Merge tag 'dt2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_sched.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static ssize_t
197 sched_feat_write(struct file *filp, const char __user *ubuf,
198 size_t cnt, loff_t *ppos)
199 {
200 char buf[64];
201 char *cmp;
202 int neg = 0;
203 int i;
204
205 if (cnt > 63)
206 cnt = 63;
207
208 if (copy_from_user(&buf, ubuf, cnt))
209 return -EFAULT;
210
211 buf[cnt] = 0;
212 cmp = strstrip(buf);
213
214 if (strncmp(cmp, "NO_", 3) == 0) {
215 neg = 1;
216 cmp += 3;
217 }
218
219 for (i = 0; i < __SCHED_FEAT_NR; i++) {
220 if (strcmp(cmp, sched_feat_names[i]) == 0) {
221 if (neg) {
222 sysctl_sched_features &= ~(1UL << i);
223 sched_feat_disable(i);
224 } else {
225 sysctl_sched_features |= (1UL << i);
226 sched_feat_enable(i);
227 }
228 break;
229 }
230 }
231
232 if (i == __SCHED_FEAT_NR)
233 return -EINVAL;
234
235 *ppos += cnt;
236
237 return cnt;
238 }
239
240 static int sched_feat_open(struct inode *inode, struct file *filp)
241 {
242 return single_open(filp, sched_feat_show, NULL);
243 }
244
245 static const struct file_operations sched_feat_fops = {
246 .open = sched_feat_open,
247 .write = sched_feat_write,
248 .read = seq_read,
249 .llseek = seq_lseek,
250 .release = single_release,
251 };
252
253 static __init int sched_init_debug(void)
254 {
255 debugfs_create_file("sched_features", 0644, NULL, NULL,
256 &sched_feat_fops);
257
258 return 0;
259 }
260 late_initcall(sched_init_debug);
261 #endif /* CONFIG_SCHED_DEBUG */
262
263 /*
264 * Number of tasks to iterate in a single balance run.
265 * Limited because this is done with IRQs disabled.
266 */
267 const_debug unsigned int sysctl_sched_nr_migrate = 32;
268
269 /*
270 * period over which we average the RT time consumption, measured
271 * in ms.
272 *
273 * default: 1s
274 */
275 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
276
277 /*
278 * period over which we measure -rt task cpu usage in us.
279 * default: 1s
280 */
281 unsigned int sysctl_sched_rt_period = 1000000;
282
283 __read_mostly int scheduler_running;
284
285 /*
286 * part of the period that we allow rt tasks to run in us.
287 * default: 0.95s
288 */
289 int sysctl_sched_rt_runtime = 950000;
290
291
292
293 /*
294 * __task_rq_lock - lock the rq @p resides on.
295 */
296 static inline struct rq *__task_rq_lock(struct task_struct *p)
297 __acquires(rq->lock)
298 {
299 struct rq *rq;
300
301 lockdep_assert_held(&p->pi_lock);
302
303 for (;;) {
304 rq = task_rq(p);
305 raw_spin_lock(&rq->lock);
306 if (likely(rq == task_rq(p)))
307 return rq;
308 raw_spin_unlock(&rq->lock);
309 }
310 }
311
312 /*
313 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
314 */
315 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
316 __acquires(p->pi_lock)
317 __acquires(rq->lock)
318 {
319 struct rq *rq;
320
321 for (;;) {
322 raw_spin_lock_irqsave(&p->pi_lock, *flags);
323 rq = task_rq(p);
324 raw_spin_lock(&rq->lock);
325 if (likely(rq == task_rq(p)))
326 return rq;
327 raw_spin_unlock(&rq->lock);
328 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
329 }
330 }
331
332 static void __task_rq_unlock(struct rq *rq)
333 __releases(rq->lock)
334 {
335 raw_spin_unlock(&rq->lock);
336 }
337
338 static inline void
339 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
340 __releases(rq->lock)
341 __releases(p->pi_lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
345 }
346
347 /*
348 * this_rq_lock - lock this runqueue and disable interrupts.
349 */
350 static struct rq *this_rq_lock(void)
351 __acquires(rq->lock)
352 {
353 struct rq *rq;
354
355 local_irq_disable();
356 rq = this_rq();
357 raw_spin_lock(&rq->lock);
358
359 return rq;
360 }
361
362 #ifdef CONFIG_SCHED_HRTICK
363 /*
364 * Use HR-timers to deliver accurate preemption points.
365 *
366 * Its all a bit involved since we cannot program an hrt while holding the
367 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
368 * reschedule event.
369 *
370 * When we get rescheduled we reprogram the hrtick_timer outside of the
371 * rq->lock.
372 */
373
374 static void hrtick_clear(struct rq *rq)
375 {
376 if (hrtimer_active(&rq->hrtick_timer))
377 hrtimer_cancel(&rq->hrtick_timer);
378 }
379
380 /*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384 static enum hrtimer_restart hrtick(struct hrtimer *timer)
385 {
386 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
390 raw_spin_lock(&rq->lock);
391 update_rq_clock(rq);
392 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393 raw_spin_unlock(&rq->lock);
394
395 return HRTIMER_NORESTART;
396 }
397
398 #ifdef CONFIG_SMP
399 /*
400 * called from hardirq (IPI) context
401 */
402 static void __hrtick_start(void *arg)
403 {
404 struct rq *rq = arg;
405
406 raw_spin_lock(&rq->lock);
407 hrtimer_restart(&rq->hrtick_timer);
408 rq->hrtick_csd_pending = 0;
409 raw_spin_unlock(&rq->lock);
410 }
411
412 /*
413 * Called to set the hrtick timer state.
414 *
415 * called with rq->lock held and irqs disabled
416 */
417 void hrtick_start(struct rq *rq, u64 delay)
418 {
419 struct hrtimer *timer = &rq->hrtick_timer;
420 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
421
422 hrtimer_set_expires(timer, time);
423
424 if (rq == this_rq()) {
425 hrtimer_restart(timer);
426 } else if (!rq->hrtick_csd_pending) {
427 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
428 rq->hrtick_csd_pending = 1;
429 }
430 }
431
432 static int
433 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
434 {
435 int cpu = (int)(long)hcpu;
436
437 switch (action) {
438 case CPU_UP_CANCELED:
439 case CPU_UP_CANCELED_FROZEN:
440 case CPU_DOWN_PREPARE:
441 case CPU_DOWN_PREPARE_FROZEN:
442 case CPU_DEAD:
443 case CPU_DEAD_FROZEN:
444 hrtick_clear(cpu_rq(cpu));
445 return NOTIFY_OK;
446 }
447
448 return NOTIFY_DONE;
449 }
450
451 static __init void init_hrtick(void)
452 {
453 hotcpu_notifier(hotplug_hrtick, 0);
454 }
455 #else
456 /*
457 * Called to set the hrtick timer state.
458 *
459 * called with rq->lock held and irqs disabled
460 */
461 void hrtick_start(struct rq *rq, u64 delay)
462 {
463 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
464 HRTIMER_MODE_REL_PINNED, 0);
465 }
466
467 static inline void init_hrtick(void)
468 {
469 }
470 #endif /* CONFIG_SMP */
471
472 static void init_rq_hrtick(struct rq *rq)
473 {
474 #ifdef CONFIG_SMP
475 rq->hrtick_csd_pending = 0;
476
477 rq->hrtick_csd.flags = 0;
478 rq->hrtick_csd.func = __hrtick_start;
479 rq->hrtick_csd.info = rq;
480 #endif
481
482 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
483 rq->hrtick_timer.function = hrtick;
484 }
485 #else /* CONFIG_SCHED_HRTICK */
486 static inline void hrtick_clear(struct rq *rq)
487 {
488 }
489
490 static inline void init_rq_hrtick(struct rq *rq)
491 {
492 }
493
494 static inline void init_hrtick(void)
495 {
496 }
497 #endif /* CONFIG_SCHED_HRTICK */
498
499 /*
500 * resched_task - mark a task 'to be rescheduled now'.
501 *
502 * On UP this means the setting of the need_resched flag, on SMP it
503 * might also involve a cross-CPU call to trigger the scheduler on
504 * the target CPU.
505 */
506 #ifdef CONFIG_SMP
507
508 #ifndef tsk_is_polling
509 #define tsk_is_polling(t) 0
510 #endif
511
512 void resched_task(struct task_struct *p)
513 {
514 int cpu;
515
516 assert_raw_spin_locked(&task_rq(p)->lock);
517
518 if (test_tsk_need_resched(p))
519 return;
520
521 set_tsk_need_resched(p);
522
523 cpu = task_cpu(p);
524 if (cpu == smp_processor_id())
525 return;
526
527 /* NEED_RESCHED must be visible before we test polling */
528 smp_mb();
529 if (!tsk_is_polling(p))
530 smp_send_reschedule(cpu);
531 }
532
533 void resched_cpu(int cpu)
534 {
535 struct rq *rq = cpu_rq(cpu);
536 unsigned long flags;
537
538 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
539 return;
540 resched_task(cpu_curr(cpu));
541 raw_spin_unlock_irqrestore(&rq->lock, flags);
542 }
543
544 #ifdef CONFIG_NO_HZ
545 /*
546 * In the semi idle case, use the nearest busy cpu for migrating timers
547 * from an idle cpu. This is good for power-savings.
548 *
549 * We don't do similar optimization for completely idle system, as
550 * selecting an idle cpu will add more delays to the timers than intended
551 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
552 */
553 int get_nohz_timer_target(void)
554 {
555 int cpu = smp_processor_id();
556 int i;
557 struct sched_domain *sd;
558
559 rcu_read_lock();
560 for_each_domain(cpu, sd) {
561 for_each_cpu(i, sched_domain_span(sd)) {
562 if (!idle_cpu(i)) {
563 cpu = i;
564 goto unlock;
565 }
566 }
567 }
568 unlock:
569 rcu_read_unlock();
570 return cpu;
571 }
572 /*
573 * When add_timer_on() enqueues a timer into the timer wheel of an
574 * idle CPU then this timer might expire before the next timer event
575 * which is scheduled to wake up that CPU. In case of a completely
576 * idle system the next event might even be infinite time into the
577 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
578 * leaves the inner idle loop so the newly added timer is taken into
579 * account when the CPU goes back to idle and evaluates the timer
580 * wheel for the next timer event.
581 */
582 void wake_up_idle_cpu(int cpu)
583 {
584 struct rq *rq = cpu_rq(cpu);
585
586 if (cpu == smp_processor_id())
587 return;
588
589 /*
590 * This is safe, as this function is called with the timer
591 * wheel base lock of (cpu) held. When the CPU is on the way
592 * to idle and has not yet set rq->curr to idle then it will
593 * be serialized on the timer wheel base lock and take the new
594 * timer into account automatically.
595 */
596 if (rq->curr != rq->idle)
597 return;
598
599 /*
600 * We can set TIF_RESCHED on the idle task of the other CPU
601 * lockless. The worst case is that the other CPU runs the
602 * idle task through an additional NOOP schedule()
603 */
604 set_tsk_need_resched(rq->idle);
605
606 /* NEED_RESCHED must be visible before we test polling */
607 smp_mb();
608 if (!tsk_is_polling(rq->idle))
609 smp_send_reschedule(cpu);
610 }
611
612 static inline bool got_nohz_idle_kick(void)
613 {
614 int cpu = smp_processor_id();
615 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
616 }
617
618 #else /* CONFIG_NO_HZ */
619
620 static inline bool got_nohz_idle_kick(void)
621 {
622 return false;
623 }
624
625 #endif /* CONFIG_NO_HZ */
626
627 void sched_avg_update(struct rq *rq)
628 {
629 s64 period = sched_avg_period();
630
631 while ((s64)(rq->clock - rq->age_stamp) > period) {
632 /*
633 * Inline assembly required to prevent the compiler
634 * optimising this loop into a divmod call.
635 * See __iter_div_u64_rem() for another example of this.
636 */
637 asm("" : "+rm" (rq->age_stamp));
638 rq->age_stamp += period;
639 rq->rt_avg /= 2;
640 }
641 }
642
643 #else /* !CONFIG_SMP */
644 void resched_task(struct task_struct *p)
645 {
646 assert_raw_spin_locked(&task_rq(p)->lock);
647 set_tsk_need_resched(p);
648 }
649 #endif /* CONFIG_SMP */
650
651 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
652 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
653 /*
654 * Iterate task_group tree rooted at *from, calling @down when first entering a
655 * node and @up when leaving it for the final time.
656 *
657 * Caller must hold rcu_lock or sufficient equivalent.
658 */
659 int walk_tg_tree_from(struct task_group *from,
660 tg_visitor down, tg_visitor up, void *data)
661 {
662 struct task_group *parent, *child;
663 int ret;
664
665 parent = from;
666
667 down:
668 ret = (*down)(parent, data);
669 if (ret)
670 goto out;
671 list_for_each_entry_rcu(child, &parent->children, siblings) {
672 parent = child;
673 goto down;
674
675 up:
676 continue;
677 }
678 ret = (*up)(parent, data);
679 if (ret || parent == from)
680 goto out;
681
682 child = parent;
683 parent = parent->parent;
684 if (parent)
685 goto up;
686 out:
687 return ret;
688 }
689
690 int tg_nop(struct task_group *tg, void *data)
691 {
692 return 0;
693 }
694 #endif
695
696 static void set_load_weight(struct task_struct *p)
697 {
698 int prio = p->static_prio - MAX_RT_PRIO;
699 struct load_weight *load = &p->se.load;
700
701 /*
702 * SCHED_IDLE tasks get minimal weight:
703 */
704 if (p->policy == SCHED_IDLE) {
705 load->weight = scale_load(WEIGHT_IDLEPRIO);
706 load->inv_weight = WMULT_IDLEPRIO;
707 return;
708 }
709
710 load->weight = scale_load(prio_to_weight[prio]);
711 load->inv_weight = prio_to_wmult[prio];
712 }
713
714 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
715 {
716 update_rq_clock(rq);
717 sched_info_queued(p);
718 p->sched_class->enqueue_task(rq, p, flags);
719 }
720
721 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
722 {
723 update_rq_clock(rq);
724 sched_info_dequeued(p);
725 p->sched_class->dequeue_task(rq, p, flags);
726 }
727
728 void activate_task(struct rq *rq, struct task_struct *p, int flags)
729 {
730 if (task_contributes_to_load(p))
731 rq->nr_uninterruptible--;
732
733 enqueue_task(rq, p, flags);
734 }
735
736 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible++;
740
741 dequeue_task(rq, p, flags);
742 }
743
744 static void update_rq_clock_task(struct rq *rq, s64 delta)
745 {
746 /*
747 * In theory, the compile should just see 0 here, and optimize out the call
748 * to sched_rt_avg_update. But I don't trust it...
749 */
750 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
751 s64 steal = 0, irq_delta = 0;
752 #endif
753 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
754 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
755
756 /*
757 * Since irq_time is only updated on {soft,}irq_exit, we might run into
758 * this case when a previous update_rq_clock() happened inside a
759 * {soft,}irq region.
760 *
761 * When this happens, we stop ->clock_task and only update the
762 * prev_irq_time stamp to account for the part that fit, so that a next
763 * update will consume the rest. This ensures ->clock_task is
764 * monotonic.
765 *
766 * It does however cause some slight miss-attribution of {soft,}irq
767 * time, a more accurate solution would be to update the irq_time using
768 * the current rq->clock timestamp, except that would require using
769 * atomic ops.
770 */
771 if (irq_delta > delta)
772 irq_delta = delta;
773
774 rq->prev_irq_time += irq_delta;
775 delta -= irq_delta;
776 #endif
777 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
778 if (static_key_false((&paravirt_steal_rq_enabled))) {
779 u64 st;
780
781 steal = paravirt_steal_clock(cpu_of(rq));
782 steal -= rq->prev_steal_time_rq;
783
784 if (unlikely(steal > delta))
785 steal = delta;
786
787 st = steal_ticks(steal);
788 steal = st * TICK_NSEC;
789
790 rq->prev_steal_time_rq += steal;
791
792 delta -= steal;
793 }
794 #endif
795
796 rq->clock_task += delta;
797
798 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
799 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
800 sched_rt_avg_update(rq, irq_delta + steal);
801 #endif
802 }
803
804 void sched_set_stop_task(int cpu, struct task_struct *stop)
805 {
806 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
807 struct task_struct *old_stop = cpu_rq(cpu)->stop;
808
809 if (stop) {
810 /*
811 * Make it appear like a SCHED_FIFO task, its something
812 * userspace knows about and won't get confused about.
813 *
814 * Also, it will make PI more or less work without too
815 * much confusion -- but then, stop work should not
816 * rely on PI working anyway.
817 */
818 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
819
820 stop->sched_class = &stop_sched_class;
821 }
822
823 cpu_rq(cpu)->stop = stop;
824
825 if (old_stop) {
826 /*
827 * Reset it back to a normal scheduling class so that
828 * it can die in pieces.
829 */
830 old_stop->sched_class = &rt_sched_class;
831 }
832 }
833
834 /*
835 * __normal_prio - return the priority that is based on the static prio
836 */
837 static inline int __normal_prio(struct task_struct *p)
838 {
839 return p->static_prio;
840 }
841
842 /*
843 * Calculate the expected normal priority: i.e. priority
844 * without taking RT-inheritance into account. Might be
845 * boosted by interactivity modifiers. Changes upon fork,
846 * setprio syscalls, and whenever the interactivity
847 * estimator recalculates.
848 */
849 static inline int normal_prio(struct task_struct *p)
850 {
851 int prio;
852
853 if (task_has_rt_policy(p))
854 prio = MAX_RT_PRIO-1 - p->rt_priority;
855 else
856 prio = __normal_prio(p);
857 return prio;
858 }
859
860 /*
861 * Calculate the current priority, i.e. the priority
862 * taken into account by the scheduler. This value might
863 * be boosted by RT tasks, or might be boosted by
864 * interactivity modifiers. Will be RT if the task got
865 * RT-boosted. If not then it returns p->normal_prio.
866 */
867 static int effective_prio(struct task_struct *p)
868 {
869 p->normal_prio = normal_prio(p);
870 /*
871 * If we are RT tasks or we were boosted to RT priority,
872 * keep the priority unchanged. Otherwise, update priority
873 * to the normal priority:
874 */
875 if (!rt_prio(p->prio))
876 return p->normal_prio;
877 return p->prio;
878 }
879
880 /**
881 * task_curr - is this task currently executing on a CPU?
882 * @p: the task in question.
883 */
884 inline int task_curr(const struct task_struct *p)
885 {
886 return cpu_curr(task_cpu(p)) == p;
887 }
888
889 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
890 const struct sched_class *prev_class,
891 int oldprio)
892 {
893 if (prev_class != p->sched_class) {
894 if (prev_class->switched_from)
895 prev_class->switched_from(rq, p);
896 p->sched_class->switched_to(rq, p);
897 } else if (oldprio != p->prio)
898 p->sched_class->prio_changed(rq, p, oldprio);
899 }
900
901 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
902 {
903 const struct sched_class *class;
904
905 if (p->sched_class == rq->curr->sched_class) {
906 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
907 } else {
908 for_each_class(class) {
909 if (class == rq->curr->sched_class)
910 break;
911 if (class == p->sched_class) {
912 resched_task(rq->curr);
913 break;
914 }
915 }
916 }
917
918 /*
919 * A queue event has occurred, and we're going to schedule. In
920 * this case, we can save a useless back to back clock update.
921 */
922 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
923 rq->skip_clock_update = 1;
924 }
925
926 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
927
928 void register_task_migration_notifier(struct notifier_block *n)
929 {
930 atomic_notifier_chain_register(&task_migration_notifier, n);
931 }
932
933 #ifdef CONFIG_SMP
934 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
935 {
936 #ifdef CONFIG_SCHED_DEBUG
937 /*
938 * We should never call set_task_cpu() on a blocked task,
939 * ttwu() will sort out the placement.
940 */
941 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
942 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
943
944 #ifdef CONFIG_LOCKDEP
945 /*
946 * The caller should hold either p->pi_lock or rq->lock, when changing
947 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
948 *
949 * sched_move_task() holds both and thus holding either pins the cgroup,
950 * see task_group().
951 *
952 * Furthermore, all task_rq users should acquire both locks, see
953 * task_rq_lock().
954 */
955 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
956 lockdep_is_held(&task_rq(p)->lock)));
957 #endif
958 #endif
959
960 trace_sched_migrate_task(p, new_cpu);
961
962 if (task_cpu(p) != new_cpu) {
963 struct task_migration_notifier tmn;
964
965 if (p->sched_class->migrate_task_rq)
966 p->sched_class->migrate_task_rq(p, new_cpu);
967 p->se.nr_migrations++;
968 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
969
970 tmn.task = p;
971 tmn.from_cpu = task_cpu(p);
972 tmn.to_cpu = new_cpu;
973
974 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
975 }
976
977 __set_task_cpu(p, new_cpu);
978 }
979
980 struct migration_arg {
981 struct task_struct *task;
982 int dest_cpu;
983 };
984
985 static int migration_cpu_stop(void *data);
986
987 /*
988 * wait_task_inactive - wait for a thread to unschedule.
989 *
990 * If @match_state is nonzero, it's the @p->state value just checked and
991 * not expected to change. If it changes, i.e. @p might have woken up,
992 * then return zero. When we succeed in waiting for @p to be off its CPU,
993 * we return a positive number (its total switch count). If a second call
994 * a short while later returns the same number, the caller can be sure that
995 * @p has remained unscheduled the whole time.
996 *
997 * The caller must ensure that the task *will* unschedule sometime soon,
998 * else this function might spin for a *long* time. This function can't
999 * be called with interrupts off, or it may introduce deadlock with
1000 * smp_call_function() if an IPI is sent by the same process we are
1001 * waiting to become inactive.
1002 */
1003 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1004 {
1005 unsigned long flags;
1006 int running, on_rq;
1007 unsigned long ncsw;
1008 struct rq *rq;
1009
1010 for (;;) {
1011 /*
1012 * We do the initial early heuristics without holding
1013 * any task-queue locks at all. We'll only try to get
1014 * the runqueue lock when things look like they will
1015 * work out!
1016 */
1017 rq = task_rq(p);
1018
1019 /*
1020 * If the task is actively running on another CPU
1021 * still, just relax and busy-wait without holding
1022 * any locks.
1023 *
1024 * NOTE! Since we don't hold any locks, it's not
1025 * even sure that "rq" stays as the right runqueue!
1026 * But we don't care, since "task_running()" will
1027 * return false if the runqueue has changed and p
1028 * is actually now running somewhere else!
1029 */
1030 while (task_running(rq, p)) {
1031 if (match_state && unlikely(p->state != match_state))
1032 return 0;
1033 cpu_relax();
1034 }
1035
1036 /*
1037 * Ok, time to look more closely! We need the rq
1038 * lock now, to be *sure*. If we're wrong, we'll
1039 * just go back and repeat.
1040 */
1041 rq = task_rq_lock(p, &flags);
1042 trace_sched_wait_task(p);
1043 running = task_running(rq, p);
1044 on_rq = p->on_rq;
1045 ncsw = 0;
1046 if (!match_state || p->state == match_state)
1047 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1048 task_rq_unlock(rq, p, &flags);
1049
1050 /*
1051 * If it changed from the expected state, bail out now.
1052 */
1053 if (unlikely(!ncsw))
1054 break;
1055
1056 /*
1057 * Was it really running after all now that we
1058 * checked with the proper locks actually held?
1059 *
1060 * Oops. Go back and try again..
1061 */
1062 if (unlikely(running)) {
1063 cpu_relax();
1064 continue;
1065 }
1066
1067 /*
1068 * It's not enough that it's not actively running,
1069 * it must be off the runqueue _entirely_, and not
1070 * preempted!
1071 *
1072 * So if it was still runnable (but just not actively
1073 * running right now), it's preempted, and we should
1074 * yield - it could be a while.
1075 */
1076 if (unlikely(on_rq)) {
1077 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1078
1079 set_current_state(TASK_UNINTERRUPTIBLE);
1080 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1081 continue;
1082 }
1083
1084 /*
1085 * Ahh, all good. It wasn't running, and it wasn't
1086 * runnable, which means that it will never become
1087 * running in the future either. We're all done!
1088 */
1089 break;
1090 }
1091
1092 return ncsw;
1093 }
1094
1095 /***
1096 * kick_process - kick a running thread to enter/exit the kernel
1097 * @p: the to-be-kicked thread
1098 *
1099 * Cause a process which is running on another CPU to enter
1100 * kernel-mode, without any delay. (to get signals handled.)
1101 *
1102 * NOTE: this function doesn't have to take the runqueue lock,
1103 * because all it wants to ensure is that the remote task enters
1104 * the kernel. If the IPI races and the task has been migrated
1105 * to another CPU then no harm is done and the purpose has been
1106 * achieved as well.
1107 */
1108 void kick_process(struct task_struct *p)
1109 {
1110 int cpu;
1111
1112 preempt_disable();
1113 cpu = task_cpu(p);
1114 if ((cpu != smp_processor_id()) && task_curr(p))
1115 smp_send_reschedule(cpu);
1116 preempt_enable();
1117 }
1118 EXPORT_SYMBOL_GPL(kick_process);
1119 #endif /* CONFIG_SMP */
1120
1121 #ifdef CONFIG_SMP
1122 /*
1123 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1124 */
1125 static int select_fallback_rq(int cpu, struct task_struct *p)
1126 {
1127 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1128 enum { cpuset, possible, fail } state = cpuset;
1129 int dest_cpu;
1130
1131 /* Look for allowed, online CPU in same node. */
1132 for_each_cpu(dest_cpu, nodemask) {
1133 if (!cpu_online(dest_cpu))
1134 continue;
1135 if (!cpu_active(dest_cpu))
1136 continue;
1137 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1138 return dest_cpu;
1139 }
1140
1141 for (;;) {
1142 /* Any allowed, online CPU? */
1143 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1144 if (!cpu_online(dest_cpu))
1145 continue;
1146 if (!cpu_active(dest_cpu))
1147 continue;
1148 goto out;
1149 }
1150
1151 switch (state) {
1152 case cpuset:
1153 /* No more Mr. Nice Guy. */
1154 cpuset_cpus_allowed_fallback(p);
1155 state = possible;
1156 break;
1157
1158 case possible:
1159 do_set_cpus_allowed(p, cpu_possible_mask);
1160 state = fail;
1161 break;
1162
1163 case fail:
1164 BUG();
1165 break;
1166 }
1167 }
1168
1169 out:
1170 if (state != cpuset) {
1171 /*
1172 * Don't tell them about moving exiting tasks or
1173 * kernel threads (both mm NULL), since they never
1174 * leave kernel.
1175 */
1176 if (p->mm && printk_ratelimit()) {
1177 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1178 task_pid_nr(p), p->comm, cpu);
1179 }
1180 }
1181
1182 return dest_cpu;
1183 }
1184
1185 /*
1186 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1187 */
1188 static inline
1189 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1190 {
1191 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1192
1193 /*
1194 * In order not to call set_task_cpu() on a blocking task we need
1195 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1196 * cpu.
1197 *
1198 * Since this is common to all placement strategies, this lives here.
1199 *
1200 * [ this allows ->select_task() to simply return task_cpu(p) and
1201 * not worry about this generic constraint ]
1202 */
1203 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1204 !cpu_online(cpu)))
1205 cpu = select_fallback_rq(task_cpu(p), p);
1206
1207 return cpu;
1208 }
1209
1210 static void update_avg(u64 *avg, u64 sample)
1211 {
1212 s64 diff = sample - *avg;
1213 *avg += diff >> 3;
1214 }
1215 #endif
1216
1217 static void
1218 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1219 {
1220 #ifdef CONFIG_SCHEDSTATS
1221 struct rq *rq = this_rq();
1222
1223 #ifdef CONFIG_SMP
1224 int this_cpu = smp_processor_id();
1225
1226 if (cpu == this_cpu) {
1227 schedstat_inc(rq, ttwu_local);
1228 schedstat_inc(p, se.statistics.nr_wakeups_local);
1229 } else {
1230 struct sched_domain *sd;
1231
1232 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1233 rcu_read_lock();
1234 for_each_domain(this_cpu, sd) {
1235 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1236 schedstat_inc(sd, ttwu_wake_remote);
1237 break;
1238 }
1239 }
1240 rcu_read_unlock();
1241 }
1242
1243 if (wake_flags & WF_MIGRATED)
1244 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1245
1246 #endif /* CONFIG_SMP */
1247
1248 schedstat_inc(rq, ttwu_count);
1249 schedstat_inc(p, se.statistics.nr_wakeups);
1250
1251 if (wake_flags & WF_SYNC)
1252 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1253
1254 #endif /* CONFIG_SCHEDSTATS */
1255 }
1256
1257 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1258 {
1259 activate_task(rq, p, en_flags);
1260 p->on_rq = 1;
1261
1262 /* if a worker is waking up, notify workqueue */
1263 if (p->flags & PF_WQ_WORKER)
1264 wq_worker_waking_up(p, cpu_of(rq));
1265 }
1266
1267 /*
1268 * Mark the task runnable and perform wakeup-preemption.
