sched: Allow balance callbacks for check_class_changed()
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
129 #name ,
130
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134
135 #undef SCHED_FEAT
136
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 int i;
140
141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
145 }
146 seq_puts(m, "\n");
147
148 return 0;
149 }
150
151 #ifdef HAVE_JUMP_LABEL
152
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162
163 #undef SCHED_FEAT
164
165 static void sched_feat_disable(int i)
166 {
167 if (static_key_enabled(&sched_feat_keys[i]))
168 static_key_slow_dec(&sched_feat_keys[i]);
169 }
170
171 static void sched_feat_enable(int i)
172 {
173 if (!static_key_enabled(&sched_feat_keys[i]))
174 static_key_slow_inc(&sched_feat_keys[i]);
175 }
176 #else
177 static void sched_feat_disable(int i) { };
178 static void sched_feat_enable(int i) { };
179 #endif /* HAVE_JUMP_LABEL */
180
181 static int sched_feat_set(char *cmp)
182 {
183 int i;
184 int neg = 0;
185
186 if (strncmp(cmp, "NO_", 3) == 0) {
187 neg = 1;
188 cmp += 3;
189 }
190
191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
193 if (neg) {
194 sysctl_sched_features &= ~(1UL << i);
195 sched_feat_disable(i);
196 } else {
197 sysctl_sched_features |= (1UL << i);
198 sched_feat_enable(i);
199 }
200 break;
201 }
202 }
203
204 return i;
205 }
206
207 static ssize_t
208 sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
210 {
211 char buf[64];
212 char *cmp;
213 int i;
214 struct inode *inode;
215
216 if (cnt > 63)
217 cnt = 63;
218
219 if (copy_from_user(&buf, ubuf, cnt))
220 return -EFAULT;
221
222 buf[cnt] = 0;
223 cmp = strstrip(buf);
224
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
228 i = sched_feat_set(cmp);
229 mutex_unlock(&inode->i_mutex);
230 if (i == __SCHED_FEAT_NR)
231 return -EINVAL;
232
233 *ppos += cnt;
234
235 return cnt;
236 }
237
238 static int sched_feat_open(struct inode *inode, struct file *filp)
239 {
240 return single_open(filp, sched_feat_show, NULL);
241 }
242
243 static const struct file_operations sched_feat_fops = {
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
249 };
250
251 static __init int sched_init_debug(void)
252 {
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257 }
258 late_initcall(sched_init_debug);
259 #endif /* CONFIG_SCHED_DEBUG */
260
261 /*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265 const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
267 /*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
275 /*
276 * period over which we measure -rt task cpu usage in us.
277 * default: 1s
278 */
279 unsigned int sysctl_sched_rt_period = 1000000;
280
281 __read_mostly int scheduler_running;
282
283 /*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287 int sysctl_sched_rt_runtime = 950000;
288
289 /* cpus with isolated domains */
290 cpumask_var_t cpu_isolated_map;
291
292 /*
293 * this_rq_lock - lock this runqueue and disable interrupts.
294 */
295 static struct rq *this_rq_lock(void)
296 __acquires(rq->lock)
297 {
298 struct rq *rq;
299
300 local_irq_disable();
301 rq = this_rq();
302 raw_spin_lock(&rq->lock);
303
304 return rq;
305 }
306
307 #ifdef CONFIG_SCHED_HRTICK
308 /*
309 * Use HR-timers to deliver accurate preemption points.
310 */
311
312 static void hrtick_clear(struct rq *rq)
313 {
314 if (hrtimer_active(&rq->hrtick_timer))
315 hrtimer_cancel(&rq->hrtick_timer);
316 }
317
318 /*
319 * High-resolution timer tick.
320 * Runs from hardirq context with interrupts disabled.
321 */
322 static enum hrtimer_restart hrtick(struct hrtimer *timer)
323 {
324 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325
326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327
328 raw_spin_lock(&rq->lock);
329 update_rq_clock(rq);
330 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
331 raw_spin_unlock(&rq->lock);
332
333 return HRTIMER_NORESTART;
334 }
335
336 #ifdef CONFIG_SMP
337
338 static void __hrtick_restart(struct rq *rq)
339 {
340 struct hrtimer *timer = &rq->hrtick_timer;
341
342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
343 }
344
345 /*
346 * called from hardirq (IPI) context
347 */
348 static void __hrtick_start(void *arg)
349 {
350 struct rq *rq = arg;
351
352 raw_spin_lock(&rq->lock);
353 __hrtick_restart(rq);
354 rq->hrtick_csd_pending = 0;
355 raw_spin_unlock(&rq->lock);
356 }
357
358 /*
359 * Called to set the hrtick timer state.
360 *
361 * called with rq->lock held and irqs disabled
362 */
363 void hrtick_start(struct rq *rq, u64 delay)
364 {
365 struct hrtimer *timer = &rq->hrtick_timer;
366 ktime_t time;
367 s64 delta;
368
369 /*
370 * Don't schedule slices shorter than 10000ns, that just
371 * doesn't make sense and can cause timer DoS.
372 */
373 delta = max_t(s64, delay, 10000LL);
374 time = ktime_add_ns(timer->base->get_time(), delta);
375
376 hrtimer_set_expires(timer, time);
377
378 if (rq == this_rq()) {
379 __hrtick_restart(rq);
380 } else if (!rq->hrtick_csd_pending) {
381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
382 rq->hrtick_csd_pending = 1;
383 }
384 }
385
386 static int
387 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388 {
389 int cpu = (int)(long)hcpu;
390
391 switch (action) {
392 case CPU_UP_CANCELED:
393 case CPU_UP_CANCELED_FROZEN:
394 case CPU_DOWN_PREPARE:
395 case CPU_DOWN_PREPARE_FROZEN:
396 case CPU_DEAD:
397 case CPU_DEAD_FROZEN:
398 hrtick_clear(cpu_rq(cpu));
399 return NOTIFY_OK;
400 }
401
402 return NOTIFY_DONE;
403 }
404
405 static __init void init_hrtick(void)
406 {
407 hotcpu_notifier(hotplug_hrtick, 0);
408 }
409 #else
410 /*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
415 void hrtick_start(struct rq *rq, u64 delay)
416 {
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED);
424 }
425
426 static inline void init_hrtick(void)
427 {
428 }
429 #endif /* CONFIG_SMP */
430
431 static void init_rq_hrtick(struct rq *rq)
432 {
433 #ifdef CONFIG_SMP
434 rq->hrtick_csd_pending = 0;
435
436 rq->hrtick_csd.flags = 0;
437 rq->hrtick_csd.func = __hrtick_start;
438 rq->hrtick_csd.info = rq;
439 #endif
440
441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 rq->hrtick_timer.function = hrtick;
443 }
444 #else /* CONFIG_SCHED_HRTICK */
445 static inline void hrtick_clear(struct rq *rq)
446 {
447 }
448
449 static inline void init_rq_hrtick(struct rq *rq)
450 {
451 }
452
453 static inline void init_hrtick(void)
454 {
455 }
456 #endif /* CONFIG_SCHED_HRTICK */
457
458 /*
459 * cmpxchg based fetch_or, macro so it works for different integer types
460 */
461 #define fetch_or(ptr, val) \
462 ({ typeof(*(ptr)) __old, __val = *(ptr); \
463 for (;;) { \
464 __old = cmpxchg((ptr), __val, __val | (val)); \
465 if (__old == __val) \
466 break; \
467 __val = __old; \
468 } \
469 __old; \
470 })
471
472 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
473 /*
474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475 * this avoids any races wrt polling state changes and thereby avoids
476 * spurious IPIs.
477 */
478 static bool set_nr_and_not_polling(struct task_struct *p)
479 {
480 struct thread_info *ti = task_thread_info(p);
481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482 }
483
484 /*
485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486 *
487 * If this returns true, then the idle task promises to call
488 * sched_ttwu_pending() and reschedule soon.
489 */
490 static bool set_nr_if_polling(struct task_struct *p)
491 {
492 struct thread_info *ti = task_thread_info(p);
493 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
494
495 for (;;) {
496 if (!(val & _TIF_POLLING_NRFLAG))
497 return false;
498 if (val & _TIF_NEED_RESCHED)
499 return true;
500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 if (old == val)
502 break;
503 val = old;
504 }
505 return true;
506 }
507
508 #else
509 static bool set_nr_and_not_polling(struct task_struct *p)
510 {
511 set_tsk_need_resched(p);
512 return true;
513 }
514
515 #ifdef CONFIG_SMP
516 static bool set_nr_if_polling(struct task_struct *p)
517 {
518 return false;
519 }
520 #endif
521 #endif
522
523 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
524 {
525 struct wake_q_node *node = &task->wake_q;
526
527 /*
528 * Atomically grab the task, if ->wake_q is !nil already it means
529 * its already queued (either by us or someone else) and will get the
530 * wakeup due to that.
531 *
532 * This cmpxchg() implies a full barrier, which pairs with the write
533 * barrier implied by the wakeup in wake_up_list().
534 */
535 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 return;
537
538 get_task_struct(task);
539
540 /*
541 * The head is context local, there can be no concurrency.
542 */
543 *head->lastp = node;
544 head->lastp = &node->next;
545 }
546
547 void wake_up_q(struct wake_q_head *head)
548 {
549 struct wake_q_node *node = head->first;
550
551 while (node != WAKE_Q_TAIL) {
552 struct task_struct *task;
553
554 task = container_of(node, struct task_struct, wake_q);
555 BUG_ON(!task);
556 /* task can safely be re-inserted now */
557 node = node->next;
558 task->wake_q.next = NULL;
559
560 /*
561 * wake_up_process() implies a wmb() to pair with the queueing
562 * in wake_q_add() so as not to miss wakeups.
563 */
564 wake_up_process(task);
565 put_task_struct(task);
566 }
567 }
568
569 /*
570 * resched_curr - mark rq's current task 'to be rescheduled now'.
571 *
572 * On UP this means the setting of the need_resched flag, on SMP it
573 * might also involve a cross-CPU call to trigger the scheduler on
574 * the target CPU.
575 */
576 void resched_curr(struct rq *rq)
577 {
578 struct task_struct *curr = rq->curr;
579 int cpu;
580
581 lockdep_assert_held(&rq->lock);
582
583 if (test_tsk_need_resched(curr))
584 return;
585
586 cpu = cpu_of(rq);
587
588 if (cpu == smp_processor_id()) {
589 set_tsk_need_resched(curr);
590 set_preempt_need_resched();
591 return;
592 }
593
594 if (set_nr_and_not_polling(curr))
595 smp_send_reschedule(cpu);
596 else
597 trace_sched_wake_idle_without_ipi(cpu);
598 }
599
600 void resched_cpu(int cpu)
601 {
602 struct rq *rq = cpu_rq(cpu);
603 unsigned long flags;
604
605 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
606 return;
607 resched_curr(rq);
608 raw_spin_unlock_irqrestore(&rq->lock, flags);
609 }
610
611 #ifdef CONFIG_SMP
612 #ifdef CONFIG_NO_HZ_COMMON
613 /*
614 * In the semi idle case, use the nearest busy cpu for migrating timers
615 * from an idle cpu. This is good for power-savings.
616 *
617 * We don't do similar optimization for completely idle system, as
618 * selecting an idle cpu will add more delays to the timers than intended
619 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
620 */
621 int get_nohz_timer_target(int pinned)
622 {
623 int cpu = smp_processor_id();
624 int i;
625 struct sched_domain *sd;
626
627 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
628 return cpu;
629
630 rcu_read_lock();
631 for_each_domain(cpu, sd) {
632 for_each_cpu(i, sched_domain_span(sd)) {
633 if (!idle_cpu(i)) {
634 cpu = i;
635 goto unlock;
636 }
637 }
638 }
639 unlock:
640 rcu_read_unlock();
641 return cpu;
642 }
643 /*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
653 static void wake_up_idle_cpu(int cpu)
654 {
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
660 if (set_nr_and_not_polling(rq->idle))
661 smp_send_reschedule(cpu);
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
664 }
665
666 static bool wake_up_full_nohz_cpu(int cpu)
667 {
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
674 if (tick_nohz_full_cpu(cpu)) {
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
677 tick_nohz_full_kick_cpu(cpu);
678 return true;
679 }
680
681 return false;
682 }
683
684 void wake_up_nohz_cpu(int cpu)
685 {
686 if (!wake_up_full_nohz_cpu(cpu))
687 wake_up_idle_cpu(cpu);
688 }
689
690 static inline bool got_nohz_idle_kick(void)
691 {
692 int cpu = smp_processor_id();
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
706 }
707
708 #else /* CONFIG_NO_HZ_COMMON */
709
710 static inline bool got_nohz_idle_kick(void)
711 {
712 return false;
713 }
714
715 #endif /* CONFIG_NO_HZ_COMMON */
716
717 #ifdef CONFIG_NO_HZ_FULL
718 bool sched_can_stop_tick(void)
719 {
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
742 if (this_rq()->nr_running > 1)
743 return false;
744
745 return true;
746 }
747 #endif /* CONFIG_NO_HZ_FULL */
748
749 void sched_avg_update(struct rq *rq)
750 {
751 s64 period = sched_avg_period();
752
753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
763 }
764
765 #endif /* CONFIG_SMP */
766
767 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 /*
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
774 */
775 int walk_tg_tree_from(struct task_group *from,
776 tg_visitor down, tg_visitor up, void *data)
777 {
778 struct task_group *parent, *child;
779 int ret;
780
781 parent = from;
782
783 down:
784 ret = (*down)(parent, data);
785 if (ret)
786 goto out;
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791 up:
792 continue;
793 }
794 ret = (*up)(parent, data);
795 if (ret || parent == from)
796 goto out;
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
802 out:
803 return ret;
804 }
805
806 int tg_nop(struct task_group *tg, void *data)
807 {
808 return 0;
809 }
810 #endif
811
812 static void set_load_weight(struct task_struct *p)
813 {
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
820 if (p->policy == SCHED_IDLE) {
821 load->weight = scale_load(WEIGHT_IDLEPRIO);
822 load->inv_weight = WMULT_IDLEPRIO;
823 return;
824 }
825
826 load->weight = scale_load(prio_to_weight[prio]);
827 load->inv_weight = prio_to_wmult[prio];
828 }
829
830 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831 {
832 update_rq_clock(rq);
833 sched_info_queued(rq, p);
834 p->sched_class->enqueue_task(rq, p, flags);
835 }
836
837 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
838 {
839 update_rq_clock(rq);
840 sched_info_dequeued(rq, p);
841 p->sched_class->dequeue_task(rq, p, flags);
842 }
843
844 void activate_task(struct rq *rq, struct task_struct *p, int flags)
845 {
846 if (task_contributes_to_load(p))
847 rq->nr_uninterruptible--;
848
849 enqueue_task(rq, p, flags);
850 }
851
852 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
853 {
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible++;
856
857 dequeue_task(rq, p, flags);
858 }
859
860 static void update_rq_clock_task(struct rq *rq, s64 delta)
861 {
862 /*
863 * In theory, the compile should just see 0 here, and optimize out the call
864 * to sched_rt_avg_update. But I don't trust it...
865 */
866 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 s64 steal = 0, irq_delta = 0;
868 #endif
869 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
870 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
871
872 /*
873 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 * this case when a previous update_rq_clock() happened inside a
875 * {soft,}irq region.
876 *
877 * When this happens, we stop ->clock_task and only update the
878 * prev_irq_time stamp to account for the part that fit, so that a next
879 * update will consume the rest. This ensures ->clock_task is
880 * monotonic.
881 *
882 * It does however cause some slight miss-attribution of {soft,}irq
883 * time, a more accurate solution would be to update the irq_time using
884 * the current rq->clock timestamp, except that would require using
885 * atomic ops.
886 */
887 if (irq_delta > delta)
888 irq_delta = delta;
889
890 rq->prev_irq_time += irq_delta;
891 delta -= irq_delta;
892 #endif
893 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
894 if (static_key_false((&paravirt_steal_rq_enabled))) {
895 steal = paravirt_steal_clock(cpu_of(rq));
896 steal -= rq->prev_steal_time_rq;
897
898 if (unlikely(steal > delta))
899 steal = delta;
900
901 rq->prev_steal_time_rq += steal;
902 delta -= steal;
903 }
904 #endif
905
906 rq->clock_task += delta;
907
908 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
909 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
910 sched_rt_avg_update(rq, irq_delta + steal);
911 #endif
912 }
913
914 void sched_set_stop_task(int cpu, struct task_struct *stop)
915 {
916 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 struct task_struct *old_stop = cpu_rq(cpu)->stop;
918
919 if (stop) {
920 /*
921 * Make it appear like a SCHED_FIFO task, its something
922 * userspace knows about and won't get confused about.
923 *
924 * Also, it will make PI more or less work without too
925 * much confusion -- but then, stop work should not
926 * rely on PI working anyway.
927 */
928 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929
930 stop->sched_class = &stop_sched_class;
931 }
932
933 cpu_rq(cpu)->stop = stop;
934
935 if (old_stop) {
936 /*
937 * Reset it back to a normal scheduling class so that
938 * it can die in pieces.
939 */
940 old_stop->sched_class = &rt_sched_class;
941 }
942 }
943
944 /*
945 * __normal_prio - return the priority that is based on the static prio
946 */
947 static inline int __normal_prio(struct task_struct *p)
948 {
949 return p->static_prio;
950 }
951
952 /*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
959 static inline int normal_prio(struct task_struct *p)
960 {
961 int prio;
962
963 if (task_has_dl_policy(p))
964 prio = MAX_DL_PRIO-1;
965 else if (task_has_rt_policy(p))
966 prio = MAX_RT_PRIO-1 - p->rt_priority;
967 else
968 prio = __normal_prio(p);
969 return prio;
970 }
971
972 /*
973 * Calculate the current priority, i.e. the priority
974 * taken into account by the scheduler. This value might
975 * be boosted by RT tasks, or might be boosted by
976 * interactivity modifiers. Will be RT if the task got
977 * RT-boosted. If not then it returns p->normal_prio.
978 */
979 static int effective_prio(struct task_struct *p)
980 {
981 p->normal_prio = normal_prio(p);
982 /*
983 * If we are RT tasks or we were boosted to RT priority,
984 * keep the priority unchanged. Otherwise, update priority
985 * to the normal priority:
986 */
987 if (!rt_prio(p->prio))
988 return p->normal_prio;
989 return p->prio;
990 }
991
992 /**
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
995 *
996 * Return: 1 if the task is currently executing. 0 otherwise.
997 */
998 inline int task_curr(const struct task_struct *p)
999 {
1000 return cpu_curr(task_cpu(p)) == p;
1001 }
1002
1003 /*
1004 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1005 * use the balance_callback list if you want balancing.
1006 *
1007 * this means any call to check_class_changed() must be followed by a call to
1008 * balance_callback().
1009 */
1010 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1011 const struct sched_class *prev_class,
1012 int oldprio)
1013 {
1014 if (prev_class != p->sched_class) {
1015 if (prev_class->switched_from)
1016 prev_class->switched_from(rq, p);
1017
1018 p->sched_class->switched_to(rq, p);
1019 } else if (oldprio != p->prio || dl_task(p))
1020 p->sched_class->prio_changed(rq, p, oldprio);
1021 }
1022
1023 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 {
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
1034 resched_curr(rq);
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045 rq_clock_skip_update(rq, true);
1046 }
1047
1048 #ifdef CONFIG_SMP
1049 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1050 {
1051 #ifdef CONFIG_SCHED_DEBUG
1052 /*
1053 * We should never call set_task_cpu() on a blocked task,
1054 * ttwu() will sort out the placement.
1055 */
1056 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1057 !p->on_rq);
1058
1059 #ifdef CONFIG_LOCKDEP
1060 /*
1061 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063 *
1064 * sched_move_task() holds both and thus holding either pins the cgroup,
1065 * see task_group().
1066 *
1067 * Furthermore, all task_rq users should acquire both locks, see
1068 * task_rq_lock().
1069 */
1070 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071 lockdep_is_held(&task_rq(p)->lock)));
1072 #endif
1073 #endif
1074
1075 trace_sched_migrate_task(p, new_cpu);
1076
1077 if (task_cpu(p) != new_cpu) {
1078 if (p->sched_class->migrate_task_rq)
1079 p->sched_class->migrate_task_rq(p, new_cpu);
1080 p->se.nr_migrations++;
1081 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1082 }
1083
1084 __set_task_cpu(p, new_cpu);
1085 }
1086
1087 static void __migrate_swap_task(struct task_struct *p, int cpu)
1088 {
1089 if (task_on_rq_queued(p)) {
1090 struct rq *src_rq, *dst_rq;
1091
1092 src_rq = task_rq(p);
1093 dst_rq = cpu_rq(cpu);
1094
1095 deactivate_task(src_rq, p, 0);
1096 set_task_cpu(p, cpu);
1097 activate_task(dst_rq, p, 0);
1098 check_preempt_curr(dst_rq, p, 0);
1099 } else {
1100 /*
1101 * Task isn't running anymore; make it appear like we migrated
1102 * it before it went to sleep. This means on wakeup we make the
1103 * previous cpu our targer instead of where it really is.
1104 */
1105 p->wake_cpu = cpu;
1106 }
1107 }
1108
1109 struct migration_swap_arg {
1110 struct task_struct *src_task, *dst_task;
1111 int src_cpu, dst_cpu;
1112 };
1113
1114 static int migrate_swap_stop(void *data)
1115 {
1116 struct migration_swap_arg *arg = data;
1117 struct rq *src_rq, *dst_rq;
1118 int ret = -EAGAIN;
1119
1120 src_rq = cpu_rq(arg->src_cpu);
1121 dst_rq = cpu_rq(arg->dst_cpu);
1122
1123 double_raw_lock(&arg->src_task->pi_lock,
1124 &arg->dst_task->pi_lock);
1125 double_rq_lock(src_rq, dst_rq);
1126 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127 goto unlock;
1128
1129 if (task_cpu(arg->src_task) != arg->src_cpu)
1130 goto unlock;
1131
1132 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133 goto unlock;
1134
1135 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136 goto unlock;
1137
1138 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1139 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1140
1141 ret = 0;
1142
1143 unlock:
1144 double_rq_unlock(src_rq, dst_rq);
1145 raw_spin_unlock(&arg->dst_task->pi_lock);
1146 raw_spin_unlock(&arg->src_task->pi_lock);
1147
1148 return ret;
1149 }
1150
1151 /*
1152 * Cross migrate two tasks
1153 */
1154 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155 {
1156 struct migration_swap_arg arg;
1157 int ret = -EINVAL;
1158
1159 arg = (struct migration_swap_arg){
1160 .src_task = cur,
1161 .src_cpu = task_cpu(cur),
1162 .dst_task = p,
1163 .dst_cpu = task_cpu(p),
1164 };
1165
1166 if (arg.src_cpu == arg.dst_cpu)
1167 goto out;
1168
1169 /*
1170 * These three tests are all lockless; this is OK since all of them
1171 * will be re-checked with proper locks held further down the line.
1172 */
1173 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174 goto out;
1175
1176 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177 goto out;
1178
1179 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180 goto out;
1181
1182 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1183 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184
1185 out:
1186 return ret;
1187 }
1188
1189 struct migration_arg {
1190 struct task_struct *task;
1191 int dest_cpu;
1192 };
1193
1194 static int migration_cpu_stop(void *data);
1195
1196 /*
1197 * wait_task_inactive - wait for a thread to unschedule.
1198 *
1199 * If @match_state is nonzero, it's the @p->state value just checked and
1200 * not expected to change. If it changes, i.e. @p might have woken up,
1201 * then return zero. When we succeed in waiting for @p to be off its CPU,
1202 * we return a positive number (its total switch count). If a second call
1203 * a short while later returns the same number, the caller can be sure that
1204 * @p has remained unscheduled the whole time.
1205 *
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
1212 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1213 {
1214 unsigned long flags;
1215 int running, queued;
1216 unsigned long ncsw;
1217 struct rq *rq;
1218
1219 for (;;) {
1220 /*
1221 * We do the initial early heuristics without holding
1222 * any task-queue locks at all. We'll only try to get
1223 * the runqueue lock when things look like they will
1224 * work out!
1225 */
1226 rq = task_rq(p);
1227
1228 /*
1229 * If the task is actively running on another CPU
1230 * still, just relax and busy-wait without holding
1231 * any locks.
1232 *
1233 * NOTE! Since we don't hold any locks, it's not
1234 * even sure that "rq" stays as the right runqueue!
1235 * But we don't care, since "task_running()" will
1236 * return false if the runqueue has changed and p
1237 * is actually now running somewhere else!
1238 */
1239 while (task_running(rq, p)) {
1240 if (match_state && unlikely(p->state != match_state))
1241 return 0;
1242 cpu_relax();
1243 }
1244
1245 /*
1246 * Ok, time to look more closely! We need the rq
1247 * lock now, to be *sure*. If we're wrong, we'll
1248 * just go back and repeat.
1249 */
1250 rq = task_rq_lock(p, &flags);
1251 trace_sched_wait_task(p);
1252 running = task_running(rq, p);
1253 queued = task_on_rq_queued(p);
1254 ncsw = 0;
1255 if (!match_state || p->state == match_state)
1256 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1257 task_rq_unlock(rq, p, &flags);
1258
1259 /*
1260 * If it changed from the expected state, bail out now.
1261 */
1262 if (unlikely(!ncsw))
1263 break;
1264
1265 /*
1266 * Was it really running after all now that we
1267 * checked with the proper locks actually held?
1268 *
1269 * Oops. Go back and try again..
1270 */
1271 if (unlikely(running)) {
1272 cpu_relax();
1273 continue;
1274 }
1275
1276 /*
1277 * It's not enough that it's not actively running,
1278 * it must be off the runqueue _entirely_, and not
1279 * preempted!
1280 *
1281 * So if it was still runnable (but just not actively
1282 * running right now), it's preempted, and we should
1283 * yield - it could be a while.
1284 */
1285 if (unlikely(queued)) {
1286 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287
1288 set_current_state(TASK_UNINTERRUPTIBLE);
1289 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1290 continue;
1291 }
1292
1293 /*
1294 * Ahh, all good. It wasn't running, and it wasn't
1295 * runnable, which means that it will never become
1296 * running in the future either. We're all done!
1297 */
1298 break;
1299 }
1300
1301 return ncsw;
1302 }
1303
1304 /***
1305 * kick_process - kick a running thread to enter/exit the kernel
1306 * @p: the to-be-kicked thread
1307 *
1308 * Cause a process which is running on another CPU to enter
1309 * kernel-mode, without any delay. (to get signals handled.)
1310 *
1311 * NOTE: this function doesn't have to take the runqueue lock,
1312 * because all it wants to ensure is that the remote task enters
1313 * the kernel. If the IPI races and the task has been migrated
1314 * to another CPU then no harm is done and the purpose has been
1315 * achieved as well.
1316 */
1317 void kick_process(struct task_struct *p)
1318 {
1319 int cpu;
1320
1321 preempt_disable();
1322 cpu = task_cpu(p);
1323 if ((cpu != smp_processor_id()) && task_curr(p))
1324 smp_send_reschedule(cpu);
1325 preempt_enable();
1326 }
1327 EXPORT_SYMBOL_GPL(kick_process);
1328 #endif /* CONFIG_SMP */
1329
1330 #ifdef CONFIG_SMP
1331 /*
1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1333 */
1334 static int select_fallback_rq(int cpu, struct task_struct *p)
1335 {
1336 int nid = cpu_to_node(cpu);
1337 const struct cpumask *nodemask = NULL;
1338 enum { cpuset, possible, fail } state = cpuset;
1339 int dest_cpu;
1340
1341 /*
1342 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 * will return -1. There is no cpu on the node, and we should
1344 * select the cpu on the other node.
1345 */
1346 if (nid != -1) {
1347 nodemask = cpumask_of_node(nid);
1348
1349 /* Look for allowed, online CPU in same node. */
1350 for_each_cpu(dest_cpu, nodemask) {
1351 if (!cpu_online(dest_cpu))
1352 continue;
1353 if (!cpu_active(dest_cpu))
1354 continue;
1355 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356 return dest_cpu;
1357 }
1358 }
1359
1360 for (;;) {
1361 /* Any allowed, online CPU? */
1362 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1363 if (!cpu_online(dest_cpu))
1364 continue;
1365 if (!cpu_active(dest_cpu))
1366 continue;
1367 goto out;
1368 }
1369
1370 switch (state) {
1371 case cpuset:
1372 /* No more Mr. Nice Guy. */
1373 cpuset_cpus_allowed_fallback(p);
1374 state = possible;
1375 break;
1376
1377 case possible:
1378 do_set_cpus_allowed(p, cpu_possible_mask);
1379 state = fail;
1380 break;
1381
1382 case fail:
1383 BUG();
1384 break;
1385 }
1386 }
1387
1388 out:
1389 if (state != cpuset) {
1390 /*
1391 * Don't tell them about moving exiting tasks or
1392 * kernel threads (both mm NULL), since they never
1393 * leave kernel.
1394 */
1395 if (p->mm && printk_ratelimit()) {
1396 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1397 task_pid_nr(p), p->comm, cpu);
1398 }
1399 }
1400
1401 return dest_cpu;
1402 }
1403
1404 /*
1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1406 */
1407 static inline
1408 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1409 {
1410 if (p->nr_cpus_allowed > 1)
1411 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1412
1413 /*
1414 * In order not to call set_task_cpu() on a blocking task we need
1415 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1416 * cpu.
1417 *
1418 * Since this is common to all placement strategies, this lives here.
