b1e5061287ab6e935b1b5da9aef1d2f54cae7a14
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
183 #else
184 # define WMULT_CONST (1UL << 32)
185 #endif
186
187 #define WMULT_SHIFT 32
188
189 /*
190 * Shift right and round:
191 */
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194 /*
195 * delta *= weight / lw
196 */
197 static unsigned long
198 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200 {
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234 }
235
236
237 const struct sched_class fair_sched_class;
238
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247 {
248 return cfs_rq->rq;
249 }
250
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
253
254 static inline struct task_struct *task_of(struct sched_entity *se)
255 {
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258 #endif
259 return container_of(se, struct task_struct, se);
260 }
261
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267 {
268 return p->se.cfs_rq;
269 }
270
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273 {
274 return se->cfs_rq;
275 }
276
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279 {
280 return grp->my_q;
281 }
282
283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq, 0);
307 }
308 }
309
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316 }
317
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322 /* Do the two (enqueued) entities belong to the same group ? */
323 static inline int
324 is_same_group(struct sched_entity *se, struct sched_entity *pse)
325 {
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330 }
331
332 static inline struct sched_entity *parent_entity(struct sched_entity *se)
333 {
334 return se->parent;
335 }
336
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity *se)
339 {
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346 }
347
348 static void
349 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350 {
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378 }
379
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
381
382 static inline struct task_struct *task_of(struct sched_entity *se)
383 {
384 return container_of(se, struct task_struct, se);
385 }
386
387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388 {
389 return container_of(cfs_rq, struct rq, cfs);
390 }
391
392 #define entity_is_task(se) 1
393
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
396
397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398 {
399 return &task_rq(p)->cfs;
400 }
401
402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403 {
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408 }
409
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412 {
413 return NULL;
414 }
415
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417 {
418 }
419
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421 {
422 }
423
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427 static inline int
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
429 {
430 return 1;
431 }
432
433 static inline struct sched_entity *parent_entity(struct sched_entity *se)
434 {
435 return NULL;
436 }
437
438 static inline void
439 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440 {
441 }
442
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
444
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453 {
454 s64 delta = (s64)(vruntime - max_vruntime);
455 if (delta > 0)
456 max_vruntime = vruntime;
457
458 return max_vruntime;
459 }
460
461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
462 {
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468 }
469
470 static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472 {
473 return (s64)(a->vruntime - b->vruntime) < 0;
474 }
475
476 static void update_min_vruntime(struct cfs_rq *cfs_rq)
477 {
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
488 if (!cfs_rq->curr)
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 #ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499 #endif
500 }
501
502 /*
503 * Enqueue an entity into the rb-tree:
504 */
505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 {
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
522 if (entity_before(se, entry)) {
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
534 if (leftmost)
535 cfs_rq->rb_leftmost = &se->run_node;
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
539 }
540
541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
548 }
549
550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
551 }
552
553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554 {
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
561 }
562
563 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564 {
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571 }
572
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575 {
576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577
578 if (!last)
579 return NULL;
580
581 return rb_entry(last, struct sched_entity, run_node);
582 }
583
584 /**************************************************************
585 * Scheduling class statistics methods:
586 */
587
588 int sched_proc_update_handler(struct ctl_table *table, int write,
589 void __user *buffer, size_t *lenp,
590 loff_t *ppos)
591 {
592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593 int factor = get_update_sysctl_factor();
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
606 #undef WRT_SYSCTL
607
608 return 0;
609 }
610 #endif
611
612 /*
613 * delta /= w
614 */
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta, struct sched_entity *se)
617 {
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620
621 return delta;
622 }
623
624 /*
625 * The idea is to set a period in which each task runs once.
626 *
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
632 static u64 __sched_period(unsigned long nr_running)
633 {
634 u64 period = sysctl_sched_latency;
635 unsigned long nr_latency = sched_nr_latency;
636
637 if (unlikely(nr_running > nr_latency)) {
638 period = sysctl_sched_min_granularity;
639 period *= nr_running;
640 }
641
642 return period;
643 }
644
645 /*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
649 * s = p*P[w/rw]
650 */
651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654
655 for_each_sched_entity(se) {
656 struct load_weight *load;
657 struct load_weight lw;
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
661
662 if (unlikely(!se->on_rq)) {
663 lw = cfs_rq->load;
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
671 }
672
673 /*
674 * We calculate the vruntime slice of a to-be-inserted task.
675 *
676 * vs = s/w
677 */
678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
679 {
680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 }
682
683 #ifdef CONFIG_SMP
684 static inline void __update_task_entity_contrib(struct sched_entity *se);
685
686 /* Give new task start runnable values to heavy its load in infant time */
687 void init_task_runnable_average(struct task_struct *p)
688 {
689 u32 slice;
690
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
696 }
697 #else
698 void init_task_runnable_average(struct task_struct *p)
699 {
700 }
701 #endif
702
703 /*
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
706 */
707 static inline void
708 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
710 {
711 unsigned long delta_exec_weighted;
712
713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
715
716 curr->sum_exec_runtime += delta_exec;
717 schedstat_add(cfs_rq, exec_clock, delta_exec);
718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
719
720 curr->vruntime += delta_exec_weighted;
721 update_min_vruntime(cfs_rq);
722 }
723
724 static void update_curr(struct cfs_rq *cfs_rq)
725 {
726 struct sched_entity *curr = cfs_rq->curr;
727 u64 now = rq_clock_task(rq_of(cfs_rq));
728 unsigned long delta_exec;
729
730 if (unlikely(!curr))
731 return;
732
733 /*
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
737 */
738 delta_exec = (unsigned long)(now - curr->exec_start);
739 if (!delta_exec)
740 return;
741
742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
744
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
747
748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
749 cpuacct_charge(curtask, delta_exec);
750 account_group_exec_runtime(curtask, delta_exec);
751 }
752
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
754 }
755
756 static inline void
757 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
758 {
759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
760 }
761
762 /*
763 * Task is being enqueued - update stats:
764 */
765 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
766 {
767 /*
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
770 */
771 if (se != cfs_rq->curr)
772 update_stats_wait_start(cfs_rq, se);
773 }
774
775 static void
776 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
777 {
778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
783 #ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
787 }
788 #endif
789 schedstat_set(se->statistics.wait_start, 0);
790 }
791
792 static inline void
793 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 {
795 /*
796 * Mark the end of the wait period if dequeueing a
797 * waiting task:
798 */
799 if (se != cfs_rq->curr)
800 update_stats_wait_end(cfs_rq, se);
801 }
802
803 /*
804 * We are picking a new current task - update its stats:
805 */
806 static inline void
807 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
808 {
809 /*
810 * We are starting a new run period:
811 */
812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
813 }
814
815 /**************************************************
816 * Scheduling class queueing methods:
817 */
818
819 #ifdef CONFIG_NUMA_BALANCING
820 /*
821 * Approximate time to scan a full NUMA task in ms. The task scan period is
822 * calculated based on the tasks virtual memory size and
823 * numa_balancing_scan_size.
824 */
825 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
826 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
827 unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
828
829 /* Portion of address space to scan in MB */
830 unsigned int sysctl_numa_balancing_scan_size = 256;
831
832 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
833 unsigned int sysctl_numa_balancing_scan_delay = 1000;
834
835 static unsigned int task_nr_scan_windows(struct task_struct *p)
836 {
837 unsigned long rss = 0;
838 unsigned long nr_scan_pages;
839
840 /*
841 * Calculations based on RSS as non-present and empty pages are skipped
842 * by the PTE scanner and NUMA hinting faults should be trapped based
843 * on resident pages
844 */
845 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
846 rss = get_mm_rss(p->mm);
847 if (!rss)
848 rss = nr_scan_pages;
849
850 rss = round_up(rss, nr_scan_pages);
851 return rss / nr_scan_pages;
852 }
853
854 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
855 #define MAX_SCAN_WINDOW 2560
856
857 static unsigned int task_scan_min(struct task_struct *p)
858 {
859 unsigned int scan, floor;
860 unsigned int windows = 1;
861
862 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
863 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
864 floor = 1000 / windows;
865
866 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
867 return max_t(unsigned int, floor, scan);
868 }
869
870 static unsigned int task_scan_max(struct task_struct *p)
871 {
872 unsigned int smin = task_scan_min(p);
873 unsigned int smax;
874
875 /* Watch for min being lower than max due to floor calculations */
876 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
877 return max(smin, smax);
878 }
879
880 /*
881 * Once a preferred node is selected the scheduler balancer will prefer moving
882 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
883 * scans. This will give the process the chance to accumulate more faults on
884 * the preferred node but still allow the scheduler to move the task again if
885 * the nodes CPUs are overloaded.
886 */
887 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
888
889 static inline int task_faults_idx(int nid, int priv)
890 {
891 return 2 * nid + priv;
892 }
893
894 static inline unsigned long task_faults(struct task_struct *p, int nid)
895 {
896 if (!p->numa_faults)
897 return 0;
898
899 return p->numa_faults[task_faults_idx(nid, 0)] +
900 p->numa_faults[task_faults_idx(nid, 1)];
901 }
902
903 static unsigned long weighted_cpuload(const int cpu);
904 static unsigned long source_load(int cpu, int type);
905 static unsigned long target_load(int cpu, int type);
906 static unsigned long power_of(int cpu);
907 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
908
909 struct numa_stats {
910 unsigned long load;
911 s64 eff_load;
912 unsigned long faults;
913 };
914
915 struct task_numa_env {
916 struct task_struct *p;
917
918 int src_cpu, src_nid;
919 int dst_cpu, dst_nid;
920
921 struct numa_stats src_stats, dst_stats;
922
923 unsigned long best_load;
924 int best_cpu;
925 };
926
927 static int task_numa_migrate(struct task_struct *p)
928 {
929 int node_cpu = cpumask_first(cpumask_of_node(p->numa_preferred_nid));
930 struct task_numa_env env = {
931 .p = p,
932 .src_cpu = task_cpu(p),
933 .src_nid = cpu_to_node(task_cpu(p)),
934 .dst_cpu = node_cpu,
935 .dst_nid = p->numa_preferred_nid,
936 .best_load = ULONG_MAX,
937 .best_cpu = task_cpu(p),
938 };
939 struct sched_domain *sd;
940 int cpu;
941 struct task_group *tg = task_group(p);
942 unsigned long weight;
943 bool balanced;
944 int imbalance_pct, idx = -1;
945
946 /*
947 * Find the lowest common scheduling domain covering the nodes of both
948 * the CPU the task is currently running on and the target NUMA node.
949 */
950 rcu_read_lock();
951 for_each_domain(env.src_cpu, sd) {
952 if (cpumask_test_cpu(node_cpu, sched_domain_span(sd))) {
953 /*
954 * busy_idx is used for the load decision as it is the
955 * same index used by the regular load balancer for an
956 * active cpu.
957 */
958 idx = sd->busy_idx;
959 imbalance_pct = sd->imbalance_pct;
960 break;
961 }
962 }
963 rcu_read_unlock();
964
965 if (WARN_ON_ONCE(idx == -1))
966 return 0;
967
968 /*
969 * XXX the below is mostly nicked from wake_affine(); we should
970 * see about sharing a bit if at all possible; also it might want
971 * some per entity weight love.
972 */
973 weight = p->se.load.weight;
974 env.src_stats.load = source_load(env.src_cpu, idx);
975 env.src_stats.eff_load = 100 + (imbalance_pct - 100) / 2;
976 env.src_stats.eff_load *= power_of(env.src_cpu);
977 env.src_stats.eff_load *= env.src_stats.load + effective_load(tg, env.src_cpu, -weight, -weight);
978
979 for_each_cpu(cpu, cpumask_of_node(env.dst_nid)) {
980 env.dst_cpu = cpu;
981 env.dst_stats.load = target_load(cpu, idx);
982
983 /* If the CPU is idle, use it */
984 if (!env.dst_stats.load) {
985 env.best_cpu = cpu;
986 goto migrate;
987 }
988
989 /* Otherwise check the target CPU load */
990 env.dst_stats.eff_load = 100;
991 env.dst_stats.eff_load *= power_of(cpu);
992 env.dst_stats.eff_load *= env.dst_stats.load + effective_load(tg, cpu, weight, weight);
993
994 /*
995 * Destination is considered balanced if the destination CPU is
996 * less loaded than the source CPU. Unfortunately there is a
997 * risk that a task running on a lightly loaded CPU will not
998 * migrate to its preferred node due to load imbalances.
999 */
1000 balanced = (env.dst_stats.eff_load <= env.src_stats.eff_load);
1001 if (!balanced)
1002 continue;
1003
1004 if (env.dst_stats.eff_load < env.best_load) {
1005 env.best_load = env.dst_stats.eff_load;
1006 env.best_cpu = cpu;
1007 }
1008 }
1009
1010 migrate:
1011 return migrate_task_to(p, env.best_cpu);
1012 }
1013
1014 /* Attempt to migrate a task to a CPU on the preferred node. */
1015 static void numa_migrate_preferred(struct task_struct *p)
1016 {
1017 /* Success if task is already running on preferred CPU */
1018 p->numa_migrate_retry = 0;
1019 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1020 /*
1021 * If migration is temporarily disabled due to a task migration
1022 * then re-enable it now as the task is running on its
1023 * preferred node and memory should migrate locally
1024 */
1025 if (!p->numa_migrate_seq)
1026 p->numa_migrate_seq++;
1027 return;
1028 }
1029
1030 /* This task has no NUMA fault statistics yet */
1031 if (unlikely(p->numa_preferred_nid == -1))
1032 return;
1033
1034 /* Otherwise, try migrate to a CPU on the preferred node */
1035 if (task_numa_migrate(p) != 0)
1036 p->numa_migrate_retry = jiffies + HZ*5;
1037 }
1038
1039 static void task_numa_placement(struct task_struct *p)
1040 {
1041 int seq, nid, max_nid = -1;
1042 unsigned long max_faults = 0;
1043
1044 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1045 if (p->numa_scan_seq == seq)
1046 return;
1047 p->numa_scan_seq = seq;
1048 p->numa_migrate_seq++;
1049 p->numa_scan_period_max = task_scan_max(p);
1050
1051 /* Find the node with the highest number of faults */
1052 for_each_online_node(nid) {
1053 unsigned long faults;
1054 int priv, i;
1055
1056 for (priv = 0; priv < 2; priv++) {
1057 i = task_faults_idx(nid, priv);
1058
1059 /* Decay existing window, copy faults since last scan */
1060 p->numa_faults[i] >>= 1;
1061 p->numa_faults[i] += p->numa_faults_buffer[i];
1062 p->numa_faults_buffer[i] = 0;
1063 }
1064
1065 /* Find maximum private faults */
1066 faults = p->numa_faults[task_faults_idx(nid, 1)];
1067 if (faults > max_faults) {
1068 max_faults = faults;
1069 max_nid = nid;
1070 }
1071 }
1072
1073 /* Preferred node as the node with the most faults */
1074 if (max_faults && max_nid != p->numa_preferred_nid) {
1075 /* Update the preferred nid and migrate task if possible */
1076 p->numa_preferred_nid = max_nid;
1077 p->numa_migrate_seq = 1;
1078 numa_migrate_preferred(p);
1079 }
1080 }
1081
1082 /*
1083 * Got a PROT_NONE fault for a page on @node.
1084 */
1085 void task_numa_fault(int last_nidpid, int node, int pages, bool migrated)
1086 {
1087 struct task_struct *p = current;
1088 int priv;
1089
1090 if (!numabalancing_enabled)
1091 return;
1092
1093 /* for example, ksmd faulting in a user's mm */
1094 if (!p->mm)
1095 return;
1096
1097 /*
1098 * First accesses are treated as private, otherwise consider accesses
1099 * to be private if the accessing pid has not changed
1100 */
1101 if (!nidpid_pid_unset(last_nidpid))
1102 priv = ((p->pid & LAST__PID_MASK) == nidpid_to_pid(last_nidpid));
1103 else
1104 priv = 1;
1105
1106 /* Allocate buffer to track faults on a per-node basis */
1107 if (unlikely(!p->numa_faults)) {
1108 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1109
1110 /* numa_faults and numa_faults_buffer share the allocation */
1111 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1112 if (!p->numa_faults)
1113 return;
1114
1115 BUG_ON(p->numa_faults_buffer);
1116 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1117 }
1118
1119 /*
1120 * If pages are properly placed (did not migrate) then scan slower.
1121 * This is reset periodically in case of phase changes
1122 */
1123 if (!migrated) {
1124 /* Initialise if necessary */
1125 if (!p->numa_scan_period_max)
1126 p->numa_scan_period_max = task_scan_max(p);
1127
1128 p->numa_scan_period = min(p->numa_scan_period_max,
1129 p->numa_scan_period + 10);
1130 }
1131
1132 task_numa_placement(p);
1133
1134 /* Retry task to preferred node migration if it previously failed */
1135 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1136 numa_migrate_preferred(p);
1137
1138 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1139 }
1140
1141 static void reset_ptenuma_scan(struct task_struct *p)
1142 {
1143 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1144 p->mm->numa_scan_offset = 0;
1145 }
1146
1147 /*
1148 * The expensive part of numa migration is done from task_work context.
1149 * Triggered from task_tick_numa().
1150 */
1151 void task_numa_work(struct callback_head *work)
1152 {
1153 unsigned long migrate, next_scan, now = jiffies;
1154 struct task_struct *p = current;
1155 struct mm_struct *mm = p->mm;
1156 struct vm_area_struct *vma;
1157 unsigned long start, end;
1158 unsigned long nr_pte_updates = 0;
1159 long pages;
1160
1161 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1162
1163 work->next = work; /* protect against double add */
1164 /*
1165 * Who cares about NUMA placement when they're dying.
1166 *
1167 * NOTE: make sure not to dereference p->mm before this check,
1168 * exit_task_work() happens _after_ exit_mm() so we could be called
1169 * without p->mm even though we still had it when we enqueued this
1170 * work.
1171 */
1172 if (p->flags & PF_EXITING)
1173 return;
1174
1175 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1176 mm->numa_next_scan = now +
1177 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1178 mm->numa_next_reset = now +
1179 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1180 }
1181
1182 /*
1183 * Reset the scan period if enough time has gone by. Objective is that
1184 * scanning will be reduced if pages are properly placed. As tasks
1185 * can enter different phases this needs to be re-examined. Lacking
1186 * proper tracking of reference behaviour, this blunt hammer is used.
1187 */
1188 migrate = mm->numa_next_reset;
1189 if (time_after(now, migrate)) {
1190 p->numa_scan_period = task_scan_min(p);
1191 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1192 xchg(&mm->numa_next_reset, next_scan);
1193 }
1194
1195 /*
1196 * Enforce maximal scan/migration frequency..
1197 */
1198 migrate = mm->numa_next_scan;
1199 if (time_before(now, migrate))
1200 return;
1201
1202 if (p->numa_scan_period == 0) {
1203 p->numa_scan_period_max = task_scan_max(p);
1204 p->numa_scan_period = task_scan_min(p);
1205 }
1206
1207 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1208 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1209 return;
1210
1211 /*
1212 * Delay this task enough that another task of this mm will likely win
1213 * the next time around.
1214 */
1215 p->node_stamp += 2 * TICK_NSEC;
1216
1217 start = mm->numa_scan_offset;
1218 pages = sysctl_numa_balancing_scan_size;
1219 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1220 if (!pages)
1221 return;
1222
1223 down_read(&mm->mmap_sem);
1224 vma = find_vma(mm, start);
1225 if (!vma) {
1226 reset_ptenuma_scan(p);
1227 start = 0;
1228 vma = mm->mmap;
1229 }
1230 for (; vma; vma = vma->vm_next) {
1231 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1232 continue;
1233
1234 /*
1235 * Shared library pages mapped by multiple processes are not
1236 * migrated as it is expected they are cache replicated. Avoid
1237 * hinting faults in read-only file-backed mappings or the vdso
1238 * as migrating the pages will be of marginal benefit.
1239 */
1240 if (!vma->vm_mm ||
1241 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1242 continue;
1243
1244 do {
1245 start = max(start, vma->vm_start);
1246 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1247 end = min(end, vma->vm_end);
1248 nr_pte_updates += change_prot_numa(vma, start, end);
1249
1250 /*
1251 * Scan sysctl_numa_balancing_scan_size but ensure that
1252 * at least one PTE is updated so that unused virtual
1253 * address space is quickly skipped.
1254 */
1255 if (nr_pte_updates)
1256 pages -= (end - start) >> PAGE_SHIFT;
1257
1258 start = end;
1259 if (pages <= 0)
1260 goto out;
1261 } while (end != vma->vm_end);
1262 }
1263
1264 out:
1265 /*
1266 * If the whole process was scanned without updates then no NUMA
1267 * hinting faults are being recorded and scan rate should be lower.
1268 */
1269 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1270 p->numa_scan_period = min(p->numa_scan_period_max,
1271 p->numa_scan_period << 1);
1272
1273 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1274 mm->numa_next_scan = next_scan;
1275 }
1276
1277 /*
1278 * It is possible to reach the end of the VMA list but the last few
1279 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1280 * would find the !migratable VMA on the next scan but not reset the
1281 * scanner to the start so check it now.
1282 */
1283 if (vma)
1284 mm->numa_scan_offset = start;
1285 else
1286 reset_ptenuma_scan(p);
1287 up_read(&mm->mmap_sem);
1288 }
1289
1290 /*
1291 * Drive the periodic memory faults..
1292 */
1293 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1294 {
1295 struct callback_head *work = &curr->numa_work;
1296 u64 period, now;
1297
1298 /*
1299 * We don't care about NUMA placement if we don't have memory.
1300 */
1301 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1302 return;
1303
1304 /*
1305 * Using runtime rather than walltime has the dual advantage that
1306 * we (mostly) drive the selection from busy threads and that the
1307 * task needs to have done some actual work before we bother with
1308 * NUMA placement.
1309 */
1310 now = curr->se.sum_exec_runtime;
1311 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1312
1313 if (now - curr->node_stamp > period) {
1314 if (!curr->node_stamp)
1315 curr->numa_scan_period = task_scan_min(curr);
1316 curr->node_stamp += period;
1317
1318 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1319 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1320 task_work_add(curr, work, true);
1321 }
1322 }
1323 }
1324 #else
1325 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1326 {
1327 }
1328 #endif /* CONFIG_NUMA_BALANCING */
1329
1330 static void
1331 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1332 {
1333 update_load_add(&cfs_rq->load, se->load.weight);
1334 if (!parent_entity(se))
1335 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1336 #ifdef CONFIG_SMP
1337 if (entity_is_task(se))
1338 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1339 #endif
1340 cfs_rq->nr_running++;
1341 }
1342
1343 static void
1344 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1345 {
1346 update_load_sub(&cfs_rq->load, se->load.weight);
1347 if (!parent_entity(se))
1348 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1349 if (entity_is_task(se))
1350 list_del_init(&se->group_node);
1351 cfs_rq->nr_running--;
1352 }
1353
1354 #ifdef CONFIG_FAIR_GROUP_SCHED
1355 # ifdef CONFIG_SMP
1356 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1357 {
1358 long tg_weight;
1359
1360 /*
1361 * Use this CPU's actual weight instead of the last load_contribution
1362 * to gain a more accurate current total weight. See
1363 * update_cfs_rq_load_contribution().
