b342f57879e693f54c12a5b15d1e4e7c5bdde7e1
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 #ifdef CONFIG_PARAVIRT
79 #include <asm/paravirt.h>
80 #endif
81
82 #include "sched.h"
83 #include "../workqueue_sched.h"
84
85 #define CREATE_TRACE_POINTS
86 #include <trace/events/sched.h>
87
88 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
89 {
90 unsigned long delta;
91 ktime_t soft, hard, now;
92
93 for (;;) {
94 if (hrtimer_active(period_timer))
95 break;
96
97 now = hrtimer_cb_get_time(period_timer);
98 hrtimer_forward(period_timer, now, period);
99
100 soft = hrtimer_get_softexpires(period_timer);
101 hard = hrtimer_get_expires(period_timer);
102 delta = ktime_to_ns(ktime_sub(hard, soft));
103 __hrtimer_start_range_ns(period_timer, soft, delta,
104 HRTIMER_MODE_ABS_PINNED, 0);
105 }
106 }
107
108 DEFINE_MUTEX(sched_domains_mutex);
109 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
110
111 static void update_rq_clock_task(struct rq *rq, s64 delta);
112
113 void update_rq_clock(struct rq *rq)
114 {
115 s64 delta;
116
117 if (rq->skip_clock_update > 0)
118 return;
119
120 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
121 rq->clock += delta;
122 update_rq_clock_task(rq, delta);
123 }
124
125 /*
126 * Debugging: various feature bits
127 */
128
129 #define SCHED_FEAT(name, enabled) \
130 (1UL << __SCHED_FEAT_##name) * enabled |
131
132 const_debug unsigned int sysctl_sched_features =
133 #include "features.h"
134 0;
135
136 #undef SCHED_FEAT
137
138 #ifdef CONFIG_SCHED_DEBUG
139 #define SCHED_FEAT(name, enabled) \
140 #name ,
141
142 static __read_mostly char *sched_feat_names[] = {
143 #include "features.h"
144 NULL
145 };
146
147 #undef SCHED_FEAT
148
149 static int sched_feat_show(struct seq_file *m, void *v)
150 {
151 int i;
152
153 for (i = 0; i < __SCHED_FEAT_NR; i++) {
154 if (!(sysctl_sched_features & (1UL << i)))
155 seq_puts(m, "NO_");
156 seq_printf(m, "%s ", sched_feat_names[i]);
157 }
158 seq_puts(m, "\n");
159
160 return 0;
161 }
162
163 #ifdef HAVE_JUMP_LABEL
164
165 #define jump_label_key__true jump_label_key_enabled
166 #define jump_label_key__false jump_label_key_disabled
167
168 #define SCHED_FEAT(name, enabled) \
169 jump_label_key__##enabled ,
170
171 struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
172 #include "features.h"
173 };
174
175 #undef SCHED_FEAT
176
177 static void sched_feat_disable(int i)
178 {
179 if (jump_label_enabled(&sched_feat_keys[i]))
180 jump_label_dec(&sched_feat_keys[i]);
181 }
182
183 static void sched_feat_enable(int i)
184 {
185 if (!jump_label_enabled(&sched_feat_keys[i]))
186 jump_label_inc(&sched_feat_keys[i]);
187 }
188 #else
189 static void sched_feat_disable(int i) { };
190 static void sched_feat_enable(int i) { };
191 #endif /* HAVE_JUMP_LABEL */
192
193 static ssize_t
194 sched_feat_write(struct file *filp, const char __user *ubuf,
195 size_t cnt, loff_t *ppos)
196 {
197 char buf[64];
198 char *cmp;
199 int neg = 0;
200 int i;
201
202 if (cnt > 63)
203 cnt = 63;
204
205 if (copy_from_user(&buf, ubuf, cnt))
206 return -EFAULT;
207
208 buf[cnt] = 0;
209 cmp = strstrip(buf);
210
211 if (strncmp(cmp, "NO_", 3) == 0) {
212 neg = 1;
213 cmp += 3;
214 }
215
216 for (i = 0; i < __SCHED_FEAT_NR; i++) {
217 if (strcmp(cmp, sched_feat_names[i]) == 0) {
218 if (neg) {
219 sysctl_sched_features &= ~(1UL << i);
220 sched_feat_disable(i);
221 } else {
222 sysctl_sched_features |= (1UL << i);
223 sched_feat_enable(i);
224 }
225 break;
226 }
227 }
228
229 if (i == __SCHED_FEAT_NR)
230 return -EINVAL;
231
232 *ppos += cnt;
233
234 return cnt;
235 }
236
237 static int sched_feat_open(struct inode *inode, struct file *filp)
238 {
239 return single_open(filp, sched_feat_show, NULL);
240 }
241
242 static const struct file_operations sched_feat_fops = {
243 .open = sched_feat_open,
244 .write = sched_feat_write,
245 .read = seq_read,
246 .llseek = seq_lseek,
247 .release = single_release,
248 };
249
250 static __init int sched_init_debug(void)
251 {
252 debugfs_create_file("sched_features", 0644, NULL, NULL,
253 &sched_feat_fops);
254
255 return 0;
256 }
257 late_initcall(sched_init_debug);
258 #endif /* CONFIG_SCHED_DEBUG */
259
260 /*
261 * Number of tasks to iterate in a single balance run.
262 * Limited because this is done with IRQs disabled.
263 */
264 const_debug unsigned int sysctl_sched_nr_migrate = 32;
265
266 /*
267 * period over which we average the RT time consumption, measured
268 * in ms.
269 *
270 * default: 1s
271 */
272 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
273
274 /*
275 * period over which we measure -rt task cpu usage in us.
276 * default: 1s
277 */
278 unsigned int sysctl_sched_rt_period = 1000000;
279
280 __read_mostly int scheduler_running;
281
282 /*
283 * part of the period that we allow rt tasks to run in us.
284 * default: 0.95s
285 */
286 int sysctl_sched_rt_runtime = 950000;
287
288
289
290 /*
291 * __task_rq_lock - lock the rq @p resides on.
292 */
293 static inline struct rq *__task_rq_lock(struct task_struct *p)
294 __acquires(rq->lock)
295 {
296 struct rq *rq;
297
298 lockdep_assert_held(&p->pi_lock);
299
300 for (;;) {
301 rq = task_rq(p);
302 raw_spin_lock(&rq->lock);
303 if (likely(rq == task_rq(p)))
304 return rq;
305 raw_spin_unlock(&rq->lock);
306 }
307 }
308
309 /*
310 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
311 */
312 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
313 __acquires(p->pi_lock)
314 __acquires(rq->lock)
315 {
316 struct rq *rq;
317
318 for (;;) {
319 raw_spin_lock_irqsave(&p->pi_lock, *flags);
320 rq = task_rq(p);
321 raw_spin_lock(&rq->lock);
322 if (likely(rq == task_rq(p)))
323 return rq;
324 raw_spin_unlock(&rq->lock);
325 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
326 }
327 }
328
329 static void __task_rq_unlock(struct rq *rq)
330 __releases(rq->lock)
331 {
332 raw_spin_unlock(&rq->lock);
333 }
334
335 static inline void
336 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
337 __releases(rq->lock)
338 __releases(p->pi_lock)
339 {
340 raw_spin_unlock(&rq->lock);
341 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
342 }
343
344 /*
345 * this_rq_lock - lock this runqueue and disable interrupts.
346 */
347 static struct rq *this_rq_lock(void)
348 __acquires(rq->lock)
349 {
350 struct rq *rq;
351
352 local_irq_disable();
353 rq = this_rq();
354 raw_spin_lock(&rq->lock);
355
356 return rq;
357 }
358
359 #ifdef CONFIG_SCHED_HRTICK
360 /*
361 * Use HR-timers to deliver accurate preemption points.
362 *
363 * Its all a bit involved since we cannot program an hrt while holding the
364 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
365 * reschedule event.
366 *
367 * When we get rescheduled we reprogram the hrtick_timer outside of the
368 * rq->lock.
369 */
370
371 static void hrtick_clear(struct rq *rq)
372 {
373 if (hrtimer_active(&rq->hrtick_timer))
374 hrtimer_cancel(&rq->hrtick_timer);
375 }
376
377 /*
378 * High-resolution timer tick.
379 * Runs from hardirq context with interrupts disabled.
380 */
381 static enum hrtimer_restart hrtick(struct hrtimer *timer)
382 {
383 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
384
385 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
386
387 raw_spin_lock(&rq->lock);
388 update_rq_clock(rq);
389 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
390 raw_spin_unlock(&rq->lock);
391
392 return HRTIMER_NORESTART;
393 }
394
395 #ifdef CONFIG_SMP
396 /*
397 * called from hardirq (IPI) context
398 */
399 static void __hrtick_start(void *arg)
400 {
401 struct rq *rq = arg;
402
403 raw_spin_lock(&rq->lock);
404 hrtimer_restart(&rq->hrtick_timer);
405 rq->hrtick_csd_pending = 0;
406 raw_spin_unlock(&rq->lock);
407 }
408
409 /*
410 * Called to set the hrtick timer state.
411 *
412 * called with rq->lock held and irqs disabled
413 */
414 void hrtick_start(struct rq *rq, u64 delay)
415 {
416 struct hrtimer *timer = &rq->hrtick_timer;
417 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
418
419 hrtimer_set_expires(timer, time);
420
421 if (rq == this_rq()) {
422 hrtimer_restart(timer);
423 } else if (!rq->hrtick_csd_pending) {
424 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
425 rq->hrtick_csd_pending = 1;
426 }
427 }
428
429 static int
430 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
431 {
432 int cpu = (int)(long)hcpu;
433
434 switch (action) {
435 case CPU_UP_CANCELED:
436 case CPU_UP_CANCELED_FROZEN:
437 case CPU_DOWN_PREPARE:
438 case CPU_DOWN_PREPARE_FROZEN:
439 case CPU_DEAD:
440 case CPU_DEAD_FROZEN:
441 hrtick_clear(cpu_rq(cpu));
442 return NOTIFY_OK;
443 }
444
445 return NOTIFY_DONE;
446 }
447
448 static __init void init_hrtick(void)
449 {
450 hotcpu_notifier(hotplug_hrtick, 0);
451 }
452 #else
453 /*
454 * Called to set the hrtick timer state.
455 *
456 * called with rq->lock held and irqs disabled
457 */
458 void hrtick_start(struct rq *rq, u64 delay)
459 {
460 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
461 HRTIMER_MODE_REL_PINNED, 0);
462 }
463
464 static inline void init_hrtick(void)
465 {
466 }
467 #endif /* CONFIG_SMP */
468
469 static void init_rq_hrtick(struct rq *rq)
470 {
471 #ifdef CONFIG_SMP
472 rq->hrtick_csd_pending = 0;
473
474 rq->hrtick_csd.flags = 0;
475 rq->hrtick_csd.func = __hrtick_start;
476 rq->hrtick_csd.info = rq;
477 #endif
478
479 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
480 rq->hrtick_timer.function = hrtick;
481 }
482 #else /* CONFIG_SCHED_HRTICK */
483 static inline void hrtick_clear(struct rq *rq)
484 {
485 }
486
487 static inline void init_rq_hrtick(struct rq *rq)
488 {
489 }
490
491 static inline void init_hrtick(void)
492 {
493 }
494 #endif /* CONFIG_SCHED_HRTICK */
495
496 /*
497 * resched_task - mark a task 'to be rescheduled now'.
498 *
499 * On UP this means the setting of the need_resched flag, on SMP it
500 * might also involve a cross-CPU call to trigger the scheduler on
501 * the target CPU.
502 */
503 #ifdef CONFIG_SMP
504
505 #ifndef tsk_is_polling
506 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
507 #endif
508
509 void resched_task(struct task_struct *p)
510 {
511 int cpu;
512
513 assert_raw_spin_locked(&task_rq(p)->lock);
514
515 if (test_tsk_need_resched(p))
516 return;
517
518 set_tsk_need_resched(p);
519
520 cpu = task_cpu(p);
521 if (cpu == smp_processor_id())
522 return;
523
524 /* NEED_RESCHED must be visible before we test polling */
525 smp_mb();
526 if (!tsk_is_polling(p))
527 smp_send_reschedule(cpu);
528 }
529
530 void resched_cpu(int cpu)
531 {
532 struct rq *rq = cpu_rq(cpu);
533 unsigned long flags;
534
535 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
536 return;
537 resched_task(cpu_curr(cpu));
538 raw_spin_unlock_irqrestore(&rq->lock, flags);
539 }
540
541 #ifdef CONFIG_NO_HZ
542 /*
543 * In the semi idle case, use the nearest busy cpu for migrating timers
544 * from an idle cpu. This is good for power-savings.
545 *
546 * We don't do similar optimization for completely idle system, as
547 * selecting an idle cpu will add more delays to the timers than intended
548 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
549 */
550 int get_nohz_timer_target(void)
551 {
552 int cpu = smp_processor_id();
553 int i;
554 struct sched_domain *sd;
555
556 rcu_read_lock();
557 for_each_domain(cpu, sd) {
558 for_each_cpu(i, sched_domain_span(sd)) {
559 if (!idle_cpu(i)) {
560 cpu = i;
561 goto unlock;
562 }
563 }
564 }
565 unlock:
566 rcu_read_unlock();
567 return cpu;
568 }
569 /*
570 * When add_timer_on() enqueues a timer into the timer wheel of an
571 * idle CPU then this timer might expire before the next timer event
572 * which is scheduled to wake up that CPU. In case of a completely
573 * idle system the next event might even be infinite time into the
574 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
575 * leaves the inner idle loop so the newly added timer is taken into
576 * account when the CPU goes back to idle and evaluates the timer
577 * wheel for the next timer event.
578 */
579 void wake_up_idle_cpu(int cpu)
580 {
581 struct rq *rq = cpu_rq(cpu);
582
583 if (cpu == smp_processor_id())
584 return;
585
586 /*
587 * This is safe, as this function is called with the timer
588 * wheel base lock of (cpu) held. When the CPU is on the way
589 * to idle and has not yet set rq->curr to idle then it will
590 * be serialized on the timer wheel base lock and take the new
591 * timer into account automatically.
592 */
593 if (rq->curr != rq->idle)
594 return;
595
596 /*
597 * We can set TIF_RESCHED on the idle task of the other CPU
598 * lockless. The worst case is that the other CPU runs the
599 * idle task through an additional NOOP schedule()
600 */
601 set_tsk_need_resched(rq->idle);
602
603 /* NEED_RESCHED must be visible before we test polling */
604 smp_mb();
605 if (!tsk_is_polling(rq->idle))
606 smp_send_reschedule(cpu);
607 }
608
609 static inline bool got_nohz_idle_kick(void)
610 {
611 int cpu = smp_processor_id();
612 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
613 }
614
615 #else /* CONFIG_NO_HZ */
616
617 static inline bool got_nohz_idle_kick(void)
618 {
619 return false;
620 }
621
622 #endif /* CONFIG_NO_HZ */
623
624 void sched_avg_update(struct rq *rq)
625 {
626 s64 period = sched_avg_period();
627
628 while ((s64)(rq->clock - rq->age_stamp) > period) {
629 /*
630 * Inline assembly required to prevent the compiler
631 * optimising this loop into a divmod call.
632 * See __iter_div_u64_rem() for another example of this.
633 */
634 asm("" : "+rm" (rq->age_stamp));
635 rq->age_stamp += period;
636 rq->rt_avg /= 2;
637 }
638 }
639
640 #else /* !CONFIG_SMP */
641 void resched_task(struct task_struct *p)
642 {
643 assert_raw_spin_locked(&task_rq(p)->lock);
644 set_tsk_need_resched(p);
645 }
646 #endif /* CONFIG_SMP */
647
648 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
650 /*
651 * Iterate task_group tree rooted at *from, calling @down when first entering a
652 * node and @up when leaving it for the final time.
653 *
654 * Caller must hold rcu_lock or sufficient equivalent.
655 */
656 int walk_tg_tree_from(struct task_group *from,
657 tg_visitor down, tg_visitor up, void *data)
658 {
659 struct task_group *parent, *child;
660 int ret;
661
662 parent = from;
663
664 down:
665 ret = (*down)(parent, data);
666 if (ret)
667 goto out;
668 list_for_each_entry_rcu(child, &parent->children, siblings) {
669 parent = child;
670 goto down;
671
672 up:
673 continue;
674 }
675 ret = (*up)(parent, data);
676 if (ret || parent == from)
677 goto out;
678
679 child = parent;
680 parent = parent->parent;
681 if (parent)
682 goto up;
683 out:
684 return ret;
685 }
686
687 int tg_nop(struct task_group *tg, void *data)
688 {
689 return 0;
690 }
691 #endif
692
693 void update_cpu_load(struct rq *this_rq);
694
695 static void set_load_weight(struct task_struct *p)
696 {
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
704 load->weight = scale_load(WEIGHT_IDLEPRIO);
705 load->inv_weight = WMULT_IDLEPRIO;
706 return;
707 }
708
709 load->weight = scale_load(prio_to_weight[prio]);
710 load->inv_weight = prio_to_wmult[prio];
711 }
712
713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714 {
715 update_rq_clock(rq);
716 sched_info_queued(p);
717 p->sched_class->enqueue_task(rq, p, flags);
718 }
719
720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721 {
722 update_rq_clock(rq);
723 sched_info_dequeued(p);
724 p->sched_class->dequeue_task(rq, p, flags);
725 }
726
727 void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 {
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
732 enqueue_task(rq, p, flags);
733 }
734
735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 {
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
740 dequeue_task(rq, p, flags);
741 }
742
743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
745 /*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
755 */
756 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757 static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759 static DEFINE_PER_CPU(u64, irq_start_time);
760 static int sched_clock_irqtime;
761
762 void enable_sched_clock_irqtime(void)
763 {
764 sched_clock_irqtime = 1;
765 }
766
767 void disable_sched_clock_irqtime(void)
768 {
769 sched_clock_irqtime = 0;
770 }
771
772 #ifndef CONFIG_64BIT
773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775 static inline void irq_time_write_begin(void)
776 {
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
779 }
780
781 static inline void irq_time_write_end(void)
782 {
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
785 }
786
787 static inline u64 irq_time_read(int cpu)
788 {
789 u64 irq_time;
790 unsigned seq;
791
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798 return irq_time;
799 }
800 #else /* CONFIG_64BIT */
801 static inline void irq_time_write_begin(void)
802 {
803 }
804
805 static inline void irq_time_write_end(void)
806 {
807 }
808
809 static inline u64 irq_time_read(int cpu)
810 {
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812 }
813 #endif /* CONFIG_64BIT */
814
815 /*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
819 void account_system_vtime(struct task_struct *curr)
820 {
821 unsigned long flags;
822 s64 delta;
823 int cpu;
824
825 if (!sched_clock_irqtime)
826 return;
827
828 local_irq_save(flags);
829
830 cpu = smp_processor_id();
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
833
834 irq_time_write_begin();
835 /*
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
840 */
841 if (hardirq_count())
842 __this_cpu_add(cpu_hardirq_time, delta);
843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844 __this_cpu_add(cpu_softirq_time, delta);
845
846 irq_time_write_end();
847 local_irq_restore(flags);
848 }
849 EXPORT_SYMBOL_GPL(account_system_vtime);
850
851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853 #ifdef CONFIG_PARAVIRT
854 static inline u64 steal_ticks(u64 steal)
855 {
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
858
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860 }
861 #endif
862
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
864 {
865 /*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_branch((&paravirt_steal_rq_enabled))) {
898 u64 st;
899
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
908
909 rq->prev_steal_time_rq += steal;
910
911 delta -= steal;
912 }
913 #endif
914
915 rq->clock_task += delta;
916
917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920 #endif
921 }
922
923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 static int irqtime_account_hi_update(void)
925 {
926 u64 *cpustat = kcpustat_this_cpu->cpustat;
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
930
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
937 }
938
939 static int irqtime_account_si_update(void)
940 {
941 u64 *cpustat = kcpustat_this_cpu->cpustat;
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
945
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
952 }
953
954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
955
956 #define sched_clock_irqtime (0)
957
958 #endif
959
960 void sched_set_stop_task(int cpu, struct task_struct *stop)
961 {
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965 if (stop) {
966 /*
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
969 *
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
973 */
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976 stop->sched_class = &stop_sched_class;
977 }
978
979 cpu_rq(cpu)->stop = stop;
980
981 if (old_stop) {
982 /*
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
985 */
986 old_stop->sched_class = &rt_sched_class;
987 }
988 }
989
990 /*
991 * __normal_prio - return the priority that is based on the static prio
992 */
993 static inline int __normal_prio(struct task_struct *p)
994 {
995 return p->static_prio;
996 }
997
998 /*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
1005 static inline int normal_prio(struct task_struct *p)
1006 {
1007 int prio;
1008
1009 if (task_has_rt_policy(p))
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1014 }
1015
1016 /*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
1023 static int effective_prio(struct task_struct *p)
1024 {
1025 p->normal_prio = normal_prio(p);
1026 /*
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1030 */
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1034 }
1035
1036 /**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
1040 inline int task_curr(const struct task_struct *p)
1041 {
1042 return cpu_curr(task_cpu(p)) == p;
1043 }
1044
1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
1047 int oldprio)
1048 {
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
1055 }
1056
1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058 {
1059 const struct sched_class *class;
1060
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1077 */
1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 rq->skip_clock_update = 1;
1080 }
1081
1082 #ifdef CONFIG_SMP
1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1084 {
1085 #ifdef CONFIG_SCHED_DEBUG
1086 /*
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1089 */
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092
1093 #ifdef CONFIG_LOCKDEP
1094 /*
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 *
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1100 *
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1103 */
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106 #endif
1107 #endif
1108
1109 trace_sched_migrate_task(p, new_cpu);
1110
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114 }
1115
1116 __set_task_cpu(p, new_cpu);
1117 }
1118
1119 struct migration_arg {
1120 struct task_struct *task;
1121 int dest_cpu;
1122 };
1123
1124 static int migration_cpu_stop(void *data);
1125
1126 /*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143 {
1144 unsigned long flags;
1145 int running, on_rq;
1146 unsigned long ncsw;
1147 struct rq *rq;
1148
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
1157
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
1172 cpu_relax();
1173 }
1174
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
1181 trace_sched_wait_task(p);
1182 running = task_running(rq, p);
1183 on_rq = p->on_rq;
1184 ncsw = 0;
1185 if (!match_state || p->state == match_state)
1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187 task_rq_unlock(rq, p, &flags);
1188
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
1205
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
1211 * So if it was still runnable (but just not actively
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 continue;
1221 }
1222
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
1230
1231 return ncsw;
1232 }
1233
1234 /***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
1247 void kick_process(struct task_struct *p)
1248 {
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256 }
1257 EXPORT_SYMBOL_GPL(kick_process);
1258 #endif /* CONFIG_SMP */
1259
1260 #ifdef CONFIG_SMP
1261 /*
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263 */
1264 static int select_fallback_rq(int cpu, struct task_struct *p)
1265 {
1266 int dest_cpu;
1267 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1268
1269 /* Look for allowed, online CPU in same node. */
1270 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1271 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1272 return dest_cpu;
1273
1274 /* Any allowed, online CPU? */
1275 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1276 if (dest_cpu < nr_cpu_ids)
1277 return dest_cpu;
1278
1279 /* No more Mr. Nice Guy. */
1280 dest_cpu = cpuset_cpus_allowed_fallback(p);
1281 /*
1282 * Don't tell them about moving exiting tasks or
1283 * kernel threads (both mm NULL), since they never
1284 * leave kernel.
1285 */
1286 if (p->mm && printk_ratelimit()) {
1287 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
1288 task_pid_nr(p), p->comm, cpu);
1289 }
1290
1291 return dest_cpu;
1292 }
1293
1294 /*
1295 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1296 */
1297 static inline
1298 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1299 {
1300 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1301
1302 /*
1303 * In order not to call set_task_cpu() on a blocking task we need
1304 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1305 * cpu.
1306 *
1307 * Since this is common to all placement strategies, this lives here.
1308 *
1309 * [ this allows ->select_task() to simply return task_cpu(p) and
1310 * not worry about this generic constraint ]
1311 */
1312 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1313 !cpu_online(cpu)))
1314 cpu = select_fallback_rq(task_cpu(p), p);
1315
1316 return cpu;
1317 }
1318
1319 static void update_avg(u64 *avg, u64 sample)
1320 {
1321 s64 diff = sample - *avg;
1322 *avg += diff >> 3;
1323 }
1324 #endif
1325
1326 static void
1327 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1328 {
1329 #ifdef CONFIG_SCHEDSTATS
1330 struct rq *rq = this_rq();
1331
1332 #ifdef CONFIG_SMP
1333 int this_cpu = smp_processor_id();
1334
1335 if (cpu == this_cpu) {
1336 schedstat_inc(rq, ttwu_local);
1337 schedstat_inc(p, se.statistics.nr_wakeups_local);
1338 } else {
1339 struct sched_domain *sd;
1340
1341 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1342 rcu_read_lock();
1343 for_each_domain(this_cpu, sd) {
1344 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1345 schedstat_inc(sd, ttwu_wake_remote);
1346 break;
1347 }
1348 }
1349 rcu_read_unlock();
1350 }
1351
1352 if (wake_flags & WF_MIGRATED)
1353 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1354
1355 #endif /* CONFIG_SMP */
1356
1357 schedstat_inc(rq, ttwu_count);
1358 schedstat_inc(p, se.statistics.nr_wakeups);
1359
1360 if (wake_flags & WF_SYNC)
1361 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1362
1363 #endif /* CONFIG_SCHEDSTATS */
1364 }
1365
1366 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1367 {
1368 activate_task(rq, p, en_flags);
1369 p->on_rq = 1;
1370
1371 /* if a worker is waking up, notify workqueue */
1372 if (p->flags & PF_WQ_WORKER)
1373 wq_worker_waking_up(p, cpu_of(rq));
1374 }
1375
1376 /*
1377 * Mark the task runnable and perform wakeup-preemption.
1378 */
1379 static void
1380 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1381 {
1382 trace_sched_wakeup(p, true);
1383 check_preempt_curr(rq, p, wake_flags);
1384
1385 p->state = TASK_RUNNING;
1386 #ifdef CONFIG_SMP
1387 if (p->sched_class->task_woken)
1388 p->sched_class->task_woken(rq, p);
1389
1390 if (rq->idle_stamp) {
1391 u64 delta = rq->clock - rq->idle_stamp;
1392 u64 max = 2*sysctl_sched_migration_cost;
1393
1394 if (delta > max)
1395 rq->avg_idle = max;
1396 else
1397 update_avg(&rq->avg_idle, delta);
1398 rq->idle_stamp = 0;
1399 }
1400 #endif
1401 }
1402
1403 static void
1404 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1405 {
1406 #ifdef CONFIG_SMP
1407 if (p->sched_contributes_to_load)
1408 rq->nr_uninterruptible--;
1409 #endif
1410
1411 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1412 ttwu_do_wakeup(rq, p, wake_flags);
1413 }
1414
1415 /*
1416 * Called in case the task @p isn't fully descheduled from its runqueue,
1417 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1418 * since all we need to do is flip p->state to TASK_RUNNING, since
1419 * the task is still ->on_rq.
