074551a792f74b6182e5111da17a0fa0359c2721
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
183 #else
184 # define WMULT_CONST (1UL << 32)
185 #endif
186
187 #define WMULT_SHIFT 32
188
189 /*
190 * Shift right and round:
191 */
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194 /*
195 * delta *= weight / lw
196 */
197 static unsigned long
198 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200 {
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234 }
235
236
237 const struct sched_class fair_sched_class;
238
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247 {
248 return cfs_rq->rq;
249 }
250
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
253
254 static inline struct task_struct *task_of(struct sched_entity *se)
255 {
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258 #endif
259 return container_of(se, struct task_struct, se);
260 }
261
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267 {
268 return p->se.cfs_rq;
269 }
270
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273 {
274 return se->cfs_rq;
275 }
276
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279 {
280 return grp->my_q;
281 }
282
283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq, 0);
307 }
308 }
309
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316 }
317
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322 /* Do the two (enqueued) entities belong to the same group ? */
323 static inline int
324 is_same_group(struct sched_entity *se, struct sched_entity *pse)
325 {
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330 }
331
332 static inline struct sched_entity *parent_entity(struct sched_entity *se)
333 {
334 return se->parent;
335 }
336
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity *se)
339 {
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346 }
347
348 static void
349 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350 {
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378 }
379
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
381
382 static inline struct task_struct *task_of(struct sched_entity *se)
383 {
384 return container_of(se, struct task_struct, se);
385 }
386
387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388 {
389 return container_of(cfs_rq, struct rq, cfs);
390 }
391
392 #define entity_is_task(se) 1
393
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
396
397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398 {
399 return &task_rq(p)->cfs;
400 }
401
402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403 {
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408 }
409
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412 {
413 return NULL;
414 }
415
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417 {
418 }
419
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421 {
422 }
423
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427 static inline int
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
429 {
430 return 1;
431 }
432
433 static inline struct sched_entity *parent_entity(struct sched_entity *se)
434 {
435 return NULL;
436 }
437
438 static inline void
439 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440 {
441 }
442
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
444
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453 {
454 s64 delta = (s64)(vruntime - max_vruntime);
455 if (delta > 0)
456 max_vruntime = vruntime;
457
458 return max_vruntime;
459 }
460
461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
462 {
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468 }
469
470 static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472 {
473 return (s64)(a->vruntime - b->vruntime) < 0;
474 }
475
476 static void update_min_vruntime(struct cfs_rq *cfs_rq)
477 {
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
488 if (!cfs_rq->curr)
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 #ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499 #endif
500 }
501
502 /*
503 * Enqueue an entity into the rb-tree:
504 */
505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 {
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
522 if (entity_before(se, entry)) {
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
534 if (leftmost)
535 cfs_rq->rb_leftmost = &se->run_node;
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
539 }
540
541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
548 }
549
550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
551 }
552
553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554 {
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
561 }
562
563 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564 {
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571 }
572
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575 {
576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577
578 if (!last)
579 return NULL;
580
581 return rb_entry(last, struct sched_entity, run_node);
582 }
583
584 /**************************************************************
585 * Scheduling class statistics methods:
586 */
587
588 int sched_proc_update_handler(struct ctl_table *table, int write,
589 void __user *buffer, size_t *lenp,
590 loff_t *ppos)
591 {
592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593 int factor = get_update_sysctl_factor();
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
606 #undef WRT_SYSCTL
607
608 return 0;
609 }
610 #endif
611
612 /*
613 * delta /= w
614 */
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta, struct sched_entity *se)
617 {
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620
621 return delta;
622 }
623
624 /*
625 * The idea is to set a period in which each task runs once.
626 *
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
632 static u64 __sched_period(unsigned long nr_running)
633 {
634 u64 period = sysctl_sched_latency;
635 unsigned long nr_latency = sched_nr_latency;
636
637 if (unlikely(nr_running > nr_latency)) {
638 period = sysctl_sched_min_granularity;
639 period *= nr_running;
640 }
641
642 return period;
643 }
644
645 /*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
649 * s = p*P[w/rw]
650 */
651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654
655 for_each_sched_entity(se) {
656 struct load_weight *load;
657 struct load_weight lw;
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
661
662 if (unlikely(!se->on_rq)) {
663 lw = cfs_rq->load;
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
671 }
672
673 /*
674 * We calculate the vruntime slice of a to-be-inserted task.
675 *
676 * vs = s/w
677 */
678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
679 {
680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 }
682
683 #ifdef CONFIG_SMP
684 static unsigned long task_h_load(struct task_struct *p);
685
686 static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688 /* Give new task start runnable values to heavy its load in infant time */
689 void init_task_runnable_average(struct task_struct *p)
690 {
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698 }
699 #else
700 void init_task_runnable_average(struct task_struct *p)
701 {
702 }
703 #endif
704
705 /*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709 static inline void
710 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
712 {
713 unsigned long delta_exec_weighted;
714
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
717
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
721
722 curr->vruntime += delta_exec_weighted;
723 update_min_vruntime(cfs_rq);
724 }
725
726 static void update_curr(struct cfs_rq *cfs_rq)
727 {
728 struct sched_entity *curr = cfs_rq->curr;
729 u64 now = rq_clock_task(rq_of(cfs_rq));
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
740 delta_exec = (unsigned long)(now - curr->exec_start);
741 if (!delta_exec)
742 return;
743
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
751 cpuacct_charge(curtask, delta_exec);
752 account_group_exec_runtime(curtask, delta_exec);
753 }
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
756 }
757
758 static inline void
759 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
760 {
761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
762 }
763
764 /*
765 * Task is being enqueued - update stats:
766 */
767 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
773 if (se != cfs_rq->curr)
774 update_stats_wait_start(cfs_rq, se);
775 }
776
777 static void
778 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
785 #ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
789 }
790 #endif
791 schedstat_set(se->statistics.wait_start, 0);
792 }
793
794 static inline void
795 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 {
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
801 if (se != cfs_rq->curr)
802 update_stats_wait_end(cfs_rq, se);
803 }
804
805 /*
806 * We are picking a new current task - update its stats:
807 */
808 static inline void
809 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
810 {
811 /*
812 * We are starting a new run period:
813 */
814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
815 }
816
817 /**************************************************
818 * Scheduling class queueing methods:
819 */
820
821 #ifdef CONFIG_NUMA_BALANCING
822 /*
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
826 */
827 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829
830 /* Portion of address space to scan in MB */
831 unsigned int sysctl_numa_balancing_scan_size = 256;
832
833 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834 unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
836 /*
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
841 */
842 unsigned int sysctl_numa_balancing_migrate_deferred = 16;
843
844 static unsigned int task_nr_scan_windows(struct task_struct *p)
845 {
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
848
849 /*
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
852 * on resident pages
853 */
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
856 if (!rss)
857 rss = nr_scan_pages;
858
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
861 }
862
863 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864 #define MAX_SCAN_WINDOW 2560
865
866 static unsigned int task_scan_min(struct task_struct *p)
867 {
868 unsigned int scan, floor;
869 unsigned int windows = 1;
870
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
874
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
877 }
878
879 static unsigned int task_scan_max(struct task_struct *p)
880 {
881 unsigned int smin = task_scan_min(p);
882 unsigned int smax;
883
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
887 }
888
889 /*
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
895 */
896 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
897
898 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
899 {
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
902 }
903
904 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
905 {
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
908 }
909
910 struct numa_group {
911 atomic_t refcount;
912
913 spinlock_t lock; /* nr_tasks, tasks */
914 int nr_tasks;
915 pid_t gid;
916 struct list_head task_list;
917
918 struct rcu_head rcu;
919 unsigned long total_faults;
920 unsigned long faults[0];
921 };
922
923 pid_t task_numa_group_id(struct task_struct *p)
924 {
925 return p->numa_group ? p->numa_group->gid : 0;
926 }
927
928 static inline int task_faults_idx(int nid, int priv)
929 {
930 return 2 * nid + priv;
931 }
932
933 static inline unsigned long task_faults(struct task_struct *p, int nid)
934 {
935 if (!p->numa_faults)
936 return 0;
937
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
940 }
941
942 static inline unsigned long group_faults(struct task_struct *p, int nid)
943 {
944 if (!p->numa_group)
945 return 0;
946
947 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
948 }
949
950 /*
951 * These return the fraction of accesses done by a particular task, or
952 * task group, on a particular numa node. The group weight is given a
953 * larger multiplier, in order to group tasks together that are almost
954 * evenly spread out between numa nodes.
955 */
956 static inline unsigned long task_weight(struct task_struct *p, int nid)
957 {
958 unsigned long total_faults;
959
960 if (!p->numa_faults)
961 return 0;
962
963 total_faults = p->total_numa_faults;
964
965 if (!total_faults)
966 return 0;
967
968 return 1000 * task_faults(p, nid) / total_faults;
969 }
970
971 static inline unsigned long group_weight(struct task_struct *p, int nid)
972 {
973 if (!p->numa_group || !p->numa_group->total_faults)
974 return 0;
975
976 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
977 }
978
979 static unsigned long weighted_cpuload(const int cpu);
980 static unsigned long source_load(int cpu, int type);
981 static unsigned long target_load(int cpu, int type);
982 static unsigned long power_of(int cpu);
983 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
984
985 /* Cached statistics for all CPUs within a node */
986 struct numa_stats {
987 unsigned long nr_running;
988 unsigned long load;
989
990 /* Total compute capacity of CPUs on a node */
991 unsigned long power;
992
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
995 int has_capacity;
996 };
997
998 /*
999 * XXX borrowed from update_sg_lb_stats
1000 */
1001 static void update_numa_stats(struct numa_stats *ns, int nid)
1002 {
1003 int cpu;
1004
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1008
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
1012 }
1013
1014 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1015 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1016 ns->has_capacity = (ns->nr_running < ns->capacity);
1017 }
1018
1019 struct task_numa_env {
1020 struct task_struct *p;
1021
1022 int src_cpu, src_nid;
1023 int dst_cpu, dst_nid;
1024
1025 struct numa_stats src_stats, dst_stats;
1026
1027 int imbalance_pct, idx;
1028
1029 struct task_struct *best_task;
1030 long best_imp;
1031 int best_cpu;
1032 };
1033
1034 static void task_numa_assign(struct task_numa_env *env,
1035 struct task_struct *p, long imp)
1036 {
1037 if (env->best_task)
1038 put_task_struct(env->best_task);
1039 if (p)
1040 get_task_struct(p);
1041
1042 env->best_task = p;
1043 env->best_imp = imp;
1044 env->best_cpu = env->dst_cpu;
1045 }
1046
1047 /*
1048 * This checks if the overall compute and NUMA accesses of the system would
1049 * be improved if the source tasks was migrated to the target dst_cpu taking
1050 * into account that it might be best if task running on the dst_cpu should
1051 * be exchanged with the source task
1052 */
1053 static void task_numa_compare(struct task_numa_env *env,
1054 long taskimp, long groupimp)
1055 {
1056 struct rq *src_rq = cpu_rq(env->src_cpu);
1057 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1058 struct task_struct *cur;
1059 long dst_load, src_load;
1060 long load;
1061 long imp = (groupimp > 0) ? groupimp : taskimp;
1062
1063 rcu_read_lock();
1064 cur = ACCESS_ONCE(dst_rq->curr);
1065 if (cur->pid == 0) /* idle */
1066 cur = NULL;
1067
1068 /*
1069 * "imp" is the fault differential for the source task between the
1070 * source and destination node. Calculate the total differential for
1071 * the source task and potential destination task. The more negative
1072 * the value is, the more rmeote accesses that would be expected to
1073 * be incurred if the tasks were swapped.
1074 */
1075 if (cur) {
1076 /* Skip this swap candidate if cannot move to the source cpu */
1077 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1078 goto unlock;
1079
1080 /*
1081 * If dst and source tasks are in the same NUMA group, or not
1082 * in any group then look only at task weights.
1083 */
1084 if (cur->numa_group == env->p->numa_group) {
1085 imp = taskimp + task_weight(cur, env->src_nid) -
1086 task_weight(cur, env->dst_nid);
1087 /*
1088 * Add some hysteresis to prevent swapping the
1089 * tasks within a group over tiny differences.
1090 */
1091 if (cur->numa_group)
1092 imp -= imp/16;
1093 } else {
1094 /*
1095 * Compare the group weights. If a task is all by
1096 * itself (not part of a group), use the task weight
1097 * instead.
1098 */
1099 if (env->p->numa_group)
1100 imp = groupimp;
1101 else
1102 imp = taskimp;
1103
1104 if (cur->numa_group)
1105 imp += group_weight(cur, env->src_nid) -
1106 group_weight(cur, env->dst_nid);
1107 else
1108 imp += task_weight(cur, env->src_nid) -
1109 task_weight(cur, env->dst_nid);
1110 }
1111 }
1112
1113 if (imp < env->best_imp)
1114 goto unlock;
1115
1116 if (!cur) {
1117 /* Is there capacity at our destination? */
1118 if (env->src_stats.has_capacity &&
1119 !env->dst_stats.has_capacity)
1120 goto unlock;
1121
1122 goto balance;
1123 }
1124
1125 /* Balance doesn't matter much if we're running a task per cpu */
1126 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1127 goto assign;
1128
1129 /*
1130 * In the overloaded case, try and keep the load balanced.
1131 */
1132 balance:
1133 dst_load = env->dst_stats.load;
1134 src_load = env->src_stats.load;
1135
1136 /* XXX missing power terms */
1137 load = task_h_load(env->p);
1138 dst_load += load;
1139 src_load -= load;
1140
1141 if (cur) {
1142 load = task_h_load(cur);
1143 dst_load -= load;
1144 src_load += load;
1145 }
1146
1147 /* make src_load the smaller */
1148 if (dst_load < src_load)
1149 swap(dst_load, src_load);
1150
1151 if (src_load * env->imbalance_pct < dst_load * 100)
1152 goto unlock;
1153
1154 assign:
1155 task_numa_assign(env, cur, imp);
1156 unlock:
1157 rcu_read_unlock();
1158 }
1159
1160 static void task_numa_find_cpu(struct task_numa_env *env,
1161 long taskimp, long groupimp)
1162 {
1163 int cpu;
1164
1165 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1166 /* Skip this CPU if the source task cannot migrate */
1167 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1168 continue;
1169
1170 env->dst_cpu = cpu;
1171 task_numa_compare(env, taskimp, groupimp);
1172 }
1173 }
1174
1175 static int task_numa_migrate(struct task_struct *p)
1176 {
1177 struct task_numa_env env = {
1178 .p = p,
1179
1180 .src_cpu = task_cpu(p),
1181 .src_nid = task_node(p),
1182
1183 .imbalance_pct = 112,
1184
1185 .best_task = NULL,
1186 .best_imp = 0,
1187 .best_cpu = -1
1188 };
1189 struct sched_domain *sd;
1190 unsigned long taskweight, groupweight;
1191 int nid, ret;
1192 long taskimp, groupimp;
1193
1194 /*
1195 * Pick the lowest SD_NUMA domain, as that would have the smallest
1196 * imbalance and would be the first to start moving tasks about.
1197 *
1198 * And we want to avoid any moving of tasks about, as that would create
1199 * random movement of tasks -- counter the numa conditions we're trying
1200 * to satisfy here.
1201 */
1202 rcu_read_lock();
1203 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1205 rcu_read_unlock();
1206
1207 taskweight = task_weight(p, env.src_nid);
1208 groupweight = group_weight(p, env.src_nid);
1209 update_numa_stats(&env.src_stats, env.src_nid);
1210 env.dst_nid = p->numa_preferred_nid;
1211 taskimp = task_weight(p, env.dst_nid) - taskweight;
1212 groupimp = group_weight(p, env.dst_nid) - groupweight;
1213 update_numa_stats(&env.dst_stats, env.dst_nid);
1214
1215 /* If the preferred nid has capacity, try to use it. */
1216 if (env.dst_stats.has_capacity)
1217 task_numa_find_cpu(&env, taskimp, groupimp);
1218
1219 /* No space available on the preferred nid. Look elsewhere. */
1220 if (env.best_cpu == -1) {
1221 for_each_online_node(nid) {
1222 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1223 continue;
1224
1225 /* Only consider nodes where both task and groups benefit */
1226 taskimp = task_weight(p, nid) - taskweight;
1227 groupimp = group_weight(p, nid) - groupweight;
1228 if (taskimp < 0 && groupimp < 0)
1229 continue;
1230
1231 env.dst_nid = nid;
1232 update_numa_stats(&env.dst_stats, env.dst_nid);
1233 task_numa_find_cpu(&env, taskimp, groupimp);
1234 }
1235 }
1236
1237 /* No better CPU than the current one was found. */
1238 if (env.best_cpu == -1)
1239 return -EAGAIN;
1240
1241 sched_setnuma(p, env.dst_nid);
1242
1243 /*
1244 * Reset the scan period if the task is being rescheduled on an
1245 * alternative node to recheck if the tasks is now properly placed.
1246 */
1247 p->numa_scan_period = task_scan_min(p);
1248
1249 if (env.best_task == NULL) {
1250 int ret = migrate_task_to(p, env.best_cpu);
1251 return ret;
1252 }
1253
1254 ret = migrate_swap(p, env.best_task);
1255 put_task_struct(env.best_task);
1256 return ret;
1257 }
1258
1259 /* Attempt to migrate a task to a CPU on the preferred node. */
1260 static void numa_migrate_preferred(struct task_struct *p)
1261 {
1262 /* This task has no NUMA fault statistics yet */
1263 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1264 return;
1265
1266 /* Periodically retry migrating the task to the preferred node */
1267 p->numa_migrate_retry = jiffies + HZ;
1268
1269 /* Success if task is already running on preferred CPU */
1270 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
1271 return;
1272
1273 /* Otherwise, try migrate to a CPU on the preferred node */
1274 task_numa_migrate(p);
1275 }
1276
1277 /*
1278 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1279 * increments. The more local the fault statistics are, the higher the scan
1280 * period will be for the next scan window. If local/remote ratio is below
1281 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1282 * scan period will decrease
1283 */
1284 #define NUMA_PERIOD_SLOTS 10
1285 #define NUMA_PERIOD_THRESHOLD 3
1286
1287 /*
1288 * Increase the scan period (slow down scanning) if the majority of
1289 * our memory is already on our local node, or if the majority of
1290 * the page accesses are shared with other processes.
1291 * Otherwise, decrease the scan period.
1292 */
1293 static void update_task_scan_period(struct task_struct *p,
1294 unsigned long shared, unsigned long private)
1295 {
1296 unsigned int period_slot;
1297 int ratio;
1298 int diff;
1299
1300 unsigned long remote = p->numa_faults_locality[0];
1301 unsigned long local = p->numa_faults_locality[1];
1302
1303 /*
1304 * If there were no record hinting faults then either the task is
1305 * completely idle or all activity is areas that are not of interest
1306 * to automatic numa balancing. Scan slower
1307 */
1308 if (local + shared == 0) {
1309 p->numa_scan_period = min(p->numa_scan_period_max,
1310 p->numa_scan_period << 1);
1311
1312 p->mm->numa_next_scan = jiffies +
1313 msecs_to_jiffies(p->numa_scan_period);
1314
1315 return;
1316 }
1317
1318 /*
1319 * Prepare to scale scan period relative to the current period.
1320 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1321 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1322 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1323 */
1324 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1325 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1326 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1327 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1328 if (!slot)
1329 slot = 1;
1330 diff = slot * period_slot;
1331 } else {
1332 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1333
1334 /*
1335 * Scale scan rate increases based on sharing. There is an
1336 * inverse relationship between the degree of sharing and
1337 * the adjustment made to the scanning period. Broadly
1338 * speaking the intent is that there is little point
1339 * scanning faster if shared accesses dominate as it may
1340 * simply bounce migrations uselessly
1341 */
1342 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1343 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1344 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1345 }
1346
1347 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1348 task_scan_min(p), task_scan_max(p));
1349 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1350 }
1351
1352 static void task_numa_placement(struct task_struct *p)
1353 {
1354 int seq, nid, max_nid = -1, max_group_nid = -1;
1355 unsigned long max_faults = 0, max_group_faults = 0;
1356 unsigned long fault_types[2] = { 0, 0 };
1357 spinlock_t *group_lock = NULL;
1358
1359 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1360 if (p->numa_scan_seq == seq)
1361 return;
1362 p->numa_scan_seq = seq;
1363 p->numa_scan_period_max = task_scan_max(p);
1364
1365 /* If the task is part of a group prevent parallel updates to group stats */
1366 if (p->numa_group) {
1367 group_lock = &p->numa_group->lock;
1368 spin_lock(group_lock);
1369 }
1370
1371 /* Find the node with the highest number of faults */
1372 for_each_online_node(nid) {
1373 unsigned long faults = 0, group_faults = 0;
1374 int priv, i;
1375
1376 for (priv = 0; priv < 2; priv++) {
1377 long diff;
1378
1379 i = task_faults_idx(nid, priv);
1380 diff = -p->numa_faults[i];
1381
1382 /* Decay existing window, copy faults since last scan */
1383 p->numa_faults[i] >>= 1;
1384 p->numa_faults[i] += p->numa_faults_buffer[i];
1385 fault_types[priv] += p->numa_faults_buffer[i];
1386 p->numa_faults_buffer[i] = 0;
1387
1388 faults += p->numa_faults[i];
1389 diff += p->numa_faults[i];
1390 p->total_numa_faults += diff;
1391 if (p->numa_group) {
1392 /* safe because we can only change our own group */
1393 p->numa_group->faults[i] += diff;
1394 p->numa_group->total_faults += diff;
1395 group_faults += p->numa_group->faults[i];
1396 }
1397 }
1398
1399 if (faults > max_faults) {
1400 max_faults = faults;
1401 max_nid = nid;
1402 }
1403
1404 if (group_faults > max_group_faults) {
1405 max_group_faults = group_faults;
1406 max_group_nid = nid;
1407 }
1408 }
1409
1410 update_task_scan_period(p, fault_types[0], fault_types[1]);
1411
1412 if (p->numa_group) {
1413 /*
1414 * If the preferred task and group nids are different,
1415 * iterate over the nodes again to find the best place.
1416 */
1417 if (max_nid != max_group_nid) {
1418 unsigned long weight, max_weight = 0;
1419
1420 for_each_online_node(nid) {
1421 weight = task_weight(p, nid) + group_weight(p, nid);
1422 if (weight > max_weight) {
1423 max_weight = weight;
1424 max_nid = nid;
1425 }
1426 }
1427 }
1428
1429 spin_unlock(group_lock);
1430 }
1431
1432 /* Preferred node as the node with the most faults */
1433 if (max_faults && max_nid != p->numa_preferred_nid) {
1434 /* Update the preferred nid and migrate task if possible */
1435 sched_setnuma(p, max_nid);
1436 numa_migrate_preferred(p);
1437 }
1438 }
1439
1440 static inline int get_numa_group(struct numa_group *grp)
1441 {
1442 return atomic_inc_not_zero(&grp->refcount);
1443 }
1444
1445 static inline void put_numa_group(struct numa_group *grp)
1446 {
1447 if (atomic_dec_and_test(&grp->refcount))
1448 kfree_rcu(grp, rcu);
1449 }
1450
1451 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1452 int *priv)
1453 {
1454 struct numa_group *grp, *my_grp;
1455 struct task_struct *tsk;
1456 bool join = false;
1457 int cpu = cpupid_to_cpu(cpupid);
1458 int i;
1459
1460 if (unlikely(!p->numa_group)) {
1461 unsigned int size = sizeof(struct numa_group) +
1462 2*nr_node_ids*sizeof(unsigned long);
1463
1464 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1465 if (!grp)
1466 return;
1467
1468 atomic_set(&grp->refcount, 1);
1469 spin_lock_init(&grp->lock);
1470 INIT_LIST_HEAD(&grp->task_list);
1471 grp->gid = p->pid;
1472
1473 for (i = 0; i < 2*nr_node_ids; i++)
1474 grp->faults[i] = p->numa_faults[i];
1475
1476 grp->total_faults = p->total_numa_faults;
1477
1478 list_add(&p->numa_entry, &grp->task_list);
1479 grp->nr_tasks++;
1480 rcu_assign_pointer(p->numa_group, grp);
1481 }
1482
1483 rcu_read_lock();
1484 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1485
1486 if (!cpupid_match_pid(tsk, cpupid))
1487 goto no_join;
1488
1489 grp = rcu_dereference(tsk->numa_group);
1490 if (!grp)
1491 goto no_join;
1492
1493 my_grp = p->numa_group;
1494 if (grp == my_grp)
1495 goto no_join;
1496
1497 /*
1498 * Only join the other group if its bigger; if we're the bigger group,
1499 * the other task will join us.
