sched/debug: Make schedstats a runtime tunable that is disabled by default
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
129 #name ,
130
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134
135 #undef SCHED_FEAT
136
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 int i;
140
141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
145 }
146 seq_puts(m, "\n");
147
148 return 0;
149 }
150
151 #ifdef HAVE_JUMP_LABEL
152
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162
163 #undef SCHED_FEAT
164
165 static void sched_feat_disable(int i)
166 {
167 static_key_disable(&sched_feat_keys[i]);
168 }
169
170 static void sched_feat_enable(int i)
171 {
172 static_key_enable(&sched_feat_keys[i]);
173 }
174 #else
175 static void sched_feat_disable(int i) { };
176 static void sched_feat_enable(int i) { };
177 #endif /* HAVE_JUMP_LABEL */
178
179 static int sched_feat_set(char *cmp)
180 {
181 int i;
182 int neg = 0;
183
184 if (strncmp(cmp, "NO_", 3) == 0) {
185 neg = 1;
186 cmp += 3;
187 }
188
189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
191 if (neg) {
192 sysctl_sched_features &= ~(1UL << i);
193 sched_feat_disable(i);
194 } else {
195 sysctl_sched_features |= (1UL << i);
196 sched_feat_enable(i);
197 }
198 break;
199 }
200 }
201
202 return i;
203 }
204
205 static ssize_t
206 sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208 {
209 char buf[64];
210 char *cmp;
211 int i;
212 struct inode *inode;
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 inode_lock(inode);
226 i = sched_feat_set(cmp);
227 inode_unlock(inode);
228 if (i == __SCHED_FEAT_NR)
229 return -EINVAL;
230
231 *ppos += cnt;
232
233 return cnt;
234 }
235
236 static int sched_feat_open(struct inode *inode, struct file *filp)
237 {
238 return single_open(filp, sched_feat_show, NULL);
239 }
240
241 static const struct file_operations sched_feat_fops = {
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
247 };
248
249 static __init int sched_init_debug(void)
250 {
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255 }
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
258
259 /*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
265 /*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
273 /*
274 * period over which we measure -rt task cpu usage in us.
275 * default: 1s
276 */
277 unsigned int sysctl_sched_rt_period = 1000000;
278
279 __read_mostly int scheduler_running;
280
281 /*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285 int sysctl_sched_rt_runtime = 950000;
286
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map;
289
290 /*
291 * this_rq_lock - lock this runqueue and disable interrupts.
292 */
293 static struct rq *this_rq_lock(void)
294 __acquires(rq->lock)
295 {
296 struct rq *rq;
297
298 local_irq_disable();
299 rq = this_rq();
300 raw_spin_lock(&rq->lock);
301
302 return rq;
303 }
304
305 #ifdef CONFIG_SCHED_HRTICK
306 /*
307 * Use HR-timers to deliver accurate preemption points.
308 */
309
310 static void hrtick_clear(struct rq *rq)
311 {
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314 }
315
316 /*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320 static enum hrtimer_restart hrtick(struct hrtimer *timer)
321 {
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
326 raw_spin_lock(&rq->lock);
327 update_rq_clock(rq);
328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329 raw_spin_unlock(&rq->lock);
330
331 return HRTIMER_NORESTART;
332 }
333
334 #ifdef CONFIG_SMP
335
336 static void __hrtick_restart(struct rq *rq)
337 {
338 struct hrtimer *timer = &rq->hrtick_timer;
339
340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
341 }
342
343 /*
344 * called from hardirq (IPI) context
345 */
346 static void __hrtick_start(void *arg)
347 {
348 struct rq *rq = arg;
349
350 raw_spin_lock(&rq->lock);
351 __hrtick_restart(rq);
352 rq->hrtick_csd_pending = 0;
353 raw_spin_unlock(&rq->lock);
354 }
355
356 /*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
361 void hrtick_start(struct rq *rq, u64 delay)
362 {
363 struct hrtimer *timer = &rq->hrtick_timer;
364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
373
374 hrtimer_set_expires(timer, time);
375
376 if (rq == this_rq()) {
377 __hrtick_restart(rq);
378 } else if (!rq->hrtick_csd_pending) {
379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 rq->hrtick_csd_pending = 1;
381 }
382 }
383
384 static int
385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386 {
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
396 hrtick_clear(cpu_rq(cpu));
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401 }
402
403 static __init void init_hrtick(void)
404 {
405 hotcpu_notifier(hotplug_hrtick, 0);
406 }
407 #else
408 /*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
413 void hrtick_start(struct rq *rq, u64 delay)
414 {
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
422 }
423
424 static inline void init_hrtick(void)
425 {
426 }
427 #endif /* CONFIG_SMP */
428
429 static void init_rq_hrtick(struct rq *rq)
430 {
431 #ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
433
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437 #endif
438
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
441 }
442 #else /* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq *rq)
444 {
445 }
446
447 static inline void init_rq_hrtick(struct rq *rq)
448 {
449 }
450
451 static inline void init_hrtick(void)
452 {
453 }
454 #endif /* CONFIG_SCHED_HRTICK */
455
456 /*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459 #define fetch_or(ptr, val) \
460 ({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468 })
469
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 /*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476 static bool set_nr_and_not_polling(struct task_struct *p)
477 {
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480 }
481
482 /*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488 static bool set_nr_if_polling(struct task_struct *p)
489 {
490 struct thread_info *ti = task_thread_info(p);
491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504 }
505
506 #else
507 static bool set_nr_and_not_polling(struct task_struct *p)
508 {
509 set_tsk_need_resched(p);
510 return true;
511 }
512
513 #ifdef CONFIG_SMP
514 static bool set_nr_if_polling(struct task_struct *p)
515 {
516 return false;
517 }
518 #endif
519 #endif
520
521 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522 {
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543 }
544
545 void wake_up_q(struct wake_q_head *head)
546 {
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565 }
566
567 /*
568 * resched_curr - mark rq's current task 'to be rescheduled now'.
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
574 void resched_curr(struct rq *rq)
575 {
576 struct task_struct *curr = rq->curr;
577 int cpu;
578
579 lockdep_assert_held(&rq->lock);
580
581 if (test_tsk_need_resched(curr))
582 return;
583
584 cpu = cpu_of(rq);
585
586 if (cpu == smp_processor_id()) {
587 set_tsk_need_resched(curr);
588 set_preempt_need_resched();
589 return;
590 }
591
592 if (set_nr_and_not_polling(curr))
593 smp_send_reschedule(cpu);
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
596 }
597
598 void resched_cpu(int cpu)
599 {
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
604 return;
605 resched_curr(rq);
606 raw_spin_unlock_irqrestore(&rq->lock, flags);
607 }
608
609 #ifdef CONFIG_SMP
610 #ifdef CONFIG_NO_HZ_COMMON
611 /*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
619 int get_nohz_timer_target(void)
620 {
621 int i, cpu = smp_processor_id();
622 struct sched_domain *sd;
623
624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 return cpu;
626
627 rcu_read_lock();
628 for_each_domain(cpu, sd) {
629 for_each_cpu(i, sched_domain_span(sd)) {
630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 cpu = i;
632 goto unlock;
633 }
634 }
635 }
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
639 unlock:
640 rcu_read_unlock();
641 return cpu;
642 }
643 /*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
653 static void wake_up_idle_cpu(int cpu)
654 {
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
660 if (set_nr_and_not_polling(rq->idle))
661 smp_send_reschedule(cpu);
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
664 }
665
666 static bool wake_up_full_nohz_cpu(int cpu)
667 {
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
674 if (tick_nohz_full_cpu(cpu)) {
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
677 tick_nohz_full_kick_cpu(cpu);
678 return true;
679 }
680
681 return false;
682 }
683
684 void wake_up_nohz_cpu(int cpu)
685 {
686 if (!wake_up_full_nohz_cpu(cpu))
687 wake_up_idle_cpu(cpu);
688 }
689
690 static inline bool got_nohz_idle_kick(void)
691 {
692 int cpu = smp_processor_id();
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
706 }
707
708 #else /* CONFIG_NO_HZ_COMMON */
709
710 static inline bool got_nohz_idle_kick(void)
711 {
712 return false;
713 }
714
715 #endif /* CONFIG_NO_HZ_COMMON */
716
717 #ifdef CONFIG_NO_HZ_FULL
718 bool sched_can_stop_tick(void)
719 {
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return list_is_singular(&rt_se->run_list);
735 }
736
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
742 if (this_rq()->nr_running > 1)
743 return false;
744
745 return true;
746 }
747 #endif /* CONFIG_NO_HZ_FULL */
748
749 void sched_avg_update(struct rq *rq)
750 {
751 s64 period = sched_avg_period();
752
753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
763 }
764
765 #endif /* CONFIG_SMP */
766
767 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 /*
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
774 */
775 int walk_tg_tree_from(struct task_group *from,
776 tg_visitor down, tg_visitor up, void *data)
777 {
778 struct task_group *parent, *child;
779 int ret;
780
781 parent = from;
782
783 down:
784 ret = (*down)(parent, data);
785 if (ret)
786 goto out;
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791 up:
792 continue;
793 }
794 ret = (*up)(parent, data);
795 if (ret || parent == from)
796 goto out;
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
802 out:
803 return ret;
804 }
805
806 int tg_nop(struct task_group *tg, void *data)
807 {
808 return 0;
809 }
810 #endif
811
812 static void set_load_weight(struct task_struct *p)
813 {
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
820 if (idle_policy(p->policy)) {
821 load->weight = scale_load(WEIGHT_IDLEPRIO);
822 load->inv_weight = WMULT_IDLEPRIO;
823 return;
824 }
825
826 load->weight = scale_load(sched_prio_to_weight[prio]);
827 load->inv_weight = sched_prio_to_wmult[prio];
828 }
829
830 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831 {
832 update_rq_clock(rq);
833 if (!(flags & ENQUEUE_RESTORE))
834 sched_info_queued(rq, p);
835 p->sched_class->enqueue_task(rq, p, flags);
836 }
837
838 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
839 {
840 update_rq_clock(rq);
841 if (!(flags & DEQUEUE_SAVE))
842 sched_info_dequeued(rq, p);
843 p->sched_class->dequeue_task(rq, p, flags);
844 }
845
846 void activate_task(struct rq *rq, struct task_struct *p, int flags)
847 {
848 if (task_contributes_to_load(p))
849 rq->nr_uninterruptible--;
850
851 enqueue_task(rq, p, flags);
852 }
853
854 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
855 {
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible++;
858
859 dequeue_task(rq, p, flags);
860 }
861
862 static void update_rq_clock_task(struct rq *rq, s64 delta)
863 {
864 /*
865 * In theory, the compile should just see 0 here, and optimize out the call
866 * to sched_rt_avg_update. But I don't trust it...
867 */
868 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
869 s64 steal = 0, irq_delta = 0;
870 #endif
871 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
872 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
873
874 /*
875 * Since irq_time is only updated on {soft,}irq_exit, we might run into
876 * this case when a previous update_rq_clock() happened inside a
877 * {soft,}irq region.
878 *
879 * When this happens, we stop ->clock_task and only update the
880 * prev_irq_time stamp to account for the part that fit, so that a next
881 * update will consume the rest. This ensures ->clock_task is
882 * monotonic.
883 *
884 * It does however cause some slight miss-attribution of {soft,}irq
885 * time, a more accurate solution would be to update the irq_time using
886 * the current rq->clock timestamp, except that would require using
887 * atomic ops.
888 */
889 if (irq_delta > delta)
890 irq_delta = delta;
891
892 rq->prev_irq_time += irq_delta;
893 delta -= irq_delta;
894 #endif
895 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
896 if (static_key_false((&paravirt_steal_rq_enabled))) {
897 steal = paravirt_steal_clock(cpu_of(rq));
898 steal -= rq->prev_steal_time_rq;
899
900 if (unlikely(steal > delta))
901 steal = delta;
902
903 rq->prev_steal_time_rq += steal;
904 delta -= steal;
905 }
906 #endif
907
908 rq->clock_task += delta;
909
910 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
911 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
912 sched_rt_avg_update(rq, irq_delta + steal);
913 #endif
914 }
915
916 void sched_set_stop_task(int cpu, struct task_struct *stop)
917 {
918 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
919 struct task_struct *old_stop = cpu_rq(cpu)->stop;
920
921 if (stop) {
922 /*
923 * Make it appear like a SCHED_FIFO task, its something
924 * userspace knows about and won't get confused about.
925 *
926 * Also, it will make PI more or less work without too
927 * much confusion -- but then, stop work should not
928 * rely on PI working anyway.
929 */
930 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
931
932 stop->sched_class = &stop_sched_class;
933 }
934
935 cpu_rq(cpu)->stop = stop;
936
937 if (old_stop) {
938 /*
939 * Reset it back to a normal scheduling class so that
940 * it can die in pieces.
941 */
942 old_stop->sched_class = &rt_sched_class;
943 }
944 }
945
946 /*
947 * __normal_prio - return the priority that is based on the static prio
948 */
949 static inline int __normal_prio(struct task_struct *p)
950 {
951 return p->static_prio;
952 }
953
954 /*
955 * Calculate the expected normal priority: i.e. priority
956 * without taking RT-inheritance into account. Might be
957 * boosted by interactivity modifiers. Changes upon fork,
958 * setprio syscalls, and whenever the interactivity
959 * estimator recalculates.
960 */
961 static inline int normal_prio(struct task_struct *p)
962 {
963 int prio;
964
965 if (task_has_dl_policy(p))
966 prio = MAX_DL_PRIO-1;
967 else if (task_has_rt_policy(p))
968 prio = MAX_RT_PRIO-1 - p->rt_priority;
969 else
970 prio = __normal_prio(p);
971 return prio;
972 }
973
974 /*
975 * Calculate the current priority, i.e. the priority
976 * taken into account by the scheduler. This value might
977 * be boosted by RT tasks, or might be boosted by
978 * interactivity modifiers. Will be RT if the task got
979 * RT-boosted. If not then it returns p->normal_prio.
980 */
981 static int effective_prio(struct task_struct *p)
982 {
983 p->normal_prio = normal_prio(p);
984 /*
985 * If we are RT tasks or we were boosted to RT priority,
986 * keep the priority unchanged. Otherwise, update priority
987 * to the normal priority:
988 */
989 if (!rt_prio(p->prio))
990 return p->normal_prio;
991 return p->prio;
992 }
993
994 /**
995 * task_curr - is this task currently executing on a CPU?
996 * @p: the task in question.
997 *
998 * Return: 1 if the task is currently executing. 0 otherwise.
999 */
1000 inline int task_curr(const struct task_struct *p)
1001 {
1002 return cpu_curr(task_cpu(p)) == p;
1003 }
1004
1005 /*
1006 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1007 * use the balance_callback list if you want balancing.
1008 *
1009 * this means any call to check_class_changed() must be followed by a call to
1010 * balance_callback().
1011 */
1012 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1013 const struct sched_class *prev_class,
1014 int oldprio)
1015 {
1016 if (prev_class != p->sched_class) {
1017 if (prev_class->switched_from)
1018 prev_class->switched_from(rq, p);
1019
1020 p->sched_class->switched_to(rq, p);
1021 } else if (oldprio != p->prio || dl_task(p))
1022 p->sched_class->prio_changed(rq, p, oldprio);
1023 }
1024
1025 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026 {
1027 const struct sched_class *class;
1028
1029 if (p->sched_class == rq->curr->sched_class) {
1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 } else {
1032 for_each_class(class) {
1033 if (class == rq->curr->sched_class)
1034 break;
1035 if (class == p->sched_class) {
1036 resched_curr(rq);
1037 break;
1038 }
1039 }
1040 }
1041
1042 /*
1043 * A queue event has occurred, and we're going to schedule. In
1044 * this case, we can save a useless back to back clock update.
1045 */
1046 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1047 rq_clock_skip_update(rq, true);
1048 }
1049
1050 #ifdef CONFIG_SMP
1051 /*
1052 * This is how migration works:
1053 *
1054 * 1) we invoke migration_cpu_stop() on the target CPU using
1055 * stop_one_cpu().
1056 * 2) stopper starts to run (implicitly forcing the migrated thread
1057 * off the CPU)
1058 * 3) it checks whether the migrated task is still in the wrong runqueue.
1059 * 4) if it's in the wrong runqueue then the migration thread removes
1060 * it and puts it into the right queue.
1061 * 5) stopper completes and stop_one_cpu() returns and the migration
1062 * is done.
1063 */
1064
1065 /*
1066 * move_queued_task - move a queued task to new rq.
1067 *
1068 * Returns (locked) new rq. Old rq's lock is released.
1069 */
1070 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1071 {
1072 lockdep_assert_held(&rq->lock);
1073
1074 p->on_rq = TASK_ON_RQ_MIGRATING;
1075 dequeue_task(rq, p, 0);
1076 set_task_cpu(p, new_cpu);
1077 raw_spin_unlock(&rq->lock);
1078
1079 rq = cpu_rq(new_cpu);
1080
1081 raw_spin_lock(&rq->lock);
1082 BUG_ON(task_cpu(p) != new_cpu);
1083 enqueue_task(rq, p, 0);
1084 p->on_rq = TASK_ON_RQ_QUEUED;
1085 check_preempt_curr(rq, p, 0);
1086
1087 return rq;
1088 }
1089
1090 struct migration_arg {
1091 struct task_struct *task;
1092 int dest_cpu;
1093 };
1094
1095 /*
1096 * Move (not current) task off this cpu, onto dest cpu. We're doing
1097 * this because either it can't run here any more (set_cpus_allowed()
1098 * away from this CPU, or CPU going down), or because we're
1099 * attempting to rebalance this task on exec (sched_exec).
1100 *
1101 * So we race with normal scheduler movements, but that's OK, as long
1102 * as the task is no longer on this CPU.
1103 */
1104 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1105 {
1106 if (unlikely(!cpu_active(dest_cpu)))
1107 return rq;
1108
1109 /* Affinity changed (again). */
1110 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1111 return rq;
1112
1113 rq = move_queued_task(rq, p, dest_cpu);
1114
1115 return rq;
1116 }
1117
1118 /*
1119 * migration_cpu_stop - this will be executed by a highprio stopper thread
1120 * and performs thread migration by bumping thread off CPU then
1121 * 'pushing' onto another runqueue.
1122 */
1123 static int migration_cpu_stop(void *data)
1124 {
1125 struct migration_arg *arg = data;
1126 struct task_struct *p = arg->task;
1127 struct rq *rq = this_rq();
1128
1129 /*
1130 * The original target cpu might have gone down and we might
1131 * be on another cpu but it doesn't matter.
1132 */
1133 local_irq_disable();
1134 /*
1135 * We need to explicitly wake pending tasks before running
1136 * __migrate_task() such that we will not miss enforcing cpus_allowed
1137 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1138 */
1139 sched_ttwu_pending();
1140
1141 raw_spin_lock(&p->pi_lock);
1142 raw_spin_lock(&rq->lock);
1143 /*
1144 * If task_rq(p) != rq, it cannot be migrated here, because we're
1145 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1146 * we're holding p->pi_lock.
1147 */
1148 if (task_rq(p) == rq && task_on_rq_queued(p))
1149 rq = __migrate_task(rq, p, arg->dest_cpu);
1150 raw_spin_unlock(&rq->lock);
1151 raw_spin_unlock(&p->pi_lock);
1152
1153 local_irq_enable();
1154 return 0;
1155 }
1156
1157 /*
1158 * sched_class::set_cpus_allowed must do the below, but is not required to
1159 * actually call this function.
1160 */
1161 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1162 {
1163 cpumask_copy(&p->cpus_allowed, new_mask);
1164 p->nr_cpus_allowed = cpumask_weight(new_mask);
1165 }
1166
1167 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1168 {
1169 struct rq *rq = task_rq(p);
1170 bool queued, running;
1171
1172 lockdep_assert_held(&p->pi_lock);
1173
1174 queued = task_on_rq_queued(p);
1175 running = task_current(rq, p);
1176
1177 if (queued) {
1178 /*
1179 * Because __kthread_bind() calls this on blocked tasks without
1180 * holding rq->lock.
1181 */
1182 lockdep_assert_held(&rq->lock);
1183 dequeue_task(rq, p, DEQUEUE_SAVE);
1184 }
1185 if (running)
1186 put_prev_task(rq, p);
1187
1188 p->sched_class->set_cpus_allowed(p, new_mask);
1189
1190 if (running)
1191 p->sched_class->set_curr_task(rq);
1192 if (queued)
1193 enqueue_task(rq, p, ENQUEUE_RESTORE);
1194 }
1195
1196 /*
1197 * Change a given task's CPU affinity. Migrate the thread to a
1198 * proper CPU and schedule it away if the CPU it's executing on
1199 * is removed from the allowed bitmask.
1200 *
1201 * NOTE: the caller must have a valid reference to the task, the
1202 * task must not exit() & deallocate itself prematurely. The
1203 * call is not atomic; no spinlocks may be held.
1204 */
1205 static int __set_cpus_allowed_ptr(struct task_struct *p,
1206 const struct cpumask *new_mask, bool check)
1207 {
1208 unsigned long flags;
1209 struct rq *rq;
1210 unsigned int dest_cpu;
1211 int ret = 0;
1212
1213 rq = task_rq_lock(p, &flags);
1214
1215 /*
1216 * Must re-check here, to close a race against __kthread_bind(),
1217 * sched_setaffinity() is not guaranteed to observe the flag.
1218 */
1219 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1220 ret = -EINVAL;
1221 goto out;
1222 }
1223
1224 if (cpumask_equal(&p->cpus_allowed, new_mask))
1225 goto out;
1226
1227 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1228 ret = -EINVAL;
1229 goto out;
1230 }
1231
1232 do_set_cpus_allowed(p, new_mask);
1233
1234 /* Can the task run on the task's current CPU? If so, we're done */
1235 if (cpumask_test_cpu(task_cpu(p), new_mask))
1236 goto out;
1237
1238 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1239 if (task_running(rq, p) || p->state == TASK_WAKING) {
1240 struct migration_arg arg = { p, dest_cpu };
1241 /* Need help from migration thread: drop lock and wait. */
1242 task_rq_unlock(rq, p, &flags);
1243 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1244 tlb_migrate_finish(p->mm);
1245 return 0;
1246 } else if (task_on_rq_queued(p)) {
1247 /*
1248 * OK, since we're going to drop the lock immediately
1249 * afterwards anyway.
1250 */
1251 lockdep_unpin_lock(&rq->lock);
1252 rq = move_queued_task(rq, p, dest_cpu);
1253 lockdep_pin_lock(&rq->lock);
1254 }
1255 out:
1256 task_rq_unlock(rq, p, &flags);
1257
1258 return ret;
1259 }
1260
1261 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1262 {
1263 return __set_cpus_allowed_ptr(p, new_mask, false);
1264 }
1265 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1266
1267 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1268 {
1269 #ifdef CONFIG_SCHED_DEBUG
1270 /*
1271 * We should never call set_task_cpu() on a blocked task,
1272 * ttwu() will sort out the placement.
1273 */
1274 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1275 !p->on_rq);
1276
1277 /*
1278 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1279 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1280 * time relying on p->on_rq.
1281 */
1282 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1283 p->sched_class == &fair_sched_class &&
1284 (p->on_rq && !task_on_rq_migrating(p)));
1285
1286 #ifdef CONFIG_LOCKDEP
1287 /*
1288 * The caller should hold either p->pi_lock or rq->lock, when changing
1289 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1290 *
1291 * sched_move_task() holds both and thus holding either pins the cgroup,
1292 * see task_group().
1293 *
1294 * Furthermore, all task_rq users should acquire both locks, see
1295 * task_rq_lock().
1296 */
1297 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1298 lockdep_is_held(&task_rq(p)->lock)));
1299 #endif
1300 #endif
1301
1302 trace_sched_migrate_task(p, new_cpu);
1303
1304 if (task_cpu(p) != new_cpu) {
1305 if (p->sched_class->migrate_task_rq)
1306 p->sched_class->migrate_task_rq(p);
1307 p->se.nr_migrations++;
1308 perf_event_task_migrate(p);
1309 }
1310
1311 __set_task_cpu(p, new_cpu);
1312 }
1313
1314 static void __migrate_swap_task(struct task_struct *p, int cpu)
1315 {
1316 if (task_on_rq_queued(p)) {
1317 struct rq *src_rq, *dst_rq;
1318
1319 src_rq = task_rq(p);
1320 dst_rq = cpu_rq(cpu);
1321
1322 p->on_rq = TASK_ON_RQ_MIGRATING;
1323 deactivate_task(src_rq, p, 0);
1324 set_task_cpu(p, cpu);
1325 activate_task(dst_rq, p, 0);
1326 p->on_rq = TASK_ON_RQ_QUEUED;
1327 check_preempt_curr(dst_rq, p, 0);
1328 } else {
1329 /*
1330 * Task isn't running anymore; make it appear like we migrated
1331 * it before it went to sleep. This means on wakeup we make the
1332 * previous cpu our targer instead of where it really is.
1333 */
1334 p->wake_cpu = cpu;
1335 }
1336 }
1337
1338 struct migration_swap_arg {
1339 struct task_struct *src_task, *dst_task;
1340 int src_cpu, dst_cpu;
1341 };
1342
1343 static int migrate_swap_stop(void *data)
1344 {
1345 struct migration_swap_arg *arg = data;
1346 struct rq *src_rq, *dst_rq;
1347 int ret = -EAGAIN;
1348
1349 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1350 return -EAGAIN;
1351
1352 src_rq = cpu_rq(arg->src_cpu);
1353 dst_rq = cpu_rq(arg->dst_cpu);
1354
1355 double_raw_lock(&arg->src_task->pi_lock,
1356 &arg->dst_task->pi_lock);
1357 double_rq_lock(src_rq, dst_rq);
1358
1359 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1360 goto unlock;
1361
1362 if (task_cpu(arg->src_task) != arg->src_cpu)
1363 goto unlock;
1364
1365 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1366 goto unlock;
1367
1368 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1369 goto unlock;
1370
1371 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1372 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1373
1374 ret = 0;
1375
1376 unlock:
1377 double_rq_unlock(src_rq, dst_rq);
1378 raw_spin_unlock(&arg->dst_task->pi_lock);
1379 raw_spin_unlock(&arg->src_task->pi_lock);
1380
1381 return ret;
1382 }
1383
1384 /*
1385 * Cross migrate two tasks
1386 */
1387 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1388 {
1389 struct migration_swap_arg arg;
1390 int ret = -EINVAL;
1391
1392 arg = (struct migration_swap_arg){
1393 .src_task = cur,
1394 .src_cpu = task_cpu(cur),
1395 .dst_task = p,
1396 .dst_cpu = task_cpu(p),
1397 };
1398
1399 if (arg.src_cpu == arg.dst_cpu)
1400 goto out;
1401
1402 /*
1403 * These three tests are all lockless; this is OK since all of them
1404 * will be re-checked with proper locks held further down the line.
1405 */
1406 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1407 goto out;
1408
1409 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1410 goto out;
1411
1412 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1413 goto out;
1414
1415 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1416 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1417
1418 out:
1419 return ret;
1420 }
1421
1422 /*
1423 * wait_task_inactive - wait for a thread to unschedule.
1424 *
1425 * If @match_state is nonzero, it's the @p->state value just checked and
1426 * not expected to change. If it changes, i.e. @p might have woken up,
1427 * then return zero. When we succeed in waiting for @p to be off its CPU,
1428 * we return a positive number (its total switch count). If a second call
1429 * a short while later returns the same number, the caller can be sure that
1430 * @p has remained unscheduled the whole time.
1431 *
1432 * The caller must ensure that the task *will* unschedule sometime soon,
1433 * else this function might spin for a *long* time. This function can't
1434 * be called with interrupts off, or it may introduce deadlock with
1435 * smp_call_function() if an IPI is sent by the same process we are
1436 * waiting to become inactive.
1437 */
1438 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1439 {
1440 unsigned long flags;
1441 int running, queued;
1442 unsigned long ncsw;
1443 struct rq *rq;
1444
1445 for (;;) {
1446 /*
1447 * We do the initial early heuristics without holding
1448 * any task-queue locks at all. We'll only try to get
1449 * the runqueue lock when things look like they will
1450 * work out!
1451 */
1452 rq = task_rq(p);
1453
1454 /*
1455 * If the task is actively running on another CPU
1456 * still, just relax and busy-wait without holding
1457 * any locks.
1458 *
1459 * NOTE! Since we don't hold any locks, it's not
1460 * even sure that "rq" stays as the right runqueue!
1461 * But we don't care, since "task_running()" will
1462 * return false if the runqueue has changed and p
1463 * is actually now running somewhere else!
1464 */
1465 while (task_running(rq, p)) {
1466 if (match_state && unlikely(p->state != match_state))
1467 return 0;
1468 cpu_relax();
1469 }
1470
1471 /*
1472 * Ok, time to look more closely! We need the rq
1473 * lock now, to be *sure*. If we're wrong, we'll
1474 * just go back and repeat.
1475 */
1476 rq = task_rq_lock(p, &flags);
1477 trace_sched_wait_task(p);
1478 running = task_running(rq, p);
1479 queued = task_on_rq_queued(p);
1480 ncsw = 0;
1481 if (!match_state || p->state == match_state)
1482 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1483 task_rq_unlock(rq, p, &flags);
1484
1485 /*
1486 * If it changed from the expected state, bail out now.
1487 */
1488 if (unlikely(!ncsw))
1489 break;
1490
1491 /*
1492 * Was it really running after all now that we
1493 * checked with the proper locks actually held?
1494 *
1495 * Oops. Go back and try again..
1496 */
1497 if (unlikely(running)) {
1498 cpu_relax();
1499 continue;
1500 }
1501
1502 /*
1503 * It's not enough that it's not actively running,
1504 * it must be off the runqueue _entirely_, and not
1505 * preempted!
1506 *
1507 * So if it was still runnable (but just not actively
1508 * running right now), it's preempted, and we should
1509 * yield - it could be a while.
1510 */
1511 if (unlikely(queued)) {
1512 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1513
1514 set_current_state(TASK_UNINTERRUPTIBLE);
1515 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1516 continue;
1517 }
1518
1519 /*
1520 * Ahh, all good. It wasn't running, and it wasn't
1521 * runnable, which means that it will never become
1522 * running in the future either. We're all done!
1523 */
1524 break;
1525 }
1526
1527 return ncsw;
1528 }
1529
1530 /***
1531 * kick_process - kick a running thread to enter/exit the kernel
1532 * @p: the to-be-kicked thread
1533 *
1534 * Cause a process which is running on another CPU to enter
1535 * kernel-mode, without any delay. (to get signals handled.)
1536 *
1537 * NOTE: this function doesn't have to take the runqueue lock,
1538 * because all it wants to ensure is that the remote task enters
1539 * the kernel. If the IPI races and the task has been migrated
1540 * to another CPU then no harm is done and the purpose has been
1541 * achieved as well.
