Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 DEFINE_MUTEX(sched_domains_mutex);
93 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
94
95 static void update_rq_clock_task(struct rq *rq, s64 delta);
96
97 void update_rq_clock(struct rq *rq)
98 {
99 s64 delta;
100
101 lockdep_assert_held(&rq->lock);
102
103 if (rq->clock_skip_update & RQCF_ACT_SKIP)
104 return;
105
106 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
107 if (delta < 0)
108 return;
109 rq->clock += delta;
110 update_rq_clock_task(rq, delta);
111 }
112
113 /*
114 * Debugging: various feature bits
115 */
116
117 #define SCHED_FEAT(name, enabled) \
118 (1UL << __SCHED_FEAT_##name) * enabled |
119
120 const_debug unsigned int sysctl_sched_features =
121 #include "features.h"
122 0;
123
124 #undef SCHED_FEAT
125
126 /*
127 * Number of tasks to iterate in a single balance run.
128 * Limited because this is done with IRQs disabled.
129 */
130 const_debug unsigned int sysctl_sched_nr_migrate = 32;
131
132 /*
133 * period over which we average the RT time consumption, measured
134 * in ms.
135 *
136 * default: 1s
137 */
138 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
139
140 /*
141 * period over which we measure -rt task cpu usage in us.
142 * default: 1s
143 */
144 unsigned int sysctl_sched_rt_period = 1000000;
145
146 __read_mostly int scheduler_running;
147
148 /*
149 * part of the period that we allow rt tasks to run in us.
150 * default: 0.95s
151 */
152 int sysctl_sched_rt_runtime = 950000;
153
154 /* cpus with isolated domains */
155 cpumask_var_t cpu_isolated_map;
156
157 /*
158 * this_rq_lock - lock this runqueue and disable interrupts.
159 */
160 static struct rq *this_rq_lock(void)
161 __acquires(rq->lock)
162 {
163 struct rq *rq;
164
165 local_irq_disable();
166 rq = this_rq();
167 raw_spin_lock(&rq->lock);
168
169 return rq;
170 }
171
172 #ifdef CONFIG_SCHED_HRTICK
173 /*
174 * Use HR-timers to deliver accurate preemption points.
175 */
176
177 static void hrtick_clear(struct rq *rq)
178 {
179 if (hrtimer_active(&rq->hrtick_timer))
180 hrtimer_cancel(&rq->hrtick_timer);
181 }
182
183 /*
184 * High-resolution timer tick.
185 * Runs from hardirq context with interrupts disabled.
186 */
187 static enum hrtimer_restart hrtick(struct hrtimer *timer)
188 {
189 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
190
191 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
192
193 raw_spin_lock(&rq->lock);
194 update_rq_clock(rq);
195 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
196 raw_spin_unlock(&rq->lock);
197
198 return HRTIMER_NORESTART;
199 }
200
201 #ifdef CONFIG_SMP
202
203 static void __hrtick_restart(struct rq *rq)
204 {
205 struct hrtimer *timer = &rq->hrtick_timer;
206
207 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
208 }
209
210 /*
211 * called from hardirq (IPI) context
212 */
213 static void __hrtick_start(void *arg)
214 {
215 struct rq *rq = arg;
216
217 raw_spin_lock(&rq->lock);
218 __hrtick_restart(rq);
219 rq->hrtick_csd_pending = 0;
220 raw_spin_unlock(&rq->lock);
221 }
222
223 /*
224 * Called to set the hrtick timer state.
225 *
226 * called with rq->lock held and irqs disabled
227 */
228 void hrtick_start(struct rq *rq, u64 delay)
229 {
230 struct hrtimer *timer = &rq->hrtick_timer;
231 ktime_t time;
232 s64 delta;
233
234 /*
235 * Don't schedule slices shorter than 10000ns, that just
236 * doesn't make sense and can cause timer DoS.
237 */
238 delta = max_t(s64, delay, 10000LL);
239 time = ktime_add_ns(timer->base->get_time(), delta);
240
241 hrtimer_set_expires(timer, time);
242
243 if (rq == this_rq()) {
244 __hrtick_restart(rq);
245 } else if (!rq->hrtick_csd_pending) {
246 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
247 rq->hrtick_csd_pending = 1;
248 }
249 }
250
251 static int
252 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
253 {
254 int cpu = (int)(long)hcpu;
255
256 switch (action) {
257 case CPU_UP_CANCELED:
258 case CPU_UP_CANCELED_FROZEN:
259 case CPU_DOWN_PREPARE:
260 case CPU_DOWN_PREPARE_FROZEN:
261 case CPU_DEAD:
262 case CPU_DEAD_FROZEN:
263 hrtick_clear(cpu_rq(cpu));
264 return NOTIFY_OK;
265 }
266
267 return NOTIFY_DONE;
268 }
269
270 static __init void init_hrtick(void)
271 {
272 hotcpu_notifier(hotplug_hrtick, 0);
273 }
274 #else
275 /*
276 * Called to set the hrtick timer state.
277 *
278 * called with rq->lock held and irqs disabled
279 */
280 void hrtick_start(struct rq *rq, u64 delay)
281 {
282 /*
283 * Don't schedule slices shorter than 10000ns, that just
284 * doesn't make sense. Rely on vruntime for fairness.
285 */
286 delay = max_t(u64, delay, 10000LL);
287 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
288 HRTIMER_MODE_REL_PINNED);
289 }
290
291 static inline void init_hrtick(void)
292 {
293 }
294 #endif /* CONFIG_SMP */
295
296 static void init_rq_hrtick(struct rq *rq)
297 {
298 #ifdef CONFIG_SMP
299 rq->hrtick_csd_pending = 0;
300
301 rq->hrtick_csd.flags = 0;
302 rq->hrtick_csd.func = __hrtick_start;
303 rq->hrtick_csd.info = rq;
304 #endif
305
306 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
307 rq->hrtick_timer.function = hrtick;
308 }
309 #else /* CONFIG_SCHED_HRTICK */
310 static inline void hrtick_clear(struct rq *rq)
311 {
312 }
313
314 static inline void init_rq_hrtick(struct rq *rq)
315 {
316 }
317
318 static inline void init_hrtick(void)
319 {
320 }
321 #endif /* CONFIG_SCHED_HRTICK */
322
323 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
324 /*
325 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
326 * this avoids any races wrt polling state changes and thereby avoids
327 * spurious IPIs.
328 */
329 static bool set_nr_and_not_polling(struct task_struct *p)
330 {
331 struct thread_info *ti = task_thread_info(p);
332 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
333 }
334
335 /*
336 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
337 *
338 * If this returns true, then the idle task promises to call
339 * sched_ttwu_pending() and reschedule soon.
340 */
341 static bool set_nr_if_polling(struct task_struct *p)
342 {
343 struct thread_info *ti = task_thread_info(p);
344 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
345
346 for (;;) {
347 if (!(val & _TIF_POLLING_NRFLAG))
348 return false;
349 if (val & _TIF_NEED_RESCHED)
350 return true;
351 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
352 if (old == val)
353 break;
354 val = old;
355 }
356 return true;
357 }
358
359 #else
360 static bool set_nr_and_not_polling(struct task_struct *p)
361 {
362 set_tsk_need_resched(p);
363 return true;
364 }
365
366 #ifdef CONFIG_SMP
367 static bool set_nr_if_polling(struct task_struct *p)
368 {
369 return false;
370 }
371 #endif
372 #endif
373
374 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
375 {
376 struct wake_q_node *node = &task->wake_q;
377
378 /*
379 * Atomically grab the task, if ->wake_q is !nil already it means
380 * its already queued (either by us or someone else) and will get the
381 * wakeup due to that.
382 *
383 * This cmpxchg() implies a full barrier, which pairs with the write
384 * barrier implied by the wakeup in wake_up_list().
385 */
386 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
387 return;
388
389 get_task_struct(task);
390
391 /*
392 * The head is context local, there can be no concurrency.
393 */
394 *head->lastp = node;
395 head->lastp = &node->next;
396 }
397
398 void wake_up_q(struct wake_q_head *head)
399 {
400 struct wake_q_node *node = head->first;
401
402 while (node != WAKE_Q_TAIL) {
403 struct task_struct *task;
404
405 task = container_of(node, struct task_struct, wake_q);
406 BUG_ON(!task);
407 /* task can safely be re-inserted now */
408 node = node->next;
409 task->wake_q.next = NULL;
410
411 /*
412 * wake_up_process() implies a wmb() to pair with the queueing
413 * in wake_q_add() so as not to miss wakeups.
414 */
415 wake_up_process(task);
416 put_task_struct(task);
417 }
418 }
419
420 /*
421 * resched_curr - mark rq's current task 'to be rescheduled now'.
422 *
423 * On UP this means the setting of the need_resched flag, on SMP it
424 * might also involve a cross-CPU call to trigger the scheduler on
425 * the target CPU.
426 */
427 void resched_curr(struct rq *rq)
428 {
429 struct task_struct *curr = rq->curr;
430 int cpu;
431
432 lockdep_assert_held(&rq->lock);
433
434 if (test_tsk_need_resched(curr))
435 return;
436
437 cpu = cpu_of(rq);
438
439 if (cpu == smp_processor_id()) {
440 set_tsk_need_resched(curr);
441 set_preempt_need_resched();
442 return;
443 }
444
445 if (set_nr_and_not_polling(curr))
446 smp_send_reschedule(cpu);
447 else
448 trace_sched_wake_idle_without_ipi(cpu);
449 }
450
451 void resched_cpu(int cpu)
452 {
453 struct rq *rq = cpu_rq(cpu);
454 unsigned long flags;
455
456 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
457 return;
458 resched_curr(rq);
459 raw_spin_unlock_irqrestore(&rq->lock, flags);
460 }
461
462 #ifdef CONFIG_SMP
463 #ifdef CONFIG_NO_HZ_COMMON
464 /*
465 * In the semi idle case, use the nearest busy cpu for migrating timers
466 * from an idle cpu. This is good for power-savings.
467 *
468 * We don't do similar optimization for completely idle system, as
469 * selecting an idle cpu will add more delays to the timers than intended
470 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
471 */
472 int get_nohz_timer_target(void)
473 {
474 int i, cpu = smp_processor_id();
475 struct sched_domain *sd;
476
477 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
478 return cpu;
479
480 rcu_read_lock();
481 for_each_domain(cpu, sd) {
482 for_each_cpu(i, sched_domain_span(sd)) {
483 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
484 cpu = i;
485 goto unlock;
486 }
487 }
488 }
489
490 if (!is_housekeeping_cpu(cpu))
491 cpu = housekeeping_any_cpu();
492 unlock:
493 rcu_read_unlock();
494 return cpu;
495 }
496 /*
497 * When add_timer_on() enqueues a timer into the timer wheel of an
498 * idle CPU then this timer might expire before the next timer event
499 * which is scheduled to wake up that CPU. In case of a completely
500 * idle system the next event might even be infinite time into the
501 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
502 * leaves the inner idle loop so the newly added timer is taken into
503 * account when the CPU goes back to idle and evaluates the timer
504 * wheel for the next timer event.
505 */
506 static void wake_up_idle_cpu(int cpu)
507 {
508 struct rq *rq = cpu_rq(cpu);
509
510 if (cpu == smp_processor_id())
511 return;
512
513 if (set_nr_and_not_polling(rq->idle))
514 smp_send_reschedule(cpu);
515 else
516 trace_sched_wake_idle_without_ipi(cpu);
517 }
518
519 static bool wake_up_full_nohz_cpu(int cpu)
520 {
521 /*
522 * We just need the target to call irq_exit() and re-evaluate
523 * the next tick. The nohz full kick at least implies that.
524 * If needed we can still optimize that later with an
525 * empty IRQ.
526 */
527 if (tick_nohz_full_cpu(cpu)) {
528 if (cpu != smp_processor_id() ||
529 tick_nohz_tick_stopped())
530 tick_nohz_full_kick_cpu(cpu);
531 return true;
532 }
533
534 return false;
535 }
536
537 void wake_up_nohz_cpu(int cpu)
538 {
539 if (!wake_up_full_nohz_cpu(cpu))
540 wake_up_idle_cpu(cpu);
541 }
542
543 static inline bool got_nohz_idle_kick(void)
544 {
545 int cpu = smp_processor_id();
546
547 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
548 return false;
549
550 if (idle_cpu(cpu) && !need_resched())
551 return true;
552
553 /*
554 * We can't run Idle Load Balance on this CPU for this time so we
555 * cancel it and clear NOHZ_BALANCE_KICK
556 */
557 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
558 return false;
559 }
560
561 #else /* CONFIG_NO_HZ_COMMON */
562
563 static inline bool got_nohz_idle_kick(void)
564 {
565 return false;
566 }
567
568 #endif /* CONFIG_NO_HZ_COMMON */
569
570 #ifdef CONFIG_NO_HZ_FULL
571 bool sched_can_stop_tick(struct rq *rq)
572 {
573 int fifo_nr_running;
574
575 /* Deadline tasks, even if single, need the tick */
576 if (rq->dl.dl_nr_running)
577 return false;
578
579 /*
580 * FIFO realtime policy runs the highest priority task (after DEADLINE).
581 * Other runnable tasks are of a lower priority. The scheduler tick
582 * isn't needed.
583 */
584 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
585 if (fifo_nr_running)
586 return true;
587
588 /*
589 * Round-robin realtime tasks time slice with other tasks at the same
590 * realtime priority.
591 */
592 if (rq->rt.rr_nr_running) {
593 if (rq->rt.rr_nr_running == 1)
594 return true;
595 else
596 return false;
597 }
598
599 /* Normal multitasking need periodic preemption checks */
600 if (rq->cfs.nr_running > 1)
601 return false;
602
603 return true;
604 }
605 #endif /* CONFIG_NO_HZ_FULL */
606
607 void sched_avg_update(struct rq *rq)
608 {
609 s64 period = sched_avg_period();
610
611 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
612 /*
613 * Inline assembly required to prevent the compiler
614 * optimising this loop into a divmod call.
615 * See __iter_div_u64_rem() for another example of this.
616 */
617 asm("" : "+rm" (rq->age_stamp));
618 rq->age_stamp += period;
619 rq->rt_avg /= 2;
620 }
621 }
622
623 #endif /* CONFIG_SMP */
624
625 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
626 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
627 /*
628 * Iterate task_group tree rooted at *from, calling @down when first entering a
629 * node and @up when leaving it for the final time.
630 *
631 * Caller must hold rcu_lock or sufficient equivalent.
632 */
633 int walk_tg_tree_from(struct task_group *from,
634 tg_visitor down, tg_visitor up, void *data)
635 {
636 struct task_group *parent, *child;
637 int ret;
638
639 parent = from;
640
641 down:
642 ret = (*down)(parent, data);
643 if (ret)
644 goto out;
645 list_for_each_entry_rcu(child, &parent->children, siblings) {
646 parent = child;
647 goto down;
648
649 up:
650 continue;
651 }
652 ret = (*up)(parent, data);
653 if (ret || parent == from)
654 goto out;
655
656 child = parent;
657 parent = parent->parent;
658 if (parent)
659 goto up;
660 out:
661 return ret;
662 }
663
664 int tg_nop(struct task_group *tg, void *data)
665 {
666 return 0;
667 }
668 #endif
669
670 static void set_load_weight(struct task_struct *p)
671 {
672 int prio = p->static_prio - MAX_RT_PRIO;
673 struct load_weight *load = &p->se.load;
674
675 /*
676 * SCHED_IDLE tasks get minimal weight:
677 */
678 if (idle_policy(p->policy)) {
679 load->weight = scale_load(WEIGHT_IDLEPRIO);
680 load->inv_weight = WMULT_IDLEPRIO;
681 return;
682 }
683
684 load->weight = scale_load(sched_prio_to_weight[prio]);
685 load->inv_weight = sched_prio_to_wmult[prio];
686 }
687
688 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
689 {
690 update_rq_clock(rq);
691 if (!(flags & ENQUEUE_RESTORE))
692 sched_info_queued(rq, p);
693 p->sched_class->enqueue_task(rq, p, flags);
694 }
695
696 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
697 {
698 update_rq_clock(rq);
699 if (!(flags & DEQUEUE_SAVE))
700 sched_info_dequeued(rq, p);
701 p->sched_class->dequeue_task(rq, p, flags);
702 }
703
704 void activate_task(struct rq *rq, struct task_struct *p, int flags)
705 {
706 if (task_contributes_to_load(p))
707 rq->nr_uninterruptible--;
708
709 enqueue_task(rq, p, flags);
710 }
711
712 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
713 {
714 if (task_contributes_to_load(p))
715 rq->nr_uninterruptible++;
716
717 dequeue_task(rq, p, flags);
718 }
719
720 static void update_rq_clock_task(struct rq *rq, s64 delta)
721 {
722 /*
723 * In theory, the compile should just see 0 here, and optimize out the call
724 * to sched_rt_avg_update. But I don't trust it...
725 */
726 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
727 s64 steal = 0, irq_delta = 0;
728 #endif
729 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
730 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
731
732 /*
733 * Since irq_time is only updated on {soft,}irq_exit, we might run into
734 * this case when a previous update_rq_clock() happened inside a
735 * {soft,}irq region.
736 *
737 * When this happens, we stop ->clock_task and only update the
738 * prev_irq_time stamp to account for the part that fit, so that a next
739 * update will consume the rest. This ensures ->clock_task is
740 * monotonic.
741 *
742 * It does however cause some slight miss-attribution of {soft,}irq
743 * time, a more accurate solution would be to update the irq_time using
744 * the current rq->clock timestamp, except that would require using
745 * atomic ops.
746 */
747 if (irq_delta > delta)
748 irq_delta = delta;
749
750 rq->prev_irq_time += irq_delta;
751 delta -= irq_delta;
752 #endif
753 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
754 if (static_key_false((&paravirt_steal_rq_enabled))) {
755 steal = paravirt_steal_clock(cpu_of(rq));
756 steal -= rq->prev_steal_time_rq;
757
758 if (unlikely(steal > delta))
759 steal = delta;
760
761 rq->prev_steal_time_rq += steal;
762 delta -= steal;
763 }
764 #endif
765
766 rq->clock_task += delta;
767
768 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
769 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
770 sched_rt_avg_update(rq, irq_delta + steal);
771 #endif
772 }
773
774 void sched_set_stop_task(int cpu, struct task_struct *stop)
775 {
776 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
777 struct task_struct *old_stop = cpu_rq(cpu)->stop;
778
779 if (stop) {
780 /*
781 * Make it appear like a SCHED_FIFO task, its something
782 * userspace knows about and won't get confused about.
783 *
784 * Also, it will make PI more or less work without too
785 * much confusion -- but then, stop work should not
786 * rely on PI working anyway.
787 */
788 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
789
790 stop->sched_class = &stop_sched_class;
791 }
792
793 cpu_rq(cpu)->stop = stop;
794
795 if (old_stop) {
796 /*
797 * Reset it back to a normal scheduling class so that
798 * it can die in pieces.
799 */
800 old_stop->sched_class = &rt_sched_class;
801 }
802 }
803
804 /*
805 * __normal_prio - return the priority that is based on the static prio
806 */
807 static inline int __normal_prio(struct task_struct *p)
808 {
809 return p->static_prio;
810 }
811
812 /*
813 * Calculate the expected normal priority: i.e. priority
814 * without taking RT-inheritance into account. Might be
815 * boosted by interactivity modifiers. Changes upon fork,
816 * setprio syscalls, and whenever the interactivity
817 * estimator recalculates.
818 */
819 static inline int normal_prio(struct task_struct *p)
820 {
821 int prio;
822
823 if (task_has_dl_policy(p))
824 prio = MAX_DL_PRIO-1;
825 else if (task_has_rt_policy(p))
826 prio = MAX_RT_PRIO-1 - p->rt_priority;
827 else
828 prio = __normal_prio(p);
829 return prio;
830 }
831
832 /*
833 * Calculate the current priority, i.e. the priority
834 * taken into account by the scheduler. This value might
835 * be boosted by RT tasks, or might be boosted by
836 * interactivity modifiers. Will be RT if the task got
837 * RT-boosted. If not then it returns p->normal_prio.
838 */
839 static int effective_prio(struct task_struct *p)
840 {
841 p->normal_prio = normal_prio(p);
842 /*
843 * If we are RT tasks or we were boosted to RT priority,
844 * keep the priority unchanged. Otherwise, update priority
845 * to the normal priority:
846 */
847 if (!rt_prio(p->prio))
848 return p->normal_prio;
849 return p->prio;
850 }
851
852 /**
853 * task_curr - is this task currently executing on a CPU?
854 * @p: the task in question.
855 *
856 * Return: 1 if the task is currently executing. 0 otherwise.
857 */
858 inline int task_curr(const struct task_struct *p)
859 {
860 return cpu_curr(task_cpu(p)) == p;
861 }
862
863 /*
864 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
865 * use the balance_callback list if you want balancing.
866 *
867 * this means any call to check_class_changed() must be followed by a call to
868 * balance_callback().
869 */
870 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
871 const struct sched_class *prev_class,
872 int oldprio)
873 {
874 if (prev_class != p->sched_class) {
875 if (prev_class->switched_from)
876 prev_class->switched_from(rq, p);
877
878 p->sched_class->switched_to(rq, p);
879 } else if (oldprio != p->prio || dl_task(p))
880 p->sched_class->prio_changed(rq, p, oldprio);
881 }
882
883 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
884 {
885 const struct sched_class *class;
886
887 if (p->sched_class == rq->curr->sched_class) {
888 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
889 } else {
890 for_each_class(class) {
891 if (class == rq->curr->sched_class)
892 break;
893 if (class == p->sched_class) {
894 resched_curr(rq);
895 break;
896 }
897 }
898 }
899
900 /*
901 * A queue event has occurred, and we're going to schedule. In
902 * this case, we can save a useless back to back clock update.
903 */
904 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
905 rq_clock_skip_update(rq, true);
906 }
907
908 #ifdef CONFIG_SMP
909 /*
910 * This is how migration works:
911 *
912 * 1) we invoke migration_cpu_stop() on the target CPU using
913 * stop_one_cpu().
914 * 2) stopper starts to run (implicitly forcing the migrated thread
915 * off the CPU)
916 * 3) it checks whether the migrated task is still in the wrong runqueue.
917 * 4) if it's in the wrong runqueue then the migration thread removes
918 * it and puts it into the right queue.
919 * 5) stopper completes and stop_one_cpu() returns and the migration
920 * is done.
921 */
922
923 /*
924 * move_queued_task - move a queued task to new rq.
925 *
926 * Returns (locked) new rq. Old rq's lock is released.
927 */
928 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
929 {
930 lockdep_assert_held(&rq->lock);
931
932 p->on_rq = TASK_ON_RQ_MIGRATING;
933 dequeue_task(rq, p, 0);
934 set_task_cpu(p, new_cpu);
935 raw_spin_unlock(&rq->lock);
936
937 rq = cpu_rq(new_cpu);
938
939 raw_spin_lock(&rq->lock);
940 BUG_ON(task_cpu(p) != new_cpu);
941 enqueue_task(rq, p, 0);
942 p->on_rq = TASK_ON_RQ_QUEUED;
943 check_preempt_curr(rq, p, 0);
944
945 return rq;
946 }
947
948 struct migration_arg {
949 struct task_struct *task;
950 int dest_cpu;
951 };
952
953 /*
954 * Move (not current) task off this cpu, onto dest cpu. We're doing
955 * this because either it can't run here any more (set_cpus_allowed()
956 * away from this CPU, or CPU going down), or because we're
957 * attempting to rebalance this task on exec (sched_exec).
958 *
959 * So we race with normal scheduler movements, but that's OK, as long
960 * as the task is no longer on this CPU.
961 */
962 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
963 {
964 if (unlikely(!cpu_active(dest_cpu)))
965 return rq;
966
967 /* Affinity changed (again). */
968 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
969 return rq;
970
971 rq = move_queued_task(rq, p, dest_cpu);
972
973 return rq;
974 }
975
976 /*
977 * migration_cpu_stop - this will be executed by a highprio stopper thread
978 * and performs thread migration by bumping thread off CPU then
979 * 'pushing' onto another runqueue.
980 */
981 static int migration_cpu_stop(void *data)
982 {
983 struct migration_arg *arg = data;
984 struct task_struct *p = arg->task;
985 struct rq *rq = this_rq();
986
987 /*
988 * The original target cpu might have gone down and we might
989 * be on another cpu but it doesn't matter.
990 */
991 local_irq_disable();
992 /*
993 * We need to explicitly wake pending tasks before running
994 * __migrate_task() such that we will not miss enforcing cpus_allowed
995 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
996 */
997 sched_ttwu_pending();
998
999 raw_spin_lock(&p->pi_lock);
1000 raw_spin_lock(&rq->lock);
1001 /*
1002 * If task_rq(p) != rq, it cannot be migrated here, because we're
1003 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1004 * we're holding p->pi_lock.
1005 */
1006 if (task_rq(p) == rq && task_on_rq_queued(p))
1007 rq = __migrate_task(rq, p, arg->dest_cpu);
1008 raw_spin_unlock(&rq->lock);
1009 raw_spin_unlock(&p->pi_lock);
1010
1011 local_irq_enable();
1012 return 0;
1013 }
1014
1015 /*
1016 * sched_class::set_cpus_allowed must do the below, but is not required to
1017 * actually call this function.
1018 */
1019 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1020 {
1021 cpumask_copy(&p->cpus_allowed, new_mask);
1022 p->nr_cpus_allowed = cpumask_weight(new_mask);
1023 }
1024
1025 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1026 {
1027 struct rq *rq = task_rq(p);
1028 bool queued, running;
1029
1030 lockdep_assert_held(&p->pi_lock);
1031
1032 queued = task_on_rq_queued(p);
1033 running = task_current(rq, p);
1034
1035 if (queued) {
1036 /*
1037 * Because __kthread_bind() calls this on blocked tasks without
1038 * holding rq->lock.
1039 */
1040 lockdep_assert_held(&rq->lock);
1041 dequeue_task(rq, p, DEQUEUE_SAVE);
1042 }
1043 if (running)
1044 put_prev_task(rq, p);
1045
1046 p->sched_class->set_cpus_allowed(p, new_mask);
1047
1048 if (running)
1049 p->sched_class->set_curr_task(rq);
1050 if (queued)
1051 enqueue_task(rq, p, ENQUEUE_RESTORE);
1052 }
1053
1054 /*
1055 * Change a given task's CPU affinity. Migrate the thread to a
1056 * proper CPU and schedule it away if the CPU it's executing on
1057 * is removed from the allowed bitmask.
1058 *
1059 * NOTE: the caller must have a valid reference to the task, the
1060 * task must not exit() & deallocate itself prematurely. The
1061 * call is not atomic; no spinlocks may be held.
1062 */
1063 static int __set_cpus_allowed_ptr(struct task_struct *p,
1064 const struct cpumask *new_mask, bool check)
1065 {
1066 unsigned long flags;
1067 struct rq *rq;
1068 unsigned int dest_cpu;
1069 int ret = 0;
1070
1071 rq = task_rq_lock(p, &flags);
1072
1073 /*
1074 * Must re-check here, to close a race against __kthread_bind(),
1075 * sched_setaffinity() is not guaranteed to observe the flag.
1076 */
1077 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1078 ret = -EINVAL;
1079 goto out;
1080 }
1081
1082 if (cpumask_equal(&p->cpus_allowed, new_mask))
1083 goto out;
1084
1085 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1086 ret = -EINVAL;
1087 goto out;
1088 }
1089
1090 do_set_cpus_allowed(p, new_mask);
1091
1092 /* Can the task run on the task's current CPU? If so, we're done */
1093 if (cpumask_test_cpu(task_cpu(p), new_mask))
1094 goto out;
1095
1096 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1097 if (task_running(rq, p) || p->state == TASK_WAKING) {
1098 struct migration_arg arg = { p, dest_cpu };
1099 /* Need help from migration thread: drop lock and wait. */
1100 task_rq_unlock(rq, p, &flags);
1101 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1102 tlb_migrate_finish(p->mm);
1103 return 0;
1104 } else if (task_on_rq_queued(p)) {
1105 /*
1106 * OK, since we're going to drop the lock immediately
1107 * afterwards anyway.
1108 */
1109 lockdep_unpin_lock(&rq->lock);
1110 rq = move_queued_task(rq, p, dest_cpu);
1111 lockdep_pin_lock(&rq->lock);
1112 }
1113 out:
1114 task_rq_unlock(rq, p, &flags);
1115
1116 return ret;
1117 }
1118
1119 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1120 {
1121 return __set_cpus_allowed_ptr(p, new_mask, false);
1122 }
1123 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1124
1125 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1126 {
1127 #ifdef CONFIG_SCHED_DEBUG
1128 /*
1129 * We should never call set_task_cpu() on a blocked task,
1130 * ttwu() will sort out the placement.
1131 */
1132 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1133 !p->on_rq);
1134
1135 /*
1136 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1137 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1138 * time relying on p->on_rq.
1139 */
1140 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1141 p->sched_class == &fair_sched_class &&
1142 (p->on_rq && !task_on_rq_migrating(p)));
1143
1144 #ifdef CONFIG_LOCKDEP
1145 /*
1146 * The caller should hold either p->pi_lock or rq->lock, when changing
1147 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1148 *
1149 * sched_move_task() holds both and thus holding either pins the cgroup,
1150 * see task_group().
1151 *
1152 * Furthermore, all task_rq users should acquire both locks, see
1153 * task_rq_lock().
1154 */
1155 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1156 lockdep_is_held(&task_rq(p)->lock)));
1157 #endif
1158 #endif
1159
1160 trace_sched_migrate_task(p, new_cpu);
1161
1162 if (task_cpu(p) != new_cpu) {
1163 if (p->sched_class->migrate_task_rq)
1164 p->sched_class->migrate_task_rq(p);
1165 p->se.nr_migrations++;
1166 perf_event_task_migrate(p);
1167 }
1168
1169 __set_task_cpu(p, new_cpu);
1170 }
1171
1172 static void __migrate_swap_task(struct task_struct *p, int cpu)
1173 {
1174 if (task_on_rq_queued(p)) {
1175 struct rq *src_rq, *dst_rq;
1176
1177 src_rq = task_rq(p);
1178 dst_rq = cpu_rq(cpu);
1179
1180 p->on_rq = TASK_ON_RQ_MIGRATING;
1181 deactivate_task(src_rq, p, 0);
1182 set_task_cpu(p, cpu);
1183 activate_task(dst_rq, p, 0);
1184 p->on_rq = TASK_ON_RQ_QUEUED;
1185 check_preempt_curr(dst_rq, p, 0);
1186 } else {
1187 /*
1188 * Task isn't running anymore; make it appear like we migrated
1189 * it before it went to sleep. This means on wakeup we make the
1190 * previous cpu our targer instead of where it really is.
