nohz: Re-evaluate the tick for the new task after a context switch
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 /*
117 * Increase the granularity value when there are more CPUs,
118 * because with more CPUs the 'effective latency' as visible
119 * to users decreases. But the relationship is not linear,
120 * so pick a second-best guess by going with the log2 of the
121 * number of CPUs.
122 *
123 * This idea comes from the SD scheduler of Con Kolivas:
124 */
125 static int get_update_sysctl_factor(void)
126 {
127 unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 unsigned int factor;
129
130 switch (sysctl_sched_tunable_scaling) {
131 case SCHED_TUNABLESCALING_NONE:
132 factor = 1;
133 break;
134 case SCHED_TUNABLESCALING_LINEAR:
135 factor = cpus;
136 break;
137 case SCHED_TUNABLESCALING_LOG:
138 default:
139 factor = 1 + ilog2(cpus);
140 break;
141 }
142
143 return factor;
144 }
145
146 static void update_sysctl(void)
147 {
148 unsigned int factor = get_update_sysctl_factor();
149
150 #define SET_SYSCTL(name) \
151 (sysctl_##name = (factor) * normalized_sysctl_##name)
152 SET_SYSCTL(sched_min_granularity);
153 SET_SYSCTL(sched_latency);
154 SET_SYSCTL(sched_wakeup_granularity);
155 #undef SET_SYSCTL
156 }
157
158 void sched_init_granularity(void)
159 {
160 update_sysctl();
161 }
162
163 #if BITS_PER_LONG == 32
164 # define WMULT_CONST (~0UL)
165 #else
166 # define WMULT_CONST (1UL << 32)
167 #endif
168
169 #define WMULT_SHIFT 32
170
171 /*
172 * Shift right and round:
173 */
174 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175
176 /*
177 * delta *= weight / lw
178 */
179 static unsigned long
180 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 struct load_weight *lw)
182 {
183 u64 tmp;
184
185 /*
186 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 * 2^SCHED_LOAD_RESOLUTION.
189 */
190 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 tmp = (u64)delta_exec * scale_load_down(weight);
192 else
193 tmp = (u64)delta_exec;
194
195 if (!lw->inv_weight) {
196 unsigned long w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * Check whether we'd overflow the 64-bit multiplication:
208 */
209 if (unlikely(tmp > WMULT_CONST))
210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 WMULT_SHIFT/2);
212 else
213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214
215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216 }
217
218
219 const struct sched_class fair_sched_class;
220
221 /**************************************************************
222 * CFS operations on generic schedulable entities:
223 */
224
225 #ifdef CONFIG_FAIR_GROUP_SCHED
226
227 /* cpu runqueue to which this cfs_rq is attached */
228 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229 {
230 return cfs_rq->rq;
231 }
232
233 /* An entity is a task if it doesn't "own" a runqueue */
234 #define entity_is_task(se) (!se->my_q)
235
236 static inline struct task_struct *task_of(struct sched_entity *se)
237 {
238 #ifdef CONFIG_SCHED_DEBUG
239 WARN_ON_ONCE(!entity_is_task(se));
240 #endif
241 return container_of(se, struct task_struct, se);
242 }
243
244 /* Walk up scheduling entities hierarchy */
245 #define for_each_sched_entity(se) \
246 for (; se; se = se->parent)
247
248 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249 {
250 return p->se.cfs_rq;
251 }
252
253 /* runqueue on which this entity is (to be) queued */
254 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255 {
256 return se->cfs_rq;
257 }
258
259 /* runqueue "owned" by this group */
260 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261 {
262 return grp->my_q;
263 }
264
265 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
266 int force_update);
267
268 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
269 {
270 if (!cfs_rq->on_list) {
271 /*
272 * Ensure we either appear before our parent (if already
273 * enqueued) or force our parent to appear after us when it is
274 * enqueued. The fact that we always enqueue bottom-up
275 * reduces this to two cases.
276 */
277 if (cfs_rq->tg->parent &&
278 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
279 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
281 } else {
282 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
283 &rq_of(cfs_rq)->leaf_cfs_rq_list);
284 }
285
286 cfs_rq->on_list = 1;
287 /* We should have no load, but we need to update last_decay. */
288 update_cfs_rq_blocked_load(cfs_rq, 0);
289 }
290 }
291
292 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293 {
294 if (cfs_rq->on_list) {
295 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
296 cfs_rq->on_list = 0;
297 }
298 }
299
300 /* Iterate thr' all leaf cfs_rq's on a runqueue */
301 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
302 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
303
304 /* Do the two (enqueued) entities belong to the same group ? */
305 static inline int
306 is_same_group(struct sched_entity *se, struct sched_entity *pse)
307 {
308 if (se->cfs_rq == pse->cfs_rq)
309 return 1;
310
311 return 0;
312 }
313
314 static inline struct sched_entity *parent_entity(struct sched_entity *se)
315 {
316 return se->parent;
317 }
318
319 /* return depth at which a sched entity is present in the hierarchy */
320 static inline int depth_se(struct sched_entity *se)
321 {
322 int depth = 0;
323
324 for_each_sched_entity(se)
325 depth++;
326
327 return depth;
328 }
329
330 static void
331 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
332 {
333 int se_depth, pse_depth;
334
335 /*
336 * preemption test can be made between sibling entities who are in the
337 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
338 * both tasks until we find their ancestors who are siblings of common
339 * parent.
340 */
341
342 /* First walk up until both entities are at same depth */
343 se_depth = depth_se(*se);
344 pse_depth = depth_se(*pse);
345
346 while (se_depth > pse_depth) {
347 se_depth--;
348 *se = parent_entity(*se);
349 }
350
351 while (pse_depth > se_depth) {
352 pse_depth--;
353 *pse = parent_entity(*pse);
354 }
355
356 while (!is_same_group(*se, *pse)) {
357 *se = parent_entity(*se);
358 *pse = parent_entity(*pse);
359 }
360 }
361
362 #else /* !CONFIG_FAIR_GROUP_SCHED */
363
364 static inline struct task_struct *task_of(struct sched_entity *se)
365 {
366 return container_of(se, struct task_struct, se);
367 }
368
369 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
370 {
371 return container_of(cfs_rq, struct rq, cfs);
372 }
373
374 #define entity_is_task(se) 1
375
376 #define for_each_sched_entity(se) \
377 for (; se; se = NULL)
378
379 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
380 {
381 return &task_rq(p)->cfs;
382 }
383
384 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
385 {
386 struct task_struct *p = task_of(se);
387 struct rq *rq = task_rq(p);
388
389 return &rq->cfs;
390 }
391
392 /* runqueue "owned" by this group */
393 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
394 {
395 return NULL;
396 }
397
398 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399 {
400 }
401
402 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
403 {
404 }
405
406 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
407 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
408
409 static inline int
410 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 {
412 return 1;
413 }
414
415 static inline struct sched_entity *parent_entity(struct sched_entity *se)
416 {
417 return NULL;
418 }
419
420 static inline void
421 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
422 {
423 }
424
425 #endif /* CONFIG_FAIR_GROUP_SCHED */
426
427 static __always_inline
428 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
429
430 /**************************************************************
431 * Scheduling class tree data structure manipulation methods:
432 */
433
434 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
435 {
436 s64 delta = (s64)(vruntime - max_vruntime);
437 if (delta > 0)
438 max_vruntime = vruntime;
439
440 return max_vruntime;
441 }
442
443 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
444 {
445 s64 delta = (s64)(vruntime - min_vruntime);
446 if (delta < 0)
447 min_vruntime = vruntime;
448
449 return min_vruntime;
450 }
451
452 static inline int entity_before(struct sched_entity *a,
453 struct sched_entity *b)
454 {
455 return (s64)(a->vruntime - b->vruntime) < 0;
456 }
457
458 static void update_min_vruntime(struct cfs_rq *cfs_rq)
459 {
460 u64 vruntime = cfs_rq->min_vruntime;
461
462 if (cfs_rq->curr)
463 vruntime = cfs_rq->curr->vruntime;
464
465 if (cfs_rq->rb_leftmost) {
466 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
467 struct sched_entity,
468 run_node);
469
470 if (!cfs_rq->curr)
471 vruntime = se->vruntime;
472 else
473 vruntime = min_vruntime(vruntime, se->vruntime);
474 }
475
476 /* ensure we never gain time by being placed backwards. */
477 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
478 #ifndef CONFIG_64BIT
479 smp_wmb();
480 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
481 #endif
482 }
483
484 /*
485 * Enqueue an entity into the rb-tree:
486 */
487 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
488 {
489 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
490 struct rb_node *parent = NULL;
491 struct sched_entity *entry;
492 int leftmost = 1;
493
494 /*
495 * Find the right place in the rbtree:
496 */
497 while (*link) {
498 parent = *link;
499 entry = rb_entry(parent, struct sched_entity, run_node);
500 /*
501 * We dont care about collisions. Nodes with
502 * the same key stay together.
503 */
504 if (entity_before(se, entry)) {
505 link = &parent->rb_left;
506 } else {
507 link = &parent->rb_right;
508 leftmost = 0;
509 }
510 }
511
512 /*
513 * Maintain a cache of leftmost tree entries (it is frequently
514 * used):
515 */
516 if (leftmost)
517 cfs_rq->rb_leftmost = &se->run_node;
518
519 rb_link_node(&se->run_node, parent, link);
520 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
521 }
522
523 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 {
525 if (cfs_rq->rb_leftmost == &se->run_node) {
526 struct rb_node *next_node;
527
528 next_node = rb_next(&se->run_node);
529 cfs_rq->rb_leftmost = next_node;
530 }
531
532 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
533 }
534
535 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
536 {
537 struct rb_node *left = cfs_rq->rb_leftmost;
538
539 if (!left)
540 return NULL;
541
542 return rb_entry(left, struct sched_entity, run_node);
543 }
544
545 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
546 {
547 struct rb_node *next = rb_next(&se->run_node);
548
549 if (!next)
550 return NULL;
551
552 return rb_entry(next, struct sched_entity, run_node);
553 }
554
555 #ifdef CONFIG_SCHED_DEBUG
556 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
557 {
558 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
559
560 if (!last)
561 return NULL;
562
563 return rb_entry(last, struct sched_entity, run_node);
564 }
565
566 /**************************************************************
567 * Scheduling class statistics methods:
568 */
569
570 int sched_proc_update_handler(struct ctl_table *table, int write,
571 void __user *buffer, size_t *lenp,
572 loff_t *ppos)
573 {
574 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
575 int factor = get_update_sysctl_factor();
576
577 if (ret || !write)
578 return ret;
579
580 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
581 sysctl_sched_min_granularity);
582
583 #define WRT_SYSCTL(name) \
584 (normalized_sysctl_##name = sysctl_##name / (factor))
585 WRT_SYSCTL(sched_min_granularity);
586 WRT_SYSCTL(sched_latency);
587 WRT_SYSCTL(sched_wakeup_granularity);
588 #undef WRT_SYSCTL
589
590 return 0;
591 }
592 #endif
593
594 /*
595 * delta /= w
596 */
597 static inline unsigned long
598 calc_delta_fair(unsigned long delta, struct sched_entity *se)
599 {
600 if (unlikely(se->load.weight != NICE_0_LOAD))
601 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
602
603 return delta;
604 }
605
606 /*
607 * The idea is to set a period in which each task runs once.
608 *
609 * When there are too many tasks (sched_nr_latency) we have to stretch
610 * this period because otherwise the slices get too small.
611 *
612 * p = (nr <= nl) ? l : l*nr/nl
613 */
614 static u64 __sched_period(unsigned long nr_running)
615 {
616 u64 period = sysctl_sched_latency;
617 unsigned long nr_latency = sched_nr_latency;
618
619 if (unlikely(nr_running > nr_latency)) {
620 period = sysctl_sched_min_granularity;
621 period *= nr_running;
622 }
623
624 return period;
625 }
626
627 /*
628 * We calculate the wall-time slice from the period by taking a part
629 * proportional to the weight.
630 *
631 * s = p*P[w/rw]
632 */
633 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
634 {
635 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
636
637 for_each_sched_entity(se) {
638 struct load_weight *load;
639 struct load_weight lw;
640
641 cfs_rq = cfs_rq_of(se);
642 load = &cfs_rq->load;
643
644 if (unlikely(!se->on_rq)) {
645 lw = cfs_rq->load;
646
647 update_load_add(&lw, se->load.weight);
648 load = &lw;
649 }
650 slice = calc_delta_mine(slice, se->load.weight, load);
651 }
652 return slice;
653 }
654
655 /*
656 * We calculate the vruntime slice of a to-be-inserted task.
657 *
658 * vs = s/w
659 */
660 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
661 {
662 return calc_delta_fair(sched_slice(cfs_rq, se), se);
663 }
664
665 /*
666 * Update the current task's runtime statistics. Skip current tasks that
667 * are not in our scheduling class.
668 */
669 static inline void
670 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
671 unsigned long delta_exec)
672 {
673 unsigned long delta_exec_weighted;
674
675 schedstat_set(curr->statistics.exec_max,
676 max((u64)delta_exec, curr->statistics.exec_max));
677
678 curr->sum_exec_runtime += delta_exec;
679 schedstat_add(cfs_rq, exec_clock, delta_exec);
680 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
681
682 curr->vruntime += delta_exec_weighted;
683 update_min_vruntime(cfs_rq);
684 }
685
686 static void update_curr(struct cfs_rq *cfs_rq)
687 {
688 struct sched_entity *curr = cfs_rq->curr;
689 u64 now = rq_of(cfs_rq)->clock_task;
690 unsigned long delta_exec;
691
692 if (unlikely(!curr))
693 return;
694
695 /*
696 * Get the amount of time the current task was running
697 * since the last time we changed load (this cannot
698 * overflow on 32 bits):
699 */
700 delta_exec = (unsigned long)(now - curr->exec_start);
701 if (!delta_exec)
702 return;
703
704 __update_curr(cfs_rq, curr, delta_exec);
705 curr->exec_start = now;
706
707 if (entity_is_task(curr)) {
708 struct task_struct *curtask = task_of(curr);
709
710 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
711 cpuacct_charge(curtask, delta_exec);
712 account_group_exec_runtime(curtask, delta_exec);
713 }
714
715 account_cfs_rq_runtime(cfs_rq, delta_exec);
716 }
717
718 static inline void
719 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
720 {
721 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
722 }
723
724 /*
725 * Task is being enqueued - update stats:
726 */
727 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
728 {
729 /*
730 * Are we enqueueing a waiting task? (for current tasks
731 * a dequeue/enqueue event is a NOP)
732 */
733 if (se != cfs_rq->curr)
734 update_stats_wait_start(cfs_rq, se);
735 }
736
737 static void
738 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
741 rq_of(cfs_rq)->clock - se->statistics.wait_start));
742 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
743 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
744 rq_of(cfs_rq)->clock - se->statistics.wait_start);
745 #ifdef CONFIG_SCHEDSTATS
746 if (entity_is_task(se)) {
747 trace_sched_stat_wait(task_of(se),
748 rq_of(cfs_rq)->clock - se->statistics.wait_start);
749 }
750 #endif
751 schedstat_set(se->statistics.wait_start, 0);
752 }
753
754 static inline void
755 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 {
757 /*
758 * Mark the end of the wait period if dequeueing a
759 * waiting task:
760 */
761 if (se != cfs_rq->curr)
762 update_stats_wait_end(cfs_rq, se);
763 }
764
765 /*
766 * We are picking a new current task - update its stats:
767 */
768 static inline void
769 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
770 {
771 /*
772 * We are starting a new run period:
773 */
774 se->exec_start = rq_of(cfs_rq)->clock_task;
775 }
776
777 /**************************************************
778 * Scheduling class queueing methods:
779 */
780
781 #ifdef CONFIG_NUMA_BALANCING
782 /*
783 * numa task sample period in ms
784 */
785 unsigned int sysctl_numa_balancing_scan_period_min = 100;
786 unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
787 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
788
789 /* Portion of address space to scan in MB */
790 unsigned int sysctl_numa_balancing_scan_size = 256;
791
792 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
793 unsigned int sysctl_numa_balancing_scan_delay = 1000;
794
795 static void task_numa_placement(struct task_struct *p)
796 {
797 int seq;
798
799 if (!p->mm) /* for example, ksmd faulting in a user's mm */
800 return;
801 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
802 if (p->numa_scan_seq == seq)
803 return;
804 p->numa_scan_seq = seq;
805
806 /* FIXME: Scheduling placement policy hints go here */
807 }
808
809 /*
810 * Got a PROT_NONE fault for a page on @node.
811 */
812 void task_numa_fault(int node, int pages, bool migrated)
813 {
814 struct task_struct *p = current;
815
816 if (!sched_feat_numa(NUMA))
817 return;
818
819 /* FIXME: Allocate task-specific structure for placement policy here */
820
821 /*
822 * If pages are properly placed (did not migrate) then scan slower.
823 * This is reset periodically in case of phase changes
824 */
825 if (!migrated)
826 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
827 p->numa_scan_period + jiffies_to_msecs(10));
828
829 task_numa_placement(p);
830 }
831
832 static void reset_ptenuma_scan(struct task_struct *p)
833 {
834 ACCESS_ONCE(p->mm->numa_scan_seq)++;
835 p->mm->numa_scan_offset = 0;
836 }
837
838 /*
839 * The expensive part of numa migration is done from task_work context.
840 * Triggered from task_tick_numa().
841 */
842 void task_numa_work(struct callback_head *work)
843 {
844 unsigned long migrate, next_scan, now = jiffies;
845 struct task_struct *p = current;
846 struct mm_struct *mm = p->mm;
847 struct vm_area_struct *vma;
848 unsigned long start, end;
849 long pages;
850
851 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
852
853 work->next = work; /* protect against double add */
854 /*
855 * Who cares about NUMA placement when they're dying.
856 *
857 * NOTE: make sure not to dereference p->mm before this check,
858 * exit_task_work() happens _after_ exit_mm() so we could be called
859 * without p->mm even though we still had it when we enqueued this
860 * work.
861 */
862 if (p->flags & PF_EXITING)
863 return;
864
865 /*
866 * We do not care about task placement until a task runs on a node
867 * other than the first one used by the address space. This is
868 * largely because migrations are driven by what CPU the task
869 * is running on. If it's never scheduled on another node, it'll
870 * not migrate so why bother trapping the fault.
871 */
872 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
873 mm->first_nid = numa_node_id();
874 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
875 /* Are we running on a new node yet? */
876 if (numa_node_id() == mm->first_nid &&
877 !sched_feat_numa(NUMA_FORCE))
878 return;
879
880 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
881 }
882
883 /*
884 * Reset the scan period if enough time has gone by. Objective is that
885 * scanning will be reduced if pages are properly placed. As tasks
886 * can enter different phases this needs to be re-examined. Lacking
887 * proper tracking of reference behaviour, this blunt hammer is used.
888 */
889 migrate = mm->numa_next_reset;
890 if (time_after(now, migrate)) {
891 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
892 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
893 xchg(&mm->numa_next_reset, next_scan);
894 }
895
896 /*
897 * Enforce maximal scan/migration frequency..
898 */
899 migrate = mm->numa_next_scan;
900 if (time_before(now, migrate))
901 return;
902
903 if (p->numa_scan_period == 0)
904 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
905
906 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
907 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
908 return;
909
910 /*
911 * Do not set pte_numa if the current running node is rate-limited.
912 * This loses statistics on the fault but if we are unwilling to
913 * migrate to this node, it is less likely we can do useful work
914 */
915 if (migrate_ratelimited(numa_node_id()))
916 return;
917
918 start = mm->numa_scan_offset;
919 pages = sysctl_numa_balancing_scan_size;
920 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
921 if (!pages)
922 return;
923
924 down_read(&mm->mmap_sem);
925 vma = find_vma(mm, start);
926 if (!vma) {
927 reset_ptenuma_scan(p);
928 start = 0;
929 vma = mm->mmap;
930 }
931 for (; vma; vma = vma->vm_next) {
932 if (!vma_migratable(vma))
933 continue;
934
935 /* Skip small VMAs. They are not likely to be of relevance */
936 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
937 continue;
938
939 do {
940 start = max(start, vma->vm_start);
941 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
942 end = min(end, vma->vm_end);
943 pages -= change_prot_numa(vma, start, end);
944
945 start = end;
946 if (pages <= 0)
947 goto out;
948 } while (end != vma->vm_end);
949 }
950
951 out:
952 /*
953 * It is possible to reach the end of the VMA list but the last few VMAs are
954 * not guaranteed to the vma_migratable. If they are not, we would find the
955 * !migratable VMA on the next scan but not reset the scanner to the start
956 * so check it now.
957 */
958 if (vma)
959 mm->numa_scan_offset = start;
960 else
961 reset_ptenuma_scan(p);
962 up_read(&mm->mmap_sem);
963 }
964
965 /*
966 * Drive the periodic memory faults..
967 */
968 void task_tick_numa(struct rq *rq, struct task_struct *curr)
969 {
970 struct callback_head *work = &curr->numa_work;
971 u64 period, now;
972
973 /*
974 * We don't care about NUMA placement if we don't have memory.
975 */
976 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
977 return;
978
979 /*
980 * Using runtime rather than walltime has the dual advantage that
981 * we (mostly) drive the selection from busy threads and that the
982 * task needs to have done some actual work before we bother with
983 * NUMA placement.
