staging: imx-drm: Replace DRM_LOG_KMS() by DRM_DEBUG_KMS()
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299 /*
300 * __task_rq_lock - lock the rq @p resides on.
301 */
302 static inline struct rq *__task_rq_lock(struct task_struct *p)
303 __acquires(rq->lock)
304 {
305 struct rq *rq;
306
307 lockdep_assert_held(&p->pi_lock);
308
309 for (;;) {
310 rq = task_rq(p);
311 raw_spin_lock(&rq->lock);
312 if (likely(rq == task_rq(p)))
313 return rq;
314 raw_spin_unlock(&rq->lock);
315 }
316 }
317
318 /*
319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
320 */
321 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322 __acquires(p->pi_lock)
323 __acquires(rq->lock)
324 {
325 struct rq *rq;
326
327 for (;;) {
328 raw_spin_lock_irqsave(&p->pi_lock, *flags);
329 rq = task_rq(p);
330 raw_spin_lock(&rq->lock);
331 if (likely(rq == task_rq(p)))
332 return rq;
333 raw_spin_unlock(&rq->lock);
334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
335 }
336 }
337
338 static void __task_rq_unlock(struct rq *rq)
339 __releases(rq->lock)
340 {
341 raw_spin_unlock(&rq->lock);
342 }
343
344 static inline void
345 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
346 __releases(rq->lock)
347 __releases(p->pi_lock)
348 {
349 raw_spin_unlock(&rq->lock);
350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
351 }
352
353 /*
354 * this_rq_lock - lock this runqueue and disable interrupts.
355 */
356 static struct rq *this_rq_lock(void)
357 __acquires(rq->lock)
358 {
359 struct rq *rq;
360
361 local_irq_disable();
362 rq = this_rq();
363 raw_spin_lock(&rq->lock);
364
365 return rq;
366 }
367
368 #ifdef CONFIG_SCHED_HRTICK
369 /*
370 * Use HR-timers to deliver accurate preemption points.
371 */
372
373 static void hrtick_clear(struct rq *rq)
374 {
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377 }
378
379 /*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389 raw_spin_lock(&rq->lock);
390 update_rq_clock(rq);
391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 raw_spin_unlock(&rq->lock);
393
394 return HRTIMER_NORESTART;
395 }
396
397 #ifdef CONFIG_SMP
398
399 static int __hrtick_restart(struct rq *rq)
400 {
401 struct hrtimer *timer = &rq->hrtick_timer;
402 ktime_t time = hrtimer_get_softexpires(timer);
403
404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405 }
406
407 /*
408 * called from hardirq (IPI) context
409 */
410 static void __hrtick_start(void *arg)
411 {
412 struct rq *rq = arg;
413
414 raw_spin_lock(&rq->lock);
415 __hrtick_restart(rq);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
418 }
419
420 /*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430 hrtimer_set_expires(timer, time);
431
432 if (rq == this_rq()) {
433 __hrtick_restart(rq);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
437 }
438 }
439
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457 }
458
459 static __init void init_hrtick(void)
460 {
461 hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
473 }
474
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
484
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488 #endif
489
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
492 }
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif /* CONFIG_SCHED_HRTICK */
506
507 /*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514 void resched_task(struct task_struct *p)
515 {
516 int cpu;
517
518 lockdep_assert_held(&task_rq(p)->lock);
519
520 if (test_tsk_need_resched(p))
521 return;
522
523 set_tsk_need_resched(p);
524
525 cpu = task_cpu(p);
526 if (cpu == smp_processor_id()) {
527 set_preempt_need_resched();
528 return;
529 }
530
531 /* NEED_RESCHED must be visible before we test polling */
532 smp_mb();
533 if (!tsk_is_polling(p))
534 smp_send_reschedule(cpu);
535 }
536
537 void resched_cpu(int cpu)
538 {
539 struct rq *rq = cpu_rq(cpu);
540 unsigned long flags;
541
542 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543 return;
544 resched_task(cpu_curr(cpu));
545 raw_spin_unlock_irqrestore(&rq->lock, flags);
546 }
547
548 #ifdef CONFIG_SMP
549 #ifdef CONFIG_NO_HZ_COMMON
550 /*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558 int get_nohz_timer_target(void)
559 {
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
564 rcu_read_lock();
565 for_each_domain(cpu, sd) {
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
572 }
573 unlock:
574 rcu_read_unlock();
575 return cpu;
576 }
577 /*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
587 static void wake_up_idle_cpu(int cpu)
588 {
589 struct rq *rq = cpu_rq(cpu);
590
591 if (cpu == smp_processor_id())
592 return;
593
594 /*
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
600 */
601 if (rq->curr != rq->idle)
602 return;
603
604 /*
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
608 */
609 set_tsk_need_resched(rq->idle);
610
611 /* NEED_RESCHED must be visible before we test polling */
612 smp_mb();
613 if (!tsk_is_polling(rq->idle))
614 smp_send_reschedule(cpu);
615 }
616
617 static bool wake_up_full_nohz_cpu(int cpu)
618 {
619 if (tick_nohz_full_cpu(cpu)) {
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu);
623 return true;
624 }
625
626 return false;
627 }
628
629 void wake_up_nohz_cpu(int cpu)
630 {
631 if (!wake_up_full_nohz_cpu(cpu))
632 wake_up_idle_cpu(cpu);
633 }
634
635 static inline bool got_nohz_idle_kick(void)
636 {
637 int cpu = smp_processor_id();
638
639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 return false;
651 }
652
653 #else /* CONFIG_NO_HZ_COMMON */
654
655 static inline bool got_nohz_idle_kick(void)
656 {
657 return false;
658 }
659
660 #endif /* CONFIG_NO_HZ_COMMON */
661
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(void)
664 {
665 struct rq *rq;
666
667 rq = this_rq();
668
669 /* Make sure rq->nr_running update is visible after the IPI */
670 smp_rmb();
671
672 /* More than one running task need preemption */
673 if (rq->nr_running > 1)
674 return false;
675
676 return true;
677 }
678 #endif /* CONFIG_NO_HZ_FULL */
679
680 void sched_avg_update(struct rq *rq)
681 {
682 s64 period = sched_avg_period();
683
684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685 /*
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
689 */
690 asm("" : "+rm" (rq->age_stamp));
691 rq->age_stamp += period;
692 rq->rt_avg /= 2;
693 }
694 }
695
696 #endif /* CONFIG_SMP */
697
698 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
700 /*
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
705 */
706 int walk_tg_tree_from(struct task_group *from,
707 tg_visitor down, tg_visitor up, void *data)
708 {
709 struct task_group *parent, *child;
710 int ret;
711
712 parent = from;
713
714 down:
715 ret = (*down)(parent, data);
716 if (ret)
717 goto out;
718 list_for_each_entry_rcu(child, &parent->children, siblings) {
719 parent = child;
720 goto down;
721
722 up:
723 continue;
724 }
725 ret = (*up)(parent, data);
726 if (ret || parent == from)
727 goto out;
728
729 child = parent;
730 parent = parent->parent;
731 if (parent)
732 goto up;
733 out:
734 return ret;
735 }
736
737 int tg_nop(struct task_group *tg, void *data)
738 {
739 return 0;
740 }
741 #endif
742
743 static void set_load_weight(struct task_struct *p)
744 {
745 int prio = p->static_prio - MAX_RT_PRIO;
746 struct load_weight *load = &p->se.load;
747
748 /*
749 * SCHED_IDLE tasks get minimal weight:
750 */
751 if (p->policy == SCHED_IDLE) {
752 load->weight = scale_load(WEIGHT_IDLEPRIO);
753 load->inv_weight = WMULT_IDLEPRIO;
754 return;
755 }
756
757 load->weight = scale_load(prio_to_weight[prio]);
758 load->inv_weight = prio_to_wmult[prio];
759 }
760
761 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
762 {
763 update_rq_clock(rq);
764 sched_info_queued(rq, p);
765 p->sched_class->enqueue_task(rq, p, flags);
766 }
767
768 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
769 {
770 update_rq_clock(rq);
771 sched_info_dequeued(rq, p);
772 p->sched_class->dequeue_task(rq, p, flags);
773 }
774
775 void activate_task(struct rq *rq, struct task_struct *p, int flags)
776 {
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
780 enqueue_task(rq, p, flags);
781 }
782
783 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784 {
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
788 dequeue_task(rq, p, flags);
789 }
790
791 static void update_rq_clock_task(struct rq *rq, s64 delta)
792 {
793 /*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 s64 steal = 0, irq_delta = 0;
799 #endif
800 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
801 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
802
803 /*
804 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805 * this case when a previous update_rq_clock() happened inside a
806 * {soft,}irq region.
807 *
808 * When this happens, we stop ->clock_task and only update the
809 * prev_irq_time stamp to account for the part that fit, so that a next
810 * update will consume the rest. This ensures ->clock_task is
811 * monotonic.
812 *
813 * It does however cause some slight miss-attribution of {soft,}irq
814 * time, a more accurate solution would be to update the irq_time using
815 * the current rq->clock timestamp, except that would require using
816 * atomic ops.
817 */
818 if (irq_delta > delta)
819 irq_delta = delta;
820
821 rq->prev_irq_time += irq_delta;
822 delta -= irq_delta;
823 #endif
824 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825 if (static_key_false((&paravirt_steal_rq_enabled))) {
826 u64 st;
827
828 steal = paravirt_steal_clock(cpu_of(rq));
829 steal -= rq->prev_steal_time_rq;
830
831 if (unlikely(steal > delta))
832 steal = delta;
833
834 st = steal_ticks(steal);
835 steal = st * TICK_NSEC;
836
837 rq->prev_steal_time_rq += steal;
838
839 delta -= steal;
840 }
841 #endif
842
843 rq->clock_task += delta;
844
845 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847 sched_rt_avg_update(rq, irq_delta + steal);
848 #endif
849 }
850
851 void sched_set_stop_task(int cpu, struct task_struct *stop)
852 {
853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854 struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856 if (stop) {
857 /*
858 * Make it appear like a SCHED_FIFO task, its something
859 * userspace knows about and won't get confused about.
860 *
861 * Also, it will make PI more or less work without too
862 * much confusion -- but then, stop work should not
863 * rely on PI working anyway.
864 */
865 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867 stop->sched_class = &stop_sched_class;
868 }
869
870 cpu_rq(cpu)->stop = stop;
871
872 if (old_stop) {
873 /*
874 * Reset it back to a normal scheduling class so that
875 * it can die in pieces.
876 */
877 old_stop->sched_class = &rt_sched_class;
878 }
879 }
880
881 /*
882 * __normal_prio - return the priority that is based on the static prio
883 */
884 static inline int __normal_prio(struct task_struct *p)
885 {
886 return p->static_prio;
887 }
888
889 /*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
896 static inline int normal_prio(struct task_struct *p)
897 {
898 int prio;
899
900 if (task_has_dl_policy(p))
901 prio = MAX_DL_PRIO-1;
902 else if (task_has_rt_policy(p))
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907 }
908
909 /*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916 static int effective_prio(struct task_struct *p)
917 {
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927 }
928
929 /**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935 inline int task_curr(const struct task_struct *p)
936 {
937 return cpu_curr(task_cpu(p)) == p;
938 }
939
940 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
942 int oldprio)
943 {
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio || dl_task(p))
949 p->sched_class->prio_changed(rq, p, oldprio);
950 }
951
952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 {
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 rq->skip_clock_update = 1;
975 }
976
977 #ifdef CONFIG_SMP
978 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979 {
980 #ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988 #ifdef CONFIG_LOCKDEP
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
994 * see task_group().
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001 #endif
1002 #endif
1003
1004 trace_sched_migrate_task(p, new_cpu);
1005
1006 if (task_cpu(p) != new_cpu) {
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
1009 p->se.nr_migrations++;
1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011 }
1012
1013 __set_task_cpu(p, new_cpu);
1014 }
1015
1016 static void __migrate_swap_task(struct task_struct *p, int cpu)
1017 {
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036 }
1037
1038 struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041 };
1042
1043 static int migrate_swap_stop(void *data)
1044 {
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072 unlock:
1073 double_rq_unlock(src_rq, dst_rq);
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
1076
1077 return ret;
1078 }
1079
1080 /*
1081 * Cross migrate two tasks
1082 */
1083 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084 {
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
1088 arg = (struct migration_swap_arg){
1089 .src_task = cur,
1090 .src_cpu = task_cpu(cur),
1091 .dst_task = p,
1092 .dst_cpu = task_cpu(p),
1093 };
1094
1095 if (arg.src_cpu == arg.dst_cpu)
1096 goto out;
1097
1098 /*
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1101 */
1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 goto out;
1107
1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 goto out;
1110
1111 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1112 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114 out:
1115 return ret;
1116 }
1117
1118 struct migration_arg {
1119 struct task_struct *task;
1120 int dest_cpu;
1121 };
1122
1123 static int migration_cpu_stop(void *data);
1124
1125 /*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change. If it changes, i.e. @p might have woken up,
1130 * then return zero. When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count). If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
1141 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1142 {
1143 unsigned long flags;
1144 int running, on_rq;
1145 unsigned long ncsw;
1146 struct rq *rq;
1147
1148 for (;;) {
1149 /*
1150 * We do the initial early heuristics without holding
1151 * any task-queue locks at all. We'll only try to get
1152 * the runqueue lock when things look like they will
1153 * work out!
1154 */
1155 rq = task_rq(p);
1156
1157 /*
1158 * If the task is actively running on another CPU
1159 * still, just relax and busy-wait without holding
1160 * any locks.
1161 *
1162 * NOTE! Since we don't hold any locks, it's not
1163 * even sure that "rq" stays as the right runqueue!
1164 * But we don't care, since "task_running()" will
1165 * return false if the runqueue has changed and p
1166 * is actually now running somewhere else!
1167 */
1168 while (task_running(rq, p)) {
1169 if (match_state && unlikely(p->state != match_state))
1170 return 0;
1171 cpu_relax();
1172 }
1173
1174 /*
1175 * Ok, time to look more closely! We need the rq
1176 * lock now, to be *sure*. If we're wrong, we'll
1177 * just go back and repeat.
1178 */
1179 rq = task_rq_lock(p, &flags);
1180 trace_sched_wait_task(p);
1181 running = task_running(rq, p);
1182 on_rq = p->on_rq;
1183 ncsw = 0;
1184 if (!match_state || p->state == match_state)
1185 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186 task_rq_unlock(rq, p, &flags);
1187
1188 /*
1189 * If it changed from the expected state, bail out now.
1190 */
1191 if (unlikely(!ncsw))
1192 break;
1193
1194 /*
1195 * Was it really running after all now that we
1196 * checked with the proper locks actually held?
1197 *
1198 * Oops. Go back and try again..
1199 */
1200 if (unlikely(running)) {
1201 cpu_relax();
1202 continue;
1203 }
1204
1205 /*
1206 * It's not enough that it's not actively running,
1207 * it must be off the runqueue _entirely_, and not
1208 * preempted!
1209 *
1210 * So if it was still runnable (but just not actively
1211 * running right now), it's preempted, and we should
1212 * yield - it could be a while.
1213 */
1214 if (unlikely(on_rq)) {
1215 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217 set_current_state(TASK_UNINTERRUPTIBLE);
1218 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219 continue;
1220 }
1221
1222 /*
1223 * Ahh, all good. It wasn't running, and it wasn't
1224 * runnable, which means that it will never become
1225 * running in the future either. We're all done!
1226 */
1227 break;
1228 }
1229
1230 return ncsw;
1231 }
1232
1233 /***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
1240 * NOTE: this function doesn't have to take the runqueue lock,
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
1246 void kick_process(struct task_struct *p)
1247 {
1248 int cpu;
1249
1250 preempt_disable();
1251 cpu = task_cpu(p);
1252 if ((cpu != smp_processor_id()) && task_curr(p))
1253 smp_send_reschedule(cpu);
1254 preempt_enable();
1255 }
1256 EXPORT_SYMBOL_GPL(kick_process);
1257 #endif /* CONFIG_SMP */
1258
1259 #ifdef CONFIG_SMP
1260 /*
1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262 */
1263 static int select_fallback_rq(int cpu, struct task_struct *p)
1264 {
1265 int nid = cpu_to_node(cpu);
1266 const struct cpumask *nodemask = NULL;
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
1269
1270 /*
1271 * If the node that the cpu is on has been offlined, cpu_to_node()
1272 * will return -1. There is no cpu on the node, and we should
1273 * select the cpu on the other node.
1274 */
1275 if (nid != -1) {
1276 nodemask = cpumask_of_node(nid);
1277
1278 /* Look for allowed, online CPU in same node. */
1279 for_each_cpu(dest_cpu, nodemask) {
1280 if (!cpu_online(dest_cpu))
1281 continue;
1282 if (!cpu_active(dest_cpu))
1283 continue;
1284 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285 return dest_cpu;
1286 }
1287 }
1288
1289 for (;;) {
1290 /* Any allowed, online CPU? */
1291 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1292 if (!cpu_online(dest_cpu))
1293 continue;
1294 if (!cpu_active(dest_cpu))
1295 continue;
1296 goto out;
1297 }
1298
1299 switch (state) {
1300 case cpuset:
1301 /* No more Mr. Nice Guy. */
1302 cpuset_cpus_allowed_fallback(p);
1303 state = possible;
1304 break;
1305
1306 case possible:
1307 do_set_cpus_allowed(p, cpu_possible_mask);
1308 state = fail;
1309 break;
1310
1311 case fail:
1312 BUG();
1313 break;
1314 }
1315 }
1316
1317 out:
1318 if (state != cpuset) {
1319 /*
1320 * Don't tell them about moving exiting tasks or
1321 * kernel threads (both mm NULL), since they never
1322 * leave kernel.
1323 */
1324 if (p->mm && printk_ratelimit()) {
1325 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326 task_pid_nr(p), p->comm, cpu);
1327 }
1328 }
1329
1330 return dest_cpu;
1331 }
1332
1333 /*
1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1335 */
1336 static inline
1337 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1338 {
1339 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1340
1341 /*
1342 * In order not to call set_task_cpu() on a blocking task we need
1343 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344 * cpu.
1345 *
1346 * Since this is common to all placement strategies, this lives here.
1347 *
1348 * [ this allows ->select_task() to simply return task_cpu(p) and
1349 * not worry about this generic constraint ]
1350 */
1351 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1352 !cpu_online(cpu)))
1353 cpu = select_fallback_rq(task_cpu(p), p);
1354
1355 return cpu;
1356 }
1357
1358 static void update_avg(u64 *avg, u64 sample)
1359 {
1360 s64 diff = sample - *avg;
1361 *avg += diff >> 3;
1362 }
1363 #endif
1364
1365 static void
1366 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1367 {
1368 #ifdef CONFIG_SCHEDSTATS
1369 struct rq *rq = this_rq();
1370
1371 #ifdef CONFIG_SMP
1372 int this_cpu = smp_processor_id();
1373
1374 if (cpu == this_cpu) {
1375 schedstat_inc(rq, ttwu_local);
1376 schedstat_inc(p, se.statistics.nr_wakeups_local);
1377 } else {
1378 struct sched_domain *sd;
1379
1380 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1381 rcu_read_lock();
1382 for_each_domain(this_cpu, sd) {
1383 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384 schedstat_inc(sd, ttwu_wake_remote);
1385 break;
1386 }
1387 }
1388 rcu_read_unlock();
1389 }
1390
1391 if (wake_flags & WF_MIGRATED)
1392 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
1394 #endif /* CONFIG_SMP */
1395
1396 schedstat_inc(rq, ttwu_count);
1397 schedstat_inc(p, se.statistics.nr_wakeups);
1398
1399 if (wake_flags & WF_SYNC)
1400 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1401
1402 #endif /* CONFIG_SCHEDSTATS */
1403 }
1404
1405 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406 {
1407 activate_task(rq, p, en_flags);
1408 p->on_rq = 1;
1409
1410 /* if a worker is waking up, notify workqueue */
1411 if (p->flags & PF_WQ_WORKER)
1412 wq_worker_waking_up(p, cpu_of(rq));
1413 }
1414
1415 /*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
1418 static void
1419 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1420 {
1421 check_preempt_curr(rq, p, wake_flags);
1422 trace_sched_wakeup(p, true);
1423
1424 p->state = TASK_RUNNING;
1425 #ifdef CONFIG_SMP
1426 if (p->sched_class->task_woken)
1427 p->sched_class->task_woken(rq, p);
1428
1429 if (rq->idle_stamp) {
1430 u64 delta = rq_clock(rq) - rq->idle_stamp;
1431 u64 max = 2*rq->max_idle_balance_cost;
1432
1433 update_avg(&rq->avg_idle, delta);
1434
1435 if (rq->avg_idle > max)
1436 rq->avg_idle = max;
1437
1438 rq->idle_stamp = 0;
1439 }
1440 #endif
1441 }
1442
1443 static void
1444 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445 {
1446 #ifdef CONFIG_SMP
1447 if (p->sched_contributes_to_load)
1448 rq->nr_uninterruptible--;
1449 #endif
1450
1451 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452 ttwu_do_wakeup(rq, p, wake_flags);
1453 }
1454
1455 /*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461 static int ttwu_remote(struct task_struct *p, int wake_flags)
1462 {
1463 struct rq *rq;
1464 int ret = 0;
1465
1466 rq = __task_rq_lock(p);
1467 if (p->on_rq) {
1468 /* check_preempt_curr() may use rq clock */
1469 update_rq_clock(rq);
1470 ttwu_do_wakeup(rq, p, wake_flags);
1471 ret = 1;
1472 }
1473 __task_rq_unlock(rq);
1474
1475 return ret;
1476 }
1477
1478 #ifdef CONFIG_SMP
1479 static void sched_ttwu_pending(void)
1480 {
1481 struct rq *rq = this_rq();
1482 struct llist_node *llist = llist_del_all(&rq->wake_list);
1483 struct task_struct *p;
1484
1485 raw_spin_lock(&rq->lock);
1486
1487 while (llist) {
1488 p = llist_entry(llist, struct task_struct, wake_entry);
1489 llist = llist_next(llist);
1490 ttwu_do_activate(rq, p, 0);
1491 }
1492
1493 raw_spin_unlock(&rq->lock);
1494 }
1495
1496 void scheduler_ipi(void)
1497 {
1498 /*
1499 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501 * this IPI.
1502 */
1503 preempt_fold_need_resched();
1504
1505 if (llist_empty(&this_rq()->wake_list)
1506 && !tick_nohz_full_cpu(smp_processor_id())
1507 && !got_nohz_idle_kick())
1508 return;
1509
1510 /*
1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 * traditionally all their work was done from the interrupt return
1513 * path. Now that we actually do some work, we need to make sure
1514 * we do call them.
1515 *
1516 * Some archs already do call them, luckily irq_enter/exit nest
1517 * properly.
1518 *
1519 * Arguably we should visit all archs and update all handlers,
1520 * however a fair share of IPIs are still resched only so this would
1521 * somewhat pessimize the simple resched case.
1522 */
1523 irq_enter();
1524 tick_nohz_full_check();
1525 sched_ttwu_pending();
1526
1527 /*
1528 * Check if someone kicked us for doing the nohz idle load balance.
1529 */
1530 if (unlikely(got_nohz_idle_kick())) {
1531 this_rq()->idle_balance = 1;
1532 raise_softirq_irqoff(SCHED_SOFTIRQ);
1533 }
1534 irq_exit();
1535 }
1536
1537 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538 {
1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540 smp_send_reschedule(cpu);
1541 }
1542
1543 bool cpus_share_cache(int this_cpu, int that_cpu)
1544 {
1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546 }
1547 #endif /* CONFIG_SMP */
1548
1549 static void ttwu_queue(struct task_struct *p, int cpu)
1550 {
1551 struct rq *rq = cpu_rq(cpu);
1552
1553 #if defined(CONFIG_SMP)
1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556 ttwu_queue_remote(p, cpu);
1557 return;
1558 }
1559 #endif
1560
1561 raw_spin_lock(&rq->lock);
1562 ttwu_do_activate(rq, p, 0);
1563 raw_spin_unlock(&rq->lock);
1564 }
1565
1566 /**
1567 * try_to_wake_up - wake up a thread
1568 * @p: the thread to be awakened
1569 * @state: the mask of task states that can be woken
1570 * @wake_flags: wake modifier flags (WF_*)
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
1578 * Return: %true if @p was woken up, %false if it was already running.
1579 * or @state didn't match @p's state.
1580 */
1581 static int
1582 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583 {
1584 unsigned long flags;
1585 int cpu, success = 0;
1586
1587 /*
1588 * If we are going to wake up a thread waiting for CONDITION we
1589 * need to ensure that CONDITION=1 done by the caller can not be
1590 * reordered with p->state check below. This pairs with mb() in
1591 * set_current_state() the waiting thread does.
1592 */
1593 smp_mb__before_spinlock();
1594 raw_spin_lock_irqsave(&p->pi_lock, flags);
1595 if (!(p->state & state))
1596 goto out;
1597
1598 success = 1; /* we're going to change ->state */
1599 cpu = task_cpu(p);
1600
1601 if (p->on_rq && ttwu_remote(p, wake_flags))
1602 goto stat;
1603
1604 #ifdef CONFIG_SMP
1605 /*
1606 * If the owning (remote) cpu is still in the middle of schedule() with
1607 * this task as prev, wait until its done referencing the task.
1608 */
1609 while (p->on_cpu)
1610 cpu_relax();
1611 /*
1612 * Pairs with the smp_wmb() in finish_lock_switch().
1613 */
1614 smp_rmb();
1615
1616 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617 p->state = TASK_WAKING;
1618
1619 if (p->sched_class->task_waking)
1620 p->sched_class->task_waking(p);
1621
1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623 if (task_cpu(p) != cpu) {
1624 wake_flags |= WF_MIGRATED;
1625 set_task_cpu(p, cpu);
1626 }
1627 #endif /* CONFIG_SMP */
1628
1629 ttwu_queue(p, cpu);
1630 stat:
1631 ttwu_stat(p, cpu, wake_flags);
1632 out:
1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634
1635 return success;
1636 }
1637
1638 /**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
1642 * Put @p on the run-queue if it's not already there. The caller must
1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644 * the current task.
