Merge tag 'arm64-perf' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[deliverable/linux.git] / kernel / sched / deadline.c
1 /*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17 #include "sched.h"
18
19 #include <linux/slab.h>
20
21 struct dl_bandwidth def_dl_bandwidth;
22
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 return container_of(dl_se, struct task_struct, dl);
26 }
27
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 return container_of(dl_rq, struct rq, dl);
31 }
32
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39 }
40
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47 {
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51 }
52
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54 {
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
58 }
59
60 void init_dl_bw(struct dl_bw *dl_b)
61 {
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 if (global_rt_runtime() == RUNTIME_INF)
65 dl_b->bw = -1;
66 else
67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
70 }
71
72 void init_dl_rq(struct dl_rq *dl_rq)
73 {
74 dl_rq->rb_root = RB_ROOT;
75
76 #ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 init_dl_bw(&dl_rq->dl_bw);
85 #endif
86 }
87
88 #ifdef CONFIG_SMP
89
90 static inline int dl_overloaded(struct rq *rq)
91 {
92 return atomic_read(&rq->rd->dlo_count);
93 }
94
95 static inline void dl_set_overload(struct rq *rq)
96 {
97 if (!rq->online)
98 return;
99
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 /*
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
104 *
105 * Matched by the barrier in pull_dl_task().
106 */
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
109 }
110
111 static inline void dl_clear_overload(struct rq *rq)
112 {
113 if (!rq->online)
114 return;
115
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118 }
119
120 static void update_dl_migration(struct dl_rq *dl_rq)
121 {
122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
126 }
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
130 }
131 }
132
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134 {
135 struct task_struct *p = dl_task_of(dl_se);
136
137 if (p->nr_cpus_allowed > 1)
138 dl_rq->dl_nr_migratory++;
139
140 update_dl_migration(dl_rq);
141 }
142
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 struct task_struct *p = dl_task_of(dl_se);
146
147 if (p->nr_cpus_allowed > 1)
148 dl_rq->dl_nr_migratory--;
149
150 update_dl_migration(dl_rq);
151 }
152
153 /*
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156 */
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158 {
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
164
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
176 }
177 }
178
179 if (leftmost) {
180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181 dl_rq->earliest_dl.next = p->dl.deadline;
182 }
183
184 rb_link_node(&p->pushable_dl_tasks, parent, link);
185 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186 }
187
188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
189 {
190 struct dl_rq *dl_rq = &rq->dl;
191
192 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 return;
194
195 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 struct rb_node *next_node;
197
198 next_node = rb_next(&p->pushable_dl_tasks);
199 dl_rq->pushable_dl_tasks_leftmost = next_node;
200 if (next_node) {
201 dl_rq->earliest_dl.next = rb_entry(next_node,
202 struct task_struct, pushable_dl_tasks)->dl.deadline;
203 }
204 }
205
206 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
207 RB_CLEAR_NODE(&p->pushable_dl_tasks);
208 }
209
210 static inline int has_pushable_dl_tasks(struct rq *rq)
211 {
212 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
213 }
214
215 static int push_dl_task(struct rq *rq);
216
217 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
218 {
219 return dl_task(prev);
220 }
221
222 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
223 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
224
225 static void push_dl_tasks(struct rq *);
226 static void pull_dl_task(struct rq *);
227
228 static inline void queue_push_tasks(struct rq *rq)
229 {
230 if (!has_pushable_dl_tasks(rq))
231 return;
232
233 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
234 }
235
236 static inline void queue_pull_task(struct rq *rq)
237 {
238 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
239 }
240
241 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
242
243 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
244 {
245 struct rq *later_rq = NULL;
246 bool fallback = false;
247
248 later_rq = find_lock_later_rq(p, rq);
249
250 if (!later_rq) {
251 int cpu;
252
253 /*
254 * If we cannot preempt any rq, fall back to pick any
255 * online cpu.
256 */
257 fallback = true;
258 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
259 if (cpu >= nr_cpu_ids) {
260 /*
261 * Fail to find any suitable cpu.
262 * The task will never come back!
263 */
264 BUG_ON(dl_bandwidth_enabled());
265
266 /*
267 * If admission control is disabled we
268 * try a little harder to let the task
269 * run.
270 */
271 cpu = cpumask_any(cpu_active_mask);
272 }
273 later_rq = cpu_rq(cpu);
274 double_lock_balance(rq, later_rq);
275 }
276
277 /*
278 * By now the task is replenished and enqueued; migrate it.
279 */
280 deactivate_task(rq, p, 0);
281 set_task_cpu(p, later_rq->cpu);
282 activate_task(later_rq, p, 0);
283
284 if (!fallback)
285 resched_curr(later_rq);
286
287 double_unlock_balance(later_rq, rq);
288
289 return later_rq;
290 }
291
292 #else
293
294 static inline
295 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
296 {
297 }
298
299 static inline
300 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
301 {
302 }
303
304 static inline
305 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
306 {
307 }
308
309 static inline
310 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311 {
312 }
313
314 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
315 {
316 return false;
317 }
318
319 static inline void pull_dl_task(struct rq *rq)
320 {
321 }
322
323 static inline void queue_push_tasks(struct rq *rq)
324 {
325 }
326
327 static inline void queue_pull_task(struct rq *rq)
328 {
329 }
330 #endif /* CONFIG_SMP */
331
332 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
333 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
334 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
335 int flags);
336
337 /*
338 * We are being explicitly informed that a new instance is starting,
339 * and this means that:
340 * - the absolute deadline of the entity has to be placed at
341 * current time + relative deadline;
342 * - the runtime of the entity has to be set to the maximum value.
343 *
344 * The capability of specifying such event is useful whenever a -deadline
345 * entity wants to (try to!) synchronize its behaviour with the scheduler's
346 * one, and to (try to!) reconcile itself with its own scheduling
347 * parameters.
348 */
349 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
350 struct sched_dl_entity *pi_se)
351 {
352 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
353 struct rq *rq = rq_of_dl_rq(dl_rq);
354
355 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
356
357 /*
358 * We are racing with the deadline timer. So, do nothing because
359 * the deadline timer handler will take care of properly recharging
360 * the runtime and postponing the deadline
361 */
362 if (dl_se->dl_throttled)
363 return;
364
365 /*
366 * We use the regular wall clock time to set deadlines in the
367 * future; in fact, we must consider execution overheads (time
368 * spent on hardirq context, etc.).
