
3921 }
3922
3923 queued = task_on_rq_queued(p);
3924 running = task_current(rq, p);
3925 if (queued)
3926 dequeue_task(rq, p, 0);
3927 if (running)
3928 put_prev_task(rq, p);
3929
3930 prev_class = p->sched_class;
3931 __setscheduler(rq, p, attr, pi);
3932
3933 if (running)
3934 p->sched_class->set_curr_task(rq);
3935 if (queued) {
3936 /*
3937 * We enqueue to tail when the priority of a task is
3938 * increased (user space view).
3939 */
3940 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3941 }
3942
3943 check_class_changed(rq, p, prev_class, oldprio);
3944 preempt_disable(); /* avoid rq from going away on us */
3945 task_rq_unlock(rq, p, &flags);
3946
3947 if (pi)
3948 rt_mutex_adjust_pi(p);
3949
3950 /*
3951 * Run balance callbacks after we've adjusted the PI chain.
3952 */
3953 balance_callback(rq);
3954 preempt_enable();
3955
3956 return 0;
3957 }
3958
3959 static int _sched_setscheduler(struct task_struct *p, int policy,
3960 const struct sched_param *param, bool check)
3961 {
3962 struct sched_attr attr = {
3963 .sched_policy = policy,
3964 .sched_priority = param->sched_priority,
3965 .sched_nice = PRIO_TO_NICE(p->static_prio),
3966 };
3967
3968 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3969 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3970 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3971 policy &= ~SCHED_RESET_ON_FORK;
3972 attr.sched_policy = policy;
3973 }
3974
3975 return __sched_setscheduler(p, &attr, check, true);
3976 }
3977 /**
3978 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3979 * @p: the task in question.
3980 * @policy: new policy.
3981 * @param: structure containing the new RT priority.
3982 *
3983 * Return: 0 on success. An error code otherwise.
3984 *
3985 * NOTE that the task may be already dead.
3986 */
3987 int sched_setscheduler(struct task_struct *p, int policy,
3988 const struct sched_param *param)
3989 {
3990 return _sched_setscheduler(p, policy, param, true);
3991 }
3992 EXPORT_SYMBOL_GPL(sched_setscheduler);
3993
3994 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3995 {
3996 return __sched_setscheduler(p, attr, true, true);
3997 }
3998 EXPORT_SYMBOL_GPL(sched_setattr);
3999
4000 /**
4001 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4002 * @p: the task in question.
4003 * @policy: new policy.
4004 * @param: structure containing the new RT priority.
4005 *
4006 * Just like sched_setscheduler, only don't bother checking if the
4007 * current context has permission. For example, this is needed in
4008 * stop_machine(): we create temporary high priority worker threads,
4009 * but our caller might not have that capability.
4010 *
4011 * Return: 0 on success. An error code otherwise.
4012 */
4013 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4014 const struct sched_param *param)
4015 {
4016 return _sched_setscheduler(p, policy, param, false);
4017 }
4018
4019 static int
4020 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4021 {
4022 struct sched_param lparam;
4023 struct task_struct *p;
4024 int retval;
4025
4026 if (!param || pid < 0)
4027 return -EINVAL;
4028 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4029 return -EFAULT;
4030
4031 rcu_read_lock();
4032 retval = -ESRCH;
4033 p = find_process_by_pid(pid);
4034 if (p != NULL)
4035 retval = sched_setscheduler(p, policy, &lparam);
4036 rcu_read_unlock();
4037
4038 return retval;
4039 }
4040
4041 /*
4042 * Mimics kernel/events/core.c perf_copy_attr().
4043 */
4044 static int sched_copy_attr(struct sched_attr __user *uattr,
4045 struct sched_attr *attr)
4046 {
4047 u32 size;
4048 int ret;
4049
4050 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4051 return -EFAULT;
4052
4053 /*
4054 * zero the full structure, so that a short copy will be nice.
4055 */
4056 memset(attr, 0, sizeof(*attr));
4057
4058 ret = get_user(size, &uattr->size);
4059 if (ret)
4060 return ret;
4061
4062 if (size > PAGE_SIZE) /* silly large */
4063 goto err_size;
4064
4065 if (!size) /* abi compat */
4066 size = SCHED_ATTR_SIZE_VER0;
4067
4068 if (size < SCHED_ATTR_SIZE_VER0)
4069 goto err_size;
4070
4071 /*
4072 * If we're handed a bigger struct than we know of,
4073 * ensure all the unknown bits are 0 - i.e. new
4074 * user-space does not rely on any kernel feature
4075 * extensions we dont know about yet.
4076 */
4077 if (size > sizeof(*attr)) {
4078 unsigned char __user *addr;
4079 unsigned char __user *end;
4080 unsigned char val;
4081
4082 addr = (void __user *)uattr + sizeof(*attr);
4083 end = (void __user *)uattr + size;
4084
4085 for (; addr < end; addr++) {
4086 ret = get_user(val, addr);
4087 if (ret)
4088 return ret;
4089 if (val)
4090 goto err_size;
4091 }
4092 size = sizeof(*attr);
4093 }
4094
4095 ret = copy_from_user(attr, uattr, size);
4096 if (ret)
4097 return -EFAULT;
4098
4099 /*
4100 * XXX: do we want to be lenient like existing syscalls; or do we want
4101 * to be strict and return an error on out-of-bounds values?
4102 */
4103 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4104
4105 return 0;
4106
4107 err_size:
4108 put_user(sizeof(*attr), &uattr->size);
4109 return -E2BIG;
4110 }
4111
4112 /**
4113 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4114 * @pid: the pid in question.
4115 * @policy: new policy.
4116 * @param: structure containing the new RT priority.
4117 *
4118 * Return: 0 on success. An error code otherwise.
4119 */
4120 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4121 struct sched_param __user *, param)
4122 {
4123 /* negative values for policy are not valid */
4124 if (policy < 0)
4125 return -EINVAL;
4126
4127 return do_sched_setscheduler(pid, policy, param);
4128 }
4129
4130 /**
4131 * sys_sched_setparam - set/change the RT priority of a thread
4132 * @pid: the pid in question.
4133 * @param: structure containing the new RT priority.
4134 *
4135 * Return: 0 on success. An error code otherwise.
4136 */
4137 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4138 {
4139 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4140 }
4141
4142 /**
4143 * sys_sched_setattr - same as above, but with extended sched_attr
4144 * @pid: the pid in question.
4145 * @uattr: structure containing the extended parameters.
4146 * @flags: for future extension.
4147 */
4148 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4149 unsigned int, flags)
4150 {
4151 struct sched_attr attr;
4152 struct task_struct *p;
4153 int retval;
4154
4155 if (!uattr || pid < 0 || flags)
4156 return -EINVAL;
4157
4158 retval = sched_copy_attr(uattr, &attr);
4159 if (retval)
4160 return retval;
4161
4162 if ((int)attr.sched_policy < 0)
4163 return -EINVAL;
4164
4165 rcu_read_lock();
4166 retval = -ESRCH;
4167 p = find_process_by_pid(pid);
4168 if (p != NULL)
4169 retval = sched_setattr(p, &attr);
4170 rcu_read_unlock();
4171
4172 return retval;
4173 }
4174
4175 /**
4176 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4177 * @pid: the pid in question.
4178 *
4179 * Return: On success, the policy of the thread. Otherwise, a negative error
4180 * code.
4181 */
4182 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4183 {
4184 struct task_struct *p;
4185 int retval;
4186
4187 if (pid < 0)
4188 return -EINVAL;
4189
4190 retval = -ESRCH;
4191 rcu_read_lock();
4192 p = find_process_by_pid(pid);
4193 if (p) {
4194 retval = security_task_getscheduler(p);
4195 if (!retval)
4196 retval = p->policy
4197 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4198 }
4199 rcu_read_unlock();
4200 return retval;
4201 }
4202
4203 /**
4204 * sys_sched_getparam - get the RT priority of a thread
4205 * @pid: the pid in question.
4206 * @param: structure containing the RT priority.
4207 *
4208 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4209 * code.
4210 */
4211 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4212 {
4213 struct sched_param lp = { .sched_priority = 0 };
4214 struct task_struct *p;
4215 int retval;
4216
4217 if (!param || pid < 0)
4218 return -EINVAL;
4219
4220 rcu_read_lock();
4221 p = find_process_by_pid(pid);
4222 retval = -ESRCH;
4223 if (!p)
4224 goto out_unlock;
4225
4226 retval = security_task_getscheduler(p);
4227 if (retval)
4228 goto out_unlock;
4229
4230 if (task_has_rt_policy(p))
4231 lp.sched_priority = p->rt_priority;
4232 rcu_read_unlock();
4233
4234 /*
4235 * This one might sleep, we cannot do it with a spinlock held ...
4236 */
4237 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4238
4239 return retval;
4240
4241 out_unlock:
4242 rcu_read_unlock();
4243 return retval;
4244 }
4245
4246 static int sched_read_attr(struct sched_attr __user *uattr,
4247 struct sched_attr *attr,
4248 unsigned int usize)
4249 {
4250 int ret;
4251
4252 if (!access_ok(VERIFY_WRITE, uattr, usize))
4253 return -EFAULT;
4254
4255 /*
4256 * If we're handed a smaller struct than we know of,
4257 * ensure all the unknown bits are 0 - i.e. old
4258 * user-space does not get uncomplete information.
4259 */
4260 if (usize < sizeof(*attr)) {
4261 unsigned char *addr;
4262 unsigned char *end;
4263
4264 addr = (void *)attr + usize;
4265 end = (void *)attr + sizeof(*attr);
4266
4267 for (; addr < end; addr++) {
4268 if (*addr)
4269 return -EFBIG;
4270 }
4271
4272 attr->size = usize;
4273 }
4274
4275 ret = copy_to_user(uattr, attr, attr->size);
4276 if (ret)
4277 return -EFAULT;
4278
4279 return 0;
4280 }
4281
4282 /**
4283 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4284 * @pid: the pid in question.
4285 * @uattr: structure containing the extended parameters.
4286 * @size: sizeof(attr) for fwd/bwd comp.
4287 * @flags: for future extension.
4288 */
4289 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4290 unsigned int, size, unsigned int, flags)
4291 {
4292 struct sched_attr attr = {
4293 .size = sizeof(struct sched_attr),
4294 };
4295 struct task_struct *p;
4296 int retval;
4297
4298 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4299 size < SCHED_ATTR_SIZE_VER0 || flags)
4300 return -EINVAL;
4301
4302 rcu_read_lock();
4303 p = find_process_by_pid(pid);
4304 retval = -ESRCH;
4305 if (!p)
4306 goto out_unlock;
4307
4308 retval = security_task_getscheduler(p);
4309 if (retval)
4310 goto out_unlock;
4311
4312 attr.sched_policy = p->policy;
4313 if (p->sched_reset_on_fork)
4314 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4315 if (task_has_dl_policy(p))
4316 __getparam_dl(p, &attr);
4317 else if (task_has_rt_policy(p))
4318 attr.sched_priority = p->rt_priority;
4319 else
4320 attr.sched_nice = task_nice(p);
4321
4322 rcu_read_unlock();
4323
4324 retval = sched_read_attr(uattr, &attr, size);
4325 return retval;
4326
4327 out_unlock:
4328 rcu_read_unlock();
4329 return retval;
4330 }
4331
4332 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4333 {
4334 cpumask_var_t cpus_allowed, new_mask;
4335 struct task_struct *p;
4336 int retval;
4337
4338 rcu_read_lock();
4339
4340 p = find_process_by_pid(pid);
4341 if (!p) {
4342 rcu_read_unlock();
4343 return -ESRCH;
4344 }
4345
4346 /* Prevent p going away */
4347 get_task_struct(p);
4348 rcu_read_unlock();
4349
4350 if (p->flags & PF_NO_SETAFFINITY) {
4351 retval = -EINVAL;
4352 goto out_put_task;
4353 }
4354 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4355 retval = -ENOMEM;
4356 goto out_put_task;
4357 }
4358 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4359 retval = -ENOMEM;
4360 goto out_free_cpus_allowed;
4361 }
4362 retval = -EPERM;
4363 if (!check_same_owner(p)) {
4364 rcu_read_lock();
4365 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4366 rcu_read_unlock();
4367 goto out_free_new_mask;
4368 }
4369 rcu_read_unlock();
4370 }
4371
4372 retval = security_task_setscheduler(p);
4373 if (retval)
4374 goto out_free_new_mask;
4375
4376
4377 cpuset_cpus_allowed(p, cpus_allowed);
4378 cpumask_and(new_mask, in_mask, cpus_allowed);
4379
4380 /*
4381 * Since bandwidth control happens on root_domain basis,
4382 * if admission test is enabled, we only admit -deadline
4383 * tasks allowed to run on all the CPUs in the task's
4384 * root_domain.
4385 */
4386 #ifdef CONFIG_SMP
4387 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4388 rcu_read_lock();
4389 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4390 retval = -EBUSY;
4391 rcu_read_unlock();
4392 goto out_free_new_mask;
4393 }
4394 rcu_read_unlock();
4395 }
4396 #endif
4397 again:
4398 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4399
4400 if (!retval) {
4401 cpuset_cpus_allowed(p, cpus_allowed);
4402 if (!cpumask_subset(new_mask, cpus_allowed)) {
4403 /*
4404 * We must have raced with a concurrent cpuset
4405 * update. Just reset the cpus_allowed to the
4406 * cpuset's cpus_allowed
4407 */
4408 cpumask_copy(new_mask, cpus_allowed);
4409 goto again;
4410 }
4411 }
4412 out_free_new_mask:
4413 free_cpumask_var(new_mask);
4414 out_free_cpus_allowed:
4415 free_cpumask_var(cpus_allowed);
4416 out_put_task:
4417 put_task_struct(p);
4418 return retval;
4419 }
4420
4421 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4422 struct cpumask *new_mask)
4423 {
4424 if (len < cpumask_size())
4425 cpumask_clear(new_mask);
4426 else if (len > cpumask_size())
4427 len = cpumask_size();
4428
4429 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4430 }
4431
4432 /**
4433 * sys_sched_setaffinity - set the cpu affinity of a process
4434 * @pid: pid of the process
4435 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4436 * @user_mask_ptr: user-space pointer to the new cpu mask
4437 *
4438 * Return: 0 on success. An error code otherwise.
4439 */
4440 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4441 unsigned long __user *, user_mask_ptr)
4442 {
4443 cpumask_var_t new_mask;
4444 int retval;
4445
4446 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4447 return -ENOMEM;
4448
4449 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4450 if (retval == 0)
4451 retval = sched_setaffinity(pid, new_mask);
4452 free_cpumask_var(new_mask);
4453 return retval;
4454 }
4455
4456 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4457 {
4458 struct task_struct *p;
4459 unsigned long flags;
4460 int retval;
4461
4462 rcu_read_lock();
4463
4464 retval = -ESRCH;
4465 p = find_process_by_pid(pid);
4466 if (!p)
4467 goto out_unlock;
4468
4469 retval = security_task_getscheduler(p);
4470 if (retval)
4471 goto out_unlock;
4472
4473 raw_spin_lock_irqsave(&p->pi_lock, flags);
4474 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4475 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4476
4477 out_unlock:
4478 rcu_read_unlock();
4479
4480 return retval;
4481 }
4482
4483 /**
4484 * sys_sched_getaffinity - get the cpu affinity of a process
4485 * @pid: pid of the process
4486 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4487 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4488 *
4489 * Return: 0 on success. An error code otherwise.
4490 */
4491 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4492 unsigned long __user *, user_mask_ptr)
4493 {
4494 int ret;
4495 cpumask_var_t mask;
4496
4497 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4498 return -EINVAL;
4499 if (len & (sizeof(unsigned long)-1))
4500 return -EINVAL;
4501
4502 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4503 return -ENOMEM;
4504
4505 ret = sched_getaffinity(pid, mask);
4506 if (ret == 0) {
4507 size_t retlen = min_t(size_t, len, cpumask_size());
4508
4509 if (copy_to_user(user_mask_ptr, mask, retlen))
4510 ret = -EFAULT;
4511 else
4512 ret = retlen;
4513 }
4514 free_cpumask_var(mask);
4515
4516 return ret;
4517 }
4518
4519 /**
4520 * sys_sched_yield - yield the current processor to other threads.
4521 *
4522 * This function yields the current CPU to other tasks. If there are no
4523 * other threads running on this CPU then this function will return.
4524 *
4525 * Return: 0.
4526 */
4527 SYSCALL_DEFINE0(sched_yield)
4528 {
4529 struct rq *rq = this_rq_lock();
4530
4531 schedstat_inc(rq, yld_count);
4532 current->sched_class->yield_task(rq);
4533
4534 /*
4535 * Since we are going to call schedule() anyway, there's
4536 * no need to preempt or enable interrupts:
4537 */
4538 __release(rq->lock);
4539 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4540 do_raw_spin_unlock(&rq->lock);
4541 sched_preempt_enable_no_resched();
4542
4543 schedule();
4544
4545 return 0;
4546 }
4547
4548 int __sched _cond_resched(void)
4549 {
4550 if (should_resched(0)) {
4551 preempt_schedule_common();
4552 return 1;
4553 }
4554 return 0;
4555 }
4556 EXPORT_SYMBOL(_cond_resched);
4557
4558 /*
4559 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4560 * call schedule, and on return reacquire the lock.
