sched/numa: Fix period_slot recalculation
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #define WMULT_CONST (~0U)
182 #define WMULT_SHIFT 32
183
184 static void __update_inv_weight(struct load_weight *lw)
185 {
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199 }
200
201 /*
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214 {
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
217
218 __update_inv_weight(lw);
219
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
225 }
226
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
229
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
236 }
237
238
239 const struct sched_class fair_sched_class;
240
241 /**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249 {
250 return cfs_rq->rq;
251 }
252
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se) (!se->my_q)
255
256 static inline struct task_struct *task_of(struct sched_entity *se)
257 {
258 #ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260 #endif
261 return container_of(se, struct task_struct, se);
262 }
263
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 return p->se.cfs_rq;
271 }
272
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 return se->cfs_rq;
277 }
278
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 return grp->my_q;
283 }
284
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
287
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 {
290 if (!cfs_rq->on_list) {
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 }
305
306 cfs_rq->on_list = 1;
307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0);
309 }
310 }
311
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318 }
319
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline int
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
327 {
328 if (se->cfs_rq == pse->cfs_rq)
329 return 1;
330
331 return 0;
332 }
333
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
335 {
336 return se->parent;
337 }
338
339 /* return depth at which a sched entity is present in the hierarchy */
340 static inline int depth_se(struct sched_entity *se)
341 {
342 int depth = 0;
343
344 for_each_sched_entity(se)
345 depth++;
346
347 return depth;
348 }
349
350 static void
351 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
352 {
353 int se_depth, pse_depth;
354
355 /*
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
359 * parent.
360 */
361
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
365
366 while (se_depth > pse_depth) {
367 se_depth--;
368 *se = parent_entity(*se);
369 }
370
371 while (pse_depth > se_depth) {
372 pse_depth--;
373 *pse = parent_entity(*pse);
374 }
375
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
379 }
380 }
381
382 #else /* !CONFIG_FAIR_GROUP_SCHED */
383
384 static inline struct task_struct *task_of(struct sched_entity *se)
385 {
386 return container_of(se, struct task_struct, se);
387 }
388
389 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
390 {
391 return container_of(cfs_rq, struct rq, cfs);
392 }
393
394 #define entity_is_task(se) 1
395
396 #define for_each_sched_entity(se) \
397 for (; se; se = NULL)
398
399 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
400 {
401 return &task_rq(p)->cfs;
402 }
403
404 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
405 {
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
408
409 return &rq->cfs;
410 }
411
412 /* runqueue "owned" by this group */
413 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
414 {
415 return NULL;
416 }
417
418 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
419 {
420 }
421
422 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
423 {
424 }
425
426 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428
429 static inline int
430 is_same_group(struct sched_entity *se, struct sched_entity *pse)
431 {
432 return 1;
433 }
434
435 static inline struct sched_entity *parent_entity(struct sched_entity *se)
436 {
437 return NULL;
438 }
439
440 static inline void
441 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
442 {
443 }
444
445 #endif /* CONFIG_FAIR_GROUP_SCHED */
446
447 static __always_inline
448 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
449
450 /**************************************************************
451 * Scheduling class tree data structure manipulation methods:
452 */
453
454 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
455 {
456 s64 delta = (s64)(vruntime - max_vruntime);
457 if (delta > 0)
458 max_vruntime = vruntime;
459
460 return max_vruntime;
461 }
462
463 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
464 {
465 s64 delta = (s64)(vruntime - min_vruntime);
466 if (delta < 0)
467 min_vruntime = vruntime;
468
469 return min_vruntime;
470 }
471
472 static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
474 {
475 return (s64)(a->vruntime - b->vruntime) < 0;
476 }
477
478 static void update_min_vruntime(struct cfs_rq *cfs_rq)
479 {
480 u64 vruntime = cfs_rq->min_vruntime;
481
482 if (cfs_rq->curr)
483 vruntime = cfs_rq->curr->vruntime;
484
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
487 struct sched_entity,
488 run_node);
489
490 if (!cfs_rq->curr)
491 vruntime = se->vruntime;
492 else
493 vruntime = min_vruntime(vruntime, se->vruntime);
494 }
495
496 /* ensure we never gain time by being placed backwards. */
497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
498 #ifndef CONFIG_64BIT
499 smp_wmb();
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
501 #endif
502 }
503
504 /*
505 * Enqueue an entity into the rb-tree:
506 */
507 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
508 {
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
512 int leftmost = 1;
513
514 /*
515 * Find the right place in the rbtree:
516 */
517 while (*link) {
518 parent = *link;
519 entry = rb_entry(parent, struct sched_entity, run_node);
520 /*
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
523 */
524 if (entity_before(se, entry)) {
525 link = &parent->rb_left;
526 } else {
527 link = &parent->rb_right;
528 leftmost = 0;
529 }
530 }
531
532 /*
533 * Maintain a cache of leftmost tree entries (it is frequently
534 * used):
535 */
536 if (leftmost)
537 cfs_rq->rb_leftmost = &se->run_node;
538
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
541 }
542
543 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
544 {
545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
547
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
550 }
551
552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
553 }
554
555 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *left = cfs_rq->rb_leftmost;
558
559 if (!left)
560 return NULL;
561
562 return rb_entry(left, struct sched_entity, run_node);
563 }
564
565 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
566 {
567 struct rb_node *next = rb_next(&se->run_node);
568
569 if (!next)
570 return NULL;
571
572 return rb_entry(next, struct sched_entity, run_node);
573 }
574
575 #ifdef CONFIG_SCHED_DEBUG
576 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
577 {
578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
579
580 if (!last)
581 return NULL;
582
583 return rb_entry(last, struct sched_entity, run_node);
584 }
585
586 /**************************************************************
587 * Scheduling class statistics methods:
588 */
589
590 int sched_proc_update_handler(struct ctl_table *table, int write,
591 void __user *buffer, size_t *lenp,
592 loff_t *ppos)
593 {
594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
595 int factor = get_update_sysctl_factor();
596
597 if (ret || !write)
598 return ret;
599
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
602
603 #define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
608 #undef WRT_SYSCTL
609
610 return 0;
611 }
612 #endif
613
614 /*
615 * delta /= w
616 */
617 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
618 {
619 if (unlikely(se->load.weight != NICE_0_LOAD))
620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
621
622 return delta;
623 }
624
625 /*
626 * The idea is to set a period in which each task runs once.
627 *
628 * When there are too many tasks (sched_nr_latency) we have to stretch
629 * this period because otherwise the slices get too small.
630 *
631 * p = (nr <= nl) ? l : l*nr/nl
632 */
633 static u64 __sched_period(unsigned long nr_running)
634 {
635 u64 period = sysctl_sched_latency;
636 unsigned long nr_latency = sched_nr_latency;
637
638 if (unlikely(nr_running > nr_latency)) {
639 period = sysctl_sched_min_granularity;
640 period *= nr_running;
641 }
642
643 return period;
644 }
645
646 /*
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
649 *
650 * s = p*P[w/rw]
651 */
652 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653 {
654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
655
656 for_each_sched_entity(se) {
657 struct load_weight *load;
658 struct load_weight lw;
659
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
662
663 if (unlikely(!se->on_rq)) {
664 lw = cfs_rq->load;
665
666 update_load_add(&lw, se->load.weight);
667 load = &lw;
668 }
669 slice = __calc_delta(slice, se->load.weight, load);
670 }
671 return slice;
672 }
673
674 /*
675 * We calculate the vruntime slice of a to-be-inserted task.
676 *
677 * vs = s/w
678 */
679 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
680 {
681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
682 }
683
684 #ifdef CONFIG_SMP
685 static unsigned long task_h_load(struct task_struct *p);
686
687 static inline void __update_task_entity_contrib(struct sched_entity *se);
688
689 /* Give new task start runnable values to heavy its load in infant time */
690 void init_task_runnable_average(struct task_struct *p)
691 {
692 u32 slice;
693
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
699 }
700 #else
701 void init_task_runnable_average(struct task_struct *p)
702 {
703 }
704 #endif
705
706 /*
707 * Update the current task's runtime statistics.
708 */
709 static void update_curr(struct cfs_rq *cfs_rq)
710 {
711 struct sched_entity *curr = cfs_rq->curr;
712 u64 now = rq_clock_task(rq_of(cfs_rq));
713 u64 delta_exec;
714
715 if (unlikely(!curr))
716 return;
717
718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
720 return;
721
722 curr->exec_start = now;
723
724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
726
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
729
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
732
733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
735
736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
737 cpuacct_charge(curtask, delta_exec);
738 account_group_exec_runtime(curtask, delta_exec);
739 }
740
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
742 }
743
744 static inline void
745 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
746 {
747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
748 }
749
750 /*
751 * Task is being enqueued - update stats:
752 */
753 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 /*
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
758 */
759 if (se != cfs_rq->curr)
760 update_stats_wait_start(cfs_rq, se);
761 }
762
763 static void
764 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 {
766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771 #ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
775 }
776 #endif
777 schedstat_set(se->statistics.wait_start, 0);
778 }
779
780 static inline void
781 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
782 {
783 /*
784 * Mark the end of the wait period if dequeueing a
785 * waiting task:
786 */
787 if (se != cfs_rq->curr)
788 update_stats_wait_end(cfs_rq, se);
789 }
790
791 /*
792 * We are picking a new current task - update its stats:
793 */
794 static inline void
795 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 {
797 /*
798 * We are starting a new run period:
799 */
800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
801 }
802
803 /**************************************************
804 * Scheduling class queueing methods:
805 */
806
807 #ifdef CONFIG_NUMA_BALANCING
808 /*
809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
812 */
813 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
815
816 /* Portion of address space to scan in MB */
817 unsigned int sysctl_numa_balancing_scan_size = 256;
818
819 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820 unsigned int sysctl_numa_balancing_scan_delay = 1000;
821
822 /*
823 * After skipping a page migration on a shared page, skip N more numa page
824 * migrations unconditionally. This reduces the number of NUMA migrations
825 * in shared memory workloads, and has the effect of pulling tasks towards
826 * where their memory lives, over pulling the memory towards the task.
827 */
828 unsigned int sysctl_numa_balancing_migrate_deferred = 16;
829
830 static unsigned int task_nr_scan_windows(struct task_struct *p)
831 {
832 unsigned long rss = 0;
833 unsigned long nr_scan_pages;
834
835 /*
836 * Calculations based on RSS as non-present and empty pages are skipped
837 * by the PTE scanner and NUMA hinting faults should be trapped based
838 * on resident pages
839 */
840 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
841 rss = get_mm_rss(p->mm);
842 if (!rss)
843 rss = nr_scan_pages;
844
845 rss = round_up(rss, nr_scan_pages);
846 return rss / nr_scan_pages;
847 }
848
849 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
850 #define MAX_SCAN_WINDOW 2560
851
852 static unsigned int task_scan_min(struct task_struct *p)
853 {
854 unsigned int scan, floor;
855 unsigned int windows = 1;
856
857 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
858 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
859 floor = 1000 / windows;
860
861 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
862 return max_t(unsigned int, floor, scan);
863 }
864
865 static unsigned int task_scan_max(struct task_struct *p)
866 {
867 unsigned int smin = task_scan_min(p);
868 unsigned int smax;
869
870 /* Watch for min being lower than max due to floor calculations */
871 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
872 return max(smin, smax);
873 }
874
875 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
876 {
877 rq->nr_numa_running += (p->numa_preferred_nid != -1);
878 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
879 }
880
881 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
882 {
883 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
884 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
885 }
886
887 struct numa_group {
888 atomic_t refcount;
889
890 spinlock_t lock; /* nr_tasks, tasks */
891 int nr_tasks;
892 pid_t gid;
893 struct list_head task_list;
894
895 struct rcu_head rcu;
896 unsigned long total_faults;
897 unsigned long faults[0];
898 };
899
900 pid_t task_numa_group_id(struct task_struct *p)
901 {
902 return p->numa_group ? p->numa_group->gid : 0;
903 }
904
905 static inline int task_faults_idx(int nid, int priv)
906 {
907 return 2 * nid + priv;
908 }
909
910 static inline unsigned long task_faults(struct task_struct *p, int nid)
911 {
912 if (!p->numa_faults)
913 return 0;
914
915 return p->numa_faults[task_faults_idx(nid, 0)] +
916 p->numa_faults[task_faults_idx(nid, 1)];
917 }
918
919 static inline unsigned long group_faults(struct task_struct *p, int nid)
920 {
921 if (!p->numa_group)
922 return 0;
923
924 return p->numa_group->faults[task_faults_idx(nid, 0)] +
925 p->numa_group->faults[task_faults_idx(nid, 1)];
926 }
927
928 /*
929 * These return the fraction of accesses done by a particular task, or
930 * task group, on a particular numa node. The group weight is given a
931 * larger multiplier, in order to group tasks together that are almost
932 * evenly spread out between numa nodes.
933 */
934 static inline unsigned long task_weight(struct task_struct *p, int nid)
935 {
936 unsigned long total_faults;
937
938 if (!p->numa_faults)
939 return 0;
940
941 total_faults = p->total_numa_faults;
942
943 if (!total_faults)
944 return 0;
945
946 return 1000 * task_faults(p, nid) / total_faults;
947 }
948
949 static inline unsigned long group_weight(struct task_struct *p, int nid)
950 {
951 if (!p->numa_group || !p->numa_group->total_faults)
952 return 0;
953
954 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
955 }
956
957 static unsigned long weighted_cpuload(const int cpu);
958 static unsigned long source_load(int cpu, int type);
959 static unsigned long target_load(int cpu, int type);
960 static unsigned long power_of(int cpu);
961 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
962
963 /* Cached statistics for all CPUs within a node */
964 struct numa_stats {
965 unsigned long nr_running;
966 unsigned long load;
967
968 /* Total compute capacity of CPUs on a node */
969 unsigned long power;
970
971 /* Approximate capacity in terms of runnable tasks on a node */
972 unsigned long capacity;
973 int has_capacity;
974 };
975
976 /*
977 * XXX borrowed from update_sg_lb_stats
978 */
979 static void update_numa_stats(struct numa_stats *ns, int nid)
980 {
981 int cpu, cpus = 0;
982
983 memset(ns, 0, sizeof(*ns));
984 for_each_cpu(cpu, cpumask_of_node(nid)) {
985 struct rq *rq = cpu_rq(cpu);
986
987 ns->nr_running += rq->nr_running;
988 ns->load += weighted_cpuload(cpu);
989 ns->power += power_of(cpu);
990
991 cpus++;
992 }
993
994 /*
995 * If we raced with hotplug and there are no CPUs left in our mask
996 * the @ns structure is NULL'ed and task_numa_compare() will
997 * not find this node attractive.
998 *
999 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1000 * and bail there.
1001 */
1002 if (!cpus)
1003 return;
1004
1005 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1006 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1007 ns->has_capacity = (ns->nr_running < ns->capacity);
1008 }
1009
1010 struct task_numa_env {
1011 struct task_struct *p;
1012
1013 int src_cpu, src_nid;
1014 int dst_cpu, dst_nid;
1015
1016 struct numa_stats src_stats, dst_stats;
1017
1018 int imbalance_pct;
1019
1020 struct task_struct *best_task;
1021 long best_imp;
1022 int best_cpu;
1023 };
1024
1025 static void task_numa_assign(struct task_numa_env *env,
1026 struct task_struct *p, long imp)
1027 {
1028 if (env->best_task)
1029 put_task_struct(env->best_task);
1030 if (p)
1031 get_task_struct(p);
1032
1033 env->best_task = p;
1034 env->best_imp = imp;
1035 env->best_cpu = env->dst_cpu;
1036 }
1037
1038 /*
1039 * This checks if the overall compute and NUMA accesses of the system would
1040 * be improved if the source tasks was migrated to the target dst_cpu taking
1041 * into account that it might be best if task running on the dst_cpu should
1042 * be exchanged with the source task
1043 */
1044 static void task_numa_compare(struct task_numa_env *env,
1045 long taskimp, long groupimp)
1046 {
1047 struct rq *src_rq = cpu_rq(env->src_cpu);
1048 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1049 struct task_struct *cur;
1050 long dst_load, src_load;
1051 long load;
1052 long imp = (groupimp > 0) ? groupimp : taskimp;
1053
1054 rcu_read_lock();
1055 cur = ACCESS_ONCE(dst_rq->curr);
1056 if (cur->pid == 0) /* idle */
1057 cur = NULL;
1058
1059 /*
1060 * "imp" is the fault differential for the source task between the
1061 * source and destination node. Calculate the total differential for
1062 * the source task and potential destination task. The more negative
1063 * the value is, the more rmeote accesses that would be expected to
1064 * be incurred if the tasks were swapped.
1065 */
1066 if (cur) {
1067 /* Skip this swap candidate if cannot move to the source cpu */
1068 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1069 goto unlock;
1070
1071 /*
1072 * If dst and source tasks are in the same NUMA group, or not
1073 * in any group then look only at task weights.
1074 */
1075 if (cur->numa_group == env->p->numa_group) {
1076 imp = taskimp + task_weight(cur, env->src_nid) -
1077 task_weight(cur, env->dst_nid);
1078 /*
1079 * Add some hysteresis to prevent swapping the
1080 * tasks within a group over tiny differences.
1081 */
1082 if (cur->numa_group)
1083 imp -= imp/16;
1084 } else {
1085 /*
1086 * Compare the group weights. If a task is all by
1087 * itself (not part of a group), use the task weight
1088 * instead.
1089 */
1090 if (env->p->numa_group)
1091 imp = groupimp;
1092 else
1093 imp = taskimp;
1094
1095 if (cur->numa_group)
1096 imp += group_weight(cur, env->src_nid) -
1097 group_weight(cur, env->dst_nid);
1098 else
1099 imp += task_weight(cur, env->src_nid) -
1100 task_weight(cur, env->dst_nid);
1101 }
1102 }
1103
1104 if (imp < env->best_imp)
1105 goto unlock;
1106
1107 if (!cur) {
1108 /* Is there capacity at our destination? */
1109 if (env->src_stats.has_capacity &&
1110 !env->dst_stats.has_capacity)
1111 goto unlock;
1112
1113 goto balance;
1114 }
1115
1116 /* Balance doesn't matter much if we're running a task per cpu */
1117 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1118 goto assign;
1119
1120 /*
1121 * In the overloaded case, try and keep the load balanced.
1122 */
1123 balance:
1124 dst_load = env->dst_stats.load;
1125 src_load = env->src_stats.load;
1126
1127 /* XXX missing power terms */
1128 load = task_h_load(env->p);
1129 dst_load += load;
1130 src_load -= load;
1131
1132 if (cur) {
1133 load = task_h_load(cur);
1134 dst_load -= load;
1135 src_load += load;
1136 }
1137
1138 /* make src_load the smaller */
1139 if (dst_load < src_load)
1140 swap(dst_load, src_load);
1141
1142 if (src_load * env->imbalance_pct < dst_load * 100)
1143 goto unlock;
1144
1145 assign:
1146 task_numa_assign(env, cur, imp);
1147 unlock:
1148 rcu_read_unlock();
1149 }
1150
1151 static void task_numa_find_cpu(struct task_numa_env *env,
1152 long taskimp, long groupimp)
1153 {
1154 int cpu;
1155
1156 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1157 /* Skip this CPU if the source task cannot migrate */
1158 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1159 continue;
1160
1161 env->dst_cpu = cpu;
1162 task_numa_compare(env, taskimp, groupimp);
1163 }
1164 }
1165
1166 static int task_numa_migrate(struct task_struct *p)
1167 {
1168 struct task_numa_env env = {
1169 .p = p,
1170
1171 .src_cpu = task_cpu(p),
1172 .src_nid = task_node(p),
1173
1174 .imbalance_pct = 112,
1175
1176 .best_task = NULL,
1177 .best_imp = 0,
1178 .best_cpu = -1
1179 };
1180 struct sched_domain *sd;
1181 unsigned long taskweight, groupweight;
1182 int nid, ret;
1183 long taskimp, groupimp;
1184
1185 /*
1186 * Pick the lowest SD_NUMA domain, as that would have the smallest
1187 * imbalance and would be the first to start moving tasks about.
1188 *
1189 * And we want to avoid any moving of tasks about, as that would create
1190 * random movement of tasks -- counter the numa conditions we're trying
1191 * to satisfy here.
1192 */
1193 rcu_read_lock();
1194 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1195 if (sd)
1196 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1197 rcu_read_unlock();
1198
1199 /*
1200 * Cpusets can break the scheduler domain tree into smaller
1201 * balance domains, some of which do not cross NUMA boundaries.
1202 * Tasks that are "trapped" in such domains cannot be migrated
1203 * elsewhere, so there is no point in (re)trying.
1204 */
1205 if (unlikely(!sd)) {
1206 p->numa_preferred_nid = task_node(p);
1207 return -EINVAL;
1208 }
1209
1210 taskweight = task_weight(p, env.src_nid);
1211 groupweight = group_weight(p, env.src_nid);
1212 update_numa_stats(&env.src_stats, env.src_nid);
1213 env.dst_nid = p->numa_preferred_nid;
1214 taskimp = task_weight(p, env.dst_nid) - taskweight;
1215 groupimp = group_weight(p, env.dst_nid) - groupweight;
1216 update_numa_stats(&env.dst_stats, env.dst_nid);
1217
1218 /* If the preferred nid has capacity, try to use it. */
1219 if (env.dst_stats.has_capacity)
1220 task_numa_find_cpu(&env, taskimp, groupimp);
1221
1222 /* No space available on the preferred nid. Look elsewhere. */
1223 if (env.best_cpu == -1) {
1224 for_each_online_node(nid) {
1225 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1226 continue;
1227
1228 /* Only consider nodes where both task and groups benefit */
1229 taskimp = task_weight(p, nid) - taskweight;
1230 groupimp = group_weight(p, nid) - groupweight;
1231 if (taskimp < 0 && groupimp < 0)
1232 continue;
1233
1234 env.dst_nid = nid;
1235 update_numa_stats(&env.dst_stats, env.dst_nid);
1236 task_numa_find_cpu(&env, taskimp, groupimp);
1237 }
1238 }
1239
1240 /* No better CPU than the current one was found. */
1241 if (env.best_cpu == -1)
1242 return -EAGAIN;
1243
1244 sched_setnuma(p, env.dst_nid);
1245
1246 /*
1247 * Reset the scan period if the task is being rescheduled on an
1248 * alternative node to recheck if the tasks is now properly placed.
1249 */
1250 p->numa_scan_period = task_scan_min(p);
1251
1252 if (env.best_task == NULL) {
1253 int ret = migrate_task_to(p, env.best_cpu);
1254 return ret;
1255 }
1256
1257 ret = migrate_swap(p, env.best_task);
1258 put_task_struct(env.best_task);
1259 return ret;
1260 }
1261
1262 /* Attempt to migrate a task to a CPU on the preferred node. */
1263 static void numa_migrate_preferred(struct task_struct *p)
1264 {
1265 /* This task has no NUMA fault statistics yet */
1266 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1267 return;
1268
1269 /* Periodically retry migrating the task to the preferred node */
1270 p->numa_migrate_retry = jiffies + HZ;
1271
1272 /* Success if task is already running on preferred CPU */
1273 if (task_node(p) == p->numa_preferred_nid)
1274 return;
1275
1276 /* Otherwise, try migrate to a CPU on the preferred node */
1277 task_numa_migrate(p);
1278 }
1279
1280 /*
1281 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1282 * increments. The more local the fault statistics are, the higher the scan
1283 * period will be for the next scan window. If local/remote ratio is below
1284 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1285 * scan period will decrease
1286 */
1287 #define NUMA_PERIOD_SLOTS 10
1288 #define NUMA_PERIOD_THRESHOLD 3
1289
1290 /*
1291 * Increase the scan period (slow down scanning) if the majority of
1292 * our memory is already on our local node, or if the majority of
1293 * the page accesses are shared with other processes.
1294 * Otherwise, decrease the scan period.
1295 */
1296 static void update_task_scan_period(struct task_struct *p,
1297 unsigned long shared, unsigned long private)
1298 {
1299 unsigned int period_slot;
1300 int ratio;
1301 int diff;
1302
1303 unsigned long remote = p->numa_faults_locality[0];
1304 unsigned long local = p->numa_faults_locality[1];
1305
1306 /*
1307 * If there were no record hinting faults then either the task is
1308 * completely idle or all activity is areas that are not of interest
1309 * to automatic numa balancing. Scan slower
1310 */
1311 if (local + shared == 0) {
1312 p->numa_scan_period = min(p->numa_scan_period_max,
1313 p->numa_scan_period << 1);
1314
1315 p->mm->numa_next_scan = jiffies +
1316 msecs_to_jiffies(p->numa_scan_period);
1317
1318 return;
1319 }
1320
1321 /*
1322 * Prepare to scale scan period relative to the current period.