1645 */
1646 static void try_to_wake_up_local(struct task_struct *p)
1647 {
1648 struct rq *rq = task_rq(p);
1649
1650 if (WARN_ON_ONCE(rq != this_rq()) ||
1651 WARN_ON_ONCE(p == current))
1652 return;
1653
1654 lockdep_assert_held(&rq->lock);
1655
1656 if (!raw_spin_trylock(&p->pi_lock)) {
1657 raw_spin_unlock(&rq->lock);
1658 raw_spin_lock(&p->pi_lock);
1659 raw_spin_lock(&rq->lock);
1660 }
1661
1662 if (!(p->state & TASK_NORMAL))
1663 goto out;
1664
1665 if (!p->on_rq)
1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
1668 ttwu_do_wakeup(rq, p, 0);
1669 ttwu_stat(p, smp_processor_id(), 0);
1670 out:
1671 raw_spin_unlock(&p->pi_lock);
1672 }
1673
1674 /**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
1686 int wake_up_process(struct task_struct *p)
1687 {
1688 WARN_ON(task_is_stopped_or_traced(p));
1689 return try_to_wake_up(p, TASK_NORMAL, 0);
1690 }
1691 EXPORT_SYMBOL(wake_up_process);
1692
1693 int wake_up_state(struct task_struct *p, unsigned int state)
1694 {
1695 return try_to_wake_up(p, state, 0);
1696 }
1697
1698 /*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705 {
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
1711 p->se.prev_sum_exec_runtime = 0;
1712 p->se.nr_migrations = 0;
1713 p->se.vruntime = 0;
1714 INIT_LIST_HEAD(&p->se.group_node);
1715
1716 #ifdef CONFIG_SCHEDSTATS
1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718 #endif
1719
1720 RB_CLEAR_NODE(&p->dl.rb_node);
1721 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722 p->dl.dl_runtime = p->dl.runtime = 0;
1723 p->dl.dl_deadline = p->dl.deadline = 0;
1724 p->dl.dl_period = 0;
1725 p->dl.flags = 0;
1726
1727 INIT_LIST_HEAD(&p->rt.run_list);
1728
1729 #ifdef CONFIG_PREEMPT_NOTIFIERS
1730 INIT_HLIST_HEAD(&p->preempt_notifiers);
1731 #endif
1732
1733 #ifdef CONFIG_NUMA_BALANCING
1734 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1735 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1736 p->mm->numa_scan_seq = 0;
1737 }
1738
1739 if (clone_flags & CLONE_VM)
1740 p->numa_preferred_nid = current->numa_preferred_nid;
1741 else
1742 p->numa_preferred_nid = -1;
1743
1744 p->node_stamp = 0ULL;
1745 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1746 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1747 p->numa_work.next = &p->numa_work;
1748 p->numa_faults = NULL;
1749 p->numa_faults_buffer = NULL;
1750
1751 INIT_LIST_HEAD(&p->numa_entry);
1752 p->numa_group = NULL;
1753 #endif /* CONFIG_NUMA_BALANCING */
1754 }
1755
1756 #ifdef CONFIG_NUMA_BALANCING
1757 #ifdef CONFIG_SCHED_DEBUG
1758 void set_numabalancing_state(bool enabled)
1759 {
1760 if (enabled)
1761 sched_feat_set("NUMA");
1762 else
1763 sched_feat_set("NO_NUMA");
1764 }
1765 #else
1766 __read_mostly bool numabalancing_enabled;
1767
1768 void set_numabalancing_state(bool enabled)
1769 {
1770 numabalancing_enabled = enabled;
1771 }
1772 #endif /* CONFIG_SCHED_DEBUG */
1773
1774 #ifdef CONFIG_PROC_SYSCTL
1775 int sysctl_numa_balancing(struct ctl_table *table, int write,
1776 void __user *buffer, size_t *lenp, loff_t *ppos)
1777 {
1778 struct ctl_table t;
1779 int err;
1780 int state = numabalancing_enabled;
1781
1782 if (write && !capable(CAP_SYS_ADMIN))
1783 return -EPERM;
1784
1785 t = *table;
1786 t.data = &state;
1787 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788 if (err < 0)
1789 return err;
1790 if (write)
1791 set_numabalancing_state(state);
1792 return err;
1793 }
1794 #endif
1795 #endif
1796
1797 /*
1798 * fork()/clone()-time setup:
1799 */
1800 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801 {
1802 unsigned long flags;
1803 int cpu = get_cpu();
1804
1805 __sched_fork(clone_flags, p);
1806 /*
1807 * We mark the process as running here. This guarantees that
1808 * nobody will actually run it, and a signal or other external
1809 * event cannot wake it up and insert it on the runqueue either.
1810 */
1811 p->state = TASK_RUNNING;
1812
1813 /*
1814 * Make sure we do not leak PI boosting priority to the child.
1815 */
1816 p->prio = current->normal_prio;
1817
1818 /*
1819 * Revert to default priority/policy on fork if requested.
1820 */
1821 if (unlikely(p->sched_reset_on_fork)) {
1822 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823 p->policy = SCHED_NORMAL;
1824 p->static_prio = NICE_TO_PRIO(0);
1825 p->rt_priority = 0;
1826 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1827 p->static_prio = NICE_TO_PRIO(0);
1828
1829 p->prio = p->normal_prio = __normal_prio(p);
1830 set_load_weight(p);
1831
1832 /*
1833 * We don't need the reset flag anymore after the fork. It has
1834 * fulfilled its duty:
1835 */
1836 p->sched_reset_on_fork = 0;
1837 }
1838
1839 if (dl_prio(p->prio)) {
1840 put_cpu();
1841 return -EAGAIN;
1842 } else if (rt_prio(p->prio)) {
1843 p->sched_class = &rt_sched_class;
1844 } else {
1845 p->sched_class = &fair_sched_class;
1846 }
1847
1848 if (p->sched_class->task_fork)
1849 p->sched_class->task_fork(p);
1850
1851 /*
1852 * The child is not yet in the pid-hash so no cgroup attach races,
1853 * and the cgroup is pinned to this child due to cgroup_fork()
1854 * is ran before sched_fork().
1855 *
1856 * Silence PROVE_RCU.
1857 */
1858 raw_spin_lock_irqsave(&p->pi_lock, flags);
1859 set_task_cpu(p, cpu);
1860 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861
1862 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863 if (likely(sched_info_on()))
1864 memset(&p->sched_info, 0, sizeof(p->sched_info));
1865 #endif
1866 #if defined(CONFIG_SMP)
1867 p->on_cpu = 0;
1868 #endif
1869 init_task_preempt_count(p);
1870 #ifdef CONFIG_SMP
1871 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873 #endif
1874
1875 put_cpu();
1876 return 0;
1877 }
1878
1879 unsigned long to_ratio(u64 period, u64 runtime)
1880 {
1881 if (runtime == RUNTIME_INF)
1882 return 1ULL << 20;
1883
1884 /*
1885 * Doing this here saves a lot of checks in all
1886 * the calling paths, and returning zero seems
1887 * safe for them anyway.
1888 */
1889 if (period == 0)
1890 return 0;
1891
1892 return div64_u64(runtime << 20, period);
1893 }
1894
1895 #ifdef CONFIG_SMP
1896 inline struct dl_bw *dl_bw_of(int i)
1897 {
1898 return &cpu_rq(i)->rd->dl_bw;
1899 }
1900
1901 static inline int dl_bw_cpus(int i)
1902 {
1903 struct root_domain *rd = cpu_rq(i)->rd;
1904 int cpus = 0;
1905
1906 for_each_cpu_and(i, rd->span, cpu_active_mask)
1907 cpus++;
1908
1909 return cpus;
1910 }
1911 #else
1912 inline struct dl_bw *dl_bw_of(int i)
1913 {
1914 return &cpu_rq(i)->dl.dl_bw;
1915 }
1916
1917 static inline int dl_bw_cpus(int i)
1918 {
1919 return 1;
1920 }
1921 #endif
1922
1923 static inline
1924 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925 {
1926 dl_b->total_bw -= tsk_bw;
1927 }
1928
1929 static inline
1930 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931 {
1932 dl_b->total_bw += tsk_bw;
1933 }
1934
1935 static inline
1936 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937 {
1938 return dl_b->bw != -1 &&
1939 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940 }
1941
1942 /*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950 static int dl_overflow(struct task_struct *p, int policy,
1951 const struct sched_attr *attr)
1952 {
1953
1954 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955 u64 period = attr->sched_period ?: attr->sched_deadline;
1956 u64 runtime = attr->sched_runtime;
1957 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958 int cpus, err = -1;
1959
1960 if (new_bw == p->dl.dl_bw)
1961 return 0;
1962
1963 /*
1964 * Either if a task, enters, leave, or stays -deadline but changes
1965 * its parameters, we may need to update accordingly the total
1966 * allocated bandwidth of the container.
1967 */
1968 raw_spin_lock(&dl_b->lock);
1969 cpus = dl_bw_cpus(task_cpu(p));
1970 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972 __dl_add(dl_b, new_bw);
1973 err = 0;
1974 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976 __dl_clear(dl_b, p->dl.dl_bw);
1977 __dl_add(dl_b, new_bw);
1978 err = 0;
1979 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980 __dl_clear(dl_b, p->dl.dl_bw);
1981 err = 0;
1982 }
1983 raw_spin_unlock(&dl_b->lock);
1984
1985 return err;
1986 }
1987
1988 extern void init_dl_bw(struct dl_bw *dl_b);
1989
1990 /*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
1997 void wake_up_new_task(struct task_struct *p)
1998 {
1999 unsigned long flags;
2000 struct rq *rq;
2001
2002 raw_spin_lock_irqsave(&p->pi_lock, flags);
2003 #ifdef CONFIG_SMP
2004 /*
2005 * Fork balancing, do it here and not earlier because:
2006 * - cpus_allowed can change in the fork path
2007 * - any previously selected cpu might disappear through hotplug
2008 */
2009 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010 #endif
2011
2012 /* Initialize new task's runnable average */
2013 init_task_runnable_average(p);
2014 rq = __task_rq_lock(p);
2015 activate_task(rq, p, 0);
2016 p->on_rq = 1;
2017 trace_sched_wakeup_new(p, true);
2018 check_preempt_curr(rq, p, WF_FORK);
2019 #ifdef CONFIG_SMP
2020 if (p->sched_class->task_woken)
2021 p->sched_class->task_woken(rq, p);
2022 #endif
2023 task_rq_unlock(rq, p, &flags);
2024 }
2025
2026 #ifdef CONFIG_PREEMPT_NOTIFIERS
2027
2028 /**
2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030 * @notifier: notifier struct to register
2031 */
2032 void preempt_notifier_register(struct preempt_notifier *notifier)
2033 {
2034 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035 }
2036 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038 /**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
2040 * @notifier: notifier struct to unregister
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045 {
2046 hlist_del(&notifier->link);
2047 }
2048 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051 {
2052 struct preempt_notifier *notifier;
2053
2054 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056 }
2057
2058 static void
2059 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060 struct task_struct *next)
2061 {
2062 struct preempt_notifier *notifier;
2063
2064 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065 notifier->ops->sched_out(notifier, next);
2066 }
2067
2068 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2069
2070 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071 {
2072 }
2073
2074 static void
2075 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076 struct task_struct *next)
2077 {
2078 }
2079
2080 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2081
2082 /**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
2085 * @prev: the current task that is being switched out
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
2095 static inline void
2096 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097 struct task_struct *next)
2098 {
2099 trace_sched_switch(prev, next);
2100 sched_info_switch(rq, prev, next);
2101 perf_event_task_sched_out(prev, next);
2102 fire_sched_out_preempt_notifiers(prev, next);
2103 prepare_lock_switch(rq, next);
2104 prepare_arch_switch(next);
2105 }
2106
2107 /**
2108 * finish_task_switch - clean up after a task-switch
2109 * @rq: runqueue associated with task-switch
2110 * @prev: the thread we just switched away from.
2111 *
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
2118 * so, we finish that here outside of the runqueue lock. (Doing it
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
2121 */
2122 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2123 __releases(rq->lock)
2124 {
2125 struct mm_struct *mm = rq->prev_mm;
2126 long prev_state;
2127
2128 rq->prev_mm = NULL;
2129
2130 /*
2131 * A task struct has one reference for the use as "current".
2132 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133 * schedule one last time. The schedule call will never return, and
2134 * the scheduled task must drop that reference.
2135 * The test for TASK_DEAD must occur while the runqueue locks are
2136 * still held, otherwise prev could be scheduled on another cpu, die
2137 * there before we look at prev->state, and then the reference would
2138 * be dropped twice.
2139 * Manfred Spraul <manfred@colorfullife.com>
2140 */
2141 prev_state = prev->state;
2142 vtime_task_switch(prev);
2143 finish_arch_switch(prev);
2144 perf_event_task_sched_in(prev, current);
2145 finish_lock_switch(rq, prev);
2146 finish_arch_post_lock_switch();
2147
2148 fire_sched_in_preempt_notifiers(current);
2149 if (mm)
2150 mmdrop(mm);
2151 if (unlikely(prev_state == TASK_DEAD)) {
2152 task_numa_free(prev);
2153
2154 if (prev->sched_class->task_dead)
2155 prev->sched_class->task_dead(prev);
2156
2157 /*
2158 * Remove function-return probe instances associated with this
2159 * task and put them back on the free list.
2160 */
2161 kprobe_flush_task(prev);
2162 put_task_struct(prev);
2163 }
2164
2165 tick_nohz_task_switch(current);
2166 }
2167
2168 #ifdef CONFIG_SMP
2169
2170 /* assumes rq->lock is held */
2171 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2172 {
2173 if (prev->sched_class->pre_schedule)
2174 prev->sched_class->pre_schedule(rq, prev);
2175 }
2176
2177 /* rq->lock is NOT held, but preemption is disabled */
2178 static inline void post_schedule(struct rq *rq)
2179 {
2180 if (rq->post_schedule) {
2181 unsigned long flags;
2182
2183 raw_spin_lock_irqsave(&rq->lock, flags);
2184 if (rq->curr->sched_class->post_schedule)
2185 rq->curr->sched_class->post_schedule(rq);
2186 raw_spin_unlock_irqrestore(&rq->lock, flags);
2187
2188 rq->post_schedule = 0;
2189 }
2190 }
2191
2192 #else
2193
2194 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2195 {
2196 }
2197
2198 static inline void post_schedule(struct rq *rq)
2199 {
2200 }
2201
2202 #endif
2203
2204 /**
2205 * schedule_tail - first thing a freshly forked thread must call.
2206 * @prev: the thread we just switched away from.
2207 */
2208 asmlinkage void schedule_tail(struct task_struct *prev)
2209 __releases(rq->lock)
2210 {
2211 struct rq *rq = this_rq();
2212
2213 finish_task_switch(rq, prev);
2214
2215 /*
2216 * FIXME: do we need to worry about rq being invalidated by the
2217 * task_switch?
2218 */
2219 post_schedule(rq);
2220
2221 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2222 /* In this case, finish_task_switch does not reenable preemption */
2223 preempt_enable();
2224 #endif
2225 if (current->set_child_tid)
2226 put_user(task_pid_vnr(current), current->set_child_tid);
2227 }
2228
2229 /*
2230 * context_switch - switch to the new MM and the new
2231 * thread's register state.
2232 */
2233 static inline void
2234 context_switch(struct rq *rq, struct task_struct *prev,
2235 struct task_struct *next)
2236 {
2237 struct mm_struct *mm, *oldmm;
2238
2239 prepare_task_switch(rq, prev, next);
2240
2241 mm = next->mm;
2242 oldmm = prev->active_mm;
2243 /*
2244 * For paravirt, this is coupled with an exit in switch_to to
2245 * combine the page table reload and the switch backend into
2246 * one hypercall.
2247 */
2248 arch_start_context_switch(prev);
2249
2250 if (!mm) {
2251 next->active_mm = oldmm;
2252 atomic_inc(&oldmm->mm_count);
2253 enter_lazy_tlb(oldmm, next);
2254 } else
2255 switch_mm(oldmm, mm, next);
2256
2257 if (!prev->mm) {
2258 prev->active_mm = NULL;
2259 rq->prev_mm = oldmm;
2260 }
2261 /*
2262 * Since the runqueue lock will be released by the next
2263 * task (which is an invalid locking op but in the case
2264 * of the scheduler it's an obvious special-case), so we
2265 * do an early lockdep release here:
2266 */
2267 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2268 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2269 #endif
2270
2271 context_tracking_task_switch(prev, next);
2272 /* Here we just switch the register state and the stack. */
2273 switch_to(prev, next, prev);
2274
2275 barrier();
2276 /*
2277 * this_rq must be evaluated again because prev may have moved
2278 * CPUs since it called schedule(), thus the 'rq' on its stack
2279 * frame will be invalid.
2280 */
2281 finish_task_switch(this_rq(), prev);
2282 }
2283
2284 /*
2285 * nr_running and nr_context_switches:
2286 *
2287 * externally visible scheduler statistics: current number of runnable
2288 * threads, total number of context switches performed since bootup.
2289 */
2290 unsigned long nr_running(void)
2291 {
2292 unsigned long i, sum = 0;
2293
2294 for_each_online_cpu(i)
2295 sum += cpu_rq(i)->nr_running;
2296
2297 return sum;
2298 }
2299
2300 unsigned long long nr_context_switches(void)
2301 {
2302 int i;
2303 unsigned long long sum = 0;
2304
2305 for_each_possible_cpu(i)
2306 sum += cpu_rq(i)->nr_switches;
2307
2308 return sum;
2309 }
2310
2311 unsigned long nr_iowait(void)
2312 {
2313 unsigned long i, sum = 0;
2314
2315 for_each_possible_cpu(i)
2316 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2317
2318 return sum;
2319 }
2320
2321 unsigned long nr_iowait_cpu(int cpu)
2322 {
2323 struct rq *this = cpu_rq(cpu);
2324 return atomic_read(&this->nr_iowait);
2325 }
2326
2327 #ifdef CONFIG_SMP
2328
2329 /*
2330 * sched_exec - execve() is a valuable balancing opportunity, because at
2331 * this point the task has the smallest effective memory and cache footprint.
2332 */
2333 void sched_exec(void)
2334 {
2335 struct task_struct *p = current;
2336 unsigned long flags;
2337 int dest_cpu;
2338
2339 raw_spin_lock_irqsave(&p->pi_lock, flags);
2340 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2341 if (dest_cpu == smp_processor_id())
2342 goto unlock;
2343
2344 if (likely(cpu_active(dest_cpu))) {
2345 struct migration_arg arg = { p, dest_cpu };
2346
2347 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2348 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2349 return;
2350 }
2351 unlock:
2352 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2353 }
2354
2355 #endif
2356
2357 DEFINE_PER_CPU(struct kernel_stat, kstat);
2358 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2359
2360 EXPORT_PER_CPU_SYMBOL(kstat);
2361 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2362
2363 /*
2364 * Return any ns on the sched_clock that have not yet been accounted in
2365 * @p in case that task is currently running.
2366 *
2367 * Called with task_rq_lock() held on @rq.
2368 */
2369 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2370 {
2371 u64 ns = 0;
2372
2373 if (task_current(rq, p)) {
2374 update_rq_clock(rq);
2375 ns = rq_clock_task(rq) - p->se.exec_start;
2376 if ((s64)ns < 0)
2377 ns = 0;
2378 }
2379
2380 return ns;
2381 }
2382
2383 unsigned long long task_delta_exec(struct task_struct *p)
2384 {
2385 unsigned long flags;
2386 struct rq *rq;
2387 u64 ns = 0;
2388
2389 rq = task_rq_lock(p, &flags);
2390 ns = do_task_delta_exec(p, rq);
2391 task_rq_unlock(rq, p, &flags);
2392
2393 return ns;
2394 }
2395
2396 /*
2397 * Return accounted runtime for the task.
2398 * In case the task is currently running, return the runtime plus current's
2399 * pending runtime that have not been accounted yet.
2400 */
2401 unsigned long long task_sched_runtime(struct task_struct *p)
2402 {
2403 unsigned long flags;
2404 struct rq *rq;
2405 u64 ns = 0;
2406
2407 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2408 /*
2409 * 64-bit doesn't need locks to atomically read a 64bit value.
2410 * So we have a optimization chance when the task's delta_exec is 0.
2411 * Reading ->on_cpu is racy, but this is ok.
2412 *
2413 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2414 * If we race with it entering cpu, unaccounted time is 0. This is
2415 * indistinguishable from the read occurring a few cycles earlier.
2416 */
2417 if (!p->on_cpu)
2418 return p->se.sum_exec_runtime;
2419 #endif
2420
2421 rq = task_rq_lock(p, &flags);
2422 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2423 task_rq_unlock(rq, p, &flags);
2424
2425 return ns;
2426 }
2427
2428 /*
2429 * This function gets called by the timer code, with HZ frequency.
2430 * We call it with interrupts disabled.
2431 */
2432 void scheduler_tick(void)
2433 {
2434 int cpu = smp_processor_id();
2435 struct rq *rq = cpu_rq(cpu);
2436 struct task_struct *curr = rq->curr;
2437
2438 sched_clock_tick();
2439
2440 raw_spin_lock(&rq->lock);
2441 update_rq_clock(rq);
2442 curr->sched_class->task_tick(rq, curr, 0);
2443 update_cpu_load_active(rq);
2444 raw_spin_unlock(&rq->lock);
2445
2446 perf_event_task_tick();
2447
2448 #ifdef CONFIG_SMP
2449 rq->idle_balance = idle_cpu(cpu);
2450 trigger_load_balance(rq);
2451 #endif
2452 rq_last_tick_reset(rq);
2453 }
2454
2455 #ifdef CONFIG_NO_HZ_FULL
2456 /**
2457 * scheduler_tick_max_deferment
2458 *
2459 * Keep at least one tick per second when a single
2460 * active task is running because the scheduler doesn't
2461 * yet completely support full dynticks environment.
2462 *
2463 * This makes sure that uptime, CFS vruntime, load
2464 * balancing, etc... continue to move forward, even
2465 * with a very low granularity.
2466 *
2467 * Return: Maximum deferment in nanoseconds.
2468 */
2469 u64 scheduler_tick_max_deferment(void)
2470 {
2471 struct rq *rq = this_rq();
2472 unsigned long next, now = ACCESS_ONCE(jiffies);
2473
2474 next = rq->last_sched_tick + HZ;
2475
2476 if (time_before_eq(next, now))
2477 return 0;
2478
2479 return jiffies_to_nsecs(next - now);
2480 }
2481 #endif
2482
2483 notrace unsigned long get_parent_ip(unsigned long addr)
2484 {
2485 if (in_lock_functions(addr)) {
2486 addr = CALLER_ADDR2;
2487 if (in_lock_functions(addr))
2488 addr = CALLER_ADDR3;
2489 }
2490 return addr;
2491 }
2492
2493 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2494 defined(CONFIG_PREEMPT_TRACER))
2495
2496 void __kprobes preempt_count_add(int val)
2497 {
2498 #ifdef CONFIG_DEBUG_PREEMPT
2499 /*
2500 * Underflow?
2501 */
2502 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2503 return;
2504 #endif
2505 __preempt_count_add(val);
2506 #ifdef CONFIG_DEBUG_PREEMPT
2507 /*
2508 * Spinlock count overflowing soon?
2509 */
2510 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2511 PREEMPT_MASK - 10);
2512 #endif
2513 if (preempt_count() == val)
2514 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2515 }
2516 EXPORT_SYMBOL(preempt_count_add);
2517
2518 void __kprobes preempt_count_sub(int val)
2519 {
2520 #ifdef CONFIG_DEBUG_PREEMPT
2521 /*
2522 * Underflow?
2523 */
2524 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2525 return;
2526 /*
2527 * Is the spinlock portion underflowing?
2528 */
2529 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2530 !(preempt_count() & PREEMPT_MASK)))
2531 return;
2532 #endif
2533
2534 if (preempt_count() == val)
2535 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2536 __preempt_count_sub(val);
2537 }
2538 EXPORT_SYMBOL(preempt_count_sub);
2539
2540 #endif
2541
2542 /*
2543 * Print scheduling while atomic bug:
2544 */
2545 static noinline void __schedule_bug(struct task_struct *prev)
2546 {
2547 if (oops_in_progress)
2548 return;
2549
2550 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2551 prev->comm, prev->pid, preempt_count());
2552
2553 debug_show_held_locks(prev);
2554 print_modules();
2555 if (irqs_disabled())
2556 print_irqtrace_events(prev);
2557 dump_stack();
2558 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2559 }
2560
2561 /*
2562 * Various schedule()-time debugging checks and statistics:
2563 */
2564 static inline void schedule_debug(struct task_struct *prev)
2565 {
2566 /*
2567 * Test if we are atomic. Since do_exit() needs to call into
2568 * schedule() atomically, we ignore that path. Otherwise whine
2569 * if we are scheduling when we should not.
2570 */
2571 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2572 __schedule_bug(prev);
2573 rcu_sleep_check();
2574
2575 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2576
2577 schedstat_inc(this_rq(), sched_count);
2578 }
2579
2580 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2581 {
2582 if (prev->on_rq || rq->skip_clock_update < 0)
2583 update_rq_clock(rq);
2584 prev->sched_class->put_prev_task(rq, prev);
2585 }
2586
2587 /*
2588 * Pick up the highest-prio task:
2589 */
2590 static inline struct task_struct *
2591 pick_next_task(struct rq *rq)
2592 {
2593 const struct sched_class *class;
2594 struct task_struct *p;
2595
2596 /*
2597 * Optimization: we know that if all tasks are in
2598 * the fair class we can call that function directly:
2599 */
2600 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2601 p = fair_sched_class.pick_next_task(rq);
2602 if (likely(p))
2603 return p;
2604 }
2605
2606 for_each_class(class) {
2607 p = class->pick_next_task(rq);
2608 if (p)
2609 return p;
2610 }
2611
2612 BUG(); /* the idle class will always have a runnable task */
2613 }
2614
2615 /*
2616 * __schedule() is the main scheduler function.
2617 *
2618 * The main means of driving the scheduler and thus entering this function are:
2619 *
2620 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2621 *
2622 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2623 * paths. For example, see arch/x86/entry_64.S.
2624 *
2625 * To drive preemption between tasks, the scheduler sets the flag in timer
2626 * interrupt handler scheduler_tick().
2627 *
2628 * 3. Wakeups don't really cause entry into schedule(). They add a
2629 * task to the run-queue and that's it.