1269 */
1270 static void
1271 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1272 {
1273 trace_sched_wakeup(p, true);
1274 check_preempt_curr(rq, p, wake_flags);
1275
1276 p->state = TASK_RUNNING;
1277 #ifdef CONFIG_SMP
1278 if (p->sched_class->task_woken)
1279 p->sched_class->task_woken(rq, p);
1280
1281 if (rq->idle_stamp) {
1282 u64 delta = rq->clock - rq->idle_stamp;
1283 u64 max = 2*sysctl_sched_migration_cost;
1284
1285 if (delta > max)
1286 rq->avg_idle = max;
1287 else
1288 update_avg(&rq->avg_idle, delta);
1289 rq->idle_stamp = 0;
1290 }
1291 #endif
1292 }
1293
1294 static void
1295 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1296 {
1297 #ifdef CONFIG_SMP
1298 if (p->sched_contributes_to_load)
1299 rq->nr_uninterruptible--;
1300 #endif
1301
1302 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1303 ttwu_do_wakeup(rq, p, wake_flags);
1304 }
1305
1306 /*
1307 * Called in case the task @p isn't fully descheduled from its runqueue,
1308 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1309 * since all we need to do is flip p->state to TASK_RUNNING, since
1310 * the task is still ->on_rq.
1311 */
1312 static int ttwu_remote(struct task_struct *p, int wake_flags)
1313 {
1314 struct rq *rq;
1315 int ret = 0;
1316
1317 rq = __task_rq_lock(p);
1318 if (p->on_rq) {
1319 ttwu_do_wakeup(rq, p, wake_flags);
1320 ret = 1;
1321 }
1322 __task_rq_unlock(rq);
1323
1324 return ret;
1325 }
1326
1327 #ifdef CONFIG_SMP
1328 static void sched_ttwu_pending(void)
1329 {
1330 struct rq *rq = this_rq();
1331 struct llist_node *llist = llist_del_all(&rq->wake_list);
1332 struct task_struct *p;
1333
1334 raw_spin_lock(&rq->lock);
1335
1336 while (llist) {
1337 p = llist_entry(llist, struct task_struct, wake_entry);
1338 llist = llist_next(llist);
1339 ttwu_do_activate(rq, p, 0);
1340 }
1341
1342 raw_spin_unlock(&rq->lock);
1343 }
1344
1345 void scheduler_ipi(void)
1346 {
1347 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1348 return;
1349
1350 /*
1351 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1352 * traditionally all their work was done from the interrupt return
1353 * path. Now that we actually do some work, we need to make sure
1354 * we do call them.
1355 *
1356 * Some archs already do call them, luckily irq_enter/exit nest
1357 * properly.
1358 *
1359 * Arguably we should visit all archs and update all handlers,
1360 * however a fair share of IPIs are still resched only so this would
1361 * somewhat pessimize the simple resched case.
1362 */
1363 irq_enter();
1364 sched_ttwu_pending();
1365
1366 /*
1367 * Check if someone kicked us for doing the nohz idle load balance.
1368 */
1369 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1370 this_rq()->idle_balance = 1;
1371 raise_softirq_irqoff(SCHED_SOFTIRQ);
1372 }
1373 irq_exit();
1374 }
1375
1376 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1377 {
1378 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1379 smp_send_reschedule(cpu);
1380 }
1381
1382 bool cpus_share_cache(int this_cpu, int that_cpu)
1383 {
1384 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1385 }
1386 #endif /* CONFIG_SMP */
1387
1388 static void ttwu_queue(struct task_struct *p, int cpu)
1389 {
1390 struct rq *rq = cpu_rq(cpu);
1391
1392 #if defined(CONFIG_SMP)
1393 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1394 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1395 ttwu_queue_remote(p, cpu);
1396 return;
1397 }
1398 #endif
1399
1400 raw_spin_lock(&rq->lock);
1401 ttwu_do_activate(rq, p, 0);
1402 raw_spin_unlock(&rq->lock);
1403 }
1404
1405 /**
1406 * try_to_wake_up - wake up a thread
1407 * @p: the thread to be awakened
1408 * @state: the mask of task states that can be woken
1409 * @wake_flags: wake modifier flags (WF_*)
1410 *
1411 * Put it on the run-queue if it's not already there. The "current"
1412 * thread is always on the run-queue (except when the actual
1413 * re-schedule is in progress), and as such you're allowed to do
1414 * the simpler "current->state = TASK_RUNNING" to mark yourself
1415 * runnable without the overhead of this.
1416 *
1417 * Returns %true if @p was woken up, %false if it was already running
1418 * or @state didn't match @p's state.
1419 */
1420 static int
1421 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1422 {
1423 unsigned long flags;
1424 int cpu, success = 0;
1425
1426 smp_wmb();
1427 raw_spin_lock_irqsave(&p->pi_lock, flags);
1428 if (!(p->state & state))
1429 goto out;
1430
1431 success = 1; /* we're going to change ->state */
1432 cpu = task_cpu(p);
1433
1434 if (p->on_rq && ttwu_remote(p, wake_flags))
1435 goto stat;
1436
1437 #ifdef CONFIG_SMP
1438 /*
1439 * If the owning (remote) cpu is still in the middle of schedule() with
1440 * this task as prev, wait until its done referencing the task.
1441 */
1442 while (p->on_cpu)
1443 cpu_relax();
1444 /*
1445 * Pairs with the smp_wmb() in finish_lock_switch().
1446 */
1447 smp_rmb();
1448
1449 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1450 p->state = TASK_WAKING;
1451
1452 if (p->sched_class->task_waking)
1453 p->sched_class->task_waking(p);
1454
1455 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1456 if (task_cpu(p) != cpu) {
1457 wake_flags |= WF_MIGRATED;
1458 set_task_cpu(p, cpu);
1459 }
1460 #endif /* CONFIG_SMP */
1461
1462 ttwu_queue(p, cpu);
1463 stat:
1464 ttwu_stat(p, cpu, wake_flags);
1465 out:
1466 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1467
1468 return success;
1469 }
1470
1471 /**
1472 * try_to_wake_up_local - try to wake up a local task with rq lock held
1473 * @p: the thread to be awakened
1474 *
1475 * Put @p on the run-queue if it's not already there. The caller must
1476 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1477 * the current task.
1478 */
1479 static void try_to_wake_up_local(struct task_struct *p)
1480 {
1481 struct rq *rq = task_rq(p);
1482
1483 BUG_ON(rq != this_rq());
1484 BUG_ON(p == current);
1485 lockdep_assert_held(&rq->lock);
1486
1487 if (!raw_spin_trylock(&p->pi_lock)) {
1488 raw_spin_unlock(&rq->lock);
1489 raw_spin_lock(&p->pi_lock);
1490 raw_spin_lock(&rq->lock);
1491 }
1492
1493 if (!(p->state & TASK_NORMAL))
1494 goto out;
1495
1496 if (!p->on_rq)
1497 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1498
1499 ttwu_do_wakeup(rq, p, 0);
1500 ttwu_stat(p, smp_processor_id(), 0);
1501 out:
1502 raw_spin_unlock(&p->pi_lock);
1503 }
1504
1505 /**
1506 * wake_up_process - Wake up a specific process
1507 * @p: The process to be woken up.
1508 *
1509 * Attempt to wake up the nominated process and move it to the set of runnable
1510 * processes. Returns 1 if the process was woken up, 0 if it was already
1511 * running.
1512 *
1513 * It may be assumed that this function implies a write memory barrier before
1514 * changing the task state if and only if any tasks are woken up.
1515 */
1516 int wake_up_process(struct task_struct *p)
1517 {
1518 return try_to_wake_up(p, TASK_ALL, 0);
1519 }
1520 EXPORT_SYMBOL(wake_up_process);
1521
1522 int wake_up_state(struct task_struct *p, unsigned int state)
1523 {
1524 return try_to_wake_up(p, state, 0);
1525 }
1526
1527 /*
1528 * Perform scheduler related setup for a newly forked process p.
1529 * p is forked by current.
1530 *
1531 * __sched_fork() is basic setup used by init_idle() too:
1532 */
1533 static void __sched_fork(struct task_struct *p)
1534 {
1535 p->on_rq = 0;
1536
1537 p->se.on_rq = 0;
1538 p->se.exec_start = 0;
1539 p->se.sum_exec_runtime = 0;
1540 p->se.prev_sum_exec_runtime = 0;
1541 p->se.nr_migrations = 0;
1542 p->se.vruntime = 0;
1543 INIT_LIST_HEAD(&p->se.group_node);
1544
1545 /*
1546 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1547 * removed when useful for applications beyond shares distribution (e.g.
1548 * load-balance).
1549 */
1550 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1551 p->se.avg.runnable_avg_period = 0;
1552 p->se.avg.runnable_avg_sum = 0;
1553 #endif
1554 #ifdef CONFIG_SCHEDSTATS
1555 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1556 #endif
1557
1558 INIT_LIST_HEAD(&p->rt.run_list);
1559
1560 #ifdef CONFIG_PREEMPT_NOTIFIERS
1561 INIT_HLIST_HEAD(&p->preempt_notifiers);
1562 #endif
1563 }
1564
1565 /*
1566 * fork()/clone()-time setup:
1567 */
1568 void sched_fork(struct task_struct *p)
1569 {
1570 unsigned long flags;
1571 int cpu = get_cpu();
1572
1573 __sched_fork(p);
1574 /*
1575 * We mark the process as running here. This guarantees that
1576 * nobody will actually run it, and a signal or other external
1577 * event cannot wake it up and insert it on the runqueue either.
1578 */
1579 p->state = TASK_RUNNING;
1580
1581 /*
1582 * Make sure we do not leak PI boosting priority to the child.
1583 */
1584 p->prio = current->normal_prio;
1585
1586 /*
1587 * Revert to default priority/policy on fork if requested.
1588 */
1589 if (unlikely(p->sched_reset_on_fork)) {
1590 if (task_has_rt_policy(p)) {
1591 p->policy = SCHED_NORMAL;
1592 p->static_prio = NICE_TO_PRIO(0);
1593 p->rt_priority = 0;
1594 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1595 p->static_prio = NICE_TO_PRIO(0);
1596
1597 p->prio = p->normal_prio = __normal_prio(p);
1598 set_load_weight(p);
1599
1600 /*
1601 * We don't need the reset flag anymore after the fork. It has
1602 * fulfilled its duty:
1603 */
1604 p->sched_reset_on_fork = 0;
1605 }
1606
1607 if (!rt_prio(p->prio))
1608 p->sched_class = &fair_sched_class;
1609
1610 if (p->sched_class->task_fork)
1611 p->sched_class->task_fork(p);
1612
1613 /*
1614 * The child is not yet in the pid-hash so no cgroup attach races,
1615 * and the cgroup is pinned to this child due to cgroup_fork()
1616 * is ran before sched_fork().
1617 *
1618 * Silence PROVE_RCU.
1619 */
1620 raw_spin_lock_irqsave(&p->pi_lock, flags);
1621 set_task_cpu(p, cpu);
1622 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1623
1624 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1625 if (likely(sched_info_on()))
1626 memset(&p->sched_info, 0, sizeof(p->sched_info));
1627 #endif
1628 #if defined(CONFIG_SMP)
1629 p->on_cpu = 0;
1630 #endif
1631 #ifdef CONFIG_PREEMPT_COUNT
1632 /* Want to start with kernel preemption disabled. */
1633 task_thread_info(p)->preempt_count = 1;
1634 #endif
1635 #ifdef CONFIG_SMP
1636 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1637 #endif
1638
1639 put_cpu();
1640 }
1641
1642 /*
1643 * wake_up_new_task - wake up a newly created task for the first time.
1644 *
1645 * This function will do some initial scheduler statistics housekeeping
1646 * that must be done for every newly created context, then puts the task
1647 * on the runqueue and wakes it.
1648 */
1649 void wake_up_new_task(struct task_struct *p)
1650 {
1651 unsigned long flags;
1652 struct rq *rq;
1653
1654 raw_spin_lock_irqsave(&p->pi_lock, flags);
1655 #ifdef CONFIG_SMP
1656 /*
1657 * Fork balancing, do it here and not earlier because:
1658 * - cpus_allowed can change in the fork path
1659 * - any previously selected cpu might disappear through hotplug
1660 */
1661 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1662 #endif
1663
1664 rq = __task_rq_lock(p);
1665 activate_task(rq, p, 0);
1666 p->on_rq = 1;
1667 trace_sched_wakeup_new(p, true);
1668 check_preempt_curr(rq, p, WF_FORK);
1669 #ifdef CONFIG_SMP
1670 if (p->sched_class->task_woken)
1671 p->sched_class->task_woken(rq, p);
1672 #endif
1673 task_rq_unlock(rq, p, &flags);
1674 }
1675
1676 #ifdef CONFIG_PREEMPT_NOTIFIERS
1677
1678 /**
1679 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1680 * @notifier: notifier struct to register
1681 */
1682 void preempt_notifier_register(struct preempt_notifier *notifier)
1683 {
1684 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1685 }
1686 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1687
1688 /**
1689 * preempt_notifier_unregister - no longer interested in preemption notifications
1690 * @notifier: notifier struct to unregister
1691 *
1692 * This is safe to call from within a preemption notifier.
1693 */
1694 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1695 {
1696 hlist_del(&notifier->link);
1697 }
1698 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1699
1700 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1701 {
1702 struct preempt_notifier *notifier;
1703 struct hlist_node *node;
1704
1705 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1706 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1707 }
1708
1709 static void
1710 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1711 struct task_struct *next)
1712 {
1713 struct preempt_notifier *notifier;
1714 struct hlist_node *node;
1715
1716 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1717 notifier->ops->sched_out(notifier, next);
1718 }
1719
1720 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1721
1722 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1723 {
1724 }
1725
1726 static void
1727 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1728 struct task_struct *next)
1729 {
1730 }
1731
1732 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1733
1734 /**
1735 * prepare_task_switch - prepare to switch tasks
1736 * @rq: the runqueue preparing to switch
1737 * @prev: the current task that is being switched out
1738 * @next: the task we are going to switch to.
1739 *
1740 * This is called with the rq lock held and interrupts off. It must
1741 * be paired with a subsequent finish_task_switch after the context
1742 * switch.
1743 *
1744 * prepare_task_switch sets up locking and calls architecture specific
1745 * hooks.
1746 */
1747 static inline void
1748 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1749 struct task_struct *next)
1750 {
1751 trace_sched_switch(prev, next);
1752 sched_info_switch(prev, next);
1753 perf_event_task_sched_out(prev, next);
1754 fire_sched_out_preempt_notifiers(prev, next);
1755 prepare_lock_switch(rq, next);
1756 prepare_arch_switch(next);
1757 }
1758
1759 /**
1760 * finish_task_switch - clean up after a task-switch
1761 * @rq: runqueue associated with task-switch
1762 * @prev: the thread we just switched away from.
1763 *
1764 * finish_task_switch must be called after the context switch, paired
1765 * with a prepare_task_switch call before the context switch.
1766 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1767 * and do any other architecture-specific cleanup actions.
1768 *
1769 * Note that we may have delayed dropping an mm in context_switch(). If
1770 * so, we finish that here outside of the runqueue lock. (Doing it
1771 * with the lock held can cause deadlocks; see schedule() for
1772 * details.)
1773 */
1774 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1775 __releases(rq->lock)
1776 {
1777 struct mm_struct *mm = rq->prev_mm;
1778 long prev_state;
1779
1780 rq->prev_mm = NULL;
1781
1782 /*
1783 * A task struct has one reference for the use as "current".
1784 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1785 * schedule one last time. The schedule call will never return, and
1786 * the scheduled task must drop that reference.
1787 * The test for TASK_DEAD must occur while the runqueue locks are
1788 * still held, otherwise prev could be scheduled on another cpu, die
1789 * there before we look at prev->state, and then the reference would
1790 * be dropped twice.
1791 * Manfred Spraul <manfred@colorfullife.com>
1792 */
1793 prev_state = prev->state;
1794 vtime_task_switch(prev);
1795 finish_arch_switch(prev);
1796 perf_event_task_sched_in(prev, current);
1797 finish_lock_switch(rq, prev);
1798 finish_arch_post_lock_switch();
1799
1800 fire_sched_in_preempt_notifiers(current);
1801 if (mm)
1802 mmdrop(mm);
1803 if (unlikely(prev_state == TASK_DEAD)) {
1804 /*
1805 * Remove function-return probe instances associated with this
1806 * task and put them back on the free list.
1807 */
1808 kprobe_flush_task(prev);
1809 put_task_struct(prev);
1810 }
1811 }
1812
1813 #ifdef CONFIG_SMP
1814
1815 /* assumes rq->lock is held */
1816 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1817 {
1818 if (prev->sched_class->pre_schedule)
1819 prev->sched_class->pre_schedule(rq, prev);
1820 }
1821
1822 /* rq->lock is NOT held, but preemption is disabled */
1823 static inline void post_schedule(struct rq *rq)
1824 {
1825 if (rq->post_schedule) {
1826 unsigned long flags;
1827
1828 raw_spin_lock_irqsave(&rq->lock, flags);
1829 if (rq->curr->sched_class->post_schedule)
1830 rq->curr->sched_class->post_schedule(rq);
1831 raw_spin_unlock_irqrestore(&rq->lock, flags);
1832
1833 rq->post_schedule = 0;
1834 }
1835 }
1836
1837 #else
1838
1839 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1840 {
1841 }
1842
1843 static inline void post_schedule(struct rq *rq)
1844 {
1845 }
1846
1847 #endif
1848
1849 /**
1850 * schedule_tail - first thing a freshly forked thread must call.
1851 * @prev: the thread we just switched away from.
1852 */
1853 asmlinkage void schedule_tail(struct task_struct *prev)
1854 __releases(rq->lock)
1855 {
1856 struct rq *rq = this_rq();
1857
1858 finish_task_switch(rq, prev);
1859
1860 /*
1861 * FIXME: do we need to worry about rq being invalidated by the
1862 * task_switch?
1863 */
1864 post_schedule(rq);
1865
1866 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1867 /* In this case, finish_task_switch does not reenable preemption */
1868 preempt_enable();
1869 #endif
1870 if (current->set_child_tid)
1871 put_user(task_pid_vnr(current), current->set_child_tid);
1872 }
1873
1874 /*
1875 * context_switch - switch to the new MM and the new
1876 * thread's register state.
1877 */
1878 static inline void
1879 context_switch(struct rq *rq, struct task_struct *prev,
1880 struct task_struct *next)
1881 {
1882 struct mm_struct *mm, *oldmm;
1883
1884 prepare_task_switch(rq, prev, next);
1885
1886 mm = next->mm;
1887 oldmm = prev->active_mm;
1888 /*
1889 * For paravirt, this is coupled with an exit in switch_to to
1890 * combine the page table reload and the switch backend into
1891 * one hypercall.
1892 */
1893 arch_start_context_switch(prev);
1894
1895 if (!mm) {
1896 next->active_mm = oldmm;
1897 atomic_inc(&oldmm->mm_count);
1898 enter_lazy_tlb(oldmm, next);
1899 } else
1900 switch_mm(oldmm, mm, next);
1901
1902 if (!prev->mm) {
1903 prev->active_mm = NULL;
1904 rq->prev_mm = oldmm;
1905 }
1906 /*
1907 * Since the runqueue lock will be released by the next
1908 * task (which is an invalid locking op but in the case
1909 * of the scheduler it's an obvious special-case), so we
1910 * do an early lockdep release here:
1911 */
1912 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1913 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1914 #endif
1915
1916 context_tracking_task_switch(prev, next);
1917 /* Here we just switch the register state and the stack. */
1918 switch_to(prev, next, prev);
1919
1920 barrier();
1921 /*
1922 * this_rq must be evaluated again because prev may have moved
1923 * CPUs since it called schedule(), thus the 'rq' on its stack
1924 * frame will be invalid.
1925 */
1926 finish_task_switch(this_rq(), prev);
1927 }
1928
1929 /*
1930 * nr_running, nr_uninterruptible and nr_context_switches:
1931 *
1932 * externally visible scheduler statistics: current number of runnable
1933 * threads, current number of uninterruptible-sleeping threads, total
1934 * number of context switches performed since bootup.
1935 */
1936 unsigned long nr_running(void)
1937 {
1938 unsigned long i, sum = 0;
1939
1940 for_each_online_cpu(i)
1941 sum += cpu_rq(i)->nr_running;
1942
1943 return sum;
1944 }
1945
1946 unsigned long nr_uninterruptible(void)
1947 {
1948 unsigned long i, sum = 0;
1949
1950 for_each_possible_cpu(i)
1951 sum += cpu_rq(i)->nr_uninterruptible;
1952
1953 /*
1954 * Since we read the counters lockless, it might be slightly
1955 * inaccurate. Do not allow it to go below zero though:
1956 */
1957 if (unlikely((long)sum < 0))
1958 sum = 0;
1959
1960 return sum;
1961 }
1962
1963 unsigned long long nr_context_switches(void)
1964 {
1965 int i;
1966 unsigned long long sum = 0;
1967
1968 for_each_possible_cpu(i)
1969 sum += cpu_rq(i)->nr_switches;
1970
1971 return sum;
1972 }
1973
1974 unsigned long nr_iowait(void)
1975 {
1976 unsigned long i, sum = 0;
1977
1978 for_each_possible_cpu(i)
1979 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1980
1981 return sum;
1982 }
1983
1984 unsigned long nr_iowait_cpu(int cpu)
1985 {
1986 struct rq *this = cpu_rq(cpu);
1987 return atomic_read(&this->nr_iowait);
1988 }
1989
1990 unsigned long this_cpu_load(void)
1991 {
1992 struct rq *this = this_rq();
1993 return this->cpu_load[0];
1994 }
1995
1996
1997 /*
1998 * Global load-average calculations
1999 *
2000 * We take a distributed and async approach to calculating the global load-avg
2001 * in order to minimize overhead.
2002 *
2003 * The global load average is an exponentially decaying average of nr_running +
2004 * nr_uninterruptible.
2005 *
2006 * Once every LOAD_FREQ:
2007 *
2008 * nr_active = 0;
2009 * for_each_possible_cpu(cpu)
2010 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2011 *
2012 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2013 *
2014 * Due to a number of reasons the above turns in the mess below:
2015 *
2016 * - for_each_possible_cpu() is prohibitively expensive on machines with
2017 * serious number of cpus, therefore we need to take a distributed approach
2018 * to calculating nr_active.
2019 *
2020 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2021 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2022 *
2023 * So assuming nr_active := 0 when we start out -- true per definition, we
2024 * can simply take per-cpu deltas and fold those into a global accumulate
2025 * to obtain the same result. See calc_load_fold_active().
2026 *
2027 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2028 * across the machine, we assume 10 ticks is sufficient time for every
2029 * cpu to have completed this task.
2030 *
2031 * This places an upper-bound on the IRQ-off latency of the machine. Then
2032 * again, being late doesn't loose the delta, just wrecks the sample.
2033 *
2034 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2035 * this would add another cross-cpu cacheline miss and atomic operation
2036 * to the wakeup path. Instead we increment on whatever cpu the task ran
2037 * when it went into uninterruptible state and decrement on whatever cpu
2038 * did the wakeup. This means that only the sum of nr_uninterruptible over
2039 * all cpus yields the correct result.
2040 *
2041 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2042 */
2043
2044 /* Variables and functions for calc_load */
2045 static atomic_long_t calc_load_tasks;
2046 static unsigned long calc_load_update;
2047 unsigned long avenrun[3];
2048 EXPORT_SYMBOL(avenrun); /* should be removed */
2049
2050 /**
2051 * get_avenrun - get the load average array
2052 * @loads: pointer to dest load array
2053 * @offset: offset to add
2054 * @shift: shift count to shift the result left
2055 *
2056 * These values are estimates at best, so no need for locking.
2057 */
2058 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2059 {
2060 loads[0] = (avenrun[0] + offset) << shift;
2061 loads[1] = (avenrun[1] + offset) << shift;
2062 loads[2] = (avenrun[2] + offset) << shift;
2063 }
2064
2065 static long calc_load_fold_active(struct rq *this_rq)
2066 {
2067 long nr_active, delta = 0;
2068
2069 nr_active = this_rq->nr_running;
2070 nr_active += (long) this_rq->nr_uninterruptible;
2071
2072 if (nr_active != this_rq->calc_load_active) {
2073 delta = nr_active - this_rq->calc_load_active;
2074 this_rq->calc_load_active = nr_active;
2075 }
2076
2077 return delta;
2078 }
2079
2080 /*
2081 * a1 = a0 * e + a * (1 - e)
2082 */
2083 static unsigned long
2084 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2085 {
2086 load *= exp;
2087 load += active * (FIXED_1 - exp);
2088 load += 1UL << (FSHIFT - 1);
2089 return load >> FSHIFT;
2090 }
2091
2092 #ifdef CONFIG_NO_HZ
2093 /*
2094 * Handle NO_HZ for the global load-average.
2095 *
2096 * Since the above described distributed algorithm to compute the global
2097 * load-average relies on per-cpu sampling from the tick, it is affected by
2098 * NO_HZ.
2099 *
2100 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2101 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2102 * when we read the global state.
2103 *
2104 * Obviously reality has to ruin such a delightfully simple scheme:
2105 *
2106 * - When we go NO_HZ idle during the window, we can negate our sample
2107 * contribution, causing under-accounting.
2108 *
2109 * We avoid this by keeping two idle-delta counters and flipping them
2110 * when the window starts, thus separating old and new NO_HZ load.
2111 *
2112 * The only trick is the slight shift in index flip for read vs write.
2113 *
2114 * 0s 5s 10s 15s
2115 * +10 +10 +10 +10
2116 * |-|-----------|-|-----------|-|-----------|-|
2117 * r:0 0 1 1 0 0 1 1 0
2118 * w:0 1 1 0 0 1 1 0 0
2119 *
2120 * This ensures we'll fold the old idle contribution in this window while
2121 * accumlating the new one.
2122 *
2123 * - When we wake up from NO_HZ idle during the window, we push up our
2124 * contribution, since we effectively move our sample point to a known
2125 * busy state.
2126 *
2127 * This is solved by pushing the window forward, and thus skipping the
2128 * sample, for this cpu (effectively using the idle-delta for this cpu which
2129 * was in effect at the time the window opened). This also solves the issue
2130 * of having to deal with a cpu having been in NOHZ idle for multiple
2131 * LOAD_FREQ intervals.
2132 *
2133 * When making the ILB scale, we should try to pull this in as well.
2134 */
2135 static atomic_long_t calc_load_idle[2];
2136 static int calc_load_idx;
2137
2138 static inline int calc_load_write_idx(void)
2139 {
2140 int idx = calc_load_idx;
2141
2142 /*
2143 * See calc_global_nohz(), if we observe the new index, we also
2144 * need to observe the new update time.
2145 */
2146 smp_rmb();
2147
2148 /*
2149 * If the folding window started, make sure we start writing in the
2150 * next idle-delta.
2151 */
2152 if (!time_before(jiffies, calc_load_update))
2153 idx++;
2154
2155 return idx & 1;
2156 }
2157
2158 static inline int calc_load_read_idx(void)
2159 {
2160 return calc_load_idx & 1;
2161 }
2162
2163 void calc_load_enter_idle(void)
2164 {
2165 struct rq *this_rq = this_rq();
2166 long delta;
2167
2168 /*
2169 * We're going into NOHZ mode, if there's any pending delta, fold it
2170 * into the pending idle delta.
2171 */
2172 delta = calc_load_fold_active(this_rq);
2173 if (delta) {
2174 int idx = calc_load_write_idx();
2175 atomic_long_add(delta, &calc_load_idle[idx]);
2176 }
2177 }
2178
2179 void calc_load_exit_idle(void)
2180 {
2181 struct rq *this_rq = this_rq();
2182
2183 /*
2184 * If we're still before the sample window, we're done.
