222c2d0b6ae219adbf0779d804d819130a87da41
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
183 #else
184 # define WMULT_CONST (1UL << 32)
185 #endif
186
187 #define WMULT_SHIFT 32
188
189 /*
190 * Shift right and round:
191 */
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194 /*
195 * delta *= weight / lw
196 */
197 static unsigned long
198 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200 {
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234 }
235
236
237 const struct sched_class fair_sched_class;
238
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247 {
248 return cfs_rq->rq;
249 }
250
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
253
254 static inline struct task_struct *task_of(struct sched_entity *se)
255 {
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258 #endif
259 return container_of(se, struct task_struct, se);
260 }
261
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267 {
268 return p->se.cfs_rq;
269 }
270
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273 {
274 return se->cfs_rq;
275 }
276
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279 {
280 return grp->my_q;
281 }
282
283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq, 0);
307 }
308 }
309
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316 }
317
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322 /* Do the two (enqueued) entities belong to the same group ? */
323 static inline int
324 is_same_group(struct sched_entity *se, struct sched_entity *pse)
325 {
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330 }
331
332 static inline struct sched_entity *parent_entity(struct sched_entity *se)
333 {
334 return se->parent;
335 }
336
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity *se)
339 {
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346 }
347
348 static void
349 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350 {
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378 }
379
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
381
382 static inline struct task_struct *task_of(struct sched_entity *se)
383 {
384 return container_of(se, struct task_struct, se);
385 }
386
387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388 {
389 return container_of(cfs_rq, struct rq, cfs);
390 }
391
392 #define entity_is_task(se) 1
393
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
396
397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398 {
399 return &task_rq(p)->cfs;
400 }
401
402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403 {
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408 }
409
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412 {
413 return NULL;
414 }
415
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417 {
418 }
419
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421 {
422 }
423
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427 static inline int
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
429 {
430 return 1;
431 }
432
433 static inline struct sched_entity *parent_entity(struct sched_entity *se)
434 {
435 return NULL;
436 }
437
438 static inline void
439 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440 {
441 }
442
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
444
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453 {
454 s64 delta = (s64)(vruntime - max_vruntime);
455 if (delta > 0)
456 max_vruntime = vruntime;
457
458 return max_vruntime;
459 }
460
461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
462 {
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468 }
469
470 static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472 {
473 return (s64)(a->vruntime - b->vruntime) < 0;
474 }
475
476 static void update_min_vruntime(struct cfs_rq *cfs_rq)
477 {
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
488 if (!cfs_rq->curr)
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 #ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499 #endif
500 }
501
502 /*
503 * Enqueue an entity into the rb-tree:
504 */
505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 {
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
522 if (entity_before(se, entry)) {
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
534 if (leftmost)
535 cfs_rq->rb_leftmost = &se->run_node;
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
539 }
540
541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
548 }
549
550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
551 }
552
553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554 {
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
561 }
562
563 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564 {
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571 }
572
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575 {
576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577
578 if (!last)
579 return NULL;
580
581 return rb_entry(last, struct sched_entity, run_node);
582 }
583
584 /**************************************************************
585 * Scheduling class statistics methods:
586 */
587
588 int sched_proc_update_handler(struct ctl_table *table, int write,
589 void __user *buffer, size_t *lenp,
590 loff_t *ppos)
591 {
592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593 int factor = get_update_sysctl_factor();
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
606 #undef WRT_SYSCTL
607
608 return 0;
609 }
610 #endif
611
612 /*
613 * delta /= w
614 */
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta, struct sched_entity *se)
617 {
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620
621 return delta;
622 }
623
624 /*
625 * The idea is to set a period in which each task runs once.
626 *
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
632 static u64 __sched_period(unsigned long nr_running)
633 {
634 u64 period = sysctl_sched_latency;
635 unsigned long nr_latency = sched_nr_latency;
636
637 if (unlikely(nr_running > nr_latency)) {
638 period = sysctl_sched_min_granularity;
639 period *= nr_running;
640 }
641
642 return period;
643 }
644
645 /*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
649 * s = p*P[w/rw]
650 */
651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654
655 for_each_sched_entity(se) {
656 struct load_weight *load;
657 struct load_weight lw;
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
661
662 if (unlikely(!se->on_rq)) {
663 lw = cfs_rq->load;
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
671 }
672
673 /*
674 * We calculate the vruntime slice of a to-be-inserted task.
675 *
676 * vs = s/w
677 */
678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
679 {
680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 }
682
683 #ifdef CONFIG_SMP
684 static unsigned long task_h_load(struct task_struct *p);
685
686 static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688 /* Give new task start runnable values to heavy its load in infant time */
689 void init_task_runnable_average(struct task_struct *p)
690 {
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698 }
699 #else
700 void init_task_runnable_average(struct task_struct *p)
701 {
702 }
703 #endif
704
705 /*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709 static inline void
710 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
712 {
713 unsigned long delta_exec_weighted;
714
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
717
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
721
722 curr->vruntime += delta_exec_weighted;
723 update_min_vruntime(cfs_rq);
724 }
725
726 static void update_curr(struct cfs_rq *cfs_rq)
727 {
728 struct sched_entity *curr = cfs_rq->curr;
729 u64 now = rq_clock_task(rq_of(cfs_rq));
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
740 delta_exec = (unsigned long)(now - curr->exec_start);
741 if (!delta_exec)
742 return;
743
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
751 cpuacct_charge(curtask, delta_exec);
752 account_group_exec_runtime(curtask, delta_exec);
753 }
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
756 }
757
758 static inline void
759 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
760 {
761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
762 }
763
764 /*
765 * Task is being enqueued - update stats:
766 */
767 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
773 if (se != cfs_rq->curr)
774 update_stats_wait_start(cfs_rq, se);
775 }
776
777 static void
778 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
785 #ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
789 }
790 #endif
791 schedstat_set(se->statistics.wait_start, 0);
792 }
793
794 static inline void
795 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 {
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
801 if (se != cfs_rq->curr)
802 update_stats_wait_end(cfs_rq, se);
803 }
804
805 /*
806 * We are picking a new current task - update its stats:
807 */
808 static inline void
809 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
810 {
811 /*
812 * We are starting a new run period:
813 */
814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
815 }
816
817 /**************************************************
818 * Scheduling class queueing methods:
819 */
820
821 #ifdef CONFIG_NUMA_BALANCING
822 /*
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
826 */
827 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829 unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
830
831 /* Portion of address space to scan in MB */
832 unsigned int sysctl_numa_balancing_scan_size = 256;
833
834 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835 unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
837 static unsigned int task_nr_scan_windows(struct task_struct *p)
838 {
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854 }
855
856 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857 #define MAX_SCAN_WINDOW 2560
858
859 static unsigned int task_scan_min(struct task_struct *p)
860 {
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870 }
871
872 static unsigned int task_scan_max(struct task_struct *p)
873 {
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880 }
881
882 /*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
889 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
890
891 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
892 {
893 rq->nr_numa_running += (p->numa_preferred_nid != -1);
894 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
895 }
896
897 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
898 {
899 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
900 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
901 }
902
903 struct numa_group {
904 atomic_t refcount;
905
906 spinlock_t lock; /* nr_tasks, tasks */
907 int nr_tasks;
908 pid_t gid;
909 struct list_head task_list;
910
911 struct rcu_head rcu;
912 atomic_long_t total_faults;
913 atomic_long_t faults[0];
914 };
915
916 pid_t task_numa_group_id(struct task_struct *p)
917 {
918 return p->numa_group ? p->numa_group->gid : 0;
919 }
920
921 static inline int task_faults_idx(int nid, int priv)
922 {
923 return 2 * nid + priv;
924 }
925
926 static inline unsigned long task_faults(struct task_struct *p, int nid)
927 {
928 if (!p->numa_faults)
929 return 0;
930
931 return p->numa_faults[task_faults_idx(nid, 0)] +
932 p->numa_faults[task_faults_idx(nid, 1)];
933 }
934
935 static inline unsigned long group_faults(struct task_struct *p, int nid)
936 {
937 if (!p->numa_group)
938 return 0;
939
940 return atomic_long_read(&p->numa_group->faults[2*nid]) +
941 atomic_long_read(&p->numa_group->faults[2*nid+1]);
942 }
943
944 /*
945 * These return the fraction of accesses done by a particular task, or
946 * task group, on a particular numa node. The group weight is given a
947 * larger multiplier, in order to group tasks together that are almost
948 * evenly spread out between numa nodes.
949 */
950 static inline unsigned long task_weight(struct task_struct *p, int nid)
951 {
952 unsigned long total_faults;
953
954 if (!p->numa_faults)
955 return 0;
956
957 total_faults = p->total_numa_faults;
958
959 if (!total_faults)
960 return 0;
961
962 return 1000 * task_faults(p, nid) / total_faults;
963 }
964
965 static inline unsigned long group_weight(struct task_struct *p, int nid)
966 {
967 unsigned long total_faults;
968
969 if (!p->numa_group)
970 return 0;
971
972 total_faults = atomic_long_read(&p->numa_group->total_faults);
973
974 if (!total_faults)
975 return 0;
976
977 return 1000 * group_faults(p, nid) / total_faults;
978 }
979
980 static unsigned long weighted_cpuload(const int cpu);
981 static unsigned long source_load(int cpu, int type);
982 static unsigned long target_load(int cpu, int type);
983 static unsigned long power_of(int cpu);
984 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
985
986 /* Cached statistics for all CPUs within a node */
987 struct numa_stats {
988 unsigned long nr_running;
989 unsigned long load;
990
991 /* Total compute capacity of CPUs on a node */
992 unsigned long power;
993
994 /* Approximate capacity in terms of runnable tasks on a node */
995 unsigned long capacity;
996 int has_capacity;
997 };
998
999 /*
1000 * XXX borrowed from update_sg_lb_stats
1001 */
1002 static void update_numa_stats(struct numa_stats *ns, int nid)
1003 {
1004 int cpu;
1005
1006 memset(ns, 0, sizeof(*ns));
1007 for_each_cpu(cpu, cpumask_of_node(nid)) {
1008 struct rq *rq = cpu_rq(cpu);
1009
1010 ns->nr_running += rq->nr_running;
1011 ns->load += weighted_cpuload(cpu);
1012 ns->power += power_of(cpu);
1013 }
1014
1015 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1016 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1017 ns->has_capacity = (ns->nr_running < ns->capacity);
1018 }
1019
1020 struct task_numa_env {
1021 struct task_struct *p;
1022
1023 int src_cpu, src_nid;
1024 int dst_cpu, dst_nid;
1025
1026 struct numa_stats src_stats, dst_stats;
1027
1028 int imbalance_pct, idx;
1029
1030 struct task_struct *best_task;
1031 long best_imp;
1032 int best_cpu;
1033 };
1034
1035 static void task_numa_assign(struct task_numa_env *env,
1036 struct task_struct *p, long imp)
1037 {
1038 if (env->best_task)
1039 put_task_struct(env->best_task);
1040 if (p)
1041 get_task_struct(p);
1042
1043 env->best_task = p;
1044 env->best_imp = imp;
1045 env->best_cpu = env->dst_cpu;
1046 }
1047
1048 /*
1049 * This checks if the overall compute and NUMA accesses of the system would
1050 * be improved if the source tasks was migrated to the target dst_cpu taking
1051 * into account that it might be best if task running on the dst_cpu should
1052 * be exchanged with the source task
1053 */
1054 static void task_numa_compare(struct task_numa_env *env,
1055 long taskimp, long groupimp)
1056 {
1057 struct rq *src_rq = cpu_rq(env->src_cpu);
1058 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1059 struct task_struct *cur;
1060 long dst_load, src_load;
1061 long load;
1062 long imp = (groupimp > 0) ? groupimp : taskimp;
1063
1064 rcu_read_lock();
1065 cur = ACCESS_ONCE(dst_rq->curr);
1066 if (cur->pid == 0) /* idle */
1067 cur = NULL;
1068
1069 /*
1070 * "imp" is the fault differential for the source task between the
1071 * source and destination node. Calculate the total differential for
1072 * the source task and potential destination task. The more negative
1073 * the value is, the more rmeote accesses that would be expected to
1074 * be incurred if the tasks were swapped.
1075 */
1076 if (cur) {
1077 /* Skip this swap candidate if cannot move to the source cpu */
1078 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1079 goto unlock;
1080
1081 /*
1082 * If dst and source tasks are in the same NUMA group, or not
1083 * in any group then look only at task weights.
1084 */
1085 if (cur->numa_group == env->p->numa_group) {
1086 imp = taskimp + task_weight(cur, env->src_nid) -
1087 task_weight(cur, env->dst_nid);
1088 /*
1089 * Add some hysteresis to prevent swapping the
1090 * tasks within a group over tiny differences.
1091 */
1092 if (cur->numa_group)
1093 imp -= imp/16;
1094 } else {
1095 /*
1096 * Compare the group weights. If a task is all by
1097 * itself (not part of a group), use the task weight
1098 * instead.
1099 */
1100 if (env->p->numa_group)
1101 imp = groupimp;
1102 else
1103 imp = taskimp;
1104
1105 if (cur->numa_group)
1106 imp += group_weight(cur, env->src_nid) -
1107 group_weight(cur, env->dst_nid);
1108 else
1109 imp += task_weight(cur, env->src_nid) -
1110 task_weight(cur, env->dst_nid);
1111 }
1112 }
1113
1114 if (imp < env->best_imp)
1115 goto unlock;
1116
1117 if (!cur) {
1118 /* Is there capacity at our destination? */
1119 if (env->src_stats.has_capacity &&
1120 !env->dst_stats.has_capacity)
1121 goto unlock;
1122
1123 goto balance;
1124 }
1125
1126 /* Balance doesn't matter much if we're running a task per cpu */
1127 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1128 goto assign;
1129
1130 /*
1131 * In the overloaded case, try and keep the load balanced.
1132 */
1133 balance:
1134 dst_load = env->dst_stats.load;
1135 src_load = env->src_stats.load;
1136
1137 /* XXX missing power terms */
1138 load = task_h_load(env->p);
1139 dst_load += load;
1140 src_load -= load;
1141
1142 if (cur) {
1143 load = task_h_load(cur);
1144 dst_load -= load;
1145 src_load += load;
1146 }
1147
1148 /* make src_load the smaller */
1149 if (dst_load < src_load)
1150 swap(dst_load, src_load);
1151
1152 if (src_load * env->imbalance_pct < dst_load * 100)
1153 goto unlock;
1154
1155 assign:
1156 task_numa_assign(env, cur, imp);
1157 unlock:
1158 rcu_read_unlock();
1159 }
1160
1161 static void task_numa_find_cpu(struct task_numa_env *env,
1162 long taskimp, long groupimp)
1163 {
1164 int cpu;
1165
1166 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1167 /* Skip this CPU if the source task cannot migrate */
1168 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1169 continue;
1170
1171 env->dst_cpu = cpu;
1172 task_numa_compare(env, taskimp, groupimp);
1173 }
1174 }
1175
1176 static int task_numa_migrate(struct task_struct *p)
1177 {
1178 struct task_numa_env env = {
1179 .p = p,
1180
1181 .src_cpu = task_cpu(p),
1182 .src_nid = task_node(p),
1183
1184 .imbalance_pct = 112,
1185
1186 .best_task = NULL,
1187 .best_imp = 0,
1188 .best_cpu = -1
1189 };
1190 struct sched_domain *sd;
1191 unsigned long taskweight, groupweight;
1192 int nid, ret;
1193 long taskimp, groupimp;
1194
1195 /*
1196 * Pick the lowest SD_NUMA domain, as that would have the smallest
1197 * imbalance and would be the first to start moving tasks about.
1198 *
1199 * And we want to avoid any moving of tasks about, as that would create
1200 * random movement of tasks -- counter the numa conditions we're trying
1201 * to satisfy here.
1202 */
1203 rcu_read_lock();
1204 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1205 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1206 rcu_read_unlock();
1207
1208 taskweight = task_weight(p, env.src_nid);
1209 groupweight = group_weight(p, env.src_nid);
1210 update_numa_stats(&env.src_stats, env.src_nid);
1211 env.dst_nid = p->numa_preferred_nid;
1212 taskimp = task_weight(p, env.dst_nid) - taskweight;
1213 groupimp = group_weight(p, env.dst_nid) - groupweight;
1214 update_numa_stats(&env.dst_stats, env.dst_nid);
1215
1216 /* If the preferred nid has capacity, try to use it. */
1217 if (env.dst_stats.has_capacity)
1218 task_numa_find_cpu(&env, taskimp, groupimp);
1219
1220 /* No space available on the preferred nid. Look elsewhere. */
1221 if (env.best_cpu == -1) {
1222 for_each_online_node(nid) {
1223 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1224 continue;
1225
1226 /* Only consider nodes where both task and groups benefit */
1227 taskimp = task_weight(p, nid) - taskweight;
1228 groupimp = group_weight(p, nid) - groupweight;
1229 if (taskimp < 0 && groupimp < 0)
1230 continue;
1231
1232 env.dst_nid = nid;
1233 update_numa_stats(&env.dst_stats, env.dst_nid);
1234 task_numa_find_cpu(&env, taskimp, groupimp);
1235 }
1236 }
1237
1238 /* No better CPU than the current one was found. */
1239 if (env.best_cpu == -1)
1240 return -EAGAIN;
1241
1242 sched_setnuma(p, env.dst_nid);
1243
1244 if (env.best_task == NULL) {
1245 int ret = migrate_task_to(p, env.best_cpu);
1246 return ret;
1247 }
1248
1249 ret = migrate_swap(p, env.best_task);
1250 put_task_struct(env.best_task);
1251 return ret;
1252 }
1253
1254 /* Attempt to migrate a task to a CPU on the preferred node. */
1255 static void numa_migrate_preferred(struct task_struct *p)
1256 {
1257 /* Success if task is already running on preferred CPU */
1258 p->numa_migrate_retry = 0;
1259 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1260 /*
1261 * If migration is temporarily disabled due to a task migration
1262 * then re-enable it now as the task is running on its
1263 * preferred node and memory should migrate locally
1264 */
1265 if (!p->numa_migrate_seq)
1266 p->numa_migrate_seq++;
1267 return;
1268 }
1269
1270 /* This task has no NUMA fault statistics yet */
1271 if (unlikely(p->numa_preferred_nid == -1))
1272 return;
1273
1274 /* Otherwise, try migrate to a CPU on the preferred node */
1275 if (task_numa_migrate(p) != 0)
1276 p->numa_migrate_retry = jiffies + HZ*5;
1277 }
1278
1279 static void task_numa_placement(struct task_struct *p)
1280 {
1281 int seq, nid, max_nid = -1, max_group_nid = -1;
1282 unsigned long max_faults = 0, max_group_faults = 0;
1283 spinlock_t *group_lock = NULL;
1284
1285 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1286 if (p->numa_scan_seq == seq)
1287 return;
1288 p->numa_scan_seq = seq;
1289 p->numa_migrate_seq++;
1290 p->numa_scan_period_max = task_scan_max(p);
1291
1292 /* If the task is part of a group prevent parallel updates to group stats */
1293 if (p->numa_group) {
1294 group_lock = &p->numa_group->lock;
1295 spin_lock(group_lock);
1296 }
1297
1298 /* Find the node with the highest number of faults */
1299 for_each_online_node(nid) {
1300 unsigned long faults = 0, group_faults = 0;
1301 int priv, i;
1302
1303 for (priv = 0; priv < 2; priv++) {
1304 long diff;
1305
1306 i = task_faults_idx(nid, priv);
1307 diff = -p->numa_faults[i];
1308
1309 /* Decay existing window, copy faults since last scan */
1310 p->numa_faults[i] >>= 1;
1311 p->numa_faults[i] += p->numa_faults_buffer[i];
1312 p->numa_faults_buffer[i] = 0;
1313
1314 faults += p->numa_faults[i];
1315 diff += p->numa_faults[i];
1316 p->total_numa_faults += diff;
1317 if (p->numa_group) {
1318 /* safe because we can only change our own group */
1319 atomic_long_add(diff, &p->numa_group->faults[i]);
1320 atomic_long_add(diff, &p->numa_group->total_faults);
1321 group_faults += atomic_long_read(&p->numa_group->faults[i]);
1322 }
1323 }
1324
1325 if (faults > max_faults) {
1326 max_faults = faults;
1327 max_nid = nid;
1328 }
1329
1330 if (group_faults > max_group_faults) {
1331 max_group_faults = group_faults;
1332 max_group_nid = nid;
1333 }
1334 }
1335
1336 if (p->numa_group) {
1337 /*
1338 * If the preferred task and group nids are different,
1339 * iterate over the nodes again to find the best place.
1340 */
1341 if (max_nid != max_group_nid) {
1342 unsigned long weight, max_weight = 0;
1343
1344 for_each_online_node(nid) {
1345 weight = task_weight(p, nid) + group_weight(p, nid);
1346 if (weight > max_weight) {
1347 max_weight = weight;
1348 max_nid = nid;
1349 }
1350 }
1351 }
1352
1353 spin_unlock(group_lock);
1354 }
1355
1356 /* Preferred node as the node with the most faults */
1357 if (max_faults && max_nid != p->numa_preferred_nid) {
1358 /* Update the preferred nid and migrate task if possible */
1359 sched_setnuma(p, max_nid);
1360 numa_migrate_preferred(p);
1361 }
1362 }
1363
1364 static inline int get_numa_group(struct numa_group *grp)
1365 {
1366 return atomic_inc_not_zero(&grp->refcount);
1367 }
1368
1369 static inline void put_numa_group(struct numa_group *grp)
1370 {
1371 if (atomic_dec_and_test(&grp->refcount))
1372 kfree_rcu(grp, rcu);
1373 }
1374
1375 static void double_lock(spinlock_t *l1, spinlock_t *l2)
1376 {
1377 if (l1 > l2)
1378 swap(l1, l2);
1379
1380 spin_lock(l1);
1381 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1382 }
1383
1384 static void task_numa_group(struct task_struct *p, int cpupid, int flags)
1385 {
1386 struct numa_group *grp, *my_grp;
1387 struct task_struct *tsk;
1388 bool join = false;
1389 int cpu = cpupid_to_cpu(cpupid);
1390 int i;
1391
1392 if (unlikely(!p->numa_group)) {
1393 unsigned int size = sizeof(struct numa_group) +
1394 2*nr_node_ids*sizeof(atomic_long_t);
1395
1396 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1397 if (!grp)
1398 return;
1399
1400 atomic_set(&grp->refcount, 1);
1401 spin_lock_init(&grp->lock);
1402 INIT_LIST_HEAD(&grp->task_list);
1403 grp->gid = p->pid;
1404
1405 for (i = 0; i < 2*nr_node_ids; i++)
1406 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1407
1408 atomic_long_set(&grp->total_faults, p->total_numa_faults);
1409
1410 list_add(&p->numa_entry, &grp->task_list);
1411 grp->nr_tasks++;
1412 rcu_assign_pointer(p->numa_group, grp);
1413 }
1414
1415 rcu_read_lock();
1416 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1417
1418 if (!cpupid_match_pid(tsk, cpupid))
1419 goto unlock;
1420
1421 grp = rcu_dereference(tsk->numa_group);
1422 if (!grp)
1423 goto unlock;
1424
1425 my_grp = p->numa_group;
1426 if (grp == my_grp)
1427 goto unlock;
1428
1429 /*
1430 * Only join the other group if its bigger; if we're the bigger group,
1431 * the other task will join us.
1432 */
1433 if (my_grp->nr_tasks > grp->nr_tasks)
1434 goto unlock;
1435
1436 /*
1437 * Tie-break on the grp address.