1542 */
1543 void kick_process(struct task_struct *p)
1544 {
1545 int cpu;
1546
1547 preempt_disable();
1548 cpu = task_cpu(p);
1549 if ((cpu != smp_processor_id()) && task_curr(p))
1550 smp_send_reschedule(cpu);
1551 preempt_enable();
1552 }
1553 EXPORT_SYMBOL_GPL(kick_process);
1554
1555 /*
1556 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1557 */
1558 static int select_fallback_rq(int cpu, struct task_struct *p)
1559 {
1560 int nid = cpu_to_node(cpu);
1561 const struct cpumask *nodemask = NULL;
1562 enum { cpuset, possible, fail } state = cpuset;
1563 int dest_cpu;
1564
1565 /*
1566 * If the node that the cpu is on has been offlined, cpu_to_node()
1567 * will return -1. There is no cpu on the node, and we should
1568 * select the cpu on the other node.
1569 */
1570 if (nid != -1) {
1571 nodemask = cpumask_of_node(nid);
1572
1573 /* Look for allowed, online CPU in same node. */
1574 for_each_cpu(dest_cpu, nodemask) {
1575 if (!cpu_online(dest_cpu))
1576 continue;
1577 if (!cpu_active(dest_cpu))
1578 continue;
1579 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1580 return dest_cpu;
1581 }
1582 }
1583
1584 for (;;) {
1585 /* Any allowed, online CPU? */
1586 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1587 if (!cpu_online(dest_cpu))
1588 continue;
1589 if (!cpu_active(dest_cpu))
1590 continue;
1591 goto out;
1592 }
1593
1594 /* No more Mr. Nice Guy. */
1595 switch (state) {
1596 case cpuset:
1597 if (IS_ENABLED(CONFIG_CPUSETS)) {
1598 cpuset_cpus_allowed_fallback(p);
1599 state = possible;
1600 break;
1601 }
1602 /* fall-through */
1603 case possible:
1604 do_set_cpus_allowed(p, cpu_possible_mask);
1605 state = fail;
1606 break;
1607
1608 case fail:
1609 BUG();
1610 break;
1611 }
1612 }
1613
1614 out:
1615 if (state != cpuset) {
1616 /*
1617 * Don't tell them about moving exiting tasks or
1618 * kernel threads (both mm NULL), since they never
1619 * leave kernel.
1620 */
1621 if (p->mm && printk_ratelimit()) {
1622 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1623 task_pid_nr(p), p->comm, cpu);
1624 }
1625 }
1626
1627 return dest_cpu;
1628 }
1629
1630 /*
1631 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1632 */
1633 static inline
1634 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1635 {
1636 lockdep_assert_held(&p->pi_lock);
1637
1638 if (p->nr_cpus_allowed > 1)
1639 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1640
1641 /*
1642 * In order not to call set_task_cpu() on a blocking task we need
1643 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1644 * cpu.
1645 *
1646 * Since this is common to all placement strategies, this lives here.
1647 *
1648 * [ this allows ->select_task() to simply return task_cpu(p) and
1649 * not worry about this generic constraint ]
1650 */
1651 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1652 !cpu_online(cpu)))
1653 cpu = select_fallback_rq(task_cpu(p), p);
1654
1655 return cpu;
1656 }
1657
1658 static void update_avg(u64 *avg, u64 sample)
1659 {
1660 s64 diff = sample - *avg;
1661 *avg += diff >> 3;
1662 }
1663
1664 #else
1665
1666 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1667 const struct cpumask *new_mask, bool check)
1668 {
1669 return set_cpus_allowed_ptr(p, new_mask);
1670 }
1671
1672 #endif /* CONFIG_SMP */
1673
1674 static void
1675 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1676 {
1677 #ifdef CONFIG_SCHEDSTATS
1678 struct rq *rq = this_rq();
1679
1680 #ifdef CONFIG_SMP
1681 int this_cpu = smp_processor_id();
1682
1683 if (cpu == this_cpu) {
1684 schedstat_inc(rq, ttwu_local);
1685 schedstat_inc(p, se.statistics.nr_wakeups_local);
1686 } else {
1687 struct sched_domain *sd;
1688
1689 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1690 rcu_read_lock();
1691 for_each_domain(this_cpu, sd) {
1692 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1693 schedstat_inc(sd, ttwu_wake_remote);
1694 break;
1695 }
1696 }
1697 rcu_read_unlock();
1698 }
1699
1700 if (wake_flags & WF_MIGRATED)
1701 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1702
1703 #endif /* CONFIG_SMP */
1704
1705 schedstat_inc(rq, ttwu_count);
1706 schedstat_inc(p, se.statistics.nr_wakeups);
1707
1708 if (wake_flags & WF_SYNC)
1709 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1710
1711 #endif /* CONFIG_SCHEDSTATS */
1712 }
1713
1714 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1715 {
1716 activate_task(rq, p, en_flags);
1717 p->on_rq = TASK_ON_RQ_QUEUED;
1718
1719 /* if a worker is waking up, notify workqueue */
1720 if (p->flags & PF_WQ_WORKER)
1721 wq_worker_waking_up(p, cpu_of(rq));
1722 }
1723
1724 /*
1725 * Mark the task runnable and perform wakeup-preemption.
1726 */
1727 static void
1728 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1729 {
1730 check_preempt_curr(rq, p, wake_flags);
1731 p->state = TASK_RUNNING;
1732 trace_sched_wakeup(p);
1733
1734 #ifdef CONFIG_SMP
1735 if (p->sched_class->task_woken) {
1736 /*
1737 * Our task @p is fully woken up and running; so its safe to
1738 * drop the rq->lock, hereafter rq is only used for statistics.
1739 */
1740 lockdep_unpin_lock(&rq->lock);
1741 p->sched_class->task_woken(rq, p);
1742 lockdep_pin_lock(&rq->lock);
1743 }
1744
1745 if (rq->idle_stamp) {
1746 u64 delta = rq_clock(rq) - rq->idle_stamp;
1747 u64 max = 2*rq->max_idle_balance_cost;
1748
1749 update_avg(&rq->avg_idle, delta);
1750
1751 if (rq->avg_idle > max)
1752 rq->avg_idle = max;
1753
1754 rq->idle_stamp = 0;
1755 }
1756 #endif
1757 }
1758
1759 static void
1760 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1761 {
1762 lockdep_assert_held(&rq->lock);
1763
1764 #ifdef CONFIG_SMP
1765 if (p->sched_contributes_to_load)
1766 rq->nr_uninterruptible--;
1767 #endif
1768
1769 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1770 ttwu_do_wakeup(rq, p, wake_flags);
1771 }
1772
1773 /*
1774 * Called in case the task @p isn't fully descheduled from its runqueue,
1775 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1776 * since all we need to do is flip p->state to TASK_RUNNING, since
1777 * the task is still ->on_rq.
1778 */
1779 static int ttwu_remote(struct task_struct *p, int wake_flags)
1780 {
1781 struct rq *rq;
1782 int ret = 0;
1783
1784 rq = __task_rq_lock(p);
1785 if (task_on_rq_queued(p)) {
1786 /* check_preempt_curr() may use rq clock */
1787 update_rq_clock(rq);
1788 ttwu_do_wakeup(rq, p, wake_flags);
1789 ret = 1;
1790 }
1791 __task_rq_unlock(rq);
1792
1793 return ret;
1794 }
1795
1796 #ifdef CONFIG_SMP
1797 void sched_ttwu_pending(void)
1798 {
1799 struct rq *rq = this_rq();
1800 struct llist_node *llist = llist_del_all(&rq->wake_list);
1801 struct task_struct *p;
1802 unsigned long flags;
1803
1804 if (!llist)
1805 return;
1806
1807 raw_spin_lock_irqsave(&rq->lock, flags);
1808 lockdep_pin_lock(&rq->lock);
1809
1810 while (llist) {
1811 p = llist_entry(llist, struct task_struct, wake_entry);
1812 llist = llist_next(llist);
1813 ttwu_do_activate(rq, p, 0);
1814 }
1815
1816 lockdep_unpin_lock(&rq->lock);
1817 raw_spin_unlock_irqrestore(&rq->lock, flags);
1818 }
1819
1820 void scheduler_ipi(void)
1821 {
1822 /*
1823 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1824 * TIF_NEED_RESCHED remotely (for the first time) will also send
1825 * this IPI.
1826 */
1827 preempt_fold_need_resched();
1828
1829 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1830 return;
1831
1832 /*
1833 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1834 * traditionally all their work was done from the interrupt return
1835 * path. Now that we actually do some work, we need to make sure
1836 * we do call them.
1837 *
1838 * Some archs already do call them, luckily irq_enter/exit nest
1839 * properly.
1840 *
1841 * Arguably we should visit all archs and update all handlers,
1842 * however a fair share of IPIs are still resched only so this would
1843 * somewhat pessimize the simple resched case.
1844 */
1845 irq_enter();
1846 sched_ttwu_pending();
1847
1848 /*
1849 * Check if someone kicked us for doing the nohz idle load balance.
1850 */
1851 if (unlikely(got_nohz_idle_kick())) {
1852 this_rq()->idle_balance = 1;
1853 raise_softirq_irqoff(SCHED_SOFTIRQ);
1854 }
1855 irq_exit();
1856 }
1857
1858 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1859 {
1860 struct rq *rq = cpu_rq(cpu);
1861
1862 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1863 if (!set_nr_if_polling(rq->idle))
1864 smp_send_reschedule(cpu);
1865 else
1866 trace_sched_wake_idle_without_ipi(cpu);
1867 }
1868 }
1869
1870 void wake_up_if_idle(int cpu)
1871 {
1872 struct rq *rq = cpu_rq(cpu);
1873 unsigned long flags;
1874
1875 rcu_read_lock();
1876
1877 if (!is_idle_task(rcu_dereference(rq->curr)))
1878 goto out;
1879
1880 if (set_nr_if_polling(rq->idle)) {
1881 trace_sched_wake_idle_without_ipi(cpu);
1882 } else {
1883 raw_spin_lock_irqsave(&rq->lock, flags);
1884 if (is_idle_task(rq->curr))
1885 smp_send_reschedule(cpu);
1886 /* Else cpu is not in idle, do nothing here */
1887 raw_spin_unlock_irqrestore(&rq->lock, flags);
1888 }
1889
1890 out:
1891 rcu_read_unlock();
1892 }
1893
1894 bool cpus_share_cache(int this_cpu, int that_cpu)
1895 {
1896 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1897 }
1898 #endif /* CONFIG_SMP */
1899
1900 static void ttwu_queue(struct task_struct *p, int cpu)
1901 {
1902 struct rq *rq = cpu_rq(cpu);
1903
1904 #if defined(CONFIG_SMP)
1905 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1906 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1907 ttwu_queue_remote(p, cpu);
1908 return;
1909 }
1910 #endif
1911
1912 raw_spin_lock(&rq->lock);
1913 lockdep_pin_lock(&rq->lock);
1914 ttwu_do_activate(rq, p, 0);
1915 lockdep_unpin_lock(&rq->lock);
1916 raw_spin_unlock(&rq->lock);
1917 }
1918
1919 /*
1920 * Notes on Program-Order guarantees on SMP systems.
1921 *
1922 * MIGRATION
1923 *
1924 * The basic program-order guarantee on SMP systems is that when a task [t]
1925 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1926 * execution on its new cpu [c1].
1927 *
1928 * For migration (of runnable tasks) this is provided by the following means:
1929 *
1930 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1931 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1932 * rq(c1)->lock (if not at the same time, then in that order).
1933 * C) LOCK of the rq(c1)->lock scheduling in task
1934 *
1935 * Transitivity guarantees that B happens after A and C after B.
1936 * Note: we only require RCpc transitivity.
1937 * Note: the cpu doing B need not be c0 or c1
1938 *
1939 * Example:
1940 *
1941 * CPU0 CPU1 CPU2
1942 *
1943 * LOCK rq(0)->lock
1944 * sched-out X
1945 * sched-in Y
1946 * UNLOCK rq(0)->lock
1947 *
1948 * LOCK rq(0)->lock // orders against CPU0
1949 * dequeue X
1950 * UNLOCK rq(0)->lock
1951 *
1952 * LOCK rq(1)->lock
1953 * enqueue X
1954 * UNLOCK rq(1)->lock
1955 *
1956 * LOCK rq(1)->lock // orders against CPU2
1957 * sched-out Z
1958 * sched-in X
1959 * UNLOCK rq(1)->lock
1960 *
1961 *
1962 * BLOCKING -- aka. SLEEP + WAKEUP
1963 *
1964 * For blocking we (obviously) need to provide the same guarantee as for
1965 * migration. However the means are completely different as there is no lock
1966 * chain to provide order. Instead we do:
1967 *
1968 * 1) smp_store_release(X->on_cpu, 0)
1969 * 2) smp_cond_acquire(!X->on_cpu)
1970 *
1971 * Example:
1972 *
1973 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1974 *
1975 * LOCK rq(0)->lock LOCK X->pi_lock
1976 * dequeue X
1977 * sched-out X
1978 * smp_store_release(X->on_cpu, 0);
1979 *
1980 * smp_cond_acquire(!X->on_cpu);
1981 * X->state = WAKING
1982 * set_task_cpu(X,2)
1983 *
1984 * LOCK rq(2)->lock
1985 * enqueue X
1986 * X->state = RUNNING
1987 * UNLOCK rq(2)->lock
1988 *
1989 * LOCK rq(2)->lock // orders against CPU1
1990 * sched-out Z
1991 * sched-in X
1992 * UNLOCK rq(2)->lock
1993 *
1994 * UNLOCK X->pi_lock
1995 * UNLOCK rq(0)->lock
1996 *
1997 *
1998 * However; for wakeups there is a second guarantee we must provide, namely we
1999 * must observe the state that lead to our wakeup. That is, not only must our
2000 * task observe its own prior state, it must also observe the stores prior to
2001 * its wakeup.
2002 *
2003 * This means that any means of doing remote wakeups must order the CPU doing
2004 * the wakeup against the CPU the task is going to end up running on. This,
2005 * however, is already required for the regular Program-Order guarantee above,
2006 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
2007 *
2008 */
2009
2010 /**
2011 * try_to_wake_up - wake up a thread
2012 * @p: the thread to be awakened
2013 * @state: the mask of task states that can be woken
2014 * @wake_flags: wake modifier flags (WF_*)
2015 *
2016 * Put it on the run-queue if it's not already there. The "current"
2017 * thread is always on the run-queue (except when the actual
2018 * re-schedule is in progress), and as such you're allowed to do
2019 * the simpler "current->state = TASK_RUNNING" to mark yourself
2020 * runnable without the overhead of this.
2021 *
2022 * Return: %true if @p was woken up, %false if it was already running.
2023 * or @state didn't match @p's state.
2024 */
2025 static int
2026 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2027 {
2028 unsigned long flags;
2029 int cpu, success = 0;
2030
2031 /*
2032 * If we are going to wake up a thread waiting for CONDITION we
2033 * need to ensure that CONDITION=1 done by the caller can not be
2034 * reordered with p->state check below. This pairs with mb() in
2035 * set_current_state() the waiting thread does.
2036 */
2037 smp_mb__before_spinlock();
2038 raw_spin_lock_irqsave(&p->pi_lock, flags);
2039 if (!(p->state & state))
2040 goto out;
2041
2042 trace_sched_waking(p);
2043
2044 success = 1; /* we're going to change ->state */
2045 cpu = task_cpu(p);
2046
2047 if (p->on_rq && ttwu_remote(p, wake_flags))
2048 goto stat;
2049
2050 #ifdef CONFIG_SMP
2051 /*
2052 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2053 * possible to, falsely, observe p->on_cpu == 0.
2054 *
2055 * One must be running (->on_cpu == 1) in order to remove oneself
2056 * from the runqueue.
2057 *
2058 * [S] ->on_cpu = 1; [L] ->on_rq
2059 * UNLOCK rq->lock
2060 * RMB
2061 * LOCK rq->lock
2062 * [S] ->on_rq = 0; [L] ->on_cpu
2063 *
2064 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2065 * from the consecutive calls to schedule(); the first switching to our
2066 * task, the second putting it to sleep.
2067 */
2068 smp_rmb();
2069
2070 /*
2071 * If the owning (remote) cpu is still in the middle of schedule() with
2072 * this task as prev, wait until its done referencing the task.
2073 *
2074 * Pairs with the smp_store_release() in finish_lock_switch().
2075 *
2076 * This ensures that tasks getting woken will be fully ordered against
2077 * their previous state and preserve Program Order.
2078 */
2079 smp_cond_acquire(!p->on_cpu);
2080
2081 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2082 p->state = TASK_WAKING;
2083
2084 if (p->sched_class->task_waking)
2085 p->sched_class->task_waking(p);
2086
2087 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2088 if (task_cpu(p) != cpu) {
2089 wake_flags |= WF_MIGRATED;
2090 set_task_cpu(p, cpu);
2091 }
2092 #endif /* CONFIG_SMP */
2093
2094 ttwu_queue(p, cpu);
2095 stat:
2096 if (schedstat_enabled())
2097 ttwu_stat(p, cpu, wake_flags);
2098 out:
2099 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2100
2101 return success;
2102 }
2103
2104 /**
2105 * try_to_wake_up_local - try to wake up a local task with rq lock held
2106 * @p: the thread to be awakened
2107 *
2108 * Put @p on the run-queue if it's not already there. The caller must
2109 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2110 * the current task.
2111 */
2112 static void try_to_wake_up_local(struct task_struct *p)
2113 {
2114 struct rq *rq = task_rq(p);
2115
2116 if (WARN_ON_ONCE(rq != this_rq()) ||
2117 WARN_ON_ONCE(p == current))
2118 return;
2119
2120 lockdep_assert_held(&rq->lock);
2121
2122 if (!raw_spin_trylock(&p->pi_lock)) {
2123 /*
2124 * This is OK, because current is on_cpu, which avoids it being
2125 * picked for load-balance and preemption/IRQs are still
2126 * disabled avoiding further scheduler activity on it and we've
2127 * not yet picked a replacement task.
2128 */
2129 lockdep_unpin_lock(&rq->lock);
2130 raw_spin_unlock(&rq->lock);
2131 raw_spin_lock(&p->pi_lock);
2132 raw_spin_lock(&rq->lock);
2133 lockdep_pin_lock(&rq->lock);
2134 }
2135
2136 if (!(p->state & TASK_NORMAL))
2137 goto out;
2138
2139 trace_sched_waking(p);
2140
2141 if (!task_on_rq_queued(p))
2142 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2143
2144 ttwu_do_wakeup(rq, p, 0);
2145 if (schedstat_enabled())
2146 ttwu_stat(p, smp_processor_id(), 0);
2147 out:
2148 raw_spin_unlock(&p->pi_lock);
2149 }
2150
2151 /**
2152 * wake_up_process - Wake up a specific process
2153 * @p: The process to be woken up.
2154 *
2155 * Attempt to wake up the nominated process and move it to the set of runnable
2156 * processes.
2157 *
2158 * Return: 1 if the process was woken up, 0 if it was already running.
2159 *
2160 * It may be assumed that this function implies a write memory barrier before
2161 * changing the task state if and only if any tasks are woken up.
2162 */
2163 int wake_up_process(struct task_struct *p)
2164 {
2165 return try_to_wake_up(p, TASK_NORMAL, 0);
2166 }
2167 EXPORT_SYMBOL(wake_up_process);
2168
2169 int wake_up_state(struct task_struct *p, unsigned int state)
2170 {
2171 return try_to_wake_up(p, state, 0);
2172 }
2173
2174 /*
2175 * This function clears the sched_dl_entity static params.
2176 */
2177 void __dl_clear_params(struct task_struct *p)
2178 {
2179 struct sched_dl_entity *dl_se = &p->dl;
2180
2181 dl_se->dl_runtime = 0;
2182 dl_se->dl_deadline = 0;
2183 dl_se->dl_period = 0;
2184 dl_se->flags = 0;
2185 dl_se->dl_bw = 0;
2186
2187 dl_se->dl_throttled = 0;
2188 dl_se->dl_new = 1;
2189 dl_se->dl_yielded = 0;
2190 }
2191
2192 /*
2193 * Perform scheduler related setup for a newly forked process p.
2194 * p is forked by current.
2195 *
2196 * __sched_fork() is basic setup used by init_idle() too:
2197 */
2198 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2199 {
2200 p->on_rq = 0;
2201
2202 p->se.on_rq = 0;
2203 p->se.exec_start = 0;
2204 p->se.sum_exec_runtime = 0;
2205 p->se.prev_sum_exec_runtime = 0;
2206 p->se.nr_migrations = 0;
2207 p->se.vruntime = 0;
2208 INIT_LIST_HEAD(&p->se.group_node);
2209
2210 #ifdef CONFIG_FAIR_GROUP_SCHED
2211 p->se.cfs_rq = NULL;
2212 #endif
2213
2214 #ifdef CONFIG_SCHEDSTATS
2215 /* Even if schedstat is disabled, there should not be garbage */
2216 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2217 #endif
2218
2219 RB_CLEAR_NODE(&p->dl.rb_node);
2220 init_dl_task_timer(&p->dl);
2221 __dl_clear_params(p);
2222
2223 INIT_LIST_HEAD(&p->rt.run_list);
2224
2225 #ifdef CONFIG_PREEMPT_NOTIFIERS
2226 INIT_HLIST_HEAD(&p->preempt_notifiers);
2227 #endif
2228
2229 #ifdef CONFIG_NUMA_BALANCING
2230 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2231 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2232 p->mm->numa_scan_seq = 0;
2233 }
2234
2235 if (clone_flags & CLONE_VM)
2236 p->numa_preferred_nid = current->numa_preferred_nid;
2237 else
2238 p->numa_preferred_nid = -1;
2239
2240 p->node_stamp = 0ULL;
2241 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2242 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2243 p->numa_work.next = &p->numa_work;
2244 p->numa_faults = NULL;
2245 p->last_task_numa_placement = 0;
2246 p->last_sum_exec_runtime = 0;
2247
2248 p->numa_group = NULL;
2249 #endif /* CONFIG_NUMA_BALANCING */
2250 }
2251
2252 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2253
2254 #ifdef CONFIG_NUMA_BALANCING
2255
2256 void set_numabalancing_state(bool enabled)
2257 {
2258 if (enabled)
2259 static_branch_enable(&sched_numa_balancing);
2260 else
2261 static_branch_disable(&sched_numa_balancing);
2262 }
2263
2264 #ifdef CONFIG_PROC_SYSCTL
2265 int sysctl_numa_balancing(struct ctl_table *table, int write,
2266 void __user *buffer, size_t *lenp, loff_t *ppos)
2267 {
2268 struct ctl_table t;
2269 int err;
2270 int state = static_branch_likely(&sched_numa_balancing);
2271
2272 if (write && !capable(CAP_SYS_ADMIN))
2273 return -EPERM;
2274
2275 t = *table;
2276 t.data = &state;
2277 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2278 if (err < 0)
2279 return err;
2280 if (write)
2281 set_numabalancing_state(state);
2282 return err;
2283 }
2284 #endif
2285 #endif
2286
2287 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2288
2289 #ifdef CONFIG_SCHEDSTATS
2290 static void set_schedstats(bool enabled)
2291 {
2292 if (enabled)
2293 static_branch_enable(&sched_schedstats);
2294 else
2295 static_branch_disable(&sched_schedstats);
2296 }
2297
2298 void force_schedstat_enabled(void)
2299 {
2300 if (!schedstat_enabled()) {
2301 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2302 static_branch_enable(&sched_schedstats);
2303 }
2304 }
2305
2306 static int __init setup_schedstats(char *str)
2307 {
2308 int ret = 0;
2309 if (!str)
2310 goto out;
2311
2312 if (!strcmp(str, "enable")) {
2313 set_schedstats(true);
2314 ret = 1;
2315 } else if (!strcmp(str, "disable")) {
2316 set_schedstats(false);
2317 ret = 1;
2318 }
2319 out:
2320 if (!ret)
2321 pr_warn("Unable to parse schedstats=\n");
2322
2323 return ret;
2324 }
2325 __setup("schedstats=", setup_schedstats);
2326
2327 #ifdef CONFIG_PROC_SYSCTL
2328 int sysctl_schedstats(struct ctl_table *table, int write,
2329 void __user *buffer, size_t *lenp, loff_t *ppos)
2330 {
2331 struct ctl_table t;
2332 int err;
2333 int state = static_branch_likely(&sched_schedstats);
2334
2335 if (write && !capable(CAP_SYS_ADMIN))
2336 return -EPERM;
2337
2338 t = *table;
2339 t.data = &state;
2340 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2341 if (err < 0)
2342 return err;
2343 if (write)
2344 set_schedstats(state);
2345 return err;
2346 }
2347 #endif
2348 #endif
2349
2350 /*
2351 * fork()/clone()-time setup:
2352 */
2353 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2354 {
2355 unsigned long flags;
2356 int cpu = get_cpu();
2357
2358 __sched_fork(clone_flags, p);
2359 /*
2360 * We mark the process as running here. This guarantees that
2361 * nobody will actually run it, and a signal or other external
2362 * event cannot wake it up and insert it on the runqueue either.
2363 */
2364 p->state = TASK_RUNNING;
2365
2366 /*
2367 * Make sure we do not leak PI boosting priority to the child.
2368 */
2369 p->prio = current->normal_prio;
2370
2371 /*
2372 * Revert to default priority/policy on fork if requested.
2373 */
2374 if (unlikely(p->sched_reset_on_fork)) {
2375 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2376 p->policy = SCHED_NORMAL;
2377 p->static_prio = NICE_TO_PRIO(0);
2378 p->rt_priority = 0;
2379 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2380 p->static_prio = NICE_TO_PRIO(0);
2381
2382 p->prio = p->normal_prio = __normal_prio(p);
2383 set_load_weight(p);
2384
2385 /*
2386 * We don't need the reset flag anymore after the fork. It has
2387 * fulfilled its duty:
2388 */
2389 p->sched_reset_on_fork = 0;
2390 }
2391
2392 if (dl_prio(p->prio)) {
2393 put_cpu();
2394 return -EAGAIN;
2395 } else if (rt_prio(p->prio)) {
2396 p->sched_class = &rt_sched_class;
2397 } else {
2398 p->sched_class = &fair_sched_class;
2399 }
2400
2401 if (p->sched_class->task_fork)
2402 p->sched_class->task_fork(p);
2403
2404 /*
2405 * The child is not yet in the pid-hash so no cgroup attach races,
2406 * and the cgroup is pinned to this child due to cgroup_fork()
2407 * is ran before sched_fork().
2408 *
2409 * Silence PROVE_RCU.
2410 */
2411 raw_spin_lock_irqsave(&p->pi_lock, flags);
2412 set_task_cpu(p, cpu);
2413 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2414
2415 #ifdef CONFIG_SCHED_INFO
2416 if (likely(sched_info_on()))
2417 memset(&p->sched_info, 0, sizeof(p->sched_info));
2418 #endif
2419 #if defined(CONFIG_SMP)
2420 p->on_cpu = 0;
2421 #endif
2422 init_task_preempt_count(p);
2423 #ifdef CONFIG_SMP
2424 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2425 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2426 #endif
2427
2428 put_cpu();
2429 return 0;
2430 }
2431
2432 unsigned long to_ratio(u64 period, u64 runtime)
2433 {
2434 if (runtime == RUNTIME_INF)
2435 return 1ULL << 20;
2436
2437 /*
2438 * Doing this here saves a lot of checks in all
2439 * the calling paths, and returning zero seems
2440 * safe for them anyway.
2441 */
2442 if (period == 0)
2443 return 0;
2444
2445 return div64_u64(runtime << 20, period);
2446 }
2447
2448 #ifdef CONFIG_SMP
2449 inline struct dl_bw *dl_bw_of(int i)
2450 {
2451 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2452 "sched RCU must be held");
2453 return &cpu_rq(i)->rd->dl_bw;
2454 }
2455
2456 static inline int dl_bw_cpus(int i)
2457 {
2458 struct root_domain *rd = cpu_rq(i)->rd;
2459 int cpus = 0;
2460
2461 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2462 "sched RCU must be held");
2463 for_each_cpu_and(i, rd->span, cpu_active_mask)
2464 cpus++;
2465
2466 return cpus;
2467 }
2468 #else
2469 inline struct dl_bw *dl_bw_of(int i)
2470 {
2471 return &cpu_rq(i)->dl.dl_bw;
2472 }
2473
2474 static inline int dl_bw_cpus(int i)
2475 {
2476 return 1;
2477 }
2478 #endif
2479
2480 /*
2481 * We must be sure that accepting a new task (or allowing changing the
2482 * parameters of an existing one) is consistent with the bandwidth
2483 * constraints. If yes, this function also accordingly updates the currently
2484 * allocated bandwidth to reflect the new situation.
2485 *
2486 * This function is called while holding p's rq->lock.
2487 *
2488 * XXX we should delay bw change until the task's 0-lag point, see
2489 * __setparam_dl().
2490 */
2491 static int dl_overflow(struct task_struct *p, int policy,
2492 const struct sched_attr *attr)
2493 {
2494
2495 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2496 u64 period = attr->sched_period ?: attr->sched_deadline;
2497 u64 runtime = attr->sched_runtime;
2498 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2499 int cpus, err = -1;
2500
2501 if (new_bw == p->dl.dl_bw)
2502 return 0;
2503
2504 /*
2505 * Either if a task, enters, leave, or stays -deadline but changes
2506 * its parameters, we may need to update accordingly the total
2507 * allocated bandwidth of the container.
2508 */
2509 raw_spin_lock(&dl_b->lock);
2510 cpus = dl_bw_cpus(task_cpu(p));
2511 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2512 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2513 __dl_add(dl_b, new_bw);
2514 err = 0;
2515 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2516 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2517 __dl_clear(dl_b, p->dl.dl_bw);
2518 __dl_add(dl_b, new_bw);
2519 err = 0;
2520 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2521 __dl_clear(dl_b, p->dl.dl_bw);
2522 err = 0;
2523 }
2524 raw_spin_unlock(&dl_b->lock);
2525
2526 return err;
2527 }
2528
2529 extern void init_dl_bw(struct dl_bw *dl_b);
2530
2531 /*
2532 * wake_up_new_task - wake up a newly created task for the first time.
2533 *
2534 * This function will do some initial scheduler statistics housekeeping
2535 * that must be done for every newly created context, then puts the task
2536 * on the runqueue and wakes it.
2537 */
2538 void wake_up_new_task(struct task_struct *p)
2539 {
2540 unsigned long flags;
2541 struct rq *rq;
2542
2543 raw_spin_lock_irqsave(&p->pi_lock, flags);
2544 /* Initialize new task's runnable average */
2545 init_entity_runnable_average(&p->se);
2546 #ifdef CONFIG_SMP
2547 /*
2548 * Fork balancing, do it here and not earlier because:
2549 * - cpus_allowed can change in the fork path
2550 * - any previously selected cpu might disappear through hotplug
2551 */
2552 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2553 #endif
2554
2555 rq = __task_rq_lock(p);
2556 activate_task(rq, p, 0);
2557 p->on_rq = TASK_ON_RQ_QUEUED;
2558 trace_sched_wakeup_new(p);
2559 check_preempt_curr(rq, p, WF_FORK);
2560 #ifdef CONFIG_SMP
2561 if (p->sched_class->task_woken) {
2562 /*
2563 * Nothing relies on rq->lock after this, so its fine to
2564 * drop it.
