Merge tag 'omap-fixes-a-for-v3.8-window' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_sched.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299
300
301 /*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 __acquires(rq->lock)
306 {
307 struct rq *rq;
308
309 lockdep_assert_held(&p->pi_lock);
310
311 for (;;) {
312 rq = task_rq(p);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
315 return rq;
316 raw_spin_unlock(&rq->lock);
317 }
318 }
319
320 /*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
325 __acquires(rq->lock)
326 {
327 struct rq *rq;
328
329 for (;;) {
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 rq = task_rq(p);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
334 return rq;
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 }
338 }
339
340 static void __task_rq_unlock(struct rq *rq)
341 __releases(rq->lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 }
345
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 __releases(rq->lock)
349 __releases(p->pi_lock)
350 {
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354
355 /*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358 static struct rq *this_rq_lock(void)
359 __acquires(rq->lock)
360 {
361 struct rq *rq;
362
363 local_irq_disable();
364 rq = this_rq();
365 raw_spin_lock(&rq->lock);
366
367 return rq;
368 }
369
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382 static void hrtick_clear(struct rq *rq)
383 {
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386 }
387
388 /*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398 raw_spin_lock(&rq->lock);
399 update_rq_clock(rq);
400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 raw_spin_unlock(&rq->lock);
402
403 return HRTIMER_NORESTART;
404 }
405
406 #ifdef CONFIG_SMP
407 /*
408 * called from hardirq (IPI) context
409 */
410 static void __hrtick_start(void *arg)
411 {
412 struct rq *rq = arg;
413
414 raw_spin_lock(&rq->lock);
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
418 }
419
420 /*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430 hrtimer_set_expires(timer, time);
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
437 }
438 }
439
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457 }
458
459 static __init void init_hrtick(void)
460 {
461 hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
473 }
474
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
484
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488 #endif
489
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
492 }
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif /* CONFIG_SCHED_HRTICK */
506
507 /*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514 #ifdef CONFIG_SMP
515
516 #ifndef tsk_is_polling
517 #define tsk_is_polling(t) 0
518 #endif
519
520 void resched_task(struct task_struct *p)
521 {
522 int cpu;
523
524 assert_raw_spin_locked(&task_rq(p)->lock);
525
526 if (test_tsk_need_resched(p))
527 return;
528
529 set_tsk_need_resched(p);
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539 }
540
541 void resched_cpu(int cpu)
542 {
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547 return;
548 resched_task(cpu_curr(cpu));
549 raw_spin_unlock_irqrestore(&rq->lock, flags);
550 }
551
552 #ifdef CONFIG_NO_HZ
553 /*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561 int get_nohz_timer_target(void)
562 {
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
567 rcu_read_lock();
568 for_each_domain(cpu, sd) {
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
575 }
576 unlock:
577 rcu_read_unlock();
578 return cpu;
579 }
580 /*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590 void wake_up_idle_cpu(int cpu)
591 {
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
606
607 /*
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
611 */
612 set_tsk_need_resched(rq->idle);
613
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
618 }
619
620 static inline bool got_nohz_idle_kick(void)
621 {
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 }
625
626 #else /* CONFIG_NO_HZ */
627
628 static inline bool got_nohz_idle_kick(void)
629 {
630 return false;
631 }
632
633 #endif /* CONFIG_NO_HZ */
634
635 void sched_avg_update(struct rq *rq)
636 {
637 s64 period = sched_avg_period();
638
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
640 /*
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
644 */
645 asm("" : "+rm" (rq->age_stamp));
646 rq->age_stamp += period;
647 rq->rt_avg /= 2;
648 }
649 }
650
651 #else /* !CONFIG_SMP */
652 void resched_task(struct task_struct *p)
653 {
654 assert_raw_spin_locked(&task_rq(p)->lock);
655 set_tsk_need_resched(p);
656 }
657 #endif /* CONFIG_SMP */
658
659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661 /*
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
666 */
667 int walk_tg_tree_from(struct task_group *from,
668 tg_visitor down, tg_visitor up, void *data)
669 {
670 struct task_group *parent, *child;
671 int ret;
672
673 parent = from;
674
675 down:
676 ret = (*down)(parent, data);
677 if (ret)
678 goto out;
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
680 parent = child;
681 goto down;
682
683 up:
684 continue;
685 }
686 ret = (*up)(parent, data);
687 if (ret || parent == from)
688 goto out;
689
690 child = parent;
691 parent = parent->parent;
692 if (parent)
693 goto up;
694 out:
695 return ret;
696 }
697
698 int tg_nop(struct task_group *tg, void *data)
699 {
700 return 0;
701 }
702 #endif
703
704 static void set_load_weight(struct task_struct *p)
705 {
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
708
709 /*
710 * SCHED_IDLE tasks get minimal weight:
711 */
712 if (p->policy == SCHED_IDLE) {
713 load->weight = scale_load(WEIGHT_IDLEPRIO);
714 load->inv_weight = WMULT_IDLEPRIO;
715 return;
716 }
717
718 load->weight = scale_load(prio_to_weight[prio]);
719 load->inv_weight = prio_to_wmult[prio];
720 }
721
722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 update_rq_clock(rq);
725 sched_info_queued(p);
726 p->sched_class->enqueue_task(rq, p, flags);
727 }
728
729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 update_rq_clock(rq);
732 sched_info_dequeued(p);
733 p->sched_class->dequeue_task(rq, p, flags);
734 }
735
736 void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
740
741 enqueue_task(rq, p, flags);
742 }
743
744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 {
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
748
749 dequeue_task(rq, p, flags);
750 }
751
752 static void update_rq_clock_task(struct rq *rq, s64 delta)
753 {
754 /*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
760 #endif
761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763
764 /*
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
767 * {soft,}irq region.
768 *
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
772 * monotonic.
773 *
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
777 * atomic ops.
778 */
779 if (irq_delta > delta)
780 irq_delta = delta;
781
782 rq->prev_irq_time += irq_delta;
783 delta -= irq_delta;
784 #endif
785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786 if (static_key_false((&paravirt_steal_rq_enabled))) {
787 u64 st;
788
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
791
792 if (unlikely(steal > delta))
793 steal = delta;
794
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
797
798 rq->prev_steal_time_rq += steal;
799
800 delta -= steal;
801 }
802 #endif
803
804 rq->clock_task += delta;
805
806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
809 #endif
810 }
811
812 void sched_set_stop_task(int cpu, struct task_struct *stop)
813 {
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817 if (stop) {
818 /*
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
821 *
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
825 */
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828 stop->sched_class = &stop_sched_class;
829 }
830
831 cpu_rq(cpu)->stop = stop;
832
833 if (old_stop) {
834 /*
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
837 */
838 old_stop->sched_class = &rt_sched_class;
839 }
840 }
841
842 /*
843 * __normal_prio - return the priority that is based on the static prio
844 */
845 static inline int __normal_prio(struct task_struct *p)
846 {
847 return p->static_prio;
848 }
849
850 /*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
857 static inline int normal_prio(struct task_struct *p)
858 {
859 int prio;
860
861 if (task_has_rt_policy(p))
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
863 else
864 prio = __normal_prio(p);
865 return prio;
866 }
867
868 /*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
875 static int effective_prio(struct task_struct *p)
876 {
877 p->normal_prio = normal_prio(p);
878 /*
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
882 */
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
885 return p->prio;
886 }
887
888 /**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
892 inline int task_curr(const struct task_struct *p)
893 {
894 return cpu_curr(task_cpu(p)) == p;
895 }
896
897 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
899 int oldprio)
900 {
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
907 }
908
909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 {
911 const struct sched_class *class;
912
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 } else {
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
918 break;
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
921 break;
922 }
923 }
924 }
925
926 /*
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
929 */
930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 rq->skip_clock_update = 1;
932 }
933
934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936 void register_task_migration_notifier(struct notifier_block *n)
937 {
938 atomic_notifier_chain_register(&task_migration_notifier, n);
939 }
940
941 #ifdef CONFIG_SMP
942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
943 {
944 #ifdef CONFIG_SCHED_DEBUG
945 /*
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
948 */
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951
952 #ifdef CONFIG_LOCKDEP
953 /*
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 *
957 * sched_move_task() holds both and thus holding either pins the cgroup,
958 * see task_group().
959 *
960 * Furthermore, all task_rq users should acquire both locks, see
961 * task_rq_lock().
962 */
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
965 #endif
966 #endif
967
968 trace_sched_migrate_task(p, new_cpu);
969
970 if (task_cpu(p) != new_cpu) {
971 struct task_migration_notifier tmn;
972
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
975 p->se.nr_migrations++;
976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977
978 tmn.task = p;
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
981
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983 }
984
985 __set_task_cpu(p, new_cpu);
986 }
987
988 struct migration_arg {
989 struct task_struct *task;
990 int dest_cpu;
991 };
992
993 static int migration_cpu_stop(void *data);
994
995 /*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1012 {
1013 unsigned long flags;
1014 int running, on_rq;
1015 unsigned long ncsw;
1016 struct rq *rq;
1017
1018 for (;;) {
1019 /*
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1023 * work out!
1024 */
1025 rq = task_rq(p);
1026
1027 /*
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1030 * any locks.
1031 *
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1037 */
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1040 return 0;
1041 cpu_relax();
1042 }
1043
1044 /*
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1048 */
1049 rq = task_rq_lock(p, &flags);
1050 trace_sched_wait_task(p);
1051 running = task_running(rq, p);
1052 on_rq = p->on_rq;
1053 ncsw = 0;
1054 if (!match_state || p->state == match_state)
1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056 task_rq_unlock(rq, p, &flags);
1057
1058 /*
1059 * If it changed from the expected state, bail out now.
1060 */
1061 if (unlikely(!ncsw))
1062 break;
1063
1064 /*
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1067 *
1068 * Oops. Go back and try again..
1069 */
1070 if (unlikely(running)) {
1071 cpu_relax();
1072 continue;
1073 }
1074
1075 /*
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1078 * preempted!
1079 *
1080 * So if it was still runnable (but just not actively
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1083 */
1084 if (unlikely(on_rq)) {
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 continue;
1090 }
1091
1092 /*
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1096 */
1097 break;
1098 }
1099
1100 return ncsw;
1101 }
1102
1103 /***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
1110 * NOTE: this function doesn't have to take the runqueue lock,
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
1116 void kick_process(struct task_struct *p)
1117 {
1118 int cpu;
1119
1120 preempt_disable();
1121 cpu = task_cpu(p);
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1124 preempt_enable();
1125 }
1126 EXPORT_SYMBOL_GPL(kick_process);
1127 #endif /* CONFIG_SMP */
1128
1129 #ifdef CONFIG_SMP
1130 /*
1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132 */
1133 static int select_fallback_rq(int cpu, struct task_struct *p)
1134 {
1135 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1136 enum { cpuset, possible, fail } state = cpuset;
1137 int dest_cpu;
1138
1139 /* Look for allowed, online CPU in same node. */
1140 for_each_cpu(dest_cpu, nodemask) {
1141 if (!cpu_online(dest_cpu))
1142 continue;
1143 if (!cpu_active(dest_cpu))
1144 continue;
1145 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1146 return dest_cpu;
1147 }
1148
1149 for (;;) {
1150 /* Any allowed, online CPU? */
1151 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1152 if (!cpu_online(dest_cpu))
1153 continue;
1154 if (!cpu_active(dest_cpu))
1155 continue;
1156 goto out;
1157 }
1158
1159 switch (state) {
1160 case cpuset:
1161 /* No more Mr. Nice Guy. */
1162 cpuset_cpus_allowed_fallback(p);
1163 state = possible;
1164 break;
1165
1166 case possible:
1167 do_set_cpus_allowed(p, cpu_possible_mask);
1168 state = fail;
1169 break;
1170
1171 case fail:
1172 BUG();
1173 break;
1174 }
1175 }
1176
1177 out:
1178 if (state != cpuset) {
1179 /*
1180 * Don't tell them about moving exiting tasks or
1181 * kernel threads (both mm NULL), since they never
1182 * leave kernel.
1183 */
1184 if (p->mm && printk_ratelimit()) {
1185 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1186 task_pid_nr(p), p->comm, cpu);
1187 }
1188 }
1189
1190 return dest_cpu;
1191 }
1192
1193 /*
1194 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1195 */
1196 static inline
1197 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1198 {
1199 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1200
1201 /*
1202 * In order not to call set_task_cpu() on a blocking task we need
1203 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1204 * cpu.
1205 *
1206 * Since this is common to all placement strategies, this lives here.
1207 *
1208 * [ this allows ->select_task() to simply return task_cpu(p) and
1209 * not worry about this generic constraint ]
1210 */
1211 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1212 !cpu_online(cpu)))
1213 cpu = select_fallback_rq(task_cpu(p), p);
1214
1215 return cpu;
1216 }
1217
1218 static void update_avg(u64 *avg, u64 sample)
1219 {
1220 s64 diff = sample - *avg;
1221 *avg += diff >> 3;
1222 }
1223 #endif
1224
1225 static void
1226 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1227 {
1228 #ifdef CONFIG_SCHEDSTATS
1229 struct rq *rq = this_rq();
1230
1231 #ifdef CONFIG_SMP
1232 int this_cpu = smp_processor_id();
1233
1234 if (cpu == this_cpu) {
1235 schedstat_inc(rq, ttwu_local);
1236 schedstat_inc(p, se.statistics.nr_wakeups_local);
1237 } else {
1238 struct sched_domain *sd;
1239
1240 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1241 rcu_read_lock();
1242 for_each_domain(this_cpu, sd) {
1243 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1244 schedstat_inc(sd, ttwu_wake_remote);
1245 break;
1246 }
1247 }
1248 rcu_read_unlock();
1249 }
1250
1251 if (wake_flags & WF_MIGRATED)
1252 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1253
1254 #endif /* CONFIG_SMP */
1255
1256 schedstat_inc(rq, ttwu_count);
1257 schedstat_inc(p, se.statistics.nr_wakeups);
1258
1259 if (wake_flags & WF_SYNC)
1260 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1261
1262 #endif /* CONFIG_SCHEDSTATS */
1263 }
1264
1265 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1266 {
1267 activate_task(rq, p, en_flags);
1268 p->on_rq = 1;
1269
1270 /* if a worker is waking up, notify workqueue */
1271 if (p->flags & PF_WQ_WORKER)
1272 wq_worker_waking_up(p, cpu_of(rq));
1273 }
1274
1275 /*
1276 * Mark the task runnable and perform wakeup-preemption.
1277 */
1278 static void
1279 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1280 {
1281 trace_sched_wakeup(p, true);
1282 check_preempt_curr(rq, p, wake_flags);
1283
1284 p->state = TASK_RUNNING;
1285 #ifdef CONFIG_SMP
1286 if (p->sched_class->task_woken)
1287 p->sched_class->task_woken(rq, p);
1288
1289 if (rq->idle_stamp) {
1290 u64 delta = rq->clock - rq->idle_stamp;
1291 u64 max = 2*sysctl_sched_migration_cost;
1292
1293 if (delta > max)
1294 rq->avg_idle = max;
1295 else
1296 update_avg(&rq->avg_idle, delta);
1297 rq->idle_stamp = 0;
1298 }
1299 #endif
1300 }
1301
1302 static void
1303 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1304 {
1305 #ifdef CONFIG_SMP
1306 if (p->sched_contributes_to_load)
1307 rq->nr_uninterruptible--;
1308 #endif
1309
1310 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1311 ttwu_do_wakeup(rq, p, wake_flags);
1312 }
1313
1314 /*
1315 * Called in case the task @p isn't fully descheduled from its runqueue,
1316 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1317 * since all we need to do is flip p->state to TASK_RUNNING, since
1318 * the task is still ->on_rq.
1319 */
1320 static int ttwu_remote(struct task_struct *p, int wake_flags)
1321 {
1322 struct rq *rq;
1323 int ret = 0;
1324
1325 rq = __task_rq_lock(p);
1326 if (p->on_rq) {
1327 ttwu_do_wakeup(rq, p, wake_flags);
1328 ret = 1;
1329 }
1330 __task_rq_unlock(rq);
1331
1332 return ret;
1333 }
1334
1335 #ifdef CONFIG_SMP
1336 static void sched_ttwu_pending(void)
1337 {
1338 struct rq *rq = this_rq();
1339 struct llist_node *llist = llist_del_all(&rq->wake_list);
1340 struct task_struct *p;
1341
1342 raw_spin_lock(&rq->lock);
1343
1344 while (llist) {
1345 p = llist_entry(llist, struct task_struct, wake_entry);
1346 llist = llist_next(llist);
1347 ttwu_do_activate(rq, p, 0);
1348 }
1349
1350 raw_spin_unlock(&rq->lock);
1351 }
1352
1353 void scheduler_ipi(void)
1354 {
1355 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1356 return;
1357
1358 /*
1359 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1360 * traditionally all their work was done from the interrupt return
1361 * path. Now that we actually do some work, we need to make sure
1362 * we do call them.
1363 *
1364 * Some archs already do call them, luckily irq_enter/exit nest
1365 * properly.
1366 *
1367 * Arguably we should visit all archs and update all handlers,
1368 * however a fair share of IPIs are still resched only so this would
1369 * somewhat pessimize the simple resched case.
1370 */
1371 irq_enter();
1372 sched_ttwu_pending();
1373
1374 /*
1375 * Check if someone kicked us for doing the nohz idle load balance.
1376 */
1377 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1378 this_rq()->idle_balance = 1;
1379 raise_softirq_irqoff(SCHED_SOFTIRQ);
1380 }
1381 irq_exit();
1382 }
1383
1384 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1385 {
1386 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1387 smp_send_reschedule(cpu);
1388 }
1389
1390 bool cpus_share_cache(int this_cpu, int that_cpu)
1391 {
1392 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1393 }
1394 #endif /* CONFIG_SMP */
1395
1396 static void ttwu_queue(struct task_struct *p, int cpu)
1397 {
1398 struct rq *rq = cpu_rq(cpu);
1399
1400 #if defined(CONFIG_SMP)
1401 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1402 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1403 ttwu_queue_remote(p, cpu);
1404 return;
1405 }
1406 #endif
1407
1408 raw_spin_lock(&rq->lock);
1409 ttwu_do_activate(rq, p, 0);
1410 raw_spin_unlock(&rq->lock);
1411 }
1412
1413 /**
1414 * try_to_wake_up - wake up a thread
1415 * @p: the thread to be awakened
1416 * @state: the mask of task states that can be woken
1417 * @wake_flags: wake modifier flags (WF_*)
1418 *
1419 * Put it on the run-queue if it's not already there. The "current"
1420 * thread is always on the run-queue (except when the actual
1421 * re-schedule is in progress), and as such you're allowed to do
1422 * the simpler "current->state = TASK_RUNNING" to mark yourself
1423 * runnable without the overhead of this.
1424 *
1425 * Returns %true if @p was woken up, %false if it was already running
1426 * or @state didn't match @p's state.
1427 */
1428 static int
1429 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1430 {
1431 unsigned long flags;
1432 int cpu, success = 0;
1433
1434 smp_wmb();
1435 raw_spin_lock_irqsave(&p->pi_lock, flags);
1436 if (!(p->state & state))
1437 goto out;
1438
1439 success = 1; /* we're going to change ->state */
1440 cpu = task_cpu(p);
1441
1442 if (p->on_rq && ttwu_remote(p, wake_flags))
1443 goto stat;
1444
1445 #ifdef CONFIG_SMP
1446 /*
1447 * If the owning (remote) cpu is still in the middle of schedule() with
1448 * this task as prev, wait until its done referencing the task.
1449 */
1450 while (p->on_cpu)
1451 cpu_relax();
1452 /*
1453 * Pairs with the smp_wmb() in finish_lock_switch().
1454 */
1455 smp_rmb();
1456
1457 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1458 p->state = TASK_WAKING;
1459
1460 if (p->sched_class->task_waking)
1461 p->sched_class->task_waking(p);
1462
1463 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1464 if (task_cpu(p) != cpu) {
1465 wake_flags |= WF_MIGRATED;
1466 set_task_cpu(p, cpu);
1467 }
1468 #endif /* CONFIG_SMP */
1469
1470 ttwu_queue(p, cpu);
1471 stat:
1472 ttwu_stat(p, cpu, wake_flags);
1473 out:
1474 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1475
1476 return success;
1477 }
1478
1479 /**
1480 * try_to_wake_up_local - try to wake up a local task with rq lock held
1481 * @p: the thread to be awakened
1482 *
1483 * Put @p on the run-queue if it's not already there. The caller must
1484 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1485 * the current task.
1486 */
1487 static void try_to_wake_up_local(struct task_struct *p)
1488 {
1489 struct rq *rq = task_rq(p);
1490
1491 BUG_ON(rq != this_rq());
1492 BUG_ON(p == current);
1493 lockdep_assert_held(&rq->lock);
1494
1495 if (!raw_spin_trylock(&p->pi_lock)) {
1496 raw_spin_unlock(&rq->lock);
1497 raw_spin_lock(&p->pi_lock);
1498 raw_spin_lock(&rq->lock);
1499 }
1500
1501 if (!(p->state & TASK_NORMAL))
1502 goto out;
1503
1504 if (!p->on_rq)
1505 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1506
1507 ttwu_do_wakeup(rq, p, 0);
1508 ttwu_stat(p, smp_processor_id(), 0);
1509 out:
1510 raw_spin_unlock(&p->pi_lock);
1511 }
1512
1513 /**
1514 * wake_up_process - Wake up a specific process
1515 * @p: The process to be woken up.
1516 *
1517 * Attempt to wake up the nominated process and move it to the set of runnable
1518 * processes. Returns 1 if the process was woken up, 0 if it was already
1519 * running.
1520 *
1521 * It may be assumed that this function implies a write memory barrier before
1522 * changing the task state if and only if any tasks are woken up.
1523 */
1524 int wake_up_process(struct task_struct *p)
1525 {
1526 return try_to_wake_up(p, TASK_ALL, 0);
1527 }
1528 EXPORT_SYMBOL(wake_up_process);
1529
1530 int wake_up_state(struct task_struct *p, unsigned int state)
1531 {
1532 return try_to_wake_up(p, state, 0);
1533 }
1534
1535 /*
1536 * Perform scheduler related setup for a newly forked process p.
1537 * p is forked by current.
1538 *
1539 * __sched_fork() is basic setup used by init_idle() too:
1540 */
1541 static void __sched_fork(struct task_struct *p)
1542 {
1543 p->on_rq = 0;
1544
1545 p->se.on_rq = 0;
1546 p->se.exec_start = 0;
1547 p->se.sum_exec_runtime = 0;
1548 p->se.prev_sum_exec_runtime = 0;
1549 p->se.nr_migrations = 0;
1550 p->se.vruntime = 0;
1551 INIT_LIST_HEAD(&p->se.group_node);
1552
1553 /*
1554 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1555 * removed when useful for applications beyond shares distribution (e.g.
1556 * load-balance).
1557 */
1558 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1559 p->se.avg.runnable_avg_period = 0;
1560 p->se.avg.runnable_avg_sum = 0;
1561 #endif
1562 #ifdef CONFIG_SCHEDSTATS
1563 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1564 #endif
1565
1566 INIT_LIST_HEAD(&p->rt.run_list);
1567
1568 #ifdef CONFIG_PREEMPT_NOTIFIERS
1569 INIT_HLIST_HEAD(&p->preempt_notifiers);
1570 #endif
1571
1572 #ifdef CONFIG_NUMA_BALANCING
1573 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1574 p->mm->numa_next_scan = jiffies;
1575 p->mm->numa_next_reset = jiffies;
1576 p->mm->numa_scan_seq = 0;
1577 }
1578
1579 p->node_stamp = 0ULL;
1580 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1581 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1582 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1583 p->numa_work.next = &p->numa_work;
1584 #endif /* CONFIG_NUMA_BALANCING */
1585 }
1586
1587 #ifdef CONFIG_NUMA_BALANCING
1588 #ifdef CONFIG_SCHED_DEBUG
1589 void set_numabalancing_state(bool enabled)
1590 {
1591 if (enabled)
1592 sched_feat_set("NUMA");
1593 else
1594 sched_feat_set("NO_NUMA");
1595 }
1596 #else
1597 __read_mostly bool numabalancing_enabled;
1598
1599 void set_numabalancing_state(bool enabled)
1600 {
1601 numabalancing_enabled = enabled;
1602 }
1603 #endif /* CONFIG_SCHED_DEBUG */
1604 #endif /* CONFIG_NUMA_BALANCING */
1605
1606 /*
1607 * fork()/clone()-time setup:
1608 */
1609 void sched_fork(struct task_struct *p)
1610 {
1611 unsigned long flags;
1612 int cpu = get_cpu();
1613
1614 __sched_fork(p);
1615 /*
1616 * We mark the process as running here. This guarantees that
1617 * nobody will actually run it, and a signal or other external
1618 * event cannot wake it up and insert it on the runqueue either.
1619 */
1620 p->state = TASK_RUNNING;
1621
1622 /*
1623 * Make sure we do not leak PI boosting priority to the child.
1624 */
1625 p->prio = current->normal_prio;
1626
1627 /*
1628 * Revert to default priority/policy on fork if requested.
1629 */
1630 if (unlikely(p->sched_reset_on_fork)) {
1631 if (task_has_rt_policy(p)) {
1632 p->policy = SCHED_NORMAL;
1633 p->static_prio = NICE_TO_PRIO(0);
1634 p->rt_priority = 0;
1635 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1636 p->static_prio = NICE_TO_PRIO(0);
1637
1638 p->prio = p->normal_prio = __normal_prio(p);
1639 set_load_weight(p);
1640
1641 /*
1642 * We don't need the reset flag anymore after the fork. It has
1643 * fulfilled its duty:
1644 */
1645 p->sched_reset_on_fork = 0;
1646 }
1647
1648 if (!rt_prio(p->prio))
1649 p->sched_class = &fair_sched_class;
1650
1651 if (p->sched_class->task_fork)
1652 p->sched_class->task_fork(p);
1653
1654 /*
1655 * The child is not yet in the pid-hash so no cgroup attach races,
1656 * and the cgroup is pinned to this child due to cgroup_fork()
1657 * is ran before sched_fork().
1658 *
1659 * Silence PROVE_RCU.
1660 */
1661 raw_spin_lock_irqsave(&p->pi_lock, flags);
1662 set_task_cpu(p, cpu);
1663 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1664
1665 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1666 if (likely(sched_info_on()))
1667 memset(&p->sched_info, 0, sizeof(p->sched_info));
1668 #endif
1669 #if defined(CONFIG_SMP)
1670 p->on_cpu = 0;
1671 #endif
1672 #ifdef CONFIG_PREEMPT_COUNT
1673 /* Want to start with kernel preemption disabled. */
1674 task_thread_info(p)->preempt_count = 1;
1675 #endif
1676 #ifdef CONFIG_SMP
1677 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1678 #endif
1679
1680 put_cpu();
1681 }
1682
1683 /*
1684 * wake_up_new_task - wake up a newly created task for the first time.
