Merge branch 'for-linus-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 /*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
133 /*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
141 /*
142 * period over which we measure -rt task cpu usage in us.
143 * default: 1s
144 */
145 unsigned int sysctl_sched_rt_period = 1000000;
146
147 __read_mostly int scheduler_running;
148
149 /*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153 int sysctl_sched_rt_runtime = 950000;
154
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157
158 /*
159 * this_rq_lock - lock this runqueue and disable interrupts.
160 */
161 static struct rq *this_rq_lock(void)
162 __acquires(rq->lock)
163 {
164 struct rq *rq;
165
166 local_irq_disable();
167 rq = this_rq();
168 raw_spin_lock(&rq->lock);
169
170 return rq;
171 }
172
173 /*
174 * __task_rq_lock - lock the rq @p resides on.
175 */
176 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
177 __acquires(rq->lock)
178 {
179 struct rq *rq;
180
181 lockdep_assert_held(&p->pi_lock);
182
183 for (;;) {
184 rq = task_rq(p);
185 raw_spin_lock(&rq->lock);
186 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
187 rf->cookie = lockdep_pin_lock(&rq->lock);
188 return rq;
189 }
190 raw_spin_unlock(&rq->lock);
191
192 while (unlikely(task_on_rq_migrating(p)))
193 cpu_relax();
194 }
195 }
196
197 /*
198 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
199 */
200 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
201 __acquires(p->pi_lock)
202 __acquires(rq->lock)
203 {
204 struct rq *rq;
205
206 for (;;) {
207 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
208 rq = task_rq(p);
209 raw_spin_lock(&rq->lock);
210 /*
211 * move_queued_task() task_rq_lock()
212 *
213 * ACQUIRE (rq->lock)
214 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
215 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
216 * [S] ->cpu = new_cpu [L] task_rq()
217 * [L] ->on_rq
218 * RELEASE (rq->lock)
219 *
220 * If we observe the old cpu in task_rq_lock, the acquire of
221 * the old rq->lock will fully serialize against the stores.
222 *
223 * If we observe the new cpu in task_rq_lock, the acquire will
224 * pair with the WMB to ensure we must then also see migrating.
225 */
226 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
227 rf->cookie = lockdep_pin_lock(&rq->lock);
228 return rq;
229 }
230 raw_spin_unlock(&rq->lock);
231 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
232
233 while (unlikely(task_on_rq_migrating(p)))
234 cpu_relax();
235 }
236 }
237
238 #ifdef CONFIG_SCHED_HRTICK
239 /*
240 * Use HR-timers to deliver accurate preemption points.
241 */
242
243 static void hrtick_clear(struct rq *rq)
244 {
245 if (hrtimer_active(&rq->hrtick_timer))
246 hrtimer_cancel(&rq->hrtick_timer);
247 }
248
249 /*
250 * High-resolution timer tick.
251 * Runs from hardirq context with interrupts disabled.
252 */
253 static enum hrtimer_restart hrtick(struct hrtimer *timer)
254 {
255 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256
257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258
259 raw_spin_lock(&rq->lock);
260 update_rq_clock(rq);
261 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262 raw_spin_unlock(&rq->lock);
263
264 return HRTIMER_NORESTART;
265 }
266
267 #ifdef CONFIG_SMP
268
269 static void __hrtick_restart(struct rq *rq)
270 {
271 struct hrtimer *timer = &rq->hrtick_timer;
272
273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275
276 /*
277 * called from hardirq (IPI) context
278 */
279 static void __hrtick_start(void *arg)
280 {
281 struct rq *rq = arg;
282
283 raw_spin_lock(&rq->lock);
284 __hrtick_restart(rq);
285 rq->hrtick_csd_pending = 0;
286 raw_spin_unlock(&rq->lock);
287 }
288
289 /*
290 * Called to set the hrtick timer state.
291 *
292 * called with rq->lock held and irqs disabled
293 */
294 void hrtick_start(struct rq *rq, u64 delay)
295 {
296 struct hrtimer *timer = &rq->hrtick_timer;
297 ktime_t time;
298 s64 delta;
299
300 /*
301 * Don't schedule slices shorter than 10000ns, that just
302 * doesn't make sense and can cause timer DoS.
303 */
304 delta = max_t(s64, delay, 10000LL);
305 time = ktime_add_ns(timer->base->get_time(), delta);
306
307 hrtimer_set_expires(timer, time);
308
309 if (rq == this_rq()) {
310 __hrtick_restart(rq);
311 } else if (!rq->hrtick_csd_pending) {
312 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313 rq->hrtick_csd_pending = 1;
314 }
315 }
316
317 #else
318 /*
319 * Called to set the hrtick timer state.
320 *
321 * called with rq->lock held and irqs disabled
322 */
323 void hrtick_start(struct rq *rq, u64 delay)
324 {
325 /*
326 * Don't schedule slices shorter than 10000ns, that just
327 * doesn't make sense. Rely on vruntime for fairness.
328 */
329 delay = max_t(u64, delay, 10000LL);
330 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331 HRTIMER_MODE_REL_PINNED);
332 }
333 #endif /* CONFIG_SMP */
334
335 static void init_rq_hrtick(struct rq *rq)
336 {
337 #ifdef CONFIG_SMP
338 rq->hrtick_csd_pending = 0;
339
340 rq->hrtick_csd.flags = 0;
341 rq->hrtick_csd.func = __hrtick_start;
342 rq->hrtick_csd.info = rq;
343 #endif
344
345 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346 rq->hrtick_timer.function = hrtick;
347 }
348 #else /* CONFIG_SCHED_HRTICK */
349 static inline void hrtick_clear(struct rq *rq)
350 {
351 }
352
353 static inline void init_rq_hrtick(struct rq *rq)
354 {
355 }
356 #endif /* CONFIG_SCHED_HRTICK */
357
358 /*
359 * cmpxchg based fetch_or, macro so it works for different integer types
360 */
361 #define fetch_or(ptr, mask) \
362 ({ \
363 typeof(ptr) _ptr = (ptr); \
364 typeof(mask) _mask = (mask); \
365 typeof(*_ptr) _old, _val = *_ptr; \
366 \
367 for (;;) { \
368 _old = cmpxchg(_ptr, _val, _val | _mask); \
369 if (_old == _val) \
370 break; \
371 _val = _old; \
372 } \
373 _old; \
374 })
375
376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 /*
378 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379 * this avoids any races wrt polling state changes and thereby avoids
380 * spurious IPIs.
381 */
382 static bool set_nr_and_not_polling(struct task_struct *p)
383 {
384 struct thread_info *ti = task_thread_info(p);
385 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386 }
387
388 /*
389 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390 *
391 * If this returns true, then the idle task promises to call
392 * sched_ttwu_pending() and reschedule soon.
393 */
394 static bool set_nr_if_polling(struct task_struct *p)
395 {
396 struct thread_info *ti = task_thread_info(p);
397 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
398
399 for (;;) {
400 if (!(val & _TIF_POLLING_NRFLAG))
401 return false;
402 if (val & _TIF_NEED_RESCHED)
403 return true;
404 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405 if (old == val)
406 break;
407 val = old;
408 }
409 return true;
410 }
411
412 #else
413 static bool set_nr_and_not_polling(struct task_struct *p)
414 {
415 set_tsk_need_resched(p);
416 return true;
417 }
418
419 #ifdef CONFIG_SMP
420 static bool set_nr_if_polling(struct task_struct *p)
421 {
422 return false;
423 }
424 #endif
425 #endif
426
427 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428 {
429 struct wake_q_node *node = &task->wake_q;
430
431 /*
432 * Atomically grab the task, if ->wake_q is !nil already it means
433 * its already queued (either by us or someone else) and will get the
434 * wakeup due to that.
435 *
436 * This cmpxchg() implies a full barrier, which pairs with the write
437 * barrier implied by the wakeup in wake_up_q().
438 */
439 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
440 return;
441
442 get_task_struct(task);
443
444 /*
445 * The head is context local, there can be no concurrency.
446 */
447 *head->lastp = node;
448 head->lastp = &node->next;
449 }
450
451 void wake_up_q(struct wake_q_head *head)
452 {
453 struct wake_q_node *node = head->first;
454
455 while (node != WAKE_Q_TAIL) {
456 struct task_struct *task;
457
458 task = container_of(node, struct task_struct, wake_q);
459 BUG_ON(!task);
460 /* task can safely be re-inserted now */
461 node = node->next;
462 task->wake_q.next = NULL;
463
464 /*
465 * wake_up_process() implies a wmb() to pair with the queueing
466 * in wake_q_add() so as not to miss wakeups.
467 */
468 wake_up_process(task);
469 put_task_struct(task);
470 }
471 }
472
473 /*
474 * resched_curr - mark rq's current task 'to be rescheduled now'.
475 *
476 * On UP this means the setting of the need_resched flag, on SMP it
477 * might also involve a cross-CPU call to trigger the scheduler on
478 * the target CPU.
479 */
480 void resched_curr(struct rq *rq)
481 {
482 struct task_struct *curr = rq->curr;
483 int cpu;
484
485 lockdep_assert_held(&rq->lock);
486
487 if (test_tsk_need_resched(curr))
488 return;
489
490 cpu = cpu_of(rq);
491
492 if (cpu == smp_processor_id()) {
493 set_tsk_need_resched(curr);
494 set_preempt_need_resched();
495 return;
496 }
497
498 if (set_nr_and_not_polling(curr))
499 smp_send_reschedule(cpu);
500 else
501 trace_sched_wake_idle_without_ipi(cpu);
502 }
503
504 void resched_cpu(int cpu)
505 {
506 struct rq *rq = cpu_rq(cpu);
507 unsigned long flags;
508
509 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
510 return;
511 resched_curr(rq);
512 raw_spin_unlock_irqrestore(&rq->lock, flags);
513 }
514
515 #ifdef CONFIG_SMP
516 #ifdef CONFIG_NO_HZ_COMMON
517 /*
518 * In the semi idle case, use the nearest busy cpu for migrating timers
519 * from an idle cpu. This is good for power-savings.
520 *
521 * We don't do similar optimization for completely idle system, as
522 * selecting an idle cpu will add more delays to the timers than intended
523 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
524 */
525 int get_nohz_timer_target(void)
526 {
527 int i, cpu = smp_processor_id();
528 struct sched_domain *sd;
529
530 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
531 return cpu;
532
533 rcu_read_lock();
534 for_each_domain(cpu, sd) {
535 for_each_cpu(i, sched_domain_span(sd)) {
536 if (cpu == i)
537 continue;
538
539 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
540 cpu = i;
541 goto unlock;
542 }
543 }
544 }
545
546 if (!is_housekeeping_cpu(cpu))
547 cpu = housekeeping_any_cpu();
548 unlock:
549 rcu_read_unlock();
550 return cpu;
551 }
552 /*
553 * When add_timer_on() enqueues a timer into the timer wheel of an
554 * idle CPU then this timer might expire before the next timer event
555 * which is scheduled to wake up that CPU. In case of a completely
556 * idle system the next event might even be infinite time into the
557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558 * leaves the inner idle loop so the newly added timer is taken into
559 * account when the CPU goes back to idle and evaluates the timer
560 * wheel for the next timer event.
561 */
562 static void wake_up_idle_cpu(int cpu)
563 {
564 struct rq *rq = cpu_rq(cpu);
565
566 if (cpu == smp_processor_id())
567 return;
568
569 if (set_nr_and_not_polling(rq->idle))
570 smp_send_reschedule(cpu);
571 else
572 trace_sched_wake_idle_without_ipi(cpu);
573 }
574
575 static bool wake_up_full_nohz_cpu(int cpu)
576 {
577 /*
578 * We just need the target to call irq_exit() and re-evaluate
579 * the next tick. The nohz full kick at least implies that.
580 * If needed we can still optimize that later with an
581 * empty IRQ.
582 */
583 if (tick_nohz_full_cpu(cpu)) {
584 if (cpu != smp_processor_id() ||
585 tick_nohz_tick_stopped())
586 tick_nohz_full_kick_cpu(cpu);
587 return true;
588 }
589
590 return false;
591 }
592
593 void wake_up_nohz_cpu(int cpu)
594 {
595 if (!wake_up_full_nohz_cpu(cpu))
596 wake_up_idle_cpu(cpu);
597 }
598
599 static inline bool got_nohz_idle_kick(void)
600 {
601 int cpu = smp_processor_id();
602
603 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
604 return false;
605
606 if (idle_cpu(cpu) && !need_resched())
607 return true;
608
609 /*
610 * We can't run Idle Load Balance on this CPU for this time so we
611 * cancel it and clear NOHZ_BALANCE_KICK
612 */
613 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
614 return false;
615 }
616
617 #else /* CONFIG_NO_HZ_COMMON */
618
619 static inline bool got_nohz_idle_kick(void)
620 {
621 return false;
622 }
623
624 #endif /* CONFIG_NO_HZ_COMMON */
625
626 #ifdef CONFIG_NO_HZ_FULL
627 bool sched_can_stop_tick(struct rq *rq)
628 {
629 int fifo_nr_running;
630
631 /* Deadline tasks, even if single, need the tick */
632 if (rq->dl.dl_nr_running)
633 return false;
634
635 /*
636 * If there are more than one RR tasks, we need the tick to effect the
637 * actual RR behaviour.
638 */
639 if (rq->rt.rr_nr_running) {
640 if (rq->rt.rr_nr_running == 1)
641 return true;
642 else
643 return false;
644 }
645
646 /*
647 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
648 * forced preemption between FIFO tasks.
649 */
650 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
651 if (fifo_nr_running)
652 return true;
653
654 /*
655 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
656 * if there's more than one we need the tick for involuntary
657 * preemption.
658 */
659 if (rq->nr_running > 1)
660 return false;
661
662 return true;
663 }
664 #endif /* CONFIG_NO_HZ_FULL */
665
666 void sched_avg_update(struct rq *rq)
667 {
668 s64 period = sched_avg_period();
669
670 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
671 /*
672 * Inline assembly required to prevent the compiler
673 * optimising this loop into a divmod call.
674 * See __iter_div_u64_rem() for another example of this.
675 */
676 asm("" : "+rm" (rq->age_stamp));
677 rq->age_stamp += period;
678 rq->rt_avg /= 2;
679 }
680 }
681
682 #endif /* CONFIG_SMP */
683
684 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
685 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
686 /*
687 * Iterate task_group tree rooted at *from, calling @down when first entering a
688 * node and @up when leaving it for the final time.
689 *
690 * Caller must hold rcu_lock or sufficient equivalent.
691 */
692 int walk_tg_tree_from(struct task_group *from,
693 tg_visitor down, tg_visitor up, void *data)
694 {
695 struct task_group *parent, *child;
696 int ret;
697
698 parent = from;
699
700 down:
701 ret = (*down)(parent, data);
702 if (ret)
703 goto out;
704 list_for_each_entry_rcu(child, &parent->children, siblings) {
705 parent = child;
706 goto down;
707
708 up:
709 continue;
710 }
711 ret = (*up)(parent, data);
712 if (ret || parent == from)
713 goto out;
714
715 child = parent;
716 parent = parent->parent;
717 if (parent)
718 goto up;
719 out:
720 return ret;
721 }
722
723 int tg_nop(struct task_group *tg, void *data)
724 {
725 return 0;
726 }
727 #endif
728
729 static void set_load_weight(struct task_struct *p)
730 {
731 int prio = p->static_prio - MAX_RT_PRIO;
732 struct load_weight *load = &p->se.load;
733
734 /*
735 * SCHED_IDLE tasks get minimal weight:
736 */
737 if (idle_policy(p->policy)) {
738 load->weight = scale_load(WEIGHT_IDLEPRIO);
739 load->inv_weight = WMULT_IDLEPRIO;
740 return;
741 }
742
743 load->weight = scale_load(sched_prio_to_weight[prio]);
744 load->inv_weight = sched_prio_to_wmult[prio];
745 }
746
747 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
748 {
749 update_rq_clock(rq);
750 if (!(flags & ENQUEUE_RESTORE))
751 sched_info_queued(rq, p);
752 p->sched_class->enqueue_task(rq, p, flags);
753 }
754
755 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 update_rq_clock(rq);
758 if (!(flags & DEQUEUE_SAVE))
759 sched_info_dequeued(rq, p);
760 p->sched_class->dequeue_task(rq, p, flags);
761 }
762
763 void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 if (task_contributes_to_load(p))
766 rq->nr_uninterruptible--;
767
768 enqueue_task(rq, p, flags);
769 }
770
771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible++;
775
776 dequeue_task(rq, p, flags);
777 }
778
779 static void update_rq_clock_task(struct rq *rq, s64 delta)
780 {
781 /*
782 * In theory, the compile should just see 0 here, and optimize out the call
783 * to sched_rt_avg_update. But I don't trust it...
784 */
785 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
786 s64 steal = 0, irq_delta = 0;
787 #endif
788 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
789 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
790
791 /*
792 * Since irq_time is only updated on {soft,}irq_exit, we might run into
793 * this case when a previous update_rq_clock() happened inside a
794 * {soft,}irq region.
795 *
796 * When this happens, we stop ->clock_task and only update the
797 * prev_irq_time stamp to account for the part that fit, so that a next
798 * update will consume the rest. This ensures ->clock_task is
799 * monotonic.
800 *
801 * It does however cause some slight miss-attribution of {soft,}irq
802 * time, a more accurate solution would be to update the irq_time using
803 * the current rq->clock timestamp, except that would require using
804 * atomic ops.
805 */
806 if (irq_delta > delta)
807 irq_delta = delta;
808
809 rq->prev_irq_time += irq_delta;
810 delta -= irq_delta;
811 #endif
812 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
813 if (static_key_false((&paravirt_steal_rq_enabled))) {
814 steal = paravirt_steal_clock(cpu_of(rq));
815 steal -= rq->prev_steal_time_rq;
816
817 if (unlikely(steal > delta))
818 steal = delta;
819
820 rq->prev_steal_time_rq += steal;
821 delta -= steal;
822 }
823 #endif
824
825 rq->clock_task += delta;
826
827 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
828 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
829 sched_rt_avg_update(rq, irq_delta + steal);
830 #endif
831 }
832
833 void sched_set_stop_task(int cpu, struct task_struct *stop)
834 {
835 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
836 struct task_struct *old_stop = cpu_rq(cpu)->stop;
837
838 if (stop) {
839 /*
840 * Make it appear like a SCHED_FIFO task, its something
841 * userspace knows about and won't get confused about.
842 *
843 * Also, it will make PI more or less work without too
844 * much confusion -- but then, stop work should not
845 * rely on PI working anyway.
846 */
847 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
848
849 stop->sched_class = &stop_sched_class;
850 }
851
852 cpu_rq(cpu)->stop = stop;
853
854 if (old_stop) {
855 /*
856 * Reset it back to a normal scheduling class so that
857 * it can die in pieces.
858 */
859 old_stop->sched_class = &rt_sched_class;
860 }
861 }
862
863 /*
864 * __normal_prio - return the priority that is based on the static prio
865 */
866 static inline int __normal_prio(struct task_struct *p)
867 {
868 return p->static_prio;
869 }
870
871 /*
872 * Calculate the expected normal priority: i.e. priority
873 * without taking RT-inheritance into account. Might be
874 * boosted by interactivity modifiers. Changes upon fork,
875 * setprio syscalls, and whenever the interactivity
876 * estimator recalculates.
877 */
878 static inline int normal_prio(struct task_struct *p)
879 {
880 int prio;
881
882 if (task_has_dl_policy(p))
883 prio = MAX_DL_PRIO-1;
884 else if (task_has_rt_policy(p))
885 prio = MAX_RT_PRIO-1 - p->rt_priority;
886 else
887 prio = __normal_prio(p);
888 return prio;
889 }
890
891 /*
892 * Calculate the current priority, i.e. the priority
893 * taken into account by the scheduler. This value might
894 * be boosted by RT tasks, or might be boosted by
895 * interactivity modifiers. Will be RT if the task got
896 * RT-boosted. If not then it returns p->normal_prio.
897 */
898 static int effective_prio(struct task_struct *p)
899 {
900 p->normal_prio = normal_prio(p);
901 /*
902 * If we are RT tasks or we were boosted to RT priority,
903 * keep the priority unchanged. Otherwise, update priority
904 * to the normal priority:
905 */
906 if (!rt_prio(p->prio))
907 return p->normal_prio;
908 return p->prio;
909 }
910
911 /**
912 * task_curr - is this task currently executing on a CPU?
913 * @p: the task in question.
914 *
915 * Return: 1 if the task is currently executing. 0 otherwise.
916 */
917 inline int task_curr(const struct task_struct *p)
918 {
919 return cpu_curr(task_cpu(p)) == p;
920 }
921
922 /*
923 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
924 * use the balance_callback list if you want balancing.
925 *
926 * this means any call to check_class_changed() must be followed by a call to
927 * balance_callback().
928 */
929 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
930 const struct sched_class *prev_class,
931 int oldprio)
932 {
933 if (prev_class != p->sched_class) {
934 if (prev_class->switched_from)
935 prev_class->switched_from(rq, p);
936
937 p->sched_class->switched_to(rq, p);
938 } else if (oldprio != p->prio || dl_task(p))
939 p->sched_class->prio_changed(rq, p, oldprio);
940 }
941
942 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
943 {
944 const struct sched_class *class;
945
946 if (p->sched_class == rq->curr->sched_class) {
947 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
948 } else {
949 for_each_class(class) {
950 if (class == rq->curr->sched_class)
951 break;
952 if (class == p->sched_class) {
953 resched_curr(rq);
954 break;
955 }
956 }
957 }
958
959 /*
960 * A queue event has occurred, and we're going to schedule. In
961 * this case, we can save a useless back to back clock update.
962 */
963 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
964 rq_clock_skip_update(rq, true);
965 }
966
967 #ifdef CONFIG_SMP
968 /*
969 * This is how migration works:
970 *
971 * 1) we invoke migration_cpu_stop() on the target CPU using
972 * stop_one_cpu().
973 * 2) stopper starts to run (implicitly forcing the migrated thread
974 * off the CPU)
975 * 3) it checks whether the migrated task is still in the wrong runqueue.
976 * 4) if it's in the wrong runqueue then the migration thread removes
977 * it and puts it into the right queue.
978 * 5) stopper completes and stop_one_cpu() returns and the migration
979 * is done.
980 */
981
982 /*
983 * move_queued_task - move a queued task to new rq.
984 *
985 * Returns (locked) new rq. Old rq's lock is released.
986 */
987 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
988 {
989 lockdep_assert_held(&rq->lock);
990
991 p->on_rq = TASK_ON_RQ_MIGRATING;
992 dequeue_task(rq, p, 0);
993 set_task_cpu(p, new_cpu);
994 raw_spin_unlock(&rq->lock);
995
996 rq = cpu_rq(new_cpu);
997
998 raw_spin_lock(&rq->lock);
999 BUG_ON(task_cpu(p) != new_cpu);
1000 enqueue_task(rq, p, 0);
1001 p->on_rq = TASK_ON_RQ_QUEUED;
1002 check_preempt_curr(rq, p, 0);
1003
1004 return rq;
1005 }
1006
1007 struct migration_arg {
1008 struct task_struct *task;
1009 int dest_cpu;
1010 };
1011
1012 /*
1013 * Move (not current) task off this cpu, onto dest cpu. We're doing
1014 * this because either it can't run here any more (set_cpus_allowed()
1015 * away from this CPU, or CPU going down), or because we're
1016 * attempting to rebalance this task on exec (sched_exec).
1017 *
1018 * So we race with normal scheduler movements, but that's OK, as long
1019 * as the task is no longer on this CPU.
1020 */
1021 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1022 {
1023 if (unlikely(!cpu_active(dest_cpu)))
1024 return rq;
1025
1026 /* Affinity changed (again). */
1027 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1028 return rq;
1029
1030 rq = move_queued_task(rq, p, dest_cpu);
1031
1032 return rq;
1033 }
1034
1035 /*
1036 * migration_cpu_stop - this will be executed by a highprio stopper thread
1037 * and performs thread migration by bumping thread off CPU then
1038 * 'pushing' onto another runqueue.
1039 */
1040 static int migration_cpu_stop(void *data)
1041 {
1042 struct migration_arg *arg = data;
1043 struct task_struct *p = arg->task;
1044 struct rq *rq = this_rq();
1045
1046 /*
1047 * The original target cpu might have gone down and we might
1048 * be on another cpu but it doesn't matter.
1049 */
1050 local_irq_disable();
1051 /*
1052 * We need to explicitly wake pending tasks before running
1053 * __migrate_task() such that we will not miss enforcing cpus_allowed
1054 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1055 */
1056 sched_ttwu_pending();
1057
1058 raw_spin_lock(&p->pi_lock);
1059 raw_spin_lock(&rq->lock);
1060 /*
1061 * If task_rq(p) != rq, it cannot be migrated here, because we're
1062 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1063 * we're holding p->pi_lock.
1064 */
1065 if (task_rq(p) == rq && task_on_rq_queued(p))
1066 rq = __migrate_task(rq, p, arg->dest_cpu);
1067 raw_spin_unlock(&rq->lock);
1068 raw_spin_unlock(&p->pi_lock);
1069
1070 local_irq_enable();
1071 return 0;
1072 }
1073
1074 /*
1075 * sched_class::set_cpus_allowed must do the below, but is not required to
1076 * actually call this function.
1077 */
1078 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1079 {
1080 cpumask_copy(&p->cpus_allowed, new_mask);
1081 p->nr_cpus_allowed = cpumask_weight(new_mask);
1082 }
1083
1084 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1085 {
1086 struct rq *rq = task_rq(p);
1087 bool queued, running;
1088
1089 lockdep_assert_held(&p->pi_lock);
1090
1091 queued = task_on_rq_queued(p);
1092 running = task_current(rq, p);
1093
1094 if (queued) {
1095 /*
1096 * Because __kthread_bind() calls this on blocked tasks without
1097 * holding rq->lock.
1098 */
1099 lockdep_assert_held(&rq->lock);
1100 dequeue_task(rq, p, DEQUEUE_SAVE);
1101 }
1102 if (running)
1103 put_prev_task(rq, p);
1104
1105 p->sched_class->set_cpus_allowed(p, new_mask);
1106
1107 if (running)
1108 p->sched_class->set_curr_task(rq);
1109 if (queued)
1110 enqueue_task(rq, p, ENQUEUE_RESTORE);
1111 }
1112
1113 /*
1114 * Change a given task's CPU affinity. Migrate the thread to a
1115 * proper CPU and schedule it away if the CPU it's executing on
1116 * is removed from the allowed bitmask.
1117 *
1118 * NOTE: the caller must have a valid reference to the task, the
1119 * task must not exit() & deallocate itself prematurely. The
1120 * call is not atomic; no spinlocks may be held.
1121 */
1122 static int __set_cpus_allowed_ptr(struct task_struct *p,
1123 const struct cpumask *new_mask, bool check)
1124 {
1125 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1126 unsigned int dest_cpu;
1127 struct rq_flags rf;
1128 struct rq *rq;
1129 int ret = 0;
1130
1131 rq = task_rq_lock(p, &rf);
1132
1133 if (p->flags & PF_KTHREAD) {
1134 /*
1135 * Kernel threads are allowed on online && !active CPUs
1136 */
1137 cpu_valid_mask = cpu_online_mask;
1138 }
1139
1140 /*
1141 * Must re-check here, to close a race against __kthread_bind(),
1142 * sched_setaffinity() is not guaranteed to observe the flag.
1143 */
1144 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1145 ret = -EINVAL;
1146 goto out;
1147 }
1148
1149 if (cpumask_equal(&p->cpus_allowed, new_mask))
1150 goto out;
1151
1152 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1153 ret = -EINVAL;
1154 goto out;
1155 }
1156
1157 do_set_cpus_allowed(p, new_mask);
1158
1159 if (p->flags & PF_KTHREAD) {
1160 /*
1161 * For kernel threads that do indeed end up on online &&
1162 * !active we want to ensure they are strict per-cpu threads.
1163 */
1164 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1165 !cpumask_intersects(new_mask, cpu_active_mask) &&
1166 p->nr_cpus_allowed != 1);
1167 }
1168
1169 /* Can the task run on the task's current CPU? If so, we're done */
1170 if (cpumask_test_cpu(task_cpu(p), new_mask))
1171 goto out;
1172
1173 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1174 if (task_running(rq, p) || p->state == TASK_WAKING) {
1175 struct migration_arg arg = { p, dest_cpu };
1176 /* Need help from migration thread: drop lock and wait. */
1177 task_rq_unlock(rq, p, &rf);
1178 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1179 tlb_migrate_finish(p->mm);
1180 return 0;
1181 } else if (task_on_rq_queued(p)) {
1182 /*
1183 * OK, since we're going to drop the lock immediately
1184 * afterwards anyway.
1185 */
1186 lockdep_unpin_lock(&rq->lock, rf.cookie);
1187 rq = move_queued_task(rq, p, dest_cpu);
1188 lockdep_repin_lock(&rq->lock, rf.cookie);
1189 }
1190 out:
1191 task_rq_unlock(rq, p, &rf);
1192
1193 return ret;
1194 }
1195
1196 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1197 {
1198 return __set_cpus_allowed_ptr(p, new_mask, false);
1199 }
1200 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1201
1202 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1203 {
1204 #ifdef CONFIG_SCHED_DEBUG
1205 /*
1206 * We should never call set_task_cpu() on a blocked task,
1207 * ttwu() will sort out the placement.
1208 */
1209 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1210 !p->on_rq);
1211
1212 /*
1213 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1214 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1215 * time relying on p->on_rq.
1216 */
1217 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1218 p->sched_class == &fair_sched_class &&
1219 (p->on_rq && !task_on_rq_migrating(p)));
1220
1221 #ifdef CONFIG_LOCKDEP
1222 /*
1223 * The caller should hold either p->pi_lock or rq->lock, when changing
1224 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1225 *
1226 * sched_move_task() holds both and thus holding either pins the cgroup,
1227 * see task_group().
1228 *
1229 * Furthermore, all task_rq users should acquire both locks, see
1230 * task_rq_lock().
1231 */
1232 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1233 lockdep_is_held(&task_rq(p)->lock)));
1234 #endif
1235 #endif
1236
1237 trace_sched_migrate_task(p, new_cpu);
1238
1239 if (task_cpu(p) != new_cpu) {
1240 if (p->sched_class->migrate_task_rq)
1241 p->sched_class->migrate_task_rq(p);
1242 p->se.nr_migrations++;
1243 perf_event_task_migrate(p);
1244 }
1245
1246 __set_task_cpu(p, new_cpu);
1247 }
1248
1249 static void __migrate_swap_task(struct task_struct *p, int cpu)
1250 {
1251 if (task_on_rq_queued(p)) {
1252 struct rq *src_rq, *dst_rq;
1253
1254 src_rq = task_rq(p);
1255 dst_rq = cpu_rq(cpu);
1256
1257 p->on_rq = TASK_ON_RQ_MIGRATING;
1258 deactivate_task(src_rq, p, 0);
1259 set_task_cpu(p, cpu);
1260 activate_task(dst_rq, p, 0);
1261 p->on_rq = TASK_ON_RQ_QUEUED;
1262 check_preempt_curr(dst_rq, p, 0);
1263 } else {
1264 /*
1265 * Task isn't running anymore; make it appear like we migrated
1266 * it before it went to sleep. This means on wakeup we make the
1267 * previous cpu our targer instead of where it really is.
