iommu/exynos: Fix checkpatch warning
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #define WMULT_CONST (~0U)
182 #define WMULT_SHIFT 32
183
184 static void __update_inv_weight(struct load_weight *lw)
185 {
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199 }
200
201 /*
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214 {
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
217
218 __update_inv_weight(lw);
219
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
225 }
226
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
229
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
236 }
237
238
239 const struct sched_class fair_sched_class;
240
241 /**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249 {
250 return cfs_rq->rq;
251 }
252
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se) (!se->my_q)
255
256 static inline struct task_struct *task_of(struct sched_entity *se)
257 {
258 #ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260 #endif
261 return container_of(se, struct task_struct, se);
262 }
263
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 return p->se.cfs_rq;
271 }
272
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 return se->cfs_rq;
277 }
278
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 return grp->my_q;
283 }
284
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
287
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 {
290 if (!cfs_rq->on_list) {
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 }
305
306 cfs_rq->on_list = 1;
307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0);
309 }
310 }
311
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318 }
319
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline struct cfs_rq *
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
327 {
328 if (se->cfs_rq == pse->cfs_rq)
329 return se->cfs_rq;
330
331 return NULL;
332 }
333
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
335 {
336 return se->parent;
337 }
338
339 static void
340 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341 {
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369 }
370
371 #else /* !CONFIG_FAIR_GROUP_SCHED */
372
373 static inline struct task_struct *task_of(struct sched_entity *se)
374 {
375 return container_of(se, struct task_struct, se);
376 }
377
378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379 {
380 return container_of(cfs_rq, struct rq, cfs);
381 }
382
383 #define entity_is_task(se) 1
384
385 #define for_each_sched_entity(se) \
386 for (; se; se = NULL)
387
388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389 {
390 return &task_rq(p)->cfs;
391 }
392
393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394 {
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399 }
400
401 /* runqueue "owned" by this group */
402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403 {
404 return NULL;
405 }
406
407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412 {
413 }
414
415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
418 static inline struct sched_entity *parent_entity(struct sched_entity *se)
419 {
420 return NULL;
421 }
422
423 static inline void
424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 }
427
428 #endif /* CONFIG_FAIR_GROUP_SCHED */
429
430 static __always_inline
431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432
433 /**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438 {
439 s64 delta = (s64)(vruntime - max_vruntime);
440 if (delta > 0)
441 max_vruntime = vruntime;
442
443 return max_vruntime;
444 }
445
446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
447 {
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453 }
454
455 static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457 {
458 return (s64)(a->vruntime - b->vruntime) < 0;
459 }
460
461 static void update_min_vruntime(struct cfs_rq *cfs_rq)
462 {
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
473 if (!cfs_rq->curr)
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
479 /* ensure we never gain time by being placed backwards. */
480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 #ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484 #endif
485 }
486
487 /*
488 * Enqueue an entity into the rb-tree:
489 */
490 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 {
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
507 if (entity_before(se, entry)) {
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
519 if (leftmost)
520 cfs_rq->rb_leftmost = &se->run_node;
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525
526 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527 {
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
533 }
534
535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
536 }
537
538 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539 {
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
546 }
547
548 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549 {
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556 }
557
558 #ifdef CONFIG_SCHED_DEBUG
559 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560 {
561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562
563 if (!last)
564 return NULL;
565
566 return rb_entry(last, struct sched_entity, run_node);
567 }
568
569 /**************************************************************
570 * Scheduling class statistics methods:
571 */
572
573 int sched_proc_update_handler(struct ctl_table *table, int write,
574 void __user *buffer, size_t *lenp,
575 loff_t *ppos)
576 {
577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578 int factor = get_update_sysctl_factor();
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
586 #define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
591 #undef WRT_SYSCTL
592
593 return 0;
594 }
595 #endif
596
597 /*
598 * delta /= w
599 */
600 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601 {
602 if (unlikely(se->load.weight != NICE_0_LOAD))
603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604
605 return delta;
606 }
607
608 /*
609 * The idea is to set a period in which each task runs once.
610 *
611 * When there are too many tasks (sched_nr_latency) we have to stretch
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
616 static u64 __sched_period(unsigned long nr_running)
617 {
618 u64 period = sysctl_sched_latency;
619 unsigned long nr_latency = sched_nr_latency;
620
621 if (unlikely(nr_running > nr_latency)) {
622 period = sysctl_sched_min_granularity;
623 period *= nr_running;
624 }
625
626 return period;
627 }
628
629 /*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
633 * s = p*P[w/rw]
634 */
635 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 {
637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638
639 for_each_sched_entity(se) {
640 struct load_weight *load;
641 struct load_weight lw;
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
645
646 if (unlikely(!se->on_rq)) {
647 lw = cfs_rq->load;
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
652 slice = __calc_delta(slice, se->load.weight, load);
653 }
654 return slice;
655 }
656
657 /*
658 * We calculate the vruntime slice of a to-be-inserted task.
659 *
660 * vs = s/w
661 */
662 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
663 {
664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
665 }
666
667 #ifdef CONFIG_SMP
668 static unsigned long task_h_load(struct task_struct *p);
669
670 static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672 /* Give new task start runnable values to heavy its load in infant time */
673 void init_task_runnable_average(struct task_struct *p)
674 {
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682 }
683 #else
684 void init_task_runnable_average(struct task_struct *p)
685 {
686 }
687 #endif
688
689 /*
690 * Update the current task's runtime statistics.
691 */
692 static void update_curr(struct cfs_rq *cfs_rq)
693 {
694 struct sched_entity *curr = cfs_rq->curr;
695 u64 now = rq_clock_task(rq_of(cfs_rq));
696 u64 delta_exec;
697
698 if (unlikely(!curr))
699 return;
700
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
703 return;
704
705 curr->exec_start = now;
706
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720 cpuacct_charge(curtask, delta_exec);
721 account_group_exec_runtime(curtask, delta_exec);
722 }
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
725 }
726
727 static inline void
728 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731 }
732
733 /*
734 * Task is being enqueued - update stats:
735 */
736 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
742 if (se != cfs_rq->curr)
743 update_stats_wait_start(cfs_rq, se);
744 }
745
746 static void
747 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748 {
749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 #ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 }
759 #endif
760 schedstat_set(se->statistics.wait_start, 0);
761 }
762
763 static inline void
764 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 {
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
770 if (se != cfs_rq->curr)
771 update_stats_wait_end(cfs_rq, se);
772 }
773
774 /*
775 * We are picking a new current task - update its stats:
776 */
777 static inline void
778 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 /*
781 * We are starting a new run period:
782 */
783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
784 }
785
786 /**************************************************
787 * Scheduling class queueing methods:
788 */
789
790 #ifdef CONFIG_NUMA_BALANCING
791 /*
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
795 */
796 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798
799 /* Portion of address space to scan in MB */
800 unsigned int sysctl_numa_balancing_scan_size = 256;
801
802 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803 unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
805 static unsigned int task_nr_scan_windows(struct task_struct *p)
806 {
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822 }
823
824 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825 #define MAX_SCAN_WINDOW 2560
826
827 static unsigned int task_scan_min(struct task_struct *p)
828 {
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838 }
839
840 static unsigned int task_scan_max(struct task_struct *p)
841 {
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848 }
849
850 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851 {
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854 }
855
856 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857 {
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860 }
861
862 struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
867 pid_t gid;
868 struct list_head task_list;
869
870 struct rcu_head rcu;
871 nodemask_t active_nodes;
872 unsigned long total_faults;
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
878 unsigned long *faults_cpu;
879 unsigned long faults[0];
880 };
881
882 /* Shared or private faults. */
883 #define NR_NUMA_HINT_FAULT_TYPES 2
884
885 /* Memory and CPU locality */
886 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888 /* Averaged statistics, and temporary buffers. */
889 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
891 pid_t task_numa_group_id(struct task_struct *p)
892 {
893 return p->numa_group ? p->numa_group->gid : 0;
894 }
895
896 static inline int task_faults_idx(int nid, int priv)
897 {
898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899 }
900
901 static inline unsigned long task_faults(struct task_struct *p, int nid)
902 {
903 if (!p->numa_faults_memory)
904 return 0;
905
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
908 }
909
910 static inline unsigned long group_faults(struct task_struct *p, int nid)
911 {
912 if (!p->numa_group)
913 return 0;
914
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
917 }
918
919 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920 {
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923 }
924
925 /*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931 static inline unsigned long task_weight(struct task_struct *p, int nid)
932 {
933 unsigned long total_faults;
934
935 if (!p->numa_faults_memory)
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944 }
945
946 static inline unsigned long group_weight(struct task_struct *p, int nid)
947 {
948 if (!p->numa_group || !p->numa_group->total_faults)
949 return 0;
950
951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952 }
953
954 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956 {
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015 }
1016
1017 static unsigned long weighted_cpuload(const int cpu);
1018 static unsigned long source_load(int cpu, int type);
1019 static unsigned long target_load(int cpu, int type);
1020 static unsigned long power_of(int cpu);
1021 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
1023 /* Cached statistics for all CPUs within a node */
1024 struct numa_stats {
1025 unsigned long nr_running;
1026 unsigned long load;
1027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity;
1033 int has_capacity;
1034 };
1035
1036 /*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039 static void update_numa_stats(struct numa_stats *ns, int nid)
1040 {
1041 int cpu, cpus = 0;
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu);
1050
1051 cpus++;
1052 }
1053
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 * and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1068 }
1069
1070 struct task_numa_env {
1071 struct task_struct *p;
1072
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
1075
1076 struct numa_stats src_stats, dst_stats;
1077
1078 int imbalance_pct;
1079
1080 struct task_struct *best_task;
1081 long best_imp;
1082 int best_cpu;
1083 };
1084
1085 static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087 {
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096 }
1097
1098 /*
1099 * This checks if the overall compute and NUMA accesses of the system would
1100 * be improved if the source tasks was migrated to the target dst_cpu taking
1101 * into account that it might be best if task running on the dst_cpu should
1102 * be exchanged with the source task
1103 */
1104 static void task_numa_compare(struct task_numa_env *env,
1105 long taskimp, long groupimp)
1106 {
1107 struct rq *src_rq = cpu_rq(env->src_cpu);
1108 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1109 struct task_struct *cur;
1110 long dst_load, src_load;
1111 long load;
1112 long imp = (groupimp > 0) ? groupimp : taskimp;
1113
1114 rcu_read_lock();
1115 cur = ACCESS_ONCE(dst_rq->curr);
1116 if (cur->pid == 0) /* idle */
1117 cur = NULL;
1118
1119 /*
1120 * "imp" is the fault differential for the source task between the
1121 * source and destination node. Calculate the total differential for
1122 * the source task and potential destination task. The more negative
1123 * the value is, the more rmeote accesses that would be expected to
1124 * be incurred if the tasks were swapped.
1125 */
1126 if (cur) {
1127 /* Skip this swap candidate if cannot move to the source cpu */
1128 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1129 goto unlock;
1130
1131 /*
1132 * If dst and source tasks are in the same NUMA group, or not
1133 * in any group then look only at task weights.
1134 */
1135 if (cur->numa_group == env->p->numa_group) {
1136 imp = taskimp + task_weight(cur, env->src_nid) -
1137 task_weight(cur, env->dst_nid);
1138 /*
1139 * Add some hysteresis to prevent swapping the
1140 * tasks within a group over tiny differences.
1141 */
1142 if (cur->numa_group)
1143 imp -= imp/16;
1144 } else {
1145 /*
1146 * Compare the group weights. If a task is all by
1147 * itself (not part of a group), use the task weight
1148 * instead.
1149 */
1150 if (env->p->numa_group)
1151 imp = groupimp;
1152 else
1153 imp = taskimp;
1154
1155 if (cur->numa_group)
1156 imp += group_weight(cur, env->src_nid) -
1157 group_weight(cur, env->dst_nid);
1158 else
1159 imp += task_weight(cur, env->src_nid) -
1160 task_weight(cur, env->dst_nid);
1161 }
1162 }
1163
1164 if (imp < env->best_imp)
1165 goto unlock;
1166
1167 if (!cur) {
1168 /* Is there capacity at our destination? */
1169 if (env->src_stats.has_capacity &&
1170 !env->dst_stats.has_capacity)
1171 goto unlock;
1172
1173 goto balance;
1174 }
1175
1176 /* Balance doesn't matter much if we're running a task per cpu */
1177 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1178 goto assign;
1179
1180 /*
1181 * In the overloaded case, try and keep the load balanced.
1182 */
1183 balance:
1184 dst_load = env->dst_stats.load;
1185 src_load = env->src_stats.load;
1186
1187 /* XXX missing power terms */
1188 load = task_h_load(env->p);
1189 dst_load += load;
1190 src_load -= load;
1191
1192 if (cur) {
1193 load = task_h_load(cur);
1194 dst_load -= load;
1195 src_load += load;
1196 }
1197
1198 /* make src_load the smaller */
1199 if (dst_load < src_load)
1200 swap(dst_load, src_load);
1201
1202 if (src_load * env->imbalance_pct < dst_load * 100)
1203 goto unlock;
1204
1205 assign:
1206 task_numa_assign(env, cur, imp);
1207 unlock:
1208 rcu_read_unlock();
1209 }
1210
1211 static void task_numa_find_cpu(struct task_numa_env *env,
1212 long taskimp, long groupimp)
1213 {
1214 int cpu;
1215
1216 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217 /* Skip this CPU if the source task cannot migrate */
1218 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1219 continue;
1220
1221 env->dst_cpu = cpu;
1222 task_numa_compare(env, taskimp, groupimp);
1223 }
1224 }
1225
1226 static int task_numa_migrate(struct task_struct *p)
1227 {
1228 struct task_numa_env env = {
1229 .p = p,
1230
1231 .src_cpu = task_cpu(p),
1232 .src_nid = task_node(p),
1233
1234 .imbalance_pct = 112,
1235
1236 .best_task = NULL,
1237 .best_imp = 0,
1238 .best_cpu = -1
1239 };
1240 struct sched_domain *sd;
1241 unsigned long taskweight, groupweight;
1242 int nid, ret;
1243 long taskimp, groupimp;
1244
1245 /*
1246 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247 * imbalance and would be the first to start moving tasks about.
1248 *
1249 * And we want to avoid any moving of tasks about, as that would create
1250 * random movement of tasks -- counter the numa conditions we're trying
1251 * to satisfy here.
1252 */
1253 rcu_read_lock();
1254 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1255 if (sd)
1256 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1257 rcu_read_unlock();
1258
1259 /*
1260 * Cpusets can break the scheduler domain tree into smaller
1261 * balance domains, some of which do not cross NUMA boundaries.
1262 * Tasks that are "trapped" in such domains cannot be migrated
1263 * elsewhere, so there is no point in (re)trying.
1264 */
1265 if (unlikely(!sd)) {
1266 p->numa_preferred_nid = task_node(p);
1267 return -EINVAL;
1268 }
1269
1270 taskweight = task_weight(p, env.src_nid);
1271 groupweight = group_weight(p, env.src_nid);
1272 update_numa_stats(&env.src_stats, env.src_nid);
1273 env.dst_nid = p->numa_preferred_nid;
1274 taskimp = task_weight(p, env.dst_nid) - taskweight;
1275 groupimp = group_weight(p, env.dst_nid) - groupweight;
1276 update_numa_stats(&env.dst_stats, env.dst_nid);
1277
1278 /* If the preferred nid has capacity, try to use it. */
1279 if (env.dst_stats.has_capacity)
1280 task_numa_find_cpu(&env, taskimp, groupimp);
1281
1282 /* No space available on the preferred nid. Look elsewhere. */
1283 if (env.best_cpu == -1) {
1284 for_each_online_node(nid) {
1285 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1286 continue;
1287
1288 /* Only consider nodes where both task and groups benefit */
1289 taskimp = task_weight(p, nid) - taskweight;
1290 groupimp = group_weight(p, nid) - groupweight;
1291 if (taskimp < 0 && groupimp < 0)
1292 continue;
1293
1294 env.dst_nid = nid;
1295 update_numa_stats(&env.dst_stats, env.dst_nid);
1296 task_numa_find_cpu(&env, taskimp, groupimp);
1297 }
1298 }
1299
1300 /* No better CPU than the current one was found. */
1301 if (env.best_cpu == -1)
1302 return -EAGAIN;
1303
1304 sched_setnuma(p, env.dst_nid);
1305
1306 /*
1307 * Reset the scan period if the task is being rescheduled on an
1308 * alternative node to recheck if the tasks is now properly placed.
1309 */
1310 p->numa_scan_period = task_scan_min(p);
1311
1312 if (env.best_task == NULL) {
1313 ret = migrate_task_to(p, env.best_cpu);
1314 if (ret != 0)
1315 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1316 return ret;
1317 }
1318
1319 ret = migrate_swap(p, env.best_task);
1320 if (ret != 0)
1321 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1322 put_task_struct(env.best_task);
1323 return ret;
1324 }
1325
1326 /* Attempt to migrate a task to a CPU on the preferred node. */
1327 static void numa_migrate_preferred(struct task_struct *p)
1328 {
1329 /* This task has no NUMA fault statistics yet */
1330 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1331 return;
1332
1333 /* Periodically retry migrating the task to the preferred node */
1334 p->numa_migrate_retry = jiffies + HZ;
1335
1336 /* Success if task is already running on preferred CPU */
1337 if (task_node(p) == p->numa_preferred_nid)
1338 return;
1339
1340 /* Otherwise, try migrate to a CPU on the preferred node */
1341 task_numa_migrate(p);
1342 }
1343
1344 /*
1345 * Find the nodes on which the workload is actively running. We do this by
1346 * tracking the nodes from which NUMA hinting faults are triggered. This can
1347 * be different from the set of nodes where the workload's memory is currently
1348 * located.
1349 *
1350 * The bitmask is used to make smarter decisions on when to do NUMA page
1351 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1352 * are added when they cause over 6/16 of the maximum number of faults, but
1353 * only removed when they drop below 3/16.
1354 */
1355 static void update_numa_active_node_mask(struct numa_group *numa_group)
1356 {
1357 unsigned long faults, max_faults = 0;
1358 int nid;
1359
1360 for_each_online_node(nid) {
1361 faults = group_faults_cpu(numa_group, nid);
1362 if (faults > max_faults)
1363 max_faults = faults;
1364 }
1365
1366 for_each_online_node(nid) {
1367 faults = group_faults_cpu(numa_group, nid);
1368 if (!node_isset(nid, numa_group->active_nodes)) {
1369 if (faults > max_faults * 6 / 16)
1370 node_set(nid, numa_group->active_nodes);
1371 } else if (faults < max_faults * 3 / 16)
1372 node_clear(nid, numa_group->active_nodes);
1373 }
1374 }
1375
1376 /*
1377 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1378 * increments. The more local the fault statistics are, the higher the scan
1379 * period will be for the next scan window. If local/remote ratio is below
1380 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1381 * scan period will decrease
1382 */
1383 #define NUMA_PERIOD_SLOTS 10
1384 #define NUMA_PERIOD_THRESHOLD 3
1385
1386 /*
1387 * Increase the scan period (slow down scanning) if the majority of
1388 * our memory is already on our local node, or if the majority of
1389 * the page accesses are shared with other processes.
1390 * Otherwise, decrease the scan period.
1391 */
1392 static void update_task_scan_period(struct task_struct *p,
1393 unsigned long shared, unsigned long private)
1394 {
1395 unsigned int period_slot;
1396 int ratio;
1397 int diff;
1398
1399 unsigned long remote = p->numa_faults_locality[0];
1400 unsigned long local = p->numa_faults_locality[1];
1401
1402 /*
1403 * If there were no record hinting faults then either the task is
1404 * completely idle or all activity is areas that are not of interest
1405 * to automatic numa balancing. Scan slower
1406 */
1407 if (local + shared == 0) {
1408 p->numa_scan_period = min(p->numa_scan_period_max,
1409 p->numa_scan_period << 1);
1410
1411 p->mm->numa_next_scan = jiffies +
1412 msecs_to_jiffies(p->numa_scan_period);
1413
1414 return;
1415 }
1416
1417 /*
1418 * Prepare to scale scan period relative to the current period.
1419 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1420 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1421 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1422 */
1423 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1424 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1425 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1426 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1427 if (!slot)
1428 slot = 1;
1429 diff = slot * period_slot;
1430 } else {
1431 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1432
1433 /*
1434 * Scale scan rate increases based on sharing. There is an
1435 * inverse relationship between the degree of sharing and
1436 * the adjustment made to the scanning period. Broadly
1437 * speaking the intent is that there is little point
1438 * scanning faster if shared accesses dominate as it may
1439 * simply bounce migrations uselessly
1440 */
1441 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1442 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1443 }
1444
1445 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1446 task_scan_min(p), task_scan_max(p));
1447 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1448 }
1449
1450 /*
1451 * Get the fraction of time the task has been running since the last
1452 * NUMA placement cycle. The scheduler keeps similar statistics, but
1453 * decays those on a 32ms period, which is orders of magnitude off
1454 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1455 * stats only if the task is so new there are no NUMA statistics yet.
1456 */
1457 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1458 {
1459 u64 runtime, delta, now;
1460 /* Use the start of this time slice to avoid calculations. */
1461 now = p->se.exec_start;
1462 runtime = p->se.sum_exec_runtime;
1463
1464 if (p->last_task_numa_placement) {
1465 delta = runtime - p->last_sum_exec_runtime;
1466 *period = now - p->last_task_numa_placement;
1467 } else {
1468 delta = p->se.avg.runnable_avg_sum;
1469 *period = p->se.avg.runnable_avg_period;
1470 }
1471
1472 p->last_sum_exec_runtime = runtime;
1473 p->last_task_numa_placement = now;
1474
1475 return delta;
1476 }
1477
1478 static void task_numa_placement(struct task_struct *p)
1479 {
1480 int seq, nid, max_nid = -1, max_group_nid = -1;
1481 unsigned long max_faults = 0, max_group_faults = 0;
1482 unsigned long fault_types[2] = { 0, 0 };
1483 unsigned long total_faults;
1484 u64 runtime, period;
1485 spinlock_t *group_lock = NULL;
1486
1487 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1488 if (p->numa_scan_seq == seq)
1489 return;
1490 p->numa_scan_seq = seq;
1491 p->numa_scan_period_max = task_scan_max(p);
1492
1493 total_faults = p->numa_faults_locality[0] +
1494 p->numa_faults_locality[1];
1495 runtime = numa_get_avg_runtime(p, &period);
1496
1497 /* If the task is part of a group prevent parallel updates to group stats */
1498 if (p->numa_group) {
1499 group_lock = &p->numa_group->lock;
1500 spin_lock_irq(group_lock);
1501 }
1502
1503 /* Find the node with the highest number of faults */
1504 for_each_online_node(nid) {
1505 unsigned long faults = 0, group_faults = 0;
1506 int priv, i;
1507
1508 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1509 long diff, f_diff, f_weight;
1510
1511 i = task_faults_idx(nid, priv);
1512
1513 /* Decay existing window, copy faults since last scan */
1514 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1515 fault_types[priv] += p->numa_faults_buffer_memory[i];
1516 p->numa_faults_buffer_memory[i] = 0;
1517
1518 /*
1519 * Normalize the faults_from, so all tasks in a group
1520 * count according to CPU use, instead of by the raw
1521 * number of faults. Tasks with little runtime have
1522 * little over-all impact on throughput, and thus their
1523 * faults are less important.
1524 */
1525 f_weight = div64_u64(runtime << 16, period + 1);
1526 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1527 (total_faults + 1);
1528 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1529 p->numa_faults_buffer_cpu[i] = 0;
1530
1531 p->numa_faults_memory[i] += diff;
1532 p->numa_faults_cpu[i] += f_diff;
1533 faults += p->numa_faults_memory[i];
1534 p->total_numa_faults += diff;
1535 if (p->numa_group) {
1536 /* safe because we can only change our own group */
1537 p->numa_group->faults[i] += diff;
1538 p->numa_group->faults_cpu[i] += f_diff;
1539 p->numa_group->total_faults += diff;
1540 group_faults += p->numa_group->faults[i];
1541 }
1542 }
1543
1544 if (faults > max_faults) {
1545 max_faults = faults;
1546 max_nid = nid;
1547 }
1548
1549 if (group_faults > max_group_faults) {
1550 max_group_faults = group_faults;
1551 max_group_nid = nid;
1552 }
1553 }
1554
1555 update_task_scan_period(p, fault_types[0], fault_types[1]);
1556
1557 if (p->numa_group) {
1558 update_numa_active_node_mask(p->numa_group);
1559 /*
1560 * If the preferred task and group nids are different,
1561 * iterate over the nodes again to find the best place.
