sched/core: Clarify SD_flags comment
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
78
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 #include <asm/irq_regs.h>
82 #include <asm/mutex.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
98
99 void update_rq_clock(struct rq *rq)
100 {
101 s64 delta;
102
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 return;
107
108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 if (delta < 0)
110 return;
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
113 }
114
115 /*
116 * Debugging: various feature bits
117 */
118
119 #define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
124 0;
125
126 #undef SCHED_FEAT
127
128 /*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132 const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
134 /*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
142 /*
143 * period over which we measure -rt task cpu usage in us.
144 * default: 1s
145 */
146 unsigned int sysctl_sched_rt_period = 1000000;
147
148 __read_mostly int scheduler_running;
149
150 /*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154 int sysctl_sched_rt_runtime = 950000;
155
156 /* cpus with isolated domains */
157 cpumask_var_t cpu_isolated_map;
158
159 /*
160 * this_rq_lock - lock this runqueue and disable interrupts.
161 */
162 static struct rq *this_rq_lock(void)
163 __acquires(rq->lock)
164 {
165 struct rq *rq;
166
167 local_irq_disable();
168 rq = this_rq();
169 raw_spin_lock(&rq->lock);
170
171 return rq;
172 }
173
174 /*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
177 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 __acquires(rq->lock)
179 {
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188 rf->cookie = lockdep_pin_lock(&rq->lock);
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196 }
197
198 /*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
201 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204 {
205 struct rq *rq;
206
207 for (;;) {
208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228 rf->cookie = lockdep_pin_lock(&rq->lock);
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237 }
238
239 #ifdef CONFIG_SCHED_HRTICK
240 /*
241 * Use HR-timers to deliver accurate preemption points.
242 */
243
244 static void hrtick_clear(struct rq *rq)
245 {
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248 }
249
250 /*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254 static enum hrtimer_restart hrtick(struct hrtimer *timer)
255 {
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
260 raw_spin_lock(&rq->lock);
261 update_rq_clock(rq);
262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263 raw_spin_unlock(&rq->lock);
264
265 return HRTIMER_NORESTART;
266 }
267
268 #ifdef CONFIG_SMP
269
270 static void __hrtick_restart(struct rq *rq)
271 {
272 struct hrtimer *timer = &rq->hrtick_timer;
273
274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
275 }
276
277 /*
278 * called from hardirq (IPI) context
279 */
280 static void __hrtick_start(void *arg)
281 {
282 struct rq *rq = arg;
283
284 raw_spin_lock(&rq->lock);
285 __hrtick_restart(rq);
286 rq->hrtick_csd_pending = 0;
287 raw_spin_unlock(&rq->lock);
288 }
289
290 /*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 struct hrtimer *timer = &rq->hrtick_timer;
298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
307
308 hrtimer_set_expires(timer, time);
309
310 if (rq == this_rq()) {
311 __hrtick_restart(rq);
312 } else if (!rq->hrtick_csd_pending) {
313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 rq->hrtick_csd_pending = 1;
315 }
316 }
317
318 #else
319 /*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
324 void hrtick_start(struct rq *rq, u64 delay)
325 {
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
333 }
334 #endif /* CONFIG_SMP */
335
336 static void init_rq_hrtick(struct rq *rq)
337 {
338 #ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
340
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344 #endif
345
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
348 }
349 #else /* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
351 {
352 }
353
354 static inline void init_rq_hrtick(struct rq *rq)
355 {
356 }
357 #endif /* CONFIG_SCHED_HRTICK */
358
359 /*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362 #define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375 })
376
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 /*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383 static bool set_nr_and_not_polling(struct task_struct *p)
384 {
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387 }
388
389 /*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 struct thread_info *ti = task_thread_info(p);
398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411 }
412
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
415 {
416 set_tsk_need_resched(p);
417 return true;
418 }
419
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
422 {
423 return false;
424 }
425 #endif
426 #endif
427
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429 {
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
438 * barrier implied by the wakeup in wake_up_q().
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450 }
451
452 void wake_up_q(struct wake_q_head *head)
453 {
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472 }
473
474 /*
475 * resched_curr - mark rq's current task 'to be rescheduled now'.
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
481 void resched_curr(struct rq *rq)
482 {
483 struct task_struct *curr = rq->curr;
484 int cpu;
485
486 lockdep_assert_held(&rq->lock);
487
488 if (test_tsk_need_resched(curr))
489 return;
490
491 cpu = cpu_of(rq);
492
493 if (cpu == smp_processor_id()) {
494 set_tsk_need_resched(curr);
495 set_preempt_need_resched();
496 return;
497 }
498
499 if (set_nr_and_not_polling(curr))
500 smp_send_reschedule(cpu);
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
503 }
504
505 void resched_cpu(int cpu)
506 {
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
511 return;
512 resched_curr(rq);
513 raw_spin_unlock_irqrestore(&rq->lock, flags);
514 }
515
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
518 /*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
526 int get_nohz_timer_target(void)
527 {
528 int i, cpu = smp_processor_id();
529 struct sched_domain *sd;
530
531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 return cpu;
533
534 rcu_read_lock();
535 for_each_domain(cpu, sd) {
536 for_each_cpu(i, sched_domain_span(sd)) {
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 cpu = i;
542 goto unlock;
543 }
544 }
545 }
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
549 unlock:
550 rcu_read_unlock();
551 return cpu;
552 }
553 /*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
563 static void wake_up_idle_cpu(int cpu)
564 {
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
570 if (set_nr_and_not_polling(rq->idle))
571 smp_send_reschedule(cpu);
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
574 }
575
576 static bool wake_up_full_nohz_cpu(int cpu)
577 {
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
584 if (tick_nohz_full_cpu(cpu)) {
585 if (cpu != smp_processor_id() ||
586 tick_nohz_tick_stopped())
587 tick_nohz_full_kick_cpu(cpu);
588 return true;
589 }
590
591 return false;
592 }
593
594 void wake_up_nohz_cpu(int cpu)
595 {
596 if (!wake_up_full_nohz_cpu(cpu))
597 wake_up_idle_cpu(cpu);
598 }
599
600 static inline bool got_nohz_idle_kick(void)
601 {
602 int cpu = smp_processor_id();
603
604 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
605 return false;
606
607 if (idle_cpu(cpu) && !need_resched())
608 return true;
609
610 /*
611 * We can't run Idle Load Balance on this CPU for this time so we
612 * cancel it and clear NOHZ_BALANCE_KICK
613 */
614 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 return false;
616 }
617
618 #else /* CONFIG_NO_HZ_COMMON */
619
620 static inline bool got_nohz_idle_kick(void)
621 {
622 return false;
623 }
624
625 #endif /* CONFIG_NO_HZ_COMMON */
626
627 #ifdef CONFIG_NO_HZ_FULL
628 bool sched_can_stop_tick(struct rq *rq)
629 {
630 int fifo_nr_running;
631
632 /* Deadline tasks, even if single, need the tick */
633 if (rq->dl.dl_nr_running)
634 return false;
635
636 /*
637 * If there are more than one RR tasks, we need the tick to effect the
638 * actual RR behaviour.
639 */
640 if (rq->rt.rr_nr_running) {
641 if (rq->rt.rr_nr_running == 1)
642 return true;
643 else
644 return false;
645 }
646
647 /*
648 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
649 * forced preemption between FIFO tasks.
650 */
651 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
652 if (fifo_nr_running)
653 return true;
654
655 /*
656 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
657 * if there's more than one we need the tick for involuntary
658 * preemption.
659 */
660 if (rq->nr_running > 1)
661 return false;
662
663 return true;
664 }
665 #endif /* CONFIG_NO_HZ_FULL */
666
667 void sched_avg_update(struct rq *rq)
668 {
669 s64 period = sched_avg_period();
670
671 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
672 /*
673 * Inline assembly required to prevent the compiler
674 * optimising this loop into a divmod call.
675 * See __iter_div_u64_rem() for another example of this.
676 */
677 asm("" : "+rm" (rq->age_stamp));
678 rq->age_stamp += period;
679 rq->rt_avg /= 2;
680 }
681 }
682
683 #endif /* CONFIG_SMP */
684
685 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
686 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
687 /*
688 * Iterate task_group tree rooted at *from, calling @down when first entering a
689 * node and @up when leaving it for the final time.
690 *
691 * Caller must hold rcu_lock or sufficient equivalent.
692 */
693 int walk_tg_tree_from(struct task_group *from,
694 tg_visitor down, tg_visitor up, void *data)
695 {
696 struct task_group *parent, *child;
697 int ret;
698
699 parent = from;
700
701 down:
702 ret = (*down)(parent, data);
703 if (ret)
704 goto out;
705 list_for_each_entry_rcu(child, &parent->children, siblings) {
706 parent = child;
707 goto down;
708
709 up:
710 continue;
711 }
712 ret = (*up)(parent, data);
713 if (ret || parent == from)
714 goto out;
715
716 child = parent;
717 parent = parent->parent;
718 if (parent)
719 goto up;
720 out:
721 return ret;
722 }
723
724 int tg_nop(struct task_group *tg, void *data)
725 {
726 return 0;
727 }
728 #endif
729
730 static void set_load_weight(struct task_struct *p)
731 {
732 int prio = p->static_prio - MAX_RT_PRIO;
733 struct load_weight *load = &p->se.load;
734
735 /*
736 * SCHED_IDLE tasks get minimal weight:
737 */
738 if (idle_policy(p->policy)) {
739 load->weight = scale_load(WEIGHT_IDLEPRIO);
740 load->inv_weight = WMULT_IDLEPRIO;
741 return;
742 }
743
744 load->weight = scale_load(sched_prio_to_weight[prio]);
745 load->inv_weight = sched_prio_to_wmult[prio];
746 }
747
748 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
749 {
750 update_rq_clock(rq);
751 if (!(flags & ENQUEUE_RESTORE))
752 sched_info_queued(rq, p);
753 p->sched_class->enqueue_task(rq, p, flags);
754 }
755
756 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
757 {
758 update_rq_clock(rq);
759 if (!(flags & DEQUEUE_SAVE))
760 sched_info_dequeued(rq, p);
761 p->sched_class->dequeue_task(rq, p, flags);
762 }
763
764 void activate_task(struct rq *rq, struct task_struct *p, int flags)
765 {
766 if (task_contributes_to_load(p))
767 rq->nr_uninterruptible--;
768
769 enqueue_task(rq, p, flags);
770 }
771
772 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
773 {
774 if (task_contributes_to_load(p))
775 rq->nr_uninterruptible++;
776
777 dequeue_task(rq, p, flags);
778 }
779
780 static void update_rq_clock_task(struct rq *rq, s64 delta)
781 {
782 /*
783 * In theory, the compile should just see 0 here, and optimize out the call
784 * to sched_rt_avg_update. But I don't trust it...
785 */
786 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
787 s64 steal = 0, irq_delta = 0;
788 #endif
789 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
790 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
791
792 /*
793 * Since irq_time is only updated on {soft,}irq_exit, we might run into
794 * this case when a previous update_rq_clock() happened inside a
795 * {soft,}irq region.
796 *
797 * When this happens, we stop ->clock_task and only update the
798 * prev_irq_time stamp to account for the part that fit, so that a next
799 * update will consume the rest. This ensures ->clock_task is
800 * monotonic.
801 *
802 * It does however cause some slight miss-attribution of {soft,}irq
803 * time, a more accurate solution would be to update the irq_time using
804 * the current rq->clock timestamp, except that would require using
805 * atomic ops.
806 */
807 if (irq_delta > delta)
808 irq_delta = delta;
809
810 rq->prev_irq_time += irq_delta;
811 delta -= irq_delta;
812 #endif
813 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
814 if (static_key_false((&paravirt_steal_rq_enabled))) {
815 steal = paravirt_steal_clock(cpu_of(rq));
816 steal -= rq->prev_steal_time_rq;
817
818 if (unlikely(steal > delta))
819 steal = delta;
820
821 rq->prev_steal_time_rq += steal;
822 delta -= steal;
823 }
824 #endif
825
826 rq->clock_task += delta;
827
828 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
829 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
830 sched_rt_avg_update(rq, irq_delta + steal);
831 #endif
832 }
833
834 void sched_set_stop_task(int cpu, struct task_struct *stop)
835 {
836 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
837 struct task_struct *old_stop = cpu_rq(cpu)->stop;
838
839 if (stop) {
840 /*
841 * Make it appear like a SCHED_FIFO task, its something
842 * userspace knows about and won't get confused about.
843 *
844 * Also, it will make PI more or less work without too
845 * much confusion -- but then, stop work should not
846 * rely on PI working anyway.
847 */
848 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
849
850 stop->sched_class = &stop_sched_class;
851 }
852
853 cpu_rq(cpu)->stop = stop;
854
855 if (old_stop) {
856 /*
857 * Reset it back to a normal scheduling class so that
858 * it can die in pieces.
859 */
860 old_stop->sched_class = &rt_sched_class;
861 }
862 }
863
864 /*
865 * __normal_prio - return the priority that is based on the static prio
866 */
867 static inline int __normal_prio(struct task_struct *p)
868 {
869 return p->static_prio;
870 }
871
872 /*
873 * Calculate the expected normal priority: i.e. priority
874 * without taking RT-inheritance into account. Might be
875 * boosted by interactivity modifiers. Changes upon fork,
876 * setprio syscalls, and whenever the interactivity
877 * estimator recalculates.
878 */
879 static inline int normal_prio(struct task_struct *p)
880 {
881 int prio;
882
883 if (task_has_dl_policy(p))
884 prio = MAX_DL_PRIO-1;
885 else if (task_has_rt_policy(p))
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
890 }
891
892 /*
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
898 */
899 static int effective_prio(struct task_struct *p)
900 {
901 p->normal_prio = normal_prio(p);
902 /*
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
906 */
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
910 }
911
912 /**
913 * task_curr - is this task currently executing on a CPU?
914 * @p: the task in question.
915 *
916 * Return: 1 if the task is currently executing. 0 otherwise.
917 */
918 inline int task_curr(const struct task_struct *p)
919 {
920 return cpu_curr(task_cpu(p)) == p;
921 }
922
923 /*
924 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
925 * use the balance_callback list if you want balancing.
926 *
927 * this means any call to check_class_changed() must be followed by a call to
928 * balance_callback().
929 */
930 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
931 const struct sched_class *prev_class,
932 int oldprio)
933 {
934 if (prev_class != p->sched_class) {
935 if (prev_class->switched_from)
936 prev_class->switched_from(rq, p);
937
938 p->sched_class->switched_to(rq, p);
939 } else if (oldprio != p->prio || dl_task(p))
940 p->sched_class->prio_changed(rq, p, oldprio);
941 }
942
943 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
944 {
945 const struct sched_class *class;
946
947 if (p->sched_class == rq->curr->sched_class) {
948 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
949 } else {
950 for_each_class(class) {
951 if (class == rq->curr->sched_class)
952 break;
953 if (class == p->sched_class) {
954 resched_curr(rq);
955 break;
956 }
957 }
958 }
959
960 /*
961 * A queue event has occurred, and we're going to schedule. In
962 * this case, we can save a useless back to back clock update.
963 */
964 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
965 rq_clock_skip_update(rq, true);
966 }
967
968 #ifdef CONFIG_SMP
969 /*
970 * This is how migration works:
971 *
972 * 1) we invoke migration_cpu_stop() on the target CPU using
973 * stop_one_cpu().
974 * 2) stopper starts to run (implicitly forcing the migrated thread
975 * off the CPU)
976 * 3) it checks whether the migrated task is still in the wrong runqueue.
977 * 4) if it's in the wrong runqueue then the migration thread removes
978 * it and puts it into the right queue.
979 * 5) stopper completes and stop_one_cpu() returns and the migration
980 * is done.
981 */
982
983 /*
984 * move_queued_task - move a queued task to new rq.
985 *
986 * Returns (locked) new rq. Old rq's lock is released.
987 */
988 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
989 {
990 lockdep_assert_held(&rq->lock);
991
992 p->on_rq = TASK_ON_RQ_MIGRATING;
993 dequeue_task(rq, p, 0);
994 set_task_cpu(p, new_cpu);
995 raw_spin_unlock(&rq->lock);
996
997 rq = cpu_rq(new_cpu);
998
999 raw_spin_lock(&rq->lock);
1000 BUG_ON(task_cpu(p) != new_cpu);
1001 enqueue_task(rq, p, 0);
1002 p->on_rq = TASK_ON_RQ_QUEUED;
1003 check_preempt_curr(rq, p, 0);
1004
1005 return rq;
1006 }
1007
1008 struct migration_arg {
1009 struct task_struct *task;
1010 int dest_cpu;
1011 };
1012
1013 /*
1014 * Move (not current) task off this cpu, onto dest cpu. We're doing
1015 * this because either it can't run here any more (set_cpus_allowed()
1016 * away from this CPU, or CPU going down), or because we're
1017 * attempting to rebalance this task on exec (sched_exec).
1018 *
1019 * So we race with normal scheduler movements, but that's OK, as long
1020 * as the task is no longer on this CPU.
1021 */
1022 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1023 {
1024 if (unlikely(!cpu_active(dest_cpu)))
1025 return rq;
1026
1027 /* Affinity changed (again). */
1028 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1029 return rq;
1030
1031 rq = move_queued_task(rq, p, dest_cpu);
1032
1033 return rq;
1034 }
1035
1036 /*
1037 * migration_cpu_stop - this will be executed by a highprio stopper thread
1038 * and performs thread migration by bumping thread off CPU then
1039 * 'pushing' onto another runqueue.
1040 */
1041 static int migration_cpu_stop(void *data)
1042 {
1043 struct migration_arg *arg = data;
1044 struct task_struct *p = arg->task;
1045 struct rq *rq = this_rq();
1046
1047 /*
1048 * The original target cpu might have gone down and we might
1049 * be on another cpu but it doesn't matter.
1050 */
1051 local_irq_disable();
1052 /*
1053 * We need to explicitly wake pending tasks before running
1054 * __migrate_task() such that we will not miss enforcing cpus_allowed
1055 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1056 */
1057 sched_ttwu_pending();
1058
1059 raw_spin_lock(&p->pi_lock);
1060 raw_spin_lock(&rq->lock);
1061 /*
1062 * If task_rq(p) != rq, it cannot be migrated here, because we're
1063 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1064 * we're holding p->pi_lock.
1065 */
1066 if (task_rq(p) == rq && task_on_rq_queued(p))
1067 rq = __migrate_task(rq, p, arg->dest_cpu);
1068 raw_spin_unlock(&rq->lock);
1069 raw_spin_unlock(&p->pi_lock);
1070
1071 local_irq_enable();
1072 return 0;
1073 }
1074
1075 /*
1076 * sched_class::set_cpus_allowed must do the below, but is not required to
1077 * actually call this function.
1078 */
1079 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1080 {
1081 cpumask_copy(&p->cpus_allowed, new_mask);
1082 p->nr_cpus_allowed = cpumask_weight(new_mask);
1083 }
1084
1085 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1086 {
1087 struct rq *rq = task_rq(p);
1088 bool queued, running;
1089
1090 lockdep_assert_held(&p->pi_lock);
1091
1092 queued = task_on_rq_queued(p);
1093 running = task_current(rq, p);
1094
1095 if (queued) {
1096 /*
1097 * Because __kthread_bind() calls this on blocked tasks without
1098 * holding rq->lock.
1099 */
1100 lockdep_assert_held(&rq->lock);
1101 dequeue_task(rq, p, DEQUEUE_SAVE);
1102 }
1103 if (running)
1104 put_prev_task(rq, p);
1105
1106 p->sched_class->set_cpus_allowed(p, new_mask);
1107
1108 if (running)
1109 p->sched_class->set_curr_task(rq);
1110 if (queued)
1111 enqueue_task(rq, p, ENQUEUE_RESTORE);
1112 }
1113
1114 /*
1115 * Change a given task's CPU affinity. Migrate the thread to a
1116 * proper CPU and schedule it away if the CPU it's executing on
1117 * is removed from the allowed bitmask.
1118 *
1119 * NOTE: the caller must have a valid reference to the task, the
1120 * task must not exit() & deallocate itself prematurely. The
1121 * call is not atomic; no spinlocks may be held.
1122 */
1123 static int __set_cpus_allowed_ptr(struct task_struct *p,
1124 const struct cpumask *new_mask, bool check)
1125 {
1126 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1127 unsigned int dest_cpu;
1128 struct rq_flags rf;
1129 struct rq *rq;
1130 int ret = 0;
1131
1132 rq = task_rq_lock(p, &rf);
1133
1134 if (p->flags & PF_KTHREAD) {
1135 /*
1136 * Kernel threads are allowed on online && !active CPUs
1137 */
1138 cpu_valid_mask = cpu_online_mask;
1139 }
1140
1141 /*
1142 * Must re-check here, to close a race against __kthread_bind(),
1143 * sched_setaffinity() is not guaranteed to observe the flag.
1144 */
1145 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1146 ret = -EINVAL;
1147 goto out;
1148 }
1149
1150 if (cpumask_equal(&p->cpus_allowed, new_mask))
1151 goto out;
1152
1153 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1154 ret = -EINVAL;
1155 goto out;
1156 }
1157
1158 do_set_cpus_allowed(p, new_mask);
1159
1160 if (p->flags & PF_KTHREAD) {
1161 /*
1162 * For kernel threads that do indeed end up on online &&
1163 * !active we want to ensure they are strict per-cpu threads.
1164 */
1165 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1166 !cpumask_intersects(new_mask, cpu_active_mask) &&
1167 p->nr_cpus_allowed != 1);
1168 }
1169
1170 /* Can the task run on the task's current CPU? If so, we're done */
1171 if (cpumask_test_cpu(task_cpu(p), new_mask))
1172 goto out;
1173
1174 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1175 if (task_running(rq, p) || p->state == TASK_WAKING) {
1176 struct migration_arg arg = { p, dest_cpu };
1177 /* Need help from migration thread: drop lock and wait. */
1178 task_rq_unlock(rq, p, &rf);
1179 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1180 tlb_migrate_finish(p->mm);
1181 return 0;
1182 } else if (task_on_rq_queued(p)) {
1183 /*
1184 * OK, since we're going to drop the lock immediately
1185 * afterwards anyway.
1186 */
1187 lockdep_unpin_lock(&rq->lock, rf.cookie);
1188 rq = move_queued_task(rq, p, dest_cpu);
1189 lockdep_repin_lock(&rq->lock, rf.cookie);
1190 }
1191 out:
1192 task_rq_unlock(rq, p, &rf);
1193
1194 return ret;
1195 }
1196
1197 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1198 {
1199 return __set_cpus_allowed_ptr(p, new_mask, false);
1200 }
1201 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1202
1203 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1204 {
1205 #ifdef CONFIG_SCHED_DEBUG
1206 /*
1207 * We should never call set_task_cpu() on a blocked task,
1208 * ttwu() will sort out the placement.
1209 */
1210 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1211 !p->on_rq);
1212
1213 /*
1214 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1215 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1216 * time relying on p->on_rq.
1217 */
1218 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1219 p->sched_class == &fair_sched_class &&
1220 (p->on_rq && !task_on_rq_migrating(p)));
1221
1222 #ifdef CONFIG_LOCKDEP
1223 /*
1224 * The caller should hold either p->pi_lock or rq->lock, when changing
1225 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1226 *
1227 * sched_move_task() holds both and thus holding either pins the cgroup,
1228 * see task_group().
1229 *
1230 * Furthermore, all task_rq users should acquire both locks, see
1231 * task_rq_lock().
1232 */
1233 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1234 lockdep_is_held(&task_rq(p)->lock)));
1235 #endif
1236 #endif
1237
1238 trace_sched_migrate_task(p, new_cpu);
1239
1240 if (task_cpu(p) != new_cpu) {
1241 if (p->sched_class->migrate_task_rq)
1242 p->sched_class->migrate_task_rq(p);
1243 p->se.nr_migrations++;
1244 perf_event_task_migrate(p);
1245 }
1246
1247 __set_task_cpu(p, new_cpu);
1248 }
1249
1250 static void __migrate_swap_task(struct task_struct *p, int cpu)
1251 {
1252 if (task_on_rq_queued(p)) {
1253 struct rq *src_rq, *dst_rq;
1254
1255 src_rq = task_rq(p);
1256 dst_rq = cpu_rq(cpu);
1257
1258 p->on_rq = TASK_ON_RQ_MIGRATING;
1259 deactivate_task(src_rq, p, 0);
1260 set_task_cpu(p, cpu);
1261 activate_task(dst_rq, p, 0);
1262 p->on_rq = TASK_ON_RQ_QUEUED;
1263 check_preempt_curr(dst_rq, p, 0);
1264 } else {
1265 /*
1266 * Task isn't running anymore; make it appear like we migrated
1267 * it before it went to sleep. This means on wakeup we make the
1268 * previous cpu our target instead of where it really is.
1269 */
1270 p->wake_cpu = cpu;
1271 }
1272 }
1273
1274 struct migration_swap_arg {
1275 struct task_struct *src_task, *dst_task;
1276 int src_cpu, dst_cpu;
1277 };
1278
1279 static int migrate_swap_stop(void *data)
1280 {
1281 struct migration_swap_arg *arg = data;
1282 struct rq *src_rq, *dst_rq;
1283 int ret = -EAGAIN;
1284
1285 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1286 return -EAGAIN;
1287
1288 src_rq = cpu_rq(arg->src_cpu);
1289 dst_rq = cpu_rq(arg->dst_cpu);
1290
1291 double_raw_lock(&arg->src_task->pi_lock,
1292 &arg->dst_task->pi_lock);
1293 double_rq_lock(src_rq, dst_rq);
1294
1295 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1296 goto unlock;
1297
1298 if (task_cpu(arg->src_task) != arg->src_cpu)
1299 goto unlock;
1300
1301 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1302 goto unlock;
1303
1304 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1305 goto unlock;
1306
1307 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1308 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1309
1310 ret = 0;
1311
1312 unlock:
1313 double_rq_unlock(src_rq, dst_rq);
1314 raw_spin_unlock(&arg->dst_task->pi_lock);
1315 raw_spin_unlock(&arg->src_task->pi_lock);
1316
1317 return ret;
1318 }
1319
1320 /*
1321 * Cross migrate two tasks
1322 */
1323 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1324 {
1325 struct migration_swap_arg arg;
1326 int ret = -EINVAL;
1327
1328 arg = (struct migration_swap_arg){
1329 .src_task = cur,
1330 .src_cpu = task_cpu(cur),
1331 .dst_task = p,
1332 .dst_cpu = task_cpu(p),
1333 };
1334
1335 if (arg.src_cpu == arg.dst_cpu)
1336 goto out;
1337
1338 /*
1339 * These three tests are all lockless; this is OK since all of them
1340 * will be re-checked with proper locks held further down the line.
1341 */
1342 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1343 goto out;
1344
1345 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1346 goto out;
1347
1348 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1349 goto out;
1350
1351 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1352 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1353
1354 out:
1355 return ret;
1356 }
1357
1358 /*
1359 * wait_task_inactive - wait for a thread to unschedule.
1360 *
1361 * If @match_state is nonzero, it's the @p->state value just checked and
1362 * not expected to change. If it changes, i.e. @p might have woken up,
1363 * then return zero. When we succeed in waiting for @p to be off its CPU,
1364 * we return a positive number (its total switch count). If a second call
1365 * a short while later returns the same number, the caller can be sure that
1366 * @p has remained unscheduled the whole time.
1367 *
1368 * The caller must ensure that the task *will* unschedule sometime soon,
1369 * else this function might spin for a *long* time. This function can't
1370 * be called with interrupts off, or it may introduce deadlock with
1371 * smp_call_function() if an IPI is sent by the same process we are
1372 * waiting to become inactive.
1373 */
1374 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1375 {
1376 int running, queued;
1377 struct rq_flags rf;
1378 unsigned long ncsw;
1379 struct rq *rq;
1380
1381 for (;;) {
1382 /*
1383 * We do the initial early heuristics without holding
1384 * any task-queue locks at all. We'll only try to get
1385 * the runqueue lock when things look like they will
1386 * work out!
1387 */
1388 rq = task_rq(p);
1389
1390 /*
1391 * If the task is actively running on another CPU
1392 * still, just relax and busy-wait without holding
1393 * any locks.
1394 *
1395 * NOTE! Since we don't hold any locks, it's not
1396 * even sure that "rq" stays as the right runqueue!
1397 * But we don't care, since "task_running()" will
1398 * return false if the runqueue has changed and p
1399 * is actually now running somewhere else!
1400 */
1401 while (task_running(rq, p)) {
1402 if (match_state && unlikely(p->state != match_state))
1403 return 0;
1404 cpu_relax();
1405 }
1406
1407 /*
1408 * Ok, time to look more closely! We need the rq
1409 * lock now, to be *sure*. If we're wrong, we'll
1410 * just go back and repeat.
1411 */
1412 rq = task_rq_lock(p, &rf);
1413 trace_sched_wait_task(p);
1414 running = task_running(rq, p);
1415 queued = task_on_rq_queued(p);
1416 ncsw = 0;
1417 if (!match_state || p->state == match_state)
1418 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1419 task_rq_unlock(rq, p, &rf);
1420
1421 /*
1422 * If it changed from the expected state, bail out now.
1423 */
1424 if (unlikely(!ncsw))
1425 break;
1426
1427 /*
1428 * Was it really running after all now that we
1429 * checked with the proper locks actually held?
1430 *
1431 * Oops. Go back and try again..
1432 */
1433 if (unlikely(running)) {
1434 cpu_relax();
1435 continue;
1436 }
1437
1438 /*
1439 * It's not enough that it's not actively running,
1440 * it must be off the runqueue _entirely_, and not
1441 * preempted!
1442 *
1443 * So if it was still runnable (but just not actively
1444 * running right now), it's preempted, and we should
1445 * yield - it could be a while.
1446 */
1447 if (unlikely(queued)) {
1448 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1449
1450 set_current_state(TASK_UNINTERRUPTIBLE);
1451 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1452 continue;
1453 }
1454
1455 /*
1456 * Ahh, all good. It wasn't running, and it wasn't
1457 * runnable, which means that it will never become
1458 * running in the future either. We're all done!
1459 */
1460 break;
1461 }
1462
1463 return ncsw;
1464 }
1465
1466 /***
1467 * kick_process - kick a running thread to enter/exit the kernel
1468 * @p: the to-be-kicked thread
1469 *
1470 * Cause a process which is running on another CPU to enter
1471 * kernel-mode, without any delay. (to get signals handled.)
1472 *
1473 * NOTE: this function doesn't have to take the runqueue lock,
1474 * because all it wants to ensure is that the remote task enters
1475 * the kernel. If the IPI races and the task has been migrated
1476 * to another CPU then no harm is done and the purpose has been
1477 * achieved as well.