1268 */
1269 p->wake_cpu = cpu;
1270 }
1271 }
1272
1273 struct migration_swap_arg {
1274 struct task_struct *src_task, *dst_task;
1275 int src_cpu, dst_cpu;
1276 };
1277
1278 static int migrate_swap_stop(void *data)
1279 {
1280 struct migration_swap_arg *arg = data;
1281 struct rq *src_rq, *dst_rq;
1282 int ret = -EAGAIN;
1283
1284 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1285 return -EAGAIN;
1286
1287 src_rq = cpu_rq(arg->src_cpu);
1288 dst_rq = cpu_rq(arg->dst_cpu);
1289
1290 double_raw_lock(&arg->src_task->pi_lock,
1291 &arg->dst_task->pi_lock);
1292 double_rq_lock(src_rq, dst_rq);
1293
1294 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1295 goto unlock;
1296
1297 if (task_cpu(arg->src_task) != arg->src_cpu)
1298 goto unlock;
1299
1300 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1301 goto unlock;
1302
1303 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1304 goto unlock;
1305
1306 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1307 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1308
1309 ret = 0;
1310
1311 unlock:
1312 double_rq_unlock(src_rq, dst_rq);
1313 raw_spin_unlock(&arg->dst_task->pi_lock);
1314 raw_spin_unlock(&arg->src_task->pi_lock);
1315
1316 return ret;
1317 }
1318
1319 /*
1320 * Cross migrate two tasks
1321 */
1322 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1323 {
1324 struct migration_swap_arg arg;
1325 int ret = -EINVAL;
1326
1327 arg = (struct migration_swap_arg){
1328 .src_task = cur,
1329 .src_cpu = task_cpu(cur),
1330 .dst_task = p,
1331 .dst_cpu = task_cpu(p),
1332 };
1333
1334 if (arg.src_cpu == arg.dst_cpu)
1335 goto out;
1336
1337 /*
1338 * These three tests are all lockless; this is OK since all of them
1339 * will be re-checked with proper locks held further down the line.
1340 */
1341 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1342 goto out;
1343
1344 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1345 goto out;
1346
1347 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1348 goto out;
1349
1350 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1351 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1352
1353 out:
1354 return ret;
1355 }
1356
1357 /*
1358 * wait_task_inactive - wait for a thread to unschedule.
1359 *
1360 * If @match_state is nonzero, it's the @p->state value just checked and
1361 * not expected to change. If it changes, i.e. @p might have woken up,
1362 * then return zero. When we succeed in waiting for @p to be off its CPU,
1363 * we return a positive number (its total switch count). If a second call
1364 * a short while later returns the same number, the caller can be sure that
1365 * @p has remained unscheduled the whole time.
1366 *
1367 * The caller must ensure that the task *will* unschedule sometime soon,
1368 * else this function might spin for a *long* time. This function can't
1369 * be called with interrupts off, or it may introduce deadlock with
1370 * smp_call_function() if an IPI is sent by the same process we are
1371 * waiting to become inactive.
1372 */
1373 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1374 {
1375 int running, queued;
1376 struct rq_flags rf;
1377 unsigned long ncsw;
1378 struct rq *rq;
1379
1380 for (;;) {
1381 /*
1382 * We do the initial early heuristics without holding
1383 * any task-queue locks at all. We'll only try to get
1384 * the runqueue lock when things look like they will
1385 * work out!
1386 */
1387 rq = task_rq(p);
1388
1389 /*
1390 * If the task is actively running on another CPU
1391 * still, just relax and busy-wait without holding
1392 * any locks.
1393 *
1394 * NOTE! Since we don't hold any locks, it's not
1395 * even sure that "rq" stays as the right runqueue!
1396 * But we don't care, since "task_running()" will
1397 * return false if the runqueue has changed and p
1398 * is actually now running somewhere else!
1399 */
1400 while (task_running(rq, p)) {
1401 if (match_state && unlikely(p->state != match_state))
1402 return 0;
1403 cpu_relax();
1404 }
1405
1406 /*
1407 * Ok, time to look more closely! We need the rq
1408 * lock now, to be *sure*. If we're wrong, we'll
1409 * just go back and repeat.
1410 */
1411 rq = task_rq_lock(p, &rf);
1412 trace_sched_wait_task(p);
1413 running = task_running(rq, p);
1414 queued = task_on_rq_queued(p);
1415 ncsw = 0;
1416 if (!match_state || p->state == match_state)
1417 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1418 task_rq_unlock(rq, p, &rf);
1419
1420 /*
1421 * If it changed from the expected state, bail out now.
1422 */
1423 if (unlikely(!ncsw))
1424 break;
1425
1426 /*
1427 * Was it really running after all now that we
1428 * checked with the proper locks actually held?
1429 *
1430 * Oops. Go back and try again..
1431 */
1432 if (unlikely(running)) {
1433 cpu_relax();
1434 continue;
1435 }
1436
1437 /*
1438 * It's not enough that it's not actively running,
1439 * it must be off the runqueue _entirely_, and not
1440 * preempted!
1441 *
1442 * So if it was still runnable (but just not actively
1443 * running right now), it's preempted, and we should
1444 * yield - it could be a while.
1445 */
1446 if (unlikely(queued)) {
1447 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1448
1449 set_current_state(TASK_UNINTERRUPTIBLE);
1450 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1451 continue;
1452 }
1453
1454 /*
1455 * Ahh, all good. It wasn't running, and it wasn't
1456 * runnable, which means that it will never become
1457 * running in the future either. We're all done!
1458 */
1459 break;
1460 }
1461
1462 return ncsw;
1463 }
1464
1465 /***
1466 * kick_process - kick a running thread to enter/exit the kernel
1467 * @p: the to-be-kicked thread
1468 *
1469 * Cause a process which is running on another CPU to enter
1470 * kernel-mode, without any delay. (to get signals handled.)
1471 *
1472 * NOTE: this function doesn't have to take the runqueue lock,
1473 * because all it wants to ensure is that the remote task enters
1474 * the kernel. If the IPI races and the task has been migrated
1475 * to another CPU then no harm is done and the purpose has been
1476 * achieved as well.
1477 */
1478 void kick_process(struct task_struct *p)
1479 {
1480 int cpu;
1481
1482 preempt_disable();
1483 cpu = task_cpu(p);
1484 if ((cpu != smp_processor_id()) && task_curr(p))
1485 smp_send_reschedule(cpu);
1486 preempt_enable();
1487 }
1488 EXPORT_SYMBOL_GPL(kick_process);
1489
1490 /*
1491 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1492 *
1493 * A few notes on cpu_active vs cpu_online:
1494 *
1495 * - cpu_active must be a subset of cpu_online
1496 *
1497 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1498 * see __set_cpus_allowed_ptr(). At this point the newly online
1499 * cpu isn't yet part of the sched domains, and balancing will not
1500 * see it.
1501 *
1502 * - on cpu-down we clear cpu_active() to mask the sched domains and
1503 * avoid the load balancer to place new tasks on the to be removed
1504 * cpu. Existing tasks will remain running there and will be taken
1505 * off.
1506 *
1507 * This means that fallback selection must not select !active CPUs.
1508 * And can assume that any active CPU must be online. Conversely
1509 * select_task_rq() below may allow selection of !active CPUs in order
1510 * to satisfy the above rules.
1511 */
1512 static int select_fallback_rq(int cpu, struct task_struct *p)
1513 {
1514 int nid = cpu_to_node(cpu);
1515 const struct cpumask *nodemask = NULL;
1516 enum { cpuset, possible, fail } state = cpuset;
1517 int dest_cpu;
1518
1519 /*
1520 * If the node that the cpu is on has been offlined, cpu_to_node()
1521 * will return -1. There is no cpu on the node, and we should
1522 * select the cpu on the other node.
1523 */
1524 if (nid != -1) {
1525 nodemask = cpumask_of_node(nid);
1526
1527 /* Look for allowed, online CPU in same node. */
1528 for_each_cpu(dest_cpu, nodemask) {
1529 if (!cpu_active(dest_cpu))
1530 continue;
1531 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1532 return dest_cpu;
1533 }
1534 }
1535
1536 for (;;) {
1537 /* Any allowed, online CPU? */
1538 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1539 if (!cpu_active(dest_cpu))
1540 continue;
1541 goto out;
1542 }
1543
1544 /* No more Mr. Nice Guy. */
1545 switch (state) {
1546 case cpuset:
1547 if (IS_ENABLED(CONFIG_CPUSETS)) {
1548 cpuset_cpus_allowed_fallback(p);
1549 state = possible;
1550 break;
1551 }
1552 /* fall-through */
1553 case possible:
1554 do_set_cpus_allowed(p, cpu_possible_mask);
1555 state = fail;
1556 break;
1557
1558 case fail:
1559 BUG();
1560 break;
1561 }
1562 }
1563
1564 out:
1565 if (state != cpuset) {
1566 /*
1567 * Don't tell them about moving exiting tasks or
1568 * kernel threads (both mm NULL), since they never
1569 * leave kernel.
1570 */
1571 if (p->mm && printk_ratelimit()) {
1572 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1573 task_pid_nr(p), p->comm, cpu);
1574 }
1575 }
1576
1577 return dest_cpu;
1578 }
1579
1580 /*
1581 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1582 */
1583 static inline
1584 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1585 {
1586 lockdep_assert_held(&p->pi_lock);
1587
1588 if (tsk_nr_cpus_allowed(p) > 1)
1589 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1590 else
1591 cpu = cpumask_any(tsk_cpus_allowed(p));
1592
1593 /*
1594 * In order not to call set_task_cpu() on a blocking task we need
1595 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1596 * cpu.
1597 *
1598 * Since this is common to all placement strategies, this lives here.
1599 *
1600 * [ this allows ->select_task() to simply return task_cpu(p) and
1601 * not worry about this generic constraint ]
1602 */
1603 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1604 !cpu_online(cpu)))
1605 cpu = select_fallback_rq(task_cpu(p), p);
1606
1607 return cpu;
1608 }
1609
1610 static void update_avg(u64 *avg, u64 sample)
1611 {
1612 s64 diff = sample - *avg;
1613 *avg += diff >> 3;
1614 }
1615
1616 #else
1617
1618 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1619 const struct cpumask *new_mask, bool check)
1620 {
1621 return set_cpus_allowed_ptr(p, new_mask);
1622 }
1623
1624 #endif /* CONFIG_SMP */
1625
1626 static void
1627 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1628 {
1629 #ifdef CONFIG_SCHEDSTATS
1630 struct rq *rq = this_rq();
1631
1632 #ifdef CONFIG_SMP
1633 int this_cpu = smp_processor_id();
1634
1635 if (cpu == this_cpu) {
1636 schedstat_inc(rq, ttwu_local);
1637 schedstat_inc(p, se.statistics.nr_wakeups_local);
1638 } else {
1639 struct sched_domain *sd;
1640
1641 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1642 rcu_read_lock();
1643 for_each_domain(this_cpu, sd) {
1644 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1645 schedstat_inc(sd, ttwu_wake_remote);
1646 break;
1647 }
1648 }
1649 rcu_read_unlock();
1650 }
1651
1652 if (wake_flags & WF_MIGRATED)
1653 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1654
1655 #endif /* CONFIG_SMP */
1656
1657 schedstat_inc(rq, ttwu_count);
1658 schedstat_inc(p, se.statistics.nr_wakeups);
1659
1660 if (wake_flags & WF_SYNC)
1661 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1662
1663 #endif /* CONFIG_SCHEDSTATS */
1664 }
1665
1666 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1667 {
1668 activate_task(rq, p, en_flags);
1669 p->on_rq = TASK_ON_RQ_QUEUED;
1670
1671 /* if a worker is waking up, notify workqueue */
1672 if (p->flags & PF_WQ_WORKER)
1673 wq_worker_waking_up(p, cpu_of(rq));
1674 }
1675
1676 /*
1677 * Mark the task runnable and perform wakeup-preemption.
1678 */
1679 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1680 struct pin_cookie cookie)
1681 {
1682 check_preempt_curr(rq, p, wake_flags);
1683 p->state = TASK_RUNNING;
1684 trace_sched_wakeup(p);
1685
1686 #ifdef CONFIG_SMP
1687 if (p->sched_class->task_woken) {
1688 /*
1689 * Our task @p is fully woken up and running; so its safe to
1690 * drop the rq->lock, hereafter rq is only used for statistics.
1691 */
1692 lockdep_unpin_lock(&rq->lock, cookie);
1693 p->sched_class->task_woken(rq, p);
1694 lockdep_repin_lock(&rq->lock, cookie);
1695 }
1696
1697 if (rq->idle_stamp) {
1698 u64 delta = rq_clock(rq) - rq->idle_stamp;
1699 u64 max = 2*rq->max_idle_balance_cost;
1700
1701 update_avg(&rq->avg_idle, delta);
1702
1703 if (rq->avg_idle > max)
1704 rq->avg_idle = max;
1705
1706 rq->idle_stamp = 0;
1707 }
1708 #endif
1709 }
1710
1711 static void
1712 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1713 struct pin_cookie cookie)
1714 {
1715 int en_flags = ENQUEUE_WAKEUP;
1716
1717 lockdep_assert_held(&rq->lock);
1718
1719 #ifdef CONFIG_SMP
1720 if (p->sched_contributes_to_load)
1721 rq->nr_uninterruptible--;
1722
1723 if (wake_flags & WF_MIGRATED)
1724 en_flags |= ENQUEUE_MIGRATED;
1725 #endif
1726
1727 ttwu_activate(rq, p, en_flags);
1728 ttwu_do_wakeup(rq, p, wake_flags, cookie);
1729 }
1730
1731 /*
1732 * Called in case the task @p isn't fully descheduled from its runqueue,
1733 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1734 * since all we need to do is flip p->state to TASK_RUNNING, since
1735 * the task is still ->on_rq.
1736 */
1737 static int ttwu_remote(struct task_struct *p, int wake_flags)
1738 {
1739 struct rq_flags rf;
1740 struct rq *rq;
1741 int ret = 0;
1742
1743 rq = __task_rq_lock(p, &rf);
1744 if (task_on_rq_queued(p)) {
1745 /* check_preempt_curr() may use rq clock */
1746 update_rq_clock(rq);
1747 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1748 ret = 1;
1749 }
1750 __task_rq_unlock(rq, &rf);
1751
1752 return ret;
1753 }
1754
1755 #ifdef CONFIG_SMP
1756 void sched_ttwu_pending(void)
1757 {
1758 struct rq *rq = this_rq();
1759 struct llist_node *llist = llist_del_all(&rq->wake_list);
1760 struct pin_cookie cookie;
1761 struct task_struct *p;
1762 unsigned long flags;
1763
1764 if (!llist)
1765 return;
1766
1767 raw_spin_lock_irqsave(&rq->lock, flags);
1768 cookie = lockdep_pin_lock(&rq->lock);
1769
1770 while (llist) {
1771 int wake_flags = 0;
1772
1773 p = llist_entry(llist, struct task_struct, wake_entry);
1774 llist = llist_next(llist);
1775
1776 if (p->sched_remote_wakeup)
1777 wake_flags = WF_MIGRATED;
1778
1779 ttwu_do_activate(rq, p, wake_flags, cookie);
1780 }
1781
1782 lockdep_unpin_lock(&rq->lock, cookie);
1783 raw_spin_unlock_irqrestore(&rq->lock, flags);
1784 }
1785
1786 void scheduler_ipi(void)
1787 {
1788 /*
1789 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1790 * TIF_NEED_RESCHED remotely (for the first time) will also send
1791 * this IPI.
1792 */
1793 preempt_fold_need_resched();
1794
1795 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1796 return;
1797
1798 /*
1799 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1800 * traditionally all their work was done from the interrupt return
1801 * path. Now that we actually do some work, we need to make sure
1802 * we do call them.
1803 *
1804 * Some archs already do call them, luckily irq_enter/exit nest
1805 * properly.
1806 *
1807 * Arguably we should visit all archs and update all handlers,
1808 * however a fair share of IPIs are still resched only so this would
1809 * somewhat pessimize the simple resched case.
1810 */
1811 irq_enter();
1812 sched_ttwu_pending();
1813
1814 /*
1815 * Check if someone kicked us for doing the nohz idle load balance.
1816 */
1817 if (unlikely(got_nohz_idle_kick())) {
1818 this_rq()->idle_balance = 1;
1819 raise_softirq_irqoff(SCHED_SOFTIRQ);
1820 }
1821 irq_exit();
1822 }
1823
1824 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1825 {
1826 struct rq *rq = cpu_rq(cpu);
1827
1828 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1829
1830 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1831 if (!set_nr_if_polling(rq->idle))
1832 smp_send_reschedule(cpu);
1833 else
1834 trace_sched_wake_idle_without_ipi(cpu);
1835 }
1836 }
1837
1838 void wake_up_if_idle(int cpu)
1839 {
1840 struct rq *rq = cpu_rq(cpu);
1841 unsigned long flags;
1842
1843 rcu_read_lock();
1844
1845 if (!is_idle_task(rcu_dereference(rq->curr)))
1846 goto out;
1847
1848 if (set_nr_if_polling(rq->idle)) {
1849 trace_sched_wake_idle_without_ipi(cpu);
1850 } else {
1851 raw_spin_lock_irqsave(&rq->lock, flags);
1852 if (is_idle_task(rq->curr))
1853 smp_send_reschedule(cpu);
1854 /* Else cpu is not in idle, do nothing here */
1855 raw_spin_unlock_irqrestore(&rq->lock, flags);
1856 }
1857
1858 out:
1859 rcu_read_unlock();
1860 }
1861
1862 bool cpus_share_cache(int this_cpu, int that_cpu)
1863 {
1864 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1865 }
1866 #endif /* CONFIG_SMP */
1867
1868 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1869 {
1870 struct rq *rq = cpu_rq(cpu);
1871 struct pin_cookie cookie;
1872
1873 #if defined(CONFIG_SMP)
1874 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1875 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1876 ttwu_queue_remote(p, cpu, wake_flags);
1877 return;
1878 }
1879 #endif
1880
1881 raw_spin_lock(&rq->lock);
1882 cookie = lockdep_pin_lock(&rq->lock);
1883 ttwu_do_activate(rq, p, wake_flags, cookie);
1884 lockdep_unpin_lock(&rq->lock, cookie);
1885 raw_spin_unlock(&rq->lock);
1886 }
1887
1888 /*
1889 * Notes on Program-Order guarantees on SMP systems.
1890 *
1891 * MIGRATION
1892 *
1893 * The basic program-order guarantee on SMP systems is that when a task [t]
1894 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1895 * execution on its new cpu [c1].
1896 *
1897 * For migration (of runnable tasks) this is provided by the following means:
1898 *
1899 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1900 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1901 * rq(c1)->lock (if not at the same time, then in that order).
1902 * C) LOCK of the rq(c1)->lock scheduling in task
1903 *
1904 * Transitivity guarantees that B happens after A and C after B.
1905 * Note: we only require RCpc transitivity.
1906 * Note: the cpu doing B need not be c0 or c1
1907 *
1908 * Example:
1909 *
1910 * CPU0 CPU1 CPU2
1911 *
1912 * LOCK rq(0)->lock
1913 * sched-out X
1914 * sched-in Y
1915 * UNLOCK rq(0)->lock
1916 *
1917 * LOCK rq(0)->lock // orders against CPU0
1918 * dequeue X
1919 * UNLOCK rq(0)->lock
1920 *
1921 * LOCK rq(1)->lock
1922 * enqueue X
1923 * UNLOCK rq(1)->lock
1924 *
1925 * LOCK rq(1)->lock // orders against CPU2
1926 * sched-out Z
1927 * sched-in X
1928 * UNLOCK rq(1)->lock
1929 *
1930 *
1931 * BLOCKING -- aka. SLEEP + WAKEUP
1932 *
1933 * For blocking we (obviously) need to provide the same guarantee as for
1934 * migration. However the means are completely different as there is no lock
1935 * chain to provide order. Instead we do:
1936 *
1937 * 1) smp_store_release(X->on_cpu, 0)
1938 * 2) smp_cond_acquire(!X->on_cpu)
1939 *
1940 * Example:
1941 *
1942 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1943 *
1944 * LOCK rq(0)->lock LOCK X->pi_lock
1945 * dequeue X
1946 * sched-out X
1947 * smp_store_release(X->on_cpu, 0);
1948 *
1949 * smp_cond_acquire(!X->on_cpu);
1950 * X->state = WAKING
1951 * set_task_cpu(X,2)
1952 *
1953 * LOCK rq(2)->lock
1954 * enqueue X
1955 * X->state = RUNNING
1956 * UNLOCK rq(2)->lock
1957 *
1958 * LOCK rq(2)->lock // orders against CPU1
1959 * sched-out Z
1960 * sched-in X
1961 * UNLOCK rq(2)->lock
1962 *
1963 * UNLOCK X->pi_lock
1964 * UNLOCK rq(0)->lock
1965 *
1966 *
1967 * However; for wakeups there is a second guarantee we must provide, namely we
1968 * must observe the state that lead to our wakeup. That is, not only must our
1969 * task observe its own prior state, it must also observe the stores prior to
1970 * its wakeup.
1971 *
1972 * This means that any means of doing remote wakeups must order the CPU doing
1973 * the wakeup against the CPU the task is going to end up running on. This,
1974 * however, is already required for the regular Program-Order guarantee above,
1975 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1976 *
1977 */
1978
1979 /**
1980 * try_to_wake_up - wake up a thread
1981 * @p: the thread to be awakened
1982 * @state: the mask of task states that can be woken
1983 * @wake_flags: wake modifier flags (WF_*)
1984 *
1985 * Put it on the run-queue if it's not already there. The "current"
1986 * thread is always on the run-queue (except when the actual
1987 * re-schedule is in progress), and as such you're allowed to do
1988 * the simpler "current->state = TASK_RUNNING" to mark yourself
1989 * runnable without the overhead of this.
1990 *
1991 * Return: %true if @p was woken up, %false if it was already running.
1992 * or @state didn't match @p's state.
1993 */
1994 static int
1995 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1996 {
1997 unsigned long flags;
1998 int cpu, success = 0;
1999
2000 /*
2001 * If we are going to wake up a thread waiting for CONDITION we
2002 * need to ensure that CONDITION=1 done by the caller can not be
2003 * reordered with p->state check below. This pairs with mb() in
2004 * set_current_state() the waiting thread does.
2005 */
2006 smp_mb__before_spinlock();
2007 raw_spin_lock_irqsave(&p->pi_lock, flags);
2008 if (!(p->state & state))
2009 goto out;
2010
2011 trace_sched_waking(p);
2012
2013 success = 1; /* we're going to change ->state */
2014 cpu = task_cpu(p);
2015
2016 if (p->on_rq && ttwu_remote(p, wake_flags))
2017 goto stat;
2018
2019 #ifdef CONFIG_SMP
2020 /*
2021 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2022 * possible to, falsely, observe p->on_cpu == 0.
2023 *
2024 * One must be running (->on_cpu == 1) in order to remove oneself
2025 * from the runqueue.
2026 *
2027 * [S] ->on_cpu = 1; [L] ->on_rq
2028 * UNLOCK rq->lock
2029 * RMB
2030 * LOCK rq->lock
2031 * [S] ->on_rq = 0; [L] ->on_cpu
2032 *
2033 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2034 * from the consecutive calls to schedule(); the first switching to our
2035 * task, the second putting it to sleep.
2036 */
2037 smp_rmb();
2038
2039 /*
2040 * If the owning (remote) cpu is still in the middle of schedule() with
2041 * this task as prev, wait until its done referencing the task.
2042 *
2043 * Pairs with the smp_store_release() in finish_lock_switch().
2044 *
2045 * This ensures that tasks getting woken will be fully ordered against
2046 * their previous state and preserve Program Order.
2047 */
2048 smp_cond_acquire(!p->on_cpu);
2049
2050 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2051 p->state = TASK_WAKING;
2052
2053 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2054 if (task_cpu(p) != cpu) {
2055 wake_flags |= WF_MIGRATED;
2056 set_task_cpu(p, cpu);
2057 }
2058 #endif /* CONFIG_SMP */
2059
2060 ttwu_queue(p, cpu, wake_flags);
2061 stat:
2062 if (schedstat_enabled())
2063 ttwu_stat(p, cpu, wake_flags);
2064 out:
2065 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2066
2067 return success;
2068 }
2069
2070 /**
2071 * try_to_wake_up_local - try to wake up a local task with rq lock held
2072 * @p: the thread to be awakened
2073 *
2074 * Put @p on the run-queue if it's not already there. The caller must
2075 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2076 * the current task.
2077 */
2078 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2079 {
2080 struct rq *rq = task_rq(p);
2081
2082 if (WARN_ON_ONCE(rq != this_rq()) ||
2083 WARN_ON_ONCE(p == current))
2084 return;
2085
2086 lockdep_assert_held(&rq->lock);
2087
2088 if (!raw_spin_trylock(&p->pi_lock)) {
2089 /*
2090 * This is OK, because current is on_cpu, which avoids it being
2091 * picked for load-balance and preemption/IRQs are still
2092 * disabled avoiding further scheduler activity on it and we've
2093 * not yet picked a replacement task.
2094 */
2095 lockdep_unpin_lock(&rq->lock, cookie);
2096 raw_spin_unlock(&rq->lock);
2097 raw_spin_lock(&p->pi_lock);
2098 raw_spin_lock(&rq->lock);
2099 lockdep_repin_lock(&rq->lock, cookie);
2100 }
2101
2102 if (!(p->state & TASK_NORMAL))
2103 goto out;
2104
2105 trace_sched_waking(p);
2106
2107 if (!task_on_rq_queued(p))
2108 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2109
2110 ttwu_do_wakeup(rq, p, 0, cookie);
2111 if (schedstat_enabled())
2112 ttwu_stat(p, smp_processor_id(), 0);
2113 out:
2114 raw_spin_unlock(&p->pi_lock);
2115 }
2116
2117 /**
2118 * wake_up_process - Wake up a specific process
2119 * @p: The process to be woken up.
2120 *
2121 * Attempt to wake up the nominated process and move it to the set of runnable
2122 * processes.
2123 *
2124 * Return: 1 if the process was woken up, 0 if it was already running.
2125 *
2126 * It may be assumed that this function implies a write memory barrier before
2127 * changing the task state if and only if any tasks are woken up.
2128 */
2129 int wake_up_process(struct task_struct *p)
2130 {
2131 return try_to_wake_up(p, TASK_NORMAL, 0);
2132 }
2133 EXPORT_SYMBOL(wake_up_process);
2134
2135 int wake_up_state(struct task_struct *p, unsigned int state)
2136 {
2137 return try_to_wake_up(p, state, 0);
2138 }
2139
2140 /*
2141 * This function clears the sched_dl_entity static params.
2142 */
2143 void __dl_clear_params(struct task_struct *p)
2144 {
2145 struct sched_dl_entity *dl_se = &p->dl;
2146
2147 dl_se->dl_runtime = 0;
2148 dl_se->dl_deadline = 0;
2149 dl_se->dl_period = 0;
2150 dl_se->flags = 0;
2151 dl_se->dl_bw = 0;
2152
2153 dl_se->dl_throttled = 0;
2154 dl_se->dl_yielded = 0;
2155 }
2156
2157 /*
2158 * Perform scheduler related setup for a newly forked process p.
2159 * p is forked by current.
2160 *
2161 * __sched_fork() is basic setup used by init_idle() too:
2162 */
2163 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2164 {
2165 p->on_rq = 0;
2166
2167 p->se.on_rq = 0;
2168 p->se.exec_start = 0;
2169 p->se.sum_exec_runtime = 0;
2170 p->se.prev_sum_exec_runtime = 0;
2171 p->se.nr_migrations = 0;
2172 p->se.vruntime = 0;
2173 INIT_LIST_HEAD(&p->se.group_node);
2174
2175 #ifdef CONFIG_FAIR_GROUP_SCHED
2176 p->se.cfs_rq = NULL;
2177 #endif
2178
2179 #ifdef CONFIG_SCHEDSTATS
2180 /* Even if schedstat is disabled, there should not be garbage */
2181 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2182 #endif
2183
2184 RB_CLEAR_NODE(&p->dl.rb_node);
2185 init_dl_task_timer(&p->dl);
2186 __dl_clear_params(p);
2187
2188 INIT_LIST_HEAD(&p->rt.run_list);
2189 p->rt.timeout = 0;
2190 p->rt.time_slice = sched_rr_timeslice;
2191 p->rt.on_rq = 0;
2192 p->rt.on_list = 0;
2193
2194 #ifdef CONFIG_PREEMPT_NOTIFIERS
2195 INIT_HLIST_HEAD(&p->preempt_notifiers);
2196 #endif
2197
2198 #ifdef CONFIG_NUMA_BALANCING
2199 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2200 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2201 p->mm->numa_scan_seq = 0;
2202 }
2203
2204 if (clone_flags & CLONE_VM)
2205 p->numa_preferred_nid = current->numa_preferred_nid;
2206 else
2207 p->numa_preferred_nid = -1;
2208
2209 p->node_stamp = 0ULL;
2210 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2211 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2212 p->numa_work.next = &p->numa_work;
2213 p->numa_faults = NULL;
2214 p->last_task_numa_placement = 0;
2215 p->last_sum_exec_runtime = 0;
2216
2217 p->numa_group = NULL;
2218 #endif /* CONFIG_NUMA_BALANCING */
2219 }
2220
2221 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2222
2223 #ifdef CONFIG_NUMA_BALANCING
2224
2225 void set_numabalancing_state(bool enabled)
2226 {
2227 if (enabled)
2228 static_branch_enable(&sched_numa_balancing);
2229 else
2230 static_branch_disable(&sched_numa_balancing);
2231 }
2232
2233 #ifdef CONFIG_PROC_SYSCTL
2234 int sysctl_numa_balancing(struct ctl_table *table, int write,
2235 void __user *buffer, size_t *lenp, loff_t *ppos)
2236 {
2237 struct ctl_table t;
2238 int err;
2239 int state = static_branch_likely(&sched_numa_balancing);
2240
2241 if (write && !capable(CAP_SYS_ADMIN))
2242 return -EPERM;
2243
2244 t = *table;
2245 t.data = &state;
2246 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2247 if (err < 0)
2248 return err;
2249 if (write)
2250 set_numabalancing_state(state);
2251 return err;
2252 }
2253 #endif
2254 #endif
2255
2256 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2257
2258 #ifdef CONFIG_SCHEDSTATS
2259 static void set_schedstats(bool enabled)
2260 {
2261 if (enabled)
2262 static_branch_enable(&sched_schedstats);
2263 else
2264 static_branch_disable(&sched_schedstats);
2265 }
2266
2267 void force_schedstat_enabled(void)
2268 {
2269 if (!schedstat_enabled()) {
2270 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2271 static_branch_enable(&sched_schedstats);
2272 }
2273 }
2274
2275 static int __init setup_schedstats(char *str)
2276 {
2277 int ret = 0;
2278 if (!str)
2279 goto out;
2280
2281 if (!strcmp(str, "enable")) {
2282 set_schedstats(true);
2283 ret = 1;
2284 } else if (!strcmp(str, "disable")) {
2285 set_schedstats(false);
2286 ret = 1;
2287 }
2288 out:
2289 if (!ret)
2290 pr_warn("Unable to parse schedstats=\n");
2291
2292 return ret;
2293 }
2294 __setup("schedstats=", setup_schedstats);
2295
2296 #ifdef CONFIG_PROC_SYSCTL
2297 int sysctl_schedstats(struct ctl_table *table, int write,
2298 void __user *buffer, size_t *lenp, loff_t *ppos)
2299 {
2300 struct ctl_table t;
2301 int err;
2302 int state = static_branch_likely(&sched_schedstats);
2303
2304 if (write && !capable(CAP_SYS_ADMIN))
2305 return -EPERM;
2306
2307 t = *table;
2308 t.data = &state;
2309 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2310 if (err < 0)
2311 return err;
2312 if (write)
2313 set_schedstats(state);
2314 return err;
2315 }
2316 #endif
2317 #endif
2318
2319 /*
2320 * fork()/clone()-time setup:
2321 */
2322 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2323 {
2324 unsigned long flags;
2325 int cpu = get_cpu();
2326
2327 __sched_fork(clone_flags, p);
2328 /*
2329 * We mark the process as running here. This guarantees that
2330 * nobody will actually run it, and a signal or other external
2331 * event cannot wake it up and insert it on the runqueue either.