2185 */
2186 if (time_before(jiffies, this_rq->calc_load_update))
2187 return;
2188
2189 /*
2190 * We woke inside or after the sample window, this means we're already
2191 * accounted through the nohz accounting, so skip the entire deal and
2192 * sync up for the next window.
2193 */
2194 this_rq->calc_load_update = calc_load_update;
2195 if (time_before(jiffies, this_rq->calc_load_update + 10))
2196 this_rq->calc_load_update += LOAD_FREQ;
2197 }
2198
2199 static long calc_load_fold_idle(void)
2200 {
2201 int idx = calc_load_read_idx();
2202 long delta = 0;
2203
2204 if (atomic_long_read(&calc_load_idle[idx]))
2205 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2206
2207 return delta;
2208 }
2209
2210 /**
2211 * fixed_power_int - compute: x^n, in O(log n) time
2212 *
2213 * @x: base of the power
2214 * @frac_bits: fractional bits of @x
2215 * @n: power to raise @x to.
2216 *
2217 * By exploiting the relation between the definition of the natural power
2218 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2219 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2220 * (where: n_i \elem {0, 1}, the binary vector representing n),
2221 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2222 * of course trivially computable in O(log_2 n), the length of our binary
2223 * vector.
2224 */
2225 static unsigned long
2226 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2227 {
2228 unsigned long result = 1UL << frac_bits;
2229
2230 if (n) for (;;) {
2231 if (n & 1) {
2232 result *= x;
2233 result += 1UL << (frac_bits - 1);
2234 result >>= frac_bits;
2235 }
2236 n >>= 1;
2237 if (!n)
2238 break;
2239 x *= x;
2240 x += 1UL << (frac_bits - 1);
2241 x >>= frac_bits;
2242 }
2243
2244 return result;
2245 }
2246
2247 /*
2248 * a1 = a0 * e + a * (1 - e)
2249 *
2250 * a2 = a1 * e + a * (1 - e)
2251 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2252 * = a0 * e^2 + a * (1 - e) * (1 + e)
2253 *
2254 * a3 = a2 * e + a * (1 - e)
2255 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2256 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2257 *
2258 * ...
2259 *
2260 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2261 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2262 * = a0 * e^n + a * (1 - e^n)
2263 *
2264 * [1] application of the geometric series:
2265 *
2266 * n 1 - x^(n+1)
2267 * S_n := \Sum x^i = -------------
2268 * i=0 1 - x
2269 */
2270 static unsigned long
2271 calc_load_n(unsigned long load, unsigned long exp,
2272 unsigned long active, unsigned int n)
2273 {
2274
2275 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2276 }
2277
2278 /*
2279 * NO_HZ can leave us missing all per-cpu ticks calling
2280 * calc_load_account_active(), but since an idle CPU folds its delta into
2281 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2282 * in the pending idle delta if our idle period crossed a load cycle boundary.
2283 *
2284 * Once we've updated the global active value, we need to apply the exponential
2285 * weights adjusted to the number of cycles missed.
2286 */
2287 static void calc_global_nohz(void)
2288 {
2289 long delta, active, n;
2290
2291 if (!time_before(jiffies, calc_load_update + 10)) {
2292 /*
2293 * Catch-up, fold however many we are behind still
2294 */
2295 delta = jiffies - calc_load_update - 10;
2296 n = 1 + (delta / LOAD_FREQ);
2297
2298 active = atomic_long_read(&calc_load_tasks);
2299 active = active > 0 ? active * FIXED_1 : 0;
2300
2301 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2302 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2303 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2304
2305 calc_load_update += n * LOAD_FREQ;
2306 }
2307
2308 /*
2309 * Flip the idle index...
2310 *
2311 * Make sure we first write the new time then flip the index, so that
2312 * calc_load_write_idx() will see the new time when it reads the new
2313 * index, this avoids a double flip messing things up.
2314 */
2315 smp_wmb();
2316 calc_load_idx++;
2317 }
2318 #else /* !CONFIG_NO_HZ */
2319
2320 static inline long calc_load_fold_idle(void) { return 0; }
2321 static inline void calc_global_nohz(void) { }
2322
2323 #endif /* CONFIG_NO_HZ */
2324
2325 /*
2326 * calc_load - update the avenrun load estimates 10 ticks after the
2327 * CPUs have updated calc_load_tasks.
2328 */
2329 void calc_global_load(unsigned long ticks)
2330 {
2331 long active, delta;
2332
2333 if (time_before(jiffies, calc_load_update + 10))
2334 return;
2335
2336 /*
2337 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2338 */
2339 delta = calc_load_fold_idle();
2340 if (delta)
2341 atomic_long_add(delta, &calc_load_tasks);
2342
2343 active = atomic_long_read(&calc_load_tasks);
2344 active = active > 0 ? active * FIXED_1 : 0;
2345
2346 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2347 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2348 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2349
2350 calc_load_update += LOAD_FREQ;
2351
2352 /*
2353 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2354 */
2355 calc_global_nohz();
2356 }
2357
2358 /*
2359 * Called from update_cpu_load() to periodically update this CPU's
2360 * active count.
2361 */
2362 static void calc_load_account_active(struct rq *this_rq)
2363 {
2364 long delta;
2365
2366 if (time_before(jiffies, this_rq->calc_load_update))
2367 return;
2368
2369 delta = calc_load_fold_active(this_rq);
2370 if (delta)
2371 atomic_long_add(delta, &calc_load_tasks);
2372
2373 this_rq->calc_load_update += LOAD_FREQ;
2374 }
2375
2376 /*
2377 * End of global load-average stuff
2378 */
2379
2380 /*
2381 * The exact cpuload at various idx values, calculated at every tick would be
2382 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2383 *
2384 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2385 * on nth tick when cpu may be busy, then we have:
2386 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2387 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2388 *
2389 * decay_load_missed() below does efficient calculation of
2390 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2391 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2392 *
2393 * The calculation is approximated on a 128 point scale.
2394 * degrade_zero_ticks is the number of ticks after which load at any
2395 * particular idx is approximated to be zero.
2396 * degrade_factor is a precomputed table, a row for each load idx.
2397 * Each column corresponds to degradation factor for a power of two ticks,
2398 * based on 128 point scale.
2399 * Example:
2400 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2401 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2402 *
2403 * With this power of 2 load factors, we can degrade the load n times
2404 * by looking at 1 bits in n and doing as many mult/shift instead of
2405 * n mult/shifts needed by the exact degradation.
2406 */
2407 #define DEGRADE_SHIFT 7
2408 static const unsigned char
2409 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2410 static const unsigned char
2411 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2412 {0, 0, 0, 0, 0, 0, 0, 0},
2413 {64, 32, 8, 0, 0, 0, 0, 0},
2414 {96, 72, 40, 12, 1, 0, 0},
2415 {112, 98, 75, 43, 15, 1, 0},
2416 {120, 112, 98, 76, 45, 16, 2} };
2417
2418 /*
2419 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2420 * would be when CPU is idle and so we just decay the old load without
2421 * adding any new load.
2422 */
2423 static unsigned long
2424 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2425 {
2426 int j = 0;
2427
2428 if (!missed_updates)
2429 return load;
2430
2431 if (missed_updates >= degrade_zero_ticks[idx])
2432 return 0;
2433
2434 if (idx == 1)
2435 return load >> missed_updates;
2436
2437 while (missed_updates) {
2438 if (missed_updates % 2)
2439 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2440
2441 missed_updates >>= 1;
2442 j++;
2443 }
2444 return load;
2445 }
2446
2447 /*
2448 * Update rq->cpu_load[] statistics. This function is usually called every
2449 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2450 * every tick. We fix it up based on jiffies.
2451 */
2452 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2453 unsigned long pending_updates)
2454 {
2455 int i, scale;
2456
2457 this_rq->nr_load_updates++;
2458
2459 /* Update our load: */
2460 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2461 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2462 unsigned long old_load, new_load;
2463
2464 /* scale is effectively 1 << i now, and >> i divides by scale */
2465
2466 old_load = this_rq->cpu_load[i];
2467 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2468 new_load = this_load;
2469 /*
2470 * Round up the averaging division if load is increasing. This
2471 * prevents us from getting stuck on 9 if the load is 10, for
2472 * example.
2473 */
2474 if (new_load > old_load)
2475 new_load += scale - 1;
2476
2477 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2478 }
2479
2480 sched_avg_update(this_rq);
2481 }
2482
2483 #ifdef CONFIG_NO_HZ
2484 /*
2485 * There is no sane way to deal with nohz on smp when using jiffies because the
2486 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2487 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2488 *
2489 * Therefore we cannot use the delta approach from the regular tick since that
2490 * would seriously skew the load calculation. However we'll make do for those
2491 * updates happening while idle (nohz_idle_balance) or coming out of idle
2492 * (tick_nohz_idle_exit).
2493 *
2494 * This means we might still be one tick off for nohz periods.
2495 */
2496
2497 /*
2498 * Called from nohz_idle_balance() to update the load ratings before doing the
2499 * idle balance.
2500 */
2501 void update_idle_cpu_load(struct rq *this_rq)
2502 {
2503 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2504 unsigned long load = this_rq->load.weight;
2505 unsigned long pending_updates;
2506
2507 /*
2508 * bail if there's load or we're actually up-to-date.
2509 */
2510 if (load || curr_jiffies == this_rq->last_load_update_tick)
2511 return;
2512
2513 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2514 this_rq->last_load_update_tick = curr_jiffies;
2515
2516 __update_cpu_load(this_rq, load, pending_updates);
2517 }
2518
2519 /*
2520 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2521 */
2522 void update_cpu_load_nohz(void)
2523 {
2524 struct rq *this_rq = this_rq();
2525 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2526 unsigned long pending_updates;
2527
2528 if (curr_jiffies == this_rq->last_load_update_tick)
2529 return;
2530
2531 raw_spin_lock(&this_rq->lock);
2532 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2533 if (pending_updates) {
2534 this_rq->last_load_update_tick = curr_jiffies;
2535 /*
2536 * We were idle, this means load 0, the current load might be
2537 * !0 due to remote wakeups and the sort.
2538 */
2539 __update_cpu_load(this_rq, 0, pending_updates);
2540 }
2541 raw_spin_unlock(&this_rq->lock);
2542 }
2543 #endif /* CONFIG_NO_HZ */
2544
2545 /*
2546 * Called from scheduler_tick()
2547 */
2548 static void update_cpu_load_active(struct rq *this_rq)
2549 {
2550 /*
2551 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2552 */
2553 this_rq->last_load_update_tick = jiffies;
2554 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2555
2556 calc_load_account_active(this_rq);
2557 }
2558
2559 #ifdef CONFIG_SMP
2560
2561 /*
2562 * sched_exec - execve() is a valuable balancing opportunity, because at
2563 * this point the task has the smallest effective memory and cache footprint.
2564 */
2565 void sched_exec(void)
2566 {
2567 struct task_struct *p = current;
2568 unsigned long flags;
2569 int dest_cpu;
2570
2571 raw_spin_lock_irqsave(&p->pi_lock, flags);
2572 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2573 if (dest_cpu == smp_processor_id())
2574 goto unlock;
2575
2576 if (likely(cpu_active(dest_cpu))) {
2577 struct migration_arg arg = { p, dest_cpu };
2578
2579 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2580 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2581 return;
2582 }
2583 unlock:
2584 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2585 }
2586
2587 #endif
2588
2589 DEFINE_PER_CPU(struct kernel_stat, kstat);
2590 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2591
2592 EXPORT_PER_CPU_SYMBOL(kstat);
2593 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2594
2595 /*
2596 * Return any ns on the sched_clock that have not yet been accounted in
2597 * @p in case that task is currently running.
2598 *
2599 * Called with task_rq_lock() held on @rq.
2600 */
2601 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2602 {
2603 u64 ns = 0;
2604
2605 if (task_current(rq, p)) {
2606 update_rq_clock(rq);
2607 ns = rq->clock_task - p->se.exec_start;
2608 if ((s64)ns < 0)
2609 ns = 0;
2610 }
2611
2612 return ns;
2613 }
2614
2615 unsigned long long task_delta_exec(struct task_struct *p)
2616 {
2617 unsigned long flags;
2618 struct rq *rq;
2619 u64 ns = 0;
2620
2621 rq = task_rq_lock(p, &flags);
2622 ns = do_task_delta_exec(p, rq);
2623 task_rq_unlock(rq, p, &flags);
2624
2625 return ns;
2626 }
2627
2628 /*
2629 * Return accounted runtime for the task.
2630 * In case the task is currently running, return the runtime plus current's
2631 * pending runtime that have not been accounted yet.
2632 */
2633 unsigned long long task_sched_runtime(struct task_struct *p)
2634 {
2635 unsigned long flags;
2636 struct rq *rq;
2637 u64 ns = 0;
2638
2639 rq = task_rq_lock(p, &flags);
2640 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2641 task_rq_unlock(rq, p, &flags);
2642
2643 return ns;
2644 }
2645
2646 /*
2647 * This function gets called by the timer code, with HZ frequency.
2648 * We call it with interrupts disabled.
2649 */
2650 void scheduler_tick(void)
2651 {
2652 int cpu = smp_processor_id();
2653 struct rq *rq = cpu_rq(cpu);
2654 struct task_struct *curr = rq->curr;
2655
2656 sched_clock_tick();
2657
2658 raw_spin_lock(&rq->lock);
2659 update_rq_clock(rq);
2660 update_cpu_load_active(rq);
2661 curr->sched_class->task_tick(rq, curr, 0);
2662 raw_spin_unlock(&rq->lock);
2663
2664 perf_event_task_tick();
2665
2666 #ifdef CONFIG_SMP
2667 rq->idle_balance = idle_cpu(cpu);
2668 trigger_load_balance(rq, cpu);
2669 #endif
2670 }
2671
2672 notrace unsigned long get_parent_ip(unsigned long addr)
2673 {
2674 if (in_lock_functions(addr)) {
2675 addr = CALLER_ADDR2;
2676 if (in_lock_functions(addr))
2677 addr = CALLER_ADDR3;
2678 }
2679 return addr;
2680 }
2681
2682 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2683 defined(CONFIG_PREEMPT_TRACER))
2684
2685 void __kprobes add_preempt_count(int val)
2686 {
2687 #ifdef CONFIG_DEBUG_PREEMPT
2688 /*
2689 * Underflow?
2690 */
2691 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2692 return;
2693 #endif
2694 preempt_count() += val;
2695 #ifdef CONFIG_DEBUG_PREEMPT
2696 /*
2697 * Spinlock count overflowing soon?
2698 */
2699 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2700 PREEMPT_MASK - 10);
2701 #endif
2702 if (preempt_count() == val)
2703 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2704 }
2705 EXPORT_SYMBOL(add_preempt_count);
2706
2707 void __kprobes sub_preempt_count(int val)
2708 {
2709 #ifdef CONFIG_DEBUG_PREEMPT
2710 /*
2711 * Underflow?
2712 */
2713 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2714 return;
2715 /*
2716 * Is the spinlock portion underflowing?
2717 */
2718 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2719 !(preempt_count() & PREEMPT_MASK)))
2720 return;
2721 #endif
2722
2723 if (preempt_count() == val)
2724 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2725 preempt_count() -= val;
2726 }
2727 EXPORT_SYMBOL(sub_preempt_count);
2728
2729 #endif
2730
2731 /*
2732 * Print scheduling while atomic bug:
2733 */
2734 static noinline void __schedule_bug(struct task_struct *prev)
2735 {
2736 if (oops_in_progress)
2737 return;
2738
2739 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2740 prev->comm, prev->pid, preempt_count());
2741
2742 debug_show_held_locks(prev);
2743 print_modules();
2744 if (irqs_disabled())
2745 print_irqtrace_events(prev);
2746 dump_stack();
2747 add_taint(TAINT_WARN);
2748 }
2749
2750 /*
2751 * Various schedule()-time debugging checks and statistics:
2752 */
2753 static inline void schedule_debug(struct task_struct *prev)
2754 {
2755 /*
2756 * Test if we are atomic. Since do_exit() needs to call into
2757 * schedule() atomically, we ignore that path for now.
2758 * Otherwise, whine if we are scheduling when we should not be.
2759 */
2760 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2761 __schedule_bug(prev);
2762 rcu_sleep_check();
2763
2764 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2765
2766 schedstat_inc(this_rq(), sched_count);
2767 }
2768
2769 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2770 {
2771 if (prev->on_rq || rq->skip_clock_update < 0)
2772 update_rq_clock(rq);
2773 prev->sched_class->put_prev_task(rq, prev);
2774 }
2775
2776 /*
2777 * Pick up the highest-prio task:
2778 */
2779 static inline struct task_struct *
2780 pick_next_task(struct rq *rq)
2781 {
2782 const struct sched_class *class;
2783 struct task_struct *p;
2784
2785 /*
2786 * Optimization: we know that if all tasks are in
2787 * the fair class we can call that function directly:
2788 */
2789 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2790 p = fair_sched_class.pick_next_task(rq);
2791 if (likely(p))
2792 return p;
2793 }
2794
2795 for_each_class(class) {
2796 p = class->pick_next_task(rq);
2797 if (p)
2798 return p;
2799 }
2800
2801 BUG(); /* the idle class will always have a runnable task */
2802 }
2803
2804 /*
2805 * __schedule() is the main scheduler function.
2806 *
2807 * The main means of driving the scheduler and thus entering this function are:
2808 *
2809 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2810 *
2811 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2812 * paths. For example, see arch/x86/entry_64.S.
2813 *
2814 * To drive preemption between tasks, the scheduler sets the flag in timer
2815 * interrupt handler scheduler_tick().
2816 *
2817 * 3. Wakeups don't really cause entry into schedule(). They add a
2818 * task to the run-queue and that's it.
2819 *
2820 * Now, if the new task added to the run-queue preempts the current
2821 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2822 * called on the nearest possible occasion:
2823 *
2824 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2825 *
2826 * - in syscall or exception context, at the next outmost
2827 * preempt_enable(). (this might be as soon as the wake_up()'s
2828 * spin_unlock()!)
2829 *
2830 * - in IRQ context, return from interrupt-handler to
2831 * preemptible context
2832 *
2833 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2834 * then at the next:
2835 *
2836 * - cond_resched() call
2837 * - explicit schedule() call
2838 * - return from syscall or exception to user-space
2839 * - return from interrupt-handler to user-space
2840 */
2841 static void __sched __schedule(void)
2842 {
2843 struct task_struct *prev, *next;
2844 unsigned long *switch_count;
2845 struct rq *rq;
2846 int cpu;
2847
2848 need_resched:
2849 preempt_disable();
2850 cpu = smp_processor_id();
2851 rq = cpu_rq(cpu);
2852 rcu_note_context_switch(cpu);
2853 prev = rq->curr;
2854
2855 schedule_debug(prev);
2856
2857 if (sched_feat(HRTICK))
2858 hrtick_clear(rq);
2859
2860 raw_spin_lock_irq(&rq->lock);
2861
2862 switch_count = &prev->nivcsw;
2863 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2864 if (unlikely(signal_pending_state(prev->state, prev))) {
2865 prev->state = TASK_RUNNING;
2866 } else {
2867 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2868 prev->on_rq = 0;
2869
2870 /*
2871 * If a worker went to sleep, notify and ask workqueue
2872 * whether it wants to wake up a task to maintain
2873 * concurrency.
2874 */
2875 if (prev->flags & PF_WQ_WORKER) {
2876 struct task_struct *to_wakeup;
2877
2878 to_wakeup = wq_worker_sleeping(prev, cpu);
2879 if (to_wakeup)
2880 try_to_wake_up_local(to_wakeup);
2881 }
2882 }
2883 switch_count = &prev->nvcsw;
2884 }
2885
2886 pre_schedule(rq, prev);
2887
2888 if (unlikely(!rq->nr_running))
2889 idle_balance(cpu, rq);
2890
2891 put_prev_task(rq, prev);
2892 next = pick_next_task(rq);
2893 clear_tsk_need_resched(prev);
2894 rq->skip_clock_update = 0;
2895
2896 if (likely(prev != next)) {
2897 rq->nr_switches++;
2898 rq->curr = next;
2899 ++*switch_count;
2900
2901 context_switch(rq, prev, next); /* unlocks the rq */
2902 /*
2903 * The context switch have flipped the stack from under us
2904 * and restored the local variables which were saved when
2905 * this task called schedule() in the past. prev == current
2906 * is still correct, but it can be moved to another cpu/rq.
2907 */
2908 cpu = smp_processor_id();
2909 rq = cpu_rq(cpu);
2910 } else
2911 raw_spin_unlock_irq(&rq->lock);
2912
2913 post_schedule(rq);
2914
2915 sched_preempt_enable_no_resched();
2916 if (need_resched())
2917 goto need_resched;
2918 }
2919
2920 static inline void sched_submit_work(struct task_struct *tsk)
2921 {
2922 if (!tsk->state || tsk_is_pi_blocked(tsk))
2923 return;
2924 /*
2925 * If we are going to sleep and we have plugged IO queued,
2926 * make sure to submit it to avoid deadlocks.
2927 */
2928 if (blk_needs_flush_plug(tsk))
2929 blk_schedule_flush_plug(tsk);
2930 }
2931
2932 asmlinkage void __sched schedule(void)
2933 {
2934 struct task_struct *tsk = current;
2935
2936 sched_submit_work(tsk);
2937 __schedule();
2938 }
2939 EXPORT_SYMBOL(schedule);
2940
2941 #ifdef CONFIG_CONTEXT_TRACKING
2942 asmlinkage void __sched schedule_user(void)
2943 {
2944 /*
2945 * If we come here after a random call to set_need_resched(),
2946 * or we have been woken up remotely but the IPI has not yet arrived,
2947 * we haven't yet exited the RCU idle mode. Do it here manually until
2948 * we find a better solution.
2949 */
2950 user_exit();
2951 schedule();
2952 user_enter();
2953 }
2954 #endif
2955
2956 /**
2957 * schedule_preempt_disabled - called with preemption disabled
2958 *
2959 * Returns with preemption disabled. Note: preempt_count must be 1
2960 */
2961 void __sched schedule_preempt_disabled(void)
2962 {
2963 sched_preempt_enable_no_resched();
2964 schedule();
2965 preempt_disable();
2966 }
2967
2968 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2969
2970 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2971 {
2972 if (lock->owner != owner)
2973 return false;
2974
2975 /*
2976 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2977 * lock->owner still matches owner, if that fails, owner might
2978 * point to free()d memory, if it still matches, the rcu_read_lock()
2979 * ensures the memory stays valid.
2980 */
2981 barrier();
2982
2983 return owner->on_cpu;
2984 }
2985
2986 /*
2987 * Look out! "owner" is an entirely speculative pointer
2988 * access and not reliable.
2989 */
2990 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
2991 {
2992 if (!sched_feat(OWNER_SPIN))
2993 return 0;
2994
2995 rcu_read_lock();
2996 while (owner_running(lock, owner)) {
2997 if (need_resched())
2998 break;
2999
3000 arch_mutex_cpu_relax();
3001 }
3002 rcu_read_unlock();
3003
3004 /*
3005 * We break out the loop above on need_resched() and when the
3006 * owner changed, which is a sign for heavy contention. Return
3007 * success only when lock->owner is NULL.
3008 */
3009 return lock->owner == NULL;
3010 }
3011 #endif
3012
3013 #ifdef CONFIG_PREEMPT
3014 /*
3015 * this is the entry point to schedule() from in-kernel preemption
3016 * off of preempt_enable. Kernel preemptions off return from interrupt
3017 * occur there and call schedule directly.
3018 */
3019 asmlinkage void __sched notrace preempt_schedule(void)
3020 {
3021 struct thread_info *ti = current_thread_info();
3022
3023 /*
3024 * If there is a non-zero preempt_count or interrupts are disabled,
3025 * we do not want to preempt the current task. Just return..
3026 */
3027 if (likely(ti->preempt_count || irqs_disabled()))
3028 return;
3029
3030 do {
3031 add_preempt_count_notrace(PREEMPT_ACTIVE);
3032 __schedule();
3033 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3034
3035 /*
3036 * Check again in case we missed a preemption opportunity
3037 * between schedule and now.
3038 */
3039 barrier();
3040 } while (need_resched());
3041 }
3042 EXPORT_SYMBOL(preempt_schedule);
3043
3044 /*
3045 * this is the entry point to schedule() from kernel preemption
3046 * off of irq context.
3047 * Note, that this is called and return with irqs disabled. This will
3048 * protect us against recursive calling from irq.
3049 */
3050 asmlinkage void __sched preempt_schedule_irq(void)
3051 {
3052 struct thread_info *ti = current_thread_info();
3053
3054 /* Catch callers which need to be fixed */
3055 BUG_ON(ti->preempt_count || !irqs_disabled());
3056
3057 user_exit();
3058 do {
3059 add_preempt_count(PREEMPT_ACTIVE);
3060 local_irq_enable();
3061 __schedule();
3062 local_irq_disable();
3063 sub_preempt_count(PREEMPT_ACTIVE);
3064
3065 /*
3066 * Check again in case we missed a preemption opportunity
3067 * between schedule and now.
3068 */
3069 barrier();
3070 } while (need_resched());
3071 }
3072
3073 #endif /* CONFIG_PREEMPT */
3074
3075 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3076 void *key)
3077 {
3078 return try_to_wake_up(curr->private, mode, wake_flags);
3079 }
3080 EXPORT_SYMBOL(default_wake_function);
3081
3082 /*
3083 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3084 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3085 * number) then we wake all the non-exclusive tasks and one exclusive task.
3086 *
3087 * There are circumstances in which we can try to wake a task which has already
3088 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3089 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3090 */
3091 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3092 int nr_exclusive, int wake_flags, void *key)
3093 {
3094 wait_queue_t *curr, *next;
3095
3096 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3097 unsigned flags = curr->flags;
3098
3099 if (curr->func(curr, mode, wake_flags, key) &&
3100 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3101 break;
3102 }
3103 }
3104
3105 /**
3106 * __wake_up - wake up threads blocked on a waitqueue.
3107 * @q: the waitqueue
3108 * @mode: which threads
3109 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3110 * @key: is directly passed to the wakeup function
3111 *
3112 * It may be assumed that this function implies a write memory barrier before
3113 * changing the task state if and only if any tasks are woken up.
3114 */
3115 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3116 int nr_exclusive, void *key)
3117 {
3118 unsigned long flags;
3119
3120 spin_lock_irqsave(&q->lock, flags);
3121 __wake_up_common(q, mode, nr_exclusive, 0, key);
3122 spin_unlock_irqrestore(&q->lock, flags);
3123 }
3124 EXPORT_SYMBOL(__wake_up);
3125
3126 /*
3127 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3128 */
3129 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3130 {
3131 __wake_up_common(q, mode, nr, 0, NULL);
3132 }
3133 EXPORT_SYMBOL_GPL(__wake_up_locked);
3134
3135 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3136 {
3137 __wake_up_common(q, mode, 1, 0, key);
3138 }
3139 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3140
3141 /**
3142 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3143 * @q: the waitqueue
3144 * @mode: which threads
3145 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3146 * @key: opaque value to be passed to wakeup targets
3147 *
3148 * The sync wakeup differs that the waker knows that it will schedule
3149 * away soon, so while the target thread will be woken up, it will not
3150 * be migrated to another CPU - ie. the two threads are 'synchronized'
3151 * with each other. This can prevent needless bouncing between CPUs.
3152 *
3153 * On UP it can prevent extra preemption.
3154 *
3155 * It may be assumed that this function implies a write memory barrier before
3156 * changing the task state if and only if any tasks are woken up.
3157 */
3158 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3159 int nr_exclusive, void *key)
3160 {
3161 unsigned long flags;
3162 int wake_flags = WF_SYNC;
3163
3164 if (unlikely(!q))
3165 return;
3166
3167 if (unlikely(!nr_exclusive))
3168 wake_flags = 0;
3169
3170 spin_lock_irqsave(&q->lock, flags);
3171 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3172 spin_unlock_irqrestore(&q->lock, flags);
3173 }
3174 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3175
3176 /*
3177 * __wake_up_sync - see __wake_up_sync_key()
3178 */
3179 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3180 {
3181 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3182 }
3183 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3184
3185 /**
3186 * complete: - signals a single thread waiting on this completion
3187 * @x: holds the state of this particular completion
3188 *
3189 * This will wake up a single thread waiting on this completion. Threads will be
3190 * awakened in the same order in which they were queued.
3191 *
3192 * See also complete_all(), wait_for_completion() and related routines.
3193 *
3194 * It may be assumed that this function implies a write memory barrier before
3195 * changing the task state if and only if any tasks are woken up.
