sched/numa: Favor placing a task on the preferred node
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
183 #else
184 # define WMULT_CONST (1UL << 32)
185 #endif
186
187 #define WMULT_SHIFT 32
188
189 /*
190 * Shift right and round:
191 */
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194 /*
195 * delta *= weight / lw
196 */
197 static unsigned long
198 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200 {
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234 }
235
236
237 const struct sched_class fair_sched_class;
238
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247 {
248 return cfs_rq->rq;
249 }
250
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
253
254 static inline struct task_struct *task_of(struct sched_entity *se)
255 {
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258 #endif
259 return container_of(se, struct task_struct, se);
260 }
261
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267 {
268 return p->se.cfs_rq;
269 }
270
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273 {
274 return se->cfs_rq;
275 }
276
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279 {
280 return grp->my_q;
281 }
282
283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq, 0);
307 }
308 }
309
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316 }
317
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322 /* Do the two (enqueued) entities belong to the same group ? */
323 static inline int
324 is_same_group(struct sched_entity *se, struct sched_entity *pse)
325 {
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330 }
331
332 static inline struct sched_entity *parent_entity(struct sched_entity *se)
333 {
334 return se->parent;
335 }
336
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity *se)
339 {
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346 }
347
348 static void
349 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350 {
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378 }
379
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
381
382 static inline struct task_struct *task_of(struct sched_entity *se)
383 {
384 return container_of(se, struct task_struct, se);
385 }
386
387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388 {
389 return container_of(cfs_rq, struct rq, cfs);
390 }
391
392 #define entity_is_task(se) 1
393
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
396
397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398 {
399 return &task_rq(p)->cfs;
400 }
401
402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403 {
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408 }
409
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412 {
413 return NULL;
414 }
415
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417 {
418 }
419
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421 {
422 }
423
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427 static inline int
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
429 {
430 return 1;
431 }
432
433 static inline struct sched_entity *parent_entity(struct sched_entity *se)
434 {
435 return NULL;
436 }
437
438 static inline void
439 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440 {
441 }
442
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
444
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453 {
454 s64 delta = (s64)(vruntime - max_vruntime);
455 if (delta > 0)
456 max_vruntime = vruntime;
457
458 return max_vruntime;
459 }
460
461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
462 {
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468 }
469
470 static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472 {
473 return (s64)(a->vruntime - b->vruntime) < 0;
474 }
475
476 static void update_min_vruntime(struct cfs_rq *cfs_rq)
477 {
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
488 if (!cfs_rq->curr)
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 #ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499 #endif
500 }
501
502 /*
503 * Enqueue an entity into the rb-tree:
504 */
505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 {
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
522 if (entity_before(se, entry)) {
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
534 if (leftmost)
535 cfs_rq->rb_leftmost = &se->run_node;
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
539 }
540
541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
548 }
549
550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
551 }
552
553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554 {
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
561 }
562
563 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564 {
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571 }
572
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575 {
576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577
578 if (!last)
579 return NULL;
580
581 return rb_entry(last, struct sched_entity, run_node);
582 }
583
584 /**************************************************************
585 * Scheduling class statistics methods:
586 */
587
588 int sched_proc_update_handler(struct ctl_table *table, int write,
589 void __user *buffer, size_t *lenp,
590 loff_t *ppos)
591 {
592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593 int factor = get_update_sysctl_factor();
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
606 #undef WRT_SYSCTL
607
608 return 0;
609 }
610 #endif
611
612 /*
613 * delta /= w
614 */
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta, struct sched_entity *se)
617 {
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620
621 return delta;
622 }
623
624 /*
625 * The idea is to set a period in which each task runs once.
626 *
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
632 static u64 __sched_period(unsigned long nr_running)
633 {
634 u64 period = sysctl_sched_latency;
635 unsigned long nr_latency = sched_nr_latency;
636
637 if (unlikely(nr_running > nr_latency)) {
638 period = sysctl_sched_min_granularity;
639 period *= nr_running;
640 }
641
642 return period;
643 }
644
645 /*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
649 * s = p*P[w/rw]
650 */
651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654
655 for_each_sched_entity(se) {
656 struct load_weight *load;
657 struct load_weight lw;
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
661
662 if (unlikely(!se->on_rq)) {
663 lw = cfs_rq->load;
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
671 }
672
673 /*
674 * We calculate the vruntime slice of a to-be-inserted task.
675 *
676 * vs = s/w
677 */
678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
679 {
680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 }
682
683 #ifdef CONFIG_SMP
684 static unsigned long task_h_load(struct task_struct *p);
685
686 static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688 /* Give new task start runnable values to heavy its load in infant time */
689 void init_task_runnable_average(struct task_struct *p)
690 {
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698 }
699 #else
700 void init_task_runnable_average(struct task_struct *p)
701 {
702 }
703 #endif
704
705 /*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709 static inline void
710 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
712 {
713 unsigned long delta_exec_weighted;
714
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
717
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
721
722 curr->vruntime += delta_exec_weighted;
723 update_min_vruntime(cfs_rq);
724 }
725
726 static void update_curr(struct cfs_rq *cfs_rq)
727 {
728 struct sched_entity *curr = cfs_rq->curr;
729 u64 now = rq_clock_task(rq_of(cfs_rq));
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
740 delta_exec = (unsigned long)(now - curr->exec_start);
741 if (!delta_exec)
742 return;
743
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
751 cpuacct_charge(curtask, delta_exec);
752 account_group_exec_runtime(curtask, delta_exec);
753 }
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
756 }
757
758 static inline void
759 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
760 {
761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
762 }
763
764 /*
765 * Task is being enqueued - update stats:
766 */
767 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
773 if (se != cfs_rq->curr)
774 update_stats_wait_start(cfs_rq, se);
775 }
776
777 static void
778 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
785 #ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
789 }
790 #endif
791 schedstat_set(se->statistics.wait_start, 0);
792 }
793
794 static inline void
795 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 {
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
801 if (se != cfs_rq->curr)
802 update_stats_wait_end(cfs_rq, se);
803 }
804
805 /*
806 * We are picking a new current task - update its stats:
807 */
808 static inline void
809 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
810 {
811 /*
812 * We are starting a new run period:
813 */
814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
815 }
816
817 /**************************************************
818 * Scheduling class queueing methods:
819 */
820
821 #ifdef CONFIG_NUMA_BALANCING
822 /*
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
826 */
827 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829 unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
830
831 /* Portion of address space to scan in MB */
832 unsigned int sysctl_numa_balancing_scan_size = 256;
833
834 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835 unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
837 static unsigned int task_nr_scan_windows(struct task_struct *p)
838 {
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854 }
855
856 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857 #define MAX_SCAN_WINDOW 2560
858
859 static unsigned int task_scan_min(struct task_struct *p)
860 {
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870 }
871
872 static unsigned int task_scan_max(struct task_struct *p)
873 {
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880 }
881
882 /*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
889 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
890
891 static inline int task_faults_idx(int nid, int priv)
892 {
893 return 2 * nid + priv;
894 }
895
896 static inline unsigned long task_faults(struct task_struct *p, int nid)
897 {
898 if (!p->numa_faults)
899 return 0;
900
901 return p->numa_faults[task_faults_idx(nid, 0)] +
902 p->numa_faults[task_faults_idx(nid, 1)];
903 }
904
905 static unsigned long weighted_cpuload(const int cpu);
906 static unsigned long source_load(int cpu, int type);
907 static unsigned long target_load(int cpu, int type);
908 static unsigned long power_of(int cpu);
909 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
910
911 /* Cached statistics for all CPUs within a node */
912 struct numa_stats {
913 unsigned long nr_running;
914 unsigned long load;
915
916 /* Total compute capacity of CPUs on a node */
917 unsigned long power;
918
919 /* Approximate capacity in terms of runnable tasks on a node */
920 unsigned long capacity;
921 int has_capacity;
922 };
923
924 /*
925 * XXX borrowed from update_sg_lb_stats
926 */
927 static void update_numa_stats(struct numa_stats *ns, int nid)
928 {
929 int cpu;
930
931 memset(ns, 0, sizeof(*ns));
932 for_each_cpu(cpu, cpumask_of_node(nid)) {
933 struct rq *rq = cpu_rq(cpu);
934
935 ns->nr_running += rq->nr_running;
936 ns->load += weighted_cpuload(cpu);
937 ns->power += power_of(cpu);
938 }
939
940 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
941 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
942 ns->has_capacity = (ns->nr_running < ns->capacity);
943 }
944
945 struct task_numa_env {
946 struct task_struct *p;
947
948 int src_cpu, src_nid;
949 int dst_cpu, dst_nid;
950
951 struct numa_stats src_stats, dst_stats;
952
953 int imbalance_pct, idx;
954
955 struct task_struct *best_task;
956 long best_imp;
957 int best_cpu;
958 };
959
960 static void task_numa_assign(struct task_numa_env *env,
961 struct task_struct *p, long imp)
962 {
963 if (env->best_task)
964 put_task_struct(env->best_task);
965 if (p)
966 get_task_struct(p);
967
968 env->best_task = p;
969 env->best_imp = imp;
970 env->best_cpu = env->dst_cpu;
971 }
972
973 /*
974 * This checks if the overall compute and NUMA accesses of the system would
975 * be improved if the source tasks was migrated to the target dst_cpu taking
976 * into account that it might be best if task running on the dst_cpu should
977 * be exchanged with the source task
978 */
979 static void task_numa_compare(struct task_numa_env *env, long imp)
980 {
981 struct rq *src_rq = cpu_rq(env->src_cpu);
982 struct rq *dst_rq = cpu_rq(env->dst_cpu);
983 struct task_struct *cur;
984 long dst_load, src_load;
985 long load;
986
987 rcu_read_lock();
988 cur = ACCESS_ONCE(dst_rq->curr);
989 if (cur->pid == 0) /* idle */
990 cur = NULL;
991
992 /*
993 * "imp" is the fault differential for the source task between the
994 * source and destination node. Calculate the total differential for
995 * the source task and potential destination task. The more negative
996 * the value is, the more rmeote accesses that would be expected to
997 * be incurred if the tasks were swapped.
998 */
999 if (cur) {
1000 /* Skip this swap candidate if cannot move to the source cpu */
1001 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1002 goto unlock;
1003
1004 imp += task_faults(cur, env->src_nid) -
1005 task_faults(cur, env->dst_nid);
1006 }
1007
1008 if (imp < env->best_imp)
1009 goto unlock;
1010
1011 if (!cur) {
1012 /* Is there capacity at our destination? */
1013 if (env->src_stats.has_capacity &&
1014 !env->dst_stats.has_capacity)
1015 goto unlock;
1016
1017 goto balance;
1018 }
1019
1020 /* Balance doesn't matter much if we're running a task per cpu */
1021 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1022 goto assign;
1023
1024 /*
1025 * In the overloaded case, try and keep the load balanced.
1026 */
1027 balance:
1028 dst_load = env->dst_stats.load;
1029 src_load = env->src_stats.load;
1030
1031 /* XXX missing power terms */
1032 load = task_h_load(env->p);
1033 dst_load += load;
1034 src_load -= load;
1035
1036 if (cur) {
1037 load = task_h_load(cur);
1038 dst_load -= load;
1039 src_load += load;
1040 }
1041
1042 /* make src_load the smaller */
1043 if (dst_load < src_load)
1044 swap(dst_load, src_load);
1045
1046 if (src_load * env->imbalance_pct < dst_load * 100)
1047 goto unlock;
1048
1049 assign:
1050 task_numa_assign(env, cur, imp);
1051 unlock:
1052 rcu_read_unlock();
1053 }
1054
1055 static void task_numa_find_cpu(struct task_numa_env *env, long imp)
1056 {
1057 int cpu;
1058
1059 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1060 /* Skip this CPU if the source task cannot migrate */
1061 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1062 continue;
1063
1064 env->dst_cpu = cpu;
1065 task_numa_compare(env, imp);
1066 }
1067 }
1068
1069 static int task_numa_migrate(struct task_struct *p)
1070 {
1071 struct task_numa_env env = {
1072 .p = p,
1073
1074 .src_cpu = task_cpu(p),
1075 .src_nid = cpu_to_node(task_cpu(p)),
1076
1077 .imbalance_pct = 112,
1078
1079 .best_task = NULL,
1080 .best_imp = 0,
1081 .best_cpu = -1
1082 };
1083 struct sched_domain *sd;
1084 unsigned long faults;
1085 int nid, ret;
1086 long imp;
1087
1088 /*
1089 * Pick the lowest SD_NUMA domain, as that would have the smallest
1090 * imbalance and would be the first to start moving tasks about.
1091 *
1092 * And we want to avoid any moving of tasks about, as that would create
1093 * random movement of tasks -- counter the numa conditions we're trying
1094 * to satisfy here.
1095 */
1096 rcu_read_lock();
1097 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1098 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1099 rcu_read_unlock();
1100
1101 faults = task_faults(p, env.src_nid);
1102 update_numa_stats(&env.src_stats, env.src_nid);
1103 env.dst_nid = p->numa_preferred_nid;
1104 imp = task_faults(env.p, env.dst_nid) - faults;
1105 update_numa_stats(&env.dst_stats, env.dst_nid);
1106
1107 /*
1108 * If the preferred nid has capacity then use it. Otherwise find an
1109 * alternative node with relatively better statistics.
1110 */
1111 if (env.dst_stats.has_capacity) {
1112 task_numa_find_cpu(&env, imp);
1113 } else {
1114 for_each_online_node(nid) {
1115 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1116 continue;
1117
1118 /* Only consider nodes that recorded more faults */
1119 imp = task_faults(env.p, nid) - faults;
1120 if (imp < 0)
1121 continue;
1122
1123 env.dst_nid = nid;
1124 update_numa_stats(&env.dst_stats, env.dst_nid);
1125 task_numa_find_cpu(&env, imp);
1126 }
1127 }
1128
1129 /* No better CPU than the current one was found. */
1130 if (env.best_cpu == -1)
1131 return -EAGAIN;
1132
1133 if (env.best_task == NULL) {
1134 int ret = migrate_task_to(p, env.best_cpu);
1135 return ret;
1136 }
1137
1138 ret = migrate_swap(p, env.best_task);
1139 put_task_struct(env.best_task);
1140 return ret;
1141 }
1142
1143 /* Attempt to migrate a task to a CPU on the preferred node. */
1144 static void numa_migrate_preferred(struct task_struct *p)
1145 {
1146 /* Success if task is already running on preferred CPU */
1147 p->numa_migrate_retry = 0;
1148 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1149 /*
1150 * If migration is temporarily disabled due to a task migration
1151 * then re-enable it now as the task is running on its
1152 * preferred node and memory should migrate locally
1153 */
1154 if (!p->numa_migrate_seq)
1155 p->numa_migrate_seq++;
1156 return;
1157 }
1158
1159 /* This task has no NUMA fault statistics yet */
1160 if (unlikely(p->numa_preferred_nid == -1))
1161 return;
1162
1163 /* Otherwise, try migrate to a CPU on the preferred node */
1164 if (task_numa_migrate(p) != 0)
1165 p->numa_migrate_retry = jiffies + HZ*5;
1166 }
1167
1168 static void task_numa_placement(struct task_struct *p)
1169 {
1170 int seq, nid, max_nid = -1;
1171 unsigned long max_faults = 0;
1172
1173 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1174 if (p->numa_scan_seq == seq)
1175 return;
1176 p->numa_scan_seq = seq;
1177 p->numa_migrate_seq++;
1178 p->numa_scan_period_max = task_scan_max(p);
1179
1180 /* Find the node with the highest number of faults */
1181 for_each_online_node(nid) {
1182 unsigned long faults = 0;
1183 int priv, i;
1184
1185 for (priv = 0; priv < 2; priv++) {
1186 i = task_faults_idx(nid, priv);
1187
1188 /* Decay existing window, copy faults since last scan */
1189 p->numa_faults[i] >>= 1;
1190 p->numa_faults[i] += p->numa_faults_buffer[i];
1191 p->numa_faults_buffer[i] = 0;
1192
1193 faults += p->numa_faults[i];
1194 }
1195
1196 if (faults > max_faults) {
1197 max_faults = faults;
1198 max_nid = nid;
1199 }
1200 }
1201
1202 /* Preferred node as the node with the most faults */
1203 if (max_faults && max_nid != p->numa_preferred_nid) {
1204 /* Update the preferred nid and migrate task if possible */
1205 p->numa_preferred_nid = max_nid;
1206 p->numa_migrate_seq = 1;
1207 numa_migrate_preferred(p);
1208 }
1209 }
1210
1211 /*
1212 * Got a PROT_NONE fault for a page on @node.
1213 */
1214 void task_numa_fault(int last_nidpid, int node, int pages, bool migrated)
1215 {
1216 struct task_struct *p = current;
1217 int priv;
1218
1219 if (!numabalancing_enabled)
1220 return;
1221
1222 /* for example, ksmd faulting in a user's mm */
1223 if (!p->mm)
1224 return;
1225
1226 /*
1227 * First accesses are treated as private, otherwise consider accesses
1228 * to be private if the accessing pid has not changed
1229 */
1230 if (!nidpid_pid_unset(last_nidpid))
1231 priv = ((p->pid & LAST__PID_MASK) == nidpid_to_pid(last_nidpid));
1232 else
1233 priv = 1;
1234
1235 /* Allocate buffer to track faults on a per-node basis */
1236 if (unlikely(!p->numa_faults)) {
1237 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1238
1239 /* numa_faults and numa_faults_buffer share the allocation */
1240 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1241 if (!p->numa_faults)
1242 return;
1243
1244 BUG_ON(p->numa_faults_buffer);
1245 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1246 }
1247
1248 /*
1249 * If pages are properly placed (did not migrate) then scan slower.
1250 * This is reset periodically in case of phase changes
1251 */
1252 if (!migrated) {
1253 /* Initialise if necessary */
1254 if (!p->numa_scan_period_max)
1255 p->numa_scan_period_max = task_scan_max(p);
1256
1257 p->numa_scan_period = min(p->numa_scan_period_max,
1258 p->numa_scan_period + 10);
1259 }
1260
1261 task_numa_placement(p);
1262
1263 /* Retry task to preferred node migration if it previously failed */
1264 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1265 numa_migrate_preferred(p);
1266
1267 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1268 }
1269
1270 static void reset_ptenuma_scan(struct task_struct *p)
1271 {
1272 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1273 p->mm->numa_scan_offset = 0;
1274 }
1275
1276 /*
1277 * The expensive part of numa migration is done from task_work context.
1278 * Triggered from task_tick_numa().
1279 */
1280 void task_numa_work(struct callback_head *work)
1281 {
1282 unsigned long migrate, next_scan, now = jiffies;
1283 struct task_struct *p = current;
1284 struct mm_struct *mm = p->mm;
1285 struct vm_area_struct *vma;
1286 unsigned long start, end;
1287 unsigned long nr_pte_updates = 0;
1288 long pages;
1289
1290 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1291
1292 work->next = work; /* protect against double add */
1293 /*
1294 * Who cares about NUMA placement when they're dying.
1295 *
1296 * NOTE: make sure not to dereference p->mm before this check,
1297 * exit_task_work() happens _after_ exit_mm() so we could be called
1298 * without p->mm even though we still had it when we enqueued this
1299 * work.
1300 */
1301 if (p->flags & PF_EXITING)
1302 return;
1303
1304 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1305 mm->numa_next_scan = now +
1306 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1307 mm->numa_next_reset = now +
1308 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1309 }
1310
1311 /*
1312 * Reset the scan period if enough time has gone by. Objective is that
1313 * scanning will be reduced if pages are properly placed. As tasks
1314 * can enter different phases this needs to be re-examined. Lacking
1315 * proper tracking of reference behaviour, this blunt hammer is used.
1316 */
1317 migrate = mm->numa_next_reset;
1318 if (time_after(now, migrate)) {
1319 p->numa_scan_period = task_scan_min(p);
1320 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1321 xchg(&mm->numa_next_reset, next_scan);
1322 }
1323
1324 /*
1325 * Enforce maximal scan/migration frequency..
1326 */
1327 migrate = mm->numa_next_scan;
1328 if (time_before(now, migrate))
1329 return;
1330
1331 if (p->numa_scan_period == 0) {
1332 p->numa_scan_period_max = task_scan_max(p);
1333 p->numa_scan_period = task_scan_min(p);
1334 }
1335
1336 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1337 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1338 return;
1339
1340 /*
1341 * Delay this task enough that another task of this mm will likely win
1342 * the next time around.
1343 */
1344 p->node_stamp += 2 * TICK_NSEC;
1345
1346 start = mm->numa_scan_offset;
1347 pages = sysctl_numa_balancing_scan_size;
1348 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1349 if (!pages)
1350 return;
1351
1352 down_read(&mm->mmap_sem);
1353 vma = find_vma(mm, start);
1354 if (!vma) {
1355 reset_ptenuma_scan(p);
1356 start = 0;
1357 vma = mm->mmap;
1358 }
1359 for (; vma; vma = vma->vm_next) {
1360 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1361 continue;
1362
1363 /*
1364 * Shared library pages mapped by multiple processes are not
1365 * migrated as it is expected they are cache replicated. Avoid
1366 * hinting faults in read-only file-backed mappings or the vdso
1367 * as migrating the pages will be of marginal benefit.
1368 */
1369 if (!vma->vm_mm ||
1370 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1371 continue;
1372
1373 do {
1374 start = max(start, vma->vm_start);
1375 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1376 end = min(end, vma->vm_end);
1377 nr_pte_updates += change_prot_numa(vma, start, end);
1378
1379 /*
1380 * Scan sysctl_numa_balancing_scan_size but ensure that
1381 * at least one PTE is updated so that unused virtual
1382 * address space is quickly skipped.
1383 */
1384 if (nr_pte_updates)
1385 pages -= (end - start) >> PAGE_SHIFT;
1386
1387 start = end;
1388 if (pages <= 0)
1389 goto out;
1390 } while (end != vma->vm_end);
1391 }
1392
1393 out:
1394 /*
1395 * If the whole process was scanned without updates then no NUMA
1396 * hinting faults are being recorded and scan rate should be lower.
1397 */
1398 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1399 p->numa_scan_period = min(p->numa_scan_period_max,
1400 p->numa_scan_period << 1);
1401
1402 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1403 mm->numa_next_scan = next_scan;
1404 }
1405
1406 /*
1407 * It is possible to reach the end of the VMA list but the last few
1408 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1409 * would find the !migratable VMA on the next scan but not reset the
1410 * scanner to the start so check it now.
1411 */
1412 if (vma)
1413 mm->numa_scan_offset = start;
1414 else
1415 reset_ptenuma_scan(p);
1416 up_read(&mm->mmap_sem);
1417 }
1418
1419 /*
1420 * Drive the periodic memory faults..
1421 */
1422 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1423 {
1424 struct callback_head *work = &curr->numa_work;
1425 u64 period, now;
1426
1427 /*
1428 * We don't care about NUMA placement if we don't have memory.
