sched/fair: Call cpufreq hook in additional paths
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 }
306 }
307
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314 }
315
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 if (se->cfs_rq == pse->cfs_rq)
325 return se->cfs_rq;
326
327 return NULL;
328 }
329
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 return se->parent;
333 }
334
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365 }
366
367 #else /* !CONFIG_FAIR_GROUP_SCHED */
368
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 return container_of(se, struct task_struct, se);
372 }
373
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 return container_of(cfs_rq, struct rq, cfs);
377 }
378
379 #define entity_is_task(se) 1
380
381 #define for_each_sched_entity(se) \
382 for (; se; se = NULL)
383
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 return &task_rq(p)->cfs;
387 }
388
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395 }
396
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 return NULL;
401 }
402
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 return NULL;
417 }
418
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
425
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428
429 /**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 s64 delta = (s64)(vruntime - max_vruntime);
436 if (delta > 0)
437 max_vruntime = vruntime;
438
439 return max_vruntime;
440 }
441
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449 }
450
451 static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453 {
454 return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
469 if (!cfs_rq->curr)
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482
483 /*
484 * Enqueue an entity into the rb-tree:
485 */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542 }
543
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552 }
553
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563 }
564
565 /**************************************************************
566 * Scheduling class statistics methods:
567 */
568
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572 {
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588
589 return 0;
590 }
591 #endif
592
593 /*
594 * delta /= w
595 */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600
601 return delta;
602 }
603
604 /*
605 * The idea is to set a period in which each task runs once.
606 *
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
618 }
619
620 /*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
624 * s = p*P[w/rw]
625 */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
636
637 if (unlikely(!se->on_rq)) {
638 lw = cfs_rq->load;
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = __calc_delta(slice, se->load.weight, load);
644 }
645 return slice;
646 }
647
648 /*
649 * We calculate the vruntime slice of a to-be-inserted task.
650 *
651 * vs = s/w
652 */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661
662 /*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
666 */
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
673 {
674 struct sched_avg *sa = &se->avg;
675
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
691 }
692
693 /*
694 * With new tasks being created, their initial util_avgs are extrapolated
695 * based on the cfs_rq's current util_avg:
696 *
697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
698 *
699 * However, in many cases, the above util_avg does not give a desired
700 * value. Moreover, the sum of the util_avgs may be divergent, such
701 * as when the series is a harmonic series.
702 *
703 * To solve this problem, we also cap the util_avg of successive tasks to
704 * only 1/2 of the left utilization budget:
705 *
706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
707 *
708 * where n denotes the nth task.
709 *
710 * For example, a simplest series from the beginning would be like:
711 *
712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
714 *
715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
716 * if util_avg > util_avg_cap.
717 */
718 void post_init_entity_util_avg(struct sched_entity *se)
719 {
720 struct cfs_rq *cfs_rq = cfs_rq_of(se);
721 struct sched_avg *sa = &se->avg;
722 long cap = (long)(scale_load_down(SCHED_LOAD_SCALE) - cfs_rq->avg.util_avg) / 2;
723
724 if (cap > 0) {
725 if (cfs_rq->avg.util_avg != 0) {
726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
727 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
728
729 if (sa->util_avg > cap)
730 sa->util_avg = cap;
731 } else {
732 sa->util_avg = cap;
733 }
734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
735 }
736 }
737
738 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
739 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
740 #else
741 void init_entity_runnable_average(struct sched_entity *se)
742 {
743 }
744 void post_init_entity_util_avg(struct sched_entity *se)
745 {
746 }
747 #endif
748
749 /*
750 * Update the current task's runtime statistics.
751 */
752 static void update_curr(struct cfs_rq *cfs_rq)
753 {
754 struct sched_entity *curr = cfs_rq->curr;
755 u64 now = rq_clock_task(rq_of(cfs_rq));
756 u64 delta_exec;
757
758 if (unlikely(!curr))
759 return;
760
761 delta_exec = now - curr->exec_start;
762 if (unlikely((s64)delta_exec <= 0))
763 return;
764
765 curr->exec_start = now;
766
767 schedstat_set(curr->statistics.exec_max,
768 max(delta_exec, curr->statistics.exec_max));
769
770 curr->sum_exec_runtime += delta_exec;
771 schedstat_add(cfs_rq, exec_clock, delta_exec);
772
773 curr->vruntime += calc_delta_fair(delta_exec, curr);
774 update_min_vruntime(cfs_rq);
775
776 if (entity_is_task(curr)) {
777 struct task_struct *curtask = task_of(curr);
778
779 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
780 cpuacct_charge(curtask, delta_exec);
781 account_group_exec_runtime(curtask, delta_exec);
782 }
783
784 account_cfs_rq_runtime(cfs_rq, delta_exec);
785 }
786
787 static void update_curr_fair(struct rq *rq)
788 {
789 update_curr(cfs_rq_of(&rq->curr->se));
790 }
791
792 #ifdef CONFIG_SCHEDSTATS
793 static inline void
794 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
795 {
796 u64 wait_start = rq_clock(rq_of(cfs_rq));
797
798 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
799 likely(wait_start > se->statistics.wait_start))
800 wait_start -= se->statistics.wait_start;
801
802 se->statistics.wait_start = wait_start;
803 }
804
805 static void
806 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
807 {
808 struct task_struct *p;
809 u64 delta;
810
811 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
812
813 if (entity_is_task(se)) {
814 p = task_of(se);
815 if (task_on_rq_migrating(p)) {
816 /*
817 * Preserve migrating task's wait time so wait_start
818 * time stamp can be adjusted to accumulate wait time
819 * prior to migration.
820 */
821 se->statistics.wait_start = delta;
822 return;
823 }
824 trace_sched_stat_wait(p, delta);
825 }
826
827 se->statistics.wait_max = max(se->statistics.wait_max, delta);
828 se->statistics.wait_count++;
829 se->statistics.wait_sum += delta;
830 se->statistics.wait_start = 0;
831 }
832
833 /*
834 * Task is being enqueued - update stats:
835 */
836 static inline void
837 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
838 {
839 /*
840 * Are we enqueueing a waiting task? (for current tasks
841 * a dequeue/enqueue event is a NOP)
842 */
843 if (se != cfs_rq->curr)
844 update_stats_wait_start(cfs_rq, se);
845 }
846
847 static inline void
848 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
849 {
850 /*
851 * Mark the end of the wait period if dequeueing a
852 * waiting task:
853 */
854 if (se != cfs_rq->curr)
855 update_stats_wait_end(cfs_rq, se);
856
857 if (flags & DEQUEUE_SLEEP) {
858 if (entity_is_task(se)) {
859 struct task_struct *tsk = task_of(se);
860
861 if (tsk->state & TASK_INTERRUPTIBLE)
862 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
863 if (tsk->state & TASK_UNINTERRUPTIBLE)
864 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
865 }
866 }
867
868 }
869 #else
870 static inline void
871 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
872 {
873 }
874
875 static inline void
876 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
877 {
878 }
879
880 static inline void
881 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
882 {
883 }
884
885 static inline void
886 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
887 {
888 }
889 #endif
890
891 /*
892 * We are picking a new current task - update its stats:
893 */
894 static inline void
895 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
896 {
897 /*
898 * We are starting a new run period:
899 */
900 se->exec_start = rq_clock_task(rq_of(cfs_rq));
901 }
902
903 /**************************************************
904 * Scheduling class queueing methods:
905 */
906
907 #ifdef CONFIG_NUMA_BALANCING
908 /*
909 * Approximate time to scan a full NUMA task in ms. The task scan period is
910 * calculated based on the tasks virtual memory size and
911 * numa_balancing_scan_size.
912 */
913 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
914 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
915
916 /* Portion of address space to scan in MB */
917 unsigned int sysctl_numa_balancing_scan_size = 256;
918
919 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
920 unsigned int sysctl_numa_balancing_scan_delay = 1000;
921
922 static unsigned int task_nr_scan_windows(struct task_struct *p)
923 {
924 unsigned long rss = 0;
925 unsigned long nr_scan_pages;
926
927 /*
928 * Calculations based on RSS as non-present and empty pages are skipped
929 * by the PTE scanner and NUMA hinting faults should be trapped based
930 * on resident pages
931 */
932 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
933 rss = get_mm_rss(p->mm);
934 if (!rss)
935 rss = nr_scan_pages;
936
937 rss = round_up(rss, nr_scan_pages);
938 return rss / nr_scan_pages;
939 }
940
941 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
942 #define MAX_SCAN_WINDOW 2560
943
944 static unsigned int task_scan_min(struct task_struct *p)
945 {
946 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
947 unsigned int scan, floor;
948 unsigned int windows = 1;
949
950 if (scan_size < MAX_SCAN_WINDOW)
951 windows = MAX_SCAN_WINDOW / scan_size;
952 floor = 1000 / windows;
953
954 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
955 return max_t(unsigned int, floor, scan);
956 }
957
958 static unsigned int task_scan_max(struct task_struct *p)
959 {
960 unsigned int smin = task_scan_min(p);
961 unsigned int smax;
962
963 /* Watch for min being lower than max due to floor calculations */
964 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
965 return max(smin, smax);
966 }
967
968 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
969 {
970 rq->nr_numa_running += (p->numa_preferred_nid != -1);
971 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
972 }
973
974 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
975 {
976 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
977 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
978 }
979
980 struct numa_group {
981 atomic_t refcount;
982
983 spinlock_t lock; /* nr_tasks, tasks */
984 int nr_tasks;
985 pid_t gid;
986 int active_nodes;
987
988 struct rcu_head rcu;
989 unsigned long total_faults;
990 unsigned long max_faults_cpu;
991 /*
992 * Faults_cpu is used to decide whether memory should move
993 * towards the CPU. As a consequence, these stats are weighted
994 * more by CPU use than by memory faults.
995 */
996 unsigned long *faults_cpu;
997 unsigned long faults[0];
998 };
999
1000 /* Shared or private faults. */
1001 #define NR_NUMA_HINT_FAULT_TYPES 2
1002
1003 /* Memory and CPU locality */
1004 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1005
1006 /* Averaged statistics, and temporary buffers. */
1007 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1008
1009 pid_t task_numa_group_id(struct task_struct *p)
1010 {
1011 return p->numa_group ? p->numa_group->gid : 0;
1012 }
1013
1014 /*
1015 * The averaged statistics, shared & private, memory & cpu,
1016 * occupy the first half of the array. The second half of the
1017 * array is for current counters, which are averaged into the
1018 * first set by task_numa_placement.
1019 */
1020 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1021 {
1022 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1023 }
1024
1025 static inline unsigned long task_faults(struct task_struct *p, int nid)
1026 {
1027 if (!p->numa_faults)
1028 return 0;
1029
1030 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1031 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1032 }
1033
1034 static inline unsigned long group_faults(struct task_struct *p, int nid)
1035 {
1036 if (!p->numa_group)
1037 return 0;
1038
1039 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1040 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1041 }
1042
1043 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1044 {
1045 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1046 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1047 }
1048
1049 /*
1050 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1051 * considered part of a numa group's pseudo-interleaving set. Migrations
1052 * between these nodes are slowed down, to allow things to settle down.
1053 */
1054 #define ACTIVE_NODE_FRACTION 3
1055
1056 static bool numa_is_active_node(int nid, struct numa_group *ng)
1057 {
1058 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1059 }
1060
1061 /* Handle placement on systems where not all nodes are directly connected. */
1062 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1063 int maxdist, bool task)
1064 {
1065 unsigned long score = 0;
1066 int node;
1067
1068 /*
1069 * All nodes are directly connected, and the same distance
1070 * from each other. No need for fancy placement algorithms.
1071 */
1072 if (sched_numa_topology_type == NUMA_DIRECT)
1073 return 0;
1074
1075 /*
1076 * This code is called for each node, introducing N^2 complexity,
1077 * which should be ok given the number of nodes rarely exceeds 8.
1078 */
1079 for_each_online_node(node) {
1080 unsigned long faults;
1081 int dist = node_distance(nid, node);
1082
1083 /*
1084 * The furthest away nodes in the system are not interesting
1085 * for placement; nid was already counted.