1419 *
1420 * [ this allows ->select_task() to simply return task_cpu(p) and
1421 * not worry about this generic constraint ]
1422 */
1423 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1424 !cpu_online(cpu)))
1425 cpu = select_fallback_rq(task_cpu(p), p);
1426
1427 return cpu;
1428 }
1429
1430 static void update_avg(u64 *avg, u64 sample)
1431 {
1432 s64 diff = sample - *avg;
1433 *avg += diff >> 3;
1434 }
1435 #endif
1436
1437 static void
1438 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1439 {
1440 #ifdef CONFIG_SCHEDSTATS
1441 struct rq *rq = this_rq();
1442
1443 #ifdef CONFIG_SMP
1444 int this_cpu = smp_processor_id();
1445
1446 if (cpu == this_cpu) {
1447 schedstat_inc(rq, ttwu_local);
1448 schedstat_inc(p, se.statistics.nr_wakeups_local);
1449 } else {
1450 struct sched_domain *sd;
1451
1452 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1453 rcu_read_lock();
1454 for_each_domain(this_cpu, sd) {
1455 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1456 schedstat_inc(sd, ttwu_wake_remote);
1457 break;
1458 }
1459 }
1460 rcu_read_unlock();
1461 }
1462
1463 if (wake_flags & WF_MIGRATED)
1464 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1465
1466 #endif /* CONFIG_SMP */
1467
1468 schedstat_inc(rq, ttwu_count);
1469 schedstat_inc(p, se.statistics.nr_wakeups);
1470
1471 if (wake_flags & WF_SYNC)
1472 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1473
1474 #endif /* CONFIG_SCHEDSTATS */
1475 }
1476
1477 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1478 {
1479 activate_task(rq, p, en_flags);
1480 p->on_rq = TASK_ON_RQ_QUEUED;
1481
1482 /* if a worker is waking up, notify workqueue */
1483 if (p->flags & PF_WQ_WORKER)
1484 wq_worker_waking_up(p, cpu_of(rq));
1485 }
1486
1487 /*
1488 * Mark the task runnable and perform wakeup-preemption.
1489 */
1490 static void
1491 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1492 {
1493 check_preempt_curr(rq, p, wake_flags);
1494 trace_sched_wakeup(p, true);
1495
1496 p->state = TASK_RUNNING;
1497 #ifdef CONFIG_SMP
1498 if (p->sched_class->task_woken) {
1499 /*
1500 * XXX can drop rq->lock; most likely ok.
1501 */
1502 p->sched_class->task_woken(rq, p);
1503 }
1504
1505 if (rq->idle_stamp) {
1506 u64 delta = rq_clock(rq) - rq->idle_stamp;
1507 u64 max = 2*rq->max_idle_balance_cost;
1508
1509 update_avg(&rq->avg_idle, delta);
1510
1511 if (rq->avg_idle > max)
1512 rq->avg_idle = max;
1513
1514 rq->idle_stamp = 0;
1515 }
1516 #endif
1517 }
1518
1519 static void
1520 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1521 {
1522 #ifdef CONFIG_SMP
1523 if (p->sched_contributes_to_load)
1524 rq->nr_uninterruptible--;
1525 #endif
1526
1527 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1528 ttwu_do_wakeup(rq, p, wake_flags);
1529 }
1530
1531 /*
1532 * Called in case the task @p isn't fully descheduled from its runqueue,
1533 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1534 * since all we need to do is flip p->state to TASK_RUNNING, since
1535 * the task is still ->on_rq.
1536 */
1537 static int ttwu_remote(struct task_struct *p, int wake_flags)
1538 {
1539 struct rq *rq;
1540 int ret = 0;
1541
1542 rq = __task_rq_lock(p);
1543 if (task_on_rq_queued(p)) {
1544 /* check_preempt_curr() may use rq clock */
1545 update_rq_clock(rq);
1546 ttwu_do_wakeup(rq, p, wake_flags);
1547 ret = 1;
1548 }
1549 __task_rq_unlock(rq);
1550
1551 return ret;
1552 }
1553
1554 #ifdef CONFIG_SMP
1555 void sched_ttwu_pending(void)
1556 {
1557 struct rq *rq = this_rq();
1558 struct llist_node *llist = llist_del_all(&rq->wake_list);
1559 struct task_struct *p;
1560 unsigned long flags;
1561
1562 if (!llist)
1563 return;
1564
1565 raw_spin_lock_irqsave(&rq->lock, flags);
1566
1567 while (llist) {
1568 p = llist_entry(llist, struct task_struct, wake_entry);
1569 llist = llist_next(llist);
1570 ttwu_do_activate(rq, p, 0);
1571 }
1572
1573 raw_spin_unlock_irqrestore(&rq->lock, flags);
1574 }
1575
1576 void scheduler_ipi(void)
1577 {
1578 /*
1579 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1580 * TIF_NEED_RESCHED remotely (for the first time) will also send
1581 * this IPI.
1582 */
1583 preempt_fold_need_resched();
1584
1585 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1586 return;
1587
1588 /*
1589 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1590 * traditionally all their work was done from the interrupt return
1591 * path. Now that we actually do some work, we need to make sure
1592 * we do call them.
1593 *
1594 * Some archs already do call them, luckily irq_enter/exit nest
1595 * properly.
1596 *
1597 * Arguably we should visit all archs and update all handlers,
1598 * however a fair share of IPIs are still resched only so this would
1599 * somewhat pessimize the simple resched case.
1600 */
1601 irq_enter();
1602 sched_ttwu_pending();
1603
1604 /*
1605 * Check if someone kicked us for doing the nohz idle load balance.
1606 */
1607 if (unlikely(got_nohz_idle_kick())) {
1608 this_rq()->idle_balance = 1;
1609 raise_softirq_irqoff(SCHED_SOFTIRQ);
1610 }
1611 irq_exit();
1612 }
1613
1614 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1615 {
1616 struct rq *rq = cpu_rq(cpu);
1617
1618 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1619 if (!set_nr_if_polling(rq->idle))
1620 smp_send_reschedule(cpu);
1621 else
1622 trace_sched_wake_idle_without_ipi(cpu);
1623 }
1624 }
1625
1626 void wake_up_if_idle(int cpu)
1627 {
1628 struct rq *rq = cpu_rq(cpu);
1629 unsigned long flags;
1630
1631 rcu_read_lock();
1632
1633 if (!is_idle_task(rcu_dereference(rq->curr)))
1634 goto out;
1635
1636 if (set_nr_if_polling(rq->idle)) {
1637 trace_sched_wake_idle_without_ipi(cpu);
1638 } else {
1639 raw_spin_lock_irqsave(&rq->lock, flags);
1640 if (is_idle_task(rq->curr))
1641 smp_send_reschedule(cpu);
1642 /* Else cpu is not in idle, do nothing here */
1643 raw_spin_unlock_irqrestore(&rq->lock, flags);
1644 }
1645
1646 out:
1647 rcu_read_unlock();
1648 }
1649
1650 bool cpus_share_cache(int this_cpu, int that_cpu)
1651 {
1652 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1653 }
1654 #endif /* CONFIG_SMP */
1655
1656 static void ttwu_queue(struct task_struct *p, int cpu)
1657 {
1658 struct rq *rq = cpu_rq(cpu);
1659
1660 #if defined(CONFIG_SMP)
1661 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1662 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1663 ttwu_queue_remote(p, cpu);
1664 return;
1665 }
1666 #endif
1667
1668 raw_spin_lock(&rq->lock);
1669 ttwu_do_activate(rq, p, 0);
1670 raw_spin_unlock(&rq->lock);
1671 }
1672
1673 /**
1674 * try_to_wake_up - wake up a thread
1675 * @p: the thread to be awakened
1676 * @state: the mask of task states that can be woken
1677 * @wake_flags: wake modifier flags (WF_*)
1678 *
1679 * Put it on the run-queue if it's not already there. The "current"
1680 * thread is always on the run-queue (except when the actual
1681 * re-schedule is in progress), and as such you're allowed to do
1682 * the simpler "current->state = TASK_RUNNING" to mark yourself
1683 * runnable without the overhead of this.
1684 *
1685 * Return: %true if @p was woken up, %false if it was already running.
1686 * or @state didn't match @p's state.
1687 */
1688 static int
1689 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1690 {
1691 unsigned long flags;
1692 int cpu, success = 0;
1693
1694 /*
1695 * If we are going to wake up a thread waiting for CONDITION we
1696 * need to ensure that CONDITION=1 done by the caller can not be
1697 * reordered with p->state check below. This pairs with mb() in
1698 * set_current_state() the waiting thread does.
1699 */
1700 smp_mb__before_spinlock();
1701 raw_spin_lock_irqsave(&p->pi_lock, flags);
1702 if (!(p->state & state))
1703 goto out;
1704
1705 success = 1; /* we're going to change ->state */
1706 cpu = task_cpu(p);
1707
1708 if (p->on_rq && ttwu_remote(p, wake_flags))
1709 goto stat;
1710
1711 #ifdef CONFIG_SMP
1712 /*
1713 * If the owning (remote) cpu is still in the middle of schedule() with
1714 * this task as prev, wait until its done referencing the task.
1715 */
1716 while (p->on_cpu)
1717 cpu_relax();
1718 /*
1719 * Pairs with the smp_wmb() in finish_lock_switch().
1720 */
1721 smp_rmb();
1722
1723 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1724 p->state = TASK_WAKING;
1725
1726 if (p->sched_class->task_waking)
1727 p->sched_class->task_waking(p);
1728
1729 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1730 if (task_cpu(p) != cpu) {
1731 wake_flags |= WF_MIGRATED;
1732 set_task_cpu(p, cpu);
1733 }
1734 #endif /* CONFIG_SMP */
1735
1736 ttwu_queue(p, cpu);
1737 stat:
1738 ttwu_stat(p, cpu, wake_flags);
1739 out:
1740 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1741
1742 return success;
1743 }
1744
1745 /**
1746 * try_to_wake_up_local - try to wake up a local task with rq lock held
1747 * @p: the thread to be awakened
1748 *
1749 * Put @p on the run-queue if it's not already there. The caller must
1750 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1751 * the current task.
1752 */
1753 static void try_to_wake_up_local(struct task_struct *p)
1754 {
1755 struct rq *rq = task_rq(p);
1756
1757 if (WARN_ON_ONCE(rq != this_rq()) ||
1758 WARN_ON_ONCE(p == current))
1759 return;
1760
1761 lockdep_assert_held(&rq->lock);
1762
1763 if (!raw_spin_trylock(&p->pi_lock)) {
1764 raw_spin_unlock(&rq->lock);
1765 raw_spin_lock(&p->pi_lock);
1766 raw_spin_lock(&rq->lock);
1767 }
1768
1769 if (!(p->state & TASK_NORMAL))
1770 goto out;
1771
1772 if (!task_on_rq_queued(p))
1773 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1774
1775 ttwu_do_wakeup(rq, p, 0);
1776 ttwu_stat(p, smp_processor_id(), 0);
1777 out:
1778 raw_spin_unlock(&p->pi_lock);
1779 }
1780
1781 /**
1782 * wake_up_process - Wake up a specific process
1783 * @p: The process to be woken up.
1784 *
1785 * Attempt to wake up the nominated process and move it to the set of runnable
1786 * processes.
1787 *
1788 * Return: 1 if the process was woken up, 0 if it was already running.
1789 *
1790 * It may be assumed that this function implies a write memory barrier before
1791 * changing the task state if and only if any tasks are woken up.
1792 */
1793 int wake_up_process(struct task_struct *p)
1794 {
1795 WARN_ON(task_is_stopped_or_traced(p));
1796 return try_to_wake_up(p, TASK_NORMAL, 0);
1797 }
1798 EXPORT_SYMBOL(wake_up_process);
1799
1800 int wake_up_state(struct task_struct *p, unsigned int state)
1801 {
1802 return try_to_wake_up(p, state, 0);
1803 }
1804
1805 /*
1806 * This function clears the sched_dl_entity static params.
1807 */
1808 void __dl_clear_params(struct task_struct *p)
1809 {
1810 struct sched_dl_entity *dl_se = &p->dl;
1811
1812 dl_se->dl_runtime = 0;
1813 dl_se->dl_deadline = 0;
1814 dl_se->dl_period = 0;
1815 dl_se->flags = 0;
1816 dl_se->dl_bw = 0;
1817
1818 dl_se->dl_throttled = 0;
1819 dl_se->dl_new = 1;
1820 dl_se->dl_yielded = 0;
1821 }
1822
1823 /*
1824 * Perform scheduler related setup for a newly forked process p.
1825 * p is forked by current.
1826 *
1827 * __sched_fork() is basic setup used by init_idle() too:
1828 */
1829 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1830 {
1831 p->on_rq = 0;
1832
1833 p->se.on_rq = 0;
1834 p->se.exec_start = 0;
1835 p->se.sum_exec_runtime = 0;
1836 p->se.prev_sum_exec_runtime = 0;
1837 p->se.nr_migrations = 0;
1838 p->se.vruntime = 0;
1839 #ifdef CONFIG_SMP
1840 p->se.avg.decay_count = 0;
1841 #endif
1842 INIT_LIST_HEAD(&p->se.group_node);
1843
1844 #ifdef CONFIG_SCHEDSTATS
1845 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1846 #endif
1847
1848 RB_CLEAR_NODE(&p->dl.rb_node);
1849 init_dl_task_timer(&p->dl);
1850 __dl_clear_params(p);
1851
1852 INIT_LIST_HEAD(&p->rt.run_list);
1853
1854 #ifdef CONFIG_PREEMPT_NOTIFIERS
1855 INIT_HLIST_HEAD(&p->preempt_notifiers);
1856 #endif
1857
1858 #ifdef CONFIG_NUMA_BALANCING
1859 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1860 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1861 p->mm->numa_scan_seq = 0;
1862 }
1863
1864 if (clone_flags & CLONE_VM)
1865 p->numa_preferred_nid = current->numa_preferred_nid;
1866 else
1867 p->numa_preferred_nid = -1;
1868
1869 p->node_stamp = 0ULL;
1870 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1871 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1872 p->numa_work.next = &p->numa_work;
1873 p->numa_faults = NULL;
1874 p->last_task_numa_placement = 0;
1875 p->last_sum_exec_runtime = 0;
1876
1877 p->numa_group = NULL;
1878 #endif /* CONFIG_NUMA_BALANCING */
1879 }
1880
1881 #ifdef CONFIG_NUMA_BALANCING
1882 #ifdef CONFIG_SCHED_DEBUG
1883 void set_numabalancing_state(bool enabled)
1884 {
1885 if (enabled)
1886 sched_feat_set("NUMA");
1887 else
1888 sched_feat_set("NO_NUMA");
1889 }
1890 #else
1891 __read_mostly bool numabalancing_enabled;
1892
1893 void set_numabalancing_state(bool enabled)
1894 {
1895 numabalancing_enabled = enabled;
1896 }
1897 #endif /* CONFIG_SCHED_DEBUG */
1898
1899 #ifdef CONFIG_PROC_SYSCTL
1900 int sysctl_numa_balancing(struct ctl_table *table, int write,
1901 void __user *buffer, size_t *lenp, loff_t *ppos)
1902 {
1903 struct ctl_table t;
1904 int err;
1905 int state = numabalancing_enabled;
1906
1907 if (write && !capable(CAP_SYS_ADMIN))
1908 return -EPERM;
1909
1910 t = *table;
1911 t.data = &state;
1912 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1913 if (err < 0)
1914 return err;
1915 if (write)
1916 set_numabalancing_state(state);
1917 return err;
1918 }
1919 #endif
1920 #endif
1921
1922 /*
1923 * fork()/clone()-time setup:
1924 */
1925 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1926 {
1927 unsigned long flags;
1928 int cpu = get_cpu();
1929
1930 __sched_fork(clone_flags, p);
1931 /*
1932 * We mark the process as running here. This guarantees that
1933 * nobody will actually run it, and a signal or other external
1934 * event cannot wake it up and insert it on the runqueue either.
1935 */
1936 p->state = TASK_RUNNING;
1937
1938 /*
1939 * Make sure we do not leak PI boosting priority to the child.
1940 */
1941 p->prio = current->normal_prio;
1942
1943 /*
1944 * Revert to default priority/policy on fork if requested.
1945 */
1946 if (unlikely(p->sched_reset_on_fork)) {
1947 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1948 p->policy = SCHED_NORMAL;
1949 p->static_prio = NICE_TO_PRIO(0);
1950 p->rt_priority = 0;
1951 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1952 p->static_prio = NICE_TO_PRIO(0);
1953
1954 p->prio = p->normal_prio = __normal_prio(p);
1955 set_load_weight(p);
1956
1957 /*
1958 * We don't need the reset flag anymore after the fork. It has
1959 * fulfilled its duty:
1960 */
1961 p->sched_reset_on_fork = 0;
1962 }
1963
1964 if (dl_prio(p->prio)) {
1965 put_cpu();
1966 return -EAGAIN;
1967 } else if (rt_prio(p->prio)) {
1968 p->sched_class = &rt_sched_class;
1969 } else {
1970 p->sched_class = &fair_sched_class;
1971 }
1972
1973 if (p->sched_class->task_fork)
1974 p->sched_class->task_fork(p);
1975
1976 /*
1977 * The child is not yet in the pid-hash so no cgroup attach races,
1978 * and the cgroup is pinned to this child due to cgroup_fork()
1979 * is ran before sched_fork().
1980 *
1981 * Silence PROVE_RCU.
1982 */
1983 raw_spin_lock_irqsave(&p->pi_lock, flags);
1984 set_task_cpu(p, cpu);
1985 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1986
1987 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1988 if (likely(sched_info_on()))
1989 memset(&p->sched_info, 0, sizeof(p->sched_info));
1990 #endif
1991 #if defined(CONFIG_SMP)
1992 p->on_cpu = 0;
1993 #endif
1994 init_task_preempt_count(p);
1995 #ifdef CONFIG_SMP
1996 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1997 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1998 #endif
1999
2000 put_cpu();
2001 return 0;
2002 }
2003
2004 unsigned long to_ratio(u64 period, u64 runtime)
2005 {
2006 if (runtime == RUNTIME_INF)
2007 return 1ULL << 20;
2008
2009 /*
2010 * Doing this here saves a lot of checks in all
2011 * the calling paths, and returning zero seems
2012 * safe for them anyway.
2013 */
2014 if (period == 0)
2015 return 0;
2016
2017 return div64_u64(runtime << 20, period);
2018 }
2019
2020 #ifdef CONFIG_SMP
2021 inline struct dl_bw *dl_bw_of(int i)
2022 {
2023 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2024 "sched RCU must be held");
2025 return &cpu_rq(i)->rd->dl_bw;
2026 }
2027
2028 static inline int dl_bw_cpus(int i)
2029 {
2030 struct root_domain *rd = cpu_rq(i)->rd;
2031 int cpus = 0;
2032
2033 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2034 "sched RCU must be held");
2035 for_each_cpu_and(i, rd->span, cpu_active_mask)
2036 cpus++;
2037
2038 return cpus;
2039 }
2040 #else
2041 inline struct dl_bw *dl_bw_of(int i)
2042 {
2043 return &cpu_rq(i)->dl.dl_bw;
2044 }
2045
2046 static inline int dl_bw_cpus(int i)
2047 {
2048 return 1;
2049 }
2050 #endif
2051
2052 /*
2053 * We must be sure that accepting a new task (or allowing changing the
2054 * parameters of an existing one) is consistent with the bandwidth
2055 * constraints. If yes, this function also accordingly updates the currently
2056 * allocated bandwidth to reflect the new situation.
2057 *
2058 * This function is called while holding p's rq->lock.
2059 *
2060 * XXX we should delay bw change until the task's 0-lag point, see
2061 * __setparam_dl().
2062 */
2063 static int dl_overflow(struct task_struct *p, int policy,
2064 const struct sched_attr *attr)
2065 {
2066
2067 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2068 u64 period = attr->sched_period ?: attr->sched_deadline;
2069 u64 runtime = attr->sched_runtime;
2070 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2071 int cpus, err = -1;
2072
2073 if (new_bw == p->dl.dl_bw)
2074 return 0;
2075
2076 /*
2077 * Either if a task, enters, leave, or stays -deadline but changes
2078 * its parameters, we may need to update accordingly the total
2079 * allocated bandwidth of the container.
2080 */
2081 raw_spin_lock(&dl_b->lock);
2082 cpus = dl_bw_cpus(task_cpu(p));
2083 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2084 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2085 __dl_add(dl_b, new_bw);
2086 err = 0;
2087 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2088 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2089 __dl_clear(dl_b, p->dl.dl_bw);
2090 __dl_add(dl_b, new_bw);
2091 err = 0;
2092 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2093 __dl_clear(dl_b, p->dl.dl_bw);
2094 err = 0;
2095 }
2096 raw_spin_unlock(&dl_b->lock);
2097
2098 return err;
2099 }
2100
2101 extern void init_dl_bw(struct dl_bw *dl_b);
2102
2103 /*
2104 * wake_up_new_task - wake up a newly created task for the first time.
2105 *
2106 * This function will do some initial scheduler statistics housekeeping
2107 * that must be done for every newly created context, then puts the task
2108 * on the runqueue and wakes it.
2109 */
2110 void wake_up_new_task(struct task_struct *p)
2111 {
2112 unsigned long flags;
2113 struct rq *rq;
2114
2115 raw_spin_lock_irqsave(&p->pi_lock, flags);
2116 #ifdef CONFIG_SMP
2117 /*
2118 * Fork balancing, do it here and not earlier because:
2119 * - cpus_allowed can change in the fork path
2120 * - any previously selected cpu might disappear through hotplug
2121 */
2122 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2123 #endif
2124
2125 /* Initialize new task's runnable average */
2126 init_task_runnable_average(p);
2127 rq = __task_rq_lock(p);
2128 activate_task(rq, p, 0);
2129 p->on_rq = TASK_ON_RQ_QUEUED;
2130 trace_sched_wakeup_new(p, true);
2131 check_preempt_curr(rq, p, WF_FORK);
2132 #ifdef CONFIG_SMP
2133 if (p->sched_class->task_woken)
2134 p->sched_class->task_woken(rq, p);
2135 #endif
2136 task_rq_unlock(rq, p, &flags);
2137 }
2138
2139 #ifdef CONFIG_PREEMPT_NOTIFIERS
2140
2141 /**
2142 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2143 * @notifier: notifier struct to register
2144 */
2145 void preempt_notifier_register(struct preempt_notifier *notifier)
2146 {
2147 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2148 }
2149 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2150
2151 /**
2152 * preempt_notifier_unregister - no longer interested in preemption notifications
2153 * @notifier: notifier struct to unregister
2154 *
2155 * This is safe to call from within a preemption notifier.
2156 */
2157 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2158 {
2159 hlist_del(&notifier->link);
2160 }
2161 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2162
2163 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2164 {
2165 struct preempt_notifier *notifier;
2166
2167 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2168 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2169 }
2170
2171 static void
2172 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2173 struct task_struct *next)
2174 {
2175 struct preempt_notifier *notifier;
2176
2177 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2178 notifier->ops->sched_out(notifier, next);
2179 }
2180
2181 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2182
2183 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2184 {
2185 }
2186
2187 static void
2188 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2189 struct task_struct *next)
2190 {
2191 }
2192
2193 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2194
2195 /**
2196 * prepare_task_switch - prepare to switch tasks
2197 * @rq: the runqueue preparing to switch
2198 * @prev: the current task that is being switched out
2199 * @next: the task we are going to switch to.
2200 *
2201 * This is called with the rq lock held and interrupts off. It must
2202 * be paired with a subsequent finish_task_switch after the context
2203 * switch.
2204 *
2205 * prepare_task_switch sets up locking and calls architecture specific
2206 * hooks.
2207 */
2208 static inline void
2209 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2210 struct task_struct *next)
2211 {
2212 trace_sched_switch(prev, next);
2213 sched_info_switch(rq, prev, next);
2214 perf_event_task_sched_out(prev, next);
2215 fire_sched_out_preempt_notifiers(prev, next);
2216 prepare_lock_switch(rq, next);
2217 prepare_arch_switch(next);
2218 }
2219
2220 /**
2221 * finish_task_switch - clean up after a task-switch
2222 * @prev: the thread we just switched away from.
2223 *
2224 * finish_task_switch must be called after the context switch, paired
2225 * with a prepare_task_switch call before the context switch.
2226 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2227 * and do any other architecture-specific cleanup actions.
2228 *
2229 * Note that we may have delayed dropping an mm in context_switch(). If
2230 * so, we finish that here outside of the runqueue lock. (Doing it
2231 * with the lock held can cause deadlocks; see schedule() for
2232 * details.)
2233 *
2234 * The context switch have flipped the stack from under us and restored the
2235 * local variables which were saved when this task called schedule() in the
2236 * past. prev == current is still correct but we need to recalculate this_rq
2237 * because prev may have moved to another CPU.
2238 */
2239 static struct rq *finish_task_switch(struct task_struct *prev)
2240 __releases(rq->lock)
2241 {
2242 struct rq *rq = this_rq();
2243 struct mm_struct *mm = rq->prev_mm;
2244 long prev_state;
2245
2246 rq->prev_mm = NULL;
2247
2248 /*
2249 * A task struct has one reference for the use as "current".
2250 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2251 * schedule one last time. The schedule call will never return, and
2252 * the scheduled task must drop that reference.
2253 * The test for TASK_DEAD must occur while the runqueue locks are
2254 * still held, otherwise prev could be scheduled on another cpu, die
2255 * there before we look at prev->state, and then the reference would
2256 * be dropped twice.
2257 * Manfred Spraul <manfred@colorfullife.com>
2258 */
2259 prev_state = prev->state;
2260 vtime_task_switch(prev);
2261 finish_arch_switch(prev);
2262 perf_event_task_sched_in(prev, current);
2263 finish_lock_switch(rq, prev);
2264 finish_arch_post_lock_switch();
2265
2266 fire_sched_in_preempt_notifiers(current);
2267 if (mm)
2268 mmdrop(mm);
2269 if (unlikely(prev_state == TASK_DEAD)) {
2270 if (prev->sched_class->task_dead)
2271 prev->sched_class->task_dead(prev);
2272
2273 /*
2274 * Remove function-return probe instances associated with this
2275 * task and put them back on the free list.
2276 */
2277 kprobe_flush_task(prev);
2278 put_task_struct(prev);
2279 }
2280
2281 tick_nohz_task_switch(current);
2282 return rq;
2283 }
2284
2285 #ifdef CONFIG_SMP
2286
2287 /* rq->lock is NOT held, but preemption is disabled */
2288 static void __balance_callback(struct rq *rq)
2289 {
2290 struct callback_head *head, *next;
2291 void (*func)(struct rq *rq);
2292 unsigned long flags;
2293
2294 raw_spin_lock_irqsave(&rq->lock, flags);
2295 head = rq->balance_callback;
2296 rq->balance_callback = NULL;
2297 while (head) {
2298 func = (void (*)(struct rq *))head->func;
2299 next = head->next;
2300 head->next = NULL;
2301 head = next;
2302
2303 func(rq);
2304 }
2305 raw_spin_unlock_irqrestore(&rq->lock, flags);
2306 }
2307
2308 static inline void balance_callback(struct rq *rq)
2309 {
2310 if (unlikely(rq->balance_callback))
2311 __balance_callback(rq);
2312 }
2313
2314 #else
2315
2316 static inline void balance_callback(struct rq *rq)
2317 {
2318 }
2319
2320 #endif
2321
2322 /**
2323 * schedule_tail - first thing a freshly forked thread must call.
2324 * @prev: the thread we just switched away from.
2325 */
2326 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2327 __releases(rq->lock)
2328 {
2329 struct rq *rq;
2330
2331 /* finish_task_switch() drops rq->lock and enables preemtion */
2332 preempt_disable();
2333 rq = finish_task_switch(prev);
2334 balance_callback(rq);
2335 preempt_enable();
2336
2337 if (current->set_child_tid)
2338 put_user(task_pid_vnr(current), current->set_child_tid);
2339 }
2340
2341 /*
2342 * context_switch - switch to the new MM and the new thread's register state.
2343 */
2344 static inline struct rq *
2345 context_switch(struct rq *rq, struct task_struct *prev,
2346 struct task_struct *next)
2347 {
2348 struct mm_struct *mm, *oldmm;
2349
2350 prepare_task_switch(rq, prev, next);
2351
2352 mm = next->mm;
2353 oldmm = prev->active_mm;
2354 /*
2355 * For paravirt, this is coupled with an exit in switch_to to
2356 * combine the page table reload and the switch backend into
2357 * one hypercall.
2358 */
2359 arch_start_context_switch(prev);
2360
2361 if (!mm) {
2362 next->active_mm = oldmm;
2363 atomic_inc(&oldmm->mm_count);
2364 enter_lazy_tlb(oldmm, next);
2365 } else
2366 switch_mm(oldmm, mm, next);
2367
2368 if (!prev->mm) {
2369 prev->active_mm = NULL;
2370 rq->prev_mm = oldmm;
2371 }
2372 /*
2373 * Since the runqueue lock will be released by the next
2374 * task (which is an invalid locking op but in the case
2375 * of the scheduler it's an obvious special-case), so we
2376 * do an early lockdep release here:
2377 */
2378 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2379
2380 context_tracking_task_switch(prev, next);
2381 /* Here we just switch the register state and the stack. */
2382 switch_to(prev, next, prev);
2383 barrier();
2384
2385 return finish_task_switch(prev);
2386 }
2387
2388 /*
2389 * nr_running and nr_context_switches:
2390 *
2391 * externally visible scheduler statistics: current number of runnable
2392 * threads, total number of context switches performed since bootup.