1685 *
1686 * This function will do some initial scheduler statistics housekeeping
1687 * that must be done for every newly created context, then puts the task
1688 * on the runqueue and wakes it.
1689 */
1690 void wake_up_new_task(struct task_struct *p)
1691 {
1692 unsigned long flags;
1693 struct rq *rq;
1694
1695 raw_spin_lock_irqsave(&p->pi_lock, flags);
1696 #ifdef CONFIG_SMP
1697 /*
1698 * Fork balancing, do it here and not earlier because:
1699 * - cpus_allowed can change in the fork path
1700 * - any previously selected cpu might disappear through hotplug
1701 */
1702 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1703 #endif
1704
1705 rq = __task_rq_lock(p);
1706 activate_task(rq, p, 0);
1707 p->on_rq = 1;
1708 trace_sched_wakeup_new(p, true);
1709 check_preempt_curr(rq, p, WF_FORK);
1710 #ifdef CONFIG_SMP
1711 if (p->sched_class->task_woken)
1712 p->sched_class->task_woken(rq, p);
1713 #endif
1714 task_rq_unlock(rq, p, &flags);
1715 }
1716
1717 #ifdef CONFIG_PREEMPT_NOTIFIERS
1718
1719 /**
1720 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1721 * @notifier: notifier struct to register
1722 */
1723 void preempt_notifier_register(struct preempt_notifier *notifier)
1724 {
1725 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1726 }
1727 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1728
1729 /**
1730 * preempt_notifier_unregister - no longer interested in preemption notifications
1731 * @notifier: notifier struct to unregister
1732 *
1733 * This is safe to call from within a preemption notifier.
1734 */
1735 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1736 {
1737 hlist_del(&notifier->link);
1738 }
1739 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1740
1741 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1742 {
1743 struct preempt_notifier *notifier;
1744 struct hlist_node *node;
1745
1746 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1747 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1748 }
1749
1750 static void
1751 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1752 struct task_struct *next)
1753 {
1754 struct preempt_notifier *notifier;
1755 struct hlist_node *node;
1756
1757 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1758 notifier->ops->sched_out(notifier, next);
1759 }
1760
1761 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1762
1763 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1764 {
1765 }
1766
1767 static void
1768 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1769 struct task_struct *next)
1770 {
1771 }
1772
1773 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1774
1775 /**
1776 * prepare_task_switch - prepare to switch tasks
1777 * @rq: the runqueue preparing to switch
1778 * @prev: the current task that is being switched out
1779 * @next: the task we are going to switch to.
1780 *
1781 * This is called with the rq lock held and interrupts off. It must
1782 * be paired with a subsequent finish_task_switch after the context
1783 * switch.
1784 *
1785 * prepare_task_switch sets up locking and calls architecture specific
1786 * hooks.
1787 */
1788 static inline void
1789 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1790 struct task_struct *next)
1791 {
1792 trace_sched_switch(prev, next);
1793 sched_info_switch(prev, next);
1794 perf_event_task_sched_out(prev, next);
1795 fire_sched_out_preempt_notifiers(prev, next);
1796 prepare_lock_switch(rq, next);
1797 prepare_arch_switch(next);
1798 }
1799
1800 /**
1801 * finish_task_switch - clean up after a task-switch
1802 * @rq: runqueue associated with task-switch
1803 * @prev: the thread we just switched away from.
1804 *
1805 * finish_task_switch must be called after the context switch, paired
1806 * with a prepare_task_switch call before the context switch.
1807 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1808 * and do any other architecture-specific cleanup actions.
1809 *
1810 * Note that we may have delayed dropping an mm in context_switch(). If
1811 * so, we finish that here outside of the runqueue lock. (Doing it
1812 * with the lock held can cause deadlocks; see schedule() for
1813 * details.)
1814 */
1815 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1816 __releases(rq->lock)
1817 {
1818 struct mm_struct *mm = rq->prev_mm;
1819 long prev_state;
1820
1821 rq->prev_mm = NULL;
1822
1823 /*
1824 * A task struct has one reference for the use as "current".
1825 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1826 * schedule one last time. The schedule call will never return, and
1827 * the scheduled task must drop that reference.
1828 * The test for TASK_DEAD must occur while the runqueue locks are
1829 * still held, otherwise prev could be scheduled on another cpu, die
1830 * there before we look at prev->state, and then the reference would
1831 * be dropped twice.
1832 * Manfred Spraul <manfred@colorfullife.com>
1833 */
1834 prev_state = prev->state;
1835 vtime_task_switch(prev);
1836 finish_arch_switch(prev);
1837 perf_event_task_sched_in(prev, current);
1838 finish_lock_switch(rq, prev);
1839 finish_arch_post_lock_switch();
1840
1841 fire_sched_in_preempt_notifiers(current);
1842 if (mm)
1843 mmdrop(mm);
1844 if (unlikely(prev_state == TASK_DEAD)) {
1845 /*
1846 * Remove function-return probe instances associated with this
1847 * task and put them back on the free list.
1848 */
1849 kprobe_flush_task(prev);
1850 put_task_struct(prev);
1851 }
1852 }
1853
1854 #ifdef CONFIG_SMP
1855
1856 /* assumes rq->lock is held */
1857 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1858 {
1859 if (prev->sched_class->pre_schedule)
1860 prev->sched_class->pre_schedule(rq, prev);
1861 }
1862
1863 /* rq->lock is NOT held, but preemption is disabled */
1864 static inline void post_schedule(struct rq *rq)
1865 {
1866 if (rq->post_schedule) {
1867 unsigned long flags;
1868
1869 raw_spin_lock_irqsave(&rq->lock, flags);
1870 if (rq->curr->sched_class->post_schedule)
1871 rq->curr->sched_class->post_schedule(rq);
1872 raw_spin_unlock_irqrestore(&rq->lock, flags);
1873
1874 rq->post_schedule = 0;
1875 }
1876 }
1877
1878 #else
1879
1880 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1881 {
1882 }
1883
1884 static inline void post_schedule(struct rq *rq)
1885 {
1886 }
1887
1888 #endif
1889
1890 /**
1891 * schedule_tail - first thing a freshly forked thread must call.
1892 * @prev: the thread we just switched away from.
1893 */
1894 asmlinkage void schedule_tail(struct task_struct *prev)
1895 __releases(rq->lock)
1896 {
1897 struct rq *rq = this_rq();
1898
1899 finish_task_switch(rq, prev);
1900
1901 /*
1902 * FIXME: do we need to worry about rq being invalidated by the
1903 * task_switch?
1904 */
1905 post_schedule(rq);
1906
1907 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1908 /* In this case, finish_task_switch does not reenable preemption */
1909 preempt_enable();
1910 #endif
1911 if (current->set_child_tid)
1912 put_user(task_pid_vnr(current), current->set_child_tid);
1913 }
1914
1915 /*
1916 * context_switch - switch to the new MM and the new
1917 * thread's register state.
1918 */
1919 static inline void
1920 context_switch(struct rq *rq, struct task_struct *prev,
1921 struct task_struct *next)
1922 {
1923 struct mm_struct *mm, *oldmm;
1924
1925 prepare_task_switch(rq, prev, next);
1926
1927 mm = next->mm;
1928 oldmm = prev->active_mm;
1929 /*
1930 * For paravirt, this is coupled with an exit in switch_to to
1931 * combine the page table reload and the switch backend into
1932 * one hypercall.
1933 */
1934 arch_start_context_switch(prev);
1935
1936 if (!mm) {
1937 next->active_mm = oldmm;
1938 atomic_inc(&oldmm->mm_count);
1939 enter_lazy_tlb(oldmm, next);
1940 } else
1941 switch_mm(oldmm, mm, next);
1942
1943 if (!prev->mm) {
1944 prev->active_mm = NULL;
1945 rq->prev_mm = oldmm;
1946 }
1947 /*
1948 * Since the runqueue lock will be released by the next
1949 * task (which is an invalid locking op but in the case
1950 * of the scheduler it's an obvious special-case), so we
1951 * do an early lockdep release here:
1952 */
1953 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1954 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1955 #endif
1956
1957 context_tracking_task_switch(prev, next);
1958 /* Here we just switch the register state and the stack. */
1959 switch_to(prev, next, prev);
1960
1961 barrier();
1962 /*
1963 * this_rq must be evaluated again because prev may have moved
1964 * CPUs since it called schedule(), thus the 'rq' on its stack
1965 * frame will be invalid.
1966 */
1967 finish_task_switch(this_rq(), prev);
1968 }
1969
1970 /*
1971 * nr_running, nr_uninterruptible and nr_context_switches:
1972 *
1973 * externally visible scheduler statistics: current number of runnable
1974 * threads, current number of uninterruptible-sleeping threads, total
1975 * number of context switches performed since bootup.
1976 */
1977 unsigned long nr_running(void)
1978 {
1979 unsigned long i, sum = 0;
1980
1981 for_each_online_cpu(i)
1982 sum += cpu_rq(i)->nr_running;
1983
1984 return sum;
1985 }
1986
1987 unsigned long nr_uninterruptible(void)
1988 {
1989 unsigned long i, sum = 0;
1990
1991 for_each_possible_cpu(i)
1992 sum += cpu_rq(i)->nr_uninterruptible;
1993
1994 /*
1995 * Since we read the counters lockless, it might be slightly
1996 * inaccurate. Do not allow it to go below zero though:
1997 */
1998 if (unlikely((long)sum < 0))
1999 sum = 0;
2000
2001 return sum;
2002 }
2003
2004 unsigned long long nr_context_switches(void)
2005 {
2006 int i;
2007 unsigned long long sum = 0;
2008
2009 for_each_possible_cpu(i)
2010 sum += cpu_rq(i)->nr_switches;
2011
2012 return sum;
2013 }
2014
2015 unsigned long nr_iowait(void)
2016 {
2017 unsigned long i, sum = 0;
2018
2019 for_each_possible_cpu(i)
2020 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2021
2022 return sum;
2023 }
2024
2025 unsigned long nr_iowait_cpu(int cpu)
2026 {
2027 struct rq *this = cpu_rq(cpu);
2028 return atomic_read(&this->nr_iowait);
2029 }
2030
2031 unsigned long this_cpu_load(void)
2032 {
2033 struct rq *this = this_rq();
2034 return this->cpu_load[0];
2035 }
2036
2037
2038 /*
2039 * Global load-average calculations
2040 *
2041 * We take a distributed and async approach to calculating the global load-avg
2042 * in order to minimize overhead.
2043 *
2044 * The global load average is an exponentially decaying average of nr_running +
2045 * nr_uninterruptible.
2046 *
2047 * Once every LOAD_FREQ:
2048 *
2049 * nr_active = 0;
2050 * for_each_possible_cpu(cpu)
2051 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2052 *
2053 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2054 *
2055 * Due to a number of reasons the above turns in the mess below:
2056 *
2057 * - for_each_possible_cpu() is prohibitively expensive on machines with
2058 * serious number of cpus, therefore we need to take a distributed approach
2059 * to calculating nr_active.
2060 *
2061 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2062 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2063 *
2064 * So assuming nr_active := 0 when we start out -- true per definition, we
2065 * can simply take per-cpu deltas and fold those into a global accumulate
2066 * to obtain the same result. See calc_load_fold_active().
2067 *
2068 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2069 * across the machine, we assume 10 ticks is sufficient time for every
2070 * cpu to have completed this task.
2071 *
2072 * This places an upper-bound on the IRQ-off latency of the machine. Then
2073 * again, being late doesn't loose the delta, just wrecks the sample.
2074 *
2075 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2076 * this would add another cross-cpu cacheline miss and atomic operation
2077 * to the wakeup path. Instead we increment on whatever cpu the task ran
2078 * when it went into uninterruptible state and decrement on whatever cpu
2079 * did the wakeup. This means that only the sum of nr_uninterruptible over
2080 * all cpus yields the correct result.
2081 *
2082 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2083 */
2084
2085 /* Variables and functions for calc_load */
2086 static atomic_long_t calc_load_tasks;
2087 static unsigned long calc_load_update;
2088 unsigned long avenrun[3];
2089 EXPORT_SYMBOL(avenrun); /* should be removed */
2090
2091 /**
2092 * get_avenrun - get the load average array
2093 * @loads: pointer to dest load array
2094 * @offset: offset to add
2095 * @shift: shift count to shift the result left
2096 *
2097 * These values are estimates at best, so no need for locking.
2098 */
2099 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2100 {
2101 loads[0] = (avenrun[0] + offset) << shift;
2102 loads[1] = (avenrun[1] + offset) << shift;
2103 loads[2] = (avenrun[2] + offset) << shift;
2104 }
2105
2106 static long calc_load_fold_active(struct rq *this_rq)
2107 {
2108 long nr_active, delta = 0;
2109
2110 nr_active = this_rq->nr_running;
2111 nr_active += (long) this_rq->nr_uninterruptible;
2112
2113 if (nr_active != this_rq->calc_load_active) {
2114 delta = nr_active - this_rq->calc_load_active;
2115 this_rq->calc_load_active = nr_active;
2116 }
2117
2118 return delta;
2119 }
2120
2121 /*
2122 * a1 = a0 * e + a * (1 - e)
2123 */
2124 static unsigned long
2125 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2126 {
2127 load *= exp;
2128 load += active * (FIXED_1 - exp);
2129 load += 1UL << (FSHIFT - 1);
2130 return load >> FSHIFT;
2131 }
2132
2133 #ifdef CONFIG_NO_HZ
2134 /*
2135 * Handle NO_HZ for the global load-average.
2136 *
2137 * Since the above described distributed algorithm to compute the global
2138 * load-average relies on per-cpu sampling from the tick, it is affected by
2139 * NO_HZ.
2140 *
2141 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2142 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2143 * when we read the global state.
2144 *
2145 * Obviously reality has to ruin such a delightfully simple scheme:
2146 *
2147 * - When we go NO_HZ idle during the window, we can negate our sample
2148 * contribution, causing under-accounting.
2149 *
2150 * We avoid this by keeping two idle-delta counters and flipping them
2151 * when the window starts, thus separating old and new NO_HZ load.
2152 *
2153 * The only trick is the slight shift in index flip for read vs write.
2154 *
2155 * 0s 5s 10s 15s
2156 * +10 +10 +10 +10
2157 * |-|-----------|-|-----------|-|-----------|-|
2158 * r:0 0 1 1 0 0 1 1 0
2159 * w:0 1 1 0 0 1 1 0 0
2160 *
2161 * This ensures we'll fold the old idle contribution in this window while
2162 * accumlating the new one.
2163 *
2164 * - When we wake up from NO_HZ idle during the window, we push up our
2165 * contribution, since we effectively move our sample point to a known
2166 * busy state.
2167 *
2168 * This is solved by pushing the window forward, and thus skipping the
2169 * sample, for this cpu (effectively using the idle-delta for this cpu which
2170 * was in effect at the time the window opened). This also solves the issue
2171 * of having to deal with a cpu having been in NOHZ idle for multiple
2172 * LOAD_FREQ intervals.
2173 *
2174 * When making the ILB scale, we should try to pull this in as well.
2175 */
2176 static atomic_long_t calc_load_idle[2];
2177 static int calc_load_idx;
2178
2179 static inline int calc_load_write_idx(void)
2180 {
2181 int idx = calc_load_idx;
2182
2183 /*
2184 * See calc_global_nohz(), if we observe the new index, we also
2185 * need to observe the new update time.
2186 */
2187 smp_rmb();
2188
2189 /*
2190 * If the folding window started, make sure we start writing in the
2191 * next idle-delta.
2192 */
2193 if (!time_before(jiffies, calc_load_update))
2194 idx++;
2195
2196 return idx & 1;
2197 }
2198
2199 static inline int calc_load_read_idx(void)
2200 {
2201 return calc_load_idx & 1;
2202 }
2203
2204 void calc_load_enter_idle(void)
2205 {
2206 struct rq *this_rq = this_rq();
2207 long delta;
2208
2209 /*
2210 * We're going into NOHZ mode, if there's any pending delta, fold it
2211 * into the pending idle delta.
2212 */
2213 delta = calc_load_fold_active(this_rq);
2214 if (delta) {
2215 int idx = calc_load_write_idx();
2216 atomic_long_add(delta, &calc_load_idle[idx]);
2217 }
2218 }
2219
2220 void calc_load_exit_idle(void)
2221 {
2222 struct rq *this_rq = this_rq();
2223
2224 /*
2225 * If we're still before the sample window, we're done.
2226 */
2227 if (time_before(jiffies, this_rq->calc_load_update))
2228 return;
2229
2230 /*
2231 * We woke inside or after the sample window, this means we're already
2232 * accounted through the nohz accounting, so skip the entire deal and
2233 * sync up for the next window.
2234 */
2235 this_rq->calc_load_update = calc_load_update;
2236 if (time_before(jiffies, this_rq->calc_load_update + 10))
2237 this_rq->calc_load_update += LOAD_FREQ;
2238 }
2239
2240 static long calc_load_fold_idle(void)
2241 {
2242 int idx = calc_load_read_idx();
2243 long delta = 0;
2244
2245 if (atomic_long_read(&calc_load_idle[idx]))
2246 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2247
2248 return delta;
2249 }
2250
2251 /**
2252 * fixed_power_int - compute: x^n, in O(log n) time
2253 *
2254 * @x: base of the power
2255 * @frac_bits: fractional bits of @x
2256 * @n: power to raise @x to.
2257 *
2258 * By exploiting the relation between the definition of the natural power
2259 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2260 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2261 * (where: n_i \elem {0, 1}, the binary vector representing n),
2262 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2263 * of course trivially computable in O(log_2 n), the length of our binary
2264 * vector.
2265 */
2266 static unsigned long
2267 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2268 {
2269 unsigned long result = 1UL << frac_bits;
2270
2271 if (n) for (;;) {
2272 if (n & 1) {
2273 result *= x;
2274 result += 1UL << (frac_bits - 1);
2275 result >>= frac_bits;
2276 }
2277 n >>= 1;
2278 if (!n)
2279 break;
2280 x *= x;
2281 x += 1UL << (frac_bits - 1);
2282 x >>= frac_bits;
2283 }
2284
2285 return result;
2286 }
2287
2288 /*
2289 * a1 = a0 * e + a * (1 - e)
2290 *
2291 * a2 = a1 * e + a * (1 - e)
2292 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2293 * = a0 * e^2 + a * (1 - e) * (1 + e)
2294 *
2295 * a3 = a2 * e + a * (1 - e)
2296 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2297 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2298 *
2299 * ...
2300 *
2301 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2302 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2303 * = a0 * e^n + a * (1 - e^n)
2304 *
2305 * [1] application of the geometric series:
2306 *
2307 * n 1 - x^(n+1)
2308 * S_n := \Sum x^i = -------------
2309 * i=0 1 - x
2310 */
2311 static unsigned long
2312 calc_load_n(unsigned long load, unsigned long exp,
2313 unsigned long active, unsigned int n)
2314 {
2315
2316 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2317 }
2318
2319 /*
2320 * NO_HZ can leave us missing all per-cpu ticks calling
2321 * calc_load_account_active(), but since an idle CPU folds its delta into
2322 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2323 * in the pending idle delta if our idle period crossed a load cycle boundary.
2324 *
2325 * Once we've updated the global active value, we need to apply the exponential
2326 * weights adjusted to the number of cycles missed.
2327 */
2328 static void calc_global_nohz(void)
2329 {
2330 long delta, active, n;
2331
2332 if (!time_before(jiffies, calc_load_update + 10)) {
2333 /*
2334 * Catch-up, fold however many we are behind still
2335 */
2336 delta = jiffies - calc_load_update - 10;
2337 n = 1 + (delta / LOAD_FREQ);
2338
2339 active = atomic_long_read(&calc_load_tasks);
2340 active = active > 0 ? active * FIXED_1 : 0;
2341
2342 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2343 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2344 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2345
2346 calc_load_update += n * LOAD_FREQ;
2347 }
2348
2349 /*
2350 * Flip the idle index...
2351 *
2352 * Make sure we first write the new time then flip the index, so that
2353 * calc_load_write_idx() will see the new time when it reads the new
2354 * index, this avoids a double flip messing things up.
2355 */
2356 smp_wmb();
2357 calc_load_idx++;
2358 }
2359 #else /* !CONFIG_NO_HZ */
2360
2361 static inline long calc_load_fold_idle(void) { return 0; }
2362 static inline void calc_global_nohz(void) { }
2363
2364 #endif /* CONFIG_NO_HZ */
2365
2366 /*
2367 * calc_load - update the avenrun load estimates 10 ticks after the
2368 * CPUs have updated calc_load_tasks.
2369 */
2370 void calc_global_load(unsigned long ticks)
2371 {
2372 long active, delta;
2373
2374 if (time_before(jiffies, calc_load_update + 10))
2375 return;
2376
2377 /*
2378 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2379 */
2380 delta = calc_load_fold_idle();
2381 if (delta)
2382 atomic_long_add(delta, &calc_load_tasks);
2383
2384 active = atomic_long_read(&calc_load_tasks);
2385 active = active > 0 ? active * FIXED_1 : 0;
2386
2387 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2388 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2389 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2390
2391 calc_load_update += LOAD_FREQ;
2392
2393 /*
2394 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2395 */
2396 calc_global_nohz();
2397 }
2398
2399 /*
2400 * Called from update_cpu_load() to periodically update this CPU's
2401 * active count.
2402 */
2403 static void calc_load_account_active(struct rq *this_rq)
2404 {
2405 long delta;
2406
2407 if (time_before(jiffies, this_rq->calc_load_update))
2408 return;
2409
2410 delta = calc_load_fold_active(this_rq);
2411 if (delta)
2412 atomic_long_add(delta, &calc_load_tasks);
2413
2414 this_rq->calc_load_update += LOAD_FREQ;
2415 }
2416
2417 /*
2418 * End of global load-average stuff
2419 */
2420
2421 /*
2422 * The exact cpuload at various idx values, calculated at every tick would be
2423 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2424 *
2425 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2426 * on nth tick when cpu may be busy, then we have:
2427 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2428 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2429 *
2430 * decay_load_missed() below does efficient calculation of
2431 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2432 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2433 *
2434 * The calculation is approximated on a 128 point scale.
2435 * degrade_zero_ticks is the number of ticks after which load at any
2436 * particular idx is approximated to be zero.
2437 * degrade_factor is a precomputed table, a row for each load idx.
2438 * Each column corresponds to degradation factor for a power of two ticks,
2439 * based on 128 point scale.
2440 * Example:
2441 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2442 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2443 *
2444 * With this power of 2 load factors, we can degrade the load n times
2445 * by looking at 1 bits in n and doing as many mult/shift instead of
2446 * n mult/shifts needed by the exact degradation.
2447 */
2448 #define DEGRADE_SHIFT 7
2449 static const unsigned char
2450 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2451 static const unsigned char
2452 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2453 {0, 0, 0, 0, 0, 0, 0, 0},
2454 {64, 32, 8, 0, 0, 0, 0, 0},
2455 {96, 72, 40, 12, 1, 0, 0},
2456 {112, 98, 75, 43, 15, 1, 0},
2457 {120, 112, 98, 76, 45, 16, 2} };
2458
2459 /*
2460 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2461 * would be when CPU is idle and so we just decay the old load without
2462 * adding any new load.
2463 */
2464 static unsigned long
2465 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2466 {
2467 int j = 0;
2468
2469 if (!missed_updates)
2470 return load;
2471
2472 if (missed_updates >= degrade_zero_ticks[idx])
2473 return 0;
2474
2475 if (idx == 1)
2476 return load >> missed_updates;
2477
2478 while (missed_updates) {
2479 if (missed_updates % 2)
2480 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2481
2482 missed_updates >>= 1;
2483 j++;
2484 }
2485 return load;
2486 }
2487
2488 /*
2489 * Update rq->cpu_load[] statistics. This function is usually called every
2490 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2491 * every tick. We fix it up based on jiffies.
2492 */
2493 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2494 unsigned long pending_updates)
2495 {
2496 int i, scale;
2497
2498 this_rq->nr_load_updates++;
2499
2500 /* Update our load: */
2501 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2502 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2503 unsigned long old_load, new_load;
2504
2505 /* scale is effectively 1 << i now, and >> i divides by scale */
2506
2507 old_load = this_rq->cpu_load[i];
2508 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2509 new_load = this_load;
2510 /*
2511 * Round up the averaging division if load is increasing. This
2512 * prevents us from getting stuck on 9 if the load is 10, for
2513 * example.
2514 */
2515 if (new_load > old_load)
2516 new_load += scale - 1;
2517
2518 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2519 }
2520
2521 sched_avg_update(this_rq);
2522 }
2523
2524 #ifdef CONFIG_NO_HZ
2525 /*
2526 * There is no sane way to deal with nohz on smp when using jiffies because the
2527 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2528 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2529 *
2530 * Therefore we cannot use the delta approach from the regular tick since that
2531 * would seriously skew the load calculation. However we'll make do for those
2532 * updates happening while idle (nohz_idle_balance) or coming out of idle
2533 * (tick_nohz_idle_exit).
2534 *
2535 * This means we might still be one tick off for nohz periods.
2536 */
2537
2538 /*
2539 * Called from nohz_idle_balance() to update the load ratings before doing the
2540 * idle balance.
2541 */
2542 void update_idle_cpu_load(struct rq *this_rq)
2543 {
2544 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2545 unsigned long load = this_rq->load.weight;
2546 unsigned long pending_updates;
2547
2548 /*
2549 * bail if there's load or we're actually up-to-date.
2550 */
2551 if (load || curr_jiffies == this_rq->last_load_update_tick)
2552 return;
2553
2554 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2555 this_rq->last_load_update_tick = curr_jiffies;
2556
2557 __update_cpu_load(this_rq, load, pending_updates);
2558 }
2559
2560 /*
2561 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2562 */
2563 void update_cpu_load_nohz(void)
2564 {
2565 struct rq *this_rq = this_rq();
2566 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2567 unsigned long pending_updates;
2568
2569 if (curr_jiffies == this_rq->last_load_update_tick)
2570 return;
2571
2572 raw_spin_lock(&this_rq->lock);
2573 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2574 if (pending_updates) {
2575 this_rq->last_load_update_tick = curr_jiffies;
2576 /*
2577 * We were idle, this means load 0, the current load might be
2578 * !0 due to remote wakeups and the sort.
