sched/numa: Init numa balancing fields of init_task
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 unsigned long delta;
96 ktime_t soft, hard, now;
97
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
104
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111 }
112
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118 void update_rq_clock(struct rq *rq)
119 {
120 s64 delta;
121
122 if (rq->skip_clock_update > 0)
123 return;
124
125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 if (delta < 0)
127 return;
128 rq->clock += delta;
129 update_rq_clock_task(rq, delta);
130 }
131
132 /*
133 * Debugging: various feature bits
134 */
135
136 #define SCHED_FEAT(name, enabled) \
137 (1UL << __SCHED_FEAT_##name) * enabled |
138
139 const_debug unsigned int sysctl_sched_features =
140 #include "features.h"
141 0;
142
143 #undef SCHED_FEAT
144
145 #ifdef CONFIG_SCHED_DEBUG
146 #define SCHED_FEAT(name, enabled) \
147 #name ,
148
149 static const char * const sched_feat_names[] = {
150 #include "features.h"
151 };
152
153 #undef SCHED_FEAT
154
155 static int sched_feat_show(struct seq_file *m, void *v)
156 {
157 int i;
158
159 for (i = 0; i < __SCHED_FEAT_NR; i++) {
160 if (!(sysctl_sched_features & (1UL << i)))
161 seq_puts(m, "NO_");
162 seq_printf(m, "%s ", sched_feat_names[i]);
163 }
164 seq_puts(m, "\n");
165
166 return 0;
167 }
168
169 #ifdef HAVE_JUMP_LABEL
170
171 #define jump_label_key__true STATIC_KEY_INIT_TRUE
172 #define jump_label_key__false STATIC_KEY_INIT_FALSE
173
174 #define SCHED_FEAT(name, enabled) \
175 jump_label_key__##enabled ,
176
177 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
178 #include "features.h"
179 };
180
181 #undef SCHED_FEAT
182
183 static void sched_feat_disable(int i)
184 {
185 if (static_key_enabled(&sched_feat_keys[i]))
186 static_key_slow_dec(&sched_feat_keys[i]);
187 }
188
189 static void sched_feat_enable(int i)
190 {
191 if (!static_key_enabled(&sched_feat_keys[i]))
192 static_key_slow_inc(&sched_feat_keys[i]);
193 }
194 #else
195 static void sched_feat_disable(int i) { };
196 static void sched_feat_enable(int i) { };
197 #endif /* HAVE_JUMP_LABEL */
198
199 static int sched_feat_set(char *cmp)
200 {
201 int i;
202 int neg = 0;
203
204 if (strncmp(cmp, "NO_", 3) == 0) {
205 neg = 1;
206 cmp += 3;
207 }
208
209 for (i = 0; i < __SCHED_FEAT_NR; i++) {
210 if (strcmp(cmp, sched_feat_names[i]) == 0) {
211 if (neg) {
212 sysctl_sched_features &= ~(1UL << i);
213 sched_feat_disable(i);
214 } else {
215 sysctl_sched_features |= (1UL << i);
216 sched_feat_enable(i);
217 }
218 break;
219 }
220 }
221
222 return i;
223 }
224
225 static ssize_t
226 sched_feat_write(struct file *filp, const char __user *ubuf,
227 size_t cnt, loff_t *ppos)
228 {
229 char buf[64];
230 char *cmp;
231 int i;
232 struct inode *inode;
233
234 if (cnt > 63)
235 cnt = 63;
236
237 if (copy_from_user(&buf, ubuf, cnt))
238 return -EFAULT;
239
240 buf[cnt] = 0;
241 cmp = strstrip(buf);
242
243 /* Ensure the static_key remains in a consistent state */
244 inode = file_inode(filp);
245 mutex_lock(&inode->i_mutex);
246 i = sched_feat_set(cmp);
247 mutex_unlock(&inode->i_mutex);
248 if (i == __SCHED_FEAT_NR)
249 return -EINVAL;
250
251 *ppos += cnt;
252
253 return cnt;
254 }
255
256 static int sched_feat_open(struct inode *inode, struct file *filp)
257 {
258 return single_open(filp, sched_feat_show, NULL);
259 }
260
261 static const struct file_operations sched_feat_fops = {
262 .open = sched_feat_open,
263 .write = sched_feat_write,
264 .read = seq_read,
265 .llseek = seq_lseek,
266 .release = single_release,
267 };
268
269 static __init int sched_init_debug(void)
270 {
271 debugfs_create_file("sched_features", 0644, NULL, NULL,
272 &sched_feat_fops);
273
274 return 0;
275 }
276 late_initcall(sched_init_debug);
277 #endif /* CONFIG_SCHED_DEBUG */
278
279 /*
280 * Number of tasks to iterate in a single balance run.
281 * Limited because this is done with IRQs disabled.
282 */
283 const_debug unsigned int sysctl_sched_nr_migrate = 32;
284
285 /*
286 * period over which we average the RT time consumption, measured
287 * in ms.
288 *
289 * default: 1s
290 */
291 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292
293 /*
294 * period over which we measure -rt task cpu usage in us.
295 * default: 1s
296 */
297 unsigned int sysctl_sched_rt_period = 1000000;
298
299 __read_mostly int scheduler_running;
300
301 /*
302 * part of the period that we allow rt tasks to run in us.
303 * default: 0.95s
304 */
305 int sysctl_sched_rt_runtime = 950000;
306
307 /*
308 * __task_rq_lock - lock the rq @p resides on.
309 */
310 static inline struct rq *__task_rq_lock(struct task_struct *p)
311 __acquires(rq->lock)
312 {
313 struct rq *rq;
314
315 lockdep_assert_held(&p->pi_lock);
316
317 for (;;) {
318 rq = task_rq(p);
319 raw_spin_lock(&rq->lock);
320 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
321 return rq;
322 raw_spin_unlock(&rq->lock);
323
324 while (unlikely(task_on_rq_migrating(p)))
325 cpu_relax();
326 }
327 }
328
329 /*
330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
331 */
332 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
333 __acquires(p->pi_lock)
334 __acquires(rq->lock)
335 {
336 struct rq *rq;
337
338 for (;;) {
339 raw_spin_lock_irqsave(&p->pi_lock, *flags);
340 rq = task_rq(p);
341 raw_spin_lock(&rq->lock);
342 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
343 return rq;
344 raw_spin_unlock(&rq->lock);
345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
346
347 while (unlikely(task_on_rq_migrating(p)))
348 cpu_relax();
349 }
350 }
351
352 static void __task_rq_unlock(struct rq *rq)
353 __releases(rq->lock)
354 {
355 raw_spin_unlock(&rq->lock);
356 }
357
358 static inline void
359 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
360 __releases(rq->lock)
361 __releases(p->pi_lock)
362 {
363 raw_spin_unlock(&rq->lock);
364 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
365 }
366
367 /*
368 * this_rq_lock - lock this runqueue and disable interrupts.
369 */
370 static struct rq *this_rq_lock(void)
371 __acquires(rq->lock)
372 {
373 struct rq *rq;
374
375 local_irq_disable();
376 rq = this_rq();
377 raw_spin_lock(&rq->lock);
378
379 return rq;
380 }
381
382 #ifdef CONFIG_SCHED_HRTICK
383 /*
384 * Use HR-timers to deliver accurate preemption points.
385 */
386
387 static void hrtick_clear(struct rq *rq)
388 {
389 if (hrtimer_active(&rq->hrtick_timer))
390 hrtimer_cancel(&rq->hrtick_timer);
391 }
392
393 /*
394 * High-resolution timer tick.
395 * Runs from hardirq context with interrupts disabled.
396 */
397 static enum hrtimer_restart hrtick(struct hrtimer *timer)
398 {
399 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400
401 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402
403 raw_spin_lock(&rq->lock);
404 update_rq_clock(rq);
405 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
406 raw_spin_unlock(&rq->lock);
407
408 return HRTIMER_NORESTART;
409 }
410
411 #ifdef CONFIG_SMP
412
413 static int __hrtick_restart(struct rq *rq)
414 {
415 struct hrtimer *timer = &rq->hrtick_timer;
416 ktime_t time = hrtimer_get_softexpires(timer);
417
418 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419 }
420
421 /*
422 * called from hardirq (IPI) context
423 */
424 static void __hrtick_start(void *arg)
425 {
426 struct rq *rq = arg;
427
428 raw_spin_lock(&rq->lock);
429 __hrtick_restart(rq);
430 rq->hrtick_csd_pending = 0;
431 raw_spin_unlock(&rq->lock);
432 }
433
434 /*
435 * Called to set the hrtick timer state.
436 *
437 * called with rq->lock held and irqs disabled
438 */
439 void hrtick_start(struct rq *rq, u64 delay)
440 {
441 struct hrtimer *timer = &rq->hrtick_timer;
442 ktime_t time;
443 s64 delta;
444
445 /*
446 * Don't schedule slices shorter than 10000ns, that just
447 * doesn't make sense and can cause timer DoS.
448 */
449 delta = max_t(s64, delay, 10000LL);
450 time = ktime_add_ns(timer->base->get_time(), delta);
451
452 hrtimer_set_expires(timer, time);
453
454 if (rq == this_rq()) {
455 __hrtick_restart(rq);
456 } else if (!rq->hrtick_csd_pending) {
457 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
458 rq->hrtick_csd_pending = 1;
459 }
460 }
461
462 static int
463 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464 {
465 int cpu = (int)(long)hcpu;
466
467 switch (action) {
468 case CPU_UP_CANCELED:
469 case CPU_UP_CANCELED_FROZEN:
470 case CPU_DOWN_PREPARE:
471 case CPU_DOWN_PREPARE_FROZEN:
472 case CPU_DEAD:
473 case CPU_DEAD_FROZEN:
474 hrtick_clear(cpu_rq(cpu));
475 return NOTIFY_OK;
476 }
477
478 return NOTIFY_DONE;
479 }
480
481 static __init void init_hrtick(void)
482 {
483 hotcpu_notifier(hotplug_hrtick, 0);
484 }
485 #else
486 /*
487 * Called to set the hrtick timer state.
488 *
489 * called with rq->lock held and irqs disabled
490 */
491 void hrtick_start(struct rq *rq, u64 delay)
492 {
493 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
494 HRTIMER_MODE_REL_PINNED, 0);
495 }
496
497 static inline void init_hrtick(void)
498 {
499 }
500 #endif /* CONFIG_SMP */
501
502 static void init_rq_hrtick(struct rq *rq)
503 {
504 #ifdef CONFIG_SMP
505 rq->hrtick_csd_pending = 0;
506
507 rq->hrtick_csd.flags = 0;
508 rq->hrtick_csd.func = __hrtick_start;
509 rq->hrtick_csd.info = rq;
510 #endif
511
512 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 rq->hrtick_timer.function = hrtick;
514 }
515 #else /* CONFIG_SCHED_HRTICK */
516 static inline void hrtick_clear(struct rq *rq)
517 {
518 }
519
520 static inline void init_rq_hrtick(struct rq *rq)
521 {
522 }
523
524 static inline void init_hrtick(void)
525 {
526 }
527 #endif /* CONFIG_SCHED_HRTICK */
528
529 /*
530 * cmpxchg based fetch_or, macro so it works for different integer types
531 */
532 #define fetch_or(ptr, val) \
533 ({ typeof(*(ptr)) __old, __val = *(ptr); \
534 for (;;) { \
535 __old = cmpxchg((ptr), __val, __val | (val)); \
536 if (__old == __val) \
537 break; \
538 __val = __old; \
539 } \
540 __old; \
541 })
542
543 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
544 /*
545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546 * this avoids any races wrt polling state changes and thereby avoids
547 * spurious IPIs.
548 */
549 static bool set_nr_and_not_polling(struct task_struct *p)
550 {
551 struct thread_info *ti = task_thread_info(p);
552 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553 }
554
555 /*
556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557 *
558 * If this returns true, then the idle task promises to call
559 * sched_ttwu_pending() and reschedule soon.
560 */
561 static bool set_nr_if_polling(struct task_struct *p)
562 {
563 struct thread_info *ti = task_thread_info(p);
564 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565
566 for (;;) {
567 if (!(val & _TIF_POLLING_NRFLAG))
568 return false;
569 if (val & _TIF_NEED_RESCHED)
570 return true;
571 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 if (old == val)
573 break;
574 val = old;
575 }
576 return true;
577 }
578
579 #else
580 static bool set_nr_and_not_polling(struct task_struct *p)
581 {
582 set_tsk_need_resched(p);
583 return true;
584 }
585
586 #ifdef CONFIG_SMP
587 static bool set_nr_if_polling(struct task_struct *p)
588 {
589 return false;
590 }
591 #endif
592 #endif
593
594 /*
595 * resched_curr - mark rq's current task 'to be rescheduled now'.
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
601 void resched_curr(struct rq *rq)
602 {
603 struct task_struct *curr = rq->curr;
604 int cpu;
605
606 lockdep_assert_held(&rq->lock);
607
608 if (test_tsk_need_resched(curr))
609 return;
610
611 cpu = cpu_of(rq);
612
613 if (cpu == smp_processor_id()) {
614 set_tsk_need_resched(curr);
615 set_preempt_need_resched();
616 return;
617 }
618
619 if (set_nr_and_not_polling(curr))
620 smp_send_reschedule(cpu);
621 else
622 trace_sched_wake_idle_without_ipi(cpu);
623 }
624
625 void resched_cpu(int cpu)
626 {
627 struct rq *rq = cpu_rq(cpu);
628 unsigned long flags;
629
630 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
631 return;
632 resched_curr(rq);
633 raw_spin_unlock_irqrestore(&rq->lock, flags);
634 }
635
636 #ifdef CONFIG_SMP
637 #ifdef CONFIG_NO_HZ_COMMON
638 /*
639 * In the semi idle case, use the nearest busy cpu for migrating timers
640 * from an idle cpu. This is good for power-savings.
641 *
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle cpu will add more delays to the timers than intended
644 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645 */
646 int get_nohz_timer_target(int pinned)
647 {
648 int cpu = smp_processor_id();
649 int i;
650 struct sched_domain *sd;
651
652 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 return cpu;
654
655 rcu_read_lock();
656 for_each_domain(cpu, sd) {
657 for_each_cpu(i, sched_domain_span(sd)) {
658 if (!idle_cpu(i)) {
659 cpu = i;
660 goto unlock;
661 }
662 }
663 }
664 unlock:
665 rcu_read_unlock();
666 return cpu;
667 }
668 /*
669 * When add_timer_on() enqueues a timer into the timer wheel of an
670 * idle CPU then this timer might expire before the next timer event
671 * which is scheduled to wake up that CPU. In case of a completely
672 * idle system the next event might even be infinite time into the
673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674 * leaves the inner idle loop so the newly added timer is taken into
675 * account when the CPU goes back to idle and evaluates the timer
676 * wheel for the next timer event.
677 */
678 static void wake_up_idle_cpu(int cpu)
679 {
680 struct rq *rq = cpu_rq(cpu);
681
682 if (cpu == smp_processor_id())
683 return;
684
685 if (set_nr_and_not_polling(rq->idle))
686 smp_send_reschedule(cpu);
687 else
688 trace_sched_wake_idle_without_ipi(cpu);
689 }
690
691 static bool wake_up_full_nohz_cpu(int cpu)
692 {
693 /*
694 * We just need the target to call irq_exit() and re-evaluate
695 * the next tick. The nohz full kick at least implies that.
696 * If needed we can still optimize that later with an
697 * empty IRQ.
698 */
699 if (tick_nohz_full_cpu(cpu)) {
700 if (cpu != smp_processor_id() ||
701 tick_nohz_tick_stopped())
702 tick_nohz_full_kick_cpu(cpu);
703 return true;
704 }
705
706 return false;
707 }
708
709 void wake_up_nohz_cpu(int cpu)
710 {
711 if (!wake_up_full_nohz_cpu(cpu))
712 wake_up_idle_cpu(cpu);
713 }
714
715 static inline bool got_nohz_idle_kick(void)
716 {
717 int cpu = smp_processor_id();
718
719 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 return false;
721
722 if (idle_cpu(cpu) && !need_resched())
723 return true;
724
725 /*
726 * We can't run Idle Load Balance on this CPU for this time so we
727 * cancel it and clear NOHZ_BALANCE_KICK
728 */
729 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 return false;
731 }
732
733 #else /* CONFIG_NO_HZ_COMMON */
734
735 static inline bool got_nohz_idle_kick(void)
736 {
737 return false;
738 }
739
740 #endif /* CONFIG_NO_HZ_COMMON */
741
742 #ifdef CONFIG_NO_HZ_FULL
743 bool sched_can_stop_tick(void)
744 {
745 /*
746 * More than one running task need preemption.
747 * nr_running update is assumed to be visible
748 * after IPI is sent from wakers.
749 */
750 if (this_rq()->nr_running > 1)
751 return false;
752
753 return true;
754 }
755 #endif /* CONFIG_NO_HZ_FULL */
756
757 void sched_avg_update(struct rq *rq)
758 {
759 s64 period = sched_avg_period();
760
761 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
762 /*
763 * Inline assembly required to prevent the compiler
764 * optimising this loop into a divmod call.
765 * See __iter_div_u64_rem() for another example of this.
766 */
767 asm("" : "+rm" (rq->age_stamp));
768 rq->age_stamp += period;
769 rq->rt_avg /= 2;
770 }
771 }
772
773 #endif /* CONFIG_SMP */
774
775 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
777 /*
778 * Iterate task_group tree rooted at *from, calling @down when first entering a
779 * node and @up when leaving it for the final time.
780 *
781 * Caller must hold rcu_lock or sufficient equivalent.
782 */
783 int walk_tg_tree_from(struct task_group *from,
784 tg_visitor down, tg_visitor up, void *data)
785 {
786 struct task_group *parent, *child;
787 int ret;
788
789 parent = from;
790
791 down:
792 ret = (*down)(parent, data);
793 if (ret)
794 goto out;
795 list_for_each_entry_rcu(child, &parent->children, siblings) {
796 parent = child;
797 goto down;
798
799 up:
800 continue;
801 }
802 ret = (*up)(parent, data);
803 if (ret || parent == from)
804 goto out;
805
806 child = parent;
807 parent = parent->parent;
808 if (parent)
809 goto up;
810 out:
811 return ret;
812 }
813
814 int tg_nop(struct task_group *tg, void *data)
815 {
816 return 0;
817 }
818 #endif
819
820 static void set_load_weight(struct task_struct *p)
821 {
822 int prio = p->static_prio - MAX_RT_PRIO;
823 struct load_weight *load = &p->se.load;
824
825 /*
826 * SCHED_IDLE tasks get minimal weight:
827 */
828 if (p->policy == SCHED_IDLE) {
829 load->weight = scale_load(WEIGHT_IDLEPRIO);
830 load->inv_weight = WMULT_IDLEPRIO;
831 return;
832 }
833
834 load->weight = scale_load(prio_to_weight[prio]);
835 load->inv_weight = prio_to_wmult[prio];
836 }
837
838 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
839 {
840 update_rq_clock(rq);
841 sched_info_queued(rq, p);
842 p->sched_class->enqueue_task(rq, p, flags);
843 }
844
845 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
846 {
847 update_rq_clock(rq);
848 sched_info_dequeued(rq, p);
849 p->sched_class->dequeue_task(rq, p, flags);
850 }
851
852 void activate_task(struct rq *rq, struct task_struct *p, int flags)
853 {
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible--;
856
857 enqueue_task(rq, p, flags);
858 }
859
860 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
861 {
862 if (task_contributes_to_load(p))
863 rq->nr_uninterruptible++;
864
865 dequeue_task(rq, p, flags);
866 }
867
868 static void update_rq_clock_task(struct rq *rq, s64 delta)
869 {
870 /*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal = 0, irq_delta = 0;
876 #endif
877 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879
880 /*
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
883 * {soft,}irq region.
884 *
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
888 * monotonic.
889 *
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
893 * atomic ops.
894 */
895 if (irq_delta > delta)
896 irq_delta = delta;
897
898 rq->prev_irq_time += irq_delta;
899 delta -= irq_delta;
900 #endif
901 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902 if (static_key_false((&paravirt_steal_rq_enabled))) {
903 steal = paravirt_steal_clock(cpu_of(rq));
904 steal -= rq->prev_steal_time_rq;
905
906 if (unlikely(steal > delta))
907 steal = delta;
908
909 rq->prev_steal_time_rq += steal;
910 delta -= steal;
911 }
912 #endif
913
914 rq->clock_task += delta;
915
916 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
917 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
918 sched_rt_avg_update(rq, irq_delta + steal);
919 #endif
920 }
921
922 void sched_set_stop_task(int cpu, struct task_struct *stop)
923 {
924 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 struct task_struct *old_stop = cpu_rq(cpu)->stop;
926
927 if (stop) {
928 /*
929 * Make it appear like a SCHED_FIFO task, its something
930 * userspace knows about and won't get confused about.
931 *
932 * Also, it will make PI more or less work without too
933 * much confusion -- but then, stop work should not
934 * rely on PI working anyway.
935 */
936 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937
938 stop->sched_class = &stop_sched_class;
939 }
940
941 cpu_rq(cpu)->stop = stop;
942
943 if (old_stop) {
944 /*
945 * Reset it back to a normal scheduling class so that
946 * it can die in pieces.
947 */
948 old_stop->sched_class = &rt_sched_class;
949 }
950 }
951
952 /*
953 * __normal_prio - return the priority that is based on the static prio
954 */
955 static inline int __normal_prio(struct task_struct *p)
956 {
957 return p->static_prio;
958 }
959
960 /*
961 * Calculate the expected normal priority: i.e. priority
962 * without taking RT-inheritance into account. Might be
963 * boosted by interactivity modifiers. Changes upon fork,
964 * setprio syscalls, and whenever the interactivity
965 * estimator recalculates.
966 */
967 static inline int normal_prio(struct task_struct *p)
968 {
969 int prio;
970
971 if (task_has_dl_policy(p))
972 prio = MAX_DL_PRIO-1;
973 else if (task_has_rt_policy(p))
974 prio = MAX_RT_PRIO-1 - p->rt_priority;
975 else
976 prio = __normal_prio(p);
977 return prio;
978 }
979
980 /*
981 * Calculate the current priority, i.e. the priority
982 * taken into account by the scheduler. This value might
983 * be boosted by RT tasks, or might be boosted by
984 * interactivity modifiers. Will be RT if the task got
985 * RT-boosted. If not then it returns p->normal_prio.
986 */
987 static int effective_prio(struct task_struct *p)
988 {
989 p->normal_prio = normal_prio(p);
990 /*
991 * If we are RT tasks or we were boosted to RT priority,
992 * keep the priority unchanged. Otherwise, update priority
993 * to the normal priority:
994 */
995 if (!rt_prio(p->prio))
996 return p->normal_prio;
997 return p->prio;
998 }
999
1000 /**
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
1003 *
1004 * Return: 1 if the task is currently executing. 0 otherwise.
1005 */
1006 inline int task_curr(const struct task_struct *p)
1007 {
1008 return cpu_curr(task_cpu(p)) == p;
1009 }
1010
1011 /*
1012 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
1013 */
1014 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1015 const struct sched_class *prev_class,
1016 int oldprio)
1017 {
1018 if (prev_class != p->sched_class) {
1019 if (prev_class->switched_from)
1020 prev_class->switched_from(rq, p);
1021 /* Possble rq->lock 'hole'. */
1022 p->sched_class->switched_to(rq, p);
1023 } else if (oldprio != p->prio || dl_task(p))
1024 p->sched_class->prio_changed(rq, p, oldprio);
1025 }
1026
1027 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1028 {
1029 const struct sched_class *class;
1030
1031 if (p->sched_class == rq->curr->sched_class) {
1032 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1033 } else {
1034 for_each_class(class) {
1035 if (class == rq->curr->sched_class)
1036 break;
1037 if (class == p->sched_class) {
1038 resched_curr(rq);
1039 break;
1040 }
1041 }
1042 }
1043
1044 /*
1045 * A queue event has occurred, and we're going to schedule. In
1046 * this case, we can save a useless back to back clock update.
1047 */
1048 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1049 rq->skip_clock_update = 1;
1050 }
1051
1052 #ifdef CONFIG_SMP
1053 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1054 {
1055 #ifdef CONFIG_SCHED_DEBUG
1056 /*
1057 * We should never call set_task_cpu() on a blocked task,
1058 * ttwu() will sort out the placement.
1059 */
1060 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1061 !p->on_rq);
1062
1063 #ifdef CONFIG_LOCKDEP
1064 /*
1065 * The caller should hold either p->pi_lock or rq->lock, when changing
1066 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1067 *
1068 * sched_move_task() holds both and thus holding either pins the cgroup,
1069 * see task_group().
1070 *
1071 * Furthermore, all task_rq users should acquire both locks, see
1072 * task_rq_lock().
1073 */
1074 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1075 lockdep_is_held(&task_rq(p)->lock)));
1076 #endif
1077 #endif
1078
1079 trace_sched_migrate_task(p, new_cpu);
1080
1081 if (task_cpu(p) != new_cpu) {
1082 if (p->sched_class->migrate_task_rq)
1083 p->sched_class->migrate_task_rq(p, new_cpu);
1084 p->se.nr_migrations++;
1085 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1086 }
1087
1088 __set_task_cpu(p, new_cpu);
1089 }
1090
1091 static void __migrate_swap_task(struct task_struct *p, int cpu)
1092 {
1093 if (task_on_rq_queued(p)) {
1094 struct rq *src_rq, *dst_rq;
1095
1096 src_rq = task_rq(p);
1097 dst_rq = cpu_rq(cpu);
1098
1099 deactivate_task(src_rq, p, 0);
1100 set_task_cpu(p, cpu);
1101 activate_task(dst_rq, p, 0);
1102 check_preempt_curr(dst_rq, p, 0);
1103 } else {
1104 /*
1105 * Task isn't running anymore; make it appear like we migrated
1106 * it before it went to sleep. This means on wakeup we make the
1107 * previous cpu our targer instead of where it really is.
1108 */
1109 p->wake_cpu = cpu;
1110 }
1111 }
1112
1113 struct migration_swap_arg {
1114 struct task_struct *src_task, *dst_task;
1115 int src_cpu, dst_cpu;
1116 };
1117
1118 static int migrate_swap_stop(void *data)
1119 {
1120 struct migration_swap_arg *arg = data;
1121 struct rq *src_rq, *dst_rq;
1122 int ret = -EAGAIN;
1123
1124 src_rq = cpu_rq(arg->src_cpu);
1125 dst_rq = cpu_rq(arg->dst_cpu);
1126
1127 double_raw_lock(&arg->src_task->pi_lock,
1128 &arg->dst_task->pi_lock);
1129 double_rq_lock(src_rq, dst_rq);
1130 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1131 goto unlock;
1132
1133 if (task_cpu(arg->src_task) != arg->src_cpu)
1134 goto unlock;
1135
1136 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1137 goto unlock;
1138
1139 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1140 goto unlock;
1141
1142 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1143 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1144
1145 ret = 0;
1146
1147 unlock:
1148 double_rq_unlock(src_rq, dst_rq);
1149 raw_spin_unlock(&arg->dst_task->pi_lock);
1150 raw_spin_unlock(&arg->src_task->pi_lock);
1151
1152 return ret;
1153 }
1154
1155 /*
1156 * Cross migrate two tasks
1157 */
1158 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1159 {
1160 struct migration_swap_arg arg;
1161 int ret = -EINVAL;
1162
1163 arg = (struct migration_swap_arg){
1164 .src_task = cur,
1165 .src_cpu = task_cpu(cur),
1166 .dst_task = p,
1167 .dst_cpu = task_cpu(p),
1168 };
1169
1170 if (arg.src_cpu == arg.dst_cpu)
1171 goto out;
1172
1173 /*
1174 * These three tests are all lockless; this is OK since all of them
1175 * will be re-checked with proper locks held further down the line.
1176 */
1177 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1178 goto out;
1179
1180 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1181 goto out;
1182
1183 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1184 goto out;
1185
1186 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1187 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1188
1189 out:
1190 return ret;
1191 }
1192
1193 struct migration_arg {
1194 struct task_struct *task;
1195 int dest_cpu;
1196 };
1197
1198 static int migration_cpu_stop(void *data);
1199
1200 /*
1201 * wait_task_inactive - wait for a thread to unschedule.
1202 *
1203 * If @match_state is nonzero, it's the @p->state value just checked and
1204 * not expected to change. If it changes, i.e. @p might have woken up,
1205 * then return zero. When we succeed in waiting for @p to be off its CPU,
1206 * we return a positive number (its total switch count). If a second call
1207 * a short while later returns the same number, the caller can be sure that
1208 * @p has remained unscheduled the whole time.
1209 *
1210 * The caller must ensure that the task *will* unschedule sometime soon,
1211 * else this function might spin for a *long* time. This function can't
1212 * be called with interrupts off, or it may introduce deadlock with
1213 * smp_call_function() if an IPI is sent by the same process we are
1214 * waiting to become inactive.
1215 */
1216 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1217 {
1218 unsigned long flags;
1219 int running, queued;
1220 unsigned long ncsw;
1221 struct rq *rq;
1222
1223 for (;;) {
1224 /*
1225 * We do the initial early heuristics without holding
1226 * any task-queue locks at all. We'll only try to get
1227 * the runqueue lock when things look like they will
1228 * work out!
1229 */
1230 rq = task_rq(p);
1231
1232 /*
1233 * If the task is actively running on another CPU
1234 * still, just relax and busy-wait without holding
1235 * any locks.
1236 *
1237 * NOTE! Since we don't hold any locks, it's not
1238 * even sure that "rq" stays as the right runqueue!
1239 * But we don't care, since "task_running()" will
1240 * return false if the runqueue has changed and p
1241 * is actually now running somewhere else!
1242 */
1243 while (task_running(rq, p)) {
1244 if (match_state && unlikely(p->state != match_state))
1245 return 0;
1246 cpu_relax();
1247 }
1248
1249 /*
1250 * Ok, time to look more closely! We need the rq
1251 * lock now, to be *sure*. If we're wrong, we'll
1252 * just go back and repeat.