1562 */
1563 if (max_nid != max_group_nid) {
1564 unsigned long weight, max_weight = 0;
1565
1566 for_each_online_node(nid) {
1567 weight = task_weight(p, nid) + group_weight(p, nid);
1568 if (weight > max_weight) {
1569 max_weight = weight;
1570 max_nid = nid;
1571 }
1572 }
1573 }
1574
1575 spin_unlock_irq(group_lock);
1576 }
1577
1578 /* Preferred node as the node with the most faults */
1579 if (max_faults && max_nid != p->numa_preferred_nid) {
1580 /* Update the preferred nid and migrate task if possible */
1581 sched_setnuma(p, max_nid);
1582 numa_migrate_preferred(p);
1583 }
1584 }
1585
1586 static inline int get_numa_group(struct numa_group *grp)
1587 {
1588 return atomic_inc_not_zero(&grp->refcount);
1589 }
1590
1591 static inline void put_numa_group(struct numa_group *grp)
1592 {
1593 if (atomic_dec_and_test(&grp->refcount))
1594 kfree_rcu(grp, rcu);
1595 }
1596
1597 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1598 int *priv)
1599 {
1600 struct numa_group *grp, *my_grp;
1601 struct task_struct *tsk;
1602 bool join = false;
1603 int cpu = cpupid_to_cpu(cpupid);
1604 int i;
1605
1606 if (unlikely(!p->numa_group)) {
1607 unsigned int size = sizeof(struct numa_group) +
1608 4*nr_node_ids*sizeof(unsigned long);
1609
1610 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1611 if (!grp)
1612 return;
1613
1614 atomic_set(&grp->refcount, 1);
1615 spin_lock_init(&grp->lock);
1616 INIT_LIST_HEAD(&grp->task_list);
1617 grp->gid = p->pid;
1618 /* Second half of the array tracks nids where faults happen */
1619 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1620 nr_node_ids;
1621
1622 node_set(task_node(current), grp->active_nodes);
1623
1624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1625 grp->faults[i] = p->numa_faults_memory[i];
1626
1627 grp->total_faults = p->total_numa_faults;
1628
1629 list_add(&p->numa_entry, &grp->task_list);
1630 grp->nr_tasks++;
1631 rcu_assign_pointer(p->numa_group, grp);
1632 }
1633
1634 rcu_read_lock();
1635 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1636
1637 if (!cpupid_match_pid(tsk, cpupid))
1638 goto no_join;
1639
1640 grp = rcu_dereference(tsk->numa_group);
1641 if (!grp)
1642 goto no_join;
1643
1644 my_grp = p->numa_group;
1645 if (grp == my_grp)
1646 goto no_join;
1647
1648 /*
1649 * Only join the other group if its bigger; if we're the bigger group,
1650 * the other task will join us.
1651 */
1652 if (my_grp->nr_tasks > grp->nr_tasks)
1653 goto no_join;
1654
1655 /*
1656 * Tie-break on the grp address.
1657 */
1658 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1659 goto no_join;
1660
1661 /* Always join threads in the same process. */
1662 if (tsk->mm == current->mm)
1663 join = true;
1664
1665 /* Simple filter to avoid false positives due to PID collisions */
1666 if (flags & TNF_SHARED)
1667 join = true;
1668
1669 /* Update priv based on whether false sharing was detected */
1670 *priv = !join;
1671
1672 if (join && !get_numa_group(grp))
1673 goto no_join;
1674
1675 rcu_read_unlock();
1676
1677 if (!join)
1678 return;
1679
1680 BUG_ON(irqs_disabled());
1681 double_lock_irq(&my_grp->lock, &grp->lock);
1682
1683 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1684 my_grp->faults[i] -= p->numa_faults_memory[i];
1685 grp->faults[i] += p->numa_faults_memory[i];
1686 }
1687 my_grp->total_faults -= p->total_numa_faults;
1688 grp->total_faults += p->total_numa_faults;
1689
1690 list_move(&p->numa_entry, &grp->task_list);
1691 my_grp->nr_tasks--;
1692 grp->nr_tasks++;
1693
1694 spin_unlock(&my_grp->lock);
1695 spin_unlock_irq(&grp->lock);
1696
1697 rcu_assign_pointer(p->numa_group, grp);
1698
1699 put_numa_group(my_grp);
1700 return;
1701
1702 no_join:
1703 rcu_read_unlock();
1704 return;
1705 }
1706
1707 void task_numa_free(struct task_struct *p)
1708 {
1709 struct numa_group *grp = p->numa_group;
1710 int i;
1711 void *numa_faults = p->numa_faults_memory;
1712
1713 if (grp) {
1714 spin_lock_irq(&grp->lock);
1715 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1716 grp->faults[i] -= p->numa_faults_memory[i];
1717 grp->total_faults -= p->total_numa_faults;
1718
1719 list_del(&p->numa_entry);
1720 grp->nr_tasks--;
1721 spin_unlock_irq(&grp->lock);
1722 rcu_assign_pointer(p->numa_group, NULL);
1723 put_numa_group(grp);
1724 }
1725
1726 p->numa_faults_memory = NULL;
1727 p->numa_faults_buffer_memory = NULL;
1728 p->numa_faults_cpu= NULL;
1729 p->numa_faults_buffer_cpu = NULL;
1730 kfree(numa_faults);
1731 }
1732
1733 /*
1734 * Got a PROT_NONE fault for a page on @node.
1735 */
1736 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1737 {
1738 struct task_struct *p = current;
1739 bool migrated = flags & TNF_MIGRATED;
1740 int cpu_node = task_node(current);
1741 int priv;
1742
1743 if (!numabalancing_enabled)
1744 return;
1745
1746 /* for example, ksmd faulting in a user's mm */
1747 if (!p->mm)
1748 return;
1749
1750 /* Do not worry about placement if exiting */
1751 if (p->state == TASK_DEAD)
1752 return;
1753
1754 /* Allocate buffer to track faults on a per-node basis */
1755 if (unlikely(!p->numa_faults_memory)) {
1756 int size = sizeof(*p->numa_faults_memory) *
1757 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1758
1759 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1760 if (!p->numa_faults_memory)
1761 return;
1762
1763 BUG_ON(p->numa_faults_buffer_memory);
1764 /*
1765 * The averaged statistics, shared & private, memory & cpu,
1766 * occupy the first half of the array. The second half of the
1767 * array is for current counters, which are averaged into the
1768 * first set by task_numa_placement.
1769 */
1770 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1771 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1772 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1773 p->total_numa_faults = 0;
1774 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1775 }
1776
1777 /*
1778 * First accesses are treated as private, otherwise consider accesses
1779 * to be private if the accessing pid has not changed
1780 */
1781 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1782 priv = 1;
1783 } else {
1784 priv = cpupid_match_pid(p, last_cpupid);
1785 if (!priv && !(flags & TNF_NO_GROUP))
1786 task_numa_group(p, last_cpupid, flags, &priv);
1787 }
1788
1789 task_numa_placement(p);
1790
1791 /*
1792 * Retry task to preferred node migration periodically, in case it
1793 * case it previously failed, or the scheduler moved us.
1794 */
1795 if (time_after(jiffies, p->numa_migrate_retry))
1796 numa_migrate_preferred(p);
1797
1798 if (migrated)
1799 p->numa_pages_migrated += pages;
1800
1801 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1802 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1803 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1804 }
1805
1806 static void reset_ptenuma_scan(struct task_struct *p)
1807 {
1808 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1809 p->mm->numa_scan_offset = 0;
1810 }
1811
1812 /*
1813 * The expensive part of numa migration is done from task_work context.
1814 * Triggered from task_tick_numa().
1815 */
1816 void task_numa_work(struct callback_head *work)
1817 {
1818 unsigned long migrate, next_scan, now = jiffies;
1819 struct task_struct *p = current;
1820 struct mm_struct *mm = p->mm;
1821 struct vm_area_struct *vma;
1822 unsigned long start, end;
1823 unsigned long nr_pte_updates = 0;
1824 long pages;
1825
1826 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1827
1828 work->next = work; /* protect against double add */
1829 /*
1830 * Who cares about NUMA placement when they're dying.
1831 *
1832 * NOTE: make sure not to dereference p->mm before this check,
1833 * exit_task_work() happens _after_ exit_mm() so we could be called
1834 * without p->mm even though we still had it when we enqueued this
1835 * work.
1836 */
1837 if (p->flags & PF_EXITING)
1838 return;
1839
1840 if (!mm->numa_next_scan) {
1841 mm->numa_next_scan = now +
1842 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1843 }
1844
1845 /*
1846 * Enforce maximal scan/migration frequency..
1847 */
1848 migrate = mm->numa_next_scan;
1849 if (time_before(now, migrate))
1850 return;
1851
1852 if (p->numa_scan_period == 0) {
1853 p->numa_scan_period_max = task_scan_max(p);
1854 p->numa_scan_period = task_scan_min(p);
1855 }
1856
1857 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1858 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1859 return;
1860
1861 /*
1862 * Delay this task enough that another task of this mm will likely win
1863 * the next time around.
1864 */
1865 p->node_stamp += 2 * TICK_NSEC;
1866
1867 start = mm->numa_scan_offset;
1868 pages = sysctl_numa_balancing_scan_size;
1869 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1870 if (!pages)
1871 return;
1872
1873 down_read(&mm->mmap_sem);
1874 vma = find_vma(mm, start);
1875 if (!vma) {
1876 reset_ptenuma_scan(p);
1877 start = 0;
1878 vma = mm->mmap;
1879 }
1880 for (; vma; vma = vma->vm_next) {
1881 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1882 continue;
1883
1884 /*
1885 * Shared library pages mapped by multiple processes are not
1886 * migrated as it is expected they are cache replicated. Avoid
1887 * hinting faults in read-only file-backed mappings or the vdso
1888 * as migrating the pages will be of marginal benefit.
1889 */
1890 if (!vma->vm_mm ||
1891 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1892 continue;
1893
1894 /*
1895 * Skip inaccessible VMAs to avoid any confusion between
1896 * PROT_NONE and NUMA hinting ptes
1897 */
1898 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1899 continue;
1900
1901 do {
1902 start = max(start, vma->vm_start);
1903 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1904 end = min(end, vma->vm_end);
1905 nr_pte_updates += change_prot_numa(vma, start, end);
1906
1907 /*
1908 * Scan sysctl_numa_balancing_scan_size but ensure that
1909 * at least one PTE is updated so that unused virtual
1910 * address space is quickly skipped.
1911 */
1912 if (nr_pte_updates)
1913 pages -= (end - start) >> PAGE_SHIFT;
1914
1915 start = end;
1916 if (pages <= 0)
1917 goto out;
1918
1919 cond_resched();
1920 } while (end != vma->vm_end);
1921 }
1922
1923 out:
1924 /*
1925 * It is possible to reach the end of the VMA list but the last few
1926 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1927 * would find the !migratable VMA on the next scan but not reset the
1928 * scanner to the start so check it now.
1929 */
1930 if (vma)
1931 mm->numa_scan_offset = start;
1932 else
1933 reset_ptenuma_scan(p);
1934 up_read(&mm->mmap_sem);
1935 }
1936
1937 /*
1938 * Drive the periodic memory faults..
1939 */
1940 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1941 {
1942 struct callback_head *work = &curr->numa_work;
1943 u64 period, now;
1944
1945 /*
1946 * We don't care about NUMA placement if we don't have memory.
1947 */
1948 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1949 return;
1950
1951 /*
1952 * Using runtime rather than walltime has the dual advantage that
1953 * we (mostly) drive the selection from busy threads and that the
1954 * task needs to have done some actual work before we bother with
1955 * NUMA placement.
1956 */
1957 now = curr->se.sum_exec_runtime;
1958 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1959
1960 if (now - curr->node_stamp > period) {
1961 if (!curr->node_stamp)
1962 curr->numa_scan_period = task_scan_min(curr);
1963 curr->node_stamp += period;
1964
1965 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1966 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1967 task_work_add(curr, work, true);
1968 }
1969 }
1970 }
1971 #else
1972 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1973 {
1974 }
1975
1976 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1977 {
1978 }
1979
1980 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1981 {
1982 }
1983 #endif /* CONFIG_NUMA_BALANCING */
1984
1985 static void
1986 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1987 {
1988 update_load_add(&cfs_rq->load, se->load.weight);
1989 if (!parent_entity(se))
1990 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1991 #ifdef CONFIG_SMP
1992 if (entity_is_task(se)) {
1993 struct rq *rq = rq_of(cfs_rq);
1994
1995 account_numa_enqueue(rq, task_of(se));
1996 list_add(&se->group_node, &rq->cfs_tasks);
1997 }
1998 #endif
1999 cfs_rq->nr_running++;
2000 }
2001
2002 static void
2003 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2004 {
2005 update_load_sub(&cfs_rq->load, se->load.weight);
2006 if (!parent_entity(se))
2007 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2008 if (entity_is_task(se)) {
2009 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2010 list_del_init(&se->group_node);
2011 }
2012 cfs_rq->nr_running--;
2013 }
2014
2015 #ifdef CONFIG_FAIR_GROUP_SCHED
2016 # ifdef CONFIG_SMP
2017 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2018 {
2019 long tg_weight;
2020
2021 /*
2022 * Use this CPU's actual weight instead of the last load_contribution
2023 * to gain a more accurate current total weight. See
2024 * update_cfs_rq_load_contribution().
2025 */
2026 tg_weight = atomic_long_read(&tg->load_avg);
2027 tg_weight -= cfs_rq->tg_load_contrib;
2028 tg_weight += cfs_rq->load.weight;
2029
2030 return tg_weight;
2031 }
2032
2033 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2034 {
2035 long tg_weight, load, shares;
2036
2037 tg_weight = calc_tg_weight(tg, cfs_rq);
2038 load = cfs_rq->load.weight;
2039
2040 shares = (tg->shares * load);
2041 if (tg_weight)
2042 shares /= tg_weight;
2043
2044 if (shares < MIN_SHARES)
2045 shares = MIN_SHARES;
2046 if (shares > tg->shares)
2047 shares = tg->shares;
2048
2049 return shares;
2050 }
2051 # else /* CONFIG_SMP */
2052 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2053 {
2054 return tg->shares;
2055 }
2056 # endif /* CONFIG_SMP */
2057 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2058 unsigned long weight)
2059 {
2060 if (se->on_rq) {
2061 /* commit outstanding execution time */
2062 if (cfs_rq->curr == se)
2063 update_curr(cfs_rq);
2064 account_entity_dequeue(cfs_rq, se);
2065 }
2066
2067 update_load_set(&se->load, weight);
2068
2069 if (se->on_rq)
2070 account_entity_enqueue(cfs_rq, se);
2071 }
2072
2073 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2074
2075 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2076 {
2077 struct task_group *tg;
2078 struct sched_entity *se;
2079 long shares;
2080
2081 tg = cfs_rq->tg;
2082 se = tg->se[cpu_of(rq_of(cfs_rq))];
2083 if (!se || throttled_hierarchy(cfs_rq))
2084 return;
2085 #ifndef CONFIG_SMP
2086 if (likely(se->load.weight == tg->shares))
2087 return;
2088 #endif
2089 shares = calc_cfs_shares(cfs_rq, tg);
2090
2091 reweight_entity(cfs_rq_of(se), se, shares);
2092 }
2093 #else /* CONFIG_FAIR_GROUP_SCHED */
2094 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2095 {
2096 }
2097 #endif /* CONFIG_FAIR_GROUP_SCHED */
2098
2099 #ifdef CONFIG_SMP
2100 /*
2101 * We choose a half-life close to 1 scheduling period.
2102 * Note: The tables below are dependent on this value.
2103 */
2104 #define LOAD_AVG_PERIOD 32
2105 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2106 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2107
2108 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2109 static const u32 runnable_avg_yN_inv[] = {
2110 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2111 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2112 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2113 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2114 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2115 0x85aac367, 0x82cd8698,
2116 };
2117
2118 /*
2119 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2120 * over-estimates when re-combining.
2121 */
2122 static const u32 runnable_avg_yN_sum[] = {
2123 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2124 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2125 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2126 };
2127
2128 /*
2129 * Approximate:
2130 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2131 */
2132 static __always_inline u64 decay_load(u64 val, u64 n)
2133 {
2134 unsigned int local_n;
2135
2136 if (!n)
2137 return val;
2138 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2139 return 0;
2140
2141 /* after bounds checking we can collapse to 32-bit */
2142 local_n = n;
2143
2144 /*
2145 * As y^PERIOD = 1/2, we can combine
2146 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2147 * With a look-up table which covers k^n (n<PERIOD)
2148 *
2149 * To achieve constant time decay_load.
2150 */
2151 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2152 val >>= local_n / LOAD_AVG_PERIOD;
2153 local_n %= LOAD_AVG_PERIOD;
2154 }
2155
2156 val *= runnable_avg_yN_inv[local_n];
2157 /* We don't use SRR here since we always want to round down. */
2158 return val >> 32;
2159 }
2160
2161 /*
2162 * For updates fully spanning n periods, the contribution to runnable
2163 * average will be: \Sum 1024*y^n
2164 *
2165 * We can compute this reasonably efficiently by combining:
2166 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2167 */
2168 static u32 __compute_runnable_contrib(u64 n)
2169 {
2170 u32 contrib = 0;
2171
2172 if (likely(n <= LOAD_AVG_PERIOD))
2173 return runnable_avg_yN_sum[n];
2174 else if (unlikely(n >= LOAD_AVG_MAX_N))
2175 return LOAD_AVG_MAX;
2176
2177 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2178 do {
2179 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2180 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2181
2182 n -= LOAD_AVG_PERIOD;
2183 } while (n > LOAD_AVG_PERIOD);
2184
2185 contrib = decay_load(contrib, n);
2186 return contrib + runnable_avg_yN_sum[n];
2187 }
2188
2189 /*
2190 * We can represent the historical contribution to runnable average as the
2191 * coefficients of a geometric series. To do this we sub-divide our runnable
2192 * history into segments of approximately 1ms (1024us); label the segment that
2193 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2194 *
2195 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2196 * p0 p1 p2
2197 * (now) (~1ms ago) (~2ms ago)
2198 *
2199 * Let u_i denote the fraction of p_i that the entity was runnable.
2200 *
2201 * We then designate the fractions u_i as our co-efficients, yielding the
2202 * following representation of historical load:
2203 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2204 *
2205 * We choose y based on the with of a reasonably scheduling period, fixing:
2206 * y^32 = 0.5
2207 *
2208 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2209 * approximately half as much as the contribution to load within the last ms
2210 * (u_0).
2211 *
2212 * When a period "rolls over" and we have new u_0`, multiplying the previous
2213 * sum again by y is sufficient to update:
2214 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2215 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2216 */
2217 static __always_inline int __update_entity_runnable_avg(u64 now,
2218 struct sched_avg *sa,
2219 int runnable)
2220 {
2221 u64 delta, periods;
2222 u32 runnable_contrib;
2223 int delta_w, decayed = 0;
2224
2225 delta = now - sa->last_runnable_update;
2226 /*
2227 * This should only happen when time goes backwards, which it
2228 * unfortunately does during sched clock init when we swap over to TSC.
2229 */
2230 if ((s64)delta < 0) {
2231 sa->last_runnable_update = now;
2232 return 0;
2233 }
2234
2235 /*
2236 * Use 1024ns as the unit of measurement since it's a reasonable
2237 * approximation of 1us and fast to compute.
2238 */
2239 delta >>= 10;
2240 if (!delta)
2241 return 0;
2242 sa->last_runnable_update = now;
2243
2244 /* delta_w is the amount already accumulated against our next period */
2245 delta_w = sa->runnable_avg_period % 1024;
2246 if (delta + delta_w >= 1024) {
2247 /* period roll-over */
2248 decayed = 1;
2249
2250 /*
2251 * Now that we know we're crossing a period boundary, figure
2252 * out how much from delta we need to complete the current
2253 * period and accrue it.
2254 */
2255 delta_w = 1024 - delta_w;
2256 if (runnable)
2257 sa->runnable_avg_sum += delta_w;
2258 sa->runnable_avg_period += delta_w;
2259
2260 delta -= delta_w;
2261
2262 /* Figure out how many additional periods this update spans */
2263 periods = delta / 1024;
2264 delta %= 1024;
2265
2266 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2267 periods + 1);
2268 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2269 periods + 1);
2270
2271 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2272 runnable_contrib = __compute_runnable_contrib(periods);
2273 if (runnable)
2274 sa->runnable_avg_sum += runnable_contrib;
2275 sa->runnable_avg_period += runnable_contrib;
2276 }
2277
2278 /* Remainder of delta accrued against u_0` */
2279 if (runnable)
2280 sa->runnable_avg_sum += delta;
2281 sa->runnable_avg_period += delta;
2282
2283 return decayed;
2284 }
2285
2286 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2287 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2288 {
2289 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2290 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2291
2292 decays -= se->avg.decay_count;
2293 if (!decays)
2294 return 0;
2295
2296 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2297 se->avg.decay_count = 0;
2298
2299 return decays;
2300 }
2301
2302 #ifdef CONFIG_FAIR_GROUP_SCHED
2303 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2304 int force_update)
2305 {
2306 struct task_group *tg = cfs_rq->tg;
2307 long tg_contrib;
2308
2309 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2310 tg_contrib -= cfs_rq->tg_load_contrib;
2311
2312 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2313 atomic_long_add(tg_contrib, &tg->load_avg);
2314 cfs_rq->tg_load_contrib += tg_contrib;
2315 }
2316 }
2317
2318 /*
2319 * Aggregate cfs_rq runnable averages into an equivalent task_group
2320 * representation for computing load contributions.
2321 */
2322 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2323 struct cfs_rq *cfs_rq)
2324 {
2325 struct task_group *tg = cfs_rq->tg;
2326 long contrib;
2327
2328 /* The fraction of a cpu used by this cfs_rq */
2329 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2330 sa->runnable_avg_period + 1);
2331 contrib -= cfs_rq->tg_runnable_contrib;
2332
2333 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2334 atomic_add(contrib, &tg->runnable_avg);
2335 cfs_rq->tg_runnable_contrib += contrib;
2336 }
2337 }
2338
2339 static inline void __update_group_entity_contrib(struct sched_entity *se)
2340 {
2341 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2342 struct task_group *tg = cfs_rq->tg;
2343 int runnable_avg;
2344
2345 u64 contrib;
2346
2347 contrib = cfs_rq->tg_load_contrib * tg->shares;
2348 se->avg.load_avg_contrib = div_u64(contrib,
2349 atomic_long_read(&tg->load_avg) + 1);
2350
2351 /*
2352 * For group entities we need to compute a correction term in the case
2353 * that they are consuming <1 cpu so that we would contribute the same
2354 * load as a task of equal weight.
2355 *
2356 * Explicitly co-ordinating this measurement would be expensive, but
2357 * fortunately the sum of each cpus contribution forms a usable
2358 * lower-bound on the true value.
2359 *
2360 * Consider the aggregate of 2 contributions. Either they are disjoint
2361 * (and the sum represents true value) or they are disjoint and we are
2362 * understating by the aggregate of their overlap.
2363 *
2364 * Extending this to N cpus, for a given overlap, the maximum amount we
2365 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2366 * cpus that overlap for this interval and w_i is the interval width.
2367 *
2368 * On a small machine; the first term is well-bounded which bounds the
2369 * total error since w_i is a subset of the period. Whereas on a
2370 * larger machine, while this first term can be larger, if w_i is the
2371 * of consequential size guaranteed to see n_i*w_i quickly converge to
2372 * our upper bound of 1-cpu.
2373 */
2374 runnable_avg = atomic_read(&tg->runnable_avg);
2375 if (runnable_avg < NICE_0_LOAD) {
2376 se->avg.load_avg_contrib *= runnable_avg;
2377 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2378 }
2379 }
2380
2381 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2382 {
2383 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2384 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2385 }
2386 #else /* CONFIG_FAIR_GROUP_SCHED */
2387 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2388 int force_update) {}
2389 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2390 struct cfs_rq *cfs_rq) {}
2391 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2392 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2393 #endif /* CONFIG_FAIR_GROUP_SCHED */
2394
2395 static inline void __update_task_entity_contrib(struct sched_entity *se)
2396 {
2397 u32 contrib;
2398
2399 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2400 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2401 contrib /= (se->avg.runnable_avg_period + 1);
2402 se->avg.load_avg_contrib = scale_load(contrib);
2403 }
2404
2405 /* Compute the current contribution to load_avg by se, return any delta */
2406 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2407 {
2408 long old_contrib = se->avg.load_avg_contrib;
2409
2410 if (entity_is_task(se)) {
2411 __update_task_entity_contrib(se);
2412 } else {
2413 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2414 __update_group_entity_contrib(se);
2415 }
2416
2417 return se->avg.load_avg_contrib - old_contrib;
2418 }
2419
2420 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2421 long load_contrib)
2422 {
2423 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2424 cfs_rq->blocked_load_avg -= load_contrib;
2425 else
2426 cfs_rq->blocked_load_avg = 0;
2427 }
2428
2429 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2430
2431 /* Update a sched_entity's runnable average */
2432 static inline void update_entity_load_avg(struct sched_entity *se,
2433 int update_cfs_rq)
2434 {
2435 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2436 long contrib_delta;
2437 u64 now;
2438
2439 /*
2440 * For a group entity we need to use their owned cfs_rq_clock_task() in
2441 * case they are the parent of a throttled hierarchy.
2442 */
2443 if (entity_is_task(se))
2444 now = cfs_rq_clock_task(cfs_rq);
2445 else
2446 now = cfs_rq_clock_task(group_cfs_rq(se));
2447
2448 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2449 return;
2450
2451 contrib_delta = __update_entity_load_avg_contrib(se);
2452
2453 if (!update_cfs_rq)
2454 return;
2455
2456 if (se->on_rq)
2457 cfs_rq->runnable_load_avg += contrib_delta;
2458 else
2459 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2460 }
2461
2462 /*
2463 * Decay the load contributed by all blocked children and account this so that
2464 * their contribution may appropriately discounted when they wake up.
2465 */
2466 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2467 {
2468 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2469 u64 decays;
2470
2471 decays = now - cfs_rq->last_decay;
2472 if (!decays && !force_update)
2473 return;
2474
2475 if (atomic_long_read(&cfs_rq->removed_load)) {
2476 unsigned long removed_load;
2477 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2478 subtract_blocked_load_contrib(cfs_rq, removed_load);
2479 }
2480
2481 if (decays) {
2482 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2483 decays);
2484 atomic64_add(decays, &cfs_rq->decay_counter);
2485 cfs_rq->last_decay = now;
2486 }
2487
2488 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2489 }
2490
2491 /* Add the load generated by se into cfs_rq's child load-average */
2492 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2493 struct sched_entity *se,
2494 int wakeup)
2495 {
2496 /*
2497 * We track migrations using entity decay_count <= 0, on a wake-up
2498 * migration we use a negative decay count to track the remote decays
2499 * accumulated while sleeping.