1438 */
1439 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1440 goto unlock;
1441
1442 /* Always join threads in the same process. */
1443 if (tsk->mm == current->mm)
1444 join = true;
1445
1446 /* Simple filter to avoid false positives due to PID collisions */
1447 if (flags & TNF_SHARED)
1448 join = true;
1449
1450 if (join && !get_numa_group(grp))
1451 join = false;
1452
1453 unlock:
1454 rcu_read_unlock();
1455
1456 if (!join)
1457 return;
1458
1459 for (i = 0; i < 2*nr_node_ids; i++) {
1460 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1461 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1462 }
1463 atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
1464 atomic_long_add(p->total_numa_faults, &grp->total_faults);
1465
1466 double_lock(&my_grp->lock, &grp->lock);
1467
1468 list_move(&p->numa_entry, &grp->task_list);
1469 my_grp->nr_tasks--;
1470 grp->nr_tasks++;
1471
1472 spin_unlock(&my_grp->lock);
1473 spin_unlock(&grp->lock);
1474
1475 rcu_assign_pointer(p->numa_group, grp);
1476
1477 put_numa_group(my_grp);
1478 }
1479
1480 void task_numa_free(struct task_struct *p)
1481 {
1482 struct numa_group *grp = p->numa_group;
1483 int i;
1484 void *numa_faults = p->numa_faults;
1485
1486 if (grp) {
1487 for (i = 0; i < 2*nr_node_ids; i++)
1488 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1489
1490 atomic_long_sub(p->total_numa_faults, &grp->total_faults);
1491
1492 spin_lock(&grp->lock);
1493 list_del(&p->numa_entry);
1494 grp->nr_tasks--;
1495 spin_unlock(&grp->lock);
1496 rcu_assign_pointer(p->numa_group, NULL);
1497 put_numa_group(grp);
1498 }
1499
1500 p->numa_faults = NULL;
1501 p->numa_faults_buffer = NULL;
1502 kfree(numa_faults);
1503 }
1504
1505 /*
1506 * Got a PROT_NONE fault for a page on @node.
1507 */
1508 void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1509 {
1510 struct task_struct *p = current;
1511 bool migrated = flags & TNF_MIGRATED;
1512 int priv;
1513
1514 if (!numabalancing_enabled)
1515 return;
1516
1517 /* for example, ksmd faulting in a user's mm */
1518 if (!p->mm)
1519 return;
1520
1521 /* Do not worry about placement if exiting */
1522 if (p->state == TASK_DEAD)
1523 return;
1524
1525 /* Allocate buffer to track faults on a per-node basis */
1526 if (unlikely(!p->numa_faults)) {
1527 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1528
1529 /* numa_faults and numa_faults_buffer share the allocation */
1530 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1531 if (!p->numa_faults)
1532 return;
1533
1534 BUG_ON(p->numa_faults_buffer);
1535 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1536 p->total_numa_faults = 0;
1537 }
1538
1539 /*
1540 * First accesses are treated as private, otherwise consider accesses
1541 * to be private if the accessing pid has not changed
1542 */
1543 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1544 priv = 1;
1545 } else {
1546 priv = cpupid_match_pid(p, last_cpupid);
1547 if (!priv && !(flags & TNF_NO_GROUP))
1548 task_numa_group(p, last_cpupid, flags);
1549 }
1550
1551 /*
1552 * If pages are properly placed (did not migrate) then scan slower.
1553 * This is reset periodically in case of phase changes
1554 */
1555 if (!migrated) {
1556 /* Initialise if necessary */
1557 if (!p->numa_scan_period_max)
1558 p->numa_scan_period_max = task_scan_max(p);
1559
1560 p->numa_scan_period = min(p->numa_scan_period_max,
1561 p->numa_scan_period + 10);
1562 }
1563
1564 task_numa_placement(p);
1565
1566 /* Retry task to preferred node migration if it previously failed */
1567 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1568 numa_migrate_preferred(p);
1569
1570 if (migrated)
1571 p->numa_pages_migrated += pages;
1572
1573 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1574 }
1575
1576 static void reset_ptenuma_scan(struct task_struct *p)
1577 {
1578 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1579 p->mm->numa_scan_offset = 0;
1580 }
1581
1582 /*
1583 * The expensive part of numa migration is done from task_work context.
1584 * Triggered from task_tick_numa().
1585 */
1586 void task_numa_work(struct callback_head *work)
1587 {
1588 unsigned long migrate, next_scan, now = jiffies;
1589 struct task_struct *p = current;
1590 struct mm_struct *mm = p->mm;
1591 struct vm_area_struct *vma;
1592 unsigned long start, end;
1593 unsigned long nr_pte_updates = 0;
1594 long pages;
1595
1596 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1597
1598 work->next = work; /* protect against double add */
1599 /*
1600 * Who cares about NUMA placement when they're dying.
1601 *
1602 * NOTE: make sure not to dereference p->mm before this check,
1603 * exit_task_work() happens _after_ exit_mm() so we could be called
1604 * without p->mm even though we still had it when we enqueued this
1605 * work.
1606 */
1607 if (p->flags & PF_EXITING)
1608 return;
1609
1610 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1611 mm->numa_next_scan = now +
1612 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1613 mm->numa_next_reset = now +
1614 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1615 }
1616
1617 /*
1618 * Reset the scan period if enough time has gone by. Objective is that
1619 * scanning will be reduced if pages are properly placed. As tasks
1620 * can enter different phases this needs to be re-examined. Lacking
1621 * proper tracking of reference behaviour, this blunt hammer is used.
1622 */
1623 migrate = mm->numa_next_reset;
1624 if (time_after(now, migrate)) {
1625 p->numa_scan_period = task_scan_min(p);
1626 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1627 xchg(&mm->numa_next_reset, next_scan);
1628 }
1629
1630 /*
1631 * Enforce maximal scan/migration frequency..
1632 */
1633 migrate = mm->numa_next_scan;
1634 if (time_before(now, migrate))
1635 return;
1636
1637 if (p->numa_scan_period == 0) {
1638 p->numa_scan_period_max = task_scan_max(p);
1639 p->numa_scan_period = task_scan_min(p);
1640 }
1641
1642 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1643 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1644 return;
1645
1646 /*
1647 * Delay this task enough that another task of this mm will likely win
1648 * the next time around.
1649 */
1650 p->node_stamp += 2 * TICK_NSEC;
1651
1652 start = mm->numa_scan_offset;
1653 pages = sysctl_numa_balancing_scan_size;
1654 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1655 if (!pages)
1656 return;
1657
1658 down_read(&mm->mmap_sem);
1659 vma = find_vma(mm, start);
1660 if (!vma) {
1661 reset_ptenuma_scan(p);
1662 start = 0;
1663 vma = mm->mmap;
1664 }
1665 for (; vma; vma = vma->vm_next) {
1666 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1667 continue;
1668
1669 /*
1670 * Shared library pages mapped by multiple processes are not
1671 * migrated as it is expected they are cache replicated. Avoid
1672 * hinting faults in read-only file-backed mappings or the vdso
1673 * as migrating the pages will be of marginal benefit.
1674 */
1675 if (!vma->vm_mm ||
1676 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1677 continue;
1678
1679 do {
1680 start = max(start, vma->vm_start);
1681 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1682 end = min(end, vma->vm_end);
1683 nr_pte_updates += change_prot_numa(vma, start, end);
1684
1685 /*
1686 * Scan sysctl_numa_balancing_scan_size but ensure that
1687 * at least one PTE is updated so that unused virtual
1688 * address space is quickly skipped.
1689 */
1690 if (nr_pte_updates)
1691 pages -= (end - start) >> PAGE_SHIFT;
1692
1693 start = end;
1694 if (pages <= 0)
1695 goto out;
1696 } while (end != vma->vm_end);
1697 }
1698
1699 out:
1700 /*
1701 * If the whole process was scanned without updates then no NUMA
1702 * hinting faults are being recorded and scan rate should be lower.
1703 */
1704 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1705 p->numa_scan_period = min(p->numa_scan_period_max,
1706 p->numa_scan_period << 1);
1707
1708 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1709 mm->numa_next_scan = next_scan;
1710 }
1711
1712 /*
1713 * It is possible to reach the end of the VMA list but the last few
1714 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1715 * would find the !migratable VMA on the next scan but not reset the
1716 * scanner to the start so check it now.
1717 */
1718 if (vma)
1719 mm->numa_scan_offset = start;
1720 else
1721 reset_ptenuma_scan(p);
1722 up_read(&mm->mmap_sem);
1723 }
1724
1725 /*
1726 * Drive the periodic memory faults..
1727 */
1728 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1729 {
1730 struct callback_head *work = &curr->numa_work;
1731 u64 period, now;
1732
1733 /*
1734 * We don't care about NUMA placement if we don't have memory.
1735 */
1736 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1737 return;
1738
1739 /*
1740 * Using runtime rather than walltime has the dual advantage that
1741 * we (mostly) drive the selection from busy threads and that the
1742 * task needs to have done some actual work before we bother with
1743 * NUMA placement.
1744 */
1745 now = curr->se.sum_exec_runtime;
1746 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1747
1748 if (now - curr->node_stamp > period) {
1749 if (!curr->node_stamp)
1750 curr->numa_scan_period = task_scan_min(curr);
1751 curr->node_stamp += period;
1752
1753 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1754 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1755 task_work_add(curr, work, true);
1756 }
1757 }
1758 }
1759 #else
1760 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1761 {
1762 }
1763
1764 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1765 {
1766 }
1767
1768 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1769 {
1770 }
1771 #endif /* CONFIG_NUMA_BALANCING */
1772
1773 static void
1774 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1775 {
1776 update_load_add(&cfs_rq->load, se->load.weight);
1777 if (!parent_entity(se))
1778 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1779 #ifdef CONFIG_SMP
1780 if (entity_is_task(se)) {
1781 struct rq *rq = rq_of(cfs_rq);
1782
1783 account_numa_enqueue(rq, task_of(se));
1784 list_add(&se->group_node, &rq->cfs_tasks);
1785 }
1786 #endif
1787 cfs_rq->nr_running++;
1788 }
1789
1790 static void
1791 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1792 {
1793 update_load_sub(&cfs_rq->load, se->load.weight);
1794 if (!parent_entity(se))
1795 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1796 if (entity_is_task(se)) {
1797 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1798 list_del_init(&se->group_node);
1799 }
1800 cfs_rq->nr_running--;
1801 }
1802
1803 #ifdef CONFIG_FAIR_GROUP_SCHED
1804 # ifdef CONFIG_SMP
1805 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1806 {
1807 long tg_weight;
1808
1809 /*
1810 * Use this CPU's actual weight instead of the last load_contribution
1811 * to gain a more accurate current total weight. See
1812 * update_cfs_rq_load_contribution().
1813 */
1814 tg_weight = atomic_long_read(&tg->load_avg);
1815 tg_weight -= cfs_rq->tg_load_contrib;
1816 tg_weight += cfs_rq->load.weight;
1817
1818 return tg_weight;
1819 }
1820
1821 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1822 {
1823 long tg_weight, load, shares;
1824
1825 tg_weight = calc_tg_weight(tg, cfs_rq);
1826 load = cfs_rq->load.weight;
1827
1828 shares = (tg->shares * load);
1829 if (tg_weight)
1830 shares /= tg_weight;
1831
1832 if (shares < MIN_SHARES)
1833 shares = MIN_SHARES;
1834 if (shares > tg->shares)
1835 shares = tg->shares;
1836
1837 return shares;
1838 }
1839 # else /* CONFIG_SMP */
1840 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1841 {
1842 return tg->shares;
1843 }
1844 # endif /* CONFIG_SMP */
1845 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1846 unsigned long weight)
1847 {
1848 if (se->on_rq) {
1849 /* commit outstanding execution time */
1850 if (cfs_rq->curr == se)
1851 update_curr(cfs_rq);
1852 account_entity_dequeue(cfs_rq, se);
1853 }
1854
1855 update_load_set(&se->load, weight);
1856
1857 if (se->on_rq)
1858 account_entity_enqueue(cfs_rq, se);
1859 }
1860
1861 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1862
1863 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1864 {
1865 struct task_group *tg;
1866 struct sched_entity *se;
1867 long shares;
1868
1869 tg = cfs_rq->tg;
1870 se = tg->se[cpu_of(rq_of(cfs_rq))];
1871 if (!se || throttled_hierarchy(cfs_rq))
1872 return;
1873 #ifndef CONFIG_SMP
1874 if (likely(se->load.weight == tg->shares))
1875 return;
1876 #endif
1877 shares = calc_cfs_shares(cfs_rq, tg);
1878
1879 reweight_entity(cfs_rq_of(se), se, shares);
1880 }
1881 #else /* CONFIG_FAIR_GROUP_SCHED */
1882 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1883 {
1884 }
1885 #endif /* CONFIG_FAIR_GROUP_SCHED */
1886
1887 #ifdef CONFIG_SMP
1888 /*
1889 * We choose a half-life close to 1 scheduling period.
1890 * Note: The tables below are dependent on this value.
1891 */
1892 #define LOAD_AVG_PERIOD 32
1893 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1894 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1895
1896 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1897 static const u32 runnable_avg_yN_inv[] = {
1898 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1899 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1900 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1901 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1902 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1903 0x85aac367, 0x82cd8698,
1904 };
1905
1906 /*
1907 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1908 * over-estimates when re-combining.
1909 */
1910 static const u32 runnable_avg_yN_sum[] = {
1911 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1912 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1913 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1914 };
1915
1916 /*
1917 * Approximate:
1918 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1919 */
1920 static __always_inline u64 decay_load(u64 val, u64 n)
1921 {
1922 unsigned int local_n;
1923
1924 if (!n)
1925 return val;
1926 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1927 return 0;
1928
1929 /* after bounds checking we can collapse to 32-bit */
1930 local_n = n;
1931
1932 /*
1933 * As y^PERIOD = 1/2, we can combine
1934 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1935 * With a look-up table which covers k^n (n<PERIOD)
1936 *
1937 * To achieve constant time decay_load.
1938 */
1939 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1940 val >>= local_n / LOAD_AVG_PERIOD;
1941 local_n %= LOAD_AVG_PERIOD;
1942 }
1943
1944 val *= runnable_avg_yN_inv[local_n];
1945 /* We don't use SRR here since we always want to round down. */
1946 return val >> 32;
1947 }
1948
1949 /*
1950 * For updates fully spanning n periods, the contribution to runnable
1951 * average will be: \Sum 1024*y^n
1952 *
1953 * We can compute this reasonably efficiently by combining:
1954 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1955 */
1956 static u32 __compute_runnable_contrib(u64 n)
1957 {
1958 u32 contrib = 0;
1959
1960 if (likely(n <= LOAD_AVG_PERIOD))
1961 return runnable_avg_yN_sum[n];
1962 else if (unlikely(n >= LOAD_AVG_MAX_N))
1963 return LOAD_AVG_MAX;
1964
1965 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1966 do {
1967 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1968 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1969
1970 n -= LOAD_AVG_PERIOD;
1971 } while (n > LOAD_AVG_PERIOD);
1972
1973 contrib = decay_load(contrib, n);
1974 return contrib + runnable_avg_yN_sum[n];
1975 }
1976
1977 /*
1978 * We can represent the historical contribution to runnable average as the
1979 * coefficients of a geometric series. To do this we sub-divide our runnable
1980 * history into segments of approximately 1ms (1024us); label the segment that
1981 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1982 *
1983 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1984 * p0 p1 p2
1985 * (now) (~1ms ago) (~2ms ago)
1986 *
1987 * Let u_i denote the fraction of p_i that the entity was runnable.
1988 *
1989 * We then designate the fractions u_i as our co-efficients, yielding the
1990 * following representation of historical load:
1991 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1992 *
1993 * We choose y based on the with of a reasonably scheduling period, fixing:
1994 * y^32 = 0.5
1995 *
1996 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1997 * approximately half as much as the contribution to load within the last ms
1998 * (u_0).
1999 *
2000 * When a period "rolls over" and we have new u_0`, multiplying the previous
2001 * sum again by y is sufficient to update:
2002 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2003 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2004 */
2005 static __always_inline int __update_entity_runnable_avg(u64 now,
2006 struct sched_avg *sa,
2007 int runnable)
2008 {
2009 u64 delta, periods;
2010 u32 runnable_contrib;
2011 int delta_w, decayed = 0;
2012
2013 delta = now - sa->last_runnable_update;
2014 /*
2015 * This should only happen when time goes backwards, which it
2016 * unfortunately does during sched clock init when we swap over to TSC.
2017 */
2018 if ((s64)delta < 0) {
2019 sa->last_runnable_update = now;
2020 return 0;
2021 }
2022
2023 /*
2024 * Use 1024ns as the unit of measurement since it's a reasonable
2025 * approximation of 1us and fast to compute.
2026 */
2027 delta >>= 10;
2028 if (!delta)
2029 return 0;
2030 sa->last_runnable_update = now;
2031
2032 /* delta_w is the amount already accumulated against our next period */
2033 delta_w = sa->runnable_avg_period % 1024;
2034 if (delta + delta_w >= 1024) {
2035 /* period roll-over */
2036 decayed = 1;
2037
2038 /*
2039 * Now that we know we're crossing a period boundary, figure
2040 * out how much from delta we need to complete the current
2041 * period and accrue it.
2042 */
2043 delta_w = 1024 - delta_w;
2044 if (runnable)
2045 sa->runnable_avg_sum += delta_w;
2046 sa->runnable_avg_period += delta_w;
2047
2048 delta -= delta_w;
2049
2050 /* Figure out how many additional periods this update spans */
2051 periods = delta / 1024;
2052 delta %= 1024;
2053
2054 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2055 periods + 1);
2056 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2057 periods + 1);
2058
2059 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2060 runnable_contrib = __compute_runnable_contrib(periods);
2061 if (runnable)
2062 sa->runnable_avg_sum += runnable_contrib;
2063 sa->runnable_avg_period += runnable_contrib;
2064 }
2065
2066 /* Remainder of delta accrued against u_0` */
2067 if (runnable)
2068 sa->runnable_avg_sum += delta;
2069 sa->runnable_avg_period += delta;
2070
2071 return decayed;
2072 }
2073
2074 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2075 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2076 {
2077 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2078 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2079
2080 decays -= se->avg.decay_count;
2081 if (!decays)
2082 return 0;
2083
2084 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2085 se->avg.decay_count = 0;
2086
2087 return decays;
2088 }
2089
2090 #ifdef CONFIG_FAIR_GROUP_SCHED
2091 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2092 int force_update)
2093 {
2094 struct task_group *tg = cfs_rq->tg;
2095 long tg_contrib;
2096
2097 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2098 tg_contrib -= cfs_rq->tg_load_contrib;
2099
2100 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2101 atomic_long_add(tg_contrib, &tg->load_avg);
2102 cfs_rq->tg_load_contrib += tg_contrib;
2103 }
2104 }
2105
2106 /*
2107 * Aggregate cfs_rq runnable averages into an equivalent task_group
2108 * representation for computing load contributions.
2109 */
2110 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2111 struct cfs_rq *cfs_rq)
2112 {
2113 struct task_group *tg = cfs_rq->tg;
2114 long contrib;
2115
2116 /* The fraction of a cpu used by this cfs_rq */
2117 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2118 sa->runnable_avg_period + 1);
2119 contrib -= cfs_rq->tg_runnable_contrib;
2120
2121 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2122 atomic_add(contrib, &tg->runnable_avg);
2123 cfs_rq->tg_runnable_contrib += contrib;
2124 }
2125 }
2126
2127 static inline void __update_group_entity_contrib(struct sched_entity *se)
2128 {
2129 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2130 struct task_group *tg = cfs_rq->tg;
2131 int runnable_avg;
2132
2133 u64 contrib;
2134
2135 contrib = cfs_rq->tg_load_contrib * tg->shares;
2136 se->avg.load_avg_contrib = div_u64(contrib,
2137 atomic_long_read(&tg->load_avg) + 1);
2138
2139 /*
2140 * For group entities we need to compute a correction term in the case
2141 * that they are consuming <1 cpu so that we would contribute the same
2142 * load as a task of equal weight.
2143 *
2144 * Explicitly co-ordinating this measurement would be expensive, but
2145 * fortunately the sum of each cpus contribution forms a usable
2146 * lower-bound on the true value.
2147 *
2148 * Consider the aggregate of 2 contributions. Either they are disjoint
2149 * (and the sum represents true value) or they are disjoint and we are
2150 * understating by the aggregate of their overlap.
2151 *
2152 * Extending this to N cpus, for a given overlap, the maximum amount we
2153 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2154 * cpus that overlap for this interval and w_i is the interval width.
2155 *
2156 * On a small machine; the first term is well-bounded which bounds the
2157 * total error since w_i is a subset of the period. Whereas on a
2158 * larger machine, while this first term can be larger, if w_i is the
2159 * of consequential size guaranteed to see n_i*w_i quickly converge to
2160 * our upper bound of 1-cpu.
2161 */
2162 runnable_avg = atomic_read(&tg->runnable_avg);
2163 if (runnable_avg < NICE_0_LOAD) {
2164 se->avg.load_avg_contrib *= runnable_avg;
2165 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2166 }
2167 }
2168 #else
2169 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2170 int force_update) {}
2171 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2172 struct cfs_rq *cfs_rq) {}
2173 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2174 #endif
2175
2176 static inline void __update_task_entity_contrib(struct sched_entity *se)
2177 {
2178 u32 contrib;
2179
2180 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2181 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2182 contrib /= (se->avg.runnable_avg_period + 1);
2183 se->avg.load_avg_contrib = scale_load(contrib);
2184 }
2185
2186 /* Compute the current contribution to load_avg by se, return any delta */
2187 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2188 {
2189 long old_contrib = se->avg.load_avg_contrib;
2190
2191 if (entity_is_task(se)) {
2192 __update_task_entity_contrib(se);
2193 } else {
2194 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2195 __update_group_entity_contrib(se);
2196 }
2197
2198 return se->avg.load_avg_contrib - old_contrib;
2199 }
2200
2201 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2202 long load_contrib)
2203 {
2204 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2205 cfs_rq->blocked_load_avg -= load_contrib;
2206 else
2207 cfs_rq->blocked_load_avg = 0;
2208 }
2209
2210 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2211
2212 /* Update a sched_entity's runnable average */
2213 static inline void update_entity_load_avg(struct sched_entity *se,
2214 int update_cfs_rq)
2215 {
2216 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2217 long contrib_delta;
2218 u64 now;
2219
2220 /*
2221 * For a group entity we need to use their owned cfs_rq_clock_task() in
2222 * case they are the parent of a throttled hierarchy.
2223 */
2224 if (entity_is_task(se))
2225 now = cfs_rq_clock_task(cfs_rq);
2226 else
2227 now = cfs_rq_clock_task(group_cfs_rq(se));
2228
2229 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2230 return;
2231
2232 contrib_delta = __update_entity_load_avg_contrib(se);
2233
2234 if (!update_cfs_rq)
2235 return;
2236
2237 if (se->on_rq)
2238 cfs_rq->runnable_load_avg += contrib_delta;
2239 else
2240 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2241 }
2242
2243 /*
2244 * Decay the load contributed by all blocked children and account this so that
2245 * their contribution may appropriately discounted when they wake up.
2246 */
2247 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2248 {
2249 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2250 u64 decays;
2251
2252 decays = now - cfs_rq->last_decay;
2253 if (!decays && !force_update)
2254 return;
2255
2256 if (atomic_long_read(&cfs_rq->removed_load)) {
2257 unsigned long removed_load;
2258 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2259 subtract_blocked_load_contrib(cfs_rq, removed_load);
2260 }
2261
2262 if (decays) {
2263 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2264 decays);
2265 atomic64_add(decays, &cfs_rq->decay_counter);
2266 cfs_rq->last_decay = now;
2267 }
2268
2269 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2270 }
2271
2272 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2273 {
2274 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2275 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2276 }
2277
2278 /* Add the load generated by se into cfs_rq's child load-average */
2279 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2280 struct sched_entity *se,
2281 int wakeup)
2282 {
2283 /*
2284 * We track migrations using entity decay_count <= 0, on a wake-up
2285 * migration we use a negative decay count to track the remote decays
2286 * accumulated while sleeping.
2287 *
2288 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2289 * are seen by enqueue_entity_load_avg() as a migration with an already
2290 * constructed load_avg_contrib.
2291 */
2292 if (unlikely(se->avg.decay_count <= 0)) {
2293 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2294 if (se->avg.decay_count) {
2295 /*
2296 * In a wake-up migration we have to approximate the
2297 * time sleeping. This is because we can't synchronize
2298 * clock_task between the two cpus, and it is not
2299 * guaranteed to be read-safe. Instead, we can
2300 * approximate this using our carried decays, which are
2301 * explicitly atomically readable.
2302 */
2303 se->avg.last_runnable_update -= (-se->avg.decay_count)
2304 << 20;
2305 update_entity_load_avg(se, 0);
2306 /* Indicate that we're now synchronized and on-rq */
2307 se->avg.decay_count = 0;
2308 }
2309 wakeup = 0;
2310 } else {
2311 /*
2312 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2313 * would have made count negative); we must be careful to avoid
2314 * double-accounting blocked time after synchronizing decays.