1364 */
1365 tg_weight = atomic_long_read(&tg->load_avg);
1366 tg_weight -= cfs_rq->tg_load_contrib;
1367 tg_weight += cfs_rq->load.weight;
1368
1369 return tg_weight;
1370 }
1371
1372 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1373 {
1374 long tg_weight, load, shares;
1375
1376 tg_weight = calc_tg_weight(tg, cfs_rq);
1377 load = cfs_rq->load.weight;
1378
1379 shares = (tg->shares * load);
1380 if (tg_weight)
1381 shares /= tg_weight;
1382
1383 if (shares < MIN_SHARES)
1384 shares = MIN_SHARES;
1385 if (shares > tg->shares)
1386 shares = tg->shares;
1387
1388 return shares;
1389 }
1390 # else /* CONFIG_SMP */
1391 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1392 {
1393 return tg->shares;
1394 }
1395 # endif /* CONFIG_SMP */
1396 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1397 unsigned long weight)
1398 {
1399 if (se->on_rq) {
1400 /* commit outstanding execution time */
1401 if (cfs_rq->curr == se)
1402 update_curr(cfs_rq);
1403 account_entity_dequeue(cfs_rq, se);
1404 }
1405
1406 update_load_set(&se->load, weight);
1407
1408 if (se->on_rq)
1409 account_entity_enqueue(cfs_rq, se);
1410 }
1411
1412 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1413
1414 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1415 {
1416 struct task_group *tg;
1417 struct sched_entity *se;
1418 long shares;
1419
1420 tg = cfs_rq->tg;
1421 se = tg->se[cpu_of(rq_of(cfs_rq))];
1422 if (!se || throttled_hierarchy(cfs_rq))
1423 return;
1424 #ifndef CONFIG_SMP
1425 if (likely(se->load.weight == tg->shares))
1426 return;
1427 #endif
1428 shares = calc_cfs_shares(cfs_rq, tg);
1429
1430 reweight_entity(cfs_rq_of(se), se, shares);
1431 }
1432 #else /* CONFIG_FAIR_GROUP_SCHED */
1433 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1434 {
1435 }
1436 #endif /* CONFIG_FAIR_GROUP_SCHED */
1437
1438 #ifdef CONFIG_SMP
1439 /*
1440 * We choose a half-life close to 1 scheduling period.
1441 * Note: The tables below are dependent on this value.
1442 */
1443 #define LOAD_AVG_PERIOD 32
1444 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1445 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1446
1447 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1448 static const u32 runnable_avg_yN_inv[] = {
1449 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1450 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1451 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1452 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1453 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1454 0x85aac367, 0x82cd8698,
1455 };
1456
1457 /*
1458 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1459 * over-estimates when re-combining.
1460 */
1461 static const u32 runnable_avg_yN_sum[] = {
1462 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1463 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1464 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1465 };
1466
1467 /*
1468 * Approximate:
1469 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1470 */
1471 static __always_inline u64 decay_load(u64 val, u64 n)
1472 {
1473 unsigned int local_n;
1474
1475 if (!n)
1476 return val;
1477 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1478 return 0;
1479
1480 /* after bounds checking we can collapse to 32-bit */
1481 local_n = n;
1482
1483 /*
1484 * As y^PERIOD = 1/2, we can combine
1485 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1486 * With a look-up table which covers k^n (n<PERIOD)
1487 *
1488 * To achieve constant time decay_load.
1489 */
1490 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1491 val >>= local_n / LOAD_AVG_PERIOD;
1492 local_n %= LOAD_AVG_PERIOD;
1493 }
1494
1495 val *= runnable_avg_yN_inv[local_n];
1496 /* We don't use SRR here since we always want to round down. */
1497 return val >> 32;
1498 }
1499
1500 /*
1501 * For updates fully spanning n periods, the contribution to runnable
1502 * average will be: \Sum 1024*y^n
1503 *
1504 * We can compute this reasonably efficiently by combining:
1505 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1506 */
1507 static u32 __compute_runnable_contrib(u64 n)
1508 {
1509 u32 contrib = 0;
1510
1511 if (likely(n <= LOAD_AVG_PERIOD))
1512 return runnable_avg_yN_sum[n];
1513 else if (unlikely(n >= LOAD_AVG_MAX_N))
1514 return LOAD_AVG_MAX;
1515
1516 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1517 do {
1518 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1519 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1520
1521 n -= LOAD_AVG_PERIOD;
1522 } while (n > LOAD_AVG_PERIOD);
1523
1524 contrib = decay_load(contrib, n);
1525 return contrib + runnable_avg_yN_sum[n];
1526 }
1527
1528 /*
1529 * We can represent the historical contribution to runnable average as the
1530 * coefficients of a geometric series. To do this we sub-divide our runnable
1531 * history into segments of approximately 1ms (1024us); label the segment that
1532 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1533 *
1534 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1535 * p0 p1 p2
1536 * (now) (~1ms ago) (~2ms ago)
1537 *
1538 * Let u_i denote the fraction of p_i that the entity was runnable.
1539 *
1540 * We then designate the fractions u_i as our co-efficients, yielding the
1541 * following representation of historical load:
1542 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1543 *
1544 * We choose y based on the with of a reasonably scheduling period, fixing:
1545 * y^32 = 0.5
1546 *
1547 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1548 * approximately half as much as the contribution to load within the last ms
1549 * (u_0).
1550 *
1551 * When a period "rolls over" and we have new u_0`, multiplying the previous
1552 * sum again by y is sufficient to update:
1553 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1554 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1555 */
1556 static __always_inline int __update_entity_runnable_avg(u64 now,
1557 struct sched_avg *sa,
1558 int runnable)
1559 {
1560 u64 delta, periods;
1561 u32 runnable_contrib;
1562 int delta_w, decayed = 0;
1563
1564 delta = now - sa->last_runnable_update;
1565 /*
1566 * This should only happen when time goes backwards, which it
1567 * unfortunately does during sched clock init when we swap over to TSC.
1568 */
1569 if ((s64)delta < 0) {
1570 sa->last_runnable_update = now;
1571 return 0;
1572 }
1573
1574 /*
1575 * Use 1024ns as the unit of measurement since it's a reasonable
1576 * approximation of 1us and fast to compute.
1577 */
1578 delta >>= 10;
1579 if (!delta)
1580 return 0;
1581 sa->last_runnable_update = now;
1582
1583 /* delta_w is the amount already accumulated against our next period */
1584 delta_w = sa->runnable_avg_period % 1024;
1585 if (delta + delta_w >= 1024) {
1586 /* period roll-over */
1587 decayed = 1;
1588
1589 /*
1590 * Now that we know we're crossing a period boundary, figure
1591 * out how much from delta we need to complete the current
1592 * period and accrue it.
1593 */
1594 delta_w = 1024 - delta_w;
1595 if (runnable)
1596 sa->runnable_avg_sum += delta_w;
1597 sa->runnable_avg_period += delta_w;
1598
1599 delta -= delta_w;
1600
1601 /* Figure out how many additional periods this update spans */
1602 periods = delta / 1024;
1603 delta %= 1024;
1604
1605 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1606 periods + 1);
1607 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1608 periods + 1);
1609
1610 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1611 runnable_contrib = __compute_runnable_contrib(periods);
1612 if (runnable)
1613 sa->runnable_avg_sum += runnable_contrib;
1614 sa->runnable_avg_period += runnable_contrib;
1615 }
1616
1617 /* Remainder of delta accrued against u_0` */
1618 if (runnable)
1619 sa->runnable_avg_sum += delta;
1620 sa->runnable_avg_period += delta;
1621
1622 return decayed;
1623 }
1624
1625 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1626 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1627 {
1628 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1629 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1630
1631 decays -= se->avg.decay_count;
1632 if (!decays)
1633 return 0;
1634
1635 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1636 se->avg.decay_count = 0;
1637
1638 return decays;
1639 }
1640
1641 #ifdef CONFIG_FAIR_GROUP_SCHED
1642 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1643 int force_update)
1644 {
1645 struct task_group *tg = cfs_rq->tg;
1646 long tg_contrib;
1647
1648 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1649 tg_contrib -= cfs_rq->tg_load_contrib;
1650
1651 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1652 atomic_long_add(tg_contrib, &tg->load_avg);
1653 cfs_rq->tg_load_contrib += tg_contrib;
1654 }
1655 }
1656
1657 /*
1658 * Aggregate cfs_rq runnable averages into an equivalent task_group
1659 * representation for computing load contributions.
1660 */
1661 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1662 struct cfs_rq *cfs_rq)
1663 {
1664 struct task_group *tg = cfs_rq->tg;
1665 long contrib;
1666
1667 /* The fraction of a cpu used by this cfs_rq */
1668 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1669 sa->runnable_avg_period + 1);
1670 contrib -= cfs_rq->tg_runnable_contrib;
1671
1672 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1673 atomic_add(contrib, &tg->runnable_avg);
1674 cfs_rq->tg_runnable_contrib += contrib;
1675 }
1676 }
1677
1678 static inline void __update_group_entity_contrib(struct sched_entity *se)
1679 {
1680 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1681 struct task_group *tg = cfs_rq->tg;
1682 int runnable_avg;
1683
1684 u64 contrib;
1685
1686 contrib = cfs_rq->tg_load_contrib * tg->shares;
1687 se->avg.load_avg_contrib = div_u64(contrib,
1688 atomic_long_read(&tg->load_avg) + 1);
1689
1690 /*
1691 * For group entities we need to compute a correction term in the case
1692 * that they are consuming <1 cpu so that we would contribute the same
1693 * load as a task of equal weight.
1694 *
1695 * Explicitly co-ordinating this measurement would be expensive, but
1696 * fortunately the sum of each cpus contribution forms a usable
1697 * lower-bound on the true value.
1698 *
1699 * Consider the aggregate of 2 contributions. Either they are disjoint
1700 * (and the sum represents true value) or they are disjoint and we are
1701 * understating by the aggregate of their overlap.
1702 *
1703 * Extending this to N cpus, for a given overlap, the maximum amount we
1704 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1705 * cpus that overlap for this interval and w_i is the interval width.
1706 *
1707 * On a small machine; the first term is well-bounded which bounds the
1708 * total error since w_i is a subset of the period. Whereas on a
1709 * larger machine, while this first term can be larger, if w_i is the
1710 * of consequential size guaranteed to see n_i*w_i quickly converge to
1711 * our upper bound of 1-cpu.
1712 */
1713 runnable_avg = atomic_read(&tg->runnable_avg);
1714 if (runnable_avg < NICE_0_LOAD) {
1715 se->avg.load_avg_contrib *= runnable_avg;
1716 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1717 }
1718 }
1719 #else
1720 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1721 int force_update) {}
1722 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1723 struct cfs_rq *cfs_rq) {}
1724 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1725 #endif
1726
1727 static inline void __update_task_entity_contrib(struct sched_entity *se)
1728 {
1729 u32 contrib;
1730
1731 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1732 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1733 contrib /= (se->avg.runnable_avg_period + 1);
1734 se->avg.load_avg_contrib = scale_load(contrib);
1735 }
1736
1737 /* Compute the current contribution to load_avg by se, return any delta */
1738 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1739 {
1740 long old_contrib = se->avg.load_avg_contrib;
1741
1742 if (entity_is_task(se)) {
1743 __update_task_entity_contrib(se);
1744 } else {
1745 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1746 __update_group_entity_contrib(se);
1747 }
1748
1749 return se->avg.load_avg_contrib - old_contrib;
1750 }
1751
1752 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1753 long load_contrib)
1754 {
1755 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1756 cfs_rq->blocked_load_avg -= load_contrib;
1757 else
1758 cfs_rq->blocked_load_avg = 0;
1759 }
1760
1761 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1762
1763 /* Update a sched_entity's runnable average */
1764 static inline void update_entity_load_avg(struct sched_entity *se,
1765 int update_cfs_rq)
1766 {
1767 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1768 long contrib_delta;
1769 u64 now;
1770
1771 /*
1772 * For a group entity we need to use their owned cfs_rq_clock_task() in
1773 * case they are the parent of a throttled hierarchy.
1774 */
1775 if (entity_is_task(se))
1776 now = cfs_rq_clock_task(cfs_rq);
1777 else
1778 now = cfs_rq_clock_task(group_cfs_rq(se));
1779
1780 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1781 return;
1782
1783 contrib_delta = __update_entity_load_avg_contrib(se);
1784
1785 if (!update_cfs_rq)
1786 return;
1787
1788 if (se->on_rq)
1789 cfs_rq->runnable_load_avg += contrib_delta;
1790 else
1791 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1792 }
1793
1794 /*
1795 * Decay the load contributed by all blocked children and account this so that
1796 * their contribution may appropriately discounted when they wake up.
1797 */
1798 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1799 {
1800 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1801 u64 decays;
1802
1803 decays = now - cfs_rq->last_decay;
1804 if (!decays && !force_update)
1805 return;
1806
1807 if (atomic_long_read(&cfs_rq->removed_load)) {
1808 unsigned long removed_load;
1809 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
1810 subtract_blocked_load_contrib(cfs_rq, removed_load);
1811 }
1812
1813 if (decays) {
1814 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1815 decays);
1816 atomic64_add(decays, &cfs_rq->decay_counter);
1817 cfs_rq->last_decay = now;
1818 }
1819
1820 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1821 }
1822
1823 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1824 {
1825 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
1826 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1827 }
1828
1829 /* Add the load generated by se into cfs_rq's child load-average */
1830 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1831 struct sched_entity *se,
1832 int wakeup)
1833 {
1834 /*
1835 * We track migrations using entity decay_count <= 0, on a wake-up
1836 * migration we use a negative decay count to track the remote decays
1837 * accumulated while sleeping.
1838 *
1839 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1840 * are seen by enqueue_entity_load_avg() as a migration with an already
1841 * constructed load_avg_contrib.
1842 */
1843 if (unlikely(se->avg.decay_count <= 0)) {
1844 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
1845 if (se->avg.decay_count) {
1846 /*
1847 * In a wake-up migration we have to approximate the
1848 * time sleeping. This is because we can't synchronize
1849 * clock_task between the two cpus, and it is not
1850 * guaranteed to be read-safe. Instead, we can
1851 * approximate this using our carried decays, which are
1852 * explicitly atomically readable.
1853 */
1854 se->avg.last_runnable_update -= (-se->avg.decay_count)
1855 << 20;
1856 update_entity_load_avg(se, 0);
1857 /* Indicate that we're now synchronized and on-rq */
1858 se->avg.decay_count = 0;
1859 }
1860 wakeup = 0;
1861 } else {
1862 /*
1863 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1864 * would have made count negative); we must be careful to avoid
1865 * double-accounting blocked time after synchronizing decays.
1866 */
1867 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1868 << 20;
1869 }
1870
1871 /* migrated tasks did not contribute to our blocked load */
1872 if (wakeup) {
1873 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1874 update_entity_load_avg(se, 0);
1875 }
1876
1877 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1878 /* we force update consideration on load-balancer moves */
1879 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1880 }
1881
1882 /*
1883 * Remove se's load from this cfs_rq child load-average, if the entity is
1884 * transitioning to a blocked state we track its projected decay using
1885 * blocked_load_avg.
1886 */
1887 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1888 struct sched_entity *se,
1889 int sleep)
1890 {
1891 update_entity_load_avg(se, 1);
1892 /* we force update consideration on load-balancer moves */
1893 update_cfs_rq_blocked_load(cfs_rq, !sleep);
1894
1895 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1896 if (sleep) {
1897 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1898 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1899 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1900 }
1901
1902 /*
1903 * Update the rq's load with the elapsed running time before entering
1904 * idle. if the last scheduled task is not a CFS task, idle_enter will
1905 * be the only way to update the runnable statistic.
1906 */
1907 void idle_enter_fair(struct rq *this_rq)
1908 {
1909 update_rq_runnable_avg(this_rq, 1);
1910 }
1911
1912 /*
1913 * Update the rq's load with the elapsed idle time before a task is
1914 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1915 * be the only way to update the runnable statistic.
1916 */
1917 void idle_exit_fair(struct rq *this_rq)
1918 {
1919 update_rq_runnable_avg(this_rq, 0);
1920 }
1921
1922 #else
1923 static inline void update_entity_load_avg(struct sched_entity *se,
1924 int update_cfs_rq) {}
1925 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1926 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1927 struct sched_entity *se,
1928 int wakeup) {}
1929 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1930 struct sched_entity *se,
1931 int sleep) {}
1932 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1933 int force_update) {}
1934 #endif
1935
1936 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1937 {
1938 #ifdef CONFIG_SCHEDSTATS
1939 struct task_struct *tsk = NULL;
1940
1941 if (entity_is_task(se))
1942 tsk = task_of(se);
1943
1944 if (se->statistics.sleep_start) {
1945 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
1946
1947 if ((s64)delta < 0)
1948 delta = 0;
1949
1950 if (unlikely(delta > se->statistics.sleep_max))
1951 se->statistics.sleep_max = delta;
1952
1953 se->statistics.sleep_start = 0;
1954 se->statistics.sum_sleep_runtime += delta;
1955
1956 if (tsk) {
1957 account_scheduler_latency(tsk, delta >> 10, 1);
1958 trace_sched_stat_sleep(tsk, delta);
1959 }
1960 }
1961 if (se->statistics.block_start) {
1962 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
1963
1964 if ((s64)delta < 0)
1965 delta = 0;
1966
1967 if (unlikely(delta > se->statistics.block_max))
1968 se->statistics.block_max = delta;
1969
1970 se->statistics.block_start = 0;
1971 se->statistics.sum_sleep_runtime += delta;
1972
1973 if (tsk) {
1974 if (tsk->in_iowait) {
1975 se->statistics.iowait_sum += delta;
1976 se->statistics.iowait_count++;
1977 trace_sched_stat_iowait(tsk, delta);
1978 }
1979
1980 trace_sched_stat_blocked(tsk, delta);
1981
1982 /*
1983 * Blocking time is in units of nanosecs, so shift by
1984 * 20 to get a milliseconds-range estimation of the
1985 * amount of time that the task spent sleeping:
1986 */
1987 if (unlikely(prof_on == SLEEP_PROFILING)) {
1988 profile_hits(SLEEP_PROFILING,
1989 (void *)get_wchan(tsk),
1990 delta >> 20);
1991 }
1992 account_scheduler_latency(tsk, delta >> 10, 0);
1993 }
1994 }
1995 #endif
1996 }
1997
1998 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1999 {
2000 #ifdef CONFIG_SCHED_DEBUG
2001 s64 d = se->vruntime - cfs_rq->min_vruntime;
2002
2003 if (d < 0)
2004 d = -d;
2005
2006 if (d > 3*sysctl_sched_latency)
2007 schedstat_inc(cfs_rq, nr_spread_over);
2008 #endif
2009 }
2010
2011 static void
2012 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2013 {
2014 u64 vruntime = cfs_rq->min_vruntime;
2015
2016 /*
2017 * The 'current' period is already promised to the current tasks,
2018 * however the extra weight of the new task will slow them down a
2019 * little, place the new task so that it fits in the slot that
2020 * stays open at the end.
2021 */
2022 if (initial && sched_feat(START_DEBIT))
2023 vruntime += sched_vslice(cfs_rq, se);
2024
2025 /* sleeps up to a single latency don't count. */
2026 if (!initial) {
2027 unsigned long thresh = sysctl_sched_latency;
2028
2029 /*
2030 * Halve their sleep time's effect, to allow
2031 * for a gentler effect of sleepers:
2032 */
2033 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2034 thresh >>= 1;
2035
2036 vruntime -= thresh;
2037 }
2038
2039 /* ensure we never gain time by being placed backwards. */
2040 se->vruntime = max_vruntime(se->vruntime, vruntime);
2041 }
2042
2043 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2044
2045 static void
2046 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2047 {
2048 /*
2049 * Update the normalized vruntime before updating min_vruntime
2050 * through calling update_curr().
2051 */
2052 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2053 se->vruntime += cfs_rq->min_vruntime;
2054
2055 /*
2056 * Update run-time statistics of the 'current'.
2057 */
2058 update_curr(cfs_rq);
2059 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2060 account_entity_enqueue(cfs_rq, se);
2061 update_cfs_shares(cfs_rq);
2062
2063 if (flags & ENQUEUE_WAKEUP) {
2064 place_entity(cfs_rq, se, 0);
2065 enqueue_sleeper(cfs_rq, se);
2066 }
2067
2068 update_stats_enqueue(cfs_rq, se);
2069 check_spread(cfs_rq, se);
2070 if (se != cfs_rq->curr)
2071 __enqueue_entity(cfs_rq, se);
2072 se->on_rq = 1;
2073
2074 if (cfs_rq->nr_running == 1) {
2075 list_add_leaf_cfs_rq(cfs_rq);
2076 check_enqueue_throttle(cfs_rq);
2077 }
2078 }
2079
2080 static void __clear_buddies_last(struct sched_entity *se)
2081 {
2082 for_each_sched_entity(se) {
2083 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2084 if (cfs_rq->last == se)
2085 cfs_rq->last = NULL;
2086 else
2087 break;
2088 }
2089 }
2090
2091 static void __clear_buddies_next(struct sched_entity *se)
2092 {
2093 for_each_sched_entity(se) {
2094 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2095 if (cfs_rq->next == se)
2096 cfs_rq->next = NULL;
2097 else
2098 break;
2099 }
2100 }
2101
2102 static void __clear_buddies_skip(struct sched_entity *se)
2103 {
2104 for_each_sched_entity(se) {
2105 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2106 if (cfs_rq->skip == se)
2107 cfs_rq->skip = NULL;
2108 else
2109 break;
2110 }
2111 }
2112
2113 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2114 {
2115 if (cfs_rq->last == se)
2116 __clear_buddies_last(se);
2117
2118 if (cfs_rq->next == se)
2119 __clear_buddies_next(se);
2120
2121 if (cfs_rq->skip == se)
2122 __clear_buddies_skip(se);
2123 }
2124
2125 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2126
2127 static void
2128 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2129 {
2130 /*
2131 * Update run-time statistics of the 'current'.