1429 */
1430 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1431 return;
1432
1433 /*
1434 * Using runtime rather than walltime has the dual advantage that
1435 * we (mostly) drive the selection from busy threads and that the
1436 * task needs to have done some actual work before we bother with
1437 * NUMA placement.
1438 */
1439 now = curr->se.sum_exec_runtime;
1440 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1441
1442 if (now - curr->node_stamp > period) {
1443 if (!curr->node_stamp)
1444 curr->numa_scan_period = task_scan_min(curr);
1445 curr->node_stamp += period;
1446
1447 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1448 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1449 task_work_add(curr, work, true);
1450 }
1451 }
1452 }
1453 #else
1454 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1455 {
1456 }
1457 #endif /* CONFIG_NUMA_BALANCING */
1458
1459 static void
1460 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1461 {
1462 update_load_add(&cfs_rq->load, se->load.weight);
1463 if (!parent_entity(se))
1464 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1465 #ifdef CONFIG_SMP
1466 if (entity_is_task(se))
1467 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1468 #endif
1469 cfs_rq->nr_running++;
1470 }
1471
1472 static void
1473 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1474 {
1475 update_load_sub(&cfs_rq->load, se->load.weight);
1476 if (!parent_entity(se))
1477 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1478 if (entity_is_task(se))
1479 list_del_init(&se->group_node);
1480 cfs_rq->nr_running--;
1481 }
1482
1483 #ifdef CONFIG_FAIR_GROUP_SCHED
1484 # ifdef CONFIG_SMP
1485 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1486 {
1487 long tg_weight;
1488
1489 /*
1490 * Use this CPU's actual weight instead of the last load_contribution
1491 * to gain a more accurate current total weight. See
1492 * update_cfs_rq_load_contribution().
1493 */
1494 tg_weight = atomic_long_read(&tg->load_avg);
1495 tg_weight -= cfs_rq->tg_load_contrib;
1496 tg_weight += cfs_rq->load.weight;
1497
1498 return tg_weight;
1499 }
1500
1501 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1502 {
1503 long tg_weight, load, shares;
1504
1505 tg_weight = calc_tg_weight(tg, cfs_rq);
1506 load = cfs_rq->load.weight;
1507
1508 shares = (tg->shares * load);
1509 if (tg_weight)
1510 shares /= tg_weight;
1511
1512 if (shares < MIN_SHARES)
1513 shares = MIN_SHARES;
1514 if (shares > tg->shares)
1515 shares = tg->shares;
1516
1517 return shares;
1518 }
1519 # else /* CONFIG_SMP */
1520 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1521 {
1522 return tg->shares;
1523 }
1524 # endif /* CONFIG_SMP */
1525 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1526 unsigned long weight)
1527 {
1528 if (se->on_rq) {
1529 /* commit outstanding execution time */
1530 if (cfs_rq->curr == se)
1531 update_curr(cfs_rq);
1532 account_entity_dequeue(cfs_rq, se);
1533 }
1534
1535 update_load_set(&se->load, weight);
1536
1537 if (se->on_rq)
1538 account_entity_enqueue(cfs_rq, se);
1539 }
1540
1541 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1542
1543 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1544 {
1545 struct task_group *tg;
1546 struct sched_entity *se;
1547 long shares;
1548
1549 tg = cfs_rq->tg;
1550 se = tg->se[cpu_of(rq_of(cfs_rq))];
1551 if (!se || throttled_hierarchy(cfs_rq))
1552 return;
1553 #ifndef CONFIG_SMP
1554 if (likely(se->load.weight == tg->shares))
1555 return;
1556 #endif
1557 shares = calc_cfs_shares(cfs_rq, tg);
1558
1559 reweight_entity(cfs_rq_of(se), se, shares);
1560 }
1561 #else /* CONFIG_FAIR_GROUP_SCHED */
1562 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1563 {
1564 }
1565 #endif /* CONFIG_FAIR_GROUP_SCHED */
1566
1567 #ifdef CONFIG_SMP
1568 /*
1569 * We choose a half-life close to 1 scheduling period.
1570 * Note: The tables below are dependent on this value.
1571 */
1572 #define LOAD_AVG_PERIOD 32
1573 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1574 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1575
1576 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1577 static const u32 runnable_avg_yN_inv[] = {
1578 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1579 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1580 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1581 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1582 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1583 0x85aac367, 0x82cd8698,
1584 };
1585
1586 /*
1587 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1588 * over-estimates when re-combining.
1589 */
1590 static const u32 runnable_avg_yN_sum[] = {
1591 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1592 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1593 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1594 };
1595
1596 /*
1597 * Approximate:
1598 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1599 */
1600 static __always_inline u64 decay_load(u64 val, u64 n)
1601 {
1602 unsigned int local_n;
1603
1604 if (!n)
1605 return val;
1606 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1607 return 0;
1608
1609 /* after bounds checking we can collapse to 32-bit */
1610 local_n = n;
1611
1612 /*
1613 * As y^PERIOD = 1/2, we can combine
1614 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1615 * With a look-up table which covers k^n (n<PERIOD)
1616 *
1617 * To achieve constant time decay_load.
1618 */
1619 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1620 val >>= local_n / LOAD_AVG_PERIOD;
1621 local_n %= LOAD_AVG_PERIOD;
1622 }
1623
1624 val *= runnable_avg_yN_inv[local_n];
1625 /* We don't use SRR here since we always want to round down. */
1626 return val >> 32;
1627 }
1628
1629 /*
1630 * For updates fully spanning n periods, the contribution to runnable
1631 * average will be: \Sum 1024*y^n
1632 *
1633 * We can compute this reasonably efficiently by combining:
1634 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1635 */
1636 static u32 __compute_runnable_contrib(u64 n)
1637 {
1638 u32 contrib = 0;
1639
1640 if (likely(n <= LOAD_AVG_PERIOD))
1641 return runnable_avg_yN_sum[n];
1642 else if (unlikely(n >= LOAD_AVG_MAX_N))
1643 return LOAD_AVG_MAX;
1644
1645 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1646 do {
1647 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1648 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1649
1650 n -= LOAD_AVG_PERIOD;
1651 } while (n > LOAD_AVG_PERIOD);
1652
1653 contrib = decay_load(contrib, n);
1654 return contrib + runnable_avg_yN_sum[n];
1655 }
1656
1657 /*
1658 * We can represent the historical contribution to runnable average as the
1659 * coefficients of a geometric series. To do this we sub-divide our runnable
1660 * history into segments of approximately 1ms (1024us); label the segment that
1661 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1662 *
1663 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1664 * p0 p1 p2
1665 * (now) (~1ms ago) (~2ms ago)
1666 *
1667 * Let u_i denote the fraction of p_i that the entity was runnable.
1668 *
1669 * We then designate the fractions u_i as our co-efficients, yielding the
1670 * following representation of historical load:
1671 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1672 *
1673 * We choose y based on the with of a reasonably scheduling period, fixing:
1674 * y^32 = 0.5
1675 *
1676 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1677 * approximately half as much as the contribution to load within the last ms
1678 * (u_0).
1679 *
1680 * When a period "rolls over" and we have new u_0`, multiplying the previous
1681 * sum again by y is sufficient to update:
1682 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1683 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1684 */
1685 static __always_inline int __update_entity_runnable_avg(u64 now,
1686 struct sched_avg *sa,
1687 int runnable)
1688 {
1689 u64 delta, periods;
1690 u32 runnable_contrib;
1691 int delta_w, decayed = 0;
1692
1693 delta = now - sa->last_runnable_update;
1694 /*
1695 * This should only happen when time goes backwards, which it
1696 * unfortunately does during sched clock init when we swap over to TSC.
1697 */
1698 if ((s64)delta < 0) {
1699 sa->last_runnable_update = now;
1700 return 0;
1701 }
1702
1703 /*
1704 * Use 1024ns as the unit of measurement since it's a reasonable
1705 * approximation of 1us and fast to compute.
1706 */
1707 delta >>= 10;
1708 if (!delta)
1709 return 0;
1710 sa->last_runnable_update = now;
1711
1712 /* delta_w is the amount already accumulated against our next period */
1713 delta_w = sa->runnable_avg_period % 1024;
1714 if (delta + delta_w >= 1024) {
1715 /* period roll-over */
1716 decayed = 1;
1717
1718 /*
1719 * Now that we know we're crossing a period boundary, figure
1720 * out how much from delta we need to complete the current
1721 * period and accrue it.
1722 */
1723 delta_w = 1024 - delta_w;
1724 if (runnable)
1725 sa->runnable_avg_sum += delta_w;
1726 sa->runnable_avg_period += delta_w;
1727
1728 delta -= delta_w;
1729
1730 /* Figure out how many additional periods this update spans */
1731 periods = delta / 1024;
1732 delta %= 1024;
1733
1734 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1735 periods + 1);
1736 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1737 periods + 1);
1738
1739 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1740 runnable_contrib = __compute_runnable_contrib(periods);
1741 if (runnable)
1742 sa->runnable_avg_sum += runnable_contrib;
1743 sa->runnable_avg_period += runnable_contrib;
1744 }
1745
1746 /* Remainder of delta accrued against u_0` */
1747 if (runnable)
1748 sa->runnable_avg_sum += delta;
1749 sa->runnable_avg_period += delta;
1750
1751 return decayed;
1752 }
1753
1754 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1755 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1756 {
1757 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1758 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1759
1760 decays -= se->avg.decay_count;
1761 if (!decays)
1762 return 0;
1763
1764 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1765 se->avg.decay_count = 0;
1766
1767 return decays;
1768 }
1769
1770 #ifdef CONFIG_FAIR_GROUP_SCHED
1771 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1772 int force_update)
1773 {
1774 struct task_group *tg = cfs_rq->tg;
1775 long tg_contrib;
1776
1777 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1778 tg_contrib -= cfs_rq->tg_load_contrib;
1779
1780 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1781 atomic_long_add(tg_contrib, &tg->load_avg);
1782 cfs_rq->tg_load_contrib += tg_contrib;
1783 }
1784 }
1785
1786 /*
1787 * Aggregate cfs_rq runnable averages into an equivalent task_group
1788 * representation for computing load contributions.
1789 */
1790 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1791 struct cfs_rq *cfs_rq)
1792 {
1793 struct task_group *tg = cfs_rq->tg;
1794 long contrib;
1795
1796 /* The fraction of a cpu used by this cfs_rq */
1797 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1798 sa->runnable_avg_period + 1);
1799 contrib -= cfs_rq->tg_runnable_contrib;
1800
1801 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1802 atomic_add(contrib, &tg->runnable_avg);
1803 cfs_rq->tg_runnable_contrib += contrib;
1804 }
1805 }
1806
1807 static inline void __update_group_entity_contrib(struct sched_entity *se)
1808 {
1809 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1810 struct task_group *tg = cfs_rq->tg;
1811 int runnable_avg;
1812
1813 u64 contrib;
1814
1815 contrib = cfs_rq->tg_load_contrib * tg->shares;
1816 se->avg.load_avg_contrib = div_u64(contrib,
1817 atomic_long_read(&tg->load_avg) + 1);
1818
1819 /*
1820 * For group entities we need to compute a correction term in the case
1821 * that they are consuming <1 cpu so that we would contribute the same
1822 * load as a task of equal weight.
1823 *
1824 * Explicitly co-ordinating this measurement would be expensive, but
1825 * fortunately the sum of each cpus contribution forms a usable
1826 * lower-bound on the true value.
1827 *
1828 * Consider the aggregate of 2 contributions. Either they are disjoint
1829 * (and the sum represents true value) or they are disjoint and we are
1830 * understating by the aggregate of their overlap.
1831 *
1832 * Extending this to N cpus, for a given overlap, the maximum amount we
1833 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1834 * cpus that overlap for this interval and w_i is the interval width.
1835 *
1836 * On a small machine; the first term is well-bounded which bounds the
1837 * total error since w_i is a subset of the period. Whereas on a
1838 * larger machine, while this first term can be larger, if w_i is the
1839 * of consequential size guaranteed to see n_i*w_i quickly converge to
1840 * our upper bound of 1-cpu.
1841 */
1842 runnable_avg = atomic_read(&tg->runnable_avg);
1843 if (runnable_avg < NICE_0_LOAD) {
1844 se->avg.load_avg_contrib *= runnable_avg;
1845 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1846 }
1847 }
1848 #else
1849 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1850 int force_update) {}
1851 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1852 struct cfs_rq *cfs_rq) {}
1853 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1854 #endif
1855
1856 static inline void __update_task_entity_contrib(struct sched_entity *se)
1857 {
1858 u32 contrib;
1859
1860 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1861 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1862 contrib /= (se->avg.runnable_avg_period + 1);
1863 se->avg.load_avg_contrib = scale_load(contrib);
1864 }
1865
1866 /* Compute the current contribution to load_avg by se, return any delta */
1867 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1868 {
1869 long old_contrib = se->avg.load_avg_contrib;
1870
1871 if (entity_is_task(se)) {
1872 __update_task_entity_contrib(se);
1873 } else {
1874 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1875 __update_group_entity_contrib(se);
1876 }
1877
1878 return se->avg.load_avg_contrib - old_contrib;
1879 }
1880
1881 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1882 long load_contrib)
1883 {
1884 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1885 cfs_rq->blocked_load_avg -= load_contrib;
1886 else
1887 cfs_rq->blocked_load_avg = 0;
1888 }
1889
1890 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1891
1892 /* Update a sched_entity's runnable average */
1893 static inline void update_entity_load_avg(struct sched_entity *se,
1894 int update_cfs_rq)
1895 {
1896 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1897 long contrib_delta;
1898 u64 now;
1899
1900 /*
1901 * For a group entity we need to use their owned cfs_rq_clock_task() in
1902 * case they are the parent of a throttled hierarchy.
1903 */
1904 if (entity_is_task(se))
1905 now = cfs_rq_clock_task(cfs_rq);
1906 else
1907 now = cfs_rq_clock_task(group_cfs_rq(se));
1908
1909 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1910 return;
1911
1912 contrib_delta = __update_entity_load_avg_contrib(se);
1913
1914 if (!update_cfs_rq)
1915 return;
1916
1917 if (se->on_rq)
1918 cfs_rq->runnable_load_avg += contrib_delta;
1919 else
1920 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1921 }
1922
1923 /*
1924 * Decay the load contributed by all blocked children and account this so that
1925 * their contribution may appropriately discounted when they wake up.
1926 */
1927 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1928 {
1929 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1930 u64 decays;
1931
1932 decays = now - cfs_rq->last_decay;
1933 if (!decays && !force_update)
1934 return;
1935
1936 if (atomic_long_read(&cfs_rq->removed_load)) {
1937 unsigned long removed_load;
1938 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
1939 subtract_blocked_load_contrib(cfs_rq, removed_load);
1940 }
1941
1942 if (decays) {
1943 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1944 decays);
1945 atomic64_add(decays, &cfs_rq->decay_counter);
1946 cfs_rq->last_decay = now;
1947 }
1948
1949 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1950 }
1951
1952 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1953 {
1954 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
1955 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1956 }
1957
1958 /* Add the load generated by se into cfs_rq's child load-average */
1959 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1960 struct sched_entity *se,
1961 int wakeup)
1962 {
1963 /*
1964 * We track migrations using entity decay_count <= 0, on a wake-up
1965 * migration we use a negative decay count to track the remote decays
1966 * accumulated while sleeping.
1967 *
1968 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1969 * are seen by enqueue_entity_load_avg() as a migration with an already
1970 * constructed load_avg_contrib.
1971 */
1972 if (unlikely(se->avg.decay_count <= 0)) {
1973 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
1974 if (se->avg.decay_count) {
1975 /*
1976 * In a wake-up migration we have to approximate the
1977 * time sleeping. This is because we can't synchronize
1978 * clock_task between the two cpus, and it is not
1979 * guaranteed to be read-safe. Instead, we can
1980 * approximate this using our carried decays, which are
1981 * explicitly atomically readable.
1982 */
1983 se->avg.last_runnable_update -= (-se->avg.decay_count)
1984 << 20;
1985 update_entity_load_avg(se, 0);
1986 /* Indicate that we're now synchronized and on-rq */
1987 se->avg.decay_count = 0;
1988 }
1989 wakeup = 0;
1990 } else {
1991 /*
1992 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1993 * would have made count negative); we must be careful to avoid
1994 * double-accounting blocked time after synchronizing decays.
1995 */
1996 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1997 << 20;
1998 }
1999
2000 /* migrated tasks did not contribute to our blocked load */
2001 if (wakeup) {
2002 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2003 update_entity_load_avg(se, 0);
2004 }
2005
2006 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2007 /* we force update consideration on load-balancer moves */
2008 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2009 }
2010
2011 /*
2012 * Remove se's load from this cfs_rq child load-average, if the entity is
2013 * transitioning to a blocked state we track its projected decay using
2014 * blocked_load_avg.
2015 */
2016 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2017 struct sched_entity *se,
2018 int sleep)
2019 {
2020 update_entity_load_avg(se, 1);
2021 /* we force update consideration on load-balancer moves */
2022 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2023
2024 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2025 if (sleep) {
2026 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2027 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2028 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2029 }
2030
2031 /*
2032 * Update the rq's load with the elapsed running time before entering
2033 * idle. if the last scheduled task is not a CFS task, idle_enter will
2034 * be the only way to update the runnable statistic.
2035 */
2036 void idle_enter_fair(struct rq *this_rq)
2037 {
2038 update_rq_runnable_avg(this_rq, 1);
2039 }
2040
2041 /*
2042 * Update the rq's load with the elapsed idle time before a task is
2043 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2044 * be the only way to update the runnable statistic.
2045 */
2046 void idle_exit_fair(struct rq *this_rq)
2047 {
2048 update_rq_runnable_avg(this_rq, 0);
2049 }
2050
2051 #else
2052 static inline void update_entity_load_avg(struct sched_entity *se,
2053 int update_cfs_rq) {}
2054 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2055 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2056 struct sched_entity *se,
2057 int wakeup) {}
2058 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2059 struct sched_entity *se,
2060 int sleep) {}
2061 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2062 int force_update) {}
2063 #endif
2064
2065 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2066 {
2067 #ifdef CONFIG_SCHEDSTATS
2068 struct task_struct *tsk = NULL;
2069
2070 if (entity_is_task(se))
2071 tsk = task_of(se);
2072
2073 if (se->statistics.sleep_start) {
2074 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2075
2076 if ((s64)delta < 0)
2077 delta = 0;
2078
2079 if (unlikely(delta > se->statistics.sleep_max))
2080 se->statistics.sleep_max = delta;
2081
2082 se->statistics.sleep_start = 0;
2083 se->statistics.sum_sleep_runtime += delta;
2084
2085 if (tsk) {
2086 account_scheduler_latency(tsk, delta >> 10, 1);
2087 trace_sched_stat_sleep(tsk, delta);
2088 }
2089 }
2090 if (se->statistics.block_start) {
2091 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2092
2093 if ((s64)delta < 0)
2094 delta = 0;
2095
2096 if (unlikely(delta > se->statistics.block_max))
2097 se->statistics.block_max = delta;
2098
2099 se->statistics.block_start = 0;
2100 se->statistics.sum_sleep_runtime += delta;
2101
2102 if (tsk) {
2103 if (tsk->in_iowait) {
2104 se->statistics.iowait_sum += delta;
2105 se->statistics.iowait_count++;
2106 trace_sched_stat_iowait(tsk, delta);
2107 }
2108
2109 trace_sched_stat_blocked(tsk, delta);
2110
2111 /*
2112 * Blocking time is in units of nanosecs, so shift by
2113 * 20 to get a milliseconds-range estimation of the
2114 * amount of time that the task spent sleeping:
2115 */
2116 if (unlikely(prof_on == SLEEP_PROFILING)) {
2117 profile_hits(SLEEP_PROFILING,
2118 (void *)get_wchan(tsk),
2119 delta >> 20);
2120 }
2121 account_scheduler_latency(tsk, delta >> 10, 0);
2122 }
2123 }
2124 #endif
2125 }
2126
2127 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2128 {
2129 #ifdef CONFIG_SCHED_DEBUG
2130 s64 d = se->vruntime - cfs_rq->min_vruntime;
2131
2132 if (d < 0)
2133 d = -d;
2134
2135 if (d > 3*sysctl_sched_latency)
2136 schedstat_inc(cfs_rq, nr_spread_over);
2137 #endif
2138 }
2139
2140 static void
2141 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2142 {
2143 u64 vruntime = cfs_rq->min_vruntime;
2144
2145 /*
2146 * The 'current' period is already promised to the current tasks,
2147 * however the extra weight of the new task will slow them down a
2148 * little, place the new task so that it fits in the slot that
2149 * stays open at the end.
2150 */
2151 if (initial && sched_feat(START_DEBIT))
2152 vruntime += sched_vslice(cfs_rq, se);
2153
2154 /* sleeps up to a single latency don't count. */
2155 if (!initial) {
2156 unsigned long thresh = sysctl_sched_latency;
2157
2158 /*
2159 * Halve their sleep time's effect, to allow
2160 * for a gentler effect of sleepers:
2161 */
2162 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2163 thresh >>= 1;
2164
2165 vruntime -= thresh;
2166 }
2167
2168 /* ensure we never gain time by being placed backwards. */
2169 se->vruntime = max_vruntime(se->vruntime, vruntime);
2170 }
2171
2172 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2173
2174 static void
2175 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2176 {
2177 /*
2178 * Update the normalized vruntime before updating min_vruntime
2179 * through calling update_curr().
2180 */
2181 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2182 se->vruntime += cfs_rq->min_vruntime;
2183
2184 /*
2185 * Update run-time statistics of the 'current'.
2186 */
2187 update_curr(cfs_rq);
2188 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2189 account_entity_enqueue(cfs_rq, se);
2190 update_cfs_shares(cfs_rq);
2191
2192 if (flags & ENQUEUE_WAKEUP) {
2193 place_entity(cfs_rq, se, 0);
2194 enqueue_sleeper(cfs_rq, se);
2195 }
2196
2197 update_stats_enqueue(cfs_rq, se);
2198 check_spread(cfs_rq, se);
2199 if (se != cfs_rq->curr)
2200 __enqueue_entity(cfs_rq, se);
2201 se->on_rq = 1;
2202
2203 if (cfs_rq->nr_running == 1) {
2204 list_add_leaf_cfs_rq(cfs_rq);
2205 check_enqueue_throttle(cfs_rq);
2206 }
2207 }
2208
2209 static void __clear_buddies_last(struct sched_entity *se)
2210 {
2211 for_each_sched_entity(se) {
2212 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2213 if (cfs_rq->last == se)
2214 cfs_rq->last = NULL;
2215 else
2216 break;
2217 }
2218 }
2219
2220 static void __clear_buddies_next(struct sched_entity *se)
2221 {
2222 for_each_sched_entity(se) {
2223 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2224 if (cfs_rq->next == se)
2225 cfs_rq->next = NULL;
2226 else
2227 break;
2228 }
2229 }
2230
2231 static void __clear_buddies_skip(struct sched_entity *se)
2232 {
2233 for_each_sched_entity(se) {
2234 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2235 if (cfs_rq->skip == se)
2236 cfs_rq->skip = NULL;
2237 else
2238 break;
2239 }
2240 }
2241
2242 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2243 {
2244 if (cfs_rq->last == se)
2245 __clear_buddies_last(se);
2246
2247 if (cfs_rq->next == se)
2248 __clear_buddies_next(se);
2249
2250 if (cfs_rq->skip == se)
2251 __clear_buddies_skip(se);
2252 }
2253
2254 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2255
2256 static void
2257 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2258 {
2259 /*
2260 * Update run-time statistics of the 'current'.