1253 */
1254 rq = task_rq_lock(p, &flags);
1255 trace_sched_wait_task(p);
1256 running = task_running(rq, p);
1257 queued = task_on_rq_queued(p);
1258 ncsw = 0;
1259 if (!match_state || p->state == match_state)
1260 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1261 task_rq_unlock(rq, p, &flags);
1262
1263 /*
1264 * If it changed from the expected state, bail out now.
1265 */
1266 if (unlikely(!ncsw))
1267 break;
1268
1269 /*
1270 * Was it really running after all now that we
1271 * checked with the proper locks actually held?
1272 *
1273 * Oops. Go back and try again..
1274 */
1275 if (unlikely(running)) {
1276 cpu_relax();
1277 continue;
1278 }
1279
1280 /*
1281 * It's not enough that it's not actively running,
1282 * it must be off the runqueue _entirely_, and not
1283 * preempted!
1284 *
1285 * So if it was still runnable (but just not actively
1286 * running right now), it's preempted, and we should
1287 * yield - it could be a while.
1288 */
1289 if (unlikely(queued)) {
1290 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1291
1292 set_current_state(TASK_UNINTERRUPTIBLE);
1293 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1294 continue;
1295 }
1296
1297 /*
1298 * Ahh, all good. It wasn't running, and it wasn't
1299 * runnable, which means that it will never become
1300 * running in the future either. We're all done!
1301 */
1302 break;
1303 }
1304
1305 return ncsw;
1306 }
1307
1308 /***
1309 * kick_process - kick a running thread to enter/exit the kernel
1310 * @p: the to-be-kicked thread
1311 *
1312 * Cause a process which is running on another CPU to enter
1313 * kernel-mode, without any delay. (to get signals handled.)
1314 *
1315 * NOTE: this function doesn't have to take the runqueue lock,
1316 * because all it wants to ensure is that the remote task enters
1317 * the kernel. If the IPI races and the task has been migrated
1318 * to another CPU then no harm is done and the purpose has been
1319 * achieved as well.
1320 */
1321 void kick_process(struct task_struct *p)
1322 {
1323 int cpu;
1324
1325 preempt_disable();
1326 cpu = task_cpu(p);
1327 if ((cpu != smp_processor_id()) && task_curr(p))
1328 smp_send_reschedule(cpu);
1329 preempt_enable();
1330 }
1331 EXPORT_SYMBOL_GPL(kick_process);
1332 #endif /* CONFIG_SMP */
1333
1334 #ifdef CONFIG_SMP
1335 /*
1336 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1337 */
1338 static int select_fallback_rq(int cpu, struct task_struct *p)
1339 {
1340 int nid = cpu_to_node(cpu);
1341 const struct cpumask *nodemask = NULL;
1342 enum { cpuset, possible, fail } state = cpuset;
1343 int dest_cpu;
1344
1345 /*
1346 * If the node that the cpu is on has been offlined, cpu_to_node()
1347 * will return -1. There is no cpu on the node, and we should
1348 * select the cpu on the other node.
1349 */
1350 if (nid != -1) {
1351 nodemask = cpumask_of_node(nid);
1352
1353 /* Look for allowed, online CPU in same node. */
1354 for_each_cpu(dest_cpu, nodemask) {
1355 if (!cpu_online(dest_cpu))
1356 continue;
1357 if (!cpu_active(dest_cpu))
1358 continue;
1359 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1360 return dest_cpu;
1361 }
1362 }
1363
1364 for (;;) {
1365 /* Any allowed, online CPU? */
1366 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1367 if (!cpu_online(dest_cpu))
1368 continue;
1369 if (!cpu_active(dest_cpu))
1370 continue;
1371 goto out;
1372 }
1373
1374 switch (state) {
1375 case cpuset:
1376 /* No more Mr. Nice Guy. */
1377 cpuset_cpus_allowed_fallback(p);
1378 state = possible;
1379 break;
1380
1381 case possible:
1382 do_set_cpus_allowed(p, cpu_possible_mask);
1383 state = fail;
1384 break;
1385
1386 case fail:
1387 BUG();
1388 break;
1389 }
1390 }
1391
1392 out:
1393 if (state != cpuset) {
1394 /*
1395 * Don't tell them about moving exiting tasks or
1396 * kernel threads (both mm NULL), since they never
1397 * leave kernel.
1398 */
1399 if (p->mm && printk_ratelimit()) {
1400 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1401 task_pid_nr(p), p->comm, cpu);
1402 }
1403 }
1404
1405 return dest_cpu;
1406 }
1407
1408 /*
1409 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1410 */
1411 static inline
1412 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1413 {
1414 if (p->nr_cpus_allowed > 1)
1415 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1416
1417 /*
1418 * In order not to call set_task_cpu() on a blocking task we need
1419 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1420 * cpu.
1421 *
1422 * Since this is common to all placement strategies, this lives here.
1423 *
1424 * [ this allows ->select_task() to simply return task_cpu(p) and
1425 * not worry about this generic constraint ]
1426 */
1427 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1428 !cpu_online(cpu)))
1429 cpu = select_fallback_rq(task_cpu(p), p);
1430
1431 return cpu;
1432 }
1433
1434 static void update_avg(u64 *avg, u64 sample)
1435 {
1436 s64 diff = sample - *avg;
1437 *avg += diff >> 3;
1438 }
1439 #endif
1440
1441 static void
1442 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1443 {
1444 #ifdef CONFIG_SCHEDSTATS
1445 struct rq *rq = this_rq();
1446
1447 #ifdef CONFIG_SMP
1448 int this_cpu = smp_processor_id();
1449
1450 if (cpu == this_cpu) {
1451 schedstat_inc(rq, ttwu_local);
1452 schedstat_inc(p, se.statistics.nr_wakeups_local);
1453 } else {
1454 struct sched_domain *sd;
1455
1456 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1457 rcu_read_lock();
1458 for_each_domain(this_cpu, sd) {
1459 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1460 schedstat_inc(sd, ttwu_wake_remote);
1461 break;
1462 }
1463 }
1464 rcu_read_unlock();
1465 }
1466
1467 if (wake_flags & WF_MIGRATED)
1468 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1469
1470 #endif /* CONFIG_SMP */
1471
1472 schedstat_inc(rq, ttwu_count);
1473 schedstat_inc(p, se.statistics.nr_wakeups);
1474
1475 if (wake_flags & WF_SYNC)
1476 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1477
1478 #endif /* CONFIG_SCHEDSTATS */
1479 }
1480
1481 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1482 {
1483 activate_task(rq, p, en_flags);
1484 p->on_rq = TASK_ON_RQ_QUEUED;
1485
1486 /* if a worker is waking up, notify workqueue */
1487 if (p->flags & PF_WQ_WORKER)
1488 wq_worker_waking_up(p, cpu_of(rq));
1489 }
1490
1491 /*
1492 * Mark the task runnable and perform wakeup-preemption.
1493 */
1494 static void
1495 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1496 {
1497 check_preempt_curr(rq, p, wake_flags);
1498 trace_sched_wakeup(p, true);
1499
1500 p->state = TASK_RUNNING;
1501 #ifdef CONFIG_SMP
1502 if (p->sched_class->task_woken)
1503 p->sched_class->task_woken(rq, p);
1504
1505 if (rq->idle_stamp) {
1506 u64 delta = rq_clock(rq) - rq->idle_stamp;
1507 u64 max = 2*rq->max_idle_balance_cost;
1508
1509 update_avg(&rq->avg_idle, delta);
1510
1511 if (rq->avg_idle > max)
1512 rq->avg_idle = max;
1513
1514 rq->idle_stamp = 0;
1515 }
1516 #endif
1517 }
1518
1519 static void
1520 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1521 {
1522 #ifdef CONFIG_SMP
1523 if (p->sched_contributes_to_load)
1524 rq->nr_uninterruptible--;
1525 #endif
1526
1527 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1528 ttwu_do_wakeup(rq, p, wake_flags);
1529 }
1530
1531 /*
1532 * Called in case the task @p isn't fully descheduled from its runqueue,
1533 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1534 * since all we need to do is flip p->state to TASK_RUNNING, since
1535 * the task is still ->on_rq.
1536 */
1537 static int ttwu_remote(struct task_struct *p, int wake_flags)
1538 {
1539 struct rq *rq;
1540 int ret = 0;
1541
1542 rq = __task_rq_lock(p);
1543 if (task_on_rq_queued(p)) {
1544 /* check_preempt_curr() may use rq clock */
1545 update_rq_clock(rq);
1546 ttwu_do_wakeup(rq, p, wake_flags);
1547 ret = 1;
1548 }
1549 __task_rq_unlock(rq);
1550
1551 return ret;
1552 }
1553
1554 #ifdef CONFIG_SMP
1555 void sched_ttwu_pending(void)
1556 {
1557 struct rq *rq = this_rq();
1558 struct llist_node *llist = llist_del_all(&rq->wake_list);
1559 struct task_struct *p;
1560 unsigned long flags;
1561
1562 if (!llist)
1563 return;
1564
1565 raw_spin_lock_irqsave(&rq->lock, flags);
1566
1567 while (llist) {
1568 p = llist_entry(llist, struct task_struct, wake_entry);
1569 llist = llist_next(llist);
1570 ttwu_do_activate(rq, p, 0);
1571 }
1572
1573 raw_spin_unlock_irqrestore(&rq->lock, flags);
1574 }
1575
1576 void scheduler_ipi(void)
1577 {
1578 /*
1579 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1580 * TIF_NEED_RESCHED remotely (for the first time) will also send
1581 * this IPI.
1582 */
1583 preempt_fold_need_resched();
1584
1585 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1586 return;
1587
1588 /*
1589 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1590 * traditionally all their work was done from the interrupt return
1591 * path. Now that we actually do some work, we need to make sure
1592 * we do call them.
1593 *
1594 * Some archs already do call them, luckily irq_enter/exit nest
1595 * properly.
1596 *
1597 * Arguably we should visit all archs and update all handlers,
1598 * however a fair share of IPIs are still resched only so this would
1599 * somewhat pessimize the simple resched case.
1600 */
1601 irq_enter();
1602 sched_ttwu_pending();
1603
1604 /*
1605 * Check if someone kicked us for doing the nohz idle load balance.
1606 */
1607 if (unlikely(got_nohz_idle_kick())) {
1608 this_rq()->idle_balance = 1;
1609 raise_softirq_irqoff(SCHED_SOFTIRQ);
1610 }
1611 irq_exit();
1612 }
1613
1614 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1615 {
1616 struct rq *rq = cpu_rq(cpu);
1617
1618 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1619 if (!set_nr_if_polling(rq->idle))
1620 smp_send_reschedule(cpu);
1621 else
1622 trace_sched_wake_idle_without_ipi(cpu);
1623 }
1624 }
1625
1626 void wake_up_if_idle(int cpu)
1627 {
1628 struct rq *rq = cpu_rq(cpu);
1629 unsigned long flags;
1630
1631 if (!is_idle_task(rq->curr))
1632 return;
1633
1634 if (set_nr_if_polling(rq->idle)) {
1635 trace_sched_wake_idle_without_ipi(cpu);
1636 } else {
1637 raw_spin_lock_irqsave(&rq->lock, flags);
1638 if (is_idle_task(rq->curr))
1639 smp_send_reschedule(cpu);
1640 /* Else cpu is not in idle, do nothing here */
1641 raw_spin_unlock_irqrestore(&rq->lock, flags);
1642 }
1643 }
1644
1645 bool cpus_share_cache(int this_cpu, int that_cpu)
1646 {
1647 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1648 }
1649 #endif /* CONFIG_SMP */
1650
1651 static void ttwu_queue(struct task_struct *p, int cpu)
1652 {
1653 struct rq *rq = cpu_rq(cpu);
1654
1655 #if defined(CONFIG_SMP)
1656 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1657 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1658 ttwu_queue_remote(p, cpu);
1659 return;
1660 }
1661 #endif
1662
1663 raw_spin_lock(&rq->lock);
1664 ttwu_do_activate(rq, p, 0);
1665 raw_spin_unlock(&rq->lock);
1666 }
1667
1668 /**
1669 * try_to_wake_up - wake up a thread
1670 * @p: the thread to be awakened
1671 * @state: the mask of task states that can be woken
1672 * @wake_flags: wake modifier flags (WF_*)
1673 *
1674 * Put it on the run-queue if it's not already there. The "current"
1675 * thread is always on the run-queue (except when the actual
1676 * re-schedule is in progress), and as such you're allowed to do
1677 * the simpler "current->state = TASK_RUNNING" to mark yourself
1678 * runnable without the overhead of this.
1679 *
1680 * Return: %true if @p was woken up, %false if it was already running.
1681 * or @state didn't match @p's state.
1682 */
1683 static int
1684 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1685 {
1686 unsigned long flags;
1687 int cpu, success = 0;
1688
1689 /*
1690 * If we are going to wake up a thread waiting for CONDITION we
1691 * need to ensure that CONDITION=1 done by the caller can not be
1692 * reordered with p->state check below. This pairs with mb() in
1693 * set_current_state() the waiting thread does.
1694 */
1695 smp_mb__before_spinlock();
1696 raw_spin_lock_irqsave(&p->pi_lock, flags);
1697 if (!(p->state & state))
1698 goto out;
1699
1700 success = 1; /* we're going to change ->state */
1701 cpu = task_cpu(p);
1702
1703 if (p->on_rq && ttwu_remote(p, wake_flags))
1704 goto stat;
1705
1706 #ifdef CONFIG_SMP
1707 /*
1708 * If the owning (remote) cpu is still in the middle of schedule() with
1709 * this task as prev, wait until its done referencing the task.
1710 */
1711 while (p->on_cpu)
1712 cpu_relax();
1713 /*
1714 * Pairs with the smp_wmb() in finish_lock_switch().
1715 */
1716 smp_rmb();
1717
1718 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1719 p->state = TASK_WAKING;
1720
1721 if (p->sched_class->task_waking)
1722 p->sched_class->task_waking(p);
1723
1724 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1725 if (task_cpu(p) != cpu) {
1726 wake_flags |= WF_MIGRATED;
1727 set_task_cpu(p, cpu);
1728 }
1729 #endif /* CONFIG_SMP */
1730
1731 ttwu_queue(p, cpu);
1732 stat:
1733 ttwu_stat(p, cpu, wake_flags);
1734 out:
1735 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1736
1737 return success;
1738 }
1739
1740 /**
1741 * try_to_wake_up_local - try to wake up a local task with rq lock held
1742 * @p: the thread to be awakened
1743 *
1744 * Put @p on the run-queue if it's not already there. The caller must
1745 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1746 * the current task.
1747 */
1748 static void try_to_wake_up_local(struct task_struct *p)
1749 {
1750 struct rq *rq = task_rq(p);
1751
1752 if (WARN_ON_ONCE(rq != this_rq()) ||
1753 WARN_ON_ONCE(p == current))
1754 return;
1755
1756 lockdep_assert_held(&rq->lock);
1757
1758 if (!raw_spin_trylock(&p->pi_lock)) {
1759 raw_spin_unlock(&rq->lock);
1760 raw_spin_lock(&p->pi_lock);
1761 raw_spin_lock(&rq->lock);
1762 }
1763
1764 if (!(p->state & TASK_NORMAL))
1765 goto out;
1766
1767 if (!task_on_rq_queued(p))
1768 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1769
1770 ttwu_do_wakeup(rq, p, 0);
1771 ttwu_stat(p, smp_processor_id(), 0);
1772 out:
1773 raw_spin_unlock(&p->pi_lock);
1774 }
1775
1776 /**
1777 * wake_up_process - Wake up a specific process
1778 * @p: The process to be woken up.
1779 *
1780 * Attempt to wake up the nominated process and move it to the set of runnable
1781 * processes.
1782 *
1783 * Return: 1 if the process was woken up, 0 if it was already running.
1784 *
1785 * It may be assumed that this function implies a write memory barrier before
1786 * changing the task state if and only if any tasks are woken up.
1787 */
1788 int wake_up_process(struct task_struct *p)
1789 {
1790 WARN_ON(task_is_stopped_or_traced(p));
1791 return try_to_wake_up(p, TASK_NORMAL, 0);
1792 }
1793 EXPORT_SYMBOL(wake_up_process);
1794
1795 int wake_up_state(struct task_struct *p, unsigned int state)
1796 {
1797 return try_to_wake_up(p, state, 0);
1798 }
1799
1800 /*
1801 * This function clears the sched_dl_entity static params.
1802 */
1803 void __dl_clear_params(struct task_struct *p)
1804 {
1805 struct sched_dl_entity *dl_se = &p->dl;
1806
1807 dl_se->dl_runtime = 0;
1808 dl_se->dl_deadline = 0;
1809 dl_se->dl_period = 0;
1810 dl_se->flags = 0;
1811 dl_se->dl_bw = 0;
1812 }
1813
1814 /*
1815 * Perform scheduler related setup for a newly forked process p.
1816 * p is forked by current.
1817 *
1818 * __sched_fork() is basic setup used by init_idle() too:
1819 */
1820 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1821 {
1822 p->on_rq = 0;
1823
1824 p->se.on_rq = 0;
1825 p->se.exec_start = 0;
1826 p->se.sum_exec_runtime = 0;
1827 p->se.prev_sum_exec_runtime = 0;
1828 p->se.nr_migrations = 0;
1829 p->se.vruntime = 0;
1830 INIT_LIST_HEAD(&p->se.group_node);
1831
1832 #ifdef CONFIG_SCHEDSTATS
1833 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1834 #endif
1835
1836 RB_CLEAR_NODE(&p->dl.rb_node);
1837 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1838 __dl_clear_params(p);
1839
1840 INIT_LIST_HEAD(&p->rt.run_list);
1841
1842 #ifdef CONFIG_PREEMPT_NOTIFIERS
1843 INIT_HLIST_HEAD(&p->preempt_notifiers);
1844 #endif
1845
1846 #ifdef CONFIG_NUMA_BALANCING
1847 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1848 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1849 p->mm->numa_scan_seq = 0;
1850 }
1851
1852 if (clone_flags & CLONE_VM)
1853 p->numa_preferred_nid = current->numa_preferred_nid;
1854 else
1855 p->numa_preferred_nid = -1;
1856
1857 p->node_stamp = 0ULL;
1858 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1859 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1860 p->numa_work.next = &p->numa_work;
1861 p->numa_faults = NULL;
1862 p->last_task_numa_placement = 0;
1863 p->last_sum_exec_runtime = 0;
1864
1865 p->numa_group = NULL;
1866 #endif /* CONFIG_NUMA_BALANCING */
1867 }
1868
1869 #ifdef CONFIG_NUMA_BALANCING
1870 #ifdef CONFIG_SCHED_DEBUG
1871 void set_numabalancing_state(bool enabled)
1872 {
1873 if (enabled)
1874 sched_feat_set("NUMA");
1875 else
1876 sched_feat_set("NO_NUMA");
1877 }
1878 #else
1879 __read_mostly bool numabalancing_enabled;
1880
1881 void set_numabalancing_state(bool enabled)
1882 {
1883 numabalancing_enabled = enabled;
1884 }
1885 #endif /* CONFIG_SCHED_DEBUG */
1886
1887 #ifdef CONFIG_PROC_SYSCTL
1888 int sysctl_numa_balancing(struct ctl_table *table, int write,
1889 void __user *buffer, size_t *lenp, loff_t *ppos)
1890 {
1891 struct ctl_table t;
1892 int err;
1893 int state = numabalancing_enabled;
1894
1895 if (write && !capable(CAP_SYS_ADMIN))
1896 return -EPERM;
1897
1898 t = *table;
1899 t.data = &state;
1900 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1901 if (err < 0)
1902 return err;
1903 if (write)
1904 set_numabalancing_state(state);
1905 return err;
1906 }
1907 #endif
1908 #endif
1909
1910 /*
1911 * fork()/clone()-time setup:
1912 */
1913 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1914 {
1915 unsigned long flags;
1916 int cpu = get_cpu();
1917
1918 __sched_fork(clone_flags, p);
1919 /*
1920 * We mark the process as running here. This guarantees that
1921 * nobody will actually run it, and a signal or other external
1922 * event cannot wake it up and insert it on the runqueue either.
1923 */
1924 p->state = TASK_RUNNING;
1925
1926 /*
1927 * Make sure we do not leak PI boosting priority to the child.
1928 */
1929 p->prio = current->normal_prio;
1930
1931 /*
1932 * Revert to default priority/policy on fork if requested.
1933 */
1934 if (unlikely(p->sched_reset_on_fork)) {
1935 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1936 p->policy = SCHED_NORMAL;
1937 p->static_prio = NICE_TO_PRIO(0);
1938 p->rt_priority = 0;
1939 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1940 p->static_prio = NICE_TO_PRIO(0);
1941
1942 p->prio = p->normal_prio = __normal_prio(p);
1943 set_load_weight(p);
1944
1945 /*
1946 * We don't need the reset flag anymore after the fork. It has
1947 * fulfilled its duty:
1948 */
1949 p->sched_reset_on_fork = 0;
1950 }
1951
1952 if (dl_prio(p->prio)) {
1953 put_cpu();
1954 return -EAGAIN;
1955 } else if (rt_prio(p->prio)) {
1956 p->sched_class = &rt_sched_class;
1957 } else {
1958 p->sched_class = &fair_sched_class;
1959 }
1960
1961 if (p->sched_class->task_fork)
1962 p->sched_class->task_fork(p);
1963
1964 /*
1965 * The child is not yet in the pid-hash so no cgroup attach races,
1966 * and the cgroup is pinned to this child due to cgroup_fork()
1967 * is ran before sched_fork().
1968 *
1969 * Silence PROVE_RCU.
1970 */
1971 raw_spin_lock_irqsave(&p->pi_lock, flags);
1972 set_task_cpu(p, cpu);
1973 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1974
1975 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1976 if (likely(sched_info_on()))
1977 memset(&p->sched_info, 0, sizeof(p->sched_info));
1978 #endif
1979 #if defined(CONFIG_SMP)
1980 p->on_cpu = 0;
1981 #endif
1982 init_task_preempt_count(p);
1983 #ifdef CONFIG_SMP
1984 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1985 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1986 #endif
1987
1988 put_cpu();
1989 return 0;
1990 }
1991
1992 unsigned long to_ratio(u64 period, u64 runtime)
1993 {
1994 if (runtime == RUNTIME_INF)
1995 return 1ULL << 20;
1996
1997 /*
1998 * Doing this here saves a lot of checks in all
1999 * the calling paths, and returning zero seems
2000 * safe for them anyway.
2001 */
2002 if (period == 0)
2003 return 0;
2004
2005 return div64_u64(runtime << 20, period);
2006 }
2007
2008 #ifdef CONFIG_SMP
2009 inline struct dl_bw *dl_bw_of(int i)
2010 {
2011 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2012 "sched RCU must be held");
2013 return &cpu_rq(i)->rd->dl_bw;
2014 }
2015
2016 static inline int dl_bw_cpus(int i)
2017 {
2018 struct root_domain *rd = cpu_rq(i)->rd;
2019 int cpus = 0;
2020
2021 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2022 "sched RCU must be held");
2023 for_each_cpu_and(i, rd->span, cpu_active_mask)
2024 cpus++;
2025
2026 return cpus;
2027 }
2028 #else
2029 inline struct dl_bw *dl_bw_of(int i)
2030 {
2031 return &cpu_rq(i)->dl.dl_bw;
2032 }
2033
2034 static inline int dl_bw_cpus(int i)
2035 {
2036 return 1;
2037 }
2038 #endif
2039
2040 /*
2041 * We must be sure that accepting a new task (or allowing changing the
2042 * parameters of an existing one) is consistent with the bandwidth
2043 * constraints. If yes, this function also accordingly updates the currently
2044 * allocated bandwidth to reflect the new situation.
2045 *
2046 * This function is called while holding p's rq->lock.
2047 */
2048 static int dl_overflow(struct task_struct *p, int policy,
2049 const struct sched_attr *attr)
2050 {
2051
2052 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2053 u64 period = attr->sched_period ?: attr->sched_deadline;
2054 u64 runtime = attr->sched_runtime;
2055 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2056 int cpus, err = -1;
2057
2058 if (new_bw == p->dl.dl_bw)
2059 return 0;
2060
2061 /*
2062 * Either if a task, enters, leave, or stays -deadline but changes
2063 * its parameters, we may need to update accordingly the total
2064 * allocated bandwidth of the container.
2065 */
2066 raw_spin_lock(&dl_b->lock);
2067 cpus = dl_bw_cpus(task_cpu(p));
2068 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2069 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2070 __dl_add(dl_b, new_bw);
2071 err = 0;
2072 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2073 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2074 __dl_clear(dl_b, p->dl.dl_bw);
2075 __dl_add(dl_b, new_bw);
2076 err = 0;
2077 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2078 __dl_clear(dl_b, p->dl.dl_bw);
2079 err = 0;
2080 }
2081 raw_spin_unlock(&dl_b->lock);
2082
2083 return err;
2084 }
2085
2086 extern void init_dl_bw(struct dl_bw *dl_b);
2087
2088 /*
2089 * wake_up_new_task - wake up a newly created task for the first time.
2090 *
2091 * This function will do some initial scheduler statistics housekeeping
2092 * that must be done for every newly created context, then puts the task
2093 * on the runqueue and wakes it.
2094 */
2095 void wake_up_new_task(struct task_struct *p)
2096 {
2097 unsigned long flags;
2098 struct rq *rq;
2099
2100 raw_spin_lock_irqsave(&p->pi_lock, flags);
2101 #ifdef CONFIG_SMP
2102 /*
2103 * Fork balancing, do it here and not earlier because:
2104 * - cpus_allowed can change in the fork path
2105 * - any previously selected cpu might disappear through hotplug
2106 */
2107 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2108 #endif
2109
2110 /* Initialize new task's runnable average */
2111 init_task_runnable_average(p);
2112 rq = __task_rq_lock(p);
2113 activate_task(rq, p, 0);
2114 p->on_rq = TASK_ON_RQ_QUEUED;
2115 trace_sched_wakeup_new(p, true);
2116 check_preempt_curr(rq, p, WF_FORK);
2117 #ifdef CONFIG_SMP
2118 if (p->sched_class->task_woken)
2119 p->sched_class->task_woken(rq, p);
2120 #endif
2121 task_rq_unlock(rq, p, &flags);
2122 }
2123
2124 #ifdef CONFIG_PREEMPT_NOTIFIERS
2125
2126 /**
2127 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2128 * @notifier: notifier struct to register
2129 */
2130 void preempt_notifier_register(struct preempt_notifier *notifier)
2131 {
2132 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2133 }
2134 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2135
2136 /**
2137 * preempt_notifier_unregister - no longer interested in preemption notifications
2138 * @notifier: notifier struct to unregister
2139 *
2140 * This is safe to call from within a preemption notifier.
2141 */
2142 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2143 {
2144 hlist_del(&notifier->link);
2145 }
2146 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2147
2148 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2149 {
2150 struct preempt_notifier *notifier;
2151
2152 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2153 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2154 }
2155
2156 static void
2157 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2158 struct task_struct *next)
2159 {
2160 struct preempt_notifier *notifier;
2161
2162 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2163 notifier->ops->sched_out(notifier, next);
2164 }
2165
2166 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2167
2168 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2169 {
2170 }
2171
2172 static void
2173 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2174 struct task_struct *next)
2175 {
2176 }
2177
2178 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2179
2180 /**
2181 * prepare_task_switch - prepare to switch tasks
2182 * @rq: the runqueue preparing to switch
2183 * @prev: the current task that is being switched out
2184 * @next: the task we are going to switch to.
2185 *
2186 * This is called with the rq lock held and interrupts off. It must
2187 * be paired with a subsequent finish_task_switch after the context
2188 * switch.
2189 *
2190 * prepare_task_switch sets up locking and calls architecture specific
2191 * hooks.
2192 */
2193 static inline void
2194 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2195 struct task_struct *next)
2196 {
2197 trace_sched_switch(prev, next);
2198 sched_info_switch(rq, prev, next);
2199 perf_event_task_sched_out(prev, next);
2200 fire_sched_out_preempt_notifiers(prev, next);
2201 prepare_lock_switch(rq, next);
2202 prepare_arch_switch(next);
2203 }
2204
2205 /**
2206 * finish_task_switch - clean up after a task-switch
2207 * @prev: the thread we just switched away from.
2208 *
2209 * finish_task_switch must be called after the context switch, paired
2210 * with a prepare_task_switch call before the context switch.
2211 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2212 * and do any other architecture-specific cleanup actions.
2213 *
2214 * Note that we may have delayed dropping an mm in context_switch(). If
2215 * so, we finish that here outside of the runqueue lock. (Doing it
2216 * with the lock held can cause deadlocks; see schedule() for
2217 * details.)
2218 *
2219 * The context switch have flipped the stack from under us and restored the
2220 * local variables which were saved when this task called schedule() in the
2221 * past. prev == current is still correct but we need to recalculate this_rq
2222 * because prev may have moved to another CPU.
2223 */
2224 static struct rq *finish_task_switch(struct task_struct *prev)
2225 __releases(rq->lock)
2226 {
2227 struct rq *rq = this_rq();
2228 struct mm_struct *mm = rq->prev_mm;
2229 long prev_state;
2230
2231 rq->prev_mm = NULL;
2232
2233 /*
2234 * A task struct has one reference for the use as "current".
2235 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2236 * schedule one last time. The schedule call will never return, and
2237 * the scheduled task must drop that reference.
2238 * The test for TASK_DEAD must occur while the runqueue locks are
2239 * still held, otherwise prev could be scheduled on another cpu, die
2240 * there before we look at prev->state, and then the reference would
2241 * be dropped twice.
2242 * Manfred Spraul <manfred@colorfullife.com>
2243 */
2244 prev_state = prev->state;
2245 vtime_task_switch(prev);
2246 finish_arch_switch(prev);
2247 perf_event_task_sched_in(prev, current);
2248 finish_lock_switch(rq, prev);
2249 finish_arch_post_lock_switch();
2250
2251 fire_sched_in_preempt_notifiers(current);
2252 if (mm)
2253 mmdrop(mm);
2254 if (unlikely(prev_state == TASK_DEAD)) {
2255 if (prev->sched_class->task_dead)
2256 prev->sched_class->task_dead(prev);
2257
2258 /*
2259 * Remove function-return probe instances associated with this
2260 * task and put them back on the free list.