1086 */
1087 if (dist == sched_max_numa_distance || node == nid)
1088 continue;
1089
1090 /*
1091 * On systems with a backplane NUMA topology, compare groups
1092 * of nodes, and move tasks towards the group with the most
1093 * memory accesses. When comparing two nodes at distance
1094 * "hoplimit", only nodes closer by than "hoplimit" are part
1095 * of each group. Skip other nodes.
1096 */
1097 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1098 dist > maxdist)
1099 continue;
1100
1101 /* Add up the faults from nearby nodes. */
1102 if (task)
1103 faults = task_faults(p, node);
1104 else
1105 faults = group_faults(p, node);
1106
1107 /*
1108 * On systems with a glueless mesh NUMA topology, there are
1109 * no fixed "groups of nodes". Instead, nodes that are not
1110 * directly connected bounce traffic through intermediate
1111 * nodes; a numa_group can occupy any set of nodes.
1112 * The further away a node is, the less the faults count.
1113 * This seems to result in good task placement.
1114 */
1115 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1116 faults *= (sched_max_numa_distance - dist);
1117 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1118 }
1119
1120 score += faults;
1121 }
1122
1123 return score;
1124 }
1125
1126 /*
1127 * These return the fraction of accesses done by a particular task, or
1128 * task group, on a particular numa node. The group weight is given a
1129 * larger multiplier, in order to group tasks together that are almost
1130 * evenly spread out between numa nodes.
1131 */
1132 static inline unsigned long task_weight(struct task_struct *p, int nid,
1133 int dist)
1134 {
1135 unsigned long faults, total_faults;
1136
1137 if (!p->numa_faults)
1138 return 0;
1139
1140 total_faults = p->total_numa_faults;
1141
1142 if (!total_faults)
1143 return 0;
1144
1145 faults = task_faults(p, nid);
1146 faults += score_nearby_nodes(p, nid, dist, true);
1147
1148 return 1000 * faults / total_faults;
1149 }
1150
1151 static inline unsigned long group_weight(struct task_struct *p, int nid,
1152 int dist)
1153 {
1154 unsigned long faults, total_faults;
1155
1156 if (!p->numa_group)
1157 return 0;
1158
1159 total_faults = p->numa_group->total_faults;
1160
1161 if (!total_faults)
1162 return 0;
1163
1164 faults = group_faults(p, nid);
1165 faults += score_nearby_nodes(p, nid, dist, false);
1166
1167 return 1000 * faults / total_faults;
1168 }
1169
1170 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1171 int src_nid, int dst_cpu)
1172 {
1173 struct numa_group *ng = p->numa_group;
1174 int dst_nid = cpu_to_node(dst_cpu);
1175 int last_cpupid, this_cpupid;
1176
1177 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1178
1179 /*
1180 * Multi-stage node selection is used in conjunction with a periodic
1181 * migration fault to build a temporal task<->page relation. By using
1182 * a two-stage filter we remove short/unlikely relations.
1183 *
1184 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1185 * a task's usage of a particular page (n_p) per total usage of this
1186 * page (n_t) (in a given time-span) to a probability.
1187 *
1188 * Our periodic faults will sample this probability and getting the
1189 * same result twice in a row, given these samples are fully
1190 * independent, is then given by P(n)^2, provided our sample period
1191 * is sufficiently short compared to the usage pattern.
1192 *
1193 * This quadric squishes small probabilities, making it less likely we
1194 * act on an unlikely task<->page relation.
1195 */
1196 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1197 if (!cpupid_pid_unset(last_cpupid) &&
1198 cpupid_to_nid(last_cpupid) != dst_nid)
1199 return false;
1200
1201 /* Always allow migrate on private faults */
1202 if (cpupid_match_pid(p, last_cpupid))
1203 return true;
1204
1205 /* A shared fault, but p->numa_group has not been set up yet. */
1206 if (!ng)
1207 return true;
1208
1209 /*
1210 * Destination node is much more heavily used than the source
1211 * node? Allow migration.
1212 */
1213 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1214 ACTIVE_NODE_FRACTION)
1215 return true;
1216
1217 /*
1218 * Distribute memory according to CPU & memory use on each node,
1219 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1220 *
1221 * faults_cpu(dst) 3 faults_cpu(src)
1222 * --------------- * - > ---------------
1223 * faults_mem(dst) 4 faults_mem(src)
1224 */
1225 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1226 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1227 }
1228
1229 static unsigned long weighted_cpuload(const int cpu);
1230 static unsigned long source_load(int cpu, int type);
1231 static unsigned long target_load(int cpu, int type);
1232 static unsigned long capacity_of(int cpu);
1233 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1234
1235 /* Cached statistics for all CPUs within a node */
1236 struct numa_stats {
1237 unsigned long nr_running;
1238 unsigned long load;
1239
1240 /* Total compute capacity of CPUs on a node */
1241 unsigned long compute_capacity;
1242
1243 /* Approximate capacity in terms of runnable tasks on a node */
1244 unsigned long task_capacity;
1245 int has_free_capacity;
1246 };
1247
1248 /*
1249 * XXX borrowed from update_sg_lb_stats
1250 */
1251 static void update_numa_stats(struct numa_stats *ns, int nid)
1252 {
1253 int smt, cpu, cpus = 0;
1254 unsigned long capacity;
1255
1256 memset(ns, 0, sizeof(*ns));
1257 for_each_cpu(cpu, cpumask_of_node(nid)) {
1258 struct rq *rq = cpu_rq(cpu);
1259
1260 ns->nr_running += rq->nr_running;
1261 ns->load += weighted_cpuload(cpu);
1262 ns->compute_capacity += capacity_of(cpu);
1263
1264 cpus++;
1265 }
1266
1267 /*
1268 * If we raced with hotplug and there are no CPUs left in our mask
1269 * the @ns structure is NULL'ed and task_numa_compare() will
1270 * not find this node attractive.
1271 *
1272 * We'll either bail at !has_free_capacity, or we'll detect a huge
1273 * imbalance and bail there.
1274 */
1275 if (!cpus)
1276 return;
1277
1278 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1279 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1280 capacity = cpus / smt; /* cores */
1281
1282 ns->task_capacity = min_t(unsigned, capacity,
1283 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1284 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1285 }
1286
1287 struct task_numa_env {
1288 struct task_struct *p;
1289
1290 int src_cpu, src_nid;
1291 int dst_cpu, dst_nid;
1292
1293 struct numa_stats src_stats, dst_stats;
1294
1295 int imbalance_pct;
1296 int dist;
1297
1298 struct task_struct *best_task;
1299 long best_imp;
1300 int best_cpu;
1301 };
1302
1303 static void task_numa_assign(struct task_numa_env *env,
1304 struct task_struct *p, long imp)
1305 {
1306 if (env->best_task)
1307 put_task_struct(env->best_task);
1308
1309 env->best_task = p;
1310 env->best_imp = imp;
1311 env->best_cpu = env->dst_cpu;
1312 }
1313
1314 static bool load_too_imbalanced(long src_load, long dst_load,
1315 struct task_numa_env *env)
1316 {
1317 long imb, old_imb;
1318 long orig_src_load, orig_dst_load;
1319 long src_capacity, dst_capacity;
1320
1321 /*
1322 * The load is corrected for the CPU capacity available on each node.
1323 *
1324 * src_load dst_load
1325 * ------------ vs ---------
1326 * src_capacity dst_capacity
1327 */
1328 src_capacity = env->src_stats.compute_capacity;
1329 dst_capacity = env->dst_stats.compute_capacity;
1330
1331 /* We care about the slope of the imbalance, not the direction. */
1332 if (dst_load < src_load)
1333 swap(dst_load, src_load);
1334
1335 /* Is the difference below the threshold? */
1336 imb = dst_load * src_capacity * 100 -
1337 src_load * dst_capacity * env->imbalance_pct;
1338 if (imb <= 0)
1339 return false;
1340
1341 /*
1342 * The imbalance is above the allowed threshold.
1343 * Compare it with the old imbalance.
1344 */
1345 orig_src_load = env->src_stats.load;
1346 orig_dst_load = env->dst_stats.load;
1347
1348 if (orig_dst_load < orig_src_load)
1349 swap(orig_dst_load, orig_src_load);
1350
1351 old_imb = orig_dst_load * src_capacity * 100 -
1352 orig_src_load * dst_capacity * env->imbalance_pct;
1353
1354 /* Would this change make things worse? */
1355 return (imb > old_imb);
1356 }
1357
1358 /*
1359 * This checks if the overall compute and NUMA accesses of the system would
1360 * be improved if the source tasks was migrated to the target dst_cpu taking
1361 * into account that it might be best if task running on the dst_cpu should
1362 * be exchanged with the source task
1363 */
1364 static void task_numa_compare(struct task_numa_env *env,
1365 long taskimp, long groupimp)
1366 {
1367 struct rq *src_rq = cpu_rq(env->src_cpu);
1368 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1369 struct task_struct *cur;
1370 long src_load, dst_load;
1371 long load;
1372 long imp = env->p->numa_group ? groupimp : taskimp;
1373 long moveimp = imp;
1374 int dist = env->dist;
1375 bool assigned = false;
1376
1377 rcu_read_lock();
1378
1379 raw_spin_lock_irq(&dst_rq->lock);
1380 cur = dst_rq->curr;
1381 /*
1382 * No need to move the exiting task or idle task.
1383 */
1384 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1385 cur = NULL;
1386 else {
1387 /*
1388 * The task_struct must be protected here to protect the
1389 * p->numa_faults access in the task_weight since the
1390 * numa_faults could already be freed in the following path:
1391 * finish_task_switch()
1392 * --> put_task_struct()
1393 * --> __put_task_struct()
1394 * --> task_numa_free()
1395 */
1396 get_task_struct(cur);
1397 }
1398
1399 raw_spin_unlock_irq(&dst_rq->lock);
1400
1401 /*
1402 * Because we have preemption enabled we can get migrated around and
1403 * end try selecting ourselves (current == env->p) as a swap candidate.
1404 */
1405 if (cur == env->p)
1406 goto unlock;
1407
1408 /*
1409 * "imp" is the fault differential for the source task between the
1410 * source and destination node. Calculate the total differential for
1411 * the source task and potential destination task. The more negative
1412 * the value is, the more rmeote accesses that would be expected to
1413 * be incurred if the tasks were swapped.
1414 */
1415 if (cur) {
1416 /* Skip this swap candidate if cannot move to the source cpu */
1417 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1418 goto unlock;
1419
1420 /*
1421 * If dst and source tasks are in the same NUMA group, or not
1422 * in any group then look only at task weights.
1423 */
1424 if (cur->numa_group == env->p->numa_group) {
1425 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1426 task_weight(cur, env->dst_nid, dist);
1427 /*
1428 * Add some hysteresis to prevent swapping the
1429 * tasks within a group over tiny differences.
1430 */
1431 if (cur->numa_group)
1432 imp -= imp/16;
1433 } else {
1434 /*
1435 * Compare the group weights. If a task is all by
1436 * itself (not part of a group), use the task weight
1437 * instead.
1438 */
1439 if (cur->numa_group)
1440 imp += group_weight(cur, env->src_nid, dist) -
1441 group_weight(cur, env->dst_nid, dist);
1442 else
1443 imp += task_weight(cur, env->src_nid, dist) -
1444 task_weight(cur, env->dst_nid, dist);
1445 }
1446 }
1447
1448 if (imp <= env->best_imp && moveimp <= env->best_imp)
1449 goto unlock;
1450
1451 if (!cur) {
1452 /* Is there capacity at our destination? */
1453 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1454 !env->dst_stats.has_free_capacity)
1455 goto unlock;
1456
1457 goto balance;
1458 }
1459
1460 /* Balance doesn't matter much if we're running a task per cpu */
1461 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1462 dst_rq->nr_running == 1)
1463 goto assign;
1464
1465 /*
1466 * In the overloaded case, try and keep the load balanced.
1467 */
1468 balance:
1469 load = task_h_load(env->p);
1470 dst_load = env->dst_stats.load + load;
1471 src_load = env->src_stats.load - load;
1472
1473 if (moveimp > imp && moveimp > env->best_imp) {
1474 /*
1475 * If the improvement from just moving env->p direction is
1476 * better than swapping tasks around, check if a move is
1477 * possible. Store a slightly smaller score than moveimp,
1478 * so an actually idle CPU will win.