2315 */
2316 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2317 << 20;
2318 }
2319
2320 /* migrated tasks did not contribute to our blocked load */
2321 if (wakeup) {
2322 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2323 update_entity_load_avg(se, 0);
2324 }
2325
2326 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2327 /* we force update consideration on load-balancer moves */
2328 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2329 }
2330
2331 /*
2332 * Remove se's load from this cfs_rq child load-average, if the entity is
2333 * transitioning to a blocked state we track its projected decay using
2334 * blocked_load_avg.
2335 */
2336 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2337 struct sched_entity *se,
2338 int sleep)
2339 {
2340 update_entity_load_avg(se, 1);
2341 /* we force update consideration on load-balancer moves */
2342 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2343
2344 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2345 if (sleep) {
2346 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2347 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2348 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2349 }
2350
2351 /*
2352 * Update the rq's load with the elapsed running time before entering
2353 * idle. if the last scheduled task is not a CFS task, idle_enter will
2354 * be the only way to update the runnable statistic.
2355 */
2356 void idle_enter_fair(struct rq *this_rq)
2357 {
2358 update_rq_runnable_avg(this_rq, 1);
2359 }
2360
2361 /*
2362 * Update the rq's load with the elapsed idle time before a task is
2363 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2364 * be the only way to update the runnable statistic.
2365 */
2366 void idle_exit_fair(struct rq *this_rq)
2367 {
2368 update_rq_runnable_avg(this_rq, 0);
2369 }
2370
2371 #else
2372 static inline void update_entity_load_avg(struct sched_entity *se,
2373 int update_cfs_rq) {}
2374 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2375 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2376 struct sched_entity *se,
2377 int wakeup) {}
2378 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2379 struct sched_entity *se,
2380 int sleep) {}
2381 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2382 int force_update) {}
2383 #endif
2384
2385 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2386 {
2387 #ifdef CONFIG_SCHEDSTATS
2388 struct task_struct *tsk = NULL;
2389
2390 if (entity_is_task(se))
2391 tsk = task_of(se);
2392
2393 if (se->statistics.sleep_start) {
2394 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2395
2396 if ((s64)delta < 0)
2397 delta = 0;
2398
2399 if (unlikely(delta > se->statistics.sleep_max))
2400 se->statistics.sleep_max = delta;
2401
2402 se->statistics.sleep_start = 0;
2403 se->statistics.sum_sleep_runtime += delta;
2404
2405 if (tsk) {
2406 account_scheduler_latency(tsk, delta >> 10, 1);
2407 trace_sched_stat_sleep(tsk, delta);
2408 }
2409 }
2410 if (se->statistics.block_start) {
2411 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2412
2413 if ((s64)delta < 0)
2414 delta = 0;
2415
2416 if (unlikely(delta > se->statistics.block_max))
2417 se->statistics.block_max = delta;
2418
2419 se->statistics.block_start = 0;
2420 se->statistics.sum_sleep_runtime += delta;
2421
2422 if (tsk) {
2423 if (tsk->in_iowait) {
2424 se->statistics.iowait_sum += delta;
2425 se->statistics.iowait_count++;
2426 trace_sched_stat_iowait(tsk, delta);
2427 }
2428
2429 trace_sched_stat_blocked(tsk, delta);
2430
2431 /*
2432 * Blocking time is in units of nanosecs, so shift by
2433 * 20 to get a milliseconds-range estimation of the
2434 * amount of time that the task spent sleeping:
2435 */
2436 if (unlikely(prof_on == SLEEP_PROFILING)) {
2437 profile_hits(SLEEP_PROFILING,
2438 (void *)get_wchan(tsk),
2439 delta >> 20);
2440 }
2441 account_scheduler_latency(tsk, delta >> 10, 0);
2442 }
2443 }
2444 #endif
2445 }
2446
2447 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2448 {
2449 #ifdef CONFIG_SCHED_DEBUG
2450 s64 d = se->vruntime - cfs_rq->min_vruntime;
2451
2452 if (d < 0)
2453 d = -d;
2454
2455 if (d > 3*sysctl_sched_latency)
2456 schedstat_inc(cfs_rq, nr_spread_over);
2457 #endif
2458 }
2459
2460 static void
2461 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2462 {
2463 u64 vruntime = cfs_rq->min_vruntime;
2464
2465 /*
2466 * The 'current' period is already promised to the current tasks,
2467 * however the extra weight of the new task will slow them down a
2468 * little, place the new task so that it fits in the slot that
2469 * stays open at the end.
2470 */
2471 if (initial && sched_feat(START_DEBIT))
2472 vruntime += sched_vslice(cfs_rq, se);
2473
2474 /* sleeps up to a single latency don't count. */
2475 if (!initial) {
2476 unsigned long thresh = sysctl_sched_latency;
2477
2478 /*
2479 * Halve their sleep time's effect, to allow
2480 * for a gentler effect of sleepers:
2481 */
2482 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2483 thresh >>= 1;
2484
2485 vruntime -= thresh;
2486 }
2487
2488 /* ensure we never gain time by being placed backwards. */
2489 se->vruntime = max_vruntime(se->vruntime, vruntime);
2490 }
2491
2492 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2493
2494 static void
2495 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2496 {
2497 /*
2498 * Update the normalized vruntime before updating min_vruntime
2499 * through calling update_curr().
2500 */
2501 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2502 se->vruntime += cfs_rq->min_vruntime;
2503
2504 /*
2505 * Update run-time statistics of the 'current'.
2506 */
2507 update_curr(cfs_rq);
2508 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2509 account_entity_enqueue(cfs_rq, se);
2510 update_cfs_shares(cfs_rq);
2511
2512 if (flags & ENQUEUE_WAKEUP) {
2513 place_entity(cfs_rq, se, 0);
2514 enqueue_sleeper(cfs_rq, se);
2515 }
2516
2517 update_stats_enqueue(cfs_rq, se);
2518 check_spread(cfs_rq, se);
2519 if (se != cfs_rq->curr)
2520 __enqueue_entity(cfs_rq, se);
2521 se->on_rq = 1;
2522
2523 if (cfs_rq->nr_running == 1) {
2524 list_add_leaf_cfs_rq(cfs_rq);
2525 check_enqueue_throttle(cfs_rq);
2526 }
2527 }
2528
2529 static void __clear_buddies_last(struct sched_entity *se)
2530 {
2531 for_each_sched_entity(se) {
2532 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2533 if (cfs_rq->last == se)
2534 cfs_rq->last = NULL;
2535 else
2536 break;
2537 }
2538 }
2539
2540 static void __clear_buddies_next(struct sched_entity *se)
2541 {
2542 for_each_sched_entity(se) {
2543 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2544 if (cfs_rq->next == se)
2545 cfs_rq->next = NULL;
2546 else
2547 break;
2548 }
2549 }
2550
2551 static void __clear_buddies_skip(struct sched_entity *se)
2552 {
2553 for_each_sched_entity(se) {
2554 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2555 if (cfs_rq->skip == se)
2556 cfs_rq->skip = NULL;
2557 else
2558 break;
2559 }
2560 }
2561
2562 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2563 {
2564 if (cfs_rq->last == se)
2565 __clear_buddies_last(se);
2566
2567 if (cfs_rq->next == se)
2568 __clear_buddies_next(se);
2569
2570 if (cfs_rq->skip == se)
2571 __clear_buddies_skip(se);
2572 }
2573
2574 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2575
2576 static void
2577 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2578 {
2579 /*
2580 * Update run-time statistics of the 'current'.
2581 */
2582 update_curr(cfs_rq);
2583 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2584
2585 update_stats_dequeue(cfs_rq, se);
2586 if (flags & DEQUEUE_SLEEP) {
2587 #ifdef CONFIG_SCHEDSTATS
2588 if (entity_is_task(se)) {
2589 struct task_struct *tsk = task_of(se);
2590
2591 if (tsk->state & TASK_INTERRUPTIBLE)
2592 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2593 if (tsk->state & TASK_UNINTERRUPTIBLE)
2594 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2595 }
2596 #endif
2597 }
2598
2599 clear_buddies(cfs_rq, se);
2600
2601 if (se != cfs_rq->curr)
2602 __dequeue_entity(cfs_rq, se);
2603 se->on_rq = 0;
2604 account_entity_dequeue(cfs_rq, se);
2605
2606 /*
2607 * Normalize the entity after updating the min_vruntime because the
2608 * update can refer to the ->curr item and we need to reflect this
2609 * movement in our normalized position.
2610 */
2611 if (!(flags & DEQUEUE_SLEEP))
2612 se->vruntime -= cfs_rq->min_vruntime;
2613
2614 /* return excess runtime on last dequeue */
2615 return_cfs_rq_runtime(cfs_rq);
2616
2617 update_min_vruntime(cfs_rq);
2618 update_cfs_shares(cfs_rq);
2619 }
2620
2621 /*
2622 * Preempt the current task with a newly woken task if needed:
2623 */
2624 static void
2625 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2626 {
2627 unsigned long ideal_runtime, delta_exec;
2628 struct sched_entity *se;
2629 s64 delta;
2630
2631 ideal_runtime = sched_slice(cfs_rq, curr);
2632 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2633 if (delta_exec > ideal_runtime) {
2634 resched_task(rq_of(cfs_rq)->curr);
2635 /*
2636 * The current task ran long enough, ensure it doesn't get
2637 * re-elected due to buddy favours.
2638 */
2639 clear_buddies(cfs_rq, curr);
2640 return;
2641 }
2642
2643 /*
2644 * Ensure that a task that missed wakeup preemption by a
2645 * narrow margin doesn't have to wait for a full slice.
2646 * This also mitigates buddy induced latencies under load.
2647 */
2648 if (delta_exec < sysctl_sched_min_granularity)
2649 return;
2650
2651 se = __pick_first_entity(cfs_rq);
2652 delta = curr->vruntime - se->vruntime;
2653
2654 if (delta < 0)
2655 return;
2656
2657 if (delta > ideal_runtime)
2658 resched_task(rq_of(cfs_rq)->curr);
2659 }
2660
2661 static void
2662 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2663 {
2664 /* 'current' is not kept within the tree. */
2665 if (se->on_rq) {
2666 /*
2667 * Any task has to be enqueued before it get to execute on
2668 * a CPU. So account for the time it spent waiting on the
2669 * runqueue.
2670 */
2671 update_stats_wait_end(cfs_rq, se);
2672 __dequeue_entity(cfs_rq, se);
2673 }
2674
2675 update_stats_curr_start(cfs_rq, se);
2676 cfs_rq->curr = se;
2677 #ifdef CONFIG_SCHEDSTATS
2678 /*
2679 * Track our maximum slice length, if the CPU's load is at
2680 * least twice that of our own weight (i.e. dont track it
2681 * when there are only lesser-weight tasks around):
2682 */
2683 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2684 se->statistics.slice_max = max(se->statistics.slice_max,
2685 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2686 }
2687 #endif
2688 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2689 }
2690
2691 static int
2692 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2693
2694 /*
2695 * Pick the next process, keeping these things in mind, in this order:
2696 * 1) keep things fair between processes/task groups
2697 * 2) pick the "next" process, since someone really wants that to run
2698 * 3) pick the "last" process, for cache locality
2699 * 4) do not run the "skip" process, if something else is available
2700 */
2701 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2702 {
2703 struct sched_entity *se = __pick_first_entity(cfs_rq);
2704 struct sched_entity *left = se;
2705
2706 /*
2707 * Avoid running the skip buddy, if running something else can
2708 * be done without getting too unfair.
2709 */
2710 if (cfs_rq->skip == se) {
2711 struct sched_entity *second = __pick_next_entity(se);
2712 if (second && wakeup_preempt_entity(second, left) < 1)
2713 se = second;
2714 }
2715
2716 /*
2717 * Prefer last buddy, try to return the CPU to a preempted task.
2718 */
2719 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2720 se = cfs_rq->last;
2721
2722 /*
2723 * Someone really wants this to run. If it's not unfair, run it.
2724 */
2725 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2726 se = cfs_rq->next;
2727
2728 clear_buddies(cfs_rq, se);
2729
2730 return se;
2731 }
2732
2733 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2734
2735 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2736 {
2737 /*
2738 * If still on the runqueue then deactivate_task()
2739 * was not called and update_curr() has to be done:
2740 */
2741 if (prev->on_rq)
2742 update_curr(cfs_rq);
2743
2744 /* throttle cfs_rqs exceeding runtime */
2745 check_cfs_rq_runtime(cfs_rq);
2746
2747 check_spread(cfs_rq, prev);
2748 if (prev->on_rq) {
2749 update_stats_wait_start(cfs_rq, prev);
2750 /* Put 'current' back into the tree. */
2751 __enqueue_entity(cfs_rq, prev);
2752 /* in !on_rq case, update occurred at dequeue */
2753 update_entity_load_avg(prev, 1);
2754 }
2755 cfs_rq->curr = NULL;
2756 }
2757
2758 static void
2759 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2760 {
2761 /*
2762 * Update run-time statistics of the 'current'.
2763 */
2764 update_curr(cfs_rq);
2765
2766 /*
2767 * Ensure that runnable average is periodically updated.
2768 */
2769 update_entity_load_avg(curr, 1);
2770 update_cfs_rq_blocked_load(cfs_rq, 1);
2771 update_cfs_shares(cfs_rq);
2772
2773 #ifdef CONFIG_SCHED_HRTICK
2774 /*
2775 * queued ticks are scheduled to match the slice, so don't bother
2776 * validating it and just reschedule.
2777 */
2778 if (queued) {
2779 resched_task(rq_of(cfs_rq)->curr);
2780 return;
2781 }
2782 /*
2783 * don't let the period tick interfere with the hrtick preemption
2784 */
2785 if (!sched_feat(DOUBLE_TICK) &&
2786 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2787 return;
2788 #endif
2789
2790 if (cfs_rq->nr_running > 1)
2791 check_preempt_tick(cfs_rq, curr);
2792 }
2793
2794
2795 /**************************************************
2796 * CFS bandwidth control machinery
2797 */
2798
2799 #ifdef CONFIG_CFS_BANDWIDTH
2800
2801 #ifdef HAVE_JUMP_LABEL
2802 static struct static_key __cfs_bandwidth_used;
2803
2804 static inline bool cfs_bandwidth_used(void)
2805 {
2806 return static_key_false(&__cfs_bandwidth_used);
2807 }
2808
2809 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2810 {
2811 /* only need to count groups transitioning between enabled/!enabled */
2812 if (enabled && !was_enabled)
2813 static_key_slow_inc(&__cfs_bandwidth_used);
2814 else if (!enabled && was_enabled)
2815 static_key_slow_dec(&__cfs_bandwidth_used);
2816 }
2817 #else /* HAVE_JUMP_LABEL */
2818 static bool cfs_bandwidth_used(void)
2819 {
2820 return true;
2821 }
2822
2823 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2824 #endif /* HAVE_JUMP_LABEL */
2825
2826 /*
2827 * default period for cfs group bandwidth.
2828 * default: 0.1s, units: nanoseconds
2829 */
2830 static inline u64 default_cfs_period(void)
2831 {
2832 return 100000000ULL;
2833 }
2834
2835 static inline u64 sched_cfs_bandwidth_slice(void)
2836 {
2837 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2838 }
2839
2840 /*
2841 * Replenish runtime according to assigned quota and update expiration time.
2842 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2843 * additional synchronization around rq->lock.
2844 *
2845 * requires cfs_b->lock
2846 */
2847 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2848 {
2849 u64 now;
2850
2851 if (cfs_b->quota == RUNTIME_INF)
2852 return;
2853
2854 now = sched_clock_cpu(smp_processor_id());
2855 cfs_b->runtime = cfs_b->quota;
2856 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2857 }
2858
2859 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2860 {
2861 return &tg->cfs_bandwidth;
2862 }
2863
2864 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2865 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2866 {
2867 if (unlikely(cfs_rq->throttle_count))
2868 return cfs_rq->throttled_clock_task;
2869
2870 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2871 }
2872
2873 /* returns 0 on failure to allocate runtime */
2874 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2875 {
2876 struct task_group *tg = cfs_rq->tg;
2877 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2878 u64 amount = 0, min_amount, expires;
2879
2880 /* note: this is a positive sum as runtime_remaining <= 0 */
2881 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2882
2883 raw_spin_lock(&cfs_b->lock);
2884 if (cfs_b->quota == RUNTIME_INF)
2885 amount = min_amount;
2886 else {
2887 /*
2888 * If the bandwidth pool has become inactive, then at least one
2889 * period must have elapsed since the last consumption.
2890 * Refresh the global state and ensure bandwidth timer becomes
2891 * active.
2892 */
2893 if (!cfs_b->timer_active) {
2894 __refill_cfs_bandwidth_runtime(cfs_b);
2895 __start_cfs_bandwidth(cfs_b);
2896 }
2897
2898 if (cfs_b->runtime > 0) {
2899 amount = min(cfs_b->runtime, min_amount);
2900 cfs_b->runtime -= amount;
2901 cfs_b->idle = 0;
2902 }
2903 }
2904 expires = cfs_b->runtime_expires;
2905 raw_spin_unlock(&cfs_b->lock);
2906
2907 cfs_rq->runtime_remaining += amount;
2908 /*
2909 * we may have advanced our local expiration to account for allowed
2910 * spread between our sched_clock and the one on which runtime was
2911 * issued.
2912 */
2913 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2914 cfs_rq->runtime_expires = expires;
2915
2916 return cfs_rq->runtime_remaining > 0;
2917 }
2918
2919 /*
2920 * Note: This depends on the synchronization provided by sched_clock and the
2921 * fact that rq->clock snapshots this value.
2922 */
2923 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2924 {
2925 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2926
2927 /* if the deadline is ahead of our clock, nothing to do */
2928 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2929 return;
2930
2931 if (cfs_rq->runtime_remaining < 0)
2932 return;
2933
2934 /*
2935 * If the local deadline has passed we have to consider the
2936 * possibility that our sched_clock is 'fast' and the global deadline
2937 * has not truly expired.
2938 *
2939 * Fortunately we can check determine whether this the case by checking
2940 * whether the global deadline has advanced.
2941 */
2942
2943 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2944 /* extend local deadline, drift is bounded above by 2 ticks */
2945 cfs_rq->runtime_expires += TICK_NSEC;
2946 } else {
2947 /* global deadline is ahead, expiration has passed */
2948 cfs_rq->runtime_remaining = 0;
2949 }
2950 }
2951
2952 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2953 unsigned long delta_exec)
2954 {
2955 /* dock delta_exec before expiring quota (as it could span periods) */
2956 cfs_rq->runtime_remaining -= delta_exec;
2957 expire_cfs_rq_runtime(cfs_rq);
2958
2959 if (likely(cfs_rq->runtime_remaining > 0))
2960 return;
2961
2962 /*
2963 * if we're unable to extend our runtime we resched so that the active
2964 * hierarchy can be throttled
2965 */
2966 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2967 resched_task(rq_of(cfs_rq)->curr);
2968 }
2969
2970 static __always_inline
2971 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2972 {
2973 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2974 return;
2975
2976 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2977 }
2978
2979 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2980 {
2981 return cfs_bandwidth_used() && cfs_rq->throttled;
2982 }
2983
2984 /* check whether cfs_rq, or any parent, is throttled */
2985 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2986 {
2987 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2988 }
2989
2990 /*
2991 * Ensure that neither of the group entities corresponding to src_cpu or
2992 * dest_cpu are members of a throttled hierarchy when performing group
2993 * load-balance operations.
2994 */
2995 static inline int throttled_lb_pair(struct task_group *tg,
2996 int src_cpu, int dest_cpu)
2997 {
2998 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2999
3000 src_cfs_rq = tg->cfs_rq[src_cpu];
3001 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3002
3003 return throttled_hierarchy(src_cfs_rq) ||
3004 throttled_hierarchy(dest_cfs_rq);
3005 }
3006
3007 /* updated child weight may affect parent so we have to do this bottom up */
3008 static int tg_unthrottle_up(struct task_group *tg, void *data)
3009 {
3010 struct rq *rq = data;
3011 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3012
3013 cfs_rq->throttle_count--;
3014 #ifdef CONFIG_SMP
3015 if (!cfs_rq->throttle_count) {
3016 /* adjust cfs_rq_clock_task() */
3017 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3018 cfs_rq->throttled_clock_task;
3019 }
3020 #endif
3021
3022 return 0;
3023 }
3024
3025 static int tg_throttle_down(struct task_group *tg, void *data)
3026 {
3027 struct rq *rq = data;
3028 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3029
3030 /* group is entering throttled state, stop time */
3031 if (!cfs_rq->throttle_count)
3032 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3033 cfs_rq->throttle_count++;
3034
3035 return 0;
3036 }
3037
3038 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3039 {
3040 struct rq *rq = rq_of(cfs_rq);
3041 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3042 struct sched_entity *se;
3043 long task_delta, dequeue = 1;
3044
3045 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3046
3047 /* freeze hierarchy runnable averages while throttled */
3048 rcu_read_lock();
3049 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3050 rcu_read_unlock();
3051
3052 task_delta = cfs_rq->h_nr_running;
3053 for_each_sched_entity(se) {
3054 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3055 /* throttled entity or throttle-on-deactivate */
3056 if (!se->on_rq)
3057 break;
3058
3059 if (dequeue)
3060 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3061 qcfs_rq->h_nr_running -= task_delta;
3062
3063 if (qcfs_rq->load.weight)
3064 dequeue = 0;
3065 }
3066
3067 if (!se)
3068 rq->nr_running -= task_delta;
3069
3070 cfs_rq->throttled = 1;
3071 cfs_rq->throttled_clock = rq_clock(rq);
3072 raw_spin_lock(&cfs_b->lock);
3073 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3074 raw_spin_unlock(&cfs_b->lock);
3075 }
3076
3077 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3078 {
3079 struct rq *rq = rq_of(cfs_rq);
3080 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3081 struct sched_entity *se;
3082 int enqueue = 1;
3083 long task_delta;
3084
3085 se = cfs_rq->tg->se[cpu_of(rq)];
3086
3087 cfs_rq->throttled = 0;
3088
3089 update_rq_clock(rq);
3090
3091 raw_spin_lock(&cfs_b->lock);
3092 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3093 list_del_rcu(&cfs_rq->throttled_list);
3094 raw_spin_unlock(&cfs_b->lock);
3095
3096 /* update hierarchical throttle state */
3097 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3098
3099 if (!cfs_rq->load.weight)
3100 return;
3101
3102 task_delta = cfs_rq->h_nr_running;
3103 for_each_sched_entity(se) {
3104 if (se->on_rq)
3105 enqueue = 0;
3106
3107 cfs_rq = cfs_rq_of(se);
3108 if (enqueue)
3109 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3110 cfs_rq->h_nr_running += task_delta;
3111
3112 if (cfs_rq_throttled(cfs_rq))
3113 break;
3114 }
3115
3116 if (!se)
3117 rq->nr_running += task_delta;
3118
3119 /* determine whether we need to wake up potentially idle cpu */
3120 if (rq->curr == rq->idle && rq->cfs.nr_running)
3121 resched_task(rq->curr);
3122 }
3123
3124 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3125 u64 remaining, u64 expires)
3126 {
3127 struct cfs_rq *cfs_rq;
3128 u64 runtime = remaining;
3129
3130 rcu_read_lock();
3131 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3132 throttled_list) {
3133 struct rq *rq = rq_of(cfs_rq);
3134
3135 raw_spin_lock(&rq->lock);
3136 if (!cfs_rq_throttled(cfs_rq))
3137 goto next;
3138
3139 runtime = -cfs_rq->runtime_remaining + 1;
3140 if (runtime > remaining)
3141 runtime = remaining;
3142 remaining -= runtime;
3143
3144 cfs_rq->runtime_remaining += runtime;
3145 cfs_rq->runtime_expires = expires;
3146
3147 /* we check whether we're throttled above */
3148 if (cfs_rq->runtime_remaining > 0)
3149 unthrottle_cfs_rq(cfs_rq);
3150
3151 next:
3152 raw_spin_unlock(&rq->lock);
3153
3154 if (!remaining)
3155 break;
3156 }
3157 rcu_read_unlock();
3158
3159 return remaining;
3160 }
3161
3162 /*
3163 * Responsible for refilling a task_group's bandwidth and unthrottling its
3164 * cfs_rqs as appropriate. If there has been no activity within the last
3165 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3166 * used to track this state.