2500 *
2501 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2502 * are seen by enqueue_entity_load_avg() as a migration with an already
2503 * constructed load_avg_contrib.
2504 */
2505 if (unlikely(se->avg.decay_count <= 0)) {
2506 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2507 if (se->avg.decay_count) {
2508 /*
2509 * In a wake-up migration we have to approximate the
2510 * time sleeping. This is because we can't synchronize
2511 * clock_task between the two cpus, and it is not
2512 * guaranteed to be read-safe. Instead, we can
2513 * approximate this using our carried decays, which are
2514 * explicitly atomically readable.
2515 */
2516 se->avg.last_runnable_update -= (-se->avg.decay_count)
2517 << 20;
2518 update_entity_load_avg(se, 0);
2519 /* Indicate that we're now synchronized and on-rq */
2520 se->avg.decay_count = 0;
2521 }
2522 wakeup = 0;
2523 } else {
2524 __synchronize_entity_decay(se);
2525 }
2526
2527 /* migrated tasks did not contribute to our blocked load */
2528 if (wakeup) {
2529 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2530 update_entity_load_avg(se, 0);
2531 }
2532
2533 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2534 /* we force update consideration on load-balancer moves */
2535 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2536 }
2537
2538 /*
2539 * Remove se's load from this cfs_rq child load-average, if the entity is
2540 * transitioning to a blocked state we track its projected decay using
2541 * blocked_load_avg.
2542 */
2543 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2544 struct sched_entity *se,
2545 int sleep)
2546 {
2547 update_entity_load_avg(se, 1);
2548 /* we force update consideration on load-balancer moves */
2549 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2550
2551 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2552 if (sleep) {
2553 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2554 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2555 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2556 }
2557
2558 /*
2559 * Update the rq's load with the elapsed running time before entering
2560 * idle. if the last scheduled task is not a CFS task, idle_enter will
2561 * be the only way to update the runnable statistic.
2562 */
2563 void idle_enter_fair(struct rq *this_rq)
2564 {
2565 update_rq_runnable_avg(this_rq, 1);
2566 }
2567
2568 /*
2569 * Update the rq's load with the elapsed idle time before a task is
2570 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2571 * be the only way to update the runnable statistic.
2572 */
2573 void idle_exit_fair(struct rq *this_rq)
2574 {
2575 update_rq_runnable_avg(this_rq, 0);
2576 }
2577
2578 static int idle_balance(struct rq *this_rq);
2579
2580 #else /* CONFIG_SMP */
2581
2582 static inline void update_entity_load_avg(struct sched_entity *se,
2583 int update_cfs_rq) {}
2584 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2585 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2586 struct sched_entity *se,
2587 int wakeup) {}
2588 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2589 struct sched_entity *se,
2590 int sleep) {}
2591 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2592 int force_update) {}
2593
2594 static inline int idle_balance(struct rq *rq)
2595 {
2596 return 0;
2597 }
2598
2599 #endif /* CONFIG_SMP */
2600
2601 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2602 {
2603 #ifdef CONFIG_SCHEDSTATS
2604 struct task_struct *tsk = NULL;
2605
2606 if (entity_is_task(se))
2607 tsk = task_of(se);
2608
2609 if (se->statistics.sleep_start) {
2610 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2611
2612 if ((s64)delta < 0)
2613 delta = 0;
2614
2615 if (unlikely(delta > se->statistics.sleep_max))
2616 se->statistics.sleep_max = delta;
2617
2618 se->statistics.sleep_start = 0;
2619 se->statistics.sum_sleep_runtime += delta;
2620
2621 if (tsk) {
2622 account_scheduler_latency(tsk, delta >> 10, 1);
2623 trace_sched_stat_sleep(tsk, delta);
2624 }
2625 }
2626 if (se->statistics.block_start) {
2627 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2628
2629 if ((s64)delta < 0)
2630 delta = 0;
2631
2632 if (unlikely(delta > se->statistics.block_max))
2633 se->statistics.block_max = delta;
2634
2635 se->statistics.block_start = 0;
2636 se->statistics.sum_sleep_runtime += delta;
2637
2638 if (tsk) {
2639 if (tsk->in_iowait) {
2640 se->statistics.iowait_sum += delta;
2641 se->statistics.iowait_count++;
2642 trace_sched_stat_iowait(tsk, delta);
2643 }
2644
2645 trace_sched_stat_blocked(tsk, delta);
2646
2647 /*
2648 * Blocking time is in units of nanosecs, so shift by
2649 * 20 to get a milliseconds-range estimation of the
2650 * amount of time that the task spent sleeping:
2651 */
2652 if (unlikely(prof_on == SLEEP_PROFILING)) {
2653 profile_hits(SLEEP_PROFILING,
2654 (void *)get_wchan(tsk),
2655 delta >> 20);
2656 }
2657 account_scheduler_latency(tsk, delta >> 10, 0);
2658 }
2659 }
2660 #endif
2661 }
2662
2663 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2664 {
2665 #ifdef CONFIG_SCHED_DEBUG
2666 s64 d = se->vruntime - cfs_rq->min_vruntime;
2667
2668 if (d < 0)
2669 d = -d;
2670
2671 if (d > 3*sysctl_sched_latency)
2672 schedstat_inc(cfs_rq, nr_spread_over);
2673 #endif
2674 }
2675
2676 static void
2677 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2678 {
2679 u64 vruntime = cfs_rq->min_vruntime;
2680
2681 /*
2682 * The 'current' period is already promised to the current tasks,
2683 * however the extra weight of the new task will slow them down a
2684 * little, place the new task so that it fits in the slot that
2685 * stays open at the end.
2686 */
2687 if (initial && sched_feat(START_DEBIT))
2688 vruntime += sched_vslice(cfs_rq, se);
2689
2690 /* sleeps up to a single latency don't count. */
2691 if (!initial) {
2692 unsigned long thresh = sysctl_sched_latency;
2693
2694 /*
2695 * Halve their sleep time's effect, to allow
2696 * for a gentler effect of sleepers:
2697 */
2698 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2699 thresh >>= 1;
2700
2701 vruntime -= thresh;
2702 }
2703
2704 /* ensure we never gain time by being placed backwards. */
2705 se->vruntime = max_vruntime(se->vruntime, vruntime);
2706 }
2707
2708 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2709
2710 static void
2711 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2712 {
2713 /*
2714 * Update the normalized vruntime before updating min_vruntime
2715 * through calling update_curr().
2716 */
2717 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2718 se->vruntime += cfs_rq->min_vruntime;
2719
2720 /*
2721 * Update run-time statistics of the 'current'.
2722 */
2723 update_curr(cfs_rq);
2724 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2725 account_entity_enqueue(cfs_rq, se);
2726 update_cfs_shares(cfs_rq);
2727
2728 if (flags & ENQUEUE_WAKEUP) {
2729 place_entity(cfs_rq, se, 0);
2730 enqueue_sleeper(cfs_rq, se);
2731 }
2732
2733 update_stats_enqueue(cfs_rq, se);
2734 check_spread(cfs_rq, se);
2735 if (se != cfs_rq->curr)
2736 __enqueue_entity(cfs_rq, se);
2737 se->on_rq = 1;
2738
2739 if (cfs_rq->nr_running == 1) {
2740 list_add_leaf_cfs_rq(cfs_rq);
2741 check_enqueue_throttle(cfs_rq);
2742 }
2743 }
2744
2745 static void __clear_buddies_last(struct sched_entity *se)
2746 {
2747 for_each_sched_entity(se) {
2748 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2749 if (cfs_rq->last != se)
2750 break;
2751
2752 cfs_rq->last = NULL;
2753 }
2754 }
2755
2756 static void __clear_buddies_next(struct sched_entity *se)
2757 {
2758 for_each_sched_entity(se) {
2759 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2760 if (cfs_rq->next != se)
2761 break;
2762
2763 cfs_rq->next = NULL;
2764 }
2765 }
2766
2767 static void __clear_buddies_skip(struct sched_entity *se)
2768 {
2769 for_each_sched_entity(se) {
2770 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2771 if (cfs_rq->skip != se)
2772 break;
2773
2774 cfs_rq->skip = NULL;
2775 }
2776 }
2777
2778 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2779 {
2780 if (cfs_rq->last == se)
2781 __clear_buddies_last(se);
2782
2783 if (cfs_rq->next == se)
2784 __clear_buddies_next(se);
2785
2786 if (cfs_rq->skip == se)
2787 __clear_buddies_skip(se);
2788 }
2789
2790 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2791
2792 static void
2793 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2794 {
2795 /*
2796 * Update run-time statistics of the 'current'.
2797 */
2798 update_curr(cfs_rq);
2799 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2800
2801 update_stats_dequeue(cfs_rq, se);
2802 if (flags & DEQUEUE_SLEEP) {
2803 #ifdef CONFIG_SCHEDSTATS
2804 if (entity_is_task(se)) {
2805 struct task_struct *tsk = task_of(se);
2806
2807 if (tsk->state & TASK_INTERRUPTIBLE)
2808 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2809 if (tsk->state & TASK_UNINTERRUPTIBLE)
2810 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2811 }
2812 #endif
2813 }
2814
2815 clear_buddies(cfs_rq, se);
2816
2817 if (se != cfs_rq->curr)
2818 __dequeue_entity(cfs_rq, se);
2819 se->on_rq = 0;
2820 account_entity_dequeue(cfs_rq, se);
2821
2822 /*
2823 * Normalize the entity after updating the min_vruntime because the
2824 * update can refer to the ->curr item and we need to reflect this
2825 * movement in our normalized position.
2826 */
2827 if (!(flags & DEQUEUE_SLEEP))
2828 se->vruntime -= cfs_rq->min_vruntime;
2829
2830 /* return excess runtime on last dequeue */
2831 return_cfs_rq_runtime(cfs_rq);
2832
2833 update_min_vruntime(cfs_rq);
2834 update_cfs_shares(cfs_rq);
2835 }
2836
2837 /*
2838 * Preempt the current task with a newly woken task if needed:
2839 */
2840 static void
2841 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2842 {
2843 unsigned long ideal_runtime, delta_exec;
2844 struct sched_entity *se;
2845 s64 delta;
2846
2847 ideal_runtime = sched_slice(cfs_rq, curr);
2848 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2849 if (delta_exec > ideal_runtime) {
2850 resched_task(rq_of(cfs_rq)->curr);
2851 /*
2852 * The current task ran long enough, ensure it doesn't get
2853 * re-elected due to buddy favours.
2854 */
2855 clear_buddies(cfs_rq, curr);
2856 return;
2857 }
2858
2859 /*
2860 * Ensure that a task that missed wakeup preemption by a
2861 * narrow margin doesn't have to wait for a full slice.
2862 * This also mitigates buddy induced latencies under load.
2863 */
2864 if (delta_exec < sysctl_sched_min_granularity)
2865 return;
2866
2867 se = __pick_first_entity(cfs_rq);
2868 delta = curr->vruntime - se->vruntime;
2869
2870 if (delta < 0)
2871 return;
2872
2873 if (delta > ideal_runtime)
2874 resched_task(rq_of(cfs_rq)->curr);
2875 }
2876
2877 static void
2878 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2879 {
2880 /* 'current' is not kept within the tree. */
2881 if (se->on_rq) {
2882 /*
2883 * Any task has to be enqueued before it get to execute on
2884 * a CPU. So account for the time it spent waiting on the
2885 * runqueue.
2886 */
2887 update_stats_wait_end(cfs_rq, se);
2888 __dequeue_entity(cfs_rq, se);
2889 }
2890
2891 update_stats_curr_start(cfs_rq, se);
2892 cfs_rq->curr = se;
2893 #ifdef CONFIG_SCHEDSTATS
2894 /*
2895 * Track our maximum slice length, if the CPU's load is at
2896 * least twice that of our own weight (i.e. dont track it
2897 * when there are only lesser-weight tasks around):
2898 */
2899 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2900 se->statistics.slice_max = max(se->statistics.slice_max,
2901 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2902 }
2903 #endif
2904 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2905 }
2906
2907 static int
2908 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2909
2910 /*
2911 * Pick the next process, keeping these things in mind, in this order:
2912 * 1) keep things fair between processes/task groups
2913 * 2) pick the "next" process, since someone really wants that to run
2914 * 3) pick the "last" process, for cache locality
2915 * 4) do not run the "skip" process, if something else is available
2916 */
2917 static struct sched_entity *
2918 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2919 {
2920 struct sched_entity *left = __pick_first_entity(cfs_rq);
2921 struct sched_entity *se;
2922
2923 /*
2924 * If curr is set we have to see if its left of the leftmost entity
2925 * still in the tree, provided there was anything in the tree at all.
2926 */
2927 if (!left || (curr && entity_before(curr, left)))
2928 left = curr;
2929
2930 se = left; /* ideally we run the leftmost entity */
2931
2932 /*
2933 * Avoid running the skip buddy, if running something else can
2934 * be done without getting too unfair.
2935 */
2936 if (cfs_rq->skip == se) {
2937 struct sched_entity *second;
2938
2939 if (se == curr) {
2940 second = __pick_first_entity(cfs_rq);
2941 } else {
2942 second = __pick_next_entity(se);
2943 if (!second || (curr && entity_before(curr, second)))
2944 second = curr;
2945 }
2946
2947 if (second && wakeup_preempt_entity(second, left) < 1)
2948 se = second;
2949 }
2950
2951 /*
2952 * Prefer last buddy, try to return the CPU to a preempted task.
2953 */
2954 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2955 se = cfs_rq->last;
2956
2957 /*
2958 * Someone really wants this to run. If it's not unfair, run it.
2959 */
2960 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2961 se = cfs_rq->next;
2962
2963 clear_buddies(cfs_rq, se);
2964
2965 return se;
2966 }
2967
2968 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2969
2970 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2971 {
2972 /*
2973 * If still on the runqueue then deactivate_task()
2974 * was not called and update_curr() has to be done:
2975 */
2976 if (prev->on_rq)
2977 update_curr(cfs_rq);
2978
2979 /* throttle cfs_rqs exceeding runtime */
2980 check_cfs_rq_runtime(cfs_rq);
2981
2982 check_spread(cfs_rq, prev);
2983 if (prev->on_rq) {
2984 update_stats_wait_start(cfs_rq, prev);
2985 /* Put 'current' back into the tree. */
2986 __enqueue_entity(cfs_rq, prev);
2987 /* in !on_rq case, update occurred at dequeue */
2988 update_entity_load_avg(prev, 1);
2989 }
2990 cfs_rq->curr = NULL;
2991 }
2992
2993 static void
2994 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2995 {
2996 /*
2997 * Update run-time statistics of the 'current'.
2998 */
2999 update_curr(cfs_rq);
3000
3001 /*
3002 * Ensure that runnable average is periodically updated.
3003 */
3004 update_entity_load_avg(curr, 1);
3005 update_cfs_rq_blocked_load(cfs_rq, 1);
3006 update_cfs_shares(cfs_rq);
3007
3008 #ifdef CONFIG_SCHED_HRTICK
3009 /*
3010 * queued ticks are scheduled to match the slice, so don't bother
3011 * validating it and just reschedule.
3012 */
3013 if (queued) {
3014 resched_task(rq_of(cfs_rq)->curr);
3015 return;
3016 }
3017 /*
3018 * don't let the period tick interfere with the hrtick preemption
3019 */
3020 if (!sched_feat(DOUBLE_TICK) &&
3021 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3022 return;
3023 #endif
3024
3025 if (cfs_rq->nr_running > 1)
3026 check_preempt_tick(cfs_rq, curr);
3027 }
3028
3029
3030 /**************************************************
3031 * CFS bandwidth control machinery
3032 */
3033
3034 #ifdef CONFIG_CFS_BANDWIDTH
3035
3036 #ifdef HAVE_JUMP_LABEL
3037 static struct static_key __cfs_bandwidth_used;
3038
3039 static inline bool cfs_bandwidth_used(void)
3040 {
3041 return static_key_false(&__cfs_bandwidth_used);
3042 }
3043
3044 void cfs_bandwidth_usage_inc(void)
3045 {
3046 static_key_slow_inc(&__cfs_bandwidth_used);
3047 }
3048
3049 void cfs_bandwidth_usage_dec(void)
3050 {
3051 static_key_slow_dec(&__cfs_bandwidth_used);
3052 }
3053 #else /* HAVE_JUMP_LABEL */
3054 static bool cfs_bandwidth_used(void)
3055 {
3056 return true;
3057 }
3058
3059 void cfs_bandwidth_usage_inc(void) {}
3060 void cfs_bandwidth_usage_dec(void) {}
3061 #endif /* HAVE_JUMP_LABEL */
3062
3063 /*
3064 * default period for cfs group bandwidth.
3065 * default: 0.1s, units: nanoseconds
3066 */
3067 static inline u64 default_cfs_period(void)
3068 {
3069 return 100000000ULL;
3070 }
3071
3072 static inline u64 sched_cfs_bandwidth_slice(void)
3073 {
3074 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3075 }
3076
3077 /*
3078 * Replenish runtime according to assigned quota and update expiration time.
3079 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3080 * additional synchronization around rq->lock.
3081 *
3082 * requires cfs_b->lock
3083 */
3084 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3085 {
3086 u64 now;
3087
3088 if (cfs_b->quota == RUNTIME_INF)
3089 return;
3090
3091 now = sched_clock_cpu(smp_processor_id());
3092 cfs_b->runtime = cfs_b->quota;
3093 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3094 }
3095
3096 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3097 {
3098 return &tg->cfs_bandwidth;
3099 }
3100
3101 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3102 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3103 {
3104 if (unlikely(cfs_rq->throttle_count))
3105 return cfs_rq->throttled_clock_task;
3106
3107 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3108 }
3109
3110 /* returns 0 on failure to allocate runtime */
3111 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3112 {
3113 struct task_group *tg = cfs_rq->tg;
3114 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3115 u64 amount = 0, min_amount, expires;
3116
3117 /* note: this is a positive sum as runtime_remaining <= 0 */
3118 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3119
3120 raw_spin_lock(&cfs_b->lock);
3121 if (cfs_b->quota == RUNTIME_INF)
3122 amount = min_amount;
3123 else {
3124 /*
3125 * If the bandwidth pool has become inactive, then at least one
3126 * period must have elapsed since the last consumption.
3127 * Refresh the global state and ensure bandwidth timer becomes
3128 * active.
3129 */
3130 if (!cfs_b->timer_active) {
3131 __refill_cfs_bandwidth_runtime(cfs_b);
3132 __start_cfs_bandwidth(cfs_b);
3133 }
3134
3135 if (cfs_b->runtime > 0) {
3136 amount = min(cfs_b->runtime, min_amount);
3137 cfs_b->runtime -= amount;
3138 cfs_b->idle = 0;
3139 }
3140 }
3141 expires = cfs_b->runtime_expires;
3142 raw_spin_unlock(&cfs_b->lock);
3143
3144 cfs_rq->runtime_remaining += amount;
3145 /*
3146 * we may have advanced our local expiration to account for allowed
3147 * spread between our sched_clock and the one on which runtime was
3148 * issued.
3149 */
3150 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3151 cfs_rq->runtime_expires = expires;
3152
3153 return cfs_rq->runtime_remaining > 0;
3154 }
3155
3156 /*
3157 * Note: This depends on the synchronization provided by sched_clock and the
3158 * fact that rq->clock snapshots this value.
3159 */
3160 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3161 {
3162 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3163
3164 /* if the deadline is ahead of our clock, nothing to do */
3165 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3166 return;
3167
3168 if (cfs_rq->runtime_remaining < 0)
3169 return;
3170
3171 /*
3172 * If the local deadline has passed we have to consider the
3173 * possibility that our sched_clock is 'fast' and the global deadline
3174 * has not truly expired.
3175 *
3176 * Fortunately we can check determine whether this the case by checking
3177 * whether the global deadline has advanced.
3178 */
3179
3180 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3181 /* extend local deadline, drift is bounded above by 2 ticks */
3182 cfs_rq->runtime_expires += TICK_NSEC;
3183 } else {
3184 /* global deadline is ahead, expiration has passed */
3185 cfs_rq->runtime_remaining = 0;
3186 }
3187 }
3188
3189 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3190 {
3191 /* dock delta_exec before expiring quota (as it could span periods) */
3192 cfs_rq->runtime_remaining -= delta_exec;
3193 expire_cfs_rq_runtime(cfs_rq);
3194
3195 if (likely(cfs_rq->runtime_remaining > 0))
3196 return;
3197
3198 /*
3199 * if we're unable to extend our runtime we resched so that the active
3200 * hierarchy can be throttled
3201 */
3202 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3203 resched_task(rq_of(cfs_rq)->curr);
3204 }
3205
3206 static __always_inline
3207 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3208 {
3209 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3210 return;
3211
3212 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3213 }
3214
3215 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3216 {
3217 return cfs_bandwidth_used() && cfs_rq->throttled;
3218 }
3219
3220 /* check whether cfs_rq, or any parent, is throttled */
3221 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3222 {
3223 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3224 }
3225
3226 /*
3227 * Ensure that neither of the group entities corresponding to src_cpu or
3228 * dest_cpu are members of a throttled hierarchy when performing group
3229 * load-balance operations.
3230 */
3231 static inline int throttled_lb_pair(struct task_group *tg,
3232 int src_cpu, int dest_cpu)
3233 {
3234 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3235
3236 src_cfs_rq = tg->cfs_rq[src_cpu];
3237 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3238
3239 return throttled_hierarchy(src_cfs_rq) ||
3240 throttled_hierarchy(dest_cfs_rq);
3241 }
3242
3243 /* updated child weight may affect parent so we have to do this bottom up */
3244 static int tg_unthrottle_up(struct task_group *tg, void *data)
3245 {
3246 struct rq *rq = data;
3247 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3248
3249 cfs_rq->throttle_count--;
3250 #ifdef CONFIG_SMP
3251 if (!cfs_rq->throttle_count) {
3252 /* adjust cfs_rq_clock_task() */
3253 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3254 cfs_rq->throttled_clock_task;
3255 }
3256 #endif
3257
3258 return 0;
3259 }
3260
3261 static int tg_throttle_down(struct task_group *tg, void *data)
3262 {
3263 struct rq *rq = data;
3264 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3265
3266 /* group is entering throttled state, stop time */
3267 if (!cfs_rq->throttle_count)
3268 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3269 cfs_rq->throttle_count++;
3270
3271 return 0;
3272 }
3273
3274 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3275 {
3276 struct rq *rq = rq_of(cfs_rq);
3277 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3278 struct sched_entity *se;
3279 long task_delta, dequeue = 1;
3280
3281 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3282
3283 /* freeze hierarchy runnable averages while throttled */
3284 rcu_read_lock();
3285 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3286 rcu_read_unlock();
3287
3288 task_delta = cfs_rq->h_nr_running;
3289 for_each_sched_entity(se) {
3290 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3291 /* throttled entity or throttle-on-deactivate */
3292 if (!se->on_rq)
3293 break;
3294
3295 if (dequeue)
3296 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3297 qcfs_rq->h_nr_running -= task_delta;
3298
3299 if (qcfs_rq->load.weight)
3300 dequeue = 0;
3301 }
3302
3303 if (!se)
3304 rq->nr_running -= task_delta;
3305
3306 cfs_rq->throttled = 1;
3307 cfs_rq->throttled_clock = rq_clock(rq);
3308 raw_spin_lock(&cfs_b->lock);
3309 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3310 if (!cfs_b->timer_active)
3311 __start_cfs_bandwidth(cfs_b);
3312 raw_spin_unlock(&cfs_b->lock);
3313 }
3314
3315 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3316 {
3317 struct rq *rq = rq_of(cfs_rq);
3318 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3319 struct sched_entity *se;
3320 int enqueue = 1;
3321 long task_delta;
3322
3323 se = cfs_rq->tg->se[cpu_of(rq)];
3324
3325 cfs_rq->throttled = 0;
3326
3327 update_rq_clock(rq);
3328
3329 raw_spin_lock(&cfs_b->lock);
3330 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3331 list_del_rcu(&cfs_rq->throttled_list);
3332 raw_spin_unlock(&cfs_b->lock);
3333
3334 /* update hierarchical throttle state */
3335 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3336
3337 if (!cfs_rq->load.weight)
3338 return;
3339
3340 task_delta = cfs_rq->h_nr_running;
3341 for_each_sched_entity(se) {
3342 if (se->on_rq)
3343 enqueue = 0;
3344
3345 cfs_rq = cfs_rq_of(se);
3346 if (enqueue)
3347 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3348 cfs_rq->h_nr_running += task_delta;
3349
3350 if (cfs_rq_throttled(cfs_rq))
3351 break;
3352 }
3353
3354 if (!se)
3355 rq->nr_running += task_delta;
3356
3357 /* determine whether we need to wake up potentially idle cpu */
3358 if (rq->curr == rq->idle && rq->cfs.nr_running)
3359 resched_task(rq->curr);
3360 }
3361
3362 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3363 u64 remaining, u64 expires)
3364 {
3365 struct cfs_rq *cfs_rq;
3366 u64 runtime = remaining;
3367
3368 rcu_read_lock();
3369 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3370 throttled_list) {
3371 struct rq *rq = rq_of(cfs_rq);
3372
3373 raw_spin_lock(&rq->lock);
3374 if (!cfs_rq_throttled(cfs_rq))
3375 goto next;
3376
3377 runtime = -cfs_rq->runtime_remaining + 1;
3378 if (runtime > remaining)
3379 runtime = remaining;
3380 remaining -= runtime;
3381
3382 cfs_rq->runtime_remaining += runtime;
3383 cfs_rq->runtime_expires = expires;
3384
3385 /* we check whether we're throttled above */
3386 if (cfs_rq->runtime_remaining > 0)
3387 unthrottle_cfs_rq(cfs_rq);
3388
3389 next:
3390 raw_spin_unlock(&rq->lock);
3391
3392 if (!remaining)
3393 break;
3394 }
3395 rcu_read_unlock();
3396
3397 return remaining;
3398 }
3399
3400 /*
3401 * Responsible for refilling a task_group's bandwidth and unthrottling its
3402 * cfs_rqs as appropriate. If there has been no activity within the last
3403 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3404 * used to track this state.
