51a45502d8a60de7af29a490db507ed1fa6ee792
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 }
306 }
307
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314 }
315
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 if (se->cfs_rq == pse->cfs_rq)
325 return se->cfs_rq;
326
327 return NULL;
328 }
329
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 return se->parent;
333 }
334
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365 }
366
367 #else /* !CONFIG_FAIR_GROUP_SCHED */
368
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 return container_of(se, struct task_struct, se);
372 }
373
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 return container_of(cfs_rq, struct rq, cfs);
377 }
378
379 #define entity_is_task(se) 1
380
381 #define for_each_sched_entity(se) \
382 for (; se; se = NULL)
383
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 return &task_rq(p)->cfs;
387 }
388
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395 }
396
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 return NULL;
401 }
402
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 return NULL;
417 }
418
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
425
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428
429 /**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 s64 delta = (s64)(vruntime - max_vruntime);
436 if (delta > 0)
437 max_vruntime = vruntime;
438
439 return max_vruntime;
440 }
441
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449 }
450
451 static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453 {
454 return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
469 if (!cfs_rq->curr)
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482
483 /*
484 * Enqueue an entity into the rb-tree:
485 */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542 }
543
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552 }
553
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563 }
564
565 /**************************************************************
566 * Scheduling class statistics methods:
567 */
568
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572 {
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588
589 return 0;
590 }
591 #endif
592
593 /*
594 * delta /= w
595 */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600
601 return delta;
602 }
603
604 /*
605 * The idea is to set a period in which each task runs once.
606 *
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
618 }
619
620 /*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
624 * s = p*P[w/rw]
625 */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
636
637 if (unlikely(!se->on_rq)) {
638 lw = cfs_rq->load;
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = __calc_delta(slice, se->load.weight, load);
644 }
645 return slice;
646 }
647
648 /*
649 * We calculate the vruntime slice of a to-be-inserted task.
650 *
651 * vs = s/w
652 */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661
662 /*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
666 */
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
673 {
674 struct sched_avg *sa = &se->avg;
675
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
688 }
689
690 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
692 #else
693 void init_entity_runnable_average(struct sched_entity *se)
694 {
695 }
696 #endif
697
698 /*
699 * Update the current task's runtime statistics.
700 */
701 static void update_curr(struct cfs_rq *cfs_rq)
702 {
703 struct sched_entity *curr = cfs_rq->curr;
704 u64 now = rq_clock_task(rq_of(cfs_rq));
705 u64 delta_exec;
706
707 if (unlikely(!curr))
708 return;
709
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
712 return;
713
714 curr->exec_start = now;
715
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729 cpuacct_charge(curtask, delta_exec);
730 account_group_exec_runtime(curtask, delta_exec);
731 }
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
734 }
735
736 static void update_curr_fair(struct rq *rq)
737 {
738 update_curr(cfs_rq_of(&rq->curr->se));
739 }
740
741 #ifdef CONFIG_SCHEDSTATS
742 static inline void
743 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 {
745 u64 wait_start = rq_clock(rq_of(cfs_rq));
746
747 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
748 likely(wait_start > se->statistics.wait_start))
749 wait_start -= se->statistics.wait_start;
750
751 se->statistics.wait_start = wait_start;
752 }
753
754 static void
755 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 {
757 struct task_struct *p;
758 u64 delta;
759
760 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
761
762 if (entity_is_task(se)) {
763 p = task_of(se);
764 if (task_on_rq_migrating(p)) {
765 /*
766 * Preserve migrating task's wait time so wait_start
767 * time stamp can be adjusted to accumulate wait time
768 * prior to migration.
769 */
770 se->statistics.wait_start = delta;
771 return;
772 }
773 trace_sched_stat_wait(p, delta);
774 }
775
776 se->statistics.wait_max = max(se->statistics.wait_max, delta);
777 se->statistics.wait_count++;
778 se->statistics.wait_sum += delta;
779 se->statistics.wait_start = 0;
780 }
781
782 /*
783 * Task is being enqueued - update stats:
784 */
785 static inline void
786 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
787 {
788 /*
789 * Are we enqueueing a waiting task? (for current tasks
790 * a dequeue/enqueue event is a NOP)
791 */
792 if (se != cfs_rq->curr)
793 update_stats_wait_start(cfs_rq, se);
794 }
795
796 static inline void
797 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
798 {
799 /*
800 * Mark the end of the wait period if dequeueing a
801 * waiting task:
802 */
803 if (se != cfs_rq->curr)
804 update_stats_wait_end(cfs_rq, se);
805
806 if (flags & DEQUEUE_SLEEP) {
807 if (entity_is_task(se)) {
808 struct task_struct *tsk = task_of(se);
809
810 if (tsk->state & TASK_INTERRUPTIBLE)
811 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
812 if (tsk->state & TASK_UNINTERRUPTIBLE)
813 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
814 }
815 }
816
817 }
818 #else
819 static inline void
820 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
821 {
822 }
823
824 static inline void
825 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
826 {
827 }
828
829 static inline void
830 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
831 {
832 }
833
834 static inline void
835 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
836 {
837 }
838 #endif
839
840 /*
841 * We are picking a new current task - update its stats:
842 */
843 static inline void
844 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
845 {
846 /*
847 * We are starting a new run period:
848 */
849 se->exec_start = rq_clock_task(rq_of(cfs_rq));
850 }
851
852 /**************************************************
853 * Scheduling class queueing methods:
854 */
855
856 #ifdef CONFIG_NUMA_BALANCING
857 /*
858 * Approximate time to scan a full NUMA task in ms. The task scan period is
859 * calculated based on the tasks virtual memory size and
860 * numa_balancing_scan_size.
861 */
862 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
863 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
864
865 /* Portion of address space to scan in MB */
866 unsigned int sysctl_numa_balancing_scan_size = 256;
867
868 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
869 unsigned int sysctl_numa_balancing_scan_delay = 1000;
870
871 static unsigned int task_nr_scan_windows(struct task_struct *p)
872 {
873 unsigned long rss = 0;
874 unsigned long nr_scan_pages;
875
876 /*
877 * Calculations based on RSS as non-present and empty pages are skipped
878 * by the PTE scanner and NUMA hinting faults should be trapped based
879 * on resident pages
880 */
881 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
882 rss = get_mm_rss(p->mm);
883 if (!rss)
884 rss = nr_scan_pages;
885
886 rss = round_up(rss, nr_scan_pages);
887 return rss / nr_scan_pages;
888 }
889
890 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
891 #define MAX_SCAN_WINDOW 2560
892
893 static unsigned int task_scan_min(struct task_struct *p)
894 {
895 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
896 unsigned int scan, floor;
897 unsigned int windows = 1;
898
899 if (scan_size < MAX_SCAN_WINDOW)
900 windows = MAX_SCAN_WINDOW / scan_size;
901 floor = 1000 / windows;
902
903 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
904 return max_t(unsigned int, floor, scan);
905 }
906
907 static unsigned int task_scan_max(struct task_struct *p)
908 {
909 unsigned int smin = task_scan_min(p);
910 unsigned int smax;
911
912 /* Watch for min being lower than max due to floor calculations */
913 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
914 return max(smin, smax);
915 }
916
917 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
918 {
919 rq->nr_numa_running += (p->numa_preferred_nid != -1);
920 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
921 }
922
923 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
924 {
925 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
926 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
927 }
928
929 struct numa_group {
930 atomic_t refcount;
931
932 spinlock_t lock; /* nr_tasks, tasks */
933 int nr_tasks;
934 pid_t gid;
935
936 struct rcu_head rcu;
937 nodemask_t active_nodes;
938 unsigned long total_faults;
939 /*
940 * Faults_cpu is used to decide whether memory should move
941 * towards the CPU. As a consequence, these stats are weighted
942 * more by CPU use than by memory faults.
943 */
944 unsigned long *faults_cpu;
945 unsigned long faults[0];
946 };
947
948 /* Shared or private faults. */
949 #define NR_NUMA_HINT_FAULT_TYPES 2
950
951 /* Memory and CPU locality */
952 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
953
954 /* Averaged statistics, and temporary buffers. */
955 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
956
957 pid_t task_numa_group_id(struct task_struct *p)
958 {
959 return p->numa_group ? p->numa_group->gid : 0;
960 }
961
962 /*
963 * The averaged statistics, shared & private, memory & cpu,
964 * occupy the first half of the array. The second half of the
965 * array is for current counters, which are averaged into the
966 * first set by task_numa_placement.
967 */
968 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
969 {
970 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
971 }
972
973 static inline unsigned long task_faults(struct task_struct *p, int nid)
974 {
975 if (!p->numa_faults)
976 return 0;
977
978 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
979 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
980 }
981
982 static inline unsigned long group_faults(struct task_struct *p, int nid)
983 {
984 if (!p->numa_group)
985 return 0;
986
987 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
988 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
989 }
990
991 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
992 {
993 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
994 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
995 }
996
997 /* Handle placement on systems where not all nodes are directly connected. */
998 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
999 int maxdist, bool task)
1000 {
1001 unsigned long score = 0;
1002 int node;
1003
1004 /*
1005 * All nodes are directly connected, and the same distance
1006 * from each other. No need for fancy placement algorithms.
1007 */
1008 if (sched_numa_topology_type == NUMA_DIRECT)
1009 return 0;
1010
1011 /*
1012 * This code is called for each node, introducing N^2 complexity,
1013 * which should be ok given the number of nodes rarely exceeds 8.
1014 */
1015 for_each_online_node(node) {
1016 unsigned long faults;
1017 int dist = node_distance(nid, node);
1018
1019 /*
1020 * The furthest away nodes in the system are not interesting
1021 * for placement; nid was already counted.
1022 */
1023 if (dist == sched_max_numa_distance || node == nid)
1024 continue;
1025
1026 /*
1027 * On systems with a backplane NUMA topology, compare groups
1028 * of nodes, and move tasks towards the group with the most
1029 * memory accesses. When comparing two nodes at distance
1030 * "hoplimit", only nodes closer by than "hoplimit" are part
1031 * of each group. Skip other nodes.
1032 */
1033 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1034 dist > maxdist)
1035 continue;
1036
1037 /* Add up the faults from nearby nodes. */
1038 if (task)
1039 faults = task_faults(p, node);
1040 else
1041 faults = group_faults(p, node);
1042
1043 /*
1044 * On systems with a glueless mesh NUMA topology, there are
1045 * no fixed "groups of nodes". Instead, nodes that are not
1046 * directly connected bounce traffic through intermediate
1047 * nodes; a numa_group can occupy any set of nodes.
1048 * The further away a node is, the less the faults count.
1049 * This seems to result in good task placement.
1050 */
1051 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1052 faults *= (sched_max_numa_distance - dist);
1053 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1054 }
1055
1056 score += faults;
1057 }
1058
1059 return score;
1060 }
1061
1062 /*
1063 * These return the fraction of accesses done by a particular task, or
1064 * task group, on a particular numa node. The group weight is given a
1065 * larger multiplier, in order to group tasks together that are almost
1066 * evenly spread out between numa nodes.
1067 */
1068 static inline unsigned long task_weight(struct task_struct *p, int nid,
1069 int dist)
1070 {
1071 unsigned long faults, total_faults;
1072
1073 if (!p->numa_faults)
1074 return 0;
1075
1076 total_faults = p->total_numa_faults;
1077
1078 if (!total_faults)
1079 return 0;
1080
1081 faults = task_faults(p, nid);
1082 faults += score_nearby_nodes(p, nid, dist, true);
1083
1084 return 1000 * faults / total_faults;
1085 }
1086
1087 static inline unsigned long group_weight(struct task_struct *p, int nid,
1088 int dist)
1089 {
1090 unsigned long faults, total_faults;
1091
1092 if (!p->numa_group)
1093 return 0;
1094
1095 total_faults = p->numa_group->total_faults;
1096
1097 if (!total_faults)
1098 return 0;
1099
1100 faults = group_faults(p, nid);
1101 faults += score_nearby_nodes(p, nid, dist, false);
1102
1103 return 1000 * faults / total_faults;
1104 }
1105
1106 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1107 int src_nid, int dst_cpu)
1108 {
1109 struct numa_group *ng = p->numa_group;
1110 int dst_nid = cpu_to_node(dst_cpu);
1111 int last_cpupid, this_cpupid;
1112
1113 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1114
1115 /*
1116 * Multi-stage node selection is used in conjunction with a periodic
1117 * migration fault to build a temporal task<->page relation. By using
1118 * a two-stage filter we remove short/unlikely relations.
1119 *
1120 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1121 * a task's usage of a particular page (n_p) per total usage of this
1122 * page (n_t) (in a given time-span) to a probability.
1123 *
1124 * Our periodic faults will sample this probability and getting the
1125 * same result twice in a row, given these samples are fully
1126 * independent, is then given by P(n)^2, provided our sample period
1127 * is sufficiently short compared to the usage pattern.
1128 *
1129 * This quadric squishes small probabilities, making it less likely we
1130 * act on an unlikely task<->page relation.
1131 */
1132 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1133 if (!cpupid_pid_unset(last_cpupid) &&
1134 cpupid_to_nid(last_cpupid) != dst_nid)
1135 return false;
1136
1137 /* Always allow migrate on private faults */
1138 if (cpupid_match_pid(p, last_cpupid))
1139 return true;
1140
1141 /* A shared fault, but p->numa_group has not been set up yet. */
1142 if (!ng)
1143 return true;
1144
1145 /*
1146 * Do not migrate if the destination is not a node that
1147 * is actively used by this numa group.
1148 */
1149 if (!node_isset(dst_nid, ng->active_nodes))
1150 return false;
1151
1152 /*
1153 * Source is a node that is not actively used by this
1154 * numa group, while the destination is. Migrate.
1155 */
1156 if (!node_isset(src_nid, ng->active_nodes))
1157 return true;
1158
1159 /*
1160 * Both source and destination are nodes in active
1161 * use by this numa group. Maximize memory bandwidth
1162 * by migrating from more heavily used groups, to less
1163 * heavily used ones, spreading the load around.
1164 * Use a 1/4 hysteresis to avoid spurious page movement.
1165 */
1166 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1167 }
1168
1169 static unsigned long weighted_cpuload(const int cpu);
1170 static unsigned long source_load(int cpu, int type);
1171 static unsigned long target_load(int cpu, int type);
1172 static unsigned long capacity_of(int cpu);
1173 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1174
1175 /* Cached statistics for all CPUs within a node */
1176 struct numa_stats {
1177 unsigned long nr_running;
1178 unsigned long load;
1179
1180 /* Total compute capacity of CPUs on a node */
1181 unsigned long compute_capacity;
1182
1183 /* Approximate capacity in terms of runnable tasks on a node */
1184 unsigned long task_capacity;
1185 int has_free_capacity;
1186 };
1187
1188 /*
1189 * XXX borrowed from update_sg_lb_stats
1190 */
1191 static void update_numa_stats(struct numa_stats *ns, int nid)
1192 {
1193 int smt, cpu, cpus = 0;
1194 unsigned long capacity;
1195
1196 memset(ns, 0, sizeof(*ns));
1197 for_each_cpu(cpu, cpumask_of_node(nid)) {
1198 struct rq *rq = cpu_rq(cpu);
1199
1200 ns->nr_running += rq->nr_running;
1201 ns->load += weighted_cpuload(cpu);
1202 ns->compute_capacity += capacity_of(cpu);
1203
1204 cpus++;
1205 }
1206
1207 /*
1208 * If we raced with hotplug and there are no CPUs left in our mask
1209 * the @ns structure is NULL'ed and task_numa_compare() will
1210 * not find this node attractive.
1211 *
1212 * We'll either bail at !has_free_capacity, or we'll detect a huge
1213 * imbalance and bail there.
1214 */
1215 if (!cpus)
1216 return;
1217
1218 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1219 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1220 capacity = cpus / smt; /* cores */
1221
1222 ns->task_capacity = min_t(unsigned, capacity,
1223 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1224 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1225 }
1226
1227 struct task_numa_env {
1228 struct task_struct *p;
1229
1230 int src_cpu, src_nid;
1231 int dst_cpu, dst_nid;
1232
1233 struct numa_stats src_stats, dst_stats;
1234
1235 int imbalance_pct;
1236 int dist;
1237
1238 struct task_struct *best_task;
1239 long best_imp;
1240 int best_cpu;
1241 };
1242
1243 static void task_numa_assign(struct task_numa_env *env,
1244 struct task_struct *p, long imp)
1245 {
1246 if (env->best_task)
1247 put_task_struct(env->best_task);
1248
1249 env->best_task = p;
1250 env->best_imp = imp;
1251 env->best_cpu = env->dst_cpu;
1252 }
1253
1254 static bool load_too_imbalanced(long src_load, long dst_load,
1255 struct task_numa_env *env)
1256 {
1257 long imb, old_imb;
1258 long orig_src_load, orig_dst_load;
1259 long src_capacity, dst_capacity;
1260
1261 /*
1262 * The load is corrected for the CPU capacity available on each node.
1263 *
1264 * src_load dst_load
1265 * ------------ vs ---------
1266 * src_capacity dst_capacity
1267 */
1268 src_capacity = env->src_stats.compute_capacity;
1269 dst_capacity = env->dst_stats.compute_capacity;
1270
1271 /* We care about the slope of the imbalance, not the direction. */
1272 if (dst_load < src_load)
1273 swap(dst_load, src_load);
1274
1275 /* Is the difference below the threshold? */
1276 imb = dst_load * src_capacity * 100 -
1277 src_load * dst_capacity * env->imbalance_pct;
1278 if (imb <= 0)
1279 return false;
1280
1281 /*
1282 * The imbalance is above the allowed threshold.
1283 * Compare it with the old imbalance.
1284 */
1285 orig_src_load = env->src_stats.load;
1286 orig_dst_load = env->dst_stats.load;
1287
1288 if (orig_dst_load < orig_src_load)
1289 swap(orig_dst_load, orig_src_load);
1290
1291 old_imb = orig_dst_load * src_capacity * 100 -
1292 orig_src_load * dst_capacity * env->imbalance_pct;
1293
1294 /* Would this change make things worse? */
1295 return (imb > old_imb);
1296 }
1297
1298 /*
1299 * This checks if the overall compute and NUMA accesses of the system would
1300 * be improved if the source tasks was migrated to the target dst_cpu taking
1301 * into account that it might be best if task running on the dst_cpu should
1302 * be exchanged with the source task
1303 */
1304 static void task_numa_compare(struct task_numa_env *env,
1305 long taskimp, long groupimp)
1306 {
1307 struct rq *src_rq = cpu_rq(env->src_cpu);
1308 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1309 struct task_struct *cur;
1310 long src_load, dst_load;
1311 long load;
1312 long imp = env->p->numa_group ? groupimp : taskimp;
1313 long moveimp = imp;
1314 int dist = env->dist;
1315 bool assigned = false;
1316
1317 rcu_read_lock();
1318
1319 raw_spin_lock_irq(&dst_rq->lock);
1320 cur = dst_rq->curr;
1321 /*
1322 * No need to move the exiting task or idle task.
1323 */
1324 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1325 cur = NULL;
1326 else {
1327 /*
1328 * The task_struct must be protected here to protect the
1329 * p->numa_faults access in the task_weight since the
1330 * numa_faults could already be freed in the following path:
1331 * finish_task_switch()
1332 * --> put_task_struct()
1333 * --> __put_task_struct()
1334 * --> task_numa_free()
1335 */
1336 get_task_struct(cur);
1337 }
1338
1339 raw_spin_unlock_irq(&dst_rq->lock);
1340
1341 /*
1342 * Because we have preemption enabled we can get migrated around and
1343 * end try selecting ourselves (current == env->p) as a swap candidate.
1344 */
1345 if (cur == env->p)
1346 goto unlock;
1347
1348 /*
1349 * "imp" is the fault differential for the source task between the
1350 * source and destination node. Calculate the total differential for
1351 * the source task and potential destination task. The more negative
1352 * the value is, the more rmeote accesses that would be expected to
1353 * be incurred if the tasks were swapped.
1354 */
1355 if (cur) {
1356 /* Skip this swap candidate if cannot move to the source cpu */
1357 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1358 goto unlock;
1359
1360 /*
1361 * If dst and source tasks are in the same NUMA group, or not
1362 * in any group then look only at task weights.
1363 */
1364 if (cur->numa_group == env->p->numa_group) {
1365 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1366 task_weight(cur, env->dst_nid, dist);
1367 /*
1368 * Add some hysteresis to prevent swapping the
1369 * tasks within a group over tiny differences.
1370 */
1371 if (cur->numa_group)
1372 imp -= imp/16;
1373 } else {
1374 /*
1375 * Compare the group weights. If a task is all by
1376 * itself (not part of a group), use the task weight
1377 * instead.
1378 */
1379 if (cur->numa_group)
1380 imp += group_weight(cur, env->src_nid, dist) -
1381 group_weight(cur, env->dst_nid, dist);
1382 else
1383 imp += task_weight(cur, env->src_nid, dist) -
1384 task_weight(cur, env->dst_nid, dist);
1385 }
1386 }
1387
1388 if (imp <= env->best_imp && moveimp <= env->best_imp)
1389 goto unlock;
1390
1391 if (!cur) {
1392 /* Is there capacity at our destination? */
1393 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1394 !env->dst_stats.has_free_capacity)
1395 goto unlock;
1396
1397 goto balance;
1398 }
1399
1400 /* Balance doesn't matter much if we're running a task per cpu */
1401 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1402 dst_rq->nr_running == 1)
1403 goto assign;
1404
1405 /*
1406 * In the overloaded case, try and keep the load balanced.
1407 */
1408 balance:
1409 load = task_h_load(env->p);
1410 dst_load = env->dst_stats.load + load;
1411 src_load = env->src_stats.load - load;
1412
1413 if (moveimp > imp && moveimp > env->best_imp) {
1414 /*
1415 * If the improvement from just moving env->p direction is
1416 * better than swapping tasks around, check if a move is
1417 * possible. Store a slightly smaller score than moveimp,
1418 * so an actually idle CPU will win.
1419 */
1420 if (!load_too_imbalanced(src_load, dst_load, env)) {
1421 imp = moveimp - 1;
1422 put_task_struct(cur);
1423 cur = NULL;
1424 goto assign;
1425 }
1426 }
1427
1428 if (imp <= env->best_imp)
1429 goto unlock;
1430
1431 if (cur) {
1432 load = task_h_load(cur);
1433 dst_load -= load;
1434 src_load += load;
1435 }
1436
1437 if (load_too_imbalanced(src_load, dst_load, env))
1438 goto unlock;
1439
1440 /*
1441 * One idle CPU per node is evaluated for a task numa move.
1442 * Call select_idle_sibling to maybe find a better one.
1443 */
1444 if (!cur)
1445 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1446
1447 assign:
1448 assigned = true;
1449 task_numa_assign(env, cur, imp);
1450 unlock:
1451 rcu_read_unlock();
1452 /*
1453 * The dst_rq->curr isn't assigned. The protection for task_struct is
1454 * finished.
1455 */
1456 if (cur && !assigned)
1457 put_task_struct(cur);
1458 }
1459
1460 static void task_numa_find_cpu(struct task_numa_env *env,
1461 long taskimp, long groupimp)
1462 {
1463 int cpu;
1464
1465 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1466 /* Skip this CPU if the source task cannot migrate */
1467 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1468 continue;
1469
1470 env->dst_cpu = cpu;
1471 task_numa_compare(env, taskimp, groupimp);
1472 }
1473 }
1474
1475 /* Only move tasks to a NUMA node less busy than the current node. */
1476 static bool numa_has_capacity(struct task_numa_env *env)
1477 {
1478 struct numa_stats *src = &env->src_stats;
1479 struct numa_stats *dst = &env->dst_stats;
1480
1481 if (src->has_free_capacity && !dst->has_free_capacity)
1482 return false;
1483
1484 /*
1485 * Only consider a task move if the source has a higher load
1486 * than the destination, corrected for CPU capacity on each node.
1487 *
1488 * src->load dst->load
1489 * --------------------- vs ---------------------
1490 * src->compute_capacity dst->compute_capacity
1491 */
1492 if (src->load * dst->compute_capacity * env->imbalance_pct >
1493
1494 dst->load * src->compute_capacity * 100)
1495 return true;
1496
1497 return false;
1498 }
1499
1500 static int task_numa_migrate(struct task_struct *p)
1501 {
1502 struct task_numa_env env = {
1503 .p = p,
1504
1505 .src_cpu = task_cpu(p),
1506 .src_nid = task_node(p),
1507
1508 .imbalance_pct = 112,
1509
1510 .best_task = NULL,
1511 .best_imp = 0,
1512 .best_cpu = -1
1513 };
1514 struct sched_domain *sd;
1515 unsigned long taskweight, groupweight;
1516 int nid, ret, dist;
1517 long taskimp, groupimp;
1518
1519 /*
1520 * Pick the lowest SD_NUMA domain, as that would have the smallest
1521 * imbalance and would be the first to start moving tasks about.
1522 *
1523 * And we want to avoid any moving of tasks about, as that would create
1524 * random movement of tasks -- counter the numa conditions we're trying
1525 * to satisfy here.
1526 */
1527 rcu_read_lock();
1528 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1529 if (sd)
1530 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1531 rcu_read_unlock();
1532
1533 /*
1534 * Cpusets can break the scheduler domain tree into smaller
1535 * balance domains, some of which do not cross NUMA boundaries.
1536 * Tasks that are "trapped" in such domains cannot be migrated
1537 * elsewhere, so there is no point in (re)trying.
1538 */
1539 if (unlikely(!sd)) {
1540 p->numa_preferred_nid = task_node(p);
1541 return -EINVAL;
1542 }
1543
1544 env.dst_nid = p->numa_preferred_nid;
1545 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1546 taskweight = task_weight(p, env.src_nid, dist);
1547 groupweight = group_weight(p, env.src_nid, dist);
1548 update_numa_stats(&env.src_stats, env.src_nid);
1549 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1550 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1551 update_numa_stats(&env.dst_stats, env.dst_nid);
1552
1553 /* Try to find a spot on the preferred nid. */
1554 if (numa_has_capacity(&env))
1555 task_numa_find_cpu(&env, taskimp, groupimp);
1556
1557 /*
1558 * Look at other nodes in these cases:
1559 * - there is no space available on the preferred_nid
1560 * - the task is part of a numa_group that is interleaved across
1561 * multiple NUMA nodes; in order to better consolidate the group,
1562 * we need to check other locations.
1563 */
1564 if (env.best_cpu == -1 || (p->numa_group &&
1565 nodes_weight(p->numa_group->active_nodes) > 1)) {
1566 for_each_online_node(nid) {
1567 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1568 continue;
1569
1570 dist = node_distance(env.src_nid, env.dst_nid);
1571 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1572 dist != env.dist) {
1573 taskweight = task_weight(p, env.src_nid, dist);
1574 groupweight = group_weight(p, env.src_nid, dist);
1575 }
1576
1577 /* Only consider nodes where both task and groups benefit */
1578 taskimp = task_weight(p, nid, dist) - taskweight;
1579 groupimp = group_weight(p, nid, dist) - groupweight;
1580 if (taskimp < 0 && groupimp < 0)
1581 continue;
1582
1583 env.dist = dist;
1584 env.dst_nid = nid;
1585 update_numa_stats(&env.dst_stats, env.dst_nid);
1586 if (numa_has_capacity(&env))
1587 task_numa_find_cpu(&env, taskimp, groupimp);
1588 }
1589 }
1590
1591 /*
1592 * If the task is part of a workload that spans multiple NUMA nodes,
1593 * and is migrating into one of the workload's active nodes, remember
1594 * this node as the task's preferred numa node, so the workload can
1595 * settle down.
1596 * A task that migrated to a second choice node will be better off
1597 * trying for a better one later. Do not set the preferred node here.
1598 */
1599 if (p->numa_group) {
1600 if (env.best_cpu == -1)
1601 nid = env.src_nid;
1602 else
1603 nid = env.dst_nid;
1604
1605 if (node_isset(nid, p->numa_group->active_nodes))
1606 sched_setnuma(p, env.dst_nid);
1607 }
1608
1609 /* No better CPU than the current one was found. */
1610 if (env.best_cpu == -1)
1611 return -EAGAIN;
1612
1613 /*
1614 * Reset the scan period if the task is being rescheduled on an
1615 * alternative node to recheck if the tasks is now properly placed.
1616 */
1617 p->numa_scan_period = task_scan_min(p);
1618
1619 if (env.best_task == NULL) {
1620 ret = migrate_task_to(p, env.best_cpu);
1621 if (ret != 0)
1622 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1623 return ret;
1624 }
1625
1626 ret = migrate_swap(p, env.best_task);
1627 if (ret != 0)
1628 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1629 put_task_struct(env.best_task);
1630 return ret;
1631 }
1632
1633 /* Attempt to migrate a task to a CPU on the preferred node. */
1634 static void numa_migrate_preferred(struct task_struct *p)
1635 {
1636 unsigned long interval = HZ;
1637
1638 /* This task has no NUMA fault statistics yet */
1639 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1640 return;
1641
1642 /* Periodically retry migrating the task to the preferred node */
1643 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1644 p->numa_migrate_retry = jiffies + interval;
1645
1646 /* Success if task is already running on preferred CPU */
1647 if (task_node(p) == p->numa_preferred_nid)
1648 return;
1649
1650 /* Otherwise, try migrate to a CPU on the preferred node */
1651 task_numa_migrate(p);
1652 }
1653
1654 /*
1655 * Find the nodes on which the workload is actively running. We do this by
1656 * tracking the nodes from which NUMA hinting faults are triggered. This can
1657 * be different from the set of nodes where the workload's memory is currently
1658 * located.