4561 *
4562 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4563 * operations here to prevent schedule() from being called twice (once via
4564 * spin_unlock(), once by hand).
4565 */
4566 int __cond_resched_lock(spinlock_t *lock)
4567 {
4568 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4569 int ret = 0;
4570
4571 lockdep_assert_held(lock);
4572
4573 if (spin_needbreak(lock) || resched) {
4574 spin_unlock(lock);
4575 if (resched)
4576 preempt_schedule_common();
4577 else
4578 cpu_relax();
4579 ret = 1;
4580 spin_lock(lock);
4581 }
4582 return ret;
4583 }
4584 EXPORT_SYMBOL(__cond_resched_lock);
4585
4586 int __sched __cond_resched_softirq(void)
4587 {
4588 BUG_ON(!in_softirq());
4589
4590 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4591 local_bh_enable();
4592 preempt_schedule_common();
4593 local_bh_disable();
4594 return 1;
4595 }
4596 return 0;
4597 }
4598 EXPORT_SYMBOL(__cond_resched_softirq);
4599
4600 /**
4601 * yield - yield the current processor to other threads.
4602 *
4603 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4604 *
4605 * The scheduler is at all times free to pick the calling task as the most
4606 * eligible task to run, if removing the yield() call from your code breaks
4607 * it, its already broken.
4608 *
4609 * Typical broken usage is:
4610 *
4611 * while (!event)
4612 * yield();
4613 *
4614 * where one assumes that yield() will let 'the other' process run that will
4615 * make event true. If the current task is a SCHED_FIFO task that will never
4616 * happen. Never use yield() as a progress guarantee!!
4617 *
4618 * If you want to use yield() to wait for something, use wait_event().
4619 * If you want to use yield() to be 'nice' for others, use cond_resched().
4620 * If you still want to use yield(), do not!
4621 */
4622 void __sched yield(void)
4623 {
4624 set_current_state(TASK_RUNNING);
4625 sys_sched_yield();
4626 }
4627 EXPORT_SYMBOL(yield);
4628
4629 /**
4630 * yield_to - yield the current processor to another thread in
4631 * your thread group, or accelerate that thread toward the
4632 * processor it's on.
4633 * @p: target task
4634 * @preempt: whether task preemption is allowed or not
4635 *
4636 * It's the caller's job to ensure that the target task struct
4637 * can't go away on us before we can do any checks.
4638 *
4639 * Return:
4640 * true (>0) if we indeed boosted the target task.
4641 * false (0) if we failed to boost the target.
4642 * -ESRCH if there's no task to yield to.
4643 */
4644 int __sched yield_to(struct task_struct *p, bool preempt)
4645 {
4646 struct task_struct *curr = current;
4647 struct rq *rq, *p_rq;
4648 unsigned long flags;
4649 int yielded = 0;
4650
4651 local_irq_save(flags);
4652 rq = this_rq();
4653
4654 again:
4655 p_rq = task_rq(p);
4656 /*
4657 * If we're the only runnable task on the rq and target rq also
4658 * has only one task, there's absolutely no point in yielding.
4659 */
4660 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4661 yielded = -ESRCH;
4662 goto out_irq;
4663 }
4664
4665 double_rq_lock(rq, p_rq);
4666 if (task_rq(p) != p_rq) {
4667 double_rq_unlock(rq, p_rq);
4668 goto again;
4669 }
4670
4671 if (!curr->sched_class->yield_to_task)
4672 goto out_unlock;
4673
4674 if (curr->sched_class != p->sched_class)
4675 goto out_unlock;
4676
4677 if (task_running(p_rq, p) || p->state)
4678 goto out_unlock;
4679
4680 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4681 if (yielded) {
4682 schedstat_inc(rq, yld_count);
4683 /*
4684 * Make p's CPU reschedule; pick_next_entity takes care of
4685 * fairness.
4686 */
4687 if (preempt && rq != p_rq)
4688 resched_curr(p_rq);
4689 }
4690
4691 out_unlock:
4692 double_rq_unlock(rq, p_rq);
4693 out_irq:
4694 local_irq_restore(flags);
4695
4696 if (yielded > 0)
4697 schedule();
4698
4699 return yielded;
4700 }
4701 EXPORT_SYMBOL_GPL(yield_to);
4702
4703 /*
4704 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4705 * that process accounting knows that this is a task in IO wait state.
4706 */
4707 long __sched io_schedule_timeout(long timeout)
4708 {
4709 int old_iowait = current->in_iowait;
4710 struct rq *rq;
4711 long ret;
4712
4713 current->in_iowait = 1;
4714 blk_schedule_flush_plug(current);
4715
4716 delayacct_blkio_start();
4717 rq = raw_rq();
4718 atomic_inc(&rq->nr_iowait);
4719 ret = schedule_timeout(timeout);
4720 current->in_iowait = old_iowait;
4721 atomic_dec(&rq->nr_iowait);
4722 delayacct_blkio_end();
4723
4724 return ret;
4725 }
4726 EXPORT_SYMBOL(io_schedule_timeout);
4727
4728 /**
4729 * sys_sched_get_priority_max - return maximum RT priority.
4730 * @policy: scheduling class.
4731 *
4732 * Return: On success, this syscall returns the maximum
4733 * rt_priority that can be used by a given scheduling class.
4734 * On failure, a negative error code is returned.
4735 */
4736 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4737 {
4738 int ret = -EINVAL;
4739
4740 switch (policy) {
4741 case SCHED_FIFO:
4742 case SCHED_RR:
4743 ret = MAX_USER_RT_PRIO-1;
4744 break;
4745 case SCHED_DEADLINE:
4746 case SCHED_NORMAL:
4747 case SCHED_BATCH:
4748 case SCHED_IDLE:
4749 ret = 0;
4750 break;
4751 }
4752 return ret;
4753 }
4754
4755 /**
4756 * sys_sched_get_priority_min - return minimum RT priority.
4757 * @policy: scheduling class.
4758 *
4759 * Return: On success, this syscall returns the minimum
4760 * rt_priority that can be used by a given scheduling class.
4761 * On failure, a negative error code is returned.
4762 */
4763 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4764 {
4765 int ret = -EINVAL;
4766
4767 switch (policy) {
4768 case SCHED_FIFO:
4769 case SCHED_RR:
4770 ret = 1;
4771 break;
4772 case SCHED_DEADLINE:
4773 case SCHED_NORMAL:
4774 case SCHED_BATCH:
4775 case SCHED_IDLE:
4776 ret = 0;
4777 }
4778 return ret;
4779 }
4780
4781 /**
4782 * sys_sched_rr_get_interval - return the default timeslice of a process.
4783 * @pid: pid of the process.
4784 * @interval: userspace pointer to the timeslice value.
4785 *
4786 * this syscall writes the default timeslice value of a given process
4787 * into the user-space timespec buffer. A value of '0' means infinity.
4788 *
4789 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4790 * an error code.
4791 */
4792 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4793 struct timespec __user *, interval)
4794 {
4795 struct task_struct *p;
4796 unsigned int time_slice;
4797 unsigned long flags;
4798 struct rq *rq;
4799 int retval;
4800 struct timespec t;
4801
4802 if (pid < 0)
4803 return -EINVAL;
4804
4805 retval = -ESRCH;
4806 rcu_read_lock();
4807 p = find_process_by_pid(pid);
4808 if (!p)
4809 goto out_unlock;
4810
4811 retval = security_task_getscheduler(p);
4812 if (retval)
4813 goto out_unlock;
4814
4815 rq = task_rq_lock(p, &flags);
4816 time_slice = 0;
4817 if (p->sched_class->get_rr_interval)
4818 time_slice = p->sched_class->get_rr_interval(rq, p);
4819 task_rq_unlock(rq, p, &flags);
4820
4821 rcu_read_unlock();
4822 jiffies_to_timespec(time_slice, &t);
4823 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4824 return retval;
4825
4826 out_unlock:
4827 rcu_read_unlock();
4828 return retval;
4829 }
4830
4831 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4832
4833 void sched_show_task(struct task_struct *p)
4834 {
4835 unsigned long free = 0;
4836 int ppid;
4837 unsigned long state = p->state;
4838
4839 if (state)
4840 state = __ffs(state) + 1;
4841 printk(KERN_INFO "%-15.15s %c", p->comm,
4842 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4843 #if BITS_PER_LONG == 32
4844 if (state == TASK_RUNNING)
4845 printk(KERN_CONT " running ");
4846 else
4847 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4848 #else
4849 if (state == TASK_RUNNING)
4850 printk(KERN_CONT " running task ");
4851 else
4852 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4853 #endif
4854 #ifdef CONFIG_DEBUG_STACK_USAGE
4855 free = stack_not_used(p);
4856 #endif
4857 ppid = 0;
4858 rcu_read_lock();
4859 if (pid_alive(p))
4860 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4861 rcu_read_unlock();
4862 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4863 task_pid_nr(p), ppid,
4864 (unsigned long)task_thread_info(p)->flags);
4865
4866 print_worker_info(KERN_INFO, p);
4867 show_stack(p, NULL);
4868 }
4869
4870 void show_state_filter(unsigned long state_filter)
4871 {
4872 struct task_struct *g, *p;
4873
4874 #if BITS_PER_LONG == 32
4875 printk(KERN_INFO
4876 " task PC stack pid father\n");
4877 #else
4878 printk(KERN_INFO
4879 " task PC stack pid father\n");
4880 #endif
4881 rcu_read_lock();
4882 for_each_process_thread(g, p) {
4883 /*
4884 * reset the NMI-timeout, listing all files on a slow
4885 * console might take a lot of time:
4886 */
4887 touch_nmi_watchdog();
4888 if (!state_filter || (p->state & state_filter))
4889 sched_show_task(p);
4890 }
4891
4892 touch_all_softlockup_watchdogs();
4893
4894 #ifdef CONFIG_SCHED_DEBUG
4895 sysrq_sched_debug_show();
4896 #endif
4897 rcu_read_unlock();
4898 /*
4899 * Only show locks if all tasks are dumped:
4900 */
4901 if (!state_filter)
4902 debug_show_all_locks();
4903 }
4904
4905 void init_idle_bootup_task(struct task_struct *idle)
4906 {
4907 idle->sched_class = &idle_sched_class;
4908 }
4909
4910 /**
4911 * init_idle - set up an idle thread for a given CPU
4912 * @idle: task in question
4913 * @cpu: cpu the idle task belongs to
4914 *
4915 * NOTE: this function does not set the idle thread's NEED_RESCHED
4916 * flag, to make booting more robust.
4917 */
4918 void init_idle(struct task_struct *idle, int cpu)
4919 {
4920 struct rq *rq = cpu_rq(cpu);
4921 unsigned long flags;
4922
4923 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4924 raw_spin_lock(&rq->lock);
4925
4926 __sched_fork(0, idle);
4927 idle->state = TASK_RUNNING;
4928 idle->se.exec_start = sched_clock();
4929
4930 do_set_cpus_allowed(idle, cpumask_of(cpu));
4931 /*
4932 * We're having a chicken and egg problem, even though we are
4933 * holding rq->lock, the cpu isn't yet set to this cpu so the
4934 * lockdep check in task_group() will fail.
4935 *
4936 * Similar case to sched_fork(). / Alternatively we could
4937 * use task_rq_lock() here and obtain the other rq->lock.
4938 *
4939 * Silence PROVE_RCU
4940 */
4941 rcu_read_lock();
4942 __set_task_cpu(idle, cpu);
4943 rcu_read_unlock();
4944
4945 rq->curr = rq->idle = idle;
4946 idle->on_rq = TASK_ON_RQ_QUEUED;
4947 #if defined(CONFIG_SMP)
4948 idle->on_cpu = 1;
4949 #endif
4950 raw_spin_unlock(&rq->lock);
4951 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
4952
4953 /* Set the preempt count _outside_ the spinlocks! */
4954 init_idle_preempt_count(idle, cpu);
4955
4956 /*
4957 * The idle tasks have their own, simple scheduling class:
4958 */
4959 idle->sched_class = &idle_sched_class;
4960 ftrace_graph_init_idle_task(idle, cpu);
4961 vtime_init_idle(idle, cpu);
4962 #if defined(CONFIG_SMP)
4963 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4964 #endif
4965 }
4966
4967 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4968 const struct cpumask *trial)
4969 {
4970 int ret = 1, trial_cpus;
4971 struct dl_bw *cur_dl_b;
4972 unsigned long flags;
4973
4974 if (!cpumask_weight(cur))
4975 return ret;
4976
4977 rcu_read_lock_sched();
4978 cur_dl_b = dl_bw_of(cpumask_any(cur));
4979 trial_cpus = cpumask_weight(trial);
4980
4981 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4982 if (cur_dl_b->bw != -1 &&
4983 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4984 ret = 0;
4985 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4986 rcu_read_unlock_sched();
4987
4988 return ret;
4989 }
4990
4991 int task_can_attach(struct task_struct *p,
4992 const struct cpumask *cs_cpus_allowed)
4993 {
4994 int ret = 0;
4995
4996 /*
4997 * Kthreads which disallow setaffinity shouldn't be moved
4998 * to a new cpuset; we don't want to change their cpu
4999 * affinity and isolating such threads by their set of
5000 * allowed nodes is unnecessary. Thus, cpusets are not
5001 * applicable for such threads. This prevents checking for
5002 * success of set_cpus_allowed_ptr() on all attached tasks
5003 * before cpus_allowed may be changed.
5004 */
5005 if (p->flags & PF_NO_SETAFFINITY) {
5006 ret = -EINVAL;
5007 goto out;
5008 }
5009
5010 #ifdef CONFIG_SMP
5011 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5012 cs_cpus_allowed)) {
5013 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5014 cs_cpus_allowed);
5015 struct dl_bw *dl_b;
5016 bool overflow;
5017 int cpus;
5018 unsigned long flags;
5019
5020 rcu_read_lock_sched();
5021 dl_b = dl_bw_of(dest_cpu);
5022 raw_spin_lock_irqsave(&dl_b->lock, flags);
5023 cpus = dl_bw_cpus(dest_cpu);
5024 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5025 if (overflow)
5026 ret = -EBUSY;
5027 else {
5028 /*
5029 * We reserve space for this task in the destination
5030 * root_domain, as we can't fail after this point.
5031 * We will free resources in the source root_domain
5032 * later on (see set_cpus_allowed_dl()).
5033 */
5034 __dl_add(dl_b, p->dl.dl_bw);
5035 }
5036 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5037 rcu_read_unlock_sched();
5038
5039 }
5040 #endif
5041 out:
5042 return ret;
5043 }
5044
5045 #ifdef CONFIG_SMP
5046
5047 #ifdef CONFIG_NUMA_BALANCING
5048 /* Migrate current task p to target_cpu */
5049 int migrate_task_to(struct task_struct *p, int target_cpu)
5050 {
5051 struct migration_arg arg = { p, target_cpu };
5052 int curr_cpu = task_cpu(p);
5053
5054 if (curr_cpu == target_cpu)
5055 return 0;
5056
5057 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5058 return -EINVAL;
5059
5060 /* TODO: This is not properly updating schedstats */
5061
5062 trace_sched_move_numa(p, curr_cpu, target_cpu);
5063 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5064 }
5065
5066 /*
5067 * Requeue a task on a given node and accurately track the number of NUMA
5068 * tasks on the runqueues
5069 */
5070 void sched_setnuma(struct task_struct *p, int nid)
5071 {
5072 struct rq *rq;
5073 unsigned long flags;
5074 bool queued, running;
5075
5076 rq = task_rq_lock(p, &flags);
5077 queued = task_on_rq_queued(p);
5078 running = task_current(rq, p);
5079
5080 if (queued)
5081 dequeue_task(rq, p, 0);
5082 if (running)
5083 put_prev_task(rq, p);
5084
5085 p->numa_preferred_nid = nid;
5086
5087 if (running)
5088 p->sched_class->set_curr_task(rq);
5089 if (queued)
5090 enqueue_task(rq, p, 0);
5091 task_rq_unlock(rq, p, &flags);
5092 }
5093 #endif /* CONFIG_NUMA_BALANCING */
5094
5095 #ifdef CONFIG_HOTPLUG_CPU
5096 /*
5097 * Ensures that the idle task is using init_mm right before its cpu goes
5098 * offline.
5099 */
5100 void idle_task_exit(void)
5101 {
5102 struct mm_struct *mm = current->active_mm;
5103
5104 BUG_ON(cpu_online(smp_processor_id()));
5105
5106 if (mm != &init_mm) {
5107 switch_mm(mm, &init_mm, current);
5108 finish_arch_post_lock_switch();
5109 }
5110 mmdrop(mm);
5111 }
5112
5113 /*
5114 * Since this CPU is going 'away' for a while, fold any nr_active delta
5115 * we might have. Assumes we're called after migrate_tasks() so that the
5116 * nr_active count is stable.
