Merge branch 'for-4.6-ns' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 }
306 }
307
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314 }
315
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 if (se->cfs_rq == pse->cfs_rq)
325 return se->cfs_rq;
326
327 return NULL;
328 }
329
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 return se->parent;
333 }
334
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365 }
366
367 #else /* !CONFIG_FAIR_GROUP_SCHED */
368
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 return container_of(se, struct task_struct, se);
372 }
373
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 return container_of(cfs_rq, struct rq, cfs);
377 }
378
379 #define entity_is_task(se) 1
380
381 #define for_each_sched_entity(se) \
382 for (; se; se = NULL)
383
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 return &task_rq(p)->cfs;
387 }
388
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395 }
396
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 return NULL;
401 }
402
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 return NULL;
417 }
418
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
425
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428
429 /**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 s64 delta = (s64)(vruntime - max_vruntime);
436 if (delta > 0)
437 max_vruntime = vruntime;
438
439 return max_vruntime;
440 }
441
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449 }
450
451 static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453 {
454 return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
469 if (!cfs_rq->curr)
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482
483 /*
484 * Enqueue an entity into the rb-tree:
485 */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542 }
543
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552 }
553
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563 }
564
565 /**************************************************************
566 * Scheduling class statistics methods:
567 */
568
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572 {
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588
589 return 0;
590 }
591 #endif
592
593 /*
594 * delta /= w
595 */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600
601 return delta;
602 }
603
604 /*
605 * The idea is to set a period in which each task runs once.
606 *
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
618 }
619
620 /*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
624 * s = p*P[w/rw]
625 */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
636
637 if (unlikely(!se->on_rq)) {
638 lw = cfs_rq->load;
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = __calc_delta(slice, se->load.weight, load);
644 }
645 return slice;
646 }
647
648 /*
649 * We calculate the vruntime slice of a to-be-inserted task.
650 *
651 * vs = s/w
652 */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661
662 /*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
666 */
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
673 {
674 struct sched_avg *sa = &se->avg;
675
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
688 }
689
690 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
692 #else
693 void init_entity_runnable_average(struct sched_entity *se)
694 {
695 }
696 #endif
697
698 /*
699 * Update the current task's runtime statistics.
700 */
701 static void update_curr(struct cfs_rq *cfs_rq)
702 {
703 struct sched_entity *curr = cfs_rq->curr;
704 u64 now = rq_clock_task(rq_of(cfs_rq));
705 u64 delta_exec;
706
707 if (unlikely(!curr))
708 return;
709
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
712 return;
713
714 curr->exec_start = now;
715
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729 cpuacct_charge(curtask, delta_exec);
730 account_group_exec_runtime(curtask, delta_exec);
731 }
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
734 }
735
736 static void update_curr_fair(struct rq *rq)
737 {
738 update_curr(cfs_rq_of(&rq->curr->se));
739 }
740
741 #ifdef CONFIG_SCHEDSTATS
742 static inline void
743 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 {
745 u64 wait_start = rq_clock(rq_of(cfs_rq));
746
747 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
748 likely(wait_start > se->statistics.wait_start))
749 wait_start -= se->statistics.wait_start;
750
751 se->statistics.wait_start = wait_start;
752 }
753
754 static void
755 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 {
757 struct task_struct *p;
758 u64 delta;
759
760 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
761
762 if (entity_is_task(se)) {
763 p = task_of(se);
764 if (task_on_rq_migrating(p)) {
765 /*
766 * Preserve migrating task's wait time so wait_start
767 * time stamp can be adjusted to accumulate wait time
768 * prior to migration.
769 */
770 se->statistics.wait_start = delta;
771 return;
772 }
773 trace_sched_stat_wait(p, delta);
774 }
775
776 se->statistics.wait_max = max(se->statistics.wait_max, delta);
777 se->statistics.wait_count++;
778 se->statistics.wait_sum += delta;
779 se->statistics.wait_start = 0;
780 }
781
782 /*
783 * Task is being enqueued - update stats:
784 */
785 static inline void
786 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
787 {
788 /*
789 * Are we enqueueing a waiting task? (for current tasks
790 * a dequeue/enqueue event is a NOP)
791 */
792 if (se != cfs_rq->curr)
793 update_stats_wait_start(cfs_rq, se);
794 }
795
796 static inline void
797 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
798 {
799 /*
800 * Mark the end of the wait period if dequeueing a
801 * waiting task:
802 */
803 if (se != cfs_rq->curr)
804 update_stats_wait_end(cfs_rq, se);
805
806 if (flags & DEQUEUE_SLEEP) {
807 if (entity_is_task(se)) {
808 struct task_struct *tsk = task_of(se);
809
810 if (tsk->state & TASK_INTERRUPTIBLE)
811 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
812 if (tsk->state & TASK_UNINTERRUPTIBLE)
813 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
814 }
815 }
816
817 }
818 #else
819 static inline void
820 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
821 {
822 }
823
824 static inline void
825 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
826 {
827 }
828
829 static inline void
830 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
831 {
832 }
833
834 static inline void
835 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
836 {
837 }
838 #endif
839
840 /*
841 * We are picking a new current task - update its stats:
842 */
843 static inline void
844 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
845 {
846 /*
847 * We are starting a new run period:
848 */
849 se->exec_start = rq_clock_task(rq_of(cfs_rq));
850 }
851
852 /**************************************************
853 * Scheduling class queueing methods:
854 */
855
856 #ifdef CONFIG_NUMA_BALANCING
857 /*
858 * Approximate time to scan a full NUMA task in ms. The task scan period is
859 * calculated based on the tasks virtual memory size and
860 * numa_balancing_scan_size.
861 */
862 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
863 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
864
865 /* Portion of address space to scan in MB */
866 unsigned int sysctl_numa_balancing_scan_size = 256;
867
868 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
869 unsigned int sysctl_numa_balancing_scan_delay = 1000;
870
871 static unsigned int task_nr_scan_windows(struct task_struct *p)
872 {
873 unsigned long rss = 0;
874 unsigned long nr_scan_pages;
875
876 /*
877 * Calculations based on RSS as non-present and empty pages are skipped
878 * by the PTE scanner and NUMA hinting faults should be trapped based
879 * on resident pages
880 */
881 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
882 rss = get_mm_rss(p->mm);
883 if (!rss)
884 rss = nr_scan_pages;
885
886 rss = round_up(rss, nr_scan_pages);
887 return rss / nr_scan_pages;
888 }
889
890 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
891 #define MAX_SCAN_WINDOW 2560
892
893 static unsigned int task_scan_min(struct task_struct *p)
894 {
895 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
896 unsigned int scan, floor;
897 unsigned int windows = 1;
898
899 if (scan_size < MAX_SCAN_WINDOW)
900 windows = MAX_SCAN_WINDOW / scan_size;
901 floor = 1000 / windows;
902
903 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
904 return max_t(unsigned int, floor, scan);
905 }
906
907 static unsigned int task_scan_max(struct task_struct *p)
908 {
909 unsigned int smin = task_scan_min(p);
910 unsigned int smax;
911
912 /* Watch for min being lower than max due to floor calculations */
913 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
914 return max(smin, smax);
915 }
916
917 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
918 {
919 rq->nr_numa_running += (p->numa_preferred_nid != -1);
920 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
921 }
922
923 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
924 {
925 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
926 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
927 }
928
929 struct numa_group {
930 atomic_t refcount;
931
932 spinlock_t lock; /* nr_tasks, tasks */
933 int nr_tasks;
934 pid_t gid;
935 int active_nodes;
936
937 struct rcu_head rcu;
938 unsigned long total_faults;
939 unsigned long max_faults_cpu;
940 /*
941 * Faults_cpu is used to decide whether memory should move
942 * towards the CPU. As a consequence, these stats are weighted
943 * more by CPU use than by memory faults.
944 */
945 unsigned long *faults_cpu;
946 unsigned long faults[0];
947 };
948
949 /* Shared or private faults. */
950 #define NR_NUMA_HINT_FAULT_TYPES 2
951
952 /* Memory and CPU locality */
953 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
954
955 /* Averaged statistics, and temporary buffers. */
956 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
957
958 pid_t task_numa_group_id(struct task_struct *p)
959 {
960 return p->numa_group ? p->numa_group->gid : 0;
961 }
962
963 /*
964 * The averaged statistics, shared & private, memory & cpu,
965 * occupy the first half of the array. The second half of the
966 * array is for current counters, which are averaged into the
967 * first set by task_numa_placement.
968 */
969 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
970 {
971 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
972 }
973
974 static inline unsigned long task_faults(struct task_struct *p, int nid)
975 {
976 if (!p->numa_faults)
977 return 0;
978
979 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
980 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
981 }
982
983 static inline unsigned long group_faults(struct task_struct *p, int nid)
984 {
985 if (!p->numa_group)
986 return 0;
987
988 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
989 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
990 }
991
992 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
993 {
994 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
995 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
996 }
997
998 /*
999 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1000 * considered part of a numa group's pseudo-interleaving set. Migrations
1001 * between these nodes are slowed down, to allow things to settle down.
1002 */
1003 #define ACTIVE_NODE_FRACTION 3
1004
1005 static bool numa_is_active_node(int nid, struct numa_group *ng)
1006 {
1007 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1008 }
1009
1010 /* Handle placement on systems where not all nodes are directly connected. */
1011 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1012 int maxdist, bool task)
1013 {
1014 unsigned long score = 0;
1015 int node;
1016
1017 /*
1018 * All nodes are directly connected, and the same distance
1019 * from each other. No need for fancy placement algorithms.
1020 */
1021 if (sched_numa_topology_type == NUMA_DIRECT)
1022 return 0;
1023
1024 /*
1025 * This code is called for each node, introducing N^2 complexity,
1026 * which should be ok given the number of nodes rarely exceeds 8.
1027 */
1028 for_each_online_node(node) {
1029 unsigned long faults;
1030 int dist = node_distance(nid, node);
1031
1032 /*
1033 * The furthest away nodes in the system are not interesting
1034 * for placement; nid was already counted.
1035 */
1036 if (dist == sched_max_numa_distance || node == nid)
1037 continue;
1038
1039 /*
1040 * On systems with a backplane NUMA topology, compare groups
1041 * of nodes, and move tasks towards the group with the most
1042 * memory accesses. When comparing two nodes at distance
1043 * "hoplimit", only nodes closer by than "hoplimit" are part
1044 * of each group. Skip other nodes.
1045 */
1046 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1047 dist > maxdist)
1048 continue;
1049
1050 /* Add up the faults from nearby nodes. */
1051 if (task)
1052 faults = task_faults(p, node);
1053 else
1054 faults = group_faults(p, node);
1055
1056 /*
1057 * On systems with a glueless mesh NUMA topology, there are
1058 * no fixed "groups of nodes". Instead, nodes that are not
1059 * directly connected bounce traffic through intermediate
1060 * nodes; a numa_group can occupy any set of nodes.
1061 * The further away a node is, the less the faults count.
1062 * This seems to result in good task placement.
1063 */
1064 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1065 faults *= (sched_max_numa_distance - dist);
1066 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1067 }
1068
1069 score += faults;
1070 }
1071
1072 return score;
1073 }
1074
1075 /*
1076 * These return the fraction of accesses done by a particular task, or
1077 * task group, on a particular numa node. The group weight is given a
1078 * larger multiplier, in order to group tasks together that are almost
1079 * evenly spread out between numa nodes.
1080 */
1081 static inline unsigned long task_weight(struct task_struct *p, int nid,
1082 int dist)
1083 {
1084 unsigned long faults, total_faults;
1085
1086 if (!p->numa_faults)
1087 return 0;
1088
1089 total_faults = p->total_numa_faults;
1090
1091 if (!total_faults)
1092 return 0;
1093
1094 faults = task_faults(p, nid);
1095 faults += score_nearby_nodes(p, nid, dist, true);
1096
1097 return 1000 * faults / total_faults;
1098 }
1099
1100 static inline unsigned long group_weight(struct task_struct *p, int nid,
1101 int dist)
1102 {
1103 unsigned long faults, total_faults;
1104
1105 if (!p->numa_group)
1106 return 0;
1107
1108 total_faults = p->numa_group->total_faults;
1109
1110 if (!total_faults)
1111 return 0;
1112
1113 faults = group_faults(p, nid);
1114 faults += score_nearby_nodes(p, nid, dist, false);
1115
1116 return 1000 * faults / total_faults;
1117 }
1118
1119 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1120 int src_nid, int dst_cpu)
1121 {
1122 struct numa_group *ng = p->numa_group;
1123 int dst_nid = cpu_to_node(dst_cpu);
1124 int last_cpupid, this_cpupid;
1125
1126 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1127
1128 /*
1129 * Multi-stage node selection is used in conjunction with a periodic
1130 * migration fault to build a temporal task<->page relation. By using
1131 * a two-stage filter we remove short/unlikely relations.
1132 *
1133 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1134 * a task's usage of a particular page (n_p) per total usage of this
1135 * page (n_t) (in a given time-span) to a probability.
1136 *
1137 * Our periodic faults will sample this probability and getting the
1138 * same result twice in a row, given these samples are fully
1139 * independent, is then given by P(n)^2, provided our sample period
1140 * is sufficiently short compared to the usage pattern.
1141 *
1142 * This quadric squishes small probabilities, making it less likely we
1143 * act on an unlikely task<->page relation.
1144 */
1145 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1146 if (!cpupid_pid_unset(last_cpupid) &&
1147 cpupid_to_nid(last_cpupid) != dst_nid)
1148 return false;
1149
1150 /* Always allow migrate on private faults */
1151 if (cpupid_match_pid(p, last_cpupid))
1152 return true;
1153
1154 /* A shared fault, but p->numa_group has not been set up yet. */
1155 if (!ng)
1156 return true;
1157
1158 /*
1159 * Destination node is much more heavily used than the source
1160 * node? Allow migration.
1161 */
1162 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1163 ACTIVE_NODE_FRACTION)
1164 return true;
1165
1166 /*
1167 * Distribute memory according to CPU & memory use on each node,
1168 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1169 *
1170 * faults_cpu(dst) 3 faults_cpu(src)
1171 * --------------- * - > ---------------
1172 * faults_mem(dst) 4 faults_mem(src)
1173 */
1174 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1175 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1176 }
1177
1178 static unsigned long weighted_cpuload(const int cpu);
1179 static unsigned long source_load(int cpu, int type);
1180 static unsigned long target_load(int cpu, int type);
1181 static unsigned long capacity_of(int cpu);
1182 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1183
1184 /* Cached statistics for all CPUs within a node */
1185 struct numa_stats {
1186 unsigned long nr_running;
1187 unsigned long load;
1188
1189 /* Total compute capacity of CPUs on a node */
1190 unsigned long compute_capacity;
1191
1192 /* Approximate capacity in terms of runnable tasks on a node */
1193 unsigned long task_capacity;
1194 int has_free_capacity;
1195 };
1196
1197 /*
1198 * XXX borrowed from update_sg_lb_stats
1199 */
1200 static void update_numa_stats(struct numa_stats *ns, int nid)
1201 {
1202 int smt, cpu, cpus = 0;
1203 unsigned long capacity;
1204
1205 memset(ns, 0, sizeof(*ns));
1206 for_each_cpu(cpu, cpumask_of_node(nid)) {
1207 struct rq *rq = cpu_rq(cpu);
1208
1209 ns->nr_running += rq->nr_running;
1210 ns->load += weighted_cpuload(cpu);
1211 ns->compute_capacity += capacity_of(cpu);
1212
1213 cpus++;
1214 }
1215
1216 /*
1217 * If we raced with hotplug and there are no CPUs left in our mask
1218 * the @ns structure is NULL'ed and task_numa_compare() will
1219 * not find this node attractive.
1220 *
1221 * We'll either bail at !has_free_capacity, or we'll detect a huge
1222 * imbalance and bail there.
1223 */
1224 if (!cpus)
1225 return;
1226
1227 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1228 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1229 capacity = cpus / smt; /* cores */
1230
1231 ns->task_capacity = min_t(unsigned, capacity,
1232 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1233 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1234 }
1235
1236 struct task_numa_env {
1237 struct task_struct *p;
1238
1239 int src_cpu, src_nid;
1240 int dst_cpu, dst_nid;
1241
1242 struct numa_stats src_stats, dst_stats;
1243
1244 int imbalance_pct;
1245 int dist;
1246
1247 struct task_struct *best_task;
1248 long best_imp;
1249 int best_cpu;
1250 };
1251
1252 static void task_numa_assign(struct task_numa_env *env,
1253 struct task_struct *p, long imp)
1254 {
1255 if (env->best_task)
1256 put_task_struct(env->best_task);
1257
1258 env->best_task = p;
1259 env->best_imp = imp;
1260 env->best_cpu = env->dst_cpu;
1261 }
1262
1263 static bool load_too_imbalanced(long src_load, long dst_load,
1264 struct task_numa_env *env)
1265 {
1266 long imb, old_imb;
1267 long orig_src_load, orig_dst_load;
1268 long src_capacity, dst_capacity;
1269
1270 /*
1271 * The load is corrected for the CPU capacity available on each node.
1272 *
1273 * src_load dst_load
1274 * ------------ vs ---------
1275 * src_capacity dst_capacity
1276 */
1277 src_capacity = env->src_stats.compute_capacity;
1278 dst_capacity = env->dst_stats.compute_capacity;
1279
1280 /* We care about the slope of the imbalance, not the direction. */
1281 if (dst_load < src_load)
1282 swap(dst_load, src_load);
1283
1284 /* Is the difference below the threshold? */
1285 imb = dst_load * src_capacity * 100 -
1286 src_load * dst_capacity * env->imbalance_pct;
1287 if (imb <= 0)
1288 return false;
1289
1290 /*
1291 * The imbalance is above the allowed threshold.
1292 * Compare it with the old imbalance.
1293 */
1294 orig_src_load = env->src_stats.load;
1295 orig_dst_load = env->dst_stats.load;
1296
1297 if (orig_dst_load < orig_src_load)
1298 swap(orig_dst_load, orig_src_load);
1299
1300 old_imb = orig_dst_load * src_capacity * 100 -
1301 orig_src_load * dst_capacity * env->imbalance_pct;
1302
1303 /* Would this change make things worse? */
1304 return (imb > old_imb);
1305 }
1306
1307 /*
1308 * This checks if the overall compute and NUMA accesses of the system would
1309 * be improved if the source tasks was migrated to the target dst_cpu taking
1310 * into account that it might be best if task running on the dst_cpu should
1311 * be exchanged with the source task
1312 */
1313 static void task_numa_compare(struct task_numa_env *env,
1314 long taskimp, long groupimp)
1315 {
1316 struct rq *src_rq = cpu_rq(env->src_cpu);
1317 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1318 struct task_struct *cur;
1319 long src_load, dst_load;
1320 long load;
1321 long imp = env->p->numa_group ? groupimp : taskimp;
1322 long moveimp = imp;
1323 int dist = env->dist;
1324 bool assigned = false;
1325
1326 rcu_read_lock();
1327
1328 raw_spin_lock_irq(&dst_rq->lock);
1329 cur = dst_rq->curr;
1330 /*
1331 * No need to move the exiting task or idle task.
1332 */
1333 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1334 cur = NULL;
1335 else {
1336 /*
1337 * The task_struct must be protected here to protect the
1338 * p->numa_faults access in the task_weight since the
1339 * numa_faults could already be freed in the following path:
1340 * finish_task_switch()
1341 * --> put_task_struct()
1342 * --> __put_task_struct()
1343 * --> task_numa_free()
1344 */
1345 get_task_struct(cur);
1346 }
1347
1348 raw_spin_unlock_irq(&dst_rq->lock);
1349
1350 /*
1351 * Because we have preemption enabled we can get migrated around and
1352 * end try selecting ourselves (current == env->p) as a swap candidate.
1353 */
1354 if (cur == env->p)
1355 goto unlock;
1356
1357 /*
1358 * "imp" is the fault differential for the source task between the
1359 * source and destination node. Calculate the total differential for
1360 * the source task and potential destination task. The more negative
1361 * the value is, the more rmeote accesses that would be expected to
1362 * be incurred if the tasks were swapped.
1363 */
1364 if (cur) {
1365 /* Skip this swap candidate if cannot move to the source cpu */
1366 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1367 goto unlock;
1368
1369 /*
1370 * If dst and source tasks are in the same NUMA group, or not
1371 * in any group then look only at task weights.
1372 */
1373 if (cur->numa_group == env->p->numa_group) {
1374 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1375 task_weight(cur, env->dst_nid, dist);
1376 /*
1377 * Add some hysteresis to prevent swapping the
1378 * tasks within a group over tiny differences.
1379 */
1380 if (cur->numa_group)
1381 imp -= imp/16;
1382 } else {
1383 /*
1384 * Compare the group weights. If a task is all by
1385 * itself (not part of a group), use the task weight
1386 * instead.
1387 */
1388 if (cur->numa_group)
1389 imp += group_weight(cur, env->src_nid, dist) -
1390 group_weight(cur, env->dst_nid, dist);
1391 else
1392 imp += task_weight(cur, env->src_nid, dist) -
1393 task_weight(cur, env->dst_nid, dist);
1394 }
1395 }
1396
1397 if (imp <= env->best_imp && moveimp <= env->best_imp)
1398 goto unlock;
1399
1400 if (!cur) {
1401 /* Is there capacity at our destination? */
1402 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1403 !env->dst_stats.has_free_capacity)
1404 goto unlock;
1405
1406 goto balance;
1407 }
1408
1409 /* Balance doesn't matter much if we're running a task per cpu */
1410 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1411 dst_rq->nr_running == 1)
1412 goto assign;
1413
1414 /*
1415 * In the overloaded case, try and keep the load balanced.
1416 */
1417 balance:
1418 load = task_h_load(env->p);
1419 dst_load = env->dst_stats.load + load;
1420 src_load = env->src_stats.load - load;
1421
1422 if (moveimp > imp && moveimp > env->best_imp) {
1423 /*
1424 * If the improvement from just moving env->p direction is
1425 * better than swapping tasks around, check if a move is
1426 * possible. Store a slightly smaller score than moveimp,
1427 * so an actually idle CPU will win.
1428 */
1429 if (!load_too_imbalanced(src_load, dst_load, env)) {
1430 imp = moveimp - 1;
1431 put_task_struct(cur);
1432 cur = NULL;
1433 goto assign;
1434 }
1435 }
1436
1437 if (imp <= env->best_imp)
1438 goto unlock;
1439
1440 if (cur) {
1441 load = task_h_load(cur);
1442 dst_load -= load;
1443 src_load += load;
1444 }
1445
1446 if (load_too_imbalanced(src_load, dst_load, env))
1447 goto unlock;
1448
1449 /*
1450 * One idle CPU per node is evaluated for a task numa move.
1451 * Call select_idle_sibling to maybe find a better one.
1452 */
1453 if (!cur)
1454 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1455
1456 assign:
1457 assigned = true;
1458 task_numa_assign(env, cur, imp);
1459 unlock:
1460 rcu_read_unlock();
1461 /*
1462 * The dst_rq->curr isn't assigned. The protection for task_struct is
1463 * finished.
1464 */
1465 if (cur && !assigned)
1466 put_task_struct(cur);
1467 }
1468
1469 static void task_numa_find_cpu(struct task_numa_env *env,
1470 long taskimp, long groupimp)
1471 {
1472 int cpu;
1473
1474 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1475 /* Skip this CPU if the source task cannot migrate */
1476 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1477 continue;
1478
1479 env->dst_cpu = cpu;
1480 task_numa_compare(env, taskimp, groupimp);
1481 }
1482 }
1483
1484 /* Only move tasks to a NUMA node less busy than the current node. */
1485 static bool numa_has_capacity(struct task_numa_env *env)
1486 {
1487 struct numa_stats *src = &env->src_stats;
1488 struct numa_stats *dst = &env->dst_stats;
1489
1490 if (src->has_free_capacity && !dst->has_free_capacity)
1491 return false;
1492
1493 /*
1494 * Only consider a task move if the source has a higher load
1495 * than the destination, corrected for CPU capacity on each node.
1496 *
1497 * src->load dst->load
1498 * --------------------- vs ---------------------
1499 * src->compute_capacity dst->compute_capacity
1500 */
1501 if (src->load * dst->compute_capacity * env->imbalance_pct >
1502
1503 dst->load * src->compute_capacity * 100)
1504 return true;
1505
1506 return false;
1507 }
1508
1509 static int task_numa_migrate(struct task_struct *p)
1510 {
1511 struct task_numa_env env = {
1512 .p = p,
1513
1514 .src_cpu = task_cpu(p),
1515 .src_nid = task_node(p),
1516
1517 .imbalance_pct = 112,
1518
1519 .best_task = NULL,
1520 .best_imp = 0,
1521 .best_cpu = -1,
1522 };
1523 struct sched_domain *sd;
1524 unsigned long taskweight, groupweight;
1525 int nid, ret, dist;
1526 long taskimp, groupimp;
1527
1528 /*
1529 * Pick the lowest SD_NUMA domain, as that would have the smallest
1530 * imbalance and would be the first to start moving tasks about.
1531 *
1532 * And we want to avoid any moving of tasks about, as that would create
1533 * random movement of tasks -- counter the numa conditions we're trying
1534 * to satisfy here.
1535 */
1536 rcu_read_lock();
1537 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1538 if (sd)
1539 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1540 rcu_read_unlock();
1541
1542 /*
1543 * Cpusets can break the scheduler domain tree into smaller
1544 * balance domains, some of which do not cross NUMA boundaries.
1545 * Tasks that are "trapped" in such domains cannot be migrated
1546 * elsewhere, so there is no point in (re)trying.
1547 */
1548 if (unlikely(!sd)) {
1549 p->numa_preferred_nid = task_node(p);
1550 return -EINVAL;
1551 }
1552
1553 env.dst_nid = p->numa_preferred_nid;
1554 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1555 taskweight = task_weight(p, env.src_nid, dist);
1556 groupweight = group_weight(p, env.src_nid, dist);
1557 update_numa_stats(&env.src_stats, env.src_nid);
1558 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1559 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1560 update_numa_stats(&env.dst_stats, env.dst_nid);
1561
1562 /* Try to find a spot on the preferred nid. */
1563 if (numa_has_capacity(&env))
1564 task_numa_find_cpu(&env, taskimp, groupimp);
1565
1566 /*
1567 * Look at other nodes in these cases:
1568 * - there is no space available on the preferred_nid
1569 * - the task is part of a numa_group that is interleaved across
1570 * multiple NUMA nodes; in order to better consolidate the group,
1571 * we need to check other locations.
1572 */
1573 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1574 for_each_online_node(nid) {
1575 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1576 continue;
1577
1578 dist = node_distance(env.src_nid, env.dst_nid);
1579 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1580 dist != env.dist) {
1581 taskweight = task_weight(p, env.src_nid, dist);
1582 groupweight = group_weight(p, env.src_nid, dist);
1583 }
1584
1585 /* Only consider nodes where both task and groups benefit */
1586 taskimp = task_weight(p, nid, dist) - taskweight;
1587 groupimp = group_weight(p, nid, dist) - groupweight;
1588 if (taskimp < 0 && groupimp < 0)
1589 continue;
1590
1591 env.dist = dist;
1592 env.dst_nid = nid;
1593 update_numa_stats(&env.dst_stats, env.dst_nid);
1594 if (numa_has_capacity(&env))
1595 task_numa_find_cpu(&env, taskimp, groupimp);
1596 }
1597 }
1598
1599 /*
1600 * If the task is part of a workload that spans multiple NUMA nodes,
1601 * and is migrating into one of the workload's active nodes, remember
1602 * this node as the task's preferred numa node, so the workload can
1603 * settle down.
1604 * A task that migrated to a second choice node will be better off
1605 * trying for a better one later. Do not set the preferred node here.
1606 */
1607 if (p->numa_group) {
1608 struct numa_group *ng = p->numa_group;
1609
1610 if (env.best_cpu == -1)
1611 nid = env.src_nid;
1612 else
1613 nid = env.dst_nid;
1614
1615 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1616 sched_setnuma(p, env.dst_nid);
1617 }
1618
1619 /* No better CPU than the current one was found. */
1620 if (env.best_cpu == -1)
1621 return -EAGAIN;
1622
1623 /*
1624 * Reset the scan period if the task is being rescheduled on an
1625 * alternative node to recheck if the tasks is now properly placed.
1626 */
1627 p->numa_scan_period = task_scan_min(p);
1628
1629 if (env.best_task == NULL) {
1630 ret = migrate_task_to(p, env.best_cpu);
1631 if (ret != 0)
1632 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1633 return ret;
1634 }
1635
1636 ret = migrate_swap(p, env.best_task);
1637 if (ret != 0)
1638 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1639 put_task_struct(env.best_task);
1640 return ret;
1641 }
1642
1643 /* Attempt to migrate a task to a CPU on the preferred node. */
1644 static void numa_migrate_preferred(struct task_struct *p)
1645 {
1646 unsigned long interval = HZ;
1647
1648 /* This task has no NUMA fault statistics yet */
1649 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1650 return;
1651
1652 /* Periodically retry migrating the task to the preferred node */
1653 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1654 p->numa_migrate_retry = jiffies + interval;
1655
1656 /* Success if task is already running on preferred CPU */
1657 if (task_node(p) == p->numa_preferred_nid)
1658 return;
1659
1660 /* Otherwise, try migrate to a CPU on the preferred node */
1661 task_numa_migrate(p);
1662 }
1663
1664 /*
1665 * Find out how many nodes on the workload is actively running on. Do this by
1666 * tracking the nodes from which NUMA hinting faults are triggered. This can
1667 * be different from the set of nodes where the workload's memory is currently
1668 * located.