1420 */
1421 static int ttwu_remote(struct task_struct *p, int wake_flags)
1422 {
1423 struct rq *rq;
1424 int ret = 0;
1425
1426 rq = __task_rq_lock(p);
1427 if (p->on_rq) {
1428 ttwu_do_wakeup(rq, p, wake_flags);
1429 ret = 1;
1430 }
1431 __task_rq_unlock(rq);
1432
1433 return ret;
1434 }
1435
1436 #ifdef CONFIG_SMP
1437 static void sched_ttwu_pending(void)
1438 {
1439 struct rq *rq = this_rq();
1440 struct llist_node *llist = llist_del_all(&rq->wake_list);
1441 struct task_struct *p;
1442
1443 raw_spin_lock(&rq->lock);
1444
1445 while (llist) {
1446 p = llist_entry(llist, struct task_struct, wake_entry);
1447 llist = llist_next(llist);
1448 ttwu_do_activate(rq, p, 0);
1449 }
1450
1451 raw_spin_unlock(&rq->lock);
1452 }
1453
1454 void scheduler_ipi(void)
1455 {
1456 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1457 return;
1458
1459 /*
1460 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1461 * traditionally all their work was done from the interrupt return
1462 * path. Now that we actually do some work, we need to make sure
1463 * we do call them.
1464 *
1465 * Some archs already do call them, luckily irq_enter/exit nest
1466 * properly.
1467 *
1468 * Arguably we should visit all archs and update all handlers,
1469 * however a fair share of IPIs are still resched only so this would
1470 * somewhat pessimize the simple resched case.
1471 */
1472 irq_enter();
1473 sched_ttwu_pending();
1474
1475 /*
1476 * Check if someone kicked us for doing the nohz idle load balance.
1477 */
1478 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1479 this_rq()->idle_balance = 1;
1480 raise_softirq_irqoff(SCHED_SOFTIRQ);
1481 }
1482 irq_exit();
1483 }
1484
1485 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1486 {
1487 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1488 smp_send_reschedule(cpu);
1489 }
1490
1491 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1492 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1493 {
1494 struct rq *rq;
1495 int ret = 0;
1496
1497 rq = __task_rq_lock(p);
1498 if (p->on_cpu) {
1499 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1500 ttwu_do_wakeup(rq, p, wake_flags);
1501 ret = 1;
1502 }
1503 __task_rq_unlock(rq);
1504
1505 return ret;
1506
1507 }
1508 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1509
1510 static inline int ttwu_share_cache(int this_cpu, int that_cpu)
1511 {
1512 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1513 }
1514 #endif /* CONFIG_SMP */
1515
1516 static void ttwu_queue(struct task_struct *p, int cpu)
1517 {
1518 struct rq *rq = cpu_rq(cpu);
1519
1520 #if defined(CONFIG_SMP)
1521 if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
1522 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1523 ttwu_queue_remote(p, cpu);
1524 return;
1525 }
1526 #endif
1527
1528 raw_spin_lock(&rq->lock);
1529 ttwu_do_activate(rq, p, 0);
1530 raw_spin_unlock(&rq->lock);
1531 }
1532
1533 /**
1534 * try_to_wake_up - wake up a thread
1535 * @p: the thread to be awakened
1536 * @state: the mask of task states that can be woken
1537 * @wake_flags: wake modifier flags (WF_*)
1538 *
1539 * Put it on the run-queue if it's not already there. The "current"
1540 * thread is always on the run-queue (except when the actual
1541 * re-schedule is in progress), and as such you're allowed to do
1542 * the simpler "current->state = TASK_RUNNING" to mark yourself
1543 * runnable without the overhead of this.
1544 *
1545 * Returns %true if @p was woken up, %false if it was already running
1546 * or @state didn't match @p's state.
1547 */
1548 static int
1549 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1550 {
1551 unsigned long flags;
1552 int cpu, success = 0;
1553
1554 smp_wmb();
1555 raw_spin_lock_irqsave(&p->pi_lock, flags);
1556 if (!(p->state & state))
1557 goto out;
1558
1559 success = 1; /* we're going to change ->state */
1560 cpu = task_cpu(p);
1561
1562 if (p->on_rq && ttwu_remote(p, wake_flags))
1563 goto stat;
1564
1565 #ifdef CONFIG_SMP
1566 /*
1567 * If the owning (remote) cpu is still in the middle of schedule() with
1568 * this task as prev, wait until its done referencing the task.
1569 */
1570 while (p->on_cpu) {
1571 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1572 /*
1573 * In case the architecture enables interrupts in
1574 * context_switch(), we cannot busy wait, since that
1575 * would lead to deadlocks when an interrupt hits and
1576 * tries to wake up @prev. So bail and do a complete
1577 * remote wakeup.
1578 */
1579 if (ttwu_activate_remote(p, wake_flags))
1580 goto stat;
1581 #else
1582 cpu_relax();
1583 #endif
1584 }
1585 /*
1586 * Pairs with the smp_wmb() in finish_lock_switch().
1587 */
1588 smp_rmb();
1589
1590 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1591 p->state = TASK_WAKING;
1592
1593 if (p->sched_class->task_waking)
1594 p->sched_class->task_waking(p);
1595
1596 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1597 if (task_cpu(p) != cpu) {
1598 wake_flags |= WF_MIGRATED;
1599 set_task_cpu(p, cpu);
1600 }
1601 #endif /* CONFIG_SMP */
1602
1603 ttwu_queue(p, cpu);
1604 stat:
1605 ttwu_stat(p, cpu, wake_flags);
1606 out:
1607 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1608
1609 return success;
1610 }
1611
1612 /**
1613 * try_to_wake_up_local - try to wake up a local task with rq lock held
1614 * @p: the thread to be awakened
1615 *
1616 * Put @p on the run-queue if it's not already there. The caller must
1617 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1618 * the current task.
1619 */
1620 static void try_to_wake_up_local(struct task_struct *p)
1621 {
1622 struct rq *rq = task_rq(p);
1623
1624 BUG_ON(rq != this_rq());
1625 BUG_ON(p == current);
1626 lockdep_assert_held(&rq->lock);
1627
1628 if (!raw_spin_trylock(&p->pi_lock)) {
1629 raw_spin_unlock(&rq->lock);
1630 raw_spin_lock(&p->pi_lock);
1631 raw_spin_lock(&rq->lock);
1632 }
1633
1634 if (!(p->state & TASK_NORMAL))
1635 goto out;
1636
1637 if (!p->on_rq)
1638 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1639
1640 ttwu_do_wakeup(rq, p, 0);
1641 ttwu_stat(p, smp_processor_id(), 0);
1642 out:
1643 raw_spin_unlock(&p->pi_lock);
1644 }
1645
1646 /**
1647 * wake_up_process - Wake up a specific process
1648 * @p: The process to be woken up.
1649 *
1650 * Attempt to wake up the nominated process and move it to the set of runnable
1651 * processes. Returns 1 if the process was woken up, 0 if it was already
1652 * running.
1653 *
1654 * It may be assumed that this function implies a write memory barrier before
1655 * changing the task state if and only if any tasks are woken up.
1656 */
1657 int wake_up_process(struct task_struct *p)
1658 {
1659 return try_to_wake_up(p, TASK_ALL, 0);
1660 }
1661 EXPORT_SYMBOL(wake_up_process);
1662
1663 int wake_up_state(struct task_struct *p, unsigned int state)
1664 {
1665 return try_to_wake_up(p, state, 0);
1666 }
1667
1668 /*
1669 * Perform scheduler related setup for a newly forked process p.
1670 * p is forked by current.
1671 *
1672 * __sched_fork() is basic setup used by init_idle() too:
1673 */
1674 static void __sched_fork(struct task_struct *p)
1675 {
1676 p->on_rq = 0;
1677
1678 p->se.on_rq = 0;
1679 p->se.exec_start = 0;
1680 p->se.sum_exec_runtime = 0;
1681 p->se.prev_sum_exec_runtime = 0;
1682 p->se.nr_migrations = 0;
1683 p->se.vruntime = 0;
1684 INIT_LIST_HEAD(&p->se.group_node);
1685
1686 #ifdef CONFIG_SCHEDSTATS
1687 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1688 #endif
1689
1690 INIT_LIST_HEAD(&p->rt.run_list);
1691
1692 #ifdef CONFIG_PREEMPT_NOTIFIERS
1693 INIT_HLIST_HEAD(&p->preempt_notifiers);
1694 #endif
1695 }
1696
1697 /*
1698 * fork()/clone()-time setup:
1699 */
1700 void sched_fork(struct task_struct *p)
1701 {
1702 unsigned long flags;
1703 int cpu = get_cpu();
1704
1705 __sched_fork(p);
1706 /*
1707 * We mark the process as running here. This guarantees that
1708 * nobody will actually run it, and a signal or other external
1709 * event cannot wake it up and insert it on the runqueue either.
1710 */
1711 p->state = TASK_RUNNING;
1712
1713 /*
1714 * Make sure we do not leak PI boosting priority to the child.
1715 */
1716 p->prio = current->normal_prio;
1717
1718 /*
1719 * Revert to default priority/policy on fork if requested.
1720 */
1721 if (unlikely(p->sched_reset_on_fork)) {
1722 if (task_has_rt_policy(p)) {
1723 p->policy = SCHED_NORMAL;
1724 p->static_prio = NICE_TO_PRIO(0);
1725 p->rt_priority = 0;
1726 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1727 p->static_prio = NICE_TO_PRIO(0);
1728
1729 p->prio = p->normal_prio = __normal_prio(p);
1730 set_load_weight(p);
1731
1732 /*
1733 * We don't need the reset flag anymore after the fork. It has
1734 * fulfilled its duty:
1735 */
1736 p->sched_reset_on_fork = 0;
1737 }
1738
1739 if (!rt_prio(p->prio))
1740 p->sched_class = &fair_sched_class;
1741
1742 if (p->sched_class->task_fork)
1743 p->sched_class->task_fork(p);
1744
1745 /*
1746 * The child is not yet in the pid-hash so no cgroup attach races,
1747 * and the cgroup is pinned to this child due to cgroup_fork()
1748 * is ran before sched_fork().
1749 *
1750 * Silence PROVE_RCU.
1751 */
1752 raw_spin_lock_irqsave(&p->pi_lock, flags);
1753 set_task_cpu(p, cpu);
1754 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1755
1756 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1757 if (likely(sched_info_on()))
1758 memset(&p->sched_info, 0, sizeof(p->sched_info));
1759 #endif
1760 #if defined(CONFIG_SMP)
1761 p->on_cpu = 0;
1762 #endif
1763 #ifdef CONFIG_PREEMPT_COUNT
1764 /* Want to start with kernel preemption disabled. */
1765 task_thread_info(p)->preempt_count = 1;
1766 #endif
1767 #ifdef CONFIG_SMP
1768 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1769 #endif
1770
1771 put_cpu();
1772 }
1773
1774 /*
1775 * wake_up_new_task - wake up a newly created task for the first time.
1776 *
1777 * This function will do some initial scheduler statistics housekeeping
1778 * that must be done for every newly created context, then puts the task
1779 * on the runqueue and wakes it.
1780 */
1781 void wake_up_new_task(struct task_struct *p)
1782 {
1783 unsigned long flags;
1784 struct rq *rq;
1785
1786 raw_spin_lock_irqsave(&p->pi_lock, flags);
1787 #ifdef CONFIG_SMP
1788 /*
1789 * Fork balancing, do it here and not earlier because:
1790 * - cpus_allowed can change in the fork path
1791 * - any previously selected cpu might disappear through hotplug
1792 */
1793 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1794 #endif
1795
1796 rq = __task_rq_lock(p);
1797 activate_task(rq, p, 0);
1798 p->on_rq = 1;
1799 trace_sched_wakeup_new(p, true);
1800 check_preempt_curr(rq, p, WF_FORK);
1801 #ifdef CONFIG_SMP
1802 if (p->sched_class->task_woken)
1803 p->sched_class->task_woken(rq, p);
1804 #endif
1805 task_rq_unlock(rq, p, &flags);
1806 }
1807
1808 #ifdef CONFIG_PREEMPT_NOTIFIERS
1809
1810 /**
1811 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1812 * @notifier: notifier struct to register
1813 */
1814 void preempt_notifier_register(struct preempt_notifier *notifier)
1815 {
1816 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1817 }
1818 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1819
1820 /**
1821 * preempt_notifier_unregister - no longer interested in preemption notifications
1822 * @notifier: notifier struct to unregister
1823 *
1824 * This is safe to call from within a preemption notifier.
1825 */
1826 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1827 {
1828 hlist_del(&notifier->link);
1829 }
1830 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1831
1832 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1833 {
1834 struct preempt_notifier *notifier;
1835 struct hlist_node *node;
1836
1837 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1838 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1839 }
1840
1841 static void
1842 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1843 struct task_struct *next)
1844 {
1845 struct preempt_notifier *notifier;
1846 struct hlist_node *node;
1847
1848 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1849 notifier->ops->sched_out(notifier, next);
1850 }
1851
1852 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1853
1854 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1855 {
1856 }
1857
1858 static void
1859 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1860 struct task_struct *next)
1861 {
1862 }
1863
1864 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1865
1866 /**
1867 * prepare_task_switch - prepare to switch tasks
1868 * @rq: the runqueue preparing to switch
1869 * @prev: the current task that is being switched out
1870 * @next: the task we are going to switch to.
1871 *
1872 * This is called with the rq lock held and interrupts off. It must
1873 * be paired with a subsequent finish_task_switch after the context
1874 * switch.
1875 *
1876 * prepare_task_switch sets up locking and calls architecture specific
1877 * hooks.
1878 */
1879 static inline void
1880 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1881 struct task_struct *next)
1882 {
1883 sched_info_switch(prev, next);
1884 perf_event_task_sched_out(prev, next);
1885 fire_sched_out_preempt_notifiers(prev, next);
1886 prepare_lock_switch(rq, next);
1887 prepare_arch_switch(next);
1888 trace_sched_switch(prev, next);
1889 }
1890
1891 /**
1892 * finish_task_switch - clean up after a task-switch
1893 * @rq: runqueue associated with task-switch
1894 * @prev: the thread we just switched away from.
1895 *
1896 * finish_task_switch must be called after the context switch, paired
1897 * with a prepare_task_switch call before the context switch.
1898 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1899 * and do any other architecture-specific cleanup actions.
1900 *
1901 * Note that we may have delayed dropping an mm in context_switch(). If
1902 * so, we finish that here outside of the runqueue lock. (Doing it
1903 * with the lock held can cause deadlocks; see schedule() for
1904 * details.)
1905 */
1906 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1907 __releases(rq->lock)
1908 {
1909 struct mm_struct *mm = rq->prev_mm;
1910 long prev_state;
1911
1912 rq->prev_mm = NULL;
1913
1914 /*
1915 * A task struct has one reference for the use as "current".
1916 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1917 * schedule one last time. The schedule call will never return, and
1918 * the scheduled task must drop that reference.
1919 * The test for TASK_DEAD must occur while the runqueue locks are
1920 * still held, otherwise prev could be scheduled on another cpu, die
1921 * there before we look at prev->state, and then the reference would
1922 * be dropped twice.
1923 * Manfred Spraul <manfred@colorfullife.com>
1924 */
1925 prev_state = prev->state;
1926 finish_arch_switch(prev);
1927 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1928 local_irq_disable();
1929 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1930 perf_event_task_sched_in(prev, current);
1931 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1932 local_irq_enable();
1933 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1934 finish_lock_switch(rq, prev);
1935
1936 fire_sched_in_preempt_notifiers(current);
1937 if (mm)
1938 mmdrop(mm);
1939 if (unlikely(prev_state == TASK_DEAD)) {
1940 /*
1941 * Remove function-return probe instances associated with this
1942 * task and put them back on the free list.
1943 */
1944 kprobe_flush_task(prev);
1945 put_task_struct(prev);
1946 }
1947 }
1948
1949 #ifdef CONFIG_SMP
1950
1951 /* assumes rq->lock is held */
1952 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1953 {
1954 if (prev->sched_class->pre_schedule)
1955 prev->sched_class->pre_schedule(rq, prev);
1956 }
1957
1958 /* rq->lock is NOT held, but preemption is disabled */
1959 static inline void post_schedule(struct rq *rq)
1960 {
1961 if (rq->post_schedule) {
1962 unsigned long flags;
1963
1964 raw_spin_lock_irqsave(&rq->lock, flags);
1965 if (rq->curr->sched_class->post_schedule)
1966 rq->curr->sched_class->post_schedule(rq);
1967 raw_spin_unlock_irqrestore(&rq->lock, flags);
1968
1969 rq->post_schedule = 0;
1970 }
1971 }
1972
1973 #else
1974
1975 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1976 {
1977 }
1978
1979 static inline void post_schedule(struct rq *rq)
1980 {
1981 }
1982
1983 #endif
1984
1985 /**
1986 * schedule_tail - first thing a freshly forked thread must call.
1987 * @prev: the thread we just switched away from.
1988 */
1989 asmlinkage void schedule_tail(struct task_struct *prev)
1990 __releases(rq->lock)
1991 {
1992 struct rq *rq = this_rq();
1993
1994 finish_task_switch(rq, prev);
1995
1996 /*
1997 * FIXME: do we need to worry about rq being invalidated by the
1998 * task_switch?
1999 */
2000 post_schedule(rq);
2001
2002 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2003 /* In this case, finish_task_switch does not reenable preemption */
2004 preempt_enable();
2005 #endif
2006 if (current->set_child_tid)
2007 put_user(task_pid_vnr(current), current->set_child_tid);
2008 }
2009
2010 /*
2011 * context_switch - switch to the new MM and the new
2012 * thread's register state.
2013 */
2014 static inline void
2015 context_switch(struct rq *rq, struct task_struct *prev,
2016 struct task_struct *next)
2017 {
2018 struct mm_struct *mm, *oldmm;
2019
2020 prepare_task_switch(rq, prev, next);
2021
2022 mm = next->mm;
2023 oldmm = prev->active_mm;
2024 /*
2025 * For paravirt, this is coupled with an exit in switch_to to
2026 * combine the page table reload and the switch backend into
2027 * one hypercall.
2028 */
2029 arch_start_context_switch(prev);
2030
2031 if (!mm) {
2032 next->active_mm = oldmm;
2033 atomic_inc(&oldmm->mm_count);
2034 enter_lazy_tlb(oldmm, next);
2035 } else
2036 switch_mm(oldmm, mm, next);
2037
2038 if (!prev->mm) {
2039 prev->active_mm = NULL;
2040 rq->prev_mm = oldmm;
2041 }
2042 /*
2043 * Since the runqueue lock will be released by the next
2044 * task (which is an invalid locking op but in the case
2045 * of the scheduler it's an obvious special-case), so we
2046 * do an early lockdep release here:
2047 */
2048 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2049 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2050 #endif
2051
2052 /* Here we just switch the register state and the stack. */
2053 switch_to(prev, next, prev);
2054
2055 barrier();
2056 /*
2057 * this_rq must be evaluated again because prev may have moved
2058 * CPUs since it called schedule(), thus the 'rq' on its stack
2059 * frame will be invalid.
2060 */
2061 finish_task_switch(this_rq(), prev);
2062 }
2063
2064 /*
2065 * nr_running, nr_uninterruptible and nr_context_switches:
2066 *
2067 * externally visible scheduler statistics: current number of runnable
2068 * threads, current number of uninterruptible-sleeping threads, total
2069 * number of context switches performed since bootup.
2070 */
2071 unsigned long nr_running(void)
2072 {
2073 unsigned long i, sum = 0;
2074
2075 for_each_online_cpu(i)
2076 sum += cpu_rq(i)->nr_running;
2077
2078 return sum;
2079 }
2080
2081 unsigned long nr_uninterruptible(void)
2082 {
2083 unsigned long i, sum = 0;
2084
2085 for_each_possible_cpu(i)
2086 sum += cpu_rq(i)->nr_uninterruptible;
2087
2088 /*
2089 * Since we read the counters lockless, it might be slightly
2090 * inaccurate. Do not allow it to go below zero though:
2091 */
2092 if (unlikely((long)sum < 0))
2093 sum = 0;
2094
2095 return sum;
2096 }
2097
2098 unsigned long long nr_context_switches(void)
2099 {
2100 int i;
2101 unsigned long long sum = 0;
2102
2103 for_each_possible_cpu(i)
2104 sum += cpu_rq(i)->nr_switches;
2105
2106 return sum;
2107 }
2108
2109 unsigned long nr_iowait(void)
2110 {
2111 unsigned long i, sum = 0;
2112
2113 for_each_possible_cpu(i)
2114 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2115
2116 return sum;
2117 }
2118
2119 unsigned long nr_iowait_cpu(int cpu)
2120 {
2121 struct rq *this = cpu_rq(cpu);
2122 return atomic_read(&this->nr_iowait);
2123 }
2124
2125 unsigned long this_cpu_load(void)
2126 {
2127 struct rq *this = this_rq();
2128 return this->cpu_load[0];
2129 }
2130
2131
2132 /* Variables and functions for calc_load */
2133 static atomic_long_t calc_load_tasks;
2134 static unsigned long calc_load_update;
2135 unsigned long avenrun[3];
2136 EXPORT_SYMBOL(avenrun);
2137
2138 static long calc_load_fold_active(struct rq *this_rq)
2139 {
2140 long nr_active, delta = 0;
2141
2142 nr_active = this_rq->nr_running;
2143 nr_active += (long) this_rq->nr_uninterruptible;
2144
2145 if (nr_active != this_rq->calc_load_active) {
2146 delta = nr_active - this_rq->calc_load_active;
2147 this_rq->calc_load_active = nr_active;
2148 }
2149
2150 return delta;
2151 }
2152
2153 static unsigned long
2154 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2155 {
2156 load *= exp;
2157 load += active * (FIXED_1 - exp);
2158 load += 1UL << (FSHIFT - 1);
2159 return load >> FSHIFT;
2160 }
2161
2162 #ifdef CONFIG_NO_HZ
2163 /*
2164 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2165 *
2166 * When making the ILB scale, we should try to pull this in as well.
2167 */
2168 static atomic_long_t calc_load_tasks_idle;
2169
2170 void calc_load_account_idle(struct rq *this_rq)
2171 {
2172 long delta;
2173
2174 delta = calc_load_fold_active(this_rq);
2175 if (delta)
2176 atomic_long_add(delta, &calc_load_tasks_idle);
2177 }
2178
2179 static long calc_load_fold_idle(void)
2180 {
2181 long delta = 0;
2182
2183 /*
2184 * Its got a race, we don't care...
2185 */
2186 if (atomic_long_read(&calc_load_tasks_idle))
2187 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2188
2189 return delta;
2190 }
2191
2192 /**
2193 * fixed_power_int - compute: x^n, in O(log n) time
2194 *
2195 * @x: base of the power
2196 * @frac_bits: fractional bits of @x
2197 * @n: power to raise @x to.
2198 *
2199 * By exploiting the relation between the definition of the natural power
2200 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2201 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2202 * (where: n_i \elem {0, 1}, the binary vector representing n),
2203 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2204 * of course trivially computable in O(log_2 n), the length of our binary
2205 * vector.
2206 */
2207 static unsigned long
2208 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2209 {
2210 unsigned long result = 1UL << frac_bits;
2211
2212 if (n) for (;;) {
2213 if (n & 1) {
2214 result *= x;
2215 result += 1UL << (frac_bits - 1);
2216 result >>= frac_bits;
2217 }
2218 n >>= 1;
2219 if (!n)
2220 break;
2221 x *= x;
2222 x += 1UL << (frac_bits - 1);
2223 x >>= frac_bits;
2224 }
2225
2226 return result;
2227 }
2228
2229 /*
2230 * a1 = a0 * e + a * (1 - e)
2231 *
2232 * a2 = a1 * e + a * (1 - e)
2233 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2234 * = a0 * e^2 + a * (1 - e) * (1 + e)
2235 *
2236 * a3 = a2 * e + a * (1 - e)
2237 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2238 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2239 *
2240 * ...
2241 *
2242 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2243 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2244 * = a0 * e^n + a * (1 - e^n)
2245 *
2246 * [1] application of the geometric series:
2247 *
2248 * n 1 - x^(n+1)
2249 * S_n := \Sum x^i = -------------
2250 * i=0 1 - x
2251 */
2252 static unsigned long
2253 calc_load_n(unsigned long load, unsigned long exp,
2254 unsigned long active, unsigned int n)
2255 {
2256
2257 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2258 }
2259
2260 /*
2261 * NO_HZ can leave us missing all per-cpu ticks calling
2262 * calc_load_account_active(), but since an idle CPU folds its delta into
2263 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2264 * in the pending idle delta if our idle period crossed a load cycle boundary.
2265 *
2266 * Once we've updated the global active value, we need to apply the exponential
2267 * weights adjusted to the number of cycles missed.
2268 */
2269 static void calc_global_nohz(unsigned long ticks)
2270 {
2271 long delta, active, n;
2272
2273 if (time_before(jiffies, calc_load_update))
2274 return;
2275
2276 /*
2277 * If we crossed a calc_load_update boundary, make sure to fold
2278 * any pending idle changes, the respective CPUs might have
2279 * missed the tick driven calc_load_account_active() update
2280 * due to NO_HZ.
2281 */
2282 delta = calc_load_fold_idle();
2283 if (delta)
2284 atomic_long_add(delta, &calc_load_tasks);
2285
2286 /*
2287 * If we were idle for multiple load cycles, apply them.
2288 */
2289 if (ticks >= LOAD_FREQ) {
2290 n = ticks / LOAD_FREQ;
2291
2292 active = atomic_long_read(&calc_load_tasks);
2293 active = active > 0 ? active * FIXED_1 : 0;
2294
2295 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2296 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2297 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2298
2299 calc_load_update += n * LOAD_FREQ;
2300 }
2301
2302 /*
2303 * Its possible the remainder of the above division also crosses
2304 * a LOAD_FREQ period, the regular check in calc_global_load()
2305 * which comes after this will take care of that.
2306 *
2307 * Consider us being 11 ticks before a cycle completion, and us
2308 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
2309 * age us 4 cycles, and the test in calc_global_load() will
2310 * pick up the final one.
2311 */
2312 }
2313 #else
2314 void calc_load_account_idle(struct rq *this_rq)
2315 {
2316 }
2317
2318 static inline long calc_load_fold_idle(void)
2319 {
2320 return 0;
2321 }
2322
2323 static void calc_global_nohz(unsigned long ticks)
2324 {
2325 }
2326 #endif
2327
2328 /**
2329 * get_avenrun - get the load average array
2330 * @loads: pointer to dest load array
2331 * @offset: offset to add
2332 * @shift: shift count to shift the result left
2333 *
2334 * These values are estimates at best, so no need for locking.
2335 */
2336 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2337 {
2338 loads[0] = (avenrun[0] + offset) << shift;
2339 loads[1] = (avenrun[1] + offset) << shift;
2340 loads[2] = (avenrun[2] + offset) << shift;
2341 }
2342
2343 /*
2344 * calc_load - update the avenrun load estimates 10 ticks after the
2345 * CPUs have updated calc_load_tasks.
2346 */
2347 void calc_global_load(unsigned long ticks)
2348 {
2349 long active;
2350
2351 calc_global_nohz(ticks);
2352
2353 if (time_before(jiffies, calc_load_update + 10))
2354 return;
2355
2356 active = atomic_long_read(&calc_load_tasks);
2357 active = active > 0 ? active * FIXED_1 : 0;
2358
2359 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2360 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2361 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2362
2363 calc_load_update += LOAD_FREQ;
2364 }
2365
2366 /*
2367 * Called from update_cpu_load() to periodically update this CPU's
2368 * active count.