1479 */
1480 if (!load_too_imbalanced(src_load, dst_load, env)) {
1481 imp = moveimp - 1;
1482 put_task_struct(cur);
1483 cur = NULL;
1484 goto assign;
1485 }
1486 }
1487
1488 if (imp <= env->best_imp)
1489 goto unlock;
1490
1491 if (cur) {
1492 load = task_h_load(cur);
1493 dst_load -= load;
1494 src_load += load;
1495 }
1496
1497 if (load_too_imbalanced(src_load, dst_load, env))
1498 goto unlock;
1499
1500 /*
1501 * One idle CPU per node is evaluated for a task numa move.
1502 * Call select_idle_sibling to maybe find a better one.
1503 */
1504 if (!cur)
1505 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1506
1507 assign:
1508 assigned = true;
1509 task_numa_assign(env, cur, imp);
1510 unlock:
1511 rcu_read_unlock();
1512 /*
1513 * The dst_rq->curr isn't assigned. The protection for task_struct is
1514 * finished.
1515 */
1516 if (cur && !assigned)
1517 put_task_struct(cur);
1518 }
1519
1520 static void task_numa_find_cpu(struct task_numa_env *env,
1521 long taskimp, long groupimp)
1522 {
1523 int cpu;
1524
1525 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1526 /* Skip this CPU if the source task cannot migrate */
1527 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1528 continue;
1529
1530 env->dst_cpu = cpu;
1531 task_numa_compare(env, taskimp, groupimp);
1532 }
1533 }
1534
1535 /* Only move tasks to a NUMA node less busy than the current node. */
1536 static bool numa_has_capacity(struct task_numa_env *env)
1537 {
1538 struct numa_stats *src = &env->src_stats;
1539 struct numa_stats *dst = &env->dst_stats;
1540
1541 if (src->has_free_capacity && !dst->has_free_capacity)
1542 return false;
1543
1544 /*
1545 * Only consider a task move if the source has a higher load
1546 * than the destination, corrected for CPU capacity on each node.
1547 *
1548 * src->load dst->load
1549 * --------------------- vs ---------------------
1550 * src->compute_capacity dst->compute_capacity
1551 */
1552 if (src->load * dst->compute_capacity * env->imbalance_pct >
1553
1554 dst->load * src->compute_capacity * 100)
1555 return true;
1556
1557 return false;
1558 }
1559
1560 static int task_numa_migrate(struct task_struct *p)
1561 {
1562 struct task_numa_env env = {
1563 .p = p,
1564
1565 .src_cpu = task_cpu(p),
1566 .src_nid = task_node(p),
1567
1568 .imbalance_pct = 112,
1569
1570 .best_task = NULL,
1571 .best_imp = 0,
1572 .best_cpu = -1,
1573 };
1574 struct sched_domain *sd;
1575 unsigned long taskweight, groupweight;
1576 int nid, ret, dist;
1577 long taskimp, groupimp;
1578
1579 /*
1580 * Pick the lowest SD_NUMA domain, as that would have the smallest
1581 * imbalance and would be the first to start moving tasks about.
1582 *
1583 * And we want to avoid any moving of tasks about, as that would create
1584 * random movement of tasks -- counter the numa conditions we're trying
1585 * to satisfy here.
1586 */
1587 rcu_read_lock();
1588 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1589 if (sd)
1590 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1591 rcu_read_unlock();
1592
1593 /*
1594 * Cpusets can break the scheduler domain tree into smaller
1595 * balance domains, some of which do not cross NUMA boundaries.
1596 * Tasks that are "trapped" in such domains cannot be migrated
1597 * elsewhere, so there is no point in (re)trying.
1598 */
1599 if (unlikely(!sd)) {
1600 p->numa_preferred_nid = task_node(p);
1601 return -EINVAL;
1602 }
1603
1604 env.dst_nid = p->numa_preferred_nid;
1605 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1606 taskweight = task_weight(p, env.src_nid, dist);
1607 groupweight = group_weight(p, env.src_nid, dist);
1608 update_numa_stats(&env.src_stats, env.src_nid);
1609 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1610 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1611 update_numa_stats(&env.dst_stats, env.dst_nid);
1612
1613 /* Try to find a spot on the preferred nid. */
1614 if (numa_has_capacity(&env))
1615 task_numa_find_cpu(&env, taskimp, groupimp);
1616
1617 /*
1618 * Look at other nodes in these cases:
1619 * - there is no space available on the preferred_nid
1620 * - the task is part of a numa_group that is interleaved across
1621 * multiple NUMA nodes; in order to better consolidate the group,
1622 * we need to check other locations.
1623 */
1624 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1625 for_each_online_node(nid) {
1626 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1627 continue;
1628
1629 dist = node_distance(env.src_nid, env.dst_nid);
1630 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1631 dist != env.dist) {
1632 taskweight = task_weight(p, env.src_nid, dist);
1633 groupweight = group_weight(p, env.src_nid, dist);
1634 }
1635
1636 /* Only consider nodes where both task and groups benefit */
1637 taskimp = task_weight(p, nid, dist) - taskweight;
1638 groupimp = group_weight(p, nid, dist) - groupweight;
1639 if (taskimp < 0 && groupimp < 0)
1640 continue;
1641
1642 env.dist = dist;
1643 env.dst_nid = nid;
1644 update_numa_stats(&env.dst_stats, env.dst_nid);
1645 if (numa_has_capacity(&env))
1646 task_numa_find_cpu(&env, taskimp, groupimp);
1647 }
1648 }
1649
1650 /*
1651 * If the task is part of a workload that spans multiple NUMA nodes,
1652 * and is migrating into one of the workload's active nodes, remember
1653 * this node as the task's preferred numa node, so the workload can
1654 * settle down.
1655 * A task that migrated to a second choice node will be better off
1656 * trying for a better one later. Do not set the preferred node here.
1657 */
1658 if (p->numa_group) {
1659 struct numa_group *ng = p->numa_group;
1660
1661 if (env.best_cpu == -1)
1662 nid = env.src_nid;
1663 else
1664 nid = env.dst_nid;
1665
1666 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1667 sched_setnuma(p, env.dst_nid);
1668 }
1669
1670 /* No better CPU than the current one was found. */
1671 if (env.best_cpu == -1)
1672 return -EAGAIN;
1673
1674 /*
1675 * Reset the scan period if the task is being rescheduled on an
1676 * alternative node to recheck if the tasks is now properly placed.
1677 */
1678 p->numa_scan_period = task_scan_min(p);
1679
1680 if (env.best_task == NULL) {
1681 ret = migrate_task_to(p, env.best_cpu);
1682 if (ret != 0)
1683 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1684 return ret;
1685 }
1686
1687 ret = migrate_swap(p, env.best_task);
1688 if (ret != 0)
1689 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1690 put_task_struct(env.best_task);
1691 return ret;
1692 }
1693
1694 /* Attempt to migrate a task to a CPU on the preferred node. */
1695 static void numa_migrate_preferred(struct task_struct *p)
1696 {
1697 unsigned long interval = HZ;
1698
1699 /* This task has no NUMA fault statistics yet */
1700 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1701 return;
1702
1703 /* Periodically retry migrating the task to the preferred node */
1704 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1705 p->numa_migrate_retry = jiffies + interval;
1706
1707 /* Success if task is already running on preferred CPU */
1708 if (task_node(p) == p->numa_preferred_nid)
1709 return;
1710
1711 /* Otherwise, try migrate to a CPU on the preferred node */
1712 task_numa_migrate(p);
1713 }
1714
1715 /*
1716 * Find out how many nodes on the workload is actively running on. Do this by
1717 * tracking the nodes from which NUMA hinting faults are triggered. This can
1718 * be different from the set of nodes where the workload's memory is currently
1719 * located.
1720 */
1721 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1722 {
1723 unsigned long faults, max_faults = 0;
1724 int nid, active_nodes = 0;
1725
1726 for_each_online_node(nid) {
1727 faults = group_faults_cpu(numa_group, nid);
1728 if (faults > max_faults)
1729 max_faults = faults;
1730 }
1731
1732 for_each_online_node(nid) {
1733 faults = group_faults_cpu(numa_group, nid);
1734 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1735 active_nodes++;
1736 }
1737
1738 numa_group->max_faults_cpu = max_faults;
1739 numa_group->active_nodes = active_nodes;
1740 }
1741
1742 /*
1743 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1744 * increments. The more local the fault statistics are, the higher the scan
1745 * period will be for the next scan window. If local/(local+remote) ratio is
1746 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1747 * the scan period will decrease. Aim for 70% local accesses.
1748 */
1749 #define NUMA_PERIOD_SLOTS 10
1750 #define NUMA_PERIOD_THRESHOLD 7
1751
1752 /*
1753 * Increase the scan period (slow down scanning) if the majority of
1754 * our memory is already on our local node, or if the majority of
1755 * the page accesses are shared with other processes.
1756 * Otherwise, decrease the scan period.
1757 */
1758 static void update_task_scan_period(struct task_struct *p,
1759 unsigned long shared, unsigned long private)
1760 {
1761 unsigned int period_slot;
1762 int ratio;
1763 int diff;
1764
1765 unsigned long remote = p->numa_faults_locality[0];
1766 unsigned long local = p->numa_faults_locality[1];
1767
1768 /*
1769 * If there were no record hinting faults then either the task is
1770 * completely idle or all activity is areas that are not of interest
1771 * to automatic numa balancing. Related to that, if there were failed
1772 * migration then it implies we are migrating too quickly or the local
1773 * node is overloaded. In either case, scan slower
1774 */
1775 if (local + shared == 0 || p->numa_faults_locality[2]) {
1776 p->numa_scan_period = min(p->numa_scan_period_max,
1777 p->numa_scan_period << 1);
1778
1779 p->mm->numa_next_scan = jiffies +
1780 msecs_to_jiffies(p->numa_scan_period);
1781
1782 return;
1783 }
1784
1785 /*
1786 * Prepare to scale scan period relative to the current period.
1787 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1788 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1789 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1790 */
1791 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1792 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1793 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1794 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1795 if (!slot)
1796 slot = 1;
1797 diff = slot * period_slot;
1798 } else {
1799 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1800
1801 /*
1802 * Scale scan rate increases based on sharing. There is an
1803 * inverse relationship between the degree of sharing and
1804 * the adjustment made to the scanning period. Broadly
1805 * speaking the intent is that there is little point
1806 * scanning faster if shared accesses dominate as it may
1807 * simply bounce migrations uselessly
1808 */
1809 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1810 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1811 }
1812
1813 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1814 task_scan_min(p), task_scan_max(p));
1815 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1816 }
1817
1818 /*
1819 * Get the fraction of time the task has been running since the last
1820 * NUMA placement cycle. The scheduler keeps similar statistics, but
1821 * decays those on a 32ms period, which is orders of magnitude off
1822 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1823 * stats only if the task is so new there are no NUMA statistics yet.
1824 */
1825 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1826 {
1827 u64 runtime, delta, now;
1828 /* Use the start of this time slice to avoid calculations. */
1829 now = p->se.exec_start;
1830 runtime = p->se.sum_exec_runtime;
1831
1832 if (p->last_task_numa_placement) {
1833 delta = runtime - p->last_sum_exec_runtime;
1834 *period = now - p->last_task_numa_placement;
1835 } else {
1836 delta = p->se.avg.load_sum / p->se.load.weight;
1837 *period = LOAD_AVG_MAX;
1838 }
1839
1840 p->last_sum_exec_runtime = runtime;
1841 p->last_task_numa_placement = now;
1842
1843 return delta;
1844 }
1845
1846 /*
1847 * Determine the preferred nid for a task in a numa_group. This needs to
1848 * be done in a way that produces consistent results with group_weight,
1849 * otherwise workloads might not converge.
1850 */
1851 static int preferred_group_nid(struct task_struct *p, int nid)
1852 {
1853 nodemask_t nodes;
1854 int dist;
1855
1856 /* Direct connections between all NUMA nodes. */
1857 if (sched_numa_topology_type == NUMA_DIRECT)
1858 return nid;
1859
1860 /*
1861 * On a system with glueless mesh NUMA topology, group_weight
1862 * scores nodes according to the number of NUMA hinting faults on
1863 * both the node itself, and on nearby nodes.