1659 *
1660 * The bitmask is used to make smarter decisions on when to do NUMA page
1661 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1662 * are added when they cause over 6/16 of the maximum number of faults, but
1663 * only removed when they drop below 3/16.
1664 */
1665 static void update_numa_active_node_mask(struct numa_group *numa_group)
1666 {
1667 unsigned long faults, max_faults = 0;
1668 int nid;
1669
1670 for_each_online_node(nid) {
1671 faults = group_faults_cpu(numa_group, nid);
1672 if (faults > max_faults)
1673 max_faults = faults;
1674 }
1675
1676 for_each_online_node(nid) {
1677 faults = group_faults_cpu(numa_group, nid);
1678 if (!node_isset(nid, numa_group->active_nodes)) {
1679 if (faults > max_faults * 6 / 16)
1680 node_set(nid, numa_group->active_nodes);
1681 } else if (faults < max_faults * 3 / 16)
1682 node_clear(nid, numa_group->active_nodes);
1683 }
1684 }
1685
1686 /*
1687 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1688 * increments. The more local the fault statistics are, the higher the scan
1689 * period will be for the next scan window. If local/(local+remote) ratio is
1690 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1691 * the scan period will decrease. Aim for 70% local accesses.
1692 */
1693 #define NUMA_PERIOD_SLOTS 10
1694 #define NUMA_PERIOD_THRESHOLD 7
1695
1696 /*
1697 * Increase the scan period (slow down scanning) if the majority of
1698 * our memory is already on our local node, or if the majority of
1699 * the page accesses are shared with other processes.
1700 * Otherwise, decrease the scan period.
1701 */
1702 static void update_task_scan_period(struct task_struct *p,
1703 unsigned long shared, unsigned long private)
1704 {
1705 unsigned int period_slot;
1706 int ratio;
1707 int diff;
1708
1709 unsigned long remote = p->numa_faults_locality[0];
1710 unsigned long local = p->numa_faults_locality[1];
1711
1712 /*
1713 * If there were no record hinting faults then either the task is
1714 * completely idle or all activity is areas that are not of interest
1715 * to automatic numa balancing. Related to that, if there were failed
1716 * migration then it implies we are migrating too quickly or the local
1717 * node is overloaded. In either case, scan slower
1718 */
1719 if (local + shared == 0 || p->numa_faults_locality[2]) {
1720 p->numa_scan_period = min(p->numa_scan_period_max,
1721 p->numa_scan_period << 1);
1722
1723 p->mm->numa_next_scan = jiffies +
1724 msecs_to_jiffies(p->numa_scan_period);
1725
1726 return;
1727 }
1728
1729 /*
1730 * Prepare to scale scan period relative to the current period.
1731 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1732 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1733 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1734 */
1735 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1736 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1737 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1738 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1739 if (!slot)
1740 slot = 1;
1741 diff = slot * period_slot;
1742 } else {
1743 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1744
1745 /*
1746 * Scale scan rate increases based on sharing. There is an
1747 * inverse relationship between the degree of sharing and
1748 * the adjustment made to the scanning period. Broadly
1749 * speaking the intent is that there is little point
1750 * scanning faster if shared accesses dominate as it may
1751 * simply bounce migrations uselessly
1752 */
1753 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1754 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1755 }
1756
1757 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1758 task_scan_min(p), task_scan_max(p));
1759 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1760 }
1761
1762 /*
1763 * Get the fraction of time the task has been running since the last
1764 * NUMA placement cycle. The scheduler keeps similar statistics, but
1765 * decays those on a 32ms period, which is orders of magnitude off
1766 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1767 * stats only if the task is so new there are no NUMA statistics yet.
1768 */
1769 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1770 {
1771 u64 runtime, delta, now;
1772 /* Use the start of this time slice to avoid calculations. */
1773 now = p->se.exec_start;
1774 runtime = p->se.sum_exec_runtime;
1775
1776 if (p->last_task_numa_placement) {
1777 delta = runtime - p->last_sum_exec_runtime;
1778 *period = now - p->last_task_numa_placement;
1779 } else {
1780 delta = p->se.avg.load_sum / p->se.load.weight;
1781 *period = LOAD_AVG_MAX;
1782 }
1783
1784 p->last_sum_exec_runtime = runtime;
1785 p->last_task_numa_placement = now;
1786
1787 return delta;
1788 }
1789
1790 /*
1791 * Determine the preferred nid for a task in a numa_group. This needs to
1792 * be done in a way that produces consistent results with group_weight,
1793 * otherwise workloads might not converge.
1794 */
1795 static int preferred_group_nid(struct task_struct *p, int nid)
1796 {
1797 nodemask_t nodes;
1798 int dist;
1799
1800 /* Direct connections between all NUMA nodes. */
1801 if (sched_numa_topology_type == NUMA_DIRECT)
1802 return nid;
1803
1804 /*
1805 * On a system with glueless mesh NUMA topology, group_weight
1806 * scores nodes according to the number of NUMA hinting faults on
1807 * both the node itself, and on nearby nodes.
1808 */
1809 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1810 unsigned long score, max_score = 0;
1811 int node, max_node = nid;
1812
1813 dist = sched_max_numa_distance;
1814
1815 for_each_online_node(node) {
1816 score = group_weight(p, node, dist);
1817 if (score > max_score) {
1818 max_score = score;
1819 max_node = node;
1820 }
1821 }
1822 return max_node;
1823 }
1824
1825 /*
1826 * Finding the preferred nid in a system with NUMA backplane
1827 * interconnect topology is more involved. The goal is to locate
1828 * tasks from numa_groups near each other in the system, and
1829 * untangle workloads from different sides of the system. This requires
1830 * searching down the hierarchy of node groups, recursively searching
1831 * inside the highest scoring group of nodes. The nodemask tricks
1832 * keep the complexity of the search down.
1833 */
1834 nodes = node_online_map;
1835 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1836 unsigned long max_faults = 0;
1837 nodemask_t max_group = NODE_MASK_NONE;
1838 int a, b;
1839
1840 /* Are there nodes at this distance from each other? */
1841 if (!find_numa_distance(dist))
1842 continue;
1843
1844 for_each_node_mask(a, nodes) {
1845 unsigned long faults = 0;
1846 nodemask_t this_group;
1847 nodes_clear(this_group);
1848
1849 /* Sum group's NUMA faults; includes a==b case. */
1850 for_each_node_mask(b, nodes) {
1851 if (node_distance(a, b) < dist) {
1852 faults += group_faults(p, b);
1853 node_set(b, this_group);
1854 node_clear(b, nodes);
1855 }
1856 }
1857
1858 /* Remember the top group. */
1859 if (faults > max_faults) {
1860 max_faults = faults;
1861 max_group = this_group;
1862 /*
1863 * subtle: at the smallest distance there is
1864 * just one node left in each "group", the
1865 * winner is the preferred nid.
1866 */
1867 nid = a;
1868 }
1869 }
1870 /* Next round, evaluate the nodes within max_group. */
1871 if (!max_faults)
1872 break;
1873 nodes = max_group;
1874 }
1875 return nid;
1876 }
1877
1878 static void task_numa_placement(struct task_struct *p)
1879 {
1880 int seq, nid, max_nid = -1, max_group_nid = -1;
1881 unsigned long max_faults = 0, max_group_faults = 0;
1882 unsigned long fault_types[2] = { 0, 0 };
1883 unsigned long total_faults;
1884 u64 runtime, period;
1885 spinlock_t *group_lock = NULL;
1886
1887 /*
1888 * The p->mm->numa_scan_seq field gets updated without
1889 * exclusive access. Use READ_ONCE() here to ensure
1890 * that the field is read in a single access:
1891 */
1892 seq = READ_ONCE(p->mm->numa_scan_seq);
1893 if (p->numa_scan_seq == seq)
1894 return;
1895 p->numa_scan_seq = seq;
1896 p->numa_scan_period_max = task_scan_max(p);
1897
1898 total_faults = p->numa_faults_locality[0] +
1899 p->numa_faults_locality[1];
1900 runtime = numa_get_avg_runtime(p, &period);
1901
1902 /* If the task is part of a group prevent parallel updates to group stats */
1903 if (p->numa_group) {
1904 group_lock = &p->numa_group->lock;
1905 spin_lock_irq(group_lock);
1906 }
1907
1908 /* Find the node with the highest number of faults */
1909 for_each_online_node(nid) {
1910 /* Keep track of the offsets in numa_faults array */
1911 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1912 unsigned long faults = 0, group_faults = 0;
1913 int priv;
1914
1915 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1916 long diff, f_diff, f_weight;
1917
1918 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1919 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1920 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1921 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1922
1923 /* Decay existing window, copy faults since last scan */
1924 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1925 fault_types[priv] += p->numa_faults[membuf_idx];
1926 p->numa_faults[membuf_idx] = 0;
1927
1928 /*
1929 * Normalize the faults_from, so all tasks in a group
1930 * count according to CPU use, instead of by the raw
1931 * number of faults. Tasks with little runtime have
1932 * little over-all impact on throughput, and thus their
1933 * faults are less important.
1934 */
1935 f_weight = div64_u64(runtime << 16, period + 1);
1936 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1937 (total_faults + 1);
1938 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1939 p->numa_faults[cpubuf_idx] = 0;
1940
1941 p->numa_faults[mem_idx] += diff;
1942 p->numa_faults[cpu_idx] += f_diff;
1943 faults += p->numa_faults[mem_idx];
1944 p->total_numa_faults += diff;
1945 if (p->numa_group) {
1946 /*
1947 * safe because we can only change our own group
1948 *
1949 * mem_idx represents the offset for a given
1950 * nid and priv in a specific region because it
1951 * is at the beginning of the numa_faults array.
1952 */
1953 p->numa_group->faults[mem_idx] += diff;
1954 p->numa_group->faults_cpu[mem_idx] += f_diff;
1955 p->numa_group->total_faults += diff;
1956 group_faults += p->numa_group->faults[mem_idx];
1957 }
1958 }
1959
1960 if (faults > max_faults) {
1961 max_faults = faults;
1962 max_nid = nid;
1963 }
1964
1965 if (group_faults > max_group_faults) {
1966 max_group_faults = group_faults;
1967 max_group_nid = nid;
1968 }
1969 }
1970
1971 update_task_scan_period(p, fault_types[0], fault_types[1]);
1972
1973 if (p->numa_group) {
1974 update_numa_active_node_mask(p->numa_group);
1975 spin_unlock_irq(group_lock);
1976 max_nid = preferred_group_nid(p, max_group_nid);
1977 }
1978
1979 if (max_faults) {
1980 /* Set the new preferred node */
1981 if (max_nid != p->numa_preferred_nid)
1982 sched_setnuma(p, max_nid);
1983
1984 if (task_node(p) != p->numa_preferred_nid)
1985 numa_migrate_preferred(p);
1986 }
1987 }
1988
1989 static inline int get_numa_group(struct numa_group *grp)
1990 {
1991 return atomic_inc_not_zero(&grp->refcount);
1992 }
1993
1994 static inline void put_numa_group(struct numa_group *grp)
1995 {
1996 if (atomic_dec_and_test(&grp->refcount))
1997 kfree_rcu(grp, rcu);
1998 }
1999
2000 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2001 int *priv)
2002 {
2003 struct numa_group *grp, *my_grp;
2004 struct task_struct *tsk;
2005 bool join = false;
2006 int cpu = cpupid_to_cpu(cpupid);
2007 int i;
2008
2009 if (unlikely(!p->numa_group)) {
2010 unsigned int size = sizeof(struct numa_group) +
2011 4*nr_node_ids*sizeof(unsigned long);
2012
2013 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2014 if (!grp)
2015 return;
2016
2017 atomic_set(&grp->refcount, 1);
2018 spin_lock_init(&grp->lock);
2019 grp->gid = p->pid;
2020 /* Second half of the array tracks nids where faults happen */
2021 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2022 nr_node_ids;
2023
2024 node_set(task_node(current), grp->active_nodes);
2025
2026 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2027 grp->faults[i] = p->numa_faults[i];
2028
2029 grp->total_faults = p->total_numa_faults;
2030
2031 grp->nr_tasks++;
2032 rcu_assign_pointer(p->numa_group, grp);
2033 }
2034
2035 rcu_read_lock();
2036 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2037
2038 if (!cpupid_match_pid(tsk, cpupid))
2039 goto no_join;
2040
2041 grp = rcu_dereference(tsk->numa_group);
2042 if (!grp)
2043 goto no_join;
2044
2045 my_grp = p->numa_group;
2046 if (grp == my_grp)
2047 goto no_join;
2048
2049 /*
2050 * Only join the other group if its bigger; if we're the bigger group,
2051 * the other task will join us.
2052 */
2053 if (my_grp->nr_tasks > grp->nr_tasks)
2054 goto no_join;
2055
2056 /*
2057 * Tie-break on the grp address.
2058 */
2059 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2060 goto no_join;
2061
2062 /* Always join threads in the same process. */
2063 if (tsk->mm == current->mm)
2064 join = true;
2065
2066 /* Simple filter to avoid false positives due to PID collisions */
2067 if (flags & TNF_SHARED)
2068 join = true;
2069
2070 /* Update priv based on whether false sharing was detected */
2071 *priv = !join;
2072
2073 if (join && !get_numa_group(grp))
2074 goto no_join;
2075
2076 rcu_read_unlock();
2077
2078 if (!join)
2079 return;
2080
2081 BUG_ON(irqs_disabled());
2082 double_lock_irq(&my_grp->lock, &grp->lock);
2083
2084 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2085 my_grp->faults[i] -= p->numa_faults[i];
2086 grp->faults[i] += p->numa_faults[i];
2087 }
2088 my_grp->total_faults -= p->total_numa_faults;
2089 grp->total_faults += p->total_numa_faults;
2090
2091 my_grp->nr_tasks--;
2092 grp->nr_tasks++;
2093
2094 spin_unlock(&my_grp->lock);
2095 spin_unlock_irq(&grp->lock);
2096
2097 rcu_assign_pointer(p->numa_group, grp);
2098
2099 put_numa_group(my_grp);
2100 return;
2101
2102 no_join:
2103 rcu_read_unlock();
2104 return;
2105 }
2106
2107 void task_numa_free(struct task_struct *p)
2108 {
2109 struct numa_group *grp = p->numa_group;
2110 void *numa_faults = p->numa_faults;
2111 unsigned long flags;
2112 int i;
2113
2114 if (grp) {
2115 spin_lock_irqsave(&grp->lock, flags);
2116 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2117 grp->faults[i] -= p->numa_faults[i];
2118 grp->total_faults -= p->total_numa_faults;
2119
2120 grp->nr_tasks--;
2121 spin_unlock_irqrestore(&grp->lock, flags);
2122 RCU_INIT_POINTER(p->numa_group, NULL);
2123 put_numa_group(grp);
2124 }
2125
2126 p->numa_faults = NULL;
2127 kfree(numa_faults);
2128 }
2129
2130 /*
2131 * Got a PROT_NONE fault for a page on @node.
2132 */
2133 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2134 {
2135 struct task_struct *p = current;
2136 bool migrated = flags & TNF_MIGRATED;
2137 int cpu_node = task_node(current);
2138 int local = !!(flags & TNF_FAULT_LOCAL);
2139 int priv;
2140
2141 if (!static_branch_likely(&sched_numa_balancing))
2142 return;
2143
2144 /* for example, ksmd faulting in a user's mm */
2145 if (!p->mm)
2146 return;
2147
2148 /* Allocate buffer to track faults on a per-node basis */
2149 if (unlikely(!p->numa_faults)) {
2150 int size = sizeof(*p->numa_faults) *
2151 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2152
2153 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2154 if (!p->numa_faults)
2155 return;
2156
2157 p->total_numa_faults = 0;
2158 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2159 }
2160
2161 /*
2162 * First accesses are treated as private, otherwise consider accesses
2163 * to be private if the accessing pid has not changed
2164 */
2165 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2166 priv = 1;
2167 } else {
2168 priv = cpupid_match_pid(p, last_cpupid);
2169 if (!priv && !(flags & TNF_NO_GROUP))
2170 task_numa_group(p, last_cpupid, flags, &priv);
2171 }
2172
2173 /*
2174 * If a workload spans multiple NUMA nodes, a shared fault that
2175 * occurs wholly within the set of nodes that the workload is
2176 * actively using should be counted as local. This allows the
2177 * scan rate to slow down when a workload has settled down.
2178 */
2179 if (!priv && !local && p->numa_group &&
2180 node_isset(cpu_node, p->numa_group->active_nodes) &&
2181 node_isset(mem_node, p->numa_group->active_nodes))
2182 local = 1;
2183
2184 task_numa_placement(p);
2185
2186 /*
2187 * Retry task to preferred node migration periodically, in case it
2188 * case it previously failed, or the scheduler moved us.
2189 */
2190 if (time_after(jiffies, p->numa_migrate_retry))
2191 numa_migrate_preferred(p);
2192
2193 if (migrated)
2194 p->numa_pages_migrated += pages;
2195 if (flags & TNF_MIGRATE_FAIL)
2196 p->numa_faults_locality[2] += pages;
2197
2198 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2199 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2200 p->numa_faults_locality[local] += pages;
2201 }
2202
2203 static void reset_ptenuma_scan(struct task_struct *p)
2204 {
2205 /*
2206 * We only did a read acquisition of the mmap sem, so
2207 * p->mm->numa_scan_seq is written to without exclusive access
2208 * and the update is not guaranteed to be atomic. That's not
2209 * much of an issue though, since this is just used for
2210 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2211 * expensive, to avoid any form of compiler optimizations:
2212 */
2213 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2214 p->mm->numa_scan_offset = 0;
2215 }
2216
2217 /*
2218 * The expensive part of numa migration is done from task_work context.
2219 * Triggered from task_tick_numa().
2220 */
2221 void task_numa_work(struct callback_head *work)
2222 {
2223 unsigned long migrate, next_scan, now = jiffies;
2224 struct task_struct *p = current;
2225 struct mm_struct *mm = p->mm;
2226 u64 runtime = p->se.sum_exec_runtime;
2227 struct vm_area_struct *vma;
2228 unsigned long start, end;
2229 unsigned long nr_pte_updates = 0;
2230 long pages, virtpages;
2231
2232 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2233
2234 work->next = work; /* protect against double add */
2235 /*
2236 * Who cares about NUMA placement when they're dying.
2237 *
2238 * NOTE: make sure not to dereference p->mm before this check,
2239 * exit_task_work() happens _after_ exit_mm() so we could be called
2240 * without p->mm even though we still had it when we enqueued this
2241 * work.
2242 */
2243 if (p->flags & PF_EXITING)
2244 return;
2245
2246 if (!mm->numa_next_scan) {
2247 mm->numa_next_scan = now +
2248 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2249 }
2250
2251 /*
2252 * Enforce maximal scan/migration frequency..
2253 */
2254 migrate = mm->numa_next_scan;
2255 if (time_before(now, migrate))
2256 return;
2257
2258 if (p->numa_scan_period == 0) {
2259 p->numa_scan_period_max = task_scan_max(p);
2260 p->numa_scan_period = task_scan_min(p);
2261 }
2262
2263 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2264 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2265 return;
2266
2267 /*
2268 * Delay this task enough that another task of this mm will likely win
2269 * the next time around.
2270 */
2271 p->node_stamp += 2 * TICK_NSEC;
2272
2273 start = mm->numa_scan_offset;
2274 pages = sysctl_numa_balancing_scan_size;
2275 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2276 virtpages = pages * 8; /* Scan up to this much virtual space */
2277 if (!pages)
2278 return;
2279
2280
2281 down_read(&mm->mmap_sem);
2282 vma = find_vma(mm, start);
2283 if (!vma) {
2284 reset_ptenuma_scan(p);
2285 start = 0;
2286 vma = mm->mmap;
2287 }
2288 for (; vma; vma = vma->vm_next) {
2289 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2290 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2291 continue;
2292 }
2293
2294 /*
2295 * Shared library pages mapped by multiple processes are not
2296 * migrated as it is expected they are cache replicated. Avoid
2297 * hinting faults in read-only file-backed mappings or the vdso
2298 * as migrating the pages will be of marginal benefit.
2299 */
2300 if (!vma->vm_mm ||
2301 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2302 continue;
2303
2304 /*
2305 * Skip inaccessible VMAs to avoid any confusion between
2306 * PROT_NONE and NUMA hinting ptes
2307 */
2308 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2309 continue;
2310
2311 do {
2312 start = max(start, vma->vm_start);
2313 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2314 end = min(end, vma->vm_end);
2315 nr_pte_updates = change_prot_numa(vma, start, end);
2316
2317 /*
2318 * Try to scan sysctl_numa_balancing_size worth of
2319 * hpages that have at least one present PTE that
2320 * is not already pte-numa. If the VMA contains
2321 * areas that are unused or already full of prot_numa
2322 * PTEs, scan up to virtpages, to skip through those
2323 * areas faster.
2324 */
2325 if (nr_pte_updates)
2326 pages -= (end - start) >> PAGE_SHIFT;
2327 virtpages -= (end - start) >> PAGE_SHIFT;
2328
2329 start = end;
2330 if (pages <= 0 || virtpages <= 0)
2331 goto out;
2332
2333 cond_resched();
2334 } while (end != vma->vm_end);
2335 }
2336
2337 out:
2338 /*
2339 * It is possible to reach the end of the VMA list but the last few
2340 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2341 * would find the !migratable VMA on the next scan but not reset the
2342 * scanner to the start so check it now.
2343 */
2344 if (vma)
2345 mm->numa_scan_offset = start;
2346 else
2347 reset_ptenuma_scan(p);
2348 up_read(&mm->mmap_sem);
2349
2350 /*
2351 * Make sure tasks use at least 32x as much time to run other code
2352 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2353 * Usually update_task_scan_period slows down scanning enough; on an
2354 * overloaded system we need to limit overhead on a per task basis.
2355 */
2356 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2357 u64 diff = p->se.sum_exec_runtime - runtime;
2358 p->node_stamp += 32 * diff;
2359 }
2360 }
2361
2362 /*
2363 * Drive the periodic memory faults..
2364 */
2365 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2366 {
2367 struct callback_head *work = &curr->numa_work;
2368 u64 period, now;
2369
2370 /*
2371 * We don't care about NUMA placement if we don't have memory.
2372 */
2373 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2374 return;
2375
2376 /*
2377 * Using runtime rather than walltime has the dual advantage that
2378 * we (mostly) drive the selection from busy threads and that the
2379 * task needs to have done some actual work before we bother with
2380 * NUMA placement.
2381 */
2382 now = curr->se.sum_exec_runtime;
2383 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2384
2385 if (now > curr->node_stamp + period) {
2386 if (!curr->node_stamp)
2387 curr->numa_scan_period = task_scan_min(curr);
2388 curr->node_stamp += period;
2389
2390 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2391 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2392 task_work_add(curr, work, true);
2393 }
2394 }
2395 }
2396 #else
2397 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2398 {
2399 }
2400
2401 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2402 {
2403 }
2404
2405 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2406 {
2407 }
2408 #endif /* CONFIG_NUMA_BALANCING */
2409
2410 static void
2411 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2412 {
2413 update_load_add(&cfs_rq->load, se->load.weight);
2414 if (!parent_entity(se))
2415 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2416 #ifdef CONFIG_SMP
2417 if (entity_is_task(se)) {
2418 struct rq *rq = rq_of(cfs_rq);
2419
2420 account_numa_enqueue(rq, task_of(se));
2421 list_add(&se->group_node, &rq->cfs_tasks);
2422 }
2423 #endif
2424 cfs_rq->nr_running++;
2425 }
2426
2427 static void
2428 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2429 {
2430 update_load_sub(&cfs_rq->load, se->load.weight);
2431 if (!parent_entity(se))
2432 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2433 if (entity_is_task(se)) {
2434 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2435 list_del_init(&se->group_node);
2436 }
2437 cfs_rq->nr_running--;
2438 }
2439
2440 #ifdef CONFIG_FAIR_GROUP_SCHED
2441 # ifdef CONFIG_SMP
2442 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2443 {
2444 long tg_weight;
2445
2446 /*
2447 * Use this CPU's real-time load instead of the last load contribution
2448 * as the updating of the contribution is delayed, and we will use the
2449 * the real-time load to calc the share. See update_tg_load_avg().
2450 */
2451 tg_weight = atomic_long_read(&tg->load_avg);
2452 tg_weight -= cfs_rq->tg_load_avg_contrib;
2453 tg_weight += cfs_rq->load.weight;
2454
2455 return tg_weight;
2456 }
2457
2458 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2459 {
2460 long tg_weight, load, shares;
2461
2462 tg_weight = calc_tg_weight(tg, cfs_rq);
2463 load = cfs_rq->load.weight;
2464
2465 shares = (tg->shares * load);
2466 if (tg_weight)
2467 shares /= tg_weight;
2468
2469 if (shares < MIN_SHARES)
2470 shares = MIN_SHARES;
2471 if (shares > tg->shares)
2472 shares = tg->shares;
2473
2474 return shares;
2475 }
2476 # else /* CONFIG_SMP */
2477 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2478 {
2479 return tg->shares;
2480 }
2481 # endif /* CONFIG_SMP */
2482 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2483 unsigned long weight)
2484 {
2485 if (se->on_rq) {
2486 /* commit outstanding execution time */
2487 if (cfs_rq->curr == se)
2488 update_curr(cfs_rq);
2489 account_entity_dequeue(cfs_rq, se);
2490 }
2491
2492 update_load_set(&se->load, weight);
2493
2494 if (se->on_rq)
2495 account_entity_enqueue(cfs_rq, se);
2496 }
2497
2498 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2499
2500 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2501 {
2502 struct task_group *tg;
2503 struct sched_entity *se;
2504 long shares;
2505
2506 tg = cfs_rq->tg;
2507 se = tg->se[cpu_of(rq_of(cfs_rq))];
2508 if (!se || throttled_hierarchy(cfs_rq))
2509 return;
2510 #ifndef CONFIG_SMP
2511 if (likely(se->load.weight == tg->shares))
2512 return;
2513 #endif
2514 shares = calc_cfs_shares(cfs_rq, tg);
2515
2516 reweight_entity(cfs_rq_of(se), se, shares);
2517 }
2518 #else /* CONFIG_FAIR_GROUP_SCHED */
2519 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2520 {
2521 }
2522 #endif /* CONFIG_FAIR_GROUP_SCHED */
2523
2524 #ifdef CONFIG_SMP
2525 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2526 static const u32 runnable_avg_yN_inv[] = {
2527 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2528 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2529 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2530 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2531 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2532 0x85aac367, 0x82cd8698,
2533 };
2534
2535 /*
2536 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2537 * over-estimates when re-combining.
2538 */
2539 static const u32 runnable_avg_yN_sum[] = {
2540 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2541 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2542 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2543 };
2544
2545 /*
2546 * Approximate:
2547 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2548 */
2549 static __always_inline u64 decay_load(u64 val, u64 n)
2550 {
2551 unsigned int local_n;
2552
2553 if (!n)
2554 return val;
2555 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2556 return 0;
2557
2558 /* after bounds checking we can collapse to 32-bit */
2559 local_n = n;
2560
2561 /*
2562 * As y^PERIOD = 1/2, we can combine
2563 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2564 * With a look-up table which covers y^n (n<PERIOD)
2565 *
2566 * To achieve constant time decay_load.
2567 */
2568 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2569 val >>= local_n / LOAD_AVG_PERIOD;
2570 local_n %= LOAD_AVG_PERIOD;
2571 }
2572
2573 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2574 return val;
2575 }
2576
2577 /*
2578 * For updates fully spanning n periods, the contribution to runnable
2579 * average will be: \Sum 1024*y^n
2580 *
2581 * We can compute this reasonably efficiently by combining:
2582 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2583 */
2584 static u32 __compute_runnable_contrib(u64 n)
2585 {
2586 u32 contrib = 0;
2587
2588 if (likely(n <= LOAD_AVG_PERIOD))
2589 return runnable_avg_yN_sum[n];
2590 else if (unlikely(n >= LOAD_AVG_MAX_N))
2591 return LOAD_AVG_MAX;
2592
2593 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2594 do {
2595 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2596 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2597
2598 n -= LOAD_AVG_PERIOD;
2599 } while (n > LOAD_AVG_PERIOD);
2600
2601 contrib = decay_load(contrib, n);
2602 return contrib + runnable_avg_yN_sum[n];
2603 }
2604
2605 #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2606 #error "load tracking assumes 2^10 as unit"
2607 #endif
2608
2609 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2610
2611 /*
2612 * We can represent the historical contribution to runnable average as the
2613 * coefficients of a geometric series. To do this we sub-divide our runnable
2614 * history into segments of approximately 1ms (1024us); label the segment that
2615 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2616 *
2617 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2618 * p0 p1 p2
2619 * (now) (~1ms ago) (~2ms ago)
2620 *
2621 * Let u_i denote the fraction of p_i that the entity was runnable.