369 */
370 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
371 dl_se->runtime = pi_se->dl_runtime;
372 }
373
374 /*
375 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
376 * possibility of a entity lasting more than what it declared, and thus
377 * exhausting its runtime.
378 *
379 * Here we are interested in making runtime overrun possible, but we do
380 * not want a entity which is misbehaving to affect the scheduling of all
381 * other entities.
382 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
383 * is used, in order to confine each entity within its own bandwidth.
384 *
385 * This function deals exactly with that, and ensures that when the runtime
386 * of a entity is replenished, its deadline is also postponed. That ensures
387 * the overrunning entity can't interfere with other entity in the system and
388 * can't make them miss their deadlines. Reasons why this kind of overruns
389 * could happen are, typically, a entity voluntarily trying to overcome its
390 * runtime, or it just underestimated it during sched_setattr().
391 */
392 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
393 struct sched_dl_entity *pi_se)
394 {
395 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
396 struct rq *rq = rq_of_dl_rq(dl_rq);
397
398 BUG_ON(pi_se->dl_runtime <= 0);
399
400 /*
401 * This could be the case for a !-dl task that is boosted.
402 * Just go with full inherited parameters.
403 */
404 if (dl_se->dl_deadline == 0) {
405 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
406 dl_se->runtime = pi_se->dl_runtime;
407 }
408
409 if (dl_se->dl_yielded && dl_se->runtime > 0)
410 dl_se->runtime = 0;
411
412 /*
413 * We keep moving the deadline away until we get some
414 * available runtime for the entity. This ensures correct
415 * handling of situations where the runtime overrun is
416 * arbitrary large.
417 */
418 while (dl_se->runtime <= 0) {
419 dl_se->deadline += pi_se->dl_period;
420 dl_se->runtime += pi_se->dl_runtime;
421 }
422
423 /*
424 * At this point, the deadline really should be "in
425 * the future" with respect to rq->clock. If it's
426 * not, we are, for some reason, lagging too much!
427 * Anyway, after having warn userspace abut that,
428 * we still try to keep the things running by
429 * resetting the deadline and the budget of the
430 * entity.
431 */
432 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
433 printk_deferred_once("sched: DL replenish lagged too much\n");
434 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
435 dl_se->runtime = pi_se->dl_runtime;
436 }
437
438 if (dl_se->dl_yielded)
439 dl_se->dl_yielded = 0;
440 if (dl_se->dl_throttled)
441 dl_se->dl_throttled = 0;
442 }
443
444 /*
445 * Here we check if --at time t-- an entity (which is probably being
446 * [re]activated or, in general, enqueued) can use its remaining runtime
447 * and its current deadline _without_ exceeding the bandwidth it is
448 * assigned (function returns true if it can't). We are in fact applying
449 * one of the CBS rules: when a task wakes up, if the residual runtime
450 * over residual deadline fits within the allocated bandwidth, then we
451 * can keep the current (absolute) deadline and residual budget without
452 * disrupting the schedulability of the system. Otherwise, we should
453 * refill the runtime and set the deadline a period in the future,
454 * because keeping the current (absolute) deadline of the task would
455 * result in breaking guarantees promised to other tasks (refer to
456 * Documentation/scheduler/sched-deadline.txt for more informations).
457 *
458 * This function returns true if:
459 *
460 * runtime / (deadline - t) > dl_runtime / dl_period ,
461 *
462 * IOW we can't recycle current parameters.
463 *
464 * Notice that the bandwidth check is done against the period. For
465 * task with deadline equal to period this is the same of using
466 * dl_deadline instead of dl_period in the equation above.
467 */
468 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
469 struct sched_dl_entity *pi_se, u64 t)
470 {
471 u64 left, right;
472
473 /*
474 * left and right are the two sides of the equation above,
475 * after a bit of shuffling to use multiplications instead
476 * of divisions.
477 *
478 * Note that none of the time values involved in the two
479 * multiplications are absolute: dl_deadline and dl_runtime
480 * are the relative deadline and the maximum runtime of each
481 * instance, runtime is the runtime left for the last instance
482 * and (deadline - t), since t is rq->clock, is the time left
483 * to the (absolute) deadline. Even if overflowing the u64 type
484 * is very unlikely to occur in both cases, here we scale down
485 * as we want to avoid that risk at all. Scaling down by 10
486 * means that we reduce granularity to 1us. We are fine with it,
487 * since this is only a true/false check and, anyway, thinking
488 * of anything below microseconds resolution is actually fiction
489 * (but still we want to give the user that illusion >;).
490 */
491 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
492 right = ((dl_se->deadline - t) >> DL_SCALE) *
493 (pi_se->dl_runtime >> DL_SCALE);
494
495 return dl_time_before(right, left);
496 }
497
498 /*
499 * When a -deadline entity is queued back on the runqueue, its runtime and
500 * deadline might need updating.
501 *
502 * The policy here is that we update the deadline of the entity only if:
503 * - the current deadline is in the past,
504 * - using the remaining runtime with the current deadline would make
505 * the entity exceed its bandwidth.
506 */
507 static void update_dl_entity(struct sched_dl_entity *dl_se,
508 struct sched_dl_entity *pi_se)
509 {
510 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
511 struct rq *rq = rq_of_dl_rq(dl_rq);
512
513 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
514 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
515 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
516 dl_se->runtime = pi_se->dl_runtime;
517 }
518 }
519
520 /*
521 * If the entity depleted all its runtime, and if we want it to sleep
522 * while waiting for some new execution time to become available, we
523 * set the bandwidth enforcement timer to the replenishment instant
524 * and try to activate it.
525 *
526 * Notice that it is important for the caller to know if the timer
527 * actually started or not (i.e., the replenishment instant is in
528 * the future or in the past).
529 */
530 static int start_dl_timer(struct task_struct *p)
531 {
532 struct sched_dl_entity *dl_se = &p->dl;
533 struct hrtimer *timer = &dl_se->dl_timer;
534 struct rq *rq = task_rq(p);
535 ktime_t now, act;
536 s64 delta;
537
538 lockdep_assert_held(&rq->lock);
539
540 /*
541 * We want the timer to fire at the deadline, but considering
542 * that it is actually coming from rq->clock and not from
543 * hrtimer's time base reading.