2565 */
2566 lockdep_unpin_lock(&rq->lock);
2567 p->sched_class->task_woken(rq, p);
2568 lockdep_pin_lock(&rq->lock);
2569 }
2570 #endif
2571 task_rq_unlock(rq, p, &flags);
2572 }
2573
2574 #ifdef CONFIG_PREEMPT_NOTIFIERS
2575
2576 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2577
2578 void preempt_notifier_inc(void)
2579 {
2580 static_key_slow_inc(&preempt_notifier_key);
2581 }
2582 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2583
2584 void preempt_notifier_dec(void)
2585 {
2586 static_key_slow_dec(&preempt_notifier_key);
2587 }
2588 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2589
2590 /**
2591 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2592 * @notifier: notifier struct to register
2593 */
2594 void preempt_notifier_register(struct preempt_notifier *notifier)
2595 {
2596 if (!static_key_false(&preempt_notifier_key))
2597 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2598
2599 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2600 }
2601 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2602
2603 /**
2604 * preempt_notifier_unregister - no longer interested in preemption notifications
2605 * @notifier: notifier struct to unregister
2606 *
2607 * This is *not* safe to call from within a preemption notifier.
2608 */
2609 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2610 {
2611 hlist_del(&notifier->link);
2612 }
2613 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2614
2615 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2616 {
2617 struct preempt_notifier *notifier;
2618
2619 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2620 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2621 }
2622
2623 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2624 {
2625 if (static_key_false(&preempt_notifier_key))
2626 __fire_sched_in_preempt_notifiers(curr);
2627 }
2628
2629 static void
2630 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2631 struct task_struct *next)
2632 {
2633 struct preempt_notifier *notifier;
2634
2635 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2636 notifier->ops->sched_out(notifier, next);
2637 }
2638
2639 static __always_inline void
2640 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2641 struct task_struct *next)
2642 {
2643 if (static_key_false(&preempt_notifier_key))
2644 __fire_sched_out_preempt_notifiers(curr, next);
2645 }
2646
2647 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2648
2649 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2650 {
2651 }
2652
2653 static inline void
2654 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2655 struct task_struct *next)
2656 {
2657 }
2658
2659 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2660
2661 /**
2662 * prepare_task_switch - prepare to switch tasks
2663 * @rq: the runqueue preparing to switch
2664 * @prev: the current task that is being switched out
2665 * @next: the task we are going to switch to.
2666 *
2667 * This is called with the rq lock held and interrupts off. It must
2668 * be paired with a subsequent finish_task_switch after the context
2669 * switch.
2670 *
2671 * prepare_task_switch sets up locking and calls architecture specific
2672 * hooks.
2673 */
2674 static inline void
2675 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2676 struct task_struct *next)
2677 {
2678 sched_info_switch(rq, prev, next);
2679 perf_event_task_sched_out(prev, next);
2680 fire_sched_out_preempt_notifiers(prev, next);
2681 prepare_lock_switch(rq, next);
2682 prepare_arch_switch(next);
2683 }
2684
2685 /**
2686 * finish_task_switch - clean up after a task-switch
2687 * @prev: the thread we just switched away from.
2688 *
2689 * finish_task_switch must be called after the context switch, paired
2690 * with a prepare_task_switch call before the context switch.
2691 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2692 * and do any other architecture-specific cleanup actions.
2693 *
2694 * Note that we may have delayed dropping an mm in context_switch(). If
2695 * so, we finish that here outside of the runqueue lock. (Doing it
2696 * with the lock held can cause deadlocks; see schedule() for
2697 * details.)
2698 *
2699 * The context switch have flipped the stack from under us and restored the
2700 * local variables which were saved when this task called schedule() in the
2701 * past. prev == current is still correct but we need to recalculate this_rq
2702 * because prev may have moved to another CPU.
2703 */
2704 static struct rq *finish_task_switch(struct task_struct *prev)
2705 __releases(rq->lock)
2706 {
2707 struct rq *rq = this_rq();
2708 struct mm_struct *mm = rq->prev_mm;
2709 long prev_state;
2710
2711 /*
2712 * The previous task will have left us with a preempt_count of 2
2713 * because it left us after:
2714 *
2715 * schedule()
2716 * preempt_disable(); // 1
2717 * __schedule()
2718 * raw_spin_lock_irq(&rq->lock) // 2
2719 *
2720 * Also, see FORK_PREEMPT_COUNT.
2721 */
2722 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2723 "corrupted preempt_count: %s/%d/0x%x\n",
2724 current->comm, current->pid, preempt_count()))
2725 preempt_count_set(FORK_PREEMPT_COUNT);
2726
2727 rq->prev_mm = NULL;
2728
2729 /*
2730 * A task struct has one reference for the use as "current".
2731 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2732 * schedule one last time. The schedule call will never return, and
2733 * the scheduled task must drop that reference.
2734 *
2735 * We must observe prev->state before clearing prev->on_cpu (in
2736 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2737 * running on another CPU and we could rave with its RUNNING -> DEAD
2738 * transition, resulting in a double drop.
2739 */
2740 prev_state = prev->state;
2741 vtime_task_switch(prev);
2742 perf_event_task_sched_in(prev, current);
2743 finish_lock_switch(rq, prev);
2744 finish_arch_post_lock_switch();
2745
2746 fire_sched_in_preempt_notifiers(current);
2747 if (mm)
2748 mmdrop(mm);
2749 if (unlikely(prev_state == TASK_DEAD)) {
2750 if (prev->sched_class->task_dead)
2751 prev->sched_class->task_dead(prev);
2752
2753 /*
2754 * Remove function-return probe instances associated with this
2755 * task and put them back on the free list.
2756 */
2757 kprobe_flush_task(prev);
2758 put_task_struct(prev);
2759 }
2760
2761 tick_nohz_task_switch();
2762 return rq;
2763 }
2764
2765 #ifdef CONFIG_SMP
2766
2767 /* rq->lock is NOT held, but preemption is disabled */
2768 static void __balance_callback(struct rq *rq)
2769 {
2770 struct callback_head *head, *next;
2771 void (*func)(struct rq *rq);
2772 unsigned long flags;
2773
2774 raw_spin_lock_irqsave(&rq->lock, flags);
2775 head = rq->balance_callback;
2776 rq->balance_callback = NULL;
2777 while (head) {
2778 func = (void (*)(struct rq *))head->func;
2779 next = head->next;
2780 head->next = NULL;
2781 head = next;
2782
2783 func(rq);
2784 }
2785 raw_spin_unlock_irqrestore(&rq->lock, flags);
2786 }
2787
2788 static inline void balance_callback(struct rq *rq)
2789 {
2790 if (unlikely(rq->balance_callback))
2791 __balance_callback(rq);
2792 }
2793
2794 #else
2795
2796 static inline void balance_callback(struct rq *rq)
2797 {
2798 }
2799
2800 #endif
2801
2802 /**
2803 * schedule_tail - first thing a freshly forked thread must call.
2804 * @prev: the thread we just switched away from.
2805 */
2806 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2807 __releases(rq->lock)
2808 {
2809 struct rq *rq;
2810
2811 /*
2812 * New tasks start with FORK_PREEMPT_COUNT, see there and
2813 * finish_task_switch() for details.
2814 *
2815 * finish_task_switch() will drop rq->lock() and lower preempt_count
2816 * and the preempt_enable() will end up enabling preemption (on
2817 * PREEMPT_COUNT kernels).
2818 */
2819
2820 rq = finish_task_switch(prev);
2821 balance_callback(rq);
2822 preempt_enable();
2823
2824 if (current->set_child_tid)
2825 put_user(task_pid_vnr(current), current->set_child_tid);
2826 }
2827
2828 /*
2829 * context_switch - switch to the new MM and the new thread's register state.
2830 */
2831 static inline struct rq *
2832 context_switch(struct rq *rq, struct task_struct *prev,
2833 struct task_struct *next)
2834 {
2835 struct mm_struct *mm, *oldmm;
2836
2837 prepare_task_switch(rq, prev, next);
2838
2839 mm = next->mm;
2840 oldmm = prev->active_mm;
2841 /*
2842 * For paravirt, this is coupled with an exit in switch_to to
2843 * combine the page table reload and the switch backend into
2844 * one hypercall.
2845 */
2846 arch_start_context_switch(prev);
2847
2848 if (!mm) {
2849 next->active_mm = oldmm;
2850 atomic_inc(&oldmm->mm_count);
2851 enter_lazy_tlb(oldmm, next);
2852 } else
2853 switch_mm(oldmm, mm, next);
2854
2855 if (!prev->mm) {
2856 prev->active_mm = NULL;
2857 rq->prev_mm = oldmm;
2858 }
2859 /*
2860 * Since the runqueue lock will be released by the next
2861 * task (which is an invalid locking op but in the case
2862 * of the scheduler it's an obvious special-case), so we
2863 * do an early lockdep release here:
2864 */
2865 lockdep_unpin_lock(&rq->lock);
2866 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2867
2868 /* Here we just switch the register state and the stack. */
2869 switch_to(prev, next, prev);
2870 barrier();
2871
2872 return finish_task_switch(prev);
2873 }
2874
2875 /*
2876 * nr_running and nr_context_switches:
2877 *
2878 * externally visible scheduler statistics: current number of runnable
2879 * threads, total number of context switches performed since bootup.
2880 */
2881 unsigned long nr_running(void)
2882 {
2883 unsigned long i, sum = 0;
2884
2885 for_each_online_cpu(i)
2886 sum += cpu_rq(i)->nr_running;
2887
2888 return sum;
2889 }
2890
2891 /*
2892 * Check if only the current task is running on the cpu.
2893 *
2894 * Caution: this function does not check that the caller has disabled
2895 * preemption, thus the result might have a time-of-check-to-time-of-use
2896 * race. The caller is responsible to use it correctly, for example:
2897 *
2898 * - from a non-preemptable section (of course)
2899 *
2900 * - from a thread that is bound to a single CPU
2901 *
2902 * - in a loop with very short iterations (e.g. a polling loop)
2903 */
2904 bool single_task_running(void)
2905 {
2906 return raw_rq()->nr_running == 1;
2907 }
2908 EXPORT_SYMBOL(single_task_running);
2909
2910 unsigned long long nr_context_switches(void)
2911 {
2912 int i;
2913 unsigned long long sum = 0;
2914
2915 for_each_possible_cpu(i)
2916 sum += cpu_rq(i)->nr_switches;
2917
2918 return sum;
2919 }
2920
2921 unsigned long nr_iowait(void)
2922 {
2923 unsigned long i, sum = 0;
2924
2925 for_each_possible_cpu(i)
2926 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2927
2928 return sum;
2929 }
2930
2931 unsigned long nr_iowait_cpu(int cpu)
2932 {
2933 struct rq *this = cpu_rq(cpu);
2934 return atomic_read(&this->nr_iowait);
2935 }
2936
2937 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2938 {
2939 struct rq *rq = this_rq();
2940 *nr_waiters = atomic_read(&rq->nr_iowait);
2941 *load = rq->load.weight;
2942 }
2943
2944 #ifdef CONFIG_SMP
2945
2946 /*
2947 * sched_exec - execve() is a valuable balancing opportunity, because at
2948 * this point the task has the smallest effective memory and cache footprint.
2949 */
2950 void sched_exec(void)
2951 {
2952 struct task_struct *p = current;
2953 unsigned long flags;
2954 int dest_cpu;
2955
2956 raw_spin_lock_irqsave(&p->pi_lock, flags);
2957 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2958 if (dest_cpu == smp_processor_id())
2959 goto unlock;
2960
2961 if (likely(cpu_active(dest_cpu))) {
2962 struct migration_arg arg = { p, dest_cpu };
2963
2964 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2965 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2966 return;
2967 }
2968 unlock:
2969 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2970 }
2971
2972 #endif
2973
2974 DEFINE_PER_CPU(struct kernel_stat, kstat);
2975 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2976
2977 EXPORT_PER_CPU_SYMBOL(kstat);
2978 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2979
2980 /*
2981 * Return accounted runtime for the task.
2982 * In case the task is currently running, return the runtime plus current's
2983 * pending runtime that have not been accounted yet.
2984 */
2985 unsigned long long task_sched_runtime(struct task_struct *p)
2986 {
2987 unsigned long flags;
2988 struct rq *rq;
2989 u64 ns;
2990
2991 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2992 /*
2993 * 64-bit doesn't need locks to atomically read a 64bit value.
2994 * So we have a optimization chance when the task's delta_exec is 0.
2995 * Reading ->on_cpu is racy, but this is ok.
2996 *
2997 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2998 * If we race with it entering cpu, unaccounted time is 0. This is
2999 * indistinguishable from the read occurring a few cycles earlier.
3000 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3001 * been accounted, so we're correct here as well.
3002 */
3003 if (!p->on_cpu || !task_on_rq_queued(p))
3004 return p->se.sum_exec_runtime;
3005 #endif
3006
3007 rq = task_rq_lock(p, &flags);
3008 /*
3009 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3010 * project cycles that may never be accounted to this
3011 * thread, breaking clock_gettime().
3012 */
3013 if (task_current(rq, p) && task_on_rq_queued(p)) {
3014 update_rq_clock(rq);
3015 p->sched_class->update_curr(rq);
3016 }
3017 ns = p->se.sum_exec_runtime;
3018 task_rq_unlock(rq, p, &flags);
3019
3020 return ns;
3021 }
3022
3023 /*
3024 * This function gets called by the timer code, with HZ frequency.
3025 * We call it with interrupts disabled.
3026 */
3027 void scheduler_tick(void)
3028 {
3029 int cpu = smp_processor_id();
3030 struct rq *rq = cpu_rq(cpu);
3031 struct task_struct *curr = rq->curr;
3032
3033 sched_clock_tick();
3034
3035 raw_spin_lock(&rq->lock);
3036 update_rq_clock(rq);
3037 curr->sched_class->task_tick(rq, curr, 0);
3038 update_cpu_load_active(rq);
3039 calc_global_load_tick(rq);
3040 raw_spin_unlock(&rq->lock);
3041
3042 perf_event_task_tick();
3043
3044 #ifdef CONFIG_SMP
3045 rq->idle_balance = idle_cpu(cpu);
3046 trigger_load_balance(rq);
3047 #endif
3048 rq_last_tick_reset(rq);
3049 }
3050
3051 #ifdef CONFIG_NO_HZ_FULL
3052 /**
3053 * scheduler_tick_max_deferment
3054 *
3055 * Keep at least one tick per second when a single
3056 * active task is running because the scheduler doesn't
3057 * yet completely support full dynticks environment.
3058 *
3059 * This makes sure that uptime, CFS vruntime, load
3060 * balancing, etc... continue to move forward, even
3061 * with a very low granularity.
3062 *
3063 * Return: Maximum deferment in nanoseconds.
3064 */
3065 u64 scheduler_tick_max_deferment(void)
3066 {
3067 struct rq *rq = this_rq();
3068 unsigned long next, now = READ_ONCE(jiffies);
3069
3070 next = rq->last_sched_tick + HZ;
3071
3072 if (time_before_eq(next, now))
3073 return 0;
3074
3075 return jiffies_to_nsecs(next - now);
3076 }
3077 #endif
3078
3079 notrace unsigned long get_parent_ip(unsigned long addr)
3080 {
3081 if (in_lock_functions(addr)) {
3082 addr = CALLER_ADDR2;
3083 if (in_lock_functions(addr))
3084 addr = CALLER_ADDR3;
3085 }
3086 return addr;
3087 }
3088
3089 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3090 defined(CONFIG_PREEMPT_TRACER))
3091
3092 void preempt_count_add(int val)
3093 {
3094 #ifdef CONFIG_DEBUG_PREEMPT
3095 /*
3096 * Underflow?
3097 */
3098 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3099 return;
3100 #endif
3101 __preempt_count_add(val);
3102 #ifdef CONFIG_DEBUG_PREEMPT
3103 /*
3104 * Spinlock count overflowing soon?
3105 */
3106 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3107 PREEMPT_MASK - 10);
3108 #endif
3109 if (preempt_count() == val) {
3110 unsigned long ip = get_parent_ip(CALLER_ADDR1);
3111 #ifdef CONFIG_DEBUG_PREEMPT
3112 current->preempt_disable_ip = ip;
3113 #endif
3114 trace_preempt_off(CALLER_ADDR0, ip);
3115 }
3116 }
3117 EXPORT_SYMBOL(preempt_count_add);
3118 NOKPROBE_SYMBOL(preempt_count_add);
3119
3120 void preempt_count_sub(int val)
3121 {
3122 #ifdef CONFIG_DEBUG_PREEMPT
3123 /*
3124 * Underflow?
3125 */
3126 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3127 return;
3128 /*
3129 * Is the spinlock portion underflowing?
3130 */
3131 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3132 !(preempt_count() & PREEMPT_MASK)))
3133 return;
3134 #endif
3135
3136 if (preempt_count() == val)
3137 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3138 __preempt_count_sub(val);
3139 }
3140 EXPORT_SYMBOL(preempt_count_sub);
3141 NOKPROBE_SYMBOL(preempt_count_sub);
3142
3143 #endif
3144
3145 /*
3146 * Print scheduling while atomic bug:
3147 */
3148 static noinline void __schedule_bug(struct task_struct *prev)
3149 {
3150 if (oops_in_progress)
3151 return;
3152
3153 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3154 prev->comm, prev->pid, preempt_count());
3155
3156 debug_show_held_locks(prev);
3157 print_modules();
3158 if (irqs_disabled())
3159 print_irqtrace_events(prev);
3160 #ifdef CONFIG_DEBUG_PREEMPT
3161 if (in_atomic_preempt_off()) {
3162 pr_err("Preemption disabled at:");
3163 print_ip_sym(current->preempt_disable_ip);
3164 pr_cont("\n");
3165 }
3166 #endif
3167 dump_stack();
3168 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3169 }
3170
3171 /*
3172 * Various schedule()-time debugging checks and statistics:
3173 */
3174 static inline void schedule_debug(struct task_struct *prev)
3175 {
3176 #ifdef CONFIG_SCHED_STACK_END_CHECK
3177 BUG_ON(task_stack_end_corrupted(prev));
3178 #endif
3179
3180 if (unlikely(in_atomic_preempt_off())) {
3181 __schedule_bug(prev);
3182 preempt_count_set(PREEMPT_DISABLED);
3183 }
3184 rcu_sleep_check();
3185
3186 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3187
3188 schedstat_inc(this_rq(), sched_count);
3189 }
3190
3191 /*
3192 * Pick up the highest-prio task:
3193 */
3194 static inline struct task_struct *
3195 pick_next_task(struct rq *rq, struct task_struct *prev)
3196 {
3197 const struct sched_class *class = &fair_sched_class;
3198 struct task_struct *p;
3199
3200 /*
3201 * Optimization: we know that if all tasks are in
3202 * the fair class we can call that function directly:
3203 */
3204 if (likely(prev->sched_class == class &&
3205 rq->nr_running == rq->cfs.h_nr_running)) {
3206 p = fair_sched_class.pick_next_task(rq, prev);
3207 if (unlikely(p == RETRY_TASK))
3208 goto again;
3209
3210 /* assumes fair_sched_class->next == idle_sched_class */
3211 if (unlikely(!p))
3212 p = idle_sched_class.pick_next_task(rq, prev);
3213
3214 return p;
3215 }
3216
3217 again:
3218 for_each_class(class) {
3219 p = class->pick_next_task(rq, prev);
3220 if (p) {
3221 if (unlikely(p == RETRY_TASK))
3222 goto again;
3223 return p;
3224 }
3225 }
3226
3227 BUG(); /* the idle class will always have a runnable task */
3228 }
3229
3230 /*
3231 * __schedule() is the main scheduler function.
3232 *
3233 * The main means of driving the scheduler and thus entering this function are:
3234 *
3235 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3236 *
3237 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3238 * paths. For example, see arch/x86/entry_64.S.
3239 *
3240 * To drive preemption between tasks, the scheduler sets the flag in timer
3241 * interrupt handler scheduler_tick().
3242 *
3243 * 3. Wakeups don't really cause entry into schedule(). They add a
3244 * task to the run-queue and that's it.
3245 *
3246 * Now, if the new task added to the run-queue preempts the current
3247 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3248 * called on the nearest possible occasion:
3249 *
3250 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3251 *
3252 * - in syscall or exception context, at the next outmost
3253 * preempt_enable(). (this might be as soon as the wake_up()'s
3254 * spin_unlock()!)
3255 *
3256 * - in IRQ context, return from interrupt-handler to
3257 * preemptible context
3258 *
3259 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3260 * then at the next:
3261 *
3262 * - cond_resched() call
3263 * - explicit schedule() call
3264 * - return from syscall or exception to user-space
3265 * - return from interrupt-handler to user-space
3266 *
3267 * WARNING: must be called with preemption disabled!
3268 */
3269 static void __sched notrace __schedule(bool preempt)
3270 {
3271 struct task_struct *prev, *next;
3272 unsigned long *switch_count;
3273 struct rq *rq;
3274 int cpu;
3275
3276 cpu = smp_processor_id();
3277 rq = cpu_rq(cpu);
3278 prev = rq->curr;
3279
3280 /*
3281 * do_exit() calls schedule() with preemption disabled as an exception;
3282 * however we must fix that up, otherwise the next task will see an
3283 * inconsistent (higher) preempt count.
3284 *
3285 * It also avoids the below schedule_debug() test from complaining
3286 * about this.
3287 */
3288 if (unlikely(prev->state == TASK_DEAD))
3289 preempt_enable_no_resched_notrace();
3290
3291 schedule_debug(prev);
3292
3293 if (sched_feat(HRTICK))
3294 hrtick_clear(rq);
3295
3296 local_irq_disable();
3297 rcu_note_context_switch();
3298
3299 /*
3300 * Make sure that signal_pending_state()->signal_pending() below
3301 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3302 * done by the caller to avoid the race with signal_wake_up().
3303 */
3304 smp_mb__before_spinlock();
3305 raw_spin_lock(&rq->lock);
3306 lockdep_pin_lock(&rq->lock);
3307
3308 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3309
3310 switch_count = &prev->nivcsw;
3311 if (!preempt && prev->state) {
3312 if (unlikely(signal_pending_state(prev->state, prev))) {
3313 prev->state = TASK_RUNNING;
3314 } else {
3315 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3316 prev->on_rq = 0;
3317
3318 /*
3319 * If a worker went to sleep, notify and ask workqueue
3320 * whether it wants to wake up a task to maintain
3321 * concurrency.
3322 */
3323 if (prev->flags & PF_WQ_WORKER) {
3324 struct task_struct *to_wakeup;
3325
3326 to_wakeup = wq_worker_sleeping(prev, cpu);
3327 if (to_wakeup)
3328 try_to_wake_up_local(to_wakeup);
3329 }
3330 }
3331 switch_count = &prev->nvcsw;
3332 }
3333
3334 if (task_on_rq_queued(prev))
3335 update_rq_clock(rq);
3336
3337 next = pick_next_task(rq, prev);
3338 clear_tsk_need_resched(prev);
3339 clear_preempt_need_resched();
3340 rq->clock_skip_update = 0;
3341
3342 if (likely(prev != next)) {
3343 rq->nr_switches++;
3344 rq->curr = next;
3345 ++*switch_count;
3346
3347 trace_sched_switch(preempt, prev, next);
3348 rq = context_switch(rq, prev, next); /* unlocks the rq */
3349 cpu = cpu_of(rq);
3350 } else {
3351 lockdep_unpin_lock(&rq->lock);
3352 raw_spin_unlock_irq(&rq->lock);
3353 }
3354
3355 balance_callback(rq);
3356 }
3357
3358 static inline void sched_submit_work(struct task_struct *tsk)
3359 {
3360 if (!tsk->state || tsk_is_pi_blocked(tsk))
3361 return;
3362 /*
3363 * If we are going to sleep and we have plugged IO queued,
3364 * make sure to submit it to avoid deadlocks.
3365 */
3366 if (blk_needs_flush_plug(tsk))
3367 blk_schedule_flush_plug(tsk);
3368 }
3369
3370 asmlinkage __visible void __sched schedule(void)
3371 {
3372 struct task_struct *tsk = current;
3373
3374 sched_submit_work(tsk);
3375 do {
3376 preempt_disable();
3377 __schedule(false);
3378 sched_preempt_enable_no_resched();
3379 } while (need_resched());
3380 }
3381 EXPORT_SYMBOL(schedule);
3382
3383 #ifdef CONFIG_CONTEXT_TRACKING
3384 asmlinkage __visible void __sched schedule_user(void)
3385 {
3386 /*
3387 * If we come here after a random call to set_need_resched(),
3388 * or we have been woken up remotely but the IPI has not yet arrived,
3389 * we haven't yet exited the RCU idle mode. Do it here manually until
3390 * we find a better solution.
3391 *
3392 * NB: There are buggy callers of this function. Ideally we
3393 * should warn if prev_state != CONTEXT_USER, but that will trigger
3394 * too frequently to make sense yet.
3395 */
3396 enum ctx_state prev_state = exception_enter();
3397 schedule();
3398 exception_exit(prev_state);
3399 }
3400 #endif
3401
3402 /**
3403 * schedule_preempt_disabled - called with preemption disabled
3404 *
3405 * Returns with preemption disabled. Note: preempt_count must be 1
3406 */
3407 void __sched schedule_preempt_disabled(void)
3408 {
3409 sched_preempt_enable_no_resched();
3410 schedule();
3411 preempt_disable();
3412 }
3413
3414 static void __sched notrace preempt_schedule_common(void)
3415 {
3416 do {
3417 preempt_disable_notrace();
3418 __schedule(true);
3419 preempt_enable_no_resched_notrace();
3420
3421 /*
3422 * Check again in case we missed a preemption opportunity
3423 * between schedule and now.
3424 */
3425 } while (need_resched());
3426 }
3427
3428 #ifdef CONFIG_PREEMPT
3429 /*
3430 * this is the entry point to schedule() from in-kernel preemption
3431 * off of preempt_enable. Kernel preemptions off return from interrupt
3432 * occur there and call schedule directly.
3433 */
3434 asmlinkage __visible void __sched notrace preempt_schedule(void)
3435 {
3436 /*
3437 * If there is a non-zero preempt_count or interrupts are disabled,
3438 * we do not want to preempt the current task. Just return..
3439 */
3440 if (likely(!preemptible()))
3441 return;
3442
3443 preempt_schedule_common();
3444 }
3445 NOKPROBE_SYMBOL(preempt_schedule);
3446 EXPORT_SYMBOL(preempt_schedule);
3447
3448 /**
3449 * preempt_schedule_notrace - preempt_schedule called by tracing
3450 *
3451 * The tracing infrastructure uses preempt_enable_notrace to prevent
3452 * recursion and tracing preempt enabling caused by the tracing
3453 * infrastructure itself. But as tracing can happen in areas coming
3454 * from userspace or just about to enter userspace, a preempt enable
3455 * can occur before user_exit() is called. This will cause the scheduler
3456 * to be called when the system is still in usermode.
3457 *
3458 * To prevent this, the preempt_enable_notrace will use this function
3459 * instead of preempt_schedule() to exit user context if needed before
3460 * calling the scheduler.
3461 */
3462 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3463 {
3464 enum ctx_state prev_ctx;
3465
3466 if (likely(!preemptible()))
3467 return;
3468
3469 do {
3470 preempt_disable_notrace();
3471 /*
3472 * Needs preempt disabled in case user_exit() is traced
3473 * and the tracer calls preempt_enable_notrace() causing
3474 * an infinite recursion.
3475 */
3476 prev_ctx = exception_enter();
3477 __schedule(true);
3478 exception_exit(prev_ctx);
3479
3480 preempt_enable_no_resched_notrace();
3481 } while (need_resched());
3482 }
3483 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3484
3485 #endif /* CONFIG_PREEMPT */
3486
3487 /*
3488 * this is the entry point to schedule() from kernel preemption
3489 * off of irq context.
3490 * Note, that this is called and return with irqs disabled. This will
3491 * protect us against recursive calling from irq.
3492 */
3493 asmlinkage __visible void __sched preempt_schedule_irq(void)
3494 {
3495 enum ctx_state prev_state;
3496
3497 /* Catch callers which need to be fixed */
3498 BUG_ON(preempt_count() || !irqs_disabled());
3499
3500 prev_state = exception_enter();
3501
3502 do {
3503 preempt_disable();
3504 local_irq_enable();
3505 __schedule(true);
3506 local_irq_disable();
3507 sched_preempt_enable_no_resched();
3508 } while (need_resched());
3509
3510 exception_exit(prev_state);
3511 }
3512
3513 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3514 void *key)
3515 {
3516 return try_to_wake_up(curr->private, mode, wake_flags);
3517 }
3518 EXPORT_SYMBOL(default_wake_function);
3519
3520 #ifdef CONFIG_RT_MUTEXES
3521
3522 /*
3523 * rt_mutex_setprio - set the current priority of a task
3524 * @p: task
3525 * @prio: prio value (kernel-internal form)
3526 *
3527 * This function changes the 'effective' priority of a task. It does
3528 * not touch ->normal_prio like __setscheduler().
3529 *
3530 * Used by the rt_mutex code to implement priority inheritance
3531 * logic. Call site only calls if the priority of the task changed.
3532 */
3533 void rt_mutex_setprio(struct task_struct *p, int prio)
3534 {
3535 int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3536 struct rq *rq;
3537 const struct sched_class *prev_class;
3538
3539 BUG_ON(prio > MAX_PRIO);
3540
3541 rq = __task_rq_lock(p);
3542
3543 /*
3544 * Idle task boosting is a nono in general. There is one
3545 * exception, when PREEMPT_RT and NOHZ is active:
3546 *
3547 * The idle task calls get_next_timer_interrupt() and holds
3548 * the timer wheel base->lock on the CPU and another CPU wants
3549 * to access the timer (probably to cancel it). We can safely
3550 * ignore the boosting request, as the idle CPU runs this code
3551 * with interrupts disabled and will complete the lock
3552 * protected section without being interrupted. So there is no
3553 * real need to boost.