1323 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1324 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1325 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1326 */
1327 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1328 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1329 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1330 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1331 if (!slot)
1332 slot = 1;
1333 diff = slot * period_slot;
1334 } else {
1335 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1336
1337 /*
1338 * Scale scan rate increases based on sharing. There is an
1339 * inverse relationship between the degree of sharing and
1340 * the adjustment made to the scanning period. Broadly
1341 * speaking the intent is that there is little point
1342 * scanning faster if shared accesses dominate as it may
1343 * simply bounce migrations uselessly
1344 */
1345 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1346 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1347 }
1348
1349 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1350 task_scan_min(p), task_scan_max(p));
1351 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1352 }
1353
1354 static void task_numa_placement(struct task_struct *p)
1355 {
1356 int seq, nid, max_nid = -1, max_group_nid = -1;
1357 unsigned long max_faults = 0, max_group_faults = 0;
1358 unsigned long fault_types[2] = { 0, 0 };
1359 spinlock_t *group_lock = NULL;
1360
1361 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1362 if (p->numa_scan_seq == seq)
1363 return;
1364 p->numa_scan_seq = seq;
1365 p->numa_scan_period_max = task_scan_max(p);
1366
1367 /* If the task is part of a group prevent parallel updates to group stats */
1368 if (p->numa_group) {
1369 group_lock = &p->numa_group->lock;
1370 spin_lock(group_lock);
1371 }
1372
1373 /* Find the node with the highest number of faults */
1374 for_each_online_node(nid) {
1375 unsigned long faults = 0, group_faults = 0;
1376 int priv, i;
1377
1378 for (priv = 0; priv < 2; priv++) {
1379 long diff;
1380
1381 i = task_faults_idx(nid, priv);
1382 diff = -p->numa_faults[i];
1383
1384 /* Decay existing window, copy faults since last scan */
1385 p->numa_faults[i] >>= 1;
1386 p->numa_faults[i] += p->numa_faults_buffer[i];
1387 fault_types[priv] += p->numa_faults_buffer[i];
1388 p->numa_faults_buffer[i] = 0;
1389
1390 faults += p->numa_faults[i];
1391 diff += p->numa_faults[i];
1392 p->total_numa_faults += diff;
1393 if (p->numa_group) {
1394 /* safe because we can only change our own group */
1395 p->numa_group->faults[i] += diff;
1396 p->numa_group->total_faults += diff;
1397 group_faults += p->numa_group->faults[i];
1398 }
1399 }
1400
1401 if (faults > max_faults) {
1402 max_faults = faults;
1403 max_nid = nid;
1404 }
1405
1406 if (group_faults > max_group_faults) {
1407 max_group_faults = group_faults;
1408 max_group_nid = nid;
1409 }
1410 }
1411
1412 update_task_scan_period(p, fault_types[0], fault_types[1]);
1413
1414 if (p->numa_group) {
1415 /*
1416 * If the preferred task and group nids are different,
1417 * iterate over the nodes again to find the best place.
1418 */
1419 if (max_nid != max_group_nid) {
1420 unsigned long weight, max_weight = 0;
1421
1422 for_each_online_node(nid) {
1423 weight = task_weight(p, nid) + group_weight(p, nid);
1424 if (weight > max_weight) {
1425 max_weight = weight;
1426 max_nid = nid;
1427 }
1428 }
1429 }
1430
1431 spin_unlock(group_lock);
1432 }
1433
1434 /* Preferred node as the node with the most faults */
1435 if (max_faults && max_nid != p->numa_preferred_nid) {
1436 /* Update the preferred nid and migrate task if possible */
1437 sched_setnuma(p, max_nid);
1438 numa_migrate_preferred(p);
1439 }
1440 }
1441
1442 static inline int get_numa_group(struct numa_group *grp)
1443 {
1444 return atomic_inc_not_zero(&grp->refcount);
1445 }
1446
1447 static inline void put_numa_group(struct numa_group *grp)
1448 {
1449 if (atomic_dec_and_test(&grp->refcount))
1450 kfree_rcu(grp, rcu);
1451 }
1452
1453 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1454 int *priv)
1455 {
1456 struct numa_group *grp, *my_grp;
1457 struct task_struct *tsk;
1458 bool join = false;
1459 int cpu = cpupid_to_cpu(cpupid);
1460 int i;
1461
1462 if (unlikely(!p->numa_group)) {
1463 unsigned int size = sizeof(struct numa_group) +
1464 2*nr_node_ids*sizeof(unsigned long);
1465
1466 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1467 if (!grp)
1468 return;
1469
1470 atomic_set(&grp->refcount, 1);
1471 spin_lock_init(&grp->lock);
1472 INIT_LIST_HEAD(&grp->task_list);
1473 grp->gid = p->pid;
1474
1475 for (i = 0; i < 2*nr_node_ids; i++)
1476 grp->faults[i] = p->numa_faults[i];
1477
1478 grp->total_faults = p->total_numa_faults;
1479
1480 list_add(&p->numa_entry, &grp->task_list);
1481 grp->nr_tasks++;
1482 rcu_assign_pointer(p->numa_group, grp);
1483 }
1484
1485 rcu_read_lock();
1486 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1487
1488 if (!cpupid_match_pid(tsk, cpupid))
1489 goto no_join;
1490
1491 grp = rcu_dereference(tsk->numa_group);
1492 if (!grp)
1493 goto no_join;
1494
1495 my_grp = p->numa_group;
1496 if (grp == my_grp)
1497 goto no_join;
1498
1499 /*
1500 * Only join the other group if its bigger; if we're the bigger group,
1501 * the other task will join us.
1502 */
1503 if (my_grp->nr_tasks > grp->nr_tasks)
1504 goto no_join;
1505
1506 /*
1507 * Tie-break on the grp address.
1508 */
1509 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1510 goto no_join;
1511
1512 /* Always join threads in the same process. */
1513 if (tsk->mm == current->mm)
1514 join = true;
1515
1516 /* Simple filter to avoid false positives due to PID collisions */
1517 if (flags & TNF_SHARED)
1518 join = true;
1519
1520 /* Update priv based on whether false sharing was detected */
1521 *priv = !join;
1522
1523 if (join && !get_numa_group(grp))
1524 goto no_join;
1525
1526 rcu_read_unlock();
1527
1528 if (!join)
1529 return;
1530
1531 double_lock(&my_grp->lock, &grp->lock);
1532
1533 for (i = 0; i < 2*nr_node_ids; i++) {
1534 my_grp->faults[i] -= p->numa_faults[i];
1535 grp->faults[i] += p->numa_faults[i];
1536 }
1537 my_grp->total_faults -= p->total_numa_faults;
1538 grp->total_faults += p->total_numa_faults;
1539
1540 list_move(&p->numa_entry, &grp->task_list);
1541 my_grp->nr_tasks--;
1542 grp->nr_tasks++;
1543
1544 spin_unlock(&my_grp->lock);
1545 spin_unlock(&grp->lock);
1546
1547 rcu_assign_pointer(p->numa_group, grp);
1548
1549 put_numa_group(my_grp);
1550 return;
1551
1552 no_join:
1553 rcu_read_unlock();
1554 return;
1555 }
1556
1557 void task_numa_free(struct task_struct *p)
1558 {
1559 struct numa_group *grp = p->numa_group;
1560 int i;
1561 void *numa_faults = p->numa_faults;
1562
1563 if (grp) {
1564 spin_lock(&grp->lock);
1565 for (i = 0; i < 2*nr_node_ids; i++)
1566 grp->faults[i] -= p->numa_faults[i];
1567 grp->total_faults -= p->total_numa_faults;
1568
1569 list_del(&p->numa_entry);
1570 grp->nr_tasks--;
1571 spin_unlock(&grp->lock);
1572 rcu_assign_pointer(p->numa_group, NULL);
1573 put_numa_group(grp);
1574 }
1575
1576 p->numa_faults = NULL;
1577 p->numa_faults_buffer = NULL;
1578 kfree(numa_faults);
1579 }
1580
1581 /*
1582 * Got a PROT_NONE fault for a page on @node.
1583 */
1584 void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1585 {
1586 struct task_struct *p = current;
1587 bool migrated = flags & TNF_MIGRATED;
1588 int priv;
1589
1590 if (!numabalancing_enabled)
1591 return;
1592
1593 /* for example, ksmd faulting in a user's mm */
1594 if (!p->mm)
1595 return;
1596
1597 /* Do not worry about placement if exiting */
1598 if (p->state == TASK_DEAD)
1599 return;
1600
1601 /* Allocate buffer to track faults on a per-node basis */
1602 if (unlikely(!p->numa_faults)) {
1603 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1604
1605 /* numa_faults and numa_faults_buffer share the allocation */
1606 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1607 if (!p->numa_faults)
1608 return;
1609
1610 BUG_ON(p->numa_faults_buffer);
1611 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1612 p->total_numa_faults = 0;
1613 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1614 }
1615
1616 /*
1617 * First accesses are treated as private, otherwise consider accesses
1618 * to be private if the accessing pid has not changed
1619 */
1620 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1621 priv = 1;
1622 } else {
1623 priv = cpupid_match_pid(p, last_cpupid);
1624 if (!priv && !(flags & TNF_NO_GROUP))
1625 task_numa_group(p, last_cpupid, flags, &priv);
1626 }
1627
1628 task_numa_placement(p);
1629
1630 /*
1631 * Retry task to preferred node migration periodically, in case it
1632 * case it previously failed, or the scheduler moved us.
1633 */
1634 if (time_after(jiffies, p->numa_migrate_retry))
1635 numa_migrate_preferred(p);
1636
1637 if (migrated)
1638 p->numa_pages_migrated += pages;
1639
1640 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1641 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1642 }
1643
1644 static void reset_ptenuma_scan(struct task_struct *p)
1645 {
1646 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1647 p->mm->numa_scan_offset = 0;
1648 }
1649
1650 /*
1651 * The expensive part of numa migration is done from task_work context.
1652 * Triggered from task_tick_numa().
1653 */
1654 void task_numa_work(struct callback_head *work)
1655 {
1656 unsigned long migrate, next_scan, now = jiffies;
1657 struct task_struct *p = current;
1658 struct mm_struct *mm = p->mm;
1659 struct vm_area_struct *vma;
1660 unsigned long start, end;
1661 unsigned long nr_pte_updates = 0;
1662 long pages;
1663
1664 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1665
1666 work->next = work; /* protect against double add */
1667 /*
1668 * Who cares about NUMA placement when they're dying.
1669 *
1670 * NOTE: make sure not to dereference p->mm before this check,
1671 * exit_task_work() happens _after_ exit_mm() so we could be called
1672 * without p->mm even though we still had it when we enqueued this
1673 * work.
1674 */
1675 if (p->flags & PF_EXITING)
1676 return;
1677
1678 if (!mm->numa_next_scan) {
1679 mm->numa_next_scan = now +
1680 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1681 }
1682
1683 /*
1684 * Enforce maximal scan/migration frequency..
1685 */
1686 migrate = mm->numa_next_scan;
1687 if (time_before(now, migrate))
1688 return;
1689
1690 if (p->numa_scan_period == 0) {
1691 p->numa_scan_period_max = task_scan_max(p);
1692 p->numa_scan_period = task_scan_min(p);
1693 }
1694
1695 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1696 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1697 return;
1698
1699 /*
1700 * Delay this task enough that another task of this mm will likely win
1701 * the next time around.
1702 */
1703 p->node_stamp += 2 * TICK_NSEC;
1704
1705 start = mm->numa_scan_offset;
1706 pages = sysctl_numa_balancing_scan_size;
1707 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1708 if (!pages)
1709 return;
1710
1711 down_read(&mm->mmap_sem);
1712 vma = find_vma(mm, start);
1713 if (!vma) {
1714 reset_ptenuma_scan(p);
1715 start = 0;
1716 vma = mm->mmap;
1717 }
1718 for (; vma; vma = vma->vm_next) {
1719 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1720 continue;
1721
1722 /*
1723 * Shared library pages mapped by multiple processes are not
1724 * migrated as it is expected they are cache replicated. Avoid
1725 * hinting faults in read-only file-backed mappings or the vdso
1726 * as migrating the pages will be of marginal benefit.
1727 */
1728 if (!vma->vm_mm ||
1729 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1730 continue;
1731
1732 do {
1733 start = max(start, vma->vm_start);
1734 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1735 end = min(end, vma->vm_end);
1736 nr_pte_updates += change_prot_numa(vma, start, end);
1737
1738 /*
1739 * Scan sysctl_numa_balancing_scan_size but ensure that
1740 * at least one PTE is updated so that unused virtual
1741 * address space is quickly skipped.
1742 */
1743 if (nr_pte_updates)
1744 pages -= (end - start) >> PAGE_SHIFT;
1745
1746 start = end;
1747 if (pages <= 0)
1748 goto out;
1749 } while (end != vma->vm_end);
1750 }
1751
1752 out:
1753 /*
1754 * It is possible to reach the end of the VMA list but the last few
1755 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1756 * would find the !migratable VMA on the next scan but not reset the
1757 * scanner to the start so check it now.
1758 */
1759 if (vma)
1760 mm->numa_scan_offset = start;
1761 else
1762 reset_ptenuma_scan(p);
1763 up_read(&mm->mmap_sem);
1764 }
1765
1766 /*
1767 * Drive the periodic memory faults..
1768 */
1769 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1770 {
1771 struct callback_head *work = &curr->numa_work;
1772 u64 period, now;
1773
1774 /*
1775 * We don't care about NUMA placement if we don't have memory.
1776 */
1777 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1778 return;
1779
1780 /*
1781 * Using runtime rather than walltime has the dual advantage that
1782 * we (mostly) drive the selection from busy threads and that the
1783 * task needs to have done some actual work before we bother with
1784 * NUMA placement.
1785 */
1786 now = curr->se.sum_exec_runtime;
1787 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1788
1789 if (now - curr->node_stamp > period) {
1790 if (!curr->node_stamp)
1791 curr->numa_scan_period = task_scan_min(curr);
1792 curr->node_stamp += period;
1793
1794 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1795 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1796 task_work_add(curr, work, true);
1797 }
1798 }
1799 }
1800 #else
1801 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1802 {
1803 }
1804
1805 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1806 {
1807 }
1808
1809 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1810 {
1811 }
1812 #endif /* CONFIG_NUMA_BALANCING */
1813
1814 static void
1815 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1816 {
1817 update_load_add(&cfs_rq->load, se->load.weight);
1818 if (!parent_entity(se))
1819 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1820 #ifdef CONFIG_SMP
1821 if (entity_is_task(se)) {
1822 struct rq *rq = rq_of(cfs_rq);
1823
1824 account_numa_enqueue(rq, task_of(se));
1825 list_add(&se->group_node, &rq->cfs_tasks);
1826 }
1827 #endif
1828 cfs_rq->nr_running++;
1829 }
1830
1831 static void
1832 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1833 {
1834 update_load_sub(&cfs_rq->load, se->load.weight);
1835 if (!parent_entity(se))
1836 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1837 if (entity_is_task(se)) {
1838 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1839 list_del_init(&se->group_node);
1840 }
1841 cfs_rq->nr_running--;
1842 }
1843
1844 #ifdef CONFIG_FAIR_GROUP_SCHED
1845 # ifdef CONFIG_SMP
1846 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1847 {
1848 long tg_weight;
1849
1850 /*
1851 * Use this CPU's actual weight instead of the last load_contribution
1852 * to gain a more accurate current total weight. See
1853 * update_cfs_rq_load_contribution().
1854 */
1855 tg_weight = atomic_long_read(&tg->load_avg);
1856 tg_weight -= cfs_rq->tg_load_contrib;
1857 tg_weight += cfs_rq->load.weight;
1858
1859 return tg_weight;
1860 }
1861
1862 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1863 {
1864 long tg_weight, load, shares;
1865
1866 tg_weight = calc_tg_weight(tg, cfs_rq);
1867 load = cfs_rq->load.weight;
1868
1869 shares = (tg->shares * load);
1870 if (tg_weight)
1871 shares /= tg_weight;
1872
1873 if (shares < MIN_SHARES)
1874 shares = MIN_SHARES;
1875 if (shares > tg->shares)
1876 shares = tg->shares;
1877
1878 return shares;
1879 }
1880 # else /* CONFIG_SMP */
1881 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1882 {
1883 return tg->shares;
1884 }
1885 # endif /* CONFIG_SMP */
1886 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1887 unsigned long weight)
1888 {
1889 if (se->on_rq) {
1890 /* commit outstanding execution time */
1891 if (cfs_rq->curr == se)
1892 update_curr(cfs_rq);
1893 account_entity_dequeue(cfs_rq, se);
1894 }
1895
1896 update_load_set(&se->load, weight);
1897
1898 if (se->on_rq)
1899 account_entity_enqueue(cfs_rq, se);
1900 }
1901
1902 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1903
1904 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1905 {
1906 struct task_group *tg;
1907 struct sched_entity *se;
1908 long shares;
1909
1910 tg = cfs_rq->tg;
1911 se = tg->se[cpu_of(rq_of(cfs_rq))];
1912 if (!se || throttled_hierarchy(cfs_rq))
1913 return;
1914 #ifndef CONFIG_SMP
1915 if (likely(se->load.weight == tg->shares))
1916 return;
1917 #endif
1918 shares = calc_cfs_shares(cfs_rq, tg);
1919
1920 reweight_entity(cfs_rq_of(se), se, shares);
1921 }
1922 #else /* CONFIG_FAIR_GROUP_SCHED */
1923 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1924 {
1925 }
1926 #endif /* CONFIG_FAIR_GROUP_SCHED */
1927
1928 #ifdef CONFIG_SMP
1929 /*
1930 * We choose a half-life close to 1 scheduling period.
1931 * Note: The tables below are dependent on this value.
1932 */
1933 #define LOAD_AVG_PERIOD 32
1934 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1935 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1936
1937 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1938 static const u32 runnable_avg_yN_inv[] = {
1939 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1940 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1941 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1942 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1943 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1944 0x85aac367, 0x82cd8698,
1945 };
1946
1947 /*
1948 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1949 * over-estimates when re-combining.
1950 */
1951 static const u32 runnable_avg_yN_sum[] = {
1952 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1953 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1954 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1955 };
1956
1957 /*
1958 * Approximate:
1959 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1960 */
1961 static __always_inline u64 decay_load(u64 val, u64 n)
1962 {
1963 unsigned int local_n;
1964
1965 if (!n)
1966 return val;
1967 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1968 return 0;
1969
1970 /* after bounds checking we can collapse to 32-bit */
1971 local_n = n;
1972
1973 /*
1974 * As y^PERIOD = 1/2, we can combine
1975 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1976 * With a look-up table which covers k^n (n<PERIOD)
1977 *
1978 * To achieve constant time decay_load.
1979 */
1980 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1981 val >>= local_n / LOAD_AVG_PERIOD;
1982 local_n %= LOAD_AVG_PERIOD;
1983 }
1984
1985 val *= runnable_avg_yN_inv[local_n];
1986 /* We don't use SRR here since we always want to round down. */
1987 return val >> 32;
1988 }
1989
1990 /*
1991 * For updates fully spanning n periods, the contribution to runnable
1992 * average will be: \Sum 1024*y^n
1993 *
1994 * We can compute this reasonably efficiently by combining:
1995 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1996 */
1997 static u32 __compute_runnable_contrib(u64 n)
1998 {
1999 u32 contrib = 0;
2000
2001 if (likely(n <= LOAD_AVG_PERIOD))
2002 return runnable_avg_yN_sum[n];
2003 else if (unlikely(n >= LOAD_AVG_MAX_N))
2004 return LOAD_AVG_MAX;
2005
2006 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2007 do {
2008 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2009 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2010
2011 n -= LOAD_AVG_PERIOD;
2012 } while (n > LOAD_AVG_PERIOD);
2013
2014 contrib = decay_load(contrib, n);
2015 return contrib + runnable_avg_yN_sum[n];
2016 }
2017
2018 /*
2019 * We can represent the historical contribution to runnable average as the
2020 * coefficients of a geometric series. To do this we sub-divide our runnable
2021 * history into segments of approximately 1ms (1024us); label the segment that
2022 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2023 *
2024 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2025 * p0 p1 p2
2026 * (now) (~1ms ago) (~2ms ago)
2027 *
2028 * Let u_i denote the fraction of p_i that the entity was runnable.
2029 *
2030 * We then designate the fractions u_i as our co-efficients, yielding the
2031 * following representation of historical load:
2032 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2033 *
2034 * We choose y based on the with of a reasonably scheduling period, fixing:
2035 * y^32 = 0.5
2036 *
2037 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2038 * approximately half as much as the contribution to load within the last ms
2039 * (u_0).
2040 *
2041 * When a period "rolls over" and we have new u_0`, multiplying the previous
2042 * sum again by y is sufficient to update:
2043 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2044 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2045 */
2046 static __always_inline int __update_entity_runnable_avg(u64 now,
2047 struct sched_avg *sa,
2048 int runnable)
2049 {
2050 u64 delta, periods;
2051 u32 runnable_contrib;
2052 int delta_w, decayed = 0;
2053
2054 delta = now - sa->last_runnable_update;
2055 /*
2056 * This should only happen when time goes backwards, which it
2057 * unfortunately does during sched clock init when we swap over to TSC.
2058 */
2059 if ((s64)delta < 0) {
2060 sa->last_runnable_update = now;
2061 return 0;
2062 }
2063
2064 /*
2065 * Use 1024ns as the unit of measurement since it's a reasonable
2066 * approximation of 1us and fast to compute.
2067 */
2068 delta >>= 10;
2069 if (!delta)
2070 return 0;
2071 sa->last_runnable_update = now;
2072
2073 /* delta_w is the amount already accumulated against our next period */
2074 delta_w = sa->runnable_avg_period % 1024;
2075 if (delta + delta_w >= 1024) {
2076 /* period roll-over */
2077 decayed = 1;
2078
2079 /*
2080 * Now that we know we're crossing a period boundary, figure
2081 * out how much from delta we need to complete the current
2082 * period and accrue it.
2083 */
2084 delta_w = 1024 - delta_w;
2085 if (runnable)
2086 sa->runnable_avg_sum += delta_w;
2087 sa->runnable_avg_period += delta_w;
2088
2089 delta -= delta_w;
2090
2091 /* Figure out how many additional periods this update spans */
2092 periods = delta / 1024;
2093 delta %= 1024;
2094
2095 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2096 periods + 1);
2097 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2098 periods + 1);
2099
2100 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2101 runnable_contrib = __compute_runnable_contrib(periods);
2102 if (runnable)
2103 sa->runnable_avg_sum += runnable_contrib;
2104 sa->runnable_avg_period += runnable_contrib;
2105 }
2106
2107 /* Remainder of delta accrued against u_0` */
2108 if (runnable)
2109 sa->runnable_avg_sum += delta;
2110 sa->runnable_avg_period += delta;
2111
2112 return decayed;
2113 }
2114
2115 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2116 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2117 {
2118 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2119 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2120
2121 decays -= se->avg.decay_count;
2122 if (!decays)
2123 return 0;
2124
2125 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2126 se->avg.decay_count = 0;
2127
2128 return decays;
2129 }
2130
2131 #ifdef CONFIG_FAIR_GROUP_SCHED
2132 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2133 int force_update)
2134 {
2135 struct task_group *tg = cfs_rq->tg;
2136 long tg_contrib;
2137
2138 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2139 tg_contrib -= cfs_rq->tg_load_contrib;
2140
2141 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2142 atomic_long_add(tg_contrib, &tg->load_avg);
2143 cfs_rq->tg_load_contrib += tg_contrib;
2144 }
2145 }
2146
2147 /*
2148 * Aggregate cfs_rq runnable averages into an equivalent task_group
2149 * representation for computing load contributions.
2150 */
2151 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2152 struct cfs_rq *cfs_rq)
2153 {
2154 struct task_group *tg = cfs_rq->tg;
2155 long contrib;
2156
2157 /* The fraction of a cpu used by this cfs_rq */
2158 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2159 sa->runnable_avg_period + 1);
2160 contrib -= cfs_rq->tg_runnable_contrib;
2161
2162 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2163 atomic_add(contrib, &tg->runnable_avg);
2164 cfs_rq->tg_runnable_contrib += contrib;
2165 }
2166 }
2167
2168 static inline void __update_group_entity_contrib(struct sched_entity *se)
2169 {
2170 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2171 struct task_group *tg = cfs_rq->tg;
2172 int runnable_avg;
2173
2174 u64 contrib;
2175
2176 contrib = cfs_rq->tg_load_contrib * tg->shares;
2177 se->avg.load_avg_contrib = div_u64(contrib,
2178 atomic_long_read(&tg->load_avg) + 1);
2179
2180 /*
2181 * For group entities we need to compute a correction term in the case
2182 * that they are consuming <1 cpu so that we would contribute the same
2183 * load as a task of equal weight.
2184 *
2185 * Explicitly co-ordinating this measurement would be expensive, but
2186 * fortunately the sum of each cpus contribution forms a usable
2187 * lower-bound on the true value.
2188 *
2189 * Consider the aggregate of 2 contributions. Either they are disjoint
2190 * (and the sum represents true value) or they are disjoint and we are
2191 * understating by the aggregate of their overlap.
2192 *
2193 * Extending this to N cpus, for a given overlap, the maximum amount we
2194 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2195 * cpus that overlap for this interval and w_i is the interval width.
2196 *
2197 * On a small machine; the first term is well-bounded which bounds the
2198 * total error since w_i is a subset of the period. Whereas on a
2199 * larger machine, while this first term can be larger, if w_i is the
2200 * of consequential size guaranteed to see n_i*w_i quickly converge to
2201 * our upper bound of 1-cpu.
