kvm/x86: Hyper-V HV_X64_MSR_VP_RUNTIME support
[deliverable/linux.git] / kernel / sched / cputime.c
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8
9
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12 /*
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23 DEFINE_PER_CPU(u64, cpu_hardirq_time);
24 DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26 static DEFINE_PER_CPU(u64, irq_start_time);
27 static int sched_clock_irqtime;
28
29 void enable_sched_clock_irqtime(void)
30 {
31 sched_clock_irqtime = 1;
32 }
33
34 void disable_sched_clock_irqtime(void)
35 {
36 sched_clock_irqtime = 0;
37 }
38
39 #ifndef CONFIG_64BIT
40 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41 #endif /* CONFIG_64BIT */
42
43 /*
44 * Called before incrementing preempt_count on {soft,}irq_enter
45 * and before decrementing preempt_count on {soft,}irq_exit.
46 */
47 void irqtime_account_irq(struct task_struct *curr)
48 {
49 unsigned long flags;
50 s64 delta;
51 int cpu;
52
53 if (!sched_clock_irqtime)
54 return;
55
56 local_irq_save(flags);
57
58 cpu = smp_processor_id();
59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 __this_cpu_add(irq_start_time, delta);
61
62 irq_time_write_begin();
63 /*
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
68 */
69 if (hardirq_count())
70 __this_cpu_add(cpu_hardirq_time, delta);
71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 __this_cpu_add(cpu_softirq_time, delta);
73
74 irq_time_write_end();
75 local_irq_restore(flags);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78
79 static int irqtime_account_hi_update(void)
80 {
81 u64 *cpustat = kcpustat_this_cpu->cpustat;
82 unsigned long flags;
83 u64 latest_ns;
84 int ret = 0;
85
86 local_irq_save(flags);
87 latest_ns = this_cpu_read(cpu_hardirq_time);
88 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 ret = 1;
90 local_irq_restore(flags);
91 return ret;
92 }
93
94 static int irqtime_account_si_update(void)
95 {
96 u64 *cpustat = kcpustat_this_cpu->cpustat;
97 unsigned long flags;
98 u64 latest_ns;
99 int ret = 0;
100
101 local_irq_save(flags);
102 latest_ns = this_cpu_read(cpu_softirq_time);
103 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 ret = 1;
105 local_irq_restore(flags);
106 return ret;
107 }
108
109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111 #define sched_clock_irqtime (0)
112
113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115 static inline void task_group_account_field(struct task_struct *p, int index,
116 u64 tmp)
117 {
118 /*
119 * Since all updates are sure to touch the root cgroup, we
120 * get ourselves ahead and touch it first. If the root cgroup
121 * is the only cgroup, then nothing else should be necessary.
122 *
123 */
124 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
125
126 cpuacct_account_field(p, index, tmp);
127 }
128
129 /*
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
134 */
135 void account_user_time(struct task_struct *p, cputime_t cputime,
136 cputime_t cputime_scaled)
137 {
138 int index;
139
140 /* Add user time to process. */
141 p->utime += cputime;
142 p->utimescaled += cputime_scaled;
143 account_group_user_time(p, cputime);
144
145 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146
147 /* Add user time to cpustat. */
148 task_group_account_field(p, index, (__force u64) cputime);
149
150 /* Account for user time used */
151 acct_account_cputime(p);
152 }
153
154 /*
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
159 */
160 static void account_guest_time(struct task_struct *p, cputime_t cputime,
161 cputime_t cputime_scaled)
162 {
163 u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165 /* Add guest time to process. */
166 p->utime += cputime;
167 p->utimescaled += cputime_scaled;
168 account_group_user_time(p, cputime);
169 p->gtime += cputime;
170
171 /* Add guest time to cpustat. */
172 if (task_nice(p) > 0) {
173 cpustat[CPUTIME_NICE] += (__force u64) cputime;
174 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175 } else {
176 cpustat[CPUTIME_USER] += (__force u64) cputime;
177 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178 }