2261 */
2262 kprobe_flush_task(prev);
2263 put_task_struct(prev);
2264 }
2265
2266 tick_nohz_task_switch(current);
2267 return rq;
2268 }
2269
2270 #ifdef CONFIG_SMP
2271
2272 /* rq->lock is NOT held, but preemption is disabled */
2273 static inline void post_schedule(struct rq *rq)
2274 {
2275 if (rq->post_schedule) {
2276 unsigned long flags;
2277
2278 raw_spin_lock_irqsave(&rq->lock, flags);
2279 if (rq->curr->sched_class->post_schedule)
2280 rq->curr->sched_class->post_schedule(rq);
2281 raw_spin_unlock_irqrestore(&rq->lock, flags);
2282
2283 rq->post_schedule = 0;
2284 }
2285 }
2286
2287 #else
2288
2289 static inline void post_schedule(struct rq *rq)
2290 {
2291 }
2292
2293 #endif
2294
2295 /**
2296 * schedule_tail - first thing a freshly forked thread must call.
2297 * @prev: the thread we just switched away from.
2298 */
2299 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2300 __releases(rq->lock)
2301 {
2302 struct rq *rq;
2303
2304 /* finish_task_switch() drops rq->lock and enables preemtion */
2305 preempt_disable();
2306 rq = finish_task_switch(prev);
2307 post_schedule(rq);
2308 preempt_enable();
2309
2310 if (current->set_child_tid)
2311 put_user(task_pid_vnr(current), current->set_child_tid);
2312 }
2313
2314 /*
2315 * context_switch - switch to the new MM and the new thread's register state.
2316 */
2317 static inline struct rq *
2318 context_switch(struct rq *rq, struct task_struct *prev,
2319 struct task_struct *next)
2320 {
2321 struct mm_struct *mm, *oldmm;
2322
2323 prepare_task_switch(rq, prev, next);
2324
2325 mm = next->mm;
2326 oldmm = prev->active_mm;
2327 /*
2328 * For paravirt, this is coupled with an exit in switch_to to
2329 * combine the page table reload and the switch backend into
2330 * one hypercall.
2331 */
2332 arch_start_context_switch(prev);
2333
2334 if (!mm) {
2335 next->active_mm = oldmm;
2336 atomic_inc(&oldmm->mm_count);
2337 enter_lazy_tlb(oldmm, next);
2338 } else
2339 switch_mm(oldmm, mm, next);
2340
2341 if (!prev->mm) {
2342 prev->active_mm = NULL;
2343 rq->prev_mm = oldmm;
2344 }
2345 /*
2346 * Since the runqueue lock will be released by the next
2347 * task (which is an invalid locking op but in the case
2348 * of the scheduler it's an obvious special-case), so we
2349 * do an early lockdep release here:
2350 */
2351 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2352
2353 context_tracking_task_switch(prev, next);
2354 /* Here we just switch the register state and the stack. */
2355 switch_to(prev, next, prev);
2356 barrier();
2357
2358 return finish_task_switch(prev);
2359 }
2360
2361 /*
2362 * nr_running and nr_context_switches:
2363 *
2364 * externally visible scheduler statistics: current number of runnable
2365 * threads, total number of context switches performed since bootup.
2366 */
2367 unsigned long nr_running(void)
2368 {
2369 unsigned long i, sum = 0;
2370
2371 for_each_online_cpu(i)
2372 sum += cpu_rq(i)->nr_running;
2373
2374 return sum;
2375 }
2376
2377 /*
2378 * Check if only the current task is running on the cpu.
2379 */
2380 bool single_task_running(void)
2381 {
2382 if (cpu_rq(smp_processor_id())->nr_running == 1)
2383 return true;
2384 else
2385 return false;
2386 }
2387 EXPORT_SYMBOL(single_task_running);
2388
2389 unsigned long long nr_context_switches(void)
2390 {
2391 int i;
2392 unsigned long long sum = 0;
2393
2394 for_each_possible_cpu(i)
2395 sum += cpu_rq(i)->nr_switches;
2396
2397 return sum;
2398 }
2399
2400 unsigned long nr_iowait(void)
2401 {
2402 unsigned long i, sum = 0;
2403
2404 for_each_possible_cpu(i)
2405 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2406
2407 return sum;
2408 }
2409
2410 unsigned long nr_iowait_cpu(int cpu)
2411 {
2412 struct rq *this = cpu_rq(cpu);
2413 return atomic_read(&this->nr_iowait);
2414 }
2415
2416 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2417 {
2418 struct rq *this = this_rq();
2419 *nr_waiters = atomic_read(&this->nr_iowait);
2420 *load = this->cpu_load[0];
2421 }
2422
2423 #ifdef CONFIG_SMP
2424
2425 /*
2426 * sched_exec - execve() is a valuable balancing opportunity, because at
2427 * this point the task has the smallest effective memory and cache footprint.
2428 */
2429 void sched_exec(void)
2430 {
2431 struct task_struct *p = current;
2432 unsigned long flags;
2433 int dest_cpu;
2434
2435 raw_spin_lock_irqsave(&p->pi_lock, flags);
2436 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2437 if (dest_cpu == smp_processor_id())
2438 goto unlock;
2439
2440 if (likely(cpu_active(dest_cpu))) {
2441 struct migration_arg arg = { p, dest_cpu };
2442
2443 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2444 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2445 return;
2446 }
2447 unlock:
2448 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2449 }
2450
2451 #endif
2452
2453 DEFINE_PER_CPU(struct kernel_stat, kstat);
2454 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2455
2456 EXPORT_PER_CPU_SYMBOL(kstat);
2457 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2458
2459 /*
2460 * Return accounted runtime for the task.
2461 * In case the task is currently running, return the runtime plus current's
2462 * pending runtime that have not been accounted yet.
2463 */
2464 unsigned long long task_sched_runtime(struct task_struct *p)
2465 {
2466 unsigned long flags;
2467 struct rq *rq;
2468 u64 ns;
2469
2470 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2471 /*
2472 * 64-bit doesn't need locks to atomically read a 64bit value.
2473 * So we have a optimization chance when the task's delta_exec is 0.
2474 * Reading ->on_cpu is racy, but this is ok.
2475 *
2476 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2477 * If we race with it entering cpu, unaccounted time is 0. This is
2478 * indistinguishable from the read occurring a few cycles earlier.
2479 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2480 * been accounted, so we're correct here as well.
2481 */
2482 if (!p->on_cpu || !task_on_rq_queued(p))
2483 return p->se.sum_exec_runtime;
2484 #endif
2485
2486 rq = task_rq_lock(p, &flags);
2487 /*
2488 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2489 * project cycles that may never be accounted to this
2490 * thread, breaking clock_gettime().
2491 */
2492 if (task_current(rq, p) && task_on_rq_queued(p)) {
2493 update_rq_clock(rq);
2494 p->sched_class->update_curr(rq);
2495 }
2496 ns = p->se.sum_exec_runtime;
2497 task_rq_unlock(rq, p, &flags);
2498
2499 return ns;
2500 }
2501
2502 /*
2503 * This function gets called by the timer code, with HZ frequency.
2504 * We call it with interrupts disabled.
2505 */
2506 void scheduler_tick(void)
2507 {
2508 int cpu = smp_processor_id();
2509 struct rq *rq = cpu_rq(cpu);
2510 struct task_struct *curr = rq->curr;
2511
2512 sched_clock_tick();
2513
2514 raw_spin_lock(&rq->lock);
2515 update_rq_clock(rq);
2516 curr->sched_class->task_tick(rq, curr, 0);
2517 update_cpu_load_active(rq);
2518 raw_spin_unlock(&rq->lock);
2519
2520 perf_event_task_tick();
2521
2522 #ifdef CONFIG_SMP
2523 rq->idle_balance = idle_cpu(cpu);
2524 trigger_load_balance(rq);
2525 #endif
2526 rq_last_tick_reset(rq);
2527 }
2528
2529 #ifdef CONFIG_NO_HZ_FULL
2530 /**
2531 * scheduler_tick_max_deferment
2532 *
2533 * Keep at least one tick per second when a single
2534 * active task is running because the scheduler doesn't
2535 * yet completely support full dynticks environment.
2536 *
2537 * This makes sure that uptime, CFS vruntime, load
2538 * balancing, etc... continue to move forward, even
2539 * with a very low granularity.
2540 *
2541 * Return: Maximum deferment in nanoseconds.
2542 */
2543 u64 scheduler_tick_max_deferment(void)
2544 {
2545 struct rq *rq = this_rq();
2546 unsigned long next, now = ACCESS_ONCE(jiffies);
2547
2548 next = rq->last_sched_tick + HZ;
2549
2550 if (time_before_eq(next, now))
2551 return 0;
2552
2553 return jiffies_to_nsecs(next - now);
2554 }
2555 #endif
2556
2557 notrace unsigned long get_parent_ip(unsigned long addr)
2558 {
2559 if (in_lock_functions(addr)) {
2560 addr = CALLER_ADDR2;
2561 if (in_lock_functions(addr))
2562 addr = CALLER_ADDR3;
2563 }
2564 return addr;
2565 }
2566
2567 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2568 defined(CONFIG_PREEMPT_TRACER))
2569
2570 void preempt_count_add(int val)
2571 {
2572 #ifdef CONFIG_DEBUG_PREEMPT
2573 /*
2574 * Underflow?
2575 */
2576 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2577 return;
2578 #endif
2579 __preempt_count_add(val);
2580 #ifdef CONFIG_DEBUG_PREEMPT
2581 /*
2582 * Spinlock count overflowing soon?
2583 */
2584 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2585 PREEMPT_MASK - 10);
2586 #endif
2587 if (preempt_count() == val) {
2588 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2589 #ifdef CONFIG_DEBUG_PREEMPT
2590 current->preempt_disable_ip = ip;
2591 #endif
2592 trace_preempt_off(CALLER_ADDR0, ip);
2593 }
2594 }
2595 EXPORT_SYMBOL(preempt_count_add);
2596 NOKPROBE_SYMBOL(preempt_count_add);
2597
2598 void preempt_count_sub(int val)
2599 {
2600 #ifdef CONFIG_DEBUG_PREEMPT
2601 /*
2602 * Underflow?
2603 */
2604 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2605 return;
2606 /*
2607 * Is the spinlock portion underflowing?
2608 */
2609 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2610 !(preempt_count() & PREEMPT_MASK)))
2611 return;
2612 #endif
2613
2614 if (preempt_count() == val)
2615 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2616 __preempt_count_sub(val);
2617 }
2618 EXPORT_SYMBOL(preempt_count_sub);
2619 NOKPROBE_SYMBOL(preempt_count_sub);
2620
2621 #endif
2622
2623 /*
2624 * Print scheduling while atomic bug:
2625 */
2626 static noinline void __schedule_bug(struct task_struct *prev)
2627 {
2628 if (oops_in_progress)
2629 return;
2630
2631 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2632 prev->comm, prev->pid, preempt_count());
2633
2634 debug_show_held_locks(prev);
2635 print_modules();
2636 if (irqs_disabled())
2637 print_irqtrace_events(prev);
2638 #ifdef CONFIG_DEBUG_PREEMPT
2639 if (in_atomic_preempt_off()) {
2640 pr_err("Preemption disabled at:");
2641 print_ip_sym(current->preempt_disable_ip);
2642 pr_cont("\n");
2643 }
2644 #endif
2645 dump_stack();
2646 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2647 }
2648
2649 /*
2650 * Various schedule()-time debugging checks and statistics:
2651 */
2652 static inline void schedule_debug(struct task_struct *prev)
2653 {
2654 #ifdef CONFIG_SCHED_STACK_END_CHECK
2655 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2656 #endif
2657 /*
2658 * Test if we are atomic. Since do_exit() needs to call into
2659 * schedule() atomically, we ignore that path. Otherwise whine
2660 * if we are scheduling when we should not.
2661 */
2662 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2663 __schedule_bug(prev);
2664 rcu_sleep_check();
2665
2666 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2667
2668 schedstat_inc(this_rq(), sched_count);
2669 }
2670
2671 /*
2672 * Pick up the highest-prio task:
2673 */
2674 static inline struct task_struct *
2675 pick_next_task(struct rq *rq, struct task_struct *prev)
2676 {
2677 const struct sched_class *class = &fair_sched_class;
2678 struct task_struct *p;
2679
2680 /*
2681 * Optimization: we know that if all tasks are in
2682 * the fair class we can call that function directly:
2683 */
2684 if (likely(prev->sched_class == class &&
2685 rq->nr_running == rq->cfs.h_nr_running)) {
2686 p = fair_sched_class.pick_next_task(rq, prev);
2687 if (unlikely(p == RETRY_TASK))
2688 goto again;
2689
2690 /* assumes fair_sched_class->next == idle_sched_class */
2691 if (unlikely(!p))
2692 p = idle_sched_class.pick_next_task(rq, prev);
2693
2694 return p;
2695 }
2696
2697 again:
2698 for_each_class(class) {
2699 p = class->pick_next_task(rq, prev);
2700 if (p) {
2701 if (unlikely(p == RETRY_TASK))
2702 goto again;
2703 return p;
2704 }
2705 }
2706
2707 BUG(); /* the idle class will always have a runnable task */
2708 }
2709
2710 /*
2711 * __schedule() is the main scheduler function.
2712 *
2713 * The main means of driving the scheduler and thus entering this function are:
2714 *
2715 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2716 *
2717 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2718 * paths. For example, see arch/x86/entry_64.S.
2719 *
2720 * To drive preemption between tasks, the scheduler sets the flag in timer
2721 * interrupt handler scheduler_tick().
2722 *
2723 * 3. Wakeups don't really cause entry into schedule(). They add a
2724 * task to the run-queue and that's it.
2725 *
2726 * Now, if the new task added to the run-queue preempts the current
2727 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2728 * called on the nearest possible occasion:
2729 *
2730 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2731 *
2732 * - in syscall or exception context, at the next outmost
2733 * preempt_enable(). (this might be as soon as the wake_up()'s
2734 * spin_unlock()!)
2735 *
2736 * - in IRQ context, return from interrupt-handler to
2737 * preemptible context
2738 *
2739 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2740 * then at the next:
2741 *
2742 * - cond_resched() call
2743 * - explicit schedule() call
2744 * - return from syscall or exception to user-space
2745 * - return from interrupt-handler to user-space
2746 */
2747 static void __sched __schedule(void)
2748 {
2749 struct task_struct *prev, *next;
2750 unsigned long *switch_count;
2751 struct rq *rq;
2752 int cpu;
2753
2754 need_resched:
2755 preempt_disable();
2756 cpu = smp_processor_id();
2757 rq = cpu_rq(cpu);
2758 rcu_note_context_switch(cpu);
2759 prev = rq->curr;
2760
2761 schedule_debug(prev);
2762
2763 if (sched_feat(HRTICK))
2764 hrtick_clear(rq);
2765
2766 /*
2767 * Make sure that signal_pending_state()->signal_pending() below
2768 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2769 * done by the caller to avoid the race with signal_wake_up().
2770 */
2771 smp_mb__before_spinlock();
2772 raw_spin_lock_irq(&rq->lock);
2773
2774 switch_count = &prev->nivcsw;
2775 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2776 if (unlikely(signal_pending_state(prev->state, prev))) {
2777 prev->state = TASK_RUNNING;
2778 } else {
2779 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2780 prev->on_rq = 0;
2781
2782 /*
2783 * If a worker went to sleep, notify and ask workqueue
2784 * whether it wants to wake up a task to maintain
2785 * concurrency.
2786 */
2787 if (prev->flags & PF_WQ_WORKER) {
2788 struct task_struct *to_wakeup;
2789
2790 to_wakeup = wq_worker_sleeping(prev, cpu);
2791 if (to_wakeup)
2792 try_to_wake_up_local(to_wakeup);
2793 }
2794 }
2795 switch_count = &prev->nvcsw;
2796 }
2797
2798 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2799 update_rq_clock(rq);
2800
2801 next = pick_next_task(rq, prev);
2802 clear_tsk_need_resched(prev);
2803 clear_preempt_need_resched();
2804 rq->skip_clock_update = 0;
2805
2806 if (likely(prev != next)) {
2807 rq->nr_switches++;
2808 rq->curr = next;
2809 ++*switch_count;
2810
2811 rq = context_switch(rq, prev, next); /* unlocks the rq */
2812 cpu = cpu_of(rq);
2813 } else
2814 raw_spin_unlock_irq(&rq->lock);
2815
2816 post_schedule(rq);
2817
2818 sched_preempt_enable_no_resched();
2819 if (need_resched())
2820 goto need_resched;
2821 }
2822
2823 static inline void sched_submit_work(struct task_struct *tsk)
2824 {
2825 if (!tsk->state || tsk_is_pi_blocked(tsk))
2826 return;
2827 /*
2828 * If we are going to sleep and we have plugged IO queued,
2829 * make sure to submit it to avoid deadlocks.
2830 */
2831 if (blk_needs_flush_plug(tsk))
2832 blk_schedule_flush_plug(tsk);
2833 }
2834
2835 asmlinkage __visible void __sched schedule(void)
2836 {
2837 struct task_struct *tsk = current;
2838
2839 sched_submit_work(tsk);
2840 __schedule();
2841 }
2842 EXPORT_SYMBOL(schedule);
2843
2844 #ifdef CONFIG_CONTEXT_TRACKING
2845 asmlinkage __visible void __sched schedule_user(void)
2846 {
2847 /*
2848 * If we come here after a random call to set_need_resched(),
2849 * or we have been woken up remotely but the IPI has not yet arrived,
2850 * we haven't yet exited the RCU idle mode. Do it here manually until
2851 * we find a better solution.
2852 */
2853 user_exit();
2854 schedule();
2855 user_enter();
2856 }
2857 #endif
2858
2859 /**
2860 * schedule_preempt_disabled - called with preemption disabled
2861 *
2862 * Returns with preemption disabled. Note: preempt_count must be 1
2863 */
2864 void __sched schedule_preempt_disabled(void)
2865 {
2866 sched_preempt_enable_no_resched();
2867 schedule();
2868 preempt_disable();
2869 }
2870
2871 #ifdef CONFIG_PREEMPT
2872 /*
2873 * this is the entry point to schedule() from in-kernel preemption
2874 * off of preempt_enable. Kernel preemptions off return from interrupt
2875 * occur there and call schedule directly.
2876 */
2877 asmlinkage __visible void __sched notrace preempt_schedule(void)
2878 {
2879 /*
2880 * If there is a non-zero preempt_count or interrupts are disabled,
2881 * we do not want to preempt the current task. Just return..
2882 */
2883 if (likely(!preemptible()))
2884 return;
2885
2886 do {
2887 __preempt_count_add(PREEMPT_ACTIVE);
2888 __schedule();
2889 __preempt_count_sub(PREEMPT_ACTIVE);
2890
2891 /*
2892 * Check again in case we missed a preemption opportunity
2893 * between schedule and now.
2894 */
2895 barrier();
2896 } while (need_resched());
2897 }
2898 NOKPROBE_SYMBOL(preempt_schedule);
2899 EXPORT_SYMBOL(preempt_schedule);
2900
2901 #ifdef CONFIG_CONTEXT_TRACKING
2902 /**
2903 * preempt_schedule_context - preempt_schedule called by tracing
2904 *
2905 * The tracing infrastructure uses preempt_enable_notrace to prevent
2906 * recursion and tracing preempt enabling caused by the tracing
2907 * infrastructure itself. But as tracing can happen in areas coming
2908 * from userspace or just about to enter userspace, a preempt enable
2909 * can occur before user_exit() is called. This will cause the scheduler
2910 * to be called when the system is still in usermode.
2911 *
2912 * To prevent this, the preempt_enable_notrace will use this function
2913 * instead of preempt_schedule() to exit user context if needed before
2914 * calling the scheduler.
2915 */
2916 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2917 {
2918 enum ctx_state prev_ctx;
2919
2920 if (likely(!preemptible()))
2921 return;
2922
2923 do {
2924 __preempt_count_add(PREEMPT_ACTIVE);
2925 /*
2926 * Needs preempt disabled in case user_exit() is traced
2927 * and the tracer calls preempt_enable_notrace() causing
2928 * an infinite recursion.
2929 */
2930 prev_ctx = exception_enter();
2931 __schedule();
2932 exception_exit(prev_ctx);
2933
2934 __preempt_count_sub(PREEMPT_ACTIVE);
2935 barrier();
2936 } while (need_resched());
2937 }
2938 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2939 #endif /* CONFIG_CONTEXT_TRACKING */
2940
2941 #endif /* CONFIG_PREEMPT */
2942
2943 /*
2944 * this is the entry point to schedule() from kernel preemption
2945 * off of irq context.
2946 * Note, that this is called and return with irqs disabled. This will
2947 * protect us against recursive calling from irq.
2948 */
2949 asmlinkage __visible void __sched preempt_schedule_irq(void)
2950 {
2951 enum ctx_state prev_state;
2952
2953 /* Catch callers which need to be fixed */
2954 BUG_ON(preempt_count() || !irqs_disabled());
2955
2956 prev_state = exception_enter();
2957
2958 do {
2959 __preempt_count_add(PREEMPT_ACTIVE);
2960 local_irq_enable();
2961 __schedule();
2962 local_irq_disable();
2963 __preempt_count_sub(PREEMPT_ACTIVE);
2964
2965 /*
2966 * Check again in case we missed a preemption opportunity
2967 * between schedule and now.
2968 */
2969 barrier();
2970 } while (need_resched());
2971
2972 exception_exit(prev_state);
2973 }
2974
2975 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2976 void *key)
2977 {
2978 return try_to_wake_up(curr->private, mode, wake_flags);
2979 }
2980 EXPORT_SYMBOL(default_wake_function);
2981
2982 #ifdef CONFIG_RT_MUTEXES
2983
2984 /*
2985 * rt_mutex_setprio - set the current priority of a task
2986 * @p: task
2987 * @prio: prio value (kernel-internal form)
2988 *
2989 * This function changes the 'effective' priority of a task. It does
2990 * not touch ->normal_prio like __setscheduler().
2991 *
2992 * Used by the rt_mutex code to implement priority inheritance
2993 * logic. Call site only calls if the priority of the task changed.
2994 */
2995 void rt_mutex_setprio(struct task_struct *p, int prio)
2996 {
2997 int oldprio, queued, running, enqueue_flag = 0;
2998 struct rq *rq;
2999 const struct sched_class *prev_class;
3000
3001 BUG_ON(prio > MAX_PRIO);
3002
3003 rq = __task_rq_lock(p);
3004
3005 /*
3006 * Idle task boosting is a nono in general. There is one
3007 * exception, when PREEMPT_RT and NOHZ is active:
3008 *
3009 * The idle task calls get_next_timer_interrupt() and holds
3010 * the timer wheel base->lock on the CPU and another CPU wants
3011 * to access the timer (probably to cancel it). We can safely
3012 * ignore the boosting request, as the idle CPU runs this code
3013 * with interrupts disabled and will complete the lock
3014 * protected section without being interrupted. So there is no
3015 * real need to boost.
3016 */
3017 if (unlikely(p == rq->idle)) {
3018 WARN_ON(p != rq->curr);
3019 WARN_ON(p->pi_blocked_on);
3020 goto out_unlock;
3021 }
3022
3023 trace_sched_pi_setprio(p, prio);
3024 oldprio = p->prio;
3025 prev_class = p->sched_class;
3026 queued = task_on_rq_queued(p);
3027 running = task_current(rq, p);
3028 if (queued)
3029 dequeue_task(rq, p, 0);
3030 if (running)
3031 put_prev_task(rq, p);
3032
3033 /*
3034 * Boosting condition are:
3035 * 1. -rt task is running and holds mutex A
3036 * --> -dl task blocks on mutex A
3037 *
3038 * 2. -dl task is running and holds mutex A
3039 * --> -dl task blocks on mutex A and could preempt the
3040 * running task
3041 */
3042 if (dl_prio(prio)) {
3043 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3044 if (!dl_prio(p->normal_prio) ||
3045 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3046 p->dl.dl_boosted = 1;
3047 p->dl.dl_throttled = 0;
3048 enqueue_flag = ENQUEUE_REPLENISH;
3049 } else
3050 p->dl.dl_boosted = 0;
3051 p->sched_class = &dl_sched_class;
3052 } else if (rt_prio(prio)) {
3053 if (dl_prio(oldprio))
3054 p->dl.dl_boosted = 0;
3055 if (oldprio < prio)
3056 enqueue_flag = ENQUEUE_HEAD;
3057 p->sched_class = &rt_sched_class;
3058 } else {
3059 if (dl_prio(oldprio))
3060 p->dl.dl_boosted = 0;
3061 p->sched_class = &fair_sched_class;
3062 }
3063
3064 p->prio = prio;
3065
3066 if (running)
3067 p->sched_class->set_curr_task(rq);
3068 if (queued)
3069 enqueue_task(rq, p, enqueue_flag);
3070
3071 check_class_changed(rq, p, prev_class, oldprio);
3072 out_unlock:
3073 __task_rq_unlock(rq);
3074 }
3075 #endif
3076
3077 void set_user_nice(struct task_struct *p, long nice)
3078 {
3079 int old_prio, delta, queued;
3080 unsigned long flags;
3081 struct rq *rq;
3082
3083 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3084 return;
3085 /*
3086 * We have to be careful, if called from sys_setpriority(),
3087 * the task might be in the middle of scheduling on another CPU.
3088 */
3089 rq = task_rq_lock(p, &flags);
3090 /*
3091 * The RT priorities are set via sched_setscheduler(), but we still
3092 * allow the 'normal' nice value to be set - but as expected
3093 * it wont have any effect on scheduling until the task is
3094 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3095 */
3096 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3097 p->static_prio = NICE_TO_PRIO(nice);
3098 goto out_unlock;
3099 }
3100 queued = task_on_rq_queued(p);
3101 if (queued)
3102 dequeue_task(rq, p, 0);
3103
3104 p->static_prio = NICE_TO_PRIO(nice);
3105 set_load_weight(p);
3106 old_prio = p->prio;
3107 p->prio = effective_prio(p);
3108 delta = p->prio - old_prio;
3109
3110 if (queued) {
3111 enqueue_task(rq, p, 0);
3112 /*
3113 * If the task increased its priority or is running and
3114 * lowered its priority, then reschedule its CPU:
3115 */
3116 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3117 resched_curr(rq);
3118 }
3119 out_unlock:
3120 task_rq_unlock(rq, p, &flags);
3121 }
3122 EXPORT_SYMBOL(set_user_nice);
3123
3124 /*
3125 * can_nice - check if a task can reduce its nice value
3126 * @p: task
3127 * @nice: nice value
3128 */
3129 int can_nice(const struct task_struct *p, const int nice)
3130 {
3131 /* convert nice value [19,-20] to rlimit style value [1,40] */
3132 int nice_rlim = nice_to_rlimit(nice);
3133
3134 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3135 capable(CAP_SYS_NICE));
3136 }
3137
3138 #ifdef __ARCH_WANT_SYS_NICE
3139
3140 /*
3141 * sys_nice - change the priority of the current process.
3142 * @increment: priority increment
3143 *
3144 * sys_setpriority is a more generic, but much slower function that
3145 * does similar things.
3146 */
3147 SYSCALL_DEFINE1(nice, int, increment)
3148 {
3149 long nice, retval;
3150
3151 /*
3152 * Setpriority might change our priority at the same moment.
3153 * We don't have to worry. Conceptually one call occurs first
3154 * and we have a single winner.
3155 */
3156 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3157 nice = task_nice(current) + increment;
3158
3159 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3160 if (increment < 0 && !can_nice(current, nice))
3161 return -EPERM;
3162
3163 retval = security_task_setnice(current, nice);
3164 if (retval)
3165 return retval;
3166
3167 set_user_nice(current, nice);
3168 return 0;
3169 }
3170
3171 #endif
3172
3173 /**
3174 * task_prio - return the priority value of a given task.
3175 * @p: the task in question.
3176 *
3177 * Return: The priority value as seen by users in /proc.
3178 * RT tasks are offset by -200. Normal tasks are centered
3179 * around 0, value goes from -16 to +15.
3180 */
3181 int task_prio(const struct task_struct *p)
3182 {
3183 return p->prio - MAX_RT_PRIO;
3184 }
3185
3186 /**
3187 * idle_cpu - is a given cpu idle currently?
3188 * @cpu: the processor in question.
3189 *
3190 * Return: 1 if the CPU is currently idle. 0 otherwise.
3191 */
3192 int idle_cpu(int cpu)
3193 {
3194 struct rq *rq = cpu_rq(cpu);
3195
3196 if (rq->curr != rq->idle)
3197 return 0;
3198
3199 if (rq->nr_running)
3200 return 0;
3201
3202 #ifdef CONFIG_SMP
3203 if (!llist_empty(&rq->wake_list))
3204 return 0;
3205 #endif
3206
3207 return 1;
3208 }
3209
3210 /**
3211 * idle_task - return the idle task for a given cpu.
3212 * @cpu: the processor in question.
3213 *
3214 * Return: The idle task for the cpu @cpu.
3215 */
3216 struct task_struct *idle_task(int cpu)
3217 {
3218 return cpu_rq(cpu)->idle;
3219 }
3220
3221 /**
3222 * find_process_by_pid - find a process with a matching PID value.
3223 * @pid: the pid in question.
3224 *
3225 * The task of @pid, if found. %NULL otherwise.
3226 */
3227 static struct task_struct *find_process_by_pid(pid_t pid)
3228 {
3229 return pid ? find_task_by_vpid(pid) : current;
3230 }
3231
3232 /*
3233 * This function initializes the sched_dl_entity of a newly becoming
3234 * SCHED_DEADLINE task.
3235 *
3236 * Only the static values are considered here, the actual runtime and the
3237 * absolute deadline will be properly calculated when the task is enqueued
3238 * for the first time with its new policy.
