90e26b11deaa1ab4b78302605850523a7852720b
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 }
306 }
307
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314 }
315
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 if (se->cfs_rq == pse->cfs_rq)
325 return se->cfs_rq;
326
327 return NULL;
328 }
329
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 return se->parent;
333 }
334
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365 }
366
367 #else /* !CONFIG_FAIR_GROUP_SCHED */
368
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 return container_of(se, struct task_struct, se);
372 }
373
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 return container_of(cfs_rq, struct rq, cfs);
377 }
378
379 #define entity_is_task(se) 1
380
381 #define for_each_sched_entity(se) \
382 for (; se; se = NULL)
383
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 return &task_rq(p)->cfs;
387 }
388
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395 }
396
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 return NULL;
401 }
402
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 return NULL;
417 }
418
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
425
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428
429 /**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 s64 delta = (s64)(vruntime - max_vruntime);
436 if (delta > 0)
437 max_vruntime = vruntime;
438
439 return max_vruntime;
440 }
441
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449 }
450
451 static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453 {
454 return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
469 if (!cfs_rq->curr)
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482
483 /*
484 * Enqueue an entity into the rb-tree:
485 */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542 }
543
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552 }
553
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563 }
564
565 /**************************************************************
566 * Scheduling class statistics methods:
567 */
568
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572 {
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588
589 return 0;
590 }
591 #endif
592
593 /*
594 * delta /= w
595 */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600
601 return delta;
602 }
603
604 /*
605 * The idea is to set a period in which each task runs once.
606 *
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
618 }
619
620 /*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
624 * s = p*P[w/rw]
625 */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
636
637 if (unlikely(!se->on_rq)) {
638 lw = cfs_rq->load;
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = __calc_delta(slice, se->load.weight, load);
644 }
645 return slice;
646 }
647
648 /*
649 * We calculate the vruntime slice of a to-be-inserted task.
650 *
651 * vs = s/w
652 */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661
662 /*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
666 */
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
673 {
674 struct sched_avg *sa = &se->avg;
675
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
688 }
689
690 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
692 #else
693 void init_entity_runnable_average(struct sched_entity *se)
694 {
695 }
696 #endif
697
698 /*
699 * Update the current task's runtime statistics.
700 */
701 static void update_curr(struct cfs_rq *cfs_rq)
702 {
703 struct sched_entity *curr = cfs_rq->curr;
704 u64 now = rq_clock_task(rq_of(cfs_rq));
705 u64 delta_exec;
706
707 if (unlikely(!curr))
708 return;
709
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
712 return;
713
714 curr->exec_start = now;
715
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729 cpuacct_charge(curtask, delta_exec);
730 account_group_exec_runtime(curtask, delta_exec);
731 }
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
734 }
735
736 static void update_curr_fair(struct rq *rq)
737 {
738 update_curr(cfs_rq_of(&rq->curr->se));
739 }
740
741 static inline void
742 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 {
744 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
745 }
746
747 /*
748 * Task is being enqueued - update stats:
749 */
750 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
751 {
752 /*
753 * Are we enqueueing a waiting task? (for current tasks
754 * a dequeue/enqueue event is a NOP)
755 */
756 if (se != cfs_rq->curr)
757 update_stats_wait_start(cfs_rq, se);
758 }
759
760 static void
761 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
762 {
763 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
764 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
765 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
766 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768 #ifdef CONFIG_SCHEDSTATS
769 if (entity_is_task(se)) {
770 trace_sched_stat_wait(task_of(se),
771 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
772 }
773 #endif
774 schedstat_set(se->statistics.wait_start, 0);
775 }
776
777 static inline void
778 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 /*
781 * Mark the end of the wait period if dequeueing a
782 * waiting task:
783 */
784 if (se != cfs_rq->curr)
785 update_stats_wait_end(cfs_rq, se);
786 }
787
788 /*
789 * We are picking a new current task - update its stats:
790 */
791 static inline void
792 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
793 {
794 /*
795 * We are starting a new run period:
796 */
797 se->exec_start = rq_clock_task(rq_of(cfs_rq));
798 }
799
800 /**************************************************
801 * Scheduling class queueing methods:
802 */
803
804 #ifdef CONFIG_NUMA_BALANCING
805 /*
806 * Approximate time to scan a full NUMA task in ms. The task scan period is
807 * calculated based on the tasks virtual memory size and
808 * numa_balancing_scan_size.
809 */
810 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
811 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
812
813 /* Portion of address space to scan in MB */
814 unsigned int sysctl_numa_balancing_scan_size = 256;
815
816 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
817 unsigned int sysctl_numa_balancing_scan_delay = 1000;
818
819 static unsigned int task_nr_scan_windows(struct task_struct *p)
820 {
821 unsigned long rss = 0;
822 unsigned long nr_scan_pages;
823
824 /*
825 * Calculations based on RSS as non-present and empty pages are skipped
826 * by the PTE scanner and NUMA hinting faults should be trapped based
827 * on resident pages
828 */
829 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
830 rss = get_mm_rss(p->mm);
831 if (!rss)
832 rss = nr_scan_pages;
833
834 rss = round_up(rss, nr_scan_pages);
835 return rss / nr_scan_pages;
836 }
837
838 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
839 #define MAX_SCAN_WINDOW 2560
840
841 static unsigned int task_scan_min(struct task_struct *p)
842 {
843 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
844 unsigned int scan, floor;
845 unsigned int windows = 1;
846
847 if (scan_size < MAX_SCAN_WINDOW)
848 windows = MAX_SCAN_WINDOW / scan_size;
849 floor = 1000 / windows;
850
851 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
852 return max_t(unsigned int, floor, scan);
853 }
854
855 static unsigned int task_scan_max(struct task_struct *p)
856 {
857 unsigned int smin = task_scan_min(p);
858 unsigned int smax;
859
860 /* Watch for min being lower than max due to floor calculations */
861 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
862 return max(smin, smax);
863 }
864
865 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
866 {
867 rq->nr_numa_running += (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
869 }
870
871 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
872 {
873 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
874 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
875 }
876
877 struct numa_group {
878 atomic_t refcount;
879
880 spinlock_t lock; /* nr_tasks, tasks */
881 int nr_tasks;
882 pid_t gid;
883
884 struct rcu_head rcu;
885 nodemask_t active_nodes;
886 unsigned long total_faults;
887 /*
888 * Faults_cpu is used to decide whether memory should move
889 * towards the CPU. As a consequence, these stats are weighted
890 * more by CPU use than by memory faults.
891 */
892 unsigned long *faults_cpu;
893 unsigned long faults[0];
894 };
895
896 /* Shared or private faults. */
897 #define NR_NUMA_HINT_FAULT_TYPES 2
898
899 /* Memory and CPU locality */
900 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
901
902 /* Averaged statistics, and temporary buffers. */
903 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
904
905 pid_t task_numa_group_id(struct task_struct *p)
906 {
907 return p->numa_group ? p->numa_group->gid : 0;
908 }
909
910 /*
911 * The averaged statistics, shared & private, memory & cpu,
912 * occupy the first half of the array. The second half of the
913 * array is for current counters, which are averaged into the
914 * first set by task_numa_placement.
915 */
916 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
917 {
918 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
919 }
920
921 static inline unsigned long task_faults(struct task_struct *p, int nid)
922 {
923 if (!p->numa_faults)
924 return 0;
925
926 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
927 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
928 }
929
930 static inline unsigned long group_faults(struct task_struct *p, int nid)
931 {
932 if (!p->numa_group)
933 return 0;
934
935 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
936 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
937 }
938
939 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
940 {
941 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
942 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
943 }
944
945 /* Handle placement on systems where not all nodes are directly connected. */
946 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
947 int maxdist, bool task)
948 {
949 unsigned long score = 0;
950 int node;
951
952 /*
953 * All nodes are directly connected, and the same distance
954 * from each other. No need for fancy placement algorithms.
955 */
956 if (sched_numa_topology_type == NUMA_DIRECT)
957 return 0;
958
959 /*
960 * This code is called for each node, introducing N^2 complexity,
961 * which should be ok given the number of nodes rarely exceeds 8.
962 */
963 for_each_online_node(node) {
964 unsigned long faults;
965 int dist = node_distance(nid, node);
966
967 /*
968 * The furthest away nodes in the system are not interesting
969 * for placement; nid was already counted.
970 */
971 if (dist == sched_max_numa_distance || node == nid)
972 continue;
973
974 /*
975 * On systems with a backplane NUMA topology, compare groups
976 * of nodes, and move tasks towards the group with the most
977 * memory accesses. When comparing two nodes at distance
978 * "hoplimit", only nodes closer by than "hoplimit" are part
979 * of each group. Skip other nodes.
980 */
981 if (sched_numa_topology_type == NUMA_BACKPLANE &&
982 dist > maxdist)
983 continue;
984
985 /* Add up the faults from nearby nodes. */
986 if (task)
987 faults = task_faults(p, node);
988 else
989 faults = group_faults(p, node);
990
991 /*
992 * On systems with a glueless mesh NUMA topology, there are
993 * no fixed "groups of nodes". Instead, nodes that are not
994 * directly connected bounce traffic through intermediate
995 * nodes; a numa_group can occupy any set of nodes.
996 * The further away a node is, the less the faults count.
997 * This seems to result in good task placement.
998 */
999 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1000 faults *= (sched_max_numa_distance - dist);
1001 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1002 }
1003
1004 score += faults;
1005 }
1006
1007 return score;
1008 }
1009
1010 /*
1011 * These return the fraction of accesses done by a particular task, or
1012 * task group, on a particular numa node. The group weight is given a
1013 * larger multiplier, in order to group tasks together that are almost
1014 * evenly spread out between numa nodes.
1015 */
1016 static inline unsigned long task_weight(struct task_struct *p, int nid,
1017 int dist)
1018 {
1019 unsigned long faults, total_faults;
1020
1021 if (!p->numa_faults)
1022 return 0;
1023
1024 total_faults = p->total_numa_faults;
1025
1026 if (!total_faults)
1027 return 0;
1028
1029 faults = task_faults(p, nid);
1030 faults += score_nearby_nodes(p, nid, dist, true);
1031
1032 return 1000 * faults / total_faults;
1033 }
1034
1035 static inline unsigned long group_weight(struct task_struct *p, int nid,
1036 int dist)
1037 {
1038 unsigned long faults, total_faults;
1039
1040 if (!p->numa_group)
1041 return 0;
1042
1043 total_faults = p->numa_group->total_faults;
1044
1045 if (!total_faults)
1046 return 0;
1047
1048 faults = group_faults(p, nid);
1049 faults += score_nearby_nodes(p, nid, dist, false);
1050
1051 return 1000 * faults / total_faults;
1052 }
1053
1054 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1055 int src_nid, int dst_cpu)
1056 {
1057 struct numa_group *ng = p->numa_group;
1058 int dst_nid = cpu_to_node(dst_cpu);
1059 int last_cpupid, this_cpupid;
1060
1061 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1062
1063 /*
1064 * Multi-stage node selection is used in conjunction with a periodic
1065 * migration fault to build a temporal task<->page relation. By using
1066 * a two-stage filter we remove short/unlikely relations.
1067 *
1068 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1069 * a task's usage of a particular page (n_p) per total usage of this
1070 * page (n_t) (in a given time-span) to a probability.
1071 *
1072 * Our periodic faults will sample this probability and getting the
1073 * same result twice in a row, given these samples are fully
1074 * independent, is then given by P(n)^2, provided our sample period
1075 * is sufficiently short compared to the usage pattern.
1076 *
1077 * This quadric squishes small probabilities, making it less likely we
1078 * act on an unlikely task<->page relation.
1079 */
1080 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1081 if (!cpupid_pid_unset(last_cpupid) &&
1082 cpupid_to_nid(last_cpupid) != dst_nid)
1083 return false;
1084
1085 /* Always allow migrate on private faults */
1086 if (cpupid_match_pid(p, last_cpupid))
1087 return true;
1088
1089 /* A shared fault, but p->numa_group has not been set up yet. */
1090 if (!ng)
1091 return true;
1092
1093 /*
1094 * Do not migrate if the destination is not a node that
1095 * is actively used by this numa group.
1096 */
1097 if (!node_isset(dst_nid, ng->active_nodes))
1098 return false;
1099
1100 /*
1101 * Source is a node that is not actively used by this
1102 * numa group, while the destination is. Migrate.
1103 */
1104 if (!node_isset(src_nid, ng->active_nodes))
1105 return true;
1106
1107 /*
1108 * Both source and destination are nodes in active
1109 * use by this numa group. Maximize memory bandwidth
1110 * by migrating from more heavily used groups, to less
1111 * heavily used ones, spreading the load around.
1112 * Use a 1/4 hysteresis to avoid spurious page movement.
1113 */
1114 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1115 }
1116
1117 static unsigned long weighted_cpuload(const int cpu);
1118 static unsigned long source_load(int cpu, int type);
1119 static unsigned long target_load(int cpu, int type);
1120 static unsigned long capacity_of(int cpu);
1121 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1122
1123 /* Cached statistics for all CPUs within a node */
1124 struct numa_stats {
1125 unsigned long nr_running;
1126 unsigned long load;
1127
1128 /* Total compute capacity of CPUs on a node */
1129 unsigned long compute_capacity;
1130
1131 /* Approximate capacity in terms of runnable tasks on a node */
1132 unsigned long task_capacity;
1133 int has_free_capacity;
1134 };
1135
1136 /*
1137 * XXX borrowed from update_sg_lb_stats
1138 */
1139 static void update_numa_stats(struct numa_stats *ns, int nid)
1140 {
1141 int smt, cpu, cpus = 0;
1142 unsigned long capacity;
1143
1144 memset(ns, 0, sizeof(*ns));
1145 for_each_cpu(cpu, cpumask_of_node(nid)) {
1146 struct rq *rq = cpu_rq(cpu);
1147
1148 ns->nr_running += rq->nr_running;
1149 ns->load += weighted_cpuload(cpu);
1150 ns->compute_capacity += capacity_of(cpu);
1151
1152 cpus++;
1153 }
1154
1155 /*
1156 * If we raced with hotplug and there are no CPUs left in our mask
1157 * the @ns structure is NULL'ed and task_numa_compare() will
1158 * not find this node attractive.
1159 *
1160 * We'll either bail at !has_free_capacity, or we'll detect a huge
1161 * imbalance and bail there.
1162 */
1163 if (!cpus)
1164 return;
1165
1166 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1167 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1168 capacity = cpus / smt; /* cores */
1169
1170 ns->task_capacity = min_t(unsigned, capacity,
1171 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1172 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1173 }
1174
1175 struct task_numa_env {
1176 struct task_struct *p;
1177
1178 int src_cpu, src_nid;
1179 int dst_cpu, dst_nid;
1180
1181 struct numa_stats src_stats, dst_stats;
1182
1183 int imbalance_pct;
1184 int dist;
1185
1186 struct task_struct *best_task;
1187 long best_imp;
1188 int best_cpu;
1189 };
1190
1191 static void task_numa_assign(struct task_numa_env *env,
1192 struct task_struct *p, long imp)
1193 {
1194 if (env->best_task)
1195 put_task_struct(env->best_task);
1196 if (p)
1197 get_task_struct(p);
1198
1199 env->best_task = p;
1200 env->best_imp = imp;
1201 env->best_cpu = env->dst_cpu;
1202 }
1203
1204 static bool load_too_imbalanced(long src_load, long dst_load,
1205 struct task_numa_env *env)
1206 {
1207 long imb, old_imb;
1208 long orig_src_load, orig_dst_load;
1209 long src_capacity, dst_capacity;
1210
1211 /*
1212 * The load is corrected for the CPU capacity available on each node.
1213 *
1214 * src_load dst_load
1215 * ------------ vs ---------
1216 * src_capacity dst_capacity
1217 */
1218 src_capacity = env->src_stats.compute_capacity;
1219 dst_capacity = env->dst_stats.compute_capacity;
1220
1221 /* We care about the slope of the imbalance, not the direction. */
1222 if (dst_load < src_load)
1223 swap(dst_load, src_load);
1224
1225 /* Is the difference below the threshold? */
1226 imb = dst_load * src_capacity * 100 -
1227 src_load * dst_capacity * env->imbalance_pct;
1228 if (imb <= 0)
1229 return false;
1230
1231 /*
1232 * The imbalance is above the allowed threshold.
1233 * Compare it with the old imbalance.
1234 */
1235 orig_src_load = env->src_stats.load;
1236 orig_dst_load = env->dst_stats.load;
1237
1238 if (orig_dst_load < orig_src_load)
1239 swap(orig_dst_load, orig_src_load);
1240
1241 old_imb = orig_dst_load * src_capacity * 100 -
1242 orig_src_load * dst_capacity * env->imbalance_pct;
1243
1244 /* Would this change make things worse? */
1245 return (imb > old_imb);
1246 }
1247
1248 /*
1249 * This checks if the overall compute and NUMA accesses of the system would
1250 * be improved if the source tasks was migrated to the target dst_cpu taking
1251 * into account that it might be best if task running on the dst_cpu should
1252 * be exchanged with the source task
1253 */
1254 static void task_numa_compare(struct task_numa_env *env,
1255 long taskimp, long groupimp)
1256 {
1257 struct rq *src_rq = cpu_rq(env->src_cpu);
1258 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1259 struct task_struct *cur;
1260 long src_load, dst_load;
1261 long load;
1262 long imp = env->p->numa_group ? groupimp : taskimp;
1263 long moveimp = imp;
1264 int dist = env->dist;
1265
1266 rcu_read_lock();
1267
1268 raw_spin_lock_irq(&dst_rq->lock);
1269 cur = dst_rq->curr;
1270 /*
1271 * No need to move the exiting task, and this ensures that ->curr
1272 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1273 * is safe under RCU read lock.
1274 * Note that rcu_read_lock() itself can't protect from the final
1275 * put_task_struct() after the last schedule().
1276 */
1277 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1278 cur = NULL;
1279 raw_spin_unlock_irq(&dst_rq->lock);
1280
1281 /*
1282 * Because we have preemption enabled we can get migrated around and
1283 * end try selecting ourselves (current == env->p) as a swap candidate.
1284 */
1285 if (cur == env->p)
1286 goto unlock;
1287
1288 /*
1289 * "imp" is the fault differential for the source task between the
1290 * source and destination node. Calculate the total differential for
1291 * the source task and potential destination task. The more negative
1292 * the value is, the more rmeote accesses that would be expected to
1293 * be incurred if the tasks were swapped.
1294 */
1295 if (cur) {
1296 /* Skip this swap candidate if cannot move to the source cpu */
1297 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1298 goto unlock;
1299
1300 /*
1301 * If dst and source tasks are in the same NUMA group, or not
1302 * in any group then look only at task weights.
1303 */
1304 if (cur->numa_group == env->p->numa_group) {
1305 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1306 task_weight(cur, env->dst_nid, dist);
1307 /*
1308 * Add some hysteresis to prevent swapping the
1309 * tasks within a group over tiny differences.
1310 */
1311 if (cur->numa_group)
1312 imp -= imp/16;
1313 } else {
1314 /*
1315 * Compare the group weights. If a task is all by
1316 * itself (not part of a group), use the task weight
1317 * instead.
1318 */
1319 if (cur->numa_group)
1320 imp += group_weight(cur, env->src_nid, dist) -
1321 group_weight(cur, env->dst_nid, dist);
1322 else
1323 imp += task_weight(cur, env->src_nid, dist) -
1324 task_weight(cur, env->dst_nid, dist);
1325 }
1326 }
1327
1328 if (imp <= env->best_imp && moveimp <= env->best_imp)
1329 goto unlock;
1330
1331 if (!cur) {
1332 /* Is there capacity at our destination? */
1333 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1334 !env->dst_stats.has_free_capacity)
1335 goto unlock;
1336
1337 goto balance;
1338 }
1339
1340 /* Balance doesn't matter much if we're running a task per cpu */
1341 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1342 dst_rq->nr_running == 1)
1343 goto assign;
1344
1345 /*
1346 * In the overloaded case, try and keep the load balanced.
1347 */
1348 balance:
1349 load = task_h_load(env->p);
1350 dst_load = env->dst_stats.load + load;
1351 src_load = env->src_stats.load - load;
1352
1353 if (moveimp > imp && moveimp > env->best_imp) {
1354 /*
1355 * If the improvement from just moving env->p direction is
1356 * better than swapping tasks around, check if a move is
1357 * possible. Store a slightly smaller score than moveimp,
1358 * so an actually idle CPU will win.
1359 */
1360 if (!load_too_imbalanced(src_load, dst_load, env)) {
1361 imp = moveimp - 1;
1362 cur = NULL;
1363 goto assign;
1364 }
1365 }
1366
1367 if (imp <= env->best_imp)
1368 goto unlock;
1369
1370 if (cur) {
1371 load = task_h_load(cur);
1372 dst_load -= load;
1373 src_load += load;
1374 }
1375
1376 if (load_too_imbalanced(src_load, dst_load, env))
1377 goto unlock;
1378
1379 /*
1380 * One idle CPU per node is evaluated for a task numa move.
1381 * Call select_idle_sibling to maybe find a better one.
1382 */
1383 if (!cur)
1384 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1385
1386 assign:
1387 task_numa_assign(env, cur, imp);
1388 unlock:
1389 rcu_read_unlock();
1390 }
1391
1392 static void task_numa_find_cpu(struct task_numa_env *env,
1393 long taskimp, long groupimp)
1394 {
1395 int cpu;
1396
1397 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1398 /* Skip this CPU if the source task cannot migrate */
1399 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1400 continue;
1401
1402 env->dst_cpu = cpu;
1403 task_numa_compare(env, taskimp, groupimp);
1404 }
1405 }
1406
1407 /* Only move tasks to a NUMA node less busy than the current node. */
1408 static bool numa_has_capacity(struct task_numa_env *env)
1409 {
1410 struct numa_stats *src = &env->src_stats;
1411 struct numa_stats *dst = &env->dst_stats;
1412
1413 if (src->has_free_capacity && !dst->has_free_capacity)
1414 return false;
1415
1416 /*
1417 * Only consider a task move if the source has a higher load
1418 * than the destination, corrected for CPU capacity on each node.
1419 *
1420 * src->load dst->load
1421 * --------------------- vs ---------------------
1422 * src->compute_capacity dst->compute_capacity
1423 */
1424 if (src->load * dst->compute_capacity * env->imbalance_pct >
1425
1426 dst->load * src->compute_capacity * 100)
1427 return true;
1428
1429 return false;
1430 }
1431
1432 static int task_numa_migrate(struct task_struct *p)
1433 {
1434 struct task_numa_env env = {
1435 .p = p,
1436
1437 .src_cpu = task_cpu(p),
1438 .src_nid = task_node(p),
1439
1440 .imbalance_pct = 112,
1441
1442 .best_task = NULL,
1443 .best_imp = 0,
1444 .best_cpu = -1
1445 };
1446 struct sched_domain *sd;
1447 unsigned long taskweight, groupweight;
1448 int nid, ret, dist;
1449 long taskimp, groupimp;
1450
1451 /*
1452 * Pick the lowest SD_NUMA domain, as that would have the smallest
1453 * imbalance and would be the first to start moving tasks about.
1454 *
1455 * And we want to avoid any moving of tasks about, as that would create
1456 * random movement of tasks -- counter the numa conditions we're trying
1457 * to satisfy here.
1458 */
1459 rcu_read_lock();
1460 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1461 if (sd)
1462 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1463 rcu_read_unlock();
1464
1465 /*
1466 * Cpusets can break the scheduler domain tree into smaller
1467 * balance domains, some of which do not cross NUMA boundaries.
1468 * Tasks that are "trapped" in such domains cannot be migrated
1469 * elsewhere, so there is no point in (re)trying.
1470 */
1471 if (unlikely(!sd)) {
1472 p->numa_preferred_nid = task_node(p);
1473 return -EINVAL;
1474 }
1475
1476 env.dst_nid = p->numa_preferred_nid;
1477 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1478 taskweight = task_weight(p, env.src_nid, dist);
1479 groupweight = group_weight(p, env.src_nid, dist);
1480 update_numa_stats(&env.src_stats, env.src_nid);
1481 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1482 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1483 update_numa_stats(&env.dst_stats, env.dst_nid);
1484
1485 /* Try to find a spot on the preferred nid. */
1486 if (numa_has_capacity(&env))
1487 task_numa_find_cpu(&env, taskimp, groupimp);
1488
1489 /*
1490 * Look at other nodes in these cases:
1491 * - there is no space available on the preferred_nid
1492 * - the task is part of a numa_group that is interleaved across
1493 * multiple NUMA nodes; in order to better consolidate the group,
1494 * we need to check other locations.
1495 */
1496 if (env.best_cpu == -1 || (p->numa_group &&
1497 nodes_weight(p->numa_group->active_nodes) > 1)) {
1498 for_each_online_node(nid) {
1499 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1500 continue;
1501
1502 dist = node_distance(env.src_nid, env.dst_nid);
1503 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1504 dist != env.dist) {
1505 taskweight = task_weight(p, env.src_nid, dist);
1506 groupweight = group_weight(p, env.src_nid, dist);
1507 }
1508
1509 /* Only consider nodes where both task and groups benefit */
1510 taskimp = task_weight(p, nid, dist) - taskweight;
1511 groupimp = group_weight(p, nid, dist) - groupweight;
1512 if (taskimp < 0 && groupimp < 0)
1513 continue;
1514
1515 env.dist = dist;
1516 env.dst_nid = nid;
1517 update_numa_stats(&env.dst_stats, env.dst_nid);
1518 if (numa_has_capacity(&env))
1519 task_numa_find_cpu(&env, taskimp, groupimp);
1520 }
1521 }
1522
1523 /*
1524 * If the task is part of a workload that spans multiple NUMA nodes,
1525 * and is migrating into one of the workload's active nodes, remember
1526 * this node as the task's preferred numa node, so the workload can
1527 * settle down.
1528 * A task that migrated to a second choice node will be better off
1529 * trying for a better one later. Do not set the preferred node here.
1530 */
1531 if (p->numa_group) {
1532 if (env.best_cpu == -1)
1533 nid = env.src_nid;
1534 else
1535 nid = env.dst_nid;
1536
1537 if (node_isset(nid, p->numa_group->active_nodes))
1538 sched_setnuma(p, env.dst_nid);
1539 }
1540
1541 /* No better CPU than the current one was found. */
1542 if (env.best_cpu == -1)
1543 return -EAGAIN;
1544
1545 /*
1546 * Reset the scan period if the task is being rescheduled on an
1547 * alternative node to recheck if the tasks is now properly placed.
1548 */
1549 p->numa_scan_period = task_scan_min(p);
1550
1551 if (env.best_task == NULL) {
1552 ret = migrate_task_to(p, env.best_cpu);
1553 if (ret != 0)
1554 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1555 return ret;
1556 }
1557
1558 ret = migrate_swap(p, env.best_task);
1559 if (ret != 0)
1560 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1561 put_task_struct(env.best_task);
1562 return ret;
1563 }
1564
1565 /* Attempt to migrate a task to a CPU on the preferred node. */
1566 static void numa_migrate_preferred(struct task_struct *p)
1567 {
1568 unsigned long interval = HZ;
1569
1570 /* This task has no NUMA fault statistics yet */
1571 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1572 return;
1573
1574 /* Periodically retry migrating the task to the preferred node */
1575 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1576 p->numa_migrate_retry = jiffies + interval;
1577
1578 /* Success if task is already running on preferred CPU */
1579 if (task_node(p) == p->numa_preferred_nid)
1580 return;
1581
1582 /* Otherwise, try migrate to a CPU on the preferred node */
1583 task_numa_migrate(p);
1584 }
1585
1586 /*
1587 * Find the nodes on which the workload is actively running. We do this by
1588 * tracking the nodes from which NUMA hinting faults are triggered. This can
1589 * be different from the set of nodes where the workload's memory is currently
1590 * located.
1591 *
1592 * The bitmask is used to make smarter decisions on when to do NUMA page
1593 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1594 * are added when they cause over 6/16 of the maximum number of faults, but
1595 * only removed when they drop below 3/16.