544 */
545 act = ns_to_ktime(dl_se->deadline);
546 now = hrtimer_cb_get_time(timer);
547 delta = ktime_to_ns(now) - rq_clock(rq);
548 act = ktime_add_ns(act, delta);
549
550 /*
551 * If the expiry time already passed, e.g., because the value
552 * chosen as the deadline is too small, don't even try to
553 * start the timer in the past!
554 */
555 if (ktime_us_delta(act, now) < 0)
556 return 0;
557
558 /*
559 * !enqueued will guarantee another callback; even if one is already in
560 * progress. This ensures a balanced {get,put}_task_struct().
561 *
562 * The race against __run_timer() clearing the enqueued state is
563 * harmless because we're holding task_rq()->lock, therefore the timer
564 * expiring after we've done the check will wait on its task_rq_lock()
565 * and observe our state.
566 */
567 if (!hrtimer_is_queued(timer)) {
568 get_task_struct(p);
569 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
570 }
571
572 return 1;
573 }
574
575 /*
576 * This is the bandwidth enforcement timer callback. If here, we know
577 * a task is not on its dl_rq, since the fact that the timer was running
578 * means the task is throttled and needs a runtime replenishment.
579 *
580 * However, what we actually do depends on the fact the task is active,
581 * (it is on its rq) or has been removed from there by a call to
582 * dequeue_task_dl(). In the former case we must issue the runtime
583 * replenishment and add the task back to the dl_rq; in the latter, we just
584 * do nothing but clearing dl_throttled, so that runtime and deadline
585 * updating (and the queueing back to dl_rq) will be done by the
586 * next call to enqueue_task_dl().
587 */
588 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
589 {
590 struct sched_dl_entity *dl_se = container_of(timer,
591 struct sched_dl_entity,
592 dl_timer);
593 struct task_struct *p = dl_task_of(dl_se);
594 unsigned long flags;
595 struct rq *rq;
596
597 rq = task_rq_lock(p, &flags);
598
599 /*
600 * The task might have changed its scheduling policy to something
601 * different than SCHED_DEADLINE (through switched_fromd_dl()).
602 */
603 if (!dl_task(p)) {
604 __dl_clear_params(p);
605 goto unlock;
606 }
607
608 /*
609 * The task might have been boosted by someone else and might be in the
610 * boosting/deboosting path, its not throttled.
611 */
612 if (dl_se->dl_boosted)
613 goto unlock;
614
615 /*
616 * Spurious timer due to start_dl_timer() race; or we already received
617 * a replenishment from rt_mutex_setprio().
618 */
619 if (!dl_se->dl_throttled)
620 goto unlock;
621
622 sched_clock_tick();
623 update_rq_clock(rq);
624
625 /*
626 * If the throttle happened during sched-out; like:
627 *
628 * schedule()
629 * deactivate_task()
630 * dequeue_task_dl()
631 * update_curr_dl()
632 * start_dl_timer()
633 * __dequeue_task_dl()
634 * prev->on_rq = 0;
635 *
636 * We can be both throttled and !queued. Replenish the counter
637 * but do not enqueue -- wait for our wakeup to do that.
638 */
639 if (!task_on_rq_queued(p)) {
640 replenish_dl_entity(dl_se, dl_se);
641 goto unlock;
642 }
643
644 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
645 if (dl_task(rq->curr))
646 check_preempt_curr_dl(rq, p, 0);
647 else
648 resched_curr(rq);
649
650 #ifdef CONFIG_SMP
651 /*
652 * Perform balancing operations here; after the replenishments. We
653 * cannot drop rq->lock before this, otherwise the assertion in
654 * start_dl_timer() about not missing updates is not true.
655 *
656 * If we find that the rq the task was on is no longer available, we
657 * need to select a new rq.
658 *
659 * XXX figure out if select_task_rq_dl() deals with offline cpus.
660 */
661 if (unlikely(!rq->online))
662 rq = dl_task_offline_migration(rq, p);
663
664 /*
665 * Queueing this task back might have overloaded rq, check if we need
666 * to kick someone away.
667 */
668 if (has_pushable_dl_tasks(rq)) {
669 /*
670 * Nothing relies on rq->lock after this, so its safe to drop
671 * rq->lock.
672 */
673 lockdep_unpin_lock(&rq->lock);
674 push_dl_task(rq);
675 lockdep_pin_lock(&rq->lock);
676 }
677 #endif
678
679 unlock:
680 task_rq_unlock(rq, p, &flags);
681
682 /*
683 * This can free the task_struct, including this hrtimer, do not touch
684 * anything related to that after this.
685 */
686 put_task_struct(p);
687
688 return HRTIMER_NORESTART;
689 }
690
691 void init_dl_task_timer(struct sched_dl_entity *dl_se)
692 {
693 struct hrtimer *timer = &dl_se->dl_timer;
694
695 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
696 timer->function = dl_task_timer;
697 }
698
699 static
700 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
701 {
702 return (dl_se->runtime <= 0);
703 }
704
705 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
706
707 /*
708 * Update the current task's runtime statistics (provided it is still
709 * a -deadline task and has not been removed from the dl_rq).
710 */
711 static void update_curr_dl(struct rq *rq)
712 {
713 struct task_struct *curr = rq->curr;
714 struct sched_dl_entity *dl_se = &curr->dl;
715 u64 delta_exec;
716
717 if (!dl_task(curr) || !on_dl_rq(dl_se))
718 return;
719
720 /* Kick cpufreq (see the comment in linux/cpufreq.h). */
721 if (cpu_of(rq) == smp_processor_id())
722 cpufreq_trigger_update(rq_clock(rq));
723
724 /*
725 * Consumed budget is computed considering the time as
726 * observed by schedulable tasks (excluding time spent
727 * in hardirq context, etc.). Deadlines are instead
728 * computed using hard walltime. This seems to be the more
729 * natural solution, but the full ramifications of this
730 * approach need further study.