2369 */
2370 static void calc_load_account_active(struct rq *this_rq)
2371 {
2372 long delta;
2373
2374 if (time_before(jiffies, this_rq->calc_load_update))
2375 return;
2376
2377 delta = calc_load_fold_active(this_rq);
2378 delta += calc_load_fold_idle();
2379 if (delta)
2380 atomic_long_add(delta, &calc_load_tasks);
2381
2382 this_rq->calc_load_update += LOAD_FREQ;
2383 }
2384
2385 /*
2386 * The exact cpuload at various idx values, calculated at every tick would be
2387 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2388 *
2389 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2390 * on nth tick when cpu may be busy, then we have:
2391 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2392 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2393 *
2394 * decay_load_missed() below does efficient calculation of
2395 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2396 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2397 *
2398 * The calculation is approximated on a 128 point scale.
2399 * degrade_zero_ticks is the number of ticks after which load at any
2400 * particular idx is approximated to be zero.
2401 * degrade_factor is a precomputed table, a row for each load idx.
2402 * Each column corresponds to degradation factor for a power of two ticks,
2403 * based on 128 point scale.
2404 * Example:
2405 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2406 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2407 *
2408 * With this power of 2 load factors, we can degrade the load n times
2409 * by looking at 1 bits in n and doing as many mult/shift instead of
2410 * n mult/shifts needed by the exact degradation.
2411 */
2412 #define DEGRADE_SHIFT 7
2413 static const unsigned char
2414 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2415 static const unsigned char
2416 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2417 {0, 0, 0, 0, 0, 0, 0, 0},
2418 {64, 32, 8, 0, 0, 0, 0, 0},
2419 {96, 72, 40, 12, 1, 0, 0},
2420 {112, 98, 75, 43, 15, 1, 0},
2421 {120, 112, 98, 76, 45, 16, 2} };
2422
2423 /*
2424 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2425 * would be when CPU is idle and so we just decay the old load without
2426 * adding any new load.
2427 */
2428 static unsigned long
2429 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2430 {
2431 int j = 0;
2432
2433 if (!missed_updates)
2434 return load;
2435
2436 if (missed_updates >= degrade_zero_ticks[idx])
2437 return 0;
2438
2439 if (idx == 1)
2440 return load >> missed_updates;
2441
2442 while (missed_updates) {
2443 if (missed_updates % 2)
2444 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2445
2446 missed_updates >>= 1;
2447 j++;
2448 }
2449 return load;
2450 }
2451
2452 /*
2453 * Update rq->cpu_load[] statistics. This function is usually called every
2454 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2455 * every tick. We fix it up based on jiffies.
2456 */
2457 void update_cpu_load(struct rq *this_rq)
2458 {
2459 unsigned long this_load = this_rq->load.weight;
2460 unsigned long curr_jiffies = jiffies;
2461 unsigned long pending_updates;
2462 int i, scale;
2463
2464 this_rq->nr_load_updates++;
2465
2466 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2467 if (curr_jiffies == this_rq->last_load_update_tick)
2468 return;
2469
2470 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2471 this_rq->last_load_update_tick = curr_jiffies;
2472
2473 /* Update our load: */
2474 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2475 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2476 unsigned long old_load, new_load;
2477
2478 /* scale is effectively 1 << i now, and >> i divides by scale */
2479
2480 old_load = this_rq->cpu_load[i];
2481 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2482 new_load = this_load;
2483 /*
2484 * Round up the averaging division if load is increasing. This
2485 * prevents us from getting stuck on 9 if the load is 10, for
2486 * example.
2487 */
2488 if (new_load > old_load)
2489 new_load += scale - 1;
2490
2491 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2492 }
2493
2494 sched_avg_update(this_rq);
2495 }
2496
2497 static void update_cpu_load_active(struct rq *this_rq)
2498 {
2499 update_cpu_load(this_rq);
2500
2501 calc_load_account_active(this_rq);
2502 }
2503
2504 #ifdef CONFIG_SMP
2505
2506 /*
2507 * sched_exec - execve() is a valuable balancing opportunity, because at
2508 * this point the task has the smallest effective memory and cache footprint.
2509 */
2510 void sched_exec(void)
2511 {
2512 struct task_struct *p = current;
2513 unsigned long flags;
2514 int dest_cpu;
2515
2516 raw_spin_lock_irqsave(&p->pi_lock, flags);
2517 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2518 if (dest_cpu == smp_processor_id())
2519 goto unlock;
2520
2521 if (likely(cpu_active(dest_cpu))) {
2522 struct migration_arg arg = { p, dest_cpu };
2523
2524 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2525 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2526 return;
2527 }
2528 unlock:
2529 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2530 }
2531
2532 #endif
2533
2534 DEFINE_PER_CPU(struct kernel_stat, kstat);
2535 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2536
2537 EXPORT_PER_CPU_SYMBOL(kstat);
2538 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2539
2540 /*
2541 * Return any ns on the sched_clock that have not yet been accounted in
2542 * @p in case that task is currently running.
2543 *
2544 * Called with task_rq_lock() held on @rq.
2545 */
2546 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2547 {
2548 u64 ns = 0;
2549
2550 if (task_current(rq, p)) {
2551 update_rq_clock(rq);
2552 ns = rq->clock_task - p->se.exec_start;
2553 if ((s64)ns < 0)
2554 ns = 0;
2555 }
2556
2557 return ns;
2558 }
2559
2560 unsigned long long task_delta_exec(struct task_struct *p)
2561 {
2562 unsigned long flags;
2563 struct rq *rq;
2564 u64 ns = 0;
2565
2566 rq = task_rq_lock(p, &flags);
2567 ns = do_task_delta_exec(p, rq);
2568 task_rq_unlock(rq, p, &flags);
2569
2570 return ns;
2571 }
2572
2573 /*
2574 * Return accounted runtime for the task.
2575 * In case the task is currently running, return the runtime plus current's
2576 * pending runtime that have not been accounted yet.
2577 */
2578 unsigned long long task_sched_runtime(struct task_struct *p)
2579 {
2580 unsigned long flags;
2581 struct rq *rq;
2582 u64 ns = 0;
2583
2584 rq = task_rq_lock(p, &flags);
2585 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2586 task_rq_unlock(rq, p, &flags);
2587
2588 return ns;
2589 }
2590
2591 #ifdef CONFIG_CGROUP_CPUACCT
2592 struct cgroup_subsys cpuacct_subsys;
2593 struct cpuacct root_cpuacct;
2594 #endif
2595
2596 static inline void task_group_account_field(struct task_struct *p, int index,
2597 u64 tmp)
2598 {
2599 #ifdef CONFIG_CGROUP_CPUACCT
2600 struct kernel_cpustat *kcpustat;
2601 struct cpuacct *ca;
2602 #endif
2603 /*
2604 * Since all updates are sure to touch the root cgroup, we
2605 * get ourselves ahead and touch it first. If the root cgroup
2606 * is the only cgroup, then nothing else should be necessary.
2607 *
2608 */
2609 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2610
2611 #ifdef CONFIG_CGROUP_CPUACCT
2612 if (unlikely(!cpuacct_subsys.active))
2613 return;
2614
2615 rcu_read_lock();
2616 ca = task_ca(p);
2617 while (ca && (ca != &root_cpuacct)) {
2618 kcpustat = this_cpu_ptr(ca->cpustat);
2619 kcpustat->cpustat[index] += tmp;
2620 ca = parent_ca(ca);
2621 }
2622 rcu_read_unlock();
2623 #endif
2624 }
2625
2626
2627 /*
2628 * Account user cpu time to a process.
2629 * @p: the process that the cpu time gets accounted to
2630 * @cputime: the cpu time spent in user space since the last update
2631 * @cputime_scaled: cputime scaled by cpu frequency
2632 */
2633 void account_user_time(struct task_struct *p, cputime_t cputime,
2634 cputime_t cputime_scaled)
2635 {
2636 int index;
2637
2638 /* Add user time to process. */
2639 p->utime += cputime;
2640 p->utimescaled += cputime_scaled;
2641 account_group_user_time(p, cputime);
2642
2643 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2644
2645 /* Add user time to cpustat. */
2646 task_group_account_field(p, index, (__force u64) cputime);
2647
2648 /* Account for user time used */
2649 acct_update_integrals(p);
2650 }
2651
2652 /*
2653 * Account guest cpu time to a process.
2654 * @p: the process that the cpu time gets accounted to
2655 * @cputime: the cpu time spent in virtual machine since the last update
2656 * @cputime_scaled: cputime scaled by cpu frequency
2657 */
2658 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2659 cputime_t cputime_scaled)
2660 {
2661 u64 *cpustat = kcpustat_this_cpu->cpustat;
2662
2663 /* Add guest time to process. */
2664 p->utime += cputime;
2665 p->utimescaled += cputime_scaled;
2666 account_group_user_time(p, cputime);
2667 p->gtime += cputime;
2668
2669 /* Add guest time to cpustat. */
2670 if (TASK_NICE(p) > 0) {
2671 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2672 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2673 } else {
2674 cpustat[CPUTIME_USER] += (__force u64) cputime;
2675 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2676 }
2677 }
2678
2679 /*
2680 * Account system cpu time to a process and desired cpustat field
2681 * @p: the process that the cpu time gets accounted to
2682 * @cputime: the cpu time spent in kernel space since the last update
2683 * @cputime_scaled: cputime scaled by cpu frequency
2684 * @target_cputime64: pointer to cpustat field that has to be updated
2685 */
2686 static inline
2687 void __account_system_time(struct task_struct *p, cputime_t cputime,
2688 cputime_t cputime_scaled, int index)
2689 {
2690 /* Add system time to process. */
2691 p->stime += cputime;
2692 p->stimescaled += cputime_scaled;
2693 account_group_system_time(p, cputime);
2694
2695 /* Add system time to cpustat. */
2696 task_group_account_field(p, index, (__force u64) cputime);
2697
2698 /* Account for system time used */
2699 acct_update_integrals(p);
2700 }
2701
2702 /*
2703 * Account system cpu time to a process.
2704 * @p: the process that the cpu time gets accounted to
2705 * @hardirq_offset: the offset to subtract from hardirq_count()
2706 * @cputime: the cpu time spent in kernel space since the last update
2707 * @cputime_scaled: cputime scaled by cpu frequency
2708 */
2709 void account_system_time(struct task_struct *p, int hardirq_offset,
2710 cputime_t cputime, cputime_t cputime_scaled)
2711 {
2712 int index;
2713
2714 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2715 account_guest_time(p, cputime, cputime_scaled);
2716 return;
2717 }
2718
2719 if (hardirq_count() - hardirq_offset)
2720 index = CPUTIME_IRQ;
2721 else if (in_serving_softirq())
2722 index = CPUTIME_SOFTIRQ;
2723 else
2724 index = CPUTIME_SYSTEM;
2725
2726 __account_system_time(p, cputime, cputime_scaled, index);
2727 }
2728
2729 /*
2730 * Account for involuntary wait time.
2731 * @cputime: the cpu time spent in involuntary wait
2732 */
2733 void account_steal_time(cputime_t cputime)
2734 {
2735 u64 *cpustat = kcpustat_this_cpu->cpustat;
2736
2737 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2738 }
2739
2740 /*
2741 * Account for idle time.
2742 * @cputime: the cpu time spent in idle wait
2743 */
2744 void account_idle_time(cputime_t cputime)
2745 {
2746 u64 *cpustat = kcpustat_this_cpu->cpustat;
2747 struct rq *rq = this_rq();
2748
2749 if (atomic_read(&rq->nr_iowait) > 0)
2750 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2751 else
2752 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2753 }
2754
2755 static __always_inline bool steal_account_process_tick(void)
2756 {
2757 #ifdef CONFIG_PARAVIRT
2758 if (static_branch(&paravirt_steal_enabled)) {
2759 u64 steal, st = 0;
2760
2761 steal = paravirt_steal_clock(smp_processor_id());
2762 steal -= this_rq()->prev_steal_time;
2763
2764 st = steal_ticks(steal);
2765 this_rq()->prev_steal_time += st * TICK_NSEC;
2766
2767 account_steal_time(st);
2768 return st;
2769 }
2770 #endif
2771 return false;
2772 }
2773
2774 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2775
2776 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2777 /*
2778 * Account a tick to a process and cpustat
2779 * @p: the process that the cpu time gets accounted to
2780 * @user_tick: is the tick from userspace
2781 * @rq: the pointer to rq
2782 *
2783 * Tick demultiplexing follows the order
2784 * - pending hardirq update
2785 * - pending softirq update
2786 * - user_time
2787 * - idle_time
2788 * - system time
2789 * - check for guest_time
2790 * - else account as system_time
2791 *
2792 * Check for hardirq is done both for system and user time as there is
2793 * no timer going off while we are on hardirq and hence we may never get an
2794 * opportunity to update it solely in system time.
2795 * p->stime and friends are only updated on system time and not on irq
2796 * softirq as those do not count in task exec_runtime any more.
2797 */
2798 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2799 struct rq *rq)
2800 {
2801 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2802 u64 *cpustat = kcpustat_this_cpu->cpustat;
2803
2804 if (steal_account_process_tick())
2805 return;
2806
2807 if (irqtime_account_hi_update()) {
2808 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2809 } else if (irqtime_account_si_update()) {
2810 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2811 } else if (this_cpu_ksoftirqd() == p) {
2812 /*
2813 * ksoftirqd time do not get accounted in cpu_softirq_time.
2814 * So, we have to handle it separately here.
2815 * Also, p->stime needs to be updated for ksoftirqd.
2816 */
2817 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2818 CPUTIME_SOFTIRQ);
2819 } else if (user_tick) {
2820 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2821 } else if (p == rq->idle) {
2822 account_idle_time(cputime_one_jiffy);
2823 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2824 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2825 } else {
2826 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2827 CPUTIME_SYSTEM);
2828 }
2829 }
2830
2831 static void irqtime_account_idle_ticks(int ticks)
2832 {
2833 int i;
2834 struct rq *rq = this_rq();
2835
2836 for (i = 0; i < ticks; i++)
2837 irqtime_account_process_tick(current, 0, rq);
2838 }
2839 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2840 static void irqtime_account_idle_ticks(int ticks) {}
2841 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2842 struct rq *rq) {}
2843 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2844
2845 /*
2846 * Account a single tick of cpu time.
2847 * @p: the process that the cpu time gets accounted to
2848 * @user_tick: indicates if the tick is a user or a system tick
2849 */
2850 void account_process_tick(struct task_struct *p, int user_tick)
2851 {
2852 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2853 struct rq *rq = this_rq();
2854
2855 if (sched_clock_irqtime) {
2856 irqtime_account_process_tick(p, user_tick, rq);
2857 return;
2858 }
2859
2860 if (steal_account_process_tick())
2861 return;
2862
2863 if (user_tick)
2864 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2865 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2866 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2867 one_jiffy_scaled);
2868 else
2869 account_idle_time(cputime_one_jiffy);
2870 }
2871
2872 /*
2873 * Account multiple ticks of steal time.
2874 * @p: the process from which the cpu time has been stolen
2875 * @ticks: number of stolen ticks
2876 */
2877 void account_steal_ticks(unsigned long ticks)
2878 {
2879 account_steal_time(jiffies_to_cputime(ticks));
2880 }
2881
2882 /*
2883 * Account multiple ticks of idle time.
2884 * @ticks: number of stolen ticks
2885 */
2886 void account_idle_ticks(unsigned long ticks)
2887 {
2888
2889 if (sched_clock_irqtime) {
2890 irqtime_account_idle_ticks(ticks);
2891 return;
2892 }
2893
2894 account_idle_time(jiffies_to_cputime(ticks));
2895 }
2896
2897 #endif
2898
2899 /*
2900 * Use precise platform statistics if available:
2901 */
2902 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2903 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2904 {
2905 *ut = p->utime;
2906 *st = p->stime;
2907 }
2908
2909 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2910 {
2911 struct task_cputime cputime;
2912
2913 thread_group_cputime(p, &cputime);
2914
2915 *ut = cputime.utime;
2916 *st = cputime.stime;
2917 }
2918 #else
2919
2920 #ifndef nsecs_to_cputime
2921 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
2922 #endif
2923
2924 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2925 {
2926 cputime_t rtime, utime = p->utime, total = utime + p->stime;
2927
2928 /*
2929 * Use CFS's precise accounting:
2930 */
2931 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2932
2933 if (total) {
2934 u64 temp = (__force u64) rtime;
2935
2936 temp *= (__force u64) utime;
2937 do_div(temp, (__force u32) total);
2938 utime = (__force cputime_t) temp;
2939 } else
2940 utime = rtime;
2941
2942 /*
2943 * Compare with previous values, to keep monotonicity:
2944 */
2945 p->prev_utime = max(p->prev_utime, utime);
2946 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2947
2948 *ut = p->prev_utime;
2949 *st = p->prev_stime;
2950 }
2951
2952 /*
2953 * Must be called with siglock held.
2954 */
2955 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2956 {
2957 struct signal_struct *sig = p->signal;
2958 struct task_cputime cputime;
2959 cputime_t rtime, utime, total;
2960
2961 thread_group_cputime(p, &cputime);
2962
2963 total = cputime.utime + cputime.stime;
2964 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2965
2966 if (total) {
2967 u64 temp = (__force u64) rtime;
2968
2969 temp *= (__force u64) cputime.utime;
2970 do_div(temp, (__force u32) total);
2971 utime = (__force cputime_t) temp;
2972 } else
2973 utime = rtime;
2974
2975 sig->prev_utime = max(sig->prev_utime, utime);
2976 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2977
2978 *ut = sig->prev_utime;
2979 *st = sig->prev_stime;
2980 }
2981 #endif
2982
2983 /*
2984 * This function gets called by the timer code, with HZ frequency.
2985 * We call it with interrupts disabled.
2986 */
2987 void scheduler_tick(void)
2988 {
2989 int cpu = smp_processor_id();
2990 struct rq *rq = cpu_rq(cpu);
2991 struct task_struct *curr = rq->curr;
2992
2993 sched_clock_tick();
2994
2995 raw_spin_lock(&rq->lock);
2996 update_rq_clock(rq);
2997 update_cpu_load_active(rq);
2998 curr->sched_class->task_tick(rq, curr, 0);
2999 raw_spin_unlock(&rq->lock);
3000
3001 perf_event_task_tick();
3002
3003 #ifdef CONFIG_SMP
3004 rq->idle_balance = idle_cpu(cpu);
3005 trigger_load_balance(rq, cpu);
3006 #endif
3007 }
3008
3009 notrace unsigned long get_parent_ip(unsigned long addr)
3010 {
3011 if (in_lock_functions(addr)) {
3012 addr = CALLER_ADDR2;
3013 if (in_lock_functions(addr))
3014 addr = CALLER_ADDR3;
3015 }
3016 return addr;
3017 }
3018
3019 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3020 defined(CONFIG_PREEMPT_TRACER))
3021
3022 void __kprobes add_preempt_count(int val)
3023 {
3024 #ifdef CONFIG_DEBUG_PREEMPT
3025 /*
3026 * Underflow?
3027 */
3028 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3029 return;
3030 #endif
3031 preempt_count() += val;
3032 #ifdef CONFIG_DEBUG_PREEMPT
3033 /*
3034 * Spinlock count overflowing soon?
3035 */
3036 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3037 PREEMPT_MASK - 10);
3038 #endif
3039 if (preempt_count() == val)
3040 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3041 }
3042 EXPORT_SYMBOL(add_preempt_count);
3043
3044 void __kprobes sub_preempt_count(int val)
3045 {
3046 #ifdef CONFIG_DEBUG_PREEMPT
3047 /*
3048 * Underflow?
3049 */
3050 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3051 return;
3052 /*
3053 * Is the spinlock portion underflowing?
3054 */
3055 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3056 !(preempt_count() & PREEMPT_MASK)))
3057 return;
3058 #endif
3059
3060 if (preempt_count() == val)
3061 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3062 preempt_count() -= val;
3063 }
3064 EXPORT_SYMBOL(sub_preempt_count);
3065
3066 #endif
3067
3068 /*
3069 * Print scheduling while atomic bug:
3070 */
3071 static noinline void __schedule_bug(struct task_struct *prev)
3072 {
3073 struct pt_regs *regs = get_irq_regs();
3074
3075 if (oops_in_progress)
3076 return;
3077
3078 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3079 prev->comm, prev->pid, preempt_count());
3080
3081 debug_show_held_locks(prev);
3082 print_modules();
3083 if (irqs_disabled())
3084 print_irqtrace_events(prev);
3085
3086 if (regs)
3087 show_regs(regs);
3088 else
3089 dump_stack();
3090 }
3091
3092 /*
3093 * Various schedule()-time debugging checks and statistics:
3094 */
3095 static inline void schedule_debug(struct task_struct *prev)
3096 {
3097 /*
3098 * Test if we are atomic. Since do_exit() needs to call into
3099 * schedule() atomically, we ignore that path for now.
3100 * Otherwise, whine if we are scheduling when we should not be.
3101 */
3102 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3103 __schedule_bug(prev);
3104 rcu_sleep_check();
3105
3106 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3107
3108 schedstat_inc(this_rq(), sched_count);
3109 }
3110
3111 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3112 {
3113 if (prev->on_rq || rq->skip_clock_update < 0)
3114 update_rq_clock(rq);
3115 prev->sched_class->put_prev_task(rq, prev);
3116 }
3117
3118 /*
3119 * Pick up the highest-prio task:
3120 */
3121 static inline struct task_struct *
3122 pick_next_task(struct rq *rq)
3123 {
3124 const struct sched_class *class;
3125 struct task_struct *p;
3126
3127 /*
3128 * Optimization: we know that if all tasks are in
3129 * the fair class we can call that function directly:
3130 */
3131 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3132 p = fair_sched_class.pick_next_task(rq);
3133 if (likely(p))
3134 return p;
3135 }
3136
3137 for_each_class(class) {
3138 p = class->pick_next_task(rq);
3139 if (p)
3140 return p;
3141 }
3142
3143 BUG(); /* the idle class will always have a runnable task */
3144 }
3145
3146 /*
3147 * __schedule() is the main scheduler function.
3148 */
3149 static void __sched __schedule(void)
3150 {
3151 struct task_struct *prev, *next;
3152 unsigned long *switch_count;
3153 struct rq *rq;
3154 int cpu;
3155
3156 need_resched:
3157 preempt_disable();
3158 cpu = smp_processor_id();
3159 rq = cpu_rq(cpu);
3160 rcu_note_context_switch(cpu);
3161 prev = rq->curr;
3162
3163 schedule_debug(prev);
3164
3165 if (sched_feat(HRTICK))
3166 hrtick_clear(rq);
3167
3168 raw_spin_lock_irq(&rq->lock);
3169
3170 switch_count = &prev->nivcsw;
3171 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3172 if (unlikely(signal_pending_state(prev->state, prev))) {
3173 prev->state = TASK_RUNNING;
3174 } else {
3175 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3176 prev->on_rq = 0;
3177
3178 /*
3179 * If a worker went to sleep, notify and ask workqueue
3180 * whether it wants to wake up a task to maintain
3181 * concurrency.
3182 */
3183 if (prev->flags & PF_WQ_WORKER) {
3184 struct task_struct *to_wakeup;
3185
3186 to_wakeup = wq_worker_sleeping(prev, cpu);
3187 if (to_wakeup)
3188 try_to_wake_up_local(to_wakeup);
3189 }
3190 }
3191 switch_count = &prev->nvcsw;
3192 }
3193
3194 pre_schedule(rq, prev);
3195
3196 if (unlikely(!rq->nr_running))
3197 idle_balance(cpu, rq);
3198
3199 put_prev_task(rq, prev);
3200 next = pick_next_task(rq);
3201 clear_tsk_need_resched(prev);
3202 rq->skip_clock_update = 0;
3203
3204 if (likely(prev != next)) {
3205 rq->nr_switches++;
3206 rq->curr = next;
3207 ++*switch_count;
3208
3209 context_switch(rq, prev, next); /* unlocks the rq */
3210 /*
3211 * The context switch have flipped the stack from under us
3212 * and restored the local variables which were saved when
3213 * this task called schedule() in the past. prev == current
3214 * is still correct, but it can be moved to another cpu/rq.
3215 */
3216 cpu = smp_processor_id();
3217 rq = cpu_rq(cpu);
3218 } else
3219 raw_spin_unlock_irq(&rq->lock);
3220
3221 post_schedule(rq);
3222
3223 preempt_enable_no_resched();
3224 if (need_resched())
3225 goto need_resched;
3226 }
3227
3228 static inline void sched_submit_work(struct task_struct *tsk)
3229 {
3230 if (!tsk->state)
3231 return;
3232 /*
3233 * If we are going to sleep and we have plugged IO queued,
3234 * make sure to submit it to avoid deadlocks.
3235 */
3236 if (blk_needs_flush_plug(tsk))
3237 blk_schedule_flush_plug(tsk);
3238 }
3239
3240 asmlinkage void __sched schedule(void)
3241 {
3242 struct task_struct *tsk = current;
3243
3244 sched_submit_work(tsk);
3245 __schedule();
3246 }
3247 EXPORT_SYMBOL(schedule);
3248
3249 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3250
3251 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3252 {
3253 if (lock->owner != owner)
3254 return false;
3255
3256 /*
3257 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3258 * lock->owner still matches owner, if that fails, owner might
3259 * point to free()d memory, if it still matches, the rcu_read_lock()
3260 * ensures the memory stays valid.
3261 */
3262 barrier();
3263
3264 return owner->on_cpu;
3265 }
3266
3267 /*
3268 * Look out! "owner" is an entirely speculative pointer
3269 * access and not reliable.
3270 */
3271 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3272 {
3273 if (!sched_feat(OWNER_SPIN))
3274 return 0;
3275
3276 rcu_read_lock();
3277 while (owner_running(lock, owner)) {
3278 if (need_resched())
3279 break;
3280
3281 arch_mutex_cpu_relax();
3282 }
3283 rcu_read_unlock();
3284
3285 /*
3286 * We break out the loop above on need_resched() and when the
3287 * owner changed, which is a sign for heavy contention. Return
3288 * success only when lock->owner is NULL.
3289 */
3290 return lock->owner == NULL;
3291 }
3292 #endif
3293
3294 #ifdef CONFIG_PREEMPT
3295 /*
3296 * this is the entry point to schedule() from in-kernel preemption
3297 * off of preempt_enable. Kernel preemptions off return from interrupt
3298 * occur there and call schedule directly.
3299 */
3300 asmlinkage void __sched notrace preempt_schedule(void)
3301 {
3302 struct thread_info *ti = current_thread_info();
3303
3304 /*
3305 * If there is a non-zero preempt_count or interrupts are disabled,
3306 * we do not want to preempt the current task. Just return..
3307 */
3308 if (likely(ti->preempt_count || irqs_disabled()))
3309 return;
3310
3311 do {
3312 add_preempt_count_notrace(PREEMPT_ACTIVE);
3313 __schedule();
3314 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3315
3316 /*
3317 * Check again in case we missed a preemption opportunity
3318 * between schedule and now.
3319 */
3320 barrier();
3321 } while (need_resched());
3322 }
3323 EXPORT_SYMBOL(preempt_schedule);
3324
3325 /*
3326 * this is the entry point to schedule() from kernel preemption
3327 * off of irq context.
3328 * Note, that this is called and return with irqs disabled. This will
3329 * protect us against recursive calling from irq.
3330 */
3331 asmlinkage void __sched preempt_schedule_irq(void)
3332 {
3333 struct thread_info *ti = current_thread_info();
3334
3335 /* Catch callers which need to be fixed */
3336 BUG_ON(ti->preempt_count || !irqs_disabled());
3337
3338 do {
3339 add_preempt_count(PREEMPT_ACTIVE);
3340 local_irq_enable();
3341 __schedule();
3342 local_irq_disable();
3343 sub_preempt_count(PREEMPT_ACTIVE);
3344
3345 /*
3346 * Check again in case we missed a preemption opportunity
3347 * between schedule and now.