1669 */
1670 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1671 {
1672 unsigned long faults, max_faults = 0;
1673 int nid, active_nodes = 0;
1674
1675 for_each_online_node(nid) {
1676 faults = group_faults_cpu(numa_group, nid);
1677 if (faults > max_faults)
1678 max_faults = faults;
1679 }
1680
1681 for_each_online_node(nid) {
1682 faults = group_faults_cpu(numa_group, nid);
1683 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1684 active_nodes++;
1685 }
1686
1687 numa_group->max_faults_cpu = max_faults;
1688 numa_group->active_nodes = active_nodes;
1689 }
1690
1691 /*
1692 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1693 * increments. The more local the fault statistics are, the higher the scan
1694 * period will be for the next scan window. If local/(local+remote) ratio is
1695 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1696 * the scan period will decrease. Aim for 70% local accesses.
1697 */
1698 #define NUMA_PERIOD_SLOTS 10
1699 #define NUMA_PERIOD_THRESHOLD 7
1700
1701 /*
1702 * Increase the scan period (slow down scanning) if the majority of
1703 * our memory is already on our local node, or if the majority of
1704 * the page accesses are shared with other processes.
1705 * Otherwise, decrease the scan period.
1706 */
1707 static void update_task_scan_period(struct task_struct *p,
1708 unsigned long shared, unsigned long private)
1709 {
1710 unsigned int period_slot;
1711 int ratio;
1712 int diff;
1713
1714 unsigned long remote = p->numa_faults_locality[0];
1715 unsigned long local = p->numa_faults_locality[1];
1716
1717 /*
1718 * If there were no record hinting faults then either the task is
1719 * completely idle or all activity is areas that are not of interest
1720 * to automatic numa balancing. Related to that, if there were failed
1721 * migration then it implies we are migrating too quickly or the local
1722 * node is overloaded. In either case, scan slower
1723 */
1724 if (local + shared == 0 || p->numa_faults_locality[2]) {
1725 p->numa_scan_period = min(p->numa_scan_period_max,
1726 p->numa_scan_period << 1);
1727
1728 p->mm->numa_next_scan = jiffies +
1729 msecs_to_jiffies(p->numa_scan_period);
1730
1731 return;
1732 }
1733
1734 /*
1735 * Prepare to scale scan period relative to the current period.
1736 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1737 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1738 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1739 */
1740 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1741 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1742 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1743 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1744 if (!slot)
1745 slot = 1;
1746 diff = slot * period_slot;
1747 } else {
1748 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1749
1750 /*
1751 * Scale scan rate increases based on sharing. There is an
1752 * inverse relationship between the degree of sharing and
1753 * the adjustment made to the scanning period. Broadly
1754 * speaking the intent is that there is little point
1755 * scanning faster if shared accesses dominate as it may
1756 * simply bounce migrations uselessly
1757 */
1758 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1759 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1760 }
1761
1762 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1763 task_scan_min(p), task_scan_max(p));
1764 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1765 }
1766
1767 /*
1768 * Get the fraction of time the task has been running since the last
1769 * NUMA placement cycle. The scheduler keeps similar statistics, but
1770 * decays those on a 32ms period, which is orders of magnitude off
1771 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1772 * stats only if the task is so new there are no NUMA statistics yet.
1773 */
1774 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1775 {
1776 u64 runtime, delta, now;
1777 /* Use the start of this time slice to avoid calculations. */
1778 now = p->se.exec_start;
1779 runtime = p->se.sum_exec_runtime;
1780
1781 if (p->last_task_numa_placement) {
1782 delta = runtime - p->last_sum_exec_runtime;
1783 *period = now - p->last_task_numa_placement;
1784 } else {
1785 delta = p->se.avg.load_sum / p->se.load.weight;
1786 *period = LOAD_AVG_MAX;
1787 }
1788
1789 p->last_sum_exec_runtime = runtime;
1790 p->last_task_numa_placement = now;
1791
1792 return delta;
1793 }
1794
1795 /*
1796 * Determine the preferred nid for a task in a numa_group. This needs to
1797 * be done in a way that produces consistent results with group_weight,
1798 * otherwise workloads might not converge.
1799 */
1800 static int preferred_group_nid(struct task_struct *p, int nid)
1801 {
1802 nodemask_t nodes;
1803 int dist;
1804
1805 /* Direct connections between all NUMA nodes. */
1806 if (sched_numa_topology_type == NUMA_DIRECT)
1807 return nid;
1808
1809 /*
1810 * On a system with glueless mesh NUMA topology, group_weight
1811 * scores nodes according to the number of NUMA hinting faults on
1812 * both the node itself, and on nearby nodes.
1813 */
1814 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1815 unsigned long score, max_score = 0;
1816 int node, max_node = nid;
1817
1818 dist = sched_max_numa_distance;
1819
1820 for_each_online_node(node) {
1821 score = group_weight(p, node, dist);
1822 if (score > max_score) {
1823 max_score = score;
1824 max_node = node;
1825 }
1826 }
1827 return max_node;
1828 }
1829
1830 /*
1831 * Finding the preferred nid in a system with NUMA backplane
1832 * interconnect topology is more involved. The goal is to locate
1833 * tasks from numa_groups near each other in the system, and
1834 * untangle workloads from different sides of the system. This requires
1835 * searching down the hierarchy of node groups, recursively searching
1836 * inside the highest scoring group of nodes. The nodemask tricks
1837 * keep the complexity of the search down.
1838 */
1839 nodes = node_online_map;
1840 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1841 unsigned long max_faults = 0;
1842 nodemask_t max_group = NODE_MASK_NONE;
1843 int a, b;
1844
1845 /* Are there nodes at this distance from each other? */
1846 if (!find_numa_distance(dist))
1847 continue;
1848
1849 for_each_node_mask(a, nodes) {
1850 unsigned long faults = 0;
1851 nodemask_t this_group;
1852 nodes_clear(this_group);
1853
1854 /* Sum group's NUMA faults; includes a==b case. */
1855 for_each_node_mask(b, nodes) {
1856 if (node_distance(a, b) < dist) {
1857 faults += group_faults(p, b);
1858 node_set(b, this_group);
1859 node_clear(b, nodes);
1860 }
1861 }
1862
1863 /* Remember the top group. */
1864 if (faults > max_faults) {
1865 max_faults = faults;
1866 max_group = this_group;
1867 /*
1868 * subtle: at the smallest distance there is
1869 * just one node left in each "group", the
1870 * winner is the preferred nid.
1871 */
1872 nid = a;
1873 }
1874 }
1875 /* Next round, evaluate the nodes within max_group. */
1876 if (!max_faults)
1877 break;
1878 nodes = max_group;
1879 }
1880 return nid;
1881 }
1882
1883 static void task_numa_placement(struct task_struct *p)
1884 {
1885 int seq, nid, max_nid = -1, max_group_nid = -1;
1886 unsigned long max_faults = 0, max_group_faults = 0;
1887 unsigned long fault_types[2] = { 0, 0 };
1888 unsigned long total_faults;
1889 u64 runtime, period;
1890 spinlock_t *group_lock = NULL;
1891
1892 /*
1893 * The p->mm->numa_scan_seq field gets updated without
1894 * exclusive access. Use READ_ONCE() here to ensure
1895 * that the field is read in a single access:
1896 */
1897 seq = READ_ONCE(p->mm->numa_scan_seq);
1898 if (p->numa_scan_seq == seq)
1899 return;
1900 p->numa_scan_seq = seq;
1901 p->numa_scan_period_max = task_scan_max(p);
1902
1903 total_faults = p->numa_faults_locality[0] +
1904 p->numa_faults_locality[1];
1905 runtime = numa_get_avg_runtime(p, &period);
1906
1907 /* If the task is part of a group prevent parallel updates to group stats */
1908 if (p->numa_group) {
1909 group_lock = &p->numa_group->lock;
1910 spin_lock_irq(group_lock);
1911 }
1912
1913 /* Find the node with the highest number of faults */
1914 for_each_online_node(nid) {
1915 /* Keep track of the offsets in numa_faults array */
1916 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1917 unsigned long faults = 0, group_faults = 0;
1918 int priv;
1919
1920 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1921 long diff, f_diff, f_weight;
1922
1923 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1924 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1925 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1926 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1927
1928 /* Decay existing window, copy faults since last scan */
1929 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1930 fault_types[priv] += p->numa_faults[membuf_idx];
1931 p->numa_faults[membuf_idx] = 0;
1932
1933 /*
1934 * Normalize the faults_from, so all tasks in a group
1935 * count according to CPU use, instead of by the raw
1936 * number of faults. Tasks with little runtime have
1937 * little over-all impact on throughput, and thus their
1938 * faults are less important.
1939 */
1940 f_weight = div64_u64(runtime << 16, period + 1);
1941 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1942 (total_faults + 1);
1943 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1944 p->numa_faults[cpubuf_idx] = 0;
1945
1946 p->numa_faults[mem_idx] += diff;
1947 p->numa_faults[cpu_idx] += f_diff;
1948 faults += p->numa_faults[mem_idx];
1949 p->total_numa_faults += diff;
1950 if (p->numa_group) {
1951 /*
1952 * safe because we can only change our own group
1953 *
1954 * mem_idx represents the offset for a given
1955 * nid and priv in a specific region because it
1956 * is at the beginning of the numa_faults array.
1957 */
1958 p->numa_group->faults[mem_idx] += diff;
1959 p->numa_group->faults_cpu[mem_idx] += f_diff;
1960 p->numa_group->total_faults += diff;
1961 group_faults += p->numa_group->faults[mem_idx];
1962 }
1963 }
1964
1965 if (faults > max_faults) {
1966 max_faults = faults;
1967 max_nid = nid;
1968 }
1969
1970 if (group_faults > max_group_faults) {
1971 max_group_faults = group_faults;
1972 max_group_nid = nid;
1973 }
1974 }
1975
1976 update_task_scan_period(p, fault_types[0], fault_types[1]);
1977
1978 if (p->numa_group) {
1979 numa_group_count_active_nodes(p->numa_group);
1980 spin_unlock_irq(group_lock);
1981 max_nid = preferred_group_nid(p, max_group_nid);
1982 }
1983
1984 if (max_faults) {
1985 /* Set the new preferred node */
1986 if (max_nid != p->numa_preferred_nid)
1987 sched_setnuma(p, max_nid);
1988
1989 if (task_node(p) != p->numa_preferred_nid)
1990 numa_migrate_preferred(p);
1991 }
1992 }
1993
1994 static inline int get_numa_group(struct numa_group *grp)
1995 {
1996 return atomic_inc_not_zero(&grp->refcount);
1997 }
1998
1999 static inline void put_numa_group(struct numa_group *grp)
2000 {
2001 if (atomic_dec_and_test(&grp->refcount))
2002 kfree_rcu(grp, rcu);
2003 }
2004
2005 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2006 int *priv)
2007 {
2008 struct numa_group *grp, *my_grp;
2009 struct task_struct *tsk;
2010 bool join = false;
2011 int cpu = cpupid_to_cpu(cpupid);
2012 int i;
2013
2014 if (unlikely(!p->numa_group)) {
2015 unsigned int size = sizeof(struct numa_group) +
2016 4*nr_node_ids*sizeof(unsigned long);
2017
2018 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2019 if (!grp)
2020 return;
2021
2022 atomic_set(&grp->refcount, 1);
2023 grp->active_nodes = 1;
2024 grp->max_faults_cpu = 0;
2025 spin_lock_init(&grp->lock);
2026 grp->gid = p->pid;
2027 /* Second half of the array tracks nids where faults happen */
2028 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2029 nr_node_ids;
2030
2031 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2032 grp->faults[i] = p->numa_faults[i];
2033
2034 grp->total_faults = p->total_numa_faults;
2035
2036 grp->nr_tasks++;
2037 rcu_assign_pointer(p->numa_group, grp);
2038 }
2039
2040 rcu_read_lock();
2041 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2042
2043 if (!cpupid_match_pid(tsk, cpupid))
2044 goto no_join;
2045
2046 grp = rcu_dereference(tsk->numa_group);
2047 if (!grp)
2048 goto no_join;
2049
2050 my_grp = p->numa_group;
2051 if (grp == my_grp)
2052 goto no_join;
2053
2054 /*
2055 * Only join the other group if its bigger; if we're the bigger group,
2056 * the other task will join us.
2057 */
2058 if (my_grp->nr_tasks > grp->nr_tasks)
2059 goto no_join;
2060
2061 /*
2062 * Tie-break on the grp address.
2063 */
2064 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2065 goto no_join;
2066
2067 /* Always join threads in the same process. */
2068 if (tsk->mm == current->mm)
2069 join = true;
2070
2071 /* Simple filter to avoid false positives due to PID collisions */
2072 if (flags & TNF_SHARED)
2073 join = true;
2074
2075 /* Update priv based on whether false sharing was detected */
2076 *priv = !join;
2077
2078 if (join && !get_numa_group(grp))
2079 goto no_join;
2080
2081 rcu_read_unlock();
2082
2083 if (!join)
2084 return;
2085
2086 BUG_ON(irqs_disabled());
2087 double_lock_irq(&my_grp->lock, &grp->lock);
2088
2089 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2090 my_grp->faults[i] -= p->numa_faults[i];
2091 grp->faults[i] += p->numa_faults[i];
2092 }
2093 my_grp->total_faults -= p->total_numa_faults;
2094 grp->total_faults += p->total_numa_faults;
2095
2096 my_grp->nr_tasks--;
2097 grp->nr_tasks++;
2098
2099 spin_unlock(&my_grp->lock);
2100 spin_unlock_irq(&grp->lock);
2101
2102 rcu_assign_pointer(p->numa_group, grp);
2103
2104 put_numa_group(my_grp);
2105 return;
2106
2107 no_join:
2108 rcu_read_unlock();
2109 return;
2110 }
2111
2112 void task_numa_free(struct task_struct *p)
2113 {
2114 struct numa_group *grp = p->numa_group;
2115 void *numa_faults = p->numa_faults;
2116 unsigned long flags;
2117 int i;
2118
2119 if (grp) {
2120 spin_lock_irqsave(&grp->lock, flags);
2121 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2122 grp->faults[i] -= p->numa_faults[i];
2123 grp->total_faults -= p->total_numa_faults;
2124
2125 grp->nr_tasks--;
2126 spin_unlock_irqrestore(&grp->lock, flags);
2127 RCU_INIT_POINTER(p->numa_group, NULL);
2128 put_numa_group(grp);
2129 }
2130
2131 p->numa_faults = NULL;
2132 kfree(numa_faults);
2133 }
2134
2135 /*
2136 * Got a PROT_NONE fault for a page on @node.
2137 */
2138 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2139 {
2140 struct task_struct *p = current;
2141 bool migrated = flags & TNF_MIGRATED;
2142 int cpu_node = task_node(current);
2143 int local = !!(flags & TNF_FAULT_LOCAL);
2144 struct numa_group *ng;
2145 int priv;
2146
2147 if (!static_branch_likely(&sched_numa_balancing))
2148 return;
2149
2150 /* for example, ksmd faulting in a user's mm */
2151 if (!p->mm)
2152 return;
2153
2154 /* Allocate buffer to track faults on a per-node basis */
2155 if (unlikely(!p->numa_faults)) {
2156 int size = sizeof(*p->numa_faults) *
2157 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2158
2159 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2160 if (!p->numa_faults)
2161 return;
2162
2163 p->total_numa_faults = 0;
2164 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2165 }
2166
2167 /*
2168 * First accesses are treated as private, otherwise consider accesses
2169 * to be private if the accessing pid has not changed
2170 */
2171 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2172 priv = 1;
2173 } else {
2174 priv = cpupid_match_pid(p, last_cpupid);
2175 if (!priv && !(flags & TNF_NO_GROUP))
2176 task_numa_group(p, last_cpupid, flags, &priv);
2177 }
2178
2179 /*
2180 * If a workload spans multiple NUMA nodes, a shared fault that
2181 * occurs wholly within the set of nodes that the workload is
2182 * actively using should be counted as local. This allows the
2183 * scan rate to slow down when a workload has settled down.
2184 */
2185 ng = p->numa_group;
2186 if (!priv && !local && ng && ng->active_nodes > 1 &&
2187 numa_is_active_node(cpu_node, ng) &&
2188 numa_is_active_node(mem_node, ng))
2189 local = 1;
2190
2191 task_numa_placement(p);
2192
2193 /*
2194 * Retry task to preferred node migration periodically, in case it
2195 * case it previously failed, or the scheduler moved us.
2196 */
2197 if (time_after(jiffies, p->numa_migrate_retry))
2198 numa_migrate_preferred(p);
2199
2200 if (migrated)
2201 p->numa_pages_migrated += pages;
2202 if (flags & TNF_MIGRATE_FAIL)
2203 p->numa_faults_locality[2] += pages;
2204
2205 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2206 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2207 p->numa_faults_locality[local] += pages;
2208 }
2209
2210 static void reset_ptenuma_scan(struct task_struct *p)
2211 {
2212 /*
2213 * We only did a read acquisition of the mmap sem, so
2214 * p->mm->numa_scan_seq is written to without exclusive access
2215 * and the update is not guaranteed to be atomic. That's not
2216 * much of an issue though, since this is just used for
2217 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2218 * expensive, to avoid any form of compiler optimizations:
2219 */
2220 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2221 p->mm->numa_scan_offset = 0;
2222 }
2223
2224 /*
2225 * The expensive part of numa migration is done from task_work context.
2226 * Triggered from task_tick_numa().
2227 */
2228 void task_numa_work(struct callback_head *work)
2229 {
2230 unsigned long migrate, next_scan, now = jiffies;
2231 struct task_struct *p = current;
2232 struct mm_struct *mm = p->mm;
2233 u64 runtime = p->se.sum_exec_runtime;
2234 struct vm_area_struct *vma;
2235 unsigned long start, end;
2236 unsigned long nr_pte_updates = 0;
2237 long pages, virtpages;
2238
2239 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2240
2241 work->next = work; /* protect against double add */
2242 /*
2243 * Who cares about NUMA placement when they're dying.
2244 *
2245 * NOTE: make sure not to dereference p->mm before this check,
2246 * exit_task_work() happens _after_ exit_mm() so we could be called
2247 * without p->mm even though we still had it when we enqueued this
2248 * work.
2249 */
2250 if (p->flags & PF_EXITING)
2251 return;
2252
2253 if (!mm->numa_next_scan) {
2254 mm->numa_next_scan = now +
2255 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2256 }
2257
2258 /*
2259 * Enforce maximal scan/migration frequency..
2260 */
2261 migrate = mm->numa_next_scan;
2262 if (time_before(now, migrate))
2263 return;
2264
2265 if (p->numa_scan_period == 0) {
2266 p->numa_scan_period_max = task_scan_max(p);
2267 p->numa_scan_period = task_scan_min(p);
2268 }
2269
2270 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2271 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2272 return;
2273
2274 /*
2275 * Delay this task enough that another task of this mm will likely win
2276 * the next time around.
2277 */
2278 p->node_stamp += 2 * TICK_NSEC;
2279
2280 start = mm->numa_scan_offset;
2281 pages = sysctl_numa_balancing_scan_size;
2282 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2283 virtpages = pages * 8; /* Scan up to this much virtual space */
2284 if (!pages)
2285 return;
2286
2287
2288 down_read(&mm->mmap_sem);
2289 vma = find_vma(mm, start);
2290 if (!vma) {
2291 reset_ptenuma_scan(p);
2292 start = 0;
2293 vma = mm->mmap;
2294 }
2295 for (; vma; vma = vma->vm_next) {
2296 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2297 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2298 continue;
2299 }
2300
2301 /*
2302 * Shared library pages mapped by multiple processes are not
2303 * migrated as it is expected they are cache replicated. Avoid
2304 * hinting faults in read-only file-backed mappings or the vdso
2305 * as migrating the pages will be of marginal benefit.
2306 */
2307 if (!vma->vm_mm ||
2308 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2309 continue;
2310
2311 /*
2312 * Skip inaccessible VMAs to avoid any confusion between
2313 * PROT_NONE and NUMA hinting ptes
2314 */
2315 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2316 continue;
2317
2318 do {
2319 start = max(start, vma->vm_start);
2320 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2321 end = min(end, vma->vm_end);
2322 nr_pte_updates = change_prot_numa(vma, start, end);
2323
2324 /*
2325 * Try to scan sysctl_numa_balancing_size worth of
2326 * hpages that have at least one present PTE that
2327 * is not already pte-numa. If the VMA contains
2328 * areas that are unused or already full of prot_numa
2329 * PTEs, scan up to virtpages, to skip through those
2330 * areas faster.
2331 */
2332 if (nr_pte_updates)
2333 pages -= (end - start) >> PAGE_SHIFT;
2334 virtpages -= (end - start) >> PAGE_SHIFT;
2335
2336 start = end;
2337 if (pages <= 0 || virtpages <= 0)
2338 goto out;
2339
2340 cond_resched();
2341 } while (end != vma->vm_end);
2342 }
2343
2344 out:
2345 /*
2346 * It is possible to reach the end of the VMA list but the last few
2347 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2348 * would find the !migratable VMA on the next scan but not reset the
2349 * scanner to the start so check it now.
2350 */
2351 if (vma)
2352 mm->numa_scan_offset = start;
2353 else
2354 reset_ptenuma_scan(p);
2355 up_read(&mm->mmap_sem);
2356
2357 /*
2358 * Make sure tasks use at least 32x as much time to run other code
2359 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2360 * Usually update_task_scan_period slows down scanning enough; on an
2361 * overloaded system we need to limit overhead on a per task basis.
2362 */
2363 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2364 u64 diff = p->se.sum_exec_runtime - runtime;
2365 p->node_stamp += 32 * diff;
2366 }
2367 }
2368
2369 /*
2370 * Drive the periodic memory faults..
2371 */
2372 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2373 {
2374 struct callback_head *work = &curr->numa_work;
2375 u64 period, now;
2376
2377 /*
2378 * We don't care about NUMA placement if we don't have memory.
2379 */
2380 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2381 return;
2382
2383 /*
2384 * Using runtime rather than walltime has the dual advantage that
2385 * we (mostly) drive the selection from busy threads and that the
2386 * task needs to have done some actual work before we bother with
2387 * NUMA placement.
2388 */
2389 now = curr->se.sum_exec_runtime;
2390 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2391
2392 if (now > curr->node_stamp + period) {
2393 if (!curr->node_stamp)
2394 curr->numa_scan_period = task_scan_min(curr);
2395 curr->node_stamp += period;
2396
2397 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2398 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2399 task_work_add(curr, work, true);
2400 }
2401 }
2402 }
2403 #else
2404 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2405 {
2406 }
2407
2408 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2409 {
2410 }
2411
2412 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2413 {
2414 }
2415 #endif /* CONFIG_NUMA_BALANCING */
2416
2417 static void
2418 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2419 {
2420 update_load_add(&cfs_rq->load, se->load.weight);
2421 if (!parent_entity(se))
2422 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2423 #ifdef CONFIG_SMP
2424 if (entity_is_task(se)) {
2425 struct rq *rq = rq_of(cfs_rq);
2426
2427 account_numa_enqueue(rq, task_of(se));
2428 list_add(&se->group_node, &rq->cfs_tasks);
2429 }
2430 #endif
2431 cfs_rq->nr_running++;
2432 }
2433
2434 static void
2435 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2436 {
2437 update_load_sub(&cfs_rq->load, se->load.weight);
2438 if (!parent_entity(se))
2439 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2440 if (entity_is_task(se)) {
2441 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2442 list_del_init(&se->group_node);
2443 }
2444 cfs_rq->nr_running--;
2445 }
2446
2447 #ifdef CONFIG_FAIR_GROUP_SCHED
2448 # ifdef CONFIG_SMP
2449 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2450 {
2451 long tg_weight;
2452
2453 /*
2454 * Use this CPU's real-time load instead of the last load contribution
2455 * as the updating of the contribution is delayed, and we will use the
2456 * the real-time load to calc the share. See update_tg_load_avg().
2457 */
2458 tg_weight = atomic_long_read(&tg->load_avg);
2459 tg_weight -= cfs_rq->tg_load_avg_contrib;
2460 tg_weight += cfs_rq->load.weight;
2461
2462 return tg_weight;
2463 }
2464
2465 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2466 {
2467 long tg_weight, load, shares;
2468
2469 tg_weight = calc_tg_weight(tg, cfs_rq);
2470 load = cfs_rq->load.weight;
2471
2472 shares = (tg->shares * load);
2473 if (tg_weight)
2474 shares /= tg_weight;
2475
2476 if (shares < MIN_SHARES)
2477 shares = MIN_SHARES;
2478 if (shares > tg->shares)
2479 shares = tg->shares;
2480
2481 return shares;
2482 }
2483 # else /* CONFIG_SMP */
2484 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2485 {
2486 return tg->shares;
2487 }
2488 # endif /* CONFIG_SMP */
2489 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2490 unsigned long weight)
2491 {
2492 if (se->on_rq) {
2493 /* commit outstanding execution time */
2494 if (cfs_rq->curr == se)
2495 update_curr(cfs_rq);
2496 account_entity_dequeue(cfs_rq, se);
2497 }
2498
2499 update_load_set(&se->load, weight);
2500
2501 if (se->on_rq)
2502 account_entity_enqueue(cfs_rq, se);
2503 }
2504
2505 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2506
2507 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2508 {
2509 struct task_group *tg;
2510 struct sched_entity *se;
2511 long shares;
2512
2513 tg = cfs_rq->tg;
2514 se = tg->se[cpu_of(rq_of(cfs_rq))];
2515 if (!se || throttled_hierarchy(cfs_rq))
2516 return;
2517 #ifndef CONFIG_SMP
2518 if (likely(se->load.weight == tg->shares))
2519 return;
2520 #endif
2521 shares = calc_cfs_shares(cfs_rq, tg);
2522
2523 reweight_entity(cfs_rq_of(se), se, shares);
2524 }
2525 #else /* CONFIG_FAIR_GROUP_SCHED */
2526 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2527 {
2528 }
2529 #endif /* CONFIG_FAIR_GROUP_SCHED */
2530
2531 #ifdef CONFIG_SMP
2532 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2533 static const u32 runnable_avg_yN_inv[] = {
2534 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2535 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2536 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2537 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2538 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2539 0x85aac367, 0x82cd8698,
2540 };
2541
2542 /*
2543 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2544 * over-estimates when re-combining.
2545 */
2546 static const u32 runnable_avg_yN_sum[] = {
2547 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2548 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2549 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2550 };
2551
2552 /*
2553 * Approximate:
2554 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2555 */
2556 static __always_inline u64 decay_load(u64 val, u64 n)
2557 {
2558 unsigned int local_n;
2559
2560 if (!n)
2561 return val;
2562 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2563 return 0;
2564
2565 /* after bounds checking we can collapse to 32-bit */
2566 local_n = n;
2567
2568 /*
2569 * As y^PERIOD = 1/2, we can combine
2570 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2571 * With a look-up table which covers y^n (n<PERIOD)
2572 *
2573 * To achieve constant time decay_load.
2574 */
2575 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2576 val >>= local_n / LOAD_AVG_PERIOD;
2577 local_n %= LOAD_AVG_PERIOD;
2578 }
2579
2580 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2581 return val;
2582 }
2583
2584 /*
2585 * For updates fully spanning n periods, the contribution to runnable
2586 * average will be: \Sum 1024*y^n
2587 *
2588 * We can compute this reasonably efficiently by combining:
2589 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2590 */
2591 static u32 __compute_runnable_contrib(u64 n)
2592 {
2593 u32 contrib = 0;
2594
2595 if (likely(n <= LOAD_AVG_PERIOD))
2596 return runnable_avg_yN_sum[n];
2597 else if (unlikely(n >= LOAD_AVG_MAX_N))
2598 return LOAD_AVG_MAX;
2599
2600 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2601 do {
2602 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2603 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2604
2605 n -= LOAD_AVG_PERIOD;
2606 } while (n > LOAD_AVG_PERIOD);
2607
2608 contrib = decay_load(contrib, n);
2609 return contrib + runnable_avg_yN_sum[n];
2610 }
2611
2612 #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2613 #error "load tracking assumes 2^10 as unit"
2614 #endif
2615
2616 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2617
2618 /*
2619 * We can represent the historical contribution to runnable average as the
2620 * coefficients of a geometric series. To do this we sub-divide our runnable
2621 * history into segments of approximately 1ms (1024us); label the segment that
2622 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2623 *
2624 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2625 * p0 p1 p2
2626 * (now) (~1ms ago) (~2ms ago)
2627 *
2628 * Let u_i denote the fraction of p_i that the entity was runnable.
2629 *
2630 * We then designate the fractions u_i as our co-efficients, yielding the
2631 * following representation of historical load:
2632 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2633 *
2634 * We choose y based on the with of a reasonably scheduling period, fixing:
2635 * y^32 = 0.5
2636 *
2637 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2638 * approximately half as much as the contribution to load within the last ms
2639 * (u_0).