3405 */
3406 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3407 {
3408 u64 runtime, runtime_expires;
3409 int idle = 1, throttled;
3410
3411 raw_spin_lock(&cfs_b->lock);
3412 /* no need to continue the timer with no bandwidth constraint */
3413 if (cfs_b->quota == RUNTIME_INF)
3414 goto out_unlock;
3415
3416 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3417 /* idle depends on !throttled (for the case of a large deficit) */
3418 idle = cfs_b->idle && !throttled;
3419 cfs_b->nr_periods += overrun;
3420
3421 /* if we're going inactive then everything else can be deferred */
3422 if (idle)
3423 goto out_unlock;
3424
3425 /*
3426 * if we have relooped after returning idle once, we need to update our
3427 * status as actually running, so that other cpus doing
3428 * __start_cfs_bandwidth will stop trying to cancel us.
3429 */
3430 cfs_b->timer_active = 1;
3431
3432 __refill_cfs_bandwidth_runtime(cfs_b);
3433
3434 if (!throttled) {
3435 /* mark as potentially idle for the upcoming period */
3436 cfs_b->idle = 1;
3437 goto out_unlock;
3438 }
3439
3440 /* account preceding periods in which throttling occurred */
3441 cfs_b->nr_throttled += overrun;
3442
3443 /*
3444 * There are throttled entities so we must first use the new bandwidth
3445 * to unthrottle them before making it generally available. This
3446 * ensures that all existing debts will be paid before a new cfs_rq is
3447 * allowed to run.
3448 */
3449 runtime = cfs_b->runtime;
3450 runtime_expires = cfs_b->runtime_expires;
3451 cfs_b->runtime = 0;
3452
3453 /*
3454 * This check is repeated as we are holding onto the new bandwidth
3455 * while we unthrottle. This can potentially race with an unthrottled
3456 * group trying to acquire new bandwidth from the global pool.
3457 */
3458 while (throttled && runtime > 0) {
3459 raw_spin_unlock(&cfs_b->lock);
3460 /* we can't nest cfs_b->lock while distributing bandwidth */
3461 runtime = distribute_cfs_runtime(cfs_b, runtime,
3462 runtime_expires);
3463 raw_spin_lock(&cfs_b->lock);
3464
3465 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3466 }
3467
3468 /* return (any) remaining runtime */
3469 cfs_b->runtime = runtime;
3470 /*
3471 * While we are ensured activity in the period following an
3472 * unthrottle, this also covers the case in which the new bandwidth is
3473 * insufficient to cover the existing bandwidth deficit. (Forcing the
3474 * timer to remain active while there are any throttled entities.)
3475 */
3476 cfs_b->idle = 0;
3477 out_unlock:
3478 if (idle)
3479 cfs_b->timer_active = 0;
3480 raw_spin_unlock(&cfs_b->lock);
3481
3482 return idle;
3483 }
3484
3485 /* a cfs_rq won't donate quota below this amount */
3486 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3487 /* minimum remaining period time to redistribute slack quota */
3488 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3489 /* how long we wait to gather additional slack before distributing */
3490 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3491
3492 /*
3493 * Are we near the end of the current quota period?
3494 *
3495 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3496 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3497 * migrate_hrtimers, base is never cleared, so we are fine.
3498 */
3499 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3500 {
3501 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3502 u64 remaining;
3503
3504 /* if the call-back is running a quota refresh is already occurring */
3505 if (hrtimer_callback_running(refresh_timer))
3506 return 1;
3507
3508 /* is a quota refresh about to occur? */
3509 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3510 if (remaining < min_expire)
3511 return 1;
3512
3513 return 0;
3514 }
3515
3516 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3517 {
3518 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3519
3520 /* if there's a quota refresh soon don't bother with slack */
3521 if (runtime_refresh_within(cfs_b, min_left))
3522 return;
3523
3524 start_bandwidth_timer(&cfs_b->slack_timer,
3525 ns_to_ktime(cfs_bandwidth_slack_period));
3526 }
3527
3528 /* we know any runtime found here is valid as update_curr() precedes return */
3529 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3530 {
3531 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3532 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3533
3534 if (slack_runtime <= 0)
3535 return;
3536
3537 raw_spin_lock(&cfs_b->lock);
3538 if (cfs_b->quota != RUNTIME_INF &&
3539 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3540 cfs_b->runtime += slack_runtime;
3541
3542 /* we are under rq->lock, defer unthrottling using a timer */
3543 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3544 !list_empty(&cfs_b->throttled_cfs_rq))
3545 start_cfs_slack_bandwidth(cfs_b);
3546 }
3547 raw_spin_unlock(&cfs_b->lock);
3548
3549 /* even if it's not valid for return we don't want to try again */
3550 cfs_rq->runtime_remaining -= slack_runtime;
3551 }
3552
3553 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3554 {
3555 if (!cfs_bandwidth_used())
3556 return;
3557
3558 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3559 return;
3560
3561 __return_cfs_rq_runtime(cfs_rq);
3562 }
3563
3564 /*
3565 * This is done with a timer (instead of inline with bandwidth return) since
3566 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3567 */
3568 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3569 {
3570 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3571 u64 expires;
3572
3573 /* confirm we're still not at a refresh boundary */
3574 raw_spin_lock(&cfs_b->lock);
3575 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3576 raw_spin_unlock(&cfs_b->lock);
3577 return;
3578 }
3579
3580 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3581 runtime = cfs_b->runtime;
3582 cfs_b->runtime = 0;
3583 }
3584 expires = cfs_b->runtime_expires;
3585 raw_spin_unlock(&cfs_b->lock);
3586
3587 if (!runtime)
3588 return;
3589
3590 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3591
3592 raw_spin_lock(&cfs_b->lock);
3593 if (expires == cfs_b->runtime_expires)
3594 cfs_b->runtime = runtime;
3595 raw_spin_unlock(&cfs_b->lock);
3596 }
3597
3598 /*
3599 * When a group wakes up we want to make sure that its quota is not already
3600 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3601 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3602 */
3603 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3604 {
3605 if (!cfs_bandwidth_used())
3606 return;
3607
3608 /* an active group must be handled by the update_curr()->put() path */
3609 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3610 return;
3611
3612 /* ensure the group is not already throttled */
3613 if (cfs_rq_throttled(cfs_rq))
3614 return;
3615
3616 /* update runtime allocation */
3617 account_cfs_rq_runtime(cfs_rq, 0);
3618 if (cfs_rq->runtime_remaining <= 0)
3619 throttle_cfs_rq(cfs_rq);
3620 }
3621
3622 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3623 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3624 {
3625 if (!cfs_bandwidth_used())
3626 return false;
3627
3628 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3629 return false;
3630
3631 /*
3632 * it's possible for a throttled entity to be forced into a running
3633 * state (e.g. set_curr_task), in this case we're finished.
3634 */
3635 if (cfs_rq_throttled(cfs_rq))
3636 return true;
3637
3638 throttle_cfs_rq(cfs_rq);
3639 return true;
3640 }
3641
3642 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3643 {
3644 struct cfs_bandwidth *cfs_b =
3645 container_of(timer, struct cfs_bandwidth, slack_timer);
3646 do_sched_cfs_slack_timer(cfs_b);
3647
3648 return HRTIMER_NORESTART;
3649 }
3650
3651 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3652 {
3653 struct cfs_bandwidth *cfs_b =
3654 container_of(timer, struct cfs_bandwidth, period_timer);
3655 ktime_t now;
3656 int overrun;
3657 int idle = 0;
3658
3659 for (;;) {
3660 now = hrtimer_cb_get_time(timer);
3661 overrun = hrtimer_forward(timer, now, cfs_b->period);
3662
3663 if (!overrun)
3664 break;
3665
3666 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3667 }
3668
3669 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3670 }
3671
3672 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3673 {
3674 raw_spin_lock_init(&cfs_b->lock);
3675 cfs_b->runtime = 0;
3676 cfs_b->quota = RUNTIME_INF;
3677 cfs_b->period = ns_to_ktime(default_cfs_period());
3678
3679 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3680 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3681 cfs_b->period_timer.function = sched_cfs_period_timer;
3682 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3683 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3684 }
3685
3686 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3687 {
3688 cfs_rq->runtime_enabled = 0;
3689 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3690 }
3691
3692 /* requires cfs_b->lock, may release to reprogram timer */
3693 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3694 {
3695 /*
3696 * The timer may be active because we're trying to set a new bandwidth
3697 * period or because we're racing with the tear-down path
3698 * (timer_active==0 becomes visible before the hrtimer call-back
3699 * terminates). In either case we ensure that it's re-programmed
3700 */
3701 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3702 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3703 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3704 raw_spin_unlock(&cfs_b->lock);
3705 cpu_relax();
3706 raw_spin_lock(&cfs_b->lock);
3707 /* if someone else restarted the timer then we're done */
3708 if (cfs_b->timer_active)
3709 return;
3710 }
3711
3712 cfs_b->timer_active = 1;
3713 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3714 }
3715
3716 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3717 {
3718 hrtimer_cancel(&cfs_b->period_timer);
3719 hrtimer_cancel(&cfs_b->slack_timer);
3720 }
3721
3722 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3723 {
3724 struct cfs_rq *cfs_rq;
3725
3726 for_each_leaf_cfs_rq(rq, cfs_rq) {
3727 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3728
3729 if (!cfs_rq->runtime_enabled)
3730 continue;
3731
3732 /*
3733 * clock_task is not advancing so we just need to make sure
3734 * there's some valid quota amount
3735 */
3736 cfs_rq->runtime_remaining = cfs_b->quota;
3737 if (cfs_rq_throttled(cfs_rq))
3738 unthrottle_cfs_rq(cfs_rq);
3739 }
3740 }
3741
3742 #else /* CONFIG_CFS_BANDWIDTH */
3743 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3744 {
3745 return rq_clock_task(rq_of(cfs_rq));
3746 }
3747
3748 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3749 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3750 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3751 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3752
3753 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3754 {
3755 return 0;
3756 }
3757
3758 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3759 {
3760 return 0;
3761 }
3762
3763 static inline int throttled_lb_pair(struct task_group *tg,
3764 int src_cpu, int dest_cpu)
3765 {
3766 return 0;
3767 }
3768
3769 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3770
3771 #ifdef CONFIG_FAIR_GROUP_SCHED
3772 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3773 #endif
3774
3775 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3776 {
3777 return NULL;
3778 }
3779 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3780 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3781
3782 #endif /* CONFIG_CFS_BANDWIDTH */
3783
3784 /**************************************************
3785 * CFS operations on tasks:
3786 */
3787
3788 #ifdef CONFIG_SCHED_HRTICK
3789 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3790 {
3791 struct sched_entity *se = &p->se;
3792 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3793
3794 WARN_ON(task_rq(p) != rq);
3795
3796 if (cfs_rq->nr_running > 1) {
3797 u64 slice = sched_slice(cfs_rq, se);
3798 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3799 s64 delta = slice - ran;
3800
3801 if (delta < 0) {
3802 if (rq->curr == p)
3803 resched_task(p);
3804 return;
3805 }
3806
3807 /*
3808 * Don't schedule slices shorter than 10000ns, that just
3809 * doesn't make sense. Rely on vruntime for fairness.
3810 */
3811 if (rq->curr != p)
3812 delta = max_t(s64, 10000LL, delta);
3813
3814 hrtick_start(rq, delta);
3815 }
3816 }
3817
3818 /*
3819 * called from enqueue/dequeue and updates the hrtick when the
3820 * current task is from our class and nr_running is low enough
3821 * to matter.
3822 */
3823 static void hrtick_update(struct rq *rq)
3824 {
3825 struct task_struct *curr = rq->curr;
3826
3827 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3828 return;
3829
3830 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3831 hrtick_start_fair(rq, curr);
3832 }
3833 #else /* !CONFIG_SCHED_HRTICK */
3834 static inline void
3835 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3836 {
3837 }
3838
3839 static inline void hrtick_update(struct rq *rq)
3840 {
3841 }
3842 #endif
3843
3844 /*
3845 * The enqueue_task method is called before nr_running is
3846 * increased. Here we update the fair scheduling stats and
3847 * then put the task into the rbtree:
3848 */
3849 static void
3850 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3851 {
3852 struct cfs_rq *cfs_rq;
3853 struct sched_entity *se = &p->se;
3854
3855 for_each_sched_entity(se) {
3856 if (se->on_rq)
3857 break;
3858 cfs_rq = cfs_rq_of(se);
3859 enqueue_entity(cfs_rq, se, flags);
3860
3861 /*
3862 * end evaluation on encountering a throttled cfs_rq
3863 *
3864 * note: in the case of encountering a throttled cfs_rq we will
3865 * post the final h_nr_running increment below.
3866 */
3867 if (cfs_rq_throttled(cfs_rq))
3868 break;
3869 cfs_rq->h_nr_running++;
3870
3871 flags = ENQUEUE_WAKEUP;
3872 }
3873
3874 for_each_sched_entity(se) {
3875 cfs_rq = cfs_rq_of(se);
3876 cfs_rq->h_nr_running++;
3877
3878 if (cfs_rq_throttled(cfs_rq))
3879 break;
3880
3881 update_cfs_shares(cfs_rq);
3882 update_entity_load_avg(se, 1);
3883 }
3884
3885 if (!se) {
3886 update_rq_runnable_avg(rq, rq->nr_running);
3887 inc_nr_running(rq);
3888 }
3889 hrtick_update(rq);
3890 }
3891
3892 static void set_next_buddy(struct sched_entity *se);
3893
3894 /*
3895 * The dequeue_task method is called before nr_running is
3896 * decreased. We remove the task from the rbtree and
3897 * update the fair scheduling stats:
3898 */
3899 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3900 {
3901 struct cfs_rq *cfs_rq;
3902 struct sched_entity *se = &p->se;
3903 int task_sleep = flags & DEQUEUE_SLEEP;
3904
3905 for_each_sched_entity(se) {
3906 cfs_rq = cfs_rq_of(se);
3907 dequeue_entity(cfs_rq, se, flags);
3908
3909 /*
3910 * end evaluation on encountering a throttled cfs_rq
3911 *
3912 * note: in the case of encountering a throttled cfs_rq we will
3913 * post the final h_nr_running decrement below.
3914 */
3915 if (cfs_rq_throttled(cfs_rq))
3916 break;
3917 cfs_rq->h_nr_running--;
3918
3919 /* Don't dequeue parent if it has other entities besides us */
3920 if (cfs_rq->load.weight) {
3921 /*
3922 * Bias pick_next to pick a task from this cfs_rq, as
3923 * p is sleeping when it is within its sched_slice.
3924 */
3925 if (task_sleep && parent_entity(se))
3926 set_next_buddy(parent_entity(se));
3927
3928 /* avoid re-evaluating load for this entity */
3929 se = parent_entity(se);
3930 break;
3931 }
3932 flags |= DEQUEUE_SLEEP;
3933 }
3934
3935 for_each_sched_entity(se) {
3936 cfs_rq = cfs_rq_of(se);
3937 cfs_rq->h_nr_running--;
3938
3939 if (cfs_rq_throttled(cfs_rq))
3940 break;
3941
3942 update_cfs_shares(cfs_rq);
3943 update_entity_load_avg(se, 1);
3944 }
3945
3946 if (!se) {
3947 dec_nr_running(rq);
3948 update_rq_runnable_avg(rq, 1);
3949 }
3950 hrtick_update(rq);
3951 }
3952
3953 #ifdef CONFIG_SMP
3954 /* Used instead of source_load when we know the type == 0 */
3955 static unsigned long weighted_cpuload(const int cpu)
3956 {
3957 return cpu_rq(cpu)->cfs.runnable_load_avg;
3958 }
3959
3960 /*
3961 * Return a low guess at the load of a migration-source cpu weighted
3962 * according to the scheduling class and "nice" value.
3963 *
3964 * We want to under-estimate the load of migration sources, to
3965 * balance conservatively.
3966 */
3967 static unsigned long source_load(int cpu, int type)
3968 {
3969 struct rq *rq = cpu_rq(cpu);
3970 unsigned long total = weighted_cpuload(cpu);
3971
3972 if (type == 0 || !sched_feat(LB_BIAS))
3973 return total;
3974
3975 return min(rq->cpu_load[type-1], total);
3976 }
3977
3978 /*
3979 * Return a high guess at the load of a migration-target cpu weighted
3980 * according to the scheduling class and "nice" value.
3981 */
3982 static unsigned long target_load(int cpu, int type)
3983 {
3984 struct rq *rq = cpu_rq(cpu);
3985 unsigned long total = weighted_cpuload(cpu);
3986
3987 if (type == 0 || !sched_feat(LB_BIAS))
3988 return total;
3989
3990 return max(rq->cpu_load[type-1], total);
3991 }
3992
3993 static unsigned long power_of(int cpu)
3994 {
3995 return cpu_rq(cpu)->cpu_power;
3996 }
3997
3998 static unsigned long cpu_avg_load_per_task(int cpu)
3999 {
4000 struct rq *rq = cpu_rq(cpu);
4001 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4002 unsigned long load_avg = rq->cfs.runnable_load_avg;
4003
4004 if (nr_running)
4005 return load_avg / nr_running;
4006
4007 return 0;
4008 }
4009
4010 static void record_wakee(struct task_struct *p)
4011 {
4012 /*
4013 * Rough decay (wiping) for cost saving, don't worry
4014 * about the boundary, really active task won't care
4015 * about the loss.
4016 */
4017 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4018 current->wakee_flips = 0;
4019 current->wakee_flip_decay_ts = jiffies;
4020 }
4021
4022 if (current->last_wakee != p) {
4023 current->last_wakee = p;
4024 current->wakee_flips++;
4025 }
4026 }
4027
4028 static void task_waking_fair(struct task_struct *p)
4029 {
4030 struct sched_entity *se = &p->se;
4031 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4032 u64 min_vruntime;
4033
4034 #ifndef CONFIG_64BIT
4035 u64 min_vruntime_copy;
4036
4037 do {
4038 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4039 smp_rmb();
4040 min_vruntime = cfs_rq->min_vruntime;
4041 } while (min_vruntime != min_vruntime_copy);
4042 #else
4043 min_vruntime = cfs_rq->min_vruntime;
4044 #endif
4045
4046 se->vruntime -= min_vruntime;
4047 record_wakee(p);
4048 }
4049
4050 #ifdef CONFIG_FAIR_GROUP_SCHED
4051 /*
4052 * effective_load() calculates the load change as seen from the root_task_group
4053 *
4054 * Adding load to a group doesn't make a group heavier, but can cause movement
4055 * of group shares between cpus. Assuming the shares were perfectly aligned one
4056 * can calculate the shift in shares.
4057 *
4058 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4059 * on this @cpu and results in a total addition (subtraction) of @wg to the
4060 * total group weight.
4061 *
4062 * Given a runqueue weight distribution (rw_i) we can compute a shares
4063 * distribution (s_i) using:
4064 *
4065 * s_i = rw_i / \Sum rw_j (1)
4066 *
4067 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4068 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4069 * shares distribution (s_i):
4070 *
4071 * rw_i = { 2, 4, 1, 0 }
4072 * s_i = { 2/7, 4/7, 1/7, 0 }
4073 *
4074 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4075 * task used to run on and the CPU the waker is running on), we need to
4076 * compute the effect of waking a task on either CPU and, in case of a sync
4077 * wakeup, compute the effect of the current task going to sleep.
4078 *
4079 * So for a change of @wl to the local @cpu with an overall group weight change
4080 * of @wl we can compute the new shares distribution (s'_i) using:
4081 *
4082 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4083 *
4084 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4085 * differences in waking a task to CPU 0. The additional task changes the
4086 * weight and shares distributions like:
4087 *
4088 * rw'_i = { 3, 4, 1, 0 }
4089 * s'_i = { 3/8, 4/8, 1/8, 0 }
4090 *
4091 * We can then compute the difference in effective weight by using:
4092 *
4093 * dw_i = S * (s'_i - s_i) (3)
4094 *
4095 * Where 'S' is the group weight as seen by its parent.
4096 *
4097 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4098 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4099 * 4/7) times the weight of the group.
4100 */
4101 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4102 {
4103 struct sched_entity *se = tg->se[cpu];
4104
4105 if (!tg->parent) /* the trivial, non-cgroup case */
4106 return wl;
4107
4108 for_each_sched_entity(se) {
4109 long w, W;
4110
4111 tg = se->my_q->tg;
4112
4113 /*
4114 * W = @wg + \Sum rw_j
4115 */
4116 W = wg + calc_tg_weight(tg, se->my_q);
4117
4118 /*
4119 * w = rw_i + @wl
4120 */
4121 w = se->my_q->load.weight + wl;
4122
4123 /*
4124 * wl = S * s'_i; see (2)
4125 */
4126 if (W > 0 && w < W)
4127 wl = (w * tg->shares) / W;
4128 else
4129 wl = tg->shares;
4130
4131 /*
4132 * Per the above, wl is the new se->load.weight value; since
4133 * those are clipped to [MIN_SHARES, ...) do so now. See
4134 * calc_cfs_shares().
4135 */
4136 if (wl < MIN_SHARES)
4137 wl = MIN_SHARES;
4138
4139 /*
4140 * wl = dw_i = S * (s'_i - s_i); see (3)
4141 */
4142 wl -= se->load.weight;
4143
4144 /*
4145 * Recursively apply this logic to all parent groups to compute
4146 * the final effective load change on the root group. Since
4147 * only the @tg group gets extra weight, all parent groups can
4148 * only redistribute existing shares. @wl is the shift in shares
4149 * resulting from this level per the above.
4150 */
4151 wg = 0;
4152 }
4153
4154 return wl;
4155 }
4156 #else
4157
4158 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4159 {
4160 return wl;
4161 }
4162
4163 #endif
4164
4165 static int wake_wide(struct task_struct *p)
4166 {
4167 int factor = this_cpu_read(sd_llc_size);
4168
4169 /*
4170 * Yeah, it's the switching-frequency, could means many wakee or
4171 * rapidly switch, use factor here will just help to automatically
4172 * adjust the loose-degree, so bigger node will lead to more pull.
4173 */
4174 if (p->wakee_flips > factor) {
4175 /*
4176 * wakee is somewhat hot, it needs certain amount of cpu
4177 * resource, so if waker is far more hot, prefer to leave
4178 * it alone.
4179 */
4180 if (current->wakee_flips > (factor * p->wakee_flips))
4181 return 1;
4182 }
4183
4184 return 0;
4185 }
4186
4187 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4188 {
4189 s64 this_load, load;
4190 int idx, this_cpu, prev_cpu;
4191 unsigned long tl_per_task;
4192 struct task_group *tg;
4193 unsigned long weight;
4194 int balanced;
4195
4196 /*
4197 * If we wake multiple tasks be careful to not bounce
4198 * ourselves around too much.
4199 */
4200 if (wake_wide(p))
4201 return 0;
4202
4203 idx = sd->wake_idx;
4204 this_cpu = smp_processor_id();
4205 prev_cpu = task_cpu(p);
4206 load = source_load(prev_cpu, idx);
4207 this_load = target_load(this_cpu, idx);
4208
4209 /*
4210 * If sync wakeup then subtract the (maximum possible)
4211 * effect of the currently running task from the load
4212 * of the current CPU:
4213 */
4214 if (sync) {
4215 tg = task_group(current);
4216 weight = current->se.load.weight;
4217
4218 this_load += effective_load(tg, this_cpu, -weight, -weight);
4219 load += effective_load(tg, prev_cpu, 0, -weight);
4220 }
4221
4222 tg = task_group(p);
4223 weight = p->se.load.weight;
4224
4225 /*
4226 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4227 * due to the sync cause above having dropped this_load to 0, we'll
4228 * always have an imbalance, but there's really nothing you can do
4229 * about that, so that's good too.
4230 *
4231 * Otherwise check if either cpus are near enough in load to allow this
4232 * task to be woken on this_cpu.
4233 */
4234 if (this_load > 0) {
4235 s64 this_eff_load, prev_eff_load;
4236
4237 this_eff_load = 100;
4238 this_eff_load *= power_of(prev_cpu);
4239 this_eff_load *= this_load +
4240 effective_load(tg, this_cpu, weight, weight);
4241
4242 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4243 prev_eff_load *= power_of(this_cpu);
4244 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4245
4246 balanced = this_eff_load <= prev_eff_load;
4247 } else
4248 balanced = true;
4249
4250 /*
4251 * If the currently running task will sleep within
4252 * a reasonable amount of time then attract this newly
4253 * woken task:
4254 */
4255 if (sync && balanced)
4256 return 1;
4257
4258 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4259 tl_per_task = cpu_avg_load_per_task(this_cpu);
4260
4261 if (balanced ||
4262 (this_load <= load &&
4263 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4264 /*
4265 * This domain has SD_WAKE_AFFINE and
4266 * p is cache cold in this domain, and
4267 * there is no bad imbalance.