1596 */
1597 static void update_numa_active_node_mask(struct numa_group *numa_group)
1598 {
1599 unsigned long faults, max_faults = 0;
1600 int nid;
1601
1602 for_each_online_node(nid) {
1603 faults = group_faults_cpu(numa_group, nid);
1604 if (faults > max_faults)
1605 max_faults = faults;
1606 }
1607
1608 for_each_online_node(nid) {
1609 faults = group_faults_cpu(numa_group, nid);
1610 if (!node_isset(nid, numa_group->active_nodes)) {
1611 if (faults > max_faults * 6 / 16)
1612 node_set(nid, numa_group->active_nodes);
1613 } else if (faults < max_faults * 3 / 16)
1614 node_clear(nid, numa_group->active_nodes);
1615 }
1616 }
1617
1618 /*
1619 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1620 * increments. The more local the fault statistics are, the higher the scan
1621 * period will be for the next scan window. If local/(local+remote) ratio is
1622 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1623 * the scan period will decrease. Aim for 70% local accesses.
1624 */
1625 #define NUMA_PERIOD_SLOTS 10
1626 #define NUMA_PERIOD_THRESHOLD 7
1627
1628 /*
1629 * Increase the scan period (slow down scanning) if the majority of
1630 * our memory is already on our local node, or if the majority of
1631 * the page accesses are shared with other processes.
1632 * Otherwise, decrease the scan period.
1633 */
1634 static void update_task_scan_period(struct task_struct *p,
1635 unsigned long shared, unsigned long private)
1636 {
1637 unsigned int period_slot;
1638 int ratio;
1639 int diff;
1640
1641 unsigned long remote = p->numa_faults_locality[0];
1642 unsigned long local = p->numa_faults_locality[1];
1643
1644 /*
1645 * If there were no record hinting faults then either the task is
1646 * completely idle or all activity is areas that are not of interest
1647 * to automatic numa balancing. Related to that, if there were failed
1648 * migration then it implies we are migrating too quickly or the local
1649 * node is overloaded. In either case, scan slower
1650 */
1651 if (local + shared == 0 || p->numa_faults_locality[2]) {
1652 p->numa_scan_period = min(p->numa_scan_period_max,
1653 p->numa_scan_period << 1);
1654
1655 p->mm->numa_next_scan = jiffies +
1656 msecs_to_jiffies(p->numa_scan_period);
1657
1658 return;
1659 }
1660
1661 /*
1662 * Prepare to scale scan period relative to the current period.
1663 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1664 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1665 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1666 */
1667 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1668 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1669 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1670 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1671 if (!slot)
1672 slot = 1;
1673 diff = slot * period_slot;
1674 } else {
1675 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1676
1677 /*
1678 * Scale scan rate increases based on sharing. There is an
1679 * inverse relationship between the degree of sharing and
1680 * the adjustment made to the scanning period. Broadly
1681 * speaking the intent is that there is little point
1682 * scanning faster if shared accesses dominate as it may
1683 * simply bounce migrations uselessly
1684 */
1685 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1686 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1687 }
1688
1689 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1690 task_scan_min(p), task_scan_max(p));
1691 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1692 }
1693
1694 /*
1695 * Get the fraction of time the task has been running since the last
1696 * NUMA placement cycle. The scheduler keeps similar statistics, but
1697 * decays those on a 32ms period, which is orders of magnitude off
1698 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1699 * stats only if the task is so new there are no NUMA statistics yet.
1700 */
1701 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1702 {
1703 u64 runtime, delta, now;
1704 /* Use the start of this time slice to avoid calculations. */
1705 now = p->se.exec_start;
1706 runtime = p->se.sum_exec_runtime;
1707
1708 if (p->last_task_numa_placement) {
1709 delta = runtime - p->last_sum_exec_runtime;
1710 *period = now - p->last_task_numa_placement;
1711 } else {
1712 delta = p->se.avg.load_sum / p->se.load.weight;
1713 *period = LOAD_AVG_MAX;
1714 }
1715
1716 p->last_sum_exec_runtime = runtime;
1717 p->last_task_numa_placement = now;
1718
1719 return delta;
1720 }
1721
1722 /*
1723 * Determine the preferred nid for a task in a numa_group. This needs to
1724 * be done in a way that produces consistent results with group_weight,
1725 * otherwise workloads might not converge.
1726 */
1727 static int preferred_group_nid(struct task_struct *p, int nid)
1728 {
1729 nodemask_t nodes;
1730 int dist;
1731
1732 /* Direct connections between all NUMA nodes. */
1733 if (sched_numa_topology_type == NUMA_DIRECT)
1734 return nid;
1735
1736 /*
1737 * On a system with glueless mesh NUMA topology, group_weight
1738 * scores nodes according to the number of NUMA hinting faults on
1739 * both the node itself, and on nearby nodes.
1740 */
1741 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1742 unsigned long score, max_score = 0;
1743 int node, max_node = nid;
1744
1745 dist = sched_max_numa_distance;
1746
1747 for_each_online_node(node) {
1748 score = group_weight(p, node, dist);
1749 if (score > max_score) {
1750 max_score = score;
1751 max_node = node;
1752 }
1753 }
1754 return max_node;
1755 }
1756
1757 /*
1758 * Finding the preferred nid in a system with NUMA backplane
1759 * interconnect topology is more involved. The goal is to locate
1760 * tasks from numa_groups near each other in the system, and
1761 * untangle workloads from different sides of the system. This requires
1762 * searching down the hierarchy of node groups, recursively searching
1763 * inside the highest scoring group of nodes. The nodemask tricks
1764 * keep the complexity of the search down.
1765 */
1766 nodes = node_online_map;
1767 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1768 unsigned long max_faults = 0;
1769 nodemask_t max_group = NODE_MASK_NONE;
1770 int a, b;
1771
1772 /* Are there nodes at this distance from each other? */
1773 if (!find_numa_distance(dist))
1774 continue;
1775
1776 for_each_node_mask(a, nodes) {
1777 unsigned long faults = 0;
1778 nodemask_t this_group;
1779 nodes_clear(this_group);
1780
1781 /* Sum group's NUMA faults; includes a==b case. */
1782 for_each_node_mask(b, nodes) {
1783 if (node_distance(a, b) < dist) {
1784 faults += group_faults(p, b);
1785 node_set(b, this_group);
1786 node_clear(b, nodes);
1787 }
1788 }
1789
1790 /* Remember the top group. */
1791 if (faults > max_faults) {
1792 max_faults = faults;
1793 max_group = this_group;
1794 /*
1795 * subtle: at the smallest distance there is
1796 * just one node left in each "group", the
1797 * winner is the preferred nid.
1798 */
1799 nid = a;
1800 }
1801 }
1802 /* Next round, evaluate the nodes within max_group. */
1803 if (!max_faults)
1804 break;
1805 nodes = max_group;
1806 }
1807 return nid;
1808 }
1809
1810 static void task_numa_placement(struct task_struct *p)
1811 {
1812 int seq, nid, max_nid = -1, max_group_nid = -1;
1813 unsigned long max_faults = 0, max_group_faults = 0;
1814 unsigned long fault_types[2] = { 0, 0 };
1815 unsigned long total_faults;
1816 u64 runtime, period;
1817 spinlock_t *group_lock = NULL;
1818
1819 /*
1820 * The p->mm->numa_scan_seq field gets updated without
1821 * exclusive access. Use READ_ONCE() here to ensure
1822 * that the field is read in a single access:
1823 */
1824 seq = READ_ONCE(p->mm->numa_scan_seq);
1825 if (p->numa_scan_seq == seq)
1826 return;
1827 p->numa_scan_seq = seq;
1828 p->numa_scan_period_max = task_scan_max(p);
1829
1830 total_faults = p->numa_faults_locality[0] +
1831 p->numa_faults_locality[1];
1832 runtime = numa_get_avg_runtime(p, &period);
1833
1834 /* If the task is part of a group prevent parallel updates to group stats */
1835 if (p->numa_group) {
1836 group_lock = &p->numa_group->lock;
1837 spin_lock_irq(group_lock);
1838 }
1839
1840 /* Find the node with the highest number of faults */
1841 for_each_online_node(nid) {
1842 /* Keep track of the offsets in numa_faults array */
1843 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1844 unsigned long faults = 0, group_faults = 0;
1845 int priv;
1846
1847 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1848 long diff, f_diff, f_weight;
1849
1850 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1851 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1852 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1853 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1854
1855 /* Decay existing window, copy faults since last scan */
1856 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1857 fault_types[priv] += p->numa_faults[membuf_idx];
1858 p->numa_faults[membuf_idx] = 0;
1859
1860 /*
1861 * Normalize the faults_from, so all tasks in a group
1862 * count according to CPU use, instead of by the raw
1863 * number of faults. Tasks with little runtime have
1864 * little over-all impact on throughput, and thus their
1865 * faults are less important.
1866 */
1867 f_weight = div64_u64(runtime << 16, period + 1);
1868 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1869 (total_faults + 1);
1870 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1871 p->numa_faults[cpubuf_idx] = 0;
1872
1873 p->numa_faults[mem_idx] += diff;
1874 p->numa_faults[cpu_idx] += f_diff;
1875 faults += p->numa_faults[mem_idx];
1876 p->total_numa_faults += diff;
1877 if (p->numa_group) {
1878 /*
1879 * safe because we can only change our own group
1880 *
1881 * mem_idx represents the offset for a given
1882 * nid and priv in a specific region because it
1883 * is at the beginning of the numa_faults array.
1884 */
1885 p->numa_group->faults[mem_idx] += diff;
1886 p->numa_group->faults_cpu[mem_idx] += f_diff;
1887 p->numa_group->total_faults += diff;
1888 group_faults += p->numa_group->faults[mem_idx];
1889 }
1890 }
1891
1892 if (faults > max_faults) {
1893 max_faults = faults;
1894 max_nid = nid;
1895 }
1896
1897 if (group_faults > max_group_faults) {
1898 max_group_faults = group_faults;
1899 max_group_nid = nid;
1900 }
1901 }
1902
1903 update_task_scan_period(p, fault_types[0], fault_types[1]);
1904
1905 if (p->numa_group) {
1906 update_numa_active_node_mask(p->numa_group);
1907 spin_unlock_irq(group_lock);
1908 max_nid = preferred_group_nid(p, max_group_nid);
1909 }
1910
1911 if (max_faults) {
1912 /* Set the new preferred node */
1913 if (max_nid != p->numa_preferred_nid)
1914 sched_setnuma(p, max_nid);
1915
1916 if (task_node(p) != p->numa_preferred_nid)
1917 numa_migrate_preferred(p);
1918 }
1919 }
1920
1921 static inline int get_numa_group(struct numa_group *grp)
1922 {
1923 return atomic_inc_not_zero(&grp->refcount);
1924 }
1925
1926 static inline void put_numa_group(struct numa_group *grp)
1927 {
1928 if (atomic_dec_and_test(&grp->refcount))
1929 kfree_rcu(grp, rcu);
1930 }
1931
1932 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1933 int *priv)
1934 {
1935 struct numa_group *grp, *my_grp;
1936 struct task_struct *tsk;
1937 bool join = false;
1938 int cpu = cpupid_to_cpu(cpupid);
1939 int i;
1940
1941 if (unlikely(!p->numa_group)) {
1942 unsigned int size = sizeof(struct numa_group) +
1943 4*nr_node_ids*sizeof(unsigned long);
1944
1945 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1946 if (!grp)
1947 return;
1948
1949 atomic_set(&grp->refcount, 1);
1950 spin_lock_init(&grp->lock);
1951 grp->gid = p->pid;
1952 /* Second half of the array tracks nids where faults happen */
1953 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1954 nr_node_ids;
1955
1956 node_set(task_node(current), grp->active_nodes);
1957
1958 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1959 grp->faults[i] = p->numa_faults[i];
1960
1961 grp->total_faults = p->total_numa_faults;
1962
1963 grp->nr_tasks++;
1964 rcu_assign_pointer(p->numa_group, grp);
1965 }
1966
1967 rcu_read_lock();
1968 tsk = READ_ONCE(cpu_rq(cpu)->curr);
1969
1970 if (!cpupid_match_pid(tsk, cpupid))
1971 goto no_join;
1972
1973 grp = rcu_dereference(tsk->numa_group);
1974 if (!grp)
1975 goto no_join;
1976
1977 my_grp = p->numa_group;
1978 if (grp == my_grp)
1979 goto no_join;
1980
1981 /*
1982 * Only join the other group if its bigger; if we're the bigger group,
1983 * the other task will join us.
1984 */
1985 if (my_grp->nr_tasks > grp->nr_tasks)
1986 goto no_join;
1987
1988 /*
1989 * Tie-break on the grp address.
1990 */
1991 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1992 goto no_join;
1993
1994 /* Always join threads in the same process. */
1995 if (tsk->mm == current->mm)
1996 join = true;
1997
1998 /* Simple filter to avoid false positives due to PID collisions */
1999 if (flags & TNF_SHARED)
2000 join = true;
2001
2002 /* Update priv based on whether false sharing was detected */
2003 *priv = !join;
2004
2005 if (join && !get_numa_group(grp))
2006 goto no_join;
2007
2008 rcu_read_unlock();
2009
2010 if (!join)
2011 return;
2012
2013 BUG_ON(irqs_disabled());
2014 double_lock_irq(&my_grp->lock, &grp->lock);
2015
2016 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2017 my_grp->faults[i] -= p->numa_faults[i];
2018 grp->faults[i] += p->numa_faults[i];
2019 }
2020 my_grp->total_faults -= p->total_numa_faults;
2021 grp->total_faults += p->total_numa_faults;
2022
2023 my_grp->nr_tasks--;
2024 grp->nr_tasks++;
2025
2026 spin_unlock(&my_grp->lock);
2027 spin_unlock_irq(&grp->lock);
2028
2029 rcu_assign_pointer(p->numa_group, grp);
2030
2031 put_numa_group(my_grp);
2032 return;
2033
2034 no_join:
2035 rcu_read_unlock();
2036 return;
2037 }
2038
2039 void task_numa_free(struct task_struct *p)
2040 {
2041 struct numa_group *grp = p->numa_group;
2042 void *numa_faults = p->numa_faults;
2043 unsigned long flags;
2044 int i;
2045
2046 if (grp) {
2047 spin_lock_irqsave(&grp->lock, flags);
2048 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2049 grp->faults[i] -= p->numa_faults[i];
2050 grp->total_faults -= p->total_numa_faults;
2051
2052 grp->nr_tasks--;
2053 spin_unlock_irqrestore(&grp->lock, flags);
2054 RCU_INIT_POINTER(p->numa_group, NULL);
2055 put_numa_group(grp);
2056 }
2057
2058 p->numa_faults = NULL;
2059 kfree(numa_faults);
2060 }
2061
2062 /*
2063 * Got a PROT_NONE fault for a page on @node.
2064 */
2065 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2066 {
2067 struct task_struct *p = current;
2068 bool migrated = flags & TNF_MIGRATED;
2069 int cpu_node = task_node(current);
2070 int local = !!(flags & TNF_FAULT_LOCAL);
2071 int priv;
2072
2073 if (!static_branch_likely(&sched_numa_balancing))
2074 return;
2075
2076 /* for example, ksmd faulting in a user's mm */
2077 if (!p->mm)
2078 return;
2079
2080 /* Allocate buffer to track faults on a per-node basis */
2081 if (unlikely(!p->numa_faults)) {
2082 int size = sizeof(*p->numa_faults) *
2083 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2084
2085 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2086 if (!p->numa_faults)
2087 return;
2088
2089 p->total_numa_faults = 0;
2090 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2091 }
2092
2093 /*
2094 * First accesses are treated as private, otherwise consider accesses
2095 * to be private if the accessing pid has not changed
2096 */
2097 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2098 priv = 1;
2099 } else {
2100 priv = cpupid_match_pid(p, last_cpupid);
2101 if (!priv && !(flags & TNF_NO_GROUP))
2102 task_numa_group(p, last_cpupid, flags, &priv);
2103 }
2104
2105 /*
2106 * If a workload spans multiple NUMA nodes, a shared fault that
2107 * occurs wholly within the set of nodes that the workload is
2108 * actively using should be counted as local. This allows the
2109 * scan rate to slow down when a workload has settled down.
2110 */
2111 if (!priv && !local && p->numa_group &&
2112 node_isset(cpu_node, p->numa_group->active_nodes) &&
2113 node_isset(mem_node, p->numa_group->active_nodes))
2114 local = 1;
2115
2116 task_numa_placement(p);
2117
2118 /*
2119 * Retry task to preferred node migration periodically, in case it
2120 * case it previously failed, or the scheduler moved us.
2121 */
2122 if (time_after(jiffies, p->numa_migrate_retry))
2123 numa_migrate_preferred(p);
2124
2125 if (migrated)
2126 p->numa_pages_migrated += pages;
2127 if (flags & TNF_MIGRATE_FAIL)
2128 p->numa_faults_locality[2] += pages;
2129
2130 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2131 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2132 p->numa_faults_locality[local] += pages;
2133 }
2134
2135 static void reset_ptenuma_scan(struct task_struct *p)
2136 {
2137 /*
2138 * We only did a read acquisition of the mmap sem, so
2139 * p->mm->numa_scan_seq is written to without exclusive access
2140 * and the update is not guaranteed to be atomic. That's not
2141 * much of an issue though, since this is just used for
2142 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2143 * expensive, to avoid any form of compiler optimizations:
2144 */
2145 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2146 p->mm->numa_scan_offset = 0;
2147 }
2148
2149 /*
2150 * The expensive part of numa migration is done from task_work context.
2151 * Triggered from task_tick_numa().
2152 */
2153 void task_numa_work(struct callback_head *work)
2154 {
2155 unsigned long migrate, next_scan, now = jiffies;
2156 struct task_struct *p = current;
2157 struct mm_struct *mm = p->mm;
2158 struct vm_area_struct *vma;
2159 unsigned long start, end;
2160 unsigned long nr_pte_updates = 0;
2161 long pages, virtpages;
2162
2163 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2164
2165 work->next = work; /* protect against double add */
2166 /*
2167 * Who cares about NUMA placement when they're dying.
2168 *
2169 * NOTE: make sure not to dereference p->mm before this check,
2170 * exit_task_work() happens _after_ exit_mm() so we could be called
2171 * without p->mm even though we still had it when we enqueued this
2172 * work.
2173 */
2174 if (p->flags & PF_EXITING)
2175 return;
2176
2177 if (!mm->numa_next_scan) {
2178 mm->numa_next_scan = now +
2179 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2180 }
2181
2182 /*
2183 * Enforce maximal scan/migration frequency..
2184 */
2185 migrate = mm->numa_next_scan;
2186 if (time_before(now, migrate))
2187 return;
2188
2189 if (p->numa_scan_period == 0) {
2190 p->numa_scan_period_max = task_scan_max(p);
2191 p->numa_scan_period = task_scan_min(p);
2192 }
2193
2194 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2195 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2196 return;
2197
2198 /*
2199 * Delay this task enough that another task of this mm will likely win
2200 * the next time around.
2201 */
2202 p->node_stamp += 2 * TICK_NSEC;
2203
2204 start = mm->numa_scan_offset;
2205 pages = sysctl_numa_balancing_scan_size;
2206 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2207 virtpages = pages * 8; /* Scan up to this much virtual space */
2208 if (!pages)
2209 return;
2210
2211
2212 down_read(&mm->mmap_sem);
2213 vma = find_vma(mm, start);
2214 if (!vma) {
2215 reset_ptenuma_scan(p);
2216 start = 0;
2217 vma = mm->mmap;
2218 }
2219 for (; vma; vma = vma->vm_next) {
2220 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2221 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2222 continue;
2223 }
2224
2225 /*
2226 * Shared library pages mapped by multiple processes are not
2227 * migrated as it is expected they are cache replicated. Avoid
2228 * hinting faults in read-only file-backed mappings or the vdso
2229 * as migrating the pages will be of marginal benefit.
2230 */
2231 if (!vma->vm_mm ||
2232 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2233 continue;
2234
2235 /*
2236 * Skip inaccessible VMAs to avoid any confusion between
2237 * PROT_NONE and NUMA hinting ptes
2238 */
2239 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2240 continue;
2241
2242 do {
2243 start = max(start, vma->vm_start);
2244 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2245 end = min(end, vma->vm_end);
2246 nr_pte_updates = change_prot_numa(vma, start, end);
2247
2248 /*
2249 * Try to scan sysctl_numa_balancing_size worth of
2250 * hpages that have at least one present PTE that
2251 * is not already pte-numa. If the VMA contains
2252 * areas that are unused or already full of prot_numa
2253 * PTEs, scan up to virtpages, to skip through those
2254 * areas faster.
2255 */
2256 if (nr_pte_updates)
2257 pages -= (end - start) >> PAGE_SHIFT;
2258 virtpages -= (end - start) >> PAGE_SHIFT;
2259
2260 start = end;
2261 if (pages <= 0 || virtpages <= 0)
2262 goto out;
2263
2264 cond_resched();
2265 } while (end != vma->vm_end);
2266 }
2267
2268 out:
2269 /*
2270 * It is possible to reach the end of the VMA list but the last few
2271 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2272 * would find the !migratable VMA on the next scan but not reset the
2273 * scanner to the start so check it now.
2274 */
2275 if (vma)
2276 mm->numa_scan_offset = start;
2277 else
2278 reset_ptenuma_scan(p);
2279 up_read(&mm->mmap_sem);
2280 }
2281
2282 /*
2283 * Drive the periodic memory faults..
2284 */
2285 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2286 {
2287 struct callback_head *work = &curr->numa_work;
2288 u64 period, now;
2289
2290 /*
2291 * We don't care about NUMA placement if we don't have memory.
2292 */
2293 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2294 return;
2295
2296 /*
2297 * Using runtime rather than walltime has the dual advantage that
2298 * we (mostly) drive the selection from busy threads and that the
2299 * task needs to have done some actual work before we bother with
2300 * NUMA placement.
2301 */
2302 now = curr->se.sum_exec_runtime;
2303 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2304
2305 if (now > curr->node_stamp + period) {
2306 if (!curr->node_stamp)
2307 curr->numa_scan_period = task_scan_min(curr);
2308 curr->node_stamp += period;
2309
2310 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2311 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2312 task_work_add(curr, work, true);
2313 }
2314 }
2315 }
2316 #else
2317 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2318 {
2319 }
2320
2321 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2322 {
2323 }
2324
2325 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2326 {
2327 }
2328 #endif /* CONFIG_NUMA_BALANCING */
2329
2330 static void
2331 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2332 {
2333 update_load_add(&cfs_rq->load, se->load.weight);
2334 if (!parent_entity(se))
2335 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2336 #ifdef CONFIG_SMP
2337 if (entity_is_task(se)) {
2338 struct rq *rq = rq_of(cfs_rq);
2339
2340 account_numa_enqueue(rq, task_of(se));
2341 list_add(&se->group_node, &rq->cfs_tasks);
2342 }
2343 #endif
2344 cfs_rq->nr_running++;
2345 }
2346
2347 static void
2348 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2349 {
2350 update_load_sub(&cfs_rq->load, se->load.weight);
2351 if (!parent_entity(se))
2352 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2353 if (entity_is_task(se)) {
2354 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2355 list_del_init(&se->group_node);
2356 }
2357 cfs_rq->nr_running--;
2358 }
2359
2360 #ifdef CONFIG_FAIR_GROUP_SCHED
2361 # ifdef CONFIG_SMP
2362 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2363 {
2364 long tg_weight;
2365
2366 /*
2367 * Use this CPU's real-time load instead of the last load contribution
2368 * as the updating of the contribution is delayed, and we will use the
2369 * the real-time load to calc the share. See update_tg_load_avg().
2370 */
2371 tg_weight = atomic_long_read(&tg->load_avg);
2372 tg_weight -= cfs_rq->tg_load_avg_contrib;
2373 tg_weight += cfs_rq->load.weight;
2374
2375 return tg_weight;
2376 }
2377
2378 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2379 {
2380 long tg_weight, load, shares;
2381
2382 tg_weight = calc_tg_weight(tg, cfs_rq);
2383 load = cfs_rq->load.weight;
2384
2385 shares = (tg->shares * load);
2386 if (tg_weight)
2387 shares /= tg_weight;
2388
2389 if (shares < MIN_SHARES)
2390 shares = MIN_SHARES;
2391 if (shares > tg->shares)
2392 shares = tg->shares;
2393
2394 return shares;
2395 }
2396 # else /* CONFIG_SMP */
2397 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2398 {
2399 return tg->shares;
2400 }
2401 # endif /* CONFIG_SMP */
2402 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2403 unsigned long weight)
2404 {
2405 if (se->on_rq) {
2406 /* commit outstanding execution time */
2407 if (cfs_rq->curr == se)
2408 update_curr(cfs_rq);
2409 account_entity_dequeue(cfs_rq, se);
2410 }
2411
2412 update_load_set(&se->load, weight);
2413
2414 if (se->on_rq)
2415 account_entity_enqueue(cfs_rq, se);
2416 }
2417
2418 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2419
2420 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2421 {
2422 struct task_group *tg;
2423 struct sched_entity *se;
2424 long shares;
2425
2426 tg = cfs_rq->tg;
2427 se = tg->se[cpu_of(rq_of(cfs_rq))];
2428 if (!se || throttled_hierarchy(cfs_rq))
2429 return;
2430 #ifndef CONFIG_SMP
2431 if (likely(se->load.weight == tg->shares))
2432 return;
2433 #endif
2434 shares = calc_cfs_shares(cfs_rq, tg);
2435
2436 reweight_entity(cfs_rq_of(se), se, shares);
2437 }
2438 #else /* CONFIG_FAIR_GROUP_SCHED */
2439 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2440 {
2441 }
2442 #endif /* CONFIG_FAIR_GROUP_SCHED */
2443
2444 #ifdef CONFIG_SMP
2445 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2446 static const u32 runnable_avg_yN_inv[] = {
2447 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2448 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2449 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2450 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2451 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2452 0x85aac367, 0x82cd8698,
2453 };
2454
2455 /*
2456 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2457 * over-estimates when re-combining.
2458 */
2459 static const u32 runnable_avg_yN_sum[] = {
2460 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2461 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2462 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2463 };
2464
2465 /*
2466 * Approximate:
2467 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2468 */
2469 static __always_inline u64 decay_load(u64 val, u64 n)
2470 {
2471 unsigned int local_n;
2472
2473 if (!n)
2474 return val;
2475 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2476 return 0;
2477
2478 /* after bounds checking we can collapse to 32-bit */
2479 local_n = n;
2480
2481 /*
2482 * As y^PERIOD = 1/2, we can combine
2483 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2484 * With a look-up table which covers y^n (n<PERIOD)
2485 *
2486 * To achieve constant time decay_load.
2487 */
2488 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2489 val >>= local_n / LOAD_AVG_PERIOD;
2490 local_n %= LOAD_AVG_PERIOD;
2491 }
2492
2493 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2494 return val;
2495 }
2496
2497 /*
2498 * For updates fully spanning n periods, the contribution to runnable
2499 * average will be: \Sum 1024*y^n
2500 *
2501 * We can compute this reasonably efficiently by combining:
2502 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2503 */
2504 static u32 __compute_runnable_contrib(u64 n)
2505 {
2506 u32 contrib = 0;
2507
2508 if (likely(n <= LOAD_AVG_PERIOD))
2509 return runnable_avg_yN_sum[n];
2510 else if (unlikely(n >= LOAD_AVG_MAX_N))
2511 return LOAD_AVG_MAX;
2512
2513 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2514 do {
2515 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2516 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2517
2518 n -= LOAD_AVG_PERIOD;
2519 } while (n > LOAD_AVG_PERIOD);
2520
2521 contrib = decay_load(contrib, n);
2522 return contrib + runnable_avg_yN_sum[n];
2523 }
2524
2525 #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2526 #error "load tracking assumes 2^10 as unit"
2527 #endif
2528
2529 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2530
2531 /*
2532 * We can represent the historical contribution to runnable average as the
2533 * coefficients of a geometric series. To do this we sub-divide our runnable
2534 * history into segments of approximately 1ms (1024us); label the segment that
2535 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2536 *
2537 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2538 * p0 p1 p2
2539 * (now) (~1ms ago) (~2ms ago)
2540 *
2541 * Let u_i denote the fraction of p_i that the entity was runnable.
2542 *
2543 * We then designate the fractions u_i as our co-efficients, yielding the
2544 * following representation of historical load:
2545 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2546 *
2547 * We choose y based on the with of a reasonably scheduling period, fixing:
2548 * y^32 = 0.5
2549 *
2550 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2551 * approximately half as much as the contribution to load within the last ms
2552 * (u_0).