2622 *
2623 * We then designate the fractions u_i as our co-efficients, yielding the
2624 * following representation of historical load:
2625 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2626 *
2627 * We choose y based on the with of a reasonably scheduling period, fixing:
2628 * y^32 = 0.5
2629 *
2630 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2631 * approximately half as much as the contribution to load within the last ms
2632 * (u_0).
2633 *
2634 * When a period "rolls over" and we have new u_0`, multiplying the previous
2635 * sum again by y is sufficient to update:
2636 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2637 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2638 */
2639 static __always_inline int
2640 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2641 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2642 {
2643 u64 delta, scaled_delta, periods;
2644 u32 contrib;
2645 unsigned int delta_w, scaled_delta_w, decayed = 0;
2646 unsigned long scale_freq, scale_cpu;
2647
2648 delta = now - sa->last_update_time;
2649 /*
2650 * This should only happen when time goes backwards, which it
2651 * unfortunately does during sched clock init when we swap over to TSC.
2652 */
2653 if ((s64)delta < 0) {
2654 sa->last_update_time = now;
2655 return 0;
2656 }
2657
2658 /*
2659 * Use 1024ns as the unit of measurement since it's a reasonable
2660 * approximation of 1us and fast to compute.
2661 */
2662 delta >>= 10;
2663 if (!delta)
2664 return 0;
2665 sa->last_update_time = now;
2666
2667 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2668 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2669
2670 /* delta_w is the amount already accumulated against our next period */
2671 delta_w = sa->period_contrib;
2672 if (delta + delta_w >= 1024) {
2673 decayed = 1;
2674
2675 /* how much left for next period will start over, we don't know yet */
2676 sa->period_contrib = 0;
2677
2678 /*
2679 * Now that we know we're crossing a period boundary, figure
2680 * out how much from delta we need to complete the current
2681 * period and accrue it.
2682 */
2683 delta_w = 1024 - delta_w;
2684 scaled_delta_w = cap_scale(delta_w, scale_freq);
2685 if (weight) {
2686 sa->load_sum += weight * scaled_delta_w;
2687 if (cfs_rq) {
2688 cfs_rq->runnable_load_sum +=
2689 weight * scaled_delta_w;
2690 }
2691 }
2692 if (running)
2693 sa->util_sum += scaled_delta_w * scale_cpu;
2694
2695 delta -= delta_w;
2696
2697 /* Figure out how many additional periods this update spans */
2698 periods = delta / 1024;
2699 delta %= 1024;
2700
2701 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2702 if (cfs_rq) {
2703 cfs_rq->runnable_load_sum =
2704 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2705 }
2706 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2707
2708 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2709 contrib = __compute_runnable_contrib(periods);
2710 contrib = cap_scale(contrib, scale_freq);
2711 if (weight) {
2712 sa->load_sum += weight * contrib;
2713 if (cfs_rq)
2714 cfs_rq->runnable_load_sum += weight * contrib;
2715 }
2716 if (running)
2717 sa->util_sum += contrib * scale_cpu;
2718 }
2719
2720 /* Remainder of delta accrued against u_0` */
2721 scaled_delta = cap_scale(delta, scale_freq);
2722 if (weight) {
2723 sa->load_sum += weight * scaled_delta;
2724 if (cfs_rq)
2725 cfs_rq->runnable_load_sum += weight * scaled_delta;
2726 }
2727 if (running)
2728 sa->util_sum += scaled_delta * scale_cpu;
2729
2730 sa->period_contrib += delta;
2731
2732 if (decayed) {
2733 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2734 if (cfs_rq) {
2735 cfs_rq->runnable_load_avg =
2736 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2737 }
2738 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2739 }
2740
2741 return decayed;
2742 }
2743
2744 #ifdef CONFIG_FAIR_GROUP_SCHED
2745 /*
2746 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2747 * and effective_load (which is not done because it is too costly).
2748 */
2749 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2750 {
2751 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2752
2753 /*
2754 * No need to update load_avg for root_task_group as it is not used.
2755 */
2756 if (cfs_rq->tg == &root_task_group)
2757 return;
2758
2759 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2760 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2761 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2762 }
2763 }
2764
2765 /*
2766 * Called within set_task_rq() right before setting a task's cpu. The
2767 * caller only guarantees p->pi_lock is held; no other assumptions,
2768 * including the state of rq->lock, should be made.
2769 */
2770 void set_task_rq_fair(struct sched_entity *se,
2771 struct cfs_rq *prev, struct cfs_rq *next)
2772 {
2773 if (!sched_feat(ATTACH_AGE_LOAD))
2774 return;
2775
2776 /*
2777 * We are supposed to update the task to "current" time, then its up to
2778 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2779 * getting what current time is, so simply throw away the out-of-date
2780 * time. This will result in the wakee task is less decayed, but giving
2781 * the wakee more load sounds not bad.
2782 */
2783 if (se->avg.last_update_time && prev) {
2784 u64 p_last_update_time;
2785 u64 n_last_update_time;
2786
2787 #ifndef CONFIG_64BIT
2788 u64 p_last_update_time_copy;
2789 u64 n_last_update_time_copy;
2790
2791 do {
2792 p_last_update_time_copy = prev->load_last_update_time_copy;
2793 n_last_update_time_copy = next->load_last_update_time_copy;
2794
2795 smp_rmb();
2796
2797 p_last_update_time = prev->avg.last_update_time;
2798 n_last_update_time = next->avg.last_update_time;
2799
2800 } while (p_last_update_time != p_last_update_time_copy ||
2801 n_last_update_time != n_last_update_time_copy);
2802 #else
2803 p_last_update_time = prev->avg.last_update_time;
2804 n_last_update_time = next->avg.last_update_time;
2805 #endif
2806 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2807 &se->avg, 0, 0, NULL);
2808 se->avg.last_update_time = n_last_update_time;
2809 }
2810 }
2811 #else /* CONFIG_FAIR_GROUP_SCHED */
2812 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2813 #endif /* CONFIG_FAIR_GROUP_SCHED */
2814
2815 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2816
2817 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2818 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2819 {
2820 struct sched_avg *sa = &cfs_rq->avg;
2821 int decayed, removed = 0;
2822
2823 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2824 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2825 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2826 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2827 removed = 1;
2828 }
2829
2830 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2831 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2832 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2833 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2834 }
2835
2836 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2837 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2838
2839 #ifndef CONFIG_64BIT
2840 smp_wmb();
2841 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2842 #endif
2843
2844 return decayed || removed;
2845 }
2846
2847 /* Update task and its cfs_rq load average */
2848 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2849 {
2850 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2851 u64 now = cfs_rq_clock_task(cfs_rq);
2852 int cpu = cpu_of(rq_of(cfs_rq));
2853
2854 /*
2855 * Track task load average for carrying it to new CPU after migrated, and
2856 * track group sched_entity load average for task_h_load calc in migration
2857 */
2858 __update_load_avg(now, cpu, &se->avg,
2859 se->on_rq * scale_load_down(se->load.weight),
2860 cfs_rq->curr == se, NULL);
2861
2862 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2863 update_tg_load_avg(cfs_rq, 0);
2864 }
2865
2866 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2867 {
2868 if (!sched_feat(ATTACH_AGE_LOAD))
2869 goto skip_aging;
2870
2871 /*
2872 * If we got migrated (either between CPUs or between cgroups) we'll
2873 * have aged the average right before clearing @last_update_time.
2874 */
2875 if (se->avg.last_update_time) {
2876 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2877 &se->avg, 0, 0, NULL);
2878
2879 /*
2880 * XXX: we could have just aged the entire load away if we've been
2881 * absent from the fair class for too long.
2882 */
2883 }
2884
2885 skip_aging:
2886 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2887 cfs_rq->avg.load_avg += se->avg.load_avg;
2888 cfs_rq->avg.load_sum += se->avg.load_sum;
2889 cfs_rq->avg.util_avg += se->avg.util_avg;
2890 cfs_rq->avg.util_sum += se->avg.util_sum;
2891 }
2892
2893 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2894 {
2895 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2896 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2897 cfs_rq->curr == se, NULL);
2898
2899 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2900 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2901 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2902 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2903 }
2904
2905 /* Add the load generated by se into cfs_rq's load average */
2906 static inline void
2907 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2908 {
2909 struct sched_avg *sa = &se->avg;
2910 u64 now = cfs_rq_clock_task(cfs_rq);
2911 int migrated, decayed;
2912
2913 migrated = !sa->last_update_time;
2914 if (!migrated) {
2915 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2916 se->on_rq * scale_load_down(se->load.weight),
2917 cfs_rq->curr == se, NULL);
2918 }
2919
2920 decayed = update_cfs_rq_load_avg(now, cfs_rq);
2921
2922 cfs_rq->runnable_load_avg += sa->load_avg;
2923 cfs_rq->runnable_load_sum += sa->load_sum;
2924
2925 if (migrated)
2926 attach_entity_load_avg(cfs_rq, se);
2927
2928 if (decayed || migrated)
2929 update_tg_load_avg(cfs_rq, 0);
2930 }
2931
2932 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
2933 static inline void
2934 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2935 {
2936 update_load_avg(se, 1);
2937
2938 cfs_rq->runnable_load_avg =
2939 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2940 cfs_rq->runnable_load_sum =
2941 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2942 }
2943
2944 #ifndef CONFIG_64BIT
2945 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2946 {
2947 u64 last_update_time_copy;
2948 u64 last_update_time;
2949
2950 do {
2951 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2952 smp_rmb();
2953 last_update_time = cfs_rq->avg.last_update_time;
2954 } while (last_update_time != last_update_time_copy);
2955
2956 return last_update_time;
2957 }
2958 #else
2959 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2960 {
2961 return cfs_rq->avg.last_update_time;
2962 }
2963 #endif
2964
2965 /*
2966 * Task first catches up with cfs_rq, and then subtract
2967 * itself from the cfs_rq (task must be off the queue now).
2968 */
2969 void remove_entity_load_avg(struct sched_entity *se)
2970 {
2971 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2972 u64 last_update_time;
2973
2974 /*
2975 * Newly created task or never used group entity should not be removed
2976 * from its (source) cfs_rq
2977 */
2978 if (se->avg.last_update_time == 0)
2979 return;
2980
2981 last_update_time = cfs_rq_last_update_time(cfs_rq);
2982
2983 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2984 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2985 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2986 }
2987
2988 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2989 {
2990 return cfs_rq->runnable_load_avg;
2991 }
2992
2993 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2994 {
2995 return cfs_rq->avg.load_avg;
2996 }
2997
2998 static int idle_balance(struct rq *this_rq);
2999
3000 #else /* CONFIG_SMP */
3001
3002 static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3003 static inline void
3004 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3005 static inline void
3006 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3007 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3008
3009 static inline void
3010 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3011 static inline void
3012 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3013
3014 static inline int idle_balance(struct rq *rq)
3015 {
3016 return 0;
3017 }
3018
3019 #endif /* CONFIG_SMP */
3020
3021 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3022 {
3023 #ifdef CONFIG_SCHEDSTATS
3024 struct task_struct *tsk = NULL;
3025
3026 if (entity_is_task(se))
3027 tsk = task_of(se);
3028
3029 if (se->statistics.sleep_start) {
3030 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3031
3032 if ((s64)delta < 0)
3033 delta = 0;
3034
3035 if (unlikely(delta > se->statistics.sleep_max))
3036 se->statistics.sleep_max = delta;
3037
3038 se->statistics.sleep_start = 0;
3039 se->statistics.sum_sleep_runtime += delta;
3040
3041 if (tsk) {
3042 account_scheduler_latency(tsk, delta >> 10, 1);
3043 trace_sched_stat_sleep(tsk, delta);
3044 }
3045 }
3046 if (se->statistics.block_start) {
3047 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3048
3049 if ((s64)delta < 0)
3050 delta = 0;
3051
3052 if (unlikely(delta > se->statistics.block_max))
3053 se->statistics.block_max = delta;
3054
3055 se->statistics.block_start = 0;
3056 se->statistics.sum_sleep_runtime += delta;
3057
3058 if (tsk) {
3059 if (tsk->in_iowait) {
3060 se->statistics.iowait_sum += delta;
3061 se->statistics.iowait_count++;
3062 trace_sched_stat_iowait(tsk, delta);
3063 }
3064
3065 trace_sched_stat_blocked(tsk, delta);
3066
3067 /*
3068 * Blocking time is in units of nanosecs, so shift by
3069 * 20 to get a milliseconds-range estimation of the
3070 * amount of time that the task spent sleeping:
3071 */
3072 if (unlikely(prof_on == SLEEP_PROFILING)) {
3073 profile_hits(SLEEP_PROFILING,
3074 (void *)get_wchan(tsk),
3075 delta >> 20);
3076 }
3077 account_scheduler_latency(tsk, delta >> 10, 0);
3078 }
3079 }
3080 #endif
3081 }
3082
3083 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3084 {
3085 #ifdef CONFIG_SCHED_DEBUG
3086 s64 d = se->vruntime - cfs_rq->min_vruntime;
3087
3088 if (d < 0)
3089 d = -d;
3090
3091 if (d > 3*sysctl_sched_latency)
3092 schedstat_inc(cfs_rq, nr_spread_over);
3093 #endif
3094 }
3095
3096 static void
3097 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3098 {
3099 u64 vruntime = cfs_rq->min_vruntime;
3100
3101 /*
3102 * The 'current' period is already promised to the current tasks,
3103 * however the extra weight of the new task will slow them down a
3104 * little, place the new task so that it fits in the slot that
3105 * stays open at the end.
3106 */
3107 if (initial && sched_feat(START_DEBIT))
3108 vruntime += sched_vslice(cfs_rq, se);
3109
3110 /* sleeps up to a single latency don't count. */
3111 if (!initial) {
3112 unsigned long thresh = sysctl_sched_latency;
3113
3114 /*
3115 * Halve their sleep time's effect, to allow
3116 * for a gentler effect of sleepers:
3117 */
3118 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3119 thresh >>= 1;
3120
3121 vruntime -= thresh;
3122 }
3123
3124 /* ensure we never gain time by being placed backwards. */
3125 se->vruntime = max_vruntime(se->vruntime, vruntime);
3126 }
3127
3128 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3129
3130 static inline void check_schedstat_required(void)
3131 {
3132 #ifdef CONFIG_SCHEDSTATS
3133 if (schedstat_enabled())
3134 return;
3135
3136 /* Force schedstat enabled if a dependent tracepoint is active */
3137 if (trace_sched_stat_wait_enabled() ||
3138 trace_sched_stat_sleep_enabled() ||
3139 trace_sched_stat_iowait_enabled() ||
3140 trace_sched_stat_blocked_enabled() ||
3141 trace_sched_stat_runtime_enabled()) {
3142 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3143 "stat_blocked and stat_runtime require the "
3144 "kernel parameter schedstats=enabled or "
3145 "kernel.sched_schedstats=1\n");
3146 }
3147 #endif
3148 }
3149
3150 static void
3151 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3152 {
3153 /*
3154 * Update the normalized vruntime before updating min_vruntime
3155 * through calling update_curr().
3156 */
3157 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3158 se->vruntime += cfs_rq->min_vruntime;
3159
3160 /*
3161 * Update run-time statistics of the 'current'.
3162 */
3163 update_curr(cfs_rq);
3164 enqueue_entity_load_avg(cfs_rq, se);
3165 account_entity_enqueue(cfs_rq, se);
3166 update_cfs_shares(cfs_rq);
3167
3168 if (flags & ENQUEUE_WAKEUP) {
3169 place_entity(cfs_rq, se, 0);
3170 if (schedstat_enabled())
3171 enqueue_sleeper(cfs_rq, se);
3172 }
3173
3174 check_schedstat_required();
3175 if (schedstat_enabled()) {
3176 update_stats_enqueue(cfs_rq, se);
3177 check_spread(cfs_rq, se);
3178 }
3179 if (se != cfs_rq->curr)
3180 __enqueue_entity(cfs_rq, se);
3181 se->on_rq = 1;
3182
3183 if (cfs_rq->nr_running == 1) {
3184 list_add_leaf_cfs_rq(cfs_rq);
3185 check_enqueue_throttle(cfs_rq);
3186 }
3187 }
3188
3189 static void __clear_buddies_last(struct sched_entity *se)
3190 {
3191 for_each_sched_entity(se) {
3192 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3193 if (cfs_rq->last != se)
3194 break;
3195
3196 cfs_rq->last = NULL;
3197 }
3198 }
3199
3200 static void __clear_buddies_next(struct sched_entity *se)
3201 {
3202 for_each_sched_entity(se) {
3203 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3204 if (cfs_rq->next != se)
3205 break;
3206
3207 cfs_rq->next = NULL;
3208 }
3209 }
3210
3211 static void __clear_buddies_skip(struct sched_entity *se)
3212 {
3213 for_each_sched_entity(se) {
3214 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3215 if (cfs_rq->skip != se)
3216 break;
3217
3218 cfs_rq->skip = NULL;
3219 }
3220 }
3221
3222 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3223 {
3224 if (cfs_rq->last == se)
3225 __clear_buddies_last(se);
3226
3227 if (cfs_rq->next == se)
3228 __clear_buddies_next(se);
3229
3230 if (cfs_rq->skip == se)
3231 __clear_buddies_skip(se);
3232 }
3233
3234 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3235
3236 static void
3237 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3238 {
3239 /*
3240 * Update run-time statistics of the 'current'.
3241 */
3242 update_curr(cfs_rq);
3243 dequeue_entity_load_avg(cfs_rq, se);
3244
3245 if (schedstat_enabled())
3246 update_stats_dequeue(cfs_rq, se, flags);
3247
3248 clear_buddies(cfs_rq, se);
3249
3250 if (se != cfs_rq->curr)
3251 __dequeue_entity(cfs_rq, se);
3252 se->on_rq = 0;
3253 account_entity_dequeue(cfs_rq, se);
3254
3255 /*
3256 * Normalize the entity after updating the min_vruntime because the
3257 * update can refer to the ->curr item and we need to reflect this
3258 * movement in our normalized position.
3259 */
3260 if (!(flags & DEQUEUE_SLEEP))
3261 se->vruntime -= cfs_rq->min_vruntime;
3262
3263 /* return excess runtime on last dequeue */
3264 return_cfs_rq_runtime(cfs_rq);
3265
3266 update_min_vruntime(cfs_rq);
3267 update_cfs_shares(cfs_rq);
3268 }
3269
3270 /*
3271 * Preempt the current task with a newly woken task if needed:
3272 */
3273 static void
3274 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3275 {
3276 unsigned long ideal_runtime, delta_exec;
3277 struct sched_entity *se;
3278 s64 delta;
3279
3280 ideal_runtime = sched_slice(cfs_rq, curr);
3281 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3282 if (delta_exec > ideal_runtime) {
3283 resched_curr(rq_of(cfs_rq));
3284 /*
3285 * The current task ran long enough, ensure it doesn't get
3286 * re-elected due to buddy favours.
3287 */
3288 clear_buddies(cfs_rq, curr);
3289 return;
3290 }
3291
3292 /*
3293 * Ensure that a task that missed wakeup preemption by a
3294 * narrow margin doesn't have to wait for a full slice.
3295 * This also mitigates buddy induced latencies under load.
3296 */
3297 if (delta_exec < sysctl_sched_min_granularity)
3298 return;
3299
3300 se = __pick_first_entity(cfs_rq);
3301 delta = curr->vruntime - se->vruntime;
3302
3303 if (delta < 0)
3304 return;
3305
3306 if (delta > ideal_runtime)
3307 resched_curr(rq_of(cfs_rq));
3308 }
3309
3310 static void
3311 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3312 {
3313 /* 'current' is not kept within the tree. */
3314 if (se->on_rq) {
3315 /*
3316 * Any task has to be enqueued before it get to execute on
3317 * a CPU. So account for the time it spent waiting on the
3318 * runqueue.
3319 */
3320 if (schedstat_enabled())
3321 update_stats_wait_end(cfs_rq, se);
3322 __dequeue_entity(cfs_rq, se);
3323 update_load_avg(se, 1);
3324 }
3325
3326 update_stats_curr_start(cfs_rq, se);
3327 cfs_rq->curr = se;
3328 #ifdef CONFIG_SCHEDSTATS
3329 /*
3330 * Track our maximum slice length, if the CPU's load is at
3331 * least twice that of our own weight (i.e. dont track it
3332 * when there are only lesser-weight tasks around):
3333 */
3334 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3335 se->statistics.slice_max = max(se->statistics.slice_max,
3336 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3337 }
3338 #endif
3339 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3340 }
3341
3342 static int
3343 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3344
3345 /*
3346 * Pick the next process, keeping these things in mind, in this order:
3347 * 1) keep things fair between processes/task groups
3348 * 2) pick the "next" process, since someone really wants that to run
3349 * 3) pick the "last" process, for cache locality
3350 * 4) do not run the "skip" process, if something else is available
3351 */
3352 static struct sched_entity *
3353 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3354 {
3355 struct sched_entity *left = __pick_first_entity(cfs_rq);
3356 struct sched_entity *se;
3357
3358 /*
3359 * If curr is set we have to see if its left of the leftmost entity
3360 * still in the tree, provided there was anything in the tree at all.
3361 */
3362 if (!left || (curr && entity_before(curr, left)))
3363 left = curr;
3364
3365 se = left; /* ideally we run the leftmost entity */
3366
3367 /*
3368 * Avoid running the skip buddy, if running something else can
3369 * be done without getting too unfair.
3370 */
3371 if (cfs_rq->skip == se) {
3372 struct sched_entity *second;
3373
3374 if (se == curr) {
3375 second = __pick_first_entity(cfs_rq);
3376 } else {
3377 second = __pick_next_entity(se);
3378 if (!second || (curr && entity_before(curr, second)))
3379 second = curr;
3380 }
3381
3382 if (second && wakeup_preempt_entity(second, left) < 1)
3383 se = second;
3384 }
3385
3386 /*
3387 * Prefer last buddy, try to return the CPU to a preempted task.
3388 */
3389 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3390 se = cfs_rq->last;
3391
3392 /*
3393 * Someone really wants this to run. If it's not unfair, run it.
3394 */
3395 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3396 se = cfs_rq->next;
3397
3398 clear_buddies(cfs_rq, se);
3399
3400 return se;
3401 }
3402
3403 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3404
3405 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3406 {
3407 /*
3408 * If still on the runqueue then deactivate_task()
3409 * was not called and update_curr() has to be done:
3410 */
3411 if (prev->on_rq)
3412 update_curr(cfs_rq);
3413
3414 /* throttle cfs_rqs exceeding runtime */
3415 check_cfs_rq_runtime(cfs_rq);
3416
3417 if (schedstat_enabled()) {
3418 check_spread(cfs_rq, prev);
3419 if (prev->on_rq)
3420 update_stats_wait_start(cfs_rq, prev);
3421 }
3422
3423 if (prev->on_rq) {
3424 /* Put 'current' back into the tree. */
3425 __enqueue_entity(cfs_rq, prev);
3426 /* in !on_rq case, update occurred at dequeue */
3427 update_load_avg(prev, 0);
3428 }
3429 cfs_rq->curr = NULL;
3430 }
3431
3432 static void
3433 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3434 {
3435 /*
3436 * Update run-time statistics of the 'current'.
3437 */
3438 update_curr(cfs_rq);
3439
3440 /*
3441 * Ensure that runnable average is periodically updated.
3442 */
3443 update_load_avg(curr, 1);
3444 update_cfs_shares(cfs_rq);
3445
3446 #ifdef CONFIG_SCHED_HRTICK
3447 /*
3448 * queued ticks are scheduled to match the slice, so don't bother
3449 * validating it and just reschedule.
3450 */
3451 if (queued) {
3452 resched_curr(rq_of(cfs_rq));
3453 return;
3454 }
3455 /*
3456 * don't let the period tick interfere with the hrtick preemption
3457 */
3458 if (!sched_feat(DOUBLE_TICK) &&
3459 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3460 return;
3461 #endif
3462
3463 if (cfs_rq->nr_running > 1)
3464 check_preempt_tick(cfs_rq, curr);
3465 }
3466
3467
3468 /**************************************************
3469 * CFS bandwidth control machinery
3470 */
3471
3472 #ifdef CONFIG_CFS_BANDWIDTH
3473
3474 #ifdef HAVE_JUMP_LABEL
3475 static struct static_key __cfs_bandwidth_used;
3476
3477 static inline bool cfs_bandwidth_used(void)
3478 {
3479 return static_key_false(&__cfs_bandwidth_used);
3480 }
3481
3482 void cfs_bandwidth_usage_inc(void)
3483 {
3484 static_key_slow_inc(&__cfs_bandwidth_used);
3485 }
3486
3487 void cfs_bandwidth_usage_dec(void)
3488 {
3489 static_key_slow_dec(&__cfs_bandwidth_used);
3490 }
3491 #else /* HAVE_JUMP_LABEL */
3492 static bool cfs_bandwidth_used(void)
3493 {
3494 return true;
3495 }
3496
3497 void cfs_bandwidth_usage_inc(void) {}
3498 void cfs_bandwidth_usage_dec(void) {}
3499 #endif /* HAVE_JUMP_LABEL */
3500
3501 /*
3502 * default period for cfs group bandwidth.
3503 * default: 0.1s, units: nanoseconds
3504 */
3505 static inline u64 default_cfs_period(void)
3506 {
3507 return 100000000ULL;
3508 }
3509
3510 static inline u64 sched_cfs_bandwidth_slice(void)
3511 {
3512 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3513 }
3514
3515 /*
3516 * Replenish runtime according to assigned quota and update expiration time.
3517 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3518 * additional synchronization around rq->lock.
3519 *
3520 * requires cfs_b->lock
3521 */
3522 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3523 {
3524 u64 now;
3525
3526 if (cfs_b->quota == RUNTIME_INF)
3527 return;
3528
3529 now = sched_clock_cpu(smp_processor_id());
3530 cfs_b->runtime = cfs_b->quota;
3531 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3532 }
3533
3534 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3535 {
3536 return &tg->cfs_bandwidth;
3537 }
3538
3539 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3540 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3541 {
3542 if (unlikely(cfs_rq->throttle_count))
3543 return cfs_rq->throttled_clock_task;
3544
3545 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3546 }
3547
3548 /* returns 0 on failure to allocate runtime */
3549 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3550 {
3551 struct task_group *tg = cfs_rq->tg;
3552 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3553 u64 amount = 0, min_amount, expires;
3554
3555 /* note: this is a positive sum as runtime_remaining <= 0 */
3556 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3557
3558 raw_spin_lock(&cfs_b->lock);
3559 if (cfs_b->quota == RUNTIME_INF)
3560 amount = min_amount;
3561 else {
3562 start_cfs_bandwidth(cfs_b);
3563
3564 if (cfs_b->runtime > 0) {
3565 amount = min(cfs_b->runtime, min_amount);
3566 cfs_b->runtime -= amount;
3567 cfs_b->idle = 0;
3568 }
3569 }
3570 expires = cfs_b->runtime_expires;
3571 raw_spin_unlock(&cfs_b->lock);
3572
3573 cfs_rq->runtime_remaining += amount;
3574 /*
3575 * we may have advanced our local expiration to account for allowed
3576 * spread between our sched_clock and the one on which runtime was
3577 * issued.
3578 */
3579 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3580 cfs_rq->runtime_expires = expires;
3581
3582 return cfs_rq->runtime_remaining > 0;
3583 }
3584
3585 /*
3586 * Note: This depends on the synchronization provided by sched_clock and the
3587 * fact that rq->clock snapshots this value.
3588 */
3589 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3590 {
3591 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3592
3593 /* if the deadline is ahead of our clock, nothing to do */
3594 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3595 return;
3596
3597 if (cfs_rq->runtime_remaining < 0)
3598 return;
3599
3600 /*
3601 * If the local deadline has passed we have to consider the
3602 * possibility that our sched_clock is 'fast' and the global deadline
3603 * has not truly expired.
3604 *
3605 * Fortunately we can check determine whether this the case by checking
3606 * whether the global deadline has advanced. It is valid to compare
3607 * cfs_b->runtime_expires without any locks since we only care about
3608 * exact equality, so a partial write will still work.