4268 */
4269 schedstat_inc(sd, ttwu_move_affine);
4270 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4271
4272 return 1;
4273 }
4274 return 0;
4275 }
4276
4277 /*
4278 * find_idlest_group finds and returns the least busy CPU group within the
4279 * domain.
4280 */
4281 static struct sched_group *
4282 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4283 int this_cpu, int sd_flag)
4284 {
4285 struct sched_group *idlest = NULL, *group = sd->groups;
4286 unsigned long min_load = ULONG_MAX, this_load = 0;
4287 int load_idx = sd->forkexec_idx;
4288 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4289
4290 if (sd_flag & SD_BALANCE_WAKE)
4291 load_idx = sd->wake_idx;
4292
4293 do {
4294 unsigned long load, avg_load;
4295 int local_group;
4296 int i;
4297
4298 /* Skip over this group if it has no CPUs allowed */
4299 if (!cpumask_intersects(sched_group_cpus(group),
4300 tsk_cpus_allowed(p)))
4301 continue;
4302
4303 local_group = cpumask_test_cpu(this_cpu,
4304 sched_group_cpus(group));
4305
4306 /* Tally up the load of all CPUs in the group */
4307 avg_load = 0;
4308
4309 for_each_cpu(i, sched_group_cpus(group)) {
4310 /* Bias balancing toward cpus of our domain */
4311 if (local_group)
4312 load = source_load(i, load_idx);
4313 else
4314 load = target_load(i, load_idx);
4315
4316 avg_load += load;
4317 }
4318
4319 /* Adjust by relative CPU power of the group */
4320 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4321
4322 if (local_group) {
4323 this_load = avg_load;
4324 } else if (avg_load < min_load) {
4325 min_load = avg_load;
4326 idlest = group;
4327 }
4328 } while (group = group->next, group != sd->groups);
4329
4330 if (!idlest || 100*this_load < imbalance*min_load)
4331 return NULL;
4332 return idlest;
4333 }
4334
4335 /*
4336 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4337 */
4338 static int
4339 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4340 {
4341 unsigned long load, min_load = ULONG_MAX;
4342 int idlest = -1;
4343 int i;
4344
4345 /* Traverse only the allowed CPUs */
4346 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4347 load = weighted_cpuload(i);
4348
4349 if (load < min_load || (load == min_load && i == this_cpu)) {
4350 min_load = load;
4351 idlest = i;
4352 }
4353 }
4354
4355 return idlest;
4356 }
4357
4358 /*
4359 * Try and locate an idle CPU in the sched_domain.
4360 */
4361 static int select_idle_sibling(struct task_struct *p, int target)
4362 {
4363 struct sched_domain *sd;
4364 struct sched_group *sg;
4365 int i = task_cpu(p);
4366
4367 if (idle_cpu(target))
4368 return target;
4369
4370 /*
4371 * If the prevous cpu is cache affine and idle, don't be stupid.
4372 */
4373 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4374 return i;
4375
4376 /*
4377 * Otherwise, iterate the domains and find an elegible idle cpu.
4378 */
4379 sd = rcu_dereference(per_cpu(sd_llc, target));
4380 for_each_lower_domain(sd) {
4381 sg = sd->groups;
4382 do {
4383 if (!cpumask_intersects(sched_group_cpus(sg),
4384 tsk_cpus_allowed(p)))
4385 goto next;
4386
4387 for_each_cpu(i, sched_group_cpus(sg)) {
4388 if (i == target || !idle_cpu(i))
4389 goto next;
4390 }
4391
4392 target = cpumask_first_and(sched_group_cpus(sg),
4393 tsk_cpus_allowed(p));
4394 goto done;
4395 next:
4396 sg = sg->next;
4397 } while (sg != sd->groups);
4398 }
4399 done:
4400 return target;
4401 }
4402
4403 /*
4404 * select_task_rq_fair: Select target runqueue for the waking task in domains
4405 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4406 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4407 *
4408 * Balances load by selecting the idlest cpu in the idlest group, or under
4409 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4410 *
4411 * Returns the target cpu number.
4412 *
4413 * preempt must be disabled.
4414 */
4415 static int
4416 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4417 {
4418 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4419 int cpu = smp_processor_id();
4420 int new_cpu = cpu;
4421 int want_affine = 0;
4422 int sync = wake_flags & WF_SYNC;
4423
4424 if (p->nr_cpus_allowed == 1)
4425 return prev_cpu;
4426
4427 if (sd_flag & SD_BALANCE_WAKE) {
4428 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4429 want_affine = 1;
4430 new_cpu = prev_cpu;
4431 }
4432
4433 rcu_read_lock();
4434 for_each_domain(cpu, tmp) {
4435 if (!(tmp->flags & SD_LOAD_BALANCE))
4436 continue;
4437
4438 /*
4439 * If both cpu and prev_cpu are part of this domain,
4440 * cpu is a valid SD_WAKE_AFFINE target.
4441 */
4442 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4443 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4444 affine_sd = tmp;
4445 break;
4446 }
4447
4448 if (tmp->flags & sd_flag)
4449 sd = tmp;
4450 }
4451
4452 if (affine_sd) {
4453 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4454 prev_cpu = cpu;
4455
4456 new_cpu = select_idle_sibling(p, prev_cpu);
4457 goto unlock;
4458 }
4459
4460 while (sd) {
4461 struct sched_group *group;
4462 int weight;
4463
4464 if (!(sd->flags & sd_flag)) {
4465 sd = sd->child;
4466 continue;
4467 }
4468
4469 group = find_idlest_group(sd, p, cpu, sd_flag);
4470 if (!group) {
4471 sd = sd->child;
4472 continue;
4473 }
4474
4475 new_cpu = find_idlest_cpu(group, p, cpu);
4476 if (new_cpu == -1 || new_cpu == cpu) {
4477 /* Now try balancing at a lower domain level of cpu */
4478 sd = sd->child;
4479 continue;
4480 }
4481
4482 /* Now try balancing at a lower domain level of new_cpu */
4483 cpu = new_cpu;
4484 weight = sd->span_weight;
4485 sd = NULL;
4486 for_each_domain(cpu, tmp) {
4487 if (weight <= tmp->span_weight)
4488 break;
4489 if (tmp->flags & sd_flag)
4490 sd = tmp;
4491 }
4492 /* while loop will break here if sd == NULL */
4493 }
4494 unlock:
4495 rcu_read_unlock();
4496
4497 return new_cpu;
4498 }
4499
4500 /*
4501 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4502 * cfs_rq_of(p) references at time of call are still valid and identify the
4503 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4504 * other assumptions, including the state of rq->lock, should be made.
4505 */
4506 static void
4507 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4508 {
4509 struct sched_entity *se = &p->se;
4510 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4511
4512 /*
4513 * Load tracking: accumulate removed load so that it can be processed
4514 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4515 * to blocked load iff they have a positive decay-count. It can never
4516 * be negative here since on-rq tasks have decay-count == 0.
4517 */
4518 if (se->avg.decay_count) {
4519 se->avg.decay_count = -__synchronize_entity_decay(se);
4520 atomic_long_add(se->avg.load_avg_contrib,
4521 &cfs_rq->removed_load);
4522 }
4523 }
4524 #endif /* CONFIG_SMP */
4525
4526 static unsigned long
4527 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4528 {
4529 unsigned long gran = sysctl_sched_wakeup_granularity;
4530
4531 /*
4532 * Since its curr running now, convert the gran from real-time
4533 * to virtual-time in his units.
4534 *
4535 * By using 'se' instead of 'curr' we penalize light tasks, so
4536 * they get preempted easier. That is, if 'se' < 'curr' then
4537 * the resulting gran will be larger, therefore penalizing the
4538 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4539 * be smaller, again penalizing the lighter task.
4540 *
4541 * This is especially important for buddies when the leftmost
4542 * task is higher priority than the buddy.
4543 */
4544 return calc_delta_fair(gran, se);
4545 }
4546
4547 /*
4548 * Should 'se' preempt 'curr'.
4549 *
4550 * |s1
4551 * |s2
4552 * |s3
4553 * g
4554 * |<--->|c
4555 *
4556 * w(c, s1) = -1
4557 * w(c, s2) = 0
4558 * w(c, s3) = 1
4559 *
4560 */
4561 static int
4562 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4563 {
4564 s64 gran, vdiff = curr->vruntime - se->vruntime;
4565
4566 if (vdiff <= 0)
4567 return -1;
4568
4569 gran = wakeup_gran(curr, se);
4570 if (vdiff > gran)
4571 return 1;
4572
4573 return 0;
4574 }
4575
4576 static void set_last_buddy(struct sched_entity *se)
4577 {
4578 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4579 return;
4580
4581 for_each_sched_entity(se)
4582 cfs_rq_of(se)->last = se;
4583 }
4584
4585 static void set_next_buddy(struct sched_entity *se)
4586 {
4587 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4588 return;
4589
4590 for_each_sched_entity(se)
4591 cfs_rq_of(se)->next = se;
4592 }
4593
4594 static void set_skip_buddy(struct sched_entity *se)
4595 {
4596 for_each_sched_entity(se)
4597 cfs_rq_of(se)->skip = se;
4598 }
4599
4600 /*
4601 * Preempt the current task with a newly woken task if needed:
4602 */
4603 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4604 {
4605 struct task_struct *curr = rq->curr;
4606 struct sched_entity *se = &curr->se, *pse = &p->se;
4607 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4608 int scale = cfs_rq->nr_running >= sched_nr_latency;
4609 int next_buddy_marked = 0;
4610
4611 if (unlikely(se == pse))
4612 return;
4613
4614 /*
4615 * This is possible from callers such as move_task(), in which we
4616 * unconditionally check_prempt_curr() after an enqueue (which may have
4617 * lead to a throttle). This both saves work and prevents false
4618 * next-buddy nomination below.
4619 */
4620 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4621 return;
4622
4623 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4624 set_next_buddy(pse);
4625 next_buddy_marked = 1;
4626 }
4627
4628 /*
4629 * We can come here with TIF_NEED_RESCHED already set from new task
4630 * wake up path.
4631 *
4632 * Note: this also catches the edge-case of curr being in a throttled
4633 * group (e.g. via set_curr_task), since update_curr() (in the
4634 * enqueue of curr) will have resulted in resched being set. This
4635 * prevents us from potentially nominating it as a false LAST_BUDDY
4636 * below.
4637 */
4638 if (test_tsk_need_resched(curr))
4639 return;
4640
4641 /* Idle tasks are by definition preempted by non-idle tasks. */
4642 if (unlikely(curr->policy == SCHED_IDLE) &&
4643 likely(p->policy != SCHED_IDLE))
4644 goto preempt;
4645
4646 /*
4647 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4648 * is driven by the tick):
4649 */
4650 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4651 return;
4652
4653 find_matching_se(&se, &pse);
4654 update_curr(cfs_rq_of(se));
4655 BUG_ON(!pse);
4656 if (wakeup_preempt_entity(se, pse) == 1) {
4657 /*
4658 * Bias pick_next to pick the sched entity that is
4659 * triggering this preemption.
4660 */
4661 if (!next_buddy_marked)
4662 set_next_buddy(pse);
4663 goto preempt;
4664 }
4665
4666 return;
4667
4668 preempt:
4669 resched_task(curr);
4670 /*
4671 * Only set the backward buddy when the current task is still
4672 * on the rq. This can happen when a wakeup gets interleaved
4673 * with schedule on the ->pre_schedule() or idle_balance()
4674 * point, either of which can * drop the rq lock.
4675 *
4676 * Also, during early boot the idle thread is in the fair class,
4677 * for obvious reasons its a bad idea to schedule back to it.
4678 */
4679 if (unlikely(!se->on_rq || curr == rq->idle))
4680 return;
4681
4682 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4683 set_last_buddy(se);
4684 }
4685
4686 static struct task_struct *
4687 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4688 {
4689 struct cfs_rq *cfs_rq = &rq->cfs;
4690 struct sched_entity *se;
4691 struct task_struct *p;
4692 int new_tasks;
4693
4694 again:
4695 #ifdef CONFIG_FAIR_GROUP_SCHED
4696 if (!cfs_rq->nr_running)
4697 goto idle;
4698
4699 if (prev->sched_class != &fair_sched_class)
4700 goto simple;
4701
4702 /*
4703 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4704 * likely that a next task is from the same cgroup as the current.
4705 *
4706 * Therefore attempt to avoid putting and setting the entire cgroup
4707 * hierarchy, only change the part that actually changes.
4708 */
4709
4710 do {
4711 struct sched_entity *curr = cfs_rq->curr;
4712
4713 /*
4714 * Since we got here without doing put_prev_entity() we also
4715 * have to consider cfs_rq->curr. If it is still a runnable
4716 * entity, update_curr() will update its vruntime, otherwise
4717 * forget we've ever seen it.
4718 */
4719 if (curr && curr->on_rq)
4720 update_curr(cfs_rq);
4721 else
4722 curr = NULL;
4723
4724 /*
4725 * This call to check_cfs_rq_runtime() will do the throttle and
4726 * dequeue its entity in the parent(s). Therefore the 'simple'
4727 * nr_running test will indeed be correct.
4728 */
4729 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4730 goto simple;
4731
4732 se = pick_next_entity(cfs_rq, curr);
4733 cfs_rq = group_cfs_rq(se);
4734 } while (cfs_rq);
4735
4736 p = task_of(se);
4737
4738 /*
4739 * Since we haven't yet done put_prev_entity and if the selected task
4740 * is a different task than we started out with, try and touch the
4741 * least amount of cfs_rqs.
4742 */
4743 if (prev != p) {
4744 struct sched_entity *pse = &prev->se;
4745
4746 while (!(cfs_rq = is_same_group(se, pse))) {
4747 int se_depth = se->depth;
4748 int pse_depth = pse->depth;
4749
4750 if (se_depth <= pse_depth) {
4751 put_prev_entity(cfs_rq_of(pse), pse);
4752 pse = parent_entity(pse);
4753 }
4754 if (se_depth >= pse_depth) {
4755 set_next_entity(cfs_rq_of(se), se);
4756 se = parent_entity(se);
4757 }
4758 }
4759
4760 put_prev_entity(cfs_rq, pse);
4761 set_next_entity(cfs_rq, se);
4762 }
4763
4764 if (hrtick_enabled(rq))
4765 hrtick_start_fair(rq, p);
4766
4767 return p;
4768 simple:
4769 cfs_rq = &rq->cfs;
4770 #endif
4771
4772 if (!cfs_rq->nr_running)
4773 goto idle;
4774
4775 put_prev_task(rq, prev);
4776
4777 do {
4778 se = pick_next_entity(cfs_rq, NULL);
4779 set_next_entity(cfs_rq, se);
4780 cfs_rq = group_cfs_rq(se);
4781 } while (cfs_rq);
4782
4783 p = task_of(se);
4784
4785 if (hrtick_enabled(rq))
4786 hrtick_start_fair(rq, p);
4787
4788 return p;
4789
4790 idle:
4791 new_tasks = idle_balance(rq);
4792 /*
4793 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4794 * possible for any higher priority task to appear. In that case we
4795 * must re-start the pick_next_entity() loop.
4796 */
4797 if (new_tasks < 0)
4798 return RETRY_TASK;
4799
4800 if (new_tasks > 0)
4801 goto again;
4802
4803 return NULL;
4804 }
4805
4806 /*
4807 * Account for a descheduled task:
4808 */
4809 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4810 {
4811 struct sched_entity *se = &prev->se;
4812 struct cfs_rq *cfs_rq;
4813
4814 for_each_sched_entity(se) {
4815 cfs_rq = cfs_rq_of(se);
4816 put_prev_entity(cfs_rq, se);
4817 }
4818 }
4819
4820 /*
4821 * sched_yield() is very simple
4822 *
4823 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4824 */
4825 static void yield_task_fair(struct rq *rq)
4826 {
4827 struct task_struct *curr = rq->curr;
4828 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4829 struct sched_entity *se = &curr->se;
4830
4831 /*
4832 * Are we the only task in the tree?
4833 */
4834 if (unlikely(rq->nr_running == 1))
4835 return;
4836
4837 clear_buddies(cfs_rq, se);
4838
4839 if (curr->policy != SCHED_BATCH) {
4840 update_rq_clock(rq);
4841 /*
4842 * Update run-time statistics of the 'current'.
4843 */
4844 update_curr(cfs_rq);
4845 /*
4846 * Tell update_rq_clock() that we've just updated,
4847 * so we don't do microscopic update in schedule()
4848 * and double the fastpath cost.
4849 */
4850 rq->skip_clock_update = 1;
4851 }
4852
4853 set_skip_buddy(se);
4854 }
4855
4856 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4857 {
4858 struct sched_entity *se = &p->se;
4859
4860 /* throttled hierarchies are not runnable */
4861 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4862 return false;
4863
4864 /* Tell the scheduler that we'd really like pse to run next. */
4865 set_next_buddy(se);
4866
4867 yield_task_fair(rq);
4868
4869 return true;
4870 }
4871
4872 #ifdef CONFIG_SMP
4873 /**************************************************
4874 * Fair scheduling class load-balancing methods.
4875 *
4876 * BASICS
4877 *
4878 * The purpose of load-balancing is to achieve the same basic fairness the
4879 * per-cpu scheduler provides, namely provide a proportional amount of compute
4880 * time to each task. This is expressed in the following equation:
4881 *
4882 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4883 *
4884 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4885 * W_i,0 is defined as:
4886 *
4887 * W_i,0 = \Sum_j w_i,j (2)
4888 *
4889 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4890 * is derived from the nice value as per prio_to_weight[].
4891 *
4892 * The weight average is an exponential decay average of the instantaneous
4893 * weight:
4894 *
4895 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4896 *
4897 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4898 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4899 * can also include other factors [XXX].
4900 *
4901 * To achieve this balance we define a measure of imbalance which follows
4902 * directly from (1):
4903 *
4904 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4905 *
4906 * We them move tasks around to minimize the imbalance. In the continuous
4907 * function space it is obvious this converges, in the discrete case we get
4908 * a few fun cases generally called infeasible weight scenarios.
4909 *
4910 * [XXX expand on:
4911 * - infeasible weights;
4912 * - local vs global optima in the discrete case. ]
4913 *
4914 *
4915 * SCHED DOMAINS
4916 *
4917 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4918 * for all i,j solution, we create a tree of cpus that follows the hardware
4919 * topology where each level pairs two lower groups (or better). This results
4920 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4921 * tree to only the first of the previous level and we decrease the frequency
4922 * of load-balance at each level inv. proportional to the number of cpus in
4923 * the groups.
4924 *
4925 * This yields:
4926 *
4927 * log_2 n 1 n
4928 * \Sum { --- * --- * 2^i } = O(n) (5)
4929 * i = 0 2^i 2^i
4930 * `- size of each group
4931 * | | `- number of cpus doing load-balance
4932 * | `- freq
4933 * `- sum over all levels
4934 *
4935 * Coupled with a limit on how many tasks we can migrate every balance pass,
4936 * this makes (5) the runtime complexity of the balancer.
4937 *
4938 * An important property here is that each CPU is still (indirectly) connected
4939 * to every other cpu in at most O(log n) steps:
4940 *
4941 * The adjacency matrix of the resulting graph is given by:
4942 *
4943 * log_2 n
4944 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4945 * k = 0
4946 *
4947 * And you'll find that:
4948 *
4949 * A^(log_2 n)_i,j != 0 for all i,j (7)
4950 *
4951 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4952 * The task movement gives a factor of O(m), giving a convergence complexity
4953 * of:
4954 *
4955 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4956 *
4957 *
4958 * WORK CONSERVING
4959 *
4960 * In order to avoid CPUs going idle while there's still work to do, new idle
4961 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4962 * tree itself instead of relying on other CPUs to bring it work.
4963 *
4964 * This adds some complexity to both (5) and (8) but it reduces the total idle
4965 * time.
4966 *
4967 * [XXX more?]
4968 *
4969 *
4970 * CGROUPS
4971 *
4972 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4973 *
4974 * s_k,i
4975 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4976 * S_k
4977 *
4978 * Where
4979 *
4980 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4981 *
4982 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4983 *
4984 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4985 * property.
4986 *
4987 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4988 * rewrite all of this once again.]
4989 */
4990
4991 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4992
4993 enum fbq_type { regular, remote, all };
4994
4995 #define LBF_ALL_PINNED 0x01
4996 #define LBF_NEED_BREAK 0x02
4997 #define LBF_DST_PINNED 0x04
4998 #define LBF_SOME_PINNED 0x08
4999
5000 struct lb_env {
5001 struct sched_domain *sd;
5002
5003 struct rq *src_rq;
5004 int src_cpu;
5005
5006 int dst_cpu;
5007 struct rq *dst_rq;
5008
5009 struct cpumask *dst_grpmask;
5010 int new_dst_cpu;
5011 enum cpu_idle_type idle;
5012 long imbalance;
5013 /* The set of CPUs under consideration for load-balancing */
5014 struct cpumask *cpus;
5015
5016 unsigned int flags;
5017
5018 unsigned int loop;
5019 unsigned int loop_break;
5020 unsigned int loop_max;
5021
5022 enum fbq_type fbq_type;
5023 };
5024
5025 /*
5026 * move_task - move a task from one runqueue to another runqueue.
5027 * Both runqueues must be locked.
5028 */
5029 static void move_task(struct task_struct *p, struct lb_env *env)
5030 {
5031 deactivate_task(env->src_rq, p, 0);
5032 set_task_cpu(p, env->dst_cpu);
5033 activate_task(env->dst_rq, p, 0);
5034 check_preempt_curr(env->dst_rq, p, 0);
5035 }
5036
5037 /*
5038 * Is this task likely cache-hot:
5039 */
5040 static int
5041 task_hot(struct task_struct *p, u64 now)
5042 {
5043 s64 delta;
5044
5045 if (p->sched_class != &fair_sched_class)
5046 return 0;
5047
5048 if (unlikely(p->policy == SCHED_IDLE))
5049 return 0;
5050
5051 /*
5052 * Buddy candidates are cache hot:
5053 */
5054 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5055 (&p->se == cfs_rq_of(&p->se)->next ||
5056 &p->se == cfs_rq_of(&p->se)->last))
5057 return 1;
5058
5059 if (sysctl_sched_migration_cost == -1)
5060 return 1;
5061 if (sysctl_sched_migration_cost == 0)
5062 return 0;
5063
5064 delta = now - p->se.exec_start;
5065
5066 return delta < (s64)sysctl_sched_migration_cost;
5067 }
5068
5069 #ifdef CONFIG_NUMA_BALANCING
5070 /* Returns true if the destination node has incurred more faults */
5071 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5072 {
5073 int src_nid, dst_nid;
5074
5075 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5076 !(env->sd->flags & SD_NUMA)) {
5077 return false;
5078 }
5079
5080 src_nid = cpu_to_node(env->src_cpu);
5081 dst_nid = cpu_to_node(env->dst_cpu);
5082
5083 if (src_nid == dst_nid)
5084 return false;
5085
5086 /* Always encourage migration to the preferred node. */
5087 if (dst_nid == p->numa_preferred_nid)
5088 return true;
5089
5090 /* If both task and group weight improve, this move is a winner. */
5091 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5092 group_weight(p, dst_nid) > group_weight(p, src_nid))
5093 return true;
5094
5095 return false;
5096 }
5097
5098
5099 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5100 {
5101 int src_nid, dst_nid;
5102
5103 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5104 return false;
5105
5106 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5107 return false;
5108
5109 src_nid = cpu_to_node(env->src_cpu);
5110 dst_nid = cpu_to_node(env->dst_cpu);
5111
5112 if (src_nid == dst_nid)
5113 return false;
5114
5115 /* Migrating away from the preferred node is always bad. */
5116 if (src_nid == p->numa_preferred_nid)
5117 return true;
5118
5119 /* If either task or group weight get worse, don't do it. */
5120 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5121 group_weight(p, dst_nid) < group_weight(p, src_nid))
5122 return true;
5123
5124 return false;
5125 }
5126
5127 #else
5128 static inline bool migrate_improves_locality(struct task_struct *p,
5129 struct lb_env *env)
5130 {
5131 return false;
5132 }
5133
5134 static inline bool migrate_degrades_locality(struct task_struct *p,
5135 struct lb_env *env)
5136 {
5137 return false;
5138 }
5139 #endif
5140
5141 /*
5142 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5143 */
5144 static
5145 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5146 {
5147 int tsk_cache_hot = 0;
5148 /*
5149 * We do not migrate tasks that are:
5150 * 1) throttled_lb_pair, or
5151 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5152 * 3) running (obviously), or
5153 * 4) are cache-hot on their current CPU.
5154 */
5155 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5156 return 0;
5157
5158 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5159 int cpu;
5160
5161 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5162
5163 env->flags |= LBF_SOME_PINNED;
5164
5165 /*
5166 * Remember if this task can be migrated to any other cpu in
5167 * our sched_group. We may want to revisit it if we couldn't
5168 * meet load balance goals by pulling other tasks on src_cpu.
5169 *
5170 * Also avoid computing new_dst_cpu if we have already computed
5171 * one in current iteration.
5172 */
5173 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5174 return 0;
5175
5176 /* Prevent to re-select dst_cpu via env's cpus */
5177 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5178 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5179 env->flags |= LBF_DST_PINNED;
5180 env->new_dst_cpu = cpu;
5181 break;
5182 }
5183 }
5184
5185 return 0;
5186 }
5187
5188 /* Record that we found atleast one task that could run on dst_cpu */
5189 env->flags &= ~LBF_ALL_PINNED;
5190
5191 if (task_running(env->src_rq, p)) {
5192 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5193 return 0;
5194 }
5195
5196 /*
5197 * Aggressive migration if:
5198 * 1) destination numa is preferred
5199 * 2) task is cache cold, or
5200 * 3) too many balance attempts have failed.