2393 */
2394 unsigned long nr_running(void)
2395 {
2396 unsigned long i, sum = 0;
2397
2398 for_each_online_cpu(i)
2399 sum += cpu_rq(i)->nr_running;
2400
2401 return sum;
2402 }
2403
2404 /*
2405 * Check if only the current task is running on the cpu.
2406 */
2407 bool single_task_running(void)
2408 {
2409 if (cpu_rq(smp_processor_id())->nr_running == 1)
2410 return true;
2411 else
2412 return false;
2413 }
2414 EXPORT_SYMBOL(single_task_running);
2415
2416 unsigned long long nr_context_switches(void)
2417 {
2418 int i;
2419 unsigned long long sum = 0;
2420
2421 for_each_possible_cpu(i)
2422 sum += cpu_rq(i)->nr_switches;
2423
2424 return sum;
2425 }
2426
2427 unsigned long nr_iowait(void)
2428 {
2429 unsigned long i, sum = 0;
2430
2431 for_each_possible_cpu(i)
2432 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2433
2434 return sum;
2435 }
2436
2437 unsigned long nr_iowait_cpu(int cpu)
2438 {
2439 struct rq *this = cpu_rq(cpu);
2440 return atomic_read(&this->nr_iowait);
2441 }
2442
2443 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2444 {
2445 struct rq *rq = this_rq();
2446 *nr_waiters = atomic_read(&rq->nr_iowait);
2447 *load = rq->load.weight;
2448 }
2449
2450 #ifdef CONFIG_SMP
2451
2452 /*
2453 * sched_exec - execve() is a valuable balancing opportunity, because at
2454 * this point the task has the smallest effective memory and cache footprint.
2455 */
2456 void sched_exec(void)
2457 {
2458 struct task_struct *p = current;
2459 unsigned long flags;
2460 int dest_cpu;
2461
2462 raw_spin_lock_irqsave(&p->pi_lock, flags);
2463 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2464 if (dest_cpu == smp_processor_id())
2465 goto unlock;
2466
2467 if (likely(cpu_active(dest_cpu))) {
2468 struct migration_arg arg = { p, dest_cpu };
2469
2470 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2471 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2472 return;
2473 }
2474 unlock:
2475 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2476 }
2477
2478 #endif
2479
2480 DEFINE_PER_CPU(struct kernel_stat, kstat);
2481 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2482
2483 EXPORT_PER_CPU_SYMBOL(kstat);
2484 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2485
2486 /*
2487 * Return accounted runtime for the task.
2488 * In case the task is currently running, return the runtime plus current's
2489 * pending runtime that have not been accounted yet.
2490 */
2491 unsigned long long task_sched_runtime(struct task_struct *p)
2492 {
2493 unsigned long flags;
2494 struct rq *rq;
2495 u64 ns;
2496
2497 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2498 /*
2499 * 64-bit doesn't need locks to atomically read a 64bit value.
2500 * So we have a optimization chance when the task's delta_exec is 0.
2501 * Reading ->on_cpu is racy, but this is ok.
2502 *
2503 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2504 * If we race with it entering cpu, unaccounted time is 0. This is
2505 * indistinguishable from the read occurring a few cycles earlier.
2506 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2507 * been accounted, so we're correct here as well.
2508 */
2509 if (!p->on_cpu || !task_on_rq_queued(p))
2510 return p->se.sum_exec_runtime;
2511 #endif
2512
2513 rq = task_rq_lock(p, &flags);
2514 /*
2515 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2516 * project cycles that may never be accounted to this
2517 * thread, breaking clock_gettime().
2518 */
2519 if (task_current(rq, p) && task_on_rq_queued(p)) {
2520 update_rq_clock(rq);
2521 p->sched_class->update_curr(rq);
2522 }
2523 ns = p->se.sum_exec_runtime;
2524 task_rq_unlock(rq, p, &flags);
2525
2526 return ns;
2527 }
2528
2529 /*
2530 * This function gets called by the timer code, with HZ frequency.
2531 * We call it with interrupts disabled.
2532 */
2533 void scheduler_tick(void)
2534 {
2535 int cpu = smp_processor_id();
2536 struct rq *rq = cpu_rq(cpu);
2537 struct task_struct *curr = rq->curr;
2538
2539 sched_clock_tick();
2540
2541 raw_spin_lock(&rq->lock);
2542 update_rq_clock(rq);
2543 curr->sched_class->task_tick(rq, curr, 0);
2544 update_cpu_load_active(rq);
2545 calc_global_load_tick(rq);
2546 raw_spin_unlock(&rq->lock);
2547
2548 perf_event_task_tick();
2549
2550 #ifdef CONFIG_SMP
2551 rq->idle_balance = idle_cpu(cpu);
2552 trigger_load_balance(rq);
2553 #endif
2554 rq_last_tick_reset(rq);
2555 }
2556
2557 #ifdef CONFIG_NO_HZ_FULL
2558 /**
2559 * scheduler_tick_max_deferment
2560 *
2561 * Keep at least one tick per second when a single
2562 * active task is running because the scheduler doesn't
2563 * yet completely support full dynticks environment.
2564 *
2565 * This makes sure that uptime, CFS vruntime, load
2566 * balancing, etc... continue to move forward, even
2567 * with a very low granularity.
2568 *
2569 * Return: Maximum deferment in nanoseconds.
2570 */
2571 u64 scheduler_tick_max_deferment(void)
2572 {
2573 struct rq *rq = this_rq();
2574 unsigned long next, now = READ_ONCE(jiffies);
2575
2576 next = rq->last_sched_tick + HZ;
2577
2578 if (time_before_eq(next, now))
2579 return 0;
2580
2581 return jiffies_to_nsecs(next - now);
2582 }
2583 #endif
2584
2585 notrace unsigned long get_parent_ip(unsigned long addr)
2586 {
2587 if (in_lock_functions(addr)) {
2588 addr = CALLER_ADDR2;
2589 if (in_lock_functions(addr))
2590 addr = CALLER_ADDR3;
2591 }
2592 return addr;
2593 }
2594
2595 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2596 defined(CONFIG_PREEMPT_TRACER))
2597
2598 void preempt_count_add(int val)
2599 {
2600 #ifdef CONFIG_DEBUG_PREEMPT
2601 /*
2602 * Underflow?
2603 */
2604 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2605 return;
2606 #endif
2607 __preempt_count_add(val);
2608 #ifdef CONFIG_DEBUG_PREEMPT
2609 /*
2610 * Spinlock count overflowing soon?
2611 */
2612 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2613 PREEMPT_MASK - 10);
2614 #endif
2615 if (preempt_count() == val) {
2616 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2617 #ifdef CONFIG_DEBUG_PREEMPT
2618 current->preempt_disable_ip = ip;
2619 #endif
2620 trace_preempt_off(CALLER_ADDR0, ip);
2621 }
2622 }
2623 EXPORT_SYMBOL(preempt_count_add);
2624 NOKPROBE_SYMBOL(preempt_count_add);
2625
2626 void preempt_count_sub(int val)
2627 {
2628 #ifdef CONFIG_DEBUG_PREEMPT
2629 /*
2630 * Underflow?
2631 */
2632 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2633 return;
2634 /*
2635 * Is the spinlock portion underflowing?
2636 */
2637 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2638 !(preempt_count() & PREEMPT_MASK)))
2639 return;
2640 #endif
2641
2642 if (preempt_count() == val)
2643 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2644 __preempt_count_sub(val);
2645 }
2646 EXPORT_SYMBOL(preempt_count_sub);
2647 NOKPROBE_SYMBOL(preempt_count_sub);
2648
2649 #endif
2650
2651 /*
2652 * Print scheduling while atomic bug:
2653 */
2654 static noinline void __schedule_bug(struct task_struct *prev)
2655 {
2656 if (oops_in_progress)
2657 return;
2658
2659 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2660 prev->comm, prev->pid, preempt_count());
2661
2662 debug_show_held_locks(prev);
2663 print_modules();
2664 if (irqs_disabled())
2665 print_irqtrace_events(prev);
2666 #ifdef CONFIG_DEBUG_PREEMPT
2667 if (in_atomic_preempt_off()) {
2668 pr_err("Preemption disabled at:");
2669 print_ip_sym(current->preempt_disable_ip);
2670 pr_cont("\n");
2671 }
2672 #endif
2673 dump_stack();
2674 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2675 }
2676
2677 /*
2678 * Various schedule()-time debugging checks and statistics:
2679 */
2680 static inline void schedule_debug(struct task_struct *prev)
2681 {
2682 #ifdef CONFIG_SCHED_STACK_END_CHECK
2683 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2684 #endif
2685 /*
2686 * Test if we are atomic. Since do_exit() needs to call into
2687 * schedule() atomically, we ignore that path. Otherwise whine
2688 * if we are scheduling when we should not.
2689 */
2690 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2691 __schedule_bug(prev);
2692 rcu_sleep_check();
2693
2694 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2695
2696 schedstat_inc(this_rq(), sched_count);
2697 }
2698
2699 /*
2700 * Pick up the highest-prio task:
2701 */
2702 static inline struct task_struct *
2703 pick_next_task(struct rq *rq, struct task_struct *prev)
2704 {
2705 const struct sched_class *class = &fair_sched_class;
2706 struct task_struct *p;
2707
2708 /*
2709 * Optimization: we know that if all tasks are in
2710 * the fair class we can call that function directly:
2711 */
2712 if (likely(prev->sched_class == class &&
2713 rq->nr_running == rq->cfs.h_nr_running)) {
2714 p = fair_sched_class.pick_next_task(rq, prev);
2715 if (unlikely(p == RETRY_TASK))
2716 goto again;
2717
2718 /* assumes fair_sched_class->next == idle_sched_class */
2719 if (unlikely(!p))
2720 p = idle_sched_class.pick_next_task(rq, prev);
2721
2722 return p;
2723 }
2724
2725 again:
2726 for_each_class(class) {
2727 p = class->pick_next_task(rq, prev);
2728 if (p) {
2729 if (unlikely(p == RETRY_TASK))
2730 goto again;
2731 return p;
2732 }
2733 }
2734
2735 BUG(); /* the idle class will always have a runnable task */
2736 }
2737
2738 /*
2739 * __schedule() is the main scheduler function.
2740 *
2741 * The main means of driving the scheduler and thus entering this function are:
2742 *
2743 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2744 *
2745 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2746 * paths. For example, see arch/x86/entry_64.S.
2747 *
2748 * To drive preemption between tasks, the scheduler sets the flag in timer
2749 * interrupt handler scheduler_tick().
2750 *
2751 * 3. Wakeups don't really cause entry into schedule(). They add a
2752 * task to the run-queue and that's it.
2753 *
2754 * Now, if the new task added to the run-queue preempts the current
2755 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2756 * called on the nearest possible occasion:
2757 *
2758 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2759 *
2760 * - in syscall or exception context, at the next outmost
2761 * preempt_enable(). (this might be as soon as the wake_up()'s
2762 * spin_unlock()!)
2763 *
2764 * - in IRQ context, return from interrupt-handler to
2765 * preemptible context
2766 *
2767 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2768 * then at the next:
2769 *
2770 * - cond_resched() call
2771 * - explicit schedule() call
2772 * - return from syscall or exception to user-space
2773 * - return from interrupt-handler to user-space
2774 *
2775 * WARNING: must be called with preemption disabled!
2776 */
2777 static void __sched __schedule(void)
2778 {
2779 struct task_struct *prev, *next;
2780 unsigned long *switch_count;
2781 struct rq *rq;
2782 int cpu;
2783
2784 cpu = smp_processor_id();
2785 rq = cpu_rq(cpu);
2786 rcu_note_context_switch();
2787 prev = rq->curr;
2788
2789 schedule_debug(prev);
2790
2791 if (sched_feat(HRTICK))
2792 hrtick_clear(rq);
2793
2794 /*
2795 * Make sure that signal_pending_state()->signal_pending() below
2796 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2797 * done by the caller to avoid the race with signal_wake_up().
2798 */
2799 smp_mb__before_spinlock();
2800 raw_spin_lock_irq(&rq->lock);
2801
2802 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2803
2804 switch_count = &prev->nivcsw;
2805 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2806 if (unlikely(signal_pending_state(prev->state, prev))) {
2807 prev->state = TASK_RUNNING;
2808 } else {
2809 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2810 prev->on_rq = 0;
2811
2812 /*
2813 * If a worker went to sleep, notify and ask workqueue
2814 * whether it wants to wake up a task to maintain
2815 * concurrency.
2816 */
2817 if (prev->flags & PF_WQ_WORKER) {
2818 struct task_struct *to_wakeup;
2819
2820 to_wakeup = wq_worker_sleeping(prev, cpu);
2821 if (to_wakeup)
2822 try_to_wake_up_local(to_wakeup);
2823 }
2824 }
2825 switch_count = &prev->nvcsw;
2826 }
2827
2828 if (task_on_rq_queued(prev))
2829 update_rq_clock(rq);
2830
2831 next = pick_next_task(rq, prev);
2832 clear_tsk_need_resched(prev);
2833 clear_preempt_need_resched();
2834 rq->clock_skip_update = 0;
2835
2836 if (likely(prev != next)) {
2837 rq->nr_switches++;
2838 rq->curr = next;
2839 ++*switch_count;
2840
2841 rq = context_switch(rq, prev, next); /* unlocks the rq */
2842 cpu = cpu_of(rq);
2843 } else
2844 raw_spin_unlock_irq(&rq->lock);
2845
2846 balance_callback(rq);
2847 }
2848
2849 static inline void sched_submit_work(struct task_struct *tsk)
2850 {
2851 if (!tsk->state || tsk_is_pi_blocked(tsk))
2852 return;
2853 /*
2854 * If we are going to sleep and we have plugged IO queued,
2855 * make sure to submit it to avoid deadlocks.
2856 */
2857 if (blk_needs_flush_plug(tsk))
2858 blk_schedule_flush_plug(tsk);
2859 }
2860
2861 asmlinkage __visible void __sched schedule(void)
2862 {
2863 struct task_struct *tsk = current;
2864
2865 sched_submit_work(tsk);
2866 do {
2867 preempt_disable();
2868 __schedule();
2869 sched_preempt_enable_no_resched();
2870 } while (need_resched());
2871 }
2872 EXPORT_SYMBOL(schedule);
2873
2874 #ifdef CONFIG_CONTEXT_TRACKING
2875 asmlinkage __visible void __sched schedule_user(void)
2876 {
2877 /*
2878 * If we come here after a random call to set_need_resched(),
2879 * or we have been woken up remotely but the IPI has not yet arrived,
2880 * we haven't yet exited the RCU idle mode. Do it here manually until
2881 * we find a better solution.
2882 *
2883 * NB: There are buggy callers of this function. Ideally we
2884 * should warn if prev_state != CONTEXT_USER, but that will trigger
2885 * too frequently to make sense yet.
2886 */
2887 enum ctx_state prev_state = exception_enter();
2888 schedule();
2889 exception_exit(prev_state);
2890 }
2891 #endif
2892
2893 /**
2894 * schedule_preempt_disabled - called with preemption disabled
2895 *
2896 * Returns with preemption disabled. Note: preempt_count must be 1
2897 */
2898 void __sched schedule_preempt_disabled(void)
2899 {
2900 sched_preempt_enable_no_resched();
2901 schedule();
2902 preempt_disable();
2903 }
2904
2905 static void __sched notrace preempt_schedule_common(void)
2906 {
2907 do {
2908 preempt_active_enter();
2909 __schedule();
2910 preempt_active_exit();
2911
2912 /*
2913 * Check again in case we missed a preemption opportunity
2914 * between schedule and now.
2915 */
2916 } while (need_resched());
2917 }
2918
2919 #ifdef CONFIG_PREEMPT
2920 /*
2921 * this is the entry point to schedule() from in-kernel preemption
2922 * off of preempt_enable. Kernel preemptions off return from interrupt
2923 * occur there and call schedule directly.
2924 */
2925 asmlinkage __visible void __sched notrace preempt_schedule(void)
2926 {
2927 /*
2928 * If there is a non-zero preempt_count or interrupts are disabled,
2929 * we do not want to preempt the current task. Just return..
2930 */
2931 if (likely(!preemptible()))
2932 return;
2933
2934 preempt_schedule_common();
2935 }
2936 NOKPROBE_SYMBOL(preempt_schedule);
2937 EXPORT_SYMBOL(preempt_schedule);
2938
2939 /**
2940 * preempt_schedule_notrace - preempt_schedule called by tracing
2941 *
2942 * The tracing infrastructure uses preempt_enable_notrace to prevent
2943 * recursion and tracing preempt enabling caused by the tracing
2944 * infrastructure itself. But as tracing can happen in areas coming
2945 * from userspace or just about to enter userspace, a preempt enable
2946 * can occur before user_exit() is called. This will cause the scheduler
2947 * to be called when the system is still in usermode.
2948 *
2949 * To prevent this, the preempt_enable_notrace will use this function
2950 * instead of preempt_schedule() to exit user context if needed before
2951 * calling the scheduler.
2952 */
2953 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
2954 {
2955 enum ctx_state prev_ctx;
2956
2957 if (likely(!preemptible()))
2958 return;
2959
2960 do {
2961 /*
2962 * Use raw __prempt_count() ops that don't call function.
2963 * We can't call functions before disabling preemption which
2964 * disarm preemption tracing recursions.
2965 */
2966 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
2967 barrier();
2968 /*
2969 * Needs preempt disabled in case user_exit() is traced
2970 * and the tracer calls preempt_enable_notrace() causing
2971 * an infinite recursion.
2972 */
2973 prev_ctx = exception_enter();
2974 __schedule();
2975 exception_exit(prev_ctx);
2976
2977 barrier();
2978 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
2979 } while (need_resched());
2980 }
2981 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
2982
2983 #endif /* CONFIG_PREEMPT */
2984
2985 /*
2986 * this is the entry point to schedule() from kernel preemption
2987 * off of irq context.
2988 * Note, that this is called and return with irqs disabled. This will
2989 * protect us against recursive calling from irq.
2990 */
2991 asmlinkage __visible void __sched preempt_schedule_irq(void)
2992 {
2993 enum ctx_state prev_state;
2994
2995 /* Catch callers which need to be fixed */
2996 BUG_ON(preempt_count() || !irqs_disabled());
2997
2998 prev_state = exception_enter();
2999
3000 do {
3001 preempt_active_enter();
3002 local_irq_enable();
3003 __schedule();
3004 local_irq_disable();
3005 preempt_active_exit();
3006 } while (need_resched());
3007
3008 exception_exit(prev_state);
3009 }
3010
3011 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3012 void *key)
3013 {
3014 return try_to_wake_up(curr->private, mode, wake_flags);
3015 }
3016 EXPORT_SYMBOL(default_wake_function);
3017
3018 #ifdef CONFIG_RT_MUTEXES
3019
3020 /*
3021 * rt_mutex_setprio - set the current priority of a task
3022 * @p: task
3023 * @prio: prio value (kernel-internal form)
3024 *
3025 * This function changes the 'effective' priority of a task. It does
3026 * not touch ->normal_prio like __setscheduler().
3027 *
3028 * Used by the rt_mutex code to implement priority inheritance
3029 * logic. Call site only calls if the priority of the task changed.
3030 */
3031 void rt_mutex_setprio(struct task_struct *p, int prio)
3032 {
3033 int oldprio, queued, running, enqueue_flag = 0;
3034 struct rq *rq;
3035 const struct sched_class *prev_class;
3036
3037 BUG_ON(prio > MAX_PRIO);
3038
3039 rq = __task_rq_lock(p);
3040
3041 /*
3042 * Idle task boosting is a nono in general. There is one
3043 * exception, when PREEMPT_RT and NOHZ is active:
3044 *
3045 * The idle task calls get_next_timer_interrupt() and holds
3046 * the timer wheel base->lock on the CPU and another CPU wants
3047 * to access the timer (probably to cancel it). We can safely
3048 * ignore the boosting request, as the idle CPU runs this code
3049 * with interrupts disabled and will complete the lock
3050 * protected section without being interrupted. So there is no
3051 * real need to boost.
3052 */
3053 if (unlikely(p == rq->idle)) {
3054 WARN_ON(p != rq->curr);
3055 WARN_ON(p->pi_blocked_on);
3056 goto out_unlock;
3057 }
3058
3059 trace_sched_pi_setprio(p, prio);
3060 oldprio = p->prio;
3061 prev_class = p->sched_class;
3062 queued = task_on_rq_queued(p);
3063 running = task_current(rq, p);
3064 if (queued)
3065 dequeue_task(rq, p, 0);
3066 if (running)
3067 put_prev_task(rq, p);
3068
3069 /*
3070 * Boosting condition are:
3071 * 1. -rt task is running and holds mutex A
3072 * --> -dl task blocks on mutex A
3073 *
3074 * 2. -dl task is running and holds mutex A
3075 * --> -dl task blocks on mutex A and could preempt the
3076 * running task
3077 */
3078 if (dl_prio(prio)) {
3079 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3080 if (!dl_prio(p->normal_prio) ||
3081 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3082 p->dl.dl_boosted = 1;
3083 p->dl.dl_throttled = 0;
3084 enqueue_flag = ENQUEUE_REPLENISH;
3085 } else
3086 p->dl.dl_boosted = 0;
3087 p->sched_class = &dl_sched_class;
3088 } else if (rt_prio(prio)) {
3089 if (dl_prio(oldprio))
3090 p->dl.dl_boosted = 0;
3091 if (oldprio < prio)
3092 enqueue_flag = ENQUEUE_HEAD;
3093 p->sched_class = &rt_sched_class;
3094 } else {
3095 if (dl_prio(oldprio))
3096 p->dl.dl_boosted = 0;
3097 if (rt_prio(oldprio))
3098 p->rt.timeout = 0;
3099 p->sched_class = &fair_sched_class;
3100 }
3101
3102 p->prio = prio;
3103
3104 if (running)
3105 p->sched_class->set_curr_task(rq);
3106 if (queued)
3107 enqueue_task(rq, p, enqueue_flag);
3108
3109 check_class_changed(rq, p, prev_class, oldprio);
3110 out_unlock:
3111 preempt_disable(); /* avoid rq from going away on us */
3112 __task_rq_unlock(rq);
3113
3114 balance_callback(rq);
3115 preempt_enable();
3116 }
3117 #endif
3118
3119 void set_user_nice(struct task_struct *p, long nice)
3120 {
3121 int old_prio, delta, queued;
3122 unsigned long flags;
3123 struct rq *rq;
3124
3125 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3126 return;
3127 /*
3128 * We have to be careful, if called from sys_setpriority(),
3129 * the task might be in the middle of scheduling on another CPU.
3130 */
3131 rq = task_rq_lock(p, &flags);
3132 /*
3133 * The RT priorities are set via sched_setscheduler(), but we still
3134 * allow the 'normal' nice value to be set - but as expected
3135 * it wont have any effect on scheduling until the task is
3136 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3137 */
3138 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3139 p->static_prio = NICE_TO_PRIO(nice);
3140 goto out_unlock;
3141 }
3142 queued = task_on_rq_queued(p);
3143 if (queued)
3144 dequeue_task(rq, p, 0);
3145
3146 p->static_prio = NICE_TO_PRIO(nice);
3147 set_load_weight(p);
3148 old_prio = p->prio;
3149 p->prio = effective_prio(p);
3150 delta = p->prio - old_prio;
3151
3152 if (queued) {
3153 enqueue_task(rq, p, 0);
3154 /*
3155 * If the task increased its priority or is running and
3156 * lowered its priority, then reschedule its CPU:
3157 */
3158 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3159 resched_curr(rq);
3160 }
3161 out_unlock:
3162 task_rq_unlock(rq, p, &flags);
3163 }
3164 EXPORT_SYMBOL(set_user_nice);
3165
3166 /*
3167 * can_nice - check if a task can reduce its nice value
3168 * @p: task
3169 * @nice: nice value
3170 */
3171 int can_nice(const struct task_struct *p, const int nice)
3172 {
3173 /* convert nice value [19,-20] to rlimit style value [1,40] */
3174 int nice_rlim = nice_to_rlimit(nice);
3175
3176 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3177 capable(CAP_SYS_NICE));
3178 }
3179
3180 #ifdef __ARCH_WANT_SYS_NICE
3181
3182 /*
3183 * sys_nice - change the priority of the current process.
3184 * @increment: priority increment
3185 *
3186 * sys_setpriority is a more generic, but much slower function that
3187 * does similar things.
3188 */
3189 SYSCALL_DEFINE1(nice, int, increment)
3190 {
3191 long nice, retval;
3192
3193 /*
3194 * Setpriority might change our priority at the same moment.
3195 * We don't have to worry. Conceptually one call occurs first
3196 * and we have a single winner.
3197 */
3198 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3199 nice = task_nice(current) + increment;
3200
3201 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3202 if (increment < 0 && !can_nice(current, nice))
3203 return -EPERM;
3204
3205 retval = security_task_setnice(current, nice);
3206 if (retval)
3207 return retval;
3208
3209 set_user_nice(current, nice);
3210 return 0;
3211 }
3212
3213 #endif
3214
3215 /**
3216 * task_prio - return the priority value of a given task.
3217 * @p: the task in question.
3218 *
3219 * Return: The priority value as seen by users in /proc.
3220 * RT tasks are offset by -200. Normal tasks are centered
3221 * around 0, value goes from -16 to +15.
3222 */
3223 int task_prio(const struct task_struct *p)
3224 {
3225 return p->prio - MAX_RT_PRIO;
3226 }
3227
3228 /**
3229 * idle_cpu - is a given cpu idle currently?
3230 * @cpu: the processor in question.
3231 *
3232 * Return: 1 if the CPU is currently idle. 0 otherwise.
3233 */
3234 int idle_cpu(int cpu)
3235 {
3236 struct rq *rq = cpu_rq(cpu);
3237
3238 if (rq->curr != rq->idle)
3239 return 0;
3240
3241 if (rq->nr_running)
3242 return 0;
3243
3244 #ifdef CONFIG_SMP
3245 if (!llist_empty(&rq->wake_list))
3246 return 0;
3247 #endif
3248
3249 return 1;
3250 }
3251
3252 /**
3253 * idle_task - return the idle task for a given cpu.
3254 * @cpu: the processor in question.
3255 *
3256 * Return: The idle task for the cpu @cpu.
3257 */
3258 struct task_struct *idle_task(int cpu)
3259 {
3260 return cpu_rq(cpu)->idle;
3261 }
3262
3263 /**
3264 * find_process_by_pid - find a process with a matching PID value.
3265 * @pid: the pid in question.
3266 *
3267 * The task of @pid, if found. %NULL otherwise.
3268 */
3269 static struct task_struct *find_process_by_pid(pid_t pid)
3270 {
3271 return pid ? find_task_by_vpid(pid) : current;
3272 }
3273
3274 /*
3275 * This function initializes the sched_dl_entity of a newly becoming
3276 * SCHED_DEADLINE task.
3277 *
3278 * Only the static values are considered here, the actual runtime and the
3279 * absolute deadline will be properly calculated when the task is enqueued
3280 * for the first time with its new policy.
3281 */
3282 static void
3283 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3284 {
3285 struct sched_dl_entity *dl_se = &p->dl;
3286
3287 dl_se->dl_runtime = attr->sched_runtime;
3288 dl_se->dl_deadline = attr->sched_deadline;
3289 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3290 dl_se->flags = attr->sched_flags;
3291 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3292
3293 /*
3294 * Changing the parameters of a task is 'tricky' and we're not doing
3295 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3296 *
3297 * What we SHOULD do is delay the bandwidth release until the 0-lag
3298 * point. This would include retaining the task_struct until that time
3299 * and change dl_overflow() to not immediately decrement the current
3300 * amount.
3301 *
3302 * Instead we retain the current runtime/deadline and let the new
3303 * parameters take effect after the current reservation period lapses.
3304 * This is safe (albeit pessimistic) because the 0-lag point is always
3305 * before the current scheduling deadline.
3306 *
3307 * We can still have temporary overloads because we do not delay the
3308 * change in bandwidth until that time; so admission control is
3309 * not on the safe side. It does however guarantee tasks will never
3310 * consume more than promised.
3311 */
3312 }
3313
3314 /*
3315 * sched_setparam() passes in -1 for its policy, to let the functions
3316 * it calls know not to change it.
3317 */
3318 #define SETPARAM_POLICY -1
3319
3320 static void __setscheduler_params(struct task_struct *p,
3321 const struct sched_attr *attr)
3322 {
3323 int policy = attr->sched_policy;
3324
3325 if (policy == SETPARAM_POLICY)
3326 policy = p->policy;
3327
3328 p->policy = policy;
3329
3330 if (dl_policy(policy))
3331 __setparam_dl(p, attr);
3332 else if (fair_policy(policy))
3333 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3334
3335 /*
3336 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3337 * !rt_policy. Always setting this ensures that things like
3338 * getparam()/getattr() don't report silly values for !rt tasks.
3339 */
3340 p->rt_priority = attr->sched_priority;
3341 p->normal_prio = normal_prio(p);
3342 set_load_weight(p);
3343 }
3344
3345 /* Actually do priority change: must hold pi & rq lock. */
3346 static void __setscheduler(struct rq *rq, struct task_struct *p,
3347 const struct sched_attr *attr, bool keep_boost)
3348 {
3349 __setscheduler_params(p, attr);
3350
3351 /*
3352 * Keep a potential priority boosting if called from
3353 * sched_setscheduler().