2261 */
2262 update_curr(cfs_rq);
2263 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2264
2265 update_stats_dequeue(cfs_rq, se);
2266 if (flags & DEQUEUE_SLEEP) {
2267 #ifdef CONFIG_SCHEDSTATS
2268 if (entity_is_task(se)) {
2269 struct task_struct *tsk = task_of(se);
2270
2271 if (tsk->state & TASK_INTERRUPTIBLE)
2272 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2273 if (tsk->state & TASK_UNINTERRUPTIBLE)
2274 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2275 }
2276 #endif
2277 }
2278
2279 clear_buddies(cfs_rq, se);
2280
2281 if (se != cfs_rq->curr)
2282 __dequeue_entity(cfs_rq, se);
2283 se->on_rq = 0;
2284 account_entity_dequeue(cfs_rq, se);
2285
2286 /*
2287 * Normalize the entity after updating the min_vruntime because the
2288 * update can refer to the ->curr item and we need to reflect this
2289 * movement in our normalized position.
2290 */
2291 if (!(flags & DEQUEUE_SLEEP))
2292 se->vruntime -= cfs_rq->min_vruntime;
2293
2294 /* return excess runtime on last dequeue */
2295 return_cfs_rq_runtime(cfs_rq);
2296
2297 update_min_vruntime(cfs_rq);
2298 update_cfs_shares(cfs_rq);
2299 }
2300
2301 /*
2302 * Preempt the current task with a newly woken task if needed:
2303 */
2304 static void
2305 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2306 {
2307 unsigned long ideal_runtime, delta_exec;
2308 struct sched_entity *se;
2309 s64 delta;
2310
2311 ideal_runtime = sched_slice(cfs_rq, curr);
2312 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2313 if (delta_exec > ideal_runtime) {
2314 resched_task(rq_of(cfs_rq)->curr);
2315 /*
2316 * The current task ran long enough, ensure it doesn't get
2317 * re-elected due to buddy favours.
2318 */
2319 clear_buddies(cfs_rq, curr);
2320 return;
2321 }
2322
2323 /*
2324 * Ensure that a task that missed wakeup preemption by a
2325 * narrow margin doesn't have to wait for a full slice.
2326 * This also mitigates buddy induced latencies under load.
2327 */
2328 if (delta_exec < sysctl_sched_min_granularity)
2329 return;
2330
2331 se = __pick_first_entity(cfs_rq);
2332 delta = curr->vruntime - se->vruntime;
2333
2334 if (delta < 0)
2335 return;
2336
2337 if (delta > ideal_runtime)
2338 resched_task(rq_of(cfs_rq)->curr);
2339 }
2340
2341 static void
2342 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2343 {
2344 /* 'current' is not kept within the tree. */
2345 if (se->on_rq) {
2346 /*
2347 * Any task has to be enqueued before it get to execute on
2348 * a CPU. So account for the time it spent waiting on the
2349 * runqueue.
2350 */
2351 update_stats_wait_end(cfs_rq, se);
2352 __dequeue_entity(cfs_rq, se);
2353 }
2354
2355 update_stats_curr_start(cfs_rq, se);
2356 cfs_rq->curr = se;
2357 #ifdef CONFIG_SCHEDSTATS
2358 /*
2359 * Track our maximum slice length, if the CPU's load is at
2360 * least twice that of our own weight (i.e. dont track it
2361 * when there are only lesser-weight tasks around):
2362 */
2363 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2364 se->statistics.slice_max = max(se->statistics.slice_max,
2365 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2366 }
2367 #endif
2368 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2369 }
2370
2371 static int
2372 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2373
2374 /*
2375 * Pick the next process, keeping these things in mind, in this order:
2376 * 1) keep things fair between processes/task groups
2377 * 2) pick the "next" process, since someone really wants that to run
2378 * 3) pick the "last" process, for cache locality
2379 * 4) do not run the "skip" process, if something else is available
2380 */
2381 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2382 {
2383 struct sched_entity *se = __pick_first_entity(cfs_rq);
2384 struct sched_entity *left = se;
2385
2386 /*
2387 * Avoid running the skip buddy, if running something else can
2388 * be done without getting too unfair.
2389 */
2390 if (cfs_rq->skip == se) {
2391 struct sched_entity *second = __pick_next_entity(se);
2392 if (second && wakeup_preempt_entity(second, left) < 1)
2393 se = second;
2394 }
2395
2396 /*
2397 * Prefer last buddy, try to return the CPU to a preempted task.
2398 */
2399 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2400 se = cfs_rq->last;
2401
2402 /*
2403 * Someone really wants this to run. If it's not unfair, run it.
2404 */
2405 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2406 se = cfs_rq->next;
2407
2408 clear_buddies(cfs_rq, se);
2409
2410 return se;
2411 }
2412
2413 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2414
2415 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2416 {
2417 /*
2418 * If still on the runqueue then deactivate_task()
2419 * was not called and update_curr() has to be done:
2420 */
2421 if (prev->on_rq)
2422 update_curr(cfs_rq);
2423
2424 /* throttle cfs_rqs exceeding runtime */
2425 check_cfs_rq_runtime(cfs_rq);
2426
2427 check_spread(cfs_rq, prev);
2428 if (prev->on_rq) {
2429 update_stats_wait_start(cfs_rq, prev);
2430 /* Put 'current' back into the tree. */
2431 __enqueue_entity(cfs_rq, prev);
2432 /* in !on_rq case, update occurred at dequeue */
2433 update_entity_load_avg(prev, 1);
2434 }
2435 cfs_rq->curr = NULL;
2436 }
2437
2438 static void
2439 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2440 {
2441 /*
2442 * Update run-time statistics of the 'current'.
2443 */
2444 update_curr(cfs_rq);
2445
2446 /*
2447 * Ensure that runnable average is periodically updated.
2448 */
2449 update_entity_load_avg(curr, 1);
2450 update_cfs_rq_blocked_load(cfs_rq, 1);
2451 update_cfs_shares(cfs_rq);
2452
2453 #ifdef CONFIG_SCHED_HRTICK
2454 /*
2455 * queued ticks are scheduled to match the slice, so don't bother
2456 * validating it and just reschedule.
2457 */
2458 if (queued) {
2459 resched_task(rq_of(cfs_rq)->curr);
2460 return;
2461 }
2462 /*
2463 * don't let the period tick interfere with the hrtick preemption
2464 */
2465 if (!sched_feat(DOUBLE_TICK) &&
2466 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2467 return;
2468 #endif
2469
2470 if (cfs_rq->nr_running > 1)
2471 check_preempt_tick(cfs_rq, curr);
2472 }
2473
2474
2475 /**************************************************
2476 * CFS bandwidth control machinery
2477 */
2478
2479 #ifdef CONFIG_CFS_BANDWIDTH
2480
2481 #ifdef HAVE_JUMP_LABEL
2482 static struct static_key __cfs_bandwidth_used;
2483
2484 static inline bool cfs_bandwidth_used(void)
2485 {
2486 return static_key_false(&__cfs_bandwidth_used);
2487 }
2488
2489 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2490 {
2491 /* only need to count groups transitioning between enabled/!enabled */
2492 if (enabled && !was_enabled)
2493 static_key_slow_inc(&__cfs_bandwidth_used);
2494 else if (!enabled && was_enabled)
2495 static_key_slow_dec(&__cfs_bandwidth_used);
2496 }
2497 #else /* HAVE_JUMP_LABEL */
2498 static bool cfs_bandwidth_used(void)
2499 {
2500 return true;
2501 }
2502
2503 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2504 #endif /* HAVE_JUMP_LABEL */
2505
2506 /*
2507 * default period for cfs group bandwidth.
2508 * default: 0.1s, units: nanoseconds
2509 */
2510 static inline u64 default_cfs_period(void)
2511 {
2512 return 100000000ULL;
2513 }
2514
2515 static inline u64 sched_cfs_bandwidth_slice(void)
2516 {
2517 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2518 }
2519
2520 /*
2521 * Replenish runtime according to assigned quota and update expiration time.
2522 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2523 * additional synchronization around rq->lock.
2524 *
2525 * requires cfs_b->lock
2526 */
2527 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2528 {
2529 u64 now;
2530
2531 if (cfs_b->quota == RUNTIME_INF)
2532 return;
2533
2534 now = sched_clock_cpu(smp_processor_id());
2535 cfs_b->runtime = cfs_b->quota;
2536 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2537 }
2538
2539 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2540 {
2541 return &tg->cfs_bandwidth;
2542 }
2543
2544 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2545 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2546 {
2547 if (unlikely(cfs_rq->throttle_count))
2548 return cfs_rq->throttled_clock_task;
2549
2550 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2551 }
2552
2553 /* returns 0 on failure to allocate runtime */
2554 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2555 {
2556 struct task_group *tg = cfs_rq->tg;
2557 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2558 u64 amount = 0, min_amount, expires;
2559
2560 /* note: this is a positive sum as runtime_remaining <= 0 */
2561 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2562
2563 raw_spin_lock(&cfs_b->lock);
2564 if (cfs_b->quota == RUNTIME_INF)
2565 amount = min_amount;
2566 else {
2567 /*
2568 * If the bandwidth pool has become inactive, then at least one
2569 * period must have elapsed since the last consumption.
2570 * Refresh the global state and ensure bandwidth timer becomes
2571 * active.
2572 */
2573 if (!cfs_b->timer_active) {
2574 __refill_cfs_bandwidth_runtime(cfs_b);
2575 __start_cfs_bandwidth(cfs_b);
2576 }
2577
2578 if (cfs_b->runtime > 0) {
2579 amount = min(cfs_b->runtime, min_amount);
2580 cfs_b->runtime -= amount;
2581 cfs_b->idle = 0;
2582 }
2583 }
2584 expires = cfs_b->runtime_expires;
2585 raw_spin_unlock(&cfs_b->lock);
2586
2587 cfs_rq->runtime_remaining += amount;
2588 /*
2589 * we may have advanced our local expiration to account for allowed
2590 * spread between our sched_clock and the one on which runtime was
2591 * issued.
2592 */
2593 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2594 cfs_rq->runtime_expires = expires;
2595
2596 return cfs_rq->runtime_remaining > 0;
2597 }
2598
2599 /*
2600 * Note: This depends on the synchronization provided by sched_clock and the
2601 * fact that rq->clock snapshots this value.
2602 */
2603 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2604 {
2605 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2606
2607 /* if the deadline is ahead of our clock, nothing to do */
2608 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2609 return;
2610
2611 if (cfs_rq->runtime_remaining < 0)
2612 return;
2613
2614 /*
2615 * If the local deadline has passed we have to consider the
2616 * possibility that our sched_clock is 'fast' and the global deadline
2617 * has not truly expired.
2618 *
2619 * Fortunately we can check determine whether this the case by checking
2620 * whether the global deadline has advanced.
2621 */
2622
2623 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2624 /* extend local deadline, drift is bounded above by 2 ticks */
2625 cfs_rq->runtime_expires += TICK_NSEC;
2626 } else {
2627 /* global deadline is ahead, expiration has passed */
2628 cfs_rq->runtime_remaining = 0;
2629 }
2630 }
2631
2632 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2633 unsigned long delta_exec)
2634 {
2635 /* dock delta_exec before expiring quota (as it could span periods) */
2636 cfs_rq->runtime_remaining -= delta_exec;
2637 expire_cfs_rq_runtime(cfs_rq);
2638
2639 if (likely(cfs_rq->runtime_remaining > 0))
2640 return;
2641
2642 /*
2643 * if we're unable to extend our runtime we resched so that the active
2644 * hierarchy can be throttled
2645 */
2646 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2647 resched_task(rq_of(cfs_rq)->curr);
2648 }
2649
2650 static __always_inline
2651 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2652 {
2653 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2654 return;
2655
2656 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2657 }
2658
2659 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2660 {
2661 return cfs_bandwidth_used() && cfs_rq->throttled;
2662 }
2663
2664 /* check whether cfs_rq, or any parent, is throttled */
2665 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2666 {
2667 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2668 }
2669
2670 /*
2671 * Ensure that neither of the group entities corresponding to src_cpu or
2672 * dest_cpu are members of a throttled hierarchy when performing group
2673 * load-balance operations.
2674 */
2675 static inline int throttled_lb_pair(struct task_group *tg,
2676 int src_cpu, int dest_cpu)
2677 {
2678 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2679
2680 src_cfs_rq = tg->cfs_rq[src_cpu];
2681 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2682
2683 return throttled_hierarchy(src_cfs_rq) ||
2684 throttled_hierarchy(dest_cfs_rq);
2685 }
2686
2687 /* updated child weight may affect parent so we have to do this bottom up */
2688 static int tg_unthrottle_up(struct task_group *tg, void *data)
2689 {
2690 struct rq *rq = data;
2691 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2692
2693 cfs_rq->throttle_count--;
2694 #ifdef CONFIG_SMP
2695 if (!cfs_rq->throttle_count) {
2696 /* adjust cfs_rq_clock_task() */
2697 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
2698 cfs_rq->throttled_clock_task;
2699 }
2700 #endif
2701
2702 return 0;
2703 }
2704
2705 static int tg_throttle_down(struct task_group *tg, void *data)
2706 {
2707 struct rq *rq = data;
2708 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2709
2710 /* group is entering throttled state, stop time */
2711 if (!cfs_rq->throttle_count)
2712 cfs_rq->throttled_clock_task = rq_clock_task(rq);
2713 cfs_rq->throttle_count++;
2714
2715 return 0;
2716 }
2717
2718 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2719 {
2720 struct rq *rq = rq_of(cfs_rq);
2721 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2722 struct sched_entity *se;
2723 long task_delta, dequeue = 1;
2724
2725 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2726
2727 /* freeze hierarchy runnable averages while throttled */
2728 rcu_read_lock();
2729 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2730 rcu_read_unlock();
2731
2732 task_delta = cfs_rq->h_nr_running;
2733 for_each_sched_entity(se) {
2734 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2735 /* throttled entity or throttle-on-deactivate */
2736 if (!se->on_rq)
2737 break;
2738
2739 if (dequeue)
2740 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2741 qcfs_rq->h_nr_running -= task_delta;
2742
2743 if (qcfs_rq->load.weight)
2744 dequeue = 0;
2745 }
2746
2747 if (!se)
2748 rq->nr_running -= task_delta;
2749
2750 cfs_rq->throttled = 1;
2751 cfs_rq->throttled_clock = rq_clock(rq);
2752 raw_spin_lock(&cfs_b->lock);
2753 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2754 raw_spin_unlock(&cfs_b->lock);
2755 }
2756
2757 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2758 {
2759 struct rq *rq = rq_of(cfs_rq);
2760 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2761 struct sched_entity *se;
2762 int enqueue = 1;
2763 long task_delta;
2764
2765 se = cfs_rq->tg->se[cpu_of(rq)];
2766
2767 cfs_rq->throttled = 0;
2768
2769 update_rq_clock(rq);
2770
2771 raw_spin_lock(&cfs_b->lock);
2772 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
2773 list_del_rcu(&cfs_rq->throttled_list);
2774 raw_spin_unlock(&cfs_b->lock);
2775
2776 /* update hierarchical throttle state */
2777 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2778
2779 if (!cfs_rq->load.weight)
2780 return;
2781
2782 task_delta = cfs_rq->h_nr_running;
2783 for_each_sched_entity(se) {
2784 if (se->on_rq)
2785 enqueue = 0;
2786
2787 cfs_rq = cfs_rq_of(se);
2788 if (enqueue)
2789 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2790 cfs_rq->h_nr_running += task_delta;
2791
2792 if (cfs_rq_throttled(cfs_rq))
2793 break;
2794 }
2795
2796 if (!se)
2797 rq->nr_running += task_delta;
2798
2799 /* determine whether we need to wake up potentially idle cpu */
2800 if (rq->curr == rq->idle && rq->cfs.nr_running)
2801 resched_task(rq->curr);
2802 }
2803
2804 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2805 u64 remaining, u64 expires)
2806 {
2807 struct cfs_rq *cfs_rq;
2808 u64 runtime = remaining;
2809
2810 rcu_read_lock();
2811 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2812 throttled_list) {
2813 struct rq *rq = rq_of(cfs_rq);
2814
2815 raw_spin_lock(&rq->lock);
2816 if (!cfs_rq_throttled(cfs_rq))
2817 goto next;
2818
2819 runtime = -cfs_rq->runtime_remaining + 1;
2820 if (runtime > remaining)
2821 runtime = remaining;
2822 remaining -= runtime;
2823
2824 cfs_rq->runtime_remaining += runtime;
2825 cfs_rq->runtime_expires = expires;
2826
2827 /* we check whether we're throttled above */
2828 if (cfs_rq->runtime_remaining > 0)
2829 unthrottle_cfs_rq(cfs_rq);
2830
2831 next:
2832 raw_spin_unlock(&rq->lock);
2833
2834 if (!remaining)
2835 break;
2836 }
2837 rcu_read_unlock();
2838
2839 return remaining;
2840 }
2841
2842 /*
2843 * Responsible for refilling a task_group's bandwidth and unthrottling its
2844 * cfs_rqs as appropriate. If there has been no activity within the last
2845 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2846 * used to track this state.
2847 */
2848 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2849 {
2850 u64 runtime, runtime_expires;
2851 int idle = 1, throttled;
2852
2853 raw_spin_lock(&cfs_b->lock);
2854 /* no need to continue the timer with no bandwidth constraint */
2855 if (cfs_b->quota == RUNTIME_INF)
2856 goto out_unlock;
2857
2858 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2859 /* idle depends on !throttled (for the case of a large deficit) */
2860 idle = cfs_b->idle && !throttled;
2861 cfs_b->nr_periods += overrun;
2862
2863 /* if we're going inactive then everything else can be deferred */
2864 if (idle)
2865 goto out_unlock;
2866
2867 __refill_cfs_bandwidth_runtime(cfs_b);
2868
2869 if (!throttled) {
2870 /* mark as potentially idle for the upcoming period */
2871 cfs_b->idle = 1;
2872 goto out_unlock;
2873 }
2874
2875 /* account preceding periods in which throttling occurred */
2876 cfs_b->nr_throttled += overrun;
2877
2878 /*
2879 * There are throttled entities so we must first use the new bandwidth
2880 * to unthrottle them before making it generally available. This
2881 * ensures that all existing debts will be paid before a new cfs_rq is
2882 * allowed to run.
2883 */
2884 runtime = cfs_b->runtime;
2885 runtime_expires = cfs_b->runtime_expires;
2886 cfs_b->runtime = 0;
2887
2888 /*
2889 * This check is repeated as we are holding onto the new bandwidth
2890 * while we unthrottle. This can potentially race with an unthrottled
2891 * group trying to acquire new bandwidth from the global pool.
2892 */
2893 while (throttled && runtime > 0) {
2894 raw_spin_unlock(&cfs_b->lock);
2895 /* we can't nest cfs_b->lock while distributing bandwidth */
2896 runtime = distribute_cfs_runtime(cfs_b, runtime,
2897 runtime_expires);
2898 raw_spin_lock(&cfs_b->lock);
2899
2900 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2901 }
2902
2903 /* return (any) remaining runtime */
2904 cfs_b->runtime = runtime;
2905 /*
2906 * While we are ensured activity in the period following an
2907 * unthrottle, this also covers the case in which the new bandwidth is
2908 * insufficient to cover the existing bandwidth deficit. (Forcing the
2909 * timer to remain active while there are any throttled entities.)
2910 */
2911 cfs_b->idle = 0;
2912 out_unlock:
2913 if (idle)
2914 cfs_b->timer_active = 0;
2915 raw_spin_unlock(&cfs_b->lock);
2916
2917 return idle;
2918 }
2919
2920 /* a cfs_rq won't donate quota below this amount */
2921 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2922 /* minimum remaining period time to redistribute slack quota */
2923 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2924 /* how long we wait to gather additional slack before distributing */
2925 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2926
2927 /* are we near the end of the current quota period? */
2928 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2929 {
2930 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2931 u64 remaining;
2932
2933 /* if the call-back is running a quota refresh is already occurring */
2934 if (hrtimer_callback_running(refresh_timer))
2935 return 1;
2936
2937 /* is a quota refresh about to occur? */
2938 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2939 if (remaining < min_expire)
2940 return 1;
2941
2942 return 0;
2943 }
2944
2945 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2946 {
2947 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2948
2949 /* if there's a quota refresh soon don't bother with slack */
2950 if (runtime_refresh_within(cfs_b, min_left))
2951 return;
2952
2953 start_bandwidth_timer(&cfs_b->slack_timer,
2954 ns_to_ktime(cfs_bandwidth_slack_period));
2955 }
2956
2957 /* we know any runtime found here is valid as update_curr() precedes return */
2958 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2959 {
2960 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2961 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2962
2963 if (slack_runtime <= 0)
2964 return;
2965
2966 raw_spin_lock(&cfs_b->lock);
2967 if (cfs_b->quota != RUNTIME_INF &&
2968 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2969 cfs_b->runtime += slack_runtime;
2970
2971 /* we are under rq->lock, defer unthrottling using a timer */
2972 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2973 !list_empty(&cfs_b->throttled_cfs_rq))
2974 start_cfs_slack_bandwidth(cfs_b);
2975 }
2976 raw_spin_unlock(&cfs_b->lock);
2977
2978 /* even if it's not valid for return we don't want to try again */
2979 cfs_rq->runtime_remaining -= slack_runtime;
2980 }
2981
2982 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2983 {
2984 if (!cfs_bandwidth_used())
2985 return;
2986
2987 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2988 return;
2989
2990 __return_cfs_rq_runtime(cfs_rq);
2991 }
2992
2993 /*
2994 * This is done with a timer (instead of inline with bandwidth return) since
2995 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2996 */
2997 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2998 {
2999 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3000 u64 expires;
3001
3002 /* confirm we're still not at a refresh boundary */
3003 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3004 return;
3005
3006 raw_spin_lock(&cfs_b->lock);
3007 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3008 runtime = cfs_b->runtime;
3009 cfs_b->runtime = 0;
3010 }
3011 expires = cfs_b->runtime_expires;
3012 raw_spin_unlock(&cfs_b->lock);
3013
3014 if (!runtime)
3015 return;
3016
3017 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3018
3019 raw_spin_lock(&cfs_b->lock);
3020 if (expires == cfs_b->runtime_expires)
3021 cfs_b->runtime = runtime;
3022 raw_spin_unlock(&cfs_b->lock);
3023 }
3024
3025 /*
3026 * When a group wakes up we want to make sure that its quota is not already
3027 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3028 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3029 */
3030 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3031 {
3032 if (!cfs_bandwidth_used())
3033 return;
3034
3035 /* an active group must be handled by the update_curr()->put() path */
3036 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3037 return;
3038
3039 /* ensure the group is not already throttled */
3040 if (cfs_rq_throttled(cfs_rq))
3041 return;
3042
3043 /* update runtime allocation */
3044 account_cfs_rq_runtime(cfs_rq, 0);
3045 if (cfs_rq->runtime_remaining <= 0)
3046 throttle_cfs_rq(cfs_rq);
3047 }
3048
3049 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3050 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3051 {
3052 if (!cfs_bandwidth_used())
3053 return;
3054
3055 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3056 return;
3057
3058 /*
3059 * it's possible for a throttled entity to be forced into a running
3060 * state (e.g. set_curr_task), in this case we're finished.