3196 */
3197 void complete(struct completion *x)
3198 {
3199 unsigned long flags;
3200
3201 spin_lock_irqsave(&x->wait.lock, flags);
3202 x->done++;
3203 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3204 spin_unlock_irqrestore(&x->wait.lock, flags);
3205 }
3206 EXPORT_SYMBOL(complete);
3207
3208 /**
3209 * complete_all: - signals all threads waiting on this completion
3210 * @x: holds the state of this particular completion
3211 *
3212 * This will wake up all threads waiting on this particular completion event.
3213 *
3214 * It may be assumed that this function implies a write memory barrier before
3215 * changing the task state if and only if any tasks are woken up.
3216 */
3217 void complete_all(struct completion *x)
3218 {
3219 unsigned long flags;
3220
3221 spin_lock_irqsave(&x->wait.lock, flags);
3222 x->done += UINT_MAX/2;
3223 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3224 spin_unlock_irqrestore(&x->wait.lock, flags);
3225 }
3226 EXPORT_SYMBOL(complete_all);
3227
3228 static inline long __sched
3229 do_wait_for_common(struct completion *x, long timeout, int state)
3230 {
3231 if (!x->done) {
3232 DECLARE_WAITQUEUE(wait, current);
3233
3234 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3235 do {
3236 if (signal_pending_state(state, current)) {
3237 timeout = -ERESTARTSYS;
3238 break;
3239 }
3240 __set_current_state(state);
3241 spin_unlock_irq(&x->wait.lock);
3242 timeout = schedule_timeout(timeout);
3243 spin_lock_irq(&x->wait.lock);
3244 } while (!x->done && timeout);
3245 __remove_wait_queue(&x->wait, &wait);
3246 if (!x->done)
3247 return timeout;
3248 }
3249 x->done--;
3250 return timeout ?: 1;
3251 }
3252
3253 static long __sched
3254 wait_for_common(struct completion *x, long timeout, int state)
3255 {
3256 might_sleep();
3257
3258 spin_lock_irq(&x->wait.lock);
3259 timeout = do_wait_for_common(x, timeout, state);
3260 spin_unlock_irq(&x->wait.lock);
3261 return timeout;
3262 }
3263
3264 /**
3265 * wait_for_completion: - waits for completion of a task
3266 * @x: holds the state of this particular completion
3267 *
3268 * This waits to be signaled for completion of a specific task. It is NOT
3269 * interruptible and there is no timeout.
3270 *
3271 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3272 * and interrupt capability. Also see complete().
3273 */
3274 void __sched wait_for_completion(struct completion *x)
3275 {
3276 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3277 }
3278 EXPORT_SYMBOL(wait_for_completion);
3279
3280 /**
3281 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3282 * @x: holds the state of this particular completion
3283 * @timeout: timeout value in jiffies
3284 *
3285 * This waits for either a completion of a specific task to be signaled or for a
3286 * specified timeout to expire. The timeout is in jiffies. It is not
3287 * interruptible.
3288 *
3289 * The return value is 0 if timed out, and positive (at least 1, or number of
3290 * jiffies left till timeout) if completed.
3291 */
3292 unsigned long __sched
3293 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3294 {
3295 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3296 }
3297 EXPORT_SYMBOL(wait_for_completion_timeout);
3298
3299 /**
3300 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3301 * @x: holds the state of this particular completion
3302 *
3303 * This waits for completion of a specific task to be signaled. It is
3304 * interruptible.
3305 *
3306 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3307 */
3308 int __sched wait_for_completion_interruptible(struct completion *x)
3309 {
3310 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3311 if (t == -ERESTARTSYS)
3312 return t;
3313 return 0;
3314 }
3315 EXPORT_SYMBOL(wait_for_completion_interruptible);
3316
3317 /**
3318 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3319 * @x: holds the state of this particular completion
3320 * @timeout: timeout value in jiffies
3321 *
3322 * This waits for either a completion of a specific task to be signaled or for a
3323 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3324 *
3325 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3326 * positive (at least 1, or number of jiffies left till timeout) if completed.
3327 */
3328 long __sched
3329 wait_for_completion_interruptible_timeout(struct completion *x,
3330 unsigned long timeout)
3331 {
3332 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3333 }
3334 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3335
3336 /**
3337 * wait_for_completion_killable: - waits for completion of a task (killable)
3338 * @x: holds the state of this particular completion
3339 *
3340 * This waits to be signaled for completion of a specific task. It can be
3341 * interrupted by a kill signal.
3342 *
3343 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3344 */
3345 int __sched wait_for_completion_killable(struct completion *x)
3346 {
3347 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3348 if (t == -ERESTARTSYS)
3349 return t;
3350 return 0;
3351 }
3352 EXPORT_SYMBOL(wait_for_completion_killable);
3353
3354 /**
3355 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3356 * @x: holds the state of this particular completion
3357 * @timeout: timeout value in jiffies
3358 *
3359 * This waits for either a completion of a specific task to be
3360 * signaled or for a specified timeout to expire. It can be
3361 * interrupted by a kill signal. The timeout is in jiffies.
3362 *
3363 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3364 * positive (at least 1, or number of jiffies left till timeout) if completed.
3365 */
3366 long __sched
3367 wait_for_completion_killable_timeout(struct completion *x,
3368 unsigned long timeout)
3369 {
3370 return wait_for_common(x, timeout, TASK_KILLABLE);
3371 }
3372 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3373
3374 /**
3375 * try_wait_for_completion - try to decrement a completion without blocking
3376 * @x: completion structure
3377 *
3378 * Returns: 0 if a decrement cannot be done without blocking
3379 * 1 if a decrement succeeded.
3380 *
3381 * If a completion is being used as a counting completion,
3382 * attempt to decrement the counter without blocking. This
3383 * enables us to avoid waiting if the resource the completion
3384 * is protecting is not available.
3385 */
3386 bool try_wait_for_completion(struct completion *x)
3387 {
3388 unsigned long flags;
3389 int ret = 1;
3390
3391 spin_lock_irqsave(&x->wait.lock, flags);
3392 if (!x->done)
3393 ret = 0;
3394 else
3395 x->done--;
3396 spin_unlock_irqrestore(&x->wait.lock, flags);
3397 return ret;
3398 }
3399 EXPORT_SYMBOL(try_wait_for_completion);
3400
3401 /**
3402 * completion_done - Test to see if a completion has any waiters
3403 * @x: completion structure
3404 *
3405 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3406 * 1 if there are no waiters.
3407 *
3408 */
3409 bool completion_done(struct completion *x)
3410 {
3411 unsigned long flags;
3412 int ret = 1;
3413
3414 spin_lock_irqsave(&x->wait.lock, flags);
3415 if (!x->done)
3416 ret = 0;
3417 spin_unlock_irqrestore(&x->wait.lock, flags);
3418 return ret;
3419 }
3420 EXPORT_SYMBOL(completion_done);
3421
3422 static long __sched
3423 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3424 {
3425 unsigned long flags;
3426 wait_queue_t wait;
3427
3428 init_waitqueue_entry(&wait, current);
3429
3430 __set_current_state(state);
3431
3432 spin_lock_irqsave(&q->lock, flags);
3433 __add_wait_queue(q, &wait);
3434 spin_unlock(&q->lock);
3435 timeout = schedule_timeout(timeout);
3436 spin_lock_irq(&q->lock);
3437 __remove_wait_queue(q, &wait);
3438 spin_unlock_irqrestore(&q->lock, flags);
3439
3440 return timeout;
3441 }
3442
3443 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3444 {
3445 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3446 }
3447 EXPORT_SYMBOL(interruptible_sleep_on);
3448
3449 long __sched
3450 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3451 {
3452 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3453 }
3454 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3455
3456 void __sched sleep_on(wait_queue_head_t *q)
3457 {
3458 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3459 }
3460 EXPORT_SYMBOL(sleep_on);
3461
3462 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3463 {
3464 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3465 }
3466 EXPORT_SYMBOL(sleep_on_timeout);
3467
3468 #ifdef CONFIG_RT_MUTEXES
3469
3470 /*
3471 * rt_mutex_setprio - set the current priority of a task
3472 * @p: task
3473 * @prio: prio value (kernel-internal form)
3474 *
3475 * This function changes the 'effective' priority of a task. It does
3476 * not touch ->normal_prio like __setscheduler().
3477 *
3478 * Used by the rt_mutex code to implement priority inheritance logic.
3479 */
3480 void rt_mutex_setprio(struct task_struct *p, int prio)
3481 {
3482 int oldprio, on_rq, running;
3483 struct rq *rq;
3484 const struct sched_class *prev_class;
3485
3486 BUG_ON(prio < 0 || prio > MAX_PRIO);
3487
3488 rq = __task_rq_lock(p);
3489
3490 /*
3491 * Idle task boosting is a nono in general. There is one
3492 * exception, when PREEMPT_RT and NOHZ is active:
3493 *
3494 * The idle task calls get_next_timer_interrupt() and holds
3495 * the timer wheel base->lock on the CPU and another CPU wants
3496 * to access the timer (probably to cancel it). We can safely
3497 * ignore the boosting request, as the idle CPU runs this code
3498 * with interrupts disabled and will complete the lock
3499 * protected section without being interrupted. So there is no
3500 * real need to boost.
3501 */
3502 if (unlikely(p == rq->idle)) {
3503 WARN_ON(p != rq->curr);
3504 WARN_ON(p->pi_blocked_on);
3505 goto out_unlock;
3506 }
3507
3508 trace_sched_pi_setprio(p, prio);
3509 oldprio = p->prio;
3510 prev_class = p->sched_class;
3511 on_rq = p->on_rq;
3512 running = task_current(rq, p);
3513 if (on_rq)
3514 dequeue_task(rq, p, 0);
3515 if (running)
3516 p->sched_class->put_prev_task(rq, p);
3517
3518 if (rt_prio(prio))
3519 p->sched_class = &rt_sched_class;
3520 else
3521 p->sched_class = &fair_sched_class;
3522
3523 p->prio = prio;
3524
3525 if (running)
3526 p->sched_class->set_curr_task(rq);
3527 if (on_rq)
3528 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3529
3530 check_class_changed(rq, p, prev_class, oldprio);
3531 out_unlock:
3532 __task_rq_unlock(rq);
3533 }
3534 #endif
3535 void set_user_nice(struct task_struct *p, long nice)
3536 {
3537 int old_prio, delta, on_rq;
3538 unsigned long flags;
3539 struct rq *rq;
3540
3541 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3542 return;
3543 /*
3544 * We have to be careful, if called from sys_setpriority(),
3545 * the task might be in the middle of scheduling on another CPU.
3546 */
3547 rq = task_rq_lock(p, &flags);
3548 /*
3549 * The RT priorities are set via sched_setscheduler(), but we still
3550 * allow the 'normal' nice value to be set - but as expected
3551 * it wont have any effect on scheduling until the task is
3552 * SCHED_FIFO/SCHED_RR:
3553 */
3554 if (task_has_rt_policy(p)) {
3555 p->static_prio = NICE_TO_PRIO(nice);
3556 goto out_unlock;
3557 }
3558 on_rq = p->on_rq;
3559 if (on_rq)
3560 dequeue_task(rq, p, 0);
3561
3562 p->static_prio = NICE_TO_PRIO(nice);
3563 set_load_weight(p);
3564 old_prio = p->prio;
3565 p->prio = effective_prio(p);
3566 delta = p->prio - old_prio;
3567
3568 if (on_rq) {
3569 enqueue_task(rq, p, 0);
3570 /*
3571 * If the task increased its priority or is running and
3572 * lowered its priority, then reschedule its CPU:
3573 */
3574 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3575 resched_task(rq->curr);
3576 }
3577 out_unlock:
3578 task_rq_unlock(rq, p, &flags);
3579 }
3580 EXPORT_SYMBOL(set_user_nice);
3581
3582 /*
3583 * can_nice - check if a task can reduce its nice value
3584 * @p: task
3585 * @nice: nice value
3586 */
3587 int can_nice(const struct task_struct *p, const int nice)
3588 {
3589 /* convert nice value [19,-20] to rlimit style value [1,40] */
3590 int nice_rlim = 20 - nice;
3591
3592 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3593 capable(CAP_SYS_NICE));
3594 }
3595
3596 #ifdef __ARCH_WANT_SYS_NICE
3597
3598 /*
3599 * sys_nice - change the priority of the current process.
3600 * @increment: priority increment
3601 *
3602 * sys_setpriority is a more generic, but much slower function that
3603 * does similar things.
3604 */
3605 SYSCALL_DEFINE1(nice, int, increment)
3606 {
3607 long nice, retval;
3608
3609 /*
3610 * Setpriority might change our priority at the same moment.
3611 * We don't have to worry. Conceptually one call occurs first
3612 * and we have a single winner.
3613 */
3614 if (increment < -40)
3615 increment = -40;
3616 if (increment > 40)
3617 increment = 40;
3618
3619 nice = TASK_NICE(current) + increment;
3620 if (nice < -20)
3621 nice = -20;
3622 if (nice > 19)
3623 nice = 19;
3624
3625 if (increment < 0 && !can_nice(current, nice))
3626 return -EPERM;
3627
3628 retval = security_task_setnice(current, nice);
3629 if (retval)
3630 return retval;
3631
3632 set_user_nice(current, nice);
3633 return 0;
3634 }
3635
3636 #endif
3637
3638 /**
3639 * task_prio - return the priority value of a given task.
3640 * @p: the task in question.
3641 *
3642 * This is the priority value as seen by users in /proc.
3643 * RT tasks are offset by -200. Normal tasks are centered
3644 * around 0, value goes from -16 to +15.
3645 */
3646 int task_prio(const struct task_struct *p)
3647 {
3648 return p->prio - MAX_RT_PRIO;
3649 }
3650
3651 /**
3652 * task_nice - return the nice value of a given task.
3653 * @p: the task in question.
3654 */
3655 int task_nice(const struct task_struct *p)
3656 {
3657 return TASK_NICE(p);
3658 }
3659 EXPORT_SYMBOL(task_nice);
3660
3661 /**
3662 * idle_cpu - is a given cpu idle currently?
3663 * @cpu: the processor in question.
3664 */
3665 int idle_cpu(int cpu)
3666 {
3667 struct rq *rq = cpu_rq(cpu);
3668
3669 if (rq->curr != rq->idle)
3670 return 0;
3671
3672 if (rq->nr_running)
3673 return 0;
3674
3675 #ifdef CONFIG_SMP
3676 if (!llist_empty(&rq->wake_list))
3677 return 0;
3678 #endif
3679
3680 return 1;
3681 }
3682
3683 /**
3684 * idle_task - return the idle task for a given cpu.
3685 * @cpu: the processor in question.
3686 */
3687 struct task_struct *idle_task(int cpu)
3688 {
3689 return cpu_rq(cpu)->idle;
3690 }
3691
3692 /**
3693 * find_process_by_pid - find a process with a matching PID value.
3694 * @pid: the pid in question.
3695 */
3696 static struct task_struct *find_process_by_pid(pid_t pid)
3697 {
3698 return pid ? find_task_by_vpid(pid) : current;
3699 }
3700
3701 /* Actually do priority change: must hold rq lock. */
3702 static void
3703 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3704 {
3705 p->policy = policy;
3706 p->rt_priority = prio;
3707 p->normal_prio = normal_prio(p);
3708 /* we are holding p->pi_lock already */
3709 p->prio = rt_mutex_getprio(p);
3710 if (rt_prio(p->prio))
3711 p->sched_class = &rt_sched_class;
3712 else
3713 p->sched_class = &fair_sched_class;
3714 set_load_weight(p);
3715 }
3716
3717 /*
3718 * check the target process has a UID that matches the current process's
3719 */
3720 static bool check_same_owner(struct task_struct *p)
3721 {
3722 const struct cred *cred = current_cred(), *pcred;
3723 bool match;
3724
3725 rcu_read_lock();
3726 pcred = __task_cred(p);
3727 match = (uid_eq(cred->euid, pcred->euid) ||
3728 uid_eq(cred->euid, pcred->uid));
3729 rcu_read_unlock();
3730 return match;
3731 }
3732
3733 static int __sched_setscheduler(struct task_struct *p, int policy,
3734 const struct sched_param *param, bool user)
3735 {
3736 int retval, oldprio, oldpolicy = -1, on_rq, running;
3737 unsigned long flags;
3738 const struct sched_class *prev_class;
3739 struct rq *rq;
3740 int reset_on_fork;
3741
3742 /* may grab non-irq protected spin_locks */
3743 BUG_ON(in_interrupt());
3744 recheck:
3745 /* double check policy once rq lock held */
3746 if (policy < 0) {
3747 reset_on_fork = p->sched_reset_on_fork;
3748 policy = oldpolicy = p->policy;
3749 } else {
3750 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3751 policy &= ~SCHED_RESET_ON_FORK;
3752
3753 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3754 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3755 policy != SCHED_IDLE)
3756 return -EINVAL;
3757 }
3758
3759 /*
3760 * Valid priorities for SCHED_FIFO and SCHED_RR are
3761 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3762 * SCHED_BATCH and SCHED_IDLE is 0.
3763 */
3764 if (param->sched_priority < 0 ||
3765 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3766 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3767 return -EINVAL;
3768 if (rt_policy(policy) != (param->sched_priority != 0))
3769 return -EINVAL;
3770
3771 /*
3772 * Allow unprivileged RT tasks to decrease priority:
3773 */
3774 if (user && !capable(CAP_SYS_NICE)) {
3775 if (rt_policy(policy)) {
3776 unsigned long rlim_rtprio =
3777 task_rlimit(p, RLIMIT_RTPRIO);
3778
3779 /* can't set/change the rt policy */
3780 if (policy != p->policy && !rlim_rtprio)
3781 return -EPERM;
3782
3783 /* can't increase priority */
3784 if (param->sched_priority > p->rt_priority &&
3785 param->sched_priority > rlim_rtprio)
3786 return -EPERM;
3787 }
3788
3789 /*
3790 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3791 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3792 */
3793 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3794 if (!can_nice(p, TASK_NICE(p)))
3795 return -EPERM;
3796 }
3797
3798 /* can't change other user's priorities */
3799 if (!check_same_owner(p))
3800 return -EPERM;
3801
3802 /* Normal users shall not reset the sched_reset_on_fork flag */
3803 if (p->sched_reset_on_fork && !reset_on_fork)
3804 return -EPERM;
3805 }
3806
3807 if (user) {
3808 retval = security_task_setscheduler(p);
3809 if (retval)
3810 return retval;
3811 }
3812
3813 /*
3814 * make sure no PI-waiters arrive (or leave) while we are
3815 * changing the priority of the task:
3816 *
3817 * To be able to change p->policy safely, the appropriate
3818 * runqueue lock must be held.
3819 */
3820 rq = task_rq_lock(p, &flags);
3821
3822 /*
3823 * Changing the policy of the stop threads its a very bad idea
3824 */
3825 if (p == rq->stop) {
3826 task_rq_unlock(rq, p, &flags);
3827 return -EINVAL;
3828 }
3829
3830 /*
3831 * If not changing anything there's no need to proceed further:
3832 */
3833 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3834 param->sched_priority == p->rt_priority))) {
3835 task_rq_unlock(rq, p, &flags);
3836 return 0;
3837 }
3838
3839 #ifdef CONFIG_RT_GROUP_SCHED
3840 if (user) {
3841 /*
3842 * Do not allow realtime tasks into groups that have no runtime
3843 * assigned.
3844 */
3845 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3846 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3847 !task_group_is_autogroup(task_group(p))) {
3848 task_rq_unlock(rq, p, &flags);
3849 return -EPERM;
3850 }
3851 }
3852 #endif
3853
3854 /* recheck policy now with rq lock held */
3855 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3856 policy = oldpolicy = -1;
3857 task_rq_unlock(rq, p, &flags);
3858 goto recheck;
3859 }
3860 on_rq = p->on_rq;
3861 running = task_current(rq, p);
3862 if (on_rq)
3863 dequeue_task(rq, p, 0);
3864 if (running)
3865 p->sched_class->put_prev_task(rq, p);
3866
3867 p->sched_reset_on_fork = reset_on_fork;
3868
3869 oldprio = p->prio;
3870 prev_class = p->sched_class;
3871 __setscheduler(rq, p, policy, param->sched_priority);
3872
3873 if (running)
3874 p->sched_class->set_curr_task(rq);
3875 if (on_rq)
3876 enqueue_task(rq, p, 0);
3877
3878 check_class_changed(rq, p, prev_class, oldprio);
3879 task_rq_unlock(rq, p, &flags);
3880
3881 rt_mutex_adjust_pi(p);
3882
3883 return 0;
3884 }
3885
3886 /**
3887 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3888 * @p: the task in question.
3889 * @policy: new policy.
3890 * @param: structure containing the new RT priority.
3891 *
3892 * NOTE that the task may be already dead.
3893 */
3894 int sched_setscheduler(struct task_struct *p, int policy,
3895 const struct sched_param *param)
3896 {
3897 return __sched_setscheduler(p, policy, param, true);
3898 }
3899 EXPORT_SYMBOL_GPL(sched_setscheduler);
3900
3901 /**
3902 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3903 * @p: the task in question.
3904 * @policy: new policy.
3905 * @param: structure containing the new RT priority.
3906 *
3907 * Just like sched_setscheduler, only don't bother checking if the
3908 * current context has permission. For example, this is needed in
3909 * stop_machine(): we create temporary high priority worker threads,
3910 * but our caller might not have that capability.
3911 */
3912 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3913 const struct sched_param *param)
3914 {
3915 return __sched_setscheduler(p, policy, param, false);
3916 }
3917
3918 static int
3919 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3920 {
3921 struct sched_param lparam;
3922 struct task_struct *p;
3923 int retval;
3924
3925 if (!param || pid < 0)
3926 return -EINVAL;
3927 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3928 return -EFAULT;
3929
3930 rcu_read_lock();
3931 retval = -ESRCH;
3932 p = find_process_by_pid(pid);
3933 if (p != NULL)
3934 retval = sched_setscheduler(p, policy, &lparam);
3935 rcu_read_unlock();
3936
3937 return retval;
3938 }
3939
3940 /**
3941 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3942 * @pid: the pid in question.
3943 * @policy: new policy.
3944 * @param: structure containing the new RT priority.
3945 */
3946 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3947 struct sched_param __user *, param)
3948 {
3949 /* negative values for policy are not valid */
3950 if (policy < 0)
3951 return -EINVAL;
3952
3953 return do_sched_setscheduler(pid, policy, param);
3954 }
3955
3956 /**
3957 * sys_sched_setparam - set/change the RT priority of a thread
3958 * @pid: the pid in question.
3959 * @param: structure containing the new RT priority.
3960 */
3961 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3962 {
3963 return do_sched_setscheduler(pid, -1, param);
3964 }
3965
3966 /**
3967 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3968 * @pid: the pid in question.
3969 */
3970 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3971 {
3972 struct task_struct *p;
3973 int retval;
3974
3975 if (pid < 0)
3976 return -EINVAL;
3977
3978 retval = -ESRCH;
3979 rcu_read_lock();
3980 p = find_process_by_pid(pid);
3981 if (p) {
3982 retval = security_task_getscheduler(p);
3983 if (!retval)
3984 retval = p->policy
3985 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3986 }
3987 rcu_read_unlock();
3988 return retval;
3989 }
3990
3991 /**
3992 * sys_sched_getparam - get the RT priority of a thread
3993 * @pid: the pid in question.
3994 * @param: structure containing the RT priority.
3995 */
3996 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3997 {
3998 struct sched_param lp;
3999 struct task_struct *p;
4000 int retval;
4001
4002 if (!param || pid < 0)
4003 return -EINVAL;
4004
4005 rcu_read_lock();
4006 p = find_process_by_pid(pid);
4007 retval = -ESRCH;
4008 if (!p)
4009 goto out_unlock;
4010
4011 retval = security_task_getscheduler(p);
4012 if (retval)
4013 goto out_unlock;
4014
4015 lp.sched_priority = p->rt_priority;
4016 rcu_read_unlock();
4017
4018 /*
4019 * This one might sleep, we cannot do it with a spinlock held ...
4020 */
4021 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4022
4023 return retval;
4024
4025 out_unlock:
4026 rcu_read_unlock();
4027 return retval;
4028 }
4029
4030 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4031 {
4032 cpumask_var_t cpus_allowed, new_mask;
4033 struct task_struct *p;
4034 int retval;
4035
4036 get_online_cpus();
4037 rcu_read_lock();
4038
4039 p = find_process_by_pid(pid);
4040 if (!p) {
4041 rcu_read_unlock();
4042 put_online_cpus();
4043 return -ESRCH;
4044 }
4045
4046 /* Prevent p going away */
4047 get_task_struct(p);
4048 rcu_read_unlock();
4049
4050 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4051 retval = -ENOMEM;
4052 goto out_put_task;
4053 }
4054 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4055 retval = -ENOMEM;
4056 goto out_free_cpus_allowed;
4057 }
4058 retval = -EPERM;
4059 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4060 goto out_unlock;
4061
4062 retval = security_task_setscheduler(p);
4063 if (retval)
4064 goto out_unlock;
4065
4066 cpuset_cpus_allowed(p, cpus_allowed);
4067 cpumask_and(new_mask, in_mask, cpus_allowed);
4068 again:
4069 retval = set_cpus_allowed_ptr(p, new_mask);
4070
4071 if (!retval) {
4072 cpuset_cpus_allowed(p, cpus_allowed);
4073 if (!cpumask_subset(new_mask, cpus_allowed)) {
4074 /*
4075 * We must have raced with a concurrent cpuset
4076 * update. Just reset the cpus_allowed to the
4077 * cpuset's cpus_allowed
4078 */
4079 cpumask_copy(new_mask, cpus_allowed);
4080 goto again;
4081 }
4082 }
4083 out_unlock:
4084 free_cpumask_var(new_mask);
4085 out_free_cpus_allowed:
4086 free_cpumask_var(cpus_allowed);
4087 out_put_task:
4088 put_task_struct(p);
4089 put_online_cpus();
4090 return retval;
4091 }
4092
4093 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4094 struct cpumask *new_mask)
4095 {
4096 if (len < cpumask_size())
4097 cpumask_clear(new_mask);
4098 else if (len > cpumask_size())
4099 len = cpumask_size();
4100
4101 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4102 }
4103
4104 /**
4105 * sys_sched_setaffinity - set the cpu affinity of a process
4106 * @pid: pid of the process
4107 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4108 * @user_mask_ptr: user-space pointer to the new cpu mask
4109 */
4110 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4111 unsigned long __user *, user_mask_ptr)
4112 {
4113 cpumask_var_t new_mask;
4114 int retval;
4115
4116 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4117 return -ENOMEM;
4118
4119 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4120 if (retval == 0)
4121 retval = sched_setaffinity(pid, new_mask);
4122 free_cpumask_var(new_mask);
4123 return retval;
4124 }
4125
4126 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4127 {
4128 struct task_struct *p;
4129 unsigned long flags;
4130 int retval;
4131
4132 get_online_cpus();
4133 rcu_read_lock();
4134
4135 retval = -ESRCH;
4136 p = find_process_by_pid(pid);
4137 if (!p)
4138 goto out_unlock;
4139
4140 retval = security_task_getscheduler(p);
4141 if (retval)
4142 goto out_unlock;
4143
4144 raw_spin_lock_irqsave(&p->pi_lock, flags);
4145 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4146 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4147
4148 out_unlock:
4149 rcu_read_unlock();
4150 put_online_cpus();
4151
4152 return retval;
4153 }
4154
4155 /**
4156 * sys_sched_getaffinity - get the cpu affinity of a process
4157 * @pid: pid of the process
4158 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4159 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4160 */
4161 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4162 unsigned long __user *, user_mask_ptr)
4163 {
4164 int ret;
4165 cpumask_var_t mask;
4166
4167 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4168 return -EINVAL;
4169 if (len & (sizeof(unsigned long)-1))
4170 return -EINVAL;
4171
4172 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4173 return -ENOMEM;
4174
4175 ret = sched_getaffinity(pid, mask);
4176 if (ret == 0) {
4177 size_t retlen = min_t(size_t, len, cpumask_size());
4178
4179 if (copy_to_user(user_mask_ptr, mask, retlen))
4180 ret = -EFAULT;
4181 else
4182 ret = retlen;
4183 }
4184 free_cpumask_var(mask);
4185
4186 return ret;
4187 }
4188
4189 /**
4190 * sys_sched_yield - yield the current processor to other threads.