3239 */
3240 static void
3241 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3242 {
3243 struct sched_dl_entity *dl_se = &p->dl;
3244
3245 init_dl_task_timer(dl_se);
3246 dl_se->dl_runtime = attr->sched_runtime;
3247 dl_se->dl_deadline = attr->sched_deadline;
3248 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3249 dl_se->flags = attr->sched_flags;
3250 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3251 dl_se->dl_throttled = 0;
3252 dl_se->dl_new = 1;
3253 dl_se->dl_yielded = 0;
3254 }
3255
3256 /*
3257 * sched_setparam() passes in -1 for its policy, to let the functions
3258 * it calls know not to change it.
3259 */
3260 #define SETPARAM_POLICY -1
3261
3262 static void __setscheduler_params(struct task_struct *p,
3263 const struct sched_attr *attr)
3264 {
3265 int policy = attr->sched_policy;
3266
3267 if (policy == SETPARAM_POLICY)
3268 policy = p->policy;
3269
3270 p->policy = policy;
3271
3272 if (dl_policy(policy))
3273 __setparam_dl(p, attr);
3274 else if (fair_policy(policy))
3275 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3276
3277 /*
3278 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3279 * !rt_policy. Always setting this ensures that things like
3280 * getparam()/getattr() don't report silly values for !rt tasks.
3281 */
3282 p->rt_priority = attr->sched_priority;
3283 p->normal_prio = normal_prio(p);
3284 set_load_weight(p);
3285 }
3286
3287 /* Actually do priority change: must hold pi & rq lock. */
3288 static void __setscheduler(struct rq *rq, struct task_struct *p,
3289 const struct sched_attr *attr)
3290 {
3291 __setscheduler_params(p, attr);
3292
3293 /*
3294 * If we get here, there was no pi waiters boosting the
3295 * task. It is safe to use the normal prio.
3296 */
3297 p->prio = normal_prio(p);
3298
3299 if (dl_prio(p->prio))
3300 p->sched_class = &dl_sched_class;
3301 else if (rt_prio(p->prio))
3302 p->sched_class = &rt_sched_class;
3303 else
3304 p->sched_class = &fair_sched_class;
3305 }
3306
3307 static void
3308 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3309 {
3310 struct sched_dl_entity *dl_se = &p->dl;
3311
3312 attr->sched_priority = p->rt_priority;
3313 attr->sched_runtime = dl_se->dl_runtime;
3314 attr->sched_deadline = dl_se->dl_deadline;
3315 attr->sched_period = dl_se->dl_period;
3316 attr->sched_flags = dl_se->flags;
3317 }
3318
3319 /*
3320 * This function validates the new parameters of a -deadline task.
3321 * We ask for the deadline not being zero, and greater or equal
3322 * than the runtime, as well as the period of being zero or
3323 * greater than deadline. Furthermore, we have to be sure that
3324 * user parameters are above the internal resolution of 1us (we
3325 * check sched_runtime only since it is always the smaller one) and
3326 * below 2^63 ns (we have to check both sched_deadline and
3327 * sched_period, as the latter can be zero).
3328 */
3329 static bool
3330 __checkparam_dl(const struct sched_attr *attr)
3331 {
3332 /* deadline != 0 */
3333 if (attr->sched_deadline == 0)
3334 return false;
3335
3336 /*
3337 * Since we truncate DL_SCALE bits, make sure we're at least
3338 * that big.
3339 */
3340 if (attr->sched_runtime < (1ULL << DL_SCALE))
3341 return false;
3342
3343 /*
3344 * Since we use the MSB for wrap-around and sign issues, make
3345 * sure it's not set (mind that period can be equal to zero).
3346 */
3347 if (attr->sched_deadline & (1ULL << 63) ||
3348 attr->sched_period & (1ULL << 63))
3349 return false;
3350
3351 /* runtime <= deadline <= period (if period != 0) */
3352 if ((attr->sched_period != 0 &&
3353 attr->sched_period < attr->sched_deadline) ||
3354 attr->sched_deadline < attr->sched_runtime)
3355 return false;
3356
3357 return true;
3358 }
3359
3360 /*
3361 * check the target process has a UID that matches the current process's
3362 */
3363 static bool check_same_owner(struct task_struct *p)
3364 {
3365 const struct cred *cred = current_cred(), *pcred;
3366 bool match;
3367
3368 rcu_read_lock();
3369 pcred = __task_cred(p);
3370 match = (uid_eq(cred->euid, pcred->euid) ||
3371 uid_eq(cred->euid, pcred->uid));
3372 rcu_read_unlock();
3373 return match;
3374 }
3375
3376 static int __sched_setscheduler(struct task_struct *p,
3377 const struct sched_attr *attr,
3378 bool user)
3379 {
3380 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3381 MAX_RT_PRIO - 1 - attr->sched_priority;
3382 int retval, oldprio, oldpolicy = -1, queued, running;
3383 int policy = attr->sched_policy;
3384 unsigned long flags;
3385 const struct sched_class *prev_class;
3386 struct rq *rq;
3387 int reset_on_fork;
3388
3389 /* may grab non-irq protected spin_locks */
3390 BUG_ON(in_interrupt());
3391 recheck:
3392 /* double check policy once rq lock held */
3393 if (policy < 0) {
3394 reset_on_fork = p->sched_reset_on_fork;
3395 policy = oldpolicy = p->policy;
3396 } else {
3397 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3398
3399 if (policy != SCHED_DEADLINE &&
3400 policy != SCHED_FIFO && policy != SCHED_RR &&
3401 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3402 policy != SCHED_IDLE)
3403 return -EINVAL;
3404 }
3405
3406 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3407 return -EINVAL;
3408
3409 /*
3410 * Valid priorities for SCHED_FIFO and SCHED_RR are
3411 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3412 * SCHED_BATCH and SCHED_IDLE is 0.
3413 */
3414 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3415 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3416 return -EINVAL;
3417 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3418 (rt_policy(policy) != (attr->sched_priority != 0)))
3419 return -EINVAL;
3420
3421 /*
3422 * Allow unprivileged RT tasks to decrease priority:
3423 */
3424 if (user && !capable(CAP_SYS_NICE)) {
3425 if (fair_policy(policy)) {
3426 if (attr->sched_nice < task_nice(p) &&
3427 !can_nice(p, attr->sched_nice))
3428 return -EPERM;
3429 }
3430
3431 if (rt_policy(policy)) {
3432 unsigned long rlim_rtprio =
3433 task_rlimit(p, RLIMIT_RTPRIO);
3434
3435 /* can't set/change the rt policy */
3436 if (policy != p->policy && !rlim_rtprio)
3437 return -EPERM;
3438
3439 /* can't increase priority */
3440 if (attr->sched_priority > p->rt_priority &&
3441 attr->sched_priority > rlim_rtprio)
3442 return -EPERM;
3443 }
3444
3445 /*
3446 * Can't set/change SCHED_DEADLINE policy at all for now
3447 * (safest behavior); in the future we would like to allow
3448 * unprivileged DL tasks to increase their relative deadline
3449 * or reduce their runtime (both ways reducing utilization)
3450 */
3451 if (dl_policy(policy))
3452 return -EPERM;
3453
3454 /*
3455 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3456 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3457 */
3458 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3459 if (!can_nice(p, task_nice(p)))
3460 return -EPERM;
3461 }
3462
3463 /* can't change other user's priorities */
3464 if (!check_same_owner(p))
3465 return -EPERM;
3466
3467 /* Normal users shall not reset the sched_reset_on_fork flag */
3468 if (p->sched_reset_on_fork && !reset_on_fork)
3469 return -EPERM;
3470 }
3471
3472 if (user) {
3473 retval = security_task_setscheduler(p);
3474 if (retval)
3475 return retval;
3476 }
3477
3478 /*
3479 * make sure no PI-waiters arrive (or leave) while we are
3480 * changing the priority of the task:
3481 *
3482 * To be able to change p->policy safely, the appropriate
3483 * runqueue lock must be held.
3484 */
3485 rq = task_rq_lock(p, &flags);
3486
3487 /*
3488 * Changing the policy of the stop threads its a very bad idea
3489 */
3490 if (p == rq->stop) {
3491 task_rq_unlock(rq, p, &flags);
3492 return -EINVAL;
3493 }
3494
3495 /*
3496 * If not changing anything there's no need to proceed further,
3497 * but store a possible modification of reset_on_fork.
3498 */
3499 if (unlikely(policy == p->policy)) {
3500 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3501 goto change;
3502 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3503 goto change;
3504 if (dl_policy(policy))
3505 goto change;
3506
3507 p->sched_reset_on_fork = reset_on_fork;
3508 task_rq_unlock(rq, p, &flags);
3509 return 0;
3510 }
3511 change:
3512
3513 if (user) {
3514 #ifdef CONFIG_RT_GROUP_SCHED
3515 /*
3516 * Do not allow realtime tasks into groups that have no runtime
3517 * assigned.
3518 */
3519 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3520 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3521 !task_group_is_autogroup(task_group(p))) {
3522 task_rq_unlock(rq, p, &flags);
3523 return -EPERM;
3524 }
3525 #endif
3526 #ifdef CONFIG_SMP
3527 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3528 cpumask_t *span = rq->rd->span;
3529
3530 /*
3531 * Don't allow tasks with an affinity mask smaller than
3532 * the entire root_domain to become SCHED_DEADLINE. We
3533 * will also fail if there's no bandwidth available.
3534 */
3535 if (!cpumask_subset(span, &p->cpus_allowed) ||
3536 rq->rd->dl_bw.bw == 0) {
3537 task_rq_unlock(rq, p, &flags);
3538 return -EPERM;
3539 }
3540 }
3541 #endif
3542 }
3543
3544 /* recheck policy now with rq lock held */
3545 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3546 policy = oldpolicy = -1;
3547 task_rq_unlock(rq, p, &flags);
3548 goto recheck;
3549 }
3550
3551 /*
3552 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3553 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3554 * is available.
3555 */
3556 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3557 task_rq_unlock(rq, p, &flags);
3558 return -EBUSY;
3559 }
3560
3561 p->sched_reset_on_fork = reset_on_fork;
3562 oldprio = p->prio;
3563
3564 /*
3565 * Special case for priority boosted tasks.
3566 *
3567 * If the new priority is lower or equal (user space view)
3568 * than the current (boosted) priority, we just store the new
3569 * normal parameters and do not touch the scheduler class and
3570 * the runqueue. This will be done when the task deboost
3571 * itself.
3572 */
3573 if (rt_mutex_check_prio(p, newprio)) {
3574 __setscheduler_params(p, attr);
3575 task_rq_unlock(rq, p, &flags);
3576 return 0;
3577 }
3578
3579 queued = task_on_rq_queued(p);
3580 running = task_current(rq, p);
3581 if (queued)
3582 dequeue_task(rq, p, 0);
3583 if (running)
3584 put_prev_task(rq, p);
3585
3586 prev_class = p->sched_class;
3587 __setscheduler(rq, p, attr);
3588
3589 if (running)
3590 p->sched_class->set_curr_task(rq);
3591 if (queued) {
3592 /*
3593 * We enqueue to tail when the priority of a task is
3594 * increased (user space view).
3595 */
3596 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3597 }
3598
3599 check_class_changed(rq, p, prev_class, oldprio);
3600 task_rq_unlock(rq, p, &flags);
3601
3602 rt_mutex_adjust_pi(p);
3603
3604 return 0;
3605 }
3606
3607 static int _sched_setscheduler(struct task_struct *p, int policy,
3608 const struct sched_param *param, bool check)
3609 {
3610 struct sched_attr attr = {
3611 .sched_policy = policy,
3612 .sched_priority = param->sched_priority,
3613 .sched_nice = PRIO_TO_NICE(p->static_prio),
3614 };
3615
3616 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3617 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3618 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3619 policy &= ~SCHED_RESET_ON_FORK;
3620 attr.sched_policy = policy;
3621 }
3622
3623 return __sched_setscheduler(p, &attr, check);
3624 }
3625 /**
3626 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3627 * @p: the task in question.
3628 * @policy: new policy.
3629 * @param: structure containing the new RT priority.
3630 *
3631 * Return: 0 on success. An error code otherwise.
3632 *
3633 * NOTE that the task may be already dead.
3634 */
3635 int sched_setscheduler(struct task_struct *p, int policy,
3636 const struct sched_param *param)
3637 {
3638 return _sched_setscheduler(p, policy, param, true);
3639 }
3640 EXPORT_SYMBOL_GPL(sched_setscheduler);
3641
3642 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3643 {
3644 return __sched_setscheduler(p, attr, true);
3645 }
3646 EXPORT_SYMBOL_GPL(sched_setattr);
3647
3648 /**
3649 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3650 * @p: the task in question.
3651 * @policy: new policy.
3652 * @param: structure containing the new RT priority.
3653 *
3654 * Just like sched_setscheduler, only don't bother checking if the
3655 * current context has permission. For example, this is needed in
3656 * stop_machine(): we create temporary high priority worker threads,
3657 * but our caller might not have that capability.
3658 *
3659 * Return: 0 on success. An error code otherwise.
3660 */
3661 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3662 const struct sched_param *param)
3663 {
3664 return _sched_setscheduler(p, policy, param, false);
3665 }
3666
3667 static int
3668 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3669 {
3670 struct sched_param lparam;
3671 struct task_struct *p;
3672 int retval;
3673
3674 if (!param || pid < 0)
3675 return -EINVAL;
3676 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3677 return -EFAULT;
3678
3679 rcu_read_lock();
3680 retval = -ESRCH;
3681 p = find_process_by_pid(pid);
3682 if (p != NULL)
3683 retval = sched_setscheduler(p, policy, &lparam);
3684 rcu_read_unlock();
3685
3686 return retval;
3687 }
3688
3689 /*
3690 * Mimics kernel/events/core.c perf_copy_attr().
3691 */
3692 static int sched_copy_attr(struct sched_attr __user *uattr,
3693 struct sched_attr *attr)
3694 {
3695 u32 size;
3696 int ret;
3697
3698 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3699 return -EFAULT;
3700
3701 /*
3702 * zero the full structure, so that a short copy will be nice.
3703 */
3704 memset(attr, 0, sizeof(*attr));
3705
3706 ret = get_user(size, &uattr->size);
3707 if (ret)
3708 return ret;
3709
3710 if (size > PAGE_SIZE) /* silly large */
3711 goto err_size;
3712
3713 if (!size) /* abi compat */
3714 size = SCHED_ATTR_SIZE_VER0;
3715
3716 if (size < SCHED_ATTR_SIZE_VER0)
3717 goto err_size;
3718
3719 /*
3720 * If we're handed a bigger struct than we know of,
3721 * ensure all the unknown bits are 0 - i.e. new
3722 * user-space does not rely on any kernel feature
3723 * extensions we dont know about yet.
3724 */
3725 if (size > sizeof(*attr)) {
3726 unsigned char __user *addr;
3727 unsigned char __user *end;
3728 unsigned char val;
3729
3730 addr = (void __user *)uattr + sizeof(*attr);
3731 end = (void __user *)uattr + size;
3732
3733 for (; addr < end; addr++) {
3734 ret = get_user(val, addr);
3735 if (ret)
3736 return ret;
3737 if (val)
3738 goto err_size;
3739 }
3740 size = sizeof(*attr);
3741 }
3742
3743 ret = copy_from_user(attr, uattr, size);
3744 if (ret)
3745 return -EFAULT;
3746
3747 /*
3748 * XXX: do we want to be lenient like existing syscalls; or do we want
3749 * to be strict and return an error on out-of-bounds values?
3750 */
3751 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3752
3753 return 0;
3754
3755 err_size:
3756 put_user(sizeof(*attr), &uattr->size);
3757 return -E2BIG;
3758 }
3759
3760 /**
3761 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3762 * @pid: the pid in question.
3763 * @policy: new policy.
3764 * @param: structure containing the new RT priority.
3765 *
3766 * Return: 0 on success. An error code otherwise.
3767 */
3768 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3769 struct sched_param __user *, param)
3770 {
3771 /* negative values for policy are not valid */
3772 if (policy < 0)
3773 return -EINVAL;
3774
3775 return do_sched_setscheduler(pid, policy, param);
3776 }
3777
3778 /**
3779 * sys_sched_setparam - set/change the RT priority of a thread
3780 * @pid: the pid in question.
3781 * @param: structure containing the new RT priority.
3782 *
3783 * Return: 0 on success. An error code otherwise.
3784 */
3785 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3786 {
3787 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3788 }
3789
3790 /**
3791 * sys_sched_setattr - same as above, but with extended sched_attr
3792 * @pid: the pid in question.
3793 * @uattr: structure containing the extended parameters.
3794 * @flags: for future extension.
3795 */
3796 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3797 unsigned int, flags)
3798 {
3799 struct sched_attr attr;
3800 struct task_struct *p;
3801 int retval;
3802
3803 if (!uattr || pid < 0 || flags)
3804 return -EINVAL;
3805
3806 retval = sched_copy_attr(uattr, &attr);
3807 if (retval)
3808 return retval;
3809
3810 if ((int)attr.sched_policy < 0)
3811 return -EINVAL;
3812
3813 rcu_read_lock();
3814 retval = -ESRCH;
3815 p = find_process_by_pid(pid);
3816 if (p != NULL)
3817 retval = sched_setattr(p, &attr);
3818 rcu_read_unlock();
3819
3820 return retval;
3821 }
3822
3823 /**
3824 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3825 * @pid: the pid in question.
3826 *
3827 * Return: On success, the policy of the thread. Otherwise, a negative error
3828 * code.
3829 */
3830 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3831 {
3832 struct task_struct *p;
3833 int retval;
3834
3835 if (pid < 0)
3836 return -EINVAL;
3837
3838 retval = -ESRCH;
3839 rcu_read_lock();
3840 p = find_process_by_pid(pid);
3841 if (p) {
3842 retval = security_task_getscheduler(p);
3843 if (!retval)
3844 retval = p->policy
3845 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3846 }
3847 rcu_read_unlock();
3848 return retval;
3849 }
3850
3851 /**
3852 * sys_sched_getparam - get the RT priority of a thread
3853 * @pid: the pid in question.
3854 * @param: structure containing the RT priority.
3855 *
3856 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3857 * code.
3858 */
3859 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3860 {
3861 struct sched_param lp = { .sched_priority = 0 };
3862 struct task_struct *p;
3863 int retval;
3864
3865 if (!param || pid < 0)
3866 return -EINVAL;
3867
3868 rcu_read_lock();
3869 p = find_process_by_pid(pid);
3870 retval = -ESRCH;
3871 if (!p)
3872 goto out_unlock;
3873
3874 retval = security_task_getscheduler(p);
3875 if (retval)
3876 goto out_unlock;
3877
3878 if (task_has_rt_policy(p))
3879 lp.sched_priority = p->rt_priority;
3880 rcu_read_unlock();
3881
3882 /*
3883 * This one might sleep, we cannot do it with a spinlock held ...
3884 */
3885 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3886
3887 return retval;
3888
3889 out_unlock:
3890 rcu_read_unlock();
3891 return retval;
3892 }
3893
3894 static int sched_read_attr(struct sched_attr __user *uattr,
3895 struct sched_attr *attr,
3896 unsigned int usize)
3897 {
3898 int ret;
3899
3900 if (!access_ok(VERIFY_WRITE, uattr, usize))
3901 return -EFAULT;
3902
3903 /*
3904 * If we're handed a smaller struct than we know of,
3905 * ensure all the unknown bits are 0 - i.e. old
3906 * user-space does not get uncomplete information.
3907 */
3908 if (usize < sizeof(*attr)) {
3909 unsigned char *addr;
3910 unsigned char *end;
3911
3912 addr = (void *)attr + usize;
3913 end = (void *)attr + sizeof(*attr);
3914
3915 for (; addr < end; addr++) {
3916 if (*addr)
3917 return -EFBIG;
3918 }
3919
3920 attr->size = usize;
3921 }
3922
3923 ret = copy_to_user(uattr, attr, attr->size);
3924 if (ret)
3925 return -EFAULT;
3926
3927 return 0;
3928 }
3929
3930 /**
3931 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3932 * @pid: the pid in question.
3933 * @uattr: structure containing the extended parameters.
3934 * @size: sizeof(attr) for fwd/bwd comp.
3935 * @flags: for future extension.
3936 */
3937 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3938 unsigned int, size, unsigned int, flags)
3939 {
3940 struct sched_attr attr = {
3941 .size = sizeof(struct sched_attr),
3942 };
3943 struct task_struct *p;
3944 int retval;
3945
3946 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3947 size < SCHED_ATTR_SIZE_VER0 || flags)
3948 return -EINVAL;
3949
3950 rcu_read_lock();
3951 p = find_process_by_pid(pid);
3952 retval = -ESRCH;
3953 if (!p)
3954 goto out_unlock;
3955
3956 retval = security_task_getscheduler(p);
3957 if (retval)
3958 goto out_unlock;
3959
3960 attr.sched_policy = p->policy;
3961 if (p->sched_reset_on_fork)
3962 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3963 if (task_has_dl_policy(p))
3964 __getparam_dl(p, &attr);
3965 else if (task_has_rt_policy(p))
3966 attr.sched_priority = p->rt_priority;
3967 else
3968 attr.sched_nice = task_nice(p);
3969
3970 rcu_read_unlock();
3971
3972 retval = sched_read_attr(uattr, &attr, size);
3973 return retval;
3974
3975 out_unlock:
3976 rcu_read_unlock();
3977 return retval;
3978 }
3979
3980 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3981 {
3982 cpumask_var_t cpus_allowed, new_mask;
3983 struct task_struct *p;
3984 int retval;
3985
3986 rcu_read_lock();
3987
3988 p = find_process_by_pid(pid);
3989 if (!p) {
3990 rcu_read_unlock();
3991 return -ESRCH;
3992 }
3993
3994 /* Prevent p going away */
3995 get_task_struct(p);
3996 rcu_read_unlock();
3997
3998 if (p->flags & PF_NO_SETAFFINITY) {
3999 retval = -EINVAL;
4000 goto out_put_task;
4001 }
4002 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4003 retval = -ENOMEM;
4004 goto out_put_task;
4005 }
4006 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4007 retval = -ENOMEM;
4008 goto out_free_cpus_allowed;
4009 }
4010 retval = -EPERM;
4011 if (!check_same_owner(p)) {
4012 rcu_read_lock();
4013 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4014 rcu_read_unlock();
4015 goto out_free_new_mask;
4016 }
4017 rcu_read_unlock();
4018 }
4019
4020 retval = security_task_setscheduler(p);
4021 if (retval)
4022 goto out_free_new_mask;
4023
4024
4025 cpuset_cpus_allowed(p, cpus_allowed);
4026 cpumask_and(new_mask, in_mask, cpus_allowed);
4027
4028 /*
4029 * Since bandwidth control happens on root_domain basis,
4030 * if admission test is enabled, we only admit -deadline
4031 * tasks allowed to run on all the CPUs in the task's
4032 * root_domain.
4033 */
4034 #ifdef CONFIG_SMP
4035 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4036 rcu_read_lock();
4037 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4038 retval = -EBUSY;
4039 rcu_read_unlock();
4040 goto out_free_new_mask;
4041 }
4042 rcu_read_unlock();
4043 }
4044 #endif
4045 again:
4046 retval = set_cpus_allowed_ptr(p, new_mask);
4047
4048 if (!retval) {
4049 cpuset_cpus_allowed(p, cpus_allowed);
4050 if (!cpumask_subset(new_mask, cpus_allowed)) {
4051 /*
4052 * We must have raced with a concurrent cpuset
4053 * update. Just reset the cpus_allowed to the
4054 * cpuset's cpus_allowed
4055 */
4056 cpumask_copy(new_mask, cpus_allowed);
4057 goto again;
4058 }
4059 }
4060 out_free_new_mask:
4061 free_cpumask_var(new_mask);
4062 out_free_cpus_allowed:
4063 free_cpumask_var(cpus_allowed);
4064 out_put_task:
4065 put_task_struct(p);
4066 return retval;
4067 }
4068
4069 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4070 struct cpumask *new_mask)
4071 {
4072 if (len < cpumask_size())
4073 cpumask_clear(new_mask);
4074 else if (len > cpumask_size())
4075 len = cpumask_size();
4076
4077 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4078 }
4079
4080 /**
4081 * sys_sched_setaffinity - set the cpu affinity of a process
4082 * @pid: pid of the process
4083 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4084 * @user_mask_ptr: user-space pointer to the new cpu mask
4085 *
4086 * Return: 0 on success. An error code otherwise.
4087 */
4088 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4089 unsigned long __user *, user_mask_ptr)
4090 {
4091 cpumask_var_t new_mask;
4092 int retval;
4093
4094 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4095 return -ENOMEM;
4096
4097 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4098 if (retval == 0)
4099 retval = sched_setaffinity(pid, new_mask);
4100 free_cpumask_var(new_mask);
4101 return retval;
4102 }
4103
4104 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4105 {
4106 struct task_struct *p;
4107 unsigned long flags;
4108 int retval;
4109
4110 rcu_read_lock();
4111
4112 retval = -ESRCH;
4113 p = find_process_by_pid(pid);
4114 if (!p)
4115 goto out_unlock;
4116
4117 retval = security_task_getscheduler(p);
4118 if (retval)
4119 goto out_unlock;
4120
4121 raw_spin_lock_irqsave(&p->pi_lock, flags);
4122 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4123 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4124
4125 out_unlock:
4126 rcu_read_unlock();
4127
4128 return retval;
4129 }
4130
4131 /**
4132 * sys_sched_getaffinity - get the cpu affinity of a process
4133 * @pid: pid of the process
4134 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4135 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4136 *
4137 * Return: 0 on success. An error code otherwise.
4138 */
4139 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4140 unsigned long __user *, user_mask_ptr)
4141 {
4142 int ret;
4143 cpumask_var_t mask;
4144
4145 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4146 return -EINVAL;
4147 if (len & (sizeof(unsigned long)-1))
4148 return -EINVAL;
4149
4150 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4151 return -ENOMEM;
4152
4153 ret = sched_getaffinity(pid, mask);
4154 if (ret == 0) {
4155 size_t retlen = min_t(size_t, len, cpumask_size());
4156
4157 if (copy_to_user(user_mask_ptr, mask, retlen))
4158 ret = -EFAULT;
4159 else
4160 ret = retlen;
4161 }
4162 free_cpumask_var(mask);
4163
4164 return ret;
4165 }
4166
4167 /**
4168 * sys_sched_yield - yield the current processor to other threads.
4169 *
4170 * This function yields the current CPU to other tasks. If there are no
4171 * other threads running on this CPU then this function will return.
4172 *
4173 * Return: 0.
4174 */
4175 SYSCALL_DEFINE0(sched_yield)
4176 {
4177 struct rq *rq = this_rq_lock();
4178
4179 schedstat_inc(rq, yld_count);
4180 current->sched_class->yield_task(rq);
4181
4182 /*
4183 * Since we are going to call schedule() anyway, there's
4184 * no need to preempt or enable interrupts:
4185 */
4186 __release(rq->lock);
4187 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4188 do_raw_spin_unlock(&rq->lock);
4189 sched_preempt_enable_no_resched();
4190
4191 schedule();
4192
4193 return 0;
4194 }
4195
4196 static void __cond_resched(void)
4197 {
4198 __preempt_count_add(PREEMPT_ACTIVE);
4199 __schedule();
4200 __preempt_count_sub(PREEMPT_ACTIVE);
4201 }
4202
4203 int __sched _cond_resched(void)
4204 {
4205 if (should_resched()) {
4206 __cond_resched();
4207 return 1;
4208 }
4209 return 0;
4210 }
4211 EXPORT_SYMBOL(_cond_resched);
4212
4213 /*
4214 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4215 * call schedule, and on return reacquire the lock.
4216 *
4217 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4218 * operations here to prevent schedule() from being called twice (once via
4219 * spin_unlock(), once by hand).
4220 */
4221 int __cond_resched_lock(spinlock_t *lock)
4222 {
4223 int resched = should_resched();
4224 int ret = 0;
4225
4226 lockdep_assert_held(lock);
4227
4228 if (spin_needbreak(lock) || resched) {
4229 spin_unlock(lock);
4230 if (resched)
4231 __cond_resched();
4232 else
4233 cpu_relax();
4234 ret = 1;
4235 spin_lock(lock);
4236 }
4237 return ret;
4238 }
4239 EXPORT_SYMBOL(__cond_resched_lock);
4240
4241 int __sched __cond_resched_softirq(void)
4242 {
4243 BUG_ON(!in_softirq());
4244
4245 if (should_resched()) {
4246 local_bh_enable();
4247 __cond_resched();
4248 local_bh_disable();
4249 return 1;
4250 }
4251 return 0;
4252 }
4253 EXPORT_SYMBOL(__cond_resched_softirq);
4254
4255 /**
4256 * yield - yield the current processor to other threads.
4257 *
4258 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4259 *
4260 * The scheduler is at all times free to pick the calling task as the most
4261 * eligible task to run, if removing the yield() call from your code breaks
4262 * it, its already broken.
4263 *
4264 * Typical broken usage is:
4265 *
4266 * while (!event)
4267 * yield();
4268 *
4269 * where one assumes that yield() will let 'the other' process run that will
4270 * make event true. If the current task is a SCHED_FIFO task that will never
4271 * happen. Never use yield() as a progress guarantee!!
4272 *
4273 * If you want to use yield() to wait for something, use wait_event().
4274 * If you want to use yield() to be 'nice' for others, use cond_resched().
4275 * If you still want to use yield(), do not!
4276 */
4277 void __sched yield(void)
4278 {
4279 set_current_state(TASK_RUNNING);
4280 sys_sched_yield();
4281 }
4282 EXPORT_SYMBOL(yield);
4283
4284 /**
4285 * yield_to - yield the current processor to another thread in
4286 * your thread group, or accelerate that thread toward the
4287 * processor it's on.
4288 * @p: target task
4289 * @preempt: whether task preemption is allowed or not
4290 *
4291 * It's the caller's job to ensure that the target task struct
4292 * can't go away on us before we can do any checks.
4293 *
4294 * Return:
4295 * true (>0) if we indeed boosted the target task.
4296 * false (0) if we failed to boost the target.
4297 * -ESRCH if there's no task to yield to.
