sched/numa: Reschedule task on preferred NUMA node once selected
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
183 #else
184 # define WMULT_CONST (1UL << 32)
185 #endif
186
187 #define WMULT_SHIFT 32
188
189 /*
190 * Shift right and round:
191 */
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194 /*
195 * delta *= weight / lw
196 */
197 static unsigned long
198 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200 {
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234 }
235
236
237 const struct sched_class fair_sched_class;
238
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247 {
248 return cfs_rq->rq;
249 }
250
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
253
254 static inline struct task_struct *task_of(struct sched_entity *se)
255 {
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258 #endif
259 return container_of(se, struct task_struct, se);
260 }
261
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267 {
268 return p->se.cfs_rq;
269 }
270
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273 {
274 return se->cfs_rq;
275 }
276
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279 {
280 return grp->my_q;
281 }
282
283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq, 0);
307 }
308 }
309
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316 }
317
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322 /* Do the two (enqueued) entities belong to the same group ? */
323 static inline int
324 is_same_group(struct sched_entity *se, struct sched_entity *pse)
325 {
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330 }
331
332 static inline struct sched_entity *parent_entity(struct sched_entity *se)
333 {
334 return se->parent;
335 }
336
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity *se)
339 {
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346 }
347
348 static void
349 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350 {
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378 }
379
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
381
382 static inline struct task_struct *task_of(struct sched_entity *se)
383 {
384 return container_of(se, struct task_struct, se);
385 }
386
387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388 {
389 return container_of(cfs_rq, struct rq, cfs);
390 }
391
392 #define entity_is_task(se) 1
393
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
396
397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398 {
399 return &task_rq(p)->cfs;
400 }
401
402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403 {
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408 }
409
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412 {
413 return NULL;
414 }
415
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417 {
418 }
419
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421 {
422 }
423
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427 static inline int
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
429 {
430 return 1;
431 }
432
433 static inline struct sched_entity *parent_entity(struct sched_entity *se)
434 {
435 return NULL;
436 }
437
438 static inline void
439 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440 {
441 }
442
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
444
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453 {
454 s64 delta = (s64)(vruntime - max_vruntime);
455 if (delta > 0)
456 max_vruntime = vruntime;
457
458 return max_vruntime;
459 }
460
461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
462 {
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468 }
469
470 static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472 {
473 return (s64)(a->vruntime - b->vruntime) < 0;
474 }
475
476 static void update_min_vruntime(struct cfs_rq *cfs_rq)
477 {
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
488 if (!cfs_rq->curr)
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 #ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499 #endif
500 }
501
502 /*
503 * Enqueue an entity into the rb-tree:
504 */
505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 {
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
522 if (entity_before(se, entry)) {
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
534 if (leftmost)
535 cfs_rq->rb_leftmost = &se->run_node;
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
539 }
540
541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
548 }
549
550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
551 }
552
553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554 {
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
561 }
562
563 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564 {
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571 }
572
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575 {
576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577
578 if (!last)
579 return NULL;
580
581 return rb_entry(last, struct sched_entity, run_node);
582 }
583
584 /**************************************************************
585 * Scheduling class statistics methods:
586 */
587
588 int sched_proc_update_handler(struct ctl_table *table, int write,
589 void __user *buffer, size_t *lenp,
590 loff_t *ppos)
591 {
592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593 int factor = get_update_sysctl_factor();
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
606 #undef WRT_SYSCTL
607
608 return 0;
609 }
610 #endif
611
612 /*
613 * delta /= w
614 */
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta, struct sched_entity *se)
617 {
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620
621 return delta;
622 }
623
624 /*
625 * The idea is to set a period in which each task runs once.
626 *
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
632 static u64 __sched_period(unsigned long nr_running)
633 {
634 u64 period = sysctl_sched_latency;
635 unsigned long nr_latency = sched_nr_latency;
636
637 if (unlikely(nr_running > nr_latency)) {
638 period = sysctl_sched_min_granularity;
639 period *= nr_running;
640 }
641
642 return period;
643 }
644
645 /*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
649 * s = p*P[w/rw]
650 */
651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654
655 for_each_sched_entity(se) {
656 struct load_weight *load;
657 struct load_weight lw;
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
661
662 if (unlikely(!se->on_rq)) {
663 lw = cfs_rq->load;
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
671 }
672
673 /*
674 * We calculate the vruntime slice of a to-be-inserted task.
675 *
676 * vs = s/w
677 */
678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
679 {
680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 }
682
683 #ifdef CONFIG_SMP
684 static inline void __update_task_entity_contrib(struct sched_entity *se);
685
686 /* Give new task start runnable values to heavy its load in infant time */
687 void init_task_runnable_average(struct task_struct *p)
688 {
689 u32 slice;
690
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
696 }
697 #else
698 void init_task_runnable_average(struct task_struct *p)
699 {
700 }
701 #endif
702
703 /*
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
706 */
707 static inline void
708 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
710 {
711 unsigned long delta_exec_weighted;
712
713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
715
716 curr->sum_exec_runtime += delta_exec;
717 schedstat_add(cfs_rq, exec_clock, delta_exec);
718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
719
720 curr->vruntime += delta_exec_weighted;
721 update_min_vruntime(cfs_rq);
722 }
723
724 static void update_curr(struct cfs_rq *cfs_rq)
725 {
726 struct sched_entity *curr = cfs_rq->curr;
727 u64 now = rq_clock_task(rq_of(cfs_rq));
728 unsigned long delta_exec;
729
730 if (unlikely(!curr))
731 return;
732
733 /*
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
737 */
738 delta_exec = (unsigned long)(now - curr->exec_start);
739 if (!delta_exec)
740 return;
741
742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
744
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
747
748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
749 cpuacct_charge(curtask, delta_exec);
750 account_group_exec_runtime(curtask, delta_exec);
751 }
752
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
754 }
755
756 static inline void
757 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
758 {
759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
760 }
761
762 /*
763 * Task is being enqueued - update stats:
764 */
765 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
766 {
767 /*
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
770 */
771 if (se != cfs_rq->curr)
772 update_stats_wait_start(cfs_rq, se);
773 }
774
775 static void
776 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
777 {
778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
783 #ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
787 }
788 #endif
789 schedstat_set(se->statistics.wait_start, 0);
790 }
791
792 static inline void
793 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 {
795 /*
796 * Mark the end of the wait period if dequeueing a
797 * waiting task:
798 */
799 if (se != cfs_rq->curr)
800 update_stats_wait_end(cfs_rq, se);
801 }
802
803 /*
804 * We are picking a new current task - update its stats:
805 */
806 static inline void
807 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
808 {
809 /*
810 * We are starting a new run period:
811 */
812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
813 }
814
815 /**************************************************
816 * Scheduling class queueing methods:
817 */
818
819 #ifdef CONFIG_NUMA_BALANCING
820 /*
821 * Approximate time to scan a full NUMA task in ms. The task scan period is
822 * calculated based on the tasks virtual memory size and
823 * numa_balancing_scan_size.
824 */
825 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
826 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
827 unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
828
829 /* Portion of address space to scan in MB */
830 unsigned int sysctl_numa_balancing_scan_size = 256;
831
832 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
833 unsigned int sysctl_numa_balancing_scan_delay = 1000;
834
835 static unsigned int task_nr_scan_windows(struct task_struct *p)
836 {
837 unsigned long rss = 0;
838 unsigned long nr_scan_pages;
839
840 /*
841 * Calculations based on RSS as non-present and empty pages are skipped
842 * by the PTE scanner and NUMA hinting faults should be trapped based
843 * on resident pages
844 */
845 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
846 rss = get_mm_rss(p->mm);
847 if (!rss)
848 rss = nr_scan_pages;
849
850 rss = round_up(rss, nr_scan_pages);
851 return rss / nr_scan_pages;
852 }
853
854 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
855 #define MAX_SCAN_WINDOW 2560
856
857 static unsigned int task_scan_min(struct task_struct *p)
858 {
859 unsigned int scan, floor;
860 unsigned int windows = 1;
861
862 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
863 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
864 floor = 1000 / windows;
865
866 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
867 return max_t(unsigned int, floor, scan);
868 }
869
870 static unsigned int task_scan_max(struct task_struct *p)
871 {
872 unsigned int smin = task_scan_min(p);
873 unsigned int smax;
874
875 /* Watch for min being lower than max due to floor calculations */
876 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
877 return max(smin, smax);
878 }
879
880 /*
881 * Once a preferred node is selected the scheduler balancer will prefer moving
882 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
883 * scans. This will give the process the chance to accumulate more faults on
884 * the preferred node but still allow the scheduler to move the task again if
885 * the nodes CPUs are overloaded.
886 */
887 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 3;
888
889 static unsigned long weighted_cpuload(const int cpu);
890
891
892 static int
893 find_idlest_cpu_node(int this_cpu, int nid)
894 {
895 unsigned long load, min_load = ULONG_MAX;
896 int i, idlest_cpu = this_cpu;
897
898 BUG_ON(cpu_to_node(this_cpu) == nid);
899
900 rcu_read_lock();
901 for_each_cpu(i, cpumask_of_node(nid)) {
902 load = weighted_cpuload(i);
903
904 if (load < min_load) {
905 min_load = load;
906 idlest_cpu = i;
907 }
908 }
909 rcu_read_unlock();
910
911 return idlest_cpu;
912 }
913
914 static void task_numa_placement(struct task_struct *p)
915 {
916 int seq, nid, max_nid = -1;
917 unsigned long max_faults = 0;
918
919 if (!p->mm) /* for example, ksmd faulting in a user's mm */
920 return;
921 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
922 if (p->numa_scan_seq == seq)
923 return;
924 p->numa_scan_seq = seq;
925 p->numa_migrate_seq++;
926 p->numa_scan_period_max = task_scan_max(p);
927
928 /* Find the node with the highest number of faults */
929 for_each_online_node(nid) {
930 unsigned long faults;
931
932 /* Decay existing window and copy faults since last scan */
933 p->numa_faults[nid] >>= 1;
934 p->numa_faults[nid] += p->numa_faults_buffer[nid];
935 p->numa_faults_buffer[nid] = 0;
936
937 faults = p->numa_faults[nid];
938 if (faults > max_faults) {
939 max_faults = faults;
940 max_nid = nid;
941 }
942 }
943
944 /*
945 * Record the preferred node as the node with the most faults,
946 * requeue the task to be running on the idlest CPU on the
947 * preferred node and reset the scanning rate to recheck
948 * the working set placement.
949 */
950 if (max_faults && max_nid != p->numa_preferred_nid) {
951 int preferred_cpu;
952
953 /*
954 * If the task is not on the preferred node then find the most
955 * idle CPU to migrate to.
956 */
957 preferred_cpu = task_cpu(p);
958 if (cpu_to_node(preferred_cpu) != max_nid) {
959 preferred_cpu = find_idlest_cpu_node(preferred_cpu,
960 max_nid);
961 }
962
963 /* Update the preferred nid and migrate task if possible */
964 p->numa_preferred_nid = max_nid;
965 p->numa_migrate_seq = 0;
966 migrate_task_to(p, preferred_cpu);
967 }
968 }
969
970 /*
971 * Got a PROT_NONE fault for a page on @node.
972 */
973 void task_numa_fault(int node, int pages, bool migrated)
974 {
975 struct task_struct *p = current;
976
977 if (!numabalancing_enabled)
978 return;
979
980 /* Allocate buffer to track faults on a per-node basis */
981 if (unlikely(!p->numa_faults)) {
982 int size = sizeof(*p->numa_faults) * nr_node_ids;
983
984 /* numa_faults and numa_faults_buffer share the allocation */
985 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
986 if (!p->numa_faults)
987 return;
988
989 BUG_ON(p->numa_faults_buffer);
990 p->numa_faults_buffer = p->numa_faults + nr_node_ids;
991 }
992
993 /*
994 * If pages are properly placed (did not migrate) then scan slower.
995 * This is reset periodically in case of phase changes
996 */
997 if (!migrated) {
998 /* Initialise if necessary */
999 if (!p->numa_scan_period_max)
1000 p->numa_scan_period_max = task_scan_max(p);
1001
1002 p->numa_scan_period = min(p->numa_scan_period_max,
1003 p->numa_scan_period + 10);
1004 }
1005
1006 task_numa_placement(p);
1007
1008 p->numa_faults_buffer[node] += pages;
1009 }
1010
1011 static void reset_ptenuma_scan(struct task_struct *p)
1012 {
1013 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1014 p->mm->numa_scan_offset = 0;
1015 }
1016
1017 /*
1018 * The expensive part of numa migration is done from task_work context.
1019 * Triggered from task_tick_numa().
1020 */
1021 void task_numa_work(struct callback_head *work)
1022 {
1023 unsigned long migrate, next_scan, now = jiffies;
1024 struct task_struct *p = current;
1025 struct mm_struct *mm = p->mm;
1026 struct vm_area_struct *vma;
1027 unsigned long start, end;
1028 unsigned long nr_pte_updates = 0;
1029 long pages;
1030
1031 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1032
1033 work->next = work; /* protect against double add */
1034 /*
1035 * Who cares about NUMA placement when they're dying.
1036 *
1037 * NOTE: make sure not to dereference p->mm before this check,
1038 * exit_task_work() happens _after_ exit_mm() so we could be called
1039 * without p->mm even though we still had it when we enqueued this
1040 * work.
1041 */
1042 if (p->flags & PF_EXITING)
1043 return;
1044
1045 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1046 mm->numa_next_scan = now +
1047 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1048 mm->numa_next_reset = now +
1049 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1050 }
1051
1052 /*
1053 * Reset the scan period if enough time has gone by. Objective is that
1054 * scanning will be reduced if pages are properly placed. As tasks
1055 * can enter different phases this needs to be re-examined. Lacking
1056 * proper tracking of reference behaviour, this blunt hammer is used.
1057 */
1058 migrate = mm->numa_next_reset;
1059 if (time_after(now, migrate)) {
1060 p->numa_scan_period = task_scan_min(p);
1061 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1062 xchg(&mm->numa_next_reset, next_scan);
1063 }
1064
1065 /*
1066 * Enforce maximal scan/migration frequency..
1067 */
1068 migrate = mm->numa_next_scan;
1069 if (time_before(now, migrate))
1070 return;
1071
1072 if (p->numa_scan_period == 0) {
1073 p->numa_scan_period_max = task_scan_max(p);
1074 p->numa_scan_period = task_scan_min(p);
1075 }
1076
1077 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1078 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1079 return;
1080
1081 /*
1082 * Delay this task enough that another task of this mm will likely win
1083 * the next time around.
1084 */
1085 p->node_stamp += 2 * TICK_NSEC;
1086
1087 start = mm->numa_scan_offset;
1088 pages = sysctl_numa_balancing_scan_size;
1089 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1090 if (!pages)
1091 return;
1092
1093 down_read(&mm->mmap_sem);
1094 vma = find_vma(mm, start);
1095 if (!vma) {
1096 reset_ptenuma_scan(p);
1097 start = 0;
1098 vma = mm->mmap;
1099 }
1100 for (; vma; vma = vma->vm_next) {
1101 if (!vma_migratable(vma))
1102 continue;
1103
1104 /* Skip small VMAs. They are not likely to be of relevance */
1105 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
1106 continue;
1107
1108 do {
1109 start = max(start, vma->vm_start);
1110 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1111 end = min(end, vma->vm_end);
1112 nr_pte_updates += change_prot_numa(vma, start, end);
1113
1114 /*
1115 * Scan sysctl_numa_balancing_scan_size but ensure that
1116 * at least one PTE is updated so that unused virtual
1117 * address space is quickly skipped.
1118 */
1119 if (nr_pte_updates)
1120 pages -= (end - start) >> PAGE_SHIFT;
1121
1122 start = end;
1123 if (pages <= 0)
1124 goto out;
1125 } while (end != vma->vm_end);
1126 }
1127
1128 out:
1129 /*
1130 * If the whole process was scanned without updates then no NUMA
1131 * hinting faults are being recorded and scan rate should be lower.
1132 */
1133 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1134 p->numa_scan_period = min(p->numa_scan_period_max,
1135 p->numa_scan_period << 1);
1136
1137 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1138 mm->numa_next_scan = next_scan;
1139 }
1140
1141 /*
1142 * It is possible to reach the end of the VMA list but the last few
1143 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1144 * would find the !migratable VMA on the next scan but not reset the
1145 * scanner to the start so check it now.
1146 */
1147 if (vma)
1148 mm->numa_scan_offset = start;
1149 else
1150 reset_ptenuma_scan(p);
1151 up_read(&mm->mmap_sem);
1152 }
1153
1154 /*
1155 * Drive the periodic memory faults..
1156 */
1157 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1158 {
1159 struct callback_head *work = &curr->numa_work;
1160 u64 period, now;
1161
1162 /*
1163 * We don't care about NUMA placement if we don't have memory.
1164 */
1165 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1166 return;
1167
1168 /*
1169 * Using runtime rather than walltime has the dual advantage that
1170 * we (mostly) drive the selection from busy threads and that the
1171 * task needs to have done some actual work before we bother with
1172 * NUMA placement.
1173 */
1174 now = curr->se.sum_exec_runtime;
1175 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1176
1177 if (now - curr->node_stamp > period) {
1178 if (!curr->node_stamp)
1179 curr->numa_scan_period = task_scan_min(curr);
1180 curr->node_stamp += period;
1181
1182 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1183 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1184 task_work_add(curr, work, true);
1185 }
1186 }
1187 }
1188 #else
1189 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1190 {
1191 }
1192 #endif /* CONFIG_NUMA_BALANCING */
1193
1194 static void
1195 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1196 {
1197 update_load_add(&cfs_rq->load, se->load.weight);
1198 if (!parent_entity(se))
1199 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1200 #ifdef CONFIG_SMP
1201 if (entity_is_task(se))
1202 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1203 #endif
1204 cfs_rq->nr_running++;
1205 }
1206
1207 static void
1208 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1209 {
1210 update_load_sub(&cfs_rq->load, se->load.weight);
1211 if (!parent_entity(se))
1212 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1213 if (entity_is_task(se))
1214 list_del_init(&se->group_node);
1215 cfs_rq->nr_running--;
1216 }
1217
1218 #ifdef CONFIG_FAIR_GROUP_SCHED
1219 # ifdef CONFIG_SMP
1220 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1221 {
1222 long tg_weight;
1223
1224 /*
1225 * Use this CPU's actual weight instead of the last load_contribution
1226 * to gain a more accurate current total weight. See
1227 * update_cfs_rq_load_contribution().
1228 */
1229 tg_weight = atomic_long_read(&tg->load_avg);
1230 tg_weight -= cfs_rq->tg_load_contrib;
1231 tg_weight += cfs_rq->load.weight;
1232
1233 return tg_weight;
1234 }
1235
1236 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1237 {
1238 long tg_weight, load, shares;
1239
1240 tg_weight = calc_tg_weight(tg, cfs_rq);
1241 load = cfs_rq->load.weight;
1242
1243 shares = (tg->shares * load);
1244 if (tg_weight)
1245 shares /= tg_weight;
1246
1247 if (shares < MIN_SHARES)
1248 shares = MIN_SHARES;
1249 if (shares > tg->shares)
1250 shares = tg->shares;
1251
1252 return shares;
1253 }
1254 # else /* CONFIG_SMP */
1255 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1256 {
1257 return tg->shares;
1258 }
1259 # endif /* CONFIG_SMP */
1260 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1261 unsigned long weight)
1262 {
1263 if (se->on_rq) {
1264 /* commit outstanding execution time */
1265 if (cfs_rq->curr == se)
1266 update_curr(cfs_rq);
1267 account_entity_dequeue(cfs_rq, se);
1268 }
1269
1270 update_load_set(&se->load, weight);
1271
1272 if (se->on_rq)
1273 account_entity_enqueue(cfs_rq, se);
1274 }
1275
1276 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1277
1278 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1279 {
1280 struct task_group *tg;
1281 struct sched_entity *se;
1282 long shares;
1283
1284 tg = cfs_rq->tg;
1285 se = tg->se[cpu_of(rq_of(cfs_rq))];
1286 if (!se || throttled_hierarchy(cfs_rq))
1287 return;
1288 #ifndef CONFIG_SMP
1289 if (likely(se->load.weight == tg->shares))
1290 return;
1291 #endif
1292 shares = calc_cfs_shares(cfs_rq, tg);
1293
1294 reweight_entity(cfs_rq_of(se), se, shares);
1295 }
1296 #else /* CONFIG_FAIR_GROUP_SCHED */
1297 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1298 {
1299 }
1300 #endif /* CONFIG_FAIR_GROUP_SCHED */
1301
1302 #ifdef CONFIG_SMP
1303 /*
1304 * We choose a half-life close to 1 scheduling period.
1305 * Note: The tables below are dependent on this value.
1306 */
1307 #define LOAD_AVG_PERIOD 32
1308 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1309 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1310
1311 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1312 static const u32 runnable_avg_yN_inv[] = {
1313 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1314 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1315 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1316 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1317 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1318 0x85aac367, 0x82cd8698,
1319 };
1320
1321 /*
1322 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1323 * over-estimates when re-combining.
1324 */
1325 static const u32 runnable_avg_yN_sum[] = {
1326 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1327 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1328 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1329 };
1330
1331 /*
1332 * Approximate:
1333 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1334 */
1335 static __always_inline u64 decay_load(u64 val, u64 n)
1336 {
1337 unsigned int local_n;
1338
1339 if (!n)
1340 return val;
1341 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1342 return 0;
1343
1344 /* after bounds checking we can collapse to 32-bit */
1345 local_n = n;
1346
1347 /*
1348 * As y^PERIOD = 1/2, we can combine
1349 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1350 * With a look-up table which covers k^n (n<PERIOD)
1351 *
1352 * To achieve constant time decay_load.