2132 */
2133 update_curr(cfs_rq);
2134 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2135
2136 update_stats_dequeue(cfs_rq, se);
2137 if (flags & DEQUEUE_SLEEP) {
2138 #ifdef CONFIG_SCHEDSTATS
2139 if (entity_is_task(se)) {
2140 struct task_struct *tsk = task_of(se);
2141
2142 if (tsk->state & TASK_INTERRUPTIBLE)
2143 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2144 if (tsk->state & TASK_UNINTERRUPTIBLE)
2145 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2146 }
2147 #endif
2148 }
2149
2150 clear_buddies(cfs_rq, se);
2151
2152 if (se != cfs_rq->curr)
2153 __dequeue_entity(cfs_rq, se);
2154 se->on_rq = 0;
2155 account_entity_dequeue(cfs_rq, se);
2156
2157 /*
2158 * Normalize the entity after updating the min_vruntime because the
2159 * update can refer to the ->curr item and we need to reflect this
2160 * movement in our normalized position.
2161 */
2162 if (!(flags & DEQUEUE_SLEEP))
2163 se->vruntime -= cfs_rq->min_vruntime;
2164
2165 /* return excess runtime on last dequeue */
2166 return_cfs_rq_runtime(cfs_rq);
2167
2168 update_min_vruntime(cfs_rq);
2169 update_cfs_shares(cfs_rq);
2170 }
2171
2172 /*
2173 * Preempt the current task with a newly woken task if needed:
2174 */
2175 static void
2176 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2177 {
2178 unsigned long ideal_runtime, delta_exec;
2179 struct sched_entity *se;
2180 s64 delta;
2181
2182 ideal_runtime = sched_slice(cfs_rq, curr);
2183 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2184 if (delta_exec > ideal_runtime) {
2185 resched_task(rq_of(cfs_rq)->curr);
2186 /*
2187 * The current task ran long enough, ensure it doesn't get
2188 * re-elected due to buddy favours.
2189 */
2190 clear_buddies(cfs_rq, curr);
2191 return;
2192 }
2193
2194 /*
2195 * Ensure that a task that missed wakeup preemption by a
2196 * narrow margin doesn't have to wait for a full slice.
2197 * This also mitigates buddy induced latencies under load.
2198 */
2199 if (delta_exec < sysctl_sched_min_granularity)
2200 return;
2201
2202 se = __pick_first_entity(cfs_rq);
2203 delta = curr->vruntime - se->vruntime;
2204
2205 if (delta < 0)
2206 return;
2207
2208 if (delta > ideal_runtime)
2209 resched_task(rq_of(cfs_rq)->curr);
2210 }
2211
2212 static void
2213 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2214 {
2215 /* 'current' is not kept within the tree. */
2216 if (se->on_rq) {
2217 /*
2218 * Any task has to be enqueued before it get to execute on
2219 * a CPU. So account for the time it spent waiting on the
2220 * runqueue.
2221 */
2222 update_stats_wait_end(cfs_rq, se);
2223 __dequeue_entity(cfs_rq, se);
2224 }
2225
2226 update_stats_curr_start(cfs_rq, se);
2227 cfs_rq->curr = se;
2228 #ifdef CONFIG_SCHEDSTATS
2229 /*
2230 * Track our maximum slice length, if the CPU's load is at
2231 * least twice that of our own weight (i.e. dont track it
2232 * when there are only lesser-weight tasks around):
2233 */
2234 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2235 se->statistics.slice_max = max(se->statistics.slice_max,
2236 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2237 }
2238 #endif
2239 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2240 }
2241
2242 static int
2243 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2244
2245 /*
2246 * Pick the next process, keeping these things in mind, in this order:
2247 * 1) keep things fair between processes/task groups
2248 * 2) pick the "next" process, since someone really wants that to run
2249 * 3) pick the "last" process, for cache locality
2250 * 4) do not run the "skip" process, if something else is available
2251 */
2252 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2253 {
2254 struct sched_entity *se = __pick_first_entity(cfs_rq);
2255 struct sched_entity *left = se;
2256
2257 /*
2258 * Avoid running the skip buddy, if running something else can
2259 * be done without getting too unfair.
2260 */
2261 if (cfs_rq->skip == se) {
2262 struct sched_entity *second = __pick_next_entity(se);
2263 if (second && wakeup_preempt_entity(second, left) < 1)
2264 se = second;
2265 }
2266
2267 /*
2268 * Prefer last buddy, try to return the CPU to a preempted task.
2269 */
2270 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2271 se = cfs_rq->last;
2272
2273 /*
2274 * Someone really wants this to run. If it's not unfair, run it.
2275 */
2276 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2277 se = cfs_rq->next;
2278
2279 clear_buddies(cfs_rq, se);
2280
2281 return se;
2282 }
2283
2284 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2285
2286 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2287 {
2288 /*
2289 * If still on the runqueue then deactivate_task()
2290 * was not called and update_curr() has to be done:
2291 */
2292 if (prev->on_rq)
2293 update_curr(cfs_rq);
2294
2295 /* throttle cfs_rqs exceeding runtime */
2296 check_cfs_rq_runtime(cfs_rq);
2297
2298 check_spread(cfs_rq, prev);
2299 if (prev->on_rq) {
2300 update_stats_wait_start(cfs_rq, prev);
2301 /* Put 'current' back into the tree. */
2302 __enqueue_entity(cfs_rq, prev);
2303 /* in !on_rq case, update occurred at dequeue */
2304 update_entity_load_avg(prev, 1);
2305 }
2306 cfs_rq->curr = NULL;
2307 }
2308
2309 static void
2310 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2311 {
2312 /*
2313 * Update run-time statistics of the 'current'.
2314 */
2315 update_curr(cfs_rq);
2316
2317 /*
2318 * Ensure that runnable average is periodically updated.
2319 */
2320 update_entity_load_avg(curr, 1);
2321 update_cfs_rq_blocked_load(cfs_rq, 1);
2322 update_cfs_shares(cfs_rq);
2323
2324 #ifdef CONFIG_SCHED_HRTICK
2325 /*
2326 * queued ticks are scheduled to match the slice, so don't bother
2327 * validating it and just reschedule.
2328 */
2329 if (queued) {
2330 resched_task(rq_of(cfs_rq)->curr);
2331 return;
2332 }
2333 /*
2334 * don't let the period tick interfere with the hrtick preemption
2335 */
2336 if (!sched_feat(DOUBLE_TICK) &&
2337 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2338 return;
2339 #endif
2340
2341 if (cfs_rq->nr_running > 1)
2342 check_preempt_tick(cfs_rq, curr);
2343 }
2344
2345
2346 /**************************************************
2347 * CFS bandwidth control machinery
2348 */
2349
2350 #ifdef CONFIG_CFS_BANDWIDTH
2351
2352 #ifdef HAVE_JUMP_LABEL
2353 static struct static_key __cfs_bandwidth_used;
2354
2355 static inline bool cfs_bandwidth_used(void)
2356 {
2357 return static_key_false(&__cfs_bandwidth_used);
2358 }
2359
2360 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2361 {
2362 /* only need to count groups transitioning between enabled/!enabled */
2363 if (enabled && !was_enabled)
2364 static_key_slow_inc(&__cfs_bandwidth_used);
2365 else if (!enabled && was_enabled)
2366 static_key_slow_dec(&__cfs_bandwidth_used);
2367 }
2368 #else /* HAVE_JUMP_LABEL */
2369 static bool cfs_bandwidth_used(void)
2370 {
2371 return true;
2372 }
2373
2374 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2375 #endif /* HAVE_JUMP_LABEL */
2376
2377 /*
2378 * default period for cfs group bandwidth.
2379 * default: 0.1s, units: nanoseconds
2380 */
2381 static inline u64 default_cfs_period(void)
2382 {
2383 return 100000000ULL;
2384 }
2385
2386 static inline u64 sched_cfs_bandwidth_slice(void)
2387 {
2388 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2389 }
2390
2391 /*
2392 * Replenish runtime according to assigned quota and update expiration time.
2393 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2394 * additional synchronization around rq->lock.
2395 *
2396 * requires cfs_b->lock
2397 */
2398 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2399 {
2400 u64 now;
2401
2402 if (cfs_b->quota == RUNTIME_INF)
2403 return;
2404
2405 now = sched_clock_cpu(smp_processor_id());
2406 cfs_b->runtime = cfs_b->quota;
2407 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2408 }
2409
2410 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2411 {
2412 return &tg->cfs_bandwidth;
2413 }
2414
2415 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2416 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2417 {
2418 if (unlikely(cfs_rq->throttle_count))
2419 return cfs_rq->throttled_clock_task;
2420
2421 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2422 }
2423
2424 /* returns 0 on failure to allocate runtime */
2425 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2426 {
2427 struct task_group *tg = cfs_rq->tg;
2428 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2429 u64 amount = 0, min_amount, expires;
2430
2431 /* note: this is a positive sum as runtime_remaining <= 0 */
2432 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2433
2434 raw_spin_lock(&cfs_b->lock);
2435 if (cfs_b->quota == RUNTIME_INF)
2436 amount = min_amount;
2437 else {
2438 /*
2439 * If the bandwidth pool has become inactive, then at least one
2440 * period must have elapsed since the last consumption.
2441 * Refresh the global state and ensure bandwidth timer becomes
2442 * active.
2443 */
2444 if (!cfs_b->timer_active) {
2445 __refill_cfs_bandwidth_runtime(cfs_b);
2446 __start_cfs_bandwidth(cfs_b);
2447 }
2448
2449 if (cfs_b->runtime > 0) {
2450 amount = min(cfs_b->runtime, min_amount);
2451 cfs_b->runtime -= amount;
2452 cfs_b->idle = 0;
2453 }
2454 }
2455 expires = cfs_b->runtime_expires;
2456 raw_spin_unlock(&cfs_b->lock);
2457
2458 cfs_rq->runtime_remaining += amount;
2459 /*
2460 * we may have advanced our local expiration to account for allowed
2461 * spread between our sched_clock and the one on which runtime was
2462 * issued.
2463 */
2464 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2465 cfs_rq->runtime_expires = expires;
2466
2467 return cfs_rq->runtime_remaining > 0;
2468 }
2469
2470 /*
2471 * Note: This depends on the synchronization provided by sched_clock and the
2472 * fact that rq->clock snapshots this value.
2473 */
2474 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2475 {
2476 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2477
2478 /* if the deadline is ahead of our clock, nothing to do */
2479 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2480 return;
2481
2482 if (cfs_rq->runtime_remaining < 0)
2483 return;
2484
2485 /*
2486 * If the local deadline has passed we have to consider the
2487 * possibility that our sched_clock is 'fast' and the global deadline
2488 * has not truly expired.
2489 *
2490 * Fortunately we can check determine whether this the case by checking
2491 * whether the global deadline has advanced.
2492 */
2493
2494 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2495 /* extend local deadline, drift is bounded above by 2 ticks */
2496 cfs_rq->runtime_expires += TICK_NSEC;
2497 } else {
2498 /* global deadline is ahead, expiration has passed */
2499 cfs_rq->runtime_remaining = 0;
2500 }
2501 }
2502
2503 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2504 unsigned long delta_exec)
2505 {
2506 /* dock delta_exec before expiring quota (as it could span periods) */
2507 cfs_rq->runtime_remaining -= delta_exec;
2508 expire_cfs_rq_runtime(cfs_rq);
2509
2510 if (likely(cfs_rq->runtime_remaining > 0))
2511 return;
2512
2513 /*
2514 * if we're unable to extend our runtime we resched so that the active
2515 * hierarchy can be throttled
2516 */
2517 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2518 resched_task(rq_of(cfs_rq)->curr);
2519 }
2520
2521 static __always_inline
2522 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2523 {
2524 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2525 return;
2526
2527 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2528 }
2529
2530 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2531 {
2532 return cfs_bandwidth_used() && cfs_rq->throttled;
2533 }
2534
2535 /* check whether cfs_rq, or any parent, is throttled */
2536 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2537 {
2538 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2539 }
2540
2541 /*
2542 * Ensure that neither of the group entities corresponding to src_cpu or
2543 * dest_cpu are members of a throttled hierarchy when performing group
2544 * load-balance operations.
2545 */
2546 static inline int throttled_lb_pair(struct task_group *tg,
2547 int src_cpu, int dest_cpu)
2548 {
2549 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2550
2551 src_cfs_rq = tg->cfs_rq[src_cpu];
2552 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2553
2554 return throttled_hierarchy(src_cfs_rq) ||
2555 throttled_hierarchy(dest_cfs_rq);
2556 }
2557
2558 /* updated child weight may affect parent so we have to do this bottom up */
2559 static int tg_unthrottle_up(struct task_group *tg, void *data)
2560 {
2561 struct rq *rq = data;
2562 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2563
2564 cfs_rq->throttle_count--;
2565 #ifdef CONFIG_SMP
2566 if (!cfs_rq->throttle_count) {
2567 /* adjust cfs_rq_clock_task() */
2568 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
2569 cfs_rq->throttled_clock_task;
2570 }
2571 #endif
2572
2573 return 0;
2574 }
2575
2576 static int tg_throttle_down(struct task_group *tg, void *data)
2577 {
2578 struct rq *rq = data;
2579 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2580
2581 /* group is entering throttled state, stop time */
2582 if (!cfs_rq->throttle_count)
2583 cfs_rq->throttled_clock_task = rq_clock_task(rq);
2584 cfs_rq->throttle_count++;
2585
2586 return 0;
2587 }
2588
2589 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2590 {
2591 struct rq *rq = rq_of(cfs_rq);
2592 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2593 struct sched_entity *se;
2594 long task_delta, dequeue = 1;
2595
2596 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2597
2598 /* freeze hierarchy runnable averages while throttled */
2599 rcu_read_lock();
2600 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2601 rcu_read_unlock();
2602
2603 task_delta = cfs_rq->h_nr_running;
2604 for_each_sched_entity(se) {
2605 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2606 /* throttled entity or throttle-on-deactivate */
2607 if (!se->on_rq)
2608 break;
2609
2610 if (dequeue)
2611 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2612 qcfs_rq->h_nr_running -= task_delta;
2613
2614 if (qcfs_rq->load.weight)
2615 dequeue = 0;
2616 }
2617
2618 if (!se)
2619 rq->nr_running -= task_delta;
2620
2621 cfs_rq->throttled = 1;
2622 cfs_rq->throttled_clock = rq_clock(rq);
2623 raw_spin_lock(&cfs_b->lock);
2624 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2625 raw_spin_unlock(&cfs_b->lock);
2626 }
2627
2628 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2629 {
2630 struct rq *rq = rq_of(cfs_rq);
2631 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2632 struct sched_entity *se;
2633 int enqueue = 1;
2634 long task_delta;
2635
2636 se = cfs_rq->tg->se[cpu_of(rq)];
2637
2638 cfs_rq->throttled = 0;
2639
2640 update_rq_clock(rq);
2641
2642 raw_spin_lock(&cfs_b->lock);
2643 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
2644 list_del_rcu(&cfs_rq->throttled_list);
2645 raw_spin_unlock(&cfs_b->lock);
2646
2647 /* update hierarchical throttle state */
2648 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2649
2650 if (!cfs_rq->load.weight)
2651 return;
2652
2653 task_delta = cfs_rq->h_nr_running;
2654 for_each_sched_entity(se) {
2655 if (se->on_rq)
2656 enqueue = 0;
2657
2658 cfs_rq = cfs_rq_of(se);
2659 if (enqueue)
2660 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2661 cfs_rq->h_nr_running += task_delta;
2662
2663 if (cfs_rq_throttled(cfs_rq))
2664 break;
2665 }
2666
2667 if (!se)
2668 rq->nr_running += task_delta;
2669
2670 /* determine whether we need to wake up potentially idle cpu */
2671 if (rq->curr == rq->idle && rq->cfs.nr_running)
2672 resched_task(rq->curr);
2673 }
2674
2675 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2676 u64 remaining, u64 expires)
2677 {
2678 struct cfs_rq *cfs_rq;
2679 u64 runtime = remaining;
2680
2681 rcu_read_lock();
2682 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2683 throttled_list) {
2684 struct rq *rq = rq_of(cfs_rq);
2685
2686 raw_spin_lock(&rq->lock);
2687 if (!cfs_rq_throttled(cfs_rq))
2688 goto next;
2689
2690 runtime = -cfs_rq->runtime_remaining + 1;
2691 if (runtime > remaining)
2692 runtime = remaining;
2693 remaining -= runtime;
2694
2695 cfs_rq->runtime_remaining += runtime;
2696 cfs_rq->runtime_expires = expires;
2697
2698 /* we check whether we're throttled above */
2699 if (cfs_rq->runtime_remaining > 0)
2700 unthrottle_cfs_rq(cfs_rq);
2701
2702 next:
2703 raw_spin_unlock(&rq->lock);
2704
2705 if (!remaining)
2706 break;
2707 }
2708 rcu_read_unlock();
2709
2710 return remaining;
2711 }
2712
2713 /*
2714 * Responsible for refilling a task_group's bandwidth and unthrottling its
2715 * cfs_rqs as appropriate. If there has been no activity within the last
2716 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2717 * used to track this state.
2718 */
2719 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2720 {
2721 u64 runtime, runtime_expires;
2722 int idle = 1, throttled;
2723
2724 raw_spin_lock(&cfs_b->lock);
2725 /* no need to continue the timer with no bandwidth constraint */
2726 if (cfs_b->quota == RUNTIME_INF)
2727 goto out_unlock;
2728
2729 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2730 /* idle depends on !throttled (for the case of a large deficit) */
2731 idle = cfs_b->idle && !throttled;
2732 cfs_b->nr_periods += overrun;
2733
2734 /* if we're going inactive then everything else can be deferred */
2735 if (idle)
2736 goto out_unlock;
2737
2738 __refill_cfs_bandwidth_runtime(cfs_b);
2739
2740 if (!throttled) {
2741 /* mark as potentially idle for the upcoming period */
2742 cfs_b->idle = 1;
2743 goto out_unlock;
2744 }
2745
2746 /* account preceding periods in which throttling occurred */
2747 cfs_b->nr_throttled += overrun;
2748
2749 /*
2750 * There are throttled entities so we must first use the new bandwidth
2751 * to unthrottle them before making it generally available. This
2752 * ensures that all existing debts will be paid before a new cfs_rq is
2753 * allowed to run.
2754 */
2755 runtime = cfs_b->runtime;
2756 runtime_expires = cfs_b->runtime_expires;
2757 cfs_b->runtime = 0;
2758
2759 /*
2760 * This check is repeated as we are holding onto the new bandwidth
2761 * while we unthrottle. This can potentially race with an unthrottled
2762 * group trying to acquire new bandwidth from the global pool.
2763 */
2764 while (throttled && runtime > 0) {
2765 raw_spin_unlock(&cfs_b->lock);
2766 /* we can't nest cfs_b->lock while distributing bandwidth */
2767 runtime = distribute_cfs_runtime(cfs_b, runtime,
2768 runtime_expires);
2769 raw_spin_lock(&cfs_b->lock);
2770
2771 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2772 }
2773
2774 /* return (any) remaining runtime */
2775 cfs_b->runtime = runtime;
2776 /*
2777 * While we are ensured activity in the period following an
2778 * unthrottle, this also covers the case in which the new bandwidth is
2779 * insufficient to cover the existing bandwidth deficit. (Forcing the
2780 * timer to remain active while there are any throttled entities.)
2781 */
2782 cfs_b->idle = 0;
2783 out_unlock:
2784 if (idle)
2785 cfs_b->timer_active = 0;
2786 raw_spin_unlock(&cfs_b->lock);
2787
2788 return idle;
2789 }
2790
2791 /* a cfs_rq won't donate quota below this amount */
2792 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2793 /* minimum remaining period time to redistribute slack quota */
2794 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2795 /* how long we wait to gather additional slack before distributing */
2796 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2797
2798 /* are we near the end of the current quota period? */
2799 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2800 {
2801 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2802 u64 remaining;
2803
2804 /* if the call-back is running a quota refresh is already occurring */
2805 if (hrtimer_callback_running(refresh_timer))
2806 return 1;
2807
2808 /* is a quota refresh about to occur? */
2809 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2810 if (remaining < min_expire)
2811 return 1;
2812
2813 return 0;
2814 }
2815
2816 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2817 {
2818 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2819
2820 /* if there's a quota refresh soon don't bother with slack */
2821 if (runtime_refresh_within(cfs_b, min_left))
2822 return;
2823
2824 start_bandwidth_timer(&cfs_b->slack_timer,
2825 ns_to_ktime(cfs_bandwidth_slack_period));
2826 }
2827
2828 /* we know any runtime found here is valid as update_curr() precedes return */
2829 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2830 {
2831 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2832 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2833
2834 if (slack_runtime <= 0)
2835 return;
2836
2837 raw_spin_lock(&cfs_b->lock);
2838 if (cfs_b->quota != RUNTIME_INF &&
2839 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2840 cfs_b->runtime += slack_runtime;
2841
2842 /* we are under rq->lock, defer unthrottling using a timer */
2843 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2844 !list_empty(&cfs_b->throttled_cfs_rq))
2845 start_cfs_slack_bandwidth(cfs_b);
2846 }
2847 raw_spin_unlock(&cfs_b->lock);
2848
2849 /* even if it's not valid for return we don't want to try again */
2850 cfs_rq->runtime_remaining -= slack_runtime;
2851 }
2852
2853 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2854 {
2855 if (!cfs_bandwidth_used())
2856 return;
2857
2858 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2859 return;
2860
2861 __return_cfs_rq_runtime(cfs_rq);
2862 }
2863
2864 /*
2865 * This is done with a timer (instead of inline with bandwidth return) since
2866 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2867 */
2868 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2869 {
2870 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2871 u64 expires;
2872
2873 /* confirm we're still not at a refresh boundary */
2874 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2875 return;
2876
2877 raw_spin_lock(&cfs_b->lock);
2878 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2879 runtime = cfs_b->runtime;
2880 cfs_b->runtime = 0;
2881 }
2882 expires = cfs_b->runtime_expires;
2883 raw_spin_unlock(&cfs_b->lock);
2884
2885 if (!runtime)
2886 return;
2887
2888 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2889
2890 raw_spin_lock(&cfs_b->lock);
2891 if (expires == cfs_b->runtime_expires)
2892 cfs_b->runtime = runtime;
2893 raw_spin_unlock(&cfs_b->lock);
2894 }
2895
2896 /*
2897 * When a group wakes up we want to make sure that its quota is not already
2898 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2899 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2900 */
2901 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2902 {
2903 if (!cfs_bandwidth_used())
2904 return;
2905
2906 /* an active group must be handled by the update_curr()->put() path */
2907 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2908 return;
2909
2910 /* ensure the group is not already throttled */
2911 if (cfs_rq_throttled(cfs_rq))
2912 return;
2913
2914 /* update runtime allocation */
2915 account_cfs_rq_runtime(cfs_rq, 0);
2916 if (cfs_rq->runtime_remaining <= 0)
2917 throttle_cfs_rq(cfs_rq);
2918 }
2919
2920 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2921 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2922 {
2923 if (!cfs_bandwidth_used())
2924 return;
2925
2926 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2927 return;
2928
2929 /*
2930 * it's possible for a throttled entity to be forced into a running
2931 * state (e.g. set_curr_task), in this case we're finished.