984 */
985 now = curr->se.sum_exec_runtime;
986 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
987
988 if (now - curr->node_stamp > period) {
989 if (!curr->node_stamp)
990 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
991 curr->node_stamp = now;
992
993 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
994 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
995 task_work_add(curr, work, true);
996 }
997 }
998 }
999 #else
1000 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1001 {
1002 }
1003 #endif /* CONFIG_NUMA_BALANCING */
1004
1005 static void
1006 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1007 {
1008 update_load_add(&cfs_rq->load, se->load.weight);
1009 if (!parent_entity(se))
1010 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1011 #ifdef CONFIG_SMP
1012 if (entity_is_task(se))
1013 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1014 #endif
1015 cfs_rq->nr_running++;
1016 }
1017
1018 static void
1019 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1020 {
1021 update_load_sub(&cfs_rq->load, se->load.weight);
1022 if (!parent_entity(se))
1023 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1024 if (entity_is_task(se))
1025 list_del_init(&se->group_node);
1026 cfs_rq->nr_running--;
1027 }
1028
1029 #ifdef CONFIG_FAIR_GROUP_SCHED
1030 # ifdef CONFIG_SMP
1031 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1032 {
1033 long tg_weight;
1034
1035 /*
1036 * Use this CPU's actual weight instead of the last load_contribution
1037 * to gain a more accurate current total weight. See
1038 * update_cfs_rq_load_contribution().
1039 */
1040 tg_weight = atomic64_read(&tg->load_avg);
1041 tg_weight -= cfs_rq->tg_load_contrib;
1042 tg_weight += cfs_rq->load.weight;
1043
1044 return tg_weight;
1045 }
1046
1047 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1048 {
1049 long tg_weight, load, shares;
1050
1051 tg_weight = calc_tg_weight(tg, cfs_rq);
1052 load = cfs_rq->load.weight;
1053
1054 shares = (tg->shares * load);
1055 if (tg_weight)
1056 shares /= tg_weight;
1057
1058 if (shares < MIN_SHARES)
1059 shares = MIN_SHARES;
1060 if (shares > tg->shares)
1061 shares = tg->shares;
1062
1063 return shares;
1064 }
1065 # else /* CONFIG_SMP */
1066 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1067 {
1068 return tg->shares;
1069 }
1070 # endif /* CONFIG_SMP */
1071 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1072 unsigned long weight)
1073 {
1074 if (se->on_rq) {
1075 /* commit outstanding execution time */
1076 if (cfs_rq->curr == se)
1077 update_curr(cfs_rq);
1078 account_entity_dequeue(cfs_rq, se);
1079 }
1080
1081 update_load_set(&se->load, weight);
1082
1083 if (se->on_rq)
1084 account_entity_enqueue(cfs_rq, se);
1085 }
1086
1087 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1088
1089 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1090 {
1091 struct task_group *tg;
1092 struct sched_entity *se;
1093 long shares;
1094
1095 tg = cfs_rq->tg;
1096 se = tg->se[cpu_of(rq_of(cfs_rq))];
1097 if (!se || throttled_hierarchy(cfs_rq))
1098 return;
1099 #ifndef CONFIG_SMP
1100 if (likely(se->load.weight == tg->shares))
1101 return;
1102 #endif
1103 shares = calc_cfs_shares(cfs_rq, tg);
1104
1105 reweight_entity(cfs_rq_of(se), se, shares);
1106 }
1107 #else /* CONFIG_FAIR_GROUP_SCHED */
1108 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1109 {
1110 }
1111 #endif /* CONFIG_FAIR_GROUP_SCHED */
1112
1113 /* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1114 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1115 /*
1116 * We choose a half-life close to 1 scheduling period.
1117 * Note: The tables below are dependent on this value.
1118 */
1119 #define LOAD_AVG_PERIOD 32
1120 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1121 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1122
1123 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1124 static const u32 runnable_avg_yN_inv[] = {
1125 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1126 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1127 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1128 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1129 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1130 0x85aac367, 0x82cd8698,
1131 };
1132
1133 /*
1134 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1135 * over-estimates when re-combining.
1136 */
1137 static const u32 runnable_avg_yN_sum[] = {
1138 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1139 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1140 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1141 };
1142
1143 /*
1144 * Approximate:
1145 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1146 */
1147 static __always_inline u64 decay_load(u64 val, u64 n)
1148 {
1149 unsigned int local_n;
1150
1151 if (!n)
1152 return val;
1153 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1154 return 0;
1155
1156 /* after bounds checking we can collapse to 32-bit */
1157 local_n = n;
1158
1159 /*
1160 * As y^PERIOD = 1/2, we can combine
1161 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1162 * With a look-up table which covers k^n (n<PERIOD)
1163 *
1164 * To achieve constant time decay_load.
1165 */
1166 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1167 val >>= local_n / LOAD_AVG_PERIOD;
1168 local_n %= LOAD_AVG_PERIOD;
1169 }
1170
1171 val *= runnable_avg_yN_inv[local_n];
1172 /* We don't use SRR here since we always want to round down. */
1173 return val >> 32;
1174 }
1175
1176 /*
1177 * For updates fully spanning n periods, the contribution to runnable
1178 * average will be: \Sum 1024*y^n
1179 *
1180 * We can compute this reasonably efficiently by combining:
1181 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1182 */
1183 static u32 __compute_runnable_contrib(u64 n)
1184 {
1185 u32 contrib = 0;
1186
1187 if (likely(n <= LOAD_AVG_PERIOD))
1188 return runnable_avg_yN_sum[n];
1189 else if (unlikely(n >= LOAD_AVG_MAX_N))
1190 return LOAD_AVG_MAX;
1191
1192 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1193 do {
1194 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1195 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1196
1197 n -= LOAD_AVG_PERIOD;
1198 } while (n > LOAD_AVG_PERIOD);
1199
1200 contrib = decay_load(contrib, n);
1201 return contrib + runnable_avg_yN_sum[n];
1202 }
1203
1204 /*
1205 * We can represent the historical contribution to runnable average as the
1206 * coefficients of a geometric series. To do this we sub-divide our runnable
1207 * history into segments of approximately 1ms (1024us); label the segment that
1208 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1209 *
1210 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1211 * p0 p1 p2
1212 * (now) (~1ms ago) (~2ms ago)
1213 *
1214 * Let u_i denote the fraction of p_i that the entity was runnable.
1215 *
1216 * We then designate the fractions u_i as our co-efficients, yielding the
1217 * following representation of historical load:
1218 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1219 *
1220 * We choose y based on the with of a reasonably scheduling period, fixing:
1221 * y^32 = 0.5
1222 *
1223 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1224 * approximately half as much as the contribution to load within the last ms
1225 * (u_0).
1226 *
1227 * When a period "rolls over" and we have new u_0`, multiplying the previous
1228 * sum again by y is sufficient to update:
1229 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1230 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1231 */
1232 static __always_inline int __update_entity_runnable_avg(u64 now,
1233 struct sched_avg *sa,
1234 int runnable)
1235 {
1236 u64 delta, periods;
1237 u32 runnable_contrib;
1238 int delta_w, decayed = 0;
1239
1240 delta = now - sa->last_runnable_update;
1241 /*
1242 * This should only happen when time goes backwards, which it
1243 * unfortunately does during sched clock init when we swap over to TSC.
1244 */
1245 if ((s64)delta < 0) {
1246 sa->last_runnable_update = now;
1247 return 0;
1248 }
1249
1250 /*
1251 * Use 1024ns as the unit of measurement since it's a reasonable
1252 * approximation of 1us and fast to compute.
1253 */
1254 delta >>= 10;
1255 if (!delta)
1256 return 0;
1257 sa->last_runnable_update = now;
1258
1259 /* delta_w is the amount already accumulated against our next period */
1260 delta_w = sa->runnable_avg_period % 1024;
1261 if (delta + delta_w >= 1024) {
1262 /* period roll-over */
1263 decayed = 1;
1264
1265 /*
1266 * Now that we know we're crossing a period boundary, figure
1267 * out how much from delta we need to complete the current
1268 * period and accrue it.
1269 */
1270 delta_w = 1024 - delta_w;
1271 if (runnable)
1272 sa->runnable_avg_sum += delta_w;
1273 sa->runnable_avg_period += delta_w;
1274
1275 delta -= delta_w;
1276
1277 /* Figure out how many additional periods this update spans */
1278 periods = delta / 1024;
1279 delta %= 1024;
1280
1281 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1282 periods + 1);
1283 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1284 periods + 1);
1285
1286 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1287 runnable_contrib = __compute_runnable_contrib(periods);
1288 if (runnable)
1289 sa->runnable_avg_sum += runnable_contrib;
1290 sa->runnable_avg_period += runnable_contrib;
1291 }
1292
1293 /* Remainder of delta accrued against u_0` */
1294 if (runnable)
1295 sa->runnable_avg_sum += delta;
1296 sa->runnable_avg_period += delta;
1297
1298 return decayed;
1299 }
1300
1301 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1302 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1303 {
1304 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1305 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1306
1307 decays -= se->avg.decay_count;
1308 if (!decays)
1309 return 0;
1310
1311 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1312 se->avg.decay_count = 0;
1313
1314 return decays;
1315 }
1316
1317 #ifdef CONFIG_FAIR_GROUP_SCHED
1318 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1319 int force_update)
1320 {
1321 struct task_group *tg = cfs_rq->tg;
1322 s64 tg_contrib;
1323
1324 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1325 tg_contrib -= cfs_rq->tg_load_contrib;
1326
1327 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1328 atomic64_add(tg_contrib, &tg->load_avg);
1329 cfs_rq->tg_load_contrib += tg_contrib;
1330 }
1331 }
1332
1333 /*
1334 * Aggregate cfs_rq runnable averages into an equivalent task_group
1335 * representation for computing load contributions.
1336 */
1337 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1338 struct cfs_rq *cfs_rq)
1339 {
1340 struct task_group *tg = cfs_rq->tg;
1341 long contrib;
1342
1343 /* The fraction of a cpu used by this cfs_rq */
1344 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1345 sa->runnable_avg_period + 1);
1346 contrib -= cfs_rq->tg_runnable_contrib;
1347
1348 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1349 atomic_add(contrib, &tg->runnable_avg);
1350 cfs_rq->tg_runnable_contrib += contrib;
1351 }
1352 }
1353
1354 static inline void __update_group_entity_contrib(struct sched_entity *se)
1355 {
1356 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1357 struct task_group *tg = cfs_rq->tg;
1358 int runnable_avg;
1359
1360 u64 contrib;
1361
1362 contrib = cfs_rq->tg_load_contrib * tg->shares;
1363 se->avg.load_avg_contrib = div64_u64(contrib,
1364 atomic64_read(&tg->load_avg) + 1);
1365
1366 /*
1367 * For group entities we need to compute a correction term in the case
1368 * that they are consuming <1 cpu so that we would contribute the same
1369 * load as a task of equal weight.
1370 *
1371 * Explicitly co-ordinating this measurement would be expensive, but
1372 * fortunately the sum of each cpus contribution forms a usable
1373 * lower-bound on the true value.
1374 *
1375 * Consider the aggregate of 2 contributions. Either they are disjoint
1376 * (and the sum represents true value) or they are disjoint and we are
1377 * understating by the aggregate of their overlap.
1378 *
1379 * Extending this to N cpus, for a given overlap, the maximum amount we
1380 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1381 * cpus that overlap for this interval and w_i is the interval width.
1382 *
1383 * On a small machine; the first term is well-bounded which bounds the
1384 * total error since w_i is a subset of the period. Whereas on a
1385 * larger machine, while this first term can be larger, if w_i is the
1386 * of consequential size guaranteed to see n_i*w_i quickly converge to
1387 * our upper bound of 1-cpu.
1388 */
1389 runnable_avg = atomic_read(&tg->runnable_avg);
1390 if (runnable_avg < NICE_0_LOAD) {
1391 se->avg.load_avg_contrib *= runnable_avg;
1392 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1393 }
1394 }
1395 #else
1396 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1397 int force_update) {}
1398 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1399 struct cfs_rq *cfs_rq) {}
1400 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1401 #endif
1402
1403 static inline void __update_task_entity_contrib(struct sched_entity *se)
1404 {
1405 u32 contrib;
1406
1407 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1408 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1409 contrib /= (se->avg.runnable_avg_period + 1);
1410 se->avg.load_avg_contrib = scale_load(contrib);
1411 }
1412
1413 /* Compute the current contribution to load_avg by se, return any delta */
1414 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1415 {
1416 long old_contrib = se->avg.load_avg_contrib;
1417
1418 if (entity_is_task(se)) {
1419 __update_task_entity_contrib(se);
1420 } else {
1421 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1422 __update_group_entity_contrib(se);
1423 }
1424
1425 return se->avg.load_avg_contrib - old_contrib;
1426 }
1427
1428 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1429 long load_contrib)
1430 {
1431 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1432 cfs_rq->blocked_load_avg -= load_contrib;
1433 else
1434 cfs_rq->blocked_load_avg = 0;
1435 }
1436
1437 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1438
1439 /* Update a sched_entity's runnable average */
1440 static inline void update_entity_load_avg(struct sched_entity *se,
1441 int update_cfs_rq)
1442 {
1443 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1444 long contrib_delta;
1445 u64 now;
1446
1447 /*
1448 * For a group entity we need to use their owned cfs_rq_clock_task() in
1449 * case they are the parent of a throttled hierarchy.
1450 */
1451 if (entity_is_task(se))
1452 now = cfs_rq_clock_task(cfs_rq);
1453 else
1454 now = cfs_rq_clock_task(group_cfs_rq(se));
1455
1456 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1457 return;
1458
1459 contrib_delta = __update_entity_load_avg_contrib(se);
1460
1461 if (!update_cfs_rq)
1462 return;
1463
1464 if (se->on_rq)
1465 cfs_rq->runnable_load_avg += contrib_delta;
1466 else
1467 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1468 }
1469
1470 /*
1471 * Decay the load contributed by all blocked children and account this so that
1472 * their contribution may appropriately discounted when they wake up.
1473 */
1474 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1475 {
1476 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1477 u64 decays;
1478
1479 decays = now - cfs_rq->last_decay;
1480 if (!decays && !force_update)
1481 return;
1482
1483 if (atomic64_read(&cfs_rq->removed_load)) {
1484 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1485 subtract_blocked_load_contrib(cfs_rq, removed_load);
1486 }
1487
1488 if (decays) {
1489 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1490 decays);
1491 atomic64_add(decays, &cfs_rq->decay_counter);
1492 cfs_rq->last_decay = now;
1493 }
1494
1495 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1496 }
1497
1498 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1499 {
1500 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
1501 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1502 }
1503
1504 /* Add the load generated by se into cfs_rq's child load-average */
1505 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1506 struct sched_entity *se,
1507 int wakeup)
1508 {
1509 /*
1510 * We track migrations using entity decay_count <= 0, on a wake-up
1511 * migration we use a negative decay count to track the remote decays
1512 * accumulated while sleeping.
1513 */
1514 if (unlikely(se->avg.decay_count <= 0)) {
1515 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
1516 if (se->avg.decay_count) {
1517 /*
1518 * In a wake-up migration we have to approximate the
1519 * time sleeping. This is because we can't synchronize
1520 * clock_task between the two cpus, and it is not
1521 * guaranteed to be read-safe. Instead, we can
1522 * approximate this using our carried decays, which are
1523 * explicitly atomically readable.
1524 */
1525 se->avg.last_runnable_update -= (-se->avg.decay_count)
1526 << 20;
1527 update_entity_load_avg(se, 0);
1528 /* Indicate that we're now synchronized and on-rq */
1529 se->avg.decay_count = 0;
1530 }
1531 wakeup = 0;
1532 } else {
1533 __synchronize_entity_decay(se);
1534 }
1535
1536 /* migrated tasks did not contribute to our blocked load */
1537 if (wakeup) {
1538 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1539 update_entity_load_avg(se, 0);
1540 }
1541
1542 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1543 /* we force update consideration on load-balancer moves */
1544 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1545 }
1546
1547 /*
1548 * Remove se's load from this cfs_rq child load-average, if the entity is
1549 * transitioning to a blocked state we track its projected decay using
1550 * blocked_load_avg.
1551 */
1552 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1553 struct sched_entity *se,
1554 int sleep)
1555 {
1556 update_entity_load_avg(se, 1);
1557 /* we force update consideration on load-balancer moves */
1558 update_cfs_rq_blocked_load(cfs_rq, !sleep);
1559
1560 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1561 if (sleep) {
1562 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1563 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1564 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1565 }
1566 #else
1567 static inline void update_entity_load_avg(struct sched_entity *se,
1568 int update_cfs_rq) {}
1569 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1570 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1571 struct sched_entity *se,
1572 int wakeup) {}
1573 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1574 struct sched_entity *se,
1575 int sleep) {}
1576 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1577 int force_update) {}
1578 #endif
1579
1580 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1581 {
1582 #ifdef CONFIG_SCHEDSTATS
1583 struct task_struct *tsk = NULL;
1584
1585 if (entity_is_task(se))
1586 tsk = task_of(se);
1587
1588 if (se->statistics.sleep_start) {
1589 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1590
1591 if ((s64)delta < 0)
1592 delta = 0;
1593
1594 if (unlikely(delta > se->statistics.sleep_max))
1595 se->statistics.sleep_max = delta;
1596
1597 se->statistics.sleep_start = 0;
1598 se->statistics.sum_sleep_runtime += delta;
1599
1600 if (tsk) {
1601 account_scheduler_latency(tsk, delta >> 10, 1);
1602 trace_sched_stat_sleep(tsk, delta);
1603 }
1604 }
1605 if (se->statistics.block_start) {
1606 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1607
1608 if ((s64)delta < 0)
1609 delta = 0;
1610
1611 if (unlikely(delta > se->statistics.block_max))
1612 se->statistics.block_max = delta;
1613
1614 se->statistics.block_start = 0;
1615 se->statistics.sum_sleep_runtime += delta;
1616
1617 if (tsk) {
1618 if (tsk->in_iowait) {
1619 se->statistics.iowait_sum += delta;
1620 se->statistics.iowait_count++;
1621 trace_sched_stat_iowait(tsk, delta);
1622 }
1623
1624 trace_sched_stat_blocked(tsk, delta);
1625
1626 /*
1627 * Blocking time is in units of nanosecs, so shift by
1628 * 20 to get a milliseconds-range estimation of the
1629 * amount of time that the task spent sleeping:
1630 */
1631 if (unlikely(prof_on == SLEEP_PROFILING)) {
1632 profile_hits(SLEEP_PROFILING,
1633 (void *)get_wchan(tsk),
1634 delta >> 20);
1635 }
1636 account_scheduler_latency(tsk, delta >> 10, 0);
1637 }
1638 }
1639 #endif
1640 }
1641
1642 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1643 {
1644 #ifdef CONFIG_SCHED_DEBUG
1645 s64 d = se->vruntime - cfs_rq->min_vruntime;
1646
1647 if (d < 0)
1648 d = -d;
1649
1650 if (d > 3*sysctl_sched_latency)
1651 schedstat_inc(cfs_rq, nr_spread_over);
1652 #endif
1653 }
1654
1655 static void
1656 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1657 {
1658 u64 vruntime = cfs_rq->min_vruntime;
1659
1660 /*
1661 * The 'current' period is already promised to the current tasks,
1662 * however the extra weight of the new task will slow them down a
1663 * little, place the new task so that it fits in the slot that
1664 * stays open at the end.
1665 */
1666 if (initial && sched_feat(START_DEBIT))
1667 vruntime += sched_vslice(cfs_rq, se);
1668
1669 /* sleeps up to a single latency don't count. */
1670 if (!initial) {
1671 unsigned long thresh = sysctl_sched_latency;
1672
1673 /*
1674 * Halve their sleep time's effect, to allow
1675 * for a gentler effect of sleepers:
1676 */
1677 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1678 thresh >>= 1;
1679
1680 vruntime -= thresh;
1681 }
1682
1683 /* ensure we never gain time by being placed backwards. */
1684 se->vruntime = max_vruntime(se->vruntime, vruntime);
1685 }
1686
1687 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1688
1689 static void
1690 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1691 {
1692 /*
1693 * Update the normalized vruntime before updating min_vruntime
1694 * through callig update_curr().
1695 */
1696 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1697 se->vruntime += cfs_rq->min_vruntime;
1698
1699 /*
1700 * Update run-time statistics of the 'current'.
1701 */
1702 update_curr(cfs_rq);
1703 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1704 account_entity_enqueue(cfs_rq, se);
1705 update_cfs_shares(cfs_rq);
1706
1707 if (flags & ENQUEUE_WAKEUP) {
1708 place_entity(cfs_rq, se, 0);
1709 enqueue_sleeper(cfs_rq, se);
1710 }
1711
1712 update_stats_enqueue(cfs_rq, se);
1713 check_spread(cfs_rq, se);
1714 if (se != cfs_rq->curr)
1715 __enqueue_entity(cfs_rq, se);
1716 se->on_rq = 1;
1717
1718 if (cfs_rq->nr_running == 1) {
1719 list_add_leaf_cfs_rq(cfs_rq);
1720 check_enqueue_throttle(cfs_rq);
1721 }
1722 }
1723
1724 static void __clear_buddies_last(struct sched_entity *se)
1725 {
1726 for_each_sched_entity(se) {
1727 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1728 if (cfs_rq->last == se)
1729 cfs_rq->last = NULL;
1730 else
1731 break;
1732 }
1733 }
1734
1735 static void __clear_buddies_next(struct sched_entity *se)
1736 {
1737 for_each_sched_entity(se) {
1738 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1739 if (cfs_rq->next == se)
1740 cfs_rq->next = NULL;
1741 else
1742 break;
1743 }
1744 }
1745
1746 static void __clear_buddies_skip(struct sched_entity *se)
1747 {
1748 for_each_sched_entity(se) {
1749 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1750 if (cfs_rq->skip == se)
1751 cfs_rq->skip = NULL;
1752 else
1753 break;
1754 }
1755 }
1756
1757 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1758 {
1759 if (cfs_rq->last == se)
1760 __clear_buddies_last(se);
1761
1762 if (cfs_rq->next == se)
1763 __clear_buddies_next(se);
1764
1765 if (cfs_rq->skip == se)
1766 __clear_buddies_skip(se);
1767 }
1768
1769 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1770
1771 static void
1772 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1773 {
1774 /*
1775 * Update run-time statistics of the 'current'.