5117 *
5118 * Also see the comment "Global load-average calculations".
5119 */
5120 static void calc_load_migrate(struct rq *rq)
5121 {
5122 long delta = calc_load_fold_active(rq);
5123 if (delta)
5124 atomic_long_add(delta, &calc_load_tasks);
5125 }
5126
5127 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5128 {
5129 }
5130
5131 static const struct sched_class fake_sched_class = {
5132 .put_prev_task = put_prev_task_fake,
5133 };
5134
5135 static struct task_struct fake_task = {
5136 /*
5137 * Avoid pull_{rt,dl}_task()
5138 */
5139 .prio = MAX_PRIO + 1,
5140 .sched_class = &fake_sched_class,
5141 };
5142
5143 /*
5144 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5145 * try_to_wake_up()->select_task_rq().
5146 *
5147 * Called with rq->lock held even though we'er in stop_machine() and
5148 * there's no concurrency possible, we hold the required locks anyway
5149 * because of lock validation efforts.
5150 */
5151 static void migrate_tasks(struct rq *dead_rq)
5152 {
5153 struct rq *rq = dead_rq;
5154 struct task_struct *next, *stop = rq->stop;
5155 int dest_cpu;
5156
5157 /*
5158 * Fudge the rq selection such that the below task selection loop
5159 * doesn't get stuck on the currently eligible stop task.
5160 *
5161 * We're currently inside stop_machine() and the rq is either stuck
5162 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5163 * either way we should never end up calling schedule() until we're
5164 * done here.
5165 */
5166 rq->stop = NULL;
5167
5168 /*
5169 * put_prev_task() and pick_next_task() sched
5170 * class method both need to have an up-to-date
5171 * value of rq->clock[_task]
5172 */
5173 update_rq_clock(rq);
5174
5175 for (;;) {
5176 /*
5177 * There's this thread running, bail when that's the only
5178 * remaining thread.
5179 */
5180 if (rq->nr_running == 1)
5181 break;
5182
5183 /*
5184 * pick_next_task assumes pinned rq->lock.
5185 */
5186 lockdep_pin_lock(&rq->lock);
5187 next = pick_next_task(rq, &fake_task);
5188 BUG_ON(!next);
5189 next->sched_class->put_prev_task(rq, next);
5190
5191 /*
5192 * Rules for changing task_struct::cpus_allowed are holding
5193 * both pi_lock and rq->lock, such that holding either
5194 * stabilizes the mask.
5195 *
5196 * Drop rq->lock is not quite as disastrous as it usually is
5197 * because !cpu_active at this point, which means load-balance
5198 * will not interfere. Also, stop-machine.
5199 */
5200 lockdep_unpin_lock(&rq->lock);
5201 raw_spin_unlock(&rq->lock);
5202 raw_spin_lock(&next->pi_lock);
5203 raw_spin_lock(&rq->lock);
5204
5205 /*
5206 * Since we're inside stop-machine, _nothing_ should have
5207 * changed the task, WARN if weird stuff happened, because in
5208 * that case the above rq->lock drop is a fail too.
5209 */
5210 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5211 raw_spin_unlock(&next->pi_lock);
5212 continue;
5213 }
5214
5215 /* Find suitable destination for @next, with force if needed. */
5216 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5217
5218 rq = __migrate_task(rq, next, dest_cpu);
5219 if (rq != dead_rq) {
5220 raw_spin_unlock(&rq->lock);
5221 rq = dead_rq;
5222 raw_spin_lock(&rq->lock);
5223 }
5224 raw_spin_unlock(&next->pi_lock);
5225 }
5226
5227 rq->stop = stop;
5228 }
5229 #endif /* CONFIG_HOTPLUG_CPU */
5230
5231 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5232
5233 static struct ctl_table sd_ctl_dir[] = {
5234 {
5235 .procname = "sched_domain",
5236 .mode = 0555,
5237 },
5238 {}
5239 };
5240
5241 static struct ctl_table sd_ctl_root[] = {
5242 {
5243 .procname = "kernel",
5244 .mode = 0555,
5245 .child = sd_ctl_dir,
5246 },
5247 {}
5248 };
5249
5250 static struct ctl_table *sd_alloc_ctl_entry(int n)
5251 {
5252 struct ctl_table *entry =
5253 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5254
5255 return entry;
5256 }
5257
5258 static void sd_free_ctl_entry(struct ctl_table **tablep)
5259 {
5260 struct ctl_table *entry;
5261
5262 /*
5263 * In the intermediate directories, both the child directory and
5264 * procname are dynamically allocated and could fail but the mode
5265 * will always be set. In the lowest directory the names are
5266 * static strings and all have proc handlers.
5267 */
5268 for (entry = *tablep; entry->mode; entry++) {
5269 if (entry->child)
5270 sd_free_ctl_entry(&entry->child);
5271 if (entry->proc_handler == NULL)
5272 kfree(entry->procname);
5273 }
5274
5275 kfree(*tablep);
5276 *tablep = NULL;
5277 }
5278
5279 static int min_load_idx = 0;
5280 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5281
5282 static void
5283 set_table_entry(struct ctl_table *entry,
5284 const char *procname, void *data, int maxlen,
5285 umode_t mode, proc_handler *proc_handler,
5286 bool load_idx)
5287 {
5288 entry->procname = procname;
5289 entry->data = data;
5290 entry->maxlen = maxlen;
5291 entry->mode = mode;
5292 entry->proc_handler = proc_handler;
5293
5294 if (load_idx) {
5295 entry->extra1 = &min_load_idx;
5296 entry->extra2 = &max_load_idx;
5297 }
5298 }
5299
5300 static struct ctl_table *
5301 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5302 {
5303 struct ctl_table *table = sd_alloc_ctl_entry(14);
5304
5305 if (table == NULL)
5306 return NULL;
5307
5308 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5309 sizeof(long), 0644, proc_doulongvec_minmax, false);
5310 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5311 sizeof(long), 0644, proc_doulongvec_minmax, false);
5312 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5313 sizeof(int), 0644, proc_dointvec_minmax, true);
5314 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5315 sizeof(int), 0644, proc_dointvec_minmax, true);
5316 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5317 sizeof(int), 0644, proc_dointvec_minmax, true);
5318 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5319 sizeof(int), 0644, proc_dointvec_minmax, true);
5320 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5321 sizeof(int), 0644, proc_dointvec_minmax, true);
5322 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5323 sizeof(int), 0644, proc_dointvec_minmax, false);
5324 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5325 sizeof(int), 0644, proc_dointvec_minmax, false);
5326 set_table_entry(&table[9], "cache_nice_tries",
5327 &sd->cache_nice_tries,
5328 sizeof(int), 0644, proc_dointvec_minmax, false);
5329 set_table_entry(&table[10], "flags", &sd->flags,
5330 sizeof(int), 0644, proc_dointvec_minmax, false);
5331 set_table_entry(&table[11], "max_newidle_lb_cost",
5332 &sd->max_newidle_lb_cost,
5333 sizeof(long), 0644, proc_doulongvec_minmax, false);
5334 set_table_entry(&table[12], "name", sd->name,
5335 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5336 /* &table[13] is terminator */
5337
5338 return table;
5339 }
5340
5341 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5342 {
5343 struct ctl_table *entry, *table;
5344 struct sched_domain *sd;
5345 int domain_num = 0, i;
5346 char buf[32];
5347
5348 for_each_domain(cpu, sd)
5349 domain_num++;
5350 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5351 if (table == NULL)
5352 return NULL;
5353
5354 i = 0;
5355 for_each_domain(cpu, sd) {
5356 snprintf(buf, 32, "domain%d", i);
5357 entry->procname = kstrdup(buf, GFP_KERNEL);
5358 entry->mode = 0555;
5359 entry->child = sd_alloc_ctl_domain_table(sd);
5360 entry++;
5361 i++;
5362 }
5363 return table;
5364 }
5365
5366 static struct ctl_table_header *sd_sysctl_header;
5367 static void register_sched_domain_sysctl(void)
5368 {
5369 int i, cpu_num = num_possible_cpus();
5370 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5371 char buf[32];
5372
5373 WARN_ON(sd_ctl_dir[0].child);
5374 sd_ctl_dir[0].child = entry;
5375
5376 if (entry == NULL)
5377 return;
5378
5379 for_each_possible_cpu(i) {
5380 snprintf(buf, 32, "cpu%d", i);
5381 entry->procname = kstrdup(buf, GFP_KERNEL);
5382 entry->mode = 0555;
5383 entry->child = sd_alloc_ctl_cpu_table(i);
5384 entry++;
5385 }
5386
5387 WARN_ON(sd_sysctl_header);
5388 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5389 }
5390
5391 /* may be called multiple times per register */
5392 static void unregister_sched_domain_sysctl(void)
5393 {
5394 unregister_sysctl_table(sd_sysctl_header);
5395 sd_sysctl_header = NULL;
5396 if (sd_ctl_dir[0].child)
5397 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5398 }
5399 #else
5400 static void register_sched_domain_sysctl(void)
5401 {
5402 }
5403 static void unregister_sched_domain_sysctl(void)
5404 {
5405 }
5406 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5407
5408 static void set_rq_online(struct rq *rq)
5409 {
5410 if (!rq->online) {
5411 const struct sched_class *class;
5412
5413 cpumask_set_cpu(rq->cpu, rq->rd->online);
5414 rq->online = 1;
5415
5416 for_each_class(class) {
5417 if (class->rq_online)
5418 class->rq_online(rq);
5419 }
5420 }
5421 }
5422
5423 static void set_rq_offline(struct rq *rq)
5424 {
5425 if (rq->online) {
5426 const struct sched_class *class;
5427
5428 for_each_class(class) {
5429 if (class->rq_offline)
5430 class->rq_offline(rq);
5431 }
5432
5433 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5434 rq->online = 0;
5435 }
5436 }
5437
5438 /*
5439 * migration_call - callback that gets triggered when a CPU is added.
5440 * Here we can start up the necessary migration thread for the new CPU.
5441 */
5442 static int
5443 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5444 {
5445 int cpu = (long)hcpu;
5446 unsigned long flags;
5447 struct rq *rq = cpu_rq(cpu);
5448
5449 switch (action & ~CPU_TASKS_FROZEN) {
5450
5451 case CPU_UP_PREPARE:
5452 rq->calc_load_update = calc_load_update;
5453 break;
5454
5455 case CPU_ONLINE:
5456 /* Update our root-domain */
5457 raw_spin_lock_irqsave(&rq->lock, flags);
5458 if (rq->rd) {
5459 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5460
5461 set_rq_online(rq);
5462 }
5463 raw_spin_unlock_irqrestore(&rq->lock, flags);
5464 break;
5465
5466 #ifdef CONFIG_HOTPLUG_CPU
5467 case CPU_DYING:
5468 sched_ttwu_pending();
5469 /* Update our root-domain */
5470 raw_spin_lock_irqsave(&rq->lock, flags);
5471 if (rq->rd) {
5472 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5473 set_rq_offline(rq);
5474 }
5475 migrate_tasks(rq);
5476 BUG_ON(rq->nr_running != 1); /* the migration thread */
5477 raw_spin_unlock_irqrestore(&rq->lock, flags);
5478 break;
5479
5480 case CPU_DEAD:
5481 calc_load_migrate(rq);
5482 break;
5483 #endif
5484 }
5485
5486 update_max_interval();
5487
5488 return NOTIFY_OK;
5489 }
5490
5491 /*
5492 * Register at high priority so that task migration (migrate_all_tasks)
5493 * happens before everything else. This has to be lower priority than
5494 * the notifier in the perf_event subsystem, though.
5495 */
5496 static struct notifier_block migration_notifier = {
5497 .notifier_call = migration_call,
5498 .priority = CPU_PRI_MIGRATION,
5499 };
5500
5501 static void set_cpu_rq_start_time(void)
5502 {
5503 int cpu = smp_processor_id();
5504 struct rq *rq = cpu_rq(cpu);
5505 rq->age_stamp = sched_clock_cpu(cpu);
5506 }
5507
5508 static int sched_cpu_active(struct notifier_block *nfb,
5509 unsigned long action, void *hcpu)
5510 {
5511 switch (action & ~CPU_TASKS_FROZEN) {
5512 case CPU_STARTING:
5513 set_cpu_rq_start_time();
5514 return NOTIFY_OK;
5515 case CPU_ONLINE:
5516 /*
5517 * At this point a starting CPU has marked itself as online via
5518 * set_cpu_online(). But it might not yet have marked itself
5519 * as active, which is essential from here on.
5520 *
5521 * Thus, fall-through and help the starting CPU along.