3354 */
3355 if (keep_boost)
3356 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3357 else
3358 p->prio = normal_prio(p);
3359
3360 if (dl_prio(p->prio))
3361 p->sched_class = &dl_sched_class;
3362 else if (rt_prio(p->prio))
3363 p->sched_class = &rt_sched_class;
3364 else
3365 p->sched_class = &fair_sched_class;
3366 }
3367
3368 static void
3369 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3370 {
3371 struct sched_dl_entity *dl_se = &p->dl;
3372
3373 attr->sched_priority = p->rt_priority;
3374 attr->sched_runtime = dl_se->dl_runtime;
3375 attr->sched_deadline = dl_se->dl_deadline;
3376 attr->sched_period = dl_se->dl_period;
3377 attr->sched_flags = dl_se->flags;
3378 }
3379
3380 /*
3381 * This function validates the new parameters of a -deadline task.
3382 * We ask for the deadline not being zero, and greater or equal
3383 * than the runtime, as well as the period of being zero or
3384 * greater than deadline. Furthermore, we have to be sure that
3385 * user parameters are above the internal resolution of 1us (we
3386 * check sched_runtime only since it is always the smaller one) and
3387 * below 2^63 ns (we have to check both sched_deadline and
3388 * sched_period, as the latter can be zero).
3389 */
3390 static bool
3391 __checkparam_dl(const struct sched_attr *attr)
3392 {
3393 /* deadline != 0 */
3394 if (attr->sched_deadline == 0)
3395 return false;
3396
3397 /*
3398 * Since we truncate DL_SCALE bits, make sure we're at least
3399 * that big.
3400 */
3401 if (attr->sched_runtime < (1ULL << DL_SCALE))
3402 return false;
3403
3404 /*
3405 * Since we use the MSB for wrap-around and sign issues, make
3406 * sure it's not set (mind that period can be equal to zero).
3407 */
3408 if (attr->sched_deadline & (1ULL << 63) ||
3409 attr->sched_period & (1ULL << 63))
3410 return false;
3411
3412 /* runtime <= deadline <= period (if period != 0) */
3413 if ((attr->sched_period != 0 &&
3414 attr->sched_period < attr->sched_deadline) ||
3415 attr->sched_deadline < attr->sched_runtime)
3416 return false;
3417
3418 return true;
3419 }
3420
3421 /*
3422 * check the target process has a UID that matches the current process's
3423 */
3424 static bool check_same_owner(struct task_struct *p)
3425 {
3426 const struct cred *cred = current_cred(), *pcred;
3427 bool match;
3428
3429 rcu_read_lock();
3430 pcred = __task_cred(p);
3431 match = (uid_eq(cred->euid, pcred->euid) ||
3432 uid_eq(cred->euid, pcred->uid));
3433 rcu_read_unlock();
3434 return match;
3435 }
3436
3437 static bool dl_param_changed(struct task_struct *p,
3438 const struct sched_attr *attr)
3439 {
3440 struct sched_dl_entity *dl_se = &p->dl;
3441
3442 if (dl_se->dl_runtime != attr->sched_runtime ||
3443 dl_se->dl_deadline != attr->sched_deadline ||
3444 dl_se->dl_period != attr->sched_period ||
3445 dl_se->flags != attr->sched_flags)
3446 return true;
3447
3448 return false;
3449 }
3450
3451 static int __sched_setscheduler(struct task_struct *p,
3452 const struct sched_attr *attr,
3453 bool user, bool pi)
3454 {
3455 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3456 MAX_RT_PRIO - 1 - attr->sched_priority;
3457 int retval, oldprio, oldpolicy = -1, queued, running;
3458 int new_effective_prio, policy = attr->sched_policy;
3459 unsigned long flags;
3460 const struct sched_class *prev_class;
3461 struct rq *rq;
3462 int reset_on_fork;
3463
3464 /* may grab non-irq protected spin_locks */
3465 BUG_ON(in_interrupt());
3466 recheck:
3467 /* double check policy once rq lock held */
3468 if (policy < 0) {
3469 reset_on_fork = p->sched_reset_on_fork;
3470 policy = oldpolicy = p->policy;
3471 } else {
3472 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3473
3474 if (policy != SCHED_DEADLINE &&
3475 policy != SCHED_FIFO && policy != SCHED_RR &&
3476 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3477 policy != SCHED_IDLE)
3478 return -EINVAL;
3479 }
3480
3481 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3482 return -EINVAL;
3483
3484 /*
3485 * Valid priorities for SCHED_FIFO and SCHED_RR are
3486 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3487 * SCHED_BATCH and SCHED_IDLE is 0.
3488 */
3489 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3490 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3491 return -EINVAL;
3492 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3493 (rt_policy(policy) != (attr->sched_priority != 0)))
3494 return -EINVAL;
3495
3496 /*
3497 * Allow unprivileged RT tasks to decrease priority:
3498 */
3499 if (user && !capable(CAP_SYS_NICE)) {
3500 if (fair_policy(policy)) {
3501 if (attr->sched_nice < task_nice(p) &&
3502 !can_nice(p, attr->sched_nice))
3503 return -EPERM;
3504 }
3505
3506 if (rt_policy(policy)) {
3507 unsigned long rlim_rtprio =
3508 task_rlimit(p, RLIMIT_RTPRIO);
3509
3510 /* can't set/change the rt policy */
3511 if (policy != p->policy && !rlim_rtprio)
3512 return -EPERM;
3513
3514 /* can't increase priority */
3515 if (attr->sched_priority > p->rt_priority &&
3516 attr->sched_priority > rlim_rtprio)
3517 return -EPERM;
3518 }
3519
3520 /*
3521 * Can't set/change SCHED_DEADLINE policy at all for now
3522 * (safest behavior); in the future we would like to allow
3523 * unprivileged DL tasks to increase their relative deadline
3524 * or reduce their runtime (both ways reducing utilization)
3525 */
3526 if (dl_policy(policy))
3527 return -EPERM;
3528
3529 /*
3530 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3531 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3532 */
3533 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3534 if (!can_nice(p, task_nice(p)))
3535 return -EPERM;
3536 }
3537
3538 /* can't change other user's priorities */
3539 if (!check_same_owner(p))
3540 return -EPERM;
3541
3542 /* Normal users shall not reset the sched_reset_on_fork flag */
3543 if (p->sched_reset_on_fork && !reset_on_fork)
3544 return -EPERM;
3545 }
3546
3547 if (user) {
3548 retval = security_task_setscheduler(p);
3549 if (retval)
3550 return retval;
3551 }
3552
3553 /*
3554 * make sure no PI-waiters arrive (or leave) while we are
3555 * changing the priority of the task:
3556 *
3557 * To be able to change p->policy safely, the appropriate
3558 * runqueue lock must be held.
3559 */
3560 rq = task_rq_lock(p, &flags);
3561
3562 /*
3563 * Changing the policy of the stop threads its a very bad idea
3564 */
3565 if (p == rq->stop) {
3566 task_rq_unlock(rq, p, &flags);
3567 return -EINVAL;
3568 }
3569
3570 /*
3571 * If not changing anything there's no need to proceed further,
3572 * but store a possible modification of reset_on_fork.
3573 */
3574 if (unlikely(policy == p->policy)) {
3575 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3576 goto change;
3577 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3578 goto change;
3579 if (dl_policy(policy) && dl_param_changed(p, attr))
3580 goto change;
3581
3582 p->sched_reset_on_fork = reset_on_fork;
3583 task_rq_unlock(rq, p, &flags);
3584 return 0;
3585 }
3586 change:
3587
3588 if (user) {
3589 #ifdef CONFIG_RT_GROUP_SCHED
3590 /*
3591 * Do not allow realtime tasks into groups that have no runtime
3592 * assigned.
3593 */
3594 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3595 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3596 !task_group_is_autogroup(task_group(p))) {
3597 task_rq_unlock(rq, p, &flags);
3598 return -EPERM;
3599 }
3600 #endif
3601 #ifdef CONFIG_SMP
3602 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3603 cpumask_t *span = rq->rd->span;
3604
3605 /*
3606 * Don't allow tasks with an affinity mask smaller than
3607 * the entire root_domain to become SCHED_DEADLINE. We
3608 * will also fail if there's no bandwidth available.
3609 */
3610 if (!cpumask_subset(span, &p->cpus_allowed) ||
3611 rq->rd->dl_bw.bw == 0) {
3612 task_rq_unlock(rq, p, &flags);
3613 return -EPERM;
3614 }
3615 }
3616 #endif
3617 }
3618
3619 /* recheck policy now with rq lock held */
3620 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3621 policy = oldpolicy = -1;
3622 task_rq_unlock(rq, p, &flags);
3623 goto recheck;
3624 }
3625
3626 /*
3627 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3628 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3629 * is available.
3630 */
3631 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3632 task_rq_unlock(rq, p, &flags);
3633 return -EBUSY;
3634 }
3635
3636 p->sched_reset_on_fork = reset_on_fork;
3637 oldprio = p->prio;
3638
3639 if (pi) {
3640 /*
3641 * Take priority boosted tasks into account. If the new
3642 * effective priority is unchanged, we just store the new
3643 * normal parameters and do not touch the scheduler class and
3644 * the runqueue. This will be done when the task deboost
3645 * itself.
3646 */
3647 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3648 if (new_effective_prio == oldprio) {
3649 __setscheduler_params(p, attr);
3650 task_rq_unlock(rq, p, &flags);
3651 return 0;
3652 }
3653 }
3654
3655 queued = task_on_rq_queued(p);
3656 running = task_current(rq, p);
3657 if (queued)
3658 dequeue_task(rq, p, 0);
3659 if (running)
3660 put_prev_task(rq, p);
3661
3662 prev_class = p->sched_class;
3663 __setscheduler(rq, p, attr, pi);
3664
3665 if (running)
3666 p->sched_class->set_curr_task(rq);
3667 if (queued) {
3668 /*
3669 * We enqueue to tail when the priority of a task is
3670 * increased (user space view).
3671 */
3672 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3673 }
3674
3675 check_class_changed(rq, p, prev_class, oldprio);
3676 preempt_disable(); /* avoid rq from going away on us */
3677 task_rq_unlock(rq, p, &flags);
3678
3679 if (pi)
3680 rt_mutex_adjust_pi(p);
3681
3682 /*
3683 * Run balance callbacks after we've adjusted the PI chain.
3684 */
3685 balance_callback(rq);
3686 preempt_enable();
3687
3688 return 0;
3689 }
3690
3691 static int _sched_setscheduler(struct task_struct *p, int policy,
3692 const struct sched_param *param, bool check)
3693 {
3694 struct sched_attr attr = {
3695 .sched_policy = policy,
3696 .sched_priority = param->sched_priority,
3697 .sched_nice = PRIO_TO_NICE(p->static_prio),
3698 };
3699
3700 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3701 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3702 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3703 policy &= ~SCHED_RESET_ON_FORK;
3704 attr.sched_policy = policy;
3705 }
3706
3707 return __sched_setscheduler(p, &attr, check, true);
3708 }
3709 /**
3710 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3711 * @p: the task in question.
3712 * @policy: new policy.
3713 * @param: structure containing the new RT priority.
3714 *
3715 * Return: 0 on success. An error code otherwise.
3716 *
3717 * NOTE that the task may be already dead.
3718 */
3719 int sched_setscheduler(struct task_struct *p, int policy,
3720 const struct sched_param *param)
3721 {
3722 return _sched_setscheduler(p, policy, param, true);
3723 }
3724 EXPORT_SYMBOL_GPL(sched_setscheduler);
3725
3726 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3727 {
3728 return __sched_setscheduler(p, attr, true, true);
3729 }
3730 EXPORT_SYMBOL_GPL(sched_setattr);
3731
3732 /**
3733 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3734 * @p: the task in question.
3735 * @policy: new policy.
3736 * @param: structure containing the new RT priority.
3737 *
3738 * Just like sched_setscheduler, only don't bother checking if the
3739 * current context has permission. For example, this is needed in
3740 * stop_machine(): we create temporary high priority worker threads,
3741 * but our caller might not have that capability.
3742 *
3743 * Return: 0 on success. An error code otherwise.
3744 */
3745 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3746 const struct sched_param *param)
3747 {
3748 return _sched_setscheduler(p, policy, param, false);
3749 }
3750
3751 static int
3752 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3753 {
3754 struct sched_param lparam;
3755 struct task_struct *p;
3756 int retval;
3757
3758 if (!param || pid < 0)
3759 return -EINVAL;
3760 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3761 return -EFAULT;
3762
3763 rcu_read_lock();
3764 retval = -ESRCH;
3765 p = find_process_by_pid(pid);
3766 if (p != NULL)
3767 retval = sched_setscheduler(p, policy, &lparam);
3768 rcu_read_unlock();
3769
3770 return retval;
3771 }
3772
3773 /*
3774 * Mimics kernel/events/core.c perf_copy_attr().
3775 */
3776 static int sched_copy_attr(struct sched_attr __user *uattr,
3777 struct sched_attr *attr)
3778 {
3779 u32 size;
3780 int ret;
3781
3782 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3783 return -EFAULT;
3784
3785 /*
3786 * zero the full structure, so that a short copy will be nice.
3787 */
3788 memset(attr, 0, sizeof(*attr));
3789
3790 ret = get_user(size, &uattr->size);
3791 if (ret)
3792 return ret;
3793
3794 if (size > PAGE_SIZE) /* silly large */
3795 goto err_size;
3796
3797 if (!size) /* abi compat */
3798 size = SCHED_ATTR_SIZE_VER0;
3799
3800 if (size < SCHED_ATTR_SIZE_VER0)
3801 goto err_size;
3802
3803 /*
3804 * If we're handed a bigger struct than we know of,
3805 * ensure all the unknown bits are 0 - i.e. new
3806 * user-space does not rely on any kernel feature
3807 * extensions we dont know about yet.
3808 */
3809 if (size > sizeof(*attr)) {
3810 unsigned char __user *addr;
3811 unsigned char __user *end;
3812 unsigned char val;
3813
3814 addr = (void __user *)uattr + sizeof(*attr);
3815 end = (void __user *)uattr + size;
3816
3817 for (; addr < end; addr++) {
3818 ret = get_user(val, addr);
3819 if (ret)
3820 return ret;
3821 if (val)
3822 goto err_size;
3823 }
3824 size = sizeof(*attr);
3825 }
3826
3827 ret = copy_from_user(attr, uattr, size);
3828 if (ret)
3829 return -EFAULT;
3830
3831 /*
3832 * XXX: do we want to be lenient like existing syscalls; or do we want
3833 * to be strict and return an error on out-of-bounds values?
3834 */
3835 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3836
3837 return 0;
3838
3839 err_size:
3840 put_user(sizeof(*attr), &uattr->size);
3841 return -E2BIG;
3842 }
3843
3844 /**
3845 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3846 * @pid: the pid in question.
3847 * @policy: new policy.
3848 * @param: structure containing the new RT priority.
3849 *
3850 * Return: 0 on success. An error code otherwise.
3851 */
3852 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3853 struct sched_param __user *, param)
3854 {
3855 /* negative values for policy are not valid */
3856 if (policy < 0)
3857 return -EINVAL;
3858
3859 return do_sched_setscheduler(pid, policy, param);
3860 }
3861
3862 /**
3863 * sys_sched_setparam - set/change the RT priority of a thread
3864 * @pid: the pid in question.
3865 * @param: structure containing the new RT priority.
3866 *
3867 * Return: 0 on success. An error code otherwise.
3868 */
3869 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3870 {
3871 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3872 }
3873
3874 /**
3875 * sys_sched_setattr - same as above, but with extended sched_attr
3876 * @pid: the pid in question.
3877 * @uattr: structure containing the extended parameters.
3878 * @flags: for future extension.
3879 */
3880 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3881 unsigned int, flags)
3882 {
3883 struct sched_attr attr;
3884 struct task_struct *p;
3885 int retval;
3886
3887 if (!uattr || pid < 0 || flags)
3888 return -EINVAL;
3889
3890 retval = sched_copy_attr(uattr, &attr);
3891 if (retval)
3892 return retval;
3893
3894 if ((int)attr.sched_policy < 0)
3895 return -EINVAL;
3896
3897 rcu_read_lock();
3898 retval = -ESRCH;
3899 p = find_process_by_pid(pid);
3900 if (p != NULL)
3901 retval = sched_setattr(p, &attr);
3902 rcu_read_unlock();
3903
3904 return retval;
3905 }
3906
3907 /**
3908 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3909 * @pid: the pid in question.
3910 *
3911 * Return: On success, the policy of the thread. Otherwise, a negative error
3912 * code.
3913 */
3914 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3915 {
3916 struct task_struct *p;
3917 int retval;
3918
3919 if (pid < 0)
3920 return -EINVAL;
3921
3922 retval = -ESRCH;
3923 rcu_read_lock();
3924 p = find_process_by_pid(pid);
3925 if (p) {
3926 retval = security_task_getscheduler(p);
3927 if (!retval)
3928 retval = p->policy
3929 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3930 }
3931 rcu_read_unlock();
3932 return retval;
3933 }
3934
3935 /**
3936 * sys_sched_getparam - get the RT priority of a thread
3937 * @pid: the pid in question.
3938 * @param: structure containing the RT priority.
3939 *
3940 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3941 * code.
3942 */
3943 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3944 {
3945 struct sched_param lp = { .sched_priority = 0 };
3946 struct task_struct *p;
3947 int retval;
3948
3949 if (!param || pid < 0)
3950 return -EINVAL;
3951
3952 rcu_read_lock();
3953 p = find_process_by_pid(pid);
3954 retval = -ESRCH;
3955 if (!p)
3956 goto out_unlock;
3957
3958 retval = security_task_getscheduler(p);
3959 if (retval)
3960 goto out_unlock;
3961
3962 if (task_has_rt_policy(p))
3963 lp.sched_priority = p->rt_priority;
3964 rcu_read_unlock();
3965
3966 /*
3967 * This one might sleep, we cannot do it with a spinlock held ...
3968 */
3969 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3970
3971 return retval;
3972
3973 out_unlock:
3974 rcu_read_unlock();
3975 return retval;
3976 }
3977
3978 static int sched_read_attr(struct sched_attr __user *uattr,
3979 struct sched_attr *attr,
3980 unsigned int usize)
3981 {
3982 int ret;
3983
3984 if (!access_ok(VERIFY_WRITE, uattr, usize))
3985 return -EFAULT;
3986
3987 /*
3988 * If we're handed a smaller struct than we know of,
3989 * ensure all the unknown bits are 0 - i.e. old
3990 * user-space does not get uncomplete information.
3991 */
3992 if (usize < sizeof(*attr)) {
3993 unsigned char *addr;
3994 unsigned char *end;
3995
3996 addr = (void *)attr + usize;
3997 end = (void *)attr + sizeof(*attr);
3998
3999 for (; addr < end; addr++) {
4000 if (*addr)
4001 return -EFBIG;
4002 }
4003
4004 attr->size = usize;
4005 }
4006
4007 ret = copy_to_user(uattr, attr, attr->size);
4008 if (ret)
4009 return -EFAULT;
4010
4011 return 0;
4012 }
4013
4014 /**
4015 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4016 * @pid: the pid in question.
4017 * @uattr: structure containing the extended parameters.
4018 * @size: sizeof(attr) for fwd/bwd comp.
4019 * @flags: for future extension.
4020 */
4021 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4022 unsigned int, size, unsigned int, flags)
4023 {
4024 struct sched_attr attr = {
4025 .size = sizeof(struct sched_attr),
4026 };
4027 struct task_struct *p;
4028 int retval;
4029
4030 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4031 size < SCHED_ATTR_SIZE_VER0 || flags)
4032 return -EINVAL;
4033
4034 rcu_read_lock();
4035 p = find_process_by_pid(pid);
4036 retval = -ESRCH;
4037 if (!p)
4038 goto out_unlock;
4039
4040 retval = security_task_getscheduler(p);
4041 if (retval)
4042 goto out_unlock;
4043
4044 attr.sched_policy = p->policy;
4045 if (p->sched_reset_on_fork)
4046 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4047 if (task_has_dl_policy(p))
4048 __getparam_dl(p, &attr);
4049 else if (task_has_rt_policy(p))
4050 attr.sched_priority = p->rt_priority;
4051 else
4052 attr.sched_nice = task_nice(p);
4053
4054 rcu_read_unlock();
4055
4056 retval = sched_read_attr(uattr, &attr, size);
4057 return retval;
4058
4059 out_unlock:
4060 rcu_read_unlock();
4061 return retval;
4062 }
4063
4064 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4065 {
4066 cpumask_var_t cpus_allowed, new_mask;
4067 struct task_struct *p;
4068 int retval;
4069
4070 rcu_read_lock();
4071
4072 p = find_process_by_pid(pid);
4073 if (!p) {
4074 rcu_read_unlock();
4075 return -ESRCH;
4076 }
4077
4078 /* Prevent p going away */
4079 get_task_struct(p);
4080 rcu_read_unlock();
4081
4082 if (p->flags & PF_NO_SETAFFINITY) {
4083 retval = -EINVAL;
4084 goto out_put_task;
4085 }
4086 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4087 retval = -ENOMEM;
4088 goto out_put_task;
4089 }
4090 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4091 retval = -ENOMEM;
4092 goto out_free_cpus_allowed;
4093 }
4094 retval = -EPERM;
4095 if (!check_same_owner(p)) {
4096 rcu_read_lock();
4097 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4098 rcu_read_unlock();
4099 goto out_free_new_mask;
4100 }
4101 rcu_read_unlock();
4102 }
4103
4104 retval = security_task_setscheduler(p);
4105 if (retval)
4106 goto out_free_new_mask;
4107
4108
4109 cpuset_cpus_allowed(p, cpus_allowed);
4110 cpumask_and(new_mask, in_mask, cpus_allowed);
4111
4112 /*
4113 * Since bandwidth control happens on root_domain basis,
4114 * if admission test is enabled, we only admit -deadline
4115 * tasks allowed to run on all the CPUs in the task's
4116 * root_domain.
4117 */
4118 #ifdef CONFIG_SMP
4119 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4120 rcu_read_lock();
4121 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4122 retval = -EBUSY;
4123 rcu_read_unlock();
4124 goto out_free_new_mask;
4125 }
4126 rcu_read_unlock();
4127 }
4128 #endif
4129 again:
4130 retval = set_cpus_allowed_ptr(p, new_mask);
4131
4132 if (!retval) {
4133 cpuset_cpus_allowed(p, cpus_allowed);
4134 if (!cpumask_subset(new_mask, cpus_allowed)) {
4135 /*
4136 * We must have raced with a concurrent cpuset
4137 * update. Just reset the cpus_allowed to the
4138 * cpuset's cpus_allowed
4139 */
4140 cpumask_copy(new_mask, cpus_allowed);
4141 goto again;
4142 }
4143 }
4144 out_free_new_mask:
4145 free_cpumask_var(new_mask);
4146 out_free_cpus_allowed:
4147 free_cpumask_var(cpus_allowed);
4148 out_put_task:
4149 put_task_struct(p);
4150 return retval;
4151 }
4152
4153 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4154 struct cpumask *new_mask)
4155 {
4156 if (len < cpumask_size())
4157 cpumask_clear(new_mask);
4158 else if (len > cpumask_size())
4159 len = cpumask_size();
4160
4161 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4162 }
4163
4164 /**
4165 * sys_sched_setaffinity - set the cpu affinity of a process
4166 * @pid: pid of the process
4167 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4168 * @user_mask_ptr: user-space pointer to the new cpu mask
4169 *
4170 * Return: 0 on success. An error code otherwise.
4171 */
4172 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4173 unsigned long __user *, user_mask_ptr)
4174 {
4175 cpumask_var_t new_mask;
4176 int retval;
4177
4178 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4179 return -ENOMEM;
4180
4181 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4182 if (retval == 0)
4183 retval = sched_setaffinity(pid, new_mask);
4184 free_cpumask_var(new_mask);
4185 return retval;
4186 }
4187
4188 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4189 {
4190 struct task_struct *p;
4191 unsigned long flags;
4192 int retval;
4193
4194 rcu_read_lock();
4195
4196 retval = -ESRCH;
4197 p = find_process_by_pid(pid);
4198 if (!p)
4199 goto out_unlock;
4200
4201 retval = security_task_getscheduler(p);
4202 if (retval)
4203 goto out_unlock;
4204
4205 raw_spin_lock_irqsave(&p->pi_lock, flags);
4206 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4207 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4208
4209 out_unlock:
4210 rcu_read_unlock();
4211
4212 return retval;
4213 }
4214
4215 /**
4216 * sys_sched_getaffinity - get the cpu affinity of a process
4217 * @pid: pid of the process
4218 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4219 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4220 *
4221 * Return: 0 on success. An error code otherwise.
4222 */
4223 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4224 unsigned long __user *, user_mask_ptr)
4225 {
4226 int ret;
4227 cpumask_var_t mask;
4228
4229 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4230 return -EINVAL;
4231 if (len & (sizeof(unsigned long)-1))
4232 return -EINVAL;
4233
4234 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4235 return -ENOMEM;
4236
4237 ret = sched_getaffinity(pid, mask);
4238 if (ret == 0) {
4239 size_t retlen = min_t(size_t, len, cpumask_size());
4240
4241 if (copy_to_user(user_mask_ptr, mask, retlen))
4242 ret = -EFAULT;
4243 else
4244 ret = retlen;
4245 }
4246 free_cpumask_var(mask);
4247
4248 return ret;
4249 }
4250
4251 /**
4252 * sys_sched_yield - yield the current processor to other threads.
4253 *
4254 * This function yields the current CPU to other tasks. If there are no
4255 * other threads running on this CPU then this function will return.
4256 *
4257 * Return: 0.
4258 */
4259 SYSCALL_DEFINE0(sched_yield)
4260 {
4261 struct rq *rq = this_rq_lock();
4262
4263 schedstat_inc(rq, yld_count);
4264 current->sched_class->yield_task(rq);
4265
4266 /*
4267 * Since we are going to call schedule() anyway, there's
4268 * no need to preempt or enable interrupts:
4269 */
4270 __release(rq->lock);
4271 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4272 do_raw_spin_unlock(&rq->lock);
4273 sched_preempt_enable_no_resched();
4274
4275 schedule();
4276
4277 return 0;
4278 }
4279
4280 int __sched _cond_resched(void)
4281 {
4282 if (should_resched()) {
4283 preempt_schedule_common();
4284 return 1;
4285 }
4286 return 0;
4287 }
4288 EXPORT_SYMBOL(_cond_resched);
4289
4290 /*
4291 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4292 * call schedule, and on return reacquire the lock.
4293 *
4294 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4295 * operations here to prevent schedule() from being called twice (once via
4296 * spin_unlock(), once by hand).
4297 */
4298 int __cond_resched_lock(spinlock_t *lock)
4299 {
4300 int resched = should_resched();
4301 int ret = 0;
4302
4303 lockdep_assert_held(lock);
4304
4305 if (spin_needbreak(lock) || resched) {
4306 spin_unlock(lock);
4307 if (resched)
4308 preempt_schedule_common();
4309 else
4310 cpu_relax();
4311 ret = 1;
4312 spin_lock(lock);
4313 }
4314 return ret;
4315 }
4316 EXPORT_SYMBOL(__cond_resched_lock);
4317
4318 int __sched __cond_resched_softirq(void)
4319 {
4320 BUG_ON(!in_softirq());
4321
4322 if (should_resched()) {
4323 local_bh_enable();
4324 preempt_schedule_common();
4325 local_bh_disable();
4326 return 1;
4327 }
4328 return 0;
4329 }
4330 EXPORT_SYMBOL(__cond_resched_softirq);
4331
4332 /**
4333 * yield - yield the current processor to other threads.
4334 *
4335 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4336 *
4337 * The scheduler is at all times free to pick the calling task as the most
4338 * eligible task to run, if removing the yield() call from your code breaks
4339 * it, its already broken.
4340 *
4341 * Typical broken usage is:
4342 *
4343 * while (!event)
4344 * yield();
4345 *
4346 * where one assumes that yield() will let 'the other' process run that will
4347 * make event true. If the current task is a SCHED_FIFO task that will never
4348 * happen. Never use yield() as a progress guarantee!!
4349 *
4350 * If you want to use yield() to wait for something, use wait_event().
4351 * If you want to use yield() to be 'nice' for others, use cond_resched().
4352 * If you still want to use yield(), do not!
4353 */
4354 void __sched yield(void)
4355 {
4356 set_current_state(TASK_RUNNING);
4357 sys_sched_yield();
4358 }
4359 EXPORT_SYMBOL(yield);
4360
4361 /**
4362 * yield_to - yield the current processor to another thread in
4363 * your thread group, or accelerate that thread toward the
4364 * processor it's on.
4365 * @p: target task
4366 * @preempt: whether task preemption is allowed or not
4367 *
4368 * It's the caller's job to ensure that the target task struct
4369 * can't go away on us before we can do any checks.
4370 *
4371 * Return:
4372 * true (>0) if we indeed boosted the target task.
4373 * false (0) if we failed to boost the target.
4374 * -ESRCH if there's no task to yield to.
4375 */
4376 int __sched yield_to(struct task_struct *p, bool preempt)
4377 {
4378 struct task_struct *curr = current;
4379 struct rq *rq, *p_rq;
4380 unsigned long flags;
4381 int yielded = 0;
4382
4383 local_irq_save(flags);
4384 rq = this_rq();
4385
4386 again:
4387 p_rq = task_rq(p);
4388 /*
4389 * If we're the only runnable task on the rq and target rq also
4390 * has only one task, there's absolutely no point in yielding.