1776 */
1777 update_curr(cfs_rq);
1778 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1779
1780 update_stats_dequeue(cfs_rq, se);
1781 if (flags & DEQUEUE_SLEEP) {
1782 #ifdef CONFIG_SCHEDSTATS
1783 if (entity_is_task(se)) {
1784 struct task_struct *tsk = task_of(se);
1785
1786 if (tsk->state & TASK_INTERRUPTIBLE)
1787 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1788 if (tsk->state & TASK_UNINTERRUPTIBLE)
1789 se->statistics.block_start = rq_of(cfs_rq)->clock;
1790 }
1791 #endif
1792 }
1793
1794 clear_buddies(cfs_rq, se);
1795
1796 if (se != cfs_rq->curr)
1797 __dequeue_entity(cfs_rq, se);
1798 se->on_rq = 0;
1799 account_entity_dequeue(cfs_rq, se);
1800
1801 /*
1802 * Normalize the entity after updating the min_vruntime because the
1803 * update can refer to the ->curr item and we need to reflect this
1804 * movement in our normalized position.
1805 */
1806 if (!(flags & DEQUEUE_SLEEP))
1807 se->vruntime -= cfs_rq->min_vruntime;
1808
1809 /* return excess runtime on last dequeue */
1810 return_cfs_rq_runtime(cfs_rq);
1811
1812 update_min_vruntime(cfs_rq);
1813 update_cfs_shares(cfs_rq);
1814 }
1815
1816 /*
1817 * Preempt the current task with a newly woken task if needed:
1818 */
1819 static void
1820 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1821 {
1822 unsigned long ideal_runtime, delta_exec;
1823 struct sched_entity *se;
1824 s64 delta;
1825
1826 ideal_runtime = sched_slice(cfs_rq, curr);
1827 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1828 if (delta_exec > ideal_runtime) {
1829 resched_task(rq_of(cfs_rq)->curr);
1830 /*
1831 * The current task ran long enough, ensure it doesn't get
1832 * re-elected due to buddy favours.
1833 */
1834 clear_buddies(cfs_rq, curr);
1835 return;
1836 }
1837
1838 /*
1839 * Ensure that a task that missed wakeup preemption by a
1840 * narrow margin doesn't have to wait for a full slice.
1841 * This also mitigates buddy induced latencies under load.
1842 */
1843 if (delta_exec < sysctl_sched_min_granularity)
1844 return;
1845
1846 se = __pick_first_entity(cfs_rq);
1847 delta = curr->vruntime - se->vruntime;
1848
1849 if (delta < 0)
1850 return;
1851
1852 if (delta > ideal_runtime)
1853 resched_task(rq_of(cfs_rq)->curr);
1854 }
1855
1856 static void
1857 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1858 {
1859 /* 'current' is not kept within the tree. */
1860 if (se->on_rq) {
1861 /*
1862 * Any task has to be enqueued before it get to execute on
1863 * a CPU. So account for the time it spent waiting on the
1864 * runqueue.
1865 */
1866 update_stats_wait_end(cfs_rq, se);
1867 __dequeue_entity(cfs_rq, se);
1868 }
1869
1870 update_stats_curr_start(cfs_rq, se);
1871 cfs_rq->curr = se;
1872 #ifdef CONFIG_SCHEDSTATS
1873 /*
1874 * Track our maximum slice length, if the CPU's load is at
1875 * least twice that of our own weight (i.e. dont track it
1876 * when there are only lesser-weight tasks around):
1877 */
1878 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1879 se->statistics.slice_max = max(se->statistics.slice_max,
1880 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1881 }
1882 #endif
1883 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1884 }
1885
1886 static int
1887 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1888
1889 /*
1890 * Pick the next process, keeping these things in mind, in this order:
1891 * 1) keep things fair between processes/task groups
1892 * 2) pick the "next" process, since someone really wants that to run
1893 * 3) pick the "last" process, for cache locality
1894 * 4) do not run the "skip" process, if something else is available
1895 */
1896 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1897 {
1898 struct sched_entity *se = __pick_first_entity(cfs_rq);
1899 struct sched_entity *left = se;
1900
1901 /*
1902 * Avoid running the skip buddy, if running something else can
1903 * be done without getting too unfair.
1904 */
1905 if (cfs_rq->skip == se) {
1906 struct sched_entity *second = __pick_next_entity(se);
1907 if (second && wakeup_preempt_entity(second, left) < 1)
1908 se = second;
1909 }
1910
1911 /*
1912 * Prefer last buddy, try to return the CPU to a preempted task.
1913 */
1914 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1915 se = cfs_rq->last;
1916
1917 /*
1918 * Someone really wants this to run. If it's not unfair, run it.
1919 */
1920 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1921 se = cfs_rq->next;
1922
1923 clear_buddies(cfs_rq, se);
1924
1925 return se;
1926 }
1927
1928 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1929
1930 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1931 {
1932 /*
1933 * If still on the runqueue then deactivate_task()
1934 * was not called and update_curr() has to be done:
1935 */
1936 if (prev->on_rq)
1937 update_curr(cfs_rq);
1938
1939 /* throttle cfs_rqs exceeding runtime */
1940 check_cfs_rq_runtime(cfs_rq);
1941
1942 check_spread(cfs_rq, prev);
1943 if (prev->on_rq) {
1944 update_stats_wait_start(cfs_rq, prev);
1945 /* Put 'current' back into the tree. */
1946 __enqueue_entity(cfs_rq, prev);
1947 /* in !on_rq case, update occurred at dequeue */
1948 update_entity_load_avg(prev, 1);
1949 }
1950 cfs_rq->curr = NULL;
1951 }
1952
1953 static void
1954 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1955 {
1956 /*
1957 * Update run-time statistics of the 'current'.
1958 */
1959 update_curr(cfs_rq);
1960
1961 /*
1962 * Ensure that runnable average is periodically updated.
1963 */
1964 update_entity_load_avg(curr, 1);
1965 update_cfs_rq_blocked_load(cfs_rq, 1);
1966
1967 #ifdef CONFIG_SCHED_HRTICK
1968 /*
1969 * queued ticks are scheduled to match the slice, so don't bother
1970 * validating it and just reschedule.
1971 */
1972 if (queued) {
1973 resched_task(rq_of(cfs_rq)->curr);
1974 return;
1975 }
1976 /*
1977 * don't let the period tick interfere with the hrtick preemption
1978 */
1979 if (!sched_feat(DOUBLE_TICK) &&
1980 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1981 return;
1982 #endif
1983
1984 if (cfs_rq->nr_running > 1)
1985 check_preempt_tick(cfs_rq, curr);
1986 }
1987
1988
1989 /**************************************************
1990 * CFS bandwidth control machinery
1991 */
1992
1993 #ifdef CONFIG_CFS_BANDWIDTH
1994
1995 #ifdef HAVE_JUMP_LABEL
1996 static struct static_key __cfs_bandwidth_used;
1997
1998 static inline bool cfs_bandwidth_used(void)
1999 {
2000 return static_key_false(&__cfs_bandwidth_used);
2001 }
2002
2003 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2004 {
2005 /* only need to count groups transitioning between enabled/!enabled */
2006 if (enabled && !was_enabled)
2007 static_key_slow_inc(&__cfs_bandwidth_used);
2008 else if (!enabled && was_enabled)
2009 static_key_slow_dec(&__cfs_bandwidth_used);
2010 }
2011 #else /* HAVE_JUMP_LABEL */
2012 static bool cfs_bandwidth_used(void)
2013 {
2014 return true;
2015 }
2016
2017 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2018 #endif /* HAVE_JUMP_LABEL */
2019
2020 /*
2021 * default period for cfs group bandwidth.
2022 * default: 0.1s, units: nanoseconds
2023 */
2024 static inline u64 default_cfs_period(void)
2025 {
2026 return 100000000ULL;
2027 }
2028
2029 static inline u64 sched_cfs_bandwidth_slice(void)
2030 {
2031 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2032 }
2033
2034 /*
2035 * Replenish runtime according to assigned quota and update expiration time.
2036 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2037 * additional synchronization around rq->lock.
2038 *
2039 * requires cfs_b->lock
2040 */
2041 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2042 {
2043 u64 now;
2044
2045 if (cfs_b->quota == RUNTIME_INF)
2046 return;
2047
2048 now = sched_clock_cpu(smp_processor_id());
2049 cfs_b->runtime = cfs_b->quota;
2050 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2051 }
2052
2053 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2054 {
2055 return &tg->cfs_bandwidth;
2056 }
2057
2058 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2059 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2060 {
2061 if (unlikely(cfs_rq->throttle_count))
2062 return cfs_rq->throttled_clock_task;
2063
2064 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2065 }
2066
2067 /* returns 0 on failure to allocate runtime */
2068 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2069 {
2070 struct task_group *tg = cfs_rq->tg;
2071 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2072 u64 amount = 0, min_amount, expires;
2073
2074 /* note: this is a positive sum as runtime_remaining <= 0 */
2075 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2076
2077 raw_spin_lock(&cfs_b->lock);
2078 if (cfs_b->quota == RUNTIME_INF)
2079 amount = min_amount;
2080 else {
2081 /*
2082 * If the bandwidth pool has become inactive, then at least one
2083 * period must have elapsed since the last consumption.
2084 * Refresh the global state and ensure bandwidth timer becomes
2085 * active.
2086 */
2087 if (!cfs_b->timer_active) {
2088 __refill_cfs_bandwidth_runtime(cfs_b);
2089 __start_cfs_bandwidth(cfs_b);
2090 }
2091
2092 if (cfs_b->runtime > 0) {
2093 amount = min(cfs_b->runtime, min_amount);
2094 cfs_b->runtime -= amount;
2095 cfs_b->idle = 0;
2096 }
2097 }
2098 expires = cfs_b->runtime_expires;
2099 raw_spin_unlock(&cfs_b->lock);
2100
2101 cfs_rq->runtime_remaining += amount;
2102 /*
2103 * we may have advanced our local expiration to account for allowed
2104 * spread between our sched_clock and the one on which runtime was
2105 * issued.
2106 */
2107 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2108 cfs_rq->runtime_expires = expires;
2109
2110 return cfs_rq->runtime_remaining > 0;
2111 }
2112
2113 /*
2114 * Note: This depends on the synchronization provided by sched_clock and the
2115 * fact that rq->clock snapshots this value.
2116 */
2117 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2118 {
2119 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2120 struct rq *rq = rq_of(cfs_rq);
2121
2122 /* if the deadline is ahead of our clock, nothing to do */
2123 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
2124 return;
2125
2126 if (cfs_rq->runtime_remaining < 0)
2127 return;
2128
2129 /*
2130 * If the local deadline has passed we have to consider the
2131 * possibility that our sched_clock is 'fast' and the global deadline
2132 * has not truly expired.
2133 *
2134 * Fortunately we can check determine whether this the case by checking
2135 * whether the global deadline has advanced.
2136 */
2137
2138 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2139 /* extend local deadline, drift is bounded above by 2 ticks */
2140 cfs_rq->runtime_expires += TICK_NSEC;
2141 } else {
2142 /* global deadline is ahead, expiration has passed */
2143 cfs_rq->runtime_remaining = 0;
2144 }
2145 }
2146
2147 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2148 unsigned long delta_exec)
2149 {
2150 /* dock delta_exec before expiring quota (as it could span periods) */
2151 cfs_rq->runtime_remaining -= delta_exec;
2152 expire_cfs_rq_runtime(cfs_rq);
2153
2154 if (likely(cfs_rq->runtime_remaining > 0))
2155 return;
2156
2157 /*
2158 * if we're unable to extend our runtime we resched so that the active
2159 * hierarchy can be throttled
2160 */
2161 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2162 resched_task(rq_of(cfs_rq)->curr);
2163 }
2164
2165 static __always_inline
2166 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2167 {
2168 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2169 return;
2170
2171 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2172 }
2173
2174 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2175 {
2176 return cfs_bandwidth_used() && cfs_rq->throttled;
2177 }
2178
2179 /* check whether cfs_rq, or any parent, is throttled */
2180 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2181 {
2182 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2183 }
2184
2185 /*
2186 * Ensure that neither of the group entities corresponding to src_cpu or
2187 * dest_cpu are members of a throttled hierarchy when performing group
2188 * load-balance operations.
2189 */
2190 static inline int throttled_lb_pair(struct task_group *tg,
2191 int src_cpu, int dest_cpu)
2192 {
2193 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2194
2195 src_cfs_rq = tg->cfs_rq[src_cpu];
2196 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2197
2198 return throttled_hierarchy(src_cfs_rq) ||
2199 throttled_hierarchy(dest_cfs_rq);
2200 }
2201
2202 /* updated child weight may affect parent so we have to do this bottom up */
2203 static int tg_unthrottle_up(struct task_group *tg, void *data)
2204 {
2205 struct rq *rq = data;
2206 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2207
2208 cfs_rq->throttle_count--;
2209 #ifdef CONFIG_SMP
2210 if (!cfs_rq->throttle_count) {
2211 /* adjust cfs_rq_clock_task() */
2212 cfs_rq->throttled_clock_task_time += rq->clock_task -
2213 cfs_rq->throttled_clock_task;
2214 }
2215 #endif
2216
2217 return 0;
2218 }
2219
2220 static int tg_throttle_down(struct task_group *tg, void *data)
2221 {
2222 struct rq *rq = data;
2223 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2224
2225 /* group is entering throttled state, stop time */
2226 if (!cfs_rq->throttle_count)
2227 cfs_rq->throttled_clock_task = rq->clock_task;
2228 cfs_rq->throttle_count++;
2229
2230 return 0;
2231 }
2232
2233 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2234 {
2235 struct rq *rq = rq_of(cfs_rq);
2236 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2237 struct sched_entity *se;
2238 long task_delta, dequeue = 1;
2239
2240 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2241
2242 /* freeze hierarchy runnable averages while throttled */
2243 rcu_read_lock();
2244 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2245 rcu_read_unlock();
2246
2247 task_delta = cfs_rq->h_nr_running;
2248 for_each_sched_entity(se) {
2249 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2250 /* throttled entity or throttle-on-deactivate */
2251 if (!se->on_rq)
2252 break;
2253
2254 if (dequeue)
2255 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2256 qcfs_rq->h_nr_running -= task_delta;
2257
2258 if (qcfs_rq->load.weight)
2259 dequeue = 0;
2260 }
2261
2262 if (!se)
2263 rq->nr_running -= task_delta;
2264
2265 cfs_rq->throttled = 1;
2266 cfs_rq->throttled_clock = rq->clock;
2267 raw_spin_lock(&cfs_b->lock);
2268 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2269 raw_spin_unlock(&cfs_b->lock);
2270 }
2271
2272 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2273 {
2274 struct rq *rq = rq_of(cfs_rq);
2275 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2276 struct sched_entity *se;
2277 int enqueue = 1;
2278 long task_delta;
2279
2280 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2281
2282 cfs_rq->throttled = 0;
2283 raw_spin_lock(&cfs_b->lock);
2284 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
2285 list_del_rcu(&cfs_rq->throttled_list);
2286 raw_spin_unlock(&cfs_b->lock);
2287
2288 update_rq_clock(rq);
2289 /* update hierarchical throttle state */
2290 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2291
2292 if (!cfs_rq->load.weight)
2293 return;
2294
2295 task_delta = cfs_rq->h_nr_running;
2296 for_each_sched_entity(se) {
2297 if (se->on_rq)
2298 enqueue = 0;
2299
2300 cfs_rq = cfs_rq_of(se);
2301 if (enqueue)
2302 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2303 cfs_rq->h_nr_running += task_delta;
2304
2305 if (cfs_rq_throttled(cfs_rq))
2306 break;
2307 }
2308
2309 if (!se)
2310 rq->nr_running += task_delta;
2311
2312 /* determine whether we need to wake up potentially idle cpu */
2313 if (rq->curr == rq->idle && rq->cfs.nr_running)
2314 resched_task(rq->curr);
2315 }
2316
2317 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2318 u64 remaining, u64 expires)
2319 {
2320 struct cfs_rq *cfs_rq;
2321 u64 runtime = remaining;
2322
2323 rcu_read_lock();
2324 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2325 throttled_list) {
2326 struct rq *rq = rq_of(cfs_rq);
2327
2328 raw_spin_lock(&rq->lock);
2329 if (!cfs_rq_throttled(cfs_rq))
2330 goto next;
2331
2332 runtime = -cfs_rq->runtime_remaining + 1;
2333 if (runtime > remaining)
2334 runtime = remaining;
2335 remaining -= runtime;
2336
2337 cfs_rq->runtime_remaining += runtime;
2338 cfs_rq->runtime_expires = expires;
2339
2340 /* we check whether we're throttled above */
2341 if (cfs_rq->runtime_remaining > 0)
2342 unthrottle_cfs_rq(cfs_rq);
2343
2344 next:
2345 raw_spin_unlock(&rq->lock);
2346
2347 if (!remaining)
2348 break;
2349 }
2350 rcu_read_unlock();
2351
2352 return remaining;
2353 }
2354
2355 /*
2356 * Responsible for refilling a task_group's bandwidth and unthrottling its
2357 * cfs_rqs as appropriate. If there has been no activity within the last
2358 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2359 * used to track this state.
2360 */
2361 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2362 {
2363 u64 runtime, runtime_expires;
2364 int idle = 1, throttled;
2365
2366 raw_spin_lock(&cfs_b->lock);
2367 /* no need to continue the timer with no bandwidth constraint */
2368 if (cfs_b->quota == RUNTIME_INF)
2369 goto out_unlock;
2370
2371 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2372 /* idle depends on !throttled (for the case of a large deficit) */
2373 idle = cfs_b->idle && !throttled;
2374 cfs_b->nr_periods += overrun;
2375
2376 /* if we're going inactive then everything else can be deferred */
2377 if (idle)
2378 goto out_unlock;
2379
2380 __refill_cfs_bandwidth_runtime(cfs_b);
2381
2382 if (!throttled) {
2383 /* mark as potentially idle for the upcoming period */
2384 cfs_b->idle = 1;
2385 goto out_unlock;
2386 }
2387
2388 /* account preceding periods in which throttling occurred */
2389 cfs_b->nr_throttled += overrun;
2390
2391 /*
2392 * There are throttled entities so we must first use the new bandwidth
2393 * to unthrottle them before making it generally available. This
2394 * ensures that all existing debts will be paid before a new cfs_rq is
2395 * allowed to run.
2396 */
2397 runtime = cfs_b->runtime;
2398 runtime_expires = cfs_b->runtime_expires;
2399 cfs_b->runtime = 0;
2400
2401 /*
2402 * This check is repeated as we are holding onto the new bandwidth
2403 * while we unthrottle. This can potentially race with an unthrottled
2404 * group trying to acquire new bandwidth from the global pool.
2405 */
2406 while (throttled && runtime > 0) {
2407 raw_spin_unlock(&cfs_b->lock);
2408 /* we can't nest cfs_b->lock while distributing bandwidth */
2409 runtime = distribute_cfs_runtime(cfs_b, runtime,
2410 runtime_expires);
2411 raw_spin_lock(&cfs_b->lock);
2412
2413 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2414 }
2415
2416 /* return (any) remaining runtime */
2417 cfs_b->runtime = runtime;
2418 /*
2419 * While we are ensured activity in the period following an
2420 * unthrottle, this also covers the case in which the new bandwidth is
2421 * insufficient to cover the existing bandwidth deficit. (Forcing the
2422 * timer to remain active while there are any throttled entities.)
2423 */
2424 cfs_b->idle = 0;
2425 out_unlock:
2426 if (idle)
2427 cfs_b->timer_active = 0;
2428 raw_spin_unlock(&cfs_b->lock);
2429
2430 return idle;
2431 }
2432
2433 /* a cfs_rq won't donate quota below this amount */
2434 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2435 /* minimum remaining period time to redistribute slack quota */
2436 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2437 /* how long we wait to gather additional slack before distributing */
2438 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2439
2440 /* are we near the end of the current quota period? */
2441 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2442 {
2443 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2444 u64 remaining;
2445
2446 /* if the call-back is running a quota refresh is already occurring */
2447 if (hrtimer_callback_running(refresh_timer))
2448 return 1;
2449
2450 /* is a quota refresh about to occur? */
2451 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2452 if (remaining < min_expire)
2453 return 1;
2454
2455 return 0;
2456 }
2457
2458 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2459 {
2460 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2461
2462 /* if there's a quota refresh soon don't bother with slack */
2463 if (runtime_refresh_within(cfs_b, min_left))
2464 return;
2465
2466 start_bandwidth_timer(&cfs_b->slack_timer,
2467 ns_to_ktime(cfs_bandwidth_slack_period));
2468 }
2469
2470 /* we know any runtime found here is valid as update_curr() precedes return */
2471 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2472 {
2473 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2474 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2475
2476 if (slack_runtime <= 0)
2477 return;
2478
2479 raw_spin_lock(&cfs_b->lock);
2480 if (cfs_b->quota != RUNTIME_INF &&
2481 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2482 cfs_b->runtime += slack_runtime;
2483
2484 /* we are under rq->lock, defer unthrottling using a timer */
2485 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2486 !list_empty(&cfs_b->throttled_cfs_rq))
2487 start_cfs_slack_bandwidth(cfs_b);
2488 }
2489 raw_spin_unlock(&cfs_b->lock);
2490
2491 /* even if it's not valid for return we don't want to try again */
2492 cfs_rq->runtime_remaining -= slack_runtime;
2493 }
2494
2495 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2496 {
2497 if (!cfs_bandwidth_used())
2498 return;
2499
2500 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2501 return;
2502
2503 __return_cfs_rq_runtime(cfs_rq);
2504 }
2505
2506 /*
2507 * This is done with a timer (instead of inline with bandwidth return) since
2508 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2509 */
2510 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2511 {
2512 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2513 u64 expires;
2514
2515 /* confirm we're still not at a refresh boundary */
2516 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2517 return;
2518
2519 raw_spin_lock(&cfs_b->lock);
2520 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2521 runtime = cfs_b->runtime;
2522 cfs_b->runtime = 0;
2523 }
2524 expires = cfs_b->runtime_expires;
2525 raw_spin_unlock(&cfs_b->lock);
2526
2527 if (!runtime)
2528 return;
2529
2530 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2531
2532 raw_spin_lock(&cfs_b->lock);
2533 if (expires == cfs_b->runtime_expires)
2534 cfs_b->runtime = runtime;
2535 raw_spin_unlock(&cfs_b->lock);
2536 }
2537
2538 /*
2539 * When a group wakes up we want to make sure that its quota is not already
2540 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2541 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2542 */
2543 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2544 {
2545 if (!cfs_bandwidth_used())
2546 return;
2547
2548 /* an active group must be handled by the update_curr()->put() path */
2549 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2550 return;
2551
2552 /* ensure the group is not already throttled */
2553 if (cfs_rq_throttled(cfs_rq))
2554 return;
2555
2556 /* update runtime allocation */
2557 account_cfs_rq_runtime(cfs_rq, 0);
2558 if (cfs_rq->runtime_remaining <= 0)
2559 throttle_cfs_rq(cfs_rq);
2560 }
2561
2562 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2563 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2564 {
2565 if (!cfs_bandwidth_used())
2566 return;
2567
2568 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2569 return;
2570
2571 /*
2572 * it's possible for a throttled entity to be forced into a running
2573 * state (e.g. set_curr_task), in this case we're finished.