1478 */
1479 void kick_process(struct task_struct *p)
1480 {
1481 int cpu;
1482
1483 preempt_disable();
1484 cpu = task_cpu(p);
1485 if ((cpu != smp_processor_id()) && task_curr(p))
1486 smp_send_reschedule(cpu);
1487 preempt_enable();
1488 }
1489 EXPORT_SYMBOL_GPL(kick_process);
1490
1491 /*
1492 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1493 *
1494 * A few notes on cpu_active vs cpu_online:
1495 *
1496 * - cpu_active must be a subset of cpu_online
1497 *
1498 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1499 * see __set_cpus_allowed_ptr(). At this point the newly online
1500 * cpu isn't yet part of the sched domains, and balancing will not
1501 * see it.
1502 *
1503 * - on cpu-down we clear cpu_active() to mask the sched domains and
1504 * avoid the load balancer to place new tasks on the to be removed
1505 * cpu. Existing tasks will remain running there and will be taken
1506 * off.
1507 *
1508 * This means that fallback selection must not select !active CPUs.
1509 * And can assume that any active CPU must be online. Conversely
1510 * select_task_rq() below may allow selection of !active CPUs in order
1511 * to satisfy the above rules.
1512 */
1513 static int select_fallback_rq(int cpu, struct task_struct *p)
1514 {
1515 int nid = cpu_to_node(cpu);
1516 const struct cpumask *nodemask = NULL;
1517 enum { cpuset, possible, fail } state = cpuset;
1518 int dest_cpu;
1519
1520 /*
1521 * If the node that the cpu is on has been offlined, cpu_to_node()
1522 * will return -1. There is no cpu on the node, and we should
1523 * select the cpu on the other node.
1524 */
1525 if (nid != -1) {
1526 nodemask = cpumask_of_node(nid);
1527
1528 /* Look for allowed, online CPU in same node. */
1529 for_each_cpu(dest_cpu, nodemask) {
1530 if (!cpu_active(dest_cpu))
1531 continue;
1532 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1533 return dest_cpu;
1534 }
1535 }
1536
1537 for (;;) {
1538 /* Any allowed, online CPU? */
1539 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1540 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1541 continue;
1542 if (!cpu_online(dest_cpu))
1543 continue;
1544 goto out;
1545 }
1546
1547 /* No more Mr. Nice Guy. */
1548 switch (state) {
1549 case cpuset:
1550 if (IS_ENABLED(CONFIG_CPUSETS)) {
1551 cpuset_cpus_allowed_fallback(p);
1552 state = possible;
1553 break;
1554 }
1555 /* fall-through */
1556 case possible:
1557 do_set_cpus_allowed(p, cpu_possible_mask);
1558 state = fail;
1559 break;
1560
1561 case fail:
1562 BUG();
1563 break;
1564 }
1565 }
1566
1567 out:
1568 if (state != cpuset) {
1569 /*
1570 * Don't tell them about moving exiting tasks or
1571 * kernel threads (both mm NULL), since they never
1572 * leave kernel.
1573 */
1574 if (p->mm && printk_ratelimit()) {
1575 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1576 task_pid_nr(p), p->comm, cpu);
1577 }
1578 }
1579
1580 return dest_cpu;
1581 }
1582
1583 /*
1584 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1585 */
1586 static inline
1587 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1588 {
1589 lockdep_assert_held(&p->pi_lock);
1590
1591 if (tsk_nr_cpus_allowed(p) > 1)
1592 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1593 else
1594 cpu = cpumask_any(tsk_cpus_allowed(p));
1595
1596 /*
1597 * In order not to call set_task_cpu() on a blocking task we need
1598 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1599 * cpu.
1600 *
1601 * Since this is common to all placement strategies, this lives here.
1602 *
1603 * [ this allows ->select_task() to simply return task_cpu(p) and
1604 * not worry about this generic constraint ]
1605 */
1606 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1607 !cpu_online(cpu)))
1608 cpu = select_fallback_rq(task_cpu(p), p);
1609
1610 return cpu;
1611 }
1612
1613 static void update_avg(u64 *avg, u64 sample)
1614 {
1615 s64 diff = sample - *avg;
1616 *avg += diff >> 3;
1617 }
1618
1619 #else
1620
1621 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1622 const struct cpumask *new_mask, bool check)
1623 {
1624 return set_cpus_allowed_ptr(p, new_mask);
1625 }
1626
1627 #endif /* CONFIG_SMP */
1628
1629 static void
1630 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1631 {
1632 #ifdef CONFIG_SCHEDSTATS
1633 struct rq *rq = this_rq();
1634
1635 #ifdef CONFIG_SMP
1636 int this_cpu = smp_processor_id();
1637
1638 if (cpu == this_cpu) {
1639 schedstat_inc(rq, ttwu_local);
1640 schedstat_inc(p, se.statistics.nr_wakeups_local);
1641 } else {
1642 struct sched_domain *sd;
1643
1644 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1645 rcu_read_lock();
1646 for_each_domain(this_cpu, sd) {
1647 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1648 schedstat_inc(sd, ttwu_wake_remote);
1649 break;
1650 }
1651 }
1652 rcu_read_unlock();
1653 }
1654
1655 if (wake_flags & WF_MIGRATED)
1656 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1657
1658 #endif /* CONFIG_SMP */
1659
1660 schedstat_inc(rq, ttwu_count);
1661 schedstat_inc(p, se.statistics.nr_wakeups);
1662
1663 if (wake_flags & WF_SYNC)
1664 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1665
1666 #endif /* CONFIG_SCHEDSTATS */
1667 }
1668
1669 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1670 {
1671 activate_task(rq, p, en_flags);
1672 p->on_rq = TASK_ON_RQ_QUEUED;
1673
1674 /* if a worker is waking up, notify workqueue */
1675 if (p->flags & PF_WQ_WORKER)
1676 wq_worker_waking_up(p, cpu_of(rq));
1677 }
1678
1679 /*
1680 * Mark the task runnable and perform wakeup-preemption.
1681 */
1682 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1683 struct pin_cookie cookie)
1684 {
1685 check_preempt_curr(rq, p, wake_flags);
1686 p->state = TASK_RUNNING;
1687 trace_sched_wakeup(p);
1688
1689 #ifdef CONFIG_SMP
1690 if (p->sched_class->task_woken) {
1691 /*
1692 * Our task @p is fully woken up and running; so its safe to
1693 * drop the rq->lock, hereafter rq is only used for statistics.
1694 */
1695 lockdep_unpin_lock(&rq->lock, cookie);
1696 p->sched_class->task_woken(rq, p);
1697 lockdep_repin_lock(&rq->lock, cookie);
1698 }
1699
1700 if (rq->idle_stamp) {
1701 u64 delta = rq_clock(rq) - rq->idle_stamp;
1702 u64 max = 2*rq->max_idle_balance_cost;
1703
1704 update_avg(&rq->avg_idle, delta);
1705
1706 if (rq->avg_idle > max)
1707 rq->avg_idle = max;
1708
1709 rq->idle_stamp = 0;
1710 }
1711 #endif
1712 }
1713
1714 static void
1715 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1716 struct pin_cookie cookie)
1717 {
1718 int en_flags = ENQUEUE_WAKEUP;
1719
1720 lockdep_assert_held(&rq->lock);
1721
1722 #ifdef CONFIG_SMP
1723 if (p->sched_contributes_to_load)
1724 rq->nr_uninterruptible--;
1725
1726 if (wake_flags & WF_MIGRATED)
1727 en_flags |= ENQUEUE_MIGRATED;
1728 #endif
1729
1730 ttwu_activate(rq, p, en_flags);
1731 ttwu_do_wakeup(rq, p, wake_flags, cookie);
1732 }
1733
1734 /*
1735 * Called in case the task @p isn't fully descheduled from its runqueue,
1736 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1737 * since all we need to do is flip p->state to TASK_RUNNING, since
1738 * the task is still ->on_rq.
1739 */
1740 static int ttwu_remote(struct task_struct *p, int wake_flags)
1741 {
1742 struct rq_flags rf;
1743 struct rq *rq;
1744 int ret = 0;
1745
1746 rq = __task_rq_lock(p, &rf);
1747 if (task_on_rq_queued(p)) {
1748 /* check_preempt_curr() may use rq clock */
1749 update_rq_clock(rq);
1750 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1751 ret = 1;
1752 }
1753 __task_rq_unlock(rq, &rf);
1754
1755 return ret;
1756 }
1757
1758 #ifdef CONFIG_SMP
1759 void sched_ttwu_pending(void)
1760 {
1761 struct rq *rq = this_rq();
1762 struct llist_node *llist = llist_del_all(&rq->wake_list);
1763 struct pin_cookie cookie;
1764 struct task_struct *p;
1765 unsigned long flags;
1766
1767 if (!llist)
1768 return;
1769
1770 raw_spin_lock_irqsave(&rq->lock, flags);
1771 cookie = lockdep_pin_lock(&rq->lock);
1772
1773 while (llist) {
1774 int wake_flags = 0;
1775
1776 p = llist_entry(llist, struct task_struct, wake_entry);
1777 llist = llist_next(llist);
1778
1779 if (p->sched_remote_wakeup)
1780 wake_flags = WF_MIGRATED;
1781
1782 ttwu_do_activate(rq, p, wake_flags, cookie);
1783 }
1784
1785 lockdep_unpin_lock(&rq->lock, cookie);
1786 raw_spin_unlock_irqrestore(&rq->lock, flags);
1787 }
1788
1789 void scheduler_ipi(void)
1790 {
1791 /*
1792 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1793 * TIF_NEED_RESCHED remotely (for the first time) will also send
1794 * this IPI.
1795 */
1796 preempt_fold_need_resched();
1797
1798 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1799 return;
1800
1801 /*
1802 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1803 * traditionally all their work was done from the interrupt return
1804 * path. Now that we actually do some work, we need to make sure
1805 * we do call them.
1806 *
1807 * Some archs already do call them, luckily irq_enter/exit nest
1808 * properly.
1809 *
1810 * Arguably we should visit all archs and update all handlers,
1811 * however a fair share of IPIs are still resched only so this would
1812 * somewhat pessimize the simple resched case.
1813 */
1814 irq_enter();
1815 sched_ttwu_pending();
1816
1817 /*
1818 * Check if someone kicked us for doing the nohz idle load balance.
1819 */
1820 if (unlikely(got_nohz_idle_kick())) {
1821 this_rq()->idle_balance = 1;
1822 raise_softirq_irqoff(SCHED_SOFTIRQ);
1823 }
1824 irq_exit();
1825 }
1826
1827 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1828 {
1829 struct rq *rq = cpu_rq(cpu);
1830
1831 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1832
1833 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1834 if (!set_nr_if_polling(rq->idle))
1835 smp_send_reschedule(cpu);
1836 else
1837 trace_sched_wake_idle_without_ipi(cpu);
1838 }
1839 }
1840
1841 void wake_up_if_idle(int cpu)
1842 {
1843 struct rq *rq = cpu_rq(cpu);
1844 unsigned long flags;
1845
1846 rcu_read_lock();
1847
1848 if (!is_idle_task(rcu_dereference(rq->curr)))
1849 goto out;
1850
1851 if (set_nr_if_polling(rq->idle)) {
1852 trace_sched_wake_idle_without_ipi(cpu);
1853 } else {
1854 raw_spin_lock_irqsave(&rq->lock, flags);
1855 if (is_idle_task(rq->curr))
1856 smp_send_reschedule(cpu);
1857 /* Else cpu is not in idle, do nothing here */
1858 raw_spin_unlock_irqrestore(&rq->lock, flags);
1859 }
1860
1861 out:
1862 rcu_read_unlock();
1863 }
1864
1865 bool cpus_share_cache(int this_cpu, int that_cpu)
1866 {
1867 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1868 }
1869 #endif /* CONFIG_SMP */
1870
1871 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1872 {
1873 struct rq *rq = cpu_rq(cpu);
1874 struct pin_cookie cookie;
1875
1876 #if defined(CONFIG_SMP)
1877 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1878 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1879 ttwu_queue_remote(p, cpu, wake_flags);
1880 return;
1881 }
1882 #endif
1883
1884 raw_spin_lock(&rq->lock);
1885 cookie = lockdep_pin_lock(&rq->lock);
1886 ttwu_do_activate(rq, p, wake_flags, cookie);
1887 lockdep_unpin_lock(&rq->lock, cookie);
1888 raw_spin_unlock(&rq->lock);
1889 }
1890
1891 /*
1892 * Notes on Program-Order guarantees on SMP systems.
1893 *
1894 * MIGRATION
1895 *
1896 * The basic program-order guarantee on SMP systems is that when a task [t]
1897 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1898 * execution on its new cpu [c1].
1899 *
1900 * For migration (of runnable tasks) this is provided by the following means:
1901 *
1902 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1903 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1904 * rq(c1)->lock (if not at the same time, then in that order).
1905 * C) LOCK of the rq(c1)->lock scheduling in task
1906 *
1907 * Transitivity guarantees that B happens after A and C after B.
1908 * Note: we only require RCpc transitivity.
1909 * Note: the cpu doing B need not be c0 or c1
1910 *
1911 * Example:
1912 *
1913 * CPU0 CPU1 CPU2
1914 *
1915 * LOCK rq(0)->lock
1916 * sched-out X
1917 * sched-in Y
1918 * UNLOCK rq(0)->lock
1919 *
1920 * LOCK rq(0)->lock // orders against CPU0
1921 * dequeue X
1922 * UNLOCK rq(0)->lock
1923 *
1924 * LOCK rq(1)->lock
1925 * enqueue X
1926 * UNLOCK rq(1)->lock
1927 *
1928 * LOCK rq(1)->lock // orders against CPU2
1929 * sched-out Z
1930 * sched-in X
1931 * UNLOCK rq(1)->lock
1932 *
1933 *
1934 * BLOCKING -- aka. SLEEP + WAKEUP
1935 *
1936 * For blocking we (obviously) need to provide the same guarantee as for
1937 * migration. However the means are completely different as there is no lock
1938 * chain to provide order. Instead we do:
1939 *
1940 * 1) smp_store_release(X->on_cpu, 0)
1941 * 2) smp_cond_load_acquire(!X->on_cpu)
1942 *
1943 * Example:
1944 *
1945 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1946 *
1947 * LOCK rq(0)->lock LOCK X->pi_lock
1948 * dequeue X
1949 * sched-out X
1950 * smp_store_release(X->on_cpu, 0);
1951 *
1952 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1953 * X->state = WAKING
1954 * set_task_cpu(X,2)
1955 *
1956 * LOCK rq(2)->lock
1957 * enqueue X
1958 * X->state = RUNNING
1959 * UNLOCK rq(2)->lock
1960 *
1961 * LOCK rq(2)->lock // orders against CPU1
1962 * sched-out Z
1963 * sched-in X
1964 * UNLOCK rq(2)->lock
1965 *
1966 * UNLOCK X->pi_lock
1967 * UNLOCK rq(0)->lock
1968 *
1969 *
1970 * However; for wakeups there is a second guarantee we must provide, namely we
1971 * must observe the state that lead to our wakeup. That is, not only must our
1972 * task observe its own prior state, it must also observe the stores prior to
1973 * its wakeup.
1974 *
1975 * This means that any means of doing remote wakeups must order the CPU doing
1976 * the wakeup against the CPU the task is going to end up running on. This,
1977 * however, is already required for the regular Program-Order guarantee above,
1978 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1979 *
1980 */
1981
1982 /**
1983 * try_to_wake_up - wake up a thread
1984 * @p: the thread to be awakened
1985 * @state: the mask of task states that can be woken
1986 * @wake_flags: wake modifier flags (WF_*)
1987 *
1988 * Put it on the run-queue if it's not already there. The "current"
1989 * thread is always on the run-queue (except when the actual
1990 * re-schedule is in progress), and as such you're allowed to do
1991 * the simpler "current->state = TASK_RUNNING" to mark yourself
1992 * runnable without the overhead of this.
1993 *
1994 * Return: %true if @p was woken up, %false if it was already running.
1995 * or @state didn't match @p's state.
1996 */
1997 static int
1998 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1999 {
2000 unsigned long flags;
2001 int cpu, success = 0;
2002
2003 /*
2004 * If we are going to wake up a thread waiting for CONDITION we
2005 * need to ensure that CONDITION=1 done by the caller can not be
2006 * reordered with p->state check below. This pairs with mb() in
2007 * set_current_state() the waiting thread does.
2008 */
2009 smp_mb__before_spinlock();
2010 raw_spin_lock_irqsave(&p->pi_lock, flags);
2011 if (!(p->state & state))
2012 goto out;
2013
2014 trace_sched_waking(p);
2015
2016 success = 1; /* we're going to change ->state */
2017 cpu = task_cpu(p);
2018
2019 if (p->on_rq && ttwu_remote(p, wake_flags))
2020 goto stat;
2021
2022 #ifdef CONFIG_SMP
2023 /*
2024 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2025 * possible to, falsely, observe p->on_cpu == 0.
2026 *
2027 * One must be running (->on_cpu == 1) in order to remove oneself
2028 * from the runqueue.
2029 *
2030 * [S] ->on_cpu = 1; [L] ->on_rq
2031 * UNLOCK rq->lock
2032 * RMB
2033 * LOCK rq->lock
2034 * [S] ->on_rq = 0; [L] ->on_cpu
2035 *
2036 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2037 * from the consecutive calls to schedule(); the first switching to our
2038 * task, the second putting it to sleep.
2039 */
2040 smp_rmb();
2041
2042 /*
2043 * If the owning (remote) cpu is still in the middle of schedule() with
2044 * this task as prev, wait until its done referencing the task.
2045 *
2046 * Pairs with the smp_store_release() in finish_lock_switch().
2047 *
2048 * This ensures that tasks getting woken will be fully ordered against
2049 * their previous state and preserve Program Order.
2050 */
2051 smp_cond_load_acquire(&p->on_cpu, !VAL);
2052
2053 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2054 p->state = TASK_WAKING;
2055
2056 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2057 if (task_cpu(p) != cpu) {
2058 wake_flags |= WF_MIGRATED;
2059 set_task_cpu(p, cpu);
2060 }
2061 #endif /* CONFIG_SMP */
2062
2063 ttwu_queue(p, cpu, wake_flags);
2064 stat:
2065 if (schedstat_enabled())
2066 ttwu_stat(p, cpu, wake_flags);
2067 out:
2068 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2069
2070 return success;
2071 }
2072
2073 /**
2074 * try_to_wake_up_local - try to wake up a local task with rq lock held
2075 * @p: the thread to be awakened
2076 * @cookie: context's cookie for pinning
2077 *
2078 * Put @p on the run-queue if it's not already there. The caller must
2079 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2080 * the current task.
2081 */
2082 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2083 {
2084 struct rq *rq = task_rq(p);
2085
2086 if (WARN_ON_ONCE(rq != this_rq()) ||
2087 WARN_ON_ONCE(p == current))
2088 return;
2089
2090 lockdep_assert_held(&rq->lock);
2091
2092 if (!raw_spin_trylock(&p->pi_lock)) {
2093 /*
2094 * This is OK, because current is on_cpu, which avoids it being
2095 * picked for load-balance and preemption/IRQs are still
2096 * disabled avoiding further scheduler activity on it and we've
2097 * not yet picked a replacement task.
2098 */
2099 lockdep_unpin_lock(&rq->lock, cookie);
2100 raw_spin_unlock(&rq->lock);
2101 raw_spin_lock(&p->pi_lock);
2102 raw_spin_lock(&rq->lock);
2103 lockdep_repin_lock(&rq->lock, cookie);
2104 }
2105
2106 if (!(p->state & TASK_NORMAL))
2107 goto out;
2108
2109 trace_sched_waking(p);
2110
2111 if (!task_on_rq_queued(p))
2112 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2113
2114 ttwu_do_wakeup(rq, p, 0, cookie);
2115 if (schedstat_enabled())
2116 ttwu_stat(p, smp_processor_id(), 0);
2117 out:
2118 raw_spin_unlock(&p->pi_lock);
2119 }
2120
2121 /**
2122 * wake_up_process - Wake up a specific process
2123 * @p: The process to be woken up.
2124 *
2125 * Attempt to wake up the nominated process and move it to the set of runnable
2126 * processes.
2127 *
2128 * Return: 1 if the process was woken up, 0 if it was already running.
2129 *
2130 * It may be assumed that this function implies a write memory barrier before
2131 * changing the task state if and only if any tasks are woken up.
2132 */
2133 int wake_up_process(struct task_struct *p)
2134 {
2135 return try_to_wake_up(p, TASK_NORMAL, 0);
2136 }
2137 EXPORT_SYMBOL(wake_up_process);
2138
2139 int wake_up_state(struct task_struct *p, unsigned int state)
2140 {
2141 return try_to_wake_up(p, state, 0);
2142 }
2143
2144 /*
2145 * This function clears the sched_dl_entity static params.
2146 */
2147 void __dl_clear_params(struct task_struct *p)
2148 {
2149 struct sched_dl_entity *dl_se = &p->dl;
2150
2151 dl_se->dl_runtime = 0;
2152 dl_se->dl_deadline = 0;
2153 dl_se->dl_period = 0;
2154 dl_se->flags = 0;
2155 dl_se->dl_bw = 0;
2156
2157 dl_se->dl_throttled = 0;
2158 dl_se->dl_yielded = 0;
2159 }
2160
2161 /*
2162 * Perform scheduler related setup for a newly forked process p.
2163 * p is forked by current.
2164 *
2165 * __sched_fork() is basic setup used by init_idle() too:
2166 */
2167 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2168 {
2169 p->on_rq = 0;
2170
2171 p->se.on_rq = 0;
2172 p->se.exec_start = 0;
2173 p->se.sum_exec_runtime = 0;
2174 p->se.prev_sum_exec_runtime = 0;
2175 p->se.nr_migrations = 0;
2176 p->se.vruntime = 0;
2177 INIT_LIST_HEAD(&p->se.group_node);
2178
2179 #ifdef CONFIG_FAIR_GROUP_SCHED
2180 p->se.cfs_rq = NULL;
2181 #endif
2182
2183 #ifdef CONFIG_SCHEDSTATS
2184 /* Even if schedstat is disabled, there should not be garbage */
2185 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2186 #endif
2187
2188 RB_CLEAR_NODE(&p->dl.rb_node);
2189 init_dl_task_timer(&p->dl);
2190 __dl_clear_params(p);
2191
2192 INIT_LIST_HEAD(&p->rt.run_list);
2193 p->rt.timeout = 0;
2194 p->rt.time_slice = sched_rr_timeslice;
2195 p->rt.on_rq = 0;
2196 p->rt.on_list = 0;
2197
2198 #ifdef CONFIG_PREEMPT_NOTIFIERS
2199 INIT_HLIST_HEAD(&p->preempt_notifiers);
2200 #endif
2201
2202 #ifdef CONFIG_NUMA_BALANCING
2203 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2204 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2205 p->mm->numa_scan_seq = 0;
2206 }
2207
2208 if (clone_flags & CLONE_VM)
2209 p->numa_preferred_nid = current->numa_preferred_nid;
2210 else
2211 p->numa_preferred_nid = -1;
2212
2213 p->node_stamp = 0ULL;
2214 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2215 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2216 p->numa_work.next = &p->numa_work;
2217 p->numa_faults = NULL;
2218 p->last_task_numa_placement = 0;
2219 p->last_sum_exec_runtime = 0;
2220
2221 p->numa_group = NULL;
2222 #endif /* CONFIG_NUMA_BALANCING */
2223 }
2224
2225 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2226
2227 #ifdef CONFIG_NUMA_BALANCING
2228
2229 void set_numabalancing_state(bool enabled)
2230 {
2231 if (enabled)
2232 static_branch_enable(&sched_numa_balancing);
2233 else
2234 static_branch_disable(&sched_numa_balancing);
2235 }
2236
2237 #ifdef CONFIG_PROC_SYSCTL
2238 int sysctl_numa_balancing(struct ctl_table *table, int write,
2239 void __user *buffer, size_t *lenp, loff_t *ppos)
2240 {
2241 struct ctl_table t;
2242 int err;
2243 int state = static_branch_likely(&sched_numa_balancing);
2244
2245 if (write && !capable(CAP_SYS_ADMIN))
2246 return -EPERM;
2247
2248 t = *table;
2249 t.data = &state;
2250 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2251 if (err < 0)
2252 return err;
2253 if (write)
2254 set_numabalancing_state(state);
2255 return err;
2256 }
2257 #endif
2258 #endif
2259
2260 #ifdef CONFIG_SCHEDSTATS
2261
2262 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2263 static bool __initdata __sched_schedstats = false;
2264
2265 static void set_schedstats(bool enabled)
2266 {
2267 if (enabled)
2268 static_branch_enable(&sched_schedstats);
2269 else
2270 static_branch_disable(&sched_schedstats);
2271 }
2272
2273 void force_schedstat_enabled(void)
2274 {
2275 if (!schedstat_enabled()) {
2276 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2277 static_branch_enable(&sched_schedstats);
2278 }
2279 }
2280
2281 static int __init setup_schedstats(char *str)
2282 {
2283 int ret = 0;
2284 if (!str)
2285 goto out;
2286
2287 /*
2288 * This code is called before jump labels have been set up, so we can't
2289 * change the static branch directly just yet. Instead set a temporary
2290 * variable so init_schedstats() can do it later.
2291 */
2292 if (!strcmp(str, "enable")) {
2293 __sched_schedstats = true;
2294 ret = 1;
2295 } else if (!strcmp(str, "disable")) {
2296 __sched_schedstats = false;
2297 ret = 1;
2298 }
2299 out:
2300 if (!ret)
2301 pr_warn("Unable to parse schedstats=\n");
2302
2303 return ret;
2304 }
2305 __setup("schedstats=", setup_schedstats);
2306
2307 static void __init init_schedstats(void)
2308 {
2309 set_schedstats(__sched_schedstats);
2310 }
2311
2312 #ifdef CONFIG_PROC_SYSCTL
2313 int sysctl_schedstats(struct ctl_table *table, int write,
2314 void __user *buffer, size_t *lenp, loff_t *ppos)
2315 {
2316 struct ctl_table t;
2317 int err;
2318 int state = static_branch_likely(&sched_schedstats);
2319
2320 if (write && !capable(CAP_SYS_ADMIN))
2321 return -EPERM;
2322
2323 t = *table;
2324 t.data = &state;
2325 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2326 if (err < 0)
2327 return err;
2328 if (write)
2329 set_schedstats(state);
2330 return err;
2331 }
2332 #endif /* CONFIG_PROC_SYSCTL */
2333 #else /* !CONFIG_SCHEDSTATS */
2334 static inline void init_schedstats(void) {}
2335 #endif /* CONFIG_SCHEDSTATS */
2336
2337 /*
2338 * fork()/clone()-time setup:
2339 */
2340 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2341 {
2342 unsigned long flags;
2343 int cpu = get_cpu();
2344
2345 __sched_fork(clone_flags, p);
2346 /*
2347 * We mark the process as NEW here. This guarantees that
2348 * nobody will actually run it, and a signal or other external
2349 * event cannot wake it up and insert it on the runqueue either.
2350 */
2351 p->state = TASK_NEW;
2352
2353 /*
2354 * Make sure we do not leak PI boosting priority to the child.
2355 */
2356 p->prio = current->normal_prio;
2357
2358 /*
2359 * Revert to default priority/policy on fork if requested.
2360 */
2361 if (unlikely(p->sched_reset_on_fork)) {
2362 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2363 p->policy = SCHED_NORMAL;
2364 p->static_prio = NICE_TO_PRIO(0);
2365 p->rt_priority = 0;
2366 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2367 p->static_prio = NICE_TO_PRIO(0);
2368
2369 p->prio = p->normal_prio = __normal_prio(p);
2370 set_load_weight(p);
2371
2372 /*
2373 * We don't need the reset flag anymore after the fork. It has
2374 * fulfilled its duty:
2375 */
2376 p->sched_reset_on_fork = 0;
2377 }
2378
2379 if (dl_prio(p->prio)) {
2380 put_cpu();
2381 return -EAGAIN;
2382 } else if (rt_prio(p->prio)) {
2383 p->sched_class = &rt_sched_class;
2384 } else {
2385 p->sched_class = &fair_sched_class;
2386 }
2387
2388 init_entity_runnable_average(&p->se);
2389
2390 /*
2391 * The child is not yet in the pid-hash so no cgroup attach races,
2392 * and the cgroup is pinned to this child due to cgroup_fork()
2393 * is ran before sched_fork().
2394 *
2395 * Silence PROVE_RCU.
2396 */
2397 raw_spin_lock_irqsave(&p->pi_lock, flags);
2398 /*
2399 * We're setting the cpu for the first time, we don't migrate,
2400 * so use __set_task_cpu().
2401 */
2402 __set_task_cpu(p, cpu);
2403 if (p->sched_class->task_fork)
2404 p->sched_class->task_fork(p);
2405 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2406
2407 #ifdef CONFIG_SCHED_INFO
2408 if (likely(sched_info_on()))
2409 memset(&p->sched_info, 0, sizeof(p->sched_info));
2410 #endif
2411 #if defined(CONFIG_SMP)
2412 p->on_cpu = 0;
2413 #endif
2414 init_task_preempt_count(p);
2415 #ifdef CONFIG_SMP
2416 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2417 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2418 #endif
2419
2420 put_cpu();
2421 return 0;
2422 }
2423
2424 unsigned long to_ratio(u64 period, u64 runtime)
2425 {
2426 if (runtime == RUNTIME_INF)
2427 return 1ULL << 20;
2428
2429 /*
2430 * Doing this here saves a lot of checks in all
2431 * the calling paths, and returning zero seems
2432 * safe for them anyway.
2433 */
2434 if (period == 0)
2435 return 0;
2436
2437 return div64_u64(runtime << 20, period);
2438 }
2439
2440 #ifdef CONFIG_SMP
2441 inline struct dl_bw *dl_bw_of(int i)
2442 {
2443 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2444 "sched RCU must be held");
2445 return &cpu_rq(i)->rd->dl_bw;
2446 }
2447
2448 static inline int dl_bw_cpus(int i)
2449 {
2450 struct root_domain *rd = cpu_rq(i)->rd;
2451 int cpus = 0;
2452
2453 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2454 "sched RCU must be held");
2455 for_each_cpu_and(i, rd->span, cpu_active_mask)
2456 cpus++;
2457
2458 return cpus;
2459 }
2460 #else
2461 inline struct dl_bw *dl_bw_of(int i)
2462 {
2463 return &cpu_rq(i)->dl.dl_bw;
2464 }
2465
2466 static inline int dl_bw_cpus(int i)
2467 {
2468 return 1;
2469 }
2470 #endif
2471
2472 /*
2473 * We must be sure that accepting a new task (or allowing changing the
2474 * parameters of an existing one) is consistent with the bandwidth
2475 * constraints. If yes, this function also accordingly updates the currently
2476 * allocated bandwidth to reflect the new situation.