5522 */
5523 case CPU_DOWN_FAILED:
5524 set_cpu_active((long)hcpu, true);
5525 return NOTIFY_OK;
5526 default:
5527 return NOTIFY_DONE;
5528 }
5529 }
5530
5531 static int sched_cpu_inactive(struct notifier_block *nfb,
5532 unsigned long action, void *hcpu)
5533 {
5534 switch (action & ~CPU_TASKS_FROZEN) {
5535 case CPU_DOWN_PREPARE:
5536 set_cpu_active((long)hcpu, false);
5537 return NOTIFY_OK;
5538 default:
5539 return NOTIFY_DONE;
5540 }
5541 }
5542
5543 static int __init migration_init(void)
5544 {
5545 void *cpu = (void *)(long)smp_processor_id();
5546 int err;
5547
5548 /* Initialize migration for the boot CPU */
5549 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5550 BUG_ON(err == NOTIFY_BAD);
5551 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5552 register_cpu_notifier(&migration_notifier);
5553
5554 /* Register cpu active notifiers */
5555 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5556 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5557
5558 return 0;
5559 }
5560 early_initcall(migration_init);
5561
5562 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5563
5564 #ifdef CONFIG_SCHED_DEBUG
5565
5566 static __read_mostly int sched_debug_enabled;
5567
5568 static int __init sched_debug_setup(char *str)
5569 {
5570 sched_debug_enabled = 1;
5571
5572 return 0;
5573 }
5574 early_param("sched_debug", sched_debug_setup);
5575
5576 static inline bool sched_debug(void)
5577 {
5578 return sched_debug_enabled;
5579 }
5580
5581 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5582 struct cpumask *groupmask)
5583 {
5584 struct sched_group *group = sd->groups;
5585
5586 cpumask_clear(groupmask);
5587
5588 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5589
5590 if (!(sd->flags & SD_LOAD_BALANCE)) {
5591 printk("does not load-balance\n");
5592 if (sd->parent)
5593 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5594 " has parent");
5595 return -1;
5596 }
5597
5598 printk(KERN_CONT "span %*pbl level %s\n",
5599 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5600
5601 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5602 printk(KERN_ERR "ERROR: domain->span does not contain "
5603 "CPU%d\n", cpu);
5604 }
5605 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5606 printk(KERN_ERR "ERROR: domain->groups does not contain"
5607 " CPU%d\n", cpu);
5608 }
5609
5610 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5611 do {
5612 if (!group) {
5613 printk("\n");
5614 printk(KERN_ERR "ERROR: group is NULL\n");
5615 break;
5616 }
5617
5618 if (!cpumask_weight(sched_group_cpus(group))) {
5619 printk(KERN_CONT "\n");
5620 printk(KERN_ERR "ERROR: empty group\n");
5621 break;
5622 }
5623
5624 if (!(sd->flags & SD_OVERLAP) &&
5625 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5626 printk(KERN_CONT "\n");
5627 printk(KERN_ERR "ERROR: repeated CPUs\n");
5628 break;
5629 }
5630
5631 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5632
5633 printk(KERN_CONT " %*pbl",
5634 cpumask_pr_args(sched_group_cpus(group)));
5635 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5636 printk(KERN_CONT " (cpu_capacity = %d)",
5637 group->sgc->capacity);
5638 }
5639
5640 group = group->next;
5641 } while (group != sd->groups);
5642 printk(KERN_CONT "\n");
5643
5644 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5645 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5646
5647 if (sd->parent &&
5648 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5649 printk(KERN_ERR "ERROR: parent span is not a superset "
5650 "of domain->span\n");
5651 return 0;
5652 }
5653
5654 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5655 {
5656 int level = 0;
5657
5658 if (!sched_debug_enabled)
5659 return;
5660
5661 if (!sd) {
5662 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5663 return;
5664 }
5665
5666 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5667
5668 for (;;) {
5669 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5670 break;
5671 level++;
5672 sd = sd->parent;
5673 if (!sd)
5674 break;
5675 }
5676 }
5677 #else /* !CONFIG_SCHED_DEBUG */
5678 # define sched_domain_debug(sd, cpu) do { } while (0)
5679 static inline bool sched_debug(void)
5680 {
5681 return false;
5682 }
5683 #endif /* CONFIG_SCHED_DEBUG */
5684
5685 static int sd_degenerate(struct sched_domain *sd)
5686 {
5687 if (cpumask_weight(sched_domain_span(sd)) == 1)
5688 return 1;
5689
5690 /* Following flags need at least 2 groups */
5691 if (sd->flags & (SD_LOAD_BALANCE |
5692 SD_BALANCE_NEWIDLE |
5693 SD_BALANCE_FORK |
5694 SD_BALANCE_EXEC |
5695 SD_SHARE_CPUCAPACITY |
5696 SD_SHARE_PKG_RESOURCES |
5697 SD_SHARE_POWERDOMAIN)) {
5698 if (sd->groups != sd->groups->next)
5699 return 0;
5700 }
5701
5702 /* Following flags don't use groups */
5703 if (sd->flags & (SD_WAKE_AFFINE))
5704 return 0;
5705
5706 return 1;
5707 }
5708
5709 static int
5710 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5711 {
5712 unsigned long cflags = sd->flags, pflags = parent->flags;
5713
5714 if (sd_degenerate(parent))
5715 return 1;
5716
5717 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5718 return 0;
5719
5720 /* Flags needing groups don't count if only 1 group in parent */
5721 if (parent->groups == parent->groups->next) {
5722 pflags &= ~(SD_LOAD_BALANCE |
5723 SD_BALANCE_NEWIDLE |
5724 SD_BALANCE_FORK |
5725 SD_BALANCE_EXEC |
5726 SD_SHARE_CPUCAPACITY |
5727 SD_SHARE_PKG_RESOURCES |
5728 SD_PREFER_SIBLING |
5729 SD_SHARE_POWERDOMAIN);
5730 if (nr_node_ids == 1)
5731 pflags &= ~SD_SERIALIZE;
5732 }
5733 if (~cflags & pflags)
5734 return 0;
5735
5736 return 1;
5737 }
5738
5739 static void free_rootdomain(struct rcu_head *rcu)
5740 {
5741 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5742
5743 cpupri_cleanup(&rd->cpupri);
5744 cpudl_cleanup(&rd->cpudl);
5745 free_cpumask_var(rd->dlo_mask);
5746 free_cpumask_var(rd->rto_mask);
5747 free_cpumask_var(rd->online);
5748 free_cpumask_var(rd->span);
5749 kfree(rd);
5750 }
5751
5752 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5753 {
5754 struct root_domain *old_rd = NULL;
5755 unsigned long flags;
5756
5757 raw_spin_lock_irqsave(&rq->lock, flags);
5758
5759 if (rq->rd) {
5760 old_rd = rq->rd;
5761
5762 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5763 set_rq_offline(rq);
5764
5765 cpumask_clear_cpu(rq->cpu, old_rd->span);
5766
5767 /*
5768 * If we dont want to free the old_rd yet then
5769 * set old_rd to NULL to skip the freeing later
5770 * in this function:
5771 */
5772 if (!atomic_dec_and_test(&old_rd->refcount))
5773 old_rd = NULL;
5774 }
5775
5776 atomic_inc(&rd->refcount);
5777 rq->rd = rd;
5778
5779 cpumask_set_cpu(rq->cpu, rd->span);
5780 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5781 set_rq_online(rq);
5782
5783 raw_spin_unlock_irqrestore(&rq->lock, flags);
5784
5785 if (old_rd)
5786 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5787 }
5788
5789 static int init_rootdomain(struct root_domain *rd)
5790 {
5791 memset(rd, 0, sizeof(*rd));
5792
5793 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5794 goto out;
5795 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5796 goto free_span;
5797 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5798 goto free_online;
5799 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5800 goto free_dlo_mask;
5801
5802 init_dl_bw(&rd->dl_bw);
5803 if (cpudl_init(&rd->cpudl) != 0)
5804 goto free_dlo_mask;
5805
5806 if (cpupri_init(&rd->cpupri) != 0)
5807 goto free_rto_mask;
5808 return 0;
5809
5810 free_rto_mask:
5811 free_cpumask_var(rd->rto_mask);
5812 free_dlo_mask:
5813 free_cpumask_var(rd->dlo_mask);
5814 free_online:
5815 free_cpumask_var(rd->online);
5816 free_span:
5817 free_cpumask_var(rd->span);
5818 out:
5819 return -ENOMEM;
5820 }
5821
5822 /*
5823 * By default the system creates a single root-domain with all cpus as
5824 * members (mimicking the global state we have today).
5825 */
5826 struct root_domain def_root_domain;
5827
5828 static void init_defrootdomain(void)
5829 {
5830 init_rootdomain(&def_root_domain);
5831
5832 atomic_set(&def_root_domain.refcount, 1);
5833 }
5834
5835 static struct root_domain *alloc_rootdomain(void)
5836 {
5837 struct root_domain *rd;
5838
5839 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5840 if (!rd)
5841 return NULL;
5842
5843 if (init_rootdomain(rd) != 0) {
5844 kfree(rd);
5845 return NULL;
5846 }
5847
5848 return rd;
5849 }
5850
5851 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5852 {
5853 struct sched_group *tmp, *first;
5854
5855 if (!sg)
5856 return;
5857
5858 first = sg;
5859 do {
5860 tmp = sg->next;
5861
5862 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5863 kfree(sg->sgc);
5864
5865 kfree(sg);
5866 sg = tmp;
5867 } while (sg != first);
5868 }
5869
5870 static void free_sched_domain(struct rcu_head *rcu)
5871 {
5872 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5873
5874 /*
5875 * If its an overlapping domain it has private groups, iterate and
5876 * nuke them all.
5877 */
5878 if (sd->flags & SD_OVERLAP) {
5879 free_sched_groups(sd->groups, 1);
5880 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5881 kfree(sd->groups->sgc);
5882 kfree(sd->groups);
5883 }
5884 kfree(sd);
5885 }
5886
5887 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5888 {
5889 call_rcu(&sd->rcu, free_sched_domain);
5890 }
5891
5892 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5893 {
5894 for (; sd; sd = sd->parent)
5895 destroy_sched_domain(sd, cpu);
5896 }
5897
5898 /*
5899 * Keep a special pointer to the highest sched_domain that has
5900 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5901 * allows us to avoid some pointer chasing select_idle_sibling().
5902 *
5903 * Also keep a unique ID per domain (we use the first cpu number in
5904 * the cpumask of the domain), this allows us to quickly tell if
5905 * two cpus are in the same cache domain, see cpus_share_cache().
5906 */
5907 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5908 DEFINE_PER_CPU(int, sd_llc_size);
5909 DEFINE_PER_CPU(int, sd_llc_id);
5910 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5911 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5912 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5913
5914 static void update_top_cache_domain(int cpu)
5915 {
5916 struct sched_domain *sd;
5917 struct sched_domain *busy_sd = NULL;
5918 int id = cpu;
5919 int size = 1;
5920
5921 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5922 if (sd) {
5923 id = cpumask_first(sched_domain_span(sd));
5924 size = cpumask_weight(sched_domain_span(sd));
5925 busy_sd = sd->parent; /* sd_busy */
5926 }
5927 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5928
5929 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5930 per_cpu(sd_llc_size, cpu) = size;
5931 per_cpu(sd_llc_id, cpu) = id;
5932
5933 sd = lowest_flag_domain(cpu, SD_NUMA);
5934 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5935
5936 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5937 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5938 }
5939
5940 /*
5941 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5942 * hold the hotplug lock.
5943 */
5944 static void
5945 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5946 {
5947 struct rq *rq = cpu_rq(cpu);
5948 struct sched_domain *tmp;
5949
5950 /* Remove the sched domains which do not contribute to scheduling. */
5951 for (tmp = sd; tmp; ) {
5952 struct sched_domain *parent = tmp->parent;
5953 if (!parent)
5954 break;
5955
5956 if (sd_parent_degenerate(tmp, parent)) {
5957 tmp->parent = parent->parent;
5958 if (parent->parent)
5959 parent->parent->child = tmp;
5960 /*
5961 * Transfer SD_PREFER_SIBLING down in case of a
5962 * degenerate parent; the spans match for this
5963 * so the property transfers.
5964 */
5965 if (parent->flags & SD_PREFER_SIBLING)
5966 tmp->flags |= SD_PREFER_SIBLING;
5967 destroy_sched_domain(parent, cpu);
5968 } else
5969 tmp = tmp->parent;
5970 }
5971
5972 if (sd && sd_degenerate(sd)) {
5973 tmp = sd;
5974 sd = sd->parent;
5975 destroy_sched_domain(tmp, cpu);
5976 if (sd)
5977 sd->child = NULL;
5978 }
5979
5980 sched_domain_debug(sd, cpu);
5981
5982 rq_attach_root(rq, rd);
5983 tmp = rq->sd;
5984 rcu_assign_pointer(rq->sd, sd);
5985 destroy_sched_domains(tmp, cpu);
5986
5987 update_top_cache_domain(cpu);
5988 }
5989
5990 /* Setup the mask of cpus configured for isolated domains */
5991 static int __init isolated_cpu_setup(char *str)
5992 {
5993 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5994 cpulist_parse(str, cpu_isolated_map);
5995 return 1;
5996 }
5997
5998 __setup("isolcpus=", isolated_cpu_setup);
5999
6000 struct s_data {
6001 struct sched_domain ** __percpu sd;
6002 struct root_domain *rd;
6003 };
6004
6005 enum s_alloc {
6006 sa_rootdomain,
6007 sa_sd,
6008 sa_sd_storage,
6009 sa_none,
6010 };
6011
6012 /*
6013 * Build an iteration mask that can exclude certain CPUs from the upwards
6014 * domain traversal.
6015 *
6016 * Asymmetric node setups can result in situations where the domain tree is of
6017 * unequal depth, make sure to skip domains that already cover the entire
6018 * range.
6019 *
6020 * In that case build_sched_domains() will have terminated the iteration early
6021 * and our sibling sd spans will be empty. Domains should always include the
6022 * cpu they're built on, so check that.
6023 *
6024 */
6025 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6026 {
6027 const struct cpumask *span = sched_domain_span(sd);
6028 struct sd_data *sdd = sd->private;
6029 struct sched_domain *sibling;
6030 int i;
6031
6032 for_each_cpu(i, span) {
6033 sibling = *per_cpu_ptr(sdd->sd, i);
6034 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6035 continue;
6036
6037 cpumask_set_cpu(i, sched_group_mask(sg));
6038 }
6039 }
6040
6041 /*
6042 * Return the canonical balance cpu for this group, this is the first cpu
6043 * of this group that's also in the iteration mask.
6044 */
6045 int group_balance_cpu(struct sched_group *sg)
6046 {
6047 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6048 }
6049
6050 static int
6051 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6052 {
6053 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6054 const struct cpumask *span = sched_domain_span(sd);
6055 struct cpumask *covered = sched_domains_tmpmask;
6056 struct sd_data *sdd = sd->private;
6057 struct sched_domain *sibling;
6058 int i;
6059
6060 cpumask_clear(covered);
6061
6062 for_each_cpu(i, span) {
6063 struct cpumask *sg_span;
6064
6065 if (cpumask_test_cpu(i, covered))
6066 continue;
6067
6068 sibling = *per_cpu_ptr(sdd->sd, i);
6069
6070 /* See the comment near build_group_mask(). */
6071 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6072 continue;
6073
6074 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6075 GFP_KERNEL, cpu_to_node(cpu));
6076
6077 if (!sg)
6078 goto fail;
6079
6080 sg_span = sched_group_cpus(sg);
6081 if (sibling->child)
6082 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6083 else
6084 cpumask_set_cpu(i, sg_span);
6085
6086 cpumask_or(covered, covered, sg_span);
6087
6088 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6089 if (atomic_inc_return(&sg->sgc->ref) == 1)
6090 build_group_mask(sd, sg);
6091
6092 /*
6093 * Initialize sgc->capacity such that even if we mess up the
6094 * domains and no possible iteration will get us here, we won't
6095 * die on a /0 trap.
6096 */
6097 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6098
6099 /*
6100 * Make sure the first group of this domain contains the
6101 * canonical balance cpu. Otherwise the sched_domain iteration
6102 * breaks. See update_sg_lb_stats().
6103 */
6104 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6105 group_balance_cpu(sg) == cpu)
6106 groups = sg;
6107
6108 if (!first)
6109 first = sg;
6110 if (last)
6111 last->next = sg;
6112 last = sg;
6113 last->next = first;
6114 }
6115 sd->groups = groups;
6116
6117 return 0;
6118
6119 fail:
6120 free_sched_groups(first, 0);
6121
6122 return -ENOMEM;
6123 }
6124
6125 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6126 {
6127 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6128 struct sched_domain *child = sd->child;
6129
6130 if (child)
6131 cpu = cpumask_first(sched_domain_span(child));
6132
6133 if (sg) {
6134 *sg = *per_cpu_ptr(sdd->sg, cpu);
6135 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6136 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6137 }
6138
6139 return cpu;
6140 }
6141
6142 /*
6143 * build_sched_groups will build a circular linked list of the groups
6144 * covered by the given span, and will set each group's ->cpumask correctly,
6145 * and ->cpu_capacity to 0.
6146 *
6147 * Assumes the sched_domain tree is fully constructed
6148 */
6149 static int
6150 build_sched_groups(struct sched_domain *sd, int cpu)
6151 {
6152 struct sched_group *first = NULL, *last = NULL;
6153 struct sd_data *sdd = sd->private;
6154 const struct cpumask *span = sched_domain_span(sd);
6155 struct cpumask *covered;
6156 int i;
6157
6158 get_group(cpu, sdd, &sd->groups);
6159 atomic_inc(&sd->groups->ref);
6160
6161 if (cpu != cpumask_first(span))
6162 return 0;
6163
6164 lockdep_assert_held(&sched_domains_mutex);
6165 covered = sched_domains_tmpmask;
6166
6167 cpumask_clear(covered);
6168
6169 for_each_cpu(i, span) {
6170 struct sched_group *sg;
6171 int group, j;
6172
6173 if (cpumask_test_cpu(i, covered))
6174 continue;
6175
6176 group = get_group(i, sdd, &sg);
6177 cpumask_setall(sched_group_mask(sg));
6178
6179 for_each_cpu(j, span) {
6180 if (get_group(j, sdd, NULL) != group)
6181 continue;
6182
6183 cpumask_set_cpu(j, covered);
6184 cpumask_set_cpu(j, sched_group_cpus(sg));
6185 }
6186
6187 if (!first)
6188 first = sg;
6189 if (last)
6190 last->next = sg;
6191 last = sg;
6192 }
6193 last->next = first;
6194
6195 return 0;
6196 }
6197
6198 /*
6199 * Initialize sched groups cpu_capacity.
6200 *
6201 * cpu_capacity indicates the capacity of sched group, which is used while
6202 * distributing the load between different sched groups in a sched domain.
6203 * Typically cpu_capacity for all the groups in a sched domain will be same
6204 * unless there are asymmetries in the topology. If there are asymmetries,
6205 * group having more cpu_capacity will pickup more load compared to the
6206 * group having less cpu_capacity.
6207 */
6208 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6209 {
6210 struct sched_group *sg = sd->groups;
6211
6212 WARN_ON(!sg);
6213
6214 do {
6215 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6216 sg = sg->next;
6217 } while (sg != sd->groups);
6218
6219 if (cpu != group_balance_cpu(sg))
6220 return;
6221
6222 update_group_capacity(sd, cpu);
6223 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6224 }
6225
6226 /*
6227 * Initializers for schedule domains
6228 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6229 */
6230
6231 static int default_relax_domain_level = -1;
6232 int sched_domain_level_max;
6233
6234 static int __init setup_relax_domain_level(char *str)
6235 {
6236 if (kstrtoint(str, 0, &default_relax_domain_level))
6237 pr_warn("Unable to set relax_domain_level\n");
6238
6239 return 1;
6240 }
6241 __setup("relax_domain_level=", setup_relax_domain_level);
6242
6243 static void set_domain_attribute(struct sched_domain *sd,
6244 struct sched_domain_attr *attr)
6245 {
6246 int request;
6247
6248 if (!attr || attr->relax_domain_level < 0) {
6249 if (default_relax_domain_level < 0)
6250 return;
6251 else
6252 request = default_relax_domain_level;
6253 } else
6254 request = attr->relax_domain_level;
6255 if (request < sd->level) {
6256 /* turn off idle balance on this domain */
6257 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6258 } else {
6259 /* turn on idle balance on this domain */
6260 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6261 }
6262 }
6263
6264 static void __sdt_free(const struct cpumask *cpu_map);
6265 static int __sdt_alloc(const struct cpumask *cpu_map);
6266
6267 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6268 const struct cpumask *cpu_map)
6269 {
6270 switch (what) {
6271 case sa_rootdomain:
6272 if (!atomic_read(&d->rd->refcount))
6273 free_rootdomain(&d->rd->rcu); /* fall through */
6274 case sa_sd:
6275 free_percpu(d->sd); /* fall through */
6276 case sa_sd_storage:
6277 __sdt_free(cpu_map); /* fall through */
6278 case sa_none:
6279 break;
6280 }
6281 }
6282
6283 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6284 const struct cpumask *cpu_map)
6285 {
6286 memset(d, 0, sizeof(*d));
6287
6288 if (__sdt_alloc(cpu_map))
6289 return sa_sd_storage;
6290 d->sd = alloc_percpu(struct sched_domain *);
6291 if (!d->sd)
6292 return sa_sd_storage;
6293 d->rd = alloc_rootdomain();
6294 if (!d->rd)
6295 return sa_sd;
6296 return sa_rootdomain;
6297 }
6298
6299 /*
6300 * NULL the sd_data elements we've used to build the sched_domain and
6301 * sched_group structure so that the subsequent __free_domain_allocs()
6302 * will not free the data we're using.