4298 */
4299 int __sched yield_to(struct task_struct *p, bool preempt)
4300 {
4301 struct task_struct *curr = current;
4302 struct rq *rq, *p_rq;
4303 unsigned long flags;
4304 int yielded = 0;
4305
4306 local_irq_save(flags);
4307 rq = this_rq();
4308
4309 again:
4310 p_rq = task_rq(p);
4311 /*
4312 * If we're the only runnable task on the rq and target rq also
4313 * has only one task, there's absolutely no point in yielding.
4314 */
4315 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4316 yielded = -ESRCH;
4317 goto out_irq;
4318 }
4319
4320 double_rq_lock(rq, p_rq);
4321 if (task_rq(p) != p_rq) {
4322 double_rq_unlock(rq, p_rq);
4323 goto again;
4324 }
4325
4326 if (!curr->sched_class->yield_to_task)
4327 goto out_unlock;
4328
4329 if (curr->sched_class != p->sched_class)
4330 goto out_unlock;
4331
4332 if (task_running(p_rq, p) || p->state)
4333 goto out_unlock;
4334
4335 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4336 if (yielded) {
4337 schedstat_inc(rq, yld_count);
4338 /*
4339 * Make p's CPU reschedule; pick_next_entity takes care of
4340 * fairness.
4341 */
4342 if (preempt && rq != p_rq)
4343 resched_curr(p_rq);
4344 }
4345
4346 out_unlock:
4347 double_rq_unlock(rq, p_rq);
4348 out_irq:
4349 local_irq_restore(flags);
4350
4351 if (yielded > 0)
4352 schedule();
4353
4354 return yielded;
4355 }
4356 EXPORT_SYMBOL_GPL(yield_to);
4357
4358 /*
4359 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4360 * that process accounting knows that this is a task in IO wait state.
4361 */
4362 void __sched io_schedule(void)
4363 {
4364 struct rq *rq = raw_rq();
4365
4366 delayacct_blkio_start();
4367 atomic_inc(&rq->nr_iowait);
4368 blk_flush_plug(current);
4369 current->in_iowait = 1;
4370 schedule();
4371 current->in_iowait = 0;
4372 atomic_dec(&rq->nr_iowait);
4373 delayacct_blkio_end();
4374 }
4375 EXPORT_SYMBOL(io_schedule);
4376
4377 long __sched io_schedule_timeout(long timeout)
4378 {
4379 struct rq *rq = raw_rq();
4380 long ret;
4381
4382 delayacct_blkio_start();
4383 atomic_inc(&rq->nr_iowait);
4384 blk_flush_plug(current);
4385 current->in_iowait = 1;
4386 ret = schedule_timeout(timeout);
4387 current->in_iowait = 0;
4388 atomic_dec(&rq->nr_iowait);
4389 delayacct_blkio_end();
4390 return ret;
4391 }
4392
4393 /**
4394 * sys_sched_get_priority_max - return maximum RT priority.
4395 * @policy: scheduling class.
4396 *
4397 * Return: On success, this syscall returns the maximum
4398 * rt_priority that can be used by a given scheduling class.
4399 * On failure, a negative error code is returned.
4400 */
4401 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4402 {
4403 int ret = -EINVAL;
4404
4405 switch (policy) {
4406 case SCHED_FIFO:
4407 case SCHED_RR:
4408 ret = MAX_USER_RT_PRIO-1;
4409 break;
4410 case SCHED_DEADLINE:
4411 case SCHED_NORMAL:
4412 case SCHED_BATCH:
4413 case SCHED_IDLE:
4414 ret = 0;
4415 break;
4416 }
4417 return ret;
4418 }
4419
4420 /**
4421 * sys_sched_get_priority_min - return minimum RT priority.
4422 * @policy: scheduling class.
4423 *
4424 * Return: On success, this syscall returns the minimum
4425 * rt_priority that can be used by a given scheduling class.
4426 * On failure, a negative error code is returned.
4427 */
4428 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4429 {
4430 int ret = -EINVAL;
4431
4432 switch (policy) {
4433 case SCHED_FIFO:
4434 case SCHED_RR:
4435 ret = 1;
4436 break;
4437 case SCHED_DEADLINE:
4438 case SCHED_NORMAL:
4439 case SCHED_BATCH:
4440 case SCHED_IDLE:
4441 ret = 0;
4442 }
4443 return ret;
4444 }
4445
4446 /**
4447 * sys_sched_rr_get_interval - return the default timeslice of a process.
4448 * @pid: pid of the process.
4449 * @interval: userspace pointer to the timeslice value.
4450 *
4451 * this syscall writes the default timeslice value of a given process
4452 * into the user-space timespec buffer. A value of '0' means infinity.
4453 *
4454 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4455 * an error code.
4456 */
4457 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4458 struct timespec __user *, interval)
4459 {
4460 struct task_struct *p;
4461 unsigned int time_slice;
4462 unsigned long flags;
4463 struct rq *rq;
4464 int retval;
4465 struct timespec t;
4466
4467 if (pid < 0)
4468 return -EINVAL;
4469
4470 retval = -ESRCH;
4471 rcu_read_lock();
4472 p = find_process_by_pid(pid);
4473 if (!p)
4474 goto out_unlock;
4475
4476 retval = security_task_getscheduler(p);
4477 if (retval)
4478 goto out_unlock;
4479
4480 rq = task_rq_lock(p, &flags);
4481 time_slice = 0;
4482 if (p->sched_class->get_rr_interval)
4483 time_slice = p->sched_class->get_rr_interval(rq, p);
4484 task_rq_unlock(rq, p, &flags);
4485
4486 rcu_read_unlock();
4487 jiffies_to_timespec(time_slice, &t);
4488 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4489 return retval;
4490
4491 out_unlock:
4492 rcu_read_unlock();
4493 return retval;
4494 }
4495
4496 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4497
4498 void sched_show_task(struct task_struct *p)
4499 {
4500 unsigned long free = 0;
4501 int ppid;
4502 unsigned state;
4503
4504 state = p->state ? __ffs(p->state) + 1 : 0;
4505 printk(KERN_INFO "%-15.15s %c", p->comm,
4506 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4507 #if BITS_PER_LONG == 32
4508 if (state == TASK_RUNNING)
4509 printk(KERN_CONT " running ");
4510 else
4511 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4512 #else
4513 if (state == TASK_RUNNING)
4514 printk(KERN_CONT " running task ");
4515 else
4516 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4517 #endif
4518 #ifdef CONFIG_DEBUG_STACK_USAGE
4519 free = stack_not_used(p);
4520 #endif
4521 rcu_read_lock();
4522 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4523 rcu_read_unlock();
4524 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4525 task_pid_nr(p), ppid,
4526 (unsigned long)task_thread_info(p)->flags);
4527
4528 print_worker_info(KERN_INFO, p);
4529 show_stack(p, NULL);
4530 }
4531
4532 void show_state_filter(unsigned long state_filter)
4533 {
4534 struct task_struct *g, *p;
4535
4536 #if BITS_PER_LONG == 32
4537 printk(KERN_INFO
4538 " task PC stack pid father\n");
4539 #else
4540 printk(KERN_INFO
4541 " task PC stack pid father\n");
4542 #endif
4543 rcu_read_lock();
4544 for_each_process_thread(g, p) {
4545 /*
4546 * reset the NMI-timeout, listing all files on a slow
4547 * console might take a lot of time:
4548 */
4549 touch_nmi_watchdog();
4550 if (!state_filter || (p->state & state_filter))
4551 sched_show_task(p);
4552 }
4553
4554 touch_all_softlockup_watchdogs();
4555
4556 #ifdef CONFIG_SCHED_DEBUG
4557 sysrq_sched_debug_show();
4558 #endif
4559 rcu_read_unlock();
4560 /*
4561 * Only show locks if all tasks are dumped:
4562 */
4563 if (!state_filter)
4564 debug_show_all_locks();
4565 }
4566
4567 void init_idle_bootup_task(struct task_struct *idle)
4568 {
4569 idle->sched_class = &idle_sched_class;
4570 }
4571
4572 /**
4573 * init_idle - set up an idle thread for a given CPU
4574 * @idle: task in question
4575 * @cpu: cpu the idle task belongs to
4576 *
4577 * NOTE: this function does not set the idle thread's NEED_RESCHED
4578 * flag, to make booting more robust.
4579 */
4580 void init_idle(struct task_struct *idle, int cpu)
4581 {
4582 struct rq *rq = cpu_rq(cpu);
4583 unsigned long flags;
4584
4585 raw_spin_lock_irqsave(&rq->lock, flags);
4586
4587 __sched_fork(0, idle);
4588 idle->state = TASK_RUNNING;
4589 idle->se.exec_start = sched_clock();
4590
4591 do_set_cpus_allowed(idle, cpumask_of(cpu));
4592 /*
4593 * We're having a chicken and egg problem, even though we are
4594 * holding rq->lock, the cpu isn't yet set to this cpu so the
4595 * lockdep check in task_group() will fail.
4596 *
4597 * Similar case to sched_fork(). / Alternatively we could
4598 * use task_rq_lock() here and obtain the other rq->lock.
4599 *
4600 * Silence PROVE_RCU
4601 */
4602 rcu_read_lock();
4603 __set_task_cpu(idle, cpu);
4604 rcu_read_unlock();
4605
4606 rq->curr = rq->idle = idle;
4607 idle->on_rq = TASK_ON_RQ_QUEUED;
4608 #if defined(CONFIG_SMP)
4609 idle->on_cpu = 1;
4610 #endif
4611 raw_spin_unlock_irqrestore(&rq->lock, flags);
4612
4613 /* Set the preempt count _outside_ the spinlocks! */
4614 init_idle_preempt_count(idle, cpu);
4615
4616 /*
4617 * The idle tasks have their own, simple scheduling class:
4618 */
4619 idle->sched_class = &idle_sched_class;
4620 ftrace_graph_init_idle_task(idle, cpu);
4621 vtime_init_idle(idle, cpu);
4622 #if defined(CONFIG_SMP)
4623 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4624 #endif
4625 }
4626
4627 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4628 const struct cpumask *trial)
4629 {
4630 int ret = 1, trial_cpus;
4631 struct dl_bw *cur_dl_b;
4632 unsigned long flags;
4633
4634 rcu_read_lock_sched();
4635 cur_dl_b = dl_bw_of(cpumask_any(cur));
4636 trial_cpus = cpumask_weight(trial);
4637
4638 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4639 if (cur_dl_b->bw != -1 &&
4640 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4641 ret = 0;
4642 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4643 rcu_read_unlock_sched();
4644
4645 return ret;
4646 }
4647
4648 int task_can_attach(struct task_struct *p,
4649 const struct cpumask *cs_cpus_allowed)
4650 {
4651 int ret = 0;
4652
4653 /*
4654 * Kthreads which disallow setaffinity shouldn't be moved
4655 * to a new cpuset; we don't want to change their cpu
4656 * affinity and isolating such threads by their set of
4657 * allowed nodes is unnecessary. Thus, cpusets are not
4658 * applicable for such threads. This prevents checking for
4659 * success of set_cpus_allowed_ptr() on all attached tasks
4660 * before cpus_allowed may be changed.
4661 */
4662 if (p->flags & PF_NO_SETAFFINITY) {
4663 ret = -EINVAL;
4664 goto out;
4665 }
4666
4667 #ifdef CONFIG_SMP
4668 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4669 cs_cpus_allowed)) {
4670 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4671 cs_cpus_allowed);
4672 struct dl_bw *dl_b;
4673 bool overflow;
4674 int cpus;
4675 unsigned long flags;
4676
4677 rcu_read_lock_sched();
4678 dl_b = dl_bw_of(dest_cpu);
4679 raw_spin_lock_irqsave(&dl_b->lock, flags);
4680 cpus = dl_bw_cpus(dest_cpu);
4681 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4682 if (overflow)
4683 ret = -EBUSY;
4684 else {
4685 /*
4686 * We reserve space for this task in the destination
4687 * root_domain, as we can't fail after this point.
4688 * We will free resources in the source root_domain
4689 * later on (see set_cpus_allowed_dl()).
4690 */
4691 __dl_add(dl_b, p->dl.dl_bw);
4692 }
4693 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4694 rcu_read_unlock_sched();
4695
4696 }
4697 #endif
4698 out:
4699 return ret;
4700 }
4701
4702 #ifdef CONFIG_SMP
4703 /*
4704 * move_queued_task - move a queued task to new rq.
4705 *
4706 * Returns (locked) new rq. Old rq's lock is released.
4707 */
4708 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4709 {
4710 struct rq *rq = task_rq(p);
4711
4712 lockdep_assert_held(&rq->lock);
4713
4714 dequeue_task(rq, p, 0);
4715 p->on_rq = TASK_ON_RQ_MIGRATING;
4716 set_task_cpu(p, new_cpu);
4717 raw_spin_unlock(&rq->lock);
4718
4719 rq = cpu_rq(new_cpu);
4720
4721 raw_spin_lock(&rq->lock);
4722 BUG_ON(task_cpu(p) != new_cpu);
4723 p->on_rq = TASK_ON_RQ_QUEUED;
4724 enqueue_task(rq, p, 0);
4725 check_preempt_curr(rq, p, 0);
4726
4727 return rq;
4728 }
4729
4730 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4731 {
4732 if (p->sched_class && p->sched_class->set_cpus_allowed)
4733 p->sched_class->set_cpus_allowed(p, new_mask);
4734
4735 cpumask_copy(&p->cpus_allowed, new_mask);
4736 p->nr_cpus_allowed = cpumask_weight(new_mask);
4737 }
4738
4739 /*
4740 * This is how migration works:
4741 *
4742 * 1) we invoke migration_cpu_stop() on the target CPU using
4743 * stop_one_cpu().
4744 * 2) stopper starts to run (implicitly forcing the migrated thread
4745 * off the CPU)
4746 * 3) it checks whether the migrated task is still in the wrong runqueue.
4747 * 4) if it's in the wrong runqueue then the migration thread removes
4748 * it and puts it into the right queue.
4749 * 5) stopper completes and stop_one_cpu() returns and the migration
4750 * is done.
4751 */
4752
4753 /*
4754 * Change a given task's CPU affinity. Migrate the thread to a
4755 * proper CPU and schedule it away if the CPU it's executing on
4756 * is removed from the allowed bitmask.
4757 *
4758 * NOTE: the caller must have a valid reference to the task, the
4759 * task must not exit() & deallocate itself prematurely. The
4760 * call is not atomic; no spinlocks may be held.
4761 */
4762 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4763 {
4764 unsigned long flags;
4765 struct rq *rq;
4766 unsigned int dest_cpu;
4767 int ret = 0;
4768
4769 rq = task_rq_lock(p, &flags);
4770
4771 if (cpumask_equal(&p->cpus_allowed, new_mask))
4772 goto out;
4773
4774 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4775 ret = -EINVAL;
4776 goto out;
4777 }
4778
4779 do_set_cpus_allowed(p, new_mask);
4780
4781 /* Can the task run on the task's current CPU? If so, we're done */
4782 if (cpumask_test_cpu(task_cpu(p), new_mask))
4783 goto out;
4784
4785 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4786 if (task_running(rq, p) || p->state == TASK_WAKING) {
4787 struct migration_arg arg = { p, dest_cpu };
4788 /* Need help from migration thread: drop lock and wait. */
4789 task_rq_unlock(rq, p, &flags);
4790 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4791 tlb_migrate_finish(p->mm);
4792 return 0;
4793 } else if (task_on_rq_queued(p))
4794 rq = move_queued_task(p, dest_cpu);
4795 out:
4796 task_rq_unlock(rq, p, &flags);
4797
4798 return ret;
4799 }
4800 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4801
4802 /*
4803 * Move (not current) task off this cpu, onto dest cpu. We're doing
4804 * this because either it can't run here any more (set_cpus_allowed()
4805 * away from this CPU, or CPU going down), or because we're
4806 * attempting to rebalance this task on exec (sched_exec).
4807 *
4808 * So we race with normal scheduler movements, but that's OK, as long
4809 * as the task is no longer on this CPU.
4810 *
4811 * Returns non-zero if task was successfully migrated.
4812 */
4813 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4814 {
4815 struct rq *rq;
4816 int ret = 0;
4817
4818 if (unlikely(!cpu_active(dest_cpu)))
4819 return ret;
4820
4821 rq = cpu_rq(src_cpu);
4822
4823 raw_spin_lock(&p->pi_lock);
4824 raw_spin_lock(&rq->lock);
4825 /* Already moved. */
4826 if (task_cpu(p) != src_cpu)
4827 goto done;
4828
4829 /* Affinity changed (again). */
4830 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4831 goto fail;
4832
4833 /*
4834 * If we're not on a rq, the next wake-up will ensure we're
4835 * placed properly.
4836 */
4837 if (task_on_rq_queued(p))
4838 rq = move_queued_task(p, dest_cpu);
4839 done:
4840 ret = 1;
4841 fail:
4842 raw_spin_unlock(&rq->lock);
4843 raw_spin_unlock(&p->pi_lock);
4844 return ret;
4845 }
4846
4847 #ifdef CONFIG_NUMA_BALANCING
4848 /* Migrate current task p to target_cpu */
4849 int migrate_task_to(struct task_struct *p, int target_cpu)
4850 {
4851 struct migration_arg arg = { p, target_cpu };
4852 int curr_cpu = task_cpu(p);
4853
4854 if (curr_cpu == target_cpu)
4855 return 0;
4856
4857 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4858 return -EINVAL;
4859
4860 /* TODO: This is not properly updating schedstats */
4861
4862 trace_sched_move_numa(p, curr_cpu, target_cpu);
4863 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4864 }
4865
4866 /*
4867 * Requeue a task on a given node and accurately track the number of NUMA
4868 * tasks on the runqueues
4869 */
4870 void sched_setnuma(struct task_struct *p, int nid)
4871 {
4872 struct rq *rq;
4873 unsigned long flags;
4874 bool queued, running;
4875
4876 rq = task_rq_lock(p, &flags);
4877 queued = task_on_rq_queued(p);
4878 running = task_current(rq, p);
4879
4880 if (queued)
4881 dequeue_task(rq, p, 0);
4882 if (running)
4883 put_prev_task(rq, p);
4884
4885 p->numa_preferred_nid = nid;
4886
4887 if (running)
4888 p->sched_class->set_curr_task(rq);
4889 if (queued)
4890 enqueue_task(rq, p, 0);
4891 task_rq_unlock(rq, p, &flags);
4892 }
4893 #endif
4894
4895 /*
4896 * migration_cpu_stop - this will be executed by a highprio stopper thread
4897 * and performs thread migration by bumping thread off CPU then
4898 * 'pushing' onto another runqueue.
4899 */
4900 static int migration_cpu_stop(void *data)
4901 {
4902 struct migration_arg *arg = data;
4903
4904 /*
4905 * The original target cpu might have gone down and we might
4906 * be on another cpu but it doesn't matter.
4907 */
4908 local_irq_disable();
4909 /*
4910 * We need to explicitly wake pending tasks before running
4911 * __migrate_task() such that we will not miss enforcing cpus_allowed
4912 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4913 */
4914 sched_ttwu_pending();
4915 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4916 local_irq_enable();
4917 return 0;
4918 }
4919
4920 #ifdef CONFIG_HOTPLUG_CPU
4921
4922 /*
4923 * Ensures that the idle task is using init_mm right before its cpu goes
4924 * offline.
4925 */
4926 void idle_task_exit(void)
4927 {
4928 struct mm_struct *mm = current->active_mm;
4929
4930 BUG_ON(cpu_online(smp_processor_id()));
4931
4932 if (mm != &init_mm) {
4933 switch_mm(mm, &init_mm, current);
4934 finish_arch_post_lock_switch();
4935 }
4936 mmdrop(mm);
4937 }
4938
4939 /*
4940 * Since this CPU is going 'away' for a while, fold any nr_active delta
4941 * we might have. Assumes we're called after migrate_tasks() so that the
4942 * nr_active count is stable.
4943 *
4944 * Also see the comment "Global load-average calculations".
4945 */
4946 static void calc_load_migrate(struct rq *rq)
4947 {
4948 long delta = calc_load_fold_active(rq);
4949 if (delta)
4950 atomic_long_add(delta, &calc_load_tasks);
4951 }
4952
4953 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4954 {
4955 }
4956
4957 static const struct sched_class fake_sched_class = {
4958 .put_prev_task = put_prev_task_fake,
4959 };
4960
4961 static struct task_struct fake_task = {
4962 /*
4963 * Avoid pull_{rt,dl}_task()
4964 */
4965 .prio = MAX_PRIO + 1,
4966 .sched_class = &fake_sched_class,
4967 };
4968
4969 /*
4970 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4971 * try_to_wake_up()->select_task_rq().
4972 *
4973 * Called with rq->lock held even though we'er in stop_machine() and
4974 * there's no concurrency possible, we hold the required locks anyway
4975 * because of lock validation efforts.
4976 */
4977 static void migrate_tasks(unsigned int dead_cpu)
4978 {
4979 struct rq *rq = cpu_rq(dead_cpu);
4980 struct task_struct *next, *stop = rq->stop;
4981 int dest_cpu;
4982
4983 /*
4984 * Fudge the rq selection such that the below task selection loop
4985 * doesn't get stuck on the currently eligible stop task.
4986 *
4987 * We're currently inside stop_machine() and the rq is either stuck
4988 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4989 * either way we should never end up calling schedule() until we're
4990 * done here.
4991 */
4992 rq->stop = NULL;
4993
4994 /*
4995 * put_prev_task() and pick_next_task() sched
4996 * class method both need to have an up-to-date
4997 * value of rq->clock[_task]
4998 */
4999 update_rq_clock(rq);
5000
5001 for ( ; ; ) {
5002 /*
5003 * There's this thread running, bail when that's the only
5004 * remaining thread.
5005 */
5006 if (rq->nr_running == 1)
5007 break;
5008
5009 next = pick_next_task(rq, &fake_task);
5010 BUG_ON(!next);
5011 next->sched_class->put_prev_task(rq, next);
5012
5013 /* Find suitable destination for @next, with force if needed. */
5014 dest_cpu = select_fallback_rq(dead_cpu, next);
5015 raw_spin_unlock(&rq->lock);
5016
5017 __migrate_task(next, dead_cpu, dest_cpu);
5018
5019 raw_spin_lock(&rq->lock);
5020 }
5021
5022 rq->stop = stop;
5023 }
5024
5025 #endif /* CONFIG_HOTPLUG_CPU */
5026
5027 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5028
5029 static struct ctl_table sd_ctl_dir[] = {
5030 {
5031 .procname = "sched_domain",
5032 .mode = 0555,
5033 },
5034 {}
5035 };
5036
5037 static struct ctl_table sd_ctl_root[] = {
5038 {
5039 .procname = "kernel",
5040 .mode = 0555,
5041 .child = sd_ctl_dir,
5042 },
5043 {}
5044 };
5045
5046 static struct ctl_table *sd_alloc_ctl_entry(int n)
5047 {
5048 struct ctl_table *entry =
5049 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5050
5051 return entry;
5052 }
5053
5054 static void sd_free_ctl_entry(struct ctl_table **tablep)
5055 {
5056 struct ctl_table *entry;
5057
5058 /*
5059 * In the intermediate directories, both the child directory and
5060 * procname are dynamically allocated and could fail but the mode
5061 * will always be set. In the lowest directory the names are
5062 * static strings and all have proc handlers.
5063 */
5064 for (entry = *tablep; entry->mode; entry++) {
5065 if (entry->child)
5066 sd_free_ctl_entry(&entry->child);
5067 if (entry->proc_handler == NULL)
5068 kfree(entry->procname);
5069 }
5070
5071 kfree(*tablep);
5072 *tablep = NULL;
5073 }
5074
5075 static int min_load_idx = 0;
5076 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5077
5078 static void
5079 set_table_entry(struct ctl_table *entry,
5080 const char *procname, void *data, int maxlen,
5081 umode_t mode, proc_handler *proc_handler,
5082 bool load_idx)
5083 {
5084 entry->procname = procname;
5085 entry->data = data;
5086 entry->maxlen = maxlen;
5087 entry->mode = mode;
5088 entry->proc_handler = proc_handler;
5089
5090 if (load_idx) {
5091 entry->extra1 = &min_load_idx;
5092 entry->extra2 = &max_load_idx;
5093 }
5094 }
5095
5096 static struct ctl_table *
5097 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5098 {
5099 struct ctl_table *table = sd_alloc_ctl_entry(14);
5100
5101 if (table == NULL)
5102 return NULL;
5103
5104 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5105 sizeof(long), 0644, proc_doulongvec_minmax, false);
5106 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5107 sizeof(long), 0644, proc_doulongvec_minmax, false);
5108 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5109 sizeof(int), 0644, proc_dointvec_minmax, true);
5110 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5111 sizeof(int), 0644, proc_dointvec_minmax, true);
5112 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5113 sizeof(int), 0644, proc_dointvec_minmax, true);
5114 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5115 sizeof(int), 0644, proc_dointvec_minmax, true);
5116 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5117 sizeof(int), 0644, proc_dointvec_minmax, true);
5118 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5119 sizeof(int), 0644, proc_dointvec_minmax, false);
5120 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5121 sizeof(int), 0644, proc_dointvec_minmax, false);
5122 set_table_entry(&table[9], "cache_nice_tries",
5123 &sd->cache_nice_tries,
5124 sizeof(int), 0644, proc_dointvec_minmax, false);
5125 set_table_entry(&table[10], "flags", &sd->flags,
5126 sizeof(int), 0644, proc_dointvec_minmax, false);
5127 set_table_entry(&table[11], "max_newidle_lb_cost",
5128 &sd->max_newidle_lb_cost,
5129 sizeof(long), 0644, proc_doulongvec_minmax, false);
5130 set_table_entry(&table[12], "name", sd->name,
5131 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5132 /* &table[13] is terminator */
5133
5134 return table;
5135 }
5136
5137 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5138 {
5139 struct ctl_table *entry, *table;
5140 struct sched_domain *sd;
5141 int domain_num = 0, i;
5142 char buf[32];
5143
5144 for_each_domain(cpu, sd)
5145 domain_num++;
5146 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5147 if (table == NULL)
5148 return NULL;
5149
5150 i = 0;
5151 for_each_domain(cpu, sd) {
5152 snprintf(buf, 32, "domain%d", i);
5153 entry->procname = kstrdup(buf, GFP_KERNEL);
5154 entry->mode = 0555;
5155 entry->child = sd_alloc_ctl_domain_table(sd);
5156 entry++;
5157 i++;
5158 }
5159 return table;
5160 }
5161
5162 static struct ctl_table_header *sd_sysctl_header;
5163 static void register_sched_domain_sysctl(void)
5164 {
5165 int i, cpu_num = num_possible_cpus();
5166 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5167 char buf[32];
5168
5169 WARN_ON(sd_ctl_dir[0].child);
5170 sd_ctl_dir[0].child = entry;
5171
5172 if (entry == NULL)
5173 return;
5174
5175 for_each_possible_cpu(i) {
5176 snprintf(buf, 32, "cpu%d", i);
5177 entry->procname = kstrdup(buf, GFP_KERNEL);
5178 entry->mode = 0555;
5179 entry->child = sd_alloc_ctl_cpu_table(i);
5180 entry++;
5181 }
5182
5183 WARN_ON(sd_sysctl_header);
5184 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5185 }
5186
5187 /* may be called multiple times per register */
5188 static void unregister_sched_domain_sysctl(void)
5189 {
5190 if (sd_sysctl_header)
5191 unregister_sysctl_table(sd_sysctl_header);
5192 sd_sysctl_header = NULL;
5193 if (sd_ctl_dir[0].child)
5194 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5195 }
5196 #else
5197 static void register_sched_domain_sysctl(void)
5198 {
5199 }
5200 static void unregister_sched_domain_sysctl(void)
5201 {
5202 }
5203 #endif
5204
5205 static void set_rq_online(struct rq *rq)
5206 {
5207 if (!rq->online) {
5208 const struct sched_class *class;
5209
5210 cpumask_set_cpu(rq->cpu, rq->rd->online);
5211 rq->online = 1;
5212
5213 for_each_class(class) {
5214 if (class->rq_online)
5215 class->rq_online(rq);
5216 }
5217 }
5218 }
5219
5220 static void set_rq_offline(struct rq *rq)
5221 {
5222 if (rq->online) {
5223 const struct sched_class *class;
5224
5225 for_each_class(class) {
5226 if (class->rq_offline)
5227 class->rq_offline(rq);
5228 }
5229
5230 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5231 rq->online = 0;
5232 }
5233 }
5234
5235 /*
5236 * migration_call - callback that gets triggered when a CPU is added.
5237 * Here we can start up the necessary migration thread for the new CPU.
5238 */
5239 static int
5240 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5241 {
5242 int cpu = (long)hcpu;
5243 unsigned long flags;
5244 struct rq *rq = cpu_rq(cpu);
5245
5246 switch (action & ~CPU_TASKS_FROZEN) {
5247
5248 case CPU_UP_PREPARE:
5249 rq->calc_load_update = calc_load_update;
5250 break;
5251
5252 case CPU_ONLINE:
5253 /* Update our root-domain */
5254 raw_spin_lock_irqsave(&rq->lock, flags);
5255 if (rq->rd) {
5256 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5257
5258 set_rq_online(rq);
5259 }
5260 raw_spin_unlock_irqrestore(&rq->lock, flags);
5261 break;
5262
5263 #ifdef CONFIG_HOTPLUG_CPU
5264 case CPU_DYING:
5265 sched_ttwu_pending();
5266 /* Update our root-domain */
5267 raw_spin_lock_irqsave(&rq->lock, flags);
5268 if (rq->rd) {
5269 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5270 set_rq_offline(rq);
5271 }
5272 migrate_tasks(cpu);
5273 BUG_ON(rq->nr_running != 1); /* the migration thread */
5274 raw_spin_unlock_irqrestore(&rq->lock, flags);
5275 break;
5276
5277 case CPU_DEAD:
5278 calc_load_migrate(rq);
5279 break;
5280 #endif
5281 }
5282
5283 update_max_interval();
5284
5285 return NOTIFY_OK;
5286 }
5287
5288 /*
5289 * Register at high priority so that task migration (migrate_all_tasks)
5290 * happens before everything else. This has to be lower priority than
5291 * the notifier in the perf_event subsystem, though.