2477 *
2478 * This function is called while holding p's rq->lock.
2479 *
2480 * XXX we should delay bw change until the task's 0-lag point, see
2481 * __setparam_dl().
2482 */
2483 static int dl_overflow(struct task_struct *p, int policy,
2484 const struct sched_attr *attr)
2485 {
2486
2487 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2488 u64 period = attr->sched_period ?: attr->sched_deadline;
2489 u64 runtime = attr->sched_runtime;
2490 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2491 int cpus, err = -1;
2492
2493 /* !deadline task may carry old deadline bandwidth */
2494 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2495 return 0;
2496
2497 /*
2498 * Either if a task, enters, leave, or stays -deadline but changes
2499 * its parameters, we may need to update accordingly the total
2500 * allocated bandwidth of the container.
2501 */
2502 raw_spin_lock(&dl_b->lock);
2503 cpus = dl_bw_cpus(task_cpu(p));
2504 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2505 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2506 __dl_add(dl_b, new_bw);
2507 err = 0;
2508 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2509 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2510 __dl_clear(dl_b, p->dl.dl_bw);
2511 __dl_add(dl_b, new_bw);
2512 err = 0;
2513 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2514 __dl_clear(dl_b, p->dl.dl_bw);
2515 err = 0;
2516 }
2517 raw_spin_unlock(&dl_b->lock);
2518
2519 return err;
2520 }
2521
2522 extern void init_dl_bw(struct dl_bw *dl_b);
2523
2524 /*
2525 * wake_up_new_task - wake up a newly created task for the first time.
2526 *
2527 * This function will do some initial scheduler statistics housekeeping
2528 * that must be done for every newly created context, then puts the task
2529 * on the runqueue and wakes it.
2530 */
2531 void wake_up_new_task(struct task_struct *p)
2532 {
2533 struct rq_flags rf;
2534 struct rq *rq;
2535
2536 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2537 p->state = TASK_RUNNING;
2538 #ifdef CONFIG_SMP
2539 /*
2540 * Fork balancing, do it here and not earlier because:
2541 * - cpus_allowed can change in the fork path
2542 * - any previously selected cpu might disappear through hotplug
2543 *
2544 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2545 * as we're not fully set-up yet.
2546 */
2547 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2548 #endif
2549 rq = __task_rq_lock(p, &rf);
2550 post_init_entity_util_avg(&p->se);
2551
2552 activate_task(rq, p, 0);
2553 p->on_rq = TASK_ON_RQ_QUEUED;
2554 trace_sched_wakeup_new(p);
2555 check_preempt_curr(rq, p, WF_FORK);
2556 #ifdef CONFIG_SMP
2557 if (p->sched_class->task_woken) {
2558 /*
2559 * Nothing relies on rq->lock after this, so its fine to
2560 * drop it.
2561 */
2562 lockdep_unpin_lock(&rq->lock, rf.cookie);
2563 p->sched_class->task_woken(rq, p);
2564 lockdep_repin_lock(&rq->lock, rf.cookie);
2565 }
2566 #endif
2567 task_rq_unlock(rq, p, &rf);
2568 }
2569
2570 #ifdef CONFIG_PREEMPT_NOTIFIERS
2571
2572 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2573
2574 void preempt_notifier_inc(void)
2575 {
2576 static_key_slow_inc(&preempt_notifier_key);
2577 }
2578 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2579
2580 void preempt_notifier_dec(void)
2581 {
2582 static_key_slow_dec(&preempt_notifier_key);
2583 }
2584 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2585
2586 /**
2587 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2588 * @notifier: notifier struct to register
2589 */
2590 void preempt_notifier_register(struct preempt_notifier *notifier)
2591 {
2592 if (!static_key_false(&preempt_notifier_key))
2593 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2594
2595 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2596 }
2597 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2598
2599 /**
2600 * preempt_notifier_unregister - no longer interested in preemption notifications
2601 * @notifier: notifier struct to unregister
2602 *
2603 * This is *not* safe to call from within a preemption notifier.
2604 */
2605 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2606 {
2607 hlist_del(&notifier->link);
2608 }
2609 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2610
2611 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2612 {
2613 struct preempt_notifier *notifier;
2614
2615 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2616 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2617 }
2618
2619 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2620 {
2621 if (static_key_false(&preempt_notifier_key))
2622 __fire_sched_in_preempt_notifiers(curr);
2623 }
2624
2625 static void
2626 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2627 struct task_struct *next)
2628 {
2629 struct preempt_notifier *notifier;
2630
2631 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2632 notifier->ops->sched_out(notifier, next);
2633 }
2634
2635 static __always_inline void
2636 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2637 struct task_struct *next)
2638 {
2639 if (static_key_false(&preempt_notifier_key))
2640 __fire_sched_out_preempt_notifiers(curr, next);
2641 }
2642
2643 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2644
2645 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2646 {
2647 }
2648
2649 static inline void
2650 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2651 struct task_struct *next)
2652 {
2653 }
2654
2655 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2656
2657 /**
2658 * prepare_task_switch - prepare to switch tasks
2659 * @rq: the runqueue preparing to switch
2660 * @prev: the current task that is being switched out
2661 * @next: the task we are going to switch to.
2662 *
2663 * This is called with the rq lock held and interrupts off. It must
2664 * be paired with a subsequent finish_task_switch after the context
2665 * switch.
2666 *
2667 * prepare_task_switch sets up locking and calls architecture specific
2668 * hooks.
2669 */
2670 static inline void
2671 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2672 struct task_struct *next)
2673 {
2674 sched_info_switch(rq, prev, next);
2675 perf_event_task_sched_out(prev, next);
2676 fire_sched_out_preempt_notifiers(prev, next);
2677 prepare_lock_switch(rq, next);
2678 prepare_arch_switch(next);
2679 }
2680
2681 /**
2682 * finish_task_switch - clean up after a task-switch
2683 * @prev: the thread we just switched away from.
2684 *
2685 * finish_task_switch must be called after the context switch, paired
2686 * with a prepare_task_switch call before the context switch.
2687 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2688 * and do any other architecture-specific cleanup actions.
2689 *
2690 * Note that we may have delayed dropping an mm in context_switch(). If
2691 * so, we finish that here outside of the runqueue lock. (Doing it
2692 * with the lock held can cause deadlocks; see schedule() for
2693 * details.)
2694 *
2695 * The context switch have flipped the stack from under us and restored the
2696 * local variables which were saved when this task called schedule() in the
2697 * past. prev == current is still correct but we need to recalculate this_rq
2698 * because prev may have moved to another CPU.
2699 */
2700 static struct rq *finish_task_switch(struct task_struct *prev)
2701 __releases(rq->lock)
2702 {
2703 struct rq *rq = this_rq();
2704 struct mm_struct *mm = rq->prev_mm;
2705 long prev_state;
2706
2707 /*
2708 * The previous task will have left us with a preempt_count of 2
2709 * because it left us after:
2710 *
2711 * schedule()
2712 * preempt_disable(); // 1
2713 * __schedule()
2714 * raw_spin_lock_irq(&rq->lock) // 2
2715 *
2716 * Also, see FORK_PREEMPT_COUNT.
2717 */
2718 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2719 "corrupted preempt_count: %s/%d/0x%x\n",
2720 current->comm, current->pid, preempt_count()))
2721 preempt_count_set(FORK_PREEMPT_COUNT);
2722
2723 rq->prev_mm = NULL;
2724
2725 /*
2726 * A task struct has one reference for the use as "current".
2727 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2728 * schedule one last time. The schedule call will never return, and
2729 * the scheduled task must drop that reference.
2730 *
2731 * We must observe prev->state before clearing prev->on_cpu (in
2732 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2733 * running on another CPU and we could rave with its RUNNING -> DEAD
2734 * transition, resulting in a double drop.
2735 */
2736 prev_state = prev->state;
2737 vtime_task_switch(prev);
2738 perf_event_task_sched_in(prev, current);
2739 finish_lock_switch(rq, prev);
2740 finish_arch_post_lock_switch();
2741
2742 fire_sched_in_preempt_notifiers(current);
2743 if (mm)
2744 mmdrop(mm);
2745 if (unlikely(prev_state == TASK_DEAD)) {
2746 if (prev->sched_class->task_dead)
2747 prev->sched_class->task_dead(prev);
2748
2749 /*
2750 * Remove function-return probe instances associated with this
2751 * task and put them back on the free list.
2752 */
2753 kprobe_flush_task(prev);
2754 put_task_struct(prev);
2755 }
2756
2757 tick_nohz_task_switch();
2758 return rq;
2759 }
2760
2761 #ifdef CONFIG_SMP
2762
2763 /* rq->lock is NOT held, but preemption is disabled */
2764 static void __balance_callback(struct rq *rq)
2765 {
2766 struct callback_head *head, *next;
2767 void (*func)(struct rq *rq);
2768 unsigned long flags;
2769
2770 raw_spin_lock_irqsave(&rq->lock, flags);
2771 head = rq->balance_callback;
2772 rq->balance_callback = NULL;
2773 while (head) {
2774 func = (void (*)(struct rq *))head->func;
2775 next = head->next;
2776 head->next = NULL;
2777 head = next;
2778
2779 func(rq);
2780 }
2781 raw_spin_unlock_irqrestore(&rq->lock, flags);
2782 }
2783
2784 static inline void balance_callback(struct rq *rq)
2785 {
2786 if (unlikely(rq->balance_callback))
2787 __balance_callback(rq);
2788 }
2789
2790 #else
2791
2792 static inline void balance_callback(struct rq *rq)
2793 {
2794 }
2795
2796 #endif
2797
2798 /**
2799 * schedule_tail - first thing a freshly forked thread must call.
2800 * @prev: the thread we just switched away from.
2801 */
2802 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2803 __releases(rq->lock)
2804 {
2805 struct rq *rq;
2806
2807 /*
2808 * New tasks start with FORK_PREEMPT_COUNT, see there and
2809 * finish_task_switch() for details.
2810 *
2811 * finish_task_switch() will drop rq->lock() and lower preempt_count
2812 * and the preempt_enable() will end up enabling preemption (on
2813 * PREEMPT_COUNT kernels).
2814 */
2815
2816 rq = finish_task_switch(prev);
2817 balance_callback(rq);
2818 preempt_enable();
2819
2820 if (current->set_child_tid)
2821 put_user(task_pid_vnr(current), current->set_child_tid);
2822 }
2823
2824 /*
2825 * context_switch - switch to the new MM and the new thread's register state.
2826 */
2827 static __always_inline struct rq *
2828 context_switch(struct rq *rq, struct task_struct *prev,
2829 struct task_struct *next, struct pin_cookie cookie)
2830 {
2831 struct mm_struct *mm, *oldmm;
2832
2833 prepare_task_switch(rq, prev, next);
2834
2835 mm = next->mm;
2836 oldmm = prev->active_mm;
2837 /*
2838 * For paravirt, this is coupled with an exit in switch_to to
2839 * combine the page table reload and the switch backend into
2840 * one hypercall.
2841 */
2842 arch_start_context_switch(prev);
2843
2844 if (!mm) {
2845 next->active_mm = oldmm;
2846 atomic_inc(&oldmm->mm_count);
2847 enter_lazy_tlb(oldmm, next);
2848 } else
2849 switch_mm_irqs_off(oldmm, mm, next);
2850
2851 if (!prev->mm) {
2852 prev->active_mm = NULL;
2853 rq->prev_mm = oldmm;
2854 }
2855 /*
2856 * Since the runqueue lock will be released by the next
2857 * task (which is an invalid locking op but in the case
2858 * of the scheduler it's an obvious special-case), so we
2859 * do an early lockdep release here:
2860 */
2861 lockdep_unpin_lock(&rq->lock, cookie);
2862 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2863
2864 /* Here we just switch the register state and the stack. */
2865 switch_to(prev, next, prev);
2866 barrier();
2867
2868 return finish_task_switch(prev);
2869 }
2870
2871 /*
2872 * nr_running and nr_context_switches:
2873 *
2874 * externally visible scheduler statistics: current number of runnable
2875 * threads, total number of context switches performed since bootup.
2876 */
2877 unsigned long nr_running(void)
2878 {
2879 unsigned long i, sum = 0;
2880
2881 for_each_online_cpu(i)
2882 sum += cpu_rq(i)->nr_running;
2883
2884 return sum;
2885 }
2886
2887 /*
2888 * Check if only the current task is running on the cpu.
2889 *
2890 * Caution: this function does not check that the caller has disabled
2891 * preemption, thus the result might have a time-of-check-to-time-of-use
2892 * race. The caller is responsible to use it correctly, for example:
2893 *
2894 * - from a non-preemptable section (of course)
2895 *
2896 * - from a thread that is bound to a single CPU
2897 *
2898 * - in a loop with very short iterations (e.g. a polling loop)
2899 */
2900 bool single_task_running(void)
2901 {
2902 return raw_rq()->nr_running == 1;
2903 }
2904 EXPORT_SYMBOL(single_task_running);
2905
2906 unsigned long long nr_context_switches(void)
2907 {
2908 int i;
2909 unsigned long long sum = 0;
2910
2911 for_each_possible_cpu(i)
2912 sum += cpu_rq(i)->nr_switches;
2913
2914 return sum;
2915 }
2916
2917 unsigned long nr_iowait(void)
2918 {
2919 unsigned long i, sum = 0;
2920
2921 for_each_possible_cpu(i)
2922 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2923
2924 return sum;
2925 }
2926
2927 unsigned long nr_iowait_cpu(int cpu)
2928 {
2929 struct rq *this = cpu_rq(cpu);
2930 return atomic_read(&this->nr_iowait);
2931 }
2932
2933 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2934 {
2935 struct rq *rq = this_rq();
2936 *nr_waiters = atomic_read(&rq->nr_iowait);
2937 *load = rq->load.weight;
2938 }
2939
2940 #ifdef CONFIG_SMP
2941
2942 /*
2943 * sched_exec - execve() is a valuable balancing opportunity, because at
2944 * this point the task has the smallest effective memory and cache footprint.
2945 */
2946 void sched_exec(void)
2947 {
2948 struct task_struct *p = current;
2949 unsigned long flags;
2950 int dest_cpu;
2951
2952 raw_spin_lock_irqsave(&p->pi_lock, flags);
2953 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2954 if (dest_cpu == smp_processor_id())
2955 goto unlock;
2956
2957 if (likely(cpu_active(dest_cpu))) {
2958 struct migration_arg arg = { p, dest_cpu };
2959
2960 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2961 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2962 return;
2963 }
2964 unlock:
2965 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2966 }
2967
2968 #endif
2969
2970 DEFINE_PER_CPU(struct kernel_stat, kstat);
2971 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2972
2973 EXPORT_PER_CPU_SYMBOL(kstat);
2974 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2975
2976 /*
2977 * The function fair_sched_class.update_curr accesses the struct curr
2978 * and its field curr->exec_start; when called from task_sched_runtime(),
2979 * we observe a high rate of cache misses in practice.
2980 * Prefetching this data results in improved performance.
2981 */
2982 static inline void prefetch_curr_exec_start(struct task_struct *p)
2983 {
2984 #ifdef CONFIG_FAIR_GROUP_SCHED
2985 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2986 #else
2987 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2988 #endif
2989 prefetch(curr);
2990 prefetch(&curr->exec_start);
2991 }
2992
2993 /*
2994 * Return accounted runtime for the task.
2995 * In case the task is currently running, return the runtime plus current's
2996 * pending runtime that have not been accounted yet.
2997 */
2998 unsigned long long task_sched_runtime(struct task_struct *p)
2999 {
3000 struct rq_flags rf;
3001 struct rq *rq;
3002 u64 ns;
3003
3004 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3005 /*
3006 * 64-bit doesn't need locks to atomically read a 64bit value.
3007 * So we have a optimization chance when the task's delta_exec is 0.
3008 * Reading ->on_cpu is racy, but this is ok.
3009 *
3010 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3011 * If we race with it entering cpu, unaccounted time is 0. This is
3012 * indistinguishable from the read occurring a few cycles earlier.
3013 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3014 * been accounted, so we're correct here as well.
3015 */
3016 if (!p->on_cpu || !task_on_rq_queued(p))
3017 return p->se.sum_exec_runtime;
3018 #endif
3019
3020 rq = task_rq_lock(p, &rf);
3021 /*
3022 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3023 * project cycles that may never be accounted to this
3024 * thread, breaking clock_gettime().
3025 */
3026 if (task_current(rq, p) && task_on_rq_queued(p)) {
3027 prefetch_curr_exec_start(p);
3028 update_rq_clock(rq);
3029 p->sched_class->update_curr(rq);
3030 }
3031 ns = p->se.sum_exec_runtime;
3032 task_rq_unlock(rq, p, &rf);
3033
3034 return ns;
3035 }
3036
3037 /*
3038 * This function gets called by the timer code, with HZ frequency.
3039 * We call it with interrupts disabled.
3040 */
3041 void scheduler_tick(void)
3042 {
3043 int cpu = smp_processor_id();
3044 struct rq *rq = cpu_rq(cpu);
3045 struct task_struct *curr = rq->curr;
3046
3047 sched_clock_tick();
3048
3049 raw_spin_lock(&rq->lock);
3050 update_rq_clock(rq);
3051 curr->sched_class->task_tick(rq, curr, 0);
3052 cpu_load_update_active(rq);
3053 calc_global_load_tick(rq);
3054 raw_spin_unlock(&rq->lock);
3055
3056 perf_event_task_tick();
3057
3058 #ifdef CONFIG_SMP
3059 rq->idle_balance = idle_cpu(cpu);
3060 trigger_load_balance(rq);
3061 #endif
3062 rq_last_tick_reset(rq);
3063 }
3064
3065 #ifdef CONFIG_NO_HZ_FULL
3066 /**
3067 * scheduler_tick_max_deferment
3068 *
3069 * Keep at least one tick per second when a single
3070 * active task is running because the scheduler doesn't
3071 * yet completely support full dynticks environment.
3072 *
3073 * This makes sure that uptime, CFS vruntime, load
3074 * balancing, etc... continue to move forward, even
3075 * with a very low granularity.
3076 *
3077 * Return: Maximum deferment in nanoseconds.
3078 */
3079 u64 scheduler_tick_max_deferment(void)
3080 {
3081 struct rq *rq = this_rq();
3082 unsigned long next, now = READ_ONCE(jiffies);
3083
3084 next = rq->last_sched_tick + HZ;
3085
3086 if (time_before_eq(next, now))
3087 return 0;
3088
3089 return jiffies_to_nsecs(next - now);
3090 }
3091 #endif
3092
3093 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3094 defined(CONFIG_PREEMPT_TRACER))
3095 /*
3096 * If the value passed in is equal to the current preempt count
3097 * then we just disabled preemption. Start timing the latency.
3098 */
3099 static inline void preempt_latency_start(int val)
3100 {
3101 if (preempt_count() == val) {
3102 unsigned long ip = get_lock_parent_ip();
3103 #ifdef CONFIG_DEBUG_PREEMPT
3104 current->preempt_disable_ip = ip;
3105 #endif
3106 trace_preempt_off(CALLER_ADDR0, ip);
3107 }
3108 }
3109
3110 void preempt_count_add(int val)
3111 {
3112 #ifdef CONFIG_DEBUG_PREEMPT
3113 /*
3114 * Underflow?
3115 */
3116 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3117 return;
3118 #endif
3119 __preempt_count_add(val);
3120 #ifdef CONFIG_DEBUG_PREEMPT
3121 /*
3122 * Spinlock count overflowing soon?
3123 */
3124 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3125 PREEMPT_MASK - 10);
3126 #endif
3127 preempt_latency_start(val);
3128 }
3129 EXPORT_SYMBOL(preempt_count_add);
3130 NOKPROBE_SYMBOL(preempt_count_add);
3131
3132 /*
3133 * If the value passed in equals to the current preempt count
3134 * then we just enabled preemption. Stop timing the latency.
3135 */
3136 static inline void preempt_latency_stop(int val)
3137 {
3138 if (preempt_count() == val)
3139 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3140 }
3141
3142 void preempt_count_sub(int val)
3143 {
3144 #ifdef CONFIG_DEBUG_PREEMPT
3145 /*
3146 * Underflow?
3147 */
3148 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3149 return;
3150 /*
3151 * Is the spinlock portion underflowing?
3152 */
3153 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3154 !(preempt_count() & PREEMPT_MASK)))
3155 return;
3156 #endif
3157
3158 preempt_latency_stop(val);
3159 __preempt_count_sub(val);
3160 }
3161 EXPORT_SYMBOL(preempt_count_sub);
3162 NOKPROBE_SYMBOL(preempt_count_sub);
3163
3164 #else
3165 static inline void preempt_latency_start(int val) { }
3166 static inline void preempt_latency_stop(int val) { }
3167 #endif
3168
3169 /*
3170 * Print scheduling while atomic bug:
3171 */
3172 static noinline void __schedule_bug(struct task_struct *prev)
3173 {
3174 /* Save this before calling printk(), since that will clobber it */
3175 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3176
3177 if (oops_in_progress)
3178 return;
3179
3180 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3181 prev->comm, prev->pid, preempt_count());
3182
3183 debug_show_held_locks(prev);
3184 print_modules();
3185 if (irqs_disabled())
3186 print_irqtrace_events(prev);
3187 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3188 && in_atomic_preempt_off()) {
3189 pr_err("Preemption disabled at:");
3190 print_ip_sym(preempt_disable_ip);
3191 pr_cont("\n");
3192 }
3193 if (panic_on_warn)
3194 panic("scheduling while atomic\n");
3195
3196 dump_stack();
3197 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3198 }
3199
3200 /*
3201 * Various schedule()-time debugging checks and statistics:
3202 */
3203 static inline void schedule_debug(struct task_struct *prev)
3204 {
3205 #ifdef CONFIG_SCHED_STACK_END_CHECK
3206 if (task_stack_end_corrupted(prev))
3207 panic("corrupted stack end detected inside scheduler\n");
3208 #endif
3209
3210 if (unlikely(in_atomic_preempt_off())) {
3211 __schedule_bug(prev);
3212 preempt_count_set(PREEMPT_DISABLED);
3213 }
3214 rcu_sleep_check();
3215
3216 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3217
3218 schedstat_inc(this_rq(), sched_count);
3219 }
3220
3221 /*
3222 * Pick up the highest-prio task:
3223 */
3224 static inline struct task_struct *
3225 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3226 {
3227 const struct sched_class *class = &fair_sched_class;
3228 struct task_struct *p;
3229
3230 /*
3231 * Optimization: we know that if all tasks are in
3232 * the fair class we can call that function directly:
3233 */
3234 if (likely(prev->sched_class == class &&
3235 rq->nr_running == rq->cfs.h_nr_running)) {
3236 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3237 if (unlikely(p == RETRY_TASK))
3238 goto again;
3239
3240 /* assumes fair_sched_class->next == idle_sched_class */
3241 if (unlikely(!p))
3242 p = idle_sched_class.pick_next_task(rq, prev, cookie);
3243
3244 return p;
3245 }
3246
3247 again:
3248 for_each_class(class) {
3249 p = class->pick_next_task(rq, prev, cookie);
3250 if (p) {
3251 if (unlikely(p == RETRY_TASK))
3252 goto again;
3253 return p;
3254 }
3255 }
3256
3257 BUG(); /* the idle class will always have a runnable task */
3258 }
3259
3260 /*
3261 * __schedule() is the main scheduler function.
3262 *
3263 * The main means of driving the scheduler and thus entering this function are:
3264 *
3265 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3266 *
3267 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3268 * paths. For example, see arch/x86/entry_64.S.
3269 *
3270 * To drive preemption between tasks, the scheduler sets the flag in timer
3271 * interrupt handler scheduler_tick().
3272 *
3273 * 3. Wakeups don't really cause entry into schedule(). They add a
3274 * task to the run-queue and that's it.
3275 *
3276 * Now, if the new task added to the run-queue preempts the current
3277 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3278 * called on the nearest possible occasion:
3279 *
3280 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3281 *
3282 * - in syscall or exception context, at the next outmost
3283 * preempt_enable(). (this might be as soon as the wake_up()'s
3284 * spin_unlock()!)
3285 *
3286 * - in IRQ context, return from interrupt-handler to
3287 * preemptible context
3288 *
3289 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3290 * then at the next:
3291 *
3292 * - cond_resched() call
3293 * - explicit schedule() call
3294 * - return from syscall or exception to user-space
3295 * - return from interrupt-handler to user-space
3296 *
3297 * WARNING: must be called with preemption disabled!
3298 */
3299 static void __sched notrace __schedule(bool preempt)
3300 {
3301 struct task_struct *prev, *next;
3302 unsigned long *switch_count;
3303 struct pin_cookie cookie;
3304 struct rq *rq;
3305 int cpu;
3306
3307 cpu = smp_processor_id();
3308 rq = cpu_rq(cpu);
3309 prev = rq->curr;
3310
3311 /*
3312 * do_exit() calls schedule() with preemption disabled as an exception;
3313 * however we must fix that up, otherwise the next task will see an
3314 * inconsistent (higher) preempt count.
3315 *
3316 * It also avoids the below schedule_debug() test from complaining
3317 * about this.
3318 */
3319 if (unlikely(prev->state == TASK_DEAD))
3320 preempt_enable_no_resched_notrace();
3321
3322 schedule_debug(prev);
3323
3324 if (sched_feat(HRTICK))
3325 hrtick_clear(rq);
3326
3327 local_irq_disable();
3328 rcu_note_context_switch();
3329
3330 /*
3331 * Make sure that signal_pending_state()->signal_pending() below
3332 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3333 * done by the caller to avoid the race with signal_wake_up().
3334 */
3335 smp_mb__before_spinlock();
3336 raw_spin_lock(&rq->lock);
3337 cookie = lockdep_pin_lock(&rq->lock);
3338
3339 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3340
3341 switch_count = &prev->nivcsw;
3342 if (!preempt && prev->state) {
3343 if (unlikely(signal_pending_state(prev->state, prev))) {
3344 prev->state = TASK_RUNNING;
3345 } else {
3346 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3347 prev->on_rq = 0;
3348
3349 /*
3350 * If a worker went to sleep, notify and ask workqueue
3351 * whether it wants to wake up a task to maintain
3352 * concurrency.
3353 */
3354 if (prev->flags & PF_WQ_WORKER) {
3355 struct task_struct *to_wakeup;
3356
3357 to_wakeup = wq_worker_sleeping(prev);
3358 if (to_wakeup)
3359 try_to_wake_up_local(to_wakeup, cookie);
3360 }
3361 }
3362 switch_count = &prev->nvcsw;
3363 }
3364
3365 if (task_on_rq_queued(prev))
3366 update_rq_clock(rq);
3367
3368 next = pick_next_task(rq, prev, cookie);
3369 clear_tsk_need_resched(prev);
3370 clear_preempt_need_resched();
3371 rq->clock_skip_update = 0;
3372
3373 if (likely(prev != next)) {
3374 rq->nr_switches++;
3375 rq->curr = next;
3376 ++*switch_count;
3377
3378 trace_sched_switch(preempt, prev, next);
3379 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3380 } else {
3381 lockdep_unpin_lock(&rq->lock, cookie);
3382 raw_spin_unlock_irq(&rq->lock);
3383 }
3384
3385 balance_callback(rq);
3386 }
3387 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3388
3389 static inline void sched_submit_work(struct task_struct *tsk)
3390 {
3391 if (!tsk->state || tsk_is_pi_blocked(tsk))
3392 return;
3393 /*
3394 * If we are going to sleep and we have plugged IO queued,
3395 * make sure to submit it to avoid deadlocks.
3396 */
3397 if (blk_needs_flush_plug(tsk))
3398 blk_schedule_flush_plug(tsk);
3399 }
3400
3401 asmlinkage __visible void __sched schedule(void)
3402 {
3403 struct task_struct *tsk = current;
3404
3405 sched_submit_work(tsk);
3406 do {
3407 preempt_disable();
3408 __schedule(false);
3409 sched_preempt_enable_no_resched();
3410 } while (need_resched());
3411 }
3412 EXPORT_SYMBOL(schedule);
3413
3414 #ifdef CONFIG_CONTEXT_TRACKING
3415 asmlinkage __visible void __sched schedule_user(void)
3416 {
3417 /*
3418 * If we come here after a random call to set_need_resched(),
3419 * or we have been woken up remotely but the IPI has not yet arrived,
3420 * we haven't yet exited the RCU idle mode. Do it here manually until
3421 * we find a better solution.
3422 *
3423 * NB: There are buggy callers of this function. Ideally we
3424 * should warn if prev_state != CONTEXT_USER, but that will trigger
3425 * too frequently to make sense yet.
3426 */
3427 enum ctx_state prev_state = exception_enter();
3428 schedule();
3429 exception_exit(prev_state);
3430 }
3431 #endif
3432
3433 /**
3434 * schedule_preempt_disabled - called with preemption disabled
3435 *
3436 * Returns with preemption disabled. Note: preempt_count must be 1
3437 */
3438 void __sched schedule_preempt_disabled(void)
3439 {
3440 sched_preempt_enable_no_resched();
3441 schedule();
3442 preempt_disable();
3443 }
3444
3445 static void __sched notrace preempt_schedule_common(void)
3446 {
3447 do {
3448 /*
3449 * Because the function tracer can trace preempt_count_sub()
3450 * and it also uses preempt_enable/disable_notrace(), if
3451 * NEED_RESCHED is set, the preempt_enable_notrace() called
3452 * by the function tracer will call this function again and
3453 * cause infinite recursion.
3454 *
3455 * Preemption must be disabled here before the function
3456 * tracer can trace. Break up preempt_disable() into two
3457 * calls. One to disable preemption without fear of being
3458 * traced. The other to still record the preemption latency,
3459 * which can also be traced by the function tracer.
3460 */
3461 preempt_disable_notrace();
3462 preempt_latency_start(1);
3463 __schedule(true);
3464 preempt_latency_stop(1);
3465 preempt_enable_no_resched_notrace();
3466
3467 /*
3468 * Check again in case we missed a preemption opportunity
3469 * between schedule and now.
3470 */
3471 } while (need_resched());
3472 }
3473
3474 #ifdef CONFIG_PREEMPT
3475 /*
3476 * this is the entry point to schedule() from in-kernel preemption
3477 * off of preempt_enable. Kernel preemptions off return from interrupt
3478 * occur there and call schedule directly.
3479 */
3480 asmlinkage __visible void __sched notrace preempt_schedule(void)
3481 {
3482 /*
3483 * If there is a non-zero preempt_count or interrupts are disabled,
3484 * we do not want to preempt the current task. Just return..