3167 */
3168 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3169 {
3170 u64 runtime, runtime_expires;
3171 int idle = 1, throttled;
3172
3173 raw_spin_lock(&cfs_b->lock);
3174 /* no need to continue the timer with no bandwidth constraint */
3175 if (cfs_b->quota == RUNTIME_INF)
3176 goto out_unlock;
3177
3178 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3179 /* idle depends on !throttled (for the case of a large deficit) */
3180 idle = cfs_b->idle && !throttled;
3181 cfs_b->nr_periods += overrun;
3182
3183 /* if we're going inactive then everything else can be deferred */
3184 if (idle)
3185 goto out_unlock;
3186
3187 __refill_cfs_bandwidth_runtime(cfs_b);
3188
3189 if (!throttled) {
3190 /* mark as potentially idle for the upcoming period */
3191 cfs_b->idle = 1;
3192 goto out_unlock;
3193 }
3194
3195 /* account preceding periods in which throttling occurred */
3196 cfs_b->nr_throttled += overrun;
3197
3198 /*
3199 * There are throttled entities so we must first use the new bandwidth
3200 * to unthrottle them before making it generally available. This
3201 * ensures that all existing debts will be paid before a new cfs_rq is
3202 * allowed to run.
3203 */
3204 runtime = cfs_b->runtime;
3205 runtime_expires = cfs_b->runtime_expires;
3206 cfs_b->runtime = 0;
3207
3208 /*
3209 * This check is repeated as we are holding onto the new bandwidth
3210 * while we unthrottle. This can potentially race with an unthrottled
3211 * group trying to acquire new bandwidth from the global pool.
3212 */
3213 while (throttled && runtime > 0) {
3214 raw_spin_unlock(&cfs_b->lock);
3215 /* we can't nest cfs_b->lock while distributing bandwidth */
3216 runtime = distribute_cfs_runtime(cfs_b, runtime,
3217 runtime_expires);
3218 raw_spin_lock(&cfs_b->lock);
3219
3220 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3221 }
3222
3223 /* return (any) remaining runtime */
3224 cfs_b->runtime = runtime;
3225 /*
3226 * While we are ensured activity in the period following an
3227 * unthrottle, this also covers the case in which the new bandwidth is
3228 * insufficient to cover the existing bandwidth deficit. (Forcing the
3229 * timer to remain active while there are any throttled entities.)
3230 */
3231 cfs_b->idle = 0;
3232 out_unlock:
3233 if (idle)
3234 cfs_b->timer_active = 0;
3235 raw_spin_unlock(&cfs_b->lock);
3236
3237 return idle;
3238 }
3239
3240 /* a cfs_rq won't donate quota below this amount */
3241 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3242 /* minimum remaining period time to redistribute slack quota */
3243 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3244 /* how long we wait to gather additional slack before distributing */
3245 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3246
3247 /* are we near the end of the current quota period? */
3248 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3249 {
3250 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3251 u64 remaining;
3252
3253 /* if the call-back is running a quota refresh is already occurring */
3254 if (hrtimer_callback_running(refresh_timer))
3255 return 1;
3256
3257 /* is a quota refresh about to occur? */
3258 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3259 if (remaining < min_expire)
3260 return 1;
3261
3262 return 0;
3263 }
3264
3265 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3266 {
3267 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3268
3269 /* if there's a quota refresh soon don't bother with slack */
3270 if (runtime_refresh_within(cfs_b, min_left))
3271 return;
3272
3273 start_bandwidth_timer(&cfs_b->slack_timer,
3274 ns_to_ktime(cfs_bandwidth_slack_period));
3275 }
3276
3277 /* we know any runtime found here is valid as update_curr() precedes return */
3278 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3279 {
3280 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3281 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3282
3283 if (slack_runtime <= 0)
3284 return;
3285
3286 raw_spin_lock(&cfs_b->lock);
3287 if (cfs_b->quota != RUNTIME_INF &&
3288 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3289 cfs_b->runtime += slack_runtime;
3290
3291 /* we are under rq->lock, defer unthrottling using a timer */
3292 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3293 !list_empty(&cfs_b->throttled_cfs_rq))
3294 start_cfs_slack_bandwidth(cfs_b);
3295 }
3296 raw_spin_unlock(&cfs_b->lock);
3297
3298 /* even if it's not valid for return we don't want to try again */
3299 cfs_rq->runtime_remaining -= slack_runtime;
3300 }
3301
3302 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3303 {
3304 if (!cfs_bandwidth_used())
3305 return;
3306
3307 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3308 return;
3309
3310 __return_cfs_rq_runtime(cfs_rq);
3311 }
3312
3313 /*
3314 * This is done with a timer (instead of inline with bandwidth return) since
3315 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3316 */
3317 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3318 {
3319 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3320 u64 expires;
3321
3322 /* confirm we're still not at a refresh boundary */
3323 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3324 return;
3325
3326 raw_spin_lock(&cfs_b->lock);
3327 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3328 runtime = cfs_b->runtime;
3329 cfs_b->runtime = 0;
3330 }
3331 expires = cfs_b->runtime_expires;
3332 raw_spin_unlock(&cfs_b->lock);
3333
3334 if (!runtime)
3335 return;
3336
3337 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3338
3339 raw_spin_lock(&cfs_b->lock);
3340 if (expires == cfs_b->runtime_expires)
3341 cfs_b->runtime = runtime;
3342 raw_spin_unlock(&cfs_b->lock);
3343 }
3344
3345 /*
3346 * When a group wakes up we want to make sure that its quota is not already
3347 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3348 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3349 */
3350 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3351 {
3352 if (!cfs_bandwidth_used())
3353 return;
3354
3355 /* an active group must be handled by the update_curr()->put() path */
3356 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3357 return;
3358
3359 /* ensure the group is not already throttled */
3360 if (cfs_rq_throttled(cfs_rq))
3361 return;
3362
3363 /* update runtime allocation */
3364 account_cfs_rq_runtime(cfs_rq, 0);
3365 if (cfs_rq->runtime_remaining <= 0)
3366 throttle_cfs_rq(cfs_rq);
3367 }
3368
3369 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3370 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3371 {
3372 if (!cfs_bandwidth_used())
3373 return;
3374
3375 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3376 return;
3377
3378 /*
3379 * it's possible for a throttled entity to be forced into a running
3380 * state (e.g. set_curr_task), in this case we're finished.
3381 */
3382 if (cfs_rq_throttled(cfs_rq))
3383 return;
3384
3385 throttle_cfs_rq(cfs_rq);
3386 }
3387
3388 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3389 {
3390 struct cfs_bandwidth *cfs_b =
3391 container_of(timer, struct cfs_bandwidth, slack_timer);
3392 do_sched_cfs_slack_timer(cfs_b);
3393
3394 return HRTIMER_NORESTART;
3395 }
3396
3397 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3398 {
3399 struct cfs_bandwidth *cfs_b =
3400 container_of(timer, struct cfs_bandwidth, period_timer);
3401 ktime_t now;
3402 int overrun;
3403 int idle = 0;
3404
3405 for (;;) {
3406 now = hrtimer_cb_get_time(timer);
3407 overrun = hrtimer_forward(timer, now, cfs_b->period);
3408
3409 if (!overrun)
3410 break;
3411
3412 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3413 }
3414
3415 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3416 }
3417
3418 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3419 {
3420 raw_spin_lock_init(&cfs_b->lock);
3421 cfs_b->runtime = 0;
3422 cfs_b->quota = RUNTIME_INF;
3423 cfs_b->period = ns_to_ktime(default_cfs_period());
3424
3425 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3426 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3427 cfs_b->period_timer.function = sched_cfs_period_timer;
3428 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3429 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3430 }
3431
3432 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3433 {
3434 cfs_rq->runtime_enabled = 0;
3435 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3436 }
3437
3438 /* requires cfs_b->lock, may release to reprogram timer */
3439 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3440 {
3441 /*
3442 * The timer may be active because we're trying to set a new bandwidth
3443 * period or because we're racing with the tear-down path
3444 * (timer_active==0 becomes visible before the hrtimer call-back
3445 * terminates). In either case we ensure that it's re-programmed
3446 */
3447 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3448 raw_spin_unlock(&cfs_b->lock);
3449 /* ensure cfs_b->lock is available while we wait */
3450 hrtimer_cancel(&cfs_b->period_timer);
3451
3452 raw_spin_lock(&cfs_b->lock);
3453 /* if someone else restarted the timer then we're done */
3454 if (cfs_b->timer_active)
3455 return;
3456 }
3457
3458 cfs_b->timer_active = 1;
3459 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3460 }
3461
3462 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3463 {
3464 hrtimer_cancel(&cfs_b->period_timer);
3465 hrtimer_cancel(&cfs_b->slack_timer);
3466 }
3467
3468 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3469 {
3470 struct cfs_rq *cfs_rq;
3471
3472 for_each_leaf_cfs_rq(rq, cfs_rq) {
3473 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3474
3475 if (!cfs_rq->runtime_enabled)
3476 continue;
3477
3478 /*
3479 * clock_task is not advancing so we just need to make sure
3480 * there's some valid quota amount
3481 */
3482 cfs_rq->runtime_remaining = cfs_b->quota;
3483 if (cfs_rq_throttled(cfs_rq))
3484 unthrottle_cfs_rq(cfs_rq);
3485 }
3486 }
3487
3488 #else /* CONFIG_CFS_BANDWIDTH */
3489 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3490 {
3491 return rq_clock_task(rq_of(cfs_rq));
3492 }
3493
3494 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3495 unsigned long delta_exec) {}
3496 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3497 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3498 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3499
3500 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3501 {
3502 return 0;
3503 }
3504
3505 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3506 {
3507 return 0;
3508 }
3509
3510 static inline int throttled_lb_pair(struct task_group *tg,
3511 int src_cpu, int dest_cpu)
3512 {
3513 return 0;
3514 }
3515
3516 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3517
3518 #ifdef CONFIG_FAIR_GROUP_SCHED
3519 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3520 #endif
3521
3522 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3523 {
3524 return NULL;
3525 }
3526 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3527 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3528
3529 #endif /* CONFIG_CFS_BANDWIDTH */
3530
3531 /**************************************************
3532 * CFS operations on tasks:
3533 */
3534
3535 #ifdef CONFIG_SCHED_HRTICK
3536 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3537 {
3538 struct sched_entity *se = &p->se;
3539 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3540
3541 WARN_ON(task_rq(p) != rq);
3542
3543 if (cfs_rq->nr_running > 1) {
3544 u64 slice = sched_slice(cfs_rq, se);
3545 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3546 s64 delta = slice - ran;
3547
3548 if (delta < 0) {
3549 if (rq->curr == p)
3550 resched_task(p);
3551 return;
3552 }
3553
3554 /*
3555 * Don't schedule slices shorter than 10000ns, that just
3556 * doesn't make sense. Rely on vruntime for fairness.
3557 */
3558 if (rq->curr != p)
3559 delta = max_t(s64, 10000LL, delta);
3560
3561 hrtick_start(rq, delta);
3562 }
3563 }
3564
3565 /*
3566 * called from enqueue/dequeue and updates the hrtick when the
3567 * current task is from our class and nr_running is low enough
3568 * to matter.
3569 */
3570 static void hrtick_update(struct rq *rq)
3571 {
3572 struct task_struct *curr = rq->curr;
3573
3574 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3575 return;
3576
3577 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3578 hrtick_start_fair(rq, curr);
3579 }
3580 #else /* !CONFIG_SCHED_HRTICK */
3581 static inline void
3582 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3583 {
3584 }
3585
3586 static inline void hrtick_update(struct rq *rq)
3587 {
3588 }
3589 #endif
3590
3591 /*
3592 * The enqueue_task method is called before nr_running is
3593 * increased. Here we update the fair scheduling stats and
3594 * then put the task into the rbtree:
3595 */
3596 static void
3597 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3598 {
3599 struct cfs_rq *cfs_rq;
3600 struct sched_entity *se = &p->se;
3601
3602 for_each_sched_entity(se) {
3603 if (se->on_rq)
3604 break;
3605 cfs_rq = cfs_rq_of(se);
3606 enqueue_entity(cfs_rq, se, flags);
3607
3608 /*
3609 * end evaluation on encountering a throttled cfs_rq
3610 *
3611 * note: in the case of encountering a throttled cfs_rq we will
3612 * post the final h_nr_running increment below.
3613 */
3614 if (cfs_rq_throttled(cfs_rq))
3615 break;
3616 cfs_rq->h_nr_running++;
3617
3618 flags = ENQUEUE_WAKEUP;
3619 }
3620
3621 for_each_sched_entity(se) {
3622 cfs_rq = cfs_rq_of(se);
3623 cfs_rq->h_nr_running++;
3624
3625 if (cfs_rq_throttled(cfs_rq))
3626 break;
3627
3628 update_cfs_shares(cfs_rq);
3629 update_entity_load_avg(se, 1);
3630 }
3631
3632 if (!se) {
3633 update_rq_runnable_avg(rq, rq->nr_running);
3634 inc_nr_running(rq);
3635 }
3636 hrtick_update(rq);
3637 }
3638
3639 static void set_next_buddy(struct sched_entity *se);
3640
3641 /*
3642 * The dequeue_task method is called before nr_running is
3643 * decreased. We remove the task from the rbtree and
3644 * update the fair scheduling stats:
3645 */
3646 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3647 {
3648 struct cfs_rq *cfs_rq;
3649 struct sched_entity *se = &p->se;
3650 int task_sleep = flags & DEQUEUE_SLEEP;
3651
3652 for_each_sched_entity(se) {
3653 cfs_rq = cfs_rq_of(se);
3654 dequeue_entity(cfs_rq, se, flags);
3655
3656 /*
3657 * end evaluation on encountering a throttled cfs_rq
3658 *
3659 * note: in the case of encountering a throttled cfs_rq we will
3660 * post the final h_nr_running decrement below.
3661 */
3662 if (cfs_rq_throttled(cfs_rq))
3663 break;
3664 cfs_rq->h_nr_running--;
3665
3666 /* Don't dequeue parent if it has other entities besides us */
3667 if (cfs_rq->load.weight) {
3668 /*
3669 * Bias pick_next to pick a task from this cfs_rq, as
3670 * p is sleeping when it is within its sched_slice.
3671 */
3672 if (task_sleep && parent_entity(se))
3673 set_next_buddy(parent_entity(se));
3674
3675 /* avoid re-evaluating load for this entity */
3676 se = parent_entity(se);
3677 break;
3678 }
3679 flags |= DEQUEUE_SLEEP;
3680 }
3681
3682 for_each_sched_entity(se) {
3683 cfs_rq = cfs_rq_of(se);
3684 cfs_rq->h_nr_running--;
3685
3686 if (cfs_rq_throttled(cfs_rq))
3687 break;
3688
3689 update_cfs_shares(cfs_rq);
3690 update_entity_load_avg(se, 1);
3691 }
3692
3693 if (!se) {
3694 dec_nr_running(rq);
3695 update_rq_runnable_avg(rq, 1);
3696 }
3697 hrtick_update(rq);
3698 }
3699
3700 #ifdef CONFIG_SMP
3701 /* Used instead of source_load when we know the type == 0 */
3702 static unsigned long weighted_cpuload(const int cpu)
3703 {
3704 return cpu_rq(cpu)->cfs.runnable_load_avg;
3705 }
3706
3707 /*
3708 * Return a low guess at the load of a migration-source cpu weighted
3709 * according to the scheduling class and "nice" value.
3710 *
3711 * We want to under-estimate the load of migration sources, to
3712 * balance conservatively.
3713 */
3714 static unsigned long source_load(int cpu, int type)
3715 {
3716 struct rq *rq = cpu_rq(cpu);
3717 unsigned long total = weighted_cpuload(cpu);
3718
3719 if (type == 0 || !sched_feat(LB_BIAS))
3720 return total;
3721
3722 return min(rq->cpu_load[type-1], total);
3723 }
3724
3725 /*
3726 * Return a high guess at the load of a migration-target cpu weighted
3727 * according to the scheduling class and "nice" value.
3728 */
3729 static unsigned long target_load(int cpu, int type)
3730 {
3731 struct rq *rq = cpu_rq(cpu);
3732 unsigned long total = weighted_cpuload(cpu);
3733
3734 if (type == 0 || !sched_feat(LB_BIAS))
3735 return total;
3736
3737 return max(rq->cpu_load[type-1], total);
3738 }
3739
3740 static unsigned long power_of(int cpu)
3741 {
3742 return cpu_rq(cpu)->cpu_power;
3743 }
3744
3745 static unsigned long cpu_avg_load_per_task(int cpu)
3746 {
3747 struct rq *rq = cpu_rq(cpu);
3748 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3749 unsigned long load_avg = rq->cfs.runnable_load_avg;
3750
3751 if (nr_running)
3752 return load_avg / nr_running;
3753
3754 return 0;
3755 }
3756
3757 static void record_wakee(struct task_struct *p)
3758 {
3759 /*
3760 * Rough decay (wiping) for cost saving, don't worry
3761 * about the boundary, really active task won't care
3762 * about the loss.
3763 */
3764 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3765 current->wakee_flips = 0;
3766 current->wakee_flip_decay_ts = jiffies;
3767 }
3768
3769 if (current->last_wakee != p) {
3770 current->last_wakee = p;
3771 current->wakee_flips++;
3772 }
3773 }
3774
3775 static void task_waking_fair(struct task_struct *p)
3776 {
3777 struct sched_entity *se = &p->se;
3778 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3779 u64 min_vruntime;
3780
3781 #ifndef CONFIG_64BIT
3782 u64 min_vruntime_copy;
3783
3784 do {
3785 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3786 smp_rmb();
3787 min_vruntime = cfs_rq->min_vruntime;
3788 } while (min_vruntime != min_vruntime_copy);
3789 #else
3790 min_vruntime = cfs_rq->min_vruntime;
3791 #endif
3792
3793 se->vruntime -= min_vruntime;
3794 record_wakee(p);
3795 }
3796
3797 #ifdef CONFIG_FAIR_GROUP_SCHED
3798 /*
3799 * effective_load() calculates the load change as seen from the root_task_group
3800 *
3801 * Adding load to a group doesn't make a group heavier, but can cause movement
3802 * of group shares between cpus. Assuming the shares were perfectly aligned one
3803 * can calculate the shift in shares.
3804 *
3805 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3806 * on this @cpu and results in a total addition (subtraction) of @wg to the
3807 * total group weight.
3808 *
3809 * Given a runqueue weight distribution (rw_i) we can compute a shares
3810 * distribution (s_i) using:
3811 *
3812 * s_i = rw_i / \Sum rw_j (1)
3813 *
3814 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3815 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3816 * shares distribution (s_i):
3817 *
3818 * rw_i = { 2, 4, 1, 0 }
3819 * s_i = { 2/7, 4/7, 1/7, 0 }
3820 *
3821 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3822 * task used to run on and the CPU the waker is running on), we need to
3823 * compute the effect of waking a task on either CPU and, in case of a sync
3824 * wakeup, compute the effect of the current task going to sleep.
3825 *
3826 * So for a change of @wl to the local @cpu with an overall group weight change
3827 * of @wl we can compute the new shares distribution (s'_i) using:
3828 *
3829 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3830 *
3831 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3832 * differences in waking a task to CPU 0. The additional task changes the
3833 * weight and shares distributions like:
3834 *
3835 * rw'_i = { 3, 4, 1, 0 }
3836 * s'_i = { 3/8, 4/8, 1/8, 0 }
3837 *
3838 * We can then compute the difference in effective weight by using:
3839 *
3840 * dw_i = S * (s'_i - s_i) (3)
3841 *
3842 * Where 'S' is the group weight as seen by its parent.
3843 *
3844 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3845 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3846 * 4/7) times the weight of the group.
3847 */
3848 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3849 {
3850 struct sched_entity *se = tg->se[cpu];
3851
3852 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
3853 return wl;
3854
3855 for_each_sched_entity(se) {
3856 long w, W;
3857
3858 tg = se->my_q->tg;
3859
3860 /*
3861 * W = @wg + \Sum rw_j
3862 */
3863 W = wg + calc_tg_weight(tg, se->my_q);
3864
3865 /*
3866 * w = rw_i + @wl
3867 */
3868 w = se->my_q->load.weight + wl;
3869
3870 /*
3871 * wl = S * s'_i; see (2)
3872 */
3873 if (W > 0 && w < W)
3874 wl = (w * tg->shares) / W;
3875 else
3876 wl = tg->shares;
3877
3878 /*
3879 * Per the above, wl is the new se->load.weight value; since
3880 * those are clipped to [MIN_SHARES, ...) do so now. See
3881 * calc_cfs_shares().
3882 */
3883 if (wl < MIN_SHARES)
3884 wl = MIN_SHARES;
3885
3886 /*
3887 * wl = dw_i = S * (s'_i - s_i); see (3)
3888 */
3889 wl -= se->load.weight;
3890
3891 /*
3892 * Recursively apply this logic to all parent groups to compute
3893 * the final effective load change on the root group. Since
3894 * only the @tg group gets extra weight, all parent groups can
3895 * only redistribute existing shares. @wl is the shift in shares
3896 * resulting from this level per the above.
3897 */
3898 wg = 0;
3899 }
3900
3901 return wl;
3902 }
3903 #else
3904
3905 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3906 {
3907 return wl;
3908 }
3909
3910 #endif
3911
3912 static int wake_wide(struct task_struct *p)
3913 {
3914 int factor = this_cpu_read(sd_llc_size);
3915
3916 /*
3917 * Yeah, it's the switching-frequency, could means many wakee or
3918 * rapidly switch, use factor here will just help to automatically
3919 * adjust the loose-degree, so bigger node will lead to more pull.
3920 */
3921 if (p->wakee_flips > factor) {
3922 /*
3923 * wakee is somewhat hot, it needs certain amount of cpu
3924 * resource, so if waker is far more hot, prefer to leave
3925 * it alone.
3926 */
3927 if (current->wakee_flips > (factor * p->wakee_flips))
3928 return 1;
3929 }
3930
3931 return 0;
3932 }
3933
3934 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3935 {
3936 s64 this_load, load;
3937 int idx, this_cpu, prev_cpu;
3938 unsigned long tl_per_task;
3939 struct task_group *tg;
3940 unsigned long weight;
3941 int balanced;
3942
3943 /*
3944 * If we wake multiple tasks be careful to not bounce
3945 * ourselves around too much.
3946 */
3947 if (wake_wide(p))
3948 return 0;
3949
3950 idx = sd->wake_idx;
3951 this_cpu = smp_processor_id();
3952 prev_cpu = task_cpu(p);
3953 load = source_load(prev_cpu, idx);
3954 this_load = target_load(this_cpu, idx);
3955
3956 /*
3957 * If sync wakeup then subtract the (maximum possible)
3958 * effect of the currently running task from the load
3959 * of the current CPU:
3960 */
3961 if (sync) {
3962 tg = task_group(current);
3963 weight = current->se.load.weight;
3964
3965 this_load += effective_load(tg, this_cpu, -weight, -weight);
3966 load += effective_load(tg, prev_cpu, 0, -weight);
3967 }
3968
3969 tg = task_group(p);
3970 weight = p->se.load.weight;
3971
3972 /*
3973 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3974 * due to the sync cause above having dropped this_load to 0, we'll
3975 * always have an imbalance, but there's really nothing you can do
3976 * about that, so that's good too.
3977 *
3978 * Otherwise check if either cpus are near enough in load to allow this
3979 * task to be woken on this_cpu.
3980 */
3981 if (this_load > 0) {
3982 s64 this_eff_load, prev_eff_load;
3983
3984 this_eff_load = 100;
3985 this_eff_load *= power_of(prev_cpu);
3986 this_eff_load *= this_load +
3987 effective_load(tg, this_cpu, weight, weight);
3988
3989 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3990 prev_eff_load *= power_of(this_cpu);
3991 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3992
3993 balanced = this_eff_load <= prev_eff_load;
3994 } else
3995 balanced = true;
3996
3997 /*
3998 * If the currently running task will sleep within
3999 * a reasonable amount of time then attract this newly
4000 * woken task:
4001 */
4002 if (sync && balanced)
4003 return 1;
4004
4005 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4006 tl_per_task = cpu_avg_load_per_task(this_cpu);
4007
4008 if (balanced ||
4009 (this_load <= load &&
4010 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4011 /*
4012 * This domain has SD_WAKE_AFFINE and
4013 * p is cache cold in this domain, and
4014 * there is no bad imbalance.
4015 */
4016 schedstat_inc(sd, ttwu_move_affine);
4017 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4018
4019 return 1;
4020 }
4021 return 0;
4022 }
4023
4024 /*
4025 * find_idlest_group finds and returns the least busy CPU group within the
4026 * domain.