1500 */
1501 if (my_grp->nr_tasks > grp->nr_tasks)
1502 goto no_join;
1503
1504 /*
1505 * Tie-break on the grp address.
1506 */
1507 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1508 goto no_join;
1509
1510 /* Always join threads in the same process. */
1511 if (tsk->mm == current->mm)
1512 join = true;
1513
1514 /* Simple filter to avoid false positives due to PID collisions */
1515 if (flags & TNF_SHARED)
1516 join = true;
1517
1518 /* Update priv based on whether false sharing was detected */
1519 *priv = !join;
1520
1521 if (join && !get_numa_group(grp))
1522 goto no_join;
1523
1524 rcu_read_unlock();
1525
1526 if (!join)
1527 return;
1528
1529 double_lock(&my_grp->lock, &grp->lock);
1530
1531 for (i = 0; i < 2*nr_node_ids; i++) {
1532 my_grp->faults[i] -= p->numa_faults[i];
1533 grp->faults[i] += p->numa_faults[i];
1534 }
1535 my_grp->total_faults -= p->total_numa_faults;
1536 grp->total_faults += p->total_numa_faults;
1537
1538 list_move(&p->numa_entry, &grp->task_list);
1539 my_grp->nr_tasks--;
1540 grp->nr_tasks++;
1541
1542 spin_unlock(&my_grp->lock);
1543 spin_unlock(&grp->lock);
1544
1545 rcu_assign_pointer(p->numa_group, grp);
1546
1547 put_numa_group(my_grp);
1548 return;
1549
1550 no_join:
1551 rcu_read_unlock();
1552 return;
1553 }
1554
1555 void task_numa_free(struct task_struct *p)
1556 {
1557 struct numa_group *grp = p->numa_group;
1558 int i;
1559 void *numa_faults = p->numa_faults;
1560
1561 if (grp) {
1562 spin_lock(&grp->lock);
1563 for (i = 0; i < 2*nr_node_ids; i++)
1564 grp->faults[i] -= p->numa_faults[i];
1565 grp->total_faults -= p->total_numa_faults;
1566
1567 list_del(&p->numa_entry);
1568 grp->nr_tasks--;
1569 spin_unlock(&grp->lock);
1570 rcu_assign_pointer(p->numa_group, NULL);
1571 put_numa_group(grp);
1572 }
1573
1574 p->numa_faults = NULL;
1575 p->numa_faults_buffer = NULL;
1576 kfree(numa_faults);
1577 }
1578
1579 /*
1580 * Got a PROT_NONE fault for a page on @node.
1581 */
1582 void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1583 {
1584 struct task_struct *p = current;
1585 bool migrated = flags & TNF_MIGRATED;
1586 int priv;
1587
1588 if (!numabalancing_enabled)
1589 return;
1590
1591 /* for example, ksmd faulting in a user's mm */
1592 if (!p->mm)
1593 return;
1594
1595 /* Do not worry about placement if exiting */
1596 if (p->state == TASK_DEAD)
1597 return;
1598
1599 /* Allocate buffer to track faults on a per-node basis */
1600 if (unlikely(!p->numa_faults)) {
1601 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1602
1603 /* numa_faults and numa_faults_buffer share the allocation */
1604 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1605 if (!p->numa_faults)
1606 return;
1607
1608 BUG_ON(p->numa_faults_buffer);
1609 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1610 p->total_numa_faults = 0;
1611 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1612 }
1613
1614 /*
1615 * First accesses are treated as private, otherwise consider accesses
1616 * to be private if the accessing pid has not changed
1617 */
1618 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1619 priv = 1;
1620 } else {
1621 priv = cpupid_match_pid(p, last_cpupid);
1622 if (!priv && !(flags & TNF_NO_GROUP))
1623 task_numa_group(p, last_cpupid, flags, &priv);
1624 }
1625
1626 task_numa_placement(p);
1627
1628 /*
1629 * Retry task to preferred node migration periodically, in case it
1630 * case it previously failed, or the scheduler moved us.
1631 */
1632 if (time_after(jiffies, p->numa_migrate_retry))
1633 numa_migrate_preferred(p);
1634
1635 if (migrated)
1636 p->numa_pages_migrated += pages;
1637
1638 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1639 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1640 }
1641
1642 static void reset_ptenuma_scan(struct task_struct *p)
1643 {
1644 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1645 p->mm->numa_scan_offset = 0;
1646 }
1647
1648 /*
1649 * The expensive part of numa migration is done from task_work context.
1650 * Triggered from task_tick_numa().
1651 */
1652 void task_numa_work(struct callback_head *work)
1653 {
1654 unsigned long migrate, next_scan, now = jiffies;
1655 struct task_struct *p = current;
1656 struct mm_struct *mm = p->mm;
1657 struct vm_area_struct *vma;
1658 unsigned long start, end;
1659 unsigned long nr_pte_updates = 0;
1660 long pages;
1661
1662 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1663
1664 work->next = work; /* protect against double add */
1665 /*
1666 * Who cares about NUMA placement when they're dying.
1667 *
1668 * NOTE: make sure not to dereference p->mm before this check,
1669 * exit_task_work() happens _after_ exit_mm() so we could be called
1670 * without p->mm even though we still had it when we enqueued this
1671 * work.
1672 */
1673 if (p->flags & PF_EXITING)
1674 return;
1675
1676 if (!mm->numa_next_scan) {
1677 mm->numa_next_scan = now +
1678 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1679 }
1680
1681 /*
1682 * Enforce maximal scan/migration frequency..
1683 */
1684 migrate = mm->numa_next_scan;
1685 if (time_before(now, migrate))
1686 return;
1687
1688 if (p->numa_scan_period == 0) {
1689 p->numa_scan_period_max = task_scan_max(p);
1690 p->numa_scan_period = task_scan_min(p);
1691 }
1692
1693 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1694 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1695 return;
1696
1697 /*
1698 * Delay this task enough that another task of this mm will likely win
1699 * the next time around.
1700 */
1701 p->node_stamp += 2 * TICK_NSEC;
1702
1703 start = mm->numa_scan_offset;
1704 pages = sysctl_numa_balancing_scan_size;
1705 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1706 if (!pages)
1707 return;
1708
1709 down_read(&mm->mmap_sem);
1710 vma = find_vma(mm, start);
1711 if (!vma) {
1712 reset_ptenuma_scan(p);
1713 start = 0;
1714 vma = mm->mmap;
1715 }
1716 for (; vma; vma = vma->vm_next) {
1717 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1718 continue;
1719
1720 /*
1721 * Shared library pages mapped by multiple processes are not
1722 * migrated as it is expected they are cache replicated. Avoid
1723 * hinting faults in read-only file-backed mappings or the vdso
1724 * as migrating the pages will be of marginal benefit.
1725 */
1726 if (!vma->vm_mm ||
1727 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1728 continue;
1729
1730 do {
1731 start = max(start, vma->vm_start);
1732 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1733 end = min(end, vma->vm_end);
1734 nr_pte_updates += change_prot_numa(vma, start, end);
1735
1736 /*
1737 * Scan sysctl_numa_balancing_scan_size but ensure that
1738 * at least one PTE is updated so that unused virtual
1739 * address space is quickly skipped.
1740 */
1741 if (nr_pte_updates)
1742 pages -= (end - start) >> PAGE_SHIFT;
1743
1744 start = end;
1745 if (pages <= 0)
1746 goto out;
1747 } while (end != vma->vm_end);
1748 }
1749
1750 out:
1751 /*
1752 * It is possible to reach the end of the VMA list but the last few
1753 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1754 * would find the !migratable VMA on the next scan but not reset the
1755 * scanner to the start so check it now.
1756 */
1757 if (vma)
1758 mm->numa_scan_offset = start;
1759 else
1760 reset_ptenuma_scan(p);
1761 up_read(&mm->mmap_sem);
1762 }
1763
1764 /*
1765 * Drive the periodic memory faults..
1766 */
1767 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1768 {
1769 struct callback_head *work = &curr->numa_work;
1770 u64 period, now;
1771
1772 /*
1773 * We don't care about NUMA placement if we don't have memory.
1774 */
1775 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1776 return;
1777
1778 /*
1779 * Using runtime rather than walltime has the dual advantage that
1780 * we (mostly) drive the selection from busy threads and that the
1781 * task needs to have done some actual work before we bother with
1782 * NUMA placement.
1783 */
1784 now = curr->se.sum_exec_runtime;
1785 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1786
1787 if (now - curr->node_stamp > period) {
1788 if (!curr->node_stamp)
1789 curr->numa_scan_period = task_scan_min(curr);
1790 curr->node_stamp += period;
1791
1792 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1793 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1794 task_work_add(curr, work, true);
1795 }
1796 }
1797 }
1798 #else
1799 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1800 {
1801 }
1802
1803 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1804 {
1805 }
1806
1807 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1808 {
1809 }
1810 #endif /* CONFIG_NUMA_BALANCING */
1811
1812 static void
1813 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1814 {
1815 update_load_add(&cfs_rq->load, se->load.weight);
1816 if (!parent_entity(se))
1817 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1818 #ifdef CONFIG_SMP
1819 if (entity_is_task(se)) {
1820 struct rq *rq = rq_of(cfs_rq);
1821
1822 account_numa_enqueue(rq, task_of(se));
1823 list_add(&se->group_node, &rq->cfs_tasks);
1824 }
1825 #endif
1826 cfs_rq->nr_running++;
1827 }
1828
1829 static void
1830 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1831 {
1832 update_load_sub(&cfs_rq->load, se->load.weight);
1833 if (!parent_entity(se))
1834 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1835 if (entity_is_task(se)) {
1836 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1837 list_del_init(&se->group_node);
1838 }
1839 cfs_rq->nr_running--;
1840 }
1841
1842 #ifdef CONFIG_FAIR_GROUP_SCHED
1843 # ifdef CONFIG_SMP
1844 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1845 {
1846 long tg_weight;
1847
1848 /*
1849 * Use this CPU's actual weight instead of the last load_contribution
1850 * to gain a more accurate current total weight. See
1851 * update_cfs_rq_load_contribution().
1852 */
1853 tg_weight = atomic_long_read(&tg->load_avg);
1854 tg_weight -= cfs_rq->tg_load_contrib;
1855 tg_weight += cfs_rq->load.weight;
1856
1857 return tg_weight;
1858 }
1859
1860 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1861 {
1862 long tg_weight, load, shares;
1863
1864 tg_weight = calc_tg_weight(tg, cfs_rq);
1865 load = cfs_rq->load.weight;
1866
1867 shares = (tg->shares * load);
1868 if (tg_weight)
1869 shares /= tg_weight;
1870
1871 if (shares < MIN_SHARES)
1872 shares = MIN_SHARES;
1873 if (shares > tg->shares)
1874 shares = tg->shares;
1875
1876 return shares;
1877 }
1878 # else /* CONFIG_SMP */
1879 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1880 {
1881 return tg->shares;
1882 }
1883 # endif /* CONFIG_SMP */
1884 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1885 unsigned long weight)
1886 {
1887 if (se->on_rq) {
1888 /* commit outstanding execution time */
1889 if (cfs_rq->curr == se)
1890 update_curr(cfs_rq);
1891 account_entity_dequeue(cfs_rq, se);
1892 }
1893
1894 update_load_set(&se->load, weight);
1895
1896 if (se->on_rq)
1897 account_entity_enqueue(cfs_rq, se);
1898 }
1899
1900 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1901
1902 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1903 {
1904 struct task_group *tg;
1905 struct sched_entity *se;
1906 long shares;
1907
1908 tg = cfs_rq->tg;
1909 se = tg->se[cpu_of(rq_of(cfs_rq))];
1910 if (!se || throttled_hierarchy(cfs_rq))
1911 return;
1912 #ifndef CONFIG_SMP
1913 if (likely(se->load.weight == tg->shares))
1914 return;
1915 #endif
1916 shares = calc_cfs_shares(cfs_rq, tg);
1917
1918 reweight_entity(cfs_rq_of(se), se, shares);
1919 }
1920 #else /* CONFIG_FAIR_GROUP_SCHED */
1921 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1922 {
1923 }
1924 #endif /* CONFIG_FAIR_GROUP_SCHED */
1925
1926 #ifdef CONFIG_SMP
1927 /*
1928 * We choose a half-life close to 1 scheduling period.
1929 * Note: The tables below are dependent on this value.
1930 */
1931 #define LOAD_AVG_PERIOD 32
1932 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1933 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1934
1935 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1936 static const u32 runnable_avg_yN_inv[] = {
1937 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1938 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1939 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1940 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1941 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1942 0x85aac367, 0x82cd8698,
1943 };
1944
1945 /*
1946 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1947 * over-estimates when re-combining.
1948 */
1949 static const u32 runnable_avg_yN_sum[] = {
1950 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1951 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1952 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1953 };
1954
1955 /*
1956 * Approximate:
1957 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1958 */
1959 static __always_inline u64 decay_load(u64 val, u64 n)
1960 {
1961 unsigned int local_n;
1962
1963 if (!n)
1964 return val;
1965 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1966 return 0;
1967
1968 /* after bounds checking we can collapse to 32-bit */
1969 local_n = n;
1970
1971 /*
1972 * As y^PERIOD = 1/2, we can combine
1973 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1974 * With a look-up table which covers k^n (n<PERIOD)
1975 *
1976 * To achieve constant time decay_load.
1977 */
1978 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1979 val >>= local_n / LOAD_AVG_PERIOD;
1980 local_n %= LOAD_AVG_PERIOD;
1981 }
1982
1983 val *= runnable_avg_yN_inv[local_n];
1984 /* We don't use SRR here since we always want to round down. */
1985 return val >> 32;
1986 }
1987
1988 /*
1989 * For updates fully spanning n periods, the contribution to runnable
1990 * average will be: \Sum 1024*y^n
1991 *
1992 * We can compute this reasonably efficiently by combining:
1993 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1994 */
1995 static u32 __compute_runnable_contrib(u64 n)
1996 {
1997 u32 contrib = 0;
1998
1999 if (likely(n <= LOAD_AVG_PERIOD))
2000 return runnable_avg_yN_sum[n];
2001 else if (unlikely(n >= LOAD_AVG_MAX_N))
2002 return LOAD_AVG_MAX;
2003
2004 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2005 do {
2006 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2007 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2008
2009 n -= LOAD_AVG_PERIOD;
2010 } while (n > LOAD_AVG_PERIOD);
2011
2012 contrib = decay_load(contrib, n);
2013 return contrib + runnable_avg_yN_sum[n];
2014 }
2015
2016 /*
2017 * We can represent the historical contribution to runnable average as the
2018 * coefficients of a geometric series. To do this we sub-divide our runnable
2019 * history into segments of approximately 1ms (1024us); label the segment that
2020 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2021 *
2022 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2023 * p0 p1 p2
2024 * (now) (~1ms ago) (~2ms ago)
2025 *
2026 * Let u_i denote the fraction of p_i that the entity was runnable.
2027 *
2028 * We then designate the fractions u_i as our co-efficients, yielding the
2029 * following representation of historical load:
2030 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2031 *
2032 * We choose y based on the with of a reasonably scheduling period, fixing:
2033 * y^32 = 0.5
2034 *
2035 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2036 * approximately half as much as the contribution to load within the last ms
2037 * (u_0).
2038 *
2039 * When a period "rolls over" and we have new u_0`, multiplying the previous
2040 * sum again by y is sufficient to update:
2041 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2042 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2043 */
2044 static __always_inline int __update_entity_runnable_avg(u64 now,
2045 struct sched_avg *sa,
2046 int runnable)
2047 {
2048 u64 delta, periods;
2049 u32 runnable_contrib;
2050 int delta_w, decayed = 0;
2051
2052 delta = now - sa->last_runnable_update;
2053 /*
2054 * This should only happen when time goes backwards, which it
2055 * unfortunately does during sched clock init when we swap over to TSC.
2056 */
2057 if ((s64)delta < 0) {
2058 sa->last_runnable_update = now;
2059 return 0;
2060 }
2061
2062 /*
2063 * Use 1024ns as the unit of measurement since it's a reasonable
2064 * approximation of 1us and fast to compute.
2065 */
2066 delta >>= 10;
2067 if (!delta)
2068 return 0;
2069 sa->last_runnable_update = now;
2070
2071 /* delta_w is the amount already accumulated against our next period */
2072 delta_w = sa->runnable_avg_period % 1024;
2073 if (delta + delta_w >= 1024) {
2074 /* period roll-over */
2075 decayed = 1;
2076
2077 /*
2078 * Now that we know we're crossing a period boundary, figure
2079 * out how much from delta we need to complete the current
2080 * period and accrue it.
2081 */
2082 delta_w = 1024 - delta_w;
2083 if (runnable)
2084 sa->runnable_avg_sum += delta_w;
2085 sa->runnable_avg_period += delta_w;
2086
2087 delta -= delta_w;
2088
2089 /* Figure out how many additional periods this update spans */
2090 periods = delta / 1024;
2091 delta %= 1024;
2092
2093 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2094 periods + 1);
2095 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2096 periods + 1);
2097
2098 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2099 runnable_contrib = __compute_runnable_contrib(periods);
2100 if (runnable)
2101 sa->runnable_avg_sum += runnable_contrib;
2102 sa->runnable_avg_period += runnable_contrib;
2103 }
2104
2105 /* Remainder of delta accrued against u_0` */
2106 if (runnable)
2107 sa->runnable_avg_sum += delta;
2108 sa->runnable_avg_period += delta;
2109
2110 return decayed;
2111 }
2112
2113 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2114 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2115 {
2116 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2117 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2118
2119 decays -= se->avg.decay_count;
2120 if (!decays)
2121 return 0;
2122
2123 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2124 se->avg.decay_count = 0;
2125
2126 return decays;
2127 }
2128
2129 #ifdef CONFIG_FAIR_GROUP_SCHED
2130 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2131 int force_update)
2132 {
2133 struct task_group *tg = cfs_rq->tg;
2134 long tg_contrib;
2135
2136 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2137 tg_contrib -= cfs_rq->tg_load_contrib;
2138
2139 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2140 atomic_long_add(tg_contrib, &tg->load_avg);
2141 cfs_rq->tg_load_contrib += tg_contrib;
2142 }
2143 }
2144
2145 /*
2146 * Aggregate cfs_rq runnable averages into an equivalent task_group
2147 * representation for computing load contributions.
2148 */
2149 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2150 struct cfs_rq *cfs_rq)
2151 {
2152 struct task_group *tg = cfs_rq->tg;
2153 long contrib;
2154
2155 /* The fraction of a cpu used by this cfs_rq */
2156 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2157 sa->runnable_avg_period + 1);
2158 contrib -= cfs_rq->tg_runnable_contrib;
2159
2160 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2161 atomic_add(contrib, &tg->runnable_avg);
2162 cfs_rq->tg_runnable_contrib += contrib;
2163 }
2164 }
2165
2166 static inline void __update_group_entity_contrib(struct sched_entity *se)
2167 {
2168 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2169 struct task_group *tg = cfs_rq->tg;
2170 int runnable_avg;
2171
2172 u64 contrib;
2173
2174 contrib = cfs_rq->tg_load_contrib * tg->shares;
2175 se->avg.load_avg_contrib = div_u64(contrib,
2176 atomic_long_read(&tg->load_avg) + 1);
2177
2178 /*
2179 * For group entities we need to compute a correction term in the case
2180 * that they are consuming <1 cpu so that we would contribute the same
2181 * load as a task of equal weight.
2182 *
2183 * Explicitly co-ordinating this measurement would be expensive, but
2184 * fortunately the sum of each cpus contribution forms a usable
2185 * lower-bound on the true value.
2186 *
2187 * Consider the aggregate of 2 contributions. Either they are disjoint
2188 * (and the sum represents true value) or they are disjoint and we are
2189 * understating by the aggregate of their overlap.
2190 *
2191 * Extending this to N cpus, for a given overlap, the maximum amount we
2192 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2193 * cpus that overlap for this interval and w_i is the interval width.
2194 *
2195 * On a small machine; the first term is well-bounded which bounds the
2196 * total error since w_i is a subset of the period. Whereas on a
2197 * larger machine, while this first term can be larger, if w_i is the
2198 * of consequential size guaranteed to see n_i*w_i quickly converge to
2199 * our upper bound of 1-cpu.
2200 */
2201 runnable_avg = atomic_read(&tg->runnable_avg);
2202 if (runnable_avg < NICE_0_LOAD) {
2203 se->avg.load_avg_contrib *= runnable_avg;
2204 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2205 }
2206 }
2207 #else
2208 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2209 int force_update) {}
2210 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2211 struct cfs_rq *cfs_rq) {}
2212 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2213 #endif
2214
2215 static inline void __update_task_entity_contrib(struct sched_entity *se)
2216 {
2217 u32 contrib;
2218
2219 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2220 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2221 contrib /= (se->avg.runnable_avg_period + 1);
2222 se->avg.load_avg_contrib = scale_load(contrib);
2223 }
2224
2225 /* Compute the current contribution to load_avg by se, return any delta */
2226 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2227 {
2228 long old_contrib = se->avg.load_avg_contrib;
2229
2230 if (entity_is_task(se)) {
2231 __update_task_entity_contrib(se);
2232 } else {
2233 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2234 __update_group_entity_contrib(se);
2235 }
2236
2237 return se->avg.load_avg_contrib - old_contrib;
2238 }
2239
2240 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2241 long load_contrib)
2242 {
2243 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2244 cfs_rq->blocked_load_avg -= load_contrib;
2245 else
2246 cfs_rq->blocked_load_avg = 0;
2247 }
2248
2249 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2250
2251 /* Update a sched_entity's runnable average */
2252 static inline void update_entity_load_avg(struct sched_entity *se,
2253 int update_cfs_rq)
2254 {
2255 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2256 long contrib_delta;
2257 u64 now;
2258
2259 /*
2260 * For a group entity we need to use their owned cfs_rq_clock_task() in
2261 * case they are the parent of a throttled hierarchy.
2262 */
2263 if (entity_is_task(se))
2264 now = cfs_rq_clock_task(cfs_rq);
2265 else
2266 now = cfs_rq_clock_task(group_cfs_rq(se));
2267
2268 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2269 return;
2270
2271 contrib_delta = __update_entity_load_avg_contrib(se);
2272
2273 if (!update_cfs_rq)
2274 return;
2275
2276 if (se->on_rq)
2277 cfs_rq->runnable_load_avg += contrib_delta;
2278 else
2279 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2280 }
2281
2282 /*
2283 * Decay the load contributed by all blocked children and account this so that
2284 * their contribution may appropriately discounted when they wake up.
2285 */
2286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2287 {
2288 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2289 u64 decays;
2290
2291 decays = now - cfs_rq->last_decay;
2292 if (!decays && !force_update)
2293 return;
2294
2295 if (atomic_long_read(&cfs_rq->removed_load)) {
2296 unsigned long removed_load;
2297 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2298 subtract_blocked_load_contrib(cfs_rq, removed_load);
2299 }
2300
2301 if (decays) {
2302 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2303 decays);
2304 atomic64_add(decays, &cfs_rq->decay_counter);
2305 cfs_rq->last_decay = now;
2306 }
2307
2308 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2309 }
2310
2311 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2312 {
2313 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2314 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2315 }
2316
2317 /* Add the load generated by se into cfs_rq's child load-average */
2318 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2319 struct sched_entity *se,
2320 int wakeup)
2321 {
2322 /*
2323 * We track migrations using entity decay_count <= 0, on a wake-up
2324 * migration we use a negative decay count to track the remote decays
2325 * accumulated while sleeping.
2326 *
2327 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2328 * are seen by enqueue_entity_load_avg() as a migration with an already
2329 * constructed load_avg_contrib.
2330 */
2331 if (unlikely(se->avg.decay_count <= 0)) {
2332 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2333 if (se->avg.decay_count) {
2334 /*
2335 * In a wake-up migration we have to approximate the
2336 * time sleeping. This is because we can't synchronize
2337 * clock_task between the two cpus, and it is not
2338 * guaranteed to be read-safe. Instead, we can
2339 * approximate this using our carried decays, which are
2340 * explicitly atomically readable.