3609 */
3610
3611 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3612 /* extend local deadline, drift is bounded above by 2 ticks */
3613 cfs_rq->runtime_expires += TICK_NSEC;
3614 } else {
3615 /* global deadline is ahead, expiration has passed */
3616 cfs_rq->runtime_remaining = 0;
3617 }
3618 }
3619
3620 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3621 {
3622 /* dock delta_exec before expiring quota (as it could span periods) */
3623 cfs_rq->runtime_remaining -= delta_exec;
3624 expire_cfs_rq_runtime(cfs_rq);
3625
3626 if (likely(cfs_rq->runtime_remaining > 0))
3627 return;
3628
3629 /*
3630 * if we're unable to extend our runtime we resched so that the active
3631 * hierarchy can be throttled
3632 */
3633 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3634 resched_curr(rq_of(cfs_rq));
3635 }
3636
3637 static __always_inline
3638 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3639 {
3640 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3641 return;
3642
3643 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3644 }
3645
3646 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3647 {
3648 return cfs_bandwidth_used() && cfs_rq->throttled;
3649 }
3650
3651 /* check whether cfs_rq, or any parent, is throttled */
3652 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3653 {
3654 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3655 }
3656
3657 /*
3658 * Ensure that neither of the group entities corresponding to src_cpu or
3659 * dest_cpu are members of a throttled hierarchy when performing group
3660 * load-balance operations.
3661 */
3662 static inline int throttled_lb_pair(struct task_group *tg,
3663 int src_cpu, int dest_cpu)
3664 {
3665 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3666
3667 src_cfs_rq = tg->cfs_rq[src_cpu];
3668 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3669
3670 return throttled_hierarchy(src_cfs_rq) ||
3671 throttled_hierarchy(dest_cfs_rq);
3672 }
3673
3674 /* updated child weight may affect parent so we have to do this bottom up */
3675 static int tg_unthrottle_up(struct task_group *tg, void *data)
3676 {
3677 struct rq *rq = data;
3678 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3679
3680 cfs_rq->throttle_count--;
3681 #ifdef CONFIG_SMP
3682 if (!cfs_rq->throttle_count) {
3683 /* adjust cfs_rq_clock_task() */
3684 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3685 cfs_rq->throttled_clock_task;
3686 }
3687 #endif
3688
3689 return 0;
3690 }
3691
3692 static int tg_throttle_down(struct task_group *tg, void *data)
3693 {
3694 struct rq *rq = data;
3695 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3696
3697 /* group is entering throttled state, stop time */
3698 if (!cfs_rq->throttle_count)
3699 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3700 cfs_rq->throttle_count++;
3701
3702 return 0;
3703 }
3704
3705 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3706 {
3707 struct rq *rq = rq_of(cfs_rq);
3708 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3709 struct sched_entity *se;
3710 long task_delta, dequeue = 1;
3711 bool empty;
3712
3713 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3714
3715 /* freeze hierarchy runnable averages while throttled */
3716 rcu_read_lock();
3717 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3718 rcu_read_unlock();
3719
3720 task_delta = cfs_rq->h_nr_running;
3721 for_each_sched_entity(se) {
3722 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3723 /* throttled entity or throttle-on-deactivate */
3724 if (!se->on_rq)
3725 break;
3726
3727 if (dequeue)
3728 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3729 qcfs_rq->h_nr_running -= task_delta;
3730
3731 if (qcfs_rq->load.weight)
3732 dequeue = 0;
3733 }
3734
3735 if (!se)
3736 sub_nr_running(rq, task_delta);
3737
3738 cfs_rq->throttled = 1;
3739 cfs_rq->throttled_clock = rq_clock(rq);
3740 raw_spin_lock(&cfs_b->lock);
3741 empty = list_empty(&cfs_b->throttled_cfs_rq);
3742
3743 /*
3744 * Add to the _head_ of the list, so that an already-started
3745 * distribute_cfs_runtime will not see us
3746 */
3747 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3748
3749 /*
3750 * If we're the first throttled task, make sure the bandwidth
3751 * timer is running.
3752 */
3753 if (empty)
3754 start_cfs_bandwidth(cfs_b);
3755
3756 raw_spin_unlock(&cfs_b->lock);
3757 }
3758
3759 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3760 {
3761 struct rq *rq = rq_of(cfs_rq);
3762 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3763 struct sched_entity *se;
3764 int enqueue = 1;
3765 long task_delta;
3766
3767 se = cfs_rq->tg->se[cpu_of(rq)];
3768
3769 cfs_rq->throttled = 0;
3770
3771 update_rq_clock(rq);
3772
3773 raw_spin_lock(&cfs_b->lock);
3774 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3775 list_del_rcu(&cfs_rq->throttled_list);
3776 raw_spin_unlock(&cfs_b->lock);
3777
3778 /* update hierarchical throttle state */
3779 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3780
3781 if (!cfs_rq->load.weight)
3782 return;
3783
3784 task_delta = cfs_rq->h_nr_running;
3785 for_each_sched_entity(se) {
3786 if (se->on_rq)
3787 enqueue = 0;
3788
3789 cfs_rq = cfs_rq_of(se);
3790 if (enqueue)
3791 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3792 cfs_rq->h_nr_running += task_delta;
3793
3794 if (cfs_rq_throttled(cfs_rq))
3795 break;
3796 }
3797
3798 if (!se)
3799 add_nr_running(rq, task_delta);
3800
3801 /* determine whether we need to wake up potentially idle cpu */
3802 if (rq->curr == rq->idle && rq->cfs.nr_running)
3803 resched_curr(rq);
3804 }
3805
3806 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3807 u64 remaining, u64 expires)
3808 {
3809 struct cfs_rq *cfs_rq;
3810 u64 runtime;
3811 u64 starting_runtime = remaining;
3812
3813 rcu_read_lock();
3814 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3815 throttled_list) {
3816 struct rq *rq = rq_of(cfs_rq);
3817
3818 raw_spin_lock(&rq->lock);
3819 if (!cfs_rq_throttled(cfs_rq))
3820 goto next;
3821
3822 runtime = -cfs_rq->runtime_remaining + 1;
3823 if (runtime > remaining)
3824 runtime = remaining;
3825 remaining -= runtime;
3826
3827 cfs_rq->runtime_remaining += runtime;
3828 cfs_rq->runtime_expires = expires;
3829
3830 /* we check whether we're throttled above */
3831 if (cfs_rq->runtime_remaining > 0)
3832 unthrottle_cfs_rq(cfs_rq);
3833
3834 next:
3835 raw_spin_unlock(&rq->lock);
3836
3837 if (!remaining)
3838 break;
3839 }
3840 rcu_read_unlock();
3841
3842 return starting_runtime - remaining;
3843 }
3844
3845 /*
3846 * Responsible for refilling a task_group's bandwidth and unthrottling its
3847 * cfs_rqs as appropriate. If there has been no activity within the last
3848 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3849 * used to track this state.
3850 */
3851 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3852 {
3853 u64 runtime, runtime_expires;
3854 int throttled;
3855
3856 /* no need to continue the timer with no bandwidth constraint */
3857 if (cfs_b->quota == RUNTIME_INF)
3858 goto out_deactivate;
3859
3860 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3861 cfs_b->nr_periods += overrun;
3862
3863 /*
3864 * idle depends on !throttled (for the case of a large deficit), and if
3865 * we're going inactive then everything else can be deferred
3866 */
3867 if (cfs_b->idle && !throttled)
3868 goto out_deactivate;
3869
3870 __refill_cfs_bandwidth_runtime(cfs_b);
3871
3872 if (!throttled) {
3873 /* mark as potentially idle for the upcoming period */
3874 cfs_b->idle = 1;
3875 return 0;
3876 }
3877
3878 /* account preceding periods in which throttling occurred */
3879 cfs_b->nr_throttled += overrun;
3880
3881 runtime_expires = cfs_b->runtime_expires;
3882
3883 /*
3884 * This check is repeated as we are holding onto the new bandwidth while
3885 * we unthrottle. This can potentially race with an unthrottled group
3886 * trying to acquire new bandwidth from the global pool. This can result
3887 * in us over-using our runtime if it is all used during this loop, but
3888 * only by limited amounts in that extreme case.
3889 */
3890 while (throttled && cfs_b->runtime > 0) {
3891 runtime = cfs_b->runtime;
3892 raw_spin_unlock(&cfs_b->lock);
3893 /* we can't nest cfs_b->lock while distributing bandwidth */
3894 runtime = distribute_cfs_runtime(cfs_b, runtime,
3895 runtime_expires);
3896 raw_spin_lock(&cfs_b->lock);
3897
3898 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3899
3900 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3901 }
3902
3903 /*
3904 * While we are ensured activity in the period following an
3905 * unthrottle, this also covers the case in which the new bandwidth is
3906 * insufficient to cover the existing bandwidth deficit. (Forcing the
3907 * timer to remain active while there are any throttled entities.)
3908 */
3909 cfs_b->idle = 0;
3910
3911 return 0;
3912
3913 out_deactivate:
3914 return 1;
3915 }
3916
3917 /* a cfs_rq won't donate quota below this amount */
3918 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3919 /* minimum remaining period time to redistribute slack quota */
3920 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3921 /* how long we wait to gather additional slack before distributing */
3922 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3923
3924 /*
3925 * Are we near the end of the current quota period?
3926 *
3927 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3928 * hrtimer base being cleared by hrtimer_start. In the case of
3929 * migrate_hrtimers, base is never cleared, so we are fine.
3930 */
3931 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3932 {
3933 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3934 u64 remaining;
3935
3936 /* if the call-back is running a quota refresh is already occurring */
3937 if (hrtimer_callback_running(refresh_timer))
3938 return 1;
3939
3940 /* is a quota refresh about to occur? */
3941 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3942 if (remaining < min_expire)
3943 return 1;
3944
3945 return 0;
3946 }
3947
3948 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3949 {
3950 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3951
3952 /* if there's a quota refresh soon don't bother with slack */
3953 if (runtime_refresh_within(cfs_b, min_left))
3954 return;
3955
3956 hrtimer_start(&cfs_b->slack_timer,
3957 ns_to_ktime(cfs_bandwidth_slack_period),
3958 HRTIMER_MODE_REL);
3959 }
3960
3961 /* we know any runtime found here is valid as update_curr() precedes return */
3962 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3963 {
3964 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3965 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3966
3967 if (slack_runtime <= 0)
3968 return;
3969
3970 raw_spin_lock(&cfs_b->lock);
3971 if (cfs_b->quota != RUNTIME_INF &&
3972 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3973 cfs_b->runtime += slack_runtime;
3974
3975 /* we are under rq->lock, defer unthrottling using a timer */
3976 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3977 !list_empty(&cfs_b->throttled_cfs_rq))
3978 start_cfs_slack_bandwidth(cfs_b);
3979 }
3980 raw_spin_unlock(&cfs_b->lock);
3981
3982 /* even if it's not valid for return we don't want to try again */
3983 cfs_rq->runtime_remaining -= slack_runtime;
3984 }
3985
3986 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3987 {
3988 if (!cfs_bandwidth_used())
3989 return;
3990
3991 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3992 return;
3993
3994 __return_cfs_rq_runtime(cfs_rq);
3995 }
3996
3997 /*
3998 * This is done with a timer (instead of inline with bandwidth return) since
3999 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4000 */
4001 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4002 {
4003 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4004 u64 expires;
4005
4006 /* confirm we're still not at a refresh boundary */
4007 raw_spin_lock(&cfs_b->lock);
4008 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4009 raw_spin_unlock(&cfs_b->lock);
4010 return;
4011 }
4012
4013 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4014 runtime = cfs_b->runtime;
4015
4016 expires = cfs_b->runtime_expires;
4017 raw_spin_unlock(&cfs_b->lock);
4018
4019 if (!runtime)
4020 return;
4021
4022 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4023
4024 raw_spin_lock(&cfs_b->lock);
4025 if (expires == cfs_b->runtime_expires)
4026 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4027 raw_spin_unlock(&cfs_b->lock);
4028 }
4029
4030 /*
4031 * When a group wakes up we want to make sure that its quota is not already
4032 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4033 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4034 */
4035 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4036 {
4037 if (!cfs_bandwidth_used())
4038 return;
4039
4040 /* an active group must be handled by the update_curr()->put() path */
4041 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4042 return;
4043
4044 /* ensure the group is not already throttled */
4045 if (cfs_rq_throttled(cfs_rq))
4046 return;
4047
4048 /* update runtime allocation */
4049 account_cfs_rq_runtime(cfs_rq, 0);
4050 if (cfs_rq->runtime_remaining <= 0)
4051 throttle_cfs_rq(cfs_rq);
4052 }
4053
4054 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4055 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4056 {
4057 if (!cfs_bandwidth_used())
4058 return false;
4059
4060 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4061 return false;
4062
4063 /*
4064 * it's possible for a throttled entity to be forced into a running
4065 * state (e.g. set_curr_task), in this case we're finished.
4066 */
4067 if (cfs_rq_throttled(cfs_rq))
4068 return true;
4069
4070 throttle_cfs_rq(cfs_rq);
4071 return true;
4072 }
4073
4074 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4075 {
4076 struct cfs_bandwidth *cfs_b =
4077 container_of(timer, struct cfs_bandwidth, slack_timer);
4078
4079 do_sched_cfs_slack_timer(cfs_b);
4080
4081 return HRTIMER_NORESTART;
4082 }
4083
4084 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4085 {
4086 struct cfs_bandwidth *cfs_b =
4087 container_of(timer, struct cfs_bandwidth, period_timer);
4088 int overrun;
4089 int idle = 0;
4090
4091 raw_spin_lock(&cfs_b->lock);
4092 for (;;) {
4093 overrun = hrtimer_forward_now(timer, cfs_b->period);
4094 if (!overrun)
4095 break;
4096
4097 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4098 }
4099 if (idle)
4100 cfs_b->period_active = 0;
4101 raw_spin_unlock(&cfs_b->lock);
4102
4103 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4104 }
4105
4106 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4107 {
4108 raw_spin_lock_init(&cfs_b->lock);
4109 cfs_b->runtime = 0;
4110 cfs_b->quota = RUNTIME_INF;
4111 cfs_b->period = ns_to_ktime(default_cfs_period());
4112
4113 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4114 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4115 cfs_b->period_timer.function = sched_cfs_period_timer;
4116 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4117 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4118 }
4119
4120 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4121 {
4122 cfs_rq->runtime_enabled = 0;
4123 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4124 }
4125
4126 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4127 {
4128 lockdep_assert_held(&cfs_b->lock);
4129
4130 if (!cfs_b->period_active) {
4131 cfs_b->period_active = 1;
4132 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4133 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4134 }
4135 }
4136
4137 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4138 {
4139 /* init_cfs_bandwidth() was not called */
4140 if (!cfs_b->throttled_cfs_rq.next)
4141 return;
4142
4143 hrtimer_cancel(&cfs_b->period_timer);
4144 hrtimer_cancel(&cfs_b->slack_timer);
4145 }
4146
4147 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4148 {
4149 struct cfs_rq *cfs_rq;
4150
4151 for_each_leaf_cfs_rq(rq, cfs_rq) {
4152 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4153
4154 raw_spin_lock(&cfs_b->lock);
4155 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4156 raw_spin_unlock(&cfs_b->lock);
4157 }
4158 }
4159
4160 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4161 {
4162 struct cfs_rq *cfs_rq;
4163
4164 for_each_leaf_cfs_rq(rq, cfs_rq) {
4165 if (!cfs_rq->runtime_enabled)
4166 continue;
4167
4168 /*
4169 * clock_task is not advancing so we just need to make sure
4170 * there's some valid quota amount
4171 */
4172 cfs_rq->runtime_remaining = 1;
4173 /*
4174 * Offline rq is schedulable till cpu is completely disabled
4175 * in take_cpu_down(), so we prevent new cfs throttling here.
4176 */
4177 cfs_rq->runtime_enabled = 0;
4178
4179 if (cfs_rq_throttled(cfs_rq))
4180 unthrottle_cfs_rq(cfs_rq);
4181 }
4182 }
4183
4184 #else /* CONFIG_CFS_BANDWIDTH */
4185 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4186 {
4187 return rq_clock_task(rq_of(cfs_rq));
4188 }
4189
4190 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4191 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4192 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4193 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4194
4195 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4196 {
4197 return 0;
4198 }
4199
4200 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4201 {
4202 return 0;
4203 }
4204
4205 static inline int throttled_lb_pair(struct task_group *tg,
4206 int src_cpu, int dest_cpu)
4207 {
4208 return 0;
4209 }
4210
4211 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4212
4213 #ifdef CONFIG_FAIR_GROUP_SCHED
4214 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4215 #endif
4216
4217 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4218 {
4219 return NULL;
4220 }
4221 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4222 static inline void update_runtime_enabled(struct rq *rq) {}
4223 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4224
4225 #endif /* CONFIG_CFS_BANDWIDTH */
4226
4227 /**************************************************
4228 * CFS operations on tasks:
4229 */
4230
4231 #ifdef CONFIG_SCHED_HRTICK
4232 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4233 {
4234 struct sched_entity *se = &p->se;
4235 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4236
4237 WARN_ON(task_rq(p) != rq);
4238
4239 if (cfs_rq->nr_running > 1) {
4240 u64 slice = sched_slice(cfs_rq, se);
4241 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4242 s64 delta = slice - ran;
4243
4244 if (delta < 0) {
4245 if (rq->curr == p)
4246 resched_curr(rq);
4247 return;
4248 }
4249 hrtick_start(rq, delta);
4250 }
4251 }
4252
4253 /*
4254 * called from enqueue/dequeue and updates the hrtick when the
4255 * current task is from our class and nr_running is low enough
4256 * to matter.
4257 */
4258 static void hrtick_update(struct rq *rq)
4259 {
4260 struct task_struct *curr = rq->curr;
4261
4262 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4263 return;
4264
4265 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4266 hrtick_start_fair(rq, curr);
4267 }
4268 #else /* !CONFIG_SCHED_HRTICK */
4269 static inline void
4270 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4271 {
4272 }
4273
4274 static inline void hrtick_update(struct rq *rq)
4275 {
4276 }
4277 #endif
4278
4279 /*
4280 * The enqueue_task method is called before nr_running is
4281 * increased. Here we update the fair scheduling stats and
4282 * then put the task into the rbtree:
4283 */
4284 static void
4285 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4286 {
4287 struct cfs_rq *cfs_rq;
4288 struct sched_entity *se = &p->se;
4289
4290 for_each_sched_entity(se) {
4291 if (se->on_rq)
4292 break;
4293 cfs_rq = cfs_rq_of(se);
4294 enqueue_entity(cfs_rq, se, flags);
4295
4296 /*
4297 * end evaluation on encountering a throttled cfs_rq
4298 *
4299 * note: in the case of encountering a throttled cfs_rq we will
4300 * post the final h_nr_running increment below.
4301 */
4302 if (cfs_rq_throttled(cfs_rq))
4303 break;
4304 cfs_rq->h_nr_running++;
4305
4306 flags = ENQUEUE_WAKEUP;
4307 }
4308
4309 for_each_sched_entity(se) {
4310 cfs_rq = cfs_rq_of(se);
4311 cfs_rq->h_nr_running++;
4312
4313 if (cfs_rq_throttled(cfs_rq))
4314 break;
4315
4316 update_load_avg(se, 1);
4317 update_cfs_shares(cfs_rq);
4318 }
4319
4320 if (!se)
4321 add_nr_running(rq, 1);
4322
4323 hrtick_update(rq);
4324 }
4325
4326 static void set_next_buddy(struct sched_entity *se);
4327
4328 /*
4329 * The dequeue_task method is called before nr_running is
4330 * decreased. We remove the task from the rbtree and
4331 * update the fair scheduling stats:
4332 */
4333 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4334 {
4335 struct cfs_rq *cfs_rq;
4336 struct sched_entity *se = &p->se;
4337 int task_sleep = flags & DEQUEUE_SLEEP;
4338
4339 for_each_sched_entity(se) {
4340 cfs_rq = cfs_rq_of(se);
4341 dequeue_entity(cfs_rq, se, flags);
4342
4343 /*
4344 * end evaluation on encountering a throttled cfs_rq
4345 *
4346 * note: in the case of encountering a throttled cfs_rq we will
4347 * post the final h_nr_running decrement below.
4348 */
4349 if (cfs_rq_throttled(cfs_rq))
4350 break;
4351 cfs_rq->h_nr_running--;
4352
4353 /* Don't dequeue parent if it has other entities besides us */
4354 if (cfs_rq->load.weight) {
4355 /*
4356 * Bias pick_next to pick a task from this cfs_rq, as
4357 * p is sleeping when it is within its sched_slice.
4358 */
4359 if (task_sleep && parent_entity(se))
4360 set_next_buddy(parent_entity(se));
4361
4362 /* avoid re-evaluating load for this entity */
4363 se = parent_entity(se);
4364 break;
4365 }
4366 flags |= DEQUEUE_SLEEP;
4367 }
4368
4369 for_each_sched_entity(se) {
4370 cfs_rq = cfs_rq_of(se);
4371 cfs_rq->h_nr_running--;
4372
4373 if (cfs_rq_throttled(cfs_rq))
4374 break;
4375
4376 update_load_avg(se, 1);
4377 update_cfs_shares(cfs_rq);
4378 }
4379
4380 if (!se)
4381 sub_nr_running(rq, 1);
4382
4383 hrtick_update(rq);
4384 }
4385
4386 #ifdef CONFIG_SMP
4387
4388 /*
4389 * per rq 'load' arrray crap; XXX kill this.
4390 */
4391
4392 /*
4393 * The exact cpuload calculated at every tick would be:
4394 *
4395 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4396 *
4397 * If a cpu misses updates for n ticks (as it was idle) and update gets
4398 * called on the n+1-th tick when cpu may be busy, then we have:
4399 *
4400 * load_n = (1 - 1/2^i)^n * load_0
4401 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4402 *
4403 * decay_load_missed() below does efficient calculation of
4404 *
4405 * load' = (1 - 1/2^i)^n * load
4406 *
4407 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4408 * This allows us to precompute the above in said factors, thereby allowing the
4409 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4410 * fixed_power_int())
4411 *
4412 * The calculation is approximated on a 128 point scale.
4413 */
4414 #define DEGRADE_SHIFT 7
4415
4416 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4417 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4418 { 0, 0, 0, 0, 0, 0, 0, 0 },
4419 { 64, 32, 8, 0, 0, 0, 0, 0 },
4420 { 96, 72, 40, 12, 1, 0, 0, 0 },
4421 { 112, 98, 75, 43, 15, 1, 0, 0 },
4422 { 120, 112, 98, 76, 45, 16, 2, 0 }
4423 };
4424
4425 /*
4426 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4427 * would be when CPU is idle and so we just decay the old load without
4428 * adding any new load.
4429 */
4430 static unsigned long
4431 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4432 {
4433 int j = 0;
4434
4435 if (!missed_updates)
4436 return load;
4437
4438 if (missed_updates >= degrade_zero_ticks[idx])
4439 return 0;
4440
4441 if (idx == 1)
4442 return load >> missed_updates;
4443
4444 while (missed_updates) {
4445 if (missed_updates % 2)
4446 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4447
4448 missed_updates >>= 1;
4449 j++;
4450 }
4451 return load;
4452 }
4453
4454 /**
4455 * __update_cpu_load - update the rq->cpu_load[] statistics
4456 * @this_rq: The rq to update statistics for
4457 * @this_load: The current load
4458 * @pending_updates: The number of missed updates
4459 * @active: !0 for NOHZ_FULL
4460 *
4461 * Update rq->cpu_load[] statistics. This function is usually called every
4462 * scheduler tick (TICK_NSEC).
4463 *
4464 * This function computes a decaying average:
4465 *
4466 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4467 *
4468 * Because of NOHZ it might not get called on every tick which gives need for
4469 * the @pending_updates argument.
4470 *
4471 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4472 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4473 * = A * (A * load[i]_n-2 + B) + B
4474 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4475 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4476 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4477 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4478 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4479 *
4480 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4481 * any change in load would have resulted in the tick being turned back on.
4482 *
4483 * For regular NOHZ, this reduces to:
4484 *
4485 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4486 *
4487 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4488 * term. See the @active paramter.
4489 */
4490 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4491 unsigned long pending_updates, int active)
4492 {
4493 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4494 int i, scale;
4495
4496 this_rq->nr_load_updates++;
4497
4498 /* Update our load: */
4499 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4500 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4501 unsigned long old_load, new_load;
4502
4503 /* scale is effectively 1 << i now, and >> i divides by scale */
4504
4505 old_load = this_rq->cpu_load[i] - tickless_load;
4506 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4507 old_load += tickless_load;
4508 new_load = this_load;
4509 /*
4510 * Round up the averaging division if load is increasing. This
4511 * prevents us from getting stuck on 9 if the load is 10, for
4512 * example.
4513 */
4514 if (new_load > old_load)
4515 new_load += scale - 1;
4516
4517 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4518 }
4519
4520 sched_avg_update(this_rq);
4521 }
4522
4523 /* Used instead of source_load when we know the type == 0 */
4524 static unsigned long weighted_cpuload(const int cpu)
4525 {
4526 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4527 }
4528
4529 #ifdef CONFIG_NO_HZ_COMMON
4530 /*
4531 * There is no sane way to deal with nohz on smp when using jiffies because the
4532 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4533 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4534 *
4535 * Therefore we cannot use the delta approach from the regular tick since that
4536 * would seriously skew the load calculation. However we'll make do for those
4537 * updates happening while idle (nohz_idle_balance) or coming out of idle
4538 * (tick_nohz_idle_exit).
4539 *
4540 * This means we might still be one tick off for nohz periods.
4541 */
4542
4543 /*
4544 * Called from nohz_idle_balance() to update the load ratings before doing the
4545 * idle balance.
4546 */
4547 static void update_idle_cpu_load(struct rq *this_rq)
4548 {
4549 unsigned long curr_jiffies = READ_ONCE(jiffies);
4550 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4551 unsigned long pending_updates;
4552
4553 /*
4554 * bail if there's load or we're actually up-to-date.
4555 */
4556 if (load || curr_jiffies == this_rq->last_load_update_tick)
4557 return;
4558
4559 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4560 this_rq->last_load_update_tick = curr_jiffies;
4561
4562 __update_cpu_load(this_rq, load, pending_updates, 0);
4563 }
4564
4565 /*
4566 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4567 */
4568 void update_cpu_load_nohz(int active)
4569 {
4570 struct rq *this_rq = this_rq();
4571 unsigned long curr_jiffies = READ_ONCE(jiffies);
4572 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4573 unsigned long pending_updates;
4574
4575 if (curr_jiffies == this_rq->last_load_update_tick)
4576 return;
4577
4578 raw_spin_lock(&this_rq->lock);
4579 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4580 if (pending_updates) {
4581 this_rq->last_load_update_tick = curr_jiffies;
4582 /*
4583 * In the regular NOHZ case, we were idle, this means load 0.
4584 * In the NOHZ_FULL case, we were non-idle, we should consider
4585 * its weighted load.
4586 */
4587 __update_cpu_load(this_rq, load, pending_updates, active);
4588 }
4589 raw_spin_unlock(&this_rq->lock);
4590 }
4591 #endif /* CONFIG_NO_HZ */
4592
4593 /*
4594 * Called from scheduler_tick()
4595 */
4596 void update_cpu_load_active(struct rq *this_rq)
4597 {
4598 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4599 /*
4600 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4601 */
4602 this_rq->last_load_update_tick = jiffies;
4603 __update_cpu_load(this_rq, load, 1, 1);
4604 }
4605
4606 /*
4607 * Return a low guess at the load of a migration-source cpu weighted
4608 * according to the scheduling class and "nice" value.
4609 *
4610 * We want to under-estimate the load of migration sources, to
4611 * balance conservatively.
4612 */
4613 static unsigned long source_load(int cpu, int type)
4614 {
4615 struct rq *rq = cpu_rq(cpu);
4616 unsigned long total = weighted_cpuload(cpu);
4617
4618 if (type == 0 || !sched_feat(LB_BIAS))
4619 return total;
4620
4621 return min(rq->cpu_load[type-1], total);
4622 }
4623
4624 /*
4625 * Return a high guess at the load of a migration-target cpu weighted
4626 * according to the scheduling class and "nice" value.
4627 */
4628 static unsigned long target_load(int cpu, int type)
4629 {
4630 struct rq *rq = cpu_rq(cpu);
4631 unsigned long total = weighted_cpuload(cpu);
4632
4633 if (type == 0 || !sched_feat(LB_BIAS))
4634 return total;
4635
4636 return max(rq->cpu_load[type-1], total);
4637 }
4638
4639 static unsigned long capacity_of(int cpu)
4640 {
4641 return cpu_rq(cpu)->cpu_capacity;
4642 }
4643
4644 static unsigned long capacity_orig_of(int cpu)
4645 {
4646 return cpu_rq(cpu)->cpu_capacity_orig;
4647 }
4648
4649 static unsigned long cpu_avg_load_per_task(int cpu)
4650 {
4651 struct rq *rq = cpu_rq(cpu);
4652 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4653 unsigned long load_avg = weighted_cpuload(cpu);
4654
4655 if (nr_running)
4656 return load_avg / nr_running;
4657
4658 return 0;
4659 }
4660
4661 static void record_wakee(struct task_struct *p)
4662 {
4663 /*
4664 * Rough decay (wiping) for cost saving, don't worry
4665 * about the boundary, really active task won't care
4666 * about the loss.