2932 */
2933 if (cfs_rq_throttled(cfs_rq))
2934 return;
2935
2936 throttle_cfs_rq(cfs_rq);
2937 }
2938
2939 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2940 {
2941 struct cfs_bandwidth *cfs_b =
2942 container_of(timer, struct cfs_bandwidth, slack_timer);
2943 do_sched_cfs_slack_timer(cfs_b);
2944
2945 return HRTIMER_NORESTART;
2946 }
2947
2948 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2949 {
2950 struct cfs_bandwidth *cfs_b =
2951 container_of(timer, struct cfs_bandwidth, period_timer);
2952 ktime_t now;
2953 int overrun;
2954 int idle = 0;
2955
2956 for (;;) {
2957 now = hrtimer_cb_get_time(timer);
2958 overrun = hrtimer_forward(timer, now, cfs_b->period);
2959
2960 if (!overrun)
2961 break;
2962
2963 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2964 }
2965
2966 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2967 }
2968
2969 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2970 {
2971 raw_spin_lock_init(&cfs_b->lock);
2972 cfs_b->runtime = 0;
2973 cfs_b->quota = RUNTIME_INF;
2974 cfs_b->period = ns_to_ktime(default_cfs_period());
2975
2976 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2977 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2978 cfs_b->period_timer.function = sched_cfs_period_timer;
2979 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2980 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2981 }
2982
2983 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2984 {
2985 cfs_rq->runtime_enabled = 0;
2986 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2987 }
2988
2989 /* requires cfs_b->lock, may release to reprogram timer */
2990 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2991 {
2992 /*
2993 * The timer may be active because we're trying to set a new bandwidth
2994 * period or because we're racing with the tear-down path
2995 * (timer_active==0 becomes visible before the hrtimer call-back
2996 * terminates). In either case we ensure that it's re-programmed
2997 */
2998 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2999 raw_spin_unlock(&cfs_b->lock);
3000 /* ensure cfs_b->lock is available while we wait */
3001 hrtimer_cancel(&cfs_b->period_timer);
3002
3003 raw_spin_lock(&cfs_b->lock);
3004 /* if someone else restarted the timer then we're done */
3005 if (cfs_b->timer_active)
3006 return;
3007 }
3008
3009 cfs_b->timer_active = 1;
3010 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3011 }
3012
3013 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3014 {
3015 hrtimer_cancel(&cfs_b->period_timer);
3016 hrtimer_cancel(&cfs_b->slack_timer);
3017 }
3018
3019 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3020 {
3021 struct cfs_rq *cfs_rq;
3022
3023 for_each_leaf_cfs_rq(rq, cfs_rq) {
3024 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3025
3026 if (!cfs_rq->runtime_enabled)
3027 continue;
3028
3029 /*
3030 * clock_task is not advancing so we just need to make sure
3031 * there's some valid quota amount
3032 */
3033 cfs_rq->runtime_remaining = cfs_b->quota;
3034 if (cfs_rq_throttled(cfs_rq))
3035 unthrottle_cfs_rq(cfs_rq);
3036 }
3037 }
3038
3039 #else /* CONFIG_CFS_BANDWIDTH */
3040 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3041 {
3042 return rq_clock_task(rq_of(cfs_rq));
3043 }
3044
3045 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3046 unsigned long delta_exec) {}
3047 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3048 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3049 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3050
3051 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3052 {
3053 return 0;
3054 }
3055
3056 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3057 {
3058 return 0;
3059 }
3060
3061 static inline int throttled_lb_pair(struct task_group *tg,
3062 int src_cpu, int dest_cpu)
3063 {
3064 return 0;
3065 }
3066
3067 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3068
3069 #ifdef CONFIG_FAIR_GROUP_SCHED
3070 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3071 #endif
3072
3073 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3074 {
3075 return NULL;
3076 }
3077 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3078 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3079
3080 #endif /* CONFIG_CFS_BANDWIDTH */
3081
3082 /**************************************************
3083 * CFS operations on tasks:
3084 */
3085
3086 #ifdef CONFIG_SCHED_HRTICK
3087 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3088 {
3089 struct sched_entity *se = &p->se;
3090 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3091
3092 WARN_ON(task_rq(p) != rq);
3093
3094 if (cfs_rq->nr_running > 1) {
3095 u64 slice = sched_slice(cfs_rq, se);
3096 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3097 s64 delta = slice - ran;
3098
3099 if (delta < 0) {
3100 if (rq->curr == p)
3101 resched_task(p);
3102 return;
3103 }
3104
3105 /*
3106 * Don't schedule slices shorter than 10000ns, that just
3107 * doesn't make sense. Rely on vruntime for fairness.
3108 */
3109 if (rq->curr != p)
3110 delta = max_t(s64, 10000LL, delta);
3111
3112 hrtick_start(rq, delta);
3113 }
3114 }
3115
3116 /*
3117 * called from enqueue/dequeue and updates the hrtick when the
3118 * current task is from our class and nr_running is low enough
3119 * to matter.
3120 */
3121 static void hrtick_update(struct rq *rq)
3122 {
3123 struct task_struct *curr = rq->curr;
3124
3125 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3126 return;
3127
3128 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3129 hrtick_start_fair(rq, curr);
3130 }
3131 #else /* !CONFIG_SCHED_HRTICK */
3132 static inline void
3133 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3134 {
3135 }
3136
3137 static inline void hrtick_update(struct rq *rq)
3138 {
3139 }
3140 #endif
3141
3142 /*
3143 * The enqueue_task method is called before nr_running is
3144 * increased. Here we update the fair scheduling stats and
3145 * then put the task into the rbtree:
3146 */
3147 static void
3148 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3149 {
3150 struct cfs_rq *cfs_rq;
3151 struct sched_entity *se = &p->se;
3152
3153 for_each_sched_entity(se) {
3154 if (se->on_rq)
3155 break;
3156 cfs_rq = cfs_rq_of(se);
3157 enqueue_entity(cfs_rq, se, flags);
3158
3159 /*
3160 * end evaluation on encountering a throttled cfs_rq
3161 *
3162 * note: in the case of encountering a throttled cfs_rq we will
3163 * post the final h_nr_running increment below.
3164 */
3165 if (cfs_rq_throttled(cfs_rq))
3166 break;
3167 cfs_rq->h_nr_running++;
3168
3169 flags = ENQUEUE_WAKEUP;
3170 }
3171
3172 for_each_sched_entity(se) {
3173 cfs_rq = cfs_rq_of(se);
3174 cfs_rq->h_nr_running++;
3175
3176 if (cfs_rq_throttled(cfs_rq))
3177 break;
3178
3179 update_cfs_shares(cfs_rq);
3180 update_entity_load_avg(se, 1);
3181 }
3182
3183 if (!se) {
3184 update_rq_runnable_avg(rq, rq->nr_running);
3185 inc_nr_running(rq);
3186 }
3187 hrtick_update(rq);
3188 }
3189
3190 static void set_next_buddy(struct sched_entity *se);
3191
3192 /*
3193 * The dequeue_task method is called before nr_running is
3194 * decreased. We remove the task from the rbtree and
3195 * update the fair scheduling stats:
3196 */
3197 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3198 {
3199 struct cfs_rq *cfs_rq;
3200 struct sched_entity *se = &p->se;
3201 int task_sleep = flags & DEQUEUE_SLEEP;
3202
3203 for_each_sched_entity(se) {
3204 cfs_rq = cfs_rq_of(se);
3205 dequeue_entity(cfs_rq, se, flags);
3206
3207 /*
3208 * end evaluation on encountering a throttled cfs_rq
3209 *
3210 * note: in the case of encountering a throttled cfs_rq we will
3211 * post the final h_nr_running decrement below.
3212 */
3213 if (cfs_rq_throttled(cfs_rq))
3214 break;
3215 cfs_rq->h_nr_running--;
3216
3217 /* Don't dequeue parent if it has other entities besides us */
3218 if (cfs_rq->load.weight) {
3219 /*
3220 * Bias pick_next to pick a task from this cfs_rq, as
3221 * p is sleeping when it is within its sched_slice.
3222 */
3223 if (task_sleep && parent_entity(se))
3224 set_next_buddy(parent_entity(se));
3225
3226 /* avoid re-evaluating load for this entity */
3227 se = parent_entity(se);
3228 break;
3229 }
3230 flags |= DEQUEUE_SLEEP;
3231 }
3232
3233 for_each_sched_entity(se) {
3234 cfs_rq = cfs_rq_of(se);
3235 cfs_rq->h_nr_running--;
3236
3237 if (cfs_rq_throttled(cfs_rq))
3238 break;
3239
3240 update_cfs_shares(cfs_rq);
3241 update_entity_load_avg(se, 1);
3242 }
3243
3244 if (!se) {
3245 dec_nr_running(rq);
3246 update_rq_runnable_avg(rq, 1);
3247 }
3248 hrtick_update(rq);
3249 }
3250
3251 #ifdef CONFIG_SMP
3252 /* Used instead of source_load when we know the type == 0 */
3253 static unsigned long weighted_cpuload(const int cpu)
3254 {
3255 return cpu_rq(cpu)->cfs.runnable_load_avg;
3256 }
3257
3258 /*
3259 * Return a low guess at the load of a migration-source cpu weighted
3260 * according to the scheduling class and "nice" value.
3261 *
3262 * We want to under-estimate the load of migration sources, to
3263 * balance conservatively.
3264 */
3265 static unsigned long source_load(int cpu, int type)
3266 {
3267 struct rq *rq = cpu_rq(cpu);
3268 unsigned long total = weighted_cpuload(cpu);
3269
3270 if (type == 0 || !sched_feat(LB_BIAS))
3271 return total;
3272
3273 return min(rq->cpu_load[type-1], total);
3274 }
3275
3276 /*
3277 * Return a high guess at the load of a migration-target cpu weighted
3278 * according to the scheduling class and "nice" value.
3279 */
3280 static unsigned long target_load(int cpu, int type)
3281 {
3282 struct rq *rq = cpu_rq(cpu);
3283 unsigned long total = weighted_cpuload(cpu);
3284
3285 if (type == 0 || !sched_feat(LB_BIAS))
3286 return total;
3287
3288 return max(rq->cpu_load[type-1], total);
3289 }
3290
3291 static unsigned long power_of(int cpu)
3292 {
3293 return cpu_rq(cpu)->cpu_power;
3294 }
3295
3296 static unsigned long cpu_avg_load_per_task(int cpu)
3297 {
3298 struct rq *rq = cpu_rq(cpu);
3299 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3300 unsigned long load_avg = rq->cfs.runnable_load_avg;
3301
3302 if (nr_running)
3303 return load_avg / nr_running;
3304
3305 return 0;
3306 }
3307
3308 static void record_wakee(struct task_struct *p)
3309 {
3310 /*
3311 * Rough decay (wiping) for cost saving, don't worry
3312 * about the boundary, really active task won't care
3313 * about the loss.
3314 */
3315 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3316 current->wakee_flips = 0;
3317 current->wakee_flip_decay_ts = jiffies;
3318 }
3319
3320 if (current->last_wakee != p) {
3321 current->last_wakee = p;
3322 current->wakee_flips++;
3323 }
3324 }
3325
3326 static void task_waking_fair(struct task_struct *p)
3327 {
3328 struct sched_entity *se = &p->se;
3329 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3330 u64 min_vruntime;
3331
3332 #ifndef CONFIG_64BIT
3333 u64 min_vruntime_copy;
3334
3335 do {
3336 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3337 smp_rmb();
3338 min_vruntime = cfs_rq->min_vruntime;
3339 } while (min_vruntime != min_vruntime_copy);
3340 #else
3341 min_vruntime = cfs_rq->min_vruntime;
3342 #endif
3343
3344 se->vruntime -= min_vruntime;
3345 record_wakee(p);
3346 }
3347
3348 #ifdef CONFIG_FAIR_GROUP_SCHED
3349 /*
3350 * effective_load() calculates the load change as seen from the root_task_group
3351 *
3352 * Adding load to a group doesn't make a group heavier, but can cause movement
3353 * of group shares between cpus. Assuming the shares were perfectly aligned one
3354 * can calculate the shift in shares.
3355 *
3356 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3357 * on this @cpu and results in a total addition (subtraction) of @wg to the
3358 * total group weight.
3359 *
3360 * Given a runqueue weight distribution (rw_i) we can compute a shares
3361 * distribution (s_i) using:
3362 *
3363 * s_i = rw_i / \Sum rw_j (1)
3364 *
3365 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3366 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3367 * shares distribution (s_i):
3368 *
3369 * rw_i = { 2, 4, 1, 0 }
3370 * s_i = { 2/7, 4/7, 1/7, 0 }
3371 *
3372 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3373 * task used to run on and the CPU the waker is running on), we need to
3374 * compute the effect of waking a task on either CPU and, in case of a sync
3375 * wakeup, compute the effect of the current task going to sleep.
3376 *
3377 * So for a change of @wl to the local @cpu with an overall group weight change
3378 * of @wl we can compute the new shares distribution (s'_i) using:
3379 *
3380 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3381 *
3382 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3383 * differences in waking a task to CPU 0. The additional task changes the
3384 * weight and shares distributions like:
3385 *
3386 * rw'_i = { 3, 4, 1, 0 }
3387 * s'_i = { 3/8, 4/8, 1/8, 0 }
3388 *
3389 * We can then compute the difference in effective weight by using:
3390 *
3391 * dw_i = S * (s'_i - s_i) (3)
3392 *
3393 * Where 'S' is the group weight as seen by its parent.
3394 *
3395 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3396 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3397 * 4/7) times the weight of the group.
3398 */
3399 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3400 {
3401 struct sched_entity *se = tg->se[cpu];
3402
3403 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
3404 return wl;
3405
3406 for_each_sched_entity(se) {
3407 long w, W;
3408
3409 tg = se->my_q->tg;
3410
3411 /*
3412 * W = @wg + \Sum rw_j
3413 */
3414 W = wg + calc_tg_weight(tg, se->my_q);
3415
3416 /*
3417 * w = rw_i + @wl
3418 */
3419 w = se->my_q->load.weight + wl;
3420
3421 /*
3422 * wl = S * s'_i; see (2)
3423 */
3424 if (W > 0 && w < W)
3425 wl = (w * tg->shares) / W;
3426 else
3427 wl = tg->shares;
3428
3429 /*
3430 * Per the above, wl is the new se->load.weight value; since
3431 * those are clipped to [MIN_SHARES, ...) do so now. See
3432 * calc_cfs_shares().
3433 */
3434 if (wl < MIN_SHARES)
3435 wl = MIN_SHARES;
3436
3437 /*
3438 * wl = dw_i = S * (s'_i - s_i); see (3)
3439 */
3440 wl -= se->load.weight;
3441
3442 /*
3443 * Recursively apply this logic to all parent groups to compute
3444 * the final effective load change on the root group. Since
3445 * only the @tg group gets extra weight, all parent groups can
3446 * only redistribute existing shares. @wl is the shift in shares
3447 * resulting from this level per the above.
3448 */
3449 wg = 0;
3450 }
3451
3452 return wl;
3453 }
3454 #else
3455
3456 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3457 {
3458 return wl;
3459 }
3460
3461 #endif
3462
3463 static int wake_wide(struct task_struct *p)
3464 {
3465 int factor = this_cpu_read(sd_llc_size);
3466
3467 /*
3468 * Yeah, it's the switching-frequency, could means many wakee or
3469 * rapidly switch, use factor here will just help to automatically
3470 * adjust the loose-degree, so bigger node will lead to more pull.
3471 */
3472 if (p->wakee_flips > factor) {
3473 /*
3474 * wakee is somewhat hot, it needs certain amount of cpu
3475 * resource, so if waker is far more hot, prefer to leave
3476 * it alone.
3477 */
3478 if (current->wakee_flips > (factor * p->wakee_flips))
3479 return 1;
3480 }
3481
3482 return 0;
3483 }
3484
3485 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3486 {
3487 s64 this_load, load;
3488 int idx, this_cpu, prev_cpu;
3489 unsigned long tl_per_task;
3490 struct task_group *tg;
3491 unsigned long weight;
3492 int balanced;
3493
3494 /*
3495 * If we wake multiple tasks be careful to not bounce
3496 * ourselves around too much.
3497 */
3498 if (wake_wide(p))
3499 return 0;
3500
3501 idx = sd->wake_idx;
3502 this_cpu = smp_processor_id();
3503 prev_cpu = task_cpu(p);
3504 load = source_load(prev_cpu, idx);
3505 this_load = target_load(this_cpu, idx);
3506
3507 /*
3508 * If sync wakeup then subtract the (maximum possible)
3509 * effect of the currently running task from the load
3510 * of the current CPU:
3511 */
3512 if (sync) {
3513 tg = task_group(current);
3514 weight = current->se.load.weight;
3515
3516 this_load += effective_load(tg, this_cpu, -weight, -weight);
3517 load += effective_load(tg, prev_cpu, 0, -weight);
3518 }
3519
3520 tg = task_group(p);
3521 weight = p->se.load.weight;
3522
3523 /*
3524 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3525 * due to the sync cause above having dropped this_load to 0, we'll
3526 * always have an imbalance, but there's really nothing you can do
3527 * about that, so that's good too.
3528 *
3529 * Otherwise check if either cpus are near enough in load to allow this
3530 * task to be woken on this_cpu.
3531 */
3532 if (this_load > 0) {
3533 s64 this_eff_load, prev_eff_load;
3534
3535 this_eff_load = 100;
3536 this_eff_load *= power_of(prev_cpu);
3537 this_eff_load *= this_load +
3538 effective_load(tg, this_cpu, weight, weight);
3539
3540 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3541 prev_eff_load *= power_of(this_cpu);
3542 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3543
3544 balanced = this_eff_load <= prev_eff_load;
3545 } else
3546 balanced = true;
3547
3548 /*
3549 * If the currently running task will sleep within
3550 * a reasonable amount of time then attract this newly
3551 * woken task:
3552 */
3553 if (sync && balanced)
3554 return 1;
3555
3556 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3557 tl_per_task = cpu_avg_load_per_task(this_cpu);
3558
3559 if (balanced ||
3560 (this_load <= load &&
3561 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3562 /*
3563 * This domain has SD_WAKE_AFFINE and
3564 * p is cache cold in this domain, and
3565 * there is no bad imbalance.
3566 */
3567 schedstat_inc(sd, ttwu_move_affine);
3568 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3569
3570 return 1;
3571 }
3572 return 0;
3573 }
3574
3575 /*
3576 * find_idlest_group finds and returns the least busy CPU group within the
3577 * domain.
3578 */
3579 static struct sched_group *
3580 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3581 int this_cpu, int load_idx)
3582 {
3583 struct sched_group *idlest = NULL, *group = sd->groups;
3584 unsigned long min_load = ULONG_MAX, this_load = 0;
3585 int imbalance = 100 + (sd->imbalance_pct-100)/2;
3586
3587 do {
3588 unsigned long load, avg_load;
3589 int local_group;
3590 int i;
3591
3592 /* Skip over this group if it has no CPUs allowed */
3593 if (!cpumask_intersects(sched_group_cpus(group),
3594 tsk_cpus_allowed(p)))
3595 continue;
3596
3597 local_group = cpumask_test_cpu(this_cpu,
3598 sched_group_cpus(group));
3599
3600 /* Tally up the load of all CPUs in the group */
3601 avg_load = 0;
3602
3603 for_each_cpu(i, sched_group_cpus(group)) {
3604 /* Bias balancing toward cpus of our domain */
3605 if (local_group)
3606 load = source_load(i, load_idx);
3607 else
3608 load = target_load(i, load_idx);
3609
3610 avg_load += load;
3611 }
3612
3613 /* Adjust by relative CPU power of the group */
3614 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3615
3616 if (local_group) {
3617 this_load = avg_load;
3618 } else if (avg_load < min_load) {
3619 min_load = avg_load;
3620 idlest = group;
3621 }
3622 } while (group = group->next, group != sd->groups);
3623
3624 if (!idlest || 100*this_load < imbalance*min_load)
3625 return NULL;
3626 return idlest;
3627 }
3628
3629 /*
3630 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3631 */
3632 static int
3633 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3634 {
3635 unsigned long load, min_load = ULONG_MAX;
3636 int idlest = -1;
3637 int i;
3638
3639 /* Traverse only the allowed CPUs */
3640 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3641 load = weighted_cpuload(i);
3642
3643 if (load < min_load || (load == min_load && i == this_cpu)) {
3644 min_load = load;
3645 idlest = i;
3646 }
3647 }
3648
3649 return idlest;
3650 }
3651
3652 /*
3653 * Try and locate an idle CPU in the sched_domain.
3654 */
3655 static int select_idle_sibling(struct task_struct *p, int target)
3656 {
3657 struct sched_domain *sd;
3658 struct sched_group *sg;
3659 int i = task_cpu(p);
3660
3661 if (idle_cpu(target))
3662 return target;
3663
3664 /*
3665 * If the prevous cpu is cache affine and idle, don't be stupid.
3666 */
3667 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3668 return i;
3669
3670 /*
3671 * Otherwise, iterate the domains and find an elegible idle cpu.
3672 */
3673 sd = rcu_dereference(per_cpu(sd_llc, target));
3674 for_each_lower_domain(sd) {
3675 sg = sd->groups;
3676 do {
3677 if (!cpumask_intersects(sched_group_cpus(sg),
3678 tsk_cpus_allowed(p)))
3679 goto next;
3680
3681 for_each_cpu(i, sched_group_cpus(sg)) {
3682 if (i == target || !idle_cpu(i))
3683 goto next;
3684 }
3685
3686 target = cpumask_first_and(sched_group_cpus(sg),
3687 tsk_cpus_allowed(p));
3688 goto done;
3689 next:
3690 sg = sg->next;
3691 } while (sg != sd->groups);
3692 }
3693 done:
3694 return target;
3695 }
3696
3697 /*
3698 * sched_balance_self: balance the current task (running on cpu) in domains
3699 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3700 * SD_BALANCE_EXEC.
3701 *
3702 * Balance, ie. select the least loaded group.
3703 *
3704 * Returns the target CPU number, or the same CPU if no balancing is needed.
3705 *
3706 * preempt must be disabled.
3707 */
3708 static int
3709 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
3710 {
3711 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3712 int cpu = smp_processor_id();
3713 int new_cpu = cpu;
3714 int want_affine = 0;
3715 int sync = wake_flags & WF_SYNC;
3716
3717 if (p->nr_cpus_allowed == 1)
3718 return prev_cpu;
3719
3720 if (sd_flag & SD_BALANCE_WAKE) {
3721 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3722 want_affine = 1;
3723 new_cpu = prev_cpu;
3724 }
3725
3726 rcu_read_lock();
3727 for_each_domain(cpu, tmp) {
3728 if (!(tmp->flags & SD_LOAD_BALANCE))
3729 continue;
3730
3731 /*
3732 * If both cpu and prev_cpu are part of this domain,
3733 * cpu is a valid SD_WAKE_AFFINE target.
