Merge tag 'gpio-for-linus' of git://git.secretlab.ca/git/linux
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299
300
301 /*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 __acquires(rq->lock)
306 {
307 struct rq *rq;
308
309 lockdep_assert_held(&p->pi_lock);
310
311 for (;;) {
312 rq = task_rq(p);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
315 return rq;
316 raw_spin_unlock(&rq->lock);
317 }
318 }
319
320 /*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
325 __acquires(rq->lock)
326 {
327 struct rq *rq;
328
329 for (;;) {
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 rq = task_rq(p);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
334 return rq;
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 }
338 }
339
340 static void __task_rq_unlock(struct rq *rq)
341 __releases(rq->lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 }
345
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 __releases(rq->lock)
349 __releases(p->pi_lock)
350 {
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354
355 /*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358 static struct rq *this_rq_lock(void)
359 __acquires(rq->lock)
360 {
361 struct rq *rq;
362
363 local_irq_disable();
364 rq = this_rq();
365 raw_spin_lock(&rq->lock);
366
367 return rq;
368 }
369
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382 static void hrtick_clear(struct rq *rq)
383 {
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386 }
387
388 /*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398 raw_spin_lock(&rq->lock);
399 update_rq_clock(rq);
400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 raw_spin_unlock(&rq->lock);
402
403 return HRTIMER_NORESTART;
404 }
405
406 #ifdef CONFIG_SMP
407 /*
408 * called from hardirq (IPI) context
409 */
410 static void __hrtick_start(void *arg)
411 {
412 struct rq *rq = arg;
413
414 raw_spin_lock(&rq->lock);
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
418 }
419
420 /*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430 hrtimer_set_expires(timer, time);
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
437 }
438 }
439
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457 }
458
459 static __init void init_hrtick(void)
460 {
461 hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
473 }
474
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
484
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488 #endif
489
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
492 }
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif /* CONFIG_SCHED_HRTICK */
506
507 /*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514 #ifdef CONFIG_SMP
515
516 #ifndef tsk_is_polling
517 #define tsk_is_polling(t) 0
518 #endif
519
520 void resched_task(struct task_struct *p)
521 {
522 int cpu;
523
524 assert_raw_spin_locked(&task_rq(p)->lock);
525
526 if (test_tsk_need_resched(p))
527 return;
528
529 set_tsk_need_resched(p);
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539 }
540
541 void resched_cpu(int cpu)
542 {
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547 return;
548 resched_task(cpu_curr(cpu));
549 raw_spin_unlock_irqrestore(&rq->lock, flags);
550 }
551
552 #ifdef CONFIG_NO_HZ
553 /*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561 int get_nohz_timer_target(void)
562 {
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
567 rcu_read_lock();
568 for_each_domain(cpu, sd) {
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
575 }
576 unlock:
577 rcu_read_unlock();
578 return cpu;
579 }
580 /*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590 void wake_up_idle_cpu(int cpu)
591 {
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
606
607 /*
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
611 */
612 set_tsk_need_resched(rq->idle);
613
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
618 }
619
620 static inline bool got_nohz_idle_kick(void)
621 {
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 }
625
626 #else /* CONFIG_NO_HZ */
627
628 static inline bool got_nohz_idle_kick(void)
629 {
630 return false;
631 }
632
633 #endif /* CONFIG_NO_HZ */
634
635 void sched_avg_update(struct rq *rq)
636 {
637 s64 period = sched_avg_period();
638
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
640 /*
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
644 */
645 asm("" : "+rm" (rq->age_stamp));
646 rq->age_stamp += period;
647 rq->rt_avg /= 2;
648 }
649 }
650
651 #else /* !CONFIG_SMP */
652 void resched_task(struct task_struct *p)
653 {
654 assert_raw_spin_locked(&task_rq(p)->lock);
655 set_tsk_need_resched(p);
656 }
657 #endif /* CONFIG_SMP */
658
659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661 /*
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
666 */
667 int walk_tg_tree_from(struct task_group *from,
668 tg_visitor down, tg_visitor up, void *data)
669 {
670 struct task_group *parent, *child;
671 int ret;
672
673 parent = from;
674
675 down:
676 ret = (*down)(parent, data);
677 if (ret)
678 goto out;
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
680 parent = child;
681 goto down;
682
683 up:
684 continue;
685 }
686 ret = (*up)(parent, data);
687 if (ret || parent == from)
688 goto out;
689
690 child = parent;
691 parent = parent->parent;
692 if (parent)
693 goto up;
694 out:
695 return ret;
696 }
697
698 int tg_nop(struct task_group *tg, void *data)
699 {
700 return 0;
701 }
702 #endif
703
704 static void set_load_weight(struct task_struct *p)
705 {
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
708
709 /*
710 * SCHED_IDLE tasks get minimal weight:
711 */
712 if (p->policy == SCHED_IDLE) {
713 load->weight = scale_load(WEIGHT_IDLEPRIO);
714 load->inv_weight = WMULT_IDLEPRIO;
715 return;
716 }
717
718 load->weight = scale_load(prio_to_weight[prio]);
719 load->inv_weight = prio_to_wmult[prio];
720 }
721
722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 update_rq_clock(rq);
725 sched_info_queued(p);
726 p->sched_class->enqueue_task(rq, p, flags);
727 }
728
729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 update_rq_clock(rq);
732 sched_info_dequeued(p);
733 p->sched_class->dequeue_task(rq, p, flags);
734 }
735
736 void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
740
741 enqueue_task(rq, p, flags);
742 }
743
744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 {
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
748
749 dequeue_task(rq, p, flags);
750 }
751
752 static void update_rq_clock_task(struct rq *rq, s64 delta)
753 {
754 /*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
760 #endif
761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763
764 /*
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
767 * {soft,}irq region.
768 *
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
772 * monotonic.
773 *
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
777 * atomic ops.
778 */
779 if (irq_delta > delta)
780 irq_delta = delta;
781
782 rq->prev_irq_time += irq_delta;
783 delta -= irq_delta;
784 #endif
785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786 if (static_key_false((&paravirt_steal_rq_enabled))) {
787 u64 st;
788
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
791
792 if (unlikely(steal > delta))
793 steal = delta;
794
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
797
798 rq->prev_steal_time_rq += steal;
799
800 delta -= steal;
801 }
802 #endif
803
804 rq->clock_task += delta;
805
806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
809 #endif
810 }
811
812 void sched_set_stop_task(int cpu, struct task_struct *stop)
813 {
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817 if (stop) {
818 /*
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
821 *
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
825 */
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828 stop->sched_class = &stop_sched_class;
829 }
830
831 cpu_rq(cpu)->stop = stop;
832
833 if (old_stop) {
834 /*
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
837 */
838 old_stop->sched_class = &rt_sched_class;
839 }
840 }
841
842 /*
843 * __normal_prio - return the priority that is based on the static prio
844 */
845 static inline int __normal_prio(struct task_struct *p)
846 {
847 return p->static_prio;
848 }
849
850 /*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
857 static inline int normal_prio(struct task_struct *p)
858 {
859 int prio;
860
861 if (task_has_rt_policy(p))
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
863 else
864 prio = __normal_prio(p);
865 return prio;
866 }
867
868 /*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
875 static int effective_prio(struct task_struct *p)
876 {
877 p->normal_prio = normal_prio(p);
878 /*
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
882 */
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
885 return p->prio;
886 }
887
888 /**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
892 inline int task_curr(const struct task_struct *p)
893 {
894 return cpu_curr(task_cpu(p)) == p;
895 }
896
897 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
899 int oldprio)
900 {
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
907 }
908
909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 {
911 const struct sched_class *class;
912
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 } else {
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
918 break;
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
921 break;
922 }
923 }
924 }
925
926 /*
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
929 */
930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 rq->skip_clock_update = 1;
932 }
933
934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936 void register_task_migration_notifier(struct notifier_block *n)
937 {
938 atomic_notifier_chain_register(&task_migration_notifier, n);
939 }
940
941 #ifdef CONFIG_SMP
942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
943 {
944 #ifdef CONFIG_SCHED_DEBUG
945 /*
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
948 */
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951
952 #ifdef CONFIG_LOCKDEP
953 /*
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 *
957 * sched_move_task() holds both and thus holding either pins the cgroup,
958 * see task_group().
959 *
960 * Furthermore, all task_rq users should acquire both locks, see
961 * task_rq_lock().
962 */
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
965 #endif
966 #endif
967
968 trace_sched_migrate_task(p, new_cpu);
969
970 if (task_cpu(p) != new_cpu) {
971 struct task_migration_notifier tmn;
972
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
975 p->se.nr_migrations++;
976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977
978 tmn.task = p;
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
981
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983 }
984
985 __set_task_cpu(p, new_cpu);
986 }
987
988 struct migration_arg {
989 struct task_struct *task;
990 int dest_cpu;
991 };
992
993 static int migration_cpu_stop(void *data);
994
995 /*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1012 {
1013 unsigned long flags;
1014 int running, on_rq;
1015 unsigned long ncsw;
1016 struct rq *rq;
1017
1018 for (;;) {
1019 /*
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1023 * work out!
1024 */
1025 rq = task_rq(p);
1026
1027 /*
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1030 * any locks.
1031 *
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1037 */
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1040 return 0;
1041 cpu_relax();
1042 }
1043
1044 /*
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1048 */
1049 rq = task_rq_lock(p, &flags);
1050 trace_sched_wait_task(p);
1051 running = task_running(rq, p);
1052 on_rq = p->on_rq;
1053 ncsw = 0;
1054 if (!match_state || p->state == match_state)
1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056 task_rq_unlock(rq, p, &flags);
1057
1058 /*
1059 * If it changed from the expected state, bail out now.
1060 */
1061 if (unlikely(!ncsw))
1062 break;
1063
1064 /*
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1067 *
1068 * Oops. Go back and try again..
1069 */
1070 if (unlikely(running)) {
1071 cpu_relax();
1072 continue;
1073 }
1074
1075 /*
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1078 * preempted!
1079 *
1080 * So if it was still runnable (but just not actively
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1083 */
1084 if (unlikely(on_rq)) {
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 continue;
1090 }
1091
1092 /*
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1096 */
1097 break;
1098 }
1099
1100 return ncsw;
1101 }
1102
1103 /***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
1110 * NOTE: this function doesn't have to take the runqueue lock,
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
1116 void kick_process(struct task_struct *p)
1117 {
1118 int cpu;
1119
1120 preempt_disable();
1121 cpu = task_cpu(p);
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1124 preempt_enable();
1125 }
1126 EXPORT_SYMBOL_GPL(kick_process);
1127 #endif /* CONFIG_SMP */
1128
1129 #ifdef CONFIG_SMP
1130 /*
1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132 */
1133 static int select_fallback_rq(int cpu, struct task_struct *p)
1134 {
1135 int nid = cpu_to_node(cpu);
1136 const struct cpumask *nodemask = NULL;
1137 enum { cpuset, possible, fail } state = cpuset;
1138 int dest_cpu;
1139
1140 /*
1141 * If the node that the cpu is on has been offlined, cpu_to_node()
1142 * will return -1. There is no cpu on the node, and we should
1143 * select the cpu on the other node.
1144 */
1145 if (nid != -1) {
1146 nodemask = cpumask_of_node(nid);
1147
1148 /* Look for allowed, online CPU in same node. */
1149 for_each_cpu(dest_cpu, nodemask) {
1150 if (!cpu_online(dest_cpu))
1151 continue;
1152 if (!cpu_active(dest_cpu))
1153 continue;
1154 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1155 return dest_cpu;
1156 }
1157 }
1158
1159 for (;;) {
1160 /* Any allowed, online CPU? */
1161 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1162 if (!cpu_online(dest_cpu))
1163 continue;
1164 if (!cpu_active(dest_cpu))
1165 continue;
1166 goto out;
1167 }
1168
1169 switch (state) {
1170 case cpuset:
1171 /* No more Mr. Nice Guy. */
1172 cpuset_cpus_allowed_fallback(p);
1173 state = possible;
1174 break;
1175
1176 case possible:
1177 do_set_cpus_allowed(p, cpu_possible_mask);
1178 state = fail;
1179 break;
1180
1181 case fail:
1182 BUG();
1183 break;
1184 }
1185 }
1186
1187 out:
1188 if (state != cpuset) {
1189 /*
1190 * Don't tell them about moving exiting tasks or
1191 * kernel threads (both mm NULL), since they never
1192 * leave kernel.
1193 */
1194 if (p->mm && printk_ratelimit()) {
1195 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1196 task_pid_nr(p), p->comm, cpu);
1197 }
1198 }
1199
1200 return dest_cpu;
1201 }
1202
1203 /*
1204 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1205 */
1206 static inline
1207 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1208 {
1209 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1210
1211 /*
1212 * In order not to call set_task_cpu() on a blocking task we need
1213 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1214 * cpu.
1215 *
1216 * Since this is common to all placement strategies, this lives here.
1217 *
1218 * [ this allows ->select_task() to simply return task_cpu(p) and
1219 * not worry about this generic constraint ]
1220 */
1221 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1222 !cpu_online(cpu)))
1223 cpu = select_fallback_rq(task_cpu(p), p);
1224
1225 return cpu;
1226 }
1227
1228 static void update_avg(u64 *avg, u64 sample)
1229 {
1230 s64 diff = sample - *avg;
1231 *avg += diff >> 3;
1232 }
1233 #endif
1234
1235 static void
1236 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1237 {
1238 #ifdef CONFIG_SCHEDSTATS
1239 struct rq *rq = this_rq();
1240
1241 #ifdef CONFIG_SMP
1242 int this_cpu = smp_processor_id();
1243
1244 if (cpu == this_cpu) {
1245 schedstat_inc(rq, ttwu_local);
1246 schedstat_inc(p, se.statistics.nr_wakeups_local);
1247 } else {
1248 struct sched_domain *sd;
1249
1250 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1251 rcu_read_lock();
1252 for_each_domain(this_cpu, sd) {
1253 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1254 schedstat_inc(sd, ttwu_wake_remote);
1255 break;
1256 }
1257 }
1258 rcu_read_unlock();
1259 }
1260
1261 if (wake_flags & WF_MIGRATED)
1262 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1263
1264 #endif /* CONFIG_SMP */
1265
1266 schedstat_inc(rq, ttwu_count);
1267 schedstat_inc(p, se.statistics.nr_wakeups);
1268
1269 if (wake_flags & WF_SYNC)
1270 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1271
1272 #endif /* CONFIG_SCHEDSTATS */
1273 }
1274
1275 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1276 {
1277 activate_task(rq, p, en_flags);
1278 p->on_rq = 1;
1279
1280 /* if a worker is waking up, notify workqueue */
1281 if (p->flags & PF_WQ_WORKER)
1282 wq_worker_waking_up(p, cpu_of(rq));
1283 }
1284
1285 /*
1286 * Mark the task runnable and perform wakeup-preemption.
1287 */
1288 static void
1289 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1290 {
1291 trace_sched_wakeup(p, true);
1292 check_preempt_curr(rq, p, wake_flags);
1293
1294 p->state = TASK_RUNNING;
1295 #ifdef CONFIG_SMP
1296 if (p->sched_class->task_woken)
1297 p->sched_class->task_woken(rq, p);
1298
1299 if (rq->idle_stamp) {
1300 u64 delta = rq->clock - rq->idle_stamp;
1301 u64 max = 2*sysctl_sched_migration_cost;
1302
1303 if (delta > max)
1304 rq->avg_idle = max;
1305 else
1306 update_avg(&rq->avg_idle, delta);
1307 rq->idle_stamp = 0;
1308 }
1309 #endif
1310 }
1311
1312 static void
1313 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1314 {
1315 #ifdef CONFIG_SMP
1316 if (p->sched_contributes_to_load)
1317 rq->nr_uninterruptible--;
1318 #endif
1319
1320 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1321 ttwu_do_wakeup(rq, p, wake_flags);
1322 }
1323
1324 /*
1325 * Called in case the task @p isn't fully descheduled from its runqueue,
1326 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1327 * since all we need to do is flip p->state to TASK_RUNNING, since
1328 * the task is still ->on_rq.
1329 */
1330 static int ttwu_remote(struct task_struct *p, int wake_flags)
1331 {
1332 struct rq *rq;
1333 int ret = 0;
1334
1335 rq = __task_rq_lock(p);
1336 if (p->on_rq) {
1337 ttwu_do_wakeup(rq, p, wake_flags);
1338 ret = 1;
1339 }
1340 __task_rq_unlock(rq);
1341
1342 return ret;
1343 }
1344
1345 #ifdef CONFIG_SMP
1346 static void sched_ttwu_pending(void)
1347 {
1348 struct rq *rq = this_rq();
1349 struct llist_node *llist = llist_del_all(&rq->wake_list);
1350 struct task_struct *p;
1351
1352 raw_spin_lock(&rq->lock);
1353
1354 while (llist) {
1355 p = llist_entry(llist, struct task_struct, wake_entry);
1356 llist = llist_next(llist);
1357 ttwu_do_activate(rq, p, 0);
1358 }
1359
1360 raw_spin_unlock(&rq->lock);
1361 }
1362
1363 void scheduler_ipi(void)
1364 {
1365 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1366 return;
1367
1368 /*
1369 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1370 * traditionally all their work was done from the interrupt return
1371 * path. Now that we actually do some work, we need to make sure
1372 * we do call them.
1373 *
1374 * Some archs already do call them, luckily irq_enter/exit nest
1375 * properly.
1376 *
1377 * Arguably we should visit all archs and update all handlers,
1378 * however a fair share of IPIs are still resched only so this would
1379 * somewhat pessimize the simple resched case.
1380 */
1381 irq_enter();
1382 sched_ttwu_pending();
1383
1384 /*
1385 * Check if someone kicked us for doing the nohz idle load balance.
1386 */
1387 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1388 this_rq()->idle_balance = 1;
1389 raise_softirq_irqoff(SCHED_SOFTIRQ);
1390 }
1391 irq_exit();
1392 }
1393
1394 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1395 {
1396 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1397 smp_send_reschedule(cpu);
1398 }
1399
1400 bool cpus_share_cache(int this_cpu, int that_cpu)
1401 {
1402 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1403 }
1404 #endif /* CONFIG_SMP */
1405
1406 static void ttwu_queue(struct task_struct *p, int cpu)
1407 {
1408 struct rq *rq = cpu_rq(cpu);
1409
1410 #if defined(CONFIG_SMP)
1411 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1412 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1413 ttwu_queue_remote(p, cpu);
1414 return;
1415 }
1416 #endif
1417
1418 raw_spin_lock(&rq->lock);
1419 ttwu_do_activate(rq, p, 0);
1420 raw_spin_unlock(&rq->lock);
1421 }
1422
1423 /**
1424 * try_to_wake_up - wake up a thread
1425 * @p: the thread to be awakened
1426 * @state: the mask of task states that can be woken
1427 * @wake_flags: wake modifier flags (WF_*)
1428 *
1429 * Put it on the run-queue if it's not already there. The "current"
1430 * thread is always on the run-queue (except when the actual
1431 * re-schedule is in progress), and as such you're allowed to do
1432 * the simpler "current->state = TASK_RUNNING" to mark yourself
1433 * runnable without the overhead of this.
1434 *
1435 * Returns %true if @p was woken up, %false if it was already running
1436 * or @state didn't match @p's state.
1437 */
1438 static int
1439 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1440 {
1441 unsigned long flags;
1442 int cpu, success = 0;
1443
1444 smp_wmb();
1445 raw_spin_lock_irqsave(&p->pi_lock, flags);
1446 if (!(p->state & state))
1447 goto out;
1448
1449 success = 1; /* we're going to change ->state */
1450 cpu = task_cpu(p);
1451
1452 if (p->on_rq && ttwu_remote(p, wake_flags))
1453 goto stat;
1454
1455 #ifdef CONFIG_SMP
1456 /*
1457 * If the owning (remote) cpu is still in the middle of schedule() with
1458 * this task as prev, wait until its done referencing the task.
1459 */
1460 while (p->on_cpu)
1461 cpu_relax();
1462 /*
1463 * Pairs with the smp_wmb() in finish_lock_switch().
1464 */
1465 smp_rmb();
1466
1467 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1468 p->state = TASK_WAKING;
1469
1470 if (p->sched_class->task_waking)
1471 p->sched_class->task_waking(p);
1472
1473 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1474 if (task_cpu(p) != cpu) {
1475 wake_flags |= WF_MIGRATED;
1476 set_task_cpu(p, cpu);
1477 }
1478 #endif /* CONFIG_SMP */
1479
1480 ttwu_queue(p, cpu);
1481 stat:
1482 ttwu_stat(p, cpu, wake_flags);
1483 out:
1484 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1485
1486 return success;
1487 }
1488
1489 /**
1490 * try_to_wake_up_local - try to wake up a local task with rq lock held
1491 * @p: the thread to be awakened
1492 *
1493 * Put @p on the run-queue if it's not already there. The caller must
1494 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1495 * the current task.
1496 */
1497 static void try_to_wake_up_local(struct task_struct *p)
1498 {
1499 struct rq *rq = task_rq(p);
1500
1501 BUG_ON(rq != this_rq());
1502 BUG_ON(p == current);
1503 lockdep_assert_held(&rq->lock);
1504
1505 if (!raw_spin_trylock(&p->pi_lock)) {
1506 raw_spin_unlock(&rq->lock);
1507 raw_spin_lock(&p->pi_lock);
1508 raw_spin_lock(&rq->lock);
1509 }
1510
1511 if (!(p->state & TASK_NORMAL))
1512 goto out;
1513
1514 if (!p->on_rq)
1515 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1516
1517 ttwu_do_wakeup(rq, p, 0);
1518 ttwu_stat(p, smp_processor_id(), 0);
1519 out:
1520 raw_spin_unlock(&p->pi_lock);
1521 }
1522
1523 /**
1524 * wake_up_process - Wake up a specific process
1525 * @p: The process to be woken up.
1526 *
1527 * Attempt to wake up the nominated process and move it to the set of runnable
1528 * processes. Returns 1 if the process was woken up, 0 if it was already
1529 * running.
1530 *
1531 * It may be assumed that this function implies a write memory barrier before
1532 * changing the task state if and only if any tasks are woken up.
1533 */
1534 int wake_up_process(struct task_struct *p)
1535 {
1536 WARN_ON(task_is_stopped_or_traced(p));
1537 return try_to_wake_up(p, TASK_NORMAL, 0);
1538 }
1539 EXPORT_SYMBOL(wake_up_process);
1540
1541 int wake_up_state(struct task_struct *p, unsigned int state)
1542 {
1543 return try_to_wake_up(p, state, 0);
1544 }
1545
1546 /*
1547 * Perform scheduler related setup for a newly forked process p.
1548 * p is forked by current.
1549 *
1550 * __sched_fork() is basic setup used by init_idle() too:
1551 */
1552 static void __sched_fork(struct task_struct *p)
1553 {
1554 p->on_rq = 0;
1555
1556 p->se.on_rq = 0;
1557 p->se.exec_start = 0;
1558 p->se.sum_exec_runtime = 0;
1559 p->se.prev_sum_exec_runtime = 0;
1560 p->se.nr_migrations = 0;
1561 p->se.vruntime = 0;
1562 INIT_LIST_HEAD(&p->se.group_node);
1563
1564 /*
1565 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1566 * removed when useful for applications beyond shares distribution (e.g.
1567 * load-balance).
1568 */
1569 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1570 p->se.avg.runnable_avg_period = 0;
1571 p->se.avg.runnable_avg_sum = 0;
1572 #endif
1573 #ifdef CONFIG_SCHEDSTATS
1574 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1575 #endif
1576
1577 INIT_LIST_HEAD(&p->rt.run_list);
1578
1579 #ifdef CONFIG_PREEMPT_NOTIFIERS
1580 INIT_HLIST_HEAD(&p->preempt_notifiers);
1581 #endif
1582
1583 #ifdef CONFIG_NUMA_BALANCING
1584 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1585 p->mm->numa_next_scan = jiffies;
1586 p->mm->numa_next_reset = jiffies;
1587 p->mm->numa_scan_seq = 0;
1588 }
1589
1590 p->node_stamp = 0ULL;
1591 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1592 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1593 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1594 p->numa_work.next = &p->numa_work;
1595 #endif /* CONFIG_NUMA_BALANCING */
1596 }
1597
1598 #ifdef CONFIG_NUMA_BALANCING
1599 #ifdef CONFIG_SCHED_DEBUG
1600 void set_numabalancing_state(bool enabled)
1601 {
1602 if (enabled)
1603 sched_feat_set("NUMA");
1604 else
1605 sched_feat_set("NO_NUMA");
1606 }
1607 #else
1608 __read_mostly bool numabalancing_enabled;
1609
1610 void set_numabalancing_state(bool enabled)
1611 {
1612 numabalancing_enabled = enabled;
1613 }
1614 #endif /* CONFIG_SCHED_DEBUG */
1615 #endif /* CONFIG_NUMA_BALANCING */
1616
1617 /*
1618 * fork()/clone()-time setup:
1619 */
1620 void sched_fork(struct task_struct *p)
1621 {
1622 unsigned long flags;
1623 int cpu = get_cpu();
1624
1625 __sched_fork(p);
1626 /*
1627 * We mark the process as running here. This guarantees that
1628 * nobody will actually run it, and a signal or other external
1629 * event cannot wake it up and insert it on the runqueue either.
1630 */
1631 p->state = TASK_RUNNING;
1632
1633 /*
1634 * Make sure we do not leak PI boosting priority to the child.
1635 */
1636 p->prio = current->normal_prio;
1637
1638 /*
1639 * Revert to default priority/policy on fork if requested.
1640 */
1641 if (unlikely(p->sched_reset_on_fork)) {
1642 if (task_has_rt_policy(p)) {
1643 p->policy = SCHED_NORMAL;
1644 p->static_prio = NICE_TO_PRIO(0);
1645 p->rt_priority = 0;
1646 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1647 p->static_prio = NICE_TO_PRIO(0);
1648
1649 p->prio = p->normal_prio = __normal_prio(p);
1650 set_load_weight(p);
1651
1652 /*
1653 * We don't need the reset flag anymore after the fork. It has
1654 * fulfilled its duty:
1655 */
1656 p->sched_reset_on_fork = 0;
1657 }
1658
1659 if (!rt_prio(p->prio))
1660 p->sched_class = &fair_sched_class;
1661
1662 if (p->sched_class->task_fork)
1663 p->sched_class->task_fork(p);
1664
1665 /*
1666 * The child is not yet in the pid-hash so no cgroup attach races,
1667 * and the cgroup is pinned to this child due to cgroup_fork()
1668 * is ran before sched_fork().
1669 *
1670 * Silence PROVE_RCU.
1671 */
1672 raw_spin_lock_irqsave(&p->pi_lock, flags);
1673 set_task_cpu(p, cpu);
1674 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1675
1676 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1677 if (likely(sched_info_on()))
1678 memset(&p->sched_info, 0, sizeof(p->sched_info));
1679 #endif
1680 #if defined(CONFIG_SMP)
1681 p->on_cpu = 0;
1682 #endif
1683 #ifdef CONFIG_PREEMPT_COUNT
1684 /* Want to start with kernel preemption disabled. */
1685 task_thread_info(p)->preempt_count = 1;
1686 #endif
1687 #ifdef CONFIG_SMP
1688 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1689 #endif
1690
1691 put_cpu();
1692 }
1693
1694 /*
1695 * wake_up_new_task - wake up a newly created task for the first time.