2341 */
2342 se->avg.last_runnable_update -= (-se->avg.decay_count)
2343 << 20;
2344 update_entity_load_avg(se, 0);
2345 /* Indicate that we're now synchronized and on-rq */
2346 se->avg.decay_count = 0;
2347 }
2348 wakeup = 0;
2349 } else {
2350 /*
2351 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2352 * would have made count negative); we must be careful to avoid
2353 * double-accounting blocked time after synchronizing decays.
2354 */
2355 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2356 << 20;
2357 }
2358
2359 /* migrated tasks did not contribute to our blocked load */
2360 if (wakeup) {
2361 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2362 update_entity_load_avg(se, 0);
2363 }
2364
2365 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2366 /* we force update consideration on load-balancer moves */
2367 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2368 }
2369
2370 /*
2371 * Remove se's load from this cfs_rq child load-average, if the entity is
2372 * transitioning to a blocked state we track its projected decay using
2373 * blocked_load_avg.
2374 */
2375 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2376 struct sched_entity *se,
2377 int sleep)
2378 {
2379 update_entity_load_avg(se, 1);
2380 /* we force update consideration on load-balancer moves */
2381 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2382
2383 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2384 if (sleep) {
2385 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2386 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2387 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2388 }
2389
2390 /*
2391 * Update the rq's load with the elapsed running time before entering
2392 * idle. if the last scheduled task is not a CFS task, idle_enter will
2393 * be the only way to update the runnable statistic.
2394 */
2395 void idle_enter_fair(struct rq *this_rq)
2396 {
2397 update_rq_runnable_avg(this_rq, 1);
2398 }
2399
2400 /*
2401 * Update the rq's load with the elapsed idle time before a task is
2402 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2403 * be the only way to update the runnable statistic.
2404 */
2405 void idle_exit_fair(struct rq *this_rq)
2406 {
2407 update_rq_runnable_avg(this_rq, 0);
2408 }
2409
2410 #else
2411 static inline void update_entity_load_avg(struct sched_entity *se,
2412 int update_cfs_rq) {}
2413 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2414 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2415 struct sched_entity *se,
2416 int wakeup) {}
2417 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2418 struct sched_entity *se,
2419 int sleep) {}
2420 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2421 int force_update) {}
2422 #endif
2423
2424 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2425 {
2426 #ifdef CONFIG_SCHEDSTATS
2427 struct task_struct *tsk = NULL;
2428
2429 if (entity_is_task(se))
2430 tsk = task_of(se);
2431
2432 if (se->statistics.sleep_start) {
2433 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2434
2435 if ((s64)delta < 0)
2436 delta = 0;
2437
2438 if (unlikely(delta > se->statistics.sleep_max))
2439 se->statistics.sleep_max = delta;
2440
2441 se->statistics.sleep_start = 0;
2442 se->statistics.sum_sleep_runtime += delta;
2443
2444 if (tsk) {
2445 account_scheduler_latency(tsk, delta >> 10, 1);
2446 trace_sched_stat_sleep(tsk, delta);
2447 }
2448 }
2449 if (se->statistics.block_start) {
2450 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2451
2452 if ((s64)delta < 0)
2453 delta = 0;
2454
2455 if (unlikely(delta > se->statistics.block_max))
2456 se->statistics.block_max = delta;
2457
2458 se->statistics.block_start = 0;
2459 se->statistics.sum_sleep_runtime += delta;
2460
2461 if (tsk) {
2462 if (tsk->in_iowait) {
2463 se->statistics.iowait_sum += delta;
2464 se->statistics.iowait_count++;
2465 trace_sched_stat_iowait(tsk, delta);
2466 }
2467
2468 trace_sched_stat_blocked(tsk, delta);
2469
2470 /*
2471 * Blocking time is in units of nanosecs, so shift by
2472 * 20 to get a milliseconds-range estimation of the
2473 * amount of time that the task spent sleeping:
2474 */
2475 if (unlikely(prof_on == SLEEP_PROFILING)) {
2476 profile_hits(SLEEP_PROFILING,
2477 (void *)get_wchan(tsk),
2478 delta >> 20);
2479 }
2480 account_scheduler_latency(tsk, delta >> 10, 0);
2481 }
2482 }
2483 #endif
2484 }
2485
2486 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2487 {
2488 #ifdef CONFIG_SCHED_DEBUG
2489 s64 d = se->vruntime - cfs_rq->min_vruntime;
2490
2491 if (d < 0)
2492 d = -d;
2493
2494 if (d > 3*sysctl_sched_latency)
2495 schedstat_inc(cfs_rq, nr_spread_over);
2496 #endif
2497 }
2498
2499 static void
2500 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2501 {
2502 u64 vruntime = cfs_rq->min_vruntime;
2503
2504 /*
2505 * The 'current' period is already promised to the current tasks,
2506 * however the extra weight of the new task will slow them down a
2507 * little, place the new task so that it fits in the slot that
2508 * stays open at the end.
2509 */
2510 if (initial && sched_feat(START_DEBIT))
2511 vruntime += sched_vslice(cfs_rq, se);
2512
2513 /* sleeps up to a single latency don't count. */
2514 if (!initial) {
2515 unsigned long thresh = sysctl_sched_latency;
2516
2517 /*
2518 * Halve their sleep time's effect, to allow
2519 * for a gentler effect of sleepers:
2520 */
2521 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2522 thresh >>= 1;
2523
2524 vruntime -= thresh;
2525 }
2526
2527 /* ensure we never gain time by being placed backwards. */
2528 se->vruntime = max_vruntime(se->vruntime, vruntime);
2529 }
2530
2531 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2532
2533 static void
2534 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2535 {
2536 /*
2537 * Update the normalized vruntime before updating min_vruntime
2538 * through calling update_curr().
2539 */
2540 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2541 se->vruntime += cfs_rq->min_vruntime;
2542
2543 /*
2544 * Update run-time statistics of the 'current'.
2545 */
2546 update_curr(cfs_rq);
2547 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2548 account_entity_enqueue(cfs_rq, se);
2549 update_cfs_shares(cfs_rq);
2550
2551 if (flags & ENQUEUE_WAKEUP) {
2552 place_entity(cfs_rq, se, 0);
2553 enqueue_sleeper(cfs_rq, se);
2554 }
2555
2556 update_stats_enqueue(cfs_rq, se);
2557 check_spread(cfs_rq, se);
2558 if (se != cfs_rq->curr)
2559 __enqueue_entity(cfs_rq, se);
2560 se->on_rq = 1;
2561
2562 if (cfs_rq->nr_running == 1) {
2563 list_add_leaf_cfs_rq(cfs_rq);
2564 check_enqueue_throttle(cfs_rq);
2565 }
2566 }
2567
2568 static void __clear_buddies_last(struct sched_entity *se)
2569 {
2570 for_each_sched_entity(se) {
2571 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2572 if (cfs_rq->last == se)
2573 cfs_rq->last = NULL;
2574 else
2575 break;
2576 }
2577 }
2578
2579 static void __clear_buddies_next(struct sched_entity *se)
2580 {
2581 for_each_sched_entity(se) {
2582 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2583 if (cfs_rq->next == se)
2584 cfs_rq->next = NULL;
2585 else
2586 break;
2587 }
2588 }
2589
2590 static void __clear_buddies_skip(struct sched_entity *se)
2591 {
2592 for_each_sched_entity(se) {
2593 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2594 if (cfs_rq->skip == se)
2595 cfs_rq->skip = NULL;
2596 else
2597 break;
2598 }
2599 }
2600
2601 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2602 {
2603 if (cfs_rq->last == se)
2604 __clear_buddies_last(se);
2605
2606 if (cfs_rq->next == se)
2607 __clear_buddies_next(se);
2608
2609 if (cfs_rq->skip == se)
2610 __clear_buddies_skip(se);
2611 }
2612
2613 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2614
2615 static void
2616 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2617 {
2618 /*
2619 * Update run-time statistics of the 'current'.
2620 */
2621 update_curr(cfs_rq);
2622 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2623
2624 update_stats_dequeue(cfs_rq, se);
2625 if (flags & DEQUEUE_SLEEP) {
2626 #ifdef CONFIG_SCHEDSTATS
2627 if (entity_is_task(se)) {
2628 struct task_struct *tsk = task_of(se);
2629
2630 if (tsk->state & TASK_INTERRUPTIBLE)
2631 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2632 if (tsk->state & TASK_UNINTERRUPTIBLE)
2633 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2634 }
2635 #endif
2636 }
2637
2638 clear_buddies(cfs_rq, se);
2639
2640 if (se != cfs_rq->curr)
2641 __dequeue_entity(cfs_rq, se);
2642 se->on_rq = 0;
2643 account_entity_dequeue(cfs_rq, se);
2644
2645 /*
2646 * Normalize the entity after updating the min_vruntime because the
2647 * update can refer to the ->curr item and we need to reflect this
2648 * movement in our normalized position.
2649 */
2650 if (!(flags & DEQUEUE_SLEEP))
2651 se->vruntime -= cfs_rq->min_vruntime;
2652
2653 /* return excess runtime on last dequeue */
2654 return_cfs_rq_runtime(cfs_rq);
2655
2656 update_min_vruntime(cfs_rq);
2657 update_cfs_shares(cfs_rq);
2658 }
2659
2660 /*
2661 * Preempt the current task with a newly woken task if needed:
2662 */
2663 static void
2664 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2665 {
2666 unsigned long ideal_runtime, delta_exec;
2667 struct sched_entity *se;
2668 s64 delta;
2669
2670 ideal_runtime = sched_slice(cfs_rq, curr);
2671 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2672 if (delta_exec > ideal_runtime) {
2673 resched_task(rq_of(cfs_rq)->curr);
2674 /*
2675 * The current task ran long enough, ensure it doesn't get
2676 * re-elected due to buddy favours.
2677 */
2678 clear_buddies(cfs_rq, curr);
2679 return;
2680 }
2681
2682 /*
2683 * Ensure that a task that missed wakeup preemption by a
2684 * narrow margin doesn't have to wait for a full slice.
2685 * This also mitigates buddy induced latencies under load.
2686 */
2687 if (delta_exec < sysctl_sched_min_granularity)
2688 return;
2689
2690 se = __pick_first_entity(cfs_rq);
2691 delta = curr->vruntime - se->vruntime;
2692
2693 if (delta < 0)
2694 return;
2695
2696 if (delta > ideal_runtime)
2697 resched_task(rq_of(cfs_rq)->curr);
2698 }
2699
2700 static void
2701 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2702 {
2703 /* 'current' is not kept within the tree. */
2704 if (se->on_rq) {
2705 /*
2706 * Any task has to be enqueued before it get to execute on
2707 * a CPU. So account for the time it spent waiting on the
2708 * runqueue.
2709 */
2710 update_stats_wait_end(cfs_rq, se);
2711 __dequeue_entity(cfs_rq, se);
2712 }
2713
2714 update_stats_curr_start(cfs_rq, se);
2715 cfs_rq->curr = se;
2716 #ifdef CONFIG_SCHEDSTATS
2717 /*
2718 * Track our maximum slice length, if the CPU's load is at
2719 * least twice that of our own weight (i.e. dont track it
2720 * when there are only lesser-weight tasks around):
2721 */
2722 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2723 se->statistics.slice_max = max(se->statistics.slice_max,
2724 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2725 }
2726 #endif
2727 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2728 }
2729
2730 static int
2731 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2732
2733 /*
2734 * Pick the next process, keeping these things in mind, in this order:
2735 * 1) keep things fair between processes/task groups
2736 * 2) pick the "next" process, since someone really wants that to run
2737 * 3) pick the "last" process, for cache locality
2738 * 4) do not run the "skip" process, if something else is available
2739 */
2740 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2741 {
2742 struct sched_entity *se = __pick_first_entity(cfs_rq);
2743 struct sched_entity *left = se;
2744
2745 /*
2746 * Avoid running the skip buddy, if running something else can
2747 * be done without getting too unfair.
2748 */
2749 if (cfs_rq->skip == se) {
2750 struct sched_entity *second = __pick_next_entity(se);
2751 if (second && wakeup_preempt_entity(second, left) < 1)
2752 se = second;
2753 }
2754
2755 /*
2756 * Prefer last buddy, try to return the CPU to a preempted task.
2757 */
2758 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2759 se = cfs_rq->last;
2760
2761 /*
2762 * Someone really wants this to run. If it's not unfair, run it.
2763 */
2764 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2765 se = cfs_rq->next;
2766
2767 clear_buddies(cfs_rq, se);
2768
2769 return se;
2770 }
2771
2772 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2773
2774 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2775 {
2776 /*
2777 * If still on the runqueue then deactivate_task()
2778 * was not called and update_curr() has to be done:
2779 */
2780 if (prev->on_rq)
2781 update_curr(cfs_rq);
2782
2783 /* throttle cfs_rqs exceeding runtime */
2784 check_cfs_rq_runtime(cfs_rq);
2785
2786 check_spread(cfs_rq, prev);
2787 if (prev->on_rq) {
2788 update_stats_wait_start(cfs_rq, prev);
2789 /* Put 'current' back into the tree. */
2790 __enqueue_entity(cfs_rq, prev);
2791 /* in !on_rq case, update occurred at dequeue */
2792 update_entity_load_avg(prev, 1);
2793 }
2794 cfs_rq->curr = NULL;
2795 }
2796
2797 static void
2798 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2799 {
2800 /*
2801 * Update run-time statistics of the 'current'.
2802 */
2803 update_curr(cfs_rq);
2804
2805 /*
2806 * Ensure that runnable average is periodically updated.
2807 */
2808 update_entity_load_avg(curr, 1);
2809 update_cfs_rq_blocked_load(cfs_rq, 1);
2810 update_cfs_shares(cfs_rq);
2811
2812 #ifdef CONFIG_SCHED_HRTICK
2813 /*
2814 * queued ticks are scheduled to match the slice, so don't bother
2815 * validating it and just reschedule.
2816 */
2817 if (queued) {
2818 resched_task(rq_of(cfs_rq)->curr);
2819 return;
2820 }
2821 /*
2822 * don't let the period tick interfere with the hrtick preemption
2823 */
2824 if (!sched_feat(DOUBLE_TICK) &&
2825 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2826 return;
2827 #endif
2828
2829 if (cfs_rq->nr_running > 1)
2830 check_preempt_tick(cfs_rq, curr);
2831 }
2832
2833
2834 /**************************************************
2835 * CFS bandwidth control machinery
2836 */
2837
2838 #ifdef CONFIG_CFS_BANDWIDTH
2839
2840 #ifdef HAVE_JUMP_LABEL
2841 static struct static_key __cfs_bandwidth_used;
2842
2843 static inline bool cfs_bandwidth_used(void)
2844 {
2845 return static_key_false(&__cfs_bandwidth_used);
2846 }
2847
2848 void cfs_bandwidth_usage_inc(void)
2849 {
2850 static_key_slow_inc(&__cfs_bandwidth_used);
2851 }
2852
2853 void cfs_bandwidth_usage_dec(void)
2854 {
2855 static_key_slow_dec(&__cfs_bandwidth_used);
2856 }
2857 #else /* HAVE_JUMP_LABEL */
2858 static bool cfs_bandwidth_used(void)
2859 {
2860 return true;
2861 }
2862
2863 void cfs_bandwidth_usage_inc(void) {}
2864 void cfs_bandwidth_usage_dec(void) {}
2865 #endif /* HAVE_JUMP_LABEL */
2866
2867 /*
2868 * default period for cfs group bandwidth.
2869 * default: 0.1s, units: nanoseconds
2870 */
2871 static inline u64 default_cfs_period(void)
2872 {
2873 return 100000000ULL;
2874 }
2875
2876 static inline u64 sched_cfs_bandwidth_slice(void)
2877 {
2878 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2879 }
2880
2881 /*
2882 * Replenish runtime according to assigned quota and update expiration time.
2883 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2884 * additional synchronization around rq->lock.
2885 *
2886 * requires cfs_b->lock
2887 */
2888 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2889 {
2890 u64 now;
2891
2892 if (cfs_b->quota == RUNTIME_INF)
2893 return;
2894
2895 now = sched_clock_cpu(smp_processor_id());
2896 cfs_b->runtime = cfs_b->quota;
2897 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2898 }
2899
2900 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2901 {
2902 return &tg->cfs_bandwidth;
2903 }
2904
2905 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2906 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2907 {
2908 if (unlikely(cfs_rq->throttle_count))
2909 return cfs_rq->throttled_clock_task;
2910
2911 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2912 }
2913
2914 /* returns 0 on failure to allocate runtime */
2915 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2916 {
2917 struct task_group *tg = cfs_rq->tg;
2918 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2919 u64 amount = 0, min_amount, expires;
2920
2921 /* note: this is a positive sum as runtime_remaining <= 0 */
2922 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2923
2924 raw_spin_lock(&cfs_b->lock);
2925 if (cfs_b->quota == RUNTIME_INF)
2926 amount = min_amount;
2927 else {
2928 /*
2929 * If the bandwidth pool has become inactive, then at least one
2930 * period must have elapsed since the last consumption.
2931 * Refresh the global state and ensure bandwidth timer becomes
2932 * active.
2933 */
2934 if (!cfs_b->timer_active) {
2935 __refill_cfs_bandwidth_runtime(cfs_b);
2936 __start_cfs_bandwidth(cfs_b);
2937 }
2938
2939 if (cfs_b->runtime > 0) {
2940 amount = min(cfs_b->runtime, min_amount);
2941 cfs_b->runtime -= amount;
2942 cfs_b->idle = 0;
2943 }
2944 }
2945 expires = cfs_b->runtime_expires;
2946 raw_spin_unlock(&cfs_b->lock);
2947
2948 cfs_rq->runtime_remaining += amount;
2949 /*
2950 * we may have advanced our local expiration to account for allowed
2951 * spread between our sched_clock and the one on which runtime was
2952 * issued.
2953 */
2954 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2955 cfs_rq->runtime_expires = expires;
2956
2957 return cfs_rq->runtime_remaining > 0;
2958 }
2959
2960 /*
2961 * Note: This depends on the synchronization provided by sched_clock and the
2962 * fact that rq->clock snapshots this value.
2963 */
2964 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2965 {
2966 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2967
2968 /* if the deadline is ahead of our clock, nothing to do */
2969 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2970 return;
2971
2972 if (cfs_rq->runtime_remaining < 0)
2973 return;
2974
2975 /*
2976 * If the local deadline has passed we have to consider the
2977 * possibility that our sched_clock is 'fast' and the global deadline
2978 * has not truly expired.
2979 *
2980 * Fortunately we can check determine whether this the case by checking
2981 * whether the global deadline has advanced.
2982 */
2983
2984 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2985 /* extend local deadline, drift is bounded above by 2 ticks */
2986 cfs_rq->runtime_expires += TICK_NSEC;
2987 } else {
2988 /* global deadline is ahead, expiration has passed */
2989 cfs_rq->runtime_remaining = 0;
2990 }
2991 }
2992
2993 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2994 unsigned long delta_exec)
2995 {
2996 /* dock delta_exec before expiring quota (as it could span periods) */
2997 cfs_rq->runtime_remaining -= delta_exec;
2998 expire_cfs_rq_runtime(cfs_rq);
2999
3000 if (likely(cfs_rq->runtime_remaining > 0))
3001 return;
3002
3003 /*
3004 * if we're unable to extend our runtime we resched so that the active
3005 * hierarchy can be throttled
3006 */
3007 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3008 resched_task(rq_of(cfs_rq)->curr);
3009 }
3010
3011 static __always_inline
3012 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
3013 {
3014 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3015 return;
3016
3017 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3018 }
3019
3020 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3021 {
3022 return cfs_bandwidth_used() && cfs_rq->throttled;
3023 }
3024
3025 /* check whether cfs_rq, or any parent, is throttled */
3026 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3027 {
3028 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3029 }
3030
3031 /*
3032 * Ensure that neither of the group entities corresponding to src_cpu or
3033 * dest_cpu are members of a throttled hierarchy when performing group
3034 * load-balance operations.
3035 */
3036 static inline int throttled_lb_pair(struct task_group *tg,
3037 int src_cpu, int dest_cpu)
3038 {
3039 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3040
3041 src_cfs_rq = tg->cfs_rq[src_cpu];
3042 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3043
3044 return throttled_hierarchy(src_cfs_rq) ||
3045 throttled_hierarchy(dest_cfs_rq);
3046 }
3047
3048 /* updated child weight may affect parent so we have to do this bottom up */
3049 static int tg_unthrottle_up(struct task_group *tg, void *data)
3050 {
3051 struct rq *rq = data;
3052 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3053
3054 cfs_rq->throttle_count--;
3055 #ifdef CONFIG_SMP
3056 if (!cfs_rq->throttle_count) {
3057 /* adjust cfs_rq_clock_task() */
3058 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3059 cfs_rq->throttled_clock_task;
3060 }
3061 #endif
3062
3063 return 0;
3064 }
3065
3066 static int tg_throttle_down(struct task_group *tg, void *data)
3067 {
3068 struct rq *rq = data;
3069 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3070
3071 /* group is entering throttled state, stop time */
3072 if (!cfs_rq->throttle_count)
3073 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3074 cfs_rq->throttle_count++;
3075
3076 return 0;
3077 }
3078
3079 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3080 {
3081 struct rq *rq = rq_of(cfs_rq);
3082 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3083 struct sched_entity *se;
3084 long task_delta, dequeue = 1;
3085
3086 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3087
3088 /* freeze hierarchy runnable averages while throttled */
3089 rcu_read_lock();
3090 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3091 rcu_read_unlock();
3092
3093 task_delta = cfs_rq->h_nr_running;
3094 for_each_sched_entity(se) {
3095 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3096 /* throttled entity or throttle-on-deactivate */
3097 if (!se->on_rq)
3098 break;
3099
3100 if (dequeue)
3101 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3102 qcfs_rq->h_nr_running -= task_delta;
3103
3104 if (qcfs_rq->load.weight)
3105 dequeue = 0;
3106 }
3107
3108 if (!se)
3109 rq->nr_running -= task_delta;
3110
3111 cfs_rq->throttled = 1;
3112 cfs_rq->throttled_clock = rq_clock(rq);
3113 raw_spin_lock(&cfs_b->lock);
3114 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3115 if (!cfs_b->timer_active)
3116 __start_cfs_bandwidth(cfs_b);
3117 raw_spin_unlock(&cfs_b->lock);
3118 }
3119
3120 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3121 {
3122 struct rq *rq = rq_of(cfs_rq);
3123 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3124 struct sched_entity *se;
3125 int enqueue = 1;
3126 long task_delta;
3127
3128 se = cfs_rq->tg->se[cpu_of(rq)];
3129
3130 cfs_rq->throttled = 0;
3131
3132 update_rq_clock(rq);
3133
3134 raw_spin_lock(&cfs_b->lock);
3135 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3136 list_del_rcu(&cfs_rq->throttled_list);
3137 raw_spin_unlock(&cfs_b->lock);
3138
3139 /* update hierarchical throttle state */
3140 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3141
3142 if (!cfs_rq->load.weight)
3143 return;
3144
3145 task_delta = cfs_rq->h_nr_running;
3146 for_each_sched_entity(se) {
3147 if (se->on_rq)
3148 enqueue = 0;
3149
3150 cfs_rq = cfs_rq_of(se);
3151 if (enqueue)
3152 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3153 cfs_rq->h_nr_running += task_delta;
3154
3155 if (cfs_rq_throttled(cfs_rq))
3156 break;
3157 }
3158
3159 if (!se)
3160 rq->nr_running += task_delta;
3161
3162 /* determine whether we need to wake up potentially idle cpu */
3163 if (rq->curr == rq->idle && rq->cfs.nr_running)
3164 resched_task(rq->curr);
3165 }
3166
3167 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3168 u64 remaining, u64 expires)
3169 {
3170 struct cfs_rq *cfs_rq;
3171 u64 runtime = remaining;
3172
3173 rcu_read_lock();
3174 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3175 throttled_list) {
3176 struct rq *rq = rq_of(cfs_rq);
3177
3178 raw_spin_lock(&rq->lock);
3179 if (!cfs_rq_throttled(cfs_rq))
3180 goto next;
3181
3182 runtime = -cfs_rq->runtime_remaining + 1;
3183 if (runtime > remaining)
3184 runtime = remaining;
3185 remaining -= runtime;
3186
3187 cfs_rq->runtime_remaining += runtime;
3188 cfs_rq->runtime_expires = expires;
3189
3190 /* we check whether we're throttled above */
3191 if (cfs_rq->runtime_remaining > 0)
3192 unthrottle_cfs_rq(cfs_rq);
3193
3194 next:
3195 raw_spin_unlock(&rq->lock);
3196
3197 if (!remaining)
3198 break;
3199 }
3200 rcu_read_unlock();
3201
3202 return remaining;
3203 }
3204
3205 /*
3206 * Responsible for refilling a task_group's bandwidth and unthrottling its
3207 * cfs_rqs as appropriate. If there has been no activity within the last
3208 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3209 * used to track this state.