2332 */
2333 p->state = TASK_RUNNING;
2334
2335 /*
2336 * Make sure we do not leak PI boosting priority to the child.
2337 */
2338 p->prio = current->normal_prio;
2339
2340 /*
2341 * Revert to default priority/policy on fork if requested.
2342 */
2343 if (unlikely(p->sched_reset_on_fork)) {
2344 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2345 p->policy = SCHED_NORMAL;
2346 p->static_prio = NICE_TO_PRIO(0);
2347 p->rt_priority = 0;
2348 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2349 p->static_prio = NICE_TO_PRIO(0);
2350
2351 p->prio = p->normal_prio = __normal_prio(p);
2352 set_load_weight(p);
2353
2354 /*
2355 * We don't need the reset flag anymore after the fork. It has
2356 * fulfilled its duty:
2357 */
2358 p->sched_reset_on_fork = 0;
2359 }
2360
2361 if (dl_prio(p->prio)) {
2362 put_cpu();
2363 return -EAGAIN;
2364 } else if (rt_prio(p->prio)) {
2365 p->sched_class = &rt_sched_class;
2366 } else {
2367 p->sched_class = &fair_sched_class;
2368 }
2369
2370 if (p->sched_class->task_fork)
2371 p->sched_class->task_fork(p);
2372
2373 /*
2374 * The child is not yet in the pid-hash so no cgroup attach races,
2375 * and the cgroup is pinned to this child due to cgroup_fork()
2376 * is ran before sched_fork().
2377 *
2378 * Silence PROVE_RCU.
2379 */
2380 raw_spin_lock_irqsave(&p->pi_lock, flags);
2381 set_task_cpu(p, cpu);
2382 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2383
2384 #ifdef CONFIG_SCHED_INFO
2385 if (likely(sched_info_on()))
2386 memset(&p->sched_info, 0, sizeof(p->sched_info));
2387 #endif
2388 #if defined(CONFIG_SMP)
2389 p->on_cpu = 0;
2390 #endif
2391 init_task_preempt_count(p);
2392 #ifdef CONFIG_SMP
2393 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2394 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2395 #endif
2396
2397 put_cpu();
2398 return 0;
2399 }
2400
2401 unsigned long to_ratio(u64 period, u64 runtime)
2402 {
2403 if (runtime == RUNTIME_INF)
2404 return 1ULL << 20;
2405
2406 /*
2407 * Doing this here saves a lot of checks in all
2408 * the calling paths, and returning zero seems
2409 * safe for them anyway.
2410 */
2411 if (period == 0)
2412 return 0;
2413
2414 return div64_u64(runtime << 20, period);
2415 }
2416
2417 #ifdef CONFIG_SMP
2418 inline struct dl_bw *dl_bw_of(int i)
2419 {
2420 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2421 "sched RCU must be held");
2422 return &cpu_rq(i)->rd->dl_bw;
2423 }
2424
2425 static inline int dl_bw_cpus(int i)
2426 {
2427 struct root_domain *rd = cpu_rq(i)->rd;
2428 int cpus = 0;
2429
2430 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2431 "sched RCU must be held");
2432 for_each_cpu_and(i, rd->span, cpu_active_mask)
2433 cpus++;
2434
2435 return cpus;
2436 }
2437 #else
2438 inline struct dl_bw *dl_bw_of(int i)
2439 {
2440 return &cpu_rq(i)->dl.dl_bw;
2441 }
2442
2443 static inline int dl_bw_cpus(int i)
2444 {
2445 return 1;
2446 }
2447 #endif
2448
2449 /*
2450 * We must be sure that accepting a new task (or allowing changing the
2451 * parameters of an existing one) is consistent with the bandwidth
2452 * constraints. If yes, this function also accordingly updates the currently
2453 * allocated bandwidth to reflect the new situation.
2454 *
2455 * This function is called while holding p's rq->lock.
2456 *
2457 * XXX we should delay bw change until the task's 0-lag point, see
2458 * __setparam_dl().
2459 */
2460 static int dl_overflow(struct task_struct *p, int policy,
2461 const struct sched_attr *attr)
2462 {
2463
2464 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2465 u64 period = attr->sched_period ?: attr->sched_deadline;
2466 u64 runtime = attr->sched_runtime;
2467 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2468 int cpus, err = -1;
2469
2470 /* !deadline task may carry old deadline bandwidth */
2471 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2472 return 0;
2473
2474 /*
2475 * Either if a task, enters, leave, or stays -deadline but changes
2476 * its parameters, we may need to update accordingly the total
2477 * allocated bandwidth of the container.
2478 */
2479 raw_spin_lock(&dl_b->lock);
2480 cpus = dl_bw_cpus(task_cpu(p));
2481 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2482 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2483 __dl_add(dl_b, new_bw);
2484 err = 0;
2485 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2486 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2487 __dl_clear(dl_b, p->dl.dl_bw);
2488 __dl_add(dl_b, new_bw);
2489 err = 0;
2490 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2491 __dl_clear(dl_b, p->dl.dl_bw);
2492 err = 0;
2493 }
2494 raw_spin_unlock(&dl_b->lock);
2495
2496 return err;
2497 }
2498
2499 extern void init_dl_bw(struct dl_bw *dl_b);
2500
2501 /*
2502 * wake_up_new_task - wake up a newly created task for the first time.
2503 *
2504 * This function will do some initial scheduler statistics housekeeping
2505 * that must be done for every newly created context, then puts the task
2506 * on the runqueue and wakes it.
2507 */
2508 void wake_up_new_task(struct task_struct *p)
2509 {
2510 struct rq_flags rf;
2511 struct rq *rq;
2512
2513 /* Initialize new task's runnable average */
2514 init_entity_runnable_average(&p->se);
2515 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2516 #ifdef CONFIG_SMP
2517 /*
2518 * Fork balancing, do it here and not earlier because:
2519 * - cpus_allowed can change in the fork path
2520 * - any previously selected cpu might disappear through hotplug
2521 */
2522 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2523 #endif
2524 /* Post initialize new task's util average when its cfs_rq is set */
2525 post_init_entity_util_avg(&p->se);
2526
2527 rq = __task_rq_lock(p, &rf);
2528 activate_task(rq, p, 0);
2529 p->on_rq = TASK_ON_RQ_QUEUED;
2530 trace_sched_wakeup_new(p);
2531 check_preempt_curr(rq, p, WF_FORK);
2532 #ifdef CONFIG_SMP
2533 if (p->sched_class->task_woken) {
2534 /*
2535 * Nothing relies on rq->lock after this, so its fine to
2536 * drop it.
2537 */
2538 lockdep_unpin_lock(&rq->lock, rf.cookie);
2539 p->sched_class->task_woken(rq, p);
2540 lockdep_repin_lock(&rq->lock, rf.cookie);
2541 }
2542 #endif
2543 task_rq_unlock(rq, p, &rf);
2544 }
2545
2546 #ifdef CONFIG_PREEMPT_NOTIFIERS
2547
2548 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2549
2550 void preempt_notifier_inc(void)
2551 {
2552 static_key_slow_inc(&preempt_notifier_key);
2553 }
2554 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2555
2556 void preempt_notifier_dec(void)
2557 {
2558 static_key_slow_dec(&preempt_notifier_key);
2559 }
2560 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2561
2562 /**
2563 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2564 * @notifier: notifier struct to register
2565 */
2566 void preempt_notifier_register(struct preempt_notifier *notifier)
2567 {
2568 if (!static_key_false(&preempt_notifier_key))
2569 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2570
2571 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2572 }
2573 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2574
2575 /**
2576 * preempt_notifier_unregister - no longer interested in preemption notifications
2577 * @notifier: notifier struct to unregister
2578 *
2579 * This is *not* safe to call from within a preemption notifier.
2580 */
2581 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2582 {
2583 hlist_del(&notifier->link);
2584 }
2585 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2586
2587 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2588 {
2589 struct preempt_notifier *notifier;
2590
2591 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2592 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2593 }
2594
2595 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2596 {
2597 if (static_key_false(&preempt_notifier_key))
2598 __fire_sched_in_preempt_notifiers(curr);
2599 }
2600
2601 static void
2602 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2603 struct task_struct *next)
2604 {
2605 struct preempt_notifier *notifier;
2606
2607 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2608 notifier->ops->sched_out(notifier, next);
2609 }
2610
2611 static __always_inline void
2612 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2613 struct task_struct *next)
2614 {
2615 if (static_key_false(&preempt_notifier_key))
2616 __fire_sched_out_preempt_notifiers(curr, next);
2617 }
2618
2619 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2620
2621 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2622 {
2623 }
2624
2625 static inline void
2626 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2627 struct task_struct *next)
2628 {
2629 }
2630
2631 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2632
2633 /**
2634 * prepare_task_switch - prepare to switch tasks
2635 * @rq: the runqueue preparing to switch
2636 * @prev: the current task that is being switched out
2637 * @next: the task we are going to switch to.
2638 *
2639 * This is called with the rq lock held and interrupts off. It must
2640 * be paired with a subsequent finish_task_switch after the context
2641 * switch.
2642 *
2643 * prepare_task_switch sets up locking and calls architecture specific
2644 * hooks.
2645 */
2646 static inline void
2647 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2648 struct task_struct *next)
2649 {
2650 sched_info_switch(rq, prev, next);
2651 perf_event_task_sched_out(prev, next);
2652 fire_sched_out_preempt_notifiers(prev, next);
2653 prepare_lock_switch(rq, next);
2654 prepare_arch_switch(next);
2655 }
2656
2657 /**
2658 * finish_task_switch - clean up after a task-switch
2659 * @prev: the thread we just switched away from.
2660 *
2661 * finish_task_switch must be called after the context switch, paired
2662 * with a prepare_task_switch call before the context switch.
2663 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2664 * and do any other architecture-specific cleanup actions.
2665 *
2666 * Note that we may have delayed dropping an mm in context_switch(). If
2667 * so, we finish that here outside of the runqueue lock. (Doing it
2668 * with the lock held can cause deadlocks; see schedule() for
2669 * details.)
2670 *
2671 * The context switch have flipped the stack from under us and restored the
2672 * local variables which were saved when this task called schedule() in the
2673 * past. prev == current is still correct but we need to recalculate this_rq
2674 * because prev may have moved to another CPU.
2675 */
2676 static struct rq *finish_task_switch(struct task_struct *prev)
2677 __releases(rq->lock)
2678 {
2679 struct rq *rq = this_rq();
2680 struct mm_struct *mm = rq->prev_mm;
2681 long prev_state;
2682
2683 /*
2684 * The previous task will have left us with a preempt_count of 2
2685 * because it left us after:
2686 *
2687 * schedule()
2688 * preempt_disable(); // 1
2689 * __schedule()
2690 * raw_spin_lock_irq(&rq->lock) // 2
2691 *
2692 * Also, see FORK_PREEMPT_COUNT.
2693 */
2694 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2695 "corrupted preempt_count: %s/%d/0x%x\n",
2696 current->comm, current->pid, preempt_count()))
2697 preempt_count_set(FORK_PREEMPT_COUNT);
2698
2699 rq->prev_mm = NULL;
2700
2701 /*
2702 * A task struct has one reference for the use as "current".
2703 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2704 * schedule one last time. The schedule call will never return, and
2705 * the scheduled task must drop that reference.
2706 *
2707 * We must observe prev->state before clearing prev->on_cpu (in
2708 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2709 * running on another CPU and we could rave with its RUNNING -> DEAD
2710 * transition, resulting in a double drop.
2711 */
2712 prev_state = prev->state;
2713 vtime_task_switch(prev);
2714 perf_event_task_sched_in(prev, current);
2715 finish_lock_switch(rq, prev);
2716 finish_arch_post_lock_switch();
2717
2718 fire_sched_in_preempt_notifiers(current);
2719 if (mm)
2720 mmdrop(mm);
2721 if (unlikely(prev_state == TASK_DEAD)) {
2722 if (prev->sched_class->task_dead)
2723 prev->sched_class->task_dead(prev);
2724
2725 /*
2726 * Remove function-return probe instances associated with this
2727 * task and put them back on the free list.
2728 */
2729 kprobe_flush_task(prev);
2730 put_task_struct(prev);
2731 }
2732
2733 tick_nohz_task_switch();
2734 return rq;
2735 }
2736
2737 #ifdef CONFIG_SMP
2738
2739 /* rq->lock is NOT held, but preemption is disabled */
2740 static void __balance_callback(struct rq *rq)
2741 {
2742 struct callback_head *head, *next;
2743 void (*func)(struct rq *rq);
2744 unsigned long flags;
2745
2746 raw_spin_lock_irqsave(&rq->lock, flags);
2747 head = rq->balance_callback;
2748 rq->balance_callback = NULL;
2749 while (head) {
2750 func = (void (*)(struct rq *))head->func;
2751 next = head->next;
2752 head->next = NULL;
2753 head = next;
2754
2755 func(rq);
2756 }
2757 raw_spin_unlock_irqrestore(&rq->lock, flags);
2758 }
2759
2760 static inline void balance_callback(struct rq *rq)
2761 {
2762 if (unlikely(rq->balance_callback))
2763 __balance_callback(rq);
2764 }
2765
2766 #else
2767
2768 static inline void balance_callback(struct rq *rq)
2769 {
2770 }
2771
2772 #endif
2773
2774 /**
2775 * schedule_tail - first thing a freshly forked thread must call.
2776 * @prev: the thread we just switched away from.
2777 */
2778 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2779 __releases(rq->lock)
2780 {
2781 struct rq *rq;
2782
2783 /*
2784 * New tasks start with FORK_PREEMPT_COUNT, see there and
2785 * finish_task_switch() for details.
2786 *
2787 * finish_task_switch() will drop rq->lock() and lower preempt_count
2788 * and the preempt_enable() will end up enabling preemption (on
2789 * PREEMPT_COUNT kernels).
2790 */
2791
2792 rq = finish_task_switch(prev);
2793 balance_callback(rq);
2794 preempt_enable();
2795
2796 if (current->set_child_tid)
2797 put_user(task_pid_vnr(current), current->set_child_tid);
2798 }
2799
2800 /*
2801 * context_switch - switch to the new MM and the new thread's register state.
2802 */
2803 static __always_inline struct rq *
2804 context_switch(struct rq *rq, struct task_struct *prev,
2805 struct task_struct *next, struct pin_cookie cookie)
2806 {
2807 struct mm_struct *mm, *oldmm;
2808
2809 prepare_task_switch(rq, prev, next);
2810
2811 mm = next->mm;
2812 oldmm = prev->active_mm;
2813 /*
2814 * For paravirt, this is coupled with an exit in switch_to to
2815 * combine the page table reload and the switch backend into
2816 * one hypercall.
2817 */
2818 arch_start_context_switch(prev);
2819
2820 if (!mm) {
2821 next->active_mm = oldmm;
2822 atomic_inc(&oldmm->mm_count);
2823 enter_lazy_tlb(oldmm, next);
2824 } else
2825 switch_mm_irqs_off(oldmm, mm, next);
2826
2827 if (!prev->mm) {
2828 prev->active_mm = NULL;
2829 rq->prev_mm = oldmm;
2830 }
2831 /*
2832 * Since the runqueue lock will be released by the next
2833 * task (which is an invalid locking op but in the case
2834 * of the scheduler it's an obvious special-case), so we
2835 * do an early lockdep release here:
2836 */
2837 lockdep_unpin_lock(&rq->lock, cookie);
2838 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2839
2840 /* Here we just switch the register state and the stack. */
2841 switch_to(prev, next, prev);
2842 barrier();
2843
2844 return finish_task_switch(prev);
2845 }
2846
2847 /*
2848 * nr_running and nr_context_switches:
2849 *
2850 * externally visible scheduler statistics: current number of runnable
2851 * threads, total number of context switches performed since bootup.
2852 */
2853 unsigned long nr_running(void)
2854 {
2855 unsigned long i, sum = 0;
2856
2857 for_each_online_cpu(i)
2858 sum += cpu_rq(i)->nr_running;
2859
2860 return sum;
2861 }
2862
2863 /*
2864 * Check if only the current task is running on the cpu.
2865 *
2866 * Caution: this function does not check that the caller has disabled
2867 * preemption, thus the result might have a time-of-check-to-time-of-use
2868 * race. The caller is responsible to use it correctly, for example:
2869 *
2870 * - from a non-preemptable section (of course)
2871 *
2872 * - from a thread that is bound to a single CPU
2873 *
2874 * - in a loop with very short iterations (e.g. a polling loop)
2875 */
2876 bool single_task_running(void)
2877 {
2878 return raw_rq()->nr_running == 1;
2879 }
2880 EXPORT_SYMBOL(single_task_running);
2881
2882 unsigned long long nr_context_switches(void)
2883 {
2884 int i;
2885 unsigned long long sum = 0;
2886
2887 for_each_possible_cpu(i)
2888 sum += cpu_rq(i)->nr_switches;
2889
2890 return sum;
2891 }
2892
2893 unsigned long nr_iowait(void)
2894 {
2895 unsigned long i, sum = 0;
2896
2897 for_each_possible_cpu(i)
2898 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2899
2900 return sum;
2901 }
2902
2903 unsigned long nr_iowait_cpu(int cpu)
2904 {
2905 struct rq *this = cpu_rq(cpu);
2906 return atomic_read(&this->nr_iowait);
2907 }
2908
2909 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2910 {
2911 struct rq *rq = this_rq();
2912 *nr_waiters = atomic_read(&rq->nr_iowait);
2913 *load = rq->load.weight;
2914 }
2915
2916 #ifdef CONFIG_SMP
2917
2918 /*
2919 * sched_exec - execve() is a valuable balancing opportunity, because at
2920 * this point the task has the smallest effective memory and cache footprint.
2921 */
2922 void sched_exec(void)
2923 {
2924 struct task_struct *p = current;
2925 unsigned long flags;
2926 int dest_cpu;
2927
2928 raw_spin_lock_irqsave(&p->pi_lock, flags);
2929 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2930 if (dest_cpu == smp_processor_id())
2931 goto unlock;
2932
2933 if (likely(cpu_active(dest_cpu))) {
2934 struct migration_arg arg = { p, dest_cpu };
2935
2936 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2937 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2938 return;
2939 }
2940 unlock:
2941 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2942 }
2943
2944 #endif
2945
2946 DEFINE_PER_CPU(struct kernel_stat, kstat);
2947 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2948
2949 EXPORT_PER_CPU_SYMBOL(kstat);
2950 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2951
2952 /*
2953 * Return accounted runtime for the task.
2954 * In case the task is currently running, return the runtime plus current's
2955 * pending runtime that have not been accounted yet.
2956 */
2957 unsigned long long task_sched_runtime(struct task_struct *p)
2958 {
2959 struct rq_flags rf;
2960 struct rq *rq;
2961 u64 ns;
2962
2963 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2964 /*
2965 * 64-bit doesn't need locks to atomically read a 64bit value.
2966 * So we have a optimization chance when the task's delta_exec is 0.
2967 * Reading ->on_cpu is racy, but this is ok.
2968 *
2969 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2970 * If we race with it entering cpu, unaccounted time is 0. This is
2971 * indistinguishable from the read occurring a few cycles earlier.
2972 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2973 * been accounted, so we're correct here as well.
2974 */
2975 if (!p->on_cpu || !task_on_rq_queued(p))
2976 return p->se.sum_exec_runtime;
2977 #endif
2978
2979 rq = task_rq_lock(p, &rf);
2980 /*
2981 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2982 * project cycles that may never be accounted to this
2983 * thread, breaking clock_gettime().
2984 */
2985 if (task_current(rq, p) && task_on_rq_queued(p)) {
2986 update_rq_clock(rq);
2987 p->sched_class->update_curr(rq);
2988 }
2989 ns = p->se.sum_exec_runtime;
2990 task_rq_unlock(rq, p, &rf);
2991
2992 return ns;
2993 }
2994
2995 /*
2996 * This function gets called by the timer code, with HZ frequency.
2997 * We call it with interrupts disabled.
2998 */
2999 void scheduler_tick(void)
3000 {
3001 int cpu = smp_processor_id();
3002 struct rq *rq = cpu_rq(cpu);
3003 struct task_struct *curr = rq->curr;
3004
3005 sched_clock_tick();
3006
3007 raw_spin_lock(&rq->lock);
3008 update_rq_clock(rq);
3009 curr->sched_class->task_tick(rq, curr, 0);
3010 cpu_load_update_active(rq);
3011 calc_global_load_tick(rq);
3012 raw_spin_unlock(&rq->lock);
3013
3014 perf_event_task_tick();
3015
3016 #ifdef CONFIG_SMP
3017 rq->idle_balance = idle_cpu(cpu);
3018 trigger_load_balance(rq);
3019 #endif
3020 rq_last_tick_reset(rq);
3021 }
3022
3023 #ifdef CONFIG_NO_HZ_FULL
3024 /**
3025 * scheduler_tick_max_deferment
3026 *
3027 * Keep at least one tick per second when a single
3028 * active task is running because the scheduler doesn't
3029 * yet completely support full dynticks environment.
3030 *
3031 * This makes sure that uptime, CFS vruntime, load
3032 * balancing, etc... continue to move forward, even
3033 * with a very low granularity.
3034 *
3035 * Return: Maximum deferment in nanoseconds.
3036 */
3037 u64 scheduler_tick_max_deferment(void)
3038 {
3039 struct rq *rq = this_rq();
3040 unsigned long next, now = READ_ONCE(jiffies);
3041
3042 next = rq->last_sched_tick + HZ;
3043
3044 if (time_before_eq(next, now))
3045 return 0;
3046
3047 return jiffies_to_nsecs(next - now);
3048 }
3049 #endif
3050
3051 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3052 defined(CONFIG_PREEMPT_TRACER))
3053 /*
3054 * If the value passed in is equal to the current preempt count
3055 * then we just disabled preemption. Start timing the latency.
3056 */
3057 static inline void preempt_latency_start(int val)
3058 {
3059 if (preempt_count() == val) {
3060 unsigned long ip = get_lock_parent_ip();
3061 #ifdef CONFIG_DEBUG_PREEMPT
3062 current->preempt_disable_ip = ip;
3063 #endif
3064 trace_preempt_off(CALLER_ADDR0, ip);
3065 }
3066 }
3067
3068 void preempt_count_add(int val)
3069 {
3070 #ifdef CONFIG_DEBUG_PREEMPT
3071 /*
3072 * Underflow?
3073 */
3074 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3075 return;
3076 #endif
3077 __preempt_count_add(val);
3078 #ifdef CONFIG_DEBUG_PREEMPT
3079 /*
3080 * Spinlock count overflowing soon?
3081 */
3082 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3083 PREEMPT_MASK - 10);
3084 #endif
3085 preempt_latency_start(val);
3086 }
3087 EXPORT_SYMBOL(preempt_count_add);
3088 NOKPROBE_SYMBOL(preempt_count_add);
3089
3090 /*
3091 * If the value passed in equals to the current preempt count
3092 * then we just enabled preemption. Stop timing the latency.
3093 */
3094 static inline void preempt_latency_stop(int val)
3095 {
3096 if (preempt_count() == val)
3097 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3098 }
3099
3100 void preempt_count_sub(int val)
3101 {
3102 #ifdef CONFIG_DEBUG_PREEMPT
3103 /*
3104 * Underflow?
3105 */
3106 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3107 return;
3108 /*
3109 * Is the spinlock portion underflowing?
3110 */
3111 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3112 !(preempt_count() & PREEMPT_MASK)))
3113 return;
3114 #endif
3115
3116 preempt_latency_stop(val);
3117 __preempt_count_sub(val);
3118 }
3119 EXPORT_SYMBOL(preempt_count_sub);
3120 NOKPROBE_SYMBOL(preempt_count_sub);
3121
3122 #else
3123 static inline void preempt_latency_start(int val) { }
3124 static inline void preempt_latency_stop(int val) { }
3125 #endif
3126
3127 /*
3128 * Print scheduling while atomic bug:
3129 */
3130 static noinline void __schedule_bug(struct task_struct *prev)
3131 {
3132 if (oops_in_progress)
3133 return;
3134
3135 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3136 prev->comm, prev->pid, preempt_count());
3137
3138 debug_show_held_locks(prev);
3139 print_modules();
3140 if (irqs_disabled())
3141 print_irqtrace_events(prev);
3142 #ifdef CONFIG_DEBUG_PREEMPT
3143 if (in_atomic_preempt_off()) {
3144 pr_err("Preemption disabled at:");
3145 print_ip_sym(current->preempt_disable_ip);
3146 pr_cont("\n");
3147 }
3148 #endif
3149 dump_stack();
3150 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3151 }
3152
3153 /*
3154 * Various schedule()-time debugging checks and statistics:
3155 */
3156 static inline void schedule_debug(struct task_struct *prev)
3157 {
3158 #ifdef CONFIG_SCHED_STACK_END_CHECK
3159 BUG_ON(task_stack_end_corrupted(prev));
3160 #endif
3161
3162 if (unlikely(in_atomic_preempt_off())) {
3163 __schedule_bug(prev);
3164 preempt_count_set(PREEMPT_DISABLED);
3165 }
3166 rcu_sleep_check();
3167
3168 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3169
3170 schedstat_inc(this_rq(), sched_count);
3171 }
3172
3173 /*
3174 * Pick up the highest-prio task:
3175 */
3176 static inline struct task_struct *
3177 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3178 {
3179 const struct sched_class *class = &fair_sched_class;
3180 struct task_struct *p;
3181
3182 /*
3183 * Optimization: we know that if all tasks are in
3184 * the fair class we can call that function directly:
3185 */
3186 if (likely(prev->sched_class == class &&
3187 rq->nr_running == rq->cfs.h_nr_running)) {
3188 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3189 if (unlikely(p == RETRY_TASK))
3190 goto again;
3191
3192 /* assumes fair_sched_class->next == idle_sched_class */
3193 if (unlikely(!p))
3194 p = idle_sched_class.pick_next_task(rq, prev, cookie);
3195
3196 return p;
3197 }
3198
3199 again:
3200 for_each_class(class) {
3201 p = class->pick_next_task(rq, prev, cookie);
3202 if (p) {
3203 if (unlikely(p == RETRY_TASK))
3204 goto again;
3205 return p;
3206 }
3207 }
3208
3209 BUG(); /* the idle class will always have a runnable task */
3210 }
3211
3212 /*
3213 * __schedule() is the main scheduler function.
3214 *
3215 * The main means of driving the scheduler and thus entering this function are:
3216 *
3217 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3218 *
3219 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3220 * paths. For example, see arch/x86/entry_64.S.
3221 *
3222 * To drive preemption between tasks, the scheduler sets the flag in timer
3223 * interrupt handler scheduler_tick().
3224 *
3225 * 3. Wakeups don't really cause entry into schedule(). They add a
3226 * task to the run-queue and that's it.
3227 *
3228 * Now, if the new task added to the run-queue preempts the current
3229 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3230 * called on the nearest possible occasion:
3231 *
3232 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3233 *
3234 * - in syscall or exception context, at the next outmost
3235 * preempt_enable(). (this might be as soon as the wake_up()'s
3236 * spin_unlock()!)
3237 *
3238 * - in IRQ context, return from interrupt-handler to
3239 * preemptible context
3240 *
3241 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3242 * then at the next:
3243 *
3244 * - cond_resched() call
3245 * - explicit schedule() call
3246 * - return from syscall or exception to user-space
3247 * - return from interrupt-handler to user-space
3248 *
3249 * WARNING: must be called with preemption disabled!
3250 */
3251 static void __sched notrace __schedule(bool preempt)
3252 {
3253 struct task_struct *prev, *next;
3254 unsigned long *switch_count;
3255 struct pin_cookie cookie;
3256 struct rq *rq;
3257 int cpu;
3258
3259 cpu = smp_processor_id();
3260 rq = cpu_rq(cpu);
3261 prev = rq->curr;
3262
3263 /*
3264 * do_exit() calls schedule() with preemption disabled as an exception;
3265 * however we must fix that up, otherwise the next task will see an
3266 * inconsistent (higher) preempt count.
3267 *
3268 * It also avoids the below schedule_debug() test from complaining
3269 * about this.
3270 */
3271 if (unlikely(prev->state == TASK_DEAD))
3272 preempt_enable_no_resched_notrace();
3273
3274 schedule_debug(prev);
3275
3276 if (sched_feat(HRTICK))
3277 hrtick_clear(rq);
3278
3279 local_irq_disable();
3280 rcu_note_context_switch();
3281
3282 /*
3283 * Make sure that signal_pending_state()->signal_pending() below
3284 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3285 * done by the caller to avoid the race with signal_wake_up().
3286 */
3287 smp_mb__before_spinlock();
3288 raw_spin_lock(&rq->lock);
3289 cookie = lockdep_pin_lock(&rq->lock);
3290
3291 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3292
3293 switch_count = &prev->nivcsw;
3294 if (!preempt && prev->state) {
3295 if (unlikely(signal_pending_state(prev->state, prev))) {
3296 prev->state = TASK_RUNNING;
3297 } else {
3298 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3299 prev->on_rq = 0;
3300
3301 /*
3302 * If a worker went to sleep, notify and ask workqueue
3303 * whether it wants to wake up a task to maintain
3304 * concurrency.