1696 *
1697 * This function will do some initial scheduler statistics housekeeping
1698 * that must be done for every newly created context, then puts the task
1699 * on the runqueue and wakes it.
1700 */
1701 void wake_up_new_task(struct task_struct *p)
1702 {
1703 unsigned long flags;
1704 struct rq *rq;
1705
1706 raw_spin_lock_irqsave(&p->pi_lock, flags);
1707 #ifdef CONFIG_SMP
1708 /*
1709 * Fork balancing, do it here and not earlier because:
1710 * - cpus_allowed can change in the fork path
1711 * - any previously selected cpu might disappear through hotplug
1712 */
1713 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1714 #endif
1715
1716 rq = __task_rq_lock(p);
1717 activate_task(rq, p, 0);
1718 p->on_rq = 1;
1719 trace_sched_wakeup_new(p, true);
1720 check_preempt_curr(rq, p, WF_FORK);
1721 #ifdef CONFIG_SMP
1722 if (p->sched_class->task_woken)
1723 p->sched_class->task_woken(rq, p);
1724 #endif
1725 task_rq_unlock(rq, p, &flags);
1726 }
1727
1728 #ifdef CONFIG_PREEMPT_NOTIFIERS
1729
1730 /**
1731 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1732 * @notifier: notifier struct to register
1733 */
1734 void preempt_notifier_register(struct preempt_notifier *notifier)
1735 {
1736 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1737 }
1738 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1739
1740 /**
1741 * preempt_notifier_unregister - no longer interested in preemption notifications
1742 * @notifier: notifier struct to unregister
1743 *
1744 * This is safe to call from within a preemption notifier.
1745 */
1746 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1747 {
1748 hlist_del(&notifier->link);
1749 }
1750 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1751
1752 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1753 {
1754 struct preempt_notifier *notifier;
1755 struct hlist_node *node;
1756
1757 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1758 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1759 }
1760
1761 static void
1762 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1763 struct task_struct *next)
1764 {
1765 struct preempt_notifier *notifier;
1766 struct hlist_node *node;
1767
1768 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1769 notifier->ops->sched_out(notifier, next);
1770 }
1771
1772 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1773
1774 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1775 {
1776 }
1777
1778 static void
1779 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1780 struct task_struct *next)
1781 {
1782 }
1783
1784 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1785
1786 /**
1787 * prepare_task_switch - prepare to switch tasks
1788 * @rq: the runqueue preparing to switch
1789 * @prev: the current task that is being switched out
1790 * @next: the task we are going to switch to.
1791 *
1792 * This is called with the rq lock held and interrupts off. It must
1793 * be paired with a subsequent finish_task_switch after the context
1794 * switch.
1795 *
1796 * prepare_task_switch sets up locking and calls architecture specific
1797 * hooks.
1798 */
1799 static inline void
1800 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1801 struct task_struct *next)
1802 {
1803 trace_sched_switch(prev, next);
1804 sched_info_switch(prev, next);
1805 perf_event_task_sched_out(prev, next);
1806 fire_sched_out_preempt_notifiers(prev, next);
1807 prepare_lock_switch(rq, next);
1808 prepare_arch_switch(next);
1809 }
1810
1811 /**
1812 * finish_task_switch - clean up after a task-switch
1813 * @rq: runqueue associated with task-switch
1814 * @prev: the thread we just switched away from.
1815 *
1816 * finish_task_switch must be called after the context switch, paired
1817 * with a prepare_task_switch call before the context switch.
1818 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1819 * and do any other architecture-specific cleanup actions.
1820 *
1821 * Note that we may have delayed dropping an mm in context_switch(). If
1822 * so, we finish that here outside of the runqueue lock. (Doing it
1823 * with the lock held can cause deadlocks; see schedule() for
1824 * details.)
1825 */
1826 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1827 __releases(rq->lock)
1828 {
1829 struct mm_struct *mm = rq->prev_mm;
1830 long prev_state;
1831
1832 rq->prev_mm = NULL;
1833
1834 /*
1835 * A task struct has one reference for the use as "current".
1836 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1837 * schedule one last time. The schedule call will never return, and
1838 * the scheduled task must drop that reference.
1839 * The test for TASK_DEAD must occur while the runqueue locks are
1840 * still held, otherwise prev could be scheduled on another cpu, die
1841 * there before we look at prev->state, and then the reference would
1842 * be dropped twice.
1843 * Manfred Spraul <manfred@colorfullife.com>
1844 */
1845 prev_state = prev->state;
1846 vtime_task_switch(prev);
1847 finish_arch_switch(prev);
1848 perf_event_task_sched_in(prev, current);
1849 finish_lock_switch(rq, prev);
1850 finish_arch_post_lock_switch();
1851
1852 fire_sched_in_preempt_notifiers(current);
1853 if (mm)
1854 mmdrop(mm);
1855 if (unlikely(prev_state == TASK_DEAD)) {
1856 /*
1857 * Remove function-return probe instances associated with this
1858 * task and put them back on the free list.
1859 */
1860 kprobe_flush_task(prev);
1861 put_task_struct(prev);
1862 }
1863 }
1864
1865 #ifdef CONFIG_SMP
1866
1867 /* assumes rq->lock is held */
1868 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1869 {
1870 if (prev->sched_class->pre_schedule)
1871 prev->sched_class->pre_schedule(rq, prev);
1872 }
1873
1874 /* rq->lock is NOT held, but preemption is disabled */
1875 static inline void post_schedule(struct rq *rq)
1876 {
1877 if (rq->post_schedule) {
1878 unsigned long flags;
1879
1880 raw_spin_lock_irqsave(&rq->lock, flags);
1881 if (rq->curr->sched_class->post_schedule)
1882 rq->curr->sched_class->post_schedule(rq);
1883 raw_spin_unlock_irqrestore(&rq->lock, flags);
1884
1885 rq->post_schedule = 0;
1886 }
1887 }
1888
1889 #else
1890
1891 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1892 {
1893 }
1894
1895 static inline void post_schedule(struct rq *rq)
1896 {
1897 }
1898
1899 #endif
1900
1901 /**
1902 * schedule_tail - first thing a freshly forked thread must call.
1903 * @prev: the thread we just switched away from.
1904 */
1905 asmlinkage void schedule_tail(struct task_struct *prev)
1906 __releases(rq->lock)
1907 {
1908 struct rq *rq = this_rq();
1909
1910 finish_task_switch(rq, prev);
1911
1912 /*
1913 * FIXME: do we need to worry about rq being invalidated by the
1914 * task_switch?
1915 */
1916 post_schedule(rq);
1917
1918 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1919 /* In this case, finish_task_switch does not reenable preemption */
1920 preempt_enable();
1921 #endif
1922 if (current->set_child_tid)
1923 put_user(task_pid_vnr(current), current->set_child_tid);
1924 }
1925
1926 /*
1927 * context_switch - switch to the new MM and the new
1928 * thread's register state.
1929 */
1930 static inline void
1931 context_switch(struct rq *rq, struct task_struct *prev,
1932 struct task_struct *next)
1933 {
1934 struct mm_struct *mm, *oldmm;
1935
1936 prepare_task_switch(rq, prev, next);
1937
1938 mm = next->mm;
1939 oldmm = prev->active_mm;
1940 /*
1941 * For paravirt, this is coupled with an exit in switch_to to
1942 * combine the page table reload and the switch backend into
1943 * one hypercall.
1944 */
1945 arch_start_context_switch(prev);
1946
1947 if (!mm) {
1948 next->active_mm = oldmm;
1949 atomic_inc(&oldmm->mm_count);
1950 enter_lazy_tlb(oldmm, next);
1951 } else
1952 switch_mm(oldmm, mm, next);
1953
1954 if (!prev->mm) {
1955 prev->active_mm = NULL;
1956 rq->prev_mm = oldmm;
1957 }
1958 /*
1959 * Since the runqueue lock will be released by the next
1960 * task (which is an invalid locking op but in the case
1961 * of the scheduler it's an obvious special-case), so we
1962 * do an early lockdep release here:
1963 */
1964 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1965 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1966 #endif
1967
1968 context_tracking_task_switch(prev, next);
1969 /* Here we just switch the register state and the stack. */
1970 switch_to(prev, next, prev);
1971
1972 barrier();
1973 /*
1974 * this_rq must be evaluated again because prev may have moved
1975 * CPUs since it called schedule(), thus the 'rq' on its stack
1976 * frame will be invalid.
1977 */
1978 finish_task_switch(this_rq(), prev);
1979 }
1980
1981 /*
1982 * nr_running, nr_uninterruptible and nr_context_switches:
1983 *
1984 * externally visible scheduler statistics: current number of runnable
1985 * threads, current number of uninterruptible-sleeping threads, total
1986 * number of context switches performed since bootup.
1987 */
1988 unsigned long nr_running(void)
1989 {
1990 unsigned long i, sum = 0;
1991
1992 for_each_online_cpu(i)
1993 sum += cpu_rq(i)->nr_running;
1994
1995 return sum;
1996 }
1997
1998 unsigned long nr_uninterruptible(void)
1999 {
2000 unsigned long i, sum = 0;
2001
2002 for_each_possible_cpu(i)
2003 sum += cpu_rq(i)->nr_uninterruptible;
2004
2005 /*
2006 * Since we read the counters lockless, it might be slightly
2007 * inaccurate. Do not allow it to go below zero though:
2008 */
2009 if (unlikely((long)sum < 0))
2010 sum = 0;
2011
2012 return sum;
2013 }
2014
2015 unsigned long long nr_context_switches(void)
2016 {
2017 int i;
2018 unsigned long long sum = 0;
2019
2020 for_each_possible_cpu(i)
2021 sum += cpu_rq(i)->nr_switches;
2022
2023 return sum;
2024 }
2025
2026 unsigned long nr_iowait(void)
2027 {
2028 unsigned long i, sum = 0;
2029
2030 for_each_possible_cpu(i)
2031 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2032
2033 return sum;
2034 }
2035
2036 unsigned long nr_iowait_cpu(int cpu)
2037 {
2038 struct rq *this = cpu_rq(cpu);
2039 return atomic_read(&this->nr_iowait);
2040 }
2041
2042 unsigned long this_cpu_load(void)
2043 {
2044 struct rq *this = this_rq();
2045 return this->cpu_load[0];
2046 }
2047
2048
2049 /*
2050 * Global load-average calculations
2051 *
2052 * We take a distributed and async approach to calculating the global load-avg
2053 * in order to minimize overhead.
2054 *
2055 * The global load average is an exponentially decaying average of nr_running +
2056 * nr_uninterruptible.
2057 *
2058 * Once every LOAD_FREQ:
2059 *
2060 * nr_active = 0;
2061 * for_each_possible_cpu(cpu)
2062 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2063 *
2064 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2065 *
2066 * Due to a number of reasons the above turns in the mess below:
2067 *
2068 * - for_each_possible_cpu() is prohibitively expensive on machines with
2069 * serious number of cpus, therefore we need to take a distributed approach
2070 * to calculating nr_active.
2071 *
2072 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2073 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2074 *
2075 * So assuming nr_active := 0 when we start out -- true per definition, we
2076 * can simply take per-cpu deltas and fold those into a global accumulate
2077 * to obtain the same result. See calc_load_fold_active().
2078 *
2079 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2080 * across the machine, we assume 10 ticks is sufficient time for every
2081 * cpu to have completed this task.
2082 *
2083 * This places an upper-bound on the IRQ-off latency of the machine. Then
2084 * again, being late doesn't loose the delta, just wrecks the sample.
2085 *
2086 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2087 * this would add another cross-cpu cacheline miss and atomic operation
2088 * to the wakeup path. Instead we increment on whatever cpu the task ran
2089 * when it went into uninterruptible state and decrement on whatever cpu
2090 * did the wakeup. This means that only the sum of nr_uninterruptible over
2091 * all cpus yields the correct result.
2092 *
2093 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2094 */
2095
2096 /* Variables and functions for calc_load */
2097 static atomic_long_t calc_load_tasks;
2098 static unsigned long calc_load_update;
2099 unsigned long avenrun[3];
2100 EXPORT_SYMBOL(avenrun); /* should be removed */
2101
2102 /**
2103 * get_avenrun - get the load average array
2104 * @loads: pointer to dest load array
2105 * @offset: offset to add
2106 * @shift: shift count to shift the result left
2107 *
2108 * These values are estimates at best, so no need for locking.
2109 */
2110 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2111 {
2112 loads[0] = (avenrun[0] + offset) << shift;
2113 loads[1] = (avenrun[1] + offset) << shift;
2114 loads[2] = (avenrun[2] + offset) << shift;
2115 }
2116
2117 static long calc_load_fold_active(struct rq *this_rq)
2118 {
2119 long nr_active, delta = 0;
2120
2121 nr_active = this_rq->nr_running;
2122 nr_active += (long) this_rq->nr_uninterruptible;
2123
2124 if (nr_active != this_rq->calc_load_active) {
2125 delta = nr_active - this_rq->calc_load_active;
2126 this_rq->calc_load_active = nr_active;
2127 }
2128
2129 return delta;
2130 }
2131
2132 /*
2133 * a1 = a0 * e + a * (1 - e)
2134 */
2135 static unsigned long
2136 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2137 {
2138 load *= exp;
2139 load += active * (FIXED_1 - exp);
2140 load += 1UL << (FSHIFT - 1);
2141 return load >> FSHIFT;
2142 }
2143
2144 #ifdef CONFIG_NO_HZ
2145 /*
2146 * Handle NO_HZ for the global load-average.
2147 *
2148 * Since the above described distributed algorithm to compute the global
2149 * load-average relies on per-cpu sampling from the tick, it is affected by
2150 * NO_HZ.
2151 *
2152 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2153 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2154 * when we read the global state.
2155 *
2156 * Obviously reality has to ruin such a delightfully simple scheme:
2157 *
2158 * - When we go NO_HZ idle during the window, we can negate our sample
2159 * contribution, causing under-accounting.
2160 *
2161 * We avoid this by keeping two idle-delta counters and flipping them
2162 * when the window starts, thus separating old and new NO_HZ load.
2163 *
2164 * The only trick is the slight shift in index flip for read vs write.
2165 *
2166 * 0s 5s 10s 15s
2167 * +10 +10 +10 +10
2168 * |-|-----------|-|-----------|-|-----------|-|
2169 * r:0 0 1 1 0 0 1 1 0
2170 * w:0 1 1 0 0 1 1 0 0
2171 *
2172 * This ensures we'll fold the old idle contribution in this window while
2173 * accumlating the new one.
2174 *
2175 * - When we wake up from NO_HZ idle during the window, we push up our
2176 * contribution, since we effectively move our sample point to a known
2177 * busy state.
2178 *
2179 * This is solved by pushing the window forward, and thus skipping the
2180 * sample, for this cpu (effectively using the idle-delta for this cpu which
2181 * was in effect at the time the window opened). This also solves the issue
2182 * of having to deal with a cpu having been in NOHZ idle for multiple
2183 * LOAD_FREQ intervals.
2184 *
2185 * When making the ILB scale, we should try to pull this in as well.
2186 */
2187 static atomic_long_t calc_load_idle[2];
2188 static int calc_load_idx;
2189
2190 static inline int calc_load_write_idx(void)
2191 {
2192 int idx = calc_load_idx;
2193
2194 /*
2195 * See calc_global_nohz(), if we observe the new index, we also
2196 * need to observe the new update time.
2197 */
2198 smp_rmb();
2199
2200 /*
2201 * If the folding window started, make sure we start writing in the
2202 * next idle-delta.
2203 */
2204 if (!time_before(jiffies, calc_load_update))
2205 idx++;
2206
2207 return idx & 1;
2208 }
2209
2210 static inline int calc_load_read_idx(void)
2211 {
2212 return calc_load_idx & 1;
2213 }
2214
2215 void calc_load_enter_idle(void)
2216 {
2217 struct rq *this_rq = this_rq();
2218 long delta;
2219
2220 /*
2221 * We're going into NOHZ mode, if there's any pending delta, fold it
2222 * into the pending idle delta.
2223 */
2224 delta = calc_load_fold_active(this_rq);
2225 if (delta) {
2226 int idx = calc_load_write_idx();
2227 atomic_long_add(delta, &calc_load_idle[idx]);
2228 }
2229 }
2230
2231 void calc_load_exit_idle(void)
2232 {
2233 struct rq *this_rq = this_rq();
2234
2235 /*
2236 * If we're still before the sample window, we're done.
2237 */
2238 if (time_before(jiffies, this_rq->calc_load_update))
2239 return;
2240
2241 /*
2242 * We woke inside or after the sample window, this means we're already
2243 * accounted through the nohz accounting, so skip the entire deal and
2244 * sync up for the next window.
2245 */
2246 this_rq->calc_load_update = calc_load_update;
2247 if (time_before(jiffies, this_rq->calc_load_update + 10))
2248 this_rq->calc_load_update += LOAD_FREQ;
2249 }
2250
2251 static long calc_load_fold_idle(void)
2252 {
2253 int idx = calc_load_read_idx();
2254 long delta = 0;
2255
2256 if (atomic_long_read(&calc_load_idle[idx]))
2257 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2258
2259 return delta;
2260 }
2261
2262 /**
2263 * fixed_power_int - compute: x^n, in O(log n) time
2264 *
2265 * @x: base of the power
2266 * @frac_bits: fractional bits of @x
2267 * @n: power to raise @x to.
2268 *
2269 * By exploiting the relation between the definition of the natural power
2270 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2271 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2272 * (where: n_i \elem {0, 1}, the binary vector representing n),
2273 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2274 * of course trivially computable in O(log_2 n), the length of our binary
2275 * vector.
2276 */
2277 static unsigned long
2278 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2279 {
2280 unsigned long result = 1UL << frac_bits;
2281
2282 if (n) for (;;) {
2283 if (n & 1) {
2284 result *= x;
2285 result += 1UL << (frac_bits - 1);
2286 result >>= frac_bits;
2287 }
2288 n >>= 1;
2289 if (!n)
2290 break;
2291 x *= x;
2292 x += 1UL << (frac_bits - 1);
2293 x >>= frac_bits;
2294 }
2295
2296 return result;
2297 }
2298
2299 /*
2300 * a1 = a0 * e + a * (1 - e)
2301 *
2302 * a2 = a1 * e + a * (1 - e)
2303 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2304 * = a0 * e^2 + a * (1 - e) * (1 + e)
2305 *
2306 * a3 = a2 * e + a * (1 - e)
2307 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2308 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2309 *
2310 * ...
2311 *
2312 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2313 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2314 * = a0 * e^n + a * (1 - e^n)
2315 *
2316 * [1] application of the geometric series:
2317 *
2318 * n 1 - x^(n+1)
2319 * S_n := \Sum x^i = -------------
2320 * i=0 1 - x
2321 */
2322 static unsigned long
2323 calc_load_n(unsigned long load, unsigned long exp,
2324 unsigned long active, unsigned int n)
2325 {
2326
2327 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2328 }
2329
2330 /*
2331 * NO_HZ can leave us missing all per-cpu ticks calling
2332 * calc_load_account_active(), but since an idle CPU folds its delta into
2333 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2334 * in the pending idle delta if our idle period crossed a load cycle boundary.
2335 *
2336 * Once we've updated the global active value, we need to apply the exponential
2337 * weights adjusted to the number of cycles missed.
2338 */
2339 static void calc_global_nohz(void)
2340 {
2341 long delta, active, n;
2342
2343 if (!time_before(jiffies, calc_load_update + 10)) {
2344 /*
2345 * Catch-up, fold however many we are behind still
2346 */
2347 delta = jiffies - calc_load_update - 10;
2348 n = 1 + (delta / LOAD_FREQ);
2349
2350 active = atomic_long_read(&calc_load_tasks);
2351 active = active > 0 ? active * FIXED_1 : 0;
2352
2353 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2354 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2355 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2356
2357 calc_load_update += n * LOAD_FREQ;
2358 }
2359
2360 /*
2361 * Flip the idle index...
2362 *
2363 * Make sure we first write the new time then flip the index, so that
2364 * calc_load_write_idx() will see the new time when it reads the new
2365 * index, this avoids a double flip messing things up.
2366 */
2367 smp_wmb();
2368 calc_load_idx++;
2369 }
2370 #else /* !CONFIG_NO_HZ */
2371
2372 static inline long calc_load_fold_idle(void) { return 0; }
2373 static inline void calc_global_nohz(void) { }
2374
2375 #endif /* CONFIG_NO_HZ */
2376
2377 /*
2378 * calc_load - update the avenrun load estimates 10 ticks after the
2379 * CPUs have updated calc_load_tasks.
2380 */
2381 void calc_global_load(unsigned long ticks)
2382 {
2383 long active, delta;
2384
2385 if (time_before(jiffies, calc_load_update + 10))
2386 return;
2387
2388 /*
2389 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2390 */
2391 delta = calc_load_fold_idle();
2392 if (delta)
2393 atomic_long_add(delta, &calc_load_tasks);
2394
2395 active = atomic_long_read(&calc_load_tasks);
2396 active = active > 0 ? active * FIXED_1 : 0;
2397
2398 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2399 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2400 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2401
2402 calc_load_update += LOAD_FREQ;
2403
2404 /*
2405 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2406 */
2407 calc_global_nohz();
2408 }
2409
2410 /*
2411 * Called from update_cpu_load() to periodically update this CPU's
2412 * active count.
2413 */
2414 static void calc_load_account_active(struct rq *this_rq)
2415 {
2416 long delta;
2417
2418 if (time_before(jiffies, this_rq->calc_load_update))
2419 return;
2420
2421 delta = calc_load_fold_active(this_rq);
2422 if (delta)
2423 atomic_long_add(delta, &calc_load_tasks);
2424
2425 this_rq->calc_load_update += LOAD_FREQ;
2426 }
2427
2428 /*
2429 * End of global load-average stuff
2430 */
2431
2432 /*
2433 * The exact cpuload at various idx values, calculated at every tick would be
2434 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2435 *
2436 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2437 * on nth tick when cpu may be busy, then we have:
2438 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2439 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2440 *
2441 * decay_load_missed() below does efficient calculation of
2442 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2443 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2444 *
2445 * The calculation is approximated on a 128 point scale.
2446 * degrade_zero_ticks is the number of ticks after which load at any
2447 * particular idx is approximated to be zero.
2448 * degrade_factor is a precomputed table, a row for each load idx.
2449 * Each column corresponds to degradation factor for a power of two ticks,
2450 * based on 128 point scale.
2451 * Example:
2452 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2453 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2454 *
2455 * With this power of 2 load factors, we can degrade the load n times
2456 * by looking at 1 bits in n and doing as many mult/shift instead of
2457 * n mult/shifts needed by the exact degradation.
2458 */
2459 #define DEGRADE_SHIFT 7
2460 static const unsigned char
2461 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2462 static const unsigned char
2463 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2464 {0, 0, 0, 0, 0, 0, 0, 0},
2465 {64, 32, 8, 0, 0, 0, 0, 0},
2466 {96, 72, 40, 12, 1, 0, 0},
2467 {112, 98, 75, 43, 15, 1, 0},
2468 {120, 112, 98, 76, 45, 16, 2} };
2469
2470 /*
2471 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2472 * would be when CPU is idle and so we just decay the old load without
2473 * adding any new load.
2474 */
2475 static unsigned long
2476 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2477 {
2478 int j = 0;
2479
2480 if (!missed_updates)
2481 return load;
2482
2483 if (missed_updates >= degrade_zero_ticks[idx])
2484 return 0;
2485
2486 if (idx == 1)
2487 return load >> missed_updates;
2488
2489 while (missed_updates) {
2490 if (missed_updates % 2)
2491 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2492
2493 missed_updates >>= 1;
2494 j++;
2495 }
2496 return load;
2497 }
2498
2499 /*
2500 * Update rq->cpu_load[] statistics. This function is usually called every
2501 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2502 * every tick. We fix it up based on jiffies.
2503 */
2504 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2505 unsigned long pending_updates)
2506 {
2507 int i, scale;
2508
2509 this_rq->nr_load_updates++;
2510
2511 /* Update our load: */
2512 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2513 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2514 unsigned long old_load, new_load;
2515
2516 /* scale is effectively 1 << i now, and >> i divides by scale */
2517
2518 old_load = this_rq->cpu_load[i];
2519 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2520 new_load = this_load;
2521 /*
2522 * Round up the averaging division if load is increasing. This
2523 * prevents us from getting stuck on 9 if the load is 10, for
2524 * example.
2525 */
2526 if (new_load > old_load)
2527 new_load += scale - 1;
2528
2529 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2530 }
2531
2532 sched_avg_update(this_rq);
2533 }
2534
2535 #ifdef CONFIG_NO_HZ
2536 /*
2537 * There is no sane way to deal with nohz on smp when using jiffies because the
2538 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2539 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2540 *
2541 * Therefore we cannot use the delta approach from the regular tick since that
2542 * would seriously skew the load calculation. However we'll make do for those
2543 * updates happening while idle (nohz_idle_balance) or coming out of idle
2544 * (tick_nohz_idle_exit).
2545 *
2546 * This means we might still be one tick off for nohz periods.
2547 */
2548
2549 /*
2550 * Called from nohz_idle_balance() to update the load ratings before doing the
2551 * idle balance.
2552 */
2553 void update_idle_cpu_load(struct rq *this_rq)
2554 {
2555 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2556 unsigned long load = this_rq->load.weight;
2557 unsigned long pending_updates;
2558
2559 /*
2560 * bail if there's load or we're actually up-to-date.
2561 */
2562 if (load || curr_jiffies == this_rq->last_load_update_tick)
2563 return;
2564
2565 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2566 this_rq->last_load_update_tick = curr_jiffies;
2567
2568 __update_cpu_load(this_rq, load, pending_updates);
2569 }
2570
2571 /*
2572 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2573 */
2574 void update_cpu_load_nohz(void)
2575 {
2576 struct rq *this_rq = this_rq();
2577 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2578 unsigned long pending_updates;
2579
2580 if (curr_jiffies == this_rq->last_load_update_tick)
2581 return;
2582
2583 raw_spin_lock(&this_rq->lock);
2584 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2585 if (pending_updates) {
2586 this_rq->last_load_update_tick = curr_jiffies;
2587 /*
2588 * We were idle, this means load 0, the current load might be
2589 * !0 due to remote wakeups and the sort.
2590 */
2591 __update_cpu_load(this_rq, 0, pending_updates);
2592 }
2593 raw_spin_unlock(&this_rq->lock);
2594 }
2595 #endif /* CONFIG_NO_HZ */
2596
2597 /*
2598 * Called from scheduler_tick()
2599 */
2600 static void update_cpu_load_active(struct rq *this_rq)
2601 {
2602 /*
2603 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2604 */
2605 this_rq->last_load_update_tick = jiffies;
2606 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2607
2608 calc_load_account_active(this_rq);
2609 }
2610
2611 #ifdef CONFIG_SMP
2612
2613 /*
2614 * sched_exec - execve() is a valuable balancing opportunity, because at
2615 * this point the task has the smallest effective memory and cache footprint.