1353 */
1354 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1355 val >>= local_n / LOAD_AVG_PERIOD;
1356 local_n %= LOAD_AVG_PERIOD;
1357 }
1358
1359 val *= runnable_avg_yN_inv[local_n];
1360 /* We don't use SRR here since we always want to round down. */
1361 return val >> 32;
1362 }
1363
1364 /*
1365 * For updates fully spanning n periods, the contribution to runnable
1366 * average will be: \Sum 1024*y^n
1367 *
1368 * We can compute this reasonably efficiently by combining:
1369 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1370 */
1371 static u32 __compute_runnable_contrib(u64 n)
1372 {
1373 u32 contrib = 0;
1374
1375 if (likely(n <= LOAD_AVG_PERIOD))
1376 return runnable_avg_yN_sum[n];
1377 else if (unlikely(n >= LOAD_AVG_MAX_N))
1378 return LOAD_AVG_MAX;
1379
1380 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1381 do {
1382 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1383 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1384
1385 n -= LOAD_AVG_PERIOD;
1386 } while (n > LOAD_AVG_PERIOD);
1387
1388 contrib = decay_load(contrib, n);
1389 return contrib + runnable_avg_yN_sum[n];
1390 }
1391
1392 /*
1393 * We can represent the historical contribution to runnable average as the
1394 * coefficients of a geometric series. To do this we sub-divide our runnable
1395 * history into segments of approximately 1ms (1024us); label the segment that
1396 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1397 *
1398 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1399 * p0 p1 p2
1400 * (now) (~1ms ago) (~2ms ago)
1401 *
1402 * Let u_i denote the fraction of p_i that the entity was runnable.
1403 *
1404 * We then designate the fractions u_i as our co-efficients, yielding the
1405 * following representation of historical load:
1406 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1407 *
1408 * We choose y based on the with of a reasonably scheduling period, fixing:
1409 * y^32 = 0.5
1410 *
1411 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1412 * approximately half as much as the contribution to load within the last ms
1413 * (u_0).
1414 *
1415 * When a period "rolls over" and we have new u_0`, multiplying the previous
1416 * sum again by y is sufficient to update:
1417 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1418 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1419 */
1420 static __always_inline int __update_entity_runnable_avg(u64 now,
1421 struct sched_avg *sa,
1422 int runnable)
1423 {
1424 u64 delta, periods;
1425 u32 runnable_contrib;
1426 int delta_w, decayed = 0;
1427
1428 delta = now - sa->last_runnable_update;
1429 /*
1430 * This should only happen when time goes backwards, which it
1431 * unfortunately does during sched clock init when we swap over to TSC.
1432 */
1433 if ((s64)delta < 0) {
1434 sa->last_runnable_update = now;
1435 return 0;
1436 }
1437
1438 /*
1439 * Use 1024ns as the unit of measurement since it's a reasonable
1440 * approximation of 1us and fast to compute.
1441 */
1442 delta >>= 10;
1443 if (!delta)
1444 return 0;
1445 sa->last_runnable_update = now;
1446
1447 /* delta_w is the amount already accumulated against our next period */
1448 delta_w = sa->runnable_avg_period % 1024;
1449 if (delta + delta_w >= 1024) {
1450 /* period roll-over */
1451 decayed = 1;
1452
1453 /*
1454 * Now that we know we're crossing a period boundary, figure
1455 * out how much from delta we need to complete the current
1456 * period and accrue it.
1457 */
1458 delta_w = 1024 - delta_w;
1459 if (runnable)
1460 sa->runnable_avg_sum += delta_w;
1461 sa->runnable_avg_period += delta_w;
1462
1463 delta -= delta_w;
1464
1465 /* Figure out how many additional periods this update spans */
1466 periods = delta / 1024;
1467 delta %= 1024;
1468
1469 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1470 periods + 1);
1471 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1472 periods + 1);
1473
1474 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1475 runnable_contrib = __compute_runnable_contrib(periods);
1476 if (runnable)
1477 sa->runnable_avg_sum += runnable_contrib;
1478 sa->runnable_avg_period += runnable_contrib;
1479 }
1480
1481 /* Remainder of delta accrued against u_0` */
1482 if (runnable)
1483 sa->runnable_avg_sum += delta;
1484 sa->runnable_avg_period += delta;
1485
1486 return decayed;
1487 }
1488
1489 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1490 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1491 {
1492 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1493 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1494
1495 decays -= se->avg.decay_count;
1496 if (!decays)
1497 return 0;
1498
1499 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1500 se->avg.decay_count = 0;
1501
1502 return decays;
1503 }
1504
1505 #ifdef CONFIG_FAIR_GROUP_SCHED
1506 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1507 int force_update)
1508 {
1509 struct task_group *tg = cfs_rq->tg;
1510 long tg_contrib;
1511
1512 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1513 tg_contrib -= cfs_rq->tg_load_contrib;
1514
1515 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1516 atomic_long_add(tg_contrib, &tg->load_avg);
1517 cfs_rq->tg_load_contrib += tg_contrib;
1518 }
1519 }
1520
1521 /*
1522 * Aggregate cfs_rq runnable averages into an equivalent task_group
1523 * representation for computing load contributions.
1524 */
1525 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1526 struct cfs_rq *cfs_rq)
1527 {
1528 struct task_group *tg = cfs_rq->tg;
1529 long contrib;
1530
1531 /* The fraction of a cpu used by this cfs_rq */
1532 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1533 sa->runnable_avg_period + 1);
1534 contrib -= cfs_rq->tg_runnable_contrib;
1535
1536 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1537 atomic_add(contrib, &tg->runnable_avg);
1538 cfs_rq->tg_runnable_contrib += contrib;
1539 }
1540 }
1541
1542 static inline void __update_group_entity_contrib(struct sched_entity *se)
1543 {
1544 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1545 struct task_group *tg = cfs_rq->tg;
1546 int runnable_avg;
1547
1548 u64 contrib;
1549
1550 contrib = cfs_rq->tg_load_contrib * tg->shares;
1551 se->avg.load_avg_contrib = div_u64(contrib,
1552 atomic_long_read(&tg->load_avg) + 1);
1553
1554 /*
1555 * For group entities we need to compute a correction term in the case
1556 * that they are consuming <1 cpu so that we would contribute the same
1557 * load as a task of equal weight.
1558 *
1559 * Explicitly co-ordinating this measurement would be expensive, but
1560 * fortunately the sum of each cpus contribution forms a usable
1561 * lower-bound on the true value.
1562 *
1563 * Consider the aggregate of 2 contributions. Either they are disjoint
1564 * (and the sum represents true value) or they are disjoint and we are
1565 * understating by the aggregate of their overlap.
1566 *
1567 * Extending this to N cpus, for a given overlap, the maximum amount we
1568 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1569 * cpus that overlap for this interval and w_i is the interval width.
1570 *
1571 * On a small machine; the first term is well-bounded which bounds the
1572 * total error since w_i is a subset of the period. Whereas on a
1573 * larger machine, while this first term can be larger, if w_i is the
1574 * of consequential size guaranteed to see n_i*w_i quickly converge to
1575 * our upper bound of 1-cpu.
1576 */
1577 runnable_avg = atomic_read(&tg->runnable_avg);
1578 if (runnable_avg < NICE_0_LOAD) {
1579 se->avg.load_avg_contrib *= runnable_avg;
1580 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1581 }
1582 }
1583 #else
1584 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1585 int force_update) {}
1586 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1587 struct cfs_rq *cfs_rq) {}
1588 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1589 #endif
1590
1591 static inline void __update_task_entity_contrib(struct sched_entity *se)
1592 {
1593 u32 contrib;
1594
1595 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1596 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1597 contrib /= (se->avg.runnable_avg_period + 1);
1598 se->avg.load_avg_contrib = scale_load(contrib);
1599 }
1600
1601 /* Compute the current contribution to load_avg by se, return any delta */
1602 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1603 {
1604 long old_contrib = se->avg.load_avg_contrib;
1605
1606 if (entity_is_task(se)) {
1607 __update_task_entity_contrib(se);
1608 } else {
1609 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1610 __update_group_entity_contrib(se);
1611 }
1612
1613 return se->avg.load_avg_contrib - old_contrib;
1614 }
1615
1616 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1617 long load_contrib)
1618 {
1619 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1620 cfs_rq->blocked_load_avg -= load_contrib;
1621 else
1622 cfs_rq->blocked_load_avg = 0;
1623 }
1624
1625 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1626
1627 /* Update a sched_entity's runnable average */
1628 static inline void update_entity_load_avg(struct sched_entity *se,
1629 int update_cfs_rq)
1630 {
1631 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1632 long contrib_delta;
1633 u64 now;
1634
1635 /*
1636 * For a group entity we need to use their owned cfs_rq_clock_task() in
1637 * case they are the parent of a throttled hierarchy.
1638 */
1639 if (entity_is_task(se))
1640 now = cfs_rq_clock_task(cfs_rq);
1641 else
1642 now = cfs_rq_clock_task(group_cfs_rq(se));
1643
1644 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1645 return;
1646
1647 contrib_delta = __update_entity_load_avg_contrib(se);
1648
1649 if (!update_cfs_rq)
1650 return;
1651
1652 if (se->on_rq)
1653 cfs_rq->runnable_load_avg += contrib_delta;
1654 else
1655 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1656 }
1657
1658 /*
1659 * Decay the load contributed by all blocked children and account this so that
1660 * their contribution may appropriately discounted when they wake up.
1661 */
1662 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1663 {
1664 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1665 u64 decays;
1666
1667 decays = now - cfs_rq->last_decay;
1668 if (!decays && !force_update)
1669 return;
1670
1671 if (atomic_long_read(&cfs_rq->removed_load)) {
1672 unsigned long removed_load;
1673 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
1674 subtract_blocked_load_contrib(cfs_rq, removed_load);
1675 }
1676
1677 if (decays) {
1678 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1679 decays);
1680 atomic64_add(decays, &cfs_rq->decay_counter);
1681 cfs_rq->last_decay = now;
1682 }
1683
1684 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1685 }
1686
1687 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1688 {
1689 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
1690 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1691 }
1692
1693 /* Add the load generated by se into cfs_rq's child load-average */
1694 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1695 struct sched_entity *se,
1696 int wakeup)
1697 {
1698 /*
1699 * We track migrations using entity decay_count <= 0, on a wake-up
1700 * migration we use a negative decay count to track the remote decays
1701 * accumulated while sleeping.
1702 *
1703 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1704 * are seen by enqueue_entity_load_avg() as a migration with an already
1705 * constructed load_avg_contrib.
1706 */
1707 if (unlikely(se->avg.decay_count <= 0)) {
1708 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
1709 if (se->avg.decay_count) {
1710 /*
1711 * In a wake-up migration we have to approximate the
1712 * time sleeping. This is because we can't synchronize
1713 * clock_task between the two cpus, and it is not
1714 * guaranteed to be read-safe. Instead, we can
1715 * approximate this using our carried decays, which are
1716 * explicitly atomically readable.
1717 */
1718 se->avg.last_runnable_update -= (-se->avg.decay_count)
1719 << 20;
1720 update_entity_load_avg(se, 0);
1721 /* Indicate that we're now synchronized and on-rq */
1722 se->avg.decay_count = 0;
1723 }
1724 wakeup = 0;
1725 } else {
1726 /*
1727 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1728 * would have made count negative); we must be careful to avoid
1729 * double-accounting blocked time after synchronizing decays.
1730 */
1731 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1732 << 20;
1733 }
1734
1735 /* migrated tasks did not contribute to our blocked load */
1736 if (wakeup) {
1737 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1738 update_entity_load_avg(se, 0);
1739 }
1740
1741 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1742 /* we force update consideration on load-balancer moves */
1743 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1744 }
1745
1746 /*
1747 * Remove se's load from this cfs_rq child load-average, if the entity is
1748 * transitioning to a blocked state we track its projected decay using
1749 * blocked_load_avg.
1750 */
1751 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1752 struct sched_entity *se,
1753 int sleep)
1754 {
1755 update_entity_load_avg(se, 1);
1756 /* we force update consideration on load-balancer moves */
1757 update_cfs_rq_blocked_load(cfs_rq, !sleep);
1758
1759 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1760 if (sleep) {
1761 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1762 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1763 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1764 }
1765
1766 /*
1767 * Update the rq's load with the elapsed running time before entering
1768 * idle. if the last scheduled task is not a CFS task, idle_enter will
1769 * be the only way to update the runnable statistic.
1770 */
1771 void idle_enter_fair(struct rq *this_rq)
1772 {
1773 update_rq_runnable_avg(this_rq, 1);
1774 }
1775
1776 /*
1777 * Update the rq's load with the elapsed idle time before a task is
1778 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1779 * be the only way to update the runnable statistic.
1780 */
1781 void idle_exit_fair(struct rq *this_rq)
1782 {
1783 update_rq_runnable_avg(this_rq, 0);
1784 }
1785
1786 #else
1787 static inline void update_entity_load_avg(struct sched_entity *se,
1788 int update_cfs_rq) {}
1789 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1790 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1791 struct sched_entity *se,
1792 int wakeup) {}
1793 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1794 struct sched_entity *se,
1795 int sleep) {}
1796 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1797 int force_update) {}
1798 #endif
1799
1800 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1801 {
1802 #ifdef CONFIG_SCHEDSTATS
1803 struct task_struct *tsk = NULL;
1804
1805 if (entity_is_task(se))
1806 tsk = task_of(se);
1807
1808 if (se->statistics.sleep_start) {
1809 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
1810
1811 if ((s64)delta < 0)
1812 delta = 0;
1813
1814 if (unlikely(delta > se->statistics.sleep_max))
1815 se->statistics.sleep_max = delta;
1816
1817 se->statistics.sleep_start = 0;
1818 se->statistics.sum_sleep_runtime += delta;
1819
1820 if (tsk) {
1821 account_scheduler_latency(tsk, delta >> 10, 1);
1822 trace_sched_stat_sleep(tsk, delta);
1823 }
1824 }
1825 if (se->statistics.block_start) {
1826 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
1827
1828 if ((s64)delta < 0)
1829 delta = 0;
1830
1831 if (unlikely(delta > se->statistics.block_max))
1832 se->statistics.block_max = delta;
1833
1834 se->statistics.block_start = 0;
1835 se->statistics.sum_sleep_runtime += delta;
1836
1837 if (tsk) {
1838 if (tsk->in_iowait) {
1839 se->statistics.iowait_sum += delta;
1840 se->statistics.iowait_count++;
1841 trace_sched_stat_iowait(tsk, delta);
1842 }
1843
1844 trace_sched_stat_blocked(tsk, delta);
1845
1846 /*
1847 * Blocking time is in units of nanosecs, so shift by
1848 * 20 to get a milliseconds-range estimation of the
1849 * amount of time that the task spent sleeping:
1850 */
1851 if (unlikely(prof_on == SLEEP_PROFILING)) {
1852 profile_hits(SLEEP_PROFILING,
1853 (void *)get_wchan(tsk),
1854 delta >> 20);
1855 }
1856 account_scheduler_latency(tsk, delta >> 10, 0);
1857 }
1858 }
1859 #endif
1860 }
1861
1862 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1863 {
1864 #ifdef CONFIG_SCHED_DEBUG
1865 s64 d = se->vruntime - cfs_rq->min_vruntime;
1866
1867 if (d < 0)
1868 d = -d;
1869
1870 if (d > 3*sysctl_sched_latency)
1871 schedstat_inc(cfs_rq, nr_spread_over);
1872 #endif
1873 }
1874
1875 static void
1876 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1877 {
1878 u64 vruntime = cfs_rq->min_vruntime;
1879
1880 /*
1881 * The 'current' period is already promised to the current tasks,
1882 * however the extra weight of the new task will slow them down a
1883 * little, place the new task so that it fits in the slot that
1884 * stays open at the end.
1885 */
1886 if (initial && sched_feat(START_DEBIT))
1887 vruntime += sched_vslice(cfs_rq, se);
1888
1889 /* sleeps up to a single latency don't count. */
1890 if (!initial) {
1891 unsigned long thresh = sysctl_sched_latency;
1892
1893 /*
1894 * Halve their sleep time's effect, to allow
1895 * for a gentler effect of sleepers:
1896 */
1897 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1898 thresh >>= 1;
1899
1900 vruntime -= thresh;
1901 }
1902
1903 /* ensure we never gain time by being placed backwards. */
1904 se->vruntime = max_vruntime(se->vruntime, vruntime);
1905 }
1906
1907 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1908
1909 static void
1910 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1911 {
1912 /*
1913 * Update the normalized vruntime before updating min_vruntime
1914 * through calling update_curr().
1915 */
1916 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1917 se->vruntime += cfs_rq->min_vruntime;
1918
1919 /*
1920 * Update run-time statistics of the 'current'.
1921 */
1922 update_curr(cfs_rq);
1923 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1924 account_entity_enqueue(cfs_rq, se);
1925 update_cfs_shares(cfs_rq);
1926
1927 if (flags & ENQUEUE_WAKEUP) {
1928 place_entity(cfs_rq, se, 0);
1929 enqueue_sleeper(cfs_rq, se);
1930 }
1931
1932 update_stats_enqueue(cfs_rq, se);
1933 check_spread(cfs_rq, se);
1934 if (se != cfs_rq->curr)
1935 __enqueue_entity(cfs_rq, se);
1936 se->on_rq = 1;
1937
1938 if (cfs_rq->nr_running == 1) {
1939 list_add_leaf_cfs_rq(cfs_rq);
1940 check_enqueue_throttle(cfs_rq);
1941 }
1942 }
1943
1944 static void __clear_buddies_last(struct sched_entity *se)
1945 {
1946 for_each_sched_entity(se) {
1947 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1948 if (cfs_rq->last == se)
1949 cfs_rq->last = NULL;
1950 else
1951 break;
1952 }
1953 }
1954
1955 static void __clear_buddies_next(struct sched_entity *se)
1956 {
1957 for_each_sched_entity(se) {
1958 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1959 if (cfs_rq->next == se)
1960 cfs_rq->next = NULL;
1961 else
1962 break;
1963 }
1964 }
1965
1966 static void __clear_buddies_skip(struct sched_entity *se)
1967 {
1968 for_each_sched_entity(se) {
1969 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1970 if (cfs_rq->skip == se)
1971 cfs_rq->skip = NULL;
1972 else
1973 break;
1974 }
1975 }
1976
1977 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1978 {
1979 if (cfs_rq->last == se)
1980 __clear_buddies_last(se);
1981
1982 if (cfs_rq->next == se)
1983 __clear_buddies_next(se);
1984
1985 if (cfs_rq->skip == se)
1986 __clear_buddies_skip(se);
1987 }
1988
1989 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1990
1991 static void
1992 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1993 {
1994 /*
1995 * Update run-time statistics of the 'current'.
1996 */
1997 update_curr(cfs_rq);
1998 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1999
2000 update_stats_dequeue(cfs_rq, se);
2001 if (flags & DEQUEUE_SLEEP) {
2002 #ifdef CONFIG_SCHEDSTATS
2003 if (entity_is_task(se)) {
2004 struct task_struct *tsk = task_of(se);
2005
2006 if (tsk->state & TASK_INTERRUPTIBLE)
2007 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2008 if (tsk->state & TASK_UNINTERRUPTIBLE)
2009 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2010 }
2011 #endif
2012 }
2013
2014 clear_buddies(cfs_rq, se);
2015
2016 if (se != cfs_rq->curr)
2017 __dequeue_entity(cfs_rq, se);
2018 se->on_rq = 0;
2019 account_entity_dequeue(cfs_rq, se);
2020
2021 /*
2022 * Normalize the entity after updating the min_vruntime because the
2023 * update can refer to the ->curr item and we need to reflect this
2024 * movement in our normalized position.
2025 */
2026 if (!(flags & DEQUEUE_SLEEP))
2027 se->vruntime -= cfs_rq->min_vruntime;
2028
2029 /* return excess runtime on last dequeue */
2030 return_cfs_rq_runtime(cfs_rq);
2031
2032 update_min_vruntime(cfs_rq);
2033 update_cfs_shares(cfs_rq);
2034 }
2035
2036 /*
2037 * Preempt the current task with a newly woken task if needed:
2038 */
2039 static void
2040 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2041 {
2042 unsigned long ideal_runtime, delta_exec;
2043 struct sched_entity *se;
2044 s64 delta;
2045
2046 ideal_runtime = sched_slice(cfs_rq, curr);
2047 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2048 if (delta_exec > ideal_runtime) {
2049 resched_task(rq_of(cfs_rq)->curr);
2050 /*
2051 * The current task ran long enough, ensure it doesn't get
2052 * re-elected due to buddy favours.
2053 */
2054 clear_buddies(cfs_rq, curr);
2055 return;
2056 }
2057
2058 /*
2059 * Ensure that a task that missed wakeup preemption by a
2060 * narrow margin doesn't have to wait for a full slice.
2061 * This also mitigates buddy induced latencies under load.
2062 */
2063 if (delta_exec < sysctl_sched_min_granularity)
2064 return;
2065
2066 se = __pick_first_entity(cfs_rq);
2067 delta = curr->vruntime - se->vruntime;
2068
2069 if (delta < 0)
2070 return;
2071
2072 if (delta > ideal_runtime)
2073 resched_task(rq_of(cfs_rq)->curr);
2074 }
2075
2076 static void
2077 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2078 {
2079 /* 'current' is not kept within the tree. */
2080 if (se->on_rq) {
2081 /*
2082 * Any task has to be enqueued before it get to execute on
2083 * a CPU. So account for the time it spent waiting on the
2084 * runqueue.
2085 */
2086 update_stats_wait_end(cfs_rq, se);
2087 __dequeue_entity(cfs_rq, se);
2088 }
2089
2090 update_stats_curr_start(cfs_rq, se);
2091 cfs_rq->curr = se;
2092 #ifdef CONFIG_SCHEDSTATS
2093 /*
2094 * Track our maximum slice length, if the CPU's load is at
2095 * least twice that of our own weight (i.e. dont track it
2096 * when there are only lesser-weight tasks around):
2097 */
2098 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2099 se->statistics.slice_max = max(se->statistics.slice_max,
2100 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2101 }
2102 #endif
2103 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2104 }
2105
2106 static int
2107 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2108
2109 /*
2110 * Pick the next process, keeping these things in mind, in this order:
2111 * 1) keep things fair between processes/task groups
2112 * 2) pick the "next" process, since someone really wants that to run
2113 * 3) pick the "last" process, for cache locality
2114 * 4) do not run the "skip" process, if something else is available
2115 */
2116 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2117 {
2118 struct sched_entity *se = __pick_first_entity(cfs_rq);
2119 struct sched_entity *left = se;
2120
2121 /*
2122 * Avoid running the skip buddy, if running something else can
2123 * be done without getting too unfair.