4391 */
4392 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4393 yielded = -ESRCH;
4394 goto out_irq;
4395 }
4396
4397 double_rq_lock(rq, p_rq);
4398 if (task_rq(p) != p_rq) {
4399 double_rq_unlock(rq, p_rq);
4400 goto again;
4401 }
4402
4403 if (!curr->sched_class->yield_to_task)
4404 goto out_unlock;
4405
4406 if (curr->sched_class != p->sched_class)
4407 goto out_unlock;
4408
4409 if (task_running(p_rq, p) || p->state)
4410 goto out_unlock;
4411
4412 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4413 if (yielded) {
4414 schedstat_inc(rq, yld_count);
4415 /*
4416 * Make p's CPU reschedule; pick_next_entity takes care of
4417 * fairness.
4418 */
4419 if (preempt && rq != p_rq)
4420 resched_curr(p_rq);
4421 }
4422
4423 out_unlock:
4424 double_rq_unlock(rq, p_rq);
4425 out_irq:
4426 local_irq_restore(flags);
4427
4428 if (yielded > 0)
4429 schedule();
4430
4431 return yielded;
4432 }
4433 EXPORT_SYMBOL_GPL(yield_to);
4434
4435 /*
4436 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4437 * that process accounting knows that this is a task in IO wait state.
4438 */
4439 long __sched io_schedule_timeout(long timeout)
4440 {
4441 int old_iowait = current->in_iowait;
4442 struct rq *rq;
4443 long ret;
4444
4445 current->in_iowait = 1;
4446 blk_schedule_flush_plug(current);
4447
4448 delayacct_blkio_start();
4449 rq = raw_rq();
4450 atomic_inc(&rq->nr_iowait);
4451 ret = schedule_timeout(timeout);
4452 current->in_iowait = old_iowait;
4453 atomic_dec(&rq->nr_iowait);
4454 delayacct_blkio_end();
4455
4456 return ret;
4457 }
4458 EXPORT_SYMBOL(io_schedule_timeout);
4459
4460 /**
4461 * sys_sched_get_priority_max - return maximum RT priority.
4462 * @policy: scheduling class.
4463 *
4464 * Return: On success, this syscall returns the maximum
4465 * rt_priority that can be used by a given scheduling class.
4466 * On failure, a negative error code is returned.
4467 */
4468 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4469 {
4470 int ret = -EINVAL;
4471
4472 switch (policy) {
4473 case SCHED_FIFO:
4474 case SCHED_RR:
4475 ret = MAX_USER_RT_PRIO-1;
4476 break;
4477 case SCHED_DEADLINE:
4478 case SCHED_NORMAL:
4479 case SCHED_BATCH:
4480 case SCHED_IDLE:
4481 ret = 0;
4482 break;
4483 }
4484 return ret;
4485 }
4486
4487 /**
4488 * sys_sched_get_priority_min - return minimum RT priority.
4489 * @policy: scheduling class.
4490 *
4491 * Return: On success, this syscall returns the minimum
4492 * rt_priority that can be used by a given scheduling class.
4493 * On failure, a negative error code is returned.
4494 */
4495 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4496 {
4497 int ret = -EINVAL;
4498
4499 switch (policy) {
4500 case SCHED_FIFO:
4501 case SCHED_RR:
4502 ret = 1;
4503 break;
4504 case SCHED_DEADLINE:
4505 case SCHED_NORMAL:
4506 case SCHED_BATCH:
4507 case SCHED_IDLE:
4508 ret = 0;
4509 }
4510 return ret;
4511 }
4512
4513 /**
4514 * sys_sched_rr_get_interval - return the default timeslice of a process.
4515 * @pid: pid of the process.
4516 * @interval: userspace pointer to the timeslice value.
4517 *
4518 * this syscall writes the default timeslice value of a given process
4519 * into the user-space timespec buffer. A value of '0' means infinity.
4520 *
4521 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4522 * an error code.
4523 */
4524 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4525 struct timespec __user *, interval)
4526 {
4527 struct task_struct *p;
4528 unsigned int time_slice;
4529 unsigned long flags;
4530 struct rq *rq;
4531 int retval;
4532 struct timespec t;
4533
4534 if (pid < 0)
4535 return -EINVAL;
4536
4537 retval = -ESRCH;
4538 rcu_read_lock();
4539 p = find_process_by_pid(pid);
4540 if (!p)
4541 goto out_unlock;
4542
4543 retval = security_task_getscheduler(p);
4544 if (retval)
4545 goto out_unlock;
4546
4547 rq = task_rq_lock(p, &flags);
4548 time_slice = 0;
4549 if (p->sched_class->get_rr_interval)
4550 time_slice = p->sched_class->get_rr_interval(rq, p);
4551 task_rq_unlock(rq, p, &flags);
4552
4553 rcu_read_unlock();
4554 jiffies_to_timespec(time_slice, &t);
4555 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4556 return retval;
4557
4558 out_unlock:
4559 rcu_read_unlock();
4560 return retval;
4561 }
4562
4563 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4564
4565 void sched_show_task(struct task_struct *p)
4566 {
4567 unsigned long free = 0;
4568 int ppid;
4569 unsigned long state = p->state;
4570
4571 if (state)
4572 state = __ffs(state) + 1;
4573 printk(KERN_INFO "%-15.15s %c", p->comm,
4574 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4575 #if BITS_PER_LONG == 32
4576 if (state == TASK_RUNNING)
4577 printk(KERN_CONT " running ");
4578 else
4579 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4580 #else
4581 if (state == TASK_RUNNING)
4582 printk(KERN_CONT " running task ");
4583 else
4584 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4585 #endif
4586 #ifdef CONFIG_DEBUG_STACK_USAGE
4587 free = stack_not_used(p);
4588 #endif
4589 ppid = 0;
4590 rcu_read_lock();
4591 if (pid_alive(p))
4592 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4593 rcu_read_unlock();
4594 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4595 task_pid_nr(p), ppid,
4596 (unsigned long)task_thread_info(p)->flags);
4597
4598 print_worker_info(KERN_INFO, p);
4599 show_stack(p, NULL);
4600 }
4601
4602 void show_state_filter(unsigned long state_filter)
4603 {
4604 struct task_struct *g, *p;
4605
4606 #if BITS_PER_LONG == 32
4607 printk(KERN_INFO
4608 " task PC stack pid father\n");
4609 #else
4610 printk(KERN_INFO
4611 " task PC stack pid father\n");
4612 #endif
4613 rcu_read_lock();
4614 for_each_process_thread(g, p) {
4615 /*
4616 * reset the NMI-timeout, listing all files on a slow
4617 * console might take a lot of time:
4618 */
4619 touch_nmi_watchdog();
4620 if (!state_filter || (p->state & state_filter))
4621 sched_show_task(p);
4622 }
4623
4624 touch_all_softlockup_watchdogs();
4625
4626 #ifdef CONFIG_SCHED_DEBUG
4627 sysrq_sched_debug_show();
4628 #endif
4629 rcu_read_unlock();
4630 /*
4631 * Only show locks if all tasks are dumped:
4632 */
4633 if (!state_filter)
4634 debug_show_all_locks();
4635 }
4636
4637 void init_idle_bootup_task(struct task_struct *idle)
4638 {
4639 idle->sched_class = &idle_sched_class;
4640 }
4641
4642 /**
4643 * init_idle - set up an idle thread for a given CPU
4644 * @idle: task in question
4645 * @cpu: cpu the idle task belongs to
4646 *
4647 * NOTE: this function does not set the idle thread's NEED_RESCHED
4648 * flag, to make booting more robust.
4649 */
4650 void init_idle(struct task_struct *idle, int cpu)
4651 {
4652 struct rq *rq = cpu_rq(cpu);
4653 unsigned long flags;
4654
4655 raw_spin_lock_irqsave(&rq->lock, flags);
4656
4657 __sched_fork(0, idle);
4658 idle->state = TASK_RUNNING;
4659 idle->se.exec_start = sched_clock();
4660
4661 do_set_cpus_allowed(idle, cpumask_of(cpu));
4662 /*
4663 * We're having a chicken and egg problem, even though we are
4664 * holding rq->lock, the cpu isn't yet set to this cpu so the
4665 * lockdep check in task_group() will fail.
4666 *
4667 * Similar case to sched_fork(). / Alternatively we could
4668 * use task_rq_lock() here and obtain the other rq->lock.
4669 *
4670 * Silence PROVE_RCU
4671 */
4672 rcu_read_lock();
4673 __set_task_cpu(idle, cpu);
4674 rcu_read_unlock();
4675
4676 rq->curr = rq->idle = idle;
4677 idle->on_rq = TASK_ON_RQ_QUEUED;
4678 #if defined(CONFIG_SMP)
4679 idle->on_cpu = 1;
4680 #endif
4681 raw_spin_unlock_irqrestore(&rq->lock, flags);
4682
4683 /* Set the preempt count _outside_ the spinlocks! */
4684 init_idle_preempt_count(idle, cpu);
4685
4686 /*
4687 * The idle tasks have their own, simple scheduling class:
4688 */
4689 idle->sched_class = &idle_sched_class;
4690 ftrace_graph_init_idle_task(idle, cpu);
4691 vtime_init_idle(idle, cpu);
4692 #if defined(CONFIG_SMP)
4693 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4694 #endif
4695 }
4696
4697 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4698 const struct cpumask *trial)
4699 {
4700 int ret = 1, trial_cpus;
4701 struct dl_bw *cur_dl_b;
4702 unsigned long flags;
4703
4704 if (!cpumask_weight(cur))
4705 return ret;
4706
4707 rcu_read_lock_sched();
4708 cur_dl_b = dl_bw_of(cpumask_any(cur));
4709 trial_cpus = cpumask_weight(trial);
4710
4711 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4712 if (cur_dl_b->bw != -1 &&
4713 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4714 ret = 0;
4715 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4716 rcu_read_unlock_sched();
4717
4718 return ret;
4719 }
4720
4721 int task_can_attach(struct task_struct *p,
4722 const struct cpumask *cs_cpus_allowed)
4723 {
4724 int ret = 0;
4725
4726 /*
4727 * Kthreads which disallow setaffinity shouldn't be moved
4728 * to a new cpuset; we don't want to change their cpu
4729 * affinity and isolating such threads by their set of
4730 * allowed nodes is unnecessary. Thus, cpusets are not
4731 * applicable for such threads. This prevents checking for
4732 * success of set_cpus_allowed_ptr() on all attached tasks
4733 * before cpus_allowed may be changed.
4734 */
4735 if (p->flags & PF_NO_SETAFFINITY) {
4736 ret = -EINVAL;
4737 goto out;
4738 }
4739
4740 #ifdef CONFIG_SMP
4741 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4742 cs_cpus_allowed)) {
4743 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4744 cs_cpus_allowed);
4745 struct dl_bw *dl_b;
4746 bool overflow;
4747 int cpus;
4748 unsigned long flags;
4749
4750 rcu_read_lock_sched();
4751 dl_b = dl_bw_of(dest_cpu);
4752 raw_spin_lock_irqsave(&dl_b->lock, flags);
4753 cpus = dl_bw_cpus(dest_cpu);
4754 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4755 if (overflow)
4756 ret = -EBUSY;
4757 else {
4758 /*
4759 * We reserve space for this task in the destination
4760 * root_domain, as we can't fail after this point.
4761 * We will free resources in the source root_domain
4762 * later on (see set_cpus_allowed_dl()).
4763 */
4764 __dl_add(dl_b, p->dl.dl_bw);
4765 }
4766 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4767 rcu_read_unlock_sched();
4768
4769 }
4770 #endif
4771 out:
4772 return ret;
4773 }
4774
4775 #ifdef CONFIG_SMP
4776 /*
4777 * move_queued_task - move a queued task to new rq.
4778 *
4779 * Returns (locked) new rq. Old rq's lock is released.
4780 */
4781 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4782 {
4783 struct rq *rq = task_rq(p);
4784
4785 lockdep_assert_held(&rq->lock);
4786
4787 dequeue_task(rq, p, 0);
4788 p->on_rq = TASK_ON_RQ_MIGRATING;
4789 set_task_cpu(p, new_cpu);
4790 raw_spin_unlock(&rq->lock);
4791
4792 rq = cpu_rq(new_cpu);
4793
4794 raw_spin_lock(&rq->lock);
4795 BUG_ON(task_cpu(p) != new_cpu);
4796 p->on_rq = TASK_ON_RQ_QUEUED;
4797 enqueue_task(rq, p, 0);
4798 check_preempt_curr(rq, p, 0);
4799
4800 return rq;
4801 }
4802
4803 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4804 {
4805 if (p->sched_class->set_cpus_allowed)
4806 p->sched_class->set_cpus_allowed(p, new_mask);
4807
4808 cpumask_copy(&p->cpus_allowed, new_mask);
4809 p->nr_cpus_allowed = cpumask_weight(new_mask);
4810 }
4811
4812 /*
4813 * This is how migration works:
4814 *
4815 * 1) we invoke migration_cpu_stop() on the target CPU using
4816 * stop_one_cpu().
4817 * 2) stopper starts to run (implicitly forcing the migrated thread
4818 * off the CPU)
4819 * 3) it checks whether the migrated task is still in the wrong runqueue.
4820 * 4) if it's in the wrong runqueue then the migration thread removes
4821 * it and puts it into the right queue.
4822 * 5) stopper completes and stop_one_cpu() returns and the migration
4823 * is done.
4824 */
4825
4826 /*
4827 * Change a given task's CPU affinity. Migrate the thread to a
4828 * proper CPU and schedule it away if the CPU it's executing on
4829 * is removed from the allowed bitmask.
4830 *
4831 * NOTE: the caller must have a valid reference to the task, the
4832 * task must not exit() & deallocate itself prematurely. The
4833 * call is not atomic; no spinlocks may be held.
4834 */
4835 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4836 {
4837 unsigned long flags;
4838 struct rq *rq;
4839 unsigned int dest_cpu;
4840 int ret = 0;
4841
4842 rq = task_rq_lock(p, &flags);
4843
4844 if (cpumask_equal(&p->cpus_allowed, new_mask))
4845 goto out;
4846
4847 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4848 ret = -EINVAL;
4849 goto out;
4850 }
4851
4852 do_set_cpus_allowed(p, new_mask);
4853
4854 /* Can the task run on the task's current CPU? If so, we're done */
4855 if (cpumask_test_cpu(task_cpu(p), new_mask))
4856 goto out;
4857
4858 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4859 if (task_running(rq, p) || p->state == TASK_WAKING) {
4860 struct migration_arg arg = { p, dest_cpu };
4861 /* Need help from migration thread: drop lock and wait. */
4862 task_rq_unlock(rq, p, &flags);
4863 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4864 tlb_migrate_finish(p->mm);
4865 return 0;
4866 } else if (task_on_rq_queued(p))
4867 rq = move_queued_task(p, dest_cpu);
4868 out:
4869 task_rq_unlock(rq, p, &flags);
4870
4871 return ret;
4872 }
4873 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4874
4875 /*
4876 * Move (not current) task off this cpu, onto dest cpu. We're doing
4877 * this because either it can't run here any more (set_cpus_allowed()
4878 * away from this CPU, or CPU going down), or because we're
4879 * attempting to rebalance this task on exec (sched_exec).
4880 *
4881 * So we race with normal scheduler movements, but that's OK, as long
4882 * as the task is no longer on this CPU.
4883 *
4884 * Returns non-zero if task was successfully migrated.
4885 */
4886 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4887 {
4888 struct rq *rq;
4889 int ret = 0;
4890
4891 if (unlikely(!cpu_active(dest_cpu)))
4892 return ret;
4893
4894 rq = cpu_rq(src_cpu);
4895
4896 raw_spin_lock(&p->pi_lock);
4897 raw_spin_lock(&rq->lock);
4898 /* Already moved. */
4899 if (task_cpu(p) != src_cpu)
4900 goto done;
4901
4902 /* Affinity changed (again). */
4903 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4904 goto fail;
4905
4906 /*
4907 * If we're not on a rq, the next wake-up will ensure we're
4908 * placed properly.
4909 */
4910 if (task_on_rq_queued(p))
4911 rq = move_queued_task(p, dest_cpu);
4912 done:
4913 ret = 1;
4914 fail:
4915 raw_spin_unlock(&rq->lock);
4916 raw_spin_unlock(&p->pi_lock);
4917 return ret;
4918 }
4919
4920 #ifdef CONFIG_NUMA_BALANCING
4921 /* Migrate current task p to target_cpu */
4922 int migrate_task_to(struct task_struct *p, int target_cpu)
4923 {
4924 struct migration_arg arg = { p, target_cpu };
4925 int curr_cpu = task_cpu(p);
4926
4927 if (curr_cpu == target_cpu)
4928 return 0;
4929
4930 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4931 return -EINVAL;
4932
4933 /* TODO: This is not properly updating schedstats */
4934
4935 trace_sched_move_numa(p, curr_cpu, target_cpu);
4936 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4937 }
4938
4939 /*
4940 * Requeue a task on a given node and accurately track the number of NUMA
4941 * tasks on the runqueues
4942 */
4943 void sched_setnuma(struct task_struct *p, int nid)
4944 {
4945 struct rq *rq;
4946 unsigned long flags;
4947 bool queued, running;
4948
4949 rq = task_rq_lock(p, &flags);
4950 queued = task_on_rq_queued(p);
4951 running = task_current(rq, p);
4952
4953 if (queued)
4954 dequeue_task(rq, p, 0);
4955 if (running)
4956 put_prev_task(rq, p);
4957
4958 p->numa_preferred_nid = nid;
4959
4960 if (running)
4961 p->sched_class->set_curr_task(rq);
4962 if (queued)
4963 enqueue_task(rq, p, 0);
4964 task_rq_unlock(rq, p, &flags);
4965 }
4966 #endif
4967
4968 /*
4969 * migration_cpu_stop - this will be executed by a highprio stopper thread
4970 * and performs thread migration by bumping thread off CPU then
4971 * 'pushing' onto another runqueue.
4972 */
4973 static int migration_cpu_stop(void *data)
4974 {
4975 struct migration_arg *arg = data;
4976
4977 /*
4978 * The original target cpu might have gone down and we might
4979 * be on another cpu but it doesn't matter.
4980 */
4981 local_irq_disable();
4982 /*
4983 * We need to explicitly wake pending tasks before running
4984 * __migrate_task() such that we will not miss enforcing cpus_allowed
4985 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4986 */
4987 sched_ttwu_pending();
4988 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4989 local_irq_enable();
4990 return 0;
4991 }
4992
4993 #ifdef CONFIG_HOTPLUG_CPU
4994
4995 /*
4996 * Ensures that the idle task is using init_mm right before its cpu goes
4997 * offline.
4998 */
4999 void idle_task_exit(void)
5000 {
5001 struct mm_struct *mm = current->active_mm;
5002
5003 BUG_ON(cpu_online(smp_processor_id()));
5004
5005 if (mm != &init_mm) {
5006 switch_mm(mm, &init_mm, current);
5007 finish_arch_post_lock_switch();
5008 }
5009 mmdrop(mm);
5010 }
5011
5012 /*
5013 * Since this CPU is going 'away' for a while, fold any nr_active delta
5014 * we might have. Assumes we're called after migrate_tasks() so that the
5015 * nr_active count is stable.
5016 *
5017 * Also see the comment "Global load-average calculations".
5018 */
5019 static void calc_load_migrate(struct rq *rq)
5020 {
5021 long delta = calc_load_fold_active(rq);
5022 if (delta)
5023 atomic_long_add(delta, &calc_load_tasks);
5024 }
5025
5026 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5027 {
5028 }
5029
5030 static const struct sched_class fake_sched_class = {
5031 .put_prev_task = put_prev_task_fake,
5032 };
5033
5034 static struct task_struct fake_task = {
5035 /*
5036 * Avoid pull_{rt,dl}_task()
5037 */
5038 .prio = MAX_PRIO + 1,
5039 .sched_class = &fake_sched_class,
5040 };
5041
5042 /*
5043 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5044 * try_to_wake_up()->select_task_rq().
5045 *
5046 * Called with rq->lock held even though we'er in stop_machine() and
5047 * there's no concurrency possible, we hold the required locks anyway
5048 * because of lock validation efforts.
5049 */
5050 static void migrate_tasks(unsigned int dead_cpu)
5051 {
5052 struct rq *rq = cpu_rq(dead_cpu);
5053 struct task_struct *next, *stop = rq->stop;
5054 int dest_cpu;
5055
5056 /*
5057 * Fudge the rq selection such that the below task selection loop
5058 * doesn't get stuck on the currently eligible stop task.
5059 *
5060 * We're currently inside stop_machine() and the rq is either stuck
5061 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5062 * either way we should never end up calling schedule() until we're
5063 * done here.
5064 */
5065 rq->stop = NULL;
5066
5067 /*
5068 * put_prev_task() and pick_next_task() sched
5069 * class method both need to have an up-to-date
5070 * value of rq->clock[_task]
5071 */
5072 update_rq_clock(rq);
5073
5074 for ( ; ; ) {
5075 /*
5076 * There's this thread running, bail when that's the only
5077 * remaining thread.
5078 */
5079 if (rq->nr_running == 1)
5080 break;
5081
5082 next = pick_next_task(rq, &fake_task);
5083 BUG_ON(!next);
5084 next->sched_class->put_prev_task(rq, next);
5085
5086 /* Find suitable destination for @next, with force if needed. */
5087 dest_cpu = select_fallback_rq(dead_cpu, next);
5088 raw_spin_unlock(&rq->lock);
5089
5090 __migrate_task(next, dead_cpu, dest_cpu);
5091
5092 raw_spin_lock(&rq->lock);
5093 }
5094
5095 rq->stop = stop;
5096 }
5097
5098 #endif /* CONFIG_HOTPLUG_CPU */
5099
5100 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5101
5102 static struct ctl_table sd_ctl_dir[] = {
5103 {
5104 .procname = "sched_domain",
5105 .mode = 0555,
5106 },
5107 {}
5108 };
5109
5110 static struct ctl_table sd_ctl_root[] = {
5111 {
5112 .procname = "kernel",
5113 .mode = 0555,
5114 .child = sd_ctl_dir,
5115 },
5116 {}
5117 };
5118
5119 static struct ctl_table *sd_alloc_ctl_entry(int n)
5120 {
5121 struct ctl_table *entry =
5122 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5123
5124 return entry;
5125 }
5126
5127 static void sd_free_ctl_entry(struct ctl_table **tablep)
5128 {
5129 struct ctl_table *entry;
5130
5131 /*
5132 * In the intermediate directories, both the child directory and
5133 * procname are dynamically allocated and could fail but the mode
5134 * will always be set. In the lowest directory the names are
5135 * static strings and all have proc handlers.
5136 */
5137 for (entry = *tablep; entry->mode; entry++) {
5138 if (entry->child)
5139 sd_free_ctl_entry(&entry->child);
5140 if (entry->proc_handler == NULL)
5141 kfree(entry->procname);
5142 }
5143
5144 kfree(*tablep);
5145 *tablep = NULL;
5146 }
5147
5148 static int min_load_idx = 0;
5149 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5150
5151 static void
5152 set_table_entry(struct ctl_table *entry,
5153 const char *procname, void *data, int maxlen,
5154 umode_t mode, proc_handler *proc_handler,
5155 bool load_idx)
5156 {
5157 entry->procname = procname;
5158 entry->data = data;
5159 entry->maxlen = maxlen;
5160 entry->mode = mode;
5161 entry->proc_handler = proc_handler;
5162
5163 if (load_idx) {
5164 entry->extra1 = &min_load_idx;
5165 entry->extra2 = &max_load_idx;
5166 }
5167 }
5168
5169 static struct ctl_table *
5170 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5171 {
5172 struct ctl_table *table = sd_alloc_ctl_entry(14);
5173
5174 if (table == NULL)
5175 return NULL;
5176
5177 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5178 sizeof(long), 0644, proc_doulongvec_minmax, false);
5179 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5180 sizeof(long), 0644, proc_doulongvec_minmax, false);
5181 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5182 sizeof(int), 0644, proc_dointvec_minmax, true);
5183 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5184 sizeof(int), 0644, proc_dointvec_minmax, true);
5185 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5186 sizeof(int), 0644, proc_dointvec_minmax, true);
5187 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5188 sizeof(int), 0644, proc_dointvec_minmax, true);
5189 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5190 sizeof(int), 0644, proc_dointvec_minmax, true);
5191 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5192 sizeof(int), 0644, proc_dointvec_minmax, false);
5193 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5194 sizeof(int), 0644, proc_dointvec_minmax, false);
5195 set_table_entry(&table[9], "cache_nice_tries",
5196 &sd->cache_nice_tries,
5197 sizeof(int), 0644, proc_dointvec_minmax, false);
5198 set_table_entry(&table[10], "flags", &sd->flags,
5199 sizeof(int), 0644, proc_dointvec_minmax, false);
5200 set_table_entry(&table[11], "max_newidle_lb_cost",
5201 &sd->max_newidle_lb_cost,
5202 sizeof(long), 0644, proc_doulongvec_minmax, false);
5203 set_table_entry(&table[12], "name", sd->name,
5204 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5205 /* &table[13] is terminator */
5206
5207 return table;
5208 }
5209
5210 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5211 {
5212 struct ctl_table *entry, *table;
5213 struct sched_domain *sd;
5214 int domain_num = 0, i;
5215 char buf[32];
5216
5217 for_each_domain(cpu, sd)
5218 domain_num++;
5219 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5220 if (table == NULL)
5221 return NULL;
5222
5223 i = 0;
5224 for_each_domain(cpu, sd) {
5225 snprintf(buf, 32, "domain%d", i);
5226 entry->procname = kstrdup(buf, GFP_KERNEL);
5227 entry->mode = 0555;
5228 entry->child = sd_alloc_ctl_domain_table(sd);
5229 entry++;
5230 i++;
5231 }
5232 return table;
5233 }
5234
5235 static struct ctl_table_header *sd_sysctl_header;
5236 static void register_sched_domain_sysctl(void)
5237 {
5238 int i, cpu_num = num_possible_cpus();
5239 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5240 char buf[32];
5241
5242 WARN_ON(sd_ctl_dir[0].child);
5243 sd_ctl_dir[0].child = entry;
5244
5245 if (entry == NULL)
5246 return;
5247
5248 for_each_possible_cpu(i) {
5249 snprintf(buf, 32, "cpu%d", i);
5250 entry->procname = kstrdup(buf, GFP_KERNEL);
5251 entry->mode = 0555;
5252 entry->child = sd_alloc_ctl_cpu_table(i);
5253 entry++;
5254 }
5255
5256 WARN_ON(sd_sysctl_header);
5257 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5258 }
5259
5260 /* may be called multiple times per register */
5261 static void unregister_sched_domain_sysctl(void)
5262 {
5263 if (sd_sysctl_header)
5264 unregister_sysctl_table(sd_sysctl_header);
5265 sd_sysctl_header = NULL;
5266 if (sd_ctl_dir[0].child)
5267 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5268 }
5269 #else
5270 static void register_sched_domain_sysctl(void)
5271 {
5272 }
5273 static void unregister_sched_domain_sysctl(void)
5274 {
5275 }
5276 #endif
5277
5278 static void set_rq_online(struct rq *rq)
5279 {
5280 if (!rq->online) {
5281 const struct sched_class *class;
5282
5283 cpumask_set_cpu(rq->cpu, rq->rd->online);
5284 rq->online = 1;
5285
5286 for_each_class(class) {
5287 if (class->rq_online)
5288 class->rq_online(rq);
5289 }
5290 }
5291 }
5292
5293 static void set_rq_offline(struct rq *rq)
5294 {
5295 if (rq->online) {
5296 const struct sched_class *class;
5297
5298 for_each_class(class) {
5299 if (class->rq_offline)
5300 class->rq_offline(rq);
5301 }
5302
5303 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5304 rq->online = 0;
5305 }
5306 }
5307
5308 /*
5309 * migration_call - callback that gets triggered when a CPU is added.
5310 * Here we can start up the necessary migration thread for the new CPU.
5311 */
5312 static int
5313 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5314 {
5315 int cpu = (long)hcpu;
5316 unsigned long flags;
5317 struct rq *rq = cpu_rq(cpu);
5318
5319 switch (action & ~CPU_TASKS_FROZEN) {
5320
5321 case CPU_UP_PREPARE:
5322 rq->calc_load_update = calc_load_update;
5323 break;
5324
5325 case CPU_ONLINE:
5326 /* Update our root-domain */
5327 raw_spin_lock_irqsave(&rq->lock, flags);
5328 if (rq->rd) {
5329 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5330
5331 set_rq_online(rq);
5332 }
5333 raw_spin_unlock_irqrestore(&rq->lock, flags);
5334 break;
5335
5336 #ifdef CONFIG_HOTPLUG_CPU
5337 case CPU_DYING:
5338 sched_ttwu_pending();
5339 /* Update our root-domain */
5340 raw_spin_lock_irqsave(&rq->lock, flags);
5341 if (rq->rd) {
5342 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5343 set_rq_offline(rq);
5344 }
5345 migrate_tasks(cpu);
5346 BUG_ON(rq->nr_running != 1); /* the migration thread */
5347 raw_spin_unlock_irqrestore(&rq->lock, flags);
5348 break;
5349
5350 case CPU_DEAD:
5351 calc_load_migrate(rq);
5352 break;
5353 #endif
5354 }
5355
5356 update_max_interval();
5357
5358 return NOTIFY_OK;
5359 }
5360
5361 /*
5362 * Register at high priority so that task migration (migrate_all_tasks)
5363 * happens before everything else. This has to be lower priority than
5364 * the notifier in the perf_event subsystem, though.