3061 */
3062 if (cfs_rq_throttled(cfs_rq))
3063 return;
3064
3065 throttle_cfs_rq(cfs_rq);
3066 }
3067
3068 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3069 {
3070 struct cfs_bandwidth *cfs_b =
3071 container_of(timer, struct cfs_bandwidth, slack_timer);
3072 do_sched_cfs_slack_timer(cfs_b);
3073
3074 return HRTIMER_NORESTART;
3075 }
3076
3077 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3078 {
3079 struct cfs_bandwidth *cfs_b =
3080 container_of(timer, struct cfs_bandwidth, period_timer);
3081 ktime_t now;
3082 int overrun;
3083 int idle = 0;
3084
3085 for (;;) {
3086 now = hrtimer_cb_get_time(timer);
3087 overrun = hrtimer_forward(timer, now, cfs_b->period);
3088
3089 if (!overrun)
3090 break;
3091
3092 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3093 }
3094
3095 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3096 }
3097
3098 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3099 {
3100 raw_spin_lock_init(&cfs_b->lock);
3101 cfs_b->runtime = 0;
3102 cfs_b->quota = RUNTIME_INF;
3103 cfs_b->period = ns_to_ktime(default_cfs_period());
3104
3105 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3106 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3107 cfs_b->period_timer.function = sched_cfs_period_timer;
3108 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3109 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3110 }
3111
3112 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3113 {
3114 cfs_rq->runtime_enabled = 0;
3115 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3116 }
3117
3118 /* requires cfs_b->lock, may release to reprogram timer */
3119 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3120 {
3121 /*
3122 * The timer may be active because we're trying to set a new bandwidth
3123 * period or because we're racing with the tear-down path
3124 * (timer_active==0 becomes visible before the hrtimer call-back
3125 * terminates). In either case we ensure that it's re-programmed
3126 */
3127 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3128 raw_spin_unlock(&cfs_b->lock);
3129 /* ensure cfs_b->lock is available while we wait */
3130 hrtimer_cancel(&cfs_b->period_timer);
3131
3132 raw_spin_lock(&cfs_b->lock);
3133 /* if someone else restarted the timer then we're done */
3134 if (cfs_b->timer_active)
3135 return;
3136 }
3137
3138 cfs_b->timer_active = 1;
3139 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3140 }
3141
3142 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3143 {
3144 hrtimer_cancel(&cfs_b->period_timer);
3145 hrtimer_cancel(&cfs_b->slack_timer);
3146 }
3147
3148 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3149 {
3150 struct cfs_rq *cfs_rq;
3151
3152 for_each_leaf_cfs_rq(rq, cfs_rq) {
3153 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3154
3155 if (!cfs_rq->runtime_enabled)
3156 continue;
3157
3158 /*
3159 * clock_task is not advancing so we just need to make sure
3160 * there's some valid quota amount
3161 */
3162 cfs_rq->runtime_remaining = cfs_b->quota;
3163 if (cfs_rq_throttled(cfs_rq))
3164 unthrottle_cfs_rq(cfs_rq);
3165 }
3166 }
3167
3168 #else /* CONFIG_CFS_BANDWIDTH */
3169 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3170 {
3171 return rq_clock_task(rq_of(cfs_rq));
3172 }
3173
3174 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3175 unsigned long delta_exec) {}
3176 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3177 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3178 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3179
3180 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3181 {
3182 return 0;
3183 }
3184
3185 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3186 {
3187 return 0;
3188 }
3189
3190 static inline int throttled_lb_pair(struct task_group *tg,
3191 int src_cpu, int dest_cpu)
3192 {
3193 return 0;
3194 }
3195
3196 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3197
3198 #ifdef CONFIG_FAIR_GROUP_SCHED
3199 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3200 #endif
3201
3202 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3203 {
3204 return NULL;
3205 }
3206 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3207 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3208
3209 #endif /* CONFIG_CFS_BANDWIDTH */
3210
3211 /**************************************************
3212 * CFS operations on tasks:
3213 */
3214
3215 #ifdef CONFIG_SCHED_HRTICK
3216 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3217 {
3218 struct sched_entity *se = &p->se;
3219 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3220
3221 WARN_ON(task_rq(p) != rq);
3222
3223 if (cfs_rq->nr_running > 1) {
3224 u64 slice = sched_slice(cfs_rq, se);
3225 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3226 s64 delta = slice - ran;
3227
3228 if (delta < 0) {
3229 if (rq->curr == p)
3230 resched_task(p);
3231 return;
3232 }
3233
3234 /*
3235 * Don't schedule slices shorter than 10000ns, that just
3236 * doesn't make sense. Rely on vruntime for fairness.
3237 */
3238 if (rq->curr != p)
3239 delta = max_t(s64, 10000LL, delta);
3240
3241 hrtick_start(rq, delta);
3242 }
3243 }
3244
3245 /*
3246 * called from enqueue/dequeue and updates the hrtick when the
3247 * current task is from our class and nr_running is low enough
3248 * to matter.
3249 */
3250 static void hrtick_update(struct rq *rq)
3251 {
3252 struct task_struct *curr = rq->curr;
3253
3254 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3255 return;
3256
3257 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3258 hrtick_start_fair(rq, curr);
3259 }
3260 #else /* !CONFIG_SCHED_HRTICK */
3261 static inline void
3262 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3263 {
3264 }
3265
3266 static inline void hrtick_update(struct rq *rq)
3267 {
3268 }
3269 #endif
3270
3271 /*
3272 * The enqueue_task method is called before nr_running is
3273 * increased. Here we update the fair scheduling stats and
3274 * then put the task into the rbtree:
3275 */
3276 static void
3277 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3278 {
3279 struct cfs_rq *cfs_rq;
3280 struct sched_entity *se = &p->se;
3281
3282 for_each_sched_entity(se) {
3283 if (se->on_rq)
3284 break;
3285 cfs_rq = cfs_rq_of(se);
3286 enqueue_entity(cfs_rq, se, flags);
3287
3288 /*
3289 * end evaluation on encountering a throttled cfs_rq
3290 *
3291 * note: in the case of encountering a throttled cfs_rq we will
3292 * post the final h_nr_running increment below.
3293 */
3294 if (cfs_rq_throttled(cfs_rq))
3295 break;
3296 cfs_rq->h_nr_running++;
3297
3298 flags = ENQUEUE_WAKEUP;
3299 }
3300
3301 for_each_sched_entity(se) {
3302 cfs_rq = cfs_rq_of(se);
3303 cfs_rq->h_nr_running++;
3304
3305 if (cfs_rq_throttled(cfs_rq))
3306 break;
3307
3308 update_cfs_shares(cfs_rq);
3309 update_entity_load_avg(se, 1);
3310 }
3311
3312 if (!se) {
3313 update_rq_runnable_avg(rq, rq->nr_running);
3314 inc_nr_running(rq);
3315 }
3316 hrtick_update(rq);
3317 }
3318
3319 static void set_next_buddy(struct sched_entity *se);
3320
3321 /*
3322 * The dequeue_task method is called before nr_running is
3323 * decreased. We remove the task from the rbtree and
3324 * update the fair scheduling stats:
3325 */
3326 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3327 {
3328 struct cfs_rq *cfs_rq;
3329 struct sched_entity *se = &p->se;
3330 int task_sleep = flags & DEQUEUE_SLEEP;
3331
3332 for_each_sched_entity(se) {
3333 cfs_rq = cfs_rq_of(se);
3334 dequeue_entity(cfs_rq, se, flags);
3335
3336 /*
3337 * end evaluation on encountering a throttled cfs_rq
3338 *
3339 * note: in the case of encountering a throttled cfs_rq we will
3340 * post the final h_nr_running decrement below.
3341 */
3342 if (cfs_rq_throttled(cfs_rq))
3343 break;
3344 cfs_rq->h_nr_running--;
3345
3346 /* Don't dequeue parent if it has other entities besides us */
3347 if (cfs_rq->load.weight) {
3348 /*
3349 * Bias pick_next to pick a task from this cfs_rq, as
3350 * p is sleeping when it is within its sched_slice.
3351 */
3352 if (task_sleep && parent_entity(se))
3353 set_next_buddy(parent_entity(se));
3354
3355 /* avoid re-evaluating load for this entity */
3356 se = parent_entity(se);
3357 break;
3358 }
3359 flags |= DEQUEUE_SLEEP;
3360 }
3361
3362 for_each_sched_entity(se) {
3363 cfs_rq = cfs_rq_of(se);
3364 cfs_rq->h_nr_running--;
3365
3366 if (cfs_rq_throttled(cfs_rq))
3367 break;
3368
3369 update_cfs_shares(cfs_rq);
3370 update_entity_load_avg(se, 1);
3371 }
3372
3373 if (!se) {
3374 dec_nr_running(rq);
3375 update_rq_runnable_avg(rq, 1);
3376 }
3377 hrtick_update(rq);
3378 }
3379
3380 #ifdef CONFIG_SMP
3381 /* Used instead of source_load when we know the type == 0 */
3382 static unsigned long weighted_cpuload(const int cpu)
3383 {
3384 return cpu_rq(cpu)->cfs.runnable_load_avg;
3385 }
3386
3387 /*
3388 * Return a low guess at the load of a migration-source cpu weighted
3389 * according to the scheduling class and "nice" value.
3390 *
3391 * We want to under-estimate the load of migration sources, to
3392 * balance conservatively.
3393 */
3394 static unsigned long source_load(int cpu, int type)
3395 {
3396 struct rq *rq = cpu_rq(cpu);
3397 unsigned long total = weighted_cpuload(cpu);
3398
3399 if (type == 0 || !sched_feat(LB_BIAS))
3400 return total;
3401
3402 return min(rq->cpu_load[type-1], total);
3403 }
3404
3405 /*
3406 * Return a high guess at the load of a migration-target cpu weighted
3407 * according to the scheduling class and "nice" value.
3408 */
3409 static unsigned long target_load(int cpu, int type)
3410 {
3411 struct rq *rq = cpu_rq(cpu);
3412 unsigned long total = weighted_cpuload(cpu);
3413
3414 if (type == 0 || !sched_feat(LB_BIAS))
3415 return total;
3416
3417 return max(rq->cpu_load[type-1], total);
3418 }
3419
3420 static unsigned long power_of(int cpu)
3421 {
3422 return cpu_rq(cpu)->cpu_power;
3423 }
3424
3425 static unsigned long cpu_avg_load_per_task(int cpu)
3426 {
3427 struct rq *rq = cpu_rq(cpu);
3428 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3429 unsigned long load_avg = rq->cfs.runnable_load_avg;
3430
3431 if (nr_running)
3432 return load_avg / nr_running;
3433
3434 return 0;
3435 }
3436
3437 static void record_wakee(struct task_struct *p)
3438 {
3439 /*
3440 * Rough decay (wiping) for cost saving, don't worry
3441 * about the boundary, really active task won't care
3442 * about the loss.
3443 */
3444 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3445 current->wakee_flips = 0;
3446 current->wakee_flip_decay_ts = jiffies;
3447 }
3448
3449 if (current->last_wakee != p) {
3450 current->last_wakee = p;
3451 current->wakee_flips++;
3452 }
3453 }
3454
3455 static void task_waking_fair(struct task_struct *p)
3456 {
3457 struct sched_entity *se = &p->se;
3458 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3459 u64 min_vruntime;
3460
3461 #ifndef CONFIG_64BIT
3462 u64 min_vruntime_copy;
3463
3464 do {
3465 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3466 smp_rmb();
3467 min_vruntime = cfs_rq->min_vruntime;
3468 } while (min_vruntime != min_vruntime_copy);
3469 #else
3470 min_vruntime = cfs_rq->min_vruntime;
3471 #endif
3472
3473 se->vruntime -= min_vruntime;
3474 record_wakee(p);
3475 }
3476
3477 #ifdef CONFIG_FAIR_GROUP_SCHED
3478 /*
3479 * effective_load() calculates the load change as seen from the root_task_group
3480 *
3481 * Adding load to a group doesn't make a group heavier, but can cause movement
3482 * of group shares between cpus. Assuming the shares were perfectly aligned one
3483 * can calculate the shift in shares.
3484 *
3485 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3486 * on this @cpu and results in a total addition (subtraction) of @wg to the
3487 * total group weight.
3488 *
3489 * Given a runqueue weight distribution (rw_i) we can compute a shares
3490 * distribution (s_i) using:
3491 *
3492 * s_i = rw_i / \Sum rw_j (1)
3493 *
3494 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3495 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3496 * shares distribution (s_i):
3497 *
3498 * rw_i = { 2, 4, 1, 0 }
3499 * s_i = { 2/7, 4/7, 1/7, 0 }
3500 *
3501 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3502 * task used to run on and the CPU the waker is running on), we need to
3503 * compute the effect of waking a task on either CPU and, in case of a sync
3504 * wakeup, compute the effect of the current task going to sleep.
3505 *
3506 * So for a change of @wl to the local @cpu with an overall group weight change
3507 * of @wl we can compute the new shares distribution (s'_i) using:
3508 *
3509 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3510 *
3511 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3512 * differences in waking a task to CPU 0. The additional task changes the
3513 * weight and shares distributions like:
3514 *
3515 * rw'_i = { 3, 4, 1, 0 }
3516 * s'_i = { 3/8, 4/8, 1/8, 0 }
3517 *
3518 * We can then compute the difference in effective weight by using:
3519 *
3520 * dw_i = S * (s'_i - s_i) (3)
3521 *
3522 * Where 'S' is the group weight as seen by its parent.
3523 *
3524 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3525 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3526 * 4/7) times the weight of the group.
3527 */
3528 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3529 {
3530 struct sched_entity *se = tg->se[cpu];
3531
3532 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
3533 return wl;
3534
3535 for_each_sched_entity(se) {
3536 long w, W;
3537
3538 tg = se->my_q->tg;
3539
3540 /*
3541 * W = @wg + \Sum rw_j
3542 */
3543 W = wg + calc_tg_weight(tg, se->my_q);
3544
3545 /*
3546 * w = rw_i + @wl
3547 */
3548 w = se->my_q->load.weight + wl;
3549
3550 /*
3551 * wl = S * s'_i; see (2)
3552 */
3553 if (W > 0 && w < W)
3554 wl = (w * tg->shares) / W;
3555 else
3556 wl = tg->shares;
3557
3558 /*
3559 * Per the above, wl is the new se->load.weight value; since
3560 * those are clipped to [MIN_SHARES, ...) do so now. See
3561 * calc_cfs_shares().
3562 */
3563 if (wl < MIN_SHARES)
3564 wl = MIN_SHARES;
3565
3566 /*
3567 * wl = dw_i = S * (s'_i - s_i); see (3)
3568 */
3569 wl -= se->load.weight;
3570
3571 /*
3572 * Recursively apply this logic to all parent groups to compute
3573 * the final effective load change on the root group. Since
3574 * only the @tg group gets extra weight, all parent groups can
3575 * only redistribute existing shares. @wl is the shift in shares
3576 * resulting from this level per the above.
3577 */
3578 wg = 0;
3579 }
3580
3581 return wl;
3582 }
3583 #else
3584
3585 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3586 {
3587 return wl;
3588 }
3589
3590 #endif
3591
3592 static int wake_wide(struct task_struct *p)
3593 {
3594 int factor = this_cpu_read(sd_llc_size);
3595
3596 /*
3597 * Yeah, it's the switching-frequency, could means many wakee or
3598 * rapidly switch, use factor here will just help to automatically
3599 * adjust the loose-degree, so bigger node will lead to more pull.
3600 */
3601 if (p->wakee_flips > factor) {
3602 /*
3603 * wakee is somewhat hot, it needs certain amount of cpu
3604 * resource, so if waker is far more hot, prefer to leave
3605 * it alone.
3606 */
3607 if (current->wakee_flips > (factor * p->wakee_flips))
3608 return 1;
3609 }
3610
3611 return 0;
3612 }
3613
3614 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3615 {
3616 s64 this_load, load;
3617 int idx, this_cpu, prev_cpu;
3618 unsigned long tl_per_task;
3619 struct task_group *tg;
3620 unsigned long weight;
3621 int balanced;
3622
3623 /*
3624 * If we wake multiple tasks be careful to not bounce
3625 * ourselves around too much.
3626 */
3627 if (wake_wide(p))
3628 return 0;
3629
3630 idx = sd->wake_idx;
3631 this_cpu = smp_processor_id();
3632 prev_cpu = task_cpu(p);
3633 load = source_load(prev_cpu, idx);
3634 this_load = target_load(this_cpu, idx);
3635
3636 /*
3637 * If sync wakeup then subtract the (maximum possible)
3638 * effect of the currently running task from the load
3639 * of the current CPU:
3640 */
3641 if (sync) {
3642 tg = task_group(current);
3643 weight = current->se.load.weight;
3644
3645 this_load += effective_load(tg, this_cpu, -weight, -weight);
3646 load += effective_load(tg, prev_cpu, 0, -weight);
3647 }
3648
3649 tg = task_group(p);
3650 weight = p->se.load.weight;
3651
3652 /*
3653 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3654 * due to the sync cause above having dropped this_load to 0, we'll
3655 * always have an imbalance, but there's really nothing you can do
3656 * about that, so that's good too.
3657 *
3658 * Otherwise check if either cpus are near enough in load to allow this
3659 * task to be woken on this_cpu.
3660 */
3661 if (this_load > 0) {
3662 s64 this_eff_load, prev_eff_load;
3663
3664 this_eff_load = 100;
3665 this_eff_load *= power_of(prev_cpu);
3666 this_eff_load *= this_load +
3667 effective_load(tg, this_cpu, weight, weight);
3668
3669 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3670 prev_eff_load *= power_of(this_cpu);
3671 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3672
3673 balanced = this_eff_load <= prev_eff_load;
3674 } else
3675 balanced = true;
3676
3677 /*
3678 * If the currently running task will sleep within
3679 * a reasonable amount of time then attract this newly
3680 * woken task:
3681 */
3682 if (sync && balanced)
3683 return 1;
3684
3685 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3686 tl_per_task = cpu_avg_load_per_task(this_cpu);
3687
3688 if (balanced ||
3689 (this_load <= load &&
3690 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3691 /*
3692 * This domain has SD_WAKE_AFFINE and
3693 * p is cache cold in this domain, and
3694 * there is no bad imbalance.
3695 */
3696 schedstat_inc(sd, ttwu_move_affine);
3697 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3698
3699 return 1;
3700 }
3701 return 0;
3702 }
3703
3704 /*
3705 * find_idlest_group finds and returns the least busy CPU group within the
3706 * domain.
3707 */
3708 static struct sched_group *
3709 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3710 int this_cpu, int load_idx)
3711 {
3712 struct sched_group *idlest = NULL, *group = sd->groups;
3713 unsigned long min_load = ULONG_MAX, this_load = 0;
3714 int imbalance = 100 + (sd->imbalance_pct-100)/2;
3715
3716 do {
3717 unsigned long load, avg_load;
3718 int local_group;
3719 int i;
3720
3721 /* Skip over this group if it has no CPUs allowed */
3722 if (!cpumask_intersects(sched_group_cpus(group),
3723 tsk_cpus_allowed(p)))
3724 continue;
3725
3726 local_group = cpumask_test_cpu(this_cpu,
3727 sched_group_cpus(group));
3728
3729 /* Tally up the load of all CPUs in the group */
3730 avg_load = 0;
3731
3732 for_each_cpu(i, sched_group_cpus(group)) {
3733 /* Bias balancing toward cpus of our domain */
3734 if (local_group)
3735 load = source_load(i, load_idx);
3736 else
3737 load = target_load(i, load_idx);
3738
3739 avg_load += load;
3740 }
3741
3742 /* Adjust by relative CPU power of the group */
3743 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3744
3745 if (local_group) {
3746 this_load = avg_load;
3747 } else if (avg_load < min_load) {
3748 min_load = avg_load;
3749 idlest = group;
3750 }
3751 } while (group = group->next, group != sd->groups);
3752
3753 if (!idlest || 100*this_load < imbalance*min_load)
3754 return NULL;
3755 return idlest;
3756 }
3757
3758 /*
3759 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3760 */
3761 static int
3762 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3763 {
3764 unsigned long load, min_load = ULONG_MAX;
3765 int idlest = -1;
3766 int i;
3767
3768 /* Traverse only the allowed CPUs */
3769 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3770 load = weighted_cpuload(i);
3771
3772 if (load < min_load || (load == min_load && i == this_cpu)) {
3773 min_load = load;
3774 idlest = i;
3775 }
3776 }
3777
3778 return idlest;
3779 }
3780
3781 /*
3782 * Try and locate an idle CPU in the sched_domain.
3783 */
3784 static int select_idle_sibling(struct task_struct *p, int target)
3785 {
3786 struct sched_domain *sd;
3787 struct sched_group *sg;
3788 int i = task_cpu(p);
3789
3790 if (idle_cpu(target))
3791 return target;
3792
3793 /*
3794 * If the prevous cpu is cache affine and idle, don't be stupid.
3795 */
3796 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3797 return i;
3798
3799 /*
3800 * Otherwise, iterate the domains and find an elegible idle cpu.
3801 */
3802 sd = rcu_dereference(per_cpu(sd_llc, target));
3803 for_each_lower_domain(sd) {
3804 sg = sd->groups;
3805 do {
3806 if (!cpumask_intersects(sched_group_cpus(sg),
3807 tsk_cpus_allowed(p)))
3808 goto next;
3809
3810 for_each_cpu(i, sched_group_cpus(sg)) {
3811 if (i == target || !idle_cpu(i))
3812 goto next;
3813 }
3814
3815 target = cpumask_first_and(sched_group_cpus(sg),
3816 tsk_cpus_allowed(p));
3817 goto done;
3818 next:
3819 sg = sg->next;
3820 } while (sg != sd->groups);
3821 }
3822 done:
3823 return target;
3824 }
3825
3826 /*
3827 * sched_balance_self: balance the current task (running on cpu) in domains
3828 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3829 * SD_BALANCE_EXEC.
3830 *
3831 * Balance, ie. select the least loaded group.
3832 *
3833 * Returns the target CPU number, or the same CPU if no balancing is needed.
3834 *
3835 * preempt must be disabled.