4027 */
4028 static struct sched_group *
4029 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4030 int this_cpu, int load_idx)
4031 {
4032 struct sched_group *idlest = NULL, *group = sd->groups;
4033 unsigned long min_load = ULONG_MAX, this_load = 0;
4034 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4035
4036 do {
4037 unsigned long load, avg_load;
4038 int local_group;
4039 int i;
4040
4041 /* Skip over this group if it has no CPUs allowed */
4042 if (!cpumask_intersects(sched_group_cpus(group),
4043 tsk_cpus_allowed(p)))
4044 continue;
4045
4046 local_group = cpumask_test_cpu(this_cpu,
4047 sched_group_cpus(group));
4048
4049 /* Tally up the load of all CPUs in the group */
4050 avg_load = 0;
4051
4052 for_each_cpu(i, sched_group_cpus(group)) {
4053 /* Bias balancing toward cpus of our domain */
4054 if (local_group)
4055 load = source_load(i, load_idx);
4056 else
4057 load = target_load(i, load_idx);
4058
4059 avg_load += load;
4060 }
4061
4062 /* Adjust by relative CPU power of the group */
4063 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4064
4065 if (local_group) {
4066 this_load = avg_load;
4067 } else if (avg_load < min_load) {
4068 min_load = avg_load;
4069 idlest = group;
4070 }
4071 } while (group = group->next, group != sd->groups);
4072
4073 if (!idlest || 100*this_load < imbalance*min_load)
4074 return NULL;
4075 return idlest;
4076 }
4077
4078 /*
4079 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4080 */
4081 static int
4082 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4083 {
4084 unsigned long load, min_load = ULONG_MAX;
4085 int idlest = -1;
4086 int i;
4087
4088 /* Traverse only the allowed CPUs */
4089 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4090 load = weighted_cpuload(i);
4091
4092 if (load < min_load || (load == min_load && i == this_cpu)) {
4093 min_load = load;
4094 idlest = i;
4095 }
4096 }
4097
4098 return idlest;
4099 }
4100
4101 /*
4102 * Try and locate an idle CPU in the sched_domain.
4103 */
4104 static int select_idle_sibling(struct task_struct *p, int target)
4105 {
4106 struct sched_domain *sd;
4107 struct sched_group *sg;
4108 int i = task_cpu(p);
4109
4110 if (idle_cpu(target))
4111 return target;
4112
4113 /*
4114 * If the prevous cpu is cache affine and idle, don't be stupid.
4115 */
4116 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4117 return i;
4118
4119 /*
4120 * Otherwise, iterate the domains and find an elegible idle cpu.
4121 */
4122 sd = rcu_dereference(per_cpu(sd_llc, target));
4123 for_each_lower_domain(sd) {
4124 sg = sd->groups;
4125 do {
4126 if (!cpumask_intersects(sched_group_cpus(sg),
4127 tsk_cpus_allowed(p)))
4128 goto next;
4129
4130 for_each_cpu(i, sched_group_cpus(sg)) {
4131 if (i == target || !idle_cpu(i))
4132 goto next;
4133 }
4134
4135 target = cpumask_first_and(sched_group_cpus(sg),
4136 tsk_cpus_allowed(p));
4137 goto done;
4138 next:
4139 sg = sg->next;
4140 } while (sg != sd->groups);
4141 }
4142 done:
4143 return target;
4144 }
4145
4146 /*
4147 * sched_balance_self: balance the current task (running on cpu) in domains
4148 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4149 * SD_BALANCE_EXEC.
4150 *
4151 * Balance, ie. select the least loaded group.
4152 *
4153 * Returns the target CPU number, or the same CPU if no balancing is needed.
4154 *
4155 * preempt must be disabled.
4156 */
4157 static int
4158 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4159 {
4160 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4161 int cpu = smp_processor_id();
4162 int new_cpu = cpu;
4163 int want_affine = 0;
4164 int sync = wake_flags & WF_SYNC;
4165
4166 if (p->nr_cpus_allowed == 1)
4167 return prev_cpu;
4168
4169 if (sd_flag & SD_BALANCE_WAKE) {
4170 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4171 want_affine = 1;
4172 new_cpu = prev_cpu;
4173 }
4174
4175 rcu_read_lock();
4176 for_each_domain(cpu, tmp) {
4177 if (!(tmp->flags & SD_LOAD_BALANCE))
4178 continue;
4179
4180 /*
4181 * If both cpu and prev_cpu are part of this domain,
4182 * cpu is a valid SD_WAKE_AFFINE target.
4183 */
4184 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4185 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4186 affine_sd = tmp;
4187 break;
4188 }
4189
4190 if (tmp->flags & sd_flag)
4191 sd = tmp;
4192 }
4193
4194 if (affine_sd) {
4195 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4196 prev_cpu = cpu;
4197
4198 new_cpu = select_idle_sibling(p, prev_cpu);
4199 goto unlock;
4200 }
4201
4202 while (sd) {
4203 int load_idx = sd->forkexec_idx;
4204 struct sched_group *group;
4205 int weight;
4206
4207 if (!(sd->flags & sd_flag)) {
4208 sd = sd->child;
4209 continue;
4210 }
4211
4212 if (sd_flag & SD_BALANCE_WAKE)
4213 load_idx = sd->wake_idx;
4214
4215 group = find_idlest_group(sd, p, cpu, load_idx);
4216 if (!group) {
4217 sd = sd->child;
4218 continue;
4219 }
4220
4221 new_cpu = find_idlest_cpu(group, p, cpu);
4222 if (new_cpu == -1 || new_cpu == cpu) {
4223 /* Now try balancing at a lower domain level of cpu */
4224 sd = sd->child;
4225 continue;
4226 }
4227
4228 /* Now try balancing at a lower domain level of new_cpu */
4229 cpu = new_cpu;
4230 weight = sd->span_weight;
4231 sd = NULL;
4232 for_each_domain(cpu, tmp) {
4233 if (weight <= tmp->span_weight)
4234 break;
4235 if (tmp->flags & sd_flag)
4236 sd = tmp;
4237 }
4238 /* while loop will break here if sd == NULL */
4239 }
4240 unlock:
4241 rcu_read_unlock();
4242
4243 return new_cpu;
4244 }
4245
4246 /*
4247 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4248 * cfs_rq_of(p) references at time of call are still valid and identify the
4249 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4250 * other assumptions, including the state of rq->lock, should be made.
4251 */
4252 static void
4253 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4254 {
4255 struct sched_entity *se = &p->se;
4256 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4257
4258 /*
4259 * Load tracking: accumulate removed load so that it can be processed
4260 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4261 * to blocked load iff they have a positive decay-count. It can never
4262 * be negative here since on-rq tasks have decay-count == 0.
4263 */
4264 if (se->avg.decay_count) {
4265 se->avg.decay_count = -__synchronize_entity_decay(se);
4266 atomic_long_add(se->avg.load_avg_contrib,
4267 &cfs_rq->removed_load);
4268 }
4269 }
4270 #endif /* CONFIG_SMP */
4271
4272 static unsigned long
4273 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4274 {
4275 unsigned long gran = sysctl_sched_wakeup_granularity;
4276
4277 /*
4278 * Since its curr running now, convert the gran from real-time
4279 * to virtual-time in his units.
4280 *
4281 * By using 'se' instead of 'curr' we penalize light tasks, so
4282 * they get preempted easier. That is, if 'se' < 'curr' then
4283 * the resulting gran will be larger, therefore penalizing the
4284 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4285 * be smaller, again penalizing the lighter task.
4286 *
4287 * This is especially important for buddies when the leftmost
4288 * task is higher priority than the buddy.
4289 */
4290 return calc_delta_fair(gran, se);
4291 }
4292
4293 /*
4294 * Should 'se' preempt 'curr'.
4295 *
4296 * |s1
4297 * |s2
4298 * |s3
4299 * g
4300 * |<--->|c
4301 *
4302 * w(c, s1) = -1
4303 * w(c, s2) = 0
4304 * w(c, s3) = 1
4305 *
4306 */
4307 static int
4308 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4309 {
4310 s64 gran, vdiff = curr->vruntime - se->vruntime;
4311
4312 if (vdiff <= 0)
4313 return -1;
4314
4315 gran = wakeup_gran(curr, se);
4316 if (vdiff > gran)
4317 return 1;
4318
4319 return 0;
4320 }
4321
4322 static void set_last_buddy(struct sched_entity *se)
4323 {
4324 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4325 return;
4326
4327 for_each_sched_entity(se)
4328 cfs_rq_of(se)->last = se;
4329 }
4330
4331 static void set_next_buddy(struct sched_entity *se)
4332 {
4333 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4334 return;
4335
4336 for_each_sched_entity(se)
4337 cfs_rq_of(se)->next = se;
4338 }
4339
4340 static void set_skip_buddy(struct sched_entity *se)
4341 {
4342 for_each_sched_entity(se)
4343 cfs_rq_of(se)->skip = se;
4344 }
4345
4346 /*
4347 * Preempt the current task with a newly woken task if needed:
4348 */
4349 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4350 {
4351 struct task_struct *curr = rq->curr;
4352 struct sched_entity *se = &curr->se, *pse = &p->se;
4353 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4354 int scale = cfs_rq->nr_running >= sched_nr_latency;
4355 int next_buddy_marked = 0;
4356
4357 if (unlikely(se == pse))
4358 return;
4359
4360 /*
4361 * This is possible from callers such as move_task(), in which we
4362 * unconditionally check_prempt_curr() after an enqueue (which may have
4363 * lead to a throttle). This both saves work and prevents false
4364 * next-buddy nomination below.
4365 */
4366 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4367 return;
4368
4369 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4370 set_next_buddy(pse);
4371 next_buddy_marked = 1;
4372 }
4373
4374 /*
4375 * We can come here with TIF_NEED_RESCHED already set from new task
4376 * wake up path.
4377 *
4378 * Note: this also catches the edge-case of curr being in a throttled
4379 * group (e.g. via set_curr_task), since update_curr() (in the
4380 * enqueue of curr) will have resulted in resched being set. This
4381 * prevents us from potentially nominating it as a false LAST_BUDDY
4382 * below.
4383 */
4384 if (test_tsk_need_resched(curr))
4385 return;
4386
4387 /* Idle tasks are by definition preempted by non-idle tasks. */
4388 if (unlikely(curr->policy == SCHED_IDLE) &&
4389 likely(p->policy != SCHED_IDLE))
4390 goto preempt;
4391
4392 /*
4393 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4394 * is driven by the tick):
4395 */
4396 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4397 return;
4398
4399 find_matching_se(&se, &pse);
4400 update_curr(cfs_rq_of(se));
4401 BUG_ON(!pse);
4402 if (wakeup_preempt_entity(se, pse) == 1) {
4403 /*
4404 * Bias pick_next to pick the sched entity that is
4405 * triggering this preemption.
4406 */
4407 if (!next_buddy_marked)
4408 set_next_buddy(pse);
4409 goto preempt;
4410 }
4411
4412 return;
4413
4414 preempt:
4415 resched_task(curr);
4416 /*
4417 * Only set the backward buddy when the current task is still
4418 * on the rq. This can happen when a wakeup gets interleaved
4419 * with schedule on the ->pre_schedule() or idle_balance()
4420 * point, either of which can * drop the rq lock.
4421 *
4422 * Also, during early boot the idle thread is in the fair class,
4423 * for obvious reasons its a bad idea to schedule back to it.
4424 */
4425 if (unlikely(!se->on_rq || curr == rq->idle))
4426 return;
4427
4428 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4429 set_last_buddy(se);
4430 }
4431
4432 static struct task_struct *pick_next_task_fair(struct rq *rq)
4433 {
4434 struct task_struct *p;
4435 struct cfs_rq *cfs_rq = &rq->cfs;
4436 struct sched_entity *se;
4437
4438 if (!cfs_rq->nr_running)
4439 return NULL;
4440
4441 do {
4442 se = pick_next_entity(cfs_rq);
4443 set_next_entity(cfs_rq, se);
4444 cfs_rq = group_cfs_rq(se);
4445 } while (cfs_rq);
4446
4447 p = task_of(se);
4448 if (hrtick_enabled(rq))
4449 hrtick_start_fair(rq, p);
4450
4451 return p;
4452 }
4453
4454 /*
4455 * Account for a descheduled task:
4456 */
4457 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4458 {
4459 struct sched_entity *se = &prev->se;
4460 struct cfs_rq *cfs_rq;
4461
4462 for_each_sched_entity(se) {
4463 cfs_rq = cfs_rq_of(se);
4464 put_prev_entity(cfs_rq, se);
4465 }
4466 }
4467
4468 /*
4469 * sched_yield() is very simple
4470 *
4471 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4472 */
4473 static void yield_task_fair(struct rq *rq)
4474 {
4475 struct task_struct *curr = rq->curr;
4476 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4477 struct sched_entity *se = &curr->se;
4478
4479 /*
4480 * Are we the only task in the tree?
4481 */
4482 if (unlikely(rq->nr_running == 1))
4483 return;
4484
4485 clear_buddies(cfs_rq, se);
4486
4487 if (curr->policy != SCHED_BATCH) {
4488 update_rq_clock(rq);
4489 /*
4490 * Update run-time statistics of the 'current'.
4491 */
4492 update_curr(cfs_rq);
4493 /*
4494 * Tell update_rq_clock() that we've just updated,
4495 * so we don't do microscopic update in schedule()
4496 * and double the fastpath cost.
4497 */
4498 rq->skip_clock_update = 1;
4499 }
4500
4501 set_skip_buddy(se);
4502 }
4503
4504 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4505 {
4506 struct sched_entity *se = &p->se;
4507
4508 /* throttled hierarchies are not runnable */
4509 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4510 return false;
4511
4512 /* Tell the scheduler that we'd really like pse to run next. */
4513 set_next_buddy(se);
4514
4515 yield_task_fair(rq);
4516
4517 return true;
4518 }
4519
4520 #ifdef CONFIG_SMP
4521 /**************************************************
4522 * Fair scheduling class load-balancing methods.
4523 *
4524 * BASICS
4525 *
4526 * The purpose of load-balancing is to achieve the same basic fairness the
4527 * per-cpu scheduler provides, namely provide a proportional amount of compute
4528 * time to each task. This is expressed in the following equation:
4529 *
4530 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4531 *
4532 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4533 * W_i,0 is defined as:
4534 *
4535 * W_i,0 = \Sum_j w_i,j (2)
4536 *
4537 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4538 * is derived from the nice value as per prio_to_weight[].
4539 *
4540 * The weight average is an exponential decay average of the instantaneous
4541 * weight:
4542 *
4543 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4544 *
4545 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4546 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4547 * can also include other factors [XXX].
4548 *
4549 * To achieve this balance we define a measure of imbalance which follows
4550 * directly from (1):
4551 *
4552 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4553 *
4554 * We them move tasks around to minimize the imbalance. In the continuous
4555 * function space it is obvious this converges, in the discrete case we get
4556 * a few fun cases generally called infeasible weight scenarios.
4557 *
4558 * [XXX expand on:
4559 * - infeasible weights;
4560 * - local vs global optima in the discrete case. ]
4561 *
4562 *
4563 * SCHED DOMAINS
4564 *
4565 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4566 * for all i,j solution, we create a tree of cpus that follows the hardware
4567 * topology where each level pairs two lower groups (or better). This results
4568 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4569 * tree to only the first of the previous level and we decrease the frequency
4570 * of load-balance at each level inv. proportional to the number of cpus in
4571 * the groups.
4572 *
4573 * This yields:
4574 *
4575 * log_2 n 1 n
4576 * \Sum { --- * --- * 2^i } = O(n) (5)
4577 * i = 0 2^i 2^i
4578 * `- size of each group
4579 * | | `- number of cpus doing load-balance
4580 * | `- freq
4581 * `- sum over all levels
4582 *
4583 * Coupled with a limit on how many tasks we can migrate every balance pass,
4584 * this makes (5) the runtime complexity of the balancer.
4585 *
4586 * An important property here is that each CPU is still (indirectly) connected
4587 * to every other cpu in at most O(log n) steps:
4588 *
4589 * The adjacency matrix of the resulting graph is given by:
4590 *
4591 * log_2 n
4592 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4593 * k = 0
4594 *
4595 * And you'll find that:
4596 *
4597 * A^(log_2 n)_i,j != 0 for all i,j (7)
4598 *
4599 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4600 * The task movement gives a factor of O(m), giving a convergence complexity
4601 * of:
4602 *
4603 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4604 *
4605 *
4606 * WORK CONSERVING
4607 *
4608 * In order to avoid CPUs going idle while there's still work to do, new idle
4609 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4610 * tree itself instead of relying on other CPUs to bring it work.
4611 *
4612 * This adds some complexity to both (5) and (8) but it reduces the total idle
4613 * time.
4614 *
4615 * [XXX more?]
4616 *
4617 *
4618 * CGROUPS
4619 *
4620 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4621 *
4622 * s_k,i
4623 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4624 * S_k
4625 *
4626 * Where
4627 *
4628 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4629 *
4630 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4631 *
4632 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4633 * property.
4634 *
4635 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4636 * rewrite all of this once again.]
4637 */
4638
4639 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4640
4641 enum fbq_type { regular, remote, all };
4642
4643 #define LBF_ALL_PINNED 0x01
4644 #define LBF_NEED_BREAK 0x02
4645 #define LBF_DST_PINNED 0x04
4646 #define LBF_SOME_PINNED 0x08
4647
4648 struct lb_env {
4649 struct sched_domain *sd;
4650
4651 struct rq *src_rq;
4652 int src_cpu;
4653
4654 int dst_cpu;
4655 struct rq *dst_rq;
4656
4657 struct cpumask *dst_grpmask;
4658 int new_dst_cpu;
4659 enum cpu_idle_type idle;
4660 long imbalance;
4661 /* The set of CPUs under consideration for load-balancing */
4662 struct cpumask *cpus;
4663
4664 unsigned int flags;
4665
4666 unsigned int loop;
4667 unsigned int loop_break;
4668 unsigned int loop_max;
4669
4670 enum fbq_type fbq_type;
4671 };
4672
4673 /*
4674 * move_task - move a task from one runqueue to another runqueue.
4675 * Both runqueues must be locked.
4676 */
4677 static void move_task(struct task_struct *p, struct lb_env *env)
4678 {
4679 deactivate_task(env->src_rq, p, 0);
4680 set_task_cpu(p, env->dst_cpu);
4681 activate_task(env->dst_rq, p, 0);
4682 check_preempt_curr(env->dst_rq, p, 0);
4683 #ifdef CONFIG_NUMA_BALANCING
4684 if (p->numa_preferred_nid != -1) {
4685 int src_nid = cpu_to_node(env->src_cpu);
4686 int dst_nid = cpu_to_node(env->dst_cpu);
4687
4688 /*
4689 * If the load balancer has moved the task then limit
4690 * migrations from taking place in the short term in
4691 * case this is a short-lived migration.
4692 */
4693 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4694 p->numa_migrate_seq = 0;
4695 }
4696 #endif
4697 }
4698
4699 /*
4700 * Is this task likely cache-hot:
4701 */
4702 static int
4703 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4704 {
4705 s64 delta;
4706
4707 if (p->sched_class != &fair_sched_class)
4708 return 0;
4709
4710 if (unlikely(p->policy == SCHED_IDLE))
4711 return 0;
4712
4713 /*
4714 * Buddy candidates are cache hot:
4715 */
4716 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4717 (&p->se == cfs_rq_of(&p->se)->next ||
4718 &p->se == cfs_rq_of(&p->se)->last))
4719 return 1;
4720
4721 if (sysctl_sched_migration_cost == -1)
4722 return 1;
4723 if (sysctl_sched_migration_cost == 0)
4724 return 0;
4725
4726 delta = now - p->se.exec_start;
4727
4728 return delta < (s64)sysctl_sched_migration_cost;
4729 }
4730
4731 #ifdef CONFIG_NUMA_BALANCING
4732 /* Returns true if the destination node has incurred more faults */
4733 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4734 {
4735 int src_nid, dst_nid;
4736
4737 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4738 !(env->sd->flags & SD_NUMA)) {
4739 return false;
4740 }
4741
4742 src_nid = cpu_to_node(env->src_cpu);
4743 dst_nid = cpu_to_node(env->dst_cpu);
4744
4745 if (src_nid == dst_nid)
4746 return false;
4747
4748 /* Always encourage migration to the preferred node. */
4749 if (dst_nid == p->numa_preferred_nid)
4750 return true;
4751
4752 /* If both task and group weight improve, this move is a winner. */
4753 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4754 group_weight(p, dst_nid) > group_weight(p, src_nid))
4755 return true;
4756
4757 return false;
4758 }
4759
4760
4761 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4762 {
4763 int src_nid, dst_nid;
4764
4765 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4766 return false;
4767
4768 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4769 return false;
4770
4771 src_nid = cpu_to_node(env->src_cpu);
4772 dst_nid = cpu_to_node(env->dst_cpu);
4773
4774 if (src_nid == dst_nid)
4775 return false;
4776
4777 /* Migrating away from the preferred node is always bad. */
4778 if (src_nid == p->numa_preferred_nid)
4779 return true;
4780
4781 /* If either task or group weight get worse, don't do it. */
4782 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4783 group_weight(p, dst_nid) < group_weight(p, src_nid))
4784 return true;
4785
4786 return false;
4787 }
4788
4789 #else
4790 static inline bool migrate_improves_locality(struct task_struct *p,
4791 struct lb_env *env)
4792 {
4793 return false;
4794 }
4795
4796 static inline bool migrate_degrades_locality(struct task_struct *p,
4797 struct lb_env *env)
4798 {
4799 return false;
4800 }
4801 #endif
4802
4803 /*
4804 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4805 */
4806 static
4807 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4808 {
4809 int tsk_cache_hot = 0;
4810 /*
4811 * We do not migrate tasks that are:
4812 * 1) throttled_lb_pair, or
4813 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4814 * 3) running (obviously), or
4815 * 4) are cache-hot on their current CPU.
4816 */
4817 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4818 return 0;
4819
4820 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4821 int cpu;
4822
4823 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4824
4825 env->flags |= LBF_SOME_PINNED;
4826
4827 /*
4828 * Remember if this task can be migrated to any other cpu in
4829 * our sched_group. We may want to revisit it if we couldn't
4830 * meet load balance goals by pulling other tasks on src_cpu.
4831 *
4832 * Also avoid computing new_dst_cpu if we have already computed
4833 * one in current iteration.
4834 */
4835 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4836 return 0;
4837
4838 /* Prevent to re-select dst_cpu via env's cpus */
4839 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4840 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4841 env->flags |= LBF_DST_PINNED;
4842 env->new_dst_cpu = cpu;
4843 break;
4844 }
4845 }
4846
4847 return 0;
4848 }
4849
4850 /* Record that we found atleast one task that could run on dst_cpu */
4851 env->flags &= ~LBF_ALL_PINNED;
4852
4853 if (task_running(env->src_rq, p)) {
4854 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4855 return 0;
4856 }
4857
4858 /*
4859 * Aggressive migration if:
4860 * 1) destination numa is preferred
4861 * 2) task is cache cold, or
4862 * 3) too many balance attempts have failed.
4863 */
4864 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4865 if (!tsk_cache_hot)
4866 tsk_cache_hot = migrate_degrades_locality(p, env);
4867
4868 if (migrate_improves_locality(p, env)) {
4869 #ifdef CONFIG_SCHEDSTATS
4870 if (tsk_cache_hot) {
4871 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4872 schedstat_inc(p, se.statistics.nr_forced_migrations);
4873 }
4874 #endif
4875 return 1;
4876 }
4877
4878 if (!tsk_cache_hot ||
4879 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4880
4881 if (tsk_cache_hot) {
4882 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4883 schedstat_inc(p, se.statistics.nr_forced_migrations);
4884 }
4885
4886 return 1;
4887 }
4888
4889 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4890 return 0;
4891 }
4892
4893 /*
4894 * move_one_task tries to move exactly one task from busiest to this_rq, as
4895 * part of active balancing operations within "domain".
4896 * Returns 1 if successful and 0 otherwise.
4897 *
4898 * Called with both runqueues locked.
4899 */
4900 static int move_one_task(struct lb_env *env)
4901 {
4902 struct task_struct *p, *n;
4903
4904 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4905 if (!can_migrate_task(p, env))
4906 continue;
4907
4908 move_task(p, env);
4909 /*
4910 * Right now, this is only the second place move_task()
4911 * is called, so we can safely collect move_task()
4912 * stats here rather than inside move_task().