3305 */
3306 if (prev->flags & PF_WQ_WORKER) {
3307 struct task_struct *to_wakeup;
3308
3309 to_wakeup = wq_worker_sleeping(prev);
3310 if (to_wakeup)
3311 try_to_wake_up_local(to_wakeup, cookie);
3312 }
3313 }
3314 switch_count = &prev->nvcsw;
3315 }
3316
3317 if (task_on_rq_queued(prev))
3318 update_rq_clock(rq);
3319
3320 next = pick_next_task(rq, prev, cookie);
3321 clear_tsk_need_resched(prev);
3322 clear_preempt_need_resched();
3323 rq->clock_skip_update = 0;
3324
3325 if (likely(prev != next)) {
3326 rq->nr_switches++;
3327 rq->curr = next;
3328 ++*switch_count;
3329
3330 trace_sched_switch(preempt, prev, next);
3331 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3332 } else {
3333 lockdep_unpin_lock(&rq->lock, cookie);
3334 raw_spin_unlock_irq(&rq->lock);
3335 }
3336
3337 balance_callback(rq);
3338 }
3339 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3340
3341 static inline void sched_submit_work(struct task_struct *tsk)
3342 {
3343 if (!tsk->state || tsk_is_pi_blocked(tsk))
3344 return;
3345 /*
3346 * If we are going to sleep and we have plugged IO queued,
3347 * make sure to submit it to avoid deadlocks.
3348 */
3349 if (blk_needs_flush_plug(tsk))
3350 blk_schedule_flush_plug(tsk);
3351 }
3352
3353 asmlinkage __visible void __sched schedule(void)
3354 {
3355 struct task_struct *tsk = current;
3356
3357 sched_submit_work(tsk);
3358 do {
3359 preempt_disable();
3360 __schedule(false);
3361 sched_preempt_enable_no_resched();
3362 } while (need_resched());
3363 }
3364 EXPORT_SYMBOL(schedule);
3365
3366 #ifdef CONFIG_CONTEXT_TRACKING
3367 asmlinkage __visible void __sched schedule_user(void)
3368 {
3369 /*
3370 * If we come here after a random call to set_need_resched(),
3371 * or we have been woken up remotely but the IPI has not yet arrived,
3372 * we haven't yet exited the RCU idle mode. Do it here manually until
3373 * we find a better solution.
3374 *
3375 * NB: There are buggy callers of this function. Ideally we
3376 * should warn if prev_state != CONTEXT_USER, but that will trigger
3377 * too frequently to make sense yet.
3378 */
3379 enum ctx_state prev_state = exception_enter();
3380 schedule();
3381 exception_exit(prev_state);
3382 }
3383 #endif
3384
3385 /**
3386 * schedule_preempt_disabled - called with preemption disabled
3387 *
3388 * Returns with preemption disabled. Note: preempt_count must be 1
3389 */
3390 void __sched schedule_preempt_disabled(void)
3391 {
3392 sched_preempt_enable_no_resched();
3393 schedule();
3394 preempt_disable();
3395 }
3396
3397 static void __sched notrace preempt_schedule_common(void)
3398 {
3399 do {
3400 /*
3401 * Because the function tracer can trace preempt_count_sub()
3402 * and it also uses preempt_enable/disable_notrace(), if
3403 * NEED_RESCHED is set, the preempt_enable_notrace() called
3404 * by the function tracer will call this function again and
3405 * cause infinite recursion.
3406 *
3407 * Preemption must be disabled here before the function
3408 * tracer can trace. Break up preempt_disable() into two
3409 * calls. One to disable preemption without fear of being
3410 * traced. The other to still record the preemption latency,
3411 * which can also be traced by the function tracer.
3412 */
3413 preempt_disable_notrace();
3414 preempt_latency_start(1);
3415 __schedule(true);
3416 preempt_latency_stop(1);
3417 preempt_enable_no_resched_notrace();
3418
3419 /*
3420 * Check again in case we missed a preemption opportunity
3421 * between schedule and now.
3422 */
3423 } while (need_resched());
3424 }
3425
3426 #ifdef CONFIG_PREEMPT
3427 /*
3428 * this is the entry point to schedule() from in-kernel preemption
3429 * off of preempt_enable. Kernel preemptions off return from interrupt
3430 * occur there and call schedule directly.
3431 */
3432 asmlinkage __visible void __sched notrace preempt_schedule(void)
3433 {
3434 /*
3435 * If there is a non-zero preempt_count or interrupts are disabled,
3436 * we do not want to preempt the current task. Just return..
3437 */
3438 if (likely(!preemptible()))
3439 return;
3440
3441 preempt_schedule_common();
3442 }
3443 NOKPROBE_SYMBOL(preempt_schedule);
3444 EXPORT_SYMBOL(preempt_schedule);
3445
3446 /**
3447 * preempt_schedule_notrace - preempt_schedule called by tracing
3448 *
3449 * The tracing infrastructure uses preempt_enable_notrace to prevent
3450 * recursion and tracing preempt enabling caused by the tracing
3451 * infrastructure itself. But as tracing can happen in areas coming
3452 * from userspace or just about to enter userspace, a preempt enable
3453 * can occur before user_exit() is called. This will cause the scheduler
3454 * to be called when the system is still in usermode.
3455 *
3456 * To prevent this, the preempt_enable_notrace will use this function
3457 * instead of preempt_schedule() to exit user context if needed before
3458 * calling the scheduler.
3459 */
3460 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3461 {
3462 enum ctx_state prev_ctx;
3463
3464 if (likely(!preemptible()))
3465 return;
3466
3467 do {
3468 /*
3469 * Because the function tracer can trace preempt_count_sub()
3470 * and it also uses preempt_enable/disable_notrace(), if
3471 * NEED_RESCHED is set, the preempt_enable_notrace() called
3472 * by the function tracer will call this function again and
3473 * cause infinite recursion.
3474 *
3475 * Preemption must be disabled here before the function
3476 * tracer can trace. Break up preempt_disable() into two
3477 * calls. One to disable preemption without fear of being
3478 * traced. The other to still record the preemption latency,
3479 * which can also be traced by the function tracer.
3480 */
3481 preempt_disable_notrace();
3482 preempt_latency_start(1);
3483 /*
3484 * Needs preempt disabled in case user_exit() is traced
3485 * and the tracer calls preempt_enable_notrace() causing
3486 * an infinite recursion.
3487 */
3488 prev_ctx = exception_enter();
3489 __schedule(true);
3490 exception_exit(prev_ctx);
3491
3492 preempt_latency_stop(1);
3493 preempt_enable_no_resched_notrace();
3494 } while (need_resched());
3495 }
3496 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3497
3498 #endif /* CONFIG_PREEMPT */
3499
3500 /*
3501 * this is the entry point to schedule() from kernel preemption
3502 * off of irq context.
3503 * Note, that this is called and return with irqs disabled. This will
3504 * protect us against recursive calling from irq.
3505 */
3506 asmlinkage __visible void __sched preempt_schedule_irq(void)
3507 {
3508 enum ctx_state prev_state;
3509
3510 /* Catch callers which need to be fixed */
3511 BUG_ON(preempt_count() || !irqs_disabled());
3512
3513 prev_state = exception_enter();
3514
3515 do {
3516 preempt_disable();
3517 local_irq_enable();
3518 __schedule(true);
3519 local_irq_disable();
3520 sched_preempt_enable_no_resched();
3521 } while (need_resched());
3522
3523 exception_exit(prev_state);
3524 }
3525
3526 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3527 void *key)
3528 {
3529 return try_to_wake_up(curr->private, mode, wake_flags);
3530 }
3531 EXPORT_SYMBOL(default_wake_function);
3532
3533 #ifdef CONFIG_RT_MUTEXES
3534
3535 /*
3536 * rt_mutex_setprio - set the current priority of a task
3537 * @p: task
3538 * @prio: prio value (kernel-internal form)
3539 *
3540 * This function changes the 'effective' priority of a task. It does
3541 * not touch ->normal_prio like __setscheduler().
3542 *
3543 * Used by the rt_mutex code to implement priority inheritance
3544 * logic. Call site only calls if the priority of the task changed.
3545 */
3546 void rt_mutex_setprio(struct task_struct *p, int prio)
3547 {
3548 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3549 const struct sched_class *prev_class;
3550 struct rq_flags rf;
3551 struct rq *rq;
3552
3553 BUG_ON(prio > MAX_PRIO);
3554
3555 rq = __task_rq_lock(p, &rf);
3556
3557 /*
3558 * Idle task boosting is a nono in general. There is one
3559 * exception, when PREEMPT_RT and NOHZ is active:
3560 *
3561 * The idle task calls get_next_timer_interrupt() and holds
3562 * the timer wheel base->lock on the CPU and another CPU wants
3563 * to access the timer (probably to cancel it). We can safely
3564 * ignore the boosting request, as the idle CPU runs this code
3565 * with interrupts disabled and will complete the lock
3566 * protected section without being interrupted. So there is no
3567 * real need to boost.
3568 */
3569 if (unlikely(p == rq->idle)) {
3570 WARN_ON(p != rq->curr);
3571 WARN_ON(p->pi_blocked_on);
3572 goto out_unlock;
3573 }
3574
3575 trace_sched_pi_setprio(p, prio);
3576 oldprio = p->prio;
3577
3578 if (oldprio == prio)
3579 queue_flag &= ~DEQUEUE_MOVE;
3580
3581 prev_class = p->sched_class;
3582 queued = task_on_rq_queued(p);
3583 running = task_current(rq, p);
3584 if (queued)
3585 dequeue_task(rq, p, queue_flag);
3586 if (running)
3587 put_prev_task(rq, p);
3588
3589 /*
3590 * Boosting condition are:
3591 * 1. -rt task is running and holds mutex A
3592 * --> -dl task blocks on mutex A
3593 *
3594 * 2. -dl task is running and holds mutex A
3595 * --> -dl task blocks on mutex A and could preempt the
3596 * running task
3597 */
3598 if (dl_prio(prio)) {
3599 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3600 if (!dl_prio(p->normal_prio) ||
3601 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3602 p->dl.dl_boosted = 1;
3603 queue_flag |= ENQUEUE_REPLENISH;
3604 } else
3605 p->dl.dl_boosted = 0;
3606 p->sched_class = &dl_sched_class;
3607 } else if (rt_prio(prio)) {
3608 if (dl_prio(oldprio))
3609 p->dl.dl_boosted = 0;
3610 if (oldprio < prio)
3611 queue_flag |= ENQUEUE_HEAD;
3612 p->sched_class = &rt_sched_class;
3613 } else {
3614 if (dl_prio(oldprio))
3615 p->dl.dl_boosted = 0;
3616 if (rt_prio(oldprio))
3617 p->rt.timeout = 0;
3618 p->sched_class = &fair_sched_class;
3619 }
3620
3621 p->prio = prio;
3622
3623 if (running)
3624 p->sched_class->set_curr_task(rq);
3625 if (queued)
3626 enqueue_task(rq, p, queue_flag);
3627
3628 check_class_changed(rq, p, prev_class, oldprio);
3629 out_unlock:
3630 preempt_disable(); /* avoid rq from going away on us */
3631 __task_rq_unlock(rq, &rf);
3632
3633 balance_callback(rq);
3634 preempt_enable();
3635 }
3636 #endif
3637
3638 void set_user_nice(struct task_struct *p, long nice)
3639 {
3640 int old_prio, delta, queued;
3641 struct rq_flags rf;
3642 struct rq *rq;
3643
3644 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3645 return;
3646 /*
3647 * We have to be careful, if called from sys_setpriority(),
3648 * the task might be in the middle of scheduling on another CPU.
3649 */
3650 rq = task_rq_lock(p, &rf);
3651 /*
3652 * The RT priorities are set via sched_setscheduler(), but we still
3653 * allow the 'normal' nice value to be set - but as expected
3654 * it wont have any effect on scheduling until the task is
3655 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3656 */
3657 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3658 p->static_prio = NICE_TO_PRIO(nice);
3659 goto out_unlock;
3660 }
3661 queued = task_on_rq_queued(p);
3662 if (queued)
3663 dequeue_task(rq, p, DEQUEUE_SAVE);
3664
3665 p->static_prio = NICE_TO_PRIO(nice);
3666 set_load_weight(p);
3667 old_prio = p->prio;
3668 p->prio = effective_prio(p);
3669 delta = p->prio - old_prio;
3670
3671 if (queued) {
3672 enqueue_task(rq, p, ENQUEUE_RESTORE);
3673 /*
3674 * If the task increased its priority or is running and
3675 * lowered its priority, then reschedule its CPU:
3676 */
3677 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3678 resched_curr(rq);
3679 }
3680 out_unlock:
3681 task_rq_unlock(rq, p, &rf);
3682 }
3683 EXPORT_SYMBOL(set_user_nice);
3684
3685 /*
3686 * can_nice - check if a task can reduce its nice value
3687 * @p: task
3688 * @nice: nice value
3689 */
3690 int can_nice(const struct task_struct *p, const int nice)
3691 {
3692 /* convert nice value [19,-20] to rlimit style value [1,40] */
3693 int nice_rlim = nice_to_rlimit(nice);
3694
3695 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3696 capable(CAP_SYS_NICE));
3697 }
3698
3699 #ifdef __ARCH_WANT_SYS_NICE
3700
3701 /*
3702 * sys_nice - change the priority of the current process.
3703 * @increment: priority increment
3704 *
3705 * sys_setpriority is a more generic, but much slower function that
3706 * does similar things.
3707 */
3708 SYSCALL_DEFINE1(nice, int, increment)
3709 {
3710 long nice, retval;
3711
3712 /*
3713 * Setpriority might change our priority at the same moment.
3714 * We don't have to worry. Conceptually one call occurs first
3715 * and we have a single winner.
3716 */
3717 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3718 nice = task_nice(current) + increment;
3719
3720 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3721 if (increment < 0 && !can_nice(current, nice))
3722 return -EPERM;
3723
3724 retval = security_task_setnice(current, nice);
3725 if (retval)
3726 return retval;
3727
3728 set_user_nice(current, nice);
3729 return 0;
3730 }
3731
3732 #endif
3733
3734 /**
3735 * task_prio - return the priority value of a given task.
3736 * @p: the task in question.
3737 *
3738 * Return: The priority value as seen by users in /proc.
3739 * RT tasks are offset by -200. Normal tasks are centered
3740 * around 0, value goes from -16 to +15.
3741 */
3742 int task_prio(const struct task_struct *p)
3743 {
3744 return p->prio - MAX_RT_PRIO;
3745 }
3746
3747 /**
3748 * idle_cpu - is a given cpu idle currently?
3749 * @cpu: the processor in question.
3750 *
3751 * Return: 1 if the CPU is currently idle. 0 otherwise.
3752 */
3753 int idle_cpu(int cpu)
3754 {
3755 struct rq *rq = cpu_rq(cpu);
3756
3757 if (rq->curr != rq->idle)
3758 return 0;
3759
3760 if (rq->nr_running)
3761 return 0;
3762
3763 #ifdef CONFIG_SMP
3764 if (!llist_empty(&rq->wake_list))
3765 return 0;
3766 #endif
3767
3768 return 1;
3769 }
3770
3771 /**
3772 * idle_task - return the idle task for a given cpu.
3773 * @cpu: the processor in question.
3774 *
3775 * Return: The idle task for the cpu @cpu.
3776 */
3777 struct task_struct *idle_task(int cpu)
3778 {
3779 return cpu_rq(cpu)->idle;
3780 }
3781
3782 /**
3783 * find_process_by_pid - find a process with a matching PID value.
3784 * @pid: the pid in question.
3785 *
3786 * The task of @pid, if found. %NULL otherwise.
3787 */
3788 static struct task_struct *find_process_by_pid(pid_t pid)
3789 {
3790 return pid ? find_task_by_vpid(pid) : current;
3791 }
3792
3793 /*
3794 * This function initializes the sched_dl_entity of a newly becoming
3795 * SCHED_DEADLINE task.
3796 *
3797 * Only the static values are considered here, the actual runtime and the
3798 * absolute deadline will be properly calculated when the task is enqueued
3799 * for the first time with its new policy.
3800 */
3801 static void
3802 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3803 {
3804 struct sched_dl_entity *dl_se = &p->dl;
3805
3806 dl_se->dl_runtime = attr->sched_runtime;
3807 dl_se->dl_deadline = attr->sched_deadline;
3808 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3809 dl_se->flags = attr->sched_flags;
3810 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3811
3812 /*
3813 * Changing the parameters of a task is 'tricky' and we're not doing
3814 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3815 *
3816 * What we SHOULD do is delay the bandwidth release until the 0-lag
3817 * point. This would include retaining the task_struct until that time
3818 * and change dl_overflow() to not immediately decrement the current
3819 * amount.
3820 *
3821 * Instead we retain the current runtime/deadline and let the new
3822 * parameters take effect after the current reservation period lapses.
3823 * This is safe (albeit pessimistic) because the 0-lag point is always
3824 * before the current scheduling deadline.
3825 *
3826 * We can still have temporary overloads because we do not delay the
3827 * change in bandwidth until that time; so admission control is
3828 * not on the safe side. It does however guarantee tasks will never
3829 * consume more than promised.
3830 */
3831 }
3832
3833 /*
3834 * sched_setparam() passes in -1 for its policy, to let the functions
3835 * it calls know not to change it.
3836 */
3837 #define SETPARAM_POLICY -1
3838
3839 static void __setscheduler_params(struct task_struct *p,
3840 const struct sched_attr *attr)
3841 {
3842 int policy = attr->sched_policy;
3843
3844 if (policy == SETPARAM_POLICY)
3845 policy = p->policy;
3846
3847 p->policy = policy;
3848
3849 if (dl_policy(policy))
3850 __setparam_dl(p, attr);
3851 else if (fair_policy(policy))
3852 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3853
3854 /*
3855 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3856 * !rt_policy. Always setting this ensures that things like
3857 * getparam()/getattr() don't report silly values for !rt tasks.
3858 */
3859 p->rt_priority = attr->sched_priority;
3860 p->normal_prio = normal_prio(p);
3861 set_load_weight(p);
3862 }
3863
3864 /* Actually do priority change: must hold pi & rq lock. */
3865 static void __setscheduler(struct rq *rq, struct task_struct *p,
3866 const struct sched_attr *attr, bool keep_boost)
3867 {
3868 __setscheduler_params(p, attr);
3869
3870 /*
3871 * Keep a potential priority boosting if called from
3872 * sched_setscheduler().
3873 */
3874 if (keep_boost)
3875 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3876 else
3877 p->prio = normal_prio(p);
3878
3879 if (dl_prio(p->prio))
3880 p->sched_class = &dl_sched_class;
3881 else if (rt_prio(p->prio))
3882 p->sched_class = &rt_sched_class;
3883 else
3884 p->sched_class = &fair_sched_class;
3885 }
3886
3887 static void
3888 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3889 {
3890 struct sched_dl_entity *dl_se = &p->dl;
3891
3892 attr->sched_priority = p->rt_priority;
3893 attr->sched_runtime = dl_se->dl_runtime;
3894 attr->sched_deadline = dl_se->dl_deadline;
3895 attr->sched_period = dl_se->dl_period;
3896 attr->sched_flags = dl_se->flags;
3897 }
3898
3899 /*
3900 * This function validates the new parameters of a -deadline task.
3901 * We ask for the deadline not being zero, and greater or equal
3902 * than the runtime, as well as the period of being zero or
3903 * greater than deadline. Furthermore, we have to be sure that
3904 * user parameters are above the internal resolution of 1us (we
3905 * check sched_runtime only since it is always the smaller one) and
3906 * below 2^63 ns (we have to check both sched_deadline and
3907 * sched_period, as the latter can be zero).
3908 */
3909 static bool
3910 __checkparam_dl(const struct sched_attr *attr)
3911 {
3912 /* deadline != 0 */
3913 if (attr->sched_deadline == 0)
3914 return false;
3915
3916 /*
3917 * Since we truncate DL_SCALE bits, make sure we're at least
3918 * that big.
3919 */
3920 if (attr->sched_runtime < (1ULL << DL_SCALE))
3921 return false;
3922
3923 /*
3924 * Since we use the MSB for wrap-around and sign issues, make
3925 * sure it's not set (mind that period can be equal to zero).
3926 */
3927 if (attr->sched_deadline & (1ULL << 63) ||
3928 attr->sched_period & (1ULL << 63))
3929 return false;
3930
3931 /* runtime <= deadline <= period (if period != 0) */
3932 if ((attr->sched_period != 0 &&
3933 attr->sched_period < attr->sched_deadline) ||
3934 attr->sched_deadline < attr->sched_runtime)
3935 return false;
3936
3937 return true;
3938 }
3939
3940 /*
3941 * check the target process has a UID that matches the current process's
3942 */
3943 static bool check_same_owner(struct task_struct *p)
3944 {
3945 const struct cred *cred = current_cred(), *pcred;
3946 bool match;
3947
3948 rcu_read_lock();
3949 pcred = __task_cred(p);
3950 match = (uid_eq(cred->euid, pcred->euid) ||
3951 uid_eq(cred->euid, pcred->uid));
3952 rcu_read_unlock();
3953 return match;
3954 }
3955
3956 static bool dl_param_changed(struct task_struct *p,
3957 const struct sched_attr *attr)
3958 {
3959 struct sched_dl_entity *dl_se = &p->dl;
3960
3961 if (dl_se->dl_runtime != attr->sched_runtime ||
3962 dl_se->dl_deadline != attr->sched_deadline ||
3963 dl_se->dl_period != attr->sched_period ||
3964 dl_se->flags != attr->sched_flags)
3965 return true;
3966
3967 return false;
3968 }
3969
3970 static int __sched_setscheduler(struct task_struct *p,
3971 const struct sched_attr *attr,
3972 bool user, bool pi)
3973 {
3974 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3975 MAX_RT_PRIO - 1 - attr->sched_priority;
3976 int retval, oldprio, oldpolicy = -1, queued, running;
3977 int new_effective_prio, policy = attr->sched_policy;
3978 const struct sched_class *prev_class;
3979 struct rq_flags rf;
3980 int reset_on_fork;
3981 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3982 struct rq *rq;
3983
3984 /* may grab non-irq protected spin_locks */
3985 BUG_ON(in_interrupt());
3986 recheck:
3987 /* double check policy once rq lock held */
3988 if (policy < 0) {
3989 reset_on_fork = p->sched_reset_on_fork;
3990 policy = oldpolicy = p->policy;
3991 } else {
3992 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3993
3994 if (!valid_policy(policy))
3995 return -EINVAL;
3996 }
3997
3998 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3999 return -EINVAL;
4000
4001 /*
4002 * Valid priorities for SCHED_FIFO and SCHED_RR are
4003 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4004 * SCHED_BATCH and SCHED_IDLE is 0.
4005 */
4006 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4007 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4008 return -EINVAL;
4009 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4010 (rt_policy(policy) != (attr->sched_priority != 0)))
4011 return -EINVAL;
4012
4013 /*
4014 * Allow unprivileged RT tasks to decrease priority:
4015 */
4016 if (user && !capable(CAP_SYS_NICE)) {
4017 if (fair_policy(policy)) {
4018 if (attr->sched_nice < task_nice(p) &&
4019 !can_nice(p, attr->sched_nice))
4020 return -EPERM;
4021 }
4022
4023 if (rt_policy(policy)) {
4024 unsigned long rlim_rtprio =
4025 task_rlimit(p, RLIMIT_RTPRIO);
4026
4027 /* can't set/change the rt policy */
4028 if (policy != p->policy && !rlim_rtprio)
4029 return -EPERM;
4030
4031 /* can't increase priority */
4032 if (attr->sched_priority > p->rt_priority &&
4033 attr->sched_priority > rlim_rtprio)
4034 return -EPERM;
4035 }
4036
4037 /*
4038 * Can't set/change SCHED_DEADLINE policy at all for now
4039 * (safest behavior); in the future we would like to allow
4040 * unprivileged DL tasks to increase their relative deadline
4041 * or reduce their runtime (both ways reducing utilization)
4042 */
4043 if (dl_policy(policy))
4044 return -EPERM;
4045
4046 /*
4047 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4048 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4049 */
4050 if (idle_policy(p->policy) && !idle_policy(policy)) {
4051 if (!can_nice(p, task_nice(p)))
4052 return -EPERM;
4053 }
4054
4055 /* can't change other user's priorities */
4056 if (!check_same_owner(p))
4057 return -EPERM;
4058
4059 /* Normal users shall not reset the sched_reset_on_fork flag */
4060 if (p->sched_reset_on_fork && !reset_on_fork)
4061 return -EPERM;
4062 }
4063
4064 if (user) {
4065 retval = security_task_setscheduler(p);
4066 if (retval)
4067 return retval;
4068 }
4069
4070 /*
4071 * make sure no PI-waiters arrive (or leave) while we are
4072 * changing the priority of the task:
4073 *
4074 * To be able to change p->policy safely, the appropriate
4075 * runqueue lock must be held.
4076 */
4077 rq = task_rq_lock(p, &rf);
4078
4079 /*
4080 * Changing the policy of the stop threads its a very bad idea
4081 */
4082 if (p == rq->stop) {
4083 task_rq_unlock(rq, p, &rf);
4084 return -EINVAL;
4085 }
4086
4087 /*
4088 * If not changing anything there's no need to proceed further,
4089 * but store a possible modification of reset_on_fork.
4090 */
4091 if (unlikely(policy == p->policy)) {
4092 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4093 goto change;
4094 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4095 goto change;
4096 if (dl_policy(policy) && dl_param_changed(p, attr))
4097 goto change;
4098
4099 p->sched_reset_on_fork = reset_on_fork;
4100 task_rq_unlock(rq, p, &rf);
4101 return 0;
4102 }
4103 change:
4104
4105 if (user) {
4106 #ifdef CONFIG_RT_GROUP_SCHED
4107 /*
4108 * Do not allow realtime tasks into groups that have no runtime
4109 * assigned.
4110 */
4111 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4112 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4113 !task_group_is_autogroup(task_group(p))) {
4114 task_rq_unlock(rq, p, &rf);
4115 return -EPERM;
4116 }
4117 #endif
4118 #ifdef CONFIG_SMP
4119 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4120 cpumask_t *span = rq->rd->span;
4121
4122 /*
4123 * Don't allow tasks with an affinity mask smaller than
4124 * the entire root_domain to become SCHED_DEADLINE. We
4125 * will also fail if there's no bandwidth available.
4126 */
4127 if (!cpumask_subset(span, &p->cpus_allowed) ||
4128 rq->rd->dl_bw.bw == 0) {
4129 task_rq_unlock(rq, p, &rf);
4130 return -EPERM;
4131 }
4132 }
4133 #endif
4134 }
4135
4136 /* recheck policy now with rq lock held */
4137 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4138 policy = oldpolicy = -1;
4139 task_rq_unlock(rq, p, &rf);
4140 goto recheck;
4141 }
4142
4143 /*
4144 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4145 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4146 * is available.
4147 */
4148 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4149 task_rq_unlock(rq, p, &rf);
4150 return -EBUSY;
4151 }
4152
4153 p->sched_reset_on_fork = reset_on_fork;
4154 oldprio = p->prio;
4155
4156 if (pi) {
4157 /*
4158 * Take priority boosted tasks into account. If the new
4159 * effective priority is unchanged, we just store the new
4160 * normal parameters and do not touch the scheduler class and
4161 * the runqueue. This will be done when the task deboost
4162 * itself.
4163 */
4164 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4165 if (new_effective_prio == oldprio)
4166 queue_flags &= ~DEQUEUE_MOVE;
4167 }
4168
4169 queued = task_on_rq_queued(p);
4170 running = task_current(rq, p);
4171 if (queued)
4172 dequeue_task(rq, p, queue_flags);
4173 if (running)
4174 put_prev_task(rq, p);
4175
4176 prev_class = p->sched_class;
4177 __setscheduler(rq, p, attr, pi);
4178
4179 if (running)
4180 p->sched_class->set_curr_task(rq);
4181 if (queued) {
4182 /*
4183 * We enqueue to tail when the priority of a task is
4184 * increased (user space view).
4185 */
4186 if (oldprio < p->prio)
4187 queue_flags |= ENQUEUE_HEAD;
4188
4189 enqueue_task(rq, p, queue_flags);
4190 }
4191
4192 check_class_changed(rq, p, prev_class, oldprio);
4193 preempt_disable(); /* avoid rq from going away on us */
4194 task_rq_unlock(rq, p, &rf);
4195
4196 if (pi)
4197 rt_mutex_adjust_pi(p);
4198
4199 /*
4200 * Run balance callbacks after we've adjusted the PI chain.
4201 */
4202 balance_callback(rq);
4203 preempt_enable();
4204
4205 return 0;
4206 }
4207
4208 static int _sched_setscheduler(struct task_struct *p, int policy,
4209 const struct sched_param *param, bool check)
4210 {
4211 struct sched_attr attr = {
4212 .sched_policy = policy,
4213 .sched_priority = param->sched_priority,
4214 .sched_nice = PRIO_TO_NICE(p->static_prio),
4215 };
4216
4217 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4218 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4219 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4220 policy &= ~SCHED_RESET_ON_FORK;
4221 attr.sched_policy = policy;
4222 }
4223
4224 return __sched_setscheduler(p, &attr, check, true);
4225 }
4226 /**
4227 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4228 * @p: the task in question.
4229 * @policy: new policy.
4230 * @param: structure containing the new RT priority.
4231 *
4232 * Return: 0 on success. An error code otherwise.
4233 *
4234 * NOTE that the task may be already dead.
4235 */
4236 int sched_setscheduler(struct task_struct *p, int policy,
4237 const struct sched_param *param)
4238 {
4239 return _sched_setscheduler(p, policy, param, true);
4240 }
4241 EXPORT_SYMBOL_GPL(sched_setscheduler);
4242
4243 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4244 {
4245 return __sched_setscheduler(p, attr, true, true);
4246 }
4247 EXPORT_SYMBOL_GPL(sched_setattr);
4248
4249 /**
4250 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4251 * @p: the task in question.
4252 * @policy: new policy.
4253 * @param: structure containing the new RT priority.
4254 *
4255 * Just like sched_setscheduler, only don't bother checking if the
4256 * current context has permission. For example, this is needed in
4257 * stop_machine(): we create temporary high priority worker threads,
4258 * but our caller might not have that capability.
4259 *
4260 * Return: 0 on success. An error code otherwise.
4261 */
4262 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4263 const struct sched_param *param)
4264 {
4265 return _sched_setscheduler(p, policy, param, false);
4266 }
4267 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4268
4269 static int
4270 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4271 {
4272 struct sched_param lparam;
4273 struct task_struct *p;
4274 int retval;
4275
4276 if (!param || pid < 0)
4277 return -EINVAL;
4278 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4279 return -EFAULT;
4280
4281 rcu_read_lock();
4282 retval = -ESRCH;
4283 p = find_process_by_pid(pid);
4284 if (p != NULL)
4285 retval = sched_setscheduler(p, policy, &lparam);
4286 rcu_read_unlock();
4287
4288 return retval;
4289 }
4290
4291 /*
4292 * Mimics kernel/events/core.c perf_copy_attr().
4293 */
4294 static int sched_copy_attr(struct sched_attr __user *uattr,
4295 struct sched_attr *attr)
4296 {
4297 u32 size;
4298 int ret;
4299
4300 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4301 return -EFAULT;
4302
4303 /*
4304 * zero the full structure, so that a short copy will be nice.
4305 */
4306 memset(attr, 0, sizeof(*attr));
4307
4308 ret = get_user(size, &uattr->size);
4309 if (ret)
4310 return ret;
4311
4312 if (size > PAGE_SIZE) /* silly large */
4313 goto err_size;
4314
4315 if (!size) /* abi compat */
4316 size = SCHED_ATTR_SIZE_VER0;
4317
4318 if (size < SCHED_ATTR_SIZE_VER0)
4319 goto err_size;
4320
4321 /*
4322 * If we're handed a bigger struct than we know of,
4323 * ensure all the unknown bits are 0 - i.e. new
4324 * user-space does not rely on any kernel feature
4325 * extensions we dont know about yet.