731 */
732 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
733 if (unlikely((s64)delta_exec <= 0)) {
734 if (unlikely(dl_se->dl_yielded))
735 goto throttle;
736 return;
737 }
738
739 schedstat_set(curr->se.statistics.exec_max,
740 max(curr->se.statistics.exec_max, delta_exec));
741
742 curr->se.sum_exec_runtime += delta_exec;
743 account_group_exec_runtime(curr, delta_exec);
744
745 curr->se.exec_start = rq_clock_task(rq);
746 cpuacct_charge(curr, delta_exec);
747
748 sched_rt_avg_update(rq, delta_exec);
749
750 dl_se->runtime -= delta_exec;
751
752 throttle:
753 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
754 dl_se->dl_throttled = 1;
755 __dequeue_task_dl(rq, curr, 0);
756 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
757 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
758
759 if (!is_leftmost(curr, &rq->dl))
760 resched_curr(rq);
761 }
762
763 /*
764 * Because -- for now -- we share the rt bandwidth, we need to
765 * account our runtime there too, otherwise actual rt tasks
766 * would be able to exceed the shared quota.
767 *
768 * Account to the root rt group for now.
769 *
770 * The solution we're working towards is having the RT groups scheduled
771 * using deadline servers -- however there's a few nasties to figure
772 * out before that can happen.
773 */
774 if (rt_bandwidth_enabled()) {
775 struct rt_rq *rt_rq = &rq->rt;
776
777 raw_spin_lock(&rt_rq->rt_runtime_lock);
778 /*
779 * We'll let actual RT tasks worry about the overflow here, we
780 * have our own CBS to keep us inline; only account when RT
781 * bandwidth is relevant.
782 */
783 if (sched_rt_bandwidth_account(rt_rq))
784 rt_rq->rt_time += delta_exec;
785 raw_spin_unlock(&rt_rq->rt_runtime_lock);
786 }
787 }
788
789 #ifdef CONFIG_SMP
790
791 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
792 {
793 struct rq *rq = rq_of_dl_rq(dl_rq);
794
795 if (dl_rq->earliest_dl.curr == 0 ||
796 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
797 dl_rq->earliest_dl.curr = deadline;
798 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
799 }
800 }
801
802 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
803 {
804 struct rq *rq = rq_of_dl_rq(dl_rq);
805
806 /*
807 * Since we may have removed our earliest (and/or next earliest)
808 * task we must recompute them.
809 */
810 if (!dl_rq->dl_nr_running) {
811 dl_rq->earliest_dl.curr = 0;
812 dl_rq->earliest_dl.next = 0;
813 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
814 } else {
815 struct rb_node *leftmost = dl_rq->rb_leftmost;
816 struct sched_dl_entity *entry;
817
818 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
819 dl_rq->earliest_dl.curr = entry->deadline;
820 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
821 }
822 }
823
824 #else
825
826 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
827 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
828
829 #endif /* CONFIG_SMP */
830
831 static inline
832 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
833 {
834 int prio = dl_task_of(dl_se)->prio;
835 u64 deadline = dl_se->deadline;
836
837 WARN_ON(!dl_prio(prio));
838 dl_rq->dl_nr_running++;
839 add_nr_running(rq_of_dl_rq(dl_rq), 1);
840
841 inc_dl_deadline(dl_rq, deadline);
842 inc_dl_migration(dl_se, dl_rq);
843 }
844
845 static inline
846 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
847 {
848 int prio = dl_task_of(dl_se)->prio;
849
850 WARN_ON(!dl_prio(prio));
851 WARN_ON(!dl_rq->dl_nr_running);
852 dl_rq->dl_nr_running--;
853 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
854
855 dec_dl_deadline(dl_rq, dl_se->deadline);
856 dec_dl_migration(dl_se, dl_rq);
857 }
858
859 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
860 {
861 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
862 struct rb_node **link = &dl_rq->rb_root.rb_node;
863 struct rb_node *parent = NULL;
864 struct sched_dl_entity *entry;
865 int leftmost = 1;
866
867 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
868
869 while (*link) {
870 parent = *link;
871 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
872 if (dl_time_before(dl_se->deadline, entry->deadline))
873 link = &parent->rb_left;
874 else {
875 link = &parent->rb_right;
876 leftmost = 0;
877 }
878 }
879
880 if (leftmost)
881 dl_rq->rb_leftmost = &dl_se->rb_node;
882
883 rb_link_node(&dl_se->rb_node, parent, link);
884 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
885
886 inc_dl_tasks(dl_se, dl_rq);
887 }
888
889 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
890 {
891 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
892
893 if (RB_EMPTY_NODE(&dl_se->rb_node))
894 return;
895
896 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
897 struct rb_node *next_node;
898
899 next_node = rb_next(&dl_se->rb_node);
900 dl_rq->rb_leftmost = next_node;
901 }
902
903 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
904 RB_CLEAR_NODE(&dl_se->rb_node);
905
906 dec_dl_tasks(dl_se, dl_rq);
907 }
908
909 static void
910 enqueue_dl_entity(struct sched_dl_entity *dl_se,
911 struct sched_dl_entity *pi_se, int flags)
912 {
913 BUG_ON(on_dl_rq(dl_se));
914
915 /*
916 * If this is a wakeup or a new instance, the scheduling
917 * parameters of the task might need updating. Otherwise,
918 * we want a replenishment of its runtime.
919 */
920 if (flags & ENQUEUE_WAKEUP)
921 update_dl_entity(dl_se, pi_se);
922 else if (flags & ENQUEUE_REPLENISH)
923 replenish_dl_entity(dl_se, pi_se);
924
925 __enqueue_dl_entity(dl_se);
926 }
927
928 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
929 {
930 __dequeue_dl_entity(dl_se);
931 }
932
933 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
934 {
935 struct task_struct *pi_task = rt_mutex_get_top_task(p);
936 struct sched_dl_entity *pi_se = &p->dl;
937
938 /*
939 * Use the scheduling parameters of the top pi-waiter
940 * task if we have one and its (absolute) deadline is
941 * smaller than our one... OTW we keep our runtime and
942 * deadline.
943 */
944 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
945 pi_se = &pi_task->dl;
946 } else if (!dl_prio(p->normal_prio)) {
947 /*
948 * Special case in which we have a !SCHED_DEADLINE task
949 * that is going to be deboosted, but exceedes its
950 * runtime while doing so. No point in replenishing
951 * it, as it's going to return back to its original
952 * scheduling class after this.
953 */
954 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
955 return;
956 }
957
958 /*
959 * If p is throttled, we do nothing. In fact, if it exhausted
960 * its budget it needs a replenishment and, since it now is on
961 * its rq, the bandwidth timer callback (which clearly has not
962 * run yet) will take care of this.