2630 *
2631 * Now, if the new task added to the run-queue preempts the current
2632 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2633 * called on the nearest possible occasion:
2634 *
2635 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2636 *
2637 * - in syscall or exception context, at the next outmost
2638 * preempt_enable(). (this might be as soon as the wake_up()'s
2639 * spin_unlock()!)
2640 *
2641 * - in IRQ context, return from interrupt-handler to
2642 * preemptible context
2643 *
2644 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2645 * then at the next:
2646 *
2647 * - cond_resched() call
2648 * - explicit schedule() call
2649 * - return from syscall or exception to user-space
2650 * - return from interrupt-handler to user-space
2651 */
2652 static void __sched __schedule(void)
2653 {
2654 struct task_struct *prev, *next;
2655 unsigned long *switch_count;
2656 struct rq *rq;
2657 int cpu;
2658
2659 need_resched:
2660 preempt_disable();
2661 cpu = smp_processor_id();
2662 rq = cpu_rq(cpu);
2663 rcu_note_context_switch(cpu);
2664 prev = rq->curr;
2665
2666 schedule_debug(prev);
2667
2668 if (sched_feat(HRTICK))
2669 hrtick_clear(rq);
2670
2671 /*
2672 * Make sure that signal_pending_state()->signal_pending() below
2673 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2674 * done by the caller to avoid the race with signal_wake_up().
2675 */
2676 smp_mb__before_spinlock();
2677 raw_spin_lock_irq(&rq->lock);
2678
2679 switch_count = &prev->nivcsw;
2680 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2681 if (unlikely(signal_pending_state(prev->state, prev))) {
2682 prev->state = TASK_RUNNING;
2683 } else {
2684 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2685 prev->on_rq = 0;
2686
2687 /*
2688 * If a worker went to sleep, notify and ask workqueue
2689 * whether it wants to wake up a task to maintain
2690 * concurrency.
2691 */
2692 if (prev->flags & PF_WQ_WORKER) {
2693 struct task_struct *to_wakeup;
2694
2695 to_wakeup = wq_worker_sleeping(prev, cpu);
2696 if (to_wakeup)
2697 try_to_wake_up_local(to_wakeup);
2698 }
2699 }
2700 switch_count = &prev->nvcsw;
2701 }
2702
2703 pre_schedule(rq, prev);
2704
2705 if (unlikely(!rq->nr_running))
2706 idle_balance(cpu, rq);
2707
2708 put_prev_task(rq, prev);
2709 next = pick_next_task(rq);
2710 clear_tsk_need_resched(prev);
2711 clear_preempt_need_resched();
2712 rq->skip_clock_update = 0;
2713
2714 if (likely(prev != next)) {
2715 rq->nr_switches++;
2716 rq->curr = next;
2717 ++*switch_count;
2718
2719 context_switch(rq, prev, next); /* unlocks the rq */
2720 /*
2721 * The context switch have flipped the stack from under us
2722 * and restored the local variables which were saved when
2723 * this task called schedule() in the past. prev == current
2724 * is still correct, but it can be moved to another cpu/rq.
2725 */
2726 cpu = smp_processor_id();
2727 rq = cpu_rq(cpu);
2728 } else
2729 raw_spin_unlock_irq(&rq->lock);
2730
2731 post_schedule(rq);
2732
2733 sched_preempt_enable_no_resched();
2734 if (need_resched())
2735 goto need_resched;
2736 }
2737
2738 static inline void sched_submit_work(struct task_struct *tsk)
2739 {
2740 if (!tsk->state || tsk_is_pi_blocked(tsk))
2741 return;
2742 /*
2743 * If we are going to sleep and we have plugged IO queued,
2744 * make sure to submit it to avoid deadlocks.
2745 */
2746 if (blk_needs_flush_plug(tsk))
2747 blk_schedule_flush_plug(tsk);
2748 }
2749
2750 asmlinkage void __sched schedule(void)
2751 {
2752 struct task_struct *tsk = current;
2753
2754 sched_submit_work(tsk);
2755 __schedule();
2756 }
2757 EXPORT_SYMBOL(schedule);
2758
2759 #ifdef CONFIG_CONTEXT_TRACKING
2760 asmlinkage void __sched schedule_user(void)
2761 {
2762 /*
2763 * If we come here after a random call to set_need_resched(),
2764 * or we have been woken up remotely but the IPI has not yet arrived,
2765 * we haven't yet exited the RCU idle mode. Do it here manually until
2766 * we find a better solution.
2767 */
2768 user_exit();
2769 schedule();
2770 user_enter();
2771 }
2772 #endif
2773
2774 /**
2775 * schedule_preempt_disabled - called with preemption disabled
2776 *
2777 * Returns with preemption disabled. Note: preempt_count must be 1
2778 */
2779 void __sched schedule_preempt_disabled(void)
2780 {
2781 sched_preempt_enable_no_resched();
2782 schedule();
2783 preempt_disable();
2784 }
2785
2786 #ifdef CONFIG_PREEMPT
2787 /*
2788 * this is the entry point to schedule() from in-kernel preemption
2789 * off of preempt_enable. Kernel preemptions off return from interrupt
2790 * occur there and call schedule directly.
2791 */
2792 asmlinkage void __sched notrace preempt_schedule(void)
2793 {
2794 /*
2795 * If there is a non-zero preempt_count or interrupts are disabled,
2796 * we do not want to preempt the current task. Just return..
2797 */
2798 if (likely(!preemptible()))
2799 return;
2800
2801 do {
2802 __preempt_count_add(PREEMPT_ACTIVE);
2803 __schedule();
2804 __preempt_count_sub(PREEMPT_ACTIVE);
2805
2806 /*
2807 * Check again in case we missed a preemption opportunity
2808 * between schedule and now.
2809 */
2810 barrier();
2811 } while (need_resched());
2812 }
2813 EXPORT_SYMBOL(preempt_schedule);
2814 #endif /* CONFIG_PREEMPT */
2815
2816 /*
2817 * this is the entry point to schedule() from kernel preemption
2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq.
2821 */
2822 asmlinkage void __sched preempt_schedule_irq(void)
2823 {
2824 enum ctx_state prev_state;
2825
2826 /* Catch callers which need to be fixed */
2827 BUG_ON(preempt_count() || !irqs_disabled());
2828
2829 prev_state = exception_enter();
2830
2831 do {
2832 __preempt_count_add(PREEMPT_ACTIVE);
2833 local_irq_enable();
2834 __schedule();
2835 local_irq_disable();
2836 __preempt_count_sub(PREEMPT_ACTIVE);
2837
2838 /*
2839 * Check again in case we missed a preemption opportunity
2840 * between schedule and now.
2841 */
2842 barrier();
2843 } while (need_resched());
2844
2845 exception_exit(prev_state);
2846 }
2847
2848 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2849 void *key)
2850 {
2851 return try_to_wake_up(curr->private, mode, wake_flags);
2852 }
2853 EXPORT_SYMBOL(default_wake_function);
2854
2855 static long __sched
2856 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2857 {
2858 unsigned long flags;
2859 wait_queue_t wait;
2860
2861 init_waitqueue_entry(&wait, current);
2862
2863 __set_current_state(state);
2864
2865 spin_lock_irqsave(&q->lock, flags);
2866 __add_wait_queue(q, &wait);
2867 spin_unlock(&q->lock);
2868 timeout = schedule_timeout(timeout);
2869 spin_lock_irq(&q->lock);
2870 __remove_wait_queue(q, &wait);
2871 spin_unlock_irqrestore(&q->lock, flags);
2872
2873 return timeout;
2874 }
2875
2876 void __sched interruptible_sleep_on(wait_queue_head_t *q)
2877 {
2878 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2879 }
2880 EXPORT_SYMBOL(interruptible_sleep_on);
2881
2882 long __sched
2883 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2884 {
2885 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2886 }
2887 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2888
2889 void __sched sleep_on(wait_queue_head_t *q)
2890 {
2891 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2892 }
2893 EXPORT_SYMBOL(sleep_on);
2894
2895 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2896 {
2897 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2898 }
2899 EXPORT_SYMBOL(sleep_on_timeout);
2900
2901 #ifdef CONFIG_RT_MUTEXES
2902
2903 /*
2904 * rt_mutex_setprio - set the current priority of a task
2905 * @p: task
2906 * @prio: prio value (kernel-internal form)
2907 *
2908 * This function changes the 'effective' priority of a task. It does
2909 * not touch ->normal_prio like __setscheduler().
2910 *
2911 * Used by the rt_mutex code to implement priority inheritance logic.
2912 */
2913 void rt_mutex_setprio(struct task_struct *p, int prio)
2914 {
2915 int oldprio, on_rq, running, enqueue_flag = 0;
2916 struct rq *rq;
2917 const struct sched_class *prev_class;
2918
2919 BUG_ON(prio > MAX_PRIO);
2920
2921 rq = __task_rq_lock(p);
2922
2923 /*
2924 * Idle task boosting is a nono in general. There is one
2925 * exception, when PREEMPT_RT and NOHZ is active:
2926 *
2927 * The idle task calls get_next_timer_interrupt() and holds
2928 * the timer wheel base->lock on the CPU and another CPU wants
2929 * to access the timer (probably to cancel it). We can safely
2930 * ignore the boosting request, as the idle CPU runs this code
2931 * with interrupts disabled and will complete the lock
2932 * protected section without being interrupted. So there is no
2933 * real need to boost.
2934 */
2935 if (unlikely(p == rq->idle)) {
2936 WARN_ON(p != rq->curr);
2937 WARN_ON(p->pi_blocked_on);
2938 goto out_unlock;
2939 }
2940
2941 trace_sched_pi_setprio(p, prio);
2942 p->pi_top_task = rt_mutex_get_top_task(p);
2943 oldprio = p->prio;
2944 prev_class = p->sched_class;
2945 on_rq = p->on_rq;
2946 running = task_current(rq, p);
2947 if (on_rq)
2948 dequeue_task(rq, p, 0);
2949 if (running)
2950 p->sched_class->put_prev_task(rq, p);
2951
2952 /*
2953 * Boosting condition are:
2954 * 1. -rt task is running and holds mutex A
2955 * --> -dl task blocks on mutex A
2956 *
2957 * 2. -dl task is running and holds mutex A
2958 * --> -dl task blocks on mutex A and could preempt the
2959 * running task
2960 */
2961 if (dl_prio(prio)) {
2962 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2963 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2964 p->dl.dl_boosted = 1;
2965 p->dl.dl_throttled = 0;
2966 enqueue_flag = ENQUEUE_REPLENISH;
2967 } else
2968 p->dl.dl_boosted = 0;
2969 p->sched_class = &dl_sched_class;
2970 } else if (rt_prio(prio)) {
2971 if (dl_prio(oldprio))
2972 p->dl.dl_boosted = 0;
2973 if (oldprio < prio)
2974 enqueue_flag = ENQUEUE_HEAD;
2975 p->sched_class = &rt_sched_class;
2976 } else {
2977 if (dl_prio(oldprio))
2978 p->dl.dl_boosted = 0;
2979 p->sched_class = &fair_sched_class;
2980 }
2981
2982 p->prio = prio;
2983
2984 if (running)
2985 p->sched_class->set_curr_task(rq);
2986 if (on_rq)
2987 enqueue_task(rq, p, enqueue_flag);
2988
2989 check_class_changed(rq, p, prev_class, oldprio);
2990 out_unlock:
2991 __task_rq_unlock(rq);
2992 }
2993 #endif
2994
2995 void set_user_nice(struct task_struct *p, long nice)
2996 {
2997 int old_prio, delta, on_rq;
2998 unsigned long flags;
2999 struct rq *rq;
3000
3001 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3002 return;
3003 /*
3004 * We have to be careful, if called from sys_setpriority(),
3005 * the task might be in the middle of scheduling on another CPU.
3006 */
3007 rq = task_rq_lock(p, &flags);
3008 /*
3009 * The RT priorities are set via sched_setscheduler(), but we still
3010 * allow the 'normal' nice value to be set - but as expected
3011 * it wont have any effect on scheduling until the task is
3012 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3013 */
3014 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3015 p->static_prio = NICE_TO_PRIO(nice);
3016 goto out_unlock;
3017 }
3018 on_rq = p->on_rq;
3019 if (on_rq)
3020 dequeue_task(rq, p, 0);
3021
3022 p->static_prio = NICE_TO_PRIO(nice);
3023 set_load_weight(p);
3024 old_prio = p->prio;
3025 p->prio = effective_prio(p);
3026 delta = p->prio - old_prio;
3027
3028 if (on_rq) {
3029 enqueue_task(rq, p, 0);
3030 /*
3031 * If the task increased its priority or is running and
3032 * lowered its priority, then reschedule its CPU:
3033 */
3034 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3035 resched_task(rq->curr);
3036 }
3037 out_unlock:
3038 task_rq_unlock(rq, p, &flags);
3039 }
3040 EXPORT_SYMBOL(set_user_nice);
3041
3042 /*
3043 * can_nice - check if a task can reduce its nice value
3044 * @p: task
3045 * @nice: nice value
3046 */
3047 int can_nice(const struct task_struct *p, const int nice)
3048 {
3049 /* convert nice value [19,-20] to rlimit style value [1,40] */
3050 int nice_rlim = 20 - nice;
3051
3052 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3053 capable(CAP_SYS_NICE));
3054 }
3055
3056 #ifdef __ARCH_WANT_SYS_NICE
3057
3058 /*
3059 * sys_nice - change the priority of the current process.
3060 * @increment: priority increment
3061 *
3062 * sys_setpriority is a more generic, but much slower function that
3063 * does similar things.
3064 */
3065 SYSCALL_DEFINE1(nice, int, increment)
3066 {
3067 long nice, retval;
3068
3069 /*
3070 * Setpriority might change our priority at the same moment.
3071 * We don't have to worry. Conceptually one call occurs first
3072 * and we have a single winner.
3073 */
3074 if (increment < -40)
3075 increment = -40;
3076 if (increment > 40)
3077 increment = 40;
3078
3079 nice = TASK_NICE(current) + increment;
3080 if (nice < -20)
3081 nice = -20;
3082 if (nice > 19)
3083 nice = 19;
3084
3085 if (increment < 0 && !can_nice(current, nice))
3086 return -EPERM;
3087
3088 retval = security_task_setnice(current, nice);
3089 if (retval)
3090 return retval;
3091
3092 set_user_nice(current, nice);
3093 return 0;
3094 }
3095
3096 #endif
3097
3098 /**
3099 * task_prio - return the priority value of a given task.
3100 * @p: the task in question.
3101 *
3102 * Return: The priority value as seen by users in /proc.
3103 * RT tasks are offset by -200. Normal tasks are centered
3104 * around 0, value goes from -16 to +15.
3105 */
3106 int task_prio(const struct task_struct *p)
3107 {
3108 return p->prio - MAX_RT_PRIO;
3109 }
3110
3111 /**
3112 * task_nice - return the nice value of a given task.
3113 * @p: the task in question.
3114 *
3115 * Return: The nice value [ -20 ... 0 ... 19 ].
3116 */
3117 int task_nice(const struct task_struct *p)
3118 {
3119 return TASK_NICE(p);
3120 }
3121 EXPORT_SYMBOL(task_nice);
3122
3123 /**
3124 * idle_cpu - is a given cpu idle currently?
3125 * @cpu: the processor in question.
3126 *
3127 * Return: 1 if the CPU is currently idle. 0 otherwise.
3128 */
3129 int idle_cpu(int cpu)
3130 {
3131 struct rq *rq = cpu_rq(cpu);
3132
3133 if (rq->curr != rq->idle)
3134 return 0;
3135
3136 if (rq->nr_running)
3137 return 0;
3138
3139 #ifdef CONFIG_SMP
3140 if (!llist_empty(&rq->wake_list))
3141 return 0;
3142 #endif
3143
3144 return 1;
3145 }
3146
3147 /**
3148 * idle_task - return the idle task for a given cpu.
3149 * @cpu: the processor in question.
3150 *
3151 * Return: The idle task for the cpu @cpu.
3152 */
3153 struct task_struct *idle_task(int cpu)
3154 {
3155 return cpu_rq(cpu)->idle;
3156 }
3157
3158 /**
3159 * find_process_by_pid - find a process with a matching PID value.
3160 * @pid: the pid in question.
3161 *
3162 * The task of @pid, if found. %NULL otherwise.
3163 */
3164 static struct task_struct *find_process_by_pid(pid_t pid)
3165 {
3166 return pid ? find_task_by_vpid(pid) : current;
3167 }
3168
3169 /*
3170 * This function initializes the sched_dl_entity of a newly becoming
3171 * SCHED_DEADLINE task.
3172 *
3173 * Only the static values are considered here, the actual runtime and the
3174 * absolute deadline will be properly calculated when the task is enqueued
3175 * for the first time with its new policy.
3176 */
3177 static void
3178 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3179 {
3180 struct sched_dl_entity *dl_se = &p->dl;
3181
3182 init_dl_task_timer(dl_se);
3183 dl_se->dl_runtime = attr->sched_runtime;
3184 dl_se->dl_deadline = attr->sched_deadline;
3185 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3186 dl_se->flags = attr->sched_flags;
3187 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3188 dl_se->dl_throttled = 0;
3189 dl_se->dl_new = 1;
3190 }
3191
3192 /* Actually do priority change: must hold pi & rq lock. */
3193 static void __setscheduler(struct rq *rq, struct task_struct *p,
3194 const struct sched_attr *attr)
3195 {
3196 int policy = attr->sched_policy;
3197
3198 if (policy == -1) /* setparam */
3199 policy = p->policy;
3200
3201 p->policy = policy;
3202
3203 if (dl_policy(policy))
3204 __setparam_dl(p, attr);
3205 else if (fair_policy(policy))
3206 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3207
3208 /*
3209 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3210 * !rt_policy. Always setting this ensures that things like
3211 * getparam()/getattr() don't report silly values for !rt tasks.
3212 */
3213 p->rt_priority = attr->sched_priority;
3214
3215 p->normal_prio = normal_prio(p);
3216 p->prio = rt_mutex_getprio(p);
3217
3218 if (dl_prio(p->prio))
3219 p->sched_class = &dl_sched_class;
3220 else if (rt_prio(p->prio))
3221 p->sched_class = &rt_sched_class;
3222 else
3223 p->sched_class = &fair_sched_class;
3224
3225 set_load_weight(p);
3226 }
3227
3228 static void
3229 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3230 {
3231 struct sched_dl_entity *dl_se = &p->dl;
3232
3233 attr->sched_priority = p->rt_priority;
3234 attr->sched_runtime = dl_se->dl_runtime;
3235 attr->sched_deadline = dl_se->dl_deadline;
3236 attr->sched_period = dl_se->dl_period;
3237 attr->sched_flags = dl_se->flags;
3238 }
3239
3240 /*
3241 * This function validates the new parameters of a -deadline task.
3242 * We ask for the deadline not being zero, and greater or equal
3243 * than the runtime, as well as the period of being zero or
3244 * greater than deadline. Furthermore, we have to be sure that
3245 * user parameters are above the internal resolution (1us); we
3246 * check sched_runtime only since it is always the smaller one.
3247 */
3248 static bool
3249 __checkparam_dl(const struct sched_attr *attr)
3250 {
3251 return attr && attr->sched_deadline != 0 &&
3252 (attr->sched_period == 0 ||
3253 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
3254 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3255 attr->sched_runtime >= (2 << (DL_SCALE - 1));
3256 }
3257
3258 /*
3259 * check the target process has a UID that matches the current process's
3260 */
3261 static bool check_same_owner(struct task_struct *p)
3262 {
3263 const struct cred *cred = current_cred(), *pcred;
3264 bool match;
3265
3266 rcu_read_lock();
3267 pcred = __task_cred(p);
3268 match = (uid_eq(cred->euid, pcred->euid) ||
3269 uid_eq(cred->euid, pcred->uid));
3270 rcu_read_unlock();
3271 return match;
3272 }
3273
3274 static int __sched_setscheduler(struct task_struct *p,
3275 const struct sched_attr *attr,
3276 bool user)
3277 {
3278 int retval, oldprio, oldpolicy = -1, on_rq, running;
3279 int policy = attr->sched_policy;
3280 unsigned long flags;
3281 const struct sched_class *prev_class;
3282 struct rq *rq;
3283 int reset_on_fork;
3284
3285 /* may grab non-irq protected spin_locks */
3286 BUG_ON(in_interrupt());
3287 recheck:
3288 /* double check policy once rq lock held */
3289 if (policy < 0) {
3290 reset_on_fork = p->sched_reset_on_fork;
3291 policy = oldpolicy = p->policy;
3292 } else {
3293 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3294
3295 if (policy != SCHED_DEADLINE &&
3296 policy != SCHED_FIFO && policy != SCHED_RR &&
3297 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3298 policy != SCHED_IDLE)
3299 return -EINVAL;
3300 }
3301
3302 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3303 return -EINVAL;
3304
3305 /*
3306 * Valid priorities for SCHED_FIFO and SCHED_RR are
3307 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3308 * SCHED_BATCH and SCHED_IDLE is 0.
3309 */
3310 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3311 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3312 return -EINVAL;
3313 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3314 (rt_policy(policy) != (attr->sched_priority != 0)))
3315 return -EINVAL;
3316
3317 /*
3318 * Allow unprivileged RT tasks to decrease priority:
3319 */
3320 if (user && !capable(CAP_SYS_NICE)) {
3321 if (fair_policy(policy)) {
3322 if (attr->sched_nice < TASK_NICE(p) &&
3323 !can_nice(p, attr->sched_nice))
3324 return -EPERM;
3325 }
3326
3327 if (rt_policy(policy)) {
3328 unsigned long rlim_rtprio =
3329 task_rlimit(p, RLIMIT_RTPRIO);
3330
3331 /* can't set/change the rt policy */
3332 if (policy != p->policy && !rlim_rtprio)
3333 return -EPERM;
3334
3335 /* can't increase priority */
3336 if (attr->sched_priority > p->rt_priority &&
3337 attr->sched_priority > rlim_rtprio)
3338 return -EPERM;
3339 }
3340
3341 /*
3342 * Can't set/change SCHED_DEADLINE policy at all for now
3343 * (safest behavior); in the future we would like to allow
3344 * unprivileged DL tasks to increase their relative deadline
3345 * or reduce their runtime (both ways reducing utilization)
3346 */
3347 if (dl_policy(policy))
3348 return -EPERM;
3349
3350 /*
3351 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3352 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3353 */
3354 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3355 if (!can_nice(p, TASK_NICE(p)))
3356 return -EPERM;
3357 }
3358
3359 /* can't change other user's priorities */
3360 if (!check_same_owner(p))
3361 return -EPERM;
3362
3363 /* Normal users shall not reset the sched_reset_on_fork flag */
3364 if (p->sched_reset_on_fork && !reset_on_fork)
3365 return -EPERM;
3366 }
3367
3368 if (user) {
3369 retval = security_task_setscheduler(p);
3370 if (retval)
3371 return retval;
3372 }
3373
3374 /*
3375 * make sure no PI-waiters arrive (or leave) while we are
3376 * changing the priority of the task:
3377 *
3378 * To be able to change p->policy safely, the appropriate
3379 * runqueue lock must be held.
3380 */
3381 rq = task_rq_lock(p, &flags);
3382
3383 /*
3384 * Changing the policy of the stop threads its a very bad idea
3385 */
3386 if (p == rq->stop) {
3387 task_rq_unlock(rq, p, &flags);
3388 return -EINVAL;
3389 }
3390
3391 /*
3392 * If not changing anything there's no need to proceed further:
3393 */
3394 if (unlikely(policy == p->policy)) {
3395 if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3396 goto change;
3397 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3398 goto change;
3399 if (dl_policy(policy))
3400 goto change;
3401
3402 task_rq_unlock(rq, p, &flags);
3403 return 0;
3404 }
3405 change:
3406
3407 if (user) {
3408 #ifdef CONFIG_RT_GROUP_SCHED
3409 /*
3410 * Do not allow realtime tasks into groups that have no runtime
3411 * assigned.
3412 */
3413 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3414 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3415 !task_group_is_autogroup(task_group(p))) {
3416 task_rq_unlock(rq, p, &flags);
3417 return -EPERM;
3418 }
3419 #endif
3420 #ifdef CONFIG_SMP
3421 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3422 cpumask_t *span = rq->rd->span;
3423
3424 /*
3425 * Don't allow tasks with an affinity mask smaller than
3426 * the entire root_domain to become SCHED_DEADLINE. We
3427 * will also fail if there's no bandwidth available.
3428 */
3429 if (!cpumask_subset(span, &p->cpus_allowed) ||
3430 rq->rd->dl_bw.bw == 0) {
3431 task_rq_unlock(rq, p, &flags);
3432 return -EPERM;
3433 }
3434 }
3435 #endif
3436 }
3437
3438 /* recheck policy now with rq lock held */
3439 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3440 policy = oldpolicy = -1;
3441 task_rq_unlock(rq, p, &flags);
3442 goto recheck;
3443 }
3444
3445 /*
3446 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3447 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3448 * is available.
3449 */
3450 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3451 task_rq_unlock(rq, p, &flags);
3452 return -EBUSY;
3453 }
3454
3455 on_rq = p->on_rq;
3456 running = task_current(rq, p);
3457 if (on_rq)
3458 dequeue_task(rq, p, 0);
3459 if (running)
3460 p->sched_class->put_prev_task(rq, p);
3461
3462 p->sched_reset_on_fork = reset_on_fork;
3463
3464 oldprio = p->prio;
3465 prev_class = p->sched_class;
3466 __setscheduler(rq, p, attr);
3467
3468 if (running)
3469 p->sched_class->set_curr_task(rq);
3470 if (on_rq)
3471 enqueue_task(rq, p, 0);
3472
3473 check_class_changed(rq, p, prev_class, oldprio);
3474 task_rq_unlock(rq, p, &flags);
3475
3476 rt_mutex_adjust_pi(p);
3477
3478 return 0;
3479 }
3480
3481 static int _sched_setscheduler(struct task_struct *p, int policy,
3482 const struct sched_param *param, bool check)
3483 {
3484 struct sched_attr attr = {
3485 .sched_policy = policy,
3486 .sched_priority = param->sched_priority,
3487 .sched_nice = PRIO_TO_NICE(p->static_prio),
3488 };
3489
3490 /*
3491 * Fixup the legacy SCHED_RESET_ON_FORK hack
3492 */
3493 if (policy & SCHED_RESET_ON_FORK) {
3494 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3495 policy &= ~SCHED_RESET_ON_FORK;
3496 attr.sched_policy = policy;
3497 }
3498
3499 return __sched_setscheduler(p, &attr, check);
3500 }
3501 /**
3502 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3503 * @p: the task in question.