2579 */
2580 __update_cpu_load(this_rq, 0, pending_updates);
2581 }
2582 raw_spin_unlock(&this_rq->lock);
2583 }
2584 #endif /* CONFIG_NO_HZ */
2585
2586 /*
2587 * Called from scheduler_tick()
2588 */
2589 static void update_cpu_load_active(struct rq *this_rq)
2590 {
2591 /*
2592 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2593 */
2594 this_rq->last_load_update_tick = jiffies;
2595 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2596
2597 calc_load_account_active(this_rq);
2598 }
2599
2600 #ifdef CONFIG_SMP
2601
2602 /*
2603 * sched_exec - execve() is a valuable balancing opportunity, because at
2604 * this point the task has the smallest effective memory and cache footprint.
2605 */
2606 void sched_exec(void)
2607 {
2608 struct task_struct *p = current;
2609 unsigned long flags;
2610 int dest_cpu;
2611
2612 raw_spin_lock_irqsave(&p->pi_lock, flags);
2613 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2614 if (dest_cpu == smp_processor_id())
2615 goto unlock;
2616
2617 if (likely(cpu_active(dest_cpu))) {
2618 struct migration_arg arg = { p, dest_cpu };
2619
2620 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2621 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2622 return;
2623 }
2624 unlock:
2625 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2626 }
2627
2628 #endif
2629
2630 DEFINE_PER_CPU(struct kernel_stat, kstat);
2631 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2632
2633 EXPORT_PER_CPU_SYMBOL(kstat);
2634 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2635
2636 /*
2637 * Return any ns on the sched_clock that have not yet been accounted in
2638 * @p in case that task is currently running.
2639 *
2640 * Called with task_rq_lock() held on @rq.
2641 */
2642 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2643 {
2644 u64 ns = 0;
2645
2646 if (task_current(rq, p)) {
2647 update_rq_clock(rq);
2648 ns = rq->clock_task - p->se.exec_start;
2649 if ((s64)ns < 0)
2650 ns = 0;
2651 }
2652
2653 return ns;
2654 }
2655
2656 unsigned long long task_delta_exec(struct task_struct *p)
2657 {
2658 unsigned long flags;
2659 struct rq *rq;
2660 u64 ns = 0;
2661
2662 rq = task_rq_lock(p, &flags);
2663 ns = do_task_delta_exec(p, rq);
2664 task_rq_unlock(rq, p, &flags);
2665
2666 return ns;
2667 }
2668
2669 /*
2670 * Return accounted runtime for the task.
2671 * In case the task is currently running, return the runtime plus current's
2672 * pending runtime that have not been accounted yet.
2673 */
2674 unsigned long long task_sched_runtime(struct task_struct *p)
2675 {
2676 unsigned long flags;
2677 struct rq *rq;
2678 u64 ns = 0;
2679
2680 rq = task_rq_lock(p, &flags);
2681 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2682 task_rq_unlock(rq, p, &flags);
2683
2684 return ns;
2685 }
2686
2687 /*
2688 * This function gets called by the timer code, with HZ frequency.
2689 * We call it with interrupts disabled.
2690 */
2691 void scheduler_tick(void)
2692 {
2693 int cpu = smp_processor_id();
2694 struct rq *rq = cpu_rq(cpu);
2695 struct task_struct *curr = rq->curr;
2696
2697 sched_clock_tick();
2698
2699 raw_spin_lock(&rq->lock);
2700 update_rq_clock(rq);
2701 update_cpu_load_active(rq);
2702 curr->sched_class->task_tick(rq, curr, 0);
2703 raw_spin_unlock(&rq->lock);
2704
2705 perf_event_task_tick();
2706
2707 #ifdef CONFIG_SMP
2708 rq->idle_balance = idle_cpu(cpu);
2709 trigger_load_balance(rq, cpu);
2710 #endif
2711 }
2712
2713 notrace unsigned long get_parent_ip(unsigned long addr)
2714 {
2715 if (in_lock_functions(addr)) {
2716 addr = CALLER_ADDR2;
2717 if (in_lock_functions(addr))
2718 addr = CALLER_ADDR3;
2719 }
2720 return addr;
2721 }
2722
2723 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2724 defined(CONFIG_PREEMPT_TRACER))
2725
2726 void __kprobes add_preempt_count(int val)
2727 {
2728 #ifdef CONFIG_DEBUG_PREEMPT
2729 /*
2730 * Underflow?
2731 */
2732 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2733 return;
2734 #endif
2735 preempt_count() += val;
2736 #ifdef CONFIG_DEBUG_PREEMPT
2737 /*
2738 * Spinlock count overflowing soon?
2739 */
2740 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2741 PREEMPT_MASK - 10);
2742 #endif
2743 if (preempt_count() == val)
2744 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2745 }
2746 EXPORT_SYMBOL(add_preempt_count);
2747
2748 void __kprobes sub_preempt_count(int val)
2749 {
2750 #ifdef CONFIG_DEBUG_PREEMPT
2751 /*
2752 * Underflow?
2753 */
2754 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2755 return;
2756 /*
2757 * Is the spinlock portion underflowing?
2758 */
2759 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2760 !(preempt_count() & PREEMPT_MASK)))
2761 return;
2762 #endif
2763
2764 if (preempt_count() == val)
2765 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2766 preempt_count() -= val;
2767 }
2768 EXPORT_SYMBOL(sub_preempt_count);
2769
2770 #endif
2771
2772 /*
2773 * Print scheduling while atomic bug:
2774 */
2775 static noinline void __schedule_bug(struct task_struct *prev)
2776 {
2777 if (oops_in_progress)
2778 return;
2779
2780 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2781 prev->comm, prev->pid, preempt_count());
2782
2783 debug_show_held_locks(prev);
2784 print_modules();
2785 if (irqs_disabled())
2786 print_irqtrace_events(prev);
2787 dump_stack();
2788 add_taint(TAINT_WARN);
2789 }
2790
2791 /*
2792 * Various schedule()-time debugging checks and statistics:
2793 */
2794 static inline void schedule_debug(struct task_struct *prev)
2795 {
2796 /*
2797 * Test if we are atomic. Since do_exit() needs to call into
2798 * schedule() atomically, we ignore that path for now.
2799 * Otherwise, whine if we are scheduling when we should not be.
2800 */
2801 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2802 __schedule_bug(prev);
2803 rcu_sleep_check();
2804
2805 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2806
2807 schedstat_inc(this_rq(), sched_count);
2808 }
2809
2810 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2811 {
2812 if (prev->on_rq || rq->skip_clock_update < 0)
2813 update_rq_clock(rq);
2814 prev->sched_class->put_prev_task(rq, prev);
2815 }
2816
2817 /*
2818 * Pick up the highest-prio task:
2819 */
2820 static inline struct task_struct *
2821 pick_next_task(struct rq *rq)
2822 {
2823 const struct sched_class *class;
2824 struct task_struct *p;
2825
2826 /*
2827 * Optimization: we know that if all tasks are in
2828 * the fair class we can call that function directly:
2829 */
2830 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2831 p = fair_sched_class.pick_next_task(rq);
2832 if (likely(p))
2833 return p;
2834 }
2835
2836 for_each_class(class) {
2837 p = class->pick_next_task(rq);
2838 if (p)
2839 return p;
2840 }
2841
2842 BUG(); /* the idle class will always have a runnable task */
2843 }
2844
2845 /*
2846 * __schedule() is the main scheduler function.
2847 *
2848 * The main means of driving the scheduler and thus entering this function are:
2849 *
2850 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2851 *
2852 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2853 * paths. For example, see arch/x86/entry_64.S.
2854 *
2855 * To drive preemption between tasks, the scheduler sets the flag in timer
2856 * interrupt handler scheduler_tick().
2857 *
2858 * 3. Wakeups don't really cause entry into schedule(). They add a
2859 * task to the run-queue and that's it.
2860 *
2861 * Now, if the new task added to the run-queue preempts the current
2862 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2863 * called on the nearest possible occasion:
2864 *
2865 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2866 *
2867 * - in syscall or exception context, at the next outmost
2868 * preempt_enable(). (this might be as soon as the wake_up()'s
2869 * spin_unlock()!)
2870 *
2871 * - in IRQ context, return from interrupt-handler to
2872 * preemptible context
2873 *
2874 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2875 * then at the next:
2876 *
2877 * - cond_resched() call
2878 * - explicit schedule() call
2879 * - return from syscall or exception to user-space
2880 * - return from interrupt-handler to user-space
2881 */
2882 static void __sched __schedule(void)
2883 {
2884 struct task_struct *prev, *next;
2885 unsigned long *switch_count;
2886 struct rq *rq;
2887 int cpu;
2888
2889 need_resched:
2890 preempt_disable();
2891 cpu = smp_processor_id();
2892 rq = cpu_rq(cpu);
2893 rcu_note_context_switch(cpu);
2894 prev = rq->curr;
2895
2896 schedule_debug(prev);
2897
2898 if (sched_feat(HRTICK))
2899 hrtick_clear(rq);
2900
2901 raw_spin_lock_irq(&rq->lock);
2902
2903 switch_count = &prev->nivcsw;
2904 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2905 if (unlikely(signal_pending_state(prev->state, prev))) {
2906 prev->state = TASK_RUNNING;
2907 } else {
2908 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2909 prev->on_rq = 0;
2910
2911 /*
2912 * If a worker went to sleep, notify and ask workqueue
2913 * whether it wants to wake up a task to maintain
2914 * concurrency.
2915 */
2916 if (prev->flags & PF_WQ_WORKER) {
2917 struct task_struct *to_wakeup;
2918
2919 to_wakeup = wq_worker_sleeping(prev, cpu);
2920 if (to_wakeup)
2921 try_to_wake_up_local(to_wakeup);
2922 }
2923 }
2924 switch_count = &prev->nvcsw;
2925 }
2926
2927 pre_schedule(rq, prev);
2928
2929 if (unlikely(!rq->nr_running))
2930 idle_balance(cpu, rq);
2931
2932 put_prev_task(rq, prev);
2933 next = pick_next_task(rq);
2934 clear_tsk_need_resched(prev);
2935 rq->skip_clock_update = 0;
2936
2937 if (likely(prev != next)) {
2938 rq->nr_switches++;
2939 rq->curr = next;
2940 ++*switch_count;
2941
2942 context_switch(rq, prev, next); /* unlocks the rq */
2943 /*
2944 * The context switch have flipped the stack from under us
2945 * and restored the local variables which were saved when
2946 * this task called schedule() in the past. prev == current
2947 * is still correct, but it can be moved to another cpu/rq.
2948 */
2949 cpu = smp_processor_id();
2950 rq = cpu_rq(cpu);
2951 } else
2952 raw_spin_unlock_irq(&rq->lock);
2953
2954 post_schedule(rq);
2955
2956 sched_preempt_enable_no_resched();
2957 if (need_resched())
2958 goto need_resched;
2959 }
2960
2961 static inline void sched_submit_work(struct task_struct *tsk)
2962 {
2963 if (!tsk->state || tsk_is_pi_blocked(tsk))
2964 return;
2965 /*
2966 * If we are going to sleep and we have plugged IO queued,
2967 * make sure to submit it to avoid deadlocks.
2968 */
2969 if (blk_needs_flush_plug(tsk))
2970 blk_schedule_flush_plug(tsk);
2971 }
2972
2973 asmlinkage void __sched schedule(void)
2974 {
2975 struct task_struct *tsk = current;
2976
2977 sched_submit_work(tsk);
2978 __schedule();
2979 }
2980 EXPORT_SYMBOL(schedule);
2981
2982 #ifdef CONFIG_CONTEXT_TRACKING
2983 asmlinkage void __sched schedule_user(void)
2984 {
2985 /*
2986 * If we come here after a random call to set_need_resched(),
2987 * or we have been woken up remotely but the IPI has not yet arrived,
2988 * we haven't yet exited the RCU idle mode. Do it here manually until
2989 * we find a better solution.
2990 */
2991 user_exit();
2992 schedule();
2993 user_enter();
2994 }
2995 #endif
2996
2997 /**
2998 * schedule_preempt_disabled - called with preemption disabled
2999 *
3000 * Returns with preemption disabled. Note: preempt_count must be 1
3001 */
3002 void __sched schedule_preempt_disabled(void)
3003 {
3004 sched_preempt_enable_no_resched();
3005 schedule();
3006 preempt_disable();
3007 }
3008
3009 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3010
3011 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3012 {
3013 if (lock->owner != owner)
3014 return false;
3015
3016 /*
3017 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3018 * lock->owner still matches owner, if that fails, owner might
3019 * point to free()d memory, if it still matches, the rcu_read_lock()
3020 * ensures the memory stays valid.
3021 */
3022 barrier();
3023
3024 return owner->on_cpu;
3025 }
3026
3027 /*
3028 * Look out! "owner" is an entirely speculative pointer
3029 * access and not reliable.
3030 */
3031 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3032 {
3033 if (!sched_feat(OWNER_SPIN))
3034 return 0;
3035
3036 rcu_read_lock();
3037 while (owner_running(lock, owner)) {
3038 if (need_resched())
3039 break;
3040
3041 arch_mutex_cpu_relax();
3042 }
3043 rcu_read_unlock();
3044
3045 /*
3046 * We break out the loop above on need_resched() and when the
3047 * owner changed, which is a sign for heavy contention. Return
3048 * success only when lock->owner is NULL.
3049 */
3050 return lock->owner == NULL;
3051 }
3052 #endif
3053
3054 #ifdef CONFIG_PREEMPT
3055 /*
3056 * this is the entry point to schedule() from in-kernel preemption
3057 * off of preempt_enable. Kernel preemptions off return from interrupt
3058 * occur there and call schedule directly.
3059 */
3060 asmlinkage void __sched notrace preempt_schedule(void)
3061 {
3062 struct thread_info *ti = current_thread_info();
3063
3064 /*
3065 * If there is a non-zero preempt_count or interrupts are disabled,
3066 * we do not want to preempt the current task. Just return..
3067 */
3068 if (likely(ti->preempt_count || irqs_disabled()))
3069 return;
3070
3071 do {
3072 add_preempt_count_notrace(PREEMPT_ACTIVE);
3073 __schedule();
3074 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3075
3076 /*
3077 * Check again in case we missed a preemption opportunity
3078 * between schedule and now.
3079 */
3080 barrier();
3081 } while (need_resched());
3082 }
3083 EXPORT_SYMBOL(preempt_schedule);
3084
3085 /*
3086 * this is the entry point to schedule() from kernel preemption
3087 * off of irq context.
3088 * Note, that this is called and return with irqs disabled. This will
3089 * protect us against recursive calling from irq.
3090 */
3091 asmlinkage void __sched preempt_schedule_irq(void)
3092 {
3093 struct thread_info *ti = current_thread_info();
3094
3095 /* Catch callers which need to be fixed */
3096 BUG_ON(ti->preempt_count || !irqs_disabled());
3097
3098 user_exit();
3099 do {
3100 add_preempt_count(PREEMPT_ACTIVE);
3101 local_irq_enable();
3102 __schedule();
3103 local_irq_disable();
3104 sub_preempt_count(PREEMPT_ACTIVE);
3105
3106 /*
3107 * Check again in case we missed a preemption opportunity
3108 * between schedule and now.
3109 */
3110 barrier();
3111 } while (need_resched());
3112 }
3113
3114 #endif /* CONFIG_PREEMPT */
3115
3116 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3117 void *key)
3118 {
3119 return try_to_wake_up(curr->private, mode, wake_flags);
3120 }
3121 EXPORT_SYMBOL(default_wake_function);
3122
3123 /*
3124 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3125 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3126 * number) then we wake all the non-exclusive tasks and one exclusive task.
3127 *
3128 * There are circumstances in which we can try to wake a task which has already
3129 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3130 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3131 */
3132 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3133 int nr_exclusive, int wake_flags, void *key)
3134 {
3135 wait_queue_t *curr, *next;
3136
3137 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3138 unsigned flags = curr->flags;
3139
3140 if (curr->func(curr, mode, wake_flags, key) &&
3141 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3142 break;
3143 }
3144 }
3145
3146 /**
3147 * __wake_up - wake up threads blocked on a waitqueue.
3148 * @q: the waitqueue
3149 * @mode: which threads
3150 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3151 * @key: is directly passed to the wakeup function
3152 *
3153 * It may be assumed that this function implies a write memory barrier before
3154 * changing the task state if and only if any tasks are woken up.
3155 */
3156 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3157 int nr_exclusive, void *key)
3158 {
3159 unsigned long flags;
3160
3161 spin_lock_irqsave(&q->lock, flags);
3162 __wake_up_common(q, mode, nr_exclusive, 0, key);
3163 spin_unlock_irqrestore(&q->lock, flags);
3164 }
3165 EXPORT_SYMBOL(__wake_up);
3166
3167 /*
3168 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3169 */
3170 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3171 {
3172 __wake_up_common(q, mode, nr, 0, NULL);
3173 }
3174 EXPORT_SYMBOL_GPL(__wake_up_locked);
3175
3176 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3177 {
3178 __wake_up_common(q, mode, 1, 0, key);
3179 }
3180 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3181
3182 /**
3183 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3184 * @q: the waitqueue
3185 * @mode: which threads
3186 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3187 * @key: opaque value to be passed to wakeup targets
3188 *
3189 * The sync wakeup differs that the waker knows that it will schedule
3190 * away soon, so while the target thread will be woken up, it will not
3191 * be migrated to another CPU - ie. the two threads are 'synchronized'
3192 * with each other. This can prevent needless bouncing between CPUs.
3193 *
3194 * On UP it can prevent extra preemption.
3195 *
3196 * It may be assumed that this function implies a write memory barrier before
3197 * changing the task state if and only if any tasks are woken up.
3198 */
3199 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3200 int nr_exclusive, void *key)
3201 {
3202 unsigned long flags;
3203 int wake_flags = WF_SYNC;
3204
3205 if (unlikely(!q))
3206 return;
3207
3208 if (unlikely(!nr_exclusive))
3209 wake_flags = 0;
3210
3211 spin_lock_irqsave(&q->lock, flags);
3212 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3213 spin_unlock_irqrestore(&q->lock, flags);
3214 }
3215 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3216
3217 /*
3218 * __wake_up_sync - see __wake_up_sync_key()
3219 */
3220 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3221 {
3222 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3223 }
3224 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3225
3226 /**
3227 * complete: - signals a single thread waiting on this completion
3228 * @x: holds the state of this particular completion
3229 *
3230 * This will wake up a single thread waiting on this completion. Threads will be
3231 * awakened in the same order in which they were queued.
3232 *
3233 * See also complete_all(), wait_for_completion() and related routines.
3234 *
3235 * It may be assumed that this function implies a write memory barrier before
3236 * changing the task state if and only if any tasks are woken up.
3237 */
3238 void complete(struct completion *x)
3239 {
3240 unsigned long flags;
3241
3242 spin_lock_irqsave(&x->wait.lock, flags);
3243 x->done++;
3244 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3245 spin_unlock_irqrestore(&x->wait.lock, flags);
3246 }
3247 EXPORT_SYMBOL(complete);
3248
3249 /**
3250 * complete_all: - signals all threads waiting on this completion
3251 * @x: holds the state of this particular completion
3252 *
3253 * This will wake up all threads waiting on this particular completion event.
3254 *
3255 * It may be assumed that this function implies a write memory barrier before
3256 * changing the task state if and only if any tasks are woken up.
3257 */
3258 void complete_all(struct completion *x)
3259 {
3260 unsigned long flags;
3261
3262 spin_lock_irqsave(&x->wait.lock, flags);
3263 x->done += UINT_MAX/2;
3264 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3265 spin_unlock_irqrestore(&x->wait.lock, flags);
3266 }
3267 EXPORT_SYMBOL(complete_all);
3268
3269 static inline long __sched
3270 do_wait_for_common(struct completion *x, long timeout, int state)
3271 {
3272 if (!x->done) {
3273 DECLARE_WAITQUEUE(wait, current);
3274
3275 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3276 do {
3277 if (signal_pending_state(state, current)) {
3278 timeout = -ERESTARTSYS;
3279 break;
3280 }
3281 __set_current_state(state);
3282 spin_unlock_irq(&x->wait.lock);
3283 timeout = schedule_timeout(timeout);
3284 spin_lock_irq(&x->wait.lock);
3285 } while (!x->done && timeout);
3286 __remove_wait_queue(&x->wait, &wait);
3287 if (!x->done)
3288 return timeout;
3289 }
3290 x->done--;
3291 return timeout ?: 1;
3292 }
3293
3294 static long __sched
3295 wait_for_common(struct completion *x, long timeout, int state)
3296 {
3297 might_sleep();
3298
3299 spin_lock_irq(&x->wait.lock);
3300 timeout = do_wait_for_common(x, timeout, state);
3301 spin_unlock_irq(&x->wait.lock);
3302 return timeout;
3303 }
3304
3305 /**
3306 * wait_for_completion: - waits for completion of a task
3307 * @x: holds the state of this particular completion
3308 *
3309 * This waits to be signaled for completion of a specific task. It is NOT
3310 * interruptible and there is no timeout.
3311 *
3312 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3313 * and interrupt capability. Also see complete().
3314 */
3315 void __sched wait_for_completion(struct completion *x)
3316 {
3317 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3318 }
3319 EXPORT_SYMBOL(wait_for_completion);
3320
3321 /**
3322 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3323 * @x: holds the state of this particular completion
3324 * @timeout: timeout value in jiffies
3325 *
3326 * This waits for either a completion of a specific task to be signaled or for a
3327 * specified timeout to expire. The timeout is in jiffies. It is not
3328 * interruptible.
3329 *
3330 * The return value is 0 if timed out, and positive (at least 1, or number of
3331 * jiffies left till timeout) if completed.
3332 */
3333 unsigned long __sched
3334 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3335 {
3336 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3337 }
3338 EXPORT_SYMBOL(wait_for_completion_timeout);
3339
3340 /**
3341 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3342 * @x: holds the state of this particular completion
3343 *
3344 * This waits for completion of a specific task to be signaled. It is
3345 * interruptible.
3346 *
3347 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3348 */
3349 int __sched wait_for_completion_interruptible(struct completion *x)
3350 {
3351 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3352 if (t == -ERESTARTSYS)
3353 return t;
3354 return 0;
3355 }
3356 EXPORT_SYMBOL(wait_for_completion_interruptible);
3357
3358 /**
3359 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3360 * @x: holds the state of this particular completion
3361 * @timeout: timeout value in jiffies
3362 *
3363 * This waits for either a completion of a specific task to be signaled or for a
3364 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3365 *
3366 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3367 * positive (at least 1, or number of jiffies left till timeout) if completed.
3368 */
3369 long __sched
3370 wait_for_completion_interruptible_timeout(struct completion *x,
3371 unsigned long timeout)
3372 {
3373 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3374 }
3375 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3376
3377 /**
3378 * wait_for_completion_killable: - waits for completion of a task (killable)
3379 * @x: holds the state of this particular completion
3380 *
3381 * This waits to be signaled for completion of a specific task. It can be
3382 * interrupted by a kill signal.
3383 *
3384 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3385 */
3386 int __sched wait_for_completion_killable(struct completion *x)
3387 {
3388 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3389 if (t == -ERESTARTSYS)
3390 return t;
3391 return 0;
3392 }
3393 EXPORT_SYMBOL(wait_for_completion_killable);
3394
3395 /**
3396 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3397 * @x: holds the state of this particular completion
3398 * @timeout: timeout value in jiffies
3399 *
3400 * This waits for either a completion of a specific task to be
3401 * signaled or for a specified timeout to expire. It can be
3402 * interrupted by a kill signal. The timeout is in jiffies.
3403 *
3404 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3405 * positive (at least 1, or number of jiffies left till timeout) if completed.
3406 */
3407 long __sched
3408 wait_for_completion_killable_timeout(struct completion *x,
3409 unsigned long timeout)
3410 {
3411 return wait_for_common(x, timeout, TASK_KILLABLE);
3412 }
3413 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3414
3415 /**
3416 * try_wait_for_completion - try to decrement a completion without blocking
3417 * @x: completion structure
3418 *
3419 * Returns: 0 if a decrement cannot be done without blocking
3420 * 1 if a decrement succeeded.
3421 *
3422 * If a completion is being used as a counting completion,
3423 * attempt to decrement the counter without blocking. This
3424 * enables us to avoid waiting if the resource the completion
3425 * is protecting is not available.
3426 */
3427 bool try_wait_for_completion(struct completion *x)
3428 {
3429 unsigned long flags;
3430 int ret = 1;
3431
3432 spin_lock_irqsave(&x->wait.lock, flags);
3433 if (!x->done)
3434 ret = 0;
3435 else
3436 x->done--;
3437 spin_unlock_irqrestore(&x->wait.lock, flags);
3438 return ret;
3439 }
3440 EXPORT_SYMBOL(try_wait_for_completion);
3441
3442 /**
3443 * completion_done - Test to see if a completion has any waiters
3444 * @x: completion structure
3445 *
3446 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3447 * 1 if there are no waiters.
3448 *
3449 */
3450 bool completion_done(struct completion *x)
3451 {
3452 unsigned long flags;
3453 int ret = 1;
3454
3455 spin_lock_irqsave(&x->wait.lock, flags);
3456 if (!x->done)
3457 ret = 0;
3458 spin_unlock_irqrestore(&x->wait.lock, flags);
3459 return ret;
3460 }
3461 EXPORT_SYMBOL(completion_done);
3462
3463 static long __sched
3464 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3465 {
3466 unsigned long flags;
3467 wait_queue_t wait;
3468
3469 init_waitqueue_entry(&wait, current);
3470
3471 __set_current_state(state);
3472
3473 spin_lock_irqsave(&q->lock, flags);
3474 __add_wait_queue(q, &wait);
3475 spin_unlock(&q->lock);
3476 timeout = schedule_timeout(timeout);
3477 spin_lock_irq(&q->lock);
3478 __remove_wait_queue(q, &wait);
3479 spin_unlock_irqrestore(&q->lock, flags);
3480
3481 return timeout;
3482 }
3483
3484 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3485 {
3486 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3487 }
3488 EXPORT_SYMBOL(interruptible_sleep_on);
3489
3490 long __sched
3491 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3492 {
3493 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3494 }
3495 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3496
3497 void __sched sleep_on(wait_queue_head_t *q)
3498 {
3499 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3500 }
3501 EXPORT_SYMBOL(sleep_on);
3502
3503 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3504 {
3505 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3506 }
3507 EXPORT_SYMBOL(sleep_on_timeout);
3508
3509 #ifdef CONFIG_RT_MUTEXES
3510
3511 /*
3512 * rt_mutex_setprio - set the current priority of a task
3513 * @p: task
3514 * @prio: prio value (kernel-internal form)
3515 *
3516 * This function changes the 'effective' priority of a task. It does
3517 * not touch ->normal_prio like __setscheduler().
3518 *
3519 * Used by the rt_mutex code to implement priority inheritance logic.