6303 */
6304 static void claim_allocations(int cpu, struct sched_domain *sd)
6305 {
6306 struct sd_data *sdd = sd->private;
6307
6308 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6309 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6310
6311 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6312 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6313
6314 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6315 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6316 }
6317
6318 #ifdef CONFIG_NUMA
6319 static int sched_domains_numa_levels;
6320 enum numa_topology_type sched_numa_topology_type;
6321 static int *sched_domains_numa_distance;
6322 int sched_max_numa_distance;
6323 static struct cpumask ***sched_domains_numa_masks;
6324 static int sched_domains_curr_level;
6325 #endif
6326
6327 /*
6328 * SD_flags allowed in topology descriptions.
6329 *
6330 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6331 * SD_SHARE_PKG_RESOURCES - describes shared caches
6332 * SD_NUMA - describes NUMA topologies
6333 * SD_SHARE_POWERDOMAIN - describes shared power domain
6334 *
6335 * Odd one out:
6336 * SD_ASYM_PACKING - describes SMT quirks
6337 */
6338 #define TOPOLOGY_SD_FLAGS \
6339 (SD_SHARE_CPUCAPACITY | \
6340 SD_SHARE_PKG_RESOURCES | \
6341 SD_NUMA | \
6342 SD_ASYM_PACKING | \
6343 SD_SHARE_POWERDOMAIN)
6344
6345 static struct sched_domain *
6346 sd_init(struct sched_domain_topology_level *tl, int cpu)
6347 {
6348 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6349 int sd_weight, sd_flags = 0;
6350
6351 #ifdef CONFIG_NUMA
6352 /*
6353 * Ugly hack to pass state to sd_numa_mask()...
6354 */
6355 sched_domains_curr_level = tl->numa_level;
6356 #endif
6357
6358 sd_weight = cpumask_weight(tl->mask(cpu));
6359
6360 if (tl->sd_flags)
6361 sd_flags = (*tl->sd_flags)();
6362 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6363 "wrong sd_flags in topology description\n"))
6364 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6365
6366 *sd = (struct sched_domain){
6367 .min_interval = sd_weight,
6368 .max_interval = 2*sd_weight,
6369 .busy_factor = 32,
6370 .imbalance_pct = 125,
6371
6372 .cache_nice_tries = 0,
6373 .busy_idx = 0,
6374 .idle_idx = 0,
6375 .newidle_idx = 0,
6376 .wake_idx = 0,
6377 .forkexec_idx = 0,
6378
6379 .flags = 1*SD_LOAD_BALANCE
6380 | 1*SD_BALANCE_NEWIDLE
6381 | 1*SD_BALANCE_EXEC
6382 | 1*SD_BALANCE_FORK
6383 | 0*SD_BALANCE_WAKE
6384 | 1*SD_WAKE_AFFINE
6385 | 0*SD_SHARE_CPUCAPACITY
6386 | 0*SD_SHARE_PKG_RESOURCES
6387 | 0*SD_SERIALIZE
6388 | 0*SD_PREFER_SIBLING
6389 | 0*SD_NUMA
6390 | sd_flags
6391 ,
6392
6393 .last_balance = jiffies,
6394 .balance_interval = sd_weight,
6395 .smt_gain = 0,
6396 .max_newidle_lb_cost = 0,
6397 .next_decay_max_lb_cost = jiffies,
6398 #ifdef CONFIG_SCHED_DEBUG
6399 .name = tl->name,
6400 #endif
6401 };
6402
6403 /*
6404 * Convert topological properties into behaviour.
6405 */
6406
6407 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6408 sd->flags |= SD_PREFER_SIBLING;
6409 sd->imbalance_pct = 110;
6410 sd->smt_gain = 1178; /* ~15% */
6411
6412 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6413 sd->imbalance_pct = 117;
6414 sd->cache_nice_tries = 1;
6415 sd->busy_idx = 2;
6416
6417 #ifdef CONFIG_NUMA
6418 } else if (sd->flags & SD_NUMA) {
6419 sd->cache_nice_tries = 2;
6420 sd->busy_idx = 3;
6421 sd->idle_idx = 2;
6422
6423 sd->flags |= SD_SERIALIZE;
6424 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6425 sd->flags &= ~(SD_BALANCE_EXEC |
6426 SD_BALANCE_FORK |
6427 SD_WAKE_AFFINE);
6428 }
6429
6430 #endif
6431 } else {
6432 sd->flags |= SD_PREFER_SIBLING;
6433 sd->cache_nice_tries = 1;
6434 sd->busy_idx = 2;
6435 sd->idle_idx = 1;
6436 }
6437
6438 sd->private = &tl->data;
6439
6440 return sd;
6441 }
6442
6443 /*
6444 * Topology list, bottom-up.
6445 */
6446 static struct sched_domain_topology_level default_topology[] = {
6447 #ifdef CONFIG_SCHED_SMT
6448 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6449 #endif
6450 #ifdef CONFIG_SCHED_MC
6451 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6452 #endif
6453 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6454 { NULL, },
6455 };
6456
6457 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6458
6459 #define for_each_sd_topology(tl) \
6460 for (tl = sched_domain_topology; tl->mask; tl++)
6461
6462 void set_sched_topology(struct sched_domain_topology_level *tl)
6463 {
6464 sched_domain_topology = tl;
6465 }
6466
6467 #ifdef CONFIG_NUMA
6468
6469 static const struct cpumask *sd_numa_mask(int cpu)
6470 {
6471 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6472 }
6473
6474 static void sched_numa_warn(const char *str)
6475 {
6476 static int done = false;
6477 int i,j;
6478
6479 if (done)
6480 return;
6481
6482 done = true;
6483
6484 printk(KERN_WARNING "ERROR: %s\n\n", str);
6485
6486 for (i = 0; i < nr_node_ids; i++) {
6487 printk(KERN_WARNING " ");
6488 for (j = 0; j < nr_node_ids; j++)
6489 printk(KERN_CONT "%02d ", node_distance(i,j));
6490 printk(KERN_CONT "\n");
6491 }
6492 printk(KERN_WARNING "\n");
6493 }
6494
6495 bool find_numa_distance(int distance)
6496 {
6497 int i;
6498
6499 if (distance == node_distance(0, 0))
6500 return true;
6501
6502 for (i = 0; i < sched_domains_numa_levels; i++) {
6503 if (sched_domains_numa_distance[i] == distance)
6504 return true;
6505 }
6506
6507 return false;
6508 }
6509
6510 /*
6511 * A system can have three types of NUMA topology:
6512 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6513 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6514 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6515 *
6516 * The difference between a glueless mesh topology and a backplane
6517 * topology lies in whether communication between not directly
6518 * connected nodes goes through intermediary nodes (where programs
6519 * could run), or through backplane controllers. This affects
6520 * placement of programs.
6521 *
6522 * The type of topology can be discerned with the following tests:
6523 * - If the maximum distance between any nodes is 1 hop, the system
6524 * is directly connected.
6525 * - If for two nodes A and B, located N > 1 hops away from each other,
6526 * there is an intermediary node C, which is < N hops away from both
6527 * nodes A and B, the system is a glueless mesh.
6528 */
6529 static void init_numa_topology_type(void)
6530 {
6531 int a, b, c, n;
6532
6533 n = sched_max_numa_distance;
6534
6535 if (sched_domains_numa_levels <= 1) {
6536 sched_numa_topology_type = NUMA_DIRECT;
6537 return;
6538 }
6539
6540 for_each_online_node(a) {
6541 for_each_online_node(b) {
6542 /* Find two nodes furthest removed from each other. */
6543 if (node_distance(a, b) < n)
6544 continue;
6545
6546 /* Is there an intermediary node between a and b? */
6547 for_each_online_node(c) {
6548 if (node_distance(a, c) < n &&
6549 node_distance(b, c) < n) {
6550 sched_numa_topology_type =
6551 NUMA_GLUELESS_MESH;
6552 return;
6553 }
6554 }
6555
6556 sched_numa_topology_type = NUMA_BACKPLANE;
6557 return;
6558 }
6559 }
6560 }
6561
6562 static void sched_init_numa(void)
6563 {
6564 int next_distance, curr_distance = node_distance(0, 0);
6565 struct sched_domain_topology_level *tl;
6566 int level = 0;
6567 int i, j, k;
6568
6569 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6570 if (!sched_domains_numa_distance)
6571 return;
6572
6573 /*
6574 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6575 * unique distances in the node_distance() table.
6576 *
6577 * Assumes node_distance(0,j) includes all distances in
6578 * node_distance(i,j) in order to avoid cubic time.
6579 */
6580 next_distance = curr_distance;
6581 for (i = 0; i < nr_node_ids; i++) {
6582 for (j = 0; j < nr_node_ids; j++) {
6583 for (k = 0; k < nr_node_ids; k++) {
6584 int distance = node_distance(i, k);
6585
6586 if (distance > curr_distance &&
6587 (distance < next_distance ||
6588 next_distance == curr_distance))
6589 next_distance = distance;
6590
6591 /*
6592 * While not a strong assumption it would be nice to know
6593 * about cases where if node A is connected to B, B is not
6594 * equally connected to A.
6595 */
6596 if (sched_debug() && node_distance(k, i) != distance)
6597 sched_numa_warn("Node-distance not symmetric");
6598
6599 if (sched_debug() && i && !find_numa_distance(distance))
6600 sched_numa_warn("Node-0 not representative");
6601 }
6602 if (next_distance != curr_distance) {
6603 sched_domains_numa_distance[level++] = next_distance;
6604 sched_domains_numa_levels = level;
6605 curr_distance = next_distance;
6606 } else break;
6607 }
6608
6609 /*
6610 * In case of sched_debug() we verify the above assumption.
6611 */
6612 if (!sched_debug())
6613 break;
6614 }
6615
6616 if (!level)
6617 return;
6618
6619 /*
6620 * 'level' contains the number of unique distances, excluding the
6621 * identity distance node_distance(i,i).
6622 *
6623 * The sched_domains_numa_distance[] array includes the actual distance
6624 * numbers.
6625 */
6626
6627 /*
6628 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6629 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6630 * the array will contain less then 'level' members. This could be
6631 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6632 * in other functions.
6633 *
6634 * We reset it to 'level' at the end of this function.
6635 */
6636 sched_domains_numa_levels = 0;
6637
6638 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6639 if (!sched_domains_numa_masks)
6640 return;
6641
6642 /*
6643 * Now for each level, construct a mask per node which contains all
6644 * cpus of nodes that are that many hops away from us.
6645 */
6646 for (i = 0; i < level; i++) {
6647 sched_domains_numa_masks[i] =
6648 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6649 if (!sched_domains_numa_masks[i])
6650 return;
6651
6652 for (j = 0; j < nr_node_ids; j++) {
6653 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6654 if (!mask)
6655 return;
6656
6657 sched_domains_numa_masks[i][j] = mask;
6658
6659 for (k = 0; k < nr_node_ids; k++) {
6660 if (node_distance(j, k) > sched_domains_numa_distance[i])
6661 continue;
6662
6663 cpumask_or(mask, mask, cpumask_of_node(k));
6664 }
6665 }
6666 }
6667
6668 /* Compute default topology size */
6669 for (i = 0; sched_domain_topology[i].mask; i++);
6670
6671 tl = kzalloc((i + level + 1) *
6672 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6673 if (!tl)
6674 return;
6675
6676 /*
6677 * Copy the default topology bits..
6678 */
6679 for (i = 0; sched_domain_topology[i].mask; i++)
6680 tl[i] = sched_domain_topology[i];
6681
6682 /*
6683 * .. and append 'j' levels of NUMA goodness.
6684 */
6685 for (j = 0; j < level; i++, j++) {
6686 tl[i] = (struct sched_domain_topology_level){
6687 .mask = sd_numa_mask,
6688 .sd_flags = cpu_numa_flags,
6689 .flags = SDTL_OVERLAP,
6690 .numa_level = j,
6691 SD_INIT_NAME(NUMA)
6692 };
6693 }
6694
6695 sched_domain_topology = tl;
6696
6697 sched_domains_numa_levels = level;
6698 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6699
6700 init_numa_topology_type();
6701 }
6702
6703 static void sched_domains_numa_masks_set(int cpu)
6704 {
6705 int i, j;
6706 int node = cpu_to_node(cpu);
6707
6708 for (i = 0; i < sched_domains_numa_levels; i++) {
6709 for (j = 0; j < nr_node_ids; j++) {
6710 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6711 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6712 }
6713 }
6714 }
6715
6716 static void sched_domains_numa_masks_clear(int cpu)
6717 {
6718 int i, j;
6719 for (i = 0; i < sched_domains_numa_levels; i++) {
6720 for (j = 0; j < nr_node_ids; j++)
6721 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6722 }
6723 }
6724
6725 /*
6726 * Update sched_domains_numa_masks[level][node] array when new cpus
6727 * are onlined.
6728 */
6729 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6730 unsigned long action,
6731 void *hcpu)
6732 {
6733 int cpu = (long)hcpu;
6734
6735 switch (action & ~CPU_TASKS_FROZEN) {
6736 case CPU_ONLINE:
6737 sched_domains_numa_masks_set(cpu);
6738 break;
6739
6740 case CPU_DEAD:
6741 sched_domains_numa_masks_clear(cpu);
6742 break;
6743
6744 default:
6745 return NOTIFY_DONE;
6746 }
6747
6748 return NOTIFY_OK;
6749 }
6750 #else
6751 static inline void sched_init_numa(void)
6752 {
6753 }
6754
6755 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6756 unsigned long action,
6757 void *hcpu)
6758 {
6759 return 0;
6760 }
6761 #endif /* CONFIG_NUMA */
6762
6763 static int __sdt_alloc(const struct cpumask *cpu_map)
6764 {
6765 struct sched_domain_topology_level *tl;
6766 int j;
6767
6768 for_each_sd_topology(tl) {
6769 struct sd_data *sdd = &tl->data;
6770
6771 sdd->sd = alloc_percpu(struct sched_domain *);
6772 if (!sdd->sd)
6773 return -ENOMEM;
6774
6775 sdd->sg = alloc_percpu(struct sched_group *);
6776 if (!sdd->sg)
6777 return -ENOMEM;
6778
6779 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6780 if (!sdd->sgc)
6781 return -ENOMEM;
6782
6783 for_each_cpu(j, cpu_map) {
6784 struct sched_domain *sd;
6785 struct sched_group *sg;
6786 struct sched_group_capacity *sgc;
6787
6788 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6789 GFP_KERNEL, cpu_to_node(j));
6790 if (!sd)
6791 return -ENOMEM;
6792
6793 *per_cpu_ptr(sdd->sd, j) = sd;
6794
6795 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6796 GFP_KERNEL, cpu_to_node(j));
6797 if (!sg)
6798 return -ENOMEM;
6799
6800 sg->next = sg;
6801
6802 *per_cpu_ptr(sdd->sg, j) = sg;
6803
6804 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6805 GFP_KERNEL, cpu_to_node(j));
6806 if (!sgc)
6807 return -ENOMEM;
6808
6809 *per_cpu_ptr(sdd->sgc, j) = sgc;
6810 }
6811 }
6812
6813 return 0;
6814 }
6815
6816 static void __sdt_free(const struct cpumask *cpu_map)
6817 {
6818 struct sched_domain_topology_level *tl;
6819 int j;
6820
6821 for_each_sd_topology(tl) {
6822 struct sd_data *sdd = &tl->data;
6823
6824 for_each_cpu(j, cpu_map) {
6825 struct sched_domain *sd;
6826
6827 if (sdd->sd) {
6828 sd = *per_cpu_ptr(sdd->sd, j);
6829 if (sd && (sd->flags & SD_OVERLAP))
6830 free_sched_groups(sd->groups, 0);
6831 kfree(*per_cpu_ptr(sdd->sd, j));
6832 }
6833
6834 if (sdd->sg)
6835 kfree(*per_cpu_ptr(sdd->sg, j));
6836 if (sdd->sgc)
6837 kfree(*per_cpu_ptr(sdd->sgc, j));
6838 }
6839 free_percpu(sdd->sd);
6840 sdd->sd = NULL;
6841 free_percpu(sdd->sg);
6842 sdd->sg = NULL;
6843 free_percpu(sdd->sgc);
6844 sdd->sgc = NULL;
6845 }
6846 }
6847
6848 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6849 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6850 struct sched_domain *child, int cpu)
6851 {
6852 struct sched_domain *sd = sd_init(tl, cpu);
6853 if (!sd)
6854 return child;
6855
6856 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6857 if (child) {
6858 sd->level = child->level + 1;
6859 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6860 child->parent = sd;
6861 sd->child = child;
6862
6863 if (!cpumask_subset(sched_domain_span(child),
6864 sched_domain_span(sd))) {
6865 pr_err("BUG: arch topology borken\n");
6866 #ifdef CONFIG_SCHED_DEBUG
6867 pr_err(" the %s domain not a subset of the %s domain\n",
6868 child->name, sd->name);
6869 #endif
6870 /* Fixup, ensure @sd has at least @child cpus. */
6871 cpumask_or(sched_domain_span(sd),
6872 sched_domain_span(sd),
6873 sched_domain_span(child));
6874 }
6875
6876 }
6877 set_domain_attribute(sd, attr);
6878
6879 return sd;
6880 }
6881
6882 /*
6883 * Build sched domains for a given set of cpus and attach the sched domains
6884 * to the individual cpus
6885 */
6886 static int build_sched_domains(const struct cpumask *cpu_map,
6887 struct sched_domain_attr *attr)
6888 {
6889 enum s_alloc alloc_state;
6890 struct sched_domain *sd;
6891 struct s_data d;
6892 int i, ret = -ENOMEM;
6893
6894 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6895 if (alloc_state != sa_rootdomain)
6896 goto error;
6897
6898 /* Set up domains for cpus specified by the cpu_map. */
6899 for_each_cpu(i, cpu_map) {
6900 struct sched_domain_topology_level *tl;
6901
6902 sd = NULL;
6903 for_each_sd_topology(tl) {
6904 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6905 if (tl == sched_domain_topology)
6906 *per_cpu_ptr(d.sd, i) = sd;
6907 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6908 sd->flags |= SD_OVERLAP;
6909 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6910 break;
6911 }
6912 }
6913
6914 /* Build the groups for the domains */
6915 for_each_cpu(i, cpu_map) {
6916 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6917 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6918 if (sd->flags & SD_OVERLAP) {
6919 if (build_overlap_sched_groups(sd, i))
6920 goto error;
6921 } else {
6922 if (build_sched_groups(sd, i))
6923 goto error;
6924 }
6925 }
6926 }
6927
6928 /* Calculate CPU capacity for physical packages and nodes */
6929 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6930 if (!cpumask_test_cpu(i, cpu_map))
6931 continue;
6932
6933 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6934 claim_allocations(i, sd);
6935 init_sched_groups_capacity(i, sd);
6936 }
6937 }
6938
6939 /* Attach the domains */
6940 rcu_read_lock();
6941 for_each_cpu(i, cpu_map) {
6942 sd = *per_cpu_ptr(d.sd, i);
6943 cpu_attach_domain(sd, d.rd, i);
6944 }
6945 rcu_read_unlock();
6946
6947 ret = 0;
6948 error:
6949 __free_domain_allocs(&d, alloc_state, cpu_map);
6950 return ret;
6951 }
6952
6953 static cpumask_var_t *doms_cur; /* current sched domains */
6954 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6955 static struct sched_domain_attr *dattr_cur;
6956 /* attribues of custom domains in 'doms_cur' */
6957
6958 /*
6959 * Special case: If a kmalloc of a doms_cur partition (array of
6960 * cpumask) fails, then fallback to a single sched domain,
6961 * as determined by the single cpumask fallback_doms.
