context_tracking: Optimize guest APIs off case with static key
[deliverable/linux.git] / kernel / sched / cputime.c
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8
9
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12 /*
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23 DEFINE_PER_CPU(u64, cpu_hardirq_time);
24 DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26 static DEFINE_PER_CPU(u64, irq_start_time);
27 static int sched_clock_irqtime;
28
29 void enable_sched_clock_irqtime(void)
30 {
31 sched_clock_irqtime = 1;
32 }
33
34 void disable_sched_clock_irqtime(void)
35 {
36 sched_clock_irqtime = 0;
37 }
38
39 #ifndef CONFIG_64BIT
40 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41 #endif /* CONFIG_64BIT */
42
43 /*
44 * Called before incrementing preempt_count on {soft,}irq_enter
45 * and before decrementing preempt_count on {soft,}irq_exit.
46 */
47 void irqtime_account_irq(struct task_struct *curr)
48 {
49 unsigned long flags;
50 s64 delta;
51 int cpu;
52
53 if (!sched_clock_irqtime)
54 return;
55
56 local_irq_save(flags);
57
58 cpu = smp_processor_id();
59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 __this_cpu_add(irq_start_time, delta);
61
62 irq_time_write_begin();
63 /*
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
68 */
69 if (hardirq_count())
70 __this_cpu_add(cpu_hardirq_time, delta);
71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 __this_cpu_add(cpu_softirq_time, delta);
73
74 irq_time_write_end();
75 local_irq_restore(flags);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78
79 static int irqtime_account_hi_update(void)
80 {
81 u64 *cpustat = kcpustat_this_cpu->cpustat;
82 unsigned long flags;
83 u64 latest_ns;
84 int ret = 0;
85
86 local_irq_save(flags);
87 latest_ns = this_cpu_read(cpu_hardirq_time);
88 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 ret = 1;
90 local_irq_restore(flags);
91 return ret;
92 }
93
94 static int irqtime_account_si_update(void)
95 {
96 u64 *cpustat = kcpustat_this_cpu->cpustat;
97 unsigned long flags;
98 u64 latest_ns;
99 int ret = 0;
100
101 local_irq_save(flags);
102 latest_ns = this_cpu_read(cpu_softirq_time);
103 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 ret = 1;
105 local_irq_restore(flags);
106 return ret;
107 }
108
109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111 #define sched_clock_irqtime (0)
112
113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115 static inline void task_group_account_field(struct task_struct *p, int index,
116 u64 tmp)
117 {
118 /*
119 * Since all updates are sure to touch the root cgroup, we
120 * get ourselves ahead and touch it first. If the root cgroup
121 * is the only cgroup, then nothing else should be necessary.
122 *
123 */
124 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
125
126 cpuacct_account_field(p, index, tmp);
127 }
128
129 /*
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
134 */
135 void account_user_time(struct task_struct *p, cputime_t cputime,
136 cputime_t cputime_scaled)
137 {
138 int index;
139
140 /* Add user time to process. */
141 p->utime += cputime;
142 p->utimescaled += cputime_scaled;
143 account_group_user_time(p, cputime);
144
145 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146
147 /* Add user time to cpustat. */
148 task_group_account_field(p, index, (__force u64) cputime);
149
150 /* Account for user time used */
151 acct_account_cputime(p);
152 }
153
154 /*
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
159 */
160 static void account_guest_time(struct task_struct *p, cputime_t cputime,
161 cputime_t cputime_scaled)
162 {
163 u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165 /* Add guest time to process. */
166 p->utime += cputime;
167 p->utimescaled += cputime_scaled;
168 account_group_user_time(p, cputime);
169 p->gtime += cputime;
170
171 /* Add guest time to cpustat. */
172 if (TASK_NICE(p) > 0) {
173 cpustat[CPUTIME_NICE] += (__force u64) cputime;
174 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175 } else {
176 cpustat[CPUTIME_USER] += (__force u64) cputime;
177 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178 }
179 }
180
181 /*
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
187 */
188 static inline
189 void __account_system_time(struct task_struct *p, cputime_t cputime,
190 cputime_t cputime_scaled, int index)
191 {
192 /* Add system time to process. */
193 p->stime += cputime;
194 p->stimescaled += cputime_scaled;
195 account_group_system_time(p, cputime);
196
197 /* Add system time to cpustat. */
198 task_group_account_field(p, index, (__force u64) cputime);
199
200 /* Account for system time used */
201 acct_account_cputime(p);
202 }
203
204 /*
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
210 */
211 void account_system_time(struct task_struct *p, int hardirq_offset,
212 cputime_t cputime, cputime_t cputime_scaled)
213 {
214 int index;
215
216 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217 account_guest_time(p, cputime, cputime_scaled);
218 return;
219 }
220
221 if (hardirq_count() - hardirq_offset)
222 index = CPUTIME_IRQ;
223 else if (in_serving_softirq())
224 index = CPUTIME_SOFTIRQ;
225 else
226 index = CPUTIME_SYSTEM;
227