2616 */
2617 void sched_exec(void)
2618 {
2619 struct task_struct *p = current;
2620 unsigned long flags;
2621 int dest_cpu;
2622
2623 raw_spin_lock_irqsave(&p->pi_lock, flags);
2624 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2625 if (dest_cpu == smp_processor_id())
2626 goto unlock;
2627
2628 if (likely(cpu_active(dest_cpu))) {
2629 struct migration_arg arg = { p, dest_cpu };
2630
2631 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2632 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2633 return;
2634 }
2635 unlock:
2636 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2637 }
2638
2639 #endif
2640
2641 DEFINE_PER_CPU(struct kernel_stat, kstat);
2642 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2643
2644 EXPORT_PER_CPU_SYMBOL(kstat);
2645 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2646
2647 /*
2648 * Return any ns on the sched_clock that have not yet been accounted in
2649 * @p in case that task is currently running.
2650 *
2651 * Called with task_rq_lock() held on @rq.
2652 */
2653 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2654 {
2655 u64 ns = 0;
2656
2657 if (task_current(rq, p)) {
2658 update_rq_clock(rq);
2659 ns = rq->clock_task - p->se.exec_start;
2660 if ((s64)ns < 0)
2661 ns = 0;
2662 }
2663
2664 return ns;
2665 }
2666
2667 unsigned long long task_delta_exec(struct task_struct *p)
2668 {
2669 unsigned long flags;
2670 struct rq *rq;
2671 u64 ns = 0;
2672
2673 rq = task_rq_lock(p, &flags);
2674 ns = do_task_delta_exec(p, rq);
2675 task_rq_unlock(rq, p, &flags);
2676
2677 return ns;
2678 }
2679
2680 /*
2681 * Return accounted runtime for the task.
2682 * In case the task is currently running, return the runtime plus current's
2683 * pending runtime that have not been accounted yet.
2684 */
2685 unsigned long long task_sched_runtime(struct task_struct *p)
2686 {
2687 unsigned long flags;
2688 struct rq *rq;
2689 u64 ns = 0;
2690
2691 rq = task_rq_lock(p, &flags);
2692 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2693 task_rq_unlock(rq, p, &flags);
2694
2695 return ns;
2696 }
2697
2698 /*
2699 * This function gets called by the timer code, with HZ frequency.
2700 * We call it with interrupts disabled.
2701 */
2702 void scheduler_tick(void)
2703 {
2704 int cpu = smp_processor_id();
2705 struct rq *rq = cpu_rq(cpu);
2706 struct task_struct *curr = rq->curr;
2707
2708 sched_clock_tick();
2709
2710 raw_spin_lock(&rq->lock);
2711 update_rq_clock(rq);
2712 update_cpu_load_active(rq);
2713 curr->sched_class->task_tick(rq, curr, 0);
2714 raw_spin_unlock(&rq->lock);
2715
2716 perf_event_task_tick();
2717
2718 #ifdef CONFIG_SMP
2719 rq->idle_balance = idle_cpu(cpu);
2720 trigger_load_balance(rq, cpu);
2721 #endif
2722 }
2723
2724 notrace unsigned long get_parent_ip(unsigned long addr)
2725 {
2726 if (in_lock_functions(addr)) {
2727 addr = CALLER_ADDR2;
2728 if (in_lock_functions(addr))
2729 addr = CALLER_ADDR3;
2730 }
2731 return addr;
2732 }
2733
2734 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2735 defined(CONFIG_PREEMPT_TRACER))
2736
2737 void __kprobes add_preempt_count(int val)
2738 {
2739 #ifdef CONFIG_DEBUG_PREEMPT
2740 /*
2741 * Underflow?
2742 */
2743 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2744 return;
2745 #endif
2746 preempt_count() += val;
2747 #ifdef CONFIG_DEBUG_PREEMPT
2748 /*
2749 * Spinlock count overflowing soon?
2750 */
2751 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2752 PREEMPT_MASK - 10);
2753 #endif
2754 if (preempt_count() == val)
2755 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2756 }
2757 EXPORT_SYMBOL(add_preempt_count);
2758
2759 void __kprobes sub_preempt_count(int val)
2760 {
2761 #ifdef CONFIG_DEBUG_PREEMPT
2762 /*
2763 * Underflow?
2764 */
2765 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2766 return;
2767 /*
2768 * Is the spinlock portion underflowing?
2769 */
2770 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2771 !(preempt_count() & PREEMPT_MASK)))
2772 return;
2773 #endif
2774
2775 if (preempt_count() == val)
2776 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2777 preempt_count() -= val;
2778 }
2779 EXPORT_SYMBOL(sub_preempt_count);
2780
2781 #endif
2782
2783 /*
2784 * Print scheduling while atomic bug:
2785 */
2786 static noinline void __schedule_bug(struct task_struct *prev)
2787 {
2788 if (oops_in_progress)
2789 return;
2790
2791 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2792 prev->comm, prev->pid, preempt_count());
2793
2794 debug_show_held_locks(prev);
2795 print_modules();
2796 if (irqs_disabled())
2797 print_irqtrace_events(prev);
2798 dump_stack();
2799 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2800 }
2801
2802 /*
2803 * Various schedule()-time debugging checks and statistics:
2804 */
2805 static inline void schedule_debug(struct task_struct *prev)
2806 {
2807 /*
2808 * Test if we are atomic. Since do_exit() needs to call into
2809 * schedule() atomically, we ignore that path for now.
2810 * Otherwise, whine if we are scheduling when we should not be.
2811 */
2812 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2813 __schedule_bug(prev);
2814 rcu_sleep_check();
2815
2816 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2817
2818 schedstat_inc(this_rq(), sched_count);
2819 }
2820
2821 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2822 {
2823 if (prev->on_rq || rq->skip_clock_update < 0)
2824 update_rq_clock(rq);
2825 prev->sched_class->put_prev_task(rq, prev);
2826 }
2827
2828 /*
2829 * Pick up the highest-prio task:
2830 */
2831 static inline struct task_struct *
2832 pick_next_task(struct rq *rq)
2833 {
2834 const struct sched_class *class;
2835 struct task_struct *p;
2836
2837 /*
2838 * Optimization: we know that if all tasks are in
2839 * the fair class we can call that function directly:
2840 */
2841 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2842 p = fair_sched_class.pick_next_task(rq);
2843 if (likely(p))
2844 return p;
2845 }
2846
2847 for_each_class(class) {
2848 p = class->pick_next_task(rq);
2849 if (p)
2850 return p;
2851 }
2852
2853 BUG(); /* the idle class will always have a runnable task */
2854 }
2855
2856 /*
2857 * __schedule() is the main scheduler function.
2858 *
2859 * The main means of driving the scheduler and thus entering this function are:
2860 *
2861 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2862 *
2863 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2864 * paths. For example, see arch/x86/entry_64.S.
2865 *
2866 * To drive preemption between tasks, the scheduler sets the flag in timer
2867 * interrupt handler scheduler_tick().
2868 *
2869 * 3. Wakeups don't really cause entry into schedule(). They add a
2870 * task to the run-queue and that's it.
2871 *
2872 * Now, if the new task added to the run-queue preempts the current
2873 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2874 * called on the nearest possible occasion:
2875 *
2876 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2877 *
2878 * - in syscall or exception context, at the next outmost
2879 * preempt_enable(). (this might be as soon as the wake_up()'s
2880 * spin_unlock()!)
2881 *
2882 * - in IRQ context, return from interrupt-handler to
2883 * preemptible context
2884 *
2885 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2886 * then at the next:
2887 *
2888 * - cond_resched() call
2889 * - explicit schedule() call
2890 * - return from syscall or exception to user-space
2891 * - return from interrupt-handler to user-space
2892 */
2893 static void __sched __schedule(void)
2894 {
2895 struct task_struct *prev, *next;
2896 unsigned long *switch_count;
2897 struct rq *rq;
2898 int cpu;
2899
2900 need_resched:
2901 preempt_disable();
2902 cpu = smp_processor_id();
2903 rq = cpu_rq(cpu);
2904 rcu_note_context_switch(cpu);
2905 prev = rq->curr;
2906
2907 schedule_debug(prev);
2908
2909 if (sched_feat(HRTICK))
2910 hrtick_clear(rq);
2911
2912 raw_spin_lock_irq(&rq->lock);
2913
2914 switch_count = &prev->nivcsw;
2915 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2916 if (unlikely(signal_pending_state(prev->state, prev))) {
2917 prev->state = TASK_RUNNING;
2918 } else {
2919 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2920 prev->on_rq = 0;
2921
2922 /*
2923 * If a worker went to sleep, notify and ask workqueue
2924 * whether it wants to wake up a task to maintain
2925 * concurrency.
2926 */
2927 if (prev->flags & PF_WQ_WORKER) {
2928 struct task_struct *to_wakeup;
2929
2930 to_wakeup = wq_worker_sleeping(prev, cpu);
2931 if (to_wakeup)
2932 try_to_wake_up_local(to_wakeup);
2933 }
2934 }
2935 switch_count = &prev->nvcsw;
2936 }
2937
2938 pre_schedule(rq, prev);
2939
2940 if (unlikely(!rq->nr_running))
2941 idle_balance(cpu, rq);
2942
2943 put_prev_task(rq, prev);
2944 next = pick_next_task(rq);
2945 clear_tsk_need_resched(prev);
2946 rq->skip_clock_update = 0;
2947
2948 if (likely(prev != next)) {
2949 rq->nr_switches++;
2950 rq->curr = next;
2951 ++*switch_count;
2952
2953 context_switch(rq, prev, next); /* unlocks the rq */
2954 /*
2955 * The context switch have flipped the stack from under us
2956 * and restored the local variables which were saved when
2957 * this task called schedule() in the past. prev == current
2958 * is still correct, but it can be moved to another cpu/rq.
2959 */
2960 cpu = smp_processor_id();
2961 rq = cpu_rq(cpu);
2962 } else
2963 raw_spin_unlock_irq(&rq->lock);
2964
2965 post_schedule(rq);
2966
2967 sched_preempt_enable_no_resched();
2968 if (need_resched())
2969 goto need_resched;
2970 }
2971
2972 static inline void sched_submit_work(struct task_struct *tsk)
2973 {
2974 if (!tsk->state || tsk_is_pi_blocked(tsk))
2975 return;
2976 /*
2977 * If we are going to sleep and we have plugged IO queued,
2978 * make sure to submit it to avoid deadlocks.
2979 */
2980 if (blk_needs_flush_plug(tsk))
2981 blk_schedule_flush_plug(tsk);
2982 }
2983
2984 asmlinkage void __sched schedule(void)
2985 {
2986 struct task_struct *tsk = current;
2987
2988 sched_submit_work(tsk);
2989 __schedule();
2990 }
2991 EXPORT_SYMBOL(schedule);
2992
2993 #ifdef CONFIG_CONTEXT_TRACKING
2994 asmlinkage void __sched schedule_user(void)
2995 {
2996 /*
2997 * If we come here after a random call to set_need_resched(),
2998 * or we have been woken up remotely but the IPI has not yet arrived,
2999 * we haven't yet exited the RCU idle mode. Do it here manually until
3000 * we find a better solution.
3001 */
3002 user_exit();
3003 schedule();
3004 user_enter();
3005 }
3006 #endif
3007
3008 /**
3009 * schedule_preempt_disabled - called with preemption disabled
3010 *
3011 * Returns with preemption disabled. Note: preempt_count must be 1
3012 */
3013 void __sched schedule_preempt_disabled(void)
3014 {
3015 sched_preempt_enable_no_resched();
3016 schedule();
3017 preempt_disable();
3018 }
3019
3020 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3021
3022 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3023 {
3024 if (lock->owner != owner)
3025 return false;
3026
3027 /*
3028 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3029 * lock->owner still matches owner, if that fails, owner might
3030 * point to free()d memory, if it still matches, the rcu_read_lock()
3031 * ensures the memory stays valid.
3032 */
3033 barrier();
3034
3035 return owner->on_cpu;
3036 }
3037
3038 /*
3039 * Look out! "owner" is an entirely speculative pointer
3040 * access and not reliable.
3041 */
3042 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3043 {
3044 if (!sched_feat(OWNER_SPIN))
3045 return 0;
3046
3047 rcu_read_lock();
3048 while (owner_running(lock, owner)) {
3049 if (need_resched())
3050 break;
3051
3052 arch_mutex_cpu_relax();
3053 }
3054 rcu_read_unlock();
3055
3056 /*
3057 * We break out the loop above on need_resched() and when the
3058 * owner changed, which is a sign for heavy contention. Return
3059 * success only when lock->owner is NULL.
3060 */
3061 return lock->owner == NULL;
3062 }
3063 #endif
3064
3065 #ifdef CONFIG_PREEMPT
3066 /*
3067 * this is the entry point to schedule() from in-kernel preemption
3068 * off of preempt_enable. Kernel preemptions off return from interrupt
3069 * occur there and call schedule directly.
3070 */
3071 asmlinkage void __sched notrace preempt_schedule(void)
3072 {
3073 struct thread_info *ti = current_thread_info();
3074
3075 /*
3076 * If there is a non-zero preempt_count or interrupts are disabled,
3077 * we do not want to preempt the current task. Just return..
3078 */
3079 if (likely(ti->preempt_count || irqs_disabled()))
3080 return;
3081
3082 do {
3083 add_preempt_count_notrace(PREEMPT_ACTIVE);
3084 __schedule();
3085 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3086
3087 /*
3088 * Check again in case we missed a preemption opportunity
3089 * between schedule and now.
3090 */
3091 barrier();
3092 } while (need_resched());
3093 }
3094 EXPORT_SYMBOL(preempt_schedule);
3095
3096 /*
3097 * this is the entry point to schedule() from kernel preemption
3098 * off of irq context.
3099 * Note, that this is called and return with irqs disabled. This will
3100 * protect us against recursive calling from irq.
3101 */
3102 asmlinkage void __sched preempt_schedule_irq(void)
3103 {
3104 struct thread_info *ti = current_thread_info();
3105
3106 /* Catch callers which need to be fixed */
3107 BUG_ON(ti->preempt_count || !irqs_disabled());
3108
3109 user_exit();
3110 do {
3111 add_preempt_count(PREEMPT_ACTIVE);
3112 local_irq_enable();
3113 __schedule();
3114 local_irq_disable();
3115 sub_preempt_count(PREEMPT_ACTIVE);
3116
3117 /*
3118 * Check again in case we missed a preemption opportunity
3119 * between schedule and now.
3120 */
3121 barrier();
3122 } while (need_resched());
3123 }
3124
3125 #endif /* CONFIG_PREEMPT */
3126
3127 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3128 void *key)
3129 {
3130 return try_to_wake_up(curr->private, mode, wake_flags);
3131 }
3132 EXPORT_SYMBOL(default_wake_function);
3133
3134 /*
3135 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3136 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3137 * number) then we wake all the non-exclusive tasks and one exclusive task.
3138 *
3139 * There are circumstances in which we can try to wake a task which has already
3140 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3141 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3142 */
3143 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3144 int nr_exclusive, int wake_flags, void *key)
3145 {
3146 wait_queue_t *curr, *next;
3147
3148 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3149 unsigned flags = curr->flags;
3150
3151 if (curr->func(curr, mode, wake_flags, key) &&
3152 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3153 break;
3154 }
3155 }
3156
3157 /**
3158 * __wake_up - wake up threads blocked on a waitqueue.
3159 * @q: the waitqueue
3160 * @mode: which threads
3161 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3162 * @key: is directly passed to the wakeup function
3163 *
3164 * It may be assumed that this function implies a write memory barrier before
3165 * changing the task state if and only if any tasks are woken up.
3166 */
3167 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3168 int nr_exclusive, void *key)
3169 {
3170 unsigned long flags;
3171
3172 spin_lock_irqsave(&q->lock, flags);
3173 __wake_up_common(q, mode, nr_exclusive, 0, key);
3174 spin_unlock_irqrestore(&q->lock, flags);
3175 }
3176 EXPORT_SYMBOL(__wake_up);
3177
3178 /*
3179 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3180 */
3181 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3182 {
3183 __wake_up_common(q, mode, nr, 0, NULL);
3184 }
3185 EXPORT_SYMBOL_GPL(__wake_up_locked);
3186
3187 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3188 {
3189 __wake_up_common(q, mode, 1, 0, key);
3190 }
3191 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3192
3193 /**
3194 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3195 * @q: the waitqueue
3196 * @mode: which threads
3197 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3198 * @key: opaque value to be passed to wakeup targets
3199 *
3200 * The sync wakeup differs that the waker knows that it will schedule
3201 * away soon, so while the target thread will be woken up, it will not
3202 * be migrated to another CPU - ie. the two threads are 'synchronized'
3203 * with each other. This can prevent needless bouncing between CPUs.
3204 *
3205 * On UP it can prevent extra preemption.
3206 *
3207 * It may be assumed that this function implies a write memory barrier before
3208 * changing the task state if and only if any tasks are woken up.
3209 */
3210 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3211 int nr_exclusive, void *key)
3212 {
3213 unsigned long flags;
3214 int wake_flags = WF_SYNC;
3215
3216 if (unlikely(!q))
3217 return;
3218
3219 if (unlikely(!nr_exclusive))
3220 wake_flags = 0;
3221
3222 spin_lock_irqsave(&q->lock, flags);
3223 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3224 spin_unlock_irqrestore(&q->lock, flags);
3225 }
3226 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3227
3228 /*
3229 * __wake_up_sync - see __wake_up_sync_key()
3230 */
3231 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3232 {
3233 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3234 }
3235 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3236
3237 /**
3238 * complete: - signals a single thread waiting on this completion
3239 * @x: holds the state of this particular completion
3240 *
3241 * This will wake up a single thread waiting on this completion. Threads will be
3242 * awakened in the same order in which they were queued.
3243 *
3244 * See also complete_all(), wait_for_completion() and related routines.
3245 *
3246 * It may be assumed that this function implies a write memory barrier before
3247 * changing the task state if and only if any tasks are woken up.
3248 */
3249 void complete(struct completion *x)
3250 {
3251 unsigned long flags;
3252
3253 spin_lock_irqsave(&x->wait.lock, flags);
3254 x->done++;
3255 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3256 spin_unlock_irqrestore(&x->wait.lock, flags);
3257 }
3258 EXPORT_SYMBOL(complete);
3259
3260 /**
3261 * complete_all: - signals all threads waiting on this completion
3262 * @x: holds the state of this particular completion
3263 *
3264 * This will wake up all threads waiting on this particular completion event.
3265 *
3266 * It may be assumed that this function implies a write memory barrier before
3267 * changing the task state if and only if any tasks are woken up.
3268 */
3269 void complete_all(struct completion *x)
3270 {
3271 unsigned long flags;
3272
3273 spin_lock_irqsave(&x->wait.lock, flags);
3274 x->done += UINT_MAX/2;
3275 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3276 spin_unlock_irqrestore(&x->wait.lock, flags);
3277 }
3278 EXPORT_SYMBOL(complete_all);
3279
3280 static inline long __sched
3281 do_wait_for_common(struct completion *x, long timeout, int state)
3282 {
3283 if (!x->done) {
3284 DECLARE_WAITQUEUE(wait, current);
3285
3286 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3287 do {
3288 if (signal_pending_state(state, current)) {
3289 timeout = -ERESTARTSYS;
3290 break;
3291 }
3292 __set_current_state(state);
3293 spin_unlock_irq(&x->wait.lock);
3294 timeout = schedule_timeout(timeout);
3295 spin_lock_irq(&x->wait.lock);
3296 } while (!x->done && timeout);
3297 __remove_wait_queue(&x->wait, &wait);
3298 if (!x->done)
3299 return timeout;
3300 }
3301 x->done--;
3302 return timeout ?: 1;
3303 }
3304
3305 static long __sched
3306 wait_for_common(struct completion *x, long timeout, int state)
3307 {
3308 might_sleep();
3309
3310 spin_lock_irq(&x->wait.lock);
3311 timeout = do_wait_for_common(x, timeout, state);
3312 spin_unlock_irq(&x->wait.lock);
3313 return timeout;
3314 }
3315
3316 /**
3317 * wait_for_completion: - waits for completion of a task
3318 * @x: holds the state of this particular completion
3319 *
3320 * This waits to be signaled for completion of a specific task. It is NOT
3321 * interruptible and there is no timeout.
3322 *
3323 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3324 * and interrupt capability. Also see complete().
3325 */
3326 void __sched wait_for_completion(struct completion *x)
3327 {
3328 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3329 }
3330 EXPORT_SYMBOL(wait_for_completion);
3331
3332 /**
3333 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3334 * @x: holds the state of this particular completion
3335 * @timeout: timeout value in jiffies
3336 *
3337 * This waits for either a completion of a specific task to be signaled or for a
3338 * specified timeout to expire. The timeout is in jiffies. It is not
3339 * interruptible.
3340 *
3341 * The return value is 0 if timed out, and positive (at least 1, or number of
3342 * jiffies left till timeout) if completed.
3343 */
3344 unsigned long __sched
3345 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3346 {
3347 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3348 }
3349 EXPORT_SYMBOL(wait_for_completion_timeout);
3350
3351 /**
3352 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3353 * @x: holds the state of this particular completion
3354 *
3355 * This waits for completion of a specific task to be signaled. It is
3356 * interruptible.
3357 *
3358 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3359 */
3360 int __sched wait_for_completion_interruptible(struct completion *x)
3361 {
3362 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3363 if (t == -ERESTARTSYS)
3364 return t;
3365 return 0;
3366 }
3367 EXPORT_SYMBOL(wait_for_completion_interruptible);
3368
3369 /**
3370 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3371 * @x: holds the state of this particular completion
3372 * @timeout: timeout value in jiffies
3373 *
3374 * This waits for either a completion of a specific task to be signaled or for a
3375 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3376 *
3377 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3378 * positive (at least 1, or number of jiffies left till timeout) if completed.
3379 */
3380 long __sched
3381 wait_for_completion_interruptible_timeout(struct completion *x,
3382 unsigned long timeout)
3383 {
3384 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3385 }
3386 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3387
3388 /**
3389 * wait_for_completion_killable: - waits for completion of a task (killable)
3390 * @x: holds the state of this particular completion
3391 *
3392 * This waits to be signaled for completion of a specific task. It can be
3393 * interrupted by a kill signal.
3394 *
3395 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3396 */
3397 int __sched wait_for_completion_killable(struct completion *x)
3398 {
3399 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3400 if (t == -ERESTARTSYS)
3401 return t;
3402 return 0;
3403 }
3404 EXPORT_SYMBOL(wait_for_completion_killable);
3405
3406 /**
3407 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3408 * @x: holds the state of this particular completion
3409 * @timeout: timeout value in jiffies
3410 *
3411 * This waits for either a completion of a specific task to be
3412 * signaled or for a specified timeout to expire. It can be
3413 * interrupted by a kill signal. The timeout is in jiffies.
3414 *
3415 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3416 * positive (at least 1, or number of jiffies left till timeout) if completed.
3417 */
3418 long __sched
3419 wait_for_completion_killable_timeout(struct completion *x,
3420 unsigned long timeout)
3421 {
3422 return wait_for_common(x, timeout, TASK_KILLABLE);
3423 }
3424 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3425
3426 /**
3427 * try_wait_for_completion - try to decrement a completion without blocking
3428 * @x: completion structure
3429 *
3430 * Returns: 0 if a decrement cannot be done without blocking
3431 * 1 if a decrement succeeded.
3432 *
3433 * If a completion is being used as a counting completion,
3434 * attempt to decrement the counter without blocking. This
3435 * enables us to avoid waiting if the resource the completion
3436 * is protecting is not available.
3437 */
3438 bool try_wait_for_completion(struct completion *x)
3439 {
3440 unsigned long flags;
3441 int ret = 1;
3442
3443 spin_lock_irqsave(&x->wait.lock, flags);
3444 if (!x->done)
3445 ret = 0;
3446 else
3447 x->done--;
3448 spin_unlock_irqrestore(&x->wait.lock, flags);
3449 return ret;
3450 }
3451 EXPORT_SYMBOL(try_wait_for_completion);
3452
3453 /**
3454 * completion_done - Test to see if a completion has any waiters
3455 * @x: completion structure
3456 *
3457 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3458 * 1 if there are no waiters.
3459 *
3460 */
3461 bool completion_done(struct completion *x)
3462 {
3463 unsigned long flags;
3464 int ret = 1;
3465
3466 spin_lock_irqsave(&x->wait.lock, flags);
3467 if (!x->done)
3468 ret = 0;
3469 spin_unlock_irqrestore(&x->wait.lock, flags);
3470 return ret;
3471 }
3472 EXPORT_SYMBOL(completion_done);
3473
3474 static long __sched
3475 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3476 {
3477 unsigned long flags;
3478 wait_queue_t wait;
3479
3480 init_waitqueue_entry(&wait, current);
3481
3482 __set_current_state(state);
3483
3484 spin_lock_irqsave(&q->lock, flags);
3485 __add_wait_queue(q, &wait);
3486 spin_unlock(&q->lock);
3487 timeout = schedule_timeout(timeout);
3488 spin_lock_irq(&q->lock);
3489 __remove_wait_queue(q, &wait);
3490 spin_unlock_irqrestore(&q->lock, flags);
3491
3492 return timeout;
3493 }
3494
3495 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3496 {
3497 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3498 }
3499 EXPORT_SYMBOL(interruptible_sleep_on);
3500
3501 long __sched
3502 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3503 {
3504 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3505 }
3506 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3507
3508 void __sched sleep_on(wait_queue_head_t *q)
3509 {
3510 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3511 }
3512 EXPORT_SYMBOL(sleep_on);
3513
3514 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3515 {
3516 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3517 }
3518 EXPORT_SYMBOL(sleep_on_timeout);
3519
3520 #ifdef CONFIG_RT_MUTEXES
3521
3522 /*
3523 * rt_mutex_setprio - set the current priority of a task
3524 * @p: task
3525 * @prio: prio value (kernel-internal form)
3526 *
3527 * This function changes the 'effective' priority of a task. It does
3528 * not touch ->normal_prio like __setscheduler().
3529 *
3530 * Used by the rt_mutex code to implement priority inheritance logic.
3531 */
3532 void rt_mutex_setprio(struct task_struct *p, int prio)
3533 {
3534 int oldprio, on_rq, running;
3535 struct rq *rq;
3536 const struct sched_class *prev_class;
3537
3538 BUG_ON(prio < 0 || prio > MAX_PRIO);
3539
3540 rq = __task_rq_lock(p);
3541
3542 /*
3543 * Idle task boosting is a nono in general. There is one
3544 * exception, when PREEMPT_RT and NOHZ is active:
3545 *
3546 * The idle task calls get_next_timer_interrupt() and holds
3547 * the timer wheel base->lock on the CPU and another CPU wants
3548 * to access the timer (probably to cancel it). We can safely
3549 * ignore the boosting request, as the idle CPU runs this code
3550 * with interrupts disabled and will complete the lock
3551 * protected section without being interrupted. So there is no
3552 * real need to boost.