3520 */
3521 void rt_mutex_setprio(struct task_struct *p, int prio)
3522 {
3523 int oldprio, on_rq, running;
3524 struct rq *rq;
3525 const struct sched_class *prev_class;
3526
3527 BUG_ON(prio < 0 || prio > MAX_PRIO);
3528
3529 rq = __task_rq_lock(p);
3530
3531 /*
3532 * Idle task boosting is a nono in general. There is one
3533 * exception, when PREEMPT_RT and NOHZ is active:
3534 *
3535 * The idle task calls get_next_timer_interrupt() and holds
3536 * the timer wheel base->lock on the CPU and another CPU wants
3537 * to access the timer (probably to cancel it). We can safely
3538 * ignore the boosting request, as the idle CPU runs this code
3539 * with interrupts disabled and will complete the lock
3540 * protected section without being interrupted. So there is no
3541 * real need to boost.
3542 */
3543 if (unlikely(p == rq->idle)) {
3544 WARN_ON(p != rq->curr);
3545 WARN_ON(p->pi_blocked_on);
3546 goto out_unlock;
3547 }
3548
3549 trace_sched_pi_setprio(p, prio);
3550 oldprio = p->prio;
3551 prev_class = p->sched_class;
3552 on_rq = p->on_rq;
3553 running = task_current(rq, p);
3554 if (on_rq)
3555 dequeue_task(rq, p, 0);
3556 if (running)
3557 p->sched_class->put_prev_task(rq, p);
3558
3559 if (rt_prio(prio))
3560 p->sched_class = &rt_sched_class;
3561 else
3562 p->sched_class = &fair_sched_class;
3563
3564 p->prio = prio;
3565
3566 if (running)
3567 p->sched_class->set_curr_task(rq);
3568 if (on_rq)
3569 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3570
3571 check_class_changed(rq, p, prev_class, oldprio);
3572 out_unlock:
3573 __task_rq_unlock(rq);
3574 }
3575 #endif
3576 void set_user_nice(struct task_struct *p, long nice)
3577 {
3578 int old_prio, delta, on_rq;
3579 unsigned long flags;
3580 struct rq *rq;
3581
3582 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3583 return;
3584 /*
3585 * We have to be careful, if called from sys_setpriority(),
3586 * the task might be in the middle of scheduling on another CPU.
3587 */
3588 rq = task_rq_lock(p, &flags);
3589 /*
3590 * The RT priorities are set via sched_setscheduler(), but we still
3591 * allow the 'normal' nice value to be set - but as expected
3592 * it wont have any effect on scheduling until the task is
3593 * SCHED_FIFO/SCHED_RR:
3594 */
3595 if (task_has_rt_policy(p)) {
3596 p->static_prio = NICE_TO_PRIO(nice);
3597 goto out_unlock;
3598 }
3599 on_rq = p->on_rq;
3600 if (on_rq)
3601 dequeue_task(rq, p, 0);
3602
3603 p->static_prio = NICE_TO_PRIO(nice);
3604 set_load_weight(p);
3605 old_prio = p->prio;
3606 p->prio = effective_prio(p);
3607 delta = p->prio - old_prio;
3608
3609 if (on_rq) {
3610 enqueue_task(rq, p, 0);
3611 /*
3612 * If the task increased its priority or is running and
3613 * lowered its priority, then reschedule its CPU:
3614 */
3615 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3616 resched_task(rq->curr);
3617 }
3618 out_unlock:
3619 task_rq_unlock(rq, p, &flags);
3620 }
3621 EXPORT_SYMBOL(set_user_nice);
3622
3623 /*
3624 * can_nice - check if a task can reduce its nice value
3625 * @p: task
3626 * @nice: nice value
3627 */
3628 int can_nice(const struct task_struct *p, const int nice)
3629 {
3630 /* convert nice value [19,-20] to rlimit style value [1,40] */
3631 int nice_rlim = 20 - nice;
3632
3633 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3634 capable(CAP_SYS_NICE));
3635 }
3636
3637 #ifdef __ARCH_WANT_SYS_NICE
3638
3639 /*
3640 * sys_nice - change the priority of the current process.
3641 * @increment: priority increment
3642 *
3643 * sys_setpriority is a more generic, but much slower function that
3644 * does similar things.
3645 */
3646 SYSCALL_DEFINE1(nice, int, increment)
3647 {
3648 long nice, retval;
3649
3650 /*
3651 * Setpriority might change our priority at the same moment.
3652 * We don't have to worry. Conceptually one call occurs first
3653 * and we have a single winner.
3654 */
3655 if (increment < -40)
3656 increment = -40;
3657 if (increment > 40)
3658 increment = 40;
3659
3660 nice = TASK_NICE(current) + increment;
3661 if (nice < -20)
3662 nice = -20;
3663 if (nice > 19)
3664 nice = 19;
3665
3666 if (increment < 0 && !can_nice(current, nice))
3667 return -EPERM;
3668
3669 retval = security_task_setnice(current, nice);
3670 if (retval)
3671 return retval;
3672
3673 set_user_nice(current, nice);
3674 return 0;
3675 }
3676
3677 #endif
3678
3679 /**
3680 * task_prio - return the priority value of a given task.
3681 * @p: the task in question.
3682 *
3683 * This is the priority value as seen by users in /proc.
3684 * RT tasks are offset by -200. Normal tasks are centered
3685 * around 0, value goes from -16 to +15.
3686 */
3687 int task_prio(const struct task_struct *p)
3688 {
3689 return p->prio - MAX_RT_PRIO;
3690 }
3691
3692 /**
3693 * task_nice - return the nice value of a given task.
3694 * @p: the task in question.
3695 */
3696 int task_nice(const struct task_struct *p)
3697 {
3698 return TASK_NICE(p);
3699 }
3700 EXPORT_SYMBOL(task_nice);
3701
3702 /**
3703 * idle_cpu - is a given cpu idle currently?
3704 * @cpu: the processor in question.
3705 */
3706 int idle_cpu(int cpu)
3707 {
3708 struct rq *rq = cpu_rq(cpu);
3709
3710 if (rq->curr != rq->idle)
3711 return 0;
3712
3713 if (rq->nr_running)
3714 return 0;
3715
3716 #ifdef CONFIG_SMP
3717 if (!llist_empty(&rq->wake_list))
3718 return 0;
3719 #endif
3720
3721 return 1;
3722 }
3723
3724 /**
3725 * idle_task - return the idle task for a given cpu.
3726 * @cpu: the processor in question.
3727 */
3728 struct task_struct *idle_task(int cpu)
3729 {
3730 return cpu_rq(cpu)->idle;
3731 }
3732
3733 /**
3734 * find_process_by_pid - find a process with a matching PID value.
3735 * @pid: the pid in question.
3736 */
3737 static struct task_struct *find_process_by_pid(pid_t pid)
3738 {
3739 return pid ? find_task_by_vpid(pid) : current;
3740 }
3741
3742 /* Actually do priority change: must hold rq lock. */
3743 static void
3744 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3745 {
3746 p->policy = policy;
3747 p->rt_priority = prio;
3748 p->normal_prio = normal_prio(p);
3749 /* we are holding p->pi_lock already */
3750 p->prio = rt_mutex_getprio(p);
3751 if (rt_prio(p->prio))
3752 p->sched_class = &rt_sched_class;
3753 else
3754 p->sched_class = &fair_sched_class;
3755 set_load_weight(p);
3756 }
3757
3758 /*
3759 * check the target process has a UID that matches the current process's
3760 */
3761 static bool check_same_owner(struct task_struct *p)
3762 {
3763 const struct cred *cred = current_cred(), *pcred;
3764 bool match;
3765
3766 rcu_read_lock();
3767 pcred = __task_cred(p);
3768 match = (uid_eq(cred->euid, pcred->euid) ||
3769 uid_eq(cred->euid, pcred->uid));
3770 rcu_read_unlock();
3771 return match;
3772 }
3773
3774 static int __sched_setscheduler(struct task_struct *p, int policy,
3775 const struct sched_param *param, bool user)
3776 {
3777 int retval, oldprio, oldpolicy = -1, on_rq, running;
3778 unsigned long flags;
3779 const struct sched_class *prev_class;
3780 struct rq *rq;
3781 int reset_on_fork;
3782
3783 /* may grab non-irq protected spin_locks */
3784 BUG_ON(in_interrupt());
3785 recheck:
3786 /* double check policy once rq lock held */
3787 if (policy < 0) {
3788 reset_on_fork = p->sched_reset_on_fork;
3789 policy = oldpolicy = p->policy;
3790 } else {
3791 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3792 policy &= ~SCHED_RESET_ON_FORK;
3793
3794 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3795 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3796 policy != SCHED_IDLE)
3797 return -EINVAL;
3798 }
3799
3800 /*
3801 * Valid priorities for SCHED_FIFO and SCHED_RR are
3802 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3803 * SCHED_BATCH and SCHED_IDLE is 0.
3804 */
3805 if (param->sched_priority < 0 ||
3806 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3807 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3808 return -EINVAL;
3809 if (rt_policy(policy) != (param->sched_priority != 0))
3810 return -EINVAL;
3811
3812 /*
3813 * Allow unprivileged RT tasks to decrease priority:
3814 */
3815 if (user && !capable(CAP_SYS_NICE)) {
3816 if (rt_policy(policy)) {
3817 unsigned long rlim_rtprio =
3818 task_rlimit(p, RLIMIT_RTPRIO);
3819
3820 /* can't set/change the rt policy */
3821 if (policy != p->policy && !rlim_rtprio)
3822 return -EPERM;
3823
3824 /* can't increase priority */
3825 if (param->sched_priority > p->rt_priority &&
3826 param->sched_priority > rlim_rtprio)
3827 return -EPERM;
3828 }
3829
3830 /*
3831 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3832 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3833 */
3834 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3835 if (!can_nice(p, TASK_NICE(p)))
3836 return -EPERM;
3837 }
3838
3839 /* can't change other user's priorities */
3840 if (!check_same_owner(p))
3841 return -EPERM;
3842
3843 /* Normal users shall not reset the sched_reset_on_fork flag */
3844 if (p->sched_reset_on_fork && !reset_on_fork)
3845 return -EPERM;
3846 }
3847
3848 if (user) {
3849 retval = security_task_setscheduler(p);
3850 if (retval)
3851 return retval;
3852 }
3853
3854 /*
3855 * make sure no PI-waiters arrive (or leave) while we are
3856 * changing the priority of the task:
3857 *
3858 * To be able to change p->policy safely, the appropriate
3859 * runqueue lock must be held.
3860 */
3861 rq = task_rq_lock(p, &flags);
3862
3863 /*
3864 * Changing the policy of the stop threads its a very bad idea
3865 */
3866 if (p == rq->stop) {
3867 task_rq_unlock(rq, p, &flags);
3868 return -EINVAL;
3869 }
3870
3871 /*
3872 * If not changing anything there's no need to proceed further:
3873 */
3874 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3875 param->sched_priority == p->rt_priority))) {
3876 task_rq_unlock(rq, p, &flags);
3877 return 0;
3878 }
3879
3880 #ifdef CONFIG_RT_GROUP_SCHED
3881 if (user) {
3882 /*
3883 * Do not allow realtime tasks into groups that have no runtime
3884 * assigned.
3885 */
3886 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3887 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3888 !task_group_is_autogroup(task_group(p))) {
3889 task_rq_unlock(rq, p, &flags);
3890 return -EPERM;
3891 }
3892 }
3893 #endif
3894
3895 /* recheck policy now with rq lock held */
3896 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3897 policy = oldpolicy = -1;
3898 task_rq_unlock(rq, p, &flags);
3899 goto recheck;
3900 }
3901 on_rq = p->on_rq;
3902 running = task_current(rq, p);
3903 if (on_rq)
3904 dequeue_task(rq, p, 0);
3905 if (running)
3906 p->sched_class->put_prev_task(rq, p);
3907
3908 p->sched_reset_on_fork = reset_on_fork;
3909
3910 oldprio = p->prio;
3911 prev_class = p->sched_class;
3912 __setscheduler(rq, p, policy, param->sched_priority);
3913
3914 if (running)
3915 p->sched_class->set_curr_task(rq);
3916 if (on_rq)
3917 enqueue_task(rq, p, 0);
3918
3919 check_class_changed(rq, p, prev_class, oldprio);
3920 task_rq_unlock(rq, p, &flags);
3921
3922 rt_mutex_adjust_pi(p);
3923
3924 return 0;
3925 }
3926
3927 /**
3928 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3929 * @p: the task in question.
3930 * @policy: new policy.
3931 * @param: structure containing the new RT priority.
3932 *
3933 * NOTE that the task may be already dead.
3934 */
3935 int sched_setscheduler(struct task_struct *p, int policy,
3936 const struct sched_param *param)
3937 {
3938 return __sched_setscheduler(p, policy, param, true);
3939 }
3940 EXPORT_SYMBOL_GPL(sched_setscheduler);
3941
3942 /**
3943 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3944 * @p: the task in question.
3945 * @policy: new policy.
3946 * @param: structure containing the new RT priority.
3947 *
3948 * Just like sched_setscheduler, only don't bother checking if the
3949 * current context has permission. For example, this is needed in
3950 * stop_machine(): we create temporary high priority worker threads,
3951 * but our caller might not have that capability.
3952 */
3953 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3954 const struct sched_param *param)
3955 {
3956 return __sched_setscheduler(p, policy, param, false);
3957 }
3958
3959 static int
3960 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3961 {
3962 struct sched_param lparam;
3963 struct task_struct *p;
3964 int retval;
3965
3966 if (!param || pid < 0)
3967 return -EINVAL;
3968 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3969 return -EFAULT;
3970
3971 rcu_read_lock();
3972 retval = -ESRCH;
3973 p = find_process_by_pid(pid);
3974 if (p != NULL)
3975 retval = sched_setscheduler(p, policy, &lparam);
3976 rcu_read_unlock();
3977
3978 return retval;
3979 }
3980
3981 /**
3982 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3983 * @pid: the pid in question.
3984 * @policy: new policy.
3985 * @param: structure containing the new RT priority.
3986 */
3987 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3988 struct sched_param __user *, param)
3989 {
3990 /* negative values for policy are not valid */
3991 if (policy < 0)
3992 return -EINVAL;
3993
3994 return do_sched_setscheduler(pid, policy, param);
3995 }
3996
3997 /**
3998 * sys_sched_setparam - set/change the RT priority of a thread
3999 * @pid: the pid in question.
4000 * @param: structure containing the new RT priority.
4001 */
4002 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4003 {
4004 return do_sched_setscheduler(pid, -1, param);
4005 }
4006
4007 /**
4008 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4009 * @pid: the pid in question.
4010 */
4011 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4012 {
4013 struct task_struct *p;
4014 int retval;
4015
4016 if (pid < 0)
4017 return -EINVAL;
4018
4019 retval = -ESRCH;
4020 rcu_read_lock();
4021 p = find_process_by_pid(pid);
4022 if (p) {
4023 retval = security_task_getscheduler(p);
4024 if (!retval)
4025 retval = p->policy
4026 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4027 }
4028 rcu_read_unlock();
4029 return retval;
4030 }
4031
4032 /**
4033 * sys_sched_getparam - get the RT priority of a thread
4034 * @pid: the pid in question.
4035 * @param: structure containing the RT priority.
4036 */
4037 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4038 {
4039 struct sched_param lp;
4040 struct task_struct *p;
4041 int retval;
4042
4043 if (!param || pid < 0)
4044 return -EINVAL;
4045
4046 rcu_read_lock();
4047 p = find_process_by_pid(pid);
4048 retval = -ESRCH;
4049 if (!p)
4050 goto out_unlock;
4051
4052 retval = security_task_getscheduler(p);
4053 if (retval)
4054 goto out_unlock;
4055
4056 lp.sched_priority = p->rt_priority;
4057 rcu_read_unlock();
4058
4059 /*
4060 * This one might sleep, we cannot do it with a spinlock held ...
4061 */
4062 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4063
4064 return retval;
4065
4066 out_unlock:
4067 rcu_read_unlock();
4068 return retval;
4069 }
4070
4071 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4072 {
4073 cpumask_var_t cpus_allowed, new_mask;
4074 struct task_struct *p;
4075 int retval;
4076
4077 get_online_cpus();
4078 rcu_read_lock();
4079
4080 p = find_process_by_pid(pid);
4081 if (!p) {
4082 rcu_read_unlock();
4083 put_online_cpus();
4084 return -ESRCH;
4085 }
4086
4087 /* Prevent p going away */
4088 get_task_struct(p);
4089 rcu_read_unlock();
4090
4091 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4092 retval = -ENOMEM;
4093 goto out_put_task;
4094 }
4095 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4096 retval = -ENOMEM;
4097 goto out_free_cpus_allowed;
4098 }
4099 retval = -EPERM;
4100 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4101 goto out_unlock;
4102
4103 retval = security_task_setscheduler(p);
4104 if (retval)
4105 goto out_unlock;
4106
4107 cpuset_cpus_allowed(p, cpus_allowed);
4108 cpumask_and(new_mask, in_mask, cpus_allowed);
4109 again:
4110 retval = set_cpus_allowed_ptr(p, new_mask);
4111
4112 if (!retval) {
4113 cpuset_cpus_allowed(p, cpus_allowed);
4114 if (!cpumask_subset(new_mask, cpus_allowed)) {
4115 /*
4116 * We must have raced with a concurrent cpuset
4117 * update. Just reset the cpus_allowed to the
4118 * cpuset's cpus_allowed
4119 */
4120 cpumask_copy(new_mask, cpus_allowed);
4121 goto again;
4122 }
4123 }
4124 out_unlock:
4125 free_cpumask_var(new_mask);
4126 out_free_cpus_allowed:
4127 free_cpumask_var(cpus_allowed);
4128 out_put_task:
4129 put_task_struct(p);
4130 put_online_cpus();
4131 return retval;
4132 }
4133
4134 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4135 struct cpumask *new_mask)
4136 {
4137 if (len < cpumask_size())
4138 cpumask_clear(new_mask);
4139 else if (len > cpumask_size())
4140 len = cpumask_size();
4141
4142 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4143 }
4144
4145 /**
4146 * sys_sched_setaffinity - set the cpu affinity of a process
4147 * @pid: pid of the process
4148 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4149 * @user_mask_ptr: user-space pointer to the new cpu mask
4150 */
4151 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4152 unsigned long __user *, user_mask_ptr)
4153 {
4154 cpumask_var_t new_mask;
4155 int retval;
4156
4157 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4158 return -ENOMEM;
4159
4160 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4161 if (retval == 0)
4162 retval = sched_setaffinity(pid, new_mask);
4163 free_cpumask_var(new_mask);
4164 return retval;
4165 }
4166
4167 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4168 {
4169 struct task_struct *p;
4170 unsigned long flags;
4171 int retval;
4172
4173 get_online_cpus();
4174 rcu_read_lock();
4175
4176 retval = -ESRCH;
4177 p = find_process_by_pid(pid);
4178 if (!p)
4179 goto out_unlock;
4180
4181 retval = security_task_getscheduler(p);
4182 if (retval)
4183 goto out_unlock;
4184
4185 raw_spin_lock_irqsave(&p->pi_lock, flags);
4186 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4187 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4188
4189 out_unlock:
4190 rcu_read_unlock();
4191 put_online_cpus();
4192
4193 return retval;
4194 }
4195
4196 /**
4197 * sys_sched_getaffinity - get the cpu affinity of a process
4198 * @pid: pid of the process
4199 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4200 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4201 */
4202 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4203 unsigned long __user *, user_mask_ptr)
4204 {
4205 int ret;
4206 cpumask_var_t mask;
4207
4208 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4209 return -EINVAL;
4210 if (len & (sizeof(unsigned long)-1))
4211 return -EINVAL;
4212
4213 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4214 return -ENOMEM;
4215
4216 ret = sched_getaffinity(pid, mask);
4217 if (ret == 0) {
4218 size_t retlen = min_t(size_t, len, cpumask_size());
4219
4220 if (copy_to_user(user_mask_ptr, mask, retlen))
4221 ret = -EFAULT;
4222 else
4223 ret = retlen;
4224 }
4225 free_cpumask_var(mask);
4226
4227 return ret;
4228 }
4229
4230 /**
4231 * sys_sched_yield - yield the current processor to other threads.
4232 *
4233 * This function yields the current CPU to other tasks. If there are no
4234 * other threads running on this CPU then this function will return.
4235 */
4236 SYSCALL_DEFINE0(sched_yield)
4237 {
4238 struct rq *rq = this_rq_lock();
4239
4240 schedstat_inc(rq, yld_count);
4241 current->sched_class->yield_task(rq);
4242
4243 /*
4244 * Since we are going to call schedule() anyway, there's
4245 * no need to preempt or enable interrupts:
4246 */
4247 __release(rq->lock);
4248 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4249 do_raw_spin_unlock(&rq->lock);
4250 sched_preempt_enable_no_resched();
4251
4252 schedule();
4253
4254 return 0;
4255 }
4256
4257 static inline int should_resched(void)
4258 {
4259 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4260 }
4261
4262 static void __cond_resched(void)
4263 {
4264 add_preempt_count(PREEMPT_ACTIVE);
4265 __schedule();
4266 sub_preempt_count(PREEMPT_ACTIVE);
4267 }
4268
4269 int __sched _cond_resched(void)
4270 {
4271 if (should_resched()) {
4272 __cond_resched();
4273 return 1;
4274 }
4275 return 0;
4276 }
4277 EXPORT_SYMBOL(_cond_resched);
4278
4279 /*
4280 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4281 * call schedule, and on return reacquire the lock.
4282 *
4283 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4284 * operations here to prevent schedule() from being called twice (once via
4285 * spin_unlock(), once by hand).
4286 */
4287 int __cond_resched_lock(spinlock_t *lock)
4288 {
4289 int resched = should_resched();
4290 int ret = 0;
4291
4292 lockdep_assert_held(lock);
4293
4294 if (spin_needbreak(lock) || resched) {
4295 spin_unlock(lock);
4296 if (resched)
4297 __cond_resched();
4298 else
4299 cpu_relax();
4300 ret = 1;
4301 spin_lock(lock);
4302 }
4303 return ret;
4304 }
4305 EXPORT_SYMBOL(__cond_resched_lock);
4306
4307 int __sched __cond_resched_softirq(void)
4308 {
4309 BUG_ON(!in_softirq());
4310
4311 if (should_resched()) {
4312 local_bh_enable();
4313 __cond_resched();
4314 local_bh_disable();
4315 return 1;
4316 }
4317 return 0;
4318 }
4319 EXPORT_SYMBOL(__cond_resched_softirq);
4320
4321 /**
4322 * yield - yield the current processor to other threads.
4323 *
4324 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4325 *
4326 * The scheduler is at all times free to pick the calling task as the most
4327 * eligible task to run, if removing the yield() call from your code breaks
4328 * it, its already broken.
4329 *
4330 * Typical broken usage is:
4331 *
4332 * while (!event)
4333 * yield();
4334 *
4335 * where one assumes that yield() will let 'the other' process run that will
4336 * make event true. If the current task is a SCHED_FIFO task that will never
4337 * happen. Never use yield() as a progress guarantee!!
4338 *
4339 * If you want to use yield() to wait for something, use wait_event().
4340 * If you want to use yield() to be 'nice' for others, use cond_resched().
4341 * If you still want to use yield(), do not!
4342 */
4343 void __sched yield(void)
4344 {
4345 set_current_state(TASK_RUNNING);
4346 sys_sched_yield();
4347 }
4348 EXPORT_SYMBOL(yield);
4349
4350 /**
4351 * yield_to - yield the current processor to another thread in
4352 * your thread group, or accelerate that thread toward the
4353 * processor it's on.
4354 * @p: target task
4355 * @preempt: whether task preemption is allowed or not
4356 *
4357 * It's the caller's job to ensure that the target task struct
4358 * can't go away on us before we can do any checks.
4359 *
4360 * Returns true if we indeed boosted the target task.
4361 */
4362 bool __sched yield_to(struct task_struct *p, bool preempt)
4363 {
4364 struct task_struct *curr = current;
4365 struct rq *rq, *p_rq;
4366 unsigned long flags;
4367 bool yielded = 0;
4368
4369 local_irq_save(flags);
4370 rq = this_rq();
4371
4372 again:
4373 p_rq = task_rq(p);
4374 double_rq_lock(rq, p_rq);
4375 while (task_rq(p) != p_rq) {
4376 double_rq_unlock(rq, p_rq);
4377 goto again;
4378 }
4379
4380 if (!curr->sched_class->yield_to_task)
4381 goto out;
4382
4383 if (curr->sched_class != p->sched_class)
4384 goto out;
4385
4386 if (task_running(p_rq, p) || p->state)
4387 goto out;
4388
4389 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4390 if (yielded) {
4391 schedstat_inc(rq, yld_count);
4392 /*
4393 * Make p's CPU reschedule; pick_next_entity takes care of
4394 * fairness.
4395 */
4396 if (preempt && rq != p_rq)
4397 resched_task(p_rq->curr);
4398 }
4399
4400 out:
4401 double_rq_unlock(rq, p_rq);
4402 local_irq_restore(flags);
4403
4404 if (yielded)
4405 schedule();
4406
4407 return yielded;
4408 }
4409 EXPORT_SYMBOL_GPL(yield_to);
4410
4411 /*
4412 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4413 * that process accounting knows that this is a task in IO wait state.
4414 */
4415 void __sched io_schedule(void)
4416 {
4417 struct rq *rq = raw_rq();
4418
4419 delayacct_blkio_start();
4420 atomic_inc(&rq->nr_iowait);
4421 blk_flush_plug(current);
4422 current->in_iowait = 1;
4423 schedule();
4424 current->in_iowait = 0;
4425 atomic_dec(&rq->nr_iowait);
4426 delayacct_blkio_end();
4427 }
4428 EXPORT_SYMBOL(io_schedule);
4429
4430 long __sched io_schedule_timeout(long timeout)
4431 {
4432 struct rq *rq = raw_rq();
4433 long ret;
4434
4435 delayacct_blkio_start();
4436 atomic_inc(&rq->nr_iowait);
4437 blk_flush_plug(current);
4438 current->in_iowait = 1;
4439 ret = schedule_timeout(timeout);
4440 current->in_iowait = 0;
4441 atomic_dec(&rq->nr_iowait);
4442 delayacct_blkio_end();
4443 return ret;
4444 }
4445
4446 /**
4447 * sys_sched_get_priority_max - return maximum RT priority.
4448 * @policy: scheduling class.
4449 *
4450 * this syscall returns the maximum rt_priority that can be used
4451 * by a given scheduling class.
4452 */
4453 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4454 {
4455 int ret = -EINVAL;
4456
4457 switch (policy) {
4458 case SCHED_FIFO:
4459 case SCHED_RR:
4460 ret = MAX_USER_RT_PRIO-1;
4461 break;
4462 case SCHED_NORMAL:
4463 case SCHED_BATCH:
4464 case SCHED_IDLE:
4465 ret = 0;
4466 break;
4467 }
4468 return ret;
4469 }
4470
4471 /**
4472 * sys_sched_get_priority_min - return minimum RT priority.