228 __account_system_time(p, cputime, cputime_scaled, index);
229 }
230
231 /*
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
234 */
235 void account_steal_time(cputime_t cputime)
236 {
237 u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240 }
241
242 /*
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
245 */
246 void account_idle_time(cputime_t cputime)
247 {
248 u64 *cpustat = kcpustat_this_cpu->cpustat;
249 struct rq *rq = this_rq();
250
251 if (atomic_read(&rq->nr_iowait) > 0)
252 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253 else
254 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255 }
256
257 static __always_inline bool steal_account_process_tick(void)
258 {
259 #ifdef CONFIG_PARAVIRT
260 if (static_key_false(&paravirt_steal_enabled)) {
261 u64 steal, st = 0;
262
263 steal = paravirt_steal_clock(smp_processor_id());
264 steal -= this_rq()->prev_steal_time;
265
266 st = steal_ticks(steal);
267 this_rq()->prev_steal_time += st * TICK_NSEC;
268
269 account_steal_time(st);
270 return st;
271 }
272 #endif
273 return false;
274 }
275
276 /*
277 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
278 * tasks (sum on group iteration) belonging to @tsk's group.
279 */
280 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
281 {
282 struct signal_struct *sig = tsk->signal;
283 cputime_t utime, stime;
284 struct task_struct *t;
285
286 times->utime = sig->utime;
287 times->stime = sig->stime;
288 times->sum_exec_runtime = sig->sum_sched_runtime;
289
290 rcu_read_lock();
291 /* make sure we can trust tsk->thread_group list */
292 if (!likely(pid_alive(tsk)))
293 goto out;
294
295 t = tsk;
296 do {
297 task_cputime(t, &utime, &stime);
298 times->utime += utime;
299 times->stime += stime;
300 times->sum_exec_runtime += task_sched_runtime(t);
301 } while_each_thread(tsk, t);
302 out:
303 rcu_read_unlock();
304 }
305
306 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
307 /*
308 * Account a tick to a process and cpustat
309 * @p: the process that the cpu time gets accounted to
310 * @user_tick: is the tick from userspace
311 * @rq: the pointer to rq
312 *
313 * Tick demultiplexing follows the order
314 * - pending hardirq update
315 * - pending softirq update
316 * - user_time
317 * - idle_time
318 * - system time
319 * - check for guest_time
320 * - else account as system_time
321 *
322 * Check for hardirq is done both for system and user time as there is
323 * no timer going off while we are on hardirq and hence we may never get an
324 * opportunity to update it solely in system time.
325 * p->stime and friends are only updated on system time and not on irq
326 * softirq as those do not count in task exec_runtime any more.
327 */
328 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
329 struct rq *rq)
330 {
331 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
332 u64 *cpustat = kcpustat_this_cpu->cpustat;
333
334 if (steal_account_process_tick())
335 return;
336
337 if (irqtime_account_hi_update()) {
338 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
339 } else if (irqtime_account_si_update()) {
340 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
341 } else if (this_cpu_ksoftirqd() == p) {
342 /*
343 * ksoftirqd time do not get accounted in cpu_softirq_time.
344 * So, we have to handle it separately here.
345 * Also, p->stime needs to be updated for ksoftirqd.
346 */
347 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
348 CPUTIME_SOFTIRQ);
349 } else if (user_tick) {
350 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
351 } else if (p == rq->idle) {
352 account_idle_time(cputime_one_jiffy);
353 } else if (p->flags & PF_VCPU) { /* System time or guest time */
354 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
355 } else {
356 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
357 CPUTIME_SYSTEM);
358 }
359 }
360
361 static void irqtime_account_idle_ticks(int ticks)
362 {
363 int i;
364 struct rq *rq = this_rq();
365
366 for (i = 0; i < ticks; i++)
367 irqtime_account_process_tick(current, 0, rq);
368 }
369 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
370 static inline void irqtime_account_idle_ticks(int ticks) {}
371 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
372 struct rq *rq) {}
373 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
374
375 /*
376 * Use precise platform statistics if available:
377 */
378 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
379
380 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
381 void vtime_task_switch(struct task_struct *prev)
382 {
383 if (!vtime_accounting_enabled())
384 return;
385
386 if (is_idle_task(prev))
387 vtime_account_idle(prev);
388 else
389 vtime_account_system(prev);
390
391 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
392 vtime_account_user(prev);
393 #endif
394 arch_vtime_task_switch(prev);
395 }
396 #endif
397
398 /*
399 * Archs that account the whole time spent in the idle task
400 * (outside irq) as idle time can rely on this and just implement
401 * vtime_account_system() and vtime_account_idle(). Archs that
402 * have other meaning of the idle time (s390 only includes the
403 * time spent by the CPU when it's in low power mode) must override
404 * vtime_account().