2553 *
2554 * When a period "rolls over" and we have new u_0`, multiplying the previous
2555 * sum again by y is sufficient to update:
2556 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2557 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2558 */
2559 static __always_inline int
2560 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2561 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2562 {
2563 u64 delta, scaled_delta, periods;
2564 u32 contrib;
2565 unsigned int delta_w, scaled_delta_w, decayed = 0;
2566 unsigned long scale_freq, scale_cpu;
2567
2568 delta = now - sa->last_update_time;
2569 /*
2570 * This should only happen when time goes backwards, which it
2571 * unfortunately does during sched clock init when we swap over to TSC.
2572 */
2573 if ((s64)delta < 0) {
2574 sa->last_update_time = now;
2575 return 0;
2576 }
2577
2578 /*
2579 * Use 1024ns as the unit of measurement since it's a reasonable
2580 * approximation of 1us and fast to compute.
2581 */
2582 delta >>= 10;
2583 if (!delta)
2584 return 0;
2585 sa->last_update_time = now;
2586
2587 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2588 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2589
2590 /* delta_w is the amount already accumulated against our next period */
2591 delta_w = sa->period_contrib;
2592 if (delta + delta_w >= 1024) {
2593 decayed = 1;
2594
2595 /* how much left for next period will start over, we don't know yet */
2596 sa->period_contrib = 0;
2597
2598 /*
2599 * Now that we know we're crossing a period boundary, figure
2600 * out how much from delta we need to complete the current
2601 * period and accrue it.
2602 */
2603 delta_w = 1024 - delta_w;
2604 scaled_delta_w = cap_scale(delta_w, scale_freq);
2605 if (weight) {
2606 sa->load_sum += weight * scaled_delta_w;
2607 if (cfs_rq) {
2608 cfs_rq->runnable_load_sum +=
2609 weight * scaled_delta_w;
2610 }
2611 }
2612 if (running)
2613 sa->util_sum += scaled_delta_w * scale_cpu;
2614
2615 delta -= delta_w;
2616
2617 /* Figure out how many additional periods this update spans */
2618 periods = delta / 1024;
2619 delta %= 1024;
2620
2621 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2622 if (cfs_rq) {
2623 cfs_rq->runnable_load_sum =
2624 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2625 }
2626 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2627
2628 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2629 contrib = __compute_runnable_contrib(periods);
2630 contrib = cap_scale(contrib, scale_freq);
2631 if (weight) {
2632 sa->load_sum += weight * contrib;
2633 if (cfs_rq)
2634 cfs_rq->runnable_load_sum += weight * contrib;
2635 }
2636 if (running)
2637 sa->util_sum += contrib * scale_cpu;
2638 }
2639
2640 /* Remainder of delta accrued against u_0` */
2641 scaled_delta = cap_scale(delta, scale_freq);
2642 if (weight) {
2643 sa->load_sum += weight * scaled_delta;
2644 if (cfs_rq)
2645 cfs_rq->runnable_load_sum += weight * scaled_delta;
2646 }
2647 if (running)
2648 sa->util_sum += scaled_delta * scale_cpu;
2649
2650 sa->period_contrib += delta;
2651
2652 if (decayed) {
2653 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2654 if (cfs_rq) {
2655 cfs_rq->runnable_load_avg =
2656 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2657 }
2658 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2659 }
2660
2661 return decayed;
2662 }
2663
2664 #ifdef CONFIG_FAIR_GROUP_SCHED
2665 /*
2666 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2667 * and effective_load (which is not done because it is too costly).
2668 */
2669 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2670 {
2671 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2672
2673 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2674 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2675 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2676 }
2677 }
2678
2679 #else /* CONFIG_FAIR_GROUP_SCHED */
2680 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2681 #endif /* CONFIG_FAIR_GROUP_SCHED */
2682
2683 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2684
2685 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2686 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2687 {
2688 struct sched_avg *sa = &cfs_rq->avg;
2689 int decayed, removed = 0;
2690
2691 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2692 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2693 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2694 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2695 removed = 1;
2696 }
2697
2698 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2699 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2700 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2701 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2702 }
2703
2704 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2705 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2706
2707 #ifndef CONFIG_64BIT
2708 smp_wmb();
2709 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2710 #endif
2711
2712 return decayed || removed;
2713 }
2714
2715 /* Update task and its cfs_rq load average */
2716 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2717 {
2718 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2719 u64 now = cfs_rq_clock_task(cfs_rq);
2720 int cpu = cpu_of(rq_of(cfs_rq));
2721
2722 /*
2723 * Track task load average for carrying it to new CPU after migrated, and
2724 * track group sched_entity load average for task_h_load calc in migration
2725 */
2726 __update_load_avg(now, cpu, &se->avg,
2727 se->on_rq * scale_load_down(se->load.weight),
2728 cfs_rq->curr == se, NULL);
2729
2730 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2731 update_tg_load_avg(cfs_rq, 0);
2732 }
2733
2734 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2735 {
2736 if (!sched_feat(ATTACH_AGE_LOAD))
2737 goto skip_aging;
2738
2739 /*
2740 * If we got migrated (either between CPUs or between cgroups) we'll
2741 * have aged the average right before clearing @last_update_time.
2742 */
2743 if (se->avg.last_update_time) {
2744 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2745 &se->avg, 0, 0, NULL);
2746
2747 /*
2748 * XXX: we could have just aged the entire load away if we've been
2749 * absent from the fair class for too long.
2750 */
2751 }
2752
2753 skip_aging:
2754 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2755 cfs_rq->avg.load_avg += se->avg.load_avg;
2756 cfs_rq->avg.load_sum += se->avg.load_sum;
2757 cfs_rq->avg.util_avg += se->avg.util_avg;
2758 cfs_rq->avg.util_sum += se->avg.util_sum;
2759 }
2760
2761 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2762 {
2763 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2764 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2765 cfs_rq->curr == se, NULL);
2766
2767 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2768 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2769 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2770 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2771 }
2772
2773 /* Add the load generated by se into cfs_rq's load average */
2774 static inline void
2775 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2776 {
2777 struct sched_avg *sa = &se->avg;
2778 u64 now = cfs_rq_clock_task(cfs_rq);
2779 int migrated, decayed;
2780
2781 migrated = !sa->last_update_time;
2782 if (!migrated) {
2783 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2784 se->on_rq * scale_load_down(se->load.weight),
2785 cfs_rq->curr == se, NULL);
2786 }
2787
2788 decayed = update_cfs_rq_load_avg(now, cfs_rq);
2789
2790 cfs_rq->runnable_load_avg += sa->load_avg;
2791 cfs_rq->runnable_load_sum += sa->load_sum;
2792
2793 if (migrated)
2794 attach_entity_load_avg(cfs_rq, se);
2795
2796 if (decayed || migrated)
2797 update_tg_load_avg(cfs_rq, 0);
2798 }
2799
2800 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
2801 static inline void
2802 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2803 {
2804 update_load_avg(se, 1);
2805
2806 cfs_rq->runnable_load_avg =
2807 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2808 cfs_rq->runnable_load_sum =
2809 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2810 }
2811
2812 /*
2813 * Task first catches up with cfs_rq, and then subtract
2814 * itself from the cfs_rq (task must be off the queue now).
2815 */
2816 void remove_entity_load_avg(struct sched_entity *se)
2817 {
2818 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2819 u64 last_update_time;
2820
2821 #ifndef CONFIG_64BIT
2822 u64 last_update_time_copy;
2823
2824 do {
2825 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2826 smp_rmb();
2827 last_update_time = cfs_rq->avg.last_update_time;
2828 } while (last_update_time != last_update_time_copy);
2829 #else
2830 last_update_time = cfs_rq->avg.last_update_time;
2831 #endif
2832
2833 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2834 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2835 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2836 }
2837
2838 /*
2839 * Update the rq's load with the elapsed running time before entering
2840 * idle. if the last scheduled task is not a CFS task, idle_enter will
2841 * be the only way to update the runnable statistic.
2842 */
2843 void idle_enter_fair(struct rq *this_rq)
2844 {
2845 }
2846
2847 /*
2848 * Update the rq's load with the elapsed idle time before a task is
2849 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2850 * be the only way to update the runnable statistic.
2851 */
2852 void idle_exit_fair(struct rq *this_rq)
2853 {
2854 }
2855
2856 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2857 {
2858 return cfs_rq->runnable_load_avg;
2859 }
2860
2861 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2862 {
2863 return cfs_rq->avg.load_avg;
2864 }
2865
2866 static int idle_balance(struct rq *this_rq);
2867
2868 #else /* CONFIG_SMP */
2869
2870 static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2871 static inline void
2872 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2873 static inline void
2874 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2875 static inline void remove_entity_load_avg(struct sched_entity *se) {}
2876
2877 static inline void
2878 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2879 static inline void
2880 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2881
2882 static inline int idle_balance(struct rq *rq)
2883 {
2884 return 0;
2885 }
2886
2887 #endif /* CONFIG_SMP */
2888
2889 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2890 {
2891 #ifdef CONFIG_SCHEDSTATS
2892 struct task_struct *tsk = NULL;
2893
2894 if (entity_is_task(se))
2895 tsk = task_of(se);
2896
2897 if (se->statistics.sleep_start) {
2898 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2899
2900 if ((s64)delta < 0)
2901 delta = 0;
2902
2903 if (unlikely(delta > se->statistics.sleep_max))
2904 se->statistics.sleep_max = delta;
2905
2906 se->statistics.sleep_start = 0;
2907 se->statistics.sum_sleep_runtime += delta;
2908
2909 if (tsk) {
2910 account_scheduler_latency(tsk, delta >> 10, 1);
2911 trace_sched_stat_sleep(tsk, delta);
2912 }
2913 }
2914 if (se->statistics.block_start) {
2915 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2916
2917 if ((s64)delta < 0)
2918 delta = 0;
2919
2920 if (unlikely(delta > se->statistics.block_max))
2921 se->statistics.block_max = delta;
2922
2923 se->statistics.block_start = 0;
2924 se->statistics.sum_sleep_runtime += delta;
2925
2926 if (tsk) {
2927 if (tsk->in_iowait) {
2928 se->statistics.iowait_sum += delta;
2929 se->statistics.iowait_count++;
2930 trace_sched_stat_iowait(tsk, delta);
2931 }
2932
2933 trace_sched_stat_blocked(tsk, delta);
2934
2935 /*
2936 * Blocking time is in units of nanosecs, so shift by
2937 * 20 to get a milliseconds-range estimation of the
2938 * amount of time that the task spent sleeping:
2939 */
2940 if (unlikely(prof_on == SLEEP_PROFILING)) {
2941 profile_hits(SLEEP_PROFILING,
2942 (void *)get_wchan(tsk),
2943 delta >> 20);
2944 }
2945 account_scheduler_latency(tsk, delta >> 10, 0);
2946 }
2947 }
2948 #endif
2949 }
2950
2951 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2952 {
2953 #ifdef CONFIG_SCHED_DEBUG
2954 s64 d = se->vruntime - cfs_rq->min_vruntime;
2955
2956 if (d < 0)
2957 d = -d;
2958
2959 if (d > 3*sysctl_sched_latency)
2960 schedstat_inc(cfs_rq, nr_spread_over);
2961 #endif
2962 }
2963
2964 static void
2965 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2966 {
2967 u64 vruntime = cfs_rq->min_vruntime;
2968
2969 /*
2970 * The 'current' period is already promised to the current tasks,
2971 * however the extra weight of the new task will slow them down a
2972 * little, place the new task so that it fits in the slot that
2973 * stays open at the end.
2974 */
2975 if (initial && sched_feat(START_DEBIT))
2976 vruntime += sched_vslice(cfs_rq, se);
2977
2978 /* sleeps up to a single latency don't count. */
2979 if (!initial) {
2980 unsigned long thresh = sysctl_sched_latency;
2981
2982 /*
2983 * Halve their sleep time's effect, to allow
2984 * for a gentler effect of sleepers:
2985 */
2986 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2987 thresh >>= 1;
2988
2989 vruntime -= thresh;
2990 }
2991
2992 /* ensure we never gain time by being placed backwards. */
2993 se->vruntime = max_vruntime(se->vruntime, vruntime);
2994 }
2995
2996 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2997
2998 static void
2999 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3000 {
3001 /*
3002 * Update the normalized vruntime before updating min_vruntime
3003 * through calling update_curr().
3004 */
3005 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3006 se->vruntime += cfs_rq->min_vruntime;
3007
3008 /*
3009 * Update run-time statistics of the 'current'.
3010 */
3011 update_curr(cfs_rq);
3012 enqueue_entity_load_avg(cfs_rq, se);
3013 account_entity_enqueue(cfs_rq, se);
3014 update_cfs_shares(cfs_rq);
3015
3016 if (flags & ENQUEUE_WAKEUP) {
3017 place_entity(cfs_rq, se, 0);
3018 enqueue_sleeper(cfs_rq, se);
3019 }
3020
3021 update_stats_enqueue(cfs_rq, se);
3022 check_spread(cfs_rq, se);
3023 if (se != cfs_rq->curr)
3024 __enqueue_entity(cfs_rq, se);
3025 se->on_rq = 1;
3026
3027 if (cfs_rq->nr_running == 1) {
3028 list_add_leaf_cfs_rq(cfs_rq);
3029 check_enqueue_throttle(cfs_rq);
3030 }
3031 }
3032
3033 static void __clear_buddies_last(struct sched_entity *se)
3034 {
3035 for_each_sched_entity(se) {
3036 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3037 if (cfs_rq->last != se)
3038 break;
3039
3040 cfs_rq->last = NULL;
3041 }
3042 }
3043
3044 static void __clear_buddies_next(struct sched_entity *se)
3045 {
3046 for_each_sched_entity(se) {
3047 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3048 if (cfs_rq->next != se)
3049 break;
3050
3051 cfs_rq->next = NULL;
3052 }
3053 }
3054
3055 static void __clear_buddies_skip(struct sched_entity *se)
3056 {
3057 for_each_sched_entity(se) {
3058 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3059 if (cfs_rq->skip != se)
3060 break;
3061
3062 cfs_rq->skip = NULL;
3063 }
3064 }
3065
3066 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3067 {
3068 if (cfs_rq->last == se)
3069 __clear_buddies_last(se);
3070
3071 if (cfs_rq->next == se)
3072 __clear_buddies_next(se);
3073
3074 if (cfs_rq->skip == se)
3075 __clear_buddies_skip(se);
3076 }
3077
3078 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3079
3080 static void
3081 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3082 {
3083 /*
3084 * Update run-time statistics of the 'current'.
3085 */
3086 update_curr(cfs_rq);
3087 dequeue_entity_load_avg(cfs_rq, se);
3088
3089 update_stats_dequeue(cfs_rq, se);
3090 if (flags & DEQUEUE_SLEEP) {
3091 #ifdef CONFIG_SCHEDSTATS
3092 if (entity_is_task(se)) {
3093 struct task_struct *tsk = task_of(se);
3094
3095 if (tsk->state & TASK_INTERRUPTIBLE)
3096 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3097 if (tsk->state & TASK_UNINTERRUPTIBLE)
3098 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3099 }
3100 #endif
3101 }
3102
3103 clear_buddies(cfs_rq, se);
3104
3105 if (se != cfs_rq->curr)
3106 __dequeue_entity(cfs_rq, se);
3107 se->on_rq = 0;
3108 account_entity_dequeue(cfs_rq, se);
3109
3110 /*
3111 * Normalize the entity after updating the min_vruntime because the
3112 * update can refer to the ->curr item and we need to reflect this
3113 * movement in our normalized position.
3114 */
3115 if (!(flags & DEQUEUE_SLEEP))
3116 se->vruntime -= cfs_rq->min_vruntime;
3117
3118 /* return excess runtime on last dequeue */
3119 return_cfs_rq_runtime(cfs_rq);
3120
3121 update_min_vruntime(cfs_rq);
3122 update_cfs_shares(cfs_rq);
3123 }
3124
3125 /*
3126 * Preempt the current task with a newly woken task if needed:
3127 */
3128 static void
3129 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3130 {
3131 unsigned long ideal_runtime, delta_exec;
3132 struct sched_entity *se;
3133 s64 delta;
3134
3135 ideal_runtime = sched_slice(cfs_rq, curr);
3136 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3137 if (delta_exec > ideal_runtime) {
3138 resched_curr(rq_of(cfs_rq));
3139 /*
3140 * The current task ran long enough, ensure it doesn't get
3141 * re-elected due to buddy favours.
3142 */
3143 clear_buddies(cfs_rq, curr);
3144 return;
3145 }
3146
3147 /*
3148 * Ensure that a task that missed wakeup preemption by a
3149 * narrow margin doesn't have to wait for a full slice.
3150 * This also mitigates buddy induced latencies under load.
3151 */
3152 if (delta_exec < sysctl_sched_min_granularity)
3153 return;
3154
3155 se = __pick_first_entity(cfs_rq);
3156 delta = curr->vruntime - se->vruntime;
3157
3158 if (delta < 0)
3159 return;
3160
3161 if (delta > ideal_runtime)
3162 resched_curr(rq_of(cfs_rq));
3163 }
3164
3165 static void
3166 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3167 {
3168 /* 'current' is not kept within the tree. */
3169 if (se->on_rq) {
3170 /*
3171 * Any task has to be enqueued before it get to execute on
3172 * a CPU. So account for the time it spent waiting on the
3173 * runqueue.
3174 */
3175 update_stats_wait_end(cfs_rq, se);
3176 __dequeue_entity(cfs_rq, se);
3177 update_load_avg(se, 1);
3178 }
3179
3180 update_stats_curr_start(cfs_rq, se);
3181 cfs_rq->curr = se;
3182 #ifdef CONFIG_SCHEDSTATS
3183 /*
3184 * Track our maximum slice length, if the CPU's load is at
3185 * least twice that of our own weight (i.e. dont track it
3186 * when there are only lesser-weight tasks around):
3187 */
3188 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3189 se->statistics.slice_max = max(se->statistics.slice_max,
3190 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3191 }
3192 #endif
3193 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3194 }
3195
3196 static int
3197 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3198
3199 /*
3200 * Pick the next process, keeping these things in mind, in this order:
3201 * 1) keep things fair between processes/task groups
3202 * 2) pick the "next" process, since someone really wants that to run
3203 * 3) pick the "last" process, for cache locality
3204 * 4) do not run the "skip" process, if something else is available
3205 */
3206 static struct sched_entity *
3207 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3208 {
3209 struct sched_entity *left = __pick_first_entity(cfs_rq);
3210 struct sched_entity *se;
3211
3212 /*
3213 * If curr is set we have to see if its left of the leftmost entity
3214 * still in the tree, provided there was anything in the tree at all.
3215 */
3216 if (!left || (curr && entity_before(curr, left)))
3217 left = curr;
3218
3219 se = left; /* ideally we run the leftmost entity */
3220
3221 /*
3222 * Avoid running the skip buddy, if running something else can
3223 * be done without getting too unfair.
3224 */
3225 if (cfs_rq->skip == se) {
3226 struct sched_entity *second;
3227
3228 if (se == curr) {
3229 second = __pick_first_entity(cfs_rq);
3230 } else {
3231 second = __pick_next_entity(se);
3232 if (!second || (curr && entity_before(curr, second)))
3233 second = curr;
3234 }
3235
3236 if (second && wakeup_preempt_entity(second, left) < 1)
3237 se = second;
3238 }
3239
3240 /*
3241 * Prefer last buddy, try to return the CPU to a preempted task.
3242 */
3243 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3244 se = cfs_rq->last;
3245
3246 /*
3247 * Someone really wants this to run. If it's not unfair, run it.
3248 */
3249 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3250 se = cfs_rq->next;
3251
3252 clear_buddies(cfs_rq, se);
3253
3254 return se;
3255 }
3256
3257 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3258
3259 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3260 {
3261 /*
3262 * If still on the runqueue then deactivate_task()
3263 * was not called and update_curr() has to be done:
3264 */
3265 if (prev->on_rq)
3266 update_curr(cfs_rq);
3267
3268 /* throttle cfs_rqs exceeding runtime */
3269 check_cfs_rq_runtime(cfs_rq);
3270
3271 check_spread(cfs_rq, prev);
3272 if (prev->on_rq) {
3273 update_stats_wait_start(cfs_rq, prev);
3274 /* Put 'current' back into the tree. */
3275 __enqueue_entity(cfs_rq, prev);
3276 /* in !on_rq case, update occurred at dequeue */
3277 update_load_avg(prev, 0);
3278 }
3279 cfs_rq->curr = NULL;
3280 }
3281
3282 static void
3283 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3284 {
3285 /*
3286 * Update run-time statistics of the 'current'.
3287 */
3288 update_curr(cfs_rq);
3289
3290 /*
3291 * Ensure that runnable average is periodically updated.
3292 */
3293 update_load_avg(curr, 1);
3294 update_cfs_shares(cfs_rq);
3295
3296 #ifdef CONFIG_SCHED_HRTICK
3297 /*
3298 * queued ticks are scheduled to match the slice, so don't bother
3299 * validating it and just reschedule.
3300 */
3301 if (queued) {
3302 resched_curr(rq_of(cfs_rq));
3303 return;
3304 }
3305 /*
3306 * don't let the period tick interfere with the hrtick preemption
3307 */
3308 if (!sched_feat(DOUBLE_TICK) &&
3309 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3310 return;
3311 #endif
3312
3313 if (cfs_rq->nr_running > 1)
3314 check_preempt_tick(cfs_rq, curr);
3315 }
3316
3317
3318 /**************************************************
3319 * CFS bandwidth control machinery
3320 */
3321
3322 #ifdef CONFIG_CFS_BANDWIDTH
3323
3324 #ifdef HAVE_JUMP_LABEL
3325 static struct static_key __cfs_bandwidth_used;
3326
3327 static inline bool cfs_bandwidth_used(void)
3328 {
3329 return static_key_false(&__cfs_bandwidth_used);
3330 }
3331
3332 void cfs_bandwidth_usage_inc(void)
3333 {
3334 static_key_slow_inc(&__cfs_bandwidth_used);
3335 }
3336
3337 void cfs_bandwidth_usage_dec(void)
3338 {
3339 static_key_slow_dec(&__cfs_bandwidth_used);
3340 }
3341 #else /* HAVE_JUMP_LABEL */
3342 static bool cfs_bandwidth_used(void)
3343 {
3344 return true;
3345 }
3346
3347 void cfs_bandwidth_usage_inc(void) {}
3348 void cfs_bandwidth_usage_dec(void) {}
3349 #endif /* HAVE_JUMP_LABEL */
3350
3351 /*
3352 * default period for cfs group bandwidth.
3353 * default: 0.1s, units: nanoseconds
3354 */
3355 static inline u64 default_cfs_period(void)
3356 {
3357 return 100000000ULL;
3358 }
3359
3360 static inline u64 sched_cfs_bandwidth_slice(void)
3361 {
3362 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3363 }
3364
3365 /*
3366 * Replenish runtime according to assigned quota and update expiration time.
3367 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3368 * additional synchronization around rq->lock.
3369 *
3370 * requires cfs_b->lock
3371 */
3372 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3373 {
3374 u64 now;
3375
3376 if (cfs_b->quota == RUNTIME_INF)
3377 return;
3378
3379 now = sched_clock_cpu(smp_processor_id());
3380 cfs_b->runtime = cfs_b->quota;
3381 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3382 }
3383
3384 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3385 {
3386 return &tg->cfs_bandwidth;
3387 }
3388
3389 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3390 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3391 {
3392 if (unlikely(cfs_rq->throttle_count))
3393 return cfs_rq->throttled_clock_task;
3394
3395 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3396 }
3397
3398 /* returns 0 on failure to allocate runtime */
3399 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3400 {
3401 struct task_group *tg = cfs_rq->tg;
3402 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3403 u64 amount = 0, min_amount, expires;
3404
3405 /* note: this is a positive sum as runtime_remaining <= 0 */
3406 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3407
3408 raw_spin_lock(&cfs_b->lock);
3409 if (cfs_b->quota == RUNTIME_INF)
3410 amount = min_amount;
3411 else {
3412 start_cfs_bandwidth(cfs_b);
3413
3414 if (cfs_b->runtime > 0) {
3415 amount = min(cfs_b->runtime, min_amount);
3416 cfs_b->runtime -= amount;
3417 cfs_b->idle = 0;
3418 }
3419 }
3420 expires = cfs_b->runtime_expires;
3421 raw_spin_unlock(&cfs_b->lock);
3422
3423 cfs_rq->runtime_remaining += amount;
3424 /*
3425 * we may have advanced our local expiration to account for allowed
3426 * spread between our sched_clock and the one on which runtime was
3427 * issued.
3428 */
3429 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3430 cfs_rq->runtime_expires = expires;
3431
3432 return cfs_rq->runtime_remaining > 0;
3433 }
3434
3435 /*
3436 * Note: This depends on the synchronization provided by sched_clock and the
3437 * fact that rq->clock snapshots this value.
3438 */
3439 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3440 {
3441 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3442
3443 /* if the deadline is ahead of our clock, nothing to do */
3444 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3445 return;
3446
3447 if (cfs_rq->runtime_remaining < 0)
3448 return;
3449
3450 /*
3451 * If the local deadline has passed we have to consider the
3452 * possibility that our sched_clock is 'fast' and the global deadline
3453 * has not truly expired.
3454 *
3455 * Fortunately we can check determine whether this the case by checking
3456 * whether the global deadline has advanced. It is valid to compare
3457 * cfs_b->runtime_expires without any locks since we only care about
3458 * exact equality, so a partial write will still work.
3459 */
3460
3461 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3462 /* extend local deadline, drift is bounded above by 2 ticks */
3463 cfs_rq->runtime_expires += TICK_NSEC;
3464 } else {
3465 /* global deadline is ahead, expiration has passed */
3466 cfs_rq->runtime_remaining = 0;
3467 }
3468 }
3469
3470 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3471 {
3472 /* dock delta_exec before expiring quota (as it could span periods) */
3473 cfs_rq->runtime_remaining -= delta_exec;
3474 expire_cfs_rq_runtime(cfs_rq);
3475
3476 if (likely(cfs_rq->runtime_remaining > 0))
3477 return;
3478
3479 /*
3480 * if we're unable to extend our runtime we resched so that the active
3481 * hierarchy can be throttled
3482 */
3483 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3484 resched_curr(rq_of(cfs_rq));
3485 }
3486
3487 static __always_inline
3488 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3489 {
3490 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3491 return;
3492
3493 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3494 }
3495
3496 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3497 {
3498 return cfs_bandwidth_used() && cfs_rq->throttled;
3499 }
3500
3501 /* check whether cfs_rq, or any parent, is throttled */
3502 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3503 {
3504 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3505 }
3506
3507 /*
3508 * Ensure that neither of the group entities corresponding to src_cpu or
3509 * dest_cpu are members of a throttled hierarchy when performing group
3510 * load-balance operations.
3511 */
3512 static inline int throttled_lb_pair(struct task_group *tg,
3513 int src_cpu, int dest_cpu)
3514 {
3515 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3516
3517 src_cfs_rq = tg->cfs_rq[src_cpu];
3518 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3519
3520 return throttled_hierarchy(src_cfs_rq) ||
3521 throttled_hierarchy(dest_cfs_rq);
3522 }
3523
3524 /* updated child weight may affect parent so we have to do this bottom up */
3525 static int tg_unthrottle_up(struct task_group *tg, void *data)
3526 {
3527 struct rq *rq = data;
3528 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3529
3530 cfs_rq->throttle_count--;
3531 #ifdef CONFIG_SMP
3532 if (!cfs_rq->throttle_count) {
3533 /* adjust cfs_rq_clock_task() */
3534 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3535 cfs_rq->throttled_clock_task;
3536 }
3537 #endif
3538
3539 return 0;
3540 }
3541
3542 static int tg_throttle_down(struct task_group *tg, void *data)
3543 {
3544 struct rq *rq = data;
3545 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3546
3547 /* group is entering throttled state, stop time */
3548 if (!cfs_rq->throttle_count)
3549 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3550 cfs_rq->throttle_count++;
3551
3552 return 0;
3553 }
3554
3555 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3556 {
3557 struct rq *rq = rq_of(cfs_rq);
3558 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3559 struct sched_entity *se;
3560 long task_delta, dequeue = 1;
3561 bool empty;
3562
3563 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3564
3565 /* freeze hierarchy runnable averages while throttled */
3566 rcu_read_lock();
3567 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3568 rcu_read_unlock();
3569
3570 task_delta = cfs_rq->h_nr_running;
3571 for_each_sched_entity(se) {
3572 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3573 /* throttled entity or throttle-on-deactivate */
3574 if (!se->on_rq)
3575 break;
3576
3577 if (dequeue)
3578 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3579 qcfs_rq->h_nr_running -= task_delta;
3580
3581 if (qcfs_rq->load.weight)
3582 dequeue = 0;
3583 }
3584
3585 if (!se)
3586 sub_nr_running(rq, task_delta);
3587
3588 cfs_rq->throttled = 1;
3589 cfs_rq->throttled_clock = rq_clock(rq);
3590 raw_spin_lock(&cfs_b->lock);
3591 empty = list_empty(&cfs_b->throttled_cfs_rq);
3592
3593 /*
3594 * Add to the _head_ of the list, so that an already-started
3595 * distribute_cfs_runtime will not see us
3596 */
3597 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3598
3599 /*
3600 * If we're the first throttled task, make sure the bandwidth
3601 * timer is running.