2640 *
2641 * When a period "rolls over" and we have new u_0`, multiplying the previous
2642 * sum again by y is sufficient to update:
2643 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2644 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2645 */
2646 static __always_inline int
2647 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2648 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2649 {
2650 u64 delta, scaled_delta, periods;
2651 u32 contrib;
2652 unsigned int delta_w, scaled_delta_w, decayed = 0;
2653 unsigned long scale_freq, scale_cpu;
2654
2655 delta = now - sa->last_update_time;
2656 /*
2657 * This should only happen when time goes backwards, which it
2658 * unfortunately does during sched clock init when we swap over to TSC.
2659 */
2660 if ((s64)delta < 0) {
2661 sa->last_update_time = now;
2662 return 0;
2663 }
2664
2665 /*
2666 * Use 1024ns as the unit of measurement since it's a reasonable
2667 * approximation of 1us and fast to compute.
2668 */
2669 delta >>= 10;
2670 if (!delta)
2671 return 0;
2672 sa->last_update_time = now;
2673
2674 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2675 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2676
2677 /* delta_w is the amount already accumulated against our next period */
2678 delta_w = sa->period_contrib;
2679 if (delta + delta_w >= 1024) {
2680 decayed = 1;
2681
2682 /* how much left for next period will start over, we don't know yet */
2683 sa->period_contrib = 0;
2684
2685 /*
2686 * Now that we know we're crossing a period boundary, figure
2687 * out how much from delta we need to complete the current
2688 * period and accrue it.
2689 */
2690 delta_w = 1024 - delta_w;
2691 scaled_delta_w = cap_scale(delta_w, scale_freq);
2692 if (weight) {
2693 sa->load_sum += weight * scaled_delta_w;
2694 if (cfs_rq) {
2695 cfs_rq->runnable_load_sum +=
2696 weight * scaled_delta_w;
2697 }
2698 }
2699 if (running)
2700 sa->util_sum += scaled_delta_w * scale_cpu;
2701
2702 delta -= delta_w;
2703
2704 /* Figure out how many additional periods this update spans */
2705 periods = delta / 1024;
2706 delta %= 1024;
2707
2708 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2709 if (cfs_rq) {
2710 cfs_rq->runnable_load_sum =
2711 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2712 }
2713 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2714
2715 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2716 contrib = __compute_runnable_contrib(periods);
2717 contrib = cap_scale(contrib, scale_freq);
2718 if (weight) {
2719 sa->load_sum += weight * contrib;
2720 if (cfs_rq)
2721 cfs_rq->runnable_load_sum += weight * contrib;
2722 }
2723 if (running)
2724 sa->util_sum += contrib * scale_cpu;
2725 }
2726
2727 /* Remainder of delta accrued against u_0` */
2728 scaled_delta = cap_scale(delta, scale_freq);
2729 if (weight) {
2730 sa->load_sum += weight * scaled_delta;
2731 if (cfs_rq)
2732 cfs_rq->runnable_load_sum += weight * scaled_delta;
2733 }
2734 if (running)
2735 sa->util_sum += scaled_delta * scale_cpu;
2736
2737 sa->period_contrib += delta;
2738
2739 if (decayed) {
2740 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2741 if (cfs_rq) {
2742 cfs_rq->runnable_load_avg =
2743 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2744 }
2745 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2746 }
2747
2748 return decayed;
2749 }
2750
2751 #ifdef CONFIG_FAIR_GROUP_SCHED
2752 /*
2753 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2754 * and effective_load (which is not done because it is too costly).
2755 */
2756 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2757 {
2758 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2759
2760 /*
2761 * No need to update load_avg for root_task_group as it is not used.
2762 */
2763 if (cfs_rq->tg == &root_task_group)
2764 return;
2765
2766 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2767 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2768 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2769 }
2770 }
2771
2772 /*
2773 * Called within set_task_rq() right before setting a task's cpu. The
2774 * caller only guarantees p->pi_lock is held; no other assumptions,
2775 * including the state of rq->lock, should be made.
2776 */
2777 void set_task_rq_fair(struct sched_entity *se,
2778 struct cfs_rq *prev, struct cfs_rq *next)
2779 {
2780 if (!sched_feat(ATTACH_AGE_LOAD))
2781 return;
2782
2783 /*
2784 * We are supposed to update the task to "current" time, then its up to
2785 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2786 * getting what current time is, so simply throw away the out-of-date
2787 * time. This will result in the wakee task is less decayed, but giving
2788 * the wakee more load sounds not bad.
2789 */
2790 if (se->avg.last_update_time && prev) {
2791 u64 p_last_update_time;
2792 u64 n_last_update_time;
2793
2794 #ifndef CONFIG_64BIT
2795 u64 p_last_update_time_copy;
2796 u64 n_last_update_time_copy;
2797
2798 do {
2799 p_last_update_time_copy = prev->load_last_update_time_copy;
2800 n_last_update_time_copy = next->load_last_update_time_copy;
2801
2802 smp_rmb();
2803
2804 p_last_update_time = prev->avg.last_update_time;
2805 n_last_update_time = next->avg.last_update_time;
2806
2807 } while (p_last_update_time != p_last_update_time_copy ||
2808 n_last_update_time != n_last_update_time_copy);
2809 #else
2810 p_last_update_time = prev->avg.last_update_time;
2811 n_last_update_time = next->avg.last_update_time;
2812 #endif
2813 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2814 &se->avg, 0, 0, NULL);
2815 se->avg.last_update_time = n_last_update_time;
2816 }
2817 }
2818 #else /* CONFIG_FAIR_GROUP_SCHED */
2819 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2820 #endif /* CONFIG_FAIR_GROUP_SCHED */
2821
2822 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2823
2824 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2825 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2826 {
2827 struct sched_avg *sa = &cfs_rq->avg;
2828 int decayed, removed = 0;
2829
2830 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2831 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2832 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2833 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2834 removed = 1;
2835 }
2836
2837 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2838 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2839 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2840 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2841 }
2842
2843 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2844 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2845
2846 #ifndef CONFIG_64BIT
2847 smp_wmb();
2848 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2849 #endif
2850
2851 return decayed || removed;
2852 }
2853
2854 /* Update task and its cfs_rq load average */
2855 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2856 {
2857 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2858 u64 now = cfs_rq_clock_task(cfs_rq);
2859 struct rq *rq = rq_of(cfs_rq);
2860 int cpu = cpu_of(rq);
2861
2862 /*
2863 * Track task load average for carrying it to new CPU after migrated, and
2864 * track group sched_entity load average for task_h_load calc in migration
2865 */
2866 __update_load_avg(now, cpu, &se->avg,
2867 se->on_rq * scale_load_down(se->load.weight),
2868 cfs_rq->curr == se, NULL);
2869
2870 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2871 update_tg_load_avg(cfs_rq, 0);
2872
2873 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2874 unsigned long max = rq->cpu_capacity_orig;
2875
2876 /*
2877 * There are a few boundary cases this might miss but it should
2878 * get called often enough that that should (hopefully) not be
2879 * a real problem -- added to that it only calls on the local
2880 * CPU, so if we enqueue remotely we'll miss an update, but
2881 * the next tick/schedule should update.
2882 *
2883 * It will not get called when we go idle, because the idle
2884 * thread is a different class (!fair), nor will the utilization
2885 * number include things like RT tasks.
2886 *
2887 * As is, the util number is not freq-invariant (we'd have to
2888 * implement arch_scale_freq_capacity() for that).
2889 *
2890 * See cpu_util().
2891 */
2892 cpufreq_update_util(rq_clock(rq),
2893 min(cfs_rq->avg.util_avg, max), max);
2894 }
2895 }
2896
2897 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2898 {
2899 if (!sched_feat(ATTACH_AGE_LOAD))
2900 goto skip_aging;
2901
2902 /*
2903 * If we got migrated (either between CPUs or between cgroups) we'll
2904 * have aged the average right before clearing @last_update_time.
2905 */
2906 if (se->avg.last_update_time) {
2907 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2908 &se->avg, 0, 0, NULL);
2909
2910 /*
2911 * XXX: we could have just aged the entire load away if we've been
2912 * absent from the fair class for too long.
2913 */
2914 }
2915
2916 skip_aging:
2917 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2918 cfs_rq->avg.load_avg += se->avg.load_avg;
2919 cfs_rq->avg.load_sum += se->avg.load_sum;
2920 cfs_rq->avg.util_avg += se->avg.util_avg;
2921 cfs_rq->avg.util_sum += se->avg.util_sum;
2922 }
2923
2924 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2925 {
2926 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2927 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2928 cfs_rq->curr == se, NULL);
2929
2930 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2931 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2932 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2933 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2934 }
2935
2936 /* Add the load generated by se into cfs_rq's load average */
2937 static inline void
2938 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2939 {
2940 struct sched_avg *sa = &se->avg;
2941 u64 now = cfs_rq_clock_task(cfs_rq);
2942 int migrated, decayed;
2943
2944 migrated = !sa->last_update_time;
2945 if (!migrated) {
2946 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2947 se->on_rq * scale_load_down(se->load.weight),
2948 cfs_rq->curr == se, NULL);
2949 }
2950
2951 decayed = update_cfs_rq_load_avg(now, cfs_rq);
2952
2953 cfs_rq->runnable_load_avg += sa->load_avg;
2954 cfs_rq->runnable_load_sum += sa->load_sum;
2955
2956 if (migrated)
2957 attach_entity_load_avg(cfs_rq, se);
2958
2959 if (decayed || migrated)
2960 update_tg_load_avg(cfs_rq, 0);
2961 }
2962
2963 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
2964 static inline void
2965 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2966 {
2967 update_load_avg(se, 1);
2968
2969 cfs_rq->runnable_load_avg =
2970 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2971 cfs_rq->runnable_load_sum =
2972 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2973 }
2974
2975 #ifndef CONFIG_64BIT
2976 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2977 {
2978 u64 last_update_time_copy;
2979 u64 last_update_time;
2980
2981 do {
2982 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2983 smp_rmb();
2984 last_update_time = cfs_rq->avg.last_update_time;
2985 } while (last_update_time != last_update_time_copy);
2986
2987 return last_update_time;
2988 }
2989 #else
2990 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2991 {
2992 return cfs_rq->avg.last_update_time;
2993 }
2994 #endif
2995
2996 /*
2997 * Task first catches up with cfs_rq, and then subtract
2998 * itself from the cfs_rq (task must be off the queue now).
2999 */
3000 void remove_entity_load_avg(struct sched_entity *se)
3001 {
3002 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3003 u64 last_update_time;
3004
3005 /*
3006 * Newly created task or never used group entity should not be removed
3007 * from its (source) cfs_rq
3008 */
3009 if (se->avg.last_update_time == 0)
3010 return;
3011
3012 last_update_time = cfs_rq_last_update_time(cfs_rq);
3013
3014 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3015 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3016 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3017 }
3018
3019 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3020 {
3021 return cfs_rq->runnable_load_avg;
3022 }
3023
3024 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3025 {
3026 return cfs_rq->avg.load_avg;
3027 }
3028
3029 static int idle_balance(struct rq *this_rq);
3030
3031 #else /* CONFIG_SMP */
3032
3033 static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3034 static inline void
3035 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3036 static inline void
3037 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3038 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3039
3040 static inline void
3041 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3042 static inline void
3043 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3044
3045 static inline int idle_balance(struct rq *rq)
3046 {
3047 return 0;
3048 }
3049
3050 #endif /* CONFIG_SMP */
3051
3052 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3053 {
3054 #ifdef CONFIG_SCHEDSTATS
3055 struct task_struct *tsk = NULL;
3056
3057 if (entity_is_task(se))
3058 tsk = task_of(se);
3059
3060 if (se->statistics.sleep_start) {
3061 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3062
3063 if ((s64)delta < 0)
3064 delta = 0;
3065
3066 if (unlikely(delta > se->statistics.sleep_max))
3067 se->statistics.sleep_max = delta;
3068
3069 se->statistics.sleep_start = 0;
3070 se->statistics.sum_sleep_runtime += delta;
3071
3072 if (tsk) {
3073 account_scheduler_latency(tsk, delta >> 10, 1);
3074 trace_sched_stat_sleep(tsk, delta);
3075 }
3076 }
3077 if (se->statistics.block_start) {
3078 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3079
3080 if ((s64)delta < 0)
3081 delta = 0;
3082
3083 if (unlikely(delta > se->statistics.block_max))
3084 se->statistics.block_max = delta;
3085
3086 se->statistics.block_start = 0;
3087 se->statistics.sum_sleep_runtime += delta;
3088
3089 if (tsk) {
3090 if (tsk->in_iowait) {
3091 se->statistics.iowait_sum += delta;
3092 se->statistics.iowait_count++;
3093 trace_sched_stat_iowait(tsk, delta);
3094 }
3095
3096 trace_sched_stat_blocked(tsk, delta);
3097
3098 /*
3099 * Blocking time is in units of nanosecs, so shift by
3100 * 20 to get a milliseconds-range estimation of the
3101 * amount of time that the task spent sleeping:
3102 */
3103 if (unlikely(prof_on == SLEEP_PROFILING)) {
3104 profile_hits(SLEEP_PROFILING,
3105 (void *)get_wchan(tsk),
3106 delta >> 20);
3107 }
3108 account_scheduler_latency(tsk, delta >> 10, 0);
3109 }
3110 }
3111 #endif
3112 }
3113
3114 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3115 {
3116 #ifdef CONFIG_SCHED_DEBUG
3117 s64 d = se->vruntime - cfs_rq->min_vruntime;
3118
3119 if (d < 0)
3120 d = -d;
3121
3122 if (d > 3*sysctl_sched_latency)
3123 schedstat_inc(cfs_rq, nr_spread_over);
3124 #endif
3125 }
3126
3127 static void
3128 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3129 {
3130 u64 vruntime = cfs_rq->min_vruntime;
3131
3132 /*
3133 * The 'current' period is already promised to the current tasks,
3134 * however the extra weight of the new task will slow them down a
3135 * little, place the new task so that it fits in the slot that
3136 * stays open at the end.
3137 */
3138 if (initial && sched_feat(START_DEBIT))
3139 vruntime += sched_vslice(cfs_rq, se);
3140
3141 /* sleeps up to a single latency don't count. */
3142 if (!initial) {
3143 unsigned long thresh = sysctl_sched_latency;
3144
3145 /*
3146 * Halve their sleep time's effect, to allow
3147 * for a gentler effect of sleepers:
3148 */
3149 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3150 thresh >>= 1;
3151
3152 vruntime -= thresh;
3153 }
3154
3155 /* ensure we never gain time by being placed backwards. */
3156 se->vruntime = max_vruntime(se->vruntime, vruntime);
3157 }
3158
3159 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3160
3161 static inline void check_schedstat_required(void)
3162 {
3163 #ifdef CONFIG_SCHEDSTATS
3164 if (schedstat_enabled())
3165 return;
3166
3167 /* Force schedstat enabled if a dependent tracepoint is active */
3168 if (trace_sched_stat_wait_enabled() ||
3169 trace_sched_stat_sleep_enabled() ||
3170 trace_sched_stat_iowait_enabled() ||
3171 trace_sched_stat_blocked_enabled() ||
3172 trace_sched_stat_runtime_enabled()) {
3173 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3174 "stat_blocked and stat_runtime require the "
3175 "kernel parameter schedstats=enabled or "
3176 "kernel.sched_schedstats=1\n");
3177 }
3178 #endif
3179 }
3180
3181 static void
3182 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3183 {
3184 /*
3185 * Update the normalized vruntime before updating min_vruntime
3186 * through calling update_curr().
3187 */
3188 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3189 se->vruntime += cfs_rq->min_vruntime;
3190
3191 /*
3192 * Update run-time statistics of the 'current'.
3193 */
3194 update_curr(cfs_rq);
3195 enqueue_entity_load_avg(cfs_rq, se);
3196 account_entity_enqueue(cfs_rq, se);
3197 update_cfs_shares(cfs_rq);
3198
3199 if (flags & ENQUEUE_WAKEUP) {
3200 place_entity(cfs_rq, se, 0);
3201 if (schedstat_enabled())
3202 enqueue_sleeper(cfs_rq, se);
3203 }
3204
3205 check_schedstat_required();
3206 if (schedstat_enabled()) {
3207 update_stats_enqueue(cfs_rq, se);
3208 check_spread(cfs_rq, se);
3209 }
3210 if (se != cfs_rq->curr)
3211 __enqueue_entity(cfs_rq, se);
3212 se->on_rq = 1;
3213
3214 if (cfs_rq->nr_running == 1) {
3215 list_add_leaf_cfs_rq(cfs_rq);
3216 check_enqueue_throttle(cfs_rq);
3217 }
3218 }
3219
3220 static void __clear_buddies_last(struct sched_entity *se)
3221 {
3222 for_each_sched_entity(se) {
3223 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3224 if (cfs_rq->last != se)
3225 break;
3226
3227 cfs_rq->last = NULL;
3228 }
3229 }
3230
3231 static void __clear_buddies_next(struct sched_entity *se)
3232 {
3233 for_each_sched_entity(se) {
3234 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3235 if (cfs_rq->next != se)
3236 break;
3237
3238 cfs_rq->next = NULL;
3239 }
3240 }
3241
3242 static void __clear_buddies_skip(struct sched_entity *se)
3243 {
3244 for_each_sched_entity(se) {
3245 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3246 if (cfs_rq->skip != se)
3247 break;
3248
3249 cfs_rq->skip = NULL;
3250 }
3251 }
3252
3253 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3254 {
3255 if (cfs_rq->last == se)
3256 __clear_buddies_last(se);
3257
3258 if (cfs_rq->next == se)
3259 __clear_buddies_next(se);
3260
3261 if (cfs_rq->skip == se)
3262 __clear_buddies_skip(se);
3263 }
3264
3265 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3266
3267 static void
3268 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3269 {
3270 /*
3271 * Update run-time statistics of the 'current'.
3272 */
3273 update_curr(cfs_rq);
3274 dequeue_entity_load_avg(cfs_rq, se);
3275
3276 if (schedstat_enabled())
3277 update_stats_dequeue(cfs_rq, se, flags);
3278
3279 clear_buddies(cfs_rq, se);
3280
3281 if (se != cfs_rq->curr)
3282 __dequeue_entity(cfs_rq, se);
3283 se->on_rq = 0;
3284 account_entity_dequeue(cfs_rq, se);
3285
3286 /*
3287 * Normalize the entity after updating the min_vruntime because the
3288 * update can refer to the ->curr item and we need to reflect this
3289 * movement in our normalized position.
3290 */
3291 if (!(flags & DEQUEUE_SLEEP))
3292 se->vruntime -= cfs_rq->min_vruntime;
3293
3294 /* return excess runtime on last dequeue */
3295 return_cfs_rq_runtime(cfs_rq);
3296
3297 update_min_vruntime(cfs_rq);
3298 update_cfs_shares(cfs_rq);
3299 }
3300
3301 /*
3302 * Preempt the current task with a newly woken task if needed:
3303 */
3304 static void
3305 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3306 {
3307 unsigned long ideal_runtime, delta_exec;
3308 struct sched_entity *se;
3309 s64 delta;
3310
3311 ideal_runtime = sched_slice(cfs_rq, curr);
3312 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3313 if (delta_exec > ideal_runtime) {
3314 resched_curr(rq_of(cfs_rq));
3315 /*
3316 * The current task ran long enough, ensure it doesn't get
3317 * re-elected due to buddy favours.
3318 */
3319 clear_buddies(cfs_rq, curr);
3320 return;
3321 }
3322
3323 /*
3324 * Ensure that a task that missed wakeup preemption by a
3325 * narrow margin doesn't have to wait for a full slice.
3326 * This also mitigates buddy induced latencies under load.
3327 */
3328 if (delta_exec < sysctl_sched_min_granularity)
3329 return;
3330
3331 se = __pick_first_entity(cfs_rq);
3332 delta = curr->vruntime - se->vruntime;
3333
3334 if (delta < 0)
3335 return;
3336
3337 if (delta > ideal_runtime)
3338 resched_curr(rq_of(cfs_rq));
3339 }
3340
3341 static void
3342 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3343 {
3344 /* 'current' is not kept within the tree. */
3345 if (se->on_rq) {
3346 /*
3347 * Any task has to be enqueued before it get to execute on
3348 * a CPU. So account for the time it spent waiting on the
3349 * runqueue.
3350 */
3351 if (schedstat_enabled())
3352 update_stats_wait_end(cfs_rq, se);
3353 __dequeue_entity(cfs_rq, se);
3354 update_load_avg(se, 1);
3355 }
3356
3357 update_stats_curr_start(cfs_rq, se);
3358 cfs_rq->curr = se;
3359 #ifdef CONFIG_SCHEDSTATS
3360 /*
3361 * Track our maximum slice length, if the CPU's load is at
3362 * least twice that of our own weight (i.e. dont track it
3363 * when there are only lesser-weight tasks around):
3364 */
3365 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3366 se->statistics.slice_max = max(se->statistics.slice_max,
3367 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3368 }
3369 #endif
3370 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3371 }
3372
3373 static int
3374 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3375
3376 /*
3377 * Pick the next process, keeping these things in mind, in this order:
3378 * 1) keep things fair between processes/task groups
3379 * 2) pick the "next" process, since someone really wants that to run
3380 * 3) pick the "last" process, for cache locality
3381 * 4) do not run the "skip" process, if something else is available
3382 */
3383 static struct sched_entity *
3384 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3385 {
3386 struct sched_entity *left = __pick_first_entity(cfs_rq);
3387 struct sched_entity *se;
3388
3389 /*
3390 * If curr is set we have to see if its left of the leftmost entity
3391 * still in the tree, provided there was anything in the tree at all.
3392 */
3393 if (!left || (curr && entity_before(curr, left)))
3394 left = curr;
3395
3396 se = left; /* ideally we run the leftmost entity */
3397
3398 /*
3399 * Avoid running the skip buddy, if running something else can
3400 * be done without getting too unfair.
3401 */
3402 if (cfs_rq->skip == se) {
3403 struct sched_entity *second;
3404
3405 if (se == curr) {
3406 second = __pick_first_entity(cfs_rq);
3407 } else {
3408 second = __pick_next_entity(se);
3409 if (!second || (curr && entity_before(curr, second)))
3410 second = curr;
3411 }
3412
3413 if (second && wakeup_preempt_entity(second, left) < 1)
3414 se = second;
3415 }
3416
3417 /*
3418 * Prefer last buddy, try to return the CPU to a preempted task.
3419 */
3420 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3421 se = cfs_rq->last;
3422
3423 /*
3424 * Someone really wants this to run. If it's not unfair, run it.
3425 */
3426 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3427 se = cfs_rq->next;
3428
3429 clear_buddies(cfs_rq, se);
3430
3431 return se;
3432 }
3433
3434 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3435
3436 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3437 {
3438 /*
3439 * If still on the runqueue then deactivate_task()
3440 * was not called and update_curr() has to be done:
3441 */
3442 if (prev->on_rq)
3443 update_curr(cfs_rq);
3444
3445 /* throttle cfs_rqs exceeding runtime */
3446 check_cfs_rq_runtime(cfs_rq);
3447
3448 if (schedstat_enabled()) {
3449 check_spread(cfs_rq, prev);
3450 if (prev->on_rq)
3451 update_stats_wait_start(cfs_rq, prev);
3452 }
3453
3454 if (prev->on_rq) {
3455 /* Put 'current' back into the tree. */
3456 __enqueue_entity(cfs_rq, prev);
3457 /* in !on_rq case, update occurred at dequeue */
3458 update_load_avg(prev, 0);
3459 }
3460 cfs_rq->curr = NULL;
3461 }
3462
3463 static void
3464 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3465 {
3466 /*
3467 * Update run-time statistics of the 'current'.
3468 */
3469 update_curr(cfs_rq);
3470
3471 /*
3472 * Ensure that runnable average is periodically updated.
3473 */
3474 update_load_avg(curr, 1);
3475 update_cfs_shares(cfs_rq);
3476
3477 #ifdef CONFIG_SCHED_HRTICK
3478 /*
3479 * queued ticks are scheduled to match the slice, so don't bother
3480 * validating it and just reschedule.
3481 */
3482 if (queued) {
3483 resched_curr(rq_of(cfs_rq));
3484 return;
3485 }
3486 /*
3487 * don't let the period tick interfere with the hrtick preemption
3488 */
3489 if (!sched_feat(DOUBLE_TICK) &&
3490 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3491 return;
3492 #endif
3493
3494 if (cfs_rq->nr_running > 1)
3495 check_preempt_tick(cfs_rq, curr);
3496 }
3497
3498
3499 /**************************************************
3500 * CFS bandwidth control machinery
3501 */
3502
3503 #ifdef CONFIG_CFS_BANDWIDTH
3504
3505 #ifdef HAVE_JUMP_LABEL
3506 static struct static_key __cfs_bandwidth_used;
3507
3508 static inline bool cfs_bandwidth_used(void)
3509 {
3510 return static_key_false(&__cfs_bandwidth_used);
3511 }
3512
3513 void cfs_bandwidth_usage_inc(void)
3514 {
3515 static_key_slow_inc(&__cfs_bandwidth_used);
3516 }
3517
3518 void cfs_bandwidth_usage_dec(void)
3519 {
3520 static_key_slow_dec(&__cfs_bandwidth_used);
3521 }
3522 #else /* HAVE_JUMP_LABEL */
3523 static bool cfs_bandwidth_used(void)
3524 {
3525 return true;
3526 }
3527
3528 void cfs_bandwidth_usage_inc(void) {}
3529 void cfs_bandwidth_usage_dec(void) {}
3530 #endif /* HAVE_JUMP_LABEL */
3531
3532 /*
3533 * default period for cfs group bandwidth.
3534 * default: 0.1s, units: nanoseconds
3535 */
3536 static inline u64 default_cfs_period(void)
3537 {
3538 return 100000000ULL;
3539 }
3540
3541 static inline u64 sched_cfs_bandwidth_slice(void)
3542 {
3543 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3544 }
3545
3546 /*
3547 * Replenish runtime according to assigned quota and update expiration time.
3548 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3549 * additional synchronization around rq->lock.
3550 *
3551 * requires cfs_b->lock
3552 */
3553 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3554 {
3555 u64 now;
3556
3557 if (cfs_b->quota == RUNTIME_INF)
3558 return;
3559
3560 now = sched_clock_cpu(smp_processor_id());
3561 cfs_b->runtime = cfs_b->quota;
3562 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3563 }
3564
3565 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3566 {
3567 return &tg->cfs_bandwidth;
3568 }
3569
3570 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3571 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3572 {
3573 if (unlikely(cfs_rq->throttle_count))
3574 return cfs_rq->throttled_clock_task;
3575
3576 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3577 }
3578
3579 /* returns 0 on failure to allocate runtime */
3580 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3581 {
3582 struct task_group *tg = cfs_rq->tg;
3583 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3584 u64 amount = 0, min_amount, expires;
3585
3586 /* note: this is a positive sum as runtime_remaining <= 0 */
3587 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3588
3589 raw_spin_lock(&cfs_b->lock);
3590 if (cfs_b->quota == RUNTIME_INF)
3591 amount = min_amount;
3592 else {
3593 start_cfs_bandwidth(cfs_b);
3594
3595 if (cfs_b->runtime > 0) {
3596 amount = min(cfs_b->runtime, min_amount);
3597 cfs_b->runtime -= amount;
3598 cfs_b->idle = 0;
3599 }
3600 }
3601 expires = cfs_b->runtime_expires;
3602 raw_spin_unlock(&cfs_b->lock);
3603
3604 cfs_rq->runtime_remaining += amount;
3605 /*
3606 * we may have advanced our local expiration to account for allowed
3607 * spread between our sched_clock and the one on which runtime was
3608 * issued.
3609 */
3610 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3611 cfs_rq->runtime_expires = expires;
3612
3613 return cfs_rq->runtime_remaining > 0;
3614 }
3615
3616 /*
3617 * Note: This depends on the synchronization provided by sched_clock and the
3618 * fact that rq->clock snapshots this value.
3619 */
3620 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3621 {
3622 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3623
3624 /* if the deadline is ahead of our clock, nothing to do */
3625 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3626 return;
3627
3628 if (cfs_rq->runtime_remaining < 0)
3629 return;
3630
3631 /*
3632 * If the local deadline has passed we have to consider the
3633 * possibility that our sched_clock is 'fast' and the global deadline
3634 * has not truly expired.
3635 *
3636 * Fortunately we can check determine whether this the case by checking
3637 * whether the global deadline has advanced. It is valid to compare
3638 * cfs_b->runtime_expires without any locks since we only care about
3639 * exact equality, so a partial write will still work.