1864 */
1865 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1866 unsigned long score, max_score = 0;
1867 int node, max_node = nid;
1868
1869 dist = sched_max_numa_distance;
1870
1871 for_each_online_node(node) {
1872 score = group_weight(p, node, dist);
1873 if (score > max_score) {
1874 max_score = score;
1875 max_node = node;
1876 }
1877 }
1878 return max_node;
1879 }
1880
1881 /*
1882 * Finding the preferred nid in a system with NUMA backplane
1883 * interconnect topology is more involved. The goal is to locate
1884 * tasks from numa_groups near each other in the system, and
1885 * untangle workloads from different sides of the system. This requires
1886 * searching down the hierarchy of node groups, recursively searching
1887 * inside the highest scoring group of nodes. The nodemask tricks
1888 * keep the complexity of the search down.
1889 */
1890 nodes = node_online_map;
1891 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1892 unsigned long max_faults = 0;
1893 nodemask_t max_group = NODE_MASK_NONE;
1894 int a, b;
1895
1896 /* Are there nodes at this distance from each other? */
1897 if (!find_numa_distance(dist))
1898 continue;
1899
1900 for_each_node_mask(a, nodes) {
1901 unsigned long faults = 0;
1902 nodemask_t this_group;
1903 nodes_clear(this_group);
1904
1905 /* Sum group's NUMA faults; includes a==b case. */
1906 for_each_node_mask(b, nodes) {
1907 if (node_distance(a, b) < dist) {
1908 faults += group_faults(p, b);
1909 node_set(b, this_group);
1910 node_clear(b, nodes);
1911 }
1912 }
1913
1914 /* Remember the top group. */
1915 if (faults > max_faults) {
1916 max_faults = faults;
1917 max_group = this_group;
1918 /*
1919 * subtle: at the smallest distance there is
1920 * just one node left in each "group", the
1921 * winner is the preferred nid.
1922 */
1923 nid = a;
1924 }
1925 }
1926 /* Next round, evaluate the nodes within max_group. */
1927 if (!max_faults)
1928 break;
1929 nodes = max_group;
1930 }
1931 return nid;
1932 }
1933
1934 static void task_numa_placement(struct task_struct *p)
1935 {
1936 int seq, nid, max_nid = -1, max_group_nid = -1;
1937 unsigned long max_faults = 0, max_group_faults = 0;
1938 unsigned long fault_types[2] = { 0, 0 };
1939 unsigned long total_faults;
1940 u64 runtime, period;
1941 spinlock_t *group_lock = NULL;
1942
1943 /*
1944 * The p->mm->numa_scan_seq field gets updated without
1945 * exclusive access. Use READ_ONCE() here to ensure
1946 * that the field is read in a single access:
1947 */
1948 seq = READ_ONCE(p->mm->numa_scan_seq);
1949 if (p->numa_scan_seq == seq)
1950 return;
1951 p->numa_scan_seq = seq;
1952 p->numa_scan_period_max = task_scan_max(p);
1953
1954 total_faults = p->numa_faults_locality[0] +
1955 p->numa_faults_locality[1];
1956 runtime = numa_get_avg_runtime(p, &period);
1957
1958 /* If the task is part of a group prevent parallel updates to group stats */
1959 if (p->numa_group) {
1960 group_lock = &p->numa_group->lock;
1961 spin_lock_irq(group_lock);
1962 }
1963
1964 /* Find the node with the highest number of faults */
1965 for_each_online_node(nid) {
1966 /* Keep track of the offsets in numa_faults array */
1967 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1968 unsigned long faults = 0, group_faults = 0;
1969 int priv;
1970
1971 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1972 long diff, f_diff, f_weight;
1973
1974 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1975 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1976 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1977 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1978
1979 /* Decay existing window, copy faults since last scan */
1980 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1981 fault_types[priv] += p->numa_faults[membuf_idx];
1982 p->numa_faults[membuf_idx] = 0;
1983
1984 /*
1985 * Normalize the faults_from, so all tasks in a group
1986 * count according to CPU use, instead of by the raw
1987 * number of faults. Tasks with little runtime have
1988 * little over-all impact on throughput, and thus their
1989 * faults are less important.
1990 */
1991 f_weight = div64_u64(runtime << 16, period + 1);
1992 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1993 (total_faults + 1);
1994 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1995 p->numa_faults[cpubuf_idx] = 0;
1996
1997 p->numa_faults[mem_idx] += diff;
1998 p->numa_faults[cpu_idx] += f_diff;
1999 faults += p->numa_faults[mem_idx];
2000 p->total_numa_faults += diff;
2001 if (p->numa_group) {
2002 /*
2003 * safe because we can only change our own group
2004 *
2005 * mem_idx represents the offset for a given
2006 * nid and priv in a specific region because it
2007 * is at the beginning of the numa_faults array.
2008 */
2009 p->numa_group->faults[mem_idx] += diff;
2010 p->numa_group->faults_cpu[mem_idx] += f_diff;
2011 p->numa_group->total_faults += diff;
2012 group_faults += p->numa_group->faults[mem_idx];
2013 }
2014 }
2015
2016 if (faults > max_faults) {
2017 max_faults = faults;
2018 max_nid = nid;
2019 }
2020
2021 if (group_faults > max_group_faults) {
2022 max_group_faults = group_faults;
2023 max_group_nid = nid;
2024 }
2025 }
2026
2027 update_task_scan_period(p, fault_types[0], fault_types[1]);
2028
2029 if (p->numa_group) {
2030 numa_group_count_active_nodes(p->numa_group);
2031 spin_unlock_irq(group_lock);
2032 max_nid = preferred_group_nid(p, max_group_nid);
2033 }
2034
2035 if (max_faults) {
2036 /* Set the new preferred node */
2037 if (max_nid != p->numa_preferred_nid)
2038 sched_setnuma(p, max_nid);
2039
2040 if (task_node(p) != p->numa_preferred_nid)
2041 numa_migrate_preferred(p);
2042 }
2043 }
2044
2045 static inline int get_numa_group(struct numa_group *grp)
2046 {
2047 return atomic_inc_not_zero(&grp->refcount);
2048 }
2049
2050 static inline void put_numa_group(struct numa_group *grp)
2051 {
2052 if (atomic_dec_and_test(&grp->refcount))
2053 kfree_rcu(grp, rcu);
2054 }
2055
2056 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2057 int *priv)
2058 {
2059 struct numa_group *grp, *my_grp;
2060 struct task_struct *tsk;
2061 bool join = false;
2062 int cpu = cpupid_to_cpu(cpupid);
2063 int i;
2064
2065 if (unlikely(!p->numa_group)) {
2066 unsigned int size = sizeof(struct numa_group) +
2067 4*nr_node_ids*sizeof(unsigned long);
2068
2069 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2070 if (!grp)
2071 return;
2072
2073 atomic_set(&grp->refcount, 1);
2074 grp->active_nodes = 1;
2075 grp->max_faults_cpu = 0;
2076 spin_lock_init(&grp->lock);
2077 grp->gid = p->pid;
2078 /* Second half of the array tracks nids where faults happen */
2079 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2080 nr_node_ids;
2081
2082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2083 grp->faults[i] = p->numa_faults[i];
2084
2085 grp->total_faults = p->total_numa_faults;
2086
2087 grp->nr_tasks++;
2088 rcu_assign_pointer(p->numa_group, grp);
2089 }
2090
2091 rcu_read_lock();
2092 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2093
2094 if (!cpupid_match_pid(tsk, cpupid))
2095 goto no_join;
2096
2097 grp = rcu_dereference(tsk->numa_group);
2098 if (!grp)
2099 goto no_join;
2100
2101 my_grp = p->numa_group;
2102 if (grp == my_grp)
2103 goto no_join;
2104
2105 /*
2106 * Only join the other group if its bigger; if we're the bigger group,
2107 * the other task will join us.
2108 */
2109 if (my_grp->nr_tasks > grp->nr_tasks)
2110 goto no_join;
2111
2112 /*
2113 * Tie-break on the grp address.
2114 */
2115 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2116 goto no_join;
2117
2118 /* Always join threads in the same process. */
2119 if (tsk->mm == current->mm)
2120 join = true;
2121
2122 /* Simple filter to avoid false positives due to PID collisions */
2123 if (flags & TNF_SHARED)
2124 join = true;
2125
2126 /* Update priv based on whether false sharing was detected */
2127 *priv = !join;
2128
2129 if (join && !get_numa_group(grp))
2130 goto no_join;
2131
2132 rcu_read_unlock();
2133
2134 if (!join)
2135 return;
2136
2137 BUG_ON(irqs_disabled());
2138 double_lock_irq(&my_grp->lock, &grp->lock);
2139
2140 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2141 my_grp->faults[i] -= p->numa_faults[i];
2142 grp->faults[i] += p->numa_faults[i];
2143 }
2144 my_grp->total_faults -= p->total_numa_faults;
2145 grp->total_faults += p->total_numa_faults;
2146
2147 my_grp->nr_tasks--;
2148 grp->nr_tasks++;
2149
2150 spin_unlock(&my_grp->lock);
2151 spin_unlock_irq(&grp->lock);
2152
2153 rcu_assign_pointer(p->numa_group, grp);
2154
2155 put_numa_group(my_grp);
2156 return;
2157
2158 no_join:
2159 rcu_read_unlock();
2160 return;
2161 }
2162
2163 void task_numa_free(struct task_struct *p)
2164 {
2165 struct numa_group *grp = p->numa_group;
2166 void *numa_faults = p->numa_faults;
2167 unsigned long flags;
2168 int i;
2169
2170 if (grp) {
2171 spin_lock_irqsave(&grp->lock, flags);
2172 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2173 grp->faults[i] -= p->numa_faults[i];
2174 grp->total_faults -= p->total_numa_faults;
2175
2176 grp->nr_tasks--;
2177 spin_unlock_irqrestore(&grp->lock, flags);
2178 RCU_INIT_POINTER(p->numa_group, NULL);
2179 put_numa_group(grp);
2180 }
2181
2182 p->numa_faults = NULL;
2183 kfree(numa_faults);
2184 }
2185
2186 /*
2187 * Got a PROT_NONE fault for a page on @node.
2188 */
2189 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2190 {
2191 struct task_struct *p = current;
2192 bool migrated = flags & TNF_MIGRATED;
2193 int cpu_node = task_node(current);
2194 int local = !!(flags & TNF_FAULT_LOCAL);
2195 struct numa_group *ng;
2196 int priv;
2197
2198 if (!static_branch_likely(&sched_numa_balancing))
2199 return;
2200
2201 /* for example, ksmd faulting in a user's mm */
2202 if (!p->mm)
2203 return;
2204
2205 /* Allocate buffer to track faults on a per-node basis */
2206 if (unlikely(!p->numa_faults)) {
2207 int size = sizeof(*p->numa_faults) *
2208 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2209
2210 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2211 if (!p->numa_faults)
2212 return;
2213
2214 p->total_numa_faults = 0;
2215 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2216 }
2217
2218 /*
2219 * First accesses are treated as private, otherwise consider accesses
2220 * to be private if the accessing pid has not changed
2221 */
2222 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2223 priv = 1;
2224 } else {
2225 priv = cpupid_match_pid(p, last_cpupid);
2226 if (!priv && !(flags & TNF_NO_GROUP))
2227 task_numa_group(p, last_cpupid, flags, &priv);
2228 }
2229
2230 /*
2231 * If a workload spans multiple NUMA nodes, a shared fault that
2232 * occurs wholly within the set of nodes that the workload is
2233 * actively using should be counted as local. This allows the
2234 * scan rate to slow down when a workload has settled down.
2235 */
2236 ng = p->numa_group;
2237 if (!priv && !local && ng && ng->active_nodes > 1 &&
2238 numa_is_active_node(cpu_node, ng) &&
2239 numa_is_active_node(mem_node, ng))
2240 local = 1;
2241
2242 task_numa_placement(p);
2243
2244 /*
2245 * Retry task to preferred node migration periodically, in case it
2246 * case it previously failed, or the scheduler moved us.