3553 */
3554 if (unlikely(p == rq->idle)) {
3555 WARN_ON(p != rq->curr);
3556 WARN_ON(p->pi_blocked_on);
3557 goto out_unlock;
3558 }
3559
3560 trace_sched_pi_setprio(p, prio);
3561 oldprio = p->prio;
3562 prev_class = p->sched_class;
3563 on_rq = p->on_rq;
3564 running = task_current(rq, p);
3565 if (on_rq)
3566 dequeue_task(rq, p, 0);
3567 if (running)
3568 p->sched_class->put_prev_task(rq, p);
3569
3570 if (rt_prio(prio))
3571 p->sched_class = &rt_sched_class;
3572 else
3573 p->sched_class = &fair_sched_class;
3574
3575 p->prio = prio;
3576
3577 if (running)
3578 p->sched_class->set_curr_task(rq);
3579 if (on_rq)
3580 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3581
3582 check_class_changed(rq, p, prev_class, oldprio);
3583 out_unlock:
3584 __task_rq_unlock(rq);
3585 }
3586 #endif
3587 void set_user_nice(struct task_struct *p, long nice)
3588 {
3589 int old_prio, delta, on_rq;
3590 unsigned long flags;
3591 struct rq *rq;
3592
3593 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3594 return;
3595 /*
3596 * We have to be careful, if called from sys_setpriority(),
3597 * the task might be in the middle of scheduling on another CPU.
3598 */
3599 rq = task_rq_lock(p, &flags);
3600 /*
3601 * The RT priorities are set via sched_setscheduler(), but we still
3602 * allow the 'normal' nice value to be set - but as expected
3603 * it wont have any effect on scheduling until the task is
3604 * SCHED_FIFO/SCHED_RR:
3605 */
3606 if (task_has_rt_policy(p)) {
3607 p->static_prio = NICE_TO_PRIO(nice);
3608 goto out_unlock;
3609 }
3610 on_rq = p->on_rq;
3611 if (on_rq)
3612 dequeue_task(rq, p, 0);
3613
3614 p->static_prio = NICE_TO_PRIO(nice);
3615 set_load_weight(p);
3616 old_prio = p->prio;
3617 p->prio = effective_prio(p);
3618 delta = p->prio - old_prio;
3619
3620 if (on_rq) {
3621 enqueue_task(rq, p, 0);
3622 /*
3623 * If the task increased its priority or is running and
3624 * lowered its priority, then reschedule its CPU:
3625 */
3626 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3627 resched_task(rq->curr);
3628 }
3629 out_unlock:
3630 task_rq_unlock(rq, p, &flags);
3631 }
3632 EXPORT_SYMBOL(set_user_nice);
3633
3634 /*
3635 * can_nice - check if a task can reduce its nice value
3636 * @p: task
3637 * @nice: nice value
3638 */
3639 int can_nice(const struct task_struct *p, const int nice)
3640 {
3641 /* convert nice value [19,-20] to rlimit style value [1,40] */
3642 int nice_rlim = 20 - nice;
3643
3644 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3645 capable(CAP_SYS_NICE));
3646 }
3647
3648 #ifdef __ARCH_WANT_SYS_NICE
3649
3650 /*
3651 * sys_nice - change the priority of the current process.
3652 * @increment: priority increment
3653 *
3654 * sys_setpriority is a more generic, but much slower function that
3655 * does similar things.
3656 */
3657 SYSCALL_DEFINE1(nice, int, increment)
3658 {
3659 long nice, retval;
3660
3661 /*
3662 * Setpriority might change our priority at the same moment.
3663 * We don't have to worry. Conceptually one call occurs first
3664 * and we have a single winner.
3665 */
3666 if (increment < -40)
3667 increment = -40;
3668 if (increment > 40)
3669 increment = 40;
3670
3671 nice = TASK_NICE(current) + increment;
3672 if (nice < -20)
3673 nice = -20;
3674 if (nice > 19)
3675 nice = 19;
3676
3677 if (increment < 0 && !can_nice(current, nice))
3678 return -EPERM;
3679
3680 retval = security_task_setnice(current, nice);
3681 if (retval)
3682 return retval;
3683
3684 set_user_nice(current, nice);
3685 return 0;
3686 }
3687
3688 #endif
3689
3690 /**
3691 * task_prio - return the priority value of a given task.
3692 * @p: the task in question.
3693 *
3694 * This is the priority value as seen by users in /proc.
3695 * RT tasks are offset by -200. Normal tasks are centered
3696 * around 0, value goes from -16 to +15.
3697 */
3698 int task_prio(const struct task_struct *p)
3699 {
3700 return p->prio - MAX_RT_PRIO;
3701 }
3702
3703 /**
3704 * task_nice - return the nice value of a given task.
3705 * @p: the task in question.
3706 */
3707 int task_nice(const struct task_struct *p)
3708 {
3709 return TASK_NICE(p);
3710 }
3711 EXPORT_SYMBOL(task_nice);
3712
3713 /**
3714 * idle_cpu - is a given cpu idle currently?
3715 * @cpu: the processor in question.
3716 */
3717 int idle_cpu(int cpu)
3718 {
3719 struct rq *rq = cpu_rq(cpu);
3720
3721 if (rq->curr != rq->idle)
3722 return 0;
3723
3724 if (rq->nr_running)
3725 return 0;
3726
3727 #ifdef CONFIG_SMP
3728 if (!llist_empty(&rq->wake_list))
3729 return 0;
3730 #endif
3731
3732 return 1;
3733 }
3734
3735 /**
3736 * idle_task - return the idle task for a given cpu.
3737 * @cpu: the processor in question.
3738 */
3739 struct task_struct *idle_task(int cpu)
3740 {
3741 return cpu_rq(cpu)->idle;
3742 }
3743
3744 /**
3745 * find_process_by_pid - find a process with a matching PID value.
3746 * @pid: the pid in question.
3747 */
3748 static struct task_struct *find_process_by_pid(pid_t pid)
3749 {
3750 return pid ? find_task_by_vpid(pid) : current;
3751 }
3752
3753 /* Actually do priority change: must hold rq lock. */
3754 static void
3755 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3756 {
3757 p->policy = policy;
3758 p->rt_priority = prio;
3759 p->normal_prio = normal_prio(p);
3760 /* we are holding p->pi_lock already */
3761 p->prio = rt_mutex_getprio(p);
3762 if (rt_prio(p->prio))
3763 p->sched_class = &rt_sched_class;
3764 else
3765 p->sched_class = &fair_sched_class;
3766 set_load_weight(p);
3767 }
3768
3769 /*
3770 * check the target process has a UID that matches the current process's
3771 */
3772 static bool check_same_owner(struct task_struct *p)
3773 {
3774 const struct cred *cred = current_cred(), *pcred;
3775 bool match;
3776
3777 rcu_read_lock();
3778 pcred = __task_cred(p);
3779 match = (uid_eq(cred->euid, pcred->euid) ||
3780 uid_eq(cred->euid, pcred->uid));
3781 rcu_read_unlock();
3782 return match;
3783 }
3784
3785 static int __sched_setscheduler(struct task_struct *p, int policy,
3786 const struct sched_param *param, bool user)
3787 {
3788 int retval, oldprio, oldpolicy = -1, on_rq, running;
3789 unsigned long flags;
3790 const struct sched_class *prev_class;
3791 struct rq *rq;
3792 int reset_on_fork;
3793
3794 /* may grab non-irq protected spin_locks */
3795 BUG_ON(in_interrupt());
3796 recheck:
3797 /* double check policy once rq lock held */
3798 if (policy < 0) {
3799 reset_on_fork = p->sched_reset_on_fork;
3800 policy = oldpolicy = p->policy;
3801 } else {
3802 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3803 policy &= ~SCHED_RESET_ON_FORK;
3804
3805 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3806 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3807 policy != SCHED_IDLE)
3808 return -EINVAL;
3809 }
3810
3811 /*
3812 * Valid priorities for SCHED_FIFO and SCHED_RR are
3813 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3814 * SCHED_BATCH and SCHED_IDLE is 0.
3815 */
3816 if (param->sched_priority < 0 ||
3817 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3818 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3819 return -EINVAL;
3820 if (rt_policy(policy) != (param->sched_priority != 0))
3821 return -EINVAL;
3822
3823 /*
3824 * Allow unprivileged RT tasks to decrease priority:
3825 */
3826 if (user && !capable(CAP_SYS_NICE)) {
3827 if (rt_policy(policy)) {
3828 unsigned long rlim_rtprio =
3829 task_rlimit(p, RLIMIT_RTPRIO);
3830
3831 /* can't set/change the rt policy */
3832 if (policy != p->policy && !rlim_rtprio)
3833 return -EPERM;
3834
3835 /* can't increase priority */
3836 if (param->sched_priority > p->rt_priority &&
3837 param->sched_priority > rlim_rtprio)
3838 return -EPERM;
3839 }
3840
3841 /*
3842 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3843 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3844 */
3845 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3846 if (!can_nice(p, TASK_NICE(p)))
3847 return -EPERM;
3848 }
3849
3850 /* can't change other user's priorities */
3851 if (!check_same_owner(p))
3852 return -EPERM;
3853
3854 /* Normal users shall not reset the sched_reset_on_fork flag */
3855 if (p->sched_reset_on_fork && !reset_on_fork)
3856 return -EPERM;
3857 }
3858
3859 if (user) {
3860 retval = security_task_setscheduler(p);
3861 if (retval)
3862 return retval;
3863 }
3864
3865 /*
3866 * make sure no PI-waiters arrive (or leave) while we are
3867 * changing the priority of the task:
3868 *
3869 * To be able to change p->policy safely, the appropriate
3870 * runqueue lock must be held.
3871 */
3872 rq = task_rq_lock(p, &flags);
3873
3874 /*
3875 * Changing the policy of the stop threads its a very bad idea
3876 */
3877 if (p == rq->stop) {
3878 task_rq_unlock(rq, p, &flags);
3879 return -EINVAL;
3880 }
3881
3882 /*
3883 * If not changing anything there's no need to proceed further:
3884 */
3885 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3886 param->sched_priority == p->rt_priority))) {
3887 task_rq_unlock(rq, p, &flags);
3888 return 0;
3889 }
3890
3891 #ifdef CONFIG_RT_GROUP_SCHED
3892 if (user) {
3893 /*
3894 * Do not allow realtime tasks into groups that have no runtime
3895 * assigned.
3896 */
3897 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3898 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3899 !task_group_is_autogroup(task_group(p))) {
3900 task_rq_unlock(rq, p, &flags);
3901 return -EPERM;
3902 }
3903 }
3904 #endif
3905
3906 /* recheck policy now with rq lock held */
3907 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3908 policy = oldpolicy = -1;
3909 task_rq_unlock(rq, p, &flags);
3910 goto recheck;
3911 }
3912 on_rq = p->on_rq;
3913 running = task_current(rq, p);
3914 if (on_rq)
3915 dequeue_task(rq, p, 0);
3916 if (running)
3917 p->sched_class->put_prev_task(rq, p);
3918
3919 p->sched_reset_on_fork = reset_on_fork;
3920
3921 oldprio = p->prio;
3922 prev_class = p->sched_class;
3923 __setscheduler(rq, p, policy, param->sched_priority);
3924
3925 if (running)
3926 p->sched_class->set_curr_task(rq);
3927 if (on_rq)
3928 enqueue_task(rq, p, 0);
3929
3930 check_class_changed(rq, p, prev_class, oldprio);
3931 task_rq_unlock(rq, p, &flags);
3932
3933 rt_mutex_adjust_pi(p);
3934
3935 return 0;
3936 }
3937
3938 /**
3939 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3940 * @p: the task in question.
3941 * @policy: new policy.
3942 * @param: structure containing the new RT priority.
3943 *
3944 * NOTE that the task may be already dead.
3945 */
3946 int sched_setscheduler(struct task_struct *p, int policy,
3947 const struct sched_param *param)
3948 {
3949 return __sched_setscheduler(p, policy, param, true);
3950 }
3951 EXPORT_SYMBOL_GPL(sched_setscheduler);
3952
3953 /**
3954 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3955 * @p: the task in question.
3956 * @policy: new policy.
3957 * @param: structure containing the new RT priority.
3958 *
3959 * Just like sched_setscheduler, only don't bother checking if the
3960 * current context has permission. For example, this is needed in
3961 * stop_machine(): we create temporary high priority worker threads,
3962 * but our caller might not have that capability.
3963 */
3964 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3965 const struct sched_param *param)
3966 {
3967 return __sched_setscheduler(p, policy, param, false);
3968 }
3969
3970 static int
3971 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3972 {
3973 struct sched_param lparam;
3974 struct task_struct *p;
3975 int retval;
3976
3977 if (!param || pid < 0)
3978 return -EINVAL;
3979 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3980 return -EFAULT;
3981
3982 rcu_read_lock();
3983 retval = -ESRCH;
3984 p = find_process_by_pid(pid);
3985 if (p != NULL)
3986 retval = sched_setscheduler(p, policy, &lparam);
3987 rcu_read_unlock();
3988
3989 return retval;
3990 }
3991
3992 /**
3993 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3994 * @pid: the pid in question.
3995 * @policy: new policy.
3996 * @param: structure containing the new RT priority.
3997 */
3998 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3999 struct sched_param __user *, param)
4000 {
4001 /* negative values for policy are not valid */
4002 if (policy < 0)
4003 return -EINVAL;
4004
4005 return do_sched_setscheduler(pid, policy, param);
4006 }
4007
4008 /**
4009 * sys_sched_setparam - set/change the RT priority of a thread
4010 * @pid: the pid in question.
4011 * @param: structure containing the new RT priority.
4012 */
4013 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4014 {
4015 return do_sched_setscheduler(pid, -1, param);
4016 }
4017
4018 /**
4019 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4020 * @pid: the pid in question.
4021 */
4022 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4023 {
4024 struct task_struct *p;
4025 int retval;
4026
4027 if (pid < 0)
4028 return -EINVAL;
4029
4030 retval = -ESRCH;
4031 rcu_read_lock();
4032 p = find_process_by_pid(pid);
4033 if (p) {
4034 retval = security_task_getscheduler(p);
4035 if (!retval)
4036 retval = p->policy
4037 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4038 }
4039 rcu_read_unlock();
4040 return retval;
4041 }
4042
4043 /**
4044 * sys_sched_getparam - get the RT priority of a thread
4045 * @pid: the pid in question.
4046 * @param: structure containing the RT priority.
4047 */
4048 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4049 {
4050 struct sched_param lp;
4051 struct task_struct *p;
4052 int retval;
4053
4054 if (!param || pid < 0)
4055 return -EINVAL;
4056
4057 rcu_read_lock();
4058 p = find_process_by_pid(pid);
4059 retval = -ESRCH;
4060 if (!p)
4061 goto out_unlock;
4062
4063 retval = security_task_getscheduler(p);
4064 if (retval)
4065 goto out_unlock;
4066
4067 lp.sched_priority = p->rt_priority;
4068 rcu_read_unlock();
4069
4070 /*
4071 * This one might sleep, we cannot do it with a spinlock held ...
4072 */
4073 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4074
4075 return retval;
4076
4077 out_unlock:
4078 rcu_read_unlock();
4079 return retval;
4080 }
4081
4082 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4083 {
4084 cpumask_var_t cpus_allowed, new_mask;
4085 struct task_struct *p;
4086 int retval;
4087
4088 get_online_cpus();
4089 rcu_read_lock();
4090
4091 p = find_process_by_pid(pid);
4092 if (!p) {
4093 rcu_read_unlock();
4094 put_online_cpus();
4095 return -ESRCH;
4096 }
4097
4098 /* Prevent p going away */
4099 get_task_struct(p);
4100 rcu_read_unlock();
4101
4102 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4103 retval = -ENOMEM;
4104 goto out_put_task;
4105 }
4106 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4107 retval = -ENOMEM;
4108 goto out_free_cpus_allowed;
4109 }
4110 retval = -EPERM;
4111 if (!check_same_owner(p)) {
4112 rcu_read_lock();
4113 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4114 rcu_read_unlock();
4115 goto out_unlock;
4116 }
4117 rcu_read_unlock();
4118 }
4119
4120 retval = security_task_setscheduler(p);
4121 if (retval)
4122 goto out_unlock;
4123
4124 cpuset_cpus_allowed(p, cpus_allowed);
4125 cpumask_and(new_mask, in_mask, cpus_allowed);
4126 again:
4127 retval = set_cpus_allowed_ptr(p, new_mask);
4128
4129 if (!retval) {
4130 cpuset_cpus_allowed(p, cpus_allowed);
4131 if (!cpumask_subset(new_mask, cpus_allowed)) {
4132 /*
4133 * We must have raced with a concurrent cpuset
4134 * update. Just reset the cpus_allowed to the
4135 * cpuset's cpus_allowed
4136 */
4137 cpumask_copy(new_mask, cpus_allowed);
4138 goto again;
4139 }
4140 }
4141 out_unlock:
4142 free_cpumask_var(new_mask);
4143 out_free_cpus_allowed:
4144 free_cpumask_var(cpus_allowed);
4145 out_put_task:
4146 put_task_struct(p);
4147 put_online_cpus();
4148 return retval;
4149 }
4150
4151 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4152 struct cpumask *new_mask)
4153 {
4154 if (len < cpumask_size())
4155 cpumask_clear(new_mask);
4156 else if (len > cpumask_size())
4157 len = cpumask_size();
4158
4159 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4160 }
4161
4162 /**
4163 * sys_sched_setaffinity - set the cpu affinity of a process
4164 * @pid: pid of the process
4165 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4166 * @user_mask_ptr: user-space pointer to the new cpu mask
4167 */
4168 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4169 unsigned long __user *, user_mask_ptr)
4170 {
4171 cpumask_var_t new_mask;
4172 int retval;
4173
4174 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4175 return -ENOMEM;
4176
4177 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4178 if (retval == 0)
4179 retval = sched_setaffinity(pid, new_mask);
4180 free_cpumask_var(new_mask);
4181 return retval;
4182 }
4183
4184 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4185 {
4186 struct task_struct *p;
4187 unsigned long flags;
4188 int retval;
4189
4190 get_online_cpus();
4191 rcu_read_lock();
4192
4193 retval = -ESRCH;
4194 p = find_process_by_pid(pid);
4195 if (!p)
4196 goto out_unlock;
4197
4198 retval = security_task_getscheduler(p);
4199 if (retval)
4200 goto out_unlock;
4201
4202 raw_spin_lock_irqsave(&p->pi_lock, flags);
4203 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4204 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4205
4206 out_unlock:
4207 rcu_read_unlock();
4208 put_online_cpus();
4209
4210 return retval;
4211 }
4212
4213 /**
4214 * sys_sched_getaffinity - get the cpu affinity of a process
4215 * @pid: pid of the process
4216 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4217 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4218 */
4219 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4220 unsigned long __user *, user_mask_ptr)
4221 {
4222 int ret;
4223 cpumask_var_t mask;
4224
4225 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4226 return -EINVAL;
4227 if (len & (sizeof(unsigned long)-1))
4228 return -EINVAL;
4229
4230 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4231 return -ENOMEM;
4232
4233 ret = sched_getaffinity(pid, mask);
4234 if (ret == 0) {
4235 size_t retlen = min_t(size_t, len, cpumask_size());
4236
4237 if (copy_to_user(user_mask_ptr, mask, retlen))
4238 ret = -EFAULT;
4239 else
4240 ret = retlen;
4241 }
4242 free_cpumask_var(mask);
4243
4244 return ret;
4245 }
4246
4247 /**
4248 * sys_sched_yield - yield the current processor to other threads.
4249 *
4250 * This function yields the current CPU to other tasks. If there are no
4251 * other threads running on this CPU then this function will return.
4252 */
4253 SYSCALL_DEFINE0(sched_yield)
4254 {
4255 struct rq *rq = this_rq_lock();
4256
4257 schedstat_inc(rq, yld_count);
4258 current->sched_class->yield_task(rq);
4259
4260 /*
4261 * Since we are going to call schedule() anyway, there's
4262 * no need to preempt or enable interrupts:
4263 */
4264 __release(rq->lock);
4265 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4266 do_raw_spin_unlock(&rq->lock);
4267 sched_preempt_enable_no_resched();
4268
4269 schedule();
4270
4271 return 0;
4272 }
4273
4274 static inline int should_resched(void)
4275 {
4276 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4277 }
4278
4279 static void __cond_resched(void)
4280 {
4281 add_preempt_count(PREEMPT_ACTIVE);
4282 __schedule();
4283 sub_preempt_count(PREEMPT_ACTIVE);
4284 }
4285
4286 int __sched _cond_resched(void)
4287 {
4288 if (should_resched()) {
4289 __cond_resched();
4290 return 1;
4291 }
4292 return 0;
4293 }
4294 EXPORT_SYMBOL(_cond_resched);
4295
4296 /*
4297 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4298 * call schedule, and on return reacquire the lock.
4299 *
4300 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4301 * operations here to prevent schedule() from being called twice (once via
4302 * spin_unlock(), once by hand).
4303 */
4304 int __cond_resched_lock(spinlock_t *lock)
4305 {
4306 int resched = should_resched();
4307 int ret = 0;
4308
4309 lockdep_assert_held(lock);
4310
4311 if (spin_needbreak(lock) || resched) {
4312 spin_unlock(lock);
4313 if (resched)
4314 __cond_resched();
4315 else
4316 cpu_relax();
4317 ret = 1;
4318 spin_lock(lock);
4319 }
4320 return ret;
4321 }
4322 EXPORT_SYMBOL(__cond_resched_lock);
4323
4324 int __sched __cond_resched_softirq(void)
4325 {
4326 BUG_ON(!in_softirq());
4327
4328 if (should_resched()) {
4329 local_bh_enable();
4330 __cond_resched();
4331 local_bh_disable();
4332 return 1;
4333 }
4334 return 0;
4335 }
4336 EXPORT_SYMBOL(__cond_resched_softirq);
4337
4338 /**
4339 * yield - yield the current processor to other threads.
4340 *
4341 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4342 *
4343 * The scheduler is at all times free to pick the calling task as the most
4344 * eligible task to run, if removing the yield() call from your code breaks
4345 * it, its already broken.
4346 *
4347 * Typical broken usage is:
4348 *
4349 * while (!event)
4350 * yield();
4351 *
4352 * where one assumes that yield() will let 'the other' process run that will
4353 * make event true. If the current task is a SCHED_FIFO task that will never
4354 * happen. Never use yield() as a progress guarantee!!
4355 *
4356 * If you want to use yield() to wait for something, use wait_event().
4357 * If you want to use yield() to be 'nice' for others, use cond_resched().
4358 * If you still want to use yield(), do not!
4359 */
4360 void __sched yield(void)
4361 {
4362 set_current_state(TASK_RUNNING);
4363 sys_sched_yield();
4364 }
4365 EXPORT_SYMBOL(yield);
4366
4367 /**
4368 * yield_to - yield the current processor to another thread in
4369 * your thread group, or accelerate that thread toward the
4370 * processor it's on.
4371 * @p: target task
4372 * @preempt: whether task preemption is allowed or not
4373 *
4374 * It's the caller's job to ensure that the target task struct
4375 * can't go away on us before we can do any checks.
4376 *
4377 * Returns:
4378 * true (>0) if we indeed boosted the target task.
4379 * false (0) if we failed to boost the target.
4380 * -ESRCH if there's no task to yield to.
4381 */
4382 bool __sched yield_to(struct task_struct *p, bool preempt)
4383 {
4384 struct task_struct *curr = current;
4385 struct rq *rq, *p_rq;
4386 unsigned long flags;
4387 int yielded = 0;
4388
4389 local_irq_save(flags);
4390 rq = this_rq();
4391
4392 again:
4393 p_rq = task_rq(p);
4394 /*
4395 * If we're the only runnable task on the rq and target rq also
4396 * has only one task, there's absolutely no point in yielding.
4397 */
4398 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4399 yielded = -ESRCH;
4400 goto out_irq;
4401 }
4402
4403 double_rq_lock(rq, p_rq);
4404 while (task_rq(p) != p_rq) {
4405 double_rq_unlock(rq, p_rq);
4406 goto again;
4407 }
4408
4409 if (!curr->sched_class->yield_to_task)
4410 goto out_unlock;
4411
4412 if (curr->sched_class != p->sched_class)
4413 goto out_unlock;
4414
4415 if (task_running(p_rq, p) || p->state)
4416 goto out_unlock;
4417
4418 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4419 if (yielded) {
4420 schedstat_inc(rq, yld_count);
4421 /*
4422 * Make p's CPU reschedule; pick_next_entity takes care of
4423 * fairness.
4424 */
4425 if (preempt && rq != p_rq)
4426 resched_task(p_rq->curr);
4427 }
4428
4429 out_unlock:
4430 double_rq_unlock(rq, p_rq);
4431 out_irq:
4432 local_irq_restore(flags);
4433
4434 if (yielded > 0)
4435 schedule();
4436
4437 return yielded;
4438 }
4439 EXPORT_SYMBOL_GPL(yield_to);
4440
4441 /*
4442 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4443 * that process accounting knows that this is a task in IO wait state.
4444 */
4445 void __sched io_schedule(void)
4446 {
4447 struct rq *rq = raw_rq();
4448
4449 delayacct_blkio_start();
4450 atomic_inc(&rq->nr_iowait);
4451 blk_flush_plug(current);
4452 current->in_iowait = 1;
4453 schedule();
4454 current->in_iowait = 0;
4455 atomic_dec(&rq->nr_iowait);
4456 delayacct_blkio_end();
4457 }
4458 EXPORT_SYMBOL(io_schedule);
4459
4460 long __sched io_schedule_timeout(long timeout)
4461 {
4462 struct rq *rq = raw_rq();
4463 long ret;
4464
4465 delayacct_blkio_start();
4466 atomic_inc(&rq->nr_iowait);
4467 blk_flush_plug(current);
4468 current->in_iowait = 1;
4469 ret = schedule_timeout(timeout);
4470 current->in_iowait = 0;
4471 atomic_dec(&rq->nr_iowait);
4472 delayacct_blkio_end();
4473 return ret;
4474 }
4475
4476 /**
4477 * sys_sched_get_priority_max - return maximum RT priority.
4478 * @policy: scheduling class.
4479 *
4480 * this syscall returns the maximum rt_priority that can be used
4481 * by a given scheduling class.
4482 */
4483 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4484 {
4485 int ret = -EINVAL;
4486
4487 switch (policy) {
4488 case SCHED_FIFO:
4489 case SCHED_RR:
4490 ret = MAX_USER_RT_PRIO-1;
4491 break;
4492 case SCHED_NORMAL:
4493 case SCHED_BATCH:
4494 case SCHED_IDLE:
4495 ret = 0;
4496 break;
4497 }
4498 return ret;
4499 }
4500
4501 /**
4502 * sys_sched_get_priority_min - return minimum RT priority.
4503 * @policy: scheduling class.