4913 */
4914 schedstat_inc(env->sd, lb_gained[env->idle]);
4915 return 1;
4916 }
4917 return 0;
4918 }
4919
4920 static const unsigned int sched_nr_migrate_break = 32;
4921
4922 /*
4923 * move_tasks tries to move up to imbalance weighted load from busiest to
4924 * this_rq, as part of a balancing operation within domain "sd".
4925 * Returns 1 if successful and 0 otherwise.
4926 *
4927 * Called with both runqueues locked.
4928 */
4929 static int move_tasks(struct lb_env *env)
4930 {
4931 struct list_head *tasks = &env->src_rq->cfs_tasks;
4932 struct task_struct *p;
4933 unsigned long load;
4934 int pulled = 0;
4935
4936 if (env->imbalance <= 0)
4937 return 0;
4938
4939 while (!list_empty(tasks)) {
4940 p = list_first_entry(tasks, struct task_struct, se.group_node);
4941
4942 env->loop++;
4943 /* We've more or less seen every task there is, call it quits */
4944 if (env->loop > env->loop_max)
4945 break;
4946
4947 /* take a breather every nr_migrate tasks */
4948 if (env->loop > env->loop_break) {
4949 env->loop_break += sched_nr_migrate_break;
4950 env->flags |= LBF_NEED_BREAK;
4951 break;
4952 }
4953
4954 if (!can_migrate_task(p, env))
4955 goto next;
4956
4957 load = task_h_load(p);
4958
4959 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4960 goto next;
4961
4962 if ((load / 2) > env->imbalance)
4963 goto next;
4964
4965 move_task(p, env);
4966 pulled++;
4967 env->imbalance -= load;
4968
4969 #ifdef CONFIG_PREEMPT
4970 /*
4971 * NEWIDLE balancing is a source of latency, so preemptible
4972 * kernels will stop after the first task is pulled to minimize
4973 * the critical section.
4974 */
4975 if (env->idle == CPU_NEWLY_IDLE)
4976 break;
4977 #endif
4978
4979 /*
4980 * We only want to steal up to the prescribed amount of
4981 * weighted load.
4982 */
4983 if (env->imbalance <= 0)
4984 break;
4985
4986 continue;
4987 next:
4988 list_move_tail(&p->se.group_node, tasks);
4989 }
4990
4991 /*
4992 * Right now, this is one of only two places move_task() is called,
4993 * so we can safely collect move_task() stats here rather than
4994 * inside move_task().
4995 */
4996 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4997
4998 return pulled;
4999 }
5000
5001 #ifdef CONFIG_FAIR_GROUP_SCHED
5002 /*
5003 * update tg->load_weight by folding this cpu's load_avg
5004 */
5005 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5006 {
5007 struct sched_entity *se = tg->se[cpu];
5008 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5009
5010 /* throttled entities do not contribute to load */
5011 if (throttled_hierarchy(cfs_rq))
5012 return;
5013
5014 update_cfs_rq_blocked_load(cfs_rq, 1);
5015
5016 if (se) {
5017 update_entity_load_avg(se, 1);
5018 /*
5019 * We pivot on our runnable average having decayed to zero for
5020 * list removal. This generally implies that all our children
5021 * have also been removed (modulo rounding error or bandwidth
5022 * control); however, such cases are rare and we can fix these
5023 * at enqueue.
5024 *
5025 * TODO: fix up out-of-order children on enqueue.
5026 */
5027 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5028 list_del_leaf_cfs_rq(cfs_rq);
5029 } else {
5030 struct rq *rq = rq_of(cfs_rq);
5031 update_rq_runnable_avg(rq, rq->nr_running);
5032 }
5033 }
5034
5035 static void update_blocked_averages(int cpu)
5036 {
5037 struct rq *rq = cpu_rq(cpu);
5038 struct cfs_rq *cfs_rq;
5039 unsigned long flags;
5040
5041 raw_spin_lock_irqsave(&rq->lock, flags);
5042 update_rq_clock(rq);
5043 /*
5044 * Iterates the task_group tree in a bottom up fashion, see
5045 * list_add_leaf_cfs_rq() for details.
5046 */
5047 for_each_leaf_cfs_rq(rq, cfs_rq) {
5048 /*
5049 * Note: We may want to consider periodically releasing
5050 * rq->lock about these updates so that creating many task
5051 * groups does not result in continually extending hold time.
5052 */
5053 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5054 }
5055
5056 raw_spin_unlock_irqrestore(&rq->lock, flags);
5057 }
5058
5059 /*
5060 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5061 * This needs to be done in a top-down fashion because the load of a child
5062 * group is a fraction of its parents load.
5063 */
5064 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5065 {
5066 struct rq *rq = rq_of(cfs_rq);
5067 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5068 unsigned long now = jiffies;
5069 unsigned long load;
5070
5071 if (cfs_rq->last_h_load_update == now)
5072 return;
5073
5074 cfs_rq->h_load_next = NULL;
5075 for_each_sched_entity(se) {
5076 cfs_rq = cfs_rq_of(se);
5077 cfs_rq->h_load_next = se;
5078 if (cfs_rq->last_h_load_update == now)
5079 break;
5080 }
5081
5082 if (!se) {
5083 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5084 cfs_rq->last_h_load_update = now;
5085 }
5086
5087 while ((se = cfs_rq->h_load_next) != NULL) {
5088 load = cfs_rq->h_load;
5089 load = div64_ul(load * se->avg.load_avg_contrib,
5090 cfs_rq->runnable_load_avg + 1);
5091 cfs_rq = group_cfs_rq(se);
5092 cfs_rq->h_load = load;
5093 cfs_rq->last_h_load_update = now;
5094 }
5095 }
5096
5097 static unsigned long task_h_load(struct task_struct *p)
5098 {
5099 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5100
5101 update_cfs_rq_h_load(cfs_rq);
5102 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5103 cfs_rq->runnable_load_avg + 1);
5104 }
5105 #else
5106 static inline void update_blocked_averages(int cpu)
5107 {
5108 }
5109
5110 static unsigned long task_h_load(struct task_struct *p)
5111 {
5112 return p->se.avg.load_avg_contrib;
5113 }
5114 #endif
5115
5116 /********** Helpers for find_busiest_group ************************/
5117 /*
5118 * sg_lb_stats - stats of a sched_group required for load_balancing
5119 */
5120 struct sg_lb_stats {
5121 unsigned long avg_load; /*Avg load across the CPUs of the group */
5122 unsigned long group_load; /* Total load over the CPUs of the group */
5123 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5124 unsigned long load_per_task;
5125 unsigned long group_power;
5126 unsigned int sum_nr_running; /* Nr tasks running in the group */
5127 unsigned int group_capacity;
5128 unsigned int idle_cpus;
5129 unsigned int group_weight;
5130 int group_imb; /* Is there an imbalance in the group ? */
5131 int group_has_capacity; /* Is there extra capacity in the group? */
5132 #ifdef CONFIG_NUMA_BALANCING
5133 unsigned int nr_numa_running;
5134 unsigned int nr_preferred_running;
5135 #endif
5136 };
5137
5138 /*
5139 * sd_lb_stats - Structure to store the statistics of a sched_domain
5140 * during load balancing.
5141 */
5142 struct sd_lb_stats {
5143 struct sched_group *busiest; /* Busiest group in this sd */
5144 struct sched_group *local; /* Local group in this sd */
5145 unsigned long total_load; /* Total load of all groups in sd */
5146 unsigned long total_pwr; /* Total power of all groups in sd */
5147 unsigned long avg_load; /* Average load across all groups in sd */
5148
5149 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5150 struct sg_lb_stats local_stat; /* Statistics of the local group */
5151 };
5152
5153 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5154 {
5155 /*
5156 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5157 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5158 * We must however clear busiest_stat::avg_load because
5159 * update_sd_pick_busiest() reads this before assignment.
5160 */
5161 *sds = (struct sd_lb_stats){
5162 .busiest = NULL,
5163 .local = NULL,
5164 .total_load = 0UL,
5165 .total_pwr = 0UL,
5166 .busiest_stat = {
5167 .avg_load = 0UL,
5168 },
5169 };
5170 }
5171
5172 /**
5173 * get_sd_load_idx - Obtain the load index for a given sched domain.
5174 * @sd: The sched_domain whose load_idx is to be obtained.
5175 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
5176 *
5177 * Return: The load index.
5178 */
5179 static inline int get_sd_load_idx(struct sched_domain *sd,
5180 enum cpu_idle_type idle)
5181 {
5182 int load_idx;
5183
5184 switch (idle) {
5185 case CPU_NOT_IDLE:
5186 load_idx = sd->busy_idx;
5187 break;
5188
5189 case CPU_NEWLY_IDLE:
5190 load_idx = sd->newidle_idx;
5191 break;
5192 default:
5193 load_idx = sd->idle_idx;
5194 break;
5195 }
5196
5197 return load_idx;
5198 }
5199
5200 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5201 {
5202 return SCHED_POWER_SCALE;
5203 }
5204
5205 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5206 {
5207 return default_scale_freq_power(sd, cpu);
5208 }
5209
5210 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5211 {
5212 unsigned long weight = sd->span_weight;
5213 unsigned long smt_gain = sd->smt_gain;
5214
5215 smt_gain /= weight;
5216
5217 return smt_gain;
5218 }
5219
5220 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5221 {
5222 return default_scale_smt_power(sd, cpu);
5223 }
5224
5225 static unsigned long scale_rt_power(int cpu)
5226 {
5227 struct rq *rq = cpu_rq(cpu);
5228 u64 total, available, age_stamp, avg;
5229
5230 /*
5231 * Since we're reading these variables without serialization make sure
5232 * we read them once before doing sanity checks on them.
5233 */
5234 age_stamp = ACCESS_ONCE(rq->age_stamp);
5235 avg = ACCESS_ONCE(rq->rt_avg);
5236
5237 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5238
5239 if (unlikely(total < avg)) {
5240 /* Ensures that power won't end up being negative */
5241 available = 0;
5242 } else {
5243 available = total - avg;
5244 }
5245
5246 if (unlikely((s64)total < SCHED_POWER_SCALE))
5247 total = SCHED_POWER_SCALE;
5248
5249 total >>= SCHED_POWER_SHIFT;
5250
5251 return div_u64(available, total);
5252 }
5253
5254 static void update_cpu_power(struct sched_domain *sd, int cpu)
5255 {
5256 unsigned long weight = sd->span_weight;
5257 unsigned long power = SCHED_POWER_SCALE;
5258 struct sched_group *sdg = sd->groups;
5259
5260 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5261 if (sched_feat(ARCH_POWER))
5262 power *= arch_scale_smt_power(sd, cpu);
5263 else
5264 power *= default_scale_smt_power(sd, cpu);
5265
5266 power >>= SCHED_POWER_SHIFT;
5267 }
5268
5269 sdg->sgp->power_orig = power;
5270
5271 if (sched_feat(ARCH_POWER))
5272 power *= arch_scale_freq_power(sd, cpu);
5273 else
5274 power *= default_scale_freq_power(sd, cpu);
5275
5276 power >>= SCHED_POWER_SHIFT;
5277
5278 power *= scale_rt_power(cpu);
5279 power >>= SCHED_POWER_SHIFT;
5280
5281 if (!power)
5282 power = 1;
5283
5284 cpu_rq(cpu)->cpu_power = power;
5285 sdg->sgp->power = power;
5286 }
5287
5288 void update_group_power(struct sched_domain *sd, int cpu)
5289 {
5290 struct sched_domain *child = sd->child;
5291 struct sched_group *group, *sdg = sd->groups;
5292 unsigned long power, power_orig;
5293 unsigned long interval;
5294
5295 interval = msecs_to_jiffies(sd->balance_interval);
5296 interval = clamp(interval, 1UL, max_load_balance_interval);
5297 sdg->sgp->next_update = jiffies + interval;
5298
5299 if (!child) {
5300 update_cpu_power(sd, cpu);
5301 return;
5302 }
5303
5304 power_orig = power = 0;
5305
5306 if (child->flags & SD_OVERLAP) {
5307 /*
5308 * SD_OVERLAP domains cannot assume that child groups
5309 * span the current group.
5310 */
5311
5312 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5313 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5314
5315 power_orig += sg->sgp->power_orig;
5316 power += sg->sgp->power;
5317 }
5318 } else {
5319 /*
5320 * !SD_OVERLAP domains can assume that child groups
5321 * span the current group.
5322 */
5323
5324 group = child->groups;
5325 do {
5326 power_orig += group->sgp->power_orig;
5327 power += group->sgp->power;
5328 group = group->next;
5329 } while (group != child->groups);
5330 }
5331
5332 sdg->sgp->power_orig = power_orig;
5333 sdg->sgp->power = power;
5334 }
5335
5336 /*
5337 * Try and fix up capacity for tiny siblings, this is needed when
5338 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5339 * which on its own isn't powerful enough.
5340 *
5341 * See update_sd_pick_busiest() and check_asym_packing().
5342 */
5343 static inline int
5344 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5345 {
5346 /*
5347 * Only siblings can have significantly less than SCHED_POWER_SCALE
5348 */
5349 if (!(sd->flags & SD_SHARE_CPUPOWER))
5350 return 0;
5351
5352 /*
5353 * If ~90% of the cpu_power is still there, we're good.
5354 */
5355 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5356 return 1;
5357
5358 return 0;
5359 }
5360
5361 /*
5362 * Group imbalance indicates (and tries to solve) the problem where balancing
5363 * groups is inadequate due to tsk_cpus_allowed() constraints.
5364 *
5365 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5366 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5367 * Something like:
5368 *
5369 * { 0 1 2 3 } { 4 5 6 7 }
5370 * * * * *
5371 *
5372 * If we were to balance group-wise we'd place two tasks in the first group and
5373 * two tasks in the second group. Clearly this is undesired as it will overload
5374 * cpu 3 and leave one of the cpus in the second group unused.
5375 *
5376 * The current solution to this issue is detecting the skew in the first group
5377 * by noticing the lower domain failed to reach balance and had difficulty
5378 * moving tasks due to affinity constraints.
5379 *
5380 * When this is so detected; this group becomes a candidate for busiest; see
5381 * update_sd_pick_busiest(). And calculcate_imbalance() and
5382 * find_busiest_group() avoid some of the usual balance conditions to allow it
5383 * to create an effective group imbalance.
5384 *
5385 * This is a somewhat tricky proposition since the next run might not find the
5386 * group imbalance and decide the groups need to be balanced again. A most
5387 * subtle and fragile situation.
5388 */
5389
5390 static inline int sg_imbalanced(struct sched_group *group)
5391 {
5392 return group->sgp->imbalance;
5393 }
5394
5395 /*
5396 * Compute the group capacity.
5397 *
5398 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5399 * first dividing out the smt factor and computing the actual number of cores
5400 * and limit power unit capacity with that.
5401 */
5402 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5403 {
5404 unsigned int capacity, smt, cpus;
5405 unsigned int power, power_orig;
5406
5407 power = group->sgp->power;
5408 power_orig = group->sgp->power_orig;
5409 cpus = group->group_weight;
5410
5411 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5412 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5413 capacity = cpus / smt; /* cores */
5414
5415 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5416 if (!capacity)
5417 capacity = fix_small_capacity(env->sd, group);
5418
5419 return capacity;
5420 }
5421
5422 /**
5423 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5424 * @env: The load balancing environment.
5425 * @group: sched_group whose statistics are to be updated.
5426 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5427 * @local_group: Does group contain this_cpu.
5428 * @sgs: variable to hold the statistics for this group.
5429 */
5430 static inline void update_sg_lb_stats(struct lb_env *env,
5431 struct sched_group *group, int load_idx,
5432 int local_group, struct sg_lb_stats *sgs)
5433 {
5434 unsigned long nr_running;
5435 unsigned long load;
5436 int i;
5437
5438 memset(sgs, 0, sizeof(*sgs));
5439
5440 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5441 struct rq *rq = cpu_rq(i);
5442
5443 nr_running = rq->nr_running;
5444
5445 /* Bias balancing toward cpus of our domain */
5446 if (local_group)
5447 load = target_load(i, load_idx);
5448 else
5449 load = source_load(i, load_idx);
5450
5451 sgs->group_load += load;
5452 sgs->sum_nr_running += nr_running;
5453 #ifdef CONFIG_NUMA_BALANCING
5454 sgs->nr_numa_running += rq->nr_numa_running;
5455 sgs->nr_preferred_running += rq->nr_preferred_running;
5456 #endif
5457 sgs->sum_weighted_load += weighted_cpuload(i);
5458 if (idle_cpu(i))
5459 sgs->idle_cpus++;
5460 }
5461
5462 /* Adjust by relative CPU power of the group */
5463 sgs->group_power = group->sgp->power;
5464 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5465
5466 if (sgs->sum_nr_running)
5467 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5468
5469 sgs->group_weight = group->group_weight;
5470
5471 sgs->group_imb = sg_imbalanced(group);
5472 sgs->group_capacity = sg_capacity(env, group);
5473
5474 if (sgs->group_capacity > sgs->sum_nr_running)
5475 sgs->group_has_capacity = 1;
5476 }
5477
5478 /**
5479 * update_sd_pick_busiest - return 1 on busiest group
5480 * @env: The load balancing environment.
5481 * @sds: sched_domain statistics
5482 * @sg: sched_group candidate to be checked for being the busiest
5483 * @sgs: sched_group statistics
5484 *
5485 * Determine if @sg is a busier group than the previously selected
5486 * busiest group.
5487 *
5488 * Return: %true if @sg is a busier group than the previously selected
5489 * busiest group. %false otherwise.
5490 */
5491 static bool update_sd_pick_busiest(struct lb_env *env,
5492 struct sd_lb_stats *sds,
5493 struct sched_group *sg,
5494 struct sg_lb_stats *sgs)
5495 {
5496 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5497 return false;
5498
5499 if (sgs->sum_nr_running > sgs->group_capacity)
5500 return true;
5501
5502 if (sgs->group_imb)
5503 return true;
5504
5505 /*
5506 * ASYM_PACKING needs to move all the work to the lowest
5507 * numbered CPUs in the group, therefore mark all groups
5508 * higher than ourself as busy.
5509 */
5510 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5511 env->dst_cpu < group_first_cpu(sg)) {
5512 if (!sds->busiest)
5513 return true;
5514
5515 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5516 return true;
5517 }
5518
5519 return false;
5520 }
5521
5522 #ifdef CONFIG_NUMA_BALANCING
5523 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5524 {
5525 if (sgs->sum_nr_running > sgs->nr_numa_running)
5526 return regular;
5527 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5528 return remote;
5529 return all;
5530 }
5531
5532 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5533 {
5534 if (rq->nr_running > rq->nr_numa_running)
5535 return regular;
5536 if (rq->nr_running > rq->nr_preferred_running)
5537 return remote;
5538 return all;
5539 }
5540 #else
5541 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5542 {
5543 return all;
5544 }
5545
5546 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5547 {
5548 return regular;
5549 }
5550 #endif /* CONFIG_NUMA_BALANCING */
5551
5552 /**
5553 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5554 * @env: The load balancing environment.
5555 * @balance: Should we balance.
5556 * @sds: variable to hold the statistics for this sched_domain.
5557 */
5558 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5559 {
5560 struct sched_domain *child = env->sd->child;
5561 struct sched_group *sg = env->sd->groups;
5562 struct sg_lb_stats tmp_sgs;
5563 int load_idx, prefer_sibling = 0;
5564
5565 if (child && child->flags & SD_PREFER_SIBLING)
5566 prefer_sibling = 1;
5567
5568 load_idx = get_sd_load_idx(env->sd, env->idle);
5569
5570 do {
5571 struct sg_lb_stats *sgs = &tmp_sgs;
5572 int local_group;
5573
5574 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5575 if (local_group) {
5576 sds->local = sg;
5577 sgs = &sds->local_stat;
5578
5579 if (env->idle != CPU_NEWLY_IDLE ||
5580 time_after_eq(jiffies, sg->sgp->next_update))
5581 update_group_power(env->sd, env->dst_cpu);
5582 }
5583
5584 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5585
5586 if (local_group)
5587 goto next_group;
5588
5589 /*
5590 * In case the child domain prefers tasks go to siblings
5591 * first, lower the sg capacity to one so that we'll try
5592 * and move all the excess tasks away. We lower the capacity
5593 * of a group only if the local group has the capacity to fit
5594 * these excess tasks, i.e. nr_running < group_capacity. The
5595 * extra check prevents the case where you always pull from the
5596 * heaviest group when it is already under-utilized (possible
5597 * with a large weight task outweighs the tasks on the system).
5598 */
5599 if (prefer_sibling && sds->local &&
5600 sds->local_stat.group_has_capacity)
5601 sgs->group_capacity = min(sgs->group_capacity, 1U);
5602
5603 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5604 sds->busiest = sg;
5605 sds->busiest_stat = *sgs;
5606 }
5607
5608 next_group:
5609 /* Now, start updating sd_lb_stats */
5610 sds->total_load += sgs->group_load;
5611 sds->total_pwr += sgs->group_power;
5612
5613 sg = sg->next;
5614 } while (sg != env->sd->groups);
5615
5616 if (env->sd->flags & SD_NUMA)
5617 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5618 }
5619
5620 /**
5621 * check_asym_packing - Check to see if the group is packed into the
5622 * sched doman.
5623 *
5624 * This is primarily intended to used at the sibling level. Some
5625 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5626 * case of POWER7, it can move to lower SMT modes only when higher
5627 * threads are idle. When in lower SMT modes, the threads will
5628 * perform better since they share less core resources. Hence when we
5629 * have idle threads, we want them to be the higher ones.
5630 *
5631 * This packing function is run on idle threads. It checks to see if
5632 * the busiest CPU in this domain (core in the P7 case) has a higher
5633 * CPU number than the packing function is being run on. Here we are
5634 * assuming lower CPU number will be equivalent to lower a SMT thread
5635 * number.
5636 *
5637 * Return: 1 when packing is required and a task should be moved to
5638 * this CPU. The amount of the imbalance is returned in *imbalance.
5639 *
5640 * @env: The load balancing environment.
5641 * @sds: Statistics of the sched_domain which is to be packed
5642 */
5643 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5644 {
5645 int busiest_cpu;
5646
5647 if (!(env->sd->flags & SD_ASYM_PACKING))
5648 return 0;
5649
5650 if (!sds->busiest)
5651 return 0;
5652
5653 busiest_cpu = group_first_cpu(sds->busiest);
5654 if (env->dst_cpu > busiest_cpu)
5655 return 0;
5656
5657 env->imbalance = DIV_ROUND_CLOSEST(
5658 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5659 SCHED_POWER_SCALE);
5660
5661 return 1;
5662 }
5663
5664 /**
5665 * fix_small_imbalance - Calculate the minor imbalance that exists
5666 * amongst the groups of a sched_domain, during
5667 * load balancing.
5668 * @env: The load balancing environment.
5669 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5670 */
5671 static inline
5672 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5673 {
5674 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5675 unsigned int imbn = 2;
5676 unsigned long scaled_busy_load_per_task;
5677 struct sg_lb_stats *local, *busiest;
5678
5679 local = &sds->local_stat;
5680 busiest = &sds->busiest_stat;
5681
5682 if (!local->sum_nr_running)
5683 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5684 else if (busiest->load_per_task > local->load_per_task)
5685 imbn = 1;
5686
5687 scaled_busy_load_per_task =
5688 (busiest->load_per_task * SCHED_POWER_SCALE) /
5689 busiest->group_power;
5690
5691 if (busiest->avg_load + scaled_busy_load_per_task >=
5692 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5693 env->imbalance = busiest->load_per_task;
5694 return;
5695 }
5696
5697 /*
5698 * OK, we don't have enough imbalance to justify moving tasks,
5699 * however we may be able to increase total CPU power used by
5700 * moving them.