3504 * @policy: new policy.
3505 * @param: structure containing the new RT priority.
3506 *
3507 * Return: 0 on success. An error code otherwise.
3508 *
3509 * NOTE that the task may be already dead.
3510 */
3511 int sched_setscheduler(struct task_struct *p, int policy,
3512 const struct sched_param *param)
3513 {
3514 return _sched_setscheduler(p, policy, param, true);
3515 }
3516 EXPORT_SYMBOL_GPL(sched_setscheduler);
3517
3518 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3519 {
3520 return __sched_setscheduler(p, attr, true);
3521 }
3522 EXPORT_SYMBOL_GPL(sched_setattr);
3523
3524 /**
3525 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3526 * @p: the task in question.
3527 * @policy: new policy.
3528 * @param: structure containing the new RT priority.
3529 *
3530 * Just like sched_setscheduler, only don't bother checking if the
3531 * current context has permission. For example, this is needed in
3532 * stop_machine(): we create temporary high priority worker threads,
3533 * but our caller might not have that capability.
3534 *
3535 * Return: 0 on success. An error code otherwise.
3536 */
3537 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3538 const struct sched_param *param)
3539 {
3540 return _sched_setscheduler(p, policy, param, false);
3541 }
3542
3543 static int
3544 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3545 {
3546 struct sched_param lparam;
3547 struct task_struct *p;
3548 int retval;
3549
3550 if (!param || pid < 0)
3551 return -EINVAL;
3552 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3553 return -EFAULT;
3554
3555 rcu_read_lock();
3556 retval = -ESRCH;
3557 p = find_process_by_pid(pid);
3558 if (p != NULL)
3559 retval = sched_setscheduler(p, policy, &lparam);
3560 rcu_read_unlock();
3561
3562 return retval;
3563 }
3564
3565 /*
3566 * Mimics kernel/events/core.c perf_copy_attr().
3567 */
3568 static int sched_copy_attr(struct sched_attr __user *uattr,
3569 struct sched_attr *attr)
3570 {
3571 u32 size;
3572 int ret;
3573
3574 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3575 return -EFAULT;
3576
3577 /*
3578 * zero the full structure, so that a short copy will be nice.
3579 */
3580 memset(attr, 0, sizeof(*attr));
3581
3582 ret = get_user(size, &uattr->size);
3583 if (ret)
3584 return ret;
3585
3586 if (size > PAGE_SIZE) /* silly large */
3587 goto err_size;
3588
3589 if (!size) /* abi compat */
3590 size = SCHED_ATTR_SIZE_VER0;
3591
3592 if (size < SCHED_ATTR_SIZE_VER0)
3593 goto err_size;
3594
3595 /*
3596 * If we're handed a bigger struct than we know of,
3597 * ensure all the unknown bits are 0 - i.e. new
3598 * user-space does not rely on any kernel feature
3599 * extensions we dont know about yet.
3600 */
3601 if (size > sizeof(*attr)) {
3602 unsigned char __user *addr;
3603 unsigned char __user *end;
3604 unsigned char val;
3605
3606 addr = (void __user *)uattr + sizeof(*attr);
3607 end = (void __user *)uattr + size;
3608
3609 for (; addr < end; addr++) {
3610 ret = get_user(val, addr);
3611 if (ret)
3612 return ret;
3613 if (val)
3614 goto err_size;
3615 }
3616 size = sizeof(*attr);
3617 }
3618
3619 ret = copy_from_user(attr, uattr, size);
3620 if (ret)
3621 return -EFAULT;
3622
3623 /*
3624 * XXX: do we want to be lenient like existing syscalls; or do we want
3625 * to be strict and return an error on out-of-bounds values?
3626 */
3627 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3628
3629 out:
3630 return ret;
3631
3632 err_size:
3633 put_user(sizeof(*attr), &uattr->size);
3634 ret = -E2BIG;
3635 goto out;
3636 }
3637
3638 /**
3639 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3640 * @pid: the pid in question.
3641 * @policy: new policy.
3642 * @param: structure containing the new RT priority.
3643 *
3644 * Return: 0 on success. An error code otherwise.
3645 */
3646 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3647 struct sched_param __user *, param)
3648 {
3649 /* negative values for policy are not valid */
3650 if (policy < 0)
3651 return -EINVAL;
3652
3653 return do_sched_setscheduler(pid, policy, param);
3654 }
3655
3656 /**
3657 * sys_sched_setparam - set/change the RT priority of a thread
3658 * @pid: the pid in question.
3659 * @param: structure containing the new RT priority.
3660 *
3661 * Return: 0 on success. An error code otherwise.
3662 */
3663 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3664 {
3665 return do_sched_setscheduler(pid, -1, param);
3666 }
3667
3668 /**
3669 * sys_sched_setattr - same as above, but with extended sched_attr
3670 * @pid: the pid in question.
3671 * @uattr: structure containing the extended parameters.
3672 */
3673 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3674 unsigned int, flags)
3675 {
3676 struct sched_attr attr;
3677 struct task_struct *p;
3678 int retval;
3679
3680 if (!uattr || pid < 0 || flags)
3681 return -EINVAL;
3682
3683 if (sched_copy_attr(uattr, &attr))
3684 return -EFAULT;
3685
3686 rcu_read_lock();
3687 retval = -ESRCH;
3688 p = find_process_by_pid(pid);
3689 if (p != NULL)
3690 retval = sched_setattr(p, &attr);
3691 rcu_read_unlock();
3692
3693 return retval;
3694 }
3695
3696 /**
3697 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3698 * @pid: the pid in question.
3699 *
3700 * Return: On success, the policy of the thread. Otherwise, a negative error
3701 * code.
3702 */
3703 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3704 {
3705 struct task_struct *p;
3706 int retval;
3707
3708 if (pid < 0)
3709 return -EINVAL;
3710
3711 retval = -ESRCH;
3712 rcu_read_lock();
3713 p = find_process_by_pid(pid);
3714 if (p) {
3715 retval = security_task_getscheduler(p);
3716 if (!retval)
3717 retval = p->policy
3718 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3719 }
3720 rcu_read_unlock();
3721 return retval;
3722 }
3723
3724 /**
3725 * sys_sched_getparam - get the RT priority of a thread
3726 * @pid: the pid in question.
3727 * @param: structure containing the RT priority.
3728 *
3729 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3730 * code.
3731 */
3732 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3733 {
3734 struct sched_param lp;
3735 struct task_struct *p;
3736 int retval;
3737
3738 if (!param || pid < 0)
3739 return -EINVAL;
3740
3741 rcu_read_lock();
3742 p = find_process_by_pid(pid);
3743 retval = -ESRCH;
3744 if (!p)
3745 goto out_unlock;
3746
3747 retval = security_task_getscheduler(p);
3748 if (retval)
3749 goto out_unlock;
3750
3751 if (task_has_dl_policy(p)) {
3752 retval = -EINVAL;
3753 goto out_unlock;
3754 }
3755 lp.sched_priority = p->rt_priority;
3756 rcu_read_unlock();
3757
3758 /*
3759 * This one might sleep, we cannot do it with a spinlock held ...
3760 */
3761 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3762
3763 return retval;
3764
3765 out_unlock:
3766 rcu_read_unlock();
3767 return retval;
3768 }
3769
3770 static int sched_read_attr(struct sched_attr __user *uattr,
3771 struct sched_attr *attr,
3772 unsigned int usize)
3773 {
3774 int ret;
3775
3776 if (!access_ok(VERIFY_WRITE, uattr, usize))
3777 return -EFAULT;
3778
3779 /*
3780 * If we're handed a smaller struct than we know of,
3781 * ensure all the unknown bits are 0 - i.e. old
3782 * user-space does not get uncomplete information.
3783 */
3784 if (usize < sizeof(*attr)) {
3785 unsigned char *addr;
3786 unsigned char *end;
3787
3788 addr = (void *)attr + usize;
3789 end = (void *)attr + sizeof(*attr);
3790
3791 for (; addr < end; addr++) {
3792 if (*addr)
3793 goto err_size;
3794 }
3795
3796 attr->size = usize;
3797 }
3798
3799 ret = copy_to_user(uattr, attr, attr->size);
3800 if (ret)
3801 return -EFAULT;
3802
3803 out:
3804 return ret;
3805
3806 err_size:
3807 ret = -E2BIG;
3808 goto out;
3809 }
3810
3811 /**
3812 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3813 * @pid: the pid in question.
3814 * @uattr: structure containing the extended parameters.
3815 * @size: sizeof(attr) for fwd/bwd comp.
3816 */
3817 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3818 unsigned int, size, unsigned int, flags)
3819 {
3820 struct sched_attr attr = {
3821 .size = sizeof(struct sched_attr),
3822 };
3823 struct task_struct *p;
3824 int retval;
3825
3826 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3827 size < SCHED_ATTR_SIZE_VER0 || flags)
3828 return -EINVAL;
3829
3830 rcu_read_lock();
3831 p = find_process_by_pid(pid);
3832 retval = -ESRCH;
3833 if (!p)
3834 goto out_unlock;
3835
3836 retval = security_task_getscheduler(p);
3837 if (retval)
3838 goto out_unlock;
3839
3840 attr.sched_policy = p->policy;
3841 if (p->sched_reset_on_fork)
3842 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3843 if (task_has_dl_policy(p))
3844 __getparam_dl(p, &attr);
3845 else if (task_has_rt_policy(p))
3846 attr.sched_priority = p->rt_priority;
3847 else
3848 attr.sched_nice = TASK_NICE(p);
3849
3850 rcu_read_unlock();
3851
3852 retval = sched_read_attr(uattr, &attr, size);
3853 return retval;
3854
3855 out_unlock:
3856 rcu_read_unlock();
3857 return retval;
3858 }
3859
3860 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3861 {
3862 cpumask_var_t cpus_allowed, new_mask;
3863 struct task_struct *p;
3864 int retval;
3865
3866 rcu_read_lock();
3867
3868 p = find_process_by_pid(pid);
3869 if (!p) {
3870 rcu_read_unlock();
3871 return -ESRCH;
3872 }
3873
3874 /* Prevent p going away */
3875 get_task_struct(p);
3876 rcu_read_unlock();
3877
3878 if (p->flags & PF_NO_SETAFFINITY) {
3879 retval = -EINVAL;
3880 goto out_put_task;
3881 }
3882 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3883 retval = -ENOMEM;
3884 goto out_put_task;
3885 }
3886 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3887 retval = -ENOMEM;
3888 goto out_free_cpus_allowed;
3889 }
3890 retval = -EPERM;
3891 if (!check_same_owner(p)) {
3892 rcu_read_lock();
3893 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3894 rcu_read_unlock();
3895 goto out_unlock;
3896 }
3897 rcu_read_unlock();
3898 }
3899
3900 retval = security_task_setscheduler(p);
3901 if (retval)
3902 goto out_unlock;
3903
3904
3905 cpuset_cpus_allowed(p, cpus_allowed);
3906 cpumask_and(new_mask, in_mask, cpus_allowed);
3907
3908 /*
3909 * Since bandwidth control happens on root_domain basis,
3910 * if admission test is enabled, we only admit -deadline
3911 * tasks allowed to run on all the CPUs in the task's
3912 * root_domain.
3913 */
3914 #ifdef CONFIG_SMP
3915 if (task_has_dl_policy(p)) {
3916 const struct cpumask *span = task_rq(p)->rd->span;
3917
3918 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3919 retval = -EBUSY;
3920 goto out_unlock;
3921 }
3922 }
3923 #endif
3924 again:
3925 retval = set_cpus_allowed_ptr(p, new_mask);
3926
3927 if (!retval) {
3928 cpuset_cpus_allowed(p, cpus_allowed);
3929 if (!cpumask_subset(new_mask, cpus_allowed)) {
3930 /*
3931 * We must have raced with a concurrent cpuset
3932 * update. Just reset the cpus_allowed to the
3933 * cpuset's cpus_allowed
3934 */
3935 cpumask_copy(new_mask, cpus_allowed);
3936 goto again;
3937 }
3938 }
3939 out_unlock:
3940 free_cpumask_var(new_mask);
3941 out_free_cpus_allowed:
3942 free_cpumask_var(cpus_allowed);
3943 out_put_task:
3944 put_task_struct(p);
3945 return retval;
3946 }
3947
3948 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3949 struct cpumask *new_mask)
3950 {
3951 if (len < cpumask_size())
3952 cpumask_clear(new_mask);
3953 else if (len > cpumask_size())
3954 len = cpumask_size();
3955
3956 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3957 }
3958
3959 /**
3960 * sys_sched_setaffinity - set the cpu affinity of a process
3961 * @pid: pid of the process
3962 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3963 * @user_mask_ptr: user-space pointer to the new cpu mask
3964 *
3965 * Return: 0 on success. An error code otherwise.
3966 */
3967 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3968 unsigned long __user *, user_mask_ptr)
3969 {
3970 cpumask_var_t new_mask;
3971 int retval;
3972
3973 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3974 return -ENOMEM;
3975
3976 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3977 if (retval == 0)
3978 retval = sched_setaffinity(pid, new_mask);
3979 free_cpumask_var(new_mask);
3980 return retval;
3981 }
3982
3983 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3984 {
3985 struct task_struct *p;
3986 unsigned long flags;
3987 int retval;
3988
3989 rcu_read_lock();
3990
3991 retval = -ESRCH;
3992 p = find_process_by_pid(pid);
3993 if (!p)
3994 goto out_unlock;
3995
3996 retval = security_task_getscheduler(p);
3997 if (retval)
3998 goto out_unlock;
3999
4000 raw_spin_lock_irqsave(&p->pi_lock, flags);
4001 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4002 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4003
4004 out_unlock:
4005 rcu_read_unlock();
4006
4007 return retval;
4008 }
4009
4010 /**
4011 * sys_sched_getaffinity - get the cpu affinity of a process
4012 * @pid: pid of the process
4013 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4014 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4015 *
4016 * Return: 0 on success. An error code otherwise.
4017 */
4018 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4019 unsigned long __user *, user_mask_ptr)
4020 {
4021 int ret;
4022 cpumask_var_t mask;
4023
4024 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4025 return -EINVAL;
4026 if (len & (sizeof(unsigned long)-1))
4027 return -EINVAL;
4028
4029 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4030 return -ENOMEM;
4031
4032 ret = sched_getaffinity(pid, mask);
4033 if (ret == 0) {
4034 size_t retlen = min_t(size_t, len, cpumask_size());
4035
4036 if (copy_to_user(user_mask_ptr, mask, retlen))
4037 ret = -EFAULT;
4038 else
4039 ret = retlen;
4040 }
4041 free_cpumask_var(mask);
4042
4043 return ret;
4044 }
4045
4046 /**
4047 * sys_sched_yield - yield the current processor to other threads.
4048 *
4049 * This function yields the current CPU to other tasks. If there are no
4050 * other threads running on this CPU then this function will return.
4051 *
4052 * Return: 0.
4053 */
4054 SYSCALL_DEFINE0(sched_yield)
4055 {
4056 struct rq *rq = this_rq_lock();
4057
4058 schedstat_inc(rq, yld_count);
4059 current->sched_class->yield_task(rq);
4060
4061 /*
4062 * Since we are going to call schedule() anyway, there's
4063 * no need to preempt or enable interrupts:
4064 */
4065 __release(rq->lock);
4066 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4067 do_raw_spin_unlock(&rq->lock);
4068 sched_preempt_enable_no_resched();
4069
4070 schedule();
4071
4072 return 0;
4073 }
4074
4075 static void __cond_resched(void)
4076 {
4077 __preempt_count_add(PREEMPT_ACTIVE);
4078 __schedule();
4079 __preempt_count_sub(PREEMPT_ACTIVE);
4080 }
4081
4082 int __sched _cond_resched(void)
4083 {
4084 if (should_resched()) {
4085 __cond_resched();
4086 return 1;
4087 }
4088 return 0;
4089 }
4090 EXPORT_SYMBOL(_cond_resched);
4091
4092 /*
4093 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4094 * call schedule, and on return reacquire the lock.
4095 *
4096 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4097 * operations here to prevent schedule() from being called twice (once via
4098 * spin_unlock(), once by hand).
4099 */
4100 int __cond_resched_lock(spinlock_t *lock)
4101 {
4102 int resched = should_resched();
4103 int ret = 0;
4104
4105 lockdep_assert_held(lock);
4106
4107 if (spin_needbreak(lock) || resched) {
4108 spin_unlock(lock);
4109 if (resched)
4110 __cond_resched();
4111 else
4112 cpu_relax();
4113 ret = 1;
4114 spin_lock(lock);
4115 }
4116 return ret;
4117 }
4118 EXPORT_SYMBOL(__cond_resched_lock);
4119
4120 int __sched __cond_resched_softirq(void)
4121 {
4122 BUG_ON(!in_softirq());
4123
4124 if (should_resched()) {
4125 local_bh_enable();
4126 __cond_resched();
4127 local_bh_disable();
4128 return 1;
4129 }
4130 return 0;
4131 }
4132 EXPORT_SYMBOL(__cond_resched_softirq);
4133
4134 /**
4135 * yield - yield the current processor to other threads.
4136 *
4137 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4138 *
4139 * The scheduler is at all times free to pick the calling task as the most
4140 * eligible task to run, if removing the yield() call from your code breaks
4141 * it, its already broken.
4142 *
4143 * Typical broken usage is:
4144 *
4145 * while (!event)
4146 * yield();
4147 *
4148 * where one assumes that yield() will let 'the other' process run that will
4149 * make event true. If the current task is a SCHED_FIFO task that will never
4150 * happen. Never use yield() as a progress guarantee!!
4151 *
4152 * If you want to use yield() to wait for something, use wait_event().
4153 * If you want to use yield() to be 'nice' for others, use cond_resched().
4154 * If you still want to use yield(), do not!
4155 */
4156 void __sched yield(void)
4157 {
4158 set_current_state(TASK_RUNNING);
4159 sys_sched_yield();
4160 }
4161 EXPORT_SYMBOL(yield);
4162
4163 /**
4164 * yield_to - yield the current processor to another thread in
4165 * your thread group, or accelerate that thread toward the
4166 * processor it's on.
4167 * @p: target task
4168 * @preempt: whether task preemption is allowed or not
4169 *
4170 * It's the caller's job to ensure that the target task struct
4171 * can't go away on us before we can do any checks.
4172 *
4173 * Return:
4174 * true (>0) if we indeed boosted the target task.
4175 * false (0) if we failed to boost the target.
4176 * -ESRCH if there's no task to yield to.
4177 */
4178 bool __sched yield_to(struct task_struct *p, bool preempt)
4179 {
4180 struct task_struct *curr = current;
4181 struct rq *rq, *p_rq;
4182 unsigned long flags;
4183 int yielded = 0;
4184
4185 local_irq_save(flags);
4186 rq = this_rq();
4187
4188 again:
4189 p_rq = task_rq(p);
4190 /*
4191 * If we're the only runnable task on the rq and target rq also
4192 * has only one task, there's absolutely no point in yielding.
4193 */
4194 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4195 yielded = -ESRCH;
4196 goto out_irq;
4197 }
4198
4199 double_rq_lock(rq, p_rq);
4200 if (task_rq(p) != p_rq) {
4201 double_rq_unlock(rq, p_rq);
4202 goto again;
4203 }
4204
4205 if (!curr->sched_class->yield_to_task)
4206 goto out_unlock;
4207
4208 if (curr->sched_class != p->sched_class)
4209 goto out_unlock;
4210
4211 if (task_running(p_rq, p) || p->state)
4212 goto out_unlock;
4213
4214 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4215 if (yielded) {
4216 schedstat_inc(rq, yld_count);
4217 /*
4218 * Make p's CPU reschedule; pick_next_entity takes care of
4219 * fairness.
4220 */
4221 if (preempt && rq != p_rq)
4222 resched_task(p_rq->curr);
4223 }
4224
4225 out_unlock:
4226 double_rq_unlock(rq, p_rq);
4227 out_irq:
4228 local_irq_restore(flags);
4229
4230 if (yielded > 0)
4231 schedule();
4232
4233 return yielded;
4234 }
4235 EXPORT_SYMBOL_GPL(yield_to);
4236
4237 /*
4238 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4239 * that process accounting knows that this is a task in IO wait state.
4240 */
4241 void __sched io_schedule(void)
4242 {
4243 struct rq *rq = raw_rq();
4244
4245 delayacct_blkio_start();
4246 atomic_inc(&rq->nr_iowait);
4247 blk_flush_plug(current);
4248 current->in_iowait = 1;
4249 schedule();
4250 current->in_iowait = 0;
4251 atomic_dec(&rq->nr_iowait);
4252 delayacct_blkio_end();
4253 }
4254 EXPORT_SYMBOL(io_schedule);
4255
4256 long __sched io_schedule_timeout(long timeout)
4257 {
4258 struct rq *rq = raw_rq();
4259 long ret;
4260
4261 delayacct_blkio_start();
4262 atomic_inc(&rq->nr_iowait);
4263 blk_flush_plug(current);
4264 current->in_iowait = 1;
4265 ret = schedule_timeout(timeout);
4266 current->in_iowait = 0;
4267 atomic_dec(&rq->nr_iowait);
4268 delayacct_blkio_end();
4269 return ret;
4270 }
4271
4272 /**
4273 * sys_sched_get_priority_max - return maximum RT priority.
4274 * @policy: scheduling class.
4275 *
4276 * Return: On success, this syscall returns the maximum
4277 * rt_priority that can be used by a given scheduling class.
4278 * On failure, a negative error code is returned.
4279 */
4280 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4281 {
4282 int ret = -EINVAL;
4283
4284 switch (policy) {
4285 case SCHED_FIFO:
4286 case SCHED_RR:
4287 ret = MAX_USER_RT_PRIO-1;
4288 break;
4289 case SCHED_DEADLINE:
4290 case SCHED_NORMAL:
4291 case SCHED_BATCH:
4292 case SCHED_IDLE:
4293 ret = 0;
4294 break;
4295 }
4296 return ret;
4297 }
4298
4299 /**
4300 * sys_sched_get_priority_min - return minimum RT priority.
4301 * @policy: scheduling class.
4302 *
4303 * Return: On success, this syscall returns the minimum
4304 * rt_priority that can be used by a given scheduling class.
4305 * On failure, a negative error code is returned.
4306 */
4307 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4308 {
4309 int ret = -EINVAL;
4310
4311 switch (policy) {
4312 case SCHED_FIFO:
4313 case SCHED_RR:
4314 ret = 1;
4315 break;
4316 case SCHED_DEADLINE:
4317 case SCHED_NORMAL:
4318 case SCHED_BATCH:
4319 case SCHED_IDLE:
4320 ret = 0;
4321 }
4322 return ret;
4323 }
4324
4325 /**
4326 * sys_sched_rr_get_interval - return the default timeslice of a process.
4327 * @pid: pid of the process.
4328 * @interval: userspace pointer to the timeslice value.
4329 *
4330 * this syscall writes the default timeslice value of a given process
4331 * into the user-space timespec buffer. A value of '0' means infinity.
4332 *
4333 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4334 * an error code.
4335 */
4336 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4337 struct timespec __user *, interval)
4338 {
4339 struct task_struct *p;
4340 unsigned int time_slice;
4341 unsigned long flags;
4342 struct rq *rq;
4343 int retval;
4344 struct timespec t;
4345
4346 if (pid < 0)
4347 return -EINVAL;
4348
4349 retval = -ESRCH;
4350 rcu_read_lock();
4351 p = find_process_by_pid(pid);
4352 if (!p)
4353 goto out_unlock;
4354
4355 retval = security_task_getscheduler(p);
4356 if (retval)
4357 goto out_unlock;
4358
4359 rq = task_rq_lock(p, &flags);
4360 time_slice = 0;
4361 if (p->sched_class->get_rr_interval)
4362 time_slice = p->sched_class->get_rr_interval(rq, p);
4363 task_rq_unlock(rq, p, &flags);
4364
4365 rcu_read_unlock();
4366 jiffies_to_timespec(time_slice, &t);
4367 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4368 return retval;
4369
4370 out_unlock:
4371 rcu_read_unlock();
4372 return retval;
4373 }
4374
4375 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4376
4377 void sched_show_task(struct task_struct *p)
4378 {
4379 unsigned long free = 0;
4380 int ppid;
4381 unsigned state;
4382
4383 state = p->state ? __ffs(p->state) + 1 : 0;
4384 printk(KERN_INFO "%-15.15s %c", p->comm,
4385 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4386 #if BITS_PER_LONG == 32
4387 if (state == TASK_RUNNING)
4388 printk(KERN_CONT " running ");
4389 else
4390 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4391 #else
4392 if (state == TASK_RUNNING)
4393 printk(KERN_CONT " running task ");
4394 else
4395 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4396 #endif
4397 #ifdef CONFIG_DEBUG_STACK_USAGE
4398 free = stack_not_used(p);
4399 #endif
4400 rcu_read_lock();
4401 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4402 rcu_read_unlock();
4403 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4404 task_pid_nr(p), ppid,
4405 (unsigned long)task_thread_info(p)->flags);
4406
4407 print_worker_info(KERN_INFO, p);
4408 show_stack(p, NULL);
4409 }
4410
4411 void show_state_filter(unsigned long state_filter)
4412 {
4413 struct task_struct *g, *p;
4414
4415 #if BITS_PER_LONG == 32
4416 printk(KERN_INFO
4417 " task PC stack pid father\n");
4418 #else
4419 printk(KERN_INFO
4420 " task PC stack pid father\n");
4421 #endif
4422 rcu_read_lock();
4423 do_each_thread(g, p) {
4424 /*
4425 * reset the NMI-timeout, listing all files on a slow
4426 * console might take a lot of time:
4427 */
4428 touch_nmi_watchdog();
4429 if (!state_filter || (p->state & state_filter))
4430 sched_show_task(p);
4431 } while_each_thread(g, p);
4432
4433 touch_all_softlockup_watchdogs();
4434
4435 #ifdef CONFIG_SCHED_DEBUG
4436 sysrq_sched_debug_show();
4437 #endif
4438 rcu_read_unlock();
4439 /*
4440 * Only show locks if all tasks are dumped:
4441 */
4442 if (!state_filter)
4443 debug_show_all_locks();
4444 }
4445
4446 void init_idle_bootup_task(struct task_struct *idle)
4447 {
4448 idle->sched_class = &idle_sched_class;
4449 }
4450
4451 /**
4452 * init_idle - set up an idle thread for a given CPU
4453 * @idle: task in question
4454 * @cpu: cpu the idle task belongs to
4455 *
4456 * NOTE: this function does not set the idle thread's NEED_RESCHED
4457 * flag, to make booting more robust.