963 */
964 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
965 return;
966
967 enqueue_dl_entity(&p->dl, pi_se, flags);
968
969 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
970 enqueue_pushable_dl_task(rq, p);
971 }
972
973 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
974 {
975 dequeue_dl_entity(&p->dl);
976 dequeue_pushable_dl_task(rq, p);
977 }
978
979 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
980 {
981 update_curr_dl(rq);
982 __dequeue_task_dl(rq, p, flags);
983 }
984
985 /*
986 * Yield task semantic for -deadline tasks is:
987 *
988 * get off from the CPU until our next instance, with
989 * a new runtime. This is of little use now, since we
990 * don't have a bandwidth reclaiming mechanism. Anyway,
991 * bandwidth reclaiming is planned for the future, and
992 * yield_task_dl will indicate that some spare budget
993 * is available for other task instances to use it.
994 */
995 static void yield_task_dl(struct rq *rq)
996 {
997 /*
998 * We make the task go to sleep until its current deadline by
999 * forcing its runtime to zero. This way, update_curr_dl() stops
1000 * it and the bandwidth timer will wake it up and will give it
1001 * new scheduling parameters (thanks to dl_yielded=1).
1002 */
1003 rq->curr->dl.dl_yielded = 1;
1004
1005 update_rq_clock(rq);
1006 update_curr_dl(rq);
1007 /*
1008 * Tell update_rq_clock() that we've just updated,
1009 * so we don't do microscopic update in schedule()
1010 * and double the fastpath cost.
1011 */
1012 rq_clock_skip_update(rq, true);
1013 }
1014
1015 #ifdef CONFIG_SMP
1016
1017 static int find_later_rq(struct task_struct *task);
1018
1019 static int
1020 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1021 {
1022 struct task_struct *curr;
1023 struct rq *rq;
1024
1025 if (sd_flag != SD_BALANCE_WAKE)
1026 goto out;
1027
1028 rq = cpu_rq(cpu);
1029
1030 rcu_read_lock();
1031 curr = READ_ONCE(rq->curr); /* unlocked access */
1032
1033 /*
1034 * If we are dealing with a -deadline task, we must
1035 * decide where to wake it up.
1036 * If it has a later deadline and the current task
1037 * on this rq can't move (provided the waking task
1038 * can!) we prefer to send it somewhere else. On the
1039 * other hand, if it has a shorter deadline, we
1040 * try to make it stay here, it might be important.
1041 */
1042 if (unlikely(dl_task(curr)) &&
1043 (curr->nr_cpus_allowed < 2 ||
1044 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1045 (p->nr_cpus_allowed > 1)) {
1046 int target = find_later_rq(p);
1047
1048 if (target != -1 &&
1049 (dl_time_before(p->dl.deadline,
1050 cpu_rq(target)->dl.earliest_dl.curr) ||
1051 (cpu_rq(target)->dl.dl_nr_running == 0)))
1052 cpu = target;
1053 }
1054 rcu_read_unlock();
1055
1056 out:
1057 return cpu;
1058 }
1059
1060 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1061 {
1062 /*
1063 * Current can't be migrated, useless to reschedule,
1064 * let's hope p can move out.
1065 */
1066 if (rq->curr->nr_cpus_allowed == 1 ||
1067 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1068 return;
1069
1070 /*
1071 * p is migratable, so let's not schedule it and
1072 * see if it is pushed or pulled somewhere else.
1073 */
1074 if (p->nr_cpus_allowed != 1 &&
1075 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1076 return;
1077
1078 resched_curr(rq);
1079 }
1080
1081 #endif /* CONFIG_SMP */
1082
1083 /*
1084 * Only called when both the current and waking task are -deadline
1085 * tasks.
1086 */
1087 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1088 int flags)
1089 {
1090 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1091 resched_curr(rq);
1092 return;
1093 }
1094
1095 #ifdef CONFIG_SMP
1096 /*
1097 * In the unlikely case current and p have the same deadline
1098 * let us try to decide what's the best thing to do...
1099 */
1100 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1101 !test_tsk_need_resched(rq->curr))
1102 check_preempt_equal_dl(rq, p);
1103 #endif /* CONFIG_SMP */
1104 }
1105
1106 #ifdef CONFIG_SCHED_HRTICK
1107 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1108 {
1109 hrtick_start(rq, p->dl.runtime);
1110 }
1111 #else /* !CONFIG_SCHED_HRTICK */
1112 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1113 {
1114 }
1115 #endif
1116
1117 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1118 struct dl_rq *dl_rq)
1119 {
1120 struct rb_node *left = dl_rq->rb_leftmost;
1121
1122 if (!left)
1123 return NULL;
1124
1125 return rb_entry(left, struct sched_dl_entity, rb_node);
1126 }
1127
1128 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1129 {
1130 struct sched_dl_entity *dl_se;
1131 struct task_struct *p;
1132 struct dl_rq *dl_rq;
1133
1134 dl_rq = &rq->dl;
1135
1136 if (need_pull_dl_task(rq, prev)) {
1137 /*
1138 * This is OK, because current is on_cpu, which avoids it being
1139 * picked for load-balance and preemption/IRQs are still
1140 * disabled avoiding further scheduler activity on it and we're
1141 * being very careful to re-start the picking loop.
1142 */
1143 lockdep_unpin_lock(&rq->lock);
1144 pull_dl_task(rq);
1145 lockdep_pin_lock(&rq->lock);
1146 /*
1147 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1148 * means a stop task can slip in, in which case we need to
1149 * re-start task selection.
1150 */
1151 if (rq->stop && task_on_rq_queued(rq->stop))
1152 return RETRY_TASK;
1153 }
1154
1155 /*
1156 * When prev is DL, we may throttle it in put_prev_task().
1157 * So, we update time before we check for dl_nr_running.