179 }
180
181 /*
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
187 */
188 static inline
189 void __account_system_time(struct task_struct *p, cputime_t cputime,
190 cputime_t cputime_scaled, int index)
191 {
192 /* Add system time to process. */
193 p->stime += cputime;
194 p->stimescaled += cputime_scaled;
195 account_group_system_time(p, cputime);
196
197 /* Add system time to cpustat. */
198 task_group_account_field(p, index, (__force u64) cputime);
199
200 /* Account for system time used */
201 acct_account_cputime(p);
202 }
203
204 /*
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
210 */
211 void account_system_time(struct task_struct *p, int hardirq_offset,
212 cputime_t cputime, cputime_t cputime_scaled)
213 {
214 int index;
215
216 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217 account_guest_time(p, cputime, cputime_scaled);
218 return;
219 }
220
221 if (hardirq_count() - hardirq_offset)
222 index = CPUTIME_IRQ;
223 else if (in_serving_softirq())
224 index = CPUTIME_SOFTIRQ;
225 else
226 index = CPUTIME_SYSTEM;
227
228 __account_system_time(p, cputime, cputime_scaled, index);
229 }
230
231 /*
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
234 */
235 void account_steal_time(cputime_t cputime)
236 {
237 u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240 }
241
242 /*
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
245 */
246 void account_idle_time(cputime_t cputime)
247 {
248 u64 *cpustat = kcpustat_this_cpu->cpustat;
249 struct rq *rq = this_rq();
250
251 if (atomic_read(&rq->nr_iowait) > 0)
252 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253 else
254 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255 }
256
257 static __always_inline bool steal_account_process_tick(void)
258 {
259 #ifdef CONFIG_PARAVIRT
260 if (static_key_false(&paravirt_steal_enabled)) {
261 u64 steal;
262 cputime_t steal_ct;
263
264 steal = paravirt_steal_clock(smp_processor_id());
265 steal -= this_rq()->prev_steal_time;
266
267 /*
268 * cputime_t may be less precise than nsecs (eg: if it's
269 * based on jiffies). Lets cast the result to cputime
270 * granularity and account the rest on the next rounds.
271 */
272 steal_ct = nsecs_to_cputime(steal);
273 this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
274
275 account_steal_time(steal_ct);
276 return steal_ct;
277 }
278 #endif
279 return false;
280 }
281
282 /*
283 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284 * tasks (sum on group iteration) belonging to @tsk's group.
285 */
286 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
287 {
288 struct signal_struct *sig = tsk->signal;
289 cputime_t utime, stime;
290 struct task_struct *t;
291 unsigned int seq, nextseq;
292 unsigned long flags;
293
294 rcu_read_lock();
295 /* Attempt a lockless read on the first round. */
296 nextseq = 0;
297 do {
298 seq = nextseq;
299 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
300 times->utime = sig->utime;
301 times->stime = sig->stime;
302 times->sum_exec_runtime = sig->sum_sched_runtime;
303
304 for_each_thread(tsk, t) {
305 task_cputime(t, &utime, &stime);
306 times->utime += utime;
307 times->stime += stime;
308 times->sum_exec_runtime += task_sched_runtime(t);
309 }
310 /* If lockless access failed, take the lock. */
311 nextseq = 1;
312 } while (need_seqretry(&sig->stats_lock, seq));
313 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
314 rcu_read_unlock();
315 }
316
317 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
318 /*
319 * Account a tick to a process and cpustat
320 * @p: the process that the cpu time gets accounted to
321 * @user_tick: is the tick from userspace
322 * @rq: the pointer to rq
323 *
324 * Tick demultiplexing follows the order
325 * - pending hardirq update
326 * - pending softirq update
327 * - user_time
328 * - idle_time
329 * - system time
330 * - check for guest_time
331 * - else account as system_time
332 *
333 * Check for hardirq is done both for system and user time as there is
334 * no timer going off while we are on hardirq and hence we may never get an
335 * opportunity to update it solely in system time.