2124 */
2125 if (cfs_rq->skip == se) {
2126 struct sched_entity *second = __pick_next_entity(se);
2127 if (second && wakeup_preempt_entity(second, left) < 1)
2128 se = second;
2129 }
2130
2131 /*
2132 * Prefer last buddy, try to return the CPU to a preempted task.
2133 */
2134 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2135 se = cfs_rq->last;
2136
2137 /*
2138 * Someone really wants this to run. If it's not unfair, run it.
2139 */
2140 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2141 se = cfs_rq->next;
2142
2143 clear_buddies(cfs_rq, se);
2144
2145 return se;
2146 }
2147
2148 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2149
2150 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2151 {
2152 /*
2153 * If still on the runqueue then deactivate_task()
2154 * was not called and update_curr() has to be done:
2155 */
2156 if (prev->on_rq)
2157 update_curr(cfs_rq);
2158
2159 /* throttle cfs_rqs exceeding runtime */
2160 check_cfs_rq_runtime(cfs_rq);
2161
2162 check_spread(cfs_rq, prev);
2163 if (prev->on_rq) {
2164 update_stats_wait_start(cfs_rq, prev);
2165 /* Put 'current' back into the tree. */
2166 __enqueue_entity(cfs_rq, prev);
2167 /* in !on_rq case, update occurred at dequeue */
2168 update_entity_load_avg(prev, 1);
2169 }
2170 cfs_rq->curr = NULL;
2171 }
2172
2173 static void
2174 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2175 {
2176 /*
2177 * Update run-time statistics of the 'current'.
2178 */
2179 update_curr(cfs_rq);
2180
2181 /*
2182 * Ensure that runnable average is periodically updated.
2183 */
2184 update_entity_load_avg(curr, 1);
2185 update_cfs_rq_blocked_load(cfs_rq, 1);
2186 update_cfs_shares(cfs_rq);
2187
2188 #ifdef CONFIG_SCHED_HRTICK
2189 /*
2190 * queued ticks are scheduled to match the slice, so don't bother
2191 * validating it and just reschedule.
2192 */
2193 if (queued) {
2194 resched_task(rq_of(cfs_rq)->curr);
2195 return;
2196 }
2197 /*
2198 * don't let the period tick interfere with the hrtick preemption
2199 */
2200 if (!sched_feat(DOUBLE_TICK) &&
2201 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2202 return;
2203 #endif
2204
2205 if (cfs_rq->nr_running > 1)
2206 check_preempt_tick(cfs_rq, curr);
2207 }
2208
2209
2210 /**************************************************
2211 * CFS bandwidth control machinery
2212 */
2213
2214 #ifdef CONFIG_CFS_BANDWIDTH
2215
2216 #ifdef HAVE_JUMP_LABEL
2217 static struct static_key __cfs_bandwidth_used;
2218
2219 static inline bool cfs_bandwidth_used(void)
2220 {
2221 return static_key_false(&__cfs_bandwidth_used);
2222 }
2223
2224 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2225 {
2226 /* only need to count groups transitioning between enabled/!enabled */
2227 if (enabled && !was_enabled)
2228 static_key_slow_inc(&__cfs_bandwidth_used);
2229 else if (!enabled && was_enabled)
2230 static_key_slow_dec(&__cfs_bandwidth_used);
2231 }
2232 #else /* HAVE_JUMP_LABEL */
2233 static bool cfs_bandwidth_used(void)
2234 {
2235 return true;
2236 }
2237
2238 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2239 #endif /* HAVE_JUMP_LABEL */
2240
2241 /*
2242 * default period for cfs group bandwidth.
2243 * default: 0.1s, units: nanoseconds
2244 */
2245 static inline u64 default_cfs_period(void)
2246 {
2247 return 100000000ULL;
2248 }
2249
2250 static inline u64 sched_cfs_bandwidth_slice(void)
2251 {
2252 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2253 }
2254
2255 /*
2256 * Replenish runtime according to assigned quota and update expiration time.
2257 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2258 * additional synchronization around rq->lock.
2259 *
2260 * requires cfs_b->lock
2261 */
2262 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2263 {
2264 u64 now;
2265
2266 if (cfs_b->quota == RUNTIME_INF)
2267 return;
2268
2269 now = sched_clock_cpu(smp_processor_id());
2270 cfs_b->runtime = cfs_b->quota;
2271 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2272 }
2273
2274 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2275 {
2276 return &tg->cfs_bandwidth;
2277 }
2278
2279 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2280 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2281 {
2282 if (unlikely(cfs_rq->throttle_count))
2283 return cfs_rq->throttled_clock_task;
2284
2285 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2286 }
2287
2288 /* returns 0 on failure to allocate runtime */
2289 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2290 {
2291 struct task_group *tg = cfs_rq->tg;
2292 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2293 u64 amount = 0, min_amount, expires;
2294
2295 /* note: this is a positive sum as runtime_remaining <= 0 */
2296 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2297
2298 raw_spin_lock(&cfs_b->lock);
2299 if (cfs_b->quota == RUNTIME_INF)
2300 amount = min_amount;
2301 else {
2302 /*
2303 * If the bandwidth pool has become inactive, then at least one
2304 * period must have elapsed since the last consumption.
2305 * Refresh the global state and ensure bandwidth timer becomes
2306 * active.
2307 */
2308 if (!cfs_b->timer_active) {
2309 __refill_cfs_bandwidth_runtime(cfs_b);
2310 __start_cfs_bandwidth(cfs_b);
2311 }
2312
2313 if (cfs_b->runtime > 0) {
2314 amount = min(cfs_b->runtime, min_amount);
2315 cfs_b->runtime -= amount;
2316 cfs_b->idle = 0;
2317 }
2318 }
2319 expires = cfs_b->runtime_expires;
2320 raw_spin_unlock(&cfs_b->lock);
2321
2322 cfs_rq->runtime_remaining += amount;
2323 /*
2324 * we may have advanced our local expiration to account for allowed
2325 * spread between our sched_clock and the one on which runtime was
2326 * issued.
2327 */
2328 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2329 cfs_rq->runtime_expires = expires;
2330
2331 return cfs_rq->runtime_remaining > 0;
2332 }
2333
2334 /*
2335 * Note: This depends on the synchronization provided by sched_clock and the
2336 * fact that rq->clock snapshots this value.
2337 */
2338 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2339 {
2340 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2341
2342 /* if the deadline is ahead of our clock, nothing to do */
2343 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2344 return;
2345
2346 if (cfs_rq->runtime_remaining < 0)
2347 return;
2348
2349 /*
2350 * If the local deadline has passed we have to consider the
2351 * possibility that our sched_clock is 'fast' and the global deadline
2352 * has not truly expired.
2353 *
2354 * Fortunately we can check determine whether this the case by checking
2355 * whether the global deadline has advanced.
2356 */
2357
2358 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2359 /* extend local deadline, drift is bounded above by 2 ticks */
2360 cfs_rq->runtime_expires += TICK_NSEC;
2361 } else {
2362 /* global deadline is ahead, expiration has passed */
2363 cfs_rq->runtime_remaining = 0;
2364 }
2365 }
2366
2367 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2368 unsigned long delta_exec)
2369 {
2370 /* dock delta_exec before expiring quota (as it could span periods) */
2371 cfs_rq->runtime_remaining -= delta_exec;
2372 expire_cfs_rq_runtime(cfs_rq);
2373
2374 if (likely(cfs_rq->runtime_remaining > 0))
2375 return;
2376
2377 /*
2378 * if we're unable to extend our runtime we resched so that the active
2379 * hierarchy can be throttled
2380 */
2381 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2382 resched_task(rq_of(cfs_rq)->curr);
2383 }
2384
2385 static __always_inline
2386 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2387 {
2388 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2389 return;
2390
2391 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2392 }
2393
2394 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2395 {
2396 return cfs_bandwidth_used() && cfs_rq->throttled;
2397 }
2398
2399 /* check whether cfs_rq, or any parent, is throttled */
2400 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2401 {
2402 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2403 }
2404
2405 /*
2406 * Ensure that neither of the group entities corresponding to src_cpu or
2407 * dest_cpu are members of a throttled hierarchy when performing group
2408 * load-balance operations.
2409 */
2410 static inline int throttled_lb_pair(struct task_group *tg,
2411 int src_cpu, int dest_cpu)
2412 {
2413 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2414
2415 src_cfs_rq = tg->cfs_rq[src_cpu];
2416 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2417
2418 return throttled_hierarchy(src_cfs_rq) ||
2419 throttled_hierarchy(dest_cfs_rq);
2420 }
2421
2422 /* updated child weight may affect parent so we have to do this bottom up */
2423 static int tg_unthrottle_up(struct task_group *tg, void *data)
2424 {
2425 struct rq *rq = data;
2426 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2427
2428 cfs_rq->throttle_count--;
2429 #ifdef CONFIG_SMP
2430 if (!cfs_rq->throttle_count) {
2431 /* adjust cfs_rq_clock_task() */
2432 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
2433 cfs_rq->throttled_clock_task;
2434 }
2435 #endif
2436
2437 return 0;
2438 }
2439
2440 static int tg_throttle_down(struct task_group *tg, void *data)
2441 {
2442 struct rq *rq = data;
2443 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2444
2445 /* group is entering throttled state, stop time */
2446 if (!cfs_rq->throttle_count)
2447 cfs_rq->throttled_clock_task = rq_clock_task(rq);
2448 cfs_rq->throttle_count++;
2449
2450 return 0;
2451 }
2452
2453 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2454 {
2455 struct rq *rq = rq_of(cfs_rq);
2456 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2457 struct sched_entity *se;
2458 long task_delta, dequeue = 1;
2459
2460 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2461
2462 /* freeze hierarchy runnable averages while throttled */
2463 rcu_read_lock();
2464 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2465 rcu_read_unlock();
2466
2467 task_delta = cfs_rq->h_nr_running;
2468 for_each_sched_entity(se) {
2469 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2470 /* throttled entity or throttle-on-deactivate */
2471 if (!se->on_rq)
2472 break;
2473
2474 if (dequeue)
2475 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2476 qcfs_rq->h_nr_running -= task_delta;
2477
2478 if (qcfs_rq->load.weight)
2479 dequeue = 0;
2480 }
2481
2482 if (!se)
2483 rq->nr_running -= task_delta;
2484
2485 cfs_rq->throttled = 1;
2486 cfs_rq->throttled_clock = rq_clock(rq);
2487 raw_spin_lock(&cfs_b->lock);
2488 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2489 raw_spin_unlock(&cfs_b->lock);
2490 }
2491
2492 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2493 {
2494 struct rq *rq = rq_of(cfs_rq);
2495 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2496 struct sched_entity *se;
2497 int enqueue = 1;
2498 long task_delta;
2499
2500 se = cfs_rq->tg->se[cpu_of(rq)];
2501
2502 cfs_rq->throttled = 0;
2503
2504 update_rq_clock(rq);
2505
2506 raw_spin_lock(&cfs_b->lock);
2507 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
2508 list_del_rcu(&cfs_rq->throttled_list);
2509 raw_spin_unlock(&cfs_b->lock);
2510
2511 /* update hierarchical throttle state */
2512 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2513
2514 if (!cfs_rq->load.weight)
2515 return;
2516
2517 task_delta = cfs_rq->h_nr_running;
2518 for_each_sched_entity(se) {
2519 if (se->on_rq)
2520 enqueue = 0;
2521
2522 cfs_rq = cfs_rq_of(se);
2523 if (enqueue)
2524 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2525 cfs_rq->h_nr_running += task_delta;
2526
2527 if (cfs_rq_throttled(cfs_rq))
2528 break;
2529 }
2530
2531 if (!se)
2532 rq->nr_running += task_delta;
2533
2534 /* determine whether we need to wake up potentially idle cpu */
2535 if (rq->curr == rq->idle && rq->cfs.nr_running)
2536 resched_task(rq->curr);
2537 }
2538
2539 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2540 u64 remaining, u64 expires)
2541 {
2542 struct cfs_rq *cfs_rq;
2543 u64 runtime = remaining;
2544
2545 rcu_read_lock();
2546 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2547 throttled_list) {
2548 struct rq *rq = rq_of(cfs_rq);
2549
2550 raw_spin_lock(&rq->lock);
2551 if (!cfs_rq_throttled(cfs_rq))
2552 goto next;
2553
2554 runtime = -cfs_rq->runtime_remaining + 1;
2555 if (runtime > remaining)
2556 runtime = remaining;
2557 remaining -= runtime;
2558
2559 cfs_rq->runtime_remaining += runtime;
2560 cfs_rq->runtime_expires = expires;
2561
2562 /* we check whether we're throttled above */
2563 if (cfs_rq->runtime_remaining > 0)
2564 unthrottle_cfs_rq(cfs_rq);
2565
2566 next:
2567 raw_spin_unlock(&rq->lock);
2568
2569 if (!remaining)
2570 break;
2571 }
2572 rcu_read_unlock();
2573
2574 return remaining;
2575 }
2576
2577 /*
2578 * Responsible for refilling a task_group's bandwidth and unthrottling its
2579 * cfs_rqs as appropriate. If there has been no activity within the last
2580 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2581 * used to track this state.
2582 */
2583 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2584 {
2585 u64 runtime, runtime_expires;
2586 int idle = 1, throttled;
2587
2588 raw_spin_lock(&cfs_b->lock);
2589 /* no need to continue the timer with no bandwidth constraint */
2590 if (cfs_b->quota == RUNTIME_INF)
2591 goto out_unlock;
2592
2593 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2594 /* idle depends on !throttled (for the case of a large deficit) */
2595 idle = cfs_b->idle && !throttled;
2596 cfs_b->nr_periods += overrun;
2597
2598 /* if we're going inactive then everything else can be deferred */
2599 if (idle)
2600 goto out_unlock;
2601
2602 __refill_cfs_bandwidth_runtime(cfs_b);
2603
2604 if (!throttled) {
2605 /* mark as potentially idle for the upcoming period */
2606 cfs_b->idle = 1;
2607 goto out_unlock;
2608 }
2609
2610 /* account preceding periods in which throttling occurred */
2611 cfs_b->nr_throttled += overrun;
2612
2613 /*
2614 * There are throttled entities so we must first use the new bandwidth
2615 * to unthrottle them before making it generally available. This
2616 * ensures that all existing debts will be paid before a new cfs_rq is
2617 * allowed to run.
2618 */
2619 runtime = cfs_b->runtime;
2620 runtime_expires = cfs_b->runtime_expires;
2621 cfs_b->runtime = 0;
2622
2623 /*
2624 * This check is repeated as we are holding onto the new bandwidth
2625 * while we unthrottle. This can potentially race with an unthrottled
2626 * group trying to acquire new bandwidth from the global pool.
2627 */
2628 while (throttled && runtime > 0) {
2629 raw_spin_unlock(&cfs_b->lock);
2630 /* we can't nest cfs_b->lock while distributing bandwidth */
2631 runtime = distribute_cfs_runtime(cfs_b, runtime,
2632 runtime_expires);
2633 raw_spin_lock(&cfs_b->lock);
2634
2635 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2636 }
2637
2638 /* return (any) remaining runtime */
2639 cfs_b->runtime = runtime;
2640 /*
2641 * While we are ensured activity in the period following an
2642 * unthrottle, this also covers the case in which the new bandwidth is
2643 * insufficient to cover the existing bandwidth deficit. (Forcing the
2644 * timer to remain active while there are any throttled entities.)
2645 */
2646 cfs_b->idle = 0;
2647 out_unlock:
2648 if (idle)
2649 cfs_b->timer_active = 0;
2650 raw_spin_unlock(&cfs_b->lock);
2651
2652 return idle;
2653 }
2654
2655 /* a cfs_rq won't donate quota below this amount */
2656 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2657 /* minimum remaining period time to redistribute slack quota */
2658 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2659 /* how long we wait to gather additional slack before distributing */
2660 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2661
2662 /* are we near the end of the current quota period? */
2663 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2664 {
2665 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2666 u64 remaining;
2667
2668 /* if the call-back is running a quota refresh is already occurring */
2669 if (hrtimer_callback_running(refresh_timer))
2670 return 1;
2671
2672 /* is a quota refresh about to occur? */
2673 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2674 if (remaining < min_expire)
2675 return 1;
2676
2677 return 0;
2678 }
2679
2680 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2681 {
2682 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2683
2684 /* if there's a quota refresh soon don't bother with slack */
2685 if (runtime_refresh_within(cfs_b, min_left))
2686 return;
2687
2688 start_bandwidth_timer(&cfs_b->slack_timer,
2689 ns_to_ktime(cfs_bandwidth_slack_period));
2690 }
2691
2692 /* we know any runtime found here is valid as update_curr() precedes return */
2693 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2694 {
2695 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2696 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2697
2698 if (slack_runtime <= 0)
2699 return;
2700
2701 raw_spin_lock(&cfs_b->lock);
2702 if (cfs_b->quota != RUNTIME_INF &&
2703 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2704 cfs_b->runtime += slack_runtime;
2705
2706 /* we are under rq->lock, defer unthrottling using a timer */
2707 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2708 !list_empty(&cfs_b->throttled_cfs_rq))
2709 start_cfs_slack_bandwidth(cfs_b);
2710 }
2711 raw_spin_unlock(&cfs_b->lock);
2712
2713 /* even if it's not valid for return we don't want to try again */
2714 cfs_rq->runtime_remaining -= slack_runtime;
2715 }
2716
2717 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2718 {
2719 if (!cfs_bandwidth_used())
2720 return;
2721
2722 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2723 return;
2724
2725 __return_cfs_rq_runtime(cfs_rq);
2726 }
2727
2728 /*
2729 * This is done with a timer (instead of inline with bandwidth return) since
2730 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2731 */
2732 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2733 {
2734 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2735 u64 expires;
2736
2737 /* confirm we're still not at a refresh boundary */
2738 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2739 return;
2740
2741 raw_spin_lock(&cfs_b->lock);
2742 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2743 runtime = cfs_b->runtime;
2744 cfs_b->runtime = 0;
2745 }
2746 expires = cfs_b->runtime_expires;
2747 raw_spin_unlock(&cfs_b->lock);
2748
2749 if (!runtime)
2750 return;
2751
2752 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2753
2754 raw_spin_lock(&cfs_b->lock);
2755 if (expires == cfs_b->runtime_expires)
2756 cfs_b->runtime = runtime;
2757 raw_spin_unlock(&cfs_b->lock);
2758 }
2759
2760 /*
2761 * When a group wakes up we want to make sure that its quota is not already
2762 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2763 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2764 */
2765 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2766 {
2767 if (!cfs_bandwidth_used())
2768 return;
2769
2770 /* an active group must be handled by the update_curr()->put() path */
2771 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2772 return;
2773
2774 /* ensure the group is not already throttled */
2775 if (cfs_rq_throttled(cfs_rq))
2776 return;
2777
2778 /* update runtime allocation */
2779 account_cfs_rq_runtime(cfs_rq, 0);
2780 if (cfs_rq->runtime_remaining <= 0)
2781 throttle_cfs_rq(cfs_rq);
2782 }
2783
2784 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2785 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2786 {
2787 if (!cfs_bandwidth_used())
2788 return;
2789
2790 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2791 return;
2792
2793 /*
2794 * it's possible for a throttled entity to be forced into a running
2795 * state (e.g. set_curr_task), in this case we're finished.
2796 */
2797 if (cfs_rq_throttled(cfs_rq))
2798 return;
2799
2800 throttle_cfs_rq(cfs_rq);
2801 }
2802
2803 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2804 {
2805 struct cfs_bandwidth *cfs_b =
2806 container_of(timer, struct cfs_bandwidth, slack_timer);
2807 do_sched_cfs_slack_timer(cfs_b);
2808
2809 return HRTIMER_NORESTART;
2810 }
2811
2812 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2813 {
2814 struct cfs_bandwidth *cfs_b =
2815 container_of(timer, struct cfs_bandwidth, period_timer);
2816 ktime_t now;
2817 int overrun;
2818 int idle = 0;
2819
2820 for (;;) {
2821 now = hrtimer_cb_get_time(timer);
2822 overrun = hrtimer_forward(timer, now, cfs_b->period);
2823
2824 if (!overrun)
2825 break;
2826
2827 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2828 }
2829
2830 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2831 }
2832
2833 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2834 {
2835 raw_spin_lock_init(&cfs_b->lock);
2836 cfs_b->runtime = 0;
2837 cfs_b->quota = RUNTIME_INF;
2838 cfs_b->period = ns_to_ktime(default_cfs_period());
2839
2840 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2841 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2842 cfs_b->period_timer.function = sched_cfs_period_timer;
2843 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2844 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2845 }
2846
2847 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2848 {
2849 cfs_rq->runtime_enabled = 0;
2850 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2851 }
2852
2853 /* requires cfs_b->lock, may release to reprogram timer */
2854 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2855 {
2856 /*
2857 * The timer may be active because we're trying to set a new bandwidth
2858 * period or because we're racing with the tear-down path
2859 * (timer_active==0 becomes visible before the hrtimer call-back
2860 * terminates). In either case we ensure that it's re-programmed
2861 */
2862 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2863 raw_spin_unlock(&cfs_b->lock);
2864 /* ensure cfs_b->lock is available while we wait */
2865 hrtimer_cancel(&cfs_b->period_timer);
2866
2867 raw_spin_lock(&cfs_b->lock);
2868 /* if someone else restarted the timer then we're done */
2869 if (cfs_b->timer_active)
2870 return;
2871 }
2872
2873 cfs_b->timer_active = 1;
2874 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2875 }
2876
2877 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2878 {
2879 hrtimer_cancel(&cfs_b->period_timer);
2880 hrtimer_cancel(&cfs_b->slack_timer);
2881 }
2882
2883 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2884 {
2885 struct cfs_rq *cfs_rq;
2886
2887 for_each_leaf_cfs_rq(rq, cfs_rq) {
2888 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2889
2890 if (!cfs_rq->runtime_enabled)
2891 continue;
2892
2893 /*
2894 * clock_task is not advancing so we just need to make sure
2895 * there's some valid quota amount
2896 */
2897 cfs_rq->runtime_remaining = cfs_b->quota;
2898 if (cfs_rq_throttled(cfs_rq))
2899 unthrottle_cfs_rq(cfs_rq);
2900 }
2901 }
2902
2903 #else /* CONFIG_CFS_BANDWIDTH */
2904 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2905 {
2906 return rq_clock_task(rq_of(cfs_rq));
2907 }
2908
2909 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2910 unsigned long delta_exec) {}
2911 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2912 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2913 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2914
2915 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2916 {
2917 return 0;
2918 }
2919
2920 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2921 {
2922 return 0;
2923 }
2924
2925 static inline int throttled_lb_pair(struct task_group *tg,
2926 int src_cpu, int dest_cpu)
2927 {
2928 return 0;
2929 }
2930
2931 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2932
2933 #ifdef CONFIG_FAIR_GROUP_SCHED
2934 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2935 #endif
2936
2937 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2938 {
2939 return NULL;
2940 }
2941 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2942 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2943
2944 #endif /* CONFIG_CFS_BANDWIDTH */
2945
2946 /**************************************************
2947 * CFS operations on tasks:
2948 */
2949
2950 #ifdef CONFIG_SCHED_HRTICK
2951 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2952 {
2953 struct sched_entity *se = &p->se;
2954 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2955
2956 WARN_ON(task_rq(p) != rq);
2957
2958 if (cfs_rq->nr_running > 1) {
2959 u64 slice = sched_slice(cfs_rq, se);
2960 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2961 s64 delta = slice - ran;
2962
2963 if (delta < 0) {
2964 if (rq->curr == p)
2965 resched_task(p);
2966 return;
2967 }
2968
2969 /*
2970 * Don't schedule slices shorter than 10000ns, that just
2971 * doesn't make sense. Rely on vruntime for fairness.