1191 */
1192 p->wake_cpu = cpu;
1193 }
1194 }
1195
1196 struct migration_swap_arg {
1197 struct task_struct *src_task, *dst_task;
1198 int src_cpu, dst_cpu;
1199 };
1200
1201 static int migrate_swap_stop(void *data)
1202 {
1203 struct migration_swap_arg *arg = data;
1204 struct rq *src_rq, *dst_rq;
1205 int ret = -EAGAIN;
1206
1207 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1208 return -EAGAIN;
1209
1210 src_rq = cpu_rq(arg->src_cpu);
1211 dst_rq = cpu_rq(arg->dst_cpu);
1212
1213 double_raw_lock(&arg->src_task->pi_lock,
1214 &arg->dst_task->pi_lock);
1215 double_rq_lock(src_rq, dst_rq);
1216
1217 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1218 goto unlock;
1219
1220 if (task_cpu(arg->src_task) != arg->src_cpu)
1221 goto unlock;
1222
1223 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1224 goto unlock;
1225
1226 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1227 goto unlock;
1228
1229 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1230 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1231
1232 ret = 0;
1233
1234 unlock:
1235 double_rq_unlock(src_rq, dst_rq);
1236 raw_spin_unlock(&arg->dst_task->pi_lock);
1237 raw_spin_unlock(&arg->src_task->pi_lock);
1238
1239 return ret;
1240 }
1241
1242 /*
1243 * Cross migrate two tasks
1244 */
1245 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1246 {
1247 struct migration_swap_arg arg;
1248 int ret = -EINVAL;
1249
1250 arg = (struct migration_swap_arg){
1251 .src_task = cur,
1252 .src_cpu = task_cpu(cur),
1253 .dst_task = p,
1254 .dst_cpu = task_cpu(p),
1255 };
1256
1257 if (arg.src_cpu == arg.dst_cpu)
1258 goto out;
1259
1260 /*
1261 * These three tests are all lockless; this is OK since all of them
1262 * will be re-checked with proper locks held further down the line.
1263 */
1264 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1265 goto out;
1266
1267 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1268 goto out;
1269
1270 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1271 goto out;
1272
1273 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1274 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1275
1276 out:
1277 return ret;
1278 }
1279
1280 /*
1281 * wait_task_inactive - wait for a thread to unschedule.
1282 *
1283 * If @match_state is nonzero, it's the @p->state value just checked and
1284 * not expected to change. If it changes, i.e. @p might have woken up,
1285 * then return zero. When we succeed in waiting for @p to be off its CPU,
1286 * we return a positive number (its total switch count). If a second call
1287 * a short while later returns the same number, the caller can be sure that
1288 * @p has remained unscheduled the whole time.
1289 *
1290 * The caller must ensure that the task *will* unschedule sometime soon,
1291 * else this function might spin for a *long* time. This function can't
1292 * be called with interrupts off, or it may introduce deadlock with
1293 * smp_call_function() if an IPI is sent by the same process we are
1294 * waiting to become inactive.
1295 */
1296 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1297 {
1298 unsigned long flags;
1299 int running, queued;
1300 unsigned long ncsw;
1301 struct rq *rq;
1302
1303 for (;;) {
1304 /*
1305 * We do the initial early heuristics without holding
1306 * any task-queue locks at all. We'll only try to get
1307 * the runqueue lock when things look like they will
1308 * work out!
1309 */
1310 rq = task_rq(p);
1311
1312 /*
1313 * If the task is actively running on another CPU
1314 * still, just relax and busy-wait without holding
1315 * any locks.
1316 *
1317 * NOTE! Since we don't hold any locks, it's not
1318 * even sure that "rq" stays as the right runqueue!
1319 * But we don't care, since "task_running()" will
1320 * return false if the runqueue has changed and p
1321 * is actually now running somewhere else!
1322 */
1323 while (task_running(rq, p)) {
1324 if (match_state && unlikely(p->state != match_state))
1325 return 0;
1326 cpu_relax();
1327 }
1328
1329 /*
1330 * Ok, time to look more closely! We need the rq
1331 * lock now, to be *sure*. If we're wrong, we'll
1332 * just go back and repeat.
1333 */
1334 rq = task_rq_lock(p, &flags);
1335 trace_sched_wait_task(p);
1336 running = task_running(rq, p);
1337 queued = task_on_rq_queued(p);
1338 ncsw = 0;
1339 if (!match_state || p->state == match_state)
1340 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1341 task_rq_unlock(rq, p, &flags);
1342
1343 /*
1344 * If it changed from the expected state, bail out now.
1345 */
1346 if (unlikely(!ncsw))
1347 break;
1348
1349 /*
1350 * Was it really running after all now that we
1351 * checked with the proper locks actually held?
1352 *
1353 * Oops. Go back and try again..
1354 */
1355 if (unlikely(running)) {
1356 cpu_relax();
1357 continue;
1358 }
1359
1360 /*
1361 * It's not enough that it's not actively running,
1362 * it must be off the runqueue _entirely_, and not
1363 * preempted!
1364 *
1365 * So if it was still runnable (but just not actively
1366 * running right now), it's preempted, and we should
1367 * yield - it could be a while.
1368 */
1369 if (unlikely(queued)) {
1370 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1371
1372 set_current_state(TASK_UNINTERRUPTIBLE);
1373 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1374 continue;
1375 }
1376
1377 /*
1378 * Ahh, all good. It wasn't running, and it wasn't
1379 * runnable, which means that it will never become
1380 * running in the future either. We're all done!
1381 */
1382 break;
1383 }
1384
1385 return ncsw;
1386 }
1387
1388 /***
1389 * kick_process - kick a running thread to enter/exit the kernel
1390 * @p: the to-be-kicked thread
1391 *
1392 * Cause a process which is running on another CPU to enter
1393 * kernel-mode, without any delay. (to get signals handled.)
1394 *
1395 * NOTE: this function doesn't have to take the runqueue lock,
1396 * because all it wants to ensure is that the remote task enters
1397 * the kernel. If the IPI races and the task has been migrated
1398 * to another CPU then no harm is done and the purpose has been
1399 * achieved as well.
1400 */
1401 void kick_process(struct task_struct *p)
1402 {
1403 int cpu;
1404
1405 preempt_disable();
1406 cpu = task_cpu(p);
1407 if ((cpu != smp_processor_id()) && task_curr(p))
1408 smp_send_reschedule(cpu);
1409 preempt_enable();
1410 }
1411 EXPORT_SYMBOL_GPL(kick_process);
1412
1413 /*
1414 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1415 */
1416 static int select_fallback_rq(int cpu, struct task_struct *p)
1417 {
1418 int nid = cpu_to_node(cpu);
1419 const struct cpumask *nodemask = NULL;
1420 enum { cpuset, possible, fail } state = cpuset;
1421 int dest_cpu;
1422
1423 /*
1424 * If the node that the cpu is on has been offlined, cpu_to_node()
1425 * will return -1. There is no cpu on the node, and we should
1426 * select the cpu on the other node.
1427 */
1428 if (nid != -1) {
1429 nodemask = cpumask_of_node(nid);
1430
1431 /* Look for allowed, online CPU in same node. */
1432 for_each_cpu(dest_cpu, nodemask) {
1433 if (!cpu_online(dest_cpu))
1434 continue;
1435 if (!cpu_active(dest_cpu))
1436 continue;
1437 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1438 return dest_cpu;
1439 }
1440 }
1441
1442 for (;;) {
1443 /* Any allowed, online CPU? */
1444 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1445 if (!cpu_online(dest_cpu))
1446 continue;
1447 if (!cpu_active(dest_cpu))
1448 continue;
1449 goto out;
1450 }
1451
1452 /* No more Mr. Nice Guy. */
1453 switch (state) {
1454 case cpuset:
1455 if (IS_ENABLED(CONFIG_CPUSETS)) {
1456 cpuset_cpus_allowed_fallback(p);
1457 state = possible;
1458 break;
1459 }
1460 /* fall-through */
1461 case possible:
1462 do_set_cpus_allowed(p, cpu_possible_mask);
1463 state = fail;
1464 break;
1465
1466 case fail:
1467 BUG();
1468 break;
1469 }
1470 }
1471
1472 out:
1473 if (state != cpuset) {
1474 /*
1475 * Don't tell them about moving exiting tasks or
1476 * kernel threads (both mm NULL), since they never
1477 * leave kernel.
1478 */
1479 if (p->mm && printk_ratelimit()) {
1480 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1481 task_pid_nr(p), p->comm, cpu);
1482 }
1483 }
1484
1485 return dest_cpu;
1486 }
1487
1488 /*
1489 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1490 */
1491 static inline
1492 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1493 {
1494 lockdep_assert_held(&p->pi_lock);
1495
1496 if (p->nr_cpus_allowed > 1)
1497 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1498
1499 /*
1500 * In order not to call set_task_cpu() on a blocking task we need
1501 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1502 * cpu.
1503 *
1504 * Since this is common to all placement strategies, this lives here.
1505 *
1506 * [ this allows ->select_task() to simply return task_cpu(p) and
1507 * not worry about this generic constraint ]
1508 */
1509 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1510 !cpu_online(cpu)))
1511 cpu = select_fallback_rq(task_cpu(p), p);
1512
1513 return cpu;
1514 }
1515
1516 static void update_avg(u64 *avg, u64 sample)
1517 {
1518 s64 diff = sample - *avg;
1519 *avg += diff >> 3;
1520 }
1521
1522 #else
1523
1524 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1525 const struct cpumask *new_mask, bool check)
1526 {
1527 return set_cpus_allowed_ptr(p, new_mask);
1528 }
1529
1530 #endif /* CONFIG_SMP */
1531
1532 static void
1533 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1534 {
1535 #ifdef CONFIG_SCHEDSTATS
1536 struct rq *rq = this_rq();
1537
1538 #ifdef CONFIG_SMP
1539 int this_cpu = smp_processor_id();
1540
1541 if (cpu == this_cpu) {
1542 schedstat_inc(rq, ttwu_local);
1543 schedstat_inc(p, se.statistics.nr_wakeups_local);
1544 } else {
1545 struct sched_domain *sd;
1546
1547 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1548 rcu_read_lock();
1549 for_each_domain(this_cpu, sd) {
1550 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1551 schedstat_inc(sd, ttwu_wake_remote);
1552 break;
1553 }
1554 }
1555 rcu_read_unlock();
1556 }
1557
1558 if (wake_flags & WF_MIGRATED)
1559 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1560
1561 #endif /* CONFIG_SMP */
1562
1563 schedstat_inc(rq, ttwu_count);
1564 schedstat_inc(p, se.statistics.nr_wakeups);
1565
1566 if (wake_flags & WF_SYNC)
1567 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1568
1569 #endif /* CONFIG_SCHEDSTATS */
1570 }
1571
1572 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1573 {
1574 activate_task(rq, p, en_flags);
1575 p->on_rq = TASK_ON_RQ_QUEUED;
1576
1577 /* if a worker is waking up, notify workqueue */
1578 if (p->flags & PF_WQ_WORKER)
1579 wq_worker_waking_up(p, cpu_of(rq));
1580 }
1581
1582 /*
1583 * Mark the task runnable and perform wakeup-preemption.
1584 */
1585 static void
1586 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1587 {
1588 check_preempt_curr(rq, p, wake_flags);
1589 p->state = TASK_RUNNING;
1590 trace_sched_wakeup(p);
1591
1592 #ifdef CONFIG_SMP
1593 if (p->sched_class->task_woken) {
1594 /*
1595 * Our task @p is fully woken up and running; so its safe to
1596 * drop the rq->lock, hereafter rq is only used for statistics.
1597 */
1598 lockdep_unpin_lock(&rq->lock);
1599 p->sched_class->task_woken(rq, p);
1600 lockdep_pin_lock(&rq->lock);
1601 }
1602
1603 if (rq->idle_stamp) {
1604 u64 delta = rq_clock(rq) - rq->idle_stamp;
1605 u64 max = 2*rq->max_idle_balance_cost;
1606
1607 update_avg(&rq->avg_idle, delta);
1608
1609 if (rq->avg_idle > max)
1610 rq->avg_idle = max;
1611
1612 rq->idle_stamp = 0;
1613 }
1614 #endif
1615 }
1616
1617 static void
1618 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1619 {
1620 lockdep_assert_held(&rq->lock);
1621
1622 #ifdef CONFIG_SMP
1623 if (p->sched_contributes_to_load)
1624 rq->nr_uninterruptible--;
1625 #endif
1626
1627 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1628 ttwu_do_wakeup(rq, p, wake_flags);
1629 }
1630
1631 /*
1632 * Called in case the task @p isn't fully descheduled from its runqueue,
1633 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1634 * since all we need to do is flip p->state to TASK_RUNNING, since
1635 * the task is still ->on_rq.
1636 */
1637 static int ttwu_remote(struct task_struct *p, int wake_flags)
1638 {
1639 struct rq *rq;
1640 int ret = 0;
1641
1642 rq = __task_rq_lock(p);
1643 if (task_on_rq_queued(p)) {
1644 /* check_preempt_curr() may use rq clock */
1645 update_rq_clock(rq);
1646 ttwu_do_wakeup(rq, p, wake_flags);
1647 ret = 1;
1648 }
1649 __task_rq_unlock(rq);
1650
1651 return ret;
1652 }
1653
1654 #ifdef CONFIG_SMP
1655 void sched_ttwu_pending(void)
1656 {
1657 struct rq *rq = this_rq();
1658 struct llist_node *llist = llist_del_all(&rq->wake_list);
1659 struct task_struct *p;
1660 unsigned long flags;
1661
1662 if (!llist)
1663 return;
1664
1665 raw_spin_lock_irqsave(&rq->lock, flags);
1666 lockdep_pin_lock(&rq->lock);
1667
1668 while (llist) {
1669 p = llist_entry(llist, struct task_struct, wake_entry);
1670 llist = llist_next(llist);
1671 ttwu_do_activate(rq, p, 0);
1672 }
1673
1674 lockdep_unpin_lock(&rq->lock);
1675 raw_spin_unlock_irqrestore(&rq->lock, flags);
1676 }
1677
1678 void scheduler_ipi(void)
1679 {
1680 /*
1681 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1682 * TIF_NEED_RESCHED remotely (for the first time) will also send
1683 * this IPI.
1684 */
1685 preempt_fold_need_resched();
1686
1687 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1688 return;
1689
1690 /*
1691 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1692 * traditionally all their work was done from the interrupt return
1693 * path. Now that we actually do some work, we need to make sure
1694 * we do call them.
1695 *
1696 * Some archs already do call them, luckily irq_enter/exit nest
1697 * properly.
1698 *
1699 * Arguably we should visit all archs and update all handlers,
1700 * however a fair share of IPIs are still resched only so this would
1701 * somewhat pessimize the simple resched case.
1702 */
1703 irq_enter();
1704 sched_ttwu_pending();
1705
1706 /*
1707 * Check if someone kicked us for doing the nohz idle load balance.
1708 */
1709 if (unlikely(got_nohz_idle_kick())) {
1710 this_rq()->idle_balance = 1;
1711 raise_softirq_irqoff(SCHED_SOFTIRQ);
1712 }
1713 irq_exit();
1714 }
1715
1716 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1717 {
1718 struct rq *rq = cpu_rq(cpu);
1719
1720 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1721 if (!set_nr_if_polling(rq->idle))
1722 smp_send_reschedule(cpu);
1723 else
1724 trace_sched_wake_idle_without_ipi(cpu);
1725 }
1726 }
1727
1728 void wake_up_if_idle(int cpu)
1729 {
1730 struct rq *rq = cpu_rq(cpu);
1731 unsigned long flags;
1732
1733 rcu_read_lock();
1734
1735 if (!is_idle_task(rcu_dereference(rq->curr)))
1736 goto out;
1737
1738 if (set_nr_if_polling(rq->idle)) {
1739 trace_sched_wake_idle_without_ipi(cpu);
1740 } else {
1741 raw_spin_lock_irqsave(&rq->lock, flags);
1742 if (is_idle_task(rq->curr))
1743 smp_send_reschedule(cpu);
1744 /* Else cpu is not in idle, do nothing here */
1745 raw_spin_unlock_irqrestore(&rq->lock, flags);
1746 }
1747
1748 out:
1749 rcu_read_unlock();
1750 }
1751
1752 bool cpus_share_cache(int this_cpu, int that_cpu)
1753 {
1754 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1755 }
1756 #endif /* CONFIG_SMP */
1757
1758 static void ttwu_queue(struct task_struct *p, int cpu)
1759 {
1760 struct rq *rq = cpu_rq(cpu);
1761
1762 #if defined(CONFIG_SMP)
1763 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1764 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1765 ttwu_queue_remote(p, cpu);
1766 return;
1767 }
1768 #endif
1769
1770 raw_spin_lock(&rq->lock);
1771 lockdep_pin_lock(&rq->lock);
1772 ttwu_do_activate(rq, p, 0);
1773 lockdep_unpin_lock(&rq->lock);
1774 raw_spin_unlock(&rq->lock);
1775 }
1776
1777 /*
1778 * Notes on Program-Order guarantees on SMP systems.
1779 *
1780 * MIGRATION
1781 *
1782 * The basic program-order guarantee on SMP systems is that when a task [t]
1783 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1784 * execution on its new cpu [c1].
1785 *
1786 * For migration (of runnable tasks) this is provided by the following means:
1787 *
1788 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1789 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1790 * rq(c1)->lock (if not at the same time, then in that order).
1791 * C) LOCK of the rq(c1)->lock scheduling in task
1792 *
1793 * Transitivity guarantees that B happens after A and C after B.
1794 * Note: we only require RCpc transitivity.
1795 * Note: the cpu doing B need not be c0 or c1
1796 *
1797 * Example:
1798 *
1799 * CPU0 CPU1 CPU2
1800 *
1801 * LOCK rq(0)->lock
1802 * sched-out X
1803 * sched-in Y
1804 * UNLOCK rq(0)->lock
1805 *
1806 * LOCK rq(0)->lock // orders against CPU0
1807 * dequeue X
1808 * UNLOCK rq(0)->lock
1809 *
1810 * LOCK rq(1)->lock
1811 * enqueue X
1812 * UNLOCK rq(1)->lock
1813 *
1814 * LOCK rq(1)->lock // orders against CPU2
1815 * sched-out Z
1816 * sched-in X
1817 * UNLOCK rq(1)->lock
1818 *
1819 *
1820 * BLOCKING -- aka. SLEEP + WAKEUP
1821 *
1822 * For blocking we (obviously) need to provide the same guarantee as for
1823 * migration. However the means are completely different as there is no lock
1824 * chain to provide order. Instead we do:
1825 *
1826 * 1) smp_store_release(X->on_cpu, 0)
1827 * 2) smp_cond_acquire(!X->on_cpu)
1828 *
1829 * Example:
1830 *
1831 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1832 *
1833 * LOCK rq(0)->lock LOCK X->pi_lock
1834 * dequeue X
1835 * sched-out X
1836 * smp_store_release(X->on_cpu, 0);
1837 *
1838 * smp_cond_acquire(!X->on_cpu);
1839 * X->state = WAKING
1840 * set_task_cpu(X,2)
1841 *
1842 * LOCK rq(2)->lock
1843 * enqueue X
1844 * X->state = RUNNING
1845 * UNLOCK rq(2)->lock
1846 *
1847 * LOCK rq(2)->lock // orders against CPU1
1848 * sched-out Z
1849 * sched-in X
1850 * UNLOCK rq(2)->lock
1851 *
1852 * UNLOCK X->pi_lock
1853 * UNLOCK rq(0)->lock
1854 *
1855 *
1856 * However; for wakeups there is a second guarantee we must provide, namely we
1857 * must observe the state that lead to our wakeup. That is, not only must our
1858 * task observe its own prior state, it must also observe the stores prior to
1859 * its wakeup.
1860 *
1861 * This means that any means of doing remote wakeups must order the CPU doing
1862 * the wakeup against the CPU the task is going to end up running on. This,
1863 * however, is already required for the regular Program-Order guarantee above,
1864 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1865 *
1866 */
1867
1868 /**
1869 * try_to_wake_up - wake up a thread
1870 * @p: the thread to be awakened
1871 * @state: the mask of task states that can be woken
1872 * @wake_flags: wake modifier flags (WF_*)
1873 *
1874 * Put it on the run-queue if it's not already there. The "current"
1875 * thread is always on the run-queue (except when the actual
1876 * re-schedule is in progress), and as such you're allowed to do
1877 * the simpler "current->state = TASK_RUNNING" to mark yourself
1878 * runnable without the overhead of this.
1879 *
1880 * Return: %true if @p was woken up, %false if it was already running.
1881 * or @state didn't match @p's state.
1882 */
1883 static int
1884 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1885 {
1886 unsigned long flags;
1887 int cpu, success = 0;
1888
1889 /*
1890 * If we are going to wake up a thread waiting for CONDITION we
1891 * need to ensure that CONDITION=1 done by the caller can not be
1892 * reordered with p->state check below. This pairs with mb() in
1893 * set_current_state() the waiting thread does.
1894 */
1895 smp_mb__before_spinlock();
1896 raw_spin_lock_irqsave(&p->pi_lock, flags);
1897 if (!(p->state & state))
1898 goto out;
1899
1900 trace_sched_waking(p);
1901
1902 success = 1; /* we're going to change ->state */
1903 cpu = task_cpu(p);
1904
1905 if (p->on_rq && ttwu_remote(p, wake_flags))
1906 goto stat;
1907
1908 #ifdef CONFIG_SMP
1909 /*
1910 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1911 * possible to, falsely, observe p->on_cpu == 0.
1912 *
1913 * One must be running (->on_cpu == 1) in order to remove oneself
1914 * from the runqueue.
1915 *
1916 * [S] ->on_cpu = 1; [L] ->on_rq
1917 * UNLOCK rq->lock
1918 * RMB
1919 * LOCK rq->lock
1920 * [S] ->on_rq = 0; [L] ->on_cpu
1921 *
1922 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1923 * from the consecutive calls to schedule(); the first switching to our
1924 * task, the second putting it to sleep.
1925 */
1926 smp_rmb();
1927
1928 /*
1929 * If the owning (remote) cpu is still in the middle of schedule() with
1930 * this task as prev, wait until its done referencing the task.
1931 *
1932 * Pairs with the smp_store_release() in finish_lock_switch().
1933 *
1934 * This ensures that tasks getting woken will be fully ordered against
1935 * their previous state and preserve Program Order.
1936 */
1937 smp_cond_acquire(!p->on_cpu);
1938
1939 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1940 p->state = TASK_WAKING;
1941
1942 if (p->sched_class->task_waking)
1943 p->sched_class->task_waking(p);
1944
1945 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1946 if (task_cpu(p) != cpu) {
1947 wake_flags |= WF_MIGRATED;
1948 set_task_cpu(p, cpu);
1949 }
1950 #endif /* CONFIG_SMP */
1951
1952 ttwu_queue(p, cpu);
1953 stat:
1954 if (schedstat_enabled())
1955 ttwu_stat(p, cpu, wake_flags);
1956 out:
1957 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1958
1959 return success;
1960 }
1961
1962 /**
1963 * try_to_wake_up_local - try to wake up a local task with rq lock held
1964 * @p: the thread to be awakened
1965 *
1966 * Put @p on the run-queue if it's not already there. The caller must
1967 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1968 * the current task.
1969 */
1970 static void try_to_wake_up_local(struct task_struct *p)
1971 {
1972 struct rq *rq = task_rq(p);
1973
1974 if (WARN_ON_ONCE(rq != this_rq()) ||
1975 WARN_ON_ONCE(p == current))
1976 return;
1977
1978 lockdep_assert_held(&rq->lock);
1979
1980 if (!raw_spin_trylock(&p->pi_lock)) {
1981 /*
1982 * This is OK, because current is on_cpu, which avoids it being
1983 * picked for load-balance and preemption/IRQs are still
1984 * disabled avoiding further scheduler activity on it and we've
1985 * not yet picked a replacement task.
1986 */
1987 lockdep_unpin_lock(&rq->lock);
1988 raw_spin_unlock(&rq->lock);
1989 raw_spin_lock(&p->pi_lock);
1990 raw_spin_lock(&rq->lock);
1991 lockdep_pin_lock(&rq->lock);
1992 }
1993
1994 if (!(p->state & TASK_NORMAL))
1995 goto out;
1996
1997 trace_sched_waking(p);
1998
1999 if (!task_on_rq_queued(p))
2000 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2001
2002 ttwu_do_wakeup(rq, p, 0);
2003 if (schedstat_enabled())
2004 ttwu_stat(p, smp_processor_id(), 0);
2005 out:
2006 raw_spin_unlock(&p->pi_lock);
2007 }
2008
2009 /**
2010 * wake_up_process - Wake up a specific process
2011 * @p: The process to be woken up.
2012 *
2013 * Attempt to wake up the nominated process and move it to the set of runnable
2014 * processes.
2015 *
2016 * Return: 1 if the process was woken up, 0 if it was already running.
2017 *
2018 * It may be assumed that this function implies a write memory barrier before
2019 * changing the task state if and only if any tasks are woken up.
2020 */
2021 int wake_up_process(struct task_struct *p)
2022 {
2023 return try_to_wake_up(p, TASK_NORMAL, 0);
2024 }
2025 EXPORT_SYMBOL(wake_up_process);
2026
2027 int wake_up_state(struct task_struct *p, unsigned int state)
2028 {
2029 return try_to_wake_up(p, state, 0);
2030 }
2031
2032 /*
2033 * This function clears the sched_dl_entity static params.
2034 */
2035 void __dl_clear_params(struct task_struct *p)
2036 {
2037 struct sched_dl_entity *dl_se = &p->dl;
2038
2039 dl_se->dl_runtime = 0;
2040 dl_se->dl_deadline = 0;
2041 dl_se->dl_period = 0;
2042 dl_se->flags = 0;
2043 dl_se->dl_bw = 0;
2044
2045 dl_se->dl_throttled = 0;
2046 dl_se->dl_yielded = 0;
2047 }
2048
2049 /*
2050 * Perform scheduler related setup for a newly forked process p.
2051 * p is forked by current.
2052 *
2053 * __sched_fork() is basic setup used by init_idle() too:
2054 */
2055 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2056 {
2057 p->on_rq = 0;
2058
2059 p->se.on_rq = 0;
2060 p->se.exec_start = 0;
2061 p->se.sum_exec_runtime = 0;
2062 p->se.prev_sum_exec_runtime = 0;
2063 p->se.nr_migrations = 0;
2064 p->se.vruntime = 0;
2065 INIT_LIST_HEAD(&p->se.group_node);
2066
2067 #ifdef CONFIG_FAIR_GROUP_SCHED
2068 p->se.cfs_rq = NULL;
2069 #endif
2070
2071 #ifdef CONFIG_SCHEDSTATS
2072 /* Even if schedstat is disabled, there should not be garbage */
2073 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2074 #endif
2075
2076 RB_CLEAR_NODE(&p->dl.rb_node);
2077 init_dl_task_timer(&p->dl);
2078 __dl_clear_params(p);
2079
2080 INIT_LIST_HEAD(&p->rt.run_list);
2081 p->rt.timeout = 0;
2082 p->rt.time_slice = sched_rr_timeslice;
2083 p->rt.on_rq = 0;
2084 p->rt.on_list = 0;
2085
2086 #ifdef CONFIG_PREEMPT_NOTIFIERS
2087 INIT_HLIST_HEAD(&p->preempt_notifiers);
2088 #endif
2089
2090 #ifdef CONFIG_NUMA_BALANCING
2091 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2092 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2093 p->mm->numa_scan_seq = 0;
2094 }
2095
2096 if (clone_flags & CLONE_VM)
2097 p->numa_preferred_nid = current->numa_preferred_nid;
2098 else
2099 p->numa_preferred_nid = -1;
2100
2101 p->node_stamp = 0ULL;
2102 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2103 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2104 p->numa_work.next = &p->numa_work;
2105 p->numa_faults = NULL;
2106 p->last_task_numa_placement = 0;
2107 p->last_sum_exec_runtime = 0;
2108
2109 p->numa_group = NULL;
2110 #endif /* CONFIG_NUMA_BALANCING */
2111 }
2112
2113 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2114
2115 #ifdef CONFIG_NUMA_BALANCING
2116
2117 void set_numabalancing_state(bool enabled)
2118 {
2119 if (enabled)
2120 static_branch_enable(&sched_numa_balancing);
2121 else
2122 static_branch_disable(&sched_numa_balancing);
2123 }
2124
2125 #ifdef CONFIG_PROC_SYSCTL
2126 int sysctl_numa_balancing(struct ctl_table *table, int write,
2127 void __user *buffer, size_t *lenp, loff_t *ppos)
2128 {
2129 struct ctl_table t;
2130 int err;
2131 int state = static_branch_likely(&sched_numa_balancing);
2132
2133 if (write && !capable(CAP_SYS_ADMIN))
2134 return -EPERM;
2135
2136 t = *table;
2137 t.data = &state;
2138 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2139 if (err < 0)
2140 return err;
2141 if (write)
2142 set_numabalancing_state(state);
2143 return err;
2144 }
2145 #endif
2146 #endif
2147
2148 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2149
2150 #ifdef CONFIG_SCHEDSTATS
2151 static void set_schedstats(bool enabled)
2152 {
2153 if (enabled)
2154 static_branch_enable(&sched_schedstats);
2155 else
2156 static_branch_disable(&sched_schedstats);
2157 }
2158
2159 void force_schedstat_enabled(void)
2160 {
2161 if (!schedstat_enabled()) {
2162 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2163 static_branch_enable(&sched_schedstats);
2164 }
2165 }
2166
2167 static int __init setup_schedstats(char *str)
2168 {
2169 int ret = 0;
2170 if (!str)
2171 goto out;
2172
2173 if (!strcmp(str, "enable")) {
2174 set_schedstats(true);
2175 ret = 1;
2176 } else if (!strcmp(str, "disable")) {
2177 set_schedstats(false);
2178 ret = 1;
2179 }
2180 out:
2181 if (!ret)
2182 pr_warn("Unable to parse schedstats=\n");
2183
2184 return ret;
2185 }
2186 __setup("schedstats=", setup_schedstats);
2187
2188 #ifdef CONFIG_PROC_SYSCTL
2189 int sysctl_schedstats(struct ctl_table *table, int write,
2190 void __user *buffer, size_t *lenp, loff_t *ppos)
2191 {
2192 struct ctl_table t;
2193 int err;
2194 int state = static_branch_likely(&sched_schedstats);
2195
2196 if (write && !capable(CAP_SYS_ADMIN))
2197 return -EPERM;
2198
2199 t = *table;
2200 t.data = &state;
2201 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2202 if (err < 0)
2203 return err;
2204 if (write)
2205 set_schedstats(state);
2206 return err;
2207 }
2208 #endif
2209 #endif
2210
2211 /*
2212 * fork()/clone()-time setup:
2213 */
2214 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2215 {
2216 unsigned long flags;
2217 int cpu = get_cpu();
2218
2219 __sched_fork(clone_flags, p);
2220 /*
2221 * We mark the process as running here. This guarantees that
2222 * nobody will actually run it, and a signal or other external
2223 * event cannot wake it up and insert it on the runqueue either.