2247 */
2248 if (time_after(jiffies, p->numa_migrate_retry))
2249 numa_migrate_preferred(p);
2250
2251 if (migrated)
2252 p->numa_pages_migrated += pages;
2253 if (flags & TNF_MIGRATE_FAIL)
2254 p->numa_faults_locality[2] += pages;
2255
2256 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2257 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2258 p->numa_faults_locality[local] += pages;
2259 }
2260
2261 static void reset_ptenuma_scan(struct task_struct *p)
2262 {
2263 /*
2264 * We only did a read acquisition of the mmap sem, so
2265 * p->mm->numa_scan_seq is written to without exclusive access
2266 * and the update is not guaranteed to be atomic. That's not
2267 * much of an issue though, since this is just used for
2268 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2269 * expensive, to avoid any form of compiler optimizations:
2270 */
2271 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2272 p->mm->numa_scan_offset = 0;
2273 }
2274
2275 /*
2276 * The expensive part of numa migration is done from task_work context.
2277 * Triggered from task_tick_numa().
2278 */
2279 void task_numa_work(struct callback_head *work)
2280 {
2281 unsigned long migrate, next_scan, now = jiffies;
2282 struct task_struct *p = current;
2283 struct mm_struct *mm = p->mm;
2284 u64 runtime = p->se.sum_exec_runtime;
2285 struct vm_area_struct *vma;
2286 unsigned long start, end;
2287 unsigned long nr_pte_updates = 0;
2288 long pages, virtpages;
2289
2290 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2291
2292 work->next = work; /* protect against double add */
2293 /*
2294 * Who cares about NUMA placement when they're dying.
2295 *
2296 * NOTE: make sure not to dereference p->mm before this check,
2297 * exit_task_work() happens _after_ exit_mm() so we could be called
2298 * without p->mm even though we still had it when we enqueued this
2299 * work.
2300 */
2301 if (p->flags & PF_EXITING)
2302 return;
2303
2304 if (!mm->numa_next_scan) {
2305 mm->numa_next_scan = now +
2306 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2307 }
2308
2309 /*
2310 * Enforce maximal scan/migration frequency..
2311 */
2312 migrate = mm->numa_next_scan;
2313 if (time_before(now, migrate))
2314 return;
2315
2316 if (p->numa_scan_period == 0) {
2317 p->numa_scan_period_max = task_scan_max(p);
2318 p->numa_scan_period = task_scan_min(p);
2319 }
2320
2321 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2322 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2323 return;
2324
2325 /*
2326 * Delay this task enough that another task of this mm will likely win
2327 * the next time around.
2328 */
2329 p->node_stamp += 2 * TICK_NSEC;
2330
2331 start = mm->numa_scan_offset;
2332 pages = sysctl_numa_balancing_scan_size;
2333 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2334 virtpages = pages * 8; /* Scan up to this much virtual space */
2335 if (!pages)
2336 return;
2337
2338
2339 down_read(&mm->mmap_sem);
2340 vma = find_vma(mm, start);
2341 if (!vma) {
2342 reset_ptenuma_scan(p);
2343 start = 0;
2344 vma = mm->mmap;
2345 }
2346 for (; vma; vma = vma->vm_next) {
2347 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2348 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2349 continue;
2350 }
2351
2352 /*
2353 * Shared library pages mapped by multiple processes are not
2354 * migrated as it is expected they are cache replicated. Avoid
2355 * hinting faults in read-only file-backed mappings or the vdso
2356 * as migrating the pages will be of marginal benefit.
2357 */
2358 if (!vma->vm_mm ||
2359 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2360 continue;
2361
2362 /*
2363 * Skip inaccessible VMAs to avoid any confusion between
2364 * PROT_NONE and NUMA hinting ptes
2365 */
2366 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2367 continue;
2368
2369 do {
2370 start = max(start, vma->vm_start);
2371 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2372 end = min(end, vma->vm_end);
2373 nr_pte_updates = change_prot_numa(vma, start, end);
2374
2375 /*
2376 * Try to scan sysctl_numa_balancing_size worth of
2377 * hpages that have at least one present PTE that
2378 * is not already pte-numa. If the VMA contains
2379 * areas that are unused or already full of prot_numa
2380 * PTEs, scan up to virtpages, to skip through those
2381 * areas faster.
2382 */
2383 if (nr_pte_updates)
2384 pages -= (end - start) >> PAGE_SHIFT;
2385 virtpages -= (end - start) >> PAGE_SHIFT;
2386
2387 start = end;
2388 if (pages <= 0 || virtpages <= 0)
2389 goto out;
2390
2391 cond_resched();
2392 } while (end != vma->vm_end);
2393 }
2394
2395 out:
2396 /*
2397 * It is possible to reach the end of the VMA list but the last few
2398 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2399 * would find the !migratable VMA on the next scan but not reset the
2400 * scanner to the start so check it now.
2401 */
2402 if (vma)
2403 mm->numa_scan_offset = start;
2404 else
2405 reset_ptenuma_scan(p);
2406 up_read(&mm->mmap_sem);
2407
2408 /*
2409 * Make sure tasks use at least 32x as much time to run other code
2410 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2411 * Usually update_task_scan_period slows down scanning enough; on an
2412 * overloaded system we need to limit overhead on a per task basis.
2413 */
2414 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2415 u64 diff = p->se.sum_exec_runtime - runtime;
2416 p->node_stamp += 32 * diff;
2417 }
2418 }
2419
2420 /*
2421 * Drive the periodic memory faults..
2422 */
2423 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2424 {
2425 struct callback_head *work = &curr->numa_work;
2426 u64 period, now;
2427
2428 /*
2429 * We don't care about NUMA placement if we don't have memory.
2430 */
2431 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2432 return;
2433
2434 /*
2435 * Using runtime rather than walltime has the dual advantage that
2436 * we (mostly) drive the selection from busy threads and that the
2437 * task needs to have done some actual work before we bother with
2438 * NUMA placement.
2439 */
2440 now = curr->se.sum_exec_runtime;
2441 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2442
2443 if (now > curr->node_stamp + period) {
2444 if (!curr->node_stamp)
2445 curr->numa_scan_period = task_scan_min(curr);
2446 curr->node_stamp += period;
2447
2448 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2449 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2450 task_work_add(curr, work, true);
2451 }
2452 }
2453 }
2454 #else
2455 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2456 {
2457 }
2458
2459 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2460 {
2461 }
2462
2463 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2464 {
2465 }
2466 #endif /* CONFIG_NUMA_BALANCING */
2467
2468 static void
2469 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2470 {
2471 update_load_add(&cfs_rq->load, se->load.weight);
2472 if (!parent_entity(se))
2473 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2474 #ifdef CONFIG_SMP
2475 if (entity_is_task(se)) {
2476 struct rq *rq = rq_of(cfs_rq);
2477
2478 account_numa_enqueue(rq, task_of(se));
2479 list_add(&se->group_node, &rq->cfs_tasks);
2480 }
2481 #endif
2482 cfs_rq->nr_running++;
2483 }
2484
2485 static void
2486 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2487 {
2488 update_load_sub(&cfs_rq->load, se->load.weight);
2489 if (!parent_entity(se))
2490 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2491 #ifdef CONFIG_SMP
2492 if (entity_is_task(se)) {
2493 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2494 list_del_init(&se->group_node);
2495 }
2496 #endif
2497 cfs_rq->nr_running--;
2498 }
2499
2500 #ifdef CONFIG_FAIR_GROUP_SCHED
2501 # ifdef CONFIG_SMP
2502 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2503 {
2504 long tg_weight;
2505
2506 /*
2507 * Use this CPU's real-time load instead of the last load contribution
2508 * as the updating of the contribution is delayed, and we will use the
2509 * the real-time load to calc the share. See update_tg_load_avg().
2510 */
2511 tg_weight = atomic_long_read(&tg->load_avg);
2512 tg_weight -= cfs_rq->tg_load_avg_contrib;
2513 tg_weight += cfs_rq->load.weight;
2514
2515 return tg_weight;
2516 }
2517
2518 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2519 {
2520 long tg_weight, load, shares;
2521
2522 tg_weight = calc_tg_weight(tg, cfs_rq);
2523 load = cfs_rq->load.weight;
2524
2525 shares = (tg->shares * load);
2526 if (tg_weight)
2527 shares /= tg_weight;
2528
2529 if (shares < MIN_SHARES)
2530 shares = MIN_SHARES;
2531 if (shares > tg->shares)
2532 shares = tg->shares;
2533
2534 return shares;
2535 }
2536 # else /* CONFIG_SMP */
2537 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2538 {
2539 return tg->shares;
2540 }
2541 # endif /* CONFIG_SMP */
2542 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 unsigned long weight)
2544 {
2545 if (se->on_rq) {
2546 /* commit outstanding execution time */
2547 if (cfs_rq->curr == se)
2548 update_curr(cfs_rq);
2549 account_entity_dequeue(cfs_rq, se);
2550 }
2551
2552 update_load_set(&se->load, weight);
2553
2554 if (se->on_rq)
2555 account_entity_enqueue(cfs_rq, se);
2556 }
2557
2558 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2559
2560 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2561 {
2562 struct task_group *tg;
2563 struct sched_entity *se;
2564 long shares;
2565
2566 tg = cfs_rq->tg;
2567 se = tg->se[cpu_of(rq_of(cfs_rq))];
2568 if (!se || throttled_hierarchy(cfs_rq))
2569 return;
2570 #ifndef CONFIG_SMP
2571 if (likely(se->load.weight == tg->shares))
2572 return;
2573 #endif
2574 shares = calc_cfs_shares(cfs_rq, tg);
2575
2576 reweight_entity(cfs_rq_of(se), se, shares);
2577 }
2578 #else /* CONFIG_FAIR_GROUP_SCHED */
2579 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2580 {
2581 }
2582 #endif /* CONFIG_FAIR_GROUP_SCHED */
2583
2584 #ifdef CONFIG_SMP
2585 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2586 static const u32 runnable_avg_yN_inv[] = {
2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 0x85aac367, 0x82cd8698,
2593 };
2594
2595 /*
2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2597 * over-estimates when re-combining.
2598 */
2599 static const u32 runnable_avg_yN_sum[] = {
2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2603 };
2604
2605 /*
2606 * Approximate:
2607 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2608 */
2609 static __always_inline u64 decay_load(u64 val, u64 n)
2610 {
2611 unsigned int local_n;
2612
2613 if (!n)
2614 return val;
2615 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2616 return 0;
2617
2618 /* after bounds checking we can collapse to 32-bit */
2619 local_n = n;
2620
2621 /*
2622 * As y^PERIOD = 1/2, we can combine
2623 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2624 * With a look-up table which covers y^n (n<PERIOD)
2625 *
2626 * To achieve constant time decay_load.
2627 */
2628 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2629 val >>= local_n / LOAD_AVG_PERIOD;
2630 local_n %= LOAD_AVG_PERIOD;
2631 }
2632
2633 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2634 return val;
2635 }
2636
2637 /*
2638 * For updates fully spanning n periods, the contribution to runnable
2639 * average will be: \Sum 1024*y^n
2640 *
2641 * We can compute this reasonably efficiently by combining:
2642 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2643 */
2644 static u32 __compute_runnable_contrib(u64 n)
2645 {
2646 u32 contrib = 0;
2647
2648 if (likely(n <= LOAD_AVG_PERIOD))
2649 return runnable_avg_yN_sum[n];
2650 else if (unlikely(n >= LOAD_AVG_MAX_N))
2651 return LOAD_AVG_MAX;
2652
2653 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2654 do {
2655 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2656 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2657
2658 n -= LOAD_AVG_PERIOD;
2659 } while (n > LOAD_AVG_PERIOD);
2660
2661 contrib = decay_load(contrib, n);
2662 return contrib + runnable_avg_yN_sum[n];
2663 }
2664
2665 #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2666 #error "load tracking assumes 2^10 as unit"
2667 #endif
2668
2669 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2670
2671 /*
2672 * We can represent the historical contribution to runnable average as the
2673 * coefficients of a geometric series. To do this we sub-divide our runnable
2674 * history into segments of approximately 1ms (1024us); label the segment that
2675 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2676 *
2677 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2678 * p0 p1 p2
2679 * (now) (~1ms ago) (~2ms ago)
2680 *
2681 * Let u_i denote the fraction of p_i that the entity was runnable.