3640 */
3641
3642 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3643 /* extend local deadline, drift is bounded above by 2 ticks */
3644 cfs_rq->runtime_expires += TICK_NSEC;
3645 } else {
3646 /* global deadline is ahead, expiration has passed */
3647 cfs_rq->runtime_remaining = 0;
3648 }
3649 }
3650
3651 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3652 {
3653 /* dock delta_exec before expiring quota (as it could span periods) */
3654 cfs_rq->runtime_remaining -= delta_exec;
3655 expire_cfs_rq_runtime(cfs_rq);
3656
3657 if (likely(cfs_rq->runtime_remaining > 0))
3658 return;
3659
3660 /*
3661 * if we're unable to extend our runtime we resched so that the active
3662 * hierarchy can be throttled
3663 */
3664 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3665 resched_curr(rq_of(cfs_rq));
3666 }
3667
3668 static __always_inline
3669 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3670 {
3671 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3672 return;
3673
3674 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3675 }
3676
3677 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3678 {
3679 return cfs_bandwidth_used() && cfs_rq->throttled;
3680 }
3681
3682 /* check whether cfs_rq, or any parent, is throttled */
3683 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3684 {
3685 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3686 }
3687
3688 /*
3689 * Ensure that neither of the group entities corresponding to src_cpu or
3690 * dest_cpu are members of a throttled hierarchy when performing group
3691 * load-balance operations.
3692 */
3693 static inline int throttled_lb_pair(struct task_group *tg,
3694 int src_cpu, int dest_cpu)
3695 {
3696 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3697
3698 src_cfs_rq = tg->cfs_rq[src_cpu];
3699 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3700
3701 return throttled_hierarchy(src_cfs_rq) ||
3702 throttled_hierarchy(dest_cfs_rq);
3703 }
3704
3705 /* updated child weight may affect parent so we have to do this bottom up */
3706 static int tg_unthrottle_up(struct task_group *tg, void *data)
3707 {
3708 struct rq *rq = data;
3709 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3710
3711 cfs_rq->throttle_count--;
3712 #ifdef CONFIG_SMP
3713 if (!cfs_rq->throttle_count) {
3714 /* adjust cfs_rq_clock_task() */
3715 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3716 cfs_rq->throttled_clock_task;
3717 }
3718 #endif
3719
3720 return 0;
3721 }
3722
3723 static int tg_throttle_down(struct task_group *tg, void *data)
3724 {
3725 struct rq *rq = data;
3726 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3727
3728 /* group is entering throttled state, stop time */
3729 if (!cfs_rq->throttle_count)
3730 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3731 cfs_rq->throttle_count++;
3732
3733 return 0;
3734 }
3735
3736 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3737 {
3738 struct rq *rq = rq_of(cfs_rq);
3739 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3740 struct sched_entity *se;
3741 long task_delta, dequeue = 1;
3742 bool empty;
3743
3744 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3745
3746 /* freeze hierarchy runnable averages while throttled */
3747 rcu_read_lock();
3748 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3749 rcu_read_unlock();
3750
3751 task_delta = cfs_rq->h_nr_running;
3752 for_each_sched_entity(se) {
3753 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3754 /* throttled entity or throttle-on-deactivate */
3755 if (!se->on_rq)
3756 break;
3757
3758 if (dequeue)
3759 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3760 qcfs_rq->h_nr_running -= task_delta;
3761
3762 if (qcfs_rq->load.weight)
3763 dequeue = 0;
3764 }
3765
3766 if (!se)
3767 sub_nr_running(rq, task_delta);
3768
3769 cfs_rq->throttled = 1;
3770 cfs_rq->throttled_clock = rq_clock(rq);
3771 raw_spin_lock(&cfs_b->lock);
3772 empty = list_empty(&cfs_b->throttled_cfs_rq);
3773
3774 /*
3775 * Add to the _head_ of the list, so that an already-started
3776 * distribute_cfs_runtime will not see us
3777 */
3778 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3779
3780 /*
3781 * If we're the first throttled task, make sure the bandwidth
3782 * timer is running.
3783 */
3784 if (empty)
3785 start_cfs_bandwidth(cfs_b);
3786
3787 raw_spin_unlock(&cfs_b->lock);
3788 }
3789
3790 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3791 {
3792 struct rq *rq = rq_of(cfs_rq);
3793 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3794 struct sched_entity *se;
3795 int enqueue = 1;
3796 long task_delta;
3797
3798 se = cfs_rq->tg->se[cpu_of(rq)];
3799
3800 cfs_rq->throttled = 0;
3801
3802 update_rq_clock(rq);
3803
3804 raw_spin_lock(&cfs_b->lock);
3805 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3806 list_del_rcu(&cfs_rq->throttled_list);
3807 raw_spin_unlock(&cfs_b->lock);
3808
3809 /* update hierarchical throttle state */
3810 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3811
3812 if (!cfs_rq->load.weight)
3813 return;
3814
3815 task_delta = cfs_rq->h_nr_running;
3816 for_each_sched_entity(se) {
3817 if (se->on_rq)
3818 enqueue = 0;
3819
3820 cfs_rq = cfs_rq_of(se);
3821 if (enqueue)
3822 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3823 cfs_rq->h_nr_running += task_delta;
3824
3825 if (cfs_rq_throttled(cfs_rq))
3826 break;
3827 }
3828
3829 if (!se)
3830 add_nr_running(rq, task_delta);
3831
3832 /* determine whether we need to wake up potentially idle cpu */
3833 if (rq->curr == rq->idle && rq->cfs.nr_running)
3834 resched_curr(rq);
3835 }
3836
3837 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3838 u64 remaining, u64 expires)
3839 {
3840 struct cfs_rq *cfs_rq;
3841 u64 runtime;
3842 u64 starting_runtime = remaining;
3843
3844 rcu_read_lock();
3845 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3846 throttled_list) {
3847 struct rq *rq = rq_of(cfs_rq);
3848
3849 raw_spin_lock(&rq->lock);
3850 if (!cfs_rq_throttled(cfs_rq))
3851 goto next;
3852
3853 runtime = -cfs_rq->runtime_remaining + 1;
3854 if (runtime > remaining)
3855 runtime = remaining;
3856 remaining -= runtime;
3857
3858 cfs_rq->runtime_remaining += runtime;
3859 cfs_rq->runtime_expires = expires;
3860
3861 /* we check whether we're throttled above */
3862 if (cfs_rq->runtime_remaining > 0)
3863 unthrottle_cfs_rq(cfs_rq);
3864
3865 next:
3866 raw_spin_unlock(&rq->lock);
3867
3868 if (!remaining)
3869 break;
3870 }
3871 rcu_read_unlock();
3872
3873 return starting_runtime - remaining;
3874 }
3875
3876 /*
3877 * Responsible for refilling a task_group's bandwidth and unthrottling its
3878 * cfs_rqs as appropriate. If there has been no activity within the last
3879 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3880 * used to track this state.
3881 */
3882 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3883 {
3884 u64 runtime, runtime_expires;
3885 int throttled;
3886
3887 /* no need to continue the timer with no bandwidth constraint */
3888 if (cfs_b->quota == RUNTIME_INF)
3889 goto out_deactivate;
3890
3891 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3892 cfs_b->nr_periods += overrun;
3893
3894 /*
3895 * idle depends on !throttled (for the case of a large deficit), and if
3896 * we're going inactive then everything else can be deferred
3897 */
3898 if (cfs_b->idle && !throttled)
3899 goto out_deactivate;
3900
3901 __refill_cfs_bandwidth_runtime(cfs_b);
3902
3903 if (!throttled) {
3904 /* mark as potentially idle for the upcoming period */
3905 cfs_b->idle = 1;
3906 return 0;
3907 }
3908
3909 /* account preceding periods in which throttling occurred */
3910 cfs_b->nr_throttled += overrun;
3911
3912 runtime_expires = cfs_b->runtime_expires;
3913
3914 /*
3915 * This check is repeated as we are holding onto the new bandwidth while
3916 * we unthrottle. This can potentially race with an unthrottled group
3917 * trying to acquire new bandwidth from the global pool. This can result
3918 * in us over-using our runtime if it is all used during this loop, but
3919 * only by limited amounts in that extreme case.
3920 */
3921 while (throttled && cfs_b->runtime > 0) {
3922 runtime = cfs_b->runtime;
3923 raw_spin_unlock(&cfs_b->lock);
3924 /* we can't nest cfs_b->lock while distributing bandwidth */
3925 runtime = distribute_cfs_runtime(cfs_b, runtime,
3926 runtime_expires);
3927 raw_spin_lock(&cfs_b->lock);
3928
3929 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3930
3931 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3932 }
3933
3934 /*
3935 * While we are ensured activity in the period following an
3936 * unthrottle, this also covers the case in which the new bandwidth is
3937 * insufficient to cover the existing bandwidth deficit. (Forcing the
3938 * timer to remain active while there are any throttled entities.)
3939 */
3940 cfs_b->idle = 0;
3941
3942 return 0;
3943
3944 out_deactivate:
3945 return 1;
3946 }
3947
3948 /* a cfs_rq won't donate quota below this amount */
3949 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3950 /* minimum remaining period time to redistribute slack quota */
3951 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3952 /* how long we wait to gather additional slack before distributing */
3953 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3954
3955 /*
3956 * Are we near the end of the current quota period?
3957 *
3958 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3959 * hrtimer base being cleared by hrtimer_start. In the case of
3960 * migrate_hrtimers, base is never cleared, so we are fine.
3961 */
3962 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3963 {
3964 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3965 u64 remaining;
3966
3967 /* if the call-back is running a quota refresh is already occurring */
3968 if (hrtimer_callback_running(refresh_timer))
3969 return 1;
3970
3971 /* is a quota refresh about to occur? */
3972 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3973 if (remaining < min_expire)
3974 return 1;
3975
3976 return 0;
3977 }
3978
3979 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3980 {
3981 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3982
3983 /* if there's a quota refresh soon don't bother with slack */
3984 if (runtime_refresh_within(cfs_b, min_left))
3985 return;
3986
3987 hrtimer_start(&cfs_b->slack_timer,
3988 ns_to_ktime(cfs_bandwidth_slack_period),
3989 HRTIMER_MODE_REL);
3990 }
3991
3992 /* we know any runtime found here is valid as update_curr() precedes return */
3993 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3994 {
3995 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3996 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3997
3998 if (slack_runtime <= 0)
3999 return;
4000
4001 raw_spin_lock(&cfs_b->lock);
4002 if (cfs_b->quota != RUNTIME_INF &&
4003 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4004 cfs_b->runtime += slack_runtime;
4005
4006 /* we are under rq->lock, defer unthrottling using a timer */
4007 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4008 !list_empty(&cfs_b->throttled_cfs_rq))
4009 start_cfs_slack_bandwidth(cfs_b);
4010 }
4011 raw_spin_unlock(&cfs_b->lock);
4012
4013 /* even if it's not valid for return we don't want to try again */
4014 cfs_rq->runtime_remaining -= slack_runtime;
4015 }
4016
4017 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4018 {
4019 if (!cfs_bandwidth_used())
4020 return;
4021
4022 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4023 return;
4024
4025 __return_cfs_rq_runtime(cfs_rq);
4026 }
4027
4028 /*
4029 * This is done with a timer (instead of inline with bandwidth return) since
4030 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4031 */
4032 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4033 {
4034 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4035 u64 expires;
4036
4037 /* confirm we're still not at a refresh boundary */
4038 raw_spin_lock(&cfs_b->lock);
4039 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4040 raw_spin_unlock(&cfs_b->lock);
4041 return;
4042 }
4043
4044 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4045 runtime = cfs_b->runtime;
4046
4047 expires = cfs_b->runtime_expires;
4048 raw_spin_unlock(&cfs_b->lock);
4049
4050 if (!runtime)
4051 return;
4052
4053 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4054
4055 raw_spin_lock(&cfs_b->lock);
4056 if (expires == cfs_b->runtime_expires)
4057 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4058 raw_spin_unlock(&cfs_b->lock);
4059 }
4060
4061 /*
4062 * When a group wakes up we want to make sure that its quota is not already
4063 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4064 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4065 */
4066 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4067 {
4068 if (!cfs_bandwidth_used())
4069 return;
4070
4071 /* an active group must be handled by the update_curr()->put() path */
4072 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4073 return;
4074
4075 /* ensure the group is not already throttled */
4076 if (cfs_rq_throttled(cfs_rq))
4077 return;
4078
4079 /* update runtime allocation */
4080 account_cfs_rq_runtime(cfs_rq, 0);
4081 if (cfs_rq->runtime_remaining <= 0)
4082 throttle_cfs_rq(cfs_rq);
4083 }
4084
4085 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4086 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4087 {
4088 if (!cfs_bandwidth_used())
4089 return false;
4090
4091 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4092 return false;
4093
4094 /*
4095 * it's possible for a throttled entity to be forced into a running
4096 * state (e.g. set_curr_task), in this case we're finished.
4097 */
4098 if (cfs_rq_throttled(cfs_rq))
4099 return true;
4100
4101 throttle_cfs_rq(cfs_rq);
4102 return true;
4103 }
4104
4105 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4106 {
4107 struct cfs_bandwidth *cfs_b =
4108 container_of(timer, struct cfs_bandwidth, slack_timer);
4109
4110 do_sched_cfs_slack_timer(cfs_b);
4111
4112 return HRTIMER_NORESTART;
4113 }
4114
4115 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4116 {
4117 struct cfs_bandwidth *cfs_b =
4118 container_of(timer, struct cfs_bandwidth, period_timer);
4119 int overrun;
4120 int idle = 0;
4121
4122 raw_spin_lock(&cfs_b->lock);
4123 for (;;) {
4124 overrun = hrtimer_forward_now(timer, cfs_b->period);
4125 if (!overrun)
4126 break;
4127
4128 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4129 }
4130 if (idle)
4131 cfs_b->period_active = 0;
4132 raw_spin_unlock(&cfs_b->lock);
4133
4134 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4135 }
4136
4137 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4138 {
4139 raw_spin_lock_init(&cfs_b->lock);
4140 cfs_b->runtime = 0;
4141 cfs_b->quota = RUNTIME_INF;
4142 cfs_b->period = ns_to_ktime(default_cfs_period());
4143
4144 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4145 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4146 cfs_b->period_timer.function = sched_cfs_period_timer;
4147 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4148 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4149 }
4150
4151 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4152 {
4153 cfs_rq->runtime_enabled = 0;
4154 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4155 }
4156
4157 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4158 {
4159 lockdep_assert_held(&cfs_b->lock);
4160
4161 if (!cfs_b->period_active) {
4162 cfs_b->period_active = 1;
4163 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4164 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4165 }
4166 }
4167
4168 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4169 {
4170 /* init_cfs_bandwidth() was not called */
4171 if (!cfs_b->throttled_cfs_rq.next)
4172 return;
4173
4174 hrtimer_cancel(&cfs_b->period_timer);
4175 hrtimer_cancel(&cfs_b->slack_timer);
4176 }
4177
4178 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4179 {
4180 struct cfs_rq *cfs_rq;
4181
4182 for_each_leaf_cfs_rq(rq, cfs_rq) {
4183 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4184
4185 raw_spin_lock(&cfs_b->lock);
4186 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4187 raw_spin_unlock(&cfs_b->lock);
4188 }
4189 }
4190
4191 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4192 {
4193 struct cfs_rq *cfs_rq;
4194
4195 for_each_leaf_cfs_rq(rq, cfs_rq) {
4196 if (!cfs_rq->runtime_enabled)
4197 continue;
4198
4199 /*
4200 * clock_task is not advancing so we just need to make sure
4201 * there's some valid quota amount
4202 */
4203 cfs_rq->runtime_remaining = 1;
4204 /*
4205 * Offline rq is schedulable till cpu is completely disabled
4206 * in take_cpu_down(), so we prevent new cfs throttling here.
4207 */
4208 cfs_rq->runtime_enabled = 0;
4209
4210 if (cfs_rq_throttled(cfs_rq))
4211 unthrottle_cfs_rq(cfs_rq);
4212 }
4213 }
4214
4215 #else /* CONFIG_CFS_BANDWIDTH */
4216 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4217 {
4218 return rq_clock_task(rq_of(cfs_rq));
4219 }
4220
4221 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4222 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4223 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4224 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4225
4226 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4227 {
4228 return 0;
4229 }
4230
4231 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4232 {
4233 return 0;
4234 }
4235
4236 static inline int throttled_lb_pair(struct task_group *tg,
4237 int src_cpu, int dest_cpu)
4238 {
4239 return 0;
4240 }
4241
4242 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4243
4244 #ifdef CONFIG_FAIR_GROUP_SCHED
4245 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4246 #endif
4247
4248 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4249 {
4250 return NULL;
4251 }
4252 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4253 static inline void update_runtime_enabled(struct rq *rq) {}
4254 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4255
4256 #endif /* CONFIG_CFS_BANDWIDTH */
4257
4258 /**************************************************
4259 * CFS operations on tasks:
4260 */
4261
4262 #ifdef CONFIG_SCHED_HRTICK
4263 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4264 {
4265 struct sched_entity *se = &p->se;
4266 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4267
4268 WARN_ON(task_rq(p) != rq);
4269
4270 if (cfs_rq->nr_running > 1) {
4271 u64 slice = sched_slice(cfs_rq, se);
4272 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4273 s64 delta = slice - ran;
4274
4275 if (delta < 0) {
4276 if (rq->curr == p)
4277 resched_curr(rq);
4278 return;
4279 }
4280 hrtick_start(rq, delta);
4281 }
4282 }
4283
4284 /*
4285 * called from enqueue/dequeue and updates the hrtick when the
4286 * current task is from our class and nr_running is low enough
4287 * to matter.
4288 */
4289 static void hrtick_update(struct rq *rq)
4290 {
4291 struct task_struct *curr = rq->curr;
4292
4293 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4294 return;
4295
4296 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4297 hrtick_start_fair(rq, curr);
4298 }
4299 #else /* !CONFIG_SCHED_HRTICK */
4300 static inline void
4301 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4302 {
4303 }
4304
4305 static inline void hrtick_update(struct rq *rq)
4306 {
4307 }
4308 #endif
4309
4310 /*
4311 * The enqueue_task method is called before nr_running is
4312 * increased. Here we update the fair scheduling stats and
4313 * then put the task into the rbtree:
4314 */
4315 static void
4316 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4317 {
4318 struct cfs_rq *cfs_rq;
4319 struct sched_entity *se = &p->se;
4320
4321 for_each_sched_entity(se) {
4322 if (se->on_rq)
4323 break;
4324 cfs_rq = cfs_rq_of(se);
4325 enqueue_entity(cfs_rq, se, flags);
4326
4327 /*
4328 * end evaluation on encountering a throttled cfs_rq
4329 *
4330 * note: in the case of encountering a throttled cfs_rq we will
4331 * post the final h_nr_running increment below.
4332 */
4333 if (cfs_rq_throttled(cfs_rq))
4334 break;
4335 cfs_rq->h_nr_running++;
4336
4337 flags = ENQUEUE_WAKEUP;
4338 }
4339
4340 for_each_sched_entity(se) {
4341 cfs_rq = cfs_rq_of(se);
4342 cfs_rq->h_nr_running++;
4343
4344 if (cfs_rq_throttled(cfs_rq))
4345 break;
4346
4347 update_load_avg(se, 1);
4348 update_cfs_shares(cfs_rq);
4349 }
4350
4351 if (!se)
4352 add_nr_running(rq, 1);
4353
4354 hrtick_update(rq);
4355 }
4356
4357 static void set_next_buddy(struct sched_entity *se);
4358
4359 /*
4360 * The dequeue_task method is called before nr_running is
4361 * decreased. We remove the task from the rbtree and
4362 * update the fair scheduling stats:
4363 */
4364 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4365 {
4366 struct cfs_rq *cfs_rq;
4367 struct sched_entity *se = &p->se;
4368 int task_sleep = flags & DEQUEUE_SLEEP;
4369
4370 for_each_sched_entity(se) {
4371 cfs_rq = cfs_rq_of(se);
4372 dequeue_entity(cfs_rq, se, flags);
4373
4374 /*
4375 * end evaluation on encountering a throttled cfs_rq
4376 *
4377 * note: in the case of encountering a throttled cfs_rq we will
4378 * post the final h_nr_running decrement below.
4379 */
4380 if (cfs_rq_throttled(cfs_rq))
4381 break;
4382 cfs_rq->h_nr_running--;
4383
4384 /* Don't dequeue parent if it has other entities besides us */
4385 if (cfs_rq->load.weight) {
4386 /*
4387 * Bias pick_next to pick a task from this cfs_rq, as
4388 * p is sleeping when it is within its sched_slice.
4389 */
4390 if (task_sleep && parent_entity(se))
4391 set_next_buddy(parent_entity(se));
4392
4393 /* avoid re-evaluating load for this entity */
4394 se = parent_entity(se);
4395 break;
4396 }
4397 flags |= DEQUEUE_SLEEP;
4398 }
4399
4400 for_each_sched_entity(se) {
4401 cfs_rq = cfs_rq_of(se);
4402 cfs_rq->h_nr_running--;
4403
4404 if (cfs_rq_throttled(cfs_rq))
4405 break;
4406
4407 update_load_avg(se, 1);
4408 update_cfs_shares(cfs_rq);
4409 }
4410
4411 if (!se)
4412 sub_nr_running(rq, 1);
4413
4414 hrtick_update(rq);
4415 }
4416
4417 #ifdef CONFIG_SMP
4418
4419 /*
4420 * per rq 'load' arrray crap; XXX kill this.
4421 */
4422
4423 /*
4424 * The exact cpuload calculated at every tick would be:
4425 *
4426 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4427 *
4428 * If a cpu misses updates for n ticks (as it was idle) and update gets
4429 * called on the n+1-th tick when cpu may be busy, then we have:
4430 *
4431 * load_n = (1 - 1/2^i)^n * load_0
4432 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4433 *
4434 * decay_load_missed() below does efficient calculation of
4435 *
4436 * load' = (1 - 1/2^i)^n * load
4437 *
4438 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4439 * This allows us to precompute the above in said factors, thereby allowing the
4440 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4441 * fixed_power_int())
4442 *
4443 * The calculation is approximated on a 128 point scale.
4444 */
4445 #define DEGRADE_SHIFT 7
4446
4447 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4448 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4449 { 0, 0, 0, 0, 0, 0, 0, 0 },
4450 { 64, 32, 8, 0, 0, 0, 0, 0 },
4451 { 96, 72, 40, 12, 1, 0, 0, 0 },
4452 { 112, 98, 75, 43, 15, 1, 0, 0 },
4453 { 120, 112, 98, 76, 45, 16, 2, 0 }
4454 };
4455
4456 /*
4457 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4458 * would be when CPU is idle and so we just decay the old load without
4459 * adding any new load.
4460 */
4461 static unsigned long
4462 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4463 {
4464 int j = 0;
4465
4466 if (!missed_updates)
4467 return load;
4468
4469 if (missed_updates >= degrade_zero_ticks[idx])
4470 return 0;
4471
4472 if (idx == 1)
4473 return load >> missed_updates;
4474
4475 while (missed_updates) {
4476 if (missed_updates % 2)
4477 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4478
4479 missed_updates >>= 1;
4480 j++;
4481 }
4482 return load;
4483 }
4484
4485 /**
4486 * __update_cpu_load - update the rq->cpu_load[] statistics
4487 * @this_rq: The rq to update statistics for
4488 * @this_load: The current load
4489 * @pending_updates: The number of missed updates
4490 * @active: !0 for NOHZ_FULL
4491 *
4492 * Update rq->cpu_load[] statistics. This function is usually called every
4493 * scheduler tick (TICK_NSEC).
4494 *
4495 * This function computes a decaying average:
4496 *
4497 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4498 *
4499 * Because of NOHZ it might not get called on every tick which gives need for
4500 * the @pending_updates argument.
4501 *
4502 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4503 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4504 * = A * (A * load[i]_n-2 + B) + B
4505 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4506 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4507 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4508 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4509 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4510 *
4511 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4512 * any change in load would have resulted in the tick being turned back on.
4513 *
4514 * For regular NOHZ, this reduces to:
4515 *
4516 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4517 *
4518 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4519 * term. See the @active paramter.
4520 */
4521 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4522 unsigned long pending_updates, int active)
4523 {
4524 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4525 int i, scale;
4526
4527 this_rq->nr_load_updates++;
4528
4529 /* Update our load: */
4530 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4531 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4532 unsigned long old_load, new_load;
4533
4534 /* scale is effectively 1 << i now, and >> i divides by scale */
4535
4536 old_load = this_rq->cpu_load[i];
4537 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4538 if (tickless_load) {
4539 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4540 /*
4541 * old_load can never be a negative value because a
4542 * decayed tickless_load cannot be greater than the
4543 * original tickless_load.
4544 */
4545 old_load += tickless_load;
4546 }
4547 new_load = this_load;
4548 /*
4549 * Round up the averaging division if load is increasing. This
4550 * prevents us from getting stuck on 9 if the load is 10, for
4551 * example.
4552 */
4553 if (new_load > old_load)
4554 new_load += scale - 1;
4555
4556 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4557 }
4558
4559 sched_avg_update(this_rq);
4560 }
4561
4562 /* Used instead of source_load when we know the type == 0 */
4563 static unsigned long weighted_cpuload(const int cpu)
4564 {
4565 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4566 }
4567
4568 #ifdef CONFIG_NO_HZ_COMMON
4569 static void __update_cpu_load_nohz(struct rq *this_rq,
4570 unsigned long curr_jiffies,
4571 unsigned long load,
4572 int active)
4573 {
4574 unsigned long pending_updates;
4575
4576 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4577 if (pending_updates) {
4578 this_rq->last_load_update_tick = curr_jiffies;
4579 /*
4580 * In the regular NOHZ case, we were idle, this means load 0.
4581 * In the NOHZ_FULL case, we were non-idle, we should consider
4582 * its weighted load.
4583 */
4584 __update_cpu_load(this_rq, load, pending_updates, active);
4585 }
4586 }
4587
4588 /*
4589 * There is no sane way to deal with nohz on smp when using jiffies because the
4590 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4591 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4592 *
4593 * Therefore we cannot use the delta approach from the regular tick since that
4594 * would seriously skew the load calculation. However we'll make do for those
4595 * updates happening while idle (nohz_idle_balance) or coming out of idle
4596 * (tick_nohz_idle_exit).
4597 *
4598 * This means we might still be one tick off for nohz periods.
4599 */
4600
4601 /*
4602 * Called from nohz_idle_balance() to update the load ratings before doing the
4603 * idle balance.
4604 */
4605 static void update_cpu_load_idle(struct rq *this_rq)
4606 {
4607 /*
4608 * bail if there's load or we're actually up-to-date.
4609 */
4610 if (weighted_cpuload(cpu_of(this_rq)))
4611 return;
4612
4613 __update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
4614 }
4615
4616 /*
4617 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4618 */
4619 void update_cpu_load_nohz(int active)
4620 {
4621 struct rq *this_rq = this_rq();
4622 unsigned long curr_jiffies = READ_ONCE(jiffies);
4623 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4624
4625 if (curr_jiffies == this_rq->last_load_update_tick)
4626 return;
4627
4628 raw_spin_lock(&this_rq->lock);
4629 __update_cpu_load_nohz(this_rq, curr_jiffies, load, active);
4630 raw_spin_unlock(&this_rq->lock);
4631 }
4632 #endif /* CONFIG_NO_HZ */
4633
4634 /*
4635 * Called from scheduler_tick()
4636 */
4637 void update_cpu_load_active(struct rq *this_rq)
4638 {
4639 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4640 /*
4641 * See the mess around update_cpu_load_idle() / update_cpu_load_nohz().
4642 */
4643 this_rq->last_load_update_tick = jiffies;
4644 __update_cpu_load(this_rq, load, 1, 1);
4645 }
4646
4647 /*
4648 * Return a low guess at the load of a migration-source cpu weighted
4649 * according to the scheduling class and "nice" value.
4650 *
4651 * We want to under-estimate the load of migration sources, to
4652 * balance conservatively.
4653 */
4654 static unsigned long source_load(int cpu, int type)
4655 {
4656 struct rq *rq = cpu_rq(cpu);
4657 unsigned long total = weighted_cpuload(cpu);
4658
4659 if (type == 0 || !sched_feat(LB_BIAS))
4660 return total;
4661
4662 return min(rq->cpu_load[type-1], total);
4663 }
4664
4665 /*
4666 * Return a high guess at the load of a migration-target cpu weighted
4667 * according to the scheduling class and "nice" value.
4668 */
4669 static unsigned long target_load(int cpu, int type)
4670 {
4671 struct rq *rq = cpu_rq(cpu);
4672 unsigned long total = weighted_cpuload(cpu);
4673
4674 if (type == 0 || !sched_feat(LB_BIAS))
4675 return total;
4676
4677 return max(rq->cpu_load[type-1], total);
4678 }
4679
4680 static unsigned long capacity_of(int cpu)
4681 {
4682 return cpu_rq(cpu)->cpu_capacity;
4683 }
4684
4685 static unsigned long capacity_orig_of(int cpu)
4686 {
4687 return cpu_rq(cpu)->cpu_capacity_orig;
4688 }
4689
4690 static unsigned long cpu_avg_load_per_task(int cpu)
4691 {
4692 struct rq *rq = cpu_rq(cpu);
4693 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4694 unsigned long load_avg = weighted_cpuload(cpu);
4695
4696 if (nr_running)
4697 return load_avg / nr_running;
4698
4699 return 0;
4700 }
4701
4702 static void record_wakee(struct task_struct *p)
4703 {
4704 /*
4705 * Rough decay (wiping) for cost saving, don't worry
4706 * about the boundary, really active task won't care
4707 * about the loss.