3836 */
3837 static int
3838 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
3839 {
3840 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3841 int cpu = smp_processor_id();
3842 int new_cpu = cpu;
3843 int want_affine = 0;
3844 int sync = wake_flags & WF_SYNC;
3845
3846 if (p->nr_cpus_allowed == 1)
3847 return prev_cpu;
3848
3849 if (sd_flag & SD_BALANCE_WAKE) {
3850 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3851 want_affine = 1;
3852 new_cpu = prev_cpu;
3853 }
3854
3855 rcu_read_lock();
3856 for_each_domain(cpu, tmp) {
3857 if (!(tmp->flags & SD_LOAD_BALANCE))
3858 continue;
3859
3860 /*
3861 * If both cpu and prev_cpu are part of this domain,
3862 * cpu is a valid SD_WAKE_AFFINE target.
3863 */
3864 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3865 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3866 affine_sd = tmp;
3867 break;
3868 }
3869
3870 if (tmp->flags & sd_flag)
3871 sd = tmp;
3872 }
3873
3874 if (affine_sd) {
3875 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3876 prev_cpu = cpu;
3877
3878 new_cpu = select_idle_sibling(p, prev_cpu);
3879 goto unlock;
3880 }
3881
3882 while (sd) {
3883 int load_idx = sd->forkexec_idx;
3884 struct sched_group *group;
3885 int weight;
3886
3887 if (!(sd->flags & sd_flag)) {
3888 sd = sd->child;
3889 continue;
3890 }
3891
3892 if (sd_flag & SD_BALANCE_WAKE)
3893 load_idx = sd->wake_idx;
3894
3895 group = find_idlest_group(sd, p, cpu, load_idx);
3896 if (!group) {
3897 sd = sd->child;
3898 continue;
3899 }
3900
3901 new_cpu = find_idlest_cpu(group, p, cpu);
3902 if (new_cpu == -1 || new_cpu == cpu) {
3903 /* Now try balancing at a lower domain level of cpu */
3904 sd = sd->child;
3905 continue;
3906 }
3907
3908 /* Now try balancing at a lower domain level of new_cpu */
3909 cpu = new_cpu;
3910 weight = sd->span_weight;
3911 sd = NULL;
3912 for_each_domain(cpu, tmp) {
3913 if (weight <= tmp->span_weight)
3914 break;
3915 if (tmp->flags & sd_flag)
3916 sd = tmp;
3917 }
3918 /* while loop will break here if sd == NULL */
3919 }
3920 unlock:
3921 rcu_read_unlock();
3922
3923 return new_cpu;
3924 }
3925
3926 /*
3927 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3928 * cfs_rq_of(p) references at time of call are still valid and identify the
3929 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3930 * other assumptions, including the state of rq->lock, should be made.
3931 */
3932 static void
3933 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3934 {
3935 struct sched_entity *se = &p->se;
3936 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3937
3938 /*
3939 * Load tracking: accumulate removed load so that it can be processed
3940 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3941 * to blocked load iff they have a positive decay-count. It can never
3942 * be negative here since on-rq tasks have decay-count == 0.
3943 */
3944 if (se->avg.decay_count) {
3945 se->avg.decay_count = -__synchronize_entity_decay(se);
3946 atomic_long_add(se->avg.load_avg_contrib,
3947 &cfs_rq->removed_load);
3948 }
3949 }
3950 #endif /* CONFIG_SMP */
3951
3952 static unsigned long
3953 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3954 {
3955 unsigned long gran = sysctl_sched_wakeup_granularity;
3956
3957 /*
3958 * Since its curr running now, convert the gran from real-time
3959 * to virtual-time in his units.
3960 *
3961 * By using 'se' instead of 'curr' we penalize light tasks, so
3962 * they get preempted easier. That is, if 'se' < 'curr' then
3963 * the resulting gran will be larger, therefore penalizing the
3964 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3965 * be smaller, again penalizing the lighter task.
3966 *
3967 * This is especially important for buddies when the leftmost
3968 * task is higher priority than the buddy.
3969 */
3970 return calc_delta_fair(gran, se);
3971 }
3972
3973 /*
3974 * Should 'se' preempt 'curr'.
3975 *
3976 * |s1
3977 * |s2
3978 * |s3
3979 * g
3980 * |<--->|c
3981 *
3982 * w(c, s1) = -1
3983 * w(c, s2) = 0
3984 * w(c, s3) = 1
3985 *
3986 */
3987 static int
3988 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3989 {
3990 s64 gran, vdiff = curr->vruntime - se->vruntime;
3991
3992 if (vdiff <= 0)
3993 return -1;
3994
3995 gran = wakeup_gran(curr, se);
3996 if (vdiff > gran)
3997 return 1;
3998
3999 return 0;
4000 }
4001
4002 static void set_last_buddy(struct sched_entity *se)
4003 {
4004 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4005 return;
4006
4007 for_each_sched_entity(se)
4008 cfs_rq_of(se)->last = se;
4009 }
4010
4011 static void set_next_buddy(struct sched_entity *se)
4012 {
4013 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4014 return;
4015
4016 for_each_sched_entity(se)
4017 cfs_rq_of(se)->next = se;
4018 }
4019
4020 static void set_skip_buddy(struct sched_entity *se)
4021 {
4022 for_each_sched_entity(se)
4023 cfs_rq_of(se)->skip = se;
4024 }
4025
4026 /*
4027 * Preempt the current task with a newly woken task if needed:
4028 */
4029 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4030 {
4031 struct task_struct *curr = rq->curr;
4032 struct sched_entity *se = &curr->se, *pse = &p->se;
4033 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4034 int scale = cfs_rq->nr_running >= sched_nr_latency;
4035 int next_buddy_marked = 0;
4036
4037 if (unlikely(se == pse))
4038 return;
4039
4040 /*
4041 * This is possible from callers such as move_task(), in which we
4042 * unconditionally check_prempt_curr() after an enqueue (which may have
4043 * lead to a throttle). This both saves work and prevents false
4044 * next-buddy nomination below.
4045 */
4046 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4047 return;
4048
4049 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4050 set_next_buddy(pse);
4051 next_buddy_marked = 1;
4052 }
4053
4054 /*
4055 * We can come here with TIF_NEED_RESCHED already set from new task
4056 * wake up path.
4057 *
4058 * Note: this also catches the edge-case of curr being in a throttled
4059 * group (e.g. via set_curr_task), since update_curr() (in the
4060 * enqueue of curr) will have resulted in resched being set. This
4061 * prevents us from potentially nominating it as a false LAST_BUDDY
4062 * below.
4063 */
4064 if (test_tsk_need_resched(curr))
4065 return;
4066
4067 /* Idle tasks are by definition preempted by non-idle tasks. */
4068 if (unlikely(curr->policy == SCHED_IDLE) &&
4069 likely(p->policy != SCHED_IDLE))
4070 goto preempt;
4071
4072 /*
4073 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4074 * is driven by the tick):
4075 */
4076 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4077 return;
4078
4079 find_matching_se(&se, &pse);
4080 update_curr(cfs_rq_of(se));
4081 BUG_ON(!pse);
4082 if (wakeup_preempt_entity(se, pse) == 1) {
4083 /*
4084 * Bias pick_next to pick the sched entity that is
4085 * triggering this preemption.
4086 */
4087 if (!next_buddy_marked)
4088 set_next_buddy(pse);
4089 goto preempt;
4090 }
4091
4092 return;
4093
4094 preempt:
4095 resched_task(curr);
4096 /*
4097 * Only set the backward buddy when the current task is still
4098 * on the rq. This can happen when a wakeup gets interleaved
4099 * with schedule on the ->pre_schedule() or idle_balance()
4100 * point, either of which can * drop the rq lock.
4101 *
4102 * Also, during early boot the idle thread is in the fair class,
4103 * for obvious reasons its a bad idea to schedule back to it.
4104 */
4105 if (unlikely(!se->on_rq || curr == rq->idle))
4106 return;
4107
4108 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4109 set_last_buddy(se);
4110 }
4111
4112 static struct task_struct *pick_next_task_fair(struct rq *rq)
4113 {
4114 struct task_struct *p;
4115 struct cfs_rq *cfs_rq = &rq->cfs;
4116 struct sched_entity *se;
4117
4118 if (!cfs_rq->nr_running)
4119 return NULL;
4120
4121 do {
4122 se = pick_next_entity(cfs_rq);
4123 set_next_entity(cfs_rq, se);
4124 cfs_rq = group_cfs_rq(se);
4125 } while (cfs_rq);
4126
4127 p = task_of(se);
4128 if (hrtick_enabled(rq))
4129 hrtick_start_fair(rq, p);
4130
4131 return p;
4132 }
4133
4134 /*
4135 * Account for a descheduled task:
4136 */
4137 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4138 {
4139 struct sched_entity *se = &prev->se;
4140 struct cfs_rq *cfs_rq;
4141
4142 for_each_sched_entity(se) {
4143 cfs_rq = cfs_rq_of(se);
4144 put_prev_entity(cfs_rq, se);
4145 }
4146 }
4147
4148 /*
4149 * sched_yield() is very simple
4150 *
4151 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4152 */
4153 static void yield_task_fair(struct rq *rq)
4154 {
4155 struct task_struct *curr = rq->curr;
4156 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4157 struct sched_entity *se = &curr->se;
4158
4159 /*
4160 * Are we the only task in the tree?
4161 */
4162 if (unlikely(rq->nr_running == 1))
4163 return;
4164
4165 clear_buddies(cfs_rq, se);
4166
4167 if (curr->policy != SCHED_BATCH) {
4168 update_rq_clock(rq);
4169 /*
4170 * Update run-time statistics of the 'current'.
4171 */
4172 update_curr(cfs_rq);
4173 /*
4174 * Tell update_rq_clock() that we've just updated,
4175 * so we don't do microscopic update in schedule()
4176 * and double the fastpath cost.
4177 */
4178 rq->skip_clock_update = 1;
4179 }
4180
4181 set_skip_buddy(se);
4182 }
4183
4184 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4185 {
4186 struct sched_entity *se = &p->se;
4187
4188 /* throttled hierarchies are not runnable */
4189 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4190 return false;
4191
4192 /* Tell the scheduler that we'd really like pse to run next. */
4193 set_next_buddy(se);
4194
4195 yield_task_fair(rq);
4196
4197 return true;
4198 }
4199
4200 #ifdef CONFIG_SMP
4201 /**************************************************
4202 * Fair scheduling class load-balancing methods.
4203 *
4204 * BASICS
4205 *
4206 * The purpose of load-balancing is to achieve the same basic fairness the
4207 * per-cpu scheduler provides, namely provide a proportional amount of compute
4208 * time to each task. This is expressed in the following equation:
4209 *
4210 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4211 *
4212 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4213 * W_i,0 is defined as:
4214 *
4215 * W_i,0 = \Sum_j w_i,j (2)
4216 *
4217 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4218 * is derived from the nice value as per prio_to_weight[].
4219 *
4220 * The weight average is an exponential decay average of the instantaneous
4221 * weight:
4222 *
4223 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4224 *
4225 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4226 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4227 * can also include other factors [XXX].
4228 *
4229 * To achieve this balance we define a measure of imbalance which follows
4230 * directly from (1):
4231 *
4232 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4233 *
4234 * We them move tasks around to minimize the imbalance. In the continuous
4235 * function space it is obvious this converges, in the discrete case we get
4236 * a few fun cases generally called infeasible weight scenarios.
4237 *
4238 * [XXX expand on:
4239 * - infeasible weights;
4240 * - local vs global optima in the discrete case. ]
4241 *
4242 *
4243 * SCHED DOMAINS
4244 *
4245 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4246 * for all i,j solution, we create a tree of cpus that follows the hardware
4247 * topology where each level pairs two lower groups (or better). This results
4248 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4249 * tree to only the first of the previous level and we decrease the frequency
4250 * of load-balance at each level inv. proportional to the number of cpus in
4251 * the groups.
4252 *
4253 * This yields:
4254 *
4255 * log_2 n 1 n
4256 * \Sum { --- * --- * 2^i } = O(n) (5)
4257 * i = 0 2^i 2^i
4258 * `- size of each group
4259 * | | `- number of cpus doing load-balance
4260 * | `- freq
4261 * `- sum over all levels
4262 *
4263 * Coupled with a limit on how many tasks we can migrate every balance pass,
4264 * this makes (5) the runtime complexity of the balancer.
4265 *
4266 * An important property here is that each CPU is still (indirectly) connected
4267 * to every other cpu in at most O(log n) steps:
4268 *
4269 * The adjacency matrix of the resulting graph is given by:
4270 *
4271 * log_2 n
4272 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4273 * k = 0
4274 *
4275 * And you'll find that:
4276 *
4277 * A^(log_2 n)_i,j != 0 for all i,j (7)
4278 *
4279 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4280 * The task movement gives a factor of O(m), giving a convergence complexity
4281 * of:
4282 *
4283 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4284 *
4285 *
4286 * WORK CONSERVING
4287 *
4288 * In order to avoid CPUs going idle while there's still work to do, new idle
4289 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4290 * tree itself instead of relying on other CPUs to bring it work.
4291 *
4292 * This adds some complexity to both (5) and (8) but it reduces the total idle
4293 * time.
4294 *
4295 * [XXX more?]
4296 *
4297 *
4298 * CGROUPS
4299 *
4300 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4301 *
4302 * s_k,i
4303 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4304 * S_k
4305 *
4306 * Where
4307 *
4308 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4309 *
4310 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4311 *
4312 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4313 * property.
4314 *
4315 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4316 * rewrite all of this once again.]
4317 */
4318
4319 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4320
4321 #define LBF_ALL_PINNED 0x01
4322 #define LBF_NEED_BREAK 0x02
4323 #define LBF_DST_PINNED 0x04
4324 #define LBF_SOME_PINNED 0x08
4325
4326 struct lb_env {
4327 struct sched_domain *sd;
4328
4329 struct rq *src_rq;
4330 int src_cpu;
4331
4332 int dst_cpu;
4333 struct rq *dst_rq;
4334
4335 struct cpumask *dst_grpmask;
4336 int new_dst_cpu;
4337 enum cpu_idle_type idle;
4338 long imbalance;
4339 /* The set of CPUs under consideration for load-balancing */
4340 struct cpumask *cpus;
4341
4342 unsigned int flags;
4343
4344 unsigned int loop;
4345 unsigned int loop_break;
4346 unsigned int loop_max;
4347 };
4348
4349 /*
4350 * move_task - move a task from one runqueue to another runqueue.
4351 * Both runqueues must be locked.
4352 */
4353 static void move_task(struct task_struct *p, struct lb_env *env)
4354 {
4355 deactivate_task(env->src_rq, p, 0);
4356 set_task_cpu(p, env->dst_cpu);
4357 activate_task(env->dst_rq, p, 0);
4358 check_preempt_curr(env->dst_rq, p, 0);
4359 #ifdef CONFIG_NUMA_BALANCING
4360 if (p->numa_preferred_nid != -1) {
4361 int src_nid = cpu_to_node(env->src_cpu);
4362 int dst_nid = cpu_to_node(env->dst_cpu);
4363
4364 /*
4365 * If the load balancer has moved the task then limit
4366 * migrations from taking place in the short term in
4367 * case this is a short-lived migration.
4368 */
4369 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4370 p->numa_migrate_seq = 0;
4371 }
4372 #endif
4373 }
4374
4375 /*
4376 * Is this task likely cache-hot:
4377 */
4378 static int
4379 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4380 {
4381 s64 delta;
4382
4383 if (p->sched_class != &fair_sched_class)
4384 return 0;
4385
4386 if (unlikely(p->policy == SCHED_IDLE))
4387 return 0;
4388
4389 /*
4390 * Buddy candidates are cache hot:
4391 */
4392 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4393 (&p->se == cfs_rq_of(&p->se)->next ||
4394 &p->se == cfs_rq_of(&p->se)->last))
4395 return 1;
4396
4397 if (sysctl_sched_migration_cost == -1)
4398 return 1;
4399 if (sysctl_sched_migration_cost == 0)
4400 return 0;
4401
4402 delta = now - p->se.exec_start;
4403
4404 return delta < (s64)sysctl_sched_migration_cost;
4405 }
4406
4407 #ifdef CONFIG_NUMA_BALANCING
4408 /* Returns true if the destination node has incurred more faults */
4409 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4410 {
4411 int src_nid, dst_nid;
4412
4413 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4414 !(env->sd->flags & SD_NUMA)) {
4415 return false;
4416 }
4417
4418 src_nid = cpu_to_node(env->src_cpu);
4419 dst_nid = cpu_to_node(env->dst_cpu);
4420
4421 if (src_nid == dst_nid ||
4422 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4423 return false;
4424
4425 if (dst_nid == p->numa_preferred_nid ||
4426 task_faults(p, dst_nid) > task_faults(p, src_nid))
4427 return true;
4428
4429 return false;
4430 }
4431
4432
4433 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4434 {
4435 int src_nid, dst_nid;
4436
4437 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4438 return false;
4439
4440 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4441 return false;
4442
4443 src_nid = cpu_to_node(env->src_cpu);
4444 dst_nid = cpu_to_node(env->dst_cpu);
4445
4446 if (src_nid == dst_nid ||
4447 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4448 return false;
4449
4450 if (task_faults(p, dst_nid) < task_faults(p, src_nid))
4451 return true;
4452
4453 return false;
4454 }
4455
4456 #else
4457 static inline bool migrate_improves_locality(struct task_struct *p,
4458 struct lb_env *env)
4459 {
4460 return false;
4461 }
4462
4463 static inline bool migrate_degrades_locality(struct task_struct *p,
4464 struct lb_env *env)
4465 {
4466 return false;
4467 }
4468 #endif
4469
4470 /*
4471 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4472 */
4473 static
4474 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4475 {
4476 int tsk_cache_hot = 0;
4477 /*
4478 * We do not migrate tasks that are:
4479 * 1) throttled_lb_pair, or
4480 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4481 * 3) running (obviously), or
4482 * 4) are cache-hot on their current CPU.
4483 */
4484 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4485 return 0;
4486
4487 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4488 int cpu;
4489
4490 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4491
4492 env->flags |= LBF_SOME_PINNED;
4493
4494 /*
4495 * Remember if this task can be migrated to any other cpu in
4496 * our sched_group. We may want to revisit it if we couldn't
4497 * meet load balance goals by pulling other tasks on src_cpu.
4498 *
4499 * Also avoid computing new_dst_cpu if we have already computed
4500 * one in current iteration.
4501 */
4502 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4503 return 0;
4504
4505 /* Prevent to re-select dst_cpu via env's cpus */
4506 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4507 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4508 env->flags |= LBF_DST_PINNED;
4509 env->new_dst_cpu = cpu;
4510 break;
4511 }
4512 }
4513
4514 return 0;
4515 }
4516
4517 /* Record that we found atleast one task that could run on dst_cpu */
4518 env->flags &= ~LBF_ALL_PINNED;
4519
4520 if (task_running(env->src_rq, p)) {
4521 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4522 return 0;
4523 }
4524
4525 /*
4526 * Aggressive migration if:
4527 * 1) destination numa is preferred
4528 * 2) task is cache cold, or
4529 * 3) too many balance attempts have failed.
4530 */
4531 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4532 if (!tsk_cache_hot)
4533 tsk_cache_hot = migrate_degrades_locality(p, env);
4534
4535 if (migrate_improves_locality(p, env)) {
4536 #ifdef CONFIG_SCHEDSTATS
4537 if (tsk_cache_hot) {
4538 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4539 schedstat_inc(p, se.statistics.nr_forced_migrations);
4540 }
4541 #endif
4542 return 1;
4543 }
4544
4545 if (!tsk_cache_hot ||
4546 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4547
4548 if (tsk_cache_hot) {
4549 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4550 schedstat_inc(p, se.statistics.nr_forced_migrations);
4551 }
4552
4553 return 1;
4554 }
4555
4556 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4557 return 0;
4558 }
4559
4560 /*
4561 * move_one_task tries to move exactly one task from busiest to this_rq, as
4562 * part of active balancing operations within "domain".
4563 * Returns 1 if successful and 0 otherwise.
4564 *
4565 * Called with both runqueues locked.
4566 */
4567 static int move_one_task(struct lb_env *env)
4568 {
4569 struct task_struct *p, *n;
4570
4571 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4572 if (!can_migrate_task(p, env))
4573 continue;
4574
4575 move_task(p, env);
4576 /*
4577 * Right now, this is only the second place move_task()
4578 * is called, so we can safely collect move_task()
4579 * stats here rather than inside move_task().
4580 */
4581 schedstat_inc(env->sd, lb_gained[env->idle]);
4582 return 1;
4583 }
4584 return 0;
4585 }
4586
4587 static const unsigned int sched_nr_migrate_break = 32;
4588
4589 /*
4590 * move_tasks tries to move up to imbalance weighted load from busiest to
4591 * this_rq, as part of a balancing operation within domain "sd".
4592 * Returns 1 if successful and 0 otherwise.
4593 *
4594 * Called with both runqueues locked.
4595 */
4596 static int move_tasks(struct lb_env *env)
4597 {
4598 struct list_head *tasks = &env->src_rq->cfs_tasks;
4599 struct task_struct *p;
4600 unsigned long load;
4601 int pulled = 0;
4602
4603 if (env->imbalance <= 0)
4604 return 0;
4605
4606 while (!list_empty(tasks)) {
4607 p = list_first_entry(tasks, struct task_struct, se.group_node);
4608
4609 env->loop++;
4610 /* We've more or less seen every task there is, call it quits */
4611 if (env->loop > env->loop_max)
4612 break;
4613
4614 /* take a breather every nr_migrate tasks */
4615 if (env->loop > env->loop_break) {
4616 env->loop_break += sched_nr_migrate_break;
4617 env->flags |= LBF_NEED_BREAK;
4618 break;
4619 }
4620
4621 if (!can_migrate_task(p, env))
4622 goto next;
4623
4624 load = task_h_load(p);
4625
4626 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4627 goto next;
4628
4629 if ((load / 2) > env->imbalance)
4630 goto next;
4631
4632 move_task(p, env);
4633 pulled++;
4634 env->imbalance -= load;
4635
4636 #ifdef CONFIG_PREEMPT
4637 /*
4638 * NEWIDLE balancing is a source of latency, so preemptible
4639 * kernels will stop after the first task is pulled to minimize
4640 * the critical section.
4641 */
4642 if (env->idle == CPU_NEWLY_IDLE)
4643 break;
4644 #endif
4645
4646 /*
4647 * We only want to steal up to the prescribed amount of
4648 * weighted load.
4649 */
4650 if (env->imbalance <= 0)
4651 break;
4652
4653 continue;
4654 next:
4655 list_move_tail(&p->se.group_node, tasks);
4656 }
4657
4658 /*
4659 * Right now, this is one of only two places move_task() is called,
4660 * so we can safely collect move_task() stats here rather than
4661 * inside move_task().