5701 */
5702
5703 pwr_now += busiest->group_power *
5704 min(busiest->load_per_task, busiest->avg_load);
5705 pwr_now += local->group_power *
5706 min(local->load_per_task, local->avg_load);
5707 pwr_now /= SCHED_POWER_SCALE;
5708
5709 /* Amount of load we'd subtract */
5710 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5711 busiest->group_power;
5712 if (busiest->avg_load > tmp) {
5713 pwr_move += busiest->group_power *
5714 min(busiest->load_per_task,
5715 busiest->avg_load - tmp);
5716 }
5717
5718 /* Amount of load we'd add */
5719 if (busiest->avg_load * busiest->group_power <
5720 busiest->load_per_task * SCHED_POWER_SCALE) {
5721 tmp = (busiest->avg_load * busiest->group_power) /
5722 local->group_power;
5723 } else {
5724 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5725 local->group_power;
5726 }
5727 pwr_move += local->group_power *
5728 min(local->load_per_task, local->avg_load + tmp);
5729 pwr_move /= SCHED_POWER_SCALE;
5730
5731 /* Move if we gain throughput */
5732 if (pwr_move > pwr_now)
5733 env->imbalance = busiest->load_per_task;
5734 }
5735
5736 /**
5737 * calculate_imbalance - Calculate the amount of imbalance present within the
5738 * groups of a given sched_domain during load balance.
5739 * @env: load balance environment
5740 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5741 */
5742 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5743 {
5744 unsigned long max_pull, load_above_capacity = ~0UL;
5745 struct sg_lb_stats *local, *busiest;
5746
5747 local = &sds->local_stat;
5748 busiest = &sds->busiest_stat;
5749
5750 if (busiest->group_imb) {
5751 /*
5752 * In the group_imb case we cannot rely on group-wide averages
5753 * to ensure cpu-load equilibrium, look at wider averages. XXX
5754 */
5755 busiest->load_per_task =
5756 min(busiest->load_per_task, sds->avg_load);
5757 }
5758
5759 /*
5760 * In the presence of smp nice balancing, certain scenarios can have
5761 * max load less than avg load(as we skip the groups at or below
5762 * its cpu_power, while calculating max_load..)
5763 */
5764 if (busiest->avg_load <= sds->avg_load ||
5765 local->avg_load >= sds->avg_load) {
5766 env->imbalance = 0;
5767 return fix_small_imbalance(env, sds);
5768 }
5769
5770 if (!busiest->group_imb) {
5771 /*
5772 * Don't want to pull so many tasks that a group would go idle.
5773 * Except of course for the group_imb case, since then we might
5774 * have to drop below capacity to reach cpu-load equilibrium.
5775 */
5776 load_above_capacity =
5777 (busiest->sum_nr_running - busiest->group_capacity);
5778
5779 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5780 load_above_capacity /= busiest->group_power;
5781 }
5782
5783 /*
5784 * We're trying to get all the cpus to the average_load, so we don't
5785 * want to push ourselves above the average load, nor do we wish to
5786 * reduce the max loaded cpu below the average load. At the same time,
5787 * we also don't want to reduce the group load below the group capacity
5788 * (so that we can implement power-savings policies etc). Thus we look
5789 * for the minimum possible imbalance.
5790 */
5791 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5792
5793 /* How much load to actually move to equalise the imbalance */
5794 env->imbalance = min(
5795 max_pull * busiest->group_power,
5796 (sds->avg_load - local->avg_load) * local->group_power
5797 ) / SCHED_POWER_SCALE;
5798
5799 /*
5800 * if *imbalance is less than the average load per runnable task
5801 * there is no guarantee that any tasks will be moved so we'll have
5802 * a think about bumping its value to force at least one task to be
5803 * moved
5804 */
5805 if (env->imbalance < busiest->load_per_task)
5806 return fix_small_imbalance(env, sds);
5807 }
5808
5809 /******* find_busiest_group() helpers end here *********************/
5810
5811 /**
5812 * find_busiest_group - Returns the busiest group within the sched_domain
5813 * if there is an imbalance. If there isn't an imbalance, and
5814 * the user has opted for power-savings, it returns a group whose
5815 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5816 * such a group exists.
5817 *
5818 * Also calculates the amount of weighted load which should be moved
5819 * to restore balance.
5820 *
5821 * @env: The load balancing environment.
5822 *
5823 * Return: - The busiest group if imbalance exists.
5824 * - If no imbalance and user has opted for power-savings balance,
5825 * return the least loaded group whose CPUs can be
5826 * put to idle by rebalancing its tasks onto our group.
5827 */
5828 static struct sched_group *find_busiest_group(struct lb_env *env)
5829 {
5830 struct sg_lb_stats *local, *busiest;
5831 struct sd_lb_stats sds;
5832
5833 init_sd_lb_stats(&sds);
5834
5835 /*
5836 * Compute the various statistics relavent for load balancing at
5837 * this level.
5838 */
5839 update_sd_lb_stats(env, &sds);
5840 local = &sds.local_stat;
5841 busiest = &sds.busiest_stat;
5842
5843 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5844 check_asym_packing(env, &sds))
5845 return sds.busiest;
5846
5847 /* There is no busy sibling group to pull tasks from */
5848 if (!sds.busiest || busiest->sum_nr_running == 0)
5849 goto out_balanced;
5850
5851 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5852
5853 /*
5854 * If the busiest group is imbalanced the below checks don't
5855 * work because they assume all things are equal, which typically
5856 * isn't true due to cpus_allowed constraints and the like.
5857 */
5858 if (busiest->group_imb)
5859 goto force_balance;
5860
5861 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5862 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5863 !busiest->group_has_capacity)
5864 goto force_balance;
5865
5866 /*
5867 * If the local group is more busy than the selected busiest group
5868 * don't try and pull any tasks.
5869 */
5870 if (local->avg_load >= busiest->avg_load)
5871 goto out_balanced;
5872
5873 /*
5874 * Don't pull any tasks if this group is already above the domain
5875 * average load.
5876 */
5877 if (local->avg_load >= sds.avg_load)
5878 goto out_balanced;
5879
5880 if (env->idle == CPU_IDLE) {
5881 /*
5882 * This cpu is idle. If the busiest group load doesn't
5883 * have more tasks than the number of available cpu's and
5884 * there is no imbalance between this and busiest group
5885 * wrt to idle cpu's, it is balanced.
5886 */
5887 if ((local->idle_cpus < busiest->idle_cpus) &&
5888 busiest->sum_nr_running <= busiest->group_weight)
5889 goto out_balanced;
5890 } else {
5891 /*
5892 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5893 * imbalance_pct to be conservative.
5894 */
5895 if (100 * busiest->avg_load <=
5896 env->sd->imbalance_pct * local->avg_load)
5897 goto out_balanced;
5898 }
5899
5900 force_balance:
5901 /* Looks like there is an imbalance. Compute it */
5902 calculate_imbalance(env, &sds);
5903 return sds.busiest;
5904
5905 out_balanced:
5906 env->imbalance = 0;
5907 return NULL;
5908 }
5909
5910 /*
5911 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5912 */
5913 static struct rq *find_busiest_queue(struct lb_env *env,
5914 struct sched_group *group)
5915 {
5916 struct rq *busiest = NULL, *rq;
5917 unsigned long busiest_load = 0, busiest_power = 1;
5918 int i;
5919
5920 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5921 unsigned long power, capacity, wl;
5922 enum fbq_type rt;
5923
5924 rq = cpu_rq(i);
5925 rt = fbq_classify_rq(rq);
5926
5927 /*
5928 * We classify groups/runqueues into three groups:
5929 * - regular: there are !numa tasks
5930 * - remote: there are numa tasks that run on the 'wrong' node
5931 * - all: there is no distinction
5932 *
5933 * In order to avoid migrating ideally placed numa tasks,
5934 * ignore those when there's better options.
5935 *
5936 * If we ignore the actual busiest queue to migrate another
5937 * task, the next balance pass can still reduce the busiest
5938 * queue by moving tasks around inside the node.
5939 *
5940 * If we cannot move enough load due to this classification
5941 * the next pass will adjust the group classification and
5942 * allow migration of more tasks.
5943 *
5944 * Both cases only affect the total convergence complexity.
5945 */
5946 if (rt > env->fbq_type)
5947 continue;
5948
5949 power = power_of(i);
5950 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
5951 if (!capacity)
5952 capacity = fix_small_capacity(env->sd, group);
5953
5954 wl = weighted_cpuload(i);
5955
5956 /*
5957 * When comparing with imbalance, use weighted_cpuload()
5958 * which is not scaled with the cpu power.
5959 */
5960 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
5961 continue;
5962
5963 /*
5964 * For the load comparisons with the other cpu's, consider
5965 * the weighted_cpuload() scaled with the cpu power, so that
5966 * the load can be moved away from the cpu that is potentially
5967 * running at a lower capacity.
5968 *
5969 * Thus we're looking for max(wl_i / power_i), crosswise
5970 * multiplication to rid ourselves of the division works out
5971 * to: wl_i * power_j > wl_j * power_i; where j is our
5972 * previous maximum.
5973 */
5974 if (wl * busiest_power > busiest_load * power) {
5975 busiest_load = wl;
5976 busiest_power = power;
5977 busiest = rq;
5978 }
5979 }
5980
5981 return busiest;
5982 }
5983
5984 /*
5985 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5986 * so long as it is large enough.
5987 */
5988 #define MAX_PINNED_INTERVAL 512
5989
5990 /* Working cpumask for load_balance and load_balance_newidle. */
5991 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5992
5993 static int need_active_balance(struct lb_env *env)
5994 {
5995 struct sched_domain *sd = env->sd;
5996
5997 if (env->idle == CPU_NEWLY_IDLE) {
5998
5999 /*
6000 * ASYM_PACKING needs to force migrate tasks from busy but
6001 * higher numbered CPUs in order to pack all tasks in the
6002 * lowest numbered CPUs.
6003 */
6004 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6005 return 1;
6006 }
6007
6008 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6009 }
6010
6011 static int active_load_balance_cpu_stop(void *data);
6012
6013 static int should_we_balance(struct lb_env *env)
6014 {
6015 struct sched_group *sg = env->sd->groups;
6016 struct cpumask *sg_cpus, *sg_mask;
6017 int cpu, balance_cpu = -1;
6018
6019 /*
6020 * In the newly idle case, we will allow all the cpu's
6021 * to do the newly idle load balance.
6022 */
6023 if (env->idle == CPU_NEWLY_IDLE)
6024 return 1;
6025
6026 sg_cpus = sched_group_cpus(sg);
6027 sg_mask = sched_group_mask(sg);
6028 /* Try to find first idle cpu */
6029 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6030 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6031 continue;
6032
6033 balance_cpu = cpu;
6034 break;
6035 }
6036
6037 if (balance_cpu == -1)
6038 balance_cpu = group_balance_cpu(sg);
6039
6040 /*
6041 * First idle cpu or the first cpu(busiest) in this sched group
6042 * is eligible for doing load balancing at this and above domains.
6043 */
6044 return balance_cpu == env->dst_cpu;
6045 }
6046
6047 /*
6048 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6049 * tasks if there is an imbalance.
6050 */
6051 static int load_balance(int this_cpu, struct rq *this_rq,
6052 struct sched_domain *sd, enum cpu_idle_type idle,
6053 int *continue_balancing)
6054 {
6055 int ld_moved, cur_ld_moved, active_balance = 0;
6056 struct sched_domain *sd_parent = sd->parent;
6057 struct sched_group *group;
6058 struct rq *busiest;
6059 unsigned long flags;
6060 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6061
6062 struct lb_env env = {
6063 .sd = sd,
6064 .dst_cpu = this_cpu,
6065 .dst_rq = this_rq,
6066 .dst_grpmask = sched_group_cpus(sd->groups),
6067 .idle = idle,
6068 .loop_break = sched_nr_migrate_break,
6069 .cpus = cpus,
6070 .fbq_type = all,
6071 };
6072
6073 /*
6074 * For NEWLY_IDLE load_balancing, we don't need to consider
6075 * other cpus in our group
6076 */
6077 if (idle == CPU_NEWLY_IDLE)
6078 env.dst_grpmask = NULL;
6079
6080 cpumask_copy(cpus, cpu_active_mask);
6081
6082 schedstat_inc(sd, lb_count[idle]);
6083
6084 redo:
6085 if (!should_we_balance(&env)) {
6086 *continue_balancing = 0;
6087 goto out_balanced;
6088 }
6089
6090 group = find_busiest_group(&env);
6091 if (!group) {
6092 schedstat_inc(sd, lb_nobusyg[idle]);
6093 goto out_balanced;
6094 }
6095
6096 busiest = find_busiest_queue(&env, group);
6097 if (!busiest) {
6098 schedstat_inc(sd, lb_nobusyq[idle]);
6099 goto out_balanced;
6100 }
6101
6102 BUG_ON(busiest == env.dst_rq);
6103
6104 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6105
6106 ld_moved = 0;
6107 if (busiest->nr_running > 1) {
6108 /*
6109 * Attempt to move tasks. If find_busiest_group has found
6110 * an imbalance but busiest->nr_running <= 1, the group is
6111 * still unbalanced. ld_moved simply stays zero, so it is
6112 * correctly treated as an imbalance.
6113 */
6114 env.flags |= LBF_ALL_PINNED;
6115 env.src_cpu = busiest->cpu;
6116 env.src_rq = busiest;
6117 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6118
6119 more_balance:
6120 local_irq_save(flags);
6121 double_rq_lock(env.dst_rq, busiest);
6122
6123 /*
6124 * cur_ld_moved - load moved in current iteration
6125 * ld_moved - cumulative load moved across iterations
6126 */
6127 cur_ld_moved = move_tasks(&env);
6128 ld_moved += cur_ld_moved;
6129 double_rq_unlock(env.dst_rq, busiest);
6130 local_irq_restore(flags);
6131
6132 /*
6133 * some other cpu did the load balance for us.
6134 */
6135 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6136 resched_cpu(env.dst_cpu);
6137
6138 if (env.flags & LBF_NEED_BREAK) {
6139 env.flags &= ~LBF_NEED_BREAK;
6140 goto more_balance;
6141 }
6142
6143 /*
6144 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6145 * us and move them to an alternate dst_cpu in our sched_group
6146 * where they can run. The upper limit on how many times we
6147 * iterate on same src_cpu is dependent on number of cpus in our
6148 * sched_group.
6149 *
6150 * This changes load balance semantics a bit on who can move
6151 * load to a given_cpu. In addition to the given_cpu itself
6152 * (or a ilb_cpu acting on its behalf where given_cpu is
6153 * nohz-idle), we now have balance_cpu in a position to move
6154 * load to given_cpu. In rare situations, this may cause
6155 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6156 * _independently_ and at _same_ time to move some load to
6157 * given_cpu) causing exceess load to be moved to given_cpu.
6158 * This however should not happen so much in practice and
6159 * moreover subsequent load balance cycles should correct the
6160 * excess load moved.
6161 */
6162 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6163
6164 /* Prevent to re-select dst_cpu via env's cpus */
6165 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6166
6167 env.dst_rq = cpu_rq(env.new_dst_cpu);
6168 env.dst_cpu = env.new_dst_cpu;
6169 env.flags &= ~LBF_DST_PINNED;
6170 env.loop = 0;
6171 env.loop_break = sched_nr_migrate_break;
6172
6173 /*
6174 * Go back to "more_balance" rather than "redo" since we
6175 * need to continue with same src_cpu.
6176 */
6177 goto more_balance;
6178 }
6179
6180 /*
6181 * We failed to reach balance because of affinity.
6182 */
6183 if (sd_parent) {
6184 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6185
6186 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6187 *group_imbalance = 1;
6188 } else if (*group_imbalance)
6189 *group_imbalance = 0;
6190 }
6191
6192 /* All tasks on this runqueue were pinned by CPU affinity */
6193 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6194 cpumask_clear_cpu(cpu_of(busiest), cpus);
6195 if (!cpumask_empty(cpus)) {
6196 env.loop = 0;
6197 env.loop_break = sched_nr_migrate_break;
6198 goto redo;
6199 }
6200 goto out_balanced;
6201 }
6202 }
6203
6204 if (!ld_moved) {
6205 schedstat_inc(sd, lb_failed[idle]);
6206 /*
6207 * Increment the failure counter only on periodic balance.
6208 * We do not want newidle balance, which can be very
6209 * frequent, pollute the failure counter causing
6210 * excessive cache_hot migrations and active balances.
6211 */
6212 if (idle != CPU_NEWLY_IDLE)
6213 sd->nr_balance_failed++;
6214
6215 if (need_active_balance(&env)) {
6216 raw_spin_lock_irqsave(&busiest->lock, flags);
6217
6218 /* don't kick the active_load_balance_cpu_stop,
6219 * if the curr task on busiest cpu can't be
6220 * moved to this_cpu
6221 */
6222 if (!cpumask_test_cpu(this_cpu,
6223 tsk_cpus_allowed(busiest->curr))) {
6224 raw_spin_unlock_irqrestore(&busiest->lock,
6225 flags);
6226 env.flags |= LBF_ALL_PINNED;
6227 goto out_one_pinned;
6228 }
6229
6230 /*
6231 * ->active_balance synchronizes accesses to
6232 * ->active_balance_work. Once set, it's cleared
6233 * only after active load balance is finished.
6234 */
6235 if (!busiest->active_balance) {
6236 busiest->active_balance = 1;
6237 busiest->push_cpu = this_cpu;
6238 active_balance = 1;
6239 }
6240 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6241
6242 if (active_balance) {
6243 stop_one_cpu_nowait(cpu_of(busiest),
6244 active_load_balance_cpu_stop, busiest,
6245 &busiest->active_balance_work);
6246 }
6247
6248 /*
6249 * We've kicked active balancing, reset the failure
6250 * counter.
6251 */
6252 sd->nr_balance_failed = sd->cache_nice_tries+1;
6253 }
6254 } else
6255 sd->nr_balance_failed = 0;
6256
6257 if (likely(!active_balance)) {
6258 /* We were unbalanced, so reset the balancing interval */
6259 sd->balance_interval = sd->min_interval;
6260 } else {
6261 /*
6262 * If we've begun active balancing, start to back off. This
6263 * case may not be covered by the all_pinned logic if there
6264 * is only 1 task on the busy runqueue (because we don't call
6265 * move_tasks).
6266 */
6267 if (sd->balance_interval < sd->max_interval)
6268 sd->balance_interval *= 2;
6269 }
6270
6271 goto out;
6272
6273 out_balanced:
6274 schedstat_inc(sd, lb_balanced[idle]);
6275
6276 sd->nr_balance_failed = 0;
6277
6278 out_one_pinned:
6279 /* tune up the balancing interval */
6280 if (((env.flags & LBF_ALL_PINNED) &&
6281 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6282 (sd->balance_interval < sd->max_interval))
6283 sd->balance_interval *= 2;
6284
6285 ld_moved = 0;
6286 out:
6287 return ld_moved;
6288 }
6289
6290 /*
6291 * idle_balance is called by schedule() if this_cpu is about to become
6292 * idle. Attempts to pull tasks from other CPUs.
6293 */
6294 void idle_balance(int this_cpu, struct rq *this_rq)
6295 {
6296 struct sched_domain *sd;
6297 int pulled_task = 0;
6298 unsigned long next_balance = jiffies + HZ;
6299 u64 curr_cost = 0;
6300
6301 this_rq->idle_stamp = rq_clock(this_rq);
6302
6303 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6304 return;
6305
6306 /*
6307 * Drop the rq->lock, but keep IRQ/preempt disabled.
6308 */
6309 raw_spin_unlock(&this_rq->lock);
6310
6311 update_blocked_averages(this_cpu);
6312 rcu_read_lock();
6313 for_each_domain(this_cpu, sd) {
6314 unsigned long interval;
6315 int continue_balancing = 1;
6316 u64 t0, domain_cost;
6317
6318 if (!(sd->flags & SD_LOAD_BALANCE))
6319 continue;
6320
6321 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6322 break;
6323
6324 if (sd->flags & SD_BALANCE_NEWIDLE) {
6325 t0 = sched_clock_cpu(this_cpu);
6326
6327 /* If we've pulled tasks over stop searching: */
6328 pulled_task = load_balance(this_cpu, this_rq,
6329 sd, CPU_NEWLY_IDLE,
6330 &continue_balancing);
6331
6332 domain_cost = sched_clock_cpu(this_cpu) - t0;
6333 if (domain_cost > sd->max_newidle_lb_cost)
6334 sd->max_newidle_lb_cost = domain_cost;
6335
6336 curr_cost += domain_cost;
6337 }
6338
6339 interval = msecs_to_jiffies(sd->balance_interval);
6340 if (time_after(next_balance, sd->last_balance + interval))
6341 next_balance = sd->last_balance + interval;
6342 if (pulled_task) {
6343 this_rq->idle_stamp = 0;
6344 break;
6345 }
6346 }
6347 rcu_read_unlock();
6348
6349 raw_spin_lock(&this_rq->lock);
6350
6351 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6352 /*
6353 * We are going idle. next_balance may be set based on
6354 * a busy processor. So reset next_balance.
6355 */
6356 this_rq->next_balance = next_balance;
6357 }
6358
6359 if (curr_cost > this_rq->max_idle_balance_cost)
6360 this_rq->max_idle_balance_cost = curr_cost;
6361 }
6362
6363 /*
6364 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6365 * running tasks off the busiest CPU onto idle CPUs. It requires at
6366 * least 1 task to be running on each physical CPU where possible, and
6367 * avoids physical / logical imbalances.
6368 */
6369 static int active_load_balance_cpu_stop(void *data)
6370 {
6371 struct rq *busiest_rq = data;
6372 int busiest_cpu = cpu_of(busiest_rq);
6373 int target_cpu = busiest_rq->push_cpu;
6374 struct rq *target_rq = cpu_rq(target_cpu);
6375 struct sched_domain *sd;
6376
6377 raw_spin_lock_irq(&busiest_rq->lock);
6378
6379 /* make sure the requested cpu hasn't gone down in the meantime */
6380 if (unlikely(busiest_cpu != smp_processor_id() ||
6381 !busiest_rq->active_balance))
6382 goto out_unlock;
6383
6384 /* Is there any task to move? */
6385 if (busiest_rq->nr_running <= 1)
6386 goto out_unlock;
6387
6388 /*
6389 * This condition is "impossible", if it occurs
6390 * we need to fix it. Originally reported by
6391 * Bjorn Helgaas on a 128-cpu setup.
6392 */
6393 BUG_ON(busiest_rq == target_rq);
6394
6395 /* move a task from busiest_rq to target_rq */
6396 double_lock_balance(busiest_rq, target_rq);
6397
6398 /* Search for an sd spanning us and the target CPU. */
6399 rcu_read_lock();
6400 for_each_domain(target_cpu, sd) {
6401 if ((sd->flags & SD_LOAD_BALANCE) &&
6402 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6403 break;
6404 }
6405
6406 if (likely(sd)) {
6407 struct lb_env env = {
6408 .sd = sd,
6409 .dst_cpu = target_cpu,
6410 .dst_rq = target_rq,
6411 .src_cpu = busiest_rq->cpu,
6412 .src_rq = busiest_rq,
6413 .idle = CPU_IDLE,
6414 };
6415
6416 schedstat_inc(sd, alb_count);
6417
6418 if (move_one_task(&env))
6419 schedstat_inc(sd, alb_pushed);
6420 else
6421 schedstat_inc(sd, alb_failed);
6422 }
6423 rcu_read_unlock();
6424 double_unlock_balance(busiest_rq, target_rq);
6425 out_unlock:
6426 busiest_rq->active_balance = 0;
6427 raw_spin_unlock_irq(&busiest_rq->lock);
6428 return 0;
6429 }
6430
6431 #ifdef CONFIG_NO_HZ_COMMON
6432 /*
6433 * idle load balancing details
6434 * - When one of the busy CPUs notice that there may be an idle rebalancing
6435 * needed, they will kick the idle load balancer, which then does idle
6436 * load balancing for all the idle CPUs.
6437 */
6438 static struct {
6439 cpumask_var_t idle_cpus_mask;
6440 atomic_t nr_cpus;
6441 unsigned long next_balance; /* in jiffy units */
6442 } nohz ____cacheline_aligned;
6443
6444 static inline int find_new_ilb(int call_cpu)
6445 {
6446 int ilb = cpumask_first(nohz.idle_cpus_mask);
6447
6448 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6449 return ilb;
6450
6451 return nr_cpu_ids;
6452 }
6453
6454 /*
6455 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6456 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6457 * CPU (if there is one).
6458 */
6459 static void nohz_balancer_kick(int cpu)
6460 {
6461 int ilb_cpu;
6462
6463 nohz.next_balance++;
6464
6465 ilb_cpu = find_new_ilb(cpu);
6466
6467 if (ilb_cpu >= nr_cpu_ids)
6468 return;
6469
6470 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6471 return;
6472 /*
6473 * Use smp_send_reschedule() instead of resched_cpu().