2224 */
2225 p->state = TASK_RUNNING;
2226
2227 /*
2228 * Make sure we do not leak PI boosting priority to the child.
2229 */
2230 p->prio = current->normal_prio;
2231
2232 /*
2233 * Revert to default priority/policy on fork if requested.
2234 */
2235 if (unlikely(p->sched_reset_on_fork)) {
2236 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2237 p->policy = SCHED_NORMAL;
2238 p->static_prio = NICE_TO_PRIO(0);
2239 p->rt_priority = 0;
2240 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2241 p->static_prio = NICE_TO_PRIO(0);
2242
2243 p->prio = p->normal_prio = __normal_prio(p);
2244 set_load_weight(p);
2245
2246 /*
2247 * We don't need the reset flag anymore after the fork. It has
2248 * fulfilled its duty:
2249 */
2250 p->sched_reset_on_fork = 0;
2251 }
2252
2253 if (dl_prio(p->prio)) {
2254 put_cpu();
2255 return -EAGAIN;
2256 } else if (rt_prio(p->prio)) {
2257 p->sched_class = &rt_sched_class;
2258 } else {
2259 p->sched_class = &fair_sched_class;
2260 }
2261
2262 if (p->sched_class->task_fork)
2263 p->sched_class->task_fork(p);
2264
2265 /*
2266 * The child is not yet in the pid-hash so no cgroup attach races,
2267 * and the cgroup is pinned to this child due to cgroup_fork()
2268 * is ran before sched_fork().
2269 *
2270 * Silence PROVE_RCU.
2271 */
2272 raw_spin_lock_irqsave(&p->pi_lock, flags);
2273 set_task_cpu(p, cpu);
2274 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2275
2276 #ifdef CONFIG_SCHED_INFO
2277 if (likely(sched_info_on()))
2278 memset(&p->sched_info, 0, sizeof(p->sched_info));
2279 #endif
2280 #if defined(CONFIG_SMP)
2281 p->on_cpu = 0;
2282 #endif
2283 init_task_preempt_count(p);
2284 #ifdef CONFIG_SMP
2285 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2286 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2287 #endif
2288
2289 put_cpu();
2290 return 0;
2291 }
2292
2293 unsigned long to_ratio(u64 period, u64 runtime)
2294 {
2295 if (runtime == RUNTIME_INF)
2296 return 1ULL << 20;
2297
2298 /*
2299 * Doing this here saves a lot of checks in all
2300 * the calling paths, and returning zero seems
2301 * safe for them anyway.
2302 */
2303 if (period == 0)
2304 return 0;
2305
2306 return div64_u64(runtime << 20, period);
2307 }
2308
2309 #ifdef CONFIG_SMP
2310 inline struct dl_bw *dl_bw_of(int i)
2311 {
2312 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2313 "sched RCU must be held");
2314 return &cpu_rq(i)->rd->dl_bw;
2315 }
2316
2317 static inline int dl_bw_cpus(int i)
2318 {
2319 struct root_domain *rd = cpu_rq(i)->rd;
2320 int cpus = 0;
2321
2322 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2323 "sched RCU must be held");
2324 for_each_cpu_and(i, rd->span, cpu_active_mask)
2325 cpus++;
2326
2327 return cpus;
2328 }
2329 #else
2330 inline struct dl_bw *dl_bw_of(int i)
2331 {
2332 return &cpu_rq(i)->dl.dl_bw;
2333 }
2334
2335 static inline int dl_bw_cpus(int i)
2336 {
2337 return 1;
2338 }
2339 #endif
2340
2341 /*
2342 * We must be sure that accepting a new task (or allowing changing the
2343 * parameters of an existing one) is consistent with the bandwidth
2344 * constraints. If yes, this function also accordingly updates the currently
2345 * allocated bandwidth to reflect the new situation.
2346 *
2347 * This function is called while holding p's rq->lock.
2348 *
2349 * XXX we should delay bw change until the task's 0-lag point, see
2350 * __setparam_dl().
2351 */
2352 static int dl_overflow(struct task_struct *p, int policy,
2353 const struct sched_attr *attr)
2354 {
2355
2356 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2357 u64 period = attr->sched_period ?: attr->sched_deadline;
2358 u64 runtime = attr->sched_runtime;
2359 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2360 int cpus, err = -1;
2361
2362 if (new_bw == p->dl.dl_bw)
2363 return 0;
2364
2365 /*
2366 * Either if a task, enters, leave, or stays -deadline but changes
2367 * its parameters, we may need to update accordingly the total
2368 * allocated bandwidth of the container.
2369 */
2370 raw_spin_lock(&dl_b->lock);
2371 cpus = dl_bw_cpus(task_cpu(p));
2372 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2373 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2374 __dl_add(dl_b, new_bw);
2375 err = 0;
2376 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2377 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2378 __dl_clear(dl_b, p->dl.dl_bw);
2379 __dl_add(dl_b, new_bw);
2380 err = 0;
2381 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2382 __dl_clear(dl_b, p->dl.dl_bw);
2383 err = 0;
2384 }
2385 raw_spin_unlock(&dl_b->lock);
2386
2387 return err;
2388 }
2389
2390 extern void init_dl_bw(struct dl_bw *dl_b);
2391
2392 /*
2393 * wake_up_new_task - wake up a newly created task for the first time.
2394 *
2395 * This function will do some initial scheduler statistics housekeeping
2396 * that must be done for every newly created context, then puts the task
2397 * on the runqueue and wakes it.
2398 */
2399 void wake_up_new_task(struct task_struct *p)
2400 {
2401 unsigned long flags;
2402 struct rq *rq;
2403
2404 raw_spin_lock_irqsave(&p->pi_lock, flags);
2405 /* Initialize new task's runnable average */
2406 init_entity_runnable_average(&p->se);
2407 #ifdef CONFIG_SMP
2408 /*
2409 * Fork balancing, do it here and not earlier because:
2410 * - cpus_allowed can change in the fork path
2411 * - any previously selected cpu might disappear through hotplug
2412 */
2413 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2414 #endif
2415
2416 rq = __task_rq_lock(p);
2417 activate_task(rq, p, 0);
2418 p->on_rq = TASK_ON_RQ_QUEUED;
2419 trace_sched_wakeup_new(p);
2420 check_preempt_curr(rq, p, WF_FORK);
2421 #ifdef CONFIG_SMP
2422 if (p->sched_class->task_woken) {
2423 /*
2424 * Nothing relies on rq->lock after this, so its fine to
2425 * drop it.
2426 */
2427 lockdep_unpin_lock(&rq->lock);
2428 p->sched_class->task_woken(rq, p);
2429 lockdep_pin_lock(&rq->lock);
2430 }
2431 #endif
2432 task_rq_unlock(rq, p, &flags);
2433 }
2434
2435 #ifdef CONFIG_PREEMPT_NOTIFIERS
2436
2437 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2438
2439 void preempt_notifier_inc(void)
2440 {
2441 static_key_slow_inc(&preempt_notifier_key);
2442 }
2443 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2444
2445 void preempt_notifier_dec(void)
2446 {
2447 static_key_slow_dec(&preempt_notifier_key);
2448 }
2449 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2450
2451 /**
2452 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2453 * @notifier: notifier struct to register
2454 */
2455 void preempt_notifier_register(struct preempt_notifier *notifier)
2456 {
2457 if (!static_key_false(&preempt_notifier_key))
2458 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2459
2460 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2461 }
2462 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2463
2464 /**
2465 * preempt_notifier_unregister - no longer interested in preemption notifications
2466 * @notifier: notifier struct to unregister
2467 *
2468 * This is *not* safe to call from within a preemption notifier.
2469 */
2470 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2471 {
2472 hlist_del(&notifier->link);
2473 }
2474 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2475
2476 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2477 {
2478 struct preempt_notifier *notifier;
2479
2480 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2481 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2482 }
2483
2484 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2485 {
2486 if (static_key_false(&preempt_notifier_key))
2487 __fire_sched_in_preempt_notifiers(curr);
2488 }
2489
2490 static void
2491 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2492 struct task_struct *next)
2493 {
2494 struct preempt_notifier *notifier;
2495
2496 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2497 notifier->ops->sched_out(notifier, next);
2498 }
2499
2500 static __always_inline void
2501 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2502 struct task_struct *next)
2503 {
2504 if (static_key_false(&preempt_notifier_key))
2505 __fire_sched_out_preempt_notifiers(curr, next);
2506 }
2507
2508 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2509
2510 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2511 {
2512 }
2513
2514 static inline void
2515 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2516 struct task_struct *next)
2517 {
2518 }
2519
2520 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2521
2522 /**
2523 * prepare_task_switch - prepare to switch tasks
2524 * @rq: the runqueue preparing to switch
2525 * @prev: the current task that is being switched out
2526 * @next: the task we are going to switch to.
2527 *
2528 * This is called with the rq lock held and interrupts off. It must
2529 * be paired with a subsequent finish_task_switch after the context
2530 * switch.
2531 *
2532 * prepare_task_switch sets up locking and calls architecture specific
2533 * hooks.
2534 */
2535 static inline void
2536 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2537 struct task_struct *next)
2538 {
2539 sched_info_switch(rq, prev, next);
2540 perf_event_task_sched_out(prev, next);
2541 fire_sched_out_preempt_notifiers(prev, next);
2542 prepare_lock_switch(rq, next);
2543 prepare_arch_switch(next);
2544 }
2545
2546 /**
2547 * finish_task_switch - clean up after a task-switch
2548 * @prev: the thread we just switched away from.
2549 *
2550 * finish_task_switch must be called after the context switch, paired
2551 * with a prepare_task_switch call before the context switch.
2552 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2553 * and do any other architecture-specific cleanup actions.
2554 *
2555 * Note that we may have delayed dropping an mm in context_switch(). If
2556 * so, we finish that here outside of the runqueue lock. (Doing it
2557 * with the lock held can cause deadlocks; see schedule() for
2558 * details.)
2559 *
2560 * The context switch have flipped the stack from under us and restored the
2561 * local variables which were saved when this task called schedule() in the
2562 * past. prev == current is still correct but we need to recalculate this_rq
2563 * because prev may have moved to another CPU.
2564 */
2565 static struct rq *finish_task_switch(struct task_struct *prev)
2566 __releases(rq->lock)
2567 {
2568 struct rq *rq = this_rq();
2569 struct mm_struct *mm = rq->prev_mm;
2570 long prev_state;
2571
2572 /*
2573 * The previous task will have left us with a preempt_count of 2
2574 * because it left us after:
2575 *
2576 * schedule()
2577 * preempt_disable(); // 1
2578 * __schedule()
2579 * raw_spin_lock_irq(&rq->lock) // 2
2580 *
2581 * Also, see FORK_PREEMPT_COUNT.
2582 */
2583 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2584 "corrupted preempt_count: %s/%d/0x%x\n",
2585 current->comm, current->pid, preempt_count()))
2586 preempt_count_set(FORK_PREEMPT_COUNT);
2587
2588 rq->prev_mm = NULL;
2589
2590 /*
2591 * A task struct has one reference for the use as "current".
2592 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2593 * schedule one last time. The schedule call will never return, and
2594 * the scheduled task must drop that reference.
2595 *
2596 * We must observe prev->state before clearing prev->on_cpu (in
2597 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2598 * running on another CPU and we could rave with its RUNNING -> DEAD
2599 * transition, resulting in a double drop.
2600 */
2601 prev_state = prev->state;
2602 vtime_task_switch(prev);
2603 perf_event_task_sched_in(prev, current);
2604 finish_lock_switch(rq, prev);
2605 finish_arch_post_lock_switch();
2606
2607 fire_sched_in_preempt_notifiers(current);
2608 if (mm)
2609 mmdrop(mm);
2610 if (unlikely(prev_state == TASK_DEAD)) {
2611 if (prev->sched_class->task_dead)
2612 prev->sched_class->task_dead(prev);
2613
2614 /*
2615 * Remove function-return probe instances associated with this
2616 * task and put them back on the free list.
2617 */
2618 kprobe_flush_task(prev);
2619 put_task_struct(prev);
2620 }
2621
2622 tick_nohz_task_switch();
2623 return rq;
2624 }
2625
2626 #ifdef CONFIG_SMP
2627
2628 /* rq->lock is NOT held, but preemption is disabled */
2629 static void __balance_callback(struct rq *rq)
2630 {
2631 struct callback_head *head, *next;
2632 void (*func)(struct rq *rq);
2633 unsigned long flags;
2634
2635 raw_spin_lock_irqsave(&rq->lock, flags);
2636 head = rq->balance_callback;
2637 rq->balance_callback = NULL;
2638 while (head) {
2639 func = (void (*)(struct rq *))head->func;
2640 next = head->next;
2641 head->next = NULL;
2642 head = next;
2643
2644 func(rq);
2645 }
2646 raw_spin_unlock_irqrestore(&rq->lock, flags);
2647 }
2648
2649 static inline void balance_callback(struct rq *rq)
2650 {
2651 if (unlikely(rq->balance_callback))
2652 __balance_callback(rq);
2653 }
2654
2655 #else
2656
2657 static inline void balance_callback(struct rq *rq)
2658 {
2659 }
2660
2661 #endif
2662
2663 /**
2664 * schedule_tail - first thing a freshly forked thread must call.
2665 * @prev: the thread we just switched away from.
2666 */
2667 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2668 __releases(rq->lock)
2669 {
2670 struct rq *rq;
2671
2672 /*
2673 * New tasks start with FORK_PREEMPT_COUNT, see there and
2674 * finish_task_switch() for details.
2675 *
2676 * finish_task_switch() will drop rq->lock() and lower preempt_count
2677 * and the preempt_enable() will end up enabling preemption (on
2678 * PREEMPT_COUNT kernels).
2679 */
2680
2681 rq = finish_task_switch(prev);
2682 balance_callback(rq);
2683 preempt_enable();
2684
2685 if (current->set_child_tid)
2686 put_user(task_pid_vnr(current), current->set_child_tid);
2687 }
2688
2689 /*
2690 * context_switch - switch to the new MM and the new thread's register state.
2691 */
2692 static inline struct rq *
2693 context_switch(struct rq *rq, struct task_struct *prev,
2694 struct task_struct *next)
2695 {
2696 struct mm_struct *mm, *oldmm;
2697
2698 prepare_task_switch(rq, prev, next);
2699
2700 mm = next->mm;
2701 oldmm = prev->active_mm;
2702 /*
2703 * For paravirt, this is coupled with an exit in switch_to to
2704 * combine the page table reload and the switch backend into
2705 * one hypercall.
2706 */
2707 arch_start_context_switch(prev);
2708
2709 if (!mm) {
2710 next->active_mm = oldmm;
2711 atomic_inc(&oldmm->mm_count);
2712 enter_lazy_tlb(oldmm, next);
2713 } else
2714 switch_mm(oldmm, mm, next);
2715
2716 if (!prev->mm) {
2717 prev->active_mm = NULL;
2718 rq->prev_mm = oldmm;
2719 }
2720 /*
2721 * Since the runqueue lock will be released by the next
2722 * task (which is an invalid locking op but in the case
2723 * of the scheduler it's an obvious special-case), so we
2724 * do an early lockdep release here:
2725 */
2726 lockdep_unpin_lock(&rq->lock);
2727 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2728
2729 /* Here we just switch the register state and the stack. */
2730 switch_to(prev, next, prev);
2731 barrier();
2732
2733 return finish_task_switch(prev);
2734 }
2735
2736 /*
2737 * nr_running and nr_context_switches:
2738 *
2739 * externally visible scheduler statistics: current number of runnable
2740 * threads, total number of context switches performed since bootup.
2741 */
2742 unsigned long nr_running(void)
2743 {
2744 unsigned long i, sum = 0;
2745
2746 for_each_online_cpu(i)
2747 sum += cpu_rq(i)->nr_running;
2748
2749 return sum;
2750 }
2751
2752 /*
2753 * Check if only the current task is running on the cpu.
2754 *
2755 * Caution: this function does not check that the caller has disabled
2756 * preemption, thus the result might have a time-of-check-to-time-of-use
2757 * race. The caller is responsible to use it correctly, for example:
2758 *
2759 * - from a non-preemptable section (of course)
2760 *
2761 * - from a thread that is bound to a single CPU
2762 *
2763 * - in a loop with very short iterations (e.g. a polling loop)
2764 */
2765 bool single_task_running(void)
2766 {
2767 return raw_rq()->nr_running == 1;
2768 }
2769 EXPORT_SYMBOL(single_task_running);
2770
2771 unsigned long long nr_context_switches(void)
2772 {
2773 int i;
2774 unsigned long long sum = 0;
2775
2776 for_each_possible_cpu(i)
2777 sum += cpu_rq(i)->nr_switches;
2778
2779 return sum;
2780 }
2781
2782 unsigned long nr_iowait(void)
2783 {
2784 unsigned long i, sum = 0;
2785
2786 for_each_possible_cpu(i)
2787 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2788
2789 return sum;
2790 }
2791
2792 unsigned long nr_iowait_cpu(int cpu)
2793 {
2794 struct rq *this = cpu_rq(cpu);
2795 return atomic_read(&this->nr_iowait);
2796 }
2797
2798 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2799 {
2800 struct rq *rq = this_rq();
2801 *nr_waiters = atomic_read(&rq->nr_iowait);
2802 *load = rq->load.weight;
2803 }
2804
2805 #ifdef CONFIG_SMP
2806
2807 /*
2808 * sched_exec - execve() is a valuable balancing opportunity, because at
2809 * this point the task has the smallest effective memory and cache footprint.
2810 */
2811 void sched_exec(void)
2812 {
2813 struct task_struct *p = current;
2814 unsigned long flags;
2815 int dest_cpu;
2816
2817 raw_spin_lock_irqsave(&p->pi_lock, flags);
2818 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2819 if (dest_cpu == smp_processor_id())
2820 goto unlock;
2821
2822 if (likely(cpu_active(dest_cpu))) {
2823 struct migration_arg arg = { p, dest_cpu };
2824
2825 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2826 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2827 return;
2828 }
2829 unlock:
2830 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2831 }
2832
2833 #endif
2834
2835 DEFINE_PER_CPU(struct kernel_stat, kstat);
2836 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2837
2838 EXPORT_PER_CPU_SYMBOL(kstat);
2839 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2840
2841 /*
2842 * Return accounted runtime for the task.
2843 * In case the task is currently running, return the runtime plus current's
2844 * pending runtime that have not been accounted yet.
2845 */
2846 unsigned long long task_sched_runtime(struct task_struct *p)
2847 {
2848 unsigned long flags;
2849 struct rq *rq;
2850 u64 ns;
2851
2852 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2853 /*
2854 * 64-bit doesn't need locks to atomically read a 64bit value.
2855 * So we have a optimization chance when the task's delta_exec is 0.
2856 * Reading ->on_cpu is racy, but this is ok.
2857 *
2858 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2859 * If we race with it entering cpu, unaccounted time is 0. This is
2860 * indistinguishable from the read occurring a few cycles earlier.
2861 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2862 * been accounted, so we're correct here as well.
2863 */
2864 if (!p->on_cpu || !task_on_rq_queued(p))
2865 return p->se.sum_exec_runtime;
2866 #endif
2867
2868 rq = task_rq_lock(p, &flags);
2869 /*
2870 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2871 * project cycles that may never be accounted to this
2872 * thread, breaking clock_gettime().
2873 */
2874 if (task_current(rq, p) && task_on_rq_queued(p)) {
2875 update_rq_clock(rq);
2876 p->sched_class->update_curr(rq);
2877 }
2878 ns = p->se.sum_exec_runtime;
2879 task_rq_unlock(rq, p, &flags);
2880
2881 return ns;
2882 }
2883
2884 /*
2885 * This function gets called by the timer code, with HZ frequency.
2886 * We call it with interrupts disabled.
2887 */
2888 void scheduler_tick(void)
2889 {
2890 int cpu = smp_processor_id();
2891 struct rq *rq = cpu_rq(cpu);
2892 struct task_struct *curr = rq->curr;
2893
2894 sched_clock_tick();
2895
2896 raw_spin_lock(&rq->lock);
2897 update_rq_clock(rq);
2898 curr->sched_class->task_tick(rq, curr, 0);
2899 update_cpu_load_active(rq);
2900 calc_global_load_tick(rq);
2901 raw_spin_unlock(&rq->lock);
2902
2903 perf_event_task_tick();
2904
2905 #ifdef CONFIG_SMP
2906 rq->idle_balance = idle_cpu(cpu);
2907 trigger_load_balance(rq);
2908 #endif
2909 rq_last_tick_reset(rq);
2910 }
2911
2912 #ifdef CONFIG_NO_HZ_FULL
2913 /**
2914 * scheduler_tick_max_deferment
2915 *
2916 * Keep at least one tick per second when a single
2917 * active task is running because the scheduler doesn't
2918 * yet completely support full dynticks environment.
2919 *
2920 * This makes sure that uptime, CFS vruntime, load
2921 * balancing, etc... continue to move forward, even
2922 * with a very low granularity.
2923 *
2924 * Return: Maximum deferment in nanoseconds.
2925 */
2926 u64 scheduler_tick_max_deferment(void)
2927 {
2928 struct rq *rq = this_rq();
2929 unsigned long next, now = READ_ONCE(jiffies);
2930
2931 next = rq->last_sched_tick + HZ;
2932
2933 if (time_before_eq(next, now))
2934 return 0;
2935
2936 return jiffies_to_nsecs(next - now);
2937 }
2938 #endif
2939
2940 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2941 defined(CONFIG_PREEMPT_TRACER))
2942
2943 void preempt_count_add(int val)
2944 {
2945 #ifdef CONFIG_DEBUG_PREEMPT
2946 /*
2947 * Underflow?
2948 */
2949 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2950 return;
2951 #endif
2952 __preempt_count_add(val);
2953 #ifdef CONFIG_DEBUG_PREEMPT
2954 /*
2955 * Spinlock count overflowing soon?
2956 */
2957 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2958 PREEMPT_MASK - 10);
2959 #endif
2960 if (preempt_count() == val) {
2961 unsigned long ip = get_lock_parent_ip();
2962 #ifdef CONFIG_DEBUG_PREEMPT
2963 current->preempt_disable_ip = ip;
2964 #endif
2965 trace_preempt_off(CALLER_ADDR0, ip);
2966 }
2967 }
2968 EXPORT_SYMBOL(preempt_count_add);
2969 NOKPROBE_SYMBOL(preempt_count_add);
2970
2971 void preempt_count_sub(int val)
2972 {
2973 #ifdef CONFIG_DEBUG_PREEMPT
2974 /*
2975 * Underflow?
2976 */
2977 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2978 return;
2979 /*
2980 * Is the spinlock portion underflowing?
2981 */
2982 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2983 !(preempt_count() & PREEMPT_MASK)))
2984 return;
2985 #endif
2986
2987 if (preempt_count() == val)
2988 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
2989 __preempt_count_sub(val);
2990 }
2991 EXPORT_SYMBOL(preempt_count_sub);
2992 NOKPROBE_SYMBOL(preempt_count_sub);
2993
2994 #endif
2995
2996 /*
2997 * Print scheduling while atomic bug:
2998 */
2999 static noinline void __schedule_bug(struct task_struct *prev)
3000 {
3001 if (oops_in_progress)
3002 return;
3003
3004 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3005 prev->comm, prev->pid, preempt_count());
3006
3007 debug_show_held_locks(prev);
3008 print_modules();
3009 if (irqs_disabled())
3010 print_irqtrace_events(prev);
3011 #ifdef CONFIG_DEBUG_PREEMPT
3012 if (in_atomic_preempt_off()) {
3013 pr_err("Preemption disabled at:");
3014 print_ip_sym(current->preempt_disable_ip);
3015 pr_cont("\n");
3016 }
3017 #endif
3018 dump_stack();
3019 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3020 }
3021
3022 /*
3023 * Various schedule()-time debugging checks and statistics:
3024 */
3025 static inline void schedule_debug(struct task_struct *prev)
3026 {
3027 #ifdef CONFIG_SCHED_STACK_END_CHECK
3028 BUG_ON(task_stack_end_corrupted(prev));
3029 #endif
3030
3031 if (unlikely(in_atomic_preempt_off())) {
3032 __schedule_bug(prev);
3033 preempt_count_set(PREEMPT_DISABLED);
3034 }
3035 rcu_sleep_check();
3036
3037 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3038
3039 schedstat_inc(this_rq(), sched_count);
3040 }
3041
3042 /*
3043 * Pick up the highest-prio task:
3044 */
3045 static inline struct task_struct *
3046 pick_next_task(struct rq *rq, struct task_struct *prev)
3047 {
3048 const struct sched_class *class = &fair_sched_class;
3049 struct task_struct *p;
3050
3051 /*
3052 * Optimization: we know that if all tasks are in
3053 * the fair class we can call that function directly:
3054 */
3055 if (likely(prev->sched_class == class &&
3056 rq->nr_running == rq->cfs.h_nr_running)) {
3057 p = fair_sched_class.pick_next_task(rq, prev);
3058 if (unlikely(p == RETRY_TASK))
3059 goto again;
3060
3061 /* assumes fair_sched_class->next == idle_sched_class */
3062 if (unlikely(!p))
3063 p = idle_sched_class.pick_next_task(rq, prev);
3064
3065 return p;
3066 }
3067
3068 again:
3069 for_each_class(class) {
3070 p = class->pick_next_task(rq, prev);
3071 if (p) {
3072 if (unlikely(p == RETRY_TASK))
3073 goto again;
3074 return p;
3075 }
3076 }
3077
3078 BUG(); /* the idle class will always have a runnable task */
3079 }
3080
3081 /*
3082 * __schedule() is the main scheduler function.
3083 *
3084 * The main means of driving the scheduler and thus entering this function are:
3085 *
3086 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3087 *
3088 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3089 * paths. For example, see arch/x86/entry_64.S.
3090 *
3091 * To drive preemption between tasks, the scheduler sets the flag in timer
3092 * interrupt handler scheduler_tick().
3093 *
3094 * 3. Wakeups don't really cause entry into schedule(). They add a
3095 * task to the run-queue and that's it.
3096 *
3097 * Now, if the new task added to the run-queue preempts the current
3098 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3099 * called on the nearest possible occasion:
3100 *
3101 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3102 *
3103 * - in syscall or exception context, at the next outmost
3104 * preempt_enable(). (this might be as soon as the wake_up()'s
3105 * spin_unlock()!)
3106 *
3107 * - in IRQ context, return from interrupt-handler to
3108 * preemptible context
3109 *
3110 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3111 * then at the next:
3112 *
3113 * - cond_resched() call
3114 * - explicit schedule() call
3115 * - return from syscall or exception to user-space
3116 * - return from interrupt-handler to user-space
3117 *
3118 * WARNING: must be called with preemption disabled!
3119 */
3120 static void __sched notrace __schedule(bool preempt)
3121 {
3122 struct task_struct *prev, *next;
3123 unsigned long *switch_count;
3124 struct rq *rq;
3125 int cpu;
3126
3127 cpu = smp_processor_id();
3128 rq = cpu_rq(cpu);
3129 prev = rq->curr;
3130
3131 /*
3132 * do_exit() calls schedule() with preemption disabled as an exception;
3133 * however we must fix that up, otherwise the next task will see an
3134 * inconsistent (higher) preempt count.
3135 *
3136 * It also avoids the below schedule_debug() test from complaining
3137 * about this.
3138 */
3139 if (unlikely(prev->state == TASK_DEAD))
3140 preempt_enable_no_resched_notrace();
3141
3142 schedule_debug(prev);
3143
3144 if (sched_feat(HRTICK))
3145 hrtick_clear(rq);
3146
3147 local_irq_disable();
3148 rcu_note_context_switch();
3149
3150 /*
3151 * Make sure that signal_pending_state()->signal_pending() below
3152 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3153 * done by the caller to avoid the race with signal_wake_up().
3154 */
3155 smp_mb__before_spinlock();
3156 raw_spin_lock(&rq->lock);
3157 lockdep_pin_lock(&rq->lock);
3158
3159 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3160
3161 switch_count = &prev->nivcsw;
3162 if (!preempt && prev->state) {
3163 if (unlikely(signal_pending_state(prev->state, prev))) {
3164 prev->state = TASK_RUNNING;
3165 } else {
3166 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3167 prev->on_rq = 0;
3168
3169 /*
3170 * If a worker went to sleep, notify and ask workqueue
3171 * whether it wants to wake up a task to maintain
3172 * concurrency.
3173 */
3174 if (prev->flags & PF_WQ_WORKER) {
3175 struct task_struct *to_wakeup;
3176
3177 to_wakeup = wq_worker_sleeping(prev, cpu);
3178 if (to_wakeup)
3179 try_to_wake_up_local(to_wakeup);
3180 }
3181 }
3182 switch_count = &prev->nvcsw;
3183 }
3184
3185 if (task_on_rq_queued(prev))
3186 update_rq_clock(rq);
3187
3188 next = pick_next_task(rq, prev);
3189 clear_tsk_need_resched(prev);
3190 clear_preempt_need_resched();
3191 rq->clock_skip_update = 0;
3192
3193 if (likely(prev != next)) {
3194 rq->nr_switches++;
3195 rq->curr = next;
3196 ++*switch_count;
3197
3198 trace_sched_switch(preempt, prev, next);
3199 rq = context_switch(rq, prev, next); /* unlocks the rq */
3200 } else {
3201 lockdep_unpin_lock(&rq->lock);
3202 raw_spin_unlock_irq(&rq->lock);
3203 }
3204
3205 balance_callback(rq);
3206 }
3207
3208 static inline void sched_submit_work(struct task_struct *tsk)
3209 {
3210 if (!tsk->state || tsk_is_pi_blocked(tsk))
3211 return;
3212 /*
3213 * If we are going to sleep and we have plugged IO queued,
3214 * make sure to submit it to avoid deadlocks.
3215 */
3216 if (blk_needs_flush_plug(tsk))
3217 blk_schedule_flush_plug(tsk);
3218 }
3219
3220 asmlinkage __visible void __sched schedule(void)
3221 {
3222 struct task_struct *tsk = current;
3223
3224 sched_submit_work(tsk);
3225 do {
3226 preempt_disable();
3227 __schedule(false);
3228 sched_preempt_enable_no_resched();
3229 } while (need_resched());
3230 }
3231 EXPORT_SYMBOL(schedule);
3232
3233 #ifdef CONFIG_CONTEXT_TRACKING
3234 asmlinkage __visible void __sched schedule_user(void)
3235 {
3236 /*
3237 * If we come here after a random call to set_need_resched(),
3238 * or we have been woken up remotely but the IPI has not yet arrived,
3239 * we haven't yet exited the RCU idle mode. Do it here manually until
3240 * we find a better solution.
3241 *
3242 * NB: There are buggy callers of this function. Ideally we
3243 * should warn if prev_state != CONTEXT_USER, but that will trigger
3244 * too frequently to make sense yet.