336 * p->stime and friends are only updated on system time and not on irq
337 * softirq as those do not count in task exec_runtime any more.
338 */
339 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
340 struct rq *rq, int ticks)
341 {
342 cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
343 u64 cputime = (__force u64) cputime_one_jiffy;
344 u64 *cpustat = kcpustat_this_cpu->cpustat;
345
346 if (steal_account_process_tick())
347 return;
348
349 cputime *= ticks;
350 scaled *= ticks;
351
352 if (irqtime_account_hi_update()) {
353 cpustat[CPUTIME_IRQ] += cputime;
354 } else if (irqtime_account_si_update()) {
355 cpustat[CPUTIME_SOFTIRQ] += cputime;
356 } else if (this_cpu_ksoftirqd() == p) {
357 /*
358 * ksoftirqd time do not get accounted in cpu_softirq_time.
359 * So, we have to handle it separately here.
360 * Also, p->stime needs to be updated for ksoftirqd.
361 */
362 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
363 } else if (user_tick) {
364 account_user_time(p, cputime, scaled);
365 } else if (p == rq->idle) {
366 account_idle_time(cputime);
367 } else if (p->flags & PF_VCPU) { /* System time or guest time */
368 account_guest_time(p, cputime, scaled);
369 } else {
370 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
371 }
372 }
373
374 static void irqtime_account_idle_ticks(int ticks)
375 {
376 struct rq *rq = this_rq();
377
378 irqtime_account_process_tick(current, 0, rq, ticks);
379 }
380 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
381 static inline void irqtime_account_idle_ticks(int ticks) {}
382 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
383 struct rq *rq, int nr_ticks) {}
384 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
385
386 /*
387 * Use precise platform statistics if available:
388 */
389 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
390
391 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
392 void vtime_common_task_switch(struct task_struct *prev)
393 {
394 if (is_idle_task(prev))
395 vtime_account_idle(prev);
396 else
397 vtime_account_system(prev);
398
399 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
400 vtime_account_user(prev);
401 #endif
402 arch_vtime_task_switch(prev);
403 }
404 #endif
405
406 /*
407 * Archs that account the whole time spent in the idle task
408 * (outside irq) as idle time can rely on this and just implement
409 * vtime_account_system() and vtime_account_idle(). Archs that
410 * have other meaning of the idle time (s390 only includes the
411 * time spent by the CPU when it's in low power mode) must override
412 * vtime_account().
413 */
414 #ifndef __ARCH_HAS_VTIME_ACCOUNT
415 void vtime_common_account_irq_enter(struct task_struct *tsk)
416 {
417 if (!in_interrupt()) {
418 /*
419 * If we interrupted user, context_tracking_in_user()
420 * is 1 because the context tracking don't hook
421 * on irq entry/exit. This way we know if
422 * we need to flush user time on kernel entry.
423 */
424 if (context_tracking_in_user()) {
425 vtime_account_user(tsk);
426 return;
427 }
428
429 if (is_idle_task(tsk)) {
430 vtime_account_idle(tsk);
431 return;
432 }
433 }
434 vtime_account_system(tsk);
435 }
436 EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
437 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
438 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
439
440
441 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
442 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
443 {
444 *ut = p->utime;
445 *st = p->stime;
446 }
447 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
448
449 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
450 {
451 struct task_cputime cputime;
452
453 thread_group_cputime(p, &cputime);
454
455 *ut = cputime.utime;
456 *st = cputime.stime;
457 }
458 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
459 /*
460 * Account a single tick of cpu time.
461 * @p: the process that the cpu time gets accounted to
462 * @user_tick: indicates if the tick is a user or a system tick
463 */
464 void account_process_tick(struct task_struct *p, int user_tick)
465 {
466 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
467 struct rq *rq = this_rq();
468
469 if (vtime_accounting_enabled())
470 return;
471
472 if (sched_clock_irqtime) {
473 irqtime_account_process_tick(p, user_tick, rq, 1);
474 return;
475 }
476
477 if (steal_account_process_tick())
478 return;
479
480 if (user_tick)
481 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
482 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
483 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
484 one_jiffy_scaled);
485 else
486 account_idle_time(cputime_one_jiffy);
487 }
488
489 /*
490 * Account multiple ticks of steal time.