3602 */
3603 if (empty)
3604 start_cfs_bandwidth(cfs_b);
3605
3606 raw_spin_unlock(&cfs_b->lock);
3607 }
3608
3609 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3610 {
3611 struct rq *rq = rq_of(cfs_rq);
3612 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3613 struct sched_entity *se;
3614 int enqueue = 1;
3615 long task_delta;
3616
3617 se = cfs_rq->tg->se[cpu_of(rq)];
3618
3619 cfs_rq->throttled = 0;
3620
3621 update_rq_clock(rq);
3622
3623 raw_spin_lock(&cfs_b->lock);
3624 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3625 list_del_rcu(&cfs_rq->throttled_list);
3626 raw_spin_unlock(&cfs_b->lock);
3627
3628 /* update hierarchical throttle state */
3629 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3630
3631 if (!cfs_rq->load.weight)
3632 return;
3633
3634 task_delta = cfs_rq->h_nr_running;
3635 for_each_sched_entity(se) {
3636 if (se->on_rq)
3637 enqueue = 0;
3638
3639 cfs_rq = cfs_rq_of(se);
3640 if (enqueue)
3641 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3642 cfs_rq->h_nr_running += task_delta;
3643
3644 if (cfs_rq_throttled(cfs_rq))
3645 break;
3646 }
3647
3648 if (!se)
3649 add_nr_running(rq, task_delta);
3650
3651 /* determine whether we need to wake up potentially idle cpu */
3652 if (rq->curr == rq->idle && rq->cfs.nr_running)
3653 resched_curr(rq);
3654 }
3655
3656 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3657 u64 remaining, u64 expires)
3658 {
3659 struct cfs_rq *cfs_rq;
3660 u64 runtime;
3661 u64 starting_runtime = remaining;
3662
3663 rcu_read_lock();
3664 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3665 throttled_list) {
3666 struct rq *rq = rq_of(cfs_rq);
3667
3668 raw_spin_lock(&rq->lock);
3669 if (!cfs_rq_throttled(cfs_rq))
3670 goto next;
3671
3672 runtime = -cfs_rq->runtime_remaining + 1;
3673 if (runtime > remaining)
3674 runtime = remaining;
3675 remaining -= runtime;
3676
3677 cfs_rq->runtime_remaining += runtime;
3678 cfs_rq->runtime_expires = expires;
3679
3680 /* we check whether we're throttled above */
3681 if (cfs_rq->runtime_remaining > 0)
3682 unthrottle_cfs_rq(cfs_rq);
3683
3684 next:
3685 raw_spin_unlock(&rq->lock);
3686
3687 if (!remaining)
3688 break;
3689 }
3690 rcu_read_unlock();
3691
3692 return starting_runtime - remaining;
3693 }
3694
3695 /*
3696 * Responsible for refilling a task_group's bandwidth and unthrottling its
3697 * cfs_rqs as appropriate. If there has been no activity within the last
3698 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3699 * used to track this state.
3700 */
3701 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3702 {
3703 u64 runtime, runtime_expires;
3704 int throttled;
3705
3706 /* no need to continue the timer with no bandwidth constraint */
3707 if (cfs_b->quota == RUNTIME_INF)
3708 goto out_deactivate;
3709
3710 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3711 cfs_b->nr_periods += overrun;
3712
3713 /*
3714 * idle depends on !throttled (for the case of a large deficit), and if
3715 * we're going inactive then everything else can be deferred
3716 */
3717 if (cfs_b->idle && !throttled)
3718 goto out_deactivate;
3719
3720 __refill_cfs_bandwidth_runtime(cfs_b);
3721
3722 if (!throttled) {
3723 /* mark as potentially idle for the upcoming period */
3724 cfs_b->idle = 1;
3725 return 0;
3726 }
3727
3728 /* account preceding periods in which throttling occurred */
3729 cfs_b->nr_throttled += overrun;
3730
3731 runtime_expires = cfs_b->runtime_expires;
3732
3733 /*
3734 * This check is repeated as we are holding onto the new bandwidth while
3735 * we unthrottle. This can potentially race with an unthrottled group
3736 * trying to acquire new bandwidth from the global pool. This can result
3737 * in us over-using our runtime if it is all used during this loop, but
3738 * only by limited amounts in that extreme case.
3739 */
3740 while (throttled && cfs_b->runtime > 0) {
3741 runtime = cfs_b->runtime;
3742 raw_spin_unlock(&cfs_b->lock);
3743 /* we can't nest cfs_b->lock while distributing bandwidth */
3744 runtime = distribute_cfs_runtime(cfs_b, runtime,
3745 runtime_expires);
3746 raw_spin_lock(&cfs_b->lock);
3747
3748 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3749
3750 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3751 }
3752
3753 /*
3754 * While we are ensured activity in the period following an
3755 * unthrottle, this also covers the case in which the new bandwidth is
3756 * insufficient to cover the existing bandwidth deficit. (Forcing the
3757 * timer to remain active while there are any throttled entities.)
3758 */
3759 cfs_b->idle = 0;
3760
3761 return 0;
3762
3763 out_deactivate:
3764 return 1;
3765 }
3766
3767 /* a cfs_rq won't donate quota below this amount */
3768 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3769 /* minimum remaining period time to redistribute slack quota */
3770 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3771 /* how long we wait to gather additional slack before distributing */
3772 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3773
3774 /*
3775 * Are we near the end of the current quota period?
3776 *
3777 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3778 * hrtimer base being cleared by hrtimer_start. In the case of
3779 * migrate_hrtimers, base is never cleared, so we are fine.
3780 */
3781 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3782 {
3783 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3784 u64 remaining;
3785
3786 /* if the call-back is running a quota refresh is already occurring */
3787 if (hrtimer_callback_running(refresh_timer))
3788 return 1;
3789
3790 /* is a quota refresh about to occur? */
3791 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3792 if (remaining < min_expire)
3793 return 1;
3794
3795 return 0;
3796 }
3797
3798 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3799 {
3800 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3801
3802 /* if there's a quota refresh soon don't bother with slack */
3803 if (runtime_refresh_within(cfs_b, min_left))
3804 return;
3805
3806 hrtimer_start(&cfs_b->slack_timer,
3807 ns_to_ktime(cfs_bandwidth_slack_period),
3808 HRTIMER_MODE_REL);
3809 }
3810
3811 /* we know any runtime found here is valid as update_curr() precedes return */
3812 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3813 {
3814 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3815 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3816
3817 if (slack_runtime <= 0)
3818 return;
3819
3820 raw_spin_lock(&cfs_b->lock);
3821 if (cfs_b->quota != RUNTIME_INF &&
3822 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3823 cfs_b->runtime += slack_runtime;
3824
3825 /* we are under rq->lock, defer unthrottling using a timer */
3826 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3827 !list_empty(&cfs_b->throttled_cfs_rq))
3828 start_cfs_slack_bandwidth(cfs_b);
3829 }
3830 raw_spin_unlock(&cfs_b->lock);
3831
3832 /* even if it's not valid for return we don't want to try again */
3833 cfs_rq->runtime_remaining -= slack_runtime;
3834 }
3835
3836 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3837 {
3838 if (!cfs_bandwidth_used())
3839 return;
3840
3841 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3842 return;
3843
3844 __return_cfs_rq_runtime(cfs_rq);
3845 }
3846
3847 /*
3848 * This is done with a timer (instead of inline with bandwidth return) since
3849 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3850 */
3851 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3852 {
3853 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3854 u64 expires;
3855
3856 /* confirm we're still not at a refresh boundary */
3857 raw_spin_lock(&cfs_b->lock);
3858 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3859 raw_spin_unlock(&cfs_b->lock);
3860 return;
3861 }
3862
3863 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3864 runtime = cfs_b->runtime;
3865
3866 expires = cfs_b->runtime_expires;
3867 raw_spin_unlock(&cfs_b->lock);
3868
3869 if (!runtime)
3870 return;
3871
3872 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3873
3874 raw_spin_lock(&cfs_b->lock);
3875 if (expires == cfs_b->runtime_expires)
3876 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3877 raw_spin_unlock(&cfs_b->lock);
3878 }
3879
3880 /*
3881 * When a group wakes up we want to make sure that its quota is not already
3882 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3883 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3884 */
3885 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3886 {
3887 if (!cfs_bandwidth_used())
3888 return;
3889
3890 /* an active group must be handled by the update_curr()->put() path */
3891 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3892 return;
3893
3894 /* ensure the group is not already throttled */
3895 if (cfs_rq_throttled(cfs_rq))
3896 return;
3897
3898 /* update runtime allocation */
3899 account_cfs_rq_runtime(cfs_rq, 0);
3900 if (cfs_rq->runtime_remaining <= 0)
3901 throttle_cfs_rq(cfs_rq);
3902 }
3903
3904 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3905 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3906 {
3907 if (!cfs_bandwidth_used())
3908 return false;
3909
3910 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3911 return false;
3912
3913 /*
3914 * it's possible for a throttled entity to be forced into a running
3915 * state (e.g. set_curr_task), in this case we're finished.
3916 */
3917 if (cfs_rq_throttled(cfs_rq))
3918 return true;
3919
3920 throttle_cfs_rq(cfs_rq);
3921 return true;
3922 }
3923
3924 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3925 {
3926 struct cfs_bandwidth *cfs_b =
3927 container_of(timer, struct cfs_bandwidth, slack_timer);
3928
3929 do_sched_cfs_slack_timer(cfs_b);
3930
3931 return HRTIMER_NORESTART;
3932 }
3933
3934 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3935 {
3936 struct cfs_bandwidth *cfs_b =
3937 container_of(timer, struct cfs_bandwidth, period_timer);
3938 int overrun;
3939 int idle = 0;
3940
3941 raw_spin_lock(&cfs_b->lock);
3942 for (;;) {
3943 overrun = hrtimer_forward_now(timer, cfs_b->period);
3944 if (!overrun)
3945 break;
3946
3947 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3948 }
3949 if (idle)
3950 cfs_b->period_active = 0;
3951 raw_spin_unlock(&cfs_b->lock);
3952
3953 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3954 }
3955
3956 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3957 {
3958 raw_spin_lock_init(&cfs_b->lock);
3959 cfs_b->runtime = 0;
3960 cfs_b->quota = RUNTIME_INF;
3961 cfs_b->period = ns_to_ktime(default_cfs_period());
3962
3963 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3964 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
3965 cfs_b->period_timer.function = sched_cfs_period_timer;
3966 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3967 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3968 }
3969
3970 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3971 {
3972 cfs_rq->runtime_enabled = 0;
3973 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3974 }
3975
3976 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3977 {
3978 lockdep_assert_held(&cfs_b->lock);
3979
3980 if (!cfs_b->period_active) {
3981 cfs_b->period_active = 1;
3982 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3983 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3984 }
3985 }
3986
3987 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3988 {
3989 /* init_cfs_bandwidth() was not called */
3990 if (!cfs_b->throttled_cfs_rq.next)
3991 return;
3992
3993 hrtimer_cancel(&cfs_b->period_timer);
3994 hrtimer_cancel(&cfs_b->slack_timer);
3995 }
3996
3997 static void __maybe_unused update_runtime_enabled(struct rq *rq)
3998 {
3999 struct cfs_rq *cfs_rq;
4000
4001 for_each_leaf_cfs_rq(rq, cfs_rq) {
4002 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4003
4004 raw_spin_lock(&cfs_b->lock);
4005 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4006 raw_spin_unlock(&cfs_b->lock);
4007 }
4008 }
4009
4010 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4011 {
4012 struct cfs_rq *cfs_rq;
4013
4014 for_each_leaf_cfs_rq(rq, cfs_rq) {
4015 if (!cfs_rq->runtime_enabled)
4016 continue;
4017
4018 /*
4019 * clock_task is not advancing so we just need to make sure
4020 * there's some valid quota amount
4021 */
4022 cfs_rq->runtime_remaining = 1;
4023 /*
4024 * Offline rq is schedulable till cpu is completely disabled
4025 * in take_cpu_down(), so we prevent new cfs throttling here.
4026 */
4027 cfs_rq->runtime_enabled = 0;
4028
4029 if (cfs_rq_throttled(cfs_rq))
4030 unthrottle_cfs_rq(cfs_rq);
4031 }
4032 }
4033
4034 #else /* CONFIG_CFS_BANDWIDTH */
4035 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4036 {
4037 return rq_clock_task(rq_of(cfs_rq));
4038 }
4039
4040 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4041 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4042 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4043 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4044
4045 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4046 {
4047 return 0;
4048 }
4049
4050 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4051 {
4052 return 0;
4053 }
4054
4055 static inline int throttled_lb_pair(struct task_group *tg,
4056 int src_cpu, int dest_cpu)
4057 {
4058 return 0;
4059 }
4060
4061 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4062
4063 #ifdef CONFIG_FAIR_GROUP_SCHED
4064 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4065 #endif
4066
4067 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4068 {
4069 return NULL;
4070 }
4071 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4072 static inline void update_runtime_enabled(struct rq *rq) {}
4073 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4074
4075 #endif /* CONFIG_CFS_BANDWIDTH */
4076
4077 /**************************************************
4078 * CFS operations on tasks:
4079 */
4080
4081 #ifdef CONFIG_SCHED_HRTICK
4082 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4083 {
4084 struct sched_entity *se = &p->se;
4085 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4086
4087 WARN_ON(task_rq(p) != rq);
4088
4089 if (cfs_rq->nr_running > 1) {
4090 u64 slice = sched_slice(cfs_rq, se);
4091 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4092 s64 delta = slice - ran;
4093
4094 if (delta < 0) {
4095 if (rq->curr == p)
4096 resched_curr(rq);
4097 return;
4098 }
4099 hrtick_start(rq, delta);
4100 }
4101 }
4102
4103 /*
4104 * called from enqueue/dequeue and updates the hrtick when the
4105 * current task is from our class and nr_running is low enough
4106 * to matter.
4107 */
4108 static void hrtick_update(struct rq *rq)
4109 {
4110 struct task_struct *curr = rq->curr;
4111
4112 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4113 return;
4114
4115 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4116 hrtick_start_fair(rq, curr);
4117 }
4118 #else /* !CONFIG_SCHED_HRTICK */
4119 static inline void
4120 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4121 {
4122 }
4123
4124 static inline void hrtick_update(struct rq *rq)
4125 {
4126 }
4127 #endif
4128
4129 /*
4130 * The enqueue_task method is called before nr_running is
4131 * increased. Here we update the fair scheduling stats and
4132 * then put the task into the rbtree:
4133 */
4134 static void
4135 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4136 {
4137 struct cfs_rq *cfs_rq;
4138 struct sched_entity *se = &p->se;
4139
4140 for_each_sched_entity(se) {
4141 if (se->on_rq)
4142 break;
4143 cfs_rq = cfs_rq_of(se);
4144 enqueue_entity(cfs_rq, se, flags);
4145
4146 /*
4147 * end evaluation on encountering a throttled cfs_rq
4148 *
4149 * note: in the case of encountering a throttled cfs_rq we will
4150 * post the final h_nr_running increment below.
4151 */
4152 if (cfs_rq_throttled(cfs_rq))
4153 break;
4154 cfs_rq->h_nr_running++;
4155
4156 flags = ENQUEUE_WAKEUP;
4157 }
4158
4159 for_each_sched_entity(se) {
4160 cfs_rq = cfs_rq_of(se);
4161 cfs_rq->h_nr_running++;
4162
4163 if (cfs_rq_throttled(cfs_rq))
4164 break;
4165
4166 update_load_avg(se, 1);
4167 update_cfs_shares(cfs_rq);
4168 }
4169
4170 if (!se)
4171 add_nr_running(rq, 1);
4172
4173 hrtick_update(rq);
4174 }
4175
4176 static void set_next_buddy(struct sched_entity *se);
4177
4178 /*
4179 * The dequeue_task method is called before nr_running is
4180 * decreased. We remove the task from the rbtree and
4181 * update the fair scheduling stats:
4182 */
4183 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4184 {
4185 struct cfs_rq *cfs_rq;
4186 struct sched_entity *se = &p->se;
4187 int task_sleep = flags & DEQUEUE_SLEEP;
4188
4189 for_each_sched_entity(se) {
4190 cfs_rq = cfs_rq_of(se);
4191 dequeue_entity(cfs_rq, se, flags);
4192
4193 /*
4194 * end evaluation on encountering a throttled cfs_rq
4195 *
4196 * note: in the case of encountering a throttled cfs_rq we will
4197 * post the final h_nr_running decrement below.
4198 */
4199 if (cfs_rq_throttled(cfs_rq))
4200 break;
4201 cfs_rq->h_nr_running--;
4202
4203 /* Don't dequeue parent if it has other entities besides us */
4204 if (cfs_rq->load.weight) {
4205 /*
4206 * Bias pick_next to pick a task from this cfs_rq, as
4207 * p is sleeping when it is within its sched_slice.
4208 */
4209 if (task_sleep && parent_entity(se))
4210 set_next_buddy(parent_entity(se));
4211
4212 /* avoid re-evaluating load for this entity */
4213 se = parent_entity(se);
4214 break;
4215 }
4216 flags |= DEQUEUE_SLEEP;
4217 }
4218
4219 for_each_sched_entity(se) {
4220 cfs_rq = cfs_rq_of(se);
4221 cfs_rq->h_nr_running--;
4222
4223 if (cfs_rq_throttled(cfs_rq))
4224 break;
4225
4226 update_load_avg(se, 1);
4227 update_cfs_shares(cfs_rq);
4228 }
4229
4230 if (!se)
4231 sub_nr_running(rq, 1);
4232
4233 hrtick_update(rq);
4234 }
4235
4236 #ifdef CONFIG_SMP
4237
4238 /*
4239 * per rq 'load' arrray crap; XXX kill this.
4240 */
4241
4242 /*
4243 * The exact cpuload at various idx values, calculated at every tick would be
4244 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4245 *
4246 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4247 * on nth tick when cpu may be busy, then we have:
4248 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4249 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4250 *
4251 * decay_load_missed() below does efficient calculation of
4252 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4253 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4254 *
4255 * The calculation is approximated on a 128 point scale.
4256 * degrade_zero_ticks is the number of ticks after which load at any
4257 * particular idx is approximated to be zero.
4258 * degrade_factor is a precomputed table, a row for each load idx.
4259 * Each column corresponds to degradation factor for a power of two ticks,
4260 * based on 128 point scale.
4261 * Example:
4262 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4263 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4264 *
4265 * With this power of 2 load factors, we can degrade the load n times
4266 * by looking at 1 bits in n and doing as many mult/shift instead of
4267 * n mult/shifts needed by the exact degradation.
4268 */
4269 #define DEGRADE_SHIFT 7
4270 static const unsigned char
4271 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4272 static const unsigned char
4273 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4274 {0, 0, 0, 0, 0, 0, 0, 0},
4275 {64, 32, 8, 0, 0, 0, 0, 0},
4276 {96, 72, 40, 12, 1, 0, 0},
4277 {112, 98, 75, 43, 15, 1, 0},
4278 {120, 112, 98, 76, 45, 16, 2} };
4279
4280 /*
4281 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4282 * would be when CPU is idle and so we just decay the old load without
4283 * adding any new load.
4284 */
4285 static unsigned long
4286 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4287 {
4288 int j = 0;
4289
4290 if (!missed_updates)
4291 return load;
4292
4293 if (missed_updates >= degrade_zero_ticks[idx])
4294 return 0;
4295
4296 if (idx == 1)
4297 return load >> missed_updates;
4298
4299 while (missed_updates) {
4300 if (missed_updates % 2)
4301 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4302
4303 missed_updates >>= 1;
4304 j++;
4305 }
4306 return load;
4307 }
4308
4309 /*
4310 * Update rq->cpu_load[] statistics. This function is usually called every
4311 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4312 * every tick. We fix it up based on jiffies.
4313 */
4314 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4315 unsigned long pending_updates)
4316 {
4317 int i, scale;
4318
4319 this_rq->nr_load_updates++;
4320
4321 /* Update our load: */
4322 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4323 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4324 unsigned long old_load, new_load;
4325
4326 /* scale is effectively 1 << i now, and >> i divides by scale */
4327
4328 old_load = this_rq->cpu_load[i];
4329 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4330 new_load = this_load;
4331 /*
4332 * Round up the averaging division if load is increasing. This
4333 * prevents us from getting stuck on 9 if the load is 10, for
4334 * example.
4335 */
4336 if (new_load > old_load)
4337 new_load += scale - 1;
4338
4339 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4340 }
4341
4342 sched_avg_update(this_rq);
4343 }
4344
4345 /* Used instead of source_load when we know the type == 0 */
4346 static unsigned long weighted_cpuload(const int cpu)
4347 {
4348 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4349 }
4350
4351 #ifdef CONFIG_NO_HZ_COMMON
4352 /*
4353 * There is no sane way to deal with nohz on smp when using jiffies because the
4354 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4355 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4356 *
4357 * Therefore we cannot use the delta approach from the regular tick since that
4358 * would seriously skew the load calculation. However we'll make do for those
4359 * updates happening while idle (nohz_idle_balance) or coming out of idle
4360 * (tick_nohz_idle_exit).
4361 *
4362 * This means we might still be one tick off for nohz periods.
4363 */
4364
4365 /*
4366 * Called from nohz_idle_balance() to update the load ratings before doing the
4367 * idle balance.
4368 */
4369 static void update_idle_cpu_load(struct rq *this_rq)
4370 {
4371 unsigned long curr_jiffies = READ_ONCE(jiffies);
4372 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4373 unsigned long pending_updates;
4374
4375 /*
4376 * bail if there's load or we're actually up-to-date.
4377 */
4378 if (load || curr_jiffies == this_rq->last_load_update_tick)
4379 return;
4380
4381 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4382 this_rq->last_load_update_tick = curr_jiffies;
4383
4384 __update_cpu_load(this_rq, load, pending_updates);
4385 }
4386
4387 /*
4388 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4389 */
4390 void update_cpu_load_nohz(void)
4391 {
4392 struct rq *this_rq = this_rq();
4393 unsigned long curr_jiffies = READ_ONCE(jiffies);
4394 unsigned long pending_updates;
4395
4396 if (curr_jiffies == this_rq->last_load_update_tick)
4397 return;
4398
4399 raw_spin_lock(&this_rq->lock);
4400 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4401 if (pending_updates) {
4402 this_rq->last_load_update_tick = curr_jiffies;
4403 /*
4404 * We were idle, this means load 0, the current load might be
4405 * !0 due to remote wakeups and the sort.
4406 */
4407 __update_cpu_load(this_rq, 0, pending_updates);
4408 }
4409 raw_spin_unlock(&this_rq->lock);
4410 }
4411 #endif /* CONFIG_NO_HZ */
4412
4413 /*
4414 * Called from scheduler_tick()
4415 */
4416 void update_cpu_load_active(struct rq *this_rq)
4417 {
4418 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4419 /*
4420 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4421 */
4422 this_rq->last_load_update_tick = jiffies;
4423 __update_cpu_load(this_rq, load, 1);
4424 }
4425
4426 /*
4427 * Return a low guess at the load of a migration-source cpu weighted
4428 * according to the scheduling class and "nice" value.
4429 *
4430 * We want to under-estimate the load of migration sources, to
4431 * balance conservatively.
4432 */
4433 static unsigned long source_load(int cpu, int type)
4434 {
4435 struct rq *rq = cpu_rq(cpu);
4436 unsigned long total = weighted_cpuload(cpu);
4437
4438 if (type == 0 || !sched_feat(LB_BIAS))
4439 return total;
4440
4441 return min(rq->cpu_load[type-1], total);
4442 }
4443
4444 /*
4445 * Return a high guess at the load of a migration-target cpu weighted
4446 * according to the scheduling class and "nice" value.
4447 */
4448 static unsigned long target_load(int cpu, int type)
4449 {
4450 struct rq *rq = cpu_rq(cpu);
4451 unsigned long total = weighted_cpuload(cpu);
4452
4453 if (type == 0 || !sched_feat(LB_BIAS))
4454 return total;
4455
4456 return max(rq->cpu_load[type-1], total);
4457 }
4458
4459 static unsigned long capacity_of(int cpu)
4460 {
4461 return cpu_rq(cpu)->cpu_capacity;
4462 }
4463
4464 static unsigned long capacity_orig_of(int cpu)
4465 {
4466 return cpu_rq(cpu)->cpu_capacity_orig;
4467 }
4468
4469 static unsigned long cpu_avg_load_per_task(int cpu)
4470 {
4471 struct rq *rq = cpu_rq(cpu);
4472 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4473 unsigned long load_avg = weighted_cpuload(cpu);
4474
4475 if (nr_running)
4476 return load_avg / nr_running;
4477
4478 return 0;
4479 }
4480
4481 static void record_wakee(struct task_struct *p)
4482 {
4483 /*
4484 * Rough decay (wiping) for cost saving, don't worry
4485 * about the boundary, really active task won't care
4486 * about the loss.
4487 */
4488 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4489 current->wakee_flips >>= 1;
4490 current->wakee_flip_decay_ts = jiffies;
4491 }
4492
4493 if (current->last_wakee != p) {
4494 current->last_wakee = p;
4495 current->wakee_flips++;
4496 }
4497 }
4498
4499 static void task_waking_fair(struct task_struct *p)
4500 {
4501 struct sched_entity *se = &p->se;
4502 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4503 u64 min_vruntime;
4504
4505 #ifndef CONFIG_64BIT
4506 u64 min_vruntime_copy;
4507
4508 do {
4509 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4510 smp_rmb();
4511 min_vruntime = cfs_rq->min_vruntime;
4512 } while (min_vruntime != min_vruntime_copy);
4513 #else
4514 min_vruntime = cfs_rq->min_vruntime;
4515 #endif
4516
4517 se->vruntime -= min_vruntime;
4518 record_wakee(p);
4519 }
4520
4521 #ifdef CONFIG_FAIR_GROUP_SCHED
4522 /*
4523 * effective_load() calculates the load change as seen from the root_task_group
4524 *
4525 * Adding load to a group doesn't make a group heavier, but can cause movement
4526 * of group shares between cpus. Assuming the shares were perfectly aligned one
4527 * can calculate the shift in shares.
4528 *
4529 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4530 * on this @cpu and results in a total addition (subtraction) of @wg to the
4531 * total group weight.
4532 *
4533 * Given a runqueue weight distribution (rw_i) we can compute a shares
4534 * distribution (s_i) using:
4535 *
4536 * s_i = rw_i / \Sum rw_j (1)
4537 *
4538 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4539 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4540 * shares distribution (s_i):
4541 *
4542 * rw_i = { 2, 4, 1, 0 }
4543 * s_i = { 2/7, 4/7, 1/7, 0 }
4544 *
4545 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4546 * task used to run on and the CPU the waker is running on), we need to
4547 * compute the effect of waking a task on either CPU and, in case of a sync
4548 * wakeup, compute the effect of the current task going to sleep.
4549 *
4550 * So for a change of @wl to the local @cpu with an overall group weight change
4551 * of @wl we can compute the new shares distribution (s'_i) using:
4552 *
4553 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4554 *
4555 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4556 * differences in waking a task to CPU 0. The additional task changes the
4557 * weight and shares distributions like:
4558 *
4559 * rw'_i = { 3, 4, 1, 0 }
4560 * s'_i = { 3/8, 4/8, 1/8, 0 }
4561 *
4562 * We can then compute the difference in effective weight by using:
4563 *
4564 * dw_i = S * (s'_i - s_i) (3)
4565 *
4566 * Where 'S' is the group weight as seen by its parent.
4567 *
4568 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4569 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4570 * 4/7) times the weight of the group.