4662 */
4663 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4664
4665 return pulled;
4666 }
4667
4668 #ifdef CONFIG_FAIR_GROUP_SCHED
4669 /*
4670 * update tg->load_weight by folding this cpu's load_avg
4671 */
4672 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4673 {
4674 struct sched_entity *se = tg->se[cpu];
4675 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4676
4677 /* throttled entities do not contribute to load */
4678 if (throttled_hierarchy(cfs_rq))
4679 return;
4680
4681 update_cfs_rq_blocked_load(cfs_rq, 1);
4682
4683 if (se) {
4684 update_entity_load_avg(se, 1);
4685 /*
4686 * We pivot on our runnable average having decayed to zero for
4687 * list removal. This generally implies that all our children
4688 * have also been removed (modulo rounding error or bandwidth
4689 * control); however, such cases are rare and we can fix these
4690 * at enqueue.
4691 *
4692 * TODO: fix up out-of-order children on enqueue.
4693 */
4694 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4695 list_del_leaf_cfs_rq(cfs_rq);
4696 } else {
4697 struct rq *rq = rq_of(cfs_rq);
4698 update_rq_runnable_avg(rq, rq->nr_running);
4699 }
4700 }
4701
4702 static void update_blocked_averages(int cpu)
4703 {
4704 struct rq *rq = cpu_rq(cpu);
4705 struct cfs_rq *cfs_rq;
4706 unsigned long flags;
4707
4708 raw_spin_lock_irqsave(&rq->lock, flags);
4709 update_rq_clock(rq);
4710 /*
4711 * Iterates the task_group tree in a bottom up fashion, see
4712 * list_add_leaf_cfs_rq() for details.
4713 */
4714 for_each_leaf_cfs_rq(rq, cfs_rq) {
4715 /*
4716 * Note: We may want to consider periodically releasing
4717 * rq->lock about these updates so that creating many task
4718 * groups does not result in continually extending hold time.
4719 */
4720 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4721 }
4722
4723 raw_spin_unlock_irqrestore(&rq->lock, flags);
4724 }
4725
4726 /*
4727 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
4728 * This needs to be done in a top-down fashion because the load of a child
4729 * group is a fraction of its parents load.
4730 */
4731 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
4732 {
4733 struct rq *rq = rq_of(cfs_rq);
4734 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
4735 unsigned long now = jiffies;
4736 unsigned long load;
4737
4738 if (cfs_rq->last_h_load_update == now)
4739 return;
4740
4741 cfs_rq->h_load_next = NULL;
4742 for_each_sched_entity(se) {
4743 cfs_rq = cfs_rq_of(se);
4744 cfs_rq->h_load_next = se;
4745 if (cfs_rq->last_h_load_update == now)
4746 break;
4747 }
4748
4749 if (!se) {
4750 cfs_rq->h_load = cfs_rq->runnable_load_avg;
4751 cfs_rq->last_h_load_update = now;
4752 }
4753
4754 while ((se = cfs_rq->h_load_next) != NULL) {
4755 load = cfs_rq->h_load;
4756 load = div64_ul(load * se->avg.load_avg_contrib,
4757 cfs_rq->runnable_load_avg + 1);
4758 cfs_rq = group_cfs_rq(se);
4759 cfs_rq->h_load = load;
4760 cfs_rq->last_h_load_update = now;
4761 }
4762 }
4763
4764 static unsigned long task_h_load(struct task_struct *p)
4765 {
4766 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4767
4768 update_cfs_rq_h_load(cfs_rq);
4769 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4770 cfs_rq->runnable_load_avg + 1);
4771 }
4772 #else
4773 static inline void update_blocked_averages(int cpu)
4774 {
4775 }
4776
4777 static unsigned long task_h_load(struct task_struct *p)
4778 {
4779 return p->se.avg.load_avg_contrib;
4780 }
4781 #endif
4782
4783 /********** Helpers for find_busiest_group ************************/
4784 /*
4785 * sg_lb_stats - stats of a sched_group required for load_balancing
4786 */
4787 struct sg_lb_stats {
4788 unsigned long avg_load; /*Avg load across the CPUs of the group */
4789 unsigned long group_load; /* Total load over the CPUs of the group */
4790 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4791 unsigned long load_per_task;
4792 unsigned long group_power;
4793 unsigned int sum_nr_running; /* Nr tasks running in the group */
4794 unsigned int group_capacity;
4795 unsigned int idle_cpus;
4796 unsigned int group_weight;
4797 int group_imb; /* Is there an imbalance in the group ? */
4798 int group_has_capacity; /* Is there extra capacity in the group? */
4799 };
4800
4801 /*
4802 * sd_lb_stats - Structure to store the statistics of a sched_domain
4803 * during load balancing.
4804 */
4805 struct sd_lb_stats {
4806 struct sched_group *busiest; /* Busiest group in this sd */
4807 struct sched_group *local; /* Local group in this sd */
4808 unsigned long total_load; /* Total load of all groups in sd */
4809 unsigned long total_pwr; /* Total power of all groups in sd */
4810 unsigned long avg_load; /* Average load across all groups in sd */
4811
4812 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
4813 struct sg_lb_stats local_stat; /* Statistics of the local group */
4814 };
4815
4816 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4817 {
4818 /*
4819 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4820 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4821 * We must however clear busiest_stat::avg_load because
4822 * update_sd_pick_busiest() reads this before assignment.
4823 */
4824 *sds = (struct sd_lb_stats){
4825 .busiest = NULL,
4826 .local = NULL,
4827 .total_load = 0UL,
4828 .total_pwr = 0UL,
4829 .busiest_stat = {
4830 .avg_load = 0UL,
4831 },
4832 };
4833 }
4834
4835 /**
4836 * get_sd_load_idx - Obtain the load index for a given sched domain.
4837 * @sd: The sched_domain whose load_idx is to be obtained.
4838 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4839 *
4840 * Return: The load index.
4841 */
4842 static inline int get_sd_load_idx(struct sched_domain *sd,
4843 enum cpu_idle_type idle)
4844 {
4845 int load_idx;
4846
4847 switch (idle) {
4848 case CPU_NOT_IDLE:
4849 load_idx = sd->busy_idx;
4850 break;
4851
4852 case CPU_NEWLY_IDLE:
4853 load_idx = sd->newidle_idx;
4854 break;
4855 default:
4856 load_idx = sd->idle_idx;
4857 break;
4858 }
4859
4860 return load_idx;
4861 }
4862
4863 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4864 {
4865 return SCHED_POWER_SCALE;
4866 }
4867
4868 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4869 {
4870 return default_scale_freq_power(sd, cpu);
4871 }
4872
4873 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4874 {
4875 unsigned long weight = sd->span_weight;
4876 unsigned long smt_gain = sd->smt_gain;
4877
4878 smt_gain /= weight;
4879
4880 return smt_gain;
4881 }
4882
4883 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4884 {
4885 return default_scale_smt_power(sd, cpu);
4886 }
4887
4888 static unsigned long scale_rt_power(int cpu)
4889 {
4890 struct rq *rq = cpu_rq(cpu);
4891 u64 total, available, age_stamp, avg;
4892
4893 /*
4894 * Since we're reading these variables without serialization make sure
4895 * we read them once before doing sanity checks on them.
4896 */
4897 age_stamp = ACCESS_ONCE(rq->age_stamp);
4898 avg = ACCESS_ONCE(rq->rt_avg);
4899
4900 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
4901
4902 if (unlikely(total < avg)) {
4903 /* Ensures that power won't end up being negative */
4904 available = 0;
4905 } else {
4906 available = total - avg;
4907 }
4908
4909 if (unlikely((s64)total < SCHED_POWER_SCALE))
4910 total = SCHED_POWER_SCALE;
4911
4912 total >>= SCHED_POWER_SHIFT;
4913
4914 return div_u64(available, total);
4915 }
4916
4917 static void update_cpu_power(struct sched_domain *sd, int cpu)
4918 {
4919 unsigned long weight = sd->span_weight;
4920 unsigned long power = SCHED_POWER_SCALE;
4921 struct sched_group *sdg = sd->groups;
4922
4923 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4924 if (sched_feat(ARCH_POWER))
4925 power *= arch_scale_smt_power(sd, cpu);
4926 else
4927 power *= default_scale_smt_power(sd, cpu);
4928
4929 power >>= SCHED_POWER_SHIFT;
4930 }
4931
4932 sdg->sgp->power_orig = power;
4933
4934 if (sched_feat(ARCH_POWER))
4935 power *= arch_scale_freq_power(sd, cpu);
4936 else
4937 power *= default_scale_freq_power(sd, cpu);
4938
4939 power >>= SCHED_POWER_SHIFT;
4940
4941 power *= scale_rt_power(cpu);
4942 power >>= SCHED_POWER_SHIFT;
4943
4944 if (!power)
4945 power = 1;
4946
4947 cpu_rq(cpu)->cpu_power = power;
4948 sdg->sgp->power = power;
4949 }
4950
4951 void update_group_power(struct sched_domain *sd, int cpu)
4952 {
4953 struct sched_domain *child = sd->child;
4954 struct sched_group *group, *sdg = sd->groups;
4955 unsigned long power, power_orig;
4956 unsigned long interval;
4957
4958 interval = msecs_to_jiffies(sd->balance_interval);
4959 interval = clamp(interval, 1UL, max_load_balance_interval);
4960 sdg->sgp->next_update = jiffies + interval;
4961
4962 if (!child) {
4963 update_cpu_power(sd, cpu);
4964 return;
4965 }
4966
4967 power_orig = power = 0;
4968
4969 if (child->flags & SD_OVERLAP) {
4970 /*
4971 * SD_OVERLAP domains cannot assume that child groups
4972 * span the current group.
4973 */
4974
4975 for_each_cpu(cpu, sched_group_cpus(sdg)) {
4976 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
4977
4978 power_orig += sg->sgp->power_orig;
4979 power += sg->sgp->power;
4980 }
4981 } else {
4982 /*
4983 * !SD_OVERLAP domains can assume that child groups
4984 * span the current group.
4985 */
4986
4987 group = child->groups;
4988 do {
4989 power_orig += group->sgp->power_orig;
4990 power += group->sgp->power;
4991 group = group->next;
4992 } while (group != child->groups);
4993 }
4994
4995 sdg->sgp->power_orig = power_orig;
4996 sdg->sgp->power = power;
4997 }
4998
4999 /*
5000 * Try and fix up capacity for tiny siblings, this is needed when
5001 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5002 * which on its own isn't powerful enough.
5003 *
5004 * See update_sd_pick_busiest() and check_asym_packing().
5005 */
5006 static inline int
5007 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5008 {
5009 /*
5010 * Only siblings can have significantly less than SCHED_POWER_SCALE
5011 */
5012 if (!(sd->flags & SD_SHARE_CPUPOWER))
5013 return 0;
5014
5015 /*
5016 * If ~90% of the cpu_power is still there, we're good.
5017 */
5018 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5019 return 1;
5020
5021 return 0;
5022 }
5023
5024 /*
5025 * Group imbalance indicates (and tries to solve) the problem where balancing
5026 * groups is inadequate due to tsk_cpus_allowed() constraints.
5027 *
5028 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5029 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5030 * Something like:
5031 *
5032 * { 0 1 2 3 } { 4 5 6 7 }
5033 * * * * *
5034 *
5035 * If we were to balance group-wise we'd place two tasks in the first group and
5036 * two tasks in the second group. Clearly this is undesired as it will overload
5037 * cpu 3 and leave one of the cpus in the second group unused.
5038 *
5039 * The current solution to this issue is detecting the skew in the first group
5040 * by noticing the lower domain failed to reach balance and had difficulty
5041 * moving tasks due to affinity constraints.
5042 *
5043 * When this is so detected; this group becomes a candidate for busiest; see
5044 * update_sd_pick_busiest(). And calculcate_imbalance() and
5045 * find_busiest_group() avoid some of the usual balance conditions to allow it
5046 * to create an effective group imbalance.
5047 *
5048 * This is a somewhat tricky proposition since the next run might not find the
5049 * group imbalance and decide the groups need to be balanced again. A most
5050 * subtle and fragile situation.
5051 */
5052
5053 static inline int sg_imbalanced(struct sched_group *group)
5054 {
5055 return group->sgp->imbalance;
5056 }
5057
5058 /*
5059 * Compute the group capacity.
5060 *
5061 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5062 * first dividing out the smt factor and computing the actual number of cores
5063 * and limit power unit capacity with that.
5064 */
5065 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5066 {
5067 unsigned int capacity, smt, cpus;
5068 unsigned int power, power_orig;
5069
5070 power = group->sgp->power;
5071 power_orig = group->sgp->power_orig;
5072 cpus = group->group_weight;
5073
5074 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5075 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5076 capacity = cpus / smt; /* cores */
5077
5078 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5079 if (!capacity)
5080 capacity = fix_small_capacity(env->sd, group);
5081
5082 return capacity;
5083 }
5084
5085 /**
5086 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5087 * @env: The load balancing environment.
5088 * @group: sched_group whose statistics are to be updated.
5089 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5090 * @local_group: Does group contain this_cpu.
5091 * @sgs: variable to hold the statistics for this group.
5092 */
5093 static inline void update_sg_lb_stats(struct lb_env *env,
5094 struct sched_group *group, int load_idx,
5095 int local_group, struct sg_lb_stats *sgs)
5096 {
5097 unsigned long nr_running;
5098 unsigned long load;
5099 int i;
5100
5101 memset(sgs, 0, sizeof(*sgs));
5102
5103 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5104 struct rq *rq = cpu_rq(i);
5105
5106 nr_running = rq->nr_running;
5107
5108 /* Bias balancing toward cpus of our domain */
5109 if (local_group)
5110 load = target_load(i, load_idx);
5111 else
5112 load = source_load(i, load_idx);
5113
5114 sgs->group_load += load;
5115 sgs->sum_nr_running += nr_running;
5116 sgs->sum_weighted_load += weighted_cpuload(i);
5117 if (idle_cpu(i))
5118 sgs->idle_cpus++;
5119 }
5120
5121 /* Adjust by relative CPU power of the group */
5122 sgs->group_power = group->sgp->power;
5123 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5124
5125 if (sgs->sum_nr_running)
5126 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5127
5128 sgs->group_weight = group->group_weight;
5129
5130 sgs->group_imb = sg_imbalanced(group);
5131 sgs->group_capacity = sg_capacity(env, group);
5132
5133 if (sgs->group_capacity > sgs->sum_nr_running)
5134 sgs->group_has_capacity = 1;
5135 }
5136
5137 /**
5138 * update_sd_pick_busiest - return 1 on busiest group
5139 * @env: The load balancing environment.
5140 * @sds: sched_domain statistics
5141 * @sg: sched_group candidate to be checked for being the busiest
5142 * @sgs: sched_group statistics
5143 *
5144 * Determine if @sg is a busier group than the previously selected
5145 * busiest group.
5146 *
5147 * Return: %true if @sg is a busier group than the previously selected
5148 * busiest group. %false otherwise.
5149 */
5150 static bool update_sd_pick_busiest(struct lb_env *env,
5151 struct sd_lb_stats *sds,
5152 struct sched_group *sg,
5153 struct sg_lb_stats *sgs)
5154 {
5155 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5156 return false;
5157
5158 if (sgs->sum_nr_running > sgs->group_capacity)
5159 return true;
5160
5161 if (sgs->group_imb)
5162 return true;
5163
5164 /*
5165 * ASYM_PACKING needs to move all the work to the lowest
5166 * numbered CPUs in the group, therefore mark all groups
5167 * higher than ourself as busy.
5168 */
5169 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5170 env->dst_cpu < group_first_cpu(sg)) {
5171 if (!sds->busiest)
5172 return true;
5173
5174 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5175 return true;
5176 }
5177
5178 return false;
5179 }
5180
5181 /**
5182 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5183 * @env: The load balancing environment.
5184 * @balance: Should we balance.
5185 * @sds: variable to hold the statistics for this sched_domain.
5186 */
5187 static inline void update_sd_lb_stats(struct lb_env *env,
5188 struct sd_lb_stats *sds)
5189 {
5190 struct sched_domain *child = env->sd->child;
5191 struct sched_group *sg = env->sd->groups;
5192 struct sg_lb_stats tmp_sgs;
5193 int load_idx, prefer_sibling = 0;
5194
5195 if (child && child->flags & SD_PREFER_SIBLING)
5196 prefer_sibling = 1;
5197
5198 load_idx = get_sd_load_idx(env->sd, env->idle);
5199
5200 do {
5201 struct sg_lb_stats *sgs = &tmp_sgs;
5202 int local_group;
5203
5204 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5205 if (local_group) {
5206 sds->local = sg;
5207 sgs = &sds->local_stat;
5208
5209 if (env->idle != CPU_NEWLY_IDLE ||
5210 time_after_eq(jiffies, sg->sgp->next_update))
5211 update_group_power(env->sd, env->dst_cpu);
5212 }
5213
5214 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5215
5216 if (local_group)
5217 goto next_group;
5218
5219 /*
5220 * In case the child domain prefers tasks go to siblings
5221 * first, lower the sg capacity to one so that we'll try
5222 * and move all the excess tasks away. We lower the capacity
5223 * of a group only if the local group has the capacity to fit
5224 * these excess tasks, i.e. nr_running < group_capacity. The
5225 * extra check prevents the case where you always pull from the
5226 * heaviest group when it is already under-utilized (possible
5227 * with a large weight task outweighs the tasks on the system).
5228 */
5229 if (prefer_sibling && sds->local &&
5230 sds->local_stat.group_has_capacity)
5231 sgs->group_capacity = min(sgs->group_capacity, 1U);
5232
5233 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5234 sds->busiest = sg;
5235 sds->busiest_stat = *sgs;
5236 }
5237
5238 next_group:
5239 /* Now, start updating sd_lb_stats */
5240 sds->total_load += sgs->group_load;
5241 sds->total_pwr += sgs->group_power;
5242
5243 sg = sg->next;
5244 } while (sg != env->sd->groups);
5245 }
5246
5247 /**
5248 * check_asym_packing - Check to see if the group is packed into the
5249 * sched doman.
5250 *
5251 * This is primarily intended to used at the sibling level. Some
5252 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5253 * case of POWER7, it can move to lower SMT modes only when higher
5254 * threads are idle. When in lower SMT modes, the threads will
5255 * perform better since they share less core resources. Hence when we
5256 * have idle threads, we want them to be the higher ones.
5257 *
5258 * This packing function is run on idle threads. It checks to see if
5259 * the busiest CPU in this domain (core in the P7 case) has a higher
5260 * CPU number than the packing function is being run on. Here we are
5261 * assuming lower CPU number will be equivalent to lower a SMT thread
5262 * number.
5263 *
5264 * Return: 1 when packing is required and a task should be moved to
5265 * this CPU. The amount of the imbalance is returned in *imbalance.
5266 *
5267 * @env: The load balancing environment.
5268 * @sds: Statistics of the sched_domain which is to be packed
5269 */
5270 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5271 {
5272 int busiest_cpu;
5273
5274 if (!(env->sd->flags & SD_ASYM_PACKING))
5275 return 0;
5276
5277 if (!sds->busiest)
5278 return 0;
5279
5280 busiest_cpu = group_first_cpu(sds->busiest);
5281 if (env->dst_cpu > busiest_cpu)
5282 return 0;
5283
5284 env->imbalance = DIV_ROUND_CLOSEST(
5285 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5286 SCHED_POWER_SCALE);
5287
5288 return 1;
5289 }
5290
5291 /**
5292 * fix_small_imbalance - Calculate the minor imbalance that exists
5293 * amongst the groups of a sched_domain, during
5294 * load balancing.
5295 * @env: The load balancing environment.
5296 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5297 */
5298 static inline
5299 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5300 {
5301 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5302 unsigned int imbn = 2;
5303 unsigned long scaled_busy_load_per_task;
5304 struct sg_lb_stats *local, *busiest;
5305
5306 local = &sds->local_stat;
5307 busiest = &sds->busiest_stat;
5308
5309 if (!local->sum_nr_running)
5310 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5311 else if (busiest->load_per_task > local->load_per_task)
5312 imbn = 1;
5313
5314 scaled_busy_load_per_task =
5315 (busiest->load_per_task * SCHED_POWER_SCALE) /
5316 busiest->group_power;
5317
5318 if (busiest->avg_load + scaled_busy_load_per_task >=
5319 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5320 env->imbalance = busiest->load_per_task;
5321 return;
5322 }
5323
5324 /*
5325 * OK, we don't have enough imbalance to justify moving tasks,
5326 * however we may be able to increase total CPU power used by
5327 * moving them.
5328 */
5329
5330 pwr_now += busiest->group_power *
5331 min(busiest->load_per_task, busiest->avg_load);
5332 pwr_now += local->group_power *
5333 min(local->load_per_task, local->avg_load);
5334 pwr_now /= SCHED_POWER_SCALE;
5335
5336 /* Amount of load we'd subtract */
5337 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5338 busiest->group_power;
5339 if (busiest->avg_load > tmp) {
5340 pwr_move += busiest->group_power *
5341 min(busiest->load_per_task,
5342 busiest->avg_load - tmp);
5343 }
5344
5345 /* Amount of load we'd add */
5346 if (busiest->avg_load * busiest->group_power <
5347 busiest->load_per_task * SCHED_POWER_SCALE) {
5348 tmp = (busiest->avg_load * busiest->group_power) /
5349 local->group_power;
5350 } else {
5351 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5352 local->group_power;
5353 }
5354 pwr_move += local->group_power *
5355 min(local->load_per_task, local->avg_load + tmp);
5356 pwr_move /= SCHED_POWER_SCALE;
5357
5358 /* Move if we gain throughput */
5359 if (pwr_move > pwr_now)
5360 env->imbalance = busiest->load_per_task;
5361 }
5362
5363 /**
5364 * calculate_imbalance - Calculate the amount of imbalance present within the
5365 * groups of a given sched_domain during load balance.
5366 * @env: load balance environment
5367 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5368 */
5369 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5370 {
5371 unsigned long max_pull, load_above_capacity = ~0UL;
5372 struct sg_lb_stats *local, *busiest;
5373
5374 local = &sds->local_stat;
5375 busiest = &sds->busiest_stat;
5376
5377 if (busiest->group_imb) {
5378 /*
5379 * In the group_imb case we cannot rely on group-wide averages
5380 * to ensure cpu-load equilibrium, look at wider averages. XXX
5381 */
5382 busiest->load_per_task =
5383 min(busiest->load_per_task, sds->avg_load);
5384 }
5385
5386 /*
5387 * In the presence of smp nice balancing, certain scenarios can have
5388 * max load less than avg load(as we skip the groups at or below
5389 * its cpu_power, while calculating max_load..)
5390 */
5391 if (busiest->avg_load <= sds->avg_load ||
5392 local->avg_load >= sds->avg_load) {
5393 env->imbalance = 0;
5394 return fix_small_imbalance(env, sds);
5395 }
5396
5397 if (!busiest->group_imb) {
5398 /*
5399 * Don't want to pull so many tasks that a group would go idle.
5400 * Except of course for the group_imb case, since then we might
5401 * have to drop below capacity to reach cpu-load equilibrium.