5201 */
5202 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
5203 if (!tsk_cache_hot)
5204 tsk_cache_hot = migrate_degrades_locality(p, env);
5205
5206 if (migrate_improves_locality(p, env)) {
5207 #ifdef CONFIG_SCHEDSTATS
5208 if (tsk_cache_hot) {
5209 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5210 schedstat_inc(p, se.statistics.nr_forced_migrations);
5211 }
5212 #endif
5213 return 1;
5214 }
5215
5216 if (!tsk_cache_hot ||
5217 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5218
5219 if (tsk_cache_hot) {
5220 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5221 schedstat_inc(p, se.statistics.nr_forced_migrations);
5222 }
5223
5224 return 1;
5225 }
5226
5227 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5228 return 0;
5229 }
5230
5231 /*
5232 * move_one_task tries to move exactly one task from busiest to this_rq, as
5233 * part of active balancing operations within "domain".
5234 * Returns 1 if successful and 0 otherwise.
5235 *
5236 * Called with both runqueues locked.
5237 */
5238 static int move_one_task(struct lb_env *env)
5239 {
5240 struct task_struct *p, *n;
5241
5242 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5243 if (!can_migrate_task(p, env))
5244 continue;
5245
5246 move_task(p, env);
5247 /*
5248 * Right now, this is only the second place move_task()
5249 * is called, so we can safely collect move_task()
5250 * stats here rather than inside move_task().
5251 */
5252 schedstat_inc(env->sd, lb_gained[env->idle]);
5253 return 1;
5254 }
5255 return 0;
5256 }
5257
5258 static const unsigned int sched_nr_migrate_break = 32;
5259
5260 /*
5261 * move_tasks tries to move up to imbalance weighted load from busiest to
5262 * this_rq, as part of a balancing operation within domain "sd".
5263 * Returns 1 if successful and 0 otherwise.
5264 *
5265 * Called with both runqueues locked.
5266 */
5267 static int move_tasks(struct lb_env *env)
5268 {
5269 struct list_head *tasks = &env->src_rq->cfs_tasks;
5270 struct task_struct *p;
5271 unsigned long load;
5272 int pulled = 0;
5273
5274 if (env->imbalance <= 0)
5275 return 0;
5276
5277 while (!list_empty(tasks)) {
5278 p = list_first_entry(tasks, struct task_struct, se.group_node);
5279
5280 env->loop++;
5281 /* We've more or less seen every task there is, call it quits */
5282 if (env->loop > env->loop_max)
5283 break;
5284
5285 /* take a breather every nr_migrate tasks */
5286 if (env->loop > env->loop_break) {
5287 env->loop_break += sched_nr_migrate_break;
5288 env->flags |= LBF_NEED_BREAK;
5289 break;
5290 }
5291
5292 if (!can_migrate_task(p, env))
5293 goto next;
5294
5295 load = task_h_load(p);
5296
5297 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5298 goto next;
5299
5300 if ((load / 2) > env->imbalance)
5301 goto next;
5302
5303 move_task(p, env);
5304 pulled++;
5305 env->imbalance -= load;
5306
5307 #ifdef CONFIG_PREEMPT
5308 /*
5309 * NEWIDLE balancing is a source of latency, so preemptible
5310 * kernels will stop after the first task is pulled to minimize
5311 * the critical section.
5312 */
5313 if (env->idle == CPU_NEWLY_IDLE)
5314 break;
5315 #endif
5316
5317 /*
5318 * We only want to steal up to the prescribed amount of
5319 * weighted load.
5320 */
5321 if (env->imbalance <= 0)
5322 break;
5323
5324 continue;
5325 next:
5326 list_move_tail(&p->se.group_node, tasks);
5327 }
5328
5329 /*
5330 * Right now, this is one of only two places move_task() is called,
5331 * so we can safely collect move_task() stats here rather than
5332 * inside move_task().
5333 */
5334 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5335
5336 return pulled;
5337 }
5338
5339 #ifdef CONFIG_FAIR_GROUP_SCHED
5340 /*
5341 * update tg->load_weight by folding this cpu's load_avg
5342 */
5343 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5344 {
5345 struct sched_entity *se = tg->se[cpu];
5346 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5347
5348 /* throttled entities do not contribute to load */
5349 if (throttled_hierarchy(cfs_rq))
5350 return;
5351
5352 update_cfs_rq_blocked_load(cfs_rq, 1);
5353
5354 if (se) {
5355 update_entity_load_avg(se, 1);
5356 /*
5357 * We pivot on our runnable average having decayed to zero for
5358 * list removal. This generally implies that all our children
5359 * have also been removed (modulo rounding error or bandwidth
5360 * control); however, such cases are rare and we can fix these
5361 * at enqueue.
5362 *
5363 * TODO: fix up out-of-order children on enqueue.
5364 */
5365 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5366 list_del_leaf_cfs_rq(cfs_rq);
5367 } else {
5368 struct rq *rq = rq_of(cfs_rq);
5369 update_rq_runnable_avg(rq, rq->nr_running);
5370 }
5371 }
5372
5373 static void update_blocked_averages(int cpu)
5374 {
5375 struct rq *rq = cpu_rq(cpu);
5376 struct cfs_rq *cfs_rq;
5377 unsigned long flags;
5378
5379 raw_spin_lock_irqsave(&rq->lock, flags);
5380 update_rq_clock(rq);
5381 /*
5382 * Iterates the task_group tree in a bottom up fashion, see
5383 * list_add_leaf_cfs_rq() for details.
5384 */
5385 for_each_leaf_cfs_rq(rq, cfs_rq) {
5386 /*
5387 * Note: We may want to consider periodically releasing
5388 * rq->lock about these updates so that creating many task
5389 * groups does not result in continually extending hold time.
5390 */
5391 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5392 }
5393
5394 raw_spin_unlock_irqrestore(&rq->lock, flags);
5395 }
5396
5397 /*
5398 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5399 * This needs to be done in a top-down fashion because the load of a child
5400 * group is a fraction of its parents load.
5401 */
5402 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5403 {
5404 struct rq *rq = rq_of(cfs_rq);
5405 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5406 unsigned long now = jiffies;
5407 unsigned long load;
5408
5409 if (cfs_rq->last_h_load_update == now)
5410 return;
5411
5412 cfs_rq->h_load_next = NULL;
5413 for_each_sched_entity(se) {
5414 cfs_rq = cfs_rq_of(se);
5415 cfs_rq->h_load_next = se;
5416 if (cfs_rq->last_h_load_update == now)
5417 break;
5418 }
5419
5420 if (!se) {
5421 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5422 cfs_rq->last_h_load_update = now;
5423 }
5424
5425 while ((se = cfs_rq->h_load_next) != NULL) {
5426 load = cfs_rq->h_load;
5427 load = div64_ul(load * se->avg.load_avg_contrib,
5428 cfs_rq->runnable_load_avg + 1);
5429 cfs_rq = group_cfs_rq(se);
5430 cfs_rq->h_load = load;
5431 cfs_rq->last_h_load_update = now;
5432 }
5433 }
5434
5435 static unsigned long task_h_load(struct task_struct *p)
5436 {
5437 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5438
5439 update_cfs_rq_h_load(cfs_rq);
5440 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5441 cfs_rq->runnable_load_avg + 1);
5442 }
5443 #else
5444 static inline void update_blocked_averages(int cpu)
5445 {
5446 }
5447
5448 static unsigned long task_h_load(struct task_struct *p)
5449 {
5450 return p->se.avg.load_avg_contrib;
5451 }
5452 #endif
5453
5454 /********** Helpers for find_busiest_group ************************/
5455 /*
5456 * sg_lb_stats - stats of a sched_group required for load_balancing
5457 */
5458 struct sg_lb_stats {
5459 unsigned long avg_load; /*Avg load across the CPUs of the group */
5460 unsigned long group_load; /* Total load over the CPUs of the group */
5461 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5462 unsigned long load_per_task;
5463 unsigned long group_power;
5464 unsigned int sum_nr_running; /* Nr tasks running in the group */
5465 unsigned int group_capacity;
5466 unsigned int idle_cpus;
5467 unsigned int group_weight;
5468 int group_imb; /* Is there an imbalance in the group ? */
5469 int group_has_capacity; /* Is there extra capacity in the group? */
5470 #ifdef CONFIG_NUMA_BALANCING
5471 unsigned int nr_numa_running;
5472 unsigned int nr_preferred_running;
5473 #endif
5474 };
5475
5476 /*
5477 * sd_lb_stats - Structure to store the statistics of a sched_domain
5478 * during load balancing.
5479 */
5480 struct sd_lb_stats {
5481 struct sched_group *busiest; /* Busiest group in this sd */
5482 struct sched_group *local; /* Local group in this sd */
5483 unsigned long total_load; /* Total load of all groups in sd */
5484 unsigned long total_pwr; /* Total power of all groups in sd */
5485 unsigned long avg_load; /* Average load across all groups in sd */
5486
5487 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5488 struct sg_lb_stats local_stat; /* Statistics of the local group */
5489 };
5490
5491 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5492 {
5493 /*
5494 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5495 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5496 * We must however clear busiest_stat::avg_load because
5497 * update_sd_pick_busiest() reads this before assignment.
5498 */
5499 *sds = (struct sd_lb_stats){
5500 .busiest = NULL,
5501 .local = NULL,
5502 .total_load = 0UL,
5503 .total_pwr = 0UL,
5504 .busiest_stat = {
5505 .avg_load = 0UL,
5506 },
5507 };
5508 }
5509
5510 /**
5511 * get_sd_load_idx - Obtain the load index for a given sched domain.
5512 * @sd: The sched_domain whose load_idx is to be obtained.
5513 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5514 *
5515 * Return: The load index.
5516 */
5517 static inline int get_sd_load_idx(struct sched_domain *sd,
5518 enum cpu_idle_type idle)
5519 {
5520 int load_idx;
5521
5522 switch (idle) {
5523 case CPU_NOT_IDLE:
5524 load_idx = sd->busy_idx;
5525 break;
5526
5527 case CPU_NEWLY_IDLE:
5528 load_idx = sd->newidle_idx;
5529 break;
5530 default:
5531 load_idx = sd->idle_idx;
5532 break;
5533 }
5534
5535 return load_idx;
5536 }
5537
5538 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5539 {
5540 return SCHED_POWER_SCALE;
5541 }
5542
5543 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5544 {
5545 return default_scale_freq_power(sd, cpu);
5546 }
5547
5548 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5549 {
5550 unsigned long weight = sd->span_weight;
5551 unsigned long smt_gain = sd->smt_gain;
5552
5553 smt_gain /= weight;
5554
5555 return smt_gain;
5556 }
5557
5558 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5559 {
5560 return default_scale_smt_power(sd, cpu);
5561 }
5562
5563 static unsigned long scale_rt_power(int cpu)
5564 {
5565 struct rq *rq = cpu_rq(cpu);
5566 u64 total, available, age_stamp, avg;
5567
5568 /*
5569 * Since we're reading these variables without serialization make sure
5570 * we read them once before doing sanity checks on them.
5571 */
5572 age_stamp = ACCESS_ONCE(rq->age_stamp);
5573 avg = ACCESS_ONCE(rq->rt_avg);
5574
5575 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5576
5577 if (unlikely(total < avg)) {
5578 /* Ensures that power won't end up being negative */
5579 available = 0;
5580 } else {
5581 available = total - avg;
5582 }
5583
5584 if (unlikely((s64)total < SCHED_POWER_SCALE))
5585 total = SCHED_POWER_SCALE;
5586
5587 total >>= SCHED_POWER_SHIFT;
5588
5589 return div_u64(available, total);
5590 }
5591
5592 static void update_cpu_power(struct sched_domain *sd, int cpu)
5593 {
5594 unsigned long weight = sd->span_weight;
5595 unsigned long power = SCHED_POWER_SCALE;
5596 struct sched_group *sdg = sd->groups;
5597
5598 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5599 if (sched_feat(ARCH_POWER))
5600 power *= arch_scale_smt_power(sd, cpu);
5601 else
5602 power *= default_scale_smt_power(sd, cpu);
5603
5604 power >>= SCHED_POWER_SHIFT;
5605 }
5606
5607 sdg->sgp->power_orig = power;
5608
5609 if (sched_feat(ARCH_POWER))
5610 power *= arch_scale_freq_power(sd, cpu);
5611 else
5612 power *= default_scale_freq_power(sd, cpu);
5613
5614 power >>= SCHED_POWER_SHIFT;
5615
5616 power *= scale_rt_power(cpu);
5617 power >>= SCHED_POWER_SHIFT;
5618
5619 if (!power)
5620 power = 1;
5621
5622 cpu_rq(cpu)->cpu_power = power;
5623 sdg->sgp->power = power;
5624 }
5625
5626 void update_group_power(struct sched_domain *sd, int cpu)
5627 {
5628 struct sched_domain *child = sd->child;
5629 struct sched_group *group, *sdg = sd->groups;
5630 unsigned long power, power_orig;
5631 unsigned long interval;
5632
5633 interval = msecs_to_jiffies(sd->balance_interval);
5634 interval = clamp(interval, 1UL, max_load_balance_interval);
5635 sdg->sgp->next_update = jiffies + interval;
5636
5637 if (!child) {
5638 update_cpu_power(sd, cpu);
5639 return;
5640 }
5641
5642 power_orig = power = 0;
5643
5644 if (child->flags & SD_OVERLAP) {
5645 /*
5646 * SD_OVERLAP domains cannot assume that child groups
5647 * span the current group.
5648 */
5649
5650 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5651 struct sched_group_power *sgp;
5652 struct rq *rq = cpu_rq(cpu);
5653
5654 /*
5655 * build_sched_domains() -> init_sched_groups_power()
5656 * gets here before we've attached the domains to the
5657 * runqueues.
5658 *
5659 * Use power_of(), which is set irrespective of domains
5660 * in update_cpu_power().
5661 *
5662 * This avoids power/power_orig from being 0 and
5663 * causing divide-by-zero issues on boot.
5664 *
5665 * Runtime updates will correct power_orig.
5666 */
5667 if (unlikely(!rq->sd)) {
5668 power_orig += power_of(cpu);
5669 power += power_of(cpu);
5670 continue;
5671 }
5672
5673 sgp = rq->sd->groups->sgp;
5674 power_orig += sgp->power_orig;
5675 power += sgp->power;
5676 }
5677 } else {
5678 /*
5679 * !SD_OVERLAP domains can assume that child groups
5680 * span the current group.
5681 */
5682
5683 group = child->groups;
5684 do {
5685 power_orig += group->sgp->power_orig;
5686 power += group->sgp->power;
5687 group = group->next;
5688 } while (group != child->groups);
5689 }
5690
5691 sdg->sgp->power_orig = power_orig;
5692 sdg->sgp->power = power;
5693 }
5694
5695 /*
5696 * Try and fix up capacity for tiny siblings, this is needed when
5697 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5698 * which on its own isn't powerful enough.
5699 *
5700 * See update_sd_pick_busiest() and check_asym_packing().
5701 */
5702 static inline int
5703 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5704 {
5705 /*
5706 * Only siblings can have significantly less than SCHED_POWER_SCALE
5707 */
5708 if (!(sd->flags & SD_SHARE_CPUPOWER))
5709 return 0;
5710
5711 /*
5712 * If ~90% of the cpu_power is still there, we're good.
5713 */
5714 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5715 return 1;
5716
5717 return 0;
5718 }
5719
5720 /*
5721 * Group imbalance indicates (and tries to solve) the problem where balancing
5722 * groups is inadequate due to tsk_cpus_allowed() constraints.
5723 *
5724 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5725 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5726 * Something like:
5727 *
5728 * { 0 1 2 3 } { 4 5 6 7 }
5729 * * * * *
5730 *
5731 * If we were to balance group-wise we'd place two tasks in the first group and
5732 * two tasks in the second group. Clearly this is undesired as it will overload
5733 * cpu 3 and leave one of the cpus in the second group unused.
5734 *
5735 * The current solution to this issue is detecting the skew in the first group
5736 * by noticing the lower domain failed to reach balance and had difficulty
5737 * moving tasks due to affinity constraints.
5738 *
5739 * When this is so detected; this group becomes a candidate for busiest; see
5740 * update_sd_pick_busiest(). And calculate_imbalance() and
5741 * find_busiest_group() avoid some of the usual balance conditions to allow it
5742 * to create an effective group imbalance.
5743 *
5744 * This is a somewhat tricky proposition since the next run might not find the
5745 * group imbalance and decide the groups need to be balanced again. A most
5746 * subtle and fragile situation.
5747 */
5748
5749 static inline int sg_imbalanced(struct sched_group *group)
5750 {
5751 return group->sgp->imbalance;
5752 }
5753
5754 /*
5755 * Compute the group capacity.
5756 *
5757 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5758 * first dividing out the smt factor and computing the actual number of cores
5759 * and limit power unit capacity with that.
5760 */
5761 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5762 {
5763 unsigned int capacity, smt, cpus;
5764 unsigned int power, power_orig;
5765
5766 power = group->sgp->power;
5767 power_orig = group->sgp->power_orig;
5768 cpus = group->group_weight;
5769
5770 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5771 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5772 capacity = cpus / smt; /* cores */
5773
5774 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5775 if (!capacity)
5776 capacity = fix_small_capacity(env->sd, group);
5777
5778 return capacity;
5779 }
5780
5781 /**
5782 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5783 * @env: The load balancing environment.
5784 * @group: sched_group whose statistics are to be updated.
5785 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5786 * @local_group: Does group contain this_cpu.
5787 * @sgs: variable to hold the statistics for this group.
5788 */
5789 static inline void update_sg_lb_stats(struct lb_env *env,
5790 struct sched_group *group, int load_idx,
5791 int local_group, struct sg_lb_stats *sgs)
5792 {
5793 unsigned long load;
5794 int i;
5795
5796 memset(sgs, 0, sizeof(*sgs));
5797
5798 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5799 struct rq *rq = cpu_rq(i);
5800
5801 /* Bias balancing toward cpus of our domain */
5802 if (local_group)
5803 load = target_load(i, load_idx);
5804 else
5805 load = source_load(i, load_idx);
5806
5807 sgs->group_load += load;
5808 sgs->sum_nr_running += rq->nr_running;
5809 #ifdef CONFIG_NUMA_BALANCING
5810 sgs->nr_numa_running += rq->nr_numa_running;
5811 sgs->nr_preferred_running += rq->nr_preferred_running;
5812 #endif
5813 sgs->sum_weighted_load += weighted_cpuload(i);
5814 if (idle_cpu(i))
5815 sgs->idle_cpus++;
5816 }
5817
5818 /* Adjust by relative CPU power of the group */
5819 sgs->group_power = group->sgp->power;
5820 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5821
5822 if (sgs->sum_nr_running)
5823 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5824
5825 sgs->group_weight = group->group_weight;
5826
5827 sgs->group_imb = sg_imbalanced(group);
5828 sgs->group_capacity = sg_capacity(env, group);
5829
5830 if (sgs->group_capacity > sgs->sum_nr_running)
5831 sgs->group_has_capacity = 1;
5832 }
5833
5834 /**
5835 * update_sd_pick_busiest - return 1 on busiest group
5836 * @env: The load balancing environment.
5837 * @sds: sched_domain statistics
5838 * @sg: sched_group candidate to be checked for being the busiest
5839 * @sgs: sched_group statistics
5840 *
5841 * Determine if @sg is a busier group than the previously selected
5842 * busiest group.
5843 *
5844 * Return: %true if @sg is a busier group than the previously selected
5845 * busiest group. %false otherwise.
5846 */
5847 static bool update_sd_pick_busiest(struct lb_env *env,
5848 struct sd_lb_stats *sds,
5849 struct sched_group *sg,
5850 struct sg_lb_stats *sgs)
5851 {
5852 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5853 return false;
5854
5855 if (sgs->sum_nr_running > sgs->group_capacity)
5856 return true;
5857
5858 if (sgs->group_imb)
5859 return true;
5860
5861 /*
5862 * ASYM_PACKING needs to move all the work to the lowest
5863 * numbered CPUs in the group, therefore mark all groups
5864 * higher than ourself as busy.
5865 */
5866 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5867 env->dst_cpu < group_first_cpu(sg)) {
5868 if (!sds->busiest)
5869 return true;
5870
5871 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5872 return true;
5873 }
5874
5875 return false;
5876 }
5877
5878 #ifdef CONFIG_NUMA_BALANCING
5879 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5880 {
5881 if (sgs->sum_nr_running > sgs->nr_numa_running)
5882 return regular;
5883 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5884 return remote;
5885 return all;
5886 }
5887
5888 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5889 {
5890 if (rq->nr_running > rq->nr_numa_running)
5891 return regular;
5892 if (rq->nr_running > rq->nr_preferred_running)
5893 return remote;
5894 return all;
5895 }
5896 #else
5897 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5898 {
5899 return all;
5900 }
5901
5902 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5903 {
5904 return regular;
5905 }
5906 #endif /* CONFIG_NUMA_BALANCING */
5907
5908 /**
5909 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5910 * @env: The load balancing environment.
5911 * @sds: variable to hold the statistics for this sched_domain.
5912 */
5913 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5914 {
5915 struct sched_domain *child = env->sd->child;
5916 struct sched_group *sg = env->sd->groups;
5917 struct sg_lb_stats tmp_sgs;
5918 int load_idx, prefer_sibling = 0;
5919
5920 if (child && child->flags & SD_PREFER_SIBLING)
5921 prefer_sibling = 1;
5922
5923 load_idx = get_sd_load_idx(env->sd, env->idle);
5924
5925 do {
5926 struct sg_lb_stats *sgs = &tmp_sgs;
5927 int local_group;
5928
5929 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5930 if (local_group) {
5931 sds->local = sg;
5932 sgs = &sds->local_stat;
5933
5934 if (env->idle != CPU_NEWLY_IDLE ||
5935 time_after_eq(jiffies, sg->sgp->next_update))
5936 update_group_power(env->sd, env->dst_cpu);
5937 }
5938
5939 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5940
5941 if (local_group)
5942 goto next_group;
5943
5944 /*
5945 * In case the child domain prefers tasks go to siblings
5946 * first, lower the sg capacity to one so that we'll try
5947 * and move all the excess tasks away. We lower the capacity
5948 * of a group only if the local group has the capacity to fit
5949 * these excess tasks, i.e. nr_running < group_capacity. The
5950 * extra check prevents the case where you always pull from the
5951 * heaviest group when it is already under-utilized (possible
5952 * with a large weight task outweighs the tasks on the system).
5953 */
5954 if (prefer_sibling && sds->local &&
5955 sds->local_stat.group_has_capacity)
5956 sgs->group_capacity = min(sgs->group_capacity, 1U);
5957
5958 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5959 sds->busiest = sg;
5960 sds->busiest_stat = *sgs;
5961 }
5962
5963 next_group:
5964 /* Now, start updating sd_lb_stats */
5965 sds->total_load += sgs->group_load;
5966 sds->total_pwr += sgs->group_power;
5967
5968 sg = sg->next;
5969 } while (sg != env->sd->groups);
5970
5971 if (env->sd->flags & SD_NUMA)
5972 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5973 }
5974
5975 /**
5976 * check_asym_packing - Check to see if the group is packed into the
5977 * sched doman.
5978 *
5979 * This is primarily intended to used at the sibling level. Some
5980 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5981 * case of POWER7, it can move to lower SMT modes only when higher
5982 * threads are idle. When in lower SMT modes, the threads will
5983 * perform better since they share less core resources. Hence when we
5984 * have idle threads, we want them to be the higher ones.
5985 *
5986 * This packing function is run on idle threads. It checks to see if
5987 * the busiest CPU in this domain (core in the P7 case) has a higher
5988 * CPU number than the packing function is being run on. Here we are
5989 * assuming lower CPU number will be equivalent to lower a SMT thread
5990 * number.
5991 *
5992 * Return: 1 when packing is required and a task should be moved to
5993 * this CPU. The amount of the imbalance is returned in *imbalance.
5994 *
5995 * @env: The load balancing environment.
5996 * @sds: Statistics of the sched_domain which is to be packed
5997 */
5998 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5999 {
6000 int busiest_cpu;
6001
6002 if (!(env->sd->flags & SD_ASYM_PACKING))
6003 return 0;
6004
6005 if (!sds->busiest)
6006 return 0;
6007
6008 busiest_cpu = group_first_cpu(sds->busiest);
6009 if (env->dst_cpu > busiest_cpu)
6010 return 0;
6011
6012 env->imbalance = DIV_ROUND_CLOSEST(
6013 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6014 SCHED_POWER_SCALE);
6015
6016 return 1;
6017 }
6018
6019 /**
6020 * fix_small_imbalance - Calculate the minor imbalance that exists
6021 * amongst the groups of a sched_domain, during
6022 * load balancing.
6023 * @env: The load balancing environment.
6024 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6025 */
6026 static inline
6027 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6028 {
6029 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6030 unsigned int imbn = 2;
6031 unsigned long scaled_busy_load_per_task;
6032 struct sg_lb_stats *local, *busiest;
6033
6034 local = &sds->local_stat;
6035 busiest = &sds->busiest_stat;
6036
6037 if (!local->sum_nr_running)
6038 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6039 else if (busiest->load_per_task > local->load_per_task)
6040 imbn = 1;
6041
6042 scaled_busy_load_per_task =
6043 (busiest->load_per_task * SCHED_POWER_SCALE) /
6044 busiest->group_power;
6045
6046 if (busiest->avg_load + scaled_busy_load_per_task >=
6047 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6048 env->imbalance = busiest->load_per_task;
6049 return;
6050 }
6051
6052 /*
6053 * OK, we don't have enough imbalance to justify moving tasks,
6054 * however we may be able to increase total CPU power used by
6055 * moving them.