405 */
406 #ifndef __ARCH_HAS_VTIME_ACCOUNT
407 void vtime_account_irq_enter(struct task_struct *tsk)
408 {
409 if (!vtime_accounting_enabled())
410 return;
411
412 if (!in_interrupt()) {
413 /*
414 * If we interrupted user, context_tracking_in_user()
415 * is 1 because the context tracking don't hook
416 * on irq entry/exit. This way we know if
417 * we need to flush user time on kernel entry.
418 */
419 if (context_tracking_in_user()) {
420 vtime_account_user(tsk);
421 return;
422 }
423
424 if (is_idle_task(tsk)) {
425 vtime_account_idle(tsk);
426 return;
427 }
428 }
429 vtime_account_system(tsk);
430 }
431 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
432 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
433 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
434
435
436 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
437 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
438 {
439 *ut = p->utime;
440 *st = p->stime;
441 }
442
443 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
444 {
445 struct task_cputime cputime;
446
447 thread_group_cputime(p, &cputime);
448
449 *ut = cputime.utime;
450 *st = cputime.stime;
451 }
452 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
453 /*
454 * Account a single tick of cpu time.
455 * @p: the process that the cpu time gets accounted to
456 * @user_tick: indicates if the tick is a user or a system tick
457 */
458 void account_process_tick(struct task_struct *p, int user_tick)
459 {
460 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
461 struct rq *rq = this_rq();
462
463 if (vtime_accounting_enabled())
464 return;
465
466 if (sched_clock_irqtime) {
467 irqtime_account_process_tick(p, user_tick, rq);
468 return;
469 }
470
471 if (steal_account_process_tick())
472 return;
473
474 if (user_tick)
475 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
476 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
477 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
478 one_jiffy_scaled);
479 else
480 account_idle_time(cputime_one_jiffy);
481 }
482
483 /*
484 * Account multiple ticks of steal time.
485 * @p: the process from which the cpu time has been stolen
486 * @ticks: number of stolen ticks
487 */
488 void account_steal_ticks(unsigned long ticks)
489 {
490 account_steal_time(jiffies_to_cputime(ticks));
491 }
492
493 /*
494 * Account multiple ticks of idle time.
495 * @ticks: number of stolen ticks
496 */
497 void account_idle_ticks(unsigned long ticks)
498 {
499
500 if (sched_clock_irqtime) {
501 irqtime_account_idle_ticks(ticks);
502 return;
503 }
504
505 account_idle_time(jiffies_to_cputime(ticks));
506 }
507
508 /*
509 * Perform (stime * rtime) / total, but avoid multiplication overflow by
510 * loosing precision when the numbers are big.
511 */
512 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
513 {
514 u64 scaled;
515
516 for (;;) {
517 /* Make sure "rtime" is the bigger of stime/rtime */
518 if (stime > rtime)
519 swap(rtime, stime);
520
521 /* Make sure 'total' fits in 32 bits */
522 if (total >> 32)
523 goto drop_precision;
524
525 /* Does rtime (and thus stime) fit in 32 bits? */
526 if (!(rtime >> 32))
527 break;
528
529 /* Can we just balance rtime/stime rather than dropping bits? */
530 if (stime >> 31)
531 goto drop_precision;
532
533 /* We can grow stime and shrink rtime and try to make them both fit */
534 stime <<= 1;
535 rtime >>= 1;
536 continue;
537
538 drop_precision:
539 /* We drop from rtime, it has more bits than stime */
540 rtime >>= 1;
541 total >>= 1;
542 }
543
544 /*
545 * Make sure gcc understands that this is a 32x32->64 multiply,
546 * followed by a 64/32->64 divide.
547 */
548 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
549 return (__force cputime_t) scaled;
550 }
551
552 /*
553 * Adjust tick based cputime random precision against scheduler
554 * runtime accounting.