3245 */
3246 enum ctx_state prev_state = exception_enter();
3247 schedule();
3248 exception_exit(prev_state);
3249 }
3250 #endif
3251
3252 /**
3253 * schedule_preempt_disabled - called with preemption disabled
3254 *
3255 * Returns with preemption disabled. Note: preempt_count must be 1
3256 */
3257 void __sched schedule_preempt_disabled(void)
3258 {
3259 sched_preempt_enable_no_resched();
3260 schedule();
3261 preempt_disable();
3262 }
3263
3264 static void __sched notrace preempt_schedule_common(void)
3265 {
3266 do {
3267 preempt_disable_notrace();
3268 __schedule(true);
3269 preempt_enable_no_resched_notrace();
3270
3271 /*
3272 * Check again in case we missed a preemption opportunity
3273 * between schedule and now.
3274 */
3275 } while (need_resched());
3276 }
3277
3278 #ifdef CONFIG_PREEMPT
3279 /*
3280 * this is the entry point to schedule() from in-kernel preemption
3281 * off of preempt_enable. Kernel preemptions off return from interrupt
3282 * occur there and call schedule directly.
3283 */
3284 asmlinkage __visible void __sched notrace preempt_schedule(void)
3285 {
3286 /*
3287 * If there is a non-zero preempt_count or interrupts are disabled,
3288 * we do not want to preempt the current task. Just return..
3289 */
3290 if (likely(!preemptible()))
3291 return;
3292
3293 preempt_schedule_common();
3294 }
3295 NOKPROBE_SYMBOL(preempt_schedule);
3296 EXPORT_SYMBOL(preempt_schedule);
3297
3298 /**
3299 * preempt_schedule_notrace - preempt_schedule called by tracing
3300 *
3301 * The tracing infrastructure uses preempt_enable_notrace to prevent
3302 * recursion and tracing preempt enabling caused by the tracing
3303 * infrastructure itself. But as tracing can happen in areas coming
3304 * from userspace or just about to enter userspace, a preempt enable
3305 * can occur before user_exit() is called. This will cause the scheduler
3306 * to be called when the system is still in usermode.
3307 *
3308 * To prevent this, the preempt_enable_notrace will use this function
3309 * instead of preempt_schedule() to exit user context if needed before
3310 * calling the scheduler.
3311 */
3312 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3313 {
3314 enum ctx_state prev_ctx;
3315
3316 if (likely(!preemptible()))
3317 return;
3318
3319 do {
3320 preempt_disable_notrace();
3321 /*
3322 * Needs preempt disabled in case user_exit() is traced
3323 * and the tracer calls preempt_enable_notrace() causing
3324 * an infinite recursion.
3325 */
3326 prev_ctx = exception_enter();
3327 __schedule(true);
3328 exception_exit(prev_ctx);
3329
3330 preempt_enable_no_resched_notrace();
3331 } while (need_resched());
3332 }
3333 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3334
3335 #endif /* CONFIG_PREEMPT */
3336
3337 /*
3338 * this is the entry point to schedule() from kernel preemption
3339 * off of irq context.
3340 * Note, that this is called and return with irqs disabled. This will
3341 * protect us against recursive calling from irq.
3342 */
3343 asmlinkage __visible void __sched preempt_schedule_irq(void)
3344 {
3345 enum ctx_state prev_state;
3346
3347 /* Catch callers which need to be fixed */
3348 BUG_ON(preempt_count() || !irqs_disabled());
3349
3350 prev_state = exception_enter();
3351
3352 do {
3353 preempt_disable();
3354 local_irq_enable();
3355 __schedule(true);
3356 local_irq_disable();
3357 sched_preempt_enable_no_resched();
3358 } while (need_resched());
3359
3360 exception_exit(prev_state);
3361 }
3362
3363 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3364 void *key)
3365 {
3366 return try_to_wake_up(curr->private, mode, wake_flags);
3367 }
3368 EXPORT_SYMBOL(default_wake_function);
3369
3370 #ifdef CONFIG_RT_MUTEXES
3371
3372 /*
3373 * rt_mutex_setprio - set the current priority of a task
3374 * @p: task
3375 * @prio: prio value (kernel-internal form)
3376 *
3377 * This function changes the 'effective' priority of a task. It does
3378 * not touch ->normal_prio like __setscheduler().
3379 *
3380 * Used by the rt_mutex code to implement priority inheritance
3381 * logic. Call site only calls if the priority of the task changed.
3382 */
3383 void rt_mutex_setprio(struct task_struct *p, int prio)
3384 {
3385 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3386 struct rq *rq;
3387 const struct sched_class *prev_class;
3388
3389 BUG_ON(prio > MAX_PRIO);
3390
3391 rq = __task_rq_lock(p);
3392
3393 /*
3394 * Idle task boosting is a nono in general. There is one
3395 * exception, when PREEMPT_RT and NOHZ is active:
3396 *
3397 * The idle task calls get_next_timer_interrupt() and holds
3398 * the timer wheel base->lock on the CPU and another CPU wants
3399 * to access the timer (probably to cancel it). We can safely
3400 * ignore the boosting request, as the idle CPU runs this code
3401 * with interrupts disabled and will complete the lock
3402 * protected section without being interrupted. So there is no
3403 * real need to boost.
3404 */
3405 if (unlikely(p == rq->idle)) {
3406 WARN_ON(p != rq->curr);
3407 WARN_ON(p->pi_blocked_on);
3408 goto out_unlock;
3409 }
3410
3411 trace_sched_pi_setprio(p, prio);
3412 oldprio = p->prio;
3413
3414 if (oldprio == prio)
3415 queue_flag &= ~DEQUEUE_MOVE;
3416
3417 prev_class = p->sched_class;
3418 queued = task_on_rq_queued(p);
3419 running = task_current(rq, p);
3420 if (queued)
3421 dequeue_task(rq, p, queue_flag);
3422 if (running)
3423 put_prev_task(rq, p);
3424
3425 /*
3426 * Boosting condition are:
3427 * 1. -rt task is running and holds mutex A
3428 * --> -dl task blocks on mutex A
3429 *
3430 * 2. -dl task is running and holds mutex A
3431 * --> -dl task blocks on mutex A and could preempt the
3432 * running task
3433 */
3434 if (dl_prio(prio)) {
3435 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3436 if (!dl_prio(p->normal_prio) ||
3437 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3438 p->dl.dl_boosted = 1;
3439 queue_flag |= ENQUEUE_REPLENISH;
3440 } else
3441 p->dl.dl_boosted = 0;
3442 p->sched_class = &dl_sched_class;
3443 } else if (rt_prio(prio)) {
3444 if (dl_prio(oldprio))
3445 p->dl.dl_boosted = 0;
3446 if (oldprio < prio)
3447 queue_flag |= ENQUEUE_HEAD;
3448 p->sched_class = &rt_sched_class;
3449 } else {
3450 if (dl_prio(oldprio))
3451 p->dl.dl_boosted = 0;
3452 if (rt_prio(oldprio))
3453 p->rt.timeout = 0;
3454 p->sched_class = &fair_sched_class;
3455 }
3456
3457 p->prio = prio;
3458
3459 if (running)
3460 p->sched_class->set_curr_task(rq);
3461 if (queued)
3462 enqueue_task(rq, p, queue_flag);
3463
3464 check_class_changed(rq, p, prev_class, oldprio);
3465 out_unlock:
3466 preempt_disable(); /* avoid rq from going away on us */
3467 __task_rq_unlock(rq);
3468
3469 balance_callback(rq);
3470 preempt_enable();
3471 }
3472 #endif
3473
3474 void set_user_nice(struct task_struct *p, long nice)
3475 {
3476 int old_prio, delta, queued;
3477 unsigned long flags;
3478 struct rq *rq;
3479
3480 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3481 return;
3482 /*
3483 * We have to be careful, if called from sys_setpriority(),
3484 * the task might be in the middle of scheduling on another CPU.
3485 */
3486 rq = task_rq_lock(p, &flags);
3487 /*
3488 * The RT priorities are set via sched_setscheduler(), but we still
3489 * allow the 'normal' nice value to be set - but as expected
3490 * it wont have any effect on scheduling until the task is
3491 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3492 */
3493 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3494 p->static_prio = NICE_TO_PRIO(nice);
3495 goto out_unlock;
3496 }
3497 queued = task_on_rq_queued(p);
3498 if (queued)
3499 dequeue_task(rq, p, DEQUEUE_SAVE);
3500
3501 p->static_prio = NICE_TO_PRIO(nice);
3502 set_load_weight(p);
3503 old_prio = p->prio;
3504 p->prio = effective_prio(p);
3505 delta = p->prio - old_prio;
3506
3507 if (queued) {
3508 enqueue_task(rq, p, ENQUEUE_RESTORE);
3509 /*
3510 * If the task increased its priority or is running and
3511 * lowered its priority, then reschedule its CPU:
3512 */
3513 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3514 resched_curr(rq);
3515 }
3516 out_unlock:
3517 task_rq_unlock(rq, p, &flags);
3518 }
3519 EXPORT_SYMBOL(set_user_nice);
3520
3521 /*
3522 * can_nice - check if a task can reduce its nice value
3523 * @p: task
3524 * @nice: nice value
3525 */
3526 int can_nice(const struct task_struct *p, const int nice)
3527 {
3528 /* convert nice value [19,-20] to rlimit style value [1,40] */
3529 int nice_rlim = nice_to_rlimit(nice);
3530
3531 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3532 capable(CAP_SYS_NICE));
3533 }
3534
3535 #ifdef __ARCH_WANT_SYS_NICE
3536
3537 /*
3538 * sys_nice - change the priority of the current process.
3539 * @increment: priority increment
3540 *
3541 * sys_setpriority is a more generic, but much slower function that
3542 * does similar things.
3543 */
3544 SYSCALL_DEFINE1(nice, int, increment)
3545 {
3546 long nice, retval;
3547
3548 /*
3549 * Setpriority might change our priority at the same moment.
3550 * We don't have to worry. Conceptually one call occurs first
3551 * and we have a single winner.
3552 */
3553 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3554 nice = task_nice(current) + increment;
3555
3556 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3557 if (increment < 0 && !can_nice(current, nice))
3558 return -EPERM;
3559
3560 retval = security_task_setnice(current, nice);
3561 if (retval)
3562 return retval;
3563
3564 set_user_nice(current, nice);
3565 return 0;
3566 }
3567
3568 #endif
3569
3570 /**
3571 * task_prio - return the priority value of a given task.
3572 * @p: the task in question.
3573 *
3574 * Return: The priority value as seen by users in /proc.
3575 * RT tasks are offset by -200. Normal tasks are centered
3576 * around 0, value goes from -16 to +15.
3577 */
3578 int task_prio(const struct task_struct *p)
3579 {
3580 return p->prio - MAX_RT_PRIO;
3581 }
3582
3583 /**
3584 * idle_cpu - is a given cpu idle currently?
3585 * @cpu: the processor in question.
3586 *
3587 * Return: 1 if the CPU is currently idle. 0 otherwise.
3588 */
3589 int idle_cpu(int cpu)
3590 {
3591 struct rq *rq = cpu_rq(cpu);
3592
3593 if (rq->curr != rq->idle)
3594 return 0;
3595
3596 if (rq->nr_running)
3597 return 0;
3598
3599 #ifdef CONFIG_SMP
3600 if (!llist_empty(&rq->wake_list))
3601 return 0;
3602 #endif
3603
3604 return 1;
3605 }
3606
3607 /**
3608 * idle_task - return the idle task for a given cpu.
3609 * @cpu: the processor in question.
3610 *
3611 * Return: The idle task for the cpu @cpu.
3612 */
3613 struct task_struct *idle_task(int cpu)
3614 {
3615 return cpu_rq(cpu)->idle;
3616 }
3617
3618 /**
3619 * find_process_by_pid - find a process with a matching PID value.
3620 * @pid: the pid in question.
3621 *
3622 * The task of @pid, if found. %NULL otherwise.
3623 */
3624 static struct task_struct *find_process_by_pid(pid_t pid)
3625 {
3626 return pid ? find_task_by_vpid(pid) : current;
3627 }
3628
3629 /*
3630 * This function initializes the sched_dl_entity of a newly becoming
3631 * SCHED_DEADLINE task.
3632 *
3633 * Only the static values are considered here, the actual runtime and the
3634 * absolute deadline will be properly calculated when the task is enqueued
3635 * for the first time with its new policy.
3636 */
3637 static void
3638 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3639 {
3640 struct sched_dl_entity *dl_se = &p->dl;
3641
3642 dl_se->dl_runtime = attr->sched_runtime;
3643 dl_se->dl_deadline = attr->sched_deadline;
3644 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3645 dl_se->flags = attr->sched_flags;
3646 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3647
3648 /*
3649 * Changing the parameters of a task is 'tricky' and we're not doing
3650 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3651 *
3652 * What we SHOULD do is delay the bandwidth release until the 0-lag
3653 * point. This would include retaining the task_struct until that time
3654 * and change dl_overflow() to not immediately decrement the current
3655 * amount.
3656 *
3657 * Instead we retain the current runtime/deadline and let the new
3658 * parameters take effect after the current reservation period lapses.
3659 * This is safe (albeit pessimistic) because the 0-lag point is always
3660 * before the current scheduling deadline.
3661 *
3662 * We can still have temporary overloads because we do not delay the
3663 * change in bandwidth until that time; so admission control is
3664 * not on the safe side. It does however guarantee tasks will never
3665 * consume more than promised.
3666 */
3667 }
3668
3669 /*
3670 * sched_setparam() passes in -1 for its policy, to let the functions
3671 * it calls know not to change it.
3672 */
3673 #define SETPARAM_POLICY -1
3674
3675 static void __setscheduler_params(struct task_struct *p,
3676 const struct sched_attr *attr)
3677 {
3678 int policy = attr->sched_policy;
3679
3680 if (policy == SETPARAM_POLICY)
3681 policy = p->policy;
3682
3683 p->policy = policy;
3684
3685 if (dl_policy(policy))
3686 __setparam_dl(p, attr);
3687 else if (fair_policy(policy))
3688 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3689
3690 /*
3691 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3692 * !rt_policy. Always setting this ensures that things like
3693 * getparam()/getattr() don't report silly values for !rt tasks.
3694 */
3695 p->rt_priority = attr->sched_priority;
3696 p->normal_prio = normal_prio(p);
3697 set_load_weight(p);
3698 }
3699
3700 /* Actually do priority change: must hold pi & rq lock. */
3701 static void __setscheduler(struct rq *rq, struct task_struct *p,
3702 const struct sched_attr *attr, bool keep_boost)
3703 {
3704 __setscheduler_params(p, attr);
3705
3706 /*
3707 * Keep a potential priority boosting if called from
3708 * sched_setscheduler().
3709 */
3710 if (keep_boost)
3711 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3712 else
3713 p->prio = normal_prio(p);
3714
3715 if (dl_prio(p->prio))
3716 p->sched_class = &dl_sched_class;
3717 else if (rt_prio(p->prio))
3718 p->sched_class = &rt_sched_class;
3719 else
3720 p->sched_class = &fair_sched_class;
3721 }
3722
3723 static void
3724 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3725 {
3726 struct sched_dl_entity *dl_se = &p->dl;
3727
3728 attr->sched_priority = p->rt_priority;
3729 attr->sched_runtime = dl_se->dl_runtime;
3730 attr->sched_deadline = dl_se->dl_deadline;
3731 attr->sched_period = dl_se->dl_period;
3732 attr->sched_flags = dl_se->flags;
3733 }
3734
3735 /*
3736 * This function validates the new parameters of a -deadline task.
3737 * We ask for the deadline not being zero, and greater or equal
3738 * than the runtime, as well as the period of being zero or
3739 * greater than deadline. Furthermore, we have to be sure that
3740 * user parameters are above the internal resolution of 1us (we
3741 * check sched_runtime only since it is always the smaller one) and
3742 * below 2^63 ns (we have to check both sched_deadline and
3743 * sched_period, as the latter can be zero).
3744 */
3745 static bool
3746 __checkparam_dl(const struct sched_attr *attr)
3747 {
3748 /* deadline != 0 */
3749 if (attr->sched_deadline == 0)
3750 return false;
3751
3752 /*
3753 * Since we truncate DL_SCALE bits, make sure we're at least
3754 * that big.
3755 */
3756 if (attr->sched_runtime < (1ULL << DL_SCALE))
3757 return false;
3758
3759 /*
3760 * Since we use the MSB for wrap-around and sign issues, make
3761 * sure it's not set (mind that period can be equal to zero).
3762 */
3763 if (attr->sched_deadline & (1ULL << 63) ||
3764 attr->sched_period & (1ULL << 63))
3765 return false;
3766
3767 /* runtime <= deadline <= period (if period != 0) */
3768 if ((attr->sched_period != 0 &&
3769 attr->sched_period < attr->sched_deadline) ||
3770 attr->sched_deadline < attr->sched_runtime)
3771 return false;
3772
3773 return true;
3774 }
3775
3776 /*
3777 * check the target process has a UID that matches the current process's
3778 */
3779 static bool check_same_owner(struct task_struct *p)
3780 {
3781 const struct cred *cred = current_cred(), *pcred;
3782 bool match;
3783
3784 rcu_read_lock();
3785 pcred = __task_cred(p);
3786 match = (uid_eq(cred->euid, pcred->euid) ||
3787 uid_eq(cred->euid, pcred->uid));
3788 rcu_read_unlock();
3789 return match;
3790 }
3791
3792 static bool dl_param_changed(struct task_struct *p,
3793 const struct sched_attr *attr)
3794 {
3795 struct sched_dl_entity *dl_se = &p->dl;
3796
3797 if (dl_se->dl_runtime != attr->sched_runtime ||
3798 dl_se->dl_deadline != attr->sched_deadline ||
3799 dl_se->dl_period != attr->sched_period ||
3800 dl_se->flags != attr->sched_flags)
3801 return true;
3802
3803 return false;
3804 }
3805
3806 static int __sched_setscheduler(struct task_struct *p,
3807 const struct sched_attr *attr,
3808 bool user, bool pi)
3809 {
3810 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3811 MAX_RT_PRIO - 1 - attr->sched_priority;
3812 int retval, oldprio, oldpolicy = -1, queued, running;
3813 int new_effective_prio, policy = attr->sched_policy;
3814 unsigned long flags;
3815 const struct sched_class *prev_class;
3816 struct rq *rq;
3817 int reset_on_fork;
3818 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3819
3820 /* may grab non-irq protected spin_locks */
3821 BUG_ON(in_interrupt());
3822 recheck:
3823 /* double check policy once rq lock held */
3824 if (policy < 0) {
3825 reset_on_fork = p->sched_reset_on_fork;
3826 policy = oldpolicy = p->policy;
3827 } else {
3828 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3829
3830 if (!valid_policy(policy))
3831 return -EINVAL;
3832 }
3833
3834 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3835 return -EINVAL;
3836
3837 /*
3838 * Valid priorities for SCHED_FIFO and SCHED_RR are
3839 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3840 * SCHED_BATCH and SCHED_IDLE is 0.
3841 */
3842 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3843 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3844 return -EINVAL;
3845 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3846 (rt_policy(policy) != (attr->sched_priority != 0)))
3847 return -EINVAL;
3848
3849 /*
3850 * Allow unprivileged RT tasks to decrease priority:
3851 */
3852 if (user && !capable(CAP_SYS_NICE)) {
3853 if (fair_policy(policy)) {
3854 if (attr->sched_nice < task_nice(p) &&
3855 !can_nice(p, attr->sched_nice))
3856 return -EPERM;
3857 }
3858
3859 if (rt_policy(policy)) {
3860 unsigned long rlim_rtprio =
3861 task_rlimit(p, RLIMIT_RTPRIO);
3862
3863 /* can't set/change the rt policy */
3864 if (policy != p->policy && !rlim_rtprio)
3865 return -EPERM;
3866
3867 /* can't increase priority */
3868 if (attr->sched_priority > p->rt_priority &&
3869 attr->sched_priority > rlim_rtprio)
3870 return -EPERM;
3871 }
3872
3873 /*
3874 * Can't set/change SCHED_DEADLINE policy at all for now
3875 * (safest behavior); in the future we would like to allow
3876 * unprivileged DL tasks to increase their relative deadline
3877 * or reduce their runtime (both ways reducing utilization)
3878 */
3879 if (dl_policy(policy))
3880 return -EPERM;
3881
3882 /*
3883 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3884 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3885 */
3886 if (idle_policy(p->policy) && !idle_policy(policy)) {
3887 if (!can_nice(p, task_nice(p)))
3888 return -EPERM;
3889 }
3890
3891 /* can't change other user's priorities */
3892 if (!check_same_owner(p))
3893 return -EPERM;
3894
3895 /* Normal users shall not reset the sched_reset_on_fork flag */
3896 if (p->sched_reset_on_fork && !reset_on_fork)
3897 return -EPERM;
3898 }
3899
3900 if (user) {
3901 retval = security_task_setscheduler(p);
3902 if (retval)
3903 return retval;
3904 }
3905
3906 /*
3907 * make sure no PI-waiters arrive (or leave) while we are
3908 * changing the priority of the task:
3909 *
3910 * To be able to change p->policy safely, the appropriate
3911 * runqueue lock must be held.
3912 */
3913 rq = task_rq_lock(p, &flags);
3914
3915 /*
3916 * Changing the policy of the stop threads its a very bad idea
3917 */
3918 if (p == rq->stop) {
3919 task_rq_unlock(rq, p, &flags);
3920 return -EINVAL;
3921 }
3922
3923 /*
3924 * If not changing anything there's no need to proceed further,
3925 * but store a possible modification of reset_on_fork.
3926 */
3927 if (unlikely(policy == p->policy)) {
3928 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3929 goto change;
3930 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3931 goto change;
3932 if (dl_policy(policy) && dl_param_changed(p, attr))
3933 goto change;
3934
3935 p->sched_reset_on_fork = reset_on_fork;
3936 task_rq_unlock(rq, p, &flags);
3937 return 0;
3938 }
3939 change:
3940
3941 if (user) {
3942 #ifdef CONFIG_RT_GROUP_SCHED
3943 /*
3944 * Do not allow realtime tasks into groups that have no runtime
3945 * assigned.
3946 */
3947 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3948 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3949 !task_group_is_autogroup(task_group(p))) {
3950 task_rq_unlock(rq, p, &flags);
3951 return -EPERM;
3952 }
3953 #endif
3954 #ifdef CONFIG_SMP
3955 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3956 cpumask_t *span = rq->rd->span;
3957
3958 /*
3959 * Don't allow tasks with an affinity mask smaller than
3960 * the entire root_domain to become SCHED_DEADLINE. We
3961 * will also fail if there's no bandwidth available.
3962 */
3963 if (!cpumask_subset(span, &p->cpus_allowed) ||
3964 rq->rd->dl_bw.bw == 0) {
3965 task_rq_unlock(rq, p, &flags);
3966 return -EPERM;
3967 }
3968 }
3969 #endif
3970 }
3971
3972 /* recheck policy now with rq lock held */
3973 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3974 policy = oldpolicy = -1;
3975 task_rq_unlock(rq, p, &flags);
3976 goto recheck;
3977 }
3978
3979 /*
3980 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3981 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3982 * is available.
3983 */
3984 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3985 task_rq_unlock(rq, p, &flags);
3986 return -EBUSY;
3987 }
3988
3989 p->sched_reset_on_fork = reset_on_fork;
3990 oldprio = p->prio;
3991
3992 if (pi) {
3993 /*
3994 * Take priority boosted tasks into account. If the new
3995 * effective priority is unchanged, we just store the new
3996 * normal parameters and do not touch the scheduler class and
3997 * the runqueue. This will be done when the task deboost
3998 * itself.
3999 */
4000 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4001 if (new_effective_prio == oldprio)
4002 queue_flags &= ~DEQUEUE_MOVE;
4003 }
4004
4005 queued = task_on_rq_queued(p);
4006 running = task_current(rq, p);
4007 if (queued)
4008 dequeue_task(rq, p, queue_flags);
4009 if (running)
4010 put_prev_task(rq, p);
4011
4012 prev_class = p->sched_class;
4013 __setscheduler(rq, p, attr, pi);
4014
4015 if (running)
4016 p->sched_class->set_curr_task(rq);
4017 if (queued) {
4018 /*
4019 * We enqueue to tail when the priority of a task is
4020 * increased (user space view).
4021 */
4022 if (oldprio < p->prio)
4023 queue_flags |= ENQUEUE_HEAD;
4024
4025 enqueue_task(rq, p, queue_flags);
4026 }
4027
4028 check_class_changed(rq, p, prev_class, oldprio);
4029 preempt_disable(); /* avoid rq from going away on us */
4030 task_rq_unlock(rq, p, &flags);
4031
4032 if (pi)
4033 rt_mutex_adjust_pi(p);
4034
4035 /*
4036 * Run balance callbacks after we've adjusted the PI chain.
4037 */
4038 balance_callback(rq);
4039 preempt_enable();
4040
4041 return 0;
4042 }
4043
4044 static int _sched_setscheduler(struct task_struct *p, int policy,
4045 const struct sched_param *param, bool check)
4046 {
4047 struct sched_attr attr = {
4048 .sched_policy = policy,
4049 .sched_priority = param->sched_priority,
4050 .sched_nice = PRIO_TO_NICE(p->static_prio),
4051 };
4052
4053 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4054 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4055 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4056 policy &= ~SCHED_RESET_ON_FORK;
4057 attr.sched_policy = policy;
4058 }
4059
4060 return __sched_setscheduler(p, &attr, check, true);
4061 }
4062 /**
4063 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4064 * @p: the task in question.
4065 * @policy: new policy.
4066 * @param: structure containing the new RT priority.
4067 *
4068 * Return: 0 on success. An error code otherwise.
4069 *
4070 * NOTE that the task may be already dead.
4071 */
4072 int sched_setscheduler(struct task_struct *p, int policy,
4073 const struct sched_param *param)
4074 {
4075 return _sched_setscheduler(p, policy, param, true);
4076 }
4077 EXPORT_SYMBOL_GPL(sched_setscheduler);
4078
4079 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4080 {
4081 return __sched_setscheduler(p, attr, true, true);
4082 }
4083 EXPORT_SYMBOL_GPL(sched_setattr);
4084
4085 /**
4086 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4087 * @p: the task in question.
4088 * @policy: new policy.
4089 * @param: structure containing the new RT priority.
4090 *
4091 * Just like sched_setscheduler, only don't bother checking if the
4092 * current context has permission. For example, this is needed in
4093 * stop_machine(): we create temporary high priority worker threads,
4094 * but our caller might not have that capability.
4095 *
4096 * Return: 0 on success. An error code otherwise.
4097 */
4098 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4099 const struct sched_param *param)
4100 {
4101 return _sched_setscheduler(p, policy, param, false);
4102 }
4103 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4104
4105 static int
4106 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4107 {
4108 struct sched_param lparam;
4109 struct task_struct *p;
4110 int retval;
4111
4112 if (!param || pid < 0)
4113 return -EINVAL;
4114 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4115 return -EFAULT;
4116
4117 rcu_read_lock();
4118 retval = -ESRCH;
4119 p = find_process_by_pid(pid);
4120 if (p != NULL)
4121 retval = sched_setscheduler(p, policy, &lparam);
4122 rcu_read_unlock();
4123
4124 return retval;
4125 }
4126
4127 /*
4128 * Mimics kernel/events/core.c perf_copy_attr().
4129 */
4130 static int sched_copy_attr(struct sched_attr __user *uattr,
4131 struct sched_attr *attr)
4132 {
4133 u32 size;
4134 int ret;
4135
4136 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4137 return -EFAULT;
4138
4139 /*
4140 * zero the full structure, so that a short copy will be nice.
4141 */
4142 memset(attr, 0, sizeof(*attr));
4143
4144 ret = get_user(size, &uattr->size);
4145 if (ret)
4146 return ret;
4147
4148 if (size > PAGE_SIZE) /* silly large */
4149 goto err_size;
4150
4151 if (!size) /* abi compat */
4152 size = SCHED_ATTR_SIZE_VER0;
4153
4154 if (size < SCHED_ATTR_SIZE_VER0)
4155 goto err_size;
4156
4157 /*
4158 * If we're handed a bigger struct than we know of,
4159 * ensure all the unknown bits are 0 - i.e. new
4160 * user-space does not rely on any kernel feature
4161 * extensions we dont know about yet.
4162 */
4163 if (size > sizeof(*attr)) {
4164 unsigned char __user *addr;
4165 unsigned char __user *end;
4166 unsigned char val;
4167
4168 addr = (void __user *)uattr + sizeof(*attr);
4169 end = (void __user *)uattr + size;
4170
4171 for (; addr < end; addr++) {
4172 ret = get_user(val, addr);
4173 if (ret)
4174 return ret;
4175 if (val)
4176 goto err_size;
4177 }
4178 size = sizeof(*attr);
4179 }
4180
4181 ret = copy_from_user(attr, uattr, size);
4182 if (ret)
4183 return -EFAULT;
4184
4185 /*
4186 * XXX: do we want to be lenient like existing syscalls; or do we want
4187 * to be strict and return an error on out-of-bounds values?
4188 */
4189 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4190
4191 return 0;
4192
4193 err_size:
4194 put_user(sizeof(*attr), &uattr->size);
4195 return -E2BIG;
4196 }
4197
4198 /**
4199 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4200 * @pid: the pid in question.
4201 * @policy: new policy.
4202 * @param: structure containing the new RT priority.
4203 *
4204 * Return: 0 on success. An error code otherwise.
4205 */
4206 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4207 struct sched_param __user *, param)
4208 {
4209 /* negative values for policy are not valid */
4210 if (policy < 0)
4211 return -EINVAL;
4212
4213 return do_sched_setscheduler(pid, policy, param);
4214 }
4215
4216 /**
4217 * sys_sched_setparam - set/change the RT priority of a thread
4218 * @pid: the pid in question.
4219 * @param: structure containing the new RT priority.
4220 *
4221 * Return: 0 on success. An error code otherwise.
4222 */
4223 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4224 {
4225 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4226 }
4227
4228 /**
4229 * sys_sched_setattr - same as above, but with extended sched_attr
4230 * @pid: the pid in question.
4231 * @uattr: structure containing the extended parameters.
4232 * @flags: for future extension.
4233 */
4234 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4235 unsigned int, flags)
4236 {
4237 struct sched_attr attr;
4238 struct task_struct *p;
4239 int retval;
4240
4241 if (!uattr || pid < 0 || flags)
4242 return -EINVAL;
4243
4244 retval = sched_copy_attr(uattr, &attr);
4245 if (retval)
4246 return retval;
4247
4248 if ((int)attr.sched_policy < 0)
4249 return -EINVAL;
4250
4251 rcu_read_lock();
4252 retval = -ESRCH;
4253 p = find_process_by_pid(pid);
4254 if (p != NULL)
4255 retval = sched_setattr(p, &attr);
4256 rcu_read_unlock();
4257
4258 return retval;
4259 }
4260
4261 /**
4262 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4263 * @pid: the pid in question.