4504 *
4505 * this syscall returns the minimum rt_priority that can be used
4506 * by a given scheduling class.
4507 */
4508 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4509 {
4510 int ret = -EINVAL;
4511
4512 switch (policy) {
4513 case SCHED_FIFO:
4514 case SCHED_RR:
4515 ret = 1;
4516 break;
4517 case SCHED_NORMAL:
4518 case SCHED_BATCH:
4519 case SCHED_IDLE:
4520 ret = 0;
4521 }
4522 return ret;
4523 }
4524
4525 /**
4526 * sys_sched_rr_get_interval - return the default timeslice of a process.
4527 * @pid: pid of the process.
4528 * @interval: userspace pointer to the timeslice value.
4529 *
4530 * this syscall writes the default timeslice value of a given process
4531 * into the user-space timespec buffer. A value of '0' means infinity.
4532 */
4533 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4534 struct timespec __user *, interval)
4535 {
4536 struct task_struct *p;
4537 unsigned int time_slice;
4538 unsigned long flags;
4539 struct rq *rq;
4540 int retval;
4541 struct timespec t;
4542
4543 if (pid < 0)
4544 return -EINVAL;
4545
4546 retval = -ESRCH;
4547 rcu_read_lock();
4548 p = find_process_by_pid(pid);
4549 if (!p)
4550 goto out_unlock;
4551
4552 retval = security_task_getscheduler(p);
4553 if (retval)
4554 goto out_unlock;
4555
4556 rq = task_rq_lock(p, &flags);
4557 time_slice = p->sched_class->get_rr_interval(rq, p);
4558 task_rq_unlock(rq, p, &flags);
4559
4560 rcu_read_unlock();
4561 jiffies_to_timespec(time_slice, &t);
4562 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4563 return retval;
4564
4565 out_unlock:
4566 rcu_read_unlock();
4567 return retval;
4568 }
4569
4570 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4571
4572 void sched_show_task(struct task_struct *p)
4573 {
4574 unsigned long free = 0;
4575 int ppid;
4576 unsigned state;
4577
4578 state = p->state ? __ffs(p->state) + 1 : 0;
4579 printk(KERN_INFO "%-15.15s %c", p->comm,
4580 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4581 #if BITS_PER_LONG == 32
4582 if (state == TASK_RUNNING)
4583 printk(KERN_CONT " running ");
4584 else
4585 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4586 #else
4587 if (state == TASK_RUNNING)
4588 printk(KERN_CONT " running task ");
4589 else
4590 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4591 #endif
4592 #ifdef CONFIG_DEBUG_STACK_USAGE
4593 free = stack_not_used(p);
4594 #endif
4595 rcu_read_lock();
4596 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4597 rcu_read_unlock();
4598 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4599 task_pid_nr(p), ppid,
4600 (unsigned long)task_thread_info(p)->flags);
4601
4602 show_stack(p, NULL);
4603 }
4604
4605 void show_state_filter(unsigned long state_filter)
4606 {
4607 struct task_struct *g, *p;
4608
4609 #if BITS_PER_LONG == 32
4610 printk(KERN_INFO
4611 " task PC stack pid father\n");
4612 #else
4613 printk(KERN_INFO
4614 " task PC stack pid father\n");
4615 #endif
4616 rcu_read_lock();
4617 do_each_thread(g, p) {
4618 /*
4619 * reset the NMI-timeout, listing all files on a slow
4620 * console might take a lot of time:
4621 */
4622 touch_nmi_watchdog();
4623 if (!state_filter || (p->state & state_filter))
4624 sched_show_task(p);
4625 } while_each_thread(g, p);
4626
4627 touch_all_softlockup_watchdogs();
4628
4629 #ifdef CONFIG_SCHED_DEBUG
4630 sysrq_sched_debug_show();
4631 #endif
4632 rcu_read_unlock();
4633 /*
4634 * Only show locks if all tasks are dumped:
4635 */
4636 if (!state_filter)
4637 debug_show_all_locks();
4638 }
4639
4640 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4641 {
4642 idle->sched_class = &idle_sched_class;
4643 }
4644
4645 /**
4646 * init_idle - set up an idle thread for a given CPU
4647 * @idle: task in question
4648 * @cpu: cpu the idle task belongs to
4649 *
4650 * NOTE: this function does not set the idle thread's NEED_RESCHED
4651 * flag, to make booting more robust.
4652 */
4653 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4654 {
4655 struct rq *rq = cpu_rq(cpu);
4656 unsigned long flags;
4657
4658 raw_spin_lock_irqsave(&rq->lock, flags);
4659
4660 __sched_fork(idle);
4661 idle->state = TASK_RUNNING;
4662 idle->se.exec_start = sched_clock();
4663
4664 do_set_cpus_allowed(idle, cpumask_of(cpu));
4665 /*
4666 * We're having a chicken and egg problem, even though we are
4667 * holding rq->lock, the cpu isn't yet set to this cpu so the
4668 * lockdep check in task_group() will fail.
4669 *
4670 * Similar case to sched_fork(). / Alternatively we could
4671 * use task_rq_lock() here and obtain the other rq->lock.
4672 *
4673 * Silence PROVE_RCU
4674 */
4675 rcu_read_lock();
4676 __set_task_cpu(idle, cpu);
4677 rcu_read_unlock();
4678
4679 rq->curr = rq->idle = idle;
4680 #if defined(CONFIG_SMP)
4681 idle->on_cpu = 1;
4682 #endif
4683 raw_spin_unlock_irqrestore(&rq->lock, flags);
4684
4685 /* Set the preempt count _outside_ the spinlocks! */
4686 task_thread_info(idle)->preempt_count = 0;
4687
4688 /*
4689 * The idle tasks have their own, simple scheduling class:
4690 */
4691 idle->sched_class = &idle_sched_class;
4692 ftrace_graph_init_idle_task(idle, cpu);
4693 vtime_init_idle(idle);
4694 #if defined(CONFIG_SMP)
4695 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4696 #endif
4697 }
4698
4699 #ifdef CONFIG_SMP
4700 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4701 {
4702 if (p->sched_class && p->sched_class->set_cpus_allowed)
4703 p->sched_class->set_cpus_allowed(p, new_mask);
4704
4705 cpumask_copy(&p->cpus_allowed, new_mask);
4706 p->nr_cpus_allowed = cpumask_weight(new_mask);
4707 }
4708
4709 /*
4710 * This is how migration works:
4711 *
4712 * 1) we invoke migration_cpu_stop() on the target CPU using
4713 * stop_one_cpu().
4714 * 2) stopper starts to run (implicitly forcing the migrated thread
4715 * off the CPU)
4716 * 3) it checks whether the migrated task is still in the wrong runqueue.
4717 * 4) if it's in the wrong runqueue then the migration thread removes
4718 * it and puts it into the right queue.
4719 * 5) stopper completes and stop_one_cpu() returns and the migration
4720 * is done.
4721 */
4722
4723 /*
4724 * Change a given task's CPU affinity. Migrate the thread to a
4725 * proper CPU and schedule it away if the CPU it's executing on
4726 * is removed from the allowed bitmask.
4727 *
4728 * NOTE: the caller must have a valid reference to the task, the
4729 * task must not exit() & deallocate itself prematurely. The
4730 * call is not atomic; no spinlocks may be held.
4731 */
4732 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4733 {
4734 unsigned long flags;
4735 struct rq *rq;
4736 unsigned int dest_cpu;
4737 int ret = 0;
4738
4739 rq = task_rq_lock(p, &flags);
4740
4741 if (cpumask_equal(&p->cpus_allowed, new_mask))
4742 goto out;
4743
4744 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4745 ret = -EINVAL;
4746 goto out;
4747 }
4748
4749 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4750 ret = -EINVAL;
4751 goto out;
4752 }
4753
4754 do_set_cpus_allowed(p, new_mask);
4755
4756 /* Can the task run on the task's current CPU? If so, we're done */
4757 if (cpumask_test_cpu(task_cpu(p), new_mask))
4758 goto out;
4759
4760 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4761 if (p->on_rq) {
4762 struct migration_arg arg = { p, dest_cpu };
4763 /* Need help from migration thread: drop lock and wait. */
4764 task_rq_unlock(rq, p, &flags);
4765 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4766 tlb_migrate_finish(p->mm);
4767 return 0;
4768 }
4769 out:
4770 task_rq_unlock(rq, p, &flags);
4771
4772 return ret;
4773 }
4774 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4775
4776 /*
4777 * Move (not current) task off this cpu, onto dest cpu. We're doing
4778 * this because either it can't run here any more (set_cpus_allowed()
4779 * away from this CPU, or CPU going down), or because we're
4780 * attempting to rebalance this task on exec (sched_exec).
4781 *
4782 * So we race with normal scheduler movements, but that's OK, as long
4783 * as the task is no longer on this CPU.
4784 *
4785 * Returns non-zero if task was successfully migrated.
4786 */
4787 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4788 {
4789 struct rq *rq_dest, *rq_src;
4790 int ret = 0;
4791
4792 if (unlikely(!cpu_active(dest_cpu)))
4793 return ret;
4794
4795 rq_src = cpu_rq(src_cpu);
4796 rq_dest = cpu_rq(dest_cpu);
4797
4798 raw_spin_lock(&p->pi_lock);
4799 double_rq_lock(rq_src, rq_dest);
4800 /* Already moved. */
4801 if (task_cpu(p) != src_cpu)
4802 goto done;
4803 /* Affinity changed (again). */
4804 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4805 goto fail;
4806
4807 /*
4808 * If we're not on a rq, the next wake-up will ensure we're
4809 * placed properly.
4810 */
4811 if (p->on_rq) {
4812 dequeue_task(rq_src, p, 0);
4813 set_task_cpu(p, dest_cpu);
4814 enqueue_task(rq_dest, p, 0);
4815 check_preempt_curr(rq_dest, p, 0);
4816 }
4817 done:
4818 ret = 1;
4819 fail:
4820 double_rq_unlock(rq_src, rq_dest);
4821 raw_spin_unlock(&p->pi_lock);
4822 return ret;
4823 }
4824
4825 /*
4826 * migration_cpu_stop - this will be executed by a highprio stopper thread
4827 * and performs thread migration by bumping thread off CPU then
4828 * 'pushing' onto another runqueue.
4829 */
4830 static int migration_cpu_stop(void *data)
4831 {
4832 struct migration_arg *arg = data;
4833
4834 /*
4835 * The original target cpu might have gone down and we might
4836 * be on another cpu but it doesn't matter.
4837 */
4838 local_irq_disable();
4839 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4840 local_irq_enable();
4841 return 0;
4842 }
4843
4844 #ifdef CONFIG_HOTPLUG_CPU
4845
4846 /*
4847 * Ensures that the idle task is using init_mm right before its cpu goes
4848 * offline.
4849 */
4850 void idle_task_exit(void)
4851 {
4852 struct mm_struct *mm = current->active_mm;
4853
4854 BUG_ON(cpu_online(smp_processor_id()));
4855
4856 if (mm != &init_mm)
4857 switch_mm(mm, &init_mm, current);
4858 mmdrop(mm);
4859 }
4860
4861 /*
4862 * Since this CPU is going 'away' for a while, fold any nr_active delta
4863 * we might have. Assumes we're called after migrate_tasks() so that the
4864 * nr_active count is stable.
4865 *
4866 * Also see the comment "Global load-average calculations".
4867 */
4868 static void calc_load_migrate(struct rq *rq)
4869 {
4870 long delta = calc_load_fold_active(rq);
4871 if (delta)
4872 atomic_long_add(delta, &calc_load_tasks);
4873 }
4874
4875 /*
4876 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4877 * try_to_wake_up()->select_task_rq().
4878 *
4879 * Called with rq->lock held even though we'er in stop_machine() and
4880 * there's no concurrency possible, we hold the required locks anyway
4881 * because of lock validation efforts.
4882 */
4883 static void migrate_tasks(unsigned int dead_cpu)
4884 {
4885 struct rq *rq = cpu_rq(dead_cpu);
4886 struct task_struct *next, *stop = rq->stop;
4887 int dest_cpu;
4888
4889 /*
4890 * Fudge the rq selection such that the below task selection loop
4891 * doesn't get stuck on the currently eligible stop task.
4892 *
4893 * We're currently inside stop_machine() and the rq is either stuck
4894 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4895 * either way we should never end up calling schedule() until we're
4896 * done here.
4897 */
4898 rq->stop = NULL;
4899
4900 for ( ; ; ) {
4901 /*
4902 * There's this thread running, bail when that's the only
4903 * remaining thread.
4904 */
4905 if (rq->nr_running == 1)
4906 break;
4907
4908 next = pick_next_task(rq);
4909 BUG_ON(!next);
4910 next->sched_class->put_prev_task(rq, next);
4911
4912 /* Find suitable destination for @next, with force if needed. */
4913 dest_cpu = select_fallback_rq(dead_cpu, next);
4914 raw_spin_unlock(&rq->lock);
4915
4916 __migrate_task(next, dead_cpu, dest_cpu);
4917
4918 raw_spin_lock(&rq->lock);
4919 }
4920
4921 rq->stop = stop;
4922 }
4923
4924 #endif /* CONFIG_HOTPLUG_CPU */
4925
4926 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4927
4928 static struct ctl_table sd_ctl_dir[] = {
4929 {
4930 .procname = "sched_domain",
4931 .mode = 0555,
4932 },
4933 {}
4934 };
4935
4936 static struct ctl_table sd_ctl_root[] = {
4937 {
4938 .procname = "kernel",
4939 .mode = 0555,
4940 .child = sd_ctl_dir,
4941 },
4942 {}
4943 };
4944
4945 static struct ctl_table *sd_alloc_ctl_entry(int n)
4946 {
4947 struct ctl_table *entry =
4948 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4949
4950 return entry;
4951 }
4952
4953 static void sd_free_ctl_entry(struct ctl_table **tablep)
4954 {
4955 struct ctl_table *entry;
4956
4957 /*
4958 * In the intermediate directories, both the child directory and
4959 * procname are dynamically allocated and could fail but the mode
4960 * will always be set. In the lowest directory the names are
4961 * static strings and all have proc handlers.
4962 */
4963 for (entry = *tablep; entry->mode; entry++) {
4964 if (entry->child)
4965 sd_free_ctl_entry(&entry->child);
4966 if (entry->proc_handler == NULL)
4967 kfree(entry->procname);
4968 }
4969
4970 kfree(*tablep);
4971 *tablep = NULL;
4972 }
4973
4974 static int min_load_idx = 0;
4975 static int max_load_idx = CPU_LOAD_IDX_MAX;
4976
4977 static void
4978 set_table_entry(struct ctl_table *entry,
4979 const char *procname, void *data, int maxlen,
4980 umode_t mode, proc_handler *proc_handler,
4981 bool load_idx)
4982 {
4983 entry->procname = procname;
4984 entry->data = data;
4985 entry->maxlen = maxlen;
4986 entry->mode = mode;
4987 entry->proc_handler = proc_handler;
4988
4989 if (load_idx) {
4990 entry->extra1 = &min_load_idx;
4991 entry->extra2 = &max_load_idx;
4992 }
4993 }
4994
4995 static struct ctl_table *
4996 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4997 {
4998 struct ctl_table *table = sd_alloc_ctl_entry(13);
4999
5000 if (table == NULL)
5001 return NULL;
5002
5003 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5004 sizeof(long), 0644, proc_doulongvec_minmax, false);
5005 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5006 sizeof(long), 0644, proc_doulongvec_minmax, false);
5007 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5008 sizeof(int), 0644, proc_dointvec_minmax, true);
5009 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5010 sizeof(int), 0644, proc_dointvec_minmax, true);
5011 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5012 sizeof(int), 0644, proc_dointvec_minmax, true);
5013 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5014 sizeof(int), 0644, proc_dointvec_minmax, true);
5015 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5016 sizeof(int), 0644, proc_dointvec_minmax, true);
5017 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5018 sizeof(int), 0644, proc_dointvec_minmax, false);
5019 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5020 sizeof(int), 0644, proc_dointvec_minmax, false);
5021 set_table_entry(&table[9], "cache_nice_tries",
5022 &sd->cache_nice_tries,
5023 sizeof(int), 0644, proc_dointvec_minmax, false);
5024 set_table_entry(&table[10], "flags", &sd->flags,
5025 sizeof(int), 0644, proc_dointvec_minmax, false);
5026 set_table_entry(&table[11], "name", sd->name,
5027 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5028 /* &table[12] is terminator */
5029
5030 return table;
5031 }
5032
5033 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5034 {
5035 struct ctl_table *entry, *table;
5036 struct sched_domain *sd;
5037 int domain_num = 0, i;
5038 char buf[32];
5039
5040 for_each_domain(cpu, sd)
5041 domain_num++;
5042 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5043 if (table == NULL)
5044 return NULL;
5045
5046 i = 0;
5047 for_each_domain(cpu, sd) {
5048 snprintf(buf, 32, "domain%d", i);
5049 entry->procname = kstrdup(buf, GFP_KERNEL);
5050 entry->mode = 0555;
5051 entry->child = sd_alloc_ctl_domain_table(sd);
5052 entry++;
5053 i++;
5054 }
5055 return table;
5056 }
5057
5058 static struct ctl_table_header *sd_sysctl_header;
5059 static void register_sched_domain_sysctl(void)
5060 {
5061 int i, cpu_num = num_possible_cpus();
5062 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5063 char buf[32];
5064
5065 WARN_ON(sd_ctl_dir[0].child);
5066 sd_ctl_dir[0].child = entry;
5067
5068 if (entry == NULL)
5069 return;
5070
5071 for_each_possible_cpu(i) {
5072 snprintf(buf, 32, "cpu%d", i);
5073 entry->procname = kstrdup(buf, GFP_KERNEL);
5074 entry->mode = 0555;
5075 entry->child = sd_alloc_ctl_cpu_table(i);
5076 entry++;
5077 }
5078
5079 WARN_ON(sd_sysctl_header);
5080 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5081 }
5082
5083 /* may be called multiple times per register */
5084 static void unregister_sched_domain_sysctl(void)
5085 {
5086 if (sd_sysctl_header)
5087 unregister_sysctl_table(sd_sysctl_header);
5088 sd_sysctl_header = NULL;
5089 if (sd_ctl_dir[0].child)
5090 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5091 }
5092 #else
5093 static void register_sched_domain_sysctl(void)
5094 {
5095 }
5096 static void unregister_sched_domain_sysctl(void)
5097 {
5098 }
5099 #endif
5100
5101 static void set_rq_online(struct rq *rq)
5102 {
5103 if (!rq->online) {
5104 const struct sched_class *class;
5105
5106 cpumask_set_cpu(rq->cpu, rq->rd->online);
5107 rq->online = 1;
5108
5109 for_each_class(class) {
5110 if (class->rq_online)
5111 class->rq_online(rq);
5112 }
5113 }
5114 }
5115
5116 static void set_rq_offline(struct rq *rq)
5117 {
5118 if (rq->online) {
5119 const struct sched_class *class;
5120
5121 for_each_class(class) {
5122 if (class->rq_offline)
5123 class->rq_offline(rq);
5124 }
5125
5126 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5127 rq->online = 0;
5128 }
5129 }
5130
5131 /*
5132 * migration_call - callback that gets triggered when a CPU is added.
5133 * Here we can start up the necessary migration thread for the new CPU.
5134 */
5135 static int __cpuinit
5136 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5137 {
5138 int cpu = (long)hcpu;
5139 unsigned long flags;
5140 struct rq *rq = cpu_rq(cpu);
5141
5142 switch (action & ~CPU_TASKS_FROZEN) {
5143
5144 case CPU_UP_PREPARE:
5145 rq->calc_load_update = calc_load_update;
5146 break;
5147
5148 case CPU_ONLINE:
5149 /* Update our root-domain */
5150 raw_spin_lock_irqsave(&rq->lock, flags);
5151 if (rq->rd) {
5152 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5153
5154 set_rq_online(rq);
5155 }
5156 raw_spin_unlock_irqrestore(&rq->lock, flags);
5157 break;
5158
5159 #ifdef CONFIG_HOTPLUG_CPU
5160 case CPU_DYING:
5161 sched_ttwu_pending();
5162 /* Update our root-domain */
5163 raw_spin_lock_irqsave(&rq->lock, flags);
5164 if (rq->rd) {
5165 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5166 set_rq_offline(rq);
5167 }
5168 migrate_tasks(cpu);
5169 BUG_ON(rq->nr_running != 1); /* the migration thread */
5170 raw_spin_unlock_irqrestore(&rq->lock, flags);
5171 break;
5172
5173 case CPU_DEAD:
5174 calc_load_migrate(rq);
5175 break;
5176 #endif
5177 }
5178
5179 update_max_interval();
5180
5181 return NOTIFY_OK;
5182 }
5183
5184 /*
5185 * Register at high priority so that task migration (migrate_all_tasks)
5186 * happens before everything else. This has to be lower priority than
5187 * the notifier in the perf_event subsystem, though.
5188 */
5189 static struct notifier_block __cpuinitdata migration_notifier = {
5190 .notifier_call = migration_call,
5191 .priority = CPU_PRI_MIGRATION,
5192 };
5193
5194 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5195 unsigned long action, void *hcpu)
5196 {
5197 switch (action & ~CPU_TASKS_FROZEN) {
5198 case CPU_STARTING:
5199 case CPU_DOWN_FAILED:
5200 set_cpu_active((long)hcpu, true);
5201 return NOTIFY_OK;
5202 default:
5203 return NOTIFY_DONE;
5204 }
5205 }
5206
5207 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5208 unsigned long action, void *hcpu)
5209 {
5210 switch (action & ~CPU_TASKS_FROZEN) {
5211 case CPU_DOWN_PREPARE:
5212 set_cpu_active((long)hcpu, false);
5213 return NOTIFY_OK;
5214 default:
5215 return NOTIFY_DONE;
5216 }
5217 }
5218
5219 static int __init migration_init(void)
5220 {
5221 void *cpu = (void *)(long)smp_processor_id();
5222 int err;
5223
5224 /* Initialize migration for the boot CPU */
5225 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5226 BUG_ON(err == NOTIFY_BAD);
5227 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5228 register_cpu_notifier(&migration_notifier);
5229
5230 /* Register cpu active notifiers */
5231 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5232 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5233
5234 return 0;
5235 }
5236 early_initcall(migration_init);
5237 #endif
5238
5239 #ifdef CONFIG_SMP
5240
5241 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5242
5243 #ifdef CONFIG_SCHED_DEBUG
5244
5245 static __read_mostly int sched_debug_enabled;
5246
5247 static int __init sched_debug_setup(char *str)
5248 {
5249 sched_debug_enabled = 1;
5250
5251 return 0;
5252 }
5253 early_param("sched_debug", sched_debug_setup);
5254
5255 static inline bool sched_debug(void)
5256 {
5257 return sched_debug_enabled;
5258 }
5259
5260 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5261 struct cpumask *groupmask)
5262 {
5263 struct sched_group *group = sd->groups;
5264 char str[256];
5265
5266 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5267 cpumask_clear(groupmask);
5268
5269 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5270
5271 if (!(sd->flags & SD_LOAD_BALANCE)) {
5272 printk("does not load-balance\n");
5273 if (sd->parent)
5274 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5275 " has parent");
5276 return -1;
5277 }
5278
5279 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5280
5281 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5282 printk(KERN_ERR "ERROR: domain->span does not contain "
5283 "CPU%d\n", cpu);
5284 }
5285 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5286 printk(KERN_ERR "ERROR: domain->groups does not contain"
5287 " CPU%d\n", cpu);
5288 }
5289
5290 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5291 do {
5292 if (!group) {
5293 printk("\n");
5294 printk(KERN_ERR "ERROR: group is NULL\n");
5295 break;
5296 }
5297
5298 /*
5299 * Even though we initialize ->power to something semi-sane,
5300 * we leave power_orig unset. This allows us to detect if
5301 * domain iteration is still funny without causing /0 traps.
5302 */
5303 if (!group->sgp->power_orig) {
5304 printk(KERN_CONT "\n");
5305 printk(KERN_ERR "ERROR: domain->cpu_power not "
5306 "set\n");
5307 break;
5308 }
5309
5310 if (!cpumask_weight(sched_group_cpus(group))) {
5311 printk(KERN_CONT "\n");
5312 printk(KERN_ERR "ERROR: empty group\n");
5313 break;
5314 }
5315
5316 if (!(sd->flags & SD_OVERLAP) &&
5317 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5318 printk(KERN_CONT "\n");
5319 printk(KERN_ERR "ERROR: repeated CPUs\n");
5320 break;
5321 }
5322
5323 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5324
5325 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5326
5327 printk(KERN_CONT " %s", str);
5328 if (group->sgp->power != SCHED_POWER_SCALE) {
5329 printk(KERN_CONT " (cpu_power = %d)",
5330 group->sgp->power);
5331 }
5332
5333 group = group->next;
5334 } while (group != sd->groups);
5335 printk(KERN_CONT "\n");
5336
5337 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5338 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5339
5340 if (sd->parent &&
5341 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5342 printk(KERN_ERR "ERROR: parent span is not a superset "
5343 "of domain->span\n");
5344 return 0;
5345 }
5346
5347 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5348 {
5349 int level = 0;
5350
5351 if (!sched_debug_enabled)
5352 return;
5353
5354 if (!sd) {
5355 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5356 return;
5357 }
5358
5359 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5360
5361 for (;;) {
5362 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5363 break;
5364 level++;
5365 sd = sd->parent;
5366 if (!sd)
5367 break;
5368 }
5369 }
5370 #else /* !CONFIG_SCHED_DEBUG */
5371 # define sched_domain_debug(sd, cpu) do { } while (0)
5372 static inline bool sched_debug(void)
5373 {
5374 return false;
5375 }
5376 #endif /* CONFIG_SCHED_DEBUG */
5377
5378 static int sd_degenerate(struct sched_domain *sd)
5379 {
5380 if (cpumask_weight(sched_domain_span(sd)) == 1)
5381 return 1;
5382
5383 /* Following flags need at least 2 groups */
5384 if (sd->flags & (SD_LOAD_BALANCE |
5385 SD_BALANCE_NEWIDLE |
5386 SD_BALANCE_FORK |
5387 SD_BALANCE_EXEC |
5388 SD_SHARE_CPUPOWER |
5389 SD_SHARE_PKG_RESOURCES)) {
5390 if (sd->groups != sd->groups->next)
5391 return 0;
5392 }
5393
5394 /* Following flags don't use groups */
5395 if (sd->flags & (SD_WAKE_AFFINE))
5396 return 0;
5397
5398 return 1;
5399 }
5400
5401 static int
5402 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5403 {
5404 unsigned long cflags = sd->flags, pflags = parent->flags;
5405
5406 if (sd_degenerate(parent))
5407 return 1;
5408
5409 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5410 return 0;
5411
5412 /* Flags needing groups don't count if only 1 group in parent */
5413 if (parent->groups == parent->groups->next) {
5414 pflags &= ~(SD_LOAD_BALANCE |
5415 SD_BALANCE_NEWIDLE |
5416 SD_BALANCE_FORK |
5417 SD_BALANCE_EXEC |
5418 SD_SHARE_CPUPOWER |
5419 SD_SHARE_PKG_RESOURCES);
5420 if (nr_node_ids == 1)
5421 pflags &= ~SD_SERIALIZE;
5422 }
5423 if (~cflags & pflags)
5424 return 0;
5425
5426 return 1;
5427 }
5428
5429 static void free_rootdomain(struct rcu_head *rcu)
5430 {
5431 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5432
5433 cpupri_cleanup(&rd->cpupri);
5434 free_cpumask_var(rd->rto_mask);
5435 free_cpumask_var(rd->online);
5436 free_cpumask_var(rd->span);
5437 kfree(rd);
5438 }
5439
5440 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5441 {
5442 struct root_domain *old_rd = NULL;
5443 unsigned long flags;
5444
5445 raw_spin_lock_irqsave(&rq->lock, flags);
5446
5447 if (rq->rd) {
5448 old_rd = rq->rd;
5449
5450 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5451 set_rq_offline(rq);
5452
5453 cpumask_clear_cpu(rq->cpu, old_rd->span);
5454
5455 /*
5456 * If we dont want to free the old_rt yet then
5457 * set old_rd to NULL to skip the freeing later
5458 * in this function:
5459 */
5460 if (!atomic_dec_and_test(&old_rd->refcount))
5461 old_rd = NULL;
5462 }
5463
5464 atomic_inc(&rd->refcount);
5465 rq->rd = rd;
5466
5467 cpumask_set_cpu(rq->cpu, rd->span);
5468 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5469 set_rq_online(rq);
5470
5471 raw_spin_unlock_irqrestore(&rq->lock, flags);
5472
5473 if (old_rd)
5474 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5475 }
5476
5477 static int init_rootdomain(struct root_domain *rd)
5478 {
5479 memset(rd, 0, sizeof(*rd));
5480
5481 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5482 goto out;
5483 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5484 goto free_span;
5485 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5486 goto free_online;
5487
5488 if (cpupri_init(&rd->cpupri) != 0)
5489 goto free_rto_mask;
5490 return 0;
5491
5492 free_rto_mask:
5493 free_cpumask_var(rd->rto_mask);
5494 free_online:
5495 free_cpumask_var(rd->online);
5496 free_span:
5497 free_cpumask_var(rd->span);
5498 out:
5499 return -ENOMEM;
5500 }
5501
5502 /*
5503 * By default the system creates a single root-domain with all cpus as
5504 * members (mimicking the global state we have today).