4571 */
4572 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4573 {
4574 struct sched_entity *se = tg->se[cpu];
4575
4576 if (!tg->parent) /* the trivial, non-cgroup case */
4577 return wl;
4578
4579 for_each_sched_entity(se) {
4580 long w, W;
4581
4582 tg = se->my_q->tg;
4583
4584 /*
4585 * W = @wg + \Sum rw_j
4586 */
4587 W = wg + calc_tg_weight(tg, se->my_q);
4588
4589 /*
4590 * w = rw_i + @wl
4591 */
4592 w = cfs_rq_load_avg(se->my_q) + wl;
4593
4594 /*
4595 * wl = S * s'_i; see (2)
4596 */
4597 if (W > 0 && w < W)
4598 wl = (w * (long)tg->shares) / W;
4599 else
4600 wl = tg->shares;
4601
4602 /*
4603 * Per the above, wl is the new se->load.weight value; since
4604 * those are clipped to [MIN_SHARES, ...) do so now. See
4605 * calc_cfs_shares().
4606 */
4607 if (wl < MIN_SHARES)
4608 wl = MIN_SHARES;
4609
4610 /*
4611 * wl = dw_i = S * (s'_i - s_i); see (3)
4612 */
4613 wl -= se->avg.load_avg;
4614
4615 /*
4616 * Recursively apply this logic to all parent groups to compute
4617 * the final effective load change on the root group. Since
4618 * only the @tg group gets extra weight, all parent groups can
4619 * only redistribute existing shares. @wl is the shift in shares
4620 * resulting from this level per the above.
4621 */
4622 wg = 0;
4623 }
4624
4625 return wl;
4626 }
4627 #else
4628
4629 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4630 {
4631 return wl;
4632 }
4633
4634 #endif
4635
4636 /*
4637 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4638 * A waker of many should wake a different task than the one last awakened
4639 * at a frequency roughly N times higher than one of its wakees. In order
4640 * to determine whether we should let the load spread vs consolodating to
4641 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4642 * partner, and a factor of lls_size higher frequency in the other. With
4643 * both conditions met, we can be relatively sure that the relationship is
4644 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4645 * being client/server, worker/dispatcher, interrupt source or whatever is
4646 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4647 */
4648 static int wake_wide(struct task_struct *p)
4649 {
4650 unsigned int master = current->wakee_flips;
4651 unsigned int slave = p->wakee_flips;
4652 int factor = this_cpu_read(sd_llc_size);
4653
4654 if (master < slave)
4655 swap(master, slave);
4656 if (slave < factor || master < slave * factor)
4657 return 0;
4658 return 1;
4659 }
4660
4661 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4662 {
4663 s64 this_load, load;
4664 s64 this_eff_load, prev_eff_load;
4665 int idx, this_cpu, prev_cpu;
4666 struct task_group *tg;
4667 unsigned long weight;
4668 int balanced;
4669
4670 idx = sd->wake_idx;
4671 this_cpu = smp_processor_id();
4672 prev_cpu = task_cpu(p);
4673 load = source_load(prev_cpu, idx);
4674 this_load = target_load(this_cpu, idx);
4675
4676 /*
4677 * If sync wakeup then subtract the (maximum possible)
4678 * effect of the currently running task from the load
4679 * of the current CPU:
4680 */
4681 if (sync) {
4682 tg = task_group(current);
4683 weight = current->se.avg.load_avg;
4684
4685 this_load += effective_load(tg, this_cpu, -weight, -weight);
4686 load += effective_load(tg, prev_cpu, 0, -weight);
4687 }
4688
4689 tg = task_group(p);
4690 weight = p->se.avg.load_avg;
4691
4692 /*
4693 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4694 * due to the sync cause above having dropped this_load to 0, we'll
4695 * always have an imbalance, but there's really nothing you can do
4696 * about that, so that's good too.
4697 *
4698 * Otherwise check if either cpus are near enough in load to allow this
4699 * task to be woken on this_cpu.
4700 */
4701 this_eff_load = 100;
4702 this_eff_load *= capacity_of(prev_cpu);
4703
4704 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4705 prev_eff_load *= capacity_of(this_cpu);
4706
4707 if (this_load > 0) {
4708 this_eff_load *= this_load +
4709 effective_load(tg, this_cpu, weight, weight);
4710
4711 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4712 }
4713
4714 balanced = this_eff_load <= prev_eff_load;
4715
4716 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4717
4718 if (!balanced)
4719 return 0;
4720
4721 schedstat_inc(sd, ttwu_move_affine);
4722 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4723
4724 return 1;
4725 }
4726
4727 /*
4728 * find_idlest_group finds and returns the least busy CPU group within the
4729 * domain.
4730 */
4731 static struct sched_group *
4732 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4733 int this_cpu, int sd_flag)
4734 {
4735 struct sched_group *idlest = NULL, *group = sd->groups;
4736 unsigned long min_load = ULONG_MAX, this_load = 0;
4737 int load_idx = sd->forkexec_idx;
4738 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4739
4740 if (sd_flag & SD_BALANCE_WAKE)
4741 load_idx = sd->wake_idx;
4742
4743 do {
4744 unsigned long load, avg_load;
4745 int local_group;
4746 int i;
4747
4748 /* Skip over this group if it has no CPUs allowed */
4749 if (!cpumask_intersects(sched_group_cpus(group),
4750 tsk_cpus_allowed(p)))
4751 continue;
4752
4753 local_group = cpumask_test_cpu(this_cpu,
4754 sched_group_cpus(group));
4755
4756 /* Tally up the load of all CPUs in the group */
4757 avg_load = 0;
4758
4759 for_each_cpu(i, sched_group_cpus(group)) {
4760 /* Bias balancing toward cpus of our domain */
4761 if (local_group)
4762 load = source_load(i, load_idx);
4763 else
4764 load = target_load(i, load_idx);
4765
4766 avg_load += load;
4767 }
4768
4769 /* Adjust by relative CPU capacity of the group */
4770 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4771
4772 if (local_group) {
4773 this_load = avg_load;
4774 } else if (avg_load < min_load) {
4775 min_load = avg_load;
4776 idlest = group;
4777 }
4778 } while (group = group->next, group != sd->groups);
4779
4780 if (!idlest || 100*this_load < imbalance*min_load)
4781 return NULL;
4782 return idlest;
4783 }
4784
4785 /*
4786 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4787 */
4788 static int
4789 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4790 {
4791 unsigned long load, min_load = ULONG_MAX;
4792 unsigned int min_exit_latency = UINT_MAX;
4793 u64 latest_idle_timestamp = 0;
4794 int least_loaded_cpu = this_cpu;
4795 int shallowest_idle_cpu = -1;
4796 int i;
4797
4798 /* Traverse only the allowed CPUs */
4799 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4800 if (idle_cpu(i)) {
4801 struct rq *rq = cpu_rq(i);
4802 struct cpuidle_state *idle = idle_get_state(rq);
4803 if (idle && idle->exit_latency < min_exit_latency) {
4804 /*
4805 * We give priority to a CPU whose idle state
4806 * has the smallest exit latency irrespective
4807 * of any idle timestamp.
4808 */
4809 min_exit_latency = idle->exit_latency;
4810 latest_idle_timestamp = rq->idle_stamp;
4811 shallowest_idle_cpu = i;
4812 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4813 rq->idle_stamp > latest_idle_timestamp) {
4814 /*
4815 * If equal or no active idle state, then
4816 * the most recently idled CPU might have
4817 * a warmer cache.
4818 */
4819 latest_idle_timestamp = rq->idle_stamp;
4820 shallowest_idle_cpu = i;
4821 }
4822 } else if (shallowest_idle_cpu == -1) {
4823 load = weighted_cpuload(i);
4824 if (load < min_load || (load == min_load && i == this_cpu)) {
4825 min_load = load;
4826 least_loaded_cpu = i;
4827 }
4828 }
4829 }
4830
4831 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4832 }
4833
4834 /*
4835 * Try and locate an idle CPU in the sched_domain.
4836 */
4837 static int select_idle_sibling(struct task_struct *p, int target)
4838 {
4839 struct sched_domain *sd;
4840 struct sched_group *sg;
4841 int i = task_cpu(p);
4842
4843 if (idle_cpu(target))
4844 return target;
4845
4846 /*
4847 * If the prevous cpu is cache affine and idle, don't be stupid.
4848 */
4849 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4850 return i;
4851
4852 /*
4853 * Otherwise, iterate the domains and find an elegible idle cpu.
4854 */
4855 sd = rcu_dereference(per_cpu(sd_llc, target));
4856 for_each_lower_domain(sd) {
4857 sg = sd->groups;
4858 do {
4859 if (!cpumask_intersects(sched_group_cpus(sg),
4860 tsk_cpus_allowed(p)))
4861 goto next;
4862
4863 for_each_cpu(i, sched_group_cpus(sg)) {
4864 if (i == target || !idle_cpu(i))
4865 goto next;
4866 }
4867
4868 target = cpumask_first_and(sched_group_cpus(sg),
4869 tsk_cpus_allowed(p));
4870 goto done;
4871 next:
4872 sg = sg->next;
4873 } while (sg != sd->groups);
4874 }
4875 done:
4876 return target;
4877 }
4878
4879 /*
4880 * cpu_util returns the amount of capacity of a CPU that is used by CFS
4881 * tasks. The unit of the return value must be the one of capacity so we can
4882 * compare the utilization with the capacity of the CPU that is available for
4883 * CFS task (ie cpu_capacity).
4884 *
4885 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
4886 * recent utilization of currently non-runnable tasks on a CPU. It represents
4887 * the amount of utilization of a CPU in the range [0..capacity_orig] where
4888 * capacity_orig is the cpu_capacity available at the highest frequency
4889 * (arch_scale_freq_capacity()).
4890 * The utilization of a CPU converges towards a sum equal to or less than the
4891 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
4892 * the running time on this CPU scaled by capacity_curr.
4893 *
4894 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
4895 * higher than capacity_orig because of unfortunate rounding in
4896 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
4897 * the average stabilizes with the new running time. We need to check that the
4898 * utilization stays within the range of [0..capacity_orig] and cap it if
4899 * necessary. Without utilization capping, a group could be seen as overloaded
4900 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
4901 * available capacity. We allow utilization to overshoot capacity_curr (but not
4902 * capacity_orig) as it useful for predicting the capacity required after task
4903 * migrations (scheduler-driven DVFS).
4904 */
4905 static int cpu_util(int cpu)
4906 {
4907 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
4908 unsigned long capacity = capacity_orig_of(cpu);
4909
4910 return (util >= capacity) ? capacity : util;
4911 }
4912
4913 /*
4914 * select_task_rq_fair: Select target runqueue for the waking task in domains
4915 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4916 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4917 *
4918 * Balances load by selecting the idlest cpu in the idlest group, or under
4919 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4920 *
4921 * Returns the target cpu number.
4922 *
4923 * preempt must be disabled.
4924 */
4925 static int
4926 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4927 {
4928 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4929 int cpu = smp_processor_id();
4930 int new_cpu = prev_cpu;
4931 int want_affine = 0;
4932 int sync = wake_flags & WF_SYNC;
4933
4934 if (sd_flag & SD_BALANCE_WAKE)
4935 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4936
4937 rcu_read_lock();
4938 for_each_domain(cpu, tmp) {
4939 if (!(tmp->flags & SD_LOAD_BALANCE))
4940 break;
4941
4942 /*
4943 * If both cpu and prev_cpu are part of this domain,
4944 * cpu is a valid SD_WAKE_AFFINE target.
4945 */
4946 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4947 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4948 affine_sd = tmp;
4949 break;
4950 }
4951
4952 if (tmp->flags & sd_flag)
4953 sd = tmp;
4954 else if (!want_affine)
4955 break;
4956 }
4957
4958 if (affine_sd) {
4959 sd = NULL; /* Prefer wake_affine over balance flags */
4960 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4961 new_cpu = cpu;
4962 }
4963
4964 if (!sd) {
4965 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4966 new_cpu = select_idle_sibling(p, new_cpu);
4967
4968 } else while (sd) {
4969 struct sched_group *group;
4970 int weight;
4971
4972 if (!(sd->flags & sd_flag)) {
4973 sd = sd->child;
4974 continue;
4975 }
4976
4977 group = find_idlest_group(sd, p, cpu, sd_flag);
4978 if (!group) {
4979 sd = sd->child;
4980 continue;
4981 }
4982
4983 new_cpu = find_idlest_cpu(group, p, cpu);
4984 if (new_cpu == -1 || new_cpu == cpu) {
4985 /* Now try balancing at a lower domain level of cpu */
4986 sd = sd->child;
4987 continue;
4988 }
4989
4990 /* Now try balancing at a lower domain level of new_cpu */
4991 cpu = new_cpu;
4992 weight = sd->span_weight;
4993 sd = NULL;
4994 for_each_domain(cpu, tmp) {
4995 if (weight <= tmp->span_weight)
4996 break;
4997 if (tmp->flags & sd_flag)
4998 sd = tmp;
4999 }
5000 /* while loop will break here if sd == NULL */
5001 }
5002 rcu_read_unlock();
5003
5004 return new_cpu;
5005 }
5006
5007 /*
5008 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5009 * cfs_rq_of(p) references at time of call are still valid and identify the
5010 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5011 * other assumptions, including the state of rq->lock, should be made.
5012 */
5013 static void migrate_task_rq_fair(struct task_struct *p)
5014 {
5015 /*
5016 * We are supposed to update the task to "current" time, then its up to date
5017 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5018 * what current time is, so simply throw away the out-of-date time. This
5019 * will result in the wakee task is less decayed, but giving the wakee more
5020 * load sounds not bad.
5021 */
5022 remove_entity_load_avg(&p->se);
5023
5024 /* Tell new CPU we are migrated */
5025 p->se.avg.last_update_time = 0;
5026
5027 /* We have migrated, no longer consider this task hot */
5028 p->se.exec_start = 0;
5029 }
5030
5031 static void task_dead_fair(struct task_struct *p)
5032 {
5033 remove_entity_load_avg(&p->se);
5034 }
5035 #endif /* CONFIG_SMP */
5036
5037 static unsigned long
5038 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5039 {
5040 unsigned long gran = sysctl_sched_wakeup_granularity;
5041
5042 /*
5043 * Since its curr running now, convert the gran from real-time
5044 * to virtual-time in his units.
5045 *
5046 * By using 'se' instead of 'curr' we penalize light tasks, so
5047 * they get preempted easier. That is, if 'se' < 'curr' then
5048 * the resulting gran will be larger, therefore penalizing the
5049 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5050 * be smaller, again penalizing the lighter task.
5051 *
5052 * This is especially important for buddies when the leftmost
5053 * task is higher priority than the buddy.
5054 */
5055 return calc_delta_fair(gran, se);
5056 }
5057
5058 /*
5059 * Should 'se' preempt 'curr'.
5060 *
5061 * |s1
5062 * |s2
5063 * |s3
5064 * g
5065 * |<--->|c
5066 *
5067 * w(c, s1) = -1
5068 * w(c, s2) = 0
5069 * w(c, s3) = 1
5070 *
5071 */
5072 static int
5073 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5074 {
5075 s64 gran, vdiff = curr->vruntime - se->vruntime;
5076
5077 if (vdiff <= 0)
5078 return -1;
5079
5080 gran = wakeup_gran(curr, se);
5081 if (vdiff > gran)
5082 return 1;
5083
5084 return 0;
5085 }
5086
5087 static void set_last_buddy(struct sched_entity *se)
5088 {
5089 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5090 return;
5091
5092 for_each_sched_entity(se)
5093 cfs_rq_of(se)->last = se;
5094 }
5095
5096 static void set_next_buddy(struct sched_entity *se)
5097 {
5098 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5099 return;
5100
5101 for_each_sched_entity(se)
5102 cfs_rq_of(se)->next = se;
5103 }
5104
5105 static void set_skip_buddy(struct sched_entity *se)
5106 {
5107 for_each_sched_entity(se)
5108 cfs_rq_of(se)->skip = se;
5109 }
5110
5111 /*
5112 * Preempt the current task with a newly woken task if needed:
5113 */
5114 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5115 {
5116 struct task_struct *curr = rq->curr;
5117 struct sched_entity *se = &curr->se, *pse = &p->se;
5118 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5119 int scale = cfs_rq->nr_running >= sched_nr_latency;
5120 int next_buddy_marked = 0;
5121
5122 if (unlikely(se == pse))
5123 return;
5124
5125 /*
5126 * This is possible from callers such as attach_tasks(), in which we
5127 * unconditionally check_prempt_curr() after an enqueue (which may have
5128 * lead to a throttle). This both saves work and prevents false
5129 * next-buddy nomination below.
5130 */
5131 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5132 return;
5133
5134 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5135 set_next_buddy(pse);
5136 next_buddy_marked = 1;
5137 }
5138
5139 /*
5140 * We can come here with TIF_NEED_RESCHED already set from new task
5141 * wake up path.
5142 *
5143 * Note: this also catches the edge-case of curr being in a throttled
5144 * group (e.g. via set_curr_task), since update_curr() (in the
5145 * enqueue of curr) will have resulted in resched being set. This
5146 * prevents us from potentially nominating it as a false LAST_BUDDY
5147 * below.
5148 */
5149 if (test_tsk_need_resched(curr))
5150 return;
5151
5152 /* Idle tasks are by definition preempted by non-idle tasks. */
5153 if (unlikely(curr->policy == SCHED_IDLE) &&
5154 likely(p->policy != SCHED_IDLE))
5155 goto preempt;
5156
5157 /*
5158 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5159 * is driven by the tick):
5160 */
5161 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5162 return;
5163
5164 find_matching_se(&se, &pse);
5165 update_curr(cfs_rq_of(se));
5166 BUG_ON(!pse);
5167 if (wakeup_preempt_entity(se, pse) == 1) {
5168 /*
5169 * Bias pick_next to pick the sched entity that is
5170 * triggering this preemption.
5171 */
5172 if (!next_buddy_marked)
5173 set_next_buddy(pse);
5174 goto preempt;
5175 }
5176
5177 return;
5178
5179 preempt:
5180 resched_curr(rq);
5181 /*
5182 * Only set the backward buddy when the current task is still
5183 * on the rq. This can happen when a wakeup gets interleaved
5184 * with schedule on the ->pre_schedule() or idle_balance()
5185 * point, either of which can * drop the rq lock.
5186 *
5187 * Also, during early boot the idle thread is in the fair class,
5188 * for obvious reasons its a bad idea to schedule back to it.
5189 */
5190 if (unlikely(!se->on_rq || curr == rq->idle))
5191 return;
5192
5193 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5194 set_last_buddy(se);
5195 }
5196
5197 static struct task_struct *
5198 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5199 {
5200 struct cfs_rq *cfs_rq = &rq->cfs;
5201 struct sched_entity *se;
5202 struct task_struct *p;
5203 int new_tasks;
5204
5205 again:
5206 #ifdef CONFIG_FAIR_GROUP_SCHED
5207 if (!cfs_rq->nr_running)
5208 goto idle;
5209
5210 if (prev->sched_class != &fair_sched_class)
5211 goto simple;
5212
5213 /*
5214 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5215 * likely that a next task is from the same cgroup as the current.
5216 *
5217 * Therefore attempt to avoid putting and setting the entire cgroup
5218 * hierarchy, only change the part that actually changes.
5219 */
5220
5221 do {
5222 struct sched_entity *curr = cfs_rq->curr;
5223
5224 /*
5225 * Since we got here without doing put_prev_entity() we also
5226 * have to consider cfs_rq->curr. If it is still a runnable
5227 * entity, update_curr() will update its vruntime, otherwise
5228 * forget we've ever seen it.
5229 */
5230 if (curr) {
5231 if (curr->on_rq)
5232 update_curr(cfs_rq);
5233 else
5234 curr = NULL;
5235
5236 /*
5237 * This call to check_cfs_rq_runtime() will do the
5238 * throttle and dequeue its entity in the parent(s).
5239 * Therefore the 'simple' nr_running test will indeed
5240 * be correct.
5241 */
5242 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5243 goto simple;
5244 }
5245
5246 se = pick_next_entity(cfs_rq, curr);
5247 cfs_rq = group_cfs_rq(se);
5248 } while (cfs_rq);
5249
5250 p = task_of(se);
5251
5252 /*
5253 * Since we haven't yet done put_prev_entity and if the selected task
5254 * is a different task than we started out with, try and touch the
5255 * least amount of cfs_rqs.
5256 */
5257 if (prev != p) {
5258 struct sched_entity *pse = &prev->se;
5259
5260 while (!(cfs_rq = is_same_group(se, pse))) {
5261 int se_depth = se->depth;
5262 int pse_depth = pse->depth;
5263
5264 if (se_depth <= pse_depth) {
5265 put_prev_entity(cfs_rq_of(pse), pse);
5266 pse = parent_entity(pse);
5267 }
5268 if (se_depth >= pse_depth) {
5269 set_next_entity(cfs_rq_of(se), se);
5270 se = parent_entity(se);
5271 }
5272 }
5273
5274 put_prev_entity(cfs_rq, pse);
5275 set_next_entity(cfs_rq, se);
5276 }
5277
5278 if (hrtick_enabled(rq))
5279 hrtick_start_fair(rq, p);
5280
5281 return p;
5282 simple:
5283 cfs_rq = &rq->cfs;
5284 #endif
5285
5286 if (!cfs_rq->nr_running)
5287 goto idle;
5288
5289 put_prev_task(rq, prev);
5290
5291 do {
5292 se = pick_next_entity(cfs_rq, NULL);
5293 set_next_entity(cfs_rq, se);
5294 cfs_rq = group_cfs_rq(se);
5295 } while (cfs_rq);
5296
5297 p = task_of(se);
5298
5299 if (hrtick_enabled(rq))
5300 hrtick_start_fair(rq, p);
5301
5302 return p;
5303
5304 idle:
5305 /*
5306 * This is OK, because current is on_cpu, which avoids it being picked
5307 * for load-balance and preemption/IRQs are still disabled avoiding
5308 * further scheduler activity on it and we're being very careful to
5309 * re-start the picking loop.
5310 */
5311 lockdep_unpin_lock(&rq->lock);
5312 new_tasks = idle_balance(rq);
5313 lockdep_pin_lock(&rq->lock);
5314 /*
5315 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5316 * possible for any higher priority task to appear. In that case we
5317 * must re-start the pick_next_entity() loop.
5318 */
5319 if (new_tasks < 0)
5320 return RETRY_TASK;
5321
5322 if (new_tasks > 0)
5323 goto again;
5324
5325 return NULL;
5326 }
5327
5328 /*
5329 * Account for a descheduled task:
5330 */
5331 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5332 {
5333 struct sched_entity *se = &prev->se;
5334 struct cfs_rq *cfs_rq;
5335
5336 for_each_sched_entity(se) {
5337 cfs_rq = cfs_rq_of(se);
5338 put_prev_entity(cfs_rq, se);
5339 }
5340 }
5341
5342 /*
5343 * sched_yield() is very simple
5344 *
5345 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5346 */
5347 static void yield_task_fair(struct rq *rq)
5348 {
5349 struct task_struct *curr = rq->curr;
5350 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5351 struct sched_entity *se = &curr->se;
5352
5353 /*
5354 * Are we the only task in the tree?
5355 */
5356 if (unlikely(rq->nr_running == 1))
5357 return;
5358
5359 clear_buddies(cfs_rq, se);
5360
5361 if (curr->policy != SCHED_BATCH) {
5362 update_rq_clock(rq);
5363 /*
5364 * Update run-time statistics of the 'current'.
5365 */
5366 update_curr(cfs_rq);
5367 /*
5368 * Tell update_rq_clock() that we've just updated,
5369 * so we don't do microscopic update in schedule()
5370 * and double the fastpath cost.
5371 */
5372 rq_clock_skip_update(rq, true);
5373 }
5374
5375 set_skip_buddy(se);
5376 }
5377
5378 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5379 {
5380 struct sched_entity *se = &p->se;
5381
5382 /* throttled hierarchies are not runnable */
5383 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5384 return false;
5385
5386 /* Tell the scheduler that we'd really like pse to run next. */
5387 set_next_buddy(se);
5388
5389 yield_task_fair(rq);
5390
5391 return true;
5392 }
5393
5394 #ifdef CONFIG_SMP
5395 /**************************************************
5396 * Fair scheduling class load-balancing methods.
5397 *
5398 * BASICS
5399 *
5400 * The purpose of load-balancing is to achieve the same basic fairness the
5401 * per-cpu scheduler provides, namely provide a proportional amount of compute
5402 * time to each task. This is expressed in the following equation:
5403 *
5404 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5405 *
5406 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5407 * W_i,0 is defined as:
5408 *
5409 * W_i,0 = \Sum_j w_i,j (2)
5410 *
5411 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5412 * is derived from the nice value as per prio_to_weight[].
5413 *
5414 * The weight average is an exponential decay average of the instantaneous
5415 * weight:
5416 *
5417 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5418 *
5419 * C_i is the compute capacity of cpu i, typically it is the
5420 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5421 * can also include other factors [XXX].
5422 *
5423 * To achieve this balance we define a measure of imbalance which follows
5424 * directly from (1):
5425 *
5426 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5427 *
5428 * We them move tasks around to minimize the imbalance. In the continuous
5429 * function space it is obvious this converges, in the discrete case we get
5430 * a few fun cases generally called infeasible weight scenarios.
5431 *
5432 * [XXX expand on:
5433 * - infeasible weights;
5434 * - local vs global optima in the discrete case. ]
5435 *
5436 *
5437 * SCHED DOMAINS
5438 *
5439 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5440 * for all i,j solution, we create a tree of cpus that follows the hardware
5441 * topology where each level pairs two lower groups (or better). This results
5442 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5443 * tree to only the first of the previous level and we decrease the frequency
5444 * of load-balance at each level inv. proportional to the number of cpus in
5445 * the groups.
5446 *
5447 * This yields:
5448 *
5449 * log_2 n 1 n
5450 * \Sum { --- * --- * 2^i } = O(n) (5)
5451 * i = 0 2^i 2^i
5452 * `- size of each group
5453 * | | `- number of cpus doing load-balance
5454 * | `- freq
5455 * `- sum over all levels
5456 *
5457 * Coupled with a limit on how many tasks we can migrate every balance pass,
5458 * this makes (5) the runtime complexity of the balancer.
5459 *
5460 * An important property here is that each CPU is still (indirectly) connected
5461 * to every other cpu in at most O(log n) steps:
5462 *
5463 * The adjacency matrix of the resulting graph is given by:
5464 *
5465 * log_2 n
5466 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5467 * k = 0
5468 *
5469 * And you'll find that:
5470 *
5471 * A^(log_2 n)_i,j != 0 for all i,j (7)
5472 *
5473 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5474 * The task movement gives a factor of O(m), giving a convergence complexity
5475 * of:
5476 *
5477 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5478 *
5479 *
5480 * WORK CONSERVING
5481 *
5482 * In order to avoid CPUs going idle while there's still work to do, new idle
5483 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5484 * tree itself instead of relying on other CPUs to bring it work.
5485 *
5486 * This adds some complexity to both (5) and (8) but it reduces the total idle
5487 * time.
5488 *
5489 * [XXX more?]
5490 *
5491 *
5492 * CGROUPS
5493 *
5494 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5495 *
5496 * s_k,i
5497 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5498 * S_k
5499 *
5500 * Where
5501 *
5502 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5503 *
5504 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5505 *
5506 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5507 * property.
5508 *
5509 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5510 * rewrite all of this once again.]