2202 */
2203 runnable_avg = atomic_read(&tg->runnable_avg);
2204 if (runnable_avg < NICE_0_LOAD) {
2205 se->avg.load_avg_contrib *= runnable_avg;
2206 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2207 }
2208 }
2209 #else
2210 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2211 int force_update) {}
2212 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2213 struct cfs_rq *cfs_rq) {}
2214 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2215 #endif
2216
2217 static inline void __update_task_entity_contrib(struct sched_entity *se)
2218 {
2219 u32 contrib;
2220
2221 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2222 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2223 contrib /= (se->avg.runnable_avg_period + 1);
2224 se->avg.load_avg_contrib = scale_load(contrib);
2225 }
2226
2227 /* Compute the current contribution to load_avg by se, return any delta */
2228 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2229 {
2230 long old_contrib = se->avg.load_avg_contrib;
2231
2232 if (entity_is_task(se)) {
2233 __update_task_entity_contrib(se);
2234 } else {
2235 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2236 __update_group_entity_contrib(se);
2237 }
2238
2239 return se->avg.load_avg_contrib - old_contrib;
2240 }
2241
2242 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2243 long load_contrib)
2244 {
2245 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2246 cfs_rq->blocked_load_avg -= load_contrib;
2247 else
2248 cfs_rq->blocked_load_avg = 0;
2249 }
2250
2251 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2252
2253 /* Update a sched_entity's runnable average */
2254 static inline void update_entity_load_avg(struct sched_entity *se,
2255 int update_cfs_rq)
2256 {
2257 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2258 long contrib_delta;
2259 u64 now;
2260
2261 /*
2262 * For a group entity we need to use their owned cfs_rq_clock_task() in
2263 * case they are the parent of a throttled hierarchy.
2264 */
2265 if (entity_is_task(se))
2266 now = cfs_rq_clock_task(cfs_rq);
2267 else
2268 now = cfs_rq_clock_task(group_cfs_rq(se));
2269
2270 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2271 return;
2272
2273 contrib_delta = __update_entity_load_avg_contrib(se);
2274
2275 if (!update_cfs_rq)
2276 return;
2277
2278 if (se->on_rq)
2279 cfs_rq->runnable_load_avg += contrib_delta;
2280 else
2281 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2282 }
2283
2284 /*
2285 * Decay the load contributed by all blocked children and account this so that
2286 * their contribution may appropriately discounted when they wake up.
2287 */
2288 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2289 {
2290 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2291 u64 decays;
2292
2293 decays = now - cfs_rq->last_decay;
2294 if (!decays && !force_update)
2295 return;
2296
2297 if (atomic_long_read(&cfs_rq->removed_load)) {
2298 unsigned long removed_load;
2299 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2300 subtract_blocked_load_contrib(cfs_rq, removed_load);
2301 }
2302
2303 if (decays) {
2304 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2305 decays);
2306 atomic64_add(decays, &cfs_rq->decay_counter);
2307 cfs_rq->last_decay = now;
2308 }
2309
2310 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2311 }
2312
2313 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2314 {
2315 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2316 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2317 }
2318
2319 /* Add the load generated by se into cfs_rq's child load-average */
2320 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2321 struct sched_entity *se,
2322 int wakeup)
2323 {
2324 /*
2325 * We track migrations using entity decay_count <= 0, on a wake-up
2326 * migration we use a negative decay count to track the remote decays
2327 * accumulated while sleeping.
2328 *
2329 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2330 * are seen by enqueue_entity_load_avg() as a migration with an already
2331 * constructed load_avg_contrib.
2332 */
2333 if (unlikely(se->avg.decay_count <= 0)) {
2334 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2335 if (se->avg.decay_count) {
2336 /*
2337 * In a wake-up migration we have to approximate the
2338 * time sleeping. This is because we can't synchronize
2339 * clock_task between the two cpus, and it is not
2340 * guaranteed to be read-safe. Instead, we can
2341 * approximate this using our carried decays, which are
2342 * explicitly atomically readable.
2343 */
2344 se->avg.last_runnable_update -= (-se->avg.decay_count)
2345 << 20;
2346 update_entity_load_avg(se, 0);
2347 /* Indicate that we're now synchronized and on-rq */
2348 se->avg.decay_count = 0;
2349 }
2350 wakeup = 0;
2351 } else {
2352 /*
2353 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2354 * would have made count negative); we must be careful to avoid
2355 * double-accounting blocked time after synchronizing decays.
2356 */
2357 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2358 << 20;
2359 }
2360
2361 /* migrated tasks did not contribute to our blocked load */
2362 if (wakeup) {
2363 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2364 update_entity_load_avg(se, 0);
2365 }
2366
2367 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2368 /* we force update consideration on load-balancer moves */
2369 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2370 }
2371
2372 /*
2373 * Remove se's load from this cfs_rq child load-average, if the entity is
2374 * transitioning to a blocked state we track its projected decay using
2375 * blocked_load_avg.
2376 */
2377 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2378 struct sched_entity *se,
2379 int sleep)
2380 {
2381 update_entity_load_avg(se, 1);
2382 /* we force update consideration on load-balancer moves */
2383 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2384
2385 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2386 if (sleep) {
2387 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2388 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2389 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2390 }
2391
2392 /*
2393 * Update the rq's load with the elapsed running time before entering
2394 * idle. if the last scheduled task is not a CFS task, idle_enter will
2395 * be the only way to update the runnable statistic.
2396 */
2397 void idle_enter_fair(struct rq *this_rq)
2398 {
2399 update_rq_runnable_avg(this_rq, 1);
2400 }
2401
2402 /*
2403 * Update the rq's load with the elapsed idle time before a task is
2404 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2405 * be the only way to update the runnable statistic.
2406 */
2407 void idle_exit_fair(struct rq *this_rq)
2408 {
2409 update_rq_runnable_avg(this_rq, 0);
2410 }
2411
2412 #else
2413 static inline void update_entity_load_avg(struct sched_entity *se,
2414 int update_cfs_rq) {}
2415 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2416 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2417 struct sched_entity *se,
2418 int wakeup) {}
2419 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2420 struct sched_entity *se,
2421 int sleep) {}
2422 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2423 int force_update) {}
2424 #endif
2425
2426 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2427 {
2428 #ifdef CONFIG_SCHEDSTATS
2429 struct task_struct *tsk = NULL;
2430
2431 if (entity_is_task(se))
2432 tsk = task_of(se);
2433
2434 if (se->statistics.sleep_start) {
2435 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2436
2437 if ((s64)delta < 0)
2438 delta = 0;
2439
2440 if (unlikely(delta > se->statistics.sleep_max))
2441 se->statistics.sleep_max = delta;
2442
2443 se->statistics.sleep_start = 0;
2444 se->statistics.sum_sleep_runtime += delta;
2445
2446 if (tsk) {
2447 account_scheduler_latency(tsk, delta >> 10, 1);
2448 trace_sched_stat_sleep(tsk, delta);
2449 }
2450 }
2451 if (se->statistics.block_start) {
2452 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2453
2454 if ((s64)delta < 0)
2455 delta = 0;
2456
2457 if (unlikely(delta > se->statistics.block_max))
2458 se->statistics.block_max = delta;
2459
2460 se->statistics.block_start = 0;
2461 se->statistics.sum_sleep_runtime += delta;
2462
2463 if (tsk) {
2464 if (tsk->in_iowait) {
2465 se->statistics.iowait_sum += delta;
2466 se->statistics.iowait_count++;
2467 trace_sched_stat_iowait(tsk, delta);
2468 }
2469
2470 trace_sched_stat_blocked(tsk, delta);
2471
2472 /*
2473 * Blocking time is in units of nanosecs, so shift by
2474 * 20 to get a milliseconds-range estimation of the
2475 * amount of time that the task spent sleeping:
2476 */
2477 if (unlikely(prof_on == SLEEP_PROFILING)) {
2478 profile_hits(SLEEP_PROFILING,
2479 (void *)get_wchan(tsk),
2480 delta >> 20);
2481 }
2482 account_scheduler_latency(tsk, delta >> 10, 0);
2483 }
2484 }
2485 #endif
2486 }
2487
2488 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2489 {
2490 #ifdef CONFIG_SCHED_DEBUG
2491 s64 d = se->vruntime - cfs_rq->min_vruntime;
2492
2493 if (d < 0)
2494 d = -d;
2495
2496 if (d > 3*sysctl_sched_latency)
2497 schedstat_inc(cfs_rq, nr_spread_over);
2498 #endif
2499 }
2500
2501 static void
2502 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2503 {
2504 u64 vruntime = cfs_rq->min_vruntime;
2505
2506 /*
2507 * The 'current' period is already promised to the current tasks,
2508 * however the extra weight of the new task will slow them down a
2509 * little, place the new task so that it fits in the slot that
2510 * stays open at the end.
2511 */
2512 if (initial && sched_feat(START_DEBIT))
2513 vruntime += sched_vslice(cfs_rq, se);
2514
2515 /* sleeps up to a single latency don't count. */
2516 if (!initial) {
2517 unsigned long thresh = sysctl_sched_latency;
2518
2519 /*
2520 * Halve their sleep time's effect, to allow
2521 * for a gentler effect of sleepers:
2522 */
2523 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2524 thresh >>= 1;
2525
2526 vruntime -= thresh;
2527 }
2528
2529 /* ensure we never gain time by being placed backwards. */
2530 se->vruntime = max_vruntime(se->vruntime, vruntime);
2531 }
2532
2533 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2534
2535 static void
2536 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2537 {
2538 /*
2539 * Update the normalized vruntime before updating min_vruntime
2540 * through calling update_curr().
2541 */
2542 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2543 se->vruntime += cfs_rq->min_vruntime;
2544
2545 /*
2546 * Update run-time statistics of the 'current'.
2547 */
2548 update_curr(cfs_rq);
2549 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2550 account_entity_enqueue(cfs_rq, se);
2551 update_cfs_shares(cfs_rq);
2552
2553 if (flags & ENQUEUE_WAKEUP) {
2554 place_entity(cfs_rq, se, 0);
2555 enqueue_sleeper(cfs_rq, se);
2556 }
2557
2558 update_stats_enqueue(cfs_rq, se);
2559 check_spread(cfs_rq, se);
2560 if (se != cfs_rq->curr)
2561 __enqueue_entity(cfs_rq, se);
2562 se->on_rq = 1;
2563
2564 if (cfs_rq->nr_running == 1) {
2565 list_add_leaf_cfs_rq(cfs_rq);
2566 check_enqueue_throttle(cfs_rq);
2567 }
2568 }
2569
2570 static void __clear_buddies_last(struct sched_entity *se)
2571 {
2572 for_each_sched_entity(se) {
2573 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2574 if (cfs_rq->last == se)
2575 cfs_rq->last = NULL;
2576 else
2577 break;
2578 }
2579 }
2580
2581 static void __clear_buddies_next(struct sched_entity *se)
2582 {
2583 for_each_sched_entity(se) {
2584 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2585 if (cfs_rq->next == se)
2586 cfs_rq->next = NULL;
2587 else
2588 break;
2589 }
2590 }
2591
2592 static void __clear_buddies_skip(struct sched_entity *se)
2593 {
2594 for_each_sched_entity(se) {
2595 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2596 if (cfs_rq->skip == se)
2597 cfs_rq->skip = NULL;
2598 else
2599 break;
2600 }
2601 }
2602
2603 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2604 {
2605 if (cfs_rq->last == se)
2606 __clear_buddies_last(se);
2607
2608 if (cfs_rq->next == se)
2609 __clear_buddies_next(se);
2610
2611 if (cfs_rq->skip == se)
2612 __clear_buddies_skip(se);
2613 }
2614
2615 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2616
2617 static void
2618 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2619 {
2620 /*
2621 * Update run-time statistics of the 'current'.
2622 */
2623 update_curr(cfs_rq);
2624 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2625
2626 update_stats_dequeue(cfs_rq, se);
2627 if (flags & DEQUEUE_SLEEP) {
2628 #ifdef CONFIG_SCHEDSTATS
2629 if (entity_is_task(se)) {
2630 struct task_struct *tsk = task_of(se);
2631
2632 if (tsk->state & TASK_INTERRUPTIBLE)
2633 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2634 if (tsk->state & TASK_UNINTERRUPTIBLE)
2635 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2636 }
2637 #endif
2638 }
2639
2640 clear_buddies(cfs_rq, se);
2641
2642 if (se != cfs_rq->curr)
2643 __dequeue_entity(cfs_rq, se);
2644 se->on_rq = 0;
2645 account_entity_dequeue(cfs_rq, se);
2646
2647 /*
2648 * Normalize the entity after updating the min_vruntime because the
2649 * update can refer to the ->curr item and we need to reflect this
2650 * movement in our normalized position.
2651 */
2652 if (!(flags & DEQUEUE_SLEEP))
2653 se->vruntime -= cfs_rq->min_vruntime;
2654
2655 /* return excess runtime on last dequeue */
2656 return_cfs_rq_runtime(cfs_rq);
2657
2658 update_min_vruntime(cfs_rq);
2659 update_cfs_shares(cfs_rq);
2660 }
2661
2662 /*
2663 * Preempt the current task with a newly woken task if needed:
2664 */
2665 static void
2666 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2667 {
2668 unsigned long ideal_runtime, delta_exec;
2669 struct sched_entity *se;
2670 s64 delta;
2671
2672 ideal_runtime = sched_slice(cfs_rq, curr);
2673 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2674 if (delta_exec > ideal_runtime) {
2675 resched_task(rq_of(cfs_rq)->curr);
2676 /*
2677 * The current task ran long enough, ensure it doesn't get
2678 * re-elected due to buddy favours.
2679 */
2680 clear_buddies(cfs_rq, curr);
2681 return;
2682 }
2683
2684 /*
2685 * Ensure that a task that missed wakeup preemption by a
2686 * narrow margin doesn't have to wait for a full slice.
2687 * This also mitigates buddy induced latencies under load.
2688 */
2689 if (delta_exec < sysctl_sched_min_granularity)
2690 return;
2691
2692 se = __pick_first_entity(cfs_rq);
2693 delta = curr->vruntime - se->vruntime;
2694
2695 if (delta < 0)
2696 return;
2697
2698 if (delta > ideal_runtime)
2699 resched_task(rq_of(cfs_rq)->curr);
2700 }
2701
2702 static void
2703 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2704 {
2705 /* 'current' is not kept within the tree. */
2706 if (se->on_rq) {
2707 /*
2708 * Any task has to be enqueued before it get to execute on
2709 * a CPU. So account for the time it spent waiting on the
2710 * runqueue.
2711 */
2712 update_stats_wait_end(cfs_rq, se);
2713 __dequeue_entity(cfs_rq, se);
2714 }
2715
2716 update_stats_curr_start(cfs_rq, se);
2717 cfs_rq->curr = se;
2718 #ifdef CONFIG_SCHEDSTATS
2719 /*
2720 * Track our maximum slice length, if the CPU's load is at
2721 * least twice that of our own weight (i.e. dont track it
2722 * when there are only lesser-weight tasks around):
2723 */
2724 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2725 se->statistics.slice_max = max(se->statistics.slice_max,
2726 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2727 }
2728 #endif
2729 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2730 }
2731
2732 static int
2733 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2734
2735 /*
2736 * Pick the next process, keeping these things in mind, in this order:
2737 * 1) keep things fair between processes/task groups
2738 * 2) pick the "next" process, since someone really wants that to run
2739 * 3) pick the "last" process, for cache locality
2740 * 4) do not run the "skip" process, if something else is available
2741 */
2742 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2743 {
2744 struct sched_entity *se = __pick_first_entity(cfs_rq);
2745 struct sched_entity *left = se;
2746
2747 /*
2748 * Avoid running the skip buddy, if running something else can
2749 * be done without getting too unfair.
2750 */
2751 if (cfs_rq->skip == se) {
2752 struct sched_entity *second = __pick_next_entity(se);
2753 if (second && wakeup_preempt_entity(second, left) < 1)
2754 se = second;
2755 }
2756
2757 /*
2758 * Prefer last buddy, try to return the CPU to a preempted task.
2759 */
2760 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2761 se = cfs_rq->last;
2762
2763 /*
2764 * Someone really wants this to run. If it's not unfair, run it.
2765 */
2766 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2767 se = cfs_rq->next;
2768
2769 clear_buddies(cfs_rq, se);
2770
2771 return se;
2772 }
2773
2774 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2775
2776 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2777 {
2778 /*
2779 * If still on the runqueue then deactivate_task()
2780 * was not called and update_curr() has to be done:
2781 */
2782 if (prev->on_rq)
2783 update_curr(cfs_rq);
2784
2785 /* throttle cfs_rqs exceeding runtime */
2786 check_cfs_rq_runtime(cfs_rq);
2787
2788 check_spread(cfs_rq, prev);
2789 if (prev->on_rq) {
2790 update_stats_wait_start(cfs_rq, prev);
2791 /* Put 'current' back into the tree. */
2792 __enqueue_entity(cfs_rq, prev);
2793 /* in !on_rq case, update occurred at dequeue */
2794 update_entity_load_avg(prev, 1);
2795 }
2796 cfs_rq->curr = NULL;
2797 }
2798
2799 static void
2800 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2801 {
2802 /*
2803 * Update run-time statistics of the 'current'.
2804 */
2805 update_curr(cfs_rq);
2806
2807 /*
2808 * Ensure that runnable average is periodically updated.
2809 */
2810 update_entity_load_avg(curr, 1);
2811 update_cfs_rq_blocked_load(cfs_rq, 1);
2812 update_cfs_shares(cfs_rq);
2813
2814 #ifdef CONFIG_SCHED_HRTICK
2815 /*
2816 * queued ticks are scheduled to match the slice, so don't bother
2817 * validating it and just reschedule.
2818 */
2819 if (queued) {
2820 resched_task(rq_of(cfs_rq)->curr);
2821 return;
2822 }
2823 /*
2824 * don't let the period tick interfere with the hrtick preemption
2825 */
2826 if (!sched_feat(DOUBLE_TICK) &&
2827 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2828 return;
2829 #endif
2830
2831 if (cfs_rq->nr_running > 1)
2832 check_preempt_tick(cfs_rq, curr);
2833 }
2834
2835
2836 /**************************************************
2837 * CFS bandwidth control machinery
2838 */
2839
2840 #ifdef CONFIG_CFS_BANDWIDTH
2841
2842 #ifdef HAVE_JUMP_LABEL
2843 static struct static_key __cfs_bandwidth_used;
2844
2845 static inline bool cfs_bandwidth_used(void)
2846 {
2847 return static_key_false(&__cfs_bandwidth_used);
2848 }
2849
2850 void cfs_bandwidth_usage_inc(void)
2851 {
2852 static_key_slow_inc(&__cfs_bandwidth_used);
2853 }
2854
2855 void cfs_bandwidth_usage_dec(void)
2856 {
2857 static_key_slow_dec(&__cfs_bandwidth_used);
2858 }
2859 #else /* HAVE_JUMP_LABEL */
2860 static bool cfs_bandwidth_used(void)
2861 {
2862 return true;
2863 }
2864
2865 void cfs_bandwidth_usage_inc(void) {}
2866 void cfs_bandwidth_usage_dec(void) {}
2867 #endif /* HAVE_JUMP_LABEL */
2868
2869 /*
2870 * default period for cfs group bandwidth.
2871 * default: 0.1s, units: nanoseconds
2872 */
2873 static inline u64 default_cfs_period(void)
2874 {
2875 return 100000000ULL;
2876 }
2877
2878 static inline u64 sched_cfs_bandwidth_slice(void)
2879 {
2880 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2881 }
2882
2883 /*
2884 * Replenish runtime according to assigned quota and update expiration time.
2885 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2886 * additional synchronization around rq->lock.
2887 *
2888 * requires cfs_b->lock
2889 */
2890 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2891 {
2892 u64 now;
2893
2894 if (cfs_b->quota == RUNTIME_INF)
2895 return;
2896
2897 now = sched_clock_cpu(smp_processor_id());
2898 cfs_b->runtime = cfs_b->quota;
2899 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2900 }
2901
2902 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2903 {
2904 return &tg->cfs_bandwidth;
2905 }
2906
2907 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2908 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2909 {
2910 if (unlikely(cfs_rq->throttle_count))
2911 return cfs_rq->throttled_clock_task;
2912
2913 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2914 }
2915
2916 /* returns 0 on failure to allocate runtime */
2917 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2918 {
2919 struct task_group *tg = cfs_rq->tg;
2920 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2921 u64 amount = 0, min_amount, expires;
2922
2923 /* note: this is a positive sum as runtime_remaining <= 0 */
2924 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2925
2926 raw_spin_lock(&cfs_b->lock);
2927 if (cfs_b->quota == RUNTIME_INF)
2928 amount = min_amount;
2929 else {
2930 /*
2931 * If the bandwidth pool has become inactive, then at least one
2932 * period must have elapsed since the last consumption.
2933 * Refresh the global state and ensure bandwidth timer becomes
2934 * active.
2935 */
2936 if (!cfs_b->timer_active) {
2937 __refill_cfs_bandwidth_runtime(cfs_b);
2938 __start_cfs_bandwidth(cfs_b);
2939 }
2940
2941 if (cfs_b->runtime > 0) {
2942 amount = min(cfs_b->runtime, min_amount);
2943 cfs_b->runtime -= amount;
2944 cfs_b->idle = 0;
2945 }
2946 }
2947 expires = cfs_b->runtime_expires;
2948 raw_spin_unlock(&cfs_b->lock);
2949
2950 cfs_rq->runtime_remaining += amount;
2951 /*
2952 * we may have advanced our local expiration to account for allowed
2953 * spread between our sched_clock and the one on which runtime was
2954 * issued.
2955 */
2956 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2957 cfs_rq->runtime_expires = expires;
2958
2959 return cfs_rq->runtime_remaining > 0;
2960 }
2961
2962 /*
2963 * Note: This depends on the synchronization provided by sched_clock and the
2964 * fact that rq->clock snapshots this value.
2965 */
2966 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2967 {
2968 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2969
2970 /* if the deadline is ahead of our clock, nothing to do */
2971 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2972 return;
2973
2974 if (cfs_rq->runtime_remaining < 0)
2975 return;
2976
2977 /*
2978 * If the local deadline has passed we have to consider the
2979 * possibility that our sched_clock is 'fast' and the global deadline
2980 * has not truly expired.
2981 *
2982 * Fortunately we can check determine whether this the case by checking
2983 * whether the global deadline has advanced.
2984 */
2985
2986 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2987 /* extend local deadline, drift is bounded above by 2 ticks */
2988 cfs_rq->runtime_expires += TICK_NSEC;
2989 } else {
2990 /* global deadline is ahead, expiration has passed */
2991 cfs_rq->runtime_remaining = 0;
2992 }
2993 }
2994
2995 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
2996 {
2997 /* dock delta_exec before expiring quota (as it could span periods) */
2998 cfs_rq->runtime_remaining -= delta_exec;
2999 expire_cfs_rq_runtime(cfs_rq);
3000
3001 if (likely(cfs_rq->runtime_remaining > 0))
3002 return;
3003
3004 /*
3005 * if we're unable to extend our runtime we resched so that the active
3006 * hierarchy can be throttled
3007 */
3008 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3009 resched_task(rq_of(cfs_rq)->curr);
3010 }
3011
3012 static __always_inline
3013 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3014 {
3015 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3016 return;
3017
3018 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3019 }
3020
3021 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3022 {
3023 return cfs_bandwidth_used() && cfs_rq->throttled;
3024 }
3025
3026 /* check whether cfs_rq, or any parent, is throttled */
3027 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3028 {
3029 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3030 }
3031
3032 /*
3033 * Ensure that neither of the group entities corresponding to src_cpu or
3034 * dest_cpu are members of a throttled hierarchy when performing group
3035 * load-balance operations.