6962 */
6963 static cpumask_var_t fallback_doms;
6964
6965 /*
6966 * arch_update_cpu_topology lets virtualized architectures update the
6967 * cpu core maps. It is supposed to return 1 if the topology changed
6968 * or 0 if it stayed the same.
6969 */
6970 int __weak arch_update_cpu_topology(void)
6971 {
6972 return 0;
6973 }
6974
6975 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6976 {
6977 int i;
6978 cpumask_var_t *doms;
6979
6980 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6981 if (!doms)
6982 return NULL;
6983 for (i = 0; i < ndoms; i++) {
6984 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6985 free_sched_domains(doms, i);
6986 return NULL;
6987 }
6988 }
6989 return doms;
6990 }
6991
6992 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6993 {
6994 unsigned int i;
6995 for (i = 0; i < ndoms; i++)
6996 free_cpumask_var(doms[i]);
6997 kfree(doms);
6998 }
6999
7000 /*
7001 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7002 * For now this just excludes isolated cpus, but could be used to
7003 * exclude other special cases in the future.
7004 */
7005 static int init_sched_domains(const struct cpumask *cpu_map)
7006 {
7007 int err;
7008
7009 arch_update_cpu_topology();
7010 ndoms_cur = 1;
7011 doms_cur = alloc_sched_domains(ndoms_cur);
7012 if (!doms_cur)
7013 doms_cur = &fallback_doms;
7014 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7015 err = build_sched_domains(doms_cur[0], NULL);
7016 register_sched_domain_sysctl();
7017
7018 return err;
7019 }
7020
7021 /*
7022 * Detach sched domains from a group of cpus specified in cpu_map
7023 * These cpus will now be attached to the NULL domain
7024 */
7025 static void detach_destroy_domains(const struct cpumask *cpu_map)
7026 {
7027 int i;
7028
7029 rcu_read_lock();
7030 for_each_cpu(i, cpu_map)
7031 cpu_attach_domain(NULL, &def_root_domain, i);
7032 rcu_read_unlock();
7033 }
7034
7035 /* handle null as "default" */
7036 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7037 struct sched_domain_attr *new, int idx_new)
7038 {
7039 struct sched_domain_attr tmp;
7040
7041 /* fast path */
7042 if (!new && !cur)
7043 return 1;
7044
7045 tmp = SD_ATTR_INIT;
7046 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7047 new ? (new + idx_new) : &tmp,
7048 sizeof(struct sched_domain_attr));
7049 }
7050
7051 /*
7052 * Partition sched domains as specified by the 'ndoms_new'
7053 * cpumasks in the array doms_new[] of cpumasks. This compares
7054 * doms_new[] to the current sched domain partitioning, doms_cur[].
7055 * It destroys each deleted domain and builds each new domain.
7056 *
7057 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7058 * The masks don't intersect (don't overlap.) We should setup one
7059 * sched domain for each mask. CPUs not in any of the cpumasks will
7060 * not be load balanced. If the same cpumask appears both in the
7061 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7062 * it as it is.
7063 *
7064 * The passed in 'doms_new' should be allocated using
7065 * alloc_sched_domains. This routine takes ownership of it and will
7066 * free_sched_domains it when done with it. If the caller failed the
7067 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7068 * and partition_sched_domains() will fallback to the single partition
7069 * 'fallback_doms', it also forces the domains to be rebuilt.
7070 *
7071 * If doms_new == NULL it will be replaced with cpu_online_mask.
7072 * ndoms_new == 0 is a special case for destroying existing domains,
7073 * and it will not create the default domain.
7074 *
7075 * Call with hotplug lock held
7076 */
7077 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7078 struct sched_domain_attr *dattr_new)
7079 {
7080 int i, j, n;
7081 int new_topology;
7082
7083 mutex_lock(&sched_domains_mutex);
7084
7085 /* always unregister in case we don't destroy any domains */
7086 unregister_sched_domain_sysctl();
7087
7088 /* Let architecture update cpu core mappings. */
7089 new_topology = arch_update_cpu_topology();
7090
7091 n = doms_new ? ndoms_new : 0;
7092
7093 /* Destroy deleted domains */
7094 for (i = 0; i < ndoms_cur; i++) {
7095 for (j = 0; j < n && !new_topology; j++) {
7096 if (cpumask_equal(doms_cur[i], doms_new[j])
7097 && dattrs_equal(dattr_cur, i, dattr_new, j))
7098 goto match1;
7099 }
7100 /* no match - a current sched domain not in new doms_new[] */
7101 detach_destroy_domains(doms_cur[i]);
7102 match1:
7103 ;
7104 }
7105
7106 n = ndoms_cur;
7107 if (doms_new == NULL) {
7108 n = 0;
7109 doms_new = &fallback_doms;
7110 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7111 WARN_ON_ONCE(dattr_new);
7112 }
7113
7114 /* Build new domains */
7115 for (i = 0; i < ndoms_new; i++) {
7116 for (j = 0; j < n && !new_topology; j++) {
7117 if (cpumask_equal(doms_new[i], doms_cur[j])
7118 && dattrs_equal(dattr_new, i, dattr_cur, j))
7119 goto match2;
7120 }
7121 /* no match - add a new doms_new */
7122 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7123 match2:
7124 ;
7125 }
7126
7127 /* Remember the new sched domains */
7128 if (doms_cur != &fallback_doms)
7129 free_sched_domains(doms_cur, ndoms_cur);
7130 kfree(dattr_cur); /* kfree(NULL) is safe */
7131 doms_cur = doms_new;
7132 dattr_cur = dattr_new;
7133 ndoms_cur = ndoms_new;
7134
7135 register_sched_domain_sysctl();
7136
7137 mutex_unlock(&sched_domains_mutex);
7138 }
7139
7140 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7141
7142 /*
7143 * Update cpusets according to cpu_active mask. If cpusets are
7144 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7145 * around partition_sched_domains().
7146 *
7147 * If we come here as part of a suspend/resume, don't touch cpusets because we
7148 * want to restore it back to its original state upon resume anyway.
7149 */
7150 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7151 void *hcpu)
7152 {
7153 switch (action) {
7154 case CPU_ONLINE_FROZEN:
7155 case CPU_DOWN_FAILED_FROZEN:
7156
7157 /*
7158 * num_cpus_frozen tracks how many CPUs are involved in suspend
7159 * resume sequence. As long as this is not the last online
7160 * operation in the resume sequence, just build a single sched
7161 * domain, ignoring cpusets.
7162 */
7163 num_cpus_frozen--;
7164 if (likely(num_cpus_frozen)) {
7165 partition_sched_domains(1, NULL, NULL);
7166 break;
7167 }
7168
7169 /*
7170 * This is the last CPU online operation. So fall through and
7171 * restore the original sched domains by considering the
7172 * cpuset configurations.
7173 */
7174
7175 case CPU_ONLINE:
7176 cpuset_update_active_cpus(true);
7177 break;
7178 default:
7179 return NOTIFY_DONE;
7180 }
7181 return NOTIFY_OK;
7182 }
7183
7184 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7185 void *hcpu)
7186 {
7187 unsigned long flags;
7188 long cpu = (long)hcpu;
7189 struct dl_bw *dl_b;
7190 bool overflow;
7191 int cpus;
7192
7193 switch (action) {
7194 case CPU_DOWN_PREPARE:
7195 rcu_read_lock_sched();
7196 dl_b = dl_bw_of(cpu);
7197
7198 raw_spin_lock_irqsave(&dl_b->lock, flags);
7199 cpus = dl_bw_cpus(cpu);
7200 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7201 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7202
7203 rcu_read_unlock_sched();
7204
7205 if (overflow)
7206 return notifier_from_errno(-EBUSY);
7207 cpuset_update_active_cpus(false);
7208 break;
7209 case CPU_DOWN_PREPARE_FROZEN:
7210 num_cpus_frozen++;
7211 partition_sched_domains(1, NULL, NULL);
7212 break;
7213 default:
7214 return NOTIFY_DONE;
7215 }
7216 return NOTIFY_OK;
7217 }
7218
7219 void __init sched_init_smp(void)
7220 {
7221 cpumask_var_t non_isolated_cpus;
7222
7223 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7224 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7225
7226 /* nohz_full won't take effect without isolating the cpus. */
7227 tick_nohz_full_add_cpus_to(cpu_isolated_map);
7228
7229 sched_init_numa();
7230
7231 /*
7232 * There's no userspace yet to cause hotplug operations; hence all the
7233 * cpu masks are stable and all blatant races in the below code cannot
7234 * happen.
7235 */
7236 mutex_lock(&sched_domains_mutex);
7237 init_sched_domains(cpu_active_mask);
7238 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7239 if (cpumask_empty(non_isolated_cpus))
7240 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7241 mutex_unlock(&sched_domains_mutex);
7242
7243 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7244 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7245 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7246
7247 init_hrtick();
7248
7249 /* Move init over to a non-isolated CPU */
7250 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7251 BUG();
7252 sched_init_granularity();
7253 free_cpumask_var(non_isolated_cpus);
7254
7255 init_sched_rt_class();
7256 init_sched_dl_class();
7257 }
7258 #else
7259 void __init sched_init_smp(void)
7260 {
7261 sched_init_granularity();
7262 }
7263 #endif /* CONFIG_SMP */
7264
7265 int in_sched_functions(unsigned long addr)
7266 {
7267 return in_lock_functions(addr) ||
7268 (addr >= (unsigned long)__sched_text_start
7269 && addr < (unsigned long)__sched_text_end);
7270 }
7271
7272 #ifdef CONFIG_CGROUP_SCHED
7273 /*
7274 * Default task group.
7275 * Every task in system belongs to this group at bootup.
7276 */
7277 struct task_group root_task_group;
7278 LIST_HEAD(task_groups);
7279 #endif
7280
7281 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7282
7283 void __init sched_init(void)
7284 {
7285 int i, j;
7286 unsigned long alloc_size = 0, ptr;
7287
7288 #ifdef CONFIG_FAIR_GROUP_SCHED
7289 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7290 #endif
7291 #ifdef CONFIG_RT_GROUP_SCHED
7292 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7293 #endif
7294 if (alloc_size) {
7295 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7296
7297 #ifdef CONFIG_FAIR_GROUP_SCHED
7298 root_task_group.se = (struct sched_entity **)ptr;
7299 ptr += nr_cpu_ids * sizeof(void **);
7300
7301 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7302 ptr += nr_cpu_ids * sizeof(void **);
7303
7304 #endif /* CONFIG_FAIR_GROUP_SCHED */
7305 #ifdef CONFIG_RT_GROUP_SCHED
7306 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7307 ptr += nr_cpu_ids * sizeof(void **);
7308
7309 root_task_group.rt_rq = (struct rt_rq **)ptr;
7310 ptr += nr_cpu_ids * sizeof(void **);
7311
7312 #endif /* CONFIG_RT_GROUP_SCHED */
7313 }
7314 #ifdef CONFIG_CPUMASK_OFFSTACK
7315 for_each_possible_cpu(i) {
7316 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7317 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7318 }
7319 #endif /* CONFIG_CPUMASK_OFFSTACK */
7320
7321 init_rt_bandwidth(&def_rt_bandwidth,
7322 global_rt_period(), global_rt_runtime());
7323 init_dl_bandwidth(&def_dl_bandwidth,
7324 global_rt_period(), global_rt_runtime());
7325
7326 #ifdef CONFIG_SMP
7327 init_defrootdomain();
7328 #endif
7329
7330 #ifdef CONFIG_RT_GROUP_SCHED
7331 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7332 global_rt_period(), global_rt_runtime());
7333 #endif /* CONFIG_RT_GROUP_SCHED */
7334
7335 #ifdef CONFIG_CGROUP_SCHED
7336 list_add(&root_task_group.list, &task_groups);
7337 INIT_LIST_HEAD(&root_task_group.children);
7338 INIT_LIST_HEAD(&root_task_group.siblings);
7339 autogroup_init(&init_task);
7340
7341 #endif /* CONFIG_CGROUP_SCHED */
7342
7343 for_each_possible_cpu(i) {
7344 struct rq *rq;
7345
7346 rq = cpu_rq(i);
7347 raw_spin_lock_init(&rq->lock);
7348 rq->nr_running = 0;
7349 rq->calc_load_active = 0;
7350 rq->calc_load_update = jiffies + LOAD_FREQ;
7351 init_cfs_rq(&rq->cfs);
7352 init_rt_rq(&rq->rt);
7353 init_dl_rq(&rq->dl);
7354 #ifdef CONFIG_FAIR_GROUP_SCHED
7355 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7356 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7357 /*
7358 * How much cpu bandwidth does root_task_group get?
7359 *
7360 * In case of task-groups formed thr' the cgroup filesystem, it
7361 * gets 100% of the cpu resources in the system. This overall
7362 * system cpu resource is divided among the tasks of
7363 * root_task_group and its child task-groups in a fair manner,
7364 * based on each entity's (task or task-group's) weight
7365 * (se->load.weight).