3734 */
3735 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3736 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3737 affine_sd = tmp;
3738 break;
3739 }
3740
3741 if (tmp->flags & sd_flag)
3742 sd = tmp;
3743 }
3744
3745 if (affine_sd) {
3746 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3747 prev_cpu = cpu;
3748
3749 new_cpu = select_idle_sibling(p, prev_cpu);
3750 goto unlock;
3751 }
3752
3753 while (sd) {
3754 int load_idx = sd->forkexec_idx;
3755 struct sched_group *group;
3756 int weight;
3757
3758 if (!(sd->flags & sd_flag)) {
3759 sd = sd->child;
3760 continue;
3761 }
3762
3763 if (sd_flag & SD_BALANCE_WAKE)
3764 load_idx = sd->wake_idx;
3765
3766 group = find_idlest_group(sd, p, cpu, load_idx);
3767 if (!group) {
3768 sd = sd->child;
3769 continue;
3770 }
3771
3772 new_cpu = find_idlest_cpu(group, p, cpu);
3773 if (new_cpu == -1 || new_cpu == cpu) {
3774 /* Now try balancing at a lower domain level of cpu */
3775 sd = sd->child;
3776 continue;
3777 }
3778
3779 /* Now try balancing at a lower domain level of new_cpu */
3780 cpu = new_cpu;
3781 weight = sd->span_weight;
3782 sd = NULL;
3783 for_each_domain(cpu, tmp) {
3784 if (weight <= tmp->span_weight)
3785 break;
3786 if (tmp->flags & sd_flag)
3787 sd = tmp;
3788 }
3789 /* while loop will break here if sd == NULL */
3790 }
3791 unlock:
3792 rcu_read_unlock();
3793
3794 return new_cpu;
3795 }
3796
3797 /*
3798 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3799 * cfs_rq_of(p) references at time of call are still valid and identify the
3800 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3801 * other assumptions, including the state of rq->lock, should be made.
3802 */
3803 static void
3804 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3805 {
3806 struct sched_entity *se = &p->se;
3807 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3808
3809 /*
3810 * Load tracking: accumulate removed load so that it can be processed
3811 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3812 * to blocked load iff they have a positive decay-count. It can never
3813 * be negative here since on-rq tasks have decay-count == 0.
3814 */
3815 if (se->avg.decay_count) {
3816 se->avg.decay_count = -__synchronize_entity_decay(se);
3817 atomic_long_add(se->avg.load_avg_contrib,
3818 &cfs_rq->removed_load);
3819 }
3820 }
3821 #endif /* CONFIG_SMP */
3822
3823 static unsigned long
3824 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3825 {
3826 unsigned long gran = sysctl_sched_wakeup_granularity;
3827
3828 /*
3829 * Since its curr running now, convert the gran from real-time
3830 * to virtual-time in his units.
3831 *
3832 * By using 'se' instead of 'curr' we penalize light tasks, so
3833 * they get preempted easier. That is, if 'se' < 'curr' then
3834 * the resulting gran will be larger, therefore penalizing the
3835 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3836 * be smaller, again penalizing the lighter task.
3837 *
3838 * This is especially important for buddies when the leftmost
3839 * task is higher priority than the buddy.
3840 */
3841 return calc_delta_fair(gran, se);
3842 }
3843
3844 /*
3845 * Should 'se' preempt 'curr'.
3846 *
3847 * |s1
3848 * |s2
3849 * |s3
3850 * g
3851 * |<--->|c
3852 *
3853 * w(c, s1) = -1
3854 * w(c, s2) = 0
3855 * w(c, s3) = 1
3856 *
3857 */
3858 static int
3859 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3860 {
3861 s64 gran, vdiff = curr->vruntime - se->vruntime;
3862
3863 if (vdiff <= 0)
3864 return -1;
3865
3866 gran = wakeup_gran(curr, se);
3867 if (vdiff > gran)
3868 return 1;
3869
3870 return 0;
3871 }
3872
3873 static void set_last_buddy(struct sched_entity *se)
3874 {
3875 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3876 return;
3877
3878 for_each_sched_entity(se)
3879 cfs_rq_of(se)->last = se;
3880 }
3881
3882 static void set_next_buddy(struct sched_entity *se)
3883 {
3884 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3885 return;
3886
3887 for_each_sched_entity(se)
3888 cfs_rq_of(se)->next = se;
3889 }
3890
3891 static void set_skip_buddy(struct sched_entity *se)
3892 {
3893 for_each_sched_entity(se)
3894 cfs_rq_of(se)->skip = se;
3895 }
3896
3897 /*
3898 * Preempt the current task with a newly woken task if needed:
3899 */
3900 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3901 {
3902 struct task_struct *curr = rq->curr;
3903 struct sched_entity *se = &curr->se, *pse = &p->se;
3904 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3905 int scale = cfs_rq->nr_running >= sched_nr_latency;
3906 int next_buddy_marked = 0;
3907
3908 if (unlikely(se == pse))
3909 return;
3910
3911 /*
3912 * This is possible from callers such as move_task(), in which we
3913 * unconditionally check_prempt_curr() after an enqueue (which may have
3914 * lead to a throttle). This both saves work and prevents false
3915 * next-buddy nomination below.
3916 */
3917 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3918 return;
3919
3920 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3921 set_next_buddy(pse);
3922 next_buddy_marked = 1;
3923 }
3924
3925 /*
3926 * We can come here with TIF_NEED_RESCHED already set from new task
3927 * wake up path.
3928 *
3929 * Note: this also catches the edge-case of curr being in a throttled
3930 * group (e.g. via set_curr_task), since update_curr() (in the
3931 * enqueue of curr) will have resulted in resched being set. This
3932 * prevents us from potentially nominating it as a false LAST_BUDDY
3933 * below.
3934 */
3935 if (test_tsk_need_resched(curr))
3936 return;
3937
3938 /* Idle tasks are by definition preempted by non-idle tasks. */
3939 if (unlikely(curr->policy == SCHED_IDLE) &&
3940 likely(p->policy != SCHED_IDLE))
3941 goto preempt;
3942
3943 /*
3944 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3945 * is driven by the tick):
3946 */
3947 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3948 return;
3949
3950 find_matching_se(&se, &pse);
3951 update_curr(cfs_rq_of(se));
3952 BUG_ON(!pse);
3953 if (wakeup_preempt_entity(se, pse) == 1) {
3954 /*
3955 * Bias pick_next to pick the sched entity that is
3956 * triggering this preemption.
3957 */
3958 if (!next_buddy_marked)
3959 set_next_buddy(pse);
3960 goto preempt;
3961 }
3962
3963 return;
3964
3965 preempt:
3966 resched_task(curr);
3967 /*
3968 * Only set the backward buddy when the current task is still
3969 * on the rq. This can happen when a wakeup gets interleaved
3970 * with schedule on the ->pre_schedule() or idle_balance()
3971 * point, either of which can * drop the rq lock.
3972 *
3973 * Also, during early boot the idle thread is in the fair class,
3974 * for obvious reasons its a bad idea to schedule back to it.
3975 */
3976 if (unlikely(!se->on_rq || curr == rq->idle))
3977 return;
3978
3979 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3980 set_last_buddy(se);
3981 }
3982
3983 static struct task_struct *pick_next_task_fair(struct rq *rq)
3984 {
3985 struct task_struct *p;
3986 struct cfs_rq *cfs_rq = &rq->cfs;
3987 struct sched_entity *se;
3988
3989 if (!cfs_rq->nr_running)
3990 return NULL;
3991
3992 do {
3993 se = pick_next_entity(cfs_rq);
3994 set_next_entity(cfs_rq, se);
3995 cfs_rq = group_cfs_rq(se);
3996 } while (cfs_rq);
3997
3998 p = task_of(se);
3999 if (hrtick_enabled(rq))
4000 hrtick_start_fair(rq, p);
4001
4002 return p;
4003 }
4004
4005 /*
4006 * Account for a descheduled task:
4007 */
4008 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4009 {
4010 struct sched_entity *se = &prev->se;
4011 struct cfs_rq *cfs_rq;
4012
4013 for_each_sched_entity(se) {
4014 cfs_rq = cfs_rq_of(se);
4015 put_prev_entity(cfs_rq, se);
4016 }
4017 }
4018
4019 /*
4020 * sched_yield() is very simple
4021 *
4022 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4023 */
4024 static void yield_task_fair(struct rq *rq)
4025 {
4026 struct task_struct *curr = rq->curr;
4027 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4028 struct sched_entity *se = &curr->se;
4029
4030 /*
4031 * Are we the only task in the tree?
4032 */
4033 if (unlikely(rq->nr_running == 1))
4034 return;
4035
4036 clear_buddies(cfs_rq, se);
4037
4038 if (curr->policy != SCHED_BATCH) {
4039 update_rq_clock(rq);
4040 /*
4041 * Update run-time statistics of the 'current'.
4042 */
4043 update_curr(cfs_rq);
4044 /*
4045 * Tell update_rq_clock() that we've just updated,
4046 * so we don't do microscopic update in schedule()
4047 * and double the fastpath cost.
4048 */
4049 rq->skip_clock_update = 1;
4050 }
4051
4052 set_skip_buddy(se);
4053 }
4054
4055 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4056 {
4057 struct sched_entity *se = &p->se;
4058
4059 /* throttled hierarchies are not runnable */
4060 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4061 return false;
4062
4063 /* Tell the scheduler that we'd really like pse to run next. */
4064 set_next_buddy(se);
4065
4066 yield_task_fair(rq);
4067
4068 return true;
4069 }
4070
4071 #ifdef CONFIG_SMP
4072 /**************************************************
4073 * Fair scheduling class load-balancing methods.
4074 *
4075 * BASICS
4076 *
4077 * The purpose of load-balancing is to achieve the same basic fairness the
4078 * per-cpu scheduler provides, namely provide a proportional amount of compute
4079 * time to each task. This is expressed in the following equation:
4080 *
4081 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4082 *
4083 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4084 * W_i,0 is defined as:
4085 *
4086 * W_i,0 = \Sum_j w_i,j (2)
4087 *
4088 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4089 * is derived from the nice value as per prio_to_weight[].
4090 *
4091 * The weight average is an exponential decay average of the instantaneous
4092 * weight:
4093 *
4094 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4095 *
4096 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4097 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4098 * can also include other factors [XXX].
4099 *
4100 * To achieve this balance we define a measure of imbalance which follows
4101 * directly from (1):
4102 *
4103 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4104 *
4105 * We them move tasks around to minimize the imbalance. In the continuous
4106 * function space it is obvious this converges, in the discrete case we get
4107 * a few fun cases generally called infeasible weight scenarios.
4108 *
4109 * [XXX expand on:
4110 * - infeasible weights;
4111 * - local vs global optima in the discrete case. ]
4112 *
4113 *
4114 * SCHED DOMAINS
4115 *
4116 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4117 * for all i,j solution, we create a tree of cpus that follows the hardware
4118 * topology where each level pairs two lower groups (or better). This results
4119 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4120 * tree to only the first of the previous level and we decrease the frequency
4121 * of load-balance at each level inv. proportional to the number of cpus in
4122 * the groups.
4123 *
4124 * This yields:
4125 *
4126 * log_2 n 1 n
4127 * \Sum { --- * --- * 2^i } = O(n) (5)
4128 * i = 0 2^i 2^i
4129 * `- size of each group
4130 * | | `- number of cpus doing load-balance
4131 * | `- freq
4132 * `- sum over all levels
4133 *
4134 * Coupled with a limit on how many tasks we can migrate every balance pass,
4135 * this makes (5) the runtime complexity of the balancer.
4136 *
4137 * An important property here is that each CPU is still (indirectly) connected
4138 * to every other cpu in at most O(log n) steps:
4139 *
4140 * The adjacency matrix of the resulting graph is given by:
4141 *
4142 * log_2 n
4143 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4144 * k = 0
4145 *
4146 * And you'll find that:
4147 *
4148 * A^(log_2 n)_i,j != 0 for all i,j (7)
4149 *
4150 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4151 * The task movement gives a factor of O(m), giving a convergence complexity
4152 * of:
4153 *
4154 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4155 *
4156 *
4157 * WORK CONSERVING
4158 *
4159 * In order to avoid CPUs going idle while there's still work to do, new idle
4160 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4161 * tree itself instead of relying on other CPUs to bring it work.
4162 *
4163 * This adds some complexity to both (5) and (8) but it reduces the total idle
4164 * time.
4165 *
4166 * [XXX more?]
4167 *
4168 *
4169 * CGROUPS
4170 *
4171 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4172 *
4173 * s_k,i
4174 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4175 * S_k
4176 *
4177 * Where
4178 *
4179 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4180 *
4181 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4182 *
4183 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4184 * property.
4185 *
4186 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4187 * rewrite all of this once again.]
4188 */
4189
4190 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4191
4192 #define LBF_ALL_PINNED 0x01
4193 #define LBF_NEED_BREAK 0x02
4194 #define LBF_DST_PINNED 0x04
4195 #define LBF_SOME_PINNED 0x08
4196
4197 struct lb_env {
4198 struct sched_domain *sd;
4199
4200 struct rq *src_rq;
4201 int src_cpu;
4202
4203 int dst_cpu;
4204 struct rq *dst_rq;
4205
4206 struct cpumask *dst_grpmask;
4207 int new_dst_cpu;
4208 enum cpu_idle_type idle;
4209 long imbalance;
4210 /* The set of CPUs under consideration for load-balancing */
4211 struct cpumask *cpus;
4212
4213 unsigned int flags;
4214
4215 unsigned int loop;
4216 unsigned int loop_break;
4217 unsigned int loop_max;
4218 };
4219
4220 /*
4221 * move_task - move a task from one runqueue to another runqueue.
4222 * Both runqueues must be locked.
4223 */
4224 static void move_task(struct task_struct *p, struct lb_env *env)
4225 {
4226 deactivate_task(env->src_rq, p, 0);
4227 set_task_cpu(p, env->dst_cpu);
4228 activate_task(env->dst_rq, p, 0);
4229 check_preempt_curr(env->dst_rq, p, 0);
4230 #ifdef CONFIG_NUMA_BALANCING
4231 if (p->numa_preferred_nid != -1) {
4232 int src_nid = cpu_to_node(env->src_cpu);
4233 int dst_nid = cpu_to_node(env->dst_cpu);
4234
4235 /*
4236 * If the load balancer has moved the task then limit
4237 * migrations from taking place in the short term in
4238 * case this is a short-lived migration.
4239 */
4240 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4241 p->numa_migrate_seq = 0;
4242 }
4243 #endif
4244 }
4245
4246 /*
4247 * Is this task likely cache-hot:
4248 */
4249 static int
4250 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4251 {
4252 s64 delta;
4253
4254 if (p->sched_class != &fair_sched_class)
4255 return 0;
4256
4257 if (unlikely(p->policy == SCHED_IDLE))
4258 return 0;
4259
4260 /*
4261 * Buddy candidates are cache hot:
4262 */
4263 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4264 (&p->se == cfs_rq_of(&p->se)->next ||
4265 &p->se == cfs_rq_of(&p->se)->last))
4266 return 1;
4267
4268 if (sysctl_sched_migration_cost == -1)
4269 return 1;
4270 if (sysctl_sched_migration_cost == 0)
4271 return 0;
4272
4273 delta = now - p->se.exec_start;
4274
4275 return delta < (s64)sysctl_sched_migration_cost;
4276 }
4277
4278 #ifdef CONFIG_NUMA_BALANCING
4279 /* Returns true if the destination node has incurred more faults */
4280 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4281 {
4282 int src_nid, dst_nid;
4283
4284 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4285 !(env->sd->flags & SD_NUMA)) {
4286 return false;
4287 }
4288
4289 src_nid = cpu_to_node(env->src_cpu);
4290 dst_nid = cpu_to_node(env->dst_cpu);
4291
4292 if (src_nid == dst_nid ||
4293 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4294 return false;
4295
4296 if (dst_nid == p->numa_preferred_nid ||
4297 task_faults(p, dst_nid) > task_faults(p, src_nid))
4298 return true;
4299
4300 return false;
4301 }
4302
4303
4304 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4305 {
4306 int src_nid, dst_nid;
4307
4308 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4309 return false;
4310
4311 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4312 return false;
4313
4314 src_nid = cpu_to_node(env->src_cpu);
4315 dst_nid = cpu_to_node(env->dst_cpu);
4316
4317 if (src_nid == dst_nid ||
4318 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4319 return false;
4320
4321 if (task_faults(p, dst_nid) < task_faults(p, src_nid))
4322 return true;
4323
4324 return false;
4325 }
4326
4327 #else
4328 static inline bool migrate_improves_locality(struct task_struct *p,
4329 struct lb_env *env)
4330 {
4331 return false;
4332 }
4333
4334 static inline bool migrate_degrades_locality(struct task_struct *p,
4335 struct lb_env *env)
4336 {
4337 return false;
4338 }
4339 #endif
4340
4341 /*
4342 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4343 */
4344 static
4345 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4346 {
4347 int tsk_cache_hot = 0;
4348 /*
4349 * We do not migrate tasks that are:
4350 * 1) throttled_lb_pair, or
4351 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4352 * 3) running (obviously), or
4353 * 4) are cache-hot on their current CPU.
4354 */
4355 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4356 return 0;
4357
4358 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4359 int cpu;
4360
4361 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4362
4363 env->flags |= LBF_SOME_PINNED;
4364
4365 /*
4366 * Remember if this task can be migrated to any other cpu in
4367 * our sched_group. We may want to revisit it if we couldn't
4368 * meet load balance goals by pulling other tasks on src_cpu.
4369 *
4370 * Also avoid computing new_dst_cpu if we have already computed
4371 * one in current iteration.
4372 */
4373 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4374 return 0;
4375
4376 /* Prevent to re-select dst_cpu via env's cpus */
4377 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4378 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4379 env->flags |= LBF_DST_PINNED;
4380 env->new_dst_cpu = cpu;
4381 break;
4382 }
4383 }
4384
4385 return 0;
4386 }
4387
4388 /* Record that we found atleast one task that could run on dst_cpu */
4389 env->flags &= ~LBF_ALL_PINNED;
4390
4391 if (task_running(env->src_rq, p)) {
4392 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4393 return 0;
4394 }
4395
4396 /*
4397 * Aggressive migration if:
4398 * 1) destination numa is preferred
4399 * 2) task is cache cold, or
4400 * 3) too many balance attempts have failed.
4401 */
4402 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4403 if (!tsk_cache_hot)
4404 tsk_cache_hot = migrate_degrades_locality(p, env);
4405
4406 if (migrate_improves_locality(p, env)) {
4407 #ifdef CONFIG_SCHEDSTATS
4408 if (tsk_cache_hot) {
4409 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4410 schedstat_inc(p, se.statistics.nr_forced_migrations);
4411 }
4412 #endif
4413 return 1;
4414 }
4415
4416 if (!tsk_cache_hot ||
4417 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4418
4419 if (tsk_cache_hot) {
4420 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4421 schedstat_inc(p, se.statistics.nr_forced_migrations);
4422 }
4423
4424 return 1;
4425 }
4426
4427 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4428 return 0;
4429 }
4430
4431 /*
4432 * move_one_task tries to move exactly one task from busiest to this_rq, as
4433 * part of active balancing operations within "domain".
4434 * Returns 1 if successful and 0 otherwise.
4435 *
4436 * Called with both runqueues locked.
4437 */
4438 static int move_one_task(struct lb_env *env)
4439 {
4440 struct task_struct *p, *n;
4441
4442 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4443 if (!can_migrate_task(p, env))
4444 continue;
4445
4446 move_task(p, env);
4447 /*
4448 * Right now, this is only the second place move_task()
4449 * is called, so we can safely collect move_task()
4450 * stats here rather than inside move_task().
4451 */
4452 schedstat_inc(env->sd, lb_gained[env->idle]);
4453 return 1;
4454 }
4455 return 0;
4456 }
4457
4458 static unsigned long task_h_load(struct task_struct *p);
4459
4460 static const unsigned int sched_nr_migrate_break = 32;
4461
4462 /*
4463 * move_tasks tries to move up to imbalance weighted load from busiest to
4464 * this_rq, as part of a balancing operation within domain "sd".
4465 * Returns 1 if successful and 0 otherwise.
4466 *
4467 * Called with both runqueues locked.
4468 */
4469 static int move_tasks(struct lb_env *env)
4470 {
4471 struct list_head *tasks = &env->src_rq->cfs_tasks;
4472 struct task_struct *p;
4473 unsigned long load;
4474 int pulled = 0;
4475
4476 if (env->imbalance <= 0)
4477 return 0;
4478
4479 while (!list_empty(tasks)) {
4480 p = list_first_entry(tasks, struct task_struct, se.group_node);
4481
4482 env->loop++;
4483 /* We've more or less seen every task there is, call it quits */
4484 if (env->loop > env->loop_max)
4485 break;
4486
4487 /* take a breather every nr_migrate tasks */
4488 if (env->loop > env->loop_break) {
4489 env->loop_break += sched_nr_migrate_break;
4490 env->flags |= LBF_NEED_BREAK;
4491 break;
4492 }
4493
4494 if (!can_migrate_task(p, env))
4495 goto next;
4496
4497 load = task_h_load(p);
4498
4499 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4500 goto next;
4501
4502 if ((load / 2) > env->imbalance)
4503 goto next;
4504
4505 move_task(p, env);
4506 pulled++;
4507 env->imbalance -= load;
4508
4509 #ifdef CONFIG_PREEMPT
4510 /*
4511 * NEWIDLE balancing is a source of latency, so preemptible
4512 * kernels will stop after the first task is pulled to minimize
4513 * the critical section.
4514 */
4515 if (env->idle == CPU_NEWLY_IDLE)
4516 break;
4517 #endif
4518
4519 /*
4520 * We only want to steal up to the prescribed amount of
4521 * weighted load.
4522 */
4523 if (env->imbalance <= 0)
4524 break;
4525
4526 continue;
4527 next:
4528 list_move_tail(&p->se.group_node, tasks);
4529 }
4530
4531 /*
4532 * Right now, this is one of only two places move_task() is called,
4533 * so we can safely collect move_task() stats here rather than
4534 * inside move_task().
4535 */
4536 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4537
4538 return pulled;
4539 }
4540
4541 #ifdef CONFIG_FAIR_GROUP_SCHED
4542 /*
4543 * update tg->load_weight by folding this cpu's load_avg
4544 */
4545 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4546 {
4547 struct sched_entity *se = tg->se[cpu];
4548 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4549
4550 /* throttled entities do not contribute to load */
4551 if (throttled_hierarchy(cfs_rq))
4552 return;
4553
4554 update_cfs_rq_blocked_load(cfs_rq, 1);
4555
4556 if (se) {
4557 update_entity_load_avg(se, 1);
4558 /*
4559 * We pivot on our runnable average having decayed to zero for
4560 * list removal. This generally implies that all our children
4561 * have also been removed (modulo rounding error or bandwidth
4562 * control); however, such cases are rare and we can fix these
4563 * at enqueue.