4708 */
4709 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4710 current->wakee_flips >>= 1;
4711 current->wakee_flip_decay_ts = jiffies;
4712 }
4713
4714 if (current->last_wakee != p) {
4715 current->last_wakee = p;
4716 current->wakee_flips++;
4717 }
4718 }
4719
4720 static void task_waking_fair(struct task_struct *p)
4721 {
4722 struct sched_entity *se = &p->se;
4723 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4724 u64 min_vruntime;
4725
4726 #ifndef CONFIG_64BIT
4727 u64 min_vruntime_copy;
4728
4729 do {
4730 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4731 smp_rmb();
4732 min_vruntime = cfs_rq->min_vruntime;
4733 } while (min_vruntime != min_vruntime_copy);
4734 #else
4735 min_vruntime = cfs_rq->min_vruntime;
4736 #endif
4737
4738 se->vruntime -= min_vruntime;
4739 record_wakee(p);
4740 }
4741
4742 #ifdef CONFIG_FAIR_GROUP_SCHED
4743 /*
4744 * effective_load() calculates the load change as seen from the root_task_group
4745 *
4746 * Adding load to a group doesn't make a group heavier, but can cause movement
4747 * of group shares between cpus. Assuming the shares were perfectly aligned one
4748 * can calculate the shift in shares.
4749 *
4750 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4751 * on this @cpu and results in a total addition (subtraction) of @wg to the
4752 * total group weight.
4753 *
4754 * Given a runqueue weight distribution (rw_i) we can compute a shares
4755 * distribution (s_i) using:
4756 *
4757 * s_i = rw_i / \Sum rw_j (1)
4758 *
4759 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4760 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4761 * shares distribution (s_i):
4762 *
4763 * rw_i = { 2, 4, 1, 0 }
4764 * s_i = { 2/7, 4/7, 1/7, 0 }
4765 *
4766 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4767 * task used to run on and the CPU the waker is running on), we need to
4768 * compute the effect of waking a task on either CPU and, in case of a sync
4769 * wakeup, compute the effect of the current task going to sleep.
4770 *
4771 * So for a change of @wl to the local @cpu with an overall group weight change
4772 * of @wl we can compute the new shares distribution (s'_i) using:
4773 *
4774 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4775 *
4776 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4777 * differences in waking a task to CPU 0. The additional task changes the
4778 * weight and shares distributions like:
4779 *
4780 * rw'_i = { 3, 4, 1, 0 }
4781 * s'_i = { 3/8, 4/8, 1/8, 0 }
4782 *
4783 * We can then compute the difference in effective weight by using:
4784 *
4785 * dw_i = S * (s'_i - s_i) (3)
4786 *
4787 * Where 'S' is the group weight as seen by its parent.
4788 *
4789 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4790 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4791 * 4/7) times the weight of the group.
4792 */
4793 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4794 {
4795 struct sched_entity *se = tg->se[cpu];
4796
4797 if (!tg->parent) /* the trivial, non-cgroup case */
4798 return wl;
4799
4800 for_each_sched_entity(se) {
4801 long w, W;
4802
4803 tg = se->my_q->tg;
4804
4805 /*
4806 * W = @wg + \Sum rw_j
4807 */
4808 W = wg + calc_tg_weight(tg, se->my_q);
4809
4810 /*
4811 * w = rw_i + @wl
4812 */
4813 w = cfs_rq_load_avg(se->my_q) + wl;
4814
4815 /*
4816 * wl = S * s'_i; see (2)
4817 */
4818 if (W > 0 && w < W)
4819 wl = (w * (long)tg->shares) / W;
4820 else
4821 wl = tg->shares;
4822
4823 /*
4824 * Per the above, wl is the new se->load.weight value; since
4825 * those are clipped to [MIN_SHARES, ...) do so now. See
4826 * calc_cfs_shares().
4827 */
4828 if (wl < MIN_SHARES)
4829 wl = MIN_SHARES;
4830
4831 /*
4832 * wl = dw_i = S * (s'_i - s_i); see (3)
4833 */
4834 wl -= se->avg.load_avg;
4835
4836 /*
4837 * Recursively apply this logic to all parent groups to compute
4838 * the final effective load change on the root group. Since
4839 * only the @tg group gets extra weight, all parent groups can
4840 * only redistribute existing shares. @wl is the shift in shares
4841 * resulting from this level per the above.
4842 */
4843 wg = 0;
4844 }
4845
4846 return wl;
4847 }
4848 #else
4849
4850 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4851 {
4852 return wl;
4853 }
4854
4855 #endif
4856
4857 /*
4858 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4859 * A waker of many should wake a different task than the one last awakened
4860 * at a frequency roughly N times higher than one of its wakees. In order
4861 * to determine whether we should let the load spread vs consolodating to
4862 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4863 * partner, and a factor of lls_size higher frequency in the other. With
4864 * both conditions met, we can be relatively sure that the relationship is
4865 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4866 * being client/server, worker/dispatcher, interrupt source or whatever is
4867 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4868 */
4869 static int wake_wide(struct task_struct *p)
4870 {
4871 unsigned int master = current->wakee_flips;
4872 unsigned int slave = p->wakee_flips;
4873 int factor = this_cpu_read(sd_llc_size);
4874
4875 if (master < slave)
4876 swap(master, slave);
4877 if (slave < factor || master < slave * factor)
4878 return 0;
4879 return 1;
4880 }
4881
4882 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4883 {
4884 s64 this_load, load;
4885 s64 this_eff_load, prev_eff_load;
4886 int idx, this_cpu, prev_cpu;
4887 struct task_group *tg;
4888 unsigned long weight;
4889 int balanced;
4890
4891 idx = sd->wake_idx;
4892 this_cpu = smp_processor_id();
4893 prev_cpu = task_cpu(p);
4894 load = source_load(prev_cpu, idx);
4895 this_load = target_load(this_cpu, idx);
4896
4897 /*
4898 * If sync wakeup then subtract the (maximum possible)
4899 * effect of the currently running task from the load
4900 * of the current CPU:
4901 */
4902 if (sync) {
4903 tg = task_group(current);
4904 weight = current->se.avg.load_avg;
4905
4906 this_load += effective_load(tg, this_cpu, -weight, -weight);
4907 load += effective_load(tg, prev_cpu, 0, -weight);
4908 }
4909
4910 tg = task_group(p);
4911 weight = p->se.avg.load_avg;
4912
4913 /*
4914 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4915 * due to the sync cause above having dropped this_load to 0, we'll
4916 * always have an imbalance, but there's really nothing you can do
4917 * about that, so that's good too.
4918 *
4919 * Otherwise check if either cpus are near enough in load to allow this
4920 * task to be woken on this_cpu.
4921 */
4922 this_eff_load = 100;
4923 this_eff_load *= capacity_of(prev_cpu);
4924
4925 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4926 prev_eff_load *= capacity_of(this_cpu);
4927
4928 if (this_load > 0) {
4929 this_eff_load *= this_load +
4930 effective_load(tg, this_cpu, weight, weight);
4931
4932 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4933 }
4934
4935 balanced = this_eff_load <= prev_eff_load;
4936
4937 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4938
4939 if (!balanced)
4940 return 0;
4941
4942 schedstat_inc(sd, ttwu_move_affine);
4943 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4944
4945 return 1;
4946 }
4947
4948 /*
4949 * find_idlest_group finds and returns the least busy CPU group within the
4950 * domain.
4951 */
4952 static struct sched_group *
4953 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4954 int this_cpu, int sd_flag)
4955 {
4956 struct sched_group *idlest = NULL, *group = sd->groups;
4957 unsigned long min_load = ULONG_MAX, this_load = 0;
4958 int load_idx = sd->forkexec_idx;
4959 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4960
4961 if (sd_flag & SD_BALANCE_WAKE)
4962 load_idx = sd->wake_idx;
4963
4964 do {
4965 unsigned long load, avg_load;
4966 int local_group;
4967 int i;
4968
4969 /* Skip over this group if it has no CPUs allowed */
4970 if (!cpumask_intersects(sched_group_cpus(group),
4971 tsk_cpus_allowed(p)))
4972 continue;
4973
4974 local_group = cpumask_test_cpu(this_cpu,
4975 sched_group_cpus(group));
4976
4977 /* Tally up the load of all CPUs in the group */
4978 avg_load = 0;
4979
4980 for_each_cpu(i, sched_group_cpus(group)) {
4981 /* Bias balancing toward cpus of our domain */
4982 if (local_group)
4983 load = source_load(i, load_idx);
4984 else
4985 load = target_load(i, load_idx);
4986
4987 avg_load += load;
4988 }
4989
4990 /* Adjust by relative CPU capacity of the group */
4991 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4992
4993 if (local_group) {
4994 this_load = avg_load;
4995 } else if (avg_load < min_load) {
4996 min_load = avg_load;
4997 idlest = group;
4998 }
4999 } while (group = group->next, group != sd->groups);
5000
5001 if (!idlest || 100*this_load < imbalance*min_load)
5002 return NULL;
5003 return idlest;
5004 }
5005
5006 /*
5007 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5008 */
5009 static int
5010 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5011 {
5012 unsigned long load, min_load = ULONG_MAX;
5013 unsigned int min_exit_latency = UINT_MAX;
5014 u64 latest_idle_timestamp = 0;
5015 int least_loaded_cpu = this_cpu;
5016 int shallowest_idle_cpu = -1;
5017 int i;
5018
5019 /* Traverse only the allowed CPUs */
5020 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5021 if (idle_cpu(i)) {
5022 struct rq *rq = cpu_rq(i);
5023 struct cpuidle_state *idle = idle_get_state(rq);
5024 if (idle && idle->exit_latency < min_exit_latency) {
5025 /*
5026 * We give priority to a CPU whose idle state
5027 * has the smallest exit latency irrespective
5028 * of any idle timestamp.
5029 */
5030 min_exit_latency = idle->exit_latency;
5031 latest_idle_timestamp = rq->idle_stamp;
5032 shallowest_idle_cpu = i;
5033 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5034 rq->idle_stamp > latest_idle_timestamp) {
5035 /*
5036 * If equal or no active idle state, then
5037 * the most recently idled CPU might have
5038 * a warmer cache.
5039 */
5040 latest_idle_timestamp = rq->idle_stamp;
5041 shallowest_idle_cpu = i;
5042 }
5043 } else if (shallowest_idle_cpu == -1) {
5044 load = weighted_cpuload(i);
5045 if (load < min_load || (load == min_load && i == this_cpu)) {
5046 min_load = load;
5047 least_loaded_cpu = i;
5048 }
5049 }
5050 }
5051
5052 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5053 }
5054
5055 /*
5056 * Try and locate an idle CPU in the sched_domain.
5057 */
5058 static int select_idle_sibling(struct task_struct *p, int target)
5059 {
5060 struct sched_domain *sd;
5061 struct sched_group *sg;
5062 int i = task_cpu(p);
5063
5064 if (idle_cpu(target))
5065 return target;
5066
5067 /*
5068 * If the prevous cpu is cache affine and idle, don't be stupid.
5069 */
5070 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5071 return i;
5072
5073 /*
5074 * Otherwise, iterate the domains and find an elegible idle cpu.
5075 */
5076 sd = rcu_dereference(per_cpu(sd_llc, target));
5077 for_each_lower_domain(sd) {
5078 sg = sd->groups;
5079 do {
5080 if (!cpumask_intersects(sched_group_cpus(sg),
5081 tsk_cpus_allowed(p)))
5082 goto next;
5083
5084 for_each_cpu(i, sched_group_cpus(sg)) {
5085 if (i == target || !idle_cpu(i))
5086 goto next;
5087 }
5088
5089 target = cpumask_first_and(sched_group_cpus(sg),
5090 tsk_cpus_allowed(p));
5091 goto done;
5092 next:
5093 sg = sg->next;
5094 } while (sg != sd->groups);
5095 }
5096 done:
5097 return target;
5098 }
5099
5100 /*
5101 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5102 * tasks. The unit of the return value must be the one of capacity so we can
5103 * compare the utilization with the capacity of the CPU that is available for
5104 * CFS task (ie cpu_capacity).
5105 *
5106 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5107 * recent utilization of currently non-runnable tasks on a CPU. It represents
5108 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5109 * capacity_orig is the cpu_capacity available at the highest frequency
5110 * (arch_scale_freq_capacity()).
5111 * The utilization of a CPU converges towards a sum equal to or less than the
5112 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5113 * the running time on this CPU scaled by capacity_curr.
5114 *
5115 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5116 * higher than capacity_orig because of unfortunate rounding in
5117 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5118 * the average stabilizes with the new running time. We need to check that the
5119 * utilization stays within the range of [0..capacity_orig] and cap it if
5120 * necessary. Without utilization capping, a group could be seen as overloaded
5121 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5122 * available capacity. We allow utilization to overshoot capacity_curr (but not
5123 * capacity_orig) as it useful for predicting the capacity required after task
5124 * migrations (scheduler-driven DVFS).
5125 */
5126 static int cpu_util(int cpu)
5127 {
5128 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5129 unsigned long capacity = capacity_orig_of(cpu);
5130
5131 return (util >= capacity) ? capacity : util;
5132 }
5133
5134 /*
5135 * select_task_rq_fair: Select target runqueue for the waking task in domains
5136 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5137 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5138 *
5139 * Balances load by selecting the idlest cpu in the idlest group, or under
5140 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5141 *
5142 * Returns the target cpu number.
5143 *
5144 * preempt must be disabled.
5145 */
5146 static int
5147 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5148 {
5149 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5150 int cpu = smp_processor_id();
5151 int new_cpu = prev_cpu;
5152 int want_affine = 0;
5153 int sync = wake_flags & WF_SYNC;
5154
5155 if (sd_flag & SD_BALANCE_WAKE)
5156 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5157
5158 rcu_read_lock();
5159 for_each_domain(cpu, tmp) {
5160 if (!(tmp->flags & SD_LOAD_BALANCE))
5161 break;
5162
5163 /*
5164 * If both cpu and prev_cpu are part of this domain,
5165 * cpu is a valid SD_WAKE_AFFINE target.
5166 */
5167 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5168 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5169 affine_sd = tmp;
5170 break;
5171 }
5172
5173 if (tmp->flags & sd_flag)
5174 sd = tmp;
5175 else if (!want_affine)
5176 break;
5177 }
5178
5179 if (affine_sd) {
5180 sd = NULL; /* Prefer wake_affine over balance flags */
5181 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5182 new_cpu = cpu;
5183 }
5184
5185 if (!sd) {
5186 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5187 new_cpu = select_idle_sibling(p, new_cpu);
5188
5189 } else while (sd) {
5190 struct sched_group *group;
5191 int weight;
5192
5193 if (!(sd->flags & sd_flag)) {
5194 sd = sd->child;
5195 continue;
5196 }
5197
5198 group = find_idlest_group(sd, p, cpu, sd_flag);
5199 if (!group) {
5200 sd = sd->child;
5201 continue;
5202 }
5203
5204 new_cpu = find_idlest_cpu(group, p, cpu);
5205 if (new_cpu == -1 || new_cpu == cpu) {
5206 /* Now try balancing at a lower domain level of cpu */
5207 sd = sd->child;
5208 continue;
5209 }
5210
5211 /* Now try balancing at a lower domain level of new_cpu */
5212 cpu = new_cpu;
5213 weight = sd->span_weight;
5214 sd = NULL;
5215 for_each_domain(cpu, tmp) {
5216 if (weight <= tmp->span_weight)
5217 break;
5218 if (tmp->flags & sd_flag)
5219 sd = tmp;
5220 }
5221 /* while loop will break here if sd == NULL */
5222 }
5223 rcu_read_unlock();
5224
5225 return new_cpu;
5226 }
5227
5228 /*
5229 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5230 * cfs_rq_of(p) references at time of call are still valid and identify the
5231 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5232 */
5233 static void migrate_task_rq_fair(struct task_struct *p)
5234 {
5235 /*
5236 * We are supposed to update the task to "current" time, then its up to date
5237 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5238 * what current time is, so simply throw away the out-of-date time. This
5239 * will result in the wakee task is less decayed, but giving the wakee more
5240 * load sounds not bad.
5241 */
5242 remove_entity_load_avg(&p->se);
5243
5244 /* Tell new CPU we are migrated */
5245 p->se.avg.last_update_time = 0;
5246
5247 /* We have migrated, no longer consider this task hot */
5248 p->se.exec_start = 0;
5249 }
5250
5251 static void task_dead_fair(struct task_struct *p)
5252 {
5253 remove_entity_load_avg(&p->se);
5254 }
5255 #endif /* CONFIG_SMP */
5256
5257 static unsigned long
5258 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5259 {
5260 unsigned long gran = sysctl_sched_wakeup_granularity;
5261
5262 /*
5263 * Since its curr running now, convert the gran from real-time
5264 * to virtual-time in his units.
5265 *
5266 * By using 'se' instead of 'curr' we penalize light tasks, so
5267 * they get preempted easier. That is, if 'se' < 'curr' then
5268 * the resulting gran will be larger, therefore penalizing the
5269 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5270 * be smaller, again penalizing the lighter task.
5271 *
5272 * This is especially important for buddies when the leftmost
5273 * task is higher priority than the buddy.
5274 */
5275 return calc_delta_fair(gran, se);
5276 }
5277
5278 /*
5279 * Should 'se' preempt 'curr'.
5280 *
5281 * |s1
5282 * |s2
5283 * |s3
5284 * g
5285 * |<--->|c
5286 *
5287 * w(c, s1) = -1
5288 * w(c, s2) = 0
5289 * w(c, s3) = 1
5290 *
5291 */
5292 static int
5293 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5294 {
5295 s64 gran, vdiff = curr->vruntime - se->vruntime;
5296
5297 if (vdiff <= 0)
5298 return -1;
5299
5300 gran = wakeup_gran(curr, se);
5301 if (vdiff > gran)
5302 return 1;
5303
5304 return 0;
5305 }
5306
5307 static void set_last_buddy(struct sched_entity *se)
5308 {
5309 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5310 return;
5311
5312 for_each_sched_entity(se)
5313 cfs_rq_of(se)->last = se;
5314 }
5315
5316 static void set_next_buddy(struct sched_entity *se)
5317 {
5318 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5319 return;
5320
5321 for_each_sched_entity(se)
5322 cfs_rq_of(se)->next = se;
5323 }
5324
5325 static void set_skip_buddy(struct sched_entity *se)
5326 {
5327 for_each_sched_entity(se)
5328 cfs_rq_of(se)->skip = se;
5329 }
5330
5331 /*
5332 * Preempt the current task with a newly woken task if needed:
5333 */
5334 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5335 {
5336 struct task_struct *curr = rq->curr;
5337 struct sched_entity *se = &curr->se, *pse = &p->se;
5338 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5339 int scale = cfs_rq->nr_running >= sched_nr_latency;
5340 int next_buddy_marked = 0;
5341
5342 if (unlikely(se == pse))
5343 return;
5344
5345 /*
5346 * This is possible from callers such as attach_tasks(), in which we
5347 * unconditionally check_prempt_curr() after an enqueue (which may have
5348 * lead to a throttle). This both saves work and prevents false
5349 * next-buddy nomination below.
5350 */
5351 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5352 return;
5353
5354 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5355 set_next_buddy(pse);
5356 next_buddy_marked = 1;
5357 }
5358
5359 /*
5360 * We can come here with TIF_NEED_RESCHED already set from new task
5361 * wake up path.
5362 *
5363 * Note: this also catches the edge-case of curr being in a throttled
5364 * group (e.g. via set_curr_task), since update_curr() (in the
5365 * enqueue of curr) will have resulted in resched being set. This
5366 * prevents us from potentially nominating it as a false LAST_BUDDY
5367 * below.
5368 */
5369 if (test_tsk_need_resched(curr))
5370 return;
5371
5372 /* Idle tasks are by definition preempted by non-idle tasks. */
5373 if (unlikely(curr->policy == SCHED_IDLE) &&
5374 likely(p->policy != SCHED_IDLE))
5375 goto preempt;
5376
5377 /*
5378 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5379 * is driven by the tick):
5380 */
5381 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5382 return;
5383
5384 find_matching_se(&se, &pse);
5385 update_curr(cfs_rq_of(se));
5386 BUG_ON(!pse);
5387 if (wakeup_preempt_entity(se, pse) == 1) {
5388 /*
5389 * Bias pick_next to pick the sched entity that is
5390 * triggering this preemption.
5391 */
5392 if (!next_buddy_marked)
5393 set_next_buddy(pse);
5394 goto preempt;
5395 }
5396
5397 return;
5398
5399 preempt:
5400 resched_curr(rq);
5401 /*
5402 * Only set the backward buddy when the current task is still
5403 * on the rq. This can happen when a wakeup gets interleaved
5404 * with schedule on the ->pre_schedule() or idle_balance()
5405 * point, either of which can * drop the rq lock.
5406 *
5407 * Also, during early boot the idle thread is in the fair class,
5408 * for obvious reasons its a bad idea to schedule back to it.
5409 */
5410 if (unlikely(!se->on_rq || curr == rq->idle))
5411 return;
5412
5413 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5414 set_last_buddy(se);
5415 }
5416
5417 static struct task_struct *
5418 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5419 {
5420 struct cfs_rq *cfs_rq = &rq->cfs;
5421 struct sched_entity *se;
5422 struct task_struct *p;
5423 int new_tasks;
5424
5425 again:
5426 #ifdef CONFIG_FAIR_GROUP_SCHED
5427 if (!cfs_rq->nr_running)
5428 goto idle;
5429
5430 if (prev->sched_class != &fair_sched_class)
5431 goto simple;
5432
5433 /*
5434 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5435 * likely that a next task is from the same cgroup as the current.
5436 *
5437 * Therefore attempt to avoid putting and setting the entire cgroup
5438 * hierarchy, only change the part that actually changes.
5439 */
5440
5441 do {
5442 struct sched_entity *curr = cfs_rq->curr;
5443
5444 /*
5445 * Since we got here without doing put_prev_entity() we also
5446 * have to consider cfs_rq->curr. If it is still a runnable
5447 * entity, update_curr() will update its vruntime, otherwise
5448 * forget we've ever seen it.
5449 */
5450 if (curr) {
5451 if (curr->on_rq)
5452 update_curr(cfs_rq);
5453 else
5454 curr = NULL;
5455
5456 /*
5457 * This call to check_cfs_rq_runtime() will do the
5458 * throttle and dequeue its entity in the parent(s).
5459 * Therefore the 'simple' nr_running test will indeed
5460 * be correct.
5461 */
5462 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5463 goto simple;
5464 }
5465
5466 se = pick_next_entity(cfs_rq, curr);
5467 cfs_rq = group_cfs_rq(se);
5468 } while (cfs_rq);
5469
5470 p = task_of(se);
5471
5472 /*
5473 * Since we haven't yet done put_prev_entity and if the selected task
5474 * is a different task than we started out with, try and touch the
5475 * least amount of cfs_rqs.
5476 */
5477 if (prev != p) {
5478 struct sched_entity *pse = &prev->se;
5479
5480 while (!(cfs_rq = is_same_group(se, pse))) {
5481 int se_depth = se->depth;
5482 int pse_depth = pse->depth;
5483
5484 if (se_depth <= pse_depth) {
5485 put_prev_entity(cfs_rq_of(pse), pse);
5486 pse = parent_entity(pse);
5487 }
5488 if (se_depth >= pse_depth) {
5489 set_next_entity(cfs_rq_of(se), se);
5490 se = parent_entity(se);
5491 }
5492 }
5493
5494 put_prev_entity(cfs_rq, pse);
5495 set_next_entity(cfs_rq, se);
5496 }
5497
5498 if (hrtick_enabled(rq))
5499 hrtick_start_fair(rq, p);
5500
5501 return p;
5502 simple:
5503 cfs_rq = &rq->cfs;
5504 #endif
5505
5506 if (!cfs_rq->nr_running)
5507 goto idle;
5508
5509 put_prev_task(rq, prev);
5510
5511 do {
5512 se = pick_next_entity(cfs_rq, NULL);
5513 set_next_entity(cfs_rq, se);
5514 cfs_rq = group_cfs_rq(se);
5515 } while (cfs_rq);
5516
5517 p = task_of(se);
5518
5519 if (hrtick_enabled(rq))
5520 hrtick_start_fair(rq, p);
5521
5522 return p;
5523
5524 idle:
5525 /*
5526 * This is OK, because current is on_cpu, which avoids it being picked
5527 * for load-balance and preemption/IRQs are still disabled avoiding
5528 * further scheduler activity on it and we're being very careful to
5529 * re-start the picking loop.
5530 */
5531 lockdep_unpin_lock(&rq->lock);
5532 new_tasks = idle_balance(rq);
5533 lockdep_pin_lock(&rq->lock);
5534 /*
5535 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5536 * possible for any higher priority task to appear. In that case we
5537 * must re-start the pick_next_entity() loop.
5538 */
5539 if (new_tasks < 0)
5540 return RETRY_TASK;
5541
5542 if (new_tasks > 0)
5543 goto again;
5544
5545 return NULL;
5546 }
5547
5548 /*
5549 * Account for a descheduled task:
5550 */
5551 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5552 {
5553 struct sched_entity *se = &prev->se;
5554 struct cfs_rq *cfs_rq;
5555
5556 for_each_sched_entity(se) {
5557 cfs_rq = cfs_rq_of(se);
5558 put_prev_entity(cfs_rq, se);
5559 }
5560 }
5561
5562 /*
5563 * sched_yield() is very simple
5564 *
5565 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5566 */
5567 static void yield_task_fair(struct rq *rq)
5568 {
5569 struct task_struct *curr = rq->curr;
5570 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5571 struct sched_entity *se = &curr->se;
5572
5573 /*
5574 * Are we the only task in the tree?
5575 */
5576 if (unlikely(rq->nr_running == 1))
5577 return;
5578
5579 clear_buddies(cfs_rq, se);
5580
5581 if (curr->policy != SCHED_BATCH) {
5582 update_rq_clock(rq);
5583 /*
5584 * Update run-time statistics of the 'current'.
5585 */
5586 update_curr(cfs_rq);
5587 /*
5588 * Tell update_rq_clock() that we've just updated,
5589 * so we don't do microscopic update in schedule()
5590 * and double the fastpath cost.
5591 */
5592 rq_clock_skip_update(rq, true);
5593 }
5594
5595 set_skip_buddy(se);
5596 }
5597
5598 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5599 {
5600 struct sched_entity *se = &p->se;
5601
5602 /* throttled hierarchies are not runnable */
5603 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5604 return false;
5605
5606 /* Tell the scheduler that we'd really like pse to run next. */
5607 set_next_buddy(se);
5608
5609 yield_task_fair(rq);
5610
5611 return true;
5612 }
5613
5614 #ifdef CONFIG_SMP
5615 /**************************************************
5616 * Fair scheduling class load-balancing methods.
5617 *
5618 * BASICS
5619 *
5620 * The purpose of load-balancing is to achieve the same basic fairness the
5621 * per-cpu scheduler provides, namely provide a proportional amount of compute
5622 * time to each task. This is expressed in the following equation:
5623 *
5624 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5625 *
5626 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5627 * W_i,0 is defined as:
5628 *
5629 * W_i,0 = \Sum_j w_i,j (2)
5630 *
5631 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5632 * is derived from the nice value as per prio_to_weight[].
5633 *
5634 * The weight average is an exponential decay average of the instantaneous
5635 * weight:
5636 *
5637 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5638 *
5639 * C_i is the compute capacity of cpu i, typically it is the
5640 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5641 * can also include other factors [XXX].
5642 *
5643 * To achieve this balance we define a measure of imbalance which follows
5644 * directly from (1):
5645 *
5646 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5647 *
5648 * We them move tasks around to minimize the imbalance. In the continuous
5649 * function space it is obvious this converges, in the discrete case we get
5650 * a few fun cases generally called infeasible weight scenarios.
5651 *
5652 * [XXX expand on:
5653 * - infeasible weights;
5654 * - local vs global optima in the discrete case. ]
5655 *
5656 *
5657 * SCHED DOMAINS
5658 *
5659 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5660 * for all i,j solution, we create a tree of cpus that follows the hardware
5661 * topology where each level pairs two lower groups (or better). This results
5662 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5663 * tree to only the first of the previous level and we decrease the frequency
5664 * of load-balance at each level inv. proportional to the number of cpus in
5665 * the groups.
5666 *
5667 * This yields:
5668 *
5669 * log_2 n 1 n
5670 * \Sum { --- * --- * 2^i } = O(n) (5)
5671 * i = 0 2^i 2^i
5672 * `- size of each group
5673 * | | `- number of cpus doing load-balance
5674 * | `- freq
5675 * `- sum over all levels
5676 *
5677 * Coupled with a limit on how many tasks we can migrate every balance pass,
5678 * this makes (5) the runtime complexity of the balancer.