7366 *
7367 * In other words, if root_task_group has 10 tasks of weight
7368 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7369 * then A0's share of the cpu resource is:
7370 *
7371 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7372 *
7373 * We achieve this by letting root_task_group's tasks sit
7374 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7375 */
7376 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7377 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7378 #endif /* CONFIG_FAIR_GROUP_SCHED */
7379
7380 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7381 #ifdef CONFIG_RT_GROUP_SCHED
7382 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7383 #endif
7384
7385 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7386 rq->cpu_load[j] = 0;
7387
7388 rq->last_load_update_tick = jiffies;
7389
7390 #ifdef CONFIG_SMP
7391 rq->sd = NULL;
7392 rq->rd = NULL;
7393 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7394 rq->balance_callback = NULL;
7395 rq->active_balance = 0;
7396 rq->next_balance = jiffies;
7397 rq->push_cpu = 0;
7398 rq->cpu = i;
7399 rq->online = 0;
7400 rq->idle_stamp = 0;
7401 rq->avg_idle = 2*sysctl_sched_migration_cost;
7402 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7403
7404 INIT_LIST_HEAD(&rq->cfs_tasks);
7405
7406 rq_attach_root(rq, &def_root_domain);
7407 #ifdef CONFIG_NO_HZ_COMMON
7408 rq->nohz_flags = 0;
7409 #endif
7410 #ifdef CONFIG_NO_HZ_FULL
7411 rq->last_sched_tick = 0;
7412 #endif
7413 #endif
7414 init_rq_hrtick(rq);
7415 atomic_set(&rq->nr_iowait, 0);
7416 }
7417
7418 set_load_weight(&init_task);
7419
7420 #ifdef CONFIG_PREEMPT_NOTIFIERS
7421 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7422 #endif
7423
7424 /*
7425 * The boot idle thread does lazy MMU switching as well:
7426 */
7427 atomic_inc(&init_mm.mm_count);
7428 enter_lazy_tlb(&init_mm, current);
7429
7430 /*
7431 * During early bootup we pretend to be a normal task:
7432 */
7433 current->sched_class = &fair_sched_class;
7434
7435 /*
7436 * Make us the idle thread. Technically, schedule() should not be
7437 * called from this thread, however somewhere below it might be,
7438 * but because we are the idle thread, we just pick up running again
7439 * when this runqueue becomes "idle".
7440 */
7441 init_idle(current, smp_processor_id());
7442
7443 calc_load_update = jiffies + LOAD_FREQ;
7444
7445 #ifdef CONFIG_SMP
7446 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7447 /* May be allocated at isolcpus cmdline parse time */
7448 if (cpu_isolated_map == NULL)
7449 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7450 idle_thread_set_boot_cpu();
7451 set_cpu_rq_start_time();
7452 #endif
7453 init_sched_fair_class();
7454
7455 scheduler_running = 1;
7456 }
7457
7458 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7459 static inline int preempt_count_equals(int preempt_offset)
7460 {
7461 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7462
7463 return (nested == preempt_offset);
7464 }
7465
7466 void __might_sleep(const char *file, int line, int preempt_offset)
7467 {
7468 /*
7469 * Blocking primitives will set (and therefore destroy) current->state,
7470 * since we will exit with TASK_RUNNING make sure we enter with it,
7471 * otherwise we will destroy state.
7472 */
7473 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7474 "do not call blocking ops when !TASK_RUNNING; "
7475 "state=%lx set at [<%p>] %pS\n",
7476 current->state,
7477 (void *)current->task_state_change,
7478 (void *)current->task_state_change);
7479
7480 ___might_sleep(file, line, preempt_offset);
7481 }
7482 EXPORT_SYMBOL(__might_sleep);
7483
7484 void ___might_sleep(const char *file, int line, int preempt_offset)
7485 {
7486 static unsigned long prev_jiffy; /* ratelimiting */
7487
7488 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7489 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7490 !is_idle_task(current)) ||
7491 system_state != SYSTEM_RUNNING || oops_in_progress)
7492 return;
7493 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7494 return;
7495 prev_jiffy = jiffies;
7496
7497 printk(KERN_ERR
7498 "BUG: sleeping function called from invalid context at %s:%d\n",
7499 file, line);
7500 printk(KERN_ERR
7501 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7502 in_atomic(), irqs_disabled(),
7503 current->pid, current->comm);
7504
7505 if (task_stack_end_corrupted(current))
7506 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7507
7508 debug_show_held_locks(current);
7509 if (irqs_disabled())
7510 print_irqtrace_events(current);
7511 #ifdef CONFIG_DEBUG_PREEMPT
7512 if (!preempt_count_equals(preempt_offset)) {
7513 pr_err("Preemption disabled at:");
7514 print_ip_sym(current->preempt_disable_ip);
7515 pr_cont("\n");
7516 }
7517 #endif
7518 dump_stack();
7519 }
7520 EXPORT_SYMBOL(___might_sleep);
7521 #endif
7522
7523 #ifdef CONFIG_MAGIC_SYSRQ
7524 void normalize_rt_tasks(void)
7525 {
7526 struct task_struct *g, *p;
7527 struct sched_attr attr = {
7528 .sched_policy = SCHED_NORMAL,
7529 };
7530
7531 read_lock(&tasklist_lock);
7532 for_each_process_thread(g, p) {
7533 /*
7534 * Only normalize user tasks:
7535 */
7536 if (p->flags & PF_KTHREAD)
7537 continue;
7538
7539 p->se.exec_start = 0;
7540 #ifdef CONFIG_SCHEDSTATS
7541 p->se.statistics.wait_start = 0;
7542 p->se.statistics.sleep_start = 0;
7543 p->se.statistics.block_start = 0;
7544 #endif
7545
7546 if (!dl_task(p) && !rt_task(p)) {
7547 /*
7548 * Renice negative nice level userspace
7549 * tasks back to 0:
7550 */
7551 if (task_nice(p) < 0)
7552 set_user_nice(p, 0);
7553 continue;
7554 }
7555
7556 __sched_setscheduler(p, &attr, false, false);
7557 }
7558 read_unlock(&tasklist_lock);
7559 }
7560
7561 #endif /* CONFIG_MAGIC_SYSRQ */
7562
7563 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7564 /*
7565 * These functions are only useful for the IA64 MCA handling, or kdb.
7566 *
7567 * They can only be called when the whole system has been
7568 * stopped - every CPU needs to be quiescent, and no scheduling
7569 * activity can take place. Using them for anything else would
7570 * be a serious bug, and as a result, they aren't even visible
7571 * under any other configuration.
7572 */
7573
7574 /**
7575 * curr_task - return the current task for a given cpu.
7576 * @cpu: the processor in question.
7577 *
7578 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7579 *
7580 * Return: The current task for @cpu.
7581 */
7582 struct task_struct *curr_task(int cpu)
7583 {
7584 return cpu_curr(cpu);
7585 }
7586
7587 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7588
7589 #ifdef CONFIG_IA64
7590 /**
7591 * set_curr_task - set the current task for a given cpu.
7592 * @cpu: the processor in question.
7593 * @p: the task pointer to set.
7594 *
7595 * Description: This function must only be used when non-maskable interrupts
7596 * are serviced on a separate stack. It allows the architecture to switch the
7597 * notion of the current task on a cpu in a non-blocking manner. This function
7598 * must be called with all CPU's synchronized, and interrupts disabled, the
7599 * and caller must save the original value of the current task (see
7600 * curr_task() above) and restore that value before reenabling interrupts and
7601 * re-starting the system.
7602 *
7603 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7604 */
7605 void set_curr_task(int cpu, struct task_struct *p)
7606 {
7607 cpu_curr(cpu) = p;
7608 }
7609
7610 #endif
7611
7612 #ifdef CONFIG_CGROUP_SCHED
7613 /* task_group_lock serializes the addition/removal of task groups */
7614 static DEFINE_SPINLOCK(task_group_lock);
7615
7616 static void free_sched_group(struct task_group *tg)
7617 {
7618 free_fair_sched_group(tg);
7619 free_rt_sched_group(tg);
7620 autogroup_free(tg);
7621 kfree(tg);
7622 }
7623
7624 /* allocate runqueue etc for a new task group */
7625 struct task_group *sched_create_group(struct task_group *parent)
7626 {
7627 struct task_group *tg;
7628
7629 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7630 if (!tg)
7631 return ERR_PTR(-ENOMEM);
7632
7633 if (!alloc_fair_sched_group(tg, parent))
7634 goto err;
7635
7636 if (!alloc_rt_sched_group(tg, parent))
7637 goto err;
7638
7639 return tg;
7640
7641 err:
7642 free_sched_group(tg);
7643 return ERR_PTR(-ENOMEM);
7644 }
7645
7646 void sched_online_group(struct task_group *tg, struct task_group *parent)
7647 {
7648 unsigned long flags;
7649
7650 spin_lock_irqsave(&task_group_lock, flags);
7651 list_add_rcu(&tg->list, &task_groups);
7652
7653 WARN_ON(!parent); /* root should already exist */
7654
7655 tg->parent = parent;
7656 INIT_LIST_HEAD(&tg->children);
7657 list_add_rcu(&tg->siblings, &parent->children);
7658 spin_unlock_irqrestore(&task_group_lock, flags);
7659 }
7660
7661 /* rcu callback to free various structures associated with a task group */
7662 static void free_sched_group_rcu(struct rcu_head *rhp)
7663 {
7664 /* now it should be safe to free those cfs_rqs */
7665 free_sched_group(container_of(rhp, struct task_group, rcu));
7666 }
7667
7668 /* Destroy runqueue etc associated with a task group */
7669 void sched_destroy_group(struct task_group *tg)
7670 {
7671 /* wait for possible concurrent references to cfs_rqs complete */
7672 call_rcu(&tg->rcu, free_sched_group_rcu);
7673 }
7674
7675 void sched_offline_group(struct task_group *tg)
7676 {
7677 unsigned long flags;
7678 int i;
7679
7680 /* end participation in shares distribution */
7681 for_each_possible_cpu(i)
7682 unregister_fair_sched_group(tg, i);
7683
7684 spin_lock_irqsave(&task_group_lock, flags);
7685 list_del_rcu(&tg->list);
7686 list_del_rcu(&tg->siblings);
7687 spin_unlock_irqrestore(&task_group_lock, flags);
7688 }
7689
7690 /* change task's runqueue when it moves between groups.
7691 * The caller of this function should have put the task in its new group
7692 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7693 * reflect its new group.
7694 */
7695 void sched_move_task(struct task_struct *tsk)
7696 {
7697 struct task_group *tg;
7698 int queued, running;
7699 unsigned long flags;
7700 struct rq *rq;
7701
7702 rq = task_rq_lock(tsk, &flags);
7703
7704 running = task_current(rq, tsk);
7705 queued = task_on_rq_queued(tsk);
7706
7707 if (queued)
7708 dequeue_task(rq, tsk, 0);
7709 if (unlikely(running))
7710 put_prev_task(rq, tsk);
7711
7712 /*
7713 * All callers are synchronized by task_rq_lock(); we do not use RCU
7714 * which is pointless here. Thus, we pass "true" to task_css_check()
7715 * to prevent lockdep warnings.
7716 */
7717 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7718 struct task_group, css);
7719 tg = autogroup_task_group(tsk, tg);
7720 tsk->sched_task_group = tg;
7721
7722 #ifdef CONFIG_FAIR_GROUP_SCHED
7723 if (tsk->sched_class->task_move_group)
7724 tsk->sched_class->task_move_group(tsk);
7725 else
7726 #endif
7727 set_task_rq(tsk, task_cpu(tsk));
7728
7729 if (unlikely(running))
7730 tsk->sched_class->set_curr_task(rq);
7731 if (queued)
7732 enqueue_task(rq, tsk, 0);
7733
7734 task_rq_unlock(rq, tsk, &flags);
7735 }
7736 #endif /* CONFIG_CGROUP_SCHED */
7737
7738 #ifdef CONFIG_RT_GROUP_SCHED
7739 /*
7740 * Ensure that the real time constraints are schedulable.
7741 */
7742 static DEFINE_MUTEX(rt_constraints_mutex);
7743
7744 /* Must be called with tasklist_lock held */
7745 static inline int tg_has_rt_tasks(struct task_group *tg)
7746 {
7747 struct task_struct *g, *p;
7748
7749 /*
7750 * Autogroups do not have RT tasks; see autogroup_create().
7751 */
7752 if (task_group_is_autogroup(tg))
7753 return 0;
7754
7755 for_each_process_thread(g, p) {
7756 if (rt_task(p) && task_group(p) == tg)
7757 return 1;
7758 }
7759
7760 return 0;
7761 }
7762
7763 struct rt_schedulable_data {
7764 struct task_group *tg;
7765 u64 rt_period;
7766 u64 rt_runtime;
7767 };
7768
7769 static int tg_rt_schedulable(struct task_group *tg, void *data)
7770 {
7771 struct rt_schedulable_data *d = data;
7772 struct task_group *child;
7773 unsigned long total, sum = 0;
7774 u64 period, runtime;
7775
7776 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7777 runtime = tg->rt_bandwidth.rt_runtime;
7778
7779 if (tg == d->tg) {
7780 period = d->rt_period;
7781 runtime = d->rt_runtime;
7782 }
7783
7784 /*
7785 * Cannot have more runtime than the period.
7786 */
7787 if (runtime > period && runtime != RUNTIME_INF)
7788 return -EINVAL;
7789
7790 /*
7791 * Ensure we don't starve existing RT tasks.
7792 */
7793 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7794 return -EBUSY;
7795
7796 total = to_ratio(period, runtime);
7797
7798 /*
7799 * Nobody can have more than the global setting allows.
7800 */
7801 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7802 return -EINVAL;
7803
7804 /*
7805 * The sum of our children's runtime should not exceed our own.
7806 */
7807 list_for_each_entry_rcu(child, &tg->children, siblings) {
7808 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7809 runtime = child->rt_bandwidth.rt_runtime;
7810
7811 if (child == d->tg) {
7812 period = d->rt_period;
7813 runtime = d->rt_runtime;
7814 }
7815
7816 sum += to_ratio(period, runtime);
7817 }
7818
7819 if (sum > total)
7820 return -EINVAL;
7821
7822 return 0;
7823 }
7824
7825 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7826 {
7827 int ret;
7828
7829 struct rt_schedulable_data data = {
7830 .tg = tg,
7831 .rt_period = period,
7832 .rt_runtime = runtime,
7833 };
7834
7835 rcu_read_lock();
7836 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7837 rcu_read_unlock();
7838
7839 return ret;
7840 }
7841
7842 static int tg_set_rt_bandwidth(struct task_group *tg,
7843 u64 rt_period, u64 rt_runtime)
7844 {
7845 int i, err = 0;
7846
7847 /*
7848 * Disallowing the root group RT runtime is BAD, it would disallow the
7849 * kernel creating (and or operating) RT threads.
7850 */
7851 if (tg == &root_task_group && rt_runtime == 0)
7852 return -EINVAL;
7853
7854 /* No period doesn't make any sense. */
7855 if (rt_period == 0)
7856 return -EINVAL;
7857
7858 mutex_lock(&rt_constraints_mutex);
7859 read_lock(&tasklist_lock);
7860 err = __rt_schedulable(tg, rt_period, rt_runtime);
7861 if (err)
7862 goto unlock;
7863
7864 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7865 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7866 tg->rt_bandwidth.rt_runtime = rt_runtime;
7867
7868 for_each_possible_cpu(i) {
7869 struct rt_rq *rt_rq = tg->rt_rq[i];
7870
7871 raw_spin_lock(&rt_rq->rt_runtime_lock);
7872 rt_rq->rt_runtime = rt_runtime;
7873 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7874 }
7875 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7876 unlock:
7877 read_unlock(&tasklist_lock);
7878 mutex_unlock(&rt_constraints_mutex);
7879
7880 return err;
7881 }
7882
7883 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7884 {
7885 u64 rt_runtime, rt_period;
7886
7887 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7888 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7889 if (rt_runtime_us < 0)
7890 rt_runtime = RUNTIME_INF;
7891
7892 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7893 }
7894
7895 static long sched_group_rt_runtime(struct task_group *tg)
7896 {
7897 u64 rt_runtime_us;
7898
7899 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7900 return -1;
7901
7902 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7903 do_div(rt_runtime_us, NSEC_PER_USEC);
7904 return rt_runtime_us;
7905 }
7906
7907 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7908 {
7909 u64 rt_runtime, rt_period;
7910
7911 rt_period = rt_period_us * NSEC_PER_USEC;
7912 rt_runtime = tg->rt_bandwidth.rt_runtime;
7913
7914 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7915 }
7916
7917 static long sched_group_rt_period(struct task_group *tg)
7918 {
7919 u64 rt_period_us;
7920
7921 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7922 do_div(rt_period_us, NSEC_PER_USEC);
7923 return rt_period_us;
7924 }
7925 #endif /* CONFIG_RT_GROUP_SCHED */
7926
7927 #ifdef CONFIG_RT_GROUP_SCHED
7928 static int sched_rt_global_constraints(void)
7929 {
7930 int ret = 0;
7931
7932 mutex_lock(&rt_constraints_mutex);
7933 read_lock(&tasklist_lock);
7934 ret = __rt_schedulable(NULL, 0, 0);
7935 read_unlock(&tasklist_lock);
7936 mutex_unlock(&rt_constraints_mutex);
7937
7938 return ret;
7939 }
7940
7941 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7942 {
7943 /* Don't accept realtime tasks when there is no way for them to run */
7944 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7945 return 0;
7946
7947 return 1;
7948 }
7949
7950 #else /* !CONFIG_RT_GROUP_SCHED */
7951 static int sched_rt_global_constraints(void)
7952 {
7953 unsigned long flags;
7954 int i, ret = 0;
7955
7956 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7957 for_each_possible_cpu(i) {
7958 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7959
7960 raw_spin_lock(&rt_rq->rt_runtime_lock);
7961 rt_rq->rt_runtime = global_rt_runtime();
7962 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7963 }
7964 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7965
7966 return ret;
7967 }
7968 #endif /* CONFIG_RT_GROUP_SCHED */
7969
7970 static int sched_dl_global_validate(void)
7971 {
7972 u64 runtime = global_rt_runtime();
7973 u64 period = global_rt_period();
7974 u64 new_bw = to_ratio(period, runtime);
7975 struct dl_bw *dl_b;
7976 int cpu, ret = 0;
7977 unsigned long flags;
7978
7979 /*
7980 * Here we want to check the bandwidth not being set to some
7981 * value smaller than the currently allocated bandwidth in
7982 * any of the root_domains.