5505 */
5506 struct root_domain def_root_domain;
5507
5508 static void init_defrootdomain(void)
5509 {
5510 init_rootdomain(&def_root_domain);
5511
5512 atomic_set(&def_root_domain.refcount, 1);
5513 }
5514
5515 static struct root_domain *alloc_rootdomain(void)
5516 {
5517 struct root_domain *rd;
5518
5519 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5520 if (!rd)
5521 return NULL;
5522
5523 if (init_rootdomain(rd) != 0) {
5524 kfree(rd);
5525 return NULL;
5526 }
5527
5528 return rd;
5529 }
5530
5531 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5532 {
5533 struct sched_group *tmp, *first;
5534
5535 if (!sg)
5536 return;
5537
5538 first = sg;
5539 do {
5540 tmp = sg->next;
5541
5542 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5543 kfree(sg->sgp);
5544
5545 kfree(sg);
5546 sg = tmp;
5547 } while (sg != first);
5548 }
5549
5550 static void free_sched_domain(struct rcu_head *rcu)
5551 {
5552 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5553
5554 /*
5555 * If its an overlapping domain it has private groups, iterate and
5556 * nuke them all.
5557 */
5558 if (sd->flags & SD_OVERLAP) {
5559 free_sched_groups(sd->groups, 1);
5560 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5561 kfree(sd->groups->sgp);
5562 kfree(sd->groups);
5563 }
5564 kfree(sd);
5565 }
5566
5567 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5568 {
5569 call_rcu(&sd->rcu, free_sched_domain);
5570 }
5571
5572 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5573 {
5574 for (; sd; sd = sd->parent)
5575 destroy_sched_domain(sd, cpu);
5576 }
5577
5578 /*
5579 * Keep a special pointer to the highest sched_domain that has
5580 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5581 * allows us to avoid some pointer chasing select_idle_sibling().
5582 *
5583 * Also keep a unique ID per domain (we use the first cpu number in
5584 * the cpumask of the domain), this allows us to quickly tell if
5585 * two cpus are in the same cache domain, see cpus_share_cache().
5586 */
5587 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5588 DEFINE_PER_CPU(int, sd_llc_id);
5589
5590 static void update_top_cache_domain(int cpu)
5591 {
5592 struct sched_domain *sd;
5593 int id = cpu;
5594
5595 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5596 if (sd)
5597 id = cpumask_first(sched_domain_span(sd));
5598
5599 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5600 per_cpu(sd_llc_id, cpu) = id;
5601 }
5602
5603 /*
5604 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5605 * hold the hotplug lock.
5606 */
5607 static void
5608 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5609 {
5610 struct rq *rq = cpu_rq(cpu);
5611 struct sched_domain *tmp;
5612
5613 /* Remove the sched domains which do not contribute to scheduling. */
5614 for (tmp = sd; tmp; ) {
5615 struct sched_domain *parent = tmp->parent;
5616 if (!parent)
5617 break;
5618
5619 if (sd_parent_degenerate(tmp, parent)) {
5620 tmp->parent = parent->parent;
5621 if (parent->parent)
5622 parent->parent->child = tmp;
5623 destroy_sched_domain(parent, cpu);
5624 } else
5625 tmp = tmp->parent;
5626 }
5627
5628 if (sd && sd_degenerate(sd)) {
5629 tmp = sd;
5630 sd = sd->parent;
5631 destroy_sched_domain(tmp, cpu);
5632 if (sd)
5633 sd->child = NULL;
5634 }
5635
5636 sched_domain_debug(sd, cpu);
5637
5638 rq_attach_root(rq, rd);
5639 tmp = rq->sd;
5640 rcu_assign_pointer(rq->sd, sd);
5641 destroy_sched_domains(tmp, cpu);
5642
5643 update_top_cache_domain(cpu);
5644 }
5645
5646 /* cpus with isolated domains */
5647 static cpumask_var_t cpu_isolated_map;
5648
5649 /* Setup the mask of cpus configured for isolated domains */
5650 static int __init isolated_cpu_setup(char *str)
5651 {
5652 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5653 cpulist_parse(str, cpu_isolated_map);
5654 return 1;
5655 }
5656
5657 __setup("isolcpus=", isolated_cpu_setup);
5658
5659 static const struct cpumask *cpu_cpu_mask(int cpu)
5660 {
5661 return cpumask_of_node(cpu_to_node(cpu));
5662 }
5663
5664 struct sd_data {
5665 struct sched_domain **__percpu sd;
5666 struct sched_group **__percpu sg;
5667 struct sched_group_power **__percpu sgp;
5668 };
5669
5670 struct s_data {
5671 struct sched_domain ** __percpu sd;
5672 struct root_domain *rd;
5673 };
5674
5675 enum s_alloc {
5676 sa_rootdomain,
5677 sa_sd,
5678 sa_sd_storage,
5679 sa_none,
5680 };
5681
5682 struct sched_domain_topology_level;
5683
5684 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5685 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5686
5687 #define SDTL_OVERLAP 0x01
5688
5689 struct sched_domain_topology_level {
5690 sched_domain_init_f init;
5691 sched_domain_mask_f mask;
5692 int flags;
5693 int numa_level;
5694 struct sd_data data;
5695 };
5696
5697 /*
5698 * Build an iteration mask that can exclude certain CPUs from the upwards
5699 * domain traversal.
5700 *
5701 * Asymmetric node setups can result in situations where the domain tree is of
5702 * unequal depth, make sure to skip domains that already cover the entire
5703 * range.
5704 *
5705 * In that case build_sched_domains() will have terminated the iteration early
5706 * and our sibling sd spans will be empty. Domains should always include the
5707 * cpu they're built on, so check that.
5708 *
5709 */
5710 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5711 {
5712 const struct cpumask *span = sched_domain_span(sd);
5713 struct sd_data *sdd = sd->private;
5714 struct sched_domain *sibling;
5715 int i;
5716
5717 for_each_cpu(i, span) {
5718 sibling = *per_cpu_ptr(sdd->sd, i);
5719 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5720 continue;
5721
5722 cpumask_set_cpu(i, sched_group_mask(sg));
5723 }
5724 }
5725
5726 /*
5727 * Return the canonical balance cpu for this group, this is the first cpu
5728 * of this group that's also in the iteration mask.
5729 */
5730 int group_balance_cpu(struct sched_group *sg)
5731 {
5732 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5733 }
5734
5735 static int
5736 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5737 {
5738 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5739 const struct cpumask *span = sched_domain_span(sd);
5740 struct cpumask *covered = sched_domains_tmpmask;
5741 struct sd_data *sdd = sd->private;
5742 struct sched_domain *child;
5743 int i;
5744
5745 cpumask_clear(covered);
5746
5747 for_each_cpu(i, span) {
5748 struct cpumask *sg_span;
5749
5750 if (cpumask_test_cpu(i, covered))
5751 continue;
5752
5753 child = *per_cpu_ptr(sdd->sd, i);
5754
5755 /* See the comment near build_group_mask(). */
5756 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5757 continue;
5758
5759 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5760 GFP_KERNEL, cpu_to_node(cpu));
5761
5762 if (!sg)
5763 goto fail;
5764
5765 sg_span = sched_group_cpus(sg);
5766 if (child->child) {
5767 child = child->child;
5768 cpumask_copy(sg_span, sched_domain_span(child));
5769 } else
5770 cpumask_set_cpu(i, sg_span);
5771
5772 cpumask_or(covered, covered, sg_span);
5773
5774 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5775 if (atomic_inc_return(&sg->sgp->ref) == 1)
5776 build_group_mask(sd, sg);
5777
5778 /*
5779 * Initialize sgp->power such that even if we mess up the
5780 * domains and no possible iteration will get us here, we won't
5781 * die on a /0 trap.
5782 */
5783 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5784
5785 /*
5786 * Make sure the first group of this domain contains the
5787 * canonical balance cpu. Otherwise the sched_domain iteration
5788 * breaks. See update_sg_lb_stats().
5789 */
5790 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5791 group_balance_cpu(sg) == cpu)
5792 groups = sg;
5793
5794 if (!first)
5795 first = sg;
5796 if (last)
5797 last->next = sg;
5798 last = sg;
5799 last->next = first;
5800 }
5801 sd->groups = groups;
5802
5803 return 0;
5804
5805 fail:
5806 free_sched_groups(first, 0);
5807
5808 return -ENOMEM;
5809 }
5810
5811 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5812 {
5813 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5814 struct sched_domain *child = sd->child;
5815
5816 if (child)
5817 cpu = cpumask_first(sched_domain_span(child));
5818
5819 if (sg) {
5820 *sg = *per_cpu_ptr(sdd->sg, cpu);
5821 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5822 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5823 }
5824
5825 return cpu;
5826 }
5827
5828 /*
5829 * build_sched_groups will build a circular linked list of the groups
5830 * covered by the given span, and will set each group's ->cpumask correctly,
5831 * and ->cpu_power to 0.
5832 *
5833 * Assumes the sched_domain tree is fully constructed
5834 */
5835 static int
5836 build_sched_groups(struct sched_domain *sd, int cpu)
5837 {
5838 struct sched_group *first = NULL, *last = NULL;
5839 struct sd_data *sdd = sd->private;
5840 const struct cpumask *span = sched_domain_span(sd);
5841 struct cpumask *covered;
5842 int i;
5843
5844 get_group(cpu, sdd, &sd->groups);
5845 atomic_inc(&sd->groups->ref);
5846
5847 if (cpu != cpumask_first(sched_domain_span(sd)))
5848 return 0;
5849
5850 lockdep_assert_held(&sched_domains_mutex);
5851 covered = sched_domains_tmpmask;
5852
5853 cpumask_clear(covered);
5854
5855 for_each_cpu(i, span) {
5856 struct sched_group *sg;
5857 int group = get_group(i, sdd, &sg);
5858 int j;
5859
5860 if (cpumask_test_cpu(i, covered))
5861 continue;
5862
5863 cpumask_clear(sched_group_cpus(sg));
5864 sg->sgp->power = 0;
5865 cpumask_setall(sched_group_mask(sg));
5866
5867 for_each_cpu(j, span) {
5868 if (get_group(j, sdd, NULL) != group)
5869 continue;
5870
5871 cpumask_set_cpu(j, covered);
5872 cpumask_set_cpu(j, sched_group_cpus(sg));
5873 }
5874
5875 if (!first)
5876 first = sg;
5877 if (last)
5878 last->next = sg;
5879 last = sg;
5880 }
5881 last->next = first;
5882
5883 return 0;
5884 }
5885
5886 /*
5887 * Initialize sched groups cpu_power.
5888 *
5889 * cpu_power indicates the capacity of sched group, which is used while
5890 * distributing the load between different sched groups in a sched domain.
5891 * Typically cpu_power for all the groups in a sched domain will be same unless
5892 * there are asymmetries in the topology. If there are asymmetries, group
5893 * having more cpu_power will pickup more load compared to the group having
5894 * less cpu_power.
5895 */
5896 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5897 {
5898 struct sched_group *sg = sd->groups;
5899
5900 WARN_ON(!sd || !sg);
5901
5902 do {
5903 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5904 sg = sg->next;
5905 } while (sg != sd->groups);
5906
5907 if (cpu != group_balance_cpu(sg))
5908 return;
5909
5910 update_group_power(sd, cpu);
5911 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5912 }
5913
5914 int __weak arch_sd_sibling_asym_packing(void)
5915 {
5916 return 0*SD_ASYM_PACKING;
5917 }
5918
5919 /*
5920 * Initializers for schedule domains
5921 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5922 */
5923
5924 #ifdef CONFIG_SCHED_DEBUG
5925 # define SD_INIT_NAME(sd, type) sd->name = #type
5926 #else
5927 # define SD_INIT_NAME(sd, type) do { } while (0)
5928 #endif
5929
5930 #define SD_INIT_FUNC(type) \
5931 static noinline struct sched_domain * \
5932 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5933 { \
5934 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5935 *sd = SD_##type##_INIT; \
5936 SD_INIT_NAME(sd, type); \
5937 sd->private = &tl->data; \
5938 return sd; \
5939 }
5940
5941 SD_INIT_FUNC(CPU)
5942 #ifdef CONFIG_SCHED_SMT
5943 SD_INIT_FUNC(SIBLING)
5944 #endif
5945 #ifdef CONFIG_SCHED_MC
5946 SD_INIT_FUNC(MC)
5947 #endif
5948 #ifdef CONFIG_SCHED_BOOK
5949 SD_INIT_FUNC(BOOK)
5950 #endif
5951
5952 static int default_relax_domain_level = -1;
5953 int sched_domain_level_max;
5954
5955 static int __init setup_relax_domain_level(char *str)
5956 {
5957 if (kstrtoint(str, 0, &default_relax_domain_level))
5958 pr_warn("Unable to set relax_domain_level\n");
5959
5960 return 1;
5961 }
5962 __setup("relax_domain_level=", setup_relax_domain_level);
5963
5964 static void set_domain_attribute(struct sched_domain *sd,
5965 struct sched_domain_attr *attr)
5966 {
5967 int request;
5968
5969 if (!attr || attr->relax_domain_level < 0) {
5970 if (default_relax_domain_level < 0)
5971 return;
5972 else
5973 request = default_relax_domain_level;
5974 } else
5975 request = attr->relax_domain_level;
5976 if (request < sd->level) {
5977 /* turn off idle balance on this domain */
5978 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5979 } else {
5980 /* turn on idle balance on this domain */
5981 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5982 }
5983 }
5984
5985 static void __sdt_free(const struct cpumask *cpu_map);
5986 static int __sdt_alloc(const struct cpumask *cpu_map);
5987
5988 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5989 const struct cpumask *cpu_map)
5990 {
5991 switch (what) {
5992 case sa_rootdomain:
5993 if (!atomic_read(&d->rd->refcount))
5994 free_rootdomain(&d->rd->rcu); /* fall through */
5995 case sa_sd:
5996 free_percpu(d->sd); /* fall through */
5997 case sa_sd_storage:
5998 __sdt_free(cpu_map); /* fall through */
5999 case sa_none:
6000 break;
6001 }
6002 }
6003
6004 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6005 const struct cpumask *cpu_map)
6006 {
6007 memset(d, 0, sizeof(*d));
6008
6009 if (__sdt_alloc(cpu_map))
6010 return sa_sd_storage;
6011 d->sd = alloc_percpu(struct sched_domain *);
6012 if (!d->sd)
6013 return sa_sd_storage;
6014 d->rd = alloc_rootdomain();
6015 if (!d->rd)
6016 return sa_sd;
6017 return sa_rootdomain;
6018 }
6019
6020 /*
6021 * NULL the sd_data elements we've used to build the sched_domain and
6022 * sched_group structure so that the subsequent __free_domain_allocs()
6023 * will not free the data we're using.
6024 */
6025 static void claim_allocations(int cpu, struct sched_domain *sd)
6026 {
6027 struct sd_data *sdd = sd->private;
6028
6029 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6030 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6031
6032 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6033 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6034
6035 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6036 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6037 }
6038
6039 #ifdef CONFIG_SCHED_SMT
6040 static const struct cpumask *cpu_smt_mask(int cpu)
6041 {
6042 return topology_thread_cpumask(cpu);
6043 }
6044 #endif
6045
6046 /*
6047 * Topology list, bottom-up.
6048 */
6049 static struct sched_domain_topology_level default_topology[] = {
6050 #ifdef CONFIG_SCHED_SMT
6051 { sd_init_SIBLING, cpu_smt_mask, },
6052 #endif
6053 #ifdef CONFIG_SCHED_MC
6054 { sd_init_MC, cpu_coregroup_mask, },
6055 #endif
6056 #ifdef CONFIG_SCHED_BOOK
6057 { sd_init_BOOK, cpu_book_mask, },
6058 #endif
6059 { sd_init_CPU, cpu_cpu_mask, },
6060 { NULL, },
6061 };
6062
6063 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6064
6065 #ifdef CONFIG_NUMA
6066
6067 static int sched_domains_numa_levels;
6068 static int *sched_domains_numa_distance;
6069 static struct cpumask ***sched_domains_numa_masks;
6070 static int sched_domains_curr_level;
6071
6072 static inline int sd_local_flags(int level)
6073 {
6074 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6075 return 0;
6076
6077 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6078 }
6079
6080 static struct sched_domain *
6081 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6082 {
6083 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6084 int level = tl->numa_level;
6085 int sd_weight = cpumask_weight(
6086 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6087
6088 *sd = (struct sched_domain){
6089 .min_interval = sd_weight,
6090 .max_interval = 2*sd_weight,
6091 .busy_factor = 32,
6092 .imbalance_pct = 125,
6093 .cache_nice_tries = 2,
6094 .busy_idx = 3,
6095 .idle_idx = 2,
6096 .newidle_idx = 0,
6097 .wake_idx = 0,
6098 .forkexec_idx = 0,
6099
6100 .flags = 1*SD_LOAD_BALANCE
6101 | 1*SD_BALANCE_NEWIDLE
6102 | 0*SD_BALANCE_EXEC
6103 | 0*SD_BALANCE_FORK
6104 | 0*SD_BALANCE_WAKE
6105 | 0*SD_WAKE_AFFINE
6106 | 0*SD_SHARE_CPUPOWER
6107 | 0*SD_SHARE_PKG_RESOURCES
6108 | 1*SD_SERIALIZE
6109 | 0*SD_PREFER_SIBLING
6110 | sd_local_flags(level)
6111 ,
6112 .last_balance = jiffies,
6113 .balance_interval = sd_weight,
6114 };
6115 SD_INIT_NAME(sd, NUMA);
6116 sd->private = &tl->data;
6117
6118 /*
6119 * Ugly hack to pass state to sd_numa_mask()...
6120 */
6121 sched_domains_curr_level = tl->numa_level;
6122
6123 return sd;
6124 }
6125
6126 static const struct cpumask *sd_numa_mask(int cpu)
6127 {
6128 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6129 }
6130
6131 static void sched_numa_warn(const char *str)
6132 {
6133 static int done = false;
6134 int i,j;
6135
6136 if (done)
6137 return;
6138
6139 done = true;
6140
6141 printk(KERN_WARNING "ERROR: %s\n\n", str);
6142
6143 for (i = 0; i < nr_node_ids; i++) {
6144 printk(KERN_WARNING " ");
6145 for (j = 0; j < nr_node_ids; j++)
6146 printk(KERN_CONT "%02d ", node_distance(i,j));
6147 printk(KERN_CONT "\n");
6148 }
6149 printk(KERN_WARNING "\n");
6150 }
6151
6152 static bool find_numa_distance(int distance)
6153 {
6154 int i;
6155
6156 if (distance == node_distance(0, 0))
6157 return true;
6158
6159 for (i = 0; i < sched_domains_numa_levels; i++) {
6160 if (sched_domains_numa_distance[i] == distance)
6161 return true;
6162 }
6163
6164 return false;
6165 }
6166
6167 static void sched_init_numa(void)
6168 {
6169 int next_distance, curr_distance = node_distance(0, 0);
6170 struct sched_domain_topology_level *tl;
6171 int level = 0;
6172 int i, j, k;
6173
6174 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6175 if (!sched_domains_numa_distance)
6176 return;
6177
6178 /*
6179 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6180 * unique distances in the node_distance() table.
6181 *
6182 * Assumes node_distance(0,j) includes all distances in
6183 * node_distance(i,j) in order to avoid cubic time.
6184 */
6185 next_distance = curr_distance;
6186 for (i = 0; i < nr_node_ids; i++) {
6187 for (j = 0; j < nr_node_ids; j++) {
6188 for (k = 0; k < nr_node_ids; k++) {
6189 int distance = node_distance(i, k);
6190
6191 if (distance > curr_distance &&
6192 (distance < next_distance ||
6193 next_distance == curr_distance))
6194 next_distance = distance;
6195
6196 /*
6197 * While not a strong assumption it would be nice to know
6198 * about cases where if node A is connected to B, B is not
6199 * equally connected to A.
6200 */
6201 if (sched_debug() && node_distance(k, i) != distance)
6202 sched_numa_warn("Node-distance not symmetric");
6203
6204 if (sched_debug() && i && !find_numa_distance(distance))
6205 sched_numa_warn("Node-0 not representative");
6206 }
6207 if (next_distance != curr_distance) {
6208 sched_domains_numa_distance[level++] = next_distance;
6209 sched_domains_numa_levels = level;
6210 curr_distance = next_distance;
6211 } else break;
6212 }
6213
6214 /*
6215 * In case of sched_debug() we verify the above assumption.
6216 */
6217 if (!sched_debug())
6218 break;
6219 }
6220 /*
6221 * 'level' contains the number of unique distances, excluding the
6222 * identity distance node_distance(i,i).
6223 *
6224 * The sched_domains_nume_distance[] array includes the actual distance
6225 * numbers.
6226 */
6227
6228 /*
6229 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6230 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6231 * the array will contain less then 'level' members. This could be
6232 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6233 * in other functions.
6234 *
6235 * We reset it to 'level' at the end of this function.
6236 */
6237 sched_domains_numa_levels = 0;
6238
6239 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6240 if (!sched_domains_numa_masks)
6241 return;
6242
6243 /*
6244 * Now for each level, construct a mask per node which contains all
6245 * cpus of nodes that are that many hops away from us.
6246 */
6247 for (i = 0; i < level; i++) {
6248 sched_domains_numa_masks[i] =
6249 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6250 if (!sched_domains_numa_masks[i])
6251 return;
6252
6253 for (j = 0; j < nr_node_ids; j++) {
6254 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6255 if (!mask)
6256 return;
6257
6258 sched_domains_numa_masks[i][j] = mask;
6259
6260 for (k = 0; k < nr_node_ids; k++) {
6261 if (node_distance(j, k) > sched_domains_numa_distance[i])
6262 continue;
6263
6264 cpumask_or(mask, mask, cpumask_of_node(k));
6265 }
6266 }
6267 }
6268
6269 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6270 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6271 if (!tl)
6272 return;
6273
6274 /*
6275 * Copy the default topology bits..
6276 */
6277 for (i = 0; default_topology[i].init; i++)
6278 tl[i] = default_topology[i];
6279
6280 /*
6281 * .. and append 'j' levels of NUMA goodness.
6282 */
6283 for (j = 0; j < level; i++, j++) {
6284 tl[i] = (struct sched_domain_topology_level){
6285 .init = sd_numa_init,
6286 .mask = sd_numa_mask,
6287 .flags = SDTL_OVERLAP,
6288 .numa_level = j,
6289 };
6290 }
6291
6292 sched_domain_topology = tl;
6293
6294 sched_domains_numa_levels = level;
6295 }
6296
6297 static void sched_domains_numa_masks_set(int cpu)
6298 {
6299 int i, j;
6300 int node = cpu_to_node(cpu);
6301
6302 for (i = 0; i < sched_domains_numa_levels; i++) {
6303 for (j = 0; j < nr_node_ids; j++) {
6304 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6305 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6306 }
6307 }
6308 }
6309
6310 static void sched_domains_numa_masks_clear(int cpu)
6311 {
6312 int i, j;
6313 for (i = 0; i < sched_domains_numa_levels; i++) {
6314 for (j = 0; j < nr_node_ids; j++)
6315 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6316 }
6317 }
6318
6319 /*
6320 * Update sched_domains_numa_masks[level][node] array when new cpus
6321 * are onlined.