3554 */
3555 if (unlikely(p == rq->idle)) {
3556 WARN_ON(p != rq->curr);
3557 WARN_ON(p->pi_blocked_on);
3558 goto out_unlock;
3559 }
3560
3561 trace_sched_pi_setprio(p, prio);
3562 oldprio = p->prio;
3563 prev_class = p->sched_class;
3564 queued = task_on_rq_queued(p);
3565 running = task_current(rq, p);
3566 if (queued)
3567 dequeue_task(rq, p, DEQUEUE_SAVE);
3568 if (running)
3569 put_prev_task(rq, p);
3570
3571 /*
3572 * Boosting condition are:
3573 * 1. -rt task is running and holds mutex A
3574 * --> -dl task blocks on mutex A
3575 *
3576 * 2. -dl task is running and holds mutex A
3577 * --> -dl task blocks on mutex A and could preempt the
3578 * running task
3579 */
3580 if (dl_prio(prio)) {
3581 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3582 if (!dl_prio(p->normal_prio) ||
3583 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3584 p->dl.dl_boosted = 1;
3585 enqueue_flag |= ENQUEUE_REPLENISH;
3586 } else
3587 p->dl.dl_boosted = 0;
3588 p->sched_class = &dl_sched_class;
3589 } else if (rt_prio(prio)) {
3590 if (dl_prio(oldprio))
3591 p->dl.dl_boosted = 0;
3592 if (oldprio < prio)
3593 enqueue_flag |= ENQUEUE_HEAD;
3594 p->sched_class = &rt_sched_class;
3595 } else {
3596 if (dl_prio(oldprio))
3597 p->dl.dl_boosted = 0;
3598 if (rt_prio(oldprio))
3599 p->rt.timeout = 0;
3600 p->sched_class = &fair_sched_class;
3601 }
3602
3603 p->prio = prio;
3604
3605 if (running)
3606 p->sched_class->set_curr_task(rq);
3607 if (queued)
3608 enqueue_task(rq, p, enqueue_flag);
3609
3610 check_class_changed(rq, p, prev_class, oldprio);
3611 out_unlock:
3612 preempt_disable(); /* avoid rq from going away on us */
3613 __task_rq_unlock(rq);
3614
3615 balance_callback(rq);
3616 preempt_enable();
3617 }
3618 #endif
3619
3620 void set_user_nice(struct task_struct *p, long nice)
3621 {
3622 int old_prio, delta, queued;
3623 unsigned long flags;
3624 struct rq *rq;
3625
3626 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3627 return;
3628 /*
3629 * We have to be careful, if called from sys_setpriority(),
3630 * the task might be in the middle of scheduling on another CPU.
3631 */
3632 rq = task_rq_lock(p, &flags);
3633 /*
3634 * The RT priorities are set via sched_setscheduler(), but we still
3635 * allow the 'normal' nice value to be set - but as expected
3636 * it wont have any effect on scheduling until the task is
3637 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3638 */
3639 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3640 p->static_prio = NICE_TO_PRIO(nice);
3641 goto out_unlock;
3642 }
3643 queued = task_on_rq_queued(p);
3644 if (queued)
3645 dequeue_task(rq, p, DEQUEUE_SAVE);
3646
3647 p->static_prio = NICE_TO_PRIO(nice);
3648 set_load_weight(p);
3649 old_prio = p->prio;
3650 p->prio = effective_prio(p);
3651 delta = p->prio - old_prio;
3652
3653 if (queued) {
3654 enqueue_task(rq, p, ENQUEUE_RESTORE);
3655 /*
3656 * If the task increased its priority or is running and
3657 * lowered its priority, then reschedule its CPU:
3658 */
3659 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3660 resched_curr(rq);
3661 }
3662 out_unlock:
3663 task_rq_unlock(rq, p, &flags);
3664 }
3665 EXPORT_SYMBOL(set_user_nice);
3666
3667 /*
3668 * can_nice - check if a task can reduce its nice value
3669 * @p: task
3670 * @nice: nice value
3671 */
3672 int can_nice(const struct task_struct *p, const int nice)
3673 {
3674 /* convert nice value [19,-20] to rlimit style value [1,40] */
3675 int nice_rlim = nice_to_rlimit(nice);
3676
3677 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3678 capable(CAP_SYS_NICE));
3679 }
3680
3681 #ifdef __ARCH_WANT_SYS_NICE
3682
3683 /*
3684 * sys_nice - change the priority of the current process.
3685 * @increment: priority increment
3686 *
3687 * sys_setpriority is a more generic, but much slower function that
3688 * does similar things.
3689 */
3690 SYSCALL_DEFINE1(nice, int, increment)
3691 {
3692 long nice, retval;
3693
3694 /*
3695 * Setpriority might change our priority at the same moment.
3696 * We don't have to worry. Conceptually one call occurs first
3697 * and we have a single winner.
3698 */
3699 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3700 nice = task_nice(current) + increment;
3701
3702 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3703 if (increment < 0 && !can_nice(current, nice))
3704 return -EPERM;
3705
3706 retval = security_task_setnice(current, nice);
3707 if (retval)
3708 return retval;
3709
3710 set_user_nice(current, nice);
3711 return 0;
3712 }
3713
3714 #endif
3715
3716 /**
3717 * task_prio - return the priority value of a given task.
3718 * @p: the task in question.
3719 *
3720 * Return: The priority value as seen by users in /proc.
3721 * RT tasks are offset by -200. Normal tasks are centered
3722 * around 0, value goes from -16 to +15.
3723 */
3724 int task_prio(const struct task_struct *p)
3725 {
3726 return p->prio - MAX_RT_PRIO;
3727 }
3728
3729 /**
3730 * idle_cpu - is a given cpu idle currently?
3731 * @cpu: the processor in question.
3732 *
3733 * Return: 1 if the CPU is currently idle. 0 otherwise.
3734 */
3735 int idle_cpu(int cpu)
3736 {
3737 struct rq *rq = cpu_rq(cpu);
3738
3739 if (rq->curr != rq->idle)
3740 return 0;
3741
3742 if (rq->nr_running)
3743 return 0;
3744
3745 #ifdef CONFIG_SMP
3746 if (!llist_empty(&rq->wake_list))
3747 return 0;
3748 #endif
3749
3750 return 1;
3751 }
3752
3753 /**
3754 * idle_task - return the idle task for a given cpu.
3755 * @cpu: the processor in question.
3756 *
3757 * Return: The idle task for the cpu @cpu.
3758 */
3759 struct task_struct *idle_task(int cpu)
3760 {
3761 return cpu_rq(cpu)->idle;
3762 }
3763
3764 /**
3765 * find_process_by_pid - find a process with a matching PID value.
3766 * @pid: the pid in question.
3767 *
3768 * The task of @pid, if found. %NULL otherwise.
3769 */
3770 static struct task_struct *find_process_by_pid(pid_t pid)
3771 {
3772 return pid ? find_task_by_vpid(pid) : current;
3773 }
3774
3775 /*
3776 * This function initializes the sched_dl_entity of a newly becoming
3777 * SCHED_DEADLINE task.
3778 *
3779 * Only the static values are considered here, the actual runtime and the
3780 * absolute deadline will be properly calculated when the task is enqueued
3781 * for the first time with its new policy.
3782 */
3783 static void
3784 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3785 {
3786 struct sched_dl_entity *dl_se = &p->dl;
3787
3788 dl_se->dl_runtime = attr->sched_runtime;
3789 dl_se->dl_deadline = attr->sched_deadline;
3790 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3791 dl_se->flags = attr->sched_flags;
3792 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3793
3794 /*
3795 * Changing the parameters of a task is 'tricky' and we're not doing
3796 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3797 *
3798 * What we SHOULD do is delay the bandwidth release until the 0-lag
3799 * point. This would include retaining the task_struct until that time
3800 * and change dl_overflow() to not immediately decrement the current
3801 * amount.
3802 *
3803 * Instead we retain the current runtime/deadline and let the new
3804 * parameters take effect after the current reservation period lapses.
3805 * This is safe (albeit pessimistic) because the 0-lag point is always
3806 * before the current scheduling deadline.
3807 *
3808 * We can still have temporary overloads because we do not delay the
3809 * change in bandwidth until that time; so admission control is
3810 * not on the safe side. It does however guarantee tasks will never
3811 * consume more than promised.
3812 */
3813 }
3814
3815 /*
3816 * sched_setparam() passes in -1 for its policy, to let the functions
3817 * it calls know not to change it.
3818 */
3819 #define SETPARAM_POLICY -1
3820
3821 static void __setscheduler_params(struct task_struct *p,
3822 const struct sched_attr *attr)
3823 {
3824 int policy = attr->sched_policy;
3825
3826 if (policy == SETPARAM_POLICY)
3827 policy = p->policy;
3828
3829 p->policy = policy;
3830
3831 if (dl_policy(policy))
3832 __setparam_dl(p, attr);
3833 else if (fair_policy(policy))
3834 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3835
3836 /*
3837 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3838 * !rt_policy. Always setting this ensures that things like
3839 * getparam()/getattr() don't report silly values for !rt tasks.
3840 */
3841 p->rt_priority = attr->sched_priority;
3842 p->normal_prio = normal_prio(p);
3843 set_load_weight(p);
3844 }
3845
3846 /* Actually do priority change: must hold pi & rq lock. */
3847 static void __setscheduler(struct rq *rq, struct task_struct *p,
3848 const struct sched_attr *attr, bool keep_boost)
3849 {
3850 __setscheduler_params(p, attr);
3851
3852 /*
3853 * Keep a potential priority boosting if called from
3854 * sched_setscheduler().
3855 */
3856 if (keep_boost)
3857 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3858 else
3859 p->prio = normal_prio(p);
3860
3861 if (dl_prio(p->prio))
3862 p->sched_class = &dl_sched_class;
3863 else if (rt_prio(p->prio))
3864 p->sched_class = &rt_sched_class;
3865 else
3866 p->sched_class = &fair_sched_class;
3867 }
3868
3869 static void
3870 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3871 {
3872 struct sched_dl_entity *dl_se = &p->dl;
3873
3874 attr->sched_priority = p->rt_priority;
3875 attr->sched_runtime = dl_se->dl_runtime;
3876 attr->sched_deadline = dl_se->dl_deadline;
3877 attr->sched_period = dl_se->dl_period;
3878 attr->sched_flags = dl_se->flags;
3879 }
3880
3881 /*
3882 * This function validates the new parameters of a -deadline task.
3883 * We ask for the deadline not being zero, and greater or equal
3884 * than the runtime, as well as the period of being zero or
3885 * greater than deadline. Furthermore, we have to be sure that
3886 * user parameters are above the internal resolution of 1us (we
3887 * check sched_runtime only since it is always the smaller one) and
3888 * below 2^63 ns (we have to check both sched_deadline and
3889 * sched_period, as the latter can be zero).
3890 */
3891 static bool
3892 __checkparam_dl(const struct sched_attr *attr)
3893 {
3894 /* deadline != 0 */
3895 if (attr->sched_deadline == 0)
3896 return false;
3897
3898 /*
3899 * Since we truncate DL_SCALE bits, make sure we're at least
3900 * that big.
3901 */
3902 if (attr->sched_runtime < (1ULL << DL_SCALE))
3903 return false;
3904
3905 /*
3906 * Since we use the MSB for wrap-around and sign issues, make
3907 * sure it's not set (mind that period can be equal to zero).
3908 */
3909 if (attr->sched_deadline & (1ULL << 63) ||
3910 attr->sched_period & (1ULL << 63))
3911 return false;
3912
3913 /* runtime <= deadline <= period (if period != 0) */
3914 if ((attr->sched_period != 0 &&
3915 attr->sched_period < attr->sched_deadline) ||
3916 attr->sched_deadline < attr->sched_runtime)
3917 return false;
3918
3919 return true;
3920 }
3921
3922 /*
3923 * check the target process has a UID that matches the current process's
3924 */
3925 static bool check_same_owner(struct task_struct *p)
3926 {
3927 const struct cred *cred = current_cred(), *pcred;
3928 bool match;
3929
3930 rcu_read_lock();
3931 pcred = __task_cred(p);
3932 match = (uid_eq(cred->euid, pcred->euid) ||
3933 uid_eq(cred->euid, pcred->uid));
3934 rcu_read_unlock();
3935 return match;
3936 }
3937
3938 static bool dl_param_changed(struct task_struct *p,
3939 const struct sched_attr *attr)
3940 {
3941 struct sched_dl_entity *dl_se = &p->dl;
3942
3943 if (dl_se->dl_runtime != attr->sched_runtime ||
3944 dl_se->dl_deadline != attr->sched_deadline ||
3945 dl_se->dl_period != attr->sched_period ||
3946 dl_se->flags != attr->sched_flags)
3947 return true;
3948
3949 return false;
3950 }
3951
3952 static int __sched_setscheduler(struct task_struct *p,
3953 const struct sched_attr *attr,
3954 bool user, bool pi)
3955 {
3956 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3957 MAX_RT_PRIO - 1 - attr->sched_priority;
3958 int retval, oldprio, oldpolicy = -1, queued, running;
3959 int new_effective_prio, policy = attr->sched_policy;
3960 unsigned long flags;
3961 const struct sched_class *prev_class;
3962 struct rq *rq;
3963 int reset_on_fork;
3964
3965 /* may grab non-irq protected spin_locks */
3966 BUG_ON(in_interrupt());
3967 recheck:
3968 /* double check policy once rq lock held */
3969 if (policy < 0) {
3970 reset_on_fork = p->sched_reset_on_fork;
3971 policy = oldpolicy = p->policy;
3972 } else {
3973 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3974
3975 if (!valid_policy(policy))
3976 return -EINVAL;
3977 }
3978
3979 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3980 return -EINVAL;
3981
3982 /*
3983 * Valid priorities for SCHED_FIFO and SCHED_RR are
3984 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3985 * SCHED_BATCH and SCHED_IDLE is 0.
3986 */
3987 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3988 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3989 return -EINVAL;
3990 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3991 (rt_policy(policy) != (attr->sched_priority != 0)))
3992 return -EINVAL;
3993
3994 /*
3995 * Allow unprivileged RT tasks to decrease priority:
3996 */
3997 if (user && !capable(CAP_SYS_NICE)) {
3998 if (fair_policy(policy)) {
3999 if (attr->sched_nice < task_nice(p) &&
4000 !can_nice(p, attr->sched_nice))
4001 return -EPERM;
4002 }
4003
4004 if (rt_policy(policy)) {
4005 unsigned long rlim_rtprio =
4006 task_rlimit(p, RLIMIT_RTPRIO);
4007
4008 /* can't set/change the rt policy */
4009 if (policy != p->policy && !rlim_rtprio)
4010 return -EPERM;
4011
4012 /* can't increase priority */
4013 if (attr->sched_priority > p->rt_priority &&
4014 attr->sched_priority > rlim_rtprio)
4015 return -EPERM;
4016 }
4017
4018 /*
4019 * Can't set/change SCHED_DEADLINE policy at all for now
4020 * (safest behavior); in the future we would like to allow
4021 * unprivileged DL tasks to increase their relative deadline
4022 * or reduce their runtime (both ways reducing utilization)
4023 */
4024 if (dl_policy(policy))
4025 return -EPERM;
4026
4027 /*
4028 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4029 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4030 */
4031 if (idle_policy(p->policy) && !idle_policy(policy)) {
4032 if (!can_nice(p, task_nice(p)))
4033 return -EPERM;
4034 }
4035
4036 /* can't change other user's priorities */
4037 if (!check_same_owner(p))
4038 return -EPERM;
4039
4040 /* Normal users shall not reset the sched_reset_on_fork flag */
4041 if (p->sched_reset_on_fork && !reset_on_fork)
4042 return -EPERM;
4043 }
4044
4045 if (user) {
4046 retval = security_task_setscheduler(p);
4047 if (retval)
4048 return retval;
4049 }
4050
4051 /*
4052 * make sure no PI-waiters arrive (or leave) while we are
4053 * changing the priority of the task:
4054 *
4055 * To be able to change p->policy safely, the appropriate
4056 * runqueue lock must be held.
4057 */
4058 rq = task_rq_lock(p, &flags);
4059
4060 /*
4061 * Changing the policy of the stop threads its a very bad idea
4062 */
4063 if (p == rq->stop) {
4064 task_rq_unlock(rq, p, &flags);
4065 return -EINVAL;
4066 }
4067
4068 /*
4069 * If not changing anything there's no need to proceed further,
4070 * but store a possible modification of reset_on_fork.
4071 */
4072 if (unlikely(policy == p->policy)) {
4073 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4074 goto change;
4075 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4076 goto change;
4077 if (dl_policy(policy) && dl_param_changed(p, attr))
4078 goto change;
4079
4080 p->sched_reset_on_fork = reset_on_fork;
4081 task_rq_unlock(rq, p, &flags);
4082 return 0;
4083 }
4084 change:
4085
4086 if (user) {
4087 #ifdef CONFIG_RT_GROUP_SCHED
4088 /*
4089 * Do not allow realtime tasks into groups that have no runtime
4090 * assigned.
4091 */
4092 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4093 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4094 !task_group_is_autogroup(task_group(p))) {
4095 task_rq_unlock(rq, p, &flags);
4096 return -EPERM;
4097 }
4098 #endif
4099 #ifdef CONFIG_SMP
4100 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4101 cpumask_t *span = rq->rd->span;
4102
4103 /*
4104 * Don't allow tasks with an affinity mask smaller than
4105 * the entire root_domain to become SCHED_DEADLINE. We
4106 * will also fail if there's no bandwidth available.
4107 */
4108 if (!cpumask_subset(span, &p->cpus_allowed) ||
4109 rq->rd->dl_bw.bw == 0) {
4110 task_rq_unlock(rq, p, &flags);
4111 return -EPERM;
4112 }
4113 }
4114 #endif
4115 }
4116
4117 /* recheck policy now with rq lock held */
4118 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4119 policy = oldpolicy = -1;
4120 task_rq_unlock(rq, p, &flags);
4121 goto recheck;
4122 }
4123
4124 /*
4125 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4126 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4127 * is available.
4128 */
4129 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4130 task_rq_unlock(rq, p, &flags);
4131 return -EBUSY;
4132 }
4133
4134 p->sched_reset_on_fork = reset_on_fork;
4135 oldprio = p->prio;
4136
4137 if (pi) {
4138 /*
4139 * Take priority boosted tasks into account. If the new
4140 * effective priority is unchanged, we just store the new
4141 * normal parameters and do not touch the scheduler class and
4142 * the runqueue. This will be done when the task deboost
4143 * itself.
4144 */
4145 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4146 if (new_effective_prio == oldprio) {
4147 __setscheduler_params(p, attr);
4148 task_rq_unlock(rq, p, &flags);
4149 return 0;
4150 }
4151 }
4152
4153 queued = task_on_rq_queued(p);
4154 running = task_current(rq, p);
4155 if (queued)
4156 dequeue_task(rq, p, DEQUEUE_SAVE);
4157 if (running)
4158 put_prev_task(rq, p);
4159
4160 prev_class = p->sched_class;
4161 __setscheduler(rq, p, attr, pi);
4162
4163 if (running)
4164 p->sched_class->set_curr_task(rq);
4165 if (queued) {
4166 int enqueue_flags = ENQUEUE_RESTORE;
4167 /*
4168 * We enqueue to tail when the priority of a task is
4169 * increased (user space view).
4170 */
4171 if (oldprio <= p->prio)
4172 enqueue_flags |= ENQUEUE_HEAD;
4173
4174 enqueue_task(rq, p, enqueue_flags);
4175 }
4176
4177 check_class_changed(rq, p, prev_class, oldprio);
4178 preempt_disable(); /* avoid rq from going away on us */
4179 task_rq_unlock(rq, p, &flags);
4180
4181 if (pi)
4182 rt_mutex_adjust_pi(p);
4183
4184 /*
4185 * Run balance callbacks after we've adjusted the PI chain.
4186 */
4187 balance_callback(rq);
4188 preempt_enable();
4189
4190 return 0;
4191 }
4192
4193 static int _sched_setscheduler(struct task_struct *p, int policy,
4194 const struct sched_param *param, bool check)
4195 {
4196 struct sched_attr attr = {
4197 .sched_policy = policy,
4198 .sched_priority = param->sched_priority,
4199 .sched_nice = PRIO_TO_NICE(p->static_prio),
4200 };
4201
4202 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4203 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4204 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4205 policy &= ~SCHED_RESET_ON_FORK;
4206 attr.sched_policy = policy;
4207 }
4208
4209 return __sched_setscheduler(p, &attr, check, true);
4210 }
4211 /**
4212 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4213 * @p: the task in question.
4214 * @policy: new policy.
4215 * @param: structure containing the new RT priority.
4216 *
4217 * Return: 0 on success. An error code otherwise.
4218 *
4219 * NOTE that the task may be already dead.
4220 */
4221 int sched_setscheduler(struct task_struct *p, int policy,
4222 const struct sched_param *param)
4223 {
4224 return _sched_setscheduler(p, policy, param, true);
4225 }
4226 EXPORT_SYMBOL_GPL(sched_setscheduler);
4227
4228 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4229 {
4230 return __sched_setscheduler(p, attr, true, true);
4231 }
4232 EXPORT_SYMBOL_GPL(sched_setattr);
4233
4234 /**
4235 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4236 * @p: the task in question.
4237 * @policy: new policy.
4238 * @param: structure containing the new RT priority.
4239 *
4240 * Just like sched_setscheduler, only don't bother checking if the
4241 * current context has permission. For example, this is needed in
4242 * stop_machine(): we create temporary high priority worker threads,
4243 * but our caller might not have that capability.
4244 *
4245 * Return: 0 on success. An error code otherwise.
4246 */
4247 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4248 const struct sched_param *param)
4249 {
4250 return _sched_setscheduler(p, policy, param, false);
4251 }
4252 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4253
4254 static int
4255 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4256 {
4257 struct sched_param lparam;
4258 struct task_struct *p;
4259 int retval;
4260
4261 if (!param || pid < 0)
4262 return -EINVAL;
4263 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4264 return -EFAULT;
4265
4266 rcu_read_lock();
4267 retval = -ESRCH;
4268 p = find_process_by_pid(pid);
4269 if (p != NULL)
4270 retval = sched_setscheduler(p, policy, &lparam);
4271 rcu_read_unlock();
4272
4273 return retval;
4274 }
4275
4276 /*
4277 * Mimics kernel/events/core.c perf_copy_attr().
4278 */
4279 static int sched_copy_attr(struct sched_attr __user *uattr,
4280 struct sched_attr *attr)
4281 {
4282 u32 size;
4283 int ret;
4284
4285 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4286 return -EFAULT;
4287
4288 /*
4289 * zero the full structure, so that a short copy will be nice.
4290 */
4291 memset(attr, 0, sizeof(*attr));
4292
4293 ret = get_user(size, &uattr->size);
4294 if (ret)
4295 return ret;
4296
4297 if (size > PAGE_SIZE) /* silly large */
4298 goto err_size;
4299
4300 if (!size) /* abi compat */
4301 size = SCHED_ATTR_SIZE_VER0;
4302
4303 if (size < SCHED_ATTR_SIZE_VER0)
4304 goto err_size;
4305
4306 /*
4307 * If we're handed a bigger struct than we know of,
4308 * ensure all the unknown bits are 0 - i.e. new
4309 * user-space does not rely on any kernel feature
4310 * extensions we dont know about yet.
4311 */
4312 if (size > sizeof(*attr)) {
4313 unsigned char __user *addr;
4314 unsigned char __user *end;
4315 unsigned char val;
4316
4317 addr = (void __user *)uattr + sizeof(*attr);
4318 end = (void __user *)uattr + size;
4319
4320 for (; addr < end; addr++) {
4321 ret = get_user(val, addr);
4322 if (ret)
4323 return ret;
4324 if (val)
4325 goto err_size;
4326 }
4327 size = sizeof(*attr);
4328 }
4329
4330 ret = copy_from_user(attr, uattr, size);
4331 if (ret)
4332 return -EFAULT;
4333
4334 /*
4335 * XXX: do we want to be lenient like existing syscalls; or do we want
4336 * to be strict and return an error on out-of-bounds values?
4337 */
4338 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4339
4340 return 0;
4341
4342 err_size:
4343 put_user(sizeof(*attr), &uattr->size);
4344 return -E2BIG;
4345 }
4346
4347 /**
4348 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4349 * @pid: the pid in question.
4350 * @policy: new policy.
4351 * @param: structure containing the new RT priority.
4352 *
4353 * Return: 0 on success. An error code otherwise.
4354 */
4355 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4356 struct sched_param __user *, param)
4357 {
4358 /* negative values for policy are not valid */
4359 if (policy < 0)
4360 return -EINVAL;
4361
4362 return do_sched_setscheduler(pid, policy, param);
4363 }
4364
4365 /**
4366 * sys_sched_setparam - set/change the RT priority of a thread
4367 * @pid: the pid in question.
4368 * @param: structure containing the new RT priority.
4369 *
4370 * Return: 0 on success. An error code otherwise.
4371 */
4372 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4373 {
4374 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4375 }
4376
4377 /**
4378 * sys_sched_setattr - same as above, but with extended sched_attr
4379 * @pid: the pid in question.
4380 * @uattr: structure containing the extended parameters.
4381 * @flags: for future extension.
4382 */
4383 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4384 unsigned int, flags)
4385 {
4386 struct sched_attr attr;
4387 struct task_struct *p;
4388 int retval;
4389
4390 if (!uattr || pid < 0 || flags)
4391 return -EINVAL;
4392
4393 retval = sched_copy_attr(uattr, &attr);
4394 if (retval)
4395 return retval;
4396
4397 if ((int)attr.sched_policy < 0)
4398 return -EINVAL;
4399
4400 rcu_read_lock();
4401 retval = -ESRCH;
4402 p = find_process_by_pid(pid);
4403 if (p != NULL)
4404 retval = sched_setattr(p, &attr);
4405 rcu_read_unlock();
4406
4407 return retval;
4408 }
4409
4410 /**
4411 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4412 * @pid: the pid in question.
4413 *
4414 * Return: On success, the policy of the thread. Otherwise, a negative error
4415 * code.
4416 */
4417 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4418 {
4419 struct task_struct *p;
4420 int retval;
4421
4422 if (pid < 0)
4423 return -EINVAL;
4424
4425 retval = -ESRCH;
4426 rcu_read_lock();
4427 p = find_process_by_pid(pid);
4428 if (p) {
4429 retval = security_task_getscheduler(p);
4430 if (!retval)
4431 retval = p->policy
4432 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4433 }
4434 rcu_read_unlock();
4435 return retval;
4436 }
4437
4438 /**
4439 * sys_sched_getparam - get the RT priority of a thread
4440 * @pid: the pid in question.
4441 * @param: structure containing the RT priority.
4442 *
4443 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4444 * code.
4445 */
4446 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4447 {
4448 struct sched_param lp = { .sched_priority = 0 };
4449 struct task_struct *p;
4450 int retval;
4451
4452 if (!param || pid < 0)
4453 return -EINVAL;
4454
4455 rcu_read_lock();
4456 p = find_process_by_pid(pid);
4457 retval = -ESRCH;
4458 if (!p)
4459 goto out_unlock;
4460
4461 retval = security_task_getscheduler(p);
4462 if (retval)
4463 goto out_unlock;
4464
4465 if (task_has_rt_policy(p))
4466 lp.sched_priority = p->rt_priority;
4467 rcu_read_unlock();
4468
4469 /*
4470 * This one might sleep, we cannot do it with a spinlock held ...
4471 */
4472 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4473
4474 return retval;
4475
4476 out_unlock:
4477 rcu_read_unlock();
4478 return retval;
4479 }
4480
4481 static int sched_read_attr(struct sched_attr __user *uattr,
4482 struct sched_attr *attr,
4483 unsigned int usize)
4484 {
4485 int ret;
4486
4487 if (!access_ok(VERIFY_WRITE, uattr, usize))
4488 return -EFAULT;
4489
4490 /*
4491 * If we're handed a smaller struct than we know of,
4492 * ensure all the unknown bits are 0 - i.e. old
4493 * user-space does not get uncomplete information.
4494 */
4495 if (usize < sizeof(*attr)) {
4496 unsigned char *addr;
4497 unsigned char *end;
4498
4499 addr = (void *)attr + usize;
4500 end = (void *)attr + sizeof(*attr);
4501
4502 for (; addr < end; addr++) {
4503 if (*addr)
4504 return -EFBIG;
4505 }
4506
4507 attr->size = usize;
4508 }
4509
4510 ret = copy_to_user(uattr, attr, attr->size);
4511 if (ret)
4512 return -EFAULT;
4513
4514 return 0;
4515 }
4516
4517 /**
4518 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4519 * @pid: the pid in question.
4520 * @uattr: structure containing the extended parameters.
4521 * @size: sizeof(attr) for fwd/bwd comp.
4522 * @flags: for future extension.
4523 */
4524 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4525 unsigned int, size, unsigned int, flags)
4526 {
4527 struct sched_attr attr = {
4528 .size = sizeof(struct sched_attr),
4529 };
4530 struct task_struct *p;
4531 int retval;
4532
4533 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4534 size < SCHED_ATTR_SIZE_VER0 || flags)
4535 return -EINVAL;
4536
4537 rcu_read_lock();
4538 p = find_process_by_pid(pid);
4539 retval = -ESRCH;
4540 if (!p)
4541 goto out_unlock;
4542
4543 retval = security_task_getscheduler(p);
4544 if (retval)
4545 goto out_unlock;
4546
4547 attr.sched_policy = p->policy;
4548 if (p->sched_reset_on_fork)
4549 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4550 if (task_has_dl_policy(p))
4551 __getparam_dl(p, &attr);
4552 else if (task_has_rt_policy(p))
4553 attr.sched_priority = p->rt_priority;
4554 else
4555 attr.sched_nice = task_nice(p);
4556
4557 rcu_read_unlock();
4558
4559 retval = sched_read_attr(uattr, &attr, size);
4560 return retval;
4561
4562 out_unlock:
4563 rcu_read_unlock();
4564 return retval;
4565 }
4566
4567 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4568 {
4569 cpumask_var_t cpus_allowed, new_mask;
4570 struct task_struct *p;
4571 int retval;
4572
4573 rcu_read_lock();
4574
4575 p = find_process_by_pid(pid);
4576 if (!p) {
4577 rcu_read_unlock();
4578 return -ESRCH;
4579 }
4580
4581 /* Prevent p going away */
4582 get_task_struct(p);
4583 rcu_read_unlock();
4584
4585 if (p->flags & PF_NO_SETAFFINITY) {
4586 retval = -EINVAL;
4587 goto out_put_task;
4588 }
4589 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4590 retval = -ENOMEM;
4591 goto out_put_task;
4592 }
4593 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4594 retval = -ENOMEM;
4595 goto out_free_cpus_allowed;
4596 }
4597 retval = -EPERM;
4598 if (!check_same_owner(p)) {
4599 rcu_read_lock();
4600 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4601 rcu_read_unlock();
4602 goto out_free_new_mask;
4603 }
4604 rcu_read_unlock();
4605 }
4606
4607 retval = security_task_setscheduler(p);
4608 if (retval)
4609 goto out_free_new_mask;
4610
4611
4612 cpuset_cpus_allowed(p, cpus_allowed);
4613 cpumask_and(new_mask, in_mask, cpus_allowed);
4614
4615 /*
4616 * Since bandwidth control happens on root_domain basis,
4617 * if admission test is enabled, we only admit -deadline
4618 * tasks allowed to run on all the CPUs in the task's
4619 * root_domain.