5365 */
5366 static struct notifier_block migration_notifier = {
5367 .notifier_call = migration_call,
5368 .priority = CPU_PRI_MIGRATION,
5369 };
5370
5371 static void set_cpu_rq_start_time(void)
5372 {
5373 int cpu = smp_processor_id();
5374 struct rq *rq = cpu_rq(cpu);
5375 rq->age_stamp = sched_clock_cpu(cpu);
5376 }
5377
5378 static int sched_cpu_active(struct notifier_block *nfb,
5379 unsigned long action, void *hcpu)
5380 {
5381 switch (action & ~CPU_TASKS_FROZEN) {
5382 case CPU_STARTING:
5383 set_cpu_rq_start_time();
5384 return NOTIFY_OK;
5385 case CPU_DOWN_FAILED:
5386 set_cpu_active((long)hcpu, true);
5387 return NOTIFY_OK;
5388 default:
5389 return NOTIFY_DONE;
5390 }
5391 }
5392
5393 static int sched_cpu_inactive(struct notifier_block *nfb,
5394 unsigned long action, void *hcpu)
5395 {
5396 switch (action & ~CPU_TASKS_FROZEN) {
5397 case CPU_DOWN_PREPARE:
5398 set_cpu_active((long)hcpu, false);
5399 return NOTIFY_OK;
5400 default:
5401 return NOTIFY_DONE;
5402 }
5403 }
5404
5405 static int __init migration_init(void)
5406 {
5407 void *cpu = (void *)(long)smp_processor_id();
5408 int err;
5409
5410 /* Initialize migration for the boot CPU */
5411 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5412 BUG_ON(err == NOTIFY_BAD);
5413 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5414 register_cpu_notifier(&migration_notifier);
5415
5416 /* Register cpu active notifiers */
5417 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5418 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5419
5420 return 0;
5421 }
5422 early_initcall(migration_init);
5423 #endif
5424
5425 #ifdef CONFIG_SMP
5426
5427 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5428
5429 #ifdef CONFIG_SCHED_DEBUG
5430
5431 static __read_mostly int sched_debug_enabled;
5432
5433 static int __init sched_debug_setup(char *str)
5434 {
5435 sched_debug_enabled = 1;
5436
5437 return 0;
5438 }
5439 early_param("sched_debug", sched_debug_setup);
5440
5441 static inline bool sched_debug(void)
5442 {
5443 return sched_debug_enabled;
5444 }
5445
5446 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5447 struct cpumask *groupmask)
5448 {
5449 struct sched_group *group = sd->groups;
5450
5451 cpumask_clear(groupmask);
5452
5453 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5454
5455 if (!(sd->flags & SD_LOAD_BALANCE)) {
5456 printk("does not load-balance\n");
5457 if (sd->parent)
5458 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5459 " has parent");
5460 return -1;
5461 }
5462
5463 printk(KERN_CONT "span %*pbl level %s\n",
5464 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5465
5466 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5467 printk(KERN_ERR "ERROR: domain->span does not contain "
5468 "CPU%d\n", cpu);
5469 }
5470 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5471 printk(KERN_ERR "ERROR: domain->groups does not contain"
5472 " CPU%d\n", cpu);
5473 }
5474
5475 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5476 do {
5477 if (!group) {
5478 printk("\n");
5479 printk(KERN_ERR "ERROR: group is NULL\n");
5480 break;
5481 }
5482
5483 if (!cpumask_weight(sched_group_cpus(group))) {
5484 printk(KERN_CONT "\n");
5485 printk(KERN_ERR "ERROR: empty group\n");
5486 break;
5487 }
5488
5489 if (!(sd->flags & SD_OVERLAP) &&
5490 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5491 printk(KERN_CONT "\n");
5492 printk(KERN_ERR "ERROR: repeated CPUs\n");
5493 break;
5494 }
5495
5496 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5497
5498 printk(KERN_CONT " %*pbl",
5499 cpumask_pr_args(sched_group_cpus(group)));
5500 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5501 printk(KERN_CONT " (cpu_capacity = %d)",
5502 group->sgc->capacity);
5503 }
5504
5505 group = group->next;
5506 } while (group != sd->groups);
5507 printk(KERN_CONT "\n");
5508
5509 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5510 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5511
5512 if (sd->parent &&
5513 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5514 printk(KERN_ERR "ERROR: parent span is not a superset "
5515 "of domain->span\n");
5516 return 0;
5517 }
5518
5519 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5520 {
5521 int level = 0;
5522
5523 if (!sched_debug_enabled)
5524 return;
5525
5526 if (!sd) {
5527 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5528 return;
5529 }
5530
5531 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5532
5533 for (;;) {
5534 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5535 break;
5536 level++;
5537 sd = sd->parent;
5538 if (!sd)
5539 break;
5540 }
5541 }
5542 #else /* !CONFIG_SCHED_DEBUG */
5543 # define sched_domain_debug(sd, cpu) do { } while (0)
5544 static inline bool sched_debug(void)
5545 {
5546 return false;
5547 }
5548 #endif /* CONFIG_SCHED_DEBUG */
5549
5550 static int sd_degenerate(struct sched_domain *sd)
5551 {
5552 if (cpumask_weight(sched_domain_span(sd)) == 1)
5553 return 1;
5554
5555 /* Following flags need at least 2 groups */
5556 if (sd->flags & (SD_LOAD_BALANCE |
5557 SD_BALANCE_NEWIDLE |
5558 SD_BALANCE_FORK |
5559 SD_BALANCE_EXEC |
5560 SD_SHARE_CPUCAPACITY |
5561 SD_SHARE_PKG_RESOURCES |
5562 SD_SHARE_POWERDOMAIN)) {
5563 if (sd->groups != sd->groups->next)
5564 return 0;
5565 }
5566
5567 /* Following flags don't use groups */
5568 if (sd->flags & (SD_WAKE_AFFINE))
5569 return 0;
5570
5571 return 1;
5572 }
5573
5574 static int
5575 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5576 {
5577 unsigned long cflags = sd->flags, pflags = parent->flags;
5578
5579 if (sd_degenerate(parent))
5580 return 1;
5581
5582 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5583 return 0;
5584
5585 /* Flags needing groups don't count if only 1 group in parent */
5586 if (parent->groups == parent->groups->next) {
5587 pflags &= ~(SD_LOAD_BALANCE |
5588 SD_BALANCE_NEWIDLE |
5589 SD_BALANCE_FORK |
5590 SD_BALANCE_EXEC |
5591 SD_SHARE_CPUCAPACITY |
5592 SD_SHARE_PKG_RESOURCES |
5593 SD_PREFER_SIBLING |
5594 SD_SHARE_POWERDOMAIN);
5595 if (nr_node_ids == 1)
5596 pflags &= ~SD_SERIALIZE;
5597 }
5598 if (~cflags & pflags)
5599 return 0;
5600
5601 return 1;
5602 }
5603
5604 static void free_rootdomain(struct rcu_head *rcu)
5605 {
5606 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5607
5608 cpupri_cleanup(&rd->cpupri);
5609 cpudl_cleanup(&rd->cpudl);
5610 free_cpumask_var(rd->dlo_mask);
5611 free_cpumask_var(rd->rto_mask);
5612 free_cpumask_var(rd->online);
5613 free_cpumask_var(rd->span);
5614 kfree(rd);
5615 }
5616
5617 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5618 {
5619 struct root_domain *old_rd = NULL;
5620 unsigned long flags;
5621
5622 raw_spin_lock_irqsave(&rq->lock, flags);
5623
5624 if (rq->rd) {
5625 old_rd = rq->rd;
5626
5627 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5628 set_rq_offline(rq);
5629
5630 cpumask_clear_cpu(rq->cpu, old_rd->span);
5631
5632 /*
5633 * If we dont want to free the old_rd yet then
5634 * set old_rd to NULL to skip the freeing later
5635 * in this function:
5636 */
5637 if (!atomic_dec_and_test(&old_rd->refcount))
5638 old_rd = NULL;
5639 }
5640
5641 atomic_inc(&rd->refcount);
5642 rq->rd = rd;
5643
5644 cpumask_set_cpu(rq->cpu, rd->span);
5645 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5646 set_rq_online(rq);
5647
5648 raw_spin_unlock_irqrestore(&rq->lock, flags);
5649
5650 if (old_rd)
5651 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5652 }
5653
5654 static int init_rootdomain(struct root_domain *rd)
5655 {
5656 memset(rd, 0, sizeof(*rd));
5657
5658 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5659 goto out;
5660 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5661 goto free_span;
5662 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5663 goto free_online;
5664 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5665 goto free_dlo_mask;
5666
5667 init_dl_bw(&rd->dl_bw);
5668 if (cpudl_init(&rd->cpudl) != 0)
5669 goto free_dlo_mask;
5670
5671 if (cpupri_init(&rd->cpupri) != 0)
5672 goto free_rto_mask;
5673 return 0;
5674
5675 free_rto_mask:
5676 free_cpumask_var(rd->rto_mask);
5677 free_dlo_mask:
5678 free_cpumask_var(rd->dlo_mask);
5679 free_online:
5680 free_cpumask_var(rd->online);
5681 free_span:
5682 free_cpumask_var(rd->span);
5683 out:
5684 return -ENOMEM;
5685 }
5686
5687 /*
5688 * By default the system creates a single root-domain with all cpus as
5689 * members (mimicking the global state we have today).
5690 */
5691 struct root_domain def_root_domain;
5692
5693 static void init_defrootdomain(void)
5694 {
5695 init_rootdomain(&def_root_domain);
5696
5697 atomic_set(&def_root_domain.refcount, 1);
5698 }
5699
5700 static struct root_domain *alloc_rootdomain(void)
5701 {
5702 struct root_domain *rd;
5703
5704 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5705 if (!rd)
5706 return NULL;
5707
5708 if (init_rootdomain(rd) != 0) {
5709 kfree(rd);
5710 return NULL;
5711 }
5712
5713 return rd;
5714 }
5715
5716 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5717 {
5718 struct sched_group *tmp, *first;
5719
5720 if (!sg)
5721 return;
5722
5723 first = sg;
5724 do {
5725 tmp = sg->next;
5726
5727 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5728 kfree(sg->sgc);
5729
5730 kfree(sg);
5731 sg = tmp;
5732 } while (sg != first);
5733 }
5734
5735 static void free_sched_domain(struct rcu_head *rcu)
5736 {
5737 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5738
5739 /*
5740 * If its an overlapping domain it has private groups, iterate and
5741 * nuke them all.
5742 */
5743 if (sd->flags & SD_OVERLAP) {
5744 free_sched_groups(sd->groups, 1);
5745 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5746 kfree(sd->groups->sgc);
5747 kfree(sd->groups);
5748 }
5749 kfree(sd);
5750 }
5751
5752 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5753 {
5754 call_rcu(&sd->rcu, free_sched_domain);
5755 }
5756
5757 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5758 {
5759 for (; sd; sd = sd->parent)
5760 destroy_sched_domain(sd, cpu);
5761 }
5762
5763 /*
5764 * Keep a special pointer to the highest sched_domain that has
5765 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5766 * allows us to avoid some pointer chasing select_idle_sibling().
5767 *
5768 * Also keep a unique ID per domain (we use the first cpu number in
5769 * the cpumask of the domain), this allows us to quickly tell if
5770 * two cpus are in the same cache domain, see cpus_share_cache().
5771 */
5772 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5773 DEFINE_PER_CPU(int, sd_llc_size);
5774 DEFINE_PER_CPU(int, sd_llc_id);
5775 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5776 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5777 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5778
5779 static void update_top_cache_domain(int cpu)
5780 {
5781 struct sched_domain *sd;
5782 struct sched_domain *busy_sd = NULL;
5783 int id = cpu;
5784 int size = 1;
5785
5786 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5787 if (sd) {
5788 id = cpumask_first(sched_domain_span(sd));
5789 size = cpumask_weight(sched_domain_span(sd));
5790 busy_sd = sd->parent; /* sd_busy */
5791 }
5792 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5793
5794 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5795 per_cpu(sd_llc_size, cpu) = size;
5796 per_cpu(sd_llc_id, cpu) = id;
5797
5798 sd = lowest_flag_domain(cpu, SD_NUMA);
5799 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5800
5801 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5802 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5803 }
5804
5805 /*
5806 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5807 * hold the hotplug lock.
5808 */
5809 static void
5810 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5811 {
5812 struct rq *rq = cpu_rq(cpu);
5813 struct sched_domain *tmp;
5814
5815 /* Remove the sched domains which do not contribute to scheduling. */
5816 for (tmp = sd; tmp; ) {
5817 struct sched_domain *parent = tmp->parent;
5818 if (!parent)
5819 break;
5820
5821 if (sd_parent_degenerate(tmp, parent)) {
5822 tmp->parent = parent->parent;
5823 if (parent->parent)
5824 parent->parent->child = tmp;
5825 /*
5826 * Transfer SD_PREFER_SIBLING down in case of a
5827 * degenerate parent; the spans match for this
5828 * so the property transfers.
5829 */
5830 if (parent->flags & SD_PREFER_SIBLING)
5831 tmp->flags |= SD_PREFER_SIBLING;
5832 destroy_sched_domain(parent, cpu);
5833 } else
5834 tmp = tmp->parent;
5835 }
5836
5837 if (sd && sd_degenerate(sd)) {
5838 tmp = sd;
5839 sd = sd->parent;
5840 destroy_sched_domain(tmp, cpu);
5841 if (sd)
5842 sd->child = NULL;
5843 }
5844
5845 sched_domain_debug(sd, cpu);
5846
5847 rq_attach_root(rq, rd);
5848 tmp = rq->sd;
5849 rcu_assign_pointer(rq->sd, sd);
5850 destroy_sched_domains(tmp, cpu);
5851
5852 update_top_cache_domain(cpu);
5853 }
5854
5855 /* Setup the mask of cpus configured for isolated domains */
5856 static int __init isolated_cpu_setup(char *str)
5857 {
5858 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5859 cpulist_parse(str, cpu_isolated_map);
5860 return 1;
5861 }
5862
5863 __setup("isolcpus=", isolated_cpu_setup);
5864
5865 struct s_data {
5866 struct sched_domain ** __percpu sd;
5867 struct root_domain *rd;
5868 };
5869
5870 enum s_alloc {
5871 sa_rootdomain,
5872 sa_sd,
5873 sa_sd_storage,
5874 sa_none,
5875 };
5876
5877 /*
5878 * Build an iteration mask that can exclude certain CPUs from the upwards
5879 * domain traversal.
5880 *
5881 * Asymmetric node setups can result in situations where the domain tree is of
5882 * unequal depth, make sure to skip domains that already cover the entire
5883 * range.
5884 *
5885 * In that case build_sched_domains() will have terminated the iteration early
5886 * and our sibling sd spans will be empty. Domains should always include the
5887 * cpu they're built on, so check that.
5888 *
5889 */
5890 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5891 {
5892 const struct cpumask *span = sched_domain_span(sd);
5893 struct sd_data *sdd = sd->private;
5894 struct sched_domain *sibling;
5895 int i;
5896
5897 for_each_cpu(i, span) {
5898 sibling = *per_cpu_ptr(sdd->sd, i);
5899 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5900 continue;
5901
5902 cpumask_set_cpu(i, sched_group_mask(sg));
5903 }
5904 }
5905
5906 /*
5907 * Return the canonical balance cpu for this group, this is the first cpu
5908 * of this group that's also in the iteration mask.
5909 */
5910 int group_balance_cpu(struct sched_group *sg)
5911 {
5912 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5913 }
5914
5915 static int
5916 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5917 {
5918 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5919 const struct cpumask *span = sched_domain_span(sd);
5920 struct cpumask *covered = sched_domains_tmpmask;
5921 struct sd_data *sdd = sd->private;
5922 struct sched_domain *sibling;
5923 int i;
5924
5925 cpumask_clear(covered);
5926
5927 for_each_cpu(i, span) {
5928 struct cpumask *sg_span;
5929
5930 if (cpumask_test_cpu(i, covered))
5931 continue;
5932
5933 sibling = *per_cpu_ptr(sdd->sd, i);
5934
5935 /* See the comment near build_group_mask(). */
5936 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5937 continue;
5938
5939 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5940 GFP_KERNEL, cpu_to_node(cpu));
5941
5942 if (!sg)
5943 goto fail;
5944
5945 sg_span = sched_group_cpus(sg);
5946 if (sibling->child)
5947 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5948 else
5949 cpumask_set_cpu(i, sg_span);
5950
5951 cpumask_or(covered, covered, sg_span);
5952
5953 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5954 if (atomic_inc_return(&sg->sgc->ref) == 1)
5955 build_group_mask(sd, sg);
5956
5957 /*
5958 * Initialize sgc->capacity such that even if we mess up the
5959 * domains and no possible iteration will get us here, we won't
5960 * die on a /0 trap.
5961 */
5962 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5963
5964 /*
5965 * Make sure the first group of this domain contains the
5966 * canonical balance cpu. Otherwise the sched_domain iteration
5967 * breaks. See update_sg_lb_stats().
5968 */
5969 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5970 group_balance_cpu(sg) == cpu)
5971 groups = sg;
5972
5973 if (!first)
5974 first = sg;
5975 if (last)
5976 last->next = sg;
5977 last = sg;
5978 last->next = first;
5979 }
5980 sd->groups = groups;
5981
5982 return 0;
5983
5984 fail:
5985 free_sched_groups(first, 0);
5986
5987 return -ENOMEM;
5988 }
5989
5990 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5991 {
5992 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5993 struct sched_domain *child = sd->child;
5994
5995 if (child)
5996 cpu = cpumask_first(sched_domain_span(child));
5997
5998 if (sg) {
5999 *sg = *per_cpu_ptr(sdd->sg, cpu);
6000 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6001 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6002 }
6003
6004 return cpu;
6005 }
6006
6007 /*
6008 * build_sched_groups will build a circular linked list of the groups
6009 * covered by the given span, and will set each group's ->cpumask correctly,
6010 * and ->cpu_capacity to 0.
6011 *
6012 * Assumes the sched_domain tree is fully constructed
6013 */
6014 static int
6015 build_sched_groups(struct sched_domain *sd, int cpu)
6016 {
6017 struct sched_group *first = NULL, *last = NULL;
6018 struct sd_data *sdd = sd->private;
6019 const struct cpumask *span = sched_domain_span(sd);
6020 struct cpumask *covered;
6021 int i;
6022
6023 get_group(cpu, sdd, &sd->groups);
6024 atomic_inc(&sd->groups->ref);
6025
6026 if (cpu != cpumask_first(span))
6027 return 0;
6028
6029 lockdep_assert_held(&sched_domains_mutex);
6030 covered = sched_domains_tmpmask;
6031
6032 cpumask_clear(covered);
6033
6034 for_each_cpu(i, span) {
6035 struct sched_group *sg;
6036 int group, j;
6037
6038 if (cpumask_test_cpu(i, covered))
6039 continue;
6040
6041 group = get_group(i, sdd, &sg);
6042 cpumask_setall(sched_group_mask(sg));
6043
6044 for_each_cpu(j, span) {
6045 if (get_group(j, sdd, NULL) != group)
6046 continue;
6047
6048 cpumask_set_cpu(j, covered);
6049 cpumask_set_cpu(j, sched_group_cpus(sg));
6050 }
6051
6052 if (!first)
6053 first = sg;
6054 if (last)
6055 last->next = sg;
6056 last = sg;
6057 }
6058 last->next = first;
6059
6060 return 0;
6061 }
6062
6063 /*
6064 * Initialize sched groups cpu_capacity.
6065 *
6066 * cpu_capacity indicates the capacity of sched group, which is used while
6067 * distributing the load between different sched groups in a sched domain.
6068 * Typically cpu_capacity for all the groups in a sched domain will be same
6069 * unless there are asymmetries in the topology. If there are asymmetries,
6070 * group having more cpu_capacity will pickup more load compared to the
6071 * group having less cpu_capacity.
6072 */
6073 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6074 {
6075 struct sched_group *sg = sd->groups;
6076
6077 WARN_ON(!sg);
6078
6079 do {
6080 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6081 sg = sg->next;
6082 } while (sg != sd->groups);
6083
6084 if (cpu != group_balance_cpu(sg))
6085 return;
6086
6087 update_group_capacity(sd, cpu);
6088 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6089 }
6090
6091 /*
6092 * Initializers for schedule domains
6093 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6094 */
6095
6096 static int default_relax_domain_level = -1;
6097 int sched_domain_level_max;
6098
6099 static int __init setup_relax_domain_level(char *str)
6100 {
6101 if (kstrtoint(str, 0, &default_relax_domain_level))
6102 pr_warn("Unable to set relax_domain_level\n");
6103
6104 return 1;
6105 }
6106 __setup("relax_domain_level=", setup_relax_domain_level);
6107
6108 static void set_domain_attribute(struct sched_domain *sd,
6109 struct sched_domain_attr *attr)
6110 {
6111 int request;
6112
6113 if (!attr || attr->relax_domain_level < 0) {
6114 if (default_relax_domain_level < 0)
6115 return;
6116 else
6117 request = default_relax_domain_level;
6118 } else
6119 request = attr->relax_domain_level;
6120 if (request < sd->level) {
6121 /* turn off idle balance on this domain */
6122 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6123 } else {
6124 /* turn on idle balance on this domain */
6125 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6126 }
6127 }
6128
6129 static void __sdt_free(const struct cpumask *cpu_map);
6130 static int __sdt_alloc(const struct cpumask *cpu_map);
6131
6132 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6133 const struct cpumask *cpu_map)
6134 {
6135 switch (what) {
6136 case sa_rootdomain:
6137 if (!atomic_read(&d->rd->refcount))
6138 free_rootdomain(&d->rd->rcu); /* fall through */
6139 case sa_sd:
6140 free_percpu(d->sd); /* fall through */
6141 case sa_sd_storage:
6142 __sdt_free(cpu_map); /* fall through */
6143 case sa_none:
6144 break;
6145 }
6146 }
6147
6148 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6149 const struct cpumask *cpu_map)
6150 {
6151 memset(d, 0, sizeof(*d));
6152
6153 if (__sdt_alloc(cpu_map))
6154 return sa_sd_storage;
6155 d->sd = alloc_percpu(struct sched_domain *);
6156 if (!d->sd)
6157 return sa_sd_storage;
6158 d->rd = alloc_rootdomain();
6159 if (!d->rd)
6160 return sa_sd;
6161 return sa_rootdomain;
6162 }
6163
6164 /*
6165 * NULL the sd_data elements we've used to build the sched_domain and
6166 * sched_group structure so that the subsequent __free_domain_allocs()
6167 * will not free the data we're using.
6168 */
6169 static void claim_allocations(int cpu, struct sched_domain *sd)
6170 {
6171 struct sd_data *sdd = sd->private;
6172
6173 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6174 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6175
6176 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6177 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6178
6179 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6180 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6181 }
6182
6183 #ifdef CONFIG_NUMA
6184 static int sched_domains_numa_levels;
6185 enum numa_topology_type sched_numa_topology_type;
6186 static int *sched_domains_numa_distance;
6187 int sched_max_numa_distance;
6188 static struct cpumask ***sched_domains_numa_masks;
6189 static int sched_domains_curr_level;
6190 #endif
6191
6192 /*
6193 * SD_flags allowed in topology descriptions.
6194 *
6195 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6196 * SD_SHARE_PKG_RESOURCES - describes shared caches
6197 * SD_NUMA - describes NUMA topologies
6198 * SD_SHARE_POWERDOMAIN - describes shared power domain
6199 *
6200 * Odd one out:
6201 * SD_ASYM_PACKING - describes SMT quirks
6202 */
6203 #define TOPOLOGY_SD_FLAGS \
6204 (SD_SHARE_CPUCAPACITY | \
6205 SD_SHARE_PKG_RESOURCES | \
6206 SD_NUMA | \
6207 SD_ASYM_PACKING | \
6208 SD_SHARE_POWERDOMAIN)
6209
6210 static struct sched_domain *
6211 sd_init(struct sched_domain_topology_level *tl, int cpu)
6212 {
6213 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6214 int sd_weight, sd_flags = 0;
6215
6216 #ifdef CONFIG_NUMA
6217 /*
6218 * Ugly hack to pass state to sd_numa_mask()...
6219 */
6220 sched_domains_curr_level = tl->numa_level;
6221 #endif
6222
6223 sd_weight = cpumask_weight(tl->mask(cpu));
6224
6225 if (tl->sd_flags)
6226 sd_flags = (*tl->sd_flags)();
6227 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6228 "wrong sd_flags in topology description\n"))
6229 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6230
6231 *sd = (struct sched_domain){
6232 .min_interval = sd_weight,
6233 .max_interval = 2*sd_weight,
6234 .busy_factor = 32,
6235 .imbalance_pct = 125,
6236
6237 .cache_nice_tries = 0,
6238 .busy_idx = 0,
6239 .idle_idx = 0,
6240 .newidle_idx = 0,
6241 .wake_idx = 0,
6242 .forkexec_idx = 0,
6243
6244 .flags = 1*SD_LOAD_BALANCE
6245 | 1*SD_BALANCE_NEWIDLE
6246 | 1*SD_BALANCE_EXEC
6247 | 1*SD_BALANCE_FORK
6248 | 0*SD_BALANCE_WAKE
6249 | 1*SD_WAKE_AFFINE
6250 | 0*SD_SHARE_CPUCAPACITY
6251 | 0*SD_SHARE_PKG_RESOURCES
6252 | 0*SD_SERIALIZE
6253 | 0*SD_PREFER_SIBLING
6254 | 0*SD_NUMA
6255 | sd_flags
6256 ,
6257
6258 .last_balance = jiffies,
6259 .balance_interval = sd_weight,
6260 .smt_gain = 0,
6261 .max_newidle_lb_cost = 0,
6262 .next_decay_max_lb_cost = jiffies,
6263 #ifdef CONFIG_SCHED_DEBUG
6264 .name = tl->name,
6265 #endif
6266 };
6267
6268 /*
6269 * Convert topological properties into behaviour.
6270 */
6271
6272 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6273 sd->flags |= SD_PREFER_SIBLING;
6274 sd->imbalance_pct = 110;
6275 sd->smt_gain = 1178; /* ~15% */
6276
6277 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6278 sd->imbalance_pct = 117;
6279 sd->cache_nice_tries = 1;
6280 sd->busy_idx = 2;
6281
6282 #ifdef CONFIG_NUMA
6283 } else if (sd->flags & SD_NUMA) {
6284 sd->cache_nice_tries = 2;
6285 sd->busy_idx = 3;
6286 sd->idle_idx = 2;
6287
6288 sd->flags |= SD_SERIALIZE;
6289 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6290 sd->flags &= ~(SD_BALANCE_EXEC |
6291 SD_BALANCE_FORK |
6292 SD_WAKE_AFFINE);
6293 }
6294
6295 #endif
6296 } else {
6297 sd->flags |= SD_PREFER_SIBLING;
6298 sd->cache_nice_tries = 1;
6299 sd->busy_idx = 2;
6300 sd->idle_idx = 1;
6301 }
6302
6303 sd->private = &tl->data;
6304
6305 return sd;
6306 }
6307
6308 /*
6309 * Topology list, bottom-up.
6310 */
6311 static struct sched_domain_topology_level default_topology[] = {
6312 #ifdef CONFIG_SCHED_SMT
6313 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6314 #endif
6315 #ifdef CONFIG_SCHED_MC
6316 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6317 #endif
6318 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6319 { NULL, },
6320 };
6321
6322 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6323
6324 #define for_each_sd_topology(tl) \
6325 for (tl = sched_domain_topology; tl->mask; tl++)
6326
6327 void set_sched_topology(struct sched_domain_topology_level *tl)
6328 {
6329 sched_domain_topology = tl;
6330 }
6331
6332 #ifdef CONFIG_NUMA
6333
6334 static const struct cpumask *sd_numa_mask(int cpu)
6335 {
6336 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6337 }
6338
6339 static void sched_numa_warn(const char *str)
6340 {
6341 static int done = false;
6342 int i,j;
6343
6344 if (done)
6345 return;
6346
6347 done = true;
6348
6349 printk(KERN_WARNING "ERROR: %s\n\n", str);
6350
6351 for (i = 0; i < nr_node_ids; i++) {
6352 printk(KERN_WARNING " ");
6353 for (j = 0; j < nr_node_ids; j++)
6354 printk(KERN_CONT "%02d ", node_distance(i,j));
6355 printk(KERN_CONT "\n");
6356 }
6357 printk(KERN_WARNING "\n");
6358 }
6359
6360 bool find_numa_distance(int distance)
6361 {
6362 int i;
6363
6364 if (distance == node_distance(0, 0))
6365 return true;
6366
6367 for (i = 0; i < sched_domains_numa_levels; i++) {
6368 if (sched_domains_numa_distance[i] == distance)
6369 return true;
6370 }
6371
6372 return false;
6373 }
6374
6375 /*
6376 * A system can have three types of NUMA topology:
6377 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6378 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6379 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6380 *
6381 * The difference between a glueless mesh topology and a backplane
6382 * topology lies in whether communication between not directly
6383 * connected nodes goes through intermediary nodes (where programs
6384 * could run), or through backplane controllers. This affects
6385 * placement of programs.
6386 *
6387 * The type of topology can be discerned with the following tests:
6388 * - If the maximum distance between any nodes is 1 hop, the system
6389 * is directly connected.
6390 * - If for two nodes A and B, located N > 1 hops away from each other,
6391 * there is an intermediary node C, which is < N hops away from both
6392 * nodes A and B, the system is a glueless mesh.