4564 *
4565 * TODO: fix up out-of-order children on enqueue.
4566 */
4567 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4568 list_del_leaf_cfs_rq(cfs_rq);
4569 } else {
4570 struct rq *rq = rq_of(cfs_rq);
4571 update_rq_runnable_avg(rq, rq->nr_running);
4572 }
4573 }
4574
4575 static void update_blocked_averages(int cpu)
4576 {
4577 struct rq *rq = cpu_rq(cpu);
4578 struct cfs_rq *cfs_rq;
4579 unsigned long flags;
4580
4581 raw_spin_lock_irqsave(&rq->lock, flags);
4582 update_rq_clock(rq);
4583 /*
4584 * Iterates the task_group tree in a bottom up fashion, see
4585 * list_add_leaf_cfs_rq() for details.
4586 */
4587 for_each_leaf_cfs_rq(rq, cfs_rq) {
4588 /*
4589 * Note: We may want to consider periodically releasing
4590 * rq->lock about these updates so that creating many task
4591 * groups does not result in continually extending hold time.
4592 */
4593 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4594 }
4595
4596 raw_spin_unlock_irqrestore(&rq->lock, flags);
4597 }
4598
4599 /*
4600 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
4601 * This needs to be done in a top-down fashion because the load of a child
4602 * group is a fraction of its parents load.
4603 */
4604 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
4605 {
4606 struct rq *rq = rq_of(cfs_rq);
4607 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
4608 unsigned long now = jiffies;
4609 unsigned long load;
4610
4611 if (cfs_rq->last_h_load_update == now)
4612 return;
4613
4614 cfs_rq->h_load_next = NULL;
4615 for_each_sched_entity(se) {
4616 cfs_rq = cfs_rq_of(se);
4617 cfs_rq->h_load_next = se;
4618 if (cfs_rq->last_h_load_update == now)
4619 break;
4620 }
4621
4622 if (!se) {
4623 cfs_rq->h_load = cfs_rq->runnable_load_avg;
4624 cfs_rq->last_h_load_update = now;
4625 }
4626
4627 while ((se = cfs_rq->h_load_next) != NULL) {
4628 load = cfs_rq->h_load;
4629 load = div64_ul(load * se->avg.load_avg_contrib,
4630 cfs_rq->runnable_load_avg + 1);
4631 cfs_rq = group_cfs_rq(se);
4632 cfs_rq->h_load = load;
4633 cfs_rq->last_h_load_update = now;
4634 }
4635 }
4636
4637 static unsigned long task_h_load(struct task_struct *p)
4638 {
4639 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4640
4641 update_cfs_rq_h_load(cfs_rq);
4642 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4643 cfs_rq->runnable_load_avg + 1);
4644 }
4645 #else
4646 static inline void update_blocked_averages(int cpu)
4647 {
4648 }
4649
4650 static unsigned long task_h_load(struct task_struct *p)
4651 {
4652 return p->se.avg.load_avg_contrib;
4653 }
4654 #endif
4655
4656 /********** Helpers for find_busiest_group ************************/
4657 /*
4658 * sg_lb_stats - stats of a sched_group required for load_balancing
4659 */
4660 struct sg_lb_stats {
4661 unsigned long avg_load; /*Avg load across the CPUs of the group */
4662 unsigned long group_load; /* Total load over the CPUs of the group */
4663 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4664 unsigned long load_per_task;
4665 unsigned long group_power;
4666 unsigned int sum_nr_running; /* Nr tasks running in the group */
4667 unsigned int group_capacity;
4668 unsigned int idle_cpus;
4669 unsigned int group_weight;
4670 int group_imb; /* Is there an imbalance in the group ? */
4671 int group_has_capacity; /* Is there extra capacity in the group? */
4672 };
4673
4674 /*
4675 * sd_lb_stats - Structure to store the statistics of a sched_domain
4676 * during load balancing.
4677 */
4678 struct sd_lb_stats {
4679 struct sched_group *busiest; /* Busiest group in this sd */
4680 struct sched_group *local; /* Local group in this sd */
4681 unsigned long total_load; /* Total load of all groups in sd */
4682 unsigned long total_pwr; /* Total power of all groups in sd */
4683 unsigned long avg_load; /* Average load across all groups in sd */
4684
4685 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
4686 struct sg_lb_stats local_stat; /* Statistics of the local group */
4687 };
4688
4689 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4690 {
4691 /*
4692 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4693 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4694 * We must however clear busiest_stat::avg_load because
4695 * update_sd_pick_busiest() reads this before assignment.
4696 */
4697 *sds = (struct sd_lb_stats){
4698 .busiest = NULL,
4699 .local = NULL,
4700 .total_load = 0UL,
4701 .total_pwr = 0UL,
4702 .busiest_stat = {
4703 .avg_load = 0UL,
4704 },
4705 };
4706 }
4707
4708 /**
4709 * get_sd_load_idx - Obtain the load index for a given sched domain.
4710 * @sd: The sched_domain whose load_idx is to be obtained.
4711 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4712 *
4713 * Return: The load index.
4714 */
4715 static inline int get_sd_load_idx(struct sched_domain *sd,
4716 enum cpu_idle_type idle)
4717 {
4718 int load_idx;
4719
4720 switch (idle) {
4721 case CPU_NOT_IDLE:
4722 load_idx = sd->busy_idx;
4723 break;
4724
4725 case CPU_NEWLY_IDLE:
4726 load_idx = sd->newidle_idx;
4727 break;
4728 default:
4729 load_idx = sd->idle_idx;
4730 break;
4731 }
4732
4733 return load_idx;
4734 }
4735
4736 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4737 {
4738 return SCHED_POWER_SCALE;
4739 }
4740
4741 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4742 {
4743 return default_scale_freq_power(sd, cpu);
4744 }
4745
4746 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4747 {
4748 unsigned long weight = sd->span_weight;
4749 unsigned long smt_gain = sd->smt_gain;
4750
4751 smt_gain /= weight;
4752
4753 return smt_gain;
4754 }
4755
4756 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4757 {
4758 return default_scale_smt_power(sd, cpu);
4759 }
4760
4761 static unsigned long scale_rt_power(int cpu)
4762 {
4763 struct rq *rq = cpu_rq(cpu);
4764 u64 total, available, age_stamp, avg;
4765
4766 /*
4767 * Since we're reading these variables without serialization make sure
4768 * we read them once before doing sanity checks on them.
4769 */
4770 age_stamp = ACCESS_ONCE(rq->age_stamp);
4771 avg = ACCESS_ONCE(rq->rt_avg);
4772
4773 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
4774
4775 if (unlikely(total < avg)) {
4776 /* Ensures that power won't end up being negative */
4777 available = 0;
4778 } else {
4779 available = total - avg;
4780 }
4781
4782 if (unlikely((s64)total < SCHED_POWER_SCALE))
4783 total = SCHED_POWER_SCALE;
4784
4785 total >>= SCHED_POWER_SHIFT;
4786
4787 return div_u64(available, total);
4788 }
4789
4790 static void update_cpu_power(struct sched_domain *sd, int cpu)
4791 {
4792 unsigned long weight = sd->span_weight;
4793 unsigned long power = SCHED_POWER_SCALE;
4794 struct sched_group *sdg = sd->groups;
4795
4796 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4797 if (sched_feat(ARCH_POWER))
4798 power *= arch_scale_smt_power(sd, cpu);
4799 else
4800 power *= default_scale_smt_power(sd, cpu);
4801
4802 power >>= SCHED_POWER_SHIFT;
4803 }
4804
4805 sdg->sgp->power_orig = power;
4806
4807 if (sched_feat(ARCH_POWER))
4808 power *= arch_scale_freq_power(sd, cpu);
4809 else
4810 power *= default_scale_freq_power(sd, cpu);
4811
4812 power >>= SCHED_POWER_SHIFT;
4813
4814 power *= scale_rt_power(cpu);
4815 power >>= SCHED_POWER_SHIFT;
4816
4817 if (!power)
4818 power = 1;
4819
4820 cpu_rq(cpu)->cpu_power = power;
4821 sdg->sgp->power = power;
4822 }
4823
4824 void update_group_power(struct sched_domain *sd, int cpu)
4825 {
4826 struct sched_domain *child = sd->child;
4827 struct sched_group *group, *sdg = sd->groups;
4828 unsigned long power, power_orig;
4829 unsigned long interval;
4830
4831 interval = msecs_to_jiffies(sd->balance_interval);
4832 interval = clamp(interval, 1UL, max_load_balance_interval);
4833 sdg->sgp->next_update = jiffies + interval;
4834
4835 if (!child) {
4836 update_cpu_power(sd, cpu);
4837 return;
4838 }
4839
4840 power_orig = power = 0;
4841
4842 if (child->flags & SD_OVERLAP) {
4843 /*
4844 * SD_OVERLAP domains cannot assume that child groups
4845 * span the current group.
4846 */
4847
4848 for_each_cpu(cpu, sched_group_cpus(sdg)) {
4849 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
4850
4851 power_orig += sg->sgp->power_orig;
4852 power += sg->sgp->power;
4853 }
4854 } else {
4855 /*
4856 * !SD_OVERLAP domains can assume that child groups
4857 * span the current group.
4858 */
4859
4860 group = child->groups;
4861 do {
4862 power_orig += group->sgp->power_orig;
4863 power += group->sgp->power;
4864 group = group->next;
4865 } while (group != child->groups);
4866 }
4867
4868 sdg->sgp->power_orig = power_orig;
4869 sdg->sgp->power = power;
4870 }
4871
4872 /*
4873 * Try and fix up capacity for tiny siblings, this is needed when
4874 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4875 * which on its own isn't powerful enough.
4876 *
4877 * See update_sd_pick_busiest() and check_asym_packing().
4878 */
4879 static inline int
4880 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4881 {
4882 /*
4883 * Only siblings can have significantly less than SCHED_POWER_SCALE
4884 */
4885 if (!(sd->flags & SD_SHARE_CPUPOWER))
4886 return 0;
4887
4888 /*
4889 * If ~90% of the cpu_power is still there, we're good.
4890 */
4891 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4892 return 1;
4893
4894 return 0;
4895 }
4896
4897 /*
4898 * Group imbalance indicates (and tries to solve) the problem where balancing
4899 * groups is inadequate due to tsk_cpus_allowed() constraints.
4900 *
4901 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
4902 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
4903 * Something like:
4904 *
4905 * { 0 1 2 3 } { 4 5 6 7 }
4906 * * * * *
4907 *
4908 * If we were to balance group-wise we'd place two tasks in the first group and
4909 * two tasks in the second group. Clearly this is undesired as it will overload
4910 * cpu 3 and leave one of the cpus in the second group unused.
4911 *
4912 * The current solution to this issue is detecting the skew in the first group
4913 * by noticing the lower domain failed to reach balance and had difficulty
4914 * moving tasks due to affinity constraints.
4915 *
4916 * When this is so detected; this group becomes a candidate for busiest; see
4917 * update_sd_pick_busiest(). And calculcate_imbalance() and
4918 * find_busiest_group() avoid some of the usual balance conditions to allow it
4919 * to create an effective group imbalance.
4920 *
4921 * This is a somewhat tricky proposition since the next run might not find the
4922 * group imbalance and decide the groups need to be balanced again. A most
4923 * subtle and fragile situation.
4924 */
4925
4926 static inline int sg_imbalanced(struct sched_group *group)
4927 {
4928 return group->sgp->imbalance;
4929 }
4930
4931 /*
4932 * Compute the group capacity.
4933 *
4934 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
4935 * first dividing out the smt factor and computing the actual number of cores
4936 * and limit power unit capacity with that.
4937 */
4938 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
4939 {
4940 unsigned int capacity, smt, cpus;
4941 unsigned int power, power_orig;
4942
4943 power = group->sgp->power;
4944 power_orig = group->sgp->power_orig;
4945 cpus = group->group_weight;
4946
4947 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
4948 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
4949 capacity = cpus / smt; /* cores */
4950
4951 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
4952 if (!capacity)
4953 capacity = fix_small_capacity(env->sd, group);
4954
4955 return capacity;
4956 }
4957
4958 /**
4959 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4960 * @env: The load balancing environment.
4961 * @group: sched_group whose statistics are to be updated.
4962 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4963 * @local_group: Does group contain this_cpu.
4964 * @sgs: variable to hold the statistics for this group.
4965 */
4966 static inline void update_sg_lb_stats(struct lb_env *env,
4967 struct sched_group *group, int load_idx,
4968 int local_group, struct sg_lb_stats *sgs)
4969 {
4970 unsigned long nr_running;
4971 unsigned long load;
4972 int i;
4973
4974 memset(sgs, 0, sizeof(*sgs));
4975
4976 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4977 struct rq *rq = cpu_rq(i);
4978
4979 nr_running = rq->nr_running;
4980
4981 /* Bias balancing toward cpus of our domain */
4982 if (local_group)
4983 load = target_load(i, load_idx);
4984 else
4985 load = source_load(i, load_idx);
4986
4987 sgs->group_load += load;
4988 sgs->sum_nr_running += nr_running;
4989 sgs->sum_weighted_load += weighted_cpuload(i);
4990 if (idle_cpu(i))
4991 sgs->idle_cpus++;
4992 }
4993
4994 /* Adjust by relative CPU power of the group */
4995 sgs->group_power = group->sgp->power;
4996 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
4997
4998 if (sgs->sum_nr_running)
4999 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5000
5001 sgs->group_weight = group->group_weight;
5002
5003 sgs->group_imb = sg_imbalanced(group);
5004 sgs->group_capacity = sg_capacity(env, group);
5005
5006 if (sgs->group_capacity > sgs->sum_nr_running)
5007 sgs->group_has_capacity = 1;
5008 }
5009
5010 /**
5011 * update_sd_pick_busiest - return 1 on busiest group
5012 * @env: The load balancing environment.
5013 * @sds: sched_domain statistics
5014 * @sg: sched_group candidate to be checked for being the busiest
5015 * @sgs: sched_group statistics
5016 *
5017 * Determine if @sg is a busier group than the previously selected
5018 * busiest group.
5019 *
5020 * Return: %true if @sg is a busier group than the previously selected
5021 * busiest group. %false otherwise.
5022 */
5023 static bool update_sd_pick_busiest(struct lb_env *env,
5024 struct sd_lb_stats *sds,
5025 struct sched_group *sg,
5026 struct sg_lb_stats *sgs)
5027 {
5028 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5029 return false;
5030
5031 if (sgs->sum_nr_running > sgs->group_capacity)
5032 return true;
5033
5034 if (sgs->group_imb)
5035 return true;
5036
5037 /*
5038 * ASYM_PACKING needs to move all the work to the lowest
5039 * numbered CPUs in the group, therefore mark all groups
5040 * higher than ourself as busy.
5041 */
5042 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5043 env->dst_cpu < group_first_cpu(sg)) {
5044 if (!sds->busiest)
5045 return true;
5046
5047 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5048 return true;
5049 }
5050
5051 return false;
5052 }
5053
5054 /**
5055 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5056 * @env: The load balancing environment.
5057 * @balance: Should we balance.
5058 * @sds: variable to hold the statistics for this sched_domain.
5059 */
5060 static inline void update_sd_lb_stats(struct lb_env *env,
5061 struct sd_lb_stats *sds)
5062 {
5063 struct sched_domain *child = env->sd->child;
5064 struct sched_group *sg = env->sd->groups;
5065 struct sg_lb_stats tmp_sgs;
5066 int load_idx, prefer_sibling = 0;
5067
5068 if (child && child->flags & SD_PREFER_SIBLING)
5069 prefer_sibling = 1;
5070
5071 load_idx = get_sd_load_idx(env->sd, env->idle);
5072
5073 do {
5074 struct sg_lb_stats *sgs = &tmp_sgs;
5075 int local_group;
5076
5077 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5078 if (local_group) {
5079 sds->local = sg;
5080 sgs = &sds->local_stat;
5081
5082 if (env->idle != CPU_NEWLY_IDLE ||
5083 time_after_eq(jiffies, sg->sgp->next_update))
5084 update_group_power(env->sd, env->dst_cpu);
5085 }
5086
5087 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5088
5089 if (local_group)
5090 goto next_group;
5091
5092 /*
5093 * In case the child domain prefers tasks go to siblings
5094 * first, lower the sg capacity to one so that we'll try
5095 * and move all the excess tasks away. We lower the capacity
5096 * of a group only if the local group has the capacity to fit
5097 * these excess tasks, i.e. nr_running < group_capacity. The
5098 * extra check prevents the case where you always pull from the
5099 * heaviest group when it is already under-utilized (possible
5100 * with a large weight task outweighs the tasks on the system).
5101 */
5102 if (prefer_sibling && sds->local &&
5103 sds->local_stat.group_has_capacity)
5104 sgs->group_capacity = min(sgs->group_capacity, 1U);
5105
5106 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5107 sds->busiest = sg;
5108 sds->busiest_stat = *sgs;
5109 }
5110
5111 next_group:
5112 /* Now, start updating sd_lb_stats */
5113 sds->total_load += sgs->group_load;
5114 sds->total_pwr += sgs->group_power;
5115
5116 sg = sg->next;
5117 } while (sg != env->sd->groups);
5118 }
5119
5120 /**
5121 * check_asym_packing - Check to see if the group is packed into the
5122 * sched doman.
5123 *
5124 * This is primarily intended to used at the sibling level. Some
5125 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5126 * case of POWER7, it can move to lower SMT modes only when higher
5127 * threads are idle. When in lower SMT modes, the threads will
5128 * perform better since they share less core resources. Hence when we
5129 * have idle threads, we want them to be the higher ones.
5130 *
5131 * This packing function is run on idle threads. It checks to see if
5132 * the busiest CPU in this domain (core in the P7 case) has a higher
5133 * CPU number than the packing function is being run on. Here we are
5134 * assuming lower CPU number will be equivalent to lower a SMT thread
5135 * number.
5136 *
5137 * Return: 1 when packing is required and a task should be moved to
5138 * this CPU. The amount of the imbalance is returned in *imbalance.
5139 *
5140 * @env: The load balancing environment.
5141 * @sds: Statistics of the sched_domain which is to be packed
5142 */
5143 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5144 {
5145 int busiest_cpu;
5146
5147 if (!(env->sd->flags & SD_ASYM_PACKING))
5148 return 0;
5149
5150 if (!sds->busiest)
5151 return 0;
5152
5153 busiest_cpu = group_first_cpu(sds->busiest);
5154 if (env->dst_cpu > busiest_cpu)
5155 return 0;
5156
5157 env->imbalance = DIV_ROUND_CLOSEST(
5158 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5159 SCHED_POWER_SCALE);
5160
5161 return 1;
5162 }
5163
5164 /**
5165 * fix_small_imbalance - Calculate the minor imbalance that exists
5166 * amongst the groups of a sched_domain, during
5167 * load balancing.
5168 * @env: The load balancing environment.
5169 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5170 */
5171 static inline
5172 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5173 {
5174 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5175 unsigned int imbn = 2;
5176 unsigned long scaled_busy_load_per_task;
5177 struct sg_lb_stats *local, *busiest;
5178
5179 local = &sds->local_stat;
5180 busiest = &sds->busiest_stat;
5181
5182 if (!local->sum_nr_running)
5183 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5184 else if (busiest->load_per_task > local->load_per_task)
5185 imbn = 1;
5186
5187 scaled_busy_load_per_task =
5188 (busiest->load_per_task * SCHED_POWER_SCALE) /
5189 busiest->group_power;
5190
5191 if (busiest->avg_load + scaled_busy_load_per_task >=
5192 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5193 env->imbalance = busiest->load_per_task;
5194 return;
5195 }
5196
5197 /*
5198 * OK, we don't have enough imbalance to justify moving tasks,
5199 * however we may be able to increase total CPU power used by
5200 * moving them.
5201 */
5202
5203 pwr_now += busiest->group_power *
5204 min(busiest->load_per_task, busiest->avg_load);
5205 pwr_now += local->group_power *
5206 min(local->load_per_task, local->avg_load);
5207 pwr_now /= SCHED_POWER_SCALE;
5208
5209 /* Amount of load we'd subtract */
5210 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5211 busiest->group_power;
5212 if (busiest->avg_load > tmp) {
5213 pwr_move += busiest->group_power *
5214 min(busiest->load_per_task,
5215 busiest->avg_load - tmp);
5216 }
5217
5218 /* Amount of load we'd add */
5219 if (busiest->avg_load * busiest->group_power <
5220 busiest->load_per_task * SCHED_POWER_SCALE) {
5221 tmp = (busiest->avg_load * busiest->group_power) /
5222 local->group_power;
5223 } else {
5224 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5225 local->group_power;
5226 }
5227 pwr_move += local->group_power *
5228 min(local->load_per_task, local->avg_load + tmp);
5229 pwr_move /= SCHED_POWER_SCALE;
5230
5231 /* Move if we gain throughput */
5232 if (pwr_move > pwr_now)
5233 env->imbalance = busiest->load_per_task;
5234 }
5235
5236 /**
5237 * calculate_imbalance - Calculate the amount of imbalance present within the
5238 * groups of a given sched_domain during load balance.
5239 * @env: load balance environment
5240 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5241 */
5242 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5243 {
5244 unsigned long max_pull, load_above_capacity = ~0UL;
5245 struct sg_lb_stats *local, *busiest;
5246
5247 local = &sds->local_stat;
5248 busiest = &sds->busiest_stat;
5249
5250 if (busiest->group_imb) {
5251 /*
5252 * In the group_imb case we cannot rely on group-wide averages
5253 * to ensure cpu-load equilibrium, look at wider averages. XXX
5254 */
5255 busiest->load_per_task =
5256 min(busiest->load_per_task, sds->avg_load);
5257 }
5258
5259 /*
5260 * In the presence of smp nice balancing, certain scenarios can have
5261 * max load less than avg load(as we skip the groups at or below
5262 * its cpu_power, while calculating max_load..)
5263 */
5264 if (busiest->avg_load <= sds->avg_load ||
5265 local->avg_load >= sds->avg_load) {
5266 env->imbalance = 0;
5267 return fix_small_imbalance(env, sds);
5268 }
5269
5270 if (!busiest->group_imb) {
5271 /*
5272 * Don't want to pull so many tasks that a group would go idle.
5273 * Except of course for the group_imb case, since then we might
5274 * have to drop below capacity to reach cpu-load equilibrium.
5275 */
5276 load_above_capacity =
5277 (busiest->sum_nr_running - busiest->group_capacity);
5278
5279 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5280 load_above_capacity /= busiest->group_power;
5281 }
5282
5283 /*
5284 * We're trying to get all the cpus to the average_load, so we don't
5285 * want to push ourselves above the average load, nor do we wish to
5286 * reduce the max loaded cpu below the average load. At the same time,
5287 * we also don't want to reduce the group load below the group capacity
5288 * (so that we can implement power-savings policies etc). Thus we look
5289 * for the minimum possible imbalance.