3036 */
3037 static inline int throttled_lb_pair(struct task_group *tg,
3038 int src_cpu, int dest_cpu)
3039 {
3040 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3041
3042 src_cfs_rq = tg->cfs_rq[src_cpu];
3043 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3044
3045 return throttled_hierarchy(src_cfs_rq) ||
3046 throttled_hierarchy(dest_cfs_rq);
3047 }
3048
3049 /* updated child weight may affect parent so we have to do this bottom up */
3050 static int tg_unthrottle_up(struct task_group *tg, void *data)
3051 {
3052 struct rq *rq = data;
3053 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3054
3055 cfs_rq->throttle_count--;
3056 #ifdef CONFIG_SMP
3057 if (!cfs_rq->throttle_count) {
3058 /* adjust cfs_rq_clock_task() */
3059 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3060 cfs_rq->throttled_clock_task;
3061 }
3062 #endif
3063
3064 return 0;
3065 }
3066
3067 static int tg_throttle_down(struct task_group *tg, void *data)
3068 {
3069 struct rq *rq = data;
3070 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3071
3072 /* group is entering throttled state, stop time */
3073 if (!cfs_rq->throttle_count)
3074 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3075 cfs_rq->throttle_count++;
3076
3077 return 0;
3078 }
3079
3080 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3081 {
3082 struct rq *rq = rq_of(cfs_rq);
3083 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3084 struct sched_entity *se;
3085 long task_delta, dequeue = 1;
3086
3087 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3088
3089 /* freeze hierarchy runnable averages while throttled */
3090 rcu_read_lock();
3091 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3092 rcu_read_unlock();
3093
3094 task_delta = cfs_rq->h_nr_running;
3095 for_each_sched_entity(se) {
3096 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3097 /* throttled entity or throttle-on-deactivate */
3098 if (!se->on_rq)
3099 break;
3100
3101 if (dequeue)
3102 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3103 qcfs_rq->h_nr_running -= task_delta;
3104
3105 if (qcfs_rq->load.weight)
3106 dequeue = 0;
3107 }
3108
3109 if (!se)
3110 rq->nr_running -= task_delta;
3111
3112 cfs_rq->throttled = 1;
3113 cfs_rq->throttled_clock = rq_clock(rq);
3114 raw_spin_lock(&cfs_b->lock);
3115 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3116 if (!cfs_b->timer_active)
3117 __start_cfs_bandwidth(cfs_b);
3118 raw_spin_unlock(&cfs_b->lock);
3119 }
3120
3121 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3122 {
3123 struct rq *rq = rq_of(cfs_rq);
3124 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3125 struct sched_entity *se;
3126 int enqueue = 1;
3127 long task_delta;
3128
3129 se = cfs_rq->tg->se[cpu_of(rq)];
3130
3131 cfs_rq->throttled = 0;
3132
3133 update_rq_clock(rq);
3134
3135 raw_spin_lock(&cfs_b->lock);
3136 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3137 list_del_rcu(&cfs_rq->throttled_list);
3138 raw_spin_unlock(&cfs_b->lock);
3139
3140 /* update hierarchical throttle state */
3141 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3142
3143 if (!cfs_rq->load.weight)
3144 return;
3145
3146 task_delta = cfs_rq->h_nr_running;
3147 for_each_sched_entity(se) {
3148 if (se->on_rq)
3149 enqueue = 0;
3150
3151 cfs_rq = cfs_rq_of(se);
3152 if (enqueue)
3153 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3154 cfs_rq->h_nr_running += task_delta;
3155
3156 if (cfs_rq_throttled(cfs_rq))
3157 break;
3158 }
3159
3160 if (!se)
3161 rq->nr_running += task_delta;
3162
3163 /* determine whether we need to wake up potentially idle cpu */
3164 if (rq->curr == rq->idle && rq->cfs.nr_running)
3165 resched_task(rq->curr);
3166 }
3167
3168 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3169 u64 remaining, u64 expires)
3170 {
3171 struct cfs_rq *cfs_rq;
3172 u64 runtime = remaining;
3173
3174 rcu_read_lock();
3175 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3176 throttled_list) {
3177 struct rq *rq = rq_of(cfs_rq);
3178
3179 raw_spin_lock(&rq->lock);
3180 if (!cfs_rq_throttled(cfs_rq))
3181 goto next;
3182
3183 runtime = -cfs_rq->runtime_remaining + 1;
3184 if (runtime > remaining)
3185 runtime = remaining;
3186 remaining -= runtime;
3187
3188 cfs_rq->runtime_remaining += runtime;
3189 cfs_rq->runtime_expires = expires;
3190
3191 /* we check whether we're throttled above */
3192 if (cfs_rq->runtime_remaining > 0)
3193 unthrottle_cfs_rq(cfs_rq);
3194
3195 next:
3196 raw_spin_unlock(&rq->lock);
3197
3198 if (!remaining)
3199 break;
3200 }
3201 rcu_read_unlock();
3202
3203 return remaining;
3204 }
3205
3206 /*
3207 * Responsible for refilling a task_group's bandwidth and unthrottling its
3208 * cfs_rqs as appropriate. If there has been no activity within the last
3209 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3210 * used to track this state.
3211 */
3212 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3213 {
3214 u64 runtime, runtime_expires;
3215 int idle = 1, throttled;
3216
3217 raw_spin_lock(&cfs_b->lock);
3218 /* no need to continue the timer with no bandwidth constraint */
3219 if (cfs_b->quota == RUNTIME_INF)
3220 goto out_unlock;
3221
3222 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3223 /* idle depends on !throttled (for the case of a large deficit) */
3224 idle = cfs_b->idle && !throttled;
3225 cfs_b->nr_periods += overrun;
3226
3227 /* if we're going inactive then everything else can be deferred */
3228 if (idle)
3229 goto out_unlock;
3230
3231 /*
3232 * if we have relooped after returning idle once, we need to update our
3233 * status as actually running, so that other cpus doing
3234 * __start_cfs_bandwidth will stop trying to cancel us.
3235 */
3236 cfs_b->timer_active = 1;
3237
3238 __refill_cfs_bandwidth_runtime(cfs_b);
3239
3240 if (!throttled) {
3241 /* mark as potentially idle for the upcoming period */
3242 cfs_b->idle = 1;
3243 goto out_unlock;
3244 }
3245
3246 /* account preceding periods in which throttling occurred */
3247 cfs_b->nr_throttled += overrun;
3248
3249 /*
3250 * There are throttled entities so we must first use the new bandwidth
3251 * to unthrottle them before making it generally available. This
3252 * ensures that all existing debts will be paid before a new cfs_rq is
3253 * allowed to run.
3254 */
3255 runtime = cfs_b->runtime;
3256 runtime_expires = cfs_b->runtime_expires;
3257 cfs_b->runtime = 0;
3258
3259 /*
3260 * This check is repeated as we are holding onto the new bandwidth
3261 * while we unthrottle. This can potentially race with an unthrottled
3262 * group trying to acquire new bandwidth from the global pool.
3263 */
3264 while (throttled && runtime > 0) {
3265 raw_spin_unlock(&cfs_b->lock);
3266 /* we can't nest cfs_b->lock while distributing bandwidth */
3267 runtime = distribute_cfs_runtime(cfs_b, runtime,
3268 runtime_expires);
3269 raw_spin_lock(&cfs_b->lock);
3270
3271 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3272 }
3273
3274 /* return (any) remaining runtime */
3275 cfs_b->runtime = runtime;
3276 /*
3277 * While we are ensured activity in the period following an
3278 * unthrottle, this also covers the case in which the new bandwidth is
3279 * insufficient to cover the existing bandwidth deficit. (Forcing the
3280 * timer to remain active while there are any throttled entities.)
3281 */
3282 cfs_b->idle = 0;
3283 out_unlock:
3284 if (idle)
3285 cfs_b->timer_active = 0;
3286 raw_spin_unlock(&cfs_b->lock);
3287
3288 return idle;
3289 }
3290
3291 /* a cfs_rq won't donate quota below this amount */
3292 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3293 /* minimum remaining period time to redistribute slack quota */
3294 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3295 /* how long we wait to gather additional slack before distributing */
3296 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3297
3298 /*
3299 * Are we near the end of the current quota period?
3300 *
3301 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3302 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3303 * migrate_hrtimers, base is never cleared, so we are fine.
3304 */
3305 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3306 {
3307 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3308 u64 remaining;
3309
3310 /* if the call-back is running a quota refresh is already occurring */
3311 if (hrtimer_callback_running(refresh_timer))
3312 return 1;
3313
3314 /* is a quota refresh about to occur? */
3315 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3316 if (remaining < min_expire)
3317 return 1;
3318
3319 return 0;
3320 }
3321
3322 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3323 {
3324 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3325
3326 /* if there's a quota refresh soon don't bother with slack */
3327 if (runtime_refresh_within(cfs_b, min_left))
3328 return;
3329
3330 start_bandwidth_timer(&cfs_b->slack_timer,
3331 ns_to_ktime(cfs_bandwidth_slack_period));
3332 }
3333
3334 /* we know any runtime found here is valid as update_curr() precedes return */
3335 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3336 {
3337 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3338 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3339
3340 if (slack_runtime <= 0)
3341 return;
3342
3343 raw_spin_lock(&cfs_b->lock);
3344 if (cfs_b->quota != RUNTIME_INF &&
3345 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3346 cfs_b->runtime += slack_runtime;
3347
3348 /* we are under rq->lock, defer unthrottling using a timer */
3349 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3350 !list_empty(&cfs_b->throttled_cfs_rq))
3351 start_cfs_slack_bandwidth(cfs_b);
3352 }
3353 raw_spin_unlock(&cfs_b->lock);
3354
3355 /* even if it's not valid for return we don't want to try again */
3356 cfs_rq->runtime_remaining -= slack_runtime;
3357 }
3358
3359 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3360 {
3361 if (!cfs_bandwidth_used())
3362 return;
3363
3364 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3365 return;
3366
3367 __return_cfs_rq_runtime(cfs_rq);
3368 }
3369
3370 /*
3371 * This is done with a timer (instead of inline with bandwidth return) since
3372 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3373 */
3374 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3375 {
3376 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3377 u64 expires;
3378
3379 /* confirm we're still not at a refresh boundary */
3380 raw_spin_lock(&cfs_b->lock);
3381 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3382 raw_spin_unlock(&cfs_b->lock);
3383 return;
3384 }
3385
3386 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3387 runtime = cfs_b->runtime;
3388 cfs_b->runtime = 0;
3389 }
3390 expires = cfs_b->runtime_expires;
3391 raw_spin_unlock(&cfs_b->lock);
3392
3393 if (!runtime)
3394 return;
3395
3396 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3397
3398 raw_spin_lock(&cfs_b->lock);
3399 if (expires == cfs_b->runtime_expires)
3400 cfs_b->runtime = runtime;
3401 raw_spin_unlock(&cfs_b->lock);
3402 }
3403
3404 /*
3405 * When a group wakes up we want to make sure that its quota is not already
3406 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3407 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3408 */
3409 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3410 {
3411 if (!cfs_bandwidth_used())
3412 return;
3413
3414 /* an active group must be handled by the update_curr()->put() path */
3415 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3416 return;
3417
3418 /* ensure the group is not already throttled */
3419 if (cfs_rq_throttled(cfs_rq))
3420 return;
3421
3422 /* update runtime allocation */
3423 account_cfs_rq_runtime(cfs_rq, 0);
3424 if (cfs_rq->runtime_remaining <= 0)
3425 throttle_cfs_rq(cfs_rq);
3426 }
3427
3428 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3429 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3430 {
3431 if (!cfs_bandwidth_used())
3432 return;
3433
3434 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3435 return;
3436
3437 /*
3438 * it's possible for a throttled entity to be forced into a running
3439 * state (e.g. set_curr_task), in this case we're finished.
3440 */
3441 if (cfs_rq_throttled(cfs_rq))
3442 return;
3443
3444 throttle_cfs_rq(cfs_rq);
3445 }
3446
3447 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3448 {
3449 struct cfs_bandwidth *cfs_b =
3450 container_of(timer, struct cfs_bandwidth, slack_timer);
3451 do_sched_cfs_slack_timer(cfs_b);
3452
3453 return HRTIMER_NORESTART;
3454 }
3455
3456 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3457 {
3458 struct cfs_bandwidth *cfs_b =
3459 container_of(timer, struct cfs_bandwidth, period_timer);
3460 ktime_t now;
3461 int overrun;
3462 int idle = 0;
3463
3464 for (;;) {
3465 now = hrtimer_cb_get_time(timer);
3466 overrun = hrtimer_forward(timer, now, cfs_b->period);
3467
3468 if (!overrun)
3469 break;
3470
3471 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3472 }
3473
3474 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3475 }
3476
3477 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3478 {
3479 raw_spin_lock_init(&cfs_b->lock);
3480 cfs_b->runtime = 0;
3481 cfs_b->quota = RUNTIME_INF;
3482 cfs_b->period = ns_to_ktime(default_cfs_period());
3483
3484 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3485 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3486 cfs_b->period_timer.function = sched_cfs_period_timer;
3487 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3488 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3489 }
3490
3491 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3492 {
3493 cfs_rq->runtime_enabled = 0;
3494 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3495 }
3496
3497 /* requires cfs_b->lock, may release to reprogram timer */
3498 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3499 {
3500 /*
3501 * The timer may be active because we're trying to set a new bandwidth
3502 * period or because we're racing with the tear-down path
3503 * (timer_active==0 becomes visible before the hrtimer call-back
3504 * terminates). In either case we ensure that it's re-programmed
3505 */
3506 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3507 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3508 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3509 raw_spin_unlock(&cfs_b->lock);
3510 cpu_relax();
3511 raw_spin_lock(&cfs_b->lock);
3512 /* if someone else restarted the timer then we're done */
3513 if (cfs_b->timer_active)
3514 return;
3515 }
3516
3517 cfs_b->timer_active = 1;
3518 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3519 }
3520
3521 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3522 {
3523 hrtimer_cancel(&cfs_b->period_timer);
3524 hrtimer_cancel(&cfs_b->slack_timer);
3525 }
3526
3527 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3528 {
3529 struct cfs_rq *cfs_rq;
3530
3531 for_each_leaf_cfs_rq(rq, cfs_rq) {
3532 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3533
3534 if (!cfs_rq->runtime_enabled)
3535 continue;
3536
3537 /*
3538 * clock_task is not advancing so we just need to make sure
3539 * there's some valid quota amount
3540 */
3541 cfs_rq->runtime_remaining = cfs_b->quota;
3542 if (cfs_rq_throttled(cfs_rq))
3543 unthrottle_cfs_rq(cfs_rq);
3544 }
3545 }
3546
3547 #else /* CONFIG_CFS_BANDWIDTH */
3548 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3549 {
3550 return rq_clock_task(rq_of(cfs_rq));
3551 }
3552
3553 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3554 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3555 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3556 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3557
3558 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3559 {
3560 return 0;
3561 }
3562
3563 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3564 {
3565 return 0;
3566 }
3567
3568 static inline int throttled_lb_pair(struct task_group *tg,
3569 int src_cpu, int dest_cpu)
3570 {
3571 return 0;
3572 }
3573
3574 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3575
3576 #ifdef CONFIG_FAIR_GROUP_SCHED
3577 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3578 #endif
3579
3580 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3581 {
3582 return NULL;
3583 }
3584 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3585 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3586
3587 #endif /* CONFIG_CFS_BANDWIDTH */
3588
3589 /**************************************************
3590 * CFS operations on tasks:
3591 */
3592
3593 #ifdef CONFIG_SCHED_HRTICK
3594 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3595 {
3596 struct sched_entity *se = &p->se;
3597 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3598
3599 WARN_ON(task_rq(p) != rq);
3600
3601 if (cfs_rq->nr_running > 1) {
3602 u64 slice = sched_slice(cfs_rq, se);
3603 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3604 s64 delta = slice - ran;
3605
3606 if (delta < 0) {
3607 if (rq->curr == p)
3608 resched_task(p);
3609 return;
3610 }
3611
3612 /*
3613 * Don't schedule slices shorter than 10000ns, that just
3614 * doesn't make sense. Rely on vruntime for fairness.
3615 */
3616 if (rq->curr != p)
3617 delta = max_t(s64, 10000LL, delta);
3618
3619 hrtick_start(rq, delta);
3620 }
3621 }
3622
3623 /*
3624 * called from enqueue/dequeue and updates the hrtick when the
3625 * current task is from our class and nr_running is low enough
3626 * to matter.
3627 */
3628 static void hrtick_update(struct rq *rq)
3629 {
3630 struct task_struct *curr = rq->curr;
3631
3632 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3633 return;
3634
3635 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3636 hrtick_start_fair(rq, curr);
3637 }
3638 #else /* !CONFIG_SCHED_HRTICK */
3639 static inline void
3640 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3641 {
3642 }
3643
3644 static inline void hrtick_update(struct rq *rq)
3645 {
3646 }
3647 #endif
3648
3649 /*
3650 * The enqueue_task method is called before nr_running is
3651 * increased. Here we update the fair scheduling stats and
3652 * then put the task into the rbtree:
3653 */
3654 static void
3655 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3656 {
3657 struct cfs_rq *cfs_rq;
3658 struct sched_entity *se = &p->se;
3659
3660 for_each_sched_entity(se) {
3661 if (se->on_rq)
3662 break;
3663 cfs_rq = cfs_rq_of(se);
3664 enqueue_entity(cfs_rq, se, flags);
3665
3666 /*
3667 * end evaluation on encountering a throttled cfs_rq
3668 *
3669 * note: in the case of encountering a throttled cfs_rq we will
3670 * post the final h_nr_running increment below.
3671 */
3672 if (cfs_rq_throttled(cfs_rq))
3673 break;
3674 cfs_rq->h_nr_running++;
3675
3676 flags = ENQUEUE_WAKEUP;
3677 }
3678
3679 for_each_sched_entity(se) {
3680 cfs_rq = cfs_rq_of(se);
3681 cfs_rq->h_nr_running++;
3682
3683 if (cfs_rq_throttled(cfs_rq))
3684 break;
3685
3686 update_cfs_shares(cfs_rq);
3687 update_entity_load_avg(se, 1);
3688 }
3689
3690 if (!se) {
3691 update_rq_runnable_avg(rq, rq->nr_running);
3692 inc_nr_running(rq);
3693 }
3694 hrtick_update(rq);
3695 }
3696
3697 static void set_next_buddy(struct sched_entity *se);
3698
3699 /*
3700 * The dequeue_task method is called before nr_running is
3701 * decreased. We remove the task from the rbtree and
3702 * update the fair scheduling stats:
3703 */
3704 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3705 {
3706 struct cfs_rq *cfs_rq;
3707 struct sched_entity *se = &p->se;
3708 int task_sleep = flags & DEQUEUE_SLEEP;
3709
3710 for_each_sched_entity(se) {
3711 cfs_rq = cfs_rq_of(se);
3712 dequeue_entity(cfs_rq, se, flags);
3713
3714 /*
3715 * end evaluation on encountering a throttled cfs_rq
3716 *
3717 * note: in the case of encountering a throttled cfs_rq we will
3718 * post the final h_nr_running decrement below.
3719 */
3720 if (cfs_rq_throttled(cfs_rq))
3721 break;
3722 cfs_rq->h_nr_running--;
3723
3724 /* Don't dequeue parent if it has other entities besides us */
3725 if (cfs_rq->load.weight) {
3726 /*
3727 * Bias pick_next to pick a task from this cfs_rq, as
3728 * p is sleeping when it is within its sched_slice.
3729 */
3730 if (task_sleep && parent_entity(se))
3731 set_next_buddy(parent_entity(se));
3732
3733 /* avoid re-evaluating load for this entity */
3734 se = parent_entity(se);
3735 break;
3736 }
3737 flags |= DEQUEUE_SLEEP;
3738 }
3739
3740 for_each_sched_entity(se) {
3741 cfs_rq = cfs_rq_of(se);
3742 cfs_rq->h_nr_running--;
3743
3744 if (cfs_rq_throttled(cfs_rq))
3745 break;
3746
3747 update_cfs_shares(cfs_rq);
3748 update_entity_load_avg(se, 1);
3749 }
3750
3751 if (!se) {
3752 dec_nr_running(rq);
3753 update_rq_runnable_avg(rq, 1);
3754 }
3755 hrtick_update(rq);
3756 }
3757
3758 #ifdef CONFIG_SMP
3759 /* Used instead of source_load when we know the type == 0 */
3760 static unsigned long weighted_cpuload(const int cpu)
3761 {
3762 return cpu_rq(cpu)->cfs.runnable_load_avg;
3763 }
3764
3765 /*
3766 * Return a low guess at the load of a migration-source cpu weighted
3767 * according to the scheduling class and "nice" value.
3768 *
3769 * We want to under-estimate the load of migration sources, to
3770 * balance conservatively.
3771 */
3772 static unsigned long source_load(int cpu, int type)
3773 {
3774 struct rq *rq = cpu_rq(cpu);
3775 unsigned long total = weighted_cpuload(cpu);
3776
3777 if (type == 0 || !sched_feat(LB_BIAS))
3778 return total;
3779
3780 return min(rq->cpu_load[type-1], total);
3781 }
3782
3783 /*
3784 * Return a high guess at the load of a migration-target cpu weighted
3785 * according to the scheduling class and "nice" value.
3786 */
3787 static unsigned long target_load(int cpu, int type)
3788 {
3789 struct rq *rq = cpu_rq(cpu);
3790 unsigned long total = weighted_cpuload(cpu);
3791
3792 if (type == 0 || !sched_feat(LB_BIAS))
3793 return total;
3794
3795 return max(rq->cpu_load[type-1], total);
3796 }
3797
3798 static unsigned long power_of(int cpu)
3799 {
3800 return cpu_rq(cpu)->cpu_power;
3801 }
3802
3803 static unsigned long cpu_avg_load_per_task(int cpu)
3804 {
3805 struct rq *rq = cpu_rq(cpu);
3806 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3807 unsigned long load_avg = rq->cfs.runnable_load_avg;
3808
3809 if (nr_running)
3810 return load_avg / nr_running;
3811
3812 return 0;
3813 }
3814
3815 static void record_wakee(struct task_struct *p)
3816 {
3817 /*
3818 * Rough decay (wiping) for cost saving, don't worry
3819 * about the boundary, really active task won't care
3820 * about the loss.
3821 */
3822 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3823 current->wakee_flips = 0;
3824 current->wakee_flip_decay_ts = jiffies;
3825 }
3826
3827 if (current->last_wakee != p) {
3828 current->last_wakee = p;
3829 current->wakee_flips++;
3830 }
3831 }
3832
3833 static void task_waking_fair(struct task_struct *p)
3834 {
3835 struct sched_entity *se = &p->se;
3836 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3837 u64 min_vruntime;
3838
3839 #ifndef CONFIG_64BIT
3840 u64 min_vruntime_copy;
3841
3842 do {
3843 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3844 smp_rmb();
3845 min_vruntime = cfs_rq->min_vruntime;
3846 } while (min_vruntime != min_vruntime_copy);
3847 #else
3848 min_vruntime = cfs_rq->min_vruntime;
3849 #endif
3850
3851 se->vruntime -= min_vruntime;
3852 record_wakee(p);
3853 }
3854
3855 #ifdef CONFIG_FAIR_GROUP_SCHED
3856 /*
3857 * effective_load() calculates the load change as seen from the root_task_group
3858 *
3859 * Adding load to a group doesn't make a group heavier, but can cause movement
3860 * of group shares between cpus. Assuming the shares were perfectly aligned one
3861 * can calculate the shift in shares.
3862 *
3863 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3864 * on this @cpu and results in a total addition (subtraction) of @wg to the
3865 * total group weight.
3866 *
3867 * Given a runqueue weight distribution (rw_i) we can compute a shares
3868 * distribution (s_i) using:
3869 *
3870 * s_i = rw_i / \Sum rw_j (1)
3871 *
3872 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3873 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3874 * shares distribution (s_i):
3875 *
3876 * rw_i = { 2, 4, 1, 0 }
3877 * s_i = { 2/7, 4/7, 1/7, 0 }
3878 *
3879 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3880 * task used to run on and the CPU the waker is running on), we need to
3881 * compute the effect of waking a task on either CPU and, in case of a sync
3882 * wakeup, compute the effect of the current task going to sleep.
3883 *
3884 * So for a change of @wl to the local @cpu with an overall group weight change
3885 * of @wl we can compute the new shares distribution (s'_i) using:
3886 *
3887 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3888 *
3889 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3890 * differences in waking a task to CPU 0. The additional task changes the
3891 * weight and shares distributions like:
3892 *
3893 * rw'_i = { 3, 4, 1, 0 }
3894 * s'_i = { 3/8, 4/8, 1/8, 0 }
3895 *
3896 * We can then compute the difference in effective weight by using:
3897 *
3898 * dw_i = S * (s'_i - s_i) (3)
3899 *
3900 * Where 'S' is the group weight as seen by its parent.
3901 *
3902 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3903 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3904 * 4/7) times the weight of the group.
3905 */
3906 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3907 {
3908 struct sched_entity *se = tg->se[cpu];
3909
3910 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
3911 return wl;
3912
3913 for_each_sched_entity(se) {
3914 long w, W;
3915
3916 tg = se->my_q->tg;
3917
3918 /*
3919 * W = @wg + \Sum rw_j
3920 */
3921 W = wg + calc_tg_weight(tg, se->my_q);
3922
3923 /*
3924 * w = rw_i + @wl
3925 */
3926 w = se->my_q->load.weight + wl;
3927
3928 /*
3929 * wl = S * s'_i; see (2)
3930 */
3931 if (W > 0 && w < W)
3932 wl = (w * tg->shares) / W;
3933 else
3934 wl = tg->shares;
3935
3936 /*
3937 * Per the above, wl is the new se->load.weight value; since
3938 * those are clipped to [MIN_SHARES, ...) do so now. See
3939 * calc_cfs_shares().
3940 */
3941 if (wl < MIN_SHARES)
3942 wl = MIN_SHARES;
3943
3944 /*
3945 * wl = dw_i = S * (s'_i - s_i); see (3)
3946 */
3947 wl -= se->load.weight;
3948
3949 /*
3950 * Recursively apply this logic to all parent groups to compute
3951 * the final effective load change on the root group. Since
3952 * only the @tg group gets extra weight, all parent groups can
3953 * only redistribute existing shares. @wl is the shift in shares
3954 * resulting from this level per the above.
3955 */
3956 wg = 0;
3957 }
3958
3959 return wl;
3960 }
3961 #else
3962
3963 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3964 {
3965 return wl;
3966 }
3967
3968 #endif
3969
3970 static int wake_wide(struct task_struct *p)
3971 {
3972 int factor = this_cpu_read(sd_llc_size);
3973
3974 /*
3975 * Yeah, it's the switching-frequency, could means many wakee or
3976 * rapidly switch, use factor here will just help to automatically
3977 * adjust the loose-degree, so bigger node will lead to more pull.