2574 */
2575 if (cfs_rq_throttled(cfs_rq))
2576 return;
2577
2578 throttle_cfs_rq(cfs_rq);
2579 }
2580
2581 static inline u64 default_cfs_period(void);
2582 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2583 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2584
2585 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2586 {
2587 struct cfs_bandwidth *cfs_b =
2588 container_of(timer, struct cfs_bandwidth, slack_timer);
2589 do_sched_cfs_slack_timer(cfs_b);
2590
2591 return HRTIMER_NORESTART;
2592 }
2593
2594 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2595 {
2596 struct cfs_bandwidth *cfs_b =
2597 container_of(timer, struct cfs_bandwidth, period_timer);
2598 ktime_t now;
2599 int overrun;
2600 int idle = 0;
2601
2602 for (;;) {
2603 now = hrtimer_cb_get_time(timer);
2604 overrun = hrtimer_forward(timer, now, cfs_b->period);
2605
2606 if (!overrun)
2607 break;
2608
2609 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2610 }
2611
2612 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2613 }
2614
2615 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2616 {
2617 raw_spin_lock_init(&cfs_b->lock);
2618 cfs_b->runtime = 0;
2619 cfs_b->quota = RUNTIME_INF;
2620 cfs_b->period = ns_to_ktime(default_cfs_period());
2621
2622 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2623 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2624 cfs_b->period_timer.function = sched_cfs_period_timer;
2625 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2626 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2627 }
2628
2629 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2630 {
2631 cfs_rq->runtime_enabled = 0;
2632 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2633 }
2634
2635 /* requires cfs_b->lock, may release to reprogram timer */
2636 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2637 {
2638 /*
2639 * The timer may be active because we're trying to set a new bandwidth
2640 * period or because we're racing with the tear-down path
2641 * (timer_active==0 becomes visible before the hrtimer call-back
2642 * terminates). In either case we ensure that it's re-programmed
2643 */
2644 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2645 raw_spin_unlock(&cfs_b->lock);
2646 /* ensure cfs_b->lock is available while we wait */
2647 hrtimer_cancel(&cfs_b->period_timer);
2648
2649 raw_spin_lock(&cfs_b->lock);
2650 /* if someone else restarted the timer then we're done */
2651 if (cfs_b->timer_active)
2652 return;
2653 }
2654
2655 cfs_b->timer_active = 1;
2656 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2657 }
2658
2659 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2660 {
2661 hrtimer_cancel(&cfs_b->period_timer);
2662 hrtimer_cancel(&cfs_b->slack_timer);
2663 }
2664
2665 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2666 {
2667 struct cfs_rq *cfs_rq;
2668
2669 for_each_leaf_cfs_rq(rq, cfs_rq) {
2670 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2671
2672 if (!cfs_rq->runtime_enabled)
2673 continue;
2674
2675 /*
2676 * clock_task is not advancing so we just need to make sure
2677 * there's some valid quota amount
2678 */
2679 cfs_rq->runtime_remaining = cfs_b->quota;
2680 if (cfs_rq_throttled(cfs_rq))
2681 unthrottle_cfs_rq(cfs_rq);
2682 }
2683 }
2684
2685 #else /* CONFIG_CFS_BANDWIDTH */
2686 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2687 {
2688 return rq_of(cfs_rq)->clock_task;
2689 }
2690
2691 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2692 unsigned long delta_exec) {}
2693 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2694 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2695 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2696
2697 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2698 {
2699 return 0;
2700 }
2701
2702 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2703 {
2704 return 0;
2705 }
2706
2707 static inline int throttled_lb_pair(struct task_group *tg,
2708 int src_cpu, int dest_cpu)
2709 {
2710 return 0;
2711 }
2712
2713 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2714
2715 #ifdef CONFIG_FAIR_GROUP_SCHED
2716 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2717 #endif
2718
2719 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2720 {
2721 return NULL;
2722 }
2723 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2724 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2725
2726 #endif /* CONFIG_CFS_BANDWIDTH */
2727
2728 /**************************************************
2729 * CFS operations on tasks:
2730 */
2731
2732 #ifdef CONFIG_SCHED_HRTICK
2733 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2734 {
2735 struct sched_entity *se = &p->se;
2736 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2737
2738 WARN_ON(task_rq(p) != rq);
2739
2740 if (cfs_rq->nr_running > 1) {
2741 u64 slice = sched_slice(cfs_rq, se);
2742 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2743 s64 delta = slice - ran;
2744
2745 if (delta < 0) {
2746 if (rq->curr == p)
2747 resched_task(p);
2748 return;
2749 }
2750
2751 /*
2752 * Don't schedule slices shorter than 10000ns, that just
2753 * doesn't make sense. Rely on vruntime for fairness.
2754 */
2755 if (rq->curr != p)
2756 delta = max_t(s64, 10000LL, delta);
2757
2758 hrtick_start(rq, delta);
2759 }
2760 }
2761
2762 /*
2763 * called from enqueue/dequeue and updates the hrtick when the
2764 * current task is from our class and nr_running is low enough
2765 * to matter.
2766 */
2767 static void hrtick_update(struct rq *rq)
2768 {
2769 struct task_struct *curr = rq->curr;
2770
2771 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2772 return;
2773
2774 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2775 hrtick_start_fair(rq, curr);
2776 }
2777 #else /* !CONFIG_SCHED_HRTICK */
2778 static inline void
2779 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2780 {
2781 }
2782
2783 static inline void hrtick_update(struct rq *rq)
2784 {
2785 }
2786 #endif
2787
2788 /*
2789 * The enqueue_task method is called before nr_running is
2790 * increased. Here we update the fair scheduling stats and
2791 * then put the task into the rbtree:
2792 */
2793 static void
2794 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2795 {
2796 struct cfs_rq *cfs_rq;
2797 struct sched_entity *se = &p->se;
2798
2799 for_each_sched_entity(se) {
2800 if (se->on_rq)
2801 break;
2802 cfs_rq = cfs_rq_of(se);
2803 enqueue_entity(cfs_rq, se, flags);
2804
2805 /*
2806 * end evaluation on encountering a throttled cfs_rq
2807 *
2808 * note: in the case of encountering a throttled cfs_rq we will
2809 * post the final h_nr_running increment below.
2810 */
2811 if (cfs_rq_throttled(cfs_rq))
2812 break;
2813 cfs_rq->h_nr_running++;
2814
2815 flags = ENQUEUE_WAKEUP;
2816 }
2817
2818 for_each_sched_entity(se) {
2819 cfs_rq = cfs_rq_of(se);
2820 cfs_rq->h_nr_running++;
2821
2822 if (cfs_rq_throttled(cfs_rq))
2823 break;
2824
2825 update_cfs_shares(cfs_rq);
2826 update_entity_load_avg(se, 1);
2827 }
2828
2829 if (!se) {
2830 update_rq_runnable_avg(rq, rq->nr_running);
2831 inc_nr_running(rq);
2832 }
2833 hrtick_update(rq);
2834 }
2835
2836 static void set_next_buddy(struct sched_entity *se);
2837
2838 /*
2839 * The dequeue_task method is called before nr_running is
2840 * decreased. We remove the task from the rbtree and
2841 * update the fair scheduling stats:
2842 */
2843 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2844 {
2845 struct cfs_rq *cfs_rq;
2846 struct sched_entity *se = &p->se;
2847 int task_sleep = flags & DEQUEUE_SLEEP;
2848
2849 for_each_sched_entity(se) {
2850 cfs_rq = cfs_rq_of(se);
2851 dequeue_entity(cfs_rq, se, flags);
2852
2853 /*
2854 * end evaluation on encountering a throttled cfs_rq
2855 *
2856 * note: in the case of encountering a throttled cfs_rq we will
2857 * post the final h_nr_running decrement below.
2858 */
2859 if (cfs_rq_throttled(cfs_rq))
2860 break;
2861 cfs_rq->h_nr_running--;
2862
2863 /* Don't dequeue parent if it has other entities besides us */
2864 if (cfs_rq->load.weight) {
2865 /*
2866 * Bias pick_next to pick a task from this cfs_rq, as
2867 * p is sleeping when it is within its sched_slice.
2868 */
2869 if (task_sleep && parent_entity(se))
2870 set_next_buddy(parent_entity(se));
2871
2872 /* avoid re-evaluating load for this entity */
2873 se = parent_entity(se);
2874 break;
2875 }
2876 flags |= DEQUEUE_SLEEP;
2877 }
2878
2879 for_each_sched_entity(se) {
2880 cfs_rq = cfs_rq_of(se);
2881 cfs_rq->h_nr_running--;
2882
2883 if (cfs_rq_throttled(cfs_rq))
2884 break;
2885
2886 update_cfs_shares(cfs_rq);
2887 update_entity_load_avg(se, 1);
2888 }
2889
2890 if (!se) {
2891 dec_nr_running(rq);
2892 update_rq_runnable_avg(rq, 1);
2893 }
2894 hrtick_update(rq);
2895 }
2896
2897 #ifdef CONFIG_SMP
2898 /* Used instead of source_load when we know the type == 0 */
2899 static unsigned long weighted_cpuload(const int cpu)
2900 {
2901 return cpu_rq(cpu)->load.weight;
2902 }
2903
2904 /*
2905 * Return a low guess at the load of a migration-source cpu weighted
2906 * according to the scheduling class and "nice" value.
2907 *
2908 * We want to under-estimate the load of migration sources, to
2909 * balance conservatively.
2910 */
2911 static unsigned long source_load(int cpu, int type)
2912 {
2913 struct rq *rq = cpu_rq(cpu);
2914 unsigned long total = weighted_cpuload(cpu);
2915
2916 if (type == 0 || !sched_feat(LB_BIAS))
2917 return total;
2918
2919 return min(rq->cpu_load[type-1], total);
2920 }
2921
2922 /*
2923 * Return a high guess at the load of a migration-target cpu weighted
2924 * according to the scheduling class and "nice" value.
2925 */
2926 static unsigned long target_load(int cpu, int type)
2927 {
2928 struct rq *rq = cpu_rq(cpu);
2929 unsigned long total = weighted_cpuload(cpu);
2930
2931 if (type == 0 || !sched_feat(LB_BIAS))
2932 return total;
2933
2934 return max(rq->cpu_load[type-1], total);
2935 }
2936
2937 static unsigned long power_of(int cpu)
2938 {
2939 return cpu_rq(cpu)->cpu_power;
2940 }
2941
2942 static unsigned long cpu_avg_load_per_task(int cpu)
2943 {
2944 struct rq *rq = cpu_rq(cpu);
2945 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2946
2947 if (nr_running)
2948 return rq->load.weight / nr_running;
2949
2950 return 0;
2951 }
2952
2953
2954 static void task_waking_fair(struct task_struct *p)
2955 {
2956 struct sched_entity *se = &p->se;
2957 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2958 u64 min_vruntime;
2959
2960 #ifndef CONFIG_64BIT
2961 u64 min_vruntime_copy;
2962
2963 do {
2964 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2965 smp_rmb();
2966 min_vruntime = cfs_rq->min_vruntime;
2967 } while (min_vruntime != min_vruntime_copy);
2968 #else
2969 min_vruntime = cfs_rq->min_vruntime;
2970 #endif
2971
2972 se->vruntime -= min_vruntime;
2973 }
2974
2975 #ifdef CONFIG_FAIR_GROUP_SCHED
2976 /*
2977 * effective_load() calculates the load change as seen from the root_task_group
2978 *
2979 * Adding load to a group doesn't make a group heavier, but can cause movement
2980 * of group shares between cpus. Assuming the shares were perfectly aligned one
2981 * can calculate the shift in shares.
2982 *
2983 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2984 * on this @cpu and results in a total addition (subtraction) of @wg to the
2985 * total group weight.
2986 *
2987 * Given a runqueue weight distribution (rw_i) we can compute a shares
2988 * distribution (s_i) using:
2989 *
2990 * s_i = rw_i / \Sum rw_j (1)
2991 *
2992 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2993 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2994 * shares distribution (s_i):
2995 *
2996 * rw_i = { 2, 4, 1, 0 }
2997 * s_i = { 2/7, 4/7, 1/7, 0 }
2998 *
2999 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3000 * task used to run on and the CPU the waker is running on), we need to
3001 * compute the effect of waking a task on either CPU and, in case of a sync
3002 * wakeup, compute the effect of the current task going to sleep.
3003 *
3004 * So for a change of @wl to the local @cpu with an overall group weight change
3005 * of @wl we can compute the new shares distribution (s'_i) using:
3006 *
3007 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3008 *
3009 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3010 * differences in waking a task to CPU 0. The additional task changes the
3011 * weight and shares distributions like:
3012 *
3013 * rw'_i = { 3, 4, 1, 0 }
3014 * s'_i = { 3/8, 4/8, 1/8, 0 }
3015 *
3016 * We can then compute the difference in effective weight by using:
3017 *
3018 * dw_i = S * (s'_i - s_i) (3)
3019 *
3020 * Where 'S' is the group weight as seen by its parent.
3021 *
3022 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3023 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3024 * 4/7) times the weight of the group.
3025 */
3026 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3027 {
3028 struct sched_entity *se = tg->se[cpu];
3029
3030 if (!tg->parent) /* the trivial, non-cgroup case */
3031 return wl;
3032
3033 for_each_sched_entity(se) {
3034 long w, W;
3035
3036 tg = se->my_q->tg;
3037
3038 /*
3039 * W = @wg + \Sum rw_j
3040 */
3041 W = wg + calc_tg_weight(tg, se->my_q);
3042
3043 /*
3044 * w = rw_i + @wl
3045 */
3046 w = se->my_q->load.weight + wl;
3047
3048 /*
3049 * wl = S * s'_i; see (2)
3050 */
3051 if (W > 0 && w < W)
3052 wl = (w * tg->shares) / W;
3053 else
3054 wl = tg->shares;
3055
3056 /*
3057 * Per the above, wl is the new se->load.weight value; since
3058 * those are clipped to [MIN_SHARES, ...) do so now. See
3059 * calc_cfs_shares().
3060 */
3061 if (wl < MIN_SHARES)
3062 wl = MIN_SHARES;
3063
3064 /*
3065 * wl = dw_i = S * (s'_i - s_i); see (3)
3066 */
3067 wl -= se->load.weight;
3068
3069 /*
3070 * Recursively apply this logic to all parent groups to compute
3071 * the final effective load change on the root group. Since
3072 * only the @tg group gets extra weight, all parent groups can
3073 * only redistribute existing shares. @wl is the shift in shares
3074 * resulting from this level per the above.
3075 */
3076 wg = 0;
3077 }
3078
3079 return wl;
3080 }
3081 #else
3082
3083 static inline unsigned long effective_load(struct task_group *tg, int cpu,
3084 unsigned long wl, unsigned long wg)
3085 {
3086 return wl;
3087 }
3088
3089 #endif
3090
3091 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3092 {
3093 s64 this_load, load;
3094 int idx, this_cpu, prev_cpu;
3095 unsigned long tl_per_task;
3096 struct task_group *tg;
3097 unsigned long weight;
3098 int balanced;
3099
3100 idx = sd->wake_idx;
3101 this_cpu = smp_processor_id();
3102 prev_cpu = task_cpu(p);
3103 load = source_load(prev_cpu, idx);
3104 this_load = target_load(this_cpu, idx);
3105
3106 /*
3107 * If sync wakeup then subtract the (maximum possible)
3108 * effect of the currently running task from the load
3109 * of the current CPU:
3110 */
3111 if (sync) {
3112 tg = task_group(current);
3113 weight = current->se.load.weight;
3114
3115 this_load += effective_load(tg, this_cpu, -weight, -weight);
3116 load += effective_load(tg, prev_cpu, 0, -weight);
3117 }
3118
3119 tg = task_group(p);
3120 weight = p->se.load.weight;
3121
3122 /*
3123 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3124 * due to the sync cause above having dropped this_load to 0, we'll
3125 * always have an imbalance, but there's really nothing you can do
3126 * about that, so that's good too.
3127 *
3128 * Otherwise check if either cpus are near enough in load to allow this
3129 * task to be woken on this_cpu.
3130 */
3131 if (this_load > 0) {
3132 s64 this_eff_load, prev_eff_load;
3133
3134 this_eff_load = 100;
3135 this_eff_load *= power_of(prev_cpu);
3136 this_eff_load *= this_load +
3137 effective_load(tg, this_cpu, weight, weight);
3138
3139 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3140 prev_eff_load *= power_of(this_cpu);
3141 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3142
3143 balanced = this_eff_load <= prev_eff_load;
3144 } else
3145 balanced = true;
3146
3147 /*
3148 * If the currently running task will sleep within
3149 * a reasonable amount of time then attract this newly
3150 * woken task:
3151 */
3152 if (sync && balanced)
3153 return 1;
3154
3155 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3156 tl_per_task = cpu_avg_load_per_task(this_cpu);
3157
3158 if (balanced ||
3159 (this_load <= load &&
3160 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3161 /*
3162 * This domain has SD_WAKE_AFFINE and
3163 * p is cache cold in this domain, and
3164 * there is no bad imbalance.
3165 */
3166 schedstat_inc(sd, ttwu_move_affine);
3167 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3168
3169 return 1;
3170 }
3171 return 0;
3172 }
3173
3174 /*
3175 * find_idlest_group finds and returns the least busy CPU group within the
3176 * domain.
3177 */
3178 static struct sched_group *
3179 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3180 int this_cpu, int load_idx)
3181 {
3182 struct sched_group *idlest = NULL, *group = sd->groups;
3183 unsigned long min_load = ULONG_MAX, this_load = 0;
3184 int imbalance = 100 + (sd->imbalance_pct-100)/2;
3185
3186 do {
3187 unsigned long load, avg_load;
3188 int local_group;
3189 int i;
3190
3191 /* Skip over this group if it has no CPUs allowed */
3192 if (!cpumask_intersects(sched_group_cpus(group),
3193 tsk_cpus_allowed(p)))
3194 continue;
3195
3196 local_group = cpumask_test_cpu(this_cpu,
3197 sched_group_cpus(group));
3198
3199 /* Tally up the load of all CPUs in the group */
3200 avg_load = 0;
3201
3202 for_each_cpu(i, sched_group_cpus(group)) {
3203 /* Bias balancing toward cpus of our domain */
3204 if (local_group)
3205 load = source_load(i, load_idx);
3206 else
3207 load = target_load(i, load_idx);
3208
3209 avg_load += load;
3210 }
3211
3212 /* Adjust by relative CPU power of the group */
3213 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3214
3215 if (local_group) {
3216 this_load = avg_load;
3217 } else if (avg_load < min_load) {
3218 min_load = avg_load;
3219 idlest = group;
3220 }
3221 } while (group = group->next, group != sd->groups);
3222
3223 if (!idlest || 100*this_load < imbalance*min_load)
3224 return NULL;
3225 return idlest;
3226 }
3227
3228 /*
3229 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3230 */
3231 static int
3232 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3233 {
3234 unsigned long load, min_load = ULONG_MAX;
3235 int idlest = -1;
3236 int i;
3237
3238 /* Traverse only the allowed CPUs */
3239 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3240 load = weighted_cpuload(i);
3241
3242 if (load < min_load || (load == min_load && i == this_cpu)) {
3243 min_load = load;
3244 idlest = i;
3245 }
3246 }
3247
3248 return idlest;
3249 }
3250
3251 /*
3252 * Try and locate an idle CPU in the sched_domain.
3253 */
3254 static int select_idle_sibling(struct task_struct *p, int target)
3255 {
3256 struct sched_domain *sd;
3257 struct sched_group *sg;
3258 int i = task_cpu(p);
3259
3260 if (idle_cpu(target))
3261 return target;
3262
3263 /*
3264 * If the prevous cpu is cache affine and idle, don't be stupid.
3265 */
3266 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3267 return i;
3268
3269 /*
3270 * Otherwise, iterate the domains and find an elegible idle cpu.