2972 */
2973 if (rq->curr != p)
2974 delta = max_t(s64, 10000LL, delta);
2975
2976 hrtick_start(rq, delta);
2977 }
2978 }
2979
2980 /*
2981 * called from enqueue/dequeue and updates the hrtick when the
2982 * current task is from our class and nr_running is low enough
2983 * to matter.
2984 */
2985 static void hrtick_update(struct rq *rq)
2986 {
2987 struct task_struct *curr = rq->curr;
2988
2989 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2990 return;
2991
2992 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2993 hrtick_start_fair(rq, curr);
2994 }
2995 #else /* !CONFIG_SCHED_HRTICK */
2996 static inline void
2997 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2998 {
2999 }
3000
3001 static inline void hrtick_update(struct rq *rq)
3002 {
3003 }
3004 #endif
3005
3006 /*
3007 * The enqueue_task method is called before nr_running is
3008 * increased. Here we update the fair scheduling stats and
3009 * then put the task into the rbtree:
3010 */
3011 static void
3012 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3013 {
3014 struct cfs_rq *cfs_rq;
3015 struct sched_entity *se = &p->se;
3016
3017 for_each_sched_entity(se) {
3018 if (se->on_rq)
3019 break;
3020 cfs_rq = cfs_rq_of(se);
3021 enqueue_entity(cfs_rq, se, flags);
3022
3023 /*
3024 * end evaluation on encountering a throttled cfs_rq
3025 *
3026 * note: in the case of encountering a throttled cfs_rq we will
3027 * post the final h_nr_running increment below.
3028 */
3029 if (cfs_rq_throttled(cfs_rq))
3030 break;
3031 cfs_rq->h_nr_running++;
3032
3033 flags = ENQUEUE_WAKEUP;
3034 }
3035
3036 for_each_sched_entity(se) {
3037 cfs_rq = cfs_rq_of(se);
3038 cfs_rq->h_nr_running++;
3039
3040 if (cfs_rq_throttled(cfs_rq))
3041 break;
3042
3043 update_cfs_shares(cfs_rq);
3044 update_entity_load_avg(se, 1);
3045 }
3046
3047 if (!se) {
3048 update_rq_runnable_avg(rq, rq->nr_running);
3049 inc_nr_running(rq);
3050 }
3051 hrtick_update(rq);
3052 }
3053
3054 static void set_next_buddy(struct sched_entity *se);
3055
3056 /*
3057 * The dequeue_task method is called before nr_running is
3058 * decreased. We remove the task from the rbtree and
3059 * update the fair scheduling stats:
3060 */
3061 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3062 {
3063 struct cfs_rq *cfs_rq;
3064 struct sched_entity *se = &p->se;
3065 int task_sleep = flags & DEQUEUE_SLEEP;
3066
3067 for_each_sched_entity(se) {
3068 cfs_rq = cfs_rq_of(se);
3069 dequeue_entity(cfs_rq, se, flags);
3070
3071 /*
3072 * end evaluation on encountering a throttled cfs_rq
3073 *
3074 * note: in the case of encountering a throttled cfs_rq we will
3075 * post the final h_nr_running decrement below.
3076 */
3077 if (cfs_rq_throttled(cfs_rq))
3078 break;
3079 cfs_rq->h_nr_running--;
3080
3081 /* Don't dequeue parent if it has other entities besides us */
3082 if (cfs_rq->load.weight) {
3083 /*
3084 * Bias pick_next to pick a task from this cfs_rq, as
3085 * p is sleeping when it is within its sched_slice.
3086 */
3087 if (task_sleep && parent_entity(se))
3088 set_next_buddy(parent_entity(se));
3089
3090 /* avoid re-evaluating load for this entity */
3091 se = parent_entity(se);
3092 break;
3093 }
3094 flags |= DEQUEUE_SLEEP;
3095 }
3096
3097 for_each_sched_entity(se) {
3098 cfs_rq = cfs_rq_of(se);
3099 cfs_rq->h_nr_running--;
3100
3101 if (cfs_rq_throttled(cfs_rq))
3102 break;
3103
3104 update_cfs_shares(cfs_rq);
3105 update_entity_load_avg(se, 1);
3106 }
3107
3108 if (!se) {
3109 dec_nr_running(rq);
3110 update_rq_runnable_avg(rq, 1);
3111 }
3112 hrtick_update(rq);
3113 }
3114
3115 #ifdef CONFIG_SMP
3116 /* Used instead of source_load when we know the type == 0 */
3117 static unsigned long weighted_cpuload(const int cpu)
3118 {
3119 return cpu_rq(cpu)->cfs.runnable_load_avg;
3120 }
3121
3122 /*
3123 * Return a low guess at the load of a migration-source cpu weighted
3124 * according to the scheduling class and "nice" value.
3125 *
3126 * We want to under-estimate the load of migration sources, to
3127 * balance conservatively.
3128 */
3129 static unsigned long source_load(int cpu, int type)
3130 {
3131 struct rq *rq = cpu_rq(cpu);
3132 unsigned long total = weighted_cpuload(cpu);
3133
3134 if (type == 0 || !sched_feat(LB_BIAS))
3135 return total;
3136
3137 return min(rq->cpu_load[type-1], total);
3138 }
3139
3140 /*
3141 * Return a high guess at the load of a migration-target cpu weighted
3142 * according to the scheduling class and "nice" value.
3143 */
3144 static unsigned long target_load(int cpu, int type)
3145 {
3146 struct rq *rq = cpu_rq(cpu);
3147 unsigned long total = weighted_cpuload(cpu);
3148
3149 if (type == 0 || !sched_feat(LB_BIAS))
3150 return total;
3151
3152 return max(rq->cpu_load[type-1], total);
3153 }
3154
3155 static unsigned long power_of(int cpu)
3156 {
3157 return cpu_rq(cpu)->cpu_power;
3158 }
3159
3160 static unsigned long cpu_avg_load_per_task(int cpu)
3161 {
3162 struct rq *rq = cpu_rq(cpu);
3163 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3164 unsigned long load_avg = rq->cfs.runnable_load_avg;
3165
3166 if (nr_running)
3167 return load_avg / nr_running;
3168
3169 return 0;
3170 }
3171
3172 static void record_wakee(struct task_struct *p)
3173 {
3174 /*
3175 * Rough decay (wiping) for cost saving, don't worry
3176 * about the boundary, really active task won't care
3177 * about the loss.
3178 */
3179 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3180 current->wakee_flips = 0;
3181 current->wakee_flip_decay_ts = jiffies;
3182 }
3183
3184 if (current->last_wakee != p) {
3185 current->last_wakee = p;
3186 current->wakee_flips++;
3187 }
3188 }
3189
3190 static void task_waking_fair(struct task_struct *p)
3191 {
3192 struct sched_entity *se = &p->se;
3193 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3194 u64 min_vruntime;
3195
3196 #ifndef CONFIG_64BIT
3197 u64 min_vruntime_copy;
3198
3199 do {
3200 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3201 smp_rmb();
3202 min_vruntime = cfs_rq->min_vruntime;
3203 } while (min_vruntime != min_vruntime_copy);
3204 #else
3205 min_vruntime = cfs_rq->min_vruntime;
3206 #endif
3207
3208 se->vruntime -= min_vruntime;
3209 record_wakee(p);
3210 }
3211
3212 #ifdef CONFIG_FAIR_GROUP_SCHED
3213 /*
3214 * effective_load() calculates the load change as seen from the root_task_group
3215 *
3216 * Adding load to a group doesn't make a group heavier, but can cause movement
3217 * of group shares between cpus. Assuming the shares were perfectly aligned one
3218 * can calculate the shift in shares.
3219 *
3220 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3221 * on this @cpu and results in a total addition (subtraction) of @wg to the
3222 * total group weight.
3223 *
3224 * Given a runqueue weight distribution (rw_i) we can compute a shares
3225 * distribution (s_i) using:
3226 *
3227 * s_i = rw_i / \Sum rw_j (1)
3228 *
3229 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3230 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3231 * shares distribution (s_i):
3232 *
3233 * rw_i = { 2, 4, 1, 0 }
3234 * s_i = { 2/7, 4/7, 1/7, 0 }
3235 *
3236 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3237 * task used to run on and the CPU the waker is running on), we need to
3238 * compute the effect of waking a task on either CPU and, in case of a sync
3239 * wakeup, compute the effect of the current task going to sleep.
3240 *
3241 * So for a change of @wl to the local @cpu with an overall group weight change
3242 * of @wl we can compute the new shares distribution (s'_i) using:
3243 *
3244 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3245 *
3246 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3247 * differences in waking a task to CPU 0. The additional task changes the
3248 * weight and shares distributions like:
3249 *
3250 * rw'_i = { 3, 4, 1, 0 }
3251 * s'_i = { 3/8, 4/8, 1/8, 0 }
3252 *
3253 * We can then compute the difference in effective weight by using:
3254 *
3255 * dw_i = S * (s'_i - s_i) (3)
3256 *
3257 * Where 'S' is the group weight as seen by its parent.
3258 *
3259 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3260 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3261 * 4/7) times the weight of the group.
3262 */
3263 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3264 {
3265 struct sched_entity *se = tg->se[cpu];
3266
3267 if (!tg->parent) /* the trivial, non-cgroup case */
3268 return wl;
3269
3270 for_each_sched_entity(se) {
3271 long w, W;
3272
3273 tg = se->my_q->tg;
3274
3275 /*
3276 * W = @wg + \Sum rw_j
3277 */
3278 W = wg + calc_tg_weight(tg, se->my_q);
3279
3280 /*
3281 * w = rw_i + @wl
3282 */
3283 w = se->my_q->load.weight + wl;
3284
3285 /*
3286 * wl = S * s'_i; see (2)
3287 */
3288 if (W > 0 && w < W)
3289 wl = (w * tg->shares) / W;
3290 else
3291 wl = tg->shares;
3292
3293 /*
3294 * Per the above, wl is the new se->load.weight value; since
3295 * those are clipped to [MIN_SHARES, ...) do so now. See
3296 * calc_cfs_shares().
3297 */
3298 if (wl < MIN_SHARES)
3299 wl = MIN_SHARES;
3300
3301 /*
3302 * wl = dw_i = S * (s'_i - s_i); see (3)
3303 */
3304 wl -= se->load.weight;
3305
3306 /*
3307 * Recursively apply this logic to all parent groups to compute
3308 * the final effective load change on the root group. Since
3309 * only the @tg group gets extra weight, all parent groups can
3310 * only redistribute existing shares. @wl is the shift in shares
3311 * resulting from this level per the above.
3312 */
3313 wg = 0;
3314 }
3315
3316 return wl;
3317 }
3318 #else
3319
3320 static inline unsigned long effective_load(struct task_group *tg, int cpu,
3321 unsigned long wl, unsigned long wg)
3322 {
3323 return wl;
3324 }
3325
3326 #endif
3327
3328 static int wake_wide(struct task_struct *p)
3329 {
3330 int factor = this_cpu_read(sd_llc_size);
3331
3332 /*
3333 * Yeah, it's the switching-frequency, could means many wakee or
3334 * rapidly switch, use factor here will just help to automatically
3335 * adjust the loose-degree, so bigger node will lead to more pull.
3336 */
3337 if (p->wakee_flips > factor) {
3338 /*
3339 * wakee is somewhat hot, it needs certain amount of cpu
3340 * resource, so if waker is far more hot, prefer to leave
3341 * it alone.
3342 */
3343 if (current->wakee_flips > (factor * p->wakee_flips))
3344 return 1;
3345 }
3346
3347 return 0;
3348 }
3349
3350 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3351 {
3352 s64 this_load, load;
3353 int idx, this_cpu, prev_cpu;
3354 unsigned long tl_per_task;
3355 struct task_group *tg;
3356 unsigned long weight;
3357 int balanced;
3358
3359 /*
3360 * If we wake multiple tasks be careful to not bounce
3361 * ourselves around too much.
3362 */
3363 if (wake_wide(p))
3364 return 0;
3365
3366 idx = sd->wake_idx;
3367 this_cpu = smp_processor_id();
3368 prev_cpu = task_cpu(p);
3369 load = source_load(prev_cpu, idx);
3370 this_load = target_load(this_cpu, idx);
3371
3372 /*
3373 * If sync wakeup then subtract the (maximum possible)
3374 * effect of the currently running task from the load
3375 * of the current CPU:
3376 */
3377 if (sync) {
3378 tg = task_group(current);
3379 weight = current->se.load.weight;
3380
3381 this_load += effective_load(tg, this_cpu, -weight, -weight);
3382 load += effective_load(tg, prev_cpu, 0, -weight);
3383 }
3384
3385 tg = task_group(p);
3386 weight = p->se.load.weight;
3387
3388 /*
3389 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3390 * due to the sync cause above having dropped this_load to 0, we'll
3391 * always have an imbalance, but there's really nothing you can do
3392 * about that, so that's good too.
3393 *
3394 * Otherwise check if either cpus are near enough in load to allow this
3395 * task to be woken on this_cpu.
3396 */
3397 if (this_load > 0) {
3398 s64 this_eff_load, prev_eff_load;
3399
3400 this_eff_load = 100;
3401 this_eff_load *= power_of(prev_cpu);
3402 this_eff_load *= this_load +
3403 effective_load(tg, this_cpu, weight, weight);
3404
3405 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3406 prev_eff_load *= power_of(this_cpu);
3407 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3408
3409 balanced = this_eff_load <= prev_eff_load;
3410 } else
3411 balanced = true;
3412
3413 /*
3414 * If the currently running task will sleep within
3415 * a reasonable amount of time then attract this newly
3416 * woken task:
3417 */
3418 if (sync && balanced)
3419 return 1;
3420
3421 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3422 tl_per_task = cpu_avg_load_per_task(this_cpu);
3423
3424 if (balanced ||
3425 (this_load <= load &&
3426 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3427 /*
3428 * This domain has SD_WAKE_AFFINE and
3429 * p is cache cold in this domain, and
3430 * there is no bad imbalance.
3431 */
3432 schedstat_inc(sd, ttwu_move_affine);
3433 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3434
3435 return 1;
3436 }
3437 return 0;
3438 }
3439
3440 /*
3441 * find_idlest_group finds and returns the least busy CPU group within the
3442 * domain.
3443 */
3444 static struct sched_group *
3445 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3446 int this_cpu, int load_idx)
3447 {
3448 struct sched_group *idlest = NULL, *group = sd->groups;
3449 unsigned long min_load = ULONG_MAX, this_load = 0;
3450 int imbalance = 100 + (sd->imbalance_pct-100)/2;
3451
3452 do {
3453 unsigned long load, avg_load;
3454 int local_group;
3455 int i;
3456
3457 /* Skip over this group if it has no CPUs allowed */
3458 if (!cpumask_intersects(sched_group_cpus(group),
3459 tsk_cpus_allowed(p)))
3460 continue;
3461
3462 local_group = cpumask_test_cpu(this_cpu,
3463 sched_group_cpus(group));
3464
3465 /* Tally up the load of all CPUs in the group */
3466 avg_load = 0;
3467
3468 for_each_cpu(i, sched_group_cpus(group)) {
3469 /* Bias balancing toward cpus of our domain */
3470 if (local_group)
3471 load = source_load(i, load_idx);
3472 else
3473 load = target_load(i, load_idx);
3474
3475 avg_load += load;
3476 }
3477
3478 /* Adjust by relative CPU power of the group */
3479 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3480
3481 if (local_group) {
3482 this_load = avg_load;
3483 } else if (avg_load < min_load) {
3484 min_load = avg_load;
3485 idlest = group;
3486 }
3487 } while (group = group->next, group != sd->groups);
3488
3489 if (!idlest || 100*this_load < imbalance*min_load)
3490 return NULL;
3491 return idlest;
3492 }
3493
3494 /*
3495 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3496 */
3497 static int
3498 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3499 {
3500 unsigned long load, min_load = ULONG_MAX;
3501 int idlest = -1;
3502 int i;
3503
3504 /* Traverse only the allowed CPUs */
3505 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3506 load = weighted_cpuload(i);
3507
3508 if (load < min_load || (load == min_load && i == this_cpu)) {
3509 min_load = load;
3510 idlest = i;
3511 }
3512 }
3513
3514 return idlest;
3515 }
3516
3517 /*
3518 * Try and locate an idle CPU in the sched_domain.
3519 */
3520 static int select_idle_sibling(struct task_struct *p, int target)
3521 {
3522 struct sched_domain *sd;
3523 struct sched_group *sg;
3524 int i = task_cpu(p);
3525
3526 if (idle_cpu(target))
3527 return target;
3528
3529 /*
3530 * If the prevous cpu is cache affine and idle, don't be stupid.
3531 */
3532 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3533 return i;
3534
3535 /*
3536 * Otherwise, iterate the domains and find an elegible idle cpu.
3537 */
3538 sd = rcu_dereference(per_cpu(sd_llc, target));
3539 for_each_lower_domain(sd) {
3540 sg = sd->groups;
3541 do {
3542 if (!cpumask_intersects(sched_group_cpus(sg),
3543 tsk_cpus_allowed(p)))
3544 goto next;
3545
3546 for_each_cpu(i, sched_group_cpus(sg)) {
3547 if (i == target || !idle_cpu(i))
3548 goto next;
3549 }
3550
3551 target = cpumask_first_and(sched_group_cpus(sg),
3552 tsk_cpus_allowed(p));
3553 goto done;
3554 next:
3555 sg = sg->next;
3556 } while (sg != sd->groups);
3557 }
3558 done:
3559 return target;
3560 }
3561
3562 /*
3563 * sched_balance_self: balance the current task (running on cpu) in domains
3564 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3565 * SD_BALANCE_EXEC.
3566 *
3567 * Balance, ie. select the least loaded group.
3568 *
3569 * Returns the target CPU number, or the same CPU if no balancing is needed.
3570 *
3571 * preempt must be disabled.
3572 */
3573 static int
3574 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3575 {
3576 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3577 int cpu = smp_processor_id();
3578 int prev_cpu = task_cpu(p);
3579 int new_cpu = cpu;
3580 int want_affine = 0;
3581 int sync = wake_flags & WF_SYNC;
3582
3583 if (p->nr_cpus_allowed == 1)
3584 return prev_cpu;
3585
3586 if (sd_flag & SD_BALANCE_WAKE) {
3587 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3588 want_affine = 1;
3589 new_cpu = prev_cpu;
3590 }
3591
3592 rcu_read_lock();
3593 for_each_domain(cpu, tmp) {
3594 if (!(tmp->flags & SD_LOAD_BALANCE))
3595 continue;
3596
3597 /*
3598 * If both cpu and prev_cpu are part of this domain,
3599 * cpu is a valid SD_WAKE_AFFINE target.
3600 */
3601 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3602 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3603 affine_sd = tmp;
3604 break;
3605 }
3606
3607 if (tmp->flags & sd_flag)
3608 sd = tmp;
3609 }
3610
3611 if (affine_sd) {
3612 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3613 prev_cpu = cpu;
3614
3615 new_cpu = select_idle_sibling(p, prev_cpu);
3616 goto unlock;
3617 }
3618
3619 while (sd) {
3620 int load_idx = sd->forkexec_idx;
3621 struct sched_group *group;
3622 int weight;
3623
3624 if (!(sd->flags & sd_flag)) {
3625 sd = sd->child;
3626 continue;
3627 }
3628
3629 if (sd_flag & SD_BALANCE_WAKE)
3630 load_idx = sd->wake_idx;
3631
3632 group = find_idlest_group(sd, p, cpu, load_idx);
3633 if (!group) {
3634 sd = sd->child;
3635 continue;
3636 }
3637
3638 new_cpu = find_idlest_cpu(group, p, cpu);
3639 if (new_cpu == -1 || new_cpu == cpu) {
3640 /* Now try balancing at a lower domain level of cpu */
3641 sd = sd->child;
3642 continue;
3643 }
3644
3645 /* Now try balancing at a lower domain level of new_cpu */
3646 cpu = new_cpu;
3647 weight = sd->span_weight;
3648 sd = NULL;
3649 for_each_domain(cpu, tmp) {
3650 if (weight <= tmp->span_weight)
3651 break;
3652 if (tmp->flags & sd_flag)
3653 sd = tmp;
3654 }
3655 /* while loop will break here if sd == NULL */
3656 }
3657 unlock:
3658 rcu_read_unlock();
3659
3660 return new_cpu;
3661 }
3662
3663 /*
3664 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3665 * cfs_rq_of(p) references at time of call are still valid and identify the
3666 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3667 * other assumptions, including the state of rq->lock, should be made.
3668 */
3669 static void
3670 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3671 {
3672 struct sched_entity *se = &p->se;
3673 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3674
3675 /*
3676 * Load tracking: accumulate removed load so that it can be processed
3677 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3678 * to blocked load iff they have a positive decay-count. It can never
3679 * be negative here since on-rq tasks have decay-count == 0.