3348 */
3349 barrier();
3350 } while (need_resched());
3351 }
3352
3353 #endif /* CONFIG_PREEMPT */
3354
3355 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3356 void *key)
3357 {
3358 return try_to_wake_up(curr->private, mode, wake_flags);
3359 }
3360 EXPORT_SYMBOL(default_wake_function);
3361
3362 /*
3363 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3364 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3365 * number) then we wake all the non-exclusive tasks and one exclusive task.
3366 *
3367 * There are circumstances in which we can try to wake a task which has already
3368 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3369 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3370 */
3371 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3372 int nr_exclusive, int wake_flags, void *key)
3373 {
3374 wait_queue_t *curr, *next;
3375
3376 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3377 unsigned flags = curr->flags;
3378
3379 if (curr->func(curr, mode, wake_flags, key) &&
3380 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3381 break;
3382 }
3383 }
3384
3385 /**
3386 * __wake_up - wake up threads blocked on a waitqueue.
3387 * @q: the waitqueue
3388 * @mode: which threads
3389 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3390 * @key: is directly passed to the wakeup function
3391 *
3392 * It may be assumed that this function implies a write memory barrier before
3393 * changing the task state if and only if any tasks are woken up.
3394 */
3395 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3396 int nr_exclusive, void *key)
3397 {
3398 unsigned long flags;
3399
3400 spin_lock_irqsave(&q->lock, flags);
3401 __wake_up_common(q, mode, nr_exclusive, 0, key);
3402 spin_unlock_irqrestore(&q->lock, flags);
3403 }
3404 EXPORT_SYMBOL(__wake_up);
3405
3406 /*
3407 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3408 */
3409 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3410 {
3411 __wake_up_common(q, mode, 1, 0, NULL);
3412 }
3413 EXPORT_SYMBOL_GPL(__wake_up_locked);
3414
3415 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3416 {
3417 __wake_up_common(q, mode, 1, 0, key);
3418 }
3419 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3420
3421 /**
3422 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3423 * @q: the waitqueue
3424 * @mode: which threads
3425 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3426 * @key: opaque value to be passed to wakeup targets
3427 *
3428 * The sync wakeup differs that the waker knows that it will schedule
3429 * away soon, so while the target thread will be woken up, it will not
3430 * be migrated to another CPU - ie. the two threads are 'synchronized'
3431 * with each other. This can prevent needless bouncing between CPUs.
3432 *
3433 * On UP it can prevent extra preemption.
3434 *
3435 * It may be assumed that this function implies a write memory barrier before
3436 * changing the task state if and only if any tasks are woken up.
3437 */
3438 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3439 int nr_exclusive, void *key)
3440 {
3441 unsigned long flags;
3442 int wake_flags = WF_SYNC;
3443
3444 if (unlikely(!q))
3445 return;
3446
3447 if (unlikely(!nr_exclusive))
3448 wake_flags = 0;
3449
3450 spin_lock_irqsave(&q->lock, flags);
3451 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3452 spin_unlock_irqrestore(&q->lock, flags);
3453 }
3454 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3455
3456 /*
3457 * __wake_up_sync - see __wake_up_sync_key()
3458 */
3459 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3460 {
3461 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3462 }
3463 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3464
3465 /**
3466 * complete: - signals a single thread waiting on this completion
3467 * @x: holds the state of this particular completion
3468 *
3469 * This will wake up a single thread waiting on this completion. Threads will be
3470 * awakened in the same order in which they were queued.
3471 *
3472 * See also complete_all(), wait_for_completion() and related routines.
3473 *
3474 * It may be assumed that this function implies a write memory barrier before
3475 * changing the task state if and only if any tasks are woken up.
3476 */
3477 void complete(struct completion *x)
3478 {
3479 unsigned long flags;
3480
3481 spin_lock_irqsave(&x->wait.lock, flags);
3482 x->done++;
3483 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3484 spin_unlock_irqrestore(&x->wait.lock, flags);
3485 }
3486 EXPORT_SYMBOL(complete);
3487
3488 /**
3489 * complete_all: - signals all threads waiting on this completion
3490 * @x: holds the state of this particular completion
3491 *
3492 * This will wake up all threads waiting on this particular completion event.
3493 *
3494 * It may be assumed that this function implies a write memory barrier before
3495 * changing the task state if and only if any tasks are woken up.
3496 */
3497 void complete_all(struct completion *x)
3498 {
3499 unsigned long flags;
3500
3501 spin_lock_irqsave(&x->wait.lock, flags);
3502 x->done += UINT_MAX/2;
3503 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3504 spin_unlock_irqrestore(&x->wait.lock, flags);
3505 }
3506 EXPORT_SYMBOL(complete_all);
3507
3508 static inline long __sched
3509 do_wait_for_common(struct completion *x, long timeout, int state)
3510 {
3511 if (!x->done) {
3512 DECLARE_WAITQUEUE(wait, current);
3513
3514 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3515 do {
3516 if (signal_pending_state(state, current)) {
3517 timeout = -ERESTARTSYS;
3518 break;
3519 }
3520 __set_current_state(state);
3521 spin_unlock_irq(&x->wait.lock);
3522 timeout = schedule_timeout(timeout);
3523 spin_lock_irq(&x->wait.lock);
3524 } while (!x->done && timeout);
3525 __remove_wait_queue(&x->wait, &wait);
3526 if (!x->done)
3527 return timeout;
3528 }
3529 x->done--;
3530 return timeout ?: 1;
3531 }
3532
3533 static long __sched
3534 wait_for_common(struct completion *x, long timeout, int state)
3535 {
3536 might_sleep();
3537
3538 spin_lock_irq(&x->wait.lock);
3539 timeout = do_wait_for_common(x, timeout, state);
3540 spin_unlock_irq(&x->wait.lock);
3541 return timeout;
3542 }
3543
3544 /**
3545 * wait_for_completion: - waits for completion of a task
3546 * @x: holds the state of this particular completion
3547 *
3548 * This waits to be signaled for completion of a specific task. It is NOT
3549 * interruptible and there is no timeout.
3550 *
3551 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3552 * and interrupt capability. Also see complete().
3553 */
3554 void __sched wait_for_completion(struct completion *x)
3555 {
3556 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3557 }
3558 EXPORT_SYMBOL(wait_for_completion);
3559
3560 /**
3561 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3562 * @x: holds the state of this particular completion
3563 * @timeout: timeout value in jiffies
3564 *
3565 * This waits for either a completion of a specific task to be signaled or for a
3566 * specified timeout to expire. The timeout is in jiffies. It is not
3567 * interruptible.
3568 *
3569 * The return value is 0 if timed out, and positive (at least 1, or number of
3570 * jiffies left till timeout) if completed.
3571 */
3572 unsigned long __sched
3573 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3574 {
3575 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3576 }
3577 EXPORT_SYMBOL(wait_for_completion_timeout);
3578
3579 /**
3580 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3581 * @x: holds the state of this particular completion
3582 *
3583 * This waits for completion of a specific task to be signaled. It is
3584 * interruptible.
3585 *
3586 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3587 */
3588 int __sched wait_for_completion_interruptible(struct completion *x)
3589 {
3590 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3591 if (t == -ERESTARTSYS)
3592 return t;
3593 return 0;
3594 }
3595 EXPORT_SYMBOL(wait_for_completion_interruptible);
3596
3597 /**
3598 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3599 * @x: holds the state of this particular completion
3600 * @timeout: timeout value in jiffies
3601 *
3602 * This waits for either a completion of a specific task to be signaled or for a
3603 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3604 *
3605 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3606 * positive (at least 1, or number of jiffies left till timeout) if completed.
3607 */
3608 long __sched
3609 wait_for_completion_interruptible_timeout(struct completion *x,
3610 unsigned long timeout)
3611 {
3612 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3613 }
3614 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3615
3616 /**
3617 * wait_for_completion_killable: - waits for completion of a task (killable)
3618 * @x: holds the state of this particular completion
3619 *
3620 * This waits to be signaled for completion of a specific task. It can be
3621 * interrupted by a kill signal.
3622 *
3623 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3624 */
3625 int __sched wait_for_completion_killable(struct completion *x)
3626 {
3627 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3628 if (t == -ERESTARTSYS)
3629 return t;
3630 return 0;
3631 }
3632 EXPORT_SYMBOL(wait_for_completion_killable);
3633
3634 /**
3635 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3636 * @x: holds the state of this particular completion
3637 * @timeout: timeout value in jiffies
3638 *
3639 * This waits for either a completion of a specific task to be
3640 * signaled or for a specified timeout to expire. It can be
3641 * interrupted by a kill signal. The timeout is in jiffies.
3642 *
3643 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3644 * positive (at least 1, or number of jiffies left till timeout) if completed.
3645 */
3646 long __sched
3647 wait_for_completion_killable_timeout(struct completion *x,
3648 unsigned long timeout)
3649 {
3650 return wait_for_common(x, timeout, TASK_KILLABLE);
3651 }
3652 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3653
3654 /**
3655 * try_wait_for_completion - try to decrement a completion without blocking
3656 * @x: completion structure
3657 *
3658 * Returns: 0 if a decrement cannot be done without blocking
3659 * 1 if a decrement succeeded.
3660 *
3661 * If a completion is being used as a counting completion,
3662 * attempt to decrement the counter without blocking. This
3663 * enables us to avoid waiting if the resource the completion
3664 * is protecting is not available.
3665 */
3666 bool try_wait_for_completion(struct completion *x)
3667 {
3668 unsigned long flags;
3669 int ret = 1;
3670
3671 spin_lock_irqsave(&x->wait.lock, flags);
3672 if (!x->done)
3673 ret = 0;
3674 else
3675 x->done--;
3676 spin_unlock_irqrestore(&x->wait.lock, flags);
3677 return ret;
3678 }
3679 EXPORT_SYMBOL(try_wait_for_completion);
3680
3681 /**
3682 * completion_done - Test to see if a completion has any waiters
3683 * @x: completion structure
3684 *
3685 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3686 * 1 if there are no waiters.
3687 *
3688 */
3689 bool completion_done(struct completion *x)
3690 {
3691 unsigned long flags;
3692 int ret = 1;
3693
3694 spin_lock_irqsave(&x->wait.lock, flags);
3695 if (!x->done)
3696 ret = 0;
3697 spin_unlock_irqrestore(&x->wait.lock, flags);
3698 return ret;
3699 }
3700 EXPORT_SYMBOL(completion_done);
3701
3702 static long __sched
3703 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3704 {
3705 unsigned long flags;
3706 wait_queue_t wait;
3707
3708 init_waitqueue_entry(&wait, current);
3709
3710 __set_current_state(state);
3711
3712 spin_lock_irqsave(&q->lock, flags);
3713 __add_wait_queue(q, &wait);
3714 spin_unlock(&q->lock);
3715 timeout = schedule_timeout(timeout);
3716 spin_lock_irq(&q->lock);
3717 __remove_wait_queue(q, &wait);
3718 spin_unlock_irqrestore(&q->lock, flags);
3719
3720 return timeout;
3721 }
3722
3723 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3724 {
3725 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3726 }
3727 EXPORT_SYMBOL(interruptible_sleep_on);
3728
3729 long __sched
3730 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3731 {
3732 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3733 }
3734 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3735
3736 void __sched sleep_on(wait_queue_head_t *q)
3737 {
3738 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3739 }
3740 EXPORT_SYMBOL(sleep_on);
3741
3742 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3743 {
3744 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3745 }
3746 EXPORT_SYMBOL(sleep_on_timeout);
3747
3748 #ifdef CONFIG_RT_MUTEXES
3749
3750 /*
3751 * rt_mutex_setprio - set the current priority of a task
3752 * @p: task
3753 * @prio: prio value (kernel-internal form)
3754 *
3755 * This function changes the 'effective' priority of a task. It does
3756 * not touch ->normal_prio like __setscheduler().
3757 *
3758 * Used by the rt_mutex code to implement priority inheritance logic.
3759 */
3760 void rt_mutex_setprio(struct task_struct *p, int prio)
3761 {
3762 int oldprio, on_rq, running;
3763 struct rq *rq;
3764 const struct sched_class *prev_class;
3765
3766 BUG_ON(prio < 0 || prio > MAX_PRIO);
3767
3768 rq = __task_rq_lock(p);
3769
3770 trace_sched_pi_setprio(p, prio);
3771 oldprio = p->prio;
3772 prev_class = p->sched_class;
3773 on_rq = p->on_rq;
3774 running = task_current(rq, p);
3775 if (on_rq)
3776 dequeue_task(rq, p, 0);
3777 if (running)
3778 p->sched_class->put_prev_task(rq, p);
3779
3780 if (rt_prio(prio))
3781 p->sched_class = &rt_sched_class;
3782 else
3783 p->sched_class = &fair_sched_class;
3784
3785 p->prio = prio;
3786
3787 if (running)
3788 p->sched_class->set_curr_task(rq);
3789 if (on_rq)
3790 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3791
3792 check_class_changed(rq, p, prev_class, oldprio);
3793 __task_rq_unlock(rq);
3794 }
3795
3796 #endif
3797
3798 void set_user_nice(struct task_struct *p, long nice)
3799 {
3800 int old_prio, delta, on_rq;
3801 unsigned long flags;
3802 struct rq *rq;
3803
3804 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3805 return;
3806 /*
3807 * We have to be careful, if called from sys_setpriority(),
3808 * the task might be in the middle of scheduling on another CPU.
3809 */
3810 rq = task_rq_lock(p, &flags);
3811 /*
3812 * The RT priorities are set via sched_setscheduler(), but we still
3813 * allow the 'normal' nice value to be set - but as expected
3814 * it wont have any effect on scheduling until the task is
3815 * SCHED_FIFO/SCHED_RR:
3816 */
3817 if (task_has_rt_policy(p)) {
3818 p->static_prio = NICE_TO_PRIO(nice);
3819 goto out_unlock;
3820 }
3821 on_rq = p->on_rq;
3822 if (on_rq)
3823 dequeue_task(rq, p, 0);
3824
3825 p->static_prio = NICE_TO_PRIO(nice);
3826 set_load_weight(p);
3827 old_prio = p->prio;
3828 p->prio = effective_prio(p);
3829 delta = p->prio - old_prio;
3830
3831 if (on_rq) {
3832 enqueue_task(rq, p, 0);
3833 /*
3834 * If the task increased its priority or is running and
3835 * lowered its priority, then reschedule its CPU:
3836 */
3837 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3838 resched_task(rq->curr);
3839 }
3840 out_unlock:
3841 task_rq_unlock(rq, p, &flags);
3842 }
3843 EXPORT_SYMBOL(set_user_nice);
3844
3845 /*
3846 * can_nice - check if a task can reduce its nice value
3847 * @p: task
3848 * @nice: nice value
3849 */
3850 int can_nice(const struct task_struct *p, const int nice)
3851 {
3852 /* convert nice value [19,-20] to rlimit style value [1,40] */
3853 int nice_rlim = 20 - nice;
3854
3855 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3856 capable(CAP_SYS_NICE));
3857 }
3858
3859 #ifdef __ARCH_WANT_SYS_NICE
3860
3861 /*
3862 * sys_nice - change the priority of the current process.
3863 * @increment: priority increment
3864 *
3865 * sys_setpriority is a more generic, but much slower function that
3866 * does similar things.
3867 */
3868 SYSCALL_DEFINE1(nice, int, increment)
3869 {
3870 long nice, retval;
3871
3872 /*
3873 * Setpriority might change our priority at the same moment.
3874 * We don't have to worry. Conceptually one call occurs first
3875 * and we have a single winner.
3876 */
3877 if (increment < -40)
3878 increment = -40;
3879 if (increment > 40)
3880 increment = 40;
3881
3882 nice = TASK_NICE(current) + increment;
3883 if (nice < -20)
3884 nice = -20;
3885 if (nice > 19)
3886 nice = 19;
3887
3888 if (increment < 0 && !can_nice(current, nice))
3889 return -EPERM;
3890
3891 retval = security_task_setnice(current, nice);
3892 if (retval)
3893 return retval;
3894
3895 set_user_nice(current, nice);
3896 return 0;
3897 }
3898
3899 #endif
3900
3901 /**
3902 * task_prio - return the priority value of a given task.
3903 * @p: the task in question.
3904 *
3905 * This is the priority value as seen by users in /proc.
3906 * RT tasks are offset by -200. Normal tasks are centered
3907 * around 0, value goes from -16 to +15.
3908 */
3909 int task_prio(const struct task_struct *p)
3910 {
3911 return p->prio - MAX_RT_PRIO;
3912 }
3913
3914 /**
3915 * task_nice - return the nice value of a given task.
3916 * @p: the task in question.
3917 */
3918 int task_nice(const struct task_struct *p)
3919 {
3920 return TASK_NICE(p);
3921 }
3922 EXPORT_SYMBOL(task_nice);
3923
3924 /**
3925 * idle_cpu - is a given cpu idle currently?
3926 * @cpu: the processor in question.
3927 */
3928 int idle_cpu(int cpu)
3929 {
3930 struct rq *rq = cpu_rq(cpu);
3931
3932 if (rq->curr != rq->idle)
3933 return 0;
3934
3935 if (rq->nr_running)
3936 return 0;
3937
3938 #ifdef CONFIG_SMP
3939 if (!llist_empty(&rq->wake_list))
3940 return 0;
3941 #endif
3942
3943 return 1;
3944 }
3945
3946 /**
3947 * idle_task - return the idle task for a given cpu.
3948 * @cpu: the processor in question.
3949 */
3950 struct task_struct *idle_task(int cpu)
3951 {
3952 return cpu_rq(cpu)->idle;
3953 }
3954
3955 /**
3956 * find_process_by_pid - find a process with a matching PID value.
3957 * @pid: the pid in question.
3958 */
3959 static struct task_struct *find_process_by_pid(pid_t pid)
3960 {
3961 return pid ? find_task_by_vpid(pid) : current;
3962 }
3963
3964 /* Actually do priority change: must hold rq lock. */
3965 static void
3966 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3967 {
3968 p->policy = policy;
3969 p->rt_priority = prio;
3970 p->normal_prio = normal_prio(p);
3971 /* we are holding p->pi_lock already */
3972 p->prio = rt_mutex_getprio(p);
3973 if (rt_prio(p->prio))
3974 p->sched_class = &rt_sched_class;
3975 else
3976 p->sched_class = &fair_sched_class;
3977 set_load_weight(p);
3978 }
3979
3980 /*
3981 * check the target process has a UID that matches the current process's
3982 */
3983 static bool check_same_owner(struct task_struct *p)
3984 {
3985 const struct cred *cred = current_cred(), *pcred;
3986 bool match;
3987
3988 rcu_read_lock();
3989 pcred = __task_cred(p);
3990 if (cred->user->user_ns == pcred->user->user_ns)
3991 match = (cred->euid == pcred->euid ||
3992 cred->euid == pcred->uid);
3993 else
3994 match = false;
3995 rcu_read_unlock();
3996 return match;
3997 }
3998
3999 static int __sched_setscheduler(struct task_struct *p, int policy,
4000 const struct sched_param *param, bool user)
4001 {
4002 int retval, oldprio, oldpolicy = -1, on_rq, running;
4003 unsigned long flags;
4004 const struct sched_class *prev_class;
4005 struct rq *rq;
4006 int reset_on_fork;
4007
4008 /* may grab non-irq protected spin_locks */
4009 BUG_ON(in_interrupt());
4010 recheck:
4011 /* double check policy once rq lock held */
4012 if (policy < 0) {
4013 reset_on_fork = p->sched_reset_on_fork;
4014 policy = oldpolicy = p->policy;
4015 } else {
4016 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4017 policy &= ~SCHED_RESET_ON_FORK;
4018
4019 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4020 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4021 policy != SCHED_IDLE)
4022 return -EINVAL;
4023 }
4024
4025 /*
4026 * Valid priorities for SCHED_FIFO and SCHED_RR are
4027 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4028 * SCHED_BATCH and SCHED_IDLE is 0.
4029 */
4030 if (param->sched_priority < 0 ||
4031 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4032 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4033 return -EINVAL;
4034 if (rt_policy(policy) != (param->sched_priority != 0))
4035 return -EINVAL;
4036
4037 /*
4038 * Allow unprivileged RT tasks to decrease priority:
4039 */
4040 if (user && !capable(CAP_SYS_NICE)) {
4041 if (rt_policy(policy)) {
4042 unsigned long rlim_rtprio =
4043 task_rlimit(p, RLIMIT_RTPRIO);
4044
4045 /* can't set/change the rt policy */
4046 if (policy != p->policy && !rlim_rtprio)
4047 return -EPERM;
4048
4049 /* can't increase priority */
4050 if (param->sched_priority > p->rt_priority &&
4051 param->sched_priority > rlim_rtprio)
4052 return -EPERM;
4053 }
4054
4055 /*
4056 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4057 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4058 */
4059 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4060 if (!can_nice(p, TASK_NICE(p)))
4061 return -EPERM;
4062 }
4063
4064 /* can't change other user's priorities */
4065 if (!check_same_owner(p))
4066 return -EPERM;
4067
4068 /* Normal users shall not reset the sched_reset_on_fork flag */
4069 if (p->sched_reset_on_fork && !reset_on_fork)
4070 return -EPERM;
4071 }
4072
4073 if (user) {
4074 retval = security_task_setscheduler(p);
4075 if (retval)
4076 return retval;
4077 }
4078
4079 /*
4080 * make sure no PI-waiters arrive (or leave) while we are
4081 * changing the priority of the task:
4082 *
4083 * To be able to change p->policy safely, the appropriate
4084 * runqueue lock must be held.
4085 */
4086 rq = task_rq_lock(p, &flags);
4087
4088 /*
4089 * Changing the policy of the stop threads its a very bad idea
4090 */
4091 if (p == rq->stop) {
4092 task_rq_unlock(rq, p, &flags);
4093 return -EINVAL;
4094 }
4095
4096 /*
4097 * If not changing anything there's no need to proceed further:
4098 */
4099 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4100 param->sched_priority == p->rt_priority))) {
4101
4102 __task_rq_unlock(rq);
4103 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4104 return 0;
4105 }
4106
4107 #ifdef CONFIG_RT_GROUP_SCHED
4108 if (user) {
4109 /*
4110 * Do not allow realtime tasks into groups that have no runtime
4111 * assigned.
4112 */
4113 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4114 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4115 !task_group_is_autogroup(task_group(p))) {
4116 task_rq_unlock(rq, p, &flags);
4117 return -EPERM;
4118 }
4119 }
4120 #endif
4121
4122 /* recheck policy now with rq lock held */
4123 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4124 policy = oldpolicy = -1;
4125 task_rq_unlock(rq, p, &flags);
4126 goto recheck;
4127 }
4128 on_rq = p->on_rq;
4129 running = task_current(rq, p);
4130 if (on_rq)
4131 dequeue_task(rq, p, 0);
4132 if (running)
4133 p->sched_class->put_prev_task(rq, p);
4134
4135 p->sched_reset_on_fork = reset_on_fork;
4136
4137 oldprio = p->prio;
4138 prev_class = p->sched_class;
4139 __setscheduler(rq, p, policy, param->sched_priority);
4140
4141 if (running)
4142 p->sched_class->set_curr_task(rq);
4143 if (on_rq)
4144 enqueue_task(rq, p, 0);
4145
4146 check_class_changed(rq, p, prev_class, oldprio);
4147 task_rq_unlock(rq, p, &flags);
4148
4149 rt_mutex_adjust_pi(p);
4150
4151 return 0;
4152 }
4153
4154 /**
4155 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4156 * @p: the task in question.
4157 * @policy: new policy.
4158 * @param: structure containing the new RT priority.
4159 *
4160 * NOTE that the task may be already dead.
4161 */
4162 int sched_setscheduler(struct task_struct *p, int policy,
4163 const struct sched_param *param)
4164 {
4165 return __sched_setscheduler(p, policy, param, true);
4166 }
4167 EXPORT_SYMBOL_GPL(sched_setscheduler);
4168
4169 /**
4170 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4171 * @p: the task in question.
4172 * @policy: new policy.
4173 * @param: structure containing the new RT priority.
4174 *
4175 * Just like sched_setscheduler, only don't bother checking if the
4176 * current context has permission. For example, this is needed in
4177 * stop_machine(): we create temporary high priority worker threads,
4178 * but our caller might not have that capability.
4179 */
4180 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4181 const struct sched_param *param)
4182 {
4183 return __sched_setscheduler(p, policy, param, false);
4184 }
4185
4186 static int
4187 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4188 {
4189 struct sched_param lparam;
4190 struct task_struct *p;
4191 int retval;
4192
4193 if (!param || pid < 0)
4194 return -EINVAL;
4195 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4196 return -EFAULT;
4197
4198 rcu_read_lock();
4199 retval = -ESRCH;
4200 p = find_process_by_pid(pid);
4201 if (p != NULL)
4202 retval = sched_setscheduler(p, policy, &lparam);
4203 rcu_read_unlock();
4204
4205 return retval;
4206 }
4207
4208 /**
4209 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4210 * @pid: the pid in question.
4211 * @policy: new policy.
4212 * @param: structure containing the new RT priority.
4213 */
4214 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4215 struct sched_param __user *, param)
4216 {
4217 /* negative values for policy are not valid */
4218 if (policy < 0)
4219 return -EINVAL;
4220
4221 return do_sched_setscheduler(pid, policy, param);
4222 }
4223
4224 /**
4225 * sys_sched_setparam - set/change the RT priority of a thread
4226 * @pid: the pid in question.
4227 * @param: structure containing the new RT priority.
4228 */
4229 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4230 {
4231 return do_sched_setscheduler(pid, -1, param);
4232 }
4233
4234 /**
4235 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4236 * @pid: the pid in question.
4237 */
4238 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4239 {
4240 struct task_struct *p;
4241 int retval;
4242
4243 if (pid < 0)
4244 return -EINVAL;
4245
4246 retval = -ESRCH;
4247 rcu_read_lock();
4248 p = find_process_by_pid(pid);
4249 if (p) {
4250 retval = security_task_getscheduler(p);
4251 if (!retval)
4252 retval = p->policy
4253 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4254 }
4255 rcu_read_unlock();
4256 return retval;
4257 }
4258
4259 /**
4260 * sys_sched_getparam - get the RT priority of a thread
4261 * @pid: the pid in question.
4262 * @param: structure containing the RT priority.
4263 */
4264 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4265 {
4266 struct sched_param lp;
4267 struct task_struct *p;
4268 int retval;
4269
4270 if (!param || pid < 0)
4271 return -EINVAL;
4272
4273 rcu_read_lock();
4274 p = find_process_by_pid(pid);
4275 retval = -ESRCH;
4276 if (!p)
4277 goto out_unlock;
4278
4279 retval = security_task_getscheduler(p);
4280 if (retval)
4281 goto out_unlock;
4282
4283 lp.sched_priority = p->rt_priority;
4284 rcu_read_unlock();
4285
4286 /*
4287 * This one might sleep, we cannot do it with a spinlock held ...