5511 */
5512
5513 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5514
5515 enum fbq_type { regular, remote, all };
5516
5517 #define LBF_ALL_PINNED 0x01
5518 #define LBF_NEED_BREAK 0x02
5519 #define LBF_DST_PINNED 0x04
5520 #define LBF_SOME_PINNED 0x08
5521
5522 struct lb_env {
5523 struct sched_domain *sd;
5524
5525 struct rq *src_rq;
5526 int src_cpu;
5527
5528 int dst_cpu;
5529 struct rq *dst_rq;
5530
5531 struct cpumask *dst_grpmask;
5532 int new_dst_cpu;
5533 enum cpu_idle_type idle;
5534 long imbalance;
5535 /* The set of CPUs under consideration for load-balancing */
5536 struct cpumask *cpus;
5537
5538 unsigned int flags;
5539
5540 unsigned int loop;
5541 unsigned int loop_break;
5542 unsigned int loop_max;
5543
5544 enum fbq_type fbq_type;
5545 struct list_head tasks;
5546 };
5547
5548 /*
5549 * Is this task likely cache-hot:
5550 */
5551 static int task_hot(struct task_struct *p, struct lb_env *env)
5552 {
5553 s64 delta;
5554
5555 lockdep_assert_held(&env->src_rq->lock);
5556
5557 if (p->sched_class != &fair_sched_class)
5558 return 0;
5559
5560 if (unlikely(p->policy == SCHED_IDLE))
5561 return 0;
5562
5563 /*
5564 * Buddy candidates are cache hot:
5565 */
5566 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5567 (&p->se == cfs_rq_of(&p->se)->next ||
5568 &p->se == cfs_rq_of(&p->se)->last))
5569 return 1;
5570
5571 if (sysctl_sched_migration_cost == -1)
5572 return 1;
5573 if (sysctl_sched_migration_cost == 0)
5574 return 0;
5575
5576 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5577
5578 return delta < (s64)sysctl_sched_migration_cost;
5579 }
5580
5581 #ifdef CONFIG_NUMA_BALANCING
5582 /*
5583 * Returns 1, if task migration degrades locality
5584 * Returns 0, if task migration improves locality i.e migration preferred.
5585 * Returns -1, if task migration is not affected by locality.
5586 */
5587 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5588 {
5589 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5590 unsigned long src_faults, dst_faults;
5591 int src_nid, dst_nid;
5592
5593 if (!static_branch_likely(&sched_numa_balancing))
5594 return -1;
5595
5596 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5597 return -1;
5598
5599 src_nid = cpu_to_node(env->src_cpu);
5600 dst_nid = cpu_to_node(env->dst_cpu);
5601
5602 if (src_nid == dst_nid)
5603 return -1;
5604
5605 /* Migrating away from the preferred node is always bad. */
5606 if (src_nid == p->numa_preferred_nid) {
5607 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5608 return 1;
5609 else
5610 return -1;
5611 }
5612
5613 /* Encourage migration to the preferred node. */
5614 if (dst_nid == p->numa_preferred_nid)
5615 return 0;
5616
5617 if (numa_group) {
5618 src_faults = group_faults(p, src_nid);
5619 dst_faults = group_faults(p, dst_nid);
5620 } else {
5621 src_faults = task_faults(p, src_nid);
5622 dst_faults = task_faults(p, dst_nid);
5623 }
5624
5625 return dst_faults < src_faults;
5626 }
5627
5628 #else
5629 static inline int migrate_degrades_locality(struct task_struct *p,
5630 struct lb_env *env)
5631 {
5632 return -1;
5633 }
5634 #endif
5635
5636 /*
5637 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5638 */
5639 static
5640 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5641 {
5642 int tsk_cache_hot;
5643
5644 lockdep_assert_held(&env->src_rq->lock);
5645
5646 /*
5647 * We do not migrate tasks that are:
5648 * 1) throttled_lb_pair, or
5649 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5650 * 3) running (obviously), or
5651 * 4) are cache-hot on their current CPU.
5652 */
5653 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5654 return 0;
5655
5656 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5657 int cpu;
5658
5659 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5660
5661 env->flags |= LBF_SOME_PINNED;
5662
5663 /*
5664 * Remember if this task can be migrated to any other cpu in
5665 * our sched_group. We may want to revisit it if we couldn't
5666 * meet load balance goals by pulling other tasks on src_cpu.
5667 *
5668 * Also avoid computing new_dst_cpu if we have already computed
5669 * one in current iteration.
5670 */
5671 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5672 return 0;
5673
5674 /* Prevent to re-select dst_cpu via env's cpus */
5675 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5676 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5677 env->flags |= LBF_DST_PINNED;
5678 env->new_dst_cpu = cpu;
5679 break;
5680 }
5681 }
5682
5683 return 0;
5684 }
5685
5686 /* Record that we found atleast one task that could run on dst_cpu */
5687 env->flags &= ~LBF_ALL_PINNED;
5688
5689 if (task_running(env->src_rq, p)) {
5690 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5691 return 0;
5692 }
5693
5694 /*
5695 * Aggressive migration if:
5696 * 1) destination numa is preferred
5697 * 2) task is cache cold, or
5698 * 3) too many balance attempts have failed.
5699 */
5700 tsk_cache_hot = migrate_degrades_locality(p, env);
5701 if (tsk_cache_hot == -1)
5702 tsk_cache_hot = task_hot(p, env);
5703
5704 if (tsk_cache_hot <= 0 ||
5705 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5706 if (tsk_cache_hot == 1) {
5707 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5708 schedstat_inc(p, se.statistics.nr_forced_migrations);
5709 }
5710 return 1;
5711 }
5712
5713 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5714 return 0;
5715 }
5716
5717 /*
5718 * detach_task() -- detach the task for the migration specified in env
5719 */
5720 static void detach_task(struct task_struct *p, struct lb_env *env)
5721 {
5722 lockdep_assert_held(&env->src_rq->lock);
5723
5724 deactivate_task(env->src_rq, p, 0);
5725 p->on_rq = TASK_ON_RQ_MIGRATING;
5726 set_task_cpu(p, env->dst_cpu);
5727 }
5728
5729 /*
5730 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5731 * part of active balancing operations within "domain".
5732 *
5733 * Returns a task if successful and NULL otherwise.
5734 */
5735 static struct task_struct *detach_one_task(struct lb_env *env)
5736 {
5737 struct task_struct *p, *n;
5738
5739 lockdep_assert_held(&env->src_rq->lock);
5740
5741 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5742 if (!can_migrate_task(p, env))
5743 continue;
5744
5745 detach_task(p, env);
5746
5747 /*
5748 * Right now, this is only the second place where
5749 * lb_gained[env->idle] is updated (other is detach_tasks)
5750 * so we can safely collect stats here rather than
5751 * inside detach_tasks().
5752 */
5753 schedstat_inc(env->sd, lb_gained[env->idle]);
5754 return p;
5755 }
5756 return NULL;
5757 }
5758
5759 static const unsigned int sched_nr_migrate_break = 32;
5760
5761 /*
5762 * detach_tasks() -- tries to detach up to imbalance weighted load from
5763 * busiest_rq, as part of a balancing operation within domain "sd".
5764 *
5765 * Returns number of detached tasks if successful and 0 otherwise.
5766 */
5767 static int detach_tasks(struct lb_env *env)
5768 {
5769 struct list_head *tasks = &env->src_rq->cfs_tasks;
5770 struct task_struct *p;
5771 unsigned long load;
5772 int detached = 0;
5773
5774 lockdep_assert_held(&env->src_rq->lock);
5775
5776 if (env->imbalance <= 0)
5777 return 0;
5778
5779 while (!list_empty(tasks)) {
5780 /*
5781 * We don't want to steal all, otherwise we may be treated likewise,
5782 * which could at worst lead to a livelock crash.
5783 */
5784 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5785 break;
5786
5787 p = list_first_entry(tasks, struct task_struct, se.group_node);
5788
5789 env->loop++;
5790 /* We've more or less seen every task there is, call it quits */
5791 if (env->loop > env->loop_max)
5792 break;
5793
5794 /* take a breather every nr_migrate tasks */
5795 if (env->loop > env->loop_break) {
5796 env->loop_break += sched_nr_migrate_break;
5797 env->flags |= LBF_NEED_BREAK;
5798 break;
5799 }
5800
5801 if (!can_migrate_task(p, env))
5802 goto next;
5803
5804 load = task_h_load(p);
5805
5806 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5807 goto next;
5808
5809 if ((load / 2) > env->imbalance)
5810 goto next;
5811
5812 detach_task(p, env);
5813 list_add(&p->se.group_node, &env->tasks);
5814
5815 detached++;
5816 env->imbalance -= load;
5817
5818 #ifdef CONFIG_PREEMPT
5819 /*
5820 * NEWIDLE balancing is a source of latency, so preemptible
5821 * kernels will stop after the first task is detached to minimize
5822 * the critical section.
5823 */
5824 if (env->idle == CPU_NEWLY_IDLE)
5825 break;
5826 #endif
5827
5828 /*
5829 * We only want to steal up to the prescribed amount of
5830 * weighted load.
5831 */
5832 if (env->imbalance <= 0)
5833 break;
5834
5835 continue;
5836 next:
5837 list_move_tail(&p->se.group_node, tasks);
5838 }
5839
5840 /*
5841 * Right now, this is one of only two places we collect this stat
5842 * so we can safely collect detach_one_task() stats here rather
5843 * than inside detach_one_task().
5844 */
5845 schedstat_add(env->sd, lb_gained[env->idle], detached);
5846
5847 return detached;
5848 }
5849
5850 /*
5851 * attach_task() -- attach the task detached by detach_task() to its new rq.
5852 */
5853 static void attach_task(struct rq *rq, struct task_struct *p)
5854 {
5855 lockdep_assert_held(&rq->lock);
5856
5857 BUG_ON(task_rq(p) != rq);
5858 p->on_rq = TASK_ON_RQ_QUEUED;
5859 activate_task(rq, p, 0);
5860 check_preempt_curr(rq, p, 0);
5861 }
5862
5863 /*
5864 * attach_one_task() -- attaches the task returned from detach_one_task() to
5865 * its new rq.
5866 */
5867 static void attach_one_task(struct rq *rq, struct task_struct *p)
5868 {
5869 raw_spin_lock(&rq->lock);
5870 attach_task(rq, p);
5871 raw_spin_unlock(&rq->lock);
5872 }
5873
5874 /*
5875 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5876 * new rq.
5877 */
5878 static void attach_tasks(struct lb_env *env)
5879 {
5880 struct list_head *tasks = &env->tasks;
5881 struct task_struct *p;
5882
5883 raw_spin_lock(&env->dst_rq->lock);
5884
5885 while (!list_empty(tasks)) {
5886 p = list_first_entry(tasks, struct task_struct, se.group_node);
5887 list_del_init(&p->se.group_node);
5888
5889 attach_task(env->dst_rq, p);
5890 }
5891
5892 raw_spin_unlock(&env->dst_rq->lock);
5893 }
5894
5895 #ifdef CONFIG_FAIR_GROUP_SCHED
5896 static void update_blocked_averages(int cpu)
5897 {
5898 struct rq *rq = cpu_rq(cpu);
5899 struct cfs_rq *cfs_rq;
5900 unsigned long flags;
5901
5902 raw_spin_lock_irqsave(&rq->lock, flags);
5903 update_rq_clock(rq);
5904
5905 /*
5906 * Iterates the task_group tree in a bottom up fashion, see
5907 * list_add_leaf_cfs_rq() for details.
5908 */
5909 for_each_leaf_cfs_rq(rq, cfs_rq) {
5910 /* throttled entities do not contribute to load */
5911 if (throttled_hierarchy(cfs_rq))
5912 continue;
5913
5914 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5915 update_tg_load_avg(cfs_rq, 0);
5916 }
5917 raw_spin_unlock_irqrestore(&rq->lock, flags);
5918 }
5919
5920 /*
5921 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5922 * This needs to be done in a top-down fashion because the load of a child
5923 * group is a fraction of its parents load.
5924 */
5925 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5926 {
5927 struct rq *rq = rq_of(cfs_rq);
5928 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5929 unsigned long now = jiffies;
5930 unsigned long load;
5931
5932 if (cfs_rq->last_h_load_update == now)
5933 return;
5934
5935 cfs_rq->h_load_next = NULL;
5936 for_each_sched_entity(se) {
5937 cfs_rq = cfs_rq_of(se);
5938 cfs_rq->h_load_next = se;
5939 if (cfs_rq->last_h_load_update == now)
5940 break;
5941 }
5942
5943 if (!se) {
5944 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
5945 cfs_rq->last_h_load_update = now;
5946 }
5947
5948 while ((se = cfs_rq->h_load_next) != NULL) {
5949 load = cfs_rq->h_load;
5950 load = div64_ul(load * se->avg.load_avg,
5951 cfs_rq_load_avg(cfs_rq) + 1);
5952 cfs_rq = group_cfs_rq(se);
5953 cfs_rq->h_load = load;
5954 cfs_rq->last_h_load_update = now;
5955 }
5956 }
5957
5958 static unsigned long task_h_load(struct task_struct *p)
5959 {
5960 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5961
5962 update_cfs_rq_h_load(cfs_rq);
5963 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
5964 cfs_rq_load_avg(cfs_rq) + 1);
5965 }
5966 #else
5967 static inline void update_blocked_averages(int cpu)
5968 {
5969 struct rq *rq = cpu_rq(cpu);
5970 struct cfs_rq *cfs_rq = &rq->cfs;
5971 unsigned long flags;
5972
5973 raw_spin_lock_irqsave(&rq->lock, flags);
5974 update_rq_clock(rq);
5975 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5976 raw_spin_unlock_irqrestore(&rq->lock, flags);
5977 }
5978
5979 static unsigned long task_h_load(struct task_struct *p)
5980 {
5981 return p->se.avg.load_avg;
5982 }
5983 #endif
5984
5985 /********** Helpers for find_busiest_group ************************/
5986
5987 enum group_type {
5988 group_other = 0,
5989 group_imbalanced,
5990 group_overloaded,
5991 };
5992
5993 /*
5994 * sg_lb_stats - stats of a sched_group required for load_balancing
5995 */
5996 struct sg_lb_stats {
5997 unsigned long avg_load; /*Avg load across the CPUs of the group */
5998 unsigned long group_load; /* Total load over the CPUs of the group */
5999 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6000 unsigned long load_per_task;
6001 unsigned long group_capacity;
6002 unsigned long group_util; /* Total utilization of the group */
6003 unsigned int sum_nr_running; /* Nr tasks running in the group */
6004 unsigned int idle_cpus;
6005 unsigned int group_weight;
6006 enum group_type group_type;
6007 int group_no_capacity;
6008 #ifdef CONFIG_NUMA_BALANCING
6009 unsigned int nr_numa_running;
6010 unsigned int nr_preferred_running;
6011 #endif
6012 };
6013
6014 /*
6015 * sd_lb_stats - Structure to store the statistics of a sched_domain
6016 * during load balancing.
6017 */
6018 struct sd_lb_stats {
6019 struct sched_group *busiest; /* Busiest group in this sd */
6020 struct sched_group *local; /* Local group in this sd */
6021 unsigned long total_load; /* Total load of all groups in sd */
6022 unsigned long total_capacity; /* Total capacity of all groups in sd */
6023 unsigned long avg_load; /* Average load across all groups in sd */
6024
6025 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6026 struct sg_lb_stats local_stat; /* Statistics of the local group */
6027 };
6028
6029 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6030 {
6031 /*
6032 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6033 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6034 * We must however clear busiest_stat::avg_load because
6035 * update_sd_pick_busiest() reads this before assignment.
6036 */
6037 *sds = (struct sd_lb_stats){
6038 .busiest = NULL,
6039 .local = NULL,
6040 .total_load = 0UL,
6041 .total_capacity = 0UL,
6042 .busiest_stat = {
6043 .avg_load = 0UL,
6044 .sum_nr_running = 0,
6045 .group_type = group_other,
6046 },
6047 };
6048 }
6049
6050 /**
6051 * get_sd_load_idx - Obtain the load index for a given sched domain.
6052 * @sd: The sched_domain whose load_idx is to be obtained.
6053 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6054 *
6055 * Return: The load index.
6056 */
6057 static inline int get_sd_load_idx(struct sched_domain *sd,
6058 enum cpu_idle_type idle)
6059 {
6060 int load_idx;
6061
6062 switch (idle) {
6063 case CPU_NOT_IDLE:
6064 load_idx = sd->busy_idx;
6065 break;
6066
6067 case CPU_NEWLY_IDLE:
6068 load_idx = sd->newidle_idx;
6069 break;
6070 default:
6071 load_idx = sd->idle_idx;
6072 break;
6073 }
6074
6075 return load_idx;
6076 }
6077
6078 static unsigned long scale_rt_capacity(int cpu)
6079 {
6080 struct rq *rq = cpu_rq(cpu);
6081 u64 total, used, age_stamp, avg;
6082 s64 delta;
6083
6084 /*
6085 * Since we're reading these variables without serialization make sure
6086 * we read them once before doing sanity checks on them.
6087 */
6088 age_stamp = READ_ONCE(rq->age_stamp);
6089 avg = READ_ONCE(rq->rt_avg);
6090 delta = __rq_clock_broken(rq) - age_stamp;
6091
6092 if (unlikely(delta < 0))
6093 delta = 0;
6094
6095 total = sched_avg_period() + delta;
6096
6097 used = div_u64(avg, total);
6098
6099 if (likely(used < SCHED_CAPACITY_SCALE))
6100 return SCHED_CAPACITY_SCALE - used;
6101
6102 return 1;
6103 }
6104
6105 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6106 {
6107 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6108 struct sched_group *sdg = sd->groups;
6109
6110 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6111
6112 capacity *= scale_rt_capacity(cpu);
6113 capacity >>= SCHED_CAPACITY_SHIFT;
6114
6115 if (!capacity)
6116 capacity = 1;
6117
6118 cpu_rq(cpu)->cpu_capacity = capacity;
6119 sdg->sgc->capacity = capacity;
6120 }
6121
6122 void update_group_capacity(struct sched_domain *sd, int cpu)
6123 {
6124 struct sched_domain *child = sd->child;
6125 struct sched_group *group, *sdg = sd->groups;
6126 unsigned long capacity;
6127 unsigned long interval;
6128
6129 interval = msecs_to_jiffies(sd->balance_interval);
6130 interval = clamp(interval, 1UL, max_load_balance_interval);
6131 sdg->sgc->next_update = jiffies + interval;
6132
6133 if (!child) {
6134 update_cpu_capacity(sd, cpu);
6135 return;
6136 }
6137
6138 capacity = 0;
6139
6140 if (child->flags & SD_OVERLAP) {
6141 /*
6142 * SD_OVERLAP domains cannot assume that child groups
6143 * span the current group.
6144 */
6145
6146 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6147 struct sched_group_capacity *sgc;
6148 struct rq *rq = cpu_rq(cpu);
6149
6150 /*
6151 * build_sched_domains() -> init_sched_groups_capacity()
6152 * gets here before we've attached the domains to the
6153 * runqueues.
6154 *
6155 * Use capacity_of(), which is set irrespective of domains
6156 * in update_cpu_capacity().
6157 *
6158 * This avoids capacity from being 0 and
6159 * causing divide-by-zero issues on boot.
6160 */
6161 if (unlikely(!rq->sd)) {
6162 capacity += capacity_of(cpu);
6163 continue;
6164 }
6165
6166 sgc = rq->sd->groups->sgc;
6167 capacity += sgc->capacity;
6168 }
6169 } else {
6170 /*
6171 * !SD_OVERLAP domains can assume that child groups
6172 * span the current group.
6173 */
6174
6175 group = child->groups;
6176 do {
6177 capacity += group->sgc->capacity;
6178 group = group->next;
6179 } while (group != child->groups);
6180 }
6181
6182 sdg->sgc->capacity = capacity;
6183 }
6184
6185 /*
6186 * Check whether the capacity of the rq has been noticeably reduced by side
6187 * activity. The imbalance_pct is used for the threshold.
6188 * Return true is the capacity is reduced
6189 */
6190 static inline int
6191 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6192 {
6193 return ((rq->cpu_capacity * sd->imbalance_pct) <
6194 (rq->cpu_capacity_orig * 100));
6195 }
6196
6197 /*
6198 * Group imbalance indicates (and tries to solve) the problem where balancing
6199 * groups is inadequate due to tsk_cpus_allowed() constraints.
6200 *
6201 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6202 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6203 * Something like:
6204 *
6205 * { 0 1 2 3 } { 4 5 6 7 }
6206 * * * * *
6207 *
6208 * If we were to balance group-wise we'd place two tasks in the first group and
6209 * two tasks in the second group. Clearly this is undesired as it will overload
6210 * cpu 3 and leave one of the cpus in the second group unused.
6211 *
6212 * The current solution to this issue is detecting the skew in the first group
6213 * by noticing the lower domain failed to reach balance and had difficulty
6214 * moving tasks due to affinity constraints.
6215 *
6216 * When this is so detected; this group becomes a candidate for busiest; see
6217 * update_sd_pick_busiest(). And calculate_imbalance() and
6218 * find_busiest_group() avoid some of the usual balance conditions to allow it
6219 * to create an effective group imbalance.
6220 *
6221 * This is a somewhat tricky proposition since the next run might not find the
6222 * group imbalance and decide the groups need to be balanced again. A most
6223 * subtle and fragile situation.
6224 */
6225
6226 static inline int sg_imbalanced(struct sched_group *group)
6227 {
6228 return group->sgc->imbalance;
6229 }
6230
6231 /*
6232 * group_has_capacity returns true if the group has spare capacity that could
6233 * be used by some tasks.
6234 * We consider that a group has spare capacity if the * number of task is
6235 * smaller than the number of CPUs or if the utilization is lower than the
6236 * available capacity for CFS tasks.
6237 * For the latter, we use a threshold to stabilize the state, to take into
6238 * account the variance of the tasks' load and to return true if the available
6239 * capacity in meaningful for the load balancer.
6240 * As an example, an available capacity of 1% can appear but it doesn't make
6241 * any benefit for the load balance.
6242 */
6243 static inline bool
6244 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6245 {
6246 if (sgs->sum_nr_running < sgs->group_weight)
6247 return true;
6248
6249 if ((sgs->group_capacity * 100) >
6250 (sgs->group_util * env->sd->imbalance_pct))
6251 return true;
6252
6253 return false;
6254 }
6255
6256 /*
6257 * group_is_overloaded returns true if the group has more tasks than it can
6258 * handle.
6259 * group_is_overloaded is not equals to !group_has_capacity because a group
6260 * with the exact right number of tasks, has no more spare capacity but is not
6261 * overloaded so both group_has_capacity and group_is_overloaded return
6262 * false.
6263 */
6264 static inline bool
6265 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6266 {
6267 if (sgs->sum_nr_running <= sgs->group_weight)
6268 return false;
6269
6270 if ((sgs->group_capacity * 100) <
6271 (sgs->group_util * env->sd->imbalance_pct))
6272 return true;
6273
6274 return false;
6275 }
6276
6277 static inline enum
6278 group_type group_classify(struct sched_group *group,
6279 struct sg_lb_stats *sgs)
6280 {
6281 if (sgs->group_no_capacity)
6282 return group_overloaded;
6283
6284 if (sg_imbalanced(group))
6285 return group_imbalanced;
6286
6287 return group_other;
6288 }
6289
6290 /**
6291 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6292 * @env: The load balancing environment.
6293 * @group: sched_group whose statistics are to be updated.
6294 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6295 * @local_group: Does group contain this_cpu.
6296 * @sgs: variable to hold the statistics for this group.
6297 * @overload: Indicate more than one runnable task for any CPU.
6298 */
6299 static inline void update_sg_lb_stats(struct lb_env *env,
6300 struct sched_group *group, int load_idx,
6301 int local_group, struct sg_lb_stats *sgs,
6302 bool *overload)
6303 {
6304 unsigned long load;
6305 int i;
6306
6307 memset(sgs, 0, sizeof(*sgs));
6308
6309 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6310 struct rq *rq = cpu_rq(i);
6311
6312 /* Bias balancing toward cpus of our domain */
6313 if (local_group)
6314 load = target_load(i, load_idx);
6315 else
6316 load = source_load(i, load_idx);
6317
6318 sgs->group_load += load;
6319 sgs->group_util += cpu_util(i);
6320 sgs->sum_nr_running += rq->cfs.h_nr_running;
6321
6322 if (rq->nr_running > 1)
6323 *overload = true;
6324
6325 #ifdef CONFIG_NUMA_BALANCING
6326 sgs->nr_numa_running += rq->nr_numa_running;
6327 sgs->nr_preferred_running += rq->nr_preferred_running;
6328 #endif
6329 sgs->sum_weighted_load += weighted_cpuload(i);
6330 if (idle_cpu(i))
6331 sgs->idle_cpus++;
6332 }
6333
6334 /* Adjust by relative CPU capacity of the group */
6335 sgs->group_capacity = group->sgc->capacity;
6336 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6337
6338 if (sgs->sum_nr_running)
6339 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6340
6341 sgs->group_weight = group->group_weight;
6342
6343 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6344 sgs->group_type = group_classify(group, sgs);
6345 }
6346
6347 /**
6348 * update_sd_pick_busiest - return 1 on busiest group
6349 * @env: The load balancing environment.
6350 * @sds: sched_domain statistics
6351 * @sg: sched_group candidate to be checked for being the busiest
6352 * @sgs: sched_group statistics
6353 *
6354 * Determine if @sg is a busier group than the previously selected
6355 * busiest group.
6356 *
6357 * Return: %true if @sg is a busier group than the previously selected
6358 * busiest group. %false otherwise.
6359 */
6360 static bool update_sd_pick_busiest(struct lb_env *env,
6361 struct sd_lb_stats *sds,
6362 struct sched_group *sg,
6363 struct sg_lb_stats *sgs)
6364 {
6365 struct sg_lb_stats *busiest = &sds->busiest_stat;
6366
6367 if (sgs->group_type > busiest->group_type)
6368 return true;
6369
6370 if (sgs->group_type < busiest->group_type)
6371 return false;
6372
6373 if (sgs->avg_load <= busiest->avg_load)
6374 return false;
6375
6376 /* This is the busiest node in its class. */
6377 if (!(env->sd->flags & SD_ASYM_PACKING))
6378 return true;
6379
6380 /*
6381 * ASYM_PACKING needs to move all the work to the lowest
6382 * numbered CPUs in the group, therefore mark all groups
6383 * higher than ourself as busy.
6384 */
6385 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6386 if (!sds->busiest)
6387 return true;
6388
6389 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6390 return true;
6391 }
6392
6393 return false;
6394 }
6395
6396 #ifdef CONFIG_NUMA_BALANCING
6397 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6398 {
6399 if (sgs->sum_nr_running > sgs->nr_numa_running)
6400 return regular;
6401 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6402 return remote;
6403 return all;
6404 }
6405
6406 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6407 {
6408 if (rq->nr_running > rq->nr_numa_running)
6409 return regular;
6410 if (rq->nr_running > rq->nr_preferred_running)
6411 return remote;
6412 return all;
6413 }
6414 #else
6415 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6416 {
6417 return all;
6418 }
6419
6420 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6421 {
6422 return regular;
6423 }
6424 #endif /* CONFIG_NUMA_BALANCING */
6425
6426 /**
6427 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6428 * @env: The load balancing environment.
6429 * @sds: variable to hold the statistics for this sched_domain.
6430 */
6431 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6432 {
6433 struct sched_domain *child = env->sd->child;
6434 struct sched_group *sg = env->sd->groups;
6435 struct sg_lb_stats tmp_sgs;
6436 int load_idx, prefer_sibling = 0;
6437 bool overload = false;
6438
6439 if (child && child->flags & SD_PREFER_SIBLING)
6440 prefer_sibling = 1;
6441
6442 load_idx = get_sd_load_idx(env->sd, env->idle);
6443
6444 do {
6445 struct sg_lb_stats *sgs = &tmp_sgs;
6446 int local_group;
6447
6448 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6449 if (local_group) {
6450 sds->local = sg;
6451 sgs = &sds->local_stat;
6452
6453 if (env->idle != CPU_NEWLY_IDLE ||
6454 time_after_eq(jiffies, sg->sgc->next_update))
6455 update_group_capacity(env->sd, env->dst_cpu);
6456 }
6457
6458 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6459 &overload);
6460
6461 if (local_group)
6462 goto next_group;
6463
6464 /*
6465 * In case the child domain prefers tasks go to siblings
6466 * first, lower the sg capacity so that we'll try
6467 * and move all the excess tasks away. We lower the capacity
6468 * of a group only if the local group has the capacity to fit
6469 * these excess tasks. The extra check prevents the case where
6470 * you always pull from the heaviest group when it is already
6471 * under-utilized (possible with a large weight task outweighs
6472 * the tasks on the system).
6473 */
6474 if (prefer_sibling && sds->local &&
6475 group_has_capacity(env, &sds->local_stat) &&
6476 (sgs->sum_nr_running > 1)) {
6477 sgs->group_no_capacity = 1;
6478 sgs->group_type = group_classify(sg, sgs);
6479 }
6480
6481 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6482 sds->busiest = sg;
6483 sds->busiest_stat = *sgs;
6484 }
6485
6486 next_group:
6487 /* Now, start updating sd_lb_stats */
6488 sds->total_load += sgs->group_load;
6489 sds->total_capacity += sgs->group_capacity;
6490
6491 sg = sg->next;
6492 } while (sg != env->sd->groups);
6493
6494 if (env->sd->flags & SD_NUMA)
6495 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6496
6497 if (!env->sd->parent) {
6498 /* update overload indicator if we are at root domain */
6499 if (env->dst_rq->rd->overload != overload)
6500 env->dst_rq->rd->overload = overload;
6501 }
6502
6503 }
6504
6505 /**
6506 * check_asym_packing - Check to see if the group is packed into the
6507 * sched doman.