3210 */
3211 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3212 {
3213 u64 runtime, runtime_expires;
3214 int idle = 1, throttled;
3215
3216 raw_spin_lock(&cfs_b->lock);
3217 /* no need to continue the timer with no bandwidth constraint */
3218 if (cfs_b->quota == RUNTIME_INF)
3219 goto out_unlock;
3220
3221 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3222 /* idle depends on !throttled (for the case of a large deficit) */
3223 idle = cfs_b->idle && !throttled;
3224 cfs_b->nr_periods += overrun;
3225
3226 /* if we're going inactive then everything else can be deferred */
3227 if (idle)
3228 goto out_unlock;
3229
3230 /*
3231 * if we have relooped after returning idle once, we need to update our
3232 * status as actually running, so that other cpus doing
3233 * __start_cfs_bandwidth will stop trying to cancel us.
3234 */
3235 cfs_b->timer_active = 1;
3236
3237 __refill_cfs_bandwidth_runtime(cfs_b);
3238
3239 if (!throttled) {
3240 /* mark as potentially idle for the upcoming period */
3241 cfs_b->idle = 1;
3242 goto out_unlock;
3243 }
3244
3245 /* account preceding periods in which throttling occurred */
3246 cfs_b->nr_throttled += overrun;
3247
3248 /*
3249 * There are throttled entities so we must first use the new bandwidth
3250 * to unthrottle them before making it generally available. This
3251 * ensures that all existing debts will be paid before a new cfs_rq is
3252 * allowed to run.
3253 */
3254 runtime = cfs_b->runtime;
3255 runtime_expires = cfs_b->runtime_expires;
3256 cfs_b->runtime = 0;
3257
3258 /*
3259 * This check is repeated as we are holding onto the new bandwidth
3260 * while we unthrottle. This can potentially race with an unthrottled
3261 * group trying to acquire new bandwidth from the global pool.
3262 */
3263 while (throttled && runtime > 0) {
3264 raw_spin_unlock(&cfs_b->lock);
3265 /* we can't nest cfs_b->lock while distributing bandwidth */
3266 runtime = distribute_cfs_runtime(cfs_b, runtime,
3267 runtime_expires);
3268 raw_spin_lock(&cfs_b->lock);
3269
3270 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3271 }
3272
3273 /* return (any) remaining runtime */
3274 cfs_b->runtime = runtime;
3275 /*
3276 * While we are ensured activity in the period following an
3277 * unthrottle, this also covers the case in which the new bandwidth is
3278 * insufficient to cover the existing bandwidth deficit. (Forcing the
3279 * timer to remain active while there are any throttled entities.)
3280 */
3281 cfs_b->idle = 0;
3282 out_unlock:
3283 if (idle)
3284 cfs_b->timer_active = 0;
3285 raw_spin_unlock(&cfs_b->lock);
3286
3287 return idle;
3288 }
3289
3290 /* a cfs_rq won't donate quota below this amount */
3291 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3292 /* minimum remaining period time to redistribute slack quota */
3293 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3294 /* how long we wait to gather additional slack before distributing */
3295 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3296
3297 /*
3298 * Are we near the end of the current quota period?
3299 *
3300 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3301 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3302 * migrate_hrtimers, base is never cleared, so we are fine.
3303 */
3304 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3305 {
3306 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3307 u64 remaining;
3308
3309 /* if the call-back is running a quota refresh is already occurring */
3310 if (hrtimer_callback_running(refresh_timer))
3311 return 1;
3312
3313 /* is a quota refresh about to occur? */
3314 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3315 if (remaining < min_expire)
3316 return 1;
3317
3318 return 0;
3319 }
3320
3321 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3322 {
3323 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3324
3325 /* if there's a quota refresh soon don't bother with slack */
3326 if (runtime_refresh_within(cfs_b, min_left))
3327 return;
3328
3329 start_bandwidth_timer(&cfs_b->slack_timer,
3330 ns_to_ktime(cfs_bandwidth_slack_period));
3331 }
3332
3333 /* we know any runtime found here is valid as update_curr() precedes return */
3334 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3335 {
3336 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3337 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3338
3339 if (slack_runtime <= 0)
3340 return;
3341
3342 raw_spin_lock(&cfs_b->lock);
3343 if (cfs_b->quota != RUNTIME_INF &&
3344 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3345 cfs_b->runtime += slack_runtime;
3346
3347 /* we are under rq->lock, defer unthrottling using a timer */
3348 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3349 !list_empty(&cfs_b->throttled_cfs_rq))
3350 start_cfs_slack_bandwidth(cfs_b);
3351 }
3352 raw_spin_unlock(&cfs_b->lock);
3353
3354 /* even if it's not valid for return we don't want to try again */
3355 cfs_rq->runtime_remaining -= slack_runtime;
3356 }
3357
3358 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3359 {
3360 if (!cfs_bandwidth_used())
3361 return;
3362
3363 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3364 return;
3365
3366 __return_cfs_rq_runtime(cfs_rq);
3367 }
3368
3369 /*
3370 * This is done with a timer (instead of inline with bandwidth return) since
3371 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3372 */
3373 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3374 {
3375 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3376 u64 expires;
3377
3378 /* confirm we're still not at a refresh boundary */
3379 raw_spin_lock(&cfs_b->lock);
3380 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3381 raw_spin_unlock(&cfs_b->lock);
3382 return;
3383 }
3384
3385 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3386 runtime = cfs_b->runtime;
3387 cfs_b->runtime = 0;
3388 }
3389 expires = cfs_b->runtime_expires;
3390 raw_spin_unlock(&cfs_b->lock);
3391
3392 if (!runtime)
3393 return;
3394
3395 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3396
3397 raw_spin_lock(&cfs_b->lock);
3398 if (expires == cfs_b->runtime_expires)
3399 cfs_b->runtime = runtime;
3400 raw_spin_unlock(&cfs_b->lock);
3401 }
3402
3403 /*
3404 * When a group wakes up we want to make sure that its quota is not already
3405 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3406 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3407 */
3408 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3409 {
3410 if (!cfs_bandwidth_used())
3411 return;
3412
3413 /* an active group must be handled by the update_curr()->put() path */
3414 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3415 return;
3416
3417 /* ensure the group is not already throttled */
3418 if (cfs_rq_throttled(cfs_rq))
3419 return;
3420
3421 /* update runtime allocation */
3422 account_cfs_rq_runtime(cfs_rq, 0);
3423 if (cfs_rq->runtime_remaining <= 0)
3424 throttle_cfs_rq(cfs_rq);
3425 }
3426
3427 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3428 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3429 {
3430 if (!cfs_bandwidth_used())
3431 return;
3432
3433 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3434 return;
3435
3436 /*
3437 * it's possible for a throttled entity to be forced into a running
3438 * state (e.g. set_curr_task), in this case we're finished.
3439 */
3440 if (cfs_rq_throttled(cfs_rq))
3441 return;
3442
3443 throttle_cfs_rq(cfs_rq);
3444 }
3445
3446 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3447 {
3448 struct cfs_bandwidth *cfs_b =
3449 container_of(timer, struct cfs_bandwidth, slack_timer);
3450 do_sched_cfs_slack_timer(cfs_b);
3451
3452 return HRTIMER_NORESTART;
3453 }
3454
3455 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3456 {
3457 struct cfs_bandwidth *cfs_b =
3458 container_of(timer, struct cfs_bandwidth, period_timer);
3459 ktime_t now;
3460 int overrun;
3461 int idle = 0;
3462
3463 for (;;) {
3464 now = hrtimer_cb_get_time(timer);
3465 overrun = hrtimer_forward(timer, now, cfs_b->period);
3466
3467 if (!overrun)
3468 break;
3469
3470 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3471 }
3472
3473 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3474 }
3475
3476 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3477 {
3478 raw_spin_lock_init(&cfs_b->lock);
3479 cfs_b->runtime = 0;
3480 cfs_b->quota = RUNTIME_INF;
3481 cfs_b->period = ns_to_ktime(default_cfs_period());
3482
3483 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3484 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3485 cfs_b->period_timer.function = sched_cfs_period_timer;
3486 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3487 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3488 }
3489
3490 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3491 {
3492 cfs_rq->runtime_enabled = 0;
3493 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3494 }
3495
3496 /* requires cfs_b->lock, may release to reprogram timer */
3497 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3498 {
3499 /*
3500 * The timer may be active because we're trying to set a new bandwidth
3501 * period or because we're racing with the tear-down path
3502 * (timer_active==0 becomes visible before the hrtimer call-back
3503 * terminates). In either case we ensure that it's re-programmed
3504 */
3505 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3506 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3507 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3508 raw_spin_unlock(&cfs_b->lock);
3509 cpu_relax();
3510 raw_spin_lock(&cfs_b->lock);
3511 /* if someone else restarted the timer then we're done */
3512 if (cfs_b->timer_active)
3513 return;
3514 }
3515
3516 cfs_b->timer_active = 1;
3517 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3518 }
3519
3520 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3521 {
3522 hrtimer_cancel(&cfs_b->period_timer);
3523 hrtimer_cancel(&cfs_b->slack_timer);
3524 }
3525
3526 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3527 {
3528 struct cfs_rq *cfs_rq;
3529
3530 for_each_leaf_cfs_rq(rq, cfs_rq) {
3531 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3532
3533 if (!cfs_rq->runtime_enabled)
3534 continue;
3535
3536 /*
3537 * clock_task is not advancing so we just need to make sure
3538 * there's some valid quota amount
3539 */
3540 cfs_rq->runtime_remaining = cfs_b->quota;
3541 if (cfs_rq_throttled(cfs_rq))
3542 unthrottle_cfs_rq(cfs_rq);
3543 }
3544 }
3545
3546 #else /* CONFIG_CFS_BANDWIDTH */
3547 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3548 {
3549 return rq_clock_task(rq_of(cfs_rq));
3550 }
3551
3552 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3553 unsigned long delta_exec) {}
3554 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3555 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3556 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3557
3558 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3559 {
3560 return 0;
3561 }
3562
3563 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3564 {
3565 return 0;
3566 }
3567
3568 static inline int throttled_lb_pair(struct task_group *tg,
3569 int src_cpu, int dest_cpu)
3570 {
3571 return 0;
3572 }
3573
3574 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3575
3576 #ifdef CONFIG_FAIR_GROUP_SCHED
3577 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3578 #endif
3579
3580 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3581 {
3582 return NULL;
3583 }
3584 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3585 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3586
3587 #endif /* CONFIG_CFS_BANDWIDTH */
3588
3589 /**************************************************
3590 * CFS operations on tasks:
3591 */
3592
3593 #ifdef CONFIG_SCHED_HRTICK
3594 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3595 {
3596 struct sched_entity *se = &p->se;
3597 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3598
3599 WARN_ON(task_rq(p) != rq);
3600
3601 if (cfs_rq->nr_running > 1) {
3602 u64 slice = sched_slice(cfs_rq, se);
3603 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3604 s64 delta = slice - ran;
3605
3606 if (delta < 0) {
3607 if (rq->curr == p)
3608 resched_task(p);
3609 return;
3610 }
3611
3612 /*
3613 * Don't schedule slices shorter than 10000ns, that just
3614 * doesn't make sense. Rely on vruntime for fairness.
3615 */
3616 if (rq->curr != p)
3617 delta = max_t(s64, 10000LL, delta);
3618
3619 hrtick_start(rq, delta);
3620 }
3621 }
3622
3623 /*
3624 * called from enqueue/dequeue and updates the hrtick when the
3625 * current task is from our class and nr_running is low enough
3626 * to matter.
3627 */
3628 static void hrtick_update(struct rq *rq)
3629 {
3630 struct task_struct *curr = rq->curr;
3631
3632 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3633 return;
3634
3635 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3636 hrtick_start_fair(rq, curr);
3637 }
3638 #else /* !CONFIG_SCHED_HRTICK */
3639 static inline void
3640 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3641 {
3642 }
3643
3644 static inline void hrtick_update(struct rq *rq)
3645 {
3646 }
3647 #endif
3648
3649 /*
3650 * The enqueue_task method is called before nr_running is
3651 * increased. Here we update the fair scheduling stats and
3652 * then put the task into the rbtree:
3653 */
3654 static void
3655 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3656 {
3657 struct cfs_rq *cfs_rq;
3658 struct sched_entity *se = &p->se;
3659
3660 for_each_sched_entity(se) {
3661 if (se->on_rq)
3662 break;
3663 cfs_rq = cfs_rq_of(se);
3664 enqueue_entity(cfs_rq, se, flags);
3665
3666 /*
3667 * end evaluation on encountering a throttled cfs_rq
3668 *
3669 * note: in the case of encountering a throttled cfs_rq we will
3670 * post the final h_nr_running increment below.
3671 */
3672 if (cfs_rq_throttled(cfs_rq))
3673 break;
3674 cfs_rq->h_nr_running++;
3675
3676 flags = ENQUEUE_WAKEUP;
3677 }
3678
3679 for_each_sched_entity(se) {
3680 cfs_rq = cfs_rq_of(se);
3681 cfs_rq->h_nr_running++;
3682
3683 if (cfs_rq_throttled(cfs_rq))
3684 break;
3685
3686 update_cfs_shares(cfs_rq);
3687 update_entity_load_avg(se, 1);
3688 }
3689
3690 if (!se) {
3691 update_rq_runnable_avg(rq, rq->nr_running);
3692 inc_nr_running(rq);
3693 }
3694 hrtick_update(rq);
3695 }
3696
3697 static void set_next_buddy(struct sched_entity *se);
3698
3699 /*
3700 * The dequeue_task method is called before nr_running is
3701 * decreased. We remove the task from the rbtree and
3702 * update the fair scheduling stats:
3703 */
3704 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3705 {
3706 struct cfs_rq *cfs_rq;
3707 struct sched_entity *se = &p->se;
3708 int task_sleep = flags & DEQUEUE_SLEEP;
3709
3710 for_each_sched_entity(se) {
3711 cfs_rq = cfs_rq_of(se);
3712 dequeue_entity(cfs_rq, se, flags);
3713
3714 /*
3715 * end evaluation on encountering a throttled cfs_rq
3716 *
3717 * note: in the case of encountering a throttled cfs_rq we will
3718 * post the final h_nr_running decrement below.
3719 */
3720 if (cfs_rq_throttled(cfs_rq))
3721 break;
3722 cfs_rq->h_nr_running--;
3723
3724 /* Don't dequeue parent if it has other entities besides us */
3725 if (cfs_rq->load.weight) {
3726 /*
3727 * Bias pick_next to pick a task from this cfs_rq, as
3728 * p is sleeping when it is within its sched_slice.
3729 */
3730 if (task_sleep && parent_entity(se))
3731 set_next_buddy(parent_entity(se));
3732
3733 /* avoid re-evaluating load for this entity */
3734 se = parent_entity(se);
3735 break;
3736 }
3737 flags |= DEQUEUE_SLEEP;
3738 }
3739
3740 for_each_sched_entity(se) {
3741 cfs_rq = cfs_rq_of(se);
3742 cfs_rq->h_nr_running--;
3743
3744 if (cfs_rq_throttled(cfs_rq))
3745 break;
3746
3747 update_cfs_shares(cfs_rq);
3748 update_entity_load_avg(se, 1);
3749 }
3750
3751 if (!se) {
3752 dec_nr_running(rq);
3753 update_rq_runnable_avg(rq, 1);
3754 }
3755 hrtick_update(rq);
3756 }
3757
3758 #ifdef CONFIG_SMP
3759 /* Used instead of source_load when we know the type == 0 */
3760 static unsigned long weighted_cpuload(const int cpu)
3761 {
3762 return cpu_rq(cpu)->cfs.runnable_load_avg;
3763 }
3764
3765 /*
3766 * Return a low guess at the load of a migration-source cpu weighted
3767 * according to the scheduling class and "nice" value.
3768 *
3769 * We want to under-estimate the load of migration sources, to
3770 * balance conservatively.
3771 */
3772 static unsigned long source_load(int cpu, int type)
3773 {
3774 struct rq *rq = cpu_rq(cpu);
3775 unsigned long total = weighted_cpuload(cpu);
3776
3777 if (type == 0 || !sched_feat(LB_BIAS))
3778 return total;
3779
3780 return min(rq->cpu_load[type-1], total);
3781 }
3782
3783 /*
3784 * Return a high guess at the load of a migration-target cpu weighted
3785 * according to the scheduling class and "nice" value.
3786 */
3787 static unsigned long target_load(int cpu, int type)
3788 {
3789 struct rq *rq = cpu_rq(cpu);
3790 unsigned long total = weighted_cpuload(cpu);
3791
3792 if (type == 0 || !sched_feat(LB_BIAS))
3793 return total;
3794
3795 return max(rq->cpu_load[type-1], total);
3796 }
3797
3798 static unsigned long power_of(int cpu)
3799 {
3800 return cpu_rq(cpu)->cpu_power;
3801 }
3802
3803 static unsigned long cpu_avg_load_per_task(int cpu)
3804 {
3805 struct rq *rq = cpu_rq(cpu);
3806 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3807 unsigned long load_avg = rq->cfs.runnable_load_avg;
3808
3809 if (nr_running)
3810 return load_avg / nr_running;
3811
3812 return 0;
3813 }
3814
3815 static void record_wakee(struct task_struct *p)
3816 {
3817 /*
3818 * Rough decay (wiping) for cost saving, don't worry
3819 * about the boundary, really active task won't care
3820 * about the loss.
3821 */
3822 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3823 current->wakee_flips = 0;
3824 current->wakee_flip_decay_ts = jiffies;
3825 }
3826
3827 if (current->last_wakee != p) {
3828 current->last_wakee = p;
3829 current->wakee_flips++;
3830 }
3831 }
3832
3833 static void task_waking_fair(struct task_struct *p)
3834 {
3835 struct sched_entity *se = &p->se;
3836 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3837 u64 min_vruntime;
3838
3839 #ifndef CONFIG_64BIT
3840 u64 min_vruntime_copy;
3841
3842 do {
3843 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3844 smp_rmb();
3845 min_vruntime = cfs_rq->min_vruntime;
3846 } while (min_vruntime != min_vruntime_copy);
3847 #else
3848 min_vruntime = cfs_rq->min_vruntime;
3849 #endif
3850
3851 se->vruntime -= min_vruntime;
3852 record_wakee(p);
3853 }
3854
3855 #ifdef CONFIG_FAIR_GROUP_SCHED
3856 /*
3857 * effective_load() calculates the load change as seen from the root_task_group
3858 *
3859 * Adding load to a group doesn't make a group heavier, but can cause movement
3860 * of group shares between cpus. Assuming the shares were perfectly aligned one
3861 * can calculate the shift in shares.
3862 *
3863 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3864 * on this @cpu and results in a total addition (subtraction) of @wg to the
3865 * total group weight.
3866 *
3867 * Given a runqueue weight distribution (rw_i) we can compute a shares
3868 * distribution (s_i) using:
3869 *
3870 * s_i = rw_i / \Sum rw_j (1)
3871 *
3872 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3873 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3874 * shares distribution (s_i):
3875 *
3876 * rw_i = { 2, 4, 1, 0 }
3877 * s_i = { 2/7, 4/7, 1/7, 0 }
3878 *
3879 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3880 * task used to run on and the CPU the waker is running on), we need to
3881 * compute the effect of waking a task on either CPU and, in case of a sync
3882 * wakeup, compute the effect of the current task going to sleep.
3883 *
3884 * So for a change of @wl to the local @cpu with an overall group weight change
3885 * of @wl we can compute the new shares distribution (s'_i) using:
3886 *
3887 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3888 *
3889 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3890 * differences in waking a task to CPU 0. The additional task changes the
3891 * weight and shares distributions like:
3892 *
3893 * rw'_i = { 3, 4, 1, 0 }
3894 * s'_i = { 3/8, 4/8, 1/8, 0 }
3895 *
3896 * We can then compute the difference in effective weight by using:
3897 *
3898 * dw_i = S * (s'_i - s_i) (3)
3899 *
3900 * Where 'S' is the group weight as seen by its parent.
3901 *
3902 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3903 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3904 * 4/7) times the weight of the group.
3905 */
3906 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3907 {
3908 struct sched_entity *se = tg->se[cpu];
3909
3910 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
3911 return wl;
3912
3913 for_each_sched_entity(se) {
3914 long w, W;
3915
3916 tg = se->my_q->tg;
3917
3918 /*
3919 * W = @wg + \Sum rw_j
3920 */
3921 W = wg + calc_tg_weight(tg, se->my_q);
3922
3923 /*
3924 * w = rw_i + @wl
3925 */
3926 w = se->my_q->load.weight + wl;
3927
3928 /*
3929 * wl = S * s'_i; see (2)
3930 */
3931 if (W > 0 && w < W)
3932 wl = (w * tg->shares) / W;
3933 else
3934 wl = tg->shares;
3935
3936 /*
3937 * Per the above, wl is the new se->load.weight value; since
3938 * those are clipped to [MIN_SHARES, ...) do so now. See
3939 * calc_cfs_shares().
3940 */
3941 if (wl < MIN_SHARES)
3942 wl = MIN_SHARES;
3943
3944 /*
3945 * wl = dw_i = S * (s'_i - s_i); see (3)
3946 */
3947 wl -= se->load.weight;
3948
3949 /*
3950 * Recursively apply this logic to all parent groups to compute
3951 * the final effective load change on the root group. Since
3952 * only the @tg group gets extra weight, all parent groups can
3953 * only redistribute existing shares. @wl is the shift in shares
3954 * resulting from this level per the above.
3955 */
3956 wg = 0;
3957 }
3958
3959 return wl;
3960 }
3961 #else
3962
3963 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3964 {
3965 return wl;
3966 }
3967
3968 #endif
3969
3970 static int wake_wide(struct task_struct *p)
3971 {
3972 int factor = this_cpu_read(sd_llc_size);
3973
3974 /*
3975 * Yeah, it's the switching-frequency, could means many wakee or
3976 * rapidly switch, use factor here will just help to automatically
3977 * adjust the loose-degree, so bigger node will lead to more pull.
3978 */
3979 if (p->wakee_flips > factor) {
3980 /*
3981 * wakee is somewhat hot, it needs certain amount of cpu
3982 * resource, so if waker is far more hot, prefer to leave
3983 * it alone.
3984 */
3985 if (current->wakee_flips > (factor * p->wakee_flips))
3986 return 1;
3987 }
3988
3989 return 0;
3990 }
3991
3992 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3993 {
3994 s64 this_load, load;
3995 int idx, this_cpu, prev_cpu;
3996 unsigned long tl_per_task;
3997 struct task_group *tg;
3998 unsigned long weight;
3999 int balanced;
4000
4001 /*
4002 * If we wake multiple tasks be careful to not bounce
4003 * ourselves around too much.
4004 */
4005 if (wake_wide(p))
4006 return 0;
4007
4008 idx = sd->wake_idx;
4009 this_cpu = smp_processor_id();
4010 prev_cpu = task_cpu(p);
4011 load = source_load(prev_cpu, idx);
4012 this_load = target_load(this_cpu, idx);
4013
4014 /*
4015 * If sync wakeup then subtract the (maximum possible)
4016 * effect of the currently running task from the load
4017 * of the current CPU:
4018 */
4019 if (sync) {
4020 tg = task_group(current);
4021 weight = current->se.load.weight;
4022
4023 this_load += effective_load(tg, this_cpu, -weight, -weight);
4024 load += effective_load(tg, prev_cpu, 0, -weight);
4025 }
4026
4027 tg = task_group(p);
4028 weight = p->se.load.weight;
4029
4030 /*
4031 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4032 * due to the sync cause above having dropped this_load to 0, we'll
4033 * always have an imbalance, but there's really nothing you can do
4034 * about that, so that's good too.
4035 *
4036 * Otherwise check if either cpus are near enough in load to allow this
4037 * task to be woken on this_cpu.