555 */
556 static void cputime_adjust(struct task_cputime *curr,
557 struct cputime *prev,
558 cputime_t *ut, cputime_t *st)
559 {
560 cputime_t rtime, stime, utime, total;
561
562 if (vtime_accounting_enabled()) {
563 *ut = curr->utime;
564 *st = curr->stime;
565 return;
566 }
567
568 stime = curr->stime;
569 total = stime + curr->utime;
570
571 /*
572 * Tick based cputime accounting depend on random scheduling
573 * timeslices of a task to be interrupted or not by the timer.
574 * Depending on these circumstances, the number of these interrupts
575 * may be over or under-optimistic, matching the real user and system
576 * cputime with a variable precision.
577 *
578 * Fix this by scaling these tick based values against the total
579 * runtime accounted by the CFS scheduler.
580 */
581 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
582
583 /*
584 * Update userspace visible utime/stime values only if actual execution
585 * time is bigger than already exported. Note that can happen, that we
586 * provided bigger values due to scaling inaccuracy on big numbers.
587 */
588 if (prev->stime + prev->utime >= rtime)
589 goto out;
590
591 if (total) {
592 stime = scale_stime((__force u64)stime,
593 (__force u64)rtime, (__force u64)total);
594 utime = rtime - stime;
595 } else {
596 stime = rtime;
597 utime = 0;
598 }
599
600 /*
601 * If the tick based count grows faster than the scheduler one,
602 * the result of the scaling may go backward.
603 * Let's enforce monotonicity.
604 */
605 prev->stime = max(prev->stime, stime);
606 prev->utime = max(prev->utime, utime);
607
608 out:
609 *ut = prev->utime;
610 *st = prev->stime;
611 }
612
613 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
614 {
615 struct task_cputime cputime = {
616 .sum_exec_runtime = p->se.sum_exec_runtime,
617 };
618
619 task_cputime(p, &cputime.utime, &cputime.stime);
620 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
621 }
622
623 /*
624 * Must be called with siglock held.
625 */
626 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
627 {
628 struct task_cputime cputime;
629
630 thread_group_cputime(p, &cputime);
631 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
632 }
633 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
634
635 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
636 static unsigned long long vtime_delta(struct task_struct *tsk)
637 {
638 unsigned long long clock;
639
640 clock = local_clock();
641 if (clock < tsk->vtime_snap)
642 return 0;
643
644 return clock - tsk->vtime_snap;
645 }
646
647 static cputime_t get_vtime_delta(struct task_struct *tsk)
648 {
649 unsigned long long delta = vtime_delta(tsk);
650
651 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
652 tsk->vtime_snap += delta;
653
654 /* CHECKME: always safe to convert nsecs to cputime? */
655 return nsecs_to_cputime(delta);
656 }
657
658 static void __vtime_account_system(struct task_struct *tsk)
659 {
660 cputime_t delta_cpu = get_vtime_delta(tsk);
661
662 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
663 }
664
665 void vtime_account_system(struct task_struct *tsk)
666 {
667 if (!vtime_accounting_enabled())
668 return;
669
670 write_seqlock(&tsk->vtime_seqlock);
671 __vtime_account_system(tsk);
672 write_sequnlock(&tsk->vtime_seqlock);
673 }
674
675 void vtime_account_irq_exit(struct task_struct *tsk)
676 {
677 if (!vtime_accounting_enabled())
678 return;
679
680 write_seqlock(&tsk->vtime_seqlock);
681 if (context_tracking_in_user())
682 tsk->vtime_snap_whence = VTIME_USER;
683 __vtime_account_system(tsk);
684 write_sequnlock(&tsk->vtime_seqlock);
685 }
686
687 void vtime_account_user(struct task_struct *tsk)
688 {
689 cputime_t delta_cpu;
690
691 if (!vtime_accounting_enabled())
692 return;
693
694 delta_cpu = get_vtime_delta(tsk);
695
696 write_seqlock(&tsk->vtime_seqlock);
697 tsk->vtime_snap_whence = VTIME_SYS;
698 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
699 write_sequnlock(&tsk->vtime_seqlock);
700 }
701
702 void vtime_user_enter(struct task_struct *tsk)
703 {
704 if (!vtime_accounting_enabled())
705 return;
706
707 write_seqlock(&tsk->vtime_seqlock);
708 tsk->vtime_snap_whence = VTIME_USER;
709 __vtime_account_system(tsk);
710 write_sequnlock(&tsk->vtime_seqlock);
711 }
712
713 void vtime_guest_enter(struct task_struct *tsk)
714 {
715 /*
716 * The flags must be updated under the lock with
717 * the vtime_snap flush and update.