4288 */
4289 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4290
4291 return retval;
4292
4293 out_unlock:
4294 rcu_read_unlock();
4295 return retval;
4296 }
4297
4298 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4299 {
4300 cpumask_var_t cpus_allowed, new_mask;
4301 struct task_struct *p;
4302 int retval;
4303
4304 get_online_cpus();
4305 rcu_read_lock();
4306
4307 p = find_process_by_pid(pid);
4308 if (!p) {
4309 rcu_read_unlock();
4310 put_online_cpus();
4311 return -ESRCH;
4312 }
4313
4314 /* Prevent p going away */
4315 get_task_struct(p);
4316 rcu_read_unlock();
4317
4318 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4319 retval = -ENOMEM;
4320 goto out_put_task;
4321 }
4322 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4323 retval = -ENOMEM;
4324 goto out_free_cpus_allowed;
4325 }
4326 retval = -EPERM;
4327 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4328 goto out_unlock;
4329
4330 retval = security_task_setscheduler(p);
4331 if (retval)
4332 goto out_unlock;
4333
4334 cpuset_cpus_allowed(p, cpus_allowed);
4335 cpumask_and(new_mask, in_mask, cpus_allowed);
4336 again:
4337 retval = set_cpus_allowed_ptr(p, new_mask);
4338
4339 if (!retval) {
4340 cpuset_cpus_allowed(p, cpus_allowed);
4341 if (!cpumask_subset(new_mask, cpus_allowed)) {
4342 /*
4343 * We must have raced with a concurrent cpuset
4344 * update. Just reset the cpus_allowed to the
4345 * cpuset's cpus_allowed
4346 */
4347 cpumask_copy(new_mask, cpus_allowed);
4348 goto again;
4349 }
4350 }
4351 out_unlock:
4352 free_cpumask_var(new_mask);
4353 out_free_cpus_allowed:
4354 free_cpumask_var(cpus_allowed);
4355 out_put_task:
4356 put_task_struct(p);
4357 put_online_cpus();
4358 return retval;
4359 }
4360
4361 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4362 struct cpumask *new_mask)
4363 {
4364 if (len < cpumask_size())
4365 cpumask_clear(new_mask);
4366 else if (len > cpumask_size())
4367 len = cpumask_size();
4368
4369 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4370 }
4371
4372 /**
4373 * sys_sched_setaffinity - set the cpu affinity of a process
4374 * @pid: pid of the process
4375 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4376 * @user_mask_ptr: user-space pointer to the new cpu mask
4377 */
4378 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4379 unsigned long __user *, user_mask_ptr)
4380 {
4381 cpumask_var_t new_mask;
4382 int retval;
4383
4384 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4385 return -ENOMEM;
4386
4387 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4388 if (retval == 0)
4389 retval = sched_setaffinity(pid, new_mask);
4390 free_cpumask_var(new_mask);
4391 return retval;
4392 }
4393
4394 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4395 {
4396 struct task_struct *p;
4397 unsigned long flags;
4398 int retval;
4399
4400 get_online_cpus();
4401 rcu_read_lock();
4402
4403 retval = -ESRCH;
4404 p = find_process_by_pid(pid);
4405 if (!p)
4406 goto out_unlock;
4407
4408 retval = security_task_getscheduler(p);
4409 if (retval)
4410 goto out_unlock;
4411
4412 raw_spin_lock_irqsave(&p->pi_lock, flags);
4413 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4414 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4415
4416 out_unlock:
4417 rcu_read_unlock();
4418 put_online_cpus();
4419
4420 return retval;
4421 }
4422
4423 /**
4424 * sys_sched_getaffinity - get the cpu affinity of a process
4425 * @pid: pid of the process
4426 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4427 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4428 */
4429 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4430 unsigned long __user *, user_mask_ptr)
4431 {
4432 int ret;
4433 cpumask_var_t mask;
4434
4435 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4436 return -EINVAL;
4437 if (len & (sizeof(unsigned long)-1))
4438 return -EINVAL;
4439
4440 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4441 return -ENOMEM;
4442
4443 ret = sched_getaffinity(pid, mask);
4444 if (ret == 0) {
4445 size_t retlen = min_t(size_t, len, cpumask_size());
4446
4447 if (copy_to_user(user_mask_ptr, mask, retlen))
4448 ret = -EFAULT;
4449 else
4450 ret = retlen;
4451 }
4452 free_cpumask_var(mask);
4453
4454 return ret;
4455 }
4456
4457 /**
4458 * sys_sched_yield - yield the current processor to other threads.
4459 *
4460 * This function yields the current CPU to other tasks. If there are no
4461 * other threads running on this CPU then this function will return.
4462 */
4463 SYSCALL_DEFINE0(sched_yield)
4464 {
4465 struct rq *rq = this_rq_lock();
4466
4467 schedstat_inc(rq, yld_count);
4468 current->sched_class->yield_task(rq);
4469
4470 /*
4471 * Since we are going to call schedule() anyway, there's
4472 * no need to preempt or enable interrupts:
4473 */
4474 __release(rq->lock);
4475 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4476 do_raw_spin_unlock(&rq->lock);
4477 preempt_enable_no_resched();
4478
4479 schedule();
4480
4481 return 0;
4482 }
4483
4484 static inline int should_resched(void)
4485 {
4486 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4487 }
4488
4489 static void __cond_resched(void)
4490 {
4491 add_preempt_count(PREEMPT_ACTIVE);
4492 __schedule();
4493 sub_preempt_count(PREEMPT_ACTIVE);
4494 }
4495
4496 int __sched _cond_resched(void)
4497 {
4498 if (should_resched()) {
4499 __cond_resched();
4500 return 1;
4501 }
4502 return 0;
4503 }
4504 EXPORT_SYMBOL(_cond_resched);
4505
4506 /*
4507 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4508 * call schedule, and on return reacquire the lock.
4509 *
4510 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4511 * operations here to prevent schedule() from being called twice (once via
4512 * spin_unlock(), once by hand).
4513 */
4514 int __cond_resched_lock(spinlock_t *lock)
4515 {
4516 int resched = should_resched();
4517 int ret = 0;
4518
4519 lockdep_assert_held(lock);
4520
4521 if (spin_needbreak(lock) || resched) {
4522 spin_unlock(lock);
4523 if (resched)
4524 __cond_resched();
4525 else
4526 cpu_relax();
4527 ret = 1;
4528 spin_lock(lock);
4529 }
4530 return ret;
4531 }
4532 EXPORT_SYMBOL(__cond_resched_lock);
4533
4534 int __sched __cond_resched_softirq(void)
4535 {
4536 BUG_ON(!in_softirq());
4537
4538 if (should_resched()) {
4539 local_bh_enable();
4540 __cond_resched();
4541 local_bh_disable();
4542 return 1;
4543 }
4544 return 0;
4545 }
4546 EXPORT_SYMBOL(__cond_resched_softirq);
4547
4548 /**
4549 * yield - yield the current processor to other threads.
4550 *
4551 * This is a shortcut for kernel-space yielding - it marks the
4552 * thread runnable and calls sys_sched_yield().
4553 */
4554 void __sched yield(void)
4555 {
4556 set_current_state(TASK_RUNNING);
4557 sys_sched_yield();
4558 }
4559 EXPORT_SYMBOL(yield);
4560
4561 /**
4562 * yield_to - yield the current processor to another thread in
4563 * your thread group, or accelerate that thread toward the
4564 * processor it's on.
4565 * @p: target task
4566 * @preempt: whether task preemption is allowed or not
4567 *
4568 * It's the caller's job to ensure that the target task struct
4569 * can't go away on us before we can do any checks.
4570 *
4571 * Returns true if we indeed boosted the target task.
4572 */
4573 bool __sched yield_to(struct task_struct *p, bool preempt)
4574 {
4575 struct task_struct *curr = current;
4576 struct rq *rq, *p_rq;
4577 unsigned long flags;
4578 bool yielded = 0;
4579
4580 local_irq_save(flags);
4581 rq = this_rq();
4582
4583 again:
4584 p_rq = task_rq(p);
4585 double_rq_lock(rq, p_rq);
4586 while (task_rq(p) != p_rq) {
4587 double_rq_unlock(rq, p_rq);
4588 goto again;
4589 }
4590
4591 if (!curr->sched_class->yield_to_task)
4592 goto out;
4593
4594 if (curr->sched_class != p->sched_class)
4595 goto out;
4596
4597 if (task_running(p_rq, p) || p->state)
4598 goto out;
4599
4600 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4601 if (yielded) {
4602 schedstat_inc(rq, yld_count);
4603 /*
4604 * Make p's CPU reschedule; pick_next_entity takes care of
4605 * fairness.
4606 */
4607 if (preempt && rq != p_rq)
4608 resched_task(p_rq->curr);
4609 } else {
4610 /*
4611 * We might have set it in task_yield_fair(), but are
4612 * not going to schedule(), so don't want to skip
4613 * the next update.
4614 */
4615 rq->skip_clock_update = 0;
4616 }
4617
4618 out:
4619 double_rq_unlock(rq, p_rq);
4620 local_irq_restore(flags);
4621
4622 if (yielded)
4623 schedule();
4624
4625 return yielded;
4626 }
4627 EXPORT_SYMBOL_GPL(yield_to);
4628
4629 /*
4630 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4631 * that process accounting knows that this is a task in IO wait state.
4632 */
4633 void __sched io_schedule(void)
4634 {
4635 struct rq *rq = raw_rq();
4636
4637 delayacct_blkio_start();
4638 atomic_inc(&rq->nr_iowait);
4639 blk_flush_plug(current);
4640 current->in_iowait = 1;
4641 schedule();
4642 current->in_iowait = 0;
4643 atomic_dec(&rq->nr_iowait);
4644 delayacct_blkio_end();
4645 }
4646 EXPORT_SYMBOL(io_schedule);
4647
4648 long __sched io_schedule_timeout(long timeout)
4649 {
4650 struct rq *rq = raw_rq();
4651 long ret;
4652
4653 delayacct_blkio_start();
4654 atomic_inc(&rq->nr_iowait);
4655 blk_flush_plug(current);
4656 current->in_iowait = 1;
4657 ret = schedule_timeout(timeout);
4658 current->in_iowait = 0;
4659 atomic_dec(&rq->nr_iowait);
4660 delayacct_blkio_end();
4661 return ret;
4662 }
4663
4664 /**
4665 * sys_sched_get_priority_max - return maximum RT priority.
4666 * @policy: scheduling class.
4667 *
4668 * this syscall returns the maximum rt_priority that can be used
4669 * by a given scheduling class.
4670 */
4671 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4672 {
4673 int ret = -EINVAL;
4674
4675 switch (policy) {
4676 case SCHED_FIFO:
4677 case SCHED_RR:
4678 ret = MAX_USER_RT_PRIO-1;
4679 break;
4680 case SCHED_NORMAL:
4681 case SCHED_BATCH:
4682 case SCHED_IDLE:
4683 ret = 0;
4684 break;
4685 }
4686 return ret;
4687 }
4688
4689 /**
4690 * sys_sched_get_priority_min - return minimum RT priority.
4691 * @policy: scheduling class.
4692 *
4693 * this syscall returns the minimum rt_priority that can be used
4694 * by a given scheduling class.
4695 */
4696 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4697 {
4698 int ret = -EINVAL;
4699
4700 switch (policy) {
4701 case SCHED_FIFO:
4702 case SCHED_RR:
4703 ret = 1;
4704 break;
4705 case SCHED_NORMAL:
4706 case SCHED_BATCH:
4707 case SCHED_IDLE:
4708 ret = 0;
4709 }
4710 return ret;
4711 }
4712
4713 /**
4714 * sys_sched_rr_get_interval - return the default timeslice of a process.
4715 * @pid: pid of the process.
4716 * @interval: userspace pointer to the timeslice value.
4717 *
4718 * this syscall writes the default timeslice value of a given process
4719 * into the user-space timespec buffer. A value of '0' means infinity.
4720 */
4721 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4722 struct timespec __user *, interval)
4723 {
4724 struct task_struct *p;
4725 unsigned int time_slice;
4726 unsigned long flags;
4727 struct rq *rq;
4728 int retval;
4729 struct timespec t;
4730
4731 if (pid < 0)
4732 return -EINVAL;
4733
4734 retval = -ESRCH;
4735 rcu_read_lock();
4736 p = find_process_by_pid(pid);
4737 if (!p)
4738 goto out_unlock;
4739
4740 retval = security_task_getscheduler(p);
4741 if (retval)
4742 goto out_unlock;
4743
4744 rq = task_rq_lock(p, &flags);
4745 time_slice = p->sched_class->get_rr_interval(rq, p);
4746 task_rq_unlock(rq, p, &flags);
4747
4748 rcu_read_unlock();
4749 jiffies_to_timespec(time_slice, &t);
4750 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4751 return retval;
4752
4753 out_unlock:
4754 rcu_read_unlock();
4755 return retval;
4756 }
4757
4758 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4759
4760 void sched_show_task(struct task_struct *p)
4761 {
4762 unsigned long free = 0;
4763 unsigned state;
4764
4765 state = p->state ? __ffs(p->state) + 1 : 0;
4766 printk(KERN_INFO "%-15.15s %c", p->comm,
4767 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4768 #if BITS_PER_LONG == 32
4769 if (state == TASK_RUNNING)
4770 printk(KERN_CONT " running ");
4771 else
4772 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4773 #else
4774 if (state == TASK_RUNNING)
4775 printk(KERN_CONT " running task ");
4776 else
4777 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4778 #endif
4779 #ifdef CONFIG_DEBUG_STACK_USAGE
4780 free = stack_not_used(p);
4781 #endif
4782 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4783 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4784 (unsigned long)task_thread_info(p)->flags);
4785
4786 show_stack(p, NULL);
4787 }
4788
4789 void show_state_filter(unsigned long state_filter)
4790 {
4791 struct task_struct *g, *p;
4792
4793 #if BITS_PER_LONG == 32
4794 printk(KERN_INFO
4795 " task PC stack pid father\n");
4796 #else
4797 printk(KERN_INFO
4798 " task PC stack pid father\n");
4799 #endif
4800 rcu_read_lock();
4801 do_each_thread(g, p) {
4802 /*
4803 * reset the NMI-timeout, listing all files on a slow
4804 * console might take a lot of time:
4805 */
4806 touch_nmi_watchdog();
4807 if (!state_filter || (p->state & state_filter))
4808 sched_show_task(p);
4809 } while_each_thread(g, p);
4810
4811 touch_all_softlockup_watchdogs();
4812
4813 #ifdef CONFIG_SCHED_DEBUG
4814 sysrq_sched_debug_show();
4815 #endif
4816 rcu_read_unlock();
4817 /*
4818 * Only show locks if all tasks are dumped:
4819 */
4820 if (!state_filter)
4821 debug_show_all_locks();
4822 }
4823
4824 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4825 {
4826 idle->sched_class = &idle_sched_class;
4827 }
4828
4829 /**
4830 * init_idle - set up an idle thread for a given CPU
4831 * @idle: task in question
4832 * @cpu: cpu the idle task belongs to
4833 *
4834 * NOTE: this function does not set the idle thread's NEED_RESCHED
4835 * flag, to make booting more robust.
4836 */
4837 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4838 {
4839 struct rq *rq = cpu_rq(cpu);
4840 unsigned long flags;
4841
4842 raw_spin_lock_irqsave(&rq->lock, flags);
4843
4844 __sched_fork(idle);
4845 idle->state = TASK_RUNNING;
4846 idle->se.exec_start = sched_clock();
4847
4848 do_set_cpus_allowed(idle, cpumask_of(cpu));
4849 /*
4850 * We're having a chicken and egg problem, even though we are
4851 * holding rq->lock, the cpu isn't yet set to this cpu so the
4852 * lockdep check in task_group() will fail.
4853 *
4854 * Similar case to sched_fork(). / Alternatively we could
4855 * use task_rq_lock() here and obtain the other rq->lock.
4856 *
4857 * Silence PROVE_RCU
4858 */
4859 rcu_read_lock();
4860 __set_task_cpu(idle, cpu);
4861 rcu_read_unlock();
4862
4863 rq->curr = rq->idle = idle;
4864 #if defined(CONFIG_SMP)
4865 idle->on_cpu = 1;
4866 #endif
4867 raw_spin_unlock_irqrestore(&rq->lock, flags);
4868
4869 /* Set the preempt count _outside_ the spinlocks! */
4870 task_thread_info(idle)->preempt_count = 0;
4871
4872 /*
4873 * The idle tasks have their own, simple scheduling class:
4874 */
4875 idle->sched_class = &idle_sched_class;
4876 ftrace_graph_init_idle_task(idle, cpu);
4877 #if defined(CONFIG_SMP)
4878 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4879 #endif
4880 }
4881
4882 #ifdef CONFIG_SMP
4883 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4884 {
4885 if (p->sched_class && p->sched_class->set_cpus_allowed)
4886 p->sched_class->set_cpus_allowed(p, new_mask);
4887
4888 cpumask_copy(&p->cpus_allowed, new_mask);
4889 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4890 }
4891
4892 /*
4893 * This is how migration works:
4894 *
4895 * 1) we invoke migration_cpu_stop() on the target CPU using
4896 * stop_one_cpu().
4897 * 2) stopper starts to run (implicitly forcing the migrated thread
4898 * off the CPU)
4899 * 3) it checks whether the migrated task is still in the wrong runqueue.
4900 * 4) if it's in the wrong runqueue then the migration thread removes
4901 * it and puts it into the right queue.
4902 * 5) stopper completes and stop_one_cpu() returns and the migration
4903 * is done.
4904 */
4905
4906 /*
4907 * Change a given task's CPU affinity. Migrate the thread to a
4908 * proper CPU and schedule it away if the CPU it's executing on
4909 * is removed from the allowed bitmask.
4910 *
4911 * NOTE: the caller must have a valid reference to the task, the
4912 * task must not exit() & deallocate itself prematurely. The
4913 * call is not atomic; no spinlocks may be held.
4914 */
4915 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4916 {
4917 unsigned long flags;
4918 struct rq *rq;
4919 unsigned int dest_cpu;
4920 int ret = 0;
4921
4922 rq = task_rq_lock(p, &flags);
4923
4924 if (cpumask_equal(&p->cpus_allowed, new_mask))
4925 goto out;
4926
4927 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4928 ret = -EINVAL;
4929 goto out;
4930 }
4931
4932 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4933 ret = -EINVAL;
4934 goto out;
4935 }
4936
4937 do_set_cpus_allowed(p, new_mask);
4938
4939 /* Can the task run on the task's current CPU? If so, we're done */
4940 if (cpumask_test_cpu(task_cpu(p), new_mask))
4941 goto out;
4942
4943 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4944 if (p->on_rq) {
4945 struct migration_arg arg = { p, dest_cpu };
4946 /* Need help from migration thread: drop lock and wait. */
4947 task_rq_unlock(rq, p, &flags);
4948 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4949 tlb_migrate_finish(p->mm);
4950 return 0;
4951 }
4952 out:
4953 task_rq_unlock(rq, p, &flags);
4954
4955 return ret;
4956 }
4957 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4958
4959 /*
4960 * Move (not current) task off this cpu, onto dest cpu. We're doing
4961 * this because either it can't run here any more (set_cpus_allowed()
4962 * away from this CPU, or CPU going down), or because we're
4963 * attempting to rebalance this task on exec (sched_exec).
4964 *
4965 * So we race with normal scheduler movements, but that's OK, as long
4966 * as the task is no longer on this CPU.
4967 *
4968 * Returns non-zero if task was successfully migrated.
4969 */
4970 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4971 {
4972 struct rq *rq_dest, *rq_src;
4973 int ret = 0;
4974
4975 if (unlikely(!cpu_active(dest_cpu)))
4976 return ret;
4977
4978 rq_src = cpu_rq(src_cpu);
4979 rq_dest = cpu_rq(dest_cpu);
4980
4981 raw_spin_lock(&p->pi_lock);
4982 double_rq_lock(rq_src, rq_dest);
4983 /* Already moved. */
4984 if (task_cpu(p) != src_cpu)
4985 goto done;
4986 /* Affinity changed (again). */
4987 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4988 goto fail;
4989
4990 /*
4991 * If we're not on a rq, the next wake-up will ensure we're
4992 * placed properly.
4993 */
4994 if (p->on_rq) {
4995 dequeue_task(rq_src, p, 0);
4996 set_task_cpu(p, dest_cpu);
4997 enqueue_task(rq_dest, p, 0);
4998 check_preempt_curr(rq_dest, p, 0);
4999 }
5000 done:
5001 ret = 1;
5002 fail:
5003 double_rq_unlock(rq_src, rq_dest);
5004 raw_spin_unlock(&p->pi_lock);
5005 return ret;
5006 }
5007
5008 /*
5009 * migration_cpu_stop - this will be executed by a highprio stopper thread
5010 * and performs thread migration by bumping thread off CPU then
5011 * 'pushing' onto another runqueue.
5012 */
5013 static int migration_cpu_stop(void *data)
5014 {
5015 struct migration_arg *arg = data;
5016
5017 /*
5018 * The original target cpu might have gone down and we might
5019 * be on another cpu but it doesn't matter.
5020 */
5021 local_irq_disable();
5022 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5023 local_irq_enable();
5024 return 0;
5025 }
5026
5027 #ifdef CONFIG_HOTPLUG_CPU
5028
5029 /*
5030 * Ensures that the idle task is using init_mm right before its cpu goes
5031 * offline.
5032 */
5033 void idle_task_exit(void)
5034 {
5035 struct mm_struct *mm = current->active_mm;
5036
5037 BUG_ON(cpu_online(smp_processor_id()));
5038
5039 if (mm != &init_mm)
5040 switch_mm(mm, &init_mm, current);
5041 mmdrop(mm);
5042 }
5043
5044 /*
5045 * While a dead CPU has no uninterruptible tasks queued at this point,
5046 * it might still have a nonzero ->nr_uninterruptible counter, because
5047 * for performance reasons the counter is not stricly tracking tasks to
5048 * their home CPUs. So we just add the counter to another CPU's counter,
5049 * to keep the global sum constant after CPU-down:
5050 */
5051 static void migrate_nr_uninterruptible(struct rq *rq_src)
5052 {
5053 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5054
5055 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5056 rq_src->nr_uninterruptible = 0;
5057 }
5058
5059 /*
5060 * remove the tasks which were accounted by rq from calc_load_tasks.
5061 */
5062 static void calc_global_load_remove(struct rq *rq)
5063 {
5064 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5065 rq->calc_load_active = 0;
5066 }
5067
5068 /*
5069 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5070 * try_to_wake_up()->select_task_rq().
5071 *
5072 * Called with rq->lock held even though we'er in stop_machine() and
5073 * there's no concurrency possible, we hold the required locks anyway
5074 * because of lock validation efforts.
5075 */
5076 static void migrate_tasks(unsigned int dead_cpu)
5077 {
5078 struct rq *rq = cpu_rq(dead_cpu);
5079 struct task_struct *next, *stop = rq->stop;
5080 int dest_cpu;
5081
5082 /*
5083 * Fudge the rq selection such that the below task selection loop
5084 * doesn't get stuck on the currently eligible stop task.
5085 *
5086 * We're currently inside stop_machine() and the rq is either stuck
5087 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5088 * either way we should never end up calling schedule() until we're
5089 * done here.
5090 */
5091 rq->stop = NULL;
5092
5093 /* Ensure any throttled groups are reachable by pick_next_task */
5094 unthrottle_offline_cfs_rqs(rq);
5095
5096 for ( ; ; ) {
5097 /*
5098 * There's this thread running, bail when that's the only
5099 * remaining thread.
5100 */
5101 if (rq->nr_running == 1)
5102 break;
5103
5104 next = pick_next_task(rq);
5105 BUG_ON(!next);
5106 next->sched_class->put_prev_task(rq, next);
5107
5108 /* Find suitable destination for @next, with force if needed. */
5109 dest_cpu = select_fallback_rq(dead_cpu, next);
5110 raw_spin_unlock(&rq->lock);
5111
5112 __migrate_task(next, dead_cpu, dest_cpu);
5113
5114 raw_spin_lock(&rq->lock);
5115 }
5116
5117 rq->stop = stop;
5118 }
5119
5120 #endif /* CONFIG_HOTPLUG_CPU */
5121
5122 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5123
5124 static struct ctl_table sd_ctl_dir[] = {
5125 {
5126 .procname = "sched_domain",
5127 .mode = 0555,
5128 },
5129 {}
5130 };
5131
5132 static struct ctl_table sd_ctl_root[] = {
5133 {
5134 .procname = "kernel",
5135 .mode = 0555,
5136 .child = sd_ctl_dir,
5137 },
5138 {}
5139 };
5140
5141 static struct ctl_table *sd_alloc_ctl_entry(int n)
5142 {
5143 struct ctl_table *entry =
5144 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5145
5146 return entry;
5147 }
5148
5149 static void sd_free_ctl_entry(struct ctl_table **tablep)
5150 {
5151 struct ctl_table *entry;
5152
5153 /*
5154 * In the intermediate directories, both the child directory and
5155 * procname are dynamically allocated and could fail but the mode
5156 * will always be set. In the lowest directory the names are
5157 * static strings and all have proc handlers.
5158 */
5159 for (entry = *tablep; entry->mode; entry++) {
5160 if (entry->child)
5161 sd_free_ctl_entry(&entry->child);
5162 if (entry->proc_handler == NULL)
5163 kfree(entry->procname);
5164 }
5165
5166 kfree(*tablep);
5167 *tablep = NULL;
5168 }
5169
5170 static void
5171 set_table_entry(struct ctl_table *entry,
5172 const char *procname, void *data, int maxlen,
5173 umode_t mode, proc_handler *proc_handler)
5174 {
5175 entry->procname = procname;
5176 entry->data = data;
5177 entry->maxlen = maxlen;
5178 entry->mode = mode;
5179 entry->proc_handler = proc_handler;
5180 }
5181
5182 static struct ctl_table *
5183 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5184 {
5185 struct ctl_table *table = sd_alloc_ctl_entry(13);
5186
5187 if (table == NULL)
5188 return NULL;
5189
5190 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5191 sizeof(long), 0644, proc_doulongvec_minmax);
5192 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5193 sizeof(long), 0644, proc_doulongvec_minmax);
5194 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5195 sizeof(int), 0644, proc_dointvec_minmax);
5196 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5197 sizeof(int), 0644, proc_dointvec_minmax);
5198 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5199 sizeof(int), 0644, proc_dointvec_minmax);
5200 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5201 sizeof(int), 0644, proc_dointvec_minmax);
5202 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5203 sizeof(int), 0644, proc_dointvec_minmax);
5204 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5205 sizeof(int), 0644, proc_dointvec_minmax);
5206 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5207 sizeof(int), 0644, proc_dointvec_minmax);
5208 set_table_entry(&table[9], "cache_nice_tries",
5209 &sd->cache_nice_tries,
5210 sizeof(int), 0644, proc_dointvec_minmax);
5211 set_table_entry(&table[10], "flags", &sd->flags,
5212 sizeof(int), 0644, proc_dointvec_minmax);
5213 set_table_entry(&table[11], "name", sd->name,
5214 CORENAME_MAX_SIZE, 0444, proc_dostring);
5215 /* &table[12] is terminator */
5216
5217 return table;
5218 }
5219
5220 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5221 {
5222 struct ctl_table *entry, *table;
5223 struct sched_domain *sd;
5224 int domain_num = 0, i;
5225 char buf[32];
5226
5227 for_each_domain(cpu, sd)
5228 domain_num++;
5229 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5230 if (table == NULL)
5231 return NULL;
5232
5233 i = 0;
5234 for_each_domain(cpu, sd) {
5235 snprintf(buf, 32, "domain%d", i);
5236 entry->procname = kstrdup(buf, GFP_KERNEL);
5237 entry->mode = 0555;
5238 entry->child = sd_alloc_ctl_domain_table(sd);
5239 entry++;
5240 i++;
5241 }
5242 return table;
5243 }
5244
5245 static struct ctl_table_header *sd_sysctl_header;
5246 static void register_sched_domain_sysctl(void)
5247 {
5248 int i, cpu_num = num_possible_cpus();
5249 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5250 char buf[32];
5251
5252 WARN_ON(sd_ctl_dir[0].child);
5253 sd_ctl_dir[0].child = entry;
5254
5255 if (entry == NULL)
5256 return;
5257
5258 for_each_possible_cpu(i) {
5259 snprintf(buf, 32, "cpu%d", i);
5260 entry->procname = kstrdup(buf, GFP_KERNEL);
5261 entry->mode = 0555;
5262 entry->child = sd_alloc_ctl_cpu_table(i);
5263 entry++;
5264 }
5265
5266 WARN_ON(sd_sysctl_header);
5267 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5268 }
5269
5270 /* may be called multiple times per register */
5271 static void unregister_sched_domain_sysctl(void)
5272 {
5273 if (sd_sysctl_header)
5274 unregister_sysctl_table(sd_sysctl_header);
5275 sd_sysctl_header = NULL;
5276 if (sd_ctl_dir[0].child)
5277 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5278 }
5279 #else
5280 static void register_sched_domain_sysctl(void)
5281 {
5282 }
5283 static void unregister_sched_domain_sysctl(void)
5284 {
5285 }
5286 #endif
5287
5288 static void set_rq_online(struct rq *rq)
5289 {
5290 if (!rq->online) {
5291 const struct sched_class *class;
5292
5293 cpumask_set_cpu(rq->cpu, rq->rd->online);
5294 rq->online = 1;
5295
5296 for_each_class(class) {
5297 if (class->rq_online)
5298 class->rq_online(rq);
5299 }
5300 }
5301 }
5302
5303 static void set_rq_offline(struct rq *rq)
5304 {
5305 if (rq->online) {
5306 const struct sched_class *class;
5307
5308 for_each_class(class) {
5309 if (class->rq_offline)
5310 class->rq_offline(rq);
5311 }
5312
5313 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5314 rq->online = 0;
5315 }
5316 }
5317
5318 /*
5319 * migration_call - callback that gets triggered when a CPU is added.