4191 *
4192 * This function yields the current CPU to other tasks. If there are no
4193 * other threads running on this CPU then this function will return.
4194 */
4195 SYSCALL_DEFINE0(sched_yield)
4196 {
4197 struct rq *rq = this_rq_lock();
4198
4199 schedstat_inc(rq, yld_count);
4200 current->sched_class->yield_task(rq);
4201
4202 /*
4203 * Since we are going to call schedule() anyway, there's
4204 * no need to preempt or enable interrupts:
4205 */
4206 __release(rq->lock);
4207 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4208 do_raw_spin_unlock(&rq->lock);
4209 sched_preempt_enable_no_resched();
4210
4211 schedule();
4212
4213 return 0;
4214 }
4215
4216 static inline int should_resched(void)
4217 {
4218 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4219 }
4220
4221 static void __cond_resched(void)
4222 {
4223 add_preempt_count(PREEMPT_ACTIVE);
4224 __schedule();
4225 sub_preempt_count(PREEMPT_ACTIVE);
4226 }
4227
4228 int __sched _cond_resched(void)
4229 {
4230 if (should_resched()) {
4231 __cond_resched();
4232 return 1;
4233 }
4234 return 0;
4235 }
4236 EXPORT_SYMBOL(_cond_resched);
4237
4238 /*
4239 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4240 * call schedule, and on return reacquire the lock.
4241 *
4242 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4243 * operations here to prevent schedule() from being called twice (once via
4244 * spin_unlock(), once by hand).
4245 */
4246 int __cond_resched_lock(spinlock_t *lock)
4247 {
4248 int resched = should_resched();
4249 int ret = 0;
4250
4251 lockdep_assert_held(lock);
4252
4253 if (spin_needbreak(lock) || resched) {
4254 spin_unlock(lock);
4255 if (resched)
4256 __cond_resched();
4257 else
4258 cpu_relax();
4259 ret = 1;
4260 spin_lock(lock);
4261 }
4262 return ret;
4263 }
4264 EXPORT_SYMBOL(__cond_resched_lock);
4265
4266 int __sched __cond_resched_softirq(void)
4267 {
4268 BUG_ON(!in_softirq());
4269
4270 if (should_resched()) {
4271 local_bh_enable();
4272 __cond_resched();
4273 local_bh_disable();
4274 return 1;
4275 }
4276 return 0;
4277 }
4278 EXPORT_SYMBOL(__cond_resched_softirq);
4279
4280 /**
4281 * yield - yield the current processor to other threads.
4282 *
4283 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4284 *
4285 * The scheduler is at all times free to pick the calling task as the most
4286 * eligible task to run, if removing the yield() call from your code breaks
4287 * it, its already broken.
4288 *
4289 * Typical broken usage is:
4290 *
4291 * while (!event)
4292 * yield();
4293 *
4294 * where one assumes that yield() will let 'the other' process run that will
4295 * make event true. If the current task is a SCHED_FIFO task that will never
4296 * happen. Never use yield() as a progress guarantee!!
4297 *
4298 * If you want to use yield() to wait for something, use wait_event().
4299 * If you want to use yield() to be 'nice' for others, use cond_resched().
4300 * If you still want to use yield(), do not!
4301 */
4302 void __sched yield(void)
4303 {
4304 set_current_state(TASK_RUNNING);
4305 sys_sched_yield();
4306 }
4307 EXPORT_SYMBOL(yield);
4308
4309 /**
4310 * yield_to - yield the current processor to another thread in
4311 * your thread group, or accelerate that thread toward the
4312 * processor it's on.
4313 * @p: target task
4314 * @preempt: whether task preemption is allowed or not
4315 *
4316 * It's the caller's job to ensure that the target task struct
4317 * can't go away on us before we can do any checks.
4318 *
4319 * Returns true if we indeed boosted the target task.
4320 */
4321 bool __sched yield_to(struct task_struct *p, bool preempt)
4322 {
4323 struct task_struct *curr = current;
4324 struct rq *rq, *p_rq;
4325 unsigned long flags;
4326 bool yielded = 0;
4327
4328 local_irq_save(flags);
4329 rq = this_rq();
4330
4331 again:
4332 p_rq = task_rq(p);
4333 double_rq_lock(rq, p_rq);
4334 while (task_rq(p) != p_rq) {
4335 double_rq_unlock(rq, p_rq);
4336 goto again;
4337 }
4338
4339 if (!curr->sched_class->yield_to_task)
4340 goto out;
4341
4342 if (curr->sched_class != p->sched_class)
4343 goto out;
4344
4345 if (task_running(p_rq, p) || p->state)
4346 goto out;
4347
4348 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4349 if (yielded) {
4350 schedstat_inc(rq, yld_count);
4351 /*
4352 * Make p's CPU reschedule; pick_next_entity takes care of
4353 * fairness.
4354 */
4355 if (preempt && rq != p_rq)
4356 resched_task(p_rq->curr);
4357 }
4358
4359 out:
4360 double_rq_unlock(rq, p_rq);
4361 local_irq_restore(flags);
4362
4363 if (yielded)
4364 schedule();
4365
4366 return yielded;
4367 }
4368 EXPORT_SYMBOL_GPL(yield_to);
4369
4370 /*
4371 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4372 * that process accounting knows that this is a task in IO wait state.
4373 */
4374 void __sched io_schedule(void)
4375 {
4376 struct rq *rq = raw_rq();
4377
4378 delayacct_blkio_start();
4379 atomic_inc(&rq->nr_iowait);
4380 blk_flush_plug(current);
4381 current->in_iowait = 1;
4382 schedule();
4383 current->in_iowait = 0;
4384 atomic_dec(&rq->nr_iowait);
4385 delayacct_blkio_end();
4386 }
4387 EXPORT_SYMBOL(io_schedule);
4388
4389 long __sched io_schedule_timeout(long timeout)
4390 {
4391 struct rq *rq = raw_rq();
4392 long ret;
4393
4394 delayacct_blkio_start();
4395 atomic_inc(&rq->nr_iowait);
4396 blk_flush_plug(current);
4397 current->in_iowait = 1;
4398 ret = schedule_timeout(timeout);
4399 current->in_iowait = 0;
4400 atomic_dec(&rq->nr_iowait);
4401 delayacct_blkio_end();
4402 return ret;
4403 }
4404
4405 /**
4406 * sys_sched_get_priority_max - return maximum RT priority.
4407 * @policy: scheduling class.
4408 *
4409 * this syscall returns the maximum rt_priority that can be used
4410 * by a given scheduling class.
4411 */
4412 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4413 {
4414 int ret = -EINVAL;
4415
4416 switch (policy) {
4417 case SCHED_FIFO:
4418 case SCHED_RR:
4419 ret = MAX_USER_RT_PRIO-1;
4420 break;
4421 case SCHED_NORMAL:
4422 case SCHED_BATCH:
4423 case SCHED_IDLE:
4424 ret = 0;
4425 break;
4426 }
4427 return ret;
4428 }
4429
4430 /**
4431 * sys_sched_get_priority_min - return minimum RT priority.
4432 * @policy: scheduling class.
4433 *
4434 * this syscall returns the minimum rt_priority that can be used
4435 * by a given scheduling class.
4436 */
4437 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4438 {
4439 int ret = -EINVAL;
4440
4441 switch (policy) {
4442 case SCHED_FIFO:
4443 case SCHED_RR:
4444 ret = 1;
4445 break;
4446 case SCHED_NORMAL:
4447 case SCHED_BATCH:
4448 case SCHED_IDLE:
4449 ret = 0;
4450 }
4451 return ret;
4452 }
4453
4454 /**
4455 * sys_sched_rr_get_interval - return the default timeslice of a process.
4456 * @pid: pid of the process.
4457 * @interval: userspace pointer to the timeslice value.
4458 *
4459 * this syscall writes the default timeslice value of a given process
4460 * into the user-space timespec buffer. A value of '0' means infinity.
4461 */
4462 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4463 struct timespec __user *, interval)
4464 {
4465 struct task_struct *p;
4466 unsigned int time_slice;
4467 unsigned long flags;
4468 struct rq *rq;
4469 int retval;
4470 struct timespec t;
4471
4472 if (pid < 0)
4473 return -EINVAL;
4474
4475 retval = -ESRCH;
4476 rcu_read_lock();
4477 p = find_process_by_pid(pid);
4478 if (!p)
4479 goto out_unlock;
4480
4481 retval = security_task_getscheduler(p);
4482 if (retval)
4483 goto out_unlock;
4484
4485 rq = task_rq_lock(p, &flags);
4486 time_slice = p->sched_class->get_rr_interval(rq, p);
4487 task_rq_unlock(rq, p, &flags);
4488
4489 rcu_read_unlock();
4490 jiffies_to_timespec(time_slice, &t);
4491 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4492 return retval;
4493
4494 out_unlock:
4495 rcu_read_unlock();
4496 return retval;
4497 }
4498
4499 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4500
4501 void sched_show_task(struct task_struct *p)
4502 {
4503 unsigned long free = 0;
4504 int ppid;
4505 unsigned state;
4506
4507 state = p->state ? __ffs(p->state) + 1 : 0;
4508 printk(KERN_INFO "%-15.15s %c", p->comm,
4509 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4510 #if BITS_PER_LONG == 32
4511 if (state == TASK_RUNNING)
4512 printk(KERN_CONT " running ");
4513 else
4514 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4515 #else
4516 if (state == TASK_RUNNING)
4517 printk(KERN_CONT " running task ");
4518 else
4519 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4520 #endif
4521 #ifdef CONFIG_DEBUG_STACK_USAGE
4522 free = stack_not_used(p);
4523 #endif
4524 rcu_read_lock();
4525 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4526 rcu_read_unlock();
4527 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4528 task_pid_nr(p), ppid,
4529 (unsigned long)task_thread_info(p)->flags);
4530
4531 show_stack(p, NULL);
4532 }
4533
4534 void show_state_filter(unsigned long state_filter)
4535 {
4536 struct task_struct *g, *p;
4537
4538 #if BITS_PER_LONG == 32
4539 printk(KERN_INFO
4540 " task PC stack pid father\n");
4541 #else
4542 printk(KERN_INFO
4543 " task PC stack pid father\n");
4544 #endif
4545 rcu_read_lock();
4546 do_each_thread(g, p) {
4547 /*
4548 * reset the NMI-timeout, listing all files on a slow
4549 * console might take a lot of time:
4550 */
4551 touch_nmi_watchdog();
4552 if (!state_filter || (p->state & state_filter))
4553 sched_show_task(p);
4554 } while_each_thread(g, p);
4555
4556 touch_all_softlockup_watchdogs();
4557
4558 #ifdef CONFIG_SCHED_DEBUG
4559 sysrq_sched_debug_show();
4560 #endif
4561 rcu_read_unlock();
4562 /*
4563 * Only show locks if all tasks are dumped:
4564 */
4565 if (!state_filter)
4566 debug_show_all_locks();
4567 }
4568
4569 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4570 {
4571 idle->sched_class = &idle_sched_class;
4572 }
4573
4574 /**
4575 * init_idle - set up an idle thread for a given CPU
4576 * @idle: task in question
4577 * @cpu: cpu the idle task belongs to
4578 *
4579 * NOTE: this function does not set the idle thread's NEED_RESCHED
4580 * flag, to make booting more robust.
4581 */
4582 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4583 {
4584 struct rq *rq = cpu_rq(cpu);
4585 unsigned long flags;
4586
4587 raw_spin_lock_irqsave(&rq->lock, flags);
4588
4589 __sched_fork(idle);
4590 idle->state = TASK_RUNNING;
4591 idle->se.exec_start = sched_clock();
4592
4593 do_set_cpus_allowed(idle, cpumask_of(cpu));
4594 /*
4595 * We're having a chicken and egg problem, even though we are
4596 * holding rq->lock, the cpu isn't yet set to this cpu so the
4597 * lockdep check in task_group() will fail.
4598 *
4599 * Similar case to sched_fork(). / Alternatively we could
4600 * use task_rq_lock() here and obtain the other rq->lock.
4601 *
4602 * Silence PROVE_RCU
4603 */
4604 rcu_read_lock();
4605 __set_task_cpu(idle, cpu);
4606 rcu_read_unlock();
4607
4608 rq->curr = rq->idle = idle;
4609 #if defined(CONFIG_SMP)
4610 idle->on_cpu = 1;
4611 #endif
4612 raw_spin_unlock_irqrestore(&rq->lock, flags);
4613
4614 /* Set the preempt count _outside_ the spinlocks! */
4615 task_thread_info(idle)->preempt_count = 0;
4616
4617 /*
4618 * The idle tasks have their own, simple scheduling class:
4619 */
4620 idle->sched_class = &idle_sched_class;
4621 ftrace_graph_init_idle_task(idle, cpu);
4622 #if defined(CONFIG_SMP)
4623 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4624 #endif
4625 }
4626
4627 #ifdef CONFIG_SMP
4628 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4629 {
4630 if (p->sched_class && p->sched_class->set_cpus_allowed)
4631 p->sched_class->set_cpus_allowed(p, new_mask);
4632
4633 cpumask_copy(&p->cpus_allowed, new_mask);
4634 p->nr_cpus_allowed = cpumask_weight(new_mask);
4635 }
4636
4637 /*
4638 * This is how migration works:
4639 *
4640 * 1) we invoke migration_cpu_stop() on the target CPU using
4641 * stop_one_cpu().
4642 * 2) stopper starts to run (implicitly forcing the migrated thread
4643 * off the CPU)
4644 * 3) it checks whether the migrated task is still in the wrong runqueue.
4645 * 4) if it's in the wrong runqueue then the migration thread removes
4646 * it and puts it into the right queue.
4647 * 5) stopper completes and stop_one_cpu() returns and the migration
4648 * is done.
4649 */
4650
4651 /*
4652 * Change a given task's CPU affinity. Migrate the thread to a
4653 * proper CPU and schedule it away if the CPU it's executing on
4654 * is removed from the allowed bitmask.
4655 *
4656 * NOTE: the caller must have a valid reference to the task, the
4657 * task must not exit() & deallocate itself prematurely. The
4658 * call is not atomic; no spinlocks may be held.
4659 */
4660 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4661 {
4662 unsigned long flags;
4663 struct rq *rq;
4664 unsigned int dest_cpu;
4665 int ret = 0;
4666
4667 rq = task_rq_lock(p, &flags);
4668
4669 if (cpumask_equal(&p->cpus_allowed, new_mask))
4670 goto out;
4671
4672 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4673 ret = -EINVAL;
4674 goto out;
4675 }
4676
4677 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4678 ret = -EINVAL;
4679 goto out;
4680 }
4681
4682 do_set_cpus_allowed(p, new_mask);
4683
4684 /* Can the task run on the task's current CPU? If so, we're done */
4685 if (cpumask_test_cpu(task_cpu(p), new_mask))
4686 goto out;
4687
4688 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4689 if (p->on_rq) {
4690 struct migration_arg arg = { p, dest_cpu };
4691 /* Need help from migration thread: drop lock and wait. */
4692 task_rq_unlock(rq, p, &flags);
4693 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4694 tlb_migrate_finish(p->mm);
4695 return 0;
4696 }
4697 out:
4698 task_rq_unlock(rq, p, &flags);
4699
4700 return ret;
4701 }
4702 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4703
4704 /*
4705 * Move (not current) task off this cpu, onto dest cpu. We're doing
4706 * this because either it can't run here any more (set_cpus_allowed()
4707 * away from this CPU, or CPU going down), or because we're
4708 * attempting to rebalance this task on exec (sched_exec).
4709 *
4710 * So we race with normal scheduler movements, but that's OK, as long
4711 * as the task is no longer on this CPU.
4712 *
4713 * Returns non-zero if task was successfully migrated.
4714 */
4715 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4716 {
4717 struct rq *rq_dest, *rq_src;
4718 int ret = 0;
4719
4720 if (unlikely(!cpu_active(dest_cpu)))
4721 return ret;
4722
4723 rq_src = cpu_rq(src_cpu);
4724 rq_dest = cpu_rq(dest_cpu);
4725
4726 raw_spin_lock(&p->pi_lock);
4727 double_rq_lock(rq_src, rq_dest);
4728 /* Already moved. */
4729 if (task_cpu(p) != src_cpu)
4730 goto done;
4731 /* Affinity changed (again). */
4732 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4733 goto fail;
4734
4735 /*
4736 * If we're not on a rq, the next wake-up will ensure we're
4737 * placed properly.
4738 */
4739 if (p->on_rq) {
4740 dequeue_task(rq_src, p, 0);
4741 set_task_cpu(p, dest_cpu);
4742 enqueue_task(rq_dest, p, 0);
4743 check_preempt_curr(rq_dest, p, 0);
4744 }
4745 done:
4746 ret = 1;
4747 fail:
4748 double_rq_unlock(rq_src, rq_dest);
4749 raw_spin_unlock(&p->pi_lock);
4750 return ret;
4751 }
4752
4753 /*
4754 * migration_cpu_stop - this will be executed by a highprio stopper thread
4755 * and performs thread migration by bumping thread off CPU then
4756 * 'pushing' onto another runqueue.
4757 */
4758 static int migration_cpu_stop(void *data)
4759 {
4760 struct migration_arg *arg = data;
4761
4762 /*
4763 * The original target cpu might have gone down and we might
4764 * be on another cpu but it doesn't matter.
4765 */
4766 local_irq_disable();
4767 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4768 local_irq_enable();
4769 return 0;
4770 }
4771
4772 #ifdef CONFIG_HOTPLUG_CPU
4773
4774 /*
4775 * Ensures that the idle task is using init_mm right before its cpu goes
4776 * offline.
4777 */
4778 void idle_task_exit(void)
4779 {
4780 struct mm_struct *mm = current->active_mm;
4781
4782 BUG_ON(cpu_online(smp_processor_id()));
4783
4784 if (mm != &init_mm)
4785 switch_mm(mm, &init_mm, current);
4786 mmdrop(mm);
4787 }
4788
4789 /*
4790 * Since this CPU is going 'away' for a while, fold any nr_active delta
4791 * we might have. Assumes we're called after migrate_tasks() so that the
4792 * nr_active count is stable.
4793 *
4794 * Also see the comment "Global load-average calculations".
4795 */
4796 static void calc_load_migrate(struct rq *rq)
4797 {
4798 long delta = calc_load_fold_active(rq);
4799 if (delta)
4800 atomic_long_add(delta, &calc_load_tasks);
4801 }
4802
4803 /*
4804 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4805 * try_to_wake_up()->select_task_rq().
4806 *
4807 * Called with rq->lock held even though we'er in stop_machine() and
4808 * there's no concurrency possible, we hold the required locks anyway
4809 * because of lock validation efforts.
4810 */
4811 static void migrate_tasks(unsigned int dead_cpu)
4812 {
4813 struct rq *rq = cpu_rq(dead_cpu);
4814 struct task_struct *next, *stop = rq->stop;
4815 int dest_cpu;
4816
4817 /*
4818 * Fudge the rq selection such that the below task selection loop
4819 * doesn't get stuck on the currently eligible stop task.
4820 *
4821 * We're currently inside stop_machine() and the rq is either stuck
4822 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4823 * either way we should never end up calling schedule() until we're
4824 * done here.
4825 */
4826 rq->stop = NULL;
4827
4828 for ( ; ; ) {
4829 /*
4830 * There's this thread running, bail when that's the only
4831 * remaining thread.
4832 */
4833 if (rq->nr_running == 1)
4834 break;
4835
4836 next = pick_next_task(rq);
4837 BUG_ON(!next);
4838 next->sched_class->put_prev_task(rq, next);
4839
4840 /* Find suitable destination for @next, with force if needed. */
4841 dest_cpu = select_fallback_rq(dead_cpu, next);
4842 raw_spin_unlock(&rq->lock);
4843
4844 __migrate_task(next, dead_cpu, dest_cpu);
4845
4846 raw_spin_lock(&rq->lock);
4847 }
4848
4849 rq->stop = stop;
4850 }
4851
4852 #endif /* CONFIG_HOTPLUG_CPU */
4853
4854 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4855
4856 static struct ctl_table sd_ctl_dir[] = {
4857 {
4858 .procname = "sched_domain",
4859 .mode = 0555,
4860 },
4861 {}
4862 };
4863
4864 static struct ctl_table sd_ctl_root[] = {
4865 {
4866 .procname = "kernel",
4867 .mode = 0555,
4868 .child = sd_ctl_dir,
4869 },
4870 {}
4871 };
4872
4873 static struct ctl_table *sd_alloc_ctl_entry(int n)
4874 {
4875 struct ctl_table *entry =
4876 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4877
4878 return entry;
4879 }
4880
4881 static void sd_free_ctl_entry(struct ctl_table **tablep)
4882 {
4883 struct ctl_table *entry;
4884
4885 /*
4886 * In the intermediate directories, both the child directory and
4887 * procname are dynamically allocated and could fail but the mode
4888 * will always be set. In the lowest directory the names are
4889 * static strings and all have proc handlers.
4890 */
4891 for (entry = *tablep; entry->mode; entry++) {
4892 if (entry->child)
4893 sd_free_ctl_entry(&entry->child);
4894 if (entry->proc_handler == NULL)
4895 kfree(entry->procname);
4896 }
4897
4898 kfree(*tablep);
4899 *tablep = NULL;
4900 }
4901
4902 static int min_load_idx = 0;
4903 static int max_load_idx = CPU_LOAD_IDX_MAX;
4904
4905 static void
4906 set_table_entry(struct ctl_table *entry,
4907 const char *procname, void *data, int maxlen,
4908 umode_t mode, proc_handler *proc_handler,
4909 bool load_idx)
4910 {
4911 entry->procname = procname;
4912 entry->data = data;
4913 entry->maxlen = maxlen;
4914 entry->mode = mode;
4915 entry->proc_handler = proc_handler;
4916
4917 if (load_idx) {
4918 entry->extra1 = &min_load_idx;
4919 entry->extra2 = &max_load_idx;
4920 }
4921 }
4922
4923 static struct ctl_table *
4924 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4925 {
4926 struct ctl_table *table = sd_alloc_ctl_entry(13);
4927
4928 if (table == NULL)
4929 return NULL;
4930
4931 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4932 sizeof(long), 0644, proc_doulongvec_minmax, false);
4933 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4934 sizeof(long), 0644, proc_doulongvec_minmax, false);
4935 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4936 sizeof(int), 0644, proc_dointvec_minmax, true);
4937 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4938 sizeof(int), 0644, proc_dointvec_minmax, true);
4939 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4940 sizeof(int), 0644, proc_dointvec_minmax, true);
4941 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4942 sizeof(int), 0644, proc_dointvec_minmax, true);
4943 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4944 sizeof(int), 0644, proc_dointvec_minmax, true);
4945 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4946 sizeof(int), 0644, proc_dointvec_minmax, false);
4947 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4948 sizeof(int), 0644, proc_dointvec_minmax, false);
4949 set_table_entry(&table[9], "cache_nice_tries",
4950 &sd->cache_nice_tries,
4951 sizeof(int), 0644, proc_dointvec_minmax, false);
4952 set_table_entry(&table[10], "flags", &sd->flags,
4953 sizeof(int), 0644, proc_dointvec_minmax, false);
4954 set_table_entry(&table[11], "name", sd->name,
4955 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4956 /* &table[12] is terminator */
4957
4958 return table;
4959 }
4960
4961 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4962 {
4963 struct ctl_table *entry, *table;
4964 struct sched_domain *sd;
4965 int domain_num = 0, i;
4966 char buf[32];
4967
4968 for_each_domain(cpu, sd)
4969 domain_num++;
4970 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4971 if (table == NULL)
4972 return NULL;
4973
4974 i = 0;
4975 for_each_domain(cpu, sd) {
4976 snprintf(buf, 32, "domain%d", i);
4977 entry->procname = kstrdup(buf, GFP_KERNEL);
4978 entry->mode = 0555;
4979 entry->child = sd_alloc_ctl_domain_table(sd);
4980 entry++;
4981 i++;
4982 }
4983 return table;
4984 }
4985
4986 static struct ctl_table_header *sd_sysctl_header;
4987 static void register_sched_domain_sysctl(void)
4988 {
4989 int i, cpu_num = num_possible_cpus();
4990 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4991 char buf[32];
4992
4993 WARN_ON(sd_ctl_dir[0].child);
4994 sd_ctl_dir[0].child = entry;
4995
4996 if (entry == NULL)
4997 return;
4998
4999 for_each_possible_cpu(i) {
5000 snprintf(buf, 32, "cpu%d", i);
5001 entry->procname = kstrdup(buf, GFP_KERNEL);
5002 entry->mode = 0555;
5003 entry->child = sd_alloc_ctl_cpu_table(i);
5004 entry++;
5005 }
5006
5007 WARN_ON(sd_sysctl_header);
5008 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5009 }
5010
5011 /* may be called multiple times per register */
5012 static void unregister_sched_domain_sysctl(void)
5013 {
5014 if (sd_sysctl_header)
5015 unregister_sysctl_table(sd_sysctl_header);
5016 sd_sysctl_header = NULL;
5017 if (sd_ctl_dir[0].child)
5018 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5019 }
5020 #else
5021 static void register_sched_domain_sysctl(void)
5022 {
5023 }
5024 static void unregister_sched_domain_sysctl(void)
5025 {
5026 }
5027 #endif
5028
5029 static void set_rq_online(struct rq *rq)
5030 {
5031 if (!rq->online) {
5032 const struct sched_class *class;
5033
5034 cpumask_set_cpu(rq->cpu, rq->rd->online);
5035 rq->online = 1;
5036
5037 for_each_class(class) {
5038 if (class->rq_online)
5039 class->rq_online(rq);
5040 }
5041 }
5042 }
5043
5044 static void set_rq_offline(struct rq *rq)
5045 {
5046 if (rq->online) {
5047 const struct sched_class *class;
5048
5049 for_each_class(class) {
5050 if (class->rq_offline)
5051 class->rq_offline(rq);
5052 }
5053
5054 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5055 rq->online = 0;
5056 }
5057 }
5058
5059 /*
5060 * migration_call - callback that gets triggered when a CPU is added.
5061 * Here we can start up the necessary migration thread for the new CPU.
5062 */
5063 static int __cpuinit
5064 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5065 {
5066 int cpu = (long)hcpu;
5067 unsigned long flags;
5068 struct rq *rq = cpu_rq(cpu);
5069
5070 switch (action & ~CPU_TASKS_FROZEN) {
5071
5072 case CPU_UP_PREPARE:
5073 rq->calc_load_update = calc_load_update;
5074 break;
5075
5076 case CPU_ONLINE:
5077 /* Update our root-domain */
5078 raw_spin_lock_irqsave(&rq->lock, flags);
5079 if (rq->rd) {
5080 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5081
5082 set_rq_online(rq);
5083 }
5084 raw_spin_unlock_irqrestore(&rq->lock, flags);
5085 break;
5086
5087 #ifdef CONFIG_HOTPLUG_CPU
5088 case CPU_DYING:
5089 sched_ttwu_pending();
5090 /* Update our root-domain */
5091 raw_spin_lock_irqsave(&rq->lock, flags);
5092 if (rq->rd) {
5093 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5094 set_rq_offline(rq);
5095 }
5096 migrate_tasks(cpu);
5097 BUG_ON(rq->nr_running != 1); /* the migration thread */
5098 raw_spin_unlock_irqrestore(&rq->lock, flags);
5099 break;
5100
5101 case CPU_DEAD:
5102 calc_load_migrate(rq);
5103 break;
5104 #endif
5105 }
5106
5107 update_max_interval();
5108
5109 return NOTIFY_OK;
5110 }
5111
5112 /*
5113 * Register at high priority so that task migration (migrate_all_tasks)
5114 * happens before everything else. This has to be lower priority than
5115 * the notifier in the perf_event subsystem, though.