4667 */
4668 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4669 current->wakee_flips >>= 1;
4670 current->wakee_flip_decay_ts = jiffies;
4671 }
4672
4673 if (current->last_wakee != p) {
4674 current->last_wakee = p;
4675 current->wakee_flips++;
4676 }
4677 }
4678
4679 static void task_waking_fair(struct task_struct *p)
4680 {
4681 struct sched_entity *se = &p->se;
4682 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4683 u64 min_vruntime;
4684
4685 #ifndef CONFIG_64BIT
4686 u64 min_vruntime_copy;
4687
4688 do {
4689 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4690 smp_rmb();
4691 min_vruntime = cfs_rq->min_vruntime;
4692 } while (min_vruntime != min_vruntime_copy);
4693 #else
4694 min_vruntime = cfs_rq->min_vruntime;
4695 #endif
4696
4697 se->vruntime -= min_vruntime;
4698 record_wakee(p);
4699 }
4700
4701 #ifdef CONFIG_FAIR_GROUP_SCHED
4702 /*
4703 * effective_load() calculates the load change as seen from the root_task_group
4704 *
4705 * Adding load to a group doesn't make a group heavier, but can cause movement
4706 * of group shares between cpus. Assuming the shares were perfectly aligned one
4707 * can calculate the shift in shares.
4708 *
4709 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4710 * on this @cpu and results in a total addition (subtraction) of @wg to the
4711 * total group weight.
4712 *
4713 * Given a runqueue weight distribution (rw_i) we can compute a shares
4714 * distribution (s_i) using:
4715 *
4716 * s_i = rw_i / \Sum rw_j (1)
4717 *
4718 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4719 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4720 * shares distribution (s_i):
4721 *
4722 * rw_i = { 2, 4, 1, 0 }
4723 * s_i = { 2/7, 4/7, 1/7, 0 }
4724 *
4725 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4726 * task used to run on and the CPU the waker is running on), we need to
4727 * compute the effect of waking a task on either CPU and, in case of a sync
4728 * wakeup, compute the effect of the current task going to sleep.
4729 *
4730 * So for a change of @wl to the local @cpu with an overall group weight change
4731 * of @wl we can compute the new shares distribution (s'_i) using:
4732 *
4733 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4734 *
4735 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4736 * differences in waking a task to CPU 0. The additional task changes the
4737 * weight and shares distributions like:
4738 *
4739 * rw'_i = { 3, 4, 1, 0 }
4740 * s'_i = { 3/8, 4/8, 1/8, 0 }
4741 *
4742 * We can then compute the difference in effective weight by using:
4743 *
4744 * dw_i = S * (s'_i - s_i) (3)
4745 *
4746 * Where 'S' is the group weight as seen by its parent.
4747 *
4748 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4749 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4750 * 4/7) times the weight of the group.
4751 */
4752 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4753 {
4754 struct sched_entity *se = tg->se[cpu];
4755
4756 if (!tg->parent) /* the trivial, non-cgroup case */
4757 return wl;
4758
4759 for_each_sched_entity(se) {
4760 long w, W;
4761
4762 tg = se->my_q->tg;
4763
4764 /*
4765 * W = @wg + \Sum rw_j
4766 */
4767 W = wg + calc_tg_weight(tg, se->my_q);
4768
4769 /*
4770 * w = rw_i + @wl
4771 */
4772 w = cfs_rq_load_avg(se->my_q) + wl;
4773
4774 /*
4775 * wl = S * s'_i; see (2)
4776 */
4777 if (W > 0 && w < W)
4778 wl = (w * (long)tg->shares) / W;
4779 else
4780 wl = tg->shares;
4781
4782 /*
4783 * Per the above, wl is the new se->load.weight value; since
4784 * those are clipped to [MIN_SHARES, ...) do so now. See
4785 * calc_cfs_shares().
4786 */
4787 if (wl < MIN_SHARES)
4788 wl = MIN_SHARES;
4789
4790 /*
4791 * wl = dw_i = S * (s'_i - s_i); see (3)
4792 */
4793 wl -= se->avg.load_avg;
4794
4795 /*
4796 * Recursively apply this logic to all parent groups to compute
4797 * the final effective load change on the root group. Since
4798 * only the @tg group gets extra weight, all parent groups can
4799 * only redistribute existing shares. @wl is the shift in shares
4800 * resulting from this level per the above.
4801 */
4802 wg = 0;
4803 }
4804
4805 return wl;
4806 }
4807 #else
4808
4809 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4810 {
4811 return wl;
4812 }
4813
4814 #endif
4815
4816 /*
4817 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4818 * A waker of many should wake a different task than the one last awakened
4819 * at a frequency roughly N times higher than one of its wakees. In order
4820 * to determine whether we should let the load spread vs consolodating to
4821 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4822 * partner, and a factor of lls_size higher frequency in the other. With
4823 * both conditions met, we can be relatively sure that the relationship is
4824 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4825 * being client/server, worker/dispatcher, interrupt source or whatever is
4826 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4827 */
4828 static int wake_wide(struct task_struct *p)
4829 {
4830 unsigned int master = current->wakee_flips;
4831 unsigned int slave = p->wakee_flips;
4832 int factor = this_cpu_read(sd_llc_size);
4833
4834 if (master < slave)
4835 swap(master, slave);
4836 if (slave < factor || master < slave * factor)
4837 return 0;
4838 return 1;
4839 }
4840
4841 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4842 {
4843 s64 this_load, load;
4844 s64 this_eff_load, prev_eff_load;
4845 int idx, this_cpu, prev_cpu;
4846 struct task_group *tg;
4847 unsigned long weight;
4848 int balanced;
4849
4850 idx = sd->wake_idx;
4851 this_cpu = smp_processor_id();
4852 prev_cpu = task_cpu(p);
4853 load = source_load(prev_cpu, idx);
4854 this_load = target_load(this_cpu, idx);
4855
4856 /*
4857 * If sync wakeup then subtract the (maximum possible)
4858 * effect of the currently running task from the load
4859 * of the current CPU:
4860 */
4861 if (sync) {
4862 tg = task_group(current);
4863 weight = current->se.avg.load_avg;
4864
4865 this_load += effective_load(tg, this_cpu, -weight, -weight);
4866 load += effective_load(tg, prev_cpu, 0, -weight);
4867 }
4868
4869 tg = task_group(p);
4870 weight = p->se.avg.load_avg;
4871
4872 /*
4873 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4874 * due to the sync cause above having dropped this_load to 0, we'll
4875 * always have an imbalance, but there's really nothing you can do
4876 * about that, so that's good too.
4877 *
4878 * Otherwise check if either cpus are near enough in load to allow this
4879 * task to be woken on this_cpu.
4880 */
4881 this_eff_load = 100;
4882 this_eff_load *= capacity_of(prev_cpu);
4883
4884 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4885 prev_eff_load *= capacity_of(this_cpu);
4886
4887 if (this_load > 0) {
4888 this_eff_load *= this_load +
4889 effective_load(tg, this_cpu, weight, weight);
4890
4891 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4892 }
4893
4894 balanced = this_eff_load <= prev_eff_load;
4895
4896 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4897
4898 if (!balanced)
4899 return 0;
4900
4901 schedstat_inc(sd, ttwu_move_affine);
4902 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4903
4904 return 1;
4905 }
4906
4907 /*
4908 * find_idlest_group finds and returns the least busy CPU group within the
4909 * domain.
4910 */
4911 static struct sched_group *
4912 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4913 int this_cpu, int sd_flag)
4914 {
4915 struct sched_group *idlest = NULL, *group = sd->groups;
4916 unsigned long min_load = ULONG_MAX, this_load = 0;
4917 int load_idx = sd->forkexec_idx;
4918 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4919
4920 if (sd_flag & SD_BALANCE_WAKE)
4921 load_idx = sd->wake_idx;
4922
4923 do {
4924 unsigned long load, avg_load;
4925 int local_group;
4926 int i;
4927
4928 /* Skip over this group if it has no CPUs allowed */
4929 if (!cpumask_intersects(sched_group_cpus(group),
4930 tsk_cpus_allowed(p)))
4931 continue;
4932
4933 local_group = cpumask_test_cpu(this_cpu,
4934 sched_group_cpus(group));
4935
4936 /* Tally up the load of all CPUs in the group */
4937 avg_load = 0;
4938
4939 for_each_cpu(i, sched_group_cpus(group)) {
4940 /* Bias balancing toward cpus of our domain */
4941 if (local_group)
4942 load = source_load(i, load_idx);
4943 else
4944 load = target_load(i, load_idx);
4945
4946 avg_load += load;
4947 }
4948
4949 /* Adjust by relative CPU capacity of the group */
4950 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4951
4952 if (local_group) {
4953 this_load = avg_load;
4954 } else if (avg_load < min_load) {
4955 min_load = avg_load;
4956 idlest = group;
4957 }
4958 } while (group = group->next, group != sd->groups);
4959
4960 if (!idlest || 100*this_load < imbalance*min_load)
4961 return NULL;
4962 return idlest;
4963 }
4964
4965 /*
4966 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4967 */
4968 static int
4969 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4970 {
4971 unsigned long load, min_load = ULONG_MAX;
4972 unsigned int min_exit_latency = UINT_MAX;
4973 u64 latest_idle_timestamp = 0;
4974 int least_loaded_cpu = this_cpu;
4975 int shallowest_idle_cpu = -1;
4976 int i;
4977
4978 /* Traverse only the allowed CPUs */
4979 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4980 if (idle_cpu(i)) {
4981 struct rq *rq = cpu_rq(i);
4982 struct cpuidle_state *idle = idle_get_state(rq);
4983 if (idle && idle->exit_latency < min_exit_latency) {
4984 /*
4985 * We give priority to a CPU whose idle state
4986 * has the smallest exit latency irrespective
4987 * of any idle timestamp.
4988 */
4989 min_exit_latency = idle->exit_latency;
4990 latest_idle_timestamp = rq->idle_stamp;
4991 shallowest_idle_cpu = i;
4992 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4993 rq->idle_stamp > latest_idle_timestamp) {
4994 /*
4995 * If equal or no active idle state, then
4996 * the most recently idled CPU might have
4997 * a warmer cache.
4998 */
4999 latest_idle_timestamp = rq->idle_stamp;
5000 shallowest_idle_cpu = i;
5001 }
5002 } else if (shallowest_idle_cpu == -1) {
5003 load = weighted_cpuload(i);
5004 if (load < min_load || (load == min_load && i == this_cpu)) {
5005 min_load = load;
5006 least_loaded_cpu = i;
5007 }
5008 }
5009 }
5010
5011 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5012 }
5013
5014 /*
5015 * Try and locate an idle CPU in the sched_domain.
5016 */
5017 static int select_idle_sibling(struct task_struct *p, int target)
5018 {
5019 struct sched_domain *sd;
5020 struct sched_group *sg;
5021 int i = task_cpu(p);
5022
5023 if (idle_cpu(target))
5024 return target;
5025
5026 /*
5027 * If the prevous cpu is cache affine and idle, don't be stupid.
5028 */
5029 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5030 return i;
5031
5032 /*
5033 * Otherwise, iterate the domains and find an elegible idle cpu.
5034 */
5035 sd = rcu_dereference(per_cpu(sd_llc, target));
5036 for_each_lower_domain(sd) {
5037 sg = sd->groups;
5038 do {
5039 if (!cpumask_intersects(sched_group_cpus(sg),
5040 tsk_cpus_allowed(p)))
5041 goto next;
5042
5043 for_each_cpu(i, sched_group_cpus(sg)) {
5044 if (i == target || !idle_cpu(i))
5045 goto next;
5046 }
5047
5048 target = cpumask_first_and(sched_group_cpus(sg),
5049 tsk_cpus_allowed(p));
5050 goto done;
5051 next:
5052 sg = sg->next;
5053 } while (sg != sd->groups);
5054 }
5055 done:
5056 return target;
5057 }
5058
5059 /*
5060 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5061 * tasks. The unit of the return value must be the one of capacity so we can
5062 * compare the utilization with the capacity of the CPU that is available for
5063 * CFS task (ie cpu_capacity).
5064 *
5065 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5066 * recent utilization of currently non-runnable tasks on a CPU. It represents
5067 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5068 * capacity_orig is the cpu_capacity available at the highest frequency
5069 * (arch_scale_freq_capacity()).
5070 * The utilization of a CPU converges towards a sum equal to or less than the
5071 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5072 * the running time on this CPU scaled by capacity_curr.
5073 *
5074 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5075 * higher than capacity_orig because of unfortunate rounding in
5076 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5077 * the average stabilizes with the new running time. We need to check that the
5078 * utilization stays within the range of [0..capacity_orig] and cap it if
5079 * necessary. Without utilization capping, a group could be seen as overloaded
5080 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5081 * available capacity. We allow utilization to overshoot capacity_curr (but not
5082 * capacity_orig) as it useful for predicting the capacity required after task
5083 * migrations (scheduler-driven DVFS).
5084 */
5085 static int cpu_util(int cpu)
5086 {
5087 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5088 unsigned long capacity = capacity_orig_of(cpu);
5089
5090 return (util >= capacity) ? capacity : util;
5091 }
5092
5093 /*
5094 * select_task_rq_fair: Select target runqueue for the waking task in domains
5095 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5096 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5097 *
5098 * Balances load by selecting the idlest cpu in the idlest group, or under
5099 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5100 *
5101 * Returns the target cpu number.
5102 *
5103 * preempt must be disabled.
5104 */
5105 static int
5106 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5107 {
5108 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5109 int cpu = smp_processor_id();
5110 int new_cpu = prev_cpu;
5111 int want_affine = 0;
5112 int sync = wake_flags & WF_SYNC;
5113
5114 if (sd_flag & SD_BALANCE_WAKE)
5115 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5116
5117 rcu_read_lock();
5118 for_each_domain(cpu, tmp) {
5119 if (!(tmp->flags & SD_LOAD_BALANCE))
5120 break;
5121
5122 /*
5123 * If both cpu and prev_cpu are part of this domain,
5124 * cpu is a valid SD_WAKE_AFFINE target.
5125 */
5126 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5127 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5128 affine_sd = tmp;
5129 break;
5130 }
5131
5132 if (tmp->flags & sd_flag)
5133 sd = tmp;
5134 else if (!want_affine)
5135 break;
5136 }
5137
5138 if (affine_sd) {
5139 sd = NULL; /* Prefer wake_affine over balance flags */
5140 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5141 new_cpu = cpu;
5142 }
5143
5144 if (!sd) {
5145 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5146 new_cpu = select_idle_sibling(p, new_cpu);
5147
5148 } else while (sd) {
5149 struct sched_group *group;
5150 int weight;
5151
5152 if (!(sd->flags & sd_flag)) {
5153 sd = sd->child;
5154 continue;
5155 }
5156
5157 group = find_idlest_group(sd, p, cpu, sd_flag);
5158 if (!group) {
5159 sd = sd->child;
5160 continue;
5161 }
5162
5163 new_cpu = find_idlest_cpu(group, p, cpu);
5164 if (new_cpu == -1 || new_cpu == cpu) {
5165 /* Now try balancing at a lower domain level of cpu */
5166 sd = sd->child;
5167 continue;
5168 }
5169
5170 /* Now try balancing at a lower domain level of new_cpu */
5171 cpu = new_cpu;
5172 weight = sd->span_weight;
5173 sd = NULL;
5174 for_each_domain(cpu, tmp) {
5175 if (weight <= tmp->span_weight)
5176 break;
5177 if (tmp->flags & sd_flag)
5178 sd = tmp;
5179 }
5180 /* while loop will break here if sd == NULL */
5181 }
5182 rcu_read_unlock();
5183
5184 return new_cpu;
5185 }
5186
5187 /*
5188 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5189 * cfs_rq_of(p) references at time of call are still valid and identify the
5190 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5191 */
5192 static void migrate_task_rq_fair(struct task_struct *p)
5193 {
5194 /*
5195 * We are supposed to update the task to "current" time, then its up to date
5196 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5197 * what current time is, so simply throw away the out-of-date time. This
5198 * will result in the wakee task is less decayed, but giving the wakee more
5199 * load sounds not bad.
5200 */
5201 remove_entity_load_avg(&p->se);
5202
5203 /* Tell new CPU we are migrated */
5204 p->se.avg.last_update_time = 0;
5205
5206 /* We have migrated, no longer consider this task hot */
5207 p->se.exec_start = 0;
5208 }
5209
5210 static void task_dead_fair(struct task_struct *p)
5211 {
5212 remove_entity_load_avg(&p->se);
5213 }
5214 #endif /* CONFIG_SMP */
5215
5216 static unsigned long
5217 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5218 {
5219 unsigned long gran = sysctl_sched_wakeup_granularity;
5220
5221 /*
5222 * Since its curr running now, convert the gran from real-time
5223 * to virtual-time in his units.
5224 *
5225 * By using 'se' instead of 'curr' we penalize light tasks, so
5226 * they get preempted easier. That is, if 'se' < 'curr' then
5227 * the resulting gran will be larger, therefore penalizing the
5228 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5229 * be smaller, again penalizing the lighter task.
5230 *
5231 * This is especially important for buddies when the leftmost
5232 * task is higher priority than the buddy.
5233 */
5234 return calc_delta_fair(gran, se);
5235 }
5236
5237 /*
5238 * Should 'se' preempt 'curr'.
5239 *
5240 * |s1
5241 * |s2
5242 * |s3
5243 * g
5244 * |<--->|c
5245 *
5246 * w(c, s1) = -1
5247 * w(c, s2) = 0
5248 * w(c, s3) = 1
5249 *
5250 */
5251 static int
5252 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5253 {
5254 s64 gran, vdiff = curr->vruntime - se->vruntime;
5255
5256 if (vdiff <= 0)
5257 return -1;
5258
5259 gran = wakeup_gran(curr, se);
5260 if (vdiff > gran)
5261 return 1;
5262
5263 return 0;
5264 }
5265
5266 static void set_last_buddy(struct sched_entity *se)
5267 {
5268 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5269 return;
5270
5271 for_each_sched_entity(se)
5272 cfs_rq_of(se)->last = se;
5273 }
5274
5275 static void set_next_buddy(struct sched_entity *se)
5276 {
5277 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5278 return;
5279
5280 for_each_sched_entity(se)
5281 cfs_rq_of(se)->next = se;
5282 }
5283
5284 static void set_skip_buddy(struct sched_entity *se)
5285 {
5286 for_each_sched_entity(se)
5287 cfs_rq_of(se)->skip = se;
5288 }
5289
5290 /*
5291 * Preempt the current task with a newly woken task if needed:
5292 */
5293 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5294 {
5295 struct task_struct *curr = rq->curr;
5296 struct sched_entity *se = &curr->se, *pse = &p->se;
5297 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5298 int scale = cfs_rq->nr_running >= sched_nr_latency;
5299 int next_buddy_marked = 0;
5300
5301 if (unlikely(se == pse))
5302 return;
5303
5304 /*
5305 * This is possible from callers such as attach_tasks(), in which we
5306 * unconditionally check_prempt_curr() after an enqueue (which may have
5307 * lead to a throttle). This both saves work and prevents false
5308 * next-buddy nomination below.
5309 */
5310 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5311 return;
5312
5313 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5314 set_next_buddy(pse);
5315 next_buddy_marked = 1;
5316 }
5317
5318 /*
5319 * We can come here with TIF_NEED_RESCHED already set from new task
5320 * wake up path.
5321 *
5322 * Note: this also catches the edge-case of curr being in a throttled
5323 * group (e.g. via set_curr_task), since update_curr() (in the
5324 * enqueue of curr) will have resulted in resched being set. This
5325 * prevents us from potentially nominating it as a false LAST_BUDDY
5326 * below.
5327 */
5328 if (test_tsk_need_resched(curr))
5329 return;
5330
5331 /* Idle tasks are by definition preempted by non-idle tasks. */
5332 if (unlikely(curr->policy == SCHED_IDLE) &&
5333 likely(p->policy != SCHED_IDLE))
5334 goto preempt;
5335
5336 /*
5337 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5338 * is driven by the tick):
5339 */
5340 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5341 return;
5342
5343 find_matching_se(&se, &pse);
5344 update_curr(cfs_rq_of(se));
5345 BUG_ON(!pse);
5346 if (wakeup_preempt_entity(se, pse) == 1) {
5347 /*
5348 * Bias pick_next to pick the sched entity that is
5349 * triggering this preemption.
5350 */
5351 if (!next_buddy_marked)
5352 set_next_buddy(pse);
5353 goto preempt;
5354 }
5355
5356 return;
5357
5358 preempt:
5359 resched_curr(rq);
5360 /*
5361 * Only set the backward buddy when the current task is still
5362 * on the rq. This can happen when a wakeup gets interleaved
5363 * with schedule on the ->pre_schedule() or idle_balance()
5364 * point, either of which can * drop the rq lock.
5365 *
5366 * Also, during early boot the idle thread is in the fair class,
5367 * for obvious reasons its a bad idea to schedule back to it.
5368 */
5369 if (unlikely(!se->on_rq || curr == rq->idle))
5370 return;
5371
5372 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5373 set_last_buddy(se);
5374 }
5375
5376 static struct task_struct *
5377 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5378 {
5379 struct cfs_rq *cfs_rq = &rq->cfs;
5380 struct sched_entity *se;
5381 struct task_struct *p;
5382 int new_tasks;
5383
5384 again:
5385 #ifdef CONFIG_FAIR_GROUP_SCHED
5386 if (!cfs_rq->nr_running)
5387 goto idle;
5388
5389 if (prev->sched_class != &fair_sched_class)
5390 goto simple;
5391
5392 /*
5393 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5394 * likely that a next task is from the same cgroup as the current.
5395 *
5396 * Therefore attempt to avoid putting and setting the entire cgroup
5397 * hierarchy, only change the part that actually changes.
5398 */
5399
5400 do {
5401 struct sched_entity *curr = cfs_rq->curr;
5402
5403 /*
5404 * Since we got here without doing put_prev_entity() we also
5405 * have to consider cfs_rq->curr. If it is still a runnable
5406 * entity, update_curr() will update its vruntime, otherwise
5407 * forget we've ever seen it.
5408 */
5409 if (curr) {
5410 if (curr->on_rq)
5411 update_curr(cfs_rq);
5412 else
5413 curr = NULL;
5414
5415 /*
5416 * This call to check_cfs_rq_runtime() will do the
5417 * throttle and dequeue its entity in the parent(s).
5418 * Therefore the 'simple' nr_running test will indeed
5419 * be correct.
5420 */
5421 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5422 goto simple;
5423 }
5424
5425 se = pick_next_entity(cfs_rq, curr);
5426 cfs_rq = group_cfs_rq(se);
5427 } while (cfs_rq);
5428
5429 p = task_of(se);
5430
5431 /*
5432 * Since we haven't yet done put_prev_entity and if the selected task
5433 * is a different task than we started out with, try and touch the
5434 * least amount of cfs_rqs.
5435 */
5436 if (prev != p) {
5437 struct sched_entity *pse = &prev->se;
5438
5439 while (!(cfs_rq = is_same_group(se, pse))) {
5440 int se_depth = se->depth;
5441 int pse_depth = pse->depth;
5442
5443 if (se_depth <= pse_depth) {
5444 put_prev_entity(cfs_rq_of(pse), pse);
5445 pse = parent_entity(pse);
5446 }
5447 if (se_depth >= pse_depth) {
5448 set_next_entity(cfs_rq_of(se), se);
5449 se = parent_entity(se);
5450 }
5451 }
5452
5453 put_prev_entity(cfs_rq, pse);
5454 set_next_entity(cfs_rq, se);
5455 }
5456
5457 if (hrtick_enabled(rq))
5458 hrtick_start_fair(rq, p);
5459
5460 return p;
5461 simple:
5462 cfs_rq = &rq->cfs;
5463 #endif
5464
5465 if (!cfs_rq->nr_running)
5466 goto idle;
5467
5468 put_prev_task(rq, prev);
5469
5470 do {
5471 se = pick_next_entity(cfs_rq, NULL);
5472 set_next_entity(cfs_rq, se);
5473 cfs_rq = group_cfs_rq(se);
5474 } while (cfs_rq);
5475
5476 p = task_of(se);
5477
5478 if (hrtick_enabled(rq))
5479 hrtick_start_fair(rq, p);
5480
5481 return p;
5482
5483 idle:
5484 /*
5485 * This is OK, because current is on_cpu, which avoids it being picked
5486 * for load-balance and preemption/IRQs are still disabled avoiding
5487 * further scheduler activity on it and we're being very careful to
5488 * re-start the picking loop.
5489 */
5490 lockdep_unpin_lock(&rq->lock);
5491 new_tasks = idle_balance(rq);
5492 lockdep_pin_lock(&rq->lock);
5493 /*
5494 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5495 * possible for any higher priority task to appear. In that case we
5496 * must re-start the pick_next_entity() loop.
5497 */
5498 if (new_tasks < 0)
5499 return RETRY_TASK;
5500
5501 if (new_tasks > 0)
5502 goto again;
5503
5504 return NULL;
5505 }
5506
5507 /*
5508 * Account for a descheduled task:
5509 */
5510 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5511 {
5512 struct sched_entity *se = &prev->se;
5513 struct cfs_rq *cfs_rq;
5514
5515 for_each_sched_entity(se) {
5516 cfs_rq = cfs_rq_of(se);
5517 put_prev_entity(cfs_rq, se);
5518 }
5519 }
5520
5521 /*
5522 * sched_yield() is very simple
5523 *
5524 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5525 */
5526 static void yield_task_fair(struct rq *rq)
5527 {
5528 struct task_struct *curr = rq->curr;
5529 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5530 struct sched_entity *se = &curr->se;
5531
5532 /*
5533 * Are we the only task in the tree?
5534 */
5535 if (unlikely(rq->nr_running == 1))
5536 return;
5537
5538 clear_buddies(cfs_rq, se);
5539
5540 if (curr->policy != SCHED_BATCH) {
5541 update_rq_clock(rq);
5542 /*
5543 * Update run-time statistics of the 'current'.
5544 */
5545 update_curr(cfs_rq);
5546 /*
5547 * Tell update_rq_clock() that we've just updated,
5548 * so we don't do microscopic update in schedule()
5549 * and double the fastpath cost.
5550 */
5551 rq_clock_skip_update(rq, true);
5552 }
5553
5554 set_skip_buddy(se);
5555 }
5556
5557 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5558 {
5559 struct sched_entity *se = &p->se;
5560
5561 /* throttled hierarchies are not runnable */
5562 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5563 return false;
5564
5565 /* Tell the scheduler that we'd really like pse to run next. */
5566 set_next_buddy(se);
5567
5568 yield_task_fair(rq);
5569
5570 return true;
5571 }
5572
5573 #ifdef CONFIG_SMP
5574 /**************************************************
5575 * Fair scheduling class load-balancing methods.
5576 *
5577 * BASICS
5578 *
5579 * The purpose of load-balancing is to achieve the same basic fairness the
5580 * per-cpu scheduler provides, namely provide a proportional amount of compute
5581 * time to each task. This is expressed in the following equation:
5582 *
5583 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5584 *
5585 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5586 * W_i,0 is defined as:
5587 *
5588 * W_i,0 = \Sum_j w_i,j (2)
5589 *
5590 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5591 * is derived from the nice value as per prio_to_weight[].
5592 *
5593 * The weight average is an exponential decay average of the instantaneous
5594 * weight:
5595 *
5596 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5597 *
5598 * C_i is the compute capacity of cpu i, typically it is the
5599 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5600 * can also include other factors [XXX].
5601 *
5602 * To achieve this balance we define a measure of imbalance which follows
5603 * directly from (1):
5604 *
5605 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5606 *
5607 * We them move tasks around to minimize the imbalance. In the continuous
5608 * function space it is obvious this converges, in the discrete case we get
5609 * a few fun cases generally called infeasible weight scenarios.
5610 *
5611 * [XXX expand on:
5612 * - infeasible weights;
5613 * - local vs global optima in the discrete case. ]
5614 *
5615 *
5616 * SCHED DOMAINS
5617 *
5618 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5619 * for all i,j solution, we create a tree of cpus that follows the hardware
5620 * topology where each level pairs two lower groups (or better). This results
5621 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5622 * tree to only the first of the previous level and we decrease the frequency
5623 * of load-balance at each level inv. proportional to the number of cpus in
5624 * the groups.
5625 *
5626 * This yields:
5627 *
5628 * log_2 n 1 n
5629 * \Sum { --- * --- * 2^i } = O(n) (5)
5630 * i = 0 2^i 2^i
5631 * `- size of each group
5632 * | | `- number of cpus doing load-balance
5633 * | `- freq
5634 * `- sum over all levels
5635 *
5636 * Coupled with a limit on how many tasks we can migrate every balance pass,
5637 * this makes (5) the runtime complexity of the balancer.