5320 * Here we can start up the necessary migration thread for the new CPU.
5321 */
5322 static int __cpuinit
5323 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5324 {
5325 int cpu = (long)hcpu;
5326 unsigned long flags;
5327 struct rq *rq = cpu_rq(cpu);
5328
5329 switch (action & ~CPU_TASKS_FROZEN) {
5330
5331 case CPU_UP_PREPARE:
5332 rq->calc_load_update = calc_load_update;
5333 break;
5334
5335 case CPU_ONLINE:
5336 /* Update our root-domain */
5337 raw_spin_lock_irqsave(&rq->lock, flags);
5338 if (rq->rd) {
5339 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5340
5341 set_rq_online(rq);
5342 }
5343 raw_spin_unlock_irqrestore(&rq->lock, flags);
5344 break;
5345
5346 #ifdef CONFIG_HOTPLUG_CPU
5347 case CPU_DYING:
5348 sched_ttwu_pending();
5349 /* Update our root-domain */
5350 raw_spin_lock_irqsave(&rq->lock, flags);
5351 if (rq->rd) {
5352 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5353 set_rq_offline(rq);
5354 }
5355 migrate_tasks(cpu);
5356 BUG_ON(rq->nr_running != 1); /* the migration thread */
5357 raw_spin_unlock_irqrestore(&rq->lock, flags);
5358
5359 migrate_nr_uninterruptible(rq);
5360 calc_global_load_remove(rq);
5361 break;
5362 #endif
5363 }
5364
5365 update_max_interval();
5366
5367 return NOTIFY_OK;
5368 }
5369
5370 /*
5371 * Register at high priority so that task migration (migrate_all_tasks)
5372 * happens before everything else. This has to be lower priority than
5373 * the notifier in the perf_event subsystem, though.
5374 */
5375 static struct notifier_block __cpuinitdata migration_notifier = {
5376 .notifier_call = migration_call,
5377 .priority = CPU_PRI_MIGRATION,
5378 };
5379
5380 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5381 unsigned long action, void *hcpu)
5382 {
5383 switch (action & ~CPU_TASKS_FROZEN) {
5384 case CPU_ONLINE:
5385 case CPU_DOWN_FAILED:
5386 set_cpu_active((long)hcpu, true);
5387 return NOTIFY_OK;
5388 default:
5389 return NOTIFY_DONE;
5390 }
5391 }
5392
5393 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5394 unsigned long action, void *hcpu)
5395 {
5396 switch (action & ~CPU_TASKS_FROZEN) {
5397 case CPU_DOWN_PREPARE:
5398 set_cpu_active((long)hcpu, false);
5399 return NOTIFY_OK;
5400 default:
5401 return NOTIFY_DONE;
5402 }
5403 }
5404
5405 static int __init migration_init(void)
5406 {
5407 void *cpu = (void *)(long)smp_processor_id();
5408 int err;
5409
5410 /* Initialize migration for the boot CPU */
5411 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5412 BUG_ON(err == NOTIFY_BAD);
5413 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5414 register_cpu_notifier(&migration_notifier);
5415
5416 /* Register cpu active notifiers */
5417 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5418 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5419
5420 return 0;
5421 }
5422 early_initcall(migration_init);
5423 #endif
5424
5425 #ifdef CONFIG_SMP
5426
5427 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5428
5429 #ifdef CONFIG_SCHED_DEBUG
5430
5431 static __read_mostly int sched_domain_debug_enabled;
5432
5433 static int __init sched_domain_debug_setup(char *str)
5434 {
5435 sched_domain_debug_enabled = 1;
5436
5437 return 0;
5438 }
5439 early_param("sched_debug", sched_domain_debug_setup);
5440
5441 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5442 struct cpumask *groupmask)
5443 {
5444 struct sched_group *group = sd->groups;
5445 char str[256];
5446
5447 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5448 cpumask_clear(groupmask);
5449
5450 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5451
5452 if (!(sd->flags & SD_LOAD_BALANCE)) {
5453 printk("does not load-balance\n");
5454 if (sd->parent)
5455 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5456 " has parent");
5457 return -1;
5458 }
5459
5460 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5461
5462 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5463 printk(KERN_ERR "ERROR: domain->span does not contain "
5464 "CPU%d\n", cpu);
5465 }
5466 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5467 printk(KERN_ERR "ERROR: domain->groups does not contain"
5468 " CPU%d\n", cpu);
5469 }
5470
5471 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5472 do {
5473 if (!group) {
5474 printk("\n");
5475 printk(KERN_ERR "ERROR: group is NULL\n");
5476 break;
5477 }
5478
5479 if (!group->sgp->power) {
5480 printk(KERN_CONT "\n");
5481 printk(KERN_ERR "ERROR: domain->cpu_power not "
5482 "set\n");
5483 break;
5484 }
5485
5486 if (!cpumask_weight(sched_group_cpus(group))) {
5487 printk(KERN_CONT "\n");
5488 printk(KERN_ERR "ERROR: empty group\n");
5489 break;
5490 }
5491
5492 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5493 printk(KERN_CONT "\n");
5494 printk(KERN_ERR "ERROR: repeated CPUs\n");
5495 break;
5496 }
5497
5498 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5499
5500 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5501
5502 printk(KERN_CONT " %s", str);
5503 if (group->sgp->power != SCHED_POWER_SCALE) {
5504 printk(KERN_CONT " (cpu_power = %d)",
5505 group->sgp->power);
5506 }
5507
5508 group = group->next;
5509 } while (group != sd->groups);
5510 printk(KERN_CONT "\n");
5511
5512 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5513 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5514
5515 if (sd->parent &&
5516 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5517 printk(KERN_ERR "ERROR: parent span is not a superset "
5518 "of domain->span\n");
5519 return 0;
5520 }
5521
5522 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5523 {
5524 int level = 0;
5525
5526 if (!sched_domain_debug_enabled)
5527 return;
5528
5529 if (!sd) {
5530 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5531 return;
5532 }
5533
5534 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5535
5536 for (;;) {
5537 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5538 break;
5539 level++;
5540 sd = sd->parent;
5541 if (!sd)
5542 break;
5543 }
5544 }
5545 #else /* !CONFIG_SCHED_DEBUG */
5546 # define sched_domain_debug(sd, cpu) do { } while (0)
5547 #endif /* CONFIG_SCHED_DEBUG */
5548
5549 static int sd_degenerate(struct sched_domain *sd)
5550 {
5551 if (cpumask_weight(sched_domain_span(sd)) == 1)
5552 return 1;
5553
5554 /* Following flags need at least 2 groups */
5555 if (sd->flags & (SD_LOAD_BALANCE |
5556 SD_BALANCE_NEWIDLE |
5557 SD_BALANCE_FORK |
5558 SD_BALANCE_EXEC |
5559 SD_SHARE_CPUPOWER |
5560 SD_SHARE_PKG_RESOURCES)) {
5561 if (sd->groups != sd->groups->next)
5562 return 0;
5563 }
5564
5565 /* Following flags don't use groups */
5566 if (sd->flags & (SD_WAKE_AFFINE))
5567 return 0;
5568
5569 return 1;
5570 }
5571
5572 static int
5573 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5574 {
5575 unsigned long cflags = sd->flags, pflags = parent->flags;
5576
5577 if (sd_degenerate(parent))
5578 return 1;
5579
5580 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5581 return 0;
5582
5583 /* Flags needing groups don't count if only 1 group in parent */
5584 if (parent->groups == parent->groups->next) {
5585 pflags &= ~(SD_LOAD_BALANCE |
5586 SD_BALANCE_NEWIDLE |
5587 SD_BALANCE_FORK |
5588 SD_BALANCE_EXEC |
5589 SD_SHARE_CPUPOWER |
5590 SD_SHARE_PKG_RESOURCES);
5591 if (nr_node_ids == 1)
5592 pflags &= ~SD_SERIALIZE;
5593 }
5594 if (~cflags & pflags)
5595 return 0;
5596
5597 return 1;
5598 }
5599
5600 static void free_rootdomain(struct rcu_head *rcu)
5601 {
5602 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5603
5604 cpupri_cleanup(&rd->cpupri);
5605 free_cpumask_var(rd->rto_mask);
5606 free_cpumask_var(rd->online);
5607 free_cpumask_var(rd->span);
5608 kfree(rd);
5609 }
5610
5611 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5612 {
5613 struct root_domain *old_rd = NULL;
5614 unsigned long flags;
5615
5616 raw_spin_lock_irqsave(&rq->lock, flags);
5617
5618 if (rq->rd) {
5619 old_rd = rq->rd;
5620
5621 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5622 set_rq_offline(rq);
5623
5624 cpumask_clear_cpu(rq->cpu, old_rd->span);
5625
5626 /*
5627 * If we dont want to free the old_rt yet then
5628 * set old_rd to NULL to skip the freeing later
5629 * in this function:
5630 */
5631 if (!atomic_dec_and_test(&old_rd->refcount))
5632 old_rd = NULL;
5633 }
5634
5635 atomic_inc(&rd->refcount);
5636 rq->rd = rd;
5637
5638 cpumask_set_cpu(rq->cpu, rd->span);
5639 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5640 set_rq_online(rq);
5641
5642 raw_spin_unlock_irqrestore(&rq->lock, flags);
5643
5644 if (old_rd)
5645 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5646 }
5647
5648 static int init_rootdomain(struct root_domain *rd)
5649 {
5650 memset(rd, 0, sizeof(*rd));
5651
5652 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5653 goto out;
5654 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5655 goto free_span;
5656 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5657 goto free_online;
5658
5659 if (cpupri_init(&rd->cpupri) != 0)
5660 goto free_rto_mask;
5661 return 0;
5662
5663 free_rto_mask:
5664 free_cpumask_var(rd->rto_mask);
5665 free_online:
5666 free_cpumask_var(rd->online);
5667 free_span:
5668 free_cpumask_var(rd->span);
5669 out:
5670 return -ENOMEM;
5671 }
5672
5673 /*
5674 * By default the system creates a single root-domain with all cpus as
5675 * members (mimicking the global state we have today).
5676 */
5677 struct root_domain def_root_domain;
5678
5679 static void init_defrootdomain(void)
5680 {
5681 init_rootdomain(&def_root_domain);
5682
5683 atomic_set(&def_root_domain.refcount, 1);
5684 }
5685
5686 static struct root_domain *alloc_rootdomain(void)
5687 {
5688 struct root_domain *rd;
5689
5690 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5691 if (!rd)
5692 return NULL;
5693
5694 if (init_rootdomain(rd) != 0) {
5695 kfree(rd);
5696 return NULL;
5697 }
5698
5699 return rd;
5700 }
5701
5702 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5703 {
5704 struct sched_group *tmp, *first;
5705
5706 if (!sg)
5707 return;
5708
5709 first = sg;
5710 do {
5711 tmp = sg->next;
5712
5713 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5714 kfree(sg->sgp);
5715
5716 kfree(sg);
5717 sg = tmp;
5718 } while (sg != first);
5719 }
5720
5721 static void free_sched_domain(struct rcu_head *rcu)
5722 {
5723 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5724
5725 /*
5726 * If its an overlapping domain it has private groups, iterate and
5727 * nuke them all.
5728 */
5729 if (sd->flags & SD_OVERLAP) {
5730 free_sched_groups(sd->groups, 1);
5731 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5732 kfree(sd->groups->sgp);
5733 kfree(sd->groups);
5734 }
5735 kfree(sd);
5736 }
5737
5738 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5739 {
5740 call_rcu(&sd->rcu, free_sched_domain);
5741 }
5742
5743 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5744 {
5745 for (; sd; sd = sd->parent)
5746 destroy_sched_domain(sd, cpu);
5747 }
5748
5749 /*
5750 * Keep a special pointer to the highest sched_domain that has
5751 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5752 * allows us to avoid some pointer chasing select_idle_sibling().
5753 *
5754 * Also keep a unique ID per domain (we use the first cpu number in
5755 * the cpumask of the domain), this allows us to quickly tell if
5756 * two cpus are in the same cache domain, see ttwu_share_cache().
5757 */
5758 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5759 DEFINE_PER_CPU(int, sd_llc_id);
5760
5761 static void update_top_cache_domain(int cpu)
5762 {
5763 struct sched_domain *sd;
5764 int id = cpu;
5765
5766 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5767 if (sd)
5768 id = cpumask_first(sched_domain_span(sd));
5769
5770 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5771 per_cpu(sd_llc_id, cpu) = id;
5772 }
5773
5774 /*
5775 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5776 * hold the hotplug lock.
5777 */
5778 static void
5779 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5780 {
5781 struct rq *rq = cpu_rq(cpu);
5782 struct sched_domain *tmp;
5783
5784 /* Remove the sched domains which do not contribute to scheduling. */
5785 for (tmp = sd; tmp; ) {
5786 struct sched_domain *parent = tmp->parent;
5787 if (!parent)
5788 break;
5789
5790 if (sd_parent_degenerate(tmp, parent)) {
5791 tmp->parent = parent->parent;
5792 if (parent->parent)
5793 parent->parent->child = tmp;
5794 destroy_sched_domain(parent, cpu);
5795 } else
5796 tmp = tmp->parent;
5797 }
5798
5799 if (sd && sd_degenerate(sd)) {
5800 tmp = sd;
5801 sd = sd->parent;
5802 destroy_sched_domain(tmp, cpu);
5803 if (sd)
5804 sd->child = NULL;
5805 }
5806
5807 sched_domain_debug(sd, cpu);
5808
5809 rq_attach_root(rq, rd);
5810 tmp = rq->sd;
5811 rcu_assign_pointer(rq->sd, sd);
5812 destroy_sched_domains(tmp, cpu);
5813
5814 update_top_cache_domain(cpu);
5815 }
5816
5817 /* cpus with isolated domains */
5818 static cpumask_var_t cpu_isolated_map;
5819
5820 /* Setup the mask of cpus configured for isolated domains */
5821 static int __init isolated_cpu_setup(char *str)
5822 {
5823 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5824 cpulist_parse(str, cpu_isolated_map);
5825 return 1;
5826 }
5827
5828 __setup("isolcpus=", isolated_cpu_setup);
5829
5830 #ifdef CONFIG_NUMA
5831
5832 /**
5833 * find_next_best_node - find the next node to include in a sched_domain
5834 * @node: node whose sched_domain we're building
5835 * @used_nodes: nodes already in the sched_domain
5836 *
5837 * Find the next node to include in a given scheduling domain. Simply
5838 * finds the closest node not already in the @used_nodes map.
5839 *
5840 * Should use nodemask_t.
5841 */
5842 static int find_next_best_node(int node, nodemask_t *used_nodes)
5843 {
5844 int i, n, val, min_val, best_node = -1;
5845
5846 min_val = INT_MAX;
5847
5848 for (i = 0; i < nr_node_ids; i++) {
5849 /* Start at @node */
5850 n = (node + i) % nr_node_ids;
5851
5852 if (!nr_cpus_node(n))
5853 continue;
5854
5855 /* Skip already used nodes */
5856 if (node_isset(n, *used_nodes))
5857 continue;
5858
5859 /* Simple min distance search */
5860 val = node_distance(node, n);
5861
5862 if (val < min_val) {
5863 min_val = val;
5864 best_node = n;
5865 }
5866 }
5867
5868 if (best_node != -1)
5869 node_set(best_node, *used_nodes);
5870 return best_node;
5871 }
5872
5873 /**
5874 * sched_domain_node_span - get a cpumask for a node's sched_domain
5875 * @node: node whose cpumask we're constructing
5876 * @span: resulting cpumask
5877 *
5878 * Given a node, construct a good cpumask for its sched_domain to span. It
5879 * should be one that prevents unnecessary balancing, but also spreads tasks
5880 * out optimally.
5881 */
5882 static void sched_domain_node_span(int node, struct cpumask *span)
5883 {
5884 nodemask_t used_nodes;
5885 int i;
5886
5887 cpumask_clear(span);
5888 nodes_clear(used_nodes);
5889
5890 cpumask_or(span, span, cpumask_of_node(node));
5891 node_set(node, used_nodes);
5892
5893 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5894 int next_node = find_next_best_node(node, &used_nodes);
5895 if (next_node < 0)
5896 break;
5897 cpumask_or(span, span, cpumask_of_node(next_node));
5898 }
5899 }
5900
5901 static const struct cpumask *cpu_node_mask(int cpu)
5902 {
5903 lockdep_assert_held(&sched_domains_mutex);
5904
5905 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5906
5907 return sched_domains_tmpmask;
5908 }
5909
5910 static const struct cpumask *cpu_allnodes_mask(int cpu)
5911 {
5912 return cpu_possible_mask;
5913 }
5914 #endif /* CONFIG_NUMA */
5915
5916 static const struct cpumask *cpu_cpu_mask(int cpu)
5917 {
5918 return cpumask_of_node(cpu_to_node(cpu));
5919 }
5920
5921 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5922
5923 struct sd_data {
5924 struct sched_domain **__percpu sd;
5925 struct sched_group **__percpu sg;
5926 struct sched_group_power **__percpu sgp;
5927 };
5928
5929 struct s_data {
5930 struct sched_domain ** __percpu sd;
5931 struct root_domain *rd;
5932 };
5933
5934 enum s_alloc {
5935 sa_rootdomain,
5936 sa_sd,
5937 sa_sd_storage,
5938 sa_none,
5939 };
5940
5941 struct sched_domain_topology_level;
5942
5943 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5944 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5945
5946 #define SDTL_OVERLAP 0x01
5947
5948 struct sched_domain_topology_level {
5949 sched_domain_init_f init;
5950 sched_domain_mask_f mask;
5951 int flags;
5952 struct sd_data data;
5953 };
5954
5955 static int
5956 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5957 {
5958 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5959 const struct cpumask *span = sched_domain_span(sd);
5960 struct cpumask *covered = sched_domains_tmpmask;
5961 struct sd_data *sdd = sd->private;
5962 struct sched_domain *child;
5963 int i;
5964
5965 cpumask_clear(covered);
5966
5967 for_each_cpu(i, span) {
5968 struct cpumask *sg_span;
5969
5970 if (cpumask_test_cpu(i, covered))
5971 continue;
5972
5973 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5974 GFP_KERNEL, cpu_to_node(cpu));
5975
5976 if (!sg)
5977 goto fail;
5978
5979 sg_span = sched_group_cpus(sg);
5980
5981 child = *per_cpu_ptr(sdd->sd, i);
5982 if (child->child) {
5983 child = child->child;
5984 cpumask_copy(sg_span, sched_domain_span(child));
5985 } else
5986 cpumask_set_cpu(i, sg_span);
5987
5988 cpumask_or(covered, covered, sg_span);
5989
5990 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
5991 atomic_inc(&sg->sgp->ref);
5992
5993 if (cpumask_test_cpu(cpu, sg_span))
5994 groups = sg;
5995
5996 if (!first)
5997 first = sg;
5998 if (last)
5999 last->next = sg;
6000 last = sg;
6001 last->next = first;
6002 }
6003 sd->groups = groups;
6004
6005 return 0;
6006
6007 fail:
6008 free_sched_groups(first, 0);
6009
6010 return -ENOMEM;
6011 }
6012
6013 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6014 {
6015 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6016 struct sched_domain *child = sd->child;
6017
6018 if (child)
6019 cpu = cpumask_first(sched_domain_span(child));
6020
6021 if (sg) {
6022 *sg = *per_cpu_ptr(sdd->sg, cpu);
6023 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6024 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6025 }
6026
6027 return cpu;
6028 }
6029
6030 /*
6031 * build_sched_groups will build a circular linked list of the groups
6032 * covered by the given span, and will set each group's ->cpumask correctly,
6033 * and ->cpu_power to 0.
6034 *
6035 * Assumes the sched_domain tree is fully constructed
6036 */
6037 static int
6038 build_sched_groups(struct sched_domain *sd, int cpu)
6039 {
6040 struct sched_group *first = NULL, *last = NULL;
6041 struct sd_data *sdd = sd->private;
6042 const struct cpumask *span = sched_domain_span(sd);
6043 struct cpumask *covered;
6044 int i;
6045
6046 get_group(cpu, sdd, &sd->groups);
6047 atomic_inc(&sd->groups->ref);
6048
6049 if (cpu != cpumask_first(sched_domain_span(sd)))
6050 return 0;
6051
6052 lockdep_assert_held(&sched_domains_mutex);
6053 covered = sched_domains_tmpmask;
6054
6055 cpumask_clear(covered);
6056
6057 for_each_cpu(i, span) {
6058 struct sched_group *sg;
6059 int group = get_group(i, sdd, &sg);
6060 int j;
6061
6062 if (cpumask_test_cpu(i, covered))
6063 continue;
6064
6065 cpumask_clear(sched_group_cpus(sg));
6066 sg->sgp->power = 0;
6067
6068 for_each_cpu(j, span) {
6069 if (get_group(j, sdd, NULL) != group)
6070 continue;
6071
6072 cpumask_set_cpu(j, covered);
6073 cpumask_set_cpu(j, sched_group_cpus(sg));
6074 }
6075
6076 if (!first)
6077 first = sg;
6078 if (last)
6079 last->next = sg;
6080 last = sg;
6081 }
6082 last->next = first;
6083
6084 return 0;
6085 }
6086
6087 /*
6088 * Initialize sched groups cpu_power.
6089 *
6090 * cpu_power indicates the capacity of sched group, which is used while
6091 * distributing the load between different sched groups in a sched domain.
6092 * Typically cpu_power for all the groups in a sched domain will be same unless
6093 * there are asymmetries in the topology. If there are asymmetries, group
6094 * having more cpu_power will pickup more load compared to the group having
6095 * less cpu_power.
6096 */
6097 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6098 {
6099 struct sched_group *sg = sd->groups;
6100
6101 WARN_ON(!sd || !sg);
6102
6103 do {
6104 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6105 sg = sg->next;
6106 } while (sg != sd->groups);
6107
6108 if (cpu != group_first_cpu(sg))
6109 return;
6110
6111 update_group_power(sd, cpu);
6112 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6113 }
6114
6115 int __weak arch_sd_sibling_asym_packing(void)
6116 {
6117 return 0*SD_ASYM_PACKING;
6118 }
6119
6120 /*
6121 * Initializers for schedule domains
6122 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6123 */
6124
6125 #ifdef CONFIG_SCHED_DEBUG
6126 # define SD_INIT_NAME(sd, type) sd->name = #type
6127 #else
6128 # define SD_INIT_NAME(sd, type) do { } while (0)
6129 #endif
6130
6131 #define SD_INIT_FUNC(type) \
6132 static noinline struct sched_domain * \
6133 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6134 { \
6135 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6136 *sd = SD_##type##_INIT; \
6137 SD_INIT_NAME(sd, type); \
6138 sd->private = &tl->data; \
6139 return sd; \
6140 }
6141
6142 SD_INIT_FUNC(CPU)
6143 #ifdef CONFIG_NUMA
6144 SD_INIT_FUNC(ALLNODES)
6145 SD_INIT_FUNC(NODE)
6146 #endif
6147 #ifdef CONFIG_SCHED_SMT
6148 SD_INIT_FUNC(SIBLING)
6149 #endif
6150 #ifdef CONFIG_SCHED_MC
6151 SD_INIT_FUNC(MC)
6152 #endif
6153 #ifdef CONFIG_SCHED_BOOK
6154 SD_INIT_FUNC(BOOK)
6155 #endif
6156
6157 static int default_relax_domain_level = -1;
6158 int sched_domain_level_max;
6159
6160 static int __init setup_relax_domain_level(char *str)
6161 {
6162 unsigned long val;
6163
6164 val = simple_strtoul(str, NULL, 0);
6165 if (val < sched_domain_level_max)
6166 default_relax_domain_level = val;
6167
6168 return 1;
6169 }
6170 __setup("relax_domain_level=", setup_relax_domain_level);
6171
6172 static void set_domain_attribute(struct sched_domain *sd,
6173 struct sched_domain_attr *attr)
6174 {
6175 int request;
6176
6177 if (!attr || attr->relax_domain_level < 0) {
6178 if (default_relax_domain_level < 0)
6179 return;
6180 else
6181 request = default_relax_domain_level;
6182 } else
6183 request = attr->relax_domain_level;
6184 if (request < sd->level) {
6185 /* turn off idle balance on this domain */
6186 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6187 } else {
6188 /* turn on idle balance on this domain */
6189 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6190 }
6191 }
6192
6193 static void __sdt_free(const struct cpumask *cpu_map);
6194 static int __sdt_alloc(const struct cpumask *cpu_map);
6195
6196 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6197 const struct cpumask *cpu_map)
6198 {
6199 switch (what) {
6200 case sa_rootdomain:
6201 if (!atomic_read(&d->rd->refcount))
6202 free_rootdomain(&d->rd->rcu); /* fall through */
6203 case sa_sd:
6204 free_percpu(d->sd); /* fall through */
6205 case sa_sd_storage:
6206 __sdt_free(cpu_map); /* fall through */
6207 case sa_none:
6208 break;
6209 }
6210 }
6211
6212 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6213 const struct cpumask *cpu_map)
6214 {
6215 memset(d, 0, sizeof(*d));
6216
6217 if (__sdt_alloc(cpu_map))
6218 return sa_sd_storage;
6219 d->sd = alloc_percpu(struct sched_domain *);
6220 if (!d->sd)
6221 return sa_sd_storage;
6222 d->rd = alloc_rootdomain();
6223 if (!d->rd)
6224 return sa_sd;
6225 return sa_rootdomain;
6226 }
6227
6228 /*
6229 * NULL the sd_data elements we've used to build the sched_domain and
6230 * sched_group structure so that the subsequent __free_domain_allocs()
6231 * will not free the data we're using.
6232 */
6233 static void claim_allocations(int cpu, struct sched_domain *sd)
6234 {
6235 struct sd_data *sdd = sd->private;
6236
6237 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6238 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6239
6240 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6241 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6242
6243 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6244 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6245 }
6246
6247 #ifdef CONFIG_SCHED_SMT
6248 static const struct cpumask *cpu_smt_mask(int cpu)
6249 {
6250 return topology_thread_cpumask(cpu);
6251 }
6252 #endif
6253
6254 /*
6255 * Topology list, bottom-up.