5290 */
5291 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5292
5293 /* How much load to actually move to equalise the imbalance */
5294 env->imbalance = min(
5295 max_pull * busiest->group_power,
5296 (sds->avg_load - local->avg_load) * local->group_power
5297 ) / SCHED_POWER_SCALE;
5298
5299 /*
5300 * if *imbalance is less than the average load per runnable task
5301 * there is no guarantee that any tasks will be moved so we'll have
5302 * a think about bumping its value to force at least one task to be
5303 * moved
5304 */
5305 if (env->imbalance < busiest->load_per_task)
5306 return fix_small_imbalance(env, sds);
5307 }
5308
5309 /******* find_busiest_group() helpers end here *********************/
5310
5311 /**
5312 * find_busiest_group - Returns the busiest group within the sched_domain
5313 * if there is an imbalance. If there isn't an imbalance, and
5314 * the user has opted for power-savings, it returns a group whose
5315 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5316 * such a group exists.
5317 *
5318 * Also calculates the amount of weighted load which should be moved
5319 * to restore balance.
5320 *
5321 * @env: The load balancing environment.
5322 *
5323 * Return: - The busiest group if imbalance exists.
5324 * - If no imbalance and user has opted for power-savings balance,
5325 * return the least loaded group whose CPUs can be
5326 * put to idle by rebalancing its tasks onto our group.
5327 */
5328 static struct sched_group *find_busiest_group(struct lb_env *env)
5329 {
5330 struct sg_lb_stats *local, *busiest;
5331 struct sd_lb_stats sds;
5332
5333 init_sd_lb_stats(&sds);
5334
5335 /*
5336 * Compute the various statistics relavent for load balancing at
5337 * this level.
5338 */
5339 update_sd_lb_stats(env, &sds);
5340 local = &sds.local_stat;
5341 busiest = &sds.busiest_stat;
5342
5343 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5344 check_asym_packing(env, &sds))
5345 return sds.busiest;
5346
5347 /* There is no busy sibling group to pull tasks from */
5348 if (!sds.busiest || busiest->sum_nr_running == 0)
5349 goto out_balanced;
5350
5351 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5352
5353 /*
5354 * If the busiest group is imbalanced the below checks don't
5355 * work because they assume all things are equal, which typically
5356 * isn't true due to cpus_allowed constraints and the like.
5357 */
5358 if (busiest->group_imb)
5359 goto force_balance;
5360
5361 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5362 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5363 !busiest->group_has_capacity)
5364 goto force_balance;
5365
5366 /*
5367 * If the local group is more busy than the selected busiest group
5368 * don't try and pull any tasks.
5369 */
5370 if (local->avg_load >= busiest->avg_load)
5371 goto out_balanced;
5372
5373 /*
5374 * Don't pull any tasks if this group is already above the domain
5375 * average load.
5376 */
5377 if (local->avg_load >= sds.avg_load)
5378 goto out_balanced;
5379
5380 if (env->idle == CPU_IDLE) {
5381 /*
5382 * This cpu is idle. If the busiest group load doesn't
5383 * have more tasks than the number of available cpu's and
5384 * there is no imbalance between this and busiest group
5385 * wrt to idle cpu's, it is balanced.
5386 */
5387 if ((local->idle_cpus < busiest->idle_cpus) &&
5388 busiest->sum_nr_running <= busiest->group_weight)
5389 goto out_balanced;
5390 } else {
5391 /*
5392 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5393 * imbalance_pct to be conservative.
5394 */
5395 if (100 * busiest->avg_load <=
5396 env->sd->imbalance_pct * local->avg_load)
5397 goto out_balanced;
5398 }
5399
5400 force_balance:
5401 /* Looks like there is an imbalance. Compute it */
5402 calculate_imbalance(env, &sds);
5403 return sds.busiest;
5404
5405 out_balanced:
5406 env->imbalance = 0;
5407 return NULL;
5408 }
5409
5410 /*
5411 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5412 */
5413 static struct rq *find_busiest_queue(struct lb_env *env,
5414 struct sched_group *group)
5415 {
5416 struct rq *busiest = NULL, *rq;
5417 unsigned long busiest_load = 0, busiest_power = 1;
5418 int i;
5419
5420 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5421 unsigned long power = power_of(i);
5422 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5423 SCHED_POWER_SCALE);
5424 unsigned long wl;
5425
5426 if (!capacity)
5427 capacity = fix_small_capacity(env->sd, group);
5428
5429 rq = cpu_rq(i);
5430 wl = weighted_cpuload(i);
5431
5432 /*
5433 * When comparing with imbalance, use weighted_cpuload()
5434 * which is not scaled with the cpu power.
5435 */
5436 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
5437 continue;
5438
5439 /*
5440 * For the load comparisons with the other cpu's, consider
5441 * the weighted_cpuload() scaled with the cpu power, so that
5442 * the load can be moved away from the cpu that is potentially
5443 * running at a lower capacity.
5444 *
5445 * Thus we're looking for max(wl_i / power_i), crosswise
5446 * multiplication to rid ourselves of the division works out
5447 * to: wl_i * power_j > wl_j * power_i; where j is our
5448 * previous maximum.
5449 */
5450 if (wl * busiest_power > busiest_load * power) {
5451 busiest_load = wl;
5452 busiest_power = power;
5453 busiest = rq;
5454 }
5455 }
5456
5457 return busiest;
5458 }
5459
5460 /*
5461 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5462 * so long as it is large enough.
5463 */
5464 #define MAX_PINNED_INTERVAL 512
5465
5466 /* Working cpumask for load_balance and load_balance_newidle. */
5467 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5468
5469 static int need_active_balance(struct lb_env *env)
5470 {
5471 struct sched_domain *sd = env->sd;
5472
5473 if (env->idle == CPU_NEWLY_IDLE) {
5474
5475 /*
5476 * ASYM_PACKING needs to force migrate tasks from busy but
5477 * higher numbered CPUs in order to pack all tasks in the
5478 * lowest numbered CPUs.
5479 */
5480 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5481 return 1;
5482 }
5483
5484 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5485 }
5486
5487 static int active_load_balance_cpu_stop(void *data);
5488
5489 static int should_we_balance(struct lb_env *env)
5490 {
5491 struct sched_group *sg = env->sd->groups;
5492 struct cpumask *sg_cpus, *sg_mask;
5493 int cpu, balance_cpu = -1;
5494
5495 /*
5496 * In the newly idle case, we will allow all the cpu's
5497 * to do the newly idle load balance.
5498 */
5499 if (env->idle == CPU_NEWLY_IDLE)
5500 return 1;
5501
5502 sg_cpus = sched_group_cpus(sg);
5503 sg_mask = sched_group_mask(sg);
5504 /* Try to find first idle cpu */
5505 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5506 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5507 continue;
5508
5509 balance_cpu = cpu;
5510 break;
5511 }
5512
5513 if (balance_cpu == -1)
5514 balance_cpu = group_balance_cpu(sg);
5515
5516 /*
5517 * First idle cpu or the first cpu(busiest) in this sched group
5518 * is eligible for doing load balancing at this and above domains.
5519 */
5520 return balance_cpu == env->dst_cpu;
5521 }
5522
5523 /*
5524 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5525 * tasks if there is an imbalance.
5526 */
5527 static int load_balance(int this_cpu, struct rq *this_rq,
5528 struct sched_domain *sd, enum cpu_idle_type idle,
5529 int *continue_balancing)
5530 {
5531 int ld_moved, cur_ld_moved, active_balance = 0;
5532 struct sched_domain *sd_parent = sd->parent;
5533 struct sched_group *group;
5534 struct rq *busiest;
5535 unsigned long flags;
5536 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5537
5538 struct lb_env env = {
5539 .sd = sd,
5540 .dst_cpu = this_cpu,
5541 .dst_rq = this_rq,
5542 .dst_grpmask = sched_group_cpus(sd->groups),
5543 .idle = idle,
5544 .loop_break = sched_nr_migrate_break,
5545 .cpus = cpus,
5546 };
5547
5548 /*
5549 * For NEWLY_IDLE load_balancing, we don't need to consider
5550 * other cpus in our group
5551 */
5552 if (idle == CPU_NEWLY_IDLE)
5553 env.dst_grpmask = NULL;
5554
5555 cpumask_copy(cpus, cpu_active_mask);
5556
5557 schedstat_inc(sd, lb_count[idle]);
5558
5559 redo:
5560 if (!should_we_balance(&env)) {
5561 *continue_balancing = 0;
5562 goto out_balanced;
5563 }
5564
5565 group = find_busiest_group(&env);
5566 if (!group) {
5567 schedstat_inc(sd, lb_nobusyg[idle]);
5568 goto out_balanced;
5569 }
5570
5571 busiest = find_busiest_queue(&env, group);
5572 if (!busiest) {
5573 schedstat_inc(sd, lb_nobusyq[idle]);
5574 goto out_balanced;
5575 }
5576
5577 BUG_ON(busiest == env.dst_rq);
5578
5579 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5580
5581 ld_moved = 0;
5582 if (busiest->nr_running > 1) {
5583 /*
5584 * Attempt to move tasks. If find_busiest_group has found
5585 * an imbalance but busiest->nr_running <= 1, the group is
5586 * still unbalanced. ld_moved simply stays zero, so it is
5587 * correctly treated as an imbalance.
5588 */
5589 env.flags |= LBF_ALL_PINNED;
5590 env.src_cpu = busiest->cpu;
5591 env.src_rq = busiest;
5592 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
5593
5594 more_balance:
5595 local_irq_save(flags);
5596 double_rq_lock(env.dst_rq, busiest);
5597
5598 /*
5599 * cur_ld_moved - load moved in current iteration
5600 * ld_moved - cumulative load moved across iterations
5601 */
5602 cur_ld_moved = move_tasks(&env);
5603 ld_moved += cur_ld_moved;
5604 double_rq_unlock(env.dst_rq, busiest);
5605 local_irq_restore(flags);
5606
5607 /*
5608 * some other cpu did the load balance for us.
5609 */
5610 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5611 resched_cpu(env.dst_cpu);
5612
5613 if (env.flags & LBF_NEED_BREAK) {
5614 env.flags &= ~LBF_NEED_BREAK;
5615 goto more_balance;
5616 }
5617
5618 /*
5619 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5620 * us and move them to an alternate dst_cpu in our sched_group
5621 * where they can run. The upper limit on how many times we
5622 * iterate on same src_cpu is dependent on number of cpus in our
5623 * sched_group.
5624 *
5625 * This changes load balance semantics a bit on who can move
5626 * load to a given_cpu. In addition to the given_cpu itself
5627 * (or a ilb_cpu acting on its behalf where given_cpu is
5628 * nohz-idle), we now have balance_cpu in a position to move
5629 * load to given_cpu. In rare situations, this may cause
5630 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5631 * _independently_ and at _same_ time to move some load to
5632 * given_cpu) causing exceess load to be moved to given_cpu.
5633 * This however should not happen so much in practice and
5634 * moreover subsequent load balance cycles should correct the
5635 * excess load moved.
5636 */
5637 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
5638
5639 /* Prevent to re-select dst_cpu via env's cpus */
5640 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5641
5642 env.dst_rq = cpu_rq(env.new_dst_cpu);
5643 env.dst_cpu = env.new_dst_cpu;
5644 env.flags &= ~LBF_DST_PINNED;
5645 env.loop = 0;
5646 env.loop_break = sched_nr_migrate_break;
5647
5648 /*
5649 * Go back to "more_balance" rather than "redo" since we
5650 * need to continue with same src_cpu.
5651 */
5652 goto more_balance;
5653 }
5654
5655 /*
5656 * We failed to reach balance because of affinity.
5657 */
5658 if (sd_parent) {
5659 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5660
5661 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5662 *group_imbalance = 1;
5663 } else if (*group_imbalance)
5664 *group_imbalance = 0;
5665 }
5666
5667 /* All tasks on this runqueue were pinned by CPU affinity */
5668 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5669 cpumask_clear_cpu(cpu_of(busiest), cpus);
5670 if (!cpumask_empty(cpus)) {
5671 env.loop = 0;
5672 env.loop_break = sched_nr_migrate_break;
5673 goto redo;
5674 }
5675 goto out_balanced;
5676 }
5677 }
5678
5679 if (!ld_moved) {
5680 schedstat_inc(sd, lb_failed[idle]);
5681 /*
5682 * Increment the failure counter only on periodic balance.
5683 * We do not want newidle balance, which can be very
5684 * frequent, pollute the failure counter causing
5685 * excessive cache_hot migrations and active balances.
5686 */
5687 if (idle != CPU_NEWLY_IDLE)
5688 sd->nr_balance_failed++;
5689
5690 if (need_active_balance(&env)) {
5691 raw_spin_lock_irqsave(&busiest->lock, flags);
5692
5693 /* don't kick the active_load_balance_cpu_stop,
5694 * if the curr task on busiest cpu can't be
5695 * moved to this_cpu
5696 */
5697 if (!cpumask_test_cpu(this_cpu,
5698 tsk_cpus_allowed(busiest->curr))) {
5699 raw_spin_unlock_irqrestore(&busiest->lock,
5700 flags);
5701 env.flags |= LBF_ALL_PINNED;
5702 goto out_one_pinned;
5703 }
5704
5705 /*
5706 * ->active_balance synchronizes accesses to
5707 * ->active_balance_work. Once set, it's cleared
5708 * only after active load balance is finished.
5709 */
5710 if (!busiest->active_balance) {
5711 busiest->active_balance = 1;
5712 busiest->push_cpu = this_cpu;
5713 active_balance = 1;
5714 }
5715 raw_spin_unlock_irqrestore(&busiest->lock, flags);
5716
5717 if (active_balance) {
5718 stop_one_cpu_nowait(cpu_of(busiest),
5719 active_load_balance_cpu_stop, busiest,
5720 &busiest->active_balance_work);
5721 }
5722
5723 /*
5724 * We've kicked active balancing, reset the failure
5725 * counter.
5726 */
5727 sd->nr_balance_failed = sd->cache_nice_tries+1;
5728 }
5729 } else
5730 sd->nr_balance_failed = 0;
5731
5732 if (likely(!active_balance)) {
5733 /* We were unbalanced, so reset the balancing interval */
5734 sd->balance_interval = sd->min_interval;
5735 } else {
5736 /*
5737 * If we've begun active balancing, start to back off. This
5738 * case may not be covered by the all_pinned logic if there
5739 * is only 1 task on the busy runqueue (because we don't call
5740 * move_tasks).
5741 */
5742 if (sd->balance_interval < sd->max_interval)
5743 sd->balance_interval *= 2;
5744 }
5745
5746 goto out;
5747
5748 out_balanced:
5749 schedstat_inc(sd, lb_balanced[idle]);
5750
5751 sd->nr_balance_failed = 0;
5752
5753 out_one_pinned:
5754 /* tune up the balancing interval */
5755 if (((env.flags & LBF_ALL_PINNED) &&
5756 sd->balance_interval < MAX_PINNED_INTERVAL) ||
5757 (sd->balance_interval < sd->max_interval))
5758 sd->balance_interval *= 2;
5759
5760 ld_moved = 0;
5761 out:
5762 return ld_moved;
5763 }
5764
5765 /*
5766 * idle_balance is called by schedule() if this_cpu is about to become
5767 * idle. Attempts to pull tasks from other CPUs.
5768 */
5769 void idle_balance(int this_cpu, struct rq *this_rq)
5770 {
5771 struct sched_domain *sd;
5772 int pulled_task = 0;
5773 unsigned long next_balance = jiffies + HZ;
5774 u64 curr_cost = 0;
5775
5776 this_rq->idle_stamp = rq_clock(this_rq);
5777
5778 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5779 return;
5780
5781 /*
5782 * Drop the rq->lock, but keep IRQ/preempt disabled.
5783 */
5784 raw_spin_unlock(&this_rq->lock);
5785
5786 update_blocked_averages(this_cpu);
5787 rcu_read_lock();
5788 for_each_domain(this_cpu, sd) {
5789 unsigned long interval;
5790 int continue_balancing = 1;
5791 u64 t0, domain_cost;
5792
5793 if (!(sd->flags & SD_LOAD_BALANCE))
5794 continue;
5795
5796 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
5797 break;
5798
5799 if (sd->flags & SD_BALANCE_NEWIDLE) {
5800 t0 = sched_clock_cpu(this_cpu);
5801
5802 /* If we've pulled tasks over stop searching: */
5803 pulled_task = load_balance(this_cpu, this_rq,
5804 sd, CPU_NEWLY_IDLE,
5805 &continue_balancing);
5806
5807 domain_cost = sched_clock_cpu(this_cpu) - t0;
5808 if (domain_cost > sd->max_newidle_lb_cost)
5809 sd->max_newidle_lb_cost = domain_cost;
5810
5811 curr_cost += domain_cost;
5812 }
5813
5814 interval = msecs_to_jiffies(sd->balance_interval);
5815 if (time_after(next_balance, sd->last_balance + interval))
5816 next_balance = sd->last_balance + interval;
5817 if (pulled_task) {
5818 this_rq->idle_stamp = 0;
5819 break;
5820 }
5821 }
5822 rcu_read_unlock();
5823
5824 raw_spin_lock(&this_rq->lock);
5825
5826 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5827 /*
5828 * We are going idle. next_balance may be set based on
5829 * a busy processor. So reset next_balance.
5830 */
5831 this_rq->next_balance = next_balance;
5832 }
5833
5834 if (curr_cost > this_rq->max_idle_balance_cost)
5835 this_rq->max_idle_balance_cost = curr_cost;
5836 }
5837
5838 /*
5839 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5840 * running tasks off the busiest CPU onto idle CPUs. It requires at
5841 * least 1 task to be running on each physical CPU where possible, and
5842 * avoids physical / logical imbalances.
5843 */
5844 static int active_load_balance_cpu_stop(void *data)
5845 {
5846 struct rq *busiest_rq = data;
5847 int busiest_cpu = cpu_of(busiest_rq);
5848 int target_cpu = busiest_rq->push_cpu;
5849 struct rq *target_rq = cpu_rq(target_cpu);
5850 struct sched_domain *sd;
5851
5852 raw_spin_lock_irq(&busiest_rq->lock);
5853
5854 /* make sure the requested cpu hasn't gone down in the meantime */
5855 if (unlikely(busiest_cpu != smp_processor_id() ||
5856 !busiest_rq->active_balance))
5857 goto out_unlock;
5858
5859 /* Is there any task to move? */
5860 if (busiest_rq->nr_running <= 1)
5861 goto out_unlock;
5862
5863 /*
5864 * This condition is "impossible", if it occurs
5865 * we need to fix it. Originally reported by
5866 * Bjorn Helgaas on a 128-cpu setup.
5867 */
5868 BUG_ON(busiest_rq == target_rq);
5869
5870 /* move a task from busiest_rq to target_rq */
5871 double_lock_balance(busiest_rq, target_rq);
5872
5873 /* Search for an sd spanning us and the target CPU. */
5874 rcu_read_lock();
5875 for_each_domain(target_cpu, sd) {
5876 if ((sd->flags & SD_LOAD_BALANCE) &&
5877 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5878 break;
5879 }
5880
5881 if (likely(sd)) {
5882 struct lb_env env = {
5883 .sd = sd,
5884 .dst_cpu = target_cpu,
5885 .dst_rq = target_rq,
5886 .src_cpu = busiest_rq->cpu,
5887 .src_rq = busiest_rq,
5888 .idle = CPU_IDLE,
5889 };
5890
5891 schedstat_inc(sd, alb_count);
5892
5893 if (move_one_task(&env))
5894 schedstat_inc(sd, alb_pushed);
5895 else
5896 schedstat_inc(sd, alb_failed);
5897 }
5898 rcu_read_unlock();
5899 double_unlock_balance(busiest_rq, target_rq);
5900 out_unlock:
5901 busiest_rq->active_balance = 0;
5902 raw_spin_unlock_irq(&busiest_rq->lock);
5903 return 0;
5904 }
5905
5906 #ifdef CONFIG_NO_HZ_COMMON
5907 /*
5908 * idle load balancing details
5909 * - When one of the busy CPUs notice that there may be an idle rebalancing
5910 * needed, they will kick the idle load balancer, which then does idle
5911 * load balancing for all the idle CPUs.
5912 */
5913 static struct {
5914 cpumask_var_t idle_cpus_mask;
5915 atomic_t nr_cpus;
5916 unsigned long next_balance; /* in jiffy units */
5917 } nohz ____cacheline_aligned;
5918
5919 static inline int find_new_ilb(int call_cpu)
5920 {
5921 int ilb = cpumask_first(nohz.idle_cpus_mask);
5922
5923 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5924 return ilb;
5925
5926 return nr_cpu_ids;
5927 }
5928
5929 /*
5930 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5931 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5932 * CPU (if there is one).
5933 */
5934 static void nohz_balancer_kick(int cpu)
5935 {
5936 int ilb_cpu;
5937
5938 nohz.next_balance++;
5939
5940 ilb_cpu = find_new_ilb(cpu);
5941
5942 if (ilb_cpu >= nr_cpu_ids)
5943 return;
5944
5945 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5946 return;
5947 /*
5948 * Use smp_send_reschedule() instead of resched_cpu().
5949 * This way we generate a sched IPI on the target cpu which
5950 * is idle. And the softirq performing nohz idle load balance
5951 * will be run before returning from the IPI.
5952 */
5953 smp_send_reschedule(ilb_cpu);
5954 return;
5955 }
5956
5957 static inline void nohz_balance_exit_idle(int cpu)
5958 {
5959 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5960 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5961 atomic_dec(&nohz.nr_cpus);
5962 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5963 }
5964 }
5965
5966 static inline void set_cpu_sd_state_busy(void)
5967 {
5968 struct sched_domain *sd;
5969
5970 rcu_read_lock();
5971 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5972
5973 if (!sd || !sd->nohz_idle)
5974 goto unlock;
5975 sd->nohz_idle = 0;
5976
5977 for (; sd; sd = sd->parent)
5978 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5979 unlock:
5980 rcu_read_unlock();
5981 }
5982
5983 void set_cpu_sd_state_idle(void)
5984 {
5985 struct sched_domain *sd;
5986
5987 rcu_read_lock();
5988 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5989
5990 if (!sd || sd->nohz_idle)
5991 goto unlock;
5992 sd->nohz_idle = 1;
5993
5994 for (; sd; sd = sd->parent)
5995 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5996 unlock:
5997 rcu_read_unlock();
5998 }
5999
6000 /*
6001 * This routine will record that the cpu is going idle with tick stopped.
6002 * This info will be used in performing idle load balancing in the future.
6003 */
6004 void nohz_balance_enter_idle(int cpu)
6005 {
6006 /*
6007 * If this cpu is going down, then nothing needs to be done.