7983 *
7984 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7985 * cycling on root_domains... Discussion on different/better
7986 * solutions is welcome!
7987 */
7988 for_each_possible_cpu(cpu) {
7989 rcu_read_lock_sched();
7990 dl_b = dl_bw_of(cpu);
7991
7992 raw_spin_lock_irqsave(&dl_b->lock, flags);
7993 if (new_bw < dl_b->total_bw)
7994 ret = -EBUSY;
7995 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7996
7997 rcu_read_unlock_sched();
7998
7999 if (ret)
8000 break;
8001 }
8002
8003 return ret;
8004 }
8005
8006 static void sched_dl_do_global(void)
8007 {
8008 u64 new_bw = -1;
8009 struct dl_bw *dl_b;
8010 int cpu;
8011 unsigned long flags;
8012
8013 def_dl_bandwidth.dl_period = global_rt_period();
8014 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8015
8016 if (global_rt_runtime() != RUNTIME_INF)
8017 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8018
8019 /*
8020 * FIXME: As above...
8021 */
8022 for_each_possible_cpu(cpu) {
8023 rcu_read_lock_sched();
8024 dl_b = dl_bw_of(cpu);
8025
8026 raw_spin_lock_irqsave(&dl_b->lock, flags);
8027 dl_b->bw = new_bw;
8028 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8029
8030 rcu_read_unlock_sched();
8031 }
8032 }
8033
8034 static int sched_rt_global_validate(void)
8035 {
8036 if (sysctl_sched_rt_period <= 0)
8037 return -EINVAL;
8038
8039 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8040 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8041 return -EINVAL;
8042
8043 return 0;
8044 }
8045
8046 static void sched_rt_do_global(void)
8047 {
8048 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8049 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8050 }
8051
8052 int sched_rt_handler(struct ctl_table *table, int write,
8053 void __user *buffer, size_t *lenp,
8054 loff_t *ppos)
8055 {
8056 int old_period, old_runtime;
8057 static DEFINE_MUTEX(mutex);
8058 int ret;
8059
8060 mutex_lock(&mutex);
8061 old_period = sysctl_sched_rt_period;
8062 old_runtime = sysctl_sched_rt_runtime;
8063
8064 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8065
8066 if (!ret && write) {
8067 ret = sched_rt_global_validate();
8068 if (ret)
8069 goto undo;
8070
8071 ret = sched_dl_global_validate();
8072 if (ret)
8073 goto undo;
8074
8075 ret = sched_rt_global_constraints();
8076 if (ret)
8077 goto undo;
8078
8079 sched_rt_do_global();
8080 sched_dl_do_global();
8081 }
8082 if (0) {
8083 undo:
8084 sysctl_sched_rt_period = old_period;
8085 sysctl_sched_rt_runtime = old_runtime;
8086 }
8087 mutex_unlock(&mutex);
8088
8089 return ret;
8090 }
8091
8092 int sched_rr_handler(struct ctl_table *table, int write,
8093 void __user *buffer, size_t *lenp,
8094 loff_t *ppos)
8095 {
8096 int ret;
8097 static DEFINE_MUTEX(mutex);
8098
8099 mutex_lock(&mutex);
8100 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8101 /* make sure that internally we keep jiffies */
8102 /* also, writing zero resets timeslice to default */
8103 if (!ret && write) {
8104 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8105 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8106 }
8107 mutex_unlock(&mutex);
8108 return ret;
8109 }
8110
8111 #ifdef CONFIG_CGROUP_SCHED
8112
8113 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8114 {
8115 return css ? container_of(css, struct task_group, css) : NULL;
8116 }
8117
8118 static struct cgroup_subsys_state *
8119 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8120 {
8121 struct task_group *parent = css_tg(parent_css);
8122 struct task_group *tg;
8123
8124 if (!parent) {
8125 /* This is early initialization for the top cgroup */
8126 return &root_task_group.css;
8127 }
8128
8129 tg = sched_create_group(parent);
8130 if (IS_ERR(tg))
8131 return ERR_PTR(-ENOMEM);
8132
8133 return &tg->css;
8134 }
8135
8136 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8137 {
8138 struct task_group *tg = css_tg(css);
8139 struct task_group *parent = css_tg(css->parent);
8140
8141 if (parent)
8142 sched_online_group(tg, parent);
8143 return 0;
8144 }
8145
8146 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8147 {
8148 struct task_group *tg = css_tg(css);
8149
8150 sched_destroy_group(tg);
8151 }
8152
8153 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8154 {
8155 struct task_group *tg = css_tg(css);
8156
8157 sched_offline_group(tg);
8158 }
8159
8160 static void cpu_cgroup_fork(struct task_struct *task, void *private)
8161 {
8162 sched_move_task(task);
8163 }
8164
8165 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8166 struct cgroup_taskset *tset)
8167 {
8168 struct task_struct *task;
8169
8170 cgroup_taskset_for_each(task, tset) {
8171 #ifdef CONFIG_RT_GROUP_SCHED
8172 if (!sched_rt_can_attach(css_tg(css), task))
8173 return -EINVAL;
8174 #else
8175 /* We don't support RT-tasks being in separate groups */
8176 if (task->sched_class != &fair_sched_class)
8177 return -EINVAL;
8178 #endif
8179 }
8180 return 0;
8181 }
8182
8183 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8184 struct cgroup_taskset *tset)
8185 {
8186 struct task_struct *task;
8187
8188 cgroup_taskset_for_each(task, tset)
8189 sched_move_task(task);
8190 }
8191
8192 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8193 struct cgroup_subsys_state *old_css,
8194 struct task_struct *task)
8195 {
8196 /*
8197 * cgroup_exit() is called in the copy_process() failure path.
8198 * Ignore this case since the task hasn't ran yet, this avoids
8199 * trying to poke a half freed task state from generic code.
8200 */
8201 if (!(task->flags & PF_EXITING))
8202 return;
8203
8204 sched_move_task(task);
8205 }
8206
8207 #ifdef CONFIG_FAIR_GROUP_SCHED
8208 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8209 struct cftype *cftype, u64 shareval)
8210 {
8211 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8212 }
8213
8214 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8215 struct cftype *cft)
8216 {
8217 struct task_group *tg = css_tg(css);
8218
8219 return (u64) scale_load_down(tg->shares);
8220 }
8221
8222 #ifdef CONFIG_CFS_BANDWIDTH
8223 static DEFINE_MUTEX(cfs_constraints_mutex);
8224
8225 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8226 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8227
8228 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8229
8230 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8231 {
8232 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8233 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8234
8235 if (tg == &root_task_group)
8236 return -EINVAL;
8237
8238 /*
8239 * Ensure we have at some amount of bandwidth every period. This is
8240 * to prevent reaching a state of large arrears when throttled via
8241 * entity_tick() resulting in prolonged exit starvation.
8242 */
8243 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8244 return -EINVAL;
8245
8246 /*
8247 * Likewise, bound things on the otherside by preventing insane quota
8248 * periods. This also allows us to normalize in computing quota
8249 * feasibility.
8250 */
8251 if (period > max_cfs_quota_period)
8252 return -EINVAL;
8253
8254 /*
8255 * Prevent race between setting of cfs_rq->runtime_enabled and
8256 * unthrottle_offline_cfs_rqs().
8257 */
8258 get_online_cpus();
8259 mutex_lock(&cfs_constraints_mutex);
8260 ret = __cfs_schedulable(tg, period, quota);
8261 if (ret)
8262 goto out_unlock;
8263
8264 runtime_enabled = quota != RUNTIME_INF;
8265 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8266 /*
8267 * If we need to toggle cfs_bandwidth_used, off->on must occur
8268 * before making related changes, and on->off must occur afterwards
8269 */
8270 if (runtime_enabled && !runtime_was_enabled)
8271 cfs_bandwidth_usage_inc();
8272 raw_spin_lock_irq(&cfs_b->lock);
8273 cfs_b->period = ns_to_ktime(period);
8274 cfs_b->quota = quota;
8275
8276 __refill_cfs_bandwidth_runtime(cfs_b);
8277 /* restart the period timer (if active) to handle new period expiry */
8278 if (runtime_enabled)
8279 start_cfs_bandwidth(cfs_b);
8280 raw_spin_unlock_irq(&cfs_b->lock);
8281
8282 for_each_online_cpu(i) {
8283 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8284 struct rq *rq = cfs_rq->rq;
8285
8286 raw_spin_lock_irq(&rq->lock);
8287 cfs_rq->runtime_enabled = runtime_enabled;
8288 cfs_rq->runtime_remaining = 0;
8289
8290 if (cfs_rq->throttled)
8291 unthrottle_cfs_rq(cfs_rq);
8292 raw_spin_unlock_irq(&rq->lock);
8293 }
8294 if (runtime_was_enabled && !runtime_enabled)
8295 cfs_bandwidth_usage_dec();
8296 out_unlock:
8297 mutex_unlock(&cfs_constraints_mutex);
8298 put_online_cpus();
8299
8300 return ret;
8301 }
8302
8303 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8304 {
8305 u64 quota, period;
8306
8307 period = ktime_to_ns(tg->cfs_bandwidth.period);
8308 if (cfs_quota_us < 0)
8309 quota = RUNTIME_INF;
8310 else
8311 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8312
8313 return tg_set_cfs_bandwidth(tg, period, quota);
8314 }
8315
8316 long tg_get_cfs_quota(struct task_group *tg)
8317 {
8318 u64 quota_us;
8319
8320 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8321 return -1;
8322
8323 quota_us = tg->cfs_bandwidth.quota;
8324 do_div(quota_us, NSEC_PER_USEC);
8325
8326 return quota_us;
8327 }
8328
8329 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8330 {
8331 u64 quota, period;
8332
8333 period = (u64)cfs_period_us * NSEC_PER_USEC;
8334 quota = tg->cfs_bandwidth.quota;
8335
8336 return tg_set_cfs_bandwidth(tg, period, quota);
8337 }
8338
8339 long tg_get_cfs_period(struct task_group *tg)
8340 {
8341 u64 cfs_period_us;
8342
8343 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8344 do_div(cfs_period_us, NSEC_PER_USEC);
8345
8346 return cfs_period_us;
8347 }
8348
8349 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8350 struct cftype *cft)
8351 {
8352 return tg_get_cfs_quota(css_tg(css));
8353 }
8354
8355 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8356 struct cftype *cftype, s64 cfs_quota_us)
8357 {
8358 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8359 }
8360
8361 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8362 struct cftype *cft)
8363 {
8364 return tg_get_cfs_period(css_tg(css));
8365 }
8366
8367 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8368 struct cftype *cftype, u64 cfs_period_us)
8369 {
8370 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8371 }
8372
8373 struct cfs_schedulable_data {
8374 struct task_group *tg;
8375 u64 period, quota;
8376 };
8377
8378 /*
8379 * normalize group quota/period to be quota/max_period
8380 * note: units are usecs
8381 */
8382 static u64 normalize_cfs_quota(struct task_group *tg,
8383 struct cfs_schedulable_data *d)
8384 {
8385 u64 quota, period;
8386
8387 if (tg == d->tg) {
8388 period = d->period;
8389 quota = d->quota;
8390 } else {
8391 period = tg_get_cfs_period(tg);
8392 quota = tg_get_cfs_quota(tg);
8393 }
8394
8395 /* note: these should typically be equivalent */
8396 if (quota == RUNTIME_INF || quota == -1)
8397 return RUNTIME_INF;
8398
8399 return to_ratio(period, quota);
8400 }
8401
8402 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8403 {
8404 struct cfs_schedulable_data *d = data;
8405 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8406 s64 quota = 0, parent_quota = -1;
8407
8408 if (!tg->parent) {
8409 quota = RUNTIME_INF;
8410 } else {
8411 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8412
8413 quota = normalize_cfs_quota(tg, d);
8414 parent_quota = parent_b->hierarchical_quota;
8415
8416 /*
8417 * ensure max(child_quota) <= parent_quota, inherit when no
8418 * limit is set
8419 */
8420 if (quota == RUNTIME_INF)
8421 quota = parent_quota;
8422 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8423 return -EINVAL;
8424 }
8425 cfs_b->hierarchical_quota = quota;
8426
8427 return 0;
8428 }
8429
8430 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8431 {
8432 int ret;
8433 struct cfs_schedulable_data data = {
8434 .tg = tg,
8435 .period = period,
8436 .quota = quota,
8437 };
8438
8439 if (quota != RUNTIME_INF) {
8440 do_div(data.period, NSEC_PER_USEC);
8441 do_div(data.quota, NSEC_PER_USEC);
8442 }
8443
8444 rcu_read_lock();
8445 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8446 rcu_read_unlock();
8447
8448 return ret;
8449 }
8450
8451 static int cpu_stats_show(struct seq_file *sf, void *v)
8452 {
8453 struct task_group *tg = css_tg(seq_css(sf));
8454 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8455
8456 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8457 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8458 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8459
8460 return 0;
8461 }
8462 #endif /* CONFIG_CFS_BANDWIDTH */
8463 #endif /* CONFIG_FAIR_GROUP_SCHED */
8464
8465 #ifdef CONFIG_RT_GROUP_SCHED
8466 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8467 struct cftype *cft, s64 val)
8468 {
8469 return sched_group_set_rt_runtime(css_tg(css), val);
8470 }
8471
8472 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8473 struct cftype *cft)
8474 {
8475 return sched_group_rt_runtime(css_tg(css));
8476 }
8477
8478 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8479 struct cftype *cftype, u64 rt_period_us)
8480 {
8481 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8482 }
8483
8484 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8485 struct cftype *cft)
8486 {
8487 return sched_group_rt_period(css_tg(css));
8488 }
8489 #endif /* CONFIG_RT_GROUP_SCHED */
8490
8491 static struct cftype cpu_files[] = {
8492 #ifdef CONFIG_FAIR_GROUP_SCHED
8493 {
8494 .name = "shares",
8495 .read_u64 = cpu_shares_read_u64,
8496 .write_u64 = cpu_shares_write_u64,
8497 },
8498 #endif
8499 #ifdef CONFIG_CFS_BANDWIDTH
8500 {
8501 .name = "cfs_quota_us",
8502 .read_s64 = cpu_cfs_quota_read_s64,
8503 .write_s64 = cpu_cfs_quota_write_s64,
8504 },
8505 {
8506 .name = "cfs_period_us",
8507 .read_u64 = cpu_cfs_period_read_u64,
8508 .write_u64 = cpu_cfs_period_write_u64,
8509 },
8510 {
8511 .name = "stat",
8512 .seq_show = cpu_stats_show,
8513 },
8514 #endif
8515 #ifdef CONFIG_RT_GROUP_SCHED
8516 {
8517 .name = "rt_runtime_us",
8518 .read_s64 = cpu_rt_runtime_read,
8519 .write_s64 = cpu_rt_runtime_write,
8520 },
8521 {
8522 .name = "rt_period_us",
8523 .read_u64 = cpu_rt_period_read_uint,
8524 .write_u64 = cpu_rt_period_write_uint,
8525 },
8526 #endif
8527 { } /* terminate */
8528 };
8529
8530 struct cgroup_subsys cpu_cgrp_subsys = {
8531 .css_alloc = cpu_cgroup_css_alloc,
8532 .css_free = cpu_cgroup_css_free,
8533 .css_online = cpu_cgroup_css_online,
8534 .css_offline = cpu_cgroup_css_offline,
8535 .fork = cpu_cgroup_fork,
8536 .can_attach = cpu_cgroup_can_attach,
8537 .attach = cpu_cgroup_attach,
8538 .exit = cpu_cgroup_exit,
8539 .legacy_cftypes = cpu_files,
8540 .early_init = 1,
8541 };
8542
8543 #endif /* CONFIG_CGROUP_SCHED */
8544
8545 void dump_cpu_task(int cpu)
8546 {
8547 pr_info("Task dump for CPU %d:\n", cpu);
8548 sched_show_task(cpu_curr(cpu));
8549 }
This page took 0.211193 seconds and 5 git commands to generate.