4458 */
4459 void init_idle(struct task_struct *idle, int cpu)
4460 {
4461 struct rq *rq = cpu_rq(cpu);
4462 unsigned long flags;
4463
4464 raw_spin_lock_irqsave(&rq->lock, flags);
4465
4466 __sched_fork(0, idle);
4467 idle->state = TASK_RUNNING;
4468 idle->se.exec_start = sched_clock();
4469
4470 do_set_cpus_allowed(idle, cpumask_of(cpu));
4471 /*
4472 * We're having a chicken and egg problem, even though we are
4473 * holding rq->lock, the cpu isn't yet set to this cpu so the
4474 * lockdep check in task_group() will fail.
4475 *
4476 * Similar case to sched_fork(). / Alternatively we could
4477 * use task_rq_lock() here and obtain the other rq->lock.
4478 *
4479 * Silence PROVE_RCU
4480 */
4481 rcu_read_lock();
4482 __set_task_cpu(idle, cpu);
4483 rcu_read_unlock();
4484
4485 rq->curr = rq->idle = idle;
4486 #if defined(CONFIG_SMP)
4487 idle->on_cpu = 1;
4488 #endif
4489 raw_spin_unlock_irqrestore(&rq->lock, flags);
4490
4491 /* Set the preempt count _outside_ the spinlocks! */
4492 init_idle_preempt_count(idle, cpu);
4493
4494 /*
4495 * The idle tasks have their own, simple scheduling class:
4496 */
4497 idle->sched_class = &idle_sched_class;
4498 ftrace_graph_init_idle_task(idle, cpu);
4499 vtime_init_idle(idle, cpu);
4500 #if defined(CONFIG_SMP)
4501 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4502 #endif
4503 }
4504
4505 #ifdef CONFIG_SMP
4506 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4507 {
4508 if (p->sched_class && p->sched_class->set_cpus_allowed)
4509 p->sched_class->set_cpus_allowed(p, new_mask);
4510
4511 cpumask_copy(&p->cpus_allowed, new_mask);
4512 p->nr_cpus_allowed = cpumask_weight(new_mask);
4513 }
4514
4515 /*
4516 * This is how migration works:
4517 *
4518 * 1) we invoke migration_cpu_stop() on the target CPU using
4519 * stop_one_cpu().
4520 * 2) stopper starts to run (implicitly forcing the migrated thread
4521 * off the CPU)
4522 * 3) it checks whether the migrated task is still in the wrong runqueue.
4523 * 4) if it's in the wrong runqueue then the migration thread removes
4524 * it and puts it into the right queue.
4525 * 5) stopper completes and stop_one_cpu() returns and the migration
4526 * is done.
4527 */
4528
4529 /*
4530 * Change a given task's CPU affinity. Migrate the thread to a
4531 * proper CPU and schedule it away if the CPU it's executing on
4532 * is removed from the allowed bitmask.
4533 *
4534 * NOTE: the caller must have a valid reference to the task, the
4535 * task must not exit() & deallocate itself prematurely. The
4536 * call is not atomic; no spinlocks may be held.
4537 */
4538 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4539 {
4540 unsigned long flags;
4541 struct rq *rq;
4542 unsigned int dest_cpu;
4543 int ret = 0;
4544
4545 rq = task_rq_lock(p, &flags);
4546
4547 if (cpumask_equal(&p->cpus_allowed, new_mask))
4548 goto out;
4549
4550 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4551 ret = -EINVAL;
4552 goto out;
4553 }
4554
4555 do_set_cpus_allowed(p, new_mask);
4556
4557 /* Can the task run on the task's current CPU? If so, we're done */
4558 if (cpumask_test_cpu(task_cpu(p), new_mask))
4559 goto out;
4560
4561 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4562 if (p->on_rq) {
4563 struct migration_arg arg = { p, dest_cpu };
4564 /* Need help from migration thread: drop lock and wait. */
4565 task_rq_unlock(rq, p, &flags);
4566 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4567 tlb_migrate_finish(p->mm);
4568 return 0;
4569 }
4570 out:
4571 task_rq_unlock(rq, p, &flags);
4572
4573 return ret;
4574 }
4575 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4576
4577 /*
4578 * Move (not current) task off this cpu, onto dest cpu. We're doing
4579 * this because either it can't run here any more (set_cpus_allowed()
4580 * away from this CPU, or CPU going down), or because we're
4581 * attempting to rebalance this task on exec (sched_exec).
4582 *
4583 * So we race with normal scheduler movements, but that's OK, as long
4584 * as the task is no longer on this CPU.
4585 *
4586 * Returns non-zero if task was successfully migrated.
4587 */
4588 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4589 {
4590 struct rq *rq_dest, *rq_src;
4591 int ret = 0;
4592
4593 if (unlikely(!cpu_active(dest_cpu)))
4594 return ret;
4595
4596 rq_src = cpu_rq(src_cpu);
4597 rq_dest = cpu_rq(dest_cpu);
4598
4599 raw_spin_lock(&p->pi_lock);
4600 double_rq_lock(rq_src, rq_dest);
4601 /* Already moved. */
4602 if (task_cpu(p) != src_cpu)
4603 goto done;
4604 /* Affinity changed (again). */
4605 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4606 goto fail;
4607
4608 /*
4609 * If we're not on a rq, the next wake-up will ensure we're
4610 * placed properly.
4611 */
4612 if (p->on_rq) {
4613 dequeue_task(rq_src, p, 0);
4614 set_task_cpu(p, dest_cpu);
4615 enqueue_task(rq_dest, p, 0);
4616 check_preempt_curr(rq_dest, p, 0);
4617 }
4618 done:
4619 ret = 1;
4620 fail:
4621 double_rq_unlock(rq_src, rq_dest);
4622 raw_spin_unlock(&p->pi_lock);
4623 return ret;
4624 }
4625
4626 #ifdef CONFIG_NUMA_BALANCING
4627 /* Migrate current task p to target_cpu */
4628 int migrate_task_to(struct task_struct *p, int target_cpu)
4629 {
4630 struct migration_arg arg = { p, target_cpu };
4631 int curr_cpu = task_cpu(p);
4632
4633 if (curr_cpu == target_cpu)
4634 return 0;
4635
4636 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4637 return -EINVAL;
4638
4639 /* TODO: This is not properly updating schedstats */
4640
4641 trace_sched_move_numa(p, curr_cpu, target_cpu);
4642 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4643 }
4644
4645 /*
4646 * Requeue a task on a given node and accurately track the number of NUMA
4647 * tasks on the runqueues
4648 */
4649 void sched_setnuma(struct task_struct *p, int nid)
4650 {
4651 struct rq *rq;
4652 unsigned long flags;
4653 bool on_rq, running;
4654
4655 rq = task_rq_lock(p, &flags);
4656 on_rq = p->on_rq;
4657 running = task_current(rq, p);
4658
4659 if (on_rq)
4660 dequeue_task(rq, p, 0);
4661 if (running)
4662 p->sched_class->put_prev_task(rq, p);
4663
4664 p->numa_preferred_nid = nid;
4665
4666 if (running)
4667 p->sched_class->set_curr_task(rq);
4668 if (on_rq)
4669 enqueue_task(rq, p, 0);
4670 task_rq_unlock(rq, p, &flags);
4671 }
4672 #endif
4673
4674 /*
4675 * migration_cpu_stop - this will be executed by a highprio stopper thread
4676 * and performs thread migration by bumping thread off CPU then
4677 * 'pushing' onto another runqueue.
4678 */
4679 static int migration_cpu_stop(void *data)
4680 {
4681 struct migration_arg *arg = data;
4682
4683 /*
4684 * The original target cpu might have gone down and we might
4685 * be on another cpu but it doesn't matter.
4686 */
4687 local_irq_disable();
4688 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4689 local_irq_enable();
4690 return 0;
4691 }
4692
4693 #ifdef CONFIG_HOTPLUG_CPU
4694
4695 /*
4696 * Ensures that the idle task is using init_mm right before its cpu goes
4697 * offline.
4698 */
4699 void idle_task_exit(void)
4700 {
4701 struct mm_struct *mm = current->active_mm;
4702
4703 BUG_ON(cpu_online(smp_processor_id()));
4704
4705 if (mm != &init_mm)
4706 switch_mm(mm, &init_mm, current);
4707 mmdrop(mm);
4708 }
4709
4710 /*
4711 * Since this CPU is going 'away' for a while, fold any nr_active delta
4712 * we might have. Assumes we're called after migrate_tasks() so that the
4713 * nr_active count is stable.
4714 *
4715 * Also see the comment "Global load-average calculations".
4716 */
4717 static void calc_load_migrate(struct rq *rq)
4718 {
4719 long delta = calc_load_fold_active(rq);
4720 if (delta)
4721 atomic_long_add(delta, &calc_load_tasks);
4722 }
4723
4724 /*
4725 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4726 * try_to_wake_up()->select_task_rq().
4727 *
4728 * Called with rq->lock held even though we'er in stop_machine() and
4729 * there's no concurrency possible, we hold the required locks anyway
4730 * because of lock validation efforts.
4731 */
4732 static void migrate_tasks(unsigned int dead_cpu)
4733 {
4734 struct rq *rq = cpu_rq(dead_cpu);
4735 struct task_struct *next, *stop = rq->stop;
4736 int dest_cpu;
4737
4738 /*
4739 * Fudge the rq selection such that the below task selection loop
4740 * doesn't get stuck on the currently eligible stop task.
4741 *
4742 * We're currently inside stop_machine() and the rq is either stuck
4743 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4744 * either way we should never end up calling schedule() until we're
4745 * done here.
4746 */
4747 rq->stop = NULL;
4748
4749 /*
4750 * put_prev_task() and pick_next_task() sched
4751 * class method both need to have an up-to-date
4752 * value of rq->clock[_task]
4753 */
4754 update_rq_clock(rq);
4755
4756 for ( ; ; ) {
4757 /*
4758 * There's this thread running, bail when that's the only
4759 * remaining thread.
4760 */
4761 if (rq->nr_running == 1)
4762 break;
4763
4764 next = pick_next_task(rq);
4765 BUG_ON(!next);
4766 next->sched_class->put_prev_task(rq, next);
4767
4768 /* Find suitable destination for @next, with force if needed. */
4769 dest_cpu = select_fallback_rq(dead_cpu, next);
4770 raw_spin_unlock(&rq->lock);
4771
4772 __migrate_task(next, dead_cpu, dest_cpu);
4773
4774 raw_spin_lock(&rq->lock);
4775 }
4776
4777 rq->stop = stop;
4778 }
4779
4780 #endif /* CONFIG_HOTPLUG_CPU */
4781
4782 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4783
4784 static struct ctl_table sd_ctl_dir[] = {
4785 {
4786 .procname = "sched_domain",
4787 .mode = 0555,
4788 },
4789 {}
4790 };
4791
4792 static struct ctl_table sd_ctl_root[] = {
4793 {
4794 .procname = "kernel",
4795 .mode = 0555,
4796 .child = sd_ctl_dir,
4797 },
4798 {}
4799 };
4800
4801 static struct ctl_table *sd_alloc_ctl_entry(int n)
4802 {
4803 struct ctl_table *entry =
4804 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4805
4806 return entry;
4807 }
4808
4809 static void sd_free_ctl_entry(struct ctl_table **tablep)
4810 {
4811 struct ctl_table *entry;
4812
4813 /*
4814 * In the intermediate directories, both the child directory and
4815 * procname are dynamically allocated and could fail but the mode
4816 * will always be set. In the lowest directory the names are
4817 * static strings and all have proc handlers.
4818 */
4819 for (entry = *tablep; entry->mode; entry++) {
4820 if (entry->child)
4821 sd_free_ctl_entry(&entry->child);
4822 if (entry->proc_handler == NULL)
4823 kfree(entry->procname);
4824 }
4825
4826 kfree(*tablep);
4827 *tablep = NULL;
4828 }
4829
4830 static int min_load_idx = 0;
4831 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4832
4833 static void
4834 set_table_entry(struct ctl_table *entry,
4835 const char *procname, void *data, int maxlen,
4836 umode_t mode, proc_handler *proc_handler,
4837 bool load_idx)
4838 {
4839 entry->procname = procname;
4840 entry->data = data;
4841 entry->maxlen = maxlen;
4842 entry->mode = mode;
4843 entry->proc_handler = proc_handler;
4844
4845 if (load_idx) {
4846 entry->extra1 = &min_load_idx;
4847 entry->extra2 = &max_load_idx;
4848 }
4849 }
4850
4851 static struct ctl_table *
4852 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4853 {
4854 struct ctl_table *table = sd_alloc_ctl_entry(13);
4855
4856 if (table == NULL)
4857 return NULL;
4858
4859 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4860 sizeof(long), 0644, proc_doulongvec_minmax, false);
4861 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4862 sizeof(long), 0644, proc_doulongvec_minmax, false);
4863 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4864 sizeof(int), 0644, proc_dointvec_minmax, true);
4865 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4866 sizeof(int), 0644, proc_dointvec_minmax, true);
4867 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4868 sizeof(int), 0644, proc_dointvec_minmax, true);
4869 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4870 sizeof(int), 0644, proc_dointvec_minmax, true);
4871 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4872 sizeof(int), 0644, proc_dointvec_minmax, true);
4873 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4874 sizeof(int), 0644, proc_dointvec_minmax, false);
4875 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4876 sizeof(int), 0644, proc_dointvec_minmax, false);
4877 set_table_entry(&table[9], "cache_nice_tries",
4878 &sd->cache_nice_tries,
4879 sizeof(int), 0644, proc_dointvec_minmax, false);
4880 set_table_entry(&table[10], "flags", &sd->flags,
4881 sizeof(int), 0644, proc_dointvec_minmax, false);
4882 set_table_entry(&table[11], "name", sd->name,
4883 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4884 /* &table[12] is terminator */
4885
4886 return table;
4887 }
4888
4889 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4890 {
4891 struct ctl_table *entry, *table;
4892 struct sched_domain *sd;
4893 int domain_num = 0, i;
4894 char buf[32];
4895
4896 for_each_domain(cpu, sd)
4897 domain_num++;
4898 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4899 if (table == NULL)
4900 return NULL;
4901
4902 i = 0;
4903 for_each_domain(cpu, sd) {
4904 snprintf(buf, 32, "domain%d", i);
4905 entry->procname = kstrdup(buf, GFP_KERNEL);
4906 entry->mode = 0555;
4907 entry->child = sd_alloc_ctl_domain_table(sd);
4908 entry++;
4909 i++;
4910 }
4911 return table;
4912 }
4913
4914 static struct ctl_table_header *sd_sysctl_header;
4915 static void register_sched_domain_sysctl(void)
4916 {
4917 int i, cpu_num = num_possible_cpus();
4918 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4919 char buf[32];
4920
4921 WARN_ON(sd_ctl_dir[0].child);
4922 sd_ctl_dir[0].child = entry;
4923
4924 if (entry == NULL)
4925 return;
4926
4927 for_each_possible_cpu(i) {
4928 snprintf(buf, 32, "cpu%d", i);
4929 entry->procname = kstrdup(buf, GFP_KERNEL);
4930 entry->mode = 0555;
4931 entry->child = sd_alloc_ctl_cpu_table(i);
4932 entry++;
4933 }
4934
4935 WARN_ON(sd_sysctl_header);
4936 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4937 }
4938
4939 /* may be called multiple times per register */
4940 static void unregister_sched_domain_sysctl(void)
4941 {
4942 if (sd_sysctl_header)
4943 unregister_sysctl_table(sd_sysctl_header);
4944 sd_sysctl_header = NULL;
4945 if (sd_ctl_dir[0].child)
4946 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4947 }
4948 #else
4949 static void register_sched_domain_sysctl(void)
4950 {
4951 }
4952 static void unregister_sched_domain_sysctl(void)
4953 {
4954 }
4955 #endif
4956
4957 static void set_rq_online(struct rq *rq)
4958 {
4959 if (!rq->online) {
4960 const struct sched_class *class;
4961
4962 cpumask_set_cpu(rq->cpu, rq->rd->online);
4963 rq->online = 1;
4964
4965 for_each_class(class) {
4966 if (class->rq_online)
4967 class->rq_online(rq);
4968 }
4969 }
4970 }
4971
4972 static void set_rq_offline(struct rq *rq)
4973 {
4974 if (rq->online) {
4975 const struct sched_class *class;
4976
4977 for_each_class(class) {
4978 if (class->rq_offline)
4979 class->rq_offline(rq);
4980 }
4981
4982 cpumask_clear_cpu(rq->cpu, rq->rd->online);
4983 rq->online = 0;
4984 }
4985 }
4986
4987 /*
4988 * migration_call - callback that gets triggered when a CPU is added.
4989 * Here we can start up the necessary migration thread for the new CPU.
4990 */
4991 static int
4992 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4993 {
4994 int cpu = (long)hcpu;
4995 unsigned long flags;
4996 struct rq *rq = cpu_rq(cpu);
4997
4998 switch (action & ~CPU_TASKS_FROZEN) {
4999
5000 case CPU_UP_PREPARE:
5001 rq->calc_load_update = calc_load_update;
5002 break;
5003
5004 case CPU_ONLINE:
5005 /* Update our root-domain */
5006 raw_spin_lock_irqsave(&rq->lock, flags);
5007 if (rq->rd) {
5008 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5009
5010 set_rq_online(rq);
5011 }
5012 raw_spin_unlock_irqrestore(&rq->lock, flags);
5013 break;
5014
5015 #ifdef CONFIG_HOTPLUG_CPU
5016 case CPU_DYING:
5017 sched_ttwu_pending();
5018 /* Update our root-domain */
5019 raw_spin_lock_irqsave(&rq->lock, flags);
5020 if (rq->rd) {
5021 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5022 set_rq_offline(rq);
5023 }
5024 migrate_tasks(cpu);
5025 BUG_ON(rq->nr_running != 1); /* the migration thread */
5026 raw_spin_unlock_irqrestore(&rq->lock, flags);
5027 break;
5028
5029 case CPU_DEAD:
5030 calc_load_migrate(rq);
5031 break;
5032 #endif
5033 }
5034
5035 update_max_interval();
5036
5037 return NOTIFY_OK;
5038 }
5039
5040 /*
5041 * Register at high priority so that task migration (migrate_all_tasks)
5042 * happens before everything else. This has to be lower priority than
5043 * the notifier in the perf_event subsystem, though.
5044 */
5045 static struct notifier_block migration_notifier = {
5046 .notifier_call = migration_call,
5047 .priority = CPU_PRI_MIGRATION,
5048 };
5049
5050 static int sched_cpu_active(struct notifier_block *nfb,
5051 unsigned long action, void *hcpu)
5052 {
5053 switch (action & ~CPU_TASKS_FROZEN) {
5054 case CPU_STARTING:
5055 case CPU_DOWN_FAILED:
5056 set_cpu_active((long)hcpu, true);
5057 return NOTIFY_OK;
5058 default:
5059 return NOTIFY_DONE;
5060 }
5061 }
5062
5063 static int sched_cpu_inactive(struct notifier_block *nfb,
5064 unsigned long action, void *hcpu)
5065 {
5066 unsigned long flags;
5067 long cpu = (long)hcpu;
5068
5069 switch (action & ~CPU_TASKS_FROZEN) {
5070 case CPU_DOWN_PREPARE:
5071 set_cpu_active(cpu, false);
5072
5073 /* explicitly allow suspend */
5074 if (!(action & CPU_TASKS_FROZEN)) {
5075 struct dl_bw *dl_b = dl_bw_of(cpu);
5076 bool overflow;
5077 int cpus;
5078
5079 raw_spin_lock_irqsave(&dl_b->lock, flags);
5080 cpus = dl_bw_cpus(cpu);
5081 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5082 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5083
5084 if (overflow)
5085 return notifier_from_errno(-EBUSY);
5086 }
5087 return NOTIFY_OK;
5088 }
5089
5090 return NOTIFY_DONE;
5091 }
5092
5093 static int __init migration_init(void)
5094 {
5095 void *cpu = (void *)(long)smp_processor_id();
5096 int err;
5097
5098 /* Initialize migration for the boot CPU */
5099 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5100 BUG_ON(err == NOTIFY_BAD);
5101 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5102 register_cpu_notifier(&migration_notifier);
5103
5104 /* Register cpu active notifiers */
5105 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5106 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5107
5108 return 0;
5109 }
5110 early_initcall(migration_init);
5111 #endif
5112
5113 #ifdef CONFIG_SMP
5114
5115 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5116
5117 #ifdef CONFIG_SCHED_DEBUG
5118
5119 static __read_mostly int sched_debug_enabled;
5120
5121 static int __init sched_debug_setup(char *str)
5122 {
5123 sched_debug_enabled = 1;
5124
5125 return 0;
5126 }
5127 early_param("sched_debug", sched_debug_setup);
5128
5129 static inline bool sched_debug(void)
5130 {
5131 return sched_debug_enabled;
5132 }
5133
5134 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5135 struct cpumask *groupmask)
5136 {
5137 struct sched_group *group = sd->groups;
5138 char str[256];
5139
5140 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5141 cpumask_clear(groupmask);
5142
5143 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5144
5145 if (!(sd->flags & SD_LOAD_BALANCE)) {
5146 printk("does not load-balance\n");
5147 if (sd->parent)
5148 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5149 " has parent");
5150 return -1;
5151 }
5152
5153 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5154
5155 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5156 printk(KERN_ERR "ERROR: domain->span does not contain "
5157 "CPU%d\n", cpu);
5158 }
5159 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5160 printk(KERN_ERR "ERROR: domain->groups does not contain"
5161 " CPU%d\n", cpu);
5162 }
5163
5164 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5165 do {
5166 if (!group) {
5167 printk("\n");
5168 printk(KERN_ERR "ERROR: group is NULL\n");
5169 break;
5170 }
5171
5172 /*
5173 * Even though we initialize ->power to something semi-sane,
5174 * we leave power_orig unset. This allows us to detect if
5175 * domain iteration is still funny without causing /0 traps.
5176 */
5177 if (!group->sgp->power_orig) {
5178 printk(KERN_CONT "\n");
5179 printk(KERN_ERR "ERROR: domain->cpu_power not "
5180 "set\n");
5181 break;
5182 }
5183
5184 if (!cpumask_weight(sched_group_cpus(group))) {
5185 printk(KERN_CONT "\n");
5186 printk(KERN_ERR "ERROR: empty group\n");
5187 break;
5188 }
5189
5190 if (!(sd->flags & SD_OVERLAP) &&
5191 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5192 printk(KERN_CONT "\n");
5193 printk(KERN_ERR "ERROR: repeated CPUs\n");
5194 break;
5195 }
5196
5197 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5198
5199 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5200
5201 printk(KERN_CONT " %s", str);
5202 if (group->sgp->power != SCHED_POWER_SCALE) {
5203 printk(KERN_CONT " (cpu_power = %d)",
5204 group->sgp->power);
5205 }
5206
5207 group = group->next;
5208 } while (group != sd->groups);
5209 printk(KERN_CONT "\n");
5210
5211 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5212 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5213
5214 if (sd->parent &&
5215 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5216 printk(KERN_ERR "ERROR: parent span is not a superset "
5217 "of domain->span\n");
5218 return 0;
5219 }
5220
5221 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5222 {
5223 int level = 0;
5224
5225 if (!sched_debug_enabled)
5226 return;
5227
5228 if (!sd) {
5229 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5230 return;
5231 }
5232
5233 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5234
5235 for (;;) {
5236 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5237 break;
5238 level++;
5239 sd = sd->parent;
5240 if (!sd)
5241 break;
5242 }
5243 }
5244 #else /* !CONFIG_SCHED_DEBUG */
5245 # define sched_domain_debug(sd, cpu) do { } while (0)
5246 static inline bool sched_debug(void)
5247 {
5248 return false;
5249 }
5250 #endif /* CONFIG_SCHED_DEBUG */
5251
5252 static int sd_degenerate(struct sched_domain *sd)
5253 {
5254 if (cpumask_weight(sched_domain_span(sd)) == 1)
5255 return 1;
5256
5257 /* Following flags need at least 2 groups */
5258 if (sd->flags & (SD_LOAD_BALANCE |
5259 SD_BALANCE_NEWIDLE |
5260 SD_BALANCE_FORK |
5261 SD_BALANCE_EXEC |
5262 SD_SHARE_CPUPOWER |
5263 SD_SHARE_PKG_RESOURCES)) {
5264 if (sd->groups != sd->groups->next)
5265 return 0;
5266 }
5267
5268 /* Following flags don't use groups */
5269 if (sd->flags & (SD_WAKE_AFFINE))
5270 return 0;
5271
5272 return 1;
5273 }
5274
5275 static int
5276 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5277 {
5278 unsigned long cflags = sd->flags, pflags = parent->flags;
5279
5280 if (sd_degenerate(parent))
5281 return 1;
5282
5283 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5284 return 0;
5285
5286 /* Flags needing groups don't count if only 1 group in parent */
5287 if (parent->groups == parent->groups->next) {
5288 pflags &= ~(SD_LOAD_BALANCE |
5289 SD_BALANCE_NEWIDLE |
5290 SD_BALANCE_FORK |
5291 SD_BALANCE_EXEC |
5292 SD_SHARE_CPUPOWER |
5293 SD_SHARE_PKG_RESOURCES |
5294 SD_PREFER_SIBLING);
5295 if (nr_node_ids == 1)
5296 pflags &= ~SD_SERIALIZE;
5297 }
5298 if (~cflags & pflags)
5299 return 0;
5300
5301 return 1;
5302 }
5303
5304 static void free_rootdomain(struct rcu_head *rcu)
5305 {
5306 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5307
5308 cpupri_cleanup(&rd->cpupri);
5309 cpudl_cleanup(&rd->cpudl);
5310 free_cpumask_var(rd->dlo_mask);
5311 free_cpumask_var(rd->rto_mask);
5312 free_cpumask_var(rd->online);
5313 free_cpumask_var(rd->span);
5314 kfree(rd);
5315 }
5316
5317 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5318 {
5319 struct root_domain *old_rd = NULL;
5320 unsigned long flags;
5321
5322 raw_spin_lock_irqsave(&rq->lock, flags);
5323
5324 if (rq->rd) {
5325 old_rd = rq->rd;
5326
5327 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5328 set_rq_offline(rq);
5329
5330 cpumask_clear_cpu(rq->cpu, old_rd->span);
5331
5332 /*
5333 * If we dont want to free the old_rd yet then
5334 * set old_rd to NULL to skip the freeing later
5335 * in this function:
5336 */
5337 if (!atomic_dec_and_test(&old_rd->refcount))
5338 old_rd = NULL;
5339 }
5340
5341 atomic_inc(&rd->refcount);
5342 rq->rd = rd;
5343
5344 cpumask_set_cpu(rq->cpu, rd->span);
5345 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5346 set_rq_online(rq);
5347
5348 raw_spin_unlock_irqrestore(&rq->lock, flags);
5349
5350 if (old_rd)
5351 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5352 }
5353
5354 static int init_rootdomain(struct root_domain *rd)
5355 {
5356 memset(rd, 0, sizeof(*rd));
5357
5358 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5359 goto out;
5360 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5361 goto free_span;
5362 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5363 goto free_online;
5364 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5365 goto free_dlo_mask;
5366
5367 init_dl_bw(&rd->dl_bw);
5368 if (cpudl_init(&rd->cpudl) != 0)
5369 goto free_dlo_mask;
5370
5371 if (cpupri_init(&rd->cpupri) != 0)
5372 goto free_rto_mask;
5373 return 0;
5374
5375 free_rto_mask:
5376 free_cpumask_var(rd->rto_mask);
5377 free_dlo_mask:
5378 free_cpumask_var(rd->dlo_mask);
5379 free_online:
5380 free_cpumask_var(rd->online);
5381 free_span:
5382 free_cpumask_var(rd->span);
5383 out:
5384 return -ENOMEM;
5385 }
5386
5387 /*
5388 * By default the system creates a single root-domain with all cpus as
5389 * members (mimicking the global state we have today).