4473 * @policy: scheduling class.
4474 *
4475 * this syscall returns the minimum rt_priority that can be used
4476 * by a given scheduling class.
4477 */
4478 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4479 {
4480 int ret = -EINVAL;
4481
4482 switch (policy) {
4483 case SCHED_FIFO:
4484 case SCHED_RR:
4485 ret = 1;
4486 break;
4487 case SCHED_NORMAL:
4488 case SCHED_BATCH:
4489 case SCHED_IDLE:
4490 ret = 0;
4491 }
4492 return ret;
4493 }
4494
4495 /**
4496 * sys_sched_rr_get_interval - return the default timeslice of a process.
4497 * @pid: pid of the process.
4498 * @interval: userspace pointer to the timeslice value.
4499 *
4500 * this syscall writes the default timeslice value of a given process
4501 * into the user-space timespec buffer. A value of '0' means infinity.
4502 */
4503 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4504 struct timespec __user *, interval)
4505 {
4506 struct task_struct *p;
4507 unsigned int time_slice;
4508 unsigned long flags;
4509 struct rq *rq;
4510 int retval;
4511 struct timespec t;
4512
4513 if (pid < 0)
4514 return -EINVAL;
4515
4516 retval = -ESRCH;
4517 rcu_read_lock();
4518 p = find_process_by_pid(pid);
4519 if (!p)
4520 goto out_unlock;
4521
4522 retval = security_task_getscheduler(p);
4523 if (retval)
4524 goto out_unlock;
4525
4526 rq = task_rq_lock(p, &flags);
4527 time_slice = p->sched_class->get_rr_interval(rq, p);
4528 task_rq_unlock(rq, p, &flags);
4529
4530 rcu_read_unlock();
4531 jiffies_to_timespec(time_slice, &t);
4532 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4533 return retval;
4534
4535 out_unlock:
4536 rcu_read_unlock();
4537 return retval;
4538 }
4539
4540 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4541
4542 void sched_show_task(struct task_struct *p)
4543 {
4544 unsigned long free = 0;
4545 int ppid;
4546 unsigned state;
4547
4548 state = p->state ? __ffs(p->state) + 1 : 0;
4549 printk(KERN_INFO "%-15.15s %c", p->comm,
4550 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4551 #if BITS_PER_LONG == 32
4552 if (state == TASK_RUNNING)
4553 printk(KERN_CONT " running ");
4554 else
4555 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4556 #else
4557 if (state == TASK_RUNNING)
4558 printk(KERN_CONT " running task ");
4559 else
4560 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4561 #endif
4562 #ifdef CONFIG_DEBUG_STACK_USAGE
4563 free = stack_not_used(p);
4564 #endif
4565 rcu_read_lock();
4566 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4567 rcu_read_unlock();
4568 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4569 task_pid_nr(p), ppid,
4570 (unsigned long)task_thread_info(p)->flags);
4571
4572 show_stack(p, NULL);
4573 }
4574
4575 void show_state_filter(unsigned long state_filter)
4576 {
4577 struct task_struct *g, *p;
4578
4579 #if BITS_PER_LONG == 32
4580 printk(KERN_INFO
4581 " task PC stack pid father\n");
4582 #else
4583 printk(KERN_INFO
4584 " task PC stack pid father\n");
4585 #endif
4586 rcu_read_lock();
4587 do_each_thread(g, p) {
4588 /*
4589 * reset the NMI-timeout, listing all files on a slow
4590 * console might take a lot of time:
4591 */
4592 touch_nmi_watchdog();
4593 if (!state_filter || (p->state & state_filter))
4594 sched_show_task(p);
4595 } while_each_thread(g, p);
4596
4597 touch_all_softlockup_watchdogs();
4598
4599 #ifdef CONFIG_SCHED_DEBUG
4600 sysrq_sched_debug_show();
4601 #endif
4602 rcu_read_unlock();
4603 /*
4604 * Only show locks if all tasks are dumped:
4605 */
4606 if (!state_filter)
4607 debug_show_all_locks();
4608 }
4609
4610 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4611 {
4612 idle->sched_class = &idle_sched_class;
4613 }
4614
4615 /**
4616 * init_idle - set up an idle thread for a given CPU
4617 * @idle: task in question
4618 * @cpu: cpu the idle task belongs to
4619 *
4620 * NOTE: this function does not set the idle thread's NEED_RESCHED
4621 * flag, to make booting more robust.
4622 */
4623 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4624 {
4625 struct rq *rq = cpu_rq(cpu);
4626 unsigned long flags;
4627
4628 raw_spin_lock_irqsave(&rq->lock, flags);
4629
4630 __sched_fork(idle);
4631 idle->state = TASK_RUNNING;
4632 idle->se.exec_start = sched_clock();
4633
4634 do_set_cpus_allowed(idle, cpumask_of(cpu));
4635 /*
4636 * We're having a chicken and egg problem, even though we are
4637 * holding rq->lock, the cpu isn't yet set to this cpu so the
4638 * lockdep check in task_group() will fail.
4639 *
4640 * Similar case to sched_fork(). / Alternatively we could
4641 * use task_rq_lock() here and obtain the other rq->lock.
4642 *
4643 * Silence PROVE_RCU
4644 */
4645 rcu_read_lock();
4646 __set_task_cpu(idle, cpu);
4647 rcu_read_unlock();
4648
4649 rq->curr = rq->idle = idle;
4650 #if defined(CONFIG_SMP)
4651 idle->on_cpu = 1;
4652 #endif
4653 raw_spin_unlock_irqrestore(&rq->lock, flags);
4654
4655 /* Set the preempt count _outside_ the spinlocks! */
4656 task_thread_info(idle)->preempt_count = 0;
4657
4658 /*
4659 * The idle tasks have their own, simple scheduling class:
4660 */
4661 idle->sched_class = &idle_sched_class;
4662 ftrace_graph_init_idle_task(idle, cpu);
4663 #if defined(CONFIG_SMP)
4664 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4665 #endif
4666 }
4667
4668 #ifdef CONFIG_SMP
4669 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4670 {
4671 if (p->sched_class && p->sched_class->set_cpus_allowed)
4672 p->sched_class->set_cpus_allowed(p, new_mask);
4673
4674 cpumask_copy(&p->cpus_allowed, new_mask);
4675 p->nr_cpus_allowed = cpumask_weight(new_mask);
4676 }
4677
4678 /*
4679 * This is how migration works:
4680 *
4681 * 1) we invoke migration_cpu_stop() on the target CPU using
4682 * stop_one_cpu().
4683 * 2) stopper starts to run (implicitly forcing the migrated thread
4684 * off the CPU)
4685 * 3) it checks whether the migrated task is still in the wrong runqueue.
4686 * 4) if it's in the wrong runqueue then the migration thread removes
4687 * it and puts it into the right queue.
4688 * 5) stopper completes and stop_one_cpu() returns and the migration
4689 * is done.
4690 */
4691
4692 /*
4693 * Change a given task's CPU affinity. Migrate the thread to a
4694 * proper CPU and schedule it away if the CPU it's executing on
4695 * is removed from the allowed bitmask.
4696 *
4697 * NOTE: the caller must have a valid reference to the task, the
4698 * task must not exit() & deallocate itself prematurely. The
4699 * call is not atomic; no spinlocks may be held.
4700 */
4701 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4702 {
4703 unsigned long flags;
4704 struct rq *rq;
4705 unsigned int dest_cpu;
4706 int ret = 0;
4707
4708 rq = task_rq_lock(p, &flags);
4709
4710 if (cpumask_equal(&p->cpus_allowed, new_mask))
4711 goto out;
4712
4713 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4714 ret = -EINVAL;
4715 goto out;
4716 }
4717
4718 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4719 ret = -EINVAL;
4720 goto out;
4721 }
4722
4723 do_set_cpus_allowed(p, new_mask);
4724
4725 /* Can the task run on the task's current CPU? If so, we're done */
4726 if (cpumask_test_cpu(task_cpu(p), new_mask))
4727 goto out;
4728
4729 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4730 if (p->on_rq) {
4731 struct migration_arg arg = { p, dest_cpu };
4732 /* Need help from migration thread: drop lock and wait. */
4733 task_rq_unlock(rq, p, &flags);
4734 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4735 tlb_migrate_finish(p->mm);
4736 return 0;
4737 }
4738 out:
4739 task_rq_unlock(rq, p, &flags);
4740
4741 return ret;
4742 }
4743 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4744
4745 /*
4746 * Move (not current) task off this cpu, onto dest cpu. We're doing
4747 * this because either it can't run here any more (set_cpus_allowed()
4748 * away from this CPU, or CPU going down), or because we're
4749 * attempting to rebalance this task on exec (sched_exec).
4750 *
4751 * So we race with normal scheduler movements, but that's OK, as long
4752 * as the task is no longer on this CPU.
4753 *
4754 * Returns non-zero if task was successfully migrated.
4755 */
4756 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4757 {
4758 struct rq *rq_dest, *rq_src;
4759 int ret = 0;
4760
4761 if (unlikely(!cpu_active(dest_cpu)))
4762 return ret;
4763
4764 rq_src = cpu_rq(src_cpu);
4765 rq_dest = cpu_rq(dest_cpu);
4766
4767 raw_spin_lock(&p->pi_lock);
4768 double_rq_lock(rq_src, rq_dest);
4769 /* Already moved. */
4770 if (task_cpu(p) != src_cpu)
4771 goto done;
4772 /* Affinity changed (again). */
4773 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4774 goto fail;
4775
4776 /*
4777 * If we're not on a rq, the next wake-up will ensure we're
4778 * placed properly.
4779 */
4780 if (p->on_rq) {
4781 dequeue_task(rq_src, p, 0);
4782 set_task_cpu(p, dest_cpu);
4783 enqueue_task(rq_dest, p, 0);
4784 check_preempt_curr(rq_dest, p, 0);
4785 }
4786 done:
4787 ret = 1;
4788 fail:
4789 double_rq_unlock(rq_src, rq_dest);
4790 raw_spin_unlock(&p->pi_lock);
4791 return ret;
4792 }
4793
4794 /*
4795 * migration_cpu_stop - this will be executed by a highprio stopper thread
4796 * and performs thread migration by bumping thread off CPU then
4797 * 'pushing' onto another runqueue.
4798 */
4799 static int migration_cpu_stop(void *data)
4800 {
4801 struct migration_arg *arg = data;
4802
4803 /*
4804 * The original target cpu might have gone down and we might
4805 * be on another cpu but it doesn't matter.
4806 */
4807 local_irq_disable();
4808 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4809 local_irq_enable();
4810 return 0;
4811 }
4812
4813 #ifdef CONFIG_HOTPLUG_CPU
4814
4815 /*
4816 * Ensures that the idle task is using init_mm right before its cpu goes
4817 * offline.
4818 */
4819 void idle_task_exit(void)
4820 {
4821 struct mm_struct *mm = current->active_mm;
4822
4823 BUG_ON(cpu_online(smp_processor_id()));
4824
4825 if (mm != &init_mm)
4826 switch_mm(mm, &init_mm, current);
4827 mmdrop(mm);
4828 }
4829
4830 /*
4831 * Since this CPU is going 'away' for a while, fold any nr_active delta
4832 * we might have. Assumes we're called after migrate_tasks() so that the
4833 * nr_active count is stable.
4834 *
4835 * Also see the comment "Global load-average calculations".
4836 */
4837 static void calc_load_migrate(struct rq *rq)
4838 {
4839 long delta = calc_load_fold_active(rq);
4840 if (delta)
4841 atomic_long_add(delta, &calc_load_tasks);
4842 }
4843
4844 /*
4845 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4846 * try_to_wake_up()->select_task_rq().
4847 *
4848 * Called with rq->lock held even though we'er in stop_machine() and
4849 * there's no concurrency possible, we hold the required locks anyway
4850 * because of lock validation efforts.
4851 */
4852 static void migrate_tasks(unsigned int dead_cpu)
4853 {
4854 struct rq *rq = cpu_rq(dead_cpu);
4855 struct task_struct *next, *stop = rq->stop;
4856 int dest_cpu;
4857
4858 /*
4859 * Fudge the rq selection such that the below task selection loop
4860 * doesn't get stuck on the currently eligible stop task.
4861 *
4862 * We're currently inside stop_machine() and the rq is either stuck
4863 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4864 * either way we should never end up calling schedule() until we're
4865 * done here.
4866 */
4867 rq->stop = NULL;
4868
4869 for ( ; ; ) {
4870 /*
4871 * There's this thread running, bail when that's the only
4872 * remaining thread.
4873 */
4874 if (rq->nr_running == 1)
4875 break;
4876
4877 next = pick_next_task(rq);
4878 BUG_ON(!next);
4879 next->sched_class->put_prev_task(rq, next);
4880
4881 /* Find suitable destination for @next, with force if needed. */
4882 dest_cpu = select_fallback_rq(dead_cpu, next);
4883 raw_spin_unlock(&rq->lock);
4884
4885 __migrate_task(next, dead_cpu, dest_cpu);
4886
4887 raw_spin_lock(&rq->lock);
4888 }
4889
4890 rq->stop = stop;
4891 }
4892
4893 #endif /* CONFIG_HOTPLUG_CPU */
4894
4895 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4896
4897 static struct ctl_table sd_ctl_dir[] = {
4898 {
4899 .procname = "sched_domain",
4900 .mode = 0555,
4901 },
4902 {}
4903 };
4904
4905 static struct ctl_table sd_ctl_root[] = {
4906 {
4907 .procname = "kernel",
4908 .mode = 0555,
4909 .child = sd_ctl_dir,
4910 },
4911 {}
4912 };
4913
4914 static struct ctl_table *sd_alloc_ctl_entry(int n)
4915 {
4916 struct ctl_table *entry =
4917 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4918
4919 return entry;
4920 }
4921
4922 static void sd_free_ctl_entry(struct ctl_table **tablep)
4923 {
4924 struct ctl_table *entry;
4925
4926 /*
4927 * In the intermediate directories, both the child directory and
4928 * procname are dynamically allocated and could fail but the mode
4929 * will always be set. In the lowest directory the names are
4930 * static strings and all have proc handlers.
4931 */
4932 for (entry = *tablep; entry->mode; entry++) {
4933 if (entry->child)
4934 sd_free_ctl_entry(&entry->child);
4935 if (entry->proc_handler == NULL)
4936 kfree(entry->procname);
4937 }
4938
4939 kfree(*tablep);
4940 *tablep = NULL;
4941 }
4942
4943 static int min_load_idx = 0;
4944 static int max_load_idx = CPU_LOAD_IDX_MAX;
4945
4946 static void
4947 set_table_entry(struct ctl_table *entry,
4948 const char *procname, void *data, int maxlen,
4949 umode_t mode, proc_handler *proc_handler,
4950 bool load_idx)
4951 {
4952 entry->procname = procname;
4953 entry->data = data;
4954 entry->maxlen = maxlen;
4955 entry->mode = mode;
4956 entry->proc_handler = proc_handler;
4957
4958 if (load_idx) {
4959 entry->extra1 = &min_load_idx;
4960 entry->extra2 = &max_load_idx;
4961 }
4962 }
4963
4964 static struct ctl_table *
4965 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4966 {
4967 struct ctl_table *table = sd_alloc_ctl_entry(13);
4968
4969 if (table == NULL)
4970 return NULL;
4971
4972 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4973 sizeof(long), 0644, proc_doulongvec_minmax, false);
4974 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4975 sizeof(long), 0644, proc_doulongvec_minmax, false);
4976 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4977 sizeof(int), 0644, proc_dointvec_minmax, true);
4978 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4979 sizeof(int), 0644, proc_dointvec_minmax, true);
4980 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4981 sizeof(int), 0644, proc_dointvec_minmax, true);
4982 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4983 sizeof(int), 0644, proc_dointvec_minmax, true);
4984 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4985 sizeof(int), 0644, proc_dointvec_minmax, true);
4986 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4987 sizeof(int), 0644, proc_dointvec_minmax, false);
4988 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4989 sizeof(int), 0644, proc_dointvec_minmax, false);
4990 set_table_entry(&table[9], "cache_nice_tries",
4991 &sd->cache_nice_tries,
4992 sizeof(int), 0644, proc_dointvec_minmax, false);
4993 set_table_entry(&table[10], "flags", &sd->flags,
4994 sizeof(int), 0644, proc_dointvec_minmax, false);
4995 set_table_entry(&table[11], "name", sd->name,
4996 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4997 /* &table[12] is terminator */
4998
4999 return table;
5000 }
5001
5002 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5003 {
5004 struct ctl_table *entry, *table;
5005 struct sched_domain *sd;
5006 int domain_num = 0, i;
5007 char buf[32];
5008
5009 for_each_domain(cpu, sd)
5010 domain_num++;
5011 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5012 if (table == NULL)
5013 return NULL;
5014
5015 i = 0;
5016 for_each_domain(cpu, sd) {
5017 snprintf(buf, 32, "domain%d", i);
5018 entry->procname = kstrdup(buf, GFP_KERNEL);
5019 entry->mode = 0555;
5020 entry->child = sd_alloc_ctl_domain_table(sd);
5021 entry++;
5022 i++;
5023 }
5024 return table;
5025 }
5026
5027 static struct ctl_table_header *sd_sysctl_header;
5028 static void register_sched_domain_sysctl(void)
5029 {
5030 int i, cpu_num = num_possible_cpus();
5031 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5032 char buf[32];
5033
5034 WARN_ON(sd_ctl_dir[0].child);
5035 sd_ctl_dir[0].child = entry;
5036
5037 if (entry == NULL)
5038 return;
5039
5040 for_each_possible_cpu(i) {
5041 snprintf(buf, 32, "cpu%d", i);
5042 entry->procname = kstrdup(buf, GFP_KERNEL);
5043 entry->mode = 0555;
5044 entry->child = sd_alloc_ctl_cpu_table(i);
5045 entry++;
5046 }
5047
5048 WARN_ON(sd_sysctl_header);
5049 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5050 }
5051
5052 /* may be called multiple times per register */
5053 static void unregister_sched_domain_sysctl(void)
5054 {
5055 if (sd_sysctl_header)
5056 unregister_sysctl_table(sd_sysctl_header);
5057 sd_sysctl_header = NULL;
5058 if (sd_ctl_dir[0].child)
5059 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5060 }
5061 #else
5062 static void register_sched_domain_sysctl(void)
5063 {
5064 }
5065 static void unregister_sched_domain_sysctl(void)
5066 {
5067 }
5068 #endif
5069
5070 static void set_rq_online(struct rq *rq)
5071 {
5072 if (!rq->online) {
5073 const struct sched_class *class;
5074
5075 cpumask_set_cpu(rq->cpu, rq->rd->online);
5076 rq->online = 1;
5077
5078 for_each_class(class) {
5079 if (class->rq_online)
5080 class->rq_online(rq);
5081 }
5082 }
5083 }
5084
5085 static void set_rq_offline(struct rq *rq)
5086 {
5087 if (rq->online) {
5088 const struct sched_class *class;
5089
5090 for_each_class(class) {
5091 if (class->rq_offline)
5092 class->rq_offline(rq);
5093 }
5094
5095 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5096 rq->online = 0;
5097 }
5098 }
5099
5100 /*
5101 * migration_call - callback that gets triggered when a CPU is added.
5102 * Here we can start up the necessary migration thread for the new CPU.
5103 */
5104 static int __cpuinit
5105 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5106 {
5107 int cpu = (long)hcpu;
5108 unsigned long flags;
5109 struct rq *rq = cpu_rq(cpu);
5110
5111 switch (action & ~CPU_TASKS_FROZEN) {
5112
5113 case CPU_UP_PREPARE:
5114 rq->calc_load_update = calc_load_update;
5115 break;
5116
5117 case CPU_ONLINE:
5118 /* Update our root-domain */
5119 raw_spin_lock_irqsave(&rq->lock, flags);
5120 if (rq->rd) {
5121 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5122
5123 set_rq_online(rq);
5124 }
5125 raw_spin_unlock_irqrestore(&rq->lock, flags);
5126 break;
5127
5128 #ifdef CONFIG_HOTPLUG_CPU
5129 case CPU_DYING:
5130 sched_ttwu_pending();
5131 /* Update our root-domain */
5132 raw_spin_lock_irqsave(&rq->lock, flags);
5133 if (rq->rd) {
5134 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5135 set_rq_offline(rq);
5136 }
5137 migrate_tasks(cpu);
5138 BUG_ON(rq->nr_running != 1); /* the migration thread */
5139 raw_spin_unlock_irqrestore(&rq->lock, flags);
5140 break;
5141
5142 case CPU_DEAD:
5143 calc_load_migrate(rq);
5144 break;
5145 #endif
5146 }
5147
5148 update_max_interval();
5149
5150 return NOTIFY_OK;
5151 }
5152
5153 /*
5154 * Register at high priority so that task migration (migrate_all_tasks)
5155 * happens before everything else. This has to be lower priority than
5156 * the notifier in the perf_event subsystem, though.
5157 */
5158 static struct notifier_block __cpuinitdata migration_notifier = {
5159 .notifier_call = migration_call,
5160 .priority = CPU_PRI_MIGRATION,
5161 };
5162
5163 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5164 unsigned long action, void *hcpu)
5165 {
5166 switch (action & ~CPU_TASKS_FROZEN) {
5167 case CPU_STARTING:
5168 case CPU_DOWN_FAILED:
5169 set_cpu_active((long)hcpu, true);
5170 return NOTIFY_OK;
5171 default:
5172 return NOTIFY_DONE;
5173 }
5174 }
5175
5176 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5177 unsigned long action, void *hcpu)
5178 {
5179 switch (action & ~CPU_TASKS_FROZEN) {
5180 case CPU_DOWN_PREPARE:
5181 set_cpu_active((long)hcpu, false);
5182 return NOTIFY_OK;
5183 default:
5184 return NOTIFY_DONE;
5185 }
5186 }
5187
5188 static int __init migration_init(void)
5189 {
5190 void *cpu = (void *)(long)smp_processor_id();
5191 int err;
5192
5193 /* Initialize migration for the boot CPU */
5194 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5195 BUG_ON(err == NOTIFY_BAD);
5196 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5197 register_cpu_notifier(&migration_notifier);
5198
5199 /* Register cpu active notifiers */
5200 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5201 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5202
5203 return 0;
5204 }
5205 early_initcall(migration_init);
5206 #endif
5207
5208 #ifdef CONFIG_SMP
5209
5210 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5211
5212 #ifdef CONFIG_SCHED_DEBUG
5213
5214 static __read_mostly int sched_debug_enabled;
5215
5216 static int __init sched_debug_setup(char *str)
5217 {
5218 sched_debug_enabled = 1;
5219
5220 return 0;
5221 }
5222 early_param("sched_debug", sched_debug_setup);
5223
5224 static inline bool sched_debug(void)
5225 {
5226 return sched_debug_enabled;
5227 }
5228
5229 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5230 struct cpumask *groupmask)
5231 {
5232 struct sched_group *group = sd->groups;
5233 char str[256];
5234
5235 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5236 cpumask_clear(groupmask);
5237
5238 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5239
5240 if (!(sd->flags & SD_LOAD_BALANCE)) {
5241 printk("does not load-balance\n");
5242 if (sd->parent)
5243 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5244 " has parent");
5245 return -1;
5246 }
5247
5248 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5249
5250 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5251 printk(KERN_ERR "ERROR: domain->span does not contain "
5252 "CPU%d\n", cpu);
5253 }
5254 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5255 printk(KERN_ERR "ERROR: domain->groups does not contain"
5256 " CPU%d\n", cpu);
5257 }
5258
5259 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5260 do {
5261 if (!group) {
5262 printk("\n");
5263 printk(KERN_ERR "ERROR: group is NULL\n");
5264 break;
5265 }
5266
5267 /*
5268 * Even though we initialize ->power to something semi-sane,
5269 * we leave power_orig unset. This allows us to detect if
5270 * domain iteration is still funny without causing /0 traps.
5271 */
5272 if (!group->sgp->power_orig) {
5273 printk(KERN_CONT "\n");
5274 printk(KERN_ERR "ERROR: domain->cpu_power not "
5275 "set\n");
5276 break;
5277 }
5278
5279 if (!cpumask_weight(sched_group_cpus(group))) {
5280 printk(KERN_CONT "\n");
5281 printk(KERN_ERR "ERROR: empty group\n");
5282 break;
5283 }
5284
5285 if (!(sd->flags & SD_OVERLAP) &&
5286 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5287 printk(KERN_CONT "\n");
5288 printk(KERN_ERR "ERROR: repeated CPUs\n");
5289 break;
5290 }
5291
5292 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5293
5294 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5295
5296 printk(KERN_CONT " %s", str);
5297 if (group->sgp->power != SCHED_POWER_SCALE) {
5298 printk(KERN_CONT " (cpu_power = %d)",
5299 group->sgp->power);
5300 }
5301
5302 group = group->next;
5303 } while (group != sd->groups);
5304 printk(KERN_CONT "\n");
5305
5306 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5307 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5308
5309 if (sd->parent &&
5310 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5311 printk(KERN_ERR "ERROR: parent span is not a superset "
5312 "of domain->span\n");
5313 return 0;
5314 }
5315
5316 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5317 {
5318 int level = 0;
5319
5320 if (!sched_debug_enabled)
5321 return;
5322
5323 if (!sd) {
5324 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5325 return;
5326 }
5327
5328 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5329
5330 for (;;) {
5331 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5332 break;
5333 level++;
5334 sd = sd->parent;
5335 if (!sd)
5336 break;
5337 }
5338 }
5339 #else /* !CONFIG_SCHED_DEBUG */
5340 # define sched_domain_debug(sd, cpu) do { } while (0)
5341 static inline bool sched_debug(void)
5342 {
5343 return false;
5344 }
5345 #endif /* CONFIG_SCHED_DEBUG */
5346
5347 static int sd_degenerate(struct sched_domain *sd)
5348 {
5349 if (cpumask_weight(sched_domain_span(sd)) == 1)
5350 return 1;
5351
5352 /* Following flags need at least 2 groups */
5353 if (sd->flags & (SD_LOAD_BALANCE |
5354 SD_BALANCE_NEWIDLE |
5355 SD_BALANCE_FORK |
5356 SD_BALANCE_EXEC |
5357 SD_SHARE_CPUPOWER |
5358 SD_SHARE_PKG_RESOURCES)) {
5359 if (sd->groups != sd->groups->next)
5360 return 0;
5361 }
5362
5363 /* Following flags don't use groups */
5364 if (sd->flags & (SD_WAKE_AFFINE))
5365 return 0;
5366
5367 return 1;
5368 }
5369
5370 static int
5371 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5372 {
5373 unsigned long cflags = sd->flags, pflags = parent->flags;
5374
5375 if (sd_degenerate(parent))
5376 return 1;
5377
5378 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5379 return 0;
5380
5381 /* Flags needing groups don't count if only 1 group in parent */
5382 if (parent->groups == parent->groups->next) {
5383 pflags &= ~(SD_LOAD_BALANCE |
5384 SD_BALANCE_NEWIDLE |
5385 SD_BALANCE_FORK |
5386 SD_BALANCE_EXEC |
5387 SD_SHARE_CPUPOWER |
5388 SD_SHARE_PKG_RESOURCES);
5389 if (nr_node_ids == 1)
5390 pflags &= ~SD_SERIALIZE;
5391 }
5392 if (~cflags & pflags)
5393 return 0;
5394
5395 return 1;
5396 }
5397
5398 static void free_rootdomain(struct rcu_head *rcu)
5399 {
5400 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5401
5402 cpupri_cleanup(&rd->cpupri);
5403 free_cpumask_var(rd->rto_mask);
5404 free_cpumask_var(rd->online);
5405 free_cpumask_var(rd->span);
5406 kfree(rd);
5407 }
5408
5409 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5410 {
5411 struct root_domain *old_rd = NULL;
5412 unsigned long flags;
5413
5414 raw_spin_lock_irqsave(&rq->lock, flags);
5415
5416 if (rq->rd) {
5417 old_rd = rq->rd;
5418
5419 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5420 set_rq_offline(rq);
5421
5422 cpumask_clear_cpu(rq->cpu, old_rd->span);
5423
5424 /*
5425 * If we dont want to free the old_rt yet then
5426 * set old_rd to NULL to skip the freeing later
5427 * in this function:
5428 */
5429 if (!atomic_dec_and_test(&old_rd->refcount))
5430 old_rd = NULL;
5431 }
5432
5433 atomic_inc(&rd->refcount);
5434 rq->rd = rd;
5435
5436 cpumask_set_cpu(rq->cpu, rd->span);
5437 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5438 set_rq_online(rq);
5439
5440 raw_spin_unlock_irqrestore(&rq->lock, flags);
5441
5442 if (old_rd)
5443 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5444 }
5445
5446 static int init_rootdomain(struct root_domain *rd)
5447 {
5448 memset(rd, 0, sizeof(*rd));
5449
5450 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5451 goto out;
5452 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5453 goto free_span;
5454 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5455 goto free_online;
5456
5457 if (cpupri_init(&rd->cpupri) != 0)
5458 goto free_rto_mask;
5459 return 0;
5460
5461 free_rto_mask:
5462 free_cpumask_var(rd->rto_mask);
5463 free_online:
5464 free_cpumask_var(rd->online);
5465 free_span:
5466 free_cpumask_var(rd->span);
5467 out:
5468 return -ENOMEM;
5469 }
5470
5471 /*
5472 * By default the system creates a single root-domain with all cpus as
5473 * members (mimicking the global state we have today).