6256 */
6257 static struct sched_domain_topology_level default_topology[] = {
6258 #ifdef CONFIG_SCHED_SMT
6259 { sd_init_SIBLING, cpu_smt_mask, },
6260 #endif
6261 #ifdef CONFIG_SCHED_MC
6262 { sd_init_MC, cpu_coregroup_mask, },
6263 #endif
6264 #ifdef CONFIG_SCHED_BOOK
6265 { sd_init_BOOK, cpu_book_mask, },
6266 #endif
6267 { sd_init_CPU, cpu_cpu_mask, },
6268 #ifdef CONFIG_NUMA
6269 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6270 { sd_init_ALLNODES, cpu_allnodes_mask, },
6271 #endif
6272 { NULL, },
6273 };
6274
6275 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6276
6277 static int __sdt_alloc(const struct cpumask *cpu_map)
6278 {
6279 struct sched_domain_topology_level *tl;
6280 int j;
6281
6282 for (tl = sched_domain_topology; tl->init; tl++) {
6283 struct sd_data *sdd = &tl->data;
6284
6285 sdd->sd = alloc_percpu(struct sched_domain *);
6286 if (!sdd->sd)
6287 return -ENOMEM;
6288
6289 sdd->sg = alloc_percpu(struct sched_group *);
6290 if (!sdd->sg)
6291 return -ENOMEM;
6292
6293 sdd->sgp = alloc_percpu(struct sched_group_power *);
6294 if (!sdd->sgp)
6295 return -ENOMEM;
6296
6297 for_each_cpu(j, cpu_map) {
6298 struct sched_domain *sd;
6299 struct sched_group *sg;
6300 struct sched_group_power *sgp;
6301
6302 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6303 GFP_KERNEL, cpu_to_node(j));
6304 if (!sd)
6305 return -ENOMEM;
6306
6307 *per_cpu_ptr(sdd->sd, j) = sd;
6308
6309 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6310 GFP_KERNEL, cpu_to_node(j));
6311 if (!sg)
6312 return -ENOMEM;
6313
6314 *per_cpu_ptr(sdd->sg, j) = sg;
6315
6316 sgp = kzalloc_node(sizeof(struct sched_group_power),
6317 GFP_KERNEL, cpu_to_node(j));
6318 if (!sgp)
6319 return -ENOMEM;
6320
6321 *per_cpu_ptr(sdd->sgp, j) = sgp;
6322 }
6323 }
6324
6325 return 0;
6326 }
6327
6328 static void __sdt_free(const struct cpumask *cpu_map)
6329 {
6330 struct sched_domain_topology_level *tl;
6331 int j;
6332
6333 for (tl = sched_domain_topology; tl->init; tl++) {
6334 struct sd_data *sdd = &tl->data;
6335
6336 for_each_cpu(j, cpu_map) {
6337 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6338 if (sd && (sd->flags & SD_OVERLAP))
6339 free_sched_groups(sd->groups, 0);
6340 kfree(*per_cpu_ptr(sdd->sd, j));
6341 kfree(*per_cpu_ptr(sdd->sg, j));
6342 kfree(*per_cpu_ptr(sdd->sgp, j));
6343 }
6344 free_percpu(sdd->sd);
6345 free_percpu(sdd->sg);
6346 free_percpu(sdd->sgp);
6347 }
6348 }
6349
6350 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6351 struct s_data *d, const struct cpumask *cpu_map,
6352 struct sched_domain_attr *attr, struct sched_domain *child,
6353 int cpu)
6354 {
6355 struct sched_domain *sd = tl->init(tl, cpu);
6356 if (!sd)
6357 return child;
6358
6359 set_domain_attribute(sd, attr);
6360 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6361 if (child) {
6362 sd->level = child->level + 1;
6363 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6364 child->parent = sd;
6365 }
6366 sd->child = child;
6367
6368 return sd;
6369 }
6370
6371 /*
6372 * Build sched domains for a given set of cpus and attach the sched domains
6373 * to the individual cpus
6374 */
6375 static int build_sched_domains(const struct cpumask *cpu_map,
6376 struct sched_domain_attr *attr)
6377 {
6378 enum s_alloc alloc_state = sa_none;
6379 struct sched_domain *sd;
6380 struct s_data d;
6381 int i, ret = -ENOMEM;
6382
6383 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6384 if (alloc_state != sa_rootdomain)
6385 goto error;
6386
6387 /* Set up domains for cpus specified by the cpu_map. */
6388 for_each_cpu(i, cpu_map) {
6389 struct sched_domain_topology_level *tl;
6390
6391 sd = NULL;
6392 for (tl = sched_domain_topology; tl->init; tl++) {
6393 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6394 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6395 sd->flags |= SD_OVERLAP;
6396 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6397 break;
6398 }
6399
6400 while (sd->child)
6401 sd = sd->child;
6402
6403 *per_cpu_ptr(d.sd, i) = sd;
6404 }
6405
6406 /* Build the groups for the domains */
6407 for_each_cpu(i, cpu_map) {
6408 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6409 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6410 if (sd->flags & SD_OVERLAP) {
6411 if (build_overlap_sched_groups(sd, i))
6412 goto error;
6413 } else {
6414 if (build_sched_groups(sd, i))
6415 goto error;
6416 }
6417 }
6418 }
6419
6420 /* Calculate CPU power for physical packages and nodes */
6421 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6422 if (!cpumask_test_cpu(i, cpu_map))
6423 continue;
6424
6425 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6426 claim_allocations(i, sd);
6427 init_sched_groups_power(i, sd);
6428 }
6429 }
6430
6431 /* Attach the domains */
6432 rcu_read_lock();
6433 for_each_cpu(i, cpu_map) {
6434 sd = *per_cpu_ptr(d.sd, i);
6435 cpu_attach_domain(sd, d.rd, i);
6436 }
6437 rcu_read_unlock();
6438
6439 ret = 0;
6440 error:
6441 __free_domain_allocs(&d, alloc_state, cpu_map);
6442 return ret;
6443 }
6444
6445 static cpumask_var_t *doms_cur; /* current sched domains */
6446 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6447 static struct sched_domain_attr *dattr_cur;
6448 /* attribues of custom domains in 'doms_cur' */
6449
6450 /*
6451 * Special case: If a kmalloc of a doms_cur partition (array of
6452 * cpumask) fails, then fallback to a single sched domain,
6453 * as determined by the single cpumask fallback_doms.
6454 */
6455 static cpumask_var_t fallback_doms;
6456
6457 /*
6458 * arch_update_cpu_topology lets virtualized architectures update the
6459 * cpu core maps. It is supposed to return 1 if the topology changed
6460 * or 0 if it stayed the same.
6461 */
6462 int __attribute__((weak)) arch_update_cpu_topology(void)
6463 {
6464 return 0;
6465 }
6466
6467 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6468 {
6469 int i;
6470 cpumask_var_t *doms;
6471
6472 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6473 if (!doms)
6474 return NULL;
6475 for (i = 0; i < ndoms; i++) {
6476 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6477 free_sched_domains(doms, i);
6478 return NULL;
6479 }
6480 }
6481 return doms;
6482 }
6483
6484 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6485 {
6486 unsigned int i;
6487 for (i = 0; i < ndoms; i++)
6488 free_cpumask_var(doms[i]);
6489 kfree(doms);
6490 }
6491
6492 /*
6493 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6494 * For now this just excludes isolated cpus, but could be used to
6495 * exclude other special cases in the future.
6496 */
6497 static int init_sched_domains(const struct cpumask *cpu_map)
6498 {
6499 int err;
6500
6501 arch_update_cpu_topology();
6502 ndoms_cur = 1;
6503 doms_cur = alloc_sched_domains(ndoms_cur);
6504 if (!doms_cur)
6505 doms_cur = &fallback_doms;
6506 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6507 dattr_cur = NULL;
6508 err = build_sched_domains(doms_cur[0], NULL);
6509 register_sched_domain_sysctl();
6510
6511 return err;
6512 }
6513
6514 /*
6515 * Detach sched domains from a group of cpus specified in cpu_map
6516 * These cpus will now be attached to the NULL domain
6517 */
6518 static void detach_destroy_domains(const struct cpumask *cpu_map)
6519 {
6520 int i;
6521
6522 rcu_read_lock();
6523 for_each_cpu(i, cpu_map)
6524 cpu_attach_domain(NULL, &def_root_domain, i);
6525 rcu_read_unlock();
6526 }
6527
6528 /* handle null as "default" */
6529 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6530 struct sched_domain_attr *new, int idx_new)
6531 {
6532 struct sched_domain_attr tmp;
6533
6534 /* fast path */
6535 if (!new && !cur)
6536 return 1;
6537
6538 tmp = SD_ATTR_INIT;
6539 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6540 new ? (new + idx_new) : &tmp,
6541 sizeof(struct sched_domain_attr));
6542 }
6543
6544 /*
6545 * Partition sched domains as specified by the 'ndoms_new'
6546 * cpumasks in the array doms_new[] of cpumasks. This compares
6547 * doms_new[] to the current sched domain partitioning, doms_cur[].
6548 * It destroys each deleted domain and builds each new domain.
6549 *
6550 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6551 * The masks don't intersect (don't overlap.) We should setup one
6552 * sched domain for each mask. CPUs not in any of the cpumasks will
6553 * not be load balanced. If the same cpumask appears both in the
6554 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6555 * it as it is.
6556 *
6557 * The passed in 'doms_new' should be allocated using
6558 * alloc_sched_domains. This routine takes ownership of it and will
6559 * free_sched_domains it when done with it. If the caller failed the
6560 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6561 * and partition_sched_domains() will fallback to the single partition
6562 * 'fallback_doms', it also forces the domains to be rebuilt.
6563 *
6564 * If doms_new == NULL it will be replaced with cpu_online_mask.
6565 * ndoms_new == 0 is a special case for destroying existing domains,
6566 * and it will not create the default domain.
6567 *
6568 * Call with hotplug lock held
6569 */
6570 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6571 struct sched_domain_attr *dattr_new)
6572 {
6573 int i, j, n;
6574 int new_topology;
6575
6576 mutex_lock(&sched_domains_mutex);
6577
6578 /* always unregister in case we don't destroy any domains */
6579 unregister_sched_domain_sysctl();
6580
6581 /* Let architecture update cpu core mappings. */
6582 new_topology = arch_update_cpu_topology();
6583
6584 n = doms_new ? ndoms_new : 0;
6585
6586 /* Destroy deleted domains */
6587 for (i = 0; i < ndoms_cur; i++) {
6588 for (j = 0; j < n && !new_topology; j++) {
6589 if (cpumask_equal(doms_cur[i], doms_new[j])
6590 && dattrs_equal(dattr_cur, i, dattr_new, j))
6591 goto match1;
6592 }
6593 /* no match - a current sched domain not in new doms_new[] */
6594 detach_destroy_domains(doms_cur[i]);
6595 match1:
6596 ;
6597 }
6598
6599 if (doms_new == NULL) {
6600 ndoms_cur = 0;
6601 doms_new = &fallback_doms;
6602 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6603 WARN_ON_ONCE(dattr_new);
6604 }
6605
6606 /* Build new domains */
6607 for (i = 0; i < ndoms_new; i++) {
6608 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6609 if (cpumask_equal(doms_new[i], doms_cur[j])
6610 && dattrs_equal(dattr_new, i, dattr_cur, j))
6611 goto match2;
6612 }
6613 /* no match - add a new doms_new */
6614 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6615 match2:
6616 ;
6617 }
6618
6619 /* Remember the new sched domains */
6620 if (doms_cur != &fallback_doms)
6621 free_sched_domains(doms_cur, ndoms_cur);
6622 kfree(dattr_cur); /* kfree(NULL) is safe */
6623 doms_cur = doms_new;
6624 dattr_cur = dattr_new;
6625 ndoms_cur = ndoms_new;
6626
6627 register_sched_domain_sysctl();
6628
6629 mutex_unlock(&sched_domains_mutex);
6630 }
6631
6632 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6633 static void reinit_sched_domains(void)
6634 {
6635 get_online_cpus();
6636
6637 /* Destroy domains first to force the rebuild */
6638 partition_sched_domains(0, NULL, NULL);
6639
6640 rebuild_sched_domains();
6641 put_online_cpus();
6642 }
6643
6644 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6645 {
6646 unsigned int level = 0;
6647
6648 if (sscanf(buf, "%u", &level) != 1)
6649 return -EINVAL;
6650
6651 /*
6652 * level is always be positive so don't check for
6653 * level < POWERSAVINGS_BALANCE_NONE which is 0
6654 * What happens on 0 or 1 byte write,
6655 * need to check for count as well?
6656 */
6657
6658 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6659 return -EINVAL;
6660
6661 if (smt)
6662 sched_smt_power_savings = level;
6663 else
6664 sched_mc_power_savings = level;
6665
6666 reinit_sched_domains();
6667
6668 return count;
6669 }
6670
6671 #ifdef CONFIG_SCHED_MC
6672 static ssize_t sched_mc_power_savings_show(struct device *dev,
6673 struct device_attribute *attr,
6674 char *buf)
6675 {
6676 return sprintf(buf, "%u\n", sched_mc_power_savings);
6677 }
6678 static ssize_t sched_mc_power_savings_store(struct device *dev,
6679 struct device_attribute *attr,
6680 const char *buf, size_t count)
6681 {
6682 return sched_power_savings_store(buf, count, 0);
6683 }
6684 static DEVICE_ATTR(sched_mc_power_savings, 0644,
6685 sched_mc_power_savings_show,
6686 sched_mc_power_savings_store);
6687 #endif
6688
6689 #ifdef CONFIG_SCHED_SMT
6690 static ssize_t sched_smt_power_savings_show(struct device *dev,
6691 struct device_attribute *attr,
6692 char *buf)
6693 {
6694 return sprintf(buf, "%u\n", sched_smt_power_savings);
6695 }
6696 static ssize_t sched_smt_power_savings_store(struct device *dev,
6697 struct device_attribute *attr,
6698 const char *buf, size_t count)
6699 {
6700 return sched_power_savings_store(buf, count, 1);
6701 }
6702 static DEVICE_ATTR(sched_smt_power_savings, 0644,
6703 sched_smt_power_savings_show,
6704 sched_smt_power_savings_store);
6705 #endif
6706
6707 int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6708 {
6709 int err = 0;
6710
6711 #ifdef CONFIG_SCHED_SMT
6712 if (smt_capable())
6713 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6714 #endif
6715 #ifdef CONFIG_SCHED_MC
6716 if (!err && mc_capable())
6717 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6718 #endif
6719 return err;
6720 }
6721 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6722
6723 /*
6724 * Update cpusets according to cpu_active mask. If cpusets are
6725 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6726 * around partition_sched_domains().
6727 */
6728 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6729 void *hcpu)
6730 {
6731 switch (action & ~CPU_TASKS_FROZEN) {
6732 case CPU_ONLINE:
6733 case CPU_DOWN_FAILED:
6734 cpuset_update_active_cpus();
6735 return NOTIFY_OK;
6736 default:
6737 return NOTIFY_DONE;
6738 }
6739 }
6740
6741 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6742 void *hcpu)
6743 {
6744 switch (action & ~CPU_TASKS_FROZEN) {
6745 case CPU_DOWN_PREPARE:
6746 cpuset_update_active_cpus();
6747 return NOTIFY_OK;
6748 default:
6749 return NOTIFY_DONE;
6750 }
6751 }
6752
6753 void __init sched_init_smp(void)
6754 {
6755 cpumask_var_t non_isolated_cpus;
6756
6757 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6758 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6759
6760 get_online_cpus();
6761 mutex_lock(&sched_domains_mutex);
6762 init_sched_domains(cpu_active_mask);
6763 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6764 if (cpumask_empty(non_isolated_cpus))
6765 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6766 mutex_unlock(&sched_domains_mutex);
6767 put_online_cpus();
6768
6769 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6770 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6771
6772 /* RT runtime code needs to handle some hotplug events */
6773 hotcpu_notifier(update_runtime, 0);
6774
6775 init_hrtick();
6776
6777 /* Move init over to a non-isolated CPU */
6778 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6779 BUG();
6780 sched_init_granularity();
6781 free_cpumask_var(non_isolated_cpus);
6782
6783 init_sched_rt_class();
6784 }
6785 #else
6786 void __init sched_init_smp(void)
6787 {
6788 sched_init_granularity();
6789 }
6790 #endif /* CONFIG_SMP */
6791
6792 const_debug unsigned int sysctl_timer_migration = 1;
6793
6794 int in_sched_functions(unsigned long addr)
6795 {
6796 return in_lock_functions(addr) ||
6797 (addr >= (unsigned long)__sched_text_start
6798 && addr < (unsigned long)__sched_text_end);
6799 }
6800
6801 #ifdef CONFIG_CGROUP_SCHED
6802 struct task_group root_task_group;
6803 #endif
6804
6805 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6806
6807 void __init sched_init(void)
6808 {
6809 int i, j;
6810 unsigned long alloc_size = 0, ptr;
6811
6812 #ifdef CONFIG_FAIR_GROUP_SCHED
6813 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6814 #endif
6815 #ifdef CONFIG_RT_GROUP_SCHED
6816 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6817 #endif
6818 #ifdef CONFIG_CPUMASK_OFFSTACK
6819 alloc_size += num_possible_cpus() * cpumask_size();
6820 #endif
6821 if (alloc_size) {
6822 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6823
6824 #ifdef CONFIG_FAIR_GROUP_SCHED
6825 root_task_group.se = (struct sched_entity **)ptr;
6826 ptr += nr_cpu_ids * sizeof(void **);
6827
6828 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6829 ptr += nr_cpu_ids * sizeof(void **);
6830
6831 #endif /* CONFIG_FAIR_GROUP_SCHED */
6832 #ifdef CONFIG_RT_GROUP_SCHED
6833 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6834 ptr += nr_cpu_ids * sizeof(void **);
6835
6836 root_task_group.rt_rq = (struct rt_rq **)ptr;
6837 ptr += nr_cpu_ids * sizeof(void **);
6838
6839 #endif /* CONFIG_RT_GROUP_SCHED */
6840 #ifdef CONFIG_CPUMASK_OFFSTACK
6841 for_each_possible_cpu(i) {
6842 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6843 ptr += cpumask_size();
6844 }
6845 #endif /* CONFIG_CPUMASK_OFFSTACK */
6846 }
6847
6848 #ifdef CONFIG_SMP
6849 init_defrootdomain();
6850 #endif
6851
6852 init_rt_bandwidth(&def_rt_bandwidth,
6853 global_rt_period(), global_rt_runtime());
6854
6855 #ifdef CONFIG_RT_GROUP_SCHED
6856 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6857 global_rt_period(), global_rt_runtime());
6858 #endif /* CONFIG_RT_GROUP_SCHED */
6859
6860 #ifdef CONFIG_CGROUP_SCHED
6861 list_add(&root_task_group.list, &task_groups);
6862 INIT_LIST_HEAD(&root_task_group.children);
6863 INIT_LIST_HEAD(&root_task_group.siblings);
6864 autogroup_init(&init_task);
6865
6866 #endif /* CONFIG_CGROUP_SCHED */
6867
6868 #ifdef CONFIG_CGROUP_CPUACCT
6869 root_cpuacct.cpustat = &kernel_cpustat;
6870 root_cpuacct.cpuusage = alloc_percpu(u64);
6871 /* Too early, not expected to fail */
6872 BUG_ON(!root_cpuacct.cpuusage);
6873 #endif
6874 for_each_possible_cpu(i) {
6875 struct rq *rq;
6876
6877 rq = cpu_rq(i);
6878 raw_spin_lock_init(&rq->lock);
6879 rq->nr_running = 0;
6880 rq->calc_load_active = 0;
6881 rq->calc_load_update = jiffies + LOAD_FREQ;
6882 init_cfs_rq(&rq->cfs);
6883 init_rt_rq(&rq->rt, rq);
6884 #ifdef CONFIG_FAIR_GROUP_SCHED
6885 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6886 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6887 /*
6888 * How much cpu bandwidth does root_task_group get?
6889 *
6890 * In case of task-groups formed thr' the cgroup filesystem, it
6891 * gets 100% of the cpu resources in the system. This overall
6892 * system cpu resource is divided among the tasks of
6893 * root_task_group and its child task-groups in a fair manner,
6894 * based on each entity's (task or task-group's) weight
6895 * (se->load.weight).
6896 *
6897 * In other words, if root_task_group has 10 tasks of weight
6898 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6899 * then A0's share of the cpu resource is:
6900 *
6901 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6902 *
6903 * We achieve this by letting root_task_group's tasks sit
6904 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6905 */
6906 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6907 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6908 #endif /* CONFIG_FAIR_GROUP_SCHED */
6909
6910 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6911 #ifdef CONFIG_RT_GROUP_SCHED
6912 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6913 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6914 #endif
6915
6916 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6917 rq->cpu_load[j] = 0;
6918
6919 rq->last_load_update_tick = jiffies;
6920
6921 #ifdef CONFIG_SMP
6922 rq->sd = NULL;
6923 rq->rd = NULL;
6924 rq->cpu_power = SCHED_POWER_SCALE;
6925 rq->post_schedule = 0;
6926 rq->active_balance = 0;
6927 rq->next_balance = jiffies;
6928 rq->push_cpu = 0;
6929 rq->cpu = i;
6930 rq->online = 0;
6931 rq->idle_stamp = 0;
6932 rq->avg_idle = 2*sysctl_sched_migration_cost;
6933 rq_attach_root(rq, &def_root_domain);
6934 #ifdef CONFIG_NO_HZ
6935 rq->nohz_flags = 0;
6936 #endif
6937 #endif
6938 init_rq_hrtick(rq);
6939 atomic_set(&rq->nr_iowait, 0);
6940 }
6941
6942 set_load_weight(&init_task);
6943
6944 #ifdef CONFIG_PREEMPT_NOTIFIERS
6945 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6946 #endif
6947
6948 #ifdef CONFIG_RT_MUTEXES
6949 plist_head_init(&init_task.pi_waiters);
6950 #endif
6951
6952 /*
6953 * The boot idle thread does lazy MMU switching as well:
6954 */
6955 atomic_inc(&init_mm.mm_count);
6956 enter_lazy_tlb(&init_mm, current);
6957
6958 /*
6959 * Make us the idle thread. Technically, schedule() should not be
6960 * called from this thread, however somewhere below it might be,
6961 * but because we are the idle thread, we just pick up running again
6962 * when this runqueue becomes "idle".
6963 */
6964 init_idle(current, smp_processor_id());
6965
6966 calc_load_update = jiffies + LOAD_FREQ;
6967
6968 /*
6969 * During early bootup we pretend to be a normal task:
6970 */
6971 current->sched_class = &fair_sched_class;
6972
6973 #ifdef CONFIG_SMP
6974 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6975 /* May be allocated at isolcpus cmdline parse time */
6976 if (cpu_isolated_map == NULL)
6977 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6978 #endif
6979 init_sched_fair_class();
6980
6981 scheduler_running = 1;
6982 }
6983
6984 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6985 static inline int preempt_count_equals(int preempt_offset)
6986 {
6987 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6988
6989 return (nested == preempt_offset);
6990 }
6991
6992 void __might_sleep(const char *file, int line, int preempt_offset)
6993 {
6994 static unsigned long prev_jiffy; /* ratelimiting */
6995
6996 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6997 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6998 system_state != SYSTEM_RUNNING || oops_in_progress)
6999 return;
7000 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7001 return;
7002 prev_jiffy = jiffies;
7003
7004 printk(KERN_ERR
7005 "BUG: sleeping function called from invalid context at %s:%d\n",
7006 file, line);
7007 printk(KERN_ERR
7008 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7009 in_atomic(), irqs_disabled(),
7010 current->pid, current->comm);
7011
7012 debug_show_held_locks(current);
7013 if (irqs_disabled())
7014 print_irqtrace_events(current);
7015 dump_stack();
7016 }
7017 EXPORT_SYMBOL(__might_sleep);
7018 #endif
7019
7020 #ifdef CONFIG_MAGIC_SYSRQ
7021 static void normalize_task(struct rq *rq, struct task_struct *p)
7022 {
7023 const struct sched_class *prev_class = p->sched_class;
7024 int old_prio = p->prio;
7025 int on_rq;
7026
7027 on_rq = p->on_rq;
7028 if (on_rq)
7029 dequeue_task(rq, p, 0);
7030 __setscheduler(rq, p, SCHED_NORMAL, 0);
7031 if (on_rq) {
7032 enqueue_task(rq, p, 0);
7033 resched_task(rq->curr);
7034 }
7035
7036 check_class_changed(rq, p, prev_class, old_prio);
7037 }
7038
7039 void normalize_rt_tasks(void)
7040 {
7041 struct task_struct *g, *p;
7042 unsigned long flags;
7043 struct rq *rq;
7044
7045 read_lock_irqsave(&tasklist_lock, flags);
7046 do_each_thread(g, p) {
7047 /*
7048 * Only normalize user tasks:
7049 */
7050 if (!p->mm)
7051 continue;
7052
7053 p->se.exec_start = 0;
7054 #ifdef CONFIG_SCHEDSTATS
7055 p->se.statistics.wait_start = 0;
7056 p->se.statistics.sleep_start = 0;
7057 p->se.statistics.block_start = 0;
7058 #endif
7059
7060 if (!rt_task(p)) {
7061 /*
7062 * Renice negative nice level userspace
7063 * tasks back to 0:
7064 */
7065 if (TASK_NICE(p) < 0 && p->mm)
7066 set_user_nice(p, 0);
7067 continue;
7068 }
7069
7070 raw_spin_lock(&p->pi_lock);
7071 rq = __task_rq_lock(p);
7072
7073 normalize_task(rq, p);
7074
7075 __task_rq_unlock(rq);
7076 raw_spin_unlock(&p->pi_lock);
7077 } while_each_thread(g, p);
7078
7079 read_unlock_irqrestore(&tasklist_lock, flags);
7080 }
7081
7082 #endif /* CONFIG_MAGIC_SYSRQ */
7083
7084 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7085 /*
7086 * These functions are only useful for the IA64 MCA handling, or kdb.
7087 *
7088 * They can only be called when the whole system has been
7089 * stopped - every CPU needs to be quiescent, and no scheduling
7090 * activity can take place. Using them for anything else would
7091 * be a serious bug, and as a result, they aren't even visible
7092 * under any other configuration.
7093 */
7094
7095 /**
7096 * curr_task - return the current task for a given cpu.
7097 * @cpu: the processor in question.
7098 *
7099 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7100 */
7101 struct task_struct *curr_task(int cpu)
7102 {
7103 return cpu_curr(cpu);
7104 }
7105
7106 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7107
7108 #ifdef CONFIG_IA64
7109 /**
7110 * set_curr_task - set the current task for a given cpu.
7111 * @cpu: the processor in question.
7112 * @p: the task pointer to set.
7113 *
7114 * Description: This function must only be used when non-maskable interrupts
7115 * are serviced on a separate stack. It allows the architecture to switch the
7116 * notion of the current task on a cpu in a non-blocking manner. This function
7117 * must be called with all CPU's synchronized, and interrupts disabled, the
7118 * and caller must save the original value of the current task (see
7119 * curr_task() above) and restore that value before reenabling interrupts and
7120 * re-starting the system.