5390 */
5391 struct root_domain def_root_domain;
5392
5393 static void init_defrootdomain(void)
5394 {
5395 init_rootdomain(&def_root_domain);
5396
5397 atomic_set(&def_root_domain.refcount, 1);
5398 }
5399
5400 static struct root_domain *alloc_rootdomain(void)
5401 {
5402 struct root_domain *rd;
5403
5404 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5405 if (!rd)
5406 return NULL;
5407
5408 if (init_rootdomain(rd) != 0) {
5409 kfree(rd);
5410 return NULL;
5411 }
5412
5413 return rd;
5414 }
5415
5416 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5417 {
5418 struct sched_group *tmp, *first;
5419
5420 if (!sg)
5421 return;
5422
5423 first = sg;
5424 do {
5425 tmp = sg->next;
5426
5427 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5428 kfree(sg->sgp);
5429
5430 kfree(sg);
5431 sg = tmp;
5432 } while (sg != first);
5433 }
5434
5435 static void free_sched_domain(struct rcu_head *rcu)
5436 {
5437 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5438
5439 /*
5440 * If its an overlapping domain it has private groups, iterate and
5441 * nuke them all.
5442 */
5443 if (sd->flags & SD_OVERLAP) {
5444 free_sched_groups(sd->groups, 1);
5445 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5446 kfree(sd->groups->sgp);
5447 kfree(sd->groups);
5448 }
5449 kfree(sd);
5450 }
5451
5452 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5453 {
5454 call_rcu(&sd->rcu, free_sched_domain);
5455 }
5456
5457 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5458 {
5459 for (; sd; sd = sd->parent)
5460 destroy_sched_domain(sd, cpu);
5461 }
5462
5463 /*
5464 * Keep a special pointer to the highest sched_domain that has
5465 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5466 * allows us to avoid some pointer chasing select_idle_sibling().
5467 *
5468 * Also keep a unique ID per domain (we use the first cpu number in
5469 * the cpumask of the domain), this allows us to quickly tell if
5470 * two cpus are in the same cache domain, see cpus_share_cache().
5471 */
5472 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5473 DEFINE_PER_CPU(int, sd_llc_size);
5474 DEFINE_PER_CPU(int, sd_llc_id);
5475 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5476 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5477 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5478
5479 static void update_top_cache_domain(int cpu)
5480 {
5481 struct sched_domain *sd;
5482 struct sched_domain *busy_sd = NULL;
5483 int id = cpu;
5484 int size = 1;
5485
5486 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5487 if (sd) {
5488 id = cpumask_first(sched_domain_span(sd));
5489 size = cpumask_weight(sched_domain_span(sd));
5490 busy_sd = sd->parent; /* sd_busy */
5491 }
5492 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5493
5494 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5495 per_cpu(sd_llc_size, cpu) = size;
5496 per_cpu(sd_llc_id, cpu) = id;
5497
5498 sd = lowest_flag_domain(cpu, SD_NUMA);
5499 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5500
5501 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5502 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5503 }
5504
5505 /*
5506 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5507 * hold the hotplug lock.
5508 */
5509 static void
5510 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5511 {
5512 struct rq *rq = cpu_rq(cpu);
5513 struct sched_domain *tmp;
5514
5515 /* Remove the sched domains which do not contribute to scheduling. */
5516 for (tmp = sd; tmp; ) {
5517 struct sched_domain *parent = tmp->parent;
5518 if (!parent)
5519 break;
5520
5521 if (sd_parent_degenerate(tmp, parent)) {
5522 tmp->parent = parent->parent;
5523 if (parent->parent)
5524 parent->parent->child = tmp;
5525 /*
5526 * Transfer SD_PREFER_SIBLING down in case of a
5527 * degenerate parent; the spans match for this
5528 * so the property transfers.
5529 */
5530 if (parent->flags & SD_PREFER_SIBLING)
5531 tmp->flags |= SD_PREFER_SIBLING;
5532 destroy_sched_domain(parent, cpu);
5533 } else
5534 tmp = tmp->parent;
5535 }
5536
5537 if (sd && sd_degenerate(sd)) {
5538 tmp = sd;
5539 sd = sd->parent;
5540 destroy_sched_domain(tmp, cpu);
5541 if (sd)
5542 sd->child = NULL;
5543 }
5544
5545 sched_domain_debug(sd, cpu);
5546
5547 rq_attach_root(rq, rd);
5548 tmp = rq->sd;
5549 rcu_assign_pointer(rq->sd, sd);
5550 destroy_sched_domains(tmp, cpu);
5551
5552 update_top_cache_domain(cpu);
5553 }
5554
5555 /* cpus with isolated domains */
5556 static cpumask_var_t cpu_isolated_map;
5557
5558 /* Setup the mask of cpus configured for isolated domains */
5559 static int __init isolated_cpu_setup(char *str)
5560 {
5561 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5562 cpulist_parse(str, cpu_isolated_map);
5563 return 1;
5564 }
5565
5566 __setup("isolcpus=", isolated_cpu_setup);
5567
5568 static const struct cpumask *cpu_cpu_mask(int cpu)
5569 {
5570 return cpumask_of_node(cpu_to_node(cpu));
5571 }
5572
5573 struct sd_data {
5574 struct sched_domain **__percpu sd;
5575 struct sched_group **__percpu sg;
5576 struct sched_group_power **__percpu sgp;
5577 };
5578
5579 struct s_data {
5580 struct sched_domain ** __percpu sd;
5581 struct root_domain *rd;
5582 };
5583
5584 enum s_alloc {
5585 sa_rootdomain,
5586 sa_sd,
5587 sa_sd_storage,
5588 sa_none,
5589 };
5590
5591 struct sched_domain_topology_level;
5592
5593 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5594 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5595
5596 #define SDTL_OVERLAP 0x01
5597
5598 struct sched_domain_topology_level {
5599 sched_domain_init_f init;
5600 sched_domain_mask_f mask;
5601 int flags;
5602 int numa_level;
5603 struct sd_data data;
5604 };
5605
5606 /*
5607 * Build an iteration mask that can exclude certain CPUs from the upwards
5608 * domain traversal.
5609 *
5610 * Asymmetric node setups can result in situations where the domain tree is of
5611 * unequal depth, make sure to skip domains that already cover the entire
5612 * range.
5613 *
5614 * In that case build_sched_domains() will have terminated the iteration early
5615 * and our sibling sd spans will be empty. Domains should always include the
5616 * cpu they're built on, so check that.
5617 *
5618 */
5619 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5620 {
5621 const struct cpumask *span = sched_domain_span(sd);
5622 struct sd_data *sdd = sd->private;
5623 struct sched_domain *sibling;
5624 int i;
5625
5626 for_each_cpu(i, span) {
5627 sibling = *per_cpu_ptr(sdd->sd, i);
5628 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5629 continue;
5630
5631 cpumask_set_cpu(i, sched_group_mask(sg));
5632 }
5633 }
5634
5635 /*
5636 * Return the canonical balance cpu for this group, this is the first cpu
5637 * of this group that's also in the iteration mask.
5638 */
5639 int group_balance_cpu(struct sched_group *sg)
5640 {
5641 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5642 }
5643
5644 static int
5645 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5646 {
5647 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5648 const struct cpumask *span = sched_domain_span(sd);
5649 struct cpumask *covered = sched_domains_tmpmask;
5650 struct sd_data *sdd = sd->private;
5651 struct sched_domain *child;
5652 int i;
5653
5654 cpumask_clear(covered);
5655
5656 for_each_cpu(i, span) {
5657 struct cpumask *sg_span;
5658
5659 if (cpumask_test_cpu(i, covered))
5660 continue;
5661
5662 child = *per_cpu_ptr(sdd->sd, i);
5663
5664 /* See the comment near build_group_mask(). */
5665 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5666 continue;
5667
5668 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5669 GFP_KERNEL, cpu_to_node(cpu));
5670
5671 if (!sg)
5672 goto fail;
5673
5674 sg_span = sched_group_cpus(sg);
5675 if (child->child) {
5676 child = child->child;
5677 cpumask_copy(sg_span, sched_domain_span(child));
5678 } else
5679 cpumask_set_cpu(i, sg_span);
5680
5681 cpumask_or(covered, covered, sg_span);
5682
5683 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5684 if (atomic_inc_return(&sg->sgp->ref) == 1)
5685 build_group_mask(sd, sg);
5686
5687 /*
5688 * Initialize sgp->power such that even if we mess up the
5689 * domains and no possible iteration will get us here, we won't
5690 * die on a /0 trap.
5691 */
5692 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5693 sg->sgp->power_orig = sg->sgp->power;
5694
5695 /*
5696 * Make sure the first group of this domain contains the
5697 * canonical balance cpu. Otherwise the sched_domain iteration
5698 * breaks. See update_sg_lb_stats().
5699 */
5700 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5701 group_balance_cpu(sg) == cpu)
5702 groups = sg;
5703
5704 if (!first)
5705 first = sg;
5706 if (last)
5707 last->next = sg;
5708 last = sg;
5709 last->next = first;
5710 }
5711 sd->groups = groups;
5712
5713 return 0;
5714
5715 fail:
5716 free_sched_groups(first, 0);
5717
5718 return -ENOMEM;
5719 }
5720
5721 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5722 {
5723 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5724 struct sched_domain *child = sd->child;
5725
5726 if (child)
5727 cpu = cpumask_first(sched_domain_span(child));
5728
5729 if (sg) {
5730 *sg = *per_cpu_ptr(sdd->sg, cpu);
5731 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5732 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5733 }
5734
5735 return cpu;
5736 }
5737
5738 /*
5739 * build_sched_groups will build a circular linked list of the groups
5740 * covered by the given span, and will set each group's ->cpumask correctly,
5741 * and ->cpu_power to 0.
5742 *
5743 * Assumes the sched_domain tree is fully constructed
5744 */
5745 static int
5746 build_sched_groups(struct sched_domain *sd, int cpu)
5747 {
5748 struct sched_group *first = NULL, *last = NULL;
5749 struct sd_data *sdd = sd->private;
5750 const struct cpumask *span = sched_domain_span(sd);
5751 struct cpumask *covered;
5752 int i;
5753
5754 get_group(cpu, sdd, &sd->groups);
5755 atomic_inc(&sd->groups->ref);
5756
5757 if (cpu != cpumask_first(span))
5758 return 0;
5759
5760 lockdep_assert_held(&sched_domains_mutex);
5761 covered = sched_domains_tmpmask;
5762
5763 cpumask_clear(covered);
5764
5765 for_each_cpu(i, span) {
5766 struct sched_group *sg;
5767 int group, j;
5768
5769 if (cpumask_test_cpu(i, covered))
5770 continue;
5771
5772 group = get_group(i, sdd, &sg);
5773 cpumask_clear(sched_group_cpus(sg));
5774 sg->sgp->power = 0;
5775 cpumask_setall(sched_group_mask(sg));
5776
5777 for_each_cpu(j, span) {
5778 if (get_group(j, sdd, NULL) != group)
5779 continue;
5780
5781 cpumask_set_cpu(j, covered);
5782 cpumask_set_cpu(j, sched_group_cpus(sg));
5783 }
5784
5785 if (!first)
5786 first = sg;
5787 if (last)
5788 last->next = sg;
5789 last = sg;
5790 }
5791 last->next = first;
5792
5793 return 0;
5794 }
5795
5796 /*
5797 * Initialize sched groups cpu_power.
5798 *
5799 * cpu_power indicates the capacity of sched group, which is used while
5800 * distributing the load between different sched groups in a sched domain.
5801 * Typically cpu_power for all the groups in a sched domain will be same unless
5802 * there are asymmetries in the topology. If there are asymmetries, group
5803 * having more cpu_power will pickup more load compared to the group having
5804 * less cpu_power.
5805 */
5806 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5807 {
5808 struct sched_group *sg = sd->groups;
5809
5810 WARN_ON(!sg);
5811
5812 do {
5813 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5814 sg = sg->next;
5815 } while (sg != sd->groups);
5816
5817 if (cpu != group_balance_cpu(sg))
5818 return;
5819
5820 update_group_power(sd, cpu);
5821 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5822 }
5823
5824 int __weak arch_sd_sibling_asym_packing(void)
5825 {
5826 return 0*SD_ASYM_PACKING;
5827 }
5828
5829 /*
5830 * Initializers for schedule domains
5831 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5832 */
5833
5834 #ifdef CONFIG_SCHED_DEBUG
5835 # define SD_INIT_NAME(sd, type) sd->name = #type
5836 #else
5837 # define SD_INIT_NAME(sd, type) do { } while (0)
5838 #endif
5839
5840 #define SD_INIT_FUNC(type) \
5841 static noinline struct sched_domain * \
5842 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5843 { \
5844 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5845 *sd = SD_##type##_INIT; \
5846 SD_INIT_NAME(sd, type); \
5847 sd->private = &tl->data; \
5848 return sd; \
5849 }
5850
5851 SD_INIT_FUNC(CPU)
5852 #ifdef CONFIG_SCHED_SMT
5853 SD_INIT_FUNC(SIBLING)
5854 #endif
5855 #ifdef CONFIG_SCHED_MC
5856 SD_INIT_FUNC(MC)
5857 #endif
5858 #ifdef CONFIG_SCHED_BOOK
5859 SD_INIT_FUNC(BOOK)
5860 #endif
5861
5862 static int default_relax_domain_level = -1;
5863 int sched_domain_level_max;
5864
5865 static int __init setup_relax_domain_level(char *str)
5866 {
5867 if (kstrtoint(str, 0, &default_relax_domain_level))
5868 pr_warn("Unable to set relax_domain_level\n");
5869
5870 return 1;
5871 }
5872 __setup("relax_domain_level=", setup_relax_domain_level);
5873
5874 static void set_domain_attribute(struct sched_domain *sd,
5875 struct sched_domain_attr *attr)
5876 {
5877 int request;
5878
5879 if (!attr || attr->relax_domain_level < 0) {
5880 if (default_relax_domain_level < 0)
5881 return;
5882 else
5883 request = default_relax_domain_level;
5884 } else
5885 request = attr->relax_domain_level;
5886 if (request < sd->level) {
5887 /* turn off idle balance on this domain */
5888 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5889 } else {
5890 /* turn on idle balance on this domain */
5891 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5892 }
5893 }
5894
5895 static void __sdt_free(const struct cpumask *cpu_map);
5896 static int __sdt_alloc(const struct cpumask *cpu_map);
5897
5898 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5899 const struct cpumask *cpu_map)
5900 {
5901 switch (what) {
5902 case sa_rootdomain:
5903 if (!atomic_read(&d->rd->refcount))
5904 free_rootdomain(&d->rd->rcu); /* fall through */
5905 case sa_sd:
5906 free_percpu(d->sd); /* fall through */
5907 case sa_sd_storage:
5908 __sdt_free(cpu_map); /* fall through */
5909 case sa_none:
5910 break;
5911 }
5912 }
5913
5914 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5915 const struct cpumask *cpu_map)
5916 {
5917 memset(d, 0, sizeof(*d));
5918
5919 if (__sdt_alloc(cpu_map))
5920 return sa_sd_storage;
5921 d->sd = alloc_percpu(struct sched_domain *);
5922 if (!d->sd)
5923 return sa_sd_storage;
5924 d->rd = alloc_rootdomain();
5925 if (!d->rd)
5926 return sa_sd;
5927 return sa_rootdomain;
5928 }
5929
5930 /*
5931 * NULL the sd_data elements we've used to build the sched_domain and
5932 * sched_group structure so that the subsequent __free_domain_allocs()
5933 * will not free the data we're using.
5934 */
5935 static void claim_allocations(int cpu, struct sched_domain *sd)
5936 {
5937 struct sd_data *sdd = sd->private;
5938
5939 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5940 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5941
5942 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5943 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5944
5945 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5946 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5947 }
5948
5949 #ifdef CONFIG_SCHED_SMT
5950 static const struct cpumask *cpu_smt_mask(int cpu)
5951 {
5952 return topology_thread_cpumask(cpu);
5953 }
5954 #endif
5955
5956 /*
5957 * Topology list, bottom-up.
5958 */
5959 static struct sched_domain_topology_level default_topology[] = {
5960 #ifdef CONFIG_SCHED_SMT
5961 { sd_init_SIBLING, cpu_smt_mask, },
5962 #endif
5963 #ifdef CONFIG_SCHED_MC
5964 { sd_init_MC, cpu_coregroup_mask, },
5965 #endif
5966 #ifdef CONFIG_SCHED_BOOK
5967 { sd_init_BOOK, cpu_book_mask, },
5968 #endif
5969 { sd_init_CPU, cpu_cpu_mask, },
5970 { NULL, },
5971 };
5972
5973 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5974
5975 #define for_each_sd_topology(tl) \
5976 for (tl = sched_domain_topology; tl->init; tl++)
5977
5978 #ifdef CONFIG_NUMA
5979
5980 static int sched_domains_numa_levels;
5981 static int *sched_domains_numa_distance;
5982 static struct cpumask ***sched_domains_numa_masks;
5983 static int sched_domains_curr_level;
5984
5985 static inline int sd_local_flags(int level)
5986 {
5987 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5988 return 0;
5989
5990 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5991 }
5992
5993 static struct sched_domain *
5994 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5995 {
5996 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5997 int level = tl->numa_level;
5998 int sd_weight = cpumask_weight(
5999 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6000
6001 *sd = (struct sched_domain){
6002 .min_interval = sd_weight,
6003 .max_interval = 2*sd_weight,
6004 .busy_factor = 32,
6005 .imbalance_pct = 125,
6006 .cache_nice_tries = 2,
6007 .busy_idx = 3,
6008 .idle_idx = 2,
6009 .newidle_idx = 0,
6010 .wake_idx = 0,
6011 .forkexec_idx = 0,
6012
6013 .flags = 1*SD_LOAD_BALANCE
6014 | 1*SD_BALANCE_NEWIDLE
6015 | 0*SD_BALANCE_EXEC
6016 | 0*SD_BALANCE_FORK
6017 | 0*SD_BALANCE_WAKE
6018 | 0*SD_WAKE_AFFINE
6019 | 0*SD_SHARE_CPUPOWER
6020 | 0*SD_SHARE_PKG_RESOURCES
6021 | 1*SD_SERIALIZE
6022 | 0*SD_PREFER_SIBLING
6023 | 1*SD_NUMA
6024 | sd_local_flags(level)
6025 ,
6026 .last_balance = jiffies,
6027 .balance_interval = sd_weight,
6028 };
6029 SD_INIT_NAME(sd, NUMA);
6030 sd->private = &tl->data;
6031
6032 /*
6033 * Ugly hack to pass state to sd_numa_mask()...
6034 */
6035 sched_domains_curr_level = tl->numa_level;
6036
6037 return sd;
6038 }
6039
6040 static const struct cpumask *sd_numa_mask(int cpu)
6041 {
6042 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6043 }
6044
6045 static void sched_numa_warn(const char *str)
6046 {
6047 static int done = false;
6048 int i,j;
6049
6050 if (done)
6051 return;
6052
6053 done = true;
6054
6055 printk(KERN_WARNING "ERROR: %s\n\n", str);
6056
6057 for (i = 0; i < nr_node_ids; i++) {
6058 printk(KERN_WARNING " ");
6059 for (j = 0; j < nr_node_ids; j++)
6060 printk(KERN_CONT "%02d ", node_distance(i,j));
6061 printk(KERN_CONT "\n");
6062 }
6063 printk(KERN_WARNING "\n");
6064 }
6065
6066 static bool find_numa_distance(int distance)
6067 {
6068 int i;
6069
6070 if (distance == node_distance(0, 0))
6071 return true;
6072
6073 for (i = 0; i < sched_domains_numa_levels; i++) {
6074 if (sched_domains_numa_distance[i] == distance)
6075 return true;
6076 }
6077
6078 return false;
6079 }
6080
6081 static void sched_init_numa(void)
6082 {
6083 int next_distance, curr_distance = node_distance(0, 0);
6084 struct sched_domain_topology_level *tl;
6085 int level = 0;
6086 int i, j, k;
6087
6088 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6089 if (!sched_domains_numa_distance)
6090 return;
6091
6092 /*
6093 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6094 * unique distances in the node_distance() table.
6095 *
6096 * Assumes node_distance(0,j) includes all distances in
6097 * node_distance(i,j) in order to avoid cubic time.
6098 */
6099 next_distance = curr_distance;
6100 for (i = 0; i < nr_node_ids; i++) {
6101 for (j = 0; j < nr_node_ids; j++) {
6102 for (k = 0; k < nr_node_ids; k++) {
6103 int distance = node_distance(i, k);
6104
6105 if (distance > curr_distance &&
6106 (distance < next_distance ||
6107 next_distance == curr_distance))
6108 next_distance = distance;
6109
6110 /*
6111 * While not a strong assumption it would be nice to know
6112 * about cases where if node A is connected to B, B is not
6113 * equally connected to A.
6114 */
6115 if (sched_debug() && node_distance(k, i) != distance)
6116 sched_numa_warn("Node-distance not symmetric");
6117
6118 if (sched_debug() && i && !find_numa_distance(distance))
6119 sched_numa_warn("Node-0 not representative");
6120 }
6121 if (next_distance != curr_distance) {
6122 sched_domains_numa_distance[level++] = next_distance;
6123 sched_domains_numa_levels = level;
6124 curr_distance = next_distance;
6125 } else break;
6126 }
6127
6128 /*
6129 * In case of sched_debug() we verify the above assumption.
6130 */
6131 if (!sched_debug())
6132 break;
6133 }
6134 /*
6135 * 'level' contains the number of unique distances, excluding the
6136 * identity distance node_distance(i,i).
6137 *
6138 * The sched_domains_numa_distance[] array includes the actual distance
6139 * numbers.
6140 */
6141
6142 /*
6143 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6144 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6145 * the array will contain less then 'level' members. This could be
6146 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6147 * in other functions.
6148 *
6149 * We reset it to 'level' at the end of this function.
6150 */
6151 sched_domains_numa_levels = 0;
6152
6153 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6154 if (!sched_domains_numa_masks)
6155 return;
6156
6157 /*
6158 * Now for each level, construct a mask per node which contains all
6159 * cpus of nodes that are that many hops away from us.
6160 */
6161 for (i = 0; i < level; i++) {
6162 sched_domains_numa_masks[i] =
6163 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6164 if (!sched_domains_numa_masks[i])
6165 return;
6166
6167 for (j = 0; j < nr_node_ids; j++) {
6168 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6169 if (!mask)
6170 return;
6171
6172 sched_domains_numa_masks[i][j] = mask;
6173
6174 for (k = 0; k < nr_node_ids; k++) {
6175 if (node_distance(j, k) > sched_domains_numa_distance[i])
6176 continue;
6177
6178 cpumask_or(mask, mask, cpumask_of_node(k));
6179 }
6180 }
6181 }
6182
6183 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6184 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6185 if (!tl)
6186 return;
6187
6188 /*
6189 * Copy the default topology bits..
6190 */
6191 for (i = 0; default_topology[i].init; i++)
6192 tl[i] = default_topology[i];
6193
6194 /*
6195 * .. and append 'j' levels of NUMA goodness.
6196 */
6197 for (j = 0; j < level; i++, j++) {
6198 tl[i] = (struct sched_domain_topology_level){
6199 .init = sd_numa_init,
6200 .mask = sd_numa_mask,
6201 .flags = SDTL_OVERLAP,
6202 .numa_level = j,
6203 };
6204 }
6205
6206 sched_domain_topology = tl;
6207
6208 sched_domains_numa_levels = level;
6209 }
6210
6211 static void sched_domains_numa_masks_set(int cpu)
6212 {
6213 int i, j;
6214 int node = cpu_to_node(cpu);
6215
6216 for (i = 0; i < sched_domains_numa_levels; i++) {
6217 for (j = 0; j < nr_node_ids; j++) {
6218 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6219 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6220 }
6221 }
6222 }
6223
6224 static void sched_domains_numa_masks_clear(int cpu)
6225 {
6226 int i, j;
6227 for (i = 0; i < sched_domains_numa_levels; i++) {
6228 for (j = 0; j < nr_node_ids; j++)
6229 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6230 }
6231 }
6232
6233 /*
6234 * Update sched_domains_numa_masks[level][node] array when new cpus
6235 * are onlined.