3271 */
3272 sd = rcu_dereference(per_cpu(sd_llc, target));
3273 for_each_lower_domain(sd) {
3274 sg = sd->groups;
3275 do {
3276 if (!cpumask_intersects(sched_group_cpus(sg),
3277 tsk_cpus_allowed(p)))
3278 goto next;
3279
3280 for_each_cpu(i, sched_group_cpus(sg)) {
3281 if (i == target || !idle_cpu(i))
3282 goto next;
3283 }
3284
3285 target = cpumask_first_and(sched_group_cpus(sg),
3286 tsk_cpus_allowed(p));
3287 goto done;
3288 next:
3289 sg = sg->next;
3290 } while (sg != sd->groups);
3291 }
3292 done:
3293 return target;
3294 }
3295
3296 /*
3297 * sched_balance_self: balance the current task (running on cpu) in domains
3298 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3299 * SD_BALANCE_EXEC.
3300 *
3301 * Balance, ie. select the least loaded group.
3302 *
3303 * Returns the target CPU number, or the same CPU if no balancing is needed.
3304 *
3305 * preempt must be disabled.
3306 */
3307 static int
3308 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3309 {
3310 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3311 int cpu = smp_processor_id();
3312 int prev_cpu = task_cpu(p);
3313 int new_cpu = cpu;
3314 int want_affine = 0;
3315 int sync = wake_flags & WF_SYNC;
3316
3317 if (p->nr_cpus_allowed == 1)
3318 return prev_cpu;
3319
3320 if (sd_flag & SD_BALANCE_WAKE) {
3321 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3322 want_affine = 1;
3323 new_cpu = prev_cpu;
3324 }
3325
3326 rcu_read_lock();
3327 for_each_domain(cpu, tmp) {
3328 if (!(tmp->flags & SD_LOAD_BALANCE))
3329 continue;
3330
3331 /*
3332 * If both cpu and prev_cpu are part of this domain,
3333 * cpu is a valid SD_WAKE_AFFINE target.
3334 */
3335 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3336 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3337 affine_sd = tmp;
3338 break;
3339 }
3340
3341 if (tmp->flags & sd_flag)
3342 sd = tmp;
3343 }
3344
3345 if (affine_sd) {
3346 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3347 prev_cpu = cpu;
3348
3349 new_cpu = select_idle_sibling(p, prev_cpu);
3350 goto unlock;
3351 }
3352
3353 while (sd) {
3354 int load_idx = sd->forkexec_idx;
3355 struct sched_group *group;
3356 int weight;
3357
3358 if (!(sd->flags & sd_flag)) {
3359 sd = sd->child;
3360 continue;
3361 }
3362
3363 if (sd_flag & SD_BALANCE_WAKE)
3364 load_idx = sd->wake_idx;
3365
3366 group = find_idlest_group(sd, p, cpu, load_idx);
3367 if (!group) {
3368 sd = sd->child;
3369 continue;
3370 }
3371
3372 new_cpu = find_idlest_cpu(group, p, cpu);
3373 if (new_cpu == -1 || new_cpu == cpu) {
3374 /* Now try balancing at a lower domain level of cpu */
3375 sd = sd->child;
3376 continue;
3377 }
3378
3379 /* Now try balancing at a lower domain level of new_cpu */
3380 cpu = new_cpu;
3381 weight = sd->span_weight;
3382 sd = NULL;
3383 for_each_domain(cpu, tmp) {
3384 if (weight <= tmp->span_weight)
3385 break;
3386 if (tmp->flags & sd_flag)
3387 sd = tmp;
3388 }
3389 /* while loop will break here if sd == NULL */
3390 }
3391 unlock:
3392 rcu_read_unlock();
3393
3394 return new_cpu;
3395 }
3396
3397 /*
3398 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3399 * removed when useful for applications beyond shares distribution (e.g.
3400 * load-balance).
3401 */
3402 #ifdef CONFIG_FAIR_GROUP_SCHED
3403 /*
3404 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3405 * cfs_rq_of(p) references at time of call are still valid and identify the
3406 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3407 * other assumptions, including the state of rq->lock, should be made.
3408 */
3409 static void
3410 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3411 {
3412 struct sched_entity *se = &p->se;
3413 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3414
3415 /*
3416 * Load tracking: accumulate removed load so that it can be processed
3417 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3418 * to blocked load iff they have a positive decay-count. It can never
3419 * be negative here since on-rq tasks have decay-count == 0.
3420 */
3421 if (se->avg.decay_count) {
3422 se->avg.decay_count = -__synchronize_entity_decay(se);
3423 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3424 }
3425 }
3426 #endif
3427 #endif /* CONFIG_SMP */
3428
3429 static unsigned long
3430 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3431 {
3432 unsigned long gran = sysctl_sched_wakeup_granularity;
3433
3434 /*
3435 * Since its curr running now, convert the gran from real-time
3436 * to virtual-time in his units.
3437 *
3438 * By using 'se' instead of 'curr' we penalize light tasks, so
3439 * they get preempted easier. That is, if 'se' < 'curr' then
3440 * the resulting gran will be larger, therefore penalizing the
3441 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3442 * be smaller, again penalizing the lighter task.
3443 *
3444 * This is especially important for buddies when the leftmost
3445 * task is higher priority than the buddy.
3446 */
3447 return calc_delta_fair(gran, se);
3448 }
3449
3450 /*
3451 * Should 'se' preempt 'curr'.
3452 *
3453 * |s1
3454 * |s2
3455 * |s3
3456 * g
3457 * |<--->|c
3458 *
3459 * w(c, s1) = -1
3460 * w(c, s2) = 0
3461 * w(c, s3) = 1
3462 *
3463 */
3464 static int
3465 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3466 {
3467 s64 gran, vdiff = curr->vruntime - se->vruntime;
3468
3469 if (vdiff <= 0)
3470 return -1;
3471
3472 gran = wakeup_gran(curr, se);
3473 if (vdiff > gran)
3474 return 1;
3475
3476 return 0;
3477 }
3478
3479 static void set_last_buddy(struct sched_entity *se)
3480 {
3481 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3482 return;
3483
3484 for_each_sched_entity(se)
3485 cfs_rq_of(se)->last = se;
3486 }
3487
3488 static void set_next_buddy(struct sched_entity *se)
3489 {
3490 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3491 return;
3492
3493 for_each_sched_entity(se)
3494 cfs_rq_of(se)->next = se;
3495 }
3496
3497 static void set_skip_buddy(struct sched_entity *se)
3498 {
3499 for_each_sched_entity(se)
3500 cfs_rq_of(se)->skip = se;
3501 }
3502
3503 /*
3504 * Preempt the current task with a newly woken task if needed:
3505 */
3506 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3507 {
3508 struct task_struct *curr = rq->curr;
3509 struct sched_entity *se = &curr->se, *pse = &p->se;
3510 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3511 int scale = cfs_rq->nr_running >= sched_nr_latency;
3512 int next_buddy_marked = 0;
3513
3514 if (unlikely(se == pse))
3515 return;
3516
3517 /*
3518 * This is possible from callers such as move_task(), in which we
3519 * unconditionally check_prempt_curr() after an enqueue (which may have
3520 * lead to a throttle). This both saves work and prevents false
3521 * next-buddy nomination below.
3522 */
3523 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3524 return;
3525
3526 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3527 set_next_buddy(pse);
3528 next_buddy_marked = 1;
3529 }
3530
3531 /*
3532 * We can come here with TIF_NEED_RESCHED already set from new task
3533 * wake up path.
3534 *
3535 * Note: this also catches the edge-case of curr being in a throttled
3536 * group (e.g. via set_curr_task), since update_curr() (in the
3537 * enqueue of curr) will have resulted in resched being set. This
3538 * prevents us from potentially nominating it as a false LAST_BUDDY
3539 * below.
3540 */
3541 if (test_tsk_need_resched(curr))
3542 return;
3543
3544 /* Idle tasks are by definition preempted by non-idle tasks. */
3545 if (unlikely(curr->policy == SCHED_IDLE) &&
3546 likely(p->policy != SCHED_IDLE))
3547 goto preempt;
3548
3549 /*
3550 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3551 * is driven by the tick):
3552 */
3553 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3554 return;
3555
3556 find_matching_se(&se, &pse);
3557 update_curr(cfs_rq_of(se));
3558 BUG_ON(!pse);
3559 if (wakeup_preempt_entity(se, pse) == 1) {
3560 /*
3561 * Bias pick_next to pick the sched entity that is
3562 * triggering this preemption.
3563 */
3564 if (!next_buddy_marked)
3565 set_next_buddy(pse);
3566 goto preempt;
3567 }
3568
3569 return;
3570
3571 preempt:
3572 resched_task(curr);
3573 /*
3574 * Only set the backward buddy when the current task is still
3575 * on the rq. This can happen when a wakeup gets interleaved
3576 * with schedule on the ->pre_schedule() or idle_balance()
3577 * point, either of which can * drop the rq lock.
3578 *
3579 * Also, during early boot the idle thread is in the fair class,
3580 * for obvious reasons its a bad idea to schedule back to it.
3581 */
3582 if (unlikely(!se->on_rq || curr == rq->idle))
3583 return;
3584
3585 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3586 set_last_buddy(se);
3587 }
3588
3589 static struct task_struct *pick_next_task_fair(struct rq *rq)
3590 {
3591 struct task_struct *p;
3592 struct cfs_rq *cfs_rq = &rq->cfs;
3593 struct sched_entity *se;
3594
3595 if (!cfs_rq->nr_running)
3596 return NULL;
3597
3598 do {
3599 se = pick_next_entity(cfs_rq);
3600 set_next_entity(cfs_rq, se);
3601 cfs_rq = group_cfs_rq(se);
3602 } while (cfs_rq);
3603
3604 p = task_of(se);
3605 if (hrtick_enabled(rq))
3606 hrtick_start_fair(rq, p);
3607
3608 return p;
3609 }
3610
3611 /*
3612 * Account for a descheduled task:
3613 */
3614 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3615 {
3616 struct sched_entity *se = &prev->se;
3617 struct cfs_rq *cfs_rq;
3618
3619 for_each_sched_entity(se) {
3620 cfs_rq = cfs_rq_of(se);
3621 put_prev_entity(cfs_rq, se);
3622 }
3623 }
3624
3625 /*
3626 * sched_yield() is very simple
3627 *
3628 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3629 */
3630 static void yield_task_fair(struct rq *rq)
3631 {
3632 struct task_struct *curr = rq->curr;
3633 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3634 struct sched_entity *se = &curr->se;
3635
3636 /*
3637 * Are we the only task in the tree?
3638 */
3639 if (unlikely(rq->nr_running == 1))
3640 return;
3641
3642 clear_buddies(cfs_rq, se);
3643
3644 if (curr->policy != SCHED_BATCH) {
3645 update_rq_clock(rq);
3646 /*
3647 * Update run-time statistics of the 'current'.
3648 */
3649 update_curr(cfs_rq);
3650 /*
3651 * Tell update_rq_clock() that we've just updated,
3652 * so we don't do microscopic update in schedule()
3653 * and double the fastpath cost.
3654 */
3655 rq->skip_clock_update = 1;
3656 }
3657
3658 set_skip_buddy(se);
3659 }
3660
3661 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3662 {
3663 struct sched_entity *se = &p->se;
3664
3665 /* throttled hierarchies are not runnable */
3666 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3667 return false;
3668
3669 /* Tell the scheduler that we'd really like pse to run next. */
3670 set_next_buddy(se);
3671
3672 yield_task_fair(rq);
3673
3674 return true;
3675 }
3676
3677 #ifdef CONFIG_SMP
3678 /**************************************************
3679 * Fair scheduling class load-balancing methods.
3680 *
3681 * BASICS
3682 *
3683 * The purpose of load-balancing is to achieve the same basic fairness the
3684 * per-cpu scheduler provides, namely provide a proportional amount of compute
3685 * time to each task. This is expressed in the following equation:
3686 *
3687 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3688 *
3689 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3690 * W_i,0 is defined as:
3691 *
3692 * W_i,0 = \Sum_j w_i,j (2)
3693 *
3694 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3695 * is derived from the nice value as per prio_to_weight[].
3696 *
3697 * The weight average is an exponential decay average of the instantaneous
3698 * weight:
3699 *
3700 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3701 *
3702 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3703 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3704 * can also include other factors [XXX].
3705 *
3706 * To achieve this balance we define a measure of imbalance which follows
3707 * directly from (1):
3708 *
3709 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3710 *
3711 * We them move tasks around to minimize the imbalance. In the continuous
3712 * function space it is obvious this converges, in the discrete case we get
3713 * a few fun cases generally called infeasible weight scenarios.
3714 *
3715 * [XXX expand on:
3716 * - infeasible weights;
3717 * - local vs global optima in the discrete case. ]
3718 *
3719 *
3720 * SCHED DOMAINS
3721 *
3722 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3723 * for all i,j solution, we create a tree of cpus that follows the hardware
3724 * topology where each level pairs two lower groups (or better). This results
3725 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3726 * tree to only the first of the previous level and we decrease the frequency
3727 * of load-balance at each level inv. proportional to the number of cpus in
3728 * the groups.
3729 *
3730 * This yields:
3731 *
3732 * log_2 n 1 n
3733 * \Sum { --- * --- * 2^i } = O(n) (5)
3734 * i = 0 2^i 2^i
3735 * `- size of each group
3736 * | | `- number of cpus doing load-balance
3737 * | `- freq
3738 * `- sum over all levels
3739 *
3740 * Coupled with a limit on how many tasks we can migrate every balance pass,
3741 * this makes (5) the runtime complexity of the balancer.
3742 *
3743 * An important property here is that each CPU is still (indirectly) connected
3744 * to every other cpu in at most O(log n) steps:
3745 *
3746 * The adjacency matrix of the resulting graph is given by:
3747 *
3748 * log_2 n
3749 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3750 * k = 0
3751 *
3752 * And you'll find that:
3753 *
3754 * A^(log_2 n)_i,j != 0 for all i,j (7)
3755 *
3756 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3757 * The task movement gives a factor of O(m), giving a convergence complexity
3758 * of:
3759 *
3760 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3761 *
3762 *
3763 * WORK CONSERVING
3764 *
3765 * In order to avoid CPUs going idle while there's still work to do, new idle
3766 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3767 * tree itself instead of relying on other CPUs to bring it work.
3768 *
3769 * This adds some complexity to both (5) and (8) but it reduces the total idle
3770 * time.
3771 *
3772 * [XXX more?]
3773 *
3774 *
3775 * CGROUPS
3776 *
3777 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3778 *
3779 * s_k,i
3780 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3781 * S_k
3782 *
3783 * Where
3784 *
3785 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3786 *
3787 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3788 *
3789 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3790 * property.
3791 *
3792 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3793 * rewrite all of this once again.]
3794 */
3795
3796 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3797
3798 #define LBF_ALL_PINNED 0x01
3799 #define LBF_NEED_BREAK 0x02
3800 #define LBF_SOME_PINNED 0x04
3801
3802 struct lb_env {
3803 struct sched_domain *sd;
3804
3805 struct rq *src_rq;
3806 int src_cpu;
3807
3808 int dst_cpu;
3809 struct rq *dst_rq;
3810
3811 struct cpumask *dst_grpmask;
3812 int new_dst_cpu;
3813 enum cpu_idle_type idle;
3814 long imbalance;
3815 /* The set of CPUs under consideration for load-balancing */
3816 struct cpumask *cpus;
3817
3818 unsigned int flags;
3819
3820 unsigned int loop;
3821 unsigned int loop_break;
3822 unsigned int loop_max;
3823 };
3824
3825 /*
3826 * move_task - move a task from one runqueue to another runqueue.
3827 * Both runqueues must be locked.
3828 */
3829 static void move_task(struct task_struct *p, struct lb_env *env)
3830 {
3831 deactivate_task(env->src_rq, p, 0);
3832 set_task_cpu(p, env->dst_cpu);
3833 activate_task(env->dst_rq, p, 0);
3834 check_preempt_curr(env->dst_rq, p, 0);
3835 }
3836
3837 /*
3838 * Is this task likely cache-hot:
3839 */
3840 static int
3841 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3842 {
3843 s64 delta;
3844
3845 if (p->sched_class != &fair_sched_class)
3846 return 0;
3847
3848 if (unlikely(p->policy == SCHED_IDLE))
3849 return 0;
3850
3851 /*
3852 * Buddy candidates are cache hot:
3853 */
3854 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3855 (&p->se == cfs_rq_of(&p->se)->next ||
3856 &p->se == cfs_rq_of(&p->se)->last))
3857 return 1;
3858
3859 if (sysctl_sched_migration_cost == -1)
3860 return 1;
3861 if (sysctl_sched_migration_cost == 0)
3862 return 0;
3863
3864 delta = now - p->se.exec_start;
3865
3866 return delta < (s64)sysctl_sched_migration_cost;
3867 }
3868
3869 /*
3870 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3871 */
3872 static
3873 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3874 {
3875 int tsk_cache_hot = 0;
3876 /*
3877 * We do not migrate tasks that are:
3878 * 1) running (obviously), or
3879 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3880 * 3) are cache-hot on their current CPU.
3881 */
3882 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3883 int new_dst_cpu;
3884
3885 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3886
3887 /*
3888 * Remember if this task can be migrated to any other cpu in
3889 * our sched_group. We may want to revisit it if we couldn't
3890 * meet load balance goals by pulling other tasks on src_cpu.
3891 *
3892 * Also avoid computing new_dst_cpu if we have already computed
3893 * one in current iteration.
3894 */
3895 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3896 return 0;
3897
3898 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3899 tsk_cpus_allowed(p));
3900 if (new_dst_cpu < nr_cpu_ids) {
3901 env->flags |= LBF_SOME_PINNED;
3902 env->new_dst_cpu = new_dst_cpu;
3903 }
3904 return 0;
3905 }
3906
3907 /* Record that we found atleast one task that could run on dst_cpu */
3908 env->flags &= ~LBF_ALL_PINNED;
3909
3910 if (task_running(env->src_rq, p)) {
3911 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3912 return 0;
3913 }
3914
3915 /*
3916 * Aggressive migration if:
3917 * 1) task is cache cold, or
3918 * 2) too many balance attempts have failed.
3919 */
3920
3921 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3922 if (!tsk_cache_hot ||
3923 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3924 #ifdef CONFIG_SCHEDSTATS
3925 if (tsk_cache_hot) {
3926 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3927 schedstat_inc(p, se.statistics.nr_forced_migrations);
3928 }
3929 #endif
3930 return 1;
3931 }
3932
3933 if (tsk_cache_hot) {
3934 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3935 return 0;
3936 }
3937 return 1;
3938 }
3939
3940 /*
3941 * move_one_task tries to move exactly one task from busiest to this_rq, as
3942 * part of active balancing operations within "domain".
3943 * Returns 1 if successful and 0 otherwise.
3944 *
3945 * Called with both runqueues locked.
3946 */
3947 static int move_one_task(struct lb_env *env)
3948 {
3949 struct task_struct *p, *n;
3950
3951 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3952 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3953 continue;
3954
3955 if (!can_migrate_task(p, env))
3956 continue;
3957
3958 move_task(p, env);
3959 /*
3960 * Right now, this is only the second place move_task()
3961 * is called, so we can safely collect move_task()
3962 * stats here rather than inside move_task().
3963 */
3964 schedstat_inc(env->sd, lb_gained[env->idle]);
3965 return 1;
3966 }
3967 return 0;
3968 }
3969
3970 static unsigned long task_h_load(struct task_struct *p);
3971
3972 static const unsigned int sched_nr_migrate_break = 32;
3973
3974 /*
3975 * move_tasks tries to move up to imbalance weighted load from busiest to
3976 * this_rq, as part of a balancing operation within domain "sd".
3977 * Returns 1 if successful and 0 otherwise.
3978 *
3979 * Called with both runqueues locked.
3980 */
3981 static int move_tasks(struct lb_env *env)
3982 {
3983 struct list_head *tasks = &env->src_rq->cfs_tasks;
3984 struct task_struct *p;
3985 unsigned long load;
3986 int pulled = 0;
3987
3988 if (env->imbalance <= 0)
3989 return 0;
3990
3991 while (!list_empty(tasks)) {
3992 p = list_first_entry(tasks, struct task_struct, se.group_node);
3993
3994 env->loop++;
3995 /* We've more or less seen every task there is, call it quits */
3996 if (env->loop > env->loop_max)
3997 break;
3998
3999 /* take a breather every nr_migrate tasks */
4000 if (env->loop > env->loop_break) {
4001 env->loop_break += sched_nr_migrate_break;
4002 env->flags |= LBF_NEED_BREAK;
4003 break;
4004 }
4005
4006 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4007 goto next;
4008
4009 load = task_h_load(p);
4010
4011 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4012 goto next;
4013
4014 if ((load / 2) > env->imbalance)
4015 goto next;
4016
4017 if (!can_migrate_task(p, env))
4018 goto next;
4019
4020 move_task(p, env);
4021 pulled++;
4022 env->imbalance -= load;
4023
4024 #ifdef CONFIG_PREEMPT
4025 /*
4026 * NEWIDLE balancing is a source of latency, so preemptible
4027 * kernels will stop after the first task is pulled to minimize
4028 * the critical section.
4029 */
4030 if (env->idle == CPU_NEWLY_IDLE)
4031 break;
4032 #endif
4033
4034 /*
4035 * We only want to steal up to the prescribed amount of
4036 * weighted load.
4037 */
4038 if (env->imbalance <= 0)
4039 break;
4040
4041 continue;
4042 next:
4043 list_move_tail(&p->se.group_node, tasks);
4044 }
4045
4046 /*
4047 * Right now, this is one of only two places move_task() is called,
4048 * so we can safely collect move_task() stats here rather than
4049 * inside move_task().
4050 */
4051 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4052
4053 return pulled;
4054 }
4055
4056 #ifdef CONFIG_FAIR_GROUP_SCHED
4057 /*
4058 * update tg->load_weight by folding this cpu's load_avg
4059 */
4060 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4061 {
4062 struct sched_entity *se = tg->se[cpu];
4063 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4064
4065 /* throttled entities do not contribute to load */
4066 if (throttled_hierarchy(cfs_rq))
4067 return;
4068
4069 update_cfs_rq_blocked_load(cfs_rq, 1);
4070
4071 if (se) {
4072 update_entity_load_avg(se, 1);
4073 /*
4074 * We pivot on our runnable average having decayed to zero for
4075 * list removal. This generally implies that all our children
4076 * have also been removed (modulo rounding error or bandwidth
4077 * control); however, such cases are rare and we can fix these
4078 * at enqueue.