4038 */
4039 if (this_load > 0) {
4040 s64 this_eff_load, prev_eff_load;
4041
4042 this_eff_load = 100;
4043 this_eff_load *= power_of(prev_cpu);
4044 this_eff_load *= this_load +
4045 effective_load(tg, this_cpu, weight, weight);
4046
4047 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4048 prev_eff_load *= power_of(this_cpu);
4049 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4050
4051 balanced = this_eff_load <= prev_eff_load;
4052 } else
4053 balanced = true;
4054
4055 /*
4056 * If the currently running task will sleep within
4057 * a reasonable amount of time then attract this newly
4058 * woken task:
4059 */
4060 if (sync && balanced)
4061 return 1;
4062
4063 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4064 tl_per_task = cpu_avg_load_per_task(this_cpu);
4065
4066 if (balanced ||
4067 (this_load <= load &&
4068 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4069 /*
4070 * This domain has SD_WAKE_AFFINE and
4071 * p is cache cold in this domain, and
4072 * there is no bad imbalance.
4073 */
4074 schedstat_inc(sd, ttwu_move_affine);
4075 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4076
4077 return 1;
4078 }
4079 return 0;
4080 }
4081
4082 /*
4083 * find_idlest_group finds and returns the least busy CPU group within the
4084 * domain.
4085 */
4086 static struct sched_group *
4087 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4088 int this_cpu, int load_idx)
4089 {
4090 struct sched_group *idlest = NULL, *group = sd->groups;
4091 unsigned long min_load = ULONG_MAX, this_load = 0;
4092 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4093
4094 do {
4095 unsigned long load, avg_load;
4096 int local_group;
4097 int i;
4098
4099 /* Skip over this group if it has no CPUs allowed */
4100 if (!cpumask_intersects(sched_group_cpus(group),
4101 tsk_cpus_allowed(p)))
4102 continue;
4103
4104 local_group = cpumask_test_cpu(this_cpu,
4105 sched_group_cpus(group));
4106
4107 /* Tally up the load of all CPUs in the group */
4108 avg_load = 0;
4109
4110 for_each_cpu(i, sched_group_cpus(group)) {
4111 /* Bias balancing toward cpus of our domain */
4112 if (local_group)
4113 load = source_load(i, load_idx);
4114 else
4115 load = target_load(i, load_idx);
4116
4117 avg_load += load;
4118 }
4119
4120 /* Adjust by relative CPU power of the group */
4121 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4122
4123 if (local_group) {
4124 this_load = avg_load;
4125 } else if (avg_load < min_load) {
4126 min_load = avg_load;
4127 idlest = group;
4128 }
4129 } while (group = group->next, group != sd->groups);
4130
4131 if (!idlest || 100*this_load < imbalance*min_load)
4132 return NULL;
4133 return idlest;
4134 }
4135
4136 /*
4137 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4138 */
4139 static int
4140 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4141 {
4142 unsigned long load, min_load = ULONG_MAX;
4143 int idlest = -1;
4144 int i;
4145
4146 /* Traverse only the allowed CPUs */
4147 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4148 load = weighted_cpuload(i);
4149
4150 if (load < min_load || (load == min_load && i == this_cpu)) {
4151 min_load = load;
4152 idlest = i;
4153 }
4154 }
4155
4156 return idlest;
4157 }
4158
4159 /*
4160 * Try and locate an idle CPU in the sched_domain.
4161 */
4162 static int select_idle_sibling(struct task_struct *p, int target)
4163 {
4164 struct sched_domain *sd;
4165 struct sched_group *sg;
4166 int i = task_cpu(p);
4167
4168 if (idle_cpu(target))
4169 return target;
4170
4171 /*
4172 * If the prevous cpu is cache affine and idle, don't be stupid.
4173 */
4174 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4175 return i;
4176
4177 /*
4178 * Otherwise, iterate the domains and find an elegible idle cpu.
4179 */
4180 sd = rcu_dereference(per_cpu(sd_llc, target));
4181 for_each_lower_domain(sd) {
4182 sg = sd->groups;
4183 do {
4184 if (!cpumask_intersects(sched_group_cpus(sg),
4185 tsk_cpus_allowed(p)))
4186 goto next;
4187
4188 for_each_cpu(i, sched_group_cpus(sg)) {
4189 if (i == target || !idle_cpu(i))
4190 goto next;
4191 }
4192
4193 target = cpumask_first_and(sched_group_cpus(sg),
4194 tsk_cpus_allowed(p));
4195 goto done;
4196 next:
4197 sg = sg->next;
4198 } while (sg != sd->groups);
4199 }
4200 done:
4201 return target;
4202 }
4203
4204 /*
4205 * sched_balance_self: balance the current task (running on cpu) in domains
4206 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4207 * SD_BALANCE_EXEC.
4208 *
4209 * Balance, ie. select the least loaded group.
4210 *
4211 * Returns the target CPU number, or the same CPU if no balancing is needed.
4212 *
4213 * preempt must be disabled.
4214 */
4215 static int
4216 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4217 {
4218 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4219 int cpu = smp_processor_id();
4220 int new_cpu = cpu;
4221 int want_affine = 0;
4222 int sync = wake_flags & WF_SYNC;
4223
4224 if (p->nr_cpus_allowed == 1)
4225 return prev_cpu;
4226
4227 if (sd_flag & SD_BALANCE_WAKE) {
4228 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4229 want_affine = 1;
4230 new_cpu = prev_cpu;
4231 }
4232
4233 rcu_read_lock();
4234 for_each_domain(cpu, tmp) {
4235 if (!(tmp->flags & SD_LOAD_BALANCE))
4236 continue;
4237
4238 /*
4239 * If both cpu and prev_cpu are part of this domain,
4240 * cpu is a valid SD_WAKE_AFFINE target.
4241 */
4242 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4243 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4244 affine_sd = tmp;
4245 break;
4246 }
4247
4248 if (tmp->flags & sd_flag)
4249 sd = tmp;
4250 }
4251
4252 if (affine_sd) {
4253 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4254 prev_cpu = cpu;
4255
4256 new_cpu = select_idle_sibling(p, prev_cpu);
4257 goto unlock;
4258 }
4259
4260 while (sd) {
4261 int load_idx = sd->forkexec_idx;
4262 struct sched_group *group;
4263 int weight;
4264
4265 if (!(sd->flags & sd_flag)) {
4266 sd = sd->child;
4267 continue;
4268 }
4269
4270 if (sd_flag & SD_BALANCE_WAKE)
4271 load_idx = sd->wake_idx;
4272
4273 group = find_idlest_group(sd, p, cpu, load_idx);
4274 if (!group) {
4275 sd = sd->child;
4276 continue;
4277 }
4278
4279 new_cpu = find_idlest_cpu(group, p, cpu);
4280 if (new_cpu == -1 || new_cpu == cpu) {
4281 /* Now try balancing at a lower domain level of cpu */
4282 sd = sd->child;
4283 continue;
4284 }
4285
4286 /* Now try balancing at a lower domain level of new_cpu */
4287 cpu = new_cpu;
4288 weight = sd->span_weight;
4289 sd = NULL;
4290 for_each_domain(cpu, tmp) {
4291 if (weight <= tmp->span_weight)
4292 break;
4293 if (tmp->flags & sd_flag)
4294 sd = tmp;
4295 }
4296 /* while loop will break here if sd == NULL */
4297 }
4298 unlock:
4299 rcu_read_unlock();
4300
4301 return new_cpu;
4302 }
4303
4304 /*
4305 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4306 * cfs_rq_of(p) references at time of call are still valid and identify the
4307 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4308 * other assumptions, including the state of rq->lock, should be made.
4309 */
4310 static void
4311 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4312 {
4313 struct sched_entity *se = &p->se;
4314 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4315
4316 /*
4317 * Load tracking: accumulate removed load so that it can be processed
4318 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4319 * to blocked load iff they have a positive decay-count. It can never
4320 * be negative here since on-rq tasks have decay-count == 0.
4321 */
4322 if (se->avg.decay_count) {
4323 se->avg.decay_count = -__synchronize_entity_decay(se);
4324 atomic_long_add(se->avg.load_avg_contrib,
4325 &cfs_rq->removed_load);
4326 }
4327 }
4328 #endif /* CONFIG_SMP */
4329
4330 static unsigned long
4331 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4332 {
4333 unsigned long gran = sysctl_sched_wakeup_granularity;
4334
4335 /*
4336 * Since its curr running now, convert the gran from real-time
4337 * to virtual-time in his units.
4338 *
4339 * By using 'se' instead of 'curr' we penalize light tasks, so
4340 * they get preempted easier. That is, if 'se' < 'curr' then
4341 * the resulting gran will be larger, therefore penalizing the
4342 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4343 * be smaller, again penalizing the lighter task.
4344 *
4345 * This is especially important for buddies when the leftmost
4346 * task is higher priority than the buddy.
4347 */
4348 return calc_delta_fair(gran, se);
4349 }
4350
4351 /*
4352 * Should 'se' preempt 'curr'.
4353 *
4354 * |s1
4355 * |s2
4356 * |s3
4357 * g
4358 * |<--->|c
4359 *
4360 * w(c, s1) = -1
4361 * w(c, s2) = 0
4362 * w(c, s3) = 1
4363 *
4364 */
4365 static int
4366 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4367 {
4368 s64 gran, vdiff = curr->vruntime - se->vruntime;
4369
4370 if (vdiff <= 0)
4371 return -1;
4372
4373 gran = wakeup_gran(curr, se);
4374 if (vdiff > gran)
4375 return 1;
4376
4377 return 0;
4378 }
4379
4380 static void set_last_buddy(struct sched_entity *se)
4381 {
4382 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4383 return;
4384
4385 for_each_sched_entity(se)
4386 cfs_rq_of(se)->last = se;
4387 }
4388
4389 static void set_next_buddy(struct sched_entity *se)
4390 {
4391 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4392 return;
4393
4394 for_each_sched_entity(se)
4395 cfs_rq_of(se)->next = se;
4396 }
4397
4398 static void set_skip_buddy(struct sched_entity *se)
4399 {
4400 for_each_sched_entity(se)
4401 cfs_rq_of(se)->skip = se;
4402 }
4403
4404 /*
4405 * Preempt the current task with a newly woken task if needed:
4406 */
4407 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4408 {
4409 struct task_struct *curr = rq->curr;
4410 struct sched_entity *se = &curr->se, *pse = &p->se;
4411 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4412 int scale = cfs_rq->nr_running >= sched_nr_latency;
4413 int next_buddy_marked = 0;
4414
4415 if (unlikely(se == pse))
4416 return;
4417
4418 /*
4419 * This is possible from callers such as move_task(), in which we
4420 * unconditionally check_prempt_curr() after an enqueue (which may have
4421 * lead to a throttle). This both saves work and prevents false
4422 * next-buddy nomination below.
4423 */
4424 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4425 return;
4426
4427 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4428 set_next_buddy(pse);
4429 next_buddy_marked = 1;
4430 }
4431
4432 /*
4433 * We can come here with TIF_NEED_RESCHED already set from new task
4434 * wake up path.
4435 *
4436 * Note: this also catches the edge-case of curr being in a throttled
4437 * group (e.g. via set_curr_task), since update_curr() (in the
4438 * enqueue of curr) will have resulted in resched being set. This
4439 * prevents us from potentially nominating it as a false LAST_BUDDY
4440 * below.
4441 */
4442 if (test_tsk_need_resched(curr))
4443 return;
4444
4445 /* Idle tasks are by definition preempted by non-idle tasks. */
4446 if (unlikely(curr->policy == SCHED_IDLE) &&
4447 likely(p->policy != SCHED_IDLE))
4448 goto preempt;
4449
4450 /*
4451 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4452 * is driven by the tick):
4453 */
4454 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4455 return;
4456
4457 find_matching_se(&se, &pse);
4458 update_curr(cfs_rq_of(se));
4459 BUG_ON(!pse);
4460 if (wakeup_preempt_entity(se, pse) == 1) {
4461 /*
4462 * Bias pick_next to pick the sched entity that is
4463 * triggering this preemption.
4464 */
4465 if (!next_buddy_marked)
4466 set_next_buddy(pse);
4467 goto preempt;
4468 }
4469
4470 return;
4471
4472 preempt:
4473 resched_task(curr);
4474 /*
4475 * Only set the backward buddy when the current task is still
4476 * on the rq. This can happen when a wakeup gets interleaved
4477 * with schedule on the ->pre_schedule() or idle_balance()
4478 * point, either of which can * drop the rq lock.
4479 *
4480 * Also, during early boot the idle thread is in the fair class,
4481 * for obvious reasons its a bad idea to schedule back to it.
4482 */
4483 if (unlikely(!se->on_rq || curr == rq->idle))
4484 return;
4485
4486 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4487 set_last_buddy(se);
4488 }
4489
4490 static struct task_struct *pick_next_task_fair(struct rq *rq)
4491 {
4492 struct task_struct *p;
4493 struct cfs_rq *cfs_rq = &rq->cfs;
4494 struct sched_entity *se;
4495
4496 if (!cfs_rq->nr_running)
4497 return NULL;
4498
4499 do {
4500 se = pick_next_entity(cfs_rq);
4501 set_next_entity(cfs_rq, se);
4502 cfs_rq = group_cfs_rq(se);
4503 } while (cfs_rq);
4504
4505 p = task_of(se);
4506 if (hrtick_enabled(rq))
4507 hrtick_start_fair(rq, p);
4508
4509 return p;
4510 }
4511
4512 /*
4513 * Account for a descheduled task:
4514 */
4515 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4516 {
4517 struct sched_entity *se = &prev->se;
4518 struct cfs_rq *cfs_rq;
4519
4520 for_each_sched_entity(se) {
4521 cfs_rq = cfs_rq_of(se);
4522 put_prev_entity(cfs_rq, se);
4523 }
4524 }
4525
4526 /*
4527 * sched_yield() is very simple
4528 *
4529 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4530 */
4531 static void yield_task_fair(struct rq *rq)
4532 {
4533 struct task_struct *curr = rq->curr;
4534 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4535 struct sched_entity *se = &curr->se;
4536
4537 /*
4538 * Are we the only task in the tree?
4539 */
4540 if (unlikely(rq->nr_running == 1))
4541 return;
4542
4543 clear_buddies(cfs_rq, se);
4544
4545 if (curr->policy != SCHED_BATCH) {
4546 update_rq_clock(rq);
4547 /*
4548 * Update run-time statistics of the 'current'.
4549 */
4550 update_curr(cfs_rq);
4551 /*
4552 * Tell update_rq_clock() that we've just updated,
4553 * so we don't do microscopic update in schedule()
4554 * and double the fastpath cost.
4555 */
4556 rq->skip_clock_update = 1;
4557 }
4558
4559 set_skip_buddy(se);
4560 }
4561
4562 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4563 {
4564 struct sched_entity *se = &p->se;
4565
4566 /* throttled hierarchies are not runnable */
4567 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4568 return false;
4569
4570 /* Tell the scheduler that we'd really like pse to run next. */
4571 set_next_buddy(se);
4572
4573 yield_task_fair(rq);
4574
4575 return true;
4576 }
4577
4578 #ifdef CONFIG_SMP
4579 /**************************************************
4580 * Fair scheduling class load-balancing methods.
4581 *
4582 * BASICS
4583 *
4584 * The purpose of load-balancing is to achieve the same basic fairness the
4585 * per-cpu scheduler provides, namely provide a proportional amount of compute
4586 * time to each task. This is expressed in the following equation:
4587 *
4588 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4589 *
4590 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4591 * W_i,0 is defined as:
4592 *
4593 * W_i,0 = \Sum_j w_i,j (2)
4594 *
4595 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4596 * is derived from the nice value as per prio_to_weight[].
4597 *
4598 * The weight average is an exponential decay average of the instantaneous
4599 * weight:
4600 *
4601 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4602 *
4603 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4604 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4605 * can also include other factors [XXX].
4606 *
4607 * To achieve this balance we define a measure of imbalance which follows
4608 * directly from (1):
4609 *
4610 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4611 *
4612 * We them move tasks around to minimize the imbalance. In the continuous
4613 * function space it is obvious this converges, in the discrete case we get
4614 * a few fun cases generally called infeasible weight scenarios.
4615 *
4616 * [XXX expand on:
4617 * - infeasible weights;
4618 * - local vs global optima in the discrete case. ]
4619 *
4620 *
4621 * SCHED DOMAINS
4622 *
4623 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4624 * for all i,j solution, we create a tree of cpus that follows the hardware
4625 * topology where each level pairs two lower groups (or better). This results
4626 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4627 * tree to only the first of the previous level and we decrease the frequency
4628 * of load-balance at each level inv. proportional to the number of cpus in
4629 * the groups.
4630 *
4631 * This yields:
4632 *
4633 * log_2 n 1 n
4634 * \Sum { --- * --- * 2^i } = O(n) (5)
4635 * i = 0 2^i 2^i
4636 * `- size of each group
4637 * | | `- number of cpus doing load-balance
4638 * | `- freq
4639 * `- sum over all levels
4640 *
4641 * Coupled with a limit on how many tasks we can migrate every balance pass,
4642 * this makes (5) the runtime complexity of the balancer.
4643 *
4644 * An important property here is that each CPU is still (indirectly) connected
4645 * to every other cpu in at most O(log n) steps:
4646 *
4647 * The adjacency matrix of the resulting graph is given by:
4648 *
4649 * log_2 n
4650 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4651 * k = 0
4652 *
4653 * And you'll find that:
4654 *
4655 * A^(log_2 n)_i,j != 0 for all i,j (7)
4656 *
4657 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4658 * The task movement gives a factor of O(m), giving a convergence complexity
4659 * of:
4660 *
4661 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4662 *
4663 *
4664 * WORK CONSERVING
4665 *
4666 * In order to avoid CPUs going idle while there's still work to do, new idle
4667 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4668 * tree itself instead of relying on other CPUs to bring it work.
4669 *
4670 * This adds some complexity to both (5) and (8) but it reduces the total idle
4671 * time.
4672 *
4673 * [XXX more?]
4674 *
4675 *
4676 * CGROUPS
4677 *
4678 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4679 *
4680 * s_k,i
4681 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4682 * S_k
4683 *
4684 * Where
4685 *
4686 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4687 *
4688 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4689 *
4690 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4691 * property.
4692 *
4693 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4694 * rewrite all of this once again.]
4695 */
4696
4697 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4698
4699 enum fbq_type { regular, remote, all };
4700
4701 #define LBF_ALL_PINNED 0x01
4702 #define LBF_NEED_BREAK 0x02
4703 #define LBF_DST_PINNED 0x04
4704 #define LBF_SOME_PINNED 0x08
4705
4706 struct lb_env {
4707 struct sched_domain *sd;
4708
4709 struct rq *src_rq;
4710 int src_cpu;
4711
4712 int dst_cpu;
4713 struct rq *dst_rq;
4714
4715 struct cpumask *dst_grpmask;
4716 int new_dst_cpu;
4717 enum cpu_idle_type idle;
4718 long imbalance;
4719 /* The set of CPUs under consideration for load-balancing */
4720 struct cpumask *cpus;
4721
4722 unsigned int flags;
4723
4724 unsigned int loop;
4725 unsigned int loop_break;
4726 unsigned int loop_max;
4727
4728 enum fbq_type fbq_type;
4729 };
4730
4731 /*
4732 * move_task - move a task from one runqueue to another runqueue.
4733 * Both runqueues must be locked.
4734 */
4735 static void move_task(struct task_struct *p, struct lb_env *env)
4736 {
4737 deactivate_task(env->src_rq, p, 0);
4738 set_task_cpu(p, env->dst_cpu);
4739 activate_task(env->dst_rq, p, 0);
4740 check_preempt_curr(env->dst_rq, p, 0);
4741 }
4742
4743 /*
4744 * Is this task likely cache-hot:
4745 */
4746 static int
4747 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4748 {
4749 s64 delta;
4750
4751 if (p->sched_class != &fair_sched_class)
4752 return 0;
4753
4754 if (unlikely(p->policy == SCHED_IDLE))
4755 return 0;
4756
4757 /*
4758 * Buddy candidates are cache hot:
4759 */
4760 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4761 (&p->se == cfs_rq_of(&p->se)->next ||
4762 &p->se == cfs_rq_of(&p->se)->last))
4763 return 1;
4764
4765 if (sysctl_sched_migration_cost == -1)
4766 return 1;
4767 if (sysctl_sched_migration_cost == 0)
4768 return 0;
4769
4770 delta = now - p->se.exec_start;
4771
4772 return delta < (s64)sysctl_sched_migration_cost;
4773 }
4774
4775 #ifdef CONFIG_NUMA_BALANCING
4776 /* Returns true if the destination node has incurred more faults */
4777 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4778 {
4779 int src_nid, dst_nid;
4780
4781 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4782 !(env->sd->flags & SD_NUMA)) {
4783 return false;
4784 }
4785
4786 src_nid = cpu_to_node(env->src_cpu);
4787 dst_nid = cpu_to_node(env->dst_cpu);
4788
4789 if (src_nid == dst_nid)
4790 return false;
4791
4792 /* Always encourage migration to the preferred node. */
4793 if (dst_nid == p->numa_preferred_nid)
4794 return true;
4795
4796 /* If both task and group weight improve, this move is a winner. */
4797 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4798 group_weight(p, dst_nid) > group_weight(p, src_nid))
4799 return true;
4800
4801 return false;
4802 }
4803
4804
4805 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4806 {
4807 int src_nid, dst_nid;
4808
4809 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4810 return false;
4811
4812 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4813 return false;
4814
4815 src_nid = cpu_to_node(env->src_cpu);
4816 dst_nid = cpu_to_node(env->dst_cpu);
4817
4818 if (src_nid == dst_nid)
4819 return false;
4820
4821 /* Migrating away from the preferred node is always bad. */
4822 if (src_nid == p->numa_preferred_nid)
4823 return true;
4824
4825 /* If either task or group weight get worse, don't do it. */
4826 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4827 group_weight(p, dst_nid) < group_weight(p, src_nid))
4828 return true;
4829
4830 return false;
4831 }
4832
4833 #else
4834 static inline bool migrate_improves_locality(struct task_struct *p,
4835 struct lb_env *env)
4836 {
4837 return false;
4838 }
4839
4840 static inline bool migrate_degrades_locality(struct task_struct *p,
4841 struct lb_env *env)
4842 {
4843 return false;
4844 }
4845 #endif
4846
4847 /*
4848 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4849 */
4850 static
4851 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4852 {
4853 int tsk_cache_hot = 0;
4854 /*
4855 * We do not migrate tasks that are:
4856 * 1) throttled_lb_pair, or
4857 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4858 * 3) running (obviously), or
4859 * 4) are cache-hot on their current CPU.
4860 */
4861 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4862 return 0;
4863
4864 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4865 int cpu;
4866
4867 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4868
4869 env->flags |= LBF_SOME_PINNED;
4870
4871 /*
4872 * Remember if this task can be migrated to any other cpu in
4873 * our sched_group. We may want to revisit it if we couldn't
4874 * meet load balance goals by pulling other tasks on src_cpu.
4875 *
4876 * Also avoid computing new_dst_cpu if we have already computed
4877 * one in current iteration.
4878 */
4879 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4880 return 0;
4881
4882 /* Prevent to re-select dst_cpu via env's cpus */
4883 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4884 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4885 env->flags |= LBF_DST_PINNED;
4886 env->new_dst_cpu = cpu;
4887 break;
4888 }
4889 }
4890
4891 return 0;
4892 }
4893
4894 /* Record that we found atleast one task that could run on dst_cpu */
4895 env->flags &= ~LBF_ALL_PINNED;
4896
4897 if (task_running(env->src_rq, p)) {
4898 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4899 return 0;
4900 }
4901
4902 /*
4903 * Aggressive migration if:
4904 * 1) destination numa is preferred
4905 * 2) task is cache cold, or
4906 * 3) too many balance attempts have failed.
4907 */
4908 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4909 if (!tsk_cache_hot)
4910 tsk_cache_hot = migrate_degrades_locality(p, env);
4911
4912 if (migrate_improves_locality(p, env)) {
4913 #ifdef CONFIG_SCHEDSTATS
4914 if (tsk_cache_hot) {
4915 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4916 schedstat_inc(p, se.statistics.nr_forced_migrations);
4917 }
4918 #endif
4919 return 1;
4920 }
4921
4922 if (!tsk_cache_hot ||
4923 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4924
4925 if (tsk_cache_hot) {
4926 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4927 schedstat_inc(p, se.statistics.nr_forced_migrations);
4928 }
4929
4930 return 1;
4931 }
4932
4933 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4934 return 0;
4935 }
4936
4937 /*
4938 * move_one_task tries to move exactly one task from busiest to this_rq, as
4939 * part of active balancing operations within "domain".
4940 * Returns 1 if successful and 0 otherwise.
4941 *
4942 * Called with both runqueues locked.