491 * @p: the process from which the cpu time has been stolen
492 * @ticks: number of stolen ticks
493 */
494 void account_steal_ticks(unsigned long ticks)
495 {
496 account_steal_time(jiffies_to_cputime(ticks));
497 }
498
499 /*
500 * Account multiple ticks of idle time.
501 * @ticks: number of stolen ticks
502 */
503 void account_idle_ticks(unsigned long ticks)
504 {
505
506 if (sched_clock_irqtime) {
507 irqtime_account_idle_ticks(ticks);
508 return;
509 }
510
511 account_idle_time(jiffies_to_cputime(ticks));
512 }
513
514 /*
515 * Perform (stime * rtime) / total, but avoid multiplication overflow by
516 * loosing precision when the numbers are big.
517 */
518 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
519 {
520 u64 scaled;
521
522 for (;;) {
523 /* Make sure "rtime" is the bigger of stime/rtime */
524 if (stime > rtime)
525 swap(rtime, stime);
526
527 /* Make sure 'total' fits in 32 bits */
528 if (total >> 32)
529 goto drop_precision;
530
531 /* Does rtime (and thus stime) fit in 32 bits? */
532 if (!(rtime >> 32))
533 break;
534
535 /* Can we just balance rtime/stime rather than dropping bits? */
536 if (stime >> 31)
537 goto drop_precision;
538
539 /* We can grow stime and shrink rtime and try to make them both fit */
540 stime <<= 1;
541 rtime >>= 1;
542 continue;
543
544 drop_precision:
545 /* We drop from rtime, it has more bits than stime */
546 rtime >>= 1;
547 total >>= 1;
548 }
549
550 /*
551 * Make sure gcc understands that this is a 32x32->64 multiply,
552 * followed by a 64/32->64 divide.
553 */
554 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
555 return (__force cputime_t) scaled;
556 }
557
558 /*
559 * Adjust tick based cputime random precision against scheduler runtime
560 * accounting.
561 *
562 * Tick based cputime accounting depend on random scheduling timeslices of a
563 * task to be interrupted or not by the timer. Depending on these
564 * circumstances, the number of these interrupts may be over or
565 * under-optimistic, matching the real user and system cputime with a variable
566 * precision.
567 *
568 * Fix this by scaling these tick based values against the total runtime
569 * accounted by the CFS scheduler.
570 *
571 * This code provides the following guarantees:
572 *
573 * stime + utime == rtime
574 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
575 *
576 * Assuming that rtime_i+1 >= rtime_i.
577 */
578 static void cputime_adjust(struct task_cputime *curr,
579 struct prev_cputime *prev,
580 cputime_t *ut, cputime_t *st)
581 {
582 cputime_t rtime, stime, utime;
583 unsigned long flags;
584
585 /* Serialize concurrent callers such that we can honour our guarantees */
586 raw_spin_lock_irqsave(&prev->lock, flags);
587 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
588
589 /*
590 * This is possible under two circumstances:
591 * - rtime isn't monotonic after all (a bug);
592 * - we got reordered by the lock.
593 *
594 * In both cases this acts as a filter such that the rest of the code
595 * can assume it is monotonic regardless of anything else.
596 */
597 if (prev->stime + prev->utime >= rtime)
598 goto out;
599
600 stime = curr->stime;
601 utime = curr->utime;
602
603 if (utime == 0) {
604 stime = rtime;
605 goto update;
606 }
607
608 if (stime == 0) {
609 utime = rtime;
610 goto update;
611 }
612
613 stime = scale_stime((__force u64)stime, (__force u64)rtime,
614 (__force u64)(stime + utime));
615
616 /*
617 * Make sure stime doesn't go backwards; this preserves monotonicity
618 * for utime because rtime is monotonic.