6008 */
6009 if (!cpu_active(cpu))
6010 return;
6011
6012 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6013 return;
6014
6015 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6016 atomic_inc(&nohz.nr_cpus);
6017 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6018 }
6019
6020 static int sched_ilb_notifier(struct notifier_block *nfb,
6021 unsigned long action, void *hcpu)
6022 {
6023 switch (action & ~CPU_TASKS_FROZEN) {
6024 case CPU_DYING:
6025 nohz_balance_exit_idle(smp_processor_id());
6026 return NOTIFY_OK;
6027 default:
6028 return NOTIFY_DONE;
6029 }
6030 }
6031 #endif
6032
6033 static DEFINE_SPINLOCK(balancing);
6034
6035 /*
6036 * Scale the max load_balance interval with the number of CPUs in the system.
6037 * This trades load-balance latency on larger machines for less cross talk.
6038 */
6039 void update_max_interval(void)
6040 {
6041 max_load_balance_interval = HZ*num_online_cpus()/10;
6042 }
6043
6044 /*
6045 * It checks each scheduling domain to see if it is due to be balanced,
6046 * and initiates a balancing operation if so.
6047 *
6048 * Balancing parameters are set up in init_sched_domains.
6049 */
6050 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6051 {
6052 int continue_balancing = 1;
6053 struct rq *rq = cpu_rq(cpu);
6054 unsigned long interval;
6055 struct sched_domain *sd;
6056 /* Earliest time when we have to do rebalance again */
6057 unsigned long next_balance = jiffies + 60*HZ;
6058 int update_next_balance = 0;
6059 int need_serialize, need_decay = 0;
6060 u64 max_cost = 0;
6061
6062 update_blocked_averages(cpu);
6063
6064 rcu_read_lock();
6065 for_each_domain(cpu, sd) {
6066 /*
6067 * Decay the newidle max times here because this is a regular
6068 * visit to all the domains. Decay ~1% per second.
6069 */
6070 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6071 sd->max_newidle_lb_cost =
6072 (sd->max_newidle_lb_cost * 253) / 256;
6073 sd->next_decay_max_lb_cost = jiffies + HZ;
6074 need_decay = 1;
6075 }
6076 max_cost += sd->max_newidle_lb_cost;
6077
6078 if (!(sd->flags & SD_LOAD_BALANCE))
6079 continue;
6080
6081 /*
6082 * Stop the load balance at this level. There is another
6083 * CPU in our sched group which is doing load balancing more
6084 * actively.
6085 */
6086 if (!continue_balancing) {
6087 if (need_decay)
6088 continue;
6089 break;
6090 }
6091
6092 interval = sd->balance_interval;
6093 if (idle != CPU_IDLE)
6094 interval *= sd->busy_factor;
6095
6096 /* scale ms to jiffies */
6097 interval = msecs_to_jiffies(interval);
6098 interval = clamp(interval, 1UL, max_load_balance_interval);
6099
6100 need_serialize = sd->flags & SD_SERIALIZE;
6101
6102 if (need_serialize) {
6103 if (!spin_trylock(&balancing))
6104 goto out;
6105 }
6106
6107 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6108 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6109 /*
6110 * The LBF_DST_PINNED logic could have changed
6111 * env->dst_cpu, so we can't know our idle
6112 * state even if we migrated tasks. Update it.
6113 */
6114 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6115 }
6116 sd->last_balance = jiffies;
6117 }
6118 if (need_serialize)
6119 spin_unlock(&balancing);
6120 out:
6121 if (time_after(next_balance, sd->last_balance + interval)) {
6122 next_balance = sd->last_balance + interval;
6123 update_next_balance = 1;
6124 }
6125 }
6126 if (need_decay) {
6127 /*
6128 * Ensure the rq-wide value also decays but keep it at a
6129 * reasonable floor to avoid funnies with rq->avg_idle.
6130 */
6131 rq->max_idle_balance_cost =
6132 max((u64)sysctl_sched_migration_cost, max_cost);
6133 }
6134 rcu_read_unlock();
6135
6136 /*
6137 * next_balance will be updated only when there is a need.
6138 * When the cpu is attached to null domain for ex, it will not be
6139 * updated.
6140 */
6141 if (likely(update_next_balance))
6142 rq->next_balance = next_balance;
6143 }
6144
6145 #ifdef CONFIG_NO_HZ_COMMON
6146 /*
6147 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6148 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6149 */
6150 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6151 {
6152 struct rq *this_rq = cpu_rq(this_cpu);
6153 struct rq *rq;
6154 int balance_cpu;
6155
6156 if (idle != CPU_IDLE ||
6157 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6158 goto end;
6159
6160 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6161 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6162 continue;
6163
6164 /*
6165 * If this cpu gets work to do, stop the load balancing
6166 * work being done for other cpus. Next load
6167 * balancing owner will pick it up.
6168 */
6169 if (need_resched())
6170 break;
6171
6172 rq = cpu_rq(balance_cpu);
6173
6174 raw_spin_lock_irq(&rq->lock);
6175 update_rq_clock(rq);
6176 update_idle_cpu_load(rq);
6177 raw_spin_unlock_irq(&rq->lock);
6178
6179 rebalance_domains(balance_cpu, CPU_IDLE);
6180
6181 if (time_after(this_rq->next_balance, rq->next_balance))
6182 this_rq->next_balance = rq->next_balance;
6183 }
6184 nohz.next_balance = this_rq->next_balance;
6185 end:
6186 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6187 }
6188
6189 /*
6190 * Current heuristic for kicking the idle load balancer in the presence
6191 * of an idle cpu is the system.
6192 * - This rq has more than one task.
6193 * - At any scheduler domain level, this cpu's scheduler group has multiple
6194 * busy cpu's exceeding the group's power.
6195 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6196 * domain span are idle.
6197 */
6198 static inline int nohz_kick_needed(struct rq *rq, int cpu)
6199 {
6200 unsigned long now = jiffies;
6201 struct sched_domain *sd;
6202
6203 if (unlikely(idle_cpu(cpu)))
6204 return 0;
6205
6206 /*
6207 * We may be recently in ticked or tickless idle mode. At the first
6208 * busy tick after returning from idle, we will update the busy stats.
6209 */
6210 set_cpu_sd_state_busy();
6211 nohz_balance_exit_idle(cpu);
6212
6213 /*
6214 * None are in tickless mode and hence no need for NOHZ idle load
6215 * balancing.
6216 */
6217 if (likely(!atomic_read(&nohz.nr_cpus)))
6218 return 0;
6219
6220 if (time_before(now, nohz.next_balance))
6221 return 0;
6222
6223 if (rq->nr_running >= 2)
6224 goto need_kick;
6225
6226 rcu_read_lock();
6227 for_each_domain(cpu, sd) {
6228 struct sched_group *sg = sd->groups;
6229 struct sched_group_power *sgp = sg->sgp;
6230 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
6231
6232 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
6233 goto need_kick_unlock;
6234
6235 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6236 && (cpumask_first_and(nohz.idle_cpus_mask,
6237 sched_domain_span(sd)) < cpu))
6238 goto need_kick_unlock;
6239
6240 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6241 break;
6242 }
6243 rcu_read_unlock();
6244 return 0;
6245
6246 need_kick_unlock:
6247 rcu_read_unlock();
6248 need_kick:
6249 return 1;
6250 }
6251 #else
6252 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6253 #endif
6254
6255 /*
6256 * run_rebalance_domains is triggered when needed from the scheduler tick.
6257 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6258 */
6259 static void run_rebalance_domains(struct softirq_action *h)
6260 {
6261 int this_cpu = smp_processor_id();
6262 struct rq *this_rq = cpu_rq(this_cpu);
6263 enum cpu_idle_type idle = this_rq->idle_balance ?
6264 CPU_IDLE : CPU_NOT_IDLE;
6265
6266 rebalance_domains(this_cpu, idle);
6267
6268 /*
6269 * If this cpu has a pending nohz_balance_kick, then do the
6270 * balancing on behalf of the other idle cpus whose ticks are
6271 * stopped.
6272 */
6273 nohz_idle_balance(this_cpu, idle);
6274 }
6275
6276 static inline int on_null_domain(int cpu)
6277 {
6278 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6279 }
6280
6281 /*
6282 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6283 */
6284 void trigger_load_balance(struct rq *rq, int cpu)
6285 {
6286 /* Don't need to rebalance while attached to NULL domain */
6287 if (time_after_eq(jiffies, rq->next_balance) &&
6288 likely(!on_null_domain(cpu)))
6289 raise_softirq(SCHED_SOFTIRQ);
6290 #ifdef CONFIG_NO_HZ_COMMON
6291 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6292 nohz_balancer_kick(cpu);
6293 #endif
6294 }
6295
6296 static void rq_online_fair(struct rq *rq)
6297 {
6298 update_sysctl();
6299 }
6300
6301 static void rq_offline_fair(struct rq *rq)
6302 {
6303 update_sysctl();
6304
6305 /* Ensure any throttled groups are reachable by pick_next_task */
6306 unthrottle_offline_cfs_rqs(rq);
6307 }
6308
6309 #endif /* CONFIG_SMP */
6310
6311 /*
6312 * scheduler tick hitting a task of our scheduling class:
6313 */
6314 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6315 {
6316 struct cfs_rq *cfs_rq;
6317 struct sched_entity *se = &curr->se;
6318
6319 for_each_sched_entity(se) {
6320 cfs_rq = cfs_rq_of(se);
6321 entity_tick(cfs_rq, se, queued);
6322 }
6323
6324 if (numabalancing_enabled)
6325 task_tick_numa(rq, curr);
6326
6327 update_rq_runnable_avg(rq, 1);
6328 }
6329
6330 /*
6331 * called on fork with the child task as argument from the parent's context
6332 * - child not yet on the tasklist
6333 * - preemption disabled
6334 */
6335 static void task_fork_fair(struct task_struct *p)
6336 {
6337 struct cfs_rq *cfs_rq;
6338 struct sched_entity *se = &p->se, *curr;
6339 int this_cpu = smp_processor_id();
6340 struct rq *rq = this_rq();
6341 unsigned long flags;
6342
6343 raw_spin_lock_irqsave(&rq->lock, flags);
6344
6345 update_rq_clock(rq);
6346
6347 cfs_rq = task_cfs_rq(current);
6348 curr = cfs_rq->curr;
6349
6350 /*
6351 * Not only the cpu but also the task_group of the parent might have
6352 * been changed after parent->se.parent,cfs_rq were copied to
6353 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6354 * of child point to valid ones.
6355 */
6356 rcu_read_lock();
6357 __set_task_cpu(p, this_cpu);
6358 rcu_read_unlock();
6359
6360 update_curr(cfs_rq);
6361
6362 if (curr)
6363 se->vruntime = curr->vruntime;
6364 place_entity(cfs_rq, se, 1);
6365
6366 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6367 /*
6368 * Upon rescheduling, sched_class::put_prev_task() will place
6369 * 'current' within the tree based on its new key value.
6370 */
6371 swap(curr->vruntime, se->vruntime);
6372 resched_task(rq->curr);
6373 }
6374
6375 se->vruntime -= cfs_rq->min_vruntime;
6376
6377 raw_spin_unlock_irqrestore(&rq->lock, flags);
6378 }
6379
6380 /*
6381 * Priority of the task has changed. Check to see if we preempt
6382 * the current task.
6383 */
6384 static void
6385 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6386 {
6387 if (!p->se.on_rq)
6388 return;
6389
6390 /*
6391 * Reschedule if we are currently running on this runqueue and
6392 * our priority decreased, or if we are not currently running on
6393 * this runqueue and our priority is higher than the current's
6394 */
6395 if (rq->curr == p) {
6396 if (p->prio > oldprio)
6397 resched_task(rq->curr);
6398 } else
6399 check_preempt_curr(rq, p, 0);
6400 }
6401
6402 static void switched_from_fair(struct rq *rq, struct task_struct *p)
6403 {
6404 struct sched_entity *se = &p->se;
6405 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6406
6407 /*
6408 * Ensure the task's vruntime is normalized, so that when its
6409 * switched back to the fair class the enqueue_entity(.flags=0) will
6410 * do the right thing.
6411 *
6412 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6413 * have normalized the vruntime, if it was !on_rq, then only when
6414 * the task is sleeping will it still have non-normalized vruntime.
6415 */
6416 if (!se->on_rq && p->state != TASK_RUNNING) {
6417 /*
6418 * Fix up our vruntime so that the current sleep doesn't
6419 * cause 'unlimited' sleep bonus.
6420 */
6421 place_entity(cfs_rq, se, 0);
6422 se->vruntime -= cfs_rq->min_vruntime;
6423 }
6424
6425 #ifdef CONFIG_SMP
6426 /*
6427 * Remove our load from contribution when we leave sched_fair
6428 * and ensure we don't carry in an old decay_count if we
6429 * switch back.
6430 */
6431 if (se->avg.decay_count) {
6432 __synchronize_entity_decay(se);
6433 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
6434 }
6435 #endif
6436 }
6437
6438 /*
6439 * We switched to the sched_fair class.
6440 */
6441 static void switched_to_fair(struct rq *rq, struct task_struct *p)
6442 {
6443 if (!p->se.on_rq)
6444 return;
6445
6446 /*
6447 * We were most likely switched from sched_rt, so
6448 * kick off the schedule if running, otherwise just see
6449 * if we can still preempt the current task.
6450 */
6451 if (rq->curr == p)
6452 resched_task(rq->curr);
6453 else
6454 check_preempt_curr(rq, p, 0);
6455 }
6456
6457 /* Account for a task changing its policy or group.
6458 *
6459 * This routine is mostly called to set cfs_rq->curr field when a task
6460 * migrates between groups/classes.
6461 */
6462 static void set_curr_task_fair(struct rq *rq)
6463 {
6464 struct sched_entity *se = &rq->curr->se;
6465
6466 for_each_sched_entity(se) {
6467 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6468
6469 set_next_entity(cfs_rq, se);
6470 /* ensure bandwidth has been allocated on our new cfs_rq */
6471 account_cfs_rq_runtime(cfs_rq, 0);
6472 }
6473 }
6474
6475 void init_cfs_rq(struct cfs_rq *cfs_rq)
6476 {
6477 cfs_rq->tasks_timeline = RB_ROOT;
6478 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6479 #ifndef CONFIG_64BIT
6480 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6481 #endif
6482 #ifdef CONFIG_SMP
6483 atomic64_set(&cfs_rq->decay_counter, 1);
6484 atomic_long_set(&cfs_rq->removed_load, 0);
6485 #endif
6486 }
6487
6488 #ifdef CONFIG_FAIR_GROUP_SCHED
6489 static void task_move_group_fair(struct task_struct *p, int on_rq)
6490 {
6491 struct cfs_rq *cfs_rq;
6492 /*
6493 * If the task was not on the rq at the time of this cgroup movement
6494 * it must have been asleep, sleeping tasks keep their ->vruntime
6495 * absolute on their old rq until wakeup (needed for the fair sleeper
6496 * bonus in place_entity()).
6497 *
6498 * If it was on the rq, we've just 'preempted' it, which does convert
6499 * ->vruntime to a relative base.
6500 *
6501 * Make sure both cases convert their relative position when migrating
6502 * to another cgroup's rq. This does somewhat interfere with the
6503 * fair sleeper stuff for the first placement, but who cares.
6504 */
6505 /*
6506 * When !on_rq, vruntime of the task has usually NOT been normalized.
6507 * But there are some cases where it has already been normalized:
6508 *
6509 * - Moving a forked child which is waiting for being woken up by
6510 * wake_up_new_task().
6511 * - Moving a task which has been woken up by try_to_wake_up() and
6512 * waiting for actually being woken up by sched_ttwu_pending().
6513 *
6514 * To prevent boost or penalty in the new cfs_rq caused by delta
6515 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6516 */
6517 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
6518 on_rq = 1;
6519
6520 if (!on_rq)
6521 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6522 set_task_rq(p, task_cpu(p));
6523 if (!on_rq) {
6524 cfs_rq = cfs_rq_of(&p->se);
6525 p->se.vruntime += cfs_rq->min_vruntime;
6526 #ifdef CONFIG_SMP
6527 /*
6528 * migrate_task_rq_fair() will have removed our previous
6529 * contribution, but we must synchronize for ongoing future
6530 * decay.
6531 */
6532 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6533 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6534 #endif
6535 }
6536 }
6537
6538 void free_fair_sched_group(struct task_group *tg)
6539 {
6540 int i;
6541
6542 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6543
6544 for_each_possible_cpu(i) {
6545 if (tg->cfs_rq)
6546 kfree(tg->cfs_rq[i]);
6547 if (tg->se)
6548 kfree(tg->se[i]);
6549 }
6550
6551 kfree(tg->cfs_rq);
6552 kfree(tg->se);
6553 }
6554
6555 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6556 {
6557 struct cfs_rq *cfs_rq;
6558 struct sched_entity *se;
6559 int i;
6560
6561 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6562 if (!tg->cfs_rq)
6563 goto err;
6564 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6565 if (!tg->se)
6566 goto err;
6567
6568 tg->shares = NICE_0_LOAD;
6569
6570 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6571
6572 for_each_possible_cpu(i) {
6573 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6574 GFP_KERNEL, cpu_to_node(i));
6575 if (!cfs_rq)
6576 goto err;
6577
6578 se = kzalloc_node(sizeof(struct sched_entity),
6579 GFP_KERNEL, cpu_to_node(i));
6580 if (!se)
6581 goto err_free_rq;
6582
6583 init_cfs_rq(cfs_rq);
6584 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6585 }
6586
6587 return 1;
6588
6589 err_free_rq:
6590 kfree(cfs_rq);
6591 err:
6592 return 0;
6593 }
6594
6595 void unregister_fair_sched_group(struct task_group *tg, int cpu)
6596 {
6597 struct rq *rq = cpu_rq(cpu);
6598 unsigned long flags;
6599
6600 /*
6601 * Only empty task groups can be destroyed; so we can speculatively
6602 * check on_list without danger of it being re-added.
6603 */
6604 if (!tg->cfs_rq[cpu]->on_list)
6605 return;
6606
6607 raw_spin_lock_irqsave(&rq->lock, flags);
6608 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6609 raw_spin_unlock_irqrestore(&rq->lock, flags);
6610 }
6611
6612 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6613 struct sched_entity *se, int cpu,
6614 struct sched_entity *parent)
6615 {
6616 struct rq *rq = cpu_rq(cpu);
6617
6618 cfs_rq->tg = tg;
6619 cfs_rq->rq = rq;
6620 init_cfs_rq_runtime(cfs_rq);
6621
6622 tg->cfs_rq[cpu] = cfs_rq;
6623 tg->se[cpu] = se;
6624
6625 /* se could be NULL for root_task_group */
6626 if (!se)
6627 return;
6628
6629 if (!parent)
6630 se->cfs_rq = &rq->cfs;
6631 else
6632 se->cfs_rq = parent->my_q;
6633
6634 se->my_q = cfs_rq;
6635 update_load_set(&se->load, 0);
6636 se->parent = parent;
6637 }
6638
6639 static DEFINE_MUTEX(shares_mutex);
6640
6641 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6642 {
6643 int i;
6644 unsigned long flags;
6645
6646 /*
6647 * We can't change the weight of the root cgroup.
6648 */
6649 if (!tg->se[0])
6650 return -EINVAL;
6651
6652 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6653
6654 mutex_lock(&shares_mutex);
6655 if (tg->shares == shares)
6656 goto done;
6657
6658 tg->shares = shares;
6659 for_each_possible_cpu(i) {
6660 struct rq *rq = cpu_rq(i);
6661 struct sched_entity *se;
6662
6663 se = tg->se[i];
6664 /* Propagate contribution to hierarchy */
6665 raw_spin_lock_irqsave(&rq->lock, flags);
6666
6667 /* Possible calls to update_curr() need rq clock */
6668 update_rq_clock(rq);
6669 for_each_sched_entity(se)
6670 update_cfs_shares(group_cfs_rq(se));
6671 raw_spin_unlock_irqrestore(&rq->lock, flags);
6672 }
6673
6674 done:
6675 mutex_unlock(&shares_mutex);
6676 return 0;
6677 }
6678 #else /* CONFIG_FAIR_GROUP_SCHED */
6679
6680 void free_fair_sched_group(struct task_group *tg) { }
6681
6682 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6683 {
6684 return 1;
6685 }
6686
6687 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6688
6689 #endif /* CONFIG_FAIR_GROUP_SCHED */
6690
6691
6692 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6693 {
6694 struct sched_entity *se = &task->se;
6695 unsigned int rr_interval = 0;
6696
6697 /*
6698 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6699 * idle runqueue:
6700 */
6701 if (rq->cfs.load.weight)
6702 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6703
6704 return rr_interval;
6705 }
6706
6707 /*
6708 * All the scheduling class methods:
6709 */
6710 const struct sched_class fair_sched_class = {
6711 .next = &idle_sched_class,
6712 .enqueue_task = enqueue_task_fair,
6713 .dequeue_task = dequeue_task_fair,
6714 .yield_task = yield_task_fair,
6715 .yield_to_task = yield_to_task_fair,
6716
6717 .check_preempt_curr = check_preempt_wakeup,
6718
6719 .pick_next_task = pick_next_task_fair,
6720 .put_prev_task = put_prev_task_fair,
6721
6722 #ifdef CONFIG_SMP
6723 .select_task_rq = select_task_rq_fair,
6724 .migrate_task_rq = migrate_task_rq_fair,
6725
6726 .rq_online = rq_online_fair,
6727 .rq_offline = rq_offline_fair,
6728
6729 .task_waking = task_waking_fair,
6730 #endif
6731
6732 .set_curr_task = set_curr_task_fair,
6733 .task_tick = task_tick_fair,
6734 .task_fork = task_fork_fair,
6735
6736 .prio_changed = prio_changed_fair,
6737 .switched_from = switched_from_fair,
6738 .switched_to = switched_to_fair,
6739
6740 .get_rr_interval = get_rr_interval_fair,
6741
6742 #ifdef CONFIG_FAIR_GROUP_SCHED
6743 .task_move_group = task_move_group_fair,
6744 #endif
6745 };
6746
6747 #ifdef CONFIG_SCHED_DEBUG
6748 void print_cfs_stats(struct seq_file *m, int cpu)
6749 {
6750 struct cfs_rq *cfs_rq;
6751
6752 rcu_read_lock();
6753 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6754 print_cfs_rq(m, cpu, cfs_rq);
6755 rcu_read_unlock();
6756 }
6757 #endif
6758
6759 __init void init_sched_fair_class(void)
6760 {
6761 #ifdef CONFIG_SMP
6762 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6763
6764 #ifdef CONFIG_NO_HZ_COMMON
6765 nohz.next_balance = jiffies;
6766 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6767 cpu_notifier(sched_ilb_notifier, 0);
6768 #endif
6769 #endif /* SMP */
6770
6771 }
This page took 0.1978 seconds and 4 git commands to generate.