3680 */
3681 if (se->avg.decay_count) {
3682 se->avg.decay_count = -__synchronize_entity_decay(se);
3683 atomic_long_add(se->avg.load_avg_contrib,
3684 &cfs_rq->removed_load);
3685 }
3686 }
3687 #endif /* CONFIG_SMP */
3688
3689 static unsigned long
3690 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3691 {
3692 unsigned long gran = sysctl_sched_wakeup_granularity;
3693
3694 /*
3695 * Since its curr running now, convert the gran from real-time
3696 * to virtual-time in his units.
3697 *
3698 * By using 'se' instead of 'curr' we penalize light tasks, so
3699 * they get preempted easier. That is, if 'se' < 'curr' then
3700 * the resulting gran will be larger, therefore penalizing the
3701 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3702 * be smaller, again penalizing the lighter task.
3703 *
3704 * This is especially important for buddies when the leftmost
3705 * task is higher priority than the buddy.
3706 */
3707 return calc_delta_fair(gran, se);
3708 }
3709
3710 /*
3711 * Should 'se' preempt 'curr'.
3712 *
3713 * |s1
3714 * |s2
3715 * |s3
3716 * g
3717 * |<--->|c
3718 *
3719 * w(c, s1) = -1
3720 * w(c, s2) = 0
3721 * w(c, s3) = 1
3722 *
3723 */
3724 static int
3725 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3726 {
3727 s64 gran, vdiff = curr->vruntime - se->vruntime;
3728
3729 if (vdiff <= 0)
3730 return -1;
3731
3732 gran = wakeup_gran(curr, se);
3733 if (vdiff > gran)
3734 return 1;
3735
3736 return 0;
3737 }
3738
3739 static void set_last_buddy(struct sched_entity *se)
3740 {
3741 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3742 return;
3743
3744 for_each_sched_entity(se)
3745 cfs_rq_of(se)->last = se;
3746 }
3747
3748 static void set_next_buddy(struct sched_entity *se)
3749 {
3750 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3751 return;
3752
3753 for_each_sched_entity(se)
3754 cfs_rq_of(se)->next = se;
3755 }
3756
3757 static void set_skip_buddy(struct sched_entity *se)
3758 {
3759 for_each_sched_entity(se)
3760 cfs_rq_of(se)->skip = se;
3761 }
3762
3763 /*
3764 * Preempt the current task with a newly woken task if needed:
3765 */
3766 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3767 {
3768 struct task_struct *curr = rq->curr;
3769 struct sched_entity *se = &curr->se, *pse = &p->se;
3770 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3771 int scale = cfs_rq->nr_running >= sched_nr_latency;
3772 int next_buddy_marked = 0;
3773
3774 if (unlikely(se == pse))
3775 return;
3776
3777 /*
3778 * This is possible from callers such as move_task(), in which we
3779 * unconditionally check_prempt_curr() after an enqueue (which may have
3780 * lead to a throttle). This both saves work and prevents false
3781 * next-buddy nomination below.
3782 */
3783 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3784 return;
3785
3786 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3787 set_next_buddy(pse);
3788 next_buddy_marked = 1;
3789 }
3790
3791 /*
3792 * We can come here with TIF_NEED_RESCHED already set from new task
3793 * wake up path.
3794 *
3795 * Note: this also catches the edge-case of curr being in a throttled
3796 * group (e.g. via set_curr_task), since update_curr() (in the
3797 * enqueue of curr) will have resulted in resched being set. This
3798 * prevents us from potentially nominating it as a false LAST_BUDDY
3799 * below.
3800 */
3801 if (test_tsk_need_resched(curr))
3802 return;
3803
3804 /* Idle tasks are by definition preempted by non-idle tasks. */
3805 if (unlikely(curr->policy == SCHED_IDLE) &&
3806 likely(p->policy != SCHED_IDLE))
3807 goto preempt;
3808
3809 /*
3810 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3811 * is driven by the tick):
3812 */
3813 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3814 return;
3815
3816 find_matching_se(&se, &pse);
3817 update_curr(cfs_rq_of(se));
3818 BUG_ON(!pse);
3819 if (wakeup_preempt_entity(se, pse) == 1) {
3820 /*
3821 * Bias pick_next to pick the sched entity that is
3822 * triggering this preemption.
3823 */
3824 if (!next_buddy_marked)
3825 set_next_buddy(pse);
3826 goto preempt;
3827 }
3828
3829 return;
3830
3831 preempt:
3832 resched_task(curr);
3833 /*
3834 * Only set the backward buddy when the current task is still
3835 * on the rq. This can happen when a wakeup gets interleaved
3836 * with schedule on the ->pre_schedule() or idle_balance()
3837 * point, either of which can * drop the rq lock.
3838 *
3839 * Also, during early boot the idle thread is in the fair class,
3840 * for obvious reasons its a bad idea to schedule back to it.
3841 */
3842 if (unlikely(!se->on_rq || curr == rq->idle))
3843 return;
3844
3845 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3846 set_last_buddy(se);
3847 }
3848
3849 static struct task_struct *pick_next_task_fair(struct rq *rq)
3850 {
3851 struct task_struct *p;
3852 struct cfs_rq *cfs_rq = &rq->cfs;
3853 struct sched_entity *se;
3854
3855 if (!cfs_rq->nr_running)
3856 return NULL;
3857
3858 do {
3859 se = pick_next_entity(cfs_rq);
3860 set_next_entity(cfs_rq, se);
3861 cfs_rq = group_cfs_rq(se);
3862 } while (cfs_rq);
3863
3864 p = task_of(se);
3865 if (hrtick_enabled(rq))
3866 hrtick_start_fair(rq, p);
3867
3868 return p;
3869 }
3870
3871 /*
3872 * Account for a descheduled task:
3873 */
3874 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3875 {
3876 struct sched_entity *se = &prev->se;
3877 struct cfs_rq *cfs_rq;
3878
3879 for_each_sched_entity(se) {
3880 cfs_rq = cfs_rq_of(se);
3881 put_prev_entity(cfs_rq, se);
3882 }
3883 }
3884
3885 /*
3886 * sched_yield() is very simple
3887 *
3888 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3889 */
3890 static void yield_task_fair(struct rq *rq)
3891 {
3892 struct task_struct *curr = rq->curr;
3893 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3894 struct sched_entity *se = &curr->se;
3895
3896 /*
3897 * Are we the only task in the tree?
3898 */
3899 if (unlikely(rq->nr_running == 1))
3900 return;
3901
3902 clear_buddies(cfs_rq, se);
3903
3904 if (curr->policy != SCHED_BATCH) {
3905 update_rq_clock(rq);
3906 /*
3907 * Update run-time statistics of the 'current'.
3908 */
3909 update_curr(cfs_rq);
3910 /*
3911 * Tell update_rq_clock() that we've just updated,
3912 * so we don't do microscopic update in schedule()
3913 * and double the fastpath cost.
3914 */
3915 rq->skip_clock_update = 1;
3916 }
3917
3918 set_skip_buddy(se);
3919 }
3920
3921 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3922 {
3923 struct sched_entity *se = &p->se;
3924
3925 /* throttled hierarchies are not runnable */
3926 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3927 return false;
3928
3929 /* Tell the scheduler that we'd really like pse to run next. */
3930 set_next_buddy(se);
3931
3932 yield_task_fair(rq);
3933
3934 return true;
3935 }
3936
3937 #ifdef CONFIG_SMP
3938 /**************************************************
3939 * Fair scheduling class load-balancing methods.
3940 *
3941 * BASICS
3942 *
3943 * The purpose of load-balancing is to achieve the same basic fairness the
3944 * per-cpu scheduler provides, namely provide a proportional amount of compute
3945 * time to each task. This is expressed in the following equation:
3946 *
3947 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3948 *
3949 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3950 * W_i,0 is defined as:
3951 *
3952 * W_i,0 = \Sum_j w_i,j (2)
3953 *
3954 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3955 * is derived from the nice value as per prio_to_weight[].
3956 *
3957 * The weight average is an exponential decay average of the instantaneous
3958 * weight:
3959 *
3960 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3961 *
3962 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3963 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3964 * can also include other factors [XXX].
3965 *
3966 * To achieve this balance we define a measure of imbalance which follows
3967 * directly from (1):
3968 *
3969 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3970 *
3971 * We them move tasks around to minimize the imbalance. In the continuous
3972 * function space it is obvious this converges, in the discrete case we get
3973 * a few fun cases generally called infeasible weight scenarios.
3974 *
3975 * [XXX expand on:
3976 * - infeasible weights;
3977 * - local vs global optima in the discrete case. ]
3978 *
3979 *
3980 * SCHED DOMAINS
3981 *
3982 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3983 * for all i,j solution, we create a tree of cpus that follows the hardware
3984 * topology where each level pairs two lower groups (or better). This results
3985 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3986 * tree to only the first of the previous level and we decrease the frequency
3987 * of load-balance at each level inv. proportional to the number of cpus in
3988 * the groups.
3989 *
3990 * This yields:
3991 *
3992 * log_2 n 1 n
3993 * \Sum { --- * --- * 2^i } = O(n) (5)
3994 * i = 0 2^i 2^i
3995 * `- size of each group
3996 * | | `- number of cpus doing load-balance
3997 * | `- freq
3998 * `- sum over all levels
3999 *
4000 * Coupled with a limit on how many tasks we can migrate every balance pass,
4001 * this makes (5) the runtime complexity of the balancer.
4002 *
4003 * An important property here is that each CPU is still (indirectly) connected
4004 * to every other cpu in at most O(log n) steps:
4005 *
4006 * The adjacency matrix of the resulting graph is given by:
4007 *
4008 * log_2 n
4009 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4010 * k = 0
4011 *
4012 * And you'll find that:
4013 *
4014 * A^(log_2 n)_i,j != 0 for all i,j (7)
4015 *
4016 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4017 * The task movement gives a factor of O(m), giving a convergence complexity
4018 * of:
4019 *
4020 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4021 *
4022 *
4023 * WORK CONSERVING
4024 *
4025 * In order to avoid CPUs going idle while there's still work to do, new idle
4026 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4027 * tree itself instead of relying on other CPUs to bring it work.
4028 *
4029 * This adds some complexity to both (5) and (8) but it reduces the total idle
4030 * time.
4031 *
4032 * [XXX more?]
4033 *
4034 *
4035 * CGROUPS
4036 *
4037 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4038 *
4039 * s_k,i
4040 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4041 * S_k
4042 *
4043 * Where
4044 *
4045 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4046 *
4047 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4048 *
4049 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4050 * property.
4051 *
4052 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4053 * rewrite all of this once again.]
4054 */
4055
4056 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4057
4058 #define LBF_ALL_PINNED 0x01
4059 #define LBF_NEED_BREAK 0x02
4060 #define LBF_DST_PINNED 0x04
4061 #define LBF_SOME_PINNED 0x08
4062
4063 struct lb_env {
4064 struct sched_domain *sd;
4065
4066 struct rq *src_rq;
4067 int src_cpu;
4068
4069 int dst_cpu;
4070 struct rq *dst_rq;
4071
4072 struct cpumask *dst_grpmask;
4073 int new_dst_cpu;
4074 enum cpu_idle_type idle;
4075 long imbalance;
4076 /* The set of CPUs under consideration for load-balancing */
4077 struct cpumask *cpus;
4078
4079 unsigned int flags;
4080
4081 unsigned int loop;
4082 unsigned int loop_break;
4083 unsigned int loop_max;
4084 };
4085
4086 /*
4087 * move_task - move a task from one runqueue to another runqueue.
4088 * Both runqueues must be locked.
4089 */
4090 static void move_task(struct task_struct *p, struct lb_env *env)
4091 {
4092 deactivate_task(env->src_rq, p, 0);
4093 set_task_cpu(p, env->dst_cpu);
4094 activate_task(env->dst_rq, p, 0);
4095 check_preempt_curr(env->dst_rq, p, 0);
4096 }
4097
4098 /*
4099 * Is this task likely cache-hot:
4100 */
4101 static int
4102 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4103 {
4104 s64 delta;
4105
4106 if (p->sched_class != &fair_sched_class)
4107 return 0;
4108
4109 if (unlikely(p->policy == SCHED_IDLE))
4110 return 0;
4111
4112 /*
4113 * Buddy candidates are cache hot:
4114 */
4115 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4116 (&p->se == cfs_rq_of(&p->se)->next ||
4117 &p->se == cfs_rq_of(&p->se)->last))
4118 return 1;
4119
4120 if (sysctl_sched_migration_cost == -1)
4121 return 1;
4122 if (sysctl_sched_migration_cost == 0)
4123 return 0;
4124
4125 delta = now - p->se.exec_start;
4126
4127 return delta < (s64)sysctl_sched_migration_cost;
4128 }
4129
4130 #ifdef CONFIG_NUMA_BALANCING
4131 /* Returns true if the destination node has incurred more faults */
4132 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4133 {
4134 int src_nid, dst_nid;
4135
4136 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4137 !(env->sd->flags & SD_NUMA)) {
4138 return false;
4139 }
4140
4141 src_nid = cpu_to_node(env->src_cpu);
4142 dst_nid = cpu_to_node(env->dst_cpu);
4143
4144 if (src_nid == dst_nid ||
4145 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4146 return false;
4147
4148 if (dst_nid == p->numa_preferred_nid ||
4149 p->numa_faults[dst_nid] > p->numa_faults[src_nid])
4150 return true;
4151
4152 return false;
4153 }
4154
4155
4156 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4157 {
4158 int src_nid, dst_nid;
4159
4160 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4161 return false;
4162
4163 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4164 return false;
4165
4166 src_nid = cpu_to_node(env->src_cpu);
4167 dst_nid = cpu_to_node(env->dst_cpu);
4168
4169 if (src_nid == dst_nid ||
4170 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4171 return false;
4172
4173 if (p->numa_faults[dst_nid] < p->numa_faults[src_nid])
4174 return true;
4175
4176 return false;
4177 }
4178
4179 #else
4180 static inline bool migrate_improves_locality(struct task_struct *p,
4181 struct lb_env *env)
4182 {
4183 return false;
4184 }
4185
4186 static inline bool migrate_degrades_locality(struct task_struct *p,
4187 struct lb_env *env)
4188 {
4189 return false;
4190 }
4191 #endif
4192
4193 /*
4194 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4195 */
4196 static
4197 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4198 {
4199 int tsk_cache_hot = 0;
4200 /*
4201 * We do not migrate tasks that are:
4202 * 1) throttled_lb_pair, or
4203 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4204 * 3) running (obviously), or
4205 * 4) are cache-hot on their current CPU.
4206 */
4207 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4208 return 0;
4209
4210 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4211 int cpu;
4212
4213 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4214
4215 env->flags |= LBF_SOME_PINNED;
4216
4217 /*
4218 * Remember if this task can be migrated to any other cpu in
4219 * our sched_group. We may want to revisit it if we couldn't
4220 * meet load balance goals by pulling other tasks on src_cpu.
4221 *
4222 * Also avoid computing new_dst_cpu if we have already computed
4223 * one in current iteration.
4224 */
4225 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4226 return 0;
4227
4228 /* Prevent to re-select dst_cpu via env's cpus */
4229 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4230 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4231 env->flags |= LBF_DST_PINNED;
4232 env->new_dst_cpu = cpu;
4233 break;
4234 }
4235 }
4236
4237 return 0;
4238 }
4239
4240 /* Record that we found atleast one task that could run on dst_cpu */
4241 env->flags &= ~LBF_ALL_PINNED;
4242
4243 if (task_running(env->src_rq, p)) {
4244 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4245 return 0;
4246 }
4247
4248 /*
4249 * Aggressive migration if:
4250 * 1) destination numa is preferred
4251 * 2) task is cache cold, or
4252 * 3) too many balance attempts have failed.
4253 */
4254 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4255 if (!tsk_cache_hot)
4256 tsk_cache_hot = migrate_degrades_locality(p, env);
4257
4258 if (migrate_improves_locality(p, env)) {
4259 #ifdef CONFIG_SCHEDSTATS
4260 if (tsk_cache_hot) {
4261 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4262 schedstat_inc(p, se.statistics.nr_forced_migrations);
4263 }
4264 #endif
4265 return 1;
4266 }
4267
4268 if (!tsk_cache_hot ||
4269 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4270
4271 if (tsk_cache_hot) {
4272 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4273 schedstat_inc(p, se.statistics.nr_forced_migrations);
4274 }
4275
4276 return 1;
4277 }
4278
4279 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4280 return 0;
4281 }
4282
4283 /*
4284 * move_one_task tries to move exactly one task from busiest to this_rq, as
4285 * part of active balancing operations within "domain".
4286 * Returns 1 if successful and 0 otherwise.
4287 *
4288 * Called with both runqueues locked.
4289 */
4290 static int move_one_task(struct lb_env *env)
4291 {
4292 struct task_struct *p, *n;
4293
4294 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4295 if (!can_migrate_task(p, env))
4296 continue;
4297
4298 move_task(p, env);
4299 /*
4300 * Right now, this is only the second place move_task()
4301 * is called, so we can safely collect move_task()
4302 * stats here rather than inside move_task().
4303 */
4304 schedstat_inc(env->sd, lb_gained[env->idle]);
4305 return 1;
4306 }
4307 return 0;
4308 }
4309
4310 static unsigned long task_h_load(struct task_struct *p);
4311
4312 static const unsigned int sched_nr_migrate_break = 32;
4313
4314 /*
4315 * move_tasks tries to move up to imbalance weighted load from busiest to
4316 * this_rq, as part of a balancing operation within domain "sd".
4317 * Returns 1 if successful and 0 otherwise.
4318 *
4319 * Called with both runqueues locked.
4320 */
4321 static int move_tasks(struct lb_env *env)
4322 {
4323 struct list_head *tasks = &env->src_rq->cfs_tasks;
4324 struct task_struct *p;
4325 unsigned long load;
4326 int pulled = 0;
4327
4328 if (env->imbalance <= 0)
4329 return 0;
4330
4331 while (!list_empty(tasks)) {
4332 p = list_first_entry(tasks, struct task_struct, se.group_node);
4333
4334 env->loop++;
4335 /* We've more or less seen every task there is, call it quits */
4336 if (env->loop > env->loop_max)
4337 break;
4338
4339 /* take a breather every nr_migrate tasks */
4340 if (env->loop > env->loop_break) {
4341 env->loop_break += sched_nr_migrate_break;
4342 env->flags |= LBF_NEED_BREAK;
4343 break;
4344 }
4345
4346 if (!can_migrate_task(p, env))
4347 goto next;
4348
4349 load = task_h_load(p);
4350
4351 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4352 goto next;
4353
4354 if ((load / 2) > env->imbalance)
4355 goto next;
4356
4357 move_task(p, env);
4358 pulled++;
4359 env->imbalance -= load;
4360
4361 #ifdef CONFIG_PREEMPT
4362 /*
4363 * NEWIDLE balancing is a source of latency, so preemptible
4364 * kernels will stop after the first task is pulled to minimize
4365 * the critical section.
4366 */
4367 if (env->idle == CPU_NEWLY_IDLE)
4368 break;
4369 #endif
4370
4371 /*
4372 * We only want to steal up to the prescribed amount of
4373 * weighted load.
4374 */
4375 if (env->imbalance <= 0)
4376 break;
4377
4378 continue;
4379 next:
4380 list_move_tail(&p->se.group_node, tasks);
4381 }
4382
4383 /*
4384 * Right now, this is one of only two places move_task() is called,
4385 * so we can safely collect move_task() stats here rather than
4386 * inside move_task().
4387 */
4388 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4389
4390 return pulled;
4391 }
4392
4393 #ifdef CONFIG_FAIR_GROUP_SCHED
4394 /*
4395 * update tg->load_weight by folding this cpu's load_avg
4396 */
4397 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4398 {
4399 struct sched_entity *se = tg->se[cpu];
4400 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4401
4402 /* throttled entities do not contribute to load */
4403 if (throttled_hierarchy(cfs_rq))
4404 return;
4405
4406 update_cfs_rq_blocked_load(cfs_rq, 1);
4407
4408 if (se) {
4409 update_entity_load_avg(se, 1);
4410 /*
4411 * We pivot on our runnable average having decayed to zero for
4412 * list removal. This generally implies that all our children
4413 * have also been removed (modulo rounding error or bandwidth
4414 * control); however, such cases are rare and we can fix these
4415 * at enqueue.
4416 *
4417 * TODO: fix up out-of-order children on enqueue.
4418 */
4419 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4420 list_del_leaf_cfs_rq(cfs_rq);
4421 } else {
4422 struct rq *rq = rq_of(cfs_rq);
4423 update_rq_runnable_avg(rq, rq->nr_running);
4424 }
4425 }
4426
4427 static void update_blocked_averages(int cpu)
4428 {
4429 struct rq *rq = cpu_rq(cpu);
4430 struct cfs_rq *cfs_rq;
4431 unsigned long flags;
4432
4433 raw_spin_lock_irqsave(&rq->lock, flags);
4434 update_rq_clock(rq);
4435 /*
4436 * Iterates the task_group tree in a bottom up fashion, see
4437 * list_add_leaf_cfs_rq() for details.
4438 */
4439 for_each_leaf_cfs_rq(rq, cfs_rq) {
4440 /*
4441 * Note: We may want to consider periodically releasing
4442 * rq->lock about these updates so that creating many task
4443 * groups does not result in continually extending hold time.
4444 */
4445 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4446 }
4447
4448 raw_spin_unlock_irqrestore(&rq->lock, flags);
4449 }
4450
4451 /*
4452 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
4453 * This needs to be done in a top-down fashion because the load of a child
4454 * group is a fraction of its parents load.