619 *
620 * utime_i+1 = rtime_i+1 - stime_i
621 * = rtime_i+1 - (rtime_i - utime_i)
622 * = (rtime_i+1 - rtime_i) + utime_i
623 * >= utime_i
624 */
625 if (stime < prev->stime)
626 stime = prev->stime;
627 utime = rtime - stime;
628
629 /*
630 * Make sure utime doesn't go backwards; this still preserves
631 * monotonicity for stime, analogous argument to above.
632 */
633 if (utime < prev->utime) {
634 utime = prev->utime;
635 stime = rtime - utime;
636 }
637
638 update:
639 prev->stime = stime;
640 prev->utime = utime;
641 out:
642 *ut = prev->utime;
643 *st = prev->stime;
644 raw_spin_unlock_irqrestore(&prev->lock, flags);
645 }
646
647 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
648 {
649 struct task_cputime cputime = {
650 .sum_exec_runtime = p->se.sum_exec_runtime,
651 };
652
653 task_cputime(p, &cputime.utime, &cputime.stime);
654 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
655 }
656 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
657
658 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
659 {
660 struct task_cputime cputime;
661
662 thread_group_cputime(p, &cputime);
663 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
664 }
665 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
666
667 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
668 static unsigned long long vtime_delta(struct task_struct *tsk)
669 {
670 unsigned long long clock;
671
672 clock = local_clock();
673 if (clock < tsk->vtime_snap)
674 return 0;
675
676 return clock - tsk->vtime_snap;
677 }
678
679 static cputime_t get_vtime_delta(struct task_struct *tsk)
680 {
681 unsigned long long delta = vtime_delta(tsk);
682
683 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
684 tsk->vtime_snap += delta;
685
686 /* CHECKME: always safe to convert nsecs to cputime? */
687 return nsecs_to_cputime(delta);
688 }
689
690 static void __vtime_account_system(struct task_struct *tsk)
691 {
692 cputime_t delta_cpu = get_vtime_delta(tsk);
693
694 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
695 }
696
697 void vtime_account_system(struct task_struct *tsk)
698 {
699 write_seqlock(&tsk->vtime_seqlock);
700 __vtime_account_system(tsk);
701 write_sequnlock(&tsk->vtime_seqlock);
702 }
703
704 void vtime_gen_account_irq_exit(struct task_struct *tsk)
705 {
706 write_seqlock(&tsk->vtime_seqlock);
707 __vtime_account_system(tsk);
708 if (context_tracking_in_user())
709 tsk->vtime_snap_whence = VTIME_USER;
710 write_sequnlock(&tsk->vtime_seqlock);
711 }
712
713 void vtime_account_user(struct task_struct *tsk)
714 {
715 cputime_t delta_cpu;
716
717 write_seqlock(&tsk->vtime_seqlock);
718 delta_cpu = get_vtime_delta(tsk);
719 tsk->vtime_snap_whence = VTIME_SYS;
720 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
721 write_sequnlock(&tsk->vtime_seqlock);
722 }
723
724 void vtime_user_enter(struct task_struct *tsk)
725 {
726 write_seqlock(&tsk->vtime_seqlock);
727 __vtime_account_system(tsk);
728 tsk->vtime_snap_whence = VTIME_USER;
729 write_sequnlock(&tsk->vtime_seqlock);
730 }
731
732 void vtime_guest_enter(struct task_struct *tsk)
733 {
734 /*
735 * The flags must be updated under the lock with
736 * the vtime_snap flush and update.
737 * That enforces a right ordering and update sequence
738 * synchronization against the reader (task_gtime())
739 * that can thus safely catch up with a tickless delta.