4943 */
4944 static int move_one_task(struct lb_env *env)
4945 {
4946 struct task_struct *p, *n;
4947
4948 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4949 if (!can_migrate_task(p, env))
4950 continue;
4951
4952 move_task(p, env);
4953 /*
4954 * Right now, this is only the second place move_task()
4955 * is called, so we can safely collect move_task()
4956 * stats here rather than inside move_task().
4957 */
4958 schedstat_inc(env->sd, lb_gained[env->idle]);
4959 return 1;
4960 }
4961 return 0;
4962 }
4963
4964 static const unsigned int sched_nr_migrate_break = 32;
4965
4966 /*
4967 * move_tasks tries to move up to imbalance weighted load from busiest to
4968 * this_rq, as part of a balancing operation within domain "sd".
4969 * Returns 1 if successful and 0 otherwise.
4970 *
4971 * Called with both runqueues locked.
4972 */
4973 static int move_tasks(struct lb_env *env)
4974 {
4975 struct list_head *tasks = &env->src_rq->cfs_tasks;
4976 struct task_struct *p;
4977 unsigned long load;
4978 int pulled = 0;
4979
4980 if (env->imbalance <= 0)
4981 return 0;
4982
4983 while (!list_empty(tasks)) {
4984 p = list_first_entry(tasks, struct task_struct, se.group_node);
4985
4986 env->loop++;
4987 /* We've more or less seen every task there is, call it quits */
4988 if (env->loop > env->loop_max)
4989 break;
4990
4991 /* take a breather every nr_migrate tasks */
4992 if (env->loop > env->loop_break) {
4993 env->loop_break += sched_nr_migrate_break;
4994 env->flags |= LBF_NEED_BREAK;
4995 break;
4996 }
4997
4998 if (!can_migrate_task(p, env))
4999 goto next;
5000
5001 load = task_h_load(p);
5002
5003 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5004 goto next;
5005
5006 if ((load / 2) > env->imbalance)
5007 goto next;
5008
5009 move_task(p, env);
5010 pulled++;
5011 env->imbalance -= load;
5012
5013 #ifdef CONFIG_PREEMPT
5014 /*
5015 * NEWIDLE balancing is a source of latency, so preemptible
5016 * kernels will stop after the first task is pulled to minimize
5017 * the critical section.
5018 */
5019 if (env->idle == CPU_NEWLY_IDLE)
5020 break;
5021 #endif
5022
5023 /*
5024 * We only want to steal up to the prescribed amount of
5025 * weighted load.
5026 */
5027 if (env->imbalance <= 0)
5028 break;
5029
5030 continue;
5031 next:
5032 list_move_tail(&p->se.group_node, tasks);
5033 }
5034
5035 /*
5036 * Right now, this is one of only two places move_task() is called,
5037 * so we can safely collect move_task() stats here rather than
5038 * inside move_task().
5039 */
5040 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5041
5042 return pulled;
5043 }
5044
5045 #ifdef CONFIG_FAIR_GROUP_SCHED
5046 /*
5047 * update tg->load_weight by folding this cpu's load_avg
5048 */
5049 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5050 {
5051 struct sched_entity *se = tg->se[cpu];
5052 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5053
5054 /* throttled entities do not contribute to load */
5055 if (throttled_hierarchy(cfs_rq))
5056 return;
5057
5058 update_cfs_rq_blocked_load(cfs_rq, 1);
5059
5060 if (se) {
5061 update_entity_load_avg(se, 1);
5062 /*
5063 * We pivot on our runnable average having decayed to zero for
5064 * list removal. This generally implies that all our children
5065 * have also been removed (modulo rounding error or bandwidth
5066 * control); however, such cases are rare and we can fix these
5067 * at enqueue.
5068 *
5069 * TODO: fix up out-of-order children on enqueue.
5070 */
5071 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5072 list_del_leaf_cfs_rq(cfs_rq);
5073 } else {
5074 struct rq *rq = rq_of(cfs_rq);
5075 update_rq_runnable_avg(rq, rq->nr_running);
5076 }
5077 }
5078
5079 static void update_blocked_averages(int cpu)
5080 {
5081 struct rq *rq = cpu_rq(cpu);
5082 struct cfs_rq *cfs_rq;
5083 unsigned long flags;
5084
5085 raw_spin_lock_irqsave(&rq->lock, flags);
5086 update_rq_clock(rq);
5087 /*
5088 * Iterates the task_group tree in a bottom up fashion, see
5089 * list_add_leaf_cfs_rq() for details.
5090 */
5091 for_each_leaf_cfs_rq(rq, cfs_rq) {
5092 /*
5093 * Note: We may want to consider periodically releasing
5094 * rq->lock about these updates so that creating many task
5095 * groups does not result in continually extending hold time.
5096 */
5097 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5098 }
5099
5100 raw_spin_unlock_irqrestore(&rq->lock, flags);
5101 }
5102
5103 /*
5104 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5105 * This needs to be done in a top-down fashion because the load of a child
5106 * group is a fraction of its parents load.
5107 */
5108 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5109 {
5110 struct rq *rq = rq_of(cfs_rq);
5111 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5112 unsigned long now = jiffies;
5113 unsigned long load;
5114
5115 if (cfs_rq->last_h_load_update == now)
5116 return;
5117
5118 cfs_rq->h_load_next = NULL;
5119 for_each_sched_entity(se) {
5120 cfs_rq = cfs_rq_of(se);
5121 cfs_rq->h_load_next = se;
5122 if (cfs_rq->last_h_load_update == now)
5123 break;
5124 }
5125
5126 if (!se) {
5127 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5128 cfs_rq->last_h_load_update = now;
5129 }
5130
5131 while ((se = cfs_rq->h_load_next) != NULL) {
5132 load = cfs_rq->h_load;
5133 load = div64_ul(load * se->avg.load_avg_contrib,
5134 cfs_rq->runnable_load_avg + 1);
5135 cfs_rq = group_cfs_rq(se);
5136 cfs_rq->h_load = load;
5137 cfs_rq->last_h_load_update = now;
5138 }
5139 }
5140
5141 static unsigned long task_h_load(struct task_struct *p)
5142 {
5143 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5144
5145 update_cfs_rq_h_load(cfs_rq);
5146 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5147 cfs_rq->runnable_load_avg + 1);
5148 }
5149 #else
5150 static inline void update_blocked_averages(int cpu)
5151 {
5152 }
5153
5154 static unsigned long task_h_load(struct task_struct *p)
5155 {
5156 return p->se.avg.load_avg_contrib;
5157 }
5158 #endif
5159
5160 /********** Helpers for find_busiest_group ************************/
5161 /*
5162 * sg_lb_stats - stats of a sched_group required for load_balancing
5163 */
5164 struct sg_lb_stats {
5165 unsigned long avg_load; /*Avg load across the CPUs of the group */
5166 unsigned long group_load; /* Total load over the CPUs of the group */
5167 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5168 unsigned long load_per_task;
5169 unsigned long group_power;
5170 unsigned int sum_nr_running; /* Nr tasks running in the group */
5171 unsigned int group_capacity;
5172 unsigned int idle_cpus;
5173 unsigned int group_weight;
5174 int group_imb; /* Is there an imbalance in the group ? */
5175 int group_has_capacity; /* Is there extra capacity in the group? */
5176 #ifdef CONFIG_NUMA_BALANCING
5177 unsigned int nr_numa_running;
5178 unsigned int nr_preferred_running;
5179 #endif
5180 };
5181
5182 /*
5183 * sd_lb_stats - Structure to store the statistics of a sched_domain
5184 * during load balancing.
5185 */
5186 struct sd_lb_stats {
5187 struct sched_group *busiest; /* Busiest group in this sd */
5188 struct sched_group *local; /* Local group in this sd */
5189 unsigned long total_load; /* Total load of all groups in sd */
5190 unsigned long total_pwr; /* Total power of all groups in sd */
5191 unsigned long avg_load; /* Average load across all groups in sd */
5192
5193 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5194 struct sg_lb_stats local_stat; /* Statistics of the local group */
5195 };
5196
5197 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5198 {
5199 /*
5200 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5201 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5202 * We must however clear busiest_stat::avg_load because
5203 * update_sd_pick_busiest() reads this before assignment.
5204 */
5205 *sds = (struct sd_lb_stats){
5206 .busiest = NULL,
5207 .local = NULL,
5208 .total_load = 0UL,
5209 .total_pwr = 0UL,
5210 .busiest_stat = {
5211 .avg_load = 0UL,
5212 },
5213 };
5214 }
5215
5216 /**
5217 * get_sd_load_idx - Obtain the load index for a given sched domain.
5218 * @sd: The sched_domain whose load_idx is to be obtained.
5219 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5220 *
5221 * Return: The load index.
5222 */
5223 static inline int get_sd_load_idx(struct sched_domain *sd,
5224 enum cpu_idle_type idle)
5225 {
5226 int load_idx;
5227
5228 switch (idle) {
5229 case CPU_NOT_IDLE:
5230 load_idx = sd->busy_idx;
5231 break;
5232
5233 case CPU_NEWLY_IDLE:
5234 load_idx = sd->newidle_idx;
5235 break;
5236 default:
5237 load_idx = sd->idle_idx;
5238 break;
5239 }
5240
5241 return load_idx;
5242 }
5243
5244 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5245 {
5246 return SCHED_POWER_SCALE;
5247 }
5248
5249 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5250 {
5251 return default_scale_freq_power(sd, cpu);
5252 }
5253
5254 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5255 {
5256 unsigned long weight = sd->span_weight;
5257 unsigned long smt_gain = sd->smt_gain;
5258
5259 smt_gain /= weight;
5260
5261 return smt_gain;
5262 }
5263
5264 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5265 {
5266 return default_scale_smt_power(sd, cpu);
5267 }
5268
5269 static unsigned long scale_rt_power(int cpu)
5270 {
5271 struct rq *rq = cpu_rq(cpu);
5272 u64 total, available, age_stamp, avg;
5273
5274 /*
5275 * Since we're reading these variables without serialization make sure
5276 * we read them once before doing sanity checks on them.
5277 */
5278 age_stamp = ACCESS_ONCE(rq->age_stamp);
5279 avg = ACCESS_ONCE(rq->rt_avg);
5280
5281 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5282
5283 if (unlikely(total < avg)) {
5284 /* Ensures that power won't end up being negative */
5285 available = 0;
5286 } else {
5287 available = total - avg;
5288 }
5289
5290 if (unlikely((s64)total < SCHED_POWER_SCALE))
5291 total = SCHED_POWER_SCALE;
5292
5293 total >>= SCHED_POWER_SHIFT;
5294
5295 return div_u64(available, total);
5296 }
5297
5298 static void update_cpu_power(struct sched_domain *sd, int cpu)
5299 {
5300 unsigned long weight = sd->span_weight;
5301 unsigned long power = SCHED_POWER_SCALE;
5302 struct sched_group *sdg = sd->groups;
5303
5304 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5305 if (sched_feat(ARCH_POWER))
5306 power *= arch_scale_smt_power(sd, cpu);
5307 else
5308 power *= default_scale_smt_power(sd, cpu);
5309
5310 power >>= SCHED_POWER_SHIFT;
5311 }
5312
5313 sdg->sgp->power_orig = power;
5314
5315 if (sched_feat(ARCH_POWER))
5316 power *= arch_scale_freq_power(sd, cpu);
5317 else
5318 power *= default_scale_freq_power(sd, cpu);
5319
5320 power >>= SCHED_POWER_SHIFT;
5321
5322 power *= scale_rt_power(cpu);
5323 power >>= SCHED_POWER_SHIFT;
5324
5325 if (!power)
5326 power = 1;
5327
5328 cpu_rq(cpu)->cpu_power = power;
5329 sdg->sgp->power = power;
5330 }
5331
5332 void update_group_power(struct sched_domain *sd, int cpu)
5333 {
5334 struct sched_domain *child = sd->child;
5335 struct sched_group *group, *sdg = sd->groups;
5336 unsigned long power, power_orig;
5337 unsigned long interval;
5338
5339 interval = msecs_to_jiffies(sd->balance_interval);
5340 interval = clamp(interval, 1UL, max_load_balance_interval);
5341 sdg->sgp->next_update = jiffies + interval;
5342
5343 if (!child) {
5344 update_cpu_power(sd, cpu);
5345 return;
5346 }
5347
5348 power_orig = power = 0;
5349
5350 if (child->flags & SD_OVERLAP) {
5351 /*
5352 * SD_OVERLAP domains cannot assume that child groups
5353 * span the current group.
5354 */
5355
5356 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5357 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5358
5359 power_orig += sg->sgp->power_orig;
5360 power += sg->sgp->power;
5361 }
5362 } else {
5363 /*
5364 * !SD_OVERLAP domains can assume that child groups
5365 * span the current group.
5366 */
5367
5368 group = child->groups;
5369 do {
5370 power_orig += group->sgp->power_orig;
5371 power += group->sgp->power;
5372 group = group->next;
5373 } while (group != child->groups);
5374 }
5375
5376 sdg->sgp->power_orig = power_orig;
5377 sdg->sgp->power = power;
5378 }
5379
5380 /*
5381 * Try and fix up capacity for tiny siblings, this is needed when
5382 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5383 * which on its own isn't powerful enough.
5384 *
5385 * See update_sd_pick_busiest() and check_asym_packing().
5386 */
5387 static inline int
5388 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5389 {
5390 /*
5391 * Only siblings can have significantly less than SCHED_POWER_SCALE
5392 */
5393 if (!(sd->flags & SD_SHARE_CPUPOWER))
5394 return 0;
5395
5396 /*
5397 * If ~90% of the cpu_power is still there, we're good.
5398 */
5399 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5400 return 1;
5401
5402 return 0;
5403 }
5404
5405 /*
5406 * Group imbalance indicates (and tries to solve) the problem where balancing
5407 * groups is inadequate due to tsk_cpus_allowed() constraints.
5408 *
5409 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5410 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5411 * Something like:
5412 *
5413 * { 0 1 2 3 } { 4 5 6 7 }
5414 * * * * *
5415 *
5416 * If we were to balance group-wise we'd place two tasks in the first group and
5417 * two tasks in the second group. Clearly this is undesired as it will overload
5418 * cpu 3 and leave one of the cpus in the second group unused.
5419 *
5420 * The current solution to this issue is detecting the skew in the first group
5421 * by noticing the lower domain failed to reach balance and had difficulty
5422 * moving tasks due to affinity constraints.
5423 *
5424 * When this is so detected; this group becomes a candidate for busiest; see
5425 * update_sd_pick_busiest(). And calculate_imbalance() and
5426 * find_busiest_group() avoid some of the usual balance conditions to allow it
5427 * to create an effective group imbalance.
5428 *
5429 * This is a somewhat tricky proposition since the next run might not find the
5430 * group imbalance and decide the groups need to be balanced again. A most
5431 * subtle and fragile situation.
5432 */
5433
5434 static inline int sg_imbalanced(struct sched_group *group)
5435 {
5436 return group->sgp->imbalance;
5437 }
5438
5439 /*
5440 * Compute the group capacity.
5441 *
5442 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5443 * first dividing out the smt factor and computing the actual number of cores
5444 * and limit power unit capacity with that.
5445 */
5446 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5447 {
5448 unsigned int capacity, smt, cpus;
5449 unsigned int power, power_orig;
5450
5451 power = group->sgp->power;
5452 power_orig = group->sgp->power_orig;
5453 cpus = group->group_weight;
5454
5455 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5456 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5457 capacity = cpus / smt; /* cores */
5458
5459 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5460 if (!capacity)
5461 capacity = fix_small_capacity(env->sd, group);
5462
5463 return capacity;
5464 }
5465
5466 /**
5467 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5468 * @env: The load balancing environment.
5469 * @group: sched_group whose statistics are to be updated.
5470 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5471 * @local_group: Does group contain this_cpu.
5472 * @sgs: variable to hold the statistics for this group.
5473 */
5474 static inline void update_sg_lb_stats(struct lb_env *env,
5475 struct sched_group *group, int load_idx,
5476 int local_group, struct sg_lb_stats *sgs)
5477 {
5478 unsigned long nr_running;
5479 unsigned long load;
5480 int i;
5481
5482 memset(sgs, 0, sizeof(*sgs));
5483
5484 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5485 struct rq *rq = cpu_rq(i);
5486
5487 nr_running = rq->nr_running;
5488
5489 /* Bias balancing toward cpus of our domain */
5490 if (local_group)
5491 load = target_load(i, load_idx);
5492 else
5493 load = source_load(i, load_idx);
5494
5495 sgs->group_load += load;
5496 sgs->sum_nr_running += nr_running;
5497 #ifdef CONFIG_NUMA_BALANCING
5498 sgs->nr_numa_running += rq->nr_numa_running;
5499 sgs->nr_preferred_running += rq->nr_preferred_running;
5500 #endif
5501 sgs->sum_weighted_load += weighted_cpuload(i);
5502 if (idle_cpu(i))
5503 sgs->idle_cpus++;
5504 }
5505
5506 /* Adjust by relative CPU power of the group */
5507 sgs->group_power = group->sgp->power;
5508 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5509
5510 if (sgs->sum_nr_running)
5511 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5512
5513 sgs->group_weight = group->group_weight;
5514
5515 sgs->group_imb = sg_imbalanced(group);
5516 sgs->group_capacity = sg_capacity(env, group);
5517
5518 if (sgs->group_capacity > sgs->sum_nr_running)
5519 sgs->group_has_capacity = 1;
5520 }
5521
5522 /**
5523 * update_sd_pick_busiest - return 1 on busiest group
5524 * @env: The load balancing environment.
5525 * @sds: sched_domain statistics
5526 * @sg: sched_group candidate to be checked for being the busiest
5527 * @sgs: sched_group statistics
5528 *
5529 * Determine if @sg is a busier group than the previously selected
5530 * busiest group.
5531 *
5532 * Return: %true if @sg is a busier group than the previously selected
5533 * busiest group. %false otherwise.
5534 */
5535 static bool update_sd_pick_busiest(struct lb_env *env,
5536 struct sd_lb_stats *sds,
5537 struct sched_group *sg,
5538 struct sg_lb_stats *sgs)
5539 {
5540 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5541 return false;
5542
5543 if (sgs->sum_nr_running > sgs->group_capacity)
5544 return true;
5545
5546 if (sgs->group_imb)
5547 return true;
5548
5549 /*
5550 * ASYM_PACKING needs to move all the work to the lowest
5551 * numbered CPUs in the group, therefore mark all groups
5552 * higher than ourself as busy.
5553 */
5554 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5555 env->dst_cpu < group_first_cpu(sg)) {
5556 if (!sds->busiest)
5557 return true;
5558
5559 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5560 return true;
5561 }
5562
5563 return false;
5564 }
5565
5566 #ifdef CONFIG_NUMA_BALANCING
5567 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5568 {
5569 if (sgs->sum_nr_running > sgs->nr_numa_running)
5570 return regular;
5571 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5572 return remote;
5573 return all;
5574 }
5575
5576 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5577 {
5578 if (rq->nr_running > rq->nr_numa_running)
5579 return regular;
5580 if (rq->nr_running > rq->nr_preferred_running)
5581 return remote;
5582 return all;
5583 }
5584 #else
5585 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5586 {
5587 return all;
5588 }
5589
5590 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5591 {
5592 return regular;
5593 }
5594 #endif /* CONFIG_NUMA_BALANCING */
5595
5596 /**
5597 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5598 * @env: The load balancing environment.
5599 * @sds: variable to hold the statistics for this sched_domain.
5600 */
5601 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5602 {
5603 struct sched_domain *child = env->sd->child;
5604 struct sched_group *sg = env->sd->groups;
5605 struct sg_lb_stats tmp_sgs;
5606 int load_idx, prefer_sibling = 0;
5607
5608 if (child && child->flags & SD_PREFER_SIBLING)
5609 prefer_sibling = 1;
5610
5611 load_idx = get_sd_load_idx(env->sd, env->idle);
5612
5613 do {
5614 struct sg_lb_stats *sgs = &tmp_sgs;
5615 int local_group;
5616
5617 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5618 if (local_group) {
5619 sds->local = sg;
5620 sgs = &sds->local_stat;
5621
5622 if (env->idle != CPU_NEWLY_IDLE ||
5623 time_after_eq(jiffies, sg->sgp->next_update))
5624 update_group_power(env->sd, env->dst_cpu);
5625 }
5626
5627 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5628
5629 if (local_group)
5630 goto next_group;
5631
5632 /*
5633 * In case the child domain prefers tasks go to siblings
5634 * first, lower the sg capacity to one so that we'll try
5635 * and move all the excess tasks away. We lower the capacity
5636 * of a group only if the local group has the capacity to fit
5637 * these excess tasks, i.e. nr_running < group_capacity. The
5638 * extra check prevents the case where you always pull from the
5639 * heaviest group when it is already under-utilized (possible
5640 * with a large weight task outweighs the tasks on the system).
5641 */
5642 if (prefer_sibling && sds->local &&
5643 sds->local_stat.group_has_capacity)
5644 sgs->group_capacity = min(sgs->group_capacity, 1U);
5645
5646 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5647 sds->busiest = sg;
5648 sds->busiest_stat = *sgs;
5649 }
5650
5651 next_group:
5652 /* Now, start updating sd_lb_stats */
5653 sds->total_load += sgs->group_load;
5654 sds->total_pwr += sgs->group_power;
5655
5656 sg = sg->next;
5657 } while (sg != env->sd->groups);
5658
5659 if (env->sd->flags & SD_NUMA)
5660 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5661 }
5662
5663 /**
5664 * check_asym_packing - Check to see if the group is packed into the
5665 * sched doman.
5666 *
5667 * This is primarily intended to used at the sibling level. Some
5668 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5669 * case of POWER7, it can move to lower SMT modes only when higher
5670 * threads are idle. When in lower SMT modes, the threads will
5671 * perform better since they share less core resources. Hence when we
5672 * have idle threads, we want them to be the higher ones.
5673 *
5674 * This packing function is run on idle threads. It checks to see if
5675 * the busiest CPU in this domain (core in the P7 case) has a higher
5676 * CPU number than the packing function is being run on. Here we are
5677 * assuming lower CPU number will be equivalent to lower a SMT thread
5678 * number.
5679 *
5680 * Return: 1 when packing is required and a task should be moved to
5681 * this CPU. The amount of the imbalance is returned in *imbalance.
5682 *
5683 * @env: The load balancing environment.
5684 * @sds: Statistics of the sched_domain which is to be packed
5685 */
5686 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5687 {
5688 int busiest_cpu;
5689
5690 if (!(env->sd->flags & SD_ASYM_PACKING))
5691 return 0;
5692
5693 if (!sds->busiest)
5694 return 0;
5695
5696 busiest_cpu = group_first_cpu(sds->busiest);
5697 if (env->dst_cpu > busiest_cpu)
5698 return 0;
5699
5700 env->imbalance = DIV_ROUND_CLOSEST(
5701 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5702 SCHED_POWER_SCALE);
5703
5704 return 1;
5705 }
5706
5707 /**
5708 * fix_small_imbalance - Calculate the minor imbalance that exists
5709 * amongst the groups of a sched_domain, during
5710 * load balancing.
5711 * @env: The load balancing environment.
5712 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5713 */
5714 static inline
5715 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5716 {
5717 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5718 unsigned int imbn = 2;
5719 unsigned long scaled_busy_load_per_task;
5720 struct sg_lb_stats *local, *busiest;
5721
5722 local = &sds->local_stat;
5723 busiest = &sds->busiest_stat;
5724
5725 if (!local->sum_nr_running)
5726 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5727 else if (busiest->load_per_task > local->load_per_task)
5728 imbn = 1;
5729
5730 scaled_busy_load_per_task =
5731 (busiest->load_per_task * SCHED_POWER_SCALE) /
5732 busiest->group_power;
5733
5734 if (busiest->avg_load + scaled_busy_load_per_task >=
5735 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5736 env->imbalance = busiest->load_per_task;
5737 return;
5738 }
5739
5740 /*
5741 * OK, we don't have enough imbalance to justify moving tasks,
5742 * however we may be able to increase total CPU power used by
5743 * moving them.