5116 */
5117 static struct notifier_block __cpuinitdata migration_notifier = {
5118 .notifier_call = migration_call,
5119 .priority = CPU_PRI_MIGRATION,
5120 };
5121
5122 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5123 unsigned long action, void *hcpu)
5124 {
5125 switch (action & ~CPU_TASKS_FROZEN) {
5126 case CPU_STARTING:
5127 case CPU_DOWN_FAILED:
5128 set_cpu_active((long)hcpu, true);
5129 return NOTIFY_OK;
5130 default:
5131 return NOTIFY_DONE;
5132 }
5133 }
5134
5135 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5136 unsigned long action, void *hcpu)
5137 {
5138 switch (action & ~CPU_TASKS_FROZEN) {
5139 case CPU_DOWN_PREPARE:
5140 set_cpu_active((long)hcpu, false);
5141 return NOTIFY_OK;
5142 default:
5143 return NOTIFY_DONE;
5144 }
5145 }
5146
5147 static int __init migration_init(void)
5148 {
5149 void *cpu = (void *)(long)smp_processor_id();
5150 int err;
5151
5152 /* Initialize migration for the boot CPU */
5153 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5154 BUG_ON(err == NOTIFY_BAD);
5155 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5156 register_cpu_notifier(&migration_notifier);
5157
5158 /* Register cpu active notifiers */
5159 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5160 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5161
5162 return 0;
5163 }
5164 early_initcall(migration_init);
5165 #endif
5166
5167 #ifdef CONFIG_SMP
5168
5169 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5170
5171 #ifdef CONFIG_SCHED_DEBUG
5172
5173 static __read_mostly int sched_debug_enabled;
5174
5175 static int __init sched_debug_setup(char *str)
5176 {
5177 sched_debug_enabled = 1;
5178
5179 return 0;
5180 }
5181 early_param("sched_debug", sched_debug_setup);
5182
5183 static inline bool sched_debug(void)
5184 {
5185 return sched_debug_enabled;
5186 }
5187
5188 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5189 struct cpumask *groupmask)
5190 {
5191 struct sched_group *group = sd->groups;
5192 char str[256];
5193
5194 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5195 cpumask_clear(groupmask);
5196
5197 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5198
5199 if (!(sd->flags & SD_LOAD_BALANCE)) {
5200 printk("does not load-balance\n");
5201 if (sd->parent)
5202 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5203 " has parent");
5204 return -1;
5205 }
5206
5207 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5208
5209 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5210 printk(KERN_ERR "ERROR: domain->span does not contain "
5211 "CPU%d\n", cpu);
5212 }
5213 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5214 printk(KERN_ERR "ERROR: domain->groups does not contain"
5215 " CPU%d\n", cpu);
5216 }
5217
5218 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5219 do {
5220 if (!group) {
5221 printk("\n");
5222 printk(KERN_ERR "ERROR: group is NULL\n");
5223 break;
5224 }
5225
5226 /*
5227 * Even though we initialize ->power to something semi-sane,
5228 * we leave power_orig unset. This allows us to detect if
5229 * domain iteration is still funny without causing /0 traps.
5230 */
5231 if (!group->sgp->power_orig) {
5232 printk(KERN_CONT "\n");
5233 printk(KERN_ERR "ERROR: domain->cpu_power not "
5234 "set\n");
5235 break;
5236 }
5237
5238 if (!cpumask_weight(sched_group_cpus(group))) {
5239 printk(KERN_CONT "\n");
5240 printk(KERN_ERR "ERROR: empty group\n");
5241 break;
5242 }
5243
5244 if (!(sd->flags & SD_OVERLAP) &&
5245 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5246 printk(KERN_CONT "\n");
5247 printk(KERN_ERR "ERROR: repeated CPUs\n");
5248 break;
5249 }
5250
5251 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5252
5253 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5254
5255 printk(KERN_CONT " %s", str);
5256 if (group->sgp->power != SCHED_POWER_SCALE) {
5257 printk(KERN_CONT " (cpu_power = %d)",
5258 group->sgp->power);
5259 }
5260
5261 group = group->next;
5262 } while (group != sd->groups);
5263 printk(KERN_CONT "\n");
5264
5265 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5266 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5267
5268 if (sd->parent &&
5269 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5270 printk(KERN_ERR "ERROR: parent span is not a superset "
5271 "of domain->span\n");
5272 return 0;
5273 }
5274
5275 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5276 {
5277 int level = 0;
5278
5279 if (!sched_debug_enabled)
5280 return;
5281
5282 if (!sd) {
5283 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5284 return;
5285 }
5286
5287 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5288
5289 for (;;) {
5290 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5291 break;
5292 level++;
5293 sd = sd->parent;
5294 if (!sd)
5295 break;
5296 }
5297 }
5298 #else /* !CONFIG_SCHED_DEBUG */
5299 # define sched_domain_debug(sd, cpu) do { } while (0)
5300 static inline bool sched_debug(void)
5301 {
5302 return false;
5303 }
5304 #endif /* CONFIG_SCHED_DEBUG */
5305
5306 static int sd_degenerate(struct sched_domain *sd)
5307 {
5308 if (cpumask_weight(sched_domain_span(sd)) == 1)
5309 return 1;
5310
5311 /* Following flags need at least 2 groups */
5312 if (sd->flags & (SD_LOAD_BALANCE |
5313 SD_BALANCE_NEWIDLE |
5314 SD_BALANCE_FORK |
5315 SD_BALANCE_EXEC |
5316 SD_SHARE_CPUPOWER |
5317 SD_SHARE_PKG_RESOURCES)) {
5318 if (sd->groups != sd->groups->next)
5319 return 0;
5320 }
5321
5322 /* Following flags don't use groups */
5323 if (sd->flags & (SD_WAKE_AFFINE))
5324 return 0;
5325
5326 return 1;
5327 }
5328
5329 static int
5330 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5331 {
5332 unsigned long cflags = sd->flags, pflags = parent->flags;
5333
5334 if (sd_degenerate(parent))
5335 return 1;
5336
5337 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5338 return 0;
5339
5340 /* Flags needing groups don't count if only 1 group in parent */
5341 if (parent->groups == parent->groups->next) {
5342 pflags &= ~(SD_LOAD_BALANCE |
5343 SD_BALANCE_NEWIDLE |
5344 SD_BALANCE_FORK |
5345 SD_BALANCE_EXEC |
5346 SD_SHARE_CPUPOWER |
5347 SD_SHARE_PKG_RESOURCES);
5348 if (nr_node_ids == 1)
5349 pflags &= ~SD_SERIALIZE;
5350 }
5351 if (~cflags & pflags)
5352 return 0;
5353
5354 return 1;
5355 }
5356
5357 static void free_rootdomain(struct rcu_head *rcu)
5358 {
5359 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5360
5361 cpupri_cleanup(&rd->cpupri);
5362 free_cpumask_var(rd->rto_mask);
5363 free_cpumask_var(rd->online);
5364 free_cpumask_var(rd->span);
5365 kfree(rd);
5366 }
5367
5368 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5369 {
5370 struct root_domain *old_rd = NULL;
5371 unsigned long flags;
5372
5373 raw_spin_lock_irqsave(&rq->lock, flags);
5374
5375 if (rq->rd) {
5376 old_rd = rq->rd;
5377
5378 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5379 set_rq_offline(rq);
5380
5381 cpumask_clear_cpu(rq->cpu, old_rd->span);
5382
5383 /*
5384 * If we dont want to free the old_rt yet then
5385 * set old_rd to NULL to skip the freeing later
5386 * in this function:
5387 */
5388 if (!atomic_dec_and_test(&old_rd->refcount))
5389 old_rd = NULL;
5390 }
5391
5392 atomic_inc(&rd->refcount);
5393 rq->rd = rd;
5394
5395 cpumask_set_cpu(rq->cpu, rd->span);
5396 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5397 set_rq_online(rq);
5398
5399 raw_spin_unlock_irqrestore(&rq->lock, flags);
5400
5401 if (old_rd)
5402 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5403 }
5404
5405 static int init_rootdomain(struct root_domain *rd)
5406 {
5407 memset(rd, 0, sizeof(*rd));
5408
5409 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5410 goto out;
5411 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5412 goto free_span;
5413 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5414 goto free_online;
5415
5416 if (cpupri_init(&rd->cpupri) != 0)
5417 goto free_rto_mask;
5418 return 0;
5419
5420 free_rto_mask:
5421 free_cpumask_var(rd->rto_mask);
5422 free_online:
5423 free_cpumask_var(rd->online);
5424 free_span:
5425 free_cpumask_var(rd->span);
5426 out:
5427 return -ENOMEM;
5428 }
5429
5430 /*
5431 * By default the system creates a single root-domain with all cpus as
5432 * members (mimicking the global state we have today).
5433 */
5434 struct root_domain def_root_domain;
5435
5436 static void init_defrootdomain(void)
5437 {
5438 init_rootdomain(&def_root_domain);
5439
5440 atomic_set(&def_root_domain.refcount, 1);
5441 }
5442
5443 static struct root_domain *alloc_rootdomain(void)
5444 {
5445 struct root_domain *rd;
5446
5447 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5448 if (!rd)
5449 return NULL;
5450
5451 if (init_rootdomain(rd) != 0) {
5452 kfree(rd);
5453 return NULL;
5454 }
5455
5456 return rd;
5457 }
5458
5459 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5460 {
5461 struct sched_group *tmp, *first;
5462
5463 if (!sg)
5464 return;
5465
5466 first = sg;
5467 do {
5468 tmp = sg->next;
5469
5470 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5471 kfree(sg->sgp);
5472
5473 kfree(sg);
5474 sg = tmp;
5475 } while (sg != first);
5476 }
5477
5478 static void free_sched_domain(struct rcu_head *rcu)
5479 {
5480 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5481
5482 /*
5483 * If its an overlapping domain it has private groups, iterate and
5484 * nuke them all.
5485 */
5486 if (sd->flags & SD_OVERLAP) {
5487 free_sched_groups(sd->groups, 1);
5488 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5489 kfree(sd->groups->sgp);
5490 kfree(sd->groups);
5491 }
5492 kfree(sd);
5493 }
5494
5495 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5496 {
5497 call_rcu(&sd->rcu, free_sched_domain);
5498 }
5499
5500 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5501 {
5502 for (; sd; sd = sd->parent)
5503 destroy_sched_domain(sd, cpu);
5504 }
5505
5506 /*
5507 * Keep a special pointer to the highest sched_domain that has
5508 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5509 * allows us to avoid some pointer chasing select_idle_sibling().
5510 *
5511 * Also keep a unique ID per domain (we use the first cpu number in
5512 * the cpumask of the domain), this allows us to quickly tell if
5513 * two cpus are in the same cache domain, see cpus_share_cache().
5514 */
5515 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5516 DEFINE_PER_CPU(int, sd_llc_id);
5517
5518 static void update_top_cache_domain(int cpu)
5519 {
5520 struct sched_domain *sd;
5521 int id = cpu;
5522
5523 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5524 if (sd)
5525 id = cpumask_first(sched_domain_span(sd));
5526
5527 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5528 per_cpu(sd_llc_id, cpu) = id;
5529 }
5530
5531 /*
5532 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5533 * hold the hotplug lock.
5534 */
5535 static void
5536 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5537 {
5538 struct rq *rq = cpu_rq(cpu);
5539 struct sched_domain *tmp;
5540
5541 /* Remove the sched domains which do not contribute to scheduling. */
5542 for (tmp = sd; tmp; ) {
5543 struct sched_domain *parent = tmp->parent;
5544 if (!parent)
5545 break;
5546
5547 if (sd_parent_degenerate(tmp, parent)) {
5548 tmp->parent = parent->parent;
5549 if (parent->parent)
5550 parent->parent->child = tmp;
5551 destroy_sched_domain(parent, cpu);
5552 } else
5553 tmp = tmp->parent;
5554 }
5555
5556 if (sd && sd_degenerate(sd)) {
5557 tmp = sd;
5558 sd = sd->parent;
5559 destroy_sched_domain(tmp, cpu);
5560 if (sd)
5561 sd->child = NULL;
5562 }
5563
5564 sched_domain_debug(sd, cpu);
5565
5566 rq_attach_root(rq, rd);
5567 tmp = rq->sd;
5568 rcu_assign_pointer(rq->sd, sd);
5569 destroy_sched_domains(tmp, cpu);
5570
5571 update_top_cache_domain(cpu);
5572 }
5573
5574 /* cpus with isolated domains */
5575 static cpumask_var_t cpu_isolated_map;
5576
5577 /* Setup the mask of cpus configured for isolated domains */
5578 static int __init isolated_cpu_setup(char *str)
5579 {
5580 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5581 cpulist_parse(str, cpu_isolated_map);
5582 return 1;
5583 }
5584
5585 __setup("isolcpus=", isolated_cpu_setup);
5586
5587 static const struct cpumask *cpu_cpu_mask(int cpu)
5588 {
5589 return cpumask_of_node(cpu_to_node(cpu));
5590 }
5591
5592 struct sd_data {
5593 struct sched_domain **__percpu sd;
5594 struct sched_group **__percpu sg;
5595 struct sched_group_power **__percpu sgp;
5596 };
5597
5598 struct s_data {
5599 struct sched_domain ** __percpu sd;
5600 struct root_domain *rd;
5601 };
5602
5603 enum s_alloc {
5604 sa_rootdomain,
5605 sa_sd,
5606 sa_sd_storage,
5607 sa_none,
5608 };
5609
5610 struct sched_domain_topology_level;
5611
5612 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5613 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5614
5615 #define SDTL_OVERLAP 0x01
5616
5617 struct sched_domain_topology_level {
5618 sched_domain_init_f init;
5619 sched_domain_mask_f mask;
5620 int flags;
5621 int numa_level;
5622 struct sd_data data;
5623 };
5624
5625 /*
5626 * Build an iteration mask that can exclude certain CPUs from the upwards
5627 * domain traversal.
5628 *
5629 * Asymmetric node setups can result in situations where the domain tree is of
5630 * unequal depth, make sure to skip domains that already cover the entire
5631 * range.
5632 *
5633 * In that case build_sched_domains() will have terminated the iteration early
5634 * and our sibling sd spans will be empty. Domains should always include the
5635 * cpu they're built on, so check that.
5636 *
5637 */
5638 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5639 {
5640 const struct cpumask *span = sched_domain_span(sd);
5641 struct sd_data *sdd = sd->private;
5642 struct sched_domain *sibling;
5643 int i;
5644
5645 for_each_cpu(i, span) {
5646 sibling = *per_cpu_ptr(sdd->sd, i);
5647 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5648 continue;
5649
5650 cpumask_set_cpu(i, sched_group_mask(sg));
5651 }
5652 }
5653
5654 /*
5655 * Return the canonical balance cpu for this group, this is the first cpu
5656 * of this group that's also in the iteration mask.
5657 */
5658 int group_balance_cpu(struct sched_group *sg)
5659 {
5660 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5661 }
5662
5663 static int
5664 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5665 {
5666 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5667 const struct cpumask *span = sched_domain_span(sd);
5668 struct cpumask *covered = sched_domains_tmpmask;
5669 struct sd_data *sdd = sd->private;
5670 struct sched_domain *child;
5671 int i;
5672
5673 cpumask_clear(covered);
5674
5675 for_each_cpu(i, span) {
5676 struct cpumask *sg_span;
5677
5678 if (cpumask_test_cpu(i, covered))
5679 continue;
5680
5681 child = *per_cpu_ptr(sdd->sd, i);
5682
5683 /* See the comment near build_group_mask(). */
5684 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5685 continue;
5686
5687 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5688 GFP_KERNEL, cpu_to_node(cpu));
5689
5690 if (!sg)
5691 goto fail;
5692
5693 sg_span = sched_group_cpus(sg);
5694 if (child->child) {
5695 child = child->child;
5696 cpumask_copy(sg_span, sched_domain_span(child));
5697 } else
5698 cpumask_set_cpu(i, sg_span);
5699
5700 cpumask_or(covered, covered, sg_span);
5701
5702 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5703 if (atomic_inc_return(&sg->sgp->ref) == 1)
5704 build_group_mask(sd, sg);
5705
5706 /*
5707 * Initialize sgp->power such that even if we mess up the
5708 * domains and no possible iteration will get us here, we won't
5709 * die on a /0 trap.
5710 */
5711 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5712
5713 /*
5714 * Make sure the first group of this domain contains the
5715 * canonical balance cpu. Otherwise the sched_domain iteration
5716 * breaks. See update_sg_lb_stats().
5717 */
5718 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5719 group_balance_cpu(sg) == cpu)
5720 groups = sg;
5721
5722 if (!first)
5723 first = sg;
5724 if (last)
5725 last->next = sg;
5726 last = sg;
5727 last->next = first;
5728 }
5729 sd->groups = groups;
5730
5731 return 0;
5732
5733 fail:
5734 free_sched_groups(first, 0);
5735
5736 return -ENOMEM;
5737 }
5738
5739 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5740 {
5741 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5742 struct sched_domain *child = sd->child;
5743
5744 if (child)
5745 cpu = cpumask_first(sched_domain_span(child));
5746
5747 if (sg) {
5748 *sg = *per_cpu_ptr(sdd->sg, cpu);
5749 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5750 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5751 }
5752
5753 return cpu;
5754 }
5755
5756 /*
5757 * build_sched_groups will build a circular linked list of the groups
5758 * covered by the given span, and will set each group's ->cpumask correctly,
5759 * and ->cpu_power to 0.
5760 *
5761 * Assumes the sched_domain tree is fully constructed
5762 */
5763 static int
5764 build_sched_groups(struct sched_domain *sd, int cpu)
5765 {
5766 struct sched_group *first = NULL, *last = NULL;
5767 struct sd_data *sdd = sd->private;
5768 const struct cpumask *span = sched_domain_span(sd);
5769 struct cpumask *covered;
5770 int i;
5771
5772 get_group(cpu, sdd, &sd->groups);
5773 atomic_inc(&sd->groups->ref);
5774
5775 if (cpu != cpumask_first(sched_domain_span(sd)))
5776 return 0;
5777
5778 lockdep_assert_held(&sched_domains_mutex);
5779 covered = sched_domains_tmpmask;
5780
5781 cpumask_clear(covered);
5782
5783 for_each_cpu(i, span) {
5784 struct sched_group *sg;
5785 int group = get_group(i, sdd, &sg);
5786 int j;
5787
5788 if (cpumask_test_cpu(i, covered))
5789 continue;
5790
5791 cpumask_clear(sched_group_cpus(sg));
5792 sg->sgp->power = 0;
5793 cpumask_setall(sched_group_mask(sg));
5794
5795 for_each_cpu(j, span) {
5796 if (get_group(j, sdd, NULL) != group)
5797 continue;
5798
5799 cpumask_set_cpu(j, covered);
5800 cpumask_set_cpu(j, sched_group_cpus(sg));
5801 }
5802
5803 if (!first)
5804 first = sg;
5805 if (last)
5806 last->next = sg;
5807 last = sg;
5808 }
5809 last->next = first;
5810
5811 return 0;
5812 }
5813
5814 /*
5815 * Initialize sched groups cpu_power.
5816 *
5817 * cpu_power indicates the capacity of sched group, which is used while
5818 * distributing the load between different sched groups in a sched domain.
5819 * Typically cpu_power for all the groups in a sched domain will be same unless
5820 * there are asymmetries in the topology. If there are asymmetries, group
5821 * having more cpu_power will pickup more load compared to the group having
5822 * less cpu_power.
5823 */
5824 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5825 {
5826 struct sched_group *sg = sd->groups;
5827
5828 WARN_ON(!sd || !sg);
5829
5830 do {
5831 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5832 sg = sg->next;
5833 } while (sg != sd->groups);
5834
5835 if (cpu != group_balance_cpu(sg))
5836 return;
5837
5838 update_group_power(sd, cpu);
5839 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5840 }
5841
5842 int __weak arch_sd_sibling_asym_packing(void)
5843 {
5844 return 0*SD_ASYM_PACKING;
5845 }
5846
5847 /*
5848 * Initializers for schedule domains
5849 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5850 */
5851
5852 #ifdef CONFIG_SCHED_DEBUG
5853 # define SD_INIT_NAME(sd, type) sd->name = #type
5854 #else
5855 # define SD_INIT_NAME(sd, type) do { } while (0)
5856 #endif
5857
5858 #define SD_INIT_FUNC(type) \
5859 static noinline struct sched_domain * \
5860 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5861 { \
5862 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5863 *sd = SD_##type##_INIT; \
5864 SD_INIT_NAME(sd, type); \
5865 sd->private = &tl->data; \
5866 return sd; \
5867 }
5868
5869 SD_INIT_FUNC(CPU)
5870 #ifdef CONFIG_SCHED_SMT
5871 SD_INIT_FUNC(SIBLING)
5872 #endif
5873 #ifdef CONFIG_SCHED_MC
5874 SD_INIT_FUNC(MC)
5875 #endif
5876 #ifdef CONFIG_SCHED_BOOK
5877 SD_INIT_FUNC(BOOK)
5878 #endif
5879
5880 static int default_relax_domain_level = -1;
5881 int sched_domain_level_max;
5882
5883 static int __init setup_relax_domain_level(char *str)
5884 {
5885 if (kstrtoint(str, 0, &default_relax_domain_level))
5886 pr_warn("Unable to set relax_domain_level\n");
5887
5888 return 1;
5889 }
5890 __setup("relax_domain_level=", setup_relax_domain_level);
5891
5892 static void set_domain_attribute(struct sched_domain *sd,
5893 struct sched_domain_attr *attr)
5894 {
5895 int request;
5896
5897 if (!attr || attr->relax_domain_level < 0) {
5898 if (default_relax_domain_level < 0)
5899 return;
5900 else
5901 request = default_relax_domain_level;
5902 } else
5903 request = attr->relax_domain_level;
5904 if (request < sd->level) {
5905 /* turn off idle balance on this domain */
5906 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5907 } else {
5908 /* turn on idle balance on this domain */
5909 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5910 }
5911 }
5912
5913 static void __sdt_free(const struct cpumask *cpu_map);
5914 static int __sdt_alloc(const struct cpumask *cpu_map);
5915
5916 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5917 const struct cpumask *cpu_map)
5918 {
5919 switch (what) {
5920 case sa_rootdomain:
5921 if (!atomic_read(&d->rd->refcount))
5922 free_rootdomain(&d->rd->rcu); /* fall through */
5923 case sa_sd:
5924 free_percpu(d->sd); /* fall through */
5925 case sa_sd_storage:
5926 __sdt_free(cpu_map); /* fall through */
5927 case sa_none:
5928 break;
5929 }
5930 }
5931
5932 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5933 const struct cpumask *cpu_map)
5934 {
5935 memset(d, 0, sizeof(*d));
5936
5937 if (__sdt_alloc(cpu_map))
5938 return sa_sd_storage;
5939 d->sd = alloc_percpu(struct sched_domain *);
5940 if (!d->sd)
5941 return sa_sd_storage;
5942 d->rd = alloc_rootdomain();
5943 if (!d->rd)
5944 return sa_sd;
5945 return sa_rootdomain;
5946 }
5947
5948 /*
5949 * NULL the sd_data elements we've used to build the sched_domain and
5950 * sched_group structure so that the subsequent __free_domain_allocs()
5951 * will not free the data we're using.
5952 */
5953 static void claim_allocations(int cpu, struct sched_domain *sd)
5954 {
5955 struct sd_data *sdd = sd->private;
5956
5957 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5958 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5959
5960 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5961 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5962
5963 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5964 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5965 }
5966
5967 #ifdef CONFIG_SCHED_SMT
5968 static const struct cpumask *cpu_smt_mask(int cpu)
5969 {
5970 return topology_thread_cpumask(cpu);
5971 }
5972 #endif
5973
5974 /*
5975 * Topology list, bottom-up.
5976 */
5977 static struct sched_domain_topology_level default_topology[] = {
5978 #ifdef CONFIG_SCHED_SMT
5979 { sd_init_SIBLING, cpu_smt_mask, },
5980 #endif
5981 #ifdef CONFIG_SCHED_MC
5982 { sd_init_MC, cpu_coregroup_mask, },
5983 #endif
5984 #ifdef CONFIG_SCHED_BOOK
5985 { sd_init_BOOK, cpu_book_mask, },
5986 #endif
5987 { sd_init_CPU, cpu_cpu_mask, },
5988 { NULL, },
5989 };
5990
5991 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5992
5993 #ifdef CONFIG_NUMA
5994
5995 static int sched_domains_numa_levels;
5996 static int *sched_domains_numa_distance;
5997 static struct cpumask ***sched_domains_numa_masks;
5998 static int sched_domains_curr_level;
5999
6000 static inline int sd_local_flags(int level)
6001 {
6002 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6003 return 0;
6004
6005 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6006 }
6007
6008 static struct sched_domain *
6009 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6010 {
6011 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6012 int level = tl->numa_level;
6013 int sd_weight = cpumask_weight(
6014 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6015
6016 *sd = (struct sched_domain){
6017 .min_interval = sd_weight,
6018 .max_interval = 2*sd_weight,
6019 .busy_factor = 32,
6020 .imbalance_pct = 125,
6021 .cache_nice_tries = 2,
6022 .busy_idx = 3,
6023 .idle_idx = 2,
6024 .newidle_idx = 0,
6025 .wake_idx = 0,
6026 .forkexec_idx = 0,
6027
6028 .flags = 1*SD_LOAD_BALANCE
6029 | 1*SD_BALANCE_NEWIDLE
6030 | 0*SD_BALANCE_EXEC
6031 | 0*SD_BALANCE_FORK
6032 | 0*SD_BALANCE_WAKE
6033 | 0*SD_WAKE_AFFINE
6034 | 0*SD_SHARE_CPUPOWER
6035 | 0*SD_SHARE_PKG_RESOURCES
6036 | 1*SD_SERIALIZE
6037 | 0*SD_PREFER_SIBLING
6038 | sd_local_flags(level)
6039 ,
6040 .last_balance = jiffies,
6041 .balance_interval = sd_weight,
6042 };
6043 SD_INIT_NAME(sd, NUMA);
6044 sd->private = &tl->data;
6045
6046 /*
6047 * Ugly hack to pass state to sd_numa_mask()...
6048 */
6049 sched_domains_curr_level = tl->numa_level;
6050
6051 return sd;
6052 }
6053
6054 static const struct cpumask *sd_numa_mask(int cpu)
6055 {
6056 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6057 }
6058
6059 static void sched_numa_warn(const char *str)
6060 {
6061 static int done = false;
6062 int i,j;
6063
6064 if (done)
6065 return;
6066
6067 done = true;
6068
6069 printk(KERN_WARNING "ERROR: %s\n\n", str);
6070
6071 for (i = 0; i < nr_node_ids; i++) {
6072 printk(KERN_WARNING " ");
6073 for (j = 0; j < nr_node_ids; j++)
6074 printk(KERN_CONT "%02d ", node_distance(i,j));
6075 printk(KERN_CONT "\n");
6076 }
6077 printk(KERN_WARNING "\n");
6078 }
6079
6080 static bool find_numa_distance(int distance)
6081 {
6082 int i;
6083
6084 if (distance == node_distance(0, 0))
6085 return true;
6086
6087 for (i = 0; i < sched_domains_numa_levels; i++) {
6088 if (sched_domains_numa_distance[i] == distance)
6089 return true;
6090 }
6091
6092 return false;
6093 }
6094
6095 static void sched_init_numa(void)
6096 {
6097 int next_distance, curr_distance = node_distance(0, 0);
6098 struct sched_domain_topology_level *tl;
6099 int level = 0;
6100 int i, j, k;
6101
6102 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6103 if (!sched_domains_numa_distance)
6104 return;
6105
6106 /*
6107 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6108 * unique distances in the node_distance() table.
6109 *
6110 * Assumes node_distance(0,j) includes all distances in
6111 * node_distance(i,j) in order to avoid cubic time.
6112 */
6113 next_distance = curr_distance;
6114 for (i = 0; i < nr_node_ids; i++) {
6115 for (j = 0; j < nr_node_ids; j++) {
6116 for (k = 0; k < nr_node_ids; k++) {
6117 int distance = node_distance(i, k);
6118
6119 if (distance > curr_distance &&
6120 (distance < next_distance ||
6121 next_distance == curr_distance))
6122 next_distance = distance;
6123
6124 /*
6125 * While not a strong assumption it would be nice to know
6126 * about cases where if node A is connected to B, B is not
6127 * equally connected to A.
6128 */
6129 if (sched_debug() && node_distance(k, i) != distance)
6130 sched_numa_warn("Node-distance not symmetric");
6131
6132 if (sched_debug() && i && !find_numa_distance(distance))
6133 sched_numa_warn("Node-0 not representative");
6134 }
6135 if (next_distance != curr_distance) {
6136 sched_domains_numa_distance[level++] = next_distance;
6137 sched_domains_numa_levels = level;
6138 curr_distance = next_distance;
6139 } else break;
6140 }
6141
6142 /*
6143 * In case of sched_debug() we verify the above assumption.
6144 */
6145 if (!sched_debug())
6146 break;
6147 }
6148 /*
6149 * 'level' contains the number of unique distances, excluding the
6150 * identity distance node_distance(i,i).