3485 */
3486 if (likely(!preemptible()))
3487 return;
3488
3489 preempt_schedule_common();
3490 }
3491 NOKPROBE_SYMBOL(preempt_schedule);
3492 EXPORT_SYMBOL(preempt_schedule);
3493
3494 /**
3495 * preempt_schedule_notrace - preempt_schedule called by tracing
3496 *
3497 * The tracing infrastructure uses preempt_enable_notrace to prevent
3498 * recursion and tracing preempt enabling caused by the tracing
3499 * infrastructure itself. But as tracing can happen in areas coming
3500 * from userspace or just about to enter userspace, a preempt enable
3501 * can occur before user_exit() is called. This will cause the scheduler
3502 * to be called when the system is still in usermode.
3503 *
3504 * To prevent this, the preempt_enable_notrace will use this function
3505 * instead of preempt_schedule() to exit user context if needed before
3506 * calling the scheduler.
3507 */
3508 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3509 {
3510 enum ctx_state prev_ctx;
3511
3512 if (likely(!preemptible()))
3513 return;
3514
3515 do {
3516 /*
3517 * Because the function tracer can trace preempt_count_sub()
3518 * and it also uses preempt_enable/disable_notrace(), if
3519 * NEED_RESCHED is set, the preempt_enable_notrace() called
3520 * by the function tracer will call this function again and
3521 * cause infinite recursion.
3522 *
3523 * Preemption must be disabled here before the function
3524 * tracer can trace. Break up preempt_disable() into two
3525 * calls. One to disable preemption without fear of being
3526 * traced. The other to still record the preemption latency,
3527 * which can also be traced by the function tracer.
3528 */
3529 preempt_disable_notrace();
3530 preempt_latency_start(1);
3531 /*
3532 * Needs preempt disabled in case user_exit() is traced
3533 * and the tracer calls preempt_enable_notrace() causing
3534 * an infinite recursion.
3535 */
3536 prev_ctx = exception_enter();
3537 __schedule(true);
3538 exception_exit(prev_ctx);
3539
3540 preempt_latency_stop(1);
3541 preempt_enable_no_resched_notrace();
3542 } while (need_resched());
3543 }
3544 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3545
3546 #endif /* CONFIG_PREEMPT */
3547
3548 /*
3549 * this is the entry point to schedule() from kernel preemption
3550 * off of irq context.
3551 * Note, that this is called and return with irqs disabled. This will
3552 * protect us against recursive calling from irq.
3553 */
3554 asmlinkage __visible void __sched preempt_schedule_irq(void)
3555 {
3556 enum ctx_state prev_state;
3557
3558 /* Catch callers which need to be fixed */
3559 BUG_ON(preempt_count() || !irqs_disabled());
3560
3561 prev_state = exception_enter();
3562
3563 do {
3564 preempt_disable();
3565 local_irq_enable();
3566 __schedule(true);
3567 local_irq_disable();
3568 sched_preempt_enable_no_resched();
3569 } while (need_resched());
3570
3571 exception_exit(prev_state);
3572 }
3573
3574 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3575 void *key)
3576 {
3577 return try_to_wake_up(curr->private, mode, wake_flags);
3578 }
3579 EXPORT_SYMBOL(default_wake_function);
3580
3581 #ifdef CONFIG_RT_MUTEXES
3582
3583 /*
3584 * rt_mutex_setprio - set the current priority of a task
3585 * @p: task
3586 * @prio: prio value (kernel-internal form)
3587 *
3588 * This function changes the 'effective' priority of a task. It does
3589 * not touch ->normal_prio like __setscheduler().
3590 *
3591 * Used by the rt_mutex code to implement priority inheritance
3592 * logic. Call site only calls if the priority of the task changed.
3593 */
3594 void rt_mutex_setprio(struct task_struct *p, int prio)
3595 {
3596 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3597 const struct sched_class *prev_class;
3598 struct rq_flags rf;
3599 struct rq *rq;
3600
3601 BUG_ON(prio > MAX_PRIO);
3602
3603 rq = __task_rq_lock(p, &rf);
3604
3605 /*
3606 * Idle task boosting is a nono in general. There is one
3607 * exception, when PREEMPT_RT and NOHZ is active:
3608 *
3609 * The idle task calls get_next_timer_interrupt() and holds
3610 * the timer wheel base->lock on the CPU and another CPU wants
3611 * to access the timer (probably to cancel it). We can safely
3612 * ignore the boosting request, as the idle CPU runs this code
3613 * with interrupts disabled and will complete the lock
3614 * protected section without being interrupted. So there is no
3615 * real need to boost.
3616 */
3617 if (unlikely(p == rq->idle)) {
3618 WARN_ON(p != rq->curr);
3619 WARN_ON(p->pi_blocked_on);
3620 goto out_unlock;
3621 }
3622
3623 trace_sched_pi_setprio(p, prio);
3624 oldprio = p->prio;
3625
3626 if (oldprio == prio)
3627 queue_flag &= ~DEQUEUE_MOVE;
3628
3629 prev_class = p->sched_class;
3630 queued = task_on_rq_queued(p);
3631 running = task_current(rq, p);
3632 if (queued)
3633 dequeue_task(rq, p, queue_flag);
3634 if (running)
3635 put_prev_task(rq, p);
3636
3637 /*
3638 * Boosting condition are:
3639 * 1. -rt task is running and holds mutex A
3640 * --> -dl task blocks on mutex A
3641 *
3642 * 2. -dl task is running and holds mutex A
3643 * --> -dl task blocks on mutex A and could preempt the
3644 * running task
3645 */
3646 if (dl_prio(prio)) {
3647 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3648 if (!dl_prio(p->normal_prio) ||
3649 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3650 p->dl.dl_boosted = 1;
3651 queue_flag |= ENQUEUE_REPLENISH;
3652 } else
3653 p->dl.dl_boosted = 0;
3654 p->sched_class = &dl_sched_class;
3655 } else if (rt_prio(prio)) {
3656 if (dl_prio(oldprio))
3657 p->dl.dl_boosted = 0;
3658 if (oldprio < prio)
3659 queue_flag |= ENQUEUE_HEAD;
3660 p->sched_class = &rt_sched_class;
3661 } else {
3662 if (dl_prio(oldprio))
3663 p->dl.dl_boosted = 0;
3664 if (rt_prio(oldprio))
3665 p->rt.timeout = 0;
3666 p->sched_class = &fair_sched_class;
3667 }
3668
3669 p->prio = prio;
3670
3671 if (running)
3672 p->sched_class->set_curr_task(rq);
3673 if (queued)
3674 enqueue_task(rq, p, queue_flag);
3675
3676 check_class_changed(rq, p, prev_class, oldprio);
3677 out_unlock:
3678 preempt_disable(); /* avoid rq from going away on us */
3679 __task_rq_unlock(rq, &rf);
3680
3681 balance_callback(rq);
3682 preempt_enable();
3683 }
3684 #endif
3685
3686 void set_user_nice(struct task_struct *p, long nice)
3687 {
3688 int old_prio, delta, queued;
3689 struct rq_flags rf;
3690 struct rq *rq;
3691
3692 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3693 return;
3694 /*
3695 * We have to be careful, if called from sys_setpriority(),
3696 * the task might be in the middle of scheduling on another CPU.
3697 */
3698 rq = task_rq_lock(p, &rf);
3699 /*
3700 * The RT priorities are set via sched_setscheduler(), but we still
3701 * allow the 'normal' nice value to be set - but as expected
3702 * it wont have any effect on scheduling until the task is
3703 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3704 */
3705 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3706 p->static_prio = NICE_TO_PRIO(nice);
3707 goto out_unlock;
3708 }
3709 queued = task_on_rq_queued(p);
3710 if (queued)
3711 dequeue_task(rq, p, DEQUEUE_SAVE);
3712
3713 p->static_prio = NICE_TO_PRIO(nice);
3714 set_load_weight(p);
3715 old_prio = p->prio;
3716 p->prio = effective_prio(p);
3717 delta = p->prio - old_prio;
3718
3719 if (queued) {
3720 enqueue_task(rq, p, ENQUEUE_RESTORE);
3721 /*
3722 * If the task increased its priority or is running and
3723 * lowered its priority, then reschedule its CPU:
3724 */
3725 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3726 resched_curr(rq);
3727 }
3728 out_unlock:
3729 task_rq_unlock(rq, p, &rf);
3730 }
3731 EXPORT_SYMBOL(set_user_nice);
3732
3733 /*
3734 * can_nice - check if a task can reduce its nice value
3735 * @p: task
3736 * @nice: nice value
3737 */
3738 int can_nice(const struct task_struct *p, const int nice)
3739 {
3740 /* convert nice value [19,-20] to rlimit style value [1,40] */
3741 int nice_rlim = nice_to_rlimit(nice);
3742
3743 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3744 capable(CAP_SYS_NICE));
3745 }
3746
3747 #ifdef __ARCH_WANT_SYS_NICE
3748
3749 /*
3750 * sys_nice - change the priority of the current process.
3751 * @increment: priority increment
3752 *
3753 * sys_setpriority is a more generic, but much slower function that
3754 * does similar things.
3755 */
3756 SYSCALL_DEFINE1(nice, int, increment)
3757 {
3758 long nice, retval;
3759
3760 /*
3761 * Setpriority might change our priority at the same moment.
3762 * We don't have to worry. Conceptually one call occurs first
3763 * and we have a single winner.
3764 */
3765 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3766 nice = task_nice(current) + increment;
3767
3768 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3769 if (increment < 0 && !can_nice(current, nice))
3770 return -EPERM;
3771
3772 retval = security_task_setnice(current, nice);
3773 if (retval)
3774 return retval;
3775
3776 set_user_nice(current, nice);
3777 return 0;
3778 }
3779
3780 #endif
3781
3782 /**
3783 * task_prio - return the priority value of a given task.
3784 * @p: the task in question.
3785 *
3786 * Return: The priority value as seen by users in /proc.
3787 * RT tasks are offset by -200. Normal tasks are centered
3788 * around 0, value goes from -16 to +15.
3789 */
3790 int task_prio(const struct task_struct *p)
3791 {
3792 return p->prio - MAX_RT_PRIO;
3793 }
3794
3795 /**
3796 * idle_cpu - is a given cpu idle currently?
3797 * @cpu: the processor in question.
3798 *
3799 * Return: 1 if the CPU is currently idle. 0 otherwise.
3800 */
3801 int idle_cpu(int cpu)
3802 {
3803 struct rq *rq = cpu_rq(cpu);
3804
3805 if (rq->curr != rq->idle)
3806 return 0;
3807
3808 if (rq->nr_running)
3809 return 0;
3810
3811 #ifdef CONFIG_SMP
3812 if (!llist_empty(&rq->wake_list))
3813 return 0;
3814 #endif
3815
3816 return 1;
3817 }
3818
3819 /**
3820 * idle_task - return the idle task for a given cpu.
3821 * @cpu: the processor in question.
3822 *
3823 * Return: The idle task for the cpu @cpu.
3824 */
3825 struct task_struct *idle_task(int cpu)
3826 {
3827 return cpu_rq(cpu)->idle;
3828 }
3829
3830 /**
3831 * find_process_by_pid - find a process with a matching PID value.
3832 * @pid: the pid in question.
3833 *
3834 * The task of @pid, if found. %NULL otherwise.
3835 */
3836 static struct task_struct *find_process_by_pid(pid_t pid)
3837 {
3838 return pid ? find_task_by_vpid(pid) : current;
3839 }
3840
3841 /*
3842 * This function initializes the sched_dl_entity of a newly becoming
3843 * SCHED_DEADLINE task.
3844 *
3845 * Only the static values are considered here, the actual runtime and the
3846 * absolute deadline will be properly calculated when the task is enqueued
3847 * for the first time with its new policy.
3848 */
3849 static void
3850 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3851 {
3852 struct sched_dl_entity *dl_se = &p->dl;
3853
3854 dl_se->dl_runtime = attr->sched_runtime;
3855 dl_se->dl_deadline = attr->sched_deadline;
3856 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3857 dl_se->flags = attr->sched_flags;
3858 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3859
3860 /*
3861 * Changing the parameters of a task is 'tricky' and we're not doing
3862 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3863 *
3864 * What we SHOULD do is delay the bandwidth release until the 0-lag
3865 * point. This would include retaining the task_struct until that time
3866 * and change dl_overflow() to not immediately decrement the current
3867 * amount.
3868 *
3869 * Instead we retain the current runtime/deadline and let the new
3870 * parameters take effect after the current reservation period lapses.
3871 * This is safe (albeit pessimistic) because the 0-lag point is always
3872 * before the current scheduling deadline.
3873 *
3874 * We can still have temporary overloads because we do not delay the
3875 * change in bandwidth until that time; so admission control is
3876 * not on the safe side. It does however guarantee tasks will never
3877 * consume more than promised.
3878 */
3879 }
3880
3881 /*
3882 * sched_setparam() passes in -1 for its policy, to let the functions
3883 * it calls know not to change it.
3884 */
3885 #define SETPARAM_POLICY -1
3886
3887 static void __setscheduler_params(struct task_struct *p,
3888 const struct sched_attr *attr)
3889 {
3890 int policy = attr->sched_policy;
3891
3892 if (policy == SETPARAM_POLICY)
3893 policy = p->policy;
3894
3895 p->policy = policy;
3896
3897 if (dl_policy(policy))
3898 __setparam_dl(p, attr);
3899 else if (fair_policy(policy))
3900 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3901
3902 /*
3903 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3904 * !rt_policy. Always setting this ensures that things like
3905 * getparam()/getattr() don't report silly values for !rt tasks.
3906 */
3907 p->rt_priority = attr->sched_priority;
3908 p->normal_prio = normal_prio(p);
3909 set_load_weight(p);
3910 }
3911
3912 /* Actually do priority change: must hold pi & rq lock. */
3913 static void __setscheduler(struct rq *rq, struct task_struct *p,
3914 const struct sched_attr *attr, bool keep_boost)
3915 {
3916 __setscheduler_params(p, attr);
3917
3918 /*
3919 * Keep a potential priority boosting if called from
3920 * sched_setscheduler().
3921 */
3922 if (keep_boost)
3923 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3924 else
3925 p->prio = normal_prio(p);
3926
3927 if (dl_prio(p->prio))
3928 p->sched_class = &dl_sched_class;
3929 else if (rt_prio(p->prio))
3930 p->sched_class = &rt_sched_class;
3931 else
3932 p->sched_class = &fair_sched_class;
3933 }
3934
3935 static void
3936 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3937 {
3938 struct sched_dl_entity *dl_se = &p->dl;
3939
3940 attr->sched_priority = p->rt_priority;
3941 attr->sched_runtime = dl_se->dl_runtime;
3942 attr->sched_deadline = dl_se->dl_deadline;
3943 attr->sched_period = dl_se->dl_period;
3944 attr->sched_flags = dl_se->flags;
3945 }
3946
3947 /*
3948 * This function validates the new parameters of a -deadline task.
3949 * We ask for the deadline not being zero, and greater or equal
3950 * than the runtime, as well as the period of being zero or
3951 * greater than deadline. Furthermore, we have to be sure that
3952 * user parameters are above the internal resolution of 1us (we
3953 * check sched_runtime only since it is always the smaller one) and
3954 * below 2^63 ns (we have to check both sched_deadline and
3955 * sched_period, as the latter can be zero).
3956 */
3957 static bool
3958 __checkparam_dl(const struct sched_attr *attr)
3959 {
3960 /* deadline != 0 */
3961 if (attr->sched_deadline == 0)
3962 return false;
3963
3964 /*
3965 * Since we truncate DL_SCALE bits, make sure we're at least
3966 * that big.
3967 */
3968 if (attr->sched_runtime < (1ULL << DL_SCALE))
3969 return false;
3970
3971 /*
3972 * Since we use the MSB for wrap-around and sign issues, make
3973 * sure it's not set (mind that period can be equal to zero).
3974 */
3975 if (attr->sched_deadline & (1ULL << 63) ||
3976 attr->sched_period & (1ULL << 63))
3977 return false;
3978
3979 /* runtime <= deadline <= period (if period != 0) */
3980 if ((attr->sched_period != 0 &&
3981 attr->sched_period < attr->sched_deadline) ||
3982 attr->sched_deadline < attr->sched_runtime)
3983 return false;
3984
3985 return true;
3986 }
3987
3988 /*
3989 * check the target process has a UID that matches the current process's
3990 */
3991 static bool check_same_owner(struct task_struct *p)
3992 {
3993 const struct cred *cred = current_cred(), *pcred;
3994 bool match;
3995
3996 rcu_read_lock();
3997 pcred = __task_cred(p);
3998 match = (uid_eq(cred->euid, pcred->euid) ||
3999 uid_eq(cred->euid, pcred->uid));
4000 rcu_read_unlock();
4001 return match;
4002 }
4003
4004 static bool dl_param_changed(struct task_struct *p,
4005 const struct sched_attr *attr)
4006 {
4007 struct sched_dl_entity *dl_se = &p->dl;
4008
4009 if (dl_se->dl_runtime != attr->sched_runtime ||
4010 dl_se->dl_deadline != attr->sched_deadline ||
4011 dl_se->dl_period != attr->sched_period ||
4012 dl_se->flags != attr->sched_flags)
4013 return true;
4014
4015 return false;
4016 }
4017
4018 static int __sched_setscheduler(struct task_struct *p,
4019 const struct sched_attr *attr,
4020 bool user, bool pi)
4021 {
4022 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4023 MAX_RT_PRIO - 1 - attr->sched_priority;
4024 int retval, oldprio, oldpolicy = -1, queued, running;
4025 int new_effective_prio, policy = attr->sched_policy;
4026 const struct sched_class *prev_class;
4027 struct rq_flags rf;
4028 int reset_on_fork;
4029 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4030 struct rq *rq;
4031
4032 /* may grab non-irq protected spin_locks */
4033 BUG_ON(in_interrupt());
4034 recheck:
4035 /* double check policy once rq lock held */
4036 if (policy < 0) {
4037 reset_on_fork = p->sched_reset_on_fork;
4038 policy = oldpolicy = p->policy;
4039 } else {
4040 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4041
4042 if (!valid_policy(policy))
4043 return -EINVAL;
4044 }
4045
4046 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4047 return -EINVAL;
4048
4049 /*
4050 * Valid priorities for SCHED_FIFO and SCHED_RR are
4051 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4052 * SCHED_BATCH and SCHED_IDLE is 0.
4053 */
4054 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4055 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4056 return -EINVAL;
4057 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4058 (rt_policy(policy) != (attr->sched_priority != 0)))
4059 return -EINVAL;
4060
4061 /*
4062 * Allow unprivileged RT tasks to decrease priority:
4063 */
4064 if (user && !capable(CAP_SYS_NICE)) {
4065 if (fair_policy(policy)) {
4066 if (attr->sched_nice < task_nice(p) &&
4067 !can_nice(p, attr->sched_nice))
4068 return -EPERM;
4069 }
4070
4071 if (rt_policy(policy)) {
4072 unsigned long rlim_rtprio =
4073 task_rlimit(p, RLIMIT_RTPRIO);
4074
4075 /* can't set/change the rt policy */
4076 if (policy != p->policy && !rlim_rtprio)
4077 return -EPERM;
4078
4079 /* can't increase priority */
4080 if (attr->sched_priority > p->rt_priority &&
4081 attr->sched_priority > rlim_rtprio)
4082 return -EPERM;
4083 }
4084
4085 /*
4086 * Can't set/change SCHED_DEADLINE policy at all for now
4087 * (safest behavior); in the future we would like to allow
4088 * unprivileged DL tasks to increase their relative deadline
4089 * or reduce their runtime (both ways reducing utilization)
4090 */
4091 if (dl_policy(policy))
4092 return -EPERM;
4093
4094 /*
4095 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4096 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4097 */
4098 if (idle_policy(p->policy) && !idle_policy(policy)) {
4099 if (!can_nice(p, task_nice(p)))
4100 return -EPERM;
4101 }
4102
4103 /* can't change other user's priorities */
4104 if (!check_same_owner(p))
4105 return -EPERM;
4106
4107 /* Normal users shall not reset the sched_reset_on_fork flag */
4108 if (p->sched_reset_on_fork && !reset_on_fork)
4109 return -EPERM;
4110 }
4111
4112 if (user) {
4113 retval = security_task_setscheduler(p);
4114 if (retval)
4115 return retval;
4116 }
4117
4118 /*
4119 * make sure no PI-waiters arrive (or leave) while we are
4120 * changing the priority of the task:
4121 *
4122 * To be able to change p->policy safely, the appropriate
4123 * runqueue lock must be held.
4124 */
4125 rq = task_rq_lock(p, &rf);
4126
4127 /*
4128 * Changing the policy of the stop threads its a very bad idea
4129 */
4130 if (p == rq->stop) {
4131 task_rq_unlock(rq, p, &rf);
4132 return -EINVAL;
4133 }
4134
4135 /*
4136 * If not changing anything there's no need to proceed further,
4137 * but store a possible modification of reset_on_fork.
4138 */
4139 if (unlikely(policy == p->policy)) {
4140 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4141 goto change;
4142 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4143 goto change;
4144 if (dl_policy(policy) && dl_param_changed(p, attr))
4145 goto change;
4146
4147 p->sched_reset_on_fork = reset_on_fork;
4148 task_rq_unlock(rq, p, &rf);
4149 return 0;
4150 }
4151 change:
4152
4153 if (user) {
4154 #ifdef CONFIG_RT_GROUP_SCHED
4155 /*
4156 * Do not allow realtime tasks into groups that have no runtime
4157 * assigned.
4158 */
4159 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4160 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4161 !task_group_is_autogroup(task_group(p))) {
4162 task_rq_unlock(rq, p, &rf);
4163 return -EPERM;
4164 }
4165 #endif
4166 #ifdef CONFIG_SMP
4167 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4168 cpumask_t *span = rq->rd->span;
4169
4170 /*
4171 * Don't allow tasks with an affinity mask smaller than
4172 * the entire root_domain to become SCHED_DEADLINE. We
4173 * will also fail if there's no bandwidth available.
4174 */
4175 if (!cpumask_subset(span, &p->cpus_allowed) ||
4176 rq->rd->dl_bw.bw == 0) {
4177 task_rq_unlock(rq, p, &rf);
4178 return -EPERM;
4179 }
4180 }
4181 #endif
4182 }
4183
4184 /* recheck policy now with rq lock held */
4185 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4186 policy = oldpolicy = -1;
4187 task_rq_unlock(rq, p, &rf);
4188 goto recheck;
4189 }
4190
4191 /*
4192 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4193 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4194 * is available.
4195 */
4196 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4197 task_rq_unlock(rq, p, &rf);
4198 return -EBUSY;
4199 }
4200
4201 p->sched_reset_on_fork = reset_on_fork;
4202 oldprio = p->prio;
4203
4204 if (pi) {
4205 /*
4206 * Take priority boosted tasks into account. If the new
4207 * effective priority is unchanged, we just store the new
4208 * normal parameters and do not touch the scheduler class and
4209 * the runqueue. This will be done when the task deboost
4210 * itself.
4211 */
4212 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4213 if (new_effective_prio == oldprio)
4214 queue_flags &= ~DEQUEUE_MOVE;
4215 }
4216
4217 queued = task_on_rq_queued(p);
4218 running = task_current(rq, p);
4219 if (queued)
4220 dequeue_task(rq, p, queue_flags);
4221 if (running)
4222 put_prev_task(rq, p);
4223
4224 prev_class = p->sched_class;
4225 __setscheduler(rq, p, attr, pi);
4226
4227 if (running)
4228 p->sched_class->set_curr_task(rq);
4229 if (queued) {
4230 /*
4231 * We enqueue to tail when the priority of a task is
4232 * increased (user space view).
4233 */
4234 if (oldprio < p->prio)
4235 queue_flags |= ENQUEUE_HEAD;
4236
4237 enqueue_task(rq, p, queue_flags);
4238 }
4239
4240 check_class_changed(rq, p, prev_class, oldprio);
4241 preempt_disable(); /* avoid rq from going away on us */
4242 task_rq_unlock(rq, p, &rf);
4243
4244 if (pi)
4245 rt_mutex_adjust_pi(p);
4246
4247 /*
4248 * Run balance callbacks after we've adjusted the PI chain.
4249 */
4250 balance_callback(rq);
4251 preempt_enable();
4252
4253 return 0;
4254 }
4255
4256 static int _sched_setscheduler(struct task_struct *p, int policy,
4257 const struct sched_param *param, bool check)
4258 {
4259 struct sched_attr attr = {
4260 .sched_policy = policy,
4261 .sched_priority = param->sched_priority,
4262 .sched_nice = PRIO_TO_NICE(p->static_prio),
4263 };
4264
4265 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4266 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4267 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4268 policy &= ~SCHED_RESET_ON_FORK;
4269 attr.sched_policy = policy;
4270 }
4271
4272 return __sched_setscheduler(p, &attr, check, true);
4273 }
4274 /**
4275 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4276 * @p: the task in question.
4277 * @policy: new policy.
4278 * @param: structure containing the new RT priority.
4279 *
4280 * Return: 0 on success. An error code otherwise.
4281 *
4282 * NOTE that the task may be already dead.
4283 */
4284 int sched_setscheduler(struct task_struct *p, int policy,
4285 const struct sched_param *param)
4286 {
4287 return _sched_setscheduler(p, policy, param, true);
4288 }
4289 EXPORT_SYMBOL_GPL(sched_setscheduler);
4290
4291 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4292 {
4293 return __sched_setscheduler(p, attr, true, true);
4294 }
4295 EXPORT_SYMBOL_GPL(sched_setattr);
4296
4297 /**
4298 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4299 * @p: the task in question.
4300 * @policy: new policy.
4301 * @param: structure containing the new RT priority.
4302 *
4303 * Just like sched_setscheduler, only don't bother checking if the
4304 * current context has permission. For example, this is needed in
4305 * stop_machine(): we create temporary high priority worker threads,
4306 * but our caller might not have that capability.
4307 *
4308 * Return: 0 on success. An error code otherwise.
4309 */
4310 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4311 const struct sched_param *param)
4312 {
4313 return _sched_setscheduler(p, policy, param, false);
4314 }
4315 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4316
4317 static int
4318 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4319 {
4320 struct sched_param lparam;
4321 struct task_struct *p;
4322 int retval;
4323
4324 if (!param || pid < 0)
4325 return -EINVAL;
4326 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4327 return -EFAULT;
4328
4329 rcu_read_lock();
4330 retval = -ESRCH;
4331 p = find_process_by_pid(pid);
4332 if (p != NULL)
4333 retval = sched_setscheduler(p, policy, &lparam);
4334 rcu_read_unlock();
4335
4336 return retval;
4337 }
4338
4339 /*
4340 * Mimics kernel/events/core.c perf_copy_attr().
4341 */
4342 static int sched_copy_attr(struct sched_attr __user *uattr,
4343 struct sched_attr *attr)
4344 {
4345 u32 size;
4346 int ret;
4347
4348 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4349 return -EFAULT;
4350
4351 /*
4352 * zero the full structure, so that a short copy will be nice.
4353 */
4354 memset(attr, 0, sizeof(*attr));
4355
4356 ret = get_user(size, &uattr->size);
4357 if (ret)
4358 return ret;
4359
4360 if (size > PAGE_SIZE) /* silly large */
4361 goto err_size;
4362
4363 if (!size) /* abi compat */
4364 size = SCHED_ATTR_SIZE_VER0;
4365
4366 if (size < SCHED_ATTR_SIZE_VER0)
4367 goto err_size;
4368
4369 /*
4370 * If we're handed a bigger struct than we know of,
4371 * ensure all the unknown bits are 0 - i.e. new
4372 * user-space does not rely on any kernel feature
4373 * extensions we dont know about yet.
4374 */
4375 if (size > sizeof(*attr)) {
4376 unsigned char __user *addr;
4377 unsigned char __user *end;
4378 unsigned char val;
4379
4380 addr = (void __user *)uattr + sizeof(*attr);
4381 end = (void __user *)uattr + size;
4382
4383 for (; addr < end; addr++) {
4384 ret = get_user(val, addr);
4385 if (ret)
4386 return ret;
4387 if (val)
4388 goto err_size;
4389 }
4390 size = sizeof(*attr);
4391 }
4392
4393 ret = copy_from_user(attr, uattr, size);
4394 if (ret)
4395 return -EFAULT;
4396
4397 /*
4398 * XXX: do we want to be lenient like existing syscalls; or do we want
4399 * to be strict and return an error on out-of-bounds values?
4400 */
4401 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4402
4403 return 0;
4404
4405 err_size:
4406 put_user(sizeof(*attr), &uattr->size);
4407 return -E2BIG;
4408 }
4409
4410 /**
4411 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4412 * @pid: the pid in question.
4413 * @policy: new policy.
4414 * @param: structure containing the new RT priority.
4415 *
4416 * Return: 0 on success. An error code otherwise.
4417 */
4418 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4419 struct sched_param __user *, param)
4420 {
4421 /* negative values for policy are not valid */
4422 if (policy < 0)
4423 return -EINVAL;
4424
4425 return do_sched_setscheduler(pid, policy, param);
4426 }
4427
4428 /**
4429 * sys_sched_setparam - set/change the RT priority of a thread
4430 * @pid: the pid in question.
4431 * @param: structure containing the new RT priority.
4432 *
4433 * Return: 0 on success. An error code otherwise.
4434 */
4435 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4436 {
4437 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4438 }
4439
4440 /**
4441 * sys_sched_setattr - same as above, but with extended sched_attr
4442 * @pid: the pid in question.
4443 * @uattr: structure containing the extended parameters.
4444 * @flags: for future extension.
4445 */
4446 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4447 unsigned int, flags)
4448 {
4449 struct sched_attr attr;
4450 struct task_struct *p;
4451 int retval;
4452
4453 if (!uattr || pid < 0 || flags)
4454 return -EINVAL;
4455
4456 retval = sched_copy_attr(uattr, &attr);
4457 if (retval)
4458 return retval;
4459
4460 if ((int)attr.sched_policy < 0)
4461 return -EINVAL;
4462
4463 rcu_read_lock();
4464 retval = -ESRCH;
4465 p = find_process_by_pid(pid);
4466 if (p != NULL)
4467 retval = sched_setattr(p, &attr);
4468 rcu_read_unlock();
4469
4470 return retval;
4471 }
4472
4473 /**
4474 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4475 * @pid: the pid in question.
4476 *
4477 * Return: On success, the policy of the thread. Otherwise, a negative error
4478 * code.
4479 */
4480 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4481 {
4482 struct task_struct *p;
4483 int retval;
4484
4485 if (pid < 0)
4486 return -EINVAL;
4487
4488 retval = -ESRCH;
4489 rcu_read_lock();
4490 p = find_process_by_pid(pid);
4491 if (p) {
4492 retval = security_task_getscheduler(p);
4493 if (!retval)
4494 retval = p->policy
4495 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4496 }
4497 rcu_read_unlock();
4498 return retval;
4499 }
4500
4501 /**
4502 * sys_sched_getparam - get the RT priority of a thread
4503 * @pid: the pid in question.