4455 */
4456 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
4457 {
4458 struct rq *rq = rq_of(cfs_rq);
4459 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
4460 unsigned long now = jiffies;
4461 unsigned long load;
4462
4463 if (cfs_rq->last_h_load_update == now)
4464 return;
4465
4466 cfs_rq->h_load_next = NULL;
4467 for_each_sched_entity(se) {
4468 cfs_rq = cfs_rq_of(se);
4469 cfs_rq->h_load_next = se;
4470 if (cfs_rq->last_h_load_update == now)
4471 break;
4472 }
4473
4474 if (!se) {
4475 cfs_rq->h_load = cfs_rq->runnable_load_avg;
4476 cfs_rq->last_h_load_update = now;
4477 }
4478
4479 while ((se = cfs_rq->h_load_next) != NULL) {
4480 load = cfs_rq->h_load;
4481 load = div64_ul(load * se->avg.load_avg_contrib,
4482 cfs_rq->runnable_load_avg + 1);
4483 cfs_rq = group_cfs_rq(se);
4484 cfs_rq->h_load = load;
4485 cfs_rq->last_h_load_update = now;
4486 }
4487 }
4488
4489 static unsigned long task_h_load(struct task_struct *p)
4490 {
4491 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4492
4493 update_cfs_rq_h_load(cfs_rq);
4494 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4495 cfs_rq->runnable_load_avg + 1);
4496 }
4497 #else
4498 static inline void update_blocked_averages(int cpu)
4499 {
4500 }
4501
4502 static unsigned long task_h_load(struct task_struct *p)
4503 {
4504 return p->se.avg.load_avg_contrib;
4505 }
4506 #endif
4507
4508 /********** Helpers for find_busiest_group ************************/
4509 /*
4510 * sg_lb_stats - stats of a sched_group required for load_balancing
4511 */
4512 struct sg_lb_stats {
4513 unsigned long avg_load; /*Avg load across the CPUs of the group */
4514 unsigned long group_load; /* Total load over the CPUs of the group */
4515 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4516 unsigned long load_per_task;
4517 unsigned long group_power;
4518 unsigned int sum_nr_running; /* Nr tasks running in the group */
4519 unsigned int group_capacity;
4520 unsigned int idle_cpus;
4521 unsigned int group_weight;
4522 int group_imb; /* Is there an imbalance in the group ? */
4523 int group_has_capacity; /* Is there extra capacity in the group? */
4524 };
4525
4526 /*
4527 * sd_lb_stats - Structure to store the statistics of a sched_domain
4528 * during load balancing.
4529 */
4530 struct sd_lb_stats {
4531 struct sched_group *busiest; /* Busiest group in this sd */
4532 struct sched_group *local; /* Local group in this sd */
4533 unsigned long total_load; /* Total load of all groups in sd */
4534 unsigned long total_pwr; /* Total power of all groups in sd */
4535 unsigned long avg_load; /* Average load across all groups in sd */
4536
4537 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
4538 struct sg_lb_stats local_stat; /* Statistics of the local group */
4539 };
4540
4541 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4542 {
4543 /*
4544 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4545 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4546 * We must however clear busiest_stat::avg_load because
4547 * update_sd_pick_busiest() reads this before assignment.
4548 */
4549 *sds = (struct sd_lb_stats){
4550 .busiest = NULL,
4551 .local = NULL,
4552 .total_load = 0UL,
4553 .total_pwr = 0UL,
4554 .busiest_stat = {
4555 .avg_load = 0UL,
4556 },
4557 };
4558 }
4559
4560 /**
4561 * get_sd_load_idx - Obtain the load index for a given sched domain.
4562 * @sd: The sched_domain whose load_idx is to be obtained.
4563 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4564 *
4565 * Return: The load index.
4566 */
4567 static inline int get_sd_load_idx(struct sched_domain *sd,
4568 enum cpu_idle_type idle)
4569 {
4570 int load_idx;
4571
4572 switch (idle) {
4573 case CPU_NOT_IDLE:
4574 load_idx = sd->busy_idx;
4575 break;
4576
4577 case CPU_NEWLY_IDLE:
4578 load_idx = sd->newidle_idx;
4579 break;
4580 default:
4581 load_idx = sd->idle_idx;
4582 break;
4583 }
4584
4585 return load_idx;
4586 }
4587
4588 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4589 {
4590 return SCHED_POWER_SCALE;
4591 }
4592
4593 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4594 {
4595 return default_scale_freq_power(sd, cpu);
4596 }
4597
4598 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4599 {
4600 unsigned long weight = sd->span_weight;
4601 unsigned long smt_gain = sd->smt_gain;
4602
4603 smt_gain /= weight;
4604
4605 return smt_gain;
4606 }
4607
4608 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4609 {
4610 return default_scale_smt_power(sd, cpu);
4611 }
4612
4613 static unsigned long scale_rt_power(int cpu)
4614 {
4615 struct rq *rq = cpu_rq(cpu);
4616 u64 total, available, age_stamp, avg;
4617
4618 /*
4619 * Since we're reading these variables without serialization make sure
4620 * we read them once before doing sanity checks on them.
4621 */
4622 age_stamp = ACCESS_ONCE(rq->age_stamp);
4623 avg = ACCESS_ONCE(rq->rt_avg);
4624
4625 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
4626
4627 if (unlikely(total < avg)) {
4628 /* Ensures that power won't end up being negative */
4629 available = 0;
4630 } else {
4631 available = total - avg;
4632 }
4633
4634 if (unlikely((s64)total < SCHED_POWER_SCALE))
4635 total = SCHED_POWER_SCALE;
4636
4637 total >>= SCHED_POWER_SHIFT;
4638
4639 return div_u64(available, total);
4640 }
4641
4642 static void update_cpu_power(struct sched_domain *sd, int cpu)
4643 {
4644 unsigned long weight = sd->span_weight;
4645 unsigned long power = SCHED_POWER_SCALE;
4646 struct sched_group *sdg = sd->groups;
4647
4648 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4649 if (sched_feat(ARCH_POWER))
4650 power *= arch_scale_smt_power(sd, cpu);
4651 else
4652 power *= default_scale_smt_power(sd, cpu);
4653
4654 power >>= SCHED_POWER_SHIFT;
4655 }
4656
4657 sdg->sgp->power_orig = power;
4658
4659 if (sched_feat(ARCH_POWER))
4660 power *= arch_scale_freq_power(sd, cpu);
4661 else
4662 power *= default_scale_freq_power(sd, cpu);
4663
4664 power >>= SCHED_POWER_SHIFT;
4665
4666 power *= scale_rt_power(cpu);
4667 power >>= SCHED_POWER_SHIFT;
4668
4669 if (!power)
4670 power = 1;
4671
4672 cpu_rq(cpu)->cpu_power = power;
4673 sdg->sgp->power = power;
4674 }
4675
4676 void update_group_power(struct sched_domain *sd, int cpu)
4677 {
4678 struct sched_domain *child = sd->child;
4679 struct sched_group *group, *sdg = sd->groups;
4680 unsigned long power, power_orig;
4681 unsigned long interval;
4682
4683 interval = msecs_to_jiffies(sd->balance_interval);
4684 interval = clamp(interval, 1UL, max_load_balance_interval);
4685 sdg->sgp->next_update = jiffies + interval;
4686
4687 if (!child) {
4688 update_cpu_power(sd, cpu);
4689 return;
4690 }
4691
4692 power_orig = power = 0;
4693
4694 if (child->flags & SD_OVERLAP) {
4695 /*
4696 * SD_OVERLAP domains cannot assume that child groups
4697 * span the current group.
4698 */
4699
4700 for_each_cpu(cpu, sched_group_cpus(sdg)) {
4701 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
4702
4703 power_orig += sg->sgp->power_orig;
4704 power += sg->sgp->power;
4705 }
4706 } else {
4707 /*
4708 * !SD_OVERLAP domains can assume that child groups
4709 * span the current group.
4710 */
4711
4712 group = child->groups;
4713 do {
4714 power_orig += group->sgp->power_orig;
4715 power += group->sgp->power;
4716 group = group->next;
4717 } while (group != child->groups);
4718 }
4719
4720 sdg->sgp->power_orig = power_orig;
4721 sdg->sgp->power = power;
4722 }
4723
4724 /*
4725 * Try and fix up capacity for tiny siblings, this is needed when
4726 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4727 * which on its own isn't powerful enough.
4728 *
4729 * See update_sd_pick_busiest() and check_asym_packing().
4730 */
4731 static inline int
4732 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4733 {
4734 /*
4735 * Only siblings can have significantly less than SCHED_POWER_SCALE
4736 */
4737 if (!(sd->flags & SD_SHARE_CPUPOWER))
4738 return 0;
4739
4740 /*
4741 * If ~90% of the cpu_power is still there, we're good.
4742 */
4743 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4744 return 1;
4745
4746 return 0;
4747 }
4748
4749 /*
4750 * Group imbalance indicates (and tries to solve) the problem where balancing
4751 * groups is inadequate due to tsk_cpus_allowed() constraints.
4752 *
4753 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
4754 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
4755 * Something like:
4756 *
4757 * { 0 1 2 3 } { 4 5 6 7 }
4758 * * * * *
4759 *
4760 * If we were to balance group-wise we'd place two tasks in the first group and
4761 * two tasks in the second group. Clearly this is undesired as it will overload
4762 * cpu 3 and leave one of the cpus in the second group unused.
4763 *
4764 * The current solution to this issue is detecting the skew in the first group
4765 * by noticing the lower domain failed to reach balance and had difficulty
4766 * moving tasks due to affinity constraints.
4767 *
4768 * When this is so detected; this group becomes a candidate for busiest; see
4769 * update_sd_pick_busiest(). And calculcate_imbalance() and
4770 * find_busiest_group() avoid some of the usual balance conditions to allow it
4771 * to create an effective group imbalance.
4772 *
4773 * This is a somewhat tricky proposition since the next run might not find the
4774 * group imbalance and decide the groups need to be balanced again. A most
4775 * subtle and fragile situation.
4776 */
4777
4778 static inline int sg_imbalanced(struct sched_group *group)
4779 {
4780 return group->sgp->imbalance;
4781 }
4782
4783 /*
4784 * Compute the group capacity.
4785 *
4786 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
4787 * first dividing out the smt factor and computing the actual number of cores
4788 * and limit power unit capacity with that.
4789 */
4790 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
4791 {
4792 unsigned int capacity, smt, cpus;
4793 unsigned int power, power_orig;
4794
4795 power = group->sgp->power;
4796 power_orig = group->sgp->power_orig;
4797 cpus = group->group_weight;
4798
4799 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
4800 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
4801 capacity = cpus / smt; /* cores */
4802
4803 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
4804 if (!capacity)
4805 capacity = fix_small_capacity(env->sd, group);
4806
4807 return capacity;
4808 }
4809
4810 /**
4811 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4812 * @env: The load balancing environment.
4813 * @group: sched_group whose statistics are to be updated.
4814 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4815 * @local_group: Does group contain this_cpu.
4816 * @sgs: variable to hold the statistics for this group.
4817 */
4818 static inline void update_sg_lb_stats(struct lb_env *env,
4819 struct sched_group *group, int load_idx,
4820 int local_group, struct sg_lb_stats *sgs)
4821 {
4822 unsigned long nr_running;
4823 unsigned long load;
4824 int i;
4825
4826 memset(sgs, 0, sizeof(*sgs));
4827
4828 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4829 struct rq *rq = cpu_rq(i);
4830
4831 nr_running = rq->nr_running;
4832
4833 /* Bias balancing toward cpus of our domain */
4834 if (local_group)
4835 load = target_load(i, load_idx);
4836 else
4837 load = source_load(i, load_idx);
4838
4839 sgs->group_load += load;
4840 sgs->sum_nr_running += nr_running;
4841 sgs->sum_weighted_load += weighted_cpuload(i);
4842 if (idle_cpu(i))
4843 sgs->idle_cpus++;
4844 }
4845
4846 /* Adjust by relative CPU power of the group */
4847 sgs->group_power = group->sgp->power;
4848 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
4849
4850 if (sgs->sum_nr_running)
4851 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4852
4853 sgs->group_weight = group->group_weight;
4854
4855 sgs->group_imb = sg_imbalanced(group);
4856 sgs->group_capacity = sg_capacity(env, group);
4857
4858 if (sgs->group_capacity > sgs->sum_nr_running)
4859 sgs->group_has_capacity = 1;
4860 }
4861
4862 /**
4863 * update_sd_pick_busiest - return 1 on busiest group
4864 * @env: The load balancing environment.
4865 * @sds: sched_domain statistics
4866 * @sg: sched_group candidate to be checked for being the busiest
4867 * @sgs: sched_group statistics
4868 *
4869 * Determine if @sg is a busier group than the previously selected
4870 * busiest group.
4871 *
4872 * Return: %true if @sg is a busier group than the previously selected
4873 * busiest group. %false otherwise.
4874 */
4875 static bool update_sd_pick_busiest(struct lb_env *env,
4876 struct sd_lb_stats *sds,
4877 struct sched_group *sg,
4878 struct sg_lb_stats *sgs)
4879 {
4880 if (sgs->avg_load <= sds->busiest_stat.avg_load)
4881 return false;
4882
4883 if (sgs->sum_nr_running > sgs->group_capacity)
4884 return true;
4885
4886 if (sgs->group_imb)
4887 return true;
4888
4889 /*
4890 * ASYM_PACKING needs to move all the work to the lowest
4891 * numbered CPUs in the group, therefore mark all groups
4892 * higher than ourself as busy.
4893 */
4894 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4895 env->dst_cpu < group_first_cpu(sg)) {
4896 if (!sds->busiest)
4897 return true;
4898
4899 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4900 return true;
4901 }
4902
4903 return false;
4904 }
4905
4906 /**
4907 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4908 * @env: The load balancing environment.
4909 * @balance: Should we balance.
4910 * @sds: variable to hold the statistics for this sched_domain.
4911 */
4912 static inline void update_sd_lb_stats(struct lb_env *env,
4913 struct sd_lb_stats *sds)
4914 {
4915 struct sched_domain *child = env->sd->child;
4916 struct sched_group *sg = env->sd->groups;
4917 struct sg_lb_stats tmp_sgs;
4918 int load_idx, prefer_sibling = 0;
4919
4920 if (child && child->flags & SD_PREFER_SIBLING)
4921 prefer_sibling = 1;
4922
4923 load_idx = get_sd_load_idx(env->sd, env->idle);
4924
4925 do {
4926 struct sg_lb_stats *sgs = &tmp_sgs;
4927 int local_group;
4928
4929 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4930 if (local_group) {
4931 sds->local = sg;
4932 sgs = &sds->local_stat;
4933
4934 if (env->idle != CPU_NEWLY_IDLE ||
4935 time_after_eq(jiffies, sg->sgp->next_update))
4936 update_group_power(env->sd, env->dst_cpu);
4937 }
4938
4939 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
4940
4941 if (local_group)
4942 goto next_group;
4943
4944 /*
4945 * In case the child domain prefers tasks go to siblings
4946 * first, lower the sg capacity to one so that we'll try
4947 * and move all the excess tasks away. We lower the capacity
4948 * of a group only if the local group has the capacity to fit
4949 * these excess tasks, i.e. nr_running < group_capacity. The
4950 * extra check prevents the case where you always pull from the
4951 * heaviest group when it is already under-utilized (possible
4952 * with a large weight task outweighs the tasks on the system).
4953 */
4954 if (prefer_sibling && sds->local &&
4955 sds->local_stat.group_has_capacity)
4956 sgs->group_capacity = min(sgs->group_capacity, 1U);
4957
4958 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
4959 sds->busiest = sg;
4960 sds->busiest_stat = *sgs;
4961 }
4962
4963 next_group:
4964 /* Now, start updating sd_lb_stats */
4965 sds->total_load += sgs->group_load;
4966 sds->total_pwr += sgs->group_power;
4967
4968 sg = sg->next;
4969 } while (sg != env->sd->groups);
4970 }
4971
4972 /**
4973 * check_asym_packing - Check to see if the group is packed into the
4974 * sched doman.
4975 *
4976 * This is primarily intended to used at the sibling level. Some
4977 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4978 * case of POWER7, it can move to lower SMT modes only when higher
4979 * threads are idle. When in lower SMT modes, the threads will
4980 * perform better since they share less core resources. Hence when we
4981 * have idle threads, we want them to be the higher ones.
4982 *
4983 * This packing function is run on idle threads. It checks to see if
4984 * the busiest CPU in this domain (core in the P7 case) has a higher
4985 * CPU number than the packing function is being run on. Here we are
4986 * assuming lower CPU number will be equivalent to lower a SMT thread
4987 * number.
4988 *
4989 * Return: 1 when packing is required and a task should be moved to
4990 * this CPU. The amount of the imbalance is returned in *imbalance.
4991 *
4992 * @env: The load balancing environment.
4993 * @sds: Statistics of the sched_domain which is to be packed
4994 */
4995 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4996 {
4997 int busiest_cpu;
4998
4999 if (!(env->sd->flags & SD_ASYM_PACKING))
5000 return 0;
5001
5002 if (!sds->busiest)
5003 return 0;
5004
5005 busiest_cpu = group_first_cpu(sds->busiest);
5006 if (env->dst_cpu > busiest_cpu)
5007 return 0;
5008
5009 env->imbalance = DIV_ROUND_CLOSEST(
5010 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5011 SCHED_POWER_SCALE);
5012
5013 return 1;
5014 }
5015
5016 /**
5017 * fix_small_imbalance - Calculate the minor imbalance that exists
5018 * amongst the groups of a sched_domain, during
5019 * load balancing.
5020 * @env: The load balancing environment.
5021 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5022 */
5023 static inline
5024 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5025 {
5026 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5027 unsigned int imbn = 2;
5028 unsigned long scaled_busy_load_per_task;
5029 struct sg_lb_stats *local, *busiest;
5030
5031 local = &sds->local_stat;
5032 busiest = &sds->busiest_stat;
5033
5034 if (!local->sum_nr_running)
5035 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5036 else if (busiest->load_per_task > local->load_per_task)
5037 imbn = 1;
5038
5039 scaled_busy_load_per_task =
5040 (busiest->load_per_task * SCHED_POWER_SCALE) /
5041 busiest->group_power;
5042
5043 if (busiest->avg_load + scaled_busy_load_per_task >=
5044 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5045 env->imbalance = busiest->load_per_task;
5046 return;
5047 }
5048
5049 /*
5050 * OK, we don't have enough imbalance to justify moving tasks,
5051 * however we may be able to increase total CPU power used by
5052 * moving them.
5053 */
5054
5055 pwr_now += busiest->group_power *
5056 min(busiest->load_per_task, busiest->avg_load);
5057 pwr_now += local->group_power *
5058 min(local->load_per_task, local->avg_load);
5059 pwr_now /= SCHED_POWER_SCALE;
5060
5061 /* Amount of load we'd subtract */
5062 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5063 busiest->group_power;
5064 if (busiest->avg_load > tmp) {
5065 pwr_move += busiest->group_power *
5066 min(busiest->load_per_task,
5067 busiest->avg_load - tmp);
5068 }
5069
5070 /* Amount of load we'd add */
5071 if (busiest->avg_load * busiest->group_power <
5072 busiest->load_per_task * SCHED_POWER_SCALE) {
5073 tmp = (busiest->avg_load * busiest->group_power) /
5074 local->group_power;
5075 } else {
5076 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5077 local->group_power;
5078 }
5079 pwr_move += local->group_power *
5080 min(local->load_per_task, local->avg_load + tmp);
5081 pwr_move /= SCHED_POWER_SCALE;
5082
5083 /* Move if we gain throughput */
5084 if (pwr_move > pwr_now)
5085 env->imbalance = busiest->load_per_task;
5086 }
5087
5088 /**
5089 * calculate_imbalance - Calculate the amount of imbalance present within the
5090 * groups of a given sched_domain during load balance.
5091 * @env: load balance environment
5092 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5093 */
5094 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5095 {
5096 unsigned long max_pull, load_above_capacity = ~0UL;
5097 struct sg_lb_stats *local, *busiest;
5098
5099 local = &sds->local_stat;
5100 busiest = &sds->busiest_stat;
5101
5102 if (busiest->group_imb) {
5103 /*
5104 * In the group_imb case we cannot rely on group-wide averages
5105 * to ensure cpu-load equilibrium, look at wider averages. XXX
5106 */
5107 busiest->load_per_task =
5108 min(busiest->load_per_task, sds->avg_load);
5109 }
5110
5111 /*
5112 * In the presence of smp nice balancing, certain scenarios can have
5113 * max load less than avg load(as we skip the groups at or below
5114 * its cpu_power, while calculating max_load..)
5115 */
5116 if (busiest->avg_load <= sds->avg_load ||
5117 local->avg_load >= sds->avg_load) {
5118 env->imbalance = 0;
5119 return fix_small_imbalance(env, sds);
5120 }
5121
5122 if (!busiest->group_imb) {
5123 /*
5124 * Don't want to pull so many tasks that a group would go idle.
5125 * Except of course for the group_imb case, since then we might
5126 * have to drop below capacity to reach cpu-load equilibrium.
5127 */
5128 load_above_capacity =
5129 (busiest->sum_nr_running - busiest->group_capacity);
5130
5131 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5132 load_above_capacity /= busiest->group_power;
5133 }
5134
5135 /*
5136 * We're trying to get all the cpus to the average_load, so we don't
5137 * want to push ourselves above the average load, nor do we wish to
5138 * reduce the max loaded cpu below the average load. At the same time,
5139 * we also don't want to reduce the group load below the group capacity
5140 * (so that we can implement power-savings policies etc). Thus we look
5141 * for the minimum possible imbalance.
5142 */
5143 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5144
5145 /* How much load to actually move to equalise the imbalance */
5146 env->imbalance = min(
5147 max_pull * busiest->group_power,
5148 (sds->avg_load - local->avg_load) * local->group_power
5149 ) / SCHED_POWER_SCALE;
5150
5151 /*
5152 * if *imbalance is less than the average load per runnable task
5153 * there is no guarantee that any tasks will be moved so we'll have
5154 * a think about bumping its value to force at least one task to be
5155 * moved
5156 */
5157 if (env->imbalance < busiest->load_per_task)
5158 return fix_small_imbalance(env, sds);
5159 }
5160
5161 /******* find_busiest_group() helpers end here *********************/
5162
5163 /**
5164 * find_busiest_group - Returns the busiest group within the sched_domain
5165 * if there is an imbalance. If there isn't an imbalance, and
5166 * the user has opted for power-savings, it returns a group whose
5167 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5168 * such a group exists.
5169 *
5170 * Also calculates the amount of weighted load which should be moved
5171 * to restore balance.
5172 *
5173 * @env: The load balancing environment.
5174 *
5175 * Return: - The busiest group if imbalance exists.