6151 *
6152 * The sched_domains_nume_distance[] array includes the actual distance
6153 * numbers.
6154 */
6155
6156 /*
6157 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6158 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6159 * the array will contain less then 'level' members. This could be
6160 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6161 * in other functions.
6162 *
6163 * We reset it to 'level' at the end of this function.
6164 */
6165 sched_domains_numa_levels = 0;
6166
6167 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6168 if (!sched_domains_numa_masks)
6169 return;
6170
6171 /*
6172 * Now for each level, construct a mask per node which contains all
6173 * cpus of nodes that are that many hops away from us.
6174 */
6175 for (i = 0; i < level; i++) {
6176 sched_domains_numa_masks[i] =
6177 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6178 if (!sched_domains_numa_masks[i])
6179 return;
6180
6181 for (j = 0; j < nr_node_ids; j++) {
6182 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6183 if (!mask)
6184 return;
6185
6186 sched_domains_numa_masks[i][j] = mask;
6187
6188 for (k = 0; k < nr_node_ids; k++) {
6189 if (node_distance(j, k) > sched_domains_numa_distance[i])
6190 continue;
6191
6192 cpumask_or(mask, mask, cpumask_of_node(k));
6193 }
6194 }
6195 }
6196
6197 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6198 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6199 if (!tl)
6200 return;
6201
6202 /*
6203 * Copy the default topology bits..
6204 */
6205 for (i = 0; default_topology[i].init; i++)
6206 tl[i] = default_topology[i];
6207
6208 /*
6209 * .. and append 'j' levels of NUMA goodness.
6210 */
6211 for (j = 0; j < level; i++, j++) {
6212 tl[i] = (struct sched_domain_topology_level){
6213 .init = sd_numa_init,
6214 .mask = sd_numa_mask,
6215 .flags = SDTL_OVERLAP,
6216 .numa_level = j,
6217 };
6218 }
6219
6220 sched_domain_topology = tl;
6221
6222 sched_domains_numa_levels = level;
6223 }
6224
6225 static void sched_domains_numa_masks_set(int cpu)
6226 {
6227 int i, j;
6228 int node = cpu_to_node(cpu);
6229
6230 for (i = 0; i < sched_domains_numa_levels; i++) {
6231 for (j = 0; j < nr_node_ids; j++) {
6232 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6233 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6234 }
6235 }
6236 }
6237
6238 static void sched_domains_numa_masks_clear(int cpu)
6239 {
6240 int i, j;
6241 for (i = 0; i < sched_domains_numa_levels; i++) {
6242 for (j = 0; j < nr_node_ids; j++)
6243 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6244 }
6245 }
6246
6247 /*
6248 * Update sched_domains_numa_masks[level][node] array when new cpus
6249 * are onlined.
6250 */
6251 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6252 unsigned long action,
6253 void *hcpu)
6254 {
6255 int cpu = (long)hcpu;
6256
6257 switch (action & ~CPU_TASKS_FROZEN) {
6258 case CPU_ONLINE:
6259 sched_domains_numa_masks_set(cpu);
6260 break;
6261
6262 case CPU_DEAD:
6263 sched_domains_numa_masks_clear(cpu);
6264 break;
6265
6266 default:
6267 return NOTIFY_DONE;
6268 }
6269
6270 return NOTIFY_OK;
6271 }
6272 #else
6273 static inline void sched_init_numa(void)
6274 {
6275 }
6276
6277 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6278 unsigned long action,
6279 void *hcpu)
6280 {
6281 return 0;
6282 }
6283 #endif /* CONFIG_NUMA */
6284
6285 static int __sdt_alloc(const struct cpumask *cpu_map)
6286 {
6287 struct sched_domain_topology_level *tl;
6288 int j;
6289
6290 for (tl = sched_domain_topology; tl->init; tl++) {
6291 struct sd_data *sdd = &tl->data;
6292
6293 sdd->sd = alloc_percpu(struct sched_domain *);
6294 if (!sdd->sd)
6295 return -ENOMEM;
6296
6297 sdd->sg = alloc_percpu(struct sched_group *);
6298 if (!sdd->sg)
6299 return -ENOMEM;
6300
6301 sdd->sgp = alloc_percpu(struct sched_group_power *);
6302 if (!sdd->sgp)
6303 return -ENOMEM;
6304
6305 for_each_cpu(j, cpu_map) {
6306 struct sched_domain *sd;
6307 struct sched_group *sg;
6308 struct sched_group_power *sgp;
6309
6310 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6311 GFP_KERNEL, cpu_to_node(j));
6312 if (!sd)
6313 return -ENOMEM;
6314
6315 *per_cpu_ptr(sdd->sd, j) = sd;
6316
6317 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6318 GFP_KERNEL, cpu_to_node(j));
6319 if (!sg)
6320 return -ENOMEM;
6321
6322 sg->next = sg;
6323
6324 *per_cpu_ptr(sdd->sg, j) = sg;
6325
6326 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6327 GFP_KERNEL, cpu_to_node(j));
6328 if (!sgp)
6329 return -ENOMEM;
6330
6331 *per_cpu_ptr(sdd->sgp, j) = sgp;
6332 }
6333 }
6334
6335 return 0;
6336 }
6337
6338 static void __sdt_free(const struct cpumask *cpu_map)
6339 {
6340 struct sched_domain_topology_level *tl;
6341 int j;
6342
6343 for (tl = sched_domain_topology; tl->init; tl++) {
6344 struct sd_data *sdd = &tl->data;
6345
6346 for_each_cpu(j, cpu_map) {
6347 struct sched_domain *sd;
6348
6349 if (sdd->sd) {
6350 sd = *per_cpu_ptr(sdd->sd, j);
6351 if (sd && (sd->flags & SD_OVERLAP))
6352 free_sched_groups(sd->groups, 0);
6353 kfree(*per_cpu_ptr(sdd->sd, j));
6354 }
6355
6356 if (sdd->sg)
6357 kfree(*per_cpu_ptr(sdd->sg, j));
6358 if (sdd->sgp)
6359 kfree(*per_cpu_ptr(sdd->sgp, j));
6360 }
6361 free_percpu(sdd->sd);
6362 sdd->sd = NULL;
6363 free_percpu(sdd->sg);
6364 sdd->sg = NULL;
6365 free_percpu(sdd->sgp);
6366 sdd->sgp = NULL;
6367 }
6368 }
6369
6370 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6371 struct s_data *d, const struct cpumask *cpu_map,
6372 struct sched_domain_attr *attr, struct sched_domain *child,
6373 int cpu)
6374 {
6375 struct sched_domain *sd = tl->init(tl, cpu);
6376 if (!sd)
6377 return child;
6378
6379 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6380 if (child) {
6381 sd->level = child->level + 1;
6382 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6383 child->parent = sd;
6384 }
6385 sd->child = child;
6386 set_domain_attribute(sd, attr);
6387
6388 return sd;
6389 }
6390
6391 /*
6392 * Build sched domains for a given set of cpus and attach the sched domains
6393 * to the individual cpus
6394 */
6395 static int build_sched_domains(const struct cpumask *cpu_map,
6396 struct sched_domain_attr *attr)
6397 {
6398 enum s_alloc alloc_state = sa_none;
6399 struct sched_domain *sd;
6400 struct s_data d;
6401 int i, ret = -ENOMEM;
6402
6403 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6404 if (alloc_state != sa_rootdomain)
6405 goto error;
6406
6407 /* Set up domains for cpus specified by the cpu_map. */
6408 for_each_cpu(i, cpu_map) {
6409 struct sched_domain_topology_level *tl;
6410
6411 sd = NULL;
6412 for (tl = sched_domain_topology; tl->init; tl++) {
6413 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6414 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6415 sd->flags |= SD_OVERLAP;
6416 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6417 break;
6418 }
6419
6420 while (sd->child)
6421 sd = sd->child;
6422
6423 *per_cpu_ptr(d.sd, i) = sd;
6424 }
6425
6426 /* Build the groups for the domains */
6427 for_each_cpu(i, cpu_map) {
6428 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6429 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6430 if (sd->flags & SD_OVERLAP) {
6431 if (build_overlap_sched_groups(sd, i))
6432 goto error;
6433 } else {
6434 if (build_sched_groups(sd, i))
6435 goto error;
6436 }
6437 }
6438 }
6439
6440 /* Calculate CPU power for physical packages and nodes */
6441 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6442 if (!cpumask_test_cpu(i, cpu_map))
6443 continue;
6444
6445 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6446 claim_allocations(i, sd);
6447 init_sched_groups_power(i, sd);
6448 }
6449 }
6450
6451 /* Attach the domains */
6452 rcu_read_lock();
6453 for_each_cpu(i, cpu_map) {
6454 sd = *per_cpu_ptr(d.sd, i);
6455 cpu_attach_domain(sd, d.rd, i);
6456 }
6457 rcu_read_unlock();
6458
6459 ret = 0;
6460 error:
6461 __free_domain_allocs(&d, alloc_state, cpu_map);
6462 return ret;
6463 }
6464
6465 static cpumask_var_t *doms_cur; /* current sched domains */
6466 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6467 static struct sched_domain_attr *dattr_cur;
6468 /* attribues of custom domains in 'doms_cur' */
6469
6470 /*
6471 * Special case: If a kmalloc of a doms_cur partition (array of
6472 * cpumask) fails, then fallback to a single sched domain,
6473 * as determined by the single cpumask fallback_doms.
6474 */
6475 static cpumask_var_t fallback_doms;
6476
6477 /*
6478 * arch_update_cpu_topology lets virtualized architectures update the
6479 * cpu core maps. It is supposed to return 1 if the topology changed
6480 * or 0 if it stayed the same.
6481 */
6482 int __attribute__((weak)) arch_update_cpu_topology(void)
6483 {
6484 return 0;
6485 }
6486
6487 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6488 {
6489 int i;
6490 cpumask_var_t *doms;
6491
6492 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6493 if (!doms)
6494 return NULL;
6495 for (i = 0; i < ndoms; i++) {
6496 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6497 free_sched_domains(doms, i);
6498 return NULL;
6499 }
6500 }
6501 return doms;
6502 }
6503
6504 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6505 {
6506 unsigned int i;
6507 for (i = 0; i < ndoms; i++)
6508 free_cpumask_var(doms[i]);
6509 kfree(doms);
6510 }
6511
6512 /*
6513 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6514 * For now this just excludes isolated cpus, but could be used to
6515 * exclude other special cases in the future.
6516 */
6517 static int init_sched_domains(const struct cpumask *cpu_map)
6518 {
6519 int err;
6520
6521 arch_update_cpu_topology();
6522 ndoms_cur = 1;
6523 doms_cur = alloc_sched_domains(ndoms_cur);
6524 if (!doms_cur)
6525 doms_cur = &fallback_doms;
6526 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6527 err = build_sched_domains(doms_cur[0], NULL);
6528 register_sched_domain_sysctl();
6529
6530 return err;
6531 }
6532
6533 /*
6534 * Detach sched domains from a group of cpus specified in cpu_map
6535 * These cpus will now be attached to the NULL domain
6536 */
6537 static void detach_destroy_domains(const struct cpumask *cpu_map)
6538 {
6539 int i;
6540
6541 rcu_read_lock();
6542 for_each_cpu(i, cpu_map)
6543 cpu_attach_domain(NULL, &def_root_domain, i);
6544 rcu_read_unlock();
6545 }
6546
6547 /* handle null as "default" */
6548 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6549 struct sched_domain_attr *new, int idx_new)
6550 {
6551 struct sched_domain_attr tmp;
6552
6553 /* fast path */
6554 if (!new && !cur)
6555 return 1;
6556
6557 tmp = SD_ATTR_INIT;
6558 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6559 new ? (new + idx_new) : &tmp,
6560 sizeof(struct sched_domain_attr));
6561 }
6562
6563 /*
6564 * Partition sched domains as specified by the 'ndoms_new'
6565 * cpumasks in the array doms_new[] of cpumasks. This compares
6566 * doms_new[] to the current sched domain partitioning, doms_cur[].
6567 * It destroys each deleted domain and builds each new domain.
6568 *
6569 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6570 * The masks don't intersect (don't overlap.) We should setup one
6571 * sched domain for each mask. CPUs not in any of the cpumasks will
6572 * not be load balanced. If the same cpumask appears both in the
6573 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6574 * it as it is.
6575 *
6576 * The passed in 'doms_new' should be allocated using
6577 * alloc_sched_domains. This routine takes ownership of it and will
6578 * free_sched_domains it when done with it. If the caller failed the
6579 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6580 * and partition_sched_domains() will fallback to the single partition
6581 * 'fallback_doms', it also forces the domains to be rebuilt.
6582 *
6583 * If doms_new == NULL it will be replaced with cpu_online_mask.
6584 * ndoms_new == 0 is a special case for destroying existing domains,
6585 * and it will not create the default domain.
6586 *
6587 * Call with hotplug lock held
6588 */
6589 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6590 struct sched_domain_attr *dattr_new)
6591 {
6592 int i, j, n;
6593 int new_topology;
6594
6595 mutex_lock(&sched_domains_mutex);
6596
6597 /* always unregister in case we don't destroy any domains */
6598 unregister_sched_domain_sysctl();
6599
6600 /* Let architecture update cpu core mappings. */
6601 new_topology = arch_update_cpu_topology();
6602
6603 n = doms_new ? ndoms_new : 0;
6604
6605 /* Destroy deleted domains */
6606 for (i = 0; i < ndoms_cur; i++) {
6607 for (j = 0; j < n && !new_topology; j++) {
6608 if (cpumask_equal(doms_cur[i], doms_new[j])
6609 && dattrs_equal(dattr_cur, i, dattr_new, j))
6610 goto match1;
6611 }
6612 /* no match - a current sched domain not in new doms_new[] */
6613 detach_destroy_domains(doms_cur[i]);
6614 match1:
6615 ;
6616 }
6617
6618 if (doms_new == NULL) {
6619 ndoms_cur = 0;
6620 doms_new = &fallback_doms;
6621 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6622 WARN_ON_ONCE(dattr_new);
6623 }
6624
6625 /* Build new domains */
6626 for (i = 0; i < ndoms_new; i++) {
6627 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6628 if (cpumask_equal(doms_new[i], doms_cur[j])
6629 && dattrs_equal(dattr_new, i, dattr_cur, j))
6630 goto match2;
6631 }
6632 /* no match - add a new doms_new */
6633 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6634 match2:
6635 ;
6636 }
6637
6638 /* Remember the new sched domains */
6639 if (doms_cur != &fallback_doms)
6640 free_sched_domains(doms_cur, ndoms_cur);
6641 kfree(dattr_cur); /* kfree(NULL) is safe */
6642 doms_cur = doms_new;
6643 dattr_cur = dattr_new;
6644 ndoms_cur = ndoms_new;
6645
6646 register_sched_domain_sysctl();
6647
6648 mutex_unlock(&sched_domains_mutex);
6649 }
6650
6651 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6652
6653 /*
6654 * Update cpusets according to cpu_active mask. If cpusets are
6655 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6656 * around partition_sched_domains().
6657 *
6658 * If we come here as part of a suspend/resume, don't touch cpusets because we
6659 * want to restore it back to its original state upon resume anyway.
6660 */
6661 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6662 void *hcpu)
6663 {
6664 switch (action) {
6665 case CPU_ONLINE_FROZEN:
6666 case CPU_DOWN_FAILED_FROZEN:
6667
6668 /*
6669 * num_cpus_frozen tracks how many CPUs are involved in suspend
6670 * resume sequence. As long as this is not the last online
6671 * operation in the resume sequence, just build a single sched
6672 * domain, ignoring cpusets.
6673 */
6674 num_cpus_frozen--;
6675 if (likely(num_cpus_frozen)) {
6676 partition_sched_domains(1, NULL, NULL);
6677 break;
6678 }
6679
6680 /*
6681 * This is the last CPU online operation. So fall through and
6682 * restore the original sched domains by considering the
6683 * cpuset configurations.
6684 */
6685
6686 case CPU_ONLINE:
6687 case CPU_DOWN_FAILED:
6688 cpuset_update_active_cpus(true);
6689 break;
6690 default:
6691 return NOTIFY_DONE;
6692 }
6693 return NOTIFY_OK;
6694 }
6695
6696 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6697 void *hcpu)
6698 {
6699 switch (action) {
6700 case CPU_DOWN_PREPARE:
6701 cpuset_update_active_cpus(false);
6702 break;
6703 case CPU_DOWN_PREPARE_FROZEN:
6704 num_cpus_frozen++;
6705 partition_sched_domains(1, NULL, NULL);
6706 break;
6707 default:
6708 return NOTIFY_DONE;
6709 }
6710 return NOTIFY_OK;
6711 }
6712
6713 void __init sched_init_smp(void)
6714 {
6715 cpumask_var_t non_isolated_cpus;
6716
6717 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6718 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6719
6720 sched_init_numa();
6721
6722 get_online_cpus();
6723 mutex_lock(&sched_domains_mutex);
6724 init_sched_domains(cpu_active_mask);
6725 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6726 if (cpumask_empty(non_isolated_cpus))
6727 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6728 mutex_unlock(&sched_domains_mutex);
6729 put_online_cpus();
6730
6731 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6732 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6733 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6734
6735 /* RT runtime code needs to handle some hotplug events */
6736 hotcpu_notifier(update_runtime, 0);
6737
6738 init_hrtick();
6739
6740 /* Move init over to a non-isolated CPU */
6741 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6742 BUG();
6743 sched_init_granularity();
6744 free_cpumask_var(non_isolated_cpus);
6745
6746 init_sched_rt_class();
6747 }
6748 #else
6749 void __init sched_init_smp(void)
6750 {
6751 sched_init_granularity();
6752 }
6753 #endif /* CONFIG_SMP */
6754
6755 const_debug unsigned int sysctl_timer_migration = 1;
6756
6757 int in_sched_functions(unsigned long addr)
6758 {
6759 return in_lock_functions(addr) ||
6760 (addr >= (unsigned long)__sched_text_start
6761 && addr < (unsigned long)__sched_text_end);
6762 }
6763
6764 #ifdef CONFIG_CGROUP_SCHED
6765 struct task_group root_task_group;
6766 LIST_HEAD(task_groups);
6767 #endif
6768
6769 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6770
6771 void __init sched_init(void)
6772 {
6773 int i, j;
6774 unsigned long alloc_size = 0, ptr;
6775
6776 #ifdef CONFIG_FAIR_GROUP_SCHED
6777 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6778 #endif
6779 #ifdef CONFIG_RT_GROUP_SCHED
6780 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6781 #endif
6782 #ifdef CONFIG_CPUMASK_OFFSTACK
6783 alloc_size += num_possible_cpus() * cpumask_size();
6784 #endif
6785 if (alloc_size) {
6786 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6787
6788 #ifdef CONFIG_FAIR_GROUP_SCHED
6789 root_task_group.se = (struct sched_entity **)ptr;
6790 ptr += nr_cpu_ids * sizeof(void **);
6791
6792 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6793 ptr += nr_cpu_ids * sizeof(void **);
6794
6795 #endif /* CONFIG_FAIR_GROUP_SCHED */
6796 #ifdef CONFIG_RT_GROUP_SCHED
6797 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6798 ptr += nr_cpu_ids * sizeof(void **);
6799
6800 root_task_group.rt_rq = (struct rt_rq **)ptr;
6801 ptr += nr_cpu_ids * sizeof(void **);
6802
6803 #endif /* CONFIG_RT_GROUP_SCHED */
6804 #ifdef CONFIG_CPUMASK_OFFSTACK
6805 for_each_possible_cpu(i) {
6806 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6807 ptr += cpumask_size();
6808 }
6809 #endif /* CONFIG_CPUMASK_OFFSTACK */
6810 }
6811
6812 #ifdef CONFIG_SMP
6813 init_defrootdomain();
6814 #endif
6815
6816 init_rt_bandwidth(&def_rt_bandwidth,
6817 global_rt_period(), global_rt_runtime());
6818
6819 #ifdef CONFIG_RT_GROUP_SCHED
6820 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6821 global_rt_period(), global_rt_runtime());
6822 #endif /* CONFIG_RT_GROUP_SCHED */
6823
6824 #ifdef CONFIG_CGROUP_SCHED
6825 list_add(&root_task_group.list, &task_groups);
6826 INIT_LIST_HEAD(&root_task_group.children);
6827 INIT_LIST_HEAD(&root_task_group.siblings);
6828 autogroup_init(&init_task);
6829
6830 #endif /* CONFIG_CGROUP_SCHED */
6831
6832 #ifdef CONFIG_CGROUP_CPUACCT
6833 root_cpuacct.cpustat = &kernel_cpustat;
6834 root_cpuacct.cpuusage = alloc_percpu(u64);
6835 /* Too early, not expected to fail */
6836 BUG_ON(!root_cpuacct.cpuusage);
6837 #endif
6838 for_each_possible_cpu(i) {
6839 struct rq *rq;
6840
6841 rq = cpu_rq(i);
6842 raw_spin_lock_init(&rq->lock);
6843 rq->nr_running = 0;
6844 rq->calc_load_active = 0;
6845 rq->calc_load_update = jiffies + LOAD_FREQ;
6846 init_cfs_rq(&rq->cfs);
6847 init_rt_rq(&rq->rt, rq);
6848 #ifdef CONFIG_FAIR_GROUP_SCHED
6849 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6850 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6851 /*
6852 * How much cpu bandwidth does root_task_group get?
6853 *
6854 * In case of task-groups formed thr' the cgroup filesystem, it
6855 * gets 100% of the cpu resources in the system. This overall
6856 * system cpu resource is divided among the tasks of
6857 * root_task_group and its child task-groups in a fair manner,
6858 * based on each entity's (task or task-group's) weight
6859 * (se->load.weight).
6860 *
6861 * In other words, if root_task_group has 10 tasks of weight
6862 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6863 * then A0's share of the cpu resource is:
6864 *
6865 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6866 *
6867 * We achieve this by letting root_task_group's tasks sit
6868 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6869 */
6870 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6871 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6872 #endif /* CONFIG_FAIR_GROUP_SCHED */
6873
6874 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6875 #ifdef CONFIG_RT_GROUP_SCHED
6876 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6877 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6878 #endif
6879
6880 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6881 rq->cpu_load[j] = 0;
6882
6883 rq->last_load_update_tick = jiffies;
6884
6885 #ifdef CONFIG_SMP
6886 rq->sd = NULL;
6887 rq->rd = NULL;
6888 rq->cpu_power = SCHED_POWER_SCALE;
6889 rq->post_schedule = 0;
6890 rq->active_balance = 0;
6891 rq->next_balance = jiffies;
6892 rq->push_cpu = 0;
6893 rq->cpu = i;
6894 rq->online = 0;
6895 rq->idle_stamp = 0;
6896 rq->avg_idle = 2*sysctl_sched_migration_cost;
6897
6898 INIT_LIST_HEAD(&rq->cfs_tasks);
6899
6900 rq_attach_root(rq, &def_root_domain);
6901 #ifdef CONFIG_NO_HZ
6902 rq->nohz_flags = 0;
6903 #endif
6904 #endif
6905 init_rq_hrtick(rq);
6906 atomic_set(&rq->nr_iowait, 0);
6907 }
6908
6909 set_load_weight(&init_task);
6910
6911 #ifdef CONFIG_PREEMPT_NOTIFIERS
6912 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6913 #endif
6914
6915 #ifdef CONFIG_RT_MUTEXES
6916 plist_head_init(&init_task.pi_waiters);
6917 #endif
6918
6919 /*
6920 * The boot idle thread does lazy MMU switching as well:
6921 */
6922 atomic_inc(&init_mm.mm_count);
6923 enter_lazy_tlb(&init_mm, current);
6924
6925 /*
6926 * Make us the idle thread. Technically, schedule() should not be
6927 * called from this thread, however somewhere below it might be,
6928 * but because we are the idle thread, we just pick up running again
6929 * when this runqueue becomes "idle".
6930 */
6931 init_idle(current, smp_processor_id());
6932
6933 calc_load_update = jiffies + LOAD_FREQ;
6934
6935 /*
6936 * During early bootup we pretend to be a normal task:
6937 */
6938 current->sched_class = &fair_sched_class;
6939
6940 #ifdef CONFIG_SMP
6941 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6942 /* May be allocated at isolcpus cmdline parse time */
6943 if (cpu_isolated_map == NULL)
6944 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6945 idle_thread_set_boot_cpu();
6946 #endif
6947 init_sched_fair_class();
6948
6949 scheduler_running = 1;
6950 }
6951
6952 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6953 static inline int preempt_count_equals(int preempt_offset)
6954 {
6955 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6956
6957 return (nested == preempt_offset);
6958 }
6959
6960 void __might_sleep(const char *file, int line, int preempt_offset)
6961 {
6962 static unsigned long prev_jiffy; /* ratelimiting */
6963
6964 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6965 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6966 system_state != SYSTEM_RUNNING || oops_in_progress)
6967 return;
6968 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6969 return;
6970 prev_jiffy = jiffies;
6971
6972 printk(KERN_ERR
6973 "BUG: sleeping function called from invalid context at %s:%d\n",
6974 file, line);
6975 printk(KERN_ERR
6976 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6977 in_atomic(), irqs_disabled(),
6978 current->pid, current->comm);
6979
6980 debug_show_held_locks(current);
6981 if (irqs_disabled())
6982 print_irqtrace_events(current);
6983 dump_stack();
6984 }
6985 EXPORT_SYMBOL(__might_sleep);
6986 #endif
6987
6988 #ifdef CONFIG_MAGIC_SYSRQ
6989 static void normalize_task(struct rq *rq, struct task_struct *p)
6990 {
6991 const struct sched_class *prev_class = p->sched_class;
6992 int old_prio = p->prio;
6993 int on_rq;
6994
6995 on_rq = p->on_rq;
6996 if (on_rq)
6997 dequeue_task(rq, p, 0);
6998 __setscheduler(rq, p, SCHED_NORMAL, 0);
6999 if (on_rq) {
7000 enqueue_task(rq, p, 0);
7001 resched_task(rq->curr);
7002 }
7003
7004 check_class_changed(rq, p, prev_class, old_prio);
7005 }
7006
7007 void normalize_rt_tasks(void)
7008 {
7009 struct task_struct *g, *p;
7010 unsigned long flags;
7011 struct rq *rq;
7012
7013 read_lock_irqsave(&tasklist_lock, flags);
7014 do_each_thread(g, p) {
7015 /*
7016 * Only normalize user tasks:
7017 */
7018 if (!p->mm)
7019 continue;
7020
7021 p->se.exec_start = 0;
7022 #ifdef CONFIG_SCHEDSTATS
7023 p->se.statistics.wait_start = 0;
7024 p->se.statistics.sleep_start = 0;
7025 p->se.statistics.block_start = 0;
7026 #endif
7027
7028 if (!rt_task(p)) {
7029 /*
7030 * Renice negative nice level userspace
7031 * tasks back to 0:
7032 */
7033 if (TASK_NICE(p) < 0 && p->mm)
7034 set_user_nice(p, 0);
7035 continue;
7036 }
7037
7038 raw_spin_lock(&p->pi_lock);
7039 rq = __task_rq_lock(p);
7040
7041 normalize_task(rq, p);
7042
7043 __task_rq_unlock(rq);
7044 raw_spin_unlock(&p->pi_lock);
7045 } while_each_thread(g, p);
7046
7047 read_unlock_irqrestore(&tasklist_lock, flags);
7048 }
7049
7050 #endif /* CONFIG_MAGIC_SYSRQ */
7051
7052 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7053 /*
7054 * These functions are only useful for the IA64 MCA handling, or kdb.
7055 *
7056 * They can only be called when the whole system has been
7057 * stopped - every CPU needs to be quiescent, and no scheduling
7058 * activity can take place. Using them for anything else would
7059 * be a serious bug, and as a result, they aren't even visible
7060 * under any other configuration.
7061 */
7062
7063 /**
7064 * curr_task - return the current task for a given cpu.
7065 * @cpu: the processor in question.
7066 *
7067 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7068 */
7069 struct task_struct *curr_task(int cpu)
7070 {
7071 return cpu_curr(cpu);
7072 }
7073
7074 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7075
7076 #ifdef CONFIG_IA64
7077 /**
7078 * set_curr_task - set the current task for a given cpu.
7079 * @cpu: the processor in question.
7080 * @p: the task pointer to set.
7081 *
7082 * Description: This function must only be used when non-maskable interrupts
7083 * are serviced on a separate stack. It allows the architecture to switch the
7084 * notion of the current task on a cpu in a non-blocking manner. This function
7085 * must be called with all CPU's synchronized, and interrupts disabled, the
7086 * and caller must save the original value of the current task (see
7087 * curr_task() above) and restore that value before reenabling interrupts and
7088 * re-starting the system.