5744 */
5745
5746 pwr_now += busiest->group_power *
5747 min(busiest->load_per_task, busiest->avg_load);
5748 pwr_now += local->group_power *
5749 min(local->load_per_task, local->avg_load);
5750 pwr_now /= SCHED_POWER_SCALE;
5751
5752 /* Amount of load we'd subtract */
5753 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5754 busiest->group_power;
5755 if (busiest->avg_load > tmp) {
5756 pwr_move += busiest->group_power *
5757 min(busiest->load_per_task,
5758 busiest->avg_load - tmp);
5759 }
5760
5761 /* Amount of load we'd add */
5762 if (busiest->avg_load * busiest->group_power <
5763 busiest->load_per_task * SCHED_POWER_SCALE) {
5764 tmp = (busiest->avg_load * busiest->group_power) /
5765 local->group_power;
5766 } else {
5767 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5768 local->group_power;
5769 }
5770 pwr_move += local->group_power *
5771 min(local->load_per_task, local->avg_load + tmp);
5772 pwr_move /= SCHED_POWER_SCALE;
5773
5774 /* Move if we gain throughput */
5775 if (pwr_move > pwr_now)
5776 env->imbalance = busiest->load_per_task;
5777 }
5778
5779 /**
5780 * calculate_imbalance - Calculate the amount of imbalance present within the
5781 * groups of a given sched_domain during load balance.
5782 * @env: load balance environment
5783 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5784 */
5785 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5786 {
5787 unsigned long max_pull, load_above_capacity = ~0UL;
5788 struct sg_lb_stats *local, *busiest;
5789
5790 local = &sds->local_stat;
5791 busiest = &sds->busiest_stat;
5792
5793 if (busiest->group_imb) {
5794 /*
5795 * In the group_imb case we cannot rely on group-wide averages
5796 * to ensure cpu-load equilibrium, look at wider averages. XXX
5797 */
5798 busiest->load_per_task =
5799 min(busiest->load_per_task, sds->avg_load);
5800 }
5801
5802 /*
5803 * In the presence of smp nice balancing, certain scenarios can have
5804 * max load less than avg load(as we skip the groups at or below
5805 * its cpu_power, while calculating max_load..)
5806 */
5807 if (busiest->avg_load <= sds->avg_load ||
5808 local->avg_load >= sds->avg_load) {
5809 env->imbalance = 0;
5810 return fix_small_imbalance(env, sds);
5811 }
5812
5813 if (!busiest->group_imb) {
5814 /*
5815 * Don't want to pull so many tasks that a group would go idle.
5816 * Except of course for the group_imb case, since then we might
5817 * have to drop below capacity to reach cpu-load equilibrium.
5818 */
5819 load_above_capacity =
5820 (busiest->sum_nr_running - busiest->group_capacity);
5821
5822 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5823 load_above_capacity /= busiest->group_power;
5824 }
5825
5826 /*
5827 * We're trying to get all the cpus to the average_load, so we don't
5828 * want to push ourselves above the average load, nor do we wish to
5829 * reduce the max loaded cpu below the average load. At the same time,
5830 * we also don't want to reduce the group load below the group capacity
5831 * (so that we can implement power-savings policies etc). Thus we look
5832 * for the minimum possible imbalance.
5833 */
5834 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5835
5836 /* How much load to actually move to equalise the imbalance */
5837 env->imbalance = min(
5838 max_pull * busiest->group_power,
5839 (sds->avg_load - local->avg_load) * local->group_power
5840 ) / SCHED_POWER_SCALE;
5841
5842 /*
5843 * if *imbalance is less than the average load per runnable task
5844 * there is no guarantee that any tasks will be moved so we'll have
5845 * a think about bumping its value to force at least one task to be
5846 * moved
5847 */
5848 if (env->imbalance < busiest->load_per_task)
5849 return fix_small_imbalance(env, sds);
5850 }
5851
5852 /******* find_busiest_group() helpers end here *********************/
5853
5854 /**
5855 * find_busiest_group - Returns the busiest group within the sched_domain
5856 * if there is an imbalance. If there isn't an imbalance, and
5857 * the user has opted for power-savings, it returns a group whose
5858 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5859 * such a group exists.
5860 *
5861 * Also calculates the amount of weighted load which should be moved
5862 * to restore balance.
5863 *
5864 * @env: The load balancing environment.
5865 *
5866 * Return: - The busiest group if imbalance exists.
5867 * - If no imbalance and user has opted for power-savings balance,
5868 * return the least loaded group whose CPUs can be
5869 * put to idle by rebalancing its tasks onto our group.
5870 */
5871 static struct sched_group *find_busiest_group(struct lb_env *env)
5872 {
5873 struct sg_lb_stats *local, *busiest;
5874 struct sd_lb_stats sds;
5875
5876 init_sd_lb_stats(&sds);
5877
5878 /*
5879 * Compute the various statistics relavent for load balancing at
5880 * this level.
5881 */
5882 update_sd_lb_stats(env, &sds);
5883 local = &sds.local_stat;
5884 busiest = &sds.busiest_stat;
5885
5886 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5887 check_asym_packing(env, &sds))
5888 return sds.busiest;
5889
5890 /* There is no busy sibling group to pull tasks from */
5891 if (!sds.busiest || busiest->sum_nr_running == 0)
5892 goto out_balanced;
5893
5894 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5895
5896 /*
5897 * If the busiest group is imbalanced the below checks don't
5898 * work because they assume all things are equal, which typically
5899 * isn't true due to cpus_allowed constraints and the like.
5900 */
5901 if (busiest->group_imb)
5902 goto force_balance;
5903
5904 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5905 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5906 !busiest->group_has_capacity)
5907 goto force_balance;
5908
5909 /*
5910 * If the local group is more busy than the selected busiest group
5911 * don't try and pull any tasks.
5912 */
5913 if (local->avg_load >= busiest->avg_load)
5914 goto out_balanced;
5915
5916 /*
5917 * Don't pull any tasks if this group is already above the domain
5918 * average load.
5919 */
5920 if (local->avg_load >= sds.avg_load)
5921 goto out_balanced;
5922
5923 if (env->idle == CPU_IDLE) {
5924 /*
5925 * This cpu is idle. If the busiest group load doesn't
5926 * have more tasks than the number of available cpu's and
5927 * there is no imbalance between this and busiest group
5928 * wrt to idle cpu's, it is balanced.
5929 */
5930 if ((local->idle_cpus < busiest->idle_cpus) &&
5931 busiest->sum_nr_running <= busiest->group_weight)
5932 goto out_balanced;
5933 } else {
5934 /*
5935 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5936 * imbalance_pct to be conservative.
5937 */
5938 if (100 * busiest->avg_load <=
5939 env->sd->imbalance_pct * local->avg_load)
5940 goto out_balanced;
5941 }
5942
5943 force_balance:
5944 /* Looks like there is an imbalance. Compute it */
5945 calculate_imbalance(env, &sds);
5946 return sds.busiest;
5947
5948 out_balanced:
5949 env->imbalance = 0;
5950 return NULL;
5951 }
5952
5953 /*
5954 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5955 */
5956 static struct rq *find_busiest_queue(struct lb_env *env,
5957 struct sched_group *group)
5958 {
5959 struct rq *busiest = NULL, *rq;
5960 unsigned long busiest_load = 0, busiest_power = 1;
5961 int i;
5962
5963 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5964 unsigned long power, capacity, wl;
5965 enum fbq_type rt;
5966
5967 rq = cpu_rq(i);
5968 rt = fbq_classify_rq(rq);
5969
5970 /*
5971 * We classify groups/runqueues into three groups:
5972 * - regular: there are !numa tasks
5973 * - remote: there are numa tasks that run on the 'wrong' node
5974 * - all: there is no distinction
5975 *
5976 * In order to avoid migrating ideally placed numa tasks,
5977 * ignore those when there's better options.
5978 *
5979 * If we ignore the actual busiest queue to migrate another
5980 * task, the next balance pass can still reduce the busiest
5981 * queue by moving tasks around inside the node.
5982 *
5983 * If we cannot move enough load due to this classification
5984 * the next pass will adjust the group classification and
5985 * allow migration of more tasks.
5986 *
5987 * Both cases only affect the total convergence complexity.
5988 */
5989 if (rt > env->fbq_type)
5990 continue;
5991
5992 power = power_of(i);
5993 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
5994 if (!capacity)
5995 capacity = fix_small_capacity(env->sd, group);
5996
5997 wl = weighted_cpuload(i);
5998
5999 /*
6000 * When comparing with imbalance, use weighted_cpuload()
6001 * which is not scaled with the cpu power.
6002 */
6003 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6004 continue;
6005
6006 /*
6007 * For the load comparisons with the other cpu's, consider
6008 * the weighted_cpuload() scaled with the cpu power, so that
6009 * the load can be moved away from the cpu that is potentially
6010 * running at a lower capacity.
6011 *
6012 * Thus we're looking for max(wl_i / power_i), crosswise
6013 * multiplication to rid ourselves of the division works out
6014 * to: wl_i * power_j > wl_j * power_i; where j is our
6015 * previous maximum.
6016 */
6017 if (wl * busiest_power > busiest_load * power) {
6018 busiest_load = wl;
6019 busiest_power = power;
6020 busiest = rq;
6021 }
6022 }
6023
6024 return busiest;
6025 }
6026
6027 /*
6028 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6029 * so long as it is large enough.
6030 */
6031 #define MAX_PINNED_INTERVAL 512
6032
6033 /* Working cpumask for load_balance and load_balance_newidle. */
6034 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6035
6036 static int need_active_balance(struct lb_env *env)
6037 {
6038 struct sched_domain *sd = env->sd;
6039
6040 if (env->idle == CPU_NEWLY_IDLE) {
6041
6042 /*
6043 * ASYM_PACKING needs to force migrate tasks from busy but
6044 * higher numbered CPUs in order to pack all tasks in the
6045 * lowest numbered CPUs.
6046 */
6047 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6048 return 1;
6049 }
6050
6051 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6052 }
6053
6054 static int active_load_balance_cpu_stop(void *data);
6055
6056 static int should_we_balance(struct lb_env *env)
6057 {
6058 struct sched_group *sg = env->sd->groups;
6059 struct cpumask *sg_cpus, *sg_mask;
6060 int cpu, balance_cpu = -1;
6061
6062 /*
6063 * In the newly idle case, we will allow all the cpu's
6064 * to do the newly idle load balance.
6065 */
6066 if (env->idle == CPU_NEWLY_IDLE)
6067 return 1;
6068
6069 sg_cpus = sched_group_cpus(sg);
6070 sg_mask = sched_group_mask(sg);
6071 /* Try to find first idle cpu */
6072 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6073 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6074 continue;
6075
6076 balance_cpu = cpu;
6077 break;
6078 }
6079
6080 if (balance_cpu == -1)
6081 balance_cpu = group_balance_cpu(sg);
6082
6083 /*
6084 * First idle cpu or the first cpu(busiest) in this sched group
6085 * is eligible for doing load balancing at this and above domains.
6086 */
6087 return balance_cpu == env->dst_cpu;
6088 }
6089
6090 /*
6091 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6092 * tasks if there is an imbalance.
6093 */
6094 static int load_balance(int this_cpu, struct rq *this_rq,
6095 struct sched_domain *sd, enum cpu_idle_type idle,
6096 int *continue_balancing)
6097 {
6098 int ld_moved, cur_ld_moved, active_balance = 0;
6099 struct sched_domain *sd_parent = sd->parent;
6100 struct sched_group *group;
6101 struct rq *busiest;
6102 unsigned long flags;
6103 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6104
6105 struct lb_env env = {
6106 .sd = sd,
6107 .dst_cpu = this_cpu,
6108 .dst_rq = this_rq,
6109 .dst_grpmask = sched_group_cpus(sd->groups),
6110 .idle = idle,
6111 .loop_break = sched_nr_migrate_break,
6112 .cpus = cpus,
6113 .fbq_type = all,
6114 };
6115
6116 /*
6117 * For NEWLY_IDLE load_balancing, we don't need to consider
6118 * other cpus in our group
6119 */
6120 if (idle == CPU_NEWLY_IDLE)
6121 env.dst_grpmask = NULL;
6122
6123 cpumask_copy(cpus, cpu_active_mask);
6124
6125 schedstat_inc(sd, lb_count[idle]);
6126
6127 redo:
6128 if (!should_we_balance(&env)) {
6129 *continue_balancing = 0;
6130 goto out_balanced;
6131 }
6132
6133 group = find_busiest_group(&env);
6134 if (!group) {
6135 schedstat_inc(sd, lb_nobusyg[idle]);
6136 goto out_balanced;
6137 }
6138
6139 busiest = find_busiest_queue(&env, group);
6140 if (!busiest) {
6141 schedstat_inc(sd, lb_nobusyq[idle]);
6142 goto out_balanced;
6143 }
6144
6145 BUG_ON(busiest == env.dst_rq);
6146
6147 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6148
6149 ld_moved = 0;
6150 if (busiest->nr_running > 1) {
6151 /*
6152 * Attempt to move tasks. If find_busiest_group has found
6153 * an imbalance but busiest->nr_running <= 1, the group is
6154 * still unbalanced. ld_moved simply stays zero, so it is
6155 * correctly treated as an imbalance.
6156 */
6157 env.flags |= LBF_ALL_PINNED;
6158 env.src_cpu = busiest->cpu;
6159 env.src_rq = busiest;
6160 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6161
6162 more_balance:
6163 local_irq_save(flags);
6164 double_rq_lock(env.dst_rq, busiest);
6165
6166 /*
6167 * cur_ld_moved - load moved in current iteration
6168 * ld_moved - cumulative load moved across iterations
6169 */
6170 cur_ld_moved = move_tasks(&env);
6171 ld_moved += cur_ld_moved;
6172 double_rq_unlock(env.dst_rq, busiest);
6173 local_irq_restore(flags);
6174
6175 /*
6176 * some other cpu did the load balance for us.
6177 */
6178 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6179 resched_cpu(env.dst_cpu);
6180
6181 if (env.flags & LBF_NEED_BREAK) {
6182 env.flags &= ~LBF_NEED_BREAK;
6183 goto more_balance;
6184 }
6185
6186 /*
6187 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6188 * us and move them to an alternate dst_cpu in our sched_group
6189 * where they can run. The upper limit on how many times we
6190 * iterate on same src_cpu is dependent on number of cpus in our
6191 * sched_group.
6192 *
6193 * This changes load balance semantics a bit on who can move
6194 * load to a given_cpu. In addition to the given_cpu itself
6195 * (or a ilb_cpu acting on its behalf where given_cpu is
6196 * nohz-idle), we now have balance_cpu in a position to move
6197 * load to given_cpu. In rare situations, this may cause
6198 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6199 * _independently_ and at _same_ time to move some load to
6200 * given_cpu) causing exceess load to be moved to given_cpu.
6201 * This however should not happen so much in practice and
6202 * moreover subsequent load balance cycles should correct the
6203 * excess load moved.
6204 */
6205 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6206
6207 /* Prevent to re-select dst_cpu via env's cpus */
6208 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6209
6210 env.dst_rq = cpu_rq(env.new_dst_cpu);
6211 env.dst_cpu = env.new_dst_cpu;
6212 env.flags &= ~LBF_DST_PINNED;
6213 env.loop = 0;
6214 env.loop_break = sched_nr_migrate_break;
6215
6216 /*
6217 * Go back to "more_balance" rather than "redo" since we
6218 * need to continue with same src_cpu.
6219 */
6220 goto more_balance;
6221 }
6222
6223 /*
6224 * We failed to reach balance because of affinity.
6225 */
6226 if (sd_parent) {
6227 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6228
6229 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6230 *group_imbalance = 1;
6231 } else if (*group_imbalance)
6232 *group_imbalance = 0;
6233 }
6234
6235 /* All tasks on this runqueue were pinned by CPU affinity */
6236 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6237 cpumask_clear_cpu(cpu_of(busiest), cpus);
6238 if (!cpumask_empty(cpus)) {
6239 env.loop = 0;
6240 env.loop_break = sched_nr_migrate_break;
6241 goto redo;
6242 }
6243 goto out_balanced;
6244 }
6245 }
6246
6247 if (!ld_moved) {
6248 schedstat_inc(sd, lb_failed[idle]);
6249 /*
6250 * Increment the failure counter only on periodic balance.
6251 * We do not want newidle balance, which can be very
6252 * frequent, pollute the failure counter causing
6253 * excessive cache_hot migrations and active balances.
6254 */
6255 if (idle != CPU_NEWLY_IDLE)
6256 sd->nr_balance_failed++;
6257
6258 if (need_active_balance(&env)) {
6259 raw_spin_lock_irqsave(&busiest->lock, flags);
6260
6261 /* don't kick the active_load_balance_cpu_stop,
6262 * if the curr task on busiest cpu can't be
6263 * moved to this_cpu
6264 */
6265 if (!cpumask_test_cpu(this_cpu,
6266 tsk_cpus_allowed(busiest->curr))) {
6267 raw_spin_unlock_irqrestore(&busiest->lock,
6268 flags);
6269 env.flags |= LBF_ALL_PINNED;
6270 goto out_one_pinned;
6271 }
6272
6273 /*
6274 * ->active_balance synchronizes accesses to
6275 * ->active_balance_work. Once set, it's cleared
6276 * only after active load balance is finished.
6277 */
6278 if (!busiest->active_balance) {
6279 busiest->active_balance = 1;
6280 busiest->push_cpu = this_cpu;
6281 active_balance = 1;
6282 }
6283 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6284
6285 if (active_balance) {
6286 stop_one_cpu_nowait(cpu_of(busiest),
6287 active_load_balance_cpu_stop, busiest,
6288 &busiest->active_balance_work);
6289 }
6290
6291 /*
6292 * We've kicked active balancing, reset the failure
6293 * counter.
6294 */
6295 sd->nr_balance_failed = sd->cache_nice_tries+1;
6296 }
6297 } else
6298 sd->nr_balance_failed = 0;
6299
6300 if (likely(!active_balance)) {
6301 /* We were unbalanced, so reset the balancing interval */
6302 sd->balance_interval = sd->min_interval;
6303 } else {
6304 /*
6305 * If we've begun active balancing, start to back off. This
6306 * case may not be covered by the all_pinned logic if there
6307 * is only 1 task on the busy runqueue (because we don't call
6308 * move_tasks).
6309 */
6310 if (sd->balance_interval < sd->max_interval)
6311 sd->balance_interval *= 2;
6312 }
6313
6314 goto out;
6315
6316 out_balanced:
6317 schedstat_inc(sd, lb_balanced[idle]);
6318
6319 sd->nr_balance_failed = 0;
6320
6321 out_one_pinned:
6322 /* tune up the balancing interval */
6323 if (((env.flags & LBF_ALL_PINNED) &&
6324 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6325 (sd->balance_interval < sd->max_interval))
6326 sd->balance_interval *= 2;
6327
6328 ld_moved = 0;
6329 out:
6330 return ld_moved;
6331 }
6332
6333 /*
6334 * idle_balance is called by schedule() if this_cpu is about to become
6335 * idle. Attempts to pull tasks from other CPUs.
6336 */
6337 void idle_balance(int this_cpu, struct rq *this_rq)
6338 {
6339 struct sched_domain *sd;
6340 int pulled_task = 0;
6341 unsigned long next_balance = jiffies + HZ;
6342 u64 curr_cost = 0;
6343
6344 this_rq->idle_stamp = rq_clock(this_rq);
6345
6346 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6347 return;
6348
6349 /*
6350 * Drop the rq->lock, but keep IRQ/preempt disabled.
6351 */
6352 raw_spin_unlock(&this_rq->lock);
6353
6354 update_blocked_averages(this_cpu);
6355 rcu_read_lock();
6356 for_each_domain(this_cpu, sd) {
6357 unsigned long interval;
6358 int continue_balancing = 1;
6359 u64 t0, domain_cost;
6360
6361 if (!(sd->flags & SD_LOAD_BALANCE))
6362 continue;
6363
6364 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6365 break;
6366
6367 if (sd->flags & SD_BALANCE_NEWIDLE) {
6368 t0 = sched_clock_cpu(this_cpu);
6369
6370 /* If we've pulled tasks over stop searching: */
6371 pulled_task = load_balance(this_cpu, this_rq,
6372 sd, CPU_NEWLY_IDLE,
6373 &continue_balancing);
6374
6375 domain_cost = sched_clock_cpu(this_cpu) - t0;
6376 if (domain_cost > sd->max_newidle_lb_cost)
6377 sd->max_newidle_lb_cost = domain_cost;
6378
6379 curr_cost += domain_cost;
6380 }
6381
6382 interval = msecs_to_jiffies(sd->balance_interval);
6383 if (time_after(next_balance, sd->last_balance + interval))
6384 next_balance = sd->last_balance + interval;
6385 if (pulled_task) {
6386 this_rq->idle_stamp = 0;
6387 break;
6388 }
6389 }
6390 rcu_read_unlock();
6391
6392 raw_spin_lock(&this_rq->lock);
6393
6394 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6395 /*
6396 * We are going idle. next_balance may be set based on
6397 * a busy processor. So reset next_balance.
6398 */
6399 this_rq->next_balance = next_balance;
6400 }
6401
6402 if (curr_cost > this_rq->max_idle_balance_cost)
6403 this_rq->max_idle_balance_cost = curr_cost;
6404 }
6405
6406 /*
6407 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6408 * running tasks off the busiest CPU onto idle CPUs. It requires at
6409 * least 1 task to be running on each physical CPU where possible, and
6410 * avoids physical / logical imbalances.
6411 */
6412 static int active_load_balance_cpu_stop(void *data)
6413 {
6414 struct rq *busiest_rq = data;
6415 int busiest_cpu = cpu_of(busiest_rq);
6416 int target_cpu = busiest_rq->push_cpu;
6417 struct rq *target_rq = cpu_rq(target_cpu);
6418 struct sched_domain *sd;
6419
6420 raw_spin_lock_irq(&busiest_rq->lock);
6421
6422 /* make sure the requested cpu hasn't gone down in the meantime */
6423 if (unlikely(busiest_cpu != smp_processor_id() ||
6424 !busiest_rq->active_balance))
6425 goto out_unlock;
6426
6427 /* Is there any task to move? */
6428 if (busiest_rq->nr_running <= 1)
6429 goto out_unlock;
6430
6431 /*
6432 * This condition is "impossible", if it occurs
6433 * we need to fix it. Originally reported by
6434 * Bjorn Helgaas on a 128-cpu setup.
6435 */
6436 BUG_ON(busiest_rq == target_rq);
6437
6438 /* move a task from busiest_rq to target_rq */
6439 double_lock_balance(busiest_rq, target_rq);
6440
6441 /* Search for an sd spanning us and the target CPU. */
6442 rcu_read_lock();
6443 for_each_domain(target_cpu, sd) {
6444 if ((sd->flags & SD_LOAD_BALANCE) &&
6445 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6446 break;
6447 }
6448
6449 if (likely(sd)) {
6450 struct lb_env env = {
6451 .sd = sd,
6452 .dst_cpu = target_cpu,
6453 .dst_rq = target_rq,
6454 .src_cpu = busiest_rq->cpu,
6455 .src_rq = busiest_rq,
6456 .idle = CPU_IDLE,
6457 };
6458
6459 schedstat_inc(sd, alb_count);
6460
6461 if (move_one_task(&env))
6462 schedstat_inc(sd, alb_pushed);
6463 else
6464 schedstat_inc(sd, alb_failed);
6465 }
6466 rcu_read_unlock();
6467 double_unlock_balance(busiest_rq, target_rq);
6468 out_unlock:
6469 busiest_rq->active_balance = 0;
6470 raw_spin_unlock_irq(&busiest_rq->lock);
6471 return 0;
6472 }
6473
6474 #ifdef CONFIG_NO_HZ_COMMON
6475 /*
6476 * idle load balancing details
6477 * - When one of the busy CPUs notice that there may be an idle rebalancing
6478 * needed, they will kick the idle load balancer, which then does idle
6479 * load balancing for all the idle CPUs.
6480 */
6481 static struct {
6482 cpumask_var_t idle_cpus_mask;
6483 atomic_t nr_cpus;
6484 unsigned long next_balance; /* in jiffy units */
6485 } nohz ____cacheline_aligned;
6486
6487 static inline int find_new_ilb(int call_cpu)
6488 {
6489 int ilb = cpumask_first(nohz.idle_cpus_mask);
6490
6491 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6492 return ilb;
6493
6494 return nr_cpu_ids;
6495 }
6496
6497 /*
6498 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6499 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6500 * CPU (if there is one).
6501 */
6502 static void nohz_balancer_kick(int cpu)
6503 {
6504 int ilb_cpu;
6505
6506 nohz.next_balance++;
6507
6508 ilb_cpu = find_new_ilb(cpu);
6509
6510 if (ilb_cpu >= nr_cpu_ids)
6511 return;
6512
6513 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6514 return;
6515 /*
6516 * Use smp_send_reschedule() instead of resched_cpu().