5679 *
5680 * An important property here is that each CPU is still (indirectly) connected
5681 * to every other cpu in at most O(log n) steps:
5682 *
5683 * The adjacency matrix of the resulting graph is given by:
5684 *
5685 * log_2 n
5686 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5687 * k = 0
5688 *
5689 * And you'll find that:
5690 *
5691 * A^(log_2 n)_i,j != 0 for all i,j (7)
5692 *
5693 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5694 * The task movement gives a factor of O(m), giving a convergence complexity
5695 * of:
5696 *
5697 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5698 *
5699 *
5700 * WORK CONSERVING
5701 *
5702 * In order to avoid CPUs going idle while there's still work to do, new idle
5703 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5704 * tree itself instead of relying on other CPUs to bring it work.
5705 *
5706 * This adds some complexity to both (5) and (8) but it reduces the total idle
5707 * time.
5708 *
5709 * [XXX more?]
5710 *
5711 *
5712 * CGROUPS
5713 *
5714 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5715 *
5716 * s_k,i
5717 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5718 * S_k
5719 *
5720 * Where
5721 *
5722 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5723 *
5724 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5725 *
5726 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5727 * property.
5728 *
5729 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5730 * rewrite all of this once again.]
5731 */
5732
5733 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5734
5735 enum fbq_type { regular, remote, all };
5736
5737 #define LBF_ALL_PINNED 0x01
5738 #define LBF_NEED_BREAK 0x02
5739 #define LBF_DST_PINNED 0x04
5740 #define LBF_SOME_PINNED 0x08
5741
5742 struct lb_env {
5743 struct sched_domain *sd;
5744
5745 struct rq *src_rq;
5746 int src_cpu;
5747
5748 int dst_cpu;
5749 struct rq *dst_rq;
5750
5751 struct cpumask *dst_grpmask;
5752 int new_dst_cpu;
5753 enum cpu_idle_type idle;
5754 long imbalance;
5755 /* The set of CPUs under consideration for load-balancing */
5756 struct cpumask *cpus;
5757
5758 unsigned int flags;
5759
5760 unsigned int loop;
5761 unsigned int loop_break;
5762 unsigned int loop_max;
5763
5764 enum fbq_type fbq_type;
5765 struct list_head tasks;
5766 };
5767
5768 /*
5769 * Is this task likely cache-hot:
5770 */
5771 static int task_hot(struct task_struct *p, struct lb_env *env)
5772 {
5773 s64 delta;
5774
5775 lockdep_assert_held(&env->src_rq->lock);
5776
5777 if (p->sched_class != &fair_sched_class)
5778 return 0;
5779
5780 if (unlikely(p->policy == SCHED_IDLE))
5781 return 0;
5782
5783 /*
5784 * Buddy candidates are cache hot:
5785 */
5786 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5787 (&p->se == cfs_rq_of(&p->se)->next ||
5788 &p->se == cfs_rq_of(&p->se)->last))
5789 return 1;
5790
5791 if (sysctl_sched_migration_cost == -1)
5792 return 1;
5793 if (sysctl_sched_migration_cost == 0)
5794 return 0;
5795
5796 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5797
5798 return delta < (s64)sysctl_sched_migration_cost;
5799 }
5800
5801 #ifdef CONFIG_NUMA_BALANCING
5802 /*
5803 * Returns 1, if task migration degrades locality
5804 * Returns 0, if task migration improves locality i.e migration preferred.
5805 * Returns -1, if task migration is not affected by locality.
5806 */
5807 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5808 {
5809 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5810 unsigned long src_faults, dst_faults;
5811 int src_nid, dst_nid;
5812
5813 if (!static_branch_likely(&sched_numa_balancing))
5814 return -1;
5815
5816 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5817 return -1;
5818
5819 src_nid = cpu_to_node(env->src_cpu);
5820 dst_nid = cpu_to_node(env->dst_cpu);
5821
5822 if (src_nid == dst_nid)
5823 return -1;
5824
5825 /* Migrating away from the preferred node is always bad. */
5826 if (src_nid == p->numa_preferred_nid) {
5827 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5828 return 1;
5829 else
5830 return -1;
5831 }
5832
5833 /* Encourage migration to the preferred node. */
5834 if (dst_nid == p->numa_preferred_nid)
5835 return 0;
5836
5837 if (numa_group) {
5838 src_faults = group_faults(p, src_nid);
5839 dst_faults = group_faults(p, dst_nid);
5840 } else {
5841 src_faults = task_faults(p, src_nid);
5842 dst_faults = task_faults(p, dst_nid);
5843 }
5844
5845 return dst_faults < src_faults;
5846 }
5847
5848 #else
5849 static inline int migrate_degrades_locality(struct task_struct *p,
5850 struct lb_env *env)
5851 {
5852 return -1;
5853 }
5854 #endif
5855
5856 /*
5857 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5858 */
5859 static
5860 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5861 {
5862 int tsk_cache_hot;
5863
5864 lockdep_assert_held(&env->src_rq->lock);
5865
5866 /*
5867 * We do not migrate tasks that are:
5868 * 1) throttled_lb_pair, or
5869 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5870 * 3) running (obviously), or
5871 * 4) are cache-hot on their current CPU.
5872 */
5873 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5874 return 0;
5875
5876 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5877 int cpu;
5878
5879 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5880
5881 env->flags |= LBF_SOME_PINNED;
5882
5883 /*
5884 * Remember if this task can be migrated to any other cpu in
5885 * our sched_group. We may want to revisit it if we couldn't
5886 * meet load balance goals by pulling other tasks on src_cpu.
5887 *
5888 * Also avoid computing new_dst_cpu if we have already computed
5889 * one in current iteration.
5890 */
5891 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5892 return 0;
5893
5894 /* Prevent to re-select dst_cpu via env's cpus */
5895 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5896 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5897 env->flags |= LBF_DST_PINNED;
5898 env->new_dst_cpu = cpu;
5899 break;
5900 }
5901 }
5902
5903 return 0;
5904 }
5905
5906 /* Record that we found atleast one task that could run on dst_cpu */
5907 env->flags &= ~LBF_ALL_PINNED;
5908
5909 if (task_running(env->src_rq, p)) {
5910 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5911 return 0;
5912 }
5913
5914 /*
5915 * Aggressive migration if:
5916 * 1) destination numa is preferred
5917 * 2) task is cache cold, or
5918 * 3) too many balance attempts have failed.
5919 */
5920 tsk_cache_hot = migrate_degrades_locality(p, env);
5921 if (tsk_cache_hot == -1)
5922 tsk_cache_hot = task_hot(p, env);
5923
5924 if (tsk_cache_hot <= 0 ||
5925 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5926 if (tsk_cache_hot == 1) {
5927 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5928 schedstat_inc(p, se.statistics.nr_forced_migrations);
5929 }
5930 return 1;
5931 }
5932
5933 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5934 return 0;
5935 }
5936
5937 /*
5938 * detach_task() -- detach the task for the migration specified in env
5939 */
5940 static void detach_task(struct task_struct *p, struct lb_env *env)
5941 {
5942 lockdep_assert_held(&env->src_rq->lock);
5943
5944 p->on_rq = TASK_ON_RQ_MIGRATING;
5945 deactivate_task(env->src_rq, p, 0);
5946 set_task_cpu(p, env->dst_cpu);
5947 }
5948
5949 /*
5950 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5951 * part of active balancing operations within "domain".
5952 *
5953 * Returns a task if successful and NULL otherwise.
5954 */
5955 static struct task_struct *detach_one_task(struct lb_env *env)
5956 {
5957 struct task_struct *p, *n;
5958
5959 lockdep_assert_held(&env->src_rq->lock);
5960
5961 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5962 if (!can_migrate_task(p, env))
5963 continue;
5964
5965 detach_task(p, env);
5966
5967 /*
5968 * Right now, this is only the second place where
5969 * lb_gained[env->idle] is updated (other is detach_tasks)
5970 * so we can safely collect stats here rather than
5971 * inside detach_tasks().
5972 */
5973 schedstat_inc(env->sd, lb_gained[env->idle]);
5974 return p;
5975 }
5976 return NULL;
5977 }
5978
5979 static const unsigned int sched_nr_migrate_break = 32;
5980
5981 /*
5982 * detach_tasks() -- tries to detach up to imbalance weighted load from
5983 * busiest_rq, as part of a balancing operation within domain "sd".
5984 *
5985 * Returns number of detached tasks if successful and 0 otherwise.
5986 */
5987 static int detach_tasks(struct lb_env *env)
5988 {
5989 struct list_head *tasks = &env->src_rq->cfs_tasks;
5990 struct task_struct *p;
5991 unsigned long load;
5992 int detached = 0;
5993
5994 lockdep_assert_held(&env->src_rq->lock);
5995
5996 if (env->imbalance <= 0)
5997 return 0;
5998
5999 while (!list_empty(tasks)) {
6000 /*
6001 * We don't want to steal all, otherwise we may be treated likewise,
6002 * which could at worst lead to a livelock crash.
6003 */
6004 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6005 break;
6006
6007 p = list_first_entry(tasks, struct task_struct, se.group_node);
6008
6009 env->loop++;
6010 /* We've more or less seen every task there is, call it quits */
6011 if (env->loop > env->loop_max)
6012 break;
6013
6014 /* take a breather every nr_migrate tasks */
6015 if (env->loop > env->loop_break) {
6016 env->loop_break += sched_nr_migrate_break;
6017 env->flags |= LBF_NEED_BREAK;
6018 break;
6019 }
6020
6021 if (!can_migrate_task(p, env))
6022 goto next;
6023
6024 load = task_h_load(p);
6025
6026 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6027 goto next;
6028
6029 if ((load / 2) > env->imbalance)
6030 goto next;
6031
6032 detach_task(p, env);
6033 list_add(&p->se.group_node, &env->tasks);
6034
6035 detached++;
6036 env->imbalance -= load;
6037
6038 #ifdef CONFIG_PREEMPT
6039 /*
6040 * NEWIDLE balancing is a source of latency, so preemptible
6041 * kernels will stop after the first task is detached to minimize
6042 * the critical section.
6043 */
6044 if (env->idle == CPU_NEWLY_IDLE)
6045 break;
6046 #endif
6047
6048 /*
6049 * We only want to steal up to the prescribed amount of
6050 * weighted load.
6051 */
6052 if (env->imbalance <= 0)
6053 break;
6054
6055 continue;
6056 next:
6057 list_move_tail(&p->se.group_node, tasks);
6058 }
6059
6060 /*
6061 * Right now, this is one of only two places we collect this stat
6062 * so we can safely collect detach_one_task() stats here rather
6063 * than inside detach_one_task().
6064 */
6065 schedstat_add(env->sd, lb_gained[env->idle], detached);
6066
6067 return detached;
6068 }
6069
6070 /*
6071 * attach_task() -- attach the task detached by detach_task() to its new rq.
6072 */
6073 static void attach_task(struct rq *rq, struct task_struct *p)
6074 {
6075 lockdep_assert_held(&rq->lock);
6076
6077 BUG_ON(task_rq(p) != rq);
6078 activate_task(rq, p, 0);
6079 p->on_rq = TASK_ON_RQ_QUEUED;
6080 check_preempt_curr(rq, p, 0);
6081 }
6082
6083 /*
6084 * attach_one_task() -- attaches the task returned from detach_one_task() to
6085 * its new rq.
6086 */
6087 static void attach_one_task(struct rq *rq, struct task_struct *p)
6088 {
6089 raw_spin_lock(&rq->lock);
6090 attach_task(rq, p);
6091 raw_spin_unlock(&rq->lock);
6092 }
6093
6094 /*
6095 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6096 * new rq.
6097 */
6098 static void attach_tasks(struct lb_env *env)
6099 {
6100 struct list_head *tasks = &env->tasks;
6101 struct task_struct *p;
6102
6103 raw_spin_lock(&env->dst_rq->lock);
6104
6105 while (!list_empty(tasks)) {
6106 p = list_first_entry(tasks, struct task_struct, se.group_node);
6107 list_del_init(&p->se.group_node);
6108
6109 attach_task(env->dst_rq, p);
6110 }
6111
6112 raw_spin_unlock(&env->dst_rq->lock);
6113 }
6114
6115 #ifdef CONFIG_FAIR_GROUP_SCHED
6116 static void update_blocked_averages(int cpu)
6117 {
6118 struct rq *rq = cpu_rq(cpu);
6119 struct cfs_rq *cfs_rq;
6120 unsigned long flags;
6121
6122 raw_spin_lock_irqsave(&rq->lock, flags);
6123 update_rq_clock(rq);
6124
6125 /*
6126 * Iterates the task_group tree in a bottom up fashion, see
6127 * list_add_leaf_cfs_rq() for details.
6128 */
6129 for_each_leaf_cfs_rq(rq, cfs_rq) {
6130 /* throttled entities do not contribute to load */
6131 if (throttled_hierarchy(cfs_rq))
6132 continue;
6133
6134 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6135 update_tg_load_avg(cfs_rq, 0);
6136 }
6137 raw_spin_unlock_irqrestore(&rq->lock, flags);
6138 }
6139
6140 /*
6141 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6142 * This needs to be done in a top-down fashion because the load of a child
6143 * group is a fraction of its parents load.
6144 */
6145 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6146 {
6147 struct rq *rq = rq_of(cfs_rq);
6148 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6149 unsigned long now = jiffies;
6150 unsigned long load;
6151
6152 if (cfs_rq->last_h_load_update == now)
6153 return;
6154
6155 cfs_rq->h_load_next = NULL;
6156 for_each_sched_entity(se) {
6157 cfs_rq = cfs_rq_of(se);
6158 cfs_rq->h_load_next = se;
6159 if (cfs_rq->last_h_load_update == now)
6160 break;
6161 }
6162
6163 if (!se) {
6164 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6165 cfs_rq->last_h_load_update = now;
6166 }
6167
6168 while ((se = cfs_rq->h_load_next) != NULL) {
6169 load = cfs_rq->h_load;
6170 load = div64_ul(load * se->avg.load_avg,
6171 cfs_rq_load_avg(cfs_rq) + 1);
6172 cfs_rq = group_cfs_rq(se);
6173 cfs_rq->h_load = load;
6174 cfs_rq->last_h_load_update = now;
6175 }
6176 }
6177
6178 static unsigned long task_h_load(struct task_struct *p)
6179 {
6180 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6181
6182 update_cfs_rq_h_load(cfs_rq);
6183 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6184 cfs_rq_load_avg(cfs_rq) + 1);
6185 }
6186 #else
6187 static inline void update_blocked_averages(int cpu)
6188 {
6189 struct rq *rq = cpu_rq(cpu);
6190 struct cfs_rq *cfs_rq = &rq->cfs;
6191 unsigned long flags;
6192
6193 raw_spin_lock_irqsave(&rq->lock, flags);
6194 update_rq_clock(rq);
6195 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6196 raw_spin_unlock_irqrestore(&rq->lock, flags);
6197 }
6198
6199 static unsigned long task_h_load(struct task_struct *p)
6200 {
6201 return p->se.avg.load_avg;
6202 }
6203 #endif
6204
6205 /********** Helpers for find_busiest_group ************************/
6206
6207 enum group_type {
6208 group_other = 0,
6209 group_imbalanced,
6210 group_overloaded,
6211 };
6212
6213 /*
6214 * sg_lb_stats - stats of a sched_group required for load_balancing
6215 */
6216 struct sg_lb_stats {
6217 unsigned long avg_load; /*Avg load across the CPUs of the group */
6218 unsigned long group_load; /* Total load over the CPUs of the group */
6219 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6220 unsigned long load_per_task;
6221 unsigned long group_capacity;
6222 unsigned long group_util; /* Total utilization of the group */
6223 unsigned int sum_nr_running; /* Nr tasks running in the group */
6224 unsigned int idle_cpus;
6225 unsigned int group_weight;
6226 enum group_type group_type;
6227 int group_no_capacity;
6228 #ifdef CONFIG_NUMA_BALANCING
6229 unsigned int nr_numa_running;
6230 unsigned int nr_preferred_running;
6231 #endif
6232 };
6233
6234 /*
6235 * sd_lb_stats - Structure to store the statistics of a sched_domain
6236 * during load balancing.
6237 */
6238 struct sd_lb_stats {
6239 struct sched_group *busiest; /* Busiest group in this sd */
6240 struct sched_group *local; /* Local group in this sd */
6241 unsigned long total_load; /* Total load of all groups in sd */
6242 unsigned long total_capacity; /* Total capacity of all groups in sd */
6243 unsigned long avg_load; /* Average load across all groups in sd */
6244
6245 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6246 struct sg_lb_stats local_stat; /* Statistics of the local group */
6247 };
6248
6249 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6250 {
6251 /*
6252 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6253 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6254 * We must however clear busiest_stat::avg_load because
6255 * update_sd_pick_busiest() reads this before assignment.
6256 */
6257 *sds = (struct sd_lb_stats){
6258 .busiest = NULL,
6259 .local = NULL,
6260 .total_load = 0UL,
6261 .total_capacity = 0UL,
6262 .busiest_stat = {
6263 .avg_load = 0UL,
6264 .sum_nr_running = 0,
6265 .group_type = group_other,
6266 },
6267 };
6268 }
6269
6270 /**
6271 * get_sd_load_idx - Obtain the load index for a given sched domain.
6272 * @sd: The sched_domain whose load_idx is to be obtained.
6273 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6274 *
6275 * Return: The load index.
6276 */
6277 static inline int get_sd_load_idx(struct sched_domain *sd,
6278 enum cpu_idle_type idle)
6279 {
6280 int load_idx;
6281
6282 switch (idle) {
6283 case CPU_NOT_IDLE:
6284 load_idx = sd->busy_idx;
6285 break;
6286
6287 case CPU_NEWLY_IDLE:
6288 load_idx = sd->newidle_idx;
6289 break;
6290 default:
6291 load_idx = sd->idle_idx;
6292 break;
6293 }
6294
6295 return load_idx;
6296 }
6297
6298 static unsigned long scale_rt_capacity(int cpu)
6299 {
6300 struct rq *rq = cpu_rq(cpu);
6301 u64 total, used, age_stamp, avg;
6302 s64 delta;
6303
6304 /*
6305 * Since we're reading these variables without serialization make sure
6306 * we read them once before doing sanity checks on them.
6307 */
6308 age_stamp = READ_ONCE(rq->age_stamp);
6309 avg = READ_ONCE(rq->rt_avg);
6310 delta = __rq_clock_broken(rq) - age_stamp;
6311
6312 if (unlikely(delta < 0))
6313 delta = 0;
6314
6315 total = sched_avg_period() + delta;
6316
6317 used = div_u64(avg, total);
6318
6319 if (likely(used < SCHED_CAPACITY_SCALE))
6320 return SCHED_CAPACITY_SCALE - used;
6321
6322 return 1;
6323 }
6324
6325 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6326 {
6327 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6328 struct sched_group *sdg = sd->groups;
6329
6330 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6331
6332 capacity *= scale_rt_capacity(cpu);
6333 capacity >>= SCHED_CAPACITY_SHIFT;
6334
6335 if (!capacity)
6336 capacity = 1;
6337
6338 cpu_rq(cpu)->cpu_capacity = capacity;
6339 sdg->sgc->capacity = capacity;
6340 }
6341
6342 void update_group_capacity(struct sched_domain *sd, int cpu)
6343 {
6344 struct sched_domain *child = sd->child;
6345 struct sched_group *group, *sdg = sd->groups;
6346 unsigned long capacity;
6347 unsigned long interval;
6348
6349 interval = msecs_to_jiffies(sd->balance_interval);
6350 interval = clamp(interval, 1UL, max_load_balance_interval);
6351 sdg->sgc->next_update = jiffies + interval;
6352
6353 if (!child) {
6354 update_cpu_capacity(sd, cpu);
6355 return;
6356 }
6357
6358 capacity = 0;
6359
6360 if (child->flags & SD_OVERLAP) {
6361 /*
6362 * SD_OVERLAP domains cannot assume that child groups
6363 * span the current group.
6364 */
6365
6366 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6367 struct sched_group_capacity *sgc;
6368 struct rq *rq = cpu_rq(cpu);
6369
6370 /*
6371 * build_sched_domains() -> init_sched_groups_capacity()
6372 * gets here before we've attached the domains to the
6373 * runqueues.
6374 *
6375 * Use capacity_of(), which is set irrespective of domains
6376 * in update_cpu_capacity().
6377 *
6378 * This avoids capacity from being 0 and
6379 * causing divide-by-zero issues on boot.
6380 */
6381 if (unlikely(!rq->sd)) {
6382 capacity += capacity_of(cpu);
6383 continue;
6384 }
6385
6386 sgc = rq->sd->groups->sgc;
6387 capacity += sgc->capacity;
6388 }
6389 } else {
6390 /*
6391 * !SD_OVERLAP domains can assume that child groups
6392 * span the current group.
6393 */
6394
6395 group = child->groups;
6396 do {
6397 capacity += group->sgc->capacity;
6398 group = group->next;
6399 } while (group != child->groups);
6400 }
6401
6402 sdg->sgc->capacity = capacity;
6403 }
6404
6405 /*
6406 * Check whether the capacity of the rq has been noticeably reduced by side
6407 * activity. The imbalance_pct is used for the threshold.
6408 * Return true is the capacity is reduced
6409 */
6410 static inline int
6411 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6412 {
6413 return ((rq->cpu_capacity * sd->imbalance_pct) <
6414 (rq->cpu_capacity_orig * 100));
6415 }
6416
6417 /*
6418 * Group imbalance indicates (and tries to solve) the problem where balancing
6419 * groups is inadequate due to tsk_cpus_allowed() constraints.
6420 *
6421 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6422 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6423 * Something like:
6424 *
6425 * { 0 1 2 3 } { 4 5 6 7 }
6426 * * * * *
6427 *
6428 * If we were to balance group-wise we'd place two tasks in the first group and
6429 * two tasks in the second group. Clearly this is undesired as it will overload
6430 * cpu 3 and leave one of the cpus in the second group unused.
6431 *
6432 * The current solution to this issue is detecting the skew in the first group
6433 * by noticing the lower domain failed to reach balance and had difficulty
6434 * moving tasks due to affinity constraints.
6435 *
6436 * When this is so detected; this group becomes a candidate for busiest; see
6437 * update_sd_pick_busiest(). And calculate_imbalance() and
6438 * find_busiest_group() avoid some of the usual balance conditions to allow it
6439 * to create an effective group imbalance.
6440 *
6441 * This is a somewhat tricky proposition since the next run might not find the
6442 * group imbalance and decide the groups need to be balanced again. A most
6443 * subtle and fragile situation.
6444 */
6445
6446 static inline int sg_imbalanced(struct sched_group *group)
6447 {
6448 return group->sgc->imbalance;
6449 }
6450
6451 /*
6452 * group_has_capacity returns true if the group has spare capacity that could
6453 * be used by some tasks.
6454 * We consider that a group has spare capacity if the * number of task is
6455 * smaller than the number of CPUs or if the utilization is lower than the
6456 * available capacity for CFS tasks.
6457 * For the latter, we use a threshold to stabilize the state, to take into
6458 * account the variance of the tasks' load and to return true if the available
6459 * capacity in meaningful for the load balancer.
6460 * As an example, an available capacity of 1% can appear but it doesn't make
6461 * any benefit for the load balance.
6462 */
6463 static inline bool
6464 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6465 {
6466 if (sgs->sum_nr_running < sgs->group_weight)
6467 return true;
6468
6469 if ((sgs->group_capacity * 100) >
6470 (sgs->group_util * env->sd->imbalance_pct))
6471 return true;
6472
6473 return false;
6474 }
6475
6476 /*
6477 * group_is_overloaded returns true if the group has more tasks than it can
6478 * handle.
6479 * group_is_overloaded is not equals to !group_has_capacity because a group
6480 * with the exact right number of tasks, has no more spare capacity but is not
6481 * overloaded so both group_has_capacity and group_is_overloaded return
6482 * false.
6483 */
6484 static inline bool
6485 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6486 {
6487 if (sgs->sum_nr_running <= sgs->group_weight)
6488 return false;
6489
6490 if ((sgs->group_capacity * 100) <
6491 (sgs->group_util * env->sd->imbalance_pct))
6492 return true;
6493
6494 return false;
6495 }
6496
6497 static inline enum
6498 group_type group_classify(struct sched_group *group,
6499 struct sg_lb_stats *sgs)
6500 {
6501 if (sgs->group_no_capacity)
6502 return group_overloaded;
6503
6504 if (sg_imbalanced(group))
6505 return group_imbalanced;
6506
6507 return group_other;
6508 }
6509
6510 /**
6511 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6512 * @env: The load balancing environment.
6513 * @group: sched_group whose statistics are to be updated.
6514 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6515 * @local_group: Does group contain this_cpu.
6516 * @sgs: variable to hold the statistics for this group.
6517 * @overload: Indicate more than one runnable task for any CPU.
6518 */
6519 static inline void update_sg_lb_stats(struct lb_env *env,
6520 struct sched_group *group, int load_idx,
6521 int local_group, struct sg_lb_stats *sgs,
6522 bool *overload)
6523 {
6524 unsigned long load;
6525 int i, nr_running;
6526
6527 memset(sgs, 0, sizeof(*sgs));
6528
6529 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6530 struct rq *rq = cpu_rq(i);
6531
6532 /* Bias balancing toward cpus of our domain */
6533 if (local_group)
6534 load = target_load(i, load_idx);
6535 else
6536 load = source_load(i, load_idx);
6537
6538 sgs->group_load += load;
6539 sgs->group_util += cpu_util(i);
6540 sgs->sum_nr_running += rq->cfs.h_nr_running;
6541
6542 nr_running = rq->nr_running;
6543 if (nr_running > 1)
6544 *overload = true;
6545
6546 #ifdef CONFIG_NUMA_BALANCING
6547 sgs->nr_numa_running += rq->nr_numa_running;
6548 sgs->nr_preferred_running += rq->nr_preferred_running;
6549 #endif
6550 sgs->sum_weighted_load += weighted_cpuload(i);
6551 /*
6552 * No need to call idle_cpu() if nr_running is not 0
6553 */
6554 if (!nr_running && idle_cpu(i))
6555 sgs->idle_cpus++;
6556 }
6557
6558 /* Adjust by relative CPU capacity of the group */
6559 sgs->group_capacity = group->sgc->capacity;
6560 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6561
6562 if (sgs->sum_nr_running)
6563 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6564
6565 sgs->group_weight = group->group_weight;
6566
6567 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6568 sgs->group_type = group_classify(group, sgs);
6569 }
6570
6571 /**
6572 * update_sd_pick_busiest - return 1 on busiest group
6573 * @env: The load balancing environment.
6574 * @sds: sched_domain statistics
6575 * @sg: sched_group candidate to be checked for being the busiest
6576 * @sgs: sched_group statistics
6577 *
6578 * Determine if @sg is a busier group than the previously selected
6579 * busiest group.
6580 *
6581 * Return: %true if @sg is a busier group than the previously selected
6582 * busiest group. %false otherwise.
6583 */
6584 static bool update_sd_pick_busiest(struct lb_env *env,
6585 struct sd_lb_stats *sds,
6586 struct sched_group *sg,
6587 struct sg_lb_stats *sgs)
6588 {
6589 struct sg_lb_stats *busiest = &sds->busiest_stat;
6590
6591 if (sgs->group_type > busiest->group_type)
6592 return true;
6593
6594 if (sgs->group_type < busiest->group_type)
6595 return false;
6596
6597 if (sgs->avg_load <= busiest->avg_load)
6598 return false;
6599
6600 /* This is the busiest node in its class. */
6601 if (!(env->sd->flags & SD_ASYM_PACKING))
6602 return true;
6603
6604 /*
6605 * ASYM_PACKING needs to move all the work to the lowest
6606 * numbered CPUs in the group, therefore mark all groups
6607 * higher than ourself as busy.
6608 */
6609 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6610 if (!sds->busiest)
6611 return true;
6612
6613 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6614 return true;
6615 }
6616
6617 return false;
6618 }
6619
6620 #ifdef CONFIG_NUMA_BALANCING
6621 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6622 {
6623 if (sgs->sum_nr_running > sgs->nr_numa_running)
6624 return regular;
6625 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6626 return remote;
6627 return all;
6628 }
6629
6630 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6631 {
6632 if (rq->nr_running > rq->nr_numa_running)
6633 return regular;
6634 if (rq->nr_running > rq->nr_preferred_running)
6635 return remote;
6636 return all;
6637 }
6638 #else
6639 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6640 {
6641 return all;
6642 }
6643
6644 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6645 {
6646 return regular;
6647 }
6648 #endif /* CONFIG_NUMA_BALANCING */
6649
6650 /**
6651 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6652 * @env: The load balancing environment.
6653 * @sds: variable to hold the statistics for this sched_domain.
6654 */
6655 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6656 {
6657 struct sched_domain *child = env->sd->child;
6658 struct sched_group *sg = env->sd->groups;
6659 struct sg_lb_stats tmp_sgs;
6660 int load_idx, prefer_sibling = 0;
6661 bool overload = false;
6662
6663 if (child && child->flags & SD_PREFER_SIBLING)
6664 prefer_sibling = 1;
6665
6666 load_idx = get_sd_load_idx(env->sd, env->idle);
6667
6668 do {
6669 struct sg_lb_stats *sgs = &tmp_sgs;
6670 int local_group;
6671
6672 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6673 if (local_group) {
6674 sds->local = sg;
6675 sgs = &sds->local_stat;
6676
6677 if (env->idle != CPU_NEWLY_IDLE ||
6678 time_after_eq(jiffies, sg->sgc->next_update))
6679 update_group_capacity(env->sd, env->dst_cpu);
6680 }
6681
6682 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6683 &overload);
6684
6685 if (local_group)
6686 goto next_group;
6687
6688 /*
6689 * In case the child domain prefers tasks go to siblings
6690 * first, lower the sg capacity so that we'll try
6691 * and move all the excess tasks away. We lower the capacity
6692 * of a group only if the local group has the capacity to fit
6693 * these excess tasks. The extra check prevents the case where
6694 * you always pull from the heaviest group when it is already
6695 * under-utilized (possible with a large weight task outweighs
6696 * the tasks on the system).