5176 * - If no imbalance and user has opted for power-savings balance,
5177 * return the least loaded group whose CPUs can be
5178 * put to idle by rebalancing its tasks onto our group.
5179 */
5180 static struct sched_group *find_busiest_group(struct lb_env *env)
5181 {
5182 struct sg_lb_stats *local, *busiest;
5183 struct sd_lb_stats sds;
5184
5185 init_sd_lb_stats(&sds);
5186
5187 /*
5188 * Compute the various statistics relavent for load balancing at
5189 * this level.
5190 */
5191 update_sd_lb_stats(env, &sds);
5192 local = &sds.local_stat;
5193 busiest = &sds.busiest_stat;
5194
5195 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5196 check_asym_packing(env, &sds))
5197 return sds.busiest;
5198
5199 /* There is no busy sibling group to pull tasks from */
5200 if (!sds.busiest || busiest->sum_nr_running == 0)
5201 goto out_balanced;
5202
5203 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5204
5205 /*
5206 * If the busiest group is imbalanced the below checks don't
5207 * work because they assume all things are equal, which typically
5208 * isn't true due to cpus_allowed constraints and the like.
5209 */
5210 if (busiest->group_imb)
5211 goto force_balance;
5212
5213 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5214 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5215 !busiest->group_has_capacity)
5216 goto force_balance;
5217
5218 /*
5219 * If the local group is more busy than the selected busiest group
5220 * don't try and pull any tasks.
5221 */
5222 if (local->avg_load >= busiest->avg_load)
5223 goto out_balanced;
5224
5225 /*
5226 * Don't pull any tasks if this group is already above the domain
5227 * average load.
5228 */
5229 if (local->avg_load >= sds.avg_load)
5230 goto out_balanced;
5231
5232 if (env->idle == CPU_IDLE) {
5233 /*
5234 * This cpu is idle. If the busiest group load doesn't
5235 * have more tasks than the number of available cpu's and
5236 * there is no imbalance between this and busiest group
5237 * wrt to idle cpu's, it is balanced.
5238 */
5239 if ((local->idle_cpus < busiest->idle_cpus) &&
5240 busiest->sum_nr_running <= busiest->group_weight)
5241 goto out_balanced;
5242 } else {
5243 /*
5244 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5245 * imbalance_pct to be conservative.
5246 */
5247 if (100 * busiest->avg_load <=
5248 env->sd->imbalance_pct * local->avg_load)
5249 goto out_balanced;
5250 }
5251
5252 force_balance:
5253 /* Looks like there is an imbalance. Compute it */
5254 calculate_imbalance(env, &sds);
5255 return sds.busiest;
5256
5257 out_balanced:
5258 env->imbalance = 0;
5259 return NULL;
5260 }
5261
5262 /*
5263 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5264 */
5265 static struct rq *find_busiest_queue(struct lb_env *env,
5266 struct sched_group *group)
5267 {
5268 struct rq *busiest = NULL, *rq;
5269 unsigned long busiest_load = 0, busiest_power = 1;
5270 int i;
5271
5272 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5273 unsigned long power = power_of(i);
5274 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5275 SCHED_POWER_SCALE);
5276 unsigned long wl;
5277
5278 if (!capacity)
5279 capacity = fix_small_capacity(env->sd, group);
5280
5281 rq = cpu_rq(i);
5282 wl = weighted_cpuload(i);
5283
5284 /*
5285 * When comparing with imbalance, use weighted_cpuload()
5286 * which is not scaled with the cpu power.
5287 */
5288 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
5289 continue;
5290
5291 /*
5292 * For the load comparisons with the other cpu's, consider
5293 * the weighted_cpuload() scaled with the cpu power, so that
5294 * the load can be moved away from the cpu that is potentially
5295 * running at a lower capacity.
5296 *
5297 * Thus we're looking for max(wl_i / power_i), crosswise
5298 * multiplication to rid ourselves of the division works out
5299 * to: wl_i * power_j > wl_j * power_i; where j is our
5300 * previous maximum.
5301 */
5302 if (wl * busiest_power > busiest_load * power) {
5303 busiest_load = wl;
5304 busiest_power = power;
5305 busiest = rq;
5306 }
5307 }
5308
5309 return busiest;
5310 }
5311
5312 /*
5313 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5314 * so long as it is large enough.
5315 */
5316 #define MAX_PINNED_INTERVAL 512
5317
5318 /* Working cpumask for load_balance and load_balance_newidle. */
5319 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5320
5321 static int need_active_balance(struct lb_env *env)
5322 {
5323 struct sched_domain *sd = env->sd;
5324
5325 if (env->idle == CPU_NEWLY_IDLE) {
5326
5327 /*
5328 * ASYM_PACKING needs to force migrate tasks from busy but
5329 * higher numbered CPUs in order to pack all tasks in the
5330 * lowest numbered CPUs.
5331 */
5332 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5333 return 1;
5334 }
5335
5336 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5337 }
5338
5339 static int active_load_balance_cpu_stop(void *data);
5340
5341 static int should_we_balance(struct lb_env *env)
5342 {
5343 struct sched_group *sg = env->sd->groups;
5344 struct cpumask *sg_cpus, *sg_mask;
5345 int cpu, balance_cpu = -1;
5346
5347 /*
5348 * In the newly idle case, we will allow all the cpu's
5349 * to do the newly idle load balance.
5350 */
5351 if (env->idle == CPU_NEWLY_IDLE)
5352 return 1;
5353
5354 sg_cpus = sched_group_cpus(sg);
5355 sg_mask = sched_group_mask(sg);
5356 /* Try to find first idle cpu */
5357 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5358 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5359 continue;
5360
5361 balance_cpu = cpu;
5362 break;
5363 }
5364
5365 if (balance_cpu == -1)
5366 balance_cpu = group_balance_cpu(sg);
5367
5368 /*
5369 * First idle cpu or the first cpu(busiest) in this sched group
5370 * is eligible for doing load balancing at this and above domains.
5371 */
5372 return balance_cpu == env->dst_cpu;
5373 }
5374
5375 /*
5376 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5377 * tasks if there is an imbalance.
5378 */
5379 static int load_balance(int this_cpu, struct rq *this_rq,
5380 struct sched_domain *sd, enum cpu_idle_type idle,
5381 int *continue_balancing)
5382 {
5383 int ld_moved, cur_ld_moved, active_balance = 0;
5384 struct sched_domain *sd_parent = sd->parent;
5385 struct sched_group *group;
5386 struct rq *busiest;
5387 unsigned long flags;
5388 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5389
5390 struct lb_env env = {
5391 .sd = sd,
5392 .dst_cpu = this_cpu,
5393 .dst_rq = this_rq,
5394 .dst_grpmask = sched_group_cpus(sd->groups),
5395 .idle = idle,
5396 .loop_break = sched_nr_migrate_break,
5397 .cpus = cpus,
5398 };
5399
5400 /*
5401 * For NEWLY_IDLE load_balancing, we don't need to consider
5402 * other cpus in our group
5403 */
5404 if (idle == CPU_NEWLY_IDLE)
5405 env.dst_grpmask = NULL;
5406
5407 cpumask_copy(cpus, cpu_active_mask);
5408
5409 schedstat_inc(sd, lb_count[idle]);
5410
5411 redo:
5412 if (!should_we_balance(&env)) {
5413 *continue_balancing = 0;
5414 goto out_balanced;
5415 }
5416
5417 group = find_busiest_group(&env);
5418 if (!group) {
5419 schedstat_inc(sd, lb_nobusyg[idle]);
5420 goto out_balanced;
5421 }
5422
5423 busiest = find_busiest_queue(&env, group);
5424 if (!busiest) {
5425 schedstat_inc(sd, lb_nobusyq[idle]);
5426 goto out_balanced;
5427 }
5428
5429 BUG_ON(busiest == env.dst_rq);
5430
5431 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5432
5433 ld_moved = 0;
5434 if (busiest->nr_running > 1) {
5435 /*
5436 * Attempt to move tasks. If find_busiest_group has found
5437 * an imbalance but busiest->nr_running <= 1, the group is
5438 * still unbalanced. ld_moved simply stays zero, so it is
5439 * correctly treated as an imbalance.
5440 */
5441 env.flags |= LBF_ALL_PINNED;
5442 env.src_cpu = busiest->cpu;
5443 env.src_rq = busiest;
5444 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
5445
5446 more_balance:
5447 local_irq_save(flags);
5448 double_rq_lock(env.dst_rq, busiest);
5449
5450 /*
5451 * cur_ld_moved - load moved in current iteration
5452 * ld_moved - cumulative load moved across iterations
5453 */
5454 cur_ld_moved = move_tasks(&env);
5455 ld_moved += cur_ld_moved;
5456 double_rq_unlock(env.dst_rq, busiest);
5457 local_irq_restore(flags);
5458
5459 /*
5460 * some other cpu did the load balance for us.
5461 */
5462 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5463 resched_cpu(env.dst_cpu);
5464
5465 if (env.flags & LBF_NEED_BREAK) {
5466 env.flags &= ~LBF_NEED_BREAK;
5467 goto more_balance;
5468 }
5469
5470 /*
5471 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5472 * us and move them to an alternate dst_cpu in our sched_group
5473 * where they can run. The upper limit on how many times we
5474 * iterate on same src_cpu is dependent on number of cpus in our
5475 * sched_group.
5476 *
5477 * This changes load balance semantics a bit on who can move
5478 * load to a given_cpu. In addition to the given_cpu itself
5479 * (or a ilb_cpu acting on its behalf where given_cpu is
5480 * nohz-idle), we now have balance_cpu in a position to move
5481 * load to given_cpu. In rare situations, this may cause
5482 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5483 * _independently_ and at _same_ time to move some load to
5484 * given_cpu) causing exceess load to be moved to given_cpu.
5485 * This however should not happen so much in practice and
5486 * moreover subsequent load balance cycles should correct the
5487 * excess load moved.
5488 */
5489 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
5490
5491 /* Prevent to re-select dst_cpu via env's cpus */
5492 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5493
5494 env.dst_rq = cpu_rq(env.new_dst_cpu);
5495 env.dst_cpu = env.new_dst_cpu;
5496 env.flags &= ~LBF_DST_PINNED;
5497 env.loop = 0;
5498 env.loop_break = sched_nr_migrate_break;
5499
5500 /*
5501 * Go back to "more_balance" rather than "redo" since we
5502 * need to continue with same src_cpu.
5503 */
5504 goto more_balance;
5505 }
5506
5507 /*
5508 * We failed to reach balance because of affinity.
5509 */
5510 if (sd_parent) {
5511 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5512
5513 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5514 *group_imbalance = 1;
5515 } else if (*group_imbalance)
5516 *group_imbalance = 0;
5517 }
5518
5519 /* All tasks on this runqueue were pinned by CPU affinity */
5520 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5521 cpumask_clear_cpu(cpu_of(busiest), cpus);
5522 if (!cpumask_empty(cpus)) {
5523 env.loop = 0;
5524 env.loop_break = sched_nr_migrate_break;
5525 goto redo;
5526 }
5527 goto out_balanced;
5528 }
5529 }
5530
5531 if (!ld_moved) {
5532 schedstat_inc(sd, lb_failed[idle]);
5533 /*
5534 * Increment the failure counter only on periodic balance.
5535 * We do not want newidle balance, which can be very
5536 * frequent, pollute the failure counter causing
5537 * excessive cache_hot migrations and active balances.
5538 */
5539 if (idle != CPU_NEWLY_IDLE)
5540 sd->nr_balance_failed++;
5541
5542 if (need_active_balance(&env)) {
5543 raw_spin_lock_irqsave(&busiest->lock, flags);
5544
5545 /* don't kick the active_load_balance_cpu_stop,
5546 * if the curr task on busiest cpu can't be
5547 * moved to this_cpu
5548 */
5549 if (!cpumask_test_cpu(this_cpu,
5550 tsk_cpus_allowed(busiest->curr))) {
5551 raw_spin_unlock_irqrestore(&busiest->lock,
5552 flags);
5553 env.flags |= LBF_ALL_PINNED;
5554 goto out_one_pinned;
5555 }
5556
5557 /*
5558 * ->active_balance synchronizes accesses to
5559 * ->active_balance_work. Once set, it's cleared
5560 * only after active load balance is finished.
5561 */
5562 if (!busiest->active_balance) {
5563 busiest->active_balance = 1;
5564 busiest->push_cpu = this_cpu;
5565 active_balance = 1;
5566 }
5567 raw_spin_unlock_irqrestore(&busiest->lock, flags);
5568
5569 if (active_balance) {
5570 stop_one_cpu_nowait(cpu_of(busiest),
5571 active_load_balance_cpu_stop, busiest,
5572 &busiest->active_balance_work);
5573 }
5574
5575 /*
5576 * We've kicked active balancing, reset the failure
5577 * counter.
5578 */
5579 sd->nr_balance_failed = sd->cache_nice_tries+1;
5580 }
5581 } else
5582 sd->nr_balance_failed = 0;
5583
5584 if (likely(!active_balance)) {
5585 /* We were unbalanced, so reset the balancing interval */
5586 sd->balance_interval = sd->min_interval;
5587 } else {
5588 /*
5589 * If we've begun active balancing, start to back off. This
5590 * case may not be covered by the all_pinned logic if there
5591 * is only 1 task on the busy runqueue (because we don't call
5592 * move_tasks).
5593 */
5594 if (sd->balance_interval < sd->max_interval)
5595 sd->balance_interval *= 2;
5596 }
5597
5598 goto out;
5599
5600 out_balanced:
5601 schedstat_inc(sd, lb_balanced[idle]);
5602
5603 sd->nr_balance_failed = 0;
5604
5605 out_one_pinned:
5606 /* tune up the balancing interval */
5607 if (((env.flags & LBF_ALL_PINNED) &&
5608 sd->balance_interval < MAX_PINNED_INTERVAL) ||
5609 (sd->balance_interval < sd->max_interval))
5610 sd->balance_interval *= 2;
5611
5612 ld_moved = 0;
5613 out:
5614 return ld_moved;
5615 }
5616
5617 /*
5618 * idle_balance is called by schedule() if this_cpu is about to become
5619 * idle. Attempts to pull tasks from other CPUs.
5620 */
5621 void idle_balance(int this_cpu, struct rq *this_rq)
5622 {
5623 struct sched_domain *sd;
5624 int pulled_task = 0;
5625 unsigned long next_balance = jiffies + HZ;
5626 u64 curr_cost = 0;
5627
5628 this_rq->idle_stamp = rq_clock(this_rq);
5629
5630 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5631 return;
5632
5633 /*
5634 * Drop the rq->lock, but keep IRQ/preempt disabled.
5635 */
5636 raw_spin_unlock(&this_rq->lock);
5637
5638 update_blocked_averages(this_cpu);
5639 rcu_read_lock();
5640 for_each_domain(this_cpu, sd) {
5641 unsigned long interval;
5642 int continue_balancing = 1;
5643 u64 t0, domain_cost;
5644
5645 if (!(sd->flags & SD_LOAD_BALANCE))
5646 continue;
5647
5648 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
5649 break;
5650
5651 if (sd->flags & SD_BALANCE_NEWIDLE) {
5652 t0 = sched_clock_cpu(this_cpu);
5653
5654 /* If we've pulled tasks over stop searching: */
5655 pulled_task = load_balance(this_cpu, this_rq,
5656 sd, CPU_NEWLY_IDLE,
5657 &continue_balancing);
5658
5659 domain_cost = sched_clock_cpu(this_cpu) - t0;
5660 if (domain_cost > sd->max_newidle_lb_cost)
5661 sd->max_newidle_lb_cost = domain_cost;
5662
5663 curr_cost += domain_cost;
5664 }
5665
5666 interval = msecs_to_jiffies(sd->balance_interval);
5667 if (time_after(next_balance, sd->last_balance + interval))
5668 next_balance = sd->last_balance + interval;
5669 if (pulled_task) {
5670 this_rq->idle_stamp = 0;
5671 break;
5672 }
5673 }
5674 rcu_read_unlock();
5675
5676 raw_spin_lock(&this_rq->lock);
5677
5678 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5679 /*
5680 * We are going idle. next_balance may be set based on
5681 * a busy processor. So reset next_balance.
5682 */
5683 this_rq->next_balance = next_balance;
5684 }
5685
5686 if (curr_cost > this_rq->max_idle_balance_cost)
5687 this_rq->max_idle_balance_cost = curr_cost;
5688 }
5689
5690 /*
5691 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5692 * running tasks off the busiest CPU onto idle CPUs. It requires at
5693 * least 1 task to be running on each physical CPU where possible, and
5694 * avoids physical / logical imbalances.
5695 */
5696 static int active_load_balance_cpu_stop(void *data)
5697 {
5698 struct rq *busiest_rq = data;
5699 int busiest_cpu = cpu_of(busiest_rq);
5700 int target_cpu = busiest_rq->push_cpu;
5701 struct rq *target_rq = cpu_rq(target_cpu);
5702 struct sched_domain *sd;
5703
5704 raw_spin_lock_irq(&busiest_rq->lock);
5705
5706 /* make sure the requested cpu hasn't gone down in the meantime */
5707 if (unlikely(busiest_cpu != smp_processor_id() ||
5708 !busiest_rq->active_balance))
5709 goto out_unlock;
5710
5711 /* Is there any task to move? */
5712 if (busiest_rq->nr_running <= 1)
5713 goto out_unlock;
5714
5715 /*
5716 * This condition is "impossible", if it occurs
5717 * we need to fix it. Originally reported by
5718 * Bjorn Helgaas on a 128-cpu setup.
5719 */
5720 BUG_ON(busiest_rq == target_rq);
5721
5722 /* move a task from busiest_rq to target_rq */
5723 double_lock_balance(busiest_rq, target_rq);
5724
5725 /* Search for an sd spanning us and the target CPU. */
5726 rcu_read_lock();
5727 for_each_domain(target_cpu, sd) {
5728 if ((sd->flags & SD_LOAD_BALANCE) &&
5729 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5730 break;
5731 }
5732
5733 if (likely(sd)) {
5734 struct lb_env env = {
5735 .sd = sd,
5736 .dst_cpu = target_cpu,
5737 .dst_rq = target_rq,
5738 .src_cpu = busiest_rq->cpu,
5739 .src_rq = busiest_rq,
5740 .idle = CPU_IDLE,
5741 };
5742
5743 schedstat_inc(sd, alb_count);
5744
5745 if (move_one_task(&env))
5746 schedstat_inc(sd, alb_pushed);
5747 else
5748 schedstat_inc(sd, alb_failed);
5749 }
5750 rcu_read_unlock();
5751 double_unlock_balance(busiest_rq, target_rq);
5752 out_unlock:
5753 busiest_rq->active_balance = 0;
5754 raw_spin_unlock_irq(&busiest_rq->lock);
5755 return 0;
5756 }
5757
5758 #ifdef CONFIG_NO_HZ_COMMON
5759 /*
5760 * idle load balancing details
5761 * - When one of the busy CPUs notice that there may be an idle rebalancing
5762 * needed, they will kick the idle load balancer, which then does idle
5763 * load balancing for all the idle CPUs.
5764 */
5765 static struct {
5766 cpumask_var_t idle_cpus_mask;
5767 atomic_t nr_cpus;
5768 unsigned long next_balance; /* in jiffy units */
5769 } nohz ____cacheline_aligned;
5770
5771 static inline int find_new_ilb(int call_cpu)
5772 {
5773 int ilb = cpumask_first(nohz.idle_cpus_mask);
5774
5775 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5776 return ilb;
5777
5778 return nr_cpu_ids;
5779 }
5780
5781 /*
5782 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5783 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5784 * CPU (if there is one).
5785 */
5786 static void nohz_balancer_kick(int cpu)
5787 {
5788 int ilb_cpu;
5789
5790 nohz.next_balance++;
5791
5792 ilb_cpu = find_new_ilb(cpu);
5793
5794 if (ilb_cpu >= nr_cpu_ids)
5795 return;
5796
5797 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5798 return;
5799 /*
5800 * Use smp_send_reschedule() instead of resched_cpu().
5801 * This way we generate a sched IPI on the target cpu which
5802 * is idle. And the softirq performing nohz idle load balance
5803 * will be run before returning from the IPI.
5804 */
5805 smp_send_reschedule(ilb_cpu);
5806 return;
5807 }
5808
5809 static inline void nohz_balance_exit_idle(int cpu)
5810 {
5811 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5812 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5813 atomic_dec(&nohz.nr_cpus);
5814 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5815 }
5816 }
5817
5818 static inline void set_cpu_sd_state_busy(void)
5819 {
5820 struct sched_domain *sd;
5821
5822 rcu_read_lock();
5823 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5824
5825 if (!sd || !sd->nohz_idle)
5826 goto unlock;
5827 sd->nohz_idle = 0;
5828
5829 for (; sd; sd = sd->parent)
5830 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5831 unlock:
5832 rcu_read_unlock();
5833 }
5834
5835 void set_cpu_sd_state_idle(void)
5836 {
5837 struct sched_domain *sd;
5838
5839 rcu_read_lock();
5840 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5841
5842 if (!sd || sd->nohz_idle)
5843 goto unlock;
5844 sd->nohz_idle = 1;
5845
5846 for (; sd; sd = sd->parent)
5847 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5848 unlock:
5849 rcu_read_unlock();
5850 }
5851
5852 /*
5853 * This routine will record that the cpu is going idle with tick stopped.
5854 * This info will be used in performing idle load balancing in the future.
5855 */
5856 void nohz_balance_enter_idle(int cpu)
5857 {
5858 /*
5859 * If this cpu is going down, then nothing needs to be done.
5860 */
5861 if (!cpu_active(cpu))
5862 return;
5863
5864 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5865 return;
5866
5867 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5868 atomic_inc(&nohz.nr_cpus);
5869 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5870 }
5871
5872 static int sched_ilb_notifier(struct notifier_block *nfb,
5873 unsigned long action, void *hcpu)
5874 {
5875 switch (action & ~CPU_TASKS_FROZEN) {
5876 case CPU_DYING:
5877 nohz_balance_exit_idle(smp_processor_id());
5878 return NOTIFY_OK;
5879 default:
5880 return NOTIFY_DONE;
5881 }
5882 }
5883 #endif
5884
5885 static DEFINE_SPINLOCK(balancing);
5886
5887 /*
5888 * Scale the max load_balance interval with the number of CPUs in the system.