4620 */
4621 #ifdef CONFIG_SMP
4622 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4623 rcu_read_lock();
4624 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4625 retval = -EBUSY;
4626 rcu_read_unlock();
4627 goto out_free_new_mask;
4628 }
4629 rcu_read_unlock();
4630 }
4631 #endif
4632 again:
4633 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4634
4635 if (!retval) {
4636 cpuset_cpus_allowed(p, cpus_allowed);
4637 if (!cpumask_subset(new_mask, cpus_allowed)) {
4638 /*
4639 * We must have raced with a concurrent cpuset
4640 * update. Just reset the cpus_allowed to the
4641 * cpuset's cpus_allowed
4642 */
4643 cpumask_copy(new_mask, cpus_allowed);
4644 goto again;
4645 }
4646 }
4647 out_free_new_mask:
4648 free_cpumask_var(new_mask);
4649 out_free_cpus_allowed:
4650 free_cpumask_var(cpus_allowed);
4651 out_put_task:
4652 put_task_struct(p);
4653 return retval;
4654 }
4655
4656 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4657 struct cpumask *new_mask)
4658 {
4659 if (len < cpumask_size())
4660 cpumask_clear(new_mask);
4661 else if (len > cpumask_size())
4662 len = cpumask_size();
4663
4664 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4665 }
4666
4667 /**
4668 * sys_sched_setaffinity - set the cpu affinity of a process
4669 * @pid: pid of the process
4670 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4671 * @user_mask_ptr: user-space pointer to the new cpu mask
4672 *
4673 * Return: 0 on success. An error code otherwise.
4674 */
4675 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4676 unsigned long __user *, user_mask_ptr)
4677 {
4678 cpumask_var_t new_mask;
4679 int retval;
4680
4681 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4682 return -ENOMEM;
4683
4684 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4685 if (retval == 0)
4686 retval = sched_setaffinity(pid, new_mask);
4687 free_cpumask_var(new_mask);
4688 return retval;
4689 }
4690
4691 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4692 {
4693 struct task_struct *p;
4694 unsigned long flags;
4695 int retval;
4696
4697 rcu_read_lock();
4698
4699 retval = -ESRCH;
4700 p = find_process_by_pid(pid);
4701 if (!p)
4702 goto out_unlock;
4703
4704 retval = security_task_getscheduler(p);
4705 if (retval)
4706 goto out_unlock;
4707
4708 raw_spin_lock_irqsave(&p->pi_lock, flags);
4709 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4710 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4711
4712 out_unlock:
4713 rcu_read_unlock();
4714
4715 return retval;
4716 }
4717
4718 /**
4719 * sys_sched_getaffinity - get the cpu affinity of a process
4720 * @pid: pid of the process
4721 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4722 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4723 *
4724 * Return: 0 on success. An error code otherwise.
4725 */
4726 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4727 unsigned long __user *, user_mask_ptr)
4728 {
4729 int ret;
4730 cpumask_var_t mask;
4731
4732 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4733 return -EINVAL;
4734 if (len & (sizeof(unsigned long)-1))
4735 return -EINVAL;
4736
4737 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4738 return -ENOMEM;
4739
4740 ret = sched_getaffinity(pid, mask);
4741 if (ret == 0) {
4742 size_t retlen = min_t(size_t, len, cpumask_size());
4743
4744 if (copy_to_user(user_mask_ptr, mask, retlen))
4745 ret = -EFAULT;
4746 else
4747 ret = retlen;
4748 }
4749 free_cpumask_var(mask);
4750
4751 return ret;
4752 }
4753
4754 /**
4755 * sys_sched_yield - yield the current processor to other threads.
4756 *
4757 * This function yields the current CPU to other tasks. If there are no
4758 * other threads running on this CPU then this function will return.
4759 *
4760 * Return: 0.
4761 */
4762 SYSCALL_DEFINE0(sched_yield)
4763 {
4764 struct rq *rq = this_rq_lock();
4765
4766 schedstat_inc(rq, yld_count);
4767 current->sched_class->yield_task(rq);
4768
4769 /*
4770 * Since we are going to call schedule() anyway, there's
4771 * no need to preempt or enable interrupts:
4772 */
4773 __release(rq->lock);
4774 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4775 do_raw_spin_unlock(&rq->lock);
4776 sched_preempt_enable_no_resched();
4777
4778 schedule();
4779
4780 return 0;
4781 }
4782
4783 int __sched _cond_resched(void)
4784 {
4785 if (should_resched(0)) {
4786 preempt_schedule_common();
4787 return 1;
4788 }
4789 return 0;
4790 }
4791 EXPORT_SYMBOL(_cond_resched);
4792
4793 /*
4794 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4795 * call schedule, and on return reacquire the lock.
4796 *
4797 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4798 * operations here to prevent schedule() from being called twice (once via
4799 * spin_unlock(), once by hand).
4800 */
4801 int __cond_resched_lock(spinlock_t *lock)
4802 {
4803 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4804 int ret = 0;
4805
4806 lockdep_assert_held(lock);
4807
4808 if (spin_needbreak(lock) || resched) {
4809 spin_unlock(lock);
4810 if (resched)
4811 preempt_schedule_common();
4812 else
4813 cpu_relax();
4814 ret = 1;
4815 spin_lock(lock);
4816 }
4817 return ret;
4818 }
4819 EXPORT_SYMBOL(__cond_resched_lock);
4820
4821 int __sched __cond_resched_softirq(void)
4822 {
4823 BUG_ON(!in_softirq());
4824
4825 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4826 local_bh_enable();
4827 preempt_schedule_common();
4828 local_bh_disable();
4829 return 1;
4830 }
4831 return 0;
4832 }
4833 EXPORT_SYMBOL(__cond_resched_softirq);
4834
4835 /**
4836 * yield - yield the current processor to other threads.
4837 *
4838 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4839 *
4840 * The scheduler is at all times free to pick the calling task as the most
4841 * eligible task to run, if removing the yield() call from your code breaks
4842 * it, its already broken.
4843 *
4844 * Typical broken usage is:
4845 *
4846 * while (!event)
4847 * yield();
4848 *
4849 * where one assumes that yield() will let 'the other' process run that will
4850 * make event true. If the current task is a SCHED_FIFO task that will never
4851 * happen. Never use yield() as a progress guarantee!!
4852 *
4853 * If you want to use yield() to wait for something, use wait_event().
4854 * If you want to use yield() to be 'nice' for others, use cond_resched().
4855 * If you still want to use yield(), do not!
4856 */
4857 void __sched yield(void)
4858 {
4859 set_current_state(TASK_RUNNING);
4860 sys_sched_yield();
4861 }
4862 EXPORT_SYMBOL(yield);
4863
4864 /**
4865 * yield_to - yield the current processor to another thread in
4866 * your thread group, or accelerate that thread toward the
4867 * processor it's on.
4868 * @p: target task
4869 * @preempt: whether task preemption is allowed or not
4870 *
4871 * It's the caller's job to ensure that the target task struct
4872 * can't go away on us before we can do any checks.
4873 *
4874 * Return:
4875 * true (>0) if we indeed boosted the target task.
4876 * false (0) if we failed to boost the target.
4877 * -ESRCH if there's no task to yield to.
4878 */
4879 int __sched yield_to(struct task_struct *p, bool preempt)
4880 {
4881 struct task_struct *curr = current;
4882 struct rq *rq, *p_rq;
4883 unsigned long flags;
4884 int yielded = 0;
4885
4886 local_irq_save(flags);
4887 rq = this_rq();
4888
4889 again:
4890 p_rq = task_rq(p);
4891 /*
4892 * If we're the only runnable task on the rq and target rq also
4893 * has only one task, there's absolutely no point in yielding.
4894 */
4895 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4896 yielded = -ESRCH;
4897 goto out_irq;
4898 }
4899
4900 double_rq_lock(rq, p_rq);
4901 if (task_rq(p) != p_rq) {
4902 double_rq_unlock(rq, p_rq);
4903 goto again;
4904 }
4905
4906 if (!curr->sched_class->yield_to_task)
4907 goto out_unlock;
4908
4909 if (curr->sched_class != p->sched_class)
4910 goto out_unlock;
4911
4912 if (task_running(p_rq, p) || p->state)
4913 goto out_unlock;
4914
4915 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4916 if (yielded) {
4917 schedstat_inc(rq, yld_count);
4918 /*
4919 * Make p's CPU reschedule; pick_next_entity takes care of
4920 * fairness.
4921 */
4922 if (preempt && rq != p_rq)
4923 resched_curr(p_rq);
4924 }
4925
4926 out_unlock:
4927 double_rq_unlock(rq, p_rq);
4928 out_irq:
4929 local_irq_restore(flags);
4930
4931 if (yielded > 0)
4932 schedule();
4933
4934 return yielded;
4935 }
4936 EXPORT_SYMBOL_GPL(yield_to);
4937
4938 /*
4939 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4940 * that process accounting knows that this is a task in IO wait state.
4941 */
4942 long __sched io_schedule_timeout(long timeout)
4943 {
4944 int old_iowait = current->in_iowait;
4945 struct rq *rq;
4946 long ret;
4947
4948 current->in_iowait = 1;
4949 blk_schedule_flush_plug(current);
4950
4951 delayacct_blkio_start();
4952 rq = raw_rq();
4953 atomic_inc(&rq->nr_iowait);
4954 ret = schedule_timeout(timeout);
4955 current->in_iowait = old_iowait;
4956 atomic_dec(&rq->nr_iowait);
4957 delayacct_blkio_end();
4958
4959 return ret;
4960 }
4961 EXPORT_SYMBOL(io_schedule_timeout);
4962
4963 /**
4964 * sys_sched_get_priority_max - return maximum RT priority.
4965 * @policy: scheduling class.
4966 *
4967 * Return: On success, this syscall returns the maximum
4968 * rt_priority that can be used by a given scheduling class.
4969 * On failure, a negative error code is returned.
4970 */
4971 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4972 {
4973 int ret = -EINVAL;
4974
4975 switch (policy) {
4976 case SCHED_FIFO:
4977 case SCHED_RR:
4978 ret = MAX_USER_RT_PRIO-1;
4979 break;
4980 case SCHED_DEADLINE:
4981 case SCHED_NORMAL:
4982 case SCHED_BATCH:
4983 case SCHED_IDLE:
4984 ret = 0;
4985 break;
4986 }
4987 return ret;
4988 }
4989
4990 /**
4991 * sys_sched_get_priority_min - return minimum RT priority.
4992 * @policy: scheduling class.
4993 *
4994 * Return: On success, this syscall returns the minimum
4995 * rt_priority that can be used by a given scheduling class.
4996 * On failure, a negative error code is returned.
4997 */
4998 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4999 {
5000 int ret = -EINVAL;
5001
5002 switch (policy) {
5003 case SCHED_FIFO:
5004 case SCHED_RR:
5005 ret = 1;
5006 break;
5007 case SCHED_DEADLINE:
5008 case SCHED_NORMAL:
5009 case SCHED_BATCH:
5010 case SCHED_IDLE:
5011 ret = 0;
5012 }
5013 return ret;
5014 }
5015
5016 /**
5017 * sys_sched_rr_get_interval - return the default timeslice of a process.
5018 * @pid: pid of the process.
5019 * @interval: userspace pointer to the timeslice value.
5020 *
5021 * this syscall writes the default timeslice value of a given process
5022 * into the user-space timespec buffer. A value of '0' means infinity.
5023 *
5024 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5025 * an error code.
5026 */
5027 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5028 struct timespec __user *, interval)
5029 {
5030 struct task_struct *p;
5031 unsigned int time_slice;
5032 unsigned long flags;
5033 struct rq *rq;
5034 int retval;
5035 struct timespec t;
5036
5037 if (pid < 0)
5038 return -EINVAL;
5039
5040 retval = -ESRCH;
5041 rcu_read_lock();
5042 p = find_process_by_pid(pid);
5043 if (!p)
5044 goto out_unlock;
5045
5046 retval = security_task_getscheduler(p);
5047 if (retval)
5048 goto out_unlock;
5049
5050 rq = task_rq_lock(p, &flags);
5051 time_slice = 0;
5052 if (p->sched_class->get_rr_interval)
5053 time_slice = p->sched_class->get_rr_interval(rq, p);
5054 task_rq_unlock(rq, p, &flags);
5055
5056 rcu_read_unlock();
5057 jiffies_to_timespec(time_slice, &t);
5058 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5059 return retval;
5060
5061 out_unlock:
5062 rcu_read_unlock();
5063 return retval;
5064 }
5065
5066 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5067
5068 void sched_show_task(struct task_struct *p)
5069 {
5070 unsigned long free = 0;
5071 int ppid;
5072 unsigned long state = p->state;
5073
5074 if (state)
5075 state = __ffs(state) + 1;
5076 printk(KERN_INFO "%-15.15s %c", p->comm,
5077 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5078 #if BITS_PER_LONG == 32
5079 if (state == TASK_RUNNING)
5080 printk(KERN_CONT " running ");
5081 else
5082 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5083 #else
5084 if (state == TASK_RUNNING)
5085 printk(KERN_CONT " running task ");
5086 else
5087 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5088 #endif
5089 #ifdef CONFIG_DEBUG_STACK_USAGE
5090 free = stack_not_used(p);
5091 #endif
5092 ppid = 0;
5093 rcu_read_lock();
5094 if (pid_alive(p))
5095 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5096 rcu_read_unlock();
5097 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5098 task_pid_nr(p), ppid,
5099 (unsigned long)task_thread_info(p)->flags);
5100
5101 print_worker_info(KERN_INFO, p);
5102 show_stack(p, NULL);
5103 }
5104
5105 void show_state_filter(unsigned long state_filter)
5106 {
5107 struct task_struct *g, *p;
5108
5109 #if BITS_PER_LONG == 32
5110 printk(KERN_INFO
5111 " task PC stack pid father\n");
5112 #else
5113 printk(KERN_INFO
5114 " task PC stack pid father\n");
5115 #endif
5116 rcu_read_lock();
5117 for_each_process_thread(g, p) {
5118 /*
5119 * reset the NMI-timeout, listing all files on a slow
5120 * console might take a lot of time:
5121 */
5122 touch_nmi_watchdog();
5123 if (!state_filter || (p->state & state_filter))
5124 sched_show_task(p);
5125 }
5126
5127 touch_all_softlockup_watchdogs();
5128
5129 #ifdef CONFIG_SCHED_DEBUG
5130 sysrq_sched_debug_show();
5131 #endif
5132 rcu_read_unlock();
5133 /*
5134 * Only show locks if all tasks are dumped:
5135 */
5136 if (!state_filter)
5137 debug_show_all_locks();
5138 }
5139
5140 void init_idle_bootup_task(struct task_struct *idle)
5141 {
5142 idle->sched_class = &idle_sched_class;
5143 }
5144
5145 /**
5146 * init_idle - set up an idle thread for a given CPU
5147 * @idle: task in question
5148 * @cpu: cpu the idle task belongs to
5149 *
5150 * NOTE: this function does not set the idle thread's NEED_RESCHED
5151 * flag, to make booting more robust.
5152 */
5153 void init_idle(struct task_struct *idle, int cpu)
5154 {
5155 struct rq *rq = cpu_rq(cpu);
5156 unsigned long flags;
5157
5158 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5159 raw_spin_lock(&rq->lock);
5160
5161 __sched_fork(0, idle);
5162 idle->state = TASK_RUNNING;
5163 idle->se.exec_start = sched_clock();
5164
5165 #ifdef CONFIG_SMP
5166 /*
5167 * Its possible that init_idle() gets called multiple times on a task,
5168 * in that case do_set_cpus_allowed() will not do the right thing.
5169 *
5170 * And since this is boot we can forgo the serialization.
5171 */
5172 set_cpus_allowed_common(idle, cpumask_of(cpu));
5173 #endif
5174 /*
5175 * We're having a chicken and egg problem, even though we are
5176 * holding rq->lock, the cpu isn't yet set to this cpu so the
5177 * lockdep check in task_group() will fail.
5178 *
5179 * Similar case to sched_fork(). / Alternatively we could
5180 * use task_rq_lock() here and obtain the other rq->lock.
5181 *
5182 * Silence PROVE_RCU
5183 */
5184 rcu_read_lock();
5185 __set_task_cpu(idle, cpu);
5186 rcu_read_unlock();
5187
5188 rq->curr = rq->idle = idle;
5189 idle->on_rq = TASK_ON_RQ_QUEUED;
5190 #ifdef CONFIG_SMP
5191 idle->on_cpu = 1;
5192 #endif
5193 raw_spin_unlock(&rq->lock);
5194 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5195
5196 /* Set the preempt count _outside_ the spinlocks! */
5197 init_idle_preempt_count(idle, cpu);
5198
5199 /*
5200 * The idle tasks have their own, simple scheduling class:
5201 */
5202 idle->sched_class = &idle_sched_class;
5203 ftrace_graph_init_idle_task(idle, cpu);
5204 vtime_init_idle(idle, cpu);
5205 #ifdef CONFIG_SMP
5206 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5207 #endif
5208 }
5209
5210 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5211 const struct cpumask *trial)
5212 {
5213 int ret = 1, trial_cpus;
5214 struct dl_bw *cur_dl_b;
5215 unsigned long flags;
5216
5217 if (!cpumask_weight(cur))
5218 return ret;
5219
5220 rcu_read_lock_sched();
5221 cur_dl_b = dl_bw_of(cpumask_any(cur));
5222 trial_cpus = cpumask_weight(trial);
5223
5224 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5225 if (cur_dl_b->bw != -1 &&
5226 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5227 ret = 0;
5228 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5229 rcu_read_unlock_sched();
5230
5231 return ret;
5232 }
5233
5234 int task_can_attach(struct task_struct *p,
5235 const struct cpumask *cs_cpus_allowed)
5236 {
5237 int ret = 0;
5238
5239 /*
5240 * Kthreads which disallow setaffinity shouldn't be moved
5241 * to a new cpuset; we don't want to change their cpu
5242 * affinity and isolating such threads by their set of
5243 * allowed nodes is unnecessary. Thus, cpusets are not
5244 * applicable for such threads. This prevents checking for
5245 * success of set_cpus_allowed_ptr() on all attached tasks
5246 * before cpus_allowed may be changed.
5247 */
5248 if (p->flags & PF_NO_SETAFFINITY) {
5249 ret = -EINVAL;
5250 goto out;
5251 }
5252
5253 #ifdef CONFIG_SMP
5254 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5255 cs_cpus_allowed)) {
5256 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5257 cs_cpus_allowed);
5258 struct dl_bw *dl_b;
5259 bool overflow;
5260 int cpus;
5261 unsigned long flags;
5262
5263 rcu_read_lock_sched();
5264 dl_b = dl_bw_of(dest_cpu);
5265 raw_spin_lock_irqsave(&dl_b->lock, flags);
5266 cpus = dl_bw_cpus(dest_cpu);
5267 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5268 if (overflow)
5269 ret = -EBUSY;
5270 else {
5271 /*
5272 * We reserve space for this task in the destination
5273 * root_domain, as we can't fail after this point.
5274 * We will free resources in the source root_domain
5275 * later on (see set_cpus_allowed_dl()).
5276 */
5277 __dl_add(dl_b, p->dl.dl_bw);
5278 }
5279 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5280 rcu_read_unlock_sched();
5281
5282 }
5283 #endif
5284 out:
5285 return ret;
5286 }
5287
5288 #ifdef CONFIG_SMP
5289
5290 #ifdef CONFIG_NUMA_BALANCING
5291 /* Migrate current task p to target_cpu */
5292 int migrate_task_to(struct task_struct *p, int target_cpu)
5293 {
5294 struct migration_arg arg = { p, target_cpu };
5295 int curr_cpu = task_cpu(p);
5296
5297 if (curr_cpu == target_cpu)
5298 return 0;
5299
5300 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5301 return -EINVAL;
5302
5303 /* TODO: This is not properly updating schedstats */
5304
5305 trace_sched_move_numa(p, curr_cpu, target_cpu);
5306 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5307 }
5308
5309 /*
5310 * Requeue a task on a given node and accurately track the number of NUMA
5311 * tasks on the runqueues
5312 */
5313 void sched_setnuma(struct task_struct *p, int nid)
5314 {
5315 struct rq *rq;
5316 unsigned long flags;
5317 bool queued, running;
5318
5319 rq = task_rq_lock(p, &flags);
5320 queued = task_on_rq_queued(p);
5321 running = task_current(rq, p);
5322
5323 if (queued)
5324 dequeue_task(rq, p, DEQUEUE_SAVE);
5325 if (running)
5326 put_prev_task(rq, p);
5327
5328 p->numa_preferred_nid = nid;
5329
5330 if (running)
5331 p->sched_class->set_curr_task(rq);
5332 if (queued)
5333 enqueue_task(rq, p, ENQUEUE_RESTORE);
5334 task_rq_unlock(rq, p, &flags);
5335 }
5336 #endif /* CONFIG_NUMA_BALANCING */
5337
5338 #ifdef CONFIG_HOTPLUG_CPU
5339 /*
5340 * Ensures that the idle task is using init_mm right before its cpu goes
5341 * offline.
5342 */
5343 void idle_task_exit(void)
5344 {
5345 struct mm_struct *mm = current->active_mm;
5346
5347 BUG_ON(cpu_online(smp_processor_id()));
5348
5349 if (mm != &init_mm) {
5350 switch_mm(mm, &init_mm, current);
5351 finish_arch_post_lock_switch();
5352 }
5353 mmdrop(mm);
5354 }
5355
5356 /*
5357 * Since this CPU is going 'away' for a while, fold any nr_active delta
5358 * we might have. Assumes we're called after migrate_tasks() so that the
5359 * nr_active count is stable.
5360 *
5361 * Also see the comment "Global load-average calculations".
5362 */
5363 static void calc_load_migrate(struct rq *rq)
5364 {
5365 long delta = calc_load_fold_active(rq);
5366 if (delta)
5367 atomic_long_add(delta, &calc_load_tasks);
5368 }
5369
5370 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5371 {
5372 }
5373
5374 static const struct sched_class fake_sched_class = {
5375 .put_prev_task = put_prev_task_fake,
5376 };
5377
5378 static struct task_struct fake_task = {
5379 /*
5380 * Avoid pull_{rt,dl}_task()
5381 */
5382 .prio = MAX_PRIO + 1,
5383 .sched_class = &fake_sched_class,
5384 };
5385
5386 /*
5387 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5388 * try_to_wake_up()->select_task_rq().
5389 *
5390 * Called with rq->lock held even though we'er in stop_machine() and
5391 * there's no concurrency possible, we hold the required locks anyway
5392 * because of lock validation efforts.
5393 */
5394 static void migrate_tasks(struct rq *dead_rq)
5395 {
5396 struct rq *rq = dead_rq;
5397 struct task_struct *next, *stop = rq->stop;
5398 int dest_cpu;
5399
5400 /*
5401 * Fudge the rq selection such that the below task selection loop
5402 * doesn't get stuck on the currently eligible stop task.
5403 *
5404 * We're currently inside stop_machine() and the rq is either stuck
5405 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5406 * either way we should never end up calling schedule() until we're
5407 * done here.
5408 */
5409 rq->stop = NULL;
5410
5411 /*
5412 * put_prev_task() and pick_next_task() sched
5413 * class method both need to have an up-to-date
5414 * value of rq->clock[_task]
5415 */
5416 update_rq_clock(rq);
5417
5418 for (;;) {
5419 /*
5420 * There's this thread running, bail when that's the only
5421 * remaining thread.
5422 */
5423 if (rq->nr_running == 1)
5424 break;
5425
5426 /*
5427 * pick_next_task assumes pinned rq->lock.
5428 */
5429 lockdep_pin_lock(&rq->lock);
5430 next = pick_next_task(rq, &fake_task);
5431 BUG_ON(!next);
5432 next->sched_class->put_prev_task(rq, next);
5433
5434 /*
5435 * Rules for changing task_struct::cpus_allowed are holding
5436 * both pi_lock and rq->lock, such that holding either
5437 * stabilizes the mask.
5438 *
5439 * Drop rq->lock is not quite as disastrous as it usually is
5440 * because !cpu_active at this point, which means load-balance
5441 * will not interfere. Also, stop-machine.
5442 */
5443 lockdep_unpin_lock(&rq->lock);
5444 raw_spin_unlock(&rq->lock);
5445 raw_spin_lock(&next->pi_lock);
5446 raw_spin_lock(&rq->lock);
5447
5448 /*
5449 * Since we're inside stop-machine, _nothing_ should have
5450 * changed the task, WARN if weird stuff happened, because in
5451 * that case the above rq->lock drop is a fail too.
5452 */
5453 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5454 raw_spin_unlock(&next->pi_lock);
5455 continue;
5456 }
5457
5458 /* Find suitable destination for @next, with force if needed. */
5459 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5460
5461 rq = __migrate_task(rq, next, dest_cpu);
5462 if (rq != dead_rq) {
5463 raw_spin_unlock(&rq->lock);
5464 rq = dead_rq;
5465 raw_spin_lock(&rq->lock);
5466 }
5467 raw_spin_unlock(&next->pi_lock);
5468 }
5469
5470 rq->stop = stop;
5471 }
5472 #endif /* CONFIG_HOTPLUG_CPU */
5473
5474 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5475
5476 static struct ctl_table sd_ctl_dir[] = {
5477 {
5478 .procname = "sched_domain",
5479 .mode = 0555,
5480 },
5481 {}
5482 };
5483
5484 static struct ctl_table sd_ctl_root[] = {
5485 {
5486 .procname = "kernel",
5487 .mode = 0555,
5488 .child = sd_ctl_dir,
5489 },
5490 {}
5491 };
5492
5493 static struct ctl_table *sd_alloc_ctl_entry(int n)
5494 {
5495 struct ctl_table *entry =
5496 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5497
5498 return entry;
5499 }
5500
5501 static void sd_free_ctl_entry(struct ctl_table **tablep)
5502 {
5503 struct ctl_table *entry;
5504
5505 /*
5506 * In the intermediate directories, both the child directory and
5507 * procname are dynamically allocated and could fail but the mode
5508 * will always be set. In the lowest directory the names are
5509 * static strings and all have proc handlers.
5510 */
5511 for (entry = *tablep; entry->mode; entry++) {
5512 if (entry->child)
5513 sd_free_ctl_entry(&entry->child);
5514 if (entry->proc_handler == NULL)
5515 kfree(entry->procname);
5516 }
5517
5518 kfree(*tablep);
5519 *tablep = NULL;
5520 }
5521
5522 static int min_load_idx = 0;
5523 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5524
5525 static void
5526 set_table_entry(struct ctl_table *entry,
5527 const char *procname, void *data, int maxlen,
5528 umode_t mode, proc_handler *proc_handler,
5529 bool load_idx)
5530 {
5531 entry->procname = procname;
5532 entry->data = data;
5533 entry->maxlen = maxlen;
5534 entry->mode = mode;
5535 entry->proc_handler = proc_handler;
5536
5537 if (load_idx) {
5538 entry->extra1 = &min_load_idx;
5539 entry->extra2 = &max_load_idx;
5540 }
5541 }
5542
5543 static struct ctl_table *
5544 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5545 {
5546 struct ctl_table *table = sd_alloc_ctl_entry(14);
5547
5548 if (table == NULL)
5549 return NULL;
5550
5551 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5552 sizeof(long), 0644, proc_doulongvec_minmax, false);
5553 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5554 sizeof(long), 0644, proc_doulongvec_minmax, false);
5555 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5556 sizeof(int), 0644, proc_dointvec_minmax, true);
5557 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5558 sizeof(int), 0644, proc_dointvec_minmax, true);
5559 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5560 sizeof(int), 0644, proc_dointvec_minmax, true);
5561 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5562 sizeof(int), 0644, proc_dointvec_minmax, true);
5563 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5564 sizeof(int), 0644, proc_dointvec_minmax, true);
5565 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5566 sizeof(int), 0644, proc_dointvec_minmax, false);
5567 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5568 sizeof(int), 0644, proc_dointvec_minmax, false);
5569 set_table_entry(&table[9], "cache_nice_tries",
5570 &sd->cache_nice_tries,
5571 sizeof(int), 0644, proc_dointvec_minmax, false);
5572 set_table_entry(&table[10], "flags", &sd->flags,
5573 sizeof(int), 0644, proc_dointvec_minmax, false);
5574 set_table_entry(&table[11], "max_newidle_lb_cost",
5575 &sd->max_newidle_lb_cost,
5576 sizeof(long), 0644, proc_doulongvec_minmax, false);
5577 set_table_entry(&table[12], "name", sd->name,
5578 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5579 /* &table[13] is terminator */
5580
5581 return table;
5582 }
5583
5584 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5585 {
5586 struct ctl_table *entry, *table;
5587 struct sched_domain *sd;
5588 int domain_num = 0, i;
5589 char buf[32];
5590
5591 for_each_domain(cpu, sd)
5592 domain_num++;
5593 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5594 if (table == NULL)
5595 return NULL;
5596
5597 i = 0;
5598 for_each_domain(cpu, sd) {
5599 snprintf(buf, 32, "domain%d", i);
5600 entry->procname = kstrdup(buf, GFP_KERNEL);
5601 entry->mode = 0555;
5602 entry->child = sd_alloc_ctl_domain_table(sd);
5603 entry++;
5604 i++;
5605 }
5606 return table;
5607 }
5608
5609 static struct ctl_table_header *sd_sysctl_header;
5610 static void register_sched_domain_sysctl(void)
5611 {
5612 int i, cpu_num = num_possible_cpus();
5613 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5614 char buf[32];
5615
5616 WARN_ON(sd_ctl_dir[0].child);
5617 sd_ctl_dir[0].child = entry;
5618
5619 if (entry == NULL)
5620 return;
5621
5622 for_each_possible_cpu(i) {
5623 snprintf(buf, 32, "cpu%d", i);
5624 entry->procname = kstrdup(buf, GFP_KERNEL);
5625 entry->mode = 0555;
5626 entry->child = sd_alloc_ctl_cpu_table(i);
5627 entry++;
5628 }
5629
5630 WARN_ON(sd_sysctl_header);
5631 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5632 }
5633
5634 /* may be called multiple times per register */
5635 static void unregister_sched_domain_sysctl(void)
5636 {
5637 unregister_sysctl_table(sd_sysctl_header);
5638 sd_sysctl_header = NULL;
5639 if (sd_ctl_dir[0].child)
5640 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5641 }
5642 #else
5643 static void register_sched_domain_sysctl(void)
5644 {
5645 }
5646 static void unregister_sched_domain_sysctl(void)
5647 {
5648 }
5649 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5650
5651 static void set_rq_online(struct rq *rq)
5652 {
5653 if (!rq->online) {
5654 const struct sched_class *class;
5655
5656 cpumask_set_cpu(rq->cpu, rq->rd->online);
5657 rq->online = 1;
5658
5659 for_each_class(class) {
5660 if (class->rq_online)
5661 class->rq_online(rq);
5662 }
5663 }
5664 }
5665
5666 static void set_rq_offline(struct rq *rq)
5667 {
5668 if (rq->online) {
5669 const struct sched_class *class;
5670
5671 for_each_class(class) {
5672 if (class->rq_offline)
5673 class->rq_offline(rq);
5674 }
5675
5676 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5677 rq->online = 0;
5678 }
5679 }
5680
5681 /*
5682 * migration_call - callback that gets triggered when a CPU is added.