6236 */
6237 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6238 unsigned long action,
6239 void *hcpu)
6240 {
6241 int cpu = (long)hcpu;
6242
6243 switch (action & ~CPU_TASKS_FROZEN) {
6244 case CPU_ONLINE:
6245 sched_domains_numa_masks_set(cpu);
6246 break;
6247
6248 case CPU_DEAD:
6249 sched_domains_numa_masks_clear(cpu);
6250 break;
6251
6252 default:
6253 return NOTIFY_DONE;
6254 }
6255
6256 return NOTIFY_OK;
6257 }
6258 #else
6259 static inline void sched_init_numa(void)
6260 {
6261 }
6262
6263 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6264 unsigned long action,
6265 void *hcpu)
6266 {
6267 return 0;
6268 }
6269 #endif /* CONFIG_NUMA */
6270
6271 static int __sdt_alloc(const struct cpumask *cpu_map)
6272 {
6273 struct sched_domain_topology_level *tl;
6274 int j;
6275
6276 for_each_sd_topology(tl) {
6277 struct sd_data *sdd = &tl->data;
6278
6279 sdd->sd = alloc_percpu(struct sched_domain *);
6280 if (!sdd->sd)
6281 return -ENOMEM;
6282
6283 sdd->sg = alloc_percpu(struct sched_group *);
6284 if (!sdd->sg)
6285 return -ENOMEM;
6286
6287 sdd->sgp = alloc_percpu(struct sched_group_power *);
6288 if (!sdd->sgp)
6289 return -ENOMEM;
6290
6291 for_each_cpu(j, cpu_map) {
6292 struct sched_domain *sd;
6293 struct sched_group *sg;
6294 struct sched_group_power *sgp;
6295
6296 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6297 GFP_KERNEL, cpu_to_node(j));
6298 if (!sd)
6299 return -ENOMEM;
6300
6301 *per_cpu_ptr(sdd->sd, j) = sd;
6302
6303 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6304 GFP_KERNEL, cpu_to_node(j));
6305 if (!sg)
6306 return -ENOMEM;
6307
6308 sg->next = sg;
6309
6310 *per_cpu_ptr(sdd->sg, j) = sg;
6311
6312 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6313 GFP_KERNEL, cpu_to_node(j));
6314 if (!sgp)
6315 return -ENOMEM;
6316
6317 *per_cpu_ptr(sdd->sgp, j) = sgp;
6318 }
6319 }
6320
6321 return 0;
6322 }
6323
6324 static void __sdt_free(const struct cpumask *cpu_map)
6325 {
6326 struct sched_domain_topology_level *tl;
6327 int j;
6328
6329 for_each_sd_topology(tl) {
6330 struct sd_data *sdd = &tl->data;
6331
6332 for_each_cpu(j, cpu_map) {
6333 struct sched_domain *sd;
6334
6335 if (sdd->sd) {
6336 sd = *per_cpu_ptr(sdd->sd, j);
6337 if (sd && (sd->flags & SD_OVERLAP))
6338 free_sched_groups(sd->groups, 0);
6339 kfree(*per_cpu_ptr(sdd->sd, j));
6340 }
6341
6342 if (sdd->sg)
6343 kfree(*per_cpu_ptr(sdd->sg, j));
6344 if (sdd->sgp)
6345 kfree(*per_cpu_ptr(sdd->sgp, j));
6346 }
6347 free_percpu(sdd->sd);
6348 sdd->sd = NULL;
6349 free_percpu(sdd->sg);
6350 sdd->sg = NULL;
6351 free_percpu(sdd->sgp);
6352 sdd->sgp = NULL;
6353 }
6354 }
6355
6356 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6357 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6358 struct sched_domain *child, int cpu)
6359 {
6360 struct sched_domain *sd = tl->init(tl, cpu);
6361 if (!sd)
6362 return child;
6363
6364 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6365 if (child) {
6366 sd->level = child->level + 1;
6367 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6368 child->parent = sd;
6369 sd->child = child;
6370 }
6371 set_domain_attribute(sd, attr);
6372
6373 return sd;
6374 }
6375
6376 /*
6377 * Build sched domains for a given set of cpus and attach the sched domains
6378 * to the individual cpus
6379 */
6380 static int build_sched_domains(const struct cpumask *cpu_map,
6381 struct sched_domain_attr *attr)
6382 {
6383 enum s_alloc alloc_state;
6384 struct sched_domain *sd;
6385 struct s_data d;
6386 int i, ret = -ENOMEM;
6387
6388 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6389 if (alloc_state != sa_rootdomain)
6390 goto error;
6391
6392 /* Set up domains for cpus specified by the cpu_map. */
6393 for_each_cpu(i, cpu_map) {
6394 struct sched_domain_topology_level *tl;
6395
6396 sd = NULL;
6397 for_each_sd_topology(tl) {
6398 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6399 if (tl == sched_domain_topology)
6400 *per_cpu_ptr(d.sd, i) = sd;
6401 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6402 sd->flags |= SD_OVERLAP;
6403 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6404 break;
6405 }
6406 }
6407
6408 /* Build the groups for the domains */
6409 for_each_cpu(i, cpu_map) {
6410 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6411 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6412 if (sd->flags & SD_OVERLAP) {
6413 if (build_overlap_sched_groups(sd, i))
6414 goto error;
6415 } else {
6416 if (build_sched_groups(sd, i))
6417 goto error;
6418 }
6419 }
6420 }
6421
6422 /* Calculate CPU power for physical packages and nodes */
6423 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6424 if (!cpumask_test_cpu(i, cpu_map))
6425 continue;
6426
6427 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6428 claim_allocations(i, sd);
6429 init_sched_groups_power(i, sd);
6430 }
6431 }
6432
6433 /* Attach the domains */
6434 rcu_read_lock();
6435 for_each_cpu(i, cpu_map) {
6436 sd = *per_cpu_ptr(d.sd, i);
6437 cpu_attach_domain(sd, d.rd, i);
6438 }
6439 rcu_read_unlock();
6440
6441 ret = 0;
6442 error:
6443 __free_domain_allocs(&d, alloc_state, cpu_map);
6444 return ret;
6445 }
6446
6447 static cpumask_var_t *doms_cur; /* current sched domains */
6448 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6449 static struct sched_domain_attr *dattr_cur;
6450 /* attribues of custom domains in 'doms_cur' */
6451
6452 /*
6453 * Special case: If a kmalloc of a doms_cur partition (array of
6454 * cpumask) fails, then fallback to a single sched domain,
6455 * as determined by the single cpumask fallback_doms.
6456 */
6457 static cpumask_var_t fallback_doms;
6458
6459 /*
6460 * arch_update_cpu_topology lets virtualized architectures update the
6461 * cpu core maps. It is supposed to return 1 if the topology changed
6462 * or 0 if it stayed the same.
6463 */
6464 int __attribute__((weak)) arch_update_cpu_topology(void)
6465 {
6466 return 0;
6467 }
6468
6469 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6470 {
6471 int i;
6472 cpumask_var_t *doms;
6473
6474 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6475 if (!doms)
6476 return NULL;
6477 for (i = 0; i < ndoms; i++) {
6478 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6479 free_sched_domains(doms, i);
6480 return NULL;
6481 }
6482 }
6483 return doms;
6484 }
6485
6486 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6487 {
6488 unsigned int i;
6489 for (i = 0; i < ndoms; i++)
6490 free_cpumask_var(doms[i]);
6491 kfree(doms);
6492 }
6493
6494 /*
6495 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6496 * For now this just excludes isolated cpus, but could be used to
6497 * exclude other special cases in the future.
6498 */
6499 static int init_sched_domains(const struct cpumask *cpu_map)
6500 {
6501 int err;
6502
6503 arch_update_cpu_topology();
6504 ndoms_cur = 1;
6505 doms_cur = alloc_sched_domains(ndoms_cur);
6506 if (!doms_cur)
6507 doms_cur = &fallback_doms;
6508 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6509 err = build_sched_domains(doms_cur[0], NULL);
6510 register_sched_domain_sysctl();
6511
6512 return err;
6513 }
6514
6515 /*
6516 * Detach sched domains from a group of cpus specified in cpu_map
6517 * These cpus will now be attached to the NULL domain
6518 */
6519 static void detach_destroy_domains(const struct cpumask *cpu_map)
6520 {
6521 int i;
6522
6523 rcu_read_lock();
6524 for_each_cpu(i, cpu_map)
6525 cpu_attach_domain(NULL, &def_root_domain, i);
6526 rcu_read_unlock();
6527 }
6528
6529 /* handle null as "default" */
6530 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6531 struct sched_domain_attr *new, int idx_new)
6532 {
6533 struct sched_domain_attr tmp;
6534
6535 /* fast path */
6536 if (!new && !cur)
6537 return 1;
6538
6539 tmp = SD_ATTR_INIT;
6540 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6541 new ? (new + idx_new) : &tmp,
6542 sizeof(struct sched_domain_attr));
6543 }
6544
6545 /*
6546 * Partition sched domains as specified by the 'ndoms_new'
6547 * cpumasks in the array doms_new[] of cpumasks. This compares
6548 * doms_new[] to the current sched domain partitioning, doms_cur[].
6549 * It destroys each deleted domain and builds each new domain.
6550 *
6551 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6552 * The masks don't intersect (don't overlap.) We should setup one
6553 * sched domain for each mask. CPUs not in any of the cpumasks will
6554 * not be load balanced. If the same cpumask appears both in the
6555 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6556 * it as it is.
6557 *
6558 * The passed in 'doms_new' should be allocated using
6559 * alloc_sched_domains. This routine takes ownership of it and will
6560 * free_sched_domains it when done with it. If the caller failed the
6561 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6562 * and partition_sched_domains() will fallback to the single partition
6563 * 'fallback_doms', it also forces the domains to be rebuilt.
6564 *
6565 * If doms_new == NULL it will be replaced with cpu_online_mask.
6566 * ndoms_new == 0 is a special case for destroying existing domains,
6567 * and it will not create the default domain.
6568 *
6569 * Call with hotplug lock held
6570 */
6571 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6572 struct sched_domain_attr *dattr_new)
6573 {
6574 int i, j, n;
6575 int new_topology;
6576
6577 mutex_lock(&sched_domains_mutex);
6578
6579 /* always unregister in case we don't destroy any domains */
6580 unregister_sched_domain_sysctl();
6581
6582 /* Let architecture update cpu core mappings. */
6583 new_topology = arch_update_cpu_topology();
6584
6585 n = doms_new ? ndoms_new : 0;
6586
6587 /* Destroy deleted domains */
6588 for (i = 0; i < ndoms_cur; i++) {
6589 for (j = 0; j < n && !new_topology; j++) {
6590 if (cpumask_equal(doms_cur[i], doms_new[j])
6591 && dattrs_equal(dattr_cur, i, dattr_new, j))
6592 goto match1;
6593 }
6594 /* no match - a current sched domain not in new doms_new[] */
6595 detach_destroy_domains(doms_cur[i]);
6596 match1:
6597 ;
6598 }
6599
6600 n = ndoms_cur;
6601 if (doms_new == NULL) {
6602 n = 0;
6603 doms_new = &fallback_doms;
6604 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6605 WARN_ON_ONCE(dattr_new);
6606 }
6607
6608 /* Build new domains */
6609 for (i = 0; i < ndoms_new; i++) {
6610 for (j = 0; j < n && !new_topology; j++) {
6611 if (cpumask_equal(doms_new[i], doms_cur[j])
6612 && dattrs_equal(dattr_new, i, dattr_cur, j))
6613 goto match2;
6614 }
6615 /* no match - add a new doms_new */
6616 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6617 match2:
6618 ;
6619 }
6620
6621 /* Remember the new sched domains */
6622 if (doms_cur != &fallback_doms)
6623 free_sched_domains(doms_cur, ndoms_cur);
6624 kfree(dattr_cur); /* kfree(NULL) is safe */
6625 doms_cur = doms_new;
6626 dattr_cur = dattr_new;
6627 ndoms_cur = ndoms_new;
6628
6629 register_sched_domain_sysctl();
6630
6631 mutex_unlock(&sched_domains_mutex);
6632 }
6633
6634 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6635
6636 /*
6637 * Update cpusets according to cpu_active mask. If cpusets are
6638 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6639 * around partition_sched_domains().
6640 *
6641 * If we come here as part of a suspend/resume, don't touch cpusets because we
6642 * want to restore it back to its original state upon resume anyway.
6643 */
6644 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6645 void *hcpu)
6646 {
6647 switch (action) {
6648 case CPU_ONLINE_FROZEN:
6649 case CPU_DOWN_FAILED_FROZEN:
6650
6651 /*
6652 * num_cpus_frozen tracks how many CPUs are involved in suspend
6653 * resume sequence. As long as this is not the last online
6654 * operation in the resume sequence, just build a single sched
6655 * domain, ignoring cpusets.
6656 */
6657 num_cpus_frozen--;
6658 if (likely(num_cpus_frozen)) {
6659 partition_sched_domains(1, NULL, NULL);
6660 break;
6661 }
6662
6663 /*
6664 * This is the last CPU online operation. So fall through and
6665 * restore the original sched domains by considering the
6666 * cpuset configurations.
6667 */
6668
6669 case CPU_ONLINE:
6670 case CPU_DOWN_FAILED:
6671 cpuset_update_active_cpus(true);
6672 break;
6673 default:
6674 return NOTIFY_DONE;
6675 }
6676 return NOTIFY_OK;
6677 }
6678
6679 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6680 void *hcpu)
6681 {
6682 switch (action) {
6683 case CPU_DOWN_PREPARE:
6684 cpuset_update_active_cpus(false);
6685 break;
6686 case CPU_DOWN_PREPARE_FROZEN:
6687 num_cpus_frozen++;
6688 partition_sched_domains(1, NULL, NULL);
6689 break;
6690 default:
6691 return NOTIFY_DONE;
6692 }
6693 return NOTIFY_OK;
6694 }
6695
6696 void __init sched_init_smp(void)
6697 {
6698 cpumask_var_t non_isolated_cpus;
6699
6700 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6701 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6702
6703 sched_init_numa();
6704
6705 /*
6706 * There's no userspace yet to cause hotplug operations; hence all the
6707 * cpu masks are stable and all blatant races in the below code cannot
6708 * happen.
6709 */
6710 mutex_lock(&sched_domains_mutex);
6711 init_sched_domains(cpu_active_mask);
6712 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6713 if (cpumask_empty(non_isolated_cpus))
6714 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6715 mutex_unlock(&sched_domains_mutex);
6716
6717 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6718 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6719 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6720
6721 init_hrtick();
6722
6723 /* Move init over to a non-isolated CPU */
6724 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6725 BUG();
6726 sched_init_granularity();
6727 free_cpumask_var(non_isolated_cpus);
6728
6729 init_sched_rt_class();
6730 init_sched_dl_class();
6731 }
6732 #else
6733 void __init sched_init_smp(void)
6734 {
6735 sched_init_granularity();
6736 }
6737 #endif /* CONFIG_SMP */
6738
6739 const_debug unsigned int sysctl_timer_migration = 1;
6740
6741 int in_sched_functions(unsigned long addr)
6742 {
6743 return in_lock_functions(addr) ||
6744 (addr >= (unsigned long)__sched_text_start
6745 && addr < (unsigned long)__sched_text_end);
6746 }
6747
6748 #ifdef CONFIG_CGROUP_SCHED
6749 /*
6750 * Default task group.
6751 * Every task in system belongs to this group at bootup.
6752 */
6753 struct task_group root_task_group;
6754 LIST_HEAD(task_groups);
6755 #endif
6756
6757 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6758
6759 void __init sched_init(void)
6760 {
6761 int i, j;
6762 unsigned long alloc_size = 0, ptr;
6763
6764 #ifdef CONFIG_FAIR_GROUP_SCHED
6765 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6766 #endif
6767 #ifdef CONFIG_RT_GROUP_SCHED
6768 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6769 #endif
6770 #ifdef CONFIG_CPUMASK_OFFSTACK
6771 alloc_size += num_possible_cpus() * cpumask_size();
6772 #endif
6773 if (alloc_size) {
6774 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6775
6776 #ifdef CONFIG_FAIR_GROUP_SCHED
6777 root_task_group.se = (struct sched_entity **)ptr;
6778 ptr += nr_cpu_ids * sizeof(void **);
6779
6780 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6781 ptr += nr_cpu_ids * sizeof(void **);
6782
6783 #endif /* CONFIG_FAIR_GROUP_SCHED */
6784 #ifdef CONFIG_RT_GROUP_SCHED
6785 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6786 ptr += nr_cpu_ids * sizeof(void **);
6787
6788 root_task_group.rt_rq = (struct rt_rq **)ptr;
6789 ptr += nr_cpu_ids * sizeof(void **);
6790
6791 #endif /* CONFIG_RT_GROUP_SCHED */
6792 #ifdef CONFIG_CPUMASK_OFFSTACK
6793 for_each_possible_cpu(i) {
6794 per_cpu(load_balance_mask, i) = (void *)ptr;
6795 ptr += cpumask_size();
6796 }
6797 #endif /* CONFIG_CPUMASK_OFFSTACK */
6798 }
6799
6800 init_rt_bandwidth(&def_rt_bandwidth,
6801 global_rt_period(), global_rt_runtime());
6802 init_dl_bandwidth(&def_dl_bandwidth,
6803 global_rt_period(), global_rt_runtime());
6804
6805 #ifdef CONFIG_SMP
6806 init_defrootdomain();
6807 #endif
6808
6809 #ifdef CONFIG_RT_GROUP_SCHED
6810 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6811 global_rt_period(), global_rt_runtime());
6812 #endif /* CONFIG_RT_GROUP_SCHED */
6813
6814 #ifdef CONFIG_CGROUP_SCHED
6815 list_add(&root_task_group.list, &task_groups);
6816 INIT_LIST_HEAD(&root_task_group.children);
6817 INIT_LIST_HEAD(&root_task_group.siblings);
6818 autogroup_init(&init_task);
6819
6820 #endif /* CONFIG_CGROUP_SCHED */
6821
6822 for_each_possible_cpu(i) {
6823 struct rq *rq;
6824
6825 rq = cpu_rq(i);
6826 raw_spin_lock_init(&rq->lock);
6827 rq->nr_running = 0;
6828 rq->calc_load_active = 0;
6829 rq->calc_load_update = jiffies + LOAD_FREQ;
6830 init_cfs_rq(&rq->cfs);
6831 init_rt_rq(&rq->rt, rq);
6832 init_dl_rq(&rq->dl, rq);
6833 #ifdef CONFIG_FAIR_GROUP_SCHED
6834 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6835 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6836 /*
6837 * How much cpu bandwidth does root_task_group get?
6838 *
6839 * In case of task-groups formed thr' the cgroup filesystem, it
6840 * gets 100% of the cpu resources in the system. This overall
6841 * system cpu resource is divided among the tasks of
6842 * root_task_group and its child task-groups in a fair manner,
6843 * based on each entity's (task or task-group's) weight
6844 * (se->load.weight).
6845 *
6846 * In other words, if root_task_group has 10 tasks of weight
6847 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6848 * then A0's share of the cpu resource is:
6849 *
6850 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6851 *
6852 * We achieve this by letting root_task_group's tasks sit
6853 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6854 */
6855 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6856 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6857 #endif /* CONFIG_FAIR_GROUP_SCHED */
6858
6859 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6860 #ifdef CONFIG_RT_GROUP_SCHED
6861 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6862 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6863 #endif
6864
6865 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6866 rq->cpu_load[j] = 0;
6867
6868 rq->last_load_update_tick = jiffies;
6869
6870 #ifdef CONFIG_SMP
6871 rq->sd = NULL;
6872 rq->rd = NULL;
6873 rq->cpu_power = SCHED_POWER_SCALE;
6874 rq->post_schedule = 0;
6875 rq->active_balance = 0;
6876 rq->next_balance = jiffies;
6877 rq->push_cpu = 0;
6878 rq->cpu = i;
6879 rq->online = 0;
6880 rq->idle_stamp = 0;
6881 rq->avg_idle = 2*sysctl_sched_migration_cost;
6882 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6883
6884 INIT_LIST_HEAD(&rq->cfs_tasks);
6885
6886 rq_attach_root(rq, &def_root_domain);
6887 #ifdef CONFIG_NO_HZ_COMMON
6888 rq->nohz_flags = 0;
6889 #endif
6890 #ifdef CONFIG_NO_HZ_FULL
6891 rq->last_sched_tick = 0;
6892 #endif
6893 #endif
6894 init_rq_hrtick(rq);
6895 atomic_set(&rq->nr_iowait, 0);
6896 }
6897
6898 set_load_weight(&init_task);
6899
6900 #ifdef CONFIG_PREEMPT_NOTIFIERS
6901 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6902 #endif
6903
6904 /*
6905 * The boot idle thread does lazy MMU switching as well:
6906 */
6907 atomic_inc(&init_mm.mm_count);
6908 enter_lazy_tlb(&init_mm, current);
6909
6910 /*
6911 * Make us the idle thread. Technically, schedule() should not be
6912 * called from this thread, however somewhere below it might be,
6913 * but because we are the idle thread, we just pick up running again
6914 * when this runqueue becomes "idle".
6915 */
6916 init_idle(current, smp_processor_id());
6917
6918 calc_load_update = jiffies + LOAD_FREQ;
6919
6920 /*
6921 * During early bootup we pretend to be a normal task:
6922 */
6923 current->sched_class = &fair_sched_class;
6924
6925 #ifdef CONFIG_SMP
6926 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6927 /* May be allocated at isolcpus cmdline parse time */
6928 if (cpu_isolated_map == NULL)
6929 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6930 idle_thread_set_boot_cpu();
6931 #endif
6932 init_sched_fair_class();
6933
6934 scheduler_running = 1;
6935 }
6936
6937 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6938 static inline int preempt_count_equals(int preempt_offset)
6939 {
6940 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6941
6942 return (nested == preempt_offset);
6943 }
6944
6945 void __might_sleep(const char *file, int line, int preempt_offset)
6946 {
6947 static unsigned long prev_jiffy; /* ratelimiting */
6948
6949 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6950 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6951 system_state != SYSTEM_RUNNING || oops_in_progress)
6952 return;
6953 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6954 return;
6955 prev_jiffy = jiffies;
6956
6957 printk(KERN_ERR
6958 "BUG: sleeping function called from invalid context at %s:%d\n",
6959 file, line);
6960 printk(KERN_ERR
6961 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6962 in_atomic(), irqs_disabled(),
6963 current->pid, current->comm);
6964
6965 debug_show_held_locks(current);
6966 if (irqs_disabled())
6967 print_irqtrace_events(current);
6968 dump_stack();
6969 }
6970 EXPORT_SYMBOL(__might_sleep);
6971 #endif
6972
6973 #ifdef CONFIG_MAGIC_SYSRQ
6974 static void normalize_task(struct rq *rq, struct task_struct *p)
6975 {
6976 const struct sched_class *prev_class = p->sched_class;
6977 struct sched_attr attr = {
6978 .sched_policy = SCHED_NORMAL,
6979 };
6980 int old_prio = p->prio;
6981 int on_rq;
6982
6983 on_rq = p->on_rq;
6984 if (on_rq)
6985 dequeue_task(rq, p, 0);
6986 __setscheduler(rq, p, &attr);
6987 if (on_rq) {
6988 enqueue_task(rq, p, 0);
6989 resched_task(rq->curr);
6990 }
6991
6992 check_class_changed(rq, p, prev_class, old_prio);
6993 }
6994
6995 void normalize_rt_tasks(void)
6996 {
6997 struct task_struct *g, *p;
6998 unsigned long flags;
6999 struct rq *rq;
7000
7001 read_lock_irqsave(&tasklist_lock, flags);
7002 do_each_thread(g, p) {
7003 /*
7004 * Only normalize user tasks:
7005 */
7006 if (!p->mm)
7007 continue;
7008
7009 p->se.exec_start = 0;
7010 #ifdef CONFIG_SCHEDSTATS
7011 p->se.statistics.wait_start = 0;
7012 p->se.statistics.sleep_start = 0;
7013 p->se.statistics.block_start = 0;
7014 #endif
7015
7016 if (!dl_task(p) && !rt_task(p)) {
7017 /*
7018 * Renice negative nice level userspace
7019 * tasks back to 0:
7020 */
7021 if (TASK_NICE(p) < 0 && p->mm)
7022 set_user_nice(p, 0);
7023 continue;
7024 }
7025
7026 raw_spin_lock(&p->pi_lock);
7027 rq = __task_rq_lock(p);
7028
7029 normalize_task(rq, p);
7030
7031 __task_rq_unlock(rq);
7032 raw_spin_unlock(&p->pi_lock);
7033 } while_each_thread(g, p);
7034
7035 read_unlock_irqrestore(&tasklist_lock, flags);
7036 }
7037
7038 #endif /* CONFIG_MAGIC_SYSRQ */
7039
7040 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7041 /*
7042 * These functions are only useful for the IA64 MCA handling, or kdb.
7043 *
7044 * They can only be called when the whole system has been
7045 * stopped - every CPU needs to be quiescent, and no scheduling
7046 * activity can take place. Using them for anything else would
7047 * be a serious bug, and as a result, they aren't even visible
7048 * under any other configuration.
7049 */
7050
7051 /**
7052 * curr_task - return the current task for a given cpu.
7053 * @cpu: the processor in question.
7054 *
7055 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7056 *
7057 * Return: The current task for @cpu.
7058 */
7059 struct task_struct *curr_task(int cpu)
7060 {
7061 return cpu_curr(cpu);
7062 }
7063
7064 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7065
7066 #ifdef CONFIG_IA64
7067 /**
7068 * set_curr_task - set the current task for a given cpu.
7069 * @cpu: the processor in question.
7070 * @p: the task pointer to set.