4504 * @param: structure containing the RT priority.
4505 *
4506 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4507 * code.
4508 */
4509 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4510 {
4511 struct sched_param lp = { .sched_priority = 0 };
4512 struct task_struct *p;
4513 int retval;
4514
4515 if (!param || pid < 0)
4516 return -EINVAL;
4517
4518 rcu_read_lock();
4519 p = find_process_by_pid(pid);
4520 retval = -ESRCH;
4521 if (!p)
4522 goto out_unlock;
4523
4524 retval = security_task_getscheduler(p);
4525 if (retval)
4526 goto out_unlock;
4527
4528 if (task_has_rt_policy(p))
4529 lp.sched_priority = p->rt_priority;
4530 rcu_read_unlock();
4531
4532 /*
4533 * This one might sleep, we cannot do it with a spinlock held ...
4534 */
4535 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4536
4537 return retval;
4538
4539 out_unlock:
4540 rcu_read_unlock();
4541 return retval;
4542 }
4543
4544 static int sched_read_attr(struct sched_attr __user *uattr,
4545 struct sched_attr *attr,
4546 unsigned int usize)
4547 {
4548 int ret;
4549
4550 if (!access_ok(VERIFY_WRITE, uattr, usize))
4551 return -EFAULT;
4552
4553 /*
4554 * If we're handed a smaller struct than we know of,
4555 * ensure all the unknown bits are 0 - i.e. old
4556 * user-space does not get uncomplete information.
4557 */
4558 if (usize < sizeof(*attr)) {
4559 unsigned char *addr;
4560 unsigned char *end;
4561
4562 addr = (void *)attr + usize;
4563 end = (void *)attr + sizeof(*attr);
4564
4565 for (; addr < end; addr++) {
4566 if (*addr)
4567 return -EFBIG;
4568 }
4569
4570 attr->size = usize;
4571 }
4572
4573 ret = copy_to_user(uattr, attr, attr->size);
4574 if (ret)
4575 return -EFAULT;
4576
4577 return 0;
4578 }
4579
4580 /**
4581 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4582 * @pid: the pid in question.
4583 * @uattr: structure containing the extended parameters.
4584 * @size: sizeof(attr) for fwd/bwd comp.
4585 * @flags: for future extension.
4586 */
4587 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4588 unsigned int, size, unsigned int, flags)
4589 {
4590 struct sched_attr attr = {
4591 .size = sizeof(struct sched_attr),
4592 };
4593 struct task_struct *p;
4594 int retval;
4595
4596 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4597 size < SCHED_ATTR_SIZE_VER0 || flags)
4598 return -EINVAL;
4599
4600 rcu_read_lock();
4601 p = find_process_by_pid(pid);
4602 retval = -ESRCH;
4603 if (!p)
4604 goto out_unlock;
4605
4606 retval = security_task_getscheduler(p);
4607 if (retval)
4608 goto out_unlock;
4609
4610 attr.sched_policy = p->policy;
4611 if (p->sched_reset_on_fork)
4612 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4613 if (task_has_dl_policy(p))
4614 __getparam_dl(p, &attr);
4615 else if (task_has_rt_policy(p))
4616 attr.sched_priority = p->rt_priority;
4617 else
4618 attr.sched_nice = task_nice(p);
4619
4620 rcu_read_unlock();
4621
4622 retval = sched_read_attr(uattr, &attr, size);
4623 return retval;
4624
4625 out_unlock:
4626 rcu_read_unlock();
4627 return retval;
4628 }
4629
4630 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4631 {
4632 cpumask_var_t cpus_allowed, new_mask;
4633 struct task_struct *p;
4634 int retval;
4635
4636 rcu_read_lock();
4637
4638 p = find_process_by_pid(pid);
4639 if (!p) {
4640 rcu_read_unlock();
4641 return -ESRCH;
4642 }
4643
4644 /* Prevent p going away */
4645 get_task_struct(p);
4646 rcu_read_unlock();
4647
4648 if (p->flags & PF_NO_SETAFFINITY) {
4649 retval = -EINVAL;
4650 goto out_put_task;
4651 }
4652 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4653 retval = -ENOMEM;
4654 goto out_put_task;
4655 }
4656 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4657 retval = -ENOMEM;
4658 goto out_free_cpus_allowed;
4659 }
4660 retval = -EPERM;
4661 if (!check_same_owner(p)) {
4662 rcu_read_lock();
4663 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4664 rcu_read_unlock();
4665 goto out_free_new_mask;
4666 }
4667 rcu_read_unlock();
4668 }
4669
4670 retval = security_task_setscheduler(p);
4671 if (retval)
4672 goto out_free_new_mask;
4673
4674
4675 cpuset_cpus_allowed(p, cpus_allowed);
4676 cpumask_and(new_mask, in_mask, cpus_allowed);
4677
4678 /*
4679 * Since bandwidth control happens on root_domain basis,
4680 * if admission test is enabled, we only admit -deadline
4681 * tasks allowed to run on all the CPUs in the task's
4682 * root_domain.
4683 */
4684 #ifdef CONFIG_SMP
4685 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4686 rcu_read_lock();
4687 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4688 retval = -EBUSY;
4689 rcu_read_unlock();
4690 goto out_free_new_mask;
4691 }
4692 rcu_read_unlock();
4693 }
4694 #endif
4695 again:
4696 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4697
4698 if (!retval) {
4699 cpuset_cpus_allowed(p, cpus_allowed);
4700 if (!cpumask_subset(new_mask, cpus_allowed)) {
4701 /*
4702 * We must have raced with a concurrent cpuset
4703 * update. Just reset the cpus_allowed to the
4704 * cpuset's cpus_allowed
4705 */
4706 cpumask_copy(new_mask, cpus_allowed);
4707 goto again;
4708 }
4709 }
4710 out_free_new_mask:
4711 free_cpumask_var(new_mask);
4712 out_free_cpus_allowed:
4713 free_cpumask_var(cpus_allowed);
4714 out_put_task:
4715 put_task_struct(p);
4716 return retval;
4717 }
4718
4719 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4720 struct cpumask *new_mask)
4721 {
4722 if (len < cpumask_size())
4723 cpumask_clear(new_mask);
4724 else if (len > cpumask_size())
4725 len = cpumask_size();
4726
4727 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4728 }
4729
4730 /**
4731 * sys_sched_setaffinity - set the cpu affinity of a process
4732 * @pid: pid of the process
4733 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4734 * @user_mask_ptr: user-space pointer to the new cpu mask
4735 *
4736 * Return: 0 on success. An error code otherwise.
4737 */
4738 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4739 unsigned long __user *, user_mask_ptr)
4740 {
4741 cpumask_var_t new_mask;
4742 int retval;
4743
4744 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4745 return -ENOMEM;
4746
4747 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4748 if (retval == 0)
4749 retval = sched_setaffinity(pid, new_mask);
4750 free_cpumask_var(new_mask);
4751 return retval;
4752 }
4753
4754 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4755 {
4756 struct task_struct *p;
4757 unsigned long flags;
4758 int retval;
4759
4760 rcu_read_lock();
4761
4762 retval = -ESRCH;
4763 p = find_process_by_pid(pid);
4764 if (!p)
4765 goto out_unlock;
4766
4767 retval = security_task_getscheduler(p);
4768 if (retval)
4769 goto out_unlock;
4770
4771 raw_spin_lock_irqsave(&p->pi_lock, flags);
4772 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4773 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4774
4775 out_unlock:
4776 rcu_read_unlock();
4777
4778 return retval;
4779 }
4780
4781 /**
4782 * sys_sched_getaffinity - get the cpu affinity of a process
4783 * @pid: pid of the process
4784 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4785 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4786 *
4787 * Return: size of CPU mask copied to user_mask_ptr on success. An
4788 * error code otherwise.
4789 */
4790 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4791 unsigned long __user *, user_mask_ptr)
4792 {
4793 int ret;
4794 cpumask_var_t mask;
4795
4796 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4797 return -EINVAL;
4798 if (len & (sizeof(unsigned long)-1))
4799 return -EINVAL;
4800
4801 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4802 return -ENOMEM;
4803
4804 ret = sched_getaffinity(pid, mask);
4805 if (ret == 0) {
4806 size_t retlen = min_t(size_t, len, cpumask_size());
4807
4808 if (copy_to_user(user_mask_ptr, mask, retlen))
4809 ret = -EFAULT;
4810 else
4811 ret = retlen;
4812 }
4813 free_cpumask_var(mask);
4814
4815 return ret;
4816 }
4817
4818 /**
4819 * sys_sched_yield - yield the current processor to other threads.
4820 *
4821 * This function yields the current CPU to other tasks. If there are no
4822 * other threads running on this CPU then this function will return.
4823 *
4824 * Return: 0.
4825 */
4826 SYSCALL_DEFINE0(sched_yield)
4827 {
4828 struct rq *rq = this_rq_lock();
4829
4830 schedstat_inc(rq, yld_count);
4831 current->sched_class->yield_task(rq);
4832
4833 /*
4834 * Since we are going to call schedule() anyway, there's
4835 * no need to preempt or enable interrupts:
4836 */
4837 __release(rq->lock);
4838 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4839 do_raw_spin_unlock(&rq->lock);
4840 sched_preempt_enable_no_resched();
4841
4842 schedule();
4843
4844 return 0;
4845 }
4846
4847 int __sched _cond_resched(void)
4848 {
4849 if (should_resched(0)) {
4850 preempt_schedule_common();
4851 return 1;
4852 }
4853 return 0;
4854 }
4855 EXPORT_SYMBOL(_cond_resched);
4856
4857 /*
4858 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4859 * call schedule, and on return reacquire the lock.
4860 *
4861 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4862 * operations here to prevent schedule() from being called twice (once via
4863 * spin_unlock(), once by hand).
4864 */
4865 int __cond_resched_lock(spinlock_t *lock)
4866 {
4867 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4868 int ret = 0;
4869
4870 lockdep_assert_held(lock);
4871
4872 if (spin_needbreak(lock) || resched) {
4873 spin_unlock(lock);
4874 if (resched)
4875 preempt_schedule_common();
4876 else
4877 cpu_relax();
4878 ret = 1;
4879 spin_lock(lock);
4880 }
4881 return ret;
4882 }
4883 EXPORT_SYMBOL(__cond_resched_lock);
4884
4885 int __sched __cond_resched_softirq(void)
4886 {
4887 BUG_ON(!in_softirq());
4888
4889 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4890 local_bh_enable();
4891 preempt_schedule_common();
4892 local_bh_disable();
4893 return 1;
4894 }
4895 return 0;
4896 }
4897 EXPORT_SYMBOL(__cond_resched_softirq);
4898
4899 /**
4900 * yield - yield the current processor to other threads.
4901 *
4902 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4903 *
4904 * The scheduler is at all times free to pick the calling task as the most
4905 * eligible task to run, if removing the yield() call from your code breaks
4906 * it, its already broken.
4907 *
4908 * Typical broken usage is:
4909 *
4910 * while (!event)
4911 * yield();
4912 *
4913 * where one assumes that yield() will let 'the other' process run that will
4914 * make event true. If the current task is a SCHED_FIFO task that will never
4915 * happen. Never use yield() as a progress guarantee!!
4916 *
4917 * If you want to use yield() to wait for something, use wait_event().
4918 * If you want to use yield() to be 'nice' for others, use cond_resched().
4919 * If you still want to use yield(), do not!
4920 */
4921 void __sched yield(void)
4922 {
4923 set_current_state(TASK_RUNNING);
4924 sys_sched_yield();
4925 }
4926 EXPORT_SYMBOL(yield);
4927
4928 /**
4929 * yield_to - yield the current processor to another thread in
4930 * your thread group, or accelerate that thread toward the
4931 * processor it's on.
4932 * @p: target task
4933 * @preempt: whether task preemption is allowed or not
4934 *
4935 * It's the caller's job to ensure that the target task struct
4936 * can't go away on us before we can do any checks.
4937 *
4938 * Return:
4939 * true (>0) if we indeed boosted the target task.
4940 * false (0) if we failed to boost the target.
4941 * -ESRCH if there's no task to yield to.
4942 */
4943 int __sched yield_to(struct task_struct *p, bool preempt)
4944 {
4945 struct task_struct *curr = current;
4946 struct rq *rq, *p_rq;
4947 unsigned long flags;
4948 int yielded = 0;
4949
4950 local_irq_save(flags);
4951 rq = this_rq();
4952
4953 again:
4954 p_rq = task_rq(p);
4955 /*
4956 * If we're the only runnable task on the rq and target rq also
4957 * has only one task, there's absolutely no point in yielding.
4958 */
4959 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4960 yielded = -ESRCH;
4961 goto out_irq;
4962 }
4963
4964 double_rq_lock(rq, p_rq);
4965 if (task_rq(p) != p_rq) {
4966 double_rq_unlock(rq, p_rq);
4967 goto again;
4968 }
4969
4970 if (!curr->sched_class->yield_to_task)
4971 goto out_unlock;
4972
4973 if (curr->sched_class != p->sched_class)
4974 goto out_unlock;
4975
4976 if (task_running(p_rq, p) || p->state)
4977 goto out_unlock;
4978
4979 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4980 if (yielded) {
4981 schedstat_inc(rq, yld_count);
4982 /*
4983 * Make p's CPU reschedule; pick_next_entity takes care of
4984 * fairness.
4985 */
4986 if (preempt && rq != p_rq)
4987 resched_curr(p_rq);
4988 }
4989
4990 out_unlock:
4991 double_rq_unlock(rq, p_rq);
4992 out_irq:
4993 local_irq_restore(flags);
4994
4995 if (yielded > 0)
4996 schedule();
4997
4998 return yielded;
4999 }
5000 EXPORT_SYMBOL_GPL(yield_to);
5001
5002 /*
5003 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5004 * that process accounting knows that this is a task in IO wait state.
5005 */
5006 long __sched io_schedule_timeout(long timeout)
5007 {
5008 int old_iowait = current->in_iowait;
5009 struct rq *rq;
5010 long ret;
5011
5012 current->in_iowait = 1;
5013 blk_schedule_flush_plug(current);
5014
5015 delayacct_blkio_start();
5016 rq = raw_rq();
5017 atomic_inc(&rq->nr_iowait);
5018 ret = schedule_timeout(timeout);
5019 current->in_iowait = old_iowait;
5020 atomic_dec(&rq->nr_iowait);
5021 delayacct_blkio_end();
5022
5023 return ret;
5024 }
5025 EXPORT_SYMBOL(io_schedule_timeout);
5026
5027 /**
5028 * sys_sched_get_priority_max - return maximum RT priority.
5029 * @policy: scheduling class.
5030 *
5031 * Return: On success, this syscall returns the maximum
5032 * rt_priority that can be used by a given scheduling class.
5033 * On failure, a negative error code is returned.
5034 */
5035 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5036 {
5037 int ret = -EINVAL;
5038
5039 switch (policy) {
5040 case SCHED_FIFO:
5041 case SCHED_RR:
5042 ret = MAX_USER_RT_PRIO-1;
5043 break;
5044 case SCHED_DEADLINE:
5045 case SCHED_NORMAL:
5046 case SCHED_BATCH:
5047 case SCHED_IDLE:
5048 ret = 0;
5049 break;
5050 }
5051 return ret;
5052 }
5053
5054 /**
5055 * sys_sched_get_priority_min - return minimum RT priority.
5056 * @policy: scheduling class.
5057 *
5058 * Return: On success, this syscall returns the minimum
5059 * rt_priority that can be used by a given scheduling class.
5060 * On failure, a negative error code is returned.
5061 */
5062 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5063 {
5064 int ret = -EINVAL;
5065
5066 switch (policy) {
5067 case SCHED_FIFO:
5068 case SCHED_RR:
5069 ret = 1;
5070 break;
5071 case SCHED_DEADLINE:
5072 case SCHED_NORMAL:
5073 case SCHED_BATCH:
5074 case SCHED_IDLE:
5075 ret = 0;
5076 }
5077 return ret;
5078 }
5079
5080 /**
5081 * sys_sched_rr_get_interval - return the default timeslice of a process.
5082 * @pid: pid of the process.
5083 * @interval: userspace pointer to the timeslice value.
5084 *
5085 * this syscall writes the default timeslice value of a given process
5086 * into the user-space timespec buffer. A value of '0' means infinity.
5087 *
5088 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5089 * an error code.
5090 */
5091 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5092 struct timespec __user *, interval)
5093 {
5094 struct task_struct *p;
5095 unsigned int time_slice;
5096 struct rq_flags rf;
5097 struct timespec t;
5098 struct rq *rq;
5099 int retval;
5100
5101 if (pid < 0)
5102 return -EINVAL;
5103
5104 retval = -ESRCH;
5105 rcu_read_lock();
5106 p = find_process_by_pid(pid);
5107 if (!p)
5108 goto out_unlock;
5109
5110 retval = security_task_getscheduler(p);
5111 if (retval)
5112 goto out_unlock;
5113
5114 rq = task_rq_lock(p, &rf);
5115 time_slice = 0;
5116 if (p->sched_class->get_rr_interval)
5117 time_slice = p->sched_class->get_rr_interval(rq, p);
5118 task_rq_unlock(rq, p, &rf);
5119
5120 rcu_read_unlock();
5121 jiffies_to_timespec(time_slice, &t);
5122 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5123 return retval;
5124
5125 out_unlock:
5126 rcu_read_unlock();
5127 return retval;
5128 }
5129
5130 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5131
5132 void sched_show_task(struct task_struct *p)
5133 {
5134 unsigned long free = 0;
5135 int ppid;
5136 unsigned long state = p->state;
5137
5138 if (state)
5139 state = __ffs(state) + 1;
5140 printk(KERN_INFO "%-15.15s %c", p->comm,
5141 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5142 #if BITS_PER_LONG == 32
5143 if (state == TASK_RUNNING)
5144 printk(KERN_CONT " running ");
5145 else
5146 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5147 #else
5148 if (state == TASK_RUNNING)
5149 printk(KERN_CONT " running task ");
5150 else
5151 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5152 #endif
5153 #ifdef CONFIG_DEBUG_STACK_USAGE
5154 free = stack_not_used(p);
5155 #endif
5156 ppid = 0;
5157 rcu_read_lock();
5158 if (pid_alive(p))
5159 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5160 rcu_read_unlock();
5161 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5162 task_pid_nr(p), ppid,
5163 (unsigned long)task_thread_info(p)->flags);
5164
5165 print_worker_info(KERN_INFO, p);
5166 show_stack(p, NULL);
5167 }
5168
5169 void show_state_filter(unsigned long state_filter)
5170 {
5171 struct task_struct *g, *p;
5172
5173 #if BITS_PER_LONG == 32
5174 printk(KERN_INFO
5175 " task PC stack pid father\n");
5176 #else
5177 printk(KERN_INFO
5178 " task PC stack pid father\n");
5179 #endif
5180 rcu_read_lock();
5181 for_each_process_thread(g, p) {
5182 /*
5183 * reset the NMI-timeout, listing all files on a slow
5184 * console might take a lot of time:
5185 * Also, reset softlockup watchdogs on all CPUs, because
5186 * another CPU might be blocked waiting for us to process
5187 * an IPI.
5188 */
5189 touch_nmi_watchdog();
5190 touch_all_softlockup_watchdogs();
5191 if (!state_filter || (p->state & state_filter))
5192 sched_show_task(p);
5193 }
5194
5195 #ifdef CONFIG_SCHED_DEBUG
5196 if (!state_filter)
5197 sysrq_sched_debug_show();
5198 #endif
5199 rcu_read_unlock();
5200 /*
5201 * Only show locks if all tasks are dumped:
5202 */
5203 if (!state_filter)
5204 debug_show_all_locks();
5205 }
5206
5207 void init_idle_bootup_task(struct task_struct *idle)
5208 {
5209 idle->sched_class = &idle_sched_class;
5210 }
5211
5212 /**
5213 * init_idle - set up an idle thread for a given CPU
5214 * @idle: task in question
5215 * @cpu: cpu the idle task belongs to
5216 *
5217 * NOTE: this function does not set the idle thread's NEED_RESCHED
5218 * flag, to make booting more robust.
5219 */
5220 void init_idle(struct task_struct *idle, int cpu)
5221 {
5222 struct rq *rq = cpu_rq(cpu);
5223 unsigned long flags;
5224
5225 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5226 raw_spin_lock(&rq->lock);
5227
5228 __sched_fork(0, idle);
5229 idle->state = TASK_RUNNING;
5230 idle->se.exec_start = sched_clock();
5231
5232 kasan_unpoison_task_stack(idle);
5233
5234 #ifdef CONFIG_SMP
5235 /*
5236 * Its possible that init_idle() gets called multiple times on a task,
5237 * in that case do_set_cpus_allowed() will not do the right thing.
5238 *
5239 * And since this is boot we can forgo the serialization.
5240 */
5241 set_cpus_allowed_common(idle, cpumask_of(cpu));
5242 #endif
5243 /*
5244 * We're having a chicken and egg problem, even though we are
5245 * holding rq->lock, the cpu isn't yet set to this cpu so the
5246 * lockdep check in task_group() will fail.
5247 *
5248 * Similar case to sched_fork(). / Alternatively we could
5249 * use task_rq_lock() here and obtain the other rq->lock.
5250 *
5251 * Silence PROVE_RCU
5252 */
5253 rcu_read_lock();
5254 __set_task_cpu(idle, cpu);
5255 rcu_read_unlock();
5256
5257 rq->curr = rq->idle = idle;
5258 idle->on_rq = TASK_ON_RQ_QUEUED;
5259 #ifdef CONFIG_SMP
5260 idle->on_cpu = 1;
5261 #endif
5262 raw_spin_unlock(&rq->lock);
5263 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5264
5265 /* Set the preempt count _outside_ the spinlocks! */
5266 init_idle_preempt_count(idle, cpu);
5267
5268 /*
5269 * The idle tasks have their own, simple scheduling class:
5270 */
5271 idle->sched_class = &idle_sched_class;
5272 ftrace_graph_init_idle_task(idle, cpu);
5273 vtime_init_idle(idle, cpu);
5274 #ifdef CONFIG_SMP
5275 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5276 #endif
5277 }
5278
5279 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5280 const struct cpumask *trial)
5281 {
5282 int ret = 1, trial_cpus;
5283 struct dl_bw *cur_dl_b;
5284 unsigned long flags;
5285
5286 if (!cpumask_weight(cur))
5287 return ret;
5288
5289 rcu_read_lock_sched();
5290 cur_dl_b = dl_bw_of(cpumask_any(cur));
5291 trial_cpus = cpumask_weight(trial);
5292
5293 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5294 if (cur_dl_b->bw != -1 &&
5295 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5296 ret = 0;
5297 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5298 rcu_read_unlock_sched();
5299
5300 return ret;
5301 }
5302
5303 int task_can_attach(struct task_struct *p,
5304 const struct cpumask *cs_cpus_allowed)
5305 {
5306 int ret = 0;
5307
5308 /*
5309 * Kthreads which disallow setaffinity shouldn't be moved
5310 * to a new cpuset; we don't want to change their cpu
5311 * affinity and isolating such threads by their set of
5312 * allowed nodes is unnecessary. Thus, cpusets are not
5313 * applicable for such threads. This prevents checking for
5314 * success of set_cpus_allowed_ptr() on all attached tasks
5315 * before cpus_allowed may be changed.
5316 */
5317 if (p->flags & PF_NO_SETAFFINITY) {
5318 ret = -EINVAL;
5319 goto out;
5320 }
5321
5322 #ifdef CONFIG_SMP
5323 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5324 cs_cpus_allowed)) {
5325 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5326 cs_cpus_allowed);
5327 struct dl_bw *dl_b;
5328 bool overflow;
5329 int cpus;
5330 unsigned long flags;
5331
5332 rcu_read_lock_sched();
5333 dl_b = dl_bw_of(dest_cpu);
5334 raw_spin_lock_irqsave(&dl_b->lock, flags);
5335 cpus = dl_bw_cpus(dest_cpu);
5336 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5337 if (overflow)
5338 ret = -EBUSY;
5339 else {
5340 /*
5341 * We reserve space for this task in the destination
5342 * root_domain, as we can't fail after this point.
5343 * We will free resources in the source root_domain
5344 * later on (see set_cpus_allowed_dl()).
5345 */
5346 __dl_add(dl_b, p->dl.dl_bw);
5347 }
5348 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5349 rcu_read_unlock_sched();
5350
5351 }
5352 #endif
5353 out:
5354 return ret;
5355 }
5356
5357 #ifdef CONFIG_SMP
5358
5359 static bool sched_smp_initialized __read_mostly;
5360
5361 #ifdef CONFIG_NUMA_BALANCING
5362 /* Migrate current task p to target_cpu */
5363 int migrate_task_to(struct task_struct *p, int target_cpu)
5364 {
5365 struct migration_arg arg = { p, target_cpu };
5366 int curr_cpu = task_cpu(p);
5367
5368 if (curr_cpu == target_cpu)
5369 return 0;
5370
5371 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5372 return -EINVAL;
5373
5374 /* TODO: This is not properly updating schedstats */
5375
5376 trace_sched_move_numa(p, curr_cpu, target_cpu);
5377 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5378 }
5379
5380 /*
5381 * Requeue a task on a given node and accurately track the number of NUMA
5382 * tasks on the runqueues
5383 */
5384 void sched_setnuma(struct task_struct *p, int nid)
5385 {
5386 bool queued, running;
5387 struct rq_flags rf;
5388 struct rq *rq;
5389
5390 rq = task_rq_lock(p, &rf);
5391 queued = task_on_rq_queued(p);
5392 running = task_current(rq, p);
5393
5394 if (queued)
5395 dequeue_task(rq, p, DEQUEUE_SAVE);
5396 if (running)
5397 put_prev_task(rq, p);
5398
5399 p->numa_preferred_nid = nid;
5400
5401 if (running)
5402 p->sched_class->set_curr_task(rq);
5403 if (queued)
5404 enqueue_task(rq, p, ENQUEUE_RESTORE);
5405 task_rq_unlock(rq, p, &rf);
5406 }
5407 #endif /* CONFIG_NUMA_BALANCING */
5408
5409 #ifdef CONFIG_HOTPLUG_CPU
5410 /*
5411 * Ensures that the idle task is using init_mm right before its cpu goes
5412 * offline.
5413 */
5414 void idle_task_exit(void)
5415 {
5416 struct mm_struct *mm = current->active_mm;
5417
5418 BUG_ON(cpu_online(smp_processor_id()));
5419
5420 if (mm != &init_mm) {
5421 switch_mm_irqs_off(mm, &init_mm, current);
5422 finish_arch_post_lock_switch();
5423 }
5424 mmdrop(mm);
5425 }
5426
5427 /*
5428 * Since this CPU is going 'away' for a while, fold any nr_active delta
5429 * we might have. Assumes we're called after migrate_tasks() so that the
5430 * nr_active count is stable. We need to take the teardown thread which
5431 * is calling this into account, so we hand in adjust = 1 to the load
5432 * calculation.
5433 *
5434 * Also see the comment "Global load-average calculations".
5435 */
5436 static void calc_load_migrate(struct rq *rq)
5437 {
5438 long delta = calc_load_fold_active(rq, 1);
5439 if (delta)
5440 atomic_long_add(delta, &calc_load_tasks);
5441 }
5442
5443 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5444 {
5445 }
5446
5447 static const struct sched_class fake_sched_class = {
5448 .put_prev_task = put_prev_task_fake,
5449 };
5450
5451 static struct task_struct fake_task = {
5452 /*
5453 * Avoid pull_{rt,dl}_task()
5454 */
5455 .prio = MAX_PRIO + 1,
5456 .sched_class = &fake_sched_class,
5457 };
5458
5459 /*
5460 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5461 * try_to_wake_up()->select_task_rq().
5462 *
5463 * Called with rq->lock held even though we'er in stop_machine() and
5464 * there's no concurrency possible, we hold the required locks anyway
5465 * because of lock validation efforts.
5466 */
5467 static void migrate_tasks(struct rq *dead_rq)
5468 {
5469 struct rq *rq = dead_rq;
5470 struct task_struct *next, *stop = rq->stop;
5471 struct pin_cookie cookie;
5472 int dest_cpu;
5473
5474 /*
5475 * Fudge the rq selection such that the below task selection loop
5476 * doesn't get stuck on the currently eligible stop task.
5477 *
5478 * We're currently inside stop_machine() and the rq is either stuck
5479 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5480 * either way we should never end up calling schedule() until we're
5481 * done here.
5482 */
5483 rq->stop = NULL;
5484
5485 /*
5486 * put_prev_task() and pick_next_task() sched
5487 * class method both need to have an up-to-date
5488 * value of rq->clock[_task]
5489 */
5490 update_rq_clock(rq);
5491
5492 for (;;) {
5493 /*
5494 * There's this thread running, bail when that's the only
5495 * remaining thread.
5496 */
5497 if (rq->nr_running == 1)
5498 break;
5499
5500 /*
5501 * pick_next_task assumes pinned rq->lock.
5502 */
5503 cookie = lockdep_pin_lock(&rq->lock);
5504 next = pick_next_task(rq, &fake_task, cookie);
5505 BUG_ON(!next);
5506 next->sched_class->put_prev_task(rq, next);
5507
5508 /*
5509 * Rules for changing task_struct::cpus_allowed are holding
5510 * both pi_lock and rq->lock, such that holding either
5511 * stabilizes the mask.
5512 *
5513 * Drop rq->lock is not quite as disastrous as it usually is
5514 * because !cpu_active at this point, which means load-balance
5515 * will not interfere. Also, stop-machine.
5516 */
5517 lockdep_unpin_lock(&rq->lock, cookie);
5518 raw_spin_unlock(&rq->lock);
5519 raw_spin_lock(&next->pi_lock);
5520 raw_spin_lock(&rq->lock);
5521
5522 /*
5523 * Since we're inside stop-machine, _nothing_ should have
5524 * changed the task, WARN if weird stuff happened, because in
5525 * that case the above rq->lock drop is a fail too.