6393 */
6394 static void init_numa_topology_type(void)
6395 {
6396 int a, b, c, n;
6397
6398 n = sched_max_numa_distance;
6399
6400 if (n <= 1)
6401 sched_numa_topology_type = NUMA_DIRECT;
6402
6403 for_each_online_node(a) {
6404 for_each_online_node(b) {
6405 /* Find two nodes furthest removed from each other. */
6406 if (node_distance(a, b) < n)
6407 continue;
6408
6409 /* Is there an intermediary node between a and b? */
6410 for_each_online_node(c) {
6411 if (node_distance(a, c) < n &&
6412 node_distance(b, c) < n) {
6413 sched_numa_topology_type =
6414 NUMA_GLUELESS_MESH;
6415 return;
6416 }
6417 }
6418
6419 sched_numa_topology_type = NUMA_BACKPLANE;
6420 return;
6421 }
6422 }
6423 }
6424
6425 static void sched_init_numa(void)
6426 {
6427 int next_distance, curr_distance = node_distance(0, 0);
6428 struct sched_domain_topology_level *tl;
6429 int level = 0;
6430 int i, j, k;
6431
6432 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6433 if (!sched_domains_numa_distance)
6434 return;
6435
6436 /*
6437 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6438 * unique distances in the node_distance() table.
6439 *
6440 * Assumes node_distance(0,j) includes all distances in
6441 * node_distance(i,j) in order to avoid cubic time.
6442 */
6443 next_distance = curr_distance;
6444 for (i = 0; i < nr_node_ids; i++) {
6445 for (j = 0; j < nr_node_ids; j++) {
6446 for (k = 0; k < nr_node_ids; k++) {
6447 int distance = node_distance(i, k);
6448
6449 if (distance > curr_distance &&
6450 (distance < next_distance ||
6451 next_distance == curr_distance))
6452 next_distance = distance;
6453
6454 /*
6455 * While not a strong assumption it would be nice to know
6456 * about cases where if node A is connected to B, B is not
6457 * equally connected to A.
6458 */
6459 if (sched_debug() && node_distance(k, i) != distance)
6460 sched_numa_warn("Node-distance not symmetric");
6461
6462 if (sched_debug() && i && !find_numa_distance(distance))
6463 sched_numa_warn("Node-0 not representative");
6464 }
6465 if (next_distance != curr_distance) {
6466 sched_domains_numa_distance[level++] = next_distance;
6467 sched_domains_numa_levels = level;
6468 curr_distance = next_distance;
6469 } else break;
6470 }
6471
6472 /*
6473 * In case of sched_debug() we verify the above assumption.
6474 */
6475 if (!sched_debug())
6476 break;
6477 }
6478
6479 if (!level)
6480 return;
6481
6482 /*
6483 * 'level' contains the number of unique distances, excluding the
6484 * identity distance node_distance(i,i).
6485 *
6486 * The sched_domains_numa_distance[] array includes the actual distance
6487 * numbers.
6488 */
6489
6490 /*
6491 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6492 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6493 * the array will contain less then 'level' members. This could be
6494 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6495 * in other functions.
6496 *
6497 * We reset it to 'level' at the end of this function.
6498 */
6499 sched_domains_numa_levels = 0;
6500
6501 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6502 if (!sched_domains_numa_masks)
6503 return;
6504
6505 /*
6506 * Now for each level, construct a mask per node which contains all
6507 * cpus of nodes that are that many hops away from us.
6508 */
6509 for (i = 0; i < level; i++) {
6510 sched_domains_numa_masks[i] =
6511 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6512 if (!sched_domains_numa_masks[i])
6513 return;
6514
6515 for (j = 0; j < nr_node_ids; j++) {
6516 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6517 if (!mask)
6518 return;
6519
6520 sched_domains_numa_masks[i][j] = mask;
6521
6522 for (k = 0; k < nr_node_ids; k++) {
6523 if (node_distance(j, k) > sched_domains_numa_distance[i])
6524 continue;
6525
6526 cpumask_or(mask, mask, cpumask_of_node(k));
6527 }
6528 }
6529 }
6530
6531 /* Compute default topology size */
6532 for (i = 0; sched_domain_topology[i].mask; i++);
6533
6534 tl = kzalloc((i + level + 1) *
6535 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6536 if (!tl)
6537 return;
6538
6539 /*
6540 * Copy the default topology bits..
6541 */
6542 for (i = 0; sched_domain_topology[i].mask; i++)
6543 tl[i] = sched_domain_topology[i];
6544
6545 /*
6546 * .. and append 'j' levels of NUMA goodness.
6547 */
6548 for (j = 0; j < level; i++, j++) {
6549 tl[i] = (struct sched_domain_topology_level){
6550 .mask = sd_numa_mask,
6551 .sd_flags = cpu_numa_flags,
6552 .flags = SDTL_OVERLAP,
6553 .numa_level = j,
6554 SD_INIT_NAME(NUMA)
6555 };
6556 }
6557
6558 sched_domain_topology = tl;
6559
6560 sched_domains_numa_levels = level;
6561 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6562
6563 init_numa_topology_type();
6564 }
6565
6566 static void sched_domains_numa_masks_set(int cpu)
6567 {
6568 int i, j;
6569 int node = cpu_to_node(cpu);
6570
6571 for (i = 0; i < sched_domains_numa_levels; i++) {
6572 for (j = 0; j < nr_node_ids; j++) {
6573 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6574 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6575 }
6576 }
6577 }
6578
6579 static void sched_domains_numa_masks_clear(int cpu)
6580 {
6581 int i, j;
6582 for (i = 0; i < sched_domains_numa_levels; i++) {
6583 for (j = 0; j < nr_node_ids; j++)
6584 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6585 }
6586 }
6587
6588 /*
6589 * Update sched_domains_numa_masks[level][node] array when new cpus
6590 * are onlined.
6591 */
6592 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6593 unsigned long action,
6594 void *hcpu)
6595 {
6596 int cpu = (long)hcpu;
6597
6598 switch (action & ~CPU_TASKS_FROZEN) {
6599 case CPU_ONLINE:
6600 sched_domains_numa_masks_set(cpu);
6601 break;
6602
6603 case CPU_DEAD:
6604 sched_domains_numa_masks_clear(cpu);
6605 break;
6606
6607 default:
6608 return NOTIFY_DONE;
6609 }
6610
6611 return NOTIFY_OK;
6612 }
6613 #else
6614 static inline void sched_init_numa(void)
6615 {
6616 }
6617
6618 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6619 unsigned long action,
6620 void *hcpu)
6621 {
6622 return 0;
6623 }
6624 #endif /* CONFIG_NUMA */
6625
6626 static int __sdt_alloc(const struct cpumask *cpu_map)
6627 {
6628 struct sched_domain_topology_level *tl;
6629 int j;
6630
6631 for_each_sd_topology(tl) {
6632 struct sd_data *sdd = &tl->data;
6633
6634 sdd->sd = alloc_percpu(struct sched_domain *);
6635 if (!sdd->sd)
6636 return -ENOMEM;
6637
6638 sdd->sg = alloc_percpu(struct sched_group *);
6639 if (!sdd->sg)
6640 return -ENOMEM;
6641
6642 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6643 if (!sdd->sgc)
6644 return -ENOMEM;
6645
6646 for_each_cpu(j, cpu_map) {
6647 struct sched_domain *sd;
6648 struct sched_group *sg;
6649 struct sched_group_capacity *sgc;
6650
6651 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6652 GFP_KERNEL, cpu_to_node(j));
6653 if (!sd)
6654 return -ENOMEM;
6655
6656 *per_cpu_ptr(sdd->sd, j) = sd;
6657
6658 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6659 GFP_KERNEL, cpu_to_node(j));
6660 if (!sg)
6661 return -ENOMEM;
6662
6663 sg->next = sg;
6664
6665 *per_cpu_ptr(sdd->sg, j) = sg;
6666
6667 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6668 GFP_KERNEL, cpu_to_node(j));
6669 if (!sgc)
6670 return -ENOMEM;
6671
6672 *per_cpu_ptr(sdd->sgc, j) = sgc;
6673 }
6674 }
6675
6676 return 0;
6677 }
6678
6679 static void __sdt_free(const struct cpumask *cpu_map)
6680 {
6681 struct sched_domain_topology_level *tl;
6682 int j;
6683
6684 for_each_sd_topology(tl) {
6685 struct sd_data *sdd = &tl->data;
6686
6687 for_each_cpu(j, cpu_map) {
6688 struct sched_domain *sd;
6689
6690 if (sdd->sd) {
6691 sd = *per_cpu_ptr(sdd->sd, j);
6692 if (sd && (sd->flags & SD_OVERLAP))
6693 free_sched_groups(sd->groups, 0);
6694 kfree(*per_cpu_ptr(sdd->sd, j));
6695 }
6696
6697 if (sdd->sg)
6698 kfree(*per_cpu_ptr(sdd->sg, j));
6699 if (sdd->sgc)
6700 kfree(*per_cpu_ptr(sdd->sgc, j));
6701 }
6702 free_percpu(sdd->sd);
6703 sdd->sd = NULL;
6704 free_percpu(sdd->sg);
6705 sdd->sg = NULL;
6706 free_percpu(sdd->sgc);
6707 sdd->sgc = NULL;
6708 }
6709 }
6710
6711 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6712 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6713 struct sched_domain *child, int cpu)
6714 {
6715 struct sched_domain *sd = sd_init(tl, cpu);
6716 if (!sd)
6717 return child;
6718
6719 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6720 if (child) {
6721 sd->level = child->level + 1;
6722 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6723 child->parent = sd;
6724 sd->child = child;
6725
6726 if (!cpumask_subset(sched_domain_span(child),
6727 sched_domain_span(sd))) {
6728 pr_err("BUG: arch topology borken\n");
6729 #ifdef CONFIG_SCHED_DEBUG
6730 pr_err(" the %s domain not a subset of the %s domain\n",
6731 child->name, sd->name);
6732 #endif
6733 /* Fixup, ensure @sd has at least @child cpus. */
6734 cpumask_or(sched_domain_span(sd),
6735 sched_domain_span(sd),
6736 sched_domain_span(child));
6737 }
6738
6739 }
6740 set_domain_attribute(sd, attr);
6741
6742 return sd;
6743 }
6744
6745 /*
6746 * Build sched domains for a given set of cpus and attach the sched domains
6747 * to the individual cpus
6748 */
6749 static int build_sched_domains(const struct cpumask *cpu_map,
6750 struct sched_domain_attr *attr)
6751 {
6752 enum s_alloc alloc_state;
6753 struct sched_domain *sd;
6754 struct s_data d;
6755 int i, ret = -ENOMEM;
6756
6757 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6758 if (alloc_state != sa_rootdomain)
6759 goto error;
6760
6761 /* Set up domains for cpus specified by the cpu_map. */
6762 for_each_cpu(i, cpu_map) {
6763 struct sched_domain_topology_level *tl;
6764
6765 sd = NULL;
6766 for_each_sd_topology(tl) {
6767 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6768 if (tl == sched_domain_topology)
6769 *per_cpu_ptr(d.sd, i) = sd;
6770 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6771 sd->flags |= SD_OVERLAP;
6772 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6773 break;
6774 }
6775 }
6776
6777 /* Build the groups for the domains */
6778 for_each_cpu(i, cpu_map) {
6779 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6780 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6781 if (sd->flags & SD_OVERLAP) {
6782 if (build_overlap_sched_groups(sd, i))
6783 goto error;
6784 } else {
6785 if (build_sched_groups(sd, i))
6786 goto error;
6787 }
6788 }
6789 }
6790
6791 /* Calculate CPU capacity for physical packages and nodes */
6792 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6793 if (!cpumask_test_cpu(i, cpu_map))
6794 continue;
6795
6796 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6797 claim_allocations(i, sd);
6798 init_sched_groups_capacity(i, sd);
6799 }
6800 }
6801
6802 /* Attach the domains */
6803 rcu_read_lock();
6804 for_each_cpu(i, cpu_map) {
6805 sd = *per_cpu_ptr(d.sd, i);
6806 cpu_attach_domain(sd, d.rd, i);
6807 }
6808 rcu_read_unlock();
6809
6810 ret = 0;
6811 error:
6812 __free_domain_allocs(&d, alloc_state, cpu_map);
6813 return ret;
6814 }
6815
6816 static cpumask_var_t *doms_cur; /* current sched domains */
6817 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6818 static struct sched_domain_attr *dattr_cur;
6819 /* attribues of custom domains in 'doms_cur' */
6820
6821 /*
6822 * Special case: If a kmalloc of a doms_cur partition (array of
6823 * cpumask) fails, then fallback to a single sched domain,
6824 * as determined by the single cpumask fallback_doms.
6825 */
6826 static cpumask_var_t fallback_doms;
6827
6828 /*
6829 * arch_update_cpu_topology lets virtualized architectures update the
6830 * cpu core maps. It is supposed to return 1 if the topology changed
6831 * or 0 if it stayed the same.
6832 */
6833 int __weak arch_update_cpu_topology(void)
6834 {
6835 return 0;
6836 }
6837
6838 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6839 {
6840 int i;
6841 cpumask_var_t *doms;
6842
6843 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6844 if (!doms)
6845 return NULL;
6846 for (i = 0; i < ndoms; i++) {
6847 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6848 free_sched_domains(doms, i);
6849 return NULL;
6850 }
6851 }
6852 return doms;
6853 }
6854
6855 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6856 {
6857 unsigned int i;
6858 for (i = 0; i < ndoms; i++)
6859 free_cpumask_var(doms[i]);
6860 kfree(doms);
6861 }
6862
6863 /*
6864 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6865 * For now this just excludes isolated cpus, but could be used to
6866 * exclude other special cases in the future.
6867 */
6868 static int init_sched_domains(const struct cpumask *cpu_map)
6869 {
6870 int err;
6871
6872 arch_update_cpu_topology();
6873 ndoms_cur = 1;
6874 doms_cur = alloc_sched_domains(ndoms_cur);
6875 if (!doms_cur)
6876 doms_cur = &fallback_doms;
6877 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6878 err = build_sched_domains(doms_cur[0], NULL);
6879 register_sched_domain_sysctl();
6880
6881 return err;
6882 }
6883
6884 /*
6885 * Detach sched domains from a group of cpus specified in cpu_map
6886 * These cpus will now be attached to the NULL domain
6887 */
6888 static void detach_destroy_domains(const struct cpumask *cpu_map)
6889 {
6890 int i;
6891
6892 rcu_read_lock();
6893 for_each_cpu(i, cpu_map)
6894 cpu_attach_domain(NULL, &def_root_domain, i);
6895 rcu_read_unlock();
6896 }
6897
6898 /* handle null as "default" */
6899 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6900 struct sched_domain_attr *new, int idx_new)
6901 {
6902 struct sched_domain_attr tmp;
6903
6904 /* fast path */
6905 if (!new && !cur)
6906 return 1;
6907
6908 tmp = SD_ATTR_INIT;
6909 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6910 new ? (new + idx_new) : &tmp,
6911 sizeof(struct sched_domain_attr));
6912 }
6913
6914 /*
6915 * Partition sched domains as specified by the 'ndoms_new'
6916 * cpumasks in the array doms_new[] of cpumasks. This compares
6917 * doms_new[] to the current sched domain partitioning, doms_cur[].
6918 * It destroys each deleted domain and builds each new domain.
6919 *
6920 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6921 * The masks don't intersect (don't overlap.) We should setup one
6922 * sched domain for each mask. CPUs not in any of the cpumasks will
6923 * not be load balanced. If the same cpumask appears both in the
6924 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6925 * it as it is.
6926 *
6927 * The passed in 'doms_new' should be allocated using
6928 * alloc_sched_domains. This routine takes ownership of it and will
6929 * free_sched_domains it when done with it. If the caller failed the
6930 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6931 * and partition_sched_domains() will fallback to the single partition
6932 * 'fallback_doms', it also forces the domains to be rebuilt.
6933 *
6934 * If doms_new == NULL it will be replaced with cpu_online_mask.
6935 * ndoms_new == 0 is a special case for destroying existing domains,
6936 * and it will not create the default domain.
6937 *
6938 * Call with hotplug lock held
6939 */
6940 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6941 struct sched_domain_attr *dattr_new)
6942 {
6943 int i, j, n;
6944 int new_topology;
6945
6946 mutex_lock(&sched_domains_mutex);
6947
6948 /* always unregister in case we don't destroy any domains */
6949 unregister_sched_domain_sysctl();
6950
6951 /* Let architecture update cpu core mappings. */
6952 new_topology = arch_update_cpu_topology();
6953
6954 n = doms_new ? ndoms_new : 0;
6955
6956 /* Destroy deleted domains */
6957 for (i = 0; i < ndoms_cur; i++) {
6958 for (j = 0; j < n && !new_topology; j++) {
6959 if (cpumask_equal(doms_cur[i], doms_new[j])
6960 && dattrs_equal(dattr_cur, i, dattr_new, j))
6961 goto match1;
6962 }
6963 /* no match - a current sched domain not in new doms_new[] */
6964 detach_destroy_domains(doms_cur[i]);
6965 match1:
6966 ;
6967 }
6968
6969 n = ndoms_cur;
6970 if (doms_new == NULL) {
6971 n = 0;
6972 doms_new = &fallback_doms;
6973 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6974 WARN_ON_ONCE(dattr_new);
6975 }
6976
6977 /* Build new domains */
6978 for (i = 0; i < ndoms_new; i++) {
6979 for (j = 0; j < n && !new_topology; j++) {
6980 if (cpumask_equal(doms_new[i], doms_cur[j])
6981 && dattrs_equal(dattr_new, i, dattr_cur, j))
6982 goto match2;
6983 }
6984 /* no match - add a new doms_new */
6985 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6986 match2:
6987 ;
6988 }
6989
6990 /* Remember the new sched domains */
6991 if (doms_cur != &fallback_doms)
6992 free_sched_domains(doms_cur, ndoms_cur);
6993 kfree(dattr_cur); /* kfree(NULL) is safe */
6994 doms_cur = doms_new;
6995 dattr_cur = dattr_new;
6996 ndoms_cur = ndoms_new;
6997
6998 register_sched_domain_sysctl();
6999
7000 mutex_unlock(&sched_domains_mutex);
7001 }
7002
7003 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7004
7005 /*
7006 * Update cpusets according to cpu_active mask. If cpusets are
7007 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7008 * around partition_sched_domains().
7009 *
7010 * If we come here as part of a suspend/resume, don't touch cpusets because we
7011 * want to restore it back to its original state upon resume anyway.
7012 */
7013 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7014 void *hcpu)
7015 {
7016 switch (action) {
7017 case CPU_ONLINE_FROZEN:
7018 case CPU_DOWN_FAILED_FROZEN:
7019
7020 /*
7021 * num_cpus_frozen tracks how many CPUs are involved in suspend
7022 * resume sequence. As long as this is not the last online
7023 * operation in the resume sequence, just build a single sched
7024 * domain, ignoring cpusets.
7025 */
7026 num_cpus_frozen--;
7027 if (likely(num_cpus_frozen)) {
7028 partition_sched_domains(1, NULL, NULL);
7029 break;
7030 }
7031
7032 /*
7033 * This is the last CPU online operation. So fall through and
7034 * restore the original sched domains by considering the
7035 * cpuset configurations.
7036 */
7037
7038 case CPU_ONLINE:
7039 cpuset_update_active_cpus(true);
7040 break;
7041 default:
7042 return NOTIFY_DONE;
7043 }
7044 return NOTIFY_OK;
7045 }
7046
7047 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7048 void *hcpu)
7049 {
7050 unsigned long flags;
7051 long cpu = (long)hcpu;
7052 struct dl_bw *dl_b;
7053 bool overflow;
7054 int cpus;
7055
7056 switch (action) {
7057 case CPU_DOWN_PREPARE:
7058 rcu_read_lock_sched();
7059 dl_b = dl_bw_of(cpu);
7060
7061 raw_spin_lock_irqsave(&dl_b->lock, flags);
7062 cpus = dl_bw_cpus(cpu);
7063 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7064 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7065
7066 rcu_read_unlock_sched();
7067
7068 if (overflow)
7069 return notifier_from_errno(-EBUSY);
7070 cpuset_update_active_cpus(false);
7071 break;
7072 case CPU_DOWN_PREPARE_FROZEN:
7073 num_cpus_frozen++;
7074 partition_sched_domains(1, NULL, NULL);
7075 break;
7076 default:
7077 return NOTIFY_DONE;
7078 }
7079 return NOTIFY_OK;
7080 }
7081
7082 void __init sched_init_smp(void)
7083 {
7084 cpumask_var_t non_isolated_cpus;
7085
7086 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7087 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7088
7089 sched_init_numa();
7090
7091 /*
7092 * There's no userspace yet to cause hotplug operations; hence all the
7093 * cpu masks are stable and all blatant races in the below code cannot
7094 * happen.
7095 */
7096 mutex_lock(&sched_domains_mutex);
7097 init_sched_domains(cpu_active_mask);
7098 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7099 if (cpumask_empty(non_isolated_cpus))
7100 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7101 mutex_unlock(&sched_domains_mutex);
7102
7103 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7104 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7105 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7106
7107 init_hrtick();
7108
7109 /* Move init over to a non-isolated CPU */
7110 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7111 BUG();
7112 sched_init_granularity();
7113 free_cpumask_var(non_isolated_cpus);
7114
7115 init_sched_rt_class();
7116 init_sched_dl_class();
7117 }
7118 #else
7119 void __init sched_init_smp(void)
7120 {
7121 sched_init_granularity();
7122 }
7123 #endif /* CONFIG_SMP */
7124
7125 const_debug unsigned int sysctl_timer_migration = 1;
7126
7127 int in_sched_functions(unsigned long addr)
7128 {
7129 return in_lock_functions(addr) ||
7130 (addr >= (unsigned long)__sched_text_start
7131 && addr < (unsigned long)__sched_text_end);
7132 }
7133
7134 #ifdef CONFIG_CGROUP_SCHED
7135 /*
7136 * Default task group.
7137 * Every task in system belongs to this group at bootup.
7138 */
7139 struct task_group root_task_group;
7140 LIST_HEAD(task_groups);
7141 #endif
7142
7143 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7144
7145 void __init sched_init(void)
7146 {
7147 int i, j;
7148 unsigned long alloc_size = 0, ptr;
7149
7150 #ifdef CONFIG_FAIR_GROUP_SCHED
7151 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7152 #endif
7153 #ifdef CONFIG_RT_GROUP_SCHED
7154 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7155 #endif
7156 if (alloc_size) {
7157 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7158
7159 #ifdef CONFIG_FAIR_GROUP_SCHED
7160 root_task_group.se = (struct sched_entity **)ptr;
7161 ptr += nr_cpu_ids * sizeof(void **);
7162
7163 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7164 ptr += nr_cpu_ids * sizeof(void **);
7165
7166 #endif /* CONFIG_FAIR_GROUP_SCHED */
7167 #ifdef CONFIG_RT_GROUP_SCHED
7168 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7169 ptr += nr_cpu_ids * sizeof(void **);
7170
7171 root_task_group.rt_rq = (struct rt_rq **)ptr;
7172 ptr += nr_cpu_ids * sizeof(void **);
7173
7174 #endif /* CONFIG_RT_GROUP_SCHED */
7175 }
7176 #ifdef CONFIG_CPUMASK_OFFSTACK
7177 for_each_possible_cpu(i) {
7178 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7179 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7180 }
7181 #endif /* CONFIG_CPUMASK_OFFSTACK */
7182
7183 init_rt_bandwidth(&def_rt_bandwidth,
7184 global_rt_period(), global_rt_runtime());
7185 init_dl_bandwidth(&def_dl_bandwidth,
7186 global_rt_period(), global_rt_runtime());
7187
7188 #ifdef CONFIG_SMP
7189 init_defrootdomain();
7190 #endif
7191
7192 #ifdef CONFIG_RT_GROUP_SCHED
7193 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7194 global_rt_period(), global_rt_runtime());
7195 #endif /* CONFIG_RT_GROUP_SCHED */
7196
7197 #ifdef CONFIG_CGROUP_SCHED
7198 list_add(&root_task_group.list, &task_groups);
7199 INIT_LIST_HEAD(&root_task_group.children);
7200 INIT_LIST_HEAD(&root_task_group.siblings);
7201 autogroup_init(&init_task);
7202
7203 #endif /* CONFIG_CGROUP_SCHED */
7204
7205 for_each_possible_cpu(i) {
7206 struct rq *rq;
7207
7208 rq = cpu_rq(i);
7209 raw_spin_lock_init(&rq->lock);
7210 rq->nr_running = 0;
7211 rq->calc_load_active = 0;
7212 rq->calc_load_update = jiffies + LOAD_FREQ;
7213 init_cfs_rq(&rq->cfs);
7214 init_rt_rq(&rq->rt);
7215 init_dl_rq(&rq->dl);
7216 #ifdef CONFIG_FAIR_GROUP_SCHED
7217 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7218 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7219 /*
7220 * How much cpu bandwidth does root_task_group get?
7221 *
7222 * In case of task-groups formed thr' the cgroup filesystem, it
7223 * gets 100% of the cpu resources in the system. This overall
7224 * system cpu resource is divided among the tasks of
7225 * root_task_group and its child task-groups in a fair manner,
7226 * based on each entity's (task or task-group's) weight
7227 * (se->load.weight).
7228 *
7229 * In other words, if root_task_group has 10 tasks of weight
7230 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7231 * then A0's share of the cpu resource is:
7232 *
7233 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7234 *
7235 * We achieve this by letting root_task_group's tasks sit
7236 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7237 */
7238 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7239 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7240 #endif /* CONFIG_FAIR_GROUP_SCHED */
7241
7242 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7243 #ifdef CONFIG_RT_GROUP_SCHED
7244 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7245 #endif
7246
7247 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7248 rq->cpu_load[j] = 0;
7249
7250 rq->last_load_update_tick = jiffies;
7251
7252 #ifdef CONFIG_SMP
7253 rq->sd = NULL;
7254 rq->rd = NULL;
7255 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7256 rq->balance_callback = NULL;
7257 rq->active_balance = 0;
7258 rq->next_balance = jiffies;
7259 rq->push_cpu = 0;
7260 rq->cpu = i;
7261 rq->online = 0;
7262 rq->idle_stamp = 0;
7263 rq->avg_idle = 2*sysctl_sched_migration_cost;
7264 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7265
7266 INIT_LIST_HEAD(&rq->cfs_tasks);
7267
7268 rq_attach_root(rq, &def_root_domain);
7269 #ifdef CONFIG_NO_HZ_COMMON
7270 rq->nohz_flags = 0;
7271 #endif
7272 #ifdef CONFIG_NO_HZ_FULL
7273 rq->last_sched_tick = 0;
7274 #endif
7275 #endif
7276 init_rq_hrtick(rq);
7277 atomic_set(&rq->nr_iowait, 0);
7278 }
7279
7280 set_load_weight(&init_task);
7281
7282 #ifdef CONFIG_PREEMPT_NOTIFIERS
7283 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7284 #endif
7285
7286 /*
7287 * The boot idle thread does lazy MMU switching as well:
7288 */
7289 atomic_inc(&init_mm.mm_count);
7290 enter_lazy_tlb(&init_mm, current);
7291
7292 /*
7293 * During early bootup we pretend to be a normal task:
7294 */
7295 current->sched_class = &fair_sched_class;
7296
7297 /*
7298 * Make us the idle thread. Technically, schedule() should not be
7299 * called from this thread, however somewhere below it might be,
7300 * but because we are the idle thread, we just pick up running again
7301 * when this runqueue becomes "idle".
7302 */
7303 init_idle(current, smp_processor_id());
7304
7305 calc_load_update = jiffies + LOAD_FREQ;
7306
7307 #ifdef CONFIG_SMP
7308 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7309 /* May be allocated at isolcpus cmdline parse time */
7310 if (cpu_isolated_map == NULL)
7311 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7312 idle_thread_set_boot_cpu();
7313 set_cpu_rq_start_time();
7314 #endif
7315 init_sched_fair_class();
7316
7317 scheduler_running = 1;
7318 }
7319
7320 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7321 static inline int preempt_count_equals(int preempt_offset)
7322 {
7323 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7324
7325 return (nested == preempt_offset);
7326 }
7327
7328 void __might_sleep(const char *file, int line, int preempt_offset)
7329 {
7330 /*
7331 * Blocking primitives will set (and therefore destroy) current->state,
7332 * since we will exit with TASK_RUNNING make sure we enter with it,
7333 * otherwise we will destroy state.
7334 */
7335 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7336 "do not call blocking ops when !TASK_RUNNING; "
7337 "state=%lx set at [<%p>] %pS\n",
7338 current->state,
7339 (void *)current->task_state_change,
7340 (void *)current->task_state_change);
7341
7342 ___might_sleep(file, line, preempt_offset);
7343 }
7344 EXPORT_SYMBOL(__might_sleep);
7345
7346 void ___might_sleep(const char *file, int line, int preempt_offset)
7347 {
7348 static unsigned long prev_jiffy; /* ratelimiting */
7349
7350 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7351 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7352 !is_idle_task(current)) ||
7353 system_state != SYSTEM_RUNNING || oops_in_progress)
7354 return;
7355 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7356 return;
7357 prev_jiffy = jiffies;
7358
7359 printk(KERN_ERR
7360 "BUG: sleeping function called from invalid context at %s:%d\n",
7361 file, line);
7362 printk(KERN_ERR
7363 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7364 in_atomic(), irqs_disabled(),
7365 current->pid, current->comm);
7366
7367 if (task_stack_end_corrupted(current))
7368 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7369
7370 debug_show_held_locks(current);
7371 if (irqs_disabled())
7372 print_irqtrace_events(current);
7373 #ifdef CONFIG_DEBUG_PREEMPT
7374 if (!preempt_count_equals(preempt_offset)) {
7375 pr_err("Preemption disabled at:");
7376 print_ip_sym(current->preempt_disable_ip);
7377 pr_cont("\n");
7378 }
7379 #endif
7380 dump_stack();
7381 }
7382 EXPORT_SYMBOL(___might_sleep);
7383 #endif
7384
7385 #ifdef CONFIG_MAGIC_SYSRQ
7386 void normalize_rt_tasks(void)
7387 {
7388 struct task_struct *g, *p;
7389 struct sched_attr attr = {
7390 .sched_policy = SCHED_NORMAL,
7391 };
7392
7393 read_lock(&tasklist_lock);
7394 for_each_process_thread(g, p) {
7395 /*
7396 * Only normalize user tasks:
7397 */
7398 if (p->flags & PF_KTHREAD)
7399 continue;
7400
7401 p->se.exec_start = 0;
7402 #ifdef CONFIG_SCHEDSTATS
7403 p->se.statistics.wait_start = 0;
7404 p->se.statistics.sleep_start = 0;
7405 p->se.statistics.block_start = 0;
7406 #endif
7407
7408 if (!dl_task(p) && !rt_task(p)) {
7409 /*
7410 * Renice negative nice level userspace
7411 * tasks back to 0:
7412 */
7413 if (task_nice(p) < 0)
7414 set_user_nice(p, 0);
7415 continue;
7416 }
7417
7418 __sched_setscheduler(p, &attr, false, false);
7419 }
7420 read_unlock(&tasklist_lock);
7421 }
7422
7423 #endif /* CONFIG_MAGIC_SYSRQ */
7424
7425 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7426 /*
7427 * These functions are only useful for the IA64 MCA handling, or kdb.