4264 *
4265 * Return: On success, the policy of the thread. Otherwise, a negative error
4266 * code.
4267 */
4268 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4269 {
4270 struct task_struct *p;
4271 int retval;
4272
4273 if (pid < 0)
4274 return -EINVAL;
4275
4276 retval = -ESRCH;
4277 rcu_read_lock();
4278 p = find_process_by_pid(pid);
4279 if (p) {
4280 retval = security_task_getscheduler(p);
4281 if (!retval)
4282 retval = p->policy
4283 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4284 }
4285 rcu_read_unlock();
4286 return retval;
4287 }
4288
4289 /**
4290 * sys_sched_getparam - get the RT priority of a thread
4291 * @pid: the pid in question.
4292 * @param: structure containing the RT priority.
4293 *
4294 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4295 * code.
4296 */
4297 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4298 {
4299 struct sched_param lp = { .sched_priority = 0 };
4300 struct task_struct *p;
4301 int retval;
4302
4303 if (!param || pid < 0)
4304 return -EINVAL;
4305
4306 rcu_read_lock();
4307 p = find_process_by_pid(pid);
4308 retval = -ESRCH;
4309 if (!p)
4310 goto out_unlock;
4311
4312 retval = security_task_getscheduler(p);
4313 if (retval)
4314 goto out_unlock;
4315
4316 if (task_has_rt_policy(p))
4317 lp.sched_priority = p->rt_priority;
4318 rcu_read_unlock();
4319
4320 /*
4321 * This one might sleep, we cannot do it with a spinlock held ...
4322 */
4323 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4324
4325 return retval;
4326
4327 out_unlock:
4328 rcu_read_unlock();
4329 return retval;
4330 }
4331
4332 static int sched_read_attr(struct sched_attr __user *uattr,
4333 struct sched_attr *attr,
4334 unsigned int usize)
4335 {
4336 int ret;
4337
4338 if (!access_ok(VERIFY_WRITE, uattr, usize))
4339 return -EFAULT;
4340
4341 /*
4342 * If we're handed a smaller struct than we know of,
4343 * ensure all the unknown bits are 0 - i.e. old
4344 * user-space does not get uncomplete information.
4345 */
4346 if (usize < sizeof(*attr)) {
4347 unsigned char *addr;
4348 unsigned char *end;
4349
4350 addr = (void *)attr + usize;
4351 end = (void *)attr + sizeof(*attr);
4352
4353 for (; addr < end; addr++) {
4354 if (*addr)
4355 return -EFBIG;
4356 }
4357
4358 attr->size = usize;
4359 }
4360
4361 ret = copy_to_user(uattr, attr, attr->size);
4362 if (ret)
4363 return -EFAULT;
4364
4365 return 0;
4366 }
4367
4368 /**
4369 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4370 * @pid: the pid in question.
4371 * @uattr: structure containing the extended parameters.
4372 * @size: sizeof(attr) for fwd/bwd comp.
4373 * @flags: for future extension.
4374 */
4375 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4376 unsigned int, size, unsigned int, flags)
4377 {
4378 struct sched_attr attr = {
4379 .size = sizeof(struct sched_attr),
4380 };
4381 struct task_struct *p;
4382 int retval;
4383
4384 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4385 size < SCHED_ATTR_SIZE_VER0 || flags)
4386 return -EINVAL;
4387
4388 rcu_read_lock();
4389 p = find_process_by_pid(pid);
4390 retval = -ESRCH;
4391 if (!p)
4392 goto out_unlock;
4393
4394 retval = security_task_getscheduler(p);
4395 if (retval)
4396 goto out_unlock;
4397
4398 attr.sched_policy = p->policy;
4399 if (p->sched_reset_on_fork)
4400 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4401 if (task_has_dl_policy(p))
4402 __getparam_dl(p, &attr);
4403 else if (task_has_rt_policy(p))
4404 attr.sched_priority = p->rt_priority;
4405 else
4406 attr.sched_nice = task_nice(p);
4407
4408 rcu_read_unlock();
4409
4410 retval = sched_read_attr(uattr, &attr, size);
4411 return retval;
4412
4413 out_unlock:
4414 rcu_read_unlock();
4415 return retval;
4416 }
4417
4418 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4419 {
4420 cpumask_var_t cpus_allowed, new_mask;
4421 struct task_struct *p;
4422 int retval;
4423
4424 rcu_read_lock();
4425
4426 p = find_process_by_pid(pid);
4427 if (!p) {
4428 rcu_read_unlock();
4429 return -ESRCH;
4430 }
4431
4432 /* Prevent p going away */
4433 get_task_struct(p);
4434 rcu_read_unlock();
4435
4436 if (p->flags & PF_NO_SETAFFINITY) {
4437 retval = -EINVAL;
4438 goto out_put_task;
4439 }
4440 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4441 retval = -ENOMEM;
4442 goto out_put_task;
4443 }
4444 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4445 retval = -ENOMEM;
4446 goto out_free_cpus_allowed;
4447 }
4448 retval = -EPERM;
4449 if (!check_same_owner(p)) {
4450 rcu_read_lock();
4451 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4452 rcu_read_unlock();
4453 goto out_free_new_mask;
4454 }
4455 rcu_read_unlock();
4456 }
4457
4458 retval = security_task_setscheduler(p);
4459 if (retval)
4460 goto out_free_new_mask;
4461
4462
4463 cpuset_cpus_allowed(p, cpus_allowed);
4464 cpumask_and(new_mask, in_mask, cpus_allowed);
4465
4466 /*
4467 * Since bandwidth control happens on root_domain basis,
4468 * if admission test is enabled, we only admit -deadline
4469 * tasks allowed to run on all the CPUs in the task's
4470 * root_domain.
4471 */
4472 #ifdef CONFIG_SMP
4473 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4474 rcu_read_lock();
4475 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4476 retval = -EBUSY;
4477 rcu_read_unlock();
4478 goto out_free_new_mask;
4479 }
4480 rcu_read_unlock();
4481 }
4482 #endif
4483 again:
4484 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4485
4486 if (!retval) {
4487 cpuset_cpus_allowed(p, cpus_allowed);
4488 if (!cpumask_subset(new_mask, cpus_allowed)) {
4489 /*
4490 * We must have raced with a concurrent cpuset
4491 * update. Just reset the cpus_allowed to the
4492 * cpuset's cpus_allowed
4493 */
4494 cpumask_copy(new_mask, cpus_allowed);
4495 goto again;
4496 }
4497 }
4498 out_free_new_mask:
4499 free_cpumask_var(new_mask);
4500 out_free_cpus_allowed:
4501 free_cpumask_var(cpus_allowed);
4502 out_put_task:
4503 put_task_struct(p);
4504 return retval;
4505 }
4506
4507 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4508 struct cpumask *new_mask)
4509 {
4510 if (len < cpumask_size())
4511 cpumask_clear(new_mask);
4512 else if (len > cpumask_size())
4513 len = cpumask_size();
4514
4515 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4516 }
4517
4518 /**
4519 * sys_sched_setaffinity - set the cpu affinity of a process
4520 * @pid: pid of the process
4521 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4522 * @user_mask_ptr: user-space pointer to the new cpu mask
4523 *
4524 * Return: 0 on success. An error code otherwise.
4525 */
4526 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4527 unsigned long __user *, user_mask_ptr)
4528 {
4529 cpumask_var_t new_mask;
4530 int retval;
4531
4532 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4533 return -ENOMEM;
4534
4535 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4536 if (retval == 0)
4537 retval = sched_setaffinity(pid, new_mask);
4538 free_cpumask_var(new_mask);
4539 return retval;
4540 }
4541
4542 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4543 {
4544 struct task_struct *p;
4545 unsigned long flags;
4546 int retval;
4547
4548 rcu_read_lock();
4549
4550 retval = -ESRCH;
4551 p = find_process_by_pid(pid);
4552 if (!p)
4553 goto out_unlock;
4554
4555 retval = security_task_getscheduler(p);
4556 if (retval)
4557 goto out_unlock;
4558
4559 raw_spin_lock_irqsave(&p->pi_lock, flags);
4560 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4561 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4562
4563 out_unlock:
4564 rcu_read_unlock();
4565
4566 return retval;
4567 }
4568
4569 /**
4570 * sys_sched_getaffinity - get the cpu affinity of a process
4571 * @pid: pid of the process
4572 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4573 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4574 *
4575 * Return: 0 on success. An error code otherwise.
4576 */
4577 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4578 unsigned long __user *, user_mask_ptr)
4579 {
4580 int ret;
4581 cpumask_var_t mask;
4582
4583 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4584 return -EINVAL;
4585 if (len & (sizeof(unsigned long)-1))
4586 return -EINVAL;
4587
4588 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4589 return -ENOMEM;
4590
4591 ret = sched_getaffinity(pid, mask);
4592 if (ret == 0) {
4593 size_t retlen = min_t(size_t, len, cpumask_size());
4594
4595 if (copy_to_user(user_mask_ptr, mask, retlen))
4596 ret = -EFAULT;
4597 else
4598 ret = retlen;
4599 }
4600 free_cpumask_var(mask);
4601
4602 return ret;
4603 }
4604
4605 /**
4606 * sys_sched_yield - yield the current processor to other threads.
4607 *
4608 * This function yields the current CPU to other tasks. If there are no
4609 * other threads running on this CPU then this function will return.
4610 *
4611 * Return: 0.
4612 */
4613 SYSCALL_DEFINE0(sched_yield)
4614 {
4615 struct rq *rq = this_rq_lock();
4616
4617 schedstat_inc(rq, yld_count);
4618 current->sched_class->yield_task(rq);
4619
4620 /*
4621 * Since we are going to call schedule() anyway, there's
4622 * no need to preempt or enable interrupts:
4623 */
4624 __release(rq->lock);
4625 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4626 do_raw_spin_unlock(&rq->lock);
4627 sched_preempt_enable_no_resched();
4628
4629 schedule();
4630
4631 return 0;
4632 }
4633
4634 int __sched _cond_resched(void)
4635 {
4636 if (should_resched(0)) {
4637 preempt_schedule_common();
4638 return 1;
4639 }
4640 return 0;
4641 }
4642 EXPORT_SYMBOL(_cond_resched);
4643
4644 /*
4645 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4646 * call schedule, and on return reacquire the lock.
4647 *
4648 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4649 * operations here to prevent schedule() from being called twice (once via
4650 * spin_unlock(), once by hand).
4651 */
4652 int __cond_resched_lock(spinlock_t *lock)
4653 {
4654 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4655 int ret = 0;
4656
4657 lockdep_assert_held(lock);
4658
4659 if (spin_needbreak(lock) || resched) {
4660 spin_unlock(lock);
4661 if (resched)
4662 preempt_schedule_common();
4663 else
4664 cpu_relax();
4665 ret = 1;
4666 spin_lock(lock);
4667 }
4668 return ret;
4669 }
4670 EXPORT_SYMBOL(__cond_resched_lock);
4671
4672 int __sched __cond_resched_softirq(void)
4673 {
4674 BUG_ON(!in_softirq());
4675
4676 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4677 local_bh_enable();
4678 preempt_schedule_common();
4679 local_bh_disable();
4680 return 1;
4681 }
4682 return 0;
4683 }
4684 EXPORT_SYMBOL(__cond_resched_softirq);
4685
4686 /**
4687 * yield - yield the current processor to other threads.
4688 *
4689 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4690 *
4691 * The scheduler is at all times free to pick the calling task as the most
4692 * eligible task to run, if removing the yield() call from your code breaks
4693 * it, its already broken.
4694 *
4695 * Typical broken usage is:
4696 *
4697 * while (!event)
4698 * yield();
4699 *
4700 * where one assumes that yield() will let 'the other' process run that will
4701 * make event true. If the current task is a SCHED_FIFO task that will never
4702 * happen. Never use yield() as a progress guarantee!!
4703 *
4704 * If you want to use yield() to wait for something, use wait_event().
4705 * If you want to use yield() to be 'nice' for others, use cond_resched().
4706 * If you still want to use yield(), do not!
4707 */
4708 void __sched yield(void)
4709 {
4710 set_current_state(TASK_RUNNING);
4711 sys_sched_yield();
4712 }
4713 EXPORT_SYMBOL(yield);
4714
4715 /**
4716 * yield_to - yield the current processor to another thread in
4717 * your thread group, or accelerate that thread toward the
4718 * processor it's on.
4719 * @p: target task
4720 * @preempt: whether task preemption is allowed or not
4721 *
4722 * It's the caller's job to ensure that the target task struct
4723 * can't go away on us before we can do any checks.
4724 *
4725 * Return:
4726 * true (>0) if we indeed boosted the target task.
4727 * false (0) if we failed to boost the target.
4728 * -ESRCH if there's no task to yield to.
4729 */
4730 int __sched yield_to(struct task_struct *p, bool preempt)
4731 {
4732 struct task_struct *curr = current;
4733 struct rq *rq, *p_rq;
4734 unsigned long flags;
4735 int yielded = 0;
4736
4737 local_irq_save(flags);
4738 rq = this_rq();
4739
4740 again:
4741 p_rq = task_rq(p);
4742 /*
4743 * If we're the only runnable task on the rq and target rq also
4744 * has only one task, there's absolutely no point in yielding.
4745 */
4746 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4747 yielded = -ESRCH;
4748 goto out_irq;
4749 }
4750
4751 double_rq_lock(rq, p_rq);
4752 if (task_rq(p) != p_rq) {
4753 double_rq_unlock(rq, p_rq);
4754 goto again;
4755 }
4756
4757 if (!curr->sched_class->yield_to_task)
4758 goto out_unlock;
4759
4760 if (curr->sched_class != p->sched_class)
4761 goto out_unlock;
4762
4763 if (task_running(p_rq, p) || p->state)
4764 goto out_unlock;
4765
4766 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4767 if (yielded) {
4768 schedstat_inc(rq, yld_count);
4769 /*
4770 * Make p's CPU reschedule; pick_next_entity takes care of
4771 * fairness.
4772 */
4773 if (preempt && rq != p_rq)
4774 resched_curr(p_rq);
4775 }
4776
4777 out_unlock:
4778 double_rq_unlock(rq, p_rq);
4779 out_irq:
4780 local_irq_restore(flags);
4781
4782 if (yielded > 0)
4783 schedule();
4784
4785 return yielded;
4786 }
4787 EXPORT_SYMBOL_GPL(yield_to);
4788
4789 /*
4790 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4791 * that process accounting knows that this is a task in IO wait state.
4792 */
4793 long __sched io_schedule_timeout(long timeout)
4794 {
4795 int old_iowait = current->in_iowait;
4796 struct rq *rq;
4797 long ret;
4798
4799 current->in_iowait = 1;
4800 blk_schedule_flush_plug(current);
4801
4802 delayacct_blkio_start();
4803 rq = raw_rq();
4804 atomic_inc(&rq->nr_iowait);
4805 ret = schedule_timeout(timeout);
4806 current->in_iowait = old_iowait;
4807 atomic_dec(&rq->nr_iowait);
4808 delayacct_blkio_end();
4809
4810 return ret;
4811 }
4812 EXPORT_SYMBOL(io_schedule_timeout);
4813
4814 /**
4815 * sys_sched_get_priority_max - return maximum RT priority.
4816 * @policy: scheduling class.
4817 *
4818 * Return: On success, this syscall returns the maximum
4819 * rt_priority that can be used by a given scheduling class.
4820 * On failure, a negative error code is returned.
4821 */
4822 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4823 {
4824 int ret = -EINVAL;
4825
4826 switch (policy) {
4827 case SCHED_FIFO:
4828 case SCHED_RR:
4829 ret = MAX_USER_RT_PRIO-1;
4830 break;
4831 case SCHED_DEADLINE:
4832 case SCHED_NORMAL:
4833 case SCHED_BATCH:
4834 case SCHED_IDLE:
4835 ret = 0;
4836 break;
4837 }
4838 return ret;
4839 }
4840
4841 /**
4842 * sys_sched_get_priority_min - return minimum RT priority.
4843 * @policy: scheduling class.
4844 *
4845 * Return: On success, this syscall returns the minimum
4846 * rt_priority that can be used by a given scheduling class.
4847 * On failure, a negative error code is returned.
4848 */
4849 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4850 {
4851 int ret = -EINVAL;
4852
4853 switch (policy) {
4854 case SCHED_FIFO:
4855 case SCHED_RR:
4856 ret = 1;
4857 break;
4858 case SCHED_DEADLINE:
4859 case SCHED_NORMAL:
4860 case SCHED_BATCH:
4861 case SCHED_IDLE:
4862 ret = 0;
4863 }
4864 return ret;
4865 }
4866
4867 /**
4868 * sys_sched_rr_get_interval - return the default timeslice of a process.
4869 * @pid: pid of the process.
4870 * @interval: userspace pointer to the timeslice value.
4871 *
4872 * this syscall writes the default timeslice value of a given process
4873 * into the user-space timespec buffer. A value of '0' means infinity.
4874 *
4875 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4876 * an error code.
4877 */
4878 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4879 struct timespec __user *, interval)
4880 {
4881 struct task_struct *p;
4882 unsigned int time_slice;
4883 unsigned long flags;
4884 struct rq *rq;
4885 int retval;
4886 struct timespec t;
4887
4888 if (pid < 0)
4889 return -EINVAL;
4890
4891 retval = -ESRCH;
4892 rcu_read_lock();
4893 p = find_process_by_pid(pid);
4894 if (!p)
4895 goto out_unlock;
4896
4897 retval = security_task_getscheduler(p);
4898 if (retval)
4899 goto out_unlock;
4900
4901 rq = task_rq_lock(p, &flags);
4902 time_slice = 0;
4903 if (p->sched_class->get_rr_interval)
4904 time_slice = p->sched_class->get_rr_interval(rq, p);
4905 task_rq_unlock(rq, p, &flags);
4906
4907 rcu_read_unlock();
4908 jiffies_to_timespec(time_slice, &t);
4909 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4910 return retval;
4911
4912 out_unlock:
4913 rcu_read_unlock();
4914 return retval;
4915 }
4916
4917 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4918
4919 void sched_show_task(struct task_struct *p)
4920 {
4921 unsigned long free = 0;
4922 int ppid;
4923 unsigned long state = p->state;
4924
4925 if (state)
4926 state = __ffs(state) + 1;
4927 printk(KERN_INFO "%-15.15s %c", p->comm,
4928 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4929 #if BITS_PER_LONG == 32
4930 if (state == TASK_RUNNING)
4931 printk(KERN_CONT " running ");
4932 else
4933 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4934 #else
4935 if (state == TASK_RUNNING)
4936 printk(KERN_CONT " running task ");
4937 else
4938 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4939 #endif
4940 #ifdef CONFIG_DEBUG_STACK_USAGE
4941 free = stack_not_used(p);
4942 #endif
4943 ppid = 0;
4944 rcu_read_lock();
4945 if (pid_alive(p))
4946 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4947 rcu_read_unlock();
4948 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4949 task_pid_nr(p), ppid,
4950 (unsigned long)task_thread_info(p)->flags);
4951
4952 print_worker_info(KERN_INFO, p);
4953 show_stack(p, NULL);
4954 }
4955
4956 void show_state_filter(unsigned long state_filter)
4957 {
4958 struct task_struct *g, *p;
4959
4960 #if BITS_PER_LONG == 32
4961 printk(KERN_INFO
4962 " task PC stack pid father\n");
4963 #else
4964 printk(KERN_INFO
4965 " task PC stack pid father\n");
4966 #endif
4967 rcu_read_lock();
4968 for_each_process_thread(g, p) {
4969 /*
4970 * reset the NMI-timeout, listing all files on a slow
4971 * console might take a lot of time:
4972 */
4973 touch_nmi_watchdog();
4974 if (!state_filter || (p->state & state_filter))
4975 sched_show_task(p);
4976 }
4977
4978 touch_all_softlockup_watchdogs();
4979
4980 #ifdef CONFIG_SCHED_DEBUG
4981 sysrq_sched_debug_show();
4982 #endif
4983 rcu_read_unlock();
4984 /*
4985 * Only show locks if all tasks are dumped:
4986 */
4987 if (!state_filter)
4988 debug_show_all_locks();
4989 }
4990
4991 void init_idle_bootup_task(struct task_struct *idle)
4992 {
4993 idle->sched_class = &idle_sched_class;
4994 }
4995
4996 /**
4997 * init_idle - set up an idle thread for a given CPU
4998 * @idle: task in question
4999 * @cpu: cpu the idle task belongs to
5000 *
5001 * NOTE: this function does not set the idle thread's NEED_RESCHED
5002 * flag, to make booting more robust.
5003 */
5004 void init_idle(struct task_struct *idle, int cpu)
5005 {
5006 struct rq *rq = cpu_rq(cpu);
5007 unsigned long flags;
5008
5009 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5010 raw_spin_lock(&rq->lock);
5011
5012 __sched_fork(0, idle);
5013 idle->state = TASK_RUNNING;
5014 idle->se.exec_start = sched_clock();
5015
5016 kasan_unpoison_task_stack(idle);
5017
5018 #ifdef CONFIG_SMP
5019 /*
5020 * Its possible that init_idle() gets called multiple times on a task,
5021 * in that case do_set_cpus_allowed() will not do the right thing.
5022 *
5023 * And since this is boot we can forgo the serialization.
5024 */
5025 set_cpus_allowed_common(idle, cpumask_of(cpu));
5026 #endif
5027 /*
5028 * We're having a chicken and egg problem, even though we are
5029 * holding rq->lock, the cpu isn't yet set to this cpu so the
5030 * lockdep check in task_group() will fail.
5031 *
5032 * Similar case to sched_fork(). / Alternatively we could
5033 * use task_rq_lock() here and obtain the other rq->lock.
5034 *
5035 * Silence PROVE_RCU
5036 */
5037 rcu_read_lock();
5038 __set_task_cpu(idle, cpu);
5039 rcu_read_unlock();
5040
5041 rq->curr = rq->idle = idle;
5042 idle->on_rq = TASK_ON_RQ_QUEUED;
5043 #ifdef CONFIG_SMP
5044 idle->on_cpu = 1;
5045 #endif
5046 raw_spin_unlock(&rq->lock);
5047 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5048
5049 /* Set the preempt count _outside_ the spinlocks! */
5050 init_idle_preempt_count(idle, cpu);
5051
5052 /*
5053 * The idle tasks have their own, simple scheduling class:
5054 */
5055 idle->sched_class = &idle_sched_class;
5056 ftrace_graph_init_idle_task(idle, cpu);
5057 vtime_init_idle(idle, cpu);
5058 #ifdef CONFIG_SMP
5059 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5060 #endif
5061 }
5062
5063 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5064 const struct cpumask *trial)
5065 {
5066 int ret = 1, trial_cpus;
5067 struct dl_bw *cur_dl_b;
5068 unsigned long flags;
5069
5070 if (!cpumask_weight(cur))
5071 return ret;
5072
5073 rcu_read_lock_sched();
5074 cur_dl_b = dl_bw_of(cpumask_any(cur));
5075 trial_cpus = cpumask_weight(trial);
5076
5077 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5078 if (cur_dl_b->bw != -1 &&
5079 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5080 ret = 0;
5081 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5082 rcu_read_unlock_sched();
5083
5084 return ret;
5085 }
5086
5087 int task_can_attach(struct task_struct *p,
5088 const struct cpumask *cs_cpus_allowed)
5089 {
5090 int ret = 0;
5091
5092 /*
5093 * Kthreads which disallow setaffinity shouldn't be moved
5094 * to a new cpuset; we don't want to change their cpu
5095 * affinity and isolating such threads by their set of
5096 * allowed nodes is unnecessary. Thus, cpusets are not
5097 * applicable for such threads. This prevents checking for
5098 * success of set_cpus_allowed_ptr() on all attached tasks
5099 * before cpus_allowed may be changed.
5100 */
5101 if (p->flags & PF_NO_SETAFFINITY) {
5102 ret = -EINVAL;
5103 goto out;
5104 }
5105
5106 #ifdef CONFIG_SMP
5107 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5108 cs_cpus_allowed)) {
5109 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5110 cs_cpus_allowed);
5111 struct dl_bw *dl_b;
5112 bool overflow;
5113 int cpus;
5114 unsigned long flags;
5115
5116 rcu_read_lock_sched();
5117 dl_b = dl_bw_of(dest_cpu);
5118 raw_spin_lock_irqsave(&dl_b->lock, flags);
5119 cpus = dl_bw_cpus(dest_cpu);
5120 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5121 if (overflow)
5122 ret = -EBUSY;
5123 else {
5124 /*
5125 * We reserve space for this task in the destination
5126 * root_domain, as we can't fail after this point.
5127 * We will free resources in the source root_domain
5128 * later on (see set_cpus_allowed_dl()).
5129 */
5130 __dl_add(dl_b, p->dl.dl_bw);
5131 }
5132 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5133 rcu_read_unlock_sched();
5134
5135 }
5136 #endif
5137 out:
5138 return ret;
5139 }
5140
5141 #ifdef CONFIG_SMP
5142
5143 #ifdef CONFIG_NUMA_BALANCING
5144 /* Migrate current task p to target_cpu */
5145 int migrate_task_to(struct task_struct *p, int target_cpu)
5146 {
5147 struct migration_arg arg = { p, target_cpu };
5148 int curr_cpu = task_cpu(p);
5149
5150 if (curr_cpu == target_cpu)
5151 return 0;
5152
5153 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5154 return -EINVAL;
5155
5156 /* TODO: This is not properly updating schedstats */
5157
5158 trace_sched_move_numa(p, curr_cpu, target_cpu);
5159 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5160 }
5161
5162 /*
5163 * Requeue a task on a given node and accurately track the number of NUMA
5164 * tasks on the runqueues
5165 */
5166 void sched_setnuma(struct task_struct *p, int nid)
5167 {
5168 struct rq *rq;
5169 unsigned long flags;
5170 bool queued, running;
5171
5172 rq = task_rq_lock(p, &flags);
5173 queued = task_on_rq_queued(p);
5174 running = task_current(rq, p);
5175
5176 if (queued)
5177 dequeue_task(rq, p, DEQUEUE_SAVE);
5178 if (running)
5179 put_prev_task(rq, p);
5180
5181 p->numa_preferred_nid = nid;
5182
5183 if (running)
5184 p->sched_class->set_curr_task(rq);
5185 if (queued)
5186 enqueue_task(rq, p, ENQUEUE_RESTORE);
5187 task_rq_unlock(rq, p, &flags);
5188 }
5189 #endif /* CONFIG_NUMA_BALANCING */
5190
5191 #ifdef CONFIG_HOTPLUG_CPU
5192 /*
5193 * Ensures that the idle task is using init_mm right before its cpu goes
5194 * offline.
5195 */
5196 void idle_task_exit(void)
5197 {
5198 struct mm_struct *mm = current->active_mm;
5199
5200 BUG_ON(cpu_online(smp_processor_id()));
5201
5202 if (mm != &init_mm) {
5203 switch_mm(mm, &init_mm, current);
5204 finish_arch_post_lock_switch();
5205 }
5206 mmdrop(mm);
5207 }
5208
5209 /*
5210 * Since this CPU is going 'away' for a while, fold any nr_active delta
5211 * we might have. Assumes we're called after migrate_tasks() so that the
5212 * nr_active count is stable.
5213 *
5214 * Also see the comment "Global load-average calculations".
5215 */
5216 static void calc_load_migrate(struct rq *rq)
5217 {
5218 long delta = calc_load_fold_active(rq);
5219 if (delta)
5220 atomic_long_add(delta, &calc_load_tasks);
5221 }
5222
5223 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5224 {
5225 }
5226
5227 static const struct sched_class fake_sched_class = {
5228 .put_prev_task = put_prev_task_fake,
5229 };
5230
5231 static struct task_struct fake_task = {
5232 /*
5233 * Avoid pull_{rt,dl}_task()
5234 */
5235 .prio = MAX_PRIO + 1,
5236 .sched_class = &fake_sched_class,
5237 };
5238
5239 /*
5240 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5241 * try_to_wake_up()->select_task_rq().
5242 *
5243 * Called with rq->lock held even though we'er in stop_machine() and
5244 * there's no concurrency possible, we hold the required locks anyway
5245 * because of lock validation efforts.
5246 */
5247 static void migrate_tasks(struct rq *dead_rq)
5248 {
5249 struct rq *rq = dead_rq;
5250 struct task_struct *next, *stop = rq->stop;
5251 int dest_cpu;
5252
5253 /*
5254 * Fudge the rq selection such that the below task selection loop
5255 * doesn't get stuck on the currently eligible stop task.
5256 *
5257 * We're currently inside stop_machine() and the rq is either stuck
5258 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5259 * either way we should never end up calling schedule() until we're
5260 * done here.
5261 */
5262 rq->stop = NULL;
5263
5264 /*
5265 * put_prev_task() and pick_next_task() sched
5266 * class method both need to have an up-to-date
5267 * value of rq->clock[_task]
5268 */
5269 update_rq_clock(rq);
5270
5271 for (;;) {
5272 /*
5273 * There's this thread running, bail when that's the only
5274 * remaining thread.
5275 */
5276 if (rq->nr_running == 1)
5277 break;
5278
5279 /*
5280 * pick_next_task assumes pinned rq->lock.
5281 */
5282 lockdep_pin_lock(&rq->lock);
5283 next = pick_next_task(rq, &fake_task);
5284 BUG_ON(!next);
5285 next->sched_class->put_prev_task(rq, next);
5286
5287 /*
5288 * Rules for changing task_struct::cpus_allowed are holding
5289 * both pi_lock and rq->lock, such that holding either
5290 * stabilizes the mask.
5291 *
5292 * Drop rq->lock is not quite as disastrous as it usually is
5293 * because !cpu_active at this point, which means load-balance
5294 * will not interfere. Also, stop-machine.
5295 */
5296 lockdep_unpin_lock(&rq->lock);
5297 raw_spin_unlock(&rq->lock);
5298 raw_spin_lock(&next->pi_lock);
5299 raw_spin_lock(&rq->lock);
5300
5301 /*
5302 * Since we're inside stop-machine, _nothing_ should have
5303 * changed the task, WARN if weird stuff happened, because in
5304 * that case the above rq->lock drop is a fail too.