6508 *
6509 * This is primarily intended to used at the sibling level. Some
6510 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6511 * case of POWER7, it can move to lower SMT modes only when higher
6512 * threads are idle. When in lower SMT modes, the threads will
6513 * perform better since they share less core resources. Hence when we
6514 * have idle threads, we want them to be the higher ones.
6515 *
6516 * This packing function is run on idle threads. It checks to see if
6517 * the busiest CPU in this domain (core in the P7 case) has a higher
6518 * CPU number than the packing function is being run on. Here we are
6519 * assuming lower CPU number will be equivalent to lower a SMT thread
6520 * number.
6521 *
6522 * Return: 1 when packing is required and a task should be moved to
6523 * this CPU. The amount of the imbalance is returned in *imbalance.
6524 *
6525 * @env: The load balancing environment.
6526 * @sds: Statistics of the sched_domain which is to be packed
6527 */
6528 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6529 {
6530 int busiest_cpu;
6531
6532 if (!(env->sd->flags & SD_ASYM_PACKING))
6533 return 0;
6534
6535 if (!sds->busiest)
6536 return 0;
6537
6538 busiest_cpu = group_first_cpu(sds->busiest);
6539 if (env->dst_cpu > busiest_cpu)
6540 return 0;
6541
6542 env->imbalance = DIV_ROUND_CLOSEST(
6543 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6544 SCHED_CAPACITY_SCALE);
6545
6546 return 1;
6547 }
6548
6549 /**
6550 * fix_small_imbalance - Calculate the minor imbalance that exists
6551 * amongst the groups of a sched_domain, during
6552 * load balancing.
6553 * @env: The load balancing environment.
6554 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6555 */
6556 static inline
6557 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6558 {
6559 unsigned long tmp, capa_now = 0, capa_move = 0;
6560 unsigned int imbn = 2;
6561 unsigned long scaled_busy_load_per_task;
6562 struct sg_lb_stats *local, *busiest;
6563
6564 local = &sds->local_stat;
6565 busiest = &sds->busiest_stat;
6566
6567 if (!local->sum_nr_running)
6568 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6569 else if (busiest->load_per_task > local->load_per_task)
6570 imbn = 1;
6571
6572 scaled_busy_load_per_task =
6573 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6574 busiest->group_capacity;
6575
6576 if (busiest->avg_load + scaled_busy_load_per_task >=
6577 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6578 env->imbalance = busiest->load_per_task;
6579 return;
6580 }
6581
6582 /*
6583 * OK, we don't have enough imbalance to justify moving tasks,
6584 * however we may be able to increase total CPU capacity used by
6585 * moving them.
6586 */
6587
6588 capa_now += busiest->group_capacity *
6589 min(busiest->load_per_task, busiest->avg_load);
6590 capa_now += local->group_capacity *
6591 min(local->load_per_task, local->avg_load);
6592 capa_now /= SCHED_CAPACITY_SCALE;
6593
6594 /* Amount of load we'd subtract */
6595 if (busiest->avg_load > scaled_busy_load_per_task) {
6596 capa_move += busiest->group_capacity *
6597 min(busiest->load_per_task,
6598 busiest->avg_load - scaled_busy_load_per_task);
6599 }
6600
6601 /* Amount of load we'd add */
6602 if (busiest->avg_load * busiest->group_capacity <
6603 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6604 tmp = (busiest->avg_load * busiest->group_capacity) /
6605 local->group_capacity;
6606 } else {
6607 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6608 local->group_capacity;
6609 }
6610 capa_move += local->group_capacity *
6611 min(local->load_per_task, local->avg_load + tmp);
6612 capa_move /= SCHED_CAPACITY_SCALE;
6613
6614 /* Move if we gain throughput */
6615 if (capa_move > capa_now)
6616 env->imbalance = busiest->load_per_task;
6617 }
6618
6619 /**
6620 * calculate_imbalance - Calculate the amount of imbalance present within the
6621 * groups of a given sched_domain during load balance.
6622 * @env: load balance environment
6623 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6624 */
6625 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6626 {
6627 unsigned long max_pull, load_above_capacity = ~0UL;
6628 struct sg_lb_stats *local, *busiest;
6629
6630 local = &sds->local_stat;
6631 busiest = &sds->busiest_stat;
6632
6633 if (busiest->group_type == group_imbalanced) {
6634 /*
6635 * In the group_imb case we cannot rely on group-wide averages
6636 * to ensure cpu-load equilibrium, look at wider averages. XXX
6637 */
6638 busiest->load_per_task =
6639 min(busiest->load_per_task, sds->avg_load);
6640 }
6641
6642 /*
6643 * In the presence of smp nice balancing, certain scenarios can have
6644 * max load less than avg load(as we skip the groups at or below
6645 * its cpu_capacity, while calculating max_load..)
6646 */
6647 if (busiest->avg_load <= sds->avg_load ||
6648 local->avg_load >= sds->avg_load) {
6649 env->imbalance = 0;
6650 return fix_small_imbalance(env, sds);
6651 }
6652
6653 /*
6654 * If there aren't any idle cpus, avoid creating some.
6655 */
6656 if (busiest->group_type == group_overloaded &&
6657 local->group_type == group_overloaded) {
6658 load_above_capacity = busiest->sum_nr_running *
6659 SCHED_LOAD_SCALE;
6660 if (load_above_capacity > busiest->group_capacity)
6661 load_above_capacity -= busiest->group_capacity;
6662 else
6663 load_above_capacity = ~0UL;
6664 }
6665
6666 /*
6667 * We're trying to get all the cpus to the average_load, so we don't
6668 * want to push ourselves above the average load, nor do we wish to
6669 * reduce the max loaded cpu below the average load. At the same time,
6670 * we also don't want to reduce the group load below the group capacity
6671 * (so that we can implement power-savings policies etc). Thus we look
6672 * for the minimum possible imbalance.
6673 */
6674 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6675
6676 /* How much load to actually move to equalise the imbalance */
6677 env->imbalance = min(
6678 max_pull * busiest->group_capacity,
6679 (sds->avg_load - local->avg_load) * local->group_capacity
6680 ) / SCHED_CAPACITY_SCALE;
6681
6682 /*
6683 * if *imbalance is less than the average load per runnable task
6684 * there is no guarantee that any tasks will be moved so we'll have
6685 * a think about bumping its value to force at least one task to be
6686 * moved
6687 */
6688 if (env->imbalance < busiest->load_per_task)
6689 return fix_small_imbalance(env, sds);
6690 }
6691
6692 /******* find_busiest_group() helpers end here *********************/
6693
6694 /**
6695 * find_busiest_group - Returns the busiest group within the sched_domain
6696 * if there is an imbalance. If there isn't an imbalance, and
6697 * the user has opted for power-savings, it returns a group whose
6698 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6699 * such a group exists.
6700 *
6701 * Also calculates the amount of weighted load which should be moved
6702 * to restore balance.
6703 *
6704 * @env: The load balancing environment.
6705 *
6706 * Return: - The busiest group if imbalance exists.
6707 * - If no imbalance and user has opted for power-savings balance,
6708 * return the least loaded group whose CPUs can be
6709 * put to idle by rebalancing its tasks onto our group.
6710 */
6711 static struct sched_group *find_busiest_group(struct lb_env *env)
6712 {
6713 struct sg_lb_stats *local, *busiest;
6714 struct sd_lb_stats sds;
6715
6716 init_sd_lb_stats(&sds);
6717
6718 /*
6719 * Compute the various statistics relavent for load balancing at
6720 * this level.
6721 */
6722 update_sd_lb_stats(env, &sds);
6723 local = &sds.local_stat;
6724 busiest = &sds.busiest_stat;
6725
6726 /* ASYM feature bypasses nice load balance check */
6727 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6728 check_asym_packing(env, &sds))
6729 return sds.busiest;
6730
6731 /* There is no busy sibling group to pull tasks from */
6732 if (!sds.busiest || busiest->sum_nr_running == 0)
6733 goto out_balanced;
6734
6735 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6736 / sds.total_capacity;
6737
6738 /*
6739 * If the busiest group is imbalanced the below checks don't
6740 * work because they assume all things are equal, which typically
6741 * isn't true due to cpus_allowed constraints and the like.
6742 */
6743 if (busiest->group_type == group_imbalanced)
6744 goto force_balance;
6745
6746 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6747 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6748 busiest->group_no_capacity)
6749 goto force_balance;
6750
6751 /*
6752 * If the local group is busier than the selected busiest group
6753 * don't try and pull any tasks.
6754 */
6755 if (local->avg_load >= busiest->avg_load)
6756 goto out_balanced;
6757
6758 /*
6759 * Don't pull any tasks if this group is already above the domain
6760 * average load.
6761 */
6762 if (local->avg_load >= sds.avg_load)
6763 goto out_balanced;
6764
6765 if (env->idle == CPU_IDLE) {
6766 /*
6767 * This cpu is idle. If the busiest group is not overloaded
6768 * and there is no imbalance between this and busiest group
6769 * wrt idle cpus, it is balanced. The imbalance becomes
6770 * significant if the diff is greater than 1 otherwise we
6771 * might end up to just move the imbalance on another group
6772 */
6773 if ((busiest->group_type != group_overloaded) &&
6774 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6775 goto out_balanced;
6776 } else {
6777 /*
6778 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6779 * imbalance_pct to be conservative.
6780 */
6781 if (100 * busiest->avg_load <=
6782 env->sd->imbalance_pct * local->avg_load)
6783 goto out_balanced;
6784 }
6785
6786 force_balance:
6787 /* Looks like there is an imbalance. Compute it */
6788 calculate_imbalance(env, &sds);
6789 return sds.busiest;
6790
6791 out_balanced:
6792 env->imbalance = 0;
6793 return NULL;
6794 }
6795
6796 /*
6797 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6798 */
6799 static struct rq *find_busiest_queue(struct lb_env *env,
6800 struct sched_group *group)
6801 {
6802 struct rq *busiest = NULL, *rq;
6803 unsigned long busiest_load = 0, busiest_capacity = 1;
6804 int i;
6805
6806 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6807 unsigned long capacity, wl;
6808 enum fbq_type rt;
6809
6810 rq = cpu_rq(i);
6811 rt = fbq_classify_rq(rq);
6812
6813 /*
6814 * We classify groups/runqueues into three groups:
6815 * - regular: there are !numa tasks
6816 * - remote: there are numa tasks that run on the 'wrong' node
6817 * - all: there is no distinction
6818 *
6819 * In order to avoid migrating ideally placed numa tasks,
6820 * ignore those when there's better options.
6821 *
6822 * If we ignore the actual busiest queue to migrate another
6823 * task, the next balance pass can still reduce the busiest
6824 * queue by moving tasks around inside the node.
6825 *
6826 * If we cannot move enough load due to this classification
6827 * the next pass will adjust the group classification and
6828 * allow migration of more tasks.
6829 *
6830 * Both cases only affect the total convergence complexity.
6831 */
6832 if (rt > env->fbq_type)
6833 continue;
6834
6835 capacity = capacity_of(i);
6836
6837 wl = weighted_cpuload(i);
6838
6839 /*
6840 * When comparing with imbalance, use weighted_cpuload()
6841 * which is not scaled with the cpu capacity.
6842 */
6843
6844 if (rq->nr_running == 1 && wl > env->imbalance &&
6845 !check_cpu_capacity(rq, env->sd))
6846 continue;
6847
6848 /*
6849 * For the load comparisons with the other cpu's, consider
6850 * the weighted_cpuload() scaled with the cpu capacity, so
6851 * that the load can be moved away from the cpu that is
6852 * potentially running at a lower capacity.
6853 *
6854 * Thus we're looking for max(wl_i / capacity_i), crosswise
6855 * multiplication to rid ourselves of the division works out
6856 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6857 * our previous maximum.
6858 */
6859 if (wl * busiest_capacity > busiest_load * capacity) {
6860 busiest_load = wl;
6861 busiest_capacity = capacity;
6862 busiest = rq;
6863 }
6864 }
6865
6866 return busiest;
6867 }
6868
6869 /*
6870 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6871 * so long as it is large enough.
6872 */
6873 #define MAX_PINNED_INTERVAL 512
6874
6875 /* Working cpumask for load_balance and load_balance_newidle. */
6876 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6877
6878 static int need_active_balance(struct lb_env *env)
6879 {
6880 struct sched_domain *sd = env->sd;
6881
6882 if (env->idle == CPU_NEWLY_IDLE) {
6883
6884 /*
6885 * ASYM_PACKING needs to force migrate tasks from busy but
6886 * higher numbered CPUs in order to pack all tasks in the
6887 * lowest numbered CPUs.
6888 */
6889 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6890 return 1;
6891 }
6892
6893 /*
6894 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6895 * It's worth migrating the task if the src_cpu's capacity is reduced
6896 * because of other sched_class or IRQs if more capacity stays
6897 * available on dst_cpu.
6898 */
6899 if ((env->idle != CPU_NOT_IDLE) &&
6900 (env->src_rq->cfs.h_nr_running == 1)) {
6901 if ((check_cpu_capacity(env->src_rq, sd)) &&
6902 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6903 return 1;
6904 }
6905
6906 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6907 }
6908
6909 static int active_load_balance_cpu_stop(void *data);
6910
6911 static int should_we_balance(struct lb_env *env)
6912 {
6913 struct sched_group *sg = env->sd->groups;
6914 struct cpumask *sg_cpus, *sg_mask;
6915 int cpu, balance_cpu = -1;
6916
6917 /*
6918 * In the newly idle case, we will allow all the cpu's
6919 * to do the newly idle load balance.
6920 */
6921 if (env->idle == CPU_NEWLY_IDLE)
6922 return 1;
6923
6924 sg_cpus = sched_group_cpus(sg);
6925 sg_mask = sched_group_mask(sg);
6926 /* Try to find first idle cpu */
6927 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6928 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6929 continue;
6930
6931 balance_cpu = cpu;
6932 break;
6933 }
6934
6935 if (balance_cpu == -1)
6936 balance_cpu = group_balance_cpu(sg);
6937
6938 /*
6939 * First idle cpu or the first cpu(busiest) in this sched group
6940 * is eligible for doing load balancing at this and above domains.
6941 */
6942 return balance_cpu == env->dst_cpu;
6943 }
6944
6945 /*
6946 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6947 * tasks if there is an imbalance.
6948 */
6949 static int load_balance(int this_cpu, struct rq *this_rq,
6950 struct sched_domain *sd, enum cpu_idle_type idle,
6951 int *continue_balancing)
6952 {
6953 int ld_moved, cur_ld_moved, active_balance = 0;
6954 struct sched_domain *sd_parent = sd->parent;
6955 struct sched_group *group;
6956 struct rq *busiest;
6957 unsigned long flags;
6958 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6959
6960 struct lb_env env = {
6961 .sd = sd,
6962 .dst_cpu = this_cpu,
6963 .dst_rq = this_rq,
6964 .dst_grpmask = sched_group_cpus(sd->groups),
6965 .idle = idle,
6966 .loop_break = sched_nr_migrate_break,
6967 .cpus = cpus,
6968 .fbq_type = all,
6969 .tasks = LIST_HEAD_INIT(env.tasks),
6970 };
6971
6972 /*
6973 * For NEWLY_IDLE load_balancing, we don't need to consider
6974 * other cpus in our group
6975 */
6976 if (idle == CPU_NEWLY_IDLE)
6977 env.dst_grpmask = NULL;
6978
6979 cpumask_copy(cpus, cpu_active_mask);
6980
6981 schedstat_inc(sd, lb_count[idle]);
6982
6983 redo:
6984 if (!should_we_balance(&env)) {
6985 *continue_balancing = 0;
6986 goto out_balanced;
6987 }
6988
6989 group = find_busiest_group(&env);
6990 if (!group) {
6991 schedstat_inc(sd, lb_nobusyg[idle]);
6992 goto out_balanced;
6993 }
6994
6995 busiest = find_busiest_queue(&env, group);
6996 if (!busiest) {
6997 schedstat_inc(sd, lb_nobusyq[idle]);
6998 goto out_balanced;
6999 }
7000
7001 BUG_ON(busiest == env.dst_rq);
7002
7003 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7004
7005 env.src_cpu = busiest->cpu;
7006 env.src_rq = busiest;
7007
7008 ld_moved = 0;
7009 if (busiest->nr_running > 1) {
7010 /*
7011 * Attempt to move tasks. If find_busiest_group has found
7012 * an imbalance but busiest->nr_running <= 1, the group is
7013 * still unbalanced. ld_moved simply stays zero, so it is
7014 * correctly treated as an imbalance.
7015 */
7016 env.flags |= LBF_ALL_PINNED;
7017 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7018
7019 more_balance:
7020 raw_spin_lock_irqsave(&busiest->lock, flags);
7021
7022 /*
7023 * cur_ld_moved - load moved in current iteration
7024 * ld_moved - cumulative load moved across iterations
7025 */
7026 cur_ld_moved = detach_tasks(&env);
7027
7028 /*
7029 * We've detached some tasks from busiest_rq. Every
7030 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7031 * unlock busiest->lock, and we are able to be sure
7032 * that nobody can manipulate the tasks in parallel.
7033 * See task_rq_lock() family for the details.
7034 */
7035
7036 raw_spin_unlock(&busiest->lock);
7037
7038 if (cur_ld_moved) {
7039 attach_tasks(&env);
7040 ld_moved += cur_ld_moved;
7041 }
7042
7043 local_irq_restore(flags);
7044
7045 if (env.flags & LBF_NEED_BREAK) {
7046 env.flags &= ~LBF_NEED_BREAK;
7047 goto more_balance;
7048 }
7049
7050 /*
7051 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7052 * us and move them to an alternate dst_cpu in our sched_group
7053 * where they can run. The upper limit on how many times we
7054 * iterate on same src_cpu is dependent on number of cpus in our
7055 * sched_group.
7056 *
7057 * This changes load balance semantics a bit on who can move
7058 * load to a given_cpu. In addition to the given_cpu itself
7059 * (or a ilb_cpu acting on its behalf where given_cpu is
7060 * nohz-idle), we now have balance_cpu in a position to move
7061 * load to given_cpu. In rare situations, this may cause
7062 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7063 * _independently_ and at _same_ time to move some load to
7064 * given_cpu) causing exceess load to be moved to given_cpu.
7065 * This however should not happen so much in practice and
7066 * moreover subsequent load balance cycles should correct the
7067 * excess load moved.
7068 */
7069 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7070
7071 /* Prevent to re-select dst_cpu via env's cpus */
7072 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7073
7074 env.dst_rq = cpu_rq(env.new_dst_cpu);
7075 env.dst_cpu = env.new_dst_cpu;
7076 env.flags &= ~LBF_DST_PINNED;
7077 env.loop = 0;
7078 env.loop_break = sched_nr_migrate_break;
7079
7080 /*
7081 * Go back to "more_balance" rather than "redo" since we
7082 * need to continue with same src_cpu.
7083 */
7084 goto more_balance;
7085 }
7086
7087 /*
7088 * We failed to reach balance because of affinity.
7089 */
7090 if (sd_parent) {
7091 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7092
7093 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7094 *group_imbalance = 1;
7095 }
7096
7097 /* All tasks on this runqueue were pinned by CPU affinity */
7098 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7099 cpumask_clear_cpu(cpu_of(busiest), cpus);
7100 if (!cpumask_empty(cpus)) {
7101 env.loop = 0;
7102 env.loop_break = sched_nr_migrate_break;
7103 goto redo;
7104 }
7105 goto out_all_pinned;
7106 }
7107 }
7108
7109 if (!ld_moved) {
7110 schedstat_inc(sd, lb_failed[idle]);
7111 /*
7112 * Increment the failure counter only on periodic balance.
7113 * We do not want newidle balance, which can be very
7114 * frequent, pollute the failure counter causing
7115 * excessive cache_hot migrations and active balances.
7116 */
7117 if (idle != CPU_NEWLY_IDLE)
7118 sd->nr_balance_failed++;
7119
7120 if (need_active_balance(&env)) {
7121 raw_spin_lock_irqsave(&busiest->lock, flags);
7122
7123 /* don't kick the active_load_balance_cpu_stop,
7124 * if the curr task on busiest cpu can't be
7125 * moved to this_cpu
7126 */
7127 if (!cpumask_test_cpu(this_cpu,
7128 tsk_cpus_allowed(busiest->curr))) {
7129 raw_spin_unlock_irqrestore(&busiest->lock,
7130 flags);
7131 env.flags |= LBF_ALL_PINNED;
7132 goto out_one_pinned;
7133 }
7134
7135 /*
7136 * ->active_balance synchronizes accesses to
7137 * ->active_balance_work. Once set, it's cleared
7138 * only after active load balance is finished.
7139 */
7140 if (!busiest->active_balance) {
7141 busiest->active_balance = 1;
7142 busiest->push_cpu = this_cpu;
7143 active_balance = 1;
7144 }
7145 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7146
7147 if (active_balance) {
7148 stop_one_cpu_nowait(cpu_of(busiest),
7149 active_load_balance_cpu_stop, busiest,
7150 &busiest->active_balance_work);
7151 }
7152
7153 /*
7154 * We've kicked active balancing, reset the failure
7155 * counter.
7156 */
7157 sd->nr_balance_failed = sd->cache_nice_tries+1;
7158 }
7159 } else
7160 sd->nr_balance_failed = 0;
7161
7162 if (likely(!active_balance)) {
7163 /* We were unbalanced, so reset the balancing interval */
7164 sd->balance_interval = sd->min_interval;
7165 } else {
7166 /*
7167 * If we've begun active balancing, start to back off. This
7168 * case may not be covered by the all_pinned logic if there
7169 * is only 1 task on the busy runqueue (because we don't call
7170 * detach_tasks).
7171 */
7172 if (sd->balance_interval < sd->max_interval)
7173 sd->balance_interval *= 2;
7174 }
7175
7176 goto out;
7177
7178 out_balanced:
7179 /*
7180 * We reach balance although we may have faced some affinity
7181 * constraints. Clear the imbalance flag if it was set.
7182 */
7183 if (sd_parent) {
7184 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7185
7186 if (*group_imbalance)
7187 *group_imbalance = 0;
7188 }
7189
7190 out_all_pinned:
7191 /*
7192 * We reach balance because all tasks are pinned at this level so
7193 * we can't migrate them. Let the imbalance flag set so parent level
7194 * can try to migrate them.
7195 */
7196 schedstat_inc(sd, lb_balanced[idle]);
7197
7198 sd->nr_balance_failed = 0;
7199
7200 out_one_pinned:
7201 /* tune up the balancing interval */
7202 if (((env.flags & LBF_ALL_PINNED) &&
7203 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7204 (sd->balance_interval < sd->max_interval))
7205 sd->balance_interval *= 2;
7206
7207 ld_moved = 0;
7208 out:
7209 return ld_moved;
7210 }
7211
7212 static inline unsigned long
7213 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7214 {
7215 unsigned long interval = sd->balance_interval;
7216
7217 if (cpu_busy)
7218 interval *= sd->busy_factor;
7219
7220 /* scale ms to jiffies */
7221 interval = msecs_to_jiffies(interval);
7222 interval = clamp(interval, 1UL, max_load_balance_interval);
7223
7224 return interval;
7225 }
7226
7227 static inline void
7228 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7229 {
7230 unsigned long interval, next;
7231
7232 interval = get_sd_balance_interval(sd, cpu_busy);
7233 next = sd->last_balance + interval;
7234
7235 if (time_after(*next_balance, next))
7236 *next_balance = next;
7237 }
7238
7239 /*
7240 * idle_balance is called by schedule() if this_cpu is about to become
7241 * idle. Attempts to pull tasks from other CPUs.
7242 */
7243 static int idle_balance(struct rq *this_rq)
7244 {
7245 unsigned long next_balance = jiffies + HZ;
7246 int this_cpu = this_rq->cpu;
7247 struct sched_domain *sd;
7248 int pulled_task = 0;
7249 u64 curr_cost = 0;
7250
7251 idle_enter_fair(this_rq);
7252
7253 /*
7254 * We must set idle_stamp _before_ calling idle_balance(), such that we
7255 * measure the duration of idle_balance() as idle time.
7256 */
7257 this_rq->idle_stamp = rq_clock(this_rq);
7258
7259 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7260 !this_rq->rd->overload) {
7261 rcu_read_lock();
7262 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7263 if (sd)
7264 update_next_balance(sd, 0, &next_balance);
7265 rcu_read_unlock();
7266
7267 goto out;
7268 }
7269
7270 raw_spin_unlock(&this_rq->lock);
7271
7272 update_blocked_averages(this_cpu);
7273 rcu_read_lock();
7274 for_each_domain(this_cpu, sd) {
7275 int continue_balancing = 1;
7276 u64 t0, domain_cost;
7277
7278 if (!(sd->flags & SD_LOAD_BALANCE))
7279 continue;
7280
7281 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7282 update_next_balance(sd, 0, &next_balance);
7283 break;
7284 }
7285
7286 if (sd->flags & SD_BALANCE_NEWIDLE) {
7287 t0 = sched_clock_cpu(this_cpu);
7288
7289 pulled_task = load_balance(this_cpu, this_rq,
7290 sd, CPU_NEWLY_IDLE,
7291 &continue_balancing);
7292
7293 domain_cost = sched_clock_cpu(this_cpu) - t0;
7294 if (domain_cost > sd->max_newidle_lb_cost)
7295 sd->max_newidle_lb_cost = domain_cost;
7296
7297 curr_cost += domain_cost;
7298 }
7299
7300 update_next_balance(sd, 0, &next_balance);
7301
7302 /*
7303 * Stop searching for tasks to pull if there are
7304 * now runnable tasks on this rq.
7305 */
7306 if (pulled_task || this_rq->nr_running > 0)
7307 break;
7308 }
7309 rcu_read_unlock();
7310
7311 raw_spin_lock(&this_rq->lock);
7312
7313 if (curr_cost > this_rq->max_idle_balance_cost)
7314 this_rq->max_idle_balance_cost = curr_cost;
7315
7316 /*
7317 * While browsing the domains, we released the rq lock, a task could
7318 * have been enqueued in the meantime. Since we're not going idle,
7319 * pretend we pulled a task.
7320 */
7321 if (this_rq->cfs.h_nr_running && !pulled_task)
7322 pulled_task = 1;
7323
7324 out:
7325 /* Move the next balance forward */
7326 if (time_after(this_rq->next_balance, next_balance))
7327 this_rq->next_balance = next_balance;
7328
7329 /* Is there a task of a high priority class? */
7330 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7331 pulled_task = -1;
7332
7333 if (pulled_task) {
7334 idle_exit_fair(this_rq);
7335 this_rq->idle_stamp = 0;
7336 }
7337
7338 return pulled_task;
7339 }
7340
7341 /*
7342 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7343 * running tasks off the busiest CPU onto idle CPUs. It requires at
7344 * least 1 task to be running on each physical CPU where possible, and
7345 * avoids physical / logical imbalances.
7346 */
7347 static int active_load_balance_cpu_stop(void *data)
7348 {
7349 struct rq *busiest_rq = data;
7350 int busiest_cpu = cpu_of(busiest_rq);
7351 int target_cpu = busiest_rq->push_cpu;
7352 struct rq *target_rq = cpu_rq(target_cpu);
7353 struct sched_domain *sd;
7354 struct task_struct *p = NULL;
7355
7356 raw_spin_lock_irq(&busiest_rq->lock);
7357
7358 /* make sure the requested cpu hasn't gone down in the meantime */
7359 if (unlikely(busiest_cpu != smp_processor_id() ||
7360 !busiest_rq->active_balance))
7361 goto out_unlock;
7362
7363 /* Is there any task to move? */
7364 if (busiest_rq->nr_running <= 1)
7365 goto out_unlock;
7366
7367 /*
7368 * This condition is "impossible", if it occurs
7369 * we need to fix it. Originally reported by
7370 * Bjorn Helgaas on a 128-cpu setup.