4326 */
4327 if (size > sizeof(*attr)) {
4328 unsigned char __user *addr;
4329 unsigned char __user *end;
4330 unsigned char val;
4331
4332 addr = (void __user *)uattr + sizeof(*attr);
4333 end = (void __user *)uattr + size;
4334
4335 for (; addr < end; addr++) {
4336 ret = get_user(val, addr);
4337 if (ret)
4338 return ret;
4339 if (val)
4340 goto err_size;
4341 }
4342 size = sizeof(*attr);
4343 }
4344
4345 ret = copy_from_user(attr, uattr, size);
4346 if (ret)
4347 return -EFAULT;
4348
4349 /*
4350 * XXX: do we want to be lenient like existing syscalls; or do we want
4351 * to be strict and return an error on out-of-bounds values?
4352 */
4353 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4354
4355 return 0;
4356
4357 err_size:
4358 put_user(sizeof(*attr), &uattr->size);
4359 return -E2BIG;
4360 }
4361
4362 /**
4363 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4364 * @pid: the pid in question.
4365 * @policy: new policy.
4366 * @param: structure containing the new RT priority.
4367 *
4368 * Return: 0 on success. An error code otherwise.
4369 */
4370 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4371 struct sched_param __user *, param)
4372 {
4373 /* negative values for policy are not valid */
4374 if (policy < 0)
4375 return -EINVAL;
4376
4377 return do_sched_setscheduler(pid, policy, param);
4378 }
4379
4380 /**
4381 * sys_sched_setparam - set/change the RT priority of a thread
4382 * @pid: the pid in question.
4383 * @param: structure containing the new RT priority.
4384 *
4385 * Return: 0 on success. An error code otherwise.
4386 */
4387 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4388 {
4389 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4390 }
4391
4392 /**
4393 * sys_sched_setattr - same as above, but with extended sched_attr
4394 * @pid: the pid in question.
4395 * @uattr: structure containing the extended parameters.
4396 * @flags: for future extension.
4397 */
4398 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4399 unsigned int, flags)
4400 {
4401 struct sched_attr attr;
4402 struct task_struct *p;
4403 int retval;
4404
4405 if (!uattr || pid < 0 || flags)
4406 return -EINVAL;
4407
4408 retval = sched_copy_attr(uattr, &attr);
4409 if (retval)
4410 return retval;
4411
4412 if ((int)attr.sched_policy < 0)
4413 return -EINVAL;
4414
4415 rcu_read_lock();
4416 retval = -ESRCH;
4417 p = find_process_by_pid(pid);
4418 if (p != NULL)
4419 retval = sched_setattr(p, &attr);
4420 rcu_read_unlock();
4421
4422 return retval;
4423 }
4424
4425 /**
4426 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4427 * @pid: the pid in question.
4428 *
4429 * Return: On success, the policy of the thread. Otherwise, a negative error
4430 * code.
4431 */
4432 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4433 {
4434 struct task_struct *p;
4435 int retval;
4436
4437 if (pid < 0)
4438 return -EINVAL;
4439
4440 retval = -ESRCH;
4441 rcu_read_lock();
4442 p = find_process_by_pid(pid);
4443 if (p) {
4444 retval = security_task_getscheduler(p);
4445 if (!retval)
4446 retval = p->policy
4447 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4448 }
4449 rcu_read_unlock();
4450 return retval;
4451 }
4452
4453 /**
4454 * sys_sched_getparam - get the RT priority of a thread
4455 * @pid: the pid in question.
4456 * @param: structure containing the RT priority.
4457 *
4458 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4459 * code.
4460 */
4461 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4462 {
4463 struct sched_param lp = { .sched_priority = 0 };
4464 struct task_struct *p;
4465 int retval;
4466
4467 if (!param || pid < 0)
4468 return -EINVAL;
4469
4470 rcu_read_lock();
4471 p = find_process_by_pid(pid);
4472 retval = -ESRCH;
4473 if (!p)
4474 goto out_unlock;
4475
4476 retval = security_task_getscheduler(p);
4477 if (retval)
4478 goto out_unlock;
4479
4480 if (task_has_rt_policy(p))
4481 lp.sched_priority = p->rt_priority;
4482 rcu_read_unlock();
4483
4484 /*
4485 * This one might sleep, we cannot do it with a spinlock held ...
4486 */
4487 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4488
4489 return retval;
4490
4491 out_unlock:
4492 rcu_read_unlock();
4493 return retval;
4494 }
4495
4496 static int sched_read_attr(struct sched_attr __user *uattr,
4497 struct sched_attr *attr,
4498 unsigned int usize)
4499 {
4500 int ret;
4501
4502 if (!access_ok(VERIFY_WRITE, uattr, usize))
4503 return -EFAULT;
4504
4505 /*
4506 * If we're handed a smaller struct than we know of,
4507 * ensure all the unknown bits are 0 - i.e. old
4508 * user-space does not get uncomplete information.
4509 */
4510 if (usize < sizeof(*attr)) {
4511 unsigned char *addr;
4512 unsigned char *end;
4513
4514 addr = (void *)attr + usize;
4515 end = (void *)attr + sizeof(*attr);
4516
4517 for (; addr < end; addr++) {
4518 if (*addr)
4519 return -EFBIG;
4520 }
4521
4522 attr->size = usize;
4523 }
4524
4525 ret = copy_to_user(uattr, attr, attr->size);
4526 if (ret)
4527 return -EFAULT;
4528
4529 return 0;
4530 }
4531
4532 /**
4533 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4534 * @pid: the pid in question.
4535 * @uattr: structure containing the extended parameters.
4536 * @size: sizeof(attr) for fwd/bwd comp.
4537 * @flags: for future extension.
4538 */
4539 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4540 unsigned int, size, unsigned int, flags)
4541 {
4542 struct sched_attr attr = {
4543 .size = sizeof(struct sched_attr),
4544 };
4545 struct task_struct *p;
4546 int retval;
4547
4548 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4549 size < SCHED_ATTR_SIZE_VER0 || flags)
4550 return -EINVAL;
4551
4552 rcu_read_lock();
4553 p = find_process_by_pid(pid);
4554 retval = -ESRCH;
4555 if (!p)
4556 goto out_unlock;
4557
4558 retval = security_task_getscheduler(p);
4559 if (retval)
4560 goto out_unlock;
4561
4562 attr.sched_policy = p->policy;
4563 if (p->sched_reset_on_fork)
4564 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4565 if (task_has_dl_policy(p))
4566 __getparam_dl(p, &attr);
4567 else if (task_has_rt_policy(p))
4568 attr.sched_priority = p->rt_priority;
4569 else
4570 attr.sched_nice = task_nice(p);
4571
4572 rcu_read_unlock();
4573
4574 retval = sched_read_attr(uattr, &attr, size);
4575 return retval;
4576
4577 out_unlock:
4578 rcu_read_unlock();
4579 return retval;
4580 }
4581
4582 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4583 {
4584 cpumask_var_t cpus_allowed, new_mask;
4585 struct task_struct *p;
4586 int retval;
4587
4588 rcu_read_lock();
4589
4590 p = find_process_by_pid(pid);
4591 if (!p) {
4592 rcu_read_unlock();
4593 return -ESRCH;
4594 }
4595
4596 /* Prevent p going away */
4597 get_task_struct(p);
4598 rcu_read_unlock();
4599
4600 if (p->flags & PF_NO_SETAFFINITY) {
4601 retval = -EINVAL;
4602 goto out_put_task;
4603 }
4604 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4605 retval = -ENOMEM;
4606 goto out_put_task;
4607 }
4608 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4609 retval = -ENOMEM;
4610 goto out_free_cpus_allowed;
4611 }
4612 retval = -EPERM;
4613 if (!check_same_owner(p)) {
4614 rcu_read_lock();
4615 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4616 rcu_read_unlock();
4617 goto out_free_new_mask;
4618 }
4619 rcu_read_unlock();
4620 }
4621
4622 retval = security_task_setscheduler(p);
4623 if (retval)
4624 goto out_free_new_mask;
4625
4626
4627 cpuset_cpus_allowed(p, cpus_allowed);
4628 cpumask_and(new_mask, in_mask, cpus_allowed);
4629
4630 /*
4631 * Since bandwidth control happens on root_domain basis,
4632 * if admission test is enabled, we only admit -deadline
4633 * tasks allowed to run on all the CPUs in the task's
4634 * root_domain.
4635 */
4636 #ifdef CONFIG_SMP
4637 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4638 rcu_read_lock();
4639 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4640 retval = -EBUSY;
4641 rcu_read_unlock();
4642 goto out_free_new_mask;
4643 }
4644 rcu_read_unlock();
4645 }
4646 #endif
4647 again:
4648 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4649
4650 if (!retval) {
4651 cpuset_cpus_allowed(p, cpus_allowed);
4652 if (!cpumask_subset(new_mask, cpus_allowed)) {
4653 /*
4654 * We must have raced with a concurrent cpuset
4655 * update. Just reset the cpus_allowed to the
4656 * cpuset's cpus_allowed
4657 */
4658 cpumask_copy(new_mask, cpus_allowed);
4659 goto again;
4660 }
4661 }
4662 out_free_new_mask:
4663 free_cpumask_var(new_mask);
4664 out_free_cpus_allowed:
4665 free_cpumask_var(cpus_allowed);
4666 out_put_task:
4667 put_task_struct(p);
4668 return retval;
4669 }
4670
4671 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4672 struct cpumask *new_mask)
4673 {
4674 if (len < cpumask_size())
4675 cpumask_clear(new_mask);
4676 else if (len > cpumask_size())
4677 len = cpumask_size();
4678
4679 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4680 }
4681
4682 /**
4683 * sys_sched_setaffinity - set the cpu affinity of a process
4684 * @pid: pid of the process
4685 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4686 * @user_mask_ptr: user-space pointer to the new cpu mask
4687 *
4688 * Return: 0 on success. An error code otherwise.
4689 */
4690 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4691 unsigned long __user *, user_mask_ptr)
4692 {
4693 cpumask_var_t new_mask;
4694 int retval;
4695
4696 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4697 return -ENOMEM;
4698
4699 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4700 if (retval == 0)
4701 retval = sched_setaffinity(pid, new_mask);
4702 free_cpumask_var(new_mask);
4703 return retval;
4704 }
4705
4706 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4707 {
4708 struct task_struct *p;
4709 unsigned long flags;
4710 int retval;
4711
4712 rcu_read_lock();
4713
4714 retval = -ESRCH;
4715 p = find_process_by_pid(pid);
4716 if (!p)
4717 goto out_unlock;
4718
4719 retval = security_task_getscheduler(p);
4720 if (retval)
4721 goto out_unlock;
4722
4723 raw_spin_lock_irqsave(&p->pi_lock, flags);
4724 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4725 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4726
4727 out_unlock:
4728 rcu_read_unlock();
4729
4730 return retval;
4731 }
4732
4733 /**
4734 * sys_sched_getaffinity - get the cpu affinity of a process
4735 * @pid: pid of the process
4736 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4737 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4738 *
4739 * Return: 0 on success. An error code otherwise.
4740 */
4741 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4742 unsigned long __user *, user_mask_ptr)
4743 {
4744 int ret;
4745 cpumask_var_t mask;
4746
4747 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4748 return -EINVAL;
4749 if (len & (sizeof(unsigned long)-1))
4750 return -EINVAL;
4751
4752 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4753 return -ENOMEM;
4754
4755 ret = sched_getaffinity(pid, mask);
4756 if (ret == 0) {
4757 size_t retlen = min_t(size_t, len, cpumask_size());
4758
4759 if (copy_to_user(user_mask_ptr, mask, retlen))
4760 ret = -EFAULT;
4761 else
4762 ret = retlen;
4763 }
4764 free_cpumask_var(mask);
4765
4766 return ret;
4767 }
4768
4769 /**
4770 * sys_sched_yield - yield the current processor to other threads.
4771 *
4772 * This function yields the current CPU to other tasks. If there are no
4773 * other threads running on this CPU then this function will return.
4774 *
4775 * Return: 0.
4776 */
4777 SYSCALL_DEFINE0(sched_yield)
4778 {
4779 struct rq *rq = this_rq_lock();
4780
4781 schedstat_inc(rq, yld_count);
4782 current->sched_class->yield_task(rq);
4783
4784 /*
4785 * Since we are going to call schedule() anyway, there's
4786 * no need to preempt or enable interrupts:
4787 */
4788 __release(rq->lock);
4789 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4790 do_raw_spin_unlock(&rq->lock);
4791 sched_preempt_enable_no_resched();
4792
4793 schedule();
4794
4795 return 0;
4796 }
4797
4798 int __sched _cond_resched(void)
4799 {
4800 if (should_resched(0)) {
4801 preempt_schedule_common();
4802 return 1;
4803 }
4804 return 0;
4805 }
4806 EXPORT_SYMBOL(_cond_resched);
4807
4808 /*
4809 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4810 * call schedule, and on return reacquire the lock.
4811 *
4812 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4813 * operations here to prevent schedule() from being called twice (once via
4814 * spin_unlock(), once by hand).
4815 */
4816 int __cond_resched_lock(spinlock_t *lock)
4817 {
4818 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4819 int ret = 0;
4820
4821 lockdep_assert_held(lock);
4822
4823 if (spin_needbreak(lock) || resched) {
4824 spin_unlock(lock);
4825 if (resched)
4826 preempt_schedule_common();
4827 else
4828 cpu_relax();
4829 ret = 1;
4830 spin_lock(lock);
4831 }
4832 return ret;
4833 }
4834 EXPORT_SYMBOL(__cond_resched_lock);
4835
4836 int __sched __cond_resched_softirq(void)
4837 {
4838 BUG_ON(!in_softirq());
4839
4840 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4841 local_bh_enable();
4842 preempt_schedule_common();
4843 local_bh_disable();
4844 return 1;
4845 }
4846 return 0;
4847 }
4848 EXPORT_SYMBOL(__cond_resched_softirq);
4849
4850 /**
4851 * yield - yield the current processor to other threads.
4852 *
4853 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4854 *
4855 * The scheduler is at all times free to pick the calling task as the most
4856 * eligible task to run, if removing the yield() call from your code breaks
4857 * it, its already broken.
4858 *
4859 * Typical broken usage is:
4860 *
4861 * while (!event)
4862 * yield();
4863 *
4864 * where one assumes that yield() will let 'the other' process run that will
4865 * make event true. If the current task is a SCHED_FIFO task that will never
4866 * happen. Never use yield() as a progress guarantee!!
4867 *
4868 * If you want to use yield() to wait for something, use wait_event().
4869 * If you want to use yield() to be 'nice' for others, use cond_resched().
4870 * If you still want to use yield(), do not!
4871 */
4872 void __sched yield(void)
4873 {
4874 set_current_state(TASK_RUNNING);
4875 sys_sched_yield();
4876 }
4877 EXPORT_SYMBOL(yield);
4878
4879 /**
4880 * yield_to - yield the current processor to another thread in
4881 * your thread group, or accelerate that thread toward the
4882 * processor it's on.
4883 * @p: target task
4884 * @preempt: whether task preemption is allowed or not
4885 *
4886 * It's the caller's job to ensure that the target task struct
4887 * can't go away on us before we can do any checks.
4888 *
4889 * Return:
4890 * true (>0) if we indeed boosted the target task.
4891 * false (0) if we failed to boost the target.
4892 * -ESRCH if there's no task to yield to.
4893 */
4894 int __sched yield_to(struct task_struct *p, bool preempt)
4895 {
4896 struct task_struct *curr = current;
4897 struct rq *rq, *p_rq;
4898 unsigned long flags;
4899 int yielded = 0;
4900
4901 local_irq_save(flags);
4902 rq = this_rq();
4903
4904 again:
4905 p_rq = task_rq(p);
4906 /*
4907 * If we're the only runnable task on the rq and target rq also
4908 * has only one task, there's absolutely no point in yielding.
4909 */
4910 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4911 yielded = -ESRCH;
4912 goto out_irq;
4913 }
4914
4915 double_rq_lock(rq, p_rq);
4916 if (task_rq(p) != p_rq) {
4917 double_rq_unlock(rq, p_rq);
4918 goto again;
4919 }
4920
4921 if (!curr->sched_class->yield_to_task)
4922 goto out_unlock;
4923
4924 if (curr->sched_class != p->sched_class)
4925 goto out_unlock;
4926
4927 if (task_running(p_rq, p) || p->state)
4928 goto out_unlock;
4929
4930 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4931 if (yielded) {
4932 schedstat_inc(rq, yld_count);
4933 /*
4934 * Make p's CPU reschedule; pick_next_entity takes care of
4935 * fairness.
4936 */
4937 if (preempt && rq != p_rq)
4938 resched_curr(p_rq);
4939 }
4940
4941 out_unlock:
4942 double_rq_unlock(rq, p_rq);
4943 out_irq:
4944 local_irq_restore(flags);
4945
4946 if (yielded > 0)
4947 schedule();
4948
4949 return yielded;
4950 }
4951 EXPORT_SYMBOL_GPL(yield_to);
4952
4953 /*
4954 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4955 * that process accounting knows that this is a task in IO wait state.
4956 */
4957 long __sched io_schedule_timeout(long timeout)
4958 {
4959 int old_iowait = current->in_iowait;
4960 struct rq *rq;
4961 long ret;
4962
4963 current->in_iowait = 1;
4964 blk_schedule_flush_plug(current);
4965
4966 delayacct_blkio_start();
4967 rq = raw_rq();
4968 atomic_inc(&rq->nr_iowait);
4969 ret = schedule_timeout(timeout);
4970 current->in_iowait = old_iowait;
4971 atomic_dec(&rq->nr_iowait);
4972 delayacct_blkio_end();
4973
4974 return ret;
4975 }
4976 EXPORT_SYMBOL(io_schedule_timeout);
4977
4978 /**
4979 * sys_sched_get_priority_max - return maximum RT priority.
4980 * @policy: scheduling class.
4981 *
4982 * Return: On success, this syscall returns the maximum
4983 * rt_priority that can be used by a given scheduling class.
4984 * On failure, a negative error code is returned.
4985 */
4986 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4987 {
4988 int ret = -EINVAL;
4989
4990 switch (policy) {
4991 case SCHED_FIFO:
4992 case SCHED_RR:
4993 ret = MAX_USER_RT_PRIO-1;
4994 break;
4995 case SCHED_DEADLINE:
4996 case SCHED_NORMAL:
4997 case SCHED_BATCH:
4998 case SCHED_IDLE:
4999 ret = 0;
5000 break;
5001 }
5002 return ret;
5003 }
5004
5005 /**
5006 * sys_sched_get_priority_min - return minimum RT priority.
5007 * @policy: scheduling class.
5008 *
5009 * Return: On success, this syscall returns the minimum
5010 * rt_priority that can be used by a given scheduling class.
5011 * On failure, a negative error code is returned.
5012 */
5013 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5014 {
5015 int ret = -EINVAL;
5016
5017 switch (policy) {
5018 case SCHED_FIFO:
5019 case SCHED_RR:
5020 ret = 1;
5021 break;
5022 case SCHED_DEADLINE:
5023 case SCHED_NORMAL:
5024 case SCHED_BATCH:
5025 case SCHED_IDLE:
5026 ret = 0;
5027 }
5028 return ret;
5029 }
5030
5031 /**
5032 * sys_sched_rr_get_interval - return the default timeslice of a process.
5033 * @pid: pid of the process.
5034 * @interval: userspace pointer to the timeslice value.
5035 *
5036 * this syscall writes the default timeslice value of a given process
5037 * into the user-space timespec buffer. A value of '0' means infinity.
5038 *
5039 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5040 * an error code.
5041 */
5042 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5043 struct timespec __user *, interval)
5044 {
5045 struct task_struct *p;
5046 unsigned int time_slice;
5047 struct rq_flags rf;
5048 struct timespec t;
5049 struct rq *rq;
5050 int retval;
5051
5052 if (pid < 0)
5053 return -EINVAL;
5054
5055 retval = -ESRCH;
5056 rcu_read_lock();
5057 p = find_process_by_pid(pid);
5058 if (!p)
5059 goto out_unlock;
5060
5061 retval = security_task_getscheduler(p);
5062 if (retval)
5063 goto out_unlock;
5064
5065 rq = task_rq_lock(p, &rf);
5066 time_slice = 0;
5067 if (p->sched_class->get_rr_interval)
5068 time_slice = p->sched_class->get_rr_interval(rq, p);
5069 task_rq_unlock(rq, p, &rf);
5070
5071 rcu_read_unlock();
5072 jiffies_to_timespec(time_slice, &t);
5073 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5074 return retval;
5075
5076 out_unlock:
5077 rcu_read_unlock();
5078 return retval;
5079 }
5080
5081 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5082
5083 void sched_show_task(struct task_struct *p)
5084 {
5085 unsigned long free = 0;
5086 int ppid;
5087 unsigned long state = p->state;
5088
5089 if (state)
5090 state = __ffs(state) + 1;
5091 printk(KERN_INFO "%-15.15s %c", p->comm,
5092 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5093 #if BITS_PER_LONG == 32
5094 if (state == TASK_RUNNING)
5095 printk(KERN_CONT " running ");
5096 else
5097 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5098 #else
5099 if (state == TASK_RUNNING)
5100 printk(KERN_CONT " running task ");
5101 else
5102 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5103 #endif
5104 #ifdef CONFIG_DEBUG_STACK_USAGE
5105 free = stack_not_used(p);
5106 #endif
5107 ppid = 0;
5108 rcu_read_lock();
5109 if (pid_alive(p))
5110 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5111 rcu_read_unlock();
5112 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5113 task_pid_nr(p), ppid,
5114 (unsigned long)task_thread_info(p)->flags);
5115
5116 print_worker_info(KERN_INFO, p);
5117 show_stack(p, NULL);
5118 }
5119
5120 void show_state_filter(unsigned long state_filter)
5121 {
5122 struct task_struct *g, *p;
5123
5124 #if BITS_PER_LONG == 32
5125 printk(KERN_INFO
5126 " task PC stack pid father\n");
5127 #else
5128 printk(KERN_INFO
5129 " task PC stack pid father\n");
5130 #endif
5131 rcu_read_lock();
5132 for_each_process_thread(g, p) {
5133 /*
5134 * reset the NMI-timeout, listing all files on a slow
5135 * console might take a lot of time:
5136 */
5137 touch_nmi_watchdog();
5138 if (!state_filter || (p->state & state_filter))
5139 sched_show_task(p);
5140 }
5141
5142 touch_all_softlockup_watchdogs();
5143
5144 #ifdef CONFIG_SCHED_DEBUG
5145 if (!state_filter)
5146 sysrq_sched_debug_show();
5147 #endif
5148 rcu_read_unlock();
5149 /*
5150 * Only show locks if all tasks are dumped:
5151 */
5152 if (!state_filter)
5153 debug_show_all_locks();
5154 }
5155
5156 void init_idle_bootup_task(struct task_struct *idle)
5157 {
5158 idle->sched_class = &idle_sched_class;
5159 }
5160
5161 /**
5162 * init_idle - set up an idle thread for a given CPU
5163 * @idle: task in question
5164 * @cpu: cpu the idle task belongs to
5165 *
5166 * NOTE: this function does not set the idle thread's NEED_RESCHED
5167 * flag, to make booting more robust.
5168 */
5169 void init_idle(struct task_struct *idle, int cpu)
5170 {
5171 struct rq *rq = cpu_rq(cpu);
5172 unsigned long flags;
5173
5174 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5175 raw_spin_lock(&rq->lock);
5176
5177 __sched_fork(0, idle);
5178 idle->state = TASK_RUNNING;
5179 idle->se.exec_start = sched_clock();
5180
5181 kasan_unpoison_task_stack(idle);
5182
5183 #ifdef CONFIG_SMP
5184 /*
5185 * Its possible that init_idle() gets called multiple times on a task,
5186 * in that case do_set_cpus_allowed() will not do the right thing.
5187 *
5188 * And since this is boot we can forgo the serialization.
5189 */
5190 set_cpus_allowed_common(idle, cpumask_of(cpu));
5191 #endif
5192 /*
5193 * We're having a chicken and egg problem, even though we are
5194 * holding rq->lock, the cpu isn't yet set to this cpu so the
5195 * lockdep check in task_group() will fail.
5196 *
5197 * Similar case to sched_fork(). / Alternatively we could
5198 * use task_rq_lock() here and obtain the other rq->lock.
5199 *
5200 * Silence PROVE_RCU
5201 */
5202 rcu_read_lock();
5203 __set_task_cpu(idle, cpu);
5204 rcu_read_unlock();
5205
5206 rq->curr = rq->idle = idle;
5207 idle->on_rq = TASK_ON_RQ_QUEUED;
5208 #ifdef CONFIG_SMP
5209 idle->on_cpu = 1;
5210 #endif
5211 raw_spin_unlock(&rq->lock);
5212 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5213
5214 /* Set the preempt count _outside_ the spinlocks! */
5215 init_idle_preempt_count(idle, cpu);
5216
5217 /*
5218 * The idle tasks have their own, simple scheduling class:
5219 */
5220 idle->sched_class = &idle_sched_class;
5221 ftrace_graph_init_idle_task(idle, cpu);
5222 vtime_init_idle(idle, cpu);
5223 #ifdef CONFIG_SMP
5224 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5225 #endif
5226 }
5227
5228 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5229 const struct cpumask *trial)
5230 {
5231 int ret = 1, trial_cpus;
5232 struct dl_bw *cur_dl_b;
5233 unsigned long flags;
5234
5235 if (!cpumask_weight(cur))
5236 return ret;
5237
5238 rcu_read_lock_sched();
5239 cur_dl_b = dl_bw_of(cpumask_any(cur));
5240 trial_cpus = cpumask_weight(trial);
5241
5242 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5243 if (cur_dl_b->bw != -1 &&
5244 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5245 ret = 0;
5246 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5247 rcu_read_unlock_sched();
5248
5249 return ret;
5250 }
5251
5252 int task_can_attach(struct task_struct *p,
5253 const struct cpumask *cs_cpus_allowed)
5254 {
5255 int ret = 0;
5256
5257 /*
5258 * Kthreads which disallow setaffinity shouldn't be moved
5259 * to a new cpuset; we don't want to change their cpu
5260 * affinity and isolating such threads by their set of
5261 * allowed nodes is unnecessary. Thus, cpusets are not
5262 * applicable for such threads. This prevents checking for
5263 * success of set_cpus_allowed_ptr() on all attached tasks
5264 * before cpus_allowed may be changed.
5265 */
5266 if (p->flags & PF_NO_SETAFFINITY) {
5267 ret = -EINVAL;
5268 goto out;
5269 }
5270
5271 #ifdef CONFIG_SMP
5272 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5273 cs_cpus_allowed)) {
5274 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5275 cs_cpus_allowed);
5276 struct dl_bw *dl_b;
5277 bool overflow;
5278 int cpus;
5279 unsigned long flags;
5280
5281 rcu_read_lock_sched();
5282 dl_b = dl_bw_of(dest_cpu);
5283 raw_spin_lock_irqsave(&dl_b->lock, flags);
5284 cpus = dl_bw_cpus(dest_cpu);
5285 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5286 if (overflow)
5287 ret = -EBUSY;
5288 else {
5289 /*
5290 * We reserve space for this task in the destination
5291 * root_domain, as we can't fail after this point.
5292 * We will free resources in the source root_domain
5293 * later on (see set_cpus_allowed_dl()).
5294 */
5295 __dl_add(dl_b, p->dl.dl_bw);
5296 }
5297 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5298 rcu_read_unlock_sched();
5299
5300 }
5301 #endif
5302 out:
5303 return ret;
5304 }
5305
5306 #ifdef CONFIG_SMP
5307
5308 static bool sched_smp_initialized __read_mostly;
5309
5310 #ifdef CONFIG_NUMA_BALANCING
5311 /* Migrate current task p to target_cpu */
5312 int migrate_task_to(struct task_struct *p, int target_cpu)
5313 {
5314 struct migration_arg arg = { p, target_cpu };
5315 int curr_cpu = task_cpu(p);
5316
5317 if (curr_cpu == target_cpu)
5318 return 0;
5319
5320 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5321 return -EINVAL;
5322
5323 /* TODO: This is not properly updating schedstats */
5324
5325 trace_sched_move_numa(p, curr_cpu, target_cpu);
5326 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5327 }
5328
5329 /*
5330 * Requeue a task on a given node and accurately track the number of NUMA
5331 * tasks on the runqueues
5332 */
5333 void sched_setnuma(struct task_struct *p, int nid)
5334 {
5335 bool queued, running;
5336 struct rq_flags rf;
5337 struct rq *rq;
5338
5339 rq = task_rq_lock(p, &rf);
5340 queued = task_on_rq_queued(p);
5341 running = task_current(rq, p);
5342
5343 if (queued)
5344 dequeue_task(rq, p, DEQUEUE_SAVE);
5345 if (running)
5346 put_prev_task(rq, p);
5347
5348 p->numa_preferred_nid = nid;
5349
5350 if (running)
5351 p->sched_class->set_curr_task(rq);
5352 if (queued)
5353 enqueue_task(rq, p, ENQUEUE_RESTORE);
5354 task_rq_unlock(rq, p, &rf);
5355 }
5356 #endif /* CONFIG_NUMA_BALANCING */
5357
5358 #ifdef CONFIG_HOTPLUG_CPU
5359 /*
5360 * Ensures that the idle task is using init_mm right before its cpu goes
5361 * offline.
5362 */
5363 void idle_task_exit(void)
5364 {
5365 struct mm_struct *mm = current->active_mm;
5366
5367 BUG_ON(cpu_online(smp_processor_id()));
5368
5369 if (mm != &init_mm) {
5370 switch_mm_irqs_off(mm, &init_mm, current);
5371 finish_arch_post_lock_switch();
5372 }
5373 mmdrop(mm);
5374 }
5375
5376 /*
5377 * Since this CPU is going 'away' for a while, fold any nr_active delta
5378 * we might have. Assumes we're called after migrate_tasks() so that the
5379 * nr_active count is stable.
5380 *
5381 * Also see the comment "Global load-average calculations".
5382 */
5383 static void calc_load_migrate(struct rq *rq)
5384 {
5385 long delta = calc_load_fold_active(rq);
5386 if (delta)
5387 atomic_long_add(delta, &calc_load_tasks);
5388 }
5389
5390 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5391 {
5392 }
5393
5394 static const struct sched_class fake_sched_class = {
5395 .put_prev_task = put_prev_task_fake,
5396 };
5397
5398 static struct task_struct fake_task = {
5399 /*
5400 * Avoid pull_{rt,dl}_task()
5401 */
5402 .prio = MAX_PRIO + 1,
5403 .sched_class = &fake_sched_class,
5404 };
5405
5406 /*
5407 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5408 * try_to_wake_up()->select_task_rq().
5409 *
5410 * Called with rq->lock held even though we'er in stop_machine() and
5411 * there's no concurrency possible, we hold the required locks anyway
5412 * because of lock validation efforts.