5526 */
5527 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5528 raw_spin_unlock(&next->pi_lock);
5529 continue;
5530 }
5531
5532 /* Find suitable destination for @next, with force if needed. */
5533 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5534
5535 rq = __migrate_task(rq, next, dest_cpu);
5536 if (rq != dead_rq) {
5537 raw_spin_unlock(&rq->lock);
5538 rq = dead_rq;
5539 raw_spin_lock(&rq->lock);
5540 }
5541 raw_spin_unlock(&next->pi_lock);
5542 }
5543
5544 rq->stop = stop;
5545 }
5546 #endif /* CONFIG_HOTPLUG_CPU */
5547
5548 static void set_rq_online(struct rq *rq)
5549 {
5550 if (!rq->online) {
5551 const struct sched_class *class;
5552
5553 cpumask_set_cpu(rq->cpu, rq->rd->online);
5554 rq->online = 1;
5555
5556 for_each_class(class) {
5557 if (class->rq_online)
5558 class->rq_online(rq);
5559 }
5560 }
5561 }
5562
5563 static void set_rq_offline(struct rq *rq)
5564 {
5565 if (rq->online) {
5566 const struct sched_class *class;
5567
5568 for_each_class(class) {
5569 if (class->rq_offline)
5570 class->rq_offline(rq);
5571 }
5572
5573 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5574 rq->online = 0;
5575 }
5576 }
5577
5578 static void set_cpu_rq_start_time(unsigned int cpu)
5579 {
5580 struct rq *rq = cpu_rq(cpu);
5581
5582 rq->age_stamp = sched_clock_cpu(cpu);
5583 }
5584
5585 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5586
5587 #ifdef CONFIG_SCHED_DEBUG
5588
5589 static __read_mostly int sched_debug_enabled;
5590
5591 static int __init sched_debug_setup(char *str)
5592 {
5593 sched_debug_enabled = 1;
5594
5595 return 0;
5596 }
5597 early_param("sched_debug", sched_debug_setup);
5598
5599 static inline bool sched_debug(void)
5600 {
5601 return sched_debug_enabled;
5602 }
5603
5604 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5605 struct cpumask *groupmask)
5606 {
5607 struct sched_group *group = sd->groups;
5608
5609 cpumask_clear(groupmask);
5610
5611 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5612
5613 if (!(sd->flags & SD_LOAD_BALANCE)) {
5614 printk("does not load-balance\n");
5615 if (sd->parent)
5616 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5617 " has parent");
5618 return -1;
5619 }
5620
5621 printk(KERN_CONT "span %*pbl level %s\n",
5622 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5623
5624 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5625 printk(KERN_ERR "ERROR: domain->span does not contain "
5626 "CPU%d\n", cpu);
5627 }
5628 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5629 printk(KERN_ERR "ERROR: domain->groups does not contain"
5630 " CPU%d\n", cpu);
5631 }
5632
5633 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5634 do {
5635 if (!group) {
5636 printk("\n");
5637 printk(KERN_ERR "ERROR: group is NULL\n");
5638 break;
5639 }
5640
5641 if (!cpumask_weight(sched_group_cpus(group))) {
5642 printk(KERN_CONT "\n");
5643 printk(KERN_ERR "ERROR: empty group\n");
5644 break;
5645 }
5646
5647 if (!(sd->flags & SD_OVERLAP) &&
5648 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5649 printk(KERN_CONT "\n");
5650 printk(KERN_ERR "ERROR: repeated CPUs\n");
5651 break;
5652 }
5653
5654 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5655
5656 printk(KERN_CONT " %*pbl",
5657 cpumask_pr_args(sched_group_cpus(group)));
5658 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5659 printk(KERN_CONT " (cpu_capacity = %d)",
5660 group->sgc->capacity);
5661 }
5662
5663 group = group->next;
5664 } while (group != sd->groups);
5665 printk(KERN_CONT "\n");
5666
5667 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5668 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5669
5670 if (sd->parent &&
5671 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5672 printk(KERN_ERR "ERROR: parent span is not a superset "
5673 "of domain->span\n");
5674 return 0;
5675 }
5676
5677 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5678 {
5679 int level = 0;
5680
5681 if (!sched_debug_enabled)
5682 return;
5683
5684 if (!sd) {
5685 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5686 return;
5687 }
5688
5689 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5690
5691 for (;;) {
5692 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5693 break;
5694 level++;
5695 sd = sd->parent;
5696 if (!sd)
5697 break;
5698 }
5699 }
5700 #else /* !CONFIG_SCHED_DEBUG */
5701 # define sched_domain_debug(sd, cpu) do { } while (0)
5702 static inline bool sched_debug(void)
5703 {
5704 return false;
5705 }
5706 #endif /* CONFIG_SCHED_DEBUG */
5707
5708 static int sd_degenerate(struct sched_domain *sd)
5709 {
5710 if (cpumask_weight(sched_domain_span(sd)) == 1)
5711 return 1;
5712
5713 /* Following flags need at least 2 groups */
5714 if (sd->flags & (SD_LOAD_BALANCE |
5715 SD_BALANCE_NEWIDLE |
5716 SD_BALANCE_FORK |
5717 SD_BALANCE_EXEC |
5718 SD_SHARE_CPUCAPACITY |
5719 SD_SHARE_PKG_RESOURCES |
5720 SD_SHARE_POWERDOMAIN)) {
5721 if (sd->groups != sd->groups->next)
5722 return 0;
5723 }
5724
5725 /* Following flags don't use groups */
5726 if (sd->flags & (SD_WAKE_AFFINE))
5727 return 0;
5728
5729 return 1;
5730 }
5731
5732 static int
5733 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5734 {
5735 unsigned long cflags = sd->flags, pflags = parent->flags;
5736
5737 if (sd_degenerate(parent))
5738 return 1;
5739
5740 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5741 return 0;
5742
5743 /* Flags needing groups don't count if only 1 group in parent */
5744 if (parent->groups == parent->groups->next) {
5745 pflags &= ~(SD_LOAD_BALANCE |
5746 SD_BALANCE_NEWIDLE |
5747 SD_BALANCE_FORK |
5748 SD_BALANCE_EXEC |
5749 SD_SHARE_CPUCAPACITY |
5750 SD_SHARE_PKG_RESOURCES |
5751 SD_PREFER_SIBLING |
5752 SD_SHARE_POWERDOMAIN);
5753 if (nr_node_ids == 1)
5754 pflags &= ~SD_SERIALIZE;
5755 }
5756 if (~cflags & pflags)
5757 return 0;
5758
5759 return 1;
5760 }
5761
5762 static void free_rootdomain(struct rcu_head *rcu)
5763 {
5764 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5765
5766 cpupri_cleanup(&rd->cpupri);
5767 cpudl_cleanup(&rd->cpudl);
5768 free_cpumask_var(rd->dlo_mask);
5769 free_cpumask_var(rd->rto_mask);
5770 free_cpumask_var(rd->online);
5771 free_cpumask_var(rd->span);
5772 kfree(rd);
5773 }
5774
5775 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5776 {
5777 struct root_domain *old_rd = NULL;
5778 unsigned long flags;
5779
5780 raw_spin_lock_irqsave(&rq->lock, flags);
5781
5782 if (rq->rd) {
5783 old_rd = rq->rd;
5784
5785 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5786 set_rq_offline(rq);
5787
5788 cpumask_clear_cpu(rq->cpu, old_rd->span);
5789
5790 /*
5791 * If we dont want to free the old_rd yet then
5792 * set old_rd to NULL to skip the freeing later
5793 * in this function:
5794 */
5795 if (!atomic_dec_and_test(&old_rd->refcount))
5796 old_rd = NULL;
5797 }
5798
5799 atomic_inc(&rd->refcount);
5800 rq->rd = rd;
5801
5802 cpumask_set_cpu(rq->cpu, rd->span);
5803 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5804 set_rq_online(rq);
5805
5806 raw_spin_unlock_irqrestore(&rq->lock, flags);
5807
5808 if (old_rd)
5809 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5810 }
5811
5812 static int init_rootdomain(struct root_domain *rd)
5813 {
5814 memset(rd, 0, sizeof(*rd));
5815
5816 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5817 goto out;
5818 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5819 goto free_span;
5820 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5821 goto free_online;
5822 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5823 goto free_dlo_mask;
5824
5825 init_dl_bw(&rd->dl_bw);
5826 if (cpudl_init(&rd->cpudl) != 0)
5827 goto free_dlo_mask;
5828
5829 if (cpupri_init(&rd->cpupri) != 0)
5830 goto free_rto_mask;
5831 return 0;
5832
5833 free_rto_mask:
5834 free_cpumask_var(rd->rto_mask);
5835 free_dlo_mask:
5836 free_cpumask_var(rd->dlo_mask);
5837 free_online:
5838 free_cpumask_var(rd->online);
5839 free_span:
5840 free_cpumask_var(rd->span);
5841 out:
5842 return -ENOMEM;
5843 }
5844
5845 /*
5846 * By default the system creates a single root-domain with all cpus as
5847 * members (mimicking the global state we have today).
5848 */
5849 struct root_domain def_root_domain;
5850
5851 static void init_defrootdomain(void)
5852 {
5853 init_rootdomain(&def_root_domain);
5854
5855 atomic_set(&def_root_domain.refcount, 1);
5856 }
5857
5858 static struct root_domain *alloc_rootdomain(void)
5859 {
5860 struct root_domain *rd;
5861
5862 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5863 if (!rd)
5864 return NULL;
5865
5866 if (init_rootdomain(rd) != 0) {
5867 kfree(rd);
5868 return NULL;
5869 }
5870
5871 return rd;
5872 }
5873
5874 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5875 {
5876 struct sched_group *tmp, *first;
5877
5878 if (!sg)
5879 return;
5880
5881 first = sg;
5882 do {
5883 tmp = sg->next;
5884
5885 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5886 kfree(sg->sgc);
5887
5888 kfree(sg);
5889 sg = tmp;
5890 } while (sg != first);
5891 }
5892
5893 static void free_sched_domain(struct rcu_head *rcu)
5894 {
5895 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5896
5897 /*
5898 * If its an overlapping domain it has private groups, iterate and
5899 * nuke them all.
5900 */
5901 if (sd->flags & SD_OVERLAP) {
5902 free_sched_groups(sd->groups, 1);
5903 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5904 kfree(sd->groups->sgc);
5905 kfree(sd->groups);
5906 }
5907 kfree(sd);
5908 }
5909
5910 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5911 {
5912 call_rcu(&sd->rcu, free_sched_domain);
5913 }
5914
5915 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5916 {
5917 for (; sd; sd = sd->parent)
5918 destroy_sched_domain(sd, cpu);
5919 }
5920
5921 /*
5922 * Keep a special pointer to the highest sched_domain that has
5923 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5924 * allows us to avoid some pointer chasing select_idle_sibling().
5925 *
5926 * Also keep a unique ID per domain (we use the first cpu number in
5927 * the cpumask of the domain), this allows us to quickly tell if
5928 * two cpus are in the same cache domain, see cpus_share_cache().
5929 */
5930 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5931 DEFINE_PER_CPU(int, sd_llc_size);
5932 DEFINE_PER_CPU(int, sd_llc_id);
5933 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5934 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5935 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5936
5937 static void update_top_cache_domain(int cpu)
5938 {
5939 struct sched_domain *sd;
5940 struct sched_domain *busy_sd = NULL;
5941 int id = cpu;
5942 int size = 1;
5943
5944 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5945 if (sd) {
5946 id = cpumask_first(sched_domain_span(sd));
5947 size = cpumask_weight(sched_domain_span(sd));
5948 busy_sd = sd->parent; /* sd_busy */
5949 }
5950 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5951
5952 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5953 per_cpu(sd_llc_size, cpu) = size;
5954 per_cpu(sd_llc_id, cpu) = id;
5955
5956 sd = lowest_flag_domain(cpu, SD_NUMA);
5957 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5958
5959 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5960 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5961 }
5962
5963 /*
5964 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5965 * hold the hotplug lock.
5966 */
5967 static void
5968 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5969 {
5970 struct rq *rq = cpu_rq(cpu);
5971 struct sched_domain *tmp;
5972
5973 /* Remove the sched domains which do not contribute to scheduling. */
5974 for (tmp = sd; tmp; ) {
5975 struct sched_domain *parent = tmp->parent;
5976 if (!parent)
5977 break;
5978
5979 if (sd_parent_degenerate(tmp, parent)) {
5980 tmp->parent = parent->parent;
5981 if (parent->parent)
5982 parent->parent->child = tmp;
5983 /*
5984 * Transfer SD_PREFER_SIBLING down in case of a
5985 * degenerate parent; the spans match for this
5986 * so the property transfers.
5987 */
5988 if (parent->flags & SD_PREFER_SIBLING)
5989 tmp->flags |= SD_PREFER_SIBLING;
5990 destroy_sched_domain(parent, cpu);
5991 } else
5992 tmp = tmp->parent;
5993 }
5994
5995 if (sd && sd_degenerate(sd)) {
5996 tmp = sd;
5997 sd = sd->parent;
5998 destroy_sched_domain(tmp, cpu);
5999 if (sd)
6000 sd->child = NULL;
6001 }
6002
6003 sched_domain_debug(sd, cpu);
6004
6005 rq_attach_root(rq, rd);
6006 tmp = rq->sd;
6007 rcu_assign_pointer(rq->sd, sd);
6008 destroy_sched_domains(tmp, cpu);
6009
6010 update_top_cache_domain(cpu);
6011 }
6012
6013 /* Setup the mask of cpus configured for isolated domains */
6014 static int __init isolated_cpu_setup(char *str)
6015 {
6016 int ret;
6017
6018 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6019 ret = cpulist_parse(str, cpu_isolated_map);
6020 if (ret) {
6021 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6022 return 0;
6023 }
6024 return 1;
6025 }
6026 __setup("isolcpus=", isolated_cpu_setup);
6027
6028 struct s_data {
6029 struct sched_domain ** __percpu sd;
6030 struct root_domain *rd;
6031 };
6032
6033 enum s_alloc {
6034 sa_rootdomain,
6035 sa_sd,
6036 sa_sd_storage,
6037 sa_none,
6038 };
6039
6040 /*
6041 * Build an iteration mask that can exclude certain CPUs from the upwards
6042 * domain traversal.
6043 *
6044 * Asymmetric node setups can result in situations where the domain tree is of
6045 * unequal depth, make sure to skip domains that already cover the entire
6046 * range.
6047 *
6048 * In that case build_sched_domains() will have terminated the iteration early
6049 * and our sibling sd spans will be empty. Domains should always include the
6050 * cpu they're built on, so check that.
6051 *
6052 */
6053 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6054 {
6055 const struct cpumask *span = sched_domain_span(sd);
6056 struct sd_data *sdd = sd->private;
6057 struct sched_domain *sibling;
6058 int i;
6059
6060 for_each_cpu(i, span) {
6061 sibling = *per_cpu_ptr(sdd->sd, i);
6062 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6063 continue;
6064
6065 cpumask_set_cpu(i, sched_group_mask(sg));
6066 }
6067 }
6068
6069 /*
6070 * Return the canonical balance cpu for this group, this is the first cpu
6071 * of this group that's also in the iteration mask.
6072 */
6073 int group_balance_cpu(struct sched_group *sg)
6074 {
6075 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6076 }
6077
6078 static int
6079 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6080 {
6081 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6082 const struct cpumask *span = sched_domain_span(sd);
6083 struct cpumask *covered = sched_domains_tmpmask;
6084 struct sd_data *sdd = sd->private;
6085 struct sched_domain *sibling;
6086 int i;
6087
6088 cpumask_clear(covered);
6089
6090 for_each_cpu(i, span) {
6091 struct cpumask *sg_span;
6092
6093 if (cpumask_test_cpu(i, covered))
6094 continue;
6095
6096 sibling = *per_cpu_ptr(sdd->sd, i);
6097
6098 /* See the comment near build_group_mask(). */
6099 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6100 continue;
6101
6102 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6103 GFP_KERNEL, cpu_to_node(cpu));
6104
6105 if (!sg)
6106 goto fail;
6107
6108 sg_span = sched_group_cpus(sg);
6109 if (sibling->child)
6110 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6111 else
6112 cpumask_set_cpu(i, sg_span);
6113
6114 cpumask_or(covered, covered, sg_span);
6115
6116 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6117 if (atomic_inc_return(&sg->sgc->ref) == 1)
6118 build_group_mask(sd, sg);
6119
6120 /*
6121 * Initialize sgc->capacity such that even if we mess up the
6122 * domains and no possible iteration will get us here, we won't
6123 * die on a /0 trap.
6124 */
6125 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6126
6127 /*
6128 * Make sure the first group of this domain contains the
6129 * canonical balance cpu. Otherwise the sched_domain iteration
6130 * breaks. See update_sg_lb_stats().
6131 */
6132 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6133 group_balance_cpu(sg) == cpu)
6134 groups = sg;
6135
6136 if (!first)
6137 first = sg;
6138 if (last)
6139 last->next = sg;
6140 last = sg;
6141 last->next = first;
6142 }
6143 sd->groups = groups;
6144
6145 return 0;
6146
6147 fail:
6148 free_sched_groups(first, 0);
6149
6150 return -ENOMEM;
6151 }
6152
6153 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6154 {
6155 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6156 struct sched_domain *child = sd->child;
6157
6158 if (child)
6159 cpu = cpumask_first(sched_domain_span(child));
6160
6161 if (sg) {
6162 *sg = *per_cpu_ptr(sdd->sg, cpu);
6163 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6164 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6165 }
6166
6167 return cpu;
6168 }
6169
6170 /*
6171 * build_sched_groups will build a circular linked list of the groups
6172 * covered by the given span, and will set each group's ->cpumask correctly,
6173 * and ->cpu_capacity to 0.
6174 *
6175 * Assumes the sched_domain tree is fully constructed
6176 */
6177 static int
6178 build_sched_groups(struct sched_domain *sd, int cpu)
6179 {
6180 struct sched_group *first = NULL, *last = NULL;
6181 struct sd_data *sdd = sd->private;
6182 const struct cpumask *span = sched_domain_span(sd);
6183 struct cpumask *covered;
6184 int i;
6185
6186 get_group(cpu, sdd, &sd->groups);
6187 atomic_inc(&sd->groups->ref);
6188
6189 if (cpu != cpumask_first(span))
6190 return 0;
6191
6192 lockdep_assert_held(&sched_domains_mutex);
6193 covered = sched_domains_tmpmask;
6194
6195 cpumask_clear(covered);
6196
6197 for_each_cpu(i, span) {
6198 struct sched_group *sg;
6199 int group, j;
6200
6201 if (cpumask_test_cpu(i, covered))
6202 continue;
6203
6204 group = get_group(i, sdd, &sg);
6205 cpumask_setall(sched_group_mask(sg));
6206
6207 for_each_cpu(j, span) {
6208 if (get_group(j, sdd, NULL) != group)
6209 continue;
6210
6211 cpumask_set_cpu(j, covered);
6212 cpumask_set_cpu(j, sched_group_cpus(sg));
6213 }
6214
6215 if (!first)
6216 first = sg;
6217 if (last)
6218 last->next = sg;
6219 last = sg;
6220 }
6221 last->next = first;
6222
6223 return 0;
6224 }
6225
6226 /*
6227 * Initialize sched groups cpu_capacity.
6228 *
6229 * cpu_capacity indicates the capacity of sched group, which is used while
6230 * distributing the load between different sched groups in a sched domain.
6231 * Typically cpu_capacity for all the groups in a sched domain will be same
6232 * unless there are asymmetries in the topology. If there are asymmetries,
6233 * group having more cpu_capacity will pickup more load compared to the
6234 * group having less cpu_capacity.
6235 */
6236 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6237 {
6238 struct sched_group *sg = sd->groups;
6239
6240 WARN_ON(!sg);
6241
6242 do {
6243 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6244 sg = sg->next;
6245 } while (sg != sd->groups);
6246
6247 if (cpu != group_balance_cpu(sg))
6248 return;
6249
6250 update_group_capacity(sd, cpu);
6251 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6252 }
6253
6254 /*
6255 * Initializers for schedule domains
6256 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6257 */
6258
6259 static int default_relax_domain_level = -1;
6260 int sched_domain_level_max;
6261
6262 static int __init setup_relax_domain_level(char *str)
6263 {
6264 if (kstrtoint(str, 0, &default_relax_domain_level))
6265 pr_warn("Unable to set relax_domain_level\n");
6266
6267 return 1;
6268 }
6269 __setup("relax_domain_level=", setup_relax_domain_level);
6270
6271 static void set_domain_attribute(struct sched_domain *sd,
6272 struct sched_domain_attr *attr)
6273 {
6274 int request;
6275
6276 if (!attr || attr->relax_domain_level < 0) {
6277 if (default_relax_domain_level < 0)
6278 return;
6279 else
6280 request = default_relax_domain_level;
6281 } else
6282 request = attr->relax_domain_level;
6283 if (request < sd->level) {
6284 /* turn off idle balance on this domain */
6285 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6286 } else {
6287 /* turn on idle balance on this domain */
6288 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6289 }
6290 }
6291
6292 static void __sdt_free(const struct cpumask *cpu_map);
6293 static int __sdt_alloc(const struct cpumask *cpu_map);
6294
6295 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6296 const struct cpumask *cpu_map)
6297 {
6298 switch (what) {
6299 case sa_rootdomain:
6300 if (!atomic_read(&d->rd->refcount))
6301 free_rootdomain(&d->rd->rcu); /* fall through */
6302 case sa_sd:
6303 free_percpu(d->sd); /* fall through */
6304 case sa_sd_storage:
6305 __sdt_free(cpu_map); /* fall through */
6306 case sa_none:
6307 break;
6308 }
6309 }
6310
6311 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6312 const struct cpumask *cpu_map)
6313 {
6314 memset(d, 0, sizeof(*d));
6315
6316 if (__sdt_alloc(cpu_map))
6317 return sa_sd_storage;
6318 d->sd = alloc_percpu(struct sched_domain *);
6319 if (!d->sd)
6320 return sa_sd_storage;
6321 d->rd = alloc_rootdomain();
6322 if (!d->rd)
6323 return sa_sd;
6324 return sa_rootdomain;
6325 }
6326
6327 /*
6328 * NULL the sd_data elements we've used to build the sched_domain and
6329 * sched_group structure so that the subsequent __free_domain_allocs()
6330 * will not free the data we're using.
6331 */
6332 static void claim_allocations(int cpu, struct sched_domain *sd)
6333 {
6334 struct sd_data *sdd = sd->private;
6335
6336 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6337 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6338
6339 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6340 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6341
6342 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6343 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6344 }
6345
6346 #ifdef CONFIG_NUMA
6347 static int sched_domains_numa_levels;
6348 enum numa_topology_type sched_numa_topology_type;
6349 static int *sched_domains_numa_distance;
6350 int sched_max_numa_distance;
6351 static struct cpumask ***sched_domains_numa_masks;
6352 static int sched_domains_curr_level;
6353 #endif
6354
6355 /*
6356 * SD_flags allowed in topology descriptions.
6357 *
6358 * These flags are purely descriptive of the topology and do not prescribe
6359 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6360 * function:
6361 *
6362 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6363 * SD_SHARE_PKG_RESOURCES - describes shared caches
6364 * SD_NUMA - describes NUMA topologies
6365 * SD_SHARE_POWERDOMAIN - describes shared power domain
6366 *
6367 * Odd one out, which beside describing the topology has a quirk also
6368 * prescribes the desired behaviour that goes along with it:
6369 *
6370 * SD_ASYM_PACKING - describes SMT quirks
6371 */
6372 #define TOPOLOGY_SD_FLAGS \
6373 (SD_SHARE_CPUCAPACITY | \
6374 SD_SHARE_PKG_RESOURCES | \
6375 SD_NUMA | \
6376 SD_ASYM_PACKING | \
6377 SD_SHARE_POWERDOMAIN)
6378
6379 static struct sched_domain *
6380 sd_init(struct sched_domain_topology_level *tl, int cpu)
6381 {
6382 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6383 int sd_weight, sd_flags = 0;
6384
6385 #ifdef CONFIG_NUMA
6386 /*
6387 * Ugly hack to pass state to sd_numa_mask()...
6388 */
6389 sched_domains_curr_level = tl->numa_level;
6390 #endif
6391
6392 sd_weight = cpumask_weight(tl->mask(cpu));
6393
6394 if (tl->sd_flags)
6395 sd_flags = (*tl->sd_flags)();
6396 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6397 "wrong sd_flags in topology description\n"))
6398 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6399
6400 *sd = (struct sched_domain){
6401 .min_interval = sd_weight,
6402 .max_interval = 2*sd_weight,
6403 .busy_factor = 32,
6404 .imbalance_pct = 125,
6405
6406 .cache_nice_tries = 0,
6407 .busy_idx = 0,
6408 .idle_idx = 0,
6409 .newidle_idx = 0,
6410 .wake_idx = 0,
6411 .forkexec_idx = 0,
6412
6413 .flags = 1*SD_LOAD_BALANCE
6414 | 1*SD_BALANCE_NEWIDLE
6415 | 1*SD_BALANCE_EXEC
6416 | 1*SD_BALANCE_FORK
6417 | 0*SD_BALANCE_WAKE
6418 | 1*SD_WAKE_AFFINE
6419 | 0*SD_SHARE_CPUCAPACITY
6420 | 0*SD_SHARE_PKG_RESOURCES
6421 | 0*SD_SERIALIZE
6422 | 0*SD_PREFER_SIBLING
6423 | 0*SD_NUMA
6424 | sd_flags
6425 ,
6426
6427 .last_balance = jiffies,
6428 .balance_interval = sd_weight,
6429 .smt_gain = 0,
6430 .max_newidle_lb_cost = 0,
6431 .next_decay_max_lb_cost = jiffies,
6432 #ifdef CONFIG_SCHED_DEBUG
6433 .name = tl->name,
6434 #endif
6435 };
6436
6437 /*
6438 * Convert topological properties into behaviour.
6439 */
6440
6441 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6442 sd->flags |= SD_PREFER_SIBLING;
6443 sd->imbalance_pct = 110;
6444 sd->smt_gain = 1178; /* ~15% */
6445
6446 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6447 sd->imbalance_pct = 117;
6448 sd->cache_nice_tries = 1;
6449 sd->busy_idx = 2;
6450
6451 #ifdef CONFIG_NUMA
6452 } else if (sd->flags & SD_NUMA) {
6453 sd->cache_nice_tries = 2;
6454 sd->busy_idx = 3;
6455 sd->idle_idx = 2;
6456
6457 sd->flags |= SD_SERIALIZE;
6458 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6459 sd->flags &= ~(SD_BALANCE_EXEC |
6460 SD_BALANCE_FORK |
6461 SD_WAKE_AFFINE);
6462 }
6463
6464 #endif
6465 } else {
6466 sd->flags |= SD_PREFER_SIBLING;
6467 sd->cache_nice_tries = 1;
6468 sd->busy_idx = 2;
6469 sd->idle_idx = 1;
6470 }
6471
6472 sd->private = &tl->data;
6473
6474 return sd;
6475 }
6476
6477 /*
6478 * Topology list, bottom-up.
6479 */
6480 static struct sched_domain_topology_level default_topology[] = {
6481 #ifdef CONFIG_SCHED_SMT
6482 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6483 #endif
6484 #ifdef CONFIG_SCHED_MC
6485 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6486 #endif
6487 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6488 { NULL, },
6489 };
6490
6491 static struct sched_domain_topology_level *sched_domain_topology =
6492 default_topology;
6493
6494 #define for_each_sd_topology(tl) \
6495 for (tl = sched_domain_topology; tl->mask; tl++)
6496
6497 void set_sched_topology(struct sched_domain_topology_level *tl)
6498 {
6499 sched_domain_topology = tl;
6500 }
6501
6502 #ifdef CONFIG_NUMA
6503
6504 static const struct cpumask *sd_numa_mask(int cpu)
6505 {
6506 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6507 }
6508
6509 static void sched_numa_warn(const char *str)
6510 {
6511 static int done = false;
6512 int i,j;
6513
6514 if (done)
6515 return;
6516
6517 done = true;
6518
6519 printk(KERN_WARNING "ERROR: %s\n\n", str);
6520
6521 for (i = 0; i < nr_node_ids; i++) {
6522 printk(KERN_WARNING " ");
6523 for (j = 0; j < nr_node_ids; j++)
6524 printk(KERN_CONT "%02d ", node_distance(i,j));
6525 printk(KERN_CONT "\n");
6526 }
6527 printk(KERN_WARNING "\n");
6528 }
6529
6530 bool find_numa_distance(int distance)
6531 {
6532 int i;
6533
6534 if (distance == node_distance(0, 0))
6535 return true;
6536
6537 for (i = 0; i < sched_domains_numa_levels; i++) {
6538 if (sched_domains_numa_distance[i] == distance)
6539 return true;
6540 }
6541
6542 return false;
6543 }
6544
6545 /*
6546 * A system can have three types of NUMA topology:
6547 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6548 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6549 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6550 *
6551 * The difference between a glueless mesh topology and a backplane
6552 * topology lies in whether communication between not directly
6553 * connected nodes goes through intermediary nodes (where programs
6554 * could run), or through backplane controllers. This affects
6555 * placement of programs.
6556 *
6557 * The type of topology can be discerned with the following tests:
6558 * - If the maximum distance between any nodes is 1 hop, the system
6559 * is directly connected.
6560 * - If for two nodes A and B, located N > 1 hops away from each other,
6561 * there is an intermediary node C, which is < N hops away from both
6562 * nodes A and B, the system is a glueless mesh.
6563 */
6564 static void init_numa_topology_type(void)
6565 {
6566 int a, b, c, n;
6567
6568 n = sched_max_numa_distance;
6569
6570 if (sched_domains_numa_levels <= 1) {
6571 sched_numa_topology_type = NUMA_DIRECT;
6572 return;
6573 }
6574
6575 for_each_online_node(a) {
6576 for_each_online_node(b) {
6577 /* Find two nodes furthest removed from each other. */
6578 if (node_distance(a, b) < n)
6579 continue;
6580
6581 /* Is there an intermediary node between a and b? */
6582 for_each_online_node(c) {
6583 if (node_distance(a, c) < n &&
6584 node_distance(b, c) < n) {
6585 sched_numa_topology_type =
6586 NUMA_GLUELESS_MESH;
6587 return;
6588 }
6589 }
6590
6591 sched_numa_topology_type = NUMA_BACKPLANE;
6592 return;
6593 }
6594 }
6595 }
6596
6597 static void sched_init_numa(void)
6598 {
6599 int next_distance, curr_distance = node_distance(0, 0);
6600 struct sched_domain_topology_level *tl;
6601 int level = 0;
6602 int i, j, k;
6603
6604 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6605 if (!sched_domains_numa_distance)
6606 return;
6607
6608 /*
6609 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6610 * unique distances in the node_distance() table.
6611 *
6612 * Assumes node_distance(0,j) includes all distances in
6613 * node_distance(i,j) in order to avoid cubic time.
6614 */
6615 next_distance = curr_distance;
6616 for (i = 0; i < nr_node_ids; i++) {
6617 for (j = 0; j < nr_node_ids; j++) {
6618 for (k = 0; k < nr_node_ids; k++) {
6619 int distance = node_distance(i, k);
6620
6621 if (distance > curr_distance &&
6622 (distance < next_distance ||
6623 next_distance == curr_distance))
6624 next_distance = distance;
6625
6626 /*
6627 * While not a strong assumption it would be nice to know
6628 * about cases where if node A is connected to B, B is not
6629 * equally connected to A.