5474 */
5475 struct root_domain def_root_domain;
5476
5477 static void init_defrootdomain(void)
5478 {
5479 init_rootdomain(&def_root_domain);
5480
5481 atomic_set(&def_root_domain.refcount, 1);
5482 }
5483
5484 static struct root_domain *alloc_rootdomain(void)
5485 {
5486 struct root_domain *rd;
5487
5488 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5489 if (!rd)
5490 return NULL;
5491
5492 if (init_rootdomain(rd) != 0) {
5493 kfree(rd);
5494 return NULL;
5495 }
5496
5497 return rd;
5498 }
5499
5500 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5501 {
5502 struct sched_group *tmp, *first;
5503
5504 if (!sg)
5505 return;
5506
5507 first = sg;
5508 do {
5509 tmp = sg->next;
5510
5511 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5512 kfree(sg->sgp);
5513
5514 kfree(sg);
5515 sg = tmp;
5516 } while (sg != first);
5517 }
5518
5519 static void free_sched_domain(struct rcu_head *rcu)
5520 {
5521 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5522
5523 /*
5524 * If its an overlapping domain it has private groups, iterate and
5525 * nuke them all.
5526 */
5527 if (sd->flags & SD_OVERLAP) {
5528 free_sched_groups(sd->groups, 1);
5529 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5530 kfree(sd->groups->sgp);
5531 kfree(sd->groups);
5532 }
5533 kfree(sd);
5534 }
5535
5536 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5537 {
5538 call_rcu(&sd->rcu, free_sched_domain);
5539 }
5540
5541 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5542 {
5543 for (; sd; sd = sd->parent)
5544 destroy_sched_domain(sd, cpu);
5545 }
5546
5547 /*
5548 * Keep a special pointer to the highest sched_domain that has
5549 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5550 * allows us to avoid some pointer chasing select_idle_sibling().
5551 *
5552 * Also keep a unique ID per domain (we use the first cpu number in
5553 * the cpumask of the domain), this allows us to quickly tell if
5554 * two cpus are in the same cache domain, see cpus_share_cache().
5555 */
5556 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5557 DEFINE_PER_CPU(int, sd_llc_id);
5558
5559 static void update_top_cache_domain(int cpu)
5560 {
5561 struct sched_domain *sd;
5562 int id = cpu;
5563
5564 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5565 if (sd)
5566 id = cpumask_first(sched_domain_span(sd));
5567
5568 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5569 per_cpu(sd_llc_id, cpu) = id;
5570 }
5571
5572 /*
5573 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5574 * hold the hotplug lock.
5575 */
5576 static void
5577 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5578 {
5579 struct rq *rq = cpu_rq(cpu);
5580 struct sched_domain *tmp;
5581
5582 /* Remove the sched domains which do not contribute to scheduling. */
5583 for (tmp = sd; tmp; ) {
5584 struct sched_domain *parent = tmp->parent;
5585 if (!parent)
5586 break;
5587
5588 if (sd_parent_degenerate(tmp, parent)) {
5589 tmp->parent = parent->parent;
5590 if (parent->parent)
5591 parent->parent->child = tmp;
5592 destroy_sched_domain(parent, cpu);
5593 } else
5594 tmp = tmp->parent;
5595 }
5596
5597 if (sd && sd_degenerate(sd)) {
5598 tmp = sd;
5599 sd = sd->parent;
5600 destroy_sched_domain(tmp, cpu);
5601 if (sd)
5602 sd->child = NULL;
5603 }
5604
5605 sched_domain_debug(sd, cpu);
5606
5607 rq_attach_root(rq, rd);
5608 tmp = rq->sd;
5609 rcu_assign_pointer(rq->sd, sd);
5610 destroy_sched_domains(tmp, cpu);
5611
5612 update_top_cache_domain(cpu);
5613 }
5614
5615 /* cpus with isolated domains */
5616 static cpumask_var_t cpu_isolated_map;
5617
5618 /* Setup the mask of cpus configured for isolated domains */
5619 static int __init isolated_cpu_setup(char *str)
5620 {
5621 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5622 cpulist_parse(str, cpu_isolated_map);
5623 return 1;
5624 }
5625
5626 __setup("isolcpus=", isolated_cpu_setup);
5627
5628 static const struct cpumask *cpu_cpu_mask(int cpu)
5629 {
5630 return cpumask_of_node(cpu_to_node(cpu));
5631 }
5632
5633 struct sd_data {
5634 struct sched_domain **__percpu sd;
5635 struct sched_group **__percpu sg;
5636 struct sched_group_power **__percpu sgp;
5637 };
5638
5639 struct s_data {
5640 struct sched_domain ** __percpu sd;
5641 struct root_domain *rd;
5642 };
5643
5644 enum s_alloc {
5645 sa_rootdomain,
5646 sa_sd,
5647 sa_sd_storage,
5648 sa_none,
5649 };
5650
5651 struct sched_domain_topology_level;
5652
5653 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5654 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5655
5656 #define SDTL_OVERLAP 0x01
5657
5658 struct sched_domain_topology_level {
5659 sched_domain_init_f init;
5660 sched_domain_mask_f mask;
5661 int flags;
5662 int numa_level;
5663 struct sd_data data;
5664 };
5665
5666 /*
5667 * Build an iteration mask that can exclude certain CPUs from the upwards
5668 * domain traversal.
5669 *
5670 * Asymmetric node setups can result in situations where the domain tree is of
5671 * unequal depth, make sure to skip domains that already cover the entire
5672 * range.
5673 *
5674 * In that case build_sched_domains() will have terminated the iteration early
5675 * and our sibling sd spans will be empty. Domains should always include the
5676 * cpu they're built on, so check that.
5677 *
5678 */
5679 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5680 {
5681 const struct cpumask *span = sched_domain_span(sd);
5682 struct sd_data *sdd = sd->private;
5683 struct sched_domain *sibling;
5684 int i;
5685
5686 for_each_cpu(i, span) {
5687 sibling = *per_cpu_ptr(sdd->sd, i);
5688 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5689 continue;
5690
5691 cpumask_set_cpu(i, sched_group_mask(sg));
5692 }
5693 }
5694
5695 /*
5696 * Return the canonical balance cpu for this group, this is the first cpu
5697 * of this group that's also in the iteration mask.
5698 */
5699 int group_balance_cpu(struct sched_group *sg)
5700 {
5701 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5702 }
5703
5704 static int
5705 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5706 {
5707 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5708 const struct cpumask *span = sched_domain_span(sd);
5709 struct cpumask *covered = sched_domains_tmpmask;
5710 struct sd_data *sdd = sd->private;
5711 struct sched_domain *child;
5712 int i;
5713
5714 cpumask_clear(covered);
5715
5716 for_each_cpu(i, span) {
5717 struct cpumask *sg_span;
5718
5719 if (cpumask_test_cpu(i, covered))
5720 continue;
5721
5722 child = *per_cpu_ptr(sdd->sd, i);
5723
5724 /* See the comment near build_group_mask(). */
5725 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5726 continue;
5727
5728 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5729 GFP_KERNEL, cpu_to_node(cpu));
5730
5731 if (!sg)
5732 goto fail;
5733
5734 sg_span = sched_group_cpus(sg);
5735 if (child->child) {
5736 child = child->child;
5737 cpumask_copy(sg_span, sched_domain_span(child));
5738 } else
5739 cpumask_set_cpu(i, sg_span);
5740
5741 cpumask_or(covered, covered, sg_span);
5742
5743 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5744 if (atomic_inc_return(&sg->sgp->ref) == 1)
5745 build_group_mask(sd, sg);
5746
5747 /*
5748 * Initialize sgp->power such that even if we mess up the
5749 * domains and no possible iteration will get us here, we won't
5750 * die on a /0 trap.
5751 */
5752 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5753
5754 /*
5755 * Make sure the first group of this domain contains the
5756 * canonical balance cpu. Otherwise the sched_domain iteration
5757 * breaks. See update_sg_lb_stats().
5758 */
5759 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5760 group_balance_cpu(sg) == cpu)
5761 groups = sg;
5762
5763 if (!first)
5764 first = sg;
5765 if (last)
5766 last->next = sg;
5767 last = sg;
5768 last->next = first;
5769 }
5770 sd->groups = groups;
5771
5772 return 0;
5773
5774 fail:
5775 free_sched_groups(first, 0);
5776
5777 return -ENOMEM;
5778 }
5779
5780 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5781 {
5782 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5783 struct sched_domain *child = sd->child;
5784
5785 if (child)
5786 cpu = cpumask_first(sched_domain_span(child));
5787
5788 if (sg) {
5789 *sg = *per_cpu_ptr(sdd->sg, cpu);
5790 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5791 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5792 }
5793
5794 return cpu;
5795 }
5796
5797 /*
5798 * build_sched_groups will build a circular linked list of the groups
5799 * covered by the given span, and will set each group's ->cpumask correctly,
5800 * and ->cpu_power to 0.
5801 *
5802 * Assumes the sched_domain tree is fully constructed
5803 */
5804 static int
5805 build_sched_groups(struct sched_domain *sd, int cpu)
5806 {
5807 struct sched_group *first = NULL, *last = NULL;
5808 struct sd_data *sdd = sd->private;
5809 const struct cpumask *span = sched_domain_span(sd);
5810 struct cpumask *covered;
5811 int i;
5812
5813 get_group(cpu, sdd, &sd->groups);
5814 atomic_inc(&sd->groups->ref);
5815
5816 if (cpu != cpumask_first(sched_domain_span(sd)))
5817 return 0;
5818
5819 lockdep_assert_held(&sched_domains_mutex);
5820 covered = sched_domains_tmpmask;
5821
5822 cpumask_clear(covered);
5823
5824 for_each_cpu(i, span) {
5825 struct sched_group *sg;
5826 int group = get_group(i, sdd, &sg);
5827 int j;
5828
5829 if (cpumask_test_cpu(i, covered))
5830 continue;
5831
5832 cpumask_clear(sched_group_cpus(sg));
5833 sg->sgp->power = 0;
5834 cpumask_setall(sched_group_mask(sg));
5835
5836 for_each_cpu(j, span) {
5837 if (get_group(j, sdd, NULL) != group)
5838 continue;
5839
5840 cpumask_set_cpu(j, covered);
5841 cpumask_set_cpu(j, sched_group_cpus(sg));
5842 }
5843
5844 if (!first)
5845 first = sg;
5846 if (last)
5847 last->next = sg;
5848 last = sg;
5849 }
5850 last->next = first;
5851
5852 return 0;
5853 }
5854
5855 /*
5856 * Initialize sched groups cpu_power.
5857 *
5858 * cpu_power indicates the capacity of sched group, which is used while
5859 * distributing the load between different sched groups in a sched domain.
5860 * Typically cpu_power for all the groups in a sched domain will be same unless
5861 * there are asymmetries in the topology. If there are asymmetries, group
5862 * having more cpu_power will pickup more load compared to the group having
5863 * less cpu_power.
5864 */
5865 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5866 {
5867 struct sched_group *sg = sd->groups;
5868
5869 WARN_ON(!sd || !sg);
5870
5871 do {
5872 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5873 sg = sg->next;
5874 } while (sg != sd->groups);
5875
5876 if (cpu != group_balance_cpu(sg))
5877 return;
5878
5879 update_group_power(sd, cpu);
5880 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5881 }
5882
5883 int __weak arch_sd_sibling_asym_packing(void)
5884 {
5885 return 0*SD_ASYM_PACKING;
5886 }
5887
5888 /*
5889 * Initializers for schedule domains
5890 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5891 */
5892
5893 #ifdef CONFIG_SCHED_DEBUG
5894 # define SD_INIT_NAME(sd, type) sd->name = #type
5895 #else
5896 # define SD_INIT_NAME(sd, type) do { } while (0)
5897 #endif
5898
5899 #define SD_INIT_FUNC(type) \
5900 static noinline struct sched_domain * \
5901 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5902 { \
5903 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5904 *sd = SD_##type##_INIT; \
5905 SD_INIT_NAME(sd, type); \
5906 sd->private = &tl->data; \
5907 return sd; \
5908 }
5909
5910 SD_INIT_FUNC(CPU)
5911 #ifdef CONFIG_SCHED_SMT
5912 SD_INIT_FUNC(SIBLING)
5913 #endif
5914 #ifdef CONFIG_SCHED_MC
5915 SD_INIT_FUNC(MC)
5916 #endif
5917 #ifdef CONFIG_SCHED_BOOK
5918 SD_INIT_FUNC(BOOK)
5919 #endif
5920
5921 static int default_relax_domain_level = -1;
5922 int sched_domain_level_max;
5923
5924 static int __init setup_relax_domain_level(char *str)
5925 {
5926 if (kstrtoint(str, 0, &default_relax_domain_level))
5927 pr_warn("Unable to set relax_domain_level\n");
5928
5929 return 1;
5930 }
5931 __setup("relax_domain_level=", setup_relax_domain_level);
5932
5933 static void set_domain_attribute(struct sched_domain *sd,
5934 struct sched_domain_attr *attr)
5935 {
5936 int request;
5937
5938 if (!attr || attr->relax_domain_level < 0) {
5939 if (default_relax_domain_level < 0)
5940 return;
5941 else
5942 request = default_relax_domain_level;
5943 } else
5944 request = attr->relax_domain_level;
5945 if (request < sd->level) {
5946 /* turn off idle balance on this domain */
5947 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5948 } else {
5949 /* turn on idle balance on this domain */
5950 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5951 }
5952 }
5953
5954 static void __sdt_free(const struct cpumask *cpu_map);
5955 static int __sdt_alloc(const struct cpumask *cpu_map);
5956
5957 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5958 const struct cpumask *cpu_map)
5959 {
5960 switch (what) {
5961 case sa_rootdomain:
5962 if (!atomic_read(&d->rd->refcount))
5963 free_rootdomain(&d->rd->rcu); /* fall through */
5964 case sa_sd:
5965 free_percpu(d->sd); /* fall through */
5966 case sa_sd_storage:
5967 __sdt_free(cpu_map); /* fall through */
5968 case sa_none:
5969 break;
5970 }
5971 }
5972
5973 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5974 const struct cpumask *cpu_map)
5975 {
5976 memset(d, 0, sizeof(*d));
5977
5978 if (__sdt_alloc(cpu_map))
5979 return sa_sd_storage;
5980 d->sd = alloc_percpu(struct sched_domain *);
5981 if (!d->sd)
5982 return sa_sd_storage;
5983 d->rd = alloc_rootdomain();
5984 if (!d->rd)
5985 return sa_sd;
5986 return sa_rootdomain;
5987 }
5988
5989 /*
5990 * NULL the sd_data elements we've used to build the sched_domain and
5991 * sched_group structure so that the subsequent __free_domain_allocs()
5992 * will not free the data we're using.
5993 */
5994 static void claim_allocations(int cpu, struct sched_domain *sd)
5995 {
5996 struct sd_data *sdd = sd->private;
5997
5998 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5999 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6000
6001 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6002 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6003
6004 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6005 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6006 }
6007
6008 #ifdef CONFIG_SCHED_SMT
6009 static const struct cpumask *cpu_smt_mask(int cpu)
6010 {
6011 return topology_thread_cpumask(cpu);
6012 }
6013 #endif
6014
6015 /*
6016 * Topology list, bottom-up.
6017 */
6018 static struct sched_domain_topology_level default_topology[] = {
6019 #ifdef CONFIG_SCHED_SMT
6020 { sd_init_SIBLING, cpu_smt_mask, },
6021 #endif
6022 #ifdef CONFIG_SCHED_MC
6023 { sd_init_MC, cpu_coregroup_mask, },
6024 #endif
6025 #ifdef CONFIG_SCHED_BOOK
6026 { sd_init_BOOK, cpu_book_mask, },
6027 #endif
6028 { sd_init_CPU, cpu_cpu_mask, },
6029 { NULL, },
6030 };
6031
6032 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6033
6034 #ifdef CONFIG_NUMA
6035
6036 static int sched_domains_numa_levels;
6037 static int *sched_domains_numa_distance;
6038 static struct cpumask ***sched_domains_numa_masks;
6039 static int sched_domains_curr_level;
6040
6041 static inline int sd_local_flags(int level)
6042 {
6043 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6044 return 0;
6045
6046 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6047 }
6048
6049 static struct sched_domain *
6050 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6051 {
6052 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6053 int level = tl->numa_level;
6054 int sd_weight = cpumask_weight(
6055 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6056
6057 *sd = (struct sched_domain){
6058 .min_interval = sd_weight,
6059 .max_interval = 2*sd_weight,
6060 .busy_factor = 32,
6061 .imbalance_pct = 125,
6062 .cache_nice_tries = 2,
6063 .busy_idx = 3,
6064 .idle_idx = 2,
6065 .newidle_idx = 0,
6066 .wake_idx = 0,
6067 .forkexec_idx = 0,
6068
6069 .flags = 1*SD_LOAD_BALANCE
6070 | 1*SD_BALANCE_NEWIDLE
6071 | 0*SD_BALANCE_EXEC
6072 | 0*SD_BALANCE_FORK
6073 | 0*SD_BALANCE_WAKE
6074 | 0*SD_WAKE_AFFINE
6075 | 0*SD_SHARE_CPUPOWER
6076 | 0*SD_SHARE_PKG_RESOURCES
6077 | 1*SD_SERIALIZE
6078 | 0*SD_PREFER_SIBLING
6079 | sd_local_flags(level)
6080 ,
6081 .last_balance = jiffies,
6082 .balance_interval = sd_weight,
6083 };
6084 SD_INIT_NAME(sd, NUMA);
6085 sd->private = &tl->data;
6086
6087 /*
6088 * Ugly hack to pass state to sd_numa_mask()...
6089 */
6090 sched_domains_curr_level = tl->numa_level;
6091
6092 return sd;
6093 }
6094
6095 static const struct cpumask *sd_numa_mask(int cpu)
6096 {
6097 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6098 }
6099
6100 static void sched_numa_warn(const char *str)
6101 {
6102 static int done = false;
6103 int i,j;
6104
6105 if (done)
6106 return;
6107
6108 done = true;
6109
6110 printk(KERN_WARNING "ERROR: %s\n\n", str);
6111
6112 for (i = 0; i < nr_node_ids; i++) {
6113 printk(KERN_WARNING " ");
6114 for (j = 0; j < nr_node_ids; j++)
6115 printk(KERN_CONT "%02d ", node_distance(i,j));
6116 printk(KERN_CONT "\n");
6117 }
6118 printk(KERN_WARNING "\n");
6119 }
6120
6121 static bool find_numa_distance(int distance)
6122 {
6123 int i;
6124
6125 if (distance == node_distance(0, 0))
6126 return true;
6127
6128 for (i = 0; i < sched_domains_numa_levels; i++) {
6129 if (sched_domains_numa_distance[i] == distance)
6130 return true;
6131 }
6132
6133 return false;
6134 }
6135
6136 static void sched_init_numa(void)
6137 {
6138 int next_distance, curr_distance = node_distance(0, 0);
6139 struct sched_domain_topology_level *tl;
6140 int level = 0;
6141 int i, j, k;
6142
6143 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6144 if (!sched_domains_numa_distance)
6145 return;
6146
6147 /*
6148 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6149 * unique distances in the node_distance() table.
6150 *
6151 * Assumes node_distance(0,j) includes all distances in
6152 * node_distance(i,j) in order to avoid cubic time.
6153 */
6154 next_distance = curr_distance;
6155 for (i = 0; i < nr_node_ids; i++) {
6156 for (j = 0; j < nr_node_ids; j++) {
6157 for (k = 0; k < nr_node_ids; k++) {
6158 int distance = node_distance(i, k);
6159
6160 if (distance > curr_distance &&
6161 (distance < next_distance ||
6162 next_distance == curr_distance))
6163 next_distance = distance;
6164
6165 /*
6166 * While not a strong assumption it would be nice to know
6167 * about cases where if node A is connected to B, B is not
6168 * equally connected to A.
6169 */
6170 if (sched_debug() && node_distance(k, i) != distance)
6171 sched_numa_warn("Node-distance not symmetric");
6172
6173 if (sched_debug() && i && !find_numa_distance(distance))
6174 sched_numa_warn("Node-0 not representative");
6175 }
6176 if (next_distance != curr_distance) {
6177 sched_domains_numa_distance[level++] = next_distance;
6178 sched_domains_numa_levels = level;
6179 curr_distance = next_distance;
6180 } else break;
6181 }
6182
6183 /*
6184 * In case of sched_debug() we verify the above assumption.
6185 */
6186 if (!sched_debug())
6187 break;
6188 }
6189 /*
6190 * 'level' contains the number of unique distances, excluding the
6191 * identity distance node_distance(i,i).
6192 *
6193 * The sched_domains_nume_distance[] array includes the actual distance
6194 * numbers.
6195 */
6196
6197 /*
6198 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6199 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6200 * the array will contain less then 'level' members. This could be
6201 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6202 * in other functions.
6203 *
6204 * We reset it to 'level' at the end of this function.
6205 */
6206 sched_domains_numa_levels = 0;
6207
6208 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6209 if (!sched_domains_numa_masks)
6210 return;
6211
6212 /*
6213 * Now for each level, construct a mask per node which contains all
6214 * cpus of nodes that are that many hops away from us.
6215 */
6216 for (i = 0; i < level; i++) {
6217 sched_domains_numa_masks[i] =
6218 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6219 if (!sched_domains_numa_masks[i])
6220 return;
6221
6222 for (j = 0; j < nr_node_ids; j++) {
6223 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6224 if (!mask)
6225 return;
6226
6227 sched_domains_numa_masks[i][j] = mask;
6228
6229 for (k = 0; k < nr_node_ids; k++) {
6230 if (node_distance(j, k) > sched_domains_numa_distance[i])
6231 continue;
6232
6233 cpumask_or(mask, mask, cpumask_of_node(k));
6234 }
6235 }
6236 }
6237
6238 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6239 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6240 if (!tl)
6241 return;
6242
6243 /*
6244 * Copy the default topology bits..
6245 */
6246 for (i = 0; default_topology[i].init; i++)
6247 tl[i] = default_topology[i];
6248
6249 /*
6250 * .. and append 'j' levels of NUMA goodness.
6251 */
6252 for (j = 0; j < level; i++, j++) {
6253 tl[i] = (struct sched_domain_topology_level){
6254 .init = sd_numa_init,
6255 .mask = sd_numa_mask,
6256 .flags = SDTL_OVERLAP,
6257 .numa_level = j,
6258 };
6259 }
6260
6261 sched_domain_topology = tl;
6262
6263 sched_domains_numa_levels = level;
6264 }
6265
6266 static void sched_domains_numa_masks_set(int cpu)
6267 {
6268 int i, j;
6269 int node = cpu_to_node(cpu);
6270
6271 for (i = 0; i < sched_domains_numa_levels; i++) {
6272 for (j = 0; j < nr_node_ids; j++) {
6273 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6274 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6275 }
6276 }
6277 }
6278
6279 static void sched_domains_numa_masks_clear(int cpu)
6280 {
6281 int i, j;
6282 for (i = 0; i < sched_domains_numa_levels; i++) {
6283 for (j = 0; j < nr_node_ids; j++)
6284 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6285 }
6286 }
6287
6288 /*
6289 * Update sched_domains_numa_masks[level][node] array when new cpus
6290 * are onlined.