5683 * Here we can start up the necessary migration thread for the new CPU.
5684 */
5685 static int
5686 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5687 {
5688 int cpu = (long)hcpu;
5689 unsigned long flags;
5690 struct rq *rq = cpu_rq(cpu);
5691
5692 switch (action & ~CPU_TASKS_FROZEN) {
5693
5694 case CPU_UP_PREPARE:
5695 rq->calc_load_update = calc_load_update;
5696 break;
5697
5698 case CPU_ONLINE:
5699 /* Update our root-domain */
5700 raw_spin_lock_irqsave(&rq->lock, flags);
5701 if (rq->rd) {
5702 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5703
5704 set_rq_online(rq);
5705 }
5706 raw_spin_unlock_irqrestore(&rq->lock, flags);
5707 break;
5708
5709 #ifdef CONFIG_HOTPLUG_CPU
5710 case CPU_DYING:
5711 sched_ttwu_pending();
5712 /* Update our root-domain */
5713 raw_spin_lock_irqsave(&rq->lock, flags);
5714 if (rq->rd) {
5715 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5716 set_rq_offline(rq);
5717 }
5718 migrate_tasks(rq);
5719 BUG_ON(rq->nr_running != 1); /* the migration thread */
5720 raw_spin_unlock_irqrestore(&rq->lock, flags);
5721 break;
5722
5723 case CPU_DEAD:
5724 calc_load_migrate(rq);
5725 break;
5726 #endif
5727 }
5728
5729 update_max_interval();
5730
5731 return NOTIFY_OK;
5732 }
5733
5734 /*
5735 * Register at high priority so that task migration (migrate_all_tasks)
5736 * happens before everything else. This has to be lower priority than
5737 * the notifier in the perf_event subsystem, though.
5738 */
5739 static struct notifier_block migration_notifier = {
5740 .notifier_call = migration_call,
5741 .priority = CPU_PRI_MIGRATION,
5742 };
5743
5744 static void set_cpu_rq_start_time(void)
5745 {
5746 int cpu = smp_processor_id();
5747 struct rq *rq = cpu_rq(cpu);
5748 rq->age_stamp = sched_clock_cpu(cpu);
5749 }
5750
5751 static int sched_cpu_active(struct notifier_block *nfb,
5752 unsigned long action, void *hcpu)
5753 {
5754 int cpu = (long)hcpu;
5755
5756 switch (action & ~CPU_TASKS_FROZEN) {
5757 case CPU_STARTING:
5758 set_cpu_rq_start_time();
5759 return NOTIFY_OK;
5760
5761 case CPU_ONLINE:
5762 /*
5763 * At this point a starting CPU has marked itself as online via
5764 * set_cpu_online(). But it might not yet have marked itself
5765 * as active, which is essential from here on.
5766 */
5767 set_cpu_active(cpu, true);
5768 stop_machine_unpark(cpu);
5769 return NOTIFY_OK;
5770
5771 case CPU_DOWN_FAILED:
5772 set_cpu_active(cpu, true);
5773 return NOTIFY_OK;
5774
5775 default:
5776 return NOTIFY_DONE;
5777 }
5778 }
5779
5780 static int sched_cpu_inactive(struct notifier_block *nfb,
5781 unsigned long action, void *hcpu)
5782 {
5783 switch (action & ~CPU_TASKS_FROZEN) {
5784 case CPU_DOWN_PREPARE:
5785 set_cpu_active((long)hcpu, false);
5786 return NOTIFY_OK;
5787 default:
5788 return NOTIFY_DONE;
5789 }
5790 }
5791
5792 static int __init migration_init(void)
5793 {
5794 void *cpu = (void *)(long)smp_processor_id();
5795 int err;
5796
5797 /* Initialize migration for the boot CPU */
5798 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5799 BUG_ON(err == NOTIFY_BAD);
5800 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5801 register_cpu_notifier(&migration_notifier);
5802
5803 /* Register cpu active notifiers */
5804 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5805 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5806
5807 return 0;
5808 }
5809 early_initcall(migration_init);
5810
5811 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5812
5813 #ifdef CONFIG_SCHED_DEBUG
5814
5815 static __read_mostly int sched_debug_enabled;
5816
5817 static int __init sched_debug_setup(char *str)
5818 {
5819 sched_debug_enabled = 1;
5820
5821 return 0;
5822 }
5823 early_param("sched_debug", sched_debug_setup);
5824
5825 static inline bool sched_debug(void)
5826 {
5827 return sched_debug_enabled;
5828 }
5829
5830 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5831 struct cpumask *groupmask)
5832 {
5833 struct sched_group *group = sd->groups;
5834
5835 cpumask_clear(groupmask);
5836
5837 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5838
5839 if (!(sd->flags & SD_LOAD_BALANCE)) {
5840 printk("does not load-balance\n");
5841 if (sd->parent)
5842 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5843 " has parent");
5844 return -1;
5845 }
5846
5847 printk(KERN_CONT "span %*pbl level %s\n",
5848 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5849
5850 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5851 printk(KERN_ERR "ERROR: domain->span does not contain "
5852 "CPU%d\n", cpu);
5853 }
5854 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5855 printk(KERN_ERR "ERROR: domain->groups does not contain"
5856 " CPU%d\n", cpu);
5857 }
5858
5859 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5860 do {
5861 if (!group) {
5862 printk("\n");
5863 printk(KERN_ERR "ERROR: group is NULL\n");
5864 break;
5865 }
5866
5867 if (!cpumask_weight(sched_group_cpus(group))) {
5868 printk(KERN_CONT "\n");
5869 printk(KERN_ERR "ERROR: empty group\n");
5870 break;
5871 }
5872
5873 if (!(sd->flags & SD_OVERLAP) &&
5874 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5875 printk(KERN_CONT "\n");
5876 printk(KERN_ERR "ERROR: repeated CPUs\n");
5877 break;
5878 }
5879
5880 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5881
5882 printk(KERN_CONT " %*pbl",
5883 cpumask_pr_args(sched_group_cpus(group)));
5884 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5885 printk(KERN_CONT " (cpu_capacity = %d)",
5886 group->sgc->capacity);
5887 }
5888
5889 group = group->next;
5890 } while (group != sd->groups);
5891 printk(KERN_CONT "\n");
5892
5893 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5894 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5895
5896 if (sd->parent &&
5897 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5898 printk(KERN_ERR "ERROR: parent span is not a superset "
5899 "of domain->span\n");
5900 return 0;
5901 }
5902
5903 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5904 {
5905 int level = 0;
5906
5907 if (!sched_debug_enabled)
5908 return;
5909
5910 if (!sd) {
5911 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5912 return;
5913 }
5914
5915 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5916
5917 for (;;) {
5918 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5919 break;
5920 level++;
5921 sd = sd->parent;
5922 if (!sd)
5923 break;
5924 }
5925 }
5926 #else /* !CONFIG_SCHED_DEBUG */
5927 # define sched_domain_debug(sd, cpu) do { } while (0)
5928 static inline bool sched_debug(void)
5929 {
5930 return false;
5931 }
5932 #endif /* CONFIG_SCHED_DEBUG */
5933
5934 static int sd_degenerate(struct sched_domain *sd)
5935 {
5936 if (cpumask_weight(sched_domain_span(sd)) == 1)
5937 return 1;
5938
5939 /* Following flags need at least 2 groups */
5940 if (sd->flags & (SD_LOAD_BALANCE |
5941 SD_BALANCE_NEWIDLE |
5942 SD_BALANCE_FORK |
5943 SD_BALANCE_EXEC |
5944 SD_SHARE_CPUCAPACITY |
5945 SD_SHARE_PKG_RESOURCES |
5946 SD_SHARE_POWERDOMAIN)) {
5947 if (sd->groups != sd->groups->next)
5948 return 0;
5949 }
5950
5951 /* Following flags don't use groups */
5952 if (sd->flags & (SD_WAKE_AFFINE))
5953 return 0;
5954
5955 return 1;
5956 }
5957
5958 static int
5959 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5960 {
5961 unsigned long cflags = sd->flags, pflags = parent->flags;
5962
5963 if (sd_degenerate(parent))
5964 return 1;
5965
5966 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5967 return 0;
5968
5969 /* Flags needing groups don't count if only 1 group in parent */
5970 if (parent->groups == parent->groups->next) {
5971 pflags &= ~(SD_LOAD_BALANCE |
5972 SD_BALANCE_NEWIDLE |
5973 SD_BALANCE_FORK |
5974 SD_BALANCE_EXEC |
5975 SD_SHARE_CPUCAPACITY |
5976 SD_SHARE_PKG_RESOURCES |
5977 SD_PREFER_SIBLING |
5978 SD_SHARE_POWERDOMAIN);
5979 if (nr_node_ids == 1)
5980 pflags &= ~SD_SERIALIZE;
5981 }
5982 if (~cflags & pflags)
5983 return 0;
5984
5985 return 1;
5986 }
5987
5988 static void free_rootdomain(struct rcu_head *rcu)
5989 {
5990 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5991
5992 cpupri_cleanup(&rd->cpupri);
5993 cpudl_cleanup(&rd->cpudl);
5994 free_cpumask_var(rd->dlo_mask);
5995 free_cpumask_var(rd->rto_mask);
5996 free_cpumask_var(rd->online);
5997 free_cpumask_var(rd->span);
5998 kfree(rd);
5999 }
6000
6001 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6002 {
6003 struct root_domain *old_rd = NULL;
6004 unsigned long flags;
6005
6006 raw_spin_lock_irqsave(&rq->lock, flags);
6007
6008 if (rq->rd) {
6009 old_rd = rq->rd;
6010
6011 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6012 set_rq_offline(rq);
6013
6014 cpumask_clear_cpu(rq->cpu, old_rd->span);
6015
6016 /*
6017 * If we dont want to free the old_rd yet then
6018 * set old_rd to NULL to skip the freeing later
6019 * in this function:
6020 */
6021 if (!atomic_dec_and_test(&old_rd->refcount))
6022 old_rd = NULL;
6023 }
6024
6025 atomic_inc(&rd->refcount);
6026 rq->rd = rd;
6027
6028 cpumask_set_cpu(rq->cpu, rd->span);
6029 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6030 set_rq_online(rq);
6031
6032 raw_spin_unlock_irqrestore(&rq->lock, flags);
6033
6034 if (old_rd)
6035 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6036 }
6037
6038 static int init_rootdomain(struct root_domain *rd)
6039 {
6040 memset(rd, 0, sizeof(*rd));
6041
6042 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
6043 goto out;
6044 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
6045 goto free_span;
6046 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
6047 goto free_online;
6048 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6049 goto free_dlo_mask;
6050
6051 init_dl_bw(&rd->dl_bw);
6052 if (cpudl_init(&rd->cpudl) != 0)
6053 goto free_dlo_mask;
6054
6055 if (cpupri_init(&rd->cpupri) != 0)
6056 goto free_rto_mask;
6057 return 0;
6058
6059 free_rto_mask:
6060 free_cpumask_var(rd->rto_mask);
6061 free_dlo_mask:
6062 free_cpumask_var(rd->dlo_mask);
6063 free_online:
6064 free_cpumask_var(rd->online);
6065 free_span:
6066 free_cpumask_var(rd->span);
6067 out:
6068 return -ENOMEM;
6069 }
6070
6071 /*
6072 * By default the system creates a single root-domain with all cpus as
6073 * members (mimicking the global state we have today).
6074 */
6075 struct root_domain def_root_domain;
6076
6077 static void init_defrootdomain(void)
6078 {
6079 init_rootdomain(&def_root_domain);
6080
6081 atomic_set(&def_root_domain.refcount, 1);
6082 }
6083
6084 static struct root_domain *alloc_rootdomain(void)
6085 {
6086 struct root_domain *rd;
6087
6088 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6089 if (!rd)
6090 return NULL;
6091
6092 if (init_rootdomain(rd) != 0) {
6093 kfree(rd);
6094 return NULL;
6095 }
6096
6097 return rd;
6098 }
6099
6100 static void free_sched_groups(struct sched_group *sg, int free_sgc)
6101 {
6102 struct sched_group *tmp, *first;
6103
6104 if (!sg)
6105 return;
6106
6107 first = sg;
6108 do {
6109 tmp = sg->next;
6110
6111 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
6112 kfree(sg->sgc);
6113
6114 kfree(sg);
6115 sg = tmp;
6116 } while (sg != first);
6117 }
6118
6119 static void free_sched_domain(struct rcu_head *rcu)
6120 {
6121 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6122
6123 /*
6124 * If its an overlapping domain it has private groups, iterate and
6125 * nuke them all.
6126 */
6127 if (sd->flags & SD_OVERLAP) {
6128 free_sched_groups(sd->groups, 1);
6129 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6130 kfree(sd->groups->sgc);
6131 kfree(sd->groups);
6132 }
6133 kfree(sd);
6134 }
6135
6136 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6137 {
6138 call_rcu(&sd->rcu, free_sched_domain);
6139 }
6140
6141 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6142 {
6143 for (; sd; sd = sd->parent)
6144 destroy_sched_domain(sd, cpu);
6145 }
6146
6147 /*
6148 * Keep a special pointer to the highest sched_domain that has
6149 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6150 * allows us to avoid some pointer chasing select_idle_sibling().
6151 *
6152 * Also keep a unique ID per domain (we use the first cpu number in
6153 * the cpumask of the domain), this allows us to quickly tell if
6154 * two cpus are in the same cache domain, see cpus_share_cache().
6155 */
6156 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6157 DEFINE_PER_CPU(int, sd_llc_size);
6158 DEFINE_PER_CPU(int, sd_llc_id);
6159 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6160 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
6161 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6162
6163 static void update_top_cache_domain(int cpu)
6164 {
6165 struct sched_domain *sd;
6166 struct sched_domain *busy_sd = NULL;
6167 int id = cpu;
6168 int size = 1;
6169
6170 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6171 if (sd) {
6172 id = cpumask_first(sched_domain_span(sd));
6173 size = cpumask_weight(sched_domain_span(sd));
6174 busy_sd = sd->parent; /* sd_busy */
6175 }
6176 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
6177
6178 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6179 per_cpu(sd_llc_size, cpu) = size;
6180 per_cpu(sd_llc_id, cpu) = id;
6181
6182 sd = lowest_flag_domain(cpu, SD_NUMA);
6183 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6184
6185 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6186 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6187 }
6188
6189 /*
6190 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6191 * hold the hotplug lock.
6192 */
6193 static void
6194 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6195 {
6196 struct rq *rq = cpu_rq(cpu);
6197 struct sched_domain *tmp;
6198
6199 /* Remove the sched domains which do not contribute to scheduling. */
6200 for (tmp = sd; tmp; ) {
6201 struct sched_domain *parent = tmp->parent;
6202 if (!parent)
6203 break;
6204
6205 if (sd_parent_degenerate(tmp, parent)) {
6206 tmp->parent = parent->parent;
6207 if (parent->parent)
6208 parent->parent->child = tmp;
6209 /*
6210 * Transfer SD_PREFER_SIBLING down in case of a
6211 * degenerate parent; the spans match for this
6212 * so the property transfers.
6213 */
6214 if (parent->flags & SD_PREFER_SIBLING)
6215 tmp->flags |= SD_PREFER_SIBLING;
6216 destroy_sched_domain(parent, cpu);
6217 } else
6218 tmp = tmp->parent;
6219 }
6220
6221 if (sd && sd_degenerate(sd)) {
6222 tmp = sd;
6223 sd = sd->parent;
6224 destroy_sched_domain(tmp, cpu);
6225 if (sd)
6226 sd->child = NULL;
6227 }
6228
6229 sched_domain_debug(sd, cpu);
6230
6231 rq_attach_root(rq, rd);
6232 tmp = rq->sd;
6233 rcu_assign_pointer(rq->sd, sd);
6234 destroy_sched_domains(tmp, cpu);
6235
6236 update_top_cache_domain(cpu);
6237 }
6238
6239 /* Setup the mask of cpus configured for isolated domains */
6240 static int __init isolated_cpu_setup(char *str)
6241 {
6242 int ret;
6243
6244 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6245 ret = cpulist_parse(str, cpu_isolated_map);
6246 if (ret) {
6247 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6248 return 0;
6249 }
6250 return 1;
6251 }
6252 __setup("isolcpus=", isolated_cpu_setup);
6253
6254 struct s_data {
6255 struct sched_domain ** __percpu sd;
6256 struct root_domain *rd;
6257 };
6258
6259 enum s_alloc {
6260 sa_rootdomain,
6261 sa_sd,
6262 sa_sd_storage,
6263 sa_none,
6264 };
6265
6266 /*
6267 * Build an iteration mask that can exclude certain CPUs from the upwards
6268 * domain traversal.
6269 *
6270 * Asymmetric node setups can result in situations where the domain tree is of
6271 * unequal depth, make sure to skip domains that already cover the entire
6272 * range.
6273 *
6274 * In that case build_sched_domains() will have terminated the iteration early
6275 * and our sibling sd spans will be empty. Domains should always include the
6276 * cpu they're built on, so check that.
6277 *
6278 */
6279 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6280 {
6281 const struct cpumask *span = sched_domain_span(sd);
6282 struct sd_data *sdd = sd->private;
6283 struct sched_domain *sibling;
6284 int i;
6285
6286 for_each_cpu(i, span) {
6287 sibling = *per_cpu_ptr(sdd->sd, i);
6288 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6289 continue;
6290
6291 cpumask_set_cpu(i, sched_group_mask(sg));
6292 }
6293 }
6294
6295 /*
6296 * Return the canonical balance cpu for this group, this is the first cpu
6297 * of this group that's also in the iteration mask.
6298 */
6299 int group_balance_cpu(struct sched_group *sg)
6300 {
6301 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6302 }
6303
6304 static int
6305 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6306 {
6307 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6308 const struct cpumask *span = sched_domain_span(sd);
6309 struct cpumask *covered = sched_domains_tmpmask;
6310 struct sd_data *sdd = sd->private;
6311 struct sched_domain *sibling;
6312 int i;
6313
6314 cpumask_clear(covered);
6315
6316 for_each_cpu(i, span) {
6317 struct cpumask *sg_span;
6318
6319 if (cpumask_test_cpu(i, covered))
6320 continue;
6321
6322 sibling = *per_cpu_ptr(sdd->sd, i);
6323
6324 /* See the comment near build_group_mask(). */
6325 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6326 continue;
6327
6328 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6329 GFP_KERNEL, cpu_to_node(cpu));
6330
6331 if (!sg)
6332 goto fail;
6333
6334 sg_span = sched_group_cpus(sg);
6335 if (sibling->child)
6336 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6337 else
6338 cpumask_set_cpu(i, sg_span);
6339
6340 cpumask_or(covered, covered, sg_span);
6341
6342 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6343 if (atomic_inc_return(&sg->sgc->ref) == 1)
6344 build_group_mask(sd, sg);
6345
6346 /*
6347 * Initialize sgc->capacity such that even if we mess up the
6348 * domains and no possible iteration will get us here, we won't
6349 * die on a /0 trap.
6350 */
6351 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6352
6353 /*
6354 * Make sure the first group of this domain contains the
6355 * canonical balance cpu. Otherwise the sched_domain iteration
6356 * breaks. See update_sg_lb_stats().
6357 */
6358 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6359 group_balance_cpu(sg) == cpu)
6360 groups = sg;
6361
6362 if (!first)
6363 first = sg;
6364 if (last)
6365 last->next = sg;
6366 last = sg;
6367 last->next = first;
6368 }
6369 sd->groups = groups;
6370
6371 return 0;
6372
6373 fail:
6374 free_sched_groups(first, 0);
6375
6376 return -ENOMEM;
6377 }
6378
6379 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6380 {
6381 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6382 struct sched_domain *child = sd->child;
6383
6384 if (child)
6385 cpu = cpumask_first(sched_domain_span(child));
6386
6387 if (sg) {
6388 *sg = *per_cpu_ptr(sdd->sg, cpu);
6389 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6390 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6391 }
6392
6393 return cpu;
6394 }
6395
6396 /*
6397 * build_sched_groups will build a circular linked list of the groups
6398 * covered by the given span, and will set each group's ->cpumask correctly,
6399 * and ->cpu_capacity to 0.
6400 *
6401 * Assumes the sched_domain tree is fully constructed
6402 */
6403 static int
6404 build_sched_groups(struct sched_domain *sd, int cpu)
6405 {
6406 struct sched_group *first = NULL, *last = NULL;
6407 struct sd_data *sdd = sd->private;
6408 const struct cpumask *span = sched_domain_span(sd);
6409 struct cpumask *covered;
6410 int i;
6411
6412 get_group(cpu, sdd, &sd->groups);
6413 atomic_inc(&sd->groups->ref);
6414
6415 if (cpu != cpumask_first(span))
6416 return 0;
6417
6418 lockdep_assert_held(&sched_domains_mutex);
6419 covered = sched_domains_tmpmask;
6420
6421 cpumask_clear(covered);
6422
6423 for_each_cpu(i, span) {
6424 struct sched_group *sg;
6425 int group, j;
6426
6427 if (cpumask_test_cpu(i, covered))
6428 continue;
6429
6430 group = get_group(i, sdd, &sg);
6431 cpumask_setall(sched_group_mask(sg));
6432
6433 for_each_cpu(j, span) {
6434 if (get_group(j, sdd, NULL) != group)
6435 continue;
6436
6437 cpumask_set_cpu(j, covered);
6438 cpumask_set_cpu(j, sched_group_cpus(sg));
6439 }
6440
6441 if (!first)
6442 first = sg;
6443 if (last)
6444 last->next = sg;
6445 last = sg;
6446 }
6447 last->next = first;
6448
6449 return 0;
6450 }
6451
6452 /*
6453 * Initialize sched groups cpu_capacity.
6454 *
6455 * cpu_capacity indicates the capacity of sched group, which is used while
6456 * distributing the load between different sched groups in a sched domain.
6457 * Typically cpu_capacity for all the groups in a sched domain will be same
6458 * unless there are asymmetries in the topology. If there are asymmetries,
6459 * group having more cpu_capacity will pickup more load compared to the
6460 * group having less cpu_capacity.
6461 */
6462 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6463 {
6464 struct sched_group *sg = sd->groups;
6465
6466 WARN_ON(!sg);
6467
6468 do {
6469 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6470 sg = sg->next;
6471 } while (sg != sd->groups);
6472
6473 if (cpu != group_balance_cpu(sg))
6474 return;
6475
6476 update_group_capacity(sd, cpu);
6477 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6478 }
6479
6480 /*
6481 * Initializers for schedule domains
6482 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6483 */
6484
6485 static int default_relax_domain_level = -1;
6486 int sched_domain_level_max;
6487
6488 static int __init setup_relax_domain_level(char *str)
6489 {
6490 if (kstrtoint(str, 0, &default_relax_domain_level))
6491 pr_warn("Unable to set relax_domain_level\n");
6492
6493 return 1;
6494 }
6495 __setup("relax_domain_level=", setup_relax_domain_level);
6496
6497 static void set_domain_attribute(struct sched_domain *sd,
6498 struct sched_domain_attr *attr)
6499 {
6500 int request;
6501
6502 if (!attr || attr->relax_domain_level < 0) {
6503 if (default_relax_domain_level < 0)
6504 return;
6505 else
6506 request = default_relax_domain_level;
6507 } else
6508 request = attr->relax_domain_level;
6509 if (request < sd->level) {
6510 /* turn off idle balance on this domain */
6511 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6512 } else {
6513 /* turn on idle balance on this domain */
6514 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6515 }
6516 }
6517
6518 static void __sdt_free(const struct cpumask *cpu_map);
6519 static int __sdt_alloc(const struct cpumask *cpu_map);
6520
6521 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6522 const struct cpumask *cpu_map)
6523 {
6524 switch (what) {
6525 case sa_rootdomain:
6526 if (!atomic_read(&d->rd->refcount))
6527 free_rootdomain(&d->rd->rcu); /* fall through */
6528 case sa_sd:
6529 free_percpu(d->sd); /* fall through */
6530 case sa_sd_storage:
6531 __sdt_free(cpu_map); /* fall through */
6532 case sa_none:
6533 break;
6534 }
6535 }
6536
6537 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6538 const struct cpumask *cpu_map)
6539 {
6540 memset(d, 0, sizeof(*d));
6541
6542 if (__sdt_alloc(cpu_map))
6543 return sa_sd_storage;
6544 d->sd = alloc_percpu(struct sched_domain *);
6545 if (!d->sd)
6546 return sa_sd_storage;
6547 d->rd = alloc_rootdomain();
6548 if (!d->rd)
6549 return sa_sd;
6550 return sa_rootdomain;
6551 }
6552
6553 /*
6554 * NULL the sd_data elements we've used to build the sched_domain and
6555 * sched_group structure so that the subsequent __free_domain_allocs()
6556 * will not free the data we're using.
6557 */
6558 static void claim_allocations(int cpu, struct sched_domain *sd)
6559 {
6560 struct sd_data *sdd = sd->private;
6561
6562 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6563 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6564
6565 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6566 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6567
6568 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6569 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6570 }
6571
6572 #ifdef CONFIG_NUMA
6573 static int sched_domains_numa_levels;
6574 enum numa_topology_type sched_numa_topology_type;
6575 static int *sched_domains_numa_distance;
6576 int sched_max_numa_distance;
6577 static struct cpumask ***sched_domains_numa_masks;
6578 static int sched_domains_curr_level;
6579 #endif
6580
6581 /*
6582 * SD_flags allowed in topology descriptions.
6583 *
6584 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6585 * SD_SHARE_PKG_RESOURCES - describes shared caches
6586 * SD_NUMA - describes NUMA topologies
6587 * SD_SHARE_POWERDOMAIN - describes shared power domain
6588 *
6589 * Odd one out:
6590 * SD_ASYM_PACKING - describes SMT quirks
6591 */
6592 #define TOPOLOGY_SD_FLAGS \
6593 (SD_SHARE_CPUCAPACITY | \
6594 SD_SHARE_PKG_RESOURCES | \
6595 SD_NUMA | \
6596 SD_ASYM_PACKING | \
6597 SD_SHARE_POWERDOMAIN)
6598
6599 static struct sched_domain *
6600 sd_init(struct sched_domain_topology_level *tl, int cpu)
6601 {
6602 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6603 int sd_weight, sd_flags = 0;
6604
6605 #ifdef CONFIG_NUMA
6606 /*
6607 * Ugly hack to pass state to sd_numa_mask()...
6608 */
6609 sched_domains_curr_level = tl->numa_level;
6610 #endif
6611
6612 sd_weight = cpumask_weight(tl->mask(cpu));
6613
6614 if (tl->sd_flags)
6615 sd_flags = (*tl->sd_flags)();
6616 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6617 "wrong sd_flags in topology description\n"))
6618 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6619
6620 *sd = (struct sched_domain){
6621 .min_interval = sd_weight,
6622 .max_interval = 2*sd_weight,
6623 .busy_factor = 32,
6624 .imbalance_pct = 125,
6625
6626 .cache_nice_tries = 0,
6627 .busy_idx = 0,
6628 .idle_idx = 0,
6629 .newidle_idx = 0,
6630 .wake_idx = 0,
6631 .forkexec_idx = 0,
6632
6633 .flags = 1*SD_LOAD_BALANCE
6634 | 1*SD_BALANCE_NEWIDLE
6635 | 1*SD_BALANCE_EXEC
6636 | 1*SD_BALANCE_FORK
6637 | 0*SD_BALANCE_WAKE
6638 | 1*SD_WAKE_AFFINE
6639 | 0*SD_SHARE_CPUCAPACITY
6640 | 0*SD_SHARE_PKG_RESOURCES
6641 | 0*SD_SERIALIZE
6642 | 0*SD_PREFER_SIBLING
6643 | 0*SD_NUMA
6644 | sd_flags
6645 ,
6646
6647 .last_balance = jiffies,
6648 .balance_interval = sd_weight,
6649 .smt_gain = 0,
6650 .max_newidle_lb_cost = 0,
6651 .next_decay_max_lb_cost = jiffies,
6652 #ifdef CONFIG_SCHED_DEBUG
6653 .name = tl->name,
6654 #endif
6655 };
6656
6657 /*
6658 * Convert topological properties into behaviour.
6659 */
6660
6661 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6662 sd->flags |= SD_PREFER_SIBLING;
6663 sd->imbalance_pct = 110;
6664 sd->smt_gain = 1178; /* ~15% */
6665
6666 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6667 sd->imbalance_pct = 117;
6668 sd->cache_nice_tries = 1;
6669 sd->busy_idx = 2;
6670
6671 #ifdef CONFIG_NUMA
6672 } else if (sd->flags & SD_NUMA) {
6673 sd->cache_nice_tries = 2;
6674 sd->busy_idx = 3;
6675 sd->idle_idx = 2;
6676
6677 sd->flags |= SD_SERIALIZE;
6678 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6679 sd->flags &= ~(SD_BALANCE_EXEC |
6680 SD_BALANCE_FORK |
6681 SD_WAKE_AFFINE);
6682 }
6683
6684 #endif
6685 } else {
6686 sd->flags |= SD_PREFER_SIBLING;
6687 sd->cache_nice_tries = 1;
6688 sd->busy_idx = 2;
6689 sd->idle_idx = 1;
6690 }
6691
6692 sd->private = &tl->data;
6693
6694 return sd;
6695 }
6696
6697 /*
6698 * Topology list, bottom-up.
6699 */
6700 static struct sched_domain_topology_level default_topology[] = {
6701 #ifdef CONFIG_SCHED_SMT
6702 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6703 #endif
6704 #ifdef CONFIG_SCHED_MC
6705 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6706 #endif
6707 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6708 { NULL, },
6709 };
6710
6711 static struct sched_domain_topology_level *sched_domain_topology =
6712 default_topology;
6713
6714 #define for_each_sd_topology(tl) \
6715 for (tl = sched_domain_topology; tl->mask; tl++)
6716
6717 void set_sched_topology(struct sched_domain_topology_level *tl)
6718 {
6719 sched_domain_topology = tl;
6720 }
6721
6722 #ifdef CONFIG_NUMA
6723
6724 static const struct cpumask *sd_numa_mask(int cpu)
6725 {
6726 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6727 }
6728
6729 static void sched_numa_warn(const char *str)
6730 {
6731 static int done = false;
6732 int i,j;
6733
6734 if (done)
6735 return;
6736
6737 done = true;
6738
6739 printk(KERN_WARNING "ERROR: %s\n\n", str);
6740
6741 for (i = 0; i < nr_node_ids; i++) {
6742 printk(KERN_WARNING " ");
6743 for (j = 0; j < nr_node_ids; j++)
6744 printk(KERN_CONT "%02d ", node_distance(i,j));
6745 printk(KERN_CONT "\n");
6746 }
6747 printk(KERN_WARNING "\n");
6748 }
6749
6750 bool find_numa_distance(int distance)
6751 {
6752 int i;
6753
6754 if (distance == node_distance(0, 0))
6755 return true;
6756
6757 for (i = 0; i < sched_domains_numa_levels; i++) {
6758 if (sched_domains_numa_distance[i] == distance)
6759 return true;
6760 }
6761
6762 return false;
6763 }
6764
6765 /*
6766 * A system can have three types of NUMA topology:
6767 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6768 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6769 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6770 *
6771 * The difference between a glueless mesh topology and a backplane
6772 * topology lies in whether communication between not directly
6773 * connected nodes goes through intermediary nodes (where programs
6774 * could run), or through backplane controllers. This affects
6775 * placement of programs.