6474 * This way we generate a sched IPI on the target cpu which
6475 * is idle. And the softirq performing nohz idle load balance
6476 * will be run before returning from the IPI.
6477 */
6478 smp_send_reschedule(ilb_cpu);
6479 return;
6480 }
6481
6482 static inline void nohz_balance_exit_idle(int cpu)
6483 {
6484 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6485 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6486 atomic_dec(&nohz.nr_cpus);
6487 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6488 }
6489 }
6490
6491 static inline void set_cpu_sd_state_busy(void)
6492 {
6493 struct sched_domain *sd;
6494
6495 rcu_read_lock();
6496 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
6497
6498 if (!sd || !sd->nohz_idle)
6499 goto unlock;
6500 sd->nohz_idle = 0;
6501
6502 for (; sd; sd = sd->parent)
6503 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6504 unlock:
6505 rcu_read_unlock();
6506 }
6507
6508 void set_cpu_sd_state_idle(void)
6509 {
6510 struct sched_domain *sd;
6511
6512 rcu_read_lock();
6513 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
6514
6515 if (!sd || sd->nohz_idle)
6516 goto unlock;
6517 sd->nohz_idle = 1;
6518
6519 for (; sd; sd = sd->parent)
6520 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6521 unlock:
6522 rcu_read_unlock();
6523 }
6524
6525 /*
6526 * This routine will record that the cpu is going idle with tick stopped.
6527 * This info will be used in performing idle load balancing in the future.
6528 */
6529 void nohz_balance_enter_idle(int cpu)
6530 {
6531 /*
6532 * If this cpu is going down, then nothing needs to be done.
6533 */
6534 if (!cpu_active(cpu))
6535 return;
6536
6537 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6538 return;
6539
6540 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6541 atomic_inc(&nohz.nr_cpus);
6542 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6543 }
6544
6545 static int sched_ilb_notifier(struct notifier_block *nfb,
6546 unsigned long action, void *hcpu)
6547 {
6548 switch (action & ~CPU_TASKS_FROZEN) {
6549 case CPU_DYING:
6550 nohz_balance_exit_idle(smp_processor_id());
6551 return NOTIFY_OK;
6552 default:
6553 return NOTIFY_DONE;
6554 }
6555 }
6556 #endif
6557
6558 static DEFINE_SPINLOCK(balancing);
6559
6560 /*
6561 * Scale the max load_balance interval with the number of CPUs in the system.
6562 * This trades load-balance latency on larger machines for less cross talk.
6563 */
6564 void update_max_interval(void)
6565 {
6566 max_load_balance_interval = HZ*num_online_cpus()/10;
6567 }
6568
6569 /*
6570 * It checks each scheduling domain to see if it is due to be balanced,
6571 * and initiates a balancing operation if so.
6572 *
6573 * Balancing parameters are set up in init_sched_domains.
6574 */
6575 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6576 {
6577 int continue_balancing = 1;
6578 struct rq *rq = cpu_rq(cpu);
6579 unsigned long interval;
6580 struct sched_domain *sd;
6581 /* Earliest time when we have to do rebalance again */
6582 unsigned long next_balance = jiffies + 60*HZ;
6583 int update_next_balance = 0;
6584 int need_serialize, need_decay = 0;
6585 u64 max_cost = 0;
6586
6587 update_blocked_averages(cpu);
6588
6589 rcu_read_lock();
6590 for_each_domain(cpu, sd) {
6591 /*
6592 * Decay the newidle max times here because this is a regular
6593 * visit to all the domains. Decay ~1% per second.
6594 */
6595 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6596 sd->max_newidle_lb_cost =
6597 (sd->max_newidle_lb_cost * 253) / 256;
6598 sd->next_decay_max_lb_cost = jiffies + HZ;
6599 need_decay = 1;
6600 }
6601 max_cost += sd->max_newidle_lb_cost;
6602
6603 if (!(sd->flags & SD_LOAD_BALANCE))
6604 continue;
6605
6606 /*
6607 * Stop the load balance at this level. There is another
6608 * CPU in our sched group which is doing load balancing more
6609 * actively.
6610 */
6611 if (!continue_balancing) {
6612 if (need_decay)
6613 continue;
6614 break;
6615 }
6616
6617 interval = sd->balance_interval;
6618 if (idle != CPU_IDLE)
6619 interval *= sd->busy_factor;
6620
6621 /* scale ms to jiffies */
6622 interval = msecs_to_jiffies(interval);
6623 interval = clamp(interval, 1UL, max_load_balance_interval);
6624
6625 need_serialize = sd->flags & SD_SERIALIZE;
6626
6627 if (need_serialize) {
6628 if (!spin_trylock(&balancing))
6629 goto out;
6630 }
6631
6632 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6633 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6634 /*
6635 * The LBF_DST_PINNED logic could have changed
6636 * env->dst_cpu, so we can't know our idle
6637 * state even if we migrated tasks. Update it.
6638 */
6639 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6640 }
6641 sd->last_balance = jiffies;
6642 }
6643 if (need_serialize)
6644 spin_unlock(&balancing);
6645 out:
6646 if (time_after(next_balance, sd->last_balance + interval)) {
6647 next_balance = sd->last_balance + interval;
6648 update_next_balance = 1;
6649 }
6650 }
6651 if (need_decay) {
6652 /*
6653 * Ensure the rq-wide value also decays but keep it at a
6654 * reasonable floor to avoid funnies with rq->avg_idle.
6655 */
6656 rq->max_idle_balance_cost =
6657 max((u64)sysctl_sched_migration_cost, max_cost);
6658 }
6659 rcu_read_unlock();
6660
6661 /*
6662 * next_balance will be updated only when there is a need.
6663 * When the cpu is attached to null domain for ex, it will not be
6664 * updated.
6665 */
6666 if (likely(update_next_balance))
6667 rq->next_balance = next_balance;
6668 }
6669
6670 #ifdef CONFIG_NO_HZ_COMMON
6671 /*
6672 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6673 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6674 */
6675 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6676 {
6677 struct rq *this_rq = cpu_rq(this_cpu);
6678 struct rq *rq;
6679 int balance_cpu;
6680
6681 if (idle != CPU_IDLE ||
6682 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6683 goto end;
6684
6685 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6686 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6687 continue;
6688
6689 /*
6690 * If this cpu gets work to do, stop the load balancing
6691 * work being done for other cpus. Next load
6692 * balancing owner will pick it up.
6693 */
6694 if (need_resched())
6695 break;
6696
6697 rq = cpu_rq(balance_cpu);
6698
6699 raw_spin_lock_irq(&rq->lock);
6700 update_rq_clock(rq);
6701 update_idle_cpu_load(rq);
6702 raw_spin_unlock_irq(&rq->lock);
6703
6704 rebalance_domains(balance_cpu, CPU_IDLE);
6705
6706 if (time_after(this_rq->next_balance, rq->next_balance))
6707 this_rq->next_balance = rq->next_balance;
6708 }
6709 nohz.next_balance = this_rq->next_balance;
6710 end:
6711 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6712 }
6713
6714 /*
6715 * Current heuristic for kicking the idle load balancer in the presence
6716 * of an idle cpu is the system.
6717 * - This rq has more than one task.
6718 * - At any scheduler domain level, this cpu's scheduler group has multiple
6719 * busy cpu's exceeding the group's power.
6720 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6721 * domain span are idle.
6722 */
6723 static inline int nohz_kick_needed(struct rq *rq, int cpu)
6724 {
6725 unsigned long now = jiffies;
6726 struct sched_domain *sd;
6727
6728 if (unlikely(idle_cpu(cpu)))
6729 return 0;
6730
6731 /*
6732 * We may be recently in ticked or tickless idle mode. At the first
6733 * busy tick after returning from idle, we will update the busy stats.
6734 */
6735 set_cpu_sd_state_busy();
6736 nohz_balance_exit_idle(cpu);
6737
6738 /*
6739 * None are in tickless mode and hence no need for NOHZ idle load
6740 * balancing.
6741 */
6742 if (likely(!atomic_read(&nohz.nr_cpus)))
6743 return 0;
6744
6745 if (time_before(now, nohz.next_balance))
6746 return 0;
6747
6748 if (rq->nr_running >= 2)
6749 goto need_kick;
6750
6751 rcu_read_lock();
6752 for_each_domain(cpu, sd) {
6753 struct sched_group *sg = sd->groups;
6754 struct sched_group_power *sgp = sg->sgp;
6755 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
6756
6757 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
6758 goto need_kick_unlock;
6759
6760 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6761 && (cpumask_first_and(nohz.idle_cpus_mask,
6762 sched_domain_span(sd)) < cpu))
6763 goto need_kick_unlock;
6764
6765 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6766 break;
6767 }
6768 rcu_read_unlock();
6769 return 0;
6770
6771 need_kick_unlock:
6772 rcu_read_unlock();
6773 need_kick:
6774 return 1;
6775 }
6776 #else
6777 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6778 #endif
6779
6780 /*
6781 * run_rebalance_domains is triggered when needed from the scheduler tick.
6782 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6783 */
6784 static void run_rebalance_domains(struct softirq_action *h)
6785 {
6786 int this_cpu = smp_processor_id();
6787 struct rq *this_rq = cpu_rq(this_cpu);
6788 enum cpu_idle_type idle = this_rq->idle_balance ?
6789 CPU_IDLE : CPU_NOT_IDLE;
6790
6791 rebalance_domains(this_cpu, idle);
6792
6793 /*
6794 * If this cpu has a pending nohz_balance_kick, then do the
6795 * balancing on behalf of the other idle cpus whose ticks are
6796 * stopped.
6797 */
6798 nohz_idle_balance(this_cpu, idle);
6799 }
6800
6801 static inline int on_null_domain(int cpu)
6802 {
6803 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6804 }
6805
6806 /*
6807 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6808 */
6809 void trigger_load_balance(struct rq *rq, int cpu)
6810 {
6811 /* Don't need to rebalance while attached to NULL domain */
6812 if (time_after_eq(jiffies, rq->next_balance) &&
6813 likely(!on_null_domain(cpu)))
6814 raise_softirq(SCHED_SOFTIRQ);
6815 #ifdef CONFIG_NO_HZ_COMMON
6816 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6817 nohz_balancer_kick(cpu);
6818 #endif
6819 }
6820
6821 static void rq_online_fair(struct rq *rq)
6822 {
6823 update_sysctl();
6824 }
6825
6826 static void rq_offline_fair(struct rq *rq)
6827 {
6828 update_sysctl();
6829
6830 /* Ensure any throttled groups are reachable by pick_next_task */
6831 unthrottle_offline_cfs_rqs(rq);
6832 }
6833
6834 #endif /* CONFIG_SMP */
6835
6836 /*
6837 * scheduler tick hitting a task of our scheduling class:
6838 */
6839 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6840 {
6841 struct cfs_rq *cfs_rq;
6842 struct sched_entity *se = &curr->se;
6843
6844 for_each_sched_entity(se) {
6845 cfs_rq = cfs_rq_of(se);
6846 entity_tick(cfs_rq, se, queued);
6847 }
6848
6849 if (numabalancing_enabled)
6850 task_tick_numa(rq, curr);
6851
6852 update_rq_runnable_avg(rq, 1);
6853 }
6854
6855 /*
6856 * called on fork with the child task as argument from the parent's context
6857 * - child not yet on the tasklist
6858 * - preemption disabled
6859 */
6860 static void task_fork_fair(struct task_struct *p)
6861 {
6862 struct cfs_rq *cfs_rq;
6863 struct sched_entity *se = &p->se, *curr;
6864 int this_cpu = smp_processor_id();
6865 struct rq *rq = this_rq();
6866 unsigned long flags;
6867
6868 raw_spin_lock_irqsave(&rq->lock, flags);
6869
6870 update_rq_clock(rq);
6871
6872 cfs_rq = task_cfs_rq(current);
6873 curr = cfs_rq->curr;
6874
6875 /*
6876 * Not only the cpu but also the task_group of the parent might have
6877 * been changed after parent->se.parent,cfs_rq were copied to
6878 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6879 * of child point to valid ones.
6880 */
6881 rcu_read_lock();
6882 __set_task_cpu(p, this_cpu);
6883 rcu_read_unlock();
6884
6885 update_curr(cfs_rq);
6886
6887 if (curr)
6888 se->vruntime = curr->vruntime;
6889 place_entity(cfs_rq, se, 1);
6890
6891 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6892 /*
6893 * Upon rescheduling, sched_class::put_prev_task() will place
6894 * 'current' within the tree based on its new key value.
6895 */
6896 swap(curr->vruntime, se->vruntime);
6897 resched_task(rq->curr);
6898 }
6899
6900 se->vruntime -= cfs_rq->min_vruntime;
6901
6902 raw_spin_unlock_irqrestore(&rq->lock, flags);
6903 }
6904
6905 /*
6906 * Priority of the task has changed. Check to see if we preempt
6907 * the current task.
6908 */
6909 static void
6910 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6911 {
6912 if (!p->se.on_rq)
6913 return;
6914
6915 /*
6916 * Reschedule if we are currently running on this runqueue and
6917 * our priority decreased, or if we are not currently running on
6918 * this runqueue and our priority is higher than the current's
6919 */
6920 if (rq->curr == p) {
6921 if (p->prio > oldprio)
6922 resched_task(rq->curr);
6923 } else
6924 check_preempt_curr(rq, p, 0);
6925 }
6926
6927 static void switched_from_fair(struct rq *rq, struct task_struct *p)
6928 {
6929 struct sched_entity *se = &p->se;
6930 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6931
6932 /*
6933 * Ensure the task's vruntime is normalized, so that when its
6934 * switched back to the fair class the enqueue_entity(.flags=0) will
6935 * do the right thing.
6936 *
6937 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6938 * have normalized the vruntime, if it was !on_rq, then only when
6939 * the task is sleeping will it still have non-normalized vruntime.
6940 */
6941 if (!se->on_rq && p->state != TASK_RUNNING) {
6942 /*
6943 * Fix up our vruntime so that the current sleep doesn't
6944 * cause 'unlimited' sleep bonus.
6945 */
6946 place_entity(cfs_rq, se, 0);
6947 se->vruntime -= cfs_rq->min_vruntime;
6948 }
6949
6950 #ifdef CONFIG_SMP
6951 /*
6952 * Remove our load from contribution when we leave sched_fair
6953 * and ensure we don't carry in an old decay_count if we
6954 * switch back.
6955 */
6956 if (se->avg.decay_count) {
6957 __synchronize_entity_decay(se);
6958 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
6959 }
6960 #endif
6961 }
6962
6963 /*
6964 * We switched to the sched_fair class.
6965 */
6966 static void switched_to_fair(struct rq *rq, struct task_struct *p)
6967 {
6968 if (!p->se.on_rq)
6969 return;
6970
6971 /*
6972 * We were most likely switched from sched_rt, so
6973 * kick off the schedule if running, otherwise just see
6974 * if we can still preempt the current task.
6975 */
6976 if (rq->curr == p)
6977 resched_task(rq->curr);
6978 else
6979 check_preempt_curr(rq, p, 0);
6980 }
6981
6982 /* Account for a task changing its policy or group.
6983 *
6984 * This routine is mostly called to set cfs_rq->curr field when a task
6985 * migrates between groups/classes.
6986 */
6987 static void set_curr_task_fair(struct rq *rq)
6988 {
6989 struct sched_entity *se = &rq->curr->se;
6990
6991 for_each_sched_entity(se) {
6992 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6993
6994 set_next_entity(cfs_rq, se);
6995 /* ensure bandwidth has been allocated on our new cfs_rq */
6996 account_cfs_rq_runtime(cfs_rq, 0);
6997 }
6998 }
6999
7000 void init_cfs_rq(struct cfs_rq *cfs_rq)
7001 {
7002 cfs_rq->tasks_timeline = RB_ROOT;
7003 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7004 #ifndef CONFIG_64BIT
7005 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7006 #endif
7007 #ifdef CONFIG_SMP
7008 atomic64_set(&cfs_rq->decay_counter, 1);
7009 atomic_long_set(&cfs_rq->removed_load, 0);
7010 #endif
7011 }
7012
7013 #ifdef CONFIG_FAIR_GROUP_SCHED
7014 static void task_move_group_fair(struct task_struct *p, int on_rq)
7015 {
7016 struct cfs_rq *cfs_rq;
7017 /*
7018 * If the task was not on the rq at the time of this cgroup movement
7019 * it must have been asleep, sleeping tasks keep their ->vruntime
7020 * absolute on their old rq until wakeup (needed for the fair sleeper
7021 * bonus in place_entity()).
7022 *
7023 * If it was on the rq, we've just 'preempted' it, which does convert
7024 * ->vruntime to a relative base.
7025 *
7026 * Make sure both cases convert their relative position when migrating
7027 * to another cgroup's rq. This does somewhat interfere with the
7028 * fair sleeper stuff for the first placement, but who cares.
7029 */
7030 /*
7031 * When !on_rq, vruntime of the task has usually NOT been normalized.
7032 * But there are some cases where it has already been normalized:
7033 *
7034 * - Moving a forked child which is waiting for being woken up by
7035 * wake_up_new_task().
7036 * - Moving a task which has been woken up by try_to_wake_up() and
7037 * waiting for actually being woken up by sched_ttwu_pending().
7038 *
7039 * To prevent boost or penalty in the new cfs_rq caused by delta
7040 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7041 */
7042 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7043 on_rq = 1;
7044
7045 if (!on_rq)
7046 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7047 set_task_rq(p, task_cpu(p));
7048 if (!on_rq) {
7049 cfs_rq = cfs_rq_of(&p->se);
7050 p->se.vruntime += cfs_rq->min_vruntime;
7051 #ifdef CONFIG_SMP
7052 /*
7053 * migrate_task_rq_fair() will have removed our previous
7054 * contribution, but we must synchronize for ongoing future
7055 * decay.
7056 */
7057 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7058 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7059 #endif
7060 }
7061 }
7062
7063 void free_fair_sched_group(struct task_group *tg)
7064 {
7065 int i;
7066
7067 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7068
7069 for_each_possible_cpu(i) {
7070 if (tg->cfs_rq)
7071 kfree(tg->cfs_rq[i]);
7072 if (tg->se)
7073 kfree(tg->se[i]);
7074 }
7075
7076 kfree(tg->cfs_rq);
7077 kfree(tg->se);
7078 }
7079
7080 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7081 {
7082 struct cfs_rq *cfs_rq;
7083 struct sched_entity *se;
7084 int i;
7085
7086 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7087 if (!tg->cfs_rq)
7088 goto err;
7089 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7090 if (!tg->se)
7091 goto err;
7092
7093 tg->shares = NICE_0_LOAD;
7094
7095 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7096
7097 for_each_possible_cpu(i) {
7098 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7099 GFP_KERNEL, cpu_to_node(i));
7100 if (!cfs_rq)
7101 goto err;
7102
7103 se = kzalloc_node(sizeof(struct sched_entity),
7104 GFP_KERNEL, cpu_to_node(i));
7105 if (!se)
7106 goto err_free_rq;
7107
7108 init_cfs_rq(cfs_rq);
7109 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7110 }
7111
7112 return 1;
7113
7114 err_free_rq:
7115 kfree(cfs_rq);
7116 err:
7117 return 0;
7118 }
7119
7120 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7121 {
7122 struct rq *rq = cpu_rq(cpu);
7123 unsigned long flags;
7124
7125 /*
7126 * Only empty task groups can be destroyed; so we can speculatively
7127 * check on_list without danger of it being re-added.
7128 */
7129 if (!tg->cfs_rq[cpu]->on_list)
7130 return;
7131
7132 raw_spin_lock_irqsave(&rq->lock, flags);
7133 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7134 raw_spin_unlock_irqrestore(&rq->lock, flags);
7135 }
7136
7137 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7138 struct sched_entity *se, int cpu,
7139 struct sched_entity *parent)
7140 {
7141 struct rq *rq = cpu_rq(cpu);
7142
7143 cfs_rq->tg = tg;
7144 cfs_rq->rq = rq;
7145 init_cfs_rq_runtime(cfs_rq);
7146
7147 tg->cfs_rq[cpu] = cfs_rq;
7148 tg->se[cpu] = se;
7149
7150 /* se could be NULL for root_task_group */
7151 if (!se)
7152 return;
7153
7154 if (!parent)
7155 se->cfs_rq = &rq->cfs;
7156 else
7157 se->cfs_rq = parent->my_q;
7158
7159 se->my_q = cfs_rq;
7160 update_load_set(&se->load, 0);
7161 se->parent = parent;
7162 }
7163
7164 static DEFINE_MUTEX(shares_mutex);
7165
7166 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7167 {
7168 int i;
7169 unsigned long flags;
7170
7171 /*
7172 * We can't change the weight of the root cgroup.
7173 */
7174 if (!tg->se[0])
7175 return -EINVAL;
7176
7177 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7178
7179 mutex_lock(&shares_mutex);
7180 if (tg->shares == shares)
7181 goto done;
7182
7183 tg->shares = shares;
7184 for_each_possible_cpu(i) {
7185 struct rq *rq = cpu_rq(i);
7186 struct sched_entity *se;
7187
7188 se = tg->se[i];
7189 /* Propagate contribution to hierarchy */
7190 raw_spin_lock_irqsave(&rq->lock, flags);
7191
7192 /* Possible calls to update_curr() need rq clock */
7193 update_rq_clock(rq);
7194 for_each_sched_entity(se)
7195 update_cfs_shares(group_cfs_rq(se));
7196 raw_spin_unlock_irqrestore(&rq->lock, flags);
7197 }
7198
7199 done:
7200 mutex_unlock(&shares_mutex);
7201 return 0;
7202 }
7203 #else /* CONFIG_FAIR_GROUP_SCHED */
7204
7205 void free_fair_sched_group(struct task_group *tg) { }
7206
7207 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7208 {
7209 return 1;
7210 }
7211
7212 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7213
7214 #endif /* CONFIG_FAIR_GROUP_SCHED */
7215
7216
7217 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7218 {
7219 struct sched_entity *se = &task->se;
7220 unsigned int rr_interval = 0;
7221
7222 /*
7223 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7224 * idle runqueue:
7225 */
7226 if (rq->cfs.load.weight)
7227 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7228
7229 return rr_interval;
7230 }
7231
7232 /*
7233 * All the scheduling class methods:
7234 */
7235 const struct sched_class fair_sched_class = {
7236 .next = &idle_sched_class,
7237 .enqueue_task = enqueue_task_fair,
7238 .dequeue_task = dequeue_task_fair,
7239 .yield_task = yield_task_fair,
7240 .yield_to_task = yield_to_task_fair,
7241
7242 .check_preempt_curr = check_preempt_wakeup,
7243
7244 .pick_next_task = pick_next_task_fair,
7245 .put_prev_task = put_prev_task_fair,
7246
7247 #ifdef CONFIG_SMP
7248 .select_task_rq = select_task_rq_fair,
7249 .migrate_task_rq = migrate_task_rq_fair,
7250
7251 .rq_online = rq_online_fair,
7252 .rq_offline = rq_offline_fair,
7253
7254 .task_waking = task_waking_fair,
7255 #endif
7256
7257 .set_curr_task = set_curr_task_fair,
7258 .task_tick = task_tick_fair,
7259 .task_fork = task_fork_fair,
7260
7261 .prio_changed = prio_changed_fair,
7262 .switched_from = switched_from_fair,
7263 .switched_to = switched_to_fair,
7264
7265 .get_rr_interval = get_rr_interval_fair,
7266
7267 #ifdef CONFIG_FAIR_GROUP_SCHED
7268 .task_move_group = task_move_group_fair,
7269 #endif
7270 };
7271
7272 #ifdef CONFIG_SCHED_DEBUG
7273 void print_cfs_stats(struct seq_file *m, int cpu)
7274 {
7275 struct cfs_rq *cfs_rq;
7276
7277 rcu_read_lock();
7278 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7279 print_cfs_rq(m, cpu, cfs_rq);
7280 rcu_read_unlock();
7281 }
7282 #endif
7283
7284 __init void init_sched_fair_class(void)
7285 {
7286 #ifdef CONFIG_SMP
7287 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7288
7289 #ifdef CONFIG_NO_HZ_COMMON
7290 nohz.next_balance = jiffies;
7291 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7292 cpu_notifier(sched_ilb_notifier, 0);
7293 #endif
7294 #endif /* SMP */
7295
7296 }
This page took 0.206751 seconds and 4 git commands to generate.