6056 */
6057
6058 pwr_now += busiest->group_power *
6059 min(busiest->load_per_task, busiest->avg_load);
6060 pwr_now += local->group_power *
6061 min(local->load_per_task, local->avg_load);
6062 pwr_now /= SCHED_POWER_SCALE;
6063
6064 /* Amount of load we'd subtract */
6065 if (busiest->avg_load > scaled_busy_load_per_task) {
6066 pwr_move += busiest->group_power *
6067 min(busiest->load_per_task,
6068 busiest->avg_load - scaled_busy_load_per_task);
6069 }
6070
6071 /* Amount of load we'd add */
6072 if (busiest->avg_load * busiest->group_power <
6073 busiest->load_per_task * SCHED_POWER_SCALE) {
6074 tmp = (busiest->avg_load * busiest->group_power) /
6075 local->group_power;
6076 } else {
6077 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
6078 local->group_power;
6079 }
6080 pwr_move += local->group_power *
6081 min(local->load_per_task, local->avg_load + tmp);
6082 pwr_move /= SCHED_POWER_SCALE;
6083
6084 /* Move if we gain throughput */
6085 if (pwr_move > pwr_now)
6086 env->imbalance = busiest->load_per_task;
6087 }
6088
6089 /**
6090 * calculate_imbalance - Calculate the amount of imbalance present within the
6091 * groups of a given sched_domain during load balance.
6092 * @env: load balance environment
6093 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6094 */
6095 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6096 {
6097 unsigned long max_pull, load_above_capacity = ~0UL;
6098 struct sg_lb_stats *local, *busiest;
6099
6100 local = &sds->local_stat;
6101 busiest = &sds->busiest_stat;
6102
6103 if (busiest->group_imb) {
6104 /*
6105 * In the group_imb case we cannot rely on group-wide averages
6106 * to ensure cpu-load equilibrium, look at wider averages. XXX
6107 */
6108 busiest->load_per_task =
6109 min(busiest->load_per_task, sds->avg_load);
6110 }
6111
6112 /*
6113 * In the presence of smp nice balancing, certain scenarios can have
6114 * max load less than avg load(as we skip the groups at or below
6115 * its cpu_power, while calculating max_load..)
6116 */
6117 if (busiest->avg_load <= sds->avg_load ||
6118 local->avg_load >= sds->avg_load) {
6119 env->imbalance = 0;
6120 return fix_small_imbalance(env, sds);
6121 }
6122
6123 if (!busiest->group_imb) {
6124 /*
6125 * Don't want to pull so many tasks that a group would go idle.
6126 * Except of course for the group_imb case, since then we might
6127 * have to drop below capacity to reach cpu-load equilibrium.
6128 */
6129 load_above_capacity =
6130 (busiest->sum_nr_running - busiest->group_capacity);
6131
6132 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
6133 load_above_capacity /= busiest->group_power;
6134 }
6135
6136 /*
6137 * We're trying to get all the cpus to the average_load, so we don't
6138 * want to push ourselves above the average load, nor do we wish to
6139 * reduce the max loaded cpu below the average load. At the same time,
6140 * we also don't want to reduce the group load below the group capacity
6141 * (so that we can implement power-savings policies etc). Thus we look
6142 * for the minimum possible imbalance.
6143 */
6144 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6145
6146 /* How much load to actually move to equalise the imbalance */
6147 env->imbalance = min(
6148 max_pull * busiest->group_power,
6149 (sds->avg_load - local->avg_load) * local->group_power
6150 ) / SCHED_POWER_SCALE;
6151
6152 /*
6153 * if *imbalance is less than the average load per runnable task
6154 * there is no guarantee that any tasks will be moved so we'll have
6155 * a think about bumping its value to force at least one task to be
6156 * moved
6157 */
6158 if (env->imbalance < busiest->load_per_task)
6159 return fix_small_imbalance(env, sds);
6160 }
6161
6162 /******* find_busiest_group() helpers end here *********************/
6163
6164 /**
6165 * find_busiest_group - Returns the busiest group within the sched_domain
6166 * if there is an imbalance. If there isn't an imbalance, and
6167 * the user has opted for power-savings, it returns a group whose
6168 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6169 * such a group exists.
6170 *
6171 * Also calculates the amount of weighted load which should be moved
6172 * to restore balance.
6173 *
6174 * @env: The load balancing environment.
6175 *
6176 * Return: - The busiest group if imbalance exists.
6177 * - If no imbalance and user has opted for power-savings balance,
6178 * return the least loaded group whose CPUs can be
6179 * put to idle by rebalancing its tasks onto our group.
6180 */
6181 static struct sched_group *find_busiest_group(struct lb_env *env)
6182 {
6183 struct sg_lb_stats *local, *busiest;
6184 struct sd_lb_stats sds;
6185
6186 init_sd_lb_stats(&sds);
6187
6188 /*
6189 * Compute the various statistics relavent for load balancing at
6190 * this level.
6191 */
6192 update_sd_lb_stats(env, &sds);
6193 local = &sds.local_stat;
6194 busiest = &sds.busiest_stat;
6195
6196 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6197 check_asym_packing(env, &sds))
6198 return sds.busiest;
6199
6200 /* There is no busy sibling group to pull tasks from */
6201 if (!sds.busiest || busiest->sum_nr_running == 0)
6202 goto out_balanced;
6203
6204 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
6205
6206 /*
6207 * If the busiest group is imbalanced the below checks don't
6208 * work because they assume all things are equal, which typically
6209 * isn't true due to cpus_allowed constraints and the like.
6210 */
6211 if (busiest->group_imb)
6212 goto force_balance;
6213
6214 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6215 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6216 !busiest->group_has_capacity)
6217 goto force_balance;
6218
6219 /*
6220 * If the local group is more busy than the selected busiest group
6221 * don't try and pull any tasks.
6222 */
6223 if (local->avg_load >= busiest->avg_load)
6224 goto out_balanced;
6225
6226 /*
6227 * Don't pull any tasks if this group is already above the domain
6228 * average load.
6229 */
6230 if (local->avg_load >= sds.avg_load)
6231 goto out_balanced;
6232
6233 if (env->idle == CPU_IDLE) {
6234 /*
6235 * This cpu is idle. If the busiest group load doesn't
6236 * have more tasks than the number of available cpu's and
6237 * there is no imbalance between this and busiest group
6238 * wrt to idle cpu's, it is balanced.
6239 */
6240 if ((local->idle_cpus < busiest->idle_cpus) &&
6241 busiest->sum_nr_running <= busiest->group_weight)
6242 goto out_balanced;
6243 } else {
6244 /*
6245 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6246 * imbalance_pct to be conservative.
6247 */
6248 if (100 * busiest->avg_load <=
6249 env->sd->imbalance_pct * local->avg_load)
6250 goto out_balanced;
6251 }
6252
6253 force_balance:
6254 /* Looks like there is an imbalance. Compute it */
6255 calculate_imbalance(env, &sds);
6256 return sds.busiest;
6257
6258 out_balanced:
6259 env->imbalance = 0;
6260 return NULL;
6261 }
6262
6263 /*
6264 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6265 */
6266 static struct rq *find_busiest_queue(struct lb_env *env,
6267 struct sched_group *group)
6268 {
6269 struct rq *busiest = NULL, *rq;
6270 unsigned long busiest_load = 0, busiest_power = 1;
6271 int i;
6272
6273 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6274 unsigned long power, capacity, wl;
6275 enum fbq_type rt;
6276
6277 rq = cpu_rq(i);
6278 rt = fbq_classify_rq(rq);
6279
6280 /*
6281 * We classify groups/runqueues into three groups:
6282 * - regular: there are !numa tasks
6283 * - remote: there are numa tasks that run on the 'wrong' node
6284 * - all: there is no distinction
6285 *
6286 * In order to avoid migrating ideally placed numa tasks,
6287 * ignore those when there's better options.
6288 *
6289 * If we ignore the actual busiest queue to migrate another
6290 * task, the next balance pass can still reduce the busiest
6291 * queue by moving tasks around inside the node.
6292 *
6293 * If we cannot move enough load due to this classification
6294 * the next pass will adjust the group classification and
6295 * allow migration of more tasks.
6296 *
6297 * Both cases only affect the total convergence complexity.
6298 */
6299 if (rt > env->fbq_type)
6300 continue;
6301
6302 power = power_of(i);
6303 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6304 if (!capacity)
6305 capacity = fix_small_capacity(env->sd, group);
6306
6307 wl = weighted_cpuload(i);
6308
6309 /*
6310 * When comparing with imbalance, use weighted_cpuload()
6311 * which is not scaled with the cpu power.
6312 */
6313 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6314 continue;
6315
6316 /*
6317 * For the load comparisons with the other cpu's, consider
6318 * the weighted_cpuload() scaled with the cpu power, so that
6319 * the load can be moved away from the cpu that is potentially
6320 * running at a lower capacity.
6321 *
6322 * Thus we're looking for max(wl_i / power_i), crosswise
6323 * multiplication to rid ourselves of the division works out
6324 * to: wl_i * power_j > wl_j * power_i; where j is our
6325 * previous maximum.
6326 */
6327 if (wl * busiest_power > busiest_load * power) {
6328 busiest_load = wl;
6329 busiest_power = power;
6330 busiest = rq;
6331 }
6332 }
6333
6334 return busiest;
6335 }
6336
6337 /*
6338 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6339 * so long as it is large enough.
6340 */
6341 #define MAX_PINNED_INTERVAL 512
6342
6343 /* Working cpumask for load_balance and load_balance_newidle. */
6344 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6345
6346 static int need_active_balance(struct lb_env *env)
6347 {
6348 struct sched_domain *sd = env->sd;
6349
6350 if (env->idle == CPU_NEWLY_IDLE) {
6351
6352 /*
6353 * ASYM_PACKING needs to force migrate tasks from busy but
6354 * higher numbered CPUs in order to pack all tasks in the
6355 * lowest numbered CPUs.
6356 */
6357 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6358 return 1;
6359 }
6360
6361 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6362 }
6363
6364 static int active_load_balance_cpu_stop(void *data);
6365
6366 static int should_we_balance(struct lb_env *env)
6367 {
6368 struct sched_group *sg = env->sd->groups;
6369 struct cpumask *sg_cpus, *sg_mask;
6370 int cpu, balance_cpu = -1;
6371
6372 /*
6373 * In the newly idle case, we will allow all the cpu's
6374 * to do the newly idle load balance.
6375 */
6376 if (env->idle == CPU_NEWLY_IDLE)
6377 return 1;
6378
6379 sg_cpus = sched_group_cpus(sg);
6380 sg_mask = sched_group_mask(sg);
6381 /* Try to find first idle cpu */
6382 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6383 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6384 continue;
6385
6386 balance_cpu = cpu;
6387 break;
6388 }
6389
6390 if (balance_cpu == -1)
6391 balance_cpu = group_balance_cpu(sg);
6392
6393 /*
6394 * First idle cpu or the first cpu(busiest) in this sched group
6395 * is eligible for doing load balancing at this and above domains.
6396 */
6397 return balance_cpu == env->dst_cpu;
6398 }
6399
6400 /*
6401 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6402 * tasks if there is an imbalance.
6403 */
6404 static int load_balance(int this_cpu, struct rq *this_rq,
6405 struct sched_domain *sd, enum cpu_idle_type idle,
6406 int *continue_balancing)
6407 {
6408 int ld_moved, cur_ld_moved, active_balance = 0;
6409 struct sched_domain *sd_parent = sd->parent;
6410 struct sched_group *group;
6411 struct rq *busiest;
6412 unsigned long flags;
6413 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6414
6415 struct lb_env env = {
6416 .sd = sd,
6417 .dst_cpu = this_cpu,
6418 .dst_rq = this_rq,
6419 .dst_grpmask = sched_group_cpus(sd->groups),
6420 .idle = idle,
6421 .loop_break = sched_nr_migrate_break,
6422 .cpus = cpus,
6423 .fbq_type = all,
6424 };
6425
6426 /*
6427 * For NEWLY_IDLE load_balancing, we don't need to consider
6428 * other cpus in our group
6429 */
6430 if (idle == CPU_NEWLY_IDLE)
6431 env.dst_grpmask = NULL;
6432
6433 cpumask_copy(cpus, cpu_active_mask);
6434
6435 schedstat_inc(sd, lb_count[idle]);
6436
6437 redo:
6438 if (!should_we_balance(&env)) {
6439 *continue_balancing = 0;
6440 goto out_balanced;
6441 }
6442
6443 group = find_busiest_group(&env);
6444 if (!group) {
6445 schedstat_inc(sd, lb_nobusyg[idle]);
6446 goto out_balanced;
6447 }
6448
6449 busiest = find_busiest_queue(&env, group);
6450 if (!busiest) {
6451 schedstat_inc(sd, lb_nobusyq[idle]);
6452 goto out_balanced;
6453 }
6454
6455 BUG_ON(busiest == env.dst_rq);
6456
6457 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6458
6459 ld_moved = 0;
6460 if (busiest->nr_running > 1) {
6461 /*
6462 * Attempt to move tasks. If find_busiest_group has found
6463 * an imbalance but busiest->nr_running <= 1, the group is
6464 * still unbalanced. ld_moved simply stays zero, so it is
6465 * correctly treated as an imbalance.
6466 */
6467 env.flags |= LBF_ALL_PINNED;
6468 env.src_cpu = busiest->cpu;
6469 env.src_rq = busiest;
6470 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6471
6472 more_balance:
6473 local_irq_save(flags);
6474 double_rq_lock(env.dst_rq, busiest);
6475
6476 /*
6477 * cur_ld_moved - load moved in current iteration
6478 * ld_moved - cumulative load moved across iterations
6479 */
6480 cur_ld_moved = move_tasks(&env);
6481 ld_moved += cur_ld_moved;
6482 double_rq_unlock(env.dst_rq, busiest);
6483 local_irq_restore(flags);
6484
6485 /*
6486 * some other cpu did the load balance for us.
6487 */
6488 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6489 resched_cpu(env.dst_cpu);
6490
6491 if (env.flags & LBF_NEED_BREAK) {
6492 env.flags &= ~LBF_NEED_BREAK;
6493 goto more_balance;
6494 }
6495
6496 /*
6497 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6498 * us and move them to an alternate dst_cpu in our sched_group
6499 * where they can run. The upper limit on how many times we
6500 * iterate on same src_cpu is dependent on number of cpus in our
6501 * sched_group.
6502 *
6503 * This changes load balance semantics a bit on who can move
6504 * load to a given_cpu. In addition to the given_cpu itself
6505 * (or a ilb_cpu acting on its behalf where given_cpu is
6506 * nohz-idle), we now have balance_cpu in a position to move
6507 * load to given_cpu. In rare situations, this may cause
6508 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6509 * _independently_ and at _same_ time to move some load to
6510 * given_cpu) causing exceess load to be moved to given_cpu.
6511 * This however should not happen so much in practice and
6512 * moreover subsequent load balance cycles should correct the
6513 * excess load moved.
6514 */
6515 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6516
6517 /* Prevent to re-select dst_cpu via env's cpus */
6518 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6519
6520 env.dst_rq = cpu_rq(env.new_dst_cpu);
6521 env.dst_cpu = env.new_dst_cpu;
6522 env.flags &= ~LBF_DST_PINNED;
6523 env.loop = 0;
6524 env.loop_break = sched_nr_migrate_break;
6525
6526 /*
6527 * Go back to "more_balance" rather than "redo" since we
6528 * need to continue with same src_cpu.
6529 */
6530 goto more_balance;
6531 }
6532
6533 /*
6534 * We failed to reach balance because of affinity.
6535 */
6536 if (sd_parent) {
6537 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6538
6539 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6540 *group_imbalance = 1;
6541 } else if (*group_imbalance)
6542 *group_imbalance = 0;
6543 }
6544
6545 /* All tasks on this runqueue were pinned by CPU affinity */
6546 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6547 cpumask_clear_cpu(cpu_of(busiest), cpus);
6548 if (!cpumask_empty(cpus)) {
6549 env.loop = 0;
6550 env.loop_break = sched_nr_migrate_break;
6551 goto redo;
6552 }
6553 goto out_balanced;
6554 }
6555 }
6556
6557 if (!ld_moved) {
6558 schedstat_inc(sd, lb_failed[idle]);
6559 /*
6560 * Increment the failure counter only on periodic balance.
6561 * We do not want newidle balance, which can be very
6562 * frequent, pollute the failure counter causing
6563 * excessive cache_hot migrations and active balances.
6564 */
6565 if (idle != CPU_NEWLY_IDLE)
6566 sd->nr_balance_failed++;
6567
6568 if (need_active_balance(&env)) {
6569 raw_spin_lock_irqsave(&busiest->lock, flags);
6570
6571 /* don't kick the active_load_balance_cpu_stop,
6572 * if the curr task on busiest cpu can't be
6573 * moved to this_cpu
6574 */
6575 if (!cpumask_test_cpu(this_cpu,
6576 tsk_cpus_allowed(busiest->curr))) {
6577 raw_spin_unlock_irqrestore(&busiest->lock,
6578 flags);
6579 env.flags |= LBF_ALL_PINNED;
6580 goto out_one_pinned;
6581 }
6582
6583 /*
6584 * ->active_balance synchronizes accesses to
6585 * ->active_balance_work. Once set, it's cleared
6586 * only after active load balance is finished.
6587 */
6588 if (!busiest->active_balance) {
6589 busiest->active_balance = 1;
6590 busiest->push_cpu = this_cpu;
6591 active_balance = 1;
6592 }
6593 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6594
6595 if (active_balance) {
6596 stop_one_cpu_nowait(cpu_of(busiest),
6597 active_load_balance_cpu_stop, busiest,
6598 &busiest->active_balance_work);
6599 }
6600
6601 /*
6602 * We've kicked active balancing, reset the failure
6603 * counter.
6604 */
6605 sd->nr_balance_failed = sd->cache_nice_tries+1;
6606 }
6607 } else
6608 sd->nr_balance_failed = 0;
6609
6610 if (likely(!active_balance)) {
6611 /* We were unbalanced, so reset the balancing interval */
6612 sd->balance_interval = sd->min_interval;
6613 } else {
6614 /*
6615 * If we've begun active balancing, start to back off. This
6616 * case may not be covered by the all_pinned logic if there
6617 * is only 1 task on the busy runqueue (because we don't call
6618 * move_tasks).
6619 */
6620 if (sd->balance_interval < sd->max_interval)
6621 sd->balance_interval *= 2;
6622 }
6623
6624 goto out;
6625
6626 out_balanced:
6627 schedstat_inc(sd, lb_balanced[idle]);
6628
6629 sd->nr_balance_failed = 0;
6630
6631 out_one_pinned:
6632 /* tune up the balancing interval */
6633 if (((env.flags & LBF_ALL_PINNED) &&
6634 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6635 (sd->balance_interval < sd->max_interval))
6636 sd->balance_interval *= 2;
6637
6638 ld_moved = 0;
6639 out:
6640 return ld_moved;
6641 }
6642
6643 /*
6644 * idle_balance is called by schedule() if this_cpu is about to become
6645 * idle. Attempts to pull tasks from other CPUs.
6646 */
6647 static int idle_balance(struct rq *this_rq)
6648 {
6649 struct sched_domain *sd;
6650 int pulled_task = 0;
6651 unsigned long next_balance = jiffies + HZ;
6652 u64 curr_cost = 0;
6653 int this_cpu = this_rq->cpu;
6654
6655 idle_enter_fair(this_rq);
6656 /*
6657 * We must set idle_stamp _before_ calling idle_balance(), such that we
6658 * measure the duration of idle_balance() as idle time.
6659 */
6660 this_rq->idle_stamp = rq_clock(this_rq);
6661
6662 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6663 goto out;
6664
6665 /*
6666 * Drop the rq->lock, but keep IRQ/preempt disabled.
6667 */
6668 raw_spin_unlock(&this_rq->lock);
6669
6670 update_blocked_averages(this_cpu);
6671 rcu_read_lock();
6672 for_each_domain(this_cpu, sd) {
6673 unsigned long interval;
6674 int continue_balancing = 1;
6675 u64 t0, domain_cost;
6676
6677 if (!(sd->flags & SD_LOAD_BALANCE))
6678 continue;
6679
6680 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6681 break;
6682
6683 if (sd->flags & SD_BALANCE_NEWIDLE) {
6684 t0 = sched_clock_cpu(this_cpu);
6685
6686 /* If we've pulled tasks over stop searching: */
6687 pulled_task = load_balance(this_cpu, this_rq,
6688 sd, CPU_NEWLY_IDLE,
6689 &continue_balancing);
6690
6691 domain_cost = sched_clock_cpu(this_cpu) - t0;
6692 if (domain_cost > sd->max_newidle_lb_cost)
6693 sd->max_newidle_lb_cost = domain_cost;
6694
6695 curr_cost += domain_cost;
6696 }
6697
6698 interval = msecs_to_jiffies(sd->balance_interval);
6699 if (time_after(next_balance, sd->last_balance + interval))
6700 next_balance = sd->last_balance + interval;
6701 if (pulled_task)
6702 break;
6703 }
6704 rcu_read_unlock();
6705
6706 raw_spin_lock(&this_rq->lock);
6707
6708 /*
6709 * While browsing the domains, we released the rq lock.
6710 * A task could have be enqueued in the meantime
6711 */
6712 if (this_rq->cfs.h_nr_running && !pulled_task) {
6713 pulled_task = 1;
6714 goto out;
6715 }
6716
6717 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6718 /*
6719 * We are going idle. next_balance may be set based on
6720 * a busy processor. So reset next_balance.
6721 */
6722 this_rq->next_balance = next_balance;
6723 }
6724
6725 if (curr_cost > this_rq->max_idle_balance_cost)
6726 this_rq->max_idle_balance_cost = curr_cost;
6727
6728 out:
6729 /* Is there a task of a high priority class? */
6730 if (this_rq->nr_running != this_rq->cfs.h_nr_running &&
6731 ((this_rq->stop && this_rq->stop->on_rq) ||
6732 this_rq->dl.dl_nr_running ||
6733 (this_rq->rt.rt_nr_running && !rt_rq_throttled(&this_rq->rt))))
6734 pulled_task = -1;
6735
6736 if (pulled_task) {
6737 idle_exit_fair(this_rq);
6738 this_rq->idle_stamp = 0;
6739 }
6740
6741 return pulled_task;
6742 }
6743
6744 /*
6745 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6746 * running tasks off the busiest CPU onto idle CPUs. It requires at
6747 * least 1 task to be running on each physical CPU where possible, and
6748 * avoids physical / logical imbalances.
6749 */
6750 static int active_load_balance_cpu_stop(void *data)
6751 {
6752 struct rq *busiest_rq = data;
6753 int busiest_cpu = cpu_of(busiest_rq);
6754 int target_cpu = busiest_rq->push_cpu;
6755 struct rq *target_rq = cpu_rq(target_cpu);
6756 struct sched_domain *sd;
6757
6758 raw_spin_lock_irq(&busiest_rq->lock);
6759
6760 /* make sure the requested cpu hasn't gone down in the meantime */
6761 if (unlikely(busiest_cpu != smp_processor_id() ||
6762 !busiest_rq->active_balance))
6763 goto out_unlock;
6764
6765 /* Is there any task to move? */
6766 if (busiest_rq->nr_running <= 1)
6767 goto out_unlock;
6768
6769 /*
6770 * This condition is "impossible", if it occurs
6771 * we need to fix it. Originally reported by
6772 * Bjorn Helgaas on a 128-cpu setup.
6773 */
6774 BUG_ON(busiest_rq == target_rq);
6775
6776 /* move a task from busiest_rq to target_rq */
6777 double_lock_balance(busiest_rq, target_rq);
6778
6779 /* Search for an sd spanning us and the target CPU. */
6780 rcu_read_lock();
6781 for_each_domain(target_cpu, sd) {
6782 if ((sd->flags & SD_LOAD_BALANCE) &&
6783 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6784 break;
6785 }
6786
6787 if (likely(sd)) {
6788 struct lb_env env = {
6789 .sd = sd,
6790 .dst_cpu = target_cpu,
6791 .dst_rq = target_rq,
6792 .src_cpu = busiest_rq->cpu,
6793 .src_rq = busiest_rq,
6794 .idle = CPU_IDLE,
6795 };
6796
6797 schedstat_inc(sd, alb_count);
6798
6799 if (move_one_task(&env))
6800 schedstat_inc(sd, alb_pushed);
6801 else
6802 schedstat_inc(sd, alb_failed);
6803 }
6804 rcu_read_unlock();
6805 double_unlock_balance(busiest_rq, target_rq);
6806 out_unlock:
6807 busiest_rq->active_balance = 0;
6808 raw_spin_unlock_irq(&busiest_rq->lock);
6809 return 0;
6810 }
6811
6812 static inline int on_null_domain(struct rq *rq)
6813 {
6814 return unlikely(!rcu_dereference_sched(rq->sd));
6815 }
6816
6817 #ifdef CONFIG_NO_HZ_COMMON
6818 /*
6819 * idle load balancing details
6820 * - When one of the busy CPUs notice that there may be an idle rebalancing
6821 * needed, they will kick the idle load balancer, which then does idle
6822 * load balancing for all the idle CPUs.