6776 *
6777 * The type of topology can be discerned with the following tests:
6778 * - If the maximum distance between any nodes is 1 hop, the system
6779 * is directly connected.
6780 * - If for two nodes A and B, located N > 1 hops away from each other,
6781 * there is an intermediary node C, which is < N hops away from both
6782 * nodes A and B, the system is a glueless mesh.
6783 */
6784 static void init_numa_topology_type(void)
6785 {
6786 int a, b, c, n;
6787
6788 n = sched_max_numa_distance;
6789
6790 if (sched_domains_numa_levels <= 1) {
6791 sched_numa_topology_type = NUMA_DIRECT;
6792 return;
6793 }
6794
6795 for_each_online_node(a) {
6796 for_each_online_node(b) {
6797 /* Find two nodes furthest removed from each other. */
6798 if (node_distance(a, b) < n)
6799 continue;
6800
6801 /* Is there an intermediary node between a and b? */
6802 for_each_online_node(c) {
6803 if (node_distance(a, c) < n &&
6804 node_distance(b, c) < n) {
6805 sched_numa_topology_type =
6806 NUMA_GLUELESS_MESH;
6807 return;
6808 }
6809 }
6810
6811 sched_numa_topology_type = NUMA_BACKPLANE;
6812 return;
6813 }
6814 }
6815 }
6816
6817 static void sched_init_numa(void)
6818 {
6819 int next_distance, curr_distance = node_distance(0, 0);
6820 struct sched_domain_topology_level *tl;
6821 int level = 0;
6822 int i, j, k;
6823
6824 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6825 if (!sched_domains_numa_distance)
6826 return;
6827
6828 /*
6829 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6830 * unique distances in the node_distance() table.
6831 *
6832 * Assumes node_distance(0,j) includes all distances in
6833 * node_distance(i,j) in order to avoid cubic time.
6834 */
6835 next_distance = curr_distance;
6836 for (i = 0; i < nr_node_ids; i++) {
6837 for (j = 0; j < nr_node_ids; j++) {
6838 for (k = 0; k < nr_node_ids; k++) {
6839 int distance = node_distance(i, k);
6840
6841 if (distance > curr_distance &&
6842 (distance < next_distance ||
6843 next_distance == curr_distance))
6844 next_distance = distance;
6845
6846 /*
6847 * While not a strong assumption it would be nice to know
6848 * about cases where if node A is connected to B, B is not
6849 * equally connected to A.
6850 */
6851 if (sched_debug() && node_distance(k, i) != distance)
6852 sched_numa_warn("Node-distance not symmetric");
6853
6854 if (sched_debug() && i && !find_numa_distance(distance))
6855 sched_numa_warn("Node-0 not representative");
6856 }
6857 if (next_distance != curr_distance) {
6858 sched_domains_numa_distance[level++] = next_distance;
6859 sched_domains_numa_levels = level;
6860 curr_distance = next_distance;
6861 } else break;
6862 }
6863
6864 /*
6865 * In case of sched_debug() we verify the above assumption.
6866 */
6867 if (!sched_debug())
6868 break;
6869 }
6870
6871 if (!level)
6872 return;
6873
6874 /*
6875 * 'level' contains the number of unique distances, excluding the
6876 * identity distance node_distance(i,i).
6877 *
6878 * The sched_domains_numa_distance[] array includes the actual distance
6879 * numbers.
6880 */
6881
6882 /*
6883 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6884 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6885 * the array will contain less then 'level' members. This could be
6886 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6887 * in other functions.
6888 *
6889 * We reset it to 'level' at the end of this function.
6890 */
6891 sched_domains_numa_levels = 0;
6892
6893 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6894 if (!sched_domains_numa_masks)
6895 return;
6896
6897 /*
6898 * Now for each level, construct a mask per node which contains all
6899 * cpus of nodes that are that many hops away from us.
6900 */
6901 for (i = 0; i < level; i++) {
6902 sched_domains_numa_masks[i] =
6903 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6904 if (!sched_domains_numa_masks[i])
6905 return;
6906
6907 for (j = 0; j < nr_node_ids; j++) {
6908 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6909 if (!mask)
6910 return;
6911
6912 sched_domains_numa_masks[i][j] = mask;
6913
6914 for_each_node(k) {
6915 if (node_distance(j, k) > sched_domains_numa_distance[i])
6916 continue;
6917
6918 cpumask_or(mask, mask, cpumask_of_node(k));
6919 }
6920 }
6921 }
6922
6923 /* Compute default topology size */
6924 for (i = 0; sched_domain_topology[i].mask; i++);
6925
6926 tl = kzalloc((i + level + 1) *
6927 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6928 if (!tl)
6929 return;
6930
6931 /*
6932 * Copy the default topology bits..
6933 */
6934 for (i = 0; sched_domain_topology[i].mask; i++)
6935 tl[i] = sched_domain_topology[i];
6936
6937 /*
6938 * .. and append 'j' levels of NUMA goodness.
6939 */
6940 for (j = 0; j < level; i++, j++) {
6941 tl[i] = (struct sched_domain_topology_level){
6942 .mask = sd_numa_mask,
6943 .sd_flags = cpu_numa_flags,
6944 .flags = SDTL_OVERLAP,
6945 .numa_level = j,
6946 SD_INIT_NAME(NUMA)
6947 };
6948 }
6949
6950 sched_domain_topology = tl;
6951
6952 sched_domains_numa_levels = level;
6953 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6954
6955 init_numa_topology_type();
6956 }
6957
6958 static void sched_domains_numa_masks_set(int cpu)
6959 {
6960 int i, j;
6961 int node = cpu_to_node(cpu);
6962
6963 for (i = 0; i < sched_domains_numa_levels; i++) {
6964 for (j = 0; j < nr_node_ids; j++) {
6965 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6966 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6967 }
6968 }
6969 }
6970
6971 static void sched_domains_numa_masks_clear(int cpu)
6972 {
6973 int i, j;
6974 for (i = 0; i < sched_domains_numa_levels; i++) {
6975 for (j = 0; j < nr_node_ids; j++)
6976 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6977 }
6978 }
6979
6980 /*
6981 * Update sched_domains_numa_masks[level][node] array when new cpus
6982 * are onlined.
6983 */
6984 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6985 unsigned long action,
6986 void *hcpu)
6987 {
6988 int cpu = (long)hcpu;
6989
6990 switch (action & ~CPU_TASKS_FROZEN) {
6991 case CPU_ONLINE:
6992 sched_domains_numa_masks_set(cpu);
6993 break;
6994
6995 case CPU_DEAD:
6996 sched_domains_numa_masks_clear(cpu);
6997 break;
6998
6999 default:
7000 return NOTIFY_DONE;
7001 }
7002
7003 return NOTIFY_OK;
7004 }
7005 #else
7006 static inline void sched_init_numa(void)
7007 {
7008 }
7009
7010 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
7011 unsigned long action,
7012 void *hcpu)
7013 {
7014 return 0;
7015 }
7016 #endif /* CONFIG_NUMA */
7017
7018 static int __sdt_alloc(const struct cpumask *cpu_map)
7019 {
7020 struct sched_domain_topology_level *tl;
7021 int j;
7022
7023 for_each_sd_topology(tl) {
7024 struct sd_data *sdd = &tl->data;
7025
7026 sdd->sd = alloc_percpu(struct sched_domain *);
7027 if (!sdd->sd)
7028 return -ENOMEM;
7029
7030 sdd->sg = alloc_percpu(struct sched_group *);
7031 if (!sdd->sg)
7032 return -ENOMEM;
7033
7034 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
7035 if (!sdd->sgc)
7036 return -ENOMEM;
7037
7038 for_each_cpu(j, cpu_map) {
7039 struct sched_domain *sd;
7040 struct sched_group *sg;
7041 struct sched_group_capacity *sgc;
7042
7043 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7044 GFP_KERNEL, cpu_to_node(j));
7045 if (!sd)
7046 return -ENOMEM;
7047
7048 *per_cpu_ptr(sdd->sd, j) = sd;
7049
7050 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7051 GFP_KERNEL, cpu_to_node(j));
7052 if (!sg)
7053 return -ENOMEM;
7054
7055 sg->next = sg;
7056
7057 *per_cpu_ptr(sdd->sg, j) = sg;
7058
7059 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
7060 GFP_KERNEL, cpu_to_node(j));
7061 if (!sgc)
7062 return -ENOMEM;
7063
7064 *per_cpu_ptr(sdd->sgc, j) = sgc;
7065 }
7066 }
7067
7068 return 0;
7069 }
7070
7071 static void __sdt_free(const struct cpumask *cpu_map)
7072 {
7073 struct sched_domain_topology_level *tl;
7074 int j;
7075
7076 for_each_sd_topology(tl) {
7077 struct sd_data *sdd = &tl->data;
7078
7079 for_each_cpu(j, cpu_map) {
7080 struct sched_domain *sd;
7081
7082 if (sdd->sd) {
7083 sd = *per_cpu_ptr(sdd->sd, j);
7084 if (sd && (sd->flags & SD_OVERLAP))
7085 free_sched_groups(sd->groups, 0);
7086 kfree(*per_cpu_ptr(sdd->sd, j));
7087 }
7088
7089 if (sdd->sg)
7090 kfree(*per_cpu_ptr(sdd->sg, j));
7091 if (sdd->sgc)
7092 kfree(*per_cpu_ptr(sdd->sgc, j));
7093 }
7094 free_percpu(sdd->sd);
7095 sdd->sd = NULL;
7096 free_percpu(sdd->sg);
7097 sdd->sg = NULL;
7098 free_percpu(sdd->sgc);
7099 sdd->sgc = NULL;
7100 }
7101 }
7102
7103 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7104 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7105 struct sched_domain *child, int cpu)
7106 {
7107 struct sched_domain *sd = sd_init(tl, cpu);
7108 if (!sd)
7109 return child;
7110
7111 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7112 if (child) {
7113 sd->level = child->level + 1;
7114 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7115 child->parent = sd;
7116 sd->child = child;
7117
7118 if (!cpumask_subset(sched_domain_span(child),
7119 sched_domain_span(sd))) {
7120 pr_err("BUG: arch topology borken\n");
7121 #ifdef CONFIG_SCHED_DEBUG
7122 pr_err(" the %s domain not a subset of the %s domain\n",
7123 child->name, sd->name);
7124 #endif
7125 /* Fixup, ensure @sd has at least @child cpus. */
7126 cpumask_or(sched_domain_span(sd),
7127 sched_domain_span(sd),
7128 sched_domain_span(child));
7129 }
7130
7131 }
7132 set_domain_attribute(sd, attr);
7133
7134 return sd;
7135 }
7136
7137 /*
7138 * Build sched domains for a given set of cpus and attach the sched domains
7139 * to the individual cpus
7140 */
7141 static int build_sched_domains(const struct cpumask *cpu_map,
7142 struct sched_domain_attr *attr)
7143 {
7144 enum s_alloc alloc_state;
7145 struct sched_domain *sd;
7146 struct s_data d;
7147 int i, ret = -ENOMEM;
7148
7149 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7150 if (alloc_state != sa_rootdomain)
7151 goto error;
7152
7153 /* Set up domains for cpus specified by the cpu_map. */
7154 for_each_cpu(i, cpu_map) {
7155 struct sched_domain_topology_level *tl;
7156
7157 sd = NULL;
7158 for_each_sd_topology(tl) {
7159 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7160 if (tl == sched_domain_topology)
7161 *per_cpu_ptr(d.sd, i) = sd;
7162 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7163 sd->flags |= SD_OVERLAP;
7164 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7165 break;
7166 }
7167 }
7168
7169 /* Build the groups for the domains */
7170 for_each_cpu(i, cpu_map) {
7171 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7172 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7173 if (sd->flags & SD_OVERLAP) {
7174 if (build_overlap_sched_groups(sd, i))
7175 goto error;
7176 } else {
7177 if (build_sched_groups(sd, i))
7178 goto error;
7179 }
7180 }
7181 }
7182
7183 /* Calculate CPU capacity for physical packages and nodes */
7184 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7185 if (!cpumask_test_cpu(i, cpu_map))
7186 continue;
7187
7188 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7189 claim_allocations(i, sd);
7190 init_sched_groups_capacity(i, sd);
7191 }
7192 }
7193
7194 /* Attach the domains */
7195 rcu_read_lock();
7196 for_each_cpu(i, cpu_map) {
7197 sd = *per_cpu_ptr(d.sd, i);
7198 cpu_attach_domain(sd, d.rd, i);
7199 }
7200 rcu_read_unlock();
7201
7202 ret = 0;
7203 error:
7204 __free_domain_allocs(&d, alloc_state, cpu_map);
7205 return ret;
7206 }
7207
7208 static cpumask_var_t *doms_cur; /* current sched domains */
7209 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7210 static struct sched_domain_attr *dattr_cur;
7211 /* attribues of custom domains in 'doms_cur' */
7212
7213 /*
7214 * Special case: If a kmalloc of a doms_cur partition (array of
7215 * cpumask) fails, then fallback to a single sched domain,
7216 * as determined by the single cpumask fallback_doms.
7217 */
7218 static cpumask_var_t fallback_doms;
7219
7220 /*
7221 * arch_update_cpu_topology lets virtualized architectures update the
7222 * cpu core maps. It is supposed to return 1 if the topology changed
7223 * or 0 if it stayed the same.
7224 */
7225 int __weak arch_update_cpu_topology(void)
7226 {
7227 return 0;
7228 }
7229
7230 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7231 {
7232 int i;
7233 cpumask_var_t *doms;
7234
7235 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7236 if (!doms)
7237 return NULL;
7238 for (i = 0; i < ndoms; i++) {
7239 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7240 free_sched_domains(doms, i);
7241 return NULL;
7242 }
7243 }
7244 return doms;
7245 }
7246
7247 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7248 {
7249 unsigned int i;
7250 for (i = 0; i < ndoms; i++)
7251 free_cpumask_var(doms[i]);
7252 kfree(doms);
7253 }
7254
7255 /*
7256 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7257 * For now this just excludes isolated cpus, but could be used to
7258 * exclude other special cases in the future.
7259 */
7260 static int init_sched_domains(const struct cpumask *cpu_map)
7261 {
7262 int err;
7263
7264 arch_update_cpu_topology();
7265 ndoms_cur = 1;
7266 doms_cur = alloc_sched_domains(ndoms_cur);
7267 if (!doms_cur)
7268 doms_cur = &fallback_doms;
7269 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7270 err = build_sched_domains(doms_cur[0], NULL);
7271 register_sched_domain_sysctl();
7272
7273 return err;
7274 }
7275
7276 /*
7277 * Detach sched domains from a group of cpus specified in cpu_map
7278 * These cpus will now be attached to the NULL domain
7279 */
7280 static void detach_destroy_domains(const struct cpumask *cpu_map)
7281 {
7282 int i;
7283
7284 rcu_read_lock();
7285 for_each_cpu(i, cpu_map)
7286 cpu_attach_domain(NULL, &def_root_domain, i);
7287 rcu_read_unlock();
7288 }
7289
7290 /* handle null as "default" */
7291 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7292 struct sched_domain_attr *new, int idx_new)
7293 {
7294 struct sched_domain_attr tmp;
7295
7296 /* fast path */
7297 if (!new && !cur)
7298 return 1;
7299
7300 tmp = SD_ATTR_INIT;
7301 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7302 new ? (new + idx_new) : &tmp,
7303 sizeof(struct sched_domain_attr));
7304 }
7305
7306 /*
7307 * Partition sched domains as specified by the 'ndoms_new'
7308 * cpumasks in the array doms_new[] of cpumasks. This compares
7309 * doms_new[] to the current sched domain partitioning, doms_cur[].
7310 * It destroys each deleted domain and builds each new domain.
7311 *
7312 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7313 * The masks don't intersect (don't overlap.) We should setup one
7314 * sched domain for each mask. CPUs not in any of the cpumasks will
7315 * not be load balanced. If the same cpumask appears both in the
7316 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7317 * it as it is.
7318 *
7319 * The passed in 'doms_new' should be allocated using
7320 * alloc_sched_domains. This routine takes ownership of it and will
7321 * free_sched_domains it when done with it. If the caller failed the
7322 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7323 * and partition_sched_domains() will fallback to the single partition
7324 * 'fallback_doms', it also forces the domains to be rebuilt.
7325 *
7326 * If doms_new == NULL it will be replaced with cpu_online_mask.
7327 * ndoms_new == 0 is a special case for destroying existing domains,
7328 * and it will not create the default domain.
7329 *
7330 * Call with hotplug lock held
7331 */
7332 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7333 struct sched_domain_attr *dattr_new)
7334 {
7335 int i, j, n;
7336 int new_topology;
7337
7338 mutex_lock(&sched_domains_mutex);
7339
7340 /* always unregister in case we don't destroy any domains */
7341 unregister_sched_domain_sysctl();
7342
7343 /* Let architecture update cpu core mappings. */
7344 new_topology = arch_update_cpu_topology();
7345
7346 n = doms_new ? ndoms_new : 0;
7347
7348 /* Destroy deleted domains */
7349 for (i = 0; i < ndoms_cur; i++) {
7350 for (j = 0; j < n && !new_topology; j++) {
7351 if (cpumask_equal(doms_cur[i], doms_new[j])
7352 && dattrs_equal(dattr_cur, i, dattr_new, j))
7353 goto match1;
7354 }
7355 /* no match - a current sched domain not in new doms_new[] */
7356 detach_destroy_domains(doms_cur[i]);
7357 match1:
7358 ;
7359 }
7360
7361 n = ndoms_cur;
7362 if (doms_new == NULL) {
7363 n = 0;
7364 doms_new = &fallback_doms;
7365 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7366 WARN_ON_ONCE(dattr_new);
7367 }
7368
7369 /* Build new domains */
7370 for (i = 0; i < ndoms_new; i++) {
7371 for (j = 0; j < n && !new_topology; j++) {
7372 if (cpumask_equal(doms_new[i], doms_cur[j])
7373 && dattrs_equal(dattr_new, i, dattr_cur, j))
7374 goto match2;
7375 }
7376 /* no match - add a new doms_new */
7377 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7378 match2:
7379 ;
7380 }
7381
7382 /* Remember the new sched domains */
7383 if (doms_cur != &fallback_doms)
7384 free_sched_domains(doms_cur, ndoms_cur);
7385 kfree(dattr_cur); /* kfree(NULL) is safe */
7386 doms_cur = doms_new;
7387 dattr_cur = dattr_new;
7388 ndoms_cur = ndoms_new;
7389
7390 register_sched_domain_sysctl();
7391
7392 mutex_unlock(&sched_domains_mutex);
7393 }
7394
7395 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7396
7397 /*
7398 * Update cpusets according to cpu_active mask. If cpusets are
7399 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7400 * around partition_sched_domains().
7401 *
7402 * If we come here as part of a suspend/resume, don't touch cpusets because we
7403 * want to restore it back to its original state upon resume anyway.
7404 */
7405 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7406 void *hcpu)
7407 {
7408 switch (action) {
7409 case CPU_ONLINE_FROZEN:
7410 case CPU_DOWN_FAILED_FROZEN:
7411
7412 /*
7413 * num_cpus_frozen tracks how many CPUs are involved in suspend
7414 * resume sequence. As long as this is not the last online
7415 * operation in the resume sequence, just build a single sched
7416 * domain, ignoring cpusets.
7417 */
7418 num_cpus_frozen--;
7419 if (likely(num_cpus_frozen)) {
7420 partition_sched_domains(1, NULL, NULL);
7421 break;
7422 }
7423
7424 /*
7425 * This is the last CPU online operation. So fall through and
7426 * restore the original sched domains by considering the
7427 * cpuset configurations.
7428 */
7429
7430 case CPU_ONLINE:
7431 cpuset_update_active_cpus(true);
7432 break;
7433 default:
7434 return NOTIFY_DONE;
7435 }
7436 return NOTIFY_OK;
7437 }
7438
7439 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7440 void *hcpu)
7441 {
7442 unsigned long flags;
7443 long cpu = (long)hcpu;
7444 struct dl_bw *dl_b;
7445 bool overflow;
7446 int cpus;
7447
7448 switch (action) {
7449 case CPU_DOWN_PREPARE:
7450 rcu_read_lock_sched();
7451 dl_b = dl_bw_of(cpu);
7452
7453 raw_spin_lock_irqsave(&dl_b->lock, flags);
7454 cpus = dl_bw_cpus(cpu);
7455 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7456 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7457
7458 rcu_read_unlock_sched();
7459
7460 if (overflow)
7461 return notifier_from_errno(-EBUSY);
7462 cpuset_update_active_cpus(false);
7463 break;
7464 case CPU_DOWN_PREPARE_FROZEN:
7465 num_cpus_frozen++;
7466 partition_sched_domains(1, NULL, NULL);
7467 break;
7468 default:
7469 return NOTIFY_DONE;
7470 }
7471 return NOTIFY_OK;
7472 }
7473
7474 void __init sched_init_smp(void)
7475 {
7476 cpumask_var_t non_isolated_cpus;
7477
7478 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7479 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7480
7481 sched_init_numa();
7482
7483 /*
7484 * There's no userspace yet to cause hotplug operations; hence all the
7485 * cpu masks are stable and all blatant races in the below code cannot
7486 * happen.
7487 */
7488 mutex_lock(&sched_domains_mutex);
7489 init_sched_domains(cpu_active_mask);
7490 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7491 if (cpumask_empty(non_isolated_cpus))
7492 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7493 mutex_unlock(&sched_domains_mutex);
7494
7495 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7496 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7497 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7498
7499 init_hrtick();
7500
7501 /* Move init over to a non-isolated CPU */
7502 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7503 BUG();
7504 sched_init_granularity();
7505 free_cpumask_var(non_isolated_cpus);
7506
7507 init_sched_rt_class();
7508 init_sched_dl_class();
7509 }
7510 #else
7511 void __init sched_init_smp(void)
7512 {
7513 sched_init_granularity();
7514 }
7515 #endif /* CONFIG_SMP */
7516
7517 int in_sched_functions(unsigned long addr)
7518 {
7519 return in_lock_functions(addr) ||
7520 (addr >= (unsigned long)__sched_text_start
7521 && addr < (unsigned long)__sched_text_end);
7522 }
7523
7524 #ifdef CONFIG_CGROUP_SCHED
7525 /*
7526 * Default task group.
7527 * Every task in system belongs to this group at bootup.
7528 */
7529 struct task_group root_task_group;
7530 LIST_HEAD(task_groups);
7531
7532 /* Cacheline aligned slab cache for task_group */
7533 static struct kmem_cache *task_group_cache __read_mostly;
7534 #endif
7535
7536 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7537
7538 void __init sched_init(void)
7539 {
7540 int i, j;
7541 unsigned long alloc_size = 0, ptr;
7542
7543 #ifdef CONFIG_FAIR_GROUP_SCHED
7544 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7545 #endif
7546 #ifdef CONFIG_RT_GROUP_SCHED
7547 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7548 #endif
7549 if (alloc_size) {
7550 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7551
7552 #ifdef CONFIG_FAIR_GROUP_SCHED
7553 root_task_group.se = (struct sched_entity **)ptr;
7554 ptr += nr_cpu_ids * sizeof(void **);
7555
7556 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7557 ptr += nr_cpu_ids * sizeof(void **);
7558
7559 #endif /* CONFIG_FAIR_GROUP_SCHED */
7560 #ifdef CONFIG_RT_GROUP_SCHED
7561 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7562 ptr += nr_cpu_ids * sizeof(void **);
7563
7564 root_task_group.rt_rq = (struct rt_rq **)ptr;
7565 ptr += nr_cpu_ids * sizeof(void **);
7566
7567 #endif /* CONFIG_RT_GROUP_SCHED */
7568 }
7569 #ifdef CONFIG_CPUMASK_OFFSTACK
7570 for_each_possible_cpu(i) {
7571 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7572 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7573 }
7574 #endif /* CONFIG_CPUMASK_OFFSTACK */
7575
7576 init_rt_bandwidth(&def_rt_bandwidth,
7577 global_rt_period(), global_rt_runtime());
7578 init_dl_bandwidth(&def_dl_bandwidth,
7579 global_rt_period(), global_rt_runtime());
7580
7581 #ifdef CONFIG_SMP
7582 init_defrootdomain();
7583 #endif
7584
7585 #ifdef CONFIG_RT_GROUP_SCHED
7586 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7587 global_rt_period(), global_rt_runtime());
7588 #endif /* CONFIG_RT_GROUP_SCHED */
7589
7590 #ifdef CONFIG_CGROUP_SCHED
7591 task_group_cache = KMEM_CACHE(task_group, 0);
7592
7593 list_add(&root_task_group.list, &task_groups);
7594 INIT_LIST_HEAD(&root_task_group.children);
7595 INIT_LIST_HEAD(&root_task_group.siblings);
7596 autogroup_init(&init_task);
7597 #endif /* CONFIG_CGROUP_SCHED */
7598
7599 for_each_possible_cpu(i) {
7600 struct rq *rq;
7601
7602 rq = cpu_rq(i);
7603 raw_spin_lock_init(&rq->lock);
7604 rq->nr_running = 0;
7605 rq->calc_load_active = 0;
7606 rq->calc_load_update = jiffies + LOAD_FREQ;
7607 init_cfs_rq(&rq->cfs);
7608 init_rt_rq(&rq->rt);
7609 init_dl_rq(&rq->dl);
7610 #ifdef CONFIG_FAIR_GROUP_SCHED
7611 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7612 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7613 /*
7614 * How much cpu bandwidth does root_task_group get?
7615 *
7616 * In case of task-groups formed thr' the cgroup filesystem, it
7617 * gets 100% of the cpu resources in the system. This overall
7618 * system cpu resource is divided among the tasks of
7619 * root_task_group and its child task-groups in a fair manner,
7620 * based on each entity's (task or task-group's) weight
7621 * (se->load.weight).
7622 *
7623 * In other words, if root_task_group has 10 tasks of weight
7624 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7625 * then A0's share of the cpu resource is:
7626 *
7627 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7628 *
7629 * We achieve this by letting root_task_group's tasks sit
7630 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7631 */
7632 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7633 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7634 #endif /* CONFIG_FAIR_GROUP_SCHED */
7635
7636 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7637 #ifdef CONFIG_RT_GROUP_SCHED
7638 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7639 #endif
7640
7641 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7642 rq->cpu_load[j] = 0;
7643
7644 rq->last_load_update_tick = jiffies;
7645
7646 #ifdef CONFIG_SMP
7647 rq->sd = NULL;
7648 rq->rd = NULL;
7649 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7650 rq->balance_callback = NULL;
7651 rq->active_balance = 0;
7652 rq->next_balance = jiffies;
7653 rq->push_cpu = 0;
7654 rq->cpu = i;
7655 rq->online = 0;
7656 rq->idle_stamp = 0;
7657 rq->avg_idle = 2*sysctl_sched_migration_cost;
7658 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7659
7660 INIT_LIST_HEAD(&rq->cfs_tasks);
7661
7662 rq_attach_root(rq, &def_root_domain);
7663 #ifdef CONFIG_NO_HZ_COMMON
7664 rq->nohz_flags = 0;
7665 #endif
7666 #ifdef CONFIG_NO_HZ_FULL
7667 rq->last_sched_tick = 0;
7668 #endif
7669 #endif
7670 init_rq_hrtick(rq);
7671 atomic_set(&rq->nr_iowait, 0);
7672 }
7673
7674 set_load_weight(&init_task);
7675
7676 #ifdef CONFIG_PREEMPT_NOTIFIERS
7677 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7678 #endif
7679
7680 /*
7681 * The boot idle thread does lazy MMU switching as well:
7682 */
7683 atomic_inc(&init_mm.mm_count);
7684 enter_lazy_tlb(&init_mm, current);
7685
7686 /*
7687 * During early bootup we pretend to be a normal task:
7688 */
7689 current->sched_class = &fair_sched_class;
7690
7691 /*
7692 * Make us the idle thread. Technically, schedule() should not be
7693 * called from this thread, however somewhere below it might be,
7694 * but because we are the idle thread, we just pick up running again
7695 * when this runqueue becomes "idle".
7696 */
7697 init_idle(current, smp_processor_id());
7698
7699 calc_load_update = jiffies + LOAD_FREQ;
7700
7701 #ifdef CONFIG_SMP
7702 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7703 /* May be allocated at isolcpus cmdline parse time */
7704 if (cpu_isolated_map == NULL)
7705 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7706 idle_thread_set_boot_cpu();
7707 set_cpu_rq_start_time();
7708 #endif
7709 init_sched_fair_class();
7710
7711 scheduler_running = 1;
7712 }
7713
7714 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7715 static inline int preempt_count_equals(int preempt_offset)
7716 {
7717 int nested = preempt_count() + rcu_preempt_depth();
7718
7719 return (nested == preempt_offset);
7720 }
7721
7722 void __might_sleep(const char *file, int line, int preempt_offset)
7723 {
7724 /*
7725 * Blocking primitives will set (and therefore destroy) current->state,
7726 * since we will exit with TASK_RUNNING make sure we enter with it,
7727 * otherwise we will destroy state.