7428 *
7429 * They can only be called when the whole system has been
7430 * stopped - every CPU needs to be quiescent, and no scheduling
7431 * activity can take place. Using them for anything else would
7432 * be a serious bug, and as a result, they aren't even visible
7433 * under any other configuration.
7434 */
7435
7436 /**
7437 * curr_task - return the current task for a given cpu.
7438 * @cpu: the processor in question.
7439 *
7440 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7441 *
7442 * Return: The current task for @cpu.
7443 */
7444 struct task_struct *curr_task(int cpu)
7445 {
7446 return cpu_curr(cpu);
7447 }
7448
7449 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7450
7451 #ifdef CONFIG_IA64
7452 /**
7453 * set_curr_task - set the current task for a given cpu.
7454 * @cpu: the processor in question.
7455 * @p: the task pointer to set.
7456 *
7457 * Description: This function must only be used when non-maskable interrupts
7458 * are serviced on a separate stack. It allows the architecture to switch the
7459 * notion of the current task on a cpu in a non-blocking manner. This function
7460 * must be called with all CPU's synchronized, and interrupts disabled, the
7461 * and caller must save the original value of the current task (see
7462 * curr_task() above) and restore that value before reenabling interrupts and
7463 * re-starting the system.
7464 *
7465 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7466 */
7467 void set_curr_task(int cpu, struct task_struct *p)
7468 {
7469 cpu_curr(cpu) = p;
7470 }
7471
7472 #endif
7473
7474 #ifdef CONFIG_CGROUP_SCHED
7475 /* task_group_lock serializes the addition/removal of task groups */
7476 static DEFINE_SPINLOCK(task_group_lock);
7477
7478 static void free_sched_group(struct task_group *tg)
7479 {
7480 free_fair_sched_group(tg);
7481 free_rt_sched_group(tg);
7482 autogroup_free(tg);
7483 kfree(tg);
7484 }
7485
7486 /* allocate runqueue etc for a new task group */
7487 struct task_group *sched_create_group(struct task_group *parent)
7488 {
7489 struct task_group *tg;
7490
7491 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7492 if (!tg)
7493 return ERR_PTR(-ENOMEM);
7494
7495 if (!alloc_fair_sched_group(tg, parent))
7496 goto err;
7497
7498 if (!alloc_rt_sched_group(tg, parent))
7499 goto err;
7500
7501 return tg;
7502
7503 err:
7504 free_sched_group(tg);
7505 return ERR_PTR(-ENOMEM);
7506 }
7507
7508 void sched_online_group(struct task_group *tg, struct task_group *parent)
7509 {
7510 unsigned long flags;
7511
7512 spin_lock_irqsave(&task_group_lock, flags);
7513 list_add_rcu(&tg->list, &task_groups);
7514
7515 WARN_ON(!parent); /* root should already exist */
7516
7517 tg->parent = parent;
7518 INIT_LIST_HEAD(&tg->children);
7519 list_add_rcu(&tg->siblings, &parent->children);
7520 spin_unlock_irqrestore(&task_group_lock, flags);
7521 }
7522
7523 /* rcu callback to free various structures associated with a task group */
7524 static void free_sched_group_rcu(struct rcu_head *rhp)
7525 {
7526 /* now it should be safe to free those cfs_rqs */
7527 free_sched_group(container_of(rhp, struct task_group, rcu));
7528 }
7529
7530 /* Destroy runqueue etc associated with a task group */
7531 void sched_destroy_group(struct task_group *tg)
7532 {
7533 /* wait for possible concurrent references to cfs_rqs complete */
7534 call_rcu(&tg->rcu, free_sched_group_rcu);
7535 }
7536
7537 void sched_offline_group(struct task_group *tg)
7538 {
7539 unsigned long flags;
7540 int i;
7541
7542 /* end participation in shares distribution */
7543 for_each_possible_cpu(i)
7544 unregister_fair_sched_group(tg, i);
7545
7546 spin_lock_irqsave(&task_group_lock, flags);
7547 list_del_rcu(&tg->list);
7548 list_del_rcu(&tg->siblings);
7549 spin_unlock_irqrestore(&task_group_lock, flags);
7550 }
7551
7552 /* change task's runqueue when it moves between groups.
7553 * The caller of this function should have put the task in its new group
7554 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7555 * reflect its new group.
7556 */
7557 void sched_move_task(struct task_struct *tsk)
7558 {
7559 struct task_group *tg;
7560 int queued, running;
7561 unsigned long flags;
7562 struct rq *rq;
7563
7564 rq = task_rq_lock(tsk, &flags);
7565
7566 running = task_current(rq, tsk);
7567 queued = task_on_rq_queued(tsk);
7568
7569 if (queued)
7570 dequeue_task(rq, tsk, 0);
7571 if (unlikely(running))
7572 put_prev_task(rq, tsk);
7573
7574 /*
7575 * All callers are synchronized by task_rq_lock(); we do not use RCU
7576 * which is pointless here. Thus, we pass "true" to task_css_check()
7577 * to prevent lockdep warnings.
7578 */
7579 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7580 struct task_group, css);
7581 tg = autogroup_task_group(tsk, tg);
7582 tsk->sched_task_group = tg;
7583
7584 #ifdef CONFIG_FAIR_GROUP_SCHED
7585 if (tsk->sched_class->task_move_group)
7586 tsk->sched_class->task_move_group(tsk, queued);
7587 else
7588 #endif
7589 set_task_rq(tsk, task_cpu(tsk));
7590
7591 if (unlikely(running))
7592 tsk->sched_class->set_curr_task(rq);
7593 if (queued)
7594 enqueue_task(rq, tsk, 0);
7595
7596 task_rq_unlock(rq, tsk, &flags);
7597 }
7598 #endif /* CONFIG_CGROUP_SCHED */
7599
7600 #ifdef CONFIG_RT_GROUP_SCHED
7601 /*
7602 * Ensure that the real time constraints are schedulable.
7603 */
7604 static DEFINE_MUTEX(rt_constraints_mutex);
7605
7606 /* Must be called with tasklist_lock held */
7607 static inline int tg_has_rt_tasks(struct task_group *tg)
7608 {
7609 struct task_struct *g, *p;
7610
7611 /*
7612 * Autogroups do not have RT tasks; see autogroup_create().
7613 */
7614 if (task_group_is_autogroup(tg))
7615 return 0;
7616
7617 for_each_process_thread(g, p) {
7618 if (rt_task(p) && task_group(p) == tg)
7619 return 1;
7620 }
7621
7622 return 0;
7623 }
7624
7625 struct rt_schedulable_data {
7626 struct task_group *tg;
7627 u64 rt_period;
7628 u64 rt_runtime;
7629 };
7630
7631 static int tg_rt_schedulable(struct task_group *tg, void *data)
7632 {
7633 struct rt_schedulable_data *d = data;
7634 struct task_group *child;
7635 unsigned long total, sum = 0;
7636 u64 period, runtime;
7637
7638 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7639 runtime = tg->rt_bandwidth.rt_runtime;
7640
7641 if (tg == d->tg) {
7642 period = d->rt_period;
7643 runtime = d->rt_runtime;
7644 }
7645
7646 /*
7647 * Cannot have more runtime than the period.
7648 */
7649 if (runtime > period && runtime != RUNTIME_INF)
7650 return -EINVAL;
7651
7652 /*
7653 * Ensure we don't starve existing RT tasks.
7654 */
7655 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7656 return -EBUSY;
7657
7658 total = to_ratio(period, runtime);
7659
7660 /*
7661 * Nobody can have more than the global setting allows.
7662 */
7663 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7664 return -EINVAL;
7665
7666 /*
7667 * The sum of our children's runtime should not exceed our own.
7668 */
7669 list_for_each_entry_rcu(child, &tg->children, siblings) {
7670 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7671 runtime = child->rt_bandwidth.rt_runtime;
7672
7673 if (child == d->tg) {
7674 period = d->rt_period;
7675 runtime = d->rt_runtime;
7676 }
7677
7678 sum += to_ratio(period, runtime);
7679 }
7680
7681 if (sum > total)
7682 return -EINVAL;
7683
7684 return 0;
7685 }
7686
7687 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7688 {
7689 int ret;
7690
7691 struct rt_schedulable_data data = {
7692 .tg = tg,
7693 .rt_period = period,
7694 .rt_runtime = runtime,
7695 };
7696
7697 rcu_read_lock();
7698 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7699 rcu_read_unlock();
7700
7701 return ret;
7702 }
7703
7704 static int tg_set_rt_bandwidth(struct task_group *tg,
7705 u64 rt_period, u64 rt_runtime)
7706 {
7707 int i, err = 0;
7708
7709 /*
7710 * Disallowing the root group RT runtime is BAD, it would disallow the
7711 * kernel creating (and or operating) RT threads.
7712 */
7713 if (tg == &root_task_group && rt_runtime == 0)
7714 return -EINVAL;
7715
7716 /* No period doesn't make any sense. */
7717 if (rt_period == 0)
7718 return -EINVAL;
7719
7720 mutex_lock(&rt_constraints_mutex);
7721 read_lock(&tasklist_lock);
7722 err = __rt_schedulable(tg, rt_period, rt_runtime);
7723 if (err)
7724 goto unlock;
7725
7726 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7727 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7728 tg->rt_bandwidth.rt_runtime = rt_runtime;
7729
7730 for_each_possible_cpu(i) {
7731 struct rt_rq *rt_rq = tg->rt_rq[i];
7732
7733 raw_spin_lock(&rt_rq->rt_runtime_lock);
7734 rt_rq->rt_runtime = rt_runtime;
7735 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7736 }
7737 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7738 unlock:
7739 read_unlock(&tasklist_lock);
7740 mutex_unlock(&rt_constraints_mutex);
7741
7742 return err;
7743 }
7744
7745 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7746 {
7747 u64 rt_runtime, rt_period;
7748
7749 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7750 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7751 if (rt_runtime_us < 0)
7752 rt_runtime = RUNTIME_INF;
7753
7754 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7755 }
7756
7757 static long sched_group_rt_runtime(struct task_group *tg)
7758 {
7759 u64 rt_runtime_us;
7760
7761 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7762 return -1;
7763
7764 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7765 do_div(rt_runtime_us, NSEC_PER_USEC);
7766 return rt_runtime_us;
7767 }
7768
7769 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7770 {
7771 u64 rt_runtime, rt_period;
7772
7773 rt_period = rt_period_us * NSEC_PER_USEC;
7774 rt_runtime = tg->rt_bandwidth.rt_runtime;
7775
7776 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7777 }
7778
7779 static long sched_group_rt_period(struct task_group *tg)
7780 {
7781 u64 rt_period_us;
7782
7783 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7784 do_div(rt_period_us, NSEC_PER_USEC);
7785 return rt_period_us;
7786 }
7787 #endif /* CONFIG_RT_GROUP_SCHED */
7788
7789 #ifdef CONFIG_RT_GROUP_SCHED
7790 static int sched_rt_global_constraints(void)
7791 {
7792 int ret = 0;
7793
7794 mutex_lock(&rt_constraints_mutex);
7795 read_lock(&tasklist_lock);
7796 ret = __rt_schedulable(NULL, 0, 0);
7797 read_unlock(&tasklist_lock);
7798 mutex_unlock(&rt_constraints_mutex);
7799
7800 return ret;
7801 }
7802
7803 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7804 {
7805 /* Don't accept realtime tasks when there is no way for them to run */
7806 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7807 return 0;
7808
7809 return 1;
7810 }
7811
7812 #else /* !CONFIG_RT_GROUP_SCHED */
7813 static int sched_rt_global_constraints(void)
7814 {
7815 unsigned long flags;
7816 int i, ret = 0;
7817
7818 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7819 for_each_possible_cpu(i) {
7820 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7821
7822 raw_spin_lock(&rt_rq->rt_runtime_lock);
7823 rt_rq->rt_runtime = global_rt_runtime();
7824 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7825 }
7826 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7827
7828 return ret;
7829 }
7830 #endif /* CONFIG_RT_GROUP_SCHED */
7831
7832 static int sched_dl_global_validate(void)
7833 {
7834 u64 runtime = global_rt_runtime();
7835 u64 period = global_rt_period();
7836 u64 new_bw = to_ratio(period, runtime);
7837 struct dl_bw *dl_b;
7838 int cpu, ret = 0;
7839 unsigned long flags;
7840
7841 /*
7842 * Here we want to check the bandwidth not being set to some
7843 * value smaller than the currently allocated bandwidth in
7844 * any of the root_domains.
7845 *
7846 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7847 * cycling on root_domains... Discussion on different/better
7848 * solutions is welcome!
7849 */
7850 for_each_possible_cpu(cpu) {
7851 rcu_read_lock_sched();
7852 dl_b = dl_bw_of(cpu);
7853
7854 raw_spin_lock_irqsave(&dl_b->lock, flags);
7855 if (new_bw < dl_b->total_bw)
7856 ret = -EBUSY;
7857 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7858
7859 rcu_read_unlock_sched();
7860
7861 if (ret)
7862 break;
7863 }
7864
7865 return ret;
7866 }
7867
7868 static void sched_dl_do_global(void)
7869 {
7870 u64 new_bw = -1;
7871 struct dl_bw *dl_b;
7872 int cpu;
7873 unsigned long flags;
7874
7875 def_dl_bandwidth.dl_period = global_rt_period();
7876 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7877
7878 if (global_rt_runtime() != RUNTIME_INF)
7879 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7880
7881 /*
7882 * FIXME: As above...
7883 */
7884 for_each_possible_cpu(cpu) {
7885 rcu_read_lock_sched();
7886 dl_b = dl_bw_of(cpu);
7887
7888 raw_spin_lock_irqsave(&dl_b->lock, flags);
7889 dl_b->bw = new_bw;
7890 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7891
7892 rcu_read_unlock_sched();
7893 }
7894 }
7895
7896 static int sched_rt_global_validate(void)
7897 {
7898 if (sysctl_sched_rt_period <= 0)
7899 return -EINVAL;
7900
7901 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7902 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7903 return -EINVAL;
7904
7905 return 0;
7906 }
7907
7908 static void sched_rt_do_global(void)
7909 {
7910 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7911 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7912 }
7913
7914 int sched_rt_handler(struct ctl_table *table, int write,
7915 void __user *buffer, size_t *lenp,
7916 loff_t *ppos)
7917 {
7918 int old_period, old_runtime;
7919 static DEFINE_MUTEX(mutex);
7920 int ret;
7921
7922 mutex_lock(&mutex);
7923 old_period = sysctl_sched_rt_period;
7924 old_runtime = sysctl_sched_rt_runtime;
7925
7926 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7927
7928 if (!ret && write) {
7929 ret = sched_rt_global_validate();
7930 if (ret)
7931 goto undo;
7932
7933 ret = sched_dl_global_validate();
7934 if (ret)
7935 goto undo;
7936
7937 ret = sched_rt_global_constraints();
7938 if (ret)
7939 goto undo;
7940
7941 sched_rt_do_global();
7942 sched_dl_do_global();
7943 }
7944 if (0) {
7945 undo:
7946 sysctl_sched_rt_period = old_period;
7947 sysctl_sched_rt_runtime = old_runtime;
7948 }
7949 mutex_unlock(&mutex);
7950
7951 return ret;
7952 }
7953
7954 int sched_rr_handler(struct ctl_table *table, int write,
7955 void __user *buffer, size_t *lenp,
7956 loff_t *ppos)
7957 {
7958 int ret;
7959 static DEFINE_MUTEX(mutex);
7960
7961 mutex_lock(&mutex);
7962 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7963 /* make sure that internally we keep jiffies */
7964 /* also, writing zero resets timeslice to default */
7965 if (!ret && write) {
7966 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7967 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7968 }
7969 mutex_unlock(&mutex);
7970 return ret;
7971 }
7972
7973 #ifdef CONFIG_CGROUP_SCHED
7974
7975 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7976 {
7977 return css ? container_of(css, struct task_group, css) : NULL;
7978 }
7979
7980 static struct cgroup_subsys_state *
7981 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7982 {
7983 struct task_group *parent = css_tg(parent_css);
7984 struct task_group *tg;
7985
7986 if (!parent) {
7987 /* This is early initialization for the top cgroup */
7988 return &root_task_group.css;
7989 }
7990
7991 tg = sched_create_group(parent);
7992 if (IS_ERR(tg))
7993 return ERR_PTR(-ENOMEM);
7994
7995 return &tg->css;
7996 }
7997
7998 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7999 {
8000 struct task_group *tg = css_tg(css);
8001 struct task_group *parent = css_tg(css->parent);
8002
8003 if (parent)
8004 sched_online_group(tg, parent);
8005 return 0;
8006 }
8007
8008 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8009 {
8010 struct task_group *tg = css_tg(css);
8011
8012 sched_destroy_group(tg);
8013 }
8014
8015 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8016 {
8017 struct task_group *tg = css_tg(css);
8018
8019 sched_offline_group(tg);
8020 }
8021
8022 static void cpu_cgroup_fork(struct task_struct *task)
8023 {
8024 sched_move_task(task);
8025 }
8026
8027 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8028 struct cgroup_taskset *tset)
8029 {
8030 struct task_struct *task;
8031
8032 cgroup_taskset_for_each(task, tset) {
8033 #ifdef CONFIG_RT_GROUP_SCHED
8034 if (!sched_rt_can_attach(css_tg(css), task))
8035 return -EINVAL;
8036 #else
8037 /* We don't support RT-tasks being in separate groups */
8038 if (task->sched_class != &fair_sched_class)
8039 return -EINVAL;
8040 #endif
8041 }
8042 return 0;
8043 }
8044
8045 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8046 struct cgroup_taskset *tset)
8047 {
8048 struct task_struct *task;
8049
8050 cgroup_taskset_for_each(task, tset)
8051 sched_move_task(task);
8052 }
8053
8054 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8055 struct cgroup_subsys_state *old_css,
8056 struct task_struct *task)
8057 {
8058 /*
8059 * cgroup_exit() is called in the copy_process() failure path.
8060 * Ignore this case since the task hasn't ran yet, this avoids
8061 * trying to poke a half freed task state from generic code.
8062 */
8063 if (!(task->flags & PF_EXITING))
8064 return;
8065
8066 sched_move_task(task);
8067 }
8068
8069 #ifdef CONFIG_FAIR_GROUP_SCHED
8070 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8071 struct cftype *cftype, u64 shareval)
8072 {
8073 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8074 }
8075
8076 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8077 struct cftype *cft)
8078 {
8079 struct task_group *tg = css_tg(css);
8080
8081 return (u64) scale_load_down(tg->shares);
8082 }
8083
8084 #ifdef CONFIG_CFS_BANDWIDTH
8085 static DEFINE_MUTEX(cfs_constraints_mutex);
8086
8087 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8088 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8089
8090 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8091
8092 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8093 {
8094 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8095 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8096
8097 if (tg == &root_task_group)
8098 return -EINVAL;
8099
8100 /*
8101 * Ensure we have at some amount of bandwidth every period. This is
8102 * to prevent reaching a state of large arrears when throttled via
8103 * entity_tick() resulting in prolonged exit starvation.
8104 */
8105 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8106 return -EINVAL;
8107
8108 /*
8109 * Likewise, bound things on the otherside by preventing insane quota
8110 * periods. This also allows us to normalize in computing quota
8111 * feasibility.
8112 */
8113 if (period > max_cfs_quota_period)
8114 return -EINVAL;
8115
8116 /*
8117 * Prevent race between setting of cfs_rq->runtime_enabled and
8118 * unthrottle_offline_cfs_rqs().
8119 */
8120 get_online_cpus();
8121 mutex_lock(&cfs_constraints_mutex);
8122 ret = __cfs_schedulable(tg, period, quota);
8123 if (ret)
8124 goto out_unlock;
8125
8126 runtime_enabled = quota != RUNTIME_INF;
8127 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8128 /*
8129 * If we need to toggle cfs_bandwidth_used, off->on must occur
8130 * before making related changes, and on->off must occur afterwards
8131 */
8132 if (runtime_enabled && !runtime_was_enabled)
8133 cfs_bandwidth_usage_inc();
8134 raw_spin_lock_irq(&cfs_b->lock);
8135 cfs_b->period = ns_to_ktime(period);
8136 cfs_b->quota = quota;
8137
8138 __refill_cfs_bandwidth_runtime(cfs_b);
8139 /* restart the period timer (if active) to handle new period expiry */
8140 if (runtime_enabled)
8141 start_cfs_bandwidth(cfs_b);
8142 raw_spin_unlock_irq(&cfs_b->lock);
8143
8144 for_each_online_cpu(i) {
8145 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8146 struct rq *rq = cfs_rq->rq;
8147
8148 raw_spin_lock_irq(&rq->lock);
8149 cfs_rq->runtime_enabled = runtime_enabled;
8150 cfs_rq->runtime_remaining = 0;
8151
8152 if (cfs_rq->throttled)
8153 unthrottle_cfs_rq(cfs_rq);
8154 raw_spin_unlock_irq(&rq->lock);
8155 }
8156 if (runtime_was_enabled && !runtime_enabled)
8157 cfs_bandwidth_usage_dec();
8158 out_unlock:
8159 mutex_unlock(&cfs_constraints_mutex);
8160 put_online_cpus();
8161
8162 return ret;
8163 }
8164
8165 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8166 {
8167 u64 quota, period;
8168
8169 period = ktime_to_ns(tg->cfs_bandwidth.period);
8170 if (cfs_quota_us < 0)
8171 quota = RUNTIME_INF;
8172 else
8173 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8174
8175 return tg_set_cfs_bandwidth(tg, period, quota);
8176 }
8177
8178 long tg_get_cfs_quota(struct task_group *tg)
8179 {
8180 u64 quota_us;
8181
8182 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8183 return -1;
8184
8185 quota_us = tg->cfs_bandwidth.quota;
8186 do_div(quota_us, NSEC_PER_USEC);
8187
8188 return quota_us;
8189 }
8190
8191 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8192 {
8193 u64 quota, period;
8194
8195 period = (u64)cfs_period_us * NSEC_PER_USEC;
8196 quota = tg->cfs_bandwidth.quota;
8197
8198 return tg_set_cfs_bandwidth(tg, period, quota);
8199 }
8200
8201 long tg_get_cfs_period(struct task_group *tg)
8202 {
8203 u64 cfs_period_us;
8204
8205 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8206 do_div(cfs_period_us, NSEC_PER_USEC);
8207
8208 return cfs_period_us;
8209 }
8210
8211 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8212 struct cftype *cft)
8213 {
8214 return tg_get_cfs_quota(css_tg(css));
8215 }
8216
8217 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8218 struct cftype *cftype, s64 cfs_quota_us)
8219 {
8220 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8221 }
8222
8223 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8224 struct cftype *cft)
8225 {
8226 return tg_get_cfs_period(css_tg(css));
8227 }
8228
8229 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8230 struct cftype *cftype, u64 cfs_period_us)
8231 {
8232 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8233 }
8234
8235 struct cfs_schedulable_data {
8236 struct task_group *tg;
8237 u64 period, quota;
8238 };
8239
8240 /*
8241 * normalize group quota/period to be quota/max_period
8242 * note: units are usecs
8243 */
8244 static u64 normalize_cfs_quota(struct task_group *tg,
8245 struct cfs_schedulable_data *d)
8246 {
8247 u64 quota, period;
8248
8249 if (tg == d->tg) {
8250 period = d->period;
8251 quota = d->quota;
8252 } else {
8253 period = tg_get_cfs_period(tg);
8254 quota = tg_get_cfs_quota(tg);
8255 }
8256
8257 /* note: these should typically be equivalent */
8258 if (quota == RUNTIME_INF || quota == -1)
8259 return RUNTIME_INF;
8260
8261 return to_ratio(period, quota);
8262 }
8263
8264 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8265 {
8266 struct cfs_schedulable_data *d = data;
8267 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8268 s64 quota = 0, parent_quota = -1;
8269
8270 if (!tg->parent) {
8271 quota = RUNTIME_INF;
8272 } else {
8273 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8274
8275 quota = normalize_cfs_quota(tg, d);
8276 parent_quota = parent_b->hierarchical_quota;
8277
8278 /*
8279 * ensure max(child_quota) <= parent_quota, inherit when no
8280 * limit is set
8281 */
8282 if (quota == RUNTIME_INF)
8283 quota = parent_quota;
8284 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8285 return -EINVAL;
8286 }
8287 cfs_b->hierarchical_quota = quota;
8288
8289 return 0;
8290 }
8291
8292 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8293 {
8294 int ret;
8295 struct cfs_schedulable_data data = {
8296 .tg = tg,
8297 .period = period,
8298 .quota = quota,
8299 };
8300
8301 if (quota != RUNTIME_INF) {
8302 do_div(data.period, NSEC_PER_USEC);
8303 do_div(data.quota, NSEC_PER_USEC);
8304 }
8305
8306 rcu_read_lock();
8307 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8308 rcu_read_unlock();
8309
8310 return ret;
8311 }
8312
8313 static int cpu_stats_show(struct seq_file *sf, void *v)
8314 {
8315 struct task_group *tg = css_tg(seq_css(sf));
8316 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8317
8318 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8319 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8320 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8321
8322 return 0;
8323 }
8324 #endif /* CONFIG_CFS_BANDWIDTH */
8325 #endif /* CONFIG_FAIR_GROUP_SCHED */
8326
8327 #ifdef CONFIG_RT_GROUP_SCHED
8328 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8329 struct cftype *cft, s64 val)
8330 {
8331 return sched_group_set_rt_runtime(css_tg(css), val);
8332 }
8333
8334 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8335 struct cftype *cft)
8336 {
8337 return sched_group_rt_runtime(css_tg(css));
8338 }
8339
8340 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8341 struct cftype *cftype, u64 rt_period_us)
8342 {
8343 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8344 }
8345
8346 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8347 struct cftype *cft)
8348 {
8349 return sched_group_rt_period(css_tg(css));
8350 }
8351 #endif /* CONFIG_RT_GROUP_SCHED */
8352
8353 static struct cftype cpu_files[] = {
8354 #ifdef CONFIG_FAIR_GROUP_SCHED
8355 {
8356 .name = "shares",
8357 .read_u64 = cpu_shares_read_u64,
8358 .write_u64 = cpu_shares_write_u64,
8359 },
8360 #endif
8361 #ifdef CONFIG_CFS_BANDWIDTH
8362 {
8363 .name = "cfs_quota_us",
8364 .read_s64 = cpu_cfs_quota_read_s64,
8365 .write_s64 = cpu_cfs_quota_write_s64,
8366 },
8367 {
8368 .name = "cfs_period_us",
8369 .read_u64 = cpu_cfs_period_read_u64,
8370 .write_u64 = cpu_cfs_period_write_u64,
8371 },
8372 {
8373 .name = "stat",
8374 .seq_show = cpu_stats_show,
8375 },
8376 #endif
8377 #ifdef CONFIG_RT_GROUP_SCHED
8378 {
8379 .name = "rt_runtime_us",
8380 .read_s64 = cpu_rt_runtime_read,
8381 .write_s64 = cpu_rt_runtime_write,
8382 },
8383 {
8384 .name = "rt_period_us",
8385 .read_u64 = cpu_rt_period_read_uint,
8386 .write_u64 = cpu_rt_period_write_uint,
8387 },
8388 #endif
8389 { } /* terminate */
8390 };
8391
8392 struct cgroup_subsys cpu_cgrp_subsys = {
8393 .css_alloc = cpu_cgroup_css_alloc,
8394 .css_free = cpu_cgroup_css_free,
8395 .css_online = cpu_cgroup_css_online,
8396 .css_offline = cpu_cgroup_css_offline,
8397 .fork = cpu_cgroup_fork,
8398 .can_attach = cpu_cgroup_can_attach,
8399 .attach = cpu_cgroup_attach,
8400 .exit = cpu_cgroup_exit,
8401 .legacy_cftypes = cpu_files,
8402 .early_init = 1,
8403 };
8404
8405 #endif /* CONFIG_CGROUP_SCHED */
8406
8407 void dump_cpu_task(int cpu)
8408 {
8409 pr_info("Task dump for CPU %d:\n", cpu);
8410 sched_show_task(cpu_curr(cpu));
8411 }
This page took 0.31332 seconds and 5 git commands to generate.