3978 */
3979 if (p->wakee_flips > factor) {
3980 /*
3981 * wakee is somewhat hot, it needs certain amount of cpu
3982 * resource, so if waker is far more hot, prefer to leave
3983 * it alone.
3984 */
3985 if (current->wakee_flips > (factor * p->wakee_flips))
3986 return 1;
3987 }
3988
3989 return 0;
3990 }
3991
3992 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3993 {
3994 s64 this_load, load;
3995 int idx, this_cpu, prev_cpu;
3996 unsigned long tl_per_task;
3997 struct task_group *tg;
3998 unsigned long weight;
3999 int balanced;
4000
4001 /*
4002 * If we wake multiple tasks be careful to not bounce
4003 * ourselves around too much.
4004 */
4005 if (wake_wide(p))
4006 return 0;
4007
4008 idx = sd->wake_idx;
4009 this_cpu = smp_processor_id();
4010 prev_cpu = task_cpu(p);
4011 load = source_load(prev_cpu, idx);
4012 this_load = target_load(this_cpu, idx);
4013
4014 /*
4015 * If sync wakeup then subtract the (maximum possible)
4016 * effect of the currently running task from the load
4017 * of the current CPU:
4018 */
4019 if (sync) {
4020 tg = task_group(current);
4021 weight = current->se.load.weight;
4022
4023 this_load += effective_load(tg, this_cpu, -weight, -weight);
4024 load += effective_load(tg, prev_cpu, 0, -weight);
4025 }
4026
4027 tg = task_group(p);
4028 weight = p->se.load.weight;
4029
4030 /*
4031 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4032 * due to the sync cause above having dropped this_load to 0, we'll
4033 * always have an imbalance, but there's really nothing you can do
4034 * about that, so that's good too.
4035 *
4036 * Otherwise check if either cpus are near enough in load to allow this
4037 * task to be woken on this_cpu.
4038 */
4039 if (this_load > 0) {
4040 s64 this_eff_load, prev_eff_load;
4041
4042 this_eff_load = 100;
4043 this_eff_load *= power_of(prev_cpu);
4044 this_eff_load *= this_load +
4045 effective_load(tg, this_cpu, weight, weight);
4046
4047 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4048 prev_eff_load *= power_of(this_cpu);
4049 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4050
4051 balanced = this_eff_load <= prev_eff_load;
4052 } else
4053 balanced = true;
4054
4055 /*
4056 * If the currently running task will sleep within
4057 * a reasonable amount of time then attract this newly
4058 * woken task:
4059 */
4060 if (sync && balanced)
4061 return 1;
4062
4063 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4064 tl_per_task = cpu_avg_load_per_task(this_cpu);
4065
4066 if (balanced ||
4067 (this_load <= load &&
4068 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4069 /*
4070 * This domain has SD_WAKE_AFFINE and
4071 * p is cache cold in this domain, and
4072 * there is no bad imbalance.
4073 */
4074 schedstat_inc(sd, ttwu_move_affine);
4075 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4076
4077 return 1;
4078 }
4079 return 0;
4080 }
4081
4082 /*
4083 * find_idlest_group finds and returns the least busy CPU group within the
4084 * domain.
4085 */
4086 static struct sched_group *
4087 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4088 int this_cpu, int sd_flag)
4089 {
4090 struct sched_group *idlest = NULL, *group = sd->groups;
4091 unsigned long min_load = ULONG_MAX, this_load = 0;
4092 int load_idx = sd->forkexec_idx;
4093 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4094
4095 if (sd_flag & SD_BALANCE_WAKE)
4096 load_idx = sd->wake_idx;
4097
4098 do {
4099 unsigned long load, avg_load;
4100 int local_group;
4101 int i;
4102
4103 /* Skip over this group if it has no CPUs allowed */
4104 if (!cpumask_intersects(sched_group_cpus(group),
4105 tsk_cpus_allowed(p)))
4106 continue;
4107
4108 local_group = cpumask_test_cpu(this_cpu,
4109 sched_group_cpus(group));
4110
4111 /* Tally up the load of all CPUs in the group */
4112 avg_load = 0;
4113
4114 for_each_cpu(i, sched_group_cpus(group)) {
4115 /* Bias balancing toward cpus of our domain */
4116 if (local_group)
4117 load = source_load(i, load_idx);
4118 else
4119 load = target_load(i, load_idx);
4120
4121 avg_load += load;
4122 }
4123
4124 /* Adjust by relative CPU power of the group */
4125 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4126
4127 if (local_group) {
4128 this_load = avg_load;
4129 } else if (avg_load < min_load) {
4130 min_load = avg_load;
4131 idlest = group;
4132 }
4133 } while (group = group->next, group != sd->groups);
4134
4135 if (!idlest || 100*this_load < imbalance*min_load)
4136 return NULL;
4137 return idlest;
4138 }
4139
4140 /*
4141 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4142 */
4143 static int
4144 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4145 {
4146 unsigned long load, min_load = ULONG_MAX;
4147 int idlest = -1;
4148 int i;
4149
4150 /* Traverse only the allowed CPUs */
4151 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4152 load = weighted_cpuload(i);
4153
4154 if (load < min_load || (load == min_load && i == this_cpu)) {
4155 min_load = load;
4156 idlest = i;
4157 }
4158 }
4159
4160 return idlest;
4161 }
4162
4163 /*
4164 * Try and locate an idle CPU in the sched_domain.
4165 */
4166 static int select_idle_sibling(struct task_struct *p, int target)
4167 {
4168 struct sched_domain *sd;
4169 struct sched_group *sg;
4170 int i = task_cpu(p);
4171
4172 if (idle_cpu(target))
4173 return target;
4174
4175 /*
4176 * If the prevous cpu is cache affine and idle, don't be stupid.
4177 */
4178 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4179 return i;
4180
4181 /*
4182 * Otherwise, iterate the domains and find an elegible idle cpu.
4183 */
4184 sd = rcu_dereference(per_cpu(sd_llc, target));
4185 for_each_lower_domain(sd) {
4186 sg = sd->groups;
4187 do {
4188 if (!cpumask_intersects(sched_group_cpus(sg),
4189 tsk_cpus_allowed(p)))
4190 goto next;
4191
4192 for_each_cpu(i, sched_group_cpus(sg)) {
4193 if (i == target || !idle_cpu(i))
4194 goto next;
4195 }
4196
4197 target = cpumask_first_and(sched_group_cpus(sg),
4198 tsk_cpus_allowed(p));
4199 goto done;
4200 next:
4201 sg = sg->next;
4202 } while (sg != sd->groups);
4203 }
4204 done:
4205 return target;
4206 }
4207
4208 /*
4209 * sched_balance_self: balance the current task (running on cpu) in domains
4210 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4211 * SD_BALANCE_EXEC.
4212 *
4213 * Balance, ie. select the least loaded group.
4214 *
4215 * Returns the target CPU number, or the same CPU if no balancing is needed.
4216 *
4217 * preempt must be disabled.
4218 */
4219 static int
4220 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4221 {
4222 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4223 int cpu = smp_processor_id();
4224 int new_cpu = cpu;
4225 int want_affine = 0;
4226 int sync = wake_flags & WF_SYNC;
4227
4228 if (p->nr_cpus_allowed == 1)
4229 return prev_cpu;
4230
4231 if (sd_flag & SD_BALANCE_WAKE) {
4232 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4233 want_affine = 1;
4234 new_cpu = prev_cpu;
4235 }
4236
4237 rcu_read_lock();
4238 for_each_domain(cpu, tmp) {
4239 if (!(tmp->flags & SD_LOAD_BALANCE))
4240 continue;
4241
4242 /*
4243 * If both cpu and prev_cpu are part of this domain,
4244 * cpu is a valid SD_WAKE_AFFINE target.
4245 */
4246 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4247 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4248 affine_sd = tmp;
4249 break;
4250 }
4251
4252 if (tmp->flags & sd_flag)
4253 sd = tmp;
4254 }
4255
4256 if (affine_sd) {
4257 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4258 prev_cpu = cpu;
4259
4260 new_cpu = select_idle_sibling(p, prev_cpu);
4261 goto unlock;
4262 }
4263
4264 while (sd) {
4265 struct sched_group *group;
4266 int weight;
4267
4268 if (!(sd->flags & sd_flag)) {
4269 sd = sd->child;
4270 continue;
4271 }
4272
4273 group = find_idlest_group(sd, p, cpu, sd_flag);
4274 if (!group) {
4275 sd = sd->child;
4276 continue;
4277 }
4278
4279 new_cpu = find_idlest_cpu(group, p, cpu);
4280 if (new_cpu == -1 || new_cpu == cpu) {
4281 /* Now try balancing at a lower domain level of cpu */
4282 sd = sd->child;
4283 continue;
4284 }
4285
4286 /* Now try balancing at a lower domain level of new_cpu */
4287 cpu = new_cpu;
4288 weight = sd->span_weight;
4289 sd = NULL;
4290 for_each_domain(cpu, tmp) {
4291 if (weight <= tmp->span_weight)
4292 break;
4293 if (tmp->flags & sd_flag)
4294 sd = tmp;
4295 }
4296 /* while loop will break here if sd == NULL */
4297 }
4298 unlock:
4299 rcu_read_unlock();
4300
4301 return new_cpu;
4302 }
4303
4304 /*
4305 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4306 * cfs_rq_of(p) references at time of call are still valid and identify the
4307 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4308 * other assumptions, including the state of rq->lock, should be made.
4309 */
4310 static void
4311 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4312 {
4313 struct sched_entity *se = &p->se;
4314 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4315
4316 /*
4317 * Load tracking: accumulate removed load so that it can be processed
4318 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4319 * to blocked load iff they have a positive decay-count. It can never
4320 * be negative here since on-rq tasks have decay-count == 0.
4321 */
4322 if (se->avg.decay_count) {
4323 se->avg.decay_count = -__synchronize_entity_decay(se);
4324 atomic_long_add(se->avg.load_avg_contrib,
4325 &cfs_rq->removed_load);
4326 }
4327 }
4328 #endif /* CONFIG_SMP */
4329
4330 static unsigned long
4331 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4332 {
4333 unsigned long gran = sysctl_sched_wakeup_granularity;
4334
4335 /*
4336 * Since its curr running now, convert the gran from real-time
4337 * to virtual-time in his units.
4338 *
4339 * By using 'se' instead of 'curr' we penalize light tasks, so
4340 * they get preempted easier. That is, if 'se' < 'curr' then
4341 * the resulting gran will be larger, therefore penalizing the
4342 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4343 * be smaller, again penalizing the lighter task.
4344 *
4345 * This is especially important for buddies when the leftmost
4346 * task is higher priority than the buddy.
4347 */
4348 return calc_delta_fair(gran, se);
4349 }
4350
4351 /*
4352 * Should 'se' preempt 'curr'.
4353 *
4354 * |s1
4355 * |s2
4356 * |s3
4357 * g
4358 * |<--->|c
4359 *
4360 * w(c, s1) = -1
4361 * w(c, s2) = 0
4362 * w(c, s3) = 1
4363 *
4364 */
4365 static int
4366 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4367 {
4368 s64 gran, vdiff = curr->vruntime - se->vruntime;
4369
4370 if (vdiff <= 0)
4371 return -1;
4372
4373 gran = wakeup_gran(curr, se);
4374 if (vdiff > gran)
4375 return 1;
4376
4377 return 0;
4378 }
4379
4380 static void set_last_buddy(struct sched_entity *se)
4381 {
4382 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4383 return;
4384
4385 for_each_sched_entity(se)
4386 cfs_rq_of(se)->last = se;
4387 }
4388
4389 static void set_next_buddy(struct sched_entity *se)
4390 {
4391 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4392 return;
4393
4394 for_each_sched_entity(se)
4395 cfs_rq_of(se)->next = se;
4396 }
4397
4398 static void set_skip_buddy(struct sched_entity *se)
4399 {
4400 for_each_sched_entity(se)
4401 cfs_rq_of(se)->skip = se;
4402 }
4403
4404 /*
4405 * Preempt the current task with a newly woken task if needed:
4406 */
4407 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4408 {
4409 struct task_struct *curr = rq->curr;
4410 struct sched_entity *se = &curr->se, *pse = &p->se;
4411 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4412 int scale = cfs_rq->nr_running >= sched_nr_latency;
4413 int next_buddy_marked = 0;
4414
4415 if (unlikely(se == pse))
4416 return;
4417
4418 /*
4419 * This is possible from callers such as move_task(), in which we
4420 * unconditionally check_prempt_curr() after an enqueue (which may have
4421 * lead to a throttle). This both saves work and prevents false
4422 * next-buddy nomination below.
4423 */
4424 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4425 return;
4426
4427 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4428 set_next_buddy(pse);
4429 next_buddy_marked = 1;
4430 }
4431
4432 /*
4433 * We can come here with TIF_NEED_RESCHED already set from new task
4434 * wake up path.
4435 *
4436 * Note: this also catches the edge-case of curr being in a throttled
4437 * group (e.g. via set_curr_task), since update_curr() (in the
4438 * enqueue of curr) will have resulted in resched being set. This
4439 * prevents us from potentially nominating it as a false LAST_BUDDY
4440 * below.
4441 */
4442 if (test_tsk_need_resched(curr))
4443 return;
4444
4445 /* Idle tasks are by definition preempted by non-idle tasks. */
4446 if (unlikely(curr->policy == SCHED_IDLE) &&
4447 likely(p->policy != SCHED_IDLE))
4448 goto preempt;
4449
4450 /*
4451 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4452 * is driven by the tick):
4453 */
4454 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4455 return;
4456
4457 find_matching_se(&se, &pse);
4458 update_curr(cfs_rq_of(se));
4459 BUG_ON(!pse);
4460 if (wakeup_preempt_entity(se, pse) == 1) {
4461 /*
4462 * Bias pick_next to pick the sched entity that is
4463 * triggering this preemption.
4464 */
4465 if (!next_buddy_marked)
4466 set_next_buddy(pse);
4467 goto preempt;
4468 }
4469
4470 return;
4471
4472 preempt:
4473 resched_task(curr);
4474 /*
4475 * Only set the backward buddy when the current task is still
4476 * on the rq. This can happen when a wakeup gets interleaved
4477 * with schedule on the ->pre_schedule() or idle_balance()
4478 * point, either of which can * drop the rq lock.
4479 *
4480 * Also, during early boot the idle thread is in the fair class,
4481 * for obvious reasons its a bad idea to schedule back to it.
4482 */
4483 if (unlikely(!se->on_rq || curr == rq->idle))
4484 return;
4485
4486 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4487 set_last_buddy(se);
4488 }
4489
4490 static struct task_struct *pick_next_task_fair(struct rq *rq)
4491 {
4492 struct task_struct *p;
4493 struct cfs_rq *cfs_rq = &rq->cfs;
4494 struct sched_entity *se;
4495
4496 if (!cfs_rq->nr_running)
4497 return NULL;
4498
4499 do {
4500 se = pick_next_entity(cfs_rq);
4501 set_next_entity(cfs_rq, se);
4502 cfs_rq = group_cfs_rq(se);
4503 } while (cfs_rq);
4504
4505 p = task_of(se);
4506 if (hrtick_enabled(rq))
4507 hrtick_start_fair(rq, p);
4508
4509 return p;
4510 }
4511
4512 /*
4513 * Account for a descheduled task:
4514 */
4515 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4516 {
4517 struct sched_entity *se = &prev->se;
4518 struct cfs_rq *cfs_rq;
4519
4520 for_each_sched_entity(se) {
4521 cfs_rq = cfs_rq_of(se);
4522 put_prev_entity(cfs_rq, se);
4523 }
4524 }
4525
4526 /*
4527 * sched_yield() is very simple
4528 *
4529 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4530 */
4531 static void yield_task_fair(struct rq *rq)
4532 {
4533 struct task_struct *curr = rq->curr;
4534 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4535 struct sched_entity *se = &curr->se;
4536
4537 /*
4538 * Are we the only task in the tree?
4539 */
4540 if (unlikely(rq->nr_running == 1))
4541 return;
4542
4543 clear_buddies(cfs_rq, se);
4544
4545 if (curr->policy != SCHED_BATCH) {
4546 update_rq_clock(rq);
4547 /*
4548 * Update run-time statistics of the 'current'.
4549 */
4550 update_curr(cfs_rq);
4551 /*
4552 * Tell update_rq_clock() that we've just updated,
4553 * so we don't do microscopic update in schedule()
4554 * and double the fastpath cost.
4555 */
4556 rq->skip_clock_update = 1;
4557 }
4558
4559 set_skip_buddy(se);
4560 }
4561
4562 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4563 {
4564 struct sched_entity *se = &p->se;
4565
4566 /* throttled hierarchies are not runnable */
4567 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4568 return false;
4569
4570 /* Tell the scheduler that we'd really like pse to run next. */
4571 set_next_buddy(se);
4572
4573 yield_task_fair(rq);
4574
4575 return true;
4576 }
4577
4578 #ifdef CONFIG_SMP
4579 /**************************************************
4580 * Fair scheduling class load-balancing methods.
4581 *
4582 * BASICS
4583 *
4584 * The purpose of load-balancing is to achieve the same basic fairness the
4585 * per-cpu scheduler provides, namely provide a proportional amount of compute
4586 * time to each task. This is expressed in the following equation:
4587 *
4588 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4589 *
4590 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4591 * W_i,0 is defined as:
4592 *
4593 * W_i,0 = \Sum_j w_i,j (2)
4594 *
4595 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4596 * is derived from the nice value as per prio_to_weight[].
4597 *
4598 * The weight average is an exponential decay average of the instantaneous
4599 * weight:
4600 *
4601 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4602 *
4603 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4604 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4605 * can also include other factors [XXX].
4606 *
4607 * To achieve this balance we define a measure of imbalance which follows
4608 * directly from (1):
4609 *
4610 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4611 *
4612 * We them move tasks around to minimize the imbalance. In the continuous
4613 * function space it is obvious this converges, in the discrete case we get
4614 * a few fun cases generally called infeasible weight scenarios.
4615 *
4616 * [XXX expand on:
4617 * - infeasible weights;
4618 * - local vs global optima in the discrete case. ]
4619 *
4620 *
4621 * SCHED DOMAINS
4622 *
4623 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4624 * for all i,j solution, we create a tree of cpus that follows the hardware
4625 * topology where each level pairs two lower groups (or better). This results
4626 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4627 * tree to only the first of the previous level and we decrease the frequency
4628 * of load-balance at each level inv. proportional to the number of cpus in
4629 * the groups.
4630 *
4631 * This yields:
4632 *
4633 * log_2 n 1 n
4634 * \Sum { --- * --- * 2^i } = O(n) (5)
4635 * i = 0 2^i 2^i
4636 * `- size of each group
4637 * | | `- number of cpus doing load-balance
4638 * | `- freq
4639 * `- sum over all levels
4640 *
4641 * Coupled with a limit on how many tasks we can migrate every balance pass,
4642 * this makes (5) the runtime complexity of the balancer.
4643 *
4644 * An important property here is that each CPU is still (indirectly) connected
4645 * to every other cpu in at most O(log n) steps:
4646 *
4647 * The adjacency matrix of the resulting graph is given by:
4648 *
4649 * log_2 n
4650 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4651 * k = 0
4652 *
4653 * And you'll find that:
4654 *
4655 * A^(log_2 n)_i,j != 0 for all i,j (7)
4656 *
4657 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4658 * The task movement gives a factor of O(m), giving a convergence complexity
4659 * of:
4660 *
4661 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4662 *
4663 *
4664 * WORK CONSERVING
4665 *
4666 * In order to avoid CPUs going idle while there's still work to do, new idle
4667 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4668 * tree itself instead of relying on other CPUs to bring it work.
4669 *
4670 * This adds some complexity to both (5) and (8) but it reduces the total idle
4671 * time.
4672 *
4673 * [XXX more?]
4674 *
4675 *
4676 * CGROUPS
4677 *
4678 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4679 *
4680 * s_k,i
4681 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4682 * S_k
4683 *
4684 * Where
4685 *
4686 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4687 *
4688 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4689 *
4690 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4691 * property.
4692 *
4693 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4694 * rewrite all of this once again.]
4695 */
4696
4697 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4698
4699 enum fbq_type { regular, remote, all };
4700
4701 #define LBF_ALL_PINNED 0x01
4702 #define LBF_NEED_BREAK 0x02
4703 #define LBF_DST_PINNED 0x04
4704 #define LBF_SOME_PINNED 0x08
4705
4706 struct lb_env {
4707 struct sched_domain *sd;
4708
4709 struct rq *src_rq;
4710 int src_cpu;
4711
4712 int dst_cpu;
4713 struct rq *dst_rq;
4714
4715 struct cpumask *dst_grpmask;
4716 int new_dst_cpu;
4717 enum cpu_idle_type idle;
4718 long imbalance;
4719 /* The set of CPUs under consideration for load-balancing */
4720 struct cpumask *cpus;
4721
4722 unsigned int flags;
4723
4724 unsigned int loop;
4725 unsigned int loop_break;
4726 unsigned int loop_max;
4727
4728 enum fbq_type fbq_type;
4729 };
4730
4731 /*
4732 * move_task - move a task from one runqueue to another runqueue.
4733 * Both runqueues must be locked.
4734 */
4735 static void move_task(struct task_struct *p, struct lb_env *env)
4736 {
4737 deactivate_task(env->src_rq, p, 0);
4738 set_task_cpu(p, env->dst_cpu);
4739 activate_task(env->dst_rq, p, 0);
4740 check_preempt_curr(env->dst_rq, p, 0);
4741 }
4742
4743 /*
4744 * Is this task likely cache-hot:
4745 */
4746 static int
4747 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4748 {
4749 s64 delta;
4750
4751 if (p->sched_class != &fair_sched_class)
4752 return 0;
4753
4754 if (unlikely(p->policy == SCHED_IDLE))
4755 return 0;
4756
4757 /*
4758 * Buddy candidates are cache hot:
4759 */
4760 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4761 (&p->se == cfs_rq_of(&p->se)->next ||
4762 &p->se == cfs_rq_of(&p->se)->last))
4763 return 1;
4764
4765 if (sysctl_sched_migration_cost == -1)
4766 return 1;
4767 if (sysctl_sched_migration_cost == 0)
4768 return 0;
4769
4770 delta = now - p->se.exec_start;
4771
4772 return delta < (s64)sysctl_sched_migration_cost;
4773 }
4774
4775 #ifdef CONFIG_NUMA_BALANCING
4776 /* Returns true if the destination node has incurred more faults */
4777 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4778 {
4779 int src_nid, dst_nid;
4780
4781 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4782 !(env->sd->flags & SD_NUMA)) {
4783 return false;
4784 }
4785
4786 src_nid = cpu_to_node(env->src_cpu);
4787 dst_nid = cpu_to_node(env->dst_cpu);
4788
4789 if (src_nid == dst_nid)
4790 return false;
4791
4792 /* Always encourage migration to the preferred node. */
4793 if (dst_nid == p->numa_preferred_nid)
4794 return true;
4795
4796 /* If both task and group weight improve, this move is a winner. */
4797 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4798 group_weight(p, dst_nid) > group_weight(p, src_nid))
4799 return true;
4800
4801 return false;
4802 }
4803
4804
4805 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4806 {
4807 int src_nid, dst_nid;
4808
4809 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4810 return false;
4811
4812 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4813 return false;
4814
4815 src_nid = cpu_to_node(env->src_cpu);
4816 dst_nid = cpu_to_node(env->dst_cpu);
4817
4818 if (src_nid == dst_nid)
4819 return false;
4820
4821 /* Migrating away from the preferred node is always bad. */
4822 if (src_nid == p->numa_preferred_nid)
4823 return true;
4824
4825 /* If either task or group weight get worse, don't do it. */
4826 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4827 group_weight(p, dst_nid) < group_weight(p, src_nid))
4828 return true;
4829
4830 return false;
4831 }
4832
4833 #else
4834 static inline bool migrate_improves_locality(struct task_struct *p,
4835 struct lb_env *env)
4836 {
4837 return false;
4838 }
4839
4840 static inline bool migrate_degrades_locality(struct task_struct *p,
4841 struct lb_env *env)
4842 {
4843 return false;
4844 }
4845 #endif
4846
4847 /*
4848 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4849 */
4850 static
4851 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4852 {
4853 int tsk_cache_hot = 0;
4854 /*
4855 * We do not migrate tasks that are:
4856 * 1) throttled_lb_pair, or
4857 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4858 * 3) running (obviously), or
4859 * 4) are cache-hot on their current CPU.
4860 */
4861 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4862 return 0;
4863
4864 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4865 int cpu;
4866
4867 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4868
4869 env->flags |= LBF_SOME_PINNED;
4870
4871 /*
4872 * Remember if this task can be migrated to any other cpu in
4873 * our sched_group. We may want to revisit it if we couldn't
4874 * meet load balance goals by pulling other tasks on src_cpu.
4875 *
4876 * Also avoid computing new_dst_cpu if we have already computed
4877 * one in current iteration.