5292 */
5293 static struct notifier_block migration_notifier = {
5294 .notifier_call = migration_call,
5295 .priority = CPU_PRI_MIGRATION,
5296 };
5297
5298 static void __cpuinit set_cpu_rq_start_time(void)
5299 {
5300 int cpu = smp_processor_id();
5301 struct rq *rq = cpu_rq(cpu);
5302 rq->age_stamp = sched_clock_cpu(cpu);
5303 }
5304
5305 static int sched_cpu_active(struct notifier_block *nfb,
5306 unsigned long action, void *hcpu)
5307 {
5308 switch (action & ~CPU_TASKS_FROZEN) {
5309 case CPU_STARTING:
5310 set_cpu_rq_start_time();
5311 return NOTIFY_OK;
5312 case CPU_DOWN_FAILED:
5313 set_cpu_active((long)hcpu, true);
5314 return NOTIFY_OK;
5315 default:
5316 return NOTIFY_DONE;
5317 }
5318 }
5319
5320 static int sched_cpu_inactive(struct notifier_block *nfb,
5321 unsigned long action, void *hcpu)
5322 {
5323 unsigned long flags;
5324 long cpu = (long)hcpu;
5325 struct dl_bw *dl_b;
5326
5327 switch (action & ~CPU_TASKS_FROZEN) {
5328 case CPU_DOWN_PREPARE:
5329 set_cpu_active(cpu, false);
5330
5331 /* explicitly allow suspend */
5332 if (!(action & CPU_TASKS_FROZEN)) {
5333 bool overflow;
5334 int cpus;
5335
5336 rcu_read_lock_sched();
5337 dl_b = dl_bw_of(cpu);
5338
5339 raw_spin_lock_irqsave(&dl_b->lock, flags);
5340 cpus = dl_bw_cpus(cpu);
5341 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5342 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5343
5344 rcu_read_unlock_sched();
5345
5346 if (overflow)
5347 return notifier_from_errno(-EBUSY);
5348 }
5349 return NOTIFY_OK;
5350 }
5351
5352 return NOTIFY_DONE;
5353 }
5354
5355 static int __init migration_init(void)
5356 {
5357 void *cpu = (void *)(long)smp_processor_id();
5358 int err;
5359
5360 /* Initialize migration for the boot CPU */
5361 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5362 BUG_ON(err == NOTIFY_BAD);
5363 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5364 register_cpu_notifier(&migration_notifier);
5365
5366 /* Register cpu active notifiers */
5367 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5368 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5369
5370 return 0;
5371 }
5372 early_initcall(migration_init);
5373 #endif
5374
5375 #ifdef CONFIG_SMP
5376
5377 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5378
5379 #ifdef CONFIG_SCHED_DEBUG
5380
5381 static __read_mostly int sched_debug_enabled;
5382
5383 static int __init sched_debug_setup(char *str)
5384 {
5385 sched_debug_enabled = 1;
5386
5387 return 0;
5388 }
5389 early_param("sched_debug", sched_debug_setup);
5390
5391 static inline bool sched_debug(void)
5392 {
5393 return sched_debug_enabled;
5394 }
5395
5396 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5397 struct cpumask *groupmask)
5398 {
5399 struct sched_group *group = sd->groups;
5400 char str[256];
5401
5402 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5403 cpumask_clear(groupmask);
5404
5405 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5406
5407 if (!(sd->flags & SD_LOAD_BALANCE)) {
5408 printk("does not load-balance\n");
5409 if (sd->parent)
5410 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5411 " has parent");
5412 return -1;
5413 }
5414
5415 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5416
5417 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5418 printk(KERN_ERR "ERROR: domain->span does not contain "
5419 "CPU%d\n", cpu);
5420 }
5421 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5422 printk(KERN_ERR "ERROR: domain->groups does not contain"
5423 " CPU%d\n", cpu);
5424 }
5425
5426 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5427 do {
5428 if (!group) {
5429 printk("\n");
5430 printk(KERN_ERR "ERROR: group is NULL\n");
5431 break;
5432 }
5433
5434 /*
5435 * Even though we initialize ->capacity to something semi-sane,
5436 * we leave capacity_orig unset. This allows us to detect if
5437 * domain iteration is still funny without causing /0 traps.
5438 */
5439 if (!group->sgc->capacity_orig) {
5440 printk(KERN_CONT "\n");
5441 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5442 break;
5443 }
5444
5445 if (!cpumask_weight(sched_group_cpus(group))) {
5446 printk(KERN_CONT "\n");
5447 printk(KERN_ERR "ERROR: empty group\n");
5448 break;
5449 }
5450
5451 if (!(sd->flags & SD_OVERLAP) &&
5452 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5453 printk(KERN_CONT "\n");
5454 printk(KERN_ERR "ERROR: repeated CPUs\n");
5455 break;
5456 }
5457
5458 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5459
5460 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5461
5462 printk(KERN_CONT " %s", str);
5463 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5464 printk(KERN_CONT " (cpu_capacity = %d)",
5465 group->sgc->capacity);
5466 }
5467
5468 group = group->next;
5469 } while (group != sd->groups);
5470 printk(KERN_CONT "\n");
5471
5472 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5473 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5474
5475 if (sd->parent &&
5476 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5477 printk(KERN_ERR "ERROR: parent span is not a superset "
5478 "of domain->span\n");
5479 return 0;
5480 }
5481
5482 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5483 {
5484 int level = 0;
5485
5486 if (!sched_debug_enabled)
5487 return;
5488
5489 if (!sd) {
5490 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5491 return;
5492 }
5493
5494 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5495
5496 for (;;) {
5497 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5498 break;
5499 level++;
5500 sd = sd->parent;
5501 if (!sd)
5502 break;
5503 }
5504 }
5505 #else /* !CONFIG_SCHED_DEBUG */
5506 # define sched_domain_debug(sd, cpu) do { } while (0)
5507 static inline bool sched_debug(void)
5508 {
5509 return false;
5510 }
5511 #endif /* CONFIG_SCHED_DEBUG */
5512
5513 static int sd_degenerate(struct sched_domain *sd)
5514 {
5515 if (cpumask_weight(sched_domain_span(sd)) == 1)
5516 return 1;
5517
5518 /* Following flags need at least 2 groups */
5519 if (sd->flags & (SD_LOAD_BALANCE |
5520 SD_BALANCE_NEWIDLE |
5521 SD_BALANCE_FORK |
5522 SD_BALANCE_EXEC |
5523 SD_SHARE_CPUCAPACITY |
5524 SD_SHARE_PKG_RESOURCES |
5525 SD_SHARE_POWERDOMAIN)) {
5526 if (sd->groups != sd->groups->next)
5527 return 0;
5528 }
5529
5530 /* Following flags don't use groups */
5531 if (sd->flags & (SD_WAKE_AFFINE))
5532 return 0;
5533
5534 return 1;
5535 }
5536
5537 static int
5538 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5539 {
5540 unsigned long cflags = sd->flags, pflags = parent->flags;
5541
5542 if (sd_degenerate(parent))
5543 return 1;
5544
5545 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5546 return 0;
5547
5548 /* Flags needing groups don't count if only 1 group in parent */
5549 if (parent->groups == parent->groups->next) {
5550 pflags &= ~(SD_LOAD_BALANCE |
5551 SD_BALANCE_NEWIDLE |
5552 SD_BALANCE_FORK |
5553 SD_BALANCE_EXEC |
5554 SD_SHARE_CPUCAPACITY |
5555 SD_SHARE_PKG_RESOURCES |
5556 SD_PREFER_SIBLING |
5557 SD_SHARE_POWERDOMAIN);
5558 if (nr_node_ids == 1)
5559 pflags &= ~SD_SERIALIZE;
5560 }
5561 if (~cflags & pflags)
5562 return 0;
5563
5564 return 1;
5565 }
5566
5567 static void free_rootdomain(struct rcu_head *rcu)
5568 {
5569 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5570
5571 cpupri_cleanup(&rd->cpupri);
5572 cpudl_cleanup(&rd->cpudl);
5573 free_cpumask_var(rd->dlo_mask);
5574 free_cpumask_var(rd->rto_mask);
5575 free_cpumask_var(rd->online);
5576 free_cpumask_var(rd->span);
5577 kfree(rd);
5578 }
5579
5580 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5581 {
5582 struct root_domain *old_rd = NULL;
5583 unsigned long flags;
5584
5585 raw_spin_lock_irqsave(&rq->lock, flags);
5586
5587 if (rq->rd) {
5588 old_rd = rq->rd;
5589
5590 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5591 set_rq_offline(rq);
5592
5593 cpumask_clear_cpu(rq->cpu, old_rd->span);
5594
5595 /*
5596 * If we dont want to free the old_rd yet then
5597 * set old_rd to NULL to skip the freeing later
5598 * in this function:
5599 */
5600 if (!atomic_dec_and_test(&old_rd->refcount))
5601 old_rd = NULL;
5602 }
5603
5604 atomic_inc(&rd->refcount);
5605 rq->rd = rd;
5606
5607 cpumask_set_cpu(rq->cpu, rd->span);
5608 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5609 set_rq_online(rq);
5610
5611 raw_spin_unlock_irqrestore(&rq->lock, flags);
5612
5613 if (old_rd)
5614 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5615 }
5616
5617 static int init_rootdomain(struct root_domain *rd)
5618 {
5619 memset(rd, 0, sizeof(*rd));
5620
5621 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5622 goto out;
5623 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5624 goto free_span;
5625 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5626 goto free_online;
5627 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5628 goto free_dlo_mask;
5629
5630 init_dl_bw(&rd->dl_bw);
5631 if (cpudl_init(&rd->cpudl) != 0)
5632 goto free_dlo_mask;
5633
5634 if (cpupri_init(&rd->cpupri) != 0)
5635 goto free_rto_mask;
5636 return 0;
5637
5638 free_rto_mask:
5639 free_cpumask_var(rd->rto_mask);
5640 free_dlo_mask:
5641 free_cpumask_var(rd->dlo_mask);
5642 free_online:
5643 free_cpumask_var(rd->online);
5644 free_span:
5645 free_cpumask_var(rd->span);
5646 out:
5647 return -ENOMEM;
5648 }
5649
5650 /*
5651 * By default the system creates a single root-domain with all cpus as
5652 * members (mimicking the global state we have today).
5653 */
5654 struct root_domain def_root_domain;
5655
5656 static void init_defrootdomain(void)
5657 {
5658 init_rootdomain(&def_root_domain);
5659
5660 atomic_set(&def_root_domain.refcount, 1);
5661 }
5662
5663 static struct root_domain *alloc_rootdomain(void)
5664 {
5665 struct root_domain *rd;
5666
5667 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5668 if (!rd)
5669 return NULL;
5670
5671 if (init_rootdomain(rd) != 0) {
5672 kfree(rd);
5673 return NULL;
5674 }
5675
5676 return rd;
5677 }
5678
5679 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5680 {
5681 struct sched_group *tmp, *first;
5682
5683 if (!sg)
5684 return;
5685
5686 first = sg;
5687 do {
5688 tmp = sg->next;
5689
5690 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5691 kfree(sg->sgc);
5692
5693 kfree(sg);
5694 sg = tmp;
5695 } while (sg != first);
5696 }
5697
5698 static void free_sched_domain(struct rcu_head *rcu)
5699 {
5700 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5701
5702 /*
5703 * If its an overlapping domain it has private groups, iterate and
5704 * nuke them all.
5705 */
5706 if (sd->flags & SD_OVERLAP) {
5707 free_sched_groups(sd->groups, 1);
5708 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5709 kfree(sd->groups->sgc);
5710 kfree(sd->groups);
5711 }
5712 kfree(sd);
5713 }
5714
5715 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5716 {
5717 call_rcu(&sd->rcu, free_sched_domain);
5718 }
5719
5720 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5721 {
5722 for (; sd; sd = sd->parent)
5723 destroy_sched_domain(sd, cpu);
5724 }
5725
5726 /*
5727 * Keep a special pointer to the highest sched_domain that has
5728 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5729 * allows us to avoid some pointer chasing select_idle_sibling().
5730 *
5731 * Also keep a unique ID per domain (we use the first cpu number in
5732 * the cpumask of the domain), this allows us to quickly tell if
5733 * two cpus are in the same cache domain, see cpus_share_cache().
5734 */
5735 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5736 DEFINE_PER_CPU(int, sd_llc_size);
5737 DEFINE_PER_CPU(int, sd_llc_id);
5738 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5739 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5740 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5741
5742 static void update_top_cache_domain(int cpu)
5743 {
5744 struct sched_domain *sd;
5745 struct sched_domain *busy_sd = NULL;
5746 int id = cpu;
5747 int size = 1;
5748
5749 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5750 if (sd) {
5751 id = cpumask_first(sched_domain_span(sd));
5752 size = cpumask_weight(sched_domain_span(sd));
5753 busy_sd = sd->parent; /* sd_busy */
5754 }
5755 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5756
5757 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5758 per_cpu(sd_llc_size, cpu) = size;
5759 per_cpu(sd_llc_id, cpu) = id;
5760
5761 sd = lowest_flag_domain(cpu, SD_NUMA);
5762 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5763
5764 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5765 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5766 }
5767
5768 /*
5769 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5770 * hold the hotplug lock.
5771 */
5772 static void
5773 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5774 {
5775 struct rq *rq = cpu_rq(cpu);
5776 struct sched_domain *tmp;
5777
5778 /* Remove the sched domains which do not contribute to scheduling. */
5779 for (tmp = sd; tmp; ) {
5780 struct sched_domain *parent = tmp->parent;
5781 if (!parent)
5782 break;
5783
5784 if (sd_parent_degenerate(tmp, parent)) {
5785 tmp->parent = parent->parent;
5786 if (parent->parent)
5787 parent->parent->child = tmp;
5788 /*
5789 * Transfer SD_PREFER_SIBLING down in case of a
5790 * degenerate parent; the spans match for this
5791 * so the property transfers.
5792 */
5793 if (parent->flags & SD_PREFER_SIBLING)
5794 tmp->flags |= SD_PREFER_SIBLING;
5795 destroy_sched_domain(parent, cpu);
5796 } else
5797 tmp = tmp->parent;
5798 }
5799
5800 if (sd && sd_degenerate(sd)) {
5801 tmp = sd;
5802 sd = sd->parent;
5803 destroy_sched_domain(tmp, cpu);
5804 if (sd)
5805 sd->child = NULL;
5806 }
5807
5808 sched_domain_debug(sd, cpu);
5809
5810 rq_attach_root(rq, rd);
5811 tmp = rq->sd;
5812 rcu_assign_pointer(rq->sd, sd);
5813 destroy_sched_domains(tmp, cpu);
5814
5815 update_top_cache_domain(cpu);
5816 }
5817
5818 /* cpus with isolated domains */
5819 static cpumask_var_t cpu_isolated_map;
5820
5821 /* Setup the mask of cpus configured for isolated domains */
5822 static int __init isolated_cpu_setup(char *str)
5823 {
5824 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5825 cpulist_parse(str, cpu_isolated_map);
5826 return 1;
5827 }
5828
5829 __setup("isolcpus=", isolated_cpu_setup);
5830
5831 struct s_data {
5832 struct sched_domain ** __percpu sd;
5833 struct root_domain *rd;
5834 };
5835
5836 enum s_alloc {
5837 sa_rootdomain,
5838 sa_sd,
5839 sa_sd_storage,
5840 sa_none,
5841 };
5842
5843 /*
5844 * Build an iteration mask that can exclude certain CPUs from the upwards
5845 * domain traversal.
5846 *
5847 * Asymmetric node setups can result in situations where the domain tree is of
5848 * unequal depth, make sure to skip domains that already cover the entire
5849 * range.
5850 *
5851 * In that case build_sched_domains() will have terminated the iteration early
5852 * and our sibling sd spans will be empty. Domains should always include the
5853 * cpu they're built on, so check that.
5854 *
5855 */
5856 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5857 {
5858 const struct cpumask *span = sched_domain_span(sd);
5859 struct sd_data *sdd = sd->private;
5860 struct sched_domain *sibling;
5861 int i;
5862
5863 for_each_cpu(i, span) {
5864 sibling = *per_cpu_ptr(sdd->sd, i);
5865 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5866 continue;
5867
5868 cpumask_set_cpu(i, sched_group_mask(sg));
5869 }
5870 }
5871
5872 /*
5873 * Return the canonical balance cpu for this group, this is the first cpu
5874 * of this group that's also in the iteration mask.
5875 */
5876 int group_balance_cpu(struct sched_group *sg)
5877 {
5878 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5879 }
5880
5881 static int
5882 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5883 {
5884 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5885 const struct cpumask *span = sched_domain_span(sd);
5886 struct cpumask *covered = sched_domains_tmpmask;
5887 struct sd_data *sdd = sd->private;
5888 struct sched_domain *sibling;
5889 int i;
5890
5891 cpumask_clear(covered);
5892
5893 for_each_cpu(i, span) {
5894 struct cpumask *sg_span;
5895
5896 if (cpumask_test_cpu(i, covered))
5897 continue;
5898
5899 sibling = *per_cpu_ptr(sdd->sd, i);
5900
5901 /* See the comment near build_group_mask(). */
5902 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5903 continue;
5904
5905 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5906 GFP_KERNEL, cpu_to_node(cpu));
5907
5908 if (!sg)
5909 goto fail;
5910
5911 sg_span = sched_group_cpus(sg);
5912 if (sibling->child)
5913 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5914 else
5915 cpumask_set_cpu(i, sg_span);
5916
5917 cpumask_or(covered, covered, sg_span);
5918
5919 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5920 if (atomic_inc_return(&sg->sgc->ref) == 1)
5921 build_group_mask(sd, sg);
5922
5923 /*
5924 * Initialize sgc->capacity such that even if we mess up the
5925 * domains and no possible iteration will get us here, we won't
5926 * die on a /0 trap.
5927 */
5928 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5929 sg->sgc->capacity_orig = sg->sgc->capacity;
5930
5931 /*
5932 * Make sure the first group of this domain contains the
5933 * canonical balance cpu. Otherwise the sched_domain iteration
5934 * breaks. See update_sg_lb_stats().
5935 */
5936 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5937 group_balance_cpu(sg) == cpu)
5938 groups = sg;
5939
5940 if (!first)
5941 first = sg;
5942 if (last)
5943 last->next = sg;
5944 last = sg;
5945 last->next = first;
5946 }
5947 sd->groups = groups;
5948
5949 return 0;
5950
5951 fail:
5952 free_sched_groups(first, 0);
5953
5954 return -ENOMEM;
5955 }
5956
5957 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5958 {
5959 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5960 struct sched_domain *child = sd->child;
5961
5962 if (child)
5963 cpu = cpumask_first(sched_domain_span(child));
5964
5965 if (sg) {
5966 *sg = *per_cpu_ptr(sdd->sg, cpu);
5967 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5968 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5969 }
5970
5971 return cpu;
5972 }
5973
5974 /*
5975 * build_sched_groups will build a circular linked list of the groups
5976 * covered by the given span, and will set each group's ->cpumask correctly,
5977 * and ->cpu_capacity to 0.
5978 *
5979 * Assumes the sched_domain tree is fully constructed
5980 */
5981 static int
5982 build_sched_groups(struct sched_domain *sd, int cpu)
5983 {
5984 struct sched_group *first = NULL, *last = NULL;
5985 struct sd_data *sdd = sd->private;
5986 const struct cpumask *span = sched_domain_span(sd);
5987 struct cpumask *covered;
5988 int i;
5989
5990 get_group(cpu, sdd, &sd->groups);
5991 atomic_inc(&sd->groups->ref);
5992
5993 if (cpu != cpumask_first(span))
5994 return 0;
5995
5996 lockdep_assert_held(&sched_domains_mutex);
5997 covered = sched_domains_tmpmask;
5998
5999 cpumask_clear(covered);
6000
6001 for_each_cpu(i, span) {
6002 struct sched_group *sg;
6003 int group, j;
6004
6005 if (cpumask_test_cpu(i, covered))
6006 continue;
6007
6008 group = get_group(i, sdd, &sg);
6009 cpumask_setall(sched_group_mask(sg));
6010
6011 for_each_cpu(j, span) {
6012 if (get_group(j, sdd, NULL) != group)
6013 continue;
6014
6015 cpumask_set_cpu(j, covered);
6016 cpumask_set_cpu(j, sched_group_cpus(sg));
6017 }
6018
6019 if (!first)
6020 first = sg;
6021 if (last)
6022 last->next = sg;
6023 last = sg;
6024 }
6025 last->next = first;
6026
6027 return 0;
6028 }
6029
6030 /*
6031 * Initialize sched groups cpu_capacity.
6032 *
6033 * cpu_capacity indicates the capacity of sched group, which is used while
6034 * distributing the load between different sched groups in a sched domain.
6035 * Typically cpu_capacity for all the groups in a sched domain will be same
6036 * unless there are asymmetries in the topology. If there are asymmetries,
6037 * group having more cpu_capacity will pickup more load compared to the
6038 * group having less cpu_capacity.
6039 */
6040 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6041 {
6042 struct sched_group *sg = sd->groups;
6043
6044 WARN_ON(!sg);
6045
6046 do {
6047 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6048 sg = sg->next;
6049 } while (sg != sd->groups);
6050
6051 if (cpu != group_balance_cpu(sg))
6052 return;
6053
6054 update_group_capacity(sd, cpu);
6055 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6056 }
6057
6058 /*
6059 * Initializers for schedule domains
6060 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6061 */
6062
6063 static int default_relax_domain_level = -1;
6064 int sched_domain_level_max;
6065
6066 static int __init setup_relax_domain_level(char *str)
6067 {
6068 if (kstrtoint(str, 0, &default_relax_domain_level))
6069 pr_warn("Unable to set relax_domain_level\n");
6070
6071 return 1;
6072 }
6073 __setup("relax_domain_level=", setup_relax_domain_level);
6074
6075 static void set_domain_attribute(struct sched_domain *sd,
6076 struct sched_domain_attr *attr)
6077 {
6078 int request;
6079
6080 if (!attr || attr->relax_domain_level < 0) {
6081 if (default_relax_domain_level < 0)
6082 return;
6083 else
6084 request = default_relax_domain_level;
6085 } else
6086 request = attr->relax_domain_level;
6087 if (request < sd->level) {
6088 /* turn off idle balance on this domain */
6089 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6090 } else {
6091 /* turn on idle balance on this domain */
6092 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6093 }
6094 }
6095
6096 static void __sdt_free(const struct cpumask *cpu_map);
6097 static int __sdt_alloc(const struct cpumask *cpu_map);
6098
6099 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6100 const struct cpumask *cpu_map)
6101 {
6102 switch (what) {
6103 case sa_rootdomain:
6104 if (!atomic_read(&d->rd->refcount))
6105 free_rootdomain(&d->rd->rcu); /* fall through */
6106 case sa_sd:
6107 free_percpu(d->sd); /* fall through */
6108 case sa_sd_storage:
6109 __sdt_free(cpu_map); /* fall through */
6110 case sa_none:
6111 break;
6112 }
6113 }
6114
6115 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6116 const struct cpumask *cpu_map)
6117 {
6118 memset(d, 0, sizeof(*d));
6119
6120 if (__sdt_alloc(cpu_map))
6121 return sa_sd_storage;
6122 d->sd = alloc_percpu(struct sched_domain *);
6123 if (!d->sd)
6124 return sa_sd_storage;
6125 d->rd = alloc_rootdomain();
6126 if (!d->rd)
6127 return sa_sd;
6128 return sa_rootdomain;
6129 }
6130
6131 /*
6132 * NULL the sd_data elements we've used to build the sched_domain and
6133 * sched_group structure so that the subsequent __free_domain_allocs()
6134 * will not free the data we're using.
6135 */
6136 static void claim_allocations(int cpu, struct sched_domain *sd)
6137 {
6138 struct sd_data *sdd = sd->private;
6139
6140 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6141 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6142
6143 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6144 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6145
6146 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6147 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6148 }
6149
6150 #ifdef CONFIG_NUMA
6151 static int sched_domains_numa_levels;
6152 enum numa_topology_type sched_numa_topology_type;
6153 static int *sched_domains_numa_distance;
6154 int sched_max_numa_distance;
6155 static struct cpumask ***sched_domains_numa_masks;
6156 static int sched_domains_curr_level;
6157 #endif
6158
6159 /*
6160 * SD_flags allowed in topology descriptions.
6161 *
6162 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6163 * SD_SHARE_PKG_RESOURCES - describes shared caches
6164 * SD_NUMA - describes NUMA topologies
6165 * SD_SHARE_POWERDOMAIN - describes shared power domain
6166 *
6167 * Odd one out:
6168 * SD_ASYM_PACKING - describes SMT quirks
6169 */
6170 #define TOPOLOGY_SD_FLAGS \
6171 (SD_SHARE_CPUCAPACITY | \
6172 SD_SHARE_PKG_RESOURCES | \
6173 SD_NUMA | \
6174 SD_ASYM_PACKING | \
6175 SD_SHARE_POWERDOMAIN)
6176
6177 static struct sched_domain *
6178 sd_init(struct sched_domain_topology_level *tl, int cpu)
6179 {
6180 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6181 int sd_weight, sd_flags = 0;
6182
6183 #ifdef CONFIG_NUMA
6184 /*
6185 * Ugly hack to pass state to sd_numa_mask()...
6186 */
6187 sched_domains_curr_level = tl->numa_level;
6188 #endif
6189
6190 sd_weight = cpumask_weight(tl->mask(cpu));
6191
6192 if (tl->sd_flags)
6193 sd_flags = (*tl->sd_flags)();
6194 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6195 "wrong sd_flags in topology description\n"))
6196 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6197
6198 *sd = (struct sched_domain){
6199 .min_interval = sd_weight,
6200 .max_interval = 2*sd_weight,
6201 .busy_factor = 32,
6202 .imbalance_pct = 125,
6203
6204 .cache_nice_tries = 0,
6205 .busy_idx = 0,
6206 .idle_idx = 0,
6207 .newidle_idx = 0,
6208 .wake_idx = 0,
6209 .forkexec_idx = 0,
6210
6211 .flags = 1*SD_LOAD_BALANCE
6212 | 1*SD_BALANCE_NEWIDLE
6213 | 1*SD_BALANCE_EXEC
6214 | 1*SD_BALANCE_FORK
6215 | 0*SD_BALANCE_WAKE
6216 | 1*SD_WAKE_AFFINE
6217 | 0*SD_SHARE_CPUCAPACITY
6218 | 0*SD_SHARE_PKG_RESOURCES
6219 | 0*SD_SERIALIZE
6220 | 0*SD_PREFER_SIBLING
6221 | 0*SD_NUMA
6222 | sd_flags
6223 ,
6224
6225 .last_balance = jiffies,
6226 .balance_interval = sd_weight,
6227 .smt_gain = 0,
6228 .max_newidle_lb_cost = 0,
6229 .next_decay_max_lb_cost = jiffies,
6230 #ifdef CONFIG_SCHED_DEBUG
6231 .name = tl->name,
6232 #endif
6233 };
6234
6235 /*
6236 * Convert topological properties into behaviour.
6237 */
6238
6239 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6240 sd->imbalance_pct = 110;
6241 sd->smt_gain = 1178; /* ~15% */
6242
6243 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6244 sd->imbalance_pct = 117;
6245 sd->cache_nice_tries = 1;
6246 sd->busy_idx = 2;
6247
6248 #ifdef CONFIG_NUMA
6249 } else if (sd->flags & SD_NUMA) {
6250 sd->cache_nice_tries = 2;
6251 sd->busy_idx = 3;
6252 sd->idle_idx = 2;
6253
6254 sd->flags |= SD_SERIALIZE;
6255 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6256 sd->flags &= ~(SD_BALANCE_EXEC |
6257 SD_BALANCE_FORK |
6258 SD_WAKE_AFFINE);
6259 }
6260
6261 #endif
6262 } else {
6263 sd->flags |= SD_PREFER_SIBLING;
6264 sd->cache_nice_tries = 1;
6265 sd->busy_idx = 2;
6266 sd->idle_idx = 1;
6267 }
6268
6269 sd->private = &tl->data;
6270
6271 return sd;
6272 }
6273
6274 /*
6275 * Topology list, bottom-up.
6276 */
6277 static struct sched_domain_topology_level default_topology[] = {
6278 #ifdef CONFIG_SCHED_SMT
6279 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6280 #endif
6281 #ifdef CONFIG_SCHED_MC
6282 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6283 #endif
6284 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6285 { NULL, },
6286 };
6287
6288 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6289
6290 #define for_each_sd_topology(tl) \
6291 for (tl = sched_domain_topology; tl->mask; tl++)
6292
6293 void set_sched_topology(struct sched_domain_topology_level *tl)
6294 {
6295 sched_domain_topology = tl;
6296 }
6297
6298 #ifdef CONFIG_NUMA
6299
6300 static const struct cpumask *sd_numa_mask(int cpu)
6301 {
6302 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6303 }
6304
6305 static void sched_numa_warn(const char *str)
6306 {
6307 static int done = false;
6308 int i,j;
6309
6310 if (done)
6311 return;
6312
6313 done = true;
6314
6315 printk(KERN_WARNING "ERROR: %s\n\n", str);
6316
6317 for (i = 0; i < nr_node_ids; i++) {
6318 printk(KERN_WARNING " ");
6319 for (j = 0; j < nr_node_ids; j++)
6320 printk(KERN_CONT "%02d ", node_distance(i,j));
6321 printk(KERN_CONT "\n");
6322 }
6323 printk(KERN_WARNING "\n");
6324 }
6325
6326 bool find_numa_distance(int distance)
6327 {
6328 int i;
6329
6330 if (distance == node_distance(0, 0))
6331 return true;
6332
6333 for (i = 0; i < sched_domains_numa_levels; i++) {
6334 if (sched_domains_numa_distance[i] == distance)
6335 return true;
6336 }
6337
6338 return false;
6339 }
6340
6341 /*
6342 * A system can have three types of NUMA topology:
6343 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6344 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6345 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6346 *
6347 * The difference between a glueless mesh topology and a backplane
6348 * topology lies in whether communication between not directly
6349 * connected nodes goes through intermediary nodes (where programs
6350 * could run), or through backplane controllers. This affects
6351 * placement of programs.