2682 *
2683 * We then designate the fractions u_i as our co-efficients, yielding the
2684 * following representation of historical load:
2685 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2686 *
2687 * We choose y based on the with of a reasonably scheduling period, fixing:
2688 * y^32 = 0.5
2689 *
2690 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2691 * approximately half as much as the contribution to load within the last ms
2692 * (u_0).
2693 *
2694 * When a period "rolls over" and we have new u_0`, multiplying the previous
2695 * sum again by y is sufficient to update:
2696 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2697 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2698 */
2699 static __always_inline int
2700 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2701 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2702 {
2703 u64 delta, scaled_delta, periods;
2704 u32 contrib;
2705 unsigned int delta_w, scaled_delta_w, decayed = 0;
2706 unsigned long scale_freq, scale_cpu;
2707
2708 delta = now - sa->last_update_time;
2709 /*
2710 * This should only happen when time goes backwards, which it
2711 * unfortunately does during sched clock init when we swap over to TSC.
2712 */
2713 if ((s64)delta < 0) {
2714 sa->last_update_time = now;
2715 return 0;
2716 }
2717
2718 /*
2719 * Use 1024ns as the unit of measurement since it's a reasonable
2720 * approximation of 1us and fast to compute.
2721 */
2722 delta >>= 10;
2723 if (!delta)
2724 return 0;
2725 sa->last_update_time = now;
2726
2727 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2728 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2729
2730 /* delta_w is the amount already accumulated against our next period */
2731 delta_w = sa->period_contrib;
2732 if (delta + delta_w >= 1024) {
2733 decayed = 1;
2734
2735 /* how much left for next period will start over, we don't know yet */
2736 sa->period_contrib = 0;
2737
2738 /*
2739 * Now that we know we're crossing a period boundary, figure
2740 * out how much from delta we need to complete the current
2741 * period and accrue it.
2742 */
2743 delta_w = 1024 - delta_w;
2744 scaled_delta_w = cap_scale(delta_w, scale_freq);
2745 if (weight) {
2746 sa->load_sum += weight * scaled_delta_w;
2747 if (cfs_rq) {
2748 cfs_rq->runnable_load_sum +=
2749 weight * scaled_delta_w;
2750 }
2751 }
2752 if (running)
2753 sa->util_sum += scaled_delta_w * scale_cpu;
2754
2755 delta -= delta_w;
2756
2757 /* Figure out how many additional periods this update spans */
2758 periods = delta / 1024;
2759 delta %= 1024;
2760
2761 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2762 if (cfs_rq) {
2763 cfs_rq->runnable_load_sum =
2764 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2765 }
2766 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2767
2768 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2769 contrib = __compute_runnable_contrib(periods);
2770 contrib = cap_scale(contrib, scale_freq);
2771 if (weight) {
2772 sa->load_sum += weight * contrib;
2773 if (cfs_rq)
2774 cfs_rq->runnable_load_sum += weight * contrib;
2775 }
2776 if (running)
2777 sa->util_sum += contrib * scale_cpu;
2778 }
2779
2780 /* Remainder of delta accrued against u_0` */
2781 scaled_delta = cap_scale(delta, scale_freq);
2782 if (weight) {
2783 sa->load_sum += weight * scaled_delta;
2784 if (cfs_rq)
2785 cfs_rq->runnable_load_sum += weight * scaled_delta;
2786 }
2787 if (running)
2788 sa->util_sum += scaled_delta * scale_cpu;
2789
2790 sa->period_contrib += delta;
2791
2792 if (decayed) {
2793 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2794 if (cfs_rq) {
2795 cfs_rq->runnable_load_avg =
2796 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2797 }
2798 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2799 }
2800
2801 return decayed;
2802 }
2803
2804 #ifdef CONFIG_FAIR_GROUP_SCHED
2805 /*
2806 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2807 * and effective_load (which is not done because it is too costly).
2808 */
2809 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2810 {
2811 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2812
2813 /*
2814 * No need to update load_avg for root_task_group as it is not used.
2815 */
2816 if (cfs_rq->tg == &root_task_group)
2817 return;
2818
2819 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2820 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2821 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2822 }
2823 }
2824
2825 /*
2826 * Called within set_task_rq() right before setting a task's cpu. The
2827 * caller only guarantees p->pi_lock is held; no other assumptions,
2828 * including the state of rq->lock, should be made.
2829 */
2830 void set_task_rq_fair(struct sched_entity *se,
2831 struct cfs_rq *prev, struct cfs_rq *next)
2832 {
2833 if (!sched_feat(ATTACH_AGE_LOAD))
2834 return;
2835
2836 /*
2837 * We are supposed to update the task to "current" time, then its up to
2838 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2839 * getting what current time is, so simply throw away the out-of-date
2840 * time. This will result in the wakee task is less decayed, but giving
2841 * the wakee more load sounds not bad.
2842 */
2843 if (se->avg.last_update_time && prev) {
2844 u64 p_last_update_time;
2845 u64 n_last_update_time;
2846
2847 #ifndef CONFIG_64BIT
2848 u64 p_last_update_time_copy;
2849 u64 n_last_update_time_copy;
2850
2851 do {
2852 p_last_update_time_copy = prev->load_last_update_time_copy;
2853 n_last_update_time_copy = next->load_last_update_time_copy;
2854
2855 smp_rmb();
2856
2857 p_last_update_time = prev->avg.last_update_time;
2858 n_last_update_time = next->avg.last_update_time;
2859
2860 } while (p_last_update_time != p_last_update_time_copy ||
2861 n_last_update_time != n_last_update_time_copy);
2862 #else
2863 p_last_update_time = prev->avg.last_update_time;
2864 n_last_update_time = next->avg.last_update_time;
2865 #endif
2866 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2867 &se->avg, 0, 0, NULL);
2868 se->avg.last_update_time = n_last_update_time;
2869 }
2870 }
2871 #else /* CONFIG_FAIR_GROUP_SCHED */
2872 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2873 #endif /* CONFIG_FAIR_GROUP_SCHED */
2874
2875 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2876
2877 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2878 {
2879 struct rq *rq = rq_of(cfs_rq);
2880 int cpu = cpu_of(rq);
2881
2882 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2883 unsigned long max = rq->cpu_capacity_orig;
2884
2885 /*
2886 * There are a few boundary cases this might miss but it should
2887 * get called often enough that that should (hopefully) not be
2888 * a real problem -- added to that it only calls on the local
2889 * CPU, so if we enqueue remotely we'll miss an update, but
2890 * the next tick/schedule should update.
2891 *
2892 * It will not get called when we go idle, because the idle
2893 * thread is a different class (!fair), nor will the utilization
2894 * number include things like RT tasks.
2895 *
2896 * As is, the util number is not freq-invariant (we'd have to
2897 * implement arch_scale_freq_capacity() for that).
2898 *
2899 * See cpu_util().
2900 */
2901 cpufreq_update_util(rq_clock(rq),
2902 min(cfs_rq->avg.util_avg, max), max);
2903 }
2904 }
2905
2906 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2907 static inline int
2908 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2909 {
2910 struct sched_avg *sa = &cfs_rq->avg;
2911 int decayed, removed_load = 0, removed_util = 0;
2912
2913 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2914 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2915 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2916 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2917 removed_load = 1;
2918 }
2919
2920 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2921 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2922 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2923 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2924 removed_util = 1;
2925 }
2926
2927 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2928 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2929
2930 #ifndef CONFIG_64BIT
2931 smp_wmb();
2932 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2933 #endif
2934
2935 if (update_freq && (decayed || removed_util))
2936 cfs_rq_util_change(cfs_rq);
2937
2938 return decayed || removed_load;
2939 }
2940
2941 /* Update task and its cfs_rq load average */
2942 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2943 {
2944 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2945 u64 now = cfs_rq_clock_task(cfs_rq);
2946 struct rq *rq = rq_of(cfs_rq);
2947 int cpu = cpu_of(rq);
2948
2949 /*
2950 * Track task load average for carrying it to new CPU after migrated, and
2951 * track group sched_entity load average for task_h_load calc in migration
2952 */
2953 __update_load_avg(now, cpu, &se->avg,
2954 se->on_rq * scale_load_down(se->load.weight),
2955 cfs_rq->curr == se, NULL);
2956
2957 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
2958 update_tg_load_avg(cfs_rq, 0);
2959 }
2960
2961 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2962 {
2963 if (!sched_feat(ATTACH_AGE_LOAD))
2964 goto skip_aging;
2965
2966 /*
2967 * If we got migrated (either between CPUs or between cgroups) we'll
2968 * have aged the average right before clearing @last_update_time.
2969 */
2970 if (se->avg.last_update_time) {
2971 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2972 &se->avg, 0, 0, NULL);
2973
2974 /*
2975 * XXX: we could have just aged the entire load away if we've been
2976 * absent from the fair class for too long.
2977 */
2978 }
2979
2980 skip_aging:
2981 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2982 cfs_rq->avg.load_avg += se->avg.load_avg;
2983 cfs_rq->avg.load_sum += se->avg.load_sum;
2984 cfs_rq->avg.util_avg += se->avg.util_avg;
2985 cfs_rq->avg.util_sum += se->avg.util_sum;
2986
2987 cfs_rq_util_change(cfs_rq);
2988 }
2989
2990 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2991 {
2992 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2993 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2994 cfs_rq->curr == se, NULL);
2995
2996 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2997 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2998 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2999 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
3000
3001 cfs_rq_util_change(cfs_rq);
3002 }
3003
3004 /* Add the load generated by se into cfs_rq's load average */
3005 static inline void
3006 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3007 {
3008 struct sched_avg *sa = &se->avg;
3009 u64 now = cfs_rq_clock_task(cfs_rq);
3010 int migrated, decayed;
3011
3012 migrated = !sa->last_update_time;
3013 if (!migrated) {
3014 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3015 se->on_rq * scale_load_down(se->load.weight),
3016 cfs_rq->curr == se, NULL);
3017 }
3018
3019 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3020
3021 cfs_rq->runnable_load_avg += sa->load_avg;
3022 cfs_rq->runnable_load_sum += sa->load_sum;
3023
3024 if (migrated)
3025 attach_entity_load_avg(cfs_rq, se);
3026
3027 if (decayed || migrated)
3028 update_tg_load_avg(cfs_rq, 0);
3029 }
3030
3031 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3032 static inline void
3033 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3034 {
3035 update_load_avg(se, 1);
3036
3037 cfs_rq->runnable_load_avg =
3038 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3039 cfs_rq->runnable_load_sum =
3040 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3041 }
3042
3043 #ifndef CONFIG_64BIT
3044 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3045 {
3046 u64 last_update_time_copy;
3047 u64 last_update_time;
3048
3049 do {
3050 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3051 smp_rmb();
3052 last_update_time = cfs_rq->avg.last_update_time;
3053 } while (last_update_time != last_update_time_copy);
3054
3055 return last_update_time;
3056 }
3057 #else
3058 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3059 {
3060 return cfs_rq->avg.last_update_time;
3061 }
3062 #endif
3063
3064 /*
3065 * Task first catches up with cfs_rq, and then subtract
3066 * itself from the cfs_rq (task must be off the queue now).