7089 *
7090 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7091 */
7092 void set_curr_task(int cpu, struct task_struct *p)
7093 {
7094 cpu_curr(cpu) = p;
7095 }
7096
7097 #endif
7098
7099 #ifdef CONFIG_CGROUP_SCHED
7100 /* task_group_lock serializes the addition/removal of task groups */
7101 static DEFINE_SPINLOCK(task_group_lock);
7102
7103 static void free_sched_group(struct task_group *tg)
7104 {
7105 free_fair_sched_group(tg);
7106 free_rt_sched_group(tg);
7107 autogroup_free(tg);
7108 kfree(tg);
7109 }
7110
7111 /* allocate runqueue etc for a new task group */
7112 struct task_group *sched_create_group(struct task_group *parent)
7113 {
7114 struct task_group *tg;
7115 unsigned long flags;
7116
7117 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7118 if (!tg)
7119 return ERR_PTR(-ENOMEM);
7120
7121 if (!alloc_fair_sched_group(tg, parent))
7122 goto err;
7123
7124 if (!alloc_rt_sched_group(tg, parent))
7125 goto err;
7126
7127 spin_lock_irqsave(&task_group_lock, flags);
7128 list_add_rcu(&tg->list, &task_groups);
7129
7130 WARN_ON(!parent); /* root should already exist */
7131
7132 tg->parent = parent;
7133 INIT_LIST_HEAD(&tg->children);
7134 list_add_rcu(&tg->siblings, &parent->children);
7135 spin_unlock_irqrestore(&task_group_lock, flags);
7136
7137 return tg;
7138
7139 err:
7140 free_sched_group(tg);
7141 return ERR_PTR(-ENOMEM);
7142 }
7143
7144 /* rcu callback to free various structures associated with a task group */
7145 static void free_sched_group_rcu(struct rcu_head *rhp)
7146 {
7147 /* now it should be safe to free those cfs_rqs */
7148 free_sched_group(container_of(rhp, struct task_group, rcu));
7149 }
7150
7151 /* Destroy runqueue etc associated with a task group */
7152 void sched_destroy_group(struct task_group *tg)
7153 {
7154 unsigned long flags;
7155 int i;
7156
7157 /* end participation in shares distribution */
7158 for_each_possible_cpu(i)
7159 unregister_fair_sched_group(tg, i);
7160
7161 spin_lock_irqsave(&task_group_lock, flags);
7162 list_del_rcu(&tg->list);
7163 list_del_rcu(&tg->siblings);
7164 spin_unlock_irqrestore(&task_group_lock, flags);
7165
7166 /* wait for possible concurrent references to cfs_rqs complete */
7167 call_rcu(&tg->rcu, free_sched_group_rcu);
7168 }
7169
7170 /* change task's runqueue when it moves between groups.
7171 * The caller of this function should have put the task in its new group
7172 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7173 * reflect its new group.
7174 */
7175 void sched_move_task(struct task_struct *tsk)
7176 {
7177 struct task_group *tg;
7178 int on_rq, running;
7179 unsigned long flags;
7180 struct rq *rq;
7181
7182 rq = task_rq_lock(tsk, &flags);
7183
7184 running = task_current(rq, tsk);
7185 on_rq = tsk->on_rq;
7186
7187 if (on_rq)
7188 dequeue_task(rq, tsk, 0);
7189 if (unlikely(running))
7190 tsk->sched_class->put_prev_task(rq, tsk);
7191
7192 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7193 lockdep_is_held(&tsk->sighand->siglock)),
7194 struct task_group, css);
7195 tg = autogroup_task_group(tsk, tg);
7196 tsk->sched_task_group = tg;
7197
7198 #ifdef CONFIG_FAIR_GROUP_SCHED
7199 if (tsk->sched_class->task_move_group)
7200 tsk->sched_class->task_move_group(tsk, on_rq);
7201 else
7202 #endif
7203 set_task_rq(tsk, task_cpu(tsk));
7204
7205 if (unlikely(running))
7206 tsk->sched_class->set_curr_task(rq);
7207 if (on_rq)
7208 enqueue_task(rq, tsk, 0);
7209
7210 task_rq_unlock(rq, tsk, &flags);
7211 }
7212 #endif /* CONFIG_CGROUP_SCHED */
7213
7214 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7215 static unsigned long to_ratio(u64 period, u64 runtime)
7216 {
7217 if (runtime == RUNTIME_INF)
7218 return 1ULL << 20;
7219
7220 return div64_u64(runtime << 20, period);
7221 }
7222 #endif
7223
7224 #ifdef CONFIG_RT_GROUP_SCHED
7225 /*
7226 * Ensure that the real time constraints are schedulable.
7227 */
7228 static DEFINE_MUTEX(rt_constraints_mutex);
7229
7230 /* Must be called with tasklist_lock held */
7231 static inline int tg_has_rt_tasks(struct task_group *tg)
7232 {
7233 struct task_struct *g, *p;
7234
7235 do_each_thread(g, p) {
7236 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7237 return 1;
7238 } while_each_thread(g, p);
7239
7240 return 0;
7241 }
7242
7243 struct rt_schedulable_data {
7244 struct task_group *tg;
7245 u64 rt_period;
7246 u64 rt_runtime;
7247 };
7248
7249 static int tg_rt_schedulable(struct task_group *tg, void *data)
7250 {
7251 struct rt_schedulable_data *d = data;
7252 struct task_group *child;
7253 unsigned long total, sum = 0;
7254 u64 period, runtime;
7255
7256 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7257 runtime = tg->rt_bandwidth.rt_runtime;
7258
7259 if (tg == d->tg) {
7260 period = d->rt_period;
7261 runtime = d->rt_runtime;
7262 }
7263
7264 /*
7265 * Cannot have more runtime than the period.
7266 */
7267 if (runtime > period && runtime != RUNTIME_INF)
7268 return -EINVAL;
7269
7270 /*
7271 * Ensure we don't starve existing RT tasks.
7272 */
7273 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7274 return -EBUSY;
7275
7276 total = to_ratio(period, runtime);
7277
7278 /*
7279 * Nobody can have more than the global setting allows.
7280 */
7281 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7282 return -EINVAL;
7283
7284 /*
7285 * The sum of our children's runtime should not exceed our own.
7286 */
7287 list_for_each_entry_rcu(child, &tg->children, siblings) {
7288 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7289 runtime = child->rt_bandwidth.rt_runtime;
7290
7291 if (child == d->tg) {
7292 period = d->rt_period;
7293 runtime = d->rt_runtime;
7294 }
7295
7296 sum += to_ratio(period, runtime);
7297 }
7298
7299 if (sum > total)
7300 return -EINVAL;
7301
7302 return 0;
7303 }
7304
7305 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7306 {
7307 int ret;
7308
7309 struct rt_schedulable_data data = {
7310 .tg = tg,
7311 .rt_period = period,
7312 .rt_runtime = runtime,
7313 };
7314
7315 rcu_read_lock();
7316 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7317 rcu_read_unlock();
7318
7319 return ret;
7320 }
7321
7322 static int tg_set_rt_bandwidth(struct task_group *tg,
7323 u64 rt_period, u64 rt_runtime)
7324 {
7325 int i, err = 0;
7326
7327 mutex_lock(&rt_constraints_mutex);
7328 read_lock(&tasklist_lock);
7329 err = __rt_schedulable(tg, rt_period, rt_runtime);
7330 if (err)
7331 goto unlock;
7332
7333 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7334 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7335 tg->rt_bandwidth.rt_runtime = rt_runtime;
7336
7337 for_each_possible_cpu(i) {
7338 struct rt_rq *rt_rq = tg->rt_rq[i];
7339
7340 raw_spin_lock(&rt_rq->rt_runtime_lock);
7341 rt_rq->rt_runtime = rt_runtime;
7342 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7343 }
7344 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7345 unlock:
7346 read_unlock(&tasklist_lock);
7347 mutex_unlock(&rt_constraints_mutex);
7348
7349 return err;
7350 }
7351
7352 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7353 {
7354 u64 rt_runtime, rt_period;
7355
7356 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7357 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7358 if (rt_runtime_us < 0)
7359 rt_runtime = RUNTIME_INF;
7360
7361 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7362 }
7363
7364 long sched_group_rt_runtime(struct task_group *tg)
7365 {
7366 u64 rt_runtime_us;
7367
7368 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7369 return -1;
7370
7371 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7372 do_div(rt_runtime_us, NSEC_PER_USEC);
7373 return rt_runtime_us;
7374 }
7375
7376 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7377 {
7378 u64 rt_runtime, rt_period;
7379
7380 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7381 rt_runtime = tg->rt_bandwidth.rt_runtime;
7382
7383 if (rt_period == 0)
7384 return -EINVAL;
7385
7386 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7387 }
7388
7389 long sched_group_rt_period(struct task_group *tg)
7390 {
7391 u64 rt_period_us;
7392
7393 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7394 do_div(rt_period_us, NSEC_PER_USEC);
7395 return rt_period_us;
7396 }
7397
7398 static int sched_rt_global_constraints(void)
7399 {
7400 u64 runtime, period;
7401 int ret = 0;
7402
7403 if (sysctl_sched_rt_period <= 0)
7404 return -EINVAL;
7405
7406 runtime = global_rt_runtime();
7407 period = global_rt_period();
7408
7409 /*
7410 * Sanity check on the sysctl variables.
7411 */
7412 if (runtime > period && runtime != RUNTIME_INF)
7413 return -EINVAL;
7414
7415 mutex_lock(&rt_constraints_mutex);
7416 read_lock(&tasklist_lock);
7417 ret = __rt_schedulable(NULL, 0, 0);
7418 read_unlock(&tasklist_lock);
7419 mutex_unlock(&rt_constraints_mutex);
7420
7421 return ret;
7422 }
7423
7424 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7425 {
7426 /* Don't accept realtime tasks when there is no way for them to run */
7427 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7428 return 0;
7429
7430 return 1;
7431 }
7432
7433 #else /* !CONFIG_RT_GROUP_SCHED */
7434 static int sched_rt_global_constraints(void)
7435 {
7436 unsigned long flags;
7437 int i;
7438
7439 if (sysctl_sched_rt_period <= 0)
7440 return -EINVAL;
7441
7442 /*
7443 * There's always some RT tasks in the root group
7444 * -- migration, kstopmachine etc..
7445 */
7446 if (sysctl_sched_rt_runtime == 0)
7447 return -EBUSY;
7448
7449 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7450 for_each_possible_cpu(i) {
7451 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7452
7453 raw_spin_lock(&rt_rq->rt_runtime_lock);
7454 rt_rq->rt_runtime = global_rt_runtime();
7455 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7456 }
7457 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7458
7459 return 0;
7460 }
7461 #endif /* CONFIG_RT_GROUP_SCHED */
7462
7463 int sched_rt_handler(struct ctl_table *table, int write,
7464 void __user *buffer, size_t *lenp,
7465 loff_t *ppos)
7466 {
7467 int ret;
7468 int old_period, old_runtime;
7469 static DEFINE_MUTEX(mutex);
7470
7471 mutex_lock(&mutex);
7472 old_period = sysctl_sched_rt_period;
7473 old_runtime = sysctl_sched_rt_runtime;
7474
7475 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7476
7477 if (!ret && write) {
7478 ret = sched_rt_global_constraints();
7479 if (ret) {
7480 sysctl_sched_rt_period = old_period;
7481 sysctl_sched_rt_runtime = old_runtime;
7482 } else {
7483 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7484 def_rt_bandwidth.rt_period =
7485 ns_to_ktime(global_rt_period());
7486 }
7487 }
7488 mutex_unlock(&mutex);
7489
7490 return ret;
7491 }
7492
7493 #ifdef CONFIG_CGROUP_SCHED
7494
7495 /* return corresponding task_group object of a cgroup */
7496 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7497 {
7498 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7499 struct task_group, css);
7500 }
7501
7502 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7503 {
7504 struct task_group *tg, *parent;
7505
7506 if (!cgrp->parent) {
7507 /* This is early initialization for the top cgroup */
7508 return &root_task_group.css;
7509 }
7510
7511 parent = cgroup_tg(cgrp->parent);
7512 tg = sched_create_group(parent);
7513 if (IS_ERR(tg))
7514 return ERR_PTR(-ENOMEM);
7515
7516 return &tg->css;
7517 }
7518
7519 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7520 {
7521 struct task_group *tg = cgroup_tg(cgrp);
7522
7523 sched_destroy_group(tg);
7524 }
7525
7526 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7527 struct cgroup_taskset *tset)
7528 {
7529 struct task_struct *task;
7530
7531 cgroup_taskset_for_each(task, cgrp, tset) {
7532 #ifdef CONFIG_RT_GROUP_SCHED
7533 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7534 return -EINVAL;
7535 #else
7536 /* We don't support RT-tasks being in separate groups */
7537 if (task->sched_class != &fair_sched_class)
7538 return -EINVAL;
7539 #endif
7540 }
7541 return 0;
7542 }
7543
7544 static void cpu_cgroup_attach(struct cgroup *cgrp,
7545 struct cgroup_taskset *tset)
7546 {
7547 struct task_struct *task;
7548
7549 cgroup_taskset_for_each(task, cgrp, tset)
7550 sched_move_task(task);
7551 }
7552
7553 static void
7554 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7555 struct task_struct *task)
7556 {
7557 /*
7558 * cgroup_exit() is called in the copy_process() failure path.
7559 * Ignore this case since the task hasn't ran yet, this avoids
7560 * trying to poke a half freed task state from generic code.
7561 */
7562 if (!(task->flags & PF_EXITING))
7563 return;
7564
7565 sched_move_task(task);
7566 }
7567
7568 #ifdef CONFIG_FAIR_GROUP_SCHED
7569 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7570 u64 shareval)
7571 {
7572 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7573 }
7574
7575 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7576 {
7577 struct task_group *tg = cgroup_tg(cgrp);
7578
7579 return (u64) scale_load_down(tg->shares);
7580 }
7581
7582 #ifdef CONFIG_CFS_BANDWIDTH
7583 static DEFINE_MUTEX(cfs_constraints_mutex);
7584
7585 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7586 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7587
7588 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7589
7590 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7591 {
7592 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7593 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7594
7595 if (tg == &root_task_group)
7596 return -EINVAL;
7597
7598 /*
7599 * Ensure we have at some amount of bandwidth every period. This is
7600 * to prevent reaching a state of large arrears when throttled via
7601 * entity_tick() resulting in prolonged exit starvation.
7602 */
7603 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7604 return -EINVAL;
7605
7606 /*
7607 * Likewise, bound things on the otherside by preventing insane quota
7608 * periods. This also allows us to normalize in computing quota
7609 * feasibility.
7610 */
7611 if (period > max_cfs_quota_period)
7612 return -EINVAL;
7613
7614 mutex_lock(&cfs_constraints_mutex);
7615 ret = __cfs_schedulable(tg, period, quota);
7616 if (ret)
7617 goto out_unlock;
7618
7619 runtime_enabled = quota != RUNTIME_INF;
7620 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7621 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7622 raw_spin_lock_irq(&cfs_b->lock);
7623 cfs_b->period = ns_to_ktime(period);
7624 cfs_b->quota = quota;
7625
7626 __refill_cfs_bandwidth_runtime(cfs_b);
7627 /* restart the period timer (if active) to handle new period expiry */
7628 if (runtime_enabled && cfs_b->timer_active) {
7629 /* force a reprogram */
7630 cfs_b->timer_active = 0;
7631 __start_cfs_bandwidth(cfs_b);
7632 }
7633 raw_spin_unlock_irq(&cfs_b->lock);
7634
7635 for_each_possible_cpu(i) {
7636 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7637 struct rq *rq = cfs_rq->rq;
7638
7639 raw_spin_lock_irq(&rq->lock);
7640 cfs_rq->runtime_enabled = runtime_enabled;
7641 cfs_rq->runtime_remaining = 0;
7642
7643 if (cfs_rq->throttled)
7644 unthrottle_cfs_rq(cfs_rq);
7645 raw_spin_unlock_irq(&rq->lock);
7646 }
7647 out_unlock:
7648 mutex_unlock(&cfs_constraints_mutex);
7649
7650 return ret;
7651 }
7652
7653 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7654 {
7655 u64 quota, period;
7656
7657 period = ktime_to_ns(tg->cfs_bandwidth.period);
7658 if (cfs_quota_us < 0)
7659 quota = RUNTIME_INF;
7660 else
7661 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7662
7663 return tg_set_cfs_bandwidth(tg, period, quota);
7664 }
7665
7666 long tg_get_cfs_quota(struct task_group *tg)
7667 {
7668 u64 quota_us;
7669
7670 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7671 return -1;
7672
7673 quota_us = tg->cfs_bandwidth.quota;
7674 do_div(quota_us, NSEC_PER_USEC);
7675
7676 return quota_us;
7677 }
7678
7679 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7680 {
7681 u64 quota, period;
7682
7683 period = (u64)cfs_period_us * NSEC_PER_USEC;
7684 quota = tg->cfs_bandwidth.quota;
7685
7686 return tg_set_cfs_bandwidth(tg, period, quota);
7687 }
7688
7689 long tg_get_cfs_period(struct task_group *tg)
7690 {
7691 u64 cfs_period_us;
7692
7693 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7694 do_div(cfs_period_us, NSEC_PER_USEC);
7695
7696 return cfs_period_us;
7697 }
7698
7699 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7700 {
7701 return tg_get_cfs_quota(cgroup_tg(cgrp));
7702 }
7703
7704 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7705 s64 cfs_quota_us)
7706 {
7707 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7708 }
7709
7710 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7711 {
7712 return tg_get_cfs_period(cgroup_tg(cgrp));
7713 }
7714
7715 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7716 u64 cfs_period_us)
7717 {
7718 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7719 }
7720
7721 struct cfs_schedulable_data {
7722 struct task_group *tg;
7723 u64 period, quota;
7724 };
7725
7726 /*
7727 * normalize group quota/period to be quota/max_period
7728 * note: units are usecs
7729 */
7730 static u64 normalize_cfs_quota(struct task_group *tg,
7731 struct cfs_schedulable_data *d)
7732 {
7733 u64 quota, period;
7734
7735 if (tg == d->tg) {
7736 period = d->period;
7737 quota = d->quota;
7738 } else {
7739 period = tg_get_cfs_period(tg);
7740 quota = tg_get_cfs_quota(tg);
7741 }
7742
7743 /* note: these should typically be equivalent */
7744 if (quota == RUNTIME_INF || quota == -1)
7745 return RUNTIME_INF;
7746
7747 return to_ratio(period, quota);
7748 }
7749
7750 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7751 {
7752 struct cfs_schedulable_data *d = data;
7753 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7754 s64 quota = 0, parent_quota = -1;
7755
7756 if (!tg->parent) {
7757 quota = RUNTIME_INF;
7758 } else {
7759 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7760
7761 quota = normalize_cfs_quota(tg, d);
7762 parent_quota = parent_b->hierarchal_quota;
7763
7764 /*
7765 * ensure max(child_quota) <= parent_quota, inherit when no
7766 * limit is set
7767 */
7768 if (quota == RUNTIME_INF)
7769 quota = parent_quota;
7770 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7771 return -EINVAL;
7772 }
7773 cfs_b->hierarchal_quota = quota;
7774
7775 return 0;
7776 }
7777
7778 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7779 {
7780 int ret;
7781 struct cfs_schedulable_data data = {
7782 .tg = tg,
7783 .period = period,
7784 .quota = quota,
7785 };
7786
7787 if (quota != RUNTIME_INF) {
7788 do_div(data.period, NSEC_PER_USEC);
7789 do_div(data.quota, NSEC_PER_USEC);
7790 }
7791
7792 rcu_read_lock();
7793 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7794 rcu_read_unlock();
7795
7796 return ret;
7797 }
7798
7799 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7800 struct cgroup_map_cb *cb)
7801 {
7802 struct task_group *tg = cgroup_tg(cgrp);
7803 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7804
7805 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7806 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7807 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7808
7809 return 0;
7810 }
7811 #endif /* CONFIG_CFS_BANDWIDTH */
7812 #endif /* CONFIG_FAIR_GROUP_SCHED */
7813
7814 #ifdef CONFIG_RT_GROUP_SCHED
7815 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7816 s64 val)
7817 {
7818 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7819 }
7820
7821 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7822 {
7823 return sched_group_rt_runtime(cgroup_tg(cgrp));
7824 }
7825
7826 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7827 u64 rt_period_us)
7828 {
7829 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7830 }
7831
7832 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7833 {
7834 return sched_group_rt_period(cgroup_tg(cgrp));
7835 }
7836 #endif /* CONFIG_RT_GROUP_SCHED */
7837
7838 static struct cftype cpu_files[] = {
7839 #ifdef CONFIG_FAIR_GROUP_SCHED
7840 {
7841 .name = "shares",
7842 .read_u64 = cpu_shares_read_u64,
7843 .write_u64 = cpu_shares_write_u64,
7844 },
7845 #endif
7846 #ifdef CONFIG_CFS_BANDWIDTH
7847 {
7848 .name = "cfs_quota_us",
7849 .read_s64 = cpu_cfs_quota_read_s64,
7850 .write_s64 = cpu_cfs_quota_write_s64,
7851 },
7852 {
7853 .name = "cfs_period_us",
7854 .read_u64 = cpu_cfs_period_read_u64,
7855 .write_u64 = cpu_cfs_period_write_u64,
7856 },
7857 {
7858 .name = "stat",
7859 .read_map = cpu_stats_show,
7860 },
7861 #endif
7862 #ifdef CONFIG_RT_GROUP_SCHED
7863 {
7864 .name = "rt_runtime_us",
7865 .read_s64 = cpu_rt_runtime_read,
7866 .write_s64 = cpu_rt_runtime_write,
7867 },
7868 {
7869 .name = "rt_period_us",
7870 .read_u64 = cpu_rt_period_read_uint,
7871 .write_u64 = cpu_rt_period_write_uint,
7872 },
7873 #endif
7874 { } /* terminate */
7875 };
7876
7877 struct cgroup_subsys cpu_cgroup_subsys = {
7878 .name = "cpu",
7879 .css_alloc = cpu_cgroup_css_alloc,
7880 .css_free = cpu_cgroup_css_free,
7881 .can_attach = cpu_cgroup_can_attach,
7882 .attach = cpu_cgroup_attach,
7883 .exit = cpu_cgroup_exit,
7884 .subsys_id = cpu_cgroup_subsys_id,
7885 .base_cftypes = cpu_files,
7886 .early_init = 1,
7887 };
7888
7889 #endif /* CONFIG_CGROUP_SCHED */
7890
7891 #ifdef CONFIG_CGROUP_CPUACCT
7892
7893 /*
7894 * CPU accounting code for task groups.
7895 *
7896 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7897 * (balbir@in.ibm.com).
7898 */
7899
7900 struct cpuacct root_cpuacct;
7901
7902 /* create a new cpu accounting group */
7903 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
7904 {
7905 struct cpuacct *ca;
7906
7907 if (!cgrp->parent)
7908 return &root_cpuacct.css;
7909
7910 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7911 if (!ca)
7912 goto out;
7913
7914 ca->cpuusage = alloc_percpu(u64);
7915 if (!ca->cpuusage)
7916 goto out_free_ca;
7917
7918 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7919 if (!ca->cpustat)
7920 goto out_free_cpuusage;
7921
7922 return &ca->css;
7923
7924 out_free_cpuusage:
7925 free_percpu(ca->cpuusage);
7926 out_free_ca:
7927 kfree(ca);
7928 out:
7929 return ERR_PTR(-ENOMEM);
7930 }
7931
7932 /* destroy an existing cpu accounting group */
7933 static void cpuacct_css_free(struct cgroup *cgrp)
7934 {
7935 struct cpuacct *ca = cgroup_ca(cgrp);
7936
7937 free_percpu(ca->cpustat);
7938 free_percpu(ca->cpuusage);
7939 kfree(ca);
7940 }
7941
7942 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7943 {
7944 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7945 u64 data;
7946
7947 #ifndef CONFIG_64BIT
7948 /*
7949 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7950 */
7951 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7952 data = *cpuusage;
7953 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7954 #else
7955 data = *cpuusage;
7956 #endif
7957
7958 return data;
7959 }
7960
7961 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7962 {
7963 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7964
7965 #ifndef CONFIG_64BIT
7966 /*
7967 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7968 */
7969 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7970 *cpuusage = val;
7971 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7972 #else
7973 *cpuusage = val;
7974 #endif
7975 }
7976
7977 /* return total cpu usage (in nanoseconds) of a group */
7978 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7979 {
7980 struct cpuacct *ca = cgroup_ca(cgrp);
7981 u64 totalcpuusage = 0;
7982 int i;
7983
7984 for_each_present_cpu(i)
7985 totalcpuusage += cpuacct_cpuusage_read(ca, i);
7986
7987 return totalcpuusage;
7988 }
7989
7990 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7991 u64 reset)
7992 {
7993 struct cpuacct *ca = cgroup_ca(cgrp);
7994 int err = 0;
7995 int i;
7996
7997 if (reset) {
7998 err = -EINVAL;
7999 goto out;
8000 }
8001
8002 for_each_present_cpu(i)
8003 cpuacct_cpuusage_write(ca, i, 0);
8004
8005 out:
8006 return err;
8007 }
8008
8009 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8010 struct seq_file *m)
8011 {
8012 struct cpuacct *ca = cgroup_ca(cgroup);
8013 u64 percpu;
8014 int i;
8015
8016 for_each_present_cpu(i) {
8017 percpu = cpuacct_cpuusage_read(ca, i);
8018 seq_printf(m, "%llu ", (unsigned long long) percpu);
8019 }
8020 seq_printf(m, "\n");
8021 return 0;
8022 }
8023
8024 static const char *cpuacct_stat_desc[] = {
8025 [CPUACCT_STAT_USER] = "user",
8026 [CPUACCT_STAT_SYSTEM] = "system",
8027 };
8028
8029 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8030 struct cgroup_map_cb *cb)
8031 {
8032 struct cpuacct *ca = cgroup_ca(cgrp);
8033 int cpu;
8034 s64 val = 0;
8035
8036 for_each_online_cpu(cpu) {
8037 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8038 val += kcpustat->cpustat[CPUTIME_USER];
8039 val += kcpustat->cpustat[CPUTIME_NICE];
8040 }
8041 val = cputime64_to_clock_t(val);
8042 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8043
8044 val = 0;
8045 for_each_online_cpu(cpu) {
8046 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8047 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8048 val += kcpustat->cpustat[CPUTIME_IRQ];
8049 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8050 }
8051
8052 val = cputime64_to_clock_t(val);
8053 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8054
8055 return 0;
8056 }
8057
8058 static struct cftype files[] = {
8059 {
8060 .name = "usage",
8061 .read_u64 = cpuusage_read,
8062 .write_u64 = cpuusage_write,
8063 },
8064 {
8065 .name = "usage_percpu",
8066 .read_seq_string = cpuacct_percpu_seq_read,
8067 },
8068 {
8069 .name = "stat",
8070 .read_map = cpuacct_stats_show,
8071 },
8072 { } /* terminate */
8073 };
8074
8075 /*
8076 * charge this task's execution time to its accounting group.
8077 *
8078 * called with rq->lock held.
8079 */
8080 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8081 {
8082 struct cpuacct *ca;
8083 int cpu;
8084
8085 if (unlikely(!cpuacct_subsys.active))
8086 return;
8087
8088 cpu = task_cpu(tsk);
8089
8090 rcu_read_lock();
8091
8092 ca = task_ca(tsk);
8093
8094 for (; ca; ca = parent_ca(ca)) {
8095 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8096 *cpuusage += cputime;
8097 }
8098
8099 rcu_read_unlock();
8100 }
8101
8102 struct cgroup_subsys cpuacct_subsys = {
8103 .name = "cpuacct",
8104 .css_alloc = cpuacct_css_alloc,
8105 .css_free = cpuacct_css_free,
8106 .subsys_id = cpuacct_subsys_id,
8107 .base_cftypes = files,
8108 };
8109 #endif /* CONFIG_CGROUP_CPUACCT */
8110
8111 void dump_cpu_task(int cpu)
8112 {
8113 pr_info("Task dump for CPU %d:\n", cpu);
8114 sched_show_task(cpu_curr(cpu));
8115 }
This page took 0.370861 seconds and 6 git commands to generate.