718 * That enforces a right ordering and update sequence
719 * synchronization against the reader (task_gtime())
720 * that can thus safely catch up with a tickless delta.
721 */
722 write_seqlock(&tsk->vtime_seqlock);
723 __vtime_account_system(tsk);
724 current->flags |= PF_VCPU;
725 write_sequnlock(&tsk->vtime_seqlock);
726 }
727 EXPORT_SYMBOL_GPL(vtime_guest_enter);
728
729 void vtime_guest_exit(struct task_struct *tsk)
730 {
731 write_seqlock(&tsk->vtime_seqlock);
732 __vtime_account_system(tsk);
733 current->flags &= ~PF_VCPU;
734 write_sequnlock(&tsk->vtime_seqlock);
735 }
736 EXPORT_SYMBOL_GPL(vtime_guest_exit);
737
738 void vtime_account_idle(struct task_struct *tsk)
739 {
740 cputime_t delta_cpu = get_vtime_delta(tsk);
741
742 account_idle_time(delta_cpu);
743 }
744
745 bool vtime_accounting_enabled(void)
746 {
747 return context_tracking_active();
748 }
749
750 void arch_vtime_task_switch(struct task_struct *prev)
751 {
752 write_seqlock(&prev->vtime_seqlock);
753 prev->vtime_snap_whence = VTIME_SLEEPING;
754 write_sequnlock(&prev->vtime_seqlock);
755
756 write_seqlock(&current->vtime_seqlock);
757 current->vtime_snap_whence = VTIME_SYS;
758 current->vtime_snap = sched_clock_cpu(smp_processor_id());
759 write_sequnlock(&current->vtime_seqlock);
760 }
761
762 void vtime_init_idle(struct task_struct *t, int cpu)
763 {
764 unsigned long flags;
765
766 write_seqlock_irqsave(&t->vtime_seqlock, flags);
767 t->vtime_snap_whence = VTIME_SYS;
768 t->vtime_snap = sched_clock_cpu(cpu);
769 write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
770 }
771
772 cputime_t task_gtime(struct task_struct *t)
773 {
774 unsigned int seq;
775 cputime_t gtime;
776
777 do {
778 seq = read_seqbegin(&t->vtime_seqlock);
779
780 gtime = t->gtime;
781 if (t->flags & PF_VCPU)
782 gtime += vtime_delta(t);
783
784 } while (read_seqretry(&t->vtime_seqlock, seq));
785
786 return gtime;
787 }
788
789 /*
790 * Fetch cputime raw values from fields of task_struct and
791 * add up the pending nohz execution time since the last
792 * cputime snapshot.
793 */
794 static void
795 fetch_task_cputime(struct task_struct *t,
796 cputime_t *u_dst, cputime_t *s_dst,
797 cputime_t *u_src, cputime_t *s_src,
798 cputime_t *udelta, cputime_t *sdelta)
799 {
800 unsigned int seq;
801 unsigned long long delta;
802
803 do {
804 *udelta = 0;
805 *sdelta = 0;
806
807 seq = read_seqbegin(&t->vtime_seqlock);
808
809 if (u_dst)
810 *u_dst = *u_src;
811 if (s_dst)
812 *s_dst = *s_src;
813
814 /* Task is sleeping, nothing to add */
815 if (t->vtime_snap_whence == VTIME_SLEEPING ||
816 is_idle_task(t))
817 continue;
818
819 delta = vtime_delta(t);
820
821 /*
822 * Task runs either in user or kernel space, add pending nohz time to
823 * the right place.
824 */
825 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
826 *udelta = delta;
827 } else {
828 if (t->vtime_snap_whence == VTIME_SYS)
829 *sdelta = delta;
830 }
831 } while (read_seqretry(&t->vtime_seqlock, seq));
832 }
833
834
835 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
836 {
837 cputime_t udelta, sdelta;
838
839 fetch_task_cputime(t, utime, stime, &t->utime,
840 &t->stime, &udelta, &sdelta);
841 if (utime)
842 *utime += udelta;
843 if (stime)
844 *stime += sdelta;
845 }
846
847 void task_cputime_scaled(struct task_struct *t,
848 cputime_t *utimescaled, cputime_t *stimescaled)
849 {
850 cputime_t udelta, sdelta;
851
852 fetch_task_cputime(t, utimescaled, stimescaled,
853 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
854 if (utimescaled)
855 *utimescaled += cputime_to_scaled(udelta);
856 if (stimescaled)
857 *stimescaled += cputime_to_scaled(sdelta);
858 }
859 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
This page took 0.09086 seconds and 5 git commands to generate.