1158 */
1159 if (prev->sched_class == &dl_sched_class)
1160 update_curr_dl(rq);
1161
1162 if (unlikely(!dl_rq->dl_nr_running))
1163 return NULL;
1164
1165 put_prev_task(rq, prev);
1166
1167 dl_se = pick_next_dl_entity(rq, dl_rq);
1168 BUG_ON(!dl_se);
1169
1170 p = dl_task_of(dl_se);
1171 p->se.exec_start = rq_clock_task(rq);
1172
1173 /* Running task will never be pushed. */
1174 dequeue_pushable_dl_task(rq, p);
1175
1176 if (hrtick_enabled(rq))
1177 start_hrtick_dl(rq, p);
1178
1179 queue_push_tasks(rq);
1180
1181 return p;
1182 }
1183
1184 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1185 {
1186 update_curr_dl(rq);
1187
1188 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1189 enqueue_pushable_dl_task(rq, p);
1190 }
1191
1192 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1193 {
1194 update_curr_dl(rq);
1195
1196 /*
1197 * Even when we have runtime, update_curr_dl() might have resulted in us
1198 * not being the leftmost task anymore. In that case NEED_RESCHED will
1199 * be set and schedule() will start a new hrtick for the next task.
1200 */
1201 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1202 is_leftmost(p, &rq->dl))
1203 start_hrtick_dl(rq, p);
1204 }
1205
1206 static void task_fork_dl(struct task_struct *p)
1207 {
1208 /*
1209 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1210 * sched_fork()
1211 */
1212 }
1213
1214 static void task_dead_dl(struct task_struct *p)
1215 {
1216 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1217
1218 /*
1219 * Since we are TASK_DEAD we won't slip out of the domain!
1220 */
1221 raw_spin_lock_irq(&dl_b->lock);
1222 /* XXX we should retain the bw until 0-lag */
1223 dl_b->total_bw -= p->dl.dl_bw;
1224 raw_spin_unlock_irq(&dl_b->lock);
1225 }
1226
1227 static void set_curr_task_dl(struct rq *rq)
1228 {
1229 struct task_struct *p = rq->curr;
1230
1231 p->se.exec_start = rq_clock_task(rq);
1232
1233 /* You can't push away the running task */
1234 dequeue_pushable_dl_task(rq, p);
1235 }
1236
1237 #ifdef CONFIG_SMP
1238
1239 /* Only try algorithms three times */
1240 #define DL_MAX_TRIES 3
1241
1242 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1243 {
1244 if (!task_running(rq, p) &&
1245 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1246 return 1;
1247 return 0;
1248 }
1249
1250 /*
1251 * Return the earliest pushable rq's task, which is suitable to be executed
1252 * on the CPU, NULL otherwise:
1253 */
1254 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1255 {
1256 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1257 struct task_struct *p = NULL;
1258
1259 if (!has_pushable_dl_tasks(rq))
1260 return NULL;
1261
1262 next_node:
1263 if (next_node) {
1264 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1265
1266 if (pick_dl_task(rq, p, cpu))
1267 return p;
1268
1269 next_node = rb_next(next_node);
1270 goto next_node;
1271 }
1272
1273 return NULL;
1274 }
1275
1276 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1277
1278 static int find_later_rq(struct task_struct *task)
1279 {
1280 struct sched_domain *sd;
1281 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1282 int this_cpu = smp_processor_id();
1283 int best_cpu, cpu = task_cpu(task);
1284
1285 /* Make sure the mask is initialized first */
1286 if (unlikely(!later_mask))
1287 return -1;
1288
1289 if (task->nr_cpus_allowed == 1)
1290 return -1;
1291
1292 /*
1293 * We have to consider system topology and task affinity
1294 * first, then we can look for a suitable cpu.
1295 */
1296 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1297 task, later_mask);
1298 if (best_cpu == -1)
1299 return -1;
1300
1301 /*
1302 * If we are here, some target has been found,
1303 * the most suitable of which is cached in best_cpu.
1304 * This is, among the runqueues where the current tasks
1305 * have later deadlines than the task's one, the rq
1306 * with the latest possible one.
1307 *
1308 * Now we check how well this matches with task's
1309 * affinity and system topology.
1310 *
1311 * The last cpu where the task run is our first
1312 * guess, since it is most likely cache-hot there.
1313 */
1314 if (cpumask_test_cpu(cpu, later_mask))
1315 return cpu;
1316 /*
1317 * Check if this_cpu is to be skipped (i.e., it is
1318 * not in the mask) or not.
1319 */
1320 if (!cpumask_test_cpu(this_cpu, later_mask))
1321 this_cpu = -1;
1322
1323 rcu_read_lock();
1324 for_each_domain(cpu, sd) {
1325 if (sd->flags & SD_WAKE_AFFINE) {
1326
1327 /*
1328 * If possible, preempting this_cpu is
1329 * cheaper than migrating.
1330 */
1331 if (this_cpu != -1 &&
1332 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1333 rcu_read_unlock();
1334 return this_cpu;
1335 }
1336
1337 /*
1338 * Last chance: if best_cpu is valid and is
1339 * in the mask, that becomes our choice.
1340 */
1341 if (best_cpu < nr_cpu_ids &&
1342 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1343 rcu_read_unlock();
1344 return best_cpu;
1345 }
1346 }
1347 }
1348 rcu_read_unlock();
1349
1350 /*
1351 * At this point, all our guesses failed, we just return
1352 * 'something', and let the caller sort the things out.
1353 */
1354 if (this_cpu != -1)
1355 return this_cpu;
1356
1357 cpu = cpumask_any(later_mask);
1358 if (cpu < nr_cpu_ids)
1359 return cpu;
1360
1361 return -1;
1362 }
1363
1364 /* Locks the rq it finds */
1365 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1366 {
1367 struct rq *later_rq = NULL;
1368 int tries;
1369 int cpu;
1370
1371 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1372 cpu = find_later_rq(task);
1373
1374 if ((cpu == -1) || (cpu == rq->cpu))
1375 break;
1376
1377 later_rq = cpu_rq(cpu);
1378
1379 if (later_rq->dl.dl_nr_running &&
1380 !dl_time_before(task->dl.deadline,
1381 later_rq->dl.earliest_dl.curr)) {
1382 /*
1383 * Target rq has tasks of equal or earlier deadline,
1384 * retrying does not release any lock and is unlikely
1385 * to yield a different result.
1386 */
1387 later_rq = NULL;
1388 break;
1389 }
1390
1391 /* Retry if something changed. */
1392 if (double_lock_balance(rq, later_rq)) {
1393 if (unlikely(task_rq(task) != rq ||
1394 !cpumask_test_cpu(later_rq->cpu,
1395 &task->cpus_allowed) ||
1396 task_running(rq, task) ||
1397 !task_on_rq_queued(task))) {
1398 double_unlock_balance(rq, later_rq);
1399 later_rq = NULL;
1400 break;
1401 }
1402 }
1403
1404 /*
1405 * If the rq we found has no -deadline task, or
1406 * its earliest one has a later deadline than our
1407 * task, the rq is a good one.