6823 */
6824 static struct {
6825 cpumask_var_t idle_cpus_mask;
6826 atomic_t nr_cpus;
6827 unsigned long next_balance; /* in jiffy units */
6828 } nohz ____cacheline_aligned;
6829
6830 static inline int find_new_ilb(void)
6831 {
6832 int ilb = cpumask_first(nohz.idle_cpus_mask);
6833
6834 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6835 return ilb;
6836
6837 return nr_cpu_ids;
6838 }
6839
6840 /*
6841 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6842 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6843 * CPU (if there is one).
6844 */
6845 static void nohz_balancer_kick(void)
6846 {
6847 int ilb_cpu;
6848
6849 nohz.next_balance++;
6850
6851 ilb_cpu = find_new_ilb();
6852
6853 if (ilb_cpu >= nr_cpu_ids)
6854 return;
6855
6856 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6857 return;
6858 /*
6859 * Use smp_send_reschedule() instead of resched_cpu().
6860 * This way we generate a sched IPI on the target cpu which
6861 * is idle. And the softirq performing nohz idle load balance
6862 * will be run before returning from the IPI.
6863 */
6864 smp_send_reschedule(ilb_cpu);
6865 return;
6866 }
6867
6868 static inline void nohz_balance_exit_idle(int cpu)
6869 {
6870 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6871 /*
6872 * Completely isolated CPUs don't ever set, so we must test.
6873 */
6874 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6875 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6876 atomic_dec(&nohz.nr_cpus);
6877 }
6878 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6879 }
6880 }
6881
6882 static inline void set_cpu_sd_state_busy(void)
6883 {
6884 struct sched_domain *sd;
6885 int cpu = smp_processor_id();
6886
6887 rcu_read_lock();
6888 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6889
6890 if (!sd || !sd->nohz_idle)
6891 goto unlock;
6892 sd->nohz_idle = 0;
6893
6894 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6895 unlock:
6896 rcu_read_unlock();
6897 }
6898
6899 void set_cpu_sd_state_idle(void)
6900 {
6901 struct sched_domain *sd;
6902 int cpu = smp_processor_id();
6903
6904 rcu_read_lock();
6905 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6906
6907 if (!sd || sd->nohz_idle)
6908 goto unlock;
6909 sd->nohz_idle = 1;
6910
6911 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6912 unlock:
6913 rcu_read_unlock();
6914 }
6915
6916 /*
6917 * This routine will record that the cpu is going idle with tick stopped.
6918 * This info will be used in performing idle load balancing in the future.
6919 */
6920 void nohz_balance_enter_idle(int cpu)
6921 {
6922 /*
6923 * If this cpu is going down, then nothing needs to be done.
6924 */
6925 if (!cpu_active(cpu))
6926 return;
6927
6928 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6929 return;
6930
6931 /*
6932 * If we're a completely isolated CPU, we don't play.
6933 */
6934 if (on_null_domain(cpu_rq(cpu)))
6935 return;
6936
6937 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6938 atomic_inc(&nohz.nr_cpus);
6939 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6940 }
6941
6942 static int sched_ilb_notifier(struct notifier_block *nfb,
6943 unsigned long action, void *hcpu)
6944 {
6945 switch (action & ~CPU_TASKS_FROZEN) {
6946 case CPU_DYING:
6947 nohz_balance_exit_idle(smp_processor_id());
6948 return NOTIFY_OK;
6949 default:
6950 return NOTIFY_DONE;
6951 }
6952 }
6953 #endif
6954
6955 static DEFINE_SPINLOCK(balancing);
6956
6957 /*
6958 * Scale the max load_balance interval with the number of CPUs in the system.
6959 * This trades load-balance latency on larger machines for less cross talk.
6960 */
6961 void update_max_interval(void)
6962 {
6963 max_load_balance_interval = HZ*num_online_cpus()/10;
6964 }
6965
6966 /*
6967 * It checks each scheduling domain to see if it is due to be balanced,
6968 * and initiates a balancing operation if so.
6969 *
6970 * Balancing parameters are set up in init_sched_domains.
6971 */
6972 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
6973 {
6974 int continue_balancing = 1;
6975 int cpu = rq->cpu;
6976 unsigned long interval;
6977 struct sched_domain *sd;
6978 /* Earliest time when we have to do rebalance again */
6979 unsigned long next_balance = jiffies + 60*HZ;
6980 int update_next_balance = 0;
6981 int need_serialize, need_decay = 0;
6982 u64 max_cost = 0;
6983
6984 update_blocked_averages(cpu);
6985
6986 rcu_read_lock();
6987 for_each_domain(cpu, sd) {
6988 /*
6989 * Decay the newidle max times here because this is a regular
6990 * visit to all the domains. Decay ~1% per second.
6991 */
6992 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6993 sd->max_newidle_lb_cost =
6994 (sd->max_newidle_lb_cost * 253) / 256;
6995 sd->next_decay_max_lb_cost = jiffies + HZ;
6996 need_decay = 1;
6997 }
6998 max_cost += sd->max_newidle_lb_cost;
6999
7000 if (!(sd->flags & SD_LOAD_BALANCE))
7001 continue;
7002
7003 /*
7004 * Stop the load balance at this level. There is another
7005 * CPU in our sched group which is doing load balancing more
7006 * actively.
7007 */
7008 if (!continue_balancing) {
7009 if (need_decay)
7010 continue;
7011 break;
7012 }
7013
7014 interval = sd->balance_interval;
7015 if (idle != CPU_IDLE)
7016 interval *= sd->busy_factor;
7017
7018 /* scale ms to jiffies */
7019 interval = msecs_to_jiffies(interval);
7020 interval = clamp(interval, 1UL, max_load_balance_interval);
7021
7022 need_serialize = sd->flags & SD_SERIALIZE;
7023
7024 if (need_serialize) {
7025 if (!spin_trylock(&balancing))
7026 goto out;
7027 }
7028
7029 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7030 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7031 /*
7032 * The LBF_DST_PINNED logic could have changed
7033 * env->dst_cpu, so we can't know our idle
7034 * state even if we migrated tasks. Update it.
7035 */
7036 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7037 }
7038 sd->last_balance = jiffies;
7039 }
7040 if (need_serialize)
7041 spin_unlock(&balancing);
7042 out:
7043 if (time_after(next_balance, sd->last_balance + interval)) {
7044 next_balance = sd->last_balance + interval;
7045 update_next_balance = 1;
7046 }
7047 }
7048 if (need_decay) {
7049 /*
7050 * Ensure the rq-wide value also decays but keep it at a
7051 * reasonable floor to avoid funnies with rq->avg_idle.
7052 */
7053 rq->max_idle_balance_cost =
7054 max((u64)sysctl_sched_migration_cost, max_cost);
7055 }
7056 rcu_read_unlock();
7057
7058 /*
7059 * next_balance will be updated only when there is a need.
7060 * When the cpu is attached to null domain for ex, it will not be
7061 * updated.
7062 */
7063 if (likely(update_next_balance))
7064 rq->next_balance = next_balance;
7065 }
7066
7067 #ifdef CONFIG_NO_HZ_COMMON
7068 /*
7069 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7070 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7071 */
7072 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7073 {
7074 int this_cpu = this_rq->cpu;
7075 struct rq *rq;
7076 int balance_cpu;
7077
7078 if (idle != CPU_IDLE ||
7079 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7080 goto end;
7081
7082 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7083 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7084 continue;
7085
7086 /*
7087 * If this cpu gets work to do, stop the load balancing
7088 * work being done for other cpus. Next load
7089 * balancing owner will pick it up.
7090 */
7091 if (need_resched())
7092 break;
7093
7094 rq = cpu_rq(balance_cpu);
7095
7096 raw_spin_lock_irq(&rq->lock);
7097 update_rq_clock(rq);
7098 update_idle_cpu_load(rq);
7099 raw_spin_unlock_irq(&rq->lock);
7100
7101 rebalance_domains(rq, CPU_IDLE);
7102
7103 if (time_after(this_rq->next_balance, rq->next_balance))
7104 this_rq->next_balance = rq->next_balance;
7105 }
7106 nohz.next_balance = this_rq->next_balance;
7107 end:
7108 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7109 }
7110
7111 /*
7112 * Current heuristic for kicking the idle load balancer in the presence
7113 * of an idle cpu is the system.
7114 * - This rq has more than one task.
7115 * - At any scheduler domain level, this cpu's scheduler group has multiple
7116 * busy cpu's exceeding the group's power.
7117 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7118 * domain span are idle.
7119 */
7120 static inline int nohz_kick_needed(struct rq *rq)
7121 {
7122 unsigned long now = jiffies;
7123 struct sched_domain *sd;
7124 struct sched_group_power *sgp;
7125 int nr_busy, cpu = rq->cpu;
7126
7127 if (unlikely(rq->idle_balance))
7128 return 0;
7129
7130 /*
7131 * We may be recently in ticked or tickless idle mode. At the first
7132 * busy tick after returning from idle, we will update the busy stats.
7133 */
7134 set_cpu_sd_state_busy();
7135 nohz_balance_exit_idle(cpu);
7136
7137 /*
7138 * None are in tickless mode and hence no need for NOHZ idle load
7139 * balancing.
7140 */
7141 if (likely(!atomic_read(&nohz.nr_cpus)))
7142 return 0;
7143
7144 if (time_before(now, nohz.next_balance))
7145 return 0;
7146
7147 if (rq->nr_running >= 2)
7148 goto need_kick;
7149
7150 rcu_read_lock();
7151 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7152
7153 if (sd) {
7154 sgp = sd->groups->sgp;
7155 nr_busy = atomic_read(&sgp->nr_busy_cpus);
7156
7157 if (nr_busy > 1)
7158 goto need_kick_unlock;
7159 }
7160
7161 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7162
7163 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7164 sched_domain_span(sd)) < cpu))
7165 goto need_kick_unlock;
7166
7167 rcu_read_unlock();
7168 return 0;
7169
7170 need_kick_unlock:
7171 rcu_read_unlock();
7172 need_kick:
7173 return 1;
7174 }
7175 #else
7176 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7177 #endif
7178
7179 /*
7180 * run_rebalance_domains is triggered when needed from the scheduler tick.
7181 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7182 */
7183 static void run_rebalance_domains(struct softirq_action *h)
7184 {
7185 struct rq *this_rq = this_rq();
7186 enum cpu_idle_type idle = this_rq->idle_balance ?
7187 CPU_IDLE : CPU_NOT_IDLE;
7188
7189 rebalance_domains(this_rq, idle);
7190
7191 /*
7192 * If this cpu has a pending nohz_balance_kick, then do the
7193 * balancing on behalf of the other idle cpus whose ticks are
7194 * stopped.
7195 */
7196 nohz_idle_balance(this_rq, idle);
7197 }
7198
7199 /*
7200 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7201 */
7202 void trigger_load_balance(struct rq *rq)
7203 {
7204 /* Don't need to rebalance while attached to NULL domain */
7205 if (unlikely(on_null_domain(rq)))
7206 return;
7207
7208 if (time_after_eq(jiffies, rq->next_balance))
7209 raise_softirq(SCHED_SOFTIRQ);
7210 #ifdef CONFIG_NO_HZ_COMMON
7211 if (nohz_kick_needed(rq))
7212 nohz_balancer_kick();
7213 #endif
7214 }
7215
7216 static void rq_online_fair(struct rq *rq)
7217 {
7218 update_sysctl();
7219 }
7220
7221 static void rq_offline_fair(struct rq *rq)
7222 {
7223 update_sysctl();
7224
7225 /* Ensure any throttled groups are reachable by pick_next_task */
7226 unthrottle_offline_cfs_rqs(rq);
7227 }
7228
7229 #endif /* CONFIG_SMP */
7230
7231 /*
7232 * scheduler tick hitting a task of our scheduling class:
7233 */
7234 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7235 {
7236 struct cfs_rq *cfs_rq;
7237 struct sched_entity *se = &curr->se;
7238
7239 for_each_sched_entity(se) {
7240 cfs_rq = cfs_rq_of(se);
7241 entity_tick(cfs_rq, se, queued);
7242 }
7243
7244 if (numabalancing_enabled)
7245 task_tick_numa(rq, curr);
7246
7247 update_rq_runnable_avg(rq, 1);
7248 }
7249
7250 /*
7251 * called on fork with the child task as argument from the parent's context
7252 * - child not yet on the tasklist
7253 * - preemption disabled
7254 */
7255 static void task_fork_fair(struct task_struct *p)
7256 {
7257 struct cfs_rq *cfs_rq;
7258 struct sched_entity *se = &p->se, *curr;
7259 int this_cpu = smp_processor_id();
7260 struct rq *rq = this_rq();
7261 unsigned long flags;
7262
7263 raw_spin_lock_irqsave(&rq->lock, flags);
7264
7265 update_rq_clock(rq);
7266
7267 cfs_rq = task_cfs_rq(current);
7268 curr = cfs_rq->curr;
7269
7270 /*
7271 * Not only the cpu but also the task_group of the parent might have
7272 * been changed after parent->se.parent,cfs_rq were copied to
7273 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7274 * of child point to valid ones.
7275 */
7276 rcu_read_lock();
7277 __set_task_cpu(p, this_cpu);
7278 rcu_read_unlock();
7279
7280 update_curr(cfs_rq);
7281
7282 if (curr)
7283 se->vruntime = curr->vruntime;
7284 place_entity(cfs_rq, se, 1);
7285
7286 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7287 /*
7288 * Upon rescheduling, sched_class::put_prev_task() will place
7289 * 'current' within the tree based on its new key value.
7290 */
7291 swap(curr->vruntime, se->vruntime);
7292 resched_task(rq->curr);
7293 }
7294
7295 se->vruntime -= cfs_rq->min_vruntime;
7296
7297 raw_spin_unlock_irqrestore(&rq->lock, flags);
7298 }
7299
7300 /*
7301 * Priority of the task has changed. Check to see if we preempt
7302 * the current task.
7303 */
7304 static void
7305 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7306 {
7307 if (!p->se.on_rq)
7308 return;
7309
7310 /*
7311 * Reschedule if we are currently running on this runqueue and
7312 * our priority decreased, or if we are not currently running on
7313 * this runqueue and our priority is higher than the current's
7314 */
7315 if (rq->curr == p) {
7316 if (p->prio > oldprio)
7317 resched_task(rq->curr);
7318 } else
7319 check_preempt_curr(rq, p, 0);
7320 }
7321
7322 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7323 {
7324 struct sched_entity *se = &p->se;
7325 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7326
7327 /*
7328 * Ensure the task's vruntime is normalized, so that when it's
7329 * switched back to the fair class the enqueue_entity(.flags=0) will
7330 * do the right thing.
7331 *
7332 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7333 * have normalized the vruntime, if it's !on_rq, then only when
7334 * the task is sleeping will it still have non-normalized vruntime.
7335 */
7336 if (!p->on_rq && p->state != TASK_RUNNING) {
7337 /*
7338 * Fix up our vruntime so that the current sleep doesn't
7339 * cause 'unlimited' sleep bonus.
7340 */
7341 place_entity(cfs_rq, se, 0);
7342 se->vruntime -= cfs_rq->min_vruntime;
7343 }
7344
7345 #ifdef CONFIG_SMP
7346 /*
7347 * Remove our load from contribution when we leave sched_fair
7348 * and ensure we don't carry in an old decay_count if we
7349 * switch back.
7350 */
7351 if (se->avg.decay_count) {
7352 __synchronize_entity_decay(se);
7353 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7354 }
7355 #endif
7356 }
7357
7358 /*
7359 * We switched to the sched_fair class.
7360 */
7361 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7362 {
7363 struct sched_entity *se = &p->se;
7364 #ifdef CONFIG_FAIR_GROUP_SCHED
7365 /*
7366 * Since the real-depth could have been changed (only FAIR
7367 * class maintain depth value), reset depth properly.
7368 */
7369 se->depth = se->parent ? se->parent->depth + 1 : 0;
7370 #endif
7371 if (!se->on_rq)
7372 return;
7373
7374 /*
7375 * We were most likely switched from sched_rt, so
7376 * kick off the schedule if running, otherwise just see
7377 * if we can still preempt the current task.
7378 */
7379 if (rq->curr == p)
7380 resched_task(rq->curr);
7381 else
7382 check_preempt_curr(rq, p, 0);
7383 }
7384
7385 /* Account for a task changing its policy or group.
7386 *
7387 * This routine is mostly called to set cfs_rq->curr field when a task
7388 * migrates between groups/classes.
7389 */
7390 static void set_curr_task_fair(struct rq *rq)
7391 {
7392 struct sched_entity *se = &rq->curr->se;
7393
7394 for_each_sched_entity(se) {
7395 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7396
7397 set_next_entity(cfs_rq, se);
7398 /* ensure bandwidth has been allocated on our new cfs_rq */
7399 account_cfs_rq_runtime(cfs_rq, 0);
7400 }
7401 }
7402
7403 void init_cfs_rq(struct cfs_rq *cfs_rq)
7404 {
7405 cfs_rq->tasks_timeline = RB_ROOT;
7406 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7407 #ifndef CONFIG_64BIT
7408 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7409 #endif
7410 #ifdef CONFIG_SMP
7411 atomic64_set(&cfs_rq->decay_counter, 1);
7412 atomic_long_set(&cfs_rq->removed_load, 0);
7413 #endif
7414 }
7415
7416 #ifdef CONFIG_FAIR_GROUP_SCHED
7417 static void task_move_group_fair(struct task_struct *p, int on_rq)
7418 {
7419 struct sched_entity *se = &p->se;
7420 struct cfs_rq *cfs_rq;
7421
7422 /*
7423 * If the task was not on the rq at the time of this cgroup movement
7424 * it must have been asleep, sleeping tasks keep their ->vruntime
7425 * absolute on their old rq until wakeup (needed for the fair sleeper
7426 * bonus in place_entity()).
7427 *
7428 * If it was on the rq, we've just 'preempted' it, which does convert
7429 * ->vruntime to a relative base.
7430 *
7431 * Make sure both cases convert their relative position when migrating
7432 * to another cgroup's rq. This does somewhat interfere with the
7433 * fair sleeper stuff for the first placement, but who cares.
7434 */
7435 /*
7436 * When !on_rq, vruntime of the task has usually NOT been normalized.
7437 * But there are some cases where it has already been normalized:
7438 *
7439 * - Moving a forked child which is waiting for being woken up by
7440 * wake_up_new_task().
7441 * - Moving a task which has been woken up by try_to_wake_up() and
7442 * waiting for actually being woken up by sched_ttwu_pending().
7443 *
7444 * To prevent boost or penalty in the new cfs_rq caused by delta
7445 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7446 */
7447 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7448 on_rq = 1;
7449
7450 if (!on_rq)
7451 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7452 set_task_rq(p, task_cpu(p));
7453 se->depth = se->parent ? se->parent->depth + 1 : 0;
7454 if (!on_rq) {
7455 cfs_rq = cfs_rq_of(se);
7456 se->vruntime += cfs_rq->min_vruntime;
7457 #ifdef CONFIG_SMP
7458 /*
7459 * migrate_task_rq_fair() will have removed our previous
7460 * contribution, but we must synchronize for ongoing future
7461 * decay.
7462 */
7463 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7464 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7465 #endif
7466 }
7467 }
7468
7469 void free_fair_sched_group(struct task_group *tg)
7470 {
7471 int i;
7472
7473 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7474
7475 for_each_possible_cpu(i) {
7476 if (tg->cfs_rq)
7477 kfree(tg->cfs_rq[i]);
7478 if (tg->se)
7479 kfree(tg->se[i]);
7480 }
7481
7482 kfree(tg->cfs_rq);
7483 kfree(tg->se);
7484 }
7485
7486 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7487 {
7488 struct cfs_rq *cfs_rq;
7489 struct sched_entity *se;
7490 int i;
7491
7492 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7493 if (!tg->cfs_rq)
7494 goto err;
7495 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7496 if (!tg->se)
7497 goto err;
7498
7499 tg->shares = NICE_0_LOAD;
7500
7501 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7502
7503 for_each_possible_cpu(i) {
7504 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7505 GFP_KERNEL, cpu_to_node(i));
7506 if (!cfs_rq)
7507 goto err;
7508
7509 se = kzalloc_node(sizeof(struct sched_entity),
7510 GFP_KERNEL, cpu_to_node(i));
7511 if (!se)
7512 goto err_free_rq;
7513
7514 init_cfs_rq(cfs_rq);
7515 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7516 }
7517
7518 return 1;
7519
7520 err_free_rq:
7521 kfree(cfs_rq);
7522 err:
7523 return 0;
7524 }
7525
7526 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7527 {
7528 struct rq *rq = cpu_rq(cpu);
7529 unsigned long flags;
7530
7531 /*
7532 * Only empty task groups can be destroyed; so we can speculatively
7533 * check on_list without danger of it being re-added.
7534 */
7535 if (!tg->cfs_rq[cpu]->on_list)
7536 return;
7537
7538 raw_spin_lock_irqsave(&rq->lock, flags);
7539 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7540 raw_spin_unlock_irqrestore(&rq->lock, flags);
7541 }
7542
7543 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7544 struct sched_entity *se, int cpu,
7545 struct sched_entity *parent)
7546 {
7547 struct rq *rq = cpu_rq(cpu);
7548
7549 cfs_rq->tg = tg;
7550 cfs_rq->rq = rq;
7551 init_cfs_rq_runtime(cfs_rq);
7552
7553 tg->cfs_rq[cpu] = cfs_rq;
7554 tg->se[cpu] = se;
7555
7556 /* se could be NULL for root_task_group */
7557 if (!se)
7558 return;
7559
7560 if (!parent) {
7561 se->cfs_rq = &rq->cfs;
7562 se->depth = 0;
7563 } else {
7564 se->cfs_rq = parent->my_q;
7565 se->depth = parent->depth + 1;
7566 }
7567
7568 se->my_q = cfs_rq;
7569 /* guarantee group entities always have weight */
7570 update_load_set(&se->load, NICE_0_LOAD);
7571 se->parent = parent;
7572 }
7573
7574 static DEFINE_MUTEX(shares_mutex);
7575
7576 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7577 {
7578 int i;
7579 unsigned long flags;
7580
7581 /*
7582 * We can't change the weight of the root cgroup.
7583 */
7584 if (!tg->se[0])
7585 return -EINVAL;
7586
7587 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7588
7589 mutex_lock(&shares_mutex);
7590 if (tg->shares == shares)
7591 goto done;
7592
7593 tg->shares = shares;
7594 for_each_possible_cpu(i) {
7595 struct rq *rq = cpu_rq(i);
7596 struct sched_entity *se;
7597
7598 se = tg->se[i];
7599 /* Propagate contribution to hierarchy */
7600 raw_spin_lock_irqsave(&rq->lock, flags);
7601
7602 /* Possible calls to update_curr() need rq clock */
7603 update_rq_clock(rq);
7604 for_each_sched_entity(se)
7605 update_cfs_shares(group_cfs_rq(se));
7606 raw_spin_unlock_irqrestore(&rq->lock, flags);
7607 }
7608
7609 done:
7610 mutex_unlock(&shares_mutex);
7611 return 0;
7612 }
7613 #else /* CONFIG_FAIR_GROUP_SCHED */
7614
7615 void free_fair_sched_group(struct task_group *tg) { }
7616
7617 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7618 {
7619 return 1;
7620 }
7621
7622 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7623
7624 #endif /* CONFIG_FAIR_GROUP_SCHED */
7625
7626
7627 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7628 {
7629 struct sched_entity *se = &task->se;
7630 unsigned int rr_interval = 0;
7631
7632 /*
7633 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7634 * idle runqueue:
7635 */
7636 if (rq->cfs.load.weight)
7637 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7638
7639 return rr_interval;
7640 }
7641
7642 /*
7643 * All the scheduling class methods:
7644 */
7645 const struct sched_class fair_sched_class = {
7646 .next = &idle_sched_class,
7647 .enqueue_task = enqueue_task_fair,
7648 .dequeue_task = dequeue_task_fair,
7649 .yield_task = yield_task_fair,
7650 .yield_to_task = yield_to_task_fair,
7651
7652 .check_preempt_curr = check_preempt_wakeup,
7653
7654 .pick_next_task = pick_next_task_fair,
7655 .put_prev_task = put_prev_task_fair,
7656
7657 #ifdef CONFIG_SMP
7658 .select_task_rq = select_task_rq_fair,
7659 .migrate_task_rq = migrate_task_rq_fair,
7660
7661 .rq_online = rq_online_fair,
7662 .rq_offline = rq_offline_fair,
7663
7664 .task_waking = task_waking_fair,
7665 #endif
7666
7667 .set_curr_task = set_curr_task_fair,
7668 .task_tick = task_tick_fair,
7669 .task_fork = task_fork_fair,
7670
7671 .prio_changed = prio_changed_fair,
7672 .switched_from = switched_from_fair,
7673 .switched_to = switched_to_fair,
7674
7675 .get_rr_interval = get_rr_interval_fair,
7676
7677 #ifdef CONFIG_FAIR_GROUP_SCHED
7678 .task_move_group = task_move_group_fair,
7679 #endif
7680 };
7681
7682 #ifdef CONFIG_SCHED_DEBUG
7683 void print_cfs_stats(struct seq_file *m, int cpu)
7684 {
7685 struct cfs_rq *cfs_rq;
7686
7687 rcu_read_lock();
7688 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7689 print_cfs_rq(m, cpu, cfs_rq);
7690 rcu_read_unlock();
7691 }
7692 #endif
7693
7694 __init void init_sched_fair_class(void)
7695 {
7696 #ifdef CONFIG_SMP
7697 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7698
7699 #ifdef CONFIG_NO_HZ_COMMON
7700 nohz.next_balance = jiffies;
7701 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7702 cpu_notifier(sched_ilb_notifier, 0);
7703 #endif
7704 #endif /* SMP */
7705
7706 }
This page took 0.201723 seconds and 5 git commands to generate.