5889 * This trades load-balance latency on larger machines for less cross talk.
5890 */
5891 void update_max_interval(void)
5892 {
5893 max_load_balance_interval = HZ*num_online_cpus()/10;
5894 }
5895
5896 /*
5897 * It checks each scheduling domain to see if it is due to be balanced,
5898 * and initiates a balancing operation if so.
5899 *
5900 * Balancing parameters are set up in init_sched_domains.
5901 */
5902 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5903 {
5904 int continue_balancing = 1;
5905 struct rq *rq = cpu_rq(cpu);
5906 unsigned long interval;
5907 struct sched_domain *sd;
5908 /* Earliest time when we have to do rebalance again */
5909 unsigned long next_balance = jiffies + 60*HZ;
5910 int update_next_balance = 0;
5911 int need_serialize, need_decay = 0;
5912 u64 max_cost = 0;
5913
5914 update_blocked_averages(cpu);
5915
5916 rcu_read_lock();
5917 for_each_domain(cpu, sd) {
5918 /*
5919 * Decay the newidle max times here because this is a regular
5920 * visit to all the domains. Decay ~1% per second.
5921 */
5922 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
5923 sd->max_newidle_lb_cost =
5924 (sd->max_newidle_lb_cost * 253) / 256;
5925 sd->next_decay_max_lb_cost = jiffies + HZ;
5926 need_decay = 1;
5927 }
5928 max_cost += sd->max_newidle_lb_cost;
5929
5930 if (!(sd->flags & SD_LOAD_BALANCE))
5931 continue;
5932
5933 /*
5934 * Stop the load balance at this level. There is another
5935 * CPU in our sched group which is doing load balancing more
5936 * actively.
5937 */
5938 if (!continue_balancing) {
5939 if (need_decay)
5940 continue;
5941 break;
5942 }
5943
5944 interval = sd->balance_interval;
5945 if (idle != CPU_IDLE)
5946 interval *= sd->busy_factor;
5947
5948 /* scale ms to jiffies */
5949 interval = msecs_to_jiffies(interval);
5950 interval = clamp(interval, 1UL, max_load_balance_interval);
5951
5952 need_serialize = sd->flags & SD_SERIALIZE;
5953
5954 if (need_serialize) {
5955 if (!spin_trylock(&balancing))
5956 goto out;
5957 }
5958
5959 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5960 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
5961 /*
5962 * The LBF_DST_PINNED logic could have changed
5963 * env->dst_cpu, so we can't know our idle
5964 * state even if we migrated tasks. Update it.
5965 */
5966 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
5967 }
5968 sd->last_balance = jiffies;
5969 }
5970 if (need_serialize)
5971 spin_unlock(&balancing);
5972 out:
5973 if (time_after(next_balance, sd->last_balance + interval)) {
5974 next_balance = sd->last_balance + interval;
5975 update_next_balance = 1;
5976 }
5977 }
5978 if (need_decay) {
5979 /*
5980 * Ensure the rq-wide value also decays but keep it at a
5981 * reasonable floor to avoid funnies with rq->avg_idle.
5982 */
5983 rq->max_idle_balance_cost =
5984 max((u64)sysctl_sched_migration_cost, max_cost);
5985 }
5986 rcu_read_unlock();
5987
5988 /*
5989 * next_balance will be updated only when there is a need.
5990 * When the cpu is attached to null domain for ex, it will not be
5991 * updated.
5992 */
5993 if (likely(update_next_balance))
5994 rq->next_balance = next_balance;
5995 }
5996
5997 #ifdef CONFIG_NO_HZ_COMMON
5998 /*
5999 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6000 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6001 */
6002 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6003 {
6004 struct rq *this_rq = cpu_rq(this_cpu);
6005 struct rq *rq;
6006 int balance_cpu;
6007
6008 if (idle != CPU_IDLE ||
6009 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6010 goto end;
6011
6012 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6013 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6014 continue;
6015
6016 /*
6017 * If this cpu gets work to do, stop the load balancing
6018 * work being done for other cpus. Next load
6019 * balancing owner will pick it up.
6020 */
6021 if (need_resched())
6022 break;
6023
6024 rq = cpu_rq(balance_cpu);
6025
6026 raw_spin_lock_irq(&rq->lock);
6027 update_rq_clock(rq);
6028 update_idle_cpu_load(rq);
6029 raw_spin_unlock_irq(&rq->lock);
6030
6031 rebalance_domains(balance_cpu, CPU_IDLE);
6032
6033 if (time_after(this_rq->next_balance, rq->next_balance))
6034 this_rq->next_balance = rq->next_balance;
6035 }
6036 nohz.next_balance = this_rq->next_balance;
6037 end:
6038 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6039 }
6040
6041 /*
6042 * Current heuristic for kicking the idle load balancer in the presence
6043 * of an idle cpu is the system.
6044 * - This rq has more than one task.
6045 * - At any scheduler domain level, this cpu's scheduler group has multiple
6046 * busy cpu's exceeding the group's power.
6047 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6048 * domain span are idle.
6049 */
6050 static inline int nohz_kick_needed(struct rq *rq, int cpu)
6051 {
6052 unsigned long now = jiffies;
6053 struct sched_domain *sd;
6054
6055 if (unlikely(idle_cpu(cpu)))
6056 return 0;
6057
6058 /*
6059 * We may be recently in ticked or tickless idle mode. At the first
6060 * busy tick after returning from idle, we will update the busy stats.
6061 */
6062 set_cpu_sd_state_busy();
6063 nohz_balance_exit_idle(cpu);
6064
6065 /*
6066 * None are in tickless mode and hence no need for NOHZ idle load
6067 * balancing.
6068 */
6069 if (likely(!atomic_read(&nohz.nr_cpus)))
6070 return 0;
6071
6072 if (time_before(now, nohz.next_balance))
6073 return 0;
6074
6075 if (rq->nr_running >= 2)
6076 goto need_kick;
6077
6078 rcu_read_lock();
6079 for_each_domain(cpu, sd) {
6080 struct sched_group *sg = sd->groups;
6081 struct sched_group_power *sgp = sg->sgp;
6082 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
6083
6084 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
6085 goto need_kick_unlock;
6086
6087 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6088 && (cpumask_first_and(nohz.idle_cpus_mask,
6089 sched_domain_span(sd)) < cpu))
6090 goto need_kick_unlock;
6091
6092 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6093 break;
6094 }
6095 rcu_read_unlock();
6096 return 0;
6097
6098 need_kick_unlock:
6099 rcu_read_unlock();
6100 need_kick:
6101 return 1;
6102 }
6103 #else
6104 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6105 #endif
6106
6107 /*
6108 * run_rebalance_domains is triggered when needed from the scheduler tick.
6109 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6110 */
6111 static void run_rebalance_domains(struct softirq_action *h)
6112 {
6113 int this_cpu = smp_processor_id();
6114 struct rq *this_rq = cpu_rq(this_cpu);
6115 enum cpu_idle_type idle = this_rq->idle_balance ?
6116 CPU_IDLE : CPU_NOT_IDLE;
6117
6118 rebalance_domains(this_cpu, idle);
6119
6120 /*
6121 * If this cpu has a pending nohz_balance_kick, then do the
6122 * balancing on behalf of the other idle cpus whose ticks are
6123 * stopped.
6124 */
6125 nohz_idle_balance(this_cpu, idle);
6126 }
6127
6128 static inline int on_null_domain(int cpu)
6129 {
6130 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6131 }
6132
6133 /*
6134 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6135 */
6136 void trigger_load_balance(struct rq *rq, int cpu)
6137 {
6138 /* Don't need to rebalance while attached to NULL domain */
6139 if (time_after_eq(jiffies, rq->next_balance) &&
6140 likely(!on_null_domain(cpu)))
6141 raise_softirq(SCHED_SOFTIRQ);
6142 #ifdef CONFIG_NO_HZ_COMMON
6143 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6144 nohz_balancer_kick(cpu);
6145 #endif
6146 }
6147
6148 static void rq_online_fair(struct rq *rq)
6149 {
6150 update_sysctl();
6151 }
6152
6153 static void rq_offline_fair(struct rq *rq)
6154 {
6155 update_sysctl();
6156
6157 /* Ensure any throttled groups are reachable by pick_next_task */
6158 unthrottle_offline_cfs_rqs(rq);
6159 }
6160
6161 #endif /* CONFIG_SMP */
6162
6163 /*
6164 * scheduler tick hitting a task of our scheduling class:
6165 */
6166 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6167 {
6168 struct cfs_rq *cfs_rq;
6169 struct sched_entity *se = &curr->se;
6170
6171 for_each_sched_entity(se) {
6172 cfs_rq = cfs_rq_of(se);
6173 entity_tick(cfs_rq, se, queued);
6174 }
6175
6176 if (numabalancing_enabled)
6177 task_tick_numa(rq, curr);
6178
6179 update_rq_runnable_avg(rq, 1);
6180 }
6181
6182 /*
6183 * called on fork with the child task as argument from the parent's context
6184 * - child not yet on the tasklist
6185 * - preemption disabled
6186 */
6187 static void task_fork_fair(struct task_struct *p)
6188 {
6189 struct cfs_rq *cfs_rq;
6190 struct sched_entity *se = &p->se, *curr;
6191 int this_cpu = smp_processor_id();
6192 struct rq *rq = this_rq();
6193 unsigned long flags;
6194
6195 raw_spin_lock_irqsave(&rq->lock, flags);
6196
6197 update_rq_clock(rq);
6198
6199 cfs_rq = task_cfs_rq(current);
6200 curr = cfs_rq->curr;
6201
6202 /*
6203 * Not only the cpu but also the task_group of the parent might have
6204 * been changed after parent->se.parent,cfs_rq were copied to
6205 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6206 * of child point to valid ones.
6207 */
6208 rcu_read_lock();
6209 __set_task_cpu(p, this_cpu);
6210 rcu_read_unlock();
6211
6212 update_curr(cfs_rq);
6213
6214 if (curr)
6215 se->vruntime = curr->vruntime;
6216 place_entity(cfs_rq, se, 1);
6217
6218 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6219 /*
6220 * Upon rescheduling, sched_class::put_prev_task() will place
6221 * 'current' within the tree based on its new key value.
6222 */
6223 swap(curr->vruntime, se->vruntime);
6224 resched_task(rq->curr);
6225 }
6226
6227 se->vruntime -= cfs_rq->min_vruntime;
6228
6229 raw_spin_unlock_irqrestore(&rq->lock, flags);
6230 }
6231
6232 /*
6233 * Priority of the task has changed. Check to see if we preempt
6234 * the current task.
6235 */
6236 static void
6237 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6238 {
6239 if (!p->se.on_rq)
6240 return;
6241
6242 /*
6243 * Reschedule if we are currently running on this runqueue and
6244 * our priority decreased, or if we are not currently running on
6245 * this runqueue and our priority is higher than the current's
6246 */
6247 if (rq->curr == p) {
6248 if (p->prio > oldprio)
6249 resched_task(rq->curr);
6250 } else
6251 check_preempt_curr(rq, p, 0);
6252 }
6253
6254 static void switched_from_fair(struct rq *rq, struct task_struct *p)
6255 {
6256 struct sched_entity *se = &p->se;
6257 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6258
6259 /*
6260 * Ensure the task's vruntime is normalized, so that when its
6261 * switched back to the fair class the enqueue_entity(.flags=0) will
6262 * do the right thing.
6263 *
6264 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6265 * have normalized the vruntime, if it was !on_rq, then only when
6266 * the task is sleeping will it still have non-normalized vruntime.
6267 */
6268 if (!se->on_rq && p->state != TASK_RUNNING) {
6269 /*
6270 * Fix up our vruntime so that the current sleep doesn't
6271 * cause 'unlimited' sleep bonus.
6272 */
6273 place_entity(cfs_rq, se, 0);
6274 se->vruntime -= cfs_rq->min_vruntime;
6275 }
6276
6277 #ifdef CONFIG_SMP
6278 /*
6279 * Remove our load from contribution when we leave sched_fair
6280 * and ensure we don't carry in an old decay_count if we
6281 * switch back.
6282 */
6283 if (se->avg.decay_count) {
6284 __synchronize_entity_decay(se);
6285 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
6286 }
6287 #endif
6288 }
6289
6290 /*
6291 * We switched to the sched_fair class.
6292 */
6293 static void switched_to_fair(struct rq *rq, struct task_struct *p)
6294 {
6295 if (!p->se.on_rq)
6296 return;
6297
6298 /*
6299 * We were most likely switched from sched_rt, so
6300 * kick off the schedule if running, otherwise just see
6301 * if we can still preempt the current task.
6302 */
6303 if (rq->curr == p)
6304 resched_task(rq->curr);
6305 else
6306 check_preempt_curr(rq, p, 0);
6307 }
6308
6309 /* Account for a task changing its policy or group.
6310 *
6311 * This routine is mostly called to set cfs_rq->curr field when a task
6312 * migrates between groups/classes.
6313 */
6314 static void set_curr_task_fair(struct rq *rq)
6315 {
6316 struct sched_entity *se = &rq->curr->se;
6317
6318 for_each_sched_entity(se) {
6319 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6320
6321 set_next_entity(cfs_rq, se);
6322 /* ensure bandwidth has been allocated on our new cfs_rq */
6323 account_cfs_rq_runtime(cfs_rq, 0);
6324 }
6325 }
6326
6327 void init_cfs_rq(struct cfs_rq *cfs_rq)
6328 {
6329 cfs_rq->tasks_timeline = RB_ROOT;
6330 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6331 #ifndef CONFIG_64BIT
6332 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6333 #endif
6334 #ifdef CONFIG_SMP
6335 atomic64_set(&cfs_rq->decay_counter, 1);
6336 atomic_long_set(&cfs_rq->removed_load, 0);
6337 #endif
6338 }
6339
6340 #ifdef CONFIG_FAIR_GROUP_SCHED
6341 static void task_move_group_fair(struct task_struct *p, int on_rq)
6342 {
6343 struct cfs_rq *cfs_rq;
6344 /*
6345 * If the task was not on the rq at the time of this cgroup movement
6346 * it must have been asleep, sleeping tasks keep their ->vruntime
6347 * absolute on their old rq until wakeup (needed for the fair sleeper
6348 * bonus in place_entity()).
6349 *
6350 * If it was on the rq, we've just 'preempted' it, which does convert
6351 * ->vruntime to a relative base.
6352 *
6353 * Make sure both cases convert their relative position when migrating
6354 * to another cgroup's rq. This does somewhat interfere with the
6355 * fair sleeper stuff for the first placement, but who cares.
6356 */
6357 /*
6358 * When !on_rq, vruntime of the task has usually NOT been normalized.
6359 * But there are some cases where it has already been normalized:
6360 *
6361 * - Moving a forked child which is waiting for being woken up by
6362 * wake_up_new_task().
6363 * - Moving a task which has been woken up by try_to_wake_up() and
6364 * waiting for actually being woken up by sched_ttwu_pending().
6365 *
6366 * To prevent boost or penalty in the new cfs_rq caused by delta
6367 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6368 */
6369 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
6370 on_rq = 1;
6371
6372 if (!on_rq)
6373 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6374 set_task_rq(p, task_cpu(p));
6375 if (!on_rq) {
6376 cfs_rq = cfs_rq_of(&p->se);
6377 p->se.vruntime += cfs_rq->min_vruntime;
6378 #ifdef CONFIG_SMP
6379 /*
6380 * migrate_task_rq_fair() will have removed our previous
6381 * contribution, but we must synchronize for ongoing future
6382 * decay.
6383 */
6384 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6385 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6386 #endif
6387 }
6388 }
6389
6390 void free_fair_sched_group(struct task_group *tg)
6391 {
6392 int i;
6393
6394 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6395
6396 for_each_possible_cpu(i) {
6397 if (tg->cfs_rq)
6398 kfree(tg->cfs_rq[i]);
6399 if (tg->se)
6400 kfree(tg->se[i]);
6401 }
6402
6403 kfree(tg->cfs_rq);
6404 kfree(tg->se);
6405 }
6406
6407 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6408 {
6409 struct cfs_rq *cfs_rq;
6410 struct sched_entity *se;
6411 int i;
6412
6413 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6414 if (!tg->cfs_rq)
6415 goto err;
6416 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6417 if (!tg->se)
6418 goto err;
6419
6420 tg->shares = NICE_0_LOAD;
6421
6422 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6423
6424 for_each_possible_cpu(i) {
6425 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6426 GFP_KERNEL, cpu_to_node(i));
6427 if (!cfs_rq)
6428 goto err;
6429
6430 se = kzalloc_node(sizeof(struct sched_entity),
6431 GFP_KERNEL, cpu_to_node(i));
6432 if (!se)
6433 goto err_free_rq;
6434
6435 init_cfs_rq(cfs_rq);
6436 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6437 }
6438
6439 return 1;
6440
6441 err_free_rq:
6442 kfree(cfs_rq);
6443 err:
6444 return 0;
6445 }
6446
6447 void unregister_fair_sched_group(struct task_group *tg, int cpu)
6448 {
6449 struct rq *rq = cpu_rq(cpu);
6450 unsigned long flags;
6451
6452 /*
6453 * Only empty task groups can be destroyed; so we can speculatively
6454 * check on_list without danger of it being re-added.
6455 */
6456 if (!tg->cfs_rq[cpu]->on_list)
6457 return;
6458
6459 raw_spin_lock_irqsave(&rq->lock, flags);
6460 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6461 raw_spin_unlock_irqrestore(&rq->lock, flags);
6462 }
6463
6464 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6465 struct sched_entity *se, int cpu,
6466 struct sched_entity *parent)
6467 {
6468 struct rq *rq = cpu_rq(cpu);
6469
6470 cfs_rq->tg = tg;
6471 cfs_rq->rq = rq;
6472 init_cfs_rq_runtime(cfs_rq);
6473
6474 tg->cfs_rq[cpu] = cfs_rq;
6475 tg->se[cpu] = se;
6476
6477 /* se could be NULL for root_task_group */
6478 if (!se)
6479 return;
6480
6481 if (!parent)
6482 se->cfs_rq = &rq->cfs;
6483 else
6484 se->cfs_rq = parent->my_q;
6485
6486 se->my_q = cfs_rq;
6487 update_load_set(&se->load, 0);
6488 se->parent = parent;
6489 }
6490
6491 static DEFINE_MUTEX(shares_mutex);
6492
6493 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6494 {
6495 int i;
6496 unsigned long flags;
6497
6498 /*
6499 * We can't change the weight of the root cgroup.
6500 */
6501 if (!tg->se[0])
6502 return -EINVAL;
6503
6504 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6505
6506 mutex_lock(&shares_mutex);
6507 if (tg->shares == shares)
6508 goto done;
6509
6510 tg->shares = shares;
6511 for_each_possible_cpu(i) {
6512 struct rq *rq = cpu_rq(i);
6513 struct sched_entity *se;
6514
6515 se = tg->se[i];
6516 /* Propagate contribution to hierarchy */
6517 raw_spin_lock_irqsave(&rq->lock, flags);
6518
6519 /* Possible calls to update_curr() need rq clock */
6520 update_rq_clock(rq);
6521 for_each_sched_entity(se)
6522 update_cfs_shares(group_cfs_rq(se));
6523 raw_spin_unlock_irqrestore(&rq->lock, flags);
6524 }
6525
6526 done:
6527 mutex_unlock(&shares_mutex);
6528 return 0;
6529 }
6530 #else /* CONFIG_FAIR_GROUP_SCHED */
6531
6532 void free_fair_sched_group(struct task_group *tg) { }
6533
6534 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6535 {
6536 return 1;
6537 }
6538
6539 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6540
6541 #endif /* CONFIG_FAIR_GROUP_SCHED */
6542
6543
6544 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6545 {
6546 struct sched_entity *se = &task->se;
6547 unsigned int rr_interval = 0;
6548
6549 /*
6550 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6551 * idle runqueue:
6552 */
6553 if (rq->cfs.load.weight)
6554 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6555
6556 return rr_interval;
6557 }
6558
6559 /*
6560 * All the scheduling class methods:
6561 */
6562 const struct sched_class fair_sched_class = {
6563 .next = &idle_sched_class,
6564 .enqueue_task = enqueue_task_fair,
6565 .dequeue_task = dequeue_task_fair,
6566 .yield_task = yield_task_fair,
6567 .yield_to_task = yield_to_task_fair,
6568
6569 .check_preempt_curr = check_preempt_wakeup,
6570
6571 .pick_next_task = pick_next_task_fair,
6572 .put_prev_task = put_prev_task_fair,
6573
6574 #ifdef CONFIG_SMP
6575 .select_task_rq = select_task_rq_fair,
6576 .migrate_task_rq = migrate_task_rq_fair,
6577
6578 .rq_online = rq_online_fair,
6579 .rq_offline = rq_offline_fair,
6580
6581 .task_waking = task_waking_fair,
6582 #endif
6583
6584 .set_curr_task = set_curr_task_fair,
6585 .task_tick = task_tick_fair,
6586 .task_fork = task_fork_fair,
6587
6588 .prio_changed = prio_changed_fair,
6589 .switched_from = switched_from_fair,
6590 .switched_to = switched_to_fair,
6591
6592 .get_rr_interval = get_rr_interval_fair,
6593
6594 #ifdef CONFIG_FAIR_GROUP_SCHED
6595 .task_move_group = task_move_group_fair,
6596 #endif
6597 };
6598
6599 #ifdef CONFIG_SCHED_DEBUG
6600 void print_cfs_stats(struct seq_file *m, int cpu)
6601 {
6602 struct cfs_rq *cfs_rq;
6603
6604 rcu_read_lock();
6605 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6606 print_cfs_rq(m, cpu, cfs_rq);
6607 rcu_read_unlock();
6608 }
6609 #endif
6610
6611 __init void init_sched_fair_class(void)
6612 {
6613 #ifdef CONFIG_SMP
6614 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6615
6616 #ifdef CONFIG_NO_HZ_COMMON
6617 nohz.next_balance = jiffies;
6618 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6619 cpu_notifier(sched_ilb_notifier, 0);
6620 #endif
6621 #endif /* SMP */
6622
6623 }
This page took 0.177592 seconds and 5 git commands to generate.