1408 */
1409 if (!later_rq->dl.dl_nr_running ||
1410 dl_time_before(task->dl.deadline,
1411 later_rq->dl.earliest_dl.curr))
1412 break;
1413
1414 /* Otherwise we try again. */
1415 double_unlock_balance(rq, later_rq);
1416 later_rq = NULL;
1417 }
1418
1419 return later_rq;
1420 }
1421
1422 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1423 {
1424 struct task_struct *p;
1425
1426 if (!has_pushable_dl_tasks(rq))
1427 return NULL;
1428
1429 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1430 struct task_struct, pushable_dl_tasks);
1431
1432 BUG_ON(rq->cpu != task_cpu(p));
1433 BUG_ON(task_current(rq, p));
1434 BUG_ON(p->nr_cpus_allowed <= 1);
1435
1436 BUG_ON(!task_on_rq_queued(p));
1437 BUG_ON(!dl_task(p));
1438
1439 return p;
1440 }
1441
1442 /*
1443 * See if the non running -deadline tasks on this rq
1444 * can be sent to some other CPU where they can preempt
1445 * and start executing.
1446 */
1447 static int push_dl_task(struct rq *rq)
1448 {
1449 struct task_struct *next_task;
1450 struct rq *later_rq;
1451 int ret = 0;
1452
1453 if (!rq->dl.overloaded)
1454 return 0;
1455
1456 next_task = pick_next_pushable_dl_task(rq);
1457 if (!next_task)
1458 return 0;
1459
1460 retry:
1461 if (unlikely(next_task == rq->curr)) {
1462 WARN_ON(1);
1463 return 0;
1464 }
1465
1466 /*
1467 * If next_task preempts rq->curr, and rq->curr
1468 * can move away, it makes sense to just reschedule
1469 * without going further in pushing next_task.
1470 */
1471 if (dl_task(rq->curr) &&
1472 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1473 rq->curr->nr_cpus_allowed > 1) {
1474 resched_curr(rq);
1475 return 0;
1476 }
1477
1478 /* We might release rq lock */
1479 get_task_struct(next_task);
1480
1481 /* Will lock the rq it'll find */
1482 later_rq = find_lock_later_rq(next_task, rq);
1483 if (!later_rq) {
1484 struct task_struct *task;
1485
1486 /*
1487 * We must check all this again, since
1488 * find_lock_later_rq releases rq->lock and it is
1489 * then possible that next_task has migrated.
1490 */
1491 task = pick_next_pushable_dl_task(rq);
1492 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1493 /*
1494 * The task is still there. We don't try
1495 * again, some other cpu will pull it when ready.
1496 */
1497 goto out;
1498 }
1499
1500 if (!task)
1501 /* No more tasks */
1502 goto out;
1503
1504 put_task_struct(next_task);
1505 next_task = task;
1506 goto retry;
1507 }
1508
1509 deactivate_task(rq, next_task, 0);
1510 set_task_cpu(next_task, later_rq->cpu);
1511 activate_task(later_rq, next_task, 0);
1512 ret = 1;
1513
1514 resched_curr(later_rq);
1515
1516 double_unlock_balance(rq, later_rq);
1517
1518 out:
1519 put_task_struct(next_task);
1520
1521 return ret;
1522 }
1523
1524 static void push_dl_tasks(struct rq *rq)
1525 {
1526 /* push_dl_task() will return true if it moved a -deadline task */
1527 while (push_dl_task(rq))
1528 ;
1529 }
1530
1531 static void pull_dl_task(struct rq *this_rq)
1532 {
1533 int this_cpu = this_rq->cpu, cpu;
1534 struct task_struct *p;
1535 bool resched = false;
1536 struct rq *src_rq;
1537 u64 dmin = LONG_MAX;
1538
1539 if (likely(!dl_overloaded(this_rq)))
1540 return;
1541
1542 /*
1543 * Match the barrier from dl_set_overloaded; this guarantees that if we
1544 * see overloaded we must also see the dlo_mask bit.
1545 */
1546 smp_rmb();
1547
1548 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1549 if (this_cpu == cpu)
1550 continue;
1551
1552 src_rq = cpu_rq(cpu);
1553
1554 /*
1555 * It looks racy, abd it is! However, as in sched_rt.c,
1556 * we are fine with this.
1557 */
1558 if (this_rq->dl.dl_nr_running &&
1559 dl_time_before(this_rq->dl.earliest_dl.curr,
1560 src_rq->dl.earliest_dl.next))
1561 continue;
1562
1563 /* Might drop this_rq->lock */
1564 double_lock_balance(this_rq, src_rq);
1565
1566 /*
1567 * If there are no more pullable tasks on the
1568 * rq, we're done with it.
1569 */
1570 if (src_rq->dl.dl_nr_running <= 1)
1571 goto skip;
1572
1573 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1574
1575 /*
1576 * We found a task to be pulled if:
1577 * - it preempts our current (if there's one),
1578 * - it will preempt the last one we pulled (if any).
1579 */
1580 if (p && dl_time_before(p->dl.deadline, dmin) &&
1581 (!this_rq->dl.dl_nr_running ||
1582 dl_time_before(p->dl.deadline,
1583 this_rq->dl.earliest_dl.curr))) {
1584 WARN_ON(p == src_rq->curr);
1585 WARN_ON(!task_on_rq_queued(p));
1586
1587 /*
1588 * Then we pull iff p has actually an earlier
1589 * deadline than the current task of its runqueue.
1590 */
1591 if (dl_time_before(p->dl.deadline,
1592 src_rq->curr->dl.deadline))
1593 goto skip;
1594
1595 resched = true;
1596
1597 deactivate_task(src_rq, p, 0);
1598 set_task_cpu(p, this_cpu);
1599 activate_task(this_rq, p, 0);
1600 dmin = p->dl.deadline;
1601
1602 /* Is there any other task even earlier? */
1603 }
1604 skip:
1605 double_unlock_balance(this_rq, src_rq);
1606 }
1607
1608 if (resched)
1609 resched_curr(this_rq);
1610 }
1611
1612 /*
1613 * Since the task is not running and a reschedule is not going to happen
1614 * anytime soon on its runqueue, we try pushing it away now.