6291 */
6292 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6293 unsigned long action,
6294 void *hcpu)
6295 {
6296 int cpu = (long)hcpu;
6297
6298 switch (action & ~CPU_TASKS_FROZEN) {
6299 case CPU_ONLINE:
6300 sched_domains_numa_masks_set(cpu);
6301 break;
6302
6303 case CPU_DEAD:
6304 sched_domains_numa_masks_clear(cpu);
6305 break;
6306
6307 default:
6308 return NOTIFY_DONE;
6309 }
6310
6311 return NOTIFY_OK;
6312 }
6313 #else
6314 static inline void sched_init_numa(void)
6315 {
6316 }
6317
6318 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6319 unsigned long action,
6320 void *hcpu)
6321 {
6322 return 0;
6323 }
6324 #endif /* CONFIG_NUMA */
6325
6326 static int __sdt_alloc(const struct cpumask *cpu_map)
6327 {
6328 struct sched_domain_topology_level *tl;
6329 int j;
6330
6331 for (tl = sched_domain_topology; tl->init; tl++) {
6332 struct sd_data *sdd = &tl->data;
6333
6334 sdd->sd = alloc_percpu(struct sched_domain *);
6335 if (!sdd->sd)
6336 return -ENOMEM;
6337
6338 sdd->sg = alloc_percpu(struct sched_group *);
6339 if (!sdd->sg)
6340 return -ENOMEM;
6341
6342 sdd->sgp = alloc_percpu(struct sched_group_power *);
6343 if (!sdd->sgp)
6344 return -ENOMEM;
6345
6346 for_each_cpu(j, cpu_map) {
6347 struct sched_domain *sd;
6348 struct sched_group *sg;
6349 struct sched_group_power *sgp;
6350
6351 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6352 GFP_KERNEL, cpu_to_node(j));
6353 if (!sd)
6354 return -ENOMEM;
6355
6356 *per_cpu_ptr(sdd->sd, j) = sd;
6357
6358 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6359 GFP_KERNEL, cpu_to_node(j));
6360 if (!sg)
6361 return -ENOMEM;
6362
6363 sg->next = sg;
6364
6365 *per_cpu_ptr(sdd->sg, j) = sg;
6366
6367 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6368 GFP_KERNEL, cpu_to_node(j));
6369 if (!sgp)
6370 return -ENOMEM;
6371
6372 *per_cpu_ptr(sdd->sgp, j) = sgp;
6373 }
6374 }
6375
6376 return 0;
6377 }
6378
6379 static void __sdt_free(const struct cpumask *cpu_map)
6380 {
6381 struct sched_domain_topology_level *tl;
6382 int j;
6383
6384 for (tl = sched_domain_topology; tl->init; tl++) {
6385 struct sd_data *sdd = &tl->data;
6386
6387 for_each_cpu(j, cpu_map) {
6388 struct sched_domain *sd;
6389
6390 if (sdd->sd) {
6391 sd = *per_cpu_ptr(sdd->sd, j);
6392 if (sd && (sd->flags & SD_OVERLAP))
6393 free_sched_groups(sd->groups, 0);
6394 kfree(*per_cpu_ptr(sdd->sd, j));
6395 }
6396
6397 if (sdd->sg)
6398 kfree(*per_cpu_ptr(sdd->sg, j));
6399 if (sdd->sgp)
6400 kfree(*per_cpu_ptr(sdd->sgp, j));
6401 }
6402 free_percpu(sdd->sd);
6403 sdd->sd = NULL;
6404 free_percpu(sdd->sg);
6405 sdd->sg = NULL;
6406 free_percpu(sdd->sgp);
6407 sdd->sgp = NULL;
6408 }
6409 }
6410
6411 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6412 struct s_data *d, const struct cpumask *cpu_map,
6413 struct sched_domain_attr *attr, struct sched_domain *child,
6414 int cpu)
6415 {
6416 struct sched_domain *sd = tl->init(tl, cpu);
6417 if (!sd)
6418 return child;
6419
6420 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6421 if (child) {
6422 sd->level = child->level + 1;
6423 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6424 child->parent = sd;
6425 }
6426 sd->child = child;
6427 set_domain_attribute(sd, attr);
6428
6429 return sd;
6430 }
6431
6432 /*
6433 * Build sched domains for a given set of cpus and attach the sched domains
6434 * to the individual cpus
6435 */
6436 static int build_sched_domains(const struct cpumask *cpu_map,
6437 struct sched_domain_attr *attr)
6438 {
6439 enum s_alloc alloc_state = sa_none;
6440 struct sched_domain *sd;
6441 struct s_data d;
6442 int i, ret = -ENOMEM;
6443
6444 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6445 if (alloc_state != sa_rootdomain)
6446 goto error;
6447
6448 /* Set up domains for cpus specified by the cpu_map. */
6449 for_each_cpu(i, cpu_map) {
6450 struct sched_domain_topology_level *tl;
6451
6452 sd = NULL;
6453 for (tl = sched_domain_topology; tl->init; tl++) {
6454 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6455 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6456 sd->flags |= SD_OVERLAP;
6457 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6458 break;
6459 }
6460
6461 while (sd->child)
6462 sd = sd->child;
6463
6464 *per_cpu_ptr(d.sd, i) = sd;
6465 }
6466
6467 /* Build the groups for the domains */
6468 for_each_cpu(i, cpu_map) {
6469 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6470 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6471 if (sd->flags & SD_OVERLAP) {
6472 if (build_overlap_sched_groups(sd, i))
6473 goto error;
6474 } else {
6475 if (build_sched_groups(sd, i))
6476 goto error;
6477 }
6478 }
6479 }
6480
6481 /* Calculate CPU power for physical packages and nodes */
6482 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6483 if (!cpumask_test_cpu(i, cpu_map))
6484 continue;
6485
6486 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6487 claim_allocations(i, sd);
6488 init_sched_groups_power(i, sd);
6489 }
6490 }
6491
6492 /* Attach the domains */
6493 rcu_read_lock();
6494 for_each_cpu(i, cpu_map) {
6495 sd = *per_cpu_ptr(d.sd, i);
6496 cpu_attach_domain(sd, d.rd, i);
6497 }
6498 rcu_read_unlock();
6499
6500 ret = 0;
6501 error:
6502 __free_domain_allocs(&d, alloc_state, cpu_map);
6503 return ret;
6504 }
6505
6506 static cpumask_var_t *doms_cur; /* current sched domains */
6507 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6508 static struct sched_domain_attr *dattr_cur;
6509 /* attribues of custom domains in 'doms_cur' */
6510
6511 /*
6512 * Special case: If a kmalloc of a doms_cur partition (array of
6513 * cpumask) fails, then fallback to a single sched domain,
6514 * as determined by the single cpumask fallback_doms.
6515 */
6516 static cpumask_var_t fallback_doms;
6517
6518 /*
6519 * arch_update_cpu_topology lets virtualized architectures update the
6520 * cpu core maps. It is supposed to return 1 if the topology changed
6521 * or 0 if it stayed the same.
6522 */
6523 int __attribute__((weak)) arch_update_cpu_topology(void)
6524 {
6525 return 0;
6526 }
6527
6528 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6529 {
6530 int i;
6531 cpumask_var_t *doms;
6532
6533 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6534 if (!doms)
6535 return NULL;
6536 for (i = 0; i < ndoms; i++) {
6537 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6538 free_sched_domains(doms, i);
6539 return NULL;
6540 }
6541 }
6542 return doms;
6543 }
6544
6545 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6546 {
6547 unsigned int i;
6548 for (i = 0; i < ndoms; i++)
6549 free_cpumask_var(doms[i]);
6550 kfree(doms);
6551 }
6552
6553 /*
6554 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6555 * For now this just excludes isolated cpus, but could be used to
6556 * exclude other special cases in the future.
6557 */
6558 static int init_sched_domains(const struct cpumask *cpu_map)
6559 {
6560 int err;
6561
6562 arch_update_cpu_topology();
6563 ndoms_cur = 1;
6564 doms_cur = alloc_sched_domains(ndoms_cur);
6565 if (!doms_cur)
6566 doms_cur = &fallback_doms;
6567 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6568 err = build_sched_domains(doms_cur[0], NULL);
6569 register_sched_domain_sysctl();
6570
6571 return err;
6572 }
6573
6574 /*
6575 * Detach sched domains from a group of cpus specified in cpu_map
6576 * These cpus will now be attached to the NULL domain
6577 */
6578 static void detach_destroy_domains(const struct cpumask *cpu_map)
6579 {
6580 int i;
6581
6582 rcu_read_lock();
6583 for_each_cpu(i, cpu_map)
6584 cpu_attach_domain(NULL, &def_root_domain, i);
6585 rcu_read_unlock();
6586 }
6587
6588 /* handle null as "default" */
6589 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6590 struct sched_domain_attr *new, int idx_new)
6591 {
6592 struct sched_domain_attr tmp;
6593
6594 /* fast path */
6595 if (!new && !cur)
6596 return 1;
6597
6598 tmp = SD_ATTR_INIT;
6599 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6600 new ? (new + idx_new) : &tmp,
6601 sizeof(struct sched_domain_attr));
6602 }
6603
6604 /*
6605 * Partition sched domains as specified by the 'ndoms_new'
6606 * cpumasks in the array doms_new[] of cpumasks. This compares
6607 * doms_new[] to the current sched domain partitioning, doms_cur[].
6608 * It destroys each deleted domain and builds each new domain.
6609 *
6610 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6611 * The masks don't intersect (don't overlap.) We should setup one
6612 * sched domain for each mask. CPUs not in any of the cpumasks will
6613 * not be load balanced. If the same cpumask appears both in the
6614 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6615 * it as it is.
6616 *
6617 * The passed in 'doms_new' should be allocated using
6618 * alloc_sched_domains. This routine takes ownership of it and will
6619 * free_sched_domains it when done with it. If the caller failed the
6620 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6621 * and partition_sched_domains() will fallback to the single partition
6622 * 'fallback_doms', it also forces the domains to be rebuilt.
6623 *
6624 * If doms_new == NULL it will be replaced with cpu_online_mask.
6625 * ndoms_new == 0 is a special case for destroying existing domains,
6626 * and it will not create the default domain.
6627 *
6628 * Call with hotplug lock held
6629 */
6630 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6631 struct sched_domain_attr *dattr_new)
6632 {
6633 int i, j, n;
6634 int new_topology;
6635
6636 mutex_lock(&sched_domains_mutex);
6637
6638 /* always unregister in case we don't destroy any domains */
6639 unregister_sched_domain_sysctl();
6640
6641 /* Let architecture update cpu core mappings. */
6642 new_topology = arch_update_cpu_topology();
6643
6644 n = doms_new ? ndoms_new : 0;
6645
6646 /* Destroy deleted domains */
6647 for (i = 0; i < ndoms_cur; i++) {
6648 for (j = 0; j < n && !new_topology; j++) {
6649 if (cpumask_equal(doms_cur[i], doms_new[j])
6650 && dattrs_equal(dattr_cur, i, dattr_new, j))
6651 goto match1;
6652 }
6653 /* no match - a current sched domain not in new doms_new[] */
6654 detach_destroy_domains(doms_cur[i]);
6655 match1:
6656 ;
6657 }
6658
6659 if (doms_new == NULL) {
6660 ndoms_cur = 0;
6661 doms_new = &fallback_doms;
6662 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6663 WARN_ON_ONCE(dattr_new);
6664 }
6665
6666 /* Build new domains */
6667 for (i = 0; i < ndoms_new; i++) {
6668 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6669 if (cpumask_equal(doms_new[i], doms_cur[j])
6670 && dattrs_equal(dattr_new, i, dattr_cur, j))
6671 goto match2;
6672 }
6673 /* no match - add a new doms_new */
6674 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6675 match2:
6676 ;
6677 }
6678
6679 /* Remember the new sched domains */
6680 if (doms_cur != &fallback_doms)
6681 free_sched_domains(doms_cur, ndoms_cur);
6682 kfree(dattr_cur); /* kfree(NULL) is safe */
6683 doms_cur = doms_new;
6684 dattr_cur = dattr_new;
6685 ndoms_cur = ndoms_new;
6686
6687 register_sched_domain_sysctl();
6688
6689 mutex_unlock(&sched_domains_mutex);
6690 }
6691
6692 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6693
6694 /*
6695 * Update cpusets according to cpu_active mask. If cpusets are
6696 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6697 * around partition_sched_domains().
6698 *
6699 * If we come here as part of a suspend/resume, don't touch cpusets because we
6700 * want to restore it back to its original state upon resume anyway.
6701 */
6702 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6703 void *hcpu)
6704 {
6705 switch (action) {
6706 case CPU_ONLINE_FROZEN:
6707 case CPU_DOWN_FAILED_FROZEN:
6708
6709 /*
6710 * num_cpus_frozen tracks how many CPUs are involved in suspend
6711 * resume sequence. As long as this is not the last online
6712 * operation in the resume sequence, just build a single sched
6713 * domain, ignoring cpusets.
6714 */
6715 num_cpus_frozen--;
6716 if (likely(num_cpus_frozen)) {
6717 partition_sched_domains(1, NULL, NULL);
6718 break;
6719 }
6720
6721 /*
6722 * This is the last CPU online operation. So fall through and
6723 * restore the original sched domains by considering the
6724 * cpuset configurations.
6725 */
6726
6727 case CPU_ONLINE:
6728 case CPU_DOWN_FAILED:
6729 cpuset_update_active_cpus(true);
6730 break;
6731 default:
6732 return NOTIFY_DONE;
6733 }
6734 return NOTIFY_OK;
6735 }
6736
6737 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6738 void *hcpu)
6739 {
6740 switch (action) {
6741 case CPU_DOWN_PREPARE:
6742 cpuset_update_active_cpus(false);
6743 break;
6744 case CPU_DOWN_PREPARE_FROZEN:
6745 num_cpus_frozen++;
6746 partition_sched_domains(1, NULL, NULL);
6747 break;
6748 default:
6749 return NOTIFY_DONE;
6750 }
6751 return NOTIFY_OK;
6752 }
6753
6754 void __init sched_init_smp(void)
6755 {
6756 cpumask_var_t non_isolated_cpus;
6757
6758 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6759 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6760
6761 sched_init_numa();
6762
6763 get_online_cpus();
6764 mutex_lock(&sched_domains_mutex);
6765 init_sched_domains(cpu_active_mask);
6766 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6767 if (cpumask_empty(non_isolated_cpus))
6768 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6769 mutex_unlock(&sched_domains_mutex);
6770 put_online_cpus();
6771
6772 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6773 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6774 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6775
6776 /* RT runtime code needs to handle some hotplug events */
6777 hotcpu_notifier(update_runtime, 0);
6778
6779 init_hrtick();
6780
6781 /* Move init over to a non-isolated CPU */
6782 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6783 BUG();
6784 sched_init_granularity();
6785 free_cpumask_var(non_isolated_cpus);
6786
6787 init_sched_rt_class();
6788 }
6789 #else
6790 void __init sched_init_smp(void)
6791 {
6792 sched_init_granularity();
6793 }
6794 #endif /* CONFIG_SMP */
6795
6796 const_debug unsigned int sysctl_timer_migration = 1;
6797
6798 int in_sched_functions(unsigned long addr)
6799 {
6800 return in_lock_functions(addr) ||
6801 (addr >= (unsigned long)__sched_text_start
6802 && addr < (unsigned long)__sched_text_end);
6803 }
6804
6805 #ifdef CONFIG_CGROUP_SCHED
6806 struct task_group root_task_group;
6807 LIST_HEAD(task_groups);
6808 #endif
6809
6810 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6811
6812 void __init sched_init(void)
6813 {
6814 int i, j;
6815 unsigned long alloc_size = 0, ptr;
6816
6817 #ifdef CONFIG_FAIR_GROUP_SCHED
6818 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6819 #endif
6820 #ifdef CONFIG_RT_GROUP_SCHED
6821 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6822 #endif
6823 #ifdef CONFIG_CPUMASK_OFFSTACK
6824 alloc_size += num_possible_cpus() * cpumask_size();
6825 #endif
6826 if (alloc_size) {
6827 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6828
6829 #ifdef CONFIG_FAIR_GROUP_SCHED
6830 root_task_group.se = (struct sched_entity **)ptr;
6831 ptr += nr_cpu_ids * sizeof(void **);
6832
6833 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6834 ptr += nr_cpu_ids * sizeof(void **);
6835
6836 #endif /* CONFIG_FAIR_GROUP_SCHED */
6837 #ifdef CONFIG_RT_GROUP_SCHED
6838 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6839 ptr += nr_cpu_ids * sizeof(void **);
6840
6841 root_task_group.rt_rq = (struct rt_rq **)ptr;
6842 ptr += nr_cpu_ids * sizeof(void **);
6843
6844 #endif /* CONFIG_RT_GROUP_SCHED */
6845 #ifdef CONFIG_CPUMASK_OFFSTACK
6846 for_each_possible_cpu(i) {
6847 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6848 ptr += cpumask_size();
6849 }
6850 #endif /* CONFIG_CPUMASK_OFFSTACK */
6851 }
6852
6853 #ifdef CONFIG_SMP
6854 init_defrootdomain();
6855 #endif
6856
6857 init_rt_bandwidth(&def_rt_bandwidth,
6858 global_rt_period(), global_rt_runtime());
6859
6860 #ifdef CONFIG_RT_GROUP_SCHED
6861 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6862 global_rt_period(), global_rt_runtime());
6863 #endif /* CONFIG_RT_GROUP_SCHED */
6864
6865 #ifdef CONFIG_CGROUP_SCHED
6866 list_add(&root_task_group.list, &task_groups);
6867 INIT_LIST_HEAD(&root_task_group.children);
6868 INIT_LIST_HEAD(&root_task_group.siblings);
6869 autogroup_init(&init_task);
6870
6871 #endif /* CONFIG_CGROUP_SCHED */
6872
6873 #ifdef CONFIG_CGROUP_CPUACCT
6874 root_cpuacct.cpustat = &kernel_cpustat;
6875 root_cpuacct.cpuusage = alloc_percpu(u64);
6876 /* Too early, not expected to fail */
6877 BUG_ON(!root_cpuacct.cpuusage);
6878 #endif
6879 for_each_possible_cpu(i) {
6880 struct rq *rq;
6881
6882 rq = cpu_rq(i);
6883 raw_spin_lock_init(&rq->lock);
6884 rq->nr_running = 0;
6885 rq->calc_load_active = 0;
6886 rq->calc_load_update = jiffies + LOAD_FREQ;
6887 init_cfs_rq(&rq->cfs);
6888 init_rt_rq(&rq->rt, rq);
6889 #ifdef CONFIG_FAIR_GROUP_SCHED
6890 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6891 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6892 /*
6893 * How much cpu bandwidth does root_task_group get?
6894 *
6895 * In case of task-groups formed thr' the cgroup filesystem, it
6896 * gets 100% of the cpu resources in the system. This overall
6897 * system cpu resource is divided among the tasks of
6898 * root_task_group and its child task-groups in a fair manner,
6899 * based on each entity's (task or task-group's) weight
6900 * (se->load.weight).
6901 *
6902 * In other words, if root_task_group has 10 tasks of weight
6903 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6904 * then A0's share of the cpu resource is:
6905 *
6906 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6907 *
6908 * We achieve this by letting root_task_group's tasks sit
6909 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6910 */
6911 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6912 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6913 #endif /* CONFIG_FAIR_GROUP_SCHED */
6914
6915 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6916 #ifdef CONFIG_RT_GROUP_SCHED
6917 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6918 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6919 #endif
6920
6921 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6922 rq->cpu_load[j] = 0;
6923
6924 rq->last_load_update_tick = jiffies;
6925
6926 #ifdef CONFIG_SMP
6927 rq->sd = NULL;
6928 rq->rd = NULL;
6929 rq->cpu_power = SCHED_POWER_SCALE;
6930 rq->post_schedule = 0;
6931 rq->active_balance = 0;
6932 rq->next_balance = jiffies;
6933 rq->push_cpu = 0;
6934 rq->cpu = i;
6935 rq->online = 0;
6936 rq->idle_stamp = 0;
6937 rq->avg_idle = 2*sysctl_sched_migration_cost;
6938
6939 INIT_LIST_HEAD(&rq->cfs_tasks);
6940
6941 rq_attach_root(rq, &def_root_domain);
6942 #ifdef CONFIG_NO_HZ
6943 rq->nohz_flags = 0;
6944 #endif
6945 #endif
6946 init_rq_hrtick(rq);
6947 atomic_set(&rq->nr_iowait, 0);
6948 }
6949
6950 set_load_weight(&init_task);
6951
6952 #ifdef CONFIG_PREEMPT_NOTIFIERS
6953 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6954 #endif
6955
6956 #ifdef CONFIG_RT_MUTEXES
6957 plist_head_init(&init_task.pi_waiters);
6958 #endif
6959
6960 /*
6961 * The boot idle thread does lazy MMU switching as well:
6962 */
6963 atomic_inc(&init_mm.mm_count);
6964 enter_lazy_tlb(&init_mm, current);
6965
6966 /*
6967 * Make us the idle thread. Technically, schedule() should not be
6968 * called from this thread, however somewhere below it might be,
6969 * but because we are the idle thread, we just pick up running again
6970 * when this runqueue becomes "idle".
6971 */
6972 init_idle(current, smp_processor_id());
6973
6974 calc_load_update = jiffies + LOAD_FREQ;
6975
6976 /*
6977 * During early bootup we pretend to be a normal task:
6978 */
6979 current->sched_class = &fair_sched_class;
6980
6981 #ifdef CONFIG_SMP
6982 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6983 /* May be allocated at isolcpus cmdline parse time */
6984 if (cpu_isolated_map == NULL)
6985 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6986 idle_thread_set_boot_cpu();
6987 #endif
6988 init_sched_fair_class();
6989
6990 scheduler_running = 1;
6991 }
6992
6993 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6994 static inline int preempt_count_equals(int preempt_offset)
6995 {
6996 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6997
6998 return (nested == preempt_offset);
6999 }
7000
7001 void __might_sleep(const char *file, int line, int preempt_offset)
7002 {
7003 static unsigned long prev_jiffy; /* ratelimiting */
7004
7005 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7006 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7007 system_state != SYSTEM_RUNNING || oops_in_progress)
7008 return;
7009 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7010 return;
7011 prev_jiffy = jiffies;
7012
7013 printk(KERN_ERR
7014 "BUG: sleeping function called from invalid context at %s:%d\n",
7015 file, line);
7016 printk(KERN_ERR
7017 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7018 in_atomic(), irqs_disabled(),
7019 current->pid, current->comm);
7020
7021 debug_show_held_locks(current);
7022 if (irqs_disabled())
7023 print_irqtrace_events(current);
7024 dump_stack();
7025 }
7026 EXPORT_SYMBOL(__might_sleep);
7027 #endif
7028
7029 #ifdef CONFIG_MAGIC_SYSRQ
7030 static void normalize_task(struct rq *rq, struct task_struct *p)
7031 {
7032 const struct sched_class *prev_class = p->sched_class;
7033 int old_prio = p->prio;
7034 int on_rq;
7035
7036 on_rq = p->on_rq;
7037 if (on_rq)
7038 dequeue_task(rq, p, 0);
7039 __setscheduler(rq, p, SCHED_NORMAL, 0);
7040 if (on_rq) {
7041 enqueue_task(rq, p, 0);
7042 resched_task(rq->curr);
7043 }
7044
7045 check_class_changed(rq, p, prev_class, old_prio);
7046 }
7047
7048 void normalize_rt_tasks(void)
7049 {
7050 struct task_struct *g, *p;
7051 unsigned long flags;
7052 struct rq *rq;
7053
7054 read_lock_irqsave(&tasklist_lock, flags);
7055 do_each_thread(g, p) {
7056 /*
7057 * Only normalize user tasks:
7058 */
7059 if (!p->mm)
7060 continue;
7061
7062 p->se.exec_start = 0;
7063 #ifdef CONFIG_SCHEDSTATS
7064 p->se.statistics.wait_start = 0;
7065 p->se.statistics.sleep_start = 0;
7066 p->se.statistics.block_start = 0;
7067 #endif
7068
7069 if (!rt_task(p)) {
7070 /*
7071 * Renice negative nice level userspace
7072 * tasks back to 0:
7073 */
7074 if (TASK_NICE(p) < 0 && p->mm)
7075 set_user_nice(p, 0);
7076 continue;
7077 }
7078
7079 raw_spin_lock(&p->pi_lock);
7080 rq = __task_rq_lock(p);
7081
7082 normalize_task(rq, p);
7083
7084 __task_rq_unlock(rq);
7085 raw_spin_unlock(&p->pi_lock);
7086 } while_each_thread(g, p);
7087
7088 read_unlock_irqrestore(&tasklist_lock, flags);
7089 }
7090
7091 #endif /* CONFIG_MAGIC_SYSRQ */
7092
7093 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7094 /*
7095 * These functions are only useful for the IA64 MCA handling, or kdb.
7096 *
7097 * They can only be called when the whole system has been
7098 * stopped - every CPU needs to be quiescent, and no scheduling
7099 * activity can take place. Using them for anything else would
7100 * be a serious bug, and as a result, they aren't even visible
7101 * under any other configuration.
7102 */
7103
7104 /**
7105 * curr_task - return the current task for a given cpu.
7106 * @cpu: the processor in question.
7107 *
7108 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7109 */
7110 struct task_struct *curr_task(int cpu)
7111 {
7112 return cpu_curr(cpu);
7113 }
7114
7115 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7116
7117 #ifdef CONFIG_IA64
7118 /**
7119 * set_curr_task - set the current task for a given cpu.
7120 * @cpu: the processor in question.
7121 * @p: the task pointer to set.
7122 *
7123 * Description: This function must only be used when non-maskable interrupts
7124 * are serviced on a separate stack. It allows the architecture to switch the
7125 * notion of the current task on a cpu in a non-blocking manner. This function
7126 * must be called with all CPU's synchronized, and interrupts disabled, the
7127 * and caller must save the original value of the current task (see
7128 * curr_task() above) and restore that value before reenabling interrupts and
7129 * re-starting the system.
7130 *
7131 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7132 */
7133 void set_curr_task(int cpu, struct task_struct *p)
7134 {
7135 cpu_curr(cpu) = p;
7136 }
7137
7138 #endif
7139
7140 #ifdef CONFIG_CGROUP_SCHED
7141 /* task_group_lock serializes the addition/removal of task groups */
7142 static DEFINE_SPINLOCK(task_group_lock);
7143
7144 static void free_sched_group(struct task_group *tg)
7145 {
7146 free_fair_sched_group(tg);
7147 free_rt_sched_group(tg);
7148 autogroup_free(tg);
7149 kfree(tg);
7150 }
7151
7152 /* allocate runqueue etc for a new task group */
7153 struct task_group *sched_create_group(struct task_group *parent)
7154 {
7155 struct task_group *tg;
7156 unsigned long flags;
7157
7158 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7159 if (!tg)
7160 return ERR_PTR(-ENOMEM);
7161
7162 if (!alloc_fair_sched_group(tg, parent))
7163 goto err;
7164
7165 if (!alloc_rt_sched_group(tg, parent))
7166 goto err;
7167
7168 spin_lock_irqsave(&task_group_lock, flags);
7169 list_add_rcu(&tg->list, &task_groups);
7170
7171 WARN_ON(!parent); /* root should already exist */
7172
7173 tg->parent = parent;
7174 INIT_LIST_HEAD(&tg->children);
7175 list_add_rcu(&tg->siblings, &parent->children);
7176 spin_unlock_irqrestore(&task_group_lock, flags);
7177
7178 return tg;
7179
7180 err:
7181 free_sched_group(tg);
7182 return ERR_PTR(-ENOMEM);
7183 }
7184
7185 /* rcu callback to free various structures associated with a task group */
7186 static void free_sched_group_rcu(struct rcu_head *rhp)
7187 {
7188 /* now it should be safe to free those cfs_rqs */
7189 free_sched_group(container_of(rhp, struct task_group, rcu));
7190 }
7191
7192 /* Destroy runqueue etc associated with a task group */
7193 void sched_destroy_group(struct task_group *tg)
7194 {
7195 unsigned long flags;
7196 int i;
7197
7198 /* end participation in shares distribution */
7199 for_each_possible_cpu(i)
7200 unregister_fair_sched_group(tg, i);
7201
7202 spin_lock_irqsave(&task_group_lock, flags);
7203 list_del_rcu(&tg->list);
7204 list_del_rcu(&tg->siblings);
7205 spin_unlock_irqrestore(&task_group_lock, flags);
7206
7207 /* wait for possible concurrent references to cfs_rqs complete */
7208 call_rcu(&tg->rcu, free_sched_group_rcu);
7209 }
7210
7211 /* change task's runqueue when it moves between groups.