7728 */
7729 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7730 "do not call blocking ops when !TASK_RUNNING; "
7731 "state=%lx set at [<%p>] %pS\n",
7732 current->state,
7733 (void *)current->task_state_change,
7734 (void *)current->task_state_change);
7735
7736 ___might_sleep(file, line, preempt_offset);
7737 }
7738 EXPORT_SYMBOL(__might_sleep);
7739
7740 void ___might_sleep(const char *file, int line, int preempt_offset)
7741 {
7742 static unsigned long prev_jiffy; /* ratelimiting */
7743
7744 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7745 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7746 !is_idle_task(current)) ||
7747 system_state != SYSTEM_RUNNING || oops_in_progress)
7748 return;
7749 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7750 return;
7751 prev_jiffy = jiffies;
7752
7753 printk(KERN_ERR
7754 "BUG: sleeping function called from invalid context at %s:%d\n",
7755 file, line);
7756 printk(KERN_ERR
7757 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7758 in_atomic(), irqs_disabled(),
7759 current->pid, current->comm);
7760
7761 if (task_stack_end_corrupted(current))
7762 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7763
7764 debug_show_held_locks(current);
7765 if (irqs_disabled())
7766 print_irqtrace_events(current);
7767 #ifdef CONFIG_DEBUG_PREEMPT
7768 if (!preempt_count_equals(preempt_offset)) {
7769 pr_err("Preemption disabled at:");
7770 print_ip_sym(current->preempt_disable_ip);
7771 pr_cont("\n");
7772 }
7773 #endif
7774 dump_stack();
7775 }
7776 EXPORT_SYMBOL(___might_sleep);
7777 #endif
7778
7779 #ifdef CONFIG_MAGIC_SYSRQ
7780 void normalize_rt_tasks(void)
7781 {
7782 struct task_struct *g, *p;
7783 struct sched_attr attr = {
7784 .sched_policy = SCHED_NORMAL,
7785 };
7786
7787 read_lock(&tasklist_lock);
7788 for_each_process_thread(g, p) {
7789 /*
7790 * Only normalize user tasks:
7791 */
7792 if (p->flags & PF_KTHREAD)
7793 continue;
7794
7795 p->se.exec_start = 0;
7796 #ifdef CONFIG_SCHEDSTATS
7797 p->se.statistics.wait_start = 0;
7798 p->se.statistics.sleep_start = 0;
7799 p->se.statistics.block_start = 0;
7800 #endif
7801
7802 if (!dl_task(p) && !rt_task(p)) {
7803 /*
7804 * Renice negative nice level userspace
7805 * tasks back to 0:
7806 */
7807 if (task_nice(p) < 0)
7808 set_user_nice(p, 0);
7809 continue;
7810 }
7811
7812 __sched_setscheduler(p, &attr, false, false);
7813 }
7814 read_unlock(&tasklist_lock);
7815 }
7816
7817 #endif /* CONFIG_MAGIC_SYSRQ */
7818
7819 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7820 /*
7821 * These functions are only useful for the IA64 MCA handling, or kdb.
7822 *
7823 * They can only be called when the whole system has been
7824 * stopped - every CPU needs to be quiescent, and no scheduling
7825 * activity can take place. Using them for anything else would
7826 * be a serious bug, and as a result, they aren't even visible
7827 * under any other configuration.
7828 */
7829
7830 /**
7831 * curr_task - return the current task for a given cpu.
7832 * @cpu: the processor in question.
7833 *
7834 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7835 *
7836 * Return: The current task for @cpu.
7837 */
7838 struct task_struct *curr_task(int cpu)
7839 {
7840 return cpu_curr(cpu);
7841 }
7842
7843 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7844
7845 #ifdef CONFIG_IA64
7846 /**
7847 * set_curr_task - set the current task for a given cpu.
7848 * @cpu: the processor in question.
7849 * @p: the task pointer to set.
7850 *
7851 * Description: This function must only be used when non-maskable interrupts
7852 * are serviced on a separate stack. It allows the architecture to switch the
7853 * notion of the current task on a cpu in a non-blocking manner. This function
7854 * must be called with all CPU's synchronized, and interrupts disabled, the
7855 * and caller must save the original value of the current task (see
7856 * curr_task() above) and restore that value before reenabling interrupts and
7857 * re-starting the system.
7858 *
7859 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7860 */
7861 void set_curr_task(int cpu, struct task_struct *p)
7862 {
7863 cpu_curr(cpu) = p;
7864 }
7865
7866 #endif
7867
7868 #ifdef CONFIG_CGROUP_SCHED
7869 /* task_group_lock serializes the addition/removal of task groups */
7870 static DEFINE_SPINLOCK(task_group_lock);
7871
7872 static void free_sched_group(struct task_group *tg)
7873 {
7874 free_fair_sched_group(tg);
7875 free_rt_sched_group(tg);
7876 autogroup_free(tg);
7877 kmem_cache_free(task_group_cache, tg);
7878 }
7879
7880 /* allocate runqueue etc for a new task group */
7881 struct task_group *sched_create_group(struct task_group *parent)
7882 {
7883 struct task_group *tg;
7884
7885 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7886 if (!tg)
7887 return ERR_PTR(-ENOMEM);
7888
7889 if (!alloc_fair_sched_group(tg, parent))
7890 goto err;
7891
7892 if (!alloc_rt_sched_group(tg, parent))
7893 goto err;
7894
7895 return tg;
7896
7897 err:
7898 free_sched_group(tg);
7899 return ERR_PTR(-ENOMEM);
7900 }
7901
7902 void sched_online_group(struct task_group *tg, struct task_group *parent)
7903 {
7904 unsigned long flags;
7905
7906 spin_lock_irqsave(&task_group_lock, flags);
7907 list_add_rcu(&tg->list, &task_groups);
7908
7909 WARN_ON(!parent); /* root should already exist */
7910
7911 tg->parent = parent;
7912 INIT_LIST_HEAD(&tg->children);
7913 list_add_rcu(&tg->siblings, &parent->children);
7914 spin_unlock_irqrestore(&task_group_lock, flags);
7915 }
7916
7917 /* rcu callback to free various structures associated with a task group */
7918 static void free_sched_group_rcu(struct rcu_head *rhp)
7919 {
7920 /* now it should be safe to free those cfs_rqs */
7921 free_sched_group(container_of(rhp, struct task_group, rcu));
7922 }
7923
7924 /* Destroy runqueue etc associated with a task group */
7925 void sched_destroy_group(struct task_group *tg)
7926 {
7927 /* wait for possible concurrent references to cfs_rqs complete */
7928 call_rcu(&tg->rcu, free_sched_group_rcu);
7929 }
7930
7931 void sched_offline_group(struct task_group *tg)
7932 {
7933 unsigned long flags;
7934 int i;
7935
7936 /* end participation in shares distribution */
7937 for_each_possible_cpu(i)
7938 unregister_fair_sched_group(tg, i);
7939
7940 spin_lock_irqsave(&task_group_lock, flags);
7941 list_del_rcu(&tg->list);
7942 list_del_rcu(&tg->siblings);
7943 spin_unlock_irqrestore(&task_group_lock, flags);
7944 }
7945
7946 /* change task's runqueue when it moves between groups.
7947 * The caller of this function should have put the task in its new group
7948 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7949 * reflect its new group.
7950 */
7951 void sched_move_task(struct task_struct *tsk)
7952 {
7953 struct task_group *tg;
7954 int queued, running;
7955 unsigned long flags;
7956 struct rq *rq;
7957
7958 rq = task_rq_lock(tsk, &flags);
7959
7960 running = task_current(rq, tsk);
7961 queued = task_on_rq_queued(tsk);
7962
7963 if (queued)
7964 dequeue_task(rq, tsk, DEQUEUE_SAVE);
7965 if (unlikely(running))
7966 put_prev_task(rq, tsk);
7967
7968 /*
7969 * All callers are synchronized by task_rq_lock(); we do not use RCU
7970 * which is pointless here. Thus, we pass "true" to task_css_check()
7971 * to prevent lockdep warnings.
7972 */
7973 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7974 struct task_group, css);
7975 tg = autogroup_task_group(tsk, tg);
7976 tsk->sched_task_group = tg;
7977
7978 #ifdef CONFIG_FAIR_GROUP_SCHED
7979 if (tsk->sched_class->task_move_group)
7980 tsk->sched_class->task_move_group(tsk);
7981 else
7982 #endif
7983 set_task_rq(tsk, task_cpu(tsk));
7984
7985 if (unlikely(running))
7986 tsk->sched_class->set_curr_task(rq);
7987 if (queued)
7988 enqueue_task(rq, tsk, ENQUEUE_RESTORE);
7989
7990 task_rq_unlock(rq, tsk, &flags);
7991 }
7992 #endif /* CONFIG_CGROUP_SCHED */
7993
7994 #ifdef CONFIG_RT_GROUP_SCHED
7995 /*
7996 * Ensure that the real time constraints are schedulable.
7997 */
7998 static DEFINE_MUTEX(rt_constraints_mutex);
7999
8000 /* Must be called with tasklist_lock held */
8001 static inline int tg_has_rt_tasks(struct task_group *tg)
8002 {
8003 struct task_struct *g, *p;
8004
8005 /*
8006 * Autogroups do not have RT tasks; see autogroup_create().
8007 */
8008 if (task_group_is_autogroup(tg))
8009 return 0;
8010
8011 for_each_process_thread(g, p) {
8012 if (rt_task(p) && task_group(p) == tg)
8013 return 1;
8014 }
8015
8016 return 0;
8017 }
8018
8019 struct rt_schedulable_data {
8020 struct task_group *tg;
8021 u64 rt_period;
8022 u64 rt_runtime;
8023 };
8024
8025 static int tg_rt_schedulable(struct task_group *tg, void *data)
8026 {
8027 struct rt_schedulable_data *d = data;
8028 struct task_group *child;
8029 unsigned long total, sum = 0;
8030 u64 period, runtime;
8031
8032 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8033 runtime = tg->rt_bandwidth.rt_runtime;
8034
8035 if (tg == d->tg) {
8036 period = d->rt_period;
8037 runtime = d->rt_runtime;
8038 }
8039
8040 /*
8041 * Cannot have more runtime than the period.
8042 */
8043 if (runtime > period && runtime != RUNTIME_INF)
8044 return -EINVAL;
8045
8046 /*
8047 * Ensure we don't starve existing RT tasks.
8048 */
8049 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8050 return -EBUSY;
8051
8052 total = to_ratio(period, runtime);
8053
8054 /*
8055 * Nobody can have more than the global setting allows.
8056 */
8057 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8058 return -EINVAL;
8059
8060 /*
8061 * The sum of our children's runtime should not exceed our own.
8062 */
8063 list_for_each_entry_rcu(child, &tg->children, siblings) {
8064 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8065 runtime = child->rt_bandwidth.rt_runtime;
8066
8067 if (child == d->tg) {
8068 period = d->rt_period;
8069 runtime = d->rt_runtime;
8070 }
8071
8072 sum += to_ratio(period, runtime);
8073 }
8074
8075 if (sum > total)
8076 return -EINVAL;
8077
8078 return 0;
8079 }
8080
8081 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8082 {
8083 int ret;
8084
8085 struct rt_schedulable_data data = {
8086 .tg = tg,
8087 .rt_period = period,
8088 .rt_runtime = runtime,
8089 };
8090
8091 rcu_read_lock();
8092 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8093 rcu_read_unlock();
8094
8095 return ret;
8096 }
8097
8098 static int tg_set_rt_bandwidth(struct task_group *tg,
8099 u64 rt_period, u64 rt_runtime)
8100 {
8101 int i, err = 0;
8102
8103 /*
8104 * Disallowing the root group RT runtime is BAD, it would disallow the
8105 * kernel creating (and or operating) RT threads.
8106 */
8107 if (tg == &root_task_group && rt_runtime == 0)
8108 return -EINVAL;
8109
8110 /* No period doesn't make any sense. */
8111 if (rt_period == 0)
8112 return -EINVAL;
8113
8114 mutex_lock(&rt_constraints_mutex);
8115 read_lock(&tasklist_lock);
8116 err = __rt_schedulable(tg, rt_period, rt_runtime);
8117 if (err)
8118 goto unlock;
8119
8120 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8121 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8122 tg->rt_bandwidth.rt_runtime = rt_runtime;
8123
8124 for_each_possible_cpu(i) {
8125 struct rt_rq *rt_rq = tg->rt_rq[i];
8126
8127 raw_spin_lock(&rt_rq->rt_runtime_lock);
8128 rt_rq->rt_runtime = rt_runtime;
8129 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8130 }
8131 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8132 unlock:
8133 read_unlock(&tasklist_lock);
8134 mutex_unlock(&rt_constraints_mutex);
8135
8136 return err;
8137 }
8138
8139 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8140 {
8141 u64 rt_runtime, rt_period;
8142
8143 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8144 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8145 if (rt_runtime_us < 0)
8146 rt_runtime = RUNTIME_INF;
8147
8148 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8149 }
8150
8151 static long sched_group_rt_runtime(struct task_group *tg)
8152 {
8153 u64 rt_runtime_us;
8154
8155 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8156 return -1;
8157
8158 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8159 do_div(rt_runtime_us, NSEC_PER_USEC);
8160 return rt_runtime_us;
8161 }
8162
8163 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8164 {
8165 u64 rt_runtime, rt_period;
8166
8167 rt_period = rt_period_us * NSEC_PER_USEC;
8168 rt_runtime = tg->rt_bandwidth.rt_runtime;
8169
8170 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8171 }
8172
8173 static long sched_group_rt_period(struct task_group *tg)
8174 {
8175 u64 rt_period_us;
8176
8177 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8178 do_div(rt_period_us, NSEC_PER_USEC);
8179 return rt_period_us;
8180 }
8181 #endif /* CONFIG_RT_GROUP_SCHED */
8182
8183 #ifdef CONFIG_RT_GROUP_SCHED
8184 static int sched_rt_global_constraints(void)
8185 {
8186 int ret = 0;
8187
8188 mutex_lock(&rt_constraints_mutex);
8189 read_lock(&tasklist_lock);
8190 ret = __rt_schedulable(NULL, 0, 0);
8191 read_unlock(&tasklist_lock);
8192 mutex_unlock(&rt_constraints_mutex);
8193
8194 return ret;
8195 }
8196
8197 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8198 {
8199 /* Don't accept realtime tasks when there is no way for them to run */
8200 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8201 return 0;
8202
8203 return 1;
8204 }
8205
8206 #else /* !CONFIG_RT_GROUP_SCHED */
8207 static int sched_rt_global_constraints(void)
8208 {
8209 unsigned long flags;
8210 int i, ret = 0;
8211
8212 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8213 for_each_possible_cpu(i) {
8214 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8215
8216 raw_spin_lock(&rt_rq->rt_runtime_lock);
8217 rt_rq->rt_runtime = global_rt_runtime();
8218 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8219 }
8220 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8221
8222 return ret;
8223 }
8224 #endif /* CONFIG_RT_GROUP_SCHED */
8225
8226 static int sched_dl_global_validate(void)
8227 {
8228 u64 runtime = global_rt_runtime();
8229 u64 period = global_rt_period();
8230 u64 new_bw = to_ratio(period, runtime);
8231 struct dl_bw *dl_b;
8232 int cpu, ret = 0;
8233 unsigned long flags;
8234
8235 /*
8236 * Here we want to check the bandwidth not being set to some
8237 * value smaller than the currently allocated bandwidth in
8238 * any of the root_domains.
8239 *
8240 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8241 * cycling on root_domains... Discussion on different/better
8242 * solutions is welcome!
8243 */
8244 for_each_possible_cpu(cpu) {
8245 rcu_read_lock_sched();
8246 dl_b = dl_bw_of(cpu);
8247
8248 raw_spin_lock_irqsave(&dl_b->lock, flags);
8249 if (new_bw < dl_b->total_bw)
8250 ret = -EBUSY;
8251 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8252
8253 rcu_read_unlock_sched();
8254
8255 if (ret)
8256 break;
8257 }
8258
8259 return ret;
8260 }
8261
8262 static void sched_dl_do_global(void)
8263 {
8264 u64 new_bw = -1;
8265 struct dl_bw *dl_b;
8266 int cpu;
8267 unsigned long flags;
8268
8269 def_dl_bandwidth.dl_period = global_rt_period();
8270 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8271
8272 if (global_rt_runtime() != RUNTIME_INF)
8273 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8274
8275 /*
8276 * FIXME: As above...
8277 */
8278 for_each_possible_cpu(cpu) {
8279 rcu_read_lock_sched();
8280 dl_b = dl_bw_of(cpu);
8281
8282 raw_spin_lock_irqsave(&dl_b->lock, flags);
8283 dl_b->bw = new_bw;
8284 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8285
8286 rcu_read_unlock_sched();
8287 }
8288 }
8289
8290 static int sched_rt_global_validate(void)
8291 {
8292 if (sysctl_sched_rt_period <= 0)
8293 return -EINVAL;
8294
8295 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8296 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8297 return -EINVAL;
8298
8299 return 0;
8300 }
8301
8302 static void sched_rt_do_global(void)
8303 {
8304 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8305 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8306 }
8307
8308 int sched_rt_handler(struct ctl_table *table, int write,
8309 void __user *buffer, size_t *lenp,
8310 loff_t *ppos)
8311 {
8312 int old_period, old_runtime;
8313 static DEFINE_MUTEX(mutex);
8314 int ret;
8315
8316 mutex_lock(&mutex);
8317 old_period = sysctl_sched_rt_period;
8318 old_runtime = sysctl_sched_rt_runtime;
8319
8320 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8321
8322 if (!ret && write) {
8323 ret = sched_rt_global_validate();
8324 if (ret)
8325 goto undo;
8326
8327 ret = sched_dl_global_validate();
8328 if (ret)
8329 goto undo;
8330
8331 ret = sched_rt_global_constraints();
8332 if (ret)
8333 goto undo;
8334
8335 sched_rt_do_global();
8336 sched_dl_do_global();
8337 }
8338 if (0) {
8339 undo:
8340 sysctl_sched_rt_period = old_period;
8341 sysctl_sched_rt_runtime = old_runtime;
8342 }
8343 mutex_unlock(&mutex);
8344
8345 return ret;
8346 }
8347
8348 int sched_rr_handler(struct ctl_table *table, int write,
8349 void __user *buffer, size_t *lenp,
8350 loff_t *ppos)
8351 {
8352 int ret;
8353 static DEFINE_MUTEX(mutex);
8354
8355 mutex_lock(&mutex);
8356 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8357 /* make sure that internally we keep jiffies */
8358 /* also, writing zero resets timeslice to default */
8359 if (!ret && write) {
8360 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8361 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8362 }
8363 mutex_unlock(&mutex);
8364 return ret;
8365 }
8366
8367 #ifdef CONFIG_CGROUP_SCHED
8368
8369 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8370 {
8371 return css ? container_of(css, struct task_group, css) : NULL;
8372 }
8373
8374 static struct cgroup_subsys_state *
8375 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8376 {
8377 struct task_group *parent = css_tg(parent_css);
8378 struct task_group *tg;
8379
8380 if (!parent) {
8381 /* This is early initialization for the top cgroup */
8382 return &root_task_group.css;
8383 }
8384
8385 tg = sched_create_group(parent);
8386 if (IS_ERR(tg))
8387 return ERR_PTR(-ENOMEM);
8388
8389 return &tg->css;
8390 }
8391
8392 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8393 {
8394 struct task_group *tg = css_tg(css);
8395 struct task_group *parent = css_tg(css->parent);
8396
8397 if (parent)
8398 sched_online_group(tg, parent);
8399 return 0;
8400 }
8401
8402 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8403 {
8404 struct task_group *tg = css_tg(css);
8405
8406 sched_destroy_group(tg);
8407 }
8408
8409 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8410 {
8411 struct task_group *tg = css_tg(css);
8412
8413 sched_offline_group(tg);
8414 }
8415
8416 static void cpu_cgroup_fork(struct task_struct *task)
8417 {
8418 sched_move_task(task);
8419 }
8420
8421 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8422 {
8423 struct task_struct *task;
8424 struct cgroup_subsys_state *css;
8425
8426 cgroup_taskset_for_each(task, css, tset) {
8427 #ifdef CONFIG_RT_GROUP_SCHED
8428 if (!sched_rt_can_attach(css_tg(css), task))
8429 return -EINVAL;
8430 #else
8431 /* We don't support RT-tasks being in separate groups */
8432 if (task->sched_class != &fair_sched_class)
8433 return -EINVAL;
8434 #endif
8435 }
8436 return 0;
8437 }
8438
8439 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8440 {
8441 struct task_struct *task;
8442 struct cgroup_subsys_state *css;
8443
8444 cgroup_taskset_for_each(task, css, tset)
8445 sched_move_task(task);
8446 }
8447
8448 #ifdef CONFIG_FAIR_GROUP_SCHED
8449 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8450 struct cftype *cftype, u64 shareval)
8451 {
8452 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8453 }
8454
8455 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8456 struct cftype *cft)
8457 {
8458 struct task_group *tg = css_tg(css);
8459
8460 return (u64) scale_load_down(tg->shares);
8461 }
8462
8463 #ifdef CONFIG_CFS_BANDWIDTH
8464 static DEFINE_MUTEX(cfs_constraints_mutex);
8465
8466 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8467 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8468
8469 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8470
8471 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8472 {
8473 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8474 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8475
8476 if (tg == &root_task_group)
8477 return -EINVAL;
8478
8479 /*
8480 * Ensure we have at some amount of bandwidth every period. This is
8481 * to prevent reaching a state of large arrears when throttled via
8482 * entity_tick() resulting in prolonged exit starvation.
8483 */
8484 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8485 return -EINVAL;
8486
8487 /*
8488 * Likewise, bound things on the otherside by preventing insane quota
8489 * periods. This also allows us to normalize in computing quota
8490 * feasibility.
8491 */
8492 if (period > max_cfs_quota_period)
8493 return -EINVAL;
8494
8495 /*
8496 * Prevent race between setting of cfs_rq->runtime_enabled and
8497 * unthrottle_offline_cfs_rqs().
8498 */
8499 get_online_cpus();
8500 mutex_lock(&cfs_constraints_mutex);
8501 ret = __cfs_schedulable(tg, period, quota);
8502 if (ret)
8503 goto out_unlock;
8504
8505 runtime_enabled = quota != RUNTIME_INF;
8506 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8507 /*
8508 * If we need to toggle cfs_bandwidth_used, off->on must occur
8509 * before making related changes, and on->off must occur afterwards
8510 */
8511 if (runtime_enabled && !runtime_was_enabled)
8512 cfs_bandwidth_usage_inc();
8513 raw_spin_lock_irq(&cfs_b->lock);
8514 cfs_b->period = ns_to_ktime(period);
8515 cfs_b->quota = quota;
8516
8517 __refill_cfs_bandwidth_runtime(cfs_b);
8518 /* restart the period timer (if active) to handle new period expiry */
8519 if (runtime_enabled)
8520 start_cfs_bandwidth(cfs_b);
8521 raw_spin_unlock_irq(&cfs_b->lock);
8522
8523 for_each_online_cpu(i) {
8524 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8525 struct rq *rq = cfs_rq->rq;
8526
8527 raw_spin_lock_irq(&rq->lock);
8528 cfs_rq->runtime_enabled = runtime_enabled;
8529 cfs_rq->runtime_remaining = 0;
8530
8531 if (cfs_rq->throttled)
8532 unthrottle_cfs_rq(cfs_rq);
8533 raw_spin_unlock_irq(&rq->lock);
8534 }
8535 if (runtime_was_enabled && !runtime_enabled)
8536 cfs_bandwidth_usage_dec();
8537 out_unlock:
8538 mutex_unlock(&cfs_constraints_mutex);
8539 put_online_cpus();
8540
8541 return ret;
8542 }
8543
8544 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8545 {
8546 u64 quota, period;
8547
8548 period = ktime_to_ns(tg->cfs_bandwidth.period);
8549 if (cfs_quota_us < 0)
8550 quota = RUNTIME_INF;
8551 else
8552 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8553
8554 return tg_set_cfs_bandwidth(tg, period, quota);
8555 }
8556
8557 long tg_get_cfs_quota(struct task_group *tg)
8558 {
8559 u64 quota_us;
8560
8561 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8562 return -1;
8563
8564 quota_us = tg->cfs_bandwidth.quota;
8565 do_div(quota_us, NSEC_PER_USEC);
8566
8567 return quota_us;
8568 }
8569
8570 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8571 {
8572 u64 quota, period;
8573
8574 period = (u64)cfs_period_us * NSEC_PER_USEC;
8575 quota = tg->cfs_bandwidth.quota;
8576
8577 return tg_set_cfs_bandwidth(tg, period, quota);
8578 }
8579
8580 long tg_get_cfs_period(struct task_group *tg)
8581 {
8582 u64 cfs_period_us;
8583
8584 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8585 do_div(cfs_period_us, NSEC_PER_USEC);
8586
8587 return cfs_period_us;
8588 }
8589
8590 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8591 struct cftype *cft)
8592 {
8593 return tg_get_cfs_quota(css_tg(css));
8594 }
8595
8596 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8597 struct cftype *cftype, s64 cfs_quota_us)
8598 {
8599 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8600 }
8601
8602 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8603 struct cftype *cft)
8604 {
8605 return tg_get_cfs_period(css_tg(css));
8606 }
8607
8608 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8609 struct cftype *cftype, u64 cfs_period_us)
8610 {
8611 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8612 }
8613
8614 struct cfs_schedulable_data {
8615 struct task_group *tg;
8616 u64 period, quota;
8617 };
8618
8619 /*
8620 * normalize group quota/period to be quota/max_period
8621 * note: units are usecs
8622 */
8623 static u64 normalize_cfs_quota(struct task_group *tg,
8624 struct cfs_schedulable_data *d)
8625 {
8626 u64 quota, period;
8627
8628 if (tg == d->tg) {
8629 period = d->period;
8630 quota = d->quota;
8631 } else {
8632 period = tg_get_cfs_period(tg);
8633 quota = tg_get_cfs_quota(tg);
8634 }
8635
8636 /* note: these should typically be equivalent */
8637 if (quota == RUNTIME_INF || quota == -1)
8638 return RUNTIME_INF;
8639
8640 return to_ratio(period, quota);
8641 }
8642
8643 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8644 {
8645 struct cfs_schedulable_data *d = data;
8646 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8647 s64 quota = 0, parent_quota = -1;
8648
8649 if (!tg->parent) {
8650 quota = RUNTIME_INF;
8651 } else {
8652 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8653
8654 quota = normalize_cfs_quota(tg, d);
8655 parent_quota = parent_b->hierarchical_quota;
8656
8657 /*
8658 * ensure max(child_quota) <= parent_quota, inherit when no
8659 * limit is set
8660 */
8661 if (quota == RUNTIME_INF)
8662 quota = parent_quota;
8663 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8664 return -EINVAL;
8665 }
8666 cfs_b->hierarchical_quota = quota;
8667
8668 return 0;
8669 }
8670
8671 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8672 {
8673 int ret;
8674 struct cfs_schedulable_data data = {
8675 .tg = tg,
8676 .period = period,
8677 .quota = quota,
8678 };
8679
8680 if (quota != RUNTIME_INF) {
8681 do_div(data.period, NSEC_PER_USEC);
8682 do_div(data.quota, NSEC_PER_USEC);
8683 }
8684
8685 rcu_read_lock();
8686 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8687 rcu_read_unlock();
8688
8689 return ret;
8690 }
8691
8692 static int cpu_stats_show(struct seq_file *sf, void *v)
8693 {
8694 struct task_group *tg = css_tg(seq_css(sf));
8695 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8696
8697 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8698 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8699 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8700
8701 return 0;
8702 }
8703 #endif /* CONFIG_CFS_BANDWIDTH */
8704 #endif /* CONFIG_FAIR_GROUP_SCHED */
8705
8706 #ifdef CONFIG_RT_GROUP_SCHED
8707 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8708 struct cftype *cft, s64 val)
8709 {
8710 return sched_group_set_rt_runtime(css_tg(css), val);
8711 }
8712
8713 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8714 struct cftype *cft)
8715 {
8716 return sched_group_rt_runtime(css_tg(css));
8717 }
8718
8719 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8720 struct cftype *cftype, u64 rt_period_us)
8721 {
8722 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8723 }
8724
8725 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8726 struct cftype *cft)
8727 {
8728 return sched_group_rt_period(css_tg(css));
8729 }
8730 #endif /* CONFIG_RT_GROUP_SCHED */
8731
8732 static struct cftype cpu_files[] = {
8733 #ifdef CONFIG_FAIR_GROUP_SCHED
8734 {
8735 .name = "shares",
8736 .read_u64 = cpu_shares_read_u64,
8737 .write_u64 = cpu_shares_write_u64,
8738 },
8739 #endif
8740 #ifdef CONFIG_CFS_BANDWIDTH
8741 {
8742 .name = "cfs_quota_us",
8743 .read_s64 = cpu_cfs_quota_read_s64,
8744 .write_s64 = cpu_cfs_quota_write_s64,
8745 },
8746 {
8747 .name = "cfs_period_us",
8748 .read_u64 = cpu_cfs_period_read_u64,
8749 .write_u64 = cpu_cfs_period_write_u64,
8750 },
8751 {
8752 .name = "stat",
8753 .seq_show = cpu_stats_show,
8754 },
8755 #endif
8756 #ifdef CONFIG_RT_GROUP_SCHED
8757 {
8758 .name = "rt_runtime_us",
8759 .read_s64 = cpu_rt_runtime_read,
8760 .write_s64 = cpu_rt_runtime_write,
8761 },
8762 {
8763 .name = "rt_period_us",
8764 .read_u64 = cpu_rt_period_read_uint,
8765 .write_u64 = cpu_rt_period_write_uint,
8766 },
8767 #endif
8768 { } /* terminate */
8769 };
8770
8771 struct cgroup_subsys cpu_cgrp_subsys = {
8772 .css_alloc = cpu_cgroup_css_alloc,
8773 .css_free = cpu_cgroup_css_free,
8774 .css_online = cpu_cgroup_css_online,
8775 .css_offline = cpu_cgroup_css_offline,
8776 .fork = cpu_cgroup_fork,
8777 .can_attach = cpu_cgroup_can_attach,
8778 .attach = cpu_cgroup_attach,
8779 .legacy_cftypes = cpu_files,
8780 .early_init = 1,
8781 };
8782
8783 #endif /* CONFIG_CGROUP_SCHED */
8784
8785 void dump_cpu_task(int cpu)
8786 {
8787 pr_info("Task dump for CPU %d:\n", cpu);
8788 sched_show_task(cpu_curr(cpu));
8789 }
8790
8791 /*
8792 * Nice levels are multiplicative, with a gentle 10% change for every
8793 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8794 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8795 * that remained on nice 0.
8796 *
8797 * The "10% effect" is relative and cumulative: from _any_ nice level,
8798 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8799 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8800 * If a task goes up by ~10% and another task goes down by ~10% then
8801 * the relative distance between them is ~25%.)
8802 */
8803 const int sched_prio_to_weight[40] = {
8804 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8805 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8806 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8807 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8808 /* 0 */ 1024, 820, 655, 526, 423,
8809 /* 5 */ 335, 272, 215, 172, 137,
8810 /* 10 */ 110, 87, 70, 56, 45,
8811 /* 15 */ 36, 29, 23, 18, 15,
8812 };
8813
8814 /*
8815 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8816 *
8817 * In cases where the weight does not change often, we can use the
8818 * precalculated inverse to speed up arithmetics by turning divisions
8819 * into multiplications:
8820 */
8821 const u32 sched_prio_to_wmult[40] = {
8822 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8823 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8824 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8825 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8826 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8827 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8828 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8829 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8830 };
This page took 0.198229 seconds and 6 git commands to generate.