4079 *
4080 * TODO: fix up out-of-order children on enqueue.
4081 */
4082 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4083 list_del_leaf_cfs_rq(cfs_rq);
4084 } else {
4085 struct rq *rq = rq_of(cfs_rq);
4086 update_rq_runnable_avg(rq, rq->nr_running);
4087 }
4088 }
4089
4090 static void update_blocked_averages(int cpu)
4091 {
4092 struct rq *rq = cpu_rq(cpu);
4093 struct cfs_rq *cfs_rq;
4094 unsigned long flags;
4095
4096 raw_spin_lock_irqsave(&rq->lock, flags);
4097 update_rq_clock(rq);
4098 /*
4099 * Iterates the task_group tree in a bottom up fashion, see
4100 * list_add_leaf_cfs_rq() for details.
4101 */
4102 for_each_leaf_cfs_rq(rq, cfs_rq) {
4103 /*
4104 * Note: We may want to consider periodically releasing
4105 * rq->lock about these updates so that creating many task
4106 * groups does not result in continually extending hold time.
4107 */
4108 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4109 }
4110
4111 raw_spin_unlock_irqrestore(&rq->lock, flags);
4112 }
4113
4114 /*
4115 * Compute the cpu's hierarchical load factor for each task group.
4116 * This needs to be done in a top-down fashion because the load of a child
4117 * group is a fraction of its parents load.
4118 */
4119 static int tg_load_down(struct task_group *tg, void *data)
4120 {
4121 unsigned long load;
4122 long cpu = (long)data;
4123
4124 if (!tg->parent) {
4125 load = cpu_rq(cpu)->load.weight;
4126 } else {
4127 load = tg->parent->cfs_rq[cpu]->h_load;
4128 load *= tg->se[cpu]->load.weight;
4129 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4130 }
4131
4132 tg->cfs_rq[cpu]->h_load = load;
4133
4134 return 0;
4135 }
4136
4137 static void update_h_load(long cpu)
4138 {
4139 struct rq *rq = cpu_rq(cpu);
4140 unsigned long now = jiffies;
4141
4142 if (rq->h_load_throttle == now)
4143 return;
4144
4145 rq->h_load_throttle = now;
4146
4147 rcu_read_lock();
4148 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
4149 rcu_read_unlock();
4150 }
4151
4152 static unsigned long task_h_load(struct task_struct *p)
4153 {
4154 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4155 unsigned long load;
4156
4157 load = p->se.load.weight;
4158 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
4159
4160 return load;
4161 }
4162 #else
4163 static inline void update_blocked_averages(int cpu)
4164 {
4165 }
4166
4167 static inline void update_h_load(long cpu)
4168 {
4169 }
4170
4171 static unsigned long task_h_load(struct task_struct *p)
4172 {
4173 return p->se.load.weight;
4174 }
4175 #endif
4176
4177 /********** Helpers for find_busiest_group ************************/
4178 /*
4179 * sd_lb_stats - Structure to store the statistics of a sched_domain
4180 * during load balancing.
4181 */
4182 struct sd_lb_stats {
4183 struct sched_group *busiest; /* Busiest group in this sd */
4184 struct sched_group *this; /* Local group in this sd */
4185 unsigned long total_load; /* Total load of all groups in sd */
4186 unsigned long total_pwr; /* Total power of all groups in sd */
4187 unsigned long avg_load; /* Average load across all groups in sd */
4188
4189 /** Statistics of this group */
4190 unsigned long this_load;
4191 unsigned long this_load_per_task;
4192 unsigned long this_nr_running;
4193 unsigned long this_has_capacity;
4194 unsigned int this_idle_cpus;
4195
4196 /* Statistics of the busiest group */
4197 unsigned int busiest_idle_cpus;
4198 unsigned long max_load;
4199 unsigned long busiest_load_per_task;
4200 unsigned long busiest_nr_running;
4201 unsigned long busiest_group_capacity;
4202 unsigned long busiest_has_capacity;
4203 unsigned int busiest_group_weight;
4204
4205 int group_imb; /* Is there imbalance in this sd */
4206 };
4207
4208 /*
4209 * sg_lb_stats - stats of a sched_group required for load_balancing
4210 */
4211 struct sg_lb_stats {
4212 unsigned long avg_load; /*Avg load across the CPUs of the group */
4213 unsigned long group_load; /* Total load over the CPUs of the group */
4214 unsigned long sum_nr_running; /* Nr tasks running in the group */
4215 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4216 unsigned long group_capacity;
4217 unsigned long idle_cpus;
4218 unsigned long group_weight;
4219 int group_imb; /* Is there an imbalance in the group ? */
4220 int group_has_capacity; /* Is there extra capacity in the group? */
4221 };
4222
4223 /**
4224 * get_sd_load_idx - Obtain the load index for a given sched domain.
4225 * @sd: The sched_domain whose load_idx is to be obtained.
4226 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4227 */
4228 static inline int get_sd_load_idx(struct sched_domain *sd,
4229 enum cpu_idle_type idle)
4230 {
4231 int load_idx;
4232
4233 switch (idle) {
4234 case CPU_NOT_IDLE:
4235 load_idx = sd->busy_idx;
4236 break;
4237
4238 case CPU_NEWLY_IDLE:
4239 load_idx = sd->newidle_idx;
4240 break;
4241 default:
4242 load_idx = sd->idle_idx;
4243 break;
4244 }
4245
4246 return load_idx;
4247 }
4248
4249 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4250 {
4251 return SCHED_POWER_SCALE;
4252 }
4253
4254 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4255 {
4256 return default_scale_freq_power(sd, cpu);
4257 }
4258
4259 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4260 {
4261 unsigned long weight = sd->span_weight;
4262 unsigned long smt_gain = sd->smt_gain;
4263
4264 smt_gain /= weight;
4265
4266 return smt_gain;
4267 }
4268
4269 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4270 {
4271 return default_scale_smt_power(sd, cpu);
4272 }
4273
4274 static unsigned long scale_rt_power(int cpu)
4275 {
4276 struct rq *rq = cpu_rq(cpu);
4277 u64 total, available, age_stamp, avg;
4278
4279 /*
4280 * Since we're reading these variables without serialization make sure
4281 * we read them once before doing sanity checks on them.
4282 */
4283 age_stamp = ACCESS_ONCE(rq->age_stamp);
4284 avg = ACCESS_ONCE(rq->rt_avg);
4285
4286 total = sched_avg_period() + (rq->clock - age_stamp);
4287
4288 if (unlikely(total < avg)) {
4289 /* Ensures that power won't end up being negative */
4290 available = 0;
4291 } else {
4292 available = total - avg;
4293 }
4294
4295 if (unlikely((s64)total < SCHED_POWER_SCALE))
4296 total = SCHED_POWER_SCALE;
4297
4298 total >>= SCHED_POWER_SHIFT;
4299
4300 return div_u64(available, total);
4301 }
4302
4303 static void update_cpu_power(struct sched_domain *sd, int cpu)
4304 {
4305 unsigned long weight = sd->span_weight;
4306 unsigned long power = SCHED_POWER_SCALE;
4307 struct sched_group *sdg = sd->groups;
4308
4309 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4310 if (sched_feat(ARCH_POWER))
4311 power *= arch_scale_smt_power(sd, cpu);
4312 else
4313 power *= default_scale_smt_power(sd, cpu);
4314
4315 power >>= SCHED_POWER_SHIFT;
4316 }
4317
4318 sdg->sgp->power_orig = power;
4319
4320 if (sched_feat(ARCH_POWER))
4321 power *= arch_scale_freq_power(sd, cpu);
4322 else
4323 power *= default_scale_freq_power(sd, cpu);
4324
4325 power >>= SCHED_POWER_SHIFT;
4326
4327 power *= scale_rt_power(cpu);
4328 power >>= SCHED_POWER_SHIFT;
4329
4330 if (!power)
4331 power = 1;
4332
4333 cpu_rq(cpu)->cpu_power = power;
4334 sdg->sgp->power = power;
4335 }
4336
4337 void update_group_power(struct sched_domain *sd, int cpu)
4338 {
4339 struct sched_domain *child = sd->child;
4340 struct sched_group *group, *sdg = sd->groups;
4341 unsigned long power;
4342 unsigned long interval;
4343
4344 interval = msecs_to_jiffies(sd->balance_interval);
4345 interval = clamp(interval, 1UL, max_load_balance_interval);
4346 sdg->sgp->next_update = jiffies + interval;
4347
4348 if (!child) {
4349 update_cpu_power(sd, cpu);
4350 return;
4351 }
4352
4353 power = 0;
4354
4355 if (child->flags & SD_OVERLAP) {
4356 /*
4357 * SD_OVERLAP domains cannot assume that child groups
4358 * span the current group.
4359 */
4360
4361 for_each_cpu(cpu, sched_group_cpus(sdg))
4362 power += power_of(cpu);
4363 } else {
4364 /*
4365 * !SD_OVERLAP domains can assume that child groups
4366 * span the current group.
4367 */
4368
4369 group = child->groups;
4370 do {
4371 power += group->sgp->power;
4372 group = group->next;
4373 } while (group != child->groups);
4374 }
4375
4376 sdg->sgp->power_orig = sdg->sgp->power = power;
4377 }
4378
4379 /*
4380 * Try and fix up capacity for tiny siblings, this is needed when
4381 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4382 * which on its own isn't powerful enough.
4383 *
4384 * See update_sd_pick_busiest() and check_asym_packing().
4385 */
4386 static inline int
4387 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4388 {
4389 /*
4390 * Only siblings can have significantly less than SCHED_POWER_SCALE
4391 */
4392 if (!(sd->flags & SD_SHARE_CPUPOWER))
4393 return 0;
4394
4395 /*
4396 * If ~90% of the cpu_power is still there, we're good.
4397 */
4398 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4399 return 1;
4400
4401 return 0;
4402 }
4403
4404 /**
4405 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4406 * @env: The load balancing environment.
4407 * @group: sched_group whose statistics are to be updated.
4408 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4409 * @local_group: Does group contain this_cpu.
4410 * @balance: Should we balance.
4411 * @sgs: variable to hold the statistics for this group.
4412 */
4413 static inline void update_sg_lb_stats(struct lb_env *env,
4414 struct sched_group *group, int load_idx,
4415 int local_group, int *balance, struct sg_lb_stats *sgs)
4416 {
4417 unsigned long nr_running, max_nr_running, min_nr_running;
4418 unsigned long load, max_cpu_load, min_cpu_load;
4419 unsigned int balance_cpu = -1, first_idle_cpu = 0;
4420 unsigned long avg_load_per_task = 0;
4421 int i;
4422
4423 if (local_group)
4424 balance_cpu = group_balance_cpu(group);
4425
4426 /* Tally up the load of all CPUs in the group */
4427 max_cpu_load = 0;
4428 min_cpu_load = ~0UL;
4429 max_nr_running = 0;
4430 min_nr_running = ~0UL;
4431
4432 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4433 struct rq *rq = cpu_rq(i);
4434
4435 nr_running = rq->nr_running;
4436
4437 /* Bias balancing toward cpus of our domain */
4438 if (local_group) {
4439 if (idle_cpu(i) && !first_idle_cpu &&
4440 cpumask_test_cpu(i, sched_group_mask(group))) {
4441 first_idle_cpu = 1;
4442 balance_cpu = i;
4443 }
4444
4445 load = target_load(i, load_idx);
4446 } else {
4447 load = source_load(i, load_idx);
4448 if (load > max_cpu_load)
4449 max_cpu_load = load;
4450 if (min_cpu_load > load)
4451 min_cpu_load = load;
4452
4453 if (nr_running > max_nr_running)
4454 max_nr_running = nr_running;
4455 if (min_nr_running > nr_running)
4456 min_nr_running = nr_running;
4457 }
4458
4459 sgs->group_load += load;
4460 sgs->sum_nr_running += nr_running;
4461 sgs->sum_weighted_load += weighted_cpuload(i);
4462 if (idle_cpu(i))
4463 sgs->idle_cpus++;
4464 }
4465
4466 /*
4467 * First idle cpu or the first cpu(busiest) in this sched group
4468 * is eligible for doing load balancing at this and above
4469 * domains. In the newly idle case, we will allow all the cpu's
4470 * to do the newly idle load balance.
4471 */
4472 if (local_group) {
4473 if (env->idle != CPU_NEWLY_IDLE) {
4474 if (balance_cpu != env->dst_cpu) {
4475 *balance = 0;
4476 return;
4477 }
4478 update_group_power(env->sd, env->dst_cpu);
4479 } else if (time_after_eq(jiffies, group->sgp->next_update))
4480 update_group_power(env->sd, env->dst_cpu);
4481 }
4482
4483 /* Adjust by relative CPU power of the group */
4484 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4485
4486 /*
4487 * Consider the group unbalanced when the imbalance is larger
4488 * than the average weight of a task.
4489 *
4490 * APZ: with cgroup the avg task weight can vary wildly and
4491 * might not be a suitable number - should we keep a
4492 * normalized nr_running number somewhere that negates
4493 * the hierarchy?
4494 */
4495 if (sgs->sum_nr_running)
4496 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4497
4498 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4499 (max_nr_running - min_nr_running) > 1)
4500 sgs->group_imb = 1;
4501
4502 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4503 SCHED_POWER_SCALE);
4504 if (!sgs->group_capacity)
4505 sgs->group_capacity = fix_small_capacity(env->sd, group);
4506 sgs->group_weight = group->group_weight;
4507
4508 if (sgs->group_capacity > sgs->sum_nr_running)
4509 sgs->group_has_capacity = 1;
4510 }
4511
4512 /**
4513 * update_sd_pick_busiest - return 1 on busiest group
4514 * @env: The load balancing environment.
4515 * @sds: sched_domain statistics
4516 * @sg: sched_group candidate to be checked for being the busiest
4517 * @sgs: sched_group statistics
4518 *
4519 * Determine if @sg is a busier group than the previously selected
4520 * busiest group.
4521 */
4522 static bool update_sd_pick_busiest(struct lb_env *env,
4523 struct sd_lb_stats *sds,
4524 struct sched_group *sg,
4525 struct sg_lb_stats *sgs)
4526 {
4527 if (sgs->avg_load <= sds->max_load)
4528 return false;
4529
4530 if (sgs->sum_nr_running > sgs->group_capacity)
4531 return true;
4532
4533 if (sgs->group_imb)
4534 return true;
4535
4536 /*
4537 * ASYM_PACKING needs to move all the work to the lowest
4538 * numbered CPUs in the group, therefore mark all groups
4539 * higher than ourself as busy.
4540 */
4541 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4542 env->dst_cpu < group_first_cpu(sg)) {
4543 if (!sds->busiest)
4544 return true;
4545
4546 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4547 return true;
4548 }
4549
4550 return false;
4551 }
4552
4553 /**
4554 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4555 * @env: The load balancing environment.
4556 * @balance: Should we balance.
4557 * @sds: variable to hold the statistics for this sched_domain.
4558 */
4559 static inline void update_sd_lb_stats(struct lb_env *env,
4560 int *balance, struct sd_lb_stats *sds)
4561 {
4562 struct sched_domain *child = env->sd->child;
4563 struct sched_group *sg = env->sd->groups;
4564 struct sg_lb_stats sgs;
4565 int load_idx, prefer_sibling = 0;
4566
4567 if (child && child->flags & SD_PREFER_SIBLING)
4568 prefer_sibling = 1;
4569
4570 load_idx = get_sd_load_idx(env->sd, env->idle);
4571
4572 do {
4573 int local_group;
4574
4575 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4576 memset(&sgs, 0, sizeof(sgs));
4577 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4578
4579 if (local_group && !(*balance))
4580 return;
4581
4582 sds->total_load += sgs.group_load;
4583 sds->total_pwr += sg->sgp->power;
4584
4585 /*
4586 * In case the child domain prefers tasks go to siblings
4587 * first, lower the sg capacity to one so that we'll try
4588 * and move all the excess tasks away. We lower the capacity
4589 * of a group only if the local group has the capacity to fit
4590 * these excess tasks, i.e. nr_running < group_capacity. The
4591 * extra check prevents the case where you always pull from the
4592 * heaviest group when it is already under-utilized (possible
4593 * with a large weight task outweighs the tasks on the system).
4594 */
4595 if (prefer_sibling && !local_group && sds->this_has_capacity)
4596 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4597
4598 if (local_group) {
4599 sds->this_load = sgs.avg_load;
4600 sds->this = sg;
4601 sds->this_nr_running = sgs.sum_nr_running;
4602 sds->this_load_per_task = sgs.sum_weighted_load;
4603 sds->this_has_capacity = sgs.group_has_capacity;
4604 sds->this_idle_cpus = sgs.idle_cpus;
4605 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4606 sds->max_load = sgs.avg_load;
4607 sds->busiest = sg;
4608 sds->busiest_nr_running = sgs.sum_nr_running;
4609 sds->busiest_idle_cpus = sgs.idle_cpus;
4610 sds->busiest_group_capacity = sgs.group_capacity;
4611 sds->busiest_load_per_task = sgs.sum_weighted_load;
4612 sds->busiest_has_capacity = sgs.group_has_capacity;
4613 sds->busiest_group_weight = sgs.group_weight;
4614 sds->group_imb = sgs.group_imb;
4615 }
4616
4617 sg = sg->next;
4618 } while (sg != env->sd->groups);
4619 }
4620
4621 /**
4622 * check_asym_packing - Check to see if the group is packed into the
4623 * sched doman.
4624 *
4625 * This is primarily intended to used at the sibling level. Some
4626 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4627 * case of POWER7, it can move to lower SMT modes only when higher
4628 * threads are idle. When in lower SMT modes, the threads will
4629 * perform better since they share less core resources. Hence when we
4630 * have idle threads, we want them to be the higher ones.
4631 *
4632 * This packing function is run on idle threads. It checks to see if
4633 * the busiest CPU in this domain (core in the P7 case) has a higher
4634 * CPU number than the packing function is being run on. Here we are
4635 * assuming lower CPU number will be equivalent to lower a SMT thread
4636 * number.
4637 *
4638 * Returns 1 when packing is required and a task should be moved to
4639 * this CPU. The amount of the imbalance is returned in *imbalance.
4640 *
4641 * @env: The load balancing environment.
4642 * @sds: Statistics of the sched_domain which is to be packed
4643 */
4644 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4645 {
4646 int busiest_cpu;
4647
4648 if (!(env->sd->flags & SD_ASYM_PACKING))
4649 return 0;
4650
4651 if (!sds->busiest)
4652 return 0;
4653
4654 busiest_cpu = group_first_cpu(sds->busiest);
4655 if (env->dst_cpu > busiest_cpu)
4656 return 0;
4657
4658 env->imbalance = DIV_ROUND_CLOSEST(
4659 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4660
4661 return 1;
4662 }
4663
4664 /**
4665 * fix_small_imbalance - Calculate the minor imbalance that exists
4666 * amongst the groups of a sched_domain, during
4667 * load balancing.
4668 * @env: The load balancing environment.
4669 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4670 */
4671 static inline
4672 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4673 {
4674 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4675 unsigned int imbn = 2;
4676 unsigned long scaled_busy_load_per_task;
4677
4678 if (sds->this_nr_running) {
4679 sds->this_load_per_task /= sds->this_nr_running;
4680 if (sds->busiest_load_per_task >
4681 sds->this_load_per_task)
4682 imbn = 1;
4683 } else {
4684 sds->this_load_per_task =
4685 cpu_avg_load_per_task(env->dst_cpu);
4686 }
4687
4688 scaled_busy_load_per_task = sds->busiest_load_per_task
4689 * SCHED_POWER_SCALE;
4690 scaled_busy_load_per_task /= sds->busiest->sgp->power;
4691
4692 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4693 (scaled_busy_load_per_task * imbn)) {
4694 env->imbalance = sds->busiest_load_per_task;
4695 return;
4696 }
4697
4698 /*
4699 * OK, we don't have enough imbalance to justify moving tasks,
4700 * however we may be able to increase total CPU power used by
4701 * moving them.
4702 */
4703
4704 pwr_now += sds->busiest->sgp->power *
4705 min(sds->busiest_load_per_task, sds->max_load);
4706 pwr_now += sds->this->sgp->power *
4707 min(sds->this_load_per_task, sds->this_load);
4708 pwr_now /= SCHED_POWER_SCALE;
4709
4710 /* Amount of load we'd subtract */
4711 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4712 sds->busiest->sgp->power;
4713 if (sds->max_load > tmp)
4714 pwr_move += sds->busiest->sgp->power *
4715 min(sds->busiest_load_per_task, sds->max_load - tmp);
4716
4717 /* Amount of load we'd add */
4718 if (sds->max_load * sds->busiest->sgp->power <
4719 sds->busiest_load_per_task * SCHED_POWER_SCALE)
4720 tmp = (sds->max_load * sds->busiest->sgp->power) /
4721 sds->this->sgp->power;
4722 else
4723 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4724 sds->this->sgp->power;
4725 pwr_move += sds->this->sgp->power *
4726 min(sds->this_load_per_task, sds->this_load + tmp);
4727 pwr_move /= SCHED_POWER_SCALE;
4728
4729 /* Move if we gain throughput */
4730 if (pwr_move > pwr_now)
4731 env->imbalance = sds->busiest_load_per_task;
4732 }
4733
4734 /**
4735 * calculate_imbalance - Calculate the amount of imbalance present within the
4736 * groups of a given sched_domain during load balance.