7121 *
7122 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7123 */
7124 void set_curr_task(int cpu, struct task_struct *p)
7125 {
7126 cpu_curr(cpu) = p;
7127 }
7128
7129 #endif
7130
7131 #ifdef CONFIG_CGROUP_SCHED
7132 /* task_group_lock serializes the addition/removal of task groups */
7133 static DEFINE_SPINLOCK(task_group_lock);
7134
7135 static void free_sched_group(struct task_group *tg)
7136 {
7137 free_fair_sched_group(tg);
7138 free_rt_sched_group(tg);
7139 autogroup_free(tg);
7140 kfree(tg);
7141 }
7142
7143 /* allocate runqueue etc for a new task group */
7144 struct task_group *sched_create_group(struct task_group *parent)
7145 {
7146 struct task_group *tg;
7147 unsigned long flags;
7148
7149 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7150 if (!tg)
7151 return ERR_PTR(-ENOMEM);
7152
7153 if (!alloc_fair_sched_group(tg, parent))
7154 goto err;
7155
7156 if (!alloc_rt_sched_group(tg, parent))
7157 goto err;
7158
7159 spin_lock_irqsave(&task_group_lock, flags);
7160 list_add_rcu(&tg->list, &task_groups);
7161
7162 WARN_ON(!parent); /* root should already exist */
7163
7164 tg->parent = parent;
7165 INIT_LIST_HEAD(&tg->children);
7166 list_add_rcu(&tg->siblings, &parent->children);
7167 spin_unlock_irqrestore(&task_group_lock, flags);
7168
7169 return tg;
7170
7171 err:
7172 free_sched_group(tg);
7173 return ERR_PTR(-ENOMEM);
7174 }
7175
7176 /* rcu callback to free various structures associated with a task group */
7177 static void free_sched_group_rcu(struct rcu_head *rhp)
7178 {
7179 /* now it should be safe to free those cfs_rqs */
7180 free_sched_group(container_of(rhp, struct task_group, rcu));
7181 }
7182
7183 /* Destroy runqueue etc associated with a task group */
7184 void sched_destroy_group(struct task_group *tg)
7185 {
7186 unsigned long flags;
7187 int i;
7188
7189 /* end participation in shares distribution */
7190 for_each_possible_cpu(i)
7191 unregister_fair_sched_group(tg, i);
7192
7193 spin_lock_irqsave(&task_group_lock, flags);
7194 list_del_rcu(&tg->list);
7195 list_del_rcu(&tg->siblings);
7196 spin_unlock_irqrestore(&task_group_lock, flags);
7197
7198 /* wait for possible concurrent references to cfs_rqs complete */
7199 call_rcu(&tg->rcu, free_sched_group_rcu);
7200 }
7201
7202 /* change task's runqueue when it moves between groups.
7203 * The caller of this function should have put the task in its new group
7204 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7205 * reflect its new group.
7206 */
7207 void sched_move_task(struct task_struct *tsk)
7208 {
7209 int on_rq, running;
7210 unsigned long flags;
7211 struct rq *rq;
7212
7213 rq = task_rq_lock(tsk, &flags);
7214
7215 running = task_current(rq, tsk);
7216 on_rq = tsk->on_rq;
7217
7218 if (on_rq)
7219 dequeue_task(rq, tsk, 0);
7220 if (unlikely(running))
7221 tsk->sched_class->put_prev_task(rq, tsk);
7222
7223 #ifdef CONFIG_FAIR_GROUP_SCHED
7224 if (tsk->sched_class->task_move_group)
7225 tsk->sched_class->task_move_group(tsk, on_rq);
7226 else
7227 #endif
7228 set_task_rq(tsk, task_cpu(tsk));
7229
7230 if (unlikely(running))
7231 tsk->sched_class->set_curr_task(rq);
7232 if (on_rq)
7233 enqueue_task(rq, tsk, 0);
7234
7235 task_rq_unlock(rq, tsk, &flags);
7236 }
7237 #endif /* CONFIG_CGROUP_SCHED */
7238
7239 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7240 static unsigned long to_ratio(u64 period, u64 runtime)
7241 {
7242 if (runtime == RUNTIME_INF)
7243 return 1ULL << 20;
7244
7245 return div64_u64(runtime << 20, period);
7246 }
7247 #endif
7248
7249 #ifdef CONFIG_RT_GROUP_SCHED
7250 /*
7251 * Ensure that the real time constraints are schedulable.
7252 */
7253 static DEFINE_MUTEX(rt_constraints_mutex);
7254
7255 /* Must be called with tasklist_lock held */
7256 static inline int tg_has_rt_tasks(struct task_group *tg)
7257 {
7258 struct task_struct *g, *p;
7259
7260 do_each_thread(g, p) {
7261 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7262 return 1;
7263 } while_each_thread(g, p);
7264
7265 return 0;
7266 }
7267
7268 struct rt_schedulable_data {
7269 struct task_group *tg;
7270 u64 rt_period;
7271 u64 rt_runtime;
7272 };
7273
7274 static int tg_rt_schedulable(struct task_group *tg, void *data)
7275 {
7276 struct rt_schedulable_data *d = data;
7277 struct task_group *child;
7278 unsigned long total, sum = 0;
7279 u64 period, runtime;
7280
7281 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7282 runtime = tg->rt_bandwidth.rt_runtime;
7283
7284 if (tg == d->tg) {
7285 period = d->rt_period;
7286 runtime = d->rt_runtime;
7287 }
7288
7289 /*
7290 * Cannot have more runtime than the period.
7291 */
7292 if (runtime > period && runtime != RUNTIME_INF)
7293 return -EINVAL;
7294
7295 /*
7296 * Ensure we don't starve existing RT tasks.
7297 */
7298 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7299 return -EBUSY;
7300
7301 total = to_ratio(period, runtime);
7302
7303 /*
7304 * Nobody can have more than the global setting allows.
7305 */
7306 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7307 return -EINVAL;
7308
7309 /*
7310 * The sum of our children's runtime should not exceed our own.
7311 */
7312 list_for_each_entry_rcu(child, &tg->children, siblings) {
7313 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7314 runtime = child->rt_bandwidth.rt_runtime;
7315
7316 if (child == d->tg) {
7317 period = d->rt_period;
7318 runtime = d->rt_runtime;
7319 }
7320
7321 sum += to_ratio(period, runtime);
7322 }
7323
7324 if (sum > total)
7325 return -EINVAL;
7326
7327 return 0;
7328 }
7329
7330 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7331 {
7332 int ret;
7333
7334 struct rt_schedulable_data data = {
7335 .tg = tg,
7336 .rt_period = period,
7337 .rt_runtime = runtime,
7338 };
7339
7340 rcu_read_lock();
7341 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7342 rcu_read_unlock();
7343
7344 return ret;
7345 }
7346
7347 static int tg_set_rt_bandwidth(struct task_group *tg,
7348 u64 rt_period, u64 rt_runtime)
7349 {
7350 int i, err = 0;
7351
7352 mutex_lock(&rt_constraints_mutex);
7353 read_lock(&tasklist_lock);
7354 err = __rt_schedulable(tg, rt_period, rt_runtime);
7355 if (err)
7356 goto unlock;
7357
7358 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7359 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7360 tg->rt_bandwidth.rt_runtime = rt_runtime;
7361
7362 for_each_possible_cpu(i) {
7363 struct rt_rq *rt_rq = tg->rt_rq[i];
7364
7365 raw_spin_lock(&rt_rq->rt_runtime_lock);
7366 rt_rq->rt_runtime = rt_runtime;
7367 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7368 }
7369 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7370 unlock:
7371 read_unlock(&tasklist_lock);
7372 mutex_unlock(&rt_constraints_mutex);
7373
7374 return err;
7375 }
7376
7377 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7378 {
7379 u64 rt_runtime, rt_period;
7380
7381 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7382 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7383 if (rt_runtime_us < 0)
7384 rt_runtime = RUNTIME_INF;
7385
7386 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7387 }
7388
7389 long sched_group_rt_runtime(struct task_group *tg)
7390 {
7391 u64 rt_runtime_us;
7392
7393 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7394 return -1;
7395
7396 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7397 do_div(rt_runtime_us, NSEC_PER_USEC);
7398 return rt_runtime_us;
7399 }
7400
7401 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7402 {
7403 u64 rt_runtime, rt_period;
7404
7405 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7406 rt_runtime = tg->rt_bandwidth.rt_runtime;
7407
7408 if (rt_period == 0)
7409 return -EINVAL;
7410
7411 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7412 }
7413
7414 long sched_group_rt_period(struct task_group *tg)
7415 {
7416 u64 rt_period_us;
7417
7418 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7419 do_div(rt_period_us, NSEC_PER_USEC);
7420 return rt_period_us;
7421 }
7422
7423 static int sched_rt_global_constraints(void)
7424 {
7425 u64 runtime, period;
7426 int ret = 0;
7427
7428 if (sysctl_sched_rt_period <= 0)
7429 return -EINVAL;
7430
7431 runtime = global_rt_runtime();
7432 period = global_rt_period();
7433
7434 /*
7435 * Sanity check on the sysctl variables.
7436 */
7437 if (runtime > period && runtime != RUNTIME_INF)
7438 return -EINVAL;
7439
7440 mutex_lock(&rt_constraints_mutex);
7441 read_lock(&tasklist_lock);
7442 ret = __rt_schedulable(NULL, 0, 0);
7443 read_unlock(&tasklist_lock);
7444 mutex_unlock(&rt_constraints_mutex);
7445
7446 return ret;
7447 }
7448
7449 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7450 {
7451 /* Don't accept realtime tasks when there is no way for them to run */
7452 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7453 return 0;
7454
7455 return 1;
7456 }
7457
7458 #else /* !CONFIG_RT_GROUP_SCHED */
7459 static int sched_rt_global_constraints(void)
7460 {
7461 unsigned long flags;
7462 int i;
7463
7464 if (sysctl_sched_rt_period <= 0)
7465 return -EINVAL;
7466
7467 /*
7468 * There's always some RT tasks in the root group
7469 * -- migration, kstopmachine etc..
7470 */
7471 if (sysctl_sched_rt_runtime == 0)
7472 return -EBUSY;
7473
7474 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7475 for_each_possible_cpu(i) {
7476 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7477
7478 raw_spin_lock(&rt_rq->rt_runtime_lock);
7479 rt_rq->rt_runtime = global_rt_runtime();
7480 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7481 }
7482 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7483
7484 return 0;
7485 }
7486 #endif /* CONFIG_RT_GROUP_SCHED */
7487
7488 int sched_rt_handler(struct ctl_table *table, int write,
7489 void __user *buffer, size_t *lenp,
7490 loff_t *ppos)
7491 {
7492 int ret;
7493 int old_period, old_runtime;
7494 static DEFINE_MUTEX(mutex);
7495
7496 mutex_lock(&mutex);
7497 old_period = sysctl_sched_rt_period;
7498 old_runtime = sysctl_sched_rt_runtime;
7499
7500 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7501
7502 if (!ret && write) {
7503 ret = sched_rt_global_constraints();
7504 if (ret) {
7505 sysctl_sched_rt_period = old_period;
7506 sysctl_sched_rt_runtime = old_runtime;
7507 } else {
7508 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7509 def_rt_bandwidth.rt_period =
7510 ns_to_ktime(global_rt_period());
7511 }
7512 }
7513 mutex_unlock(&mutex);
7514
7515 return ret;
7516 }
7517
7518 #ifdef CONFIG_CGROUP_SCHED
7519
7520 /* return corresponding task_group object of a cgroup */
7521 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7522 {
7523 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7524 struct task_group, css);
7525 }
7526
7527 static struct cgroup_subsys_state *
7528 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7529 {
7530 struct task_group *tg, *parent;
7531
7532 if (!cgrp->parent) {
7533 /* This is early initialization for the top cgroup */
7534 return &root_task_group.css;
7535 }
7536
7537 parent = cgroup_tg(cgrp->parent);
7538 tg = sched_create_group(parent);
7539 if (IS_ERR(tg))
7540 return ERR_PTR(-ENOMEM);
7541
7542 return &tg->css;
7543 }
7544
7545 static void
7546 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7547 {
7548 struct task_group *tg = cgroup_tg(cgrp);
7549
7550 sched_destroy_group(tg);
7551 }
7552
7553 static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7554 struct cgroup_taskset *tset)
7555 {
7556 struct task_struct *task;
7557
7558 cgroup_taskset_for_each(task, cgrp, tset) {
7559 #ifdef CONFIG_RT_GROUP_SCHED
7560 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7561 return -EINVAL;
7562 #else
7563 /* We don't support RT-tasks being in separate groups */
7564 if (task->sched_class != &fair_sched_class)
7565 return -EINVAL;
7566 #endif
7567 }
7568 return 0;
7569 }
7570
7571 static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7572 struct cgroup_taskset *tset)
7573 {
7574 struct task_struct *task;
7575
7576 cgroup_taskset_for_each(task, cgrp, tset)
7577 sched_move_task(task);
7578 }
7579
7580 static void
7581 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7582 struct cgroup *old_cgrp, struct task_struct *task)
7583 {
7584 /*
7585 * cgroup_exit() is called in the copy_process() failure path.
7586 * Ignore this case since the task hasn't ran yet, this avoids
7587 * trying to poke a half freed task state from generic code.
7588 */
7589 if (!(task->flags & PF_EXITING))
7590 return;
7591
7592 sched_move_task(task);
7593 }
7594
7595 #ifdef CONFIG_FAIR_GROUP_SCHED
7596 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7597 u64 shareval)
7598 {
7599 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7600 }
7601
7602 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7603 {
7604 struct task_group *tg = cgroup_tg(cgrp);
7605
7606 return (u64) scale_load_down(tg->shares);
7607 }
7608
7609 #ifdef CONFIG_CFS_BANDWIDTH
7610 static DEFINE_MUTEX(cfs_constraints_mutex);
7611
7612 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7613 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7614
7615 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7616
7617 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7618 {
7619 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7620 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7621
7622 if (tg == &root_task_group)
7623 return -EINVAL;
7624
7625 /*
7626 * Ensure we have at some amount of bandwidth every period. This is
7627 * to prevent reaching a state of large arrears when throttled via
7628 * entity_tick() resulting in prolonged exit starvation.
7629 */
7630 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7631 return -EINVAL;
7632
7633 /*
7634 * Likewise, bound things on the otherside by preventing insane quota
7635 * periods. This also allows us to normalize in computing quota
7636 * feasibility.
7637 */
7638 if (period > max_cfs_quota_period)
7639 return -EINVAL;
7640
7641 mutex_lock(&cfs_constraints_mutex);
7642 ret = __cfs_schedulable(tg, period, quota);
7643 if (ret)
7644 goto out_unlock;
7645
7646 runtime_enabled = quota != RUNTIME_INF;
7647 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7648 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7649 raw_spin_lock_irq(&cfs_b->lock);
7650 cfs_b->period = ns_to_ktime(period);
7651 cfs_b->quota = quota;
7652
7653 __refill_cfs_bandwidth_runtime(cfs_b);
7654 /* restart the period timer (if active) to handle new period expiry */
7655 if (runtime_enabled && cfs_b->timer_active) {
7656 /* force a reprogram */
7657 cfs_b->timer_active = 0;
7658 __start_cfs_bandwidth(cfs_b);
7659 }
7660 raw_spin_unlock_irq(&cfs_b->lock);
7661
7662 for_each_possible_cpu(i) {
7663 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7664 struct rq *rq = cfs_rq->rq;
7665
7666 raw_spin_lock_irq(&rq->lock);
7667 cfs_rq->runtime_enabled = runtime_enabled;
7668 cfs_rq->runtime_remaining = 0;
7669
7670 if (cfs_rq->throttled)
7671 unthrottle_cfs_rq(cfs_rq);
7672 raw_spin_unlock_irq(&rq->lock);
7673 }
7674 out_unlock:
7675 mutex_unlock(&cfs_constraints_mutex);
7676
7677 return ret;
7678 }
7679
7680 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7681 {
7682 u64 quota, period;
7683
7684 period = ktime_to_ns(tg->cfs_bandwidth.period);
7685 if (cfs_quota_us < 0)
7686 quota = RUNTIME_INF;
7687 else
7688 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7689
7690 return tg_set_cfs_bandwidth(tg, period, quota);
7691 }
7692
7693 long tg_get_cfs_quota(struct task_group *tg)
7694 {
7695 u64 quota_us;
7696
7697 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7698 return -1;
7699
7700 quota_us = tg->cfs_bandwidth.quota;
7701 do_div(quota_us, NSEC_PER_USEC);
7702
7703 return quota_us;
7704 }
7705
7706 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7707 {
7708 u64 quota, period;
7709
7710 period = (u64)cfs_period_us * NSEC_PER_USEC;
7711 quota = tg->cfs_bandwidth.quota;
7712
7713 return tg_set_cfs_bandwidth(tg, period, quota);
7714 }
7715
7716 long tg_get_cfs_period(struct task_group *tg)
7717 {
7718 u64 cfs_period_us;
7719
7720 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7721 do_div(cfs_period_us, NSEC_PER_USEC);
7722
7723 return cfs_period_us;
7724 }
7725
7726 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7727 {
7728 return tg_get_cfs_quota(cgroup_tg(cgrp));
7729 }
7730
7731 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7732 s64 cfs_quota_us)
7733 {
7734 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7735 }
7736
7737 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7738 {
7739 return tg_get_cfs_period(cgroup_tg(cgrp));
7740 }
7741
7742 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7743 u64 cfs_period_us)
7744 {
7745 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7746 }
7747
7748 struct cfs_schedulable_data {
7749 struct task_group *tg;
7750 u64 period, quota;
7751 };
7752
7753 /*
7754 * normalize group quota/period to be quota/max_period
7755 * note: units are usecs
7756 */
7757 static u64 normalize_cfs_quota(struct task_group *tg,
7758 struct cfs_schedulable_data *d)
7759 {
7760 u64 quota, period;
7761
7762 if (tg == d->tg) {
7763 period = d->period;
7764 quota = d->quota;
7765 } else {
7766 period = tg_get_cfs_period(tg);
7767 quota = tg_get_cfs_quota(tg);
7768 }
7769
7770 /* note: these should typically be equivalent */
7771 if (quota == RUNTIME_INF || quota == -1)
7772 return RUNTIME_INF;
7773
7774 return to_ratio(period, quota);
7775 }
7776
7777 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7778 {
7779 struct cfs_schedulable_data *d = data;
7780 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7781 s64 quota = 0, parent_quota = -1;
7782
7783 if (!tg->parent) {
7784 quota = RUNTIME_INF;
7785 } else {
7786 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7787
7788 quota = normalize_cfs_quota(tg, d);
7789 parent_quota = parent_b->hierarchal_quota;
7790
7791 /*
7792 * ensure max(child_quota) <= parent_quota, inherit when no
7793 * limit is set
7794 */
7795 if (quota == RUNTIME_INF)
7796 quota = parent_quota;
7797 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7798 return -EINVAL;
7799 }
7800 cfs_b->hierarchal_quota = quota;
7801
7802 return 0;
7803 }
7804
7805 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7806 {
7807 int ret;
7808 struct cfs_schedulable_data data = {
7809 .tg = tg,
7810 .period = period,
7811 .quota = quota,
7812 };
7813
7814 if (quota != RUNTIME_INF) {
7815 do_div(data.period, NSEC_PER_USEC);
7816 do_div(data.quota, NSEC_PER_USEC);
7817 }
7818
7819 rcu_read_lock();
7820 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7821 rcu_read_unlock();
7822
7823 return ret;
7824 }
7825
7826 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7827 struct cgroup_map_cb *cb)
7828 {
7829 struct task_group *tg = cgroup_tg(cgrp);
7830 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7831
7832 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7833 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7834 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7835
7836 return 0;
7837 }
7838 #endif /* CONFIG_CFS_BANDWIDTH */
7839 #endif /* CONFIG_FAIR_GROUP_SCHED */
7840
7841 #ifdef CONFIG_RT_GROUP_SCHED
7842 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7843 s64 val)
7844 {
7845 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7846 }
7847
7848 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7849 {
7850 return sched_group_rt_runtime(cgroup_tg(cgrp));
7851 }
7852
7853 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7854 u64 rt_period_us)
7855 {
7856 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7857 }
7858
7859 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7860 {
7861 return sched_group_rt_period(cgroup_tg(cgrp));
7862 }
7863 #endif /* CONFIG_RT_GROUP_SCHED */
7864
7865 static struct cftype cpu_files[] = {
7866 #ifdef CONFIG_FAIR_GROUP_SCHED
7867 {
7868 .name = "shares",
7869 .read_u64 = cpu_shares_read_u64,
7870 .write_u64 = cpu_shares_write_u64,
7871 },
7872 #endif
7873 #ifdef CONFIG_CFS_BANDWIDTH
7874 {
7875 .name = "cfs_quota_us",
7876 .read_s64 = cpu_cfs_quota_read_s64,
7877 .write_s64 = cpu_cfs_quota_write_s64,
7878 },
7879 {
7880 .name = "cfs_period_us",
7881 .read_u64 = cpu_cfs_period_read_u64,
7882 .write_u64 = cpu_cfs_period_write_u64,
7883 },
7884 {
7885 .name = "stat",
7886 .read_map = cpu_stats_show,
7887 },
7888 #endif
7889 #ifdef CONFIG_RT_GROUP_SCHED
7890 {
7891 .name = "rt_runtime_us",
7892 .read_s64 = cpu_rt_runtime_read,
7893 .write_s64 = cpu_rt_runtime_write,
7894 },
7895 {
7896 .name = "rt_period_us",
7897 .read_u64 = cpu_rt_period_read_uint,
7898 .write_u64 = cpu_rt_period_write_uint,
7899 },
7900 #endif
7901 };
7902
7903 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7904 {
7905 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7906 }
7907
7908 struct cgroup_subsys cpu_cgroup_subsys = {
7909 .name = "cpu",
7910 .create = cpu_cgroup_create,
7911 .destroy = cpu_cgroup_destroy,
7912 .can_attach = cpu_cgroup_can_attach,
7913 .attach = cpu_cgroup_attach,
7914 .exit = cpu_cgroup_exit,
7915 .populate = cpu_cgroup_populate,
7916 .subsys_id = cpu_cgroup_subsys_id,
7917 .early_init = 1,
7918 };
7919
7920 #endif /* CONFIG_CGROUP_SCHED */
7921
7922 #ifdef CONFIG_CGROUP_CPUACCT
7923
7924 /*
7925 * CPU accounting code for task groups.
7926 *
7927 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7928 * (balbir@in.ibm.com).
7929 */
7930
7931 /* create a new cpu accounting group */
7932 static struct cgroup_subsys_state *cpuacct_create(
7933 struct cgroup_subsys *ss, struct cgroup *cgrp)
7934 {
7935 struct cpuacct *ca;
7936
7937 if (!cgrp->parent)
7938 return &root_cpuacct.css;
7939
7940 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7941 if (!ca)
7942 goto out;
7943
7944 ca->cpuusage = alloc_percpu(u64);
7945 if (!ca->cpuusage)
7946 goto out_free_ca;
7947
7948 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7949 if (!ca->cpustat)
7950 goto out_free_cpuusage;
7951
7952 return &ca->css;
7953
7954 out_free_cpuusage:
7955 free_percpu(ca->cpuusage);
7956 out_free_ca:
7957 kfree(ca);
7958 out:
7959 return ERR_PTR(-ENOMEM);
7960 }
7961
7962 /* destroy an existing cpu accounting group */
7963 static void
7964 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7965 {
7966 struct cpuacct *ca = cgroup_ca(cgrp);
7967
7968 free_percpu(ca->cpustat);
7969 free_percpu(ca->cpuusage);
7970 kfree(ca);
7971 }
7972
7973 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7974 {
7975 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7976 u64 data;
7977
7978 #ifndef CONFIG_64BIT
7979 /*
7980 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7981 */
7982 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7983 data = *cpuusage;
7984 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7985 #else
7986 data = *cpuusage;
7987 #endif
7988
7989 return data;
7990 }
7991
7992 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7993 {
7994 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7995
7996 #ifndef CONFIG_64BIT
7997 /*
7998 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7999 */
8000 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8001 *cpuusage = val;
8002 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8003 #else
8004 *cpuusage = val;
8005 #endif
8006 }
8007
8008 /* return total cpu usage (in nanoseconds) of a group */
8009 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8010 {
8011 struct cpuacct *ca = cgroup_ca(cgrp);
8012 u64 totalcpuusage = 0;
8013 int i;
8014
8015 for_each_present_cpu(i)
8016 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8017
8018 return totalcpuusage;
8019 }
8020
8021 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8022 u64 reset)
8023 {
8024 struct cpuacct *ca = cgroup_ca(cgrp);
8025 int err = 0;
8026 int i;
8027
8028 if (reset) {
8029 err = -EINVAL;
8030 goto out;
8031 }
8032
8033 for_each_present_cpu(i)
8034 cpuacct_cpuusage_write(ca, i, 0);
8035
8036 out:
8037 return err;
8038 }
8039
8040 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8041 struct seq_file *m)
8042 {
8043 struct cpuacct *ca = cgroup_ca(cgroup);
8044 u64 percpu;
8045 int i;
8046
8047 for_each_present_cpu(i) {
8048 percpu = cpuacct_cpuusage_read(ca, i);
8049 seq_printf(m, "%llu ", (unsigned long long) percpu);
8050 }
8051 seq_printf(m, "\n");
8052 return 0;
8053 }
8054
8055 static const char *cpuacct_stat_desc[] = {
8056 [CPUACCT_STAT_USER] = "user",
8057 [CPUACCT_STAT_SYSTEM] = "system",
8058 };
8059
8060 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8061 struct cgroup_map_cb *cb)
8062 {
8063 struct cpuacct *ca = cgroup_ca(cgrp);
8064 int cpu;
8065 s64 val = 0;
8066
8067 for_each_online_cpu(cpu) {
8068 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8069 val += kcpustat->cpustat[CPUTIME_USER];
8070 val += kcpustat->cpustat[CPUTIME_NICE];
8071 }
8072 val = cputime64_to_clock_t(val);
8073 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8074
8075 val = 0;
8076 for_each_online_cpu(cpu) {
8077 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8078 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8079 val += kcpustat->cpustat[CPUTIME_IRQ];
8080 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8081 }
8082
8083 val = cputime64_to_clock_t(val);
8084 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8085
8086 return 0;
8087 }
8088
8089 static struct cftype files[] = {
8090 {
8091 .name = "usage",
8092 .read_u64 = cpuusage_read,
8093 .write_u64 = cpuusage_write,
8094 },
8095 {
8096 .name = "usage_percpu",
8097 .read_seq_string = cpuacct_percpu_seq_read,
8098 },
8099 {
8100 .name = "stat",
8101 .read_map = cpuacct_stats_show,
8102 },
8103 };
8104
8105 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8106 {
8107 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8108 }
8109
8110 /*
8111 * charge this task's execution time to its accounting group.
8112 *
8113 * called with rq->lock held.
8114 */
8115 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8116 {
8117 struct cpuacct *ca;
8118 int cpu;
8119
8120 if (unlikely(!cpuacct_subsys.active))
8121 return;
8122
8123 cpu = task_cpu(tsk);
8124
8125 rcu_read_lock();
8126
8127 ca = task_ca(tsk);
8128
8129 for (; ca; ca = parent_ca(ca)) {
8130 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8131 *cpuusage += cputime;
8132 }
8133
8134 rcu_read_unlock();
8135 }
8136
8137 struct cgroup_subsys cpuacct_subsys = {
8138 .name = "cpuacct",
8139 .create = cpuacct_create,
8140 .destroy = cpuacct_destroy,
8141 .populate = cpuacct_populate,
8142 .subsys_id = cpuacct_subsys_id,
8143 };
8144 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.192276 seconds and 4 git commands to generate.