7212 * The caller of this function should have put the task in its new group
7213 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7214 * reflect its new group.
7215 */
7216 void sched_move_task(struct task_struct *tsk)
7217 {
7218 struct task_group *tg;
7219 int on_rq, running;
7220 unsigned long flags;
7221 struct rq *rq;
7222
7223 rq = task_rq_lock(tsk, &flags);
7224
7225 running = task_current(rq, tsk);
7226 on_rq = tsk->on_rq;
7227
7228 if (on_rq)
7229 dequeue_task(rq, tsk, 0);
7230 if (unlikely(running))
7231 tsk->sched_class->put_prev_task(rq, tsk);
7232
7233 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7234 lockdep_is_held(&tsk->sighand->siglock)),
7235 struct task_group, css);
7236 tg = autogroup_task_group(tsk, tg);
7237 tsk->sched_task_group = tg;
7238
7239 #ifdef CONFIG_FAIR_GROUP_SCHED
7240 if (tsk->sched_class->task_move_group)
7241 tsk->sched_class->task_move_group(tsk, on_rq);
7242 else
7243 #endif
7244 set_task_rq(tsk, task_cpu(tsk));
7245
7246 if (unlikely(running))
7247 tsk->sched_class->set_curr_task(rq);
7248 if (on_rq)
7249 enqueue_task(rq, tsk, 0);
7250
7251 task_rq_unlock(rq, tsk, &flags);
7252 }
7253 #endif /* CONFIG_CGROUP_SCHED */
7254
7255 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7256 static unsigned long to_ratio(u64 period, u64 runtime)
7257 {
7258 if (runtime == RUNTIME_INF)
7259 return 1ULL << 20;
7260
7261 return div64_u64(runtime << 20, period);
7262 }
7263 #endif
7264
7265 #ifdef CONFIG_RT_GROUP_SCHED
7266 /*
7267 * Ensure that the real time constraints are schedulable.
7268 */
7269 static DEFINE_MUTEX(rt_constraints_mutex);
7270
7271 /* Must be called with tasklist_lock held */
7272 static inline int tg_has_rt_tasks(struct task_group *tg)
7273 {
7274 struct task_struct *g, *p;
7275
7276 do_each_thread(g, p) {
7277 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7278 return 1;
7279 } while_each_thread(g, p);
7280
7281 return 0;
7282 }
7283
7284 struct rt_schedulable_data {
7285 struct task_group *tg;
7286 u64 rt_period;
7287 u64 rt_runtime;
7288 };
7289
7290 static int tg_rt_schedulable(struct task_group *tg, void *data)
7291 {
7292 struct rt_schedulable_data *d = data;
7293 struct task_group *child;
7294 unsigned long total, sum = 0;
7295 u64 period, runtime;
7296
7297 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7298 runtime = tg->rt_bandwidth.rt_runtime;
7299
7300 if (tg == d->tg) {
7301 period = d->rt_period;
7302 runtime = d->rt_runtime;
7303 }
7304
7305 /*
7306 * Cannot have more runtime than the period.
7307 */
7308 if (runtime > period && runtime != RUNTIME_INF)
7309 return -EINVAL;
7310
7311 /*
7312 * Ensure we don't starve existing RT tasks.
7313 */
7314 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7315 return -EBUSY;
7316
7317 total = to_ratio(period, runtime);
7318
7319 /*
7320 * Nobody can have more than the global setting allows.
7321 */
7322 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7323 return -EINVAL;
7324
7325 /*
7326 * The sum of our children's runtime should not exceed our own.
7327 */
7328 list_for_each_entry_rcu(child, &tg->children, siblings) {
7329 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7330 runtime = child->rt_bandwidth.rt_runtime;
7331
7332 if (child == d->tg) {
7333 period = d->rt_period;
7334 runtime = d->rt_runtime;
7335 }
7336
7337 sum += to_ratio(period, runtime);
7338 }
7339
7340 if (sum > total)
7341 return -EINVAL;
7342
7343 return 0;
7344 }
7345
7346 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7347 {
7348 int ret;
7349
7350 struct rt_schedulable_data data = {
7351 .tg = tg,
7352 .rt_period = period,
7353 .rt_runtime = runtime,
7354 };
7355
7356 rcu_read_lock();
7357 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7358 rcu_read_unlock();
7359
7360 return ret;
7361 }
7362
7363 static int tg_set_rt_bandwidth(struct task_group *tg,
7364 u64 rt_period, u64 rt_runtime)
7365 {
7366 int i, err = 0;
7367
7368 mutex_lock(&rt_constraints_mutex);
7369 read_lock(&tasklist_lock);
7370 err = __rt_schedulable(tg, rt_period, rt_runtime);
7371 if (err)
7372 goto unlock;
7373
7374 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7375 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7376 tg->rt_bandwidth.rt_runtime = rt_runtime;
7377
7378 for_each_possible_cpu(i) {
7379 struct rt_rq *rt_rq = tg->rt_rq[i];
7380
7381 raw_spin_lock(&rt_rq->rt_runtime_lock);
7382 rt_rq->rt_runtime = rt_runtime;
7383 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7384 }
7385 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7386 unlock:
7387 read_unlock(&tasklist_lock);
7388 mutex_unlock(&rt_constraints_mutex);
7389
7390 return err;
7391 }
7392
7393 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7394 {
7395 u64 rt_runtime, rt_period;
7396
7397 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7398 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7399 if (rt_runtime_us < 0)
7400 rt_runtime = RUNTIME_INF;
7401
7402 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7403 }
7404
7405 long sched_group_rt_runtime(struct task_group *tg)
7406 {
7407 u64 rt_runtime_us;
7408
7409 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7410 return -1;
7411
7412 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7413 do_div(rt_runtime_us, NSEC_PER_USEC);
7414 return rt_runtime_us;
7415 }
7416
7417 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7418 {
7419 u64 rt_runtime, rt_period;
7420
7421 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7422 rt_runtime = tg->rt_bandwidth.rt_runtime;
7423
7424 if (rt_period == 0)
7425 return -EINVAL;
7426
7427 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7428 }
7429
7430 long sched_group_rt_period(struct task_group *tg)
7431 {
7432 u64 rt_period_us;
7433
7434 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7435 do_div(rt_period_us, NSEC_PER_USEC);
7436 return rt_period_us;
7437 }
7438
7439 static int sched_rt_global_constraints(void)
7440 {
7441 u64 runtime, period;
7442 int ret = 0;
7443
7444 if (sysctl_sched_rt_period <= 0)
7445 return -EINVAL;
7446
7447 runtime = global_rt_runtime();
7448 period = global_rt_period();
7449
7450 /*
7451 * Sanity check on the sysctl variables.
7452 */
7453 if (runtime > period && runtime != RUNTIME_INF)
7454 return -EINVAL;
7455
7456 mutex_lock(&rt_constraints_mutex);
7457 read_lock(&tasklist_lock);
7458 ret = __rt_schedulable(NULL, 0, 0);
7459 read_unlock(&tasklist_lock);
7460 mutex_unlock(&rt_constraints_mutex);
7461
7462 return ret;
7463 }
7464
7465 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7466 {
7467 /* Don't accept realtime tasks when there is no way for them to run */
7468 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7469 return 0;
7470
7471 return 1;
7472 }
7473
7474 #else /* !CONFIG_RT_GROUP_SCHED */
7475 static int sched_rt_global_constraints(void)
7476 {
7477 unsigned long flags;
7478 int i;
7479
7480 if (sysctl_sched_rt_period <= 0)
7481 return -EINVAL;
7482
7483 /*
7484 * There's always some RT tasks in the root group
7485 * -- migration, kstopmachine etc..
7486 */
7487 if (sysctl_sched_rt_runtime == 0)
7488 return -EBUSY;
7489
7490 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7491 for_each_possible_cpu(i) {
7492 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7493
7494 raw_spin_lock(&rt_rq->rt_runtime_lock);
7495 rt_rq->rt_runtime = global_rt_runtime();
7496 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7497 }
7498 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7499
7500 return 0;
7501 }
7502 #endif /* CONFIG_RT_GROUP_SCHED */
7503
7504 int sched_rt_handler(struct ctl_table *table, int write,
7505 void __user *buffer, size_t *lenp,
7506 loff_t *ppos)
7507 {
7508 int ret;
7509 int old_period, old_runtime;
7510 static DEFINE_MUTEX(mutex);
7511
7512 mutex_lock(&mutex);
7513 old_period = sysctl_sched_rt_period;
7514 old_runtime = sysctl_sched_rt_runtime;
7515
7516 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7517
7518 if (!ret && write) {
7519 ret = sched_rt_global_constraints();
7520 if (ret) {
7521 sysctl_sched_rt_period = old_period;
7522 sysctl_sched_rt_runtime = old_runtime;
7523 } else {
7524 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7525 def_rt_bandwidth.rt_period =
7526 ns_to_ktime(global_rt_period());
7527 }
7528 }
7529 mutex_unlock(&mutex);
7530
7531 return ret;
7532 }
7533
7534 #ifdef CONFIG_CGROUP_SCHED
7535
7536 /* return corresponding task_group object of a cgroup */
7537 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7538 {
7539 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7540 struct task_group, css);
7541 }
7542
7543 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7544 {
7545 struct task_group *tg, *parent;
7546
7547 if (!cgrp->parent) {
7548 /* This is early initialization for the top cgroup */
7549 return &root_task_group.css;
7550 }
7551
7552 parent = cgroup_tg(cgrp->parent);
7553 tg = sched_create_group(parent);
7554 if (IS_ERR(tg))
7555 return ERR_PTR(-ENOMEM);
7556
7557 return &tg->css;
7558 }
7559
7560 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7561 {
7562 struct task_group *tg = cgroup_tg(cgrp);
7563
7564 sched_destroy_group(tg);
7565 }
7566
7567 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7568 struct cgroup_taskset *tset)
7569 {
7570 struct task_struct *task;
7571
7572 cgroup_taskset_for_each(task, cgrp, tset) {
7573 #ifdef CONFIG_RT_GROUP_SCHED
7574 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7575 return -EINVAL;
7576 #else
7577 /* We don't support RT-tasks being in separate groups */
7578 if (task->sched_class != &fair_sched_class)
7579 return -EINVAL;
7580 #endif
7581 }
7582 return 0;
7583 }
7584
7585 static void cpu_cgroup_attach(struct cgroup *cgrp,
7586 struct cgroup_taskset *tset)
7587 {
7588 struct task_struct *task;
7589
7590 cgroup_taskset_for_each(task, cgrp, tset)
7591 sched_move_task(task);
7592 }
7593
7594 static void
7595 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7596 struct task_struct *task)
7597 {
7598 /*
7599 * cgroup_exit() is called in the copy_process() failure path.
7600 * Ignore this case since the task hasn't ran yet, this avoids
7601 * trying to poke a half freed task state from generic code.
7602 */
7603 if (!(task->flags & PF_EXITING))
7604 return;
7605
7606 sched_move_task(task);
7607 }
7608
7609 #ifdef CONFIG_FAIR_GROUP_SCHED
7610 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7611 u64 shareval)
7612 {
7613 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7614 }
7615
7616 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7617 {
7618 struct task_group *tg = cgroup_tg(cgrp);
7619
7620 return (u64) scale_load_down(tg->shares);
7621 }
7622
7623 #ifdef CONFIG_CFS_BANDWIDTH
7624 static DEFINE_MUTEX(cfs_constraints_mutex);
7625
7626 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7627 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7628
7629 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7630
7631 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7632 {
7633 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7634 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7635
7636 if (tg == &root_task_group)
7637 return -EINVAL;
7638
7639 /*
7640 * Ensure we have at some amount of bandwidth every period. This is
7641 * to prevent reaching a state of large arrears when throttled via
7642 * entity_tick() resulting in prolonged exit starvation.
7643 */
7644 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7645 return -EINVAL;
7646
7647 /*
7648 * Likewise, bound things on the otherside by preventing insane quota
7649 * periods. This also allows us to normalize in computing quota
7650 * feasibility.
7651 */
7652 if (period > max_cfs_quota_period)
7653 return -EINVAL;
7654
7655 mutex_lock(&cfs_constraints_mutex);
7656 ret = __cfs_schedulable(tg, period, quota);
7657 if (ret)
7658 goto out_unlock;
7659
7660 runtime_enabled = quota != RUNTIME_INF;
7661 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7662 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7663 raw_spin_lock_irq(&cfs_b->lock);
7664 cfs_b->period = ns_to_ktime(period);
7665 cfs_b->quota = quota;
7666
7667 __refill_cfs_bandwidth_runtime(cfs_b);
7668 /* restart the period timer (if active) to handle new period expiry */
7669 if (runtime_enabled && cfs_b->timer_active) {
7670 /* force a reprogram */
7671 cfs_b->timer_active = 0;
7672 __start_cfs_bandwidth(cfs_b);
7673 }
7674 raw_spin_unlock_irq(&cfs_b->lock);
7675
7676 for_each_possible_cpu(i) {
7677 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7678 struct rq *rq = cfs_rq->rq;
7679
7680 raw_spin_lock_irq(&rq->lock);
7681 cfs_rq->runtime_enabled = runtime_enabled;
7682 cfs_rq->runtime_remaining = 0;
7683
7684 if (cfs_rq->throttled)
7685 unthrottle_cfs_rq(cfs_rq);
7686 raw_spin_unlock_irq(&rq->lock);
7687 }
7688 out_unlock:
7689 mutex_unlock(&cfs_constraints_mutex);
7690
7691 return ret;
7692 }
7693
7694 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7695 {
7696 u64 quota, period;
7697
7698 period = ktime_to_ns(tg->cfs_bandwidth.period);
7699 if (cfs_quota_us < 0)
7700 quota = RUNTIME_INF;
7701 else
7702 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7703
7704 return tg_set_cfs_bandwidth(tg, period, quota);
7705 }
7706
7707 long tg_get_cfs_quota(struct task_group *tg)
7708 {
7709 u64 quota_us;
7710
7711 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7712 return -1;
7713
7714 quota_us = tg->cfs_bandwidth.quota;
7715 do_div(quota_us, NSEC_PER_USEC);
7716
7717 return quota_us;
7718 }
7719
7720 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7721 {
7722 u64 quota, period;
7723
7724 period = (u64)cfs_period_us * NSEC_PER_USEC;
7725 quota = tg->cfs_bandwidth.quota;
7726
7727 return tg_set_cfs_bandwidth(tg, period, quota);
7728 }
7729
7730 long tg_get_cfs_period(struct task_group *tg)
7731 {
7732 u64 cfs_period_us;
7733
7734 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7735 do_div(cfs_period_us, NSEC_PER_USEC);
7736
7737 return cfs_period_us;
7738 }
7739
7740 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7741 {
7742 return tg_get_cfs_quota(cgroup_tg(cgrp));
7743 }
7744
7745 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7746 s64 cfs_quota_us)
7747 {
7748 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7749 }
7750
7751 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7752 {
7753 return tg_get_cfs_period(cgroup_tg(cgrp));
7754 }
7755
7756 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7757 u64 cfs_period_us)
7758 {
7759 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7760 }
7761
7762 struct cfs_schedulable_data {
7763 struct task_group *tg;
7764 u64 period, quota;
7765 };
7766
7767 /*
7768 * normalize group quota/period to be quota/max_period
7769 * note: units are usecs
7770 */
7771 static u64 normalize_cfs_quota(struct task_group *tg,
7772 struct cfs_schedulable_data *d)
7773 {
7774 u64 quota, period;
7775
7776 if (tg == d->tg) {
7777 period = d->period;
7778 quota = d->quota;
7779 } else {
7780 period = tg_get_cfs_period(tg);
7781 quota = tg_get_cfs_quota(tg);
7782 }
7783
7784 /* note: these should typically be equivalent */
7785 if (quota == RUNTIME_INF || quota == -1)
7786 return RUNTIME_INF;
7787
7788 return to_ratio(period, quota);
7789 }
7790
7791 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7792 {
7793 struct cfs_schedulable_data *d = data;
7794 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7795 s64 quota = 0, parent_quota = -1;
7796
7797 if (!tg->parent) {
7798 quota = RUNTIME_INF;
7799 } else {
7800 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7801
7802 quota = normalize_cfs_quota(tg, d);
7803 parent_quota = parent_b->hierarchal_quota;
7804
7805 /*
7806 * ensure max(child_quota) <= parent_quota, inherit when no
7807 * limit is set
7808 */
7809 if (quota == RUNTIME_INF)
7810 quota = parent_quota;
7811 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7812 return -EINVAL;
7813 }
7814 cfs_b->hierarchal_quota = quota;
7815
7816 return 0;
7817 }
7818
7819 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7820 {
7821 int ret;
7822 struct cfs_schedulable_data data = {
7823 .tg = tg,
7824 .period = period,
7825 .quota = quota,
7826 };
7827
7828 if (quota != RUNTIME_INF) {
7829 do_div(data.period, NSEC_PER_USEC);
7830 do_div(data.quota, NSEC_PER_USEC);
7831 }
7832
7833 rcu_read_lock();
7834 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7835 rcu_read_unlock();
7836
7837 return ret;
7838 }
7839
7840 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7841 struct cgroup_map_cb *cb)
7842 {
7843 struct task_group *tg = cgroup_tg(cgrp);
7844 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7845
7846 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7847 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7848 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7849
7850 return 0;
7851 }
7852 #endif /* CONFIG_CFS_BANDWIDTH */
7853 #endif /* CONFIG_FAIR_GROUP_SCHED */
7854
7855 #ifdef CONFIG_RT_GROUP_SCHED
7856 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7857 s64 val)
7858 {
7859 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7860 }
7861
7862 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7863 {
7864 return sched_group_rt_runtime(cgroup_tg(cgrp));
7865 }
7866
7867 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7868 u64 rt_period_us)
7869 {
7870 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7871 }
7872
7873 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7874 {
7875 return sched_group_rt_period(cgroup_tg(cgrp));
7876 }
7877 #endif /* CONFIG_RT_GROUP_SCHED */
7878
7879 static struct cftype cpu_files[] = {
7880 #ifdef CONFIG_FAIR_GROUP_SCHED
7881 {
7882 .name = "shares",
7883 .read_u64 = cpu_shares_read_u64,
7884 .write_u64 = cpu_shares_write_u64,
7885 },
7886 #endif
7887 #ifdef CONFIG_CFS_BANDWIDTH
7888 {
7889 .name = "cfs_quota_us",
7890 .read_s64 = cpu_cfs_quota_read_s64,
7891 .write_s64 = cpu_cfs_quota_write_s64,
7892 },
7893 {
7894 .name = "cfs_period_us",
7895 .read_u64 = cpu_cfs_period_read_u64,
7896 .write_u64 = cpu_cfs_period_write_u64,
7897 },
7898 {
7899 .name = "stat",
7900 .read_map = cpu_stats_show,
7901 },
7902 #endif
7903 #ifdef CONFIG_RT_GROUP_SCHED
7904 {
7905 .name = "rt_runtime_us",
7906 .read_s64 = cpu_rt_runtime_read,
7907 .write_s64 = cpu_rt_runtime_write,
7908 },
7909 {
7910 .name = "rt_period_us",
7911 .read_u64 = cpu_rt_period_read_uint,
7912 .write_u64 = cpu_rt_period_write_uint,
7913 },
7914 #endif
7915 { } /* terminate */
7916 };
7917
7918 struct cgroup_subsys cpu_cgroup_subsys = {
7919 .name = "cpu",
7920 .css_alloc = cpu_cgroup_css_alloc,
7921 .css_free = cpu_cgroup_css_free,
7922 .can_attach = cpu_cgroup_can_attach,
7923 .attach = cpu_cgroup_attach,
7924 .exit = cpu_cgroup_exit,
7925 .subsys_id = cpu_cgroup_subsys_id,
7926 .base_cftypes = cpu_files,
7927 .early_init = 1,
7928 };
7929
7930 #endif /* CONFIG_CGROUP_SCHED */
7931
7932 #ifdef CONFIG_CGROUP_CPUACCT
7933
7934 /*
7935 * CPU accounting code for task groups.
7936 *
7937 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7938 * (balbir@in.ibm.com).
7939 */
7940
7941 struct cpuacct root_cpuacct;
7942
7943 /* create a new cpu accounting group */
7944 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
7945 {
7946 struct cpuacct *ca;
7947
7948 if (!cgrp->parent)
7949 return &root_cpuacct.css;
7950
7951 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7952 if (!ca)
7953 goto out;
7954
7955 ca->cpuusage = alloc_percpu(u64);
7956 if (!ca->cpuusage)
7957 goto out_free_ca;
7958
7959 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7960 if (!ca->cpustat)
7961 goto out_free_cpuusage;
7962
7963 return &ca->css;
7964
7965 out_free_cpuusage:
7966 free_percpu(ca->cpuusage);
7967 out_free_ca:
7968 kfree(ca);
7969 out:
7970 return ERR_PTR(-ENOMEM);
7971 }
7972
7973 /* destroy an existing cpu accounting group */
7974 static void cpuacct_css_free(struct cgroup *cgrp)
7975 {
7976 struct cpuacct *ca = cgroup_ca(cgrp);
7977
7978 free_percpu(ca->cpustat);
7979 free_percpu(ca->cpuusage);
7980 kfree(ca);
7981 }
7982
7983 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7984 {
7985 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7986 u64 data;
7987
7988 #ifndef CONFIG_64BIT
7989 /*
7990 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7991 */
7992 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7993 data = *cpuusage;
7994 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7995 #else
7996 data = *cpuusage;
7997 #endif
7998
7999 return data;
8000 }
8001
8002 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8003 {
8004 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8005
8006 #ifndef CONFIG_64BIT
8007 /*
8008 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8009 */
8010 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8011 *cpuusage = val;
8012 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8013 #else
8014 *cpuusage = val;
8015 #endif
8016 }
8017
8018 /* return total cpu usage (in nanoseconds) of a group */
8019 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8020 {
8021 struct cpuacct *ca = cgroup_ca(cgrp);
8022 u64 totalcpuusage = 0;
8023 int i;
8024
8025 for_each_present_cpu(i)
8026 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8027
8028 return totalcpuusage;
8029 }
8030
8031 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8032 u64 reset)
8033 {
8034 struct cpuacct *ca = cgroup_ca(cgrp);
8035 int err = 0;
8036 int i;
8037
8038 if (reset) {
8039 err = -EINVAL;
8040 goto out;
8041 }
8042
8043 for_each_present_cpu(i)
8044 cpuacct_cpuusage_write(ca, i, 0);
8045
8046 out:
8047 return err;
8048 }
8049
8050 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8051 struct seq_file *m)
8052 {
8053 struct cpuacct *ca = cgroup_ca(cgroup);
8054 u64 percpu;
8055 int i;
8056
8057 for_each_present_cpu(i) {
8058 percpu = cpuacct_cpuusage_read(ca, i);
8059 seq_printf(m, "%llu ", (unsigned long long) percpu);
8060 }
8061 seq_printf(m, "\n");
8062 return 0;
8063 }
8064
8065 static const char *cpuacct_stat_desc[] = {
8066 [CPUACCT_STAT_USER] = "user",
8067 [CPUACCT_STAT_SYSTEM] = "system",
8068 };
8069
8070 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8071 struct cgroup_map_cb *cb)
8072 {
8073 struct cpuacct *ca = cgroup_ca(cgrp);
8074 int cpu;
8075 s64 val = 0;
8076
8077 for_each_online_cpu(cpu) {
8078 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8079 val += kcpustat->cpustat[CPUTIME_USER];
8080 val += kcpustat->cpustat[CPUTIME_NICE];
8081 }
8082 val = cputime64_to_clock_t(val);
8083 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8084
8085 val = 0;
8086 for_each_online_cpu(cpu) {
8087 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8088 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8089 val += kcpustat->cpustat[CPUTIME_IRQ];
8090 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8091 }
8092
8093 val = cputime64_to_clock_t(val);
8094 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8095
8096 return 0;
8097 }
8098
8099 static struct cftype files[] = {
8100 {
8101 .name = "usage",
8102 .read_u64 = cpuusage_read,
8103 .write_u64 = cpuusage_write,
8104 },
8105 {
8106 .name = "usage_percpu",
8107 .read_seq_string = cpuacct_percpu_seq_read,
8108 },
8109 {
8110 .name = "stat",
8111 .read_map = cpuacct_stats_show,
8112 },
8113 { } /* terminate */
8114 };
8115
8116 /*
8117 * charge this task's execution time to its accounting group.
8118 *
8119 * called with rq->lock held.
8120 */
8121 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8122 {
8123 struct cpuacct *ca;
8124 int cpu;
8125
8126 if (unlikely(!cpuacct_subsys.active))
8127 return;
8128
8129 cpu = task_cpu(tsk);
8130
8131 rcu_read_lock();
8132
8133 ca = task_ca(tsk);
8134
8135 for (; ca; ca = parent_ca(ca)) {
8136 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8137 *cpuusage += cputime;
8138 }
8139
8140 rcu_read_unlock();
8141 }
8142
8143 struct cgroup_subsys cpuacct_subsys = {
8144 .name = "cpuacct",
8145 .css_alloc = cpuacct_css_alloc,
8146 .css_free = cpuacct_css_free,
8147 .subsys_id = cpuacct_subsys_id,
8148 .base_cftypes = files,
8149 };
8150 #endif /* CONFIG_CGROUP_CPUACCT */
8151
8152 void dump_cpu_task(int cpu)
8153 {
8154 pr_info("Task dump for CPU %d:\n", cpu);
8155 sched_show_task(cpu_curr(cpu));
8156 }
This page took 0.199637 seconds and 6 git commands to generate.