5413 */
5414 static void migrate_tasks(struct rq *dead_rq)
5415 {
5416 struct rq *rq = dead_rq;
5417 struct task_struct *next, *stop = rq->stop;
5418 struct pin_cookie cookie;
5419 int dest_cpu;
5420
5421 /*
5422 * Fudge the rq selection such that the below task selection loop
5423 * doesn't get stuck on the currently eligible stop task.
5424 *
5425 * We're currently inside stop_machine() and the rq is either stuck
5426 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5427 * either way we should never end up calling schedule() until we're
5428 * done here.
5429 */
5430 rq->stop = NULL;
5431
5432 /*
5433 * put_prev_task() and pick_next_task() sched
5434 * class method both need to have an up-to-date
5435 * value of rq->clock[_task]
5436 */
5437 update_rq_clock(rq);
5438
5439 for (;;) {
5440 /*
5441 * There's this thread running, bail when that's the only
5442 * remaining thread.
5443 */
5444 if (rq->nr_running == 1)
5445 break;
5446
5447 /*
5448 * pick_next_task assumes pinned rq->lock.
5449 */
5450 cookie = lockdep_pin_lock(&rq->lock);
5451 next = pick_next_task(rq, &fake_task, cookie);
5452 BUG_ON(!next);
5453 next->sched_class->put_prev_task(rq, next);
5454
5455 /*
5456 * Rules for changing task_struct::cpus_allowed are holding
5457 * both pi_lock and rq->lock, such that holding either
5458 * stabilizes the mask.
5459 *
5460 * Drop rq->lock is not quite as disastrous as it usually is
5461 * because !cpu_active at this point, which means load-balance
5462 * will not interfere. Also, stop-machine.
5463 */
5464 lockdep_unpin_lock(&rq->lock, cookie);
5465 raw_spin_unlock(&rq->lock);
5466 raw_spin_lock(&next->pi_lock);
5467 raw_spin_lock(&rq->lock);
5468
5469 /*
5470 * Since we're inside stop-machine, _nothing_ should have
5471 * changed the task, WARN if weird stuff happened, because in
5472 * that case the above rq->lock drop is a fail too.
5473 */
5474 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5475 raw_spin_unlock(&next->pi_lock);
5476 continue;
5477 }
5478
5479 /* Find suitable destination for @next, with force if needed. */
5480 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5481
5482 rq = __migrate_task(rq, next, dest_cpu);
5483 if (rq != dead_rq) {
5484 raw_spin_unlock(&rq->lock);
5485 rq = dead_rq;
5486 raw_spin_lock(&rq->lock);
5487 }
5488 raw_spin_unlock(&next->pi_lock);
5489 }
5490
5491 rq->stop = stop;
5492 }
5493 #endif /* CONFIG_HOTPLUG_CPU */
5494
5495 static void set_rq_online(struct rq *rq)
5496 {
5497 if (!rq->online) {
5498 const struct sched_class *class;
5499
5500 cpumask_set_cpu(rq->cpu, rq->rd->online);
5501 rq->online = 1;
5502
5503 for_each_class(class) {
5504 if (class->rq_online)
5505 class->rq_online(rq);
5506 }
5507 }
5508 }
5509
5510 static void set_rq_offline(struct rq *rq)
5511 {
5512 if (rq->online) {
5513 const struct sched_class *class;
5514
5515 for_each_class(class) {
5516 if (class->rq_offline)
5517 class->rq_offline(rq);
5518 }
5519
5520 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5521 rq->online = 0;
5522 }
5523 }
5524
5525 static void set_cpu_rq_start_time(unsigned int cpu)
5526 {
5527 struct rq *rq = cpu_rq(cpu);
5528
5529 rq->age_stamp = sched_clock_cpu(cpu);
5530 }
5531
5532 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5533
5534 #ifdef CONFIG_SCHED_DEBUG
5535
5536 static __read_mostly int sched_debug_enabled;
5537
5538 static int __init sched_debug_setup(char *str)
5539 {
5540 sched_debug_enabled = 1;
5541
5542 return 0;
5543 }
5544 early_param("sched_debug", sched_debug_setup);
5545
5546 static inline bool sched_debug(void)
5547 {
5548 return sched_debug_enabled;
5549 }
5550
5551 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5552 struct cpumask *groupmask)
5553 {
5554 struct sched_group *group = sd->groups;
5555
5556 cpumask_clear(groupmask);
5557
5558 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5559
5560 if (!(sd->flags & SD_LOAD_BALANCE)) {
5561 printk("does not load-balance\n");
5562 if (sd->parent)
5563 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5564 " has parent");
5565 return -1;
5566 }
5567
5568 printk(KERN_CONT "span %*pbl level %s\n",
5569 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5570
5571 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5572 printk(KERN_ERR "ERROR: domain->span does not contain "
5573 "CPU%d\n", cpu);
5574 }
5575 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5576 printk(KERN_ERR "ERROR: domain->groups does not contain"
5577 " CPU%d\n", cpu);
5578 }
5579
5580 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5581 do {
5582 if (!group) {
5583 printk("\n");
5584 printk(KERN_ERR "ERROR: group is NULL\n");
5585 break;
5586 }
5587
5588 if (!cpumask_weight(sched_group_cpus(group))) {
5589 printk(KERN_CONT "\n");
5590 printk(KERN_ERR "ERROR: empty group\n");
5591 break;
5592 }
5593
5594 if (!(sd->flags & SD_OVERLAP) &&
5595 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5596 printk(KERN_CONT "\n");
5597 printk(KERN_ERR "ERROR: repeated CPUs\n");
5598 break;
5599 }
5600
5601 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5602
5603 printk(KERN_CONT " %*pbl",
5604 cpumask_pr_args(sched_group_cpus(group)));
5605 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5606 printk(KERN_CONT " (cpu_capacity = %d)",
5607 group->sgc->capacity);
5608 }
5609
5610 group = group->next;
5611 } while (group != sd->groups);
5612 printk(KERN_CONT "\n");
5613
5614 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5615 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5616
5617 if (sd->parent &&
5618 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5619 printk(KERN_ERR "ERROR: parent span is not a superset "
5620 "of domain->span\n");
5621 return 0;
5622 }
5623
5624 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5625 {
5626 int level = 0;
5627
5628 if (!sched_debug_enabled)
5629 return;
5630
5631 if (!sd) {
5632 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5633 return;
5634 }
5635
5636 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5637
5638 for (;;) {
5639 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5640 break;
5641 level++;
5642 sd = sd->parent;
5643 if (!sd)
5644 break;
5645 }
5646 }
5647 #else /* !CONFIG_SCHED_DEBUG */
5648 # define sched_domain_debug(sd, cpu) do { } while (0)
5649 static inline bool sched_debug(void)
5650 {
5651 return false;
5652 }
5653 #endif /* CONFIG_SCHED_DEBUG */
5654
5655 static int sd_degenerate(struct sched_domain *sd)
5656 {
5657 if (cpumask_weight(sched_domain_span(sd)) == 1)
5658 return 1;
5659
5660 /* Following flags need at least 2 groups */
5661 if (sd->flags & (SD_LOAD_BALANCE |
5662 SD_BALANCE_NEWIDLE |
5663 SD_BALANCE_FORK |
5664 SD_BALANCE_EXEC |
5665 SD_SHARE_CPUCAPACITY |
5666 SD_SHARE_PKG_RESOURCES |
5667 SD_SHARE_POWERDOMAIN)) {
5668 if (sd->groups != sd->groups->next)
5669 return 0;
5670 }
5671
5672 /* Following flags don't use groups */
5673 if (sd->flags & (SD_WAKE_AFFINE))
5674 return 0;
5675
5676 return 1;
5677 }
5678
5679 static int
5680 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5681 {
5682 unsigned long cflags = sd->flags, pflags = parent->flags;
5683
5684 if (sd_degenerate(parent))
5685 return 1;
5686
5687 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5688 return 0;
5689
5690 /* Flags needing groups don't count if only 1 group in parent */
5691 if (parent->groups == parent->groups->next) {
5692 pflags &= ~(SD_LOAD_BALANCE |
5693 SD_BALANCE_NEWIDLE |
5694 SD_BALANCE_FORK |
5695 SD_BALANCE_EXEC |
5696 SD_SHARE_CPUCAPACITY |
5697 SD_SHARE_PKG_RESOURCES |
5698 SD_PREFER_SIBLING |
5699 SD_SHARE_POWERDOMAIN);
5700 if (nr_node_ids == 1)
5701 pflags &= ~SD_SERIALIZE;
5702 }
5703 if (~cflags & pflags)
5704 return 0;
5705
5706 return 1;
5707 }
5708
5709 static void free_rootdomain(struct rcu_head *rcu)
5710 {
5711 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5712
5713 cpupri_cleanup(&rd->cpupri);
5714 cpudl_cleanup(&rd->cpudl);
5715 free_cpumask_var(rd->dlo_mask);
5716 free_cpumask_var(rd->rto_mask);
5717 free_cpumask_var(rd->online);
5718 free_cpumask_var(rd->span);
5719 kfree(rd);
5720 }
5721
5722 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5723 {
5724 struct root_domain *old_rd = NULL;
5725 unsigned long flags;
5726
5727 raw_spin_lock_irqsave(&rq->lock, flags);
5728
5729 if (rq->rd) {
5730 old_rd = rq->rd;
5731
5732 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5733 set_rq_offline(rq);
5734
5735 cpumask_clear_cpu(rq->cpu, old_rd->span);
5736
5737 /*
5738 * If we dont want to free the old_rd yet then
5739 * set old_rd to NULL to skip the freeing later
5740 * in this function:
5741 */
5742 if (!atomic_dec_and_test(&old_rd->refcount))
5743 old_rd = NULL;
5744 }
5745
5746 atomic_inc(&rd->refcount);
5747 rq->rd = rd;
5748
5749 cpumask_set_cpu(rq->cpu, rd->span);
5750 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5751 set_rq_online(rq);
5752
5753 raw_spin_unlock_irqrestore(&rq->lock, flags);
5754
5755 if (old_rd)
5756 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5757 }
5758
5759 static int init_rootdomain(struct root_domain *rd)
5760 {
5761 memset(rd, 0, sizeof(*rd));
5762
5763 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5764 goto out;
5765 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5766 goto free_span;
5767 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5768 goto free_online;
5769 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5770 goto free_dlo_mask;
5771
5772 init_dl_bw(&rd->dl_bw);
5773 if (cpudl_init(&rd->cpudl) != 0)
5774 goto free_dlo_mask;
5775
5776 if (cpupri_init(&rd->cpupri) != 0)
5777 goto free_rto_mask;
5778 return 0;
5779
5780 free_rto_mask:
5781 free_cpumask_var(rd->rto_mask);
5782 free_dlo_mask:
5783 free_cpumask_var(rd->dlo_mask);
5784 free_online:
5785 free_cpumask_var(rd->online);
5786 free_span:
5787 free_cpumask_var(rd->span);
5788 out:
5789 return -ENOMEM;
5790 }
5791
5792 /*
5793 * By default the system creates a single root-domain with all cpus as
5794 * members (mimicking the global state we have today).
5795 */
5796 struct root_domain def_root_domain;
5797
5798 static void init_defrootdomain(void)
5799 {
5800 init_rootdomain(&def_root_domain);
5801
5802 atomic_set(&def_root_domain.refcount, 1);
5803 }
5804
5805 static struct root_domain *alloc_rootdomain(void)
5806 {
5807 struct root_domain *rd;
5808
5809 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5810 if (!rd)
5811 return NULL;
5812
5813 if (init_rootdomain(rd) != 0) {
5814 kfree(rd);
5815 return NULL;
5816 }
5817
5818 return rd;
5819 }
5820
5821 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5822 {
5823 struct sched_group *tmp, *first;
5824
5825 if (!sg)
5826 return;
5827
5828 first = sg;
5829 do {
5830 tmp = sg->next;
5831
5832 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5833 kfree(sg->sgc);
5834
5835 kfree(sg);
5836 sg = tmp;
5837 } while (sg != first);
5838 }
5839
5840 static void free_sched_domain(struct rcu_head *rcu)
5841 {
5842 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5843
5844 /*
5845 * If its an overlapping domain it has private groups, iterate and
5846 * nuke them all.
5847 */
5848 if (sd->flags & SD_OVERLAP) {
5849 free_sched_groups(sd->groups, 1);
5850 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5851 kfree(sd->groups->sgc);
5852 kfree(sd->groups);
5853 }
5854 kfree(sd);
5855 }
5856
5857 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5858 {
5859 call_rcu(&sd->rcu, free_sched_domain);
5860 }
5861
5862 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5863 {
5864 for (; sd; sd = sd->parent)
5865 destroy_sched_domain(sd, cpu);
5866 }
5867
5868 /*
5869 * Keep a special pointer to the highest sched_domain that has
5870 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5871 * allows us to avoid some pointer chasing select_idle_sibling().
5872 *
5873 * Also keep a unique ID per domain (we use the first cpu number in
5874 * the cpumask of the domain), this allows us to quickly tell if
5875 * two cpus are in the same cache domain, see cpus_share_cache().
5876 */
5877 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5878 DEFINE_PER_CPU(int, sd_llc_size);
5879 DEFINE_PER_CPU(int, sd_llc_id);
5880 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5881 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5882 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5883
5884 static void update_top_cache_domain(int cpu)
5885 {
5886 struct sched_domain *sd;
5887 struct sched_domain *busy_sd = NULL;
5888 int id = cpu;
5889 int size = 1;
5890
5891 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5892 if (sd) {
5893 id = cpumask_first(sched_domain_span(sd));
5894 size = cpumask_weight(sched_domain_span(sd));
5895 busy_sd = sd->parent; /* sd_busy */
5896 }
5897 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5898
5899 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5900 per_cpu(sd_llc_size, cpu) = size;
5901 per_cpu(sd_llc_id, cpu) = id;
5902
5903 sd = lowest_flag_domain(cpu, SD_NUMA);
5904 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5905
5906 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5907 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5908 }
5909
5910 /*
5911 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5912 * hold the hotplug lock.
5913 */
5914 static void
5915 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5916 {
5917 struct rq *rq = cpu_rq(cpu);
5918 struct sched_domain *tmp;
5919
5920 /* Remove the sched domains which do not contribute to scheduling. */
5921 for (tmp = sd; tmp; ) {
5922 struct sched_domain *parent = tmp->parent;
5923 if (!parent)
5924 break;
5925
5926 if (sd_parent_degenerate(tmp, parent)) {
5927 tmp->parent = parent->parent;
5928 if (parent->parent)
5929 parent->parent->child = tmp;
5930 /*
5931 * Transfer SD_PREFER_SIBLING down in case of a
5932 * degenerate parent; the spans match for this
5933 * so the property transfers.
5934 */
5935 if (parent->flags & SD_PREFER_SIBLING)
5936 tmp->flags |= SD_PREFER_SIBLING;
5937 destroy_sched_domain(parent, cpu);
5938 } else
5939 tmp = tmp->parent;
5940 }
5941
5942 if (sd && sd_degenerate(sd)) {
5943 tmp = sd;
5944 sd = sd->parent;
5945 destroy_sched_domain(tmp, cpu);
5946 if (sd)
5947 sd->child = NULL;
5948 }
5949
5950 sched_domain_debug(sd, cpu);
5951
5952 rq_attach_root(rq, rd);
5953 tmp = rq->sd;
5954 rcu_assign_pointer(rq->sd, sd);
5955 destroy_sched_domains(tmp, cpu);
5956
5957 update_top_cache_domain(cpu);
5958 }
5959
5960 /* Setup the mask of cpus configured for isolated domains */
5961 static int __init isolated_cpu_setup(char *str)
5962 {
5963 int ret;
5964
5965 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5966 ret = cpulist_parse(str, cpu_isolated_map);
5967 if (ret) {
5968 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5969 return 0;
5970 }
5971 return 1;
5972 }
5973 __setup("isolcpus=", isolated_cpu_setup);
5974
5975 struct s_data {
5976 struct sched_domain ** __percpu sd;
5977 struct root_domain *rd;
5978 };
5979
5980 enum s_alloc {
5981 sa_rootdomain,
5982 sa_sd,
5983 sa_sd_storage,
5984 sa_none,
5985 };
5986
5987 /*
5988 * Build an iteration mask that can exclude certain CPUs from the upwards
5989 * domain traversal.
5990 *
5991 * Asymmetric node setups can result in situations where the domain tree is of
5992 * unequal depth, make sure to skip domains that already cover the entire
5993 * range.
5994 *
5995 * In that case build_sched_domains() will have terminated the iteration early
5996 * and our sibling sd spans will be empty. Domains should always include the
5997 * cpu they're built on, so check that.
5998 *
5999 */
6000 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6001 {
6002 const struct cpumask *span = sched_domain_span(sd);
6003 struct sd_data *sdd = sd->private;
6004 struct sched_domain *sibling;
6005 int i;
6006
6007 for_each_cpu(i, span) {
6008 sibling = *per_cpu_ptr(sdd->sd, i);
6009 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6010 continue;
6011
6012 cpumask_set_cpu(i, sched_group_mask(sg));
6013 }
6014 }
6015
6016 /*
6017 * Return the canonical balance cpu for this group, this is the first cpu
6018 * of this group that's also in the iteration mask.
6019 */
6020 int group_balance_cpu(struct sched_group *sg)
6021 {
6022 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6023 }
6024
6025 static int
6026 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6027 {
6028 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6029 const struct cpumask *span = sched_domain_span(sd);
6030 struct cpumask *covered = sched_domains_tmpmask;
6031 struct sd_data *sdd = sd->private;
6032 struct sched_domain *sibling;
6033 int i;
6034
6035 cpumask_clear(covered);
6036
6037 for_each_cpu(i, span) {
6038 struct cpumask *sg_span;
6039
6040 if (cpumask_test_cpu(i, covered))
6041 continue;
6042
6043 sibling = *per_cpu_ptr(sdd->sd, i);
6044
6045 /* See the comment near build_group_mask(). */
6046 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6047 continue;
6048
6049 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6050 GFP_KERNEL, cpu_to_node(cpu));
6051
6052 if (!sg)
6053 goto fail;
6054
6055 sg_span = sched_group_cpus(sg);
6056 if (sibling->child)
6057 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6058 else
6059 cpumask_set_cpu(i, sg_span);
6060
6061 cpumask_or(covered, covered, sg_span);
6062
6063 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6064 if (atomic_inc_return(&sg->sgc->ref) == 1)
6065 build_group_mask(sd, sg);
6066
6067 /*
6068 * Initialize sgc->capacity such that even if we mess up the
6069 * domains and no possible iteration will get us here, we won't
6070 * die on a /0 trap.
6071 */
6072 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6073
6074 /*
6075 * Make sure the first group of this domain contains the
6076 * canonical balance cpu. Otherwise the sched_domain iteration
6077 * breaks. See update_sg_lb_stats().
6078 */
6079 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6080 group_balance_cpu(sg) == cpu)
6081 groups = sg;
6082
6083 if (!first)
6084 first = sg;
6085 if (last)
6086 last->next = sg;
6087 last = sg;
6088 last->next = first;
6089 }
6090 sd->groups = groups;
6091
6092 return 0;
6093
6094 fail:
6095 free_sched_groups(first, 0);
6096
6097 return -ENOMEM;
6098 }
6099
6100 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6101 {
6102 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6103 struct sched_domain *child = sd->child;
6104
6105 if (child)
6106 cpu = cpumask_first(sched_domain_span(child));
6107
6108 if (sg) {
6109 *sg = *per_cpu_ptr(sdd->sg, cpu);
6110 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6111 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6112 }
6113
6114 return cpu;
6115 }
6116
6117 /*
6118 * build_sched_groups will build a circular linked list of the groups
6119 * covered by the given span, and will set each group's ->cpumask correctly,
6120 * and ->cpu_capacity to 0.
6121 *
6122 * Assumes the sched_domain tree is fully constructed
6123 */
6124 static int
6125 build_sched_groups(struct sched_domain *sd, int cpu)
6126 {
6127 struct sched_group *first = NULL, *last = NULL;
6128 struct sd_data *sdd = sd->private;
6129 const struct cpumask *span = sched_domain_span(sd);
6130 struct cpumask *covered;
6131 int i;
6132
6133 get_group(cpu, sdd, &sd->groups);
6134 atomic_inc(&sd->groups->ref);
6135
6136 if (cpu != cpumask_first(span))
6137 return 0;
6138
6139 lockdep_assert_held(&sched_domains_mutex);
6140 covered = sched_domains_tmpmask;
6141
6142 cpumask_clear(covered);
6143
6144 for_each_cpu(i, span) {
6145 struct sched_group *sg;
6146 int group, j;
6147
6148 if (cpumask_test_cpu(i, covered))
6149 continue;
6150
6151 group = get_group(i, sdd, &sg);
6152 cpumask_setall(sched_group_mask(sg));
6153
6154 for_each_cpu(j, span) {
6155 if (get_group(j, sdd, NULL) != group)
6156 continue;
6157
6158 cpumask_set_cpu(j, covered);
6159 cpumask_set_cpu(j, sched_group_cpus(sg));
6160 }
6161
6162 if (!first)
6163 first = sg;
6164 if (last)
6165 last->next = sg;
6166 last = sg;
6167 }
6168 last->next = first;
6169
6170 return 0;
6171 }
6172
6173 /*
6174 * Initialize sched groups cpu_capacity.
6175 *
6176 * cpu_capacity indicates the capacity of sched group, which is used while
6177 * distributing the load between different sched groups in a sched domain.
6178 * Typically cpu_capacity for all the groups in a sched domain will be same
6179 * unless there are asymmetries in the topology. If there are asymmetries,
6180 * group having more cpu_capacity will pickup more load compared to the
6181 * group having less cpu_capacity.
6182 */
6183 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6184 {
6185 struct sched_group *sg = sd->groups;
6186
6187 WARN_ON(!sg);
6188
6189 do {
6190 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6191 sg = sg->next;
6192 } while (sg != sd->groups);
6193
6194 if (cpu != group_balance_cpu(sg))
6195 return;
6196
6197 update_group_capacity(sd, cpu);
6198 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6199 }
6200
6201 /*
6202 * Initializers for schedule domains
6203 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6204 */
6205
6206 static int default_relax_domain_level = -1;
6207 int sched_domain_level_max;
6208
6209 static int __init setup_relax_domain_level(char *str)
6210 {
6211 if (kstrtoint(str, 0, &default_relax_domain_level))
6212 pr_warn("Unable to set relax_domain_level\n");
6213
6214 return 1;
6215 }
6216 __setup("relax_domain_level=", setup_relax_domain_level);
6217
6218 static void set_domain_attribute(struct sched_domain *sd,
6219 struct sched_domain_attr *attr)
6220 {
6221 int request;
6222
6223 if (!attr || attr->relax_domain_level < 0) {
6224 if (default_relax_domain_level < 0)
6225 return;
6226 else
6227 request = default_relax_domain_level;
6228 } else
6229 request = attr->relax_domain_level;
6230 if (request < sd->level) {
6231 /* turn off idle balance on this domain */
6232 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6233 } else {
6234 /* turn on idle balance on this domain */
6235 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6236 }
6237 }
6238
6239 static void __sdt_free(const struct cpumask *cpu_map);
6240 static int __sdt_alloc(const struct cpumask *cpu_map);
6241
6242 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6243 const struct cpumask *cpu_map)
6244 {
6245 switch (what) {
6246 case sa_rootdomain:
6247 if (!atomic_read(&d->rd->refcount))
6248 free_rootdomain(&d->rd->rcu); /* fall through */
6249 case sa_sd:
6250 free_percpu(d->sd); /* fall through */
6251 case sa_sd_storage:
6252 __sdt_free(cpu_map); /* fall through */
6253 case sa_none:
6254 break;
6255 }
6256 }
6257
6258 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6259 const struct cpumask *cpu_map)
6260 {
6261 memset(d, 0, sizeof(*d));
6262
6263 if (__sdt_alloc(cpu_map))
6264 return sa_sd_storage;
6265 d->sd = alloc_percpu(struct sched_domain *);
6266 if (!d->sd)
6267 return sa_sd_storage;
6268 d->rd = alloc_rootdomain();
6269 if (!d->rd)
6270 return sa_sd;
6271 return sa_rootdomain;
6272 }
6273
6274 /*
6275 * NULL the sd_data elements we've used to build the sched_domain and
6276 * sched_group structure so that the subsequent __free_domain_allocs()
6277 * will not free the data we're using.
6278 */
6279 static void claim_allocations(int cpu, struct sched_domain *sd)
6280 {
6281 struct sd_data *sdd = sd->private;
6282
6283 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6284 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6285
6286 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6287 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6288
6289 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6290 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6291 }
6292
6293 #ifdef CONFIG_NUMA
6294 static int sched_domains_numa_levels;
6295 enum numa_topology_type sched_numa_topology_type;
6296 static int *sched_domains_numa_distance;
6297 int sched_max_numa_distance;
6298 static struct cpumask ***sched_domains_numa_masks;
6299 static int sched_domains_curr_level;
6300 #endif
6301
6302 /*
6303 * SD_flags allowed in topology descriptions.
6304 *
6305 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6306 * SD_SHARE_PKG_RESOURCES - describes shared caches
6307 * SD_NUMA - describes NUMA topologies
6308 * SD_SHARE_POWERDOMAIN - describes shared power domain
6309 *
6310 * Odd one out:
6311 * SD_ASYM_PACKING - describes SMT quirks
6312 */
6313 #define TOPOLOGY_SD_FLAGS \
6314 (SD_SHARE_CPUCAPACITY | \
6315 SD_SHARE_PKG_RESOURCES | \
6316 SD_NUMA | \
6317 SD_ASYM_PACKING | \
6318 SD_SHARE_POWERDOMAIN)
6319
6320 static struct sched_domain *
6321 sd_init(struct sched_domain_topology_level *tl, int cpu)
6322 {
6323 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6324 int sd_weight, sd_flags = 0;
6325
6326 #ifdef CONFIG_NUMA
6327 /*
6328 * Ugly hack to pass state to sd_numa_mask()...
6329 */
6330 sched_domains_curr_level = tl->numa_level;
6331 #endif
6332
6333 sd_weight = cpumask_weight(tl->mask(cpu));
6334
6335 if (tl->sd_flags)
6336 sd_flags = (*tl->sd_flags)();
6337 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6338 "wrong sd_flags in topology description\n"))
6339 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6340
6341 *sd = (struct sched_domain){
6342 .min_interval = sd_weight,
6343 .max_interval = 2*sd_weight,
6344 .busy_factor = 32,
6345 .imbalance_pct = 125,
6346
6347 .cache_nice_tries = 0,
6348 .busy_idx = 0,
6349 .idle_idx = 0,
6350 .newidle_idx = 0,
6351 .wake_idx = 0,
6352 .forkexec_idx = 0,
6353
6354 .flags = 1*SD_LOAD_BALANCE
6355 | 1*SD_BALANCE_NEWIDLE
6356 | 1*SD_BALANCE_EXEC
6357 | 1*SD_BALANCE_FORK
6358 | 0*SD_BALANCE_WAKE
6359 | 1*SD_WAKE_AFFINE
6360 | 0*SD_SHARE_CPUCAPACITY
6361 | 0*SD_SHARE_PKG_RESOURCES
6362 | 0*SD_SERIALIZE
6363 | 0*SD_PREFER_SIBLING
6364 | 0*SD_NUMA
6365 | sd_flags
6366 ,
6367
6368 .last_balance = jiffies,
6369 .balance_interval = sd_weight,
6370 .smt_gain = 0,
6371 .max_newidle_lb_cost = 0,
6372 .next_decay_max_lb_cost = jiffies,
6373 #ifdef CONFIG_SCHED_DEBUG
6374 .name = tl->name,
6375 #endif
6376 };
6377
6378 /*
6379 * Convert topological properties into behaviour.
6380 */
6381
6382 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6383 sd->flags |= SD_PREFER_SIBLING;
6384 sd->imbalance_pct = 110;
6385 sd->smt_gain = 1178; /* ~15% */
6386
6387 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6388 sd->imbalance_pct = 117;
6389 sd->cache_nice_tries = 1;
6390 sd->busy_idx = 2;
6391
6392 #ifdef CONFIG_NUMA
6393 } else if (sd->flags & SD_NUMA) {
6394 sd->cache_nice_tries = 2;
6395 sd->busy_idx = 3;
6396 sd->idle_idx = 2;
6397
6398 sd->flags |= SD_SERIALIZE;
6399 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6400 sd->flags &= ~(SD_BALANCE_EXEC |
6401 SD_BALANCE_FORK |
6402 SD_WAKE_AFFINE);
6403 }
6404
6405 #endif
6406 } else {
6407 sd->flags |= SD_PREFER_SIBLING;
6408 sd->cache_nice_tries = 1;
6409 sd->busy_idx = 2;
6410 sd->idle_idx = 1;
6411 }
6412
6413 sd->private = &tl->data;
6414
6415 return sd;
6416 }
6417
6418 /*
6419 * Topology list, bottom-up.
6420 */
6421 static struct sched_domain_topology_level default_topology[] = {
6422 #ifdef CONFIG_SCHED_SMT
6423 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6424 #endif
6425 #ifdef CONFIG_SCHED_MC
6426 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6427 #endif
6428 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6429 { NULL, },
6430 };
6431
6432 static struct sched_domain_topology_level *sched_domain_topology =
6433 default_topology;
6434
6435 #define for_each_sd_topology(tl) \
6436 for (tl = sched_domain_topology; tl->mask; tl++)
6437
6438 void set_sched_topology(struct sched_domain_topology_level *tl)
6439 {
6440 sched_domain_topology = tl;
6441 }
6442
6443 #ifdef CONFIG_NUMA
6444
6445 static const struct cpumask *sd_numa_mask(int cpu)
6446 {
6447 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6448 }
6449
6450 static void sched_numa_warn(const char *str)
6451 {
6452 static int done = false;
6453 int i,j;
6454
6455 if (done)
6456 return;
6457
6458 done = true;
6459
6460 printk(KERN_WARNING "ERROR: %s\n\n", str);
6461
6462 for (i = 0; i < nr_node_ids; i++) {
6463 printk(KERN_WARNING " ");
6464 for (j = 0; j < nr_node_ids; j++)
6465 printk(KERN_CONT "%02d ", node_distance(i,j));
6466 printk(KERN_CONT "\n");
6467 }
6468 printk(KERN_WARNING "\n");
6469 }
6470
6471 bool find_numa_distance(int distance)
6472 {
6473 int i;
6474
6475 if (distance == node_distance(0, 0))
6476 return true;
6477
6478 for (i = 0; i < sched_domains_numa_levels; i++) {
6479 if (sched_domains_numa_distance[i] == distance)
6480 return true;
6481 }
6482
6483 return false;
6484 }
6485
6486 /*
6487 * A system can have three types of NUMA topology:
6488 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6489 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6490 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6491 *
6492 * The difference between a glueless mesh topology and a backplane
6493 * topology lies in whether communication between not directly
6494 * connected nodes goes through intermediary nodes (where programs
6495 * could run), or through backplane controllers. This affects
6496 * placement of programs.
6497 *
6498 * The type of topology can be discerned with the following tests:
6499 * - If the maximum distance between any nodes is 1 hop, the system
6500 * is directly connected.