4737 * @env: load balance environment
4738 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4739 */
4740 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4741 {
4742 unsigned long max_pull, load_above_capacity = ~0UL;
4743
4744 sds->busiest_load_per_task /= sds->busiest_nr_running;
4745 if (sds->group_imb) {
4746 sds->busiest_load_per_task =
4747 min(sds->busiest_load_per_task, sds->avg_load);
4748 }
4749
4750 /*
4751 * In the presence of smp nice balancing, certain scenarios can have
4752 * max load less than avg load(as we skip the groups at or below
4753 * its cpu_power, while calculating max_load..)
4754 */
4755 if (sds->max_load < sds->avg_load) {
4756 env->imbalance = 0;
4757 return fix_small_imbalance(env, sds);
4758 }
4759
4760 if (!sds->group_imb) {
4761 /*
4762 * Don't want to pull so many tasks that a group would go idle.
4763 */
4764 load_above_capacity = (sds->busiest_nr_running -
4765 sds->busiest_group_capacity);
4766
4767 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4768
4769 load_above_capacity /= sds->busiest->sgp->power;
4770 }
4771
4772 /*
4773 * We're trying to get all the cpus to the average_load, so we don't
4774 * want to push ourselves above the average load, nor do we wish to
4775 * reduce the max loaded cpu below the average load. At the same time,
4776 * we also don't want to reduce the group load below the group capacity
4777 * (so that we can implement power-savings policies etc). Thus we look
4778 * for the minimum possible imbalance.
4779 * Be careful of negative numbers as they'll appear as very large values
4780 * with unsigned longs.
4781 */
4782 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4783
4784 /* How much load to actually move to equalise the imbalance */
4785 env->imbalance = min(max_pull * sds->busiest->sgp->power,
4786 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4787 / SCHED_POWER_SCALE;
4788
4789 /*
4790 * if *imbalance is less than the average load per runnable task
4791 * there is no guarantee that any tasks will be moved so we'll have
4792 * a think about bumping its value to force at least one task to be
4793 * moved
4794 */
4795 if (env->imbalance < sds->busiest_load_per_task)
4796 return fix_small_imbalance(env, sds);
4797
4798 }
4799
4800 /******* find_busiest_group() helpers end here *********************/
4801
4802 /**
4803 * find_busiest_group - Returns the busiest group within the sched_domain
4804 * if there is an imbalance. If there isn't an imbalance, and
4805 * the user has opted for power-savings, it returns a group whose
4806 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4807 * such a group exists.
4808 *
4809 * Also calculates the amount of weighted load which should be moved
4810 * to restore balance.
4811 *
4812 * @env: The load balancing environment.
4813 * @balance: Pointer to a variable indicating if this_cpu
4814 * is the appropriate cpu to perform load balancing at this_level.
4815 *
4816 * Returns: - the busiest group if imbalance exists.
4817 * - If no imbalance and user has opted for power-savings balance,
4818 * return the least loaded group whose CPUs can be
4819 * put to idle by rebalancing its tasks onto our group.
4820 */
4821 static struct sched_group *
4822 find_busiest_group(struct lb_env *env, int *balance)
4823 {
4824 struct sd_lb_stats sds;
4825
4826 memset(&sds, 0, sizeof(sds));
4827
4828 /*
4829 * Compute the various statistics relavent for load balancing at
4830 * this level.
4831 */
4832 update_sd_lb_stats(env, balance, &sds);
4833
4834 /*
4835 * this_cpu is not the appropriate cpu to perform load balancing at
4836 * this level.
4837 */
4838 if (!(*balance))
4839 goto ret;
4840
4841 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4842 check_asym_packing(env, &sds))
4843 return sds.busiest;
4844
4845 /* There is no busy sibling group to pull tasks from */
4846 if (!sds.busiest || sds.busiest_nr_running == 0)
4847 goto out_balanced;
4848
4849 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4850
4851 /*
4852 * If the busiest group is imbalanced the below checks don't
4853 * work because they assumes all things are equal, which typically
4854 * isn't true due to cpus_allowed constraints and the like.
4855 */
4856 if (sds.group_imb)
4857 goto force_balance;
4858
4859 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4860 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4861 !sds.busiest_has_capacity)
4862 goto force_balance;
4863
4864 /*
4865 * If the local group is more busy than the selected busiest group
4866 * don't try and pull any tasks.
4867 */
4868 if (sds.this_load >= sds.max_load)
4869 goto out_balanced;
4870
4871 /*
4872 * Don't pull any tasks if this group is already above the domain
4873 * average load.
4874 */
4875 if (sds.this_load >= sds.avg_load)
4876 goto out_balanced;
4877
4878 if (env->idle == CPU_IDLE) {
4879 /*
4880 * This cpu is idle. If the busiest group load doesn't
4881 * have more tasks than the number of available cpu's and
4882 * there is no imbalance between this and busiest group
4883 * wrt to idle cpu's, it is balanced.
4884 */
4885 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4886 sds.busiest_nr_running <= sds.busiest_group_weight)
4887 goto out_balanced;
4888 } else {
4889 /*
4890 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4891 * imbalance_pct to be conservative.
4892 */
4893 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4894 goto out_balanced;
4895 }
4896
4897 force_balance:
4898 /* Looks like there is an imbalance. Compute it */
4899 calculate_imbalance(env, &sds);
4900 return sds.busiest;
4901
4902 out_balanced:
4903 ret:
4904 env->imbalance = 0;
4905 return NULL;
4906 }
4907
4908 /*
4909 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4910 */
4911 static struct rq *find_busiest_queue(struct lb_env *env,
4912 struct sched_group *group)
4913 {
4914 struct rq *busiest = NULL, *rq;
4915 unsigned long max_load = 0;
4916 int i;
4917
4918 for_each_cpu(i, sched_group_cpus(group)) {
4919 unsigned long power = power_of(i);
4920 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4921 SCHED_POWER_SCALE);
4922 unsigned long wl;
4923
4924 if (!capacity)
4925 capacity = fix_small_capacity(env->sd, group);
4926
4927 if (!cpumask_test_cpu(i, env->cpus))
4928 continue;
4929
4930 rq = cpu_rq(i);
4931 wl = weighted_cpuload(i);
4932
4933 /*
4934 * When comparing with imbalance, use weighted_cpuload()
4935 * which is not scaled with the cpu power.
4936 */
4937 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4938 continue;
4939
4940 /*
4941 * For the load comparisons with the other cpu's, consider
4942 * the weighted_cpuload() scaled with the cpu power, so that
4943 * the load can be moved away from the cpu that is potentially
4944 * running at a lower capacity.
4945 */
4946 wl = (wl * SCHED_POWER_SCALE) / power;
4947
4948 if (wl > max_load) {
4949 max_load = wl;
4950 busiest = rq;
4951 }
4952 }
4953
4954 return busiest;
4955 }
4956
4957 /*
4958 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4959 * so long as it is large enough.
4960 */
4961 #define MAX_PINNED_INTERVAL 512
4962
4963 /* Working cpumask for load_balance and load_balance_newidle. */
4964 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4965
4966 static int need_active_balance(struct lb_env *env)
4967 {
4968 struct sched_domain *sd = env->sd;
4969
4970 if (env->idle == CPU_NEWLY_IDLE) {
4971
4972 /*
4973 * ASYM_PACKING needs to force migrate tasks from busy but
4974 * higher numbered CPUs in order to pack all tasks in the
4975 * lowest numbered CPUs.
4976 */
4977 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4978 return 1;
4979 }
4980
4981 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4982 }
4983
4984 static int active_load_balance_cpu_stop(void *data);
4985
4986 /*
4987 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4988 * tasks if there is an imbalance.
4989 */
4990 static int load_balance(int this_cpu, struct rq *this_rq,
4991 struct sched_domain *sd, enum cpu_idle_type idle,
4992 int *balance)
4993 {
4994 int ld_moved, cur_ld_moved, active_balance = 0;
4995 int lb_iterations, max_lb_iterations;
4996 struct sched_group *group;
4997 struct rq *busiest;
4998 unsigned long flags;
4999 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5000
5001 struct lb_env env = {
5002 .sd = sd,
5003 .dst_cpu = this_cpu,
5004 .dst_rq = this_rq,
5005 .dst_grpmask = sched_group_cpus(sd->groups),
5006 .idle = idle,
5007 .loop_break = sched_nr_migrate_break,
5008 .cpus = cpus,
5009 };
5010
5011 cpumask_copy(cpus, cpu_active_mask);
5012 max_lb_iterations = cpumask_weight(env.dst_grpmask);
5013
5014 schedstat_inc(sd, lb_count[idle]);
5015
5016 redo:
5017 group = find_busiest_group(&env, balance);
5018
5019 if (*balance == 0)
5020 goto out_balanced;
5021
5022 if (!group) {
5023 schedstat_inc(sd, lb_nobusyg[idle]);
5024 goto out_balanced;
5025 }
5026
5027 busiest = find_busiest_queue(&env, group);
5028 if (!busiest) {
5029 schedstat_inc(sd, lb_nobusyq[idle]);
5030 goto out_balanced;
5031 }
5032
5033 BUG_ON(busiest == env.dst_rq);
5034
5035 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5036
5037 ld_moved = 0;
5038 lb_iterations = 1;
5039 if (busiest->nr_running > 1) {
5040 /*
5041 * Attempt to move tasks. If find_busiest_group has found
5042 * an imbalance but busiest->nr_running <= 1, the group is
5043 * still unbalanced. ld_moved simply stays zero, so it is
5044 * correctly treated as an imbalance.
5045 */
5046 env.flags |= LBF_ALL_PINNED;
5047 env.src_cpu = busiest->cpu;
5048 env.src_rq = busiest;
5049 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
5050
5051 update_h_load(env.src_cpu);
5052 more_balance:
5053 local_irq_save(flags);
5054 double_rq_lock(env.dst_rq, busiest);
5055
5056 /*
5057 * cur_ld_moved - load moved in current iteration
5058 * ld_moved - cumulative load moved across iterations
5059 */
5060 cur_ld_moved = move_tasks(&env);
5061 ld_moved += cur_ld_moved;
5062 double_rq_unlock(env.dst_rq, busiest);
5063 local_irq_restore(flags);
5064
5065 if (env.flags & LBF_NEED_BREAK) {
5066 env.flags &= ~LBF_NEED_BREAK;
5067 goto more_balance;
5068 }
5069
5070 /*
5071 * some other cpu did the load balance for us.
5072 */
5073 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5074 resched_cpu(env.dst_cpu);
5075
5076 /*
5077 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5078 * us and move them to an alternate dst_cpu in our sched_group
5079 * where they can run. The upper limit on how many times we
5080 * iterate on same src_cpu is dependent on number of cpus in our
5081 * sched_group.
5082 *
5083 * This changes load balance semantics a bit on who can move
5084 * load to a given_cpu. In addition to the given_cpu itself
5085 * (or a ilb_cpu acting on its behalf where given_cpu is
5086 * nohz-idle), we now have balance_cpu in a position to move
5087 * load to given_cpu. In rare situations, this may cause
5088 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5089 * _independently_ and at _same_ time to move some load to
5090 * given_cpu) causing exceess load to be moved to given_cpu.
5091 * This however should not happen so much in practice and
5092 * moreover subsequent load balance cycles should correct the
5093 * excess load moved.
5094 */
5095 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
5096 lb_iterations++ < max_lb_iterations) {
5097
5098 env.dst_rq = cpu_rq(env.new_dst_cpu);
5099 env.dst_cpu = env.new_dst_cpu;
5100 env.flags &= ~LBF_SOME_PINNED;
5101 env.loop = 0;
5102 env.loop_break = sched_nr_migrate_break;
5103 /*
5104 * Go back to "more_balance" rather than "redo" since we
5105 * need to continue with same src_cpu.
5106 */
5107 goto more_balance;
5108 }
5109
5110 /* All tasks on this runqueue were pinned by CPU affinity */
5111 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5112 cpumask_clear_cpu(cpu_of(busiest), cpus);
5113 if (!cpumask_empty(cpus)) {
5114 env.loop = 0;
5115 env.loop_break = sched_nr_migrate_break;
5116 goto redo;
5117 }
5118 goto out_balanced;
5119 }
5120 }
5121
5122 if (!ld_moved) {
5123 schedstat_inc(sd, lb_failed[idle]);
5124 /*
5125 * Increment the failure counter only on periodic balance.
5126 * We do not want newidle balance, which can be very
5127 * frequent, pollute the failure counter causing
5128 * excessive cache_hot migrations and active balances.
5129 */
5130 if (idle != CPU_NEWLY_IDLE)
5131 sd->nr_balance_failed++;
5132
5133 if (need_active_balance(&env)) {
5134 raw_spin_lock_irqsave(&busiest->lock, flags);
5135
5136 /* don't kick the active_load_balance_cpu_stop,
5137 * if the curr task on busiest cpu can't be
5138 * moved to this_cpu
5139 */
5140 if (!cpumask_test_cpu(this_cpu,
5141 tsk_cpus_allowed(busiest->curr))) {
5142 raw_spin_unlock_irqrestore(&busiest->lock,
5143 flags);
5144 env.flags |= LBF_ALL_PINNED;
5145 goto out_one_pinned;
5146 }
5147
5148 /*
5149 * ->active_balance synchronizes accesses to
5150 * ->active_balance_work. Once set, it's cleared
5151 * only after active load balance is finished.
5152 */
5153 if (!busiest->active_balance) {
5154 busiest->active_balance = 1;
5155 busiest->push_cpu = this_cpu;
5156 active_balance = 1;
5157 }
5158 raw_spin_unlock_irqrestore(&busiest->lock, flags);
5159
5160 if (active_balance) {
5161 stop_one_cpu_nowait(cpu_of(busiest),
5162 active_load_balance_cpu_stop, busiest,
5163 &busiest->active_balance_work);
5164 }
5165
5166 /*
5167 * We've kicked active balancing, reset the failure
5168 * counter.
5169 */
5170 sd->nr_balance_failed = sd->cache_nice_tries+1;
5171 }
5172 } else
5173 sd->nr_balance_failed = 0;
5174
5175 if (likely(!active_balance)) {
5176 /* We were unbalanced, so reset the balancing interval */
5177 sd->balance_interval = sd->min_interval;
5178 } else {
5179 /*
5180 * If we've begun active balancing, start to back off. This
5181 * case may not be covered by the all_pinned logic if there
5182 * is only 1 task on the busy runqueue (because we don't call
5183 * move_tasks).
5184 */
5185 if (sd->balance_interval < sd->max_interval)
5186 sd->balance_interval *= 2;
5187 }
5188
5189 goto out;
5190
5191 out_balanced:
5192 schedstat_inc(sd, lb_balanced[idle]);
5193
5194 sd->nr_balance_failed = 0;
5195
5196 out_one_pinned:
5197 /* tune up the balancing interval */
5198 if (((env.flags & LBF_ALL_PINNED) &&
5199 sd->balance_interval < MAX_PINNED_INTERVAL) ||
5200 (sd->balance_interval < sd->max_interval))
5201 sd->balance_interval *= 2;
5202
5203 ld_moved = 0;
5204 out:
5205 return ld_moved;
5206 }
5207
5208 /*
5209 * idle_balance is called by schedule() if this_cpu is about to become
5210 * idle. Attempts to pull tasks from other CPUs.
5211 */
5212 void idle_balance(int this_cpu, struct rq *this_rq)
5213 {
5214 struct sched_domain *sd;
5215 int pulled_task = 0;
5216 unsigned long next_balance = jiffies + HZ;
5217
5218 this_rq->idle_stamp = this_rq->clock;
5219
5220 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5221 return;
5222
5223 update_rq_runnable_avg(this_rq, 1);
5224
5225 /*
5226 * Drop the rq->lock, but keep IRQ/preempt disabled.
5227 */
5228 raw_spin_unlock(&this_rq->lock);
5229
5230 update_blocked_averages(this_cpu);
5231 rcu_read_lock();
5232 for_each_domain(this_cpu, sd) {
5233 unsigned long interval;
5234 int balance = 1;
5235
5236 if (!(sd->flags & SD_LOAD_BALANCE))
5237 continue;
5238
5239 if (sd->flags & SD_BALANCE_NEWIDLE) {
5240 /* If we've pulled tasks over stop searching: */
5241 pulled_task = load_balance(this_cpu, this_rq,
5242 sd, CPU_NEWLY_IDLE, &balance);
5243 }
5244
5245 interval = msecs_to_jiffies(sd->balance_interval);
5246 if (time_after(next_balance, sd->last_balance + interval))
5247 next_balance = sd->last_balance + interval;
5248 if (pulled_task) {
5249 this_rq->idle_stamp = 0;
5250 break;
5251 }
5252 }
5253 rcu_read_unlock();
5254
5255 raw_spin_lock(&this_rq->lock);
5256
5257 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5258 /*
5259 * We are going idle. next_balance may be set based on
5260 * a busy processor. So reset next_balance.
5261 */
5262 this_rq->next_balance = next_balance;
5263 }
5264 }
5265
5266 /*
5267 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5268 * running tasks off the busiest CPU onto idle CPUs. It requires at
5269 * least 1 task to be running on each physical CPU where possible, and
5270 * avoids physical / logical imbalances.
5271 */
5272 static int active_load_balance_cpu_stop(void *data)
5273 {
5274 struct rq *busiest_rq = data;
5275 int busiest_cpu = cpu_of(busiest_rq);
5276 int target_cpu = busiest_rq->push_cpu;
5277 struct rq *target_rq = cpu_rq(target_cpu);
5278 struct sched_domain *sd;
5279
5280 raw_spin_lock_irq(&busiest_rq->lock);
5281
5282 /* make sure the requested cpu hasn't gone down in the meantime */
5283 if (unlikely(busiest_cpu != smp_processor_id() ||
5284 !busiest_rq->active_balance))
5285 goto out_unlock;
5286
5287 /* Is there any task to move? */
5288 if (busiest_rq->nr_running <= 1)
5289 goto out_unlock;
5290
5291 /*
5292 * This condition is "impossible", if it occurs
5293 * we need to fix it. Originally reported by
5294 * Bjorn Helgaas on a 128-cpu setup.
5295 */
5296 BUG_ON(busiest_rq == target_rq);
5297
5298 /* move a task from busiest_rq to target_rq */
5299 double_lock_balance(busiest_rq, target_rq);
5300
5301 /* Search for an sd spanning us and the target CPU. */
5302 rcu_read_lock();
5303 for_each_domain(target_cpu, sd) {
5304 if ((sd->flags & SD_LOAD_BALANCE) &&
5305 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5306 break;
5307 }
5308
5309 if (likely(sd)) {
5310 struct lb_env env = {
5311 .sd = sd,
5312 .dst_cpu = target_cpu,
5313 .dst_rq = target_rq,
5314 .src_cpu = busiest_rq->cpu,
5315 .src_rq = busiest_rq,
5316 .idle = CPU_IDLE,
5317 };
5318
5319 schedstat_inc(sd, alb_count);
5320
5321 if (move_one_task(&env))
5322 schedstat_inc(sd, alb_pushed);
5323 else
5324 schedstat_inc(sd, alb_failed);
5325 }
5326 rcu_read_unlock();
5327 double_unlock_balance(busiest_rq, target_rq);
5328 out_unlock:
5329 busiest_rq->active_balance = 0;
5330 raw_spin_unlock_irq(&busiest_rq->lock);
5331 return 0;
5332 }
5333
5334 #ifdef CONFIG_NO_HZ_COMMON
5335 /*
5336 * idle load balancing details
5337 * - When one of the busy CPUs notice that there may be an idle rebalancing
5338 * needed, they will kick the idle load balancer, which then does idle
5339 * load balancing for all the idle CPUs.
5340 */
5341 static struct {
5342 cpumask_var_t idle_cpus_mask;
5343 atomic_t nr_cpus;
5344 unsigned long next_balance; /* in jiffy units */
5345 } nohz ____cacheline_aligned;
5346
5347 static inline int find_new_ilb(int call_cpu)
5348 {
5349 int ilb = cpumask_first(nohz.idle_cpus_mask);
5350
5351 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5352 return ilb;
5353
5354 return nr_cpu_ids;
5355 }
5356
5357 /*
5358 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5359 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5360 * CPU (if there is one).
5361 */
5362 static void nohz_balancer_kick(int cpu)
5363 {
5364 int ilb_cpu;
5365
5366 nohz.next_balance++;
5367
5368 ilb_cpu = find_new_ilb(cpu);
5369
5370 if (ilb_cpu >= nr_cpu_ids)
5371 return;
5372
5373 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5374 return;
5375 /*
5376 * Use smp_send_reschedule() instead of resched_cpu().
5377 * This way we generate a sched IPI on the target cpu which
5378 * is idle. And the softirq performing nohz idle load balance
5379 * will be run before returning from the IPI.
5380 */
5381 smp_send_reschedule(ilb_cpu);
5382 return;
5383 }
5384
5385 static inline void nohz_balance_exit_idle(int cpu)
5386 {
5387 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5388 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5389 atomic_dec(&nohz.nr_cpus);
5390 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5391 }
5392 }
5393
5394 static inline void set_cpu_sd_state_busy(void)
5395 {
5396 struct sched_domain *sd;
5397 int cpu = smp_processor_id();
5398
5399 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5400 return;
5401 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
5402
5403 rcu_read_lock();
5404 for_each_domain(cpu, sd)
5405 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5406 rcu_read_unlock();
5407 }
5408
5409 void set_cpu_sd_state_idle(void)
5410 {
5411 struct sched_domain *sd;
5412 int cpu = smp_processor_id();
5413
5414 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5415 return;
5416 set_bit(NOHZ_IDLE, nohz_flags(cpu));
5417
5418 rcu_read_lock();
5419 for_each_domain(cpu, sd)
5420 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5421 rcu_read_unlock();
5422 }
5423
5424 /*
5425 * This routine will record that the cpu is going idle with tick stopped.
5426 * This info will be used in performing idle load balancing in the future.