3067 */
3068 void remove_entity_load_avg(struct sched_entity *se)
3069 {
3070 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3071 u64 last_update_time;
3072
3073 /*
3074 * Newly created task or never used group entity should not be removed
3075 * from its (source) cfs_rq
3076 */
3077 if (se->avg.last_update_time == 0)
3078 return;
3079
3080 last_update_time = cfs_rq_last_update_time(cfs_rq);
3081
3082 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3083 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3084 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3085 }
3086
3087 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3088 {
3089 return cfs_rq->runnable_load_avg;
3090 }
3091
3092 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3093 {
3094 return cfs_rq->avg.load_avg;
3095 }
3096
3097 static int idle_balance(struct rq *this_rq);
3098
3099 #else /* CONFIG_SMP */
3100
3101 static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3102 static inline void
3103 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3104 static inline void
3105 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3106 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3107
3108 static inline void
3109 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3110 static inline void
3111 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3112
3113 static inline int idle_balance(struct rq *rq)
3114 {
3115 return 0;
3116 }
3117
3118 #endif /* CONFIG_SMP */
3119
3120 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3121 {
3122 #ifdef CONFIG_SCHEDSTATS
3123 struct task_struct *tsk = NULL;
3124
3125 if (entity_is_task(se))
3126 tsk = task_of(se);
3127
3128 if (se->statistics.sleep_start) {
3129 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3130
3131 if ((s64)delta < 0)
3132 delta = 0;
3133
3134 if (unlikely(delta > se->statistics.sleep_max))
3135 se->statistics.sleep_max = delta;
3136
3137 se->statistics.sleep_start = 0;
3138 se->statistics.sum_sleep_runtime += delta;
3139
3140 if (tsk) {
3141 account_scheduler_latency(tsk, delta >> 10, 1);
3142 trace_sched_stat_sleep(tsk, delta);
3143 }
3144 }
3145 if (se->statistics.block_start) {
3146 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3147
3148 if ((s64)delta < 0)
3149 delta = 0;
3150
3151 if (unlikely(delta > se->statistics.block_max))
3152 se->statistics.block_max = delta;
3153
3154 se->statistics.block_start = 0;
3155 se->statistics.sum_sleep_runtime += delta;
3156
3157 if (tsk) {
3158 if (tsk->in_iowait) {
3159 se->statistics.iowait_sum += delta;
3160 se->statistics.iowait_count++;
3161 trace_sched_stat_iowait(tsk, delta);
3162 }
3163
3164 trace_sched_stat_blocked(tsk, delta);
3165
3166 /*
3167 * Blocking time is in units of nanosecs, so shift by
3168 * 20 to get a milliseconds-range estimation of the
3169 * amount of time that the task spent sleeping:
3170 */
3171 if (unlikely(prof_on == SLEEP_PROFILING)) {
3172 profile_hits(SLEEP_PROFILING,
3173 (void *)get_wchan(tsk),
3174 delta >> 20);
3175 }
3176 account_scheduler_latency(tsk, delta >> 10, 0);
3177 }
3178 }
3179 #endif
3180 }
3181
3182 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3183 {
3184 #ifdef CONFIG_SCHED_DEBUG
3185 s64 d = se->vruntime - cfs_rq->min_vruntime;
3186
3187 if (d < 0)
3188 d = -d;
3189
3190 if (d > 3*sysctl_sched_latency)
3191 schedstat_inc(cfs_rq, nr_spread_over);
3192 #endif
3193 }
3194
3195 static void
3196 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3197 {
3198 u64 vruntime = cfs_rq->min_vruntime;
3199
3200 /*
3201 * The 'current' period is already promised to the current tasks,
3202 * however the extra weight of the new task will slow them down a
3203 * little, place the new task so that it fits in the slot that
3204 * stays open at the end.
3205 */
3206 if (initial && sched_feat(START_DEBIT))
3207 vruntime += sched_vslice(cfs_rq, se);
3208
3209 /* sleeps up to a single latency don't count. */
3210 if (!initial) {
3211 unsigned long thresh = sysctl_sched_latency;
3212
3213 /*
3214 * Halve their sleep time's effect, to allow
3215 * for a gentler effect of sleepers:
3216 */
3217 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3218 thresh >>= 1;
3219
3220 vruntime -= thresh;
3221 }
3222
3223 /* ensure we never gain time by being placed backwards. */
3224 se->vruntime = max_vruntime(se->vruntime, vruntime);
3225 }
3226
3227 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3228
3229 static inline void check_schedstat_required(void)
3230 {
3231 #ifdef CONFIG_SCHEDSTATS
3232 if (schedstat_enabled())
3233 return;
3234
3235 /* Force schedstat enabled if a dependent tracepoint is active */
3236 if (trace_sched_stat_wait_enabled() ||
3237 trace_sched_stat_sleep_enabled() ||
3238 trace_sched_stat_iowait_enabled() ||
3239 trace_sched_stat_blocked_enabled() ||
3240 trace_sched_stat_runtime_enabled()) {
3241 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3242 "stat_blocked and stat_runtime require the "
3243 "kernel parameter schedstats=enabled or "
3244 "kernel.sched_schedstats=1\n");
3245 }
3246 #endif
3247 }
3248
3249 static void
3250 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3251 {
3252 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING);
3253 bool curr = cfs_rq->curr == se;
3254
3255 /*
3256 * If we're the current task, we must renormalise before calling
3257 * update_curr().
3258 */
3259 if (renorm && curr)
3260 se->vruntime += cfs_rq->min_vruntime;
3261
3262 update_curr(cfs_rq);
3263
3264 /*
3265 * Otherwise, renormalise after, such that we're placed at the current
3266 * moment in time, instead of some random moment in the past.
3267 */
3268 if (renorm && !curr)
3269 se->vruntime += cfs_rq->min_vruntime;
3270
3271 enqueue_entity_load_avg(cfs_rq, se);
3272 account_entity_enqueue(cfs_rq, se);
3273 update_cfs_shares(cfs_rq);
3274
3275 if (flags & ENQUEUE_WAKEUP) {
3276 place_entity(cfs_rq, se, 0);
3277 if (schedstat_enabled())
3278 enqueue_sleeper(cfs_rq, se);
3279 }
3280
3281 check_schedstat_required();
3282 if (schedstat_enabled()) {
3283 update_stats_enqueue(cfs_rq, se);
3284 check_spread(cfs_rq, se);
3285 }
3286 if (!curr)
3287 __enqueue_entity(cfs_rq, se);
3288 se->on_rq = 1;
3289
3290 if (cfs_rq->nr_running == 1) {
3291 list_add_leaf_cfs_rq(cfs_rq);
3292 check_enqueue_throttle(cfs_rq);
3293 }
3294 }
3295
3296 static void __clear_buddies_last(struct sched_entity *se)
3297 {
3298 for_each_sched_entity(se) {
3299 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3300 if (cfs_rq->last != se)
3301 break;
3302
3303 cfs_rq->last = NULL;
3304 }
3305 }
3306
3307 static void __clear_buddies_next(struct sched_entity *se)
3308 {
3309 for_each_sched_entity(se) {
3310 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3311 if (cfs_rq->next != se)
3312 break;
3313
3314 cfs_rq->next = NULL;
3315 }
3316 }
3317
3318 static void __clear_buddies_skip(struct sched_entity *se)
3319 {
3320 for_each_sched_entity(se) {
3321 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3322 if (cfs_rq->skip != se)
3323 break;
3324
3325 cfs_rq->skip = NULL;
3326 }
3327 }
3328
3329 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3330 {
3331 if (cfs_rq->last == se)
3332 __clear_buddies_last(se);
3333
3334 if (cfs_rq->next == se)
3335 __clear_buddies_next(se);
3336
3337 if (cfs_rq->skip == se)
3338 __clear_buddies_skip(se);
3339 }
3340
3341 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3342
3343 static void
3344 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3345 {
3346 /*
3347 * Update run-time statistics of the 'current'.
3348 */
3349 update_curr(cfs_rq);
3350 dequeue_entity_load_avg(cfs_rq, se);
3351
3352 if (schedstat_enabled())
3353 update_stats_dequeue(cfs_rq, se, flags);
3354
3355 clear_buddies(cfs_rq, se);
3356
3357 if (se != cfs_rq->curr)
3358 __dequeue_entity(cfs_rq, se);
3359 se->on_rq = 0;
3360 account_entity_dequeue(cfs_rq, se);
3361
3362 /*
3363 * Normalize the entity after updating the min_vruntime because the
3364 * update can refer to the ->curr item and we need to reflect this
3365 * movement in our normalized position.
3366 */
3367 if (!(flags & DEQUEUE_SLEEP))
3368 se->vruntime -= cfs_rq->min_vruntime;
3369
3370 /* return excess runtime on last dequeue */
3371 return_cfs_rq_runtime(cfs_rq);
3372
3373 update_min_vruntime(cfs_rq);
3374 update_cfs_shares(cfs_rq);
3375 }
3376
3377 /*
3378 * Preempt the current task with a newly woken task if needed:
3379 */
3380 static void
3381 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3382 {
3383 unsigned long ideal_runtime, delta_exec;
3384 struct sched_entity *se;
3385 s64 delta;
3386
3387 ideal_runtime = sched_slice(cfs_rq, curr);
3388 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3389 if (delta_exec > ideal_runtime) {
3390 resched_curr(rq_of(cfs_rq));
3391 /*
3392 * The current task ran long enough, ensure it doesn't get
3393 * re-elected due to buddy favours.
3394 */
3395 clear_buddies(cfs_rq, curr);
3396 return;
3397 }
3398
3399 /*
3400 * Ensure that a task that missed wakeup preemption by a
3401 * narrow margin doesn't have to wait for a full slice.
3402 * This also mitigates buddy induced latencies under load.
3403 */
3404 if (delta_exec < sysctl_sched_min_granularity)
3405 return;
3406
3407 se = __pick_first_entity(cfs_rq);
3408 delta = curr->vruntime - se->vruntime;
3409
3410 if (delta < 0)
3411 return;
3412
3413 if (delta > ideal_runtime)
3414 resched_curr(rq_of(cfs_rq));
3415 }
3416
3417 static void
3418 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3419 {
3420 /* 'current' is not kept within the tree. */
3421 if (se->on_rq) {
3422 /*
3423 * Any task has to be enqueued before it get to execute on
3424 * a CPU. So account for the time it spent waiting on the
3425 * runqueue.
3426 */
3427 if (schedstat_enabled())
3428 update_stats_wait_end(cfs_rq, se);
3429 __dequeue_entity(cfs_rq, se);
3430 update_load_avg(se, 1);
3431 }
3432
3433 update_stats_curr_start(cfs_rq, se);
3434 cfs_rq->curr = se;
3435 #ifdef CONFIG_SCHEDSTATS
3436 /*
3437 * Track our maximum slice length, if the CPU's load is at
3438 * least twice that of our own weight (i.e. dont track it
3439 * when there are only lesser-weight tasks around):
3440 */
3441 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3442 se->statistics.slice_max = max(se->statistics.slice_max,
3443 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3444 }
3445 #endif
3446 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3447 }
3448
3449 static int
3450 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3451
3452 /*
3453 * Pick the next process, keeping these things in mind, in this order:
3454 * 1) keep things fair between processes/task groups
3455 * 2) pick the "next" process, since someone really wants that to run
3456 * 3) pick the "last" process, for cache locality
3457 * 4) do not run the "skip" process, if something else is available
3458 */
3459 static struct sched_entity *
3460 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3461 {
3462 struct sched_entity *left = __pick_first_entity(cfs_rq);
3463 struct sched_entity *se;
3464
3465 /*
3466 * If curr is set we have to see if its left of the leftmost entity
3467 * still in the tree, provided there was anything in the tree at all.
3468 */
3469 if (!left || (curr && entity_before(curr, left)))
3470 left = curr;
3471
3472 se = left; /* ideally we run the leftmost entity */
3473
3474 /*
3475 * Avoid running the skip buddy, if running something else can
3476 * be done without getting too unfair.
3477 */
3478 if (cfs_rq->skip == se) {
3479 struct sched_entity *second;
3480
3481 if (se == curr) {
3482 second = __pick_first_entity(cfs_rq);
3483 } else {
3484 second = __pick_next_entity(se);
3485 if (!second || (curr && entity_before(curr, second)))
3486 second = curr;
3487 }
3488
3489 if (second && wakeup_preempt_entity(second, left) < 1)
3490 se = second;
3491 }
3492
3493 /*
3494 * Prefer last buddy, try to return the CPU to a preempted task.
3495 */
3496 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3497 se = cfs_rq->last;
3498
3499 /*
3500 * Someone really wants this to run. If it's not unfair, run it.