5402 */
5403 load_above_capacity =
5404 (busiest->sum_nr_running - busiest->group_capacity);
5405
5406 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5407 load_above_capacity /= busiest->group_power;
5408 }
5409
5410 /*
5411 * We're trying to get all the cpus to the average_load, so we don't
5412 * want to push ourselves above the average load, nor do we wish to
5413 * reduce the max loaded cpu below the average load. At the same time,
5414 * we also don't want to reduce the group load below the group capacity
5415 * (so that we can implement power-savings policies etc). Thus we look
5416 * for the minimum possible imbalance.
5417 */
5418 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5419
5420 /* How much load to actually move to equalise the imbalance */
5421 env->imbalance = min(
5422 max_pull * busiest->group_power,
5423 (sds->avg_load - local->avg_load) * local->group_power
5424 ) / SCHED_POWER_SCALE;
5425
5426 /*
5427 * if *imbalance is less than the average load per runnable task
5428 * there is no guarantee that any tasks will be moved so we'll have
5429 * a think about bumping its value to force at least one task to be
5430 * moved
5431 */
5432 if (env->imbalance < busiest->load_per_task)
5433 return fix_small_imbalance(env, sds);
5434 }
5435
5436 /******* find_busiest_group() helpers end here *********************/
5437
5438 /**
5439 * find_busiest_group - Returns the busiest group within the sched_domain
5440 * if there is an imbalance. If there isn't an imbalance, and
5441 * the user has opted for power-savings, it returns a group whose
5442 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5443 * such a group exists.
5444 *
5445 * Also calculates the amount of weighted load which should be moved
5446 * to restore balance.
5447 *
5448 * @env: The load balancing environment.
5449 *
5450 * Return: - The busiest group if imbalance exists.
5451 * - If no imbalance and user has opted for power-savings balance,
5452 * return the least loaded group whose CPUs can be
5453 * put to idle by rebalancing its tasks onto our group.
5454 */
5455 static struct sched_group *find_busiest_group(struct lb_env *env)
5456 {
5457 struct sg_lb_stats *local, *busiest;
5458 struct sd_lb_stats sds;
5459
5460 init_sd_lb_stats(&sds);
5461
5462 /*
5463 * Compute the various statistics relavent for load balancing at
5464 * this level.
5465 */
5466 update_sd_lb_stats(env, &sds);
5467 local = &sds.local_stat;
5468 busiest = &sds.busiest_stat;
5469
5470 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5471 check_asym_packing(env, &sds))
5472 return sds.busiest;
5473
5474 /* There is no busy sibling group to pull tasks from */
5475 if (!sds.busiest || busiest->sum_nr_running == 0)
5476 goto out_balanced;
5477
5478 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5479
5480 /*
5481 * If the busiest group is imbalanced the below checks don't
5482 * work because they assume all things are equal, which typically
5483 * isn't true due to cpus_allowed constraints and the like.
5484 */
5485 if (busiest->group_imb)
5486 goto force_balance;
5487
5488 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5489 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5490 !busiest->group_has_capacity)
5491 goto force_balance;
5492
5493 /*
5494 * If the local group is more busy than the selected busiest group
5495 * don't try and pull any tasks.
5496 */
5497 if (local->avg_load >= busiest->avg_load)
5498 goto out_balanced;
5499
5500 /*
5501 * Don't pull any tasks if this group is already above the domain
5502 * average load.
5503 */
5504 if (local->avg_load >= sds.avg_load)
5505 goto out_balanced;
5506
5507 if (env->idle == CPU_IDLE) {
5508 /*
5509 * This cpu is idle. If the busiest group load doesn't
5510 * have more tasks than the number of available cpu's and
5511 * there is no imbalance between this and busiest group
5512 * wrt to idle cpu's, it is balanced.
5513 */
5514 if ((local->idle_cpus < busiest->idle_cpus) &&
5515 busiest->sum_nr_running <= busiest->group_weight)
5516 goto out_balanced;
5517 } else {
5518 /*
5519 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5520 * imbalance_pct to be conservative.
5521 */
5522 if (100 * busiest->avg_load <=
5523 env->sd->imbalance_pct * local->avg_load)
5524 goto out_balanced;
5525 }
5526
5527 force_balance:
5528 /* Looks like there is an imbalance. Compute it */
5529 calculate_imbalance(env, &sds);
5530 return sds.busiest;
5531
5532 out_balanced:
5533 env->imbalance = 0;
5534 return NULL;
5535 }
5536
5537 /*
5538 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5539 */
5540 static struct rq *find_busiest_queue(struct lb_env *env,
5541 struct sched_group *group)
5542 {
5543 struct rq *busiest = NULL, *rq;
5544 unsigned long busiest_load = 0, busiest_power = 1;
5545 int i;
5546
5547 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5548 unsigned long power = power_of(i);
5549 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5550 SCHED_POWER_SCALE);
5551 unsigned long wl;
5552
5553 if (!capacity)
5554 capacity = fix_small_capacity(env->sd, group);
5555
5556 rq = cpu_rq(i);
5557 wl = weighted_cpuload(i);
5558
5559 /*
5560 * When comparing with imbalance, use weighted_cpuload()
5561 * which is not scaled with the cpu power.
5562 */
5563 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
5564 continue;
5565
5566 /*
5567 * For the load comparisons with the other cpu's, consider
5568 * the weighted_cpuload() scaled with the cpu power, so that
5569 * the load can be moved away from the cpu that is potentially
5570 * running at a lower capacity.
5571 *
5572 * Thus we're looking for max(wl_i / power_i), crosswise
5573 * multiplication to rid ourselves of the division works out
5574 * to: wl_i * power_j > wl_j * power_i; where j is our
5575 * previous maximum.
5576 */
5577 if (wl * busiest_power > busiest_load * power) {
5578 busiest_load = wl;
5579 busiest_power = power;
5580 busiest = rq;
5581 }
5582 }
5583
5584 return busiest;
5585 }
5586
5587 /*
5588 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5589 * so long as it is large enough.
5590 */
5591 #define MAX_PINNED_INTERVAL 512
5592
5593 /* Working cpumask for load_balance and load_balance_newidle. */
5594 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5595
5596 static int need_active_balance(struct lb_env *env)
5597 {
5598 struct sched_domain *sd = env->sd;
5599
5600 if (env->idle == CPU_NEWLY_IDLE) {
5601
5602 /*
5603 * ASYM_PACKING needs to force migrate tasks from busy but
5604 * higher numbered CPUs in order to pack all tasks in the
5605 * lowest numbered CPUs.
5606 */
5607 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5608 return 1;
5609 }
5610
5611 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5612 }
5613
5614 static int active_load_balance_cpu_stop(void *data);
5615
5616 static int should_we_balance(struct lb_env *env)
5617 {
5618 struct sched_group *sg = env->sd->groups;
5619 struct cpumask *sg_cpus, *sg_mask;
5620 int cpu, balance_cpu = -1;
5621
5622 /*
5623 * In the newly idle case, we will allow all the cpu's
5624 * to do the newly idle load balance.
5625 */
5626 if (env->idle == CPU_NEWLY_IDLE)
5627 return 1;
5628
5629 sg_cpus = sched_group_cpus(sg);
5630 sg_mask = sched_group_mask(sg);
5631 /* Try to find first idle cpu */
5632 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5633 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5634 continue;
5635
5636 balance_cpu = cpu;
5637 break;
5638 }
5639
5640 if (balance_cpu == -1)
5641 balance_cpu = group_balance_cpu(sg);
5642
5643 /*
5644 * First idle cpu or the first cpu(busiest) in this sched group
5645 * is eligible for doing load balancing at this and above domains.
5646 */
5647 return balance_cpu == env->dst_cpu;
5648 }
5649
5650 /*
5651 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5652 * tasks if there is an imbalance.
5653 */
5654 static int load_balance(int this_cpu, struct rq *this_rq,
5655 struct sched_domain *sd, enum cpu_idle_type idle,
5656 int *continue_balancing)
5657 {
5658 int ld_moved, cur_ld_moved, active_balance = 0;
5659 struct sched_domain *sd_parent = sd->parent;
5660 struct sched_group *group;
5661 struct rq *busiest;
5662 unsigned long flags;
5663 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5664
5665 struct lb_env env = {
5666 .sd = sd,
5667 .dst_cpu = this_cpu,
5668 .dst_rq = this_rq,
5669 .dst_grpmask = sched_group_cpus(sd->groups),
5670 .idle = idle,
5671 .loop_break = sched_nr_migrate_break,
5672 .cpus = cpus,
5673 };
5674
5675 /*
5676 * For NEWLY_IDLE load_balancing, we don't need to consider
5677 * other cpus in our group
5678 */
5679 if (idle == CPU_NEWLY_IDLE)
5680 env.dst_grpmask = NULL;
5681
5682 cpumask_copy(cpus, cpu_active_mask);
5683
5684 schedstat_inc(sd, lb_count[idle]);
5685
5686 redo:
5687 if (!should_we_balance(&env)) {
5688 *continue_balancing = 0;
5689 goto out_balanced;
5690 }
5691
5692 group = find_busiest_group(&env);
5693 if (!group) {
5694 schedstat_inc(sd, lb_nobusyg[idle]);
5695 goto out_balanced;
5696 }
5697
5698 busiest = find_busiest_queue(&env, group);
5699 if (!busiest) {
5700 schedstat_inc(sd, lb_nobusyq[idle]);
5701 goto out_balanced;
5702 }
5703
5704 BUG_ON(busiest == env.dst_rq);
5705
5706 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5707
5708 ld_moved = 0;
5709 if (busiest->nr_running > 1) {
5710 /*
5711 * Attempt to move tasks. If find_busiest_group has found
5712 * an imbalance but busiest->nr_running <= 1, the group is
5713 * still unbalanced. ld_moved simply stays zero, so it is
5714 * correctly treated as an imbalance.
5715 */
5716 env.flags |= LBF_ALL_PINNED;
5717 env.src_cpu = busiest->cpu;
5718 env.src_rq = busiest;
5719 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
5720
5721 more_balance:
5722 local_irq_save(flags);
5723 double_rq_lock(env.dst_rq, busiest);
5724
5725 /*
5726 * cur_ld_moved - load moved in current iteration
5727 * ld_moved - cumulative load moved across iterations
5728 */
5729 cur_ld_moved = move_tasks(&env);
5730 ld_moved += cur_ld_moved;
5731 double_rq_unlock(env.dst_rq, busiest);
5732 local_irq_restore(flags);
5733
5734 /*
5735 * some other cpu did the load balance for us.
5736 */
5737 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5738 resched_cpu(env.dst_cpu);
5739
5740 if (env.flags & LBF_NEED_BREAK) {
5741 env.flags &= ~LBF_NEED_BREAK;
5742 goto more_balance;
5743 }
5744
5745 /*
5746 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5747 * us and move them to an alternate dst_cpu in our sched_group
5748 * where they can run. The upper limit on how many times we
5749 * iterate on same src_cpu is dependent on number of cpus in our
5750 * sched_group.
5751 *
5752 * This changes load balance semantics a bit on who can move
5753 * load to a given_cpu. In addition to the given_cpu itself
5754 * (or a ilb_cpu acting on its behalf where given_cpu is
5755 * nohz-idle), we now have balance_cpu in a position to move
5756 * load to given_cpu. In rare situations, this may cause
5757 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5758 * _independently_ and at _same_ time to move some load to
5759 * given_cpu) causing exceess load to be moved to given_cpu.
5760 * This however should not happen so much in practice and
5761 * moreover subsequent load balance cycles should correct the
5762 * excess load moved.
5763 */
5764 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
5765
5766 /* Prevent to re-select dst_cpu via env's cpus */
5767 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5768
5769 env.dst_rq = cpu_rq(env.new_dst_cpu);
5770 env.dst_cpu = env.new_dst_cpu;
5771 env.flags &= ~LBF_DST_PINNED;
5772 env.loop = 0;
5773 env.loop_break = sched_nr_migrate_break;
5774
5775 /*
5776 * Go back to "more_balance" rather than "redo" since we
5777 * need to continue with same src_cpu.
5778 */
5779 goto more_balance;
5780 }
5781
5782 /*
5783 * We failed to reach balance because of affinity.
5784 */
5785 if (sd_parent) {
5786 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5787
5788 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5789 *group_imbalance = 1;
5790 } else if (*group_imbalance)
5791 *group_imbalance = 0;
5792 }
5793
5794 /* All tasks on this runqueue were pinned by CPU affinity */
5795 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5796 cpumask_clear_cpu(cpu_of(busiest), cpus);
5797 if (!cpumask_empty(cpus)) {
5798 env.loop = 0;
5799 env.loop_break = sched_nr_migrate_break;
5800 goto redo;
5801 }
5802 goto out_balanced;
5803 }
5804 }
5805
5806 if (!ld_moved) {
5807 schedstat_inc(sd, lb_failed[idle]);
5808 /*
5809 * Increment the failure counter only on periodic balance.
5810 * We do not want newidle balance, which can be very
5811 * frequent, pollute the failure counter causing
5812 * excessive cache_hot migrations and active balances.
5813 */
5814 if (idle != CPU_NEWLY_IDLE)
5815 sd->nr_balance_failed++;
5816
5817 if (need_active_balance(&env)) {
5818 raw_spin_lock_irqsave(&busiest->lock, flags);
5819
5820 /* don't kick the active_load_balance_cpu_stop,
5821 * if the curr task on busiest cpu can't be
5822 * moved to this_cpu
5823 */
5824 if (!cpumask_test_cpu(this_cpu,
5825 tsk_cpus_allowed(busiest->curr))) {
5826 raw_spin_unlock_irqrestore(&busiest->lock,
5827 flags);
5828 env.flags |= LBF_ALL_PINNED;
5829 goto out_one_pinned;
5830 }
5831
5832 /*
5833 * ->active_balance synchronizes accesses to
5834 * ->active_balance_work. Once set, it's cleared
5835 * only after active load balance is finished.
5836 */
5837 if (!busiest->active_balance) {
5838 busiest->active_balance = 1;
5839 busiest->push_cpu = this_cpu;
5840 active_balance = 1;
5841 }
5842 raw_spin_unlock_irqrestore(&busiest->lock, flags);
5843
5844 if (active_balance) {
5845 stop_one_cpu_nowait(cpu_of(busiest),
5846 active_load_balance_cpu_stop, busiest,
5847 &busiest->active_balance_work);
5848 }
5849
5850 /*
5851 * We've kicked active balancing, reset the failure
5852 * counter.
5853 */
5854 sd->nr_balance_failed = sd->cache_nice_tries+1;
5855 }
5856 } else
5857 sd->nr_balance_failed = 0;
5858
5859 if (likely(!active_balance)) {
5860 /* We were unbalanced, so reset the balancing interval */
5861 sd->balance_interval = sd->min_interval;
5862 } else {
5863 /*
5864 * If we've begun active balancing, start to back off. This
5865 * case may not be covered by the all_pinned logic if there
5866 * is only 1 task on the busy runqueue (because we don't call
5867 * move_tasks).
5868 */
5869 if (sd->balance_interval < sd->max_interval)
5870 sd->balance_interval *= 2;
5871 }
5872
5873 goto out;
5874
5875 out_balanced:
5876 schedstat_inc(sd, lb_balanced[idle]);
5877
5878 sd->nr_balance_failed = 0;
5879
5880 out_one_pinned:
5881 /* tune up the balancing interval */
5882 if (((env.flags & LBF_ALL_PINNED) &&
5883 sd->balance_interval < MAX_PINNED_INTERVAL) ||
5884 (sd->balance_interval < sd->max_interval))
5885 sd->balance_interval *= 2;
5886
5887 ld_moved = 0;
5888 out:
5889 return ld_moved;
5890 }
5891
5892 /*
5893 * idle_balance is called by schedule() if this_cpu is about to become
5894 * idle. Attempts to pull tasks from other CPUs.
5895 */
5896 void idle_balance(int this_cpu, struct rq *this_rq)
5897 {
5898 struct sched_domain *sd;
5899 int pulled_task = 0;
5900 unsigned long next_balance = jiffies + HZ;
5901 u64 curr_cost = 0;
5902
5903 this_rq->idle_stamp = rq_clock(this_rq);
5904
5905 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5906 return;
5907
5908 /*
5909 * Drop the rq->lock, but keep IRQ/preempt disabled.
5910 */
5911 raw_spin_unlock(&this_rq->lock);
5912
5913 update_blocked_averages(this_cpu);
5914 rcu_read_lock();
5915 for_each_domain(this_cpu, sd) {
5916 unsigned long interval;
5917 int continue_balancing = 1;
5918 u64 t0, domain_cost;
5919
5920 if (!(sd->flags & SD_LOAD_BALANCE))
5921 continue;
5922
5923 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
5924 break;
5925
5926 if (sd->flags & SD_BALANCE_NEWIDLE) {
5927 t0 = sched_clock_cpu(this_cpu);
5928
5929 /* If we've pulled tasks over stop searching: */
5930 pulled_task = load_balance(this_cpu, this_rq,
5931 sd, CPU_NEWLY_IDLE,
5932 &continue_balancing);
5933
5934 domain_cost = sched_clock_cpu(this_cpu) - t0;
5935 if (domain_cost > sd->max_newidle_lb_cost)
5936 sd->max_newidle_lb_cost = domain_cost;
5937
5938 curr_cost += domain_cost;
5939 }
5940
5941 interval = msecs_to_jiffies(sd->balance_interval);
5942 if (time_after(next_balance, sd->last_balance + interval))
5943 next_balance = sd->last_balance + interval;
5944 if (pulled_task) {
5945 this_rq->idle_stamp = 0;
5946 break;
5947 }
5948 }
5949 rcu_read_unlock();
5950
5951 raw_spin_lock(&this_rq->lock);
5952
5953 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5954 /*
5955 * We are going idle. next_balance may be set based on
5956 * a busy processor. So reset next_balance.
5957 */
5958 this_rq->next_balance = next_balance;
5959 }
5960
5961 if (curr_cost > this_rq->max_idle_balance_cost)
5962 this_rq->max_idle_balance_cost = curr_cost;
5963 }
5964
5965 /*
5966 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5967 * running tasks off the busiest CPU onto idle CPUs. It requires at
5968 * least 1 task to be running on each physical CPU where possible, and
5969 * avoids physical / logical imbalances.
5970 */
5971 static int active_load_balance_cpu_stop(void *data)
5972 {
5973 struct rq *busiest_rq = data;
5974 int busiest_cpu = cpu_of(busiest_rq);
5975 int target_cpu = busiest_rq->push_cpu;
5976 struct rq *target_rq = cpu_rq(target_cpu);
5977 struct sched_domain *sd;
5978
5979 raw_spin_lock_irq(&busiest_rq->lock);
5980
5981 /* make sure the requested cpu hasn't gone down in the meantime */
5982 if (unlikely(busiest_cpu != smp_processor_id() ||
5983 !busiest_rq->active_balance))
5984 goto out_unlock;
5985
5986 /* Is there any task to move? */
5987 if (busiest_rq->nr_running <= 1)
5988 goto out_unlock;
5989
5990 /*
5991 * This condition is "impossible", if it occurs
5992 * we need to fix it. Originally reported by
5993 * Bjorn Helgaas on a 128-cpu setup.
5994 */
5995 BUG_ON(busiest_rq == target_rq);
5996
5997 /* move a task from busiest_rq to target_rq */
5998 double_lock_balance(busiest_rq, target_rq);
5999
6000 /* Search for an sd spanning us and the target CPU. */
6001 rcu_read_lock();
6002 for_each_domain(target_cpu, sd) {
6003 if ((sd->flags & SD_LOAD_BALANCE) &&
6004 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6005 break;
6006 }
6007
6008 if (likely(sd)) {
6009 struct lb_env env = {
6010 .sd = sd,
6011 .dst_cpu = target_cpu,
6012 .dst_rq = target_rq,
6013 .src_cpu = busiest_rq->cpu,
6014 .src_rq = busiest_rq,
6015 .idle = CPU_IDLE,
6016 };
6017
6018 schedstat_inc(sd, alb_count);
6019
6020 if (move_one_task(&env))
6021 schedstat_inc(sd, alb_pushed);
6022 else
6023 schedstat_inc(sd, alb_failed);
6024 }
6025 rcu_read_unlock();
6026 double_unlock_balance(busiest_rq, target_rq);
6027 out_unlock:
6028 busiest_rq->active_balance = 0;
6029 raw_spin_unlock_irq(&busiest_rq->lock);
6030 return 0;
6031 }
6032
6033 #ifdef CONFIG_NO_HZ_COMMON
6034 /*
6035 * idle load balancing details
6036 * - When one of the busy CPUs notice that there may be an idle rebalancing
6037 * needed, they will kick the idle load balancer, which then does idle
6038 * load balancing for all the idle CPUs.
6039 */
6040 static struct {
6041 cpumask_var_t idle_cpus_mask;
6042 atomic_t nr_cpus;
6043 unsigned long next_balance; /* in jiffy units */
6044 } nohz ____cacheline_aligned;
6045
6046 static inline int find_new_ilb(int call_cpu)
6047 {
6048 int ilb = cpumask_first(nohz.idle_cpus_mask);
6049
6050 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6051 return ilb;
6052
6053 return nr_cpu_ids;
6054 }
6055
6056 /*
6057 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6058 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6059 * CPU (if there is one).
6060 */
6061 static void nohz_balancer_kick(int cpu)
6062 {
6063 int ilb_cpu;
6064
6065 nohz.next_balance++;
6066
6067 ilb_cpu = find_new_ilb(cpu);
6068
6069 if (ilb_cpu >= nr_cpu_ids)
6070 return;
6071
6072 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6073 return;
6074 /*
6075 * Use smp_send_reschedule() instead of resched_cpu().
6076 * This way we generate a sched IPI on the target cpu which
6077 * is idle. And the softirq performing nohz idle load balance
6078 * will be run before returning from the IPI.
6079 */
6080 smp_send_reschedule(ilb_cpu);
6081 return;
6082 }
6083
6084 static inline void nohz_balance_exit_idle(int cpu)
6085 {
6086 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6087 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6088 atomic_dec(&nohz.nr_cpus);
6089 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6090 }
6091 }
6092
6093 static inline void set_cpu_sd_state_busy(void)
6094 {
6095 struct sched_domain *sd;
6096
6097 rcu_read_lock();
6098 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
6099
6100 if (!sd || !sd->nohz_idle)
6101 goto unlock;
6102 sd->nohz_idle = 0;
6103
6104 for (; sd; sd = sd->parent)
6105 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6106 unlock:
6107 rcu_read_unlock();
6108 }
6109
6110 void set_cpu_sd_state_idle(void)
6111 {
6112 struct sched_domain *sd;
6113
6114 rcu_read_lock();
6115 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
6116
6117 if (!sd || sd->nohz_idle)
6118 goto unlock;
6119 sd->nohz_idle = 1;
6120
6121 for (; sd; sd = sd->parent)
6122 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6123 unlock:
6124 rcu_read_unlock();
6125 }
6126
6127 /*
6128 * This routine will record that the cpu is going idle with tick stopped.
6129 * This info will be used in performing idle load balancing in the future.