4878 */
4879 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4880 return 0;
4881
4882 /* Prevent to re-select dst_cpu via env's cpus */
4883 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4884 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4885 env->flags |= LBF_DST_PINNED;
4886 env->new_dst_cpu = cpu;
4887 break;
4888 }
4889 }
4890
4891 return 0;
4892 }
4893
4894 /* Record that we found atleast one task that could run on dst_cpu */
4895 env->flags &= ~LBF_ALL_PINNED;
4896
4897 if (task_running(env->src_rq, p)) {
4898 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4899 return 0;
4900 }
4901
4902 /*
4903 * Aggressive migration if:
4904 * 1) destination numa is preferred
4905 * 2) task is cache cold, or
4906 * 3) too many balance attempts have failed.
4907 */
4908 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4909 if (!tsk_cache_hot)
4910 tsk_cache_hot = migrate_degrades_locality(p, env);
4911
4912 if (migrate_improves_locality(p, env)) {
4913 #ifdef CONFIG_SCHEDSTATS
4914 if (tsk_cache_hot) {
4915 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4916 schedstat_inc(p, se.statistics.nr_forced_migrations);
4917 }
4918 #endif
4919 return 1;
4920 }
4921
4922 if (!tsk_cache_hot ||
4923 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4924
4925 if (tsk_cache_hot) {
4926 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4927 schedstat_inc(p, se.statistics.nr_forced_migrations);
4928 }
4929
4930 return 1;
4931 }
4932
4933 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4934 return 0;
4935 }
4936
4937 /*
4938 * move_one_task tries to move exactly one task from busiest to this_rq, as
4939 * part of active balancing operations within "domain".
4940 * Returns 1 if successful and 0 otherwise.
4941 *
4942 * Called with both runqueues locked.
4943 */
4944 static int move_one_task(struct lb_env *env)
4945 {
4946 struct task_struct *p, *n;
4947
4948 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4949 if (!can_migrate_task(p, env))
4950 continue;
4951
4952 move_task(p, env);
4953 /*
4954 * Right now, this is only the second place move_task()
4955 * is called, so we can safely collect move_task()
4956 * stats here rather than inside move_task().
4957 */
4958 schedstat_inc(env->sd, lb_gained[env->idle]);
4959 return 1;
4960 }
4961 return 0;
4962 }
4963
4964 static const unsigned int sched_nr_migrate_break = 32;
4965
4966 /*
4967 * move_tasks tries to move up to imbalance weighted load from busiest to
4968 * this_rq, as part of a balancing operation within domain "sd".
4969 * Returns 1 if successful and 0 otherwise.
4970 *
4971 * Called with both runqueues locked.
4972 */
4973 static int move_tasks(struct lb_env *env)
4974 {
4975 struct list_head *tasks = &env->src_rq->cfs_tasks;
4976 struct task_struct *p;
4977 unsigned long load;
4978 int pulled = 0;
4979
4980 if (env->imbalance <= 0)
4981 return 0;
4982
4983 while (!list_empty(tasks)) {
4984 p = list_first_entry(tasks, struct task_struct, se.group_node);
4985
4986 env->loop++;
4987 /* We've more or less seen every task there is, call it quits */
4988 if (env->loop > env->loop_max)
4989 break;
4990
4991 /* take a breather every nr_migrate tasks */
4992 if (env->loop > env->loop_break) {
4993 env->loop_break += sched_nr_migrate_break;
4994 env->flags |= LBF_NEED_BREAK;
4995 break;
4996 }
4997
4998 if (!can_migrate_task(p, env))
4999 goto next;
5000
5001 load = task_h_load(p);
5002
5003 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5004 goto next;
5005
5006 if ((load / 2) > env->imbalance)
5007 goto next;
5008
5009 move_task(p, env);
5010 pulled++;
5011 env->imbalance -= load;
5012
5013 #ifdef CONFIG_PREEMPT
5014 /*
5015 * NEWIDLE balancing is a source of latency, so preemptible
5016 * kernels will stop after the first task is pulled to minimize
5017 * the critical section.
5018 */
5019 if (env->idle == CPU_NEWLY_IDLE)
5020 break;
5021 #endif
5022
5023 /*
5024 * We only want to steal up to the prescribed amount of
5025 * weighted load.
5026 */
5027 if (env->imbalance <= 0)
5028 break;
5029
5030 continue;
5031 next:
5032 list_move_tail(&p->se.group_node, tasks);
5033 }
5034
5035 /*
5036 * Right now, this is one of only two places move_task() is called,
5037 * so we can safely collect move_task() stats here rather than
5038 * inside move_task().
5039 */
5040 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5041
5042 return pulled;
5043 }
5044
5045 #ifdef CONFIG_FAIR_GROUP_SCHED
5046 /*
5047 * update tg->load_weight by folding this cpu's load_avg
5048 */
5049 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5050 {
5051 struct sched_entity *se = tg->se[cpu];
5052 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5053
5054 /* throttled entities do not contribute to load */
5055 if (throttled_hierarchy(cfs_rq))
5056 return;
5057
5058 update_cfs_rq_blocked_load(cfs_rq, 1);
5059
5060 if (se) {
5061 update_entity_load_avg(se, 1);
5062 /*
5063 * We pivot on our runnable average having decayed to zero for
5064 * list removal. This generally implies that all our children
5065 * have also been removed (modulo rounding error or bandwidth
5066 * control); however, such cases are rare and we can fix these
5067 * at enqueue.
5068 *
5069 * TODO: fix up out-of-order children on enqueue.
5070 */
5071 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5072 list_del_leaf_cfs_rq(cfs_rq);
5073 } else {
5074 struct rq *rq = rq_of(cfs_rq);
5075 update_rq_runnable_avg(rq, rq->nr_running);
5076 }
5077 }
5078
5079 static void update_blocked_averages(int cpu)
5080 {
5081 struct rq *rq = cpu_rq(cpu);
5082 struct cfs_rq *cfs_rq;
5083 unsigned long flags;
5084
5085 raw_spin_lock_irqsave(&rq->lock, flags);
5086 update_rq_clock(rq);
5087 /*
5088 * Iterates the task_group tree in a bottom up fashion, see
5089 * list_add_leaf_cfs_rq() for details.
5090 */
5091 for_each_leaf_cfs_rq(rq, cfs_rq) {
5092 /*
5093 * Note: We may want to consider periodically releasing
5094 * rq->lock about these updates so that creating many task
5095 * groups does not result in continually extending hold time.
5096 */
5097 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5098 }
5099
5100 raw_spin_unlock_irqrestore(&rq->lock, flags);
5101 }
5102
5103 /*
5104 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5105 * This needs to be done in a top-down fashion because the load of a child
5106 * group is a fraction of its parents load.
5107 */
5108 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5109 {
5110 struct rq *rq = rq_of(cfs_rq);
5111 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5112 unsigned long now = jiffies;
5113 unsigned long load;
5114
5115 if (cfs_rq->last_h_load_update == now)
5116 return;
5117
5118 cfs_rq->h_load_next = NULL;
5119 for_each_sched_entity(se) {
5120 cfs_rq = cfs_rq_of(se);
5121 cfs_rq->h_load_next = se;
5122 if (cfs_rq->last_h_load_update == now)
5123 break;
5124 }
5125
5126 if (!se) {
5127 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5128 cfs_rq->last_h_load_update = now;
5129 }
5130
5131 while ((se = cfs_rq->h_load_next) != NULL) {
5132 load = cfs_rq->h_load;
5133 load = div64_ul(load * se->avg.load_avg_contrib,
5134 cfs_rq->runnable_load_avg + 1);
5135 cfs_rq = group_cfs_rq(se);
5136 cfs_rq->h_load = load;
5137 cfs_rq->last_h_load_update = now;
5138 }
5139 }
5140
5141 static unsigned long task_h_load(struct task_struct *p)
5142 {
5143 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5144
5145 update_cfs_rq_h_load(cfs_rq);
5146 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5147 cfs_rq->runnable_load_avg + 1);
5148 }
5149 #else
5150 static inline void update_blocked_averages(int cpu)
5151 {
5152 }
5153
5154 static unsigned long task_h_load(struct task_struct *p)
5155 {
5156 return p->se.avg.load_avg_contrib;
5157 }
5158 #endif
5159
5160 /********** Helpers for find_busiest_group ************************/
5161 /*
5162 * sg_lb_stats - stats of a sched_group required for load_balancing
5163 */
5164 struct sg_lb_stats {
5165 unsigned long avg_load; /*Avg load across the CPUs of the group */
5166 unsigned long group_load; /* Total load over the CPUs of the group */
5167 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5168 unsigned long load_per_task;
5169 unsigned long group_power;
5170 unsigned int sum_nr_running; /* Nr tasks running in the group */
5171 unsigned int group_capacity;
5172 unsigned int idle_cpus;
5173 unsigned int group_weight;
5174 int group_imb; /* Is there an imbalance in the group ? */
5175 int group_has_capacity; /* Is there extra capacity in the group? */
5176 #ifdef CONFIG_NUMA_BALANCING
5177 unsigned int nr_numa_running;
5178 unsigned int nr_preferred_running;
5179 #endif
5180 };
5181
5182 /*
5183 * sd_lb_stats - Structure to store the statistics of a sched_domain
5184 * during load balancing.
5185 */
5186 struct sd_lb_stats {
5187 struct sched_group *busiest; /* Busiest group in this sd */
5188 struct sched_group *local; /* Local group in this sd */
5189 unsigned long total_load; /* Total load of all groups in sd */
5190 unsigned long total_pwr; /* Total power of all groups in sd */
5191 unsigned long avg_load; /* Average load across all groups in sd */
5192
5193 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5194 struct sg_lb_stats local_stat; /* Statistics of the local group */
5195 };
5196
5197 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5198 {
5199 /*
5200 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5201 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5202 * We must however clear busiest_stat::avg_load because
5203 * update_sd_pick_busiest() reads this before assignment.
5204 */
5205 *sds = (struct sd_lb_stats){
5206 .busiest = NULL,
5207 .local = NULL,
5208 .total_load = 0UL,
5209 .total_pwr = 0UL,
5210 .busiest_stat = {
5211 .avg_load = 0UL,
5212 },
5213 };
5214 }
5215
5216 /**
5217 * get_sd_load_idx - Obtain the load index for a given sched domain.
5218 * @sd: The sched_domain whose load_idx is to be obtained.
5219 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5220 *
5221 * Return: The load index.
5222 */
5223 static inline int get_sd_load_idx(struct sched_domain *sd,
5224 enum cpu_idle_type idle)
5225 {
5226 int load_idx;
5227
5228 switch (idle) {
5229 case CPU_NOT_IDLE:
5230 load_idx = sd->busy_idx;
5231 break;
5232
5233 case CPU_NEWLY_IDLE:
5234 load_idx = sd->newidle_idx;
5235 break;
5236 default:
5237 load_idx = sd->idle_idx;
5238 break;
5239 }
5240
5241 return load_idx;
5242 }
5243
5244 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5245 {
5246 return SCHED_POWER_SCALE;
5247 }
5248
5249 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5250 {
5251 return default_scale_freq_power(sd, cpu);
5252 }
5253
5254 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5255 {
5256 unsigned long weight = sd->span_weight;
5257 unsigned long smt_gain = sd->smt_gain;
5258
5259 smt_gain /= weight;
5260
5261 return smt_gain;
5262 }
5263
5264 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5265 {
5266 return default_scale_smt_power(sd, cpu);
5267 }
5268
5269 static unsigned long scale_rt_power(int cpu)
5270 {
5271 struct rq *rq = cpu_rq(cpu);
5272 u64 total, available, age_stamp, avg;
5273
5274 /*
5275 * Since we're reading these variables without serialization make sure
5276 * we read them once before doing sanity checks on them.
5277 */
5278 age_stamp = ACCESS_ONCE(rq->age_stamp);
5279 avg = ACCESS_ONCE(rq->rt_avg);
5280
5281 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5282
5283 if (unlikely(total < avg)) {
5284 /* Ensures that power won't end up being negative */
5285 available = 0;
5286 } else {
5287 available = total - avg;
5288 }
5289
5290 if (unlikely((s64)total < SCHED_POWER_SCALE))
5291 total = SCHED_POWER_SCALE;
5292
5293 total >>= SCHED_POWER_SHIFT;
5294
5295 return div_u64(available, total);
5296 }
5297
5298 static void update_cpu_power(struct sched_domain *sd, int cpu)
5299 {
5300 unsigned long weight = sd->span_weight;
5301 unsigned long power = SCHED_POWER_SCALE;
5302 struct sched_group *sdg = sd->groups;
5303
5304 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5305 if (sched_feat(ARCH_POWER))
5306 power *= arch_scale_smt_power(sd, cpu);
5307 else
5308 power *= default_scale_smt_power(sd, cpu);
5309
5310 power >>= SCHED_POWER_SHIFT;
5311 }
5312
5313 sdg->sgp->power_orig = power;
5314
5315 if (sched_feat(ARCH_POWER))
5316 power *= arch_scale_freq_power(sd, cpu);
5317 else
5318 power *= default_scale_freq_power(sd, cpu);
5319
5320 power >>= SCHED_POWER_SHIFT;
5321
5322 power *= scale_rt_power(cpu);
5323 power >>= SCHED_POWER_SHIFT;
5324
5325 if (!power)
5326 power = 1;
5327
5328 cpu_rq(cpu)->cpu_power = power;
5329 sdg->sgp->power = power;
5330 }
5331
5332 void update_group_power(struct sched_domain *sd, int cpu)
5333 {
5334 struct sched_domain *child = sd->child;
5335 struct sched_group *group, *sdg = sd->groups;
5336 unsigned long power, power_orig;
5337 unsigned long interval;
5338
5339 interval = msecs_to_jiffies(sd->balance_interval);
5340 interval = clamp(interval, 1UL, max_load_balance_interval);
5341 sdg->sgp->next_update = jiffies + interval;
5342
5343 if (!child) {
5344 update_cpu_power(sd, cpu);
5345 return;
5346 }
5347
5348 power_orig = power = 0;
5349
5350 if (child->flags & SD_OVERLAP) {
5351 /*
5352 * SD_OVERLAP domains cannot assume that child groups
5353 * span the current group.
5354 */
5355
5356 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5357 struct sched_group_power *sgp;
5358 struct rq *rq = cpu_rq(cpu);
5359
5360 /*
5361 * build_sched_domains() -> init_sched_groups_power()
5362 * gets here before we've attached the domains to the
5363 * runqueues.
5364 *
5365 * Use power_of(), which is set irrespective of domains
5366 * in update_cpu_power().
5367 *
5368 * This avoids power/power_orig from being 0 and
5369 * causing divide-by-zero issues on boot.
5370 *
5371 * Runtime updates will correct power_orig.
5372 */
5373 if (unlikely(!rq->sd)) {
5374 power_orig += power_of(cpu);
5375 power += power_of(cpu);
5376 continue;
5377 }
5378
5379 sgp = rq->sd->groups->sgp;
5380 power_orig += sgp->power_orig;
5381 power += sgp->power;
5382 }
5383 } else {
5384 /*
5385 * !SD_OVERLAP domains can assume that child groups
5386 * span the current group.
5387 */
5388
5389 group = child->groups;
5390 do {
5391 power_orig += group->sgp->power_orig;
5392 power += group->sgp->power;
5393 group = group->next;
5394 } while (group != child->groups);
5395 }
5396
5397 sdg->sgp->power_orig = power_orig;
5398 sdg->sgp->power = power;
5399 }
5400
5401 /*
5402 * Try and fix up capacity for tiny siblings, this is needed when
5403 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5404 * which on its own isn't powerful enough.
5405 *
5406 * See update_sd_pick_busiest() and check_asym_packing().
5407 */
5408 static inline int
5409 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5410 {
5411 /*
5412 * Only siblings can have significantly less than SCHED_POWER_SCALE
5413 */
5414 if (!(sd->flags & SD_SHARE_CPUPOWER))
5415 return 0;
5416
5417 /*
5418 * If ~90% of the cpu_power is still there, we're good.
5419 */
5420 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5421 return 1;
5422
5423 return 0;
5424 }
5425
5426 /*
5427 * Group imbalance indicates (and tries to solve) the problem where balancing
5428 * groups is inadequate due to tsk_cpus_allowed() constraints.
5429 *
5430 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5431 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5432 * Something like:
5433 *
5434 * { 0 1 2 3 } { 4 5 6 7 }
5435 * * * * *
5436 *
5437 * If we were to balance group-wise we'd place two tasks in the first group and
5438 * two tasks in the second group. Clearly this is undesired as it will overload
5439 * cpu 3 and leave one of the cpus in the second group unused.
5440 *
5441 * The current solution to this issue is detecting the skew in the first group
5442 * by noticing the lower domain failed to reach balance and had difficulty
5443 * moving tasks due to affinity constraints.
5444 *
5445 * When this is so detected; this group becomes a candidate for busiest; see
5446 * update_sd_pick_busiest(). And calculate_imbalance() and
5447 * find_busiest_group() avoid some of the usual balance conditions to allow it
5448 * to create an effective group imbalance.
5449 *
5450 * This is a somewhat tricky proposition since the next run might not find the
5451 * group imbalance and decide the groups need to be balanced again. A most
5452 * subtle and fragile situation.
5453 */
5454
5455 static inline int sg_imbalanced(struct sched_group *group)
5456 {
5457 return group->sgp->imbalance;
5458 }
5459
5460 /*
5461 * Compute the group capacity.
5462 *
5463 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5464 * first dividing out the smt factor and computing the actual number of cores
5465 * and limit power unit capacity with that.
5466 */
5467 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5468 {
5469 unsigned int capacity, smt, cpus;
5470 unsigned int power, power_orig;
5471
5472 power = group->sgp->power;
5473 power_orig = group->sgp->power_orig;
5474 cpus = group->group_weight;
5475
5476 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5477 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5478 capacity = cpus / smt; /* cores */
5479
5480 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5481 if (!capacity)
5482 capacity = fix_small_capacity(env->sd, group);
5483
5484 return capacity;
5485 }
5486
5487 /**
5488 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5489 * @env: The load balancing environment.
5490 * @group: sched_group whose statistics are to be updated.
5491 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5492 * @local_group: Does group contain this_cpu.
5493 * @sgs: variable to hold the statistics for this group.
5494 */
5495 static inline void update_sg_lb_stats(struct lb_env *env,
5496 struct sched_group *group, int load_idx,
5497 int local_group, struct sg_lb_stats *sgs)
5498 {
5499 unsigned long load;
5500 int i;
5501
5502 memset(sgs, 0, sizeof(*sgs));
5503
5504 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5505 struct rq *rq = cpu_rq(i);
5506
5507 /* Bias balancing toward cpus of our domain */
5508 if (local_group)
5509 load = target_load(i, load_idx);
5510 else
5511 load = source_load(i, load_idx);
5512
5513 sgs->group_load += load;
5514 sgs->sum_nr_running += rq->nr_running;
5515 #ifdef CONFIG_NUMA_BALANCING
5516 sgs->nr_numa_running += rq->nr_numa_running;
5517 sgs->nr_preferred_running += rq->nr_preferred_running;
5518 #endif
5519 sgs->sum_weighted_load += weighted_cpuload(i);
5520 if (idle_cpu(i))
5521 sgs->idle_cpus++;
5522 }
5523
5524 /* Adjust by relative CPU power of the group */
5525 sgs->group_power = group->sgp->power;
5526 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5527
5528 if (sgs->sum_nr_running)
5529 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5530
5531 sgs->group_weight = group->group_weight;
5532
5533 sgs->group_imb = sg_imbalanced(group);
5534 sgs->group_capacity = sg_capacity(env, group);
5535
5536 if (sgs->group_capacity > sgs->sum_nr_running)
5537 sgs->group_has_capacity = 1;
5538 }
5539
5540 /**
5541 * update_sd_pick_busiest - return 1 on busiest group
5542 * @env: The load balancing environment.
5543 * @sds: sched_domain statistics
5544 * @sg: sched_group candidate to be checked for being the busiest
5545 * @sgs: sched_group statistics
5546 *
5547 * Determine if @sg is a busier group than the previously selected
5548 * busiest group.
5549 *
5550 * Return: %true if @sg is a busier group than the previously selected
5551 * busiest group. %false otherwise.
5552 */
5553 static bool update_sd_pick_busiest(struct lb_env *env,
5554 struct sd_lb_stats *sds,
5555 struct sched_group *sg,
5556 struct sg_lb_stats *sgs)
5557 {
5558 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5559 return false;
5560
5561 if (sgs->sum_nr_running > sgs->group_capacity)
5562 return true;
5563
5564 if (sgs->group_imb)
5565 return true;
5566
5567 /*
5568 * ASYM_PACKING needs to move all the work to the lowest
5569 * numbered CPUs in the group, therefore mark all groups
5570 * higher than ourself as busy.
5571 */
5572 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5573 env->dst_cpu < group_first_cpu(sg)) {
5574 if (!sds->busiest)
5575 return true;
5576
5577 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5578 return true;
5579 }
5580
5581 return false;
5582 }
5583
5584 #ifdef CONFIG_NUMA_BALANCING
5585 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5586 {
5587 if (sgs->sum_nr_running > sgs->nr_numa_running)
5588 return regular;
5589 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5590 return remote;
5591 return all;
5592 }
5593
5594 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5595 {
5596 if (rq->nr_running > rq->nr_numa_running)
5597 return regular;
5598 if (rq->nr_running > rq->nr_preferred_running)
5599 return remote;
5600 return all;
5601 }
5602 #else
5603 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5604 {
5605 return all;
5606 }
5607
5608 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5609 {
5610 return regular;
5611 }
5612 #endif /* CONFIG_NUMA_BALANCING */
5613
5614 /**
5615 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5616 * @env: The load balancing environment.
5617 * @sds: variable to hold the statistics for this sched_domain.
5618 */
5619 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5620 {
5621 struct sched_domain *child = env->sd->child;
5622 struct sched_group *sg = env->sd->groups;
5623 struct sg_lb_stats tmp_sgs;
5624 int load_idx, prefer_sibling = 0;
5625
5626 if (child && child->flags & SD_PREFER_SIBLING)
5627 prefer_sibling = 1;
5628
5629 load_idx = get_sd_load_idx(env->sd, env->idle);
5630
5631 do {
5632 struct sg_lb_stats *sgs = &tmp_sgs;
5633 int local_group;
5634
5635 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5636 if (local_group) {
5637 sds->local = sg;
5638 sgs = &sds->local_stat;
5639
5640 if (env->idle != CPU_NEWLY_IDLE ||
5641 time_after_eq(jiffies, sg->sgp->next_update))
5642 update_group_power(env->sd, env->dst_cpu);
5643 }
5644
5645 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5646
5647 if (local_group)
5648 goto next_group;
5649
5650 /*
5651 * In case the child domain prefers tasks go to siblings
5652 * first, lower the sg capacity to one so that we'll try
5653 * and move all the excess tasks away. We lower the capacity
5654 * of a group only if the local group has the capacity to fit
5655 * these excess tasks, i.e. nr_running < group_capacity. The
5656 * extra check prevents the case where you always pull from the
5657 * heaviest group when it is already under-utilized (possible
5658 * with a large weight task outweighs the tasks on the system).
5659 */
5660 if (prefer_sibling && sds->local &&
5661 sds->local_stat.group_has_capacity)
5662 sgs->group_capacity = min(sgs->group_capacity, 1U);
5663
5664 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5665 sds->busiest = sg;
5666 sds->busiest_stat = *sgs;
5667 }
5668
5669 next_group:
5670 /* Now, start updating sd_lb_stats */
5671 sds->total_load += sgs->group_load;
5672 sds->total_pwr += sgs->group_power;
5673
5674 sg = sg->next;
5675 } while (sg != env->sd->groups);
5676
5677 if (env->sd->flags & SD_NUMA)
5678 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5679 }
5680
5681 /**
5682 * check_asym_packing - Check to see if the group is packed into the
5683 * sched doman.
5684 *
5685 * This is primarily intended to used at the sibling level. Some
5686 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5687 * case of POWER7, it can move to lower SMT modes only when higher
5688 * threads are idle. When in lower SMT modes, the threads will
5689 * perform better since they share less core resources. Hence when we
5690 * have idle threads, we want them to be the higher ones.
5691 *
5692 * This packing function is run on idle threads. It checks to see if
5693 * the busiest CPU in this domain (core in the P7 case) has a higher
5694 * CPU number than the packing function is being run on. Here we are
5695 * assuming lower CPU number will be equivalent to lower a SMT thread
5696 * number.
5697 *
5698 * Return: 1 when packing is required and a task should be moved to
5699 * this CPU. The amount of the imbalance is returned in *imbalance.
5700 *
5701 * @env: The load balancing environment.
5702 * @sds: Statistics of the sched_domain which is to be packed
5703 */
5704 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5705 {
5706 int busiest_cpu;
5707
5708 if (!(env->sd->flags & SD_ASYM_PACKING))
5709 return 0;
5710
5711 if (!sds->busiest)
5712 return 0;
5713
5714 busiest_cpu = group_first_cpu(sds->busiest);
5715 if (env->dst_cpu > busiest_cpu)
5716 return 0;
5717
5718 env->imbalance = DIV_ROUND_CLOSEST(
5719 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5720 SCHED_POWER_SCALE);
5721
5722 return 1;
5723 }
5724
5725 /**
5726 * fix_small_imbalance - Calculate the minor imbalance that exists
5727 * amongst the groups of a sched_domain, during
5728 * load balancing.