6322 */
6323 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6324 unsigned long action,
6325 void *hcpu)
6326 {
6327 int cpu = (long)hcpu;
6328
6329 switch (action & ~CPU_TASKS_FROZEN) {
6330 case CPU_ONLINE:
6331 sched_domains_numa_masks_set(cpu);
6332 break;
6333
6334 case CPU_DEAD:
6335 sched_domains_numa_masks_clear(cpu);
6336 break;
6337
6338 default:
6339 return NOTIFY_DONE;
6340 }
6341
6342 return NOTIFY_OK;
6343 }
6344 #else
6345 static inline void sched_init_numa(void)
6346 {
6347 }
6348
6349 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6350 unsigned long action,
6351 void *hcpu)
6352 {
6353 return 0;
6354 }
6355 #endif /* CONFIG_NUMA */
6356
6357 static int __sdt_alloc(const struct cpumask *cpu_map)
6358 {
6359 struct sched_domain_topology_level *tl;
6360 int j;
6361
6362 for (tl = sched_domain_topology; tl->init; tl++) {
6363 struct sd_data *sdd = &tl->data;
6364
6365 sdd->sd = alloc_percpu(struct sched_domain *);
6366 if (!sdd->sd)
6367 return -ENOMEM;
6368
6369 sdd->sg = alloc_percpu(struct sched_group *);
6370 if (!sdd->sg)
6371 return -ENOMEM;
6372
6373 sdd->sgp = alloc_percpu(struct sched_group_power *);
6374 if (!sdd->sgp)
6375 return -ENOMEM;
6376
6377 for_each_cpu(j, cpu_map) {
6378 struct sched_domain *sd;
6379 struct sched_group *sg;
6380 struct sched_group_power *sgp;
6381
6382 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6383 GFP_KERNEL, cpu_to_node(j));
6384 if (!sd)
6385 return -ENOMEM;
6386
6387 *per_cpu_ptr(sdd->sd, j) = sd;
6388
6389 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6390 GFP_KERNEL, cpu_to_node(j));
6391 if (!sg)
6392 return -ENOMEM;
6393
6394 sg->next = sg;
6395
6396 *per_cpu_ptr(sdd->sg, j) = sg;
6397
6398 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6399 GFP_KERNEL, cpu_to_node(j));
6400 if (!sgp)
6401 return -ENOMEM;
6402
6403 *per_cpu_ptr(sdd->sgp, j) = sgp;
6404 }
6405 }
6406
6407 return 0;
6408 }
6409
6410 static void __sdt_free(const struct cpumask *cpu_map)
6411 {
6412 struct sched_domain_topology_level *tl;
6413 int j;
6414
6415 for (tl = sched_domain_topology; tl->init; tl++) {
6416 struct sd_data *sdd = &tl->data;
6417
6418 for_each_cpu(j, cpu_map) {
6419 struct sched_domain *sd;
6420
6421 if (sdd->sd) {
6422 sd = *per_cpu_ptr(sdd->sd, j);
6423 if (sd && (sd->flags & SD_OVERLAP))
6424 free_sched_groups(sd->groups, 0);
6425 kfree(*per_cpu_ptr(sdd->sd, j));
6426 }
6427
6428 if (sdd->sg)
6429 kfree(*per_cpu_ptr(sdd->sg, j));
6430 if (sdd->sgp)
6431 kfree(*per_cpu_ptr(sdd->sgp, j));
6432 }
6433 free_percpu(sdd->sd);
6434 sdd->sd = NULL;
6435 free_percpu(sdd->sg);
6436 sdd->sg = NULL;
6437 free_percpu(sdd->sgp);
6438 sdd->sgp = NULL;
6439 }
6440 }
6441
6442 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6443 struct s_data *d, const struct cpumask *cpu_map,
6444 struct sched_domain_attr *attr, struct sched_domain *child,
6445 int cpu)
6446 {
6447 struct sched_domain *sd = tl->init(tl, cpu);
6448 if (!sd)
6449 return child;
6450
6451 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6452 if (child) {
6453 sd->level = child->level + 1;
6454 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6455 child->parent = sd;
6456 }
6457 sd->child = child;
6458 set_domain_attribute(sd, attr);
6459
6460 return sd;
6461 }
6462
6463 /*
6464 * Build sched domains for a given set of cpus and attach the sched domains
6465 * to the individual cpus
6466 */
6467 static int build_sched_domains(const struct cpumask *cpu_map,
6468 struct sched_domain_attr *attr)
6469 {
6470 enum s_alloc alloc_state = sa_none;
6471 struct sched_domain *sd;
6472 struct s_data d;
6473 int i, ret = -ENOMEM;
6474
6475 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6476 if (alloc_state != sa_rootdomain)
6477 goto error;
6478
6479 /* Set up domains for cpus specified by the cpu_map. */
6480 for_each_cpu(i, cpu_map) {
6481 struct sched_domain_topology_level *tl;
6482
6483 sd = NULL;
6484 for (tl = sched_domain_topology; tl->init; tl++) {
6485 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6486 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6487 sd->flags |= SD_OVERLAP;
6488 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6489 break;
6490 }
6491
6492 while (sd->child)
6493 sd = sd->child;
6494
6495 *per_cpu_ptr(d.sd, i) = sd;
6496 }
6497
6498 /* Build the groups for the domains */
6499 for_each_cpu(i, cpu_map) {
6500 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6501 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6502 if (sd->flags & SD_OVERLAP) {
6503 if (build_overlap_sched_groups(sd, i))
6504 goto error;
6505 } else {
6506 if (build_sched_groups(sd, i))
6507 goto error;
6508 }
6509 }
6510 }
6511
6512 /* Calculate CPU power for physical packages and nodes */
6513 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6514 if (!cpumask_test_cpu(i, cpu_map))
6515 continue;
6516
6517 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6518 claim_allocations(i, sd);
6519 init_sched_groups_power(i, sd);
6520 }
6521 }
6522
6523 /* Attach the domains */
6524 rcu_read_lock();
6525 for_each_cpu(i, cpu_map) {
6526 sd = *per_cpu_ptr(d.sd, i);
6527 cpu_attach_domain(sd, d.rd, i);
6528 }
6529 rcu_read_unlock();
6530
6531 ret = 0;
6532 error:
6533 __free_domain_allocs(&d, alloc_state, cpu_map);
6534 return ret;
6535 }
6536
6537 static cpumask_var_t *doms_cur; /* current sched domains */
6538 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6539 static struct sched_domain_attr *dattr_cur;
6540 /* attribues of custom domains in 'doms_cur' */
6541
6542 /*
6543 * Special case: If a kmalloc of a doms_cur partition (array of
6544 * cpumask) fails, then fallback to a single sched domain,
6545 * as determined by the single cpumask fallback_doms.
6546 */
6547 static cpumask_var_t fallback_doms;
6548
6549 /*
6550 * arch_update_cpu_topology lets virtualized architectures update the
6551 * cpu core maps. It is supposed to return 1 if the topology changed
6552 * or 0 if it stayed the same.
6553 */
6554 int __attribute__((weak)) arch_update_cpu_topology(void)
6555 {
6556 return 0;
6557 }
6558
6559 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6560 {
6561 int i;
6562 cpumask_var_t *doms;
6563
6564 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6565 if (!doms)
6566 return NULL;
6567 for (i = 0; i < ndoms; i++) {
6568 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6569 free_sched_domains(doms, i);
6570 return NULL;
6571 }
6572 }
6573 return doms;
6574 }
6575
6576 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6577 {
6578 unsigned int i;
6579 for (i = 0; i < ndoms; i++)
6580 free_cpumask_var(doms[i]);
6581 kfree(doms);
6582 }
6583
6584 /*
6585 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6586 * For now this just excludes isolated cpus, but could be used to
6587 * exclude other special cases in the future.
6588 */
6589 static int init_sched_domains(const struct cpumask *cpu_map)
6590 {
6591 int err;
6592
6593 arch_update_cpu_topology();
6594 ndoms_cur = 1;
6595 doms_cur = alloc_sched_domains(ndoms_cur);
6596 if (!doms_cur)
6597 doms_cur = &fallback_doms;
6598 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6599 err = build_sched_domains(doms_cur[0], NULL);
6600 register_sched_domain_sysctl();
6601
6602 return err;
6603 }
6604
6605 /*
6606 * Detach sched domains from a group of cpus specified in cpu_map
6607 * These cpus will now be attached to the NULL domain
6608 */
6609 static void detach_destroy_domains(const struct cpumask *cpu_map)
6610 {
6611 int i;
6612
6613 rcu_read_lock();
6614 for_each_cpu(i, cpu_map)
6615 cpu_attach_domain(NULL, &def_root_domain, i);
6616 rcu_read_unlock();
6617 }
6618
6619 /* handle null as "default" */
6620 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6621 struct sched_domain_attr *new, int idx_new)
6622 {
6623 struct sched_domain_attr tmp;
6624
6625 /* fast path */
6626 if (!new && !cur)
6627 return 1;
6628
6629 tmp = SD_ATTR_INIT;
6630 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6631 new ? (new + idx_new) : &tmp,
6632 sizeof(struct sched_domain_attr));
6633 }
6634
6635 /*
6636 * Partition sched domains as specified by the 'ndoms_new'
6637 * cpumasks in the array doms_new[] of cpumasks. This compares
6638 * doms_new[] to the current sched domain partitioning, doms_cur[].
6639 * It destroys each deleted domain and builds each new domain.
6640 *
6641 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6642 * The masks don't intersect (don't overlap.) We should setup one
6643 * sched domain for each mask. CPUs not in any of the cpumasks will
6644 * not be load balanced. If the same cpumask appears both in the
6645 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6646 * it as it is.
6647 *
6648 * The passed in 'doms_new' should be allocated using
6649 * alloc_sched_domains. This routine takes ownership of it and will
6650 * free_sched_domains it when done with it. If the caller failed the
6651 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6652 * and partition_sched_domains() will fallback to the single partition
6653 * 'fallback_doms', it also forces the domains to be rebuilt.
6654 *
6655 * If doms_new == NULL it will be replaced with cpu_online_mask.
6656 * ndoms_new == 0 is a special case for destroying existing domains,
6657 * and it will not create the default domain.
6658 *
6659 * Call with hotplug lock held
6660 */
6661 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6662 struct sched_domain_attr *dattr_new)
6663 {
6664 int i, j, n;
6665 int new_topology;
6666
6667 mutex_lock(&sched_domains_mutex);
6668
6669 /* always unregister in case we don't destroy any domains */
6670 unregister_sched_domain_sysctl();
6671
6672 /* Let architecture update cpu core mappings. */
6673 new_topology = arch_update_cpu_topology();
6674
6675 n = doms_new ? ndoms_new : 0;
6676
6677 /* Destroy deleted domains */
6678 for (i = 0; i < ndoms_cur; i++) {
6679 for (j = 0; j < n && !new_topology; j++) {
6680 if (cpumask_equal(doms_cur[i], doms_new[j])
6681 && dattrs_equal(dattr_cur, i, dattr_new, j))
6682 goto match1;
6683 }
6684 /* no match - a current sched domain not in new doms_new[] */
6685 detach_destroy_domains(doms_cur[i]);
6686 match1:
6687 ;
6688 }
6689
6690 if (doms_new == NULL) {
6691 ndoms_cur = 0;
6692 doms_new = &fallback_doms;
6693 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6694 WARN_ON_ONCE(dattr_new);
6695 }
6696
6697 /* Build new domains */
6698 for (i = 0; i < ndoms_new; i++) {
6699 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6700 if (cpumask_equal(doms_new[i], doms_cur[j])
6701 && dattrs_equal(dattr_new, i, dattr_cur, j))
6702 goto match2;
6703 }
6704 /* no match - add a new doms_new */
6705 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6706 match2:
6707 ;
6708 }
6709
6710 /* Remember the new sched domains */
6711 if (doms_cur != &fallback_doms)
6712 free_sched_domains(doms_cur, ndoms_cur);
6713 kfree(dattr_cur); /* kfree(NULL) is safe */
6714 doms_cur = doms_new;
6715 dattr_cur = dattr_new;
6716 ndoms_cur = ndoms_new;
6717
6718 register_sched_domain_sysctl();
6719
6720 mutex_unlock(&sched_domains_mutex);
6721 }
6722
6723 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6724
6725 /*
6726 * Update cpusets according to cpu_active mask. If cpusets are
6727 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6728 * around partition_sched_domains().
6729 *
6730 * If we come here as part of a suspend/resume, don't touch cpusets because we
6731 * want to restore it back to its original state upon resume anyway.
6732 */
6733 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6734 void *hcpu)
6735 {
6736 switch (action) {
6737 case CPU_ONLINE_FROZEN:
6738 case CPU_DOWN_FAILED_FROZEN:
6739
6740 /*
6741 * num_cpus_frozen tracks how many CPUs are involved in suspend
6742 * resume sequence. As long as this is not the last online
6743 * operation in the resume sequence, just build a single sched
6744 * domain, ignoring cpusets.
6745 */
6746 num_cpus_frozen--;
6747 if (likely(num_cpus_frozen)) {
6748 partition_sched_domains(1, NULL, NULL);
6749 break;
6750 }
6751
6752 /*
6753 * This is the last CPU online operation. So fall through and
6754 * restore the original sched domains by considering the
6755 * cpuset configurations.
6756 */
6757
6758 case CPU_ONLINE:
6759 case CPU_DOWN_FAILED:
6760 cpuset_update_active_cpus(true);
6761 break;
6762 default:
6763 return NOTIFY_DONE;
6764 }
6765 return NOTIFY_OK;
6766 }
6767
6768 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6769 void *hcpu)
6770 {
6771 switch (action) {
6772 case CPU_DOWN_PREPARE:
6773 cpuset_update_active_cpus(false);
6774 break;
6775 case CPU_DOWN_PREPARE_FROZEN:
6776 num_cpus_frozen++;
6777 partition_sched_domains(1, NULL, NULL);
6778 break;
6779 default:
6780 return NOTIFY_DONE;
6781 }
6782 return NOTIFY_OK;
6783 }
6784
6785 void __init sched_init_smp(void)
6786 {
6787 cpumask_var_t non_isolated_cpus;
6788
6789 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6790 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6791
6792 sched_init_numa();
6793
6794 get_online_cpus();
6795 mutex_lock(&sched_domains_mutex);
6796 init_sched_domains(cpu_active_mask);
6797 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6798 if (cpumask_empty(non_isolated_cpus))
6799 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6800 mutex_unlock(&sched_domains_mutex);
6801 put_online_cpus();
6802
6803 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6804 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6805 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6806
6807 /* RT runtime code needs to handle some hotplug events */
6808 hotcpu_notifier(update_runtime, 0);
6809
6810 init_hrtick();
6811
6812 /* Move init over to a non-isolated CPU */
6813 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6814 BUG();
6815 sched_init_granularity();
6816 free_cpumask_var(non_isolated_cpus);
6817
6818 init_sched_rt_class();
6819 }
6820 #else
6821 void __init sched_init_smp(void)
6822 {
6823 sched_init_granularity();
6824 }
6825 #endif /* CONFIG_SMP */
6826
6827 const_debug unsigned int sysctl_timer_migration = 1;
6828
6829 int in_sched_functions(unsigned long addr)
6830 {
6831 return in_lock_functions(addr) ||
6832 (addr >= (unsigned long)__sched_text_start
6833 && addr < (unsigned long)__sched_text_end);
6834 }
6835
6836 #ifdef CONFIG_CGROUP_SCHED
6837 struct task_group root_task_group;
6838 LIST_HEAD(task_groups);
6839 #endif
6840
6841 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6842
6843 void __init sched_init(void)
6844 {
6845 int i, j;
6846 unsigned long alloc_size = 0, ptr;
6847
6848 #ifdef CONFIG_FAIR_GROUP_SCHED
6849 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6850 #endif
6851 #ifdef CONFIG_RT_GROUP_SCHED
6852 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6853 #endif
6854 #ifdef CONFIG_CPUMASK_OFFSTACK
6855 alloc_size += num_possible_cpus() * cpumask_size();
6856 #endif
6857 if (alloc_size) {
6858 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6859
6860 #ifdef CONFIG_FAIR_GROUP_SCHED
6861 root_task_group.se = (struct sched_entity **)ptr;
6862 ptr += nr_cpu_ids * sizeof(void **);
6863
6864 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6865 ptr += nr_cpu_ids * sizeof(void **);
6866
6867 #endif /* CONFIG_FAIR_GROUP_SCHED */
6868 #ifdef CONFIG_RT_GROUP_SCHED
6869 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6870 ptr += nr_cpu_ids * sizeof(void **);
6871
6872 root_task_group.rt_rq = (struct rt_rq **)ptr;
6873 ptr += nr_cpu_ids * sizeof(void **);
6874
6875 #endif /* CONFIG_RT_GROUP_SCHED */
6876 #ifdef CONFIG_CPUMASK_OFFSTACK
6877 for_each_possible_cpu(i) {
6878 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6879 ptr += cpumask_size();
6880 }
6881 #endif /* CONFIG_CPUMASK_OFFSTACK */
6882 }
6883
6884 #ifdef CONFIG_SMP
6885 init_defrootdomain();
6886 #endif
6887
6888 init_rt_bandwidth(&def_rt_bandwidth,
6889 global_rt_period(), global_rt_runtime());
6890
6891 #ifdef CONFIG_RT_GROUP_SCHED
6892 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6893 global_rt_period(), global_rt_runtime());
6894 #endif /* CONFIG_RT_GROUP_SCHED */
6895
6896 #ifdef CONFIG_CGROUP_SCHED
6897 list_add(&root_task_group.list, &task_groups);
6898 INIT_LIST_HEAD(&root_task_group.children);
6899 INIT_LIST_HEAD(&root_task_group.siblings);
6900 autogroup_init(&init_task);
6901
6902 #endif /* CONFIG_CGROUP_SCHED */
6903
6904 #ifdef CONFIG_CGROUP_CPUACCT
6905 root_cpuacct.cpustat = &kernel_cpustat;
6906 root_cpuacct.cpuusage = alloc_percpu(u64);
6907 /* Too early, not expected to fail */
6908 BUG_ON(!root_cpuacct.cpuusage);
6909 #endif
6910 for_each_possible_cpu(i) {
6911 struct rq *rq;
6912
6913 rq = cpu_rq(i);
6914 raw_spin_lock_init(&rq->lock);
6915 rq->nr_running = 0;
6916 rq->calc_load_active = 0;
6917 rq->calc_load_update = jiffies + LOAD_FREQ;
6918 init_cfs_rq(&rq->cfs);
6919 init_rt_rq(&rq->rt, rq);
6920 #ifdef CONFIG_FAIR_GROUP_SCHED
6921 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6922 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6923 /*
6924 * How much cpu bandwidth does root_task_group get?
6925 *
6926 * In case of task-groups formed thr' the cgroup filesystem, it
6927 * gets 100% of the cpu resources in the system. This overall
6928 * system cpu resource is divided among the tasks of
6929 * root_task_group and its child task-groups in a fair manner,
6930 * based on each entity's (task or task-group's) weight
6931 * (se->load.weight).
6932 *
6933 * In other words, if root_task_group has 10 tasks of weight
6934 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6935 * then A0's share of the cpu resource is:
6936 *
6937 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6938 *
6939 * We achieve this by letting root_task_group's tasks sit
6940 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6941 */
6942 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6943 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6944 #endif /* CONFIG_FAIR_GROUP_SCHED */
6945
6946 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6947 #ifdef CONFIG_RT_GROUP_SCHED
6948 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6949 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6950 #endif
6951
6952 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6953 rq->cpu_load[j] = 0;
6954
6955 rq->last_load_update_tick = jiffies;
6956
6957 #ifdef CONFIG_SMP
6958 rq->sd = NULL;
6959 rq->rd = NULL;
6960 rq->cpu_power = SCHED_POWER_SCALE;
6961 rq->post_schedule = 0;
6962 rq->active_balance = 0;
6963 rq->next_balance = jiffies;
6964 rq->push_cpu = 0;
6965 rq->cpu = i;
6966 rq->online = 0;
6967 rq->idle_stamp = 0;
6968 rq->avg_idle = 2*sysctl_sched_migration_cost;
6969
6970 INIT_LIST_HEAD(&rq->cfs_tasks);
6971
6972 rq_attach_root(rq, &def_root_domain);
6973 #ifdef CONFIG_NO_HZ
6974 rq->nohz_flags = 0;
6975 #endif
6976 #endif
6977 init_rq_hrtick(rq);
6978 atomic_set(&rq->nr_iowait, 0);
6979 }
6980
6981 set_load_weight(&init_task);
6982
6983 #ifdef CONFIG_PREEMPT_NOTIFIERS
6984 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6985 #endif
6986
6987 #ifdef CONFIG_RT_MUTEXES
6988 plist_head_init(&init_task.pi_waiters);
6989 #endif
6990
6991 /*
6992 * The boot idle thread does lazy MMU switching as well:
6993 */
6994 atomic_inc(&init_mm.mm_count);
6995 enter_lazy_tlb(&init_mm, current);
6996
6997 /*
6998 * Make us the idle thread. Technically, schedule() should not be
6999 * called from this thread, however somewhere below it might be,
7000 * but because we are the idle thread, we just pick up running again
7001 * when this runqueue becomes "idle".
7002 */
7003 init_idle(current, smp_processor_id());
7004
7005 calc_load_update = jiffies + LOAD_FREQ;
7006
7007 /*
7008 * During early bootup we pretend to be a normal task:
7009 */
7010 current->sched_class = &fair_sched_class;
7011
7012 #ifdef CONFIG_SMP
7013 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7014 /* May be allocated at isolcpus cmdline parse time */
7015 if (cpu_isolated_map == NULL)
7016 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7017 idle_thread_set_boot_cpu();
7018 #endif
7019 init_sched_fair_class();
7020
7021 scheduler_running = 1;
7022 }
7023
7024 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7025 static inline int preempt_count_equals(int preempt_offset)
7026 {
7027 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7028
7029 return (nested == preempt_offset);
7030 }
7031
7032 void __might_sleep(const char *file, int line, int preempt_offset)
7033 {
7034 static unsigned long prev_jiffy; /* ratelimiting */
7035
7036 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7037 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7038 system_state != SYSTEM_RUNNING || oops_in_progress)
7039 return;
7040 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7041 return;
7042 prev_jiffy = jiffies;
7043
7044 printk(KERN_ERR
7045 "BUG: sleeping function called from invalid context at %s:%d\n",
7046 file, line);
7047 printk(KERN_ERR
7048 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7049 in_atomic(), irqs_disabled(),
7050 current->pid, current->comm);
7051
7052 debug_show_held_locks(current);
7053 if (irqs_disabled())
7054 print_irqtrace_events(current);
7055 dump_stack();
7056 }
7057 EXPORT_SYMBOL(__might_sleep);
7058 #endif
7059
7060 #ifdef CONFIG_MAGIC_SYSRQ
7061 static void normalize_task(struct rq *rq, struct task_struct *p)
7062 {
7063 const struct sched_class *prev_class = p->sched_class;
7064 int old_prio = p->prio;
7065 int on_rq;
7066
7067 on_rq = p->on_rq;
7068 if (on_rq)
7069 dequeue_task(rq, p, 0);
7070 __setscheduler(rq, p, SCHED_NORMAL, 0);
7071 if (on_rq) {
7072 enqueue_task(rq, p, 0);
7073 resched_task(rq->curr);
7074 }
7075
7076 check_class_changed(rq, p, prev_class, old_prio);
7077 }
7078
7079 void normalize_rt_tasks(void)
7080 {
7081 struct task_struct *g, *p;
7082 unsigned long flags;
7083 struct rq *rq;
7084
7085 read_lock_irqsave(&tasklist_lock, flags);
7086 do_each_thread(g, p) {
7087 /*
7088 * Only normalize user tasks:
7089 */
7090 if (!p->mm)
7091 continue;
7092
7093 p->se.exec_start = 0;
7094 #ifdef CONFIG_SCHEDSTATS
7095 p->se.statistics.wait_start = 0;
7096 p->se.statistics.sleep_start = 0;
7097 p->se.statistics.block_start = 0;
7098 #endif
7099
7100 if (!rt_task(p)) {
7101 /*
7102 * Renice negative nice level userspace
7103 * tasks back to 0:
7104 */
7105 if (TASK_NICE(p) < 0 && p->mm)
7106 set_user_nice(p, 0);
7107 continue;
7108 }
7109
7110 raw_spin_lock(&p->pi_lock);
7111 rq = __task_rq_lock(p);
7112
7113 normalize_task(rq, p);
7114
7115 __task_rq_unlock(rq);
7116 raw_spin_unlock(&p->pi_lock);
7117 } while_each_thread(g, p);
7118
7119 read_unlock_irqrestore(&tasklist_lock, flags);
7120 }
7121
7122 #endif /* CONFIG_MAGIC_SYSRQ */
7123
7124 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7125 /*
7126 * These functions are only useful for the IA64 MCA handling, or kdb.
7127 *
7128 * They can only be called when the whole system has been
7129 * stopped - every CPU needs to be quiescent, and no scheduling
7130 * activity can take place. Using them for anything else would
7131 * be a serious bug, and as a result, they aren't even visible
7132 * under any other configuration.
7133 */
7134
7135 /**
7136 * curr_task - return the current task for a given cpu.
7137 * @cpu: the processor in question.
7138 *
7139 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7140 */
7141 struct task_struct *curr_task(int cpu)
7142 {
7143 return cpu_curr(cpu);
7144 }
7145
7146 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7147
7148 #ifdef CONFIG_IA64
7149 /**
7150 * set_curr_task - set the current task for a given cpu.
7151 * @cpu: the processor in question.
7152 * @p: the task pointer to set.
7153 *
7154 * Description: This function must only be used when non-maskable interrupts
7155 * are serviced on a separate stack. It allows the architecture to switch the
7156 * notion of the current task on a cpu in a non-blocking manner. This function
7157 * must be called with all CPU's synchronized, and interrupts disabled, the
7158 * and caller must save the original value of the current task (see
7159 * curr_task() above) and restore that value before reenabling interrupts and
7160 * re-starting the system.
7161 *
7162 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7163 */
7164 void set_curr_task(int cpu, struct task_struct *p)
7165 {
7166 cpu_curr(cpu) = p;
7167 }
7168
7169 #endif
7170
7171 #ifdef CONFIG_CGROUP_SCHED
7172 /* task_group_lock serializes the addition/removal of task groups */
7173 static DEFINE_SPINLOCK(task_group_lock);
7174
7175 static void free_sched_group(struct task_group *tg)
7176 {
7177 free_fair_sched_group(tg);
7178 free_rt_sched_group(tg);
7179 autogroup_free(tg);
7180 kfree(tg);
7181 }
7182
7183 /* allocate runqueue etc for a new task group */
7184 struct task_group *sched_create_group(struct task_group *parent)
7185 {
7186 struct task_group *tg;
7187
7188 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7189 if (!tg)
7190 return ERR_PTR(-ENOMEM);
7191
7192 if (!alloc_fair_sched_group(tg, parent))
7193 goto err;
7194
7195 if (!alloc_rt_sched_group(tg, parent))
7196 goto err;
7197
7198 return tg;
7199
7200 err:
7201 free_sched_group(tg);
7202 return ERR_PTR(-ENOMEM);
7203 }
7204
7205 void sched_online_group(struct task_group *tg, struct task_group *parent)
7206 {
7207 unsigned long flags;
7208
7209 spin_lock_irqsave(&task_group_lock, flags);
7210 list_add_rcu(&tg->list, &task_groups);
7211
7212 WARN_ON(!parent); /* root should already exist */
7213
7214 tg->parent = parent;
7215 INIT_LIST_HEAD(&tg->children);
7216 list_add_rcu(&tg->siblings, &parent->children);
7217 spin_unlock_irqrestore(&task_group_lock, flags);
7218 }
7219
7220 /* rcu callback to free various structures associated with a task group */
7221 static void free_sched_group_rcu(struct rcu_head *rhp)
7222 {
7223 /* now it should be safe to free those cfs_rqs */
7224 free_sched_group(container_of(rhp, struct task_group, rcu));
7225 }
7226
7227 /* Destroy runqueue etc associated with a task group */
7228 void sched_destroy_group(struct task_group *tg)
7229 {
7230 /* wait for possible concurrent references to cfs_rqs complete */
7231 call_rcu(&tg->rcu, free_sched_group_rcu);
7232 }
7233
7234 void sched_offline_group(struct task_group *tg)
7235 {
7236 unsigned long flags;
7237 int i;
7238
7239 /* end participation in shares distribution */
7240 for_each_possible_cpu(i)
7241 unregister_fair_sched_group(tg, i);
7242
7243 spin_lock_irqsave(&task_group_lock, flags);
7244 list_del_rcu(&tg->list);
7245 list_del_rcu(&tg->siblings);
7246 spin_unlock_irqrestore(&task_group_lock, flags);
7247 }
7248
7249 /* change task's runqueue when it moves between groups.