6630 */
6631 if (sched_debug() && node_distance(k, i) != distance)
6632 sched_numa_warn("Node-distance not symmetric");
6633
6634 if (sched_debug() && i && !find_numa_distance(distance))
6635 sched_numa_warn("Node-0 not representative");
6636 }
6637 if (next_distance != curr_distance) {
6638 sched_domains_numa_distance[level++] = next_distance;
6639 sched_domains_numa_levels = level;
6640 curr_distance = next_distance;
6641 } else break;
6642 }
6643
6644 /*
6645 * In case of sched_debug() we verify the above assumption.
6646 */
6647 if (!sched_debug())
6648 break;
6649 }
6650
6651 if (!level)
6652 return;
6653
6654 /*
6655 * 'level' contains the number of unique distances, excluding the
6656 * identity distance node_distance(i,i).
6657 *
6658 * The sched_domains_numa_distance[] array includes the actual distance
6659 * numbers.
6660 */
6661
6662 /*
6663 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6664 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6665 * the array will contain less then 'level' members. This could be
6666 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6667 * in other functions.
6668 *
6669 * We reset it to 'level' at the end of this function.
6670 */
6671 sched_domains_numa_levels = 0;
6672
6673 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6674 if (!sched_domains_numa_masks)
6675 return;
6676
6677 /*
6678 * Now for each level, construct a mask per node which contains all
6679 * cpus of nodes that are that many hops away from us.
6680 */
6681 for (i = 0; i < level; i++) {
6682 sched_domains_numa_masks[i] =
6683 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6684 if (!sched_domains_numa_masks[i])
6685 return;
6686
6687 for (j = 0; j < nr_node_ids; j++) {
6688 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6689 if (!mask)
6690 return;
6691
6692 sched_domains_numa_masks[i][j] = mask;
6693
6694 for_each_node(k) {
6695 if (node_distance(j, k) > sched_domains_numa_distance[i])
6696 continue;
6697
6698 cpumask_or(mask, mask, cpumask_of_node(k));
6699 }
6700 }
6701 }
6702
6703 /* Compute default topology size */
6704 for (i = 0; sched_domain_topology[i].mask; i++);
6705
6706 tl = kzalloc((i + level + 1) *
6707 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6708 if (!tl)
6709 return;
6710
6711 /*
6712 * Copy the default topology bits..
6713 */
6714 for (i = 0; sched_domain_topology[i].mask; i++)
6715 tl[i] = sched_domain_topology[i];
6716
6717 /*
6718 * .. and append 'j' levels of NUMA goodness.
6719 */
6720 for (j = 0; j < level; i++, j++) {
6721 tl[i] = (struct sched_domain_topology_level){
6722 .mask = sd_numa_mask,
6723 .sd_flags = cpu_numa_flags,
6724 .flags = SDTL_OVERLAP,
6725 .numa_level = j,
6726 SD_INIT_NAME(NUMA)
6727 };
6728 }
6729
6730 sched_domain_topology = tl;
6731
6732 sched_domains_numa_levels = level;
6733 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6734
6735 init_numa_topology_type();
6736 }
6737
6738 static void sched_domains_numa_masks_set(unsigned int cpu)
6739 {
6740 int node = cpu_to_node(cpu);
6741 int i, j;
6742
6743 for (i = 0; i < sched_domains_numa_levels; i++) {
6744 for (j = 0; j < nr_node_ids; j++) {
6745 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6746 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6747 }
6748 }
6749 }
6750
6751 static void sched_domains_numa_masks_clear(unsigned int cpu)
6752 {
6753 int i, j;
6754
6755 for (i = 0; i < sched_domains_numa_levels; i++) {
6756 for (j = 0; j < nr_node_ids; j++)
6757 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6758 }
6759 }
6760
6761 #else
6762 static inline void sched_init_numa(void) { }
6763 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6764 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6765 #endif /* CONFIG_NUMA */
6766
6767 static int __sdt_alloc(const struct cpumask *cpu_map)
6768 {
6769 struct sched_domain_topology_level *tl;
6770 int j;
6771
6772 for_each_sd_topology(tl) {
6773 struct sd_data *sdd = &tl->data;
6774
6775 sdd->sd = alloc_percpu(struct sched_domain *);
6776 if (!sdd->sd)
6777 return -ENOMEM;
6778
6779 sdd->sg = alloc_percpu(struct sched_group *);
6780 if (!sdd->sg)
6781 return -ENOMEM;
6782
6783 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6784 if (!sdd->sgc)
6785 return -ENOMEM;
6786
6787 for_each_cpu(j, cpu_map) {
6788 struct sched_domain *sd;
6789 struct sched_group *sg;
6790 struct sched_group_capacity *sgc;
6791
6792 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6793 GFP_KERNEL, cpu_to_node(j));
6794 if (!sd)
6795 return -ENOMEM;
6796
6797 *per_cpu_ptr(sdd->sd, j) = sd;
6798
6799 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6800 GFP_KERNEL, cpu_to_node(j));
6801 if (!sg)
6802 return -ENOMEM;
6803
6804 sg->next = sg;
6805
6806 *per_cpu_ptr(sdd->sg, j) = sg;
6807
6808 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6809 GFP_KERNEL, cpu_to_node(j));
6810 if (!sgc)
6811 return -ENOMEM;
6812
6813 *per_cpu_ptr(sdd->sgc, j) = sgc;
6814 }
6815 }
6816
6817 return 0;
6818 }
6819
6820 static void __sdt_free(const struct cpumask *cpu_map)
6821 {
6822 struct sched_domain_topology_level *tl;
6823 int j;
6824
6825 for_each_sd_topology(tl) {
6826 struct sd_data *sdd = &tl->data;
6827
6828 for_each_cpu(j, cpu_map) {
6829 struct sched_domain *sd;
6830
6831 if (sdd->sd) {
6832 sd = *per_cpu_ptr(sdd->sd, j);
6833 if (sd && (sd->flags & SD_OVERLAP))
6834 free_sched_groups(sd->groups, 0);
6835 kfree(*per_cpu_ptr(sdd->sd, j));
6836 }
6837
6838 if (sdd->sg)
6839 kfree(*per_cpu_ptr(sdd->sg, j));
6840 if (sdd->sgc)
6841 kfree(*per_cpu_ptr(sdd->sgc, j));
6842 }
6843 free_percpu(sdd->sd);
6844 sdd->sd = NULL;
6845 free_percpu(sdd->sg);
6846 sdd->sg = NULL;
6847 free_percpu(sdd->sgc);
6848 sdd->sgc = NULL;
6849 }
6850 }
6851
6852 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6853 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6854 struct sched_domain *child, int cpu)
6855 {
6856 struct sched_domain *sd = sd_init(tl, cpu);
6857 if (!sd)
6858 return child;
6859
6860 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6861 if (child) {
6862 sd->level = child->level + 1;
6863 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6864 child->parent = sd;
6865 sd->child = child;
6866
6867 if (!cpumask_subset(sched_domain_span(child),
6868 sched_domain_span(sd))) {
6869 pr_err("BUG: arch topology borken\n");
6870 #ifdef CONFIG_SCHED_DEBUG
6871 pr_err(" the %s domain not a subset of the %s domain\n",
6872 child->name, sd->name);
6873 #endif
6874 /* Fixup, ensure @sd has at least @child cpus. */
6875 cpumask_or(sched_domain_span(sd),
6876 sched_domain_span(sd),
6877 sched_domain_span(child));
6878 }
6879
6880 }
6881 set_domain_attribute(sd, attr);
6882
6883 return sd;
6884 }
6885
6886 /*
6887 * Build sched domains for a given set of cpus and attach the sched domains
6888 * to the individual cpus
6889 */
6890 static int build_sched_domains(const struct cpumask *cpu_map,
6891 struct sched_domain_attr *attr)
6892 {
6893 enum s_alloc alloc_state;
6894 struct sched_domain *sd;
6895 struct s_data d;
6896 int i, ret = -ENOMEM;
6897
6898 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6899 if (alloc_state != sa_rootdomain)
6900 goto error;
6901
6902 /* Set up domains for cpus specified by the cpu_map. */
6903 for_each_cpu(i, cpu_map) {
6904 struct sched_domain_topology_level *tl;
6905
6906 sd = NULL;
6907 for_each_sd_topology(tl) {
6908 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6909 if (tl == sched_domain_topology)
6910 *per_cpu_ptr(d.sd, i) = sd;
6911 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6912 sd->flags |= SD_OVERLAP;
6913 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6914 break;
6915 }
6916 }
6917
6918 /* Build the groups for the domains */
6919 for_each_cpu(i, cpu_map) {
6920 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6921 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6922 if (sd->flags & SD_OVERLAP) {
6923 if (build_overlap_sched_groups(sd, i))
6924 goto error;
6925 } else {
6926 if (build_sched_groups(sd, i))
6927 goto error;
6928 }
6929 }
6930 }
6931
6932 /* Calculate CPU capacity for physical packages and nodes */
6933 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6934 if (!cpumask_test_cpu(i, cpu_map))
6935 continue;
6936
6937 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6938 claim_allocations(i, sd);
6939 init_sched_groups_capacity(i, sd);
6940 }
6941 }
6942
6943 /* Attach the domains */
6944 rcu_read_lock();
6945 for_each_cpu(i, cpu_map) {
6946 sd = *per_cpu_ptr(d.sd, i);
6947 cpu_attach_domain(sd, d.rd, i);
6948 }
6949 rcu_read_unlock();
6950
6951 ret = 0;
6952 error:
6953 __free_domain_allocs(&d, alloc_state, cpu_map);
6954 return ret;
6955 }
6956
6957 static cpumask_var_t *doms_cur; /* current sched domains */
6958 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6959 static struct sched_domain_attr *dattr_cur;
6960 /* attribues of custom domains in 'doms_cur' */
6961
6962 /*
6963 * Special case: If a kmalloc of a doms_cur partition (array of
6964 * cpumask) fails, then fallback to a single sched domain,
6965 * as determined by the single cpumask fallback_doms.
6966 */
6967 static cpumask_var_t fallback_doms;
6968
6969 /*
6970 * arch_update_cpu_topology lets virtualized architectures update the
6971 * cpu core maps. It is supposed to return 1 if the topology changed
6972 * or 0 if it stayed the same.
6973 */
6974 int __weak arch_update_cpu_topology(void)
6975 {
6976 return 0;
6977 }
6978
6979 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6980 {
6981 int i;
6982 cpumask_var_t *doms;
6983
6984 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6985 if (!doms)
6986 return NULL;
6987 for (i = 0; i < ndoms; i++) {
6988 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6989 free_sched_domains(doms, i);
6990 return NULL;
6991 }
6992 }
6993 return doms;
6994 }
6995
6996 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6997 {
6998 unsigned int i;
6999 for (i = 0; i < ndoms; i++)
7000 free_cpumask_var(doms[i]);
7001 kfree(doms);
7002 }
7003
7004 /*
7005 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7006 * For now this just excludes isolated cpus, but could be used to
7007 * exclude other special cases in the future.
7008 */
7009 static int init_sched_domains(const struct cpumask *cpu_map)
7010 {
7011 int err;
7012
7013 arch_update_cpu_topology();
7014 ndoms_cur = 1;
7015 doms_cur = alloc_sched_domains(ndoms_cur);
7016 if (!doms_cur)
7017 doms_cur = &fallback_doms;
7018 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7019 err = build_sched_domains(doms_cur[0], NULL);
7020 register_sched_domain_sysctl();
7021
7022 return err;
7023 }
7024
7025 /*
7026 * Detach sched domains from a group of cpus specified in cpu_map
7027 * These cpus will now be attached to the NULL domain
7028 */
7029 static void detach_destroy_domains(const struct cpumask *cpu_map)
7030 {
7031 int i;
7032
7033 rcu_read_lock();
7034 for_each_cpu(i, cpu_map)
7035 cpu_attach_domain(NULL, &def_root_domain, i);
7036 rcu_read_unlock();
7037 }
7038
7039 /* handle null as "default" */
7040 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7041 struct sched_domain_attr *new, int idx_new)
7042 {
7043 struct sched_domain_attr tmp;
7044
7045 /* fast path */
7046 if (!new && !cur)
7047 return 1;
7048
7049 tmp = SD_ATTR_INIT;
7050 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7051 new ? (new + idx_new) : &tmp,
7052 sizeof(struct sched_domain_attr));
7053 }
7054
7055 /*
7056 * Partition sched domains as specified by the 'ndoms_new'
7057 * cpumasks in the array doms_new[] of cpumasks. This compares
7058 * doms_new[] to the current sched domain partitioning, doms_cur[].
7059 * It destroys each deleted domain and builds each new domain.
7060 *
7061 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7062 * The masks don't intersect (don't overlap.) We should setup one
7063 * sched domain for each mask. CPUs not in any of the cpumasks will
7064 * not be load balanced. If the same cpumask appears both in the
7065 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7066 * it as it is.
7067 *
7068 * The passed in 'doms_new' should be allocated using
7069 * alloc_sched_domains. This routine takes ownership of it and will
7070 * free_sched_domains it when done with it. If the caller failed the
7071 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7072 * and partition_sched_domains() will fallback to the single partition
7073 * 'fallback_doms', it also forces the domains to be rebuilt.
7074 *
7075 * If doms_new == NULL it will be replaced with cpu_online_mask.
7076 * ndoms_new == 0 is a special case for destroying existing domains,
7077 * and it will not create the default domain.
7078 *
7079 * Call with hotplug lock held
7080 */
7081 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7082 struct sched_domain_attr *dattr_new)
7083 {
7084 int i, j, n;
7085 int new_topology;
7086
7087 mutex_lock(&sched_domains_mutex);
7088
7089 /* always unregister in case we don't destroy any domains */
7090 unregister_sched_domain_sysctl();
7091
7092 /* Let architecture update cpu core mappings. */
7093 new_topology = arch_update_cpu_topology();
7094
7095 n = doms_new ? ndoms_new : 0;
7096
7097 /* Destroy deleted domains */
7098 for (i = 0; i < ndoms_cur; i++) {
7099 for (j = 0; j < n && !new_topology; j++) {
7100 if (cpumask_equal(doms_cur[i], doms_new[j])
7101 && dattrs_equal(dattr_cur, i, dattr_new, j))
7102 goto match1;
7103 }
7104 /* no match - a current sched domain not in new doms_new[] */
7105 detach_destroy_domains(doms_cur[i]);
7106 match1:
7107 ;
7108 }
7109
7110 n = ndoms_cur;
7111 if (doms_new == NULL) {
7112 n = 0;
7113 doms_new = &fallback_doms;
7114 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7115 WARN_ON_ONCE(dattr_new);
7116 }
7117
7118 /* Build new domains */
7119 for (i = 0; i < ndoms_new; i++) {
7120 for (j = 0; j < n && !new_topology; j++) {
7121 if (cpumask_equal(doms_new[i], doms_cur[j])
7122 && dattrs_equal(dattr_new, i, dattr_cur, j))
7123 goto match2;
7124 }
7125 /* no match - add a new doms_new */
7126 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7127 match2:
7128 ;
7129 }
7130
7131 /* Remember the new sched domains */
7132 if (doms_cur != &fallback_doms)
7133 free_sched_domains(doms_cur, ndoms_cur);
7134 kfree(dattr_cur); /* kfree(NULL) is safe */
7135 doms_cur = doms_new;
7136 dattr_cur = dattr_new;
7137 ndoms_cur = ndoms_new;
7138
7139 register_sched_domain_sysctl();
7140
7141 mutex_unlock(&sched_domains_mutex);
7142 }
7143
7144 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7145
7146 /*
7147 * Update cpusets according to cpu_active mask. If cpusets are
7148 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7149 * around partition_sched_domains().
7150 *
7151 * If we come here as part of a suspend/resume, don't touch cpusets because we
7152 * want to restore it back to its original state upon resume anyway.
7153 */
7154 static void cpuset_cpu_active(void)
7155 {
7156 if (cpuhp_tasks_frozen) {
7157 /*
7158 * num_cpus_frozen tracks how many CPUs are involved in suspend
7159 * resume sequence. As long as this is not the last online
7160 * operation in the resume sequence, just build a single sched
7161 * domain, ignoring cpusets.
7162 */
7163 num_cpus_frozen--;
7164 if (likely(num_cpus_frozen)) {
7165 partition_sched_domains(1, NULL, NULL);
7166 return;
7167 }
7168 /*
7169 * This is the last CPU online operation. So fall through and
7170 * restore the original sched domains by considering the
7171 * cpuset configurations.
7172 */
7173 }
7174 cpuset_update_active_cpus(true);
7175 }
7176
7177 static int cpuset_cpu_inactive(unsigned int cpu)
7178 {
7179 unsigned long flags;
7180 struct dl_bw *dl_b;
7181 bool overflow;
7182 int cpus;
7183
7184 if (!cpuhp_tasks_frozen) {
7185 rcu_read_lock_sched();
7186 dl_b = dl_bw_of(cpu);
7187
7188 raw_spin_lock_irqsave(&dl_b->lock, flags);
7189 cpus = dl_bw_cpus(cpu);
7190 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7191 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7192
7193 rcu_read_unlock_sched();
7194
7195 if (overflow)
7196 return -EBUSY;
7197 cpuset_update_active_cpus(false);
7198 } else {
7199 num_cpus_frozen++;
7200 partition_sched_domains(1, NULL, NULL);
7201 }
7202 return 0;
7203 }
7204
7205 int sched_cpu_activate(unsigned int cpu)
7206 {
7207 struct rq *rq = cpu_rq(cpu);
7208 unsigned long flags;
7209
7210 set_cpu_active(cpu, true);
7211
7212 if (sched_smp_initialized) {
7213 sched_domains_numa_masks_set(cpu);
7214 cpuset_cpu_active();
7215 }
7216
7217 /*
7218 * Put the rq online, if not already. This happens:
7219 *
7220 * 1) In the early boot process, because we build the real domains
7221 * after all cpus have been brought up.
7222 *
7223 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7224 * domains.
7225 */
7226 raw_spin_lock_irqsave(&rq->lock, flags);
7227 if (rq->rd) {
7228 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7229 set_rq_online(rq);
7230 }
7231 raw_spin_unlock_irqrestore(&rq->lock, flags);
7232
7233 update_max_interval();
7234
7235 return 0;
7236 }
7237
7238 int sched_cpu_deactivate(unsigned int cpu)
7239 {
7240 int ret;
7241
7242 set_cpu_active(cpu, false);
7243 /*
7244 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7245 * users of this state to go away such that all new such users will
7246 * observe it.
7247 *
7248 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7249 * not imply sync_sched(), so wait for both.
7250 *
7251 * Do sync before park smpboot threads to take care the rcu boost case.
7252 */
7253 if (IS_ENABLED(CONFIG_PREEMPT))
7254 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7255 else
7256 synchronize_rcu();
7257
7258 if (!sched_smp_initialized)
7259 return 0;
7260
7261 ret = cpuset_cpu_inactive(cpu);
7262 if (ret) {
7263 set_cpu_active(cpu, true);
7264 return ret;
7265 }
7266 sched_domains_numa_masks_clear(cpu);
7267 return 0;
7268 }
7269
7270 static void sched_rq_cpu_starting(unsigned int cpu)
7271 {
7272 struct rq *rq = cpu_rq(cpu);
7273
7274 rq->calc_load_update = calc_load_update;
7275 update_max_interval();
7276 }
7277
7278 int sched_cpu_starting(unsigned int cpu)
7279 {
7280 set_cpu_rq_start_time(cpu);
7281 sched_rq_cpu_starting(cpu);
7282 return 0;
7283 }
7284
7285 #ifdef CONFIG_HOTPLUG_CPU
7286 int sched_cpu_dying(unsigned int cpu)
7287 {
7288 struct rq *rq = cpu_rq(cpu);
7289 unsigned long flags;
7290
7291 /* Handle pending wakeups and then migrate everything off */
7292 sched_ttwu_pending();
7293 raw_spin_lock_irqsave(&rq->lock, flags);
7294 if (rq->rd) {
7295 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7296 set_rq_offline(rq);
7297 }
7298 migrate_tasks(rq);
7299 BUG_ON(rq->nr_running != 1);
7300 raw_spin_unlock_irqrestore(&rq->lock, flags);
7301 calc_load_migrate(rq);
7302 update_max_interval();
7303 nohz_balance_exit_idle(cpu);
7304 hrtick_clear(rq);
7305 return 0;
7306 }
7307 #endif
7308
7309 void __init sched_init_smp(void)
7310 {
7311 cpumask_var_t non_isolated_cpus;
7312
7313 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7314 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7315
7316 sched_init_numa();
7317
7318 /*
7319 * There's no userspace yet to cause hotplug operations; hence all the
7320 * cpu masks are stable and all blatant races in the below code cannot
7321 * happen.
7322 */
7323 mutex_lock(&sched_domains_mutex);
7324 init_sched_domains(cpu_active_mask);
7325 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7326 if (cpumask_empty(non_isolated_cpus))
7327 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7328 mutex_unlock(&sched_domains_mutex);
7329
7330 /* Move init over to a non-isolated CPU */
7331 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7332 BUG();
7333 sched_init_granularity();
7334 free_cpumask_var(non_isolated_cpus);
7335
7336 init_sched_rt_class();
7337 init_sched_dl_class();
7338 sched_smp_initialized = true;
7339 }
7340
7341 static int __init migration_init(void)
7342 {
7343 sched_rq_cpu_starting(smp_processor_id());
7344 return 0;
7345 }
7346 early_initcall(migration_init);
7347
7348 #else
7349 void __init sched_init_smp(void)
7350 {
7351 sched_init_granularity();
7352 }
7353 #endif /* CONFIG_SMP */
7354
7355 int in_sched_functions(unsigned long addr)
7356 {
7357 return in_lock_functions(addr) ||
7358 (addr >= (unsigned long)__sched_text_start
7359 && addr < (unsigned long)__sched_text_end);
7360 }
7361
7362 #ifdef CONFIG_CGROUP_SCHED
7363 /*
7364 * Default task group.
7365 * Every task in system belongs to this group at bootup.
7366 */
7367 struct task_group root_task_group;
7368 LIST_HEAD(task_groups);
7369
7370 /* Cacheline aligned slab cache for task_group */
7371 static struct kmem_cache *task_group_cache __read_mostly;
7372 #endif
7373
7374 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7375
7376 void __init sched_init(void)
7377 {
7378 int i, j;
7379 unsigned long alloc_size = 0, ptr;
7380
7381 #ifdef CONFIG_FAIR_GROUP_SCHED
7382 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7383 #endif
7384 #ifdef CONFIG_RT_GROUP_SCHED
7385 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7386 #endif
7387 if (alloc_size) {
7388 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7389
7390 #ifdef CONFIG_FAIR_GROUP_SCHED
7391 root_task_group.se = (struct sched_entity **)ptr;
7392 ptr += nr_cpu_ids * sizeof(void **);
7393
7394 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7395 ptr += nr_cpu_ids * sizeof(void **);
7396
7397 #endif /* CONFIG_FAIR_GROUP_SCHED */
7398 #ifdef CONFIG_RT_GROUP_SCHED
7399 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7400 ptr += nr_cpu_ids * sizeof(void **);
7401
7402 root_task_group.rt_rq = (struct rt_rq **)ptr;
7403 ptr += nr_cpu_ids * sizeof(void **);
7404
7405 #endif /* CONFIG_RT_GROUP_SCHED */
7406 }
7407 #ifdef CONFIG_CPUMASK_OFFSTACK
7408 for_each_possible_cpu(i) {
7409 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7410 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7411 }
7412 #endif /* CONFIG_CPUMASK_OFFSTACK */
7413
7414 init_rt_bandwidth(&def_rt_bandwidth,
7415 global_rt_period(), global_rt_runtime());
7416 init_dl_bandwidth(&def_dl_bandwidth,
7417 global_rt_period(), global_rt_runtime());
7418
7419 #ifdef CONFIG_SMP
7420 init_defrootdomain();
7421 #endif
7422
7423 #ifdef CONFIG_RT_GROUP_SCHED
7424 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7425 global_rt_period(), global_rt_runtime());
7426 #endif /* CONFIG_RT_GROUP_SCHED */
7427
7428 #ifdef CONFIG_CGROUP_SCHED
7429 task_group_cache = KMEM_CACHE(task_group, 0);
7430
7431 list_add(&root_task_group.list, &task_groups);
7432 INIT_LIST_HEAD(&root_task_group.children);
7433 INIT_LIST_HEAD(&root_task_group.siblings);
7434 autogroup_init(&init_task);
7435 #endif /* CONFIG_CGROUP_SCHED */
7436
7437 for_each_possible_cpu(i) {
7438 struct rq *rq;
7439
7440 rq = cpu_rq(i);
7441 raw_spin_lock_init(&rq->lock);
7442 rq->nr_running = 0;
7443 rq->calc_load_active = 0;
7444 rq->calc_load_update = jiffies + LOAD_FREQ;
7445 init_cfs_rq(&rq->cfs);
7446 init_rt_rq(&rq->rt);
7447 init_dl_rq(&rq->dl);
7448 #ifdef CONFIG_FAIR_GROUP_SCHED
7449 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7450 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7451 /*
7452 * How much cpu bandwidth does root_task_group get?
7453 *
7454 * In case of task-groups formed thr' the cgroup filesystem, it
7455 * gets 100% of the cpu resources in the system. This overall
7456 * system cpu resource is divided among the tasks of
7457 * root_task_group and its child task-groups in a fair manner,
7458 * based on each entity's (task or task-group's) weight
7459 * (se->load.weight).
7460 *
7461 * In other words, if root_task_group has 10 tasks of weight
7462 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7463 * then A0's share of the cpu resource is:
7464 *
7465 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7466 *
7467 * We achieve this by letting root_task_group's tasks sit
7468 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7469 */
7470 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7471 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7472 #endif /* CONFIG_FAIR_GROUP_SCHED */
7473
7474 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7475 #ifdef CONFIG_RT_GROUP_SCHED
7476 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7477 #endif
7478
7479 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7480 rq->cpu_load[j] = 0;
7481
7482 #ifdef CONFIG_SMP
7483 rq->sd = NULL;
7484 rq->rd = NULL;
7485 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7486 rq->balance_callback = NULL;
7487 rq->active_balance = 0;
7488 rq->next_balance = jiffies;
7489 rq->push_cpu = 0;
7490 rq->cpu = i;
7491 rq->online = 0;
7492 rq->idle_stamp = 0;
7493 rq->avg_idle = 2*sysctl_sched_migration_cost;
7494 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7495
7496 INIT_LIST_HEAD(&rq->cfs_tasks);
7497
7498 rq_attach_root(rq, &def_root_domain);
7499 #ifdef CONFIG_NO_HZ_COMMON
7500 rq->last_load_update_tick = jiffies;
7501 rq->nohz_flags = 0;
7502 #endif
7503 #ifdef CONFIG_NO_HZ_FULL
7504 rq->last_sched_tick = 0;
7505 #endif
7506 #endif /* CONFIG_SMP */
7507 init_rq_hrtick(rq);
7508 atomic_set(&rq->nr_iowait, 0);
7509 }
7510
7511 set_load_weight(&init_task);
7512
7513 #ifdef CONFIG_PREEMPT_NOTIFIERS
7514 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7515 #endif
7516
7517 /*
7518 * The boot idle thread does lazy MMU switching as well:
7519 */
7520 atomic_inc(&init_mm.mm_count);
7521 enter_lazy_tlb(&init_mm, current);
7522
7523 /*
7524 * During early bootup we pretend to be a normal task:
7525 */
7526 current->sched_class = &fair_sched_class;
7527
7528 /*
7529 * Make us the idle thread. Technically, schedule() should not be
7530 * called from this thread, however somewhere below it might be,
7531 * but because we are the idle thread, we just pick up running again
7532 * when this runqueue becomes "idle".
7533 */
7534 init_idle(current, smp_processor_id());
7535
7536 calc_load_update = jiffies + LOAD_FREQ;
7537
7538 #ifdef CONFIG_SMP
7539 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7540 /* May be allocated at isolcpus cmdline parse time */
7541 if (cpu_isolated_map == NULL)
7542 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7543 idle_thread_set_boot_cpu();
7544 set_cpu_rq_start_time(smp_processor_id());
7545 #endif
7546 init_sched_fair_class();
7547
7548 init_schedstats();
7549
7550 scheduler_running = 1;
7551 }
7552
7553 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7554 static inline int preempt_count_equals(int preempt_offset)
7555 {
7556 int nested = preempt_count() + rcu_preempt_depth();
7557
7558 return (nested == preempt_offset);
7559 }
7560
7561 void __might_sleep(const char *file, int line, int preempt_offset)
7562 {
7563 /*
7564 * Blocking primitives will set (and therefore destroy) current->state,
7565 * since we will exit with TASK_RUNNING make sure we enter with it,
7566 * otherwise we will destroy state.
7567 */
7568 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7569 "do not call blocking ops when !TASK_RUNNING; "
7570 "state=%lx set at [<%p>] %pS\n",
7571 current->state,
7572 (void *)current->task_state_change,
7573 (void *)current->task_state_change);
7574
7575 ___might_sleep(file, line, preempt_offset);
7576 }
7577 EXPORT_SYMBOL(__might_sleep);
7578
7579 void ___might_sleep(const char *file, int line, int preempt_offset)
7580 {
7581 static unsigned long prev_jiffy; /* ratelimiting */
7582 unsigned long preempt_disable_ip;
7583
7584 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7585 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7586 !is_idle_task(current)) ||
7587 system_state != SYSTEM_RUNNING || oops_in_progress)
7588 return;
7589 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7590 return;
7591 prev_jiffy = jiffies;
7592
7593 /* Save this before calling printk(), since that will clobber it */
7594 preempt_disable_ip = get_preempt_disable_ip(current);
7595
7596 printk(KERN_ERR
7597 "BUG: sleeping function called from invalid context at %s:%d\n",
7598 file, line);
7599 printk(KERN_ERR
7600 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7601 in_atomic(), irqs_disabled(),
7602 current->pid, current->comm);
7603
7604 if (task_stack_end_corrupted(current))
7605 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7606
7607 debug_show_held_locks(current);
7608 if (irqs_disabled())
7609 print_irqtrace_events(current);
7610 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7611 && !preempt_count_equals(preempt_offset)) {
7612 pr_err("Preemption disabled at:");
7613 print_ip_sym(preempt_disable_ip);
7614 pr_cont("\n");
7615 }
7616 dump_stack();
7617 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7618 }
7619 EXPORT_SYMBOL(___might_sleep);
7620 #endif
7621
7622 #ifdef CONFIG_MAGIC_SYSRQ
7623 void normalize_rt_tasks(void)
7624 {
7625 struct task_struct *g, *p;
7626 struct sched_attr attr = {
7627 .sched_policy = SCHED_NORMAL,
7628 };
7629
7630 read_lock(&tasklist_lock);
7631 for_each_process_thread(g, p) {
7632 /*
7633 * Only normalize user tasks:
7634 */
7635 if (p->flags & PF_KTHREAD)
7636 continue;
7637
7638 p->se.exec_start = 0;
7639 #ifdef CONFIG_SCHEDSTATS
7640 p->se.statistics.wait_start = 0;
7641 p->se.statistics.sleep_start = 0;
7642 p->se.statistics.block_start = 0;
7643 #endif
7644
7645 if (!dl_task(p) && !rt_task(p)) {
7646 /*
7647 * Renice negative nice level userspace
7648 * tasks back to 0:
7649 */
7650 if (task_nice(p) < 0)
7651 set_user_nice(p, 0);
7652 continue;
7653 }
7654
7655 __sched_setscheduler(p, &attr, false, false);
7656 }
7657 read_unlock(&tasklist_lock);
7658 }
7659
7660 #endif /* CONFIG_MAGIC_SYSRQ */
7661
7662 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7663 /*
7664 * These functions are only useful for the IA64 MCA handling, or kdb.