5638 *
5639 * An important property here is that each CPU is still (indirectly) connected
5640 * to every other cpu in at most O(log n) steps:
5641 *
5642 * The adjacency matrix of the resulting graph is given by:
5643 *
5644 * log_2 n
5645 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5646 * k = 0
5647 *
5648 * And you'll find that:
5649 *
5650 * A^(log_2 n)_i,j != 0 for all i,j (7)
5651 *
5652 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5653 * The task movement gives a factor of O(m), giving a convergence complexity
5654 * of:
5655 *
5656 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5657 *
5658 *
5659 * WORK CONSERVING
5660 *
5661 * In order to avoid CPUs going idle while there's still work to do, new idle
5662 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5663 * tree itself instead of relying on other CPUs to bring it work.
5664 *
5665 * This adds some complexity to both (5) and (8) but it reduces the total idle
5666 * time.
5667 *
5668 * [XXX more?]
5669 *
5670 *
5671 * CGROUPS
5672 *
5673 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5674 *
5675 * s_k,i
5676 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5677 * S_k
5678 *
5679 * Where
5680 *
5681 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5682 *
5683 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5684 *
5685 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5686 * property.
5687 *
5688 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5689 * rewrite all of this once again.]
5690 */
5691
5692 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5693
5694 enum fbq_type { regular, remote, all };
5695
5696 #define LBF_ALL_PINNED 0x01
5697 #define LBF_NEED_BREAK 0x02
5698 #define LBF_DST_PINNED 0x04
5699 #define LBF_SOME_PINNED 0x08
5700
5701 struct lb_env {
5702 struct sched_domain *sd;
5703
5704 struct rq *src_rq;
5705 int src_cpu;
5706
5707 int dst_cpu;
5708 struct rq *dst_rq;
5709
5710 struct cpumask *dst_grpmask;
5711 int new_dst_cpu;
5712 enum cpu_idle_type idle;
5713 long imbalance;
5714 /* The set of CPUs under consideration for load-balancing */
5715 struct cpumask *cpus;
5716
5717 unsigned int flags;
5718
5719 unsigned int loop;
5720 unsigned int loop_break;
5721 unsigned int loop_max;
5722
5723 enum fbq_type fbq_type;
5724 struct list_head tasks;
5725 };
5726
5727 /*
5728 * Is this task likely cache-hot:
5729 */
5730 static int task_hot(struct task_struct *p, struct lb_env *env)
5731 {
5732 s64 delta;
5733
5734 lockdep_assert_held(&env->src_rq->lock);
5735
5736 if (p->sched_class != &fair_sched_class)
5737 return 0;
5738
5739 if (unlikely(p->policy == SCHED_IDLE))
5740 return 0;
5741
5742 /*
5743 * Buddy candidates are cache hot:
5744 */
5745 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5746 (&p->se == cfs_rq_of(&p->se)->next ||
5747 &p->se == cfs_rq_of(&p->se)->last))
5748 return 1;
5749
5750 if (sysctl_sched_migration_cost == -1)
5751 return 1;
5752 if (sysctl_sched_migration_cost == 0)
5753 return 0;
5754
5755 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5756
5757 return delta < (s64)sysctl_sched_migration_cost;
5758 }
5759
5760 #ifdef CONFIG_NUMA_BALANCING
5761 /*
5762 * Returns 1, if task migration degrades locality
5763 * Returns 0, if task migration improves locality i.e migration preferred.
5764 * Returns -1, if task migration is not affected by locality.
5765 */
5766 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5767 {
5768 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5769 unsigned long src_faults, dst_faults;
5770 int src_nid, dst_nid;
5771
5772 if (!static_branch_likely(&sched_numa_balancing))
5773 return -1;
5774
5775 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5776 return -1;
5777
5778 src_nid = cpu_to_node(env->src_cpu);
5779 dst_nid = cpu_to_node(env->dst_cpu);
5780
5781 if (src_nid == dst_nid)
5782 return -1;
5783
5784 /* Migrating away from the preferred node is always bad. */
5785 if (src_nid == p->numa_preferred_nid) {
5786 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5787 return 1;
5788 else
5789 return -1;
5790 }
5791
5792 /* Encourage migration to the preferred node. */
5793 if (dst_nid == p->numa_preferred_nid)
5794 return 0;
5795
5796 if (numa_group) {
5797 src_faults = group_faults(p, src_nid);
5798 dst_faults = group_faults(p, dst_nid);
5799 } else {
5800 src_faults = task_faults(p, src_nid);
5801 dst_faults = task_faults(p, dst_nid);
5802 }
5803
5804 return dst_faults < src_faults;
5805 }
5806
5807 #else
5808 static inline int migrate_degrades_locality(struct task_struct *p,
5809 struct lb_env *env)
5810 {
5811 return -1;
5812 }
5813 #endif
5814
5815 /*
5816 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5817 */
5818 static
5819 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5820 {
5821 int tsk_cache_hot;
5822
5823 lockdep_assert_held(&env->src_rq->lock);
5824
5825 /*
5826 * We do not migrate tasks that are:
5827 * 1) throttled_lb_pair, or
5828 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5829 * 3) running (obviously), or
5830 * 4) are cache-hot on their current CPU.
5831 */
5832 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5833 return 0;
5834
5835 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5836 int cpu;
5837
5838 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5839
5840 env->flags |= LBF_SOME_PINNED;
5841
5842 /*
5843 * Remember if this task can be migrated to any other cpu in
5844 * our sched_group. We may want to revisit it if we couldn't
5845 * meet load balance goals by pulling other tasks on src_cpu.
5846 *
5847 * Also avoid computing new_dst_cpu if we have already computed
5848 * one in current iteration.
5849 */
5850 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5851 return 0;
5852
5853 /* Prevent to re-select dst_cpu via env's cpus */
5854 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5855 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5856 env->flags |= LBF_DST_PINNED;
5857 env->new_dst_cpu = cpu;
5858 break;
5859 }
5860 }
5861
5862 return 0;
5863 }
5864
5865 /* Record that we found atleast one task that could run on dst_cpu */
5866 env->flags &= ~LBF_ALL_PINNED;
5867
5868 if (task_running(env->src_rq, p)) {
5869 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5870 return 0;
5871 }
5872
5873 /*
5874 * Aggressive migration if:
5875 * 1) destination numa is preferred
5876 * 2) task is cache cold, or
5877 * 3) too many balance attempts have failed.
5878 */
5879 tsk_cache_hot = migrate_degrades_locality(p, env);
5880 if (tsk_cache_hot == -1)
5881 tsk_cache_hot = task_hot(p, env);
5882
5883 if (tsk_cache_hot <= 0 ||
5884 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5885 if (tsk_cache_hot == 1) {
5886 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5887 schedstat_inc(p, se.statistics.nr_forced_migrations);
5888 }
5889 return 1;
5890 }
5891
5892 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5893 return 0;
5894 }
5895
5896 /*
5897 * detach_task() -- detach the task for the migration specified in env
5898 */
5899 static void detach_task(struct task_struct *p, struct lb_env *env)
5900 {
5901 lockdep_assert_held(&env->src_rq->lock);
5902
5903 p->on_rq = TASK_ON_RQ_MIGRATING;
5904 deactivate_task(env->src_rq, p, 0);
5905 set_task_cpu(p, env->dst_cpu);
5906 }
5907
5908 /*
5909 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5910 * part of active balancing operations within "domain".
5911 *
5912 * Returns a task if successful and NULL otherwise.
5913 */
5914 static struct task_struct *detach_one_task(struct lb_env *env)
5915 {
5916 struct task_struct *p, *n;
5917
5918 lockdep_assert_held(&env->src_rq->lock);
5919
5920 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5921 if (!can_migrate_task(p, env))
5922 continue;
5923
5924 detach_task(p, env);
5925
5926 /*
5927 * Right now, this is only the second place where
5928 * lb_gained[env->idle] is updated (other is detach_tasks)
5929 * so we can safely collect stats here rather than
5930 * inside detach_tasks().
5931 */
5932 schedstat_inc(env->sd, lb_gained[env->idle]);
5933 return p;
5934 }
5935 return NULL;
5936 }
5937
5938 static const unsigned int sched_nr_migrate_break = 32;
5939
5940 /*
5941 * detach_tasks() -- tries to detach up to imbalance weighted load from
5942 * busiest_rq, as part of a balancing operation within domain "sd".
5943 *
5944 * Returns number of detached tasks if successful and 0 otherwise.
5945 */
5946 static int detach_tasks(struct lb_env *env)
5947 {
5948 struct list_head *tasks = &env->src_rq->cfs_tasks;
5949 struct task_struct *p;
5950 unsigned long load;
5951 int detached = 0;
5952
5953 lockdep_assert_held(&env->src_rq->lock);
5954
5955 if (env->imbalance <= 0)
5956 return 0;
5957
5958 while (!list_empty(tasks)) {
5959 /*
5960 * We don't want to steal all, otherwise we may be treated likewise,
5961 * which could at worst lead to a livelock crash.
5962 */
5963 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5964 break;
5965
5966 p = list_first_entry(tasks, struct task_struct, se.group_node);
5967
5968 env->loop++;
5969 /* We've more or less seen every task there is, call it quits */
5970 if (env->loop > env->loop_max)
5971 break;
5972
5973 /* take a breather every nr_migrate tasks */
5974 if (env->loop > env->loop_break) {
5975 env->loop_break += sched_nr_migrate_break;
5976 env->flags |= LBF_NEED_BREAK;
5977 break;
5978 }
5979
5980 if (!can_migrate_task(p, env))
5981 goto next;
5982
5983 load = task_h_load(p);
5984
5985 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5986 goto next;
5987
5988 if ((load / 2) > env->imbalance)
5989 goto next;
5990
5991 detach_task(p, env);
5992 list_add(&p->se.group_node, &env->tasks);
5993
5994 detached++;
5995 env->imbalance -= load;
5996
5997 #ifdef CONFIG_PREEMPT
5998 /*
5999 * NEWIDLE balancing is a source of latency, so preemptible
6000 * kernels will stop after the first task is detached to minimize
6001 * the critical section.
6002 */
6003 if (env->idle == CPU_NEWLY_IDLE)
6004 break;
6005 #endif
6006
6007 /*
6008 * We only want to steal up to the prescribed amount of
6009 * weighted load.
6010 */
6011 if (env->imbalance <= 0)
6012 break;
6013
6014 continue;
6015 next:
6016 list_move_tail(&p->se.group_node, tasks);
6017 }
6018
6019 /*
6020 * Right now, this is one of only two places we collect this stat
6021 * so we can safely collect detach_one_task() stats here rather
6022 * than inside detach_one_task().
6023 */
6024 schedstat_add(env->sd, lb_gained[env->idle], detached);
6025
6026 return detached;
6027 }
6028
6029 /*
6030 * attach_task() -- attach the task detached by detach_task() to its new rq.
6031 */
6032 static void attach_task(struct rq *rq, struct task_struct *p)
6033 {
6034 lockdep_assert_held(&rq->lock);
6035
6036 BUG_ON(task_rq(p) != rq);
6037 activate_task(rq, p, 0);
6038 p->on_rq = TASK_ON_RQ_QUEUED;
6039 check_preempt_curr(rq, p, 0);
6040 }
6041
6042 /*
6043 * attach_one_task() -- attaches the task returned from detach_one_task() to
6044 * its new rq.
6045 */
6046 static void attach_one_task(struct rq *rq, struct task_struct *p)
6047 {
6048 raw_spin_lock(&rq->lock);
6049 attach_task(rq, p);
6050 raw_spin_unlock(&rq->lock);
6051 }
6052
6053 /*
6054 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6055 * new rq.
6056 */
6057 static void attach_tasks(struct lb_env *env)
6058 {
6059 struct list_head *tasks = &env->tasks;
6060 struct task_struct *p;
6061
6062 raw_spin_lock(&env->dst_rq->lock);
6063
6064 while (!list_empty(tasks)) {
6065 p = list_first_entry(tasks, struct task_struct, se.group_node);
6066 list_del_init(&p->se.group_node);
6067
6068 attach_task(env->dst_rq, p);
6069 }
6070
6071 raw_spin_unlock(&env->dst_rq->lock);
6072 }
6073
6074 #ifdef CONFIG_FAIR_GROUP_SCHED
6075 static void update_blocked_averages(int cpu)
6076 {
6077 struct rq *rq = cpu_rq(cpu);
6078 struct cfs_rq *cfs_rq;
6079 unsigned long flags;
6080
6081 raw_spin_lock_irqsave(&rq->lock, flags);
6082 update_rq_clock(rq);
6083
6084 /*
6085 * Iterates the task_group tree in a bottom up fashion, see
6086 * list_add_leaf_cfs_rq() for details.
6087 */
6088 for_each_leaf_cfs_rq(rq, cfs_rq) {
6089 /* throttled entities do not contribute to load */
6090 if (throttled_hierarchy(cfs_rq))
6091 continue;
6092
6093 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6094 update_tg_load_avg(cfs_rq, 0);
6095 }
6096 raw_spin_unlock_irqrestore(&rq->lock, flags);
6097 }
6098
6099 /*
6100 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6101 * This needs to be done in a top-down fashion because the load of a child
6102 * group is a fraction of its parents load.
6103 */
6104 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6105 {
6106 struct rq *rq = rq_of(cfs_rq);
6107 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6108 unsigned long now = jiffies;
6109 unsigned long load;
6110
6111 if (cfs_rq->last_h_load_update == now)
6112 return;
6113
6114 cfs_rq->h_load_next = NULL;
6115 for_each_sched_entity(se) {
6116 cfs_rq = cfs_rq_of(se);
6117 cfs_rq->h_load_next = se;
6118 if (cfs_rq->last_h_load_update == now)
6119 break;
6120 }
6121
6122 if (!se) {
6123 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6124 cfs_rq->last_h_load_update = now;
6125 }
6126
6127 while ((se = cfs_rq->h_load_next) != NULL) {
6128 load = cfs_rq->h_load;
6129 load = div64_ul(load * se->avg.load_avg,
6130 cfs_rq_load_avg(cfs_rq) + 1);
6131 cfs_rq = group_cfs_rq(se);
6132 cfs_rq->h_load = load;
6133 cfs_rq->last_h_load_update = now;
6134 }
6135 }
6136
6137 static unsigned long task_h_load(struct task_struct *p)
6138 {
6139 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6140
6141 update_cfs_rq_h_load(cfs_rq);
6142 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6143 cfs_rq_load_avg(cfs_rq) + 1);
6144 }
6145 #else
6146 static inline void update_blocked_averages(int cpu)
6147 {
6148 struct rq *rq = cpu_rq(cpu);
6149 struct cfs_rq *cfs_rq = &rq->cfs;
6150 unsigned long flags;
6151
6152 raw_spin_lock_irqsave(&rq->lock, flags);
6153 update_rq_clock(rq);
6154 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6155 raw_spin_unlock_irqrestore(&rq->lock, flags);
6156 }
6157
6158 static unsigned long task_h_load(struct task_struct *p)
6159 {
6160 return p->se.avg.load_avg;
6161 }
6162 #endif
6163
6164 /********** Helpers for find_busiest_group ************************/
6165
6166 enum group_type {
6167 group_other = 0,
6168 group_imbalanced,
6169 group_overloaded,
6170 };
6171
6172 /*
6173 * sg_lb_stats - stats of a sched_group required for load_balancing
6174 */
6175 struct sg_lb_stats {
6176 unsigned long avg_load; /*Avg load across the CPUs of the group */
6177 unsigned long group_load; /* Total load over the CPUs of the group */
6178 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6179 unsigned long load_per_task;
6180 unsigned long group_capacity;
6181 unsigned long group_util; /* Total utilization of the group */
6182 unsigned int sum_nr_running; /* Nr tasks running in the group */
6183 unsigned int idle_cpus;
6184 unsigned int group_weight;
6185 enum group_type group_type;
6186 int group_no_capacity;
6187 #ifdef CONFIG_NUMA_BALANCING
6188 unsigned int nr_numa_running;
6189 unsigned int nr_preferred_running;
6190 #endif
6191 };
6192
6193 /*
6194 * sd_lb_stats - Structure to store the statistics of a sched_domain
6195 * during load balancing.
6196 */
6197 struct sd_lb_stats {
6198 struct sched_group *busiest; /* Busiest group in this sd */
6199 struct sched_group *local; /* Local group in this sd */
6200 unsigned long total_load; /* Total load of all groups in sd */
6201 unsigned long total_capacity; /* Total capacity of all groups in sd */
6202 unsigned long avg_load; /* Average load across all groups in sd */
6203
6204 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6205 struct sg_lb_stats local_stat; /* Statistics of the local group */
6206 };
6207
6208 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6209 {
6210 /*
6211 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6212 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6213 * We must however clear busiest_stat::avg_load because
6214 * update_sd_pick_busiest() reads this before assignment.
6215 */
6216 *sds = (struct sd_lb_stats){
6217 .busiest = NULL,
6218 .local = NULL,
6219 .total_load = 0UL,
6220 .total_capacity = 0UL,
6221 .busiest_stat = {
6222 .avg_load = 0UL,
6223 .sum_nr_running = 0,
6224 .group_type = group_other,
6225 },
6226 };
6227 }
6228
6229 /**
6230 * get_sd_load_idx - Obtain the load index for a given sched domain.
6231 * @sd: The sched_domain whose load_idx is to be obtained.
6232 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6233 *
6234 * Return: The load index.
6235 */
6236 static inline int get_sd_load_idx(struct sched_domain *sd,
6237 enum cpu_idle_type idle)
6238 {
6239 int load_idx;
6240
6241 switch (idle) {
6242 case CPU_NOT_IDLE:
6243 load_idx = sd->busy_idx;
6244 break;
6245
6246 case CPU_NEWLY_IDLE:
6247 load_idx = sd->newidle_idx;
6248 break;
6249 default:
6250 load_idx = sd->idle_idx;
6251 break;
6252 }
6253
6254 return load_idx;
6255 }
6256
6257 static unsigned long scale_rt_capacity(int cpu)
6258 {
6259 struct rq *rq = cpu_rq(cpu);
6260 u64 total, used, age_stamp, avg;
6261 s64 delta;
6262
6263 /*
6264 * Since we're reading these variables without serialization make sure
6265 * we read them once before doing sanity checks on them.
6266 */
6267 age_stamp = READ_ONCE(rq->age_stamp);
6268 avg = READ_ONCE(rq->rt_avg);
6269 delta = __rq_clock_broken(rq) - age_stamp;
6270
6271 if (unlikely(delta < 0))
6272 delta = 0;
6273
6274 total = sched_avg_period() + delta;
6275
6276 used = div_u64(avg, total);
6277
6278 if (likely(used < SCHED_CAPACITY_SCALE))
6279 return SCHED_CAPACITY_SCALE - used;
6280
6281 return 1;
6282 }
6283
6284 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6285 {
6286 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6287 struct sched_group *sdg = sd->groups;
6288
6289 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6290
6291 capacity *= scale_rt_capacity(cpu);
6292 capacity >>= SCHED_CAPACITY_SHIFT;
6293
6294 if (!capacity)
6295 capacity = 1;
6296
6297 cpu_rq(cpu)->cpu_capacity = capacity;
6298 sdg->sgc->capacity = capacity;
6299 }
6300
6301 void update_group_capacity(struct sched_domain *sd, int cpu)
6302 {
6303 struct sched_domain *child = sd->child;
6304 struct sched_group *group, *sdg = sd->groups;
6305 unsigned long capacity;
6306 unsigned long interval;
6307
6308 interval = msecs_to_jiffies(sd->balance_interval);
6309 interval = clamp(interval, 1UL, max_load_balance_interval);
6310 sdg->sgc->next_update = jiffies + interval;
6311
6312 if (!child) {
6313 update_cpu_capacity(sd, cpu);
6314 return;
6315 }
6316
6317 capacity = 0;
6318
6319 if (child->flags & SD_OVERLAP) {
6320 /*
6321 * SD_OVERLAP domains cannot assume that child groups
6322 * span the current group.
6323 */
6324
6325 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6326 struct sched_group_capacity *sgc;
6327 struct rq *rq = cpu_rq(cpu);
6328
6329 /*
6330 * build_sched_domains() -> init_sched_groups_capacity()
6331 * gets here before we've attached the domains to the
6332 * runqueues.
6333 *
6334 * Use capacity_of(), which is set irrespective of domains
6335 * in update_cpu_capacity().
6336 *
6337 * This avoids capacity from being 0 and
6338 * causing divide-by-zero issues on boot.
6339 */
6340 if (unlikely(!rq->sd)) {
6341 capacity += capacity_of(cpu);
6342 continue;
6343 }
6344
6345 sgc = rq->sd->groups->sgc;
6346 capacity += sgc->capacity;
6347 }
6348 } else {
6349 /*
6350 * !SD_OVERLAP domains can assume that child groups
6351 * span the current group.
6352 */
6353
6354 group = child->groups;
6355 do {
6356 capacity += group->sgc->capacity;
6357 group = group->next;
6358 } while (group != child->groups);
6359 }
6360
6361 sdg->sgc->capacity = capacity;
6362 }
6363
6364 /*
6365 * Check whether the capacity of the rq has been noticeably reduced by side
6366 * activity. The imbalance_pct is used for the threshold.
6367 * Return true is the capacity is reduced
6368 */
6369 static inline int
6370 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6371 {
6372 return ((rq->cpu_capacity * sd->imbalance_pct) <
6373 (rq->cpu_capacity_orig * 100));
6374 }
6375
6376 /*
6377 * Group imbalance indicates (and tries to solve) the problem where balancing
6378 * groups is inadequate due to tsk_cpus_allowed() constraints.
6379 *
6380 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6381 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6382 * Something like:
6383 *
6384 * { 0 1 2 3 } { 4 5 6 7 }
6385 * * * * *
6386 *
6387 * If we were to balance group-wise we'd place two tasks in the first group and
6388 * two tasks in the second group. Clearly this is undesired as it will overload
6389 * cpu 3 and leave one of the cpus in the second group unused.
6390 *
6391 * The current solution to this issue is detecting the skew in the first group
6392 * by noticing the lower domain failed to reach balance and had difficulty
6393 * moving tasks due to affinity constraints.
6394 *
6395 * When this is so detected; this group becomes a candidate for busiest; see
6396 * update_sd_pick_busiest(). And calculate_imbalance() and
6397 * find_busiest_group() avoid some of the usual balance conditions to allow it
6398 * to create an effective group imbalance.
6399 *
6400 * This is a somewhat tricky proposition since the next run might not find the
6401 * group imbalance and decide the groups need to be balanced again. A most
6402 * subtle and fragile situation.
6403 */
6404
6405 static inline int sg_imbalanced(struct sched_group *group)
6406 {
6407 return group->sgc->imbalance;
6408 }
6409
6410 /*
6411 * group_has_capacity returns true if the group has spare capacity that could
6412 * be used by some tasks.
6413 * We consider that a group has spare capacity if the * number of task is
6414 * smaller than the number of CPUs or if the utilization is lower than the
6415 * available capacity for CFS tasks.
6416 * For the latter, we use a threshold to stabilize the state, to take into
6417 * account the variance of the tasks' load and to return true if the available
6418 * capacity in meaningful for the load balancer.
6419 * As an example, an available capacity of 1% can appear but it doesn't make
6420 * any benefit for the load balance.
6421 */
6422 static inline bool
6423 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6424 {
6425 if (sgs->sum_nr_running < sgs->group_weight)
6426 return true;
6427
6428 if ((sgs->group_capacity * 100) >
6429 (sgs->group_util * env->sd->imbalance_pct))
6430 return true;
6431
6432 return false;
6433 }
6434
6435 /*
6436 * group_is_overloaded returns true if the group has more tasks than it can
6437 * handle.
6438 * group_is_overloaded is not equals to !group_has_capacity because a group
6439 * with the exact right number of tasks, has no more spare capacity but is not
6440 * overloaded so both group_has_capacity and group_is_overloaded return
6441 * false.
6442 */
6443 static inline bool
6444 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6445 {
6446 if (sgs->sum_nr_running <= sgs->group_weight)
6447 return false;
6448
6449 if ((sgs->group_capacity * 100) <
6450 (sgs->group_util * env->sd->imbalance_pct))
6451 return true;
6452
6453 return false;
6454 }
6455
6456 static inline enum
6457 group_type group_classify(struct sched_group *group,
6458 struct sg_lb_stats *sgs)
6459 {
6460 if (sgs->group_no_capacity)
6461 return group_overloaded;
6462
6463 if (sg_imbalanced(group))
6464 return group_imbalanced;
6465
6466 return group_other;
6467 }
6468
6469 /**
6470 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6471 * @env: The load balancing environment.
6472 * @group: sched_group whose statistics are to be updated.
6473 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6474 * @local_group: Does group contain this_cpu.
6475 * @sgs: variable to hold the statistics for this group.
6476 * @overload: Indicate more than one runnable task for any CPU.
6477 */
6478 static inline void update_sg_lb_stats(struct lb_env *env,
6479 struct sched_group *group, int load_idx,
6480 int local_group, struct sg_lb_stats *sgs,
6481 bool *overload)
6482 {
6483 unsigned long load;
6484 int i, nr_running;
6485
6486 memset(sgs, 0, sizeof(*sgs));
6487
6488 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6489 struct rq *rq = cpu_rq(i);
6490
6491 /* Bias balancing toward cpus of our domain */
6492 if (local_group)
6493 load = target_load(i, load_idx);
6494 else
6495 load = source_load(i, load_idx);
6496
6497 sgs->group_load += load;
6498 sgs->group_util += cpu_util(i);
6499 sgs->sum_nr_running += rq->cfs.h_nr_running;
6500
6501 nr_running = rq->nr_running;
6502 if (nr_running > 1)
6503 *overload = true;
6504
6505 #ifdef CONFIG_NUMA_BALANCING
6506 sgs->nr_numa_running += rq->nr_numa_running;
6507 sgs->nr_preferred_running += rq->nr_preferred_running;
6508 #endif
6509 sgs->sum_weighted_load += weighted_cpuload(i);
6510 /*
6511 * No need to call idle_cpu() if nr_running is not 0
6512 */
6513 if (!nr_running && idle_cpu(i))
6514 sgs->idle_cpus++;
6515 }
6516
6517 /* Adjust by relative CPU capacity of the group */
6518 sgs->group_capacity = group->sgc->capacity;
6519 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6520
6521 if (sgs->sum_nr_running)
6522 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6523
6524 sgs->group_weight = group->group_weight;
6525
6526 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6527 sgs->group_type = group_classify(group, sgs);
6528 }
6529
6530 /**
6531 * update_sd_pick_busiest - return 1 on busiest group
6532 * @env: The load balancing environment.
6533 * @sds: sched_domain statistics
6534 * @sg: sched_group candidate to be checked for being the busiest
6535 * @sgs: sched_group statistics
6536 *
6537 * Determine if @sg is a busier group than the previously selected
6538 * busiest group.
6539 *
6540 * Return: %true if @sg is a busier group than the previously selected
6541 * busiest group. %false otherwise.
6542 */
6543 static bool update_sd_pick_busiest(struct lb_env *env,
6544 struct sd_lb_stats *sds,
6545 struct sched_group *sg,
6546 struct sg_lb_stats *sgs)
6547 {
6548 struct sg_lb_stats *busiest = &sds->busiest_stat;
6549
6550 if (sgs->group_type > busiest->group_type)
6551 return true;
6552
6553 if (sgs->group_type < busiest->group_type)
6554 return false;
6555
6556 if (sgs->avg_load <= busiest->avg_load)
6557 return false;
6558
6559 /* This is the busiest node in its class. */
6560 if (!(env->sd->flags & SD_ASYM_PACKING))
6561 return true;
6562
6563 /*
6564 * ASYM_PACKING needs to move all the work to the lowest
6565 * numbered CPUs in the group, therefore mark all groups
6566 * higher than ourself as busy.
6567 */
6568 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6569 if (!sds->busiest)
6570 return true;
6571
6572 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6573 return true;
6574 }
6575
6576 return false;
6577 }
6578
6579 #ifdef CONFIG_NUMA_BALANCING
6580 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6581 {
6582 if (sgs->sum_nr_running > sgs->nr_numa_running)
6583 return regular;
6584 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6585 return remote;
6586 return all;
6587 }
6588
6589 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6590 {
6591 if (rq->nr_running > rq->nr_numa_running)
6592 return regular;
6593 if (rq->nr_running > rq->nr_preferred_running)
6594 return remote;
6595 return all;
6596 }
6597 #else
6598 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6599 {
6600 return all;
6601 }
6602
6603 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6604 {
6605 return regular;
6606 }
6607 #endif /* CONFIG_NUMA_BALANCING */
6608
6609 /**
6610 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6611 * @env: The load balancing environment.
6612 * @sds: variable to hold the statistics for this sched_domain.