5305 */
5306 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5307 raw_spin_unlock(&next->pi_lock);
5308 continue;
5309 }
5310
5311 /* Find suitable destination for @next, with force if needed. */
5312 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5313
5314 rq = __migrate_task(rq, next, dest_cpu);
5315 if (rq != dead_rq) {
5316 raw_spin_unlock(&rq->lock);
5317 rq = dead_rq;
5318 raw_spin_lock(&rq->lock);
5319 }
5320 raw_spin_unlock(&next->pi_lock);
5321 }
5322
5323 rq->stop = stop;
5324 }
5325 #endif /* CONFIG_HOTPLUG_CPU */
5326
5327 static void set_rq_online(struct rq *rq)
5328 {
5329 if (!rq->online) {
5330 const struct sched_class *class;
5331
5332 cpumask_set_cpu(rq->cpu, rq->rd->online);
5333 rq->online = 1;
5334
5335 for_each_class(class) {
5336 if (class->rq_online)
5337 class->rq_online(rq);
5338 }
5339 }
5340 }
5341
5342 static void set_rq_offline(struct rq *rq)
5343 {
5344 if (rq->online) {
5345 const struct sched_class *class;
5346
5347 for_each_class(class) {
5348 if (class->rq_offline)
5349 class->rq_offline(rq);
5350 }
5351
5352 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5353 rq->online = 0;
5354 }
5355 }
5356
5357 /*
5358 * migration_call - callback that gets triggered when a CPU is added.
5359 * Here we can start up the necessary migration thread for the new CPU.
5360 */
5361 static int
5362 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5363 {
5364 int cpu = (long)hcpu;
5365 unsigned long flags;
5366 struct rq *rq = cpu_rq(cpu);
5367
5368 switch (action & ~CPU_TASKS_FROZEN) {
5369
5370 case CPU_UP_PREPARE:
5371 rq->calc_load_update = calc_load_update;
5372 break;
5373
5374 case CPU_ONLINE:
5375 /* Update our root-domain */
5376 raw_spin_lock_irqsave(&rq->lock, flags);
5377 if (rq->rd) {
5378 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5379
5380 set_rq_online(rq);
5381 }
5382 raw_spin_unlock_irqrestore(&rq->lock, flags);
5383 break;
5384
5385 #ifdef CONFIG_HOTPLUG_CPU
5386 case CPU_DYING:
5387 sched_ttwu_pending();
5388 /* Update our root-domain */
5389 raw_spin_lock_irqsave(&rq->lock, flags);
5390 if (rq->rd) {
5391 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5392 set_rq_offline(rq);
5393 }
5394 migrate_tasks(rq);
5395 BUG_ON(rq->nr_running != 1); /* the migration thread */
5396 raw_spin_unlock_irqrestore(&rq->lock, flags);
5397 break;
5398
5399 case CPU_DEAD:
5400 calc_load_migrate(rq);
5401 break;
5402 #endif
5403 }
5404
5405 update_max_interval();
5406
5407 return NOTIFY_OK;
5408 }
5409
5410 /*
5411 * Register at high priority so that task migration (migrate_all_tasks)
5412 * happens before everything else. This has to be lower priority than
5413 * the notifier in the perf_event subsystem, though.
5414 */
5415 static struct notifier_block migration_notifier = {
5416 .notifier_call = migration_call,
5417 .priority = CPU_PRI_MIGRATION,
5418 };
5419
5420 static void set_cpu_rq_start_time(void)
5421 {
5422 int cpu = smp_processor_id();
5423 struct rq *rq = cpu_rq(cpu);
5424 rq->age_stamp = sched_clock_cpu(cpu);
5425 }
5426
5427 static int sched_cpu_active(struct notifier_block *nfb,
5428 unsigned long action, void *hcpu)
5429 {
5430 int cpu = (long)hcpu;
5431
5432 switch (action & ~CPU_TASKS_FROZEN) {
5433 case CPU_STARTING:
5434 set_cpu_rq_start_time();
5435 return NOTIFY_OK;
5436
5437 case CPU_ONLINE:
5438 /*
5439 * At this point a starting CPU has marked itself as online via
5440 * set_cpu_online(). But it might not yet have marked itself
5441 * as active, which is essential from here on.
5442 */
5443 set_cpu_active(cpu, true);
5444 stop_machine_unpark(cpu);
5445 return NOTIFY_OK;
5446
5447 case CPU_DOWN_FAILED:
5448 set_cpu_active(cpu, true);
5449 return NOTIFY_OK;
5450
5451 default:
5452 return NOTIFY_DONE;
5453 }
5454 }
5455
5456 static int sched_cpu_inactive(struct notifier_block *nfb,
5457 unsigned long action, void *hcpu)
5458 {
5459 switch (action & ~CPU_TASKS_FROZEN) {
5460 case CPU_DOWN_PREPARE:
5461 set_cpu_active((long)hcpu, false);
5462 return NOTIFY_OK;
5463 default:
5464 return NOTIFY_DONE;
5465 }
5466 }
5467
5468 static int __init migration_init(void)
5469 {
5470 void *cpu = (void *)(long)smp_processor_id();
5471 int err;
5472
5473 /* Initialize migration for the boot CPU */
5474 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5475 BUG_ON(err == NOTIFY_BAD);
5476 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5477 register_cpu_notifier(&migration_notifier);
5478
5479 /* Register cpu active notifiers */
5480 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5481 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5482
5483 return 0;
5484 }
5485 early_initcall(migration_init);
5486
5487 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5488
5489 #ifdef CONFIG_SCHED_DEBUG
5490
5491 static __read_mostly int sched_debug_enabled;
5492
5493 static int __init sched_debug_setup(char *str)
5494 {
5495 sched_debug_enabled = 1;
5496
5497 return 0;
5498 }
5499 early_param("sched_debug", sched_debug_setup);
5500
5501 static inline bool sched_debug(void)
5502 {
5503 return sched_debug_enabled;
5504 }
5505
5506 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5507 struct cpumask *groupmask)
5508 {
5509 struct sched_group *group = sd->groups;
5510
5511 cpumask_clear(groupmask);
5512
5513 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5514
5515 if (!(sd->flags & SD_LOAD_BALANCE)) {
5516 printk("does not load-balance\n");
5517 if (sd->parent)
5518 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5519 " has parent");
5520 return -1;
5521 }
5522
5523 printk(KERN_CONT "span %*pbl level %s\n",
5524 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5525
5526 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5527 printk(KERN_ERR "ERROR: domain->span does not contain "
5528 "CPU%d\n", cpu);
5529 }
5530 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5531 printk(KERN_ERR "ERROR: domain->groups does not contain"
5532 " CPU%d\n", cpu);
5533 }
5534
5535 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5536 do {
5537 if (!group) {
5538 printk("\n");
5539 printk(KERN_ERR "ERROR: group is NULL\n");
5540 break;
5541 }
5542
5543 if (!cpumask_weight(sched_group_cpus(group))) {
5544 printk(KERN_CONT "\n");
5545 printk(KERN_ERR "ERROR: empty group\n");
5546 break;
5547 }
5548
5549 if (!(sd->flags & SD_OVERLAP) &&
5550 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5551 printk(KERN_CONT "\n");
5552 printk(KERN_ERR "ERROR: repeated CPUs\n");
5553 break;
5554 }
5555
5556 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5557
5558 printk(KERN_CONT " %*pbl",
5559 cpumask_pr_args(sched_group_cpus(group)));
5560 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5561 printk(KERN_CONT " (cpu_capacity = %d)",
5562 group->sgc->capacity);
5563 }
5564
5565 group = group->next;
5566 } while (group != sd->groups);
5567 printk(KERN_CONT "\n");
5568
5569 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5570 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5571
5572 if (sd->parent &&
5573 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5574 printk(KERN_ERR "ERROR: parent span is not a superset "
5575 "of domain->span\n");
5576 return 0;
5577 }
5578
5579 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5580 {
5581 int level = 0;
5582
5583 if (!sched_debug_enabled)
5584 return;
5585
5586 if (!sd) {
5587 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5588 return;
5589 }
5590
5591 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5592
5593 for (;;) {
5594 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5595 break;
5596 level++;
5597 sd = sd->parent;
5598 if (!sd)
5599 break;
5600 }
5601 }
5602 #else /* !CONFIG_SCHED_DEBUG */
5603 # define sched_domain_debug(sd, cpu) do { } while (0)
5604 static inline bool sched_debug(void)
5605 {
5606 return false;
5607 }
5608 #endif /* CONFIG_SCHED_DEBUG */
5609
5610 static int sd_degenerate(struct sched_domain *sd)
5611 {
5612 if (cpumask_weight(sched_domain_span(sd)) == 1)
5613 return 1;
5614
5615 /* Following flags need at least 2 groups */
5616 if (sd->flags & (SD_LOAD_BALANCE |
5617 SD_BALANCE_NEWIDLE |
5618 SD_BALANCE_FORK |
5619 SD_BALANCE_EXEC |
5620 SD_SHARE_CPUCAPACITY |
5621 SD_SHARE_PKG_RESOURCES |
5622 SD_SHARE_POWERDOMAIN)) {
5623 if (sd->groups != sd->groups->next)
5624 return 0;
5625 }
5626
5627 /* Following flags don't use groups */
5628 if (sd->flags & (SD_WAKE_AFFINE))
5629 return 0;
5630
5631 return 1;
5632 }
5633
5634 static int
5635 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5636 {
5637 unsigned long cflags = sd->flags, pflags = parent->flags;
5638
5639 if (sd_degenerate(parent))
5640 return 1;
5641
5642 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5643 return 0;
5644
5645 /* Flags needing groups don't count if only 1 group in parent */
5646 if (parent->groups == parent->groups->next) {
5647 pflags &= ~(SD_LOAD_BALANCE |
5648 SD_BALANCE_NEWIDLE |
5649 SD_BALANCE_FORK |
5650 SD_BALANCE_EXEC |
5651 SD_SHARE_CPUCAPACITY |
5652 SD_SHARE_PKG_RESOURCES |
5653 SD_PREFER_SIBLING |
5654 SD_SHARE_POWERDOMAIN);
5655 if (nr_node_ids == 1)
5656 pflags &= ~SD_SERIALIZE;
5657 }
5658 if (~cflags & pflags)
5659 return 0;
5660
5661 return 1;
5662 }
5663
5664 static void free_rootdomain(struct rcu_head *rcu)
5665 {
5666 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5667
5668 cpupri_cleanup(&rd->cpupri);
5669 cpudl_cleanup(&rd->cpudl);
5670 free_cpumask_var(rd->dlo_mask);
5671 free_cpumask_var(rd->rto_mask);
5672 free_cpumask_var(rd->online);
5673 free_cpumask_var(rd->span);
5674 kfree(rd);
5675 }
5676
5677 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5678 {
5679 struct root_domain *old_rd = NULL;
5680 unsigned long flags;
5681
5682 raw_spin_lock_irqsave(&rq->lock, flags);
5683
5684 if (rq->rd) {
5685 old_rd = rq->rd;
5686
5687 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5688 set_rq_offline(rq);
5689
5690 cpumask_clear_cpu(rq->cpu, old_rd->span);
5691
5692 /*
5693 * If we dont want to free the old_rd yet then
5694 * set old_rd to NULL to skip the freeing later
5695 * in this function:
5696 */
5697 if (!atomic_dec_and_test(&old_rd->refcount))
5698 old_rd = NULL;
5699 }
5700
5701 atomic_inc(&rd->refcount);
5702 rq->rd = rd;
5703
5704 cpumask_set_cpu(rq->cpu, rd->span);
5705 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5706 set_rq_online(rq);
5707
5708 raw_spin_unlock_irqrestore(&rq->lock, flags);
5709
5710 if (old_rd)
5711 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5712 }
5713
5714 static int init_rootdomain(struct root_domain *rd)
5715 {
5716 memset(rd, 0, sizeof(*rd));
5717
5718 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5719 goto out;
5720 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5721 goto free_span;
5722 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5723 goto free_online;
5724 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5725 goto free_dlo_mask;
5726
5727 init_dl_bw(&rd->dl_bw);
5728 if (cpudl_init(&rd->cpudl) != 0)
5729 goto free_dlo_mask;
5730
5731 if (cpupri_init(&rd->cpupri) != 0)
5732 goto free_rto_mask;
5733 return 0;
5734
5735 free_rto_mask:
5736 free_cpumask_var(rd->rto_mask);
5737 free_dlo_mask:
5738 free_cpumask_var(rd->dlo_mask);
5739 free_online:
5740 free_cpumask_var(rd->online);
5741 free_span:
5742 free_cpumask_var(rd->span);
5743 out:
5744 return -ENOMEM;
5745 }
5746
5747 /*
5748 * By default the system creates a single root-domain with all cpus as
5749 * members (mimicking the global state we have today).
5750 */
5751 struct root_domain def_root_domain;
5752
5753 static void init_defrootdomain(void)
5754 {
5755 init_rootdomain(&def_root_domain);
5756
5757 atomic_set(&def_root_domain.refcount, 1);
5758 }
5759
5760 static struct root_domain *alloc_rootdomain(void)
5761 {
5762 struct root_domain *rd;
5763
5764 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5765 if (!rd)
5766 return NULL;
5767
5768 if (init_rootdomain(rd) != 0) {
5769 kfree(rd);
5770 return NULL;
5771 }
5772
5773 return rd;
5774 }
5775
5776 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5777 {
5778 struct sched_group *tmp, *first;
5779
5780 if (!sg)
5781 return;
5782
5783 first = sg;
5784 do {
5785 tmp = sg->next;
5786
5787 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5788 kfree(sg->sgc);
5789
5790 kfree(sg);
5791 sg = tmp;
5792 } while (sg != first);
5793 }
5794
5795 static void free_sched_domain(struct rcu_head *rcu)
5796 {
5797 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5798
5799 /*
5800 * If its an overlapping domain it has private groups, iterate and
5801 * nuke them all.
5802 */
5803 if (sd->flags & SD_OVERLAP) {
5804 free_sched_groups(sd->groups, 1);
5805 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5806 kfree(sd->groups->sgc);
5807 kfree(sd->groups);
5808 }
5809 kfree(sd);
5810 }
5811
5812 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5813 {
5814 call_rcu(&sd->rcu, free_sched_domain);
5815 }
5816
5817 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5818 {
5819 for (; sd; sd = sd->parent)
5820 destroy_sched_domain(sd, cpu);
5821 }
5822
5823 /*
5824 * Keep a special pointer to the highest sched_domain that has
5825 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5826 * allows us to avoid some pointer chasing select_idle_sibling().
5827 *
5828 * Also keep a unique ID per domain (we use the first cpu number in
5829 * the cpumask of the domain), this allows us to quickly tell if
5830 * two cpus are in the same cache domain, see cpus_share_cache().
5831 */
5832 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5833 DEFINE_PER_CPU(int, sd_llc_size);
5834 DEFINE_PER_CPU(int, sd_llc_id);
5835 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5836 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5837 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5838
5839 static void update_top_cache_domain(int cpu)
5840 {
5841 struct sched_domain *sd;
5842 struct sched_domain *busy_sd = NULL;
5843 int id = cpu;
5844 int size = 1;
5845
5846 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5847 if (sd) {
5848 id = cpumask_first(sched_domain_span(sd));
5849 size = cpumask_weight(sched_domain_span(sd));
5850 busy_sd = sd->parent; /* sd_busy */
5851 }
5852 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5853
5854 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5855 per_cpu(sd_llc_size, cpu) = size;
5856 per_cpu(sd_llc_id, cpu) = id;
5857
5858 sd = lowest_flag_domain(cpu, SD_NUMA);
5859 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5860
5861 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5862 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5863 }
5864
5865 /*
5866 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5867 * hold the hotplug lock.
5868 */
5869 static void
5870 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5871 {
5872 struct rq *rq = cpu_rq(cpu);
5873 struct sched_domain *tmp;
5874
5875 /* Remove the sched domains which do not contribute to scheduling. */
5876 for (tmp = sd; tmp; ) {
5877 struct sched_domain *parent = tmp->parent;
5878 if (!parent)
5879 break;
5880
5881 if (sd_parent_degenerate(tmp, parent)) {
5882 tmp->parent = parent->parent;
5883 if (parent->parent)
5884 parent->parent->child = tmp;
5885 /*
5886 * Transfer SD_PREFER_SIBLING down in case of a
5887 * degenerate parent; the spans match for this
5888 * so the property transfers.
5889 */
5890 if (parent->flags & SD_PREFER_SIBLING)
5891 tmp->flags |= SD_PREFER_SIBLING;
5892 destroy_sched_domain(parent, cpu);
5893 } else
5894 tmp = tmp->parent;
5895 }
5896
5897 if (sd && sd_degenerate(sd)) {
5898 tmp = sd;
5899 sd = sd->parent;
5900 destroy_sched_domain(tmp, cpu);
5901 if (sd)
5902 sd->child = NULL;
5903 }
5904
5905 sched_domain_debug(sd, cpu);
5906
5907 rq_attach_root(rq, rd);
5908 tmp = rq->sd;
5909 rcu_assign_pointer(rq->sd, sd);
5910 destroy_sched_domains(tmp, cpu);
5911
5912 update_top_cache_domain(cpu);
5913 }
5914
5915 /* Setup the mask of cpus configured for isolated domains */
5916 static int __init isolated_cpu_setup(char *str)
5917 {
5918 int ret;
5919
5920 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5921 ret = cpulist_parse(str, cpu_isolated_map);
5922 if (ret) {
5923 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5924 return 0;
5925 }
5926 return 1;
5927 }
5928 __setup("isolcpus=", isolated_cpu_setup);
5929
5930 struct s_data {
5931 struct sched_domain ** __percpu sd;
5932 struct root_domain *rd;
5933 };
5934
5935 enum s_alloc {
5936 sa_rootdomain,
5937 sa_sd,
5938 sa_sd_storage,
5939 sa_none,
5940 };
5941
5942 /*
5943 * Build an iteration mask that can exclude certain CPUs from the upwards
5944 * domain traversal.
5945 *
5946 * Asymmetric node setups can result in situations where the domain tree is of
5947 * unequal depth, make sure to skip domains that already cover the entire
5948 * range.
5949 *
5950 * In that case build_sched_domains() will have terminated the iteration early
5951 * and our sibling sd spans will be empty. Domains should always include the
5952 * cpu they're built on, so check that.
5953 *
5954 */
5955 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5956 {
5957 const struct cpumask *span = sched_domain_span(sd);
5958 struct sd_data *sdd = sd->private;
5959 struct sched_domain *sibling;
5960 int i;
5961
5962 for_each_cpu(i, span) {
5963 sibling = *per_cpu_ptr(sdd->sd, i);
5964 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5965 continue;
5966
5967 cpumask_set_cpu(i, sched_group_mask(sg));
5968 }
5969 }
5970
5971 /*
5972 * Return the canonical balance cpu for this group, this is the first cpu
5973 * of this group that's also in the iteration mask.
5974 */
5975 int group_balance_cpu(struct sched_group *sg)
5976 {
5977 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5978 }
5979
5980 static int
5981 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5982 {
5983 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5984 const struct cpumask *span = sched_domain_span(sd);
5985 struct cpumask *covered = sched_domains_tmpmask;
5986 struct sd_data *sdd = sd->private;
5987 struct sched_domain *sibling;
5988 int i;
5989
5990 cpumask_clear(covered);
5991
5992 for_each_cpu(i, span) {
5993 struct cpumask *sg_span;
5994
5995 if (cpumask_test_cpu(i, covered))
5996 continue;
5997
5998 sibling = *per_cpu_ptr(sdd->sd, i);
5999
6000 /* See the comment near build_group_mask(). */
6001 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6002 continue;
6003
6004 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6005 GFP_KERNEL, cpu_to_node(cpu));
6006
6007 if (!sg)
6008 goto fail;
6009
6010 sg_span = sched_group_cpus(sg);
6011 if (sibling->child)
6012 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6013 else
6014 cpumask_set_cpu(i, sg_span);
6015
6016 cpumask_or(covered, covered, sg_span);
6017
6018 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6019 if (atomic_inc_return(&sg->sgc->ref) == 1)
6020 build_group_mask(sd, sg);
6021
6022 /*
6023 * Initialize sgc->capacity such that even if we mess up the
6024 * domains and no possible iteration will get us here, we won't
6025 * die on a /0 trap.
6026 */
6027 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6028
6029 /*
6030 * Make sure the first group of this domain contains the
6031 * canonical balance cpu. Otherwise the sched_domain iteration
6032 * breaks. See update_sg_lb_stats().
6033 */
6034 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6035 group_balance_cpu(sg) == cpu)
6036 groups = sg;
6037
6038 if (!first)
6039 first = sg;
6040 if (last)
6041 last->next = sg;
6042 last = sg;
6043 last->next = first;
6044 }
6045 sd->groups = groups;
6046
6047 return 0;
6048
6049 fail:
6050 free_sched_groups(first, 0);
6051
6052 return -ENOMEM;
6053 }
6054
6055 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6056 {
6057 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6058 struct sched_domain *child = sd->child;
6059
6060 if (child)
6061 cpu = cpumask_first(sched_domain_span(child));
6062
6063 if (sg) {
6064 *sg = *per_cpu_ptr(sdd->sg, cpu);
6065 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6066 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6067 }
6068
6069 return cpu;
6070 }
6071
6072 /*
6073 * build_sched_groups will build a circular linked list of the groups
6074 * covered by the given span, and will set each group's ->cpumask correctly,
6075 * and ->cpu_capacity to 0.
6076 *
6077 * Assumes the sched_domain tree is fully constructed
6078 */
6079 static int
6080 build_sched_groups(struct sched_domain *sd, int cpu)
6081 {
6082 struct sched_group *first = NULL, *last = NULL;
6083 struct sd_data *sdd = sd->private;
6084 const struct cpumask *span = sched_domain_span(sd);
6085 struct cpumask *covered;
6086 int i;
6087
6088 get_group(cpu, sdd, &sd->groups);
6089 atomic_inc(&sd->groups->ref);
6090
6091 if (cpu != cpumask_first(span))
6092 return 0;
6093
6094 lockdep_assert_held(&sched_domains_mutex);
6095 covered = sched_domains_tmpmask;
6096
6097 cpumask_clear(covered);
6098
6099 for_each_cpu(i, span) {
6100 struct sched_group *sg;
6101 int group, j;
6102
6103 if (cpumask_test_cpu(i, covered))
6104 continue;
6105
6106 group = get_group(i, sdd, &sg);
6107 cpumask_setall(sched_group_mask(sg));
6108
6109 for_each_cpu(j, span) {
6110 if (get_group(j, sdd, NULL) != group)
6111 continue;
6112
6113 cpumask_set_cpu(j, covered);
6114 cpumask_set_cpu(j, sched_group_cpus(sg));
6115 }
6116
6117 if (!first)
6118 first = sg;
6119 if (last)
6120 last->next = sg;
6121 last = sg;
6122 }
6123 last->next = first;
6124
6125 return 0;
6126 }
6127
6128 /*
6129 * Initialize sched groups cpu_capacity.
6130 *
6131 * cpu_capacity indicates the capacity of sched group, which is used while
6132 * distributing the load between different sched groups in a sched domain.
6133 * Typically cpu_capacity for all the groups in a sched domain will be same
6134 * unless there are asymmetries in the topology. If there are asymmetries,
6135 * group having more cpu_capacity will pickup more load compared to the
6136 * group having less cpu_capacity.
6137 */
6138 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6139 {
6140 struct sched_group *sg = sd->groups;
6141
6142 WARN_ON(!sg);
6143
6144 do {
6145 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6146 sg = sg->next;
6147 } while (sg != sd->groups);
6148
6149 if (cpu != group_balance_cpu(sg))
6150 return;
6151
6152 update_group_capacity(sd, cpu);
6153 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6154 }
6155
6156 /*
6157 * Initializers for schedule domains
6158 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6159 */
6160
6161 static int default_relax_domain_level = -1;
6162 int sched_domain_level_max;
6163
6164 static int __init setup_relax_domain_level(char *str)
6165 {
6166 if (kstrtoint(str, 0, &default_relax_domain_level))
6167 pr_warn("Unable to set relax_domain_level\n");
6168
6169 return 1;
6170 }
6171 __setup("relax_domain_level=", setup_relax_domain_level);
6172
6173 static void set_domain_attribute(struct sched_domain *sd,
6174 struct sched_domain_attr *attr)
6175 {
6176 int request;
6177
6178 if (!attr || attr->relax_domain_level < 0) {
6179 if (default_relax_domain_level < 0)
6180 return;
6181 else
6182 request = default_relax_domain_level;
6183 } else
6184 request = attr->relax_domain_level;
6185 if (request < sd->level) {
6186 /* turn off idle balance on this domain */
6187 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6188 } else {
6189 /* turn on idle balance on this domain */
6190 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6191 }
6192 }
6193
6194 static void __sdt_free(const struct cpumask *cpu_map);
6195 static int __sdt_alloc(const struct cpumask *cpu_map);
6196
6197 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6198 const struct cpumask *cpu_map)
6199 {
6200 switch (what) {
6201 case sa_rootdomain:
6202 if (!atomic_read(&d->rd->refcount))
6203 free_rootdomain(&d->rd->rcu); /* fall through */
6204 case sa_sd:
6205 free_percpu(d->sd); /* fall through */
6206 case sa_sd_storage:
6207 __sdt_free(cpu_map); /* fall through */
6208 case sa_none:
6209 break;
6210 }
6211 }
6212
6213 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6214 const struct cpumask *cpu_map)
6215 {
6216 memset(d, 0, sizeof(*d));
6217
6218 if (__sdt_alloc(cpu_map))
6219 return sa_sd_storage;
6220 d->sd = alloc_percpu(struct sched_domain *);
6221 if (!d->sd)
6222 return sa_sd_storage;
6223 d->rd = alloc_rootdomain();
6224 if (!d->rd)
6225 return sa_sd;
6226 return sa_rootdomain;
6227 }
6228
6229 /*
6230 * NULL the sd_data elements we've used to build the sched_domain and
6231 * sched_group structure so that the subsequent __free_domain_allocs()
6232 * will not free the data we're using.
6233 */
6234 static void claim_allocations(int cpu, struct sched_domain *sd)
6235 {
6236 struct sd_data *sdd = sd->private;
6237
6238 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6239 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6240
6241 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6242 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6243
6244 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6245 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6246 }
6247
6248 #ifdef CONFIG_NUMA
6249 static int sched_domains_numa_levels;
6250 enum numa_topology_type sched_numa_topology_type;
6251 static int *sched_domains_numa_distance;
6252 int sched_max_numa_distance;
6253 static struct cpumask ***sched_domains_numa_masks;
6254 static int sched_domains_curr_level;
6255 #endif
6256
6257 /*
6258 * SD_flags allowed in topology descriptions.
6259 *
6260 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6261 * SD_SHARE_PKG_RESOURCES - describes shared caches
6262 * SD_NUMA - describes NUMA topologies
6263 * SD_SHARE_POWERDOMAIN - describes shared power domain
6264 *
6265 * Odd one out:
6266 * SD_ASYM_PACKING - describes SMT quirks
6267 */
6268 #define TOPOLOGY_SD_FLAGS \
6269 (SD_SHARE_CPUCAPACITY | \
6270 SD_SHARE_PKG_RESOURCES | \
6271 SD_NUMA | \
6272 SD_ASYM_PACKING | \
6273 SD_SHARE_POWERDOMAIN)
6274
6275 static struct sched_domain *
6276 sd_init(struct sched_domain_topology_level *tl, int cpu)
6277 {
6278 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6279 int sd_weight, sd_flags = 0;
6280
6281 #ifdef CONFIG_NUMA
6282 /*
6283 * Ugly hack to pass state to sd_numa_mask()...
6284 */
6285 sched_domains_curr_level = tl->numa_level;
6286 #endif
6287
6288 sd_weight = cpumask_weight(tl->mask(cpu));
6289
6290 if (tl->sd_flags)
6291 sd_flags = (*tl->sd_flags)();
6292 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6293 "wrong sd_flags in topology description\n"))
6294 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6295
6296 *sd = (struct sched_domain){
6297 .min_interval = sd_weight,
6298 .max_interval = 2*sd_weight,
6299 .busy_factor = 32,
6300 .imbalance_pct = 125,
6301
6302 .cache_nice_tries = 0,
6303 .busy_idx = 0,
6304 .idle_idx = 0,
6305 .newidle_idx = 0,
6306 .wake_idx = 0,
6307 .forkexec_idx = 0,
6308
6309 .flags = 1*SD_LOAD_BALANCE
6310 | 1*SD_BALANCE_NEWIDLE
6311 | 1*SD_BALANCE_EXEC
6312 | 1*SD_BALANCE_FORK
6313 | 0*SD_BALANCE_WAKE
6314 | 1*SD_WAKE_AFFINE
6315 | 0*SD_SHARE_CPUCAPACITY
6316 | 0*SD_SHARE_PKG_RESOURCES
6317 | 0*SD_SERIALIZE
6318 | 0*SD_PREFER_SIBLING
6319 | 0*SD_NUMA
6320 | sd_flags
6321 ,
6322
6323 .last_balance = jiffies,
6324 .balance_interval = sd_weight,
6325 .smt_gain = 0,
6326 .max_newidle_lb_cost = 0,
6327 .next_decay_max_lb_cost = jiffies,
6328 #ifdef CONFIG_SCHED_DEBUG
6329 .name = tl->name,
6330 #endif
6331 };
6332
6333 /*
6334 * Convert topological properties into behaviour.
6335 */
6336
6337 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6338 sd->flags |= SD_PREFER_SIBLING;
6339 sd->imbalance_pct = 110;
6340 sd->smt_gain = 1178; /* ~15% */
6341
6342 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6343 sd->imbalance_pct = 117;
6344 sd->cache_nice_tries = 1;
6345 sd->busy_idx = 2;
6346
6347 #ifdef CONFIG_NUMA
6348 } else if (sd->flags & SD_NUMA) {
6349 sd->cache_nice_tries = 2;
6350 sd->busy_idx = 3;
6351 sd->idle_idx = 2;
6352
6353 sd->flags |= SD_SERIALIZE;
6354 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6355 sd->flags &= ~(SD_BALANCE_EXEC |
6356 SD_BALANCE_FORK |
6357 SD_WAKE_AFFINE);
6358 }
6359
6360 #endif
6361 } else {
6362 sd->flags |= SD_PREFER_SIBLING;
6363 sd->cache_nice_tries = 1;
6364 sd->busy_idx = 2;
6365 sd->idle_idx = 1;
6366 }
6367
6368 sd->private = &tl->data;
6369
6370 return sd;
6371 }
6372
6373 /*
6374 * Topology list, bottom-up.