740 */
741 write_seqlock(&tsk->vtime_seqlock);
742 __vtime_account_system(tsk);
743 current->flags |= PF_VCPU;
744 write_sequnlock(&tsk->vtime_seqlock);
745 }
746 EXPORT_SYMBOL_GPL(vtime_guest_enter);
747
748 void vtime_guest_exit(struct task_struct *tsk)
749 {
750 write_seqlock(&tsk->vtime_seqlock);
751 __vtime_account_system(tsk);
752 current->flags &= ~PF_VCPU;
753 write_sequnlock(&tsk->vtime_seqlock);
754 }
755 EXPORT_SYMBOL_GPL(vtime_guest_exit);
756
757 void vtime_account_idle(struct task_struct *tsk)
758 {
759 cputime_t delta_cpu = get_vtime_delta(tsk);
760
761 account_idle_time(delta_cpu);
762 }
763
764 void arch_vtime_task_switch(struct task_struct *prev)
765 {
766 write_seqlock(&prev->vtime_seqlock);
767 prev->vtime_snap_whence = VTIME_SLEEPING;
768 write_sequnlock(&prev->vtime_seqlock);
769
770 write_seqlock(&current->vtime_seqlock);
771 current->vtime_snap_whence = VTIME_SYS;
772 current->vtime_snap = sched_clock_cpu(smp_processor_id());
773 write_sequnlock(&current->vtime_seqlock);
774 }
775
776 void vtime_init_idle(struct task_struct *t, int cpu)
777 {
778 unsigned long flags;
779
780 write_seqlock_irqsave(&t->vtime_seqlock, flags);
781 t->vtime_snap_whence = VTIME_SYS;
782 t->vtime_snap = sched_clock_cpu(cpu);
783 write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
784 }
785
786 cputime_t task_gtime(struct task_struct *t)
787 {
788 unsigned int seq;
789 cputime_t gtime;
790
791 do {
792 seq = read_seqbegin(&t->vtime_seqlock);
793
794 gtime = t->gtime;
795 if (t->flags & PF_VCPU)
796 gtime += vtime_delta(t);
797
798 } while (read_seqretry(&t->vtime_seqlock, seq));
799
800 return gtime;
801 }
802
803 /*
804 * Fetch cputime raw values from fields of task_struct and
805 * add up the pending nohz execution time since the last
806 * cputime snapshot.
807 */
808 static void
809 fetch_task_cputime(struct task_struct *t,
810 cputime_t *u_dst, cputime_t *s_dst,
811 cputime_t *u_src, cputime_t *s_src,
812 cputime_t *udelta, cputime_t *sdelta)
813 {
814 unsigned int seq;
815 unsigned long long delta;
816
817 do {
818 *udelta = 0;
819 *sdelta = 0;
820
821 seq = read_seqbegin(&t->vtime_seqlock);
822
823 if (u_dst)
824 *u_dst = *u_src;
825 if (s_dst)
826 *s_dst = *s_src;
827
828 /* Task is sleeping, nothing to add */
829 if (t->vtime_snap_whence == VTIME_SLEEPING ||
830 is_idle_task(t))
831 continue;
832
833 delta = vtime_delta(t);
834
835 /*
836 * Task runs either in user or kernel space, add pending nohz time to
837 * the right place.
838 */
839 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
840 *udelta = delta;
841 } else {
842 if (t->vtime_snap_whence == VTIME_SYS)
843 *sdelta = delta;
844 }
845 } while (read_seqretry(&t->vtime_seqlock, seq));
846 }
847
848
849 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
850 {
851 cputime_t udelta, sdelta;
852
853 fetch_task_cputime(t, utime, stime, &t->utime,
854 &t->stime, &udelta, &sdelta);
855 if (utime)
856 *utime += udelta;
857 if (stime)
858 *stime += sdelta;
859 }
860
861 void task_cputime_scaled(struct task_struct *t,
862 cputime_t *utimescaled, cputime_t *stimescaled)
863 {
864 cputime_t udelta, sdelta;
865
866 fetch_task_cputime(t, utimescaled, stimescaled,
867 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
868 if (utimescaled)
869 *utimescaled += cputime_to_scaled(udelta);
870 if (stimescaled)
871 *stimescaled += cputime_to_scaled(sdelta);
872 }
873 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
This page took 0.067234 seconds and 5 git commands to generate.