5729 * @env: The load balancing environment.
5730 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5731 */
5732 static inline
5733 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5734 {
5735 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5736 unsigned int imbn = 2;
5737 unsigned long scaled_busy_load_per_task;
5738 struct sg_lb_stats *local, *busiest;
5739
5740 local = &sds->local_stat;
5741 busiest = &sds->busiest_stat;
5742
5743 if (!local->sum_nr_running)
5744 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5745 else if (busiest->load_per_task > local->load_per_task)
5746 imbn = 1;
5747
5748 scaled_busy_load_per_task =
5749 (busiest->load_per_task * SCHED_POWER_SCALE) /
5750 busiest->group_power;
5751
5752 if (busiest->avg_load + scaled_busy_load_per_task >=
5753 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5754 env->imbalance = busiest->load_per_task;
5755 return;
5756 }
5757
5758 /*
5759 * OK, we don't have enough imbalance to justify moving tasks,
5760 * however we may be able to increase total CPU power used by
5761 * moving them.
5762 */
5763
5764 pwr_now += busiest->group_power *
5765 min(busiest->load_per_task, busiest->avg_load);
5766 pwr_now += local->group_power *
5767 min(local->load_per_task, local->avg_load);
5768 pwr_now /= SCHED_POWER_SCALE;
5769
5770 /* Amount of load we'd subtract */
5771 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5772 busiest->group_power;
5773 if (busiest->avg_load > tmp) {
5774 pwr_move += busiest->group_power *
5775 min(busiest->load_per_task,
5776 busiest->avg_load - tmp);
5777 }
5778
5779 /* Amount of load we'd add */
5780 if (busiest->avg_load * busiest->group_power <
5781 busiest->load_per_task * SCHED_POWER_SCALE) {
5782 tmp = (busiest->avg_load * busiest->group_power) /
5783 local->group_power;
5784 } else {
5785 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5786 local->group_power;
5787 }
5788 pwr_move += local->group_power *
5789 min(local->load_per_task, local->avg_load + tmp);
5790 pwr_move /= SCHED_POWER_SCALE;
5791
5792 /* Move if we gain throughput */
5793 if (pwr_move > pwr_now)
5794 env->imbalance = busiest->load_per_task;
5795 }
5796
5797 /**
5798 * calculate_imbalance - Calculate the amount of imbalance present within the
5799 * groups of a given sched_domain during load balance.
5800 * @env: load balance environment
5801 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5802 */
5803 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5804 {
5805 unsigned long max_pull, load_above_capacity = ~0UL;
5806 struct sg_lb_stats *local, *busiest;
5807
5808 local = &sds->local_stat;
5809 busiest = &sds->busiest_stat;
5810
5811 if (busiest->group_imb) {
5812 /*
5813 * In the group_imb case we cannot rely on group-wide averages
5814 * to ensure cpu-load equilibrium, look at wider averages. XXX
5815 */
5816 busiest->load_per_task =
5817 min(busiest->load_per_task, sds->avg_load);
5818 }
5819
5820 /*
5821 * In the presence of smp nice balancing, certain scenarios can have
5822 * max load less than avg load(as we skip the groups at or below
5823 * its cpu_power, while calculating max_load..)
5824 */
5825 if (busiest->avg_load <= sds->avg_load ||
5826 local->avg_load >= sds->avg_load) {
5827 env->imbalance = 0;
5828 return fix_small_imbalance(env, sds);
5829 }
5830
5831 if (!busiest->group_imb) {
5832 /*
5833 * Don't want to pull so many tasks that a group would go idle.
5834 * Except of course for the group_imb case, since then we might
5835 * have to drop below capacity to reach cpu-load equilibrium.
5836 */
5837 load_above_capacity =
5838 (busiest->sum_nr_running - busiest->group_capacity);
5839
5840 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5841 load_above_capacity /= busiest->group_power;
5842 }
5843
5844 /*
5845 * We're trying to get all the cpus to the average_load, so we don't
5846 * want to push ourselves above the average load, nor do we wish to
5847 * reduce the max loaded cpu below the average load. At the same time,
5848 * we also don't want to reduce the group load below the group capacity
5849 * (so that we can implement power-savings policies etc). Thus we look
5850 * for the minimum possible imbalance.
5851 */
5852 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5853
5854 /* How much load to actually move to equalise the imbalance */
5855 env->imbalance = min(
5856 max_pull * busiest->group_power,
5857 (sds->avg_load - local->avg_load) * local->group_power
5858 ) / SCHED_POWER_SCALE;
5859
5860 /*
5861 * if *imbalance is less than the average load per runnable task
5862 * there is no guarantee that any tasks will be moved so we'll have
5863 * a think about bumping its value to force at least one task to be
5864 * moved
5865 */
5866 if (env->imbalance < busiest->load_per_task)
5867 return fix_small_imbalance(env, sds);
5868 }
5869
5870 /******* find_busiest_group() helpers end here *********************/
5871
5872 /**
5873 * find_busiest_group - Returns the busiest group within the sched_domain
5874 * if there is an imbalance. If there isn't an imbalance, and
5875 * the user has opted for power-savings, it returns a group whose
5876 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5877 * such a group exists.
5878 *
5879 * Also calculates the amount of weighted load which should be moved
5880 * to restore balance.
5881 *
5882 * @env: The load balancing environment.
5883 *
5884 * Return: - The busiest group if imbalance exists.
5885 * - If no imbalance and user has opted for power-savings balance,
5886 * return the least loaded group whose CPUs can be
5887 * put to idle by rebalancing its tasks onto our group.
5888 */
5889 static struct sched_group *find_busiest_group(struct lb_env *env)
5890 {
5891 struct sg_lb_stats *local, *busiest;
5892 struct sd_lb_stats sds;
5893
5894 init_sd_lb_stats(&sds);
5895
5896 /*
5897 * Compute the various statistics relavent for load balancing at
5898 * this level.
5899 */
5900 update_sd_lb_stats(env, &sds);
5901 local = &sds.local_stat;
5902 busiest = &sds.busiest_stat;
5903
5904 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5905 check_asym_packing(env, &sds))
5906 return sds.busiest;
5907
5908 /* There is no busy sibling group to pull tasks from */
5909 if (!sds.busiest || busiest->sum_nr_running == 0)
5910 goto out_balanced;
5911
5912 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5913
5914 /*
5915 * If the busiest group is imbalanced the below checks don't
5916 * work because they assume all things are equal, which typically
5917 * isn't true due to cpus_allowed constraints and the like.
5918 */
5919 if (busiest->group_imb)
5920 goto force_balance;
5921
5922 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5923 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5924 !busiest->group_has_capacity)
5925 goto force_balance;
5926
5927 /*
5928 * If the local group is more busy than the selected busiest group
5929 * don't try and pull any tasks.
5930 */
5931 if (local->avg_load >= busiest->avg_load)
5932 goto out_balanced;
5933
5934 /*
5935 * Don't pull any tasks if this group is already above the domain
5936 * average load.
5937 */
5938 if (local->avg_load >= sds.avg_load)
5939 goto out_balanced;
5940
5941 if (env->idle == CPU_IDLE) {
5942 /*
5943 * This cpu is idle. If the busiest group load doesn't
5944 * have more tasks than the number of available cpu's and
5945 * there is no imbalance between this and busiest group
5946 * wrt to idle cpu's, it is balanced.
5947 */
5948 if ((local->idle_cpus < busiest->idle_cpus) &&
5949 busiest->sum_nr_running <= busiest->group_weight)
5950 goto out_balanced;
5951 } else {
5952 /*
5953 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5954 * imbalance_pct to be conservative.
5955 */
5956 if (100 * busiest->avg_load <=
5957 env->sd->imbalance_pct * local->avg_load)
5958 goto out_balanced;
5959 }
5960
5961 force_balance:
5962 /* Looks like there is an imbalance. Compute it */
5963 calculate_imbalance(env, &sds);
5964 return sds.busiest;
5965
5966 out_balanced:
5967 env->imbalance = 0;
5968 return NULL;
5969 }
5970
5971 /*
5972 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5973 */
5974 static struct rq *find_busiest_queue(struct lb_env *env,
5975 struct sched_group *group)
5976 {
5977 struct rq *busiest = NULL, *rq;
5978 unsigned long busiest_load = 0, busiest_power = 1;
5979 int i;
5980
5981 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5982 unsigned long power, capacity, wl;
5983 enum fbq_type rt;
5984
5985 rq = cpu_rq(i);
5986 rt = fbq_classify_rq(rq);
5987
5988 /*
5989 * We classify groups/runqueues into three groups:
5990 * - regular: there are !numa tasks
5991 * - remote: there are numa tasks that run on the 'wrong' node
5992 * - all: there is no distinction
5993 *
5994 * In order to avoid migrating ideally placed numa tasks,
5995 * ignore those when there's better options.
5996 *
5997 * If we ignore the actual busiest queue to migrate another
5998 * task, the next balance pass can still reduce the busiest
5999 * queue by moving tasks around inside the node.
6000 *
6001 * If we cannot move enough load due to this classification
6002 * the next pass will adjust the group classification and
6003 * allow migration of more tasks.
6004 *
6005 * Both cases only affect the total convergence complexity.
6006 */
6007 if (rt > env->fbq_type)
6008 continue;
6009
6010 power = power_of(i);
6011 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6012 if (!capacity)
6013 capacity = fix_small_capacity(env->sd, group);
6014
6015 wl = weighted_cpuload(i);
6016
6017 /*
6018 * When comparing with imbalance, use weighted_cpuload()
6019 * which is not scaled with the cpu power.
6020 */
6021 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6022 continue;
6023
6024 /*
6025 * For the load comparisons with the other cpu's, consider
6026 * the weighted_cpuload() scaled with the cpu power, so that
6027 * the load can be moved away from the cpu that is potentially
6028 * running at a lower capacity.
6029 *
6030 * Thus we're looking for max(wl_i / power_i), crosswise
6031 * multiplication to rid ourselves of the division works out
6032 * to: wl_i * power_j > wl_j * power_i; where j is our
6033 * previous maximum.
6034 */
6035 if (wl * busiest_power > busiest_load * power) {
6036 busiest_load = wl;
6037 busiest_power = power;
6038 busiest = rq;
6039 }
6040 }
6041
6042 return busiest;
6043 }
6044
6045 /*
6046 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6047 * so long as it is large enough.
6048 */
6049 #define MAX_PINNED_INTERVAL 512
6050
6051 /* Working cpumask for load_balance and load_balance_newidle. */
6052 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6053
6054 static int need_active_balance(struct lb_env *env)
6055 {
6056 struct sched_domain *sd = env->sd;
6057
6058 if (env->idle == CPU_NEWLY_IDLE) {
6059
6060 /*
6061 * ASYM_PACKING needs to force migrate tasks from busy but
6062 * higher numbered CPUs in order to pack all tasks in the
6063 * lowest numbered CPUs.
6064 */
6065 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6066 return 1;
6067 }
6068
6069 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6070 }
6071
6072 static int active_load_balance_cpu_stop(void *data);
6073
6074 static int should_we_balance(struct lb_env *env)
6075 {
6076 struct sched_group *sg = env->sd->groups;
6077 struct cpumask *sg_cpus, *sg_mask;
6078 int cpu, balance_cpu = -1;
6079
6080 /*
6081 * In the newly idle case, we will allow all the cpu's
6082 * to do the newly idle load balance.
6083 */
6084 if (env->idle == CPU_NEWLY_IDLE)
6085 return 1;
6086
6087 sg_cpus = sched_group_cpus(sg);
6088 sg_mask = sched_group_mask(sg);
6089 /* Try to find first idle cpu */
6090 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6091 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6092 continue;
6093
6094 balance_cpu = cpu;
6095 break;
6096 }
6097
6098 if (balance_cpu == -1)
6099 balance_cpu = group_balance_cpu(sg);
6100
6101 /*
6102 * First idle cpu or the first cpu(busiest) in this sched group
6103 * is eligible for doing load balancing at this and above domains.
6104 */
6105 return balance_cpu == env->dst_cpu;
6106 }
6107
6108 /*
6109 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6110 * tasks if there is an imbalance.
6111 */
6112 static int load_balance(int this_cpu, struct rq *this_rq,
6113 struct sched_domain *sd, enum cpu_idle_type idle,
6114 int *continue_balancing)
6115 {
6116 int ld_moved, cur_ld_moved, active_balance = 0;
6117 struct sched_domain *sd_parent = sd->parent;
6118 struct sched_group *group;
6119 struct rq *busiest;
6120 unsigned long flags;
6121 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6122
6123 struct lb_env env = {
6124 .sd = sd,
6125 .dst_cpu = this_cpu,
6126 .dst_rq = this_rq,
6127 .dst_grpmask = sched_group_cpus(sd->groups),
6128 .idle = idle,
6129 .loop_break = sched_nr_migrate_break,
6130 .cpus = cpus,
6131 .fbq_type = all,
6132 };
6133
6134 /*
6135 * For NEWLY_IDLE load_balancing, we don't need to consider
6136 * other cpus in our group
6137 */
6138 if (idle == CPU_NEWLY_IDLE)
6139 env.dst_grpmask = NULL;
6140
6141 cpumask_copy(cpus, cpu_active_mask);
6142
6143 schedstat_inc(sd, lb_count[idle]);
6144
6145 redo:
6146 if (!should_we_balance(&env)) {
6147 *continue_balancing = 0;
6148 goto out_balanced;
6149 }
6150
6151 group = find_busiest_group(&env);
6152 if (!group) {
6153 schedstat_inc(sd, lb_nobusyg[idle]);
6154 goto out_balanced;
6155 }
6156
6157 busiest = find_busiest_queue(&env, group);
6158 if (!busiest) {
6159 schedstat_inc(sd, lb_nobusyq[idle]);
6160 goto out_balanced;
6161 }
6162
6163 BUG_ON(busiest == env.dst_rq);
6164
6165 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6166
6167 ld_moved = 0;
6168 if (busiest->nr_running > 1) {
6169 /*
6170 * Attempt to move tasks. If find_busiest_group has found
6171 * an imbalance but busiest->nr_running <= 1, the group is
6172 * still unbalanced. ld_moved simply stays zero, so it is
6173 * correctly treated as an imbalance.
6174 */
6175 env.flags |= LBF_ALL_PINNED;
6176 env.src_cpu = busiest->cpu;
6177 env.src_rq = busiest;
6178 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6179
6180 more_balance:
6181 local_irq_save(flags);
6182 double_rq_lock(env.dst_rq, busiest);
6183
6184 /*
6185 * cur_ld_moved - load moved in current iteration
6186 * ld_moved - cumulative load moved across iterations
6187 */
6188 cur_ld_moved = move_tasks(&env);
6189 ld_moved += cur_ld_moved;
6190 double_rq_unlock(env.dst_rq, busiest);
6191 local_irq_restore(flags);
6192
6193 /*
6194 * some other cpu did the load balance for us.
6195 */
6196 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6197 resched_cpu(env.dst_cpu);
6198
6199 if (env.flags & LBF_NEED_BREAK) {
6200 env.flags &= ~LBF_NEED_BREAK;
6201 goto more_balance;
6202 }
6203
6204 /*
6205 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6206 * us and move them to an alternate dst_cpu in our sched_group
6207 * where they can run. The upper limit on how many times we
6208 * iterate on same src_cpu is dependent on number of cpus in our
6209 * sched_group.
6210 *
6211 * This changes load balance semantics a bit on who can move
6212 * load to a given_cpu. In addition to the given_cpu itself
6213 * (or a ilb_cpu acting on its behalf where given_cpu is
6214 * nohz-idle), we now have balance_cpu in a position to move
6215 * load to given_cpu. In rare situations, this may cause
6216 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6217 * _independently_ and at _same_ time to move some load to
6218 * given_cpu) causing exceess load to be moved to given_cpu.
6219 * This however should not happen so much in practice and
6220 * moreover subsequent load balance cycles should correct the
6221 * excess load moved.
6222 */
6223 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6224
6225 /* Prevent to re-select dst_cpu via env's cpus */
6226 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6227
6228 env.dst_rq = cpu_rq(env.new_dst_cpu);
6229 env.dst_cpu = env.new_dst_cpu;
6230 env.flags &= ~LBF_DST_PINNED;
6231 env.loop = 0;
6232 env.loop_break = sched_nr_migrate_break;
6233
6234 /*
6235 * Go back to "more_balance" rather than "redo" since we
6236 * need to continue with same src_cpu.
6237 */
6238 goto more_balance;
6239 }
6240
6241 /*
6242 * We failed to reach balance because of affinity.
6243 */
6244 if (sd_parent) {
6245 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6246
6247 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6248 *group_imbalance = 1;
6249 } else if (*group_imbalance)
6250 *group_imbalance = 0;
6251 }
6252
6253 /* All tasks on this runqueue were pinned by CPU affinity */
6254 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6255 cpumask_clear_cpu(cpu_of(busiest), cpus);
6256 if (!cpumask_empty(cpus)) {
6257 env.loop = 0;
6258 env.loop_break = sched_nr_migrate_break;
6259 goto redo;
6260 }
6261 goto out_balanced;
6262 }
6263 }
6264
6265 if (!ld_moved) {
6266 schedstat_inc(sd, lb_failed[idle]);
6267 /*
6268 * Increment the failure counter only on periodic balance.
6269 * We do not want newidle balance, which can be very
6270 * frequent, pollute the failure counter causing
6271 * excessive cache_hot migrations and active balances.
6272 */
6273 if (idle != CPU_NEWLY_IDLE)
6274 sd->nr_balance_failed++;
6275
6276 if (need_active_balance(&env)) {
6277 raw_spin_lock_irqsave(&busiest->lock, flags);
6278
6279 /* don't kick the active_load_balance_cpu_stop,
6280 * if the curr task on busiest cpu can't be
6281 * moved to this_cpu
6282 */
6283 if (!cpumask_test_cpu(this_cpu,
6284 tsk_cpus_allowed(busiest->curr))) {
6285 raw_spin_unlock_irqrestore(&busiest->lock,
6286 flags);
6287 env.flags |= LBF_ALL_PINNED;
6288 goto out_one_pinned;
6289 }
6290
6291 /*
6292 * ->active_balance synchronizes accesses to
6293 * ->active_balance_work. Once set, it's cleared
6294 * only after active load balance is finished.
6295 */
6296 if (!busiest->active_balance) {
6297 busiest->active_balance = 1;
6298 busiest->push_cpu = this_cpu;
6299 active_balance = 1;
6300 }
6301 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6302
6303 if (active_balance) {
6304 stop_one_cpu_nowait(cpu_of(busiest),
6305 active_load_balance_cpu_stop, busiest,
6306 &busiest->active_balance_work);
6307 }
6308
6309 /*
6310 * We've kicked active balancing, reset the failure
6311 * counter.
6312 */
6313 sd->nr_balance_failed = sd->cache_nice_tries+1;
6314 }
6315 } else
6316 sd->nr_balance_failed = 0;
6317
6318 if (likely(!active_balance)) {
6319 /* We were unbalanced, so reset the balancing interval */
6320 sd->balance_interval = sd->min_interval;
6321 } else {
6322 /*
6323 * If we've begun active balancing, start to back off. This
6324 * case may not be covered by the all_pinned logic if there
6325 * is only 1 task on the busy runqueue (because we don't call
6326 * move_tasks).
6327 */
6328 if (sd->balance_interval < sd->max_interval)
6329 sd->balance_interval *= 2;
6330 }
6331
6332 goto out;
6333
6334 out_balanced:
6335 schedstat_inc(sd, lb_balanced[idle]);
6336
6337 sd->nr_balance_failed = 0;
6338
6339 out_one_pinned:
6340 /* tune up the balancing interval */
6341 if (((env.flags & LBF_ALL_PINNED) &&
6342 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6343 (sd->balance_interval < sd->max_interval))
6344 sd->balance_interval *= 2;
6345
6346 ld_moved = 0;
6347 out:
6348 return ld_moved;
6349 }
6350
6351 /*
6352 * idle_balance is called by schedule() if this_cpu is about to become
6353 * idle. Attempts to pull tasks from other CPUs.
6354 */
6355 void idle_balance(int this_cpu, struct rq *this_rq)
6356 {
6357 struct sched_domain *sd;
6358 int pulled_task = 0;
6359 unsigned long next_balance = jiffies + HZ;
6360 u64 curr_cost = 0;
6361
6362 this_rq->idle_stamp = rq_clock(this_rq);
6363
6364 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6365 return;
6366
6367 /*
6368 * Drop the rq->lock, but keep IRQ/preempt disabled.
6369 */
6370 raw_spin_unlock(&this_rq->lock);
6371
6372 update_blocked_averages(this_cpu);
6373 rcu_read_lock();
6374 for_each_domain(this_cpu, sd) {
6375 unsigned long interval;
6376 int continue_balancing = 1;
6377 u64 t0, domain_cost;
6378
6379 if (!(sd->flags & SD_LOAD_BALANCE))
6380 continue;
6381
6382 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6383 break;
6384
6385 if (sd->flags & SD_BALANCE_NEWIDLE) {
6386 t0 = sched_clock_cpu(this_cpu);
6387
6388 /* If we've pulled tasks over stop searching: */
6389 pulled_task = load_balance(this_cpu, this_rq,
6390 sd, CPU_NEWLY_IDLE,
6391 &continue_balancing);
6392
6393 domain_cost = sched_clock_cpu(this_cpu) - t0;
6394 if (domain_cost > sd->max_newidle_lb_cost)
6395 sd->max_newidle_lb_cost = domain_cost;
6396
6397 curr_cost += domain_cost;
6398 }
6399
6400 interval = msecs_to_jiffies(sd->balance_interval);
6401 if (time_after(next_balance, sd->last_balance + interval))
6402 next_balance = sd->last_balance + interval;
6403 if (pulled_task) {
6404 this_rq->idle_stamp = 0;
6405 break;
6406 }
6407 }
6408 rcu_read_unlock();
6409
6410 raw_spin_lock(&this_rq->lock);
6411
6412 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6413 /*
6414 * We are going idle. next_balance may be set based on
6415 * a busy processor. So reset next_balance.
6416 */
6417 this_rq->next_balance = next_balance;
6418 }
6419
6420 if (curr_cost > this_rq->max_idle_balance_cost)
6421 this_rq->max_idle_balance_cost = curr_cost;
6422 }
6423
6424 /*
6425 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6426 * running tasks off the busiest CPU onto idle CPUs. It requires at
6427 * least 1 task to be running on each physical CPU where possible, and
6428 * avoids physical / logical imbalances.
6429 */
6430 static int active_load_balance_cpu_stop(void *data)
6431 {
6432 struct rq *busiest_rq = data;
6433 int busiest_cpu = cpu_of(busiest_rq);
6434 int target_cpu = busiest_rq->push_cpu;
6435 struct rq *target_rq = cpu_rq(target_cpu);
6436 struct sched_domain *sd;
6437
6438 raw_spin_lock_irq(&busiest_rq->lock);
6439
6440 /* make sure the requested cpu hasn't gone down in the meantime */
6441 if (unlikely(busiest_cpu != smp_processor_id() ||
6442 !busiest_rq->active_balance))
6443 goto out_unlock;
6444
6445 /* Is there any task to move? */
6446 if (busiest_rq->nr_running <= 1)
6447 goto out_unlock;
6448
6449 /*
6450 * This condition is "impossible", if it occurs
6451 * we need to fix it. Originally reported by
6452 * Bjorn Helgaas on a 128-cpu setup.
6453 */
6454 BUG_ON(busiest_rq == target_rq);
6455
6456 /* move a task from busiest_rq to target_rq */
6457 double_lock_balance(busiest_rq, target_rq);
6458
6459 /* Search for an sd spanning us and the target CPU. */
6460 rcu_read_lock();
6461 for_each_domain(target_cpu, sd) {
6462 if ((sd->flags & SD_LOAD_BALANCE) &&
6463 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6464 break;
6465 }
6466
6467 if (likely(sd)) {
6468 struct lb_env env = {
6469 .sd = sd,
6470 .dst_cpu = target_cpu,
6471 .dst_rq = target_rq,
6472 .src_cpu = busiest_rq->cpu,
6473 .src_rq = busiest_rq,
6474 .idle = CPU_IDLE,
6475 };
6476
6477 schedstat_inc(sd, alb_count);
6478
6479 if (move_one_task(&env))
6480 schedstat_inc(sd, alb_pushed);
6481 else
6482 schedstat_inc(sd, alb_failed);
6483 }
6484 rcu_read_unlock();
6485 double_unlock_balance(busiest_rq, target_rq);
6486 out_unlock:
6487 busiest_rq->active_balance = 0;
6488 raw_spin_unlock_irq(&busiest_rq->lock);
6489 return 0;
6490 }
6491
6492 #ifdef CONFIG_NO_HZ_COMMON
6493 /*
6494 * idle load balancing details
6495 * - When one of the busy CPUs notice that there may be an idle rebalancing
6496 * needed, they will kick the idle load balancer, which then does idle
6497 * load balancing for all the idle CPUs.