6352 *
6353 * The type of topology can be discerned with the following tests:
6354 * - If the maximum distance between any nodes is 1 hop, the system
6355 * is directly connected.
6356 * - If for two nodes A and B, located N > 1 hops away from each other,
6357 * there is an intermediary node C, which is < N hops away from both
6358 * nodes A and B, the system is a glueless mesh.
6359 */
6360 static void init_numa_topology_type(void)
6361 {
6362 int a, b, c, n;
6363
6364 n = sched_max_numa_distance;
6365
6366 if (n <= 1)
6367 sched_numa_topology_type = NUMA_DIRECT;
6368
6369 for_each_online_node(a) {
6370 for_each_online_node(b) {
6371 /* Find two nodes furthest removed from each other. */
6372 if (node_distance(a, b) < n)
6373 continue;
6374
6375 /* Is there an intermediary node between a and b? */
6376 for_each_online_node(c) {
6377 if (node_distance(a, c) < n &&
6378 node_distance(b, c) < n) {
6379 sched_numa_topology_type =
6380 NUMA_GLUELESS_MESH;
6381 return;
6382 }
6383 }
6384
6385 sched_numa_topology_type = NUMA_BACKPLANE;
6386 return;
6387 }
6388 }
6389 }
6390
6391 static void sched_init_numa(void)
6392 {
6393 int next_distance, curr_distance = node_distance(0, 0);
6394 struct sched_domain_topology_level *tl;
6395 int level = 0;
6396 int i, j, k;
6397
6398 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6399 if (!sched_domains_numa_distance)
6400 return;
6401
6402 /*
6403 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6404 * unique distances in the node_distance() table.
6405 *
6406 * Assumes node_distance(0,j) includes all distances in
6407 * node_distance(i,j) in order to avoid cubic time.
6408 */
6409 next_distance = curr_distance;
6410 for (i = 0; i < nr_node_ids; i++) {
6411 for (j = 0; j < nr_node_ids; j++) {
6412 for (k = 0; k < nr_node_ids; k++) {
6413 int distance = node_distance(i, k);
6414
6415 if (distance > curr_distance &&
6416 (distance < next_distance ||
6417 next_distance == curr_distance))
6418 next_distance = distance;
6419
6420 /*
6421 * While not a strong assumption it would be nice to know
6422 * about cases where if node A is connected to B, B is not
6423 * equally connected to A.
6424 */
6425 if (sched_debug() && node_distance(k, i) != distance)
6426 sched_numa_warn("Node-distance not symmetric");
6427
6428 if (sched_debug() && i && !find_numa_distance(distance))
6429 sched_numa_warn("Node-0 not representative");
6430 }
6431 if (next_distance != curr_distance) {
6432 sched_domains_numa_distance[level++] = next_distance;
6433 sched_domains_numa_levels = level;
6434 curr_distance = next_distance;
6435 } else break;
6436 }
6437
6438 /*
6439 * In case of sched_debug() we verify the above assumption.
6440 */
6441 if (!sched_debug())
6442 break;
6443 }
6444
6445 if (!level)
6446 return;
6447
6448 /*
6449 * 'level' contains the number of unique distances, excluding the
6450 * identity distance node_distance(i,i).
6451 *
6452 * The sched_domains_numa_distance[] array includes the actual distance
6453 * numbers.
6454 */
6455
6456 /*
6457 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6458 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6459 * the array will contain less then 'level' members. This could be
6460 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6461 * in other functions.
6462 *
6463 * We reset it to 'level' at the end of this function.
6464 */
6465 sched_domains_numa_levels = 0;
6466
6467 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6468 if (!sched_domains_numa_masks)
6469 return;
6470
6471 /*
6472 * Now for each level, construct a mask per node which contains all
6473 * cpus of nodes that are that many hops away from us.
6474 */
6475 for (i = 0; i < level; i++) {
6476 sched_domains_numa_masks[i] =
6477 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6478 if (!sched_domains_numa_masks[i])
6479 return;
6480
6481 for (j = 0; j < nr_node_ids; j++) {
6482 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6483 if (!mask)
6484 return;
6485
6486 sched_domains_numa_masks[i][j] = mask;
6487
6488 for (k = 0; k < nr_node_ids; k++) {
6489 if (node_distance(j, k) > sched_domains_numa_distance[i])
6490 continue;
6491
6492 cpumask_or(mask, mask, cpumask_of_node(k));
6493 }
6494 }
6495 }
6496
6497 /* Compute default topology size */
6498 for (i = 0; sched_domain_topology[i].mask; i++);
6499
6500 tl = kzalloc((i + level + 1) *
6501 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6502 if (!tl)
6503 return;
6504
6505 /*
6506 * Copy the default topology bits..
6507 */
6508 for (i = 0; sched_domain_topology[i].mask; i++)
6509 tl[i] = sched_domain_topology[i];
6510
6511 /*
6512 * .. and append 'j' levels of NUMA goodness.
6513 */
6514 for (j = 0; j < level; i++, j++) {
6515 tl[i] = (struct sched_domain_topology_level){
6516 .mask = sd_numa_mask,
6517 .sd_flags = cpu_numa_flags,
6518 .flags = SDTL_OVERLAP,
6519 .numa_level = j,
6520 SD_INIT_NAME(NUMA)
6521 };
6522 }
6523
6524 sched_domain_topology = tl;
6525
6526 sched_domains_numa_levels = level;
6527 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6528
6529 init_numa_topology_type();
6530 }
6531
6532 static void sched_domains_numa_masks_set(int cpu)
6533 {
6534 int i, j;
6535 int node = cpu_to_node(cpu);
6536
6537 for (i = 0; i < sched_domains_numa_levels; i++) {
6538 for (j = 0; j < nr_node_ids; j++) {
6539 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6540 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6541 }
6542 }
6543 }
6544
6545 static void sched_domains_numa_masks_clear(int cpu)
6546 {
6547 int i, j;
6548 for (i = 0; i < sched_domains_numa_levels; i++) {
6549 for (j = 0; j < nr_node_ids; j++)
6550 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6551 }
6552 }
6553
6554 /*
6555 * Update sched_domains_numa_masks[level][node] array when new cpus
6556 * are onlined.
6557 */
6558 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6559 unsigned long action,
6560 void *hcpu)
6561 {
6562 int cpu = (long)hcpu;
6563
6564 switch (action & ~CPU_TASKS_FROZEN) {
6565 case CPU_ONLINE:
6566 sched_domains_numa_masks_set(cpu);
6567 break;
6568
6569 case CPU_DEAD:
6570 sched_domains_numa_masks_clear(cpu);
6571 break;
6572
6573 default:
6574 return NOTIFY_DONE;
6575 }
6576
6577 return NOTIFY_OK;
6578 }
6579 #else
6580 static inline void sched_init_numa(void)
6581 {
6582 }
6583
6584 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6585 unsigned long action,
6586 void *hcpu)
6587 {
6588 return 0;
6589 }
6590 #endif /* CONFIG_NUMA */
6591
6592 static int __sdt_alloc(const struct cpumask *cpu_map)
6593 {
6594 struct sched_domain_topology_level *tl;
6595 int j;
6596
6597 for_each_sd_topology(tl) {
6598 struct sd_data *sdd = &tl->data;
6599
6600 sdd->sd = alloc_percpu(struct sched_domain *);
6601 if (!sdd->sd)
6602 return -ENOMEM;
6603
6604 sdd->sg = alloc_percpu(struct sched_group *);
6605 if (!sdd->sg)
6606 return -ENOMEM;
6607
6608 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6609 if (!sdd->sgc)
6610 return -ENOMEM;
6611
6612 for_each_cpu(j, cpu_map) {
6613 struct sched_domain *sd;
6614 struct sched_group *sg;
6615 struct sched_group_capacity *sgc;
6616
6617 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6618 GFP_KERNEL, cpu_to_node(j));
6619 if (!sd)
6620 return -ENOMEM;
6621
6622 *per_cpu_ptr(sdd->sd, j) = sd;
6623
6624 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6625 GFP_KERNEL, cpu_to_node(j));
6626 if (!sg)
6627 return -ENOMEM;
6628
6629 sg->next = sg;
6630
6631 *per_cpu_ptr(sdd->sg, j) = sg;
6632
6633 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6634 GFP_KERNEL, cpu_to_node(j));
6635 if (!sgc)
6636 return -ENOMEM;
6637
6638 *per_cpu_ptr(sdd->sgc, j) = sgc;
6639 }
6640 }
6641
6642 return 0;
6643 }
6644
6645 static void __sdt_free(const struct cpumask *cpu_map)
6646 {
6647 struct sched_domain_topology_level *tl;
6648 int j;
6649
6650 for_each_sd_topology(tl) {
6651 struct sd_data *sdd = &tl->data;
6652
6653 for_each_cpu(j, cpu_map) {
6654 struct sched_domain *sd;
6655
6656 if (sdd->sd) {
6657 sd = *per_cpu_ptr(sdd->sd, j);
6658 if (sd && (sd->flags & SD_OVERLAP))
6659 free_sched_groups(sd->groups, 0);
6660 kfree(*per_cpu_ptr(sdd->sd, j));
6661 }
6662
6663 if (sdd->sg)
6664 kfree(*per_cpu_ptr(sdd->sg, j));
6665 if (sdd->sgc)
6666 kfree(*per_cpu_ptr(sdd->sgc, j));
6667 }
6668 free_percpu(sdd->sd);
6669 sdd->sd = NULL;
6670 free_percpu(sdd->sg);
6671 sdd->sg = NULL;
6672 free_percpu(sdd->sgc);
6673 sdd->sgc = NULL;
6674 }
6675 }
6676
6677 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6678 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6679 struct sched_domain *child, int cpu)
6680 {
6681 struct sched_domain *sd = sd_init(tl, cpu);
6682 if (!sd)
6683 return child;
6684
6685 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6686 if (child) {
6687 sd->level = child->level + 1;
6688 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6689 child->parent = sd;
6690 sd->child = child;
6691
6692 if (!cpumask_subset(sched_domain_span(child),
6693 sched_domain_span(sd))) {
6694 pr_err("BUG: arch topology borken\n");
6695 #ifdef CONFIG_SCHED_DEBUG
6696 pr_err(" the %s domain not a subset of the %s domain\n",
6697 child->name, sd->name);
6698 #endif
6699 /* Fixup, ensure @sd has at least @child cpus. */
6700 cpumask_or(sched_domain_span(sd),
6701 sched_domain_span(sd),
6702 sched_domain_span(child));
6703 }
6704
6705 }
6706 set_domain_attribute(sd, attr);
6707
6708 return sd;
6709 }
6710
6711 /*
6712 * Build sched domains for a given set of cpus and attach the sched domains
6713 * to the individual cpus
6714 */
6715 static int build_sched_domains(const struct cpumask *cpu_map,
6716 struct sched_domain_attr *attr)
6717 {
6718 enum s_alloc alloc_state;
6719 struct sched_domain *sd;
6720 struct s_data d;
6721 int i, ret = -ENOMEM;
6722
6723 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6724 if (alloc_state != sa_rootdomain)
6725 goto error;
6726
6727 /* Set up domains for cpus specified by the cpu_map. */
6728 for_each_cpu(i, cpu_map) {
6729 struct sched_domain_topology_level *tl;
6730
6731 sd = NULL;
6732 for_each_sd_topology(tl) {
6733 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6734 if (tl == sched_domain_topology)
6735 *per_cpu_ptr(d.sd, i) = sd;
6736 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6737 sd->flags |= SD_OVERLAP;
6738 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6739 break;
6740 }
6741 }
6742
6743 /* Build the groups for the domains */
6744 for_each_cpu(i, cpu_map) {
6745 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6746 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6747 if (sd->flags & SD_OVERLAP) {
6748 if (build_overlap_sched_groups(sd, i))
6749 goto error;
6750 } else {
6751 if (build_sched_groups(sd, i))
6752 goto error;
6753 }
6754 }
6755 }
6756
6757 /* Calculate CPU capacity for physical packages and nodes */
6758 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6759 if (!cpumask_test_cpu(i, cpu_map))
6760 continue;
6761
6762 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6763 claim_allocations(i, sd);
6764 init_sched_groups_capacity(i, sd);
6765 }
6766 }
6767
6768 /* Attach the domains */
6769 rcu_read_lock();
6770 for_each_cpu(i, cpu_map) {
6771 sd = *per_cpu_ptr(d.sd, i);
6772 cpu_attach_domain(sd, d.rd, i);
6773 }
6774 rcu_read_unlock();
6775
6776 ret = 0;
6777 error:
6778 __free_domain_allocs(&d, alloc_state, cpu_map);
6779 return ret;
6780 }
6781
6782 static cpumask_var_t *doms_cur; /* current sched domains */
6783 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6784 static struct sched_domain_attr *dattr_cur;
6785 /* attribues of custom domains in 'doms_cur' */
6786
6787 /*
6788 * Special case: If a kmalloc of a doms_cur partition (array of
6789 * cpumask) fails, then fallback to a single sched domain,
6790 * as determined by the single cpumask fallback_doms.
6791 */
6792 static cpumask_var_t fallback_doms;
6793
6794 /*
6795 * arch_update_cpu_topology lets virtualized architectures update the
6796 * cpu core maps. It is supposed to return 1 if the topology changed
6797 * or 0 if it stayed the same.
6798 */
6799 int __weak arch_update_cpu_topology(void)
6800 {
6801 return 0;
6802 }
6803
6804 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6805 {
6806 int i;
6807 cpumask_var_t *doms;
6808
6809 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6810 if (!doms)
6811 return NULL;
6812 for (i = 0; i < ndoms; i++) {
6813 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6814 free_sched_domains(doms, i);
6815 return NULL;
6816 }
6817 }
6818 return doms;
6819 }
6820
6821 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6822 {
6823 unsigned int i;
6824 for (i = 0; i < ndoms; i++)
6825 free_cpumask_var(doms[i]);
6826 kfree(doms);
6827 }
6828
6829 /*
6830 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6831 * For now this just excludes isolated cpus, but could be used to
6832 * exclude other special cases in the future.
6833 */
6834 static int init_sched_domains(const struct cpumask *cpu_map)
6835 {
6836 int err;
6837
6838 arch_update_cpu_topology();
6839 ndoms_cur = 1;
6840 doms_cur = alloc_sched_domains(ndoms_cur);
6841 if (!doms_cur)
6842 doms_cur = &fallback_doms;
6843 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6844 err = build_sched_domains(doms_cur[0], NULL);
6845 register_sched_domain_sysctl();
6846
6847 return err;
6848 }
6849
6850 /*
6851 * Detach sched domains from a group of cpus specified in cpu_map
6852 * These cpus will now be attached to the NULL domain
6853 */
6854 static void detach_destroy_domains(const struct cpumask *cpu_map)
6855 {
6856 int i;
6857
6858 rcu_read_lock();
6859 for_each_cpu(i, cpu_map)
6860 cpu_attach_domain(NULL, &def_root_domain, i);
6861 rcu_read_unlock();
6862 }
6863
6864 /* handle null as "default" */
6865 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6866 struct sched_domain_attr *new, int idx_new)
6867 {
6868 struct sched_domain_attr tmp;
6869
6870 /* fast path */
6871 if (!new && !cur)
6872 return 1;
6873
6874 tmp = SD_ATTR_INIT;
6875 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6876 new ? (new + idx_new) : &tmp,
6877 sizeof(struct sched_domain_attr));
6878 }
6879
6880 /*
6881 * Partition sched domains as specified by the 'ndoms_new'
6882 * cpumasks in the array doms_new[] of cpumasks. This compares
6883 * doms_new[] to the current sched domain partitioning, doms_cur[].
6884 * It destroys each deleted domain and builds each new domain.
6885 *
6886 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6887 * The masks don't intersect (don't overlap.) We should setup one
6888 * sched domain for each mask. CPUs not in any of the cpumasks will
6889 * not be load balanced. If the same cpumask appears both in the
6890 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6891 * it as it is.
6892 *
6893 * The passed in 'doms_new' should be allocated using
6894 * alloc_sched_domains. This routine takes ownership of it and will
6895 * free_sched_domains it when done with it. If the caller failed the
6896 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6897 * and partition_sched_domains() will fallback to the single partition
6898 * 'fallback_doms', it also forces the domains to be rebuilt.
6899 *
6900 * If doms_new == NULL it will be replaced with cpu_online_mask.
6901 * ndoms_new == 0 is a special case for destroying existing domains,
6902 * and it will not create the default domain.
6903 *
6904 * Call with hotplug lock held
6905 */
6906 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6907 struct sched_domain_attr *dattr_new)
6908 {
6909 int i, j, n;
6910 int new_topology;
6911
6912 mutex_lock(&sched_domains_mutex);
6913
6914 /* always unregister in case we don't destroy any domains */
6915 unregister_sched_domain_sysctl();
6916
6917 /* Let architecture update cpu core mappings. */
6918 new_topology = arch_update_cpu_topology();
6919
6920 n = doms_new ? ndoms_new : 0;
6921
6922 /* Destroy deleted domains */
6923 for (i = 0; i < ndoms_cur; i++) {
6924 for (j = 0; j < n && !new_topology; j++) {
6925 if (cpumask_equal(doms_cur[i], doms_new[j])
6926 && dattrs_equal(dattr_cur, i, dattr_new, j))
6927 goto match1;
6928 }
6929 /* no match - a current sched domain not in new doms_new[] */
6930 detach_destroy_domains(doms_cur[i]);
6931 match1:
6932 ;
6933 }
6934
6935 n = ndoms_cur;
6936 if (doms_new == NULL) {
6937 n = 0;
6938 doms_new = &fallback_doms;
6939 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6940 WARN_ON_ONCE(dattr_new);
6941 }
6942
6943 /* Build new domains */
6944 for (i = 0; i < ndoms_new; i++) {
6945 for (j = 0; j < n && !new_topology; j++) {
6946 if (cpumask_equal(doms_new[i], doms_cur[j])
6947 && dattrs_equal(dattr_new, i, dattr_cur, j))
6948 goto match2;
6949 }
6950 /* no match - add a new doms_new */
6951 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6952 match2:
6953 ;
6954 }
6955
6956 /* Remember the new sched domains */
6957 if (doms_cur != &fallback_doms)
6958 free_sched_domains(doms_cur, ndoms_cur);
6959 kfree(dattr_cur); /* kfree(NULL) is safe */
6960 doms_cur = doms_new;
6961 dattr_cur = dattr_new;
6962 ndoms_cur = ndoms_new;
6963
6964 register_sched_domain_sysctl();
6965
6966 mutex_unlock(&sched_domains_mutex);
6967 }
6968
6969 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6970
6971 /*
6972 * Update cpusets according to cpu_active mask. If cpusets are
6973 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6974 * around partition_sched_domains().
6975 *
6976 * If we come here as part of a suspend/resume, don't touch cpusets because we
6977 * want to restore it back to its original state upon resume anyway.
6978 */
6979 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6980 void *hcpu)
6981 {
6982 switch (action) {
6983 case CPU_ONLINE_FROZEN:
6984 case CPU_DOWN_FAILED_FROZEN:
6985
6986 /*
6987 * num_cpus_frozen tracks how many CPUs are involved in suspend
6988 * resume sequence. As long as this is not the last online
6989 * operation in the resume sequence, just build a single sched
6990 * domain, ignoring cpusets.
6991 */
6992 num_cpus_frozen--;
6993 if (likely(num_cpus_frozen)) {
6994 partition_sched_domains(1, NULL, NULL);
6995 break;
6996 }
6997
6998 /*
6999 * This is the last CPU online operation. So fall through and
7000 * restore the original sched domains by considering the
7001 * cpuset configurations.
7002 */
7003
7004 case CPU_ONLINE:
7005 case CPU_DOWN_FAILED:
7006 cpuset_update_active_cpus(true);
7007 break;
7008 default:
7009 return NOTIFY_DONE;
7010 }
7011 return NOTIFY_OK;
7012 }
7013
7014 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7015 void *hcpu)
7016 {
7017 switch (action) {
7018 case CPU_DOWN_PREPARE:
7019 cpuset_update_active_cpus(false);
7020 break;
7021 case CPU_DOWN_PREPARE_FROZEN:
7022 num_cpus_frozen++;
7023 partition_sched_domains(1, NULL, NULL);
7024 break;
7025 default:
7026 return NOTIFY_DONE;
7027 }
7028 return NOTIFY_OK;
7029 }
7030
7031 void __init sched_init_smp(void)
7032 {
7033 cpumask_var_t non_isolated_cpus;
7034
7035 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7036 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7037
7038 sched_init_numa();
7039
7040 /*
7041 * There's no userspace yet to cause hotplug operations; hence all the
7042 * cpu masks are stable and all blatant races in the below code cannot
7043 * happen.
7044 */
7045 mutex_lock(&sched_domains_mutex);
7046 init_sched_domains(cpu_active_mask);
7047 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7048 if (cpumask_empty(non_isolated_cpus))
7049 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7050 mutex_unlock(&sched_domains_mutex);
7051
7052 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7053 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7054 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7055
7056 init_hrtick();
7057
7058 /* Move init over to a non-isolated CPU */
7059 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7060 BUG();
7061 sched_init_granularity();
7062 free_cpumask_var(non_isolated_cpus);
7063
7064 init_sched_rt_class();
7065 init_sched_dl_class();
7066 }
7067 #else
7068 void __init sched_init_smp(void)
7069 {
7070 sched_init_granularity();
7071 }
7072 #endif /* CONFIG_SMP */
7073
7074 const_debug unsigned int sysctl_timer_migration = 1;
7075
7076 int in_sched_functions(unsigned long addr)
7077 {
7078 return in_lock_functions(addr) ||
7079 (addr >= (unsigned long)__sched_text_start
7080 && addr < (unsigned long)__sched_text_end);
7081 }
7082
7083 #ifdef CONFIG_CGROUP_SCHED
7084 /*
7085 * Default task group.
7086 * Every task in system belongs to this group at bootup.
7087 */
7088 struct task_group root_task_group;
7089 LIST_HEAD(task_groups);
7090 #endif
7091
7092 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7093
7094 void __init sched_init(void)
7095 {
7096 int i, j;
7097 unsigned long alloc_size = 0, ptr;
7098
7099 #ifdef CONFIG_FAIR_GROUP_SCHED
7100 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7101 #endif
7102 #ifdef CONFIG_RT_GROUP_SCHED
7103 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7104 #endif
7105 #ifdef CONFIG_CPUMASK_OFFSTACK
7106 alloc_size += num_possible_cpus() * cpumask_size();
7107 #endif
7108 if (alloc_size) {
7109 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7110
7111 #ifdef CONFIG_FAIR_GROUP_SCHED
7112 root_task_group.se = (struct sched_entity **)ptr;
7113 ptr += nr_cpu_ids * sizeof(void **);
7114
7115 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7116 ptr += nr_cpu_ids * sizeof(void **);
7117
7118 #endif /* CONFIG_FAIR_GROUP_SCHED */
7119 #ifdef CONFIG_RT_GROUP_SCHED
7120 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7121 ptr += nr_cpu_ids * sizeof(void **);
7122
7123 root_task_group.rt_rq = (struct rt_rq **)ptr;
7124 ptr += nr_cpu_ids * sizeof(void **);
7125
7126 #endif /* CONFIG_RT_GROUP_SCHED */
7127 #ifdef CONFIG_CPUMASK_OFFSTACK
7128 for_each_possible_cpu(i) {
7129 per_cpu(load_balance_mask, i) = (void *)ptr;
7130 ptr += cpumask_size();
7131 }
7132 #endif /* CONFIG_CPUMASK_OFFSTACK */
7133 }
7134
7135 init_rt_bandwidth(&def_rt_bandwidth,
7136 global_rt_period(), global_rt_runtime());
7137 init_dl_bandwidth(&def_dl_bandwidth,
7138 global_rt_period(), global_rt_runtime());
7139
7140 #ifdef CONFIG_SMP
7141 init_defrootdomain();
7142 #endif
7143
7144 #ifdef CONFIG_RT_GROUP_SCHED
7145 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7146 global_rt_period(), global_rt_runtime());
7147 #endif /* CONFIG_RT_GROUP_SCHED */
7148
7149 #ifdef CONFIG_CGROUP_SCHED
7150 list_add(&root_task_group.list, &task_groups);
7151 INIT_LIST_HEAD(&root_task_group.children);
7152 INIT_LIST_HEAD(&root_task_group.siblings);
7153 autogroup_init(&init_task);
7154
7155 #endif /* CONFIG_CGROUP_SCHED */
7156
7157 for_each_possible_cpu(i) {
7158 struct rq *rq;
7159
7160 rq = cpu_rq(i);
7161 raw_spin_lock_init(&rq->lock);
7162 rq->nr_running = 0;
7163 rq->calc_load_active = 0;
7164 rq->calc_load_update = jiffies + LOAD_FREQ;
7165 init_cfs_rq(&rq->cfs);
7166 init_rt_rq(&rq->rt, rq);
7167 init_dl_rq(&rq->dl, rq);
7168 #ifdef CONFIG_FAIR_GROUP_SCHED
7169 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7170 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7171 /*
7172 * How much cpu bandwidth does root_task_group get?
7173 *
7174 * In case of task-groups formed thr' the cgroup filesystem, it
7175 * gets 100% of the cpu resources in the system. This overall
7176 * system cpu resource is divided among the tasks of
7177 * root_task_group and its child task-groups in a fair manner,
7178 * based on each entity's (task or task-group's) weight
7179 * (se->load.weight).
7180 *
7181 * In other words, if root_task_group has 10 tasks of weight
7182 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7183 * then A0's share of the cpu resource is:
7184 *
7185 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7186 *
7187 * We achieve this by letting root_task_group's tasks sit
7188 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7189 */
7190 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7191 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7192 #endif /* CONFIG_FAIR_GROUP_SCHED */
7193
7194 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7195 #ifdef CONFIG_RT_GROUP_SCHED
7196 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7197 #endif
7198
7199 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7200 rq->cpu_load[j] = 0;
7201
7202 rq->last_load_update_tick = jiffies;
7203
7204 #ifdef CONFIG_SMP
7205 rq->sd = NULL;
7206 rq->rd = NULL;
7207 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7208 rq->post_schedule = 0;
7209 rq->active_balance = 0;
7210 rq->next_balance = jiffies;
7211 rq->push_cpu = 0;
7212 rq->cpu = i;
7213 rq->online = 0;
7214 rq->idle_stamp = 0;
7215 rq->avg_idle = 2*sysctl_sched_migration_cost;
7216 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7217
7218 INIT_LIST_HEAD(&rq->cfs_tasks);
7219
7220 rq_attach_root(rq, &def_root_domain);
7221 #ifdef CONFIG_NO_HZ_COMMON
7222 rq->nohz_flags = 0;
7223 #endif
7224 #ifdef CONFIG_NO_HZ_FULL
7225 rq->last_sched_tick = 0;
7226 #endif
7227 #endif
7228 init_rq_hrtick(rq);
7229 atomic_set(&rq->nr_iowait, 0);
7230 }
7231
7232 set_load_weight(&init_task);
7233
7234 #ifdef CONFIG_PREEMPT_NOTIFIERS
7235 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7236 #endif
7237
7238 /*
7239 * The boot idle thread does lazy MMU switching as well:
7240 */
7241 atomic_inc(&init_mm.mm_count);
7242 enter_lazy_tlb(&init_mm, current);
7243
7244 /*
7245 * Make us the idle thread. Technically, schedule() should not be
7246 * called from this thread, however somewhere below it might be,
7247 * but because we are the idle thread, we just pick up running again
7248 * when this runqueue becomes "idle".
7249 */
7250 init_idle(current, smp_processor_id());
7251
7252 calc_load_update = jiffies + LOAD_FREQ;
7253
7254 /*
7255 * During early bootup we pretend to be a normal task:
7256 */
7257 current->sched_class = &fair_sched_class;
7258
7259 #ifdef CONFIG_SMP
7260 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7261 /* May be allocated at isolcpus cmdline parse time */
7262 if (cpu_isolated_map == NULL)
7263 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7264 idle_thread_set_boot_cpu();
7265 set_cpu_rq_start_time();
7266 #endif
7267 init_sched_fair_class();
7268
7269 scheduler_running = 1;
7270 }
7271
7272 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7273 static inline int preempt_count_equals(int preempt_offset)
7274 {
7275 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7276
7277 return (nested == preempt_offset);
7278 }
7279
7280 void __might_sleep(const char *file, int line, int preempt_offset)
7281 {
7282 /*
7283 * Blocking primitives will set (and therefore destroy) current->state,
7284 * since we will exit with TASK_RUNNING make sure we enter with it,
7285 * otherwise we will destroy state.