1615 */
1616 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1617 {
1618 if (!task_running(rq, p) &&
1619 !test_tsk_need_resched(rq->curr) &&
1620 p->nr_cpus_allowed > 1 &&
1621 dl_task(rq->curr) &&
1622 (rq->curr->nr_cpus_allowed < 2 ||
1623 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1624 push_dl_tasks(rq);
1625 }
1626 }
1627
1628 static void set_cpus_allowed_dl(struct task_struct *p,
1629 const struct cpumask *new_mask)
1630 {
1631 struct root_domain *src_rd;
1632 struct rq *rq;
1633
1634 BUG_ON(!dl_task(p));
1635
1636 rq = task_rq(p);
1637 src_rd = rq->rd;
1638 /*
1639 * Migrating a SCHED_DEADLINE task between exclusive
1640 * cpusets (different root_domains) entails a bandwidth
1641 * update. We already made space for us in the destination
1642 * domain (see cpuset_can_attach()).
1643 */
1644 if (!cpumask_intersects(src_rd->span, new_mask)) {
1645 struct dl_bw *src_dl_b;
1646
1647 src_dl_b = dl_bw_of(cpu_of(rq));
1648 /*
1649 * We now free resources of the root_domain we are migrating
1650 * off. In the worst case, sched_setattr() may temporary fail
1651 * until we complete the update.
1652 */
1653 raw_spin_lock(&src_dl_b->lock);
1654 __dl_clear(src_dl_b, p->dl.dl_bw);
1655 raw_spin_unlock(&src_dl_b->lock);
1656 }
1657
1658 set_cpus_allowed_common(p, new_mask);
1659 }
1660
1661 /* Assumes rq->lock is held */
1662 static void rq_online_dl(struct rq *rq)
1663 {
1664 if (rq->dl.overloaded)
1665 dl_set_overload(rq);
1666
1667 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1668 if (rq->dl.dl_nr_running > 0)
1669 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1670 }
1671
1672 /* Assumes rq->lock is held */
1673 static void rq_offline_dl(struct rq *rq)
1674 {
1675 if (rq->dl.overloaded)
1676 dl_clear_overload(rq);
1677
1678 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1679 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1680 }
1681
1682 void __init init_sched_dl_class(void)
1683 {
1684 unsigned int i;
1685
1686 for_each_possible_cpu(i)
1687 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1688 GFP_KERNEL, cpu_to_node(i));
1689 }
1690
1691 #endif /* CONFIG_SMP */
1692
1693 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1694 {
1695 /*
1696 * Start the deadline timer; if we switch back to dl before this we'll
1697 * continue consuming our current CBS slice. If we stay outside of
1698 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1699 * task.
1700 */
1701 if (!start_dl_timer(p))
1702 __dl_clear_params(p);
1703
1704 /*
1705 * Since this might be the only -deadline task on the rq,
1706 * this is the right place to try to pull some other one
1707 * from an overloaded cpu, if any.
1708 */
1709 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1710 return;
1711
1712 queue_pull_task(rq);
1713 }
1714
1715 /*
1716 * When switching to -deadline, we may overload the rq, then
1717 * we try to push someone off, if possible.
1718 */
1719 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1720 {
1721 if (dl_time_before(p->dl.deadline, rq_clock(rq)))
1722 setup_new_dl_entity(&p->dl, &p->dl);
1723
1724 if (task_on_rq_queued(p) && rq->curr != p) {
1725 #ifdef CONFIG_SMP
1726 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
1727 queue_push_tasks(rq);
1728 #else
1729 if (dl_task(rq->curr))
1730 check_preempt_curr_dl(rq, p, 0);
1731 else
1732 resched_curr(rq);
1733 #endif
1734 }
1735 }
1736
1737 /*
1738 * If the scheduling parameters of a -deadline task changed,
1739 * a push or pull operation might be needed.
1740 */
1741 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1742 int oldprio)
1743 {
1744 if (task_on_rq_queued(p) || rq->curr == p) {
1745 #ifdef CONFIG_SMP
1746 /*
1747 * This might be too much, but unfortunately
1748 * we don't have the old deadline value, and
1749 * we can't argue if the task is increasing
1750 * or lowering its prio, so...
1751 */
1752 if (!rq->dl.overloaded)
1753 queue_pull_task(rq);
1754
1755 /*
1756 * If we now have a earlier deadline task than p,
1757 * then reschedule, provided p is still on this
1758 * runqueue.
1759 */
1760 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1761 resched_curr(rq);
1762 #else
1763 /*
1764 * Again, we don't know if p has a earlier
1765 * or later deadline, so let's blindly set a
1766 * (maybe not needed) rescheduling point.
1767 */
1768 resched_curr(rq);
1769 #endif /* CONFIG_SMP */
1770 }
1771 }
1772
1773 const struct sched_class dl_sched_class = {
1774 .next = &rt_sched_class,
1775 .enqueue_task = enqueue_task_dl,
1776 .dequeue_task = dequeue_task_dl,
1777 .yield_task = yield_task_dl,
1778
1779 .check_preempt_curr = check_preempt_curr_dl,
1780
1781 .pick_next_task = pick_next_task_dl,
1782 .put_prev_task = put_prev_task_dl,
1783
1784 #ifdef CONFIG_SMP
1785 .select_task_rq = select_task_rq_dl,
1786 .set_cpus_allowed = set_cpus_allowed_dl,
1787 .rq_online = rq_online_dl,
1788 .rq_offline = rq_offline_dl,
1789 .task_woken = task_woken_dl,
1790 #endif
1791
1792 .set_curr_task = set_curr_task_dl,
1793 .task_tick = task_tick_dl,
1794 .task_fork = task_fork_dl,
1795 .task_dead = task_dead_dl,
1796
1797 .prio_changed = prio_changed_dl,
1798 .switched_from = switched_from_dl,
1799 .switched_to = switched_to_dl,
1800
1801 .update_curr = update_curr_dl,
1802 };
1803
1804 #ifdef CONFIG_SCHED_DEBUG
1805 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1806
1807 void print_dl_stats(struct seq_file *m, int cpu)
1808 {
1809 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1810 }
1811 #endif /* CONFIG_SCHED_DEBUG */
This page took 0.153803 seconds and 5 git commands to generate.