7665 *
7666 * They can only be called when the whole system has been
7667 * stopped - every CPU needs to be quiescent, and no scheduling
7668 * activity can take place. Using them for anything else would
7669 * be a serious bug, and as a result, they aren't even visible
7670 * under any other configuration.
7671 */
7672
7673 /**
7674 * curr_task - return the current task for a given cpu.
7675 * @cpu: the processor in question.
7676 *
7677 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7678 *
7679 * Return: The current task for @cpu.
7680 */
7681 struct task_struct *curr_task(int cpu)
7682 {
7683 return cpu_curr(cpu);
7684 }
7685
7686 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7687
7688 #ifdef CONFIG_IA64
7689 /**
7690 * set_curr_task - set the current task for a given cpu.
7691 * @cpu: the processor in question.
7692 * @p: the task pointer to set.
7693 *
7694 * Description: This function must only be used when non-maskable interrupts
7695 * are serviced on a separate stack. It allows the architecture to switch the
7696 * notion of the current task on a cpu in a non-blocking manner. This function
7697 * must be called with all CPU's synchronized, and interrupts disabled, the
7698 * and caller must save the original value of the current task (see
7699 * curr_task() above) and restore that value before reenabling interrupts and
7700 * re-starting the system.
7701 *
7702 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7703 */
7704 void set_curr_task(int cpu, struct task_struct *p)
7705 {
7706 cpu_curr(cpu) = p;
7707 }
7708
7709 #endif
7710
7711 #ifdef CONFIG_CGROUP_SCHED
7712 /* task_group_lock serializes the addition/removal of task groups */
7713 static DEFINE_SPINLOCK(task_group_lock);
7714
7715 static void sched_free_group(struct task_group *tg)
7716 {
7717 free_fair_sched_group(tg);
7718 free_rt_sched_group(tg);
7719 autogroup_free(tg);
7720 kmem_cache_free(task_group_cache, tg);
7721 }
7722
7723 /* allocate runqueue etc for a new task group */
7724 struct task_group *sched_create_group(struct task_group *parent)
7725 {
7726 struct task_group *tg;
7727
7728 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7729 if (!tg)
7730 return ERR_PTR(-ENOMEM);
7731
7732 if (!alloc_fair_sched_group(tg, parent))
7733 goto err;
7734
7735 if (!alloc_rt_sched_group(tg, parent))
7736 goto err;
7737
7738 return tg;
7739
7740 err:
7741 sched_free_group(tg);
7742 return ERR_PTR(-ENOMEM);
7743 }
7744
7745 void sched_online_group(struct task_group *tg, struct task_group *parent)
7746 {
7747 unsigned long flags;
7748
7749 spin_lock_irqsave(&task_group_lock, flags);
7750 list_add_rcu(&tg->list, &task_groups);
7751
7752 WARN_ON(!parent); /* root should already exist */
7753
7754 tg->parent = parent;
7755 INIT_LIST_HEAD(&tg->children);
7756 list_add_rcu(&tg->siblings, &parent->children);
7757 spin_unlock_irqrestore(&task_group_lock, flags);
7758
7759 online_fair_sched_group(tg);
7760 }
7761
7762 /* rcu callback to free various structures associated with a task group */
7763 static void sched_free_group_rcu(struct rcu_head *rhp)
7764 {
7765 /* now it should be safe to free those cfs_rqs */
7766 sched_free_group(container_of(rhp, struct task_group, rcu));
7767 }
7768
7769 void sched_destroy_group(struct task_group *tg)
7770 {
7771 /* wait for possible concurrent references to cfs_rqs complete */
7772 call_rcu(&tg->rcu, sched_free_group_rcu);
7773 }
7774
7775 void sched_offline_group(struct task_group *tg)
7776 {
7777 unsigned long flags;
7778
7779 /* end participation in shares distribution */
7780 unregister_fair_sched_group(tg);
7781
7782 spin_lock_irqsave(&task_group_lock, flags);
7783 list_del_rcu(&tg->list);
7784 list_del_rcu(&tg->siblings);
7785 spin_unlock_irqrestore(&task_group_lock, flags);
7786 }
7787
7788 static void sched_change_group(struct task_struct *tsk, int type)
7789 {
7790 struct task_group *tg;
7791
7792 /*
7793 * All callers are synchronized by task_rq_lock(); we do not use RCU
7794 * which is pointless here. Thus, we pass "true" to task_css_check()
7795 * to prevent lockdep warnings.
7796 */
7797 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7798 struct task_group, css);
7799 tg = autogroup_task_group(tsk, tg);
7800 tsk->sched_task_group = tg;
7801
7802 #ifdef CONFIG_FAIR_GROUP_SCHED
7803 if (tsk->sched_class->task_change_group)
7804 tsk->sched_class->task_change_group(tsk, type);
7805 else
7806 #endif
7807 set_task_rq(tsk, task_cpu(tsk));
7808 }
7809
7810 /*
7811 * Change task's runqueue when it moves between groups.
7812 *
7813 * The caller of this function should have put the task in its new group by
7814 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7815 * its new group.
7816 */
7817 void sched_move_task(struct task_struct *tsk)
7818 {
7819 int queued, running;
7820 struct rq_flags rf;
7821 struct rq *rq;
7822
7823 rq = task_rq_lock(tsk, &rf);
7824
7825 running = task_current(rq, tsk);
7826 queued = task_on_rq_queued(tsk);
7827
7828 if (queued)
7829 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7830 if (unlikely(running))
7831 put_prev_task(rq, tsk);
7832
7833 sched_change_group(tsk, TASK_MOVE_GROUP);
7834
7835 if (unlikely(running))
7836 tsk->sched_class->set_curr_task(rq);
7837 if (queued)
7838 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7839
7840 task_rq_unlock(rq, tsk, &rf);
7841 }
7842 #endif /* CONFIG_CGROUP_SCHED */
7843
7844 #ifdef CONFIG_RT_GROUP_SCHED
7845 /*
7846 * Ensure that the real time constraints are schedulable.
7847 */
7848 static DEFINE_MUTEX(rt_constraints_mutex);
7849
7850 /* Must be called with tasklist_lock held */
7851 static inline int tg_has_rt_tasks(struct task_group *tg)
7852 {
7853 struct task_struct *g, *p;
7854
7855 /*
7856 * Autogroups do not have RT tasks; see autogroup_create().
7857 */
7858 if (task_group_is_autogroup(tg))
7859 return 0;
7860
7861 for_each_process_thread(g, p) {
7862 if (rt_task(p) && task_group(p) == tg)
7863 return 1;
7864 }
7865
7866 return 0;
7867 }
7868
7869 struct rt_schedulable_data {
7870 struct task_group *tg;
7871 u64 rt_period;
7872 u64 rt_runtime;
7873 };
7874
7875 static int tg_rt_schedulable(struct task_group *tg, void *data)
7876 {
7877 struct rt_schedulable_data *d = data;
7878 struct task_group *child;
7879 unsigned long total, sum = 0;
7880 u64 period, runtime;
7881
7882 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7883 runtime = tg->rt_bandwidth.rt_runtime;
7884
7885 if (tg == d->tg) {
7886 period = d->rt_period;
7887 runtime = d->rt_runtime;
7888 }
7889
7890 /*
7891 * Cannot have more runtime than the period.
7892 */
7893 if (runtime > period && runtime != RUNTIME_INF)
7894 return -EINVAL;
7895
7896 /*
7897 * Ensure we don't starve existing RT tasks.
7898 */
7899 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7900 return -EBUSY;
7901
7902 total = to_ratio(period, runtime);
7903
7904 /*
7905 * Nobody can have more than the global setting allows.
7906 */
7907 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7908 return -EINVAL;
7909
7910 /*
7911 * The sum of our children's runtime should not exceed our own.
7912 */
7913 list_for_each_entry_rcu(child, &tg->children, siblings) {
7914 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7915 runtime = child->rt_bandwidth.rt_runtime;
7916
7917 if (child == d->tg) {
7918 period = d->rt_period;
7919 runtime = d->rt_runtime;
7920 }
7921
7922 sum += to_ratio(period, runtime);
7923 }
7924
7925 if (sum > total)
7926 return -EINVAL;
7927
7928 return 0;
7929 }
7930
7931 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7932 {
7933 int ret;
7934
7935 struct rt_schedulable_data data = {
7936 .tg = tg,
7937 .rt_period = period,
7938 .rt_runtime = runtime,
7939 };
7940
7941 rcu_read_lock();
7942 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7943 rcu_read_unlock();
7944
7945 return ret;
7946 }
7947
7948 static int tg_set_rt_bandwidth(struct task_group *tg,
7949 u64 rt_period, u64 rt_runtime)
7950 {
7951 int i, err = 0;
7952
7953 /*
7954 * Disallowing the root group RT runtime is BAD, it would disallow the
7955 * kernel creating (and or operating) RT threads.
7956 */
7957 if (tg == &root_task_group && rt_runtime == 0)
7958 return -EINVAL;
7959
7960 /* No period doesn't make any sense. */
7961 if (rt_period == 0)
7962 return -EINVAL;
7963
7964 mutex_lock(&rt_constraints_mutex);
7965 read_lock(&tasklist_lock);
7966 err = __rt_schedulable(tg, rt_period, rt_runtime);
7967 if (err)
7968 goto unlock;
7969
7970 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7971 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7972 tg->rt_bandwidth.rt_runtime = rt_runtime;
7973
7974 for_each_possible_cpu(i) {
7975 struct rt_rq *rt_rq = tg->rt_rq[i];
7976
7977 raw_spin_lock(&rt_rq->rt_runtime_lock);
7978 rt_rq->rt_runtime = rt_runtime;
7979 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7980 }
7981 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7982 unlock:
7983 read_unlock(&tasklist_lock);
7984 mutex_unlock(&rt_constraints_mutex);
7985
7986 return err;
7987 }
7988
7989 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7990 {
7991 u64 rt_runtime, rt_period;
7992
7993 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7994 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7995 if (rt_runtime_us < 0)
7996 rt_runtime = RUNTIME_INF;
7997
7998 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7999 }
8000
8001 static long sched_group_rt_runtime(struct task_group *tg)
8002 {
8003 u64 rt_runtime_us;
8004
8005 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8006 return -1;
8007
8008 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8009 do_div(rt_runtime_us, NSEC_PER_USEC);
8010 return rt_runtime_us;
8011 }
8012
8013 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8014 {
8015 u64 rt_runtime, rt_period;
8016
8017 rt_period = rt_period_us * NSEC_PER_USEC;
8018 rt_runtime = tg->rt_bandwidth.rt_runtime;
8019
8020 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8021 }
8022
8023 static long sched_group_rt_period(struct task_group *tg)
8024 {
8025 u64 rt_period_us;
8026
8027 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8028 do_div(rt_period_us, NSEC_PER_USEC);
8029 return rt_period_us;
8030 }
8031 #endif /* CONFIG_RT_GROUP_SCHED */
8032
8033 #ifdef CONFIG_RT_GROUP_SCHED
8034 static int sched_rt_global_constraints(void)
8035 {
8036 int ret = 0;
8037
8038 mutex_lock(&rt_constraints_mutex);
8039 read_lock(&tasklist_lock);
8040 ret = __rt_schedulable(NULL, 0, 0);
8041 read_unlock(&tasklist_lock);
8042 mutex_unlock(&rt_constraints_mutex);
8043
8044 return ret;
8045 }
8046
8047 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8048 {
8049 /* Don't accept realtime tasks when there is no way for them to run */
8050 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8051 return 0;
8052
8053 return 1;
8054 }
8055
8056 #else /* !CONFIG_RT_GROUP_SCHED */
8057 static int sched_rt_global_constraints(void)
8058 {
8059 unsigned long flags;
8060 int i;
8061
8062 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8063 for_each_possible_cpu(i) {
8064 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8065
8066 raw_spin_lock(&rt_rq->rt_runtime_lock);
8067 rt_rq->rt_runtime = global_rt_runtime();
8068 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8069 }
8070 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8071
8072 return 0;
8073 }
8074 #endif /* CONFIG_RT_GROUP_SCHED */
8075
8076 static int sched_dl_global_validate(void)
8077 {
8078 u64 runtime = global_rt_runtime();
8079 u64 period = global_rt_period();
8080 u64 new_bw = to_ratio(period, runtime);
8081 struct dl_bw *dl_b;
8082 int cpu, ret = 0;
8083 unsigned long flags;
8084
8085 /*
8086 * Here we want to check the bandwidth not being set to some
8087 * value smaller than the currently allocated bandwidth in
8088 * any of the root_domains.
8089 *
8090 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8091 * cycling on root_domains... Discussion on different/better
8092 * solutions is welcome!
8093 */
8094 for_each_possible_cpu(cpu) {
8095 rcu_read_lock_sched();
8096 dl_b = dl_bw_of(cpu);
8097
8098 raw_spin_lock_irqsave(&dl_b->lock, flags);
8099 if (new_bw < dl_b->total_bw)
8100 ret = -EBUSY;
8101 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8102
8103 rcu_read_unlock_sched();
8104
8105 if (ret)
8106 break;
8107 }
8108
8109 return ret;
8110 }
8111
8112 static void sched_dl_do_global(void)
8113 {
8114 u64 new_bw = -1;
8115 struct dl_bw *dl_b;
8116 int cpu;
8117 unsigned long flags;
8118
8119 def_dl_bandwidth.dl_period = global_rt_period();
8120 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8121
8122 if (global_rt_runtime() != RUNTIME_INF)
8123 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8124
8125 /*
8126 * FIXME: As above...
8127 */
8128 for_each_possible_cpu(cpu) {
8129 rcu_read_lock_sched();
8130 dl_b = dl_bw_of(cpu);
8131
8132 raw_spin_lock_irqsave(&dl_b->lock, flags);
8133 dl_b->bw = new_bw;
8134 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8135
8136 rcu_read_unlock_sched();
8137 }
8138 }
8139
8140 static int sched_rt_global_validate(void)
8141 {
8142 if (sysctl_sched_rt_period <= 0)
8143 return -EINVAL;
8144
8145 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8146 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8147 return -EINVAL;
8148
8149 return 0;
8150 }
8151
8152 static void sched_rt_do_global(void)
8153 {
8154 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8155 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8156 }
8157
8158 int sched_rt_handler(struct ctl_table *table, int write,
8159 void __user *buffer, size_t *lenp,
8160 loff_t *ppos)
8161 {
8162 int old_period, old_runtime;
8163 static DEFINE_MUTEX(mutex);
8164 int ret;
8165
8166 mutex_lock(&mutex);
8167 old_period = sysctl_sched_rt_period;
8168 old_runtime = sysctl_sched_rt_runtime;
8169
8170 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8171
8172 if (!ret && write) {
8173 ret = sched_rt_global_validate();
8174 if (ret)
8175 goto undo;
8176
8177 ret = sched_dl_global_validate();
8178 if (ret)
8179 goto undo;
8180
8181 ret = sched_rt_global_constraints();
8182 if (ret)
8183 goto undo;
8184
8185 sched_rt_do_global();
8186 sched_dl_do_global();
8187 }
8188 if (0) {
8189 undo:
8190 sysctl_sched_rt_period = old_period;
8191 sysctl_sched_rt_runtime = old_runtime;
8192 }
8193 mutex_unlock(&mutex);
8194
8195 return ret;
8196 }
8197
8198 int sched_rr_handler(struct ctl_table *table, int write,
8199 void __user *buffer, size_t *lenp,
8200 loff_t *ppos)
8201 {
8202 int ret;
8203 static DEFINE_MUTEX(mutex);
8204
8205 mutex_lock(&mutex);
8206 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8207 /* make sure that internally we keep jiffies */
8208 /* also, writing zero resets timeslice to default */
8209 if (!ret && write) {
8210 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8211 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8212 }
8213 mutex_unlock(&mutex);
8214 return ret;
8215 }
8216
8217 #ifdef CONFIG_CGROUP_SCHED
8218
8219 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8220 {
8221 return css ? container_of(css, struct task_group, css) : NULL;
8222 }
8223
8224 static struct cgroup_subsys_state *
8225 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8226 {
8227 struct task_group *parent = css_tg(parent_css);
8228 struct task_group *tg;
8229
8230 if (!parent) {
8231 /* This is early initialization for the top cgroup */
8232 return &root_task_group.css;
8233 }
8234
8235 tg = sched_create_group(parent);
8236 if (IS_ERR(tg))
8237 return ERR_PTR(-ENOMEM);
8238
8239 sched_online_group(tg, parent);
8240
8241 return &tg->css;
8242 }
8243
8244 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8245 {
8246 struct task_group *tg = css_tg(css);
8247
8248 sched_offline_group(tg);
8249 }
8250
8251 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8252 {
8253 struct task_group *tg = css_tg(css);
8254
8255 /*
8256 * Relies on the RCU grace period between css_released() and this.
8257 */
8258 sched_free_group(tg);
8259 }
8260
8261 /*
8262 * This is called before wake_up_new_task(), therefore we really only
8263 * have to set its group bits, all the other stuff does not apply.
8264 */
8265 static void cpu_cgroup_fork(struct task_struct *task)
8266 {
8267 struct rq_flags rf;
8268 struct rq *rq;
8269
8270 rq = task_rq_lock(task, &rf);
8271
8272 sched_change_group(task, TASK_SET_GROUP);
8273
8274 task_rq_unlock(rq, task, &rf);
8275 }
8276
8277 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8278 {
8279 struct task_struct *task;
8280 struct cgroup_subsys_state *css;
8281 int ret = 0;
8282
8283 cgroup_taskset_for_each(task, css, tset) {
8284 #ifdef CONFIG_RT_GROUP_SCHED
8285 if (!sched_rt_can_attach(css_tg(css), task))
8286 return -EINVAL;
8287 #else
8288 /* We don't support RT-tasks being in separate groups */
8289 if (task->sched_class != &fair_sched_class)
8290 return -EINVAL;
8291 #endif
8292 /*
8293 * Serialize against wake_up_new_task() such that if its
8294 * running, we're sure to observe its full state.
8295 */
8296 raw_spin_lock_irq(&task->pi_lock);
8297 /*
8298 * Avoid calling sched_move_task() before wake_up_new_task()
8299 * has happened. This would lead to problems with PELT, due to
8300 * move wanting to detach+attach while we're not attached yet.
8301 */
8302 if (task->state == TASK_NEW)
8303 ret = -EINVAL;
8304 raw_spin_unlock_irq(&task->pi_lock);
8305
8306 if (ret)
8307 break;
8308 }
8309 return ret;
8310 }
8311
8312 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8313 {
8314 struct task_struct *task;
8315 struct cgroup_subsys_state *css;
8316
8317 cgroup_taskset_for_each(task, css, tset)
8318 sched_move_task(task);
8319 }
8320
8321 #ifdef CONFIG_FAIR_GROUP_SCHED
8322 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8323 struct cftype *cftype, u64 shareval)
8324 {
8325 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8326 }
8327
8328 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8329 struct cftype *cft)
8330 {
8331 struct task_group *tg = css_tg(css);
8332
8333 return (u64) scale_load_down(tg->shares);
8334 }
8335
8336 #ifdef CONFIG_CFS_BANDWIDTH
8337 static DEFINE_MUTEX(cfs_constraints_mutex);
8338
8339 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8340 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8341
8342 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8343
8344 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8345 {
8346 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8347 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8348
8349 if (tg == &root_task_group)
8350 return -EINVAL;
8351
8352 /*
8353 * Ensure we have at some amount of bandwidth every period. This is
8354 * to prevent reaching a state of large arrears when throttled via
8355 * entity_tick() resulting in prolonged exit starvation.
8356 */
8357 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8358 return -EINVAL;
8359
8360 /*
8361 * Likewise, bound things on the otherside by preventing insane quota
8362 * periods. This also allows us to normalize in computing quota
8363 * feasibility.
8364 */
8365 if (period > max_cfs_quota_period)
8366 return -EINVAL;
8367
8368 /*
8369 * Prevent race between setting of cfs_rq->runtime_enabled and
8370 * unthrottle_offline_cfs_rqs().
8371 */
8372 get_online_cpus();
8373 mutex_lock(&cfs_constraints_mutex);
8374 ret = __cfs_schedulable(tg, period, quota);
8375 if (ret)
8376 goto out_unlock;
8377
8378 runtime_enabled = quota != RUNTIME_INF;
8379 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8380 /*
8381 * If we need to toggle cfs_bandwidth_used, off->on must occur
8382 * before making related changes, and on->off must occur afterwards
8383 */
8384 if (runtime_enabled && !runtime_was_enabled)
8385 cfs_bandwidth_usage_inc();
8386 raw_spin_lock_irq(&cfs_b->lock);
8387 cfs_b->period = ns_to_ktime(period);
8388 cfs_b->quota = quota;
8389
8390 __refill_cfs_bandwidth_runtime(cfs_b);
8391 /* restart the period timer (if active) to handle new period expiry */
8392 if (runtime_enabled)
8393 start_cfs_bandwidth(cfs_b);
8394 raw_spin_unlock_irq(&cfs_b->lock);
8395
8396 for_each_online_cpu(i) {
8397 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8398 struct rq *rq = cfs_rq->rq;
8399
8400 raw_spin_lock_irq(&rq->lock);
8401 cfs_rq->runtime_enabled = runtime_enabled;
8402 cfs_rq->runtime_remaining = 0;
8403
8404 if (cfs_rq->throttled)
8405 unthrottle_cfs_rq(cfs_rq);
8406 raw_spin_unlock_irq(&rq->lock);
8407 }
8408 if (runtime_was_enabled && !runtime_enabled)
8409 cfs_bandwidth_usage_dec();
8410 out_unlock:
8411 mutex_unlock(&cfs_constraints_mutex);
8412 put_online_cpus();
8413
8414 return ret;
8415 }
8416
8417 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8418 {
8419 u64 quota, period;
8420
8421 period = ktime_to_ns(tg->cfs_bandwidth.period);
8422 if (cfs_quota_us < 0)
8423 quota = RUNTIME_INF;
8424 else
8425 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8426
8427 return tg_set_cfs_bandwidth(tg, period, quota);
8428 }
8429
8430 long tg_get_cfs_quota(struct task_group *tg)
8431 {
8432 u64 quota_us;
8433
8434 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8435 return -1;
8436
8437 quota_us = tg->cfs_bandwidth.quota;
8438 do_div(quota_us, NSEC_PER_USEC);
8439
8440 return quota_us;
8441 }
8442
8443 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8444 {
8445 u64 quota, period;
8446
8447 period = (u64)cfs_period_us * NSEC_PER_USEC;
8448 quota = tg->cfs_bandwidth.quota;
8449
8450 return tg_set_cfs_bandwidth(tg, period, quota);
8451 }
8452
8453 long tg_get_cfs_period(struct task_group *tg)
8454 {
8455 u64 cfs_period_us;
8456
8457 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8458 do_div(cfs_period_us, NSEC_PER_USEC);
8459
8460 return cfs_period_us;
8461 }
8462
8463 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8464 struct cftype *cft)
8465 {
8466 return tg_get_cfs_quota(css_tg(css));
8467 }
8468
8469 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8470 struct cftype *cftype, s64 cfs_quota_us)
8471 {
8472 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8473 }
8474
8475 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8476 struct cftype *cft)
8477 {
8478 return tg_get_cfs_period(css_tg(css));
8479 }
8480
8481 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8482 struct cftype *cftype, u64 cfs_period_us)
8483 {
8484 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8485 }
8486
8487 struct cfs_schedulable_data {
8488 struct task_group *tg;
8489 u64 period, quota;
8490 };
8491
8492 /*
8493 * normalize group quota/period to be quota/max_period
8494 * note: units are usecs
8495 */
8496 static u64 normalize_cfs_quota(struct task_group *tg,
8497 struct cfs_schedulable_data *d)
8498 {
8499 u64 quota, period;
8500
8501 if (tg == d->tg) {
8502 period = d->period;
8503 quota = d->quota;
8504 } else {
8505 period = tg_get_cfs_period(tg);
8506 quota = tg_get_cfs_quota(tg);
8507 }
8508
8509 /* note: these should typically be equivalent */
8510 if (quota == RUNTIME_INF || quota == -1)
8511 return RUNTIME_INF;
8512
8513 return to_ratio(period, quota);
8514 }
8515
8516 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8517 {
8518 struct cfs_schedulable_data *d = data;
8519 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8520 s64 quota = 0, parent_quota = -1;
8521
8522 if (!tg->parent) {
8523 quota = RUNTIME_INF;
8524 } else {
8525 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8526
8527 quota = normalize_cfs_quota(tg, d);
8528 parent_quota = parent_b->hierarchical_quota;
8529
8530 /*
8531 * ensure max(child_quota) <= parent_quota, inherit when no
8532 * limit is set
8533 */
8534 if (quota == RUNTIME_INF)
8535 quota = parent_quota;
8536 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8537 return -EINVAL;
8538 }
8539 cfs_b->hierarchical_quota = quota;
8540
8541 return 0;
8542 }
8543
8544 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8545 {
8546 int ret;
8547 struct cfs_schedulable_data data = {
8548 .tg = tg,
8549 .period = period,
8550 .quota = quota,
8551 };
8552
8553 if (quota != RUNTIME_INF) {
8554 do_div(data.period, NSEC_PER_USEC);
8555 do_div(data.quota, NSEC_PER_USEC);
8556 }
8557
8558 rcu_read_lock();
8559 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8560 rcu_read_unlock();
8561
8562 return ret;
8563 }
8564
8565 static int cpu_stats_show(struct seq_file *sf, void *v)
8566 {
8567 struct task_group *tg = css_tg(seq_css(sf));
8568 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8569
8570 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8571 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8572 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8573
8574 return 0;
8575 }
8576 #endif /* CONFIG_CFS_BANDWIDTH */
8577 #endif /* CONFIG_FAIR_GROUP_SCHED */
8578
8579 #ifdef CONFIG_RT_GROUP_SCHED
8580 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8581 struct cftype *cft, s64 val)
8582 {
8583 return sched_group_set_rt_runtime(css_tg(css), val);
8584 }
8585
8586 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8587 struct cftype *cft)
8588 {
8589 return sched_group_rt_runtime(css_tg(css));
8590 }
8591
8592 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8593 struct cftype *cftype, u64 rt_period_us)
8594 {
8595 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8596 }
8597
8598 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8599 struct cftype *cft)
8600 {
8601 return sched_group_rt_period(css_tg(css));
8602 }
8603 #endif /* CONFIG_RT_GROUP_SCHED */
8604
8605 static struct cftype cpu_files[] = {
8606 #ifdef CONFIG_FAIR_GROUP_SCHED
8607 {
8608 .name = "shares",
8609 .read_u64 = cpu_shares_read_u64,
8610 .write_u64 = cpu_shares_write_u64,
8611 },
8612 #endif
8613 #ifdef CONFIG_CFS_BANDWIDTH
8614 {
8615 .name = "cfs_quota_us",
8616 .read_s64 = cpu_cfs_quota_read_s64,
8617 .write_s64 = cpu_cfs_quota_write_s64,
8618 },
8619 {
8620 .name = "cfs_period_us",
8621 .read_u64 = cpu_cfs_period_read_u64,
8622 .write_u64 = cpu_cfs_period_write_u64,
8623 },
8624 {
8625 .name = "stat",
8626 .seq_show = cpu_stats_show,
8627 },
8628 #endif
8629 #ifdef CONFIG_RT_GROUP_SCHED
8630 {
8631 .name = "rt_runtime_us",
8632 .read_s64 = cpu_rt_runtime_read,
8633 .write_s64 = cpu_rt_runtime_write,
8634 },
8635 {
8636 .name = "rt_period_us",
8637 .read_u64 = cpu_rt_period_read_uint,
8638 .write_u64 = cpu_rt_period_write_uint,
8639 },
8640 #endif
8641 { } /* terminate */
8642 };
8643
8644 struct cgroup_subsys cpu_cgrp_subsys = {
8645 .css_alloc = cpu_cgroup_css_alloc,
8646 .css_released = cpu_cgroup_css_released,
8647 .css_free = cpu_cgroup_css_free,
8648 .fork = cpu_cgroup_fork,
8649 .can_attach = cpu_cgroup_can_attach,
8650 .attach = cpu_cgroup_attach,
8651 .legacy_cftypes = cpu_files,
8652 .early_init = true,
8653 };
8654
8655 #endif /* CONFIG_CGROUP_SCHED */
8656
8657 void dump_cpu_task(int cpu)
8658 {
8659 pr_info("Task dump for CPU %d:\n", cpu);
8660 sched_show_task(cpu_curr(cpu));
8661 }
8662
8663 /*
8664 * Nice levels are multiplicative, with a gentle 10% change for every
8665 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8666 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8667 * that remained on nice 0.
8668 *
8669 * The "10% effect" is relative and cumulative: from _any_ nice level,
8670 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8671 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8672 * If a task goes up by ~10% and another task goes down by ~10% then
8673 * the relative distance between them is ~25%.)
8674 */
8675 const int sched_prio_to_weight[40] = {
8676 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8677 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8678 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8679 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8680 /* 0 */ 1024, 820, 655, 526, 423,
8681 /* 5 */ 335, 272, 215, 172, 137,
8682 /* 10 */ 110, 87, 70, 56, 45,
8683 /* 15 */ 36, 29, 23, 18, 15,
8684 };
8685
8686 /*
8687 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8688 *
8689 * In cases where the weight does not change often, we can use the
8690 * precalculated inverse to speed up arithmetics by turning divisions
8691 * into multiplications:
8692 */
8693 const u32 sched_prio_to_wmult[40] = {
8694 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8695 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8696 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8697 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8698 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8699 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8700 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8701 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8702 };
This page took 0.195319 seconds and 6 git commands to generate.