5427 */
5428 void nohz_balance_enter_idle(int cpu)
5429 {
5430 /*
5431 * If this cpu is going down, then nothing needs to be done.
5432 */
5433 if (!cpu_active(cpu))
5434 return;
5435
5436 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5437 return;
5438
5439 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5440 atomic_inc(&nohz.nr_cpus);
5441 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5442 }
5443
5444 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5445 unsigned long action, void *hcpu)
5446 {
5447 switch (action & ~CPU_TASKS_FROZEN) {
5448 case CPU_DYING:
5449 nohz_balance_exit_idle(smp_processor_id());
5450 return NOTIFY_OK;
5451 default:
5452 return NOTIFY_DONE;
5453 }
5454 }
5455 #endif
5456
5457 static DEFINE_SPINLOCK(balancing);
5458
5459 /*
5460 * Scale the max load_balance interval with the number of CPUs in the system.
5461 * This trades load-balance latency on larger machines for less cross talk.
5462 */
5463 void update_max_interval(void)
5464 {
5465 max_load_balance_interval = HZ*num_online_cpus()/10;
5466 }
5467
5468 /*
5469 * It checks each scheduling domain to see if it is due to be balanced,
5470 * and initiates a balancing operation if so.
5471 *
5472 * Balancing parameters are set up in arch_init_sched_domains.
5473 */
5474 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5475 {
5476 int balance = 1;
5477 struct rq *rq = cpu_rq(cpu);
5478 unsigned long interval;
5479 struct sched_domain *sd;
5480 /* Earliest time when we have to do rebalance again */
5481 unsigned long next_balance = jiffies + 60*HZ;
5482 int update_next_balance = 0;
5483 int need_serialize;
5484
5485 update_blocked_averages(cpu);
5486
5487 rcu_read_lock();
5488 for_each_domain(cpu, sd) {
5489 if (!(sd->flags & SD_LOAD_BALANCE))
5490 continue;
5491
5492 interval = sd->balance_interval;
5493 if (idle != CPU_IDLE)
5494 interval *= sd->busy_factor;
5495
5496 /* scale ms to jiffies */
5497 interval = msecs_to_jiffies(interval);
5498 interval = clamp(interval, 1UL, max_load_balance_interval);
5499
5500 need_serialize = sd->flags & SD_SERIALIZE;
5501
5502 if (need_serialize) {
5503 if (!spin_trylock(&balancing))
5504 goto out;
5505 }
5506
5507 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5508 if (load_balance(cpu, rq, sd, idle, &balance)) {
5509 /*
5510 * We've pulled tasks over so either we're no
5511 * longer idle.
5512 */
5513 idle = CPU_NOT_IDLE;
5514 }
5515 sd->last_balance = jiffies;
5516 }
5517 if (need_serialize)
5518 spin_unlock(&balancing);
5519 out:
5520 if (time_after(next_balance, sd->last_balance + interval)) {
5521 next_balance = sd->last_balance + interval;
5522 update_next_balance = 1;
5523 }
5524
5525 /*
5526 * Stop the load balance at this level. There is another
5527 * CPU in our sched group which is doing load balancing more
5528 * actively.
5529 */
5530 if (!balance)
5531 break;
5532 }
5533 rcu_read_unlock();
5534
5535 /*
5536 * next_balance will be updated only when there is a need.
5537 * When the cpu is attached to null domain for ex, it will not be
5538 * updated.
5539 */
5540 if (likely(update_next_balance))
5541 rq->next_balance = next_balance;
5542 }
5543
5544 #ifdef CONFIG_NO_HZ_COMMON
5545 /*
5546 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
5547 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5548 */
5549 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5550 {
5551 struct rq *this_rq = cpu_rq(this_cpu);
5552 struct rq *rq;
5553 int balance_cpu;
5554
5555 if (idle != CPU_IDLE ||
5556 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5557 goto end;
5558
5559 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5560 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5561 continue;
5562
5563 /*
5564 * If this cpu gets work to do, stop the load balancing
5565 * work being done for other cpus. Next load
5566 * balancing owner will pick it up.
5567 */
5568 if (need_resched())
5569 break;
5570
5571 rq = cpu_rq(balance_cpu);
5572
5573 raw_spin_lock_irq(&rq->lock);
5574 update_rq_clock(rq);
5575 update_idle_cpu_load(rq);
5576 raw_spin_unlock_irq(&rq->lock);
5577
5578 rebalance_domains(balance_cpu, CPU_IDLE);
5579
5580 if (time_after(this_rq->next_balance, rq->next_balance))
5581 this_rq->next_balance = rq->next_balance;
5582 }
5583 nohz.next_balance = this_rq->next_balance;
5584 end:
5585 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5586 }
5587
5588 /*
5589 * Current heuristic for kicking the idle load balancer in the presence
5590 * of an idle cpu is the system.
5591 * - This rq has more than one task.
5592 * - At any scheduler domain level, this cpu's scheduler group has multiple
5593 * busy cpu's exceeding the group's power.
5594 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5595 * domain span are idle.
5596 */
5597 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5598 {
5599 unsigned long now = jiffies;
5600 struct sched_domain *sd;
5601
5602 if (unlikely(idle_cpu(cpu)))
5603 return 0;
5604
5605 /*
5606 * We may be recently in ticked or tickless idle mode. At the first
5607 * busy tick after returning from idle, we will update the busy stats.
5608 */
5609 set_cpu_sd_state_busy();
5610 nohz_balance_exit_idle(cpu);
5611
5612 /*
5613 * None are in tickless mode and hence no need for NOHZ idle load
5614 * balancing.
5615 */
5616 if (likely(!atomic_read(&nohz.nr_cpus)))
5617 return 0;
5618
5619 if (time_before(now, nohz.next_balance))
5620 return 0;
5621
5622 if (rq->nr_running >= 2)
5623 goto need_kick;
5624
5625 rcu_read_lock();
5626 for_each_domain(cpu, sd) {
5627 struct sched_group *sg = sd->groups;
5628 struct sched_group_power *sgp = sg->sgp;
5629 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5630
5631 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5632 goto need_kick_unlock;
5633
5634 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5635 && (cpumask_first_and(nohz.idle_cpus_mask,
5636 sched_domain_span(sd)) < cpu))
5637 goto need_kick_unlock;
5638
5639 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5640 break;
5641 }
5642 rcu_read_unlock();
5643 return 0;
5644
5645 need_kick_unlock:
5646 rcu_read_unlock();
5647 need_kick:
5648 return 1;
5649 }
5650 #else
5651 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5652 #endif
5653
5654 /*
5655 * run_rebalance_domains is triggered when needed from the scheduler tick.
5656 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5657 */
5658 static void run_rebalance_domains(struct softirq_action *h)
5659 {
5660 int this_cpu = smp_processor_id();
5661 struct rq *this_rq = cpu_rq(this_cpu);
5662 enum cpu_idle_type idle = this_rq->idle_balance ?
5663 CPU_IDLE : CPU_NOT_IDLE;
5664
5665 rebalance_domains(this_cpu, idle);
5666
5667 /*
5668 * If this cpu has a pending nohz_balance_kick, then do the
5669 * balancing on behalf of the other idle cpus whose ticks are
5670 * stopped.
5671 */
5672 nohz_idle_balance(this_cpu, idle);
5673 }
5674
5675 static inline int on_null_domain(int cpu)
5676 {
5677 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5678 }
5679
5680 /*
5681 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5682 */
5683 void trigger_load_balance(struct rq *rq, int cpu)
5684 {
5685 /* Don't need to rebalance while attached to NULL domain */
5686 if (time_after_eq(jiffies, rq->next_balance) &&
5687 likely(!on_null_domain(cpu)))
5688 raise_softirq(SCHED_SOFTIRQ);
5689 #ifdef CONFIG_NO_HZ_COMMON
5690 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5691 nohz_balancer_kick(cpu);
5692 #endif
5693 }
5694
5695 static void rq_online_fair(struct rq *rq)
5696 {
5697 update_sysctl();
5698 }
5699
5700 static void rq_offline_fair(struct rq *rq)
5701 {
5702 update_sysctl();
5703
5704 /* Ensure any throttled groups are reachable by pick_next_task */
5705 unthrottle_offline_cfs_rqs(rq);
5706 }
5707
5708 #endif /* CONFIG_SMP */
5709
5710 /*
5711 * scheduler tick hitting a task of our scheduling class:
5712 */
5713 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5714 {
5715 struct cfs_rq *cfs_rq;
5716 struct sched_entity *se = &curr->se;
5717
5718 for_each_sched_entity(se) {
5719 cfs_rq = cfs_rq_of(se);
5720 entity_tick(cfs_rq, se, queued);
5721 }
5722
5723 if (sched_feat_numa(NUMA))
5724 task_tick_numa(rq, curr);
5725
5726 update_rq_runnable_avg(rq, 1);
5727 }
5728
5729 /*
5730 * called on fork with the child task as argument from the parent's context
5731 * - child not yet on the tasklist
5732 * - preemption disabled
5733 */
5734 static void task_fork_fair(struct task_struct *p)
5735 {
5736 struct cfs_rq *cfs_rq;
5737 struct sched_entity *se = &p->se, *curr;
5738 int this_cpu = smp_processor_id();
5739 struct rq *rq = this_rq();
5740 unsigned long flags;
5741
5742 raw_spin_lock_irqsave(&rq->lock, flags);
5743
5744 update_rq_clock(rq);
5745
5746 cfs_rq = task_cfs_rq(current);
5747 curr = cfs_rq->curr;
5748
5749 if (unlikely(task_cpu(p) != this_cpu)) {
5750 rcu_read_lock();
5751 __set_task_cpu(p, this_cpu);
5752 rcu_read_unlock();
5753 }
5754
5755 update_curr(cfs_rq);
5756
5757 if (curr)
5758 se->vruntime = curr->vruntime;
5759 place_entity(cfs_rq, se, 1);
5760
5761 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5762 /*
5763 * Upon rescheduling, sched_class::put_prev_task() will place
5764 * 'current' within the tree based on its new key value.
5765 */
5766 swap(curr->vruntime, se->vruntime);
5767 resched_task(rq->curr);
5768 }
5769
5770 se->vruntime -= cfs_rq->min_vruntime;
5771
5772 raw_spin_unlock_irqrestore(&rq->lock, flags);
5773 }
5774
5775 /*
5776 * Priority of the task has changed. Check to see if we preempt
5777 * the current task.
5778 */
5779 static void
5780 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5781 {
5782 if (!p->se.on_rq)
5783 return;
5784
5785 /*
5786 * Reschedule if we are currently running on this runqueue and
5787 * our priority decreased, or if we are not currently running on
5788 * this runqueue and our priority is higher than the current's
5789 */
5790 if (rq->curr == p) {
5791 if (p->prio > oldprio)
5792 resched_task(rq->curr);
5793 } else
5794 check_preempt_curr(rq, p, 0);
5795 }
5796
5797 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5798 {
5799 struct sched_entity *se = &p->se;
5800 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5801
5802 /*
5803 * Ensure the task's vruntime is normalized, so that when its
5804 * switched back to the fair class the enqueue_entity(.flags=0) will
5805 * do the right thing.
5806 *
5807 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5808 * have normalized the vruntime, if it was !on_rq, then only when
5809 * the task is sleeping will it still have non-normalized vruntime.
5810 */
5811 if (!se->on_rq && p->state != TASK_RUNNING) {
5812 /*
5813 * Fix up our vruntime so that the current sleep doesn't
5814 * cause 'unlimited' sleep bonus.
5815 */
5816 place_entity(cfs_rq, se, 0);
5817 se->vruntime -= cfs_rq->min_vruntime;
5818 }
5819
5820 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5821 /*
5822 * Remove our load from contribution when we leave sched_fair
5823 * and ensure we don't carry in an old decay_count if we
5824 * switch back.
5825 */
5826 if (p->se.avg.decay_count) {
5827 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5828 __synchronize_entity_decay(&p->se);
5829 subtract_blocked_load_contrib(cfs_rq,
5830 p->se.avg.load_avg_contrib);
5831 }
5832 #endif
5833 }
5834
5835 /*
5836 * We switched to the sched_fair class.
5837 */
5838 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5839 {
5840 if (!p->se.on_rq)
5841 return;
5842
5843 /*
5844 * We were most likely switched from sched_rt, so
5845 * kick off the schedule if running, otherwise just see
5846 * if we can still preempt the current task.
5847 */
5848 if (rq->curr == p)
5849 resched_task(rq->curr);
5850 else
5851 check_preempt_curr(rq, p, 0);
5852 }
5853
5854 /* Account for a task changing its policy or group.
5855 *
5856 * This routine is mostly called to set cfs_rq->curr field when a task
5857 * migrates between groups/classes.
5858 */
5859 static void set_curr_task_fair(struct rq *rq)
5860 {
5861 struct sched_entity *se = &rq->curr->se;
5862
5863 for_each_sched_entity(se) {
5864 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5865
5866 set_next_entity(cfs_rq, se);
5867 /* ensure bandwidth has been allocated on our new cfs_rq */
5868 account_cfs_rq_runtime(cfs_rq, 0);
5869 }
5870 }
5871
5872 void init_cfs_rq(struct cfs_rq *cfs_rq)
5873 {
5874 cfs_rq->tasks_timeline = RB_ROOT;
5875 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5876 #ifndef CONFIG_64BIT
5877 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5878 #endif
5879 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5880 atomic64_set(&cfs_rq->decay_counter, 1);
5881 atomic64_set(&cfs_rq->removed_load, 0);
5882 #endif
5883 }
5884
5885 #ifdef CONFIG_FAIR_GROUP_SCHED
5886 static void task_move_group_fair(struct task_struct *p, int on_rq)
5887 {
5888 struct cfs_rq *cfs_rq;
5889 /*
5890 * If the task was not on the rq at the time of this cgroup movement
5891 * it must have been asleep, sleeping tasks keep their ->vruntime
5892 * absolute on their old rq until wakeup (needed for the fair sleeper
5893 * bonus in place_entity()).
5894 *
5895 * If it was on the rq, we've just 'preempted' it, which does convert
5896 * ->vruntime to a relative base.
5897 *
5898 * Make sure both cases convert their relative position when migrating
5899 * to another cgroup's rq. This does somewhat interfere with the
5900 * fair sleeper stuff for the first placement, but who cares.
5901 */
5902 /*
5903 * When !on_rq, vruntime of the task has usually NOT been normalized.
5904 * But there are some cases where it has already been normalized:
5905 *
5906 * - Moving a forked child which is waiting for being woken up by
5907 * wake_up_new_task().
5908 * - Moving a task which has been woken up by try_to_wake_up() and
5909 * waiting for actually being woken up by sched_ttwu_pending().
5910 *
5911 * To prevent boost or penalty in the new cfs_rq caused by delta
5912 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5913 */
5914 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5915 on_rq = 1;
5916
5917 if (!on_rq)
5918 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5919 set_task_rq(p, task_cpu(p));
5920 if (!on_rq) {
5921 cfs_rq = cfs_rq_of(&p->se);
5922 p->se.vruntime += cfs_rq->min_vruntime;
5923 #ifdef CONFIG_SMP
5924 /*
5925 * migrate_task_rq_fair() will have removed our previous
5926 * contribution, but we must synchronize for ongoing future
5927 * decay.
5928 */
5929 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5930 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5931 #endif
5932 }
5933 }
5934
5935 void free_fair_sched_group(struct task_group *tg)
5936 {
5937 int i;
5938
5939 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5940
5941 for_each_possible_cpu(i) {
5942 if (tg->cfs_rq)
5943 kfree(tg->cfs_rq[i]);
5944 if (tg->se)
5945 kfree(tg->se[i]);
5946 }
5947
5948 kfree(tg->cfs_rq);
5949 kfree(tg->se);
5950 }
5951
5952 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5953 {
5954 struct cfs_rq *cfs_rq;
5955 struct sched_entity *se;
5956 int i;
5957
5958 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5959 if (!tg->cfs_rq)
5960 goto err;
5961 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5962 if (!tg->se)
5963 goto err;
5964
5965 tg->shares = NICE_0_LOAD;
5966
5967 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5968
5969 for_each_possible_cpu(i) {
5970 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5971 GFP_KERNEL, cpu_to_node(i));
5972 if (!cfs_rq)
5973 goto err;
5974
5975 se = kzalloc_node(sizeof(struct sched_entity),
5976 GFP_KERNEL, cpu_to_node(i));
5977 if (!se)
5978 goto err_free_rq;
5979
5980 init_cfs_rq(cfs_rq);
5981 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5982 }
5983
5984 return 1;
5985
5986 err_free_rq:
5987 kfree(cfs_rq);
5988 err:
5989 return 0;
5990 }
5991
5992 void unregister_fair_sched_group(struct task_group *tg, int cpu)
5993 {
5994 struct rq *rq = cpu_rq(cpu);
5995 unsigned long flags;
5996
5997 /*
5998 * Only empty task groups can be destroyed; so we can speculatively
5999 * check on_list without danger of it being re-added.
6000 */
6001 if (!tg->cfs_rq[cpu]->on_list)
6002 return;
6003
6004 raw_spin_lock_irqsave(&rq->lock, flags);
6005 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6006 raw_spin_unlock_irqrestore(&rq->lock, flags);
6007 }
6008
6009 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6010 struct sched_entity *se, int cpu,
6011 struct sched_entity *parent)
6012 {
6013 struct rq *rq = cpu_rq(cpu);
6014
6015 cfs_rq->tg = tg;
6016 cfs_rq->rq = rq;
6017 init_cfs_rq_runtime(cfs_rq);
6018
6019 tg->cfs_rq[cpu] = cfs_rq;
6020 tg->se[cpu] = se;
6021
6022 /* se could be NULL for root_task_group */
6023 if (!se)
6024 return;
6025
6026 if (!parent)
6027 se->cfs_rq = &rq->cfs;
6028 else
6029 se->cfs_rq = parent->my_q;
6030
6031 se->my_q = cfs_rq;
6032 update_load_set(&se->load, 0);
6033 se->parent = parent;
6034 }
6035
6036 static DEFINE_MUTEX(shares_mutex);
6037
6038 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6039 {
6040 int i;
6041 unsigned long flags;
6042
6043 /*
6044 * We can't change the weight of the root cgroup.
6045 */
6046 if (!tg->se[0])
6047 return -EINVAL;
6048
6049 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6050
6051 mutex_lock(&shares_mutex);
6052 if (tg->shares == shares)
6053 goto done;
6054
6055 tg->shares = shares;
6056 for_each_possible_cpu(i) {
6057 struct rq *rq = cpu_rq(i);
6058 struct sched_entity *se;
6059
6060 se = tg->se[i];
6061 /* Propagate contribution to hierarchy */
6062 raw_spin_lock_irqsave(&rq->lock, flags);
6063 for_each_sched_entity(se)
6064 update_cfs_shares(group_cfs_rq(se));
6065 raw_spin_unlock_irqrestore(&rq->lock, flags);
6066 }
6067
6068 done:
6069 mutex_unlock(&shares_mutex);
6070 return 0;
6071 }
6072 #else /* CONFIG_FAIR_GROUP_SCHED */
6073
6074 void free_fair_sched_group(struct task_group *tg) { }
6075
6076 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6077 {
6078 return 1;
6079 }
6080
6081 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6082
6083 #endif /* CONFIG_FAIR_GROUP_SCHED */
6084
6085
6086 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6087 {
6088 struct sched_entity *se = &task->se;
6089 unsigned int rr_interval = 0;
6090
6091 /*
6092 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6093 * idle runqueue:
6094 */
6095 if (rq->cfs.load.weight)
6096 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6097
6098 return rr_interval;
6099 }
6100
6101 /*
6102 * All the scheduling class methods:
6103 */
6104 const struct sched_class fair_sched_class = {
6105 .next = &idle_sched_class,
6106 .enqueue_task = enqueue_task_fair,
6107 .dequeue_task = dequeue_task_fair,
6108 .yield_task = yield_task_fair,
6109 .yield_to_task = yield_to_task_fair,
6110
6111 .check_preempt_curr = check_preempt_wakeup,
6112
6113 .pick_next_task = pick_next_task_fair,
6114 .put_prev_task = put_prev_task_fair,
6115
6116 #ifdef CONFIG_SMP
6117 .select_task_rq = select_task_rq_fair,
6118 #ifdef CONFIG_FAIR_GROUP_SCHED
6119 .migrate_task_rq = migrate_task_rq_fair,
6120 #endif
6121 .rq_online = rq_online_fair,
6122 .rq_offline = rq_offline_fair,
6123
6124 .task_waking = task_waking_fair,
6125 #endif
6126
6127 .set_curr_task = set_curr_task_fair,
6128 .task_tick = task_tick_fair,
6129 .task_fork = task_fork_fair,
6130
6131 .prio_changed = prio_changed_fair,
6132 .switched_from = switched_from_fair,
6133 .switched_to = switched_to_fair,
6134
6135 .get_rr_interval = get_rr_interval_fair,
6136
6137 #ifdef CONFIG_FAIR_GROUP_SCHED
6138 .task_move_group = task_move_group_fair,
6139 #endif
6140 };
6141
6142 #ifdef CONFIG_SCHED_DEBUG
6143 void print_cfs_stats(struct seq_file *m, int cpu)
6144 {
6145 struct cfs_rq *cfs_rq;
6146
6147 rcu_read_lock();
6148 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6149 print_cfs_rq(m, cpu, cfs_rq);
6150 rcu_read_unlock();
6151 }
6152 #endif
6153
6154 __init void init_sched_fair_class(void)
6155 {
6156 #ifdef CONFIG_SMP
6157 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6158
6159 #ifdef CONFIG_NO_HZ_COMMON
6160 nohz.next_balance = jiffies;
6161 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6162 cpu_notifier(sched_ilb_notifier, 0);
6163 #endif
6164 #endif /* SMP */
6165
6166 }
This page took 0.163151 seconds and 5 git commands to generate.