7250 * The caller of this function should have put the task in its new group
7251 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7252 * reflect its new group.
7253 */
7254 void sched_move_task(struct task_struct *tsk)
7255 {
7256 struct task_group *tg;
7257 int on_rq, running;
7258 unsigned long flags;
7259 struct rq *rq;
7260
7261 rq = task_rq_lock(tsk, &flags);
7262
7263 running = task_current(rq, tsk);
7264 on_rq = tsk->on_rq;
7265
7266 if (on_rq)
7267 dequeue_task(rq, tsk, 0);
7268 if (unlikely(running))
7269 tsk->sched_class->put_prev_task(rq, tsk);
7270
7271 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7272 lockdep_is_held(&tsk->sighand->siglock)),
7273 struct task_group, css);
7274 tg = autogroup_task_group(tsk, tg);
7275 tsk->sched_task_group = tg;
7276
7277 #ifdef CONFIG_FAIR_GROUP_SCHED
7278 if (tsk->sched_class->task_move_group)
7279 tsk->sched_class->task_move_group(tsk, on_rq);
7280 else
7281 #endif
7282 set_task_rq(tsk, task_cpu(tsk));
7283
7284 if (unlikely(running))
7285 tsk->sched_class->set_curr_task(rq);
7286 if (on_rq)
7287 enqueue_task(rq, tsk, 0);
7288
7289 task_rq_unlock(rq, tsk, &flags);
7290 }
7291 #endif /* CONFIG_CGROUP_SCHED */
7292
7293 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7294 static unsigned long to_ratio(u64 period, u64 runtime)
7295 {
7296 if (runtime == RUNTIME_INF)
7297 return 1ULL << 20;
7298
7299 return div64_u64(runtime << 20, period);
7300 }
7301 #endif
7302
7303 #ifdef CONFIG_RT_GROUP_SCHED
7304 /*
7305 * Ensure that the real time constraints are schedulable.
7306 */
7307 static DEFINE_MUTEX(rt_constraints_mutex);
7308
7309 /* Must be called with tasklist_lock held */
7310 static inline int tg_has_rt_tasks(struct task_group *tg)
7311 {
7312 struct task_struct *g, *p;
7313
7314 do_each_thread(g, p) {
7315 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7316 return 1;
7317 } while_each_thread(g, p);
7318
7319 return 0;
7320 }
7321
7322 struct rt_schedulable_data {
7323 struct task_group *tg;
7324 u64 rt_period;
7325 u64 rt_runtime;
7326 };
7327
7328 static int tg_rt_schedulable(struct task_group *tg, void *data)
7329 {
7330 struct rt_schedulable_data *d = data;
7331 struct task_group *child;
7332 unsigned long total, sum = 0;
7333 u64 period, runtime;
7334
7335 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7336 runtime = tg->rt_bandwidth.rt_runtime;
7337
7338 if (tg == d->tg) {
7339 period = d->rt_period;
7340 runtime = d->rt_runtime;
7341 }
7342
7343 /*
7344 * Cannot have more runtime than the period.
7345 */
7346 if (runtime > period && runtime != RUNTIME_INF)
7347 return -EINVAL;
7348
7349 /*
7350 * Ensure we don't starve existing RT tasks.
7351 */
7352 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7353 return -EBUSY;
7354
7355 total = to_ratio(period, runtime);
7356
7357 /*
7358 * Nobody can have more than the global setting allows.
7359 */
7360 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7361 return -EINVAL;
7362
7363 /*
7364 * The sum of our children's runtime should not exceed our own.
7365 */
7366 list_for_each_entry_rcu(child, &tg->children, siblings) {
7367 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7368 runtime = child->rt_bandwidth.rt_runtime;
7369
7370 if (child == d->tg) {
7371 period = d->rt_period;
7372 runtime = d->rt_runtime;
7373 }
7374
7375 sum += to_ratio(period, runtime);
7376 }
7377
7378 if (sum > total)
7379 return -EINVAL;
7380
7381 return 0;
7382 }
7383
7384 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7385 {
7386 int ret;
7387
7388 struct rt_schedulable_data data = {
7389 .tg = tg,
7390 .rt_period = period,
7391 .rt_runtime = runtime,
7392 };
7393
7394 rcu_read_lock();
7395 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7396 rcu_read_unlock();
7397
7398 return ret;
7399 }
7400
7401 static int tg_set_rt_bandwidth(struct task_group *tg,
7402 u64 rt_period, u64 rt_runtime)
7403 {
7404 int i, err = 0;
7405
7406 mutex_lock(&rt_constraints_mutex);
7407 read_lock(&tasklist_lock);
7408 err = __rt_schedulable(tg, rt_period, rt_runtime);
7409 if (err)
7410 goto unlock;
7411
7412 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7413 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7414 tg->rt_bandwidth.rt_runtime = rt_runtime;
7415
7416 for_each_possible_cpu(i) {
7417 struct rt_rq *rt_rq = tg->rt_rq[i];
7418
7419 raw_spin_lock(&rt_rq->rt_runtime_lock);
7420 rt_rq->rt_runtime = rt_runtime;
7421 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7422 }
7423 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7424 unlock:
7425 read_unlock(&tasklist_lock);
7426 mutex_unlock(&rt_constraints_mutex);
7427
7428 return err;
7429 }
7430
7431 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7432 {
7433 u64 rt_runtime, rt_period;
7434
7435 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7436 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7437 if (rt_runtime_us < 0)
7438 rt_runtime = RUNTIME_INF;
7439
7440 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7441 }
7442
7443 long sched_group_rt_runtime(struct task_group *tg)
7444 {
7445 u64 rt_runtime_us;
7446
7447 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7448 return -1;
7449
7450 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7451 do_div(rt_runtime_us, NSEC_PER_USEC);
7452 return rt_runtime_us;
7453 }
7454
7455 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7456 {
7457 u64 rt_runtime, rt_period;
7458
7459 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7460 rt_runtime = tg->rt_bandwidth.rt_runtime;
7461
7462 if (rt_period == 0)
7463 return -EINVAL;
7464
7465 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7466 }
7467
7468 long sched_group_rt_period(struct task_group *tg)
7469 {
7470 u64 rt_period_us;
7471
7472 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7473 do_div(rt_period_us, NSEC_PER_USEC);
7474 return rt_period_us;
7475 }
7476
7477 static int sched_rt_global_constraints(void)
7478 {
7479 u64 runtime, period;
7480 int ret = 0;
7481
7482 if (sysctl_sched_rt_period <= 0)
7483 return -EINVAL;
7484
7485 runtime = global_rt_runtime();
7486 period = global_rt_period();
7487
7488 /*
7489 * Sanity check on the sysctl variables.
7490 */
7491 if (runtime > period && runtime != RUNTIME_INF)
7492 return -EINVAL;
7493
7494 mutex_lock(&rt_constraints_mutex);
7495 read_lock(&tasklist_lock);
7496 ret = __rt_schedulable(NULL, 0, 0);
7497 read_unlock(&tasklist_lock);
7498 mutex_unlock(&rt_constraints_mutex);
7499
7500 return ret;
7501 }
7502
7503 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7504 {
7505 /* Don't accept realtime tasks when there is no way for them to run */
7506 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7507 return 0;
7508
7509 return 1;
7510 }
7511
7512 #else /* !CONFIG_RT_GROUP_SCHED */
7513 static int sched_rt_global_constraints(void)
7514 {
7515 unsigned long flags;
7516 int i;
7517
7518 if (sysctl_sched_rt_period <= 0)
7519 return -EINVAL;
7520
7521 /*
7522 * There's always some RT tasks in the root group
7523 * -- migration, kstopmachine etc..
7524 */
7525 if (sysctl_sched_rt_runtime == 0)
7526 return -EBUSY;
7527
7528 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7529 for_each_possible_cpu(i) {
7530 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7531
7532 raw_spin_lock(&rt_rq->rt_runtime_lock);
7533 rt_rq->rt_runtime = global_rt_runtime();
7534 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7535 }
7536 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7537
7538 return 0;
7539 }
7540 #endif /* CONFIG_RT_GROUP_SCHED */
7541
7542 int sched_rr_handler(struct ctl_table *table, int write,
7543 void __user *buffer, size_t *lenp,
7544 loff_t *ppos)
7545 {
7546 int ret;
7547 static DEFINE_MUTEX(mutex);
7548
7549 mutex_lock(&mutex);
7550 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7551 /* make sure that internally we keep jiffies */
7552 /* also, writing zero resets timeslice to default */
7553 if (!ret && write) {
7554 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7555 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7556 }
7557 mutex_unlock(&mutex);
7558 return ret;
7559 }
7560
7561 int sched_rt_handler(struct ctl_table *table, int write,
7562 void __user *buffer, size_t *lenp,
7563 loff_t *ppos)
7564 {
7565 int ret;
7566 int old_period, old_runtime;
7567 static DEFINE_MUTEX(mutex);
7568
7569 mutex_lock(&mutex);
7570 old_period = sysctl_sched_rt_period;
7571 old_runtime = sysctl_sched_rt_runtime;
7572
7573 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7574
7575 if (!ret && write) {
7576 ret = sched_rt_global_constraints();
7577 if (ret) {
7578 sysctl_sched_rt_period = old_period;
7579 sysctl_sched_rt_runtime = old_runtime;
7580 } else {
7581 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7582 def_rt_bandwidth.rt_period =
7583 ns_to_ktime(global_rt_period());
7584 }
7585 }
7586 mutex_unlock(&mutex);
7587
7588 return ret;
7589 }
7590
7591 #ifdef CONFIG_CGROUP_SCHED
7592
7593 /* return corresponding task_group object of a cgroup */
7594 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7595 {
7596 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7597 struct task_group, css);
7598 }
7599
7600 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7601 {
7602 struct task_group *tg, *parent;
7603
7604 if (!cgrp->parent) {
7605 /* This is early initialization for the top cgroup */
7606 return &root_task_group.css;
7607 }
7608
7609 parent = cgroup_tg(cgrp->parent);
7610 tg = sched_create_group(parent);
7611 if (IS_ERR(tg))
7612 return ERR_PTR(-ENOMEM);
7613
7614 return &tg->css;
7615 }
7616
7617 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7618 {
7619 struct task_group *tg = cgroup_tg(cgrp);
7620 struct task_group *parent;
7621
7622 if (!cgrp->parent)
7623 return 0;
7624
7625 parent = cgroup_tg(cgrp->parent);
7626 sched_online_group(tg, parent);
7627 return 0;
7628 }
7629
7630 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7631 {
7632 struct task_group *tg = cgroup_tg(cgrp);
7633
7634 sched_destroy_group(tg);
7635 }
7636
7637 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7638 {
7639 struct task_group *tg = cgroup_tg(cgrp);
7640
7641 sched_offline_group(tg);
7642 }
7643
7644 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7645 struct cgroup_taskset *tset)
7646 {
7647 struct task_struct *task;
7648
7649 cgroup_taskset_for_each(task, cgrp, tset) {
7650 #ifdef CONFIG_RT_GROUP_SCHED
7651 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7652 return -EINVAL;
7653 #else
7654 /* We don't support RT-tasks being in separate groups */
7655 if (task->sched_class != &fair_sched_class)
7656 return -EINVAL;
7657 #endif
7658 }
7659 return 0;
7660 }
7661
7662 static void cpu_cgroup_attach(struct cgroup *cgrp,
7663 struct cgroup_taskset *tset)
7664 {
7665 struct task_struct *task;
7666
7667 cgroup_taskset_for_each(task, cgrp, tset)
7668 sched_move_task(task);
7669 }
7670
7671 static void
7672 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7673 struct task_struct *task)
7674 {
7675 /*
7676 * cgroup_exit() is called in the copy_process() failure path.
7677 * Ignore this case since the task hasn't ran yet, this avoids
7678 * trying to poke a half freed task state from generic code.
7679 */
7680 if (!(task->flags & PF_EXITING))
7681 return;
7682
7683 sched_move_task(task);
7684 }
7685
7686 #ifdef CONFIG_FAIR_GROUP_SCHED
7687 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7688 u64 shareval)
7689 {
7690 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7691 }
7692
7693 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7694 {
7695 struct task_group *tg = cgroup_tg(cgrp);
7696
7697 return (u64) scale_load_down(tg->shares);
7698 }
7699
7700 #ifdef CONFIG_CFS_BANDWIDTH
7701 static DEFINE_MUTEX(cfs_constraints_mutex);
7702
7703 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7704 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7705
7706 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7707
7708 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7709 {
7710 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7711 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7712
7713 if (tg == &root_task_group)
7714 return -EINVAL;
7715
7716 /*
7717 * Ensure we have at some amount of bandwidth every period. This is
7718 * to prevent reaching a state of large arrears when throttled via
7719 * entity_tick() resulting in prolonged exit starvation.
7720 */
7721 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7722 return -EINVAL;
7723
7724 /*
7725 * Likewise, bound things on the otherside by preventing insane quota
7726 * periods. This also allows us to normalize in computing quota
7727 * feasibility.
7728 */
7729 if (period > max_cfs_quota_period)
7730 return -EINVAL;
7731
7732 mutex_lock(&cfs_constraints_mutex);
7733 ret = __cfs_schedulable(tg, period, quota);
7734 if (ret)
7735 goto out_unlock;
7736
7737 runtime_enabled = quota != RUNTIME_INF;
7738 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7739 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7740 raw_spin_lock_irq(&cfs_b->lock);
7741 cfs_b->period = ns_to_ktime(period);
7742 cfs_b->quota = quota;
7743
7744 __refill_cfs_bandwidth_runtime(cfs_b);
7745 /* restart the period timer (if active) to handle new period expiry */
7746 if (runtime_enabled && cfs_b->timer_active) {
7747 /* force a reprogram */
7748 cfs_b->timer_active = 0;
7749 __start_cfs_bandwidth(cfs_b);
7750 }
7751 raw_spin_unlock_irq(&cfs_b->lock);
7752
7753 for_each_possible_cpu(i) {
7754 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7755 struct rq *rq = cfs_rq->rq;
7756
7757 raw_spin_lock_irq(&rq->lock);
7758 cfs_rq->runtime_enabled = runtime_enabled;
7759 cfs_rq->runtime_remaining = 0;
7760
7761 if (cfs_rq->throttled)
7762 unthrottle_cfs_rq(cfs_rq);
7763 raw_spin_unlock_irq(&rq->lock);
7764 }
7765 out_unlock:
7766 mutex_unlock(&cfs_constraints_mutex);
7767
7768 return ret;
7769 }
7770
7771 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7772 {
7773 u64 quota, period;
7774
7775 period = ktime_to_ns(tg->cfs_bandwidth.period);
7776 if (cfs_quota_us < 0)
7777 quota = RUNTIME_INF;
7778 else
7779 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7780
7781 return tg_set_cfs_bandwidth(tg, period, quota);
7782 }
7783
7784 long tg_get_cfs_quota(struct task_group *tg)
7785 {
7786 u64 quota_us;
7787
7788 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7789 return -1;
7790
7791 quota_us = tg->cfs_bandwidth.quota;
7792 do_div(quota_us, NSEC_PER_USEC);
7793
7794 return quota_us;
7795 }
7796
7797 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7798 {
7799 u64 quota, period;
7800
7801 period = (u64)cfs_period_us * NSEC_PER_USEC;
7802 quota = tg->cfs_bandwidth.quota;
7803
7804 return tg_set_cfs_bandwidth(tg, period, quota);
7805 }
7806
7807 long tg_get_cfs_period(struct task_group *tg)
7808 {
7809 u64 cfs_period_us;
7810
7811 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7812 do_div(cfs_period_us, NSEC_PER_USEC);
7813
7814 return cfs_period_us;
7815 }
7816
7817 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7818 {
7819 return tg_get_cfs_quota(cgroup_tg(cgrp));
7820 }
7821
7822 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7823 s64 cfs_quota_us)
7824 {
7825 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7826 }
7827
7828 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7829 {
7830 return tg_get_cfs_period(cgroup_tg(cgrp));
7831 }
7832
7833 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7834 u64 cfs_period_us)
7835 {
7836 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7837 }
7838
7839 struct cfs_schedulable_data {
7840 struct task_group *tg;
7841 u64 period, quota;
7842 };
7843
7844 /*
7845 * normalize group quota/period to be quota/max_period
7846 * note: units are usecs
7847 */
7848 static u64 normalize_cfs_quota(struct task_group *tg,
7849 struct cfs_schedulable_data *d)
7850 {
7851 u64 quota, period;
7852
7853 if (tg == d->tg) {
7854 period = d->period;
7855 quota = d->quota;
7856 } else {
7857 period = tg_get_cfs_period(tg);
7858 quota = tg_get_cfs_quota(tg);
7859 }
7860
7861 /* note: these should typically be equivalent */
7862 if (quota == RUNTIME_INF || quota == -1)
7863 return RUNTIME_INF;
7864
7865 return to_ratio(period, quota);
7866 }
7867
7868 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7869 {
7870 struct cfs_schedulable_data *d = data;
7871 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7872 s64 quota = 0, parent_quota = -1;
7873
7874 if (!tg->parent) {
7875 quota = RUNTIME_INF;
7876 } else {
7877 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7878
7879 quota = normalize_cfs_quota(tg, d);
7880 parent_quota = parent_b->hierarchal_quota;
7881
7882 /*
7883 * ensure max(child_quota) <= parent_quota, inherit when no
7884 * limit is set
7885 */
7886 if (quota == RUNTIME_INF)
7887 quota = parent_quota;
7888 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7889 return -EINVAL;
7890 }
7891 cfs_b->hierarchal_quota = quota;
7892
7893 return 0;
7894 }
7895
7896 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7897 {
7898 int ret;
7899 struct cfs_schedulable_data data = {
7900 .tg = tg,
7901 .period = period,
7902 .quota = quota,
7903 };
7904
7905 if (quota != RUNTIME_INF) {
7906 do_div(data.period, NSEC_PER_USEC);
7907 do_div(data.quota, NSEC_PER_USEC);
7908 }
7909
7910 rcu_read_lock();
7911 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7912 rcu_read_unlock();
7913
7914 return ret;
7915 }
7916
7917 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7918 struct cgroup_map_cb *cb)
7919 {
7920 struct task_group *tg = cgroup_tg(cgrp);
7921 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7922
7923 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7924 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7925 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7926
7927 return 0;
7928 }
7929 #endif /* CONFIG_CFS_BANDWIDTH */
7930 #endif /* CONFIG_FAIR_GROUP_SCHED */
7931
7932 #ifdef CONFIG_RT_GROUP_SCHED
7933 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7934 s64 val)
7935 {
7936 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7937 }
7938
7939 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7940 {
7941 return sched_group_rt_runtime(cgroup_tg(cgrp));
7942 }
7943
7944 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7945 u64 rt_period_us)
7946 {
7947 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7948 }
7949
7950 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7951 {
7952 return sched_group_rt_period(cgroup_tg(cgrp));
7953 }
7954 #endif /* CONFIG_RT_GROUP_SCHED */
7955
7956 static struct cftype cpu_files[] = {
7957 #ifdef CONFIG_FAIR_GROUP_SCHED
7958 {
7959 .name = "shares",
7960 .read_u64 = cpu_shares_read_u64,
7961 .write_u64 = cpu_shares_write_u64,
7962 },
7963 #endif
7964 #ifdef CONFIG_CFS_BANDWIDTH
7965 {
7966 .name = "cfs_quota_us",
7967 .read_s64 = cpu_cfs_quota_read_s64,
7968 .write_s64 = cpu_cfs_quota_write_s64,
7969 },
7970 {
7971 .name = "cfs_period_us",
7972 .read_u64 = cpu_cfs_period_read_u64,
7973 .write_u64 = cpu_cfs_period_write_u64,
7974 },
7975 {
7976 .name = "stat",
7977 .read_map = cpu_stats_show,
7978 },
7979 #endif
7980 #ifdef CONFIG_RT_GROUP_SCHED
7981 {
7982 .name = "rt_runtime_us",
7983 .read_s64 = cpu_rt_runtime_read,
7984 .write_s64 = cpu_rt_runtime_write,
7985 },
7986 {
7987 .name = "rt_period_us",
7988 .read_u64 = cpu_rt_period_read_uint,
7989 .write_u64 = cpu_rt_period_write_uint,
7990 },
7991 #endif
7992 { } /* terminate */
7993 };
7994
7995 struct cgroup_subsys cpu_cgroup_subsys = {
7996 .name = "cpu",
7997 .css_alloc = cpu_cgroup_css_alloc,
7998 .css_free = cpu_cgroup_css_free,
7999 .css_online = cpu_cgroup_css_online,
8000 .css_offline = cpu_cgroup_css_offline,
8001 .can_attach = cpu_cgroup_can_attach,
8002 .attach = cpu_cgroup_attach,
8003 .exit = cpu_cgroup_exit,
8004 .subsys_id = cpu_cgroup_subsys_id,
8005 .base_cftypes = cpu_files,
8006 .early_init = 1,
8007 };
8008
8009 #endif /* CONFIG_CGROUP_SCHED */
8010
8011 #ifdef CONFIG_CGROUP_CPUACCT
8012
8013 /*
8014 * CPU accounting code for task groups.
8015 *
8016 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8017 * (balbir@in.ibm.com).
8018 */
8019
8020 struct cpuacct root_cpuacct;
8021
8022 /* create a new cpu accounting group */
8023 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8024 {
8025 struct cpuacct *ca;
8026
8027 if (!cgrp->parent)
8028 return &root_cpuacct.css;
8029
8030 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8031 if (!ca)
8032 goto out;
8033
8034 ca->cpuusage = alloc_percpu(u64);
8035 if (!ca->cpuusage)
8036 goto out_free_ca;
8037
8038 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8039 if (!ca->cpustat)
8040 goto out_free_cpuusage;
8041
8042 return &ca->css;
8043
8044 out_free_cpuusage:
8045 free_percpu(ca->cpuusage);
8046 out_free_ca:
8047 kfree(ca);
8048 out:
8049 return ERR_PTR(-ENOMEM);
8050 }
8051
8052 /* destroy an existing cpu accounting group */
8053 static void cpuacct_css_free(struct cgroup *cgrp)
8054 {
8055 struct cpuacct *ca = cgroup_ca(cgrp);
8056
8057 free_percpu(ca->cpustat);
8058 free_percpu(ca->cpuusage);
8059 kfree(ca);
8060 }
8061
8062 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8063 {
8064 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8065 u64 data;
8066
8067 #ifndef CONFIG_64BIT
8068 /*
8069 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8070 */
8071 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8072 data = *cpuusage;
8073 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8074 #else
8075 data = *cpuusage;
8076 #endif
8077
8078 return data;
8079 }
8080
8081 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8082 {
8083 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8084
8085 #ifndef CONFIG_64BIT
8086 /*
8087 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8088 */
8089 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8090 *cpuusage = val;
8091 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8092 #else
8093 *cpuusage = val;
8094 #endif
8095 }
8096
8097 /* return total cpu usage (in nanoseconds) of a group */
8098 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8099 {
8100 struct cpuacct *ca = cgroup_ca(cgrp);
8101 u64 totalcpuusage = 0;
8102 int i;
8103
8104 for_each_present_cpu(i)
8105 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8106
8107 return totalcpuusage;
8108 }
8109
8110 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8111 u64 reset)
8112 {
8113 struct cpuacct *ca = cgroup_ca(cgrp);
8114 int err = 0;
8115 int i;
8116
8117 if (reset) {
8118 err = -EINVAL;
8119 goto out;
8120 }
8121
8122 for_each_present_cpu(i)
8123 cpuacct_cpuusage_write(ca, i, 0);
8124
8125 out:
8126 return err;
8127 }
8128
8129 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8130 struct seq_file *m)
8131 {
8132 struct cpuacct *ca = cgroup_ca(cgroup);
8133 u64 percpu;
8134 int i;
8135
8136 for_each_present_cpu(i) {
8137 percpu = cpuacct_cpuusage_read(ca, i);
8138 seq_printf(m, "%llu ", (unsigned long long) percpu);
8139 }
8140 seq_printf(m, "\n");
8141 return 0;
8142 }
8143
8144 static const char *cpuacct_stat_desc[] = {
8145 [CPUACCT_STAT_USER] = "user",
8146 [CPUACCT_STAT_SYSTEM] = "system",
8147 };
8148
8149 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8150 struct cgroup_map_cb *cb)
8151 {
8152 struct cpuacct *ca = cgroup_ca(cgrp);
8153 int cpu;
8154 s64 val = 0;
8155
8156 for_each_online_cpu(cpu) {
8157 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8158 val += kcpustat->cpustat[CPUTIME_USER];
8159 val += kcpustat->cpustat[CPUTIME_NICE];
8160 }
8161 val = cputime64_to_clock_t(val);
8162 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8163
8164 val = 0;
8165 for_each_online_cpu(cpu) {
8166 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8167 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8168 val += kcpustat->cpustat[CPUTIME_IRQ];
8169 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8170 }
8171
8172 val = cputime64_to_clock_t(val);
8173 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8174
8175 return 0;
8176 }
8177
8178 static struct cftype files[] = {
8179 {
8180 .name = "usage",
8181 .read_u64 = cpuusage_read,
8182 .write_u64 = cpuusage_write,
8183 },
8184 {
8185 .name = "usage_percpu",
8186 .read_seq_string = cpuacct_percpu_seq_read,
8187 },
8188 {
8189 .name = "stat",
8190 .read_map = cpuacct_stats_show,
8191 },
8192 { } /* terminate */
8193 };
8194
8195 /*
8196 * charge this task's execution time to its accounting group.
8197 *
8198 * called with rq->lock held.
8199 */
8200 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8201 {
8202 struct cpuacct *ca;
8203 int cpu;
8204
8205 if (unlikely(!cpuacct_subsys.active))
8206 return;
8207
8208 cpu = task_cpu(tsk);
8209
8210 rcu_read_lock();
8211
8212 ca = task_ca(tsk);
8213
8214 for (; ca; ca = parent_ca(ca)) {
8215 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8216 *cpuusage += cputime;
8217 }
8218
8219 rcu_read_unlock();
8220 }
8221
8222 struct cgroup_subsys cpuacct_subsys = {
8223 .name = "cpuacct",
8224 .css_alloc = cpuacct_css_alloc,
8225 .css_free = cpuacct_css_free,
8226 .subsys_id = cpuacct_subsys_id,
8227 .base_cftypes = files,
8228 };
8229 #endif /* CONFIG_CGROUP_CPUACCT */
8230
8231 void dump_cpu_task(int cpu)
8232 {
8233 pr_info("Task dump for CPU %d:\n", cpu);
8234 sched_show_task(cpu_curr(cpu));
8235 }
This page took 0.209794 seconds and 6 git commands to generate.