6130 */
6131 void nohz_balance_enter_idle(int cpu)
6132 {
6133 /*
6134 * If this cpu is going down, then nothing needs to be done.
6135 */
6136 if (!cpu_active(cpu))
6137 return;
6138
6139 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6140 return;
6141
6142 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6143 atomic_inc(&nohz.nr_cpus);
6144 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6145 }
6146
6147 static int sched_ilb_notifier(struct notifier_block *nfb,
6148 unsigned long action, void *hcpu)
6149 {
6150 switch (action & ~CPU_TASKS_FROZEN) {
6151 case CPU_DYING:
6152 nohz_balance_exit_idle(smp_processor_id());
6153 return NOTIFY_OK;
6154 default:
6155 return NOTIFY_DONE;
6156 }
6157 }
6158 #endif
6159
6160 static DEFINE_SPINLOCK(balancing);
6161
6162 /*
6163 * Scale the max load_balance interval with the number of CPUs in the system.
6164 * This trades load-balance latency on larger machines for less cross talk.
6165 */
6166 void update_max_interval(void)
6167 {
6168 max_load_balance_interval = HZ*num_online_cpus()/10;
6169 }
6170
6171 /*
6172 * It checks each scheduling domain to see if it is due to be balanced,
6173 * and initiates a balancing operation if so.
6174 *
6175 * Balancing parameters are set up in init_sched_domains.
6176 */
6177 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6178 {
6179 int continue_balancing = 1;
6180 struct rq *rq = cpu_rq(cpu);
6181 unsigned long interval;
6182 struct sched_domain *sd;
6183 /* Earliest time when we have to do rebalance again */
6184 unsigned long next_balance = jiffies + 60*HZ;
6185 int update_next_balance = 0;
6186 int need_serialize, need_decay = 0;
6187 u64 max_cost = 0;
6188
6189 update_blocked_averages(cpu);
6190
6191 rcu_read_lock();
6192 for_each_domain(cpu, sd) {
6193 /*
6194 * Decay the newidle max times here because this is a regular
6195 * visit to all the domains. Decay ~1% per second.
6196 */
6197 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6198 sd->max_newidle_lb_cost =
6199 (sd->max_newidle_lb_cost * 253) / 256;
6200 sd->next_decay_max_lb_cost = jiffies + HZ;
6201 need_decay = 1;
6202 }
6203 max_cost += sd->max_newidle_lb_cost;
6204
6205 if (!(sd->flags & SD_LOAD_BALANCE))
6206 continue;
6207
6208 /*
6209 * Stop the load balance at this level. There is another
6210 * CPU in our sched group which is doing load balancing more
6211 * actively.
6212 */
6213 if (!continue_balancing) {
6214 if (need_decay)
6215 continue;
6216 break;
6217 }
6218
6219 interval = sd->balance_interval;
6220 if (idle != CPU_IDLE)
6221 interval *= sd->busy_factor;
6222
6223 /* scale ms to jiffies */
6224 interval = msecs_to_jiffies(interval);
6225 interval = clamp(interval, 1UL, max_load_balance_interval);
6226
6227 need_serialize = sd->flags & SD_SERIALIZE;
6228
6229 if (need_serialize) {
6230 if (!spin_trylock(&balancing))
6231 goto out;
6232 }
6233
6234 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6235 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6236 /*
6237 * The LBF_DST_PINNED logic could have changed
6238 * env->dst_cpu, so we can't know our idle
6239 * state even if we migrated tasks. Update it.
6240 */
6241 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6242 }
6243 sd->last_balance = jiffies;
6244 }
6245 if (need_serialize)
6246 spin_unlock(&balancing);
6247 out:
6248 if (time_after(next_balance, sd->last_balance + interval)) {
6249 next_balance = sd->last_balance + interval;
6250 update_next_balance = 1;
6251 }
6252 }
6253 if (need_decay) {
6254 /*
6255 * Ensure the rq-wide value also decays but keep it at a
6256 * reasonable floor to avoid funnies with rq->avg_idle.
6257 */
6258 rq->max_idle_balance_cost =
6259 max((u64)sysctl_sched_migration_cost, max_cost);
6260 }
6261 rcu_read_unlock();
6262
6263 /*
6264 * next_balance will be updated only when there is a need.
6265 * When the cpu is attached to null domain for ex, it will not be
6266 * updated.
6267 */
6268 if (likely(update_next_balance))
6269 rq->next_balance = next_balance;
6270 }
6271
6272 #ifdef CONFIG_NO_HZ_COMMON
6273 /*
6274 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6275 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6276 */
6277 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6278 {
6279 struct rq *this_rq = cpu_rq(this_cpu);
6280 struct rq *rq;
6281 int balance_cpu;
6282
6283 if (idle != CPU_IDLE ||
6284 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6285 goto end;
6286
6287 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6288 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6289 continue;
6290
6291 /*
6292 * If this cpu gets work to do, stop the load balancing
6293 * work being done for other cpus. Next load
6294 * balancing owner will pick it up.
6295 */
6296 if (need_resched())
6297 break;
6298
6299 rq = cpu_rq(balance_cpu);
6300
6301 raw_spin_lock_irq(&rq->lock);
6302 update_rq_clock(rq);
6303 update_idle_cpu_load(rq);
6304 raw_spin_unlock_irq(&rq->lock);
6305
6306 rebalance_domains(balance_cpu, CPU_IDLE);
6307
6308 if (time_after(this_rq->next_balance, rq->next_balance))
6309 this_rq->next_balance = rq->next_balance;
6310 }
6311 nohz.next_balance = this_rq->next_balance;
6312 end:
6313 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6314 }
6315
6316 /*
6317 * Current heuristic for kicking the idle load balancer in the presence
6318 * of an idle cpu is the system.
6319 * - This rq has more than one task.
6320 * - At any scheduler domain level, this cpu's scheduler group has multiple
6321 * busy cpu's exceeding the group's power.
6322 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6323 * domain span are idle.
6324 */
6325 static inline int nohz_kick_needed(struct rq *rq, int cpu)
6326 {
6327 unsigned long now = jiffies;
6328 struct sched_domain *sd;
6329
6330 if (unlikely(idle_cpu(cpu)))
6331 return 0;
6332
6333 /*
6334 * We may be recently in ticked or tickless idle mode. At the first
6335 * busy tick after returning from idle, we will update the busy stats.
6336 */
6337 set_cpu_sd_state_busy();
6338 nohz_balance_exit_idle(cpu);
6339
6340 /*
6341 * None are in tickless mode and hence no need for NOHZ idle load
6342 * balancing.
6343 */
6344 if (likely(!atomic_read(&nohz.nr_cpus)))
6345 return 0;
6346
6347 if (time_before(now, nohz.next_balance))
6348 return 0;
6349
6350 if (rq->nr_running >= 2)
6351 goto need_kick;
6352
6353 rcu_read_lock();
6354 for_each_domain(cpu, sd) {
6355 struct sched_group *sg = sd->groups;
6356 struct sched_group_power *sgp = sg->sgp;
6357 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
6358
6359 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
6360 goto need_kick_unlock;
6361
6362 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6363 && (cpumask_first_and(nohz.idle_cpus_mask,
6364 sched_domain_span(sd)) < cpu))
6365 goto need_kick_unlock;
6366
6367 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6368 break;
6369 }
6370 rcu_read_unlock();
6371 return 0;
6372
6373 need_kick_unlock:
6374 rcu_read_unlock();
6375 need_kick:
6376 return 1;
6377 }
6378 #else
6379 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6380 #endif
6381
6382 /*
6383 * run_rebalance_domains is triggered when needed from the scheduler tick.
6384 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6385 */
6386 static void run_rebalance_domains(struct softirq_action *h)
6387 {
6388 int this_cpu = smp_processor_id();
6389 struct rq *this_rq = cpu_rq(this_cpu);
6390 enum cpu_idle_type idle = this_rq->idle_balance ?
6391 CPU_IDLE : CPU_NOT_IDLE;
6392
6393 rebalance_domains(this_cpu, idle);
6394
6395 /*
6396 * If this cpu has a pending nohz_balance_kick, then do the
6397 * balancing on behalf of the other idle cpus whose ticks are
6398 * stopped.
6399 */
6400 nohz_idle_balance(this_cpu, idle);
6401 }
6402
6403 static inline int on_null_domain(int cpu)
6404 {
6405 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6406 }
6407
6408 /*
6409 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6410 */
6411 void trigger_load_balance(struct rq *rq, int cpu)
6412 {
6413 /* Don't need to rebalance while attached to NULL domain */
6414 if (time_after_eq(jiffies, rq->next_balance) &&
6415 likely(!on_null_domain(cpu)))
6416 raise_softirq(SCHED_SOFTIRQ);
6417 #ifdef CONFIG_NO_HZ_COMMON
6418 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6419 nohz_balancer_kick(cpu);
6420 #endif
6421 }
6422
6423 static void rq_online_fair(struct rq *rq)
6424 {
6425 update_sysctl();
6426 }
6427
6428 static void rq_offline_fair(struct rq *rq)
6429 {
6430 update_sysctl();
6431
6432 /* Ensure any throttled groups are reachable by pick_next_task */
6433 unthrottle_offline_cfs_rqs(rq);
6434 }
6435
6436 #endif /* CONFIG_SMP */
6437
6438 /*
6439 * scheduler tick hitting a task of our scheduling class:
6440 */
6441 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6442 {
6443 struct cfs_rq *cfs_rq;
6444 struct sched_entity *se = &curr->se;
6445
6446 for_each_sched_entity(se) {
6447 cfs_rq = cfs_rq_of(se);
6448 entity_tick(cfs_rq, se, queued);
6449 }
6450
6451 if (numabalancing_enabled)
6452 task_tick_numa(rq, curr);
6453
6454 update_rq_runnable_avg(rq, 1);
6455 }
6456
6457 /*
6458 * called on fork with the child task as argument from the parent's context
6459 * - child not yet on the tasklist
6460 * - preemption disabled
6461 */
6462 static void task_fork_fair(struct task_struct *p)
6463 {
6464 struct cfs_rq *cfs_rq;
6465 struct sched_entity *se = &p->se, *curr;
6466 int this_cpu = smp_processor_id();
6467 struct rq *rq = this_rq();
6468 unsigned long flags;
6469
6470 raw_spin_lock_irqsave(&rq->lock, flags);
6471
6472 update_rq_clock(rq);
6473
6474 cfs_rq = task_cfs_rq(current);
6475 curr = cfs_rq->curr;
6476
6477 /*
6478 * Not only the cpu but also the task_group of the parent might have
6479 * been changed after parent->se.parent,cfs_rq were copied to
6480 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6481 * of child point to valid ones.
6482 */
6483 rcu_read_lock();
6484 __set_task_cpu(p, this_cpu);
6485 rcu_read_unlock();
6486
6487 update_curr(cfs_rq);
6488
6489 if (curr)
6490 se->vruntime = curr->vruntime;
6491 place_entity(cfs_rq, se, 1);
6492
6493 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6494 /*
6495 * Upon rescheduling, sched_class::put_prev_task() will place
6496 * 'current' within the tree based on its new key value.
6497 */
6498 swap(curr->vruntime, se->vruntime);
6499 resched_task(rq->curr);
6500 }
6501
6502 se->vruntime -= cfs_rq->min_vruntime;
6503
6504 raw_spin_unlock_irqrestore(&rq->lock, flags);
6505 }
6506
6507 /*
6508 * Priority of the task has changed. Check to see if we preempt
6509 * the current task.
6510 */
6511 static void
6512 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6513 {
6514 if (!p->se.on_rq)
6515 return;
6516
6517 /*
6518 * Reschedule if we are currently running on this runqueue and
6519 * our priority decreased, or if we are not currently running on
6520 * this runqueue and our priority is higher than the current's
6521 */
6522 if (rq->curr == p) {
6523 if (p->prio > oldprio)
6524 resched_task(rq->curr);
6525 } else
6526 check_preempt_curr(rq, p, 0);
6527 }
6528
6529 static void switched_from_fair(struct rq *rq, struct task_struct *p)
6530 {
6531 struct sched_entity *se = &p->se;
6532 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6533
6534 /*
6535 * Ensure the task's vruntime is normalized, so that when its
6536 * switched back to the fair class the enqueue_entity(.flags=0) will
6537 * do the right thing.
6538 *
6539 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6540 * have normalized the vruntime, if it was !on_rq, then only when
6541 * the task is sleeping will it still have non-normalized vruntime.
6542 */
6543 if (!se->on_rq && p->state != TASK_RUNNING) {
6544 /*
6545 * Fix up our vruntime so that the current sleep doesn't
6546 * cause 'unlimited' sleep bonus.
6547 */
6548 place_entity(cfs_rq, se, 0);
6549 se->vruntime -= cfs_rq->min_vruntime;
6550 }
6551
6552 #ifdef CONFIG_SMP
6553 /*
6554 * Remove our load from contribution when we leave sched_fair
6555 * and ensure we don't carry in an old decay_count if we
6556 * switch back.
6557 */
6558 if (se->avg.decay_count) {
6559 __synchronize_entity_decay(se);
6560 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
6561 }
6562 #endif
6563 }
6564
6565 /*
6566 * We switched to the sched_fair class.
6567 */
6568 static void switched_to_fair(struct rq *rq, struct task_struct *p)
6569 {
6570 if (!p->se.on_rq)
6571 return;
6572
6573 /*
6574 * We were most likely switched from sched_rt, so
6575 * kick off the schedule if running, otherwise just see
6576 * if we can still preempt the current task.
6577 */
6578 if (rq->curr == p)
6579 resched_task(rq->curr);
6580 else
6581 check_preempt_curr(rq, p, 0);
6582 }
6583
6584 /* Account for a task changing its policy or group.
6585 *
6586 * This routine is mostly called to set cfs_rq->curr field when a task
6587 * migrates between groups/classes.
6588 */
6589 static void set_curr_task_fair(struct rq *rq)
6590 {
6591 struct sched_entity *se = &rq->curr->se;
6592
6593 for_each_sched_entity(se) {
6594 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6595
6596 set_next_entity(cfs_rq, se);
6597 /* ensure bandwidth has been allocated on our new cfs_rq */
6598 account_cfs_rq_runtime(cfs_rq, 0);
6599 }
6600 }
6601
6602 void init_cfs_rq(struct cfs_rq *cfs_rq)
6603 {
6604 cfs_rq->tasks_timeline = RB_ROOT;
6605 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6606 #ifndef CONFIG_64BIT
6607 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6608 #endif
6609 #ifdef CONFIG_SMP
6610 atomic64_set(&cfs_rq->decay_counter, 1);
6611 atomic_long_set(&cfs_rq->removed_load, 0);
6612 #endif
6613 }
6614
6615 #ifdef CONFIG_FAIR_GROUP_SCHED
6616 static void task_move_group_fair(struct task_struct *p, int on_rq)
6617 {
6618 struct cfs_rq *cfs_rq;
6619 /*
6620 * If the task was not on the rq at the time of this cgroup movement
6621 * it must have been asleep, sleeping tasks keep their ->vruntime
6622 * absolute on their old rq until wakeup (needed for the fair sleeper
6623 * bonus in place_entity()).
6624 *
6625 * If it was on the rq, we've just 'preempted' it, which does convert
6626 * ->vruntime to a relative base.
6627 *
6628 * Make sure both cases convert their relative position when migrating
6629 * to another cgroup's rq. This does somewhat interfere with the
6630 * fair sleeper stuff for the first placement, but who cares.
6631 */
6632 /*
6633 * When !on_rq, vruntime of the task has usually NOT been normalized.
6634 * But there are some cases where it has already been normalized:
6635 *
6636 * - Moving a forked child which is waiting for being woken up by
6637 * wake_up_new_task().
6638 * - Moving a task which has been woken up by try_to_wake_up() and
6639 * waiting for actually being woken up by sched_ttwu_pending().
6640 *
6641 * To prevent boost or penalty in the new cfs_rq caused by delta
6642 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6643 */
6644 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
6645 on_rq = 1;
6646
6647 if (!on_rq)
6648 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6649 set_task_rq(p, task_cpu(p));
6650 if (!on_rq) {
6651 cfs_rq = cfs_rq_of(&p->se);
6652 p->se.vruntime += cfs_rq->min_vruntime;
6653 #ifdef CONFIG_SMP
6654 /*
6655 * migrate_task_rq_fair() will have removed our previous
6656 * contribution, but we must synchronize for ongoing future
6657 * decay.
6658 */
6659 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6660 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6661 #endif
6662 }
6663 }
6664
6665 void free_fair_sched_group(struct task_group *tg)
6666 {
6667 int i;
6668
6669 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6670
6671 for_each_possible_cpu(i) {
6672 if (tg->cfs_rq)
6673 kfree(tg->cfs_rq[i]);
6674 if (tg->se)
6675 kfree(tg->se[i]);
6676 }
6677
6678 kfree(tg->cfs_rq);
6679 kfree(tg->se);
6680 }
6681
6682 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6683 {
6684 struct cfs_rq *cfs_rq;
6685 struct sched_entity *se;
6686 int i;
6687
6688 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6689 if (!tg->cfs_rq)
6690 goto err;
6691 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6692 if (!tg->se)
6693 goto err;
6694
6695 tg->shares = NICE_0_LOAD;
6696
6697 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6698
6699 for_each_possible_cpu(i) {
6700 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6701 GFP_KERNEL, cpu_to_node(i));
6702 if (!cfs_rq)
6703 goto err;
6704
6705 se = kzalloc_node(sizeof(struct sched_entity),
6706 GFP_KERNEL, cpu_to_node(i));
6707 if (!se)
6708 goto err_free_rq;
6709
6710 init_cfs_rq(cfs_rq);
6711 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6712 }
6713
6714 return 1;
6715
6716 err_free_rq:
6717 kfree(cfs_rq);
6718 err:
6719 return 0;
6720 }
6721
6722 void unregister_fair_sched_group(struct task_group *tg, int cpu)
6723 {
6724 struct rq *rq = cpu_rq(cpu);
6725 unsigned long flags;
6726
6727 /*
6728 * Only empty task groups can be destroyed; so we can speculatively
6729 * check on_list without danger of it being re-added.
6730 */
6731 if (!tg->cfs_rq[cpu]->on_list)
6732 return;
6733
6734 raw_spin_lock_irqsave(&rq->lock, flags);
6735 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6736 raw_spin_unlock_irqrestore(&rq->lock, flags);
6737 }
6738
6739 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6740 struct sched_entity *se, int cpu,
6741 struct sched_entity *parent)
6742 {
6743 struct rq *rq = cpu_rq(cpu);
6744
6745 cfs_rq->tg = tg;
6746 cfs_rq->rq = rq;
6747 init_cfs_rq_runtime(cfs_rq);
6748
6749 tg->cfs_rq[cpu] = cfs_rq;
6750 tg->se[cpu] = se;
6751
6752 /* se could be NULL for root_task_group */
6753 if (!se)
6754 return;
6755
6756 if (!parent)
6757 se->cfs_rq = &rq->cfs;
6758 else
6759 se->cfs_rq = parent->my_q;
6760
6761 se->my_q = cfs_rq;
6762 update_load_set(&se->load, 0);
6763 se->parent = parent;
6764 }
6765
6766 static DEFINE_MUTEX(shares_mutex);
6767
6768 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6769 {
6770 int i;
6771 unsigned long flags;
6772
6773 /*
6774 * We can't change the weight of the root cgroup.
6775 */
6776 if (!tg->se[0])
6777 return -EINVAL;
6778
6779 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6780
6781 mutex_lock(&shares_mutex);
6782 if (tg->shares == shares)
6783 goto done;
6784
6785 tg->shares = shares;
6786 for_each_possible_cpu(i) {
6787 struct rq *rq = cpu_rq(i);
6788 struct sched_entity *se;
6789
6790 se = tg->se[i];
6791 /* Propagate contribution to hierarchy */
6792 raw_spin_lock_irqsave(&rq->lock, flags);
6793
6794 /* Possible calls to update_curr() need rq clock */
6795 update_rq_clock(rq);
6796 for_each_sched_entity(se)
6797 update_cfs_shares(group_cfs_rq(se));
6798 raw_spin_unlock_irqrestore(&rq->lock, flags);
6799 }
6800
6801 done:
6802 mutex_unlock(&shares_mutex);
6803 return 0;
6804 }
6805 #else /* CONFIG_FAIR_GROUP_SCHED */
6806
6807 void free_fair_sched_group(struct task_group *tg) { }
6808
6809 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6810 {
6811 return 1;
6812 }
6813
6814 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6815
6816 #endif /* CONFIG_FAIR_GROUP_SCHED */
6817
6818
6819 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6820 {
6821 struct sched_entity *se = &task->se;
6822 unsigned int rr_interval = 0;
6823
6824 /*
6825 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6826 * idle runqueue:
6827 */
6828 if (rq->cfs.load.weight)
6829 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6830
6831 return rr_interval;
6832 }
6833
6834 /*
6835 * All the scheduling class methods:
6836 */
6837 const struct sched_class fair_sched_class = {
6838 .next = &idle_sched_class,
6839 .enqueue_task = enqueue_task_fair,
6840 .dequeue_task = dequeue_task_fair,
6841 .yield_task = yield_task_fair,
6842 .yield_to_task = yield_to_task_fair,
6843
6844 .check_preempt_curr = check_preempt_wakeup,
6845
6846 .pick_next_task = pick_next_task_fair,
6847 .put_prev_task = put_prev_task_fair,
6848
6849 #ifdef CONFIG_SMP
6850 .select_task_rq = select_task_rq_fair,
6851 .migrate_task_rq = migrate_task_rq_fair,
6852
6853 .rq_online = rq_online_fair,
6854 .rq_offline = rq_offline_fair,
6855
6856 .task_waking = task_waking_fair,
6857 #endif
6858
6859 .set_curr_task = set_curr_task_fair,
6860 .task_tick = task_tick_fair,
6861 .task_fork = task_fork_fair,
6862
6863 .prio_changed = prio_changed_fair,
6864 .switched_from = switched_from_fair,
6865 .switched_to = switched_to_fair,
6866
6867 .get_rr_interval = get_rr_interval_fair,
6868
6869 #ifdef CONFIG_FAIR_GROUP_SCHED
6870 .task_move_group = task_move_group_fair,
6871 #endif
6872 };
6873
6874 #ifdef CONFIG_SCHED_DEBUG
6875 void print_cfs_stats(struct seq_file *m, int cpu)
6876 {
6877 struct cfs_rq *cfs_rq;
6878
6879 rcu_read_lock();
6880 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6881 print_cfs_rq(m, cpu, cfs_rq);
6882 rcu_read_unlock();
6883 }
6884 #endif
6885
6886 __init void init_sched_fair_class(void)
6887 {
6888 #ifdef CONFIG_SMP
6889 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6890
6891 #ifdef CONFIG_NO_HZ_COMMON
6892 nohz.next_balance = jiffies;
6893 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6894 cpu_notifier(sched_ilb_notifier, 0);
6895 #endif
6896 #endif /* SMP */
6897
6898 }
This page took 0.576613 seconds and 5 git commands to generate.