7286 */
7287 if (WARN_ONCE(current->state != TASK_RUNNING,
7288 "do not call blocking ops when !TASK_RUNNING; "
7289 "state=%lx set at [<%p>] %pS\n",
7290 current->state,
7291 (void *)current->task_state_change,
7292 (void *)current->task_state_change))
7293 __set_current_state(TASK_RUNNING);
7294
7295 ___might_sleep(file, line, preempt_offset);
7296 }
7297 EXPORT_SYMBOL(__might_sleep);
7298
7299 void ___might_sleep(const char *file, int line, int preempt_offset)
7300 {
7301 static unsigned long prev_jiffy; /* ratelimiting */
7302
7303 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7304 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7305 !is_idle_task(current)) ||
7306 system_state != SYSTEM_RUNNING || oops_in_progress)
7307 return;
7308 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7309 return;
7310 prev_jiffy = jiffies;
7311
7312 printk(KERN_ERR
7313 "BUG: sleeping function called from invalid context at %s:%d\n",
7314 file, line);
7315 printk(KERN_ERR
7316 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7317 in_atomic(), irqs_disabled(),
7318 current->pid, current->comm);
7319
7320 debug_show_held_locks(current);
7321 if (irqs_disabled())
7322 print_irqtrace_events(current);
7323 #ifdef CONFIG_DEBUG_PREEMPT
7324 if (!preempt_count_equals(preempt_offset)) {
7325 pr_err("Preemption disabled at:");
7326 print_ip_sym(current->preempt_disable_ip);
7327 pr_cont("\n");
7328 }
7329 #endif
7330 dump_stack();
7331 }
7332 EXPORT_SYMBOL(___might_sleep);
7333 #endif
7334
7335 #ifdef CONFIG_MAGIC_SYSRQ
7336 static void normalize_task(struct rq *rq, struct task_struct *p)
7337 {
7338 const struct sched_class *prev_class = p->sched_class;
7339 struct sched_attr attr = {
7340 .sched_policy = SCHED_NORMAL,
7341 };
7342 int old_prio = p->prio;
7343 int queued;
7344
7345 queued = task_on_rq_queued(p);
7346 if (queued)
7347 dequeue_task(rq, p, 0);
7348 __setscheduler(rq, p, &attr);
7349 if (queued) {
7350 enqueue_task(rq, p, 0);
7351 resched_curr(rq);
7352 }
7353
7354 check_class_changed(rq, p, prev_class, old_prio);
7355 }
7356
7357 void normalize_rt_tasks(void)
7358 {
7359 struct task_struct *g, *p;
7360 unsigned long flags;
7361 struct rq *rq;
7362
7363 read_lock(&tasklist_lock);
7364 for_each_process_thread(g, p) {
7365 /*
7366 * Only normalize user tasks:
7367 */
7368 if (p->flags & PF_KTHREAD)
7369 continue;
7370
7371 p->se.exec_start = 0;
7372 #ifdef CONFIG_SCHEDSTATS
7373 p->se.statistics.wait_start = 0;
7374 p->se.statistics.sleep_start = 0;
7375 p->se.statistics.block_start = 0;
7376 #endif
7377
7378 if (!dl_task(p) && !rt_task(p)) {
7379 /*
7380 * Renice negative nice level userspace
7381 * tasks back to 0:
7382 */
7383 if (task_nice(p) < 0)
7384 set_user_nice(p, 0);
7385 continue;
7386 }
7387
7388 rq = task_rq_lock(p, &flags);
7389 normalize_task(rq, p);
7390 task_rq_unlock(rq, p, &flags);
7391 }
7392 read_unlock(&tasklist_lock);
7393 }
7394
7395 #endif /* CONFIG_MAGIC_SYSRQ */
7396
7397 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7398 /*
7399 * These functions are only useful for the IA64 MCA handling, or kdb.
7400 *
7401 * They can only be called when the whole system has been
7402 * stopped - every CPU needs to be quiescent, and no scheduling
7403 * activity can take place. Using them for anything else would
7404 * be a serious bug, and as a result, they aren't even visible
7405 * under any other configuration.
7406 */
7407
7408 /**
7409 * curr_task - return the current task for a given cpu.
7410 * @cpu: the processor in question.
7411 *
7412 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7413 *
7414 * Return: The current task for @cpu.
7415 */
7416 struct task_struct *curr_task(int cpu)
7417 {
7418 return cpu_curr(cpu);
7419 }
7420
7421 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7422
7423 #ifdef CONFIG_IA64
7424 /**
7425 * set_curr_task - set the current task for a given cpu.
7426 * @cpu: the processor in question.
7427 * @p: the task pointer to set.
7428 *
7429 * Description: This function must only be used when non-maskable interrupts
7430 * are serviced on a separate stack. It allows the architecture to switch the
7431 * notion of the current task on a cpu in a non-blocking manner. This function
7432 * must be called with all CPU's synchronized, and interrupts disabled, the
7433 * and caller must save the original value of the current task (see
7434 * curr_task() above) and restore that value before reenabling interrupts and
7435 * re-starting the system.
7436 *
7437 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7438 */
7439 void set_curr_task(int cpu, struct task_struct *p)
7440 {
7441 cpu_curr(cpu) = p;
7442 }
7443
7444 #endif
7445
7446 #ifdef CONFIG_CGROUP_SCHED
7447 /* task_group_lock serializes the addition/removal of task groups */
7448 static DEFINE_SPINLOCK(task_group_lock);
7449
7450 static void free_sched_group(struct task_group *tg)
7451 {
7452 free_fair_sched_group(tg);
7453 free_rt_sched_group(tg);
7454 autogroup_free(tg);
7455 kfree(tg);
7456 }
7457
7458 /* allocate runqueue etc for a new task group */
7459 struct task_group *sched_create_group(struct task_group *parent)
7460 {
7461 struct task_group *tg;
7462
7463 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7464 if (!tg)
7465 return ERR_PTR(-ENOMEM);
7466
7467 if (!alloc_fair_sched_group(tg, parent))
7468 goto err;
7469
7470 if (!alloc_rt_sched_group(tg, parent))
7471 goto err;
7472
7473 return tg;
7474
7475 err:
7476 free_sched_group(tg);
7477 return ERR_PTR(-ENOMEM);
7478 }
7479
7480 void sched_online_group(struct task_group *tg, struct task_group *parent)
7481 {
7482 unsigned long flags;
7483
7484 spin_lock_irqsave(&task_group_lock, flags);
7485 list_add_rcu(&tg->list, &task_groups);
7486
7487 WARN_ON(!parent); /* root should already exist */
7488
7489 tg->parent = parent;
7490 INIT_LIST_HEAD(&tg->children);
7491 list_add_rcu(&tg->siblings, &parent->children);
7492 spin_unlock_irqrestore(&task_group_lock, flags);
7493 }
7494
7495 /* rcu callback to free various structures associated with a task group */
7496 static void free_sched_group_rcu(struct rcu_head *rhp)
7497 {
7498 /* now it should be safe to free those cfs_rqs */
7499 free_sched_group(container_of(rhp, struct task_group, rcu));
7500 }
7501
7502 /* Destroy runqueue etc associated with a task group */
7503 void sched_destroy_group(struct task_group *tg)
7504 {
7505 /* wait for possible concurrent references to cfs_rqs complete */
7506 call_rcu(&tg->rcu, free_sched_group_rcu);
7507 }
7508
7509 void sched_offline_group(struct task_group *tg)
7510 {
7511 unsigned long flags;
7512 int i;
7513
7514 /* end participation in shares distribution */
7515 for_each_possible_cpu(i)
7516 unregister_fair_sched_group(tg, i);
7517
7518 spin_lock_irqsave(&task_group_lock, flags);
7519 list_del_rcu(&tg->list);
7520 list_del_rcu(&tg->siblings);
7521 spin_unlock_irqrestore(&task_group_lock, flags);
7522 }
7523
7524 /* change task's runqueue when it moves between groups.
7525 * The caller of this function should have put the task in its new group
7526 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7527 * reflect its new group.
7528 */
7529 void sched_move_task(struct task_struct *tsk)
7530 {
7531 struct task_group *tg;
7532 int queued, running;
7533 unsigned long flags;
7534 struct rq *rq;
7535
7536 rq = task_rq_lock(tsk, &flags);
7537
7538 running = task_current(rq, tsk);
7539 queued = task_on_rq_queued(tsk);
7540
7541 if (queued)
7542 dequeue_task(rq, tsk, 0);
7543 if (unlikely(running))
7544 put_prev_task(rq, tsk);
7545
7546 /*
7547 * All callers are synchronized by task_rq_lock(); we do not use RCU
7548 * which is pointless here. Thus, we pass "true" to task_css_check()
7549 * to prevent lockdep warnings.
7550 */
7551 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7552 struct task_group, css);
7553 tg = autogroup_task_group(tsk, tg);
7554 tsk->sched_task_group = tg;
7555
7556 #ifdef CONFIG_FAIR_GROUP_SCHED
7557 if (tsk->sched_class->task_move_group)
7558 tsk->sched_class->task_move_group(tsk, queued);
7559 else
7560 #endif
7561 set_task_rq(tsk, task_cpu(tsk));
7562
7563 if (unlikely(running))
7564 tsk->sched_class->set_curr_task(rq);
7565 if (queued)
7566 enqueue_task(rq, tsk, 0);
7567
7568 task_rq_unlock(rq, tsk, &flags);
7569 }
7570 #endif /* CONFIG_CGROUP_SCHED */
7571
7572 #ifdef CONFIG_RT_GROUP_SCHED
7573 /*
7574 * Ensure that the real time constraints are schedulable.
7575 */
7576 static DEFINE_MUTEX(rt_constraints_mutex);
7577
7578 /* Must be called with tasklist_lock held */
7579 static inline int tg_has_rt_tasks(struct task_group *tg)
7580 {
7581 struct task_struct *g, *p;
7582
7583 for_each_process_thread(g, p) {
7584 if (rt_task(p) && task_group(p) == tg)
7585 return 1;
7586 }
7587
7588 return 0;
7589 }
7590
7591 struct rt_schedulable_data {
7592 struct task_group *tg;
7593 u64 rt_period;
7594 u64 rt_runtime;
7595 };
7596
7597 static int tg_rt_schedulable(struct task_group *tg, void *data)
7598 {
7599 struct rt_schedulable_data *d = data;
7600 struct task_group *child;
7601 unsigned long total, sum = 0;
7602 u64 period, runtime;
7603
7604 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7605 runtime = tg->rt_bandwidth.rt_runtime;
7606
7607 if (tg == d->tg) {
7608 period = d->rt_period;
7609 runtime = d->rt_runtime;
7610 }
7611
7612 /*
7613 * Cannot have more runtime than the period.
7614 */
7615 if (runtime > period && runtime != RUNTIME_INF)
7616 return -EINVAL;
7617
7618 /*
7619 * Ensure we don't starve existing RT tasks.
7620 */
7621 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7622 return -EBUSY;
7623
7624 total = to_ratio(period, runtime);
7625
7626 /*
7627 * Nobody can have more than the global setting allows.
7628 */
7629 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7630 return -EINVAL;
7631
7632 /*
7633 * The sum of our children's runtime should not exceed our own.
7634 */
7635 list_for_each_entry_rcu(child, &tg->children, siblings) {
7636 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7637 runtime = child->rt_bandwidth.rt_runtime;
7638
7639 if (child == d->tg) {
7640 period = d->rt_period;
7641 runtime = d->rt_runtime;
7642 }
7643
7644 sum += to_ratio(period, runtime);
7645 }
7646
7647 if (sum > total)
7648 return -EINVAL;
7649
7650 return 0;
7651 }
7652
7653 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7654 {
7655 int ret;
7656
7657 struct rt_schedulable_data data = {
7658 .tg = tg,
7659 .rt_period = period,
7660 .rt_runtime = runtime,
7661 };
7662
7663 rcu_read_lock();
7664 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7665 rcu_read_unlock();
7666
7667 return ret;
7668 }
7669
7670 static int tg_set_rt_bandwidth(struct task_group *tg,
7671 u64 rt_period, u64 rt_runtime)
7672 {
7673 int i, err = 0;
7674
7675 mutex_lock(&rt_constraints_mutex);
7676 read_lock(&tasklist_lock);
7677 err = __rt_schedulable(tg, rt_period, rt_runtime);
7678 if (err)
7679 goto unlock;
7680
7681 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7682 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7683 tg->rt_bandwidth.rt_runtime = rt_runtime;
7684
7685 for_each_possible_cpu(i) {
7686 struct rt_rq *rt_rq = tg->rt_rq[i];
7687
7688 raw_spin_lock(&rt_rq->rt_runtime_lock);
7689 rt_rq->rt_runtime = rt_runtime;
7690 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7691 }
7692 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7693 unlock:
7694 read_unlock(&tasklist_lock);
7695 mutex_unlock(&rt_constraints_mutex);
7696
7697 return err;
7698 }
7699
7700 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7701 {
7702 u64 rt_runtime, rt_period;
7703
7704 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7705 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7706 if (rt_runtime_us < 0)
7707 rt_runtime = RUNTIME_INF;
7708
7709 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7710 }
7711
7712 static long sched_group_rt_runtime(struct task_group *tg)
7713 {
7714 u64 rt_runtime_us;
7715
7716 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7717 return -1;
7718
7719 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7720 do_div(rt_runtime_us, NSEC_PER_USEC);
7721 return rt_runtime_us;
7722 }
7723
7724 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7725 {
7726 u64 rt_runtime, rt_period;
7727
7728 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7729 rt_runtime = tg->rt_bandwidth.rt_runtime;
7730
7731 if (rt_period == 0)
7732 return -EINVAL;
7733
7734 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7735 }
7736
7737 static long sched_group_rt_period(struct task_group *tg)
7738 {
7739 u64 rt_period_us;
7740
7741 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7742 do_div(rt_period_us, NSEC_PER_USEC);
7743 return rt_period_us;
7744 }
7745 #endif /* CONFIG_RT_GROUP_SCHED */
7746
7747 #ifdef CONFIG_RT_GROUP_SCHED
7748 static int sched_rt_global_constraints(void)
7749 {
7750 int ret = 0;
7751
7752 mutex_lock(&rt_constraints_mutex);
7753 read_lock(&tasklist_lock);
7754 ret = __rt_schedulable(NULL, 0, 0);
7755 read_unlock(&tasklist_lock);
7756 mutex_unlock(&rt_constraints_mutex);
7757
7758 return ret;
7759 }
7760
7761 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7762 {
7763 /* Don't accept realtime tasks when there is no way for them to run */
7764 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7765 return 0;
7766
7767 return 1;
7768 }
7769
7770 #else /* !CONFIG_RT_GROUP_SCHED */
7771 static int sched_rt_global_constraints(void)
7772 {
7773 unsigned long flags;
7774 int i, ret = 0;
7775
7776 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7777 for_each_possible_cpu(i) {
7778 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7779
7780 raw_spin_lock(&rt_rq->rt_runtime_lock);
7781 rt_rq->rt_runtime = global_rt_runtime();
7782 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7783 }
7784 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7785
7786 return ret;
7787 }
7788 #endif /* CONFIG_RT_GROUP_SCHED */
7789
7790 static int sched_dl_global_constraints(void)
7791 {
7792 u64 runtime = global_rt_runtime();
7793 u64 period = global_rt_period();
7794 u64 new_bw = to_ratio(period, runtime);
7795 struct dl_bw *dl_b;
7796 int cpu, ret = 0;
7797 unsigned long flags;
7798
7799 /*
7800 * Here we want to check the bandwidth not being set to some
7801 * value smaller than the currently allocated bandwidth in
7802 * any of the root_domains.
7803 *
7804 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7805 * cycling on root_domains... Discussion on different/better
7806 * solutions is welcome!
7807 */
7808 for_each_possible_cpu(cpu) {
7809 rcu_read_lock_sched();
7810 dl_b = dl_bw_of(cpu);
7811
7812 raw_spin_lock_irqsave(&dl_b->lock, flags);
7813 if (new_bw < dl_b->total_bw)
7814 ret = -EBUSY;
7815 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7816
7817 rcu_read_unlock_sched();
7818
7819 if (ret)
7820 break;
7821 }
7822
7823 return ret;
7824 }
7825
7826 static void sched_dl_do_global(void)
7827 {
7828 u64 new_bw = -1;
7829 struct dl_bw *dl_b;
7830 int cpu;
7831 unsigned long flags;
7832
7833 def_dl_bandwidth.dl_period = global_rt_period();
7834 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7835
7836 if (global_rt_runtime() != RUNTIME_INF)
7837 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7838
7839 /*
7840 * FIXME: As above...
7841 */
7842 for_each_possible_cpu(cpu) {
7843 rcu_read_lock_sched();
7844 dl_b = dl_bw_of(cpu);
7845
7846 raw_spin_lock_irqsave(&dl_b->lock, flags);
7847 dl_b->bw = new_bw;
7848 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7849
7850 rcu_read_unlock_sched();
7851 }
7852 }
7853
7854 static int sched_rt_global_validate(void)
7855 {
7856 if (sysctl_sched_rt_period <= 0)
7857 return -EINVAL;
7858
7859 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7860 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7861 return -EINVAL;
7862
7863 return 0;
7864 }
7865
7866 static void sched_rt_do_global(void)
7867 {
7868 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7869 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7870 }
7871
7872 int sched_rt_handler(struct ctl_table *table, int write,
7873 void __user *buffer, size_t *lenp,
7874 loff_t *ppos)
7875 {
7876 int old_period, old_runtime;
7877 static DEFINE_MUTEX(mutex);
7878 int ret;
7879
7880 mutex_lock(&mutex);
7881 old_period = sysctl_sched_rt_period;
7882 old_runtime = sysctl_sched_rt_runtime;
7883
7884 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7885
7886 if (!ret && write) {
7887 ret = sched_rt_global_validate();
7888 if (ret)
7889 goto undo;
7890
7891 ret = sched_rt_global_constraints();
7892 if (ret)
7893 goto undo;
7894
7895 ret = sched_dl_global_constraints();
7896 if (ret)
7897 goto undo;
7898
7899 sched_rt_do_global();
7900 sched_dl_do_global();
7901 }
7902 if (0) {
7903 undo:
7904 sysctl_sched_rt_period = old_period;
7905 sysctl_sched_rt_runtime = old_runtime;
7906 }
7907 mutex_unlock(&mutex);
7908
7909 return ret;
7910 }
7911
7912 int sched_rr_handler(struct ctl_table *table, int write,
7913 void __user *buffer, size_t *lenp,
7914 loff_t *ppos)
7915 {
7916 int ret;
7917 static DEFINE_MUTEX(mutex);
7918
7919 mutex_lock(&mutex);
7920 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7921 /* make sure that internally we keep jiffies */
7922 /* also, writing zero resets timeslice to default */
7923 if (!ret && write) {
7924 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7925 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7926 }
7927 mutex_unlock(&mutex);
7928 return ret;
7929 }
7930
7931 #ifdef CONFIG_CGROUP_SCHED
7932
7933 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7934 {
7935 return css ? container_of(css, struct task_group, css) : NULL;
7936 }
7937
7938 static struct cgroup_subsys_state *
7939 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7940 {
7941 struct task_group *parent = css_tg(parent_css);
7942 struct task_group *tg;
7943
7944 if (!parent) {
7945 /* This is early initialization for the top cgroup */
7946 return &root_task_group.css;
7947 }
7948
7949 tg = sched_create_group(parent);
7950 if (IS_ERR(tg))
7951 return ERR_PTR(-ENOMEM);
7952
7953 return &tg->css;
7954 }
7955
7956 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7957 {
7958 struct task_group *tg = css_tg(css);
7959 struct task_group *parent = css_tg(css->parent);
7960
7961 if (parent)
7962 sched_online_group(tg, parent);
7963 return 0;
7964 }
7965
7966 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7967 {
7968 struct task_group *tg = css_tg(css);
7969
7970 sched_destroy_group(tg);
7971 }
7972
7973 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7974 {
7975 struct task_group *tg = css_tg(css);
7976
7977 sched_offline_group(tg);
7978 }
7979
7980 static void cpu_cgroup_fork(struct task_struct *task)
7981 {
7982 sched_move_task(task);
7983 }
7984
7985 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7986 struct cgroup_taskset *tset)
7987 {
7988 struct task_struct *task;
7989
7990 cgroup_taskset_for_each(task, tset) {
7991 #ifdef CONFIG_RT_GROUP_SCHED
7992 if (!sched_rt_can_attach(css_tg(css), task))
7993 return -EINVAL;
7994 #else
7995 /* We don't support RT-tasks being in separate groups */
7996 if (task->sched_class != &fair_sched_class)
7997 return -EINVAL;
7998 #endif
7999 }
8000 return 0;
8001 }
8002
8003 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8004 struct cgroup_taskset *tset)
8005 {
8006 struct task_struct *task;
8007
8008 cgroup_taskset_for_each(task, tset)
8009 sched_move_task(task);
8010 }
8011
8012 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8013 struct cgroup_subsys_state *old_css,
8014 struct task_struct *task)
8015 {
8016 /*
8017 * cgroup_exit() is called in the copy_process() failure path.
8018 * Ignore this case since the task hasn't ran yet, this avoids
8019 * trying to poke a half freed task state from generic code.
8020 */
8021 if (!(task->flags & PF_EXITING))
8022 return;
8023
8024 sched_move_task(task);
8025 }
8026
8027 #ifdef CONFIG_FAIR_GROUP_SCHED
8028 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8029 struct cftype *cftype, u64 shareval)
8030 {
8031 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8032 }
8033
8034 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8035 struct cftype *cft)
8036 {
8037 struct task_group *tg = css_tg(css);
8038
8039 return (u64) scale_load_down(tg->shares);
8040 }
8041
8042 #ifdef CONFIG_CFS_BANDWIDTH
8043 static DEFINE_MUTEX(cfs_constraints_mutex);
8044
8045 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8046 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8047
8048 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8049
8050 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8051 {
8052 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8053 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8054
8055 if (tg == &root_task_group)
8056 return -EINVAL;
8057
8058 /*
8059 * Ensure we have at some amount of bandwidth every period. This is
8060 * to prevent reaching a state of large arrears when throttled via
8061 * entity_tick() resulting in prolonged exit starvation.
8062 */
8063 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8064 return -EINVAL;
8065
8066 /*
8067 * Likewise, bound things on the otherside by preventing insane quota
8068 * periods. This also allows us to normalize in computing quota
8069 * feasibility.
8070 */
8071 if (period > max_cfs_quota_period)
8072 return -EINVAL;
8073
8074 /*
8075 * Prevent race between setting of cfs_rq->runtime_enabled and
8076 * unthrottle_offline_cfs_rqs().
8077 */
8078 get_online_cpus();
8079 mutex_lock(&cfs_constraints_mutex);
8080 ret = __cfs_schedulable(tg, period, quota);
8081 if (ret)
8082 goto out_unlock;
8083
8084 runtime_enabled = quota != RUNTIME_INF;
8085 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8086 /*
8087 * If we need to toggle cfs_bandwidth_used, off->on must occur
8088 * before making related changes, and on->off must occur afterwards
8089 */
8090 if (runtime_enabled && !runtime_was_enabled)
8091 cfs_bandwidth_usage_inc();
8092 raw_spin_lock_irq(&cfs_b->lock);
8093 cfs_b->period = ns_to_ktime(period);
8094 cfs_b->quota = quota;
8095
8096 __refill_cfs_bandwidth_runtime(cfs_b);
8097 /* restart the period timer (if active) to handle new period expiry */
8098 if (runtime_enabled && cfs_b->timer_active) {
8099 /* force a reprogram */
8100 __start_cfs_bandwidth(cfs_b, true);
8101 }
8102 raw_spin_unlock_irq(&cfs_b->lock);
8103
8104 for_each_online_cpu(i) {
8105 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8106 struct rq *rq = cfs_rq->rq;
8107
8108 raw_spin_lock_irq(&rq->lock);
8109 cfs_rq->runtime_enabled = runtime_enabled;
8110 cfs_rq->runtime_remaining = 0;
8111
8112 if (cfs_rq->throttled)
8113 unthrottle_cfs_rq(cfs_rq);
8114 raw_spin_unlock_irq(&rq->lock);
8115 }
8116 if (runtime_was_enabled && !runtime_enabled)
8117 cfs_bandwidth_usage_dec();
8118 out_unlock:
8119 mutex_unlock(&cfs_constraints_mutex);
8120 put_online_cpus();
8121
8122 return ret;
8123 }
8124
8125 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8126 {
8127 u64 quota, period;
8128
8129 period = ktime_to_ns(tg->cfs_bandwidth.period);
8130 if (cfs_quota_us < 0)
8131 quota = RUNTIME_INF;
8132 else
8133 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8134
8135 return tg_set_cfs_bandwidth(tg, period, quota);
8136 }
8137
8138 long tg_get_cfs_quota(struct task_group *tg)
8139 {
8140 u64 quota_us;
8141
8142 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8143 return -1;
8144
8145 quota_us = tg->cfs_bandwidth.quota;
8146 do_div(quota_us, NSEC_PER_USEC);
8147
8148 return quota_us;
8149 }
8150
8151 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8152 {
8153 u64 quota, period;
8154
8155 period = (u64)cfs_period_us * NSEC_PER_USEC;
8156 quota = tg->cfs_bandwidth.quota;
8157
8158 return tg_set_cfs_bandwidth(tg, period, quota);
8159 }
8160
8161 long tg_get_cfs_period(struct task_group *tg)
8162 {
8163 u64 cfs_period_us;
8164
8165 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8166 do_div(cfs_period_us, NSEC_PER_USEC);
8167
8168 return cfs_period_us;
8169 }
8170
8171 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8172 struct cftype *cft)
8173 {
8174 return tg_get_cfs_quota(css_tg(css));
8175 }
8176
8177 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8178 struct cftype *cftype, s64 cfs_quota_us)
8179 {
8180 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8181 }
8182
8183 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8184 struct cftype *cft)
8185 {
8186 return tg_get_cfs_period(css_tg(css));
8187 }
8188
8189 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8190 struct cftype *cftype, u64 cfs_period_us)
8191 {
8192 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8193 }
8194
8195 struct cfs_schedulable_data {
8196 struct task_group *tg;
8197 u64 period, quota;
8198 };
8199
8200 /*
8201 * normalize group quota/period to be quota/max_period
8202 * note: units are usecs
8203 */
8204 static u64 normalize_cfs_quota(struct task_group *tg,
8205 struct cfs_schedulable_data *d)
8206 {
8207 u64 quota, period;
8208
8209 if (tg == d->tg) {
8210 period = d->period;
8211 quota = d->quota;
8212 } else {
8213 period = tg_get_cfs_period(tg);
8214 quota = tg_get_cfs_quota(tg);
8215 }
8216
8217 /* note: these should typically be equivalent */
8218 if (quota == RUNTIME_INF || quota == -1)
8219 return RUNTIME_INF;
8220
8221 return to_ratio(period, quota);
8222 }
8223
8224 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8225 {
8226 struct cfs_schedulable_data *d = data;
8227 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8228 s64 quota = 0, parent_quota = -1;
8229
8230 if (!tg->parent) {
8231 quota = RUNTIME_INF;
8232 } else {
8233 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8234
8235 quota = normalize_cfs_quota(tg, d);
8236 parent_quota = parent_b->hierarchical_quota;
8237
8238 /*
8239 * ensure max(child_quota) <= parent_quota, inherit when no
8240 * limit is set
8241 */
8242 if (quota == RUNTIME_INF)
8243 quota = parent_quota;
8244 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8245 return -EINVAL;
8246 }
8247 cfs_b->hierarchical_quota = quota;
8248
8249 return 0;
8250 }
8251
8252 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8253 {
8254 int ret;
8255 struct cfs_schedulable_data data = {
8256 .tg = tg,
8257 .period = period,
8258 .quota = quota,
8259 };
8260
8261 if (quota != RUNTIME_INF) {
8262 do_div(data.period, NSEC_PER_USEC);
8263 do_div(data.quota, NSEC_PER_USEC);
8264 }
8265
8266 rcu_read_lock();
8267 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8268 rcu_read_unlock();
8269
8270 return ret;
8271 }
8272
8273 static int cpu_stats_show(struct seq_file *sf, void *v)
8274 {
8275 struct task_group *tg = css_tg(seq_css(sf));
8276 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8277
8278 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8279 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8280 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8281
8282 return 0;
8283 }
8284 #endif /* CONFIG_CFS_BANDWIDTH */
8285 #endif /* CONFIG_FAIR_GROUP_SCHED */
8286
8287 #ifdef CONFIG_RT_GROUP_SCHED
8288 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8289 struct cftype *cft, s64 val)
8290 {
8291 return sched_group_set_rt_runtime(css_tg(css), val);
8292 }
8293
8294 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8295 struct cftype *cft)
8296 {
8297 return sched_group_rt_runtime(css_tg(css));
8298 }
8299
8300 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8301 struct cftype *cftype, u64 rt_period_us)
8302 {
8303 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8304 }
8305
8306 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8307 struct cftype *cft)
8308 {
8309 return sched_group_rt_period(css_tg(css));
8310 }
8311 #endif /* CONFIG_RT_GROUP_SCHED */
8312
8313 static struct cftype cpu_files[] = {
8314 #ifdef CONFIG_FAIR_GROUP_SCHED
8315 {
8316 .name = "shares",
8317 .read_u64 = cpu_shares_read_u64,
8318 .write_u64 = cpu_shares_write_u64,
8319 },
8320 #endif
8321 #ifdef CONFIG_CFS_BANDWIDTH
8322 {
8323 .name = "cfs_quota_us",
8324 .read_s64 = cpu_cfs_quota_read_s64,
8325 .write_s64 = cpu_cfs_quota_write_s64,
8326 },
8327 {
8328 .name = "cfs_period_us",
8329 .read_u64 = cpu_cfs_period_read_u64,
8330 .write_u64 = cpu_cfs_period_write_u64,
8331 },
8332 {
8333 .name = "stat",
8334 .seq_show = cpu_stats_show,
8335 },
8336 #endif
8337 #ifdef CONFIG_RT_GROUP_SCHED
8338 {
8339 .name = "rt_runtime_us",
8340 .read_s64 = cpu_rt_runtime_read,
8341 .write_s64 = cpu_rt_runtime_write,
8342 },
8343 {
8344 .name = "rt_period_us",
8345 .read_u64 = cpu_rt_period_read_uint,
8346 .write_u64 = cpu_rt_period_write_uint,
8347 },
8348 #endif
8349 { } /* terminate */
8350 };
8351
8352 struct cgroup_subsys cpu_cgrp_subsys = {
8353 .css_alloc = cpu_cgroup_css_alloc,
8354 .css_free = cpu_cgroup_css_free,
8355 .css_online = cpu_cgroup_css_online,
8356 .css_offline = cpu_cgroup_css_offline,
8357 .fork = cpu_cgroup_fork,
8358 .can_attach = cpu_cgroup_can_attach,
8359 .attach = cpu_cgroup_attach,
8360 .exit = cpu_cgroup_exit,
8361 .legacy_cftypes = cpu_files,
8362 .early_init = 1,
8363 };
8364
8365 #endif /* CONFIG_CGROUP_SCHED */
8366
8367 void dump_cpu_task(int cpu)
8368 {
8369 pr_info("Task dump for CPU %d:\n", cpu);
8370 sched_show_task(cpu_curr(cpu));
8371 }
This page took 0.341675 seconds and 5 git commands to generate.