6501 * - If for two nodes A and B, located N > 1 hops away from each other,
6502 * there is an intermediary node C, which is < N hops away from both
6503 * nodes A and B, the system is a glueless mesh.
6504 */
6505 static void init_numa_topology_type(void)
6506 {
6507 int a, b, c, n;
6508
6509 n = sched_max_numa_distance;
6510
6511 if (sched_domains_numa_levels <= 1) {
6512 sched_numa_topology_type = NUMA_DIRECT;
6513 return;
6514 }
6515
6516 for_each_online_node(a) {
6517 for_each_online_node(b) {
6518 /* Find two nodes furthest removed from each other. */
6519 if (node_distance(a, b) < n)
6520 continue;
6521
6522 /* Is there an intermediary node between a and b? */
6523 for_each_online_node(c) {
6524 if (node_distance(a, c) < n &&
6525 node_distance(b, c) < n) {
6526 sched_numa_topology_type =
6527 NUMA_GLUELESS_MESH;
6528 return;
6529 }
6530 }
6531
6532 sched_numa_topology_type = NUMA_BACKPLANE;
6533 return;
6534 }
6535 }
6536 }
6537
6538 static void sched_init_numa(void)
6539 {
6540 int next_distance, curr_distance = node_distance(0, 0);
6541 struct sched_domain_topology_level *tl;
6542 int level = 0;
6543 int i, j, k;
6544
6545 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6546 if (!sched_domains_numa_distance)
6547 return;
6548
6549 /*
6550 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6551 * unique distances in the node_distance() table.
6552 *
6553 * Assumes node_distance(0,j) includes all distances in
6554 * node_distance(i,j) in order to avoid cubic time.
6555 */
6556 next_distance = curr_distance;
6557 for (i = 0; i < nr_node_ids; i++) {
6558 for (j = 0; j < nr_node_ids; j++) {
6559 for (k = 0; k < nr_node_ids; k++) {
6560 int distance = node_distance(i, k);
6561
6562 if (distance > curr_distance &&
6563 (distance < next_distance ||
6564 next_distance == curr_distance))
6565 next_distance = distance;
6566
6567 /*
6568 * While not a strong assumption it would be nice to know
6569 * about cases where if node A is connected to B, B is not
6570 * equally connected to A.
6571 */
6572 if (sched_debug() && node_distance(k, i) != distance)
6573 sched_numa_warn("Node-distance not symmetric");
6574
6575 if (sched_debug() && i && !find_numa_distance(distance))
6576 sched_numa_warn("Node-0 not representative");
6577 }
6578 if (next_distance != curr_distance) {
6579 sched_domains_numa_distance[level++] = next_distance;
6580 sched_domains_numa_levels = level;
6581 curr_distance = next_distance;
6582 } else break;
6583 }
6584
6585 /*
6586 * In case of sched_debug() we verify the above assumption.
6587 */
6588 if (!sched_debug())
6589 break;
6590 }
6591
6592 if (!level)
6593 return;
6594
6595 /*
6596 * 'level' contains the number of unique distances, excluding the
6597 * identity distance node_distance(i,i).
6598 *
6599 * The sched_domains_numa_distance[] array includes the actual distance
6600 * numbers.
6601 */
6602
6603 /*
6604 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6605 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6606 * the array will contain less then 'level' members. This could be
6607 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6608 * in other functions.
6609 *
6610 * We reset it to 'level' at the end of this function.
6611 */
6612 sched_domains_numa_levels = 0;
6613
6614 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6615 if (!sched_domains_numa_masks)
6616 return;
6617
6618 /*
6619 * Now for each level, construct a mask per node which contains all
6620 * cpus of nodes that are that many hops away from us.
6621 */
6622 for (i = 0; i < level; i++) {
6623 sched_domains_numa_masks[i] =
6624 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6625 if (!sched_domains_numa_masks[i])
6626 return;
6627
6628 for (j = 0; j < nr_node_ids; j++) {
6629 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6630 if (!mask)
6631 return;
6632
6633 sched_domains_numa_masks[i][j] = mask;
6634
6635 for_each_node(k) {
6636 if (node_distance(j, k) > sched_domains_numa_distance[i])
6637 continue;
6638
6639 cpumask_or(mask, mask, cpumask_of_node(k));
6640 }
6641 }
6642 }
6643
6644 /* Compute default topology size */
6645 for (i = 0; sched_domain_topology[i].mask; i++);
6646
6647 tl = kzalloc((i + level + 1) *
6648 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6649 if (!tl)
6650 return;
6651
6652 /*
6653 * Copy the default topology bits..
6654 */
6655 for (i = 0; sched_domain_topology[i].mask; i++)
6656 tl[i] = sched_domain_topology[i];
6657
6658 /*
6659 * .. and append 'j' levels of NUMA goodness.
6660 */
6661 for (j = 0; j < level; i++, j++) {
6662 tl[i] = (struct sched_domain_topology_level){
6663 .mask = sd_numa_mask,
6664 .sd_flags = cpu_numa_flags,
6665 .flags = SDTL_OVERLAP,
6666 .numa_level = j,
6667 SD_INIT_NAME(NUMA)
6668 };
6669 }
6670
6671 sched_domain_topology = tl;
6672
6673 sched_domains_numa_levels = level;
6674 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6675
6676 init_numa_topology_type();
6677 }
6678
6679 static void sched_domains_numa_masks_set(unsigned int cpu)
6680 {
6681 int node = cpu_to_node(cpu);
6682 int i, j;
6683
6684 for (i = 0; i < sched_domains_numa_levels; i++) {
6685 for (j = 0; j < nr_node_ids; j++) {
6686 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6687 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6688 }
6689 }
6690 }
6691
6692 static void sched_domains_numa_masks_clear(unsigned int cpu)
6693 {
6694 int i, j;
6695
6696 for (i = 0; i < sched_domains_numa_levels; i++) {
6697 for (j = 0; j < nr_node_ids; j++)
6698 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6699 }
6700 }
6701
6702 #else
6703 static inline void sched_init_numa(void) { }
6704 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6705 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6706 #endif /* CONFIG_NUMA */
6707
6708 static int __sdt_alloc(const struct cpumask *cpu_map)
6709 {
6710 struct sched_domain_topology_level *tl;
6711 int j;
6712
6713 for_each_sd_topology(tl) {
6714 struct sd_data *sdd = &tl->data;
6715
6716 sdd->sd = alloc_percpu(struct sched_domain *);
6717 if (!sdd->sd)
6718 return -ENOMEM;
6719
6720 sdd->sg = alloc_percpu(struct sched_group *);
6721 if (!sdd->sg)
6722 return -ENOMEM;
6723
6724 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6725 if (!sdd->sgc)
6726 return -ENOMEM;
6727
6728 for_each_cpu(j, cpu_map) {
6729 struct sched_domain *sd;
6730 struct sched_group *sg;
6731 struct sched_group_capacity *sgc;
6732
6733 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6734 GFP_KERNEL, cpu_to_node(j));
6735 if (!sd)
6736 return -ENOMEM;
6737
6738 *per_cpu_ptr(sdd->sd, j) = sd;
6739
6740 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6741 GFP_KERNEL, cpu_to_node(j));
6742 if (!sg)
6743 return -ENOMEM;
6744
6745 sg->next = sg;
6746
6747 *per_cpu_ptr(sdd->sg, j) = sg;
6748
6749 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6750 GFP_KERNEL, cpu_to_node(j));
6751 if (!sgc)
6752 return -ENOMEM;
6753
6754 *per_cpu_ptr(sdd->sgc, j) = sgc;
6755 }
6756 }
6757
6758 return 0;
6759 }
6760
6761 static void __sdt_free(const struct cpumask *cpu_map)
6762 {
6763 struct sched_domain_topology_level *tl;
6764 int j;
6765
6766 for_each_sd_topology(tl) {
6767 struct sd_data *sdd = &tl->data;
6768
6769 for_each_cpu(j, cpu_map) {
6770 struct sched_domain *sd;
6771
6772 if (sdd->sd) {
6773 sd = *per_cpu_ptr(sdd->sd, j);
6774 if (sd && (sd->flags & SD_OVERLAP))
6775 free_sched_groups(sd->groups, 0);
6776 kfree(*per_cpu_ptr(sdd->sd, j));
6777 }
6778
6779 if (sdd->sg)
6780 kfree(*per_cpu_ptr(sdd->sg, j));
6781 if (sdd->sgc)
6782 kfree(*per_cpu_ptr(sdd->sgc, j));
6783 }
6784 free_percpu(sdd->sd);
6785 sdd->sd = NULL;
6786 free_percpu(sdd->sg);
6787 sdd->sg = NULL;
6788 free_percpu(sdd->sgc);
6789 sdd->sgc = NULL;
6790 }
6791 }
6792
6793 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6794 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6795 struct sched_domain *child, int cpu)
6796 {
6797 struct sched_domain *sd = sd_init(tl, cpu);
6798 if (!sd)
6799 return child;
6800
6801 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6802 if (child) {
6803 sd->level = child->level + 1;
6804 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6805 child->parent = sd;
6806 sd->child = child;
6807
6808 if (!cpumask_subset(sched_domain_span(child),
6809 sched_domain_span(sd))) {
6810 pr_err("BUG: arch topology borken\n");
6811 #ifdef CONFIG_SCHED_DEBUG
6812 pr_err(" the %s domain not a subset of the %s domain\n",
6813 child->name, sd->name);
6814 #endif
6815 /* Fixup, ensure @sd has at least @child cpus. */
6816 cpumask_or(sched_domain_span(sd),
6817 sched_domain_span(sd),
6818 sched_domain_span(child));
6819 }
6820
6821 }
6822 set_domain_attribute(sd, attr);
6823
6824 return sd;
6825 }
6826
6827 /*
6828 * Build sched domains for a given set of cpus and attach the sched domains
6829 * to the individual cpus
6830 */
6831 static int build_sched_domains(const struct cpumask *cpu_map,
6832 struct sched_domain_attr *attr)
6833 {
6834 enum s_alloc alloc_state;
6835 struct sched_domain *sd;
6836 struct s_data d;
6837 int i, ret = -ENOMEM;
6838
6839 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6840 if (alloc_state != sa_rootdomain)
6841 goto error;
6842
6843 /* Set up domains for cpus specified by the cpu_map. */
6844 for_each_cpu(i, cpu_map) {
6845 struct sched_domain_topology_level *tl;
6846
6847 sd = NULL;
6848 for_each_sd_topology(tl) {
6849 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6850 if (tl == sched_domain_topology)
6851 *per_cpu_ptr(d.sd, i) = sd;
6852 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6853 sd->flags |= SD_OVERLAP;
6854 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6855 break;
6856 }
6857 }
6858
6859 /* Build the groups for the domains */
6860 for_each_cpu(i, cpu_map) {
6861 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6862 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6863 if (sd->flags & SD_OVERLAP) {
6864 if (build_overlap_sched_groups(sd, i))
6865 goto error;
6866 } else {
6867 if (build_sched_groups(sd, i))
6868 goto error;
6869 }
6870 }
6871 }
6872
6873 /* Calculate CPU capacity for physical packages and nodes */
6874 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6875 if (!cpumask_test_cpu(i, cpu_map))
6876 continue;
6877
6878 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6879 claim_allocations(i, sd);
6880 init_sched_groups_capacity(i, sd);
6881 }
6882 }
6883
6884 /* Attach the domains */
6885 rcu_read_lock();
6886 for_each_cpu(i, cpu_map) {
6887 sd = *per_cpu_ptr(d.sd, i);
6888 cpu_attach_domain(sd, d.rd, i);
6889 }
6890 rcu_read_unlock();
6891
6892 ret = 0;
6893 error:
6894 __free_domain_allocs(&d, alloc_state, cpu_map);
6895 return ret;
6896 }
6897
6898 static cpumask_var_t *doms_cur; /* current sched domains */
6899 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6900 static struct sched_domain_attr *dattr_cur;
6901 /* attribues of custom domains in 'doms_cur' */
6902
6903 /*
6904 * Special case: If a kmalloc of a doms_cur partition (array of
6905 * cpumask) fails, then fallback to a single sched domain,
6906 * as determined by the single cpumask fallback_doms.
6907 */
6908 static cpumask_var_t fallback_doms;
6909
6910 /*
6911 * arch_update_cpu_topology lets virtualized architectures update the
6912 * cpu core maps. It is supposed to return 1 if the topology changed
6913 * or 0 if it stayed the same.
6914 */
6915 int __weak arch_update_cpu_topology(void)
6916 {
6917 return 0;
6918 }
6919
6920 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6921 {
6922 int i;
6923 cpumask_var_t *doms;
6924
6925 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6926 if (!doms)
6927 return NULL;
6928 for (i = 0; i < ndoms; i++) {
6929 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6930 free_sched_domains(doms, i);
6931 return NULL;
6932 }
6933 }
6934 return doms;
6935 }
6936
6937 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6938 {
6939 unsigned int i;
6940 for (i = 0; i < ndoms; i++)
6941 free_cpumask_var(doms[i]);
6942 kfree(doms);
6943 }
6944
6945 /*
6946 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6947 * For now this just excludes isolated cpus, but could be used to
6948 * exclude other special cases in the future.
6949 */
6950 static int init_sched_domains(const struct cpumask *cpu_map)
6951 {
6952 int err;
6953
6954 arch_update_cpu_topology();
6955 ndoms_cur = 1;
6956 doms_cur = alloc_sched_domains(ndoms_cur);
6957 if (!doms_cur)
6958 doms_cur = &fallback_doms;
6959 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6960 err = build_sched_domains(doms_cur[0], NULL);
6961 register_sched_domain_sysctl();
6962
6963 return err;
6964 }
6965
6966 /*
6967 * Detach sched domains from a group of cpus specified in cpu_map
6968 * These cpus will now be attached to the NULL domain
6969 */
6970 static void detach_destroy_domains(const struct cpumask *cpu_map)
6971 {
6972 int i;
6973
6974 rcu_read_lock();
6975 for_each_cpu(i, cpu_map)
6976 cpu_attach_domain(NULL, &def_root_domain, i);
6977 rcu_read_unlock();
6978 }
6979
6980 /* handle null as "default" */
6981 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6982 struct sched_domain_attr *new, int idx_new)
6983 {
6984 struct sched_domain_attr tmp;
6985
6986 /* fast path */
6987 if (!new && !cur)
6988 return 1;
6989
6990 tmp = SD_ATTR_INIT;
6991 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6992 new ? (new + idx_new) : &tmp,
6993 sizeof(struct sched_domain_attr));
6994 }
6995
6996 /*
6997 * Partition sched domains as specified by the 'ndoms_new'
6998 * cpumasks in the array doms_new[] of cpumasks. This compares
6999 * doms_new[] to the current sched domain partitioning, doms_cur[].
7000 * It destroys each deleted domain and builds each new domain.
7001 *
7002 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7003 * The masks don't intersect (don't overlap.) We should setup one
7004 * sched domain for each mask. CPUs not in any of the cpumasks will
7005 * not be load balanced. If the same cpumask appears both in the
7006 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7007 * it as it is.
7008 *
7009 * The passed in 'doms_new' should be allocated using
7010 * alloc_sched_domains. This routine takes ownership of it and will
7011 * free_sched_domains it when done with it. If the caller failed the
7012 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7013 * and partition_sched_domains() will fallback to the single partition
7014 * 'fallback_doms', it also forces the domains to be rebuilt.
7015 *
7016 * If doms_new == NULL it will be replaced with cpu_online_mask.
7017 * ndoms_new == 0 is a special case for destroying existing domains,
7018 * and it will not create the default domain.
7019 *
7020 * Call with hotplug lock held
7021 */
7022 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7023 struct sched_domain_attr *dattr_new)
7024 {
7025 int i, j, n;
7026 int new_topology;
7027
7028 mutex_lock(&sched_domains_mutex);
7029
7030 /* always unregister in case we don't destroy any domains */
7031 unregister_sched_domain_sysctl();
7032
7033 /* Let architecture update cpu core mappings. */
7034 new_topology = arch_update_cpu_topology();
7035
7036 n = doms_new ? ndoms_new : 0;
7037
7038 /* Destroy deleted domains */
7039 for (i = 0; i < ndoms_cur; i++) {
7040 for (j = 0; j < n && !new_topology; j++) {
7041 if (cpumask_equal(doms_cur[i], doms_new[j])
7042 && dattrs_equal(dattr_cur, i, dattr_new, j))
7043 goto match1;
7044 }
7045 /* no match - a current sched domain not in new doms_new[] */
7046 detach_destroy_domains(doms_cur[i]);
7047 match1:
7048 ;
7049 }
7050
7051 n = ndoms_cur;
7052 if (doms_new == NULL) {
7053 n = 0;
7054 doms_new = &fallback_doms;
7055 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7056 WARN_ON_ONCE(dattr_new);
7057 }
7058
7059 /* Build new domains */
7060 for (i = 0; i < ndoms_new; i++) {
7061 for (j = 0; j < n && !new_topology; j++) {
7062 if (cpumask_equal(doms_new[i], doms_cur[j])
7063 && dattrs_equal(dattr_new, i, dattr_cur, j))
7064 goto match2;
7065 }
7066 /* no match - add a new doms_new */
7067 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7068 match2:
7069 ;
7070 }
7071
7072 /* Remember the new sched domains */
7073 if (doms_cur != &fallback_doms)
7074 free_sched_domains(doms_cur, ndoms_cur);
7075 kfree(dattr_cur); /* kfree(NULL) is safe */
7076 doms_cur = doms_new;
7077 dattr_cur = dattr_new;
7078 ndoms_cur = ndoms_new;
7079
7080 register_sched_domain_sysctl();
7081
7082 mutex_unlock(&sched_domains_mutex);
7083 }
7084
7085 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7086
7087 /*
7088 * Update cpusets according to cpu_active mask. If cpusets are
7089 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7090 * around partition_sched_domains().
7091 *
7092 * If we come here as part of a suspend/resume, don't touch cpusets because we
7093 * want to restore it back to its original state upon resume anyway.
7094 */
7095 static void cpuset_cpu_active(void)
7096 {
7097 if (cpuhp_tasks_frozen) {
7098 /*
7099 * num_cpus_frozen tracks how many CPUs are involved in suspend
7100 * resume sequence. As long as this is not the last online
7101 * operation in the resume sequence, just build a single sched
7102 * domain, ignoring cpusets.
7103 */
7104 num_cpus_frozen--;
7105 if (likely(num_cpus_frozen)) {
7106 partition_sched_domains(1, NULL, NULL);
7107 return;
7108 }
7109 /*
7110 * This is the last CPU online operation. So fall through and
7111 * restore the original sched domains by considering the
7112 * cpuset configurations.
7113 */
7114 }
7115 cpuset_update_active_cpus(true);
7116 }
7117
7118 static int cpuset_cpu_inactive(unsigned int cpu)
7119 {
7120 unsigned long flags;
7121 struct dl_bw *dl_b;
7122 bool overflow;
7123 int cpus;
7124
7125 if (!cpuhp_tasks_frozen) {
7126 rcu_read_lock_sched();
7127 dl_b = dl_bw_of(cpu);
7128
7129 raw_spin_lock_irqsave(&dl_b->lock, flags);
7130 cpus = dl_bw_cpus(cpu);
7131 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7132 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7133
7134 rcu_read_unlock_sched();
7135
7136 if (overflow)
7137 return -EBUSY;
7138 cpuset_update_active_cpus(false);
7139 } else {
7140 num_cpus_frozen++;
7141 partition_sched_domains(1, NULL, NULL);
7142 }
7143 return 0;
7144 }
7145
7146 int sched_cpu_activate(unsigned int cpu)
7147 {
7148 struct rq *rq = cpu_rq(cpu);
7149 unsigned long flags;
7150
7151 set_cpu_active(cpu, true);
7152
7153 if (sched_smp_initialized) {
7154 sched_domains_numa_masks_set(cpu);
7155 cpuset_cpu_active();
7156 }
7157
7158 /*
7159 * Put the rq online, if not already. This happens:
7160 *
7161 * 1) In the early boot process, because we build the real domains
7162 * after all cpus have been brought up.
7163 *
7164 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7165 * domains.
7166 */
7167 raw_spin_lock_irqsave(&rq->lock, flags);
7168 if (rq->rd) {
7169 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7170 set_rq_online(rq);
7171 }
7172 raw_spin_unlock_irqrestore(&rq->lock, flags);
7173
7174 update_max_interval();
7175
7176 return 0;
7177 }
7178
7179 int sched_cpu_deactivate(unsigned int cpu)
7180 {
7181 int ret;
7182
7183 set_cpu_active(cpu, false);
7184 /*
7185 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7186 * users of this state to go away such that all new such users will
7187 * observe it.
7188 *
7189 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7190 * not imply sync_sched(), so wait for both.
7191 *
7192 * Do sync before park smpboot threads to take care the rcu boost case.
7193 */
7194 if (IS_ENABLED(CONFIG_PREEMPT))
7195 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7196 else
7197 synchronize_rcu();
7198
7199 if (!sched_smp_initialized)
7200 return 0;
7201
7202 ret = cpuset_cpu_inactive(cpu);
7203 if (ret) {
7204 set_cpu_active(cpu, true);
7205 return ret;
7206 }
7207 sched_domains_numa_masks_clear(cpu);
7208 return 0;
7209 }
7210
7211 static void sched_rq_cpu_starting(unsigned int cpu)
7212 {
7213 struct rq *rq = cpu_rq(cpu);
7214
7215 rq->calc_load_update = calc_load_update;
7216 account_reset_rq(rq);
7217 update_max_interval();
7218 }
7219
7220 int sched_cpu_starting(unsigned int cpu)
7221 {
7222 set_cpu_rq_start_time(cpu);
7223 sched_rq_cpu_starting(cpu);
7224 return 0;
7225 }
7226
7227 #ifdef CONFIG_HOTPLUG_CPU
7228 int sched_cpu_dying(unsigned int cpu)
7229 {
7230 struct rq *rq = cpu_rq(cpu);
7231 unsigned long flags;
7232
7233 /* Handle pending wakeups and then migrate everything off */
7234 sched_ttwu_pending();
7235 raw_spin_lock_irqsave(&rq->lock, flags);
7236 if (rq->rd) {
7237 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7238 set_rq_offline(rq);
7239 }
7240 migrate_tasks(rq);
7241 BUG_ON(rq->nr_running != 1);
7242 raw_spin_unlock_irqrestore(&rq->lock, flags);
7243 calc_load_migrate(rq);
7244 update_max_interval();
7245 nohz_balance_exit_idle(cpu);
7246 hrtick_clear(rq);
7247 return 0;
7248 }
7249 #endif
7250
7251 void __init sched_init_smp(void)
7252 {
7253 cpumask_var_t non_isolated_cpus;
7254
7255 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7256 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7257
7258 sched_init_numa();
7259
7260 /*
7261 * There's no userspace yet to cause hotplug operations; hence all the
7262 * cpu masks are stable and all blatant races in the below code cannot
7263 * happen.
7264 */
7265 mutex_lock(&sched_domains_mutex);
7266 init_sched_domains(cpu_active_mask);
7267 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7268 if (cpumask_empty(non_isolated_cpus))
7269 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7270 mutex_unlock(&sched_domains_mutex);
7271
7272 /* Move init over to a non-isolated CPU */
7273 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7274 BUG();
7275 sched_init_granularity();
7276 free_cpumask_var(non_isolated_cpus);
7277
7278 init_sched_rt_class();
7279 init_sched_dl_class();
7280 sched_smp_initialized = true;
7281 }
7282
7283 static int __init migration_init(void)
7284 {
7285 sched_rq_cpu_starting(smp_processor_id());
7286 return 0;
7287 }
7288 early_initcall(migration_init);
7289
7290 #else
7291 void __init sched_init_smp(void)
7292 {
7293 sched_init_granularity();
7294 }
7295 #endif /* CONFIG_SMP */
7296
7297 int in_sched_functions(unsigned long addr)
7298 {
7299 return in_lock_functions(addr) ||
7300 (addr >= (unsigned long)__sched_text_start
7301 && addr < (unsigned long)__sched_text_end);
7302 }
7303
7304 #ifdef CONFIG_CGROUP_SCHED
7305 /*
7306 * Default task group.
7307 * Every task in system belongs to this group at bootup.
7308 */
7309 struct task_group root_task_group;
7310 LIST_HEAD(task_groups);
7311
7312 /* Cacheline aligned slab cache for task_group */
7313 static struct kmem_cache *task_group_cache __read_mostly;
7314 #endif
7315
7316 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7317
7318 void __init sched_init(void)
7319 {
7320 int i, j;
7321 unsigned long alloc_size = 0, ptr;
7322
7323 #ifdef CONFIG_FAIR_GROUP_SCHED
7324 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7325 #endif
7326 #ifdef CONFIG_RT_GROUP_SCHED
7327 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7328 #endif
7329 if (alloc_size) {
7330 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7331
7332 #ifdef CONFIG_FAIR_GROUP_SCHED
7333 root_task_group.se = (struct sched_entity **)ptr;
7334 ptr += nr_cpu_ids * sizeof(void **);
7335
7336 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7337 ptr += nr_cpu_ids * sizeof(void **);
7338
7339 #endif /* CONFIG_FAIR_GROUP_SCHED */
7340 #ifdef CONFIG_RT_GROUP_SCHED
7341 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7342 ptr += nr_cpu_ids * sizeof(void **);
7343
7344 root_task_group.rt_rq = (struct rt_rq **)ptr;
7345 ptr += nr_cpu_ids * sizeof(void **);
7346
7347 #endif /* CONFIG_RT_GROUP_SCHED */
7348 }
7349 #ifdef CONFIG_CPUMASK_OFFSTACK
7350 for_each_possible_cpu(i) {
7351 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7352 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7353 }
7354 #endif /* CONFIG_CPUMASK_OFFSTACK */
7355
7356 init_rt_bandwidth(&def_rt_bandwidth,
7357 global_rt_period(), global_rt_runtime());
7358 init_dl_bandwidth(&def_dl_bandwidth,
7359 global_rt_period(), global_rt_runtime());
7360
7361 #ifdef CONFIG_SMP
7362 init_defrootdomain();
7363 #endif
7364
7365 #ifdef CONFIG_RT_GROUP_SCHED
7366 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7367 global_rt_period(), global_rt_runtime());
7368 #endif /* CONFIG_RT_GROUP_SCHED */
7369
7370 #ifdef CONFIG_CGROUP_SCHED
7371 task_group_cache = KMEM_CACHE(task_group, 0);
7372
7373 list_add(&root_task_group.list, &task_groups);
7374 INIT_LIST_HEAD(&root_task_group.children);
7375 INIT_LIST_HEAD(&root_task_group.siblings);
7376 autogroup_init(&init_task);
7377 #endif /* CONFIG_CGROUP_SCHED */
7378
7379 for_each_possible_cpu(i) {
7380 struct rq *rq;
7381
7382 rq = cpu_rq(i);
7383 raw_spin_lock_init(&rq->lock);
7384 rq->nr_running = 0;
7385 rq->calc_load_active = 0;
7386 rq->calc_load_update = jiffies + LOAD_FREQ;
7387 init_cfs_rq(&rq->cfs);
7388 init_rt_rq(&rq->rt);
7389 init_dl_rq(&rq->dl);
7390 #ifdef CONFIG_FAIR_GROUP_SCHED
7391 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7392 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7393 /*
7394 * How much cpu bandwidth does root_task_group get?
7395 *
7396 * In case of task-groups formed thr' the cgroup filesystem, it
7397 * gets 100% of the cpu resources in the system. This overall
7398 * system cpu resource is divided among the tasks of
7399 * root_task_group and its child task-groups in a fair manner,
7400 * based on each entity's (task or task-group's) weight
7401 * (se->load.weight).
7402 *
7403 * In other words, if root_task_group has 10 tasks of weight
7404 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7405 * then A0's share of the cpu resource is:
7406 *
7407 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7408 *
7409 * We achieve this by letting root_task_group's tasks sit
7410 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7411 */
7412 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7413 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7414 #endif /* CONFIG_FAIR_GROUP_SCHED */
7415
7416 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7417 #ifdef CONFIG_RT_GROUP_SCHED
7418 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7419 #endif
7420
7421 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7422 rq->cpu_load[j] = 0;
7423
7424 #ifdef CONFIG_SMP
7425 rq->sd = NULL;
7426 rq->rd = NULL;
7427 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7428 rq->balance_callback = NULL;
7429 rq->active_balance = 0;
7430 rq->next_balance = jiffies;
7431 rq->push_cpu = 0;
7432 rq->cpu = i;
7433 rq->online = 0;
7434 rq->idle_stamp = 0;
7435 rq->avg_idle = 2*sysctl_sched_migration_cost;
7436 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7437
7438 INIT_LIST_HEAD(&rq->cfs_tasks);
7439
7440 rq_attach_root(rq, &def_root_domain);
7441 #ifdef CONFIG_NO_HZ_COMMON
7442 rq->last_load_update_tick = jiffies;
7443 rq->nohz_flags = 0;
7444 #endif
7445 #ifdef CONFIG_NO_HZ_FULL
7446 rq->last_sched_tick = 0;
7447 #endif
7448 #endif /* CONFIG_SMP */
7449 init_rq_hrtick(rq);
7450 atomic_set(&rq->nr_iowait, 0);
7451 }
7452
7453 set_load_weight(&init_task);
7454
7455 #ifdef CONFIG_PREEMPT_NOTIFIERS
7456 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7457 #endif
7458
7459 /*
7460 * The boot idle thread does lazy MMU switching as well:
7461 */
7462 atomic_inc(&init_mm.mm_count);
7463 enter_lazy_tlb(&init_mm, current);
7464
7465 /*
7466 * During early bootup we pretend to be a normal task:
7467 */
7468 current->sched_class = &fair_sched_class;
7469
7470 /*
7471 * Make us the idle thread. Technically, schedule() should not be
7472 * called from this thread, however somewhere below it might be,
7473 * but because we are the idle thread, we just pick up running again
7474 * when this runqueue becomes "idle".
7475 */
7476 init_idle(current, smp_processor_id());
7477
7478 calc_load_update = jiffies + LOAD_FREQ;
7479
7480 #ifdef CONFIG_SMP
7481 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7482 /* May be allocated at isolcpus cmdline parse time */
7483 if (cpu_isolated_map == NULL)
7484 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7485 idle_thread_set_boot_cpu();
7486 set_cpu_rq_start_time(smp_processor_id());
7487 #endif
7488 init_sched_fair_class();
7489
7490 scheduler_running = 1;
7491 }
7492
7493 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7494 static inline int preempt_count_equals(int preempt_offset)
7495 {
7496 int nested = preempt_count() + rcu_preempt_depth();
7497
7498 return (nested == preempt_offset);
7499 }
7500
7501 void __might_sleep(const char *file, int line, int preempt_offset)
7502 {
7503 /*
7504 * Blocking primitives will set (and therefore destroy) current->state,
7505 * since we will exit with TASK_RUNNING make sure we enter with it,
7506 * otherwise we will destroy state.