7071 *
7072 * Description: This function must only be used when non-maskable interrupts
7073 * are serviced on a separate stack. It allows the architecture to switch the
7074 * notion of the current task on a cpu in a non-blocking manner. This function
7075 * must be called with all CPU's synchronized, and interrupts disabled, the
7076 * and caller must save the original value of the current task (see
7077 * curr_task() above) and restore that value before reenabling interrupts and
7078 * re-starting the system.
7079 *
7080 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7081 */
7082 void set_curr_task(int cpu, struct task_struct *p)
7083 {
7084 cpu_curr(cpu) = p;
7085 }
7086
7087 #endif
7088
7089 #ifdef CONFIG_CGROUP_SCHED
7090 /* task_group_lock serializes the addition/removal of task groups */
7091 static DEFINE_SPINLOCK(task_group_lock);
7092
7093 static void free_sched_group(struct task_group *tg)
7094 {
7095 free_fair_sched_group(tg);
7096 free_rt_sched_group(tg);
7097 autogroup_free(tg);
7098 kfree(tg);
7099 }
7100
7101 /* allocate runqueue etc for a new task group */
7102 struct task_group *sched_create_group(struct task_group *parent)
7103 {
7104 struct task_group *tg;
7105
7106 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7107 if (!tg)
7108 return ERR_PTR(-ENOMEM);
7109
7110 if (!alloc_fair_sched_group(tg, parent))
7111 goto err;
7112
7113 if (!alloc_rt_sched_group(tg, parent))
7114 goto err;
7115
7116 return tg;
7117
7118 err:
7119 free_sched_group(tg);
7120 return ERR_PTR(-ENOMEM);
7121 }
7122
7123 void sched_online_group(struct task_group *tg, struct task_group *parent)
7124 {
7125 unsigned long flags;
7126
7127 spin_lock_irqsave(&task_group_lock, flags);
7128 list_add_rcu(&tg->list, &task_groups);
7129
7130 WARN_ON(!parent); /* root should already exist */
7131
7132 tg->parent = parent;
7133 INIT_LIST_HEAD(&tg->children);
7134 list_add_rcu(&tg->siblings, &parent->children);
7135 spin_unlock_irqrestore(&task_group_lock, flags);
7136 }
7137
7138 /* rcu callback to free various structures associated with a task group */
7139 static void free_sched_group_rcu(struct rcu_head *rhp)
7140 {
7141 /* now it should be safe to free those cfs_rqs */
7142 free_sched_group(container_of(rhp, struct task_group, rcu));
7143 }
7144
7145 /* Destroy runqueue etc associated with a task group */
7146 void sched_destroy_group(struct task_group *tg)
7147 {
7148 /* wait for possible concurrent references to cfs_rqs complete */
7149 call_rcu(&tg->rcu, free_sched_group_rcu);
7150 }
7151
7152 void sched_offline_group(struct task_group *tg)
7153 {
7154 unsigned long flags;
7155 int i;
7156
7157 /* end participation in shares distribution */
7158 for_each_possible_cpu(i)
7159 unregister_fair_sched_group(tg, i);
7160
7161 spin_lock_irqsave(&task_group_lock, flags);
7162 list_del_rcu(&tg->list);
7163 list_del_rcu(&tg->siblings);
7164 spin_unlock_irqrestore(&task_group_lock, flags);
7165 }
7166
7167 /* change task's runqueue when it moves between groups.
7168 * The caller of this function should have put the task in its new group
7169 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7170 * reflect its new group.
7171 */
7172 void sched_move_task(struct task_struct *tsk)
7173 {
7174 struct task_group *tg;
7175 int on_rq, running;
7176 unsigned long flags;
7177 struct rq *rq;
7178
7179 rq = task_rq_lock(tsk, &flags);
7180
7181 running = task_current(rq, tsk);
7182 on_rq = tsk->on_rq;
7183
7184 if (on_rq)
7185 dequeue_task(rq, tsk, 0);
7186 if (unlikely(running))
7187 tsk->sched_class->put_prev_task(rq, tsk);
7188
7189 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7190 lockdep_is_held(&tsk->sighand->siglock)),
7191 struct task_group, css);
7192 tg = autogroup_task_group(tsk, tg);
7193 tsk->sched_task_group = tg;
7194
7195 #ifdef CONFIG_FAIR_GROUP_SCHED
7196 if (tsk->sched_class->task_move_group)
7197 tsk->sched_class->task_move_group(tsk, on_rq);
7198 else
7199 #endif
7200 set_task_rq(tsk, task_cpu(tsk));
7201
7202 if (unlikely(running))
7203 tsk->sched_class->set_curr_task(rq);
7204 if (on_rq)
7205 enqueue_task(rq, tsk, 0);
7206
7207 task_rq_unlock(rq, tsk, &flags);
7208 }
7209 #endif /* CONFIG_CGROUP_SCHED */
7210
7211 #ifdef CONFIG_RT_GROUP_SCHED
7212 /*
7213 * Ensure that the real time constraints are schedulable.
7214 */
7215 static DEFINE_MUTEX(rt_constraints_mutex);
7216
7217 /* Must be called with tasklist_lock held */
7218 static inline int tg_has_rt_tasks(struct task_group *tg)
7219 {
7220 struct task_struct *g, *p;
7221
7222 do_each_thread(g, p) {
7223 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7224 return 1;
7225 } while_each_thread(g, p);
7226
7227 return 0;
7228 }
7229
7230 struct rt_schedulable_data {
7231 struct task_group *tg;
7232 u64 rt_period;
7233 u64 rt_runtime;
7234 };
7235
7236 static int tg_rt_schedulable(struct task_group *tg, void *data)
7237 {
7238 struct rt_schedulable_data *d = data;
7239 struct task_group *child;
7240 unsigned long total, sum = 0;
7241 u64 period, runtime;
7242
7243 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7244 runtime = tg->rt_bandwidth.rt_runtime;
7245
7246 if (tg == d->tg) {
7247 period = d->rt_period;
7248 runtime = d->rt_runtime;
7249 }
7250
7251 /*
7252 * Cannot have more runtime than the period.
7253 */
7254 if (runtime > period && runtime != RUNTIME_INF)
7255 return -EINVAL;
7256
7257 /*
7258 * Ensure we don't starve existing RT tasks.
7259 */
7260 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7261 return -EBUSY;
7262
7263 total = to_ratio(period, runtime);
7264
7265 /*
7266 * Nobody can have more than the global setting allows.
7267 */
7268 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7269 return -EINVAL;
7270
7271 /*
7272 * The sum of our children's runtime should not exceed our own.
7273 */
7274 list_for_each_entry_rcu(child, &tg->children, siblings) {
7275 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7276 runtime = child->rt_bandwidth.rt_runtime;
7277
7278 if (child == d->tg) {
7279 period = d->rt_period;
7280 runtime = d->rt_runtime;
7281 }
7282
7283 sum += to_ratio(period, runtime);
7284 }
7285
7286 if (sum > total)
7287 return -EINVAL;
7288
7289 return 0;
7290 }
7291
7292 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7293 {
7294 int ret;
7295
7296 struct rt_schedulable_data data = {
7297 .tg = tg,
7298 .rt_period = period,
7299 .rt_runtime = runtime,
7300 };
7301
7302 rcu_read_lock();
7303 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7304 rcu_read_unlock();
7305
7306 return ret;
7307 }
7308
7309 static int tg_set_rt_bandwidth(struct task_group *tg,
7310 u64 rt_period, u64 rt_runtime)
7311 {
7312 int i, err = 0;
7313
7314 mutex_lock(&rt_constraints_mutex);
7315 read_lock(&tasklist_lock);
7316 err = __rt_schedulable(tg, rt_period, rt_runtime);
7317 if (err)
7318 goto unlock;
7319
7320 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7321 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7322 tg->rt_bandwidth.rt_runtime = rt_runtime;
7323
7324 for_each_possible_cpu(i) {
7325 struct rt_rq *rt_rq = tg->rt_rq[i];
7326
7327 raw_spin_lock(&rt_rq->rt_runtime_lock);
7328 rt_rq->rt_runtime = rt_runtime;
7329 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7330 }
7331 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7332 unlock:
7333 read_unlock(&tasklist_lock);
7334 mutex_unlock(&rt_constraints_mutex);
7335
7336 return err;
7337 }
7338
7339 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7340 {
7341 u64 rt_runtime, rt_period;
7342
7343 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7344 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7345 if (rt_runtime_us < 0)
7346 rt_runtime = RUNTIME_INF;
7347
7348 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7349 }
7350
7351 static long sched_group_rt_runtime(struct task_group *tg)
7352 {
7353 u64 rt_runtime_us;
7354
7355 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7356 return -1;
7357
7358 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7359 do_div(rt_runtime_us, NSEC_PER_USEC);
7360 return rt_runtime_us;
7361 }
7362
7363 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7364 {
7365 u64 rt_runtime, rt_period;
7366
7367 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7368 rt_runtime = tg->rt_bandwidth.rt_runtime;
7369
7370 if (rt_period == 0)
7371 return -EINVAL;
7372
7373 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7374 }
7375
7376 static long sched_group_rt_period(struct task_group *tg)
7377 {
7378 u64 rt_period_us;
7379
7380 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7381 do_div(rt_period_us, NSEC_PER_USEC);
7382 return rt_period_us;
7383 }
7384 #endif /* CONFIG_RT_GROUP_SCHED */
7385
7386 #ifdef CONFIG_RT_GROUP_SCHED
7387 static int sched_rt_global_constraints(void)
7388 {
7389 int ret = 0;
7390
7391 mutex_lock(&rt_constraints_mutex);
7392 read_lock(&tasklist_lock);
7393 ret = __rt_schedulable(NULL, 0, 0);
7394 read_unlock(&tasklist_lock);
7395 mutex_unlock(&rt_constraints_mutex);
7396
7397 return ret;
7398 }
7399
7400 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7401 {
7402 /* Don't accept realtime tasks when there is no way for them to run */
7403 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7404 return 0;
7405
7406 return 1;
7407 }
7408
7409 #else /* !CONFIG_RT_GROUP_SCHED */
7410 static int sched_rt_global_constraints(void)
7411 {
7412 unsigned long flags;
7413 int i, ret = 0;
7414
7415 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7416 for_each_possible_cpu(i) {
7417 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7418
7419 raw_spin_lock(&rt_rq->rt_runtime_lock);
7420 rt_rq->rt_runtime = global_rt_runtime();
7421 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7422 }
7423 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7424
7425 return ret;
7426 }
7427 #endif /* CONFIG_RT_GROUP_SCHED */
7428
7429 static int sched_dl_global_constraints(void)
7430 {
7431 u64 runtime = global_rt_runtime();
7432 u64 period = global_rt_period();
7433 u64 new_bw = to_ratio(period, runtime);
7434 int cpu, ret = 0;
7435 unsigned long flags;
7436
7437 /*
7438 * Here we want to check the bandwidth not being set to some
7439 * value smaller than the currently allocated bandwidth in
7440 * any of the root_domains.
7441 *
7442 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7443 * cycling on root_domains... Discussion on different/better
7444 * solutions is welcome!
7445 */
7446 for_each_possible_cpu(cpu) {
7447 struct dl_bw *dl_b = dl_bw_of(cpu);
7448
7449 raw_spin_lock_irqsave(&dl_b->lock, flags);
7450 if (new_bw < dl_b->total_bw)
7451 ret = -EBUSY;
7452 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7453
7454 if (ret)
7455 break;
7456 }
7457
7458 return ret;
7459 }
7460
7461 static void sched_dl_do_global(void)
7462 {
7463 u64 new_bw = -1;
7464 int cpu;
7465 unsigned long flags;
7466
7467 def_dl_bandwidth.dl_period = global_rt_period();
7468 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7469
7470 if (global_rt_runtime() != RUNTIME_INF)
7471 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7472
7473 /*
7474 * FIXME: As above...
7475 */
7476 for_each_possible_cpu(cpu) {
7477 struct dl_bw *dl_b = dl_bw_of(cpu);
7478
7479 raw_spin_lock_irqsave(&dl_b->lock, flags);
7480 dl_b->bw = new_bw;
7481 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7482 }
7483 }
7484
7485 static int sched_rt_global_validate(void)
7486 {
7487 if (sysctl_sched_rt_period <= 0)
7488 return -EINVAL;
7489
7490 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7491 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7492 return -EINVAL;
7493
7494 return 0;
7495 }
7496
7497 static void sched_rt_do_global(void)
7498 {
7499 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7500 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7501 }
7502
7503 int sched_rt_handler(struct ctl_table *table, int write,
7504 void __user *buffer, size_t *lenp,
7505 loff_t *ppos)
7506 {
7507 int old_period, old_runtime;
7508 static DEFINE_MUTEX(mutex);
7509 int ret;
7510
7511 mutex_lock(&mutex);
7512 old_period = sysctl_sched_rt_period;
7513 old_runtime = sysctl_sched_rt_runtime;
7514
7515 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7516
7517 if (!ret && write) {
7518 ret = sched_rt_global_validate();
7519 if (ret)
7520 goto undo;
7521
7522 ret = sched_rt_global_constraints();
7523 if (ret)
7524 goto undo;
7525
7526 ret = sched_dl_global_constraints();
7527 if (ret)
7528 goto undo;
7529
7530 sched_rt_do_global();
7531 sched_dl_do_global();
7532 }
7533 if (0) {
7534 undo:
7535 sysctl_sched_rt_period = old_period;
7536 sysctl_sched_rt_runtime = old_runtime;
7537 }
7538 mutex_unlock(&mutex);
7539
7540 return ret;
7541 }
7542
7543 int sched_rr_handler(struct ctl_table *table, int write,
7544 void __user *buffer, size_t *lenp,
7545 loff_t *ppos)
7546 {
7547 int ret;
7548 static DEFINE_MUTEX(mutex);
7549
7550 mutex_lock(&mutex);
7551 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7552 /* make sure that internally we keep jiffies */
7553 /* also, writing zero resets timeslice to default */
7554 if (!ret && write) {
7555 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7556 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7557 }
7558 mutex_unlock(&mutex);
7559 return ret;
7560 }
7561
7562 #ifdef CONFIG_CGROUP_SCHED
7563
7564 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7565 {
7566 return css ? container_of(css, struct task_group, css) : NULL;
7567 }
7568
7569 static struct cgroup_subsys_state *
7570 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7571 {
7572 struct task_group *parent = css_tg(parent_css);
7573 struct task_group *tg;
7574
7575 if (!parent) {
7576 /* This is early initialization for the top cgroup */
7577 return &root_task_group.css;
7578 }
7579
7580 tg = sched_create_group(parent);
7581 if (IS_ERR(tg))
7582 return ERR_PTR(-ENOMEM);
7583
7584 return &tg->css;
7585 }
7586
7587 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7588 {
7589 struct task_group *tg = css_tg(css);
7590 struct task_group *parent = css_tg(css_parent(css));
7591
7592 if (parent)
7593 sched_online_group(tg, parent);
7594 return 0;
7595 }
7596
7597 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7598 {
7599 struct task_group *tg = css_tg(css);
7600
7601 sched_destroy_group(tg);
7602 }
7603
7604 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7605 {
7606 struct task_group *tg = css_tg(css);
7607
7608 sched_offline_group(tg);
7609 }
7610
7611 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7612 struct cgroup_taskset *tset)
7613 {
7614 struct task_struct *task;
7615
7616 cgroup_taskset_for_each(task, css, tset) {
7617 #ifdef CONFIG_RT_GROUP_SCHED
7618 if (!sched_rt_can_attach(css_tg(css), task))
7619 return -EINVAL;
7620 #else
7621 /* We don't support RT-tasks being in separate groups */
7622 if (task->sched_class != &fair_sched_class)
7623 return -EINVAL;
7624 #endif
7625 }
7626 return 0;
7627 }
7628
7629 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7630 struct cgroup_taskset *tset)
7631 {
7632 struct task_struct *task;
7633
7634 cgroup_taskset_for_each(task, css, tset)
7635 sched_move_task(task);
7636 }
7637
7638 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7639 struct cgroup_subsys_state *old_css,
7640 struct task_struct *task)
7641 {
7642 /*
7643 * cgroup_exit() is called in the copy_process() failure path.
7644 * Ignore this case since the task hasn't ran yet, this avoids
7645 * trying to poke a half freed task state from generic code.
7646 */
7647 if (!(task->flags & PF_EXITING))
7648 return;
7649
7650 sched_move_task(task);
7651 }
7652
7653 #ifdef CONFIG_FAIR_GROUP_SCHED
7654 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7655 struct cftype *cftype, u64 shareval)
7656 {
7657 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7658 }
7659
7660 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7661 struct cftype *cft)
7662 {
7663 struct task_group *tg = css_tg(css);
7664
7665 return (u64) scale_load_down(tg->shares);
7666 }
7667
7668 #ifdef CONFIG_CFS_BANDWIDTH
7669 static DEFINE_MUTEX(cfs_constraints_mutex);
7670
7671 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7672 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7673
7674 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7675
7676 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7677 {
7678 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7679 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7680
7681 if (tg == &root_task_group)
7682 return -EINVAL;
7683
7684 /*
7685 * Ensure we have at some amount of bandwidth every period. This is
7686 * to prevent reaching a state of large arrears when throttled via
7687 * entity_tick() resulting in prolonged exit starvation.
7688 */
7689 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7690 return -EINVAL;
7691
7692 /*
7693 * Likewise, bound things on the otherside by preventing insane quota
7694 * periods. This also allows us to normalize in computing quota
7695 * feasibility.
7696 */
7697 if (period > max_cfs_quota_period)
7698 return -EINVAL;
7699
7700 mutex_lock(&cfs_constraints_mutex);
7701 ret = __cfs_schedulable(tg, period, quota);
7702 if (ret)
7703 goto out_unlock;
7704
7705 runtime_enabled = quota != RUNTIME_INF;
7706 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7707 /*
7708 * If we need to toggle cfs_bandwidth_used, off->on must occur
7709 * before making related changes, and on->off must occur afterwards
7710 */
7711 if (runtime_enabled && !runtime_was_enabled)
7712 cfs_bandwidth_usage_inc();
7713 raw_spin_lock_irq(&cfs_b->lock);
7714 cfs_b->period = ns_to_ktime(period);
7715 cfs_b->quota = quota;
7716
7717 __refill_cfs_bandwidth_runtime(cfs_b);
7718 /* restart the period timer (if active) to handle new period expiry */
7719 if (runtime_enabled && cfs_b->timer_active) {
7720 /* force a reprogram */
7721 cfs_b->timer_active = 0;
7722 __start_cfs_bandwidth(cfs_b);
7723 }
7724 raw_spin_unlock_irq(&cfs_b->lock);
7725
7726 for_each_possible_cpu(i) {
7727 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7728 struct rq *rq = cfs_rq->rq;
7729
7730 raw_spin_lock_irq(&rq->lock);
7731 cfs_rq->runtime_enabled = runtime_enabled;
7732 cfs_rq->runtime_remaining = 0;
7733
7734 if (cfs_rq->throttled)
7735 unthrottle_cfs_rq(cfs_rq);
7736 raw_spin_unlock_irq(&rq->lock);
7737 }
7738 if (runtime_was_enabled && !runtime_enabled)
7739 cfs_bandwidth_usage_dec();
7740 out_unlock:
7741 mutex_unlock(&cfs_constraints_mutex);
7742
7743 return ret;
7744 }
7745
7746 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7747 {
7748 u64 quota, period;
7749
7750 period = ktime_to_ns(tg->cfs_bandwidth.period);
7751 if (cfs_quota_us < 0)
7752 quota = RUNTIME_INF;
7753 else
7754 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7755
7756 return tg_set_cfs_bandwidth(tg, period, quota);
7757 }
7758
7759 long tg_get_cfs_quota(struct task_group *tg)
7760 {
7761 u64 quota_us;
7762
7763 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7764 return -1;
7765
7766 quota_us = tg->cfs_bandwidth.quota;
7767 do_div(quota_us, NSEC_PER_USEC);
7768
7769 return quota_us;
7770 }
7771
7772 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7773 {
7774 u64 quota, period;
7775
7776 period = (u64)cfs_period_us * NSEC_PER_USEC;
7777 quota = tg->cfs_bandwidth.quota;
7778
7779 return tg_set_cfs_bandwidth(tg, period, quota);
7780 }
7781
7782 long tg_get_cfs_period(struct task_group *tg)
7783 {
7784 u64 cfs_period_us;
7785
7786 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7787 do_div(cfs_period_us, NSEC_PER_USEC);
7788
7789 return cfs_period_us;
7790 }
7791
7792 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7793 struct cftype *cft)
7794 {
7795 return tg_get_cfs_quota(css_tg(css));
7796 }
7797
7798 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7799 struct cftype *cftype, s64 cfs_quota_us)
7800 {
7801 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7802 }
7803
7804 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7805 struct cftype *cft)
7806 {
7807 return tg_get_cfs_period(css_tg(css));
7808 }
7809
7810 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7811 struct cftype *cftype, u64 cfs_period_us)
7812 {
7813 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7814 }
7815
7816 struct cfs_schedulable_data {
7817 struct task_group *tg;
7818 u64 period, quota;
7819 };
7820
7821 /*
7822 * normalize group quota/period to be quota/max_period
7823 * note: units are usecs
7824 */
7825 static u64 normalize_cfs_quota(struct task_group *tg,
7826 struct cfs_schedulable_data *d)
7827 {
7828 u64 quota, period;
7829
7830 if (tg == d->tg) {
7831 period = d->period;
7832 quota = d->quota;
7833 } else {
7834 period = tg_get_cfs_period(tg);
7835 quota = tg_get_cfs_quota(tg);
7836 }
7837
7838 /* note: these should typically be equivalent */
7839 if (quota == RUNTIME_INF || quota == -1)
7840 return RUNTIME_INF;
7841
7842 return to_ratio(period, quota);
7843 }
7844
7845 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7846 {
7847 struct cfs_schedulable_data *d = data;
7848 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7849 s64 quota = 0, parent_quota = -1;
7850
7851 if (!tg->parent) {
7852 quota = RUNTIME_INF;
7853 } else {
7854 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7855
7856 quota = normalize_cfs_quota(tg, d);
7857 parent_quota = parent_b->hierarchal_quota;
7858
7859 /*
7860 * ensure max(child_quota) <= parent_quota, inherit when no
7861 * limit is set
7862 */
7863 if (quota == RUNTIME_INF)
7864 quota = parent_quota;
7865 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7866 return -EINVAL;
7867 }
7868 cfs_b->hierarchal_quota = quota;
7869
7870 return 0;
7871 }
7872
7873 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7874 {
7875 int ret;
7876 struct cfs_schedulable_data data = {
7877 .tg = tg,
7878 .period = period,
7879 .quota = quota,
7880 };
7881
7882 if (quota != RUNTIME_INF) {
7883 do_div(data.period, NSEC_PER_USEC);
7884 do_div(data.quota, NSEC_PER_USEC);
7885 }
7886
7887 rcu_read_lock();
7888 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7889 rcu_read_unlock();
7890
7891 return ret;
7892 }
7893
7894 static int cpu_stats_show(struct seq_file *sf, void *v)
7895 {
7896 struct task_group *tg = css_tg(seq_css(sf));
7897 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7898
7899 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7900 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7901 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7902
7903 return 0;
7904 }
7905 #endif /* CONFIG_CFS_BANDWIDTH */
7906 #endif /* CONFIG_FAIR_GROUP_SCHED */
7907
7908 #ifdef CONFIG_RT_GROUP_SCHED
7909 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7910 struct cftype *cft, s64 val)
7911 {
7912 return sched_group_set_rt_runtime(css_tg(css), val);
7913 }
7914
7915 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7916 struct cftype *cft)
7917 {
7918 return sched_group_rt_runtime(css_tg(css));
7919 }
7920
7921 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7922 struct cftype *cftype, u64 rt_period_us)
7923 {
7924 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7925 }
7926
7927 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7928 struct cftype *cft)
7929 {
7930 return sched_group_rt_period(css_tg(css));
7931 }
7932 #endif /* CONFIG_RT_GROUP_SCHED */
7933
7934 static struct cftype cpu_files[] = {
7935 #ifdef CONFIG_FAIR_GROUP_SCHED
7936 {
7937 .name = "shares",
7938 .read_u64 = cpu_shares_read_u64,
7939 .write_u64 = cpu_shares_write_u64,
7940 },
7941 #endif
7942 #ifdef CONFIG_CFS_BANDWIDTH
7943 {
7944 .name = "cfs_quota_us",
7945 .read_s64 = cpu_cfs_quota_read_s64,
7946 .write_s64 = cpu_cfs_quota_write_s64,
7947 },
7948 {
7949 .name = "cfs_period_us",
7950 .read_u64 = cpu_cfs_period_read_u64,
7951 .write_u64 = cpu_cfs_period_write_u64,
7952 },
7953 {
7954 .name = "stat",
7955 .seq_show = cpu_stats_show,
7956 },
7957 #endif
7958 #ifdef CONFIG_RT_GROUP_SCHED
7959 {
7960 .name = "rt_runtime_us",
7961 .read_s64 = cpu_rt_runtime_read,
7962 .write_s64 = cpu_rt_runtime_write,
7963 },
7964 {
7965 .name = "rt_period_us",
7966 .read_u64 = cpu_rt_period_read_uint,
7967 .write_u64 = cpu_rt_period_write_uint,
7968 },
7969 #endif
7970 { } /* terminate */
7971 };
7972
7973 struct cgroup_subsys cpu_cgroup_subsys = {
7974 .name = "cpu",
7975 .css_alloc = cpu_cgroup_css_alloc,
7976 .css_free = cpu_cgroup_css_free,
7977 .css_online = cpu_cgroup_css_online,
7978 .css_offline = cpu_cgroup_css_offline,
7979 .can_attach = cpu_cgroup_can_attach,
7980 .attach = cpu_cgroup_attach,
7981 .exit = cpu_cgroup_exit,
7982 .subsys_id = cpu_cgroup_subsys_id,
7983 .base_cftypes = cpu_files,
7984 .early_init = 1,
7985 };
7986
7987 #endif /* CONFIG_CGROUP_SCHED */
7988
7989 void dump_cpu_task(int cpu)
7990 {
7991 pr_info("Task dump for CPU %d:\n", cpu);
7992 sched_show_task(cpu_curr(cpu));
7993 }
This page took 0.288409 seconds and 5 git commands to generate.