6697 */
6698 if (prefer_sibling && sds->local &&
6699 group_has_capacity(env, &sds->local_stat) &&
6700 (sgs->sum_nr_running > 1)) {
6701 sgs->group_no_capacity = 1;
6702 sgs->group_type = group_classify(sg, sgs);
6703 }
6704
6705 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6706 sds->busiest = sg;
6707 sds->busiest_stat = *sgs;
6708 }
6709
6710 next_group:
6711 /* Now, start updating sd_lb_stats */
6712 sds->total_load += sgs->group_load;
6713 sds->total_capacity += sgs->group_capacity;
6714
6715 sg = sg->next;
6716 } while (sg != env->sd->groups);
6717
6718 if (env->sd->flags & SD_NUMA)
6719 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6720
6721 if (!env->sd->parent) {
6722 /* update overload indicator if we are at root domain */
6723 if (env->dst_rq->rd->overload != overload)
6724 env->dst_rq->rd->overload = overload;
6725 }
6726
6727 }
6728
6729 /**
6730 * check_asym_packing - Check to see if the group is packed into the
6731 * sched doman.
6732 *
6733 * This is primarily intended to used at the sibling level. Some
6734 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6735 * case of POWER7, it can move to lower SMT modes only when higher
6736 * threads are idle. When in lower SMT modes, the threads will
6737 * perform better since they share less core resources. Hence when we
6738 * have idle threads, we want them to be the higher ones.
6739 *
6740 * This packing function is run on idle threads. It checks to see if
6741 * the busiest CPU in this domain (core in the P7 case) has a higher
6742 * CPU number than the packing function is being run on. Here we are
6743 * assuming lower CPU number will be equivalent to lower a SMT thread
6744 * number.
6745 *
6746 * Return: 1 when packing is required and a task should be moved to
6747 * this CPU. The amount of the imbalance is returned in *imbalance.
6748 *
6749 * @env: The load balancing environment.
6750 * @sds: Statistics of the sched_domain which is to be packed
6751 */
6752 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6753 {
6754 int busiest_cpu;
6755
6756 if (!(env->sd->flags & SD_ASYM_PACKING))
6757 return 0;
6758
6759 if (!sds->busiest)
6760 return 0;
6761
6762 busiest_cpu = group_first_cpu(sds->busiest);
6763 if (env->dst_cpu > busiest_cpu)
6764 return 0;
6765
6766 env->imbalance = DIV_ROUND_CLOSEST(
6767 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6768 SCHED_CAPACITY_SCALE);
6769
6770 return 1;
6771 }
6772
6773 /**
6774 * fix_small_imbalance - Calculate the minor imbalance that exists
6775 * amongst the groups of a sched_domain, during
6776 * load balancing.
6777 * @env: The load balancing environment.
6778 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6779 */
6780 static inline
6781 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6782 {
6783 unsigned long tmp, capa_now = 0, capa_move = 0;
6784 unsigned int imbn = 2;
6785 unsigned long scaled_busy_load_per_task;
6786 struct sg_lb_stats *local, *busiest;
6787
6788 local = &sds->local_stat;
6789 busiest = &sds->busiest_stat;
6790
6791 if (!local->sum_nr_running)
6792 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6793 else if (busiest->load_per_task > local->load_per_task)
6794 imbn = 1;
6795
6796 scaled_busy_load_per_task =
6797 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6798 busiest->group_capacity;
6799
6800 if (busiest->avg_load + scaled_busy_load_per_task >=
6801 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6802 env->imbalance = busiest->load_per_task;
6803 return;
6804 }
6805
6806 /*
6807 * OK, we don't have enough imbalance to justify moving tasks,
6808 * however we may be able to increase total CPU capacity used by
6809 * moving them.
6810 */
6811
6812 capa_now += busiest->group_capacity *
6813 min(busiest->load_per_task, busiest->avg_load);
6814 capa_now += local->group_capacity *
6815 min(local->load_per_task, local->avg_load);
6816 capa_now /= SCHED_CAPACITY_SCALE;
6817
6818 /* Amount of load we'd subtract */
6819 if (busiest->avg_load > scaled_busy_load_per_task) {
6820 capa_move += busiest->group_capacity *
6821 min(busiest->load_per_task,
6822 busiest->avg_load - scaled_busy_load_per_task);
6823 }
6824
6825 /* Amount of load we'd add */
6826 if (busiest->avg_load * busiest->group_capacity <
6827 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6828 tmp = (busiest->avg_load * busiest->group_capacity) /
6829 local->group_capacity;
6830 } else {
6831 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6832 local->group_capacity;
6833 }
6834 capa_move += local->group_capacity *
6835 min(local->load_per_task, local->avg_load + tmp);
6836 capa_move /= SCHED_CAPACITY_SCALE;
6837
6838 /* Move if we gain throughput */
6839 if (capa_move > capa_now)
6840 env->imbalance = busiest->load_per_task;
6841 }
6842
6843 /**
6844 * calculate_imbalance - Calculate the amount of imbalance present within the
6845 * groups of a given sched_domain during load balance.
6846 * @env: load balance environment
6847 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6848 */
6849 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6850 {
6851 unsigned long max_pull, load_above_capacity = ~0UL;
6852 struct sg_lb_stats *local, *busiest;
6853
6854 local = &sds->local_stat;
6855 busiest = &sds->busiest_stat;
6856
6857 if (busiest->group_type == group_imbalanced) {
6858 /*
6859 * In the group_imb case we cannot rely on group-wide averages
6860 * to ensure cpu-load equilibrium, look at wider averages. XXX
6861 */
6862 busiest->load_per_task =
6863 min(busiest->load_per_task, sds->avg_load);
6864 }
6865
6866 /*
6867 * In the presence of smp nice balancing, certain scenarios can have
6868 * max load less than avg load(as we skip the groups at or below
6869 * its cpu_capacity, while calculating max_load..)
6870 */
6871 if (busiest->avg_load <= sds->avg_load ||
6872 local->avg_load >= sds->avg_load) {
6873 env->imbalance = 0;
6874 return fix_small_imbalance(env, sds);
6875 }
6876
6877 /*
6878 * If there aren't any idle cpus, avoid creating some.
6879 */
6880 if (busiest->group_type == group_overloaded &&
6881 local->group_type == group_overloaded) {
6882 load_above_capacity = busiest->sum_nr_running *
6883 SCHED_LOAD_SCALE;
6884 if (load_above_capacity > busiest->group_capacity)
6885 load_above_capacity -= busiest->group_capacity;
6886 else
6887 load_above_capacity = ~0UL;
6888 }
6889
6890 /*
6891 * We're trying to get all the cpus to the average_load, so we don't
6892 * want to push ourselves above the average load, nor do we wish to
6893 * reduce the max loaded cpu below the average load. At the same time,
6894 * we also don't want to reduce the group load below the group capacity
6895 * (so that we can implement power-savings policies etc). Thus we look
6896 * for the minimum possible imbalance.
6897 */
6898 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6899
6900 /* How much load to actually move to equalise the imbalance */
6901 env->imbalance = min(
6902 max_pull * busiest->group_capacity,
6903 (sds->avg_load - local->avg_load) * local->group_capacity
6904 ) / SCHED_CAPACITY_SCALE;
6905
6906 /*
6907 * if *imbalance is less than the average load per runnable task
6908 * there is no guarantee that any tasks will be moved so we'll have
6909 * a think about bumping its value to force at least one task to be
6910 * moved
6911 */
6912 if (env->imbalance < busiest->load_per_task)
6913 return fix_small_imbalance(env, sds);
6914 }
6915
6916 /******* find_busiest_group() helpers end here *********************/
6917
6918 /**
6919 * find_busiest_group - Returns the busiest group within the sched_domain
6920 * if there is an imbalance. If there isn't an imbalance, and
6921 * the user has opted for power-savings, it returns a group whose
6922 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6923 * such a group exists.
6924 *
6925 * Also calculates the amount of weighted load which should be moved
6926 * to restore balance.
6927 *
6928 * @env: The load balancing environment.
6929 *
6930 * Return: - The busiest group if imbalance exists.
6931 * - If no imbalance and user has opted for power-savings balance,
6932 * return the least loaded group whose CPUs can be
6933 * put to idle by rebalancing its tasks onto our group.
6934 */
6935 static struct sched_group *find_busiest_group(struct lb_env *env)
6936 {
6937 struct sg_lb_stats *local, *busiest;
6938 struct sd_lb_stats sds;
6939
6940 init_sd_lb_stats(&sds);
6941
6942 /*
6943 * Compute the various statistics relavent for load balancing at
6944 * this level.
6945 */
6946 update_sd_lb_stats(env, &sds);
6947 local = &sds.local_stat;
6948 busiest = &sds.busiest_stat;
6949
6950 /* ASYM feature bypasses nice load balance check */
6951 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6952 check_asym_packing(env, &sds))
6953 return sds.busiest;
6954
6955 /* There is no busy sibling group to pull tasks from */
6956 if (!sds.busiest || busiest->sum_nr_running == 0)
6957 goto out_balanced;
6958
6959 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6960 / sds.total_capacity;
6961
6962 /*
6963 * If the busiest group is imbalanced the below checks don't
6964 * work because they assume all things are equal, which typically
6965 * isn't true due to cpus_allowed constraints and the like.
6966 */
6967 if (busiest->group_type == group_imbalanced)
6968 goto force_balance;
6969
6970 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6971 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6972 busiest->group_no_capacity)
6973 goto force_balance;
6974
6975 /*
6976 * If the local group is busier than the selected busiest group
6977 * don't try and pull any tasks.
6978 */
6979 if (local->avg_load >= busiest->avg_load)
6980 goto out_balanced;
6981
6982 /*
6983 * Don't pull any tasks if this group is already above the domain
6984 * average load.
6985 */
6986 if (local->avg_load >= sds.avg_load)
6987 goto out_balanced;
6988
6989 if (env->idle == CPU_IDLE) {
6990 /*
6991 * This cpu is idle. If the busiest group is not overloaded
6992 * and there is no imbalance between this and busiest group
6993 * wrt idle cpus, it is balanced. The imbalance becomes
6994 * significant if the diff is greater than 1 otherwise we
6995 * might end up to just move the imbalance on another group
6996 */
6997 if ((busiest->group_type != group_overloaded) &&
6998 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6999 goto out_balanced;
7000 } else {
7001 /*
7002 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7003 * imbalance_pct to be conservative.
7004 */
7005 if (100 * busiest->avg_load <=
7006 env->sd->imbalance_pct * local->avg_load)
7007 goto out_balanced;
7008 }
7009
7010 force_balance:
7011 /* Looks like there is an imbalance. Compute it */
7012 calculate_imbalance(env, &sds);
7013 return sds.busiest;
7014
7015 out_balanced:
7016 env->imbalance = 0;
7017 return NULL;
7018 }
7019
7020 /*
7021 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7022 */
7023 static struct rq *find_busiest_queue(struct lb_env *env,
7024 struct sched_group *group)
7025 {
7026 struct rq *busiest = NULL, *rq;
7027 unsigned long busiest_load = 0, busiest_capacity = 1;
7028 int i;
7029
7030 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7031 unsigned long capacity, wl;
7032 enum fbq_type rt;
7033
7034 rq = cpu_rq(i);
7035 rt = fbq_classify_rq(rq);
7036
7037 /*
7038 * We classify groups/runqueues into three groups:
7039 * - regular: there are !numa tasks
7040 * - remote: there are numa tasks that run on the 'wrong' node
7041 * - all: there is no distinction
7042 *
7043 * In order to avoid migrating ideally placed numa tasks,
7044 * ignore those when there's better options.
7045 *
7046 * If we ignore the actual busiest queue to migrate another
7047 * task, the next balance pass can still reduce the busiest
7048 * queue by moving tasks around inside the node.
7049 *
7050 * If we cannot move enough load due to this classification
7051 * the next pass will adjust the group classification and
7052 * allow migration of more tasks.
7053 *
7054 * Both cases only affect the total convergence complexity.
7055 */
7056 if (rt > env->fbq_type)
7057 continue;
7058
7059 capacity = capacity_of(i);
7060
7061 wl = weighted_cpuload(i);
7062
7063 /*
7064 * When comparing with imbalance, use weighted_cpuload()
7065 * which is not scaled with the cpu capacity.
7066 */
7067
7068 if (rq->nr_running == 1 && wl > env->imbalance &&
7069 !check_cpu_capacity(rq, env->sd))
7070 continue;
7071
7072 /*
7073 * For the load comparisons with the other cpu's, consider
7074 * the weighted_cpuload() scaled with the cpu capacity, so
7075 * that the load can be moved away from the cpu that is
7076 * potentially running at a lower capacity.
7077 *
7078 * Thus we're looking for max(wl_i / capacity_i), crosswise
7079 * multiplication to rid ourselves of the division works out
7080 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7081 * our previous maximum.
7082 */
7083 if (wl * busiest_capacity > busiest_load * capacity) {
7084 busiest_load = wl;
7085 busiest_capacity = capacity;
7086 busiest = rq;
7087 }
7088 }
7089
7090 return busiest;
7091 }
7092
7093 /*
7094 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7095 * so long as it is large enough.
7096 */
7097 #define MAX_PINNED_INTERVAL 512
7098
7099 /* Working cpumask for load_balance and load_balance_newidle. */
7100 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7101
7102 static int need_active_balance(struct lb_env *env)
7103 {
7104 struct sched_domain *sd = env->sd;
7105
7106 if (env->idle == CPU_NEWLY_IDLE) {
7107
7108 /*
7109 * ASYM_PACKING needs to force migrate tasks from busy but
7110 * higher numbered CPUs in order to pack all tasks in the
7111 * lowest numbered CPUs.
7112 */
7113 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7114 return 1;
7115 }
7116
7117 /*
7118 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7119 * It's worth migrating the task if the src_cpu's capacity is reduced
7120 * because of other sched_class or IRQs if more capacity stays
7121 * available on dst_cpu.
7122 */
7123 if ((env->idle != CPU_NOT_IDLE) &&
7124 (env->src_rq->cfs.h_nr_running == 1)) {
7125 if ((check_cpu_capacity(env->src_rq, sd)) &&
7126 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7127 return 1;
7128 }
7129
7130 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7131 }
7132
7133 static int active_load_balance_cpu_stop(void *data);
7134
7135 static int should_we_balance(struct lb_env *env)
7136 {
7137 struct sched_group *sg = env->sd->groups;
7138 struct cpumask *sg_cpus, *sg_mask;
7139 int cpu, balance_cpu = -1;
7140
7141 /*
7142 * In the newly idle case, we will allow all the cpu's
7143 * to do the newly idle load balance.
7144 */
7145 if (env->idle == CPU_NEWLY_IDLE)
7146 return 1;
7147
7148 sg_cpus = sched_group_cpus(sg);
7149 sg_mask = sched_group_mask(sg);
7150 /* Try to find first idle cpu */
7151 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7152 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7153 continue;
7154
7155 balance_cpu = cpu;
7156 break;
7157 }
7158
7159 if (balance_cpu == -1)
7160 balance_cpu = group_balance_cpu(sg);
7161
7162 /*
7163 * First idle cpu or the first cpu(busiest) in this sched group
7164 * is eligible for doing load balancing at this and above domains.
7165 */
7166 return balance_cpu == env->dst_cpu;
7167 }
7168
7169 /*
7170 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7171 * tasks if there is an imbalance.
7172 */
7173 static int load_balance(int this_cpu, struct rq *this_rq,
7174 struct sched_domain *sd, enum cpu_idle_type idle,
7175 int *continue_balancing)
7176 {
7177 int ld_moved, cur_ld_moved, active_balance = 0;
7178 struct sched_domain *sd_parent = sd->parent;
7179 struct sched_group *group;
7180 struct rq *busiest;
7181 unsigned long flags;
7182 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7183
7184 struct lb_env env = {
7185 .sd = sd,
7186 .dst_cpu = this_cpu,
7187 .dst_rq = this_rq,
7188 .dst_grpmask = sched_group_cpus(sd->groups),
7189 .idle = idle,
7190 .loop_break = sched_nr_migrate_break,
7191 .cpus = cpus,
7192 .fbq_type = all,
7193 .tasks = LIST_HEAD_INIT(env.tasks),
7194 };
7195
7196 /*
7197 * For NEWLY_IDLE load_balancing, we don't need to consider
7198 * other cpus in our group
7199 */
7200 if (idle == CPU_NEWLY_IDLE)
7201 env.dst_grpmask = NULL;
7202
7203 cpumask_copy(cpus, cpu_active_mask);
7204
7205 schedstat_inc(sd, lb_count[idle]);
7206
7207 redo:
7208 if (!should_we_balance(&env)) {
7209 *continue_balancing = 0;
7210 goto out_balanced;
7211 }
7212
7213 group = find_busiest_group(&env);
7214 if (!group) {
7215 schedstat_inc(sd, lb_nobusyg[idle]);
7216 goto out_balanced;
7217 }
7218
7219 busiest = find_busiest_queue(&env, group);
7220 if (!busiest) {
7221 schedstat_inc(sd, lb_nobusyq[idle]);
7222 goto out_balanced;
7223 }
7224
7225 BUG_ON(busiest == env.dst_rq);
7226
7227 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7228
7229 env.src_cpu = busiest->cpu;
7230 env.src_rq = busiest;
7231
7232 ld_moved = 0;
7233 if (busiest->nr_running > 1) {
7234 /*
7235 * Attempt to move tasks. If find_busiest_group has found
7236 * an imbalance but busiest->nr_running <= 1, the group is
7237 * still unbalanced. ld_moved simply stays zero, so it is
7238 * correctly treated as an imbalance.
7239 */
7240 env.flags |= LBF_ALL_PINNED;
7241 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7242
7243 more_balance:
7244 raw_spin_lock_irqsave(&busiest->lock, flags);
7245
7246 /*
7247 * cur_ld_moved - load moved in current iteration
7248 * ld_moved - cumulative load moved across iterations
7249 */
7250 cur_ld_moved = detach_tasks(&env);
7251
7252 /*
7253 * We've detached some tasks from busiest_rq. Every
7254 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7255 * unlock busiest->lock, and we are able to be sure
7256 * that nobody can manipulate the tasks in parallel.
7257 * See task_rq_lock() family for the details.
7258 */
7259
7260 raw_spin_unlock(&busiest->lock);
7261
7262 if (cur_ld_moved) {
7263 attach_tasks(&env);
7264 ld_moved += cur_ld_moved;
7265 }
7266
7267 local_irq_restore(flags);
7268
7269 if (env.flags & LBF_NEED_BREAK) {
7270 env.flags &= ~LBF_NEED_BREAK;
7271 goto more_balance;
7272 }
7273
7274 /*
7275 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7276 * us and move them to an alternate dst_cpu in our sched_group
7277 * where they can run. The upper limit on how many times we
7278 * iterate on same src_cpu is dependent on number of cpus in our
7279 * sched_group.
7280 *
7281 * This changes load balance semantics a bit on who can move
7282 * load to a given_cpu. In addition to the given_cpu itself
7283 * (or a ilb_cpu acting on its behalf where given_cpu is
7284 * nohz-idle), we now have balance_cpu in a position to move
7285 * load to given_cpu. In rare situations, this may cause
7286 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7287 * _independently_ and at _same_ time to move some load to
7288 * given_cpu) causing exceess load to be moved to given_cpu.
7289 * This however should not happen so much in practice and
7290 * moreover subsequent load balance cycles should correct the
7291 * excess load moved.
7292 */
7293 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7294
7295 /* Prevent to re-select dst_cpu via env's cpus */
7296 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7297
7298 env.dst_rq = cpu_rq(env.new_dst_cpu);
7299 env.dst_cpu = env.new_dst_cpu;
7300 env.flags &= ~LBF_DST_PINNED;
7301 env.loop = 0;
7302 env.loop_break = sched_nr_migrate_break;
7303
7304 /*
7305 * Go back to "more_balance" rather than "redo" since we
7306 * need to continue with same src_cpu.
7307 */
7308 goto more_balance;
7309 }
7310
7311 /*
7312 * We failed to reach balance because of affinity.
7313 */
7314 if (sd_parent) {
7315 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7316
7317 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7318 *group_imbalance = 1;
7319 }
7320
7321 /* All tasks on this runqueue were pinned by CPU affinity */
7322 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7323 cpumask_clear_cpu(cpu_of(busiest), cpus);
7324 if (!cpumask_empty(cpus)) {
7325 env.loop = 0;
7326 env.loop_break = sched_nr_migrate_break;
7327 goto redo;
7328 }
7329 goto out_all_pinned;
7330 }
7331 }
7332
7333 if (!ld_moved) {
7334 schedstat_inc(sd, lb_failed[idle]);
7335 /*
7336 * Increment the failure counter only on periodic balance.
7337 * We do not want newidle balance, which can be very
7338 * frequent, pollute the failure counter causing
7339 * excessive cache_hot migrations and active balances.
7340 */
7341 if (idle != CPU_NEWLY_IDLE)
7342 sd->nr_balance_failed++;
7343
7344 if (need_active_balance(&env)) {
7345 raw_spin_lock_irqsave(&busiest->lock, flags);
7346
7347 /* don't kick the active_load_balance_cpu_stop,
7348 * if the curr task on busiest cpu can't be
7349 * moved to this_cpu
7350 */
7351 if (!cpumask_test_cpu(this_cpu,
7352 tsk_cpus_allowed(busiest->curr))) {
7353 raw_spin_unlock_irqrestore(&busiest->lock,
7354 flags);
7355 env.flags |= LBF_ALL_PINNED;
7356 goto out_one_pinned;
7357 }
7358
7359 /*
7360 * ->active_balance synchronizes accesses to
7361 * ->active_balance_work. Once set, it's cleared
7362 * only after active load balance is finished.
7363 */
7364 if (!busiest->active_balance) {
7365 busiest->active_balance = 1;
7366 busiest->push_cpu = this_cpu;
7367 active_balance = 1;
7368 }
7369 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7370
7371 if (active_balance) {
7372 stop_one_cpu_nowait(cpu_of(busiest),
7373 active_load_balance_cpu_stop, busiest,
7374 &busiest->active_balance_work);
7375 }
7376
7377 /*
7378 * We've kicked active balancing, reset the failure
7379 * counter.
7380 */
7381 sd->nr_balance_failed = sd->cache_nice_tries+1;
7382 }
7383 } else
7384 sd->nr_balance_failed = 0;
7385
7386 if (likely(!active_balance)) {
7387 /* We were unbalanced, so reset the balancing interval */
7388 sd->balance_interval = sd->min_interval;
7389 } else {
7390 /*
7391 * If we've begun active balancing, start to back off. This
7392 * case may not be covered by the all_pinned logic if there
7393 * is only 1 task on the busy runqueue (because we don't call
7394 * detach_tasks).
7395 */
7396 if (sd->balance_interval < sd->max_interval)
7397 sd->balance_interval *= 2;
7398 }
7399
7400 goto out;
7401
7402 out_balanced:
7403 /*
7404 * We reach balance although we may have faced some affinity
7405 * constraints. Clear the imbalance flag if it was set.
7406 */
7407 if (sd_parent) {
7408 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7409
7410 if (*group_imbalance)
7411 *group_imbalance = 0;
7412 }
7413
7414 out_all_pinned:
7415 /*
7416 * We reach balance because all tasks are pinned at this level so
7417 * we can't migrate them. Let the imbalance flag set so parent level
7418 * can try to migrate them.
7419 */
7420 schedstat_inc(sd, lb_balanced[idle]);
7421
7422 sd->nr_balance_failed = 0;
7423
7424 out_one_pinned:
7425 /* tune up the balancing interval */
7426 if (((env.flags & LBF_ALL_PINNED) &&
7427 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7428 (sd->balance_interval < sd->max_interval))
7429 sd->balance_interval *= 2;
7430
7431 ld_moved = 0;
7432 out:
7433 return ld_moved;
7434 }
7435
7436 static inline unsigned long
7437 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7438 {
7439 unsigned long interval = sd->balance_interval;
7440
7441 if (cpu_busy)
7442 interval *= sd->busy_factor;
7443
7444 /* scale ms to jiffies */
7445 interval = msecs_to_jiffies(interval);
7446 interval = clamp(interval, 1UL, max_load_balance_interval);
7447
7448 return interval;
7449 }
7450
7451 static inline void
7452 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7453 {
7454 unsigned long interval, next;
7455
7456 interval = get_sd_balance_interval(sd, cpu_busy);
7457 next = sd->last_balance + interval;
7458
7459 if (time_after(*next_balance, next))
7460 *next_balance = next;
7461 }
7462
7463 /*
7464 * idle_balance is called by schedule() if this_cpu is about to become
7465 * idle. Attempts to pull tasks from other CPUs.
7466 */
7467 static int idle_balance(struct rq *this_rq)
7468 {
7469 unsigned long next_balance = jiffies + HZ;
7470 int this_cpu = this_rq->cpu;
7471 struct sched_domain *sd;
7472 int pulled_task = 0;
7473 u64 curr_cost = 0;
7474
7475 /*
7476 * We must set idle_stamp _before_ calling idle_balance(), such that we
7477 * measure the duration of idle_balance() as idle time.
7478 */
7479 this_rq->idle_stamp = rq_clock(this_rq);
7480
7481 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7482 !this_rq->rd->overload) {
7483 rcu_read_lock();
7484 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7485 if (sd)
7486 update_next_balance(sd, 0, &next_balance);
7487 rcu_read_unlock();
7488
7489 goto out;
7490 }
7491
7492 raw_spin_unlock(&this_rq->lock);
7493
7494 update_blocked_averages(this_cpu);
7495 rcu_read_lock();
7496 for_each_domain(this_cpu, sd) {
7497 int continue_balancing = 1;
7498 u64 t0, domain_cost;
7499
7500 if (!(sd->flags & SD_LOAD_BALANCE))
7501 continue;
7502
7503 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7504 update_next_balance(sd, 0, &next_balance);
7505 break;
7506 }
7507
7508 if (sd->flags & SD_BALANCE_NEWIDLE) {
7509 t0 = sched_clock_cpu(this_cpu);
7510
7511 pulled_task = load_balance(this_cpu, this_rq,
7512 sd, CPU_NEWLY_IDLE,
7513 &continue_balancing);
7514
7515 domain_cost = sched_clock_cpu(this_cpu) - t0;
7516 if (domain_cost > sd->max_newidle_lb_cost)
7517 sd->max_newidle_lb_cost = domain_cost;
7518
7519 curr_cost += domain_cost;
7520 }
7521
7522 update_next_balance(sd, 0, &next_balance);
7523
7524 /*
7525 * Stop searching for tasks to pull if there are
7526 * now runnable tasks on this rq.
7527 */
7528 if (pulled_task || this_rq->nr_running > 0)
7529 break;
7530 }
7531 rcu_read_unlock();
7532
7533 raw_spin_lock(&this_rq->lock);
7534
7535 if (curr_cost > this_rq->max_idle_balance_cost)
7536 this_rq->max_idle_balance_cost = curr_cost;
7537
7538 /*
7539 * While browsing the domains, we released the rq lock, a task could
7540 * have been enqueued in the meantime. Since we're not going idle,
7541 * pretend we pulled a task.
7542 */
7543 if (this_rq->cfs.h_nr_running && !pulled_task)
7544 pulled_task = 1;
7545
7546 out:
7547 /* Move the next balance forward */
7548 if (time_after(this_rq->next_balance, next_balance))
7549 this_rq->next_balance = next_balance;
7550
7551 /* Is there a task of a high priority class? */
7552 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7553 pulled_task = -1;
7554
7555 if (pulled_task)
7556 this_rq->idle_stamp = 0;
7557
7558 return pulled_task;
7559 }
7560
7561 /*
7562 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7563 * running tasks off the busiest CPU onto idle CPUs. It requires at
7564 * least 1 task to be running on each physical CPU where possible, and
7565 * avoids physical / logical imbalances.
7566 */
7567 static int active_load_balance_cpu_stop(void *data)
7568 {
7569 struct rq *busiest_rq = data;
7570 int busiest_cpu = cpu_of(busiest_rq);
7571 int target_cpu = busiest_rq->push_cpu;
7572 struct rq *target_rq = cpu_rq(target_cpu);
7573 struct sched_domain *sd;
7574 struct task_struct *p = NULL;
7575
7576 raw_spin_lock_irq(&busiest_rq->lock);
7577
7578 /* make sure the requested cpu hasn't gone down in the meantime */
7579 if (unlikely(busiest_cpu != smp_processor_id() ||
7580 !busiest_rq->active_balance))
7581 goto out_unlock;
7582
7583 /* Is there any task to move? */
7584 if (busiest_rq->nr_running <= 1)
7585 goto out_unlock;
7586
7587 /*
7588 * This condition is "impossible", if it occurs
7589 * we need to fix it. Originally reported by
7590 * Bjorn Helgaas on a 128-cpu setup.