7371 */
7372 BUG_ON(busiest_rq == target_rq);
7373
7374 /* Search for an sd spanning us and the target CPU. */
7375 rcu_read_lock();
7376 for_each_domain(target_cpu, sd) {
7377 if ((sd->flags & SD_LOAD_BALANCE) &&
7378 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7379 break;
7380 }
7381
7382 if (likely(sd)) {
7383 struct lb_env env = {
7384 .sd = sd,
7385 .dst_cpu = target_cpu,
7386 .dst_rq = target_rq,
7387 .src_cpu = busiest_rq->cpu,
7388 .src_rq = busiest_rq,
7389 .idle = CPU_IDLE,
7390 };
7391
7392 schedstat_inc(sd, alb_count);
7393
7394 p = detach_one_task(&env);
7395 if (p)
7396 schedstat_inc(sd, alb_pushed);
7397 else
7398 schedstat_inc(sd, alb_failed);
7399 }
7400 rcu_read_unlock();
7401 out_unlock:
7402 busiest_rq->active_balance = 0;
7403 raw_spin_unlock(&busiest_rq->lock);
7404
7405 if (p)
7406 attach_one_task(target_rq, p);
7407
7408 local_irq_enable();
7409
7410 return 0;
7411 }
7412
7413 static inline int on_null_domain(struct rq *rq)
7414 {
7415 return unlikely(!rcu_dereference_sched(rq->sd));
7416 }
7417
7418 #ifdef CONFIG_NO_HZ_COMMON
7419 /*
7420 * idle load balancing details
7421 * - When one of the busy CPUs notice that there may be an idle rebalancing
7422 * needed, they will kick the idle load balancer, which then does idle
7423 * load balancing for all the idle CPUs.
7424 */
7425 static struct {
7426 cpumask_var_t idle_cpus_mask;
7427 atomic_t nr_cpus;
7428 unsigned long next_balance; /* in jiffy units */
7429 } nohz ____cacheline_aligned;
7430
7431 static inline int find_new_ilb(void)
7432 {
7433 int ilb = cpumask_first(nohz.idle_cpus_mask);
7434
7435 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7436 return ilb;
7437
7438 return nr_cpu_ids;
7439 }
7440
7441 /*
7442 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7443 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7444 * CPU (if there is one).
7445 */
7446 static void nohz_balancer_kick(void)
7447 {
7448 int ilb_cpu;
7449
7450 nohz.next_balance++;
7451
7452 ilb_cpu = find_new_ilb();
7453
7454 if (ilb_cpu >= nr_cpu_ids)
7455 return;
7456
7457 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7458 return;
7459 /*
7460 * Use smp_send_reschedule() instead of resched_cpu().
7461 * This way we generate a sched IPI on the target cpu which
7462 * is idle. And the softirq performing nohz idle load balance
7463 * will be run before returning from the IPI.
7464 */
7465 smp_send_reschedule(ilb_cpu);
7466 return;
7467 }
7468
7469 static inline void nohz_balance_exit_idle(int cpu)
7470 {
7471 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7472 /*
7473 * Completely isolated CPUs don't ever set, so we must test.
7474 */
7475 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7476 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7477 atomic_dec(&nohz.nr_cpus);
7478 }
7479 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7480 }
7481 }
7482
7483 static inline void set_cpu_sd_state_busy(void)
7484 {
7485 struct sched_domain *sd;
7486 int cpu = smp_processor_id();
7487
7488 rcu_read_lock();
7489 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7490
7491 if (!sd || !sd->nohz_idle)
7492 goto unlock;
7493 sd->nohz_idle = 0;
7494
7495 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7496 unlock:
7497 rcu_read_unlock();
7498 }
7499
7500 void set_cpu_sd_state_idle(void)
7501 {
7502 struct sched_domain *sd;
7503 int cpu = smp_processor_id();
7504
7505 rcu_read_lock();
7506 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7507
7508 if (!sd || sd->nohz_idle)
7509 goto unlock;
7510 sd->nohz_idle = 1;
7511
7512 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7513 unlock:
7514 rcu_read_unlock();
7515 }
7516
7517 /*
7518 * This routine will record that the cpu is going idle with tick stopped.
7519 * This info will be used in performing idle load balancing in the future.
7520 */
7521 void nohz_balance_enter_idle(int cpu)
7522 {
7523 /*
7524 * If this cpu is going down, then nothing needs to be done.
7525 */
7526 if (!cpu_active(cpu))
7527 return;
7528
7529 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7530 return;
7531
7532 /*
7533 * If we're a completely isolated CPU, we don't play.
7534 */
7535 if (on_null_domain(cpu_rq(cpu)))
7536 return;
7537
7538 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7539 atomic_inc(&nohz.nr_cpus);
7540 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7541 }
7542
7543 static int sched_ilb_notifier(struct notifier_block *nfb,
7544 unsigned long action, void *hcpu)
7545 {
7546 switch (action & ~CPU_TASKS_FROZEN) {
7547 case CPU_DYING:
7548 nohz_balance_exit_idle(smp_processor_id());
7549 return NOTIFY_OK;
7550 default:
7551 return NOTIFY_DONE;
7552 }
7553 }
7554 #endif
7555
7556 static DEFINE_SPINLOCK(balancing);
7557
7558 /*
7559 * Scale the max load_balance interval with the number of CPUs in the system.
7560 * This trades load-balance latency on larger machines for less cross talk.
7561 */
7562 void update_max_interval(void)
7563 {
7564 max_load_balance_interval = HZ*num_online_cpus()/10;
7565 }
7566
7567 /*
7568 * It checks each scheduling domain to see if it is due to be balanced,
7569 * and initiates a balancing operation if so.
7570 *
7571 * Balancing parameters are set up in init_sched_domains.
7572 */
7573 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7574 {
7575 int continue_balancing = 1;
7576 int cpu = rq->cpu;
7577 unsigned long interval;
7578 struct sched_domain *sd;
7579 /* Earliest time when we have to do rebalance again */
7580 unsigned long next_balance = jiffies + 60*HZ;
7581 int update_next_balance = 0;
7582 int need_serialize, need_decay = 0;
7583 u64 max_cost = 0;
7584
7585 update_blocked_averages(cpu);
7586
7587 rcu_read_lock();
7588 for_each_domain(cpu, sd) {
7589 /*
7590 * Decay the newidle max times here because this is a regular
7591 * visit to all the domains. Decay ~1% per second.
7592 */
7593 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7594 sd->max_newidle_lb_cost =
7595 (sd->max_newidle_lb_cost * 253) / 256;
7596 sd->next_decay_max_lb_cost = jiffies + HZ;
7597 need_decay = 1;
7598 }
7599 max_cost += sd->max_newidle_lb_cost;
7600
7601 if (!(sd->flags & SD_LOAD_BALANCE))
7602 continue;
7603
7604 /*
7605 * Stop the load balance at this level. There is another
7606 * CPU in our sched group which is doing load balancing more
7607 * actively.
7608 */
7609 if (!continue_balancing) {
7610 if (need_decay)
7611 continue;
7612 break;
7613 }
7614
7615 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7616
7617 need_serialize = sd->flags & SD_SERIALIZE;
7618 if (need_serialize) {
7619 if (!spin_trylock(&balancing))
7620 goto out;
7621 }
7622
7623 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7624 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7625 /*
7626 * The LBF_DST_PINNED logic could have changed
7627 * env->dst_cpu, so we can't know our idle
7628 * state even if we migrated tasks. Update it.
7629 */
7630 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7631 }
7632 sd->last_balance = jiffies;
7633 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7634 }
7635 if (need_serialize)
7636 spin_unlock(&balancing);
7637 out:
7638 if (time_after(next_balance, sd->last_balance + interval)) {
7639 next_balance = sd->last_balance + interval;
7640 update_next_balance = 1;
7641 }
7642 }
7643 if (need_decay) {
7644 /*
7645 * Ensure the rq-wide value also decays but keep it at a
7646 * reasonable floor to avoid funnies with rq->avg_idle.
7647 */
7648 rq->max_idle_balance_cost =
7649 max((u64)sysctl_sched_migration_cost, max_cost);
7650 }
7651 rcu_read_unlock();
7652
7653 /*
7654 * next_balance will be updated only when there is a need.
7655 * When the cpu is attached to null domain for ex, it will not be
7656 * updated.
7657 */
7658 if (likely(update_next_balance)) {
7659 rq->next_balance = next_balance;
7660
7661 #ifdef CONFIG_NO_HZ_COMMON
7662 /*
7663 * If this CPU has been elected to perform the nohz idle
7664 * balance. Other idle CPUs have already rebalanced with
7665 * nohz_idle_balance() and nohz.next_balance has been
7666 * updated accordingly. This CPU is now running the idle load
7667 * balance for itself and we need to update the
7668 * nohz.next_balance accordingly.
7669 */
7670 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7671 nohz.next_balance = rq->next_balance;
7672 #endif
7673 }
7674 }
7675
7676 #ifdef CONFIG_NO_HZ_COMMON
7677 /*
7678 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7679 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7680 */
7681 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7682 {
7683 int this_cpu = this_rq->cpu;
7684 struct rq *rq;
7685 int balance_cpu;
7686 /* Earliest time when we have to do rebalance again */
7687 unsigned long next_balance = jiffies + 60*HZ;
7688 int update_next_balance = 0;
7689
7690 if (idle != CPU_IDLE ||
7691 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7692 goto end;
7693
7694 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7695 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7696 continue;
7697
7698 /*
7699 * If this cpu gets work to do, stop the load balancing
7700 * work being done for other cpus. Next load
7701 * balancing owner will pick it up.
7702 */
7703 if (need_resched())
7704 break;
7705
7706 rq = cpu_rq(balance_cpu);
7707
7708 /*
7709 * If time for next balance is due,
7710 * do the balance.
7711 */
7712 if (time_after_eq(jiffies, rq->next_balance)) {
7713 raw_spin_lock_irq(&rq->lock);
7714 update_rq_clock(rq);
7715 update_idle_cpu_load(rq);
7716 raw_spin_unlock_irq(&rq->lock);
7717 rebalance_domains(rq, CPU_IDLE);
7718 }
7719
7720 if (time_after(next_balance, rq->next_balance)) {
7721 next_balance = rq->next_balance;
7722 update_next_balance = 1;
7723 }
7724 }
7725
7726 /*
7727 * next_balance will be updated only when there is a need.
7728 * When the CPU is attached to null domain for ex, it will not be
7729 * updated.
7730 */
7731 if (likely(update_next_balance))
7732 nohz.next_balance = next_balance;
7733 end:
7734 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7735 }
7736
7737 /*
7738 * Current heuristic for kicking the idle load balancer in the presence
7739 * of an idle cpu in the system.
7740 * - This rq has more than one task.
7741 * - This rq has at least one CFS task and the capacity of the CPU is
7742 * significantly reduced because of RT tasks or IRQs.
7743 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7744 * multiple busy cpu.
7745 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7746 * domain span are idle.
7747 */
7748 static inline bool nohz_kick_needed(struct rq *rq)
7749 {
7750 unsigned long now = jiffies;
7751 struct sched_domain *sd;
7752 struct sched_group_capacity *sgc;
7753 int nr_busy, cpu = rq->cpu;
7754 bool kick = false;
7755
7756 if (unlikely(rq->idle_balance))
7757 return false;
7758
7759 /*
7760 * We may be recently in ticked or tickless idle mode. At the first
7761 * busy tick after returning from idle, we will update the busy stats.
7762 */
7763 set_cpu_sd_state_busy();
7764 nohz_balance_exit_idle(cpu);
7765
7766 /*
7767 * None are in tickless mode and hence no need for NOHZ idle load
7768 * balancing.
7769 */
7770 if (likely(!atomic_read(&nohz.nr_cpus)))
7771 return false;
7772
7773 if (time_before(now, nohz.next_balance))
7774 return false;
7775
7776 if (rq->nr_running >= 2)
7777 return true;
7778
7779 rcu_read_lock();
7780 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7781 if (sd) {
7782 sgc = sd->groups->sgc;
7783 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7784
7785 if (nr_busy > 1) {
7786 kick = true;
7787 goto unlock;
7788 }
7789
7790 }
7791
7792 sd = rcu_dereference(rq->sd);
7793 if (sd) {
7794 if ((rq->cfs.h_nr_running >= 1) &&
7795 check_cpu_capacity(rq, sd)) {
7796 kick = true;
7797 goto unlock;
7798 }
7799 }
7800
7801 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7802 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7803 sched_domain_span(sd)) < cpu)) {
7804 kick = true;
7805 goto unlock;
7806 }
7807
7808 unlock:
7809 rcu_read_unlock();
7810 return kick;
7811 }
7812 #else
7813 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7814 #endif
7815
7816 /*
7817 * run_rebalance_domains is triggered when needed from the scheduler tick.
7818 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7819 */
7820 static void run_rebalance_domains(struct softirq_action *h)
7821 {
7822 struct rq *this_rq = this_rq();
7823 enum cpu_idle_type idle = this_rq->idle_balance ?
7824 CPU_IDLE : CPU_NOT_IDLE;
7825
7826 /*
7827 * If this cpu has a pending nohz_balance_kick, then do the
7828 * balancing on behalf of the other idle cpus whose ticks are
7829 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7830 * give the idle cpus a chance to load balance. Else we may
7831 * load balance only within the local sched_domain hierarchy
7832 * and abort nohz_idle_balance altogether if we pull some load.
7833 */
7834 nohz_idle_balance(this_rq, idle);
7835 rebalance_domains(this_rq, idle);
7836 }
7837
7838 /*
7839 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7840 */
7841 void trigger_load_balance(struct rq *rq)
7842 {
7843 /* Don't need to rebalance while attached to NULL domain */
7844 if (unlikely(on_null_domain(rq)))
7845 return;
7846
7847 if (time_after_eq(jiffies, rq->next_balance))
7848 raise_softirq(SCHED_SOFTIRQ);
7849 #ifdef CONFIG_NO_HZ_COMMON
7850 if (nohz_kick_needed(rq))
7851 nohz_balancer_kick();
7852 #endif
7853 }
7854
7855 static void rq_online_fair(struct rq *rq)
7856 {
7857 update_sysctl();
7858
7859 update_runtime_enabled(rq);
7860 }
7861
7862 static void rq_offline_fair(struct rq *rq)
7863 {
7864 update_sysctl();
7865
7866 /* Ensure any throttled groups are reachable by pick_next_task */
7867 unthrottle_offline_cfs_rqs(rq);
7868 }
7869
7870 #endif /* CONFIG_SMP */
7871
7872 /*
7873 * scheduler tick hitting a task of our scheduling class:
7874 */
7875 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7876 {
7877 struct cfs_rq *cfs_rq;
7878 struct sched_entity *se = &curr->se;
7879
7880 for_each_sched_entity(se) {
7881 cfs_rq = cfs_rq_of(se);
7882 entity_tick(cfs_rq, se, queued);
7883 }
7884
7885 if (static_branch_unlikely(&sched_numa_balancing))
7886 task_tick_numa(rq, curr);
7887 }
7888
7889 /*
7890 * called on fork with the child task as argument from the parent's context
7891 * - child not yet on the tasklist
7892 * - preemption disabled
7893 */
7894 static void task_fork_fair(struct task_struct *p)
7895 {
7896 struct cfs_rq *cfs_rq;
7897 struct sched_entity *se = &p->se, *curr;
7898 int this_cpu = smp_processor_id();
7899 struct rq *rq = this_rq();
7900 unsigned long flags;
7901
7902 raw_spin_lock_irqsave(&rq->lock, flags);
7903
7904 update_rq_clock(rq);
7905
7906 cfs_rq = task_cfs_rq(current);
7907 curr = cfs_rq->curr;
7908
7909 /*
7910 * Not only the cpu but also the task_group of the parent might have
7911 * been changed after parent->se.parent,cfs_rq were copied to
7912 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7913 * of child point to valid ones.
7914 */
7915 rcu_read_lock();
7916 __set_task_cpu(p, this_cpu);
7917 rcu_read_unlock();
7918
7919 update_curr(cfs_rq);
7920
7921 if (curr)
7922 se->vruntime = curr->vruntime;
7923 place_entity(cfs_rq, se, 1);
7924
7925 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7926 /*
7927 * Upon rescheduling, sched_class::put_prev_task() will place
7928 * 'current' within the tree based on its new key value.
7929 */
7930 swap(curr->vruntime, se->vruntime);
7931 resched_curr(rq);
7932 }
7933
7934 se->vruntime -= cfs_rq->min_vruntime;
7935
7936 raw_spin_unlock_irqrestore(&rq->lock, flags);
7937 }
7938
7939 /*
7940 * Priority of the task has changed. Check to see if we preempt
7941 * the current task.
7942 */
7943 static void
7944 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7945 {
7946 if (!task_on_rq_queued(p))
7947 return;
7948
7949 /*
7950 * Reschedule if we are currently running on this runqueue and
7951 * our priority decreased, or if we are not currently running on
7952 * this runqueue and our priority is higher than the current's
7953 */
7954 if (rq->curr == p) {
7955 if (p->prio > oldprio)
7956 resched_curr(rq);
7957 } else
7958 check_preempt_curr(rq, p, 0);
7959 }
7960
7961 static inline bool vruntime_normalized(struct task_struct *p)
7962 {
7963 struct sched_entity *se = &p->se;
7964
7965 /*
7966 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
7967 * the dequeue_entity(.flags=0) will already have normalized the
7968 * vruntime.
7969 */
7970 if (p->on_rq)
7971 return true;
7972
7973 /*
7974 * When !on_rq, vruntime of the task has usually NOT been normalized.
7975 * But there are some cases where it has already been normalized:
7976 *
7977 * - A forked child which is waiting for being woken up by
7978 * wake_up_new_task().
7979 * - A task which has been woken up by try_to_wake_up() and
7980 * waiting for actually being woken up by sched_ttwu_pending().
7981 */
7982 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
7983 return true;
7984
7985 return false;
7986 }
7987
7988 static void detach_task_cfs_rq(struct task_struct *p)
7989 {
7990 struct sched_entity *se = &p->se;
7991 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7992
7993 if (!vruntime_normalized(p)) {
7994 /*
7995 * Fix up our vruntime so that the current sleep doesn't
7996 * cause 'unlimited' sleep bonus.
7997 */
7998 place_entity(cfs_rq, se, 0);
7999 se->vruntime -= cfs_rq->min_vruntime;
8000 }
8001
8002 /* Catch up with the cfs_rq and remove our load when we leave */
8003 detach_entity_load_avg(cfs_rq, se);
8004 }
8005
8006 static void attach_task_cfs_rq(struct task_struct *p)
8007 {
8008 struct sched_entity *se = &p->se;
8009 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8010
8011 #ifdef CONFIG_FAIR_GROUP_SCHED
8012 /*
8013 * Since the real-depth could have been changed (only FAIR
8014 * class maintain depth value), reset depth properly.
8015 */
8016 se->depth = se->parent ? se->parent->depth + 1 : 0;
8017 #endif
8018
8019 /* Synchronize task with its cfs_rq */
8020 attach_entity_load_avg(cfs_rq, se);
8021
8022 if (!vruntime_normalized(p))
8023 se->vruntime += cfs_rq->min_vruntime;
8024 }
8025
8026 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8027 {
8028 detach_task_cfs_rq(p);
8029 }
8030
8031 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8032 {
8033 attach_task_cfs_rq(p);
8034
8035 if (task_on_rq_queued(p)) {
8036 /*
8037 * We were most likely switched from sched_rt, so
8038 * kick off the schedule if running, otherwise just see
8039 * if we can still preempt the current task.
8040 */
8041 if (rq->curr == p)
8042 resched_curr(rq);
8043 else
8044 check_preempt_curr(rq, p, 0);
8045 }
8046 }
8047
8048 /* Account for a task changing its policy or group.
8049 *
8050 * This routine is mostly called to set cfs_rq->curr field when a task
8051 * migrates between groups/classes.
8052 */
8053 static void set_curr_task_fair(struct rq *rq)
8054 {
8055 struct sched_entity *se = &rq->curr->se;
8056
8057 for_each_sched_entity(se) {
8058 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8059
8060 set_next_entity(cfs_rq, se);
8061 /* ensure bandwidth has been allocated on our new cfs_rq */
8062 account_cfs_rq_runtime(cfs_rq, 0);
8063 }
8064 }
8065
8066 void init_cfs_rq(struct cfs_rq *cfs_rq)
8067 {
8068 cfs_rq->tasks_timeline = RB_ROOT;
8069 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8070 #ifndef CONFIG_64BIT
8071 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8072 #endif
8073 #ifdef CONFIG_SMP
8074 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8075 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8076 #endif
8077 }
8078
8079 #ifdef CONFIG_FAIR_GROUP_SCHED
8080 static void task_move_group_fair(struct task_struct *p)
8081 {
8082 detach_task_cfs_rq(p);
8083 set_task_rq(p, task_cpu(p));
8084
8085 #ifdef CONFIG_SMP
8086 /* Tell se's cfs_rq has been changed -- migrated */
8087 p->se.avg.last_update_time = 0;
8088 #endif
8089 attach_task_cfs_rq(p);
8090 }
8091
8092 void free_fair_sched_group(struct task_group *tg)
8093 {
8094 int i;
8095
8096 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8097
8098 for_each_possible_cpu(i) {
8099 if (tg->cfs_rq)
8100 kfree(tg->cfs_rq[i]);
8101 if (tg->se) {
8102 if (tg->se[i])
8103 remove_entity_load_avg(tg->se[i]);
8104 kfree(tg->se[i]);
8105 }
8106 }
8107
8108 kfree(tg->cfs_rq);
8109 kfree(tg->se);
8110 }
8111
8112 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8113 {
8114 struct cfs_rq *cfs_rq;
8115 struct sched_entity *se;
8116 int i;
8117
8118 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8119 if (!tg->cfs_rq)
8120 goto err;
8121 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8122 if (!tg->se)
8123 goto err;
8124
8125 tg->shares = NICE_0_LOAD;
8126
8127 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8128
8129 for_each_possible_cpu(i) {
8130 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8131 GFP_KERNEL, cpu_to_node(i));
8132 if (!cfs_rq)
8133 goto err;
8134
8135 se = kzalloc_node(sizeof(struct sched_entity),
8136 GFP_KERNEL, cpu_to_node(i));
8137 if (!se)
8138 goto err_free_rq;
8139
8140 init_cfs_rq(cfs_rq);
8141 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8142 init_entity_runnable_average(se);
8143 }
8144
8145 return 1;
8146
8147 err_free_rq:
8148 kfree(cfs_rq);
8149 err:
8150 return 0;
8151 }
8152
8153 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8154 {
8155 struct rq *rq = cpu_rq(cpu);
8156 unsigned long flags;
8157
8158 /*
8159 * Only empty task groups can be destroyed; so we can speculatively
8160 * check on_list without danger of it being re-added.
8161 */
8162 if (!tg->cfs_rq[cpu]->on_list)
8163 return;
8164
8165 raw_spin_lock_irqsave(&rq->lock, flags);
8166 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8167 raw_spin_unlock_irqrestore(&rq->lock, flags);
8168 }
8169
8170 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8171 struct sched_entity *se, int cpu,
8172 struct sched_entity *parent)
8173 {
8174 struct rq *rq = cpu_rq(cpu);
8175
8176 cfs_rq->tg = tg;
8177 cfs_rq->rq = rq;
8178 init_cfs_rq_runtime(cfs_rq);
8179
8180 tg->cfs_rq[cpu] = cfs_rq;
8181 tg->se[cpu] = se;
8182
8183 /* se could be NULL for root_task_group */
8184 if (!se)
8185 return;
8186
8187 if (!parent) {
8188 se->cfs_rq = &rq->cfs;
8189 se->depth = 0;
8190 } else {
8191 se->cfs_rq = parent->my_q;
8192 se->depth = parent->depth + 1;
8193 }
8194
8195 se->my_q = cfs_rq;
8196 /* guarantee group entities always have weight */
8197 update_load_set(&se->load, NICE_0_LOAD);
8198 se->parent = parent;
8199 }
8200
8201 static DEFINE_MUTEX(shares_mutex);
8202
8203 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8204 {
8205 int i;
8206 unsigned long flags;
8207
8208 /*
8209 * We can't change the weight of the root cgroup.
8210 */
8211 if (!tg->se[0])
8212 return -EINVAL;
8213
8214 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8215
8216 mutex_lock(&shares_mutex);
8217 if (tg->shares == shares)
8218 goto done;
8219
8220 tg->shares = shares;
8221 for_each_possible_cpu(i) {
8222 struct rq *rq = cpu_rq(i);
8223 struct sched_entity *se;
8224
8225 se = tg->se[i];
8226 /* Propagate contribution to hierarchy */
8227 raw_spin_lock_irqsave(&rq->lock, flags);
8228
8229 /* Possible calls to update_curr() need rq clock */
8230 update_rq_clock(rq);
8231 for_each_sched_entity(se)
8232 update_cfs_shares(group_cfs_rq(se));
8233 raw_spin_unlock_irqrestore(&rq->lock, flags);
8234 }
8235
8236 done:
8237 mutex_unlock(&shares_mutex);
8238 return 0;
8239 }
8240 #else /* CONFIG_FAIR_GROUP_SCHED */
8241
8242 void free_fair_sched_group(struct task_group *tg) { }
8243
8244 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8245 {
8246 return 1;
8247 }
8248
8249 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8250
8251 #endif /* CONFIG_FAIR_GROUP_SCHED */
8252
8253
8254 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8255 {
8256 struct sched_entity *se = &task->se;
8257 unsigned int rr_interval = 0;
8258
8259 /*
8260 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8261 * idle runqueue:
8262 */
8263 if (rq->cfs.load.weight)
8264 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8265
8266 return rr_interval;
8267 }
8268
8269 /*
8270 * All the scheduling class methods:
8271 */
8272 const struct sched_class fair_sched_class = {
8273 .next = &idle_sched_class,
8274 .enqueue_task = enqueue_task_fair,
8275 .dequeue_task = dequeue_task_fair,
8276 .yield_task = yield_task_fair,
8277 .yield_to_task = yield_to_task_fair,
8278
8279 .check_preempt_curr = check_preempt_wakeup,
8280
8281 .pick_next_task = pick_next_task_fair,
8282 .put_prev_task = put_prev_task_fair,
8283
8284 #ifdef CONFIG_SMP
8285 .select_task_rq = select_task_rq_fair,
8286 .migrate_task_rq = migrate_task_rq_fair,
8287
8288 .rq_online = rq_online_fair,
8289 .rq_offline = rq_offline_fair,
8290
8291 .task_waking = task_waking_fair,
8292 .task_dead = task_dead_fair,
8293 .set_cpus_allowed = set_cpus_allowed_common,
8294 #endif
8295
8296 .set_curr_task = set_curr_task_fair,
8297 .task_tick = task_tick_fair,
8298 .task_fork = task_fork_fair,
8299
8300 .prio_changed = prio_changed_fair,
8301 .switched_from = switched_from_fair,
8302 .switched_to = switched_to_fair,
8303
8304 .get_rr_interval = get_rr_interval_fair,
8305
8306 .update_curr = update_curr_fair,
8307
8308 #ifdef CONFIG_FAIR_GROUP_SCHED
8309 .task_move_group = task_move_group_fair,
8310 #endif
8311 };
8312
8313 #ifdef CONFIG_SCHED_DEBUG
8314 void print_cfs_stats(struct seq_file *m, int cpu)
8315 {
8316 struct cfs_rq *cfs_rq;
8317
8318 rcu_read_lock();
8319 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8320 print_cfs_rq(m, cpu, cfs_rq);
8321 rcu_read_unlock();
8322 }
8323
8324 #ifdef CONFIG_NUMA_BALANCING
8325 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8326 {
8327 int node;
8328 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8329
8330 for_each_online_node(node) {
8331 if (p->numa_faults) {
8332 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8333 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8334 }
8335 if (p->numa_group) {
8336 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8337 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8338 }
8339 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8340 }
8341 }
8342 #endif /* CONFIG_NUMA_BALANCING */
8343 #endif /* CONFIG_SCHED_DEBUG */
8344
8345 __init void init_sched_fair_class(void)
8346 {
8347 #ifdef CONFIG_SMP
8348 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8349
8350 #ifdef CONFIG_NO_HZ_COMMON
8351 nohz.next_balance = jiffies;
8352 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8353 cpu_notifier(sched_ilb_notifier, 0);
8354 #endif
8355 #endif /* SMP */
8356
8357 }
This page took 0.215059 seconds and 4 git commands to generate.