6375 */
6376 static struct sched_domain_topology_level default_topology[] = {
6377 #ifdef CONFIG_SCHED_SMT
6378 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6379 #endif
6380 #ifdef CONFIG_SCHED_MC
6381 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6382 #endif
6383 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6384 { NULL, },
6385 };
6386
6387 static struct sched_domain_topology_level *sched_domain_topology =
6388 default_topology;
6389
6390 #define for_each_sd_topology(tl) \
6391 for (tl = sched_domain_topology; tl->mask; tl++)
6392
6393 void set_sched_topology(struct sched_domain_topology_level *tl)
6394 {
6395 sched_domain_topology = tl;
6396 }
6397
6398 #ifdef CONFIG_NUMA
6399
6400 static const struct cpumask *sd_numa_mask(int cpu)
6401 {
6402 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6403 }
6404
6405 static void sched_numa_warn(const char *str)
6406 {
6407 static int done = false;
6408 int i,j;
6409
6410 if (done)
6411 return;
6412
6413 done = true;
6414
6415 printk(KERN_WARNING "ERROR: %s\n\n", str);
6416
6417 for (i = 0; i < nr_node_ids; i++) {
6418 printk(KERN_WARNING " ");
6419 for (j = 0; j < nr_node_ids; j++)
6420 printk(KERN_CONT "%02d ", node_distance(i,j));
6421 printk(KERN_CONT "\n");
6422 }
6423 printk(KERN_WARNING "\n");
6424 }
6425
6426 bool find_numa_distance(int distance)
6427 {
6428 int i;
6429
6430 if (distance == node_distance(0, 0))
6431 return true;
6432
6433 for (i = 0; i < sched_domains_numa_levels; i++) {
6434 if (sched_domains_numa_distance[i] == distance)
6435 return true;
6436 }
6437
6438 return false;
6439 }
6440
6441 /*
6442 * A system can have three types of NUMA topology:
6443 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6444 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6445 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6446 *
6447 * The difference between a glueless mesh topology and a backplane
6448 * topology lies in whether communication between not directly
6449 * connected nodes goes through intermediary nodes (where programs
6450 * could run), or through backplane controllers. This affects
6451 * placement of programs.
6452 *
6453 * The type of topology can be discerned with the following tests:
6454 * - If the maximum distance between any nodes is 1 hop, the system
6455 * is directly connected.
6456 * - If for two nodes A and B, located N > 1 hops away from each other,
6457 * there is an intermediary node C, which is < N hops away from both
6458 * nodes A and B, the system is a glueless mesh.
6459 */
6460 static void init_numa_topology_type(void)
6461 {
6462 int a, b, c, n;
6463
6464 n = sched_max_numa_distance;
6465
6466 if (sched_domains_numa_levels <= 1) {
6467 sched_numa_topology_type = NUMA_DIRECT;
6468 return;
6469 }
6470
6471 for_each_online_node(a) {
6472 for_each_online_node(b) {
6473 /* Find two nodes furthest removed from each other. */
6474 if (node_distance(a, b) < n)
6475 continue;
6476
6477 /* Is there an intermediary node between a and b? */
6478 for_each_online_node(c) {
6479 if (node_distance(a, c) < n &&
6480 node_distance(b, c) < n) {
6481 sched_numa_topology_type =
6482 NUMA_GLUELESS_MESH;
6483 return;
6484 }
6485 }
6486
6487 sched_numa_topology_type = NUMA_BACKPLANE;
6488 return;
6489 }
6490 }
6491 }
6492
6493 static void sched_init_numa(void)
6494 {
6495 int next_distance, curr_distance = node_distance(0, 0);
6496 struct sched_domain_topology_level *tl;
6497 int level = 0;
6498 int i, j, k;
6499
6500 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6501 if (!sched_domains_numa_distance)
6502 return;
6503
6504 /*
6505 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6506 * unique distances in the node_distance() table.
6507 *
6508 * Assumes node_distance(0,j) includes all distances in
6509 * node_distance(i,j) in order to avoid cubic time.
6510 */
6511 next_distance = curr_distance;
6512 for (i = 0; i < nr_node_ids; i++) {
6513 for (j = 0; j < nr_node_ids; j++) {
6514 for (k = 0; k < nr_node_ids; k++) {
6515 int distance = node_distance(i, k);
6516
6517 if (distance > curr_distance &&
6518 (distance < next_distance ||
6519 next_distance == curr_distance))
6520 next_distance = distance;
6521
6522 /*
6523 * While not a strong assumption it would be nice to know
6524 * about cases where if node A is connected to B, B is not
6525 * equally connected to A.
6526 */
6527 if (sched_debug() && node_distance(k, i) != distance)
6528 sched_numa_warn("Node-distance not symmetric");
6529
6530 if (sched_debug() && i && !find_numa_distance(distance))
6531 sched_numa_warn("Node-0 not representative");
6532 }
6533 if (next_distance != curr_distance) {
6534 sched_domains_numa_distance[level++] = next_distance;
6535 sched_domains_numa_levels = level;
6536 curr_distance = next_distance;
6537 } else break;
6538 }
6539
6540 /*
6541 * In case of sched_debug() we verify the above assumption.
6542 */
6543 if (!sched_debug())
6544 break;
6545 }
6546
6547 if (!level)
6548 return;
6549
6550 /*
6551 * 'level' contains the number of unique distances, excluding the
6552 * identity distance node_distance(i,i).
6553 *
6554 * The sched_domains_numa_distance[] array includes the actual distance
6555 * numbers.
6556 */
6557
6558 /*
6559 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6560 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6561 * the array will contain less then 'level' members. This could be
6562 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6563 * in other functions.
6564 *
6565 * We reset it to 'level' at the end of this function.
6566 */
6567 sched_domains_numa_levels = 0;
6568
6569 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6570 if (!sched_domains_numa_masks)
6571 return;
6572
6573 /*
6574 * Now for each level, construct a mask per node which contains all
6575 * cpus of nodes that are that many hops away from us.
6576 */
6577 for (i = 0; i < level; i++) {
6578 sched_domains_numa_masks[i] =
6579 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6580 if (!sched_domains_numa_masks[i])
6581 return;
6582
6583 for (j = 0; j < nr_node_ids; j++) {
6584 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6585 if (!mask)
6586 return;
6587
6588 sched_domains_numa_masks[i][j] = mask;
6589
6590 for_each_node(k) {
6591 if (node_distance(j, k) > sched_domains_numa_distance[i])
6592 continue;
6593
6594 cpumask_or(mask, mask, cpumask_of_node(k));
6595 }
6596 }
6597 }
6598
6599 /* Compute default topology size */
6600 for (i = 0; sched_domain_topology[i].mask; i++);
6601
6602 tl = kzalloc((i + level + 1) *
6603 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6604 if (!tl)
6605 return;
6606
6607 /*
6608 * Copy the default topology bits..
6609 */
6610 for (i = 0; sched_domain_topology[i].mask; i++)
6611 tl[i] = sched_domain_topology[i];
6612
6613 /*
6614 * .. and append 'j' levels of NUMA goodness.
6615 */
6616 for (j = 0; j < level; i++, j++) {
6617 tl[i] = (struct sched_domain_topology_level){
6618 .mask = sd_numa_mask,
6619 .sd_flags = cpu_numa_flags,
6620 .flags = SDTL_OVERLAP,
6621 .numa_level = j,
6622 SD_INIT_NAME(NUMA)
6623 };
6624 }
6625
6626 sched_domain_topology = tl;
6627
6628 sched_domains_numa_levels = level;
6629 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6630
6631 init_numa_topology_type();
6632 }
6633
6634 static void sched_domains_numa_masks_set(int cpu)
6635 {
6636 int i, j;
6637 int node = cpu_to_node(cpu);
6638
6639 for (i = 0; i < sched_domains_numa_levels; i++) {
6640 for (j = 0; j < nr_node_ids; j++) {
6641 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6642 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6643 }
6644 }
6645 }
6646
6647 static void sched_domains_numa_masks_clear(int cpu)
6648 {
6649 int i, j;
6650 for (i = 0; i < sched_domains_numa_levels; i++) {
6651 for (j = 0; j < nr_node_ids; j++)
6652 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6653 }
6654 }
6655
6656 /*
6657 * Update sched_domains_numa_masks[level][node] array when new cpus
6658 * are onlined.
6659 */
6660 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6661 unsigned long action,
6662 void *hcpu)
6663 {
6664 int cpu = (long)hcpu;
6665
6666 switch (action & ~CPU_TASKS_FROZEN) {
6667 case CPU_ONLINE:
6668 sched_domains_numa_masks_set(cpu);
6669 break;
6670
6671 case CPU_DEAD:
6672 sched_domains_numa_masks_clear(cpu);
6673 break;
6674
6675 default:
6676 return NOTIFY_DONE;
6677 }
6678
6679 return NOTIFY_OK;
6680 }
6681 #else
6682 static inline void sched_init_numa(void)
6683 {
6684 }
6685
6686 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6687 unsigned long action,
6688 void *hcpu)
6689 {
6690 return 0;
6691 }
6692 #endif /* CONFIG_NUMA */
6693
6694 static int __sdt_alloc(const struct cpumask *cpu_map)
6695 {
6696 struct sched_domain_topology_level *tl;
6697 int j;
6698
6699 for_each_sd_topology(tl) {
6700 struct sd_data *sdd = &tl->data;
6701
6702 sdd->sd = alloc_percpu(struct sched_domain *);
6703 if (!sdd->sd)
6704 return -ENOMEM;
6705
6706 sdd->sg = alloc_percpu(struct sched_group *);
6707 if (!sdd->sg)
6708 return -ENOMEM;
6709
6710 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6711 if (!sdd->sgc)
6712 return -ENOMEM;
6713
6714 for_each_cpu(j, cpu_map) {
6715 struct sched_domain *sd;
6716 struct sched_group *sg;
6717 struct sched_group_capacity *sgc;
6718
6719 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6720 GFP_KERNEL, cpu_to_node(j));
6721 if (!sd)
6722 return -ENOMEM;
6723
6724 *per_cpu_ptr(sdd->sd, j) = sd;
6725
6726 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6727 GFP_KERNEL, cpu_to_node(j));
6728 if (!sg)
6729 return -ENOMEM;
6730
6731 sg->next = sg;
6732
6733 *per_cpu_ptr(sdd->sg, j) = sg;
6734
6735 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6736 GFP_KERNEL, cpu_to_node(j));
6737 if (!sgc)
6738 return -ENOMEM;
6739
6740 *per_cpu_ptr(sdd->sgc, j) = sgc;
6741 }
6742 }
6743
6744 return 0;
6745 }
6746
6747 static void __sdt_free(const struct cpumask *cpu_map)
6748 {
6749 struct sched_domain_topology_level *tl;
6750 int j;
6751
6752 for_each_sd_topology(tl) {
6753 struct sd_data *sdd = &tl->data;
6754
6755 for_each_cpu(j, cpu_map) {
6756 struct sched_domain *sd;
6757
6758 if (sdd->sd) {
6759 sd = *per_cpu_ptr(sdd->sd, j);
6760 if (sd && (sd->flags & SD_OVERLAP))
6761 free_sched_groups(sd->groups, 0);
6762 kfree(*per_cpu_ptr(sdd->sd, j));
6763 }
6764
6765 if (sdd->sg)
6766 kfree(*per_cpu_ptr(sdd->sg, j));
6767 if (sdd->sgc)
6768 kfree(*per_cpu_ptr(sdd->sgc, j));
6769 }
6770 free_percpu(sdd->sd);
6771 sdd->sd = NULL;
6772 free_percpu(sdd->sg);
6773 sdd->sg = NULL;
6774 free_percpu(sdd->sgc);
6775 sdd->sgc = NULL;
6776 }
6777 }
6778
6779 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6780 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6781 struct sched_domain *child, int cpu)
6782 {
6783 struct sched_domain *sd = sd_init(tl, cpu);
6784 if (!sd)
6785 return child;
6786
6787 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6788 if (child) {
6789 sd->level = child->level + 1;
6790 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6791 child->parent = sd;
6792 sd->child = child;
6793
6794 if (!cpumask_subset(sched_domain_span(child),
6795 sched_domain_span(sd))) {
6796 pr_err("BUG: arch topology borken\n");
6797 #ifdef CONFIG_SCHED_DEBUG
6798 pr_err(" the %s domain not a subset of the %s domain\n",
6799 child->name, sd->name);
6800 #endif
6801 /* Fixup, ensure @sd has at least @child cpus. */
6802 cpumask_or(sched_domain_span(sd),
6803 sched_domain_span(sd),
6804 sched_domain_span(child));
6805 }
6806
6807 }
6808 set_domain_attribute(sd, attr);
6809
6810 return sd;
6811 }
6812
6813 /*
6814 * Build sched domains for a given set of cpus and attach the sched domains
6815 * to the individual cpus
6816 */
6817 static int build_sched_domains(const struct cpumask *cpu_map,
6818 struct sched_domain_attr *attr)
6819 {
6820 enum s_alloc alloc_state;
6821 struct sched_domain *sd;
6822 struct s_data d;
6823 int i, ret = -ENOMEM;
6824
6825 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6826 if (alloc_state != sa_rootdomain)
6827 goto error;
6828
6829 /* Set up domains for cpus specified by the cpu_map. */
6830 for_each_cpu(i, cpu_map) {
6831 struct sched_domain_topology_level *tl;
6832
6833 sd = NULL;
6834 for_each_sd_topology(tl) {
6835 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6836 if (tl == sched_domain_topology)
6837 *per_cpu_ptr(d.sd, i) = sd;
6838 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6839 sd->flags |= SD_OVERLAP;
6840 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6841 break;
6842 }
6843 }
6844
6845 /* Build the groups for the domains */
6846 for_each_cpu(i, cpu_map) {
6847 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6848 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6849 if (sd->flags & SD_OVERLAP) {
6850 if (build_overlap_sched_groups(sd, i))
6851 goto error;
6852 } else {
6853 if (build_sched_groups(sd, i))
6854 goto error;
6855 }
6856 }
6857 }
6858
6859 /* Calculate CPU capacity for physical packages and nodes */
6860 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6861 if (!cpumask_test_cpu(i, cpu_map))
6862 continue;
6863
6864 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6865 claim_allocations(i, sd);
6866 init_sched_groups_capacity(i, sd);
6867 }
6868 }
6869
6870 /* Attach the domains */
6871 rcu_read_lock();
6872 for_each_cpu(i, cpu_map) {
6873 sd = *per_cpu_ptr(d.sd, i);
6874 cpu_attach_domain(sd, d.rd, i);
6875 }
6876 rcu_read_unlock();
6877
6878 ret = 0;
6879 error:
6880 __free_domain_allocs(&d, alloc_state, cpu_map);
6881 return ret;
6882 }
6883
6884 static cpumask_var_t *doms_cur; /* current sched domains */
6885 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6886 static struct sched_domain_attr *dattr_cur;
6887 /* attribues of custom domains in 'doms_cur' */
6888
6889 /*
6890 * Special case: If a kmalloc of a doms_cur partition (array of
6891 * cpumask) fails, then fallback to a single sched domain,
6892 * as determined by the single cpumask fallback_doms.
6893 */
6894 static cpumask_var_t fallback_doms;
6895
6896 /*
6897 * arch_update_cpu_topology lets virtualized architectures update the
6898 * cpu core maps. It is supposed to return 1 if the topology changed
6899 * or 0 if it stayed the same.
6900 */
6901 int __weak arch_update_cpu_topology(void)
6902 {
6903 return 0;
6904 }
6905
6906 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6907 {
6908 int i;
6909 cpumask_var_t *doms;
6910
6911 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6912 if (!doms)
6913 return NULL;
6914 for (i = 0; i < ndoms; i++) {
6915 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6916 free_sched_domains(doms, i);
6917 return NULL;
6918 }
6919 }
6920 return doms;
6921 }
6922
6923 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6924 {
6925 unsigned int i;
6926 for (i = 0; i < ndoms; i++)
6927 free_cpumask_var(doms[i]);
6928 kfree(doms);
6929 }
6930
6931 /*
6932 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6933 * For now this just excludes isolated cpus, but could be used to
6934 * exclude other special cases in the future.
6935 */
6936 static int init_sched_domains(const struct cpumask *cpu_map)
6937 {
6938 int err;
6939
6940 arch_update_cpu_topology();
6941 ndoms_cur = 1;
6942 doms_cur = alloc_sched_domains(ndoms_cur);
6943 if (!doms_cur)
6944 doms_cur = &fallback_doms;
6945 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6946 err = build_sched_domains(doms_cur[0], NULL);
6947 register_sched_domain_sysctl();
6948
6949 return err;
6950 }
6951
6952 /*
6953 * Detach sched domains from a group of cpus specified in cpu_map
6954 * These cpus will now be attached to the NULL domain
6955 */
6956 static void detach_destroy_domains(const struct cpumask *cpu_map)
6957 {
6958 int i;
6959
6960 rcu_read_lock();
6961 for_each_cpu(i, cpu_map)
6962 cpu_attach_domain(NULL, &def_root_domain, i);
6963 rcu_read_unlock();
6964 }
6965
6966 /* handle null as "default" */
6967 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6968 struct sched_domain_attr *new, int idx_new)
6969 {
6970 struct sched_domain_attr tmp;
6971
6972 /* fast path */
6973 if (!new && !cur)
6974 return 1;
6975
6976 tmp = SD_ATTR_INIT;
6977 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6978 new ? (new + idx_new) : &tmp,
6979 sizeof(struct sched_domain_attr));
6980 }
6981
6982 /*
6983 * Partition sched domains as specified by the 'ndoms_new'
6984 * cpumasks in the array doms_new[] of cpumasks. This compares
6985 * doms_new[] to the current sched domain partitioning, doms_cur[].
6986 * It destroys each deleted domain and builds each new domain.
6987 *
6988 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6989 * The masks don't intersect (don't overlap.) We should setup one
6990 * sched domain for each mask. CPUs not in any of the cpumasks will
6991 * not be load balanced. If the same cpumask appears both in the
6992 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6993 * it as it is.
6994 *
6995 * The passed in 'doms_new' should be allocated using
6996 * alloc_sched_domains. This routine takes ownership of it and will
6997 * free_sched_domains it when done with it. If the caller failed the
6998 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6999 * and partition_sched_domains() will fallback to the single partition
7000 * 'fallback_doms', it also forces the domains to be rebuilt.
7001 *
7002 * If doms_new == NULL it will be replaced with cpu_online_mask.
7003 * ndoms_new == 0 is a special case for destroying existing domains,
7004 * and it will not create the default domain.
7005 *
7006 * Call with hotplug lock held
7007 */
7008 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7009 struct sched_domain_attr *dattr_new)
7010 {
7011 int i, j, n;
7012 int new_topology;
7013
7014 mutex_lock(&sched_domains_mutex);
7015
7016 /* always unregister in case we don't destroy any domains */
7017 unregister_sched_domain_sysctl();
7018
7019 /* Let architecture update cpu core mappings. */
7020 new_topology = arch_update_cpu_topology();
7021
7022 n = doms_new ? ndoms_new : 0;
7023
7024 /* Destroy deleted domains */
7025 for (i = 0; i < ndoms_cur; i++) {
7026 for (j = 0; j < n && !new_topology; j++) {
7027 if (cpumask_equal(doms_cur[i], doms_new[j])
7028 && dattrs_equal(dattr_cur, i, dattr_new, j))
7029 goto match1;
7030 }
7031 /* no match - a current sched domain not in new doms_new[] */
7032 detach_destroy_domains(doms_cur[i]);
7033 match1:
7034 ;
7035 }
7036
7037 n = ndoms_cur;
7038 if (doms_new == NULL) {
7039 n = 0;
7040 doms_new = &fallback_doms;
7041 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7042 WARN_ON_ONCE(dattr_new);
7043 }
7044
7045 /* Build new domains */
7046 for (i = 0; i < ndoms_new; i++) {
7047 for (j = 0; j < n && !new_topology; j++) {
7048 if (cpumask_equal(doms_new[i], doms_cur[j])
7049 && dattrs_equal(dattr_new, i, dattr_cur, j))
7050 goto match2;
7051 }
7052 /* no match - add a new doms_new */
7053 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7054 match2:
7055 ;
7056 }
7057
7058 /* Remember the new sched domains */
7059 if (doms_cur != &fallback_doms)
7060 free_sched_domains(doms_cur, ndoms_cur);
7061 kfree(dattr_cur); /* kfree(NULL) is safe */
7062 doms_cur = doms_new;
7063 dattr_cur = dattr_new;
7064 ndoms_cur = ndoms_new;
7065
7066 register_sched_domain_sysctl();
7067
7068 mutex_unlock(&sched_domains_mutex);
7069 }
7070
7071 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7072
7073 /*
7074 * Update cpusets according to cpu_active mask. If cpusets are
7075 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7076 * around partition_sched_domains().
7077 *
7078 * If we come here as part of a suspend/resume, don't touch cpusets because we
7079 * want to restore it back to its original state upon resume anyway.
7080 */
7081 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7082 void *hcpu)
7083 {
7084 switch (action) {
7085 case CPU_ONLINE_FROZEN:
7086 case CPU_DOWN_FAILED_FROZEN:
7087
7088 /*
7089 * num_cpus_frozen tracks how many CPUs are involved in suspend
7090 * resume sequence. As long as this is not the last online
7091 * operation in the resume sequence, just build a single sched
7092 * domain, ignoring cpusets.
7093 */
7094 num_cpus_frozen--;
7095 if (likely(num_cpus_frozen)) {
7096 partition_sched_domains(1, NULL, NULL);
7097 break;
7098 }
7099
7100 /*
7101 * This is the last CPU online operation. So fall through and
7102 * restore the original sched domains by considering the
7103 * cpuset configurations.
7104 */
7105
7106 case CPU_ONLINE:
7107 cpuset_update_active_cpus(true);
7108 break;
7109 default:
7110 return NOTIFY_DONE;
7111 }
7112 return NOTIFY_OK;
7113 }
7114
7115 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7116 void *hcpu)
7117 {
7118 unsigned long flags;
7119 long cpu = (long)hcpu;
7120 struct dl_bw *dl_b;
7121 bool overflow;
7122 int cpus;
7123
7124 switch (action) {
7125 case CPU_DOWN_PREPARE:
7126 rcu_read_lock_sched();
7127 dl_b = dl_bw_of(cpu);
7128
7129 raw_spin_lock_irqsave(&dl_b->lock, flags);
7130 cpus = dl_bw_cpus(cpu);
7131 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7132 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7133
7134 rcu_read_unlock_sched();
7135
7136 if (overflow)
7137 return notifier_from_errno(-EBUSY);
7138 cpuset_update_active_cpus(false);
7139 break;
7140 case CPU_DOWN_PREPARE_FROZEN:
7141 num_cpus_frozen++;
7142 partition_sched_domains(1, NULL, NULL);
7143 break;
7144 default:
7145 return NOTIFY_DONE;
7146 }
7147 return NOTIFY_OK;
7148 }
7149
7150 void __init sched_init_smp(void)
7151 {
7152 cpumask_var_t non_isolated_cpus;
7153
7154 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7155 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7156
7157 sched_init_numa();
7158
7159 /*
7160 * There's no userspace yet to cause hotplug operations; hence all the
7161 * cpu masks are stable and all blatant races in the below code cannot
7162 * happen.
7163 */
7164 mutex_lock(&sched_domains_mutex);
7165 init_sched_domains(cpu_active_mask);
7166 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7167 if (cpumask_empty(non_isolated_cpus))
7168 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7169 mutex_unlock(&sched_domains_mutex);
7170
7171 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7172 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7173 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7174
7175 init_hrtick();
7176
7177 /* Move init over to a non-isolated CPU */
7178 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7179 BUG();
7180 sched_init_granularity();
7181 free_cpumask_var(non_isolated_cpus);
7182
7183 init_sched_rt_class();
7184 init_sched_dl_class();
7185 }
7186 #else
7187 void __init sched_init_smp(void)
7188 {
7189 sched_init_granularity();
7190 }
7191 #endif /* CONFIG_SMP */
7192
7193 int in_sched_functions(unsigned long addr)
7194 {
7195 return in_lock_functions(addr) ||
7196 (addr >= (unsigned long)__sched_text_start
7197 && addr < (unsigned long)__sched_text_end);
7198 }
7199
7200 #ifdef CONFIG_CGROUP_SCHED
7201 /*
7202 * Default task group.
7203 * Every task in system belongs to this group at bootup.
7204 */
7205 struct task_group root_task_group;
7206 LIST_HEAD(task_groups);
7207
7208 /* Cacheline aligned slab cache for task_group */
7209 static struct kmem_cache *task_group_cache __read_mostly;
7210 #endif
7211
7212 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7213
7214 void __init sched_init(void)
7215 {
7216 int i, j;
7217 unsigned long alloc_size = 0, ptr;
7218
7219 #ifdef CONFIG_FAIR_GROUP_SCHED
7220 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7221 #endif
7222 #ifdef CONFIG_RT_GROUP_SCHED
7223 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7224 #endif
7225 if (alloc_size) {
7226 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7227
7228 #ifdef CONFIG_FAIR_GROUP_SCHED
7229 root_task_group.se = (struct sched_entity **)ptr;
7230 ptr += nr_cpu_ids * sizeof(void **);
7231
7232 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7233 ptr += nr_cpu_ids * sizeof(void **);
7234
7235 #endif /* CONFIG_FAIR_GROUP_SCHED */
7236 #ifdef CONFIG_RT_GROUP_SCHED
7237 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7238 ptr += nr_cpu_ids * sizeof(void **);
7239
7240 root_task_group.rt_rq = (struct rt_rq **)ptr;
7241 ptr += nr_cpu_ids * sizeof(void **);
7242
7243 #endif /* CONFIG_RT_GROUP_SCHED */
7244 }
7245 #ifdef CONFIG_CPUMASK_OFFSTACK
7246 for_each_possible_cpu(i) {
7247 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7248 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7249 }
7250 #endif /* CONFIG_CPUMASK_OFFSTACK */
7251
7252 init_rt_bandwidth(&def_rt_bandwidth,
7253 global_rt_period(), global_rt_runtime());
7254 init_dl_bandwidth(&def_dl_bandwidth,
7255 global_rt_period(), global_rt_runtime());
7256
7257 #ifdef CONFIG_SMP
7258 init_defrootdomain();
7259 #endif
7260
7261 #ifdef CONFIG_RT_GROUP_SCHED
7262 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7263 global_rt_period(), global_rt_runtime());
7264 #endif /* CONFIG_RT_GROUP_SCHED */
7265
7266 #ifdef CONFIG_CGROUP_SCHED
7267 task_group_cache = KMEM_CACHE(task_group, 0);
7268
7269 list_add(&root_task_group.list, &task_groups);
7270 INIT_LIST_HEAD(&root_task_group.children);
7271 INIT_LIST_HEAD(&root_task_group.siblings);
7272 autogroup_init(&init_task);
7273 #endif /* CONFIG_CGROUP_SCHED */
7274
7275 for_each_possible_cpu(i) {
7276 struct rq *rq;
7277
7278 rq = cpu_rq(i);
7279 raw_spin_lock_init(&rq->lock);
7280 rq->nr_running = 0;
7281 rq->calc_load_active = 0;
7282 rq->calc_load_update = jiffies + LOAD_FREQ;
7283 init_cfs_rq(&rq->cfs);
7284 init_rt_rq(&rq->rt);
7285 init_dl_rq(&rq->dl);
7286 #ifdef CONFIG_FAIR_GROUP_SCHED
7287 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7288 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7289 /*
7290 * How much cpu bandwidth does root_task_group get?
7291 *
7292 * In case of task-groups formed thr' the cgroup filesystem, it
7293 * gets 100% of the cpu resources in the system. This overall
7294 * system cpu resource is divided among the tasks of
7295 * root_task_group and its child task-groups in a fair manner,
7296 * based on each entity's (task or task-group's) weight
7297 * (se->load.weight).
7298 *
7299 * In other words, if root_task_group has 10 tasks of weight
7300 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7301 * then A0's share of the cpu resource is:
7302 *
7303 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7304 *
7305 * We achieve this by letting root_task_group's tasks sit
7306 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7307 */
7308 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7309 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7310 #endif /* CONFIG_FAIR_GROUP_SCHED */
7311
7312 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7313 #ifdef CONFIG_RT_GROUP_SCHED
7314 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7315 #endif
7316
7317 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7318 rq->cpu_load[j] = 0;
7319
7320 rq->last_load_update_tick = jiffies;
7321
7322 #ifdef CONFIG_SMP
7323 rq->sd = NULL;
7324 rq->rd = NULL;
7325 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7326 rq->balance_callback = NULL;
7327 rq->active_balance = 0;
7328 rq->next_balance = jiffies;
7329 rq->push_cpu = 0;
7330 rq->cpu = i;
7331 rq->online = 0;
7332 rq->idle_stamp = 0;
7333 rq->avg_idle = 2*sysctl_sched_migration_cost;
7334 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7335
7336 INIT_LIST_HEAD(&rq->cfs_tasks);
7337
7338 rq_attach_root(rq, &def_root_domain);
7339 #ifdef CONFIG_NO_HZ_COMMON
7340 rq->nohz_flags = 0;
7341 #endif
7342 #ifdef CONFIG_NO_HZ_FULL
7343 rq->last_sched_tick = 0;
7344 #endif
7345 #endif
7346 init_rq_hrtick(rq);
7347 atomic_set(&rq->nr_iowait, 0);
7348 }
7349
7350 set_load_weight(&init_task);
7351
7352 #ifdef CONFIG_PREEMPT_NOTIFIERS
7353 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7354 #endif
7355
7356 /*
7357 * The boot idle thread does lazy MMU switching as well:
7358 */
7359 atomic_inc(&init_mm.mm_count);
7360 enter_lazy_tlb(&init_mm, current);
7361
7362 /*
7363 * During early bootup we pretend to be a normal task:
7364 */
7365 current->sched_class = &fair_sched_class;
7366
7367 /*
7368 * Make us the idle thread. Technically, schedule() should not be
7369 * called from this thread, however somewhere below it might be,
7370 * but because we are the idle thread, we just pick up running again
7371 * when this runqueue becomes "idle".
7372 */
7373 init_idle(current, smp_processor_id());
7374
7375 calc_load_update = jiffies + LOAD_FREQ;
7376
7377 #ifdef CONFIG_SMP
7378 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7379 /* May be allocated at isolcpus cmdline parse time */
7380 if (cpu_isolated_map == NULL)
7381 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7382 idle_thread_set_boot_cpu();
7383 set_cpu_rq_start_time();
7384 #endif
7385 init_sched_fair_class();
7386
7387 scheduler_running = 1;
7388 }
7389
7390 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7391 static inline int preempt_count_equals(int preempt_offset)
7392 {
7393 int nested = preempt_count() + rcu_preempt_depth();
7394
7395 return (nested == preempt_offset);
7396 }
7397
7398 void __might_sleep(const char *file, int line, int preempt_offset)
7399 {
7400 /*
7401 * Blocking primitives will set (and therefore destroy) current->state,
7402 * since we will exit with TASK_RUNNING make sure we enter with it,
7403 * otherwise we will destroy state.