7591 */
7592 BUG_ON(busiest_rq == target_rq);
7593
7594 /* Search for an sd spanning us and the target CPU. */
7595 rcu_read_lock();
7596 for_each_domain(target_cpu, sd) {
7597 if ((sd->flags & SD_LOAD_BALANCE) &&
7598 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7599 break;
7600 }
7601
7602 if (likely(sd)) {
7603 struct lb_env env = {
7604 .sd = sd,
7605 .dst_cpu = target_cpu,
7606 .dst_rq = target_rq,
7607 .src_cpu = busiest_rq->cpu,
7608 .src_rq = busiest_rq,
7609 .idle = CPU_IDLE,
7610 };
7611
7612 schedstat_inc(sd, alb_count);
7613
7614 p = detach_one_task(&env);
7615 if (p)
7616 schedstat_inc(sd, alb_pushed);
7617 else
7618 schedstat_inc(sd, alb_failed);
7619 }
7620 rcu_read_unlock();
7621 out_unlock:
7622 busiest_rq->active_balance = 0;
7623 raw_spin_unlock(&busiest_rq->lock);
7624
7625 if (p)
7626 attach_one_task(target_rq, p);
7627
7628 local_irq_enable();
7629
7630 return 0;
7631 }
7632
7633 static inline int on_null_domain(struct rq *rq)
7634 {
7635 return unlikely(!rcu_dereference_sched(rq->sd));
7636 }
7637
7638 #ifdef CONFIG_NO_HZ_COMMON
7639 /*
7640 * idle load balancing details
7641 * - When one of the busy CPUs notice that there may be an idle rebalancing
7642 * needed, they will kick the idle load balancer, which then does idle
7643 * load balancing for all the idle CPUs.
7644 */
7645 static struct {
7646 cpumask_var_t idle_cpus_mask;
7647 atomic_t nr_cpus;
7648 unsigned long next_balance; /* in jiffy units */
7649 } nohz ____cacheline_aligned;
7650
7651 static inline int find_new_ilb(void)
7652 {
7653 int ilb = cpumask_first(nohz.idle_cpus_mask);
7654
7655 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7656 return ilb;
7657
7658 return nr_cpu_ids;
7659 }
7660
7661 /*
7662 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7663 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7664 * CPU (if there is one).
7665 */
7666 static void nohz_balancer_kick(void)
7667 {
7668 int ilb_cpu;
7669
7670 nohz.next_balance++;
7671
7672 ilb_cpu = find_new_ilb();
7673
7674 if (ilb_cpu >= nr_cpu_ids)
7675 return;
7676
7677 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7678 return;
7679 /*
7680 * Use smp_send_reschedule() instead of resched_cpu().
7681 * This way we generate a sched IPI on the target cpu which
7682 * is idle. And the softirq performing nohz idle load balance
7683 * will be run before returning from the IPI.
7684 */
7685 smp_send_reschedule(ilb_cpu);
7686 return;
7687 }
7688
7689 static inline void nohz_balance_exit_idle(int cpu)
7690 {
7691 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7692 /*
7693 * Completely isolated CPUs don't ever set, so we must test.
7694 */
7695 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7696 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7697 atomic_dec(&nohz.nr_cpus);
7698 }
7699 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7700 }
7701 }
7702
7703 static inline void set_cpu_sd_state_busy(void)
7704 {
7705 struct sched_domain *sd;
7706 int cpu = smp_processor_id();
7707
7708 rcu_read_lock();
7709 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7710
7711 if (!sd || !sd->nohz_idle)
7712 goto unlock;
7713 sd->nohz_idle = 0;
7714
7715 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7716 unlock:
7717 rcu_read_unlock();
7718 }
7719
7720 void set_cpu_sd_state_idle(void)
7721 {
7722 struct sched_domain *sd;
7723 int cpu = smp_processor_id();
7724
7725 rcu_read_lock();
7726 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7727
7728 if (!sd || sd->nohz_idle)
7729 goto unlock;
7730 sd->nohz_idle = 1;
7731
7732 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7733 unlock:
7734 rcu_read_unlock();
7735 }
7736
7737 /*
7738 * This routine will record that the cpu is going idle with tick stopped.
7739 * This info will be used in performing idle load balancing in the future.
7740 */
7741 void nohz_balance_enter_idle(int cpu)
7742 {
7743 /*
7744 * If this cpu is going down, then nothing needs to be done.
7745 */
7746 if (!cpu_active(cpu))
7747 return;
7748
7749 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7750 return;
7751
7752 /*
7753 * If we're a completely isolated CPU, we don't play.
7754 */
7755 if (on_null_domain(cpu_rq(cpu)))
7756 return;
7757
7758 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7759 atomic_inc(&nohz.nr_cpus);
7760 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7761 }
7762
7763 static int sched_ilb_notifier(struct notifier_block *nfb,
7764 unsigned long action, void *hcpu)
7765 {
7766 switch (action & ~CPU_TASKS_FROZEN) {
7767 case CPU_DYING:
7768 nohz_balance_exit_idle(smp_processor_id());
7769 return NOTIFY_OK;
7770 default:
7771 return NOTIFY_DONE;
7772 }
7773 }
7774 #endif
7775
7776 static DEFINE_SPINLOCK(balancing);
7777
7778 /*
7779 * Scale the max load_balance interval with the number of CPUs in the system.
7780 * This trades load-balance latency on larger machines for less cross talk.
7781 */
7782 void update_max_interval(void)
7783 {
7784 max_load_balance_interval = HZ*num_online_cpus()/10;
7785 }
7786
7787 /*
7788 * It checks each scheduling domain to see if it is due to be balanced,
7789 * and initiates a balancing operation if so.
7790 *
7791 * Balancing parameters are set up in init_sched_domains.
7792 */
7793 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7794 {
7795 int continue_balancing = 1;
7796 int cpu = rq->cpu;
7797 unsigned long interval;
7798 struct sched_domain *sd;
7799 /* Earliest time when we have to do rebalance again */
7800 unsigned long next_balance = jiffies + 60*HZ;
7801 int update_next_balance = 0;
7802 int need_serialize, need_decay = 0;
7803 u64 max_cost = 0;
7804
7805 update_blocked_averages(cpu);
7806
7807 rcu_read_lock();
7808 for_each_domain(cpu, sd) {
7809 /*
7810 * Decay the newidle max times here because this is a regular
7811 * visit to all the domains. Decay ~1% per second.
7812 */
7813 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7814 sd->max_newidle_lb_cost =
7815 (sd->max_newidle_lb_cost * 253) / 256;
7816 sd->next_decay_max_lb_cost = jiffies + HZ;
7817 need_decay = 1;
7818 }
7819 max_cost += sd->max_newidle_lb_cost;
7820
7821 if (!(sd->flags & SD_LOAD_BALANCE))
7822 continue;
7823
7824 /*
7825 * Stop the load balance at this level. There is another
7826 * CPU in our sched group which is doing load balancing more
7827 * actively.
7828 */
7829 if (!continue_balancing) {
7830 if (need_decay)
7831 continue;
7832 break;
7833 }
7834
7835 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7836
7837 need_serialize = sd->flags & SD_SERIALIZE;
7838 if (need_serialize) {
7839 if (!spin_trylock(&balancing))
7840 goto out;
7841 }
7842
7843 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7844 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7845 /*
7846 * The LBF_DST_PINNED logic could have changed
7847 * env->dst_cpu, so we can't know our idle
7848 * state even if we migrated tasks. Update it.
7849 */
7850 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7851 }
7852 sd->last_balance = jiffies;
7853 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7854 }
7855 if (need_serialize)
7856 spin_unlock(&balancing);
7857 out:
7858 if (time_after(next_balance, sd->last_balance + interval)) {
7859 next_balance = sd->last_balance + interval;
7860 update_next_balance = 1;
7861 }
7862 }
7863 if (need_decay) {
7864 /*
7865 * Ensure the rq-wide value also decays but keep it at a
7866 * reasonable floor to avoid funnies with rq->avg_idle.
7867 */
7868 rq->max_idle_balance_cost =
7869 max((u64)sysctl_sched_migration_cost, max_cost);
7870 }
7871 rcu_read_unlock();
7872
7873 /*
7874 * next_balance will be updated only when there is a need.
7875 * When the cpu is attached to null domain for ex, it will not be
7876 * updated.
7877 */
7878 if (likely(update_next_balance)) {
7879 rq->next_balance = next_balance;
7880
7881 #ifdef CONFIG_NO_HZ_COMMON
7882 /*
7883 * If this CPU has been elected to perform the nohz idle
7884 * balance. Other idle CPUs have already rebalanced with
7885 * nohz_idle_balance() and nohz.next_balance has been
7886 * updated accordingly. This CPU is now running the idle load
7887 * balance for itself and we need to update the
7888 * nohz.next_balance accordingly.
7889 */
7890 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7891 nohz.next_balance = rq->next_balance;
7892 #endif
7893 }
7894 }
7895
7896 #ifdef CONFIG_NO_HZ_COMMON
7897 /*
7898 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7899 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7900 */
7901 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7902 {
7903 int this_cpu = this_rq->cpu;
7904 struct rq *rq;
7905 int balance_cpu;
7906 /* Earliest time when we have to do rebalance again */
7907 unsigned long next_balance = jiffies + 60*HZ;
7908 int update_next_balance = 0;
7909
7910 if (idle != CPU_IDLE ||
7911 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7912 goto end;
7913
7914 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7915 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7916 continue;
7917
7918 /*
7919 * If this cpu gets work to do, stop the load balancing
7920 * work being done for other cpus. Next load
7921 * balancing owner will pick it up.
7922 */
7923 if (need_resched())
7924 break;
7925
7926 rq = cpu_rq(balance_cpu);
7927
7928 /*
7929 * If time for next balance is due,
7930 * do the balance.
7931 */
7932 if (time_after_eq(jiffies, rq->next_balance)) {
7933 raw_spin_lock_irq(&rq->lock);
7934 update_rq_clock(rq);
7935 update_cpu_load_idle(rq);
7936 raw_spin_unlock_irq(&rq->lock);
7937 rebalance_domains(rq, CPU_IDLE);
7938 }
7939
7940 if (time_after(next_balance, rq->next_balance)) {
7941 next_balance = rq->next_balance;
7942 update_next_balance = 1;
7943 }
7944 }
7945
7946 /*
7947 * next_balance will be updated only when there is a need.
7948 * When the CPU is attached to null domain for ex, it will not be
7949 * updated.
7950 */
7951 if (likely(update_next_balance))
7952 nohz.next_balance = next_balance;
7953 end:
7954 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7955 }
7956
7957 /*
7958 * Current heuristic for kicking the idle load balancer in the presence
7959 * of an idle cpu in the system.
7960 * - This rq has more than one task.
7961 * - This rq has at least one CFS task and the capacity of the CPU is
7962 * significantly reduced because of RT tasks or IRQs.
7963 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7964 * multiple busy cpu.
7965 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7966 * domain span are idle.
7967 */
7968 static inline bool nohz_kick_needed(struct rq *rq)
7969 {
7970 unsigned long now = jiffies;
7971 struct sched_domain *sd;
7972 struct sched_group_capacity *sgc;
7973 int nr_busy, cpu = rq->cpu;
7974 bool kick = false;
7975
7976 if (unlikely(rq->idle_balance))
7977 return false;
7978
7979 /*
7980 * We may be recently in ticked or tickless idle mode. At the first
7981 * busy tick after returning from idle, we will update the busy stats.
7982 */
7983 set_cpu_sd_state_busy();
7984 nohz_balance_exit_idle(cpu);
7985
7986 /*
7987 * None are in tickless mode and hence no need for NOHZ idle load
7988 * balancing.
7989 */
7990 if (likely(!atomic_read(&nohz.nr_cpus)))
7991 return false;
7992
7993 if (time_before(now, nohz.next_balance))
7994 return false;
7995
7996 if (rq->nr_running >= 2)
7997 return true;
7998
7999 rcu_read_lock();
8000 sd = rcu_dereference(per_cpu(sd_busy, cpu));
8001 if (sd) {
8002 sgc = sd->groups->sgc;
8003 nr_busy = atomic_read(&sgc->nr_busy_cpus);
8004
8005 if (nr_busy > 1) {
8006 kick = true;
8007 goto unlock;
8008 }
8009
8010 }
8011
8012 sd = rcu_dereference(rq->sd);
8013 if (sd) {
8014 if ((rq->cfs.h_nr_running >= 1) &&
8015 check_cpu_capacity(rq, sd)) {
8016 kick = true;
8017 goto unlock;
8018 }
8019 }
8020
8021 sd = rcu_dereference(per_cpu(sd_asym, cpu));
8022 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8023 sched_domain_span(sd)) < cpu)) {
8024 kick = true;
8025 goto unlock;
8026 }
8027
8028 unlock:
8029 rcu_read_unlock();
8030 return kick;
8031 }
8032 #else
8033 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8034 #endif
8035
8036 /*
8037 * run_rebalance_domains is triggered when needed from the scheduler tick.
8038 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8039 */
8040 static void run_rebalance_domains(struct softirq_action *h)
8041 {
8042 struct rq *this_rq = this_rq();
8043 enum cpu_idle_type idle = this_rq->idle_balance ?
8044 CPU_IDLE : CPU_NOT_IDLE;
8045
8046 /*
8047 * If this cpu has a pending nohz_balance_kick, then do the
8048 * balancing on behalf of the other idle cpus whose ticks are
8049 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8050 * give the idle cpus a chance to load balance. Else we may
8051 * load balance only within the local sched_domain hierarchy
8052 * and abort nohz_idle_balance altogether if we pull some load.
8053 */
8054 nohz_idle_balance(this_rq, idle);
8055 rebalance_domains(this_rq, idle);
8056 }
8057
8058 /*
8059 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8060 */
8061 void trigger_load_balance(struct rq *rq)
8062 {
8063 /* Don't need to rebalance while attached to NULL domain */
8064 if (unlikely(on_null_domain(rq)))
8065 return;
8066
8067 if (time_after_eq(jiffies, rq->next_balance))
8068 raise_softirq(SCHED_SOFTIRQ);
8069 #ifdef CONFIG_NO_HZ_COMMON
8070 if (nohz_kick_needed(rq))
8071 nohz_balancer_kick();
8072 #endif
8073 }
8074
8075 static void rq_online_fair(struct rq *rq)
8076 {
8077 update_sysctl();
8078
8079 update_runtime_enabled(rq);
8080 }
8081
8082 static void rq_offline_fair(struct rq *rq)
8083 {
8084 update_sysctl();
8085
8086 /* Ensure any throttled groups are reachable by pick_next_task */
8087 unthrottle_offline_cfs_rqs(rq);
8088 }
8089
8090 #endif /* CONFIG_SMP */
8091
8092 /*
8093 * scheduler tick hitting a task of our scheduling class:
8094 */
8095 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8096 {
8097 struct cfs_rq *cfs_rq;
8098 struct sched_entity *se = &curr->se;
8099
8100 for_each_sched_entity(se) {
8101 cfs_rq = cfs_rq_of(se);
8102 entity_tick(cfs_rq, se, queued);
8103 }
8104
8105 if (static_branch_unlikely(&sched_numa_balancing))
8106 task_tick_numa(rq, curr);
8107 }
8108
8109 /*
8110 * called on fork with the child task as argument from the parent's context
8111 * - child not yet on the tasklist
8112 * - preemption disabled
8113 */
8114 static void task_fork_fair(struct task_struct *p)
8115 {
8116 struct cfs_rq *cfs_rq;
8117 struct sched_entity *se = &p->se, *curr;
8118 int this_cpu = smp_processor_id();
8119 struct rq *rq = this_rq();
8120 unsigned long flags;
8121
8122 raw_spin_lock_irqsave(&rq->lock, flags);
8123
8124 update_rq_clock(rq);
8125
8126 cfs_rq = task_cfs_rq(current);
8127 curr = cfs_rq->curr;
8128
8129 /*
8130 * Not only the cpu but also the task_group of the parent might have
8131 * been changed after parent->se.parent,cfs_rq were copied to
8132 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8133 * of child point to valid ones.
8134 */
8135 rcu_read_lock();
8136 __set_task_cpu(p, this_cpu);
8137 rcu_read_unlock();
8138
8139 update_curr(cfs_rq);
8140
8141 if (curr)
8142 se->vruntime = curr->vruntime;
8143 place_entity(cfs_rq, se, 1);
8144
8145 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8146 /*
8147 * Upon rescheduling, sched_class::put_prev_task() will place
8148 * 'current' within the tree based on its new key value.
8149 */
8150 swap(curr->vruntime, se->vruntime);
8151 resched_curr(rq);
8152 }
8153
8154 se->vruntime -= cfs_rq->min_vruntime;
8155
8156 raw_spin_unlock_irqrestore(&rq->lock, flags);
8157 }
8158
8159 /*
8160 * Priority of the task has changed. Check to see if we preempt
8161 * the current task.
8162 */
8163 static void
8164 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8165 {
8166 if (!task_on_rq_queued(p))
8167 return;
8168
8169 /*
8170 * Reschedule if we are currently running on this runqueue and
8171 * our priority decreased, or if we are not currently running on
8172 * this runqueue and our priority is higher than the current's
8173 */
8174 if (rq->curr == p) {
8175 if (p->prio > oldprio)
8176 resched_curr(rq);
8177 } else
8178 check_preempt_curr(rq, p, 0);
8179 }
8180
8181 static inline bool vruntime_normalized(struct task_struct *p)
8182 {
8183 struct sched_entity *se = &p->se;
8184
8185 /*
8186 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8187 * the dequeue_entity(.flags=0) will already have normalized the
8188 * vruntime.
8189 */
8190 if (p->on_rq)
8191 return true;
8192
8193 /*
8194 * When !on_rq, vruntime of the task has usually NOT been normalized.
8195 * But there are some cases where it has already been normalized:
8196 *
8197 * - A forked child which is waiting for being woken up by
8198 * wake_up_new_task().
8199 * - A task which has been woken up by try_to_wake_up() and
8200 * waiting for actually being woken up by sched_ttwu_pending().
8201 */
8202 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8203 return true;
8204
8205 return false;
8206 }
8207
8208 static void detach_task_cfs_rq(struct task_struct *p)
8209 {
8210 struct sched_entity *se = &p->se;
8211 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8212
8213 if (!vruntime_normalized(p)) {
8214 /*
8215 * Fix up our vruntime so that the current sleep doesn't
8216 * cause 'unlimited' sleep bonus.
8217 */
8218 place_entity(cfs_rq, se, 0);
8219 se->vruntime -= cfs_rq->min_vruntime;
8220 }
8221
8222 /* Catch up with the cfs_rq and remove our load when we leave */
8223 detach_entity_load_avg(cfs_rq, se);
8224 }
8225
8226 static void attach_task_cfs_rq(struct task_struct *p)
8227 {
8228 struct sched_entity *se = &p->se;
8229 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8230
8231 #ifdef CONFIG_FAIR_GROUP_SCHED
8232 /*
8233 * Since the real-depth could have been changed (only FAIR
8234 * class maintain depth value), reset depth properly.
8235 */
8236 se->depth = se->parent ? se->parent->depth + 1 : 0;
8237 #endif
8238
8239 /* Synchronize task with its cfs_rq */
8240 attach_entity_load_avg(cfs_rq, se);
8241
8242 if (!vruntime_normalized(p))
8243 se->vruntime += cfs_rq->min_vruntime;
8244 }
8245
8246 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8247 {
8248 detach_task_cfs_rq(p);
8249 }
8250
8251 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8252 {
8253 attach_task_cfs_rq(p);
8254
8255 if (task_on_rq_queued(p)) {
8256 /*
8257 * We were most likely switched from sched_rt, so
8258 * kick off the schedule if running, otherwise just see
8259 * if we can still preempt the current task.
8260 */
8261 if (rq->curr == p)
8262 resched_curr(rq);
8263 else
8264 check_preempt_curr(rq, p, 0);
8265 }
8266 }
8267
8268 /* Account for a task changing its policy or group.
8269 *
8270 * This routine is mostly called to set cfs_rq->curr field when a task
8271 * migrates between groups/classes.
8272 */
8273 static void set_curr_task_fair(struct rq *rq)
8274 {
8275 struct sched_entity *se = &rq->curr->se;
8276
8277 for_each_sched_entity(se) {
8278 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8279
8280 set_next_entity(cfs_rq, se);
8281 /* ensure bandwidth has been allocated on our new cfs_rq */
8282 account_cfs_rq_runtime(cfs_rq, 0);
8283 }
8284 }
8285
8286 void init_cfs_rq(struct cfs_rq *cfs_rq)
8287 {
8288 cfs_rq->tasks_timeline = RB_ROOT;
8289 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8290 #ifndef CONFIG_64BIT
8291 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8292 #endif
8293 #ifdef CONFIG_SMP
8294 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8295 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8296 #endif
8297 }
8298
8299 #ifdef CONFIG_FAIR_GROUP_SCHED
8300 static void task_move_group_fair(struct task_struct *p)
8301 {
8302 detach_task_cfs_rq(p);
8303 set_task_rq(p, task_cpu(p));
8304
8305 #ifdef CONFIG_SMP
8306 /* Tell se's cfs_rq has been changed -- migrated */
8307 p->se.avg.last_update_time = 0;
8308 #endif
8309 attach_task_cfs_rq(p);
8310 }
8311
8312 void free_fair_sched_group(struct task_group *tg)
8313 {
8314 int i;
8315
8316 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8317
8318 for_each_possible_cpu(i) {
8319 if (tg->cfs_rq)
8320 kfree(tg->cfs_rq[i]);
8321 if (tg->se)
8322 kfree(tg->se[i]);
8323 }
8324
8325 kfree(tg->cfs_rq);
8326 kfree(tg->se);
8327 }
8328
8329 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8330 {
8331 struct cfs_rq *cfs_rq;
8332 struct sched_entity *se;
8333 int i;
8334
8335 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8336 if (!tg->cfs_rq)
8337 goto err;
8338 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8339 if (!tg->se)
8340 goto err;
8341
8342 tg->shares = NICE_0_LOAD;
8343
8344 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8345
8346 for_each_possible_cpu(i) {
8347 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8348 GFP_KERNEL, cpu_to_node(i));
8349 if (!cfs_rq)
8350 goto err;
8351
8352 se = kzalloc_node(sizeof(struct sched_entity),
8353 GFP_KERNEL, cpu_to_node(i));
8354 if (!se)
8355 goto err_free_rq;
8356
8357 init_cfs_rq(cfs_rq);
8358 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8359 init_entity_runnable_average(se);
8360 }
8361
8362 return 1;
8363
8364 err_free_rq:
8365 kfree(cfs_rq);
8366 err:
8367 return 0;
8368 }
8369
8370 void unregister_fair_sched_group(struct task_group *tg)
8371 {
8372 unsigned long flags;
8373 struct rq *rq;
8374 int cpu;
8375
8376 for_each_possible_cpu(cpu) {
8377 if (tg->se[cpu])
8378 remove_entity_load_avg(tg->se[cpu]);
8379
8380 /*
8381 * Only empty task groups can be destroyed; so we can speculatively
8382 * check on_list without danger of it being re-added.
8383 */
8384 if (!tg->cfs_rq[cpu]->on_list)
8385 continue;
8386
8387 rq = cpu_rq(cpu);
8388
8389 raw_spin_lock_irqsave(&rq->lock, flags);
8390 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8391 raw_spin_unlock_irqrestore(&rq->lock, flags);
8392 }
8393 }
8394
8395 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8396 struct sched_entity *se, int cpu,
8397 struct sched_entity *parent)
8398 {
8399 struct rq *rq = cpu_rq(cpu);
8400
8401 cfs_rq->tg = tg;
8402 cfs_rq->rq = rq;
8403 init_cfs_rq_runtime(cfs_rq);
8404
8405 tg->cfs_rq[cpu] = cfs_rq;
8406 tg->se[cpu] = se;
8407
8408 /* se could be NULL for root_task_group */
8409 if (!se)
8410 return;
8411
8412 if (!parent) {
8413 se->cfs_rq = &rq->cfs;
8414 se->depth = 0;
8415 } else {
8416 se->cfs_rq = parent->my_q;
8417 se->depth = parent->depth + 1;
8418 }
8419
8420 se->my_q = cfs_rq;
8421 /* guarantee group entities always have weight */
8422 update_load_set(&se->load, NICE_0_LOAD);
8423 se->parent = parent;
8424 }
8425
8426 static DEFINE_MUTEX(shares_mutex);
8427
8428 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8429 {
8430 int i;
8431 unsigned long flags;
8432
8433 /*
8434 * We can't change the weight of the root cgroup.
8435 */
8436 if (!tg->se[0])
8437 return -EINVAL;
8438
8439 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8440
8441 mutex_lock(&shares_mutex);
8442 if (tg->shares == shares)
8443 goto done;
8444
8445 tg->shares = shares;
8446 for_each_possible_cpu(i) {
8447 struct rq *rq = cpu_rq(i);
8448 struct sched_entity *se;
8449
8450 se = tg->se[i];
8451 /* Propagate contribution to hierarchy */
8452 raw_spin_lock_irqsave(&rq->lock, flags);
8453
8454 /* Possible calls to update_curr() need rq clock */
8455 update_rq_clock(rq);
8456 for_each_sched_entity(se)
8457 update_cfs_shares(group_cfs_rq(se));
8458 raw_spin_unlock_irqrestore(&rq->lock, flags);
8459 }
8460
8461 done:
8462 mutex_unlock(&shares_mutex);
8463 return 0;
8464 }
8465 #else /* CONFIG_FAIR_GROUP_SCHED */
8466
8467 void free_fair_sched_group(struct task_group *tg) { }
8468
8469 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8470 {
8471 return 1;
8472 }
8473
8474 void unregister_fair_sched_group(struct task_group *tg) { }
8475
8476 #endif /* CONFIG_FAIR_GROUP_SCHED */
8477
8478
8479 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8480 {
8481 struct sched_entity *se = &task->se;
8482 unsigned int rr_interval = 0;
8483
8484 /*
8485 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8486 * idle runqueue:
8487 */
8488 if (rq->cfs.load.weight)
8489 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8490
8491 return rr_interval;
8492 }
8493
8494 /*
8495 * All the scheduling class methods:
8496 */
8497 const struct sched_class fair_sched_class = {
8498 .next = &idle_sched_class,
8499 .enqueue_task = enqueue_task_fair,
8500 .dequeue_task = dequeue_task_fair,
8501 .yield_task = yield_task_fair,
8502 .yield_to_task = yield_to_task_fair,
8503
8504 .check_preempt_curr = check_preempt_wakeup,
8505
8506 .pick_next_task = pick_next_task_fair,
8507 .put_prev_task = put_prev_task_fair,
8508
8509 #ifdef CONFIG_SMP
8510 .select_task_rq = select_task_rq_fair,
8511 .migrate_task_rq = migrate_task_rq_fair,
8512
8513 .rq_online = rq_online_fair,
8514 .rq_offline = rq_offline_fair,
8515
8516 .task_waking = task_waking_fair,
8517 .task_dead = task_dead_fair,
8518 .set_cpus_allowed = set_cpus_allowed_common,
8519 #endif
8520
8521 .set_curr_task = set_curr_task_fair,
8522 .task_tick = task_tick_fair,
8523 .task_fork = task_fork_fair,
8524
8525 .prio_changed = prio_changed_fair,
8526 .switched_from = switched_from_fair,
8527 .switched_to = switched_to_fair,
8528
8529 .get_rr_interval = get_rr_interval_fair,
8530
8531 .update_curr = update_curr_fair,
8532
8533 #ifdef CONFIG_FAIR_GROUP_SCHED
8534 .task_move_group = task_move_group_fair,
8535 #endif
8536 };
8537
8538 #ifdef CONFIG_SCHED_DEBUG
8539 void print_cfs_stats(struct seq_file *m, int cpu)
8540 {
8541 struct cfs_rq *cfs_rq;
8542
8543 rcu_read_lock();
8544 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8545 print_cfs_rq(m, cpu, cfs_rq);
8546 rcu_read_unlock();
8547 }
8548
8549 #ifdef CONFIG_NUMA_BALANCING
8550 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8551 {
8552 int node;
8553 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8554
8555 for_each_online_node(node) {
8556 if (p->numa_faults) {
8557 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8558 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8559 }
8560 if (p->numa_group) {
8561 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8562 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8563 }
8564 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8565 }
8566 }
8567 #endif /* CONFIG_NUMA_BALANCING */
8568 #endif /* CONFIG_SCHED_DEBUG */
8569
8570 __init void init_sched_fair_class(void)
8571 {
8572 #ifdef CONFIG_SMP
8573 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8574
8575 #ifdef CONFIG_NO_HZ_COMMON
8576 nohz.next_balance = jiffies;
8577 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8578 cpu_notifier(sched_ilb_notifier, 0);
8579 #endif
8580 #endif /* SMP */
8581
8582 }
This page took 0.291548 seconds and 5 git commands to generate.