6498 */
6499 static struct {
6500 cpumask_var_t idle_cpus_mask;
6501 atomic_t nr_cpus;
6502 unsigned long next_balance; /* in jiffy units */
6503 } nohz ____cacheline_aligned;
6504
6505 static inline int find_new_ilb(int call_cpu)
6506 {
6507 int ilb = cpumask_first(nohz.idle_cpus_mask);
6508
6509 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6510 return ilb;
6511
6512 return nr_cpu_ids;
6513 }
6514
6515 /*
6516 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6517 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6518 * CPU (if there is one).
6519 */
6520 static void nohz_balancer_kick(int cpu)
6521 {
6522 int ilb_cpu;
6523
6524 nohz.next_balance++;
6525
6526 ilb_cpu = find_new_ilb(cpu);
6527
6528 if (ilb_cpu >= nr_cpu_ids)
6529 return;
6530
6531 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6532 return;
6533 /*
6534 * Use smp_send_reschedule() instead of resched_cpu().
6535 * This way we generate a sched IPI on the target cpu which
6536 * is idle. And the softirq performing nohz idle load balance
6537 * will be run before returning from the IPI.
6538 */
6539 smp_send_reschedule(ilb_cpu);
6540 return;
6541 }
6542
6543 static inline void nohz_balance_exit_idle(int cpu)
6544 {
6545 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6546 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6547 atomic_dec(&nohz.nr_cpus);
6548 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6549 }
6550 }
6551
6552 static inline void set_cpu_sd_state_busy(void)
6553 {
6554 struct sched_domain *sd;
6555 int cpu = smp_processor_id();
6556
6557 rcu_read_lock();
6558 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6559
6560 if (!sd || !sd->nohz_idle)
6561 goto unlock;
6562 sd->nohz_idle = 0;
6563
6564 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6565 unlock:
6566 rcu_read_unlock();
6567 }
6568
6569 void set_cpu_sd_state_idle(void)
6570 {
6571 struct sched_domain *sd;
6572 int cpu = smp_processor_id();
6573
6574 rcu_read_lock();
6575 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6576
6577 if (!sd || sd->nohz_idle)
6578 goto unlock;
6579 sd->nohz_idle = 1;
6580
6581 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6582 unlock:
6583 rcu_read_unlock();
6584 }
6585
6586 /*
6587 * This routine will record that the cpu is going idle with tick stopped.
6588 * This info will be used in performing idle load balancing in the future.
6589 */
6590 void nohz_balance_enter_idle(int cpu)
6591 {
6592 /*
6593 * If this cpu is going down, then nothing needs to be done.
6594 */
6595 if (!cpu_active(cpu))
6596 return;
6597
6598 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6599 return;
6600
6601 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6602 atomic_inc(&nohz.nr_cpus);
6603 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6604 }
6605
6606 static int sched_ilb_notifier(struct notifier_block *nfb,
6607 unsigned long action, void *hcpu)
6608 {
6609 switch (action & ~CPU_TASKS_FROZEN) {
6610 case CPU_DYING:
6611 nohz_balance_exit_idle(smp_processor_id());
6612 return NOTIFY_OK;
6613 default:
6614 return NOTIFY_DONE;
6615 }
6616 }
6617 #endif
6618
6619 static DEFINE_SPINLOCK(balancing);
6620
6621 /*
6622 * Scale the max load_balance interval with the number of CPUs in the system.
6623 * This trades load-balance latency on larger machines for less cross talk.
6624 */
6625 void update_max_interval(void)
6626 {
6627 max_load_balance_interval = HZ*num_online_cpus()/10;
6628 }
6629
6630 /*
6631 * It checks each scheduling domain to see if it is due to be balanced,
6632 * and initiates a balancing operation if so.
6633 *
6634 * Balancing parameters are set up in init_sched_domains.
6635 */
6636 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6637 {
6638 int continue_balancing = 1;
6639 struct rq *rq = cpu_rq(cpu);
6640 unsigned long interval;
6641 struct sched_domain *sd;
6642 /* Earliest time when we have to do rebalance again */
6643 unsigned long next_balance = jiffies + 60*HZ;
6644 int update_next_balance = 0;
6645 int need_serialize, need_decay = 0;
6646 u64 max_cost = 0;
6647
6648 update_blocked_averages(cpu);
6649
6650 rcu_read_lock();
6651 for_each_domain(cpu, sd) {
6652 /*
6653 * Decay the newidle max times here because this is a regular
6654 * visit to all the domains. Decay ~1% per second.
6655 */
6656 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6657 sd->max_newidle_lb_cost =
6658 (sd->max_newidle_lb_cost * 253) / 256;
6659 sd->next_decay_max_lb_cost = jiffies + HZ;
6660 need_decay = 1;
6661 }
6662 max_cost += sd->max_newidle_lb_cost;
6663
6664 if (!(sd->flags & SD_LOAD_BALANCE))
6665 continue;
6666
6667 /*
6668 * Stop the load balance at this level. There is another
6669 * CPU in our sched group which is doing load balancing more
6670 * actively.
6671 */
6672 if (!continue_balancing) {
6673 if (need_decay)
6674 continue;
6675 break;
6676 }
6677
6678 interval = sd->balance_interval;
6679 if (idle != CPU_IDLE)
6680 interval *= sd->busy_factor;
6681
6682 /* scale ms to jiffies */
6683 interval = msecs_to_jiffies(interval);
6684 interval = clamp(interval, 1UL, max_load_balance_interval);
6685
6686 need_serialize = sd->flags & SD_SERIALIZE;
6687
6688 if (need_serialize) {
6689 if (!spin_trylock(&balancing))
6690 goto out;
6691 }
6692
6693 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6694 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6695 /*
6696 * The LBF_DST_PINNED logic could have changed
6697 * env->dst_cpu, so we can't know our idle
6698 * state even if we migrated tasks. Update it.
6699 */
6700 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6701 }
6702 sd->last_balance = jiffies;
6703 }
6704 if (need_serialize)
6705 spin_unlock(&balancing);
6706 out:
6707 if (time_after(next_balance, sd->last_balance + interval)) {
6708 next_balance = sd->last_balance + interval;
6709 update_next_balance = 1;
6710 }
6711 }
6712 if (need_decay) {
6713 /*
6714 * Ensure the rq-wide value also decays but keep it at a
6715 * reasonable floor to avoid funnies with rq->avg_idle.
6716 */
6717 rq->max_idle_balance_cost =
6718 max((u64)sysctl_sched_migration_cost, max_cost);
6719 }
6720 rcu_read_unlock();
6721
6722 /*
6723 * next_balance will be updated only when there is a need.
6724 * When the cpu is attached to null domain for ex, it will not be
6725 * updated.
6726 */
6727 if (likely(update_next_balance))
6728 rq->next_balance = next_balance;
6729 }
6730
6731 #ifdef CONFIG_NO_HZ_COMMON
6732 /*
6733 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6734 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6735 */
6736 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6737 {
6738 struct rq *this_rq = cpu_rq(this_cpu);
6739 struct rq *rq;
6740 int balance_cpu;
6741
6742 if (idle != CPU_IDLE ||
6743 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6744 goto end;
6745
6746 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6747 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6748 continue;
6749
6750 /*
6751 * If this cpu gets work to do, stop the load balancing
6752 * work being done for other cpus. Next load
6753 * balancing owner will pick it up.
6754 */
6755 if (need_resched())
6756 break;
6757
6758 rq = cpu_rq(balance_cpu);
6759
6760 raw_spin_lock_irq(&rq->lock);
6761 update_rq_clock(rq);
6762 update_idle_cpu_load(rq);
6763 raw_spin_unlock_irq(&rq->lock);
6764
6765 rebalance_domains(balance_cpu, CPU_IDLE);
6766
6767 if (time_after(this_rq->next_balance, rq->next_balance))
6768 this_rq->next_balance = rq->next_balance;
6769 }
6770 nohz.next_balance = this_rq->next_balance;
6771 end:
6772 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6773 }
6774
6775 /*
6776 * Current heuristic for kicking the idle load balancer in the presence
6777 * of an idle cpu is the system.
6778 * - This rq has more than one task.
6779 * - At any scheduler domain level, this cpu's scheduler group has multiple
6780 * busy cpu's exceeding the group's power.
6781 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6782 * domain span are idle.
6783 */
6784 static inline int nohz_kick_needed(struct rq *rq, int cpu)
6785 {
6786 unsigned long now = jiffies;
6787 struct sched_domain *sd;
6788 struct sched_group_power *sgp;
6789 int nr_busy;
6790
6791 if (unlikely(idle_cpu(cpu)))
6792 return 0;
6793
6794 /*
6795 * We may be recently in ticked or tickless idle mode. At the first
6796 * busy tick after returning from idle, we will update the busy stats.
6797 */
6798 set_cpu_sd_state_busy();
6799 nohz_balance_exit_idle(cpu);
6800
6801 /*
6802 * None are in tickless mode and hence no need for NOHZ idle load
6803 * balancing.
6804 */
6805 if (likely(!atomic_read(&nohz.nr_cpus)))
6806 return 0;
6807
6808 if (time_before(now, nohz.next_balance))
6809 return 0;
6810
6811 if (rq->nr_running >= 2)
6812 goto need_kick;
6813
6814 rcu_read_lock();
6815 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6816
6817 if (sd) {
6818 sgp = sd->groups->sgp;
6819 nr_busy = atomic_read(&sgp->nr_busy_cpus);
6820
6821 if (nr_busy > 1)
6822 goto need_kick_unlock;
6823 }
6824
6825 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6826
6827 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6828 sched_domain_span(sd)) < cpu))
6829 goto need_kick_unlock;
6830
6831 rcu_read_unlock();
6832 return 0;
6833
6834 need_kick_unlock:
6835 rcu_read_unlock();
6836 need_kick:
6837 return 1;
6838 }
6839 #else
6840 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6841 #endif
6842
6843 /*
6844 * run_rebalance_domains is triggered when needed from the scheduler tick.
6845 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6846 */
6847 static void run_rebalance_domains(struct softirq_action *h)
6848 {
6849 int this_cpu = smp_processor_id();
6850 struct rq *this_rq = cpu_rq(this_cpu);
6851 enum cpu_idle_type idle = this_rq->idle_balance ?
6852 CPU_IDLE : CPU_NOT_IDLE;
6853
6854 rebalance_domains(this_cpu, idle);
6855
6856 /*
6857 * If this cpu has a pending nohz_balance_kick, then do the
6858 * balancing on behalf of the other idle cpus whose ticks are
6859 * stopped.
6860 */
6861 nohz_idle_balance(this_cpu, idle);
6862 }
6863
6864 static inline int on_null_domain(int cpu)
6865 {
6866 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6867 }
6868
6869 /*
6870 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6871 */
6872 void trigger_load_balance(struct rq *rq, int cpu)
6873 {
6874 /* Don't need to rebalance while attached to NULL domain */
6875 if (time_after_eq(jiffies, rq->next_balance) &&
6876 likely(!on_null_domain(cpu)))
6877 raise_softirq(SCHED_SOFTIRQ);
6878 #ifdef CONFIG_NO_HZ_COMMON
6879 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6880 nohz_balancer_kick(cpu);
6881 #endif
6882 }
6883
6884 static void rq_online_fair(struct rq *rq)
6885 {
6886 update_sysctl();
6887 }
6888
6889 static void rq_offline_fair(struct rq *rq)
6890 {
6891 update_sysctl();
6892
6893 /* Ensure any throttled groups are reachable by pick_next_task */
6894 unthrottle_offline_cfs_rqs(rq);
6895 }
6896
6897 #endif /* CONFIG_SMP */
6898
6899 /*
6900 * scheduler tick hitting a task of our scheduling class:
6901 */
6902 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6903 {
6904 struct cfs_rq *cfs_rq;
6905 struct sched_entity *se = &curr->se;
6906
6907 for_each_sched_entity(se) {
6908 cfs_rq = cfs_rq_of(se);
6909 entity_tick(cfs_rq, se, queued);
6910 }
6911
6912 if (numabalancing_enabled)
6913 task_tick_numa(rq, curr);
6914
6915 update_rq_runnable_avg(rq, 1);
6916 }
6917
6918 /*
6919 * called on fork with the child task as argument from the parent's context
6920 * - child not yet on the tasklist
6921 * - preemption disabled
6922 */
6923 static void task_fork_fair(struct task_struct *p)
6924 {
6925 struct cfs_rq *cfs_rq;
6926 struct sched_entity *se = &p->se, *curr;
6927 int this_cpu = smp_processor_id();
6928 struct rq *rq = this_rq();
6929 unsigned long flags;
6930
6931 raw_spin_lock_irqsave(&rq->lock, flags);
6932
6933 update_rq_clock(rq);
6934
6935 cfs_rq = task_cfs_rq(current);
6936 curr = cfs_rq->curr;
6937
6938 /*
6939 * Not only the cpu but also the task_group of the parent might have
6940 * been changed after parent->se.parent,cfs_rq were copied to
6941 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6942 * of child point to valid ones.
6943 */
6944 rcu_read_lock();
6945 __set_task_cpu(p, this_cpu);
6946 rcu_read_unlock();
6947
6948 update_curr(cfs_rq);
6949
6950 if (curr)
6951 se->vruntime = curr->vruntime;
6952 place_entity(cfs_rq, se, 1);
6953
6954 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6955 /*
6956 * Upon rescheduling, sched_class::put_prev_task() will place
6957 * 'current' within the tree based on its new key value.
6958 */
6959 swap(curr->vruntime, se->vruntime);
6960 resched_task(rq->curr);
6961 }
6962
6963 se->vruntime -= cfs_rq->min_vruntime;
6964
6965 raw_spin_unlock_irqrestore(&rq->lock, flags);
6966 }
6967
6968 /*
6969 * Priority of the task has changed. Check to see if we preempt
6970 * the current task.
6971 */
6972 static void
6973 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6974 {
6975 if (!p->se.on_rq)
6976 return;
6977
6978 /*
6979 * Reschedule if we are currently running on this runqueue and
6980 * our priority decreased, or if we are not currently running on
6981 * this runqueue and our priority is higher than the current's
6982 */
6983 if (rq->curr == p) {
6984 if (p->prio > oldprio)
6985 resched_task(rq->curr);
6986 } else
6987 check_preempt_curr(rq, p, 0);
6988 }
6989
6990 static void switched_from_fair(struct rq *rq, struct task_struct *p)
6991 {
6992 struct sched_entity *se = &p->se;
6993 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6994
6995 /*
6996 * Ensure the task's vruntime is normalized, so that when its
6997 * switched back to the fair class the enqueue_entity(.flags=0) will
6998 * do the right thing.
6999 *
7000 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7001 * have normalized the vruntime, if it was !on_rq, then only when
7002 * the task is sleeping will it still have non-normalized vruntime.
7003 */
7004 if (!se->on_rq && p->state != TASK_RUNNING) {
7005 /*
7006 * Fix up our vruntime so that the current sleep doesn't
7007 * cause 'unlimited' sleep bonus.
7008 */
7009 place_entity(cfs_rq, se, 0);
7010 se->vruntime -= cfs_rq->min_vruntime;
7011 }
7012
7013 #ifdef CONFIG_SMP
7014 /*
7015 * Remove our load from contribution when we leave sched_fair
7016 * and ensure we don't carry in an old decay_count if we
7017 * switch back.
7018 */
7019 if (se->avg.decay_count) {
7020 __synchronize_entity_decay(se);
7021 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7022 }
7023 #endif
7024 }
7025
7026 /*
7027 * We switched to the sched_fair class.
7028 */
7029 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7030 {
7031 if (!p->se.on_rq)
7032 return;
7033
7034 /*
7035 * We were most likely switched from sched_rt, so
7036 * kick off the schedule if running, otherwise just see
7037 * if we can still preempt the current task.
7038 */
7039 if (rq->curr == p)
7040 resched_task(rq->curr);
7041 else
7042 check_preempt_curr(rq, p, 0);
7043 }
7044
7045 /* Account for a task changing its policy or group.
7046 *
7047 * This routine is mostly called to set cfs_rq->curr field when a task
7048 * migrates between groups/classes.
7049 */
7050 static void set_curr_task_fair(struct rq *rq)
7051 {
7052 struct sched_entity *se = &rq->curr->se;
7053
7054 for_each_sched_entity(se) {
7055 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7056
7057 set_next_entity(cfs_rq, se);
7058 /* ensure bandwidth has been allocated on our new cfs_rq */
7059 account_cfs_rq_runtime(cfs_rq, 0);
7060 }
7061 }
7062
7063 void init_cfs_rq(struct cfs_rq *cfs_rq)
7064 {
7065 cfs_rq->tasks_timeline = RB_ROOT;
7066 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7067 #ifndef CONFIG_64BIT
7068 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7069 #endif
7070 #ifdef CONFIG_SMP
7071 atomic64_set(&cfs_rq->decay_counter, 1);
7072 atomic_long_set(&cfs_rq->removed_load, 0);
7073 #endif
7074 }
7075
7076 #ifdef CONFIG_FAIR_GROUP_SCHED
7077 static void task_move_group_fair(struct task_struct *p, int on_rq)
7078 {
7079 struct cfs_rq *cfs_rq;
7080 /*
7081 * If the task was not on the rq at the time of this cgroup movement
7082 * it must have been asleep, sleeping tasks keep their ->vruntime
7083 * absolute on their old rq until wakeup (needed for the fair sleeper
7084 * bonus in place_entity()).
7085 *
7086 * If it was on the rq, we've just 'preempted' it, which does convert
7087 * ->vruntime to a relative base.
7088 *
7089 * Make sure both cases convert their relative position when migrating
7090 * to another cgroup's rq. This does somewhat interfere with the
7091 * fair sleeper stuff for the first placement, but who cares.
7092 */
7093 /*
7094 * When !on_rq, vruntime of the task has usually NOT been normalized.
7095 * But there are some cases where it has already been normalized:
7096 *
7097 * - Moving a forked child which is waiting for being woken up by
7098 * wake_up_new_task().
7099 * - Moving a task which has been woken up by try_to_wake_up() and
7100 * waiting for actually being woken up by sched_ttwu_pending().
7101 *
7102 * To prevent boost or penalty in the new cfs_rq caused by delta
7103 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7104 */
7105 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7106 on_rq = 1;
7107
7108 if (!on_rq)
7109 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7110 set_task_rq(p, task_cpu(p));
7111 if (!on_rq) {
7112 cfs_rq = cfs_rq_of(&p->se);
7113 p->se.vruntime += cfs_rq->min_vruntime;
7114 #ifdef CONFIG_SMP
7115 /*
7116 * migrate_task_rq_fair() will have removed our previous
7117 * contribution, but we must synchronize for ongoing future
7118 * decay.
7119 */
7120 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7121 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7122 #endif
7123 }
7124 }
7125
7126 void free_fair_sched_group(struct task_group *tg)
7127 {
7128 int i;
7129
7130 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7131
7132 for_each_possible_cpu(i) {
7133 if (tg->cfs_rq)
7134 kfree(tg->cfs_rq[i]);
7135 if (tg->se)
7136 kfree(tg->se[i]);
7137 }
7138
7139 kfree(tg->cfs_rq);
7140 kfree(tg->se);
7141 }
7142
7143 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7144 {
7145 struct cfs_rq *cfs_rq;
7146 struct sched_entity *se;
7147 int i;
7148
7149 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7150 if (!tg->cfs_rq)
7151 goto err;
7152 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7153 if (!tg->se)
7154 goto err;
7155
7156 tg->shares = NICE_0_LOAD;
7157
7158 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7159
7160 for_each_possible_cpu(i) {
7161 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7162 GFP_KERNEL, cpu_to_node(i));
7163 if (!cfs_rq)
7164 goto err;
7165
7166 se = kzalloc_node(sizeof(struct sched_entity),
7167 GFP_KERNEL, cpu_to_node(i));
7168 if (!se)
7169 goto err_free_rq;
7170
7171 init_cfs_rq(cfs_rq);
7172 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7173 }
7174
7175 return 1;
7176
7177 err_free_rq:
7178 kfree(cfs_rq);
7179 err:
7180 return 0;
7181 }
7182
7183 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7184 {
7185 struct rq *rq = cpu_rq(cpu);
7186 unsigned long flags;
7187
7188 /*
7189 * Only empty task groups can be destroyed; so we can speculatively
7190 * check on_list without danger of it being re-added.
7191 */
7192 if (!tg->cfs_rq[cpu]->on_list)
7193 return;
7194
7195 raw_spin_lock_irqsave(&rq->lock, flags);
7196 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7197 raw_spin_unlock_irqrestore(&rq->lock, flags);
7198 }
7199
7200 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7201 struct sched_entity *se, int cpu,
7202 struct sched_entity *parent)
7203 {
7204 struct rq *rq = cpu_rq(cpu);
7205
7206 cfs_rq->tg = tg;
7207 cfs_rq->rq = rq;
7208 init_cfs_rq_runtime(cfs_rq);
7209
7210 tg->cfs_rq[cpu] = cfs_rq;
7211 tg->se[cpu] = se;
7212
7213 /* se could be NULL for root_task_group */
7214 if (!se)
7215 return;
7216
7217 if (!parent)
7218 se->cfs_rq = &rq->cfs;
7219 else
7220 se->cfs_rq = parent->my_q;
7221
7222 se->my_q = cfs_rq;
7223 /* guarantee group entities always have weight */
7224 update_load_set(&se->load, NICE_0_LOAD);
7225 se->parent = parent;
7226 }
7227
7228 static DEFINE_MUTEX(shares_mutex);
7229
7230 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7231 {
7232 int i;
7233 unsigned long flags;
7234
7235 /*
7236 * We can't change the weight of the root cgroup.
7237 */
7238 if (!tg->se[0])
7239 return -EINVAL;
7240
7241 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7242
7243 mutex_lock(&shares_mutex);
7244 if (tg->shares == shares)
7245 goto done;
7246
7247 tg->shares = shares;
7248 for_each_possible_cpu(i) {
7249 struct rq *rq = cpu_rq(i);
7250 struct sched_entity *se;
7251
7252 se = tg->se[i];
7253 /* Propagate contribution to hierarchy */
7254 raw_spin_lock_irqsave(&rq->lock, flags);
7255
7256 /* Possible calls to update_curr() need rq clock */
7257 update_rq_clock(rq);
7258 for_each_sched_entity(se)
7259 update_cfs_shares(group_cfs_rq(se));
7260 raw_spin_unlock_irqrestore(&rq->lock, flags);
7261 }
7262
7263 done:
7264 mutex_unlock(&shares_mutex);
7265 return 0;
7266 }
7267 #else /* CONFIG_FAIR_GROUP_SCHED */
7268
7269 void free_fair_sched_group(struct task_group *tg) { }
7270
7271 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7272 {
7273 return 1;
7274 }
7275
7276 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7277
7278 #endif /* CONFIG_FAIR_GROUP_SCHED */
7279
7280
7281 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7282 {
7283 struct sched_entity *se = &task->se;
7284 unsigned int rr_interval = 0;
7285
7286 /*
7287 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7288 * idle runqueue:
7289 */
7290 if (rq->cfs.load.weight)
7291 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7292
7293 return rr_interval;
7294 }
7295
7296 /*
7297 * All the scheduling class methods:
7298 */
7299 const struct sched_class fair_sched_class = {
7300 .next = &idle_sched_class,
7301 .enqueue_task = enqueue_task_fair,
7302 .dequeue_task = dequeue_task_fair,
7303 .yield_task = yield_task_fair,
7304 .yield_to_task = yield_to_task_fair,
7305
7306 .check_preempt_curr = check_preempt_wakeup,
7307
7308 .pick_next_task = pick_next_task_fair,
7309 .put_prev_task = put_prev_task_fair,
7310
7311 #ifdef CONFIG_SMP
7312 .select_task_rq = select_task_rq_fair,
7313 .migrate_task_rq = migrate_task_rq_fair,
7314
7315 .rq_online = rq_online_fair,
7316 .rq_offline = rq_offline_fair,
7317
7318 .task_waking = task_waking_fair,
7319 #endif
7320
7321 .set_curr_task = set_curr_task_fair,
7322 .task_tick = task_tick_fair,
7323 .task_fork = task_fork_fair,
7324
7325 .prio_changed = prio_changed_fair,
7326 .switched_from = switched_from_fair,
7327 .switched_to = switched_to_fair,
7328
7329 .get_rr_interval = get_rr_interval_fair,
7330
7331 #ifdef CONFIG_FAIR_GROUP_SCHED
7332 .task_move_group = task_move_group_fair,
7333 #endif
7334 };
7335
7336 #ifdef CONFIG_SCHED_DEBUG
7337 void print_cfs_stats(struct seq_file *m, int cpu)
7338 {
7339 struct cfs_rq *cfs_rq;
7340
7341 rcu_read_lock();
7342 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7343 print_cfs_rq(m, cpu, cfs_rq);
7344 rcu_read_unlock();
7345 }
7346 #endif
7347
7348 __init void init_sched_fair_class(void)
7349 {
7350 #ifdef CONFIG_SMP
7351 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7352
7353 #ifdef CONFIG_NO_HZ_COMMON
7354 nohz.next_balance = jiffies;
7355 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7356 cpu_notifier(sched_ilb_notifier, 0);
7357 #endif
7358 #endif /* SMP */
7359
7360 }
This page took 0.208772 seconds and 5 git commands to generate.