6517 * This way we generate a sched IPI on the target cpu which
6518 * is idle. And the softirq performing nohz idle load balance
6519 * will be run before returning from the IPI.
6520 */
6521 smp_send_reschedule(ilb_cpu);
6522 return;
6523 }
6524
6525 static inline void nohz_balance_exit_idle(int cpu)
6526 {
6527 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6528 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6529 atomic_dec(&nohz.nr_cpus);
6530 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6531 }
6532 }
6533
6534 static inline void set_cpu_sd_state_busy(void)
6535 {
6536 struct sched_domain *sd;
6537
6538 rcu_read_lock();
6539 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
6540
6541 if (!sd || !sd->nohz_idle)
6542 goto unlock;
6543 sd->nohz_idle = 0;
6544
6545 for (; sd; sd = sd->parent)
6546 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6547 unlock:
6548 rcu_read_unlock();
6549 }
6550
6551 void set_cpu_sd_state_idle(void)
6552 {
6553 struct sched_domain *sd;
6554
6555 rcu_read_lock();
6556 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
6557
6558 if (!sd || sd->nohz_idle)
6559 goto unlock;
6560 sd->nohz_idle = 1;
6561
6562 for (; sd; sd = sd->parent)
6563 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6564 unlock:
6565 rcu_read_unlock();
6566 }
6567
6568 /*
6569 * This routine will record that the cpu is going idle with tick stopped.
6570 * This info will be used in performing idle load balancing in the future.
6571 */
6572 void nohz_balance_enter_idle(int cpu)
6573 {
6574 /*
6575 * If this cpu is going down, then nothing needs to be done.
6576 */
6577 if (!cpu_active(cpu))
6578 return;
6579
6580 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6581 return;
6582
6583 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6584 atomic_inc(&nohz.nr_cpus);
6585 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6586 }
6587
6588 static int sched_ilb_notifier(struct notifier_block *nfb,
6589 unsigned long action, void *hcpu)
6590 {
6591 switch (action & ~CPU_TASKS_FROZEN) {
6592 case CPU_DYING:
6593 nohz_balance_exit_idle(smp_processor_id());
6594 return NOTIFY_OK;
6595 default:
6596 return NOTIFY_DONE;
6597 }
6598 }
6599 #endif
6600
6601 static DEFINE_SPINLOCK(balancing);
6602
6603 /*
6604 * Scale the max load_balance interval with the number of CPUs in the system.
6605 * This trades load-balance latency on larger machines for less cross talk.
6606 */
6607 void update_max_interval(void)
6608 {
6609 max_load_balance_interval = HZ*num_online_cpus()/10;
6610 }
6611
6612 /*
6613 * It checks each scheduling domain to see if it is due to be balanced,
6614 * and initiates a balancing operation if so.
6615 *
6616 * Balancing parameters are set up in init_sched_domains.
6617 */
6618 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6619 {
6620 int continue_balancing = 1;
6621 struct rq *rq = cpu_rq(cpu);
6622 unsigned long interval;
6623 struct sched_domain *sd;
6624 /* Earliest time when we have to do rebalance again */
6625 unsigned long next_balance = jiffies + 60*HZ;
6626 int update_next_balance = 0;
6627 int need_serialize, need_decay = 0;
6628 u64 max_cost = 0;
6629
6630 update_blocked_averages(cpu);
6631
6632 rcu_read_lock();
6633 for_each_domain(cpu, sd) {
6634 /*
6635 * Decay the newidle max times here because this is a regular
6636 * visit to all the domains. Decay ~1% per second.
6637 */
6638 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6639 sd->max_newidle_lb_cost =
6640 (sd->max_newidle_lb_cost * 253) / 256;
6641 sd->next_decay_max_lb_cost = jiffies + HZ;
6642 need_decay = 1;
6643 }
6644 max_cost += sd->max_newidle_lb_cost;
6645
6646 if (!(sd->flags & SD_LOAD_BALANCE))
6647 continue;
6648
6649 /*
6650 * Stop the load balance at this level. There is another
6651 * CPU in our sched group which is doing load balancing more
6652 * actively.
6653 */
6654 if (!continue_balancing) {
6655 if (need_decay)
6656 continue;
6657 break;
6658 }
6659
6660 interval = sd->balance_interval;
6661 if (idle != CPU_IDLE)
6662 interval *= sd->busy_factor;
6663
6664 /* scale ms to jiffies */
6665 interval = msecs_to_jiffies(interval);
6666 interval = clamp(interval, 1UL, max_load_balance_interval);
6667
6668 need_serialize = sd->flags & SD_SERIALIZE;
6669
6670 if (need_serialize) {
6671 if (!spin_trylock(&balancing))
6672 goto out;
6673 }
6674
6675 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6676 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6677 /*
6678 * The LBF_DST_PINNED logic could have changed
6679 * env->dst_cpu, so we can't know our idle
6680 * state even if we migrated tasks. Update it.
6681 */
6682 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6683 }
6684 sd->last_balance = jiffies;
6685 }
6686 if (need_serialize)
6687 spin_unlock(&balancing);
6688 out:
6689 if (time_after(next_balance, sd->last_balance + interval)) {
6690 next_balance = sd->last_balance + interval;
6691 update_next_balance = 1;
6692 }
6693 }
6694 if (need_decay) {
6695 /*
6696 * Ensure the rq-wide value also decays but keep it at a
6697 * reasonable floor to avoid funnies with rq->avg_idle.
6698 */
6699 rq->max_idle_balance_cost =
6700 max((u64)sysctl_sched_migration_cost, max_cost);
6701 }
6702 rcu_read_unlock();
6703
6704 /*
6705 * next_balance will be updated only when there is a need.
6706 * When the cpu is attached to null domain for ex, it will not be
6707 * updated.
6708 */
6709 if (likely(update_next_balance))
6710 rq->next_balance = next_balance;
6711 }
6712
6713 #ifdef CONFIG_NO_HZ_COMMON
6714 /*
6715 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6716 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6717 */
6718 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6719 {
6720 struct rq *this_rq = cpu_rq(this_cpu);
6721 struct rq *rq;
6722 int balance_cpu;
6723
6724 if (idle != CPU_IDLE ||
6725 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6726 goto end;
6727
6728 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6729 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6730 continue;
6731
6732 /*
6733 * If this cpu gets work to do, stop the load balancing
6734 * work being done for other cpus. Next load
6735 * balancing owner will pick it up.
6736 */
6737 if (need_resched())
6738 break;
6739
6740 rq = cpu_rq(balance_cpu);
6741
6742 raw_spin_lock_irq(&rq->lock);
6743 update_rq_clock(rq);
6744 update_idle_cpu_load(rq);
6745 raw_spin_unlock_irq(&rq->lock);
6746
6747 rebalance_domains(balance_cpu, CPU_IDLE);
6748
6749 if (time_after(this_rq->next_balance, rq->next_balance))
6750 this_rq->next_balance = rq->next_balance;
6751 }
6752 nohz.next_balance = this_rq->next_balance;
6753 end:
6754 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6755 }
6756
6757 /*
6758 * Current heuristic for kicking the idle load balancer in the presence
6759 * of an idle cpu is the system.
6760 * - This rq has more than one task.
6761 * - At any scheduler domain level, this cpu's scheduler group has multiple
6762 * busy cpu's exceeding the group's power.
6763 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6764 * domain span are idle.
6765 */
6766 static inline int nohz_kick_needed(struct rq *rq, int cpu)
6767 {
6768 unsigned long now = jiffies;
6769 struct sched_domain *sd;
6770
6771 if (unlikely(idle_cpu(cpu)))
6772 return 0;
6773
6774 /*
6775 * We may be recently in ticked or tickless idle mode. At the first
6776 * busy tick after returning from idle, we will update the busy stats.
6777 */
6778 set_cpu_sd_state_busy();
6779 nohz_balance_exit_idle(cpu);
6780
6781 /*
6782 * None are in tickless mode and hence no need for NOHZ idle load
6783 * balancing.
6784 */
6785 if (likely(!atomic_read(&nohz.nr_cpus)))
6786 return 0;
6787
6788 if (time_before(now, nohz.next_balance))
6789 return 0;
6790
6791 if (rq->nr_running >= 2)
6792 goto need_kick;
6793
6794 rcu_read_lock();
6795 for_each_domain(cpu, sd) {
6796 struct sched_group *sg = sd->groups;
6797 struct sched_group_power *sgp = sg->sgp;
6798 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
6799
6800 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
6801 goto need_kick_unlock;
6802
6803 if (sd->flags & SD_ASYM_PACKING
6804 && (cpumask_first_and(nohz.idle_cpus_mask,
6805 sched_domain_span(sd)) < cpu))
6806 goto need_kick_unlock;
6807
6808 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6809 break;
6810 }
6811 rcu_read_unlock();
6812 return 0;
6813
6814 need_kick_unlock:
6815 rcu_read_unlock();
6816 need_kick:
6817 return 1;
6818 }
6819 #else
6820 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6821 #endif
6822
6823 /*
6824 * run_rebalance_domains is triggered when needed from the scheduler tick.
6825 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6826 */
6827 static void run_rebalance_domains(struct softirq_action *h)
6828 {
6829 int this_cpu = smp_processor_id();
6830 struct rq *this_rq = cpu_rq(this_cpu);
6831 enum cpu_idle_type idle = this_rq->idle_balance ?
6832 CPU_IDLE : CPU_NOT_IDLE;
6833
6834 rebalance_domains(this_cpu, idle);
6835
6836 /*
6837 * If this cpu has a pending nohz_balance_kick, then do the
6838 * balancing on behalf of the other idle cpus whose ticks are
6839 * stopped.
6840 */
6841 nohz_idle_balance(this_cpu, idle);
6842 }
6843
6844 static inline int on_null_domain(int cpu)
6845 {
6846 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6847 }
6848
6849 /*
6850 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6851 */
6852 void trigger_load_balance(struct rq *rq, int cpu)
6853 {
6854 /* Don't need to rebalance while attached to NULL domain */
6855 if (time_after_eq(jiffies, rq->next_balance) &&
6856 likely(!on_null_domain(cpu)))
6857 raise_softirq(SCHED_SOFTIRQ);
6858 #ifdef CONFIG_NO_HZ_COMMON
6859 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6860 nohz_balancer_kick(cpu);
6861 #endif
6862 }
6863
6864 static void rq_online_fair(struct rq *rq)
6865 {
6866 update_sysctl();
6867 }
6868
6869 static void rq_offline_fair(struct rq *rq)
6870 {
6871 update_sysctl();
6872
6873 /* Ensure any throttled groups are reachable by pick_next_task */
6874 unthrottle_offline_cfs_rqs(rq);
6875 }
6876
6877 #endif /* CONFIG_SMP */
6878
6879 /*
6880 * scheduler tick hitting a task of our scheduling class:
6881 */
6882 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6883 {
6884 struct cfs_rq *cfs_rq;
6885 struct sched_entity *se = &curr->se;
6886
6887 for_each_sched_entity(se) {
6888 cfs_rq = cfs_rq_of(se);
6889 entity_tick(cfs_rq, se, queued);
6890 }
6891
6892 if (numabalancing_enabled)
6893 task_tick_numa(rq, curr);
6894
6895 update_rq_runnable_avg(rq, 1);
6896 }
6897
6898 /*
6899 * called on fork with the child task as argument from the parent's context
6900 * - child not yet on the tasklist
6901 * - preemption disabled
6902 */
6903 static void task_fork_fair(struct task_struct *p)
6904 {
6905 struct cfs_rq *cfs_rq;
6906 struct sched_entity *se = &p->se, *curr;
6907 int this_cpu = smp_processor_id();
6908 struct rq *rq = this_rq();
6909 unsigned long flags;
6910
6911 raw_spin_lock_irqsave(&rq->lock, flags);
6912
6913 update_rq_clock(rq);
6914
6915 cfs_rq = task_cfs_rq(current);
6916 curr = cfs_rq->curr;
6917
6918 /*
6919 * Not only the cpu but also the task_group of the parent might have
6920 * been changed after parent->se.parent,cfs_rq were copied to
6921 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6922 * of child point to valid ones.
6923 */
6924 rcu_read_lock();
6925 __set_task_cpu(p, this_cpu);
6926 rcu_read_unlock();
6927
6928 update_curr(cfs_rq);
6929
6930 if (curr)
6931 se->vruntime = curr->vruntime;
6932 place_entity(cfs_rq, se, 1);
6933
6934 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6935 /*
6936 * Upon rescheduling, sched_class::put_prev_task() will place
6937 * 'current' within the tree based on its new key value.
6938 */
6939 swap(curr->vruntime, se->vruntime);
6940 resched_task(rq->curr);
6941 }
6942
6943 se->vruntime -= cfs_rq->min_vruntime;
6944
6945 raw_spin_unlock_irqrestore(&rq->lock, flags);
6946 }
6947
6948 /*
6949 * Priority of the task has changed. Check to see if we preempt
6950 * the current task.
6951 */
6952 static void
6953 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6954 {
6955 if (!p->se.on_rq)
6956 return;
6957
6958 /*
6959 * Reschedule if we are currently running on this runqueue and
6960 * our priority decreased, or if we are not currently running on
6961 * this runqueue and our priority is higher than the current's
6962 */
6963 if (rq->curr == p) {
6964 if (p->prio > oldprio)
6965 resched_task(rq->curr);
6966 } else
6967 check_preempt_curr(rq, p, 0);
6968 }
6969
6970 static void switched_from_fair(struct rq *rq, struct task_struct *p)
6971 {
6972 struct sched_entity *se = &p->se;
6973 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6974
6975 /*
6976 * Ensure the task's vruntime is normalized, so that when its
6977 * switched back to the fair class the enqueue_entity(.flags=0) will
6978 * do the right thing.
6979 *
6980 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6981 * have normalized the vruntime, if it was !on_rq, then only when
6982 * the task is sleeping will it still have non-normalized vruntime.
6983 */
6984 if (!se->on_rq && p->state != TASK_RUNNING) {
6985 /*
6986 * Fix up our vruntime so that the current sleep doesn't
6987 * cause 'unlimited' sleep bonus.
6988 */
6989 place_entity(cfs_rq, se, 0);
6990 se->vruntime -= cfs_rq->min_vruntime;
6991 }
6992
6993 #ifdef CONFIG_SMP
6994 /*
6995 * Remove our load from contribution when we leave sched_fair
6996 * and ensure we don't carry in an old decay_count if we
6997 * switch back.
6998 */
6999 if (se->avg.decay_count) {
7000 __synchronize_entity_decay(se);
7001 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7002 }
7003 #endif
7004 }
7005
7006 /*
7007 * We switched to the sched_fair class.
7008 */
7009 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7010 {
7011 if (!p->se.on_rq)
7012 return;
7013
7014 /*
7015 * We were most likely switched from sched_rt, so
7016 * kick off the schedule if running, otherwise just see
7017 * if we can still preempt the current task.
7018 */
7019 if (rq->curr == p)
7020 resched_task(rq->curr);
7021 else
7022 check_preempt_curr(rq, p, 0);
7023 }
7024
7025 /* Account for a task changing its policy or group.
7026 *
7027 * This routine is mostly called to set cfs_rq->curr field when a task
7028 * migrates between groups/classes.
7029 */
7030 static void set_curr_task_fair(struct rq *rq)
7031 {
7032 struct sched_entity *se = &rq->curr->se;
7033
7034 for_each_sched_entity(se) {
7035 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7036
7037 set_next_entity(cfs_rq, se);
7038 /* ensure bandwidth has been allocated on our new cfs_rq */
7039 account_cfs_rq_runtime(cfs_rq, 0);
7040 }
7041 }
7042
7043 void init_cfs_rq(struct cfs_rq *cfs_rq)
7044 {
7045 cfs_rq->tasks_timeline = RB_ROOT;
7046 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7047 #ifndef CONFIG_64BIT
7048 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7049 #endif
7050 #ifdef CONFIG_SMP
7051 atomic64_set(&cfs_rq->decay_counter, 1);
7052 atomic_long_set(&cfs_rq->removed_load, 0);
7053 #endif
7054 }
7055
7056 #ifdef CONFIG_FAIR_GROUP_SCHED
7057 static void task_move_group_fair(struct task_struct *p, int on_rq)
7058 {
7059 struct cfs_rq *cfs_rq;
7060 /*
7061 * If the task was not on the rq at the time of this cgroup movement
7062 * it must have been asleep, sleeping tasks keep their ->vruntime
7063 * absolute on their old rq until wakeup (needed for the fair sleeper
7064 * bonus in place_entity()).
7065 *
7066 * If it was on the rq, we've just 'preempted' it, which does convert
7067 * ->vruntime to a relative base.
7068 *
7069 * Make sure both cases convert their relative position when migrating
7070 * to another cgroup's rq. This does somewhat interfere with the
7071 * fair sleeper stuff for the first placement, but who cares.
7072 */
7073 /*
7074 * When !on_rq, vruntime of the task has usually NOT been normalized.
7075 * But there are some cases where it has already been normalized:
7076 *
7077 * - Moving a forked child which is waiting for being woken up by
7078 * wake_up_new_task().
7079 * - Moving a task which has been woken up by try_to_wake_up() and
7080 * waiting for actually being woken up by sched_ttwu_pending().
7081 *
7082 * To prevent boost or penalty in the new cfs_rq caused by delta
7083 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7084 */
7085 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7086 on_rq = 1;
7087
7088 if (!on_rq)
7089 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7090 set_task_rq(p, task_cpu(p));
7091 if (!on_rq) {
7092 cfs_rq = cfs_rq_of(&p->se);
7093 p->se.vruntime += cfs_rq->min_vruntime;
7094 #ifdef CONFIG_SMP
7095 /*
7096 * migrate_task_rq_fair() will have removed our previous
7097 * contribution, but we must synchronize for ongoing future
7098 * decay.
7099 */
7100 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7101 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7102 #endif
7103 }
7104 }
7105
7106 void free_fair_sched_group(struct task_group *tg)
7107 {
7108 int i;
7109
7110 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7111
7112 for_each_possible_cpu(i) {
7113 if (tg->cfs_rq)
7114 kfree(tg->cfs_rq[i]);
7115 if (tg->se)
7116 kfree(tg->se[i]);
7117 }
7118
7119 kfree(tg->cfs_rq);
7120 kfree(tg->se);
7121 }
7122
7123 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7124 {
7125 struct cfs_rq *cfs_rq;
7126 struct sched_entity *se;
7127 int i;
7128
7129 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7130 if (!tg->cfs_rq)
7131 goto err;
7132 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7133 if (!tg->se)
7134 goto err;
7135
7136 tg->shares = NICE_0_LOAD;
7137
7138 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7139
7140 for_each_possible_cpu(i) {
7141 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7142 GFP_KERNEL, cpu_to_node(i));
7143 if (!cfs_rq)
7144 goto err;
7145
7146 se = kzalloc_node(sizeof(struct sched_entity),
7147 GFP_KERNEL, cpu_to_node(i));
7148 if (!se)
7149 goto err_free_rq;
7150
7151 init_cfs_rq(cfs_rq);
7152 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7153 }
7154
7155 return 1;
7156
7157 err_free_rq:
7158 kfree(cfs_rq);
7159 err:
7160 return 0;
7161 }
7162
7163 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7164 {
7165 struct rq *rq = cpu_rq(cpu);
7166 unsigned long flags;
7167
7168 /*
7169 * Only empty task groups can be destroyed; so we can speculatively
7170 * check on_list without danger of it being re-added.
7171 */
7172 if (!tg->cfs_rq[cpu]->on_list)
7173 return;
7174
7175 raw_spin_lock_irqsave(&rq->lock, flags);
7176 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7177 raw_spin_unlock_irqrestore(&rq->lock, flags);
7178 }
7179
7180 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7181 struct sched_entity *se, int cpu,
7182 struct sched_entity *parent)
7183 {
7184 struct rq *rq = cpu_rq(cpu);
7185
7186 cfs_rq->tg = tg;
7187 cfs_rq->rq = rq;
7188 init_cfs_rq_runtime(cfs_rq);
7189
7190 tg->cfs_rq[cpu] = cfs_rq;
7191 tg->se[cpu] = se;
7192
7193 /* se could be NULL for root_task_group */
7194 if (!se)
7195 return;
7196
7197 if (!parent)
7198 se->cfs_rq = &rq->cfs;
7199 else
7200 se->cfs_rq = parent->my_q;
7201
7202 se->my_q = cfs_rq;
7203 /* guarantee group entities always have weight */
7204 update_load_set(&se->load, NICE_0_LOAD);
7205 se->parent = parent;
7206 }
7207
7208 static DEFINE_MUTEX(shares_mutex);
7209
7210 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7211 {
7212 int i;
7213 unsigned long flags;
7214
7215 /*
7216 * We can't change the weight of the root cgroup.
7217 */
7218 if (!tg->se[0])
7219 return -EINVAL;
7220
7221 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7222
7223 mutex_lock(&shares_mutex);
7224 if (tg->shares == shares)
7225 goto done;
7226
7227 tg->shares = shares;
7228 for_each_possible_cpu(i) {
7229 struct rq *rq = cpu_rq(i);
7230 struct sched_entity *se;
7231
7232 se = tg->se[i];
7233 /* Propagate contribution to hierarchy */
7234 raw_spin_lock_irqsave(&rq->lock, flags);
7235
7236 /* Possible calls to update_curr() need rq clock */
7237 update_rq_clock(rq);
7238 for_each_sched_entity(se)
7239 update_cfs_shares(group_cfs_rq(se));
7240 raw_spin_unlock_irqrestore(&rq->lock, flags);
7241 }
7242
7243 done:
7244 mutex_unlock(&shares_mutex);
7245 return 0;
7246 }
7247 #else /* CONFIG_FAIR_GROUP_SCHED */
7248
7249 void free_fair_sched_group(struct task_group *tg) { }
7250
7251 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7252 {
7253 return 1;
7254 }
7255
7256 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7257
7258 #endif /* CONFIG_FAIR_GROUP_SCHED */
7259
7260
7261 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7262 {
7263 struct sched_entity *se = &task->se;
7264 unsigned int rr_interval = 0;
7265
7266 /*
7267 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7268 * idle runqueue:
7269 */
7270 if (rq->cfs.load.weight)
7271 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7272
7273 return rr_interval;
7274 }
7275
7276 /*
7277 * All the scheduling class methods:
7278 */
7279 const struct sched_class fair_sched_class = {
7280 .next = &idle_sched_class,
7281 .enqueue_task = enqueue_task_fair,
7282 .dequeue_task = dequeue_task_fair,
7283 .yield_task = yield_task_fair,
7284 .yield_to_task = yield_to_task_fair,
7285
7286 .check_preempt_curr = check_preempt_wakeup,
7287
7288 .pick_next_task = pick_next_task_fair,
7289 .put_prev_task = put_prev_task_fair,
7290
7291 #ifdef CONFIG_SMP
7292 .select_task_rq = select_task_rq_fair,
7293 .migrate_task_rq = migrate_task_rq_fair,
7294
7295 .rq_online = rq_online_fair,
7296 .rq_offline = rq_offline_fair,
7297
7298 .task_waking = task_waking_fair,
7299 #endif
7300
7301 .set_curr_task = set_curr_task_fair,
7302 .task_tick = task_tick_fair,
7303 .task_fork = task_fork_fair,
7304
7305 .prio_changed = prio_changed_fair,
7306 .switched_from = switched_from_fair,
7307 .switched_to = switched_to_fair,
7308
7309 .get_rr_interval = get_rr_interval_fair,
7310
7311 #ifdef CONFIG_FAIR_GROUP_SCHED
7312 .task_move_group = task_move_group_fair,
7313 #endif
7314 };
7315
7316 #ifdef CONFIG_SCHED_DEBUG
7317 void print_cfs_stats(struct seq_file *m, int cpu)
7318 {
7319 struct cfs_rq *cfs_rq;
7320
7321 rcu_read_lock();
7322 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7323 print_cfs_rq(m, cpu, cfs_rq);
7324 rcu_read_unlock();
7325 }
7326 #endif
7327
7328 __init void init_sched_fair_class(void)
7329 {
7330 #ifdef CONFIG_SMP
7331 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7332
7333 #ifdef CONFIG_NO_HZ_COMMON
7334 nohz.next_balance = jiffies;
7335 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7336 cpu_notifier(sched_ilb_notifier, 0);
7337 #endif
7338 #endif /* SMP */
7339
7340 }
This page took 0.180277 seconds and 4 git commands to generate.