6613 */
6614 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6615 {
6616 struct sched_domain *child = env->sd->child;
6617 struct sched_group *sg = env->sd->groups;
6618 struct sg_lb_stats tmp_sgs;
6619 int load_idx, prefer_sibling = 0;
6620 bool overload = false;
6621
6622 if (child && child->flags & SD_PREFER_SIBLING)
6623 prefer_sibling = 1;
6624
6625 load_idx = get_sd_load_idx(env->sd, env->idle);
6626
6627 do {
6628 struct sg_lb_stats *sgs = &tmp_sgs;
6629 int local_group;
6630
6631 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6632 if (local_group) {
6633 sds->local = sg;
6634 sgs = &sds->local_stat;
6635
6636 if (env->idle != CPU_NEWLY_IDLE ||
6637 time_after_eq(jiffies, sg->sgc->next_update))
6638 update_group_capacity(env->sd, env->dst_cpu);
6639 }
6640
6641 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6642 &overload);
6643
6644 if (local_group)
6645 goto next_group;
6646
6647 /*
6648 * In case the child domain prefers tasks go to siblings
6649 * first, lower the sg capacity so that we'll try
6650 * and move all the excess tasks away. We lower the capacity
6651 * of a group only if the local group has the capacity to fit
6652 * these excess tasks. The extra check prevents the case where
6653 * you always pull from the heaviest group when it is already
6654 * under-utilized (possible with a large weight task outweighs
6655 * the tasks on the system).
6656 */
6657 if (prefer_sibling && sds->local &&
6658 group_has_capacity(env, &sds->local_stat) &&
6659 (sgs->sum_nr_running > 1)) {
6660 sgs->group_no_capacity = 1;
6661 sgs->group_type = group_classify(sg, sgs);
6662 }
6663
6664 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6665 sds->busiest = sg;
6666 sds->busiest_stat = *sgs;
6667 }
6668
6669 next_group:
6670 /* Now, start updating sd_lb_stats */
6671 sds->total_load += sgs->group_load;
6672 sds->total_capacity += sgs->group_capacity;
6673
6674 sg = sg->next;
6675 } while (sg != env->sd->groups);
6676
6677 if (env->sd->flags & SD_NUMA)
6678 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6679
6680 if (!env->sd->parent) {
6681 /* update overload indicator if we are at root domain */
6682 if (env->dst_rq->rd->overload != overload)
6683 env->dst_rq->rd->overload = overload;
6684 }
6685
6686 }
6687
6688 /**
6689 * check_asym_packing - Check to see if the group is packed into the
6690 * sched doman.
6691 *
6692 * This is primarily intended to used at the sibling level. Some
6693 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6694 * case of POWER7, it can move to lower SMT modes only when higher
6695 * threads are idle. When in lower SMT modes, the threads will
6696 * perform better since they share less core resources. Hence when we
6697 * have idle threads, we want them to be the higher ones.
6698 *
6699 * This packing function is run on idle threads. It checks to see if
6700 * the busiest CPU in this domain (core in the P7 case) has a higher
6701 * CPU number than the packing function is being run on. Here we are
6702 * assuming lower CPU number will be equivalent to lower a SMT thread
6703 * number.
6704 *
6705 * Return: 1 when packing is required and a task should be moved to
6706 * this CPU. The amount of the imbalance is returned in *imbalance.
6707 *
6708 * @env: The load balancing environment.
6709 * @sds: Statistics of the sched_domain which is to be packed
6710 */
6711 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6712 {
6713 int busiest_cpu;
6714
6715 if (!(env->sd->flags & SD_ASYM_PACKING))
6716 return 0;
6717
6718 if (!sds->busiest)
6719 return 0;
6720
6721 busiest_cpu = group_first_cpu(sds->busiest);
6722 if (env->dst_cpu > busiest_cpu)
6723 return 0;
6724
6725 env->imbalance = DIV_ROUND_CLOSEST(
6726 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6727 SCHED_CAPACITY_SCALE);
6728
6729 return 1;
6730 }
6731
6732 /**
6733 * fix_small_imbalance - Calculate the minor imbalance that exists
6734 * amongst the groups of a sched_domain, during
6735 * load balancing.
6736 * @env: The load balancing environment.
6737 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6738 */
6739 static inline
6740 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6741 {
6742 unsigned long tmp, capa_now = 0, capa_move = 0;
6743 unsigned int imbn = 2;
6744 unsigned long scaled_busy_load_per_task;
6745 struct sg_lb_stats *local, *busiest;
6746
6747 local = &sds->local_stat;
6748 busiest = &sds->busiest_stat;
6749
6750 if (!local->sum_nr_running)
6751 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6752 else if (busiest->load_per_task > local->load_per_task)
6753 imbn = 1;
6754
6755 scaled_busy_load_per_task =
6756 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6757 busiest->group_capacity;
6758
6759 if (busiest->avg_load + scaled_busy_load_per_task >=
6760 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6761 env->imbalance = busiest->load_per_task;
6762 return;
6763 }
6764
6765 /*
6766 * OK, we don't have enough imbalance to justify moving tasks,
6767 * however we may be able to increase total CPU capacity used by
6768 * moving them.
6769 */
6770
6771 capa_now += busiest->group_capacity *
6772 min(busiest->load_per_task, busiest->avg_load);
6773 capa_now += local->group_capacity *
6774 min(local->load_per_task, local->avg_load);
6775 capa_now /= SCHED_CAPACITY_SCALE;
6776
6777 /* Amount of load we'd subtract */
6778 if (busiest->avg_load > scaled_busy_load_per_task) {
6779 capa_move += busiest->group_capacity *
6780 min(busiest->load_per_task,
6781 busiest->avg_load - scaled_busy_load_per_task);
6782 }
6783
6784 /* Amount of load we'd add */
6785 if (busiest->avg_load * busiest->group_capacity <
6786 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6787 tmp = (busiest->avg_load * busiest->group_capacity) /
6788 local->group_capacity;
6789 } else {
6790 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6791 local->group_capacity;
6792 }
6793 capa_move += local->group_capacity *
6794 min(local->load_per_task, local->avg_load + tmp);
6795 capa_move /= SCHED_CAPACITY_SCALE;
6796
6797 /* Move if we gain throughput */
6798 if (capa_move > capa_now)
6799 env->imbalance = busiest->load_per_task;
6800 }
6801
6802 /**
6803 * calculate_imbalance - Calculate the amount of imbalance present within the
6804 * groups of a given sched_domain during load balance.
6805 * @env: load balance environment
6806 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6807 */
6808 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6809 {
6810 unsigned long max_pull, load_above_capacity = ~0UL;
6811 struct sg_lb_stats *local, *busiest;
6812
6813 local = &sds->local_stat;
6814 busiest = &sds->busiest_stat;
6815
6816 if (busiest->group_type == group_imbalanced) {
6817 /*
6818 * In the group_imb case we cannot rely on group-wide averages
6819 * to ensure cpu-load equilibrium, look at wider averages. XXX
6820 */
6821 busiest->load_per_task =
6822 min(busiest->load_per_task, sds->avg_load);
6823 }
6824
6825 /*
6826 * In the presence of smp nice balancing, certain scenarios can have
6827 * max load less than avg load(as we skip the groups at or below
6828 * its cpu_capacity, while calculating max_load..)
6829 */
6830 if (busiest->avg_load <= sds->avg_load ||
6831 local->avg_load >= sds->avg_load) {
6832 env->imbalance = 0;
6833 return fix_small_imbalance(env, sds);
6834 }
6835
6836 /*
6837 * If there aren't any idle cpus, avoid creating some.
6838 */
6839 if (busiest->group_type == group_overloaded &&
6840 local->group_type == group_overloaded) {
6841 load_above_capacity = busiest->sum_nr_running *
6842 SCHED_LOAD_SCALE;
6843 if (load_above_capacity > busiest->group_capacity)
6844 load_above_capacity -= busiest->group_capacity;
6845 else
6846 load_above_capacity = ~0UL;
6847 }
6848
6849 /*
6850 * We're trying to get all the cpus to the average_load, so we don't
6851 * want to push ourselves above the average load, nor do we wish to
6852 * reduce the max loaded cpu below the average load. At the same time,
6853 * we also don't want to reduce the group load below the group capacity
6854 * (so that we can implement power-savings policies etc). Thus we look
6855 * for the minimum possible imbalance.
6856 */
6857 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6858
6859 /* How much load to actually move to equalise the imbalance */
6860 env->imbalance = min(
6861 max_pull * busiest->group_capacity,
6862 (sds->avg_load - local->avg_load) * local->group_capacity
6863 ) / SCHED_CAPACITY_SCALE;
6864
6865 /*
6866 * if *imbalance is less than the average load per runnable task
6867 * there is no guarantee that any tasks will be moved so we'll have
6868 * a think about bumping its value to force at least one task to be
6869 * moved
6870 */
6871 if (env->imbalance < busiest->load_per_task)
6872 return fix_small_imbalance(env, sds);
6873 }
6874
6875 /******* find_busiest_group() helpers end here *********************/
6876
6877 /**
6878 * find_busiest_group - Returns the busiest group within the sched_domain
6879 * if there is an imbalance. If there isn't an imbalance, and
6880 * the user has opted for power-savings, it returns a group whose
6881 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6882 * such a group exists.
6883 *
6884 * Also calculates the amount of weighted load which should be moved
6885 * to restore balance.
6886 *
6887 * @env: The load balancing environment.
6888 *
6889 * Return: - The busiest group if imbalance exists.
6890 * - If no imbalance and user has opted for power-savings balance,
6891 * return the least loaded group whose CPUs can be
6892 * put to idle by rebalancing its tasks onto our group.
6893 */
6894 static struct sched_group *find_busiest_group(struct lb_env *env)
6895 {
6896 struct sg_lb_stats *local, *busiest;
6897 struct sd_lb_stats sds;
6898
6899 init_sd_lb_stats(&sds);
6900
6901 /*
6902 * Compute the various statistics relavent for load balancing at
6903 * this level.
6904 */
6905 update_sd_lb_stats(env, &sds);
6906 local = &sds.local_stat;
6907 busiest = &sds.busiest_stat;
6908
6909 /* ASYM feature bypasses nice load balance check */
6910 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6911 check_asym_packing(env, &sds))
6912 return sds.busiest;
6913
6914 /* There is no busy sibling group to pull tasks from */
6915 if (!sds.busiest || busiest->sum_nr_running == 0)
6916 goto out_balanced;
6917
6918 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6919 / sds.total_capacity;
6920
6921 /*
6922 * If the busiest group is imbalanced the below checks don't
6923 * work because they assume all things are equal, which typically
6924 * isn't true due to cpus_allowed constraints and the like.
6925 */
6926 if (busiest->group_type == group_imbalanced)
6927 goto force_balance;
6928
6929 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6930 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6931 busiest->group_no_capacity)
6932 goto force_balance;
6933
6934 /*
6935 * If the local group is busier than the selected busiest group
6936 * don't try and pull any tasks.
6937 */
6938 if (local->avg_load >= busiest->avg_load)
6939 goto out_balanced;
6940
6941 /*
6942 * Don't pull any tasks if this group is already above the domain
6943 * average load.
6944 */
6945 if (local->avg_load >= sds.avg_load)
6946 goto out_balanced;
6947
6948 if (env->idle == CPU_IDLE) {
6949 /*
6950 * This cpu is idle. If the busiest group is not overloaded
6951 * and there is no imbalance between this and busiest group
6952 * wrt idle cpus, it is balanced. The imbalance becomes
6953 * significant if the diff is greater than 1 otherwise we
6954 * might end up to just move the imbalance on another group
6955 */
6956 if ((busiest->group_type != group_overloaded) &&
6957 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6958 goto out_balanced;
6959 } else {
6960 /*
6961 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6962 * imbalance_pct to be conservative.
6963 */
6964 if (100 * busiest->avg_load <=
6965 env->sd->imbalance_pct * local->avg_load)
6966 goto out_balanced;
6967 }
6968
6969 force_balance:
6970 /* Looks like there is an imbalance. Compute it */
6971 calculate_imbalance(env, &sds);
6972 return sds.busiest;
6973
6974 out_balanced:
6975 env->imbalance = 0;
6976 return NULL;
6977 }
6978
6979 /*
6980 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6981 */
6982 static struct rq *find_busiest_queue(struct lb_env *env,
6983 struct sched_group *group)
6984 {
6985 struct rq *busiest = NULL, *rq;
6986 unsigned long busiest_load = 0, busiest_capacity = 1;
6987 int i;
6988
6989 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6990 unsigned long capacity, wl;
6991 enum fbq_type rt;
6992
6993 rq = cpu_rq(i);
6994 rt = fbq_classify_rq(rq);
6995
6996 /*
6997 * We classify groups/runqueues into three groups:
6998 * - regular: there are !numa tasks
6999 * - remote: there are numa tasks that run on the 'wrong' node
7000 * - all: there is no distinction
7001 *
7002 * In order to avoid migrating ideally placed numa tasks,
7003 * ignore those when there's better options.
7004 *
7005 * If we ignore the actual busiest queue to migrate another
7006 * task, the next balance pass can still reduce the busiest
7007 * queue by moving tasks around inside the node.
7008 *
7009 * If we cannot move enough load due to this classification
7010 * the next pass will adjust the group classification and
7011 * allow migration of more tasks.
7012 *
7013 * Both cases only affect the total convergence complexity.
7014 */
7015 if (rt > env->fbq_type)
7016 continue;
7017
7018 capacity = capacity_of(i);
7019
7020 wl = weighted_cpuload(i);
7021
7022 /*
7023 * When comparing with imbalance, use weighted_cpuload()
7024 * which is not scaled with the cpu capacity.
7025 */
7026
7027 if (rq->nr_running == 1 && wl > env->imbalance &&
7028 !check_cpu_capacity(rq, env->sd))
7029 continue;
7030
7031 /*
7032 * For the load comparisons with the other cpu's, consider
7033 * the weighted_cpuload() scaled with the cpu capacity, so
7034 * that the load can be moved away from the cpu that is
7035 * potentially running at a lower capacity.
7036 *
7037 * Thus we're looking for max(wl_i / capacity_i), crosswise
7038 * multiplication to rid ourselves of the division works out
7039 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7040 * our previous maximum.
7041 */
7042 if (wl * busiest_capacity > busiest_load * capacity) {
7043 busiest_load = wl;
7044 busiest_capacity = capacity;
7045 busiest = rq;
7046 }
7047 }
7048
7049 return busiest;
7050 }
7051
7052 /*
7053 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7054 * so long as it is large enough.
7055 */
7056 #define MAX_PINNED_INTERVAL 512
7057
7058 /* Working cpumask for load_balance and load_balance_newidle. */
7059 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7060
7061 static int need_active_balance(struct lb_env *env)
7062 {
7063 struct sched_domain *sd = env->sd;
7064
7065 if (env->idle == CPU_NEWLY_IDLE) {
7066
7067 /*
7068 * ASYM_PACKING needs to force migrate tasks from busy but
7069 * higher numbered CPUs in order to pack all tasks in the
7070 * lowest numbered CPUs.
7071 */
7072 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7073 return 1;
7074 }
7075
7076 /*
7077 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7078 * It's worth migrating the task if the src_cpu's capacity is reduced
7079 * because of other sched_class or IRQs if more capacity stays
7080 * available on dst_cpu.
7081 */
7082 if ((env->idle != CPU_NOT_IDLE) &&
7083 (env->src_rq->cfs.h_nr_running == 1)) {
7084 if ((check_cpu_capacity(env->src_rq, sd)) &&
7085 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7086 return 1;
7087 }
7088
7089 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7090 }
7091
7092 static int active_load_balance_cpu_stop(void *data);
7093
7094 static int should_we_balance(struct lb_env *env)
7095 {
7096 struct sched_group *sg = env->sd->groups;
7097 struct cpumask *sg_cpus, *sg_mask;
7098 int cpu, balance_cpu = -1;
7099
7100 /*
7101 * In the newly idle case, we will allow all the cpu's
7102 * to do the newly idle load balance.
7103 */
7104 if (env->idle == CPU_NEWLY_IDLE)
7105 return 1;
7106
7107 sg_cpus = sched_group_cpus(sg);
7108 sg_mask = sched_group_mask(sg);
7109 /* Try to find first idle cpu */
7110 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7111 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7112 continue;
7113
7114 balance_cpu = cpu;
7115 break;
7116 }
7117
7118 if (balance_cpu == -1)
7119 balance_cpu = group_balance_cpu(sg);
7120
7121 /*
7122 * First idle cpu or the first cpu(busiest) in this sched group
7123 * is eligible for doing load balancing at this and above domains.
7124 */
7125 return balance_cpu == env->dst_cpu;
7126 }
7127
7128 /*
7129 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7130 * tasks if there is an imbalance.
7131 */
7132 static int load_balance(int this_cpu, struct rq *this_rq,
7133 struct sched_domain *sd, enum cpu_idle_type idle,
7134 int *continue_balancing)
7135 {
7136 int ld_moved, cur_ld_moved, active_balance = 0;
7137 struct sched_domain *sd_parent = sd->parent;
7138 struct sched_group *group;
7139 struct rq *busiest;
7140 unsigned long flags;
7141 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7142
7143 struct lb_env env = {
7144 .sd = sd,
7145 .dst_cpu = this_cpu,
7146 .dst_rq = this_rq,
7147 .dst_grpmask = sched_group_cpus(sd->groups),
7148 .idle = idle,
7149 .loop_break = sched_nr_migrate_break,
7150 .cpus = cpus,
7151 .fbq_type = all,
7152 .tasks = LIST_HEAD_INIT(env.tasks),
7153 };
7154
7155 /*
7156 * For NEWLY_IDLE load_balancing, we don't need to consider
7157 * other cpus in our group
7158 */
7159 if (idle == CPU_NEWLY_IDLE)
7160 env.dst_grpmask = NULL;
7161
7162 cpumask_copy(cpus, cpu_active_mask);
7163
7164 schedstat_inc(sd, lb_count[idle]);
7165
7166 redo:
7167 if (!should_we_balance(&env)) {
7168 *continue_balancing = 0;
7169 goto out_balanced;
7170 }
7171
7172 group = find_busiest_group(&env);
7173 if (!group) {
7174 schedstat_inc(sd, lb_nobusyg[idle]);
7175 goto out_balanced;
7176 }
7177
7178 busiest = find_busiest_queue(&env, group);
7179 if (!busiest) {
7180 schedstat_inc(sd, lb_nobusyq[idle]);
7181 goto out_balanced;
7182 }
7183
7184 BUG_ON(busiest == env.dst_rq);
7185
7186 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7187
7188 env.src_cpu = busiest->cpu;
7189 env.src_rq = busiest;
7190
7191 ld_moved = 0;
7192 if (busiest->nr_running > 1) {
7193 /*
7194 * Attempt to move tasks. If find_busiest_group has found
7195 * an imbalance but busiest->nr_running <= 1, the group is
7196 * still unbalanced. ld_moved simply stays zero, so it is
7197 * correctly treated as an imbalance.
7198 */
7199 env.flags |= LBF_ALL_PINNED;
7200 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7201
7202 more_balance:
7203 raw_spin_lock_irqsave(&busiest->lock, flags);
7204
7205 /*
7206 * cur_ld_moved - load moved in current iteration
7207 * ld_moved - cumulative load moved across iterations
7208 */
7209 cur_ld_moved = detach_tasks(&env);
7210
7211 /*
7212 * We've detached some tasks from busiest_rq. Every
7213 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7214 * unlock busiest->lock, and we are able to be sure
7215 * that nobody can manipulate the tasks in parallel.
7216 * See task_rq_lock() family for the details.
7217 */
7218
7219 raw_spin_unlock(&busiest->lock);
7220
7221 if (cur_ld_moved) {
7222 attach_tasks(&env);
7223 ld_moved += cur_ld_moved;
7224 }
7225
7226 local_irq_restore(flags);
7227
7228 if (env.flags & LBF_NEED_BREAK) {
7229 env.flags &= ~LBF_NEED_BREAK;
7230 goto more_balance;
7231 }
7232
7233 /*
7234 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7235 * us and move them to an alternate dst_cpu in our sched_group
7236 * where they can run. The upper limit on how many times we
7237 * iterate on same src_cpu is dependent on number of cpus in our
7238 * sched_group.
7239 *
7240 * This changes load balance semantics a bit on who can move
7241 * load to a given_cpu. In addition to the given_cpu itself
7242 * (or a ilb_cpu acting on its behalf where given_cpu is
7243 * nohz-idle), we now have balance_cpu in a position to move
7244 * load to given_cpu. In rare situations, this may cause
7245 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7246 * _independently_ and at _same_ time to move some load to
7247 * given_cpu) causing exceess load to be moved to given_cpu.
7248 * This however should not happen so much in practice and
7249 * moreover subsequent load balance cycles should correct the
7250 * excess load moved.
7251 */
7252 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7253
7254 /* Prevent to re-select dst_cpu via env's cpus */
7255 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7256
7257 env.dst_rq = cpu_rq(env.new_dst_cpu);
7258 env.dst_cpu = env.new_dst_cpu;
7259 env.flags &= ~LBF_DST_PINNED;
7260 env.loop = 0;
7261 env.loop_break = sched_nr_migrate_break;
7262
7263 /*
7264 * Go back to "more_balance" rather than "redo" since we
7265 * need to continue with same src_cpu.
7266 */
7267 goto more_balance;
7268 }
7269
7270 /*
7271 * We failed to reach balance because of affinity.
7272 */
7273 if (sd_parent) {
7274 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7275
7276 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7277 *group_imbalance = 1;
7278 }
7279
7280 /* All tasks on this runqueue were pinned by CPU affinity */
7281 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7282 cpumask_clear_cpu(cpu_of(busiest), cpus);
7283 if (!cpumask_empty(cpus)) {
7284 env.loop = 0;
7285 env.loop_break = sched_nr_migrate_break;
7286 goto redo;
7287 }
7288 goto out_all_pinned;
7289 }
7290 }
7291
7292 if (!ld_moved) {
7293 schedstat_inc(sd, lb_failed[idle]);
7294 /*
7295 * Increment the failure counter only on periodic balance.
7296 * We do not want newidle balance, which can be very
7297 * frequent, pollute the failure counter causing
7298 * excessive cache_hot migrations and active balances.
7299 */
7300 if (idle != CPU_NEWLY_IDLE)
7301 sd->nr_balance_failed++;
7302
7303 if (need_active_balance(&env)) {
7304 raw_spin_lock_irqsave(&busiest->lock, flags);
7305
7306 /* don't kick the active_load_balance_cpu_stop,
7307 * if the curr task on busiest cpu can't be
7308 * moved to this_cpu
7309 */
7310 if (!cpumask_test_cpu(this_cpu,
7311 tsk_cpus_allowed(busiest->curr))) {
7312 raw_spin_unlock_irqrestore(&busiest->lock,
7313 flags);
7314 env.flags |= LBF_ALL_PINNED;
7315 goto out_one_pinned;
7316 }
7317
7318 /*
7319 * ->active_balance synchronizes accesses to
7320 * ->active_balance_work. Once set, it's cleared
7321 * only after active load balance is finished.
7322 */
7323 if (!busiest->active_balance) {
7324 busiest->active_balance = 1;
7325 busiest->push_cpu = this_cpu;
7326 active_balance = 1;
7327 }
7328 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7329
7330 if (active_balance) {
7331 stop_one_cpu_nowait(cpu_of(busiest),
7332 active_load_balance_cpu_stop, busiest,
7333 &busiest->active_balance_work);
7334 }
7335
7336 /*
7337 * We've kicked active balancing, reset the failure
7338 * counter.
7339 */
7340 sd->nr_balance_failed = sd->cache_nice_tries+1;
7341 }
7342 } else
7343 sd->nr_balance_failed = 0;
7344
7345 if (likely(!active_balance)) {
7346 /* We were unbalanced, so reset the balancing interval */
7347 sd->balance_interval = sd->min_interval;
7348 } else {
7349 /*
7350 * If we've begun active balancing, start to back off. This
7351 * case may not be covered by the all_pinned logic if there
7352 * is only 1 task on the busy runqueue (because we don't call
7353 * detach_tasks).
7354 */
7355 if (sd->balance_interval < sd->max_interval)
7356 sd->balance_interval *= 2;
7357 }
7358
7359 goto out;
7360
7361 out_balanced:
7362 /*
7363 * We reach balance although we may have faced some affinity
7364 * constraints. Clear the imbalance flag if it was set.
7365 */
7366 if (sd_parent) {
7367 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7368
7369 if (*group_imbalance)
7370 *group_imbalance = 0;
7371 }
7372
7373 out_all_pinned:
7374 /*
7375 * We reach balance because all tasks are pinned at this level so
7376 * we can't migrate them. Let the imbalance flag set so parent level
7377 * can try to migrate them.
7378 */
7379 schedstat_inc(sd, lb_balanced[idle]);
7380
7381 sd->nr_balance_failed = 0;
7382
7383 out_one_pinned:
7384 /* tune up the balancing interval */
7385 if (((env.flags & LBF_ALL_PINNED) &&
7386 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7387 (sd->balance_interval < sd->max_interval))
7388 sd->balance_interval *= 2;
7389
7390 ld_moved = 0;
7391 out:
7392 return ld_moved;
7393 }
7394
7395 static inline unsigned long
7396 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7397 {
7398 unsigned long interval = sd->balance_interval;
7399
7400 if (cpu_busy)
7401 interval *= sd->busy_factor;
7402
7403 /* scale ms to jiffies */
7404 interval = msecs_to_jiffies(interval);
7405 interval = clamp(interval, 1UL, max_load_balance_interval);
7406
7407 return interval;
7408 }
7409
7410 static inline void
7411 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7412 {
7413 unsigned long interval, next;
7414
7415 interval = get_sd_balance_interval(sd, cpu_busy);
7416 next = sd->last_balance + interval;
7417
7418 if (time_after(*next_balance, next))
7419 *next_balance = next;
7420 }
7421
7422 /*
7423 * idle_balance is called by schedule() if this_cpu is about to become
7424 * idle. Attempts to pull tasks from other CPUs.
7425 */
7426 static int idle_balance(struct rq *this_rq)
7427 {
7428 unsigned long next_balance = jiffies + HZ;
7429 int this_cpu = this_rq->cpu;
7430 struct sched_domain *sd;
7431 int pulled_task = 0;
7432 u64 curr_cost = 0;
7433
7434 /*
7435 * We must set idle_stamp _before_ calling idle_balance(), such that we
7436 * measure the duration of idle_balance() as idle time.
7437 */
7438 this_rq->idle_stamp = rq_clock(this_rq);
7439
7440 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7441 !this_rq->rd->overload) {
7442 rcu_read_lock();
7443 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7444 if (sd)
7445 update_next_balance(sd, 0, &next_balance);
7446 rcu_read_unlock();
7447
7448 goto out;
7449 }
7450
7451 raw_spin_unlock(&this_rq->lock);
7452
7453 update_blocked_averages(this_cpu);
7454 rcu_read_lock();
7455 for_each_domain(this_cpu, sd) {
7456 int continue_balancing = 1;
7457 u64 t0, domain_cost;
7458
7459 if (!(sd->flags & SD_LOAD_BALANCE))
7460 continue;
7461
7462 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7463 update_next_balance(sd, 0, &next_balance);
7464 break;
7465 }
7466
7467 if (sd->flags & SD_BALANCE_NEWIDLE) {
7468 t0 = sched_clock_cpu(this_cpu);
7469
7470 pulled_task = load_balance(this_cpu, this_rq,
7471 sd, CPU_NEWLY_IDLE,
7472 &continue_balancing);
7473
7474 domain_cost = sched_clock_cpu(this_cpu) - t0;
7475 if (domain_cost > sd->max_newidle_lb_cost)
7476 sd->max_newidle_lb_cost = domain_cost;
7477
7478 curr_cost += domain_cost;
7479 }
7480
7481 update_next_balance(sd, 0, &next_balance);
7482
7483 /*
7484 * Stop searching for tasks to pull if there are
7485 * now runnable tasks on this rq.
7486 */
7487 if (pulled_task || this_rq->nr_running > 0)
7488 break;
7489 }
7490 rcu_read_unlock();
7491
7492 raw_spin_lock(&this_rq->lock);
7493
7494 if (curr_cost > this_rq->max_idle_balance_cost)
7495 this_rq->max_idle_balance_cost = curr_cost;
7496
7497 /*
7498 * While browsing the domains, we released the rq lock, a task could
7499 * have been enqueued in the meantime. Since we're not going idle,
7500 * pretend we pulled a task.
7501 */
7502 if (this_rq->cfs.h_nr_running && !pulled_task)
7503 pulled_task = 1;
7504
7505 out:
7506 /* Move the next balance forward */
7507 if (time_after(this_rq->next_balance, next_balance))
7508 this_rq->next_balance = next_balance;
7509
7510 /* Is there a task of a high priority class? */
7511 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7512 pulled_task = -1;
7513
7514 if (pulled_task)
7515 this_rq->idle_stamp = 0;
7516
7517 return pulled_task;
7518 }
7519
7520 /*
7521 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7522 * running tasks off the busiest CPU onto idle CPUs. It requires at
7523 * least 1 task to be running on each physical CPU where possible, and
7524 * avoids physical / logical imbalances.