7507 */
7508 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7509 "do not call blocking ops when !TASK_RUNNING; "
7510 "state=%lx set at [<%p>] %pS\n",
7511 current->state,
7512 (void *)current->task_state_change,
7513 (void *)current->task_state_change);
7514
7515 ___might_sleep(file, line, preempt_offset);
7516 }
7517 EXPORT_SYMBOL(__might_sleep);
7518
7519 void ___might_sleep(const char *file, int line, int preempt_offset)
7520 {
7521 static unsigned long prev_jiffy; /* ratelimiting */
7522
7523 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7524 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7525 !is_idle_task(current)) ||
7526 system_state != SYSTEM_RUNNING || oops_in_progress)
7527 return;
7528 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7529 return;
7530 prev_jiffy = jiffies;
7531
7532 printk(KERN_ERR
7533 "BUG: sleeping function called from invalid context at %s:%d\n",
7534 file, line);
7535 printk(KERN_ERR
7536 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7537 in_atomic(), irqs_disabled(),
7538 current->pid, current->comm);
7539
7540 if (task_stack_end_corrupted(current))
7541 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7542
7543 debug_show_held_locks(current);
7544 if (irqs_disabled())
7545 print_irqtrace_events(current);
7546 #ifdef CONFIG_DEBUG_PREEMPT
7547 if (!preempt_count_equals(preempt_offset)) {
7548 pr_err("Preemption disabled at:");
7549 print_ip_sym(current->preempt_disable_ip);
7550 pr_cont("\n");
7551 }
7552 #endif
7553 dump_stack();
7554 }
7555 EXPORT_SYMBOL(___might_sleep);
7556 #endif
7557
7558 #ifdef CONFIG_MAGIC_SYSRQ
7559 void normalize_rt_tasks(void)
7560 {
7561 struct task_struct *g, *p;
7562 struct sched_attr attr = {
7563 .sched_policy = SCHED_NORMAL,
7564 };
7565
7566 read_lock(&tasklist_lock);
7567 for_each_process_thread(g, p) {
7568 /*
7569 * Only normalize user tasks:
7570 */
7571 if (p->flags & PF_KTHREAD)
7572 continue;
7573
7574 p->se.exec_start = 0;
7575 #ifdef CONFIG_SCHEDSTATS
7576 p->se.statistics.wait_start = 0;
7577 p->se.statistics.sleep_start = 0;
7578 p->se.statistics.block_start = 0;
7579 #endif
7580
7581 if (!dl_task(p) && !rt_task(p)) {
7582 /*
7583 * Renice negative nice level userspace
7584 * tasks back to 0:
7585 */
7586 if (task_nice(p) < 0)
7587 set_user_nice(p, 0);
7588 continue;
7589 }
7590
7591 __sched_setscheduler(p, &attr, false, false);
7592 }
7593 read_unlock(&tasklist_lock);
7594 }
7595
7596 #endif /* CONFIG_MAGIC_SYSRQ */
7597
7598 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7599 /*
7600 * These functions are only useful for the IA64 MCA handling, or kdb.
7601 *
7602 * They can only be called when the whole system has been
7603 * stopped - every CPU needs to be quiescent, and no scheduling
7604 * activity can take place. Using them for anything else would
7605 * be a serious bug, and as a result, they aren't even visible
7606 * under any other configuration.
7607 */
7608
7609 /**
7610 * curr_task - return the current task for a given cpu.
7611 * @cpu: the processor in question.
7612 *
7613 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7614 *
7615 * Return: The current task for @cpu.
7616 */
7617 struct task_struct *curr_task(int cpu)
7618 {
7619 return cpu_curr(cpu);
7620 }
7621
7622 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7623
7624 #ifdef CONFIG_IA64
7625 /**
7626 * set_curr_task - set the current task for a given cpu.
7627 * @cpu: the processor in question.
7628 * @p: the task pointer to set.
7629 *
7630 * Description: This function must only be used when non-maskable interrupts
7631 * are serviced on a separate stack. It allows the architecture to switch the
7632 * notion of the current task on a cpu in a non-blocking manner. This function
7633 * must be called with all CPU's synchronized, and interrupts disabled, the
7634 * and caller must save the original value of the current task (see
7635 * curr_task() above) and restore that value before reenabling interrupts and
7636 * re-starting the system.
7637 *
7638 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7639 */
7640 void set_curr_task(int cpu, struct task_struct *p)
7641 {
7642 cpu_curr(cpu) = p;
7643 }
7644
7645 #endif
7646
7647 #ifdef CONFIG_CGROUP_SCHED
7648 /* task_group_lock serializes the addition/removal of task groups */
7649 static DEFINE_SPINLOCK(task_group_lock);
7650
7651 static void sched_free_group(struct task_group *tg)
7652 {
7653 free_fair_sched_group(tg);
7654 free_rt_sched_group(tg);
7655 autogroup_free(tg);
7656 kmem_cache_free(task_group_cache, tg);
7657 }
7658
7659 /* allocate runqueue etc for a new task group */
7660 struct task_group *sched_create_group(struct task_group *parent)
7661 {
7662 struct task_group *tg;
7663
7664 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7665 if (!tg)
7666 return ERR_PTR(-ENOMEM);
7667
7668 if (!alloc_fair_sched_group(tg, parent))
7669 goto err;
7670
7671 if (!alloc_rt_sched_group(tg, parent))
7672 goto err;
7673
7674 return tg;
7675
7676 err:
7677 sched_free_group(tg);
7678 return ERR_PTR(-ENOMEM);
7679 }
7680
7681 void sched_online_group(struct task_group *tg, struct task_group *parent)
7682 {
7683 unsigned long flags;
7684
7685 spin_lock_irqsave(&task_group_lock, flags);
7686 list_add_rcu(&tg->list, &task_groups);
7687
7688 WARN_ON(!parent); /* root should already exist */
7689
7690 tg->parent = parent;
7691 INIT_LIST_HEAD(&tg->children);
7692 list_add_rcu(&tg->siblings, &parent->children);
7693 spin_unlock_irqrestore(&task_group_lock, flags);
7694 }
7695
7696 /* rcu callback to free various structures associated with a task group */
7697 static void sched_free_group_rcu(struct rcu_head *rhp)
7698 {
7699 /* now it should be safe to free those cfs_rqs */
7700 sched_free_group(container_of(rhp, struct task_group, rcu));
7701 }
7702
7703 void sched_destroy_group(struct task_group *tg)
7704 {
7705 /* wait for possible concurrent references to cfs_rqs complete */
7706 call_rcu(&tg->rcu, sched_free_group_rcu);
7707 }
7708
7709 void sched_offline_group(struct task_group *tg)
7710 {
7711 unsigned long flags;
7712
7713 /* end participation in shares distribution */
7714 unregister_fair_sched_group(tg);
7715
7716 spin_lock_irqsave(&task_group_lock, flags);
7717 list_del_rcu(&tg->list);
7718 list_del_rcu(&tg->siblings);
7719 spin_unlock_irqrestore(&task_group_lock, flags);
7720 }
7721
7722 /* change task's runqueue when it moves between groups.
7723 * The caller of this function should have put the task in its new group
7724 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7725 * reflect its new group.
7726 */
7727 void sched_move_task(struct task_struct *tsk)
7728 {
7729 struct task_group *tg;
7730 int queued, running;
7731 struct rq_flags rf;
7732 struct rq *rq;
7733
7734 rq = task_rq_lock(tsk, &rf);
7735
7736 running = task_current(rq, tsk);
7737 queued = task_on_rq_queued(tsk);
7738
7739 if (queued)
7740 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7741 if (unlikely(running))
7742 put_prev_task(rq, tsk);
7743
7744 /*
7745 * All callers are synchronized by task_rq_lock(); we do not use RCU
7746 * which is pointless here. Thus, we pass "true" to task_css_check()
7747 * to prevent lockdep warnings.
7748 */
7749 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7750 struct task_group, css);
7751 tg = autogroup_task_group(tsk, tg);
7752 tsk->sched_task_group = tg;
7753
7754 #ifdef CONFIG_FAIR_GROUP_SCHED
7755 if (tsk->sched_class->task_move_group)
7756 tsk->sched_class->task_move_group(tsk);
7757 else
7758 #endif
7759 set_task_rq(tsk, task_cpu(tsk));
7760
7761 if (unlikely(running))
7762 tsk->sched_class->set_curr_task(rq);
7763 if (queued)
7764 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7765
7766 task_rq_unlock(rq, tsk, &rf);
7767 }
7768 #endif /* CONFIG_CGROUP_SCHED */
7769
7770 #ifdef CONFIG_RT_GROUP_SCHED
7771 /*
7772 * Ensure that the real time constraints are schedulable.
7773 */
7774 static DEFINE_MUTEX(rt_constraints_mutex);
7775
7776 /* Must be called with tasklist_lock held */
7777 static inline int tg_has_rt_tasks(struct task_group *tg)
7778 {
7779 struct task_struct *g, *p;
7780
7781 /*
7782 * Autogroups do not have RT tasks; see autogroup_create().
7783 */
7784 if (task_group_is_autogroup(tg))
7785 return 0;
7786
7787 for_each_process_thread(g, p) {
7788 if (rt_task(p) && task_group(p) == tg)
7789 return 1;
7790 }
7791
7792 return 0;
7793 }
7794
7795 struct rt_schedulable_data {
7796 struct task_group *tg;
7797 u64 rt_period;
7798 u64 rt_runtime;
7799 };
7800
7801 static int tg_rt_schedulable(struct task_group *tg, void *data)
7802 {
7803 struct rt_schedulable_data *d = data;
7804 struct task_group *child;
7805 unsigned long total, sum = 0;
7806 u64 period, runtime;
7807
7808 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7809 runtime = tg->rt_bandwidth.rt_runtime;
7810
7811 if (tg == d->tg) {
7812 period = d->rt_period;
7813 runtime = d->rt_runtime;
7814 }
7815
7816 /*
7817 * Cannot have more runtime than the period.
7818 */
7819 if (runtime > period && runtime != RUNTIME_INF)
7820 return -EINVAL;
7821
7822 /*
7823 * Ensure we don't starve existing RT tasks.
7824 */
7825 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7826 return -EBUSY;
7827
7828 total = to_ratio(period, runtime);
7829
7830 /*
7831 * Nobody can have more than the global setting allows.
7832 */
7833 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7834 return -EINVAL;
7835
7836 /*
7837 * The sum of our children's runtime should not exceed our own.
7838 */
7839 list_for_each_entry_rcu(child, &tg->children, siblings) {
7840 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7841 runtime = child->rt_bandwidth.rt_runtime;
7842
7843 if (child == d->tg) {
7844 period = d->rt_period;
7845 runtime = d->rt_runtime;
7846 }
7847
7848 sum += to_ratio(period, runtime);
7849 }
7850
7851 if (sum > total)
7852 return -EINVAL;
7853
7854 return 0;
7855 }
7856
7857 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7858 {
7859 int ret;
7860
7861 struct rt_schedulable_data data = {
7862 .tg = tg,
7863 .rt_period = period,
7864 .rt_runtime = runtime,
7865 };
7866
7867 rcu_read_lock();
7868 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7869 rcu_read_unlock();
7870
7871 return ret;
7872 }
7873
7874 static int tg_set_rt_bandwidth(struct task_group *tg,
7875 u64 rt_period, u64 rt_runtime)
7876 {
7877 int i, err = 0;
7878
7879 /*
7880 * Disallowing the root group RT runtime is BAD, it would disallow the
7881 * kernel creating (and or operating) RT threads.
7882 */
7883 if (tg == &root_task_group && rt_runtime == 0)
7884 return -EINVAL;
7885
7886 /* No period doesn't make any sense. */
7887 if (rt_period == 0)
7888 return -EINVAL;
7889
7890 mutex_lock(&rt_constraints_mutex);
7891 read_lock(&tasklist_lock);
7892 err = __rt_schedulable(tg, rt_period, rt_runtime);
7893 if (err)
7894 goto unlock;
7895
7896 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7897 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7898 tg->rt_bandwidth.rt_runtime = rt_runtime;
7899
7900 for_each_possible_cpu(i) {
7901 struct rt_rq *rt_rq = tg->rt_rq[i];
7902
7903 raw_spin_lock(&rt_rq->rt_runtime_lock);
7904 rt_rq->rt_runtime = rt_runtime;
7905 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7906 }
7907 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7908 unlock:
7909 read_unlock(&tasklist_lock);
7910 mutex_unlock(&rt_constraints_mutex);
7911
7912 return err;
7913 }
7914
7915 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7916 {
7917 u64 rt_runtime, rt_period;
7918
7919 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7920 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7921 if (rt_runtime_us < 0)
7922 rt_runtime = RUNTIME_INF;
7923
7924 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7925 }
7926
7927 static long sched_group_rt_runtime(struct task_group *tg)
7928 {
7929 u64 rt_runtime_us;
7930
7931 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7932 return -1;
7933
7934 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7935 do_div(rt_runtime_us, NSEC_PER_USEC);
7936 return rt_runtime_us;
7937 }
7938
7939 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7940 {
7941 u64 rt_runtime, rt_period;
7942
7943 rt_period = rt_period_us * NSEC_PER_USEC;
7944 rt_runtime = tg->rt_bandwidth.rt_runtime;
7945
7946 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7947 }
7948
7949 static long sched_group_rt_period(struct task_group *tg)
7950 {
7951 u64 rt_period_us;
7952
7953 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7954 do_div(rt_period_us, NSEC_PER_USEC);
7955 return rt_period_us;
7956 }
7957 #endif /* CONFIG_RT_GROUP_SCHED */
7958
7959 #ifdef CONFIG_RT_GROUP_SCHED
7960 static int sched_rt_global_constraints(void)
7961 {
7962 int ret = 0;
7963
7964 mutex_lock(&rt_constraints_mutex);
7965 read_lock(&tasklist_lock);
7966 ret = __rt_schedulable(NULL, 0, 0);
7967 read_unlock(&tasklist_lock);
7968 mutex_unlock(&rt_constraints_mutex);
7969
7970 return ret;
7971 }
7972
7973 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7974 {
7975 /* Don't accept realtime tasks when there is no way for them to run */
7976 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7977 return 0;
7978
7979 return 1;
7980 }
7981
7982 #else /* !CONFIG_RT_GROUP_SCHED */
7983 static int sched_rt_global_constraints(void)
7984 {
7985 unsigned long flags;
7986 int i;
7987
7988 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7989 for_each_possible_cpu(i) {
7990 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7991
7992 raw_spin_lock(&rt_rq->rt_runtime_lock);
7993 rt_rq->rt_runtime = global_rt_runtime();
7994 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7995 }
7996 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7997
7998 return 0;
7999 }
8000 #endif /* CONFIG_RT_GROUP_SCHED */
8001
8002 static int sched_dl_global_validate(void)
8003 {
8004 u64 runtime = global_rt_runtime();
8005 u64 period = global_rt_period();
8006 u64 new_bw = to_ratio(period, runtime);
8007 struct dl_bw *dl_b;
8008 int cpu, ret = 0;
8009 unsigned long flags;
8010
8011 /*
8012 * Here we want to check the bandwidth not being set to some
8013 * value smaller than the currently allocated bandwidth in
8014 * any of the root_domains.
8015 *
8016 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8017 * cycling on root_domains... Discussion on different/better
8018 * solutions is welcome!
8019 */
8020 for_each_possible_cpu(cpu) {
8021 rcu_read_lock_sched();
8022 dl_b = dl_bw_of(cpu);
8023
8024 raw_spin_lock_irqsave(&dl_b->lock, flags);
8025 if (new_bw < dl_b->total_bw)
8026 ret = -EBUSY;
8027 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8028
8029 rcu_read_unlock_sched();
8030
8031 if (ret)
8032 break;
8033 }
8034
8035 return ret;
8036 }
8037
8038 static void sched_dl_do_global(void)
8039 {
8040 u64 new_bw = -1;
8041 struct dl_bw *dl_b;
8042 int cpu;
8043 unsigned long flags;
8044
8045 def_dl_bandwidth.dl_period = global_rt_period();
8046 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8047
8048 if (global_rt_runtime() != RUNTIME_INF)
8049 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8050
8051 /*
8052 * FIXME: As above...
8053 */
8054 for_each_possible_cpu(cpu) {
8055 rcu_read_lock_sched();
8056 dl_b = dl_bw_of(cpu);
8057
8058 raw_spin_lock_irqsave(&dl_b->lock, flags);
8059 dl_b->bw = new_bw;
8060 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8061
8062 rcu_read_unlock_sched();
8063 }
8064 }
8065
8066 static int sched_rt_global_validate(void)
8067 {
8068 if (sysctl_sched_rt_period <= 0)
8069 return -EINVAL;
8070
8071 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8072 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8073 return -EINVAL;
8074
8075 return 0;
8076 }
8077
8078 static void sched_rt_do_global(void)
8079 {
8080 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8081 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8082 }
8083
8084 int sched_rt_handler(struct ctl_table *table, int write,
8085 void __user *buffer, size_t *lenp,
8086 loff_t *ppos)
8087 {
8088 int old_period, old_runtime;
8089 static DEFINE_MUTEX(mutex);
8090 int ret;
8091
8092 mutex_lock(&mutex);
8093 old_period = sysctl_sched_rt_period;
8094 old_runtime = sysctl_sched_rt_runtime;
8095
8096 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8097
8098 if (!ret && write) {
8099 ret = sched_rt_global_validate();
8100 if (ret)
8101 goto undo;
8102
8103 ret = sched_dl_global_validate();
8104 if (ret)
8105 goto undo;
8106
8107 ret = sched_rt_global_constraints();
8108 if (ret)
8109 goto undo;
8110
8111 sched_rt_do_global();
8112 sched_dl_do_global();
8113 }
8114 if (0) {
8115 undo:
8116 sysctl_sched_rt_period = old_period;
8117 sysctl_sched_rt_runtime = old_runtime;
8118 }
8119 mutex_unlock(&mutex);
8120
8121 return ret;
8122 }
8123
8124 int sched_rr_handler(struct ctl_table *table, int write,
8125 void __user *buffer, size_t *lenp,
8126 loff_t *ppos)
8127 {
8128 int ret;
8129 static DEFINE_MUTEX(mutex);
8130
8131 mutex_lock(&mutex);
8132 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8133 /* make sure that internally we keep jiffies */
8134 /* also, writing zero resets timeslice to default */
8135 if (!ret && write) {
8136 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8137 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8138 }
8139 mutex_unlock(&mutex);
8140 return ret;
8141 }
8142
8143 #ifdef CONFIG_CGROUP_SCHED
8144
8145 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8146 {
8147 return css ? container_of(css, struct task_group, css) : NULL;
8148 }
8149
8150 static struct cgroup_subsys_state *
8151 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8152 {
8153 struct task_group *parent = css_tg(parent_css);
8154 struct task_group *tg;
8155
8156 if (!parent) {
8157 /* This is early initialization for the top cgroup */
8158 return &root_task_group.css;
8159 }
8160
8161 tg = sched_create_group(parent);
8162 if (IS_ERR(tg))
8163 return ERR_PTR(-ENOMEM);
8164
8165 sched_online_group(tg, parent);
8166
8167 return &tg->css;
8168 }
8169
8170 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8171 {
8172 struct task_group *tg = css_tg(css);
8173
8174 sched_offline_group(tg);
8175 }
8176
8177 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8178 {
8179 struct task_group *tg = css_tg(css);
8180
8181 /*
8182 * Relies on the RCU grace period between css_released() and this.
8183 */
8184 sched_free_group(tg);
8185 }
8186
8187 static void cpu_cgroup_fork(struct task_struct *task)
8188 {
8189 sched_move_task(task);
8190 }
8191
8192 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8193 {
8194 struct task_struct *task;
8195 struct cgroup_subsys_state *css;
8196
8197 cgroup_taskset_for_each(task, css, tset) {
8198 #ifdef CONFIG_RT_GROUP_SCHED
8199 if (!sched_rt_can_attach(css_tg(css), task))
8200 return -EINVAL;
8201 #else
8202 /* We don't support RT-tasks being in separate groups */
8203 if (task->sched_class != &fair_sched_class)
8204 return -EINVAL;
8205 #endif
8206 }
8207 return 0;
8208 }
8209
8210 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8211 {
8212 struct task_struct *task;
8213 struct cgroup_subsys_state *css;
8214
8215 cgroup_taskset_for_each(task, css, tset)
8216 sched_move_task(task);
8217 }
8218
8219 #ifdef CONFIG_FAIR_GROUP_SCHED
8220 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8221 struct cftype *cftype, u64 shareval)
8222 {
8223 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8224 }
8225
8226 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8227 struct cftype *cft)
8228 {
8229 struct task_group *tg = css_tg(css);
8230
8231 return (u64) scale_load_down(tg->shares);
8232 }
8233
8234 #ifdef CONFIG_CFS_BANDWIDTH
8235 static DEFINE_MUTEX(cfs_constraints_mutex);
8236
8237 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8238 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8239
8240 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8241
8242 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8243 {
8244 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8245 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8246
8247 if (tg == &root_task_group)
8248 return -EINVAL;
8249
8250 /*
8251 * Ensure we have at some amount of bandwidth every period. This is
8252 * to prevent reaching a state of large arrears when throttled via
8253 * entity_tick() resulting in prolonged exit starvation.
8254 */
8255 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8256 return -EINVAL;
8257
8258 /*
8259 * Likewise, bound things on the otherside by preventing insane quota
8260 * periods. This also allows us to normalize in computing quota
8261 * feasibility.
8262 */
8263 if (period > max_cfs_quota_period)
8264 return -EINVAL;
8265
8266 /*
8267 * Prevent race between setting of cfs_rq->runtime_enabled and
8268 * unthrottle_offline_cfs_rqs().
8269 */
8270 get_online_cpus();
8271 mutex_lock(&cfs_constraints_mutex);
8272 ret = __cfs_schedulable(tg, period, quota);
8273 if (ret)
8274 goto out_unlock;
8275
8276 runtime_enabled = quota != RUNTIME_INF;
8277 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8278 /*
8279 * If we need to toggle cfs_bandwidth_used, off->on must occur
8280 * before making related changes, and on->off must occur afterwards
8281 */
8282 if (runtime_enabled && !runtime_was_enabled)
8283 cfs_bandwidth_usage_inc();
8284 raw_spin_lock_irq(&cfs_b->lock);
8285 cfs_b->period = ns_to_ktime(period);
8286 cfs_b->quota = quota;
8287
8288 __refill_cfs_bandwidth_runtime(cfs_b);
8289 /* restart the period timer (if active) to handle new period expiry */
8290 if (runtime_enabled)
8291 start_cfs_bandwidth(cfs_b);
8292 raw_spin_unlock_irq(&cfs_b->lock);
8293
8294 for_each_online_cpu(i) {
8295 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8296 struct rq *rq = cfs_rq->rq;
8297
8298 raw_spin_lock_irq(&rq->lock);
8299 cfs_rq->runtime_enabled = runtime_enabled;
8300 cfs_rq->runtime_remaining = 0;
8301
8302 if (cfs_rq->throttled)
8303 unthrottle_cfs_rq(cfs_rq);
8304 raw_spin_unlock_irq(&rq->lock);
8305 }
8306 if (runtime_was_enabled && !runtime_enabled)
8307 cfs_bandwidth_usage_dec();
8308 out_unlock:
8309 mutex_unlock(&cfs_constraints_mutex);
8310 put_online_cpus();
8311
8312 return ret;
8313 }
8314
8315 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8316 {
8317 u64 quota, period;
8318
8319 period = ktime_to_ns(tg->cfs_bandwidth.period);
8320 if (cfs_quota_us < 0)
8321 quota = RUNTIME_INF;
8322 else
8323 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8324
8325 return tg_set_cfs_bandwidth(tg, period, quota);
8326 }
8327
8328 long tg_get_cfs_quota(struct task_group *tg)
8329 {
8330 u64 quota_us;
8331
8332 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8333 return -1;
8334
8335 quota_us = tg->cfs_bandwidth.quota;
8336 do_div(quota_us, NSEC_PER_USEC);
8337
8338 return quota_us;
8339 }
8340
8341 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8342 {
8343 u64 quota, period;
8344
8345 period = (u64)cfs_period_us * NSEC_PER_USEC;
8346 quota = tg->cfs_bandwidth.quota;
8347
8348 return tg_set_cfs_bandwidth(tg, period, quota);
8349 }
8350
8351 long tg_get_cfs_period(struct task_group *tg)
8352 {
8353 u64 cfs_period_us;
8354
8355 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8356 do_div(cfs_period_us, NSEC_PER_USEC);
8357
8358 return cfs_period_us;
8359 }
8360
8361 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8362 struct cftype *cft)
8363 {
8364 return tg_get_cfs_quota(css_tg(css));
8365 }
8366
8367 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8368 struct cftype *cftype, s64 cfs_quota_us)
8369 {
8370 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8371 }
8372
8373 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8374 struct cftype *cft)
8375 {
8376 return tg_get_cfs_period(css_tg(css));
8377 }
8378
8379 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8380 struct cftype *cftype, u64 cfs_period_us)
8381 {
8382 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8383 }
8384
8385 struct cfs_schedulable_data {
8386 struct task_group *tg;
8387 u64 period, quota;
8388 };
8389
8390 /*
8391 * normalize group quota/period to be quota/max_period
8392 * note: units are usecs
8393 */
8394 static u64 normalize_cfs_quota(struct task_group *tg,
8395 struct cfs_schedulable_data *d)
8396 {
8397 u64 quota, period;
8398
8399 if (tg == d->tg) {
8400 period = d->period;
8401 quota = d->quota;
8402 } else {
8403 period = tg_get_cfs_period(tg);
8404 quota = tg_get_cfs_quota(tg);
8405 }
8406
8407 /* note: these should typically be equivalent */
8408 if (quota == RUNTIME_INF || quota == -1)
8409 return RUNTIME_INF;
8410
8411 return to_ratio(period, quota);
8412 }
8413
8414 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8415 {
8416 struct cfs_schedulable_data *d = data;
8417 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8418 s64 quota = 0, parent_quota = -1;
8419
8420 if (!tg->parent) {
8421 quota = RUNTIME_INF;
8422 } else {
8423 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8424
8425 quota = normalize_cfs_quota(tg, d);
8426 parent_quota = parent_b->hierarchical_quota;
8427
8428 /*
8429 * ensure max(child_quota) <= parent_quota, inherit when no
8430 * limit is set
8431 */
8432 if (quota == RUNTIME_INF)
8433 quota = parent_quota;
8434 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8435 return -EINVAL;
8436 }
8437 cfs_b->hierarchical_quota = quota;
8438
8439 return 0;
8440 }
8441
8442 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8443 {
8444 int ret;
8445 struct cfs_schedulable_data data = {
8446 .tg = tg,
8447 .period = period,
8448 .quota = quota,
8449 };
8450
8451 if (quota != RUNTIME_INF) {
8452 do_div(data.period, NSEC_PER_USEC);
8453 do_div(data.quota, NSEC_PER_USEC);
8454 }
8455
8456 rcu_read_lock();
8457 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8458 rcu_read_unlock();
8459
8460 return ret;
8461 }
8462
8463 static int cpu_stats_show(struct seq_file *sf, void *v)
8464 {
8465 struct task_group *tg = css_tg(seq_css(sf));
8466 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8467
8468 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8469 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8470 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8471
8472 return 0;
8473 }
8474 #endif /* CONFIG_CFS_BANDWIDTH */
8475 #endif /* CONFIG_FAIR_GROUP_SCHED */
8476
8477 #ifdef CONFIG_RT_GROUP_SCHED
8478 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8479 struct cftype *cft, s64 val)
8480 {
8481 return sched_group_set_rt_runtime(css_tg(css), val);
8482 }
8483
8484 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8485 struct cftype *cft)
8486 {
8487 return sched_group_rt_runtime(css_tg(css));
8488 }
8489
8490 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8491 struct cftype *cftype, u64 rt_period_us)
8492 {
8493 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8494 }
8495
8496 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8497 struct cftype *cft)
8498 {
8499 return sched_group_rt_period(css_tg(css));
8500 }
8501 #endif /* CONFIG_RT_GROUP_SCHED */
8502
8503 static struct cftype cpu_files[] = {
8504 #ifdef CONFIG_FAIR_GROUP_SCHED
8505 {
8506 .name = "shares",
8507 .read_u64 = cpu_shares_read_u64,
8508 .write_u64 = cpu_shares_write_u64,
8509 },
8510 #endif
8511 #ifdef CONFIG_CFS_BANDWIDTH
8512 {
8513 .name = "cfs_quota_us",
8514 .read_s64 = cpu_cfs_quota_read_s64,
8515 .write_s64 = cpu_cfs_quota_write_s64,
8516 },
8517 {
8518 .name = "cfs_period_us",
8519 .read_u64 = cpu_cfs_period_read_u64,
8520 .write_u64 = cpu_cfs_period_write_u64,
8521 },
8522 {
8523 .name = "stat",
8524 .seq_show = cpu_stats_show,
8525 },
8526 #endif
8527 #ifdef CONFIG_RT_GROUP_SCHED
8528 {
8529 .name = "rt_runtime_us",
8530 .read_s64 = cpu_rt_runtime_read,
8531 .write_s64 = cpu_rt_runtime_write,
8532 },
8533 {
8534 .name = "rt_period_us",
8535 .read_u64 = cpu_rt_period_read_uint,
8536 .write_u64 = cpu_rt_period_write_uint,
8537 },
8538 #endif
8539 { } /* terminate */
8540 };
8541
8542 struct cgroup_subsys cpu_cgrp_subsys = {
8543 .css_alloc = cpu_cgroup_css_alloc,
8544 .css_released = cpu_cgroup_css_released,
8545 .css_free = cpu_cgroup_css_free,
8546 .fork = cpu_cgroup_fork,
8547 .can_attach = cpu_cgroup_can_attach,
8548 .attach = cpu_cgroup_attach,
8549 .legacy_cftypes = cpu_files,
8550 .early_init = true,
8551 };
8552
8553 #endif /* CONFIG_CGROUP_SCHED */
8554
8555 void dump_cpu_task(int cpu)
8556 {
8557 pr_info("Task dump for CPU %d:\n", cpu);
8558 sched_show_task(cpu_curr(cpu));
8559 }
8560
8561 /*
8562 * Nice levels are multiplicative, with a gentle 10% change for every
8563 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8564 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8565 * that remained on nice 0.
8566 *
8567 * The "10% effect" is relative and cumulative: from _any_ nice level,
8568 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8569 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8570 * If a task goes up by ~10% and another task goes down by ~10% then
8571 * the relative distance between them is ~25%.)
8572 */
8573 const int sched_prio_to_weight[40] = {
8574 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8575 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8576 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8577 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8578 /* 0 */ 1024, 820, 655, 526, 423,
8579 /* 5 */ 335, 272, 215, 172, 137,
8580 /* 10 */ 110, 87, 70, 56, 45,
8581 /* 15 */ 36, 29, 23, 18, 15,
8582 };
8583
8584 /*
8585 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8586 *
8587 * In cases where the weight does not change often, we can use the
8588 * precalculated inverse to speed up arithmetics by turning divisions
8589 * into multiplications:
8590 */
8591 const u32 sched_prio_to_wmult[40] = {
8592 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8593 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8594 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8595 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8596 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8597 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8598 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8599 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8600 };
This page took 0.282312 seconds and 6 git commands to generate.