7404 */
7405 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7406 "do not call blocking ops when !TASK_RUNNING; "
7407 "state=%lx set at [<%p>] %pS\n",
7408 current->state,
7409 (void *)current->task_state_change,
7410 (void *)current->task_state_change);
7411
7412 ___might_sleep(file, line, preempt_offset);
7413 }
7414 EXPORT_SYMBOL(__might_sleep);
7415
7416 void ___might_sleep(const char *file, int line, int preempt_offset)
7417 {
7418 static unsigned long prev_jiffy; /* ratelimiting */
7419
7420 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7421 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7422 !is_idle_task(current)) ||
7423 system_state != SYSTEM_RUNNING || oops_in_progress)
7424 return;
7425 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7426 return;
7427 prev_jiffy = jiffies;
7428
7429 printk(KERN_ERR
7430 "BUG: sleeping function called from invalid context at %s:%d\n",
7431 file, line);
7432 printk(KERN_ERR
7433 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7434 in_atomic(), irqs_disabled(),
7435 current->pid, current->comm);
7436
7437 if (task_stack_end_corrupted(current))
7438 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7439
7440 debug_show_held_locks(current);
7441 if (irqs_disabled())
7442 print_irqtrace_events(current);
7443 #ifdef CONFIG_DEBUG_PREEMPT
7444 if (!preempt_count_equals(preempt_offset)) {
7445 pr_err("Preemption disabled at:");
7446 print_ip_sym(current->preempt_disable_ip);
7447 pr_cont("\n");
7448 }
7449 #endif
7450 dump_stack();
7451 }
7452 EXPORT_SYMBOL(___might_sleep);
7453 #endif
7454
7455 #ifdef CONFIG_MAGIC_SYSRQ
7456 void normalize_rt_tasks(void)
7457 {
7458 struct task_struct *g, *p;
7459 struct sched_attr attr = {
7460 .sched_policy = SCHED_NORMAL,
7461 };
7462
7463 read_lock(&tasklist_lock);
7464 for_each_process_thread(g, p) {
7465 /*
7466 * Only normalize user tasks:
7467 */
7468 if (p->flags & PF_KTHREAD)
7469 continue;
7470
7471 p->se.exec_start = 0;
7472 #ifdef CONFIG_SCHEDSTATS
7473 p->se.statistics.wait_start = 0;
7474 p->se.statistics.sleep_start = 0;
7475 p->se.statistics.block_start = 0;
7476 #endif
7477
7478 if (!dl_task(p) && !rt_task(p)) {
7479 /*
7480 * Renice negative nice level userspace
7481 * tasks back to 0:
7482 */
7483 if (task_nice(p) < 0)
7484 set_user_nice(p, 0);
7485 continue;
7486 }
7487
7488 __sched_setscheduler(p, &attr, false, false);
7489 }
7490 read_unlock(&tasklist_lock);
7491 }
7492
7493 #endif /* CONFIG_MAGIC_SYSRQ */
7494
7495 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7496 /*
7497 * These functions are only useful for the IA64 MCA handling, or kdb.
7498 *
7499 * They can only be called when the whole system has been
7500 * stopped - every CPU needs to be quiescent, and no scheduling
7501 * activity can take place. Using them for anything else would
7502 * be a serious bug, and as a result, they aren't even visible
7503 * under any other configuration.
7504 */
7505
7506 /**
7507 * curr_task - return the current task for a given cpu.
7508 * @cpu: the processor in question.
7509 *
7510 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7511 *
7512 * Return: The current task for @cpu.
7513 */
7514 struct task_struct *curr_task(int cpu)
7515 {
7516 return cpu_curr(cpu);
7517 }
7518
7519 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7520
7521 #ifdef CONFIG_IA64
7522 /**
7523 * set_curr_task - set the current task for a given cpu.
7524 * @cpu: the processor in question.
7525 * @p: the task pointer to set.
7526 *
7527 * Description: This function must only be used when non-maskable interrupts
7528 * are serviced on a separate stack. It allows the architecture to switch the
7529 * notion of the current task on a cpu in a non-blocking manner. This function
7530 * must be called with all CPU's synchronized, and interrupts disabled, the
7531 * and caller must save the original value of the current task (see
7532 * curr_task() above) and restore that value before reenabling interrupts and
7533 * re-starting the system.
7534 *
7535 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7536 */
7537 void set_curr_task(int cpu, struct task_struct *p)
7538 {
7539 cpu_curr(cpu) = p;
7540 }
7541
7542 #endif
7543
7544 #ifdef CONFIG_CGROUP_SCHED
7545 /* task_group_lock serializes the addition/removal of task groups */
7546 static DEFINE_SPINLOCK(task_group_lock);
7547
7548 static void free_sched_group(struct task_group *tg)
7549 {
7550 free_fair_sched_group(tg);
7551 free_rt_sched_group(tg);
7552 autogroup_free(tg);
7553 kmem_cache_free(task_group_cache, tg);
7554 }
7555
7556 /* allocate runqueue etc for a new task group */
7557 struct task_group *sched_create_group(struct task_group *parent)
7558 {
7559 struct task_group *tg;
7560
7561 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7562 if (!tg)
7563 return ERR_PTR(-ENOMEM);
7564
7565 if (!alloc_fair_sched_group(tg, parent))
7566 goto err;
7567
7568 if (!alloc_rt_sched_group(tg, parent))
7569 goto err;
7570
7571 return tg;
7572
7573 err:
7574 free_sched_group(tg);
7575 return ERR_PTR(-ENOMEM);
7576 }
7577
7578 void sched_online_group(struct task_group *tg, struct task_group *parent)
7579 {
7580 unsigned long flags;
7581
7582 spin_lock_irqsave(&task_group_lock, flags);
7583 list_add_rcu(&tg->list, &task_groups);
7584
7585 WARN_ON(!parent); /* root should already exist */
7586
7587 tg->parent = parent;
7588 INIT_LIST_HEAD(&tg->children);
7589 list_add_rcu(&tg->siblings, &parent->children);
7590 spin_unlock_irqrestore(&task_group_lock, flags);
7591 }
7592
7593 /* rcu callback to free various structures associated with a task group */
7594 static void free_sched_group_rcu(struct rcu_head *rhp)
7595 {
7596 /* now it should be safe to free those cfs_rqs */
7597 free_sched_group(container_of(rhp, struct task_group, rcu));
7598 }
7599
7600 /* Destroy runqueue etc associated with a task group */
7601 void sched_destroy_group(struct task_group *tg)
7602 {
7603 /* wait for possible concurrent references to cfs_rqs complete */
7604 call_rcu(&tg->rcu, free_sched_group_rcu);
7605 }
7606
7607 void sched_offline_group(struct task_group *tg)
7608 {
7609 unsigned long flags;
7610
7611 /* end participation in shares distribution */
7612 unregister_fair_sched_group(tg);
7613
7614 spin_lock_irqsave(&task_group_lock, flags);
7615 list_del_rcu(&tg->list);
7616 list_del_rcu(&tg->siblings);
7617 spin_unlock_irqrestore(&task_group_lock, flags);
7618 }
7619
7620 /* change task's runqueue when it moves between groups.
7621 * The caller of this function should have put the task in its new group
7622 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7623 * reflect its new group.
7624 */
7625 void sched_move_task(struct task_struct *tsk)
7626 {
7627 struct task_group *tg;
7628 int queued, running;
7629 unsigned long flags;
7630 struct rq *rq;
7631
7632 rq = task_rq_lock(tsk, &flags);
7633
7634 running = task_current(rq, tsk);
7635 queued = task_on_rq_queued(tsk);
7636
7637 if (queued)
7638 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7639 if (unlikely(running))
7640 put_prev_task(rq, tsk);
7641
7642 /*
7643 * All callers are synchronized by task_rq_lock(); we do not use RCU
7644 * which is pointless here. Thus, we pass "true" to task_css_check()
7645 * to prevent lockdep warnings.
7646 */
7647 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7648 struct task_group, css);
7649 tg = autogroup_task_group(tsk, tg);
7650 tsk->sched_task_group = tg;
7651
7652 #ifdef CONFIG_FAIR_GROUP_SCHED
7653 if (tsk->sched_class->task_move_group)
7654 tsk->sched_class->task_move_group(tsk);
7655 else
7656 #endif
7657 set_task_rq(tsk, task_cpu(tsk));
7658
7659 if (unlikely(running))
7660 tsk->sched_class->set_curr_task(rq);
7661 if (queued)
7662 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7663
7664 task_rq_unlock(rq, tsk, &flags);
7665 }
7666 #endif /* CONFIG_CGROUP_SCHED */
7667
7668 #ifdef CONFIG_RT_GROUP_SCHED
7669 /*
7670 * Ensure that the real time constraints are schedulable.
7671 */
7672 static DEFINE_MUTEX(rt_constraints_mutex);
7673
7674 /* Must be called with tasklist_lock held */
7675 static inline int tg_has_rt_tasks(struct task_group *tg)
7676 {
7677 struct task_struct *g, *p;
7678
7679 /*
7680 * Autogroups do not have RT tasks; see autogroup_create().
7681 */
7682 if (task_group_is_autogroup(tg))
7683 return 0;
7684
7685 for_each_process_thread(g, p) {
7686 if (rt_task(p) && task_group(p) == tg)
7687 return 1;
7688 }
7689
7690 return 0;
7691 }
7692
7693 struct rt_schedulable_data {
7694 struct task_group *tg;
7695 u64 rt_period;
7696 u64 rt_runtime;
7697 };
7698
7699 static int tg_rt_schedulable(struct task_group *tg, void *data)
7700 {
7701 struct rt_schedulable_data *d = data;
7702 struct task_group *child;
7703 unsigned long total, sum = 0;
7704 u64 period, runtime;
7705
7706 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7707 runtime = tg->rt_bandwidth.rt_runtime;
7708
7709 if (tg == d->tg) {
7710 period = d->rt_period;
7711 runtime = d->rt_runtime;
7712 }
7713
7714 /*
7715 * Cannot have more runtime than the period.
7716 */
7717 if (runtime > period && runtime != RUNTIME_INF)
7718 return -EINVAL;
7719
7720 /*
7721 * Ensure we don't starve existing RT tasks.
7722 */
7723 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7724 return -EBUSY;
7725
7726 total = to_ratio(period, runtime);
7727
7728 /*
7729 * Nobody can have more than the global setting allows.
7730 */
7731 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7732 return -EINVAL;
7733
7734 /*
7735 * The sum of our children's runtime should not exceed our own.
7736 */
7737 list_for_each_entry_rcu(child, &tg->children, siblings) {
7738 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7739 runtime = child->rt_bandwidth.rt_runtime;
7740
7741 if (child == d->tg) {
7742 period = d->rt_period;
7743 runtime = d->rt_runtime;
7744 }
7745
7746 sum += to_ratio(period, runtime);
7747 }
7748
7749 if (sum > total)
7750 return -EINVAL;
7751
7752 return 0;
7753 }
7754
7755 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7756 {
7757 int ret;
7758
7759 struct rt_schedulable_data data = {
7760 .tg = tg,
7761 .rt_period = period,
7762 .rt_runtime = runtime,
7763 };
7764
7765 rcu_read_lock();
7766 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7767 rcu_read_unlock();
7768
7769 return ret;
7770 }
7771
7772 static int tg_set_rt_bandwidth(struct task_group *tg,
7773 u64 rt_period, u64 rt_runtime)
7774 {
7775 int i, err = 0;
7776
7777 /*
7778 * Disallowing the root group RT runtime is BAD, it would disallow the
7779 * kernel creating (and or operating) RT threads.
7780 */
7781 if (tg == &root_task_group && rt_runtime == 0)
7782 return -EINVAL;
7783
7784 /* No period doesn't make any sense. */
7785 if (rt_period == 0)
7786 return -EINVAL;
7787
7788 mutex_lock(&rt_constraints_mutex);
7789 read_lock(&tasklist_lock);
7790 err = __rt_schedulable(tg, rt_period, rt_runtime);
7791 if (err)
7792 goto unlock;
7793
7794 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7795 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7796 tg->rt_bandwidth.rt_runtime = rt_runtime;
7797
7798 for_each_possible_cpu(i) {
7799 struct rt_rq *rt_rq = tg->rt_rq[i];
7800
7801 raw_spin_lock(&rt_rq->rt_runtime_lock);
7802 rt_rq->rt_runtime = rt_runtime;
7803 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7804 }
7805 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7806 unlock:
7807 read_unlock(&tasklist_lock);
7808 mutex_unlock(&rt_constraints_mutex);
7809
7810 return err;
7811 }
7812
7813 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7814 {
7815 u64 rt_runtime, rt_period;
7816
7817 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7818 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7819 if (rt_runtime_us < 0)
7820 rt_runtime = RUNTIME_INF;
7821
7822 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7823 }
7824
7825 static long sched_group_rt_runtime(struct task_group *tg)
7826 {
7827 u64 rt_runtime_us;
7828
7829 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7830 return -1;
7831
7832 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7833 do_div(rt_runtime_us, NSEC_PER_USEC);
7834 return rt_runtime_us;
7835 }
7836
7837 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7838 {
7839 u64 rt_runtime, rt_period;
7840
7841 rt_period = rt_period_us * NSEC_PER_USEC;
7842 rt_runtime = tg->rt_bandwidth.rt_runtime;
7843
7844 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7845 }
7846
7847 static long sched_group_rt_period(struct task_group *tg)
7848 {
7849 u64 rt_period_us;
7850
7851 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7852 do_div(rt_period_us, NSEC_PER_USEC);
7853 return rt_period_us;
7854 }
7855 #endif /* CONFIG_RT_GROUP_SCHED */
7856
7857 #ifdef CONFIG_RT_GROUP_SCHED
7858 static int sched_rt_global_constraints(void)
7859 {
7860 int ret = 0;
7861
7862 mutex_lock(&rt_constraints_mutex);
7863 read_lock(&tasklist_lock);
7864 ret = __rt_schedulable(NULL, 0, 0);
7865 read_unlock(&tasklist_lock);
7866 mutex_unlock(&rt_constraints_mutex);
7867
7868 return ret;
7869 }
7870
7871 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7872 {
7873 /* Don't accept realtime tasks when there is no way for them to run */
7874 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7875 return 0;
7876
7877 return 1;
7878 }
7879
7880 #else /* !CONFIG_RT_GROUP_SCHED */
7881 static int sched_rt_global_constraints(void)
7882 {
7883 unsigned long flags;
7884 int i, ret = 0;
7885
7886 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7887 for_each_possible_cpu(i) {
7888 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7889
7890 raw_spin_lock(&rt_rq->rt_runtime_lock);
7891 rt_rq->rt_runtime = global_rt_runtime();
7892 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7893 }
7894 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7895
7896 return ret;
7897 }
7898 #endif /* CONFIG_RT_GROUP_SCHED */
7899
7900 static int sched_dl_global_validate(void)
7901 {
7902 u64 runtime = global_rt_runtime();
7903 u64 period = global_rt_period();
7904 u64 new_bw = to_ratio(period, runtime);
7905 struct dl_bw *dl_b;
7906 int cpu, ret = 0;
7907 unsigned long flags;
7908
7909 /*
7910 * Here we want to check the bandwidth not being set to some
7911 * value smaller than the currently allocated bandwidth in
7912 * any of the root_domains.
7913 *
7914 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7915 * cycling on root_domains... Discussion on different/better
7916 * solutions is welcome!
7917 */
7918 for_each_possible_cpu(cpu) {
7919 rcu_read_lock_sched();
7920 dl_b = dl_bw_of(cpu);
7921
7922 raw_spin_lock_irqsave(&dl_b->lock, flags);
7923 if (new_bw < dl_b->total_bw)
7924 ret = -EBUSY;
7925 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7926
7927 rcu_read_unlock_sched();
7928
7929 if (ret)
7930 break;
7931 }
7932
7933 return ret;
7934 }
7935
7936 static void sched_dl_do_global(void)
7937 {
7938 u64 new_bw = -1;
7939 struct dl_bw *dl_b;
7940 int cpu;
7941 unsigned long flags;
7942
7943 def_dl_bandwidth.dl_period = global_rt_period();
7944 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7945
7946 if (global_rt_runtime() != RUNTIME_INF)
7947 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7948
7949 /*
7950 * FIXME: As above...
7951 */
7952 for_each_possible_cpu(cpu) {
7953 rcu_read_lock_sched();
7954 dl_b = dl_bw_of(cpu);
7955
7956 raw_spin_lock_irqsave(&dl_b->lock, flags);
7957 dl_b->bw = new_bw;
7958 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7959
7960 rcu_read_unlock_sched();
7961 }
7962 }
7963
7964 static int sched_rt_global_validate(void)
7965 {
7966 if (sysctl_sched_rt_period <= 0)
7967 return -EINVAL;
7968
7969 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7970 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7971 return -EINVAL;
7972
7973 return 0;
7974 }
7975
7976 static void sched_rt_do_global(void)
7977 {
7978 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7979 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7980 }
7981
7982 int sched_rt_handler(struct ctl_table *table, int write,
7983 void __user *buffer, size_t *lenp,
7984 loff_t *ppos)
7985 {
7986 int old_period, old_runtime;
7987 static DEFINE_MUTEX(mutex);
7988 int ret;
7989
7990 mutex_lock(&mutex);
7991 old_period = sysctl_sched_rt_period;
7992 old_runtime = sysctl_sched_rt_runtime;
7993
7994 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7995
7996 if (!ret && write) {
7997 ret = sched_rt_global_validate();
7998 if (ret)
7999 goto undo;
8000
8001 ret = sched_dl_global_validate();
8002 if (ret)
8003 goto undo;
8004
8005 ret = sched_rt_global_constraints();
8006 if (ret)
8007 goto undo;
8008
8009 sched_rt_do_global();
8010 sched_dl_do_global();
8011 }
8012 if (0) {
8013 undo:
8014 sysctl_sched_rt_period = old_period;
8015 sysctl_sched_rt_runtime = old_runtime;
8016 }
8017 mutex_unlock(&mutex);
8018
8019 return ret;
8020 }
8021
8022 int sched_rr_handler(struct ctl_table *table, int write,
8023 void __user *buffer, size_t *lenp,
8024 loff_t *ppos)
8025 {
8026 int ret;
8027 static DEFINE_MUTEX(mutex);
8028
8029 mutex_lock(&mutex);
8030 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8031 /* make sure that internally we keep jiffies */
8032 /* also, writing zero resets timeslice to default */
8033 if (!ret && write) {
8034 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8035 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8036 }
8037 mutex_unlock(&mutex);
8038 return ret;
8039 }
8040
8041 #ifdef CONFIG_CGROUP_SCHED
8042
8043 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8044 {
8045 return css ? container_of(css, struct task_group, css) : NULL;
8046 }
8047
8048 static struct cgroup_subsys_state *
8049 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8050 {
8051 struct task_group *parent = css_tg(parent_css);
8052 struct task_group *tg;
8053
8054 if (!parent) {
8055 /* This is early initialization for the top cgroup */
8056 return &root_task_group.css;
8057 }
8058
8059 tg = sched_create_group(parent);
8060 if (IS_ERR(tg))
8061 return ERR_PTR(-ENOMEM);
8062
8063 return &tg->css;
8064 }
8065
8066 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8067 {
8068 struct task_group *tg = css_tg(css);
8069 struct task_group *parent = css_tg(css->parent);
8070
8071 if (parent)
8072 sched_online_group(tg, parent);
8073 return 0;
8074 }
8075
8076 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8077 {
8078 struct task_group *tg = css_tg(css);
8079
8080 sched_destroy_group(tg);
8081 }
8082
8083 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8084 {
8085 struct task_group *tg = css_tg(css);
8086
8087 sched_offline_group(tg);
8088 }
8089
8090 static void cpu_cgroup_fork(struct task_struct *task)
8091 {
8092 sched_move_task(task);
8093 }
8094
8095 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8096 {
8097 struct task_struct *task;
8098 struct cgroup_subsys_state *css;
8099
8100 cgroup_taskset_for_each(task, css, tset) {
8101 #ifdef CONFIG_RT_GROUP_SCHED
8102 if (!sched_rt_can_attach(css_tg(css), task))
8103 return -EINVAL;
8104 #else
8105 /* We don't support RT-tasks being in separate groups */
8106 if (task->sched_class != &fair_sched_class)
8107 return -EINVAL;
8108 #endif
8109 }
8110 return 0;
8111 }
8112
8113 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8114 {
8115 struct task_struct *task;
8116 struct cgroup_subsys_state *css;
8117
8118 cgroup_taskset_for_each(task, css, tset)
8119 sched_move_task(task);
8120 }
8121
8122 #ifdef CONFIG_FAIR_GROUP_SCHED
8123 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8124 struct cftype *cftype, u64 shareval)
8125 {
8126 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8127 }
8128
8129 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8130 struct cftype *cft)
8131 {
8132 struct task_group *tg = css_tg(css);
8133
8134 return (u64) scale_load_down(tg->shares);
8135 }
8136
8137 #ifdef CONFIG_CFS_BANDWIDTH
8138 static DEFINE_MUTEX(cfs_constraints_mutex);
8139
8140 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8141 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8142
8143 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8144
8145 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8146 {
8147 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8148 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8149
8150 if (tg == &root_task_group)
8151 return -EINVAL;
8152
8153 /*
8154 * Ensure we have at some amount of bandwidth every period. This is
8155 * to prevent reaching a state of large arrears when throttled via
8156 * entity_tick() resulting in prolonged exit starvation.
8157 */
8158 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8159 return -EINVAL;
8160
8161 /*
8162 * Likewise, bound things on the otherside by preventing insane quota
8163 * periods. This also allows us to normalize in computing quota
8164 * feasibility.
8165 */
8166 if (period > max_cfs_quota_period)
8167 return -EINVAL;
8168
8169 /*
8170 * Prevent race between setting of cfs_rq->runtime_enabled and
8171 * unthrottle_offline_cfs_rqs().
8172 */
8173 get_online_cpus();
8174 mutex_lock(&cfs_constraints_mutex);
8175 ret = __cfs_schedulable(tg, period, quota);
8176 if (ret)
8177 goto out_unlock;
8178
8179 runtime_enabled = quota != RUNTIME_INF;
8180 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8181 /*
8182 * If we need to toggle cfs_bandwidth_used, off->on must occur
8183 * before making related changes, and on->off must occur afterwards
8184 */
8185 if (runtime_enabled && !runtime_was_enabled)
8186 cfs_bandwidth_usage_inc();
8187 raw_spin_lock_irq(&cfs_b->lock);
8188 cfs_b->period = ns_to_ktime(period);
8189 cfs_b->quota = quota;
8190
8191 __refill_cfs_bandwidth_runtime(cfs_b);
8192 /* restart the period timer (if active) to handle new period expiry */
8193 if (runtime_enabled)
8194 start_cfs_bandwidth(cfs_b);
8195 raw_spin_unlock_irq(&cfs_b->lock);
8196
8197 for_each_online_cpu(i) {
8198 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8199 struct rq *rq = cfs_rq->rq;
8200
8201 raw_spin_lock_irq(&rq->lock);
8202 cfs_rq->runtime_enabled = runtime_enabled;
8203 cfs_rq->runtime_remaining = 0;
8204
8205 if (cfs_rq->throttled)
8206 unthrottle_cfs_rq(cfs_rq);
8207 raw_spin_unlock_irq(&rq->lock);
8208 }
8209 if (runtime_was_enabled && !runtime_enabled)
8210 cfs_bandwidth_usage_dec();
8211 out_unlock:
8212 mutex_unlock(&cfs_constraints_mutex);
8213 put_online_cpus();
8214
8215 return ret;
8216 }
8217
8218 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8219 {
8220 u64 quota, period;
8221
8222 period = ktime_to_ns(tg->cfs_bandwidth.period);
8223 if (cfs_quota_us < 0)
8224 quota = RUNTIME_INF;
8225 else
8226 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8227
8228 return tg_set_cfs_bandwidth(tg, period, quota);
8229 }
8230
8231 long tg_get_cfs_quota(struct task_group *tg)
8232 {
8233 u64 quota_us;
8234
8235 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8236 return -1;
8237
8238 quota_us = tg->cfs_bandwidth.quota;
8239 do_div(quota_us, NSEC_PER_USEC);
8240
8241 return quota_us;
8242 }
8243
8244 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8245 {
8246 u64 quota, period;
8247
8248 period = (u64)cfs_period_us * NSEC_PER_USEC;
8249 quota = tg->cfs_bandwidth.quota;
8250
8251 return tg_set_cfs_bandwidth(tg, period, quota);
8252 }
8253
8254 long tg_get_cfs_period(struct task_group *tg)
8255 {
8256 u64 cfs_period_us;
8257
8258 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8259 do_div(cfs_period_us, NSEC_PER_USEC);
8260
8261 return cfs_period_us;
8262 }
8263
8264 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8265 struct cftype *cft)
8266 {
8267 return tg_get_cfs_quota(css_tg(css));
8268 }
8269
8270 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8271 struct cftype *cftype, s64 cfs_quota_us)
8272 {
8273 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8274 }
8275
8276 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8277 struct cftype *cft)
8278 {
8279 return tg_get_cfs_period(css_tg(css));
8280 }
8281
8282 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8283 struct cftype *cftype, u64 cfs_period_us)
8284 {
8285 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8286 }
8287
8288 struct cfs_schedulable_data {
8289 struct task_group *tg;
8290 u64 period, quota;
8291 };
8292
8293 /*
8294 * normalize group quota/period to be quota/max_period
8295 * note: units are usecs
8296 */
8297 static u64 normalize_cfs_quota(struct task_group *tg,
8298 struct cfs_schedulable_data *d)
8299 {
8300 u64 quota, period;
8301
8302 if (tg == d->tg) {
8303 period = d->period;
8304 quota = d->quota;
8305 } else {
8306 period = tg_get_cfs_period(tg);
8307 quota = tg_get_cfs_quota(tg);
8308 }
8309
8310 /* note: these should typically be equivalent */
8311 if (quota == RUNTIME_INF || quota == -1)
8312 return RUNTIME_INF;
8313
8314 return to_ratio(period, quota);
8315 }
8316
8317 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8318 {
8319 struct cfs_schedulable_data *d = data;
8320 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8321 s64 quota = 0, parent_quota = -1;
8322
8323 if (!tg->parent) {
8324 quota = RUNTIME_INF;
8325 } else {
8326 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8327
8328 quota = normalize_cfs_quota(tg, d);
8329 parent_quota = parent_b->hierarchical_quota;
8330
8331 /*
8332 * ensure max(child_quota) <= parent_quota, inherit when no
8333 * limit is set
8334 */
8335 if (quota == RUNTIME_INF)
8336 quota = parent_quota;
8337 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8338 return -EINVAL;
8339 }
8340 cfs_b->hierarchical_quota = quota;
8341
8342 return 0;
8343 }
8344
8345 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8346 {
8347 int ret;
8348 struct cfs_schedulable_data data = {
8349 .tg = tg,
8350 .period = period,
8351 .quota = quota,
8352 };
8353
8354 if (quota != RUNTIME_INF) {
8355 do_div(data.period, NSEC_PER_USEC);
8356 do_div(data.quota, NSEC_PER_USEC);
8357 }
8358
8359 rcu_read_lock();
8360 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8361 rcu_read_unlock();
8362
8363 return ret;
8364 }
8365
8366 static int cpu_stats_show(struct seq_file *sf, void *v)
8367 {
8368 struct task_group *tg = css_tg(seq_css(sf));
8369 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8370
8371 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8372 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8373 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8374
8375 return 0;
8376 }
8377 #endif /* CONFIG_CFS_BANDWIDTH */
8378 #endif /* CONFIG_FAIR_GROUP_SCHED */
8379
8380 #ifdef CONFIG_RT_GROUP_SCHED
8381 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8382 struct cftype *cft, s64 val)
8383 {
8384 return sched_group_set_rt_runtime(css_tg(css), val);
8385 }
8386
8387 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8388 struct cftype *cft)
8389 {
8390 return sched_group_rt_runtime(css_tg(css));
8391 }
8392
8393 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8394 struct cftype *cftype, u64 rt_period_us)
8395 {
8396 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8397 }
8398
8399 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8400 struct cftype *cft)
8401 {
8402 return sched_group_rt_period(css_tg(css));
8403 }
8404 #endif /* CONFIG_RT_GROUP_SCHED */
8405
8406 static struct cftype cpu_files[] = {
8407 #ifdef CONFIG_FAIR_GROUP_SCHED
8408 {
8409 .name = "shares",
8410 .read_u64 = cpu_shares_read_u64,
8411 .write_u64 = cpu_shares_write_u64,
8412 },
8413 #endif
8414 #ifdef CONFIG_CFS_BANDWIDTH
8415 {
8416 .name = "cfs_quota_us",
8417 .read_s64 = cpu_cfs_quota_read_s64,
8418 .write_s64 = cpu_cfs_quota_write_s64,
8419 },
8420 {
8421 .name = "cfs_period_us",
8422 .read_u64 = cpu_cfs_period_read_u64,
8423 .write_u64 = cpu_cfs_period_write_u64,
8424 },
8425 {
8426 .name = "stat",
8427 .seq_show = cpu_stats_show,
8428 },
8429 #endif
8430 #ifdef CONFIG_RT_GROUP_SCHED
8431 {
8432 .name = "rt_runtime_us",
8433 .read_s64 = cpu_rt_runtime_read,
8434 .write_s64 = cpu_rt_runtime_write,
8435 },
8436 {
8437 .name = "rt_period_us",
8438 .read_u64 = cpu_rt_period_read_uint,
8439 .write_u64 = cpu_rt_period_write_uint,
8440 },
8441 #endif
8442 { } /* terminate */
8443 };
8444
8445 struct cgroup_subsys cpu_cgrp_subsys = {
8446 .css_alloc = cpu_cgroup_css_alloc,
8447 .css_free = cpu_cgroup_css_free,
8448 .css_online = cpu_cgroup_css_online,
8449 .css_offline = cpu_cgroup_css_offline,
8450 .fork = cpu_cgroup_fork,
8451 .can_attach = cpu_cgroup_can_attach,
8452 .attach = cpu_cgroup_attach,
8453 .legacy_cftypes = cpu_files,
8454 .early_init = 1,
8455 };
8456
8457 #endif /* CONFIG_CGROUP_SCHED */
8458
8459 void dump_cpu_task(int cpu)
8460 {
8461 pr_info("Task dump for CPU %d:\n", cpu);
8462 sched_show_task(cpu_curr(cpu));
8463 }
8464
8465 /*
8466 * Nice levels are multiplicative, with a gentle 10% change for every
8467 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8468 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8469 * that remained on nice 0.
8470 *
8471 * The "10% effect" is relative and cumulative: from _any_ nice level,
8472 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8473 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8474 * If a task goes up by ~10% and another task goes down by ~10% then
8475 * the relative distance between them is ~25%.)
8476 */
8477 const int sched_prio_to_weight[40] = {
8478 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8479 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8480 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8481 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8482 /* 0 */ 1024, 820, 655, 526, 423,
8483 /* 5 */ 335, 272, 215, 172, 137,
8484 /* 10 */ 110, 87, 70, 56, 45,
8485 /* 15 */ 36, 29, 23, 18, 15,
8486 };
8487
8488 /*
8489 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8490 *
8491 * In cases where the weight does not change often, we can use the
8492 * precalculated inverse to speed up arithmetics by turning divisions
8493 * into multiplications:
8494 */
8495 const u32 sched_prio_to_wmult[40] = {
8496 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8497 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8498 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8499 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8500 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8501 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8502 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8503 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8504 };
This page took 0.216391 seconds and 5 git commands to generate.