7525 */
7526 static int active_load_balance_cpu_stop(void *data)
7527 {
7528 struct rq *busiest_rq = data;
7529 int busiest_cpu = cpu_of(busiest_rq);
7530 int target_cpu = busiest_rq->push_cpu;
7531 struct rq *target_rq = cpu_rq(target_cpu);
7532 struct sched_domain *sd;
7533 struct task_struct *p = NULL;
7534
7535 raw_spin_lock_irq(&busiest_rq->lock);
7536
7537 /* make sure the requested cpu hasn't gone down in the meantime */
7538 if (unlikely(busiest_cpu != smp_processor_id() ||
7539 !busiest_rq->active_balance))
7540 goto out_unlock;
7541
7542 /* Is there any task to move? */
7543 if (busiest_rq->nr_running <= 1)
7544 goto out_unlock;
7545
7546 /*
7547 * This condition is "impossible", if it occurs
7548 * we need to fix it. Originally reported by
7549 * Bjorn Helgaas on a 128-cpu setup.
7550 */
7551 BUG_ON(busiest_rq == target_rq);
7552
7553 /* Search for an sd spanning us and the target CPU. */
7554 rcu_read_lock();
7555 for_each_domain(target_cpu, sd) {
7556 if ((sd->flags & SD_LOAD_BALANCE) &&
7557 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7558 break;
7559 }
7560
7561 if (likely(sd)) {
7562 struct lb_env env = {
7563 .sd = sd,
7564 .dst_cpu = target_cpu,
7565 .dst_rq = target_rq,
7566 .src_cpu = busiest_rq->cpu,
7567 .src_rq = busiest_rq,
7568 .idle = CPU_IDLE,
7569 };
7570
7571 schedstat_inc(sd, alb_count);
7572
7573 p = detach_one_task(&env);
7574 if (p)
7575 schedstat_inc(sd, alb_pushed);
7576 else
7577 schedstat_inc(sd, alb_failed);
7578 }
7579 rcu_read_unlock();
7580 out_unlock:
7581 busiest_rq->active_balance = 0;
7582 raw_spin_unlock(&busiest_rq->lock);
7583
7584 if (p)
7585 attach_one_task(target_rq, p);
7586
7587 local_irq_enable();
7588
7589 return 0;
7590 }
7591
7592 static inline int on_null_domain(struct rq *rq)
7593 {
7594 return unlikely(!rcu_dereference_sched(rq->sd));
7595 }
7596
7597 #ifdef CONFIG_NO_HZ_COMMON
7598 /*
7599 * idle load balancing details
7600 * - When one of the busy CPUs notice that there may be an idle rebalancing
7601 * needed, they will kick the idle load balancer, which then does idle
7602 * load balancing for all the idle CPUs.
7603 */
7604 static struct {
7605 cpumask_var_t idle_cpus_mask;
7606 atomic_t nr_cpus;
7607 unsigned long next_balance; /* in jiffy units */
7608 } nohz ____cacheline_aligned;
7609
7610 static inline int find_new_ilb(void)
7611 {
7612 int ilb = cpumask_first(nohz.idle_cpus_mask);
7613
7614 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7615 return ilb;
7616
7617 return nr_cpu_ids;
7618 }
7619
7620 /*
7621 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7622 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7623 * CPU (if there is one).
7624 */
7625 static void nohz_balancer_kick(void)
7626 {
7627 int ilb_cpu;
7628
7629 nohz.next_balance++;
7630
7631 ilb_cpu = find_new_ilb();
7632
7633 if (ilb_cpu >= nr_cpu_ids)
7634 return;
7635
7636 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7637 return;
7638 /*
7639 * Use smp_send_reschedule() instead of resched_cpu().
7640 * This way we generate a sched IPI on the target cpu which
7641 * is idle. And the softirq performing nohz idle load balance
7642 * will be run before returning from the IPI.
7643 */
7644 smp_send_reschedule(ilb_cpu);
7645 return;
7646 }
7647
7648 static inline void nohz_balance_exit_idle(int cpu)
7649 {
7650 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7651 /*
7652 * Completely isolated CPUs don't ever set, so we must test.
7653 */
7654 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7655 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7656 atomic_dec(&nohz.nr_cpus);
7657 }
7658 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7659 }
7660 }
7661
7662 static inline void set_cpu_sd_state_busy(void)
7663 {
7664 struct sched_domain *sd;
7665 int cpu = smp_processor_id();
7666
7667 rcu_read_lock();
7668 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7669
7670 if (!sd || !sd->nohz_idle)
7671 goto unlock;
7672 sd->nohz_idle = 0;
7673
7674 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7675 unlock:
7676 rcu_read_unlock();
7677 }
7678
7679 void set_cpu_sd_state_idle(void)
7680 {
7681 struct sched_domain *sd;
7682 int cpu = smp_processor_id();
7683
7684 rcu_read_lock();
7685 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7686
7687 if (!sd || sd->nohz_idle)
7688 goto unlock;
7689 sd->nohz_idle = 1;
7690
7691 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7692 unlock:
7693 rcu_read_unlock();
7694 }
7695
7696 /*
7697 * This routine will record that the cpu is going idle with tick stopped.
7698 * This info will be used in performing idle load balancing in the future.
7699 */
7700 void nohz_balance_enter_idle(int cpu)
7701 {
7702 /*
7703 * If this cpu is going down, then nothing needs to be done.
7704 */
7705 if (!cpu_active(cpu))
7706 return;
7707
7708 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7709 return;
7710
7711 /*
7712 * If we're a completely isolated CPU, we don't play.
7713 */
7714 if (on_null_domain(cpu_rq(cpu)))
7715 return;
7716
7717 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7718 atomic_inc(&nohz.nr_cpus);
7719 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7720 }
7721
7722 static int sched_ilb_notifier(struct notifier_block *nfb,
7723 unsigned long action, void *hcpu)
7724 {
7725 switch (action & ~CPU_TASKS_FROZEN) {
7726 case CPU_DYING:
7727 nohz_balance_exit_idle(smp_processor_id());
7728 return NOTIFY_OK;
7729 default:
7730 return NOTIFY_DONE;
7731 }
7732 }
7733 #endif
7734
7735 static DEFINE_SPINLOCK(balancing);
7736
7737 /*
7738 * Scale the max load_balance interval with the number of CPUs in the system.
7739 * This trades load-balance latency on larger machines for less cross talk.
7740 */
7741 void update_max_interval(void)
7742 {
7743 max_load_balance_interval = HZ*num_online_cpus()/10;
7744 }
7745
7746 /*
7747 * It checks each scheduling domain to see if it is due to be balanced,
7748 * and initiates a balancing operation if so.
7749 *
7750 * Balancing parameters are set up in init_sched_domains.
7751 */
7752 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7753 {
7754 int continue_balancing = 1;
7755 int cpu = rq->cpu;
7756 unsigned long interval;
7757 struct sched_domain *sd;
7758 /* Earliest time when we have to do rebalance again */
7759 unsigned long next_balance = jiffies + 60*HZ;
7760 int update_next_balance = 0;
7761 int need_serialize, need_decay = 0;
7762 u64 max_cost = 0;
7763
7764 update_blocked_averages(cpu);
7765
7766 rcu_read_lock();
7767 for_each_domain(cpu, sd) {
7768 /*
7769 * Decay the newidle max times here because this is a regular
7770 * visit to all the domains. Decay ~1% per second.
7771 */
7772 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7773 sd->max_newidle_lb_cost =
7774 (sd->max_newidle_lb_cost * 253) / 256;
7775 sd->next_decay_max_lb_cost = jiffies + HZ;
7776 need_decay = 1;
7777 }
7778 max_cost += sd->max_newidle_lb_cost;
7779
7780 if (!(sd->flags & SD_LOAD_BALANCE))
7781 continue;
7782
7783 /*
7784 * Stop the load balance at this level. There is another
7785 * CPU in our sched group which is doing load balancing more
7786 * actively.
7787 */
7788 if (!continue_balancing) {
7789 if (need_decay)
7790 continue;
7791 break;
7792 }
7793
7794 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7795
7796 need_serialize = sd->flags & SD_SERIALIZE;
7797 if (need_serialize) {
7798 if (!spin_trylock(&balancing))
7799 goto out;
7800 }
7801
7802 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7803 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7804 /*
7805 * The LBF_DST_PINNED logic could have changed
7806 * env->dst_cpu, so we can't know our idle
7807 * state even if we migrated tasks. Update it.
7808 */
7809 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7810 }
7811 sd->last_balance = jiffies;
7812 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7813 }
7814 if (need_serialize)
7815 spin_unlock(&balancing);
7816 out:
7817 if (time_after(next_balance, sd->last_balance + interval)) {
7818 next_balance = sd->last_balance + interval;
7819 update_next_balance = 1;
7820 }
7821 }
7822 if (need_decay) {
7823 /*
7824 * Ensure the rq-wide value also decays but keep it at a
7825 * reasonable floor to avoid funnies with rq->avg_idle.
7826 */
7827 rq->max_idle_balance_cost =
7828 max((u64)sysctl_sched_migration_cost, max_cost);
7829 }
7830 rcu_read_unlock();
7831
7832 /*
7833 * next_balance will be updated only when there is a need.
7834 * When the cpu is attached to null domain for ex, it will not be
7835 * updated.
7836 */
7837 if (likely(update_next_balance)) {
7838 rq->next_balance = next_balance;
7839
7840 #ifdef CONFIG_NO_HZ_COMMON
7841 /*
7842 * If this CPU has been elected to perform the nohz idle
7843 * balance. Other idle CPUs have already rebalanced with
7844 * nohz_idle_balance() and nohz.next_balance has been
7845 * updated accordingly. This CPU is now running the idle load
7846 * balance for itself and we need to update the
7847 * nohz.next_balance accordingly.
7848 */
7849 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7850 nohz.next_balance = rq->next_balance;
7851 #endif
7852 }
7853 }
7854
7855 #ifdef CONFIG_NO_HZ_COMMON
7856 /*
7857 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7858 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7859 */
7860 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7861 {
7862 int this_cpu = this_rq->cpu;
7863 struct rq *rq;
7864 int balance_cpu;
7865 /* Earliest time when we have to do rebalance again */
7866 unsigned long next_balance = jiffies + 60*HZ;
7867 int update_next_balance = 0;
7868
7869 if (idle != CPU_IDLE ||
7870 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7871 goto end;
7872
7873 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7874 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7875 continue;
7876
7877 /*
7878 * If this cpu gets work to do, stop the load balancing
7879 * work being done for other cpus. Next load
7880 * balancing owner will pick it up.
7881 */
7882 if (need_resched())
7883 break;
7884
7885 rq = cpu_rq(balance_cpu);
7886
7887 /*
7888 * If time for next balance is due,
7889 * do the balance.
7890 */
7891 if (time_after_eq(jiffies, rq->next_balance)) {
7892 raw_spin_lock_irq(&rq->lock);
7893 update_rq_clock(rq);
7894 update_idle_cpu_load(rq);
7895 raw_spin_unlock_irq(&rq->lock);
7896 rebalance_domains(rq, CPU_IDLE);
7897 }
7898
7899 if (time_after(next_balance, rq->next_balance)) {
7900 next_balance = rq->next_balance;
7901 update_next_balance = 1;
7902 }
7903 }
7904
7905 /*
7906 * next_balance will be updated only when there is a need.
7907 * When the CPU is attached to null domain for ex, it will not be
7908 * updated.
7909 */
7910 if (likely(update_next_balance))
7911 nohz.next_balance = next_balance;
7912 end:
7913 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7914 }
7915
7916 /*
7917 * Current heuristic for kicking the idle load balancer in the presence
7918 * of an idle cpu in the system.
7919 * - This rq has more than one task.
7920 * - This rq has at least one CFS task and the capacity of the CPU is
7921 * significantly reduced because of RT tasks or IRQs.
7922 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7923 * multiple busy cpu.
7924 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7925 * domain span are idle.
7926 */
7927 static inline bool nohz_kick_needed(struct rq *rq)
7928 {
7929 unsigned long now = jiffies;
7930 struct sched_domain *sd;
7931 struct sched_group_capacity *sgc;
7932 int nr_busy, cpu = rq->cpu;
7933 bool kick = false;
7934
7935 if (unlikely(rq->idle_balance))
7936 return false;
7937
7938 /*
7939 * We may be recently in ticked or tickless idle mode. At the first
7940 * busy tick after returning from idle, we will update the busy stats.
7941 */
7942 set_cpu_sd_state_busy();
7943 nohz_balance_exit_idle(cpu);
7944
7945 /*
7946 * None are in tickless mode and hence no need for NOHZ idle load
7947 * balancing.
7948 */
7949 if (likely(!atomic_read(&nohz.nr_cpus)))
7950 return false;
7951
7952 if (time_before(now, nohz.next_balance))
7953 return false;
7954
7955 if (rq->nr_running >= 2)
7956 return true;
7957
7958 rcu_read_lock();
7959 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7960 if (sd) {
7961 sgc = sd->groups->sgc;
7962 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7963
7964 if (nr_busy > 1) {
7965 kick = true;
7966 goto unlock;
7967 }
7968
7969 }
7970
7971 sd = rcu_dereference(rq->sd);
7972 if (sd) {
7973 if ((rq->cfs.h_nr_running >= 1) &&
7974 check_cpu_capacity(rq, sd)) {
7975 kick = true;
7976 goto unlock;
7977 }
7978 }
7979
7980 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7981 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7982 sched_domain_span(sd)) < cpu)) {
7983 kick = true;
7984 goto unlock;
7985 }
7986
7987 unlock:
7988 rcu_read_unlock();
7989 return kick;
7990 }
7991 #else
7992 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7993 #endif
7994
7995 /*
7996 * run_rebalance_domains is triggered when needed from the scheduler tick.
7997 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7998 */
7999 static void run_rebalance_domains(struct softirq_action *h)
8000 {
8001 struct rq *this_rq = this_rq();
8002 enum cpu_idle_type idle = this_rq->idle_balance ?
8003 CPU_IDLE : CPU_NOT_IDLE;
8004
8005 /*
8006 * If this cpu has a pending nohz_balance_kick, then do the
8007 * balancing on behalf of the other idle cpus whose ticks are
8008 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8009 * give the idle cpus a chance to load balance. Else we may
8010 * load balance only within the local sched_domain hierarchy
8011 * and abort nohz_idle_balance altogether if we pull some load.
8012 */
8013 nohz_idle_balance(this_rq, idle);
8014 rebalance_domains(this_rq, idle);
8015 }
8016
8017 /*
8018 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8019 */
8020 void trigger_load_balance(struct rq *rq)
8021 {
8022 /* Don't need to rebalance while attached to NULL domain */
8023 if (unlikely(on_null_domain(rq)))
8024 return;
8025
8026 if (time_after_eq(jiffies, rq->next_balance))
8027 raise_softirq(SCHED_SOFTIRQ);
8028 #ifdef CONFIG_NO_HZ_COMMON
8029 if (nohz_kick_needed(rq))
8030 nohz_balancer_kick();
8031 #endif
8032 }
8033
8034 static void rq_online_fair(struct rq *rq)
8035 {
8036 update_sysctl();
8037
8038 update_runtime_enabled(rq);
8039 }
8040
8041 static void rq_offline_fair(struct rq *rq)
8042 {
8043 update_sysctl();
8044
8045 /* Ensure any throttled groups are reachable by pick_next_task */
8046 unthrottle_offline_cfs_rqs(rq);
8047 }
8048
8049 #endif /* CONFIG_SMP */
8050
8051 /*
8052 * scheduler tick hitting a task of our scheduling class:
8053 */
8054 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8055 {
8056 struct cfs_rq *cfs_rq;
8057 struct sched_entity *se = &curr->se;
8058
8059 for_each_sched_entity(se) {
8060 cfs_rq = cfs_rq_of(se);
8061 entity_tick(cfs_rq, se, queued);
8062 }
8063
8064 if (static_branch_unlikely(&sched_numa_balancing))
8065 task_tick_numa(rq, curr);
8066 }
8067
8068 /*
8069 * called on fork with the child task as argument from the parent's context
8070 * - child not yet on the tasklist
8071 * - preemption disabled
8072 */
8073 static void task_fork_fair(struct task_struct *p)
8074 {
8075 struct cfs_rq *cfs_rq;
8076 struct sched_entity *se = &p->se, *curr;
8077 int this_cpu = smp_processor_id();
8078 struct rq *rq = this_rq();
8079 unsigned long flags;
8080
8081 raw_spin_lock_irqsave(&rq->lock, flags);
8082
8083 update_rq_clock(rq);
8084
8085 cfs_rq = task_cfs_rq(current);
8086 curr = cfs_rq->curr;
8087
8088 /*
8089 * Not only the cpu but also the task_group of the parent might have
8090 * been changed after parent->se.parent,cfs_rq were copied to
8091 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8092 * of child point to valid ones.
8093 */
8094 rcu_read_lock();
8095 __set_task_cpu(p, this_cpu);
8096 rcu_read_unlock();
8097
8098 update_curr(cfs_rq);
8099
8100 if (curr)
8101 se->vruntime = curr->vruntime;
8102 place_entity(cfs_rq, se, 1);
8103
8104 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8105 /*
8106 * Upon rescheduling, sched_class::put_prev_task() will place
8107 * 'current' within the tree based on its new key value.
8108 */
8109 swap(curr->vruntime, se->vruntime);
8110 resched_curr(rq);
8111 }
8112
8113 se->vruntime -= cfs_rq->min_vruntime;
8114
8115 raw_spin_unlock_irqrestore(&rq->lock, flags);
8116 }
8117
8118 /*
8119 * Priority of the task has changed. Check to see if we preempt
8120 * the current task.
8121 */
8122 static void
8123 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8124 {
8125 if (!task_on_rq_queued(p))
8126 return;
8127
8128 /*
8129 * Reschedule if we are currently running on this runqueue and
8130 * our priority decreased, or if we are not currently running on
8131 * this runqueue and our priority is higher than the current's
8132 */
8133 if (rq->curr == p) {
8134 if (p->prio > oldprio)
8135 resched_curr(rq);
8136 } else
8137 check_preempt_curr(rq, p, 0);
8138 }
8139
8140 static inline bool vruntime_normalized(struct task_struct *p)
8141 {
8142 struct sched_entity *se = &p->se;
8143
8144 /*
8145 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8146 * the dequeue_entity(.flags=0) will already have normalized the
8147 * vruntime.
8148 */
8149 if (p->on_rq)
8150 return true;
8151
8152 /*
8153 * When !on_rq, vruntime of the task has usually NOT been normalized.
8154 * But there are some cases where it has already been normalized:
8155 *
8156 * - A forked child which is waiting for being woken up by
8157 * wake_up_new_task().
8158 * - A task which has been woken up by try_to_wake_up() and
8159 * waiting for actually being woken up by sched_ttwu_pending().
8160 */
8161 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8162 return true;
8163
8164 return false;
8165 }
8166
8167 static void detach_task_cfs_rq(struct task_struct *p)
8168 {
8169 struct sched_entity *se = &p->se;
8170 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8171
8172 if (!vruntime_normalized(p)) {
8173 /*
8174 * Fix up our vruntime so that the current sleep doesn't
8175 * cause 'unlimited' sleep bonus.
8176 */
8177 place_entity(cfs_rq, se, 0);
8178 se->vruntime -= cfs_rq->min_vruntime;
8179 }
8180
8181 /* Catch up with the cfs_rq and remove our load when we leave */
8182 detach_entity_load_avg(cfs_rq, se);
8183 }
8184
8185 static void attach_task_cfs_rq(struct task_struct *p)
8186 {
8187 struct sched_entity *se = &p->se;
8188 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8189
8190 #ifdef CONFIG_FAIR_GROUP_SCHED
8191 /*
8192 * Since the real-depth could have been changed (only FAIR
8193 * class maintain depth value), reset depth properly.
8194 */
8195 se->depth = se->parent ? se->parent->depth + 1 : 0;
8196 #endif
8197
8198 /* Synchronize task with its cfs_rq */
8199 attach_entity_load_avg(cfs_rq, se);
8200
8201 if (!vruntime_normalized(p))
8202 se->vruntime += cfs_rq->min_vruntime;
8203 }
8204
8205 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8206 {
8207 detach_task_cfs_rq(p);
8208 }
8209
8210 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8211 {
8212 attach_task_cfs_rq(p);
8213
8214 if (task_on_rq_queued(p)) {
8215 /*
8216 * We were most likely switched from sched_rt, so
8217 * kick off the schedule if running, otherwise just see
8218 * if we can still preempt the current task.
8219 */
8220 if (rq->curr == p)
8221 resched_curr(rq);
8222 else
8223 check_preempt_curr(rq, p, 0);
8224 }
8225 }
8226
8227 /* Account for a task changing its policy or group.
8228 *
8229 * This routine is mostly called to set cfs_rq->curr field when a task
8230 * migrates between groups/classes.
8231 */
8232 static void set_curr_task_fair(struct rq *rq)
8233 {
8234 struct sched_entity *se = &rq->curr->se;
8235
8236 for_each_sched_entity(se) {
8237 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8238
8239 set_next_entity(cfs_rq, se);
8240 /* ensure bandwidth has been allocated on our new cfs_rq */
8241 account_cfs_rq_runtime(cfs_rq, 0);
8242 }
8243 }
8244
8245 void init_cfs_rq(struct cfs_rq *cfs_rq)
8246 {
8247 cfs_rq->tasks_timeline = RB_ROOT;
8248 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8249 #ifndef CONFIG_64BIT
8250 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8251 #endif
8252 #ifdef CONFIG_SMP
8253 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8254 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8255 #endif
8256 }
8257
8258 #ifdef CONFIG_FAIR_GROUP_SCHED
8259 static void task_move_group_fair(struct task_struct *p)
8260 {
8261 detach_task_cfs_rq(p);
8262 set_task_rq(p, task_cpu(p));
8263
8264 #ifdef CONFIG_SMP
8265 /* Tell se's cfs_rq has been changed -- migrated */
8266 p->se.avg.last_update_time = 0;
8267 #endif
8268 attach_task_cfs_rq(p);
8269 }
8270
8271 void free_fair_sched_group(struct task_group *tg)
8272 {
8273 int i;
8274
8275 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8276
8277 for_each_possible_cpu(i) {
8278 if (tg->cfs_rq)
8279 kfree(tg->cfs_rq[i]);
8280 if (tg->se) {
8281 if (tg->se[i])
8282 remove_entity_load_avg(tg->se[i]);
8283 kfree(tg->se[i]);
8284 }
8285 }
8286
8287 kfree(tg->cfs_rq);
8288 kfree(tg->se);
8289 }
8290
8291 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8292 {
8293 struct cfs_rq *cfs_rq;
8294 struct sched_entity *se;
8295 int i;
8296
8297 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8298 if (!tg->cfs_rq)
8299 goto err;
8300 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8301 if (!tg->se)
8302 goto err;
8303
8304 tg->shares = NICE_0_LOAD;
8305
8306 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8307
8308 for_each_possible_cpu(i) {
8309 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8310 GFP_KERNEL, cpu_to_node(i));
8311 if (!cfs_rq)
8312 goto err;
8313
8314 se = kzalloc_node(sizeof(struct sched_entity),
8315 GFP_KERNEL, cpu_to_node(i));
8316 if (!se)
8317 goto err_free_rq;
8318
8319 init_cfs_rq(cfs_rq);
8320 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8321 init_entity_runnable_average(se);
8322 }
8323
8324 return 1;
8325
8326 err_free_rq:
8327 kfree(cfs_rq);
8328 err:
8329 return 0;
8330 }
8331
8332 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8333 {
8334 struct rq *rq = cpu_rq(cpu);
8335 unsigned long flags;
8336
8337 /*
8338 * Only empty task groups can be destroyed; so we can speculatively
8339 * check on_list without danger of it being re-added.
8340 */
8341 if (!tg->cfs_rq[cpu]->on_list)
8342 return;
8343
8344 raw_spin_lock_irqsave(&rq->lock, flags);
8345 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8346 raw_spin_unlock_irqrestore(&rq->lock, flags);
8347 }
8348
8349 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8350 struct sched_entity *se, int cpu,
8351 struct sched_entity *parent)
8352 {
8353 struct rq *rq = cpu_rq(cpu);
8354
8355 cfs_rq->tg = tg;
8356 cfs_rq->rq = rq;
8357 init_cfs_rq_runtime(cfs_rq);
8358
8359 tg->cfs_rq[cpu] = cfs_rq;
8360 tg->se[cpu] = se;
8361
8362 /* se could be NULL for root_task_group */
8363 if (!se)
8364 return;
8365
8366 if (!parent) {
8367 se->cfs_rq = &rq->cfs;
8368 se->depth = 0;
8369 } else {
8370 se->cfs_rq = parent->my_q;
8371 se->depth = parent->depth + 1;
8372 }
8373
8374 se->my_q = cfs_rq;
8375 /* guarantee group entities always have weight */
8376 update_load_set(&se->load, NICE_0_LOAD);
8377 se->parent = parent;
8378 }
8379
8380 static DEFINE_MUTEX(shares_mutex);
8381
8382 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8383 {
8384 int i;
8385 unsigned long flags;
8386
8387 /*
8388 * We can't change the weight of the root cgroup.
8389 */
8390 if (!tg->se[0])
8391 return -EINVAL;
8392
8393 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8394
8395 mutex_lock(&shares_mutex);
8396 if (tg->shares == shares)
8397 goto done;
8398
8399 tg->shares = shares;
8400 for_each_possible_cpu(i) {
8401 struct rq *rq = cpu_rq(i);
8402 struct sched_entity *se;
8403
8404 se = tg->se[i];
8405 /* Propagate contribution to hierarchy */
8406 raw_spin_lock_irqsave(&rq->lock, flags);
8407
8408 /* Possible calls to update_curr() need rq clock */
8409 update_rq_clock(rq);
8410 for_each_sched_entity(se)
8411 update_cfs_shares(group_cfs_rq(se));
8412 raw_spin_unlock_irqrestore(&rq->lock, flags);
8413 }
8414
8415 done:
8416 mutex_unlock(&shares_mutex);
8417 return 0;
8418 }
8419 #else /* CONFIG_FAIR_GROUP_SCHED */
8420
8421 void free_fair_sched_group(struct task_group *tg) { }
8422
8423 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8424 {
8425 return 1;
8426 }
8427
8428 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8429
8430 #endif /* CONFIG_FAIR_GROUP_SCHED */
8431
8432
8433 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8434 {
8435 struct sched_entity *se = &task->se;
8436 unsigned int rr_interval = 0;
8437
8438 /*
8439 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8440 * idle runqueue:
8441 */
8442 if (rq->cfs.load.weight)
8443 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8444
8445 return rr_interval;
8446 }
8447
8448 /*
8449 * All the scheduling class methods:
8450 */
8451 const struct sched_class fair_sched_class = {
8452 .next = &idle_sched_class,
8453 .enqueue_task = enqueue_task_fair,
8454 .dequeue_task = dequeue_task_fair,
8455 .yield_task = yield_task_fair,
8456 .yield_to_task = yield_to_task_fair,
8457
8458 .check_preempt_curr = check_preempt_wakeup,
8459
8460 .pick_next_task = pick_next_task_fair,
8461 .put_prev_task = put_prev_task_fair,
8462
8463 #ifdef CONFIG_SMP
8464 .select_task_rq = select_task_rq_fair,
8465 .migrate_task_rq = migrate_task_rq_fair,
8466
8467 .rq_online = rq_online_fair,
8468 .rq_offline = rq_offline_fair,
8469
8470 .task_waking = task_waking_fair,
8471 .task_dead = task_dead_fair,
8472 .set_cpus_allowed = set_cpus_allowed_common,
8473 #endif
8474
8475 .set_curr_task = set_curr_task_fair,
8476 .task_tick = task_tick_fair,
8477 .task_fork = task_fork_fair,
8478
8479 .prio_changed = prio_changed_fair,
8480 .switched_from = switched_from_fair,
8481 .switched_to = switched_to_fair,
8482
8483 .get_rr_interval = get_rr_interval_fair,
8484
8485 .update_curr = update_curr_fair,
8486
8487 #ifdef CONFIG_FAIR_GROUP_SCHED
8488 .task_move_group = task_move_group_fair,
8489 #endif
8490 };
8491
8492 #ifdef CONFIG_SCHED_DEBUG
8493 void print_cfs_stats(struct seq_file *m, int cpu)
8494 {
8495 struct cfs_rq *cfs_rq;
8496
8497 rcu_read_lock();
8498 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8499 print_cfs_rq(m, cpu, cfs_rq);
8500 rcu_read_unlock();
8501 }
8502
8503 #ifdef CONFIG_NUMA_BALANCING
8504 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8505 {
8506 int node;
8507 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8508
8509 for_each_online_node(node) {
8510 if (p->numa_faults) {
8511 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8512 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8513 }
8514 if (p->numa_group) {
8515 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8516 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8517 }
8518 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8519 }
8520 }
8521 #endif /* CONFIG_NUMA_BALANCING */
8522 #endif /* CONFIG_SCHED_DEBUG */
8523
8524 __init void init_sched_fair_class(void)
8525 {
8526 #ifdef CONFIG_SMP
8527 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8528
8529 #ifdef CONFIG_NO_HZ_COMMON
8530 nohz.next_balance = jiffies;
8531 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8532 cpu_notifier(sched_ilb_notifier, 0);
8533 #endif
8534 #endif /* SMP */
8535
8536 }
This page took 0.213599 seconds and 5 git commands to generate.