3501 */
3502 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3503 se = cfs_rq->next;
3504
3505 clear_buddies(cfs_rq, se);
3506
3507 return se;
3508 }
3509
3510 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3511
3512 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3513 {
3514 /*
3515 * If still on the runqueue then deactivate_task()
3516 * was not called and update_curr() has to be done:
3517 */
3518 if (prev->on_rq)
3519 update_curr(cfs_rq);
3520
3521 /* throttle cfs_rqs exceeding runtime */
3522 check_cfs_rq_runtime(cfs_rq);
3523
3524 if (schedstat_enabled()) {
3525 check_spread(cfs_rq, prev);
3526 if (prev->on_rq)
3527 update_stats_wait_start(cfs_rq, prev);
3528 }
3529
3530 if (prev->on_rq) {
3531 /* Put 'current' back into the tree. */
3532 __enqueue_entity(cfs_rq, prev);
3533 /* in !on_rq case, update occurred at dequeue */
3534 update_load_avg(prev, 0);
3535 }
3536 cfs_rq->curr = NULL;
3537 }
3538
3539 static void
3540 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3541 {
3542 /*
3543 * Update run-time statistics of the 'current'.
3544 */
3545 update_curr(cfs_rq);
3546
3547 /*
3548 * Ensure that runnable average is periodically updated.
3549 */
3550 update_load_avg(curr, 1);
3551 update_cfs_shares(cfs_rq);
3552
3553 #ifdef CONFIG_SCHED_HRTICK
3554 /*
3555 * queued ticks are scheduled to match the slice, so don't bother
3556 * validating it and just reschedule.
3557 */
3558 if (queued) {
3559 resched_curr(rq_of(cfs_rq));
3560 return;
3561 }
3562 /*
3563 * don't let the period tick interfere with the hrtick preemption
3564 */
3565 if (!sched_feat(DOUBLE_TICK) &&
3566 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3567 return;
3568 #endif
3569
3570 if (cfs_rq->nr_running > 1)
3571 check_preempt_tick(cfs_rq, curr);
3572 }
3573
3574
3575 /**************************************************
3576 * CFS bandwidth control machinery
3577 */
3578
3579 #ifdef CONFIG_CFS_BANDWIDTH
3580
3581 #ifdef HAVE_JUMP_LABEL
3582 static struct static_key __cfs_bandwidth_used;
3583
3584 static inline bool cfs_bandwidth_used(void)
3585 {
3586 return static_key_false(&__cfs_bandwidth_used);
3587 }
3588
3589 void cfs_bandwidth_usage_inc(void)
3590 {
3591 static_key_slow_inc(&__cfs_bandwidth_used);
3592 }
3593
3594 void cfs_bandwidth_usage_dec(void)
3595 {
3596 static_key_slow_dec(&__cfs_bandwidth_used);
3597 }
3598 #else /* HAVE_JUMP_LABEL */
3599 static bool cfs_bandwidth_used(void)
3600 {
3601 return true;
3602 }
3603
3604 void cfs_bandwidth_usage_inc(void) {}
3605 void cfs_bandwidth_usage_dec(void) {}
3606 #endif /* HAVE_JUMP_LABEL */
3607
3608 /*
3609 * default period for cfs group bandwidth.
3610 * default: 0.1s, units: nanoseconds
3611 */
3612 static inline u64 default_cfs_period(void)
3613 {
3614 return 100000000ULL;
3615 }
3616
3617 static inline u64 sched_cfs_bandwidth_slice(void)
3618 {
3619 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3620 }
3621
3622 /*
3623 * Replenish runtime according to assigned quota and update expiration time.
3624 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3625 * additional synchronization around rq->lock.
3626 *
3627 * requires cfs_b->lock
3628 */
3629 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3630 {
3631 u64 now;
3632
3633 if (cfs_b->quota == RUNTIME_INF)
3634 return;
3635
3636 now = sched_clock_cpu(smp_processor_id());
3637 cfs_b->runtime = cfs_b->quota;
3638 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3639 }
3640
3641 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3642 {
3643 return &tg->cfs_bandwidth;
3644 }
3645
3646 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3647 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3648 {
3649 if (unlikely(cfs_rq->throttle_count))
3650 return cfs_rq->throttled_clock_task;
3651
3652 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3653 }
3654
3655 /* returns 0 on failure to allocate runtime */
3656 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3657 {
3658 struct task_group *tg = cfs_rq->tg;
3659 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3660 u64 amount = 0, min_amount, expires;
3661
3662 /* note: this is a positive sum as runtime_remaining <= 0 */
3663 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3664
3665 raw_spin_lock(&cfs_b->lock);
3666 if (cfs_b->quota == RUNTIME_INF)
3667 amount = min_amount;
3668 else {
3669 start_cfs_bandwidth(cfs_b);
3670
3671 if (cfs_b->runtime > 0) {
3672 amount = min(cfs_b->runtime, min_amount);
3673 cfs_b->runtime -= amount;
3674 cfs_b->idle = 0;
3675 }
3676 }
3677 expires = cfs_b->runtime_expires;
3678 raw_spin_unlock(&cfs_b->lock);
3679
3680 cfs_rq->runtime_remaining += amount;
3681 /*
3682 * we may have advanced our local expiration to account for allowed
3683 * spread between our sched_clock and the one on which runtime was
3684 * issued.
3685 */
3686 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3687 cfs_rq->runtime_expires = expires;
3688
3689 return cfs_rq->runtime_remaining > 0;
3690 }
3691
3692 /*
3693 * Note: This depends on the synchronization provided by sched_clock and the
3694 * fact that rq->clock snapshots this value.
3695 */
3696 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3697 {
3698 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3699
3700 /* if the deadline is ahead of our clock, nothing to do */
3701 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3702 return;
3703
3704 if (cfs_rq->runtime_remaining < 0)
3705 return;
3706
3707 /*
3708 * If the local deadline has passed we have to consider the
3709 * possibility that our sched_clock is 'fast' and the global deadline
3710 * has not truly expired.
3711 *
3712 * Fortunately we can check determine whether this the case by checking
3713 * whether the global deadline has advanced. It is valid to compare
3714 * cfs_b->runtime_expires without any locks since we only care about
3715 * exact equality, so a partial write will still work.
3716 */
3717
3718 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3719 /* extend local deadline, drift is bounded above by 2 ticks */
3720 cfs_rq->runtime_expires += TICK_NSEC;
3721 } else {
3722 /* global deadline is ahead, expiration has passed */
3723 cfs_rq->runtime_remaining = 0;
3724 }
3725 }
3726
3727 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3728 {
3729 /* dock delta_exec before expiring quota (as it could span periods) */
3730 cfs_rq->runtime_remaining -= delta_exec;
3731 expire_cfs_rq_runtime(cfs_rq);
3732
3733 if (likely(cfs_rq->runtime_remaining > 0))
3734 return;
3735
3736 /*
3737 * if we're unable to extend our runtime we resched so that the active
3738 * hierarchy can be throttled
3739 */
3740 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3741 resched_curr(rq_of(cfs_rq));
3742 }
3743
3744 static __always_inline
3745 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3746 {
3747 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3748 return;
3749
3750 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3751 }
3752
3753 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3754 {
3755 return cfs_bandwidth_used() && cfs_rq->throttled;
3756 }
3757
3758 /* check whether cfs_rq, or any parent, is throttled */
3759 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3760 {
3761 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3762 }
3763
3764 /*
3765 * Ensure that neither of the group entities corresponding to src_cpu or
3766 * dest_cpu are members of a throttled hierarchy when performing group
3767 * load-balance operations.
3768 */
3769 static inline int throttled_lb_pair(struct task_group *tg,
3770 int src_cpu, int dest_cpu)
3771 {
3772 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3773
3774 src_cfs_rq = tg->cfs_rq[src_cpu];
3775 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3776
3777 return throttled_hierarchy(src_cfs_rq) ||
3778 throttled_hierarchy(dest_cfs_rq);
3779 }
3780
3781 /* updated child weight may affect parent so we have to do this bottom up */
3782 static int tg_unthrottle_up(struct task_group *tg, void *data)
3783 {
3784 struct rq *rq = data;
3785 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3786
3787 cfs_rq->throttle_count--;
3788 #ifdef CONFIG_SMP
3789 if (!cfs_rq->throttle_count) {
3790 /* adjust cfs_rq_clock_task() */
3791 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3792 cfs_rq->throttled_clock_task;
3793 }
3794 #endif
3795
3796 return 0;
3797 }
3798
3799 static int tg_throttle_down(struct task_group *tg, void *data)
3800 {
3801 struct rq *rq = data;
3802 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3803
3804 /* group is entering throttled state, stop time */
3805 if (!cfs_rq->throttle_count)
3806 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3807 cfs_rq->throttle_count++;
3808
3809 return 0;
3810 }
3811
3812 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3813 {
3814 struct rq *rq = rq_of(cfs_rq);
3815 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3816 struct sched_entity *se;
3817 long task_delta, dequeue = 1;
3818 bool empty;
3819
3820 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3821
3822 /* freeze hierarchy runnable averages while throttled */
3823 rcu_read_lock();
3824 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3825 rcu_read_unlock();
3826
3827 task_delta = cfs_rq->h_nr_running;
3828 for_each_sched_entity(se) {
3829 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3830 /* throttled entity or throttle-on-deactivate */
3831 if (!se->on_rq)
3832 break;
3833
3834 if (dequeue)
3835 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3836 qcfs_rq->h_nr_running -= task_delta;
3837
3838 if (qcfs_rq->load.weight)
3839 dequeue = 0;
3840 }
3841
3842 if (!se)
3843 sub_nr_running(rq, task_delta);
3844
3845 cfs_rq->throttled = 1;
3846 cfs_rq->throttled_clock = rq_clock(rq);
3847 raw_spin_lock(&cfs_b->lock);
3848 empty = list_empty(&cfs_b->throttled_cfs_rq);
3849
3850 /*
3851 * Add to the _head_ of the list, so that an already-started
3852 * distribute_cfs_runtime will not see us
3853 */
3854 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3855
3856 /*
3857 * If we're the first throttled task, make sure the bandwidth
3858 * timer is running.
3859 */
3860 if (empty)
3861 start_cfs_bandwidth(cfs_b);
3862
3863 raw_spin_unlock(&cfs_b->lock);
3864 }
3865
3866 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3867 {
3868 struct rq *rq = rq_of(cfs_rq);
3869 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3870 struct sched_entity *se;
3871 int enqueue = 1;
3872 long task_delta;
3873
3874 se = cfs_rq->tg->se[cpu_of(rq)];
3875
3876 cfs_rq->throttled = 0;
3877
3878 update_rq_clock(rq);
3879
3880 raw_spin_lock(&cfs_b->lock);
3881 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3882 list_del_rcu(&cfs_rq->throttled_list);
3883 raw_spin_unlock(&cfs_b->lock);
3884
3885 /* update hierarchical throttle state */
3886 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3887
3888 if (!cfs_rq->load.weight)
3889 return;
3890
3891 task_delta = cfs_rq->h_nr_running;
3892 for_each_sched_entity(se) {
3893 if (se->on_rq)
3894 enqueue = 0;
3895
3896 cfs_rq = cfs_rq_of(se);
3897 if (enqueue)
3898 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3899 cfs_rq->h_nr_running += task_delta;
3900
3901 if (cfs_rq_throttled(cfs_rq))
3902 break;
3903 }
3904
3905 if (!se)
3906 add_nr_running(rq, task_delta);
3907
3908 /* determine whether we need to wake up potentially idle cpu */
3909 if (rq->curr == rq->idle && rq->cfs.nr_running)
3910 resched_curr(rq);
3911 }
3912
3913 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3914 u64 remaining, u64 expires)
3915 {
3916 struct cfs_rq *cfs_rq;
3917 u64 runtime;
3918 u64 starting_runtime = remaining;
3919
3920 rcu_read_lock();
3921 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3922 throttled_list) {
3923 struct rq *rq = rq_of(cfs_rq);
3924
3925 raw_spin_lock(&rq->lock);
3926 if (!cfs_rq_throttled(cfs_rq))
3927 goto next;
3928
3929 runtime = -cfs_rq->runtime_remaining + 1;
3930 if (runtime > remaining)
3931 runtime = remaining;
3932 remaining -= runtime;
3933
3934 cfs_rq->runtime_remaining += runtime;
3935 cfs_rq->runtime_expires = expires;
3936
3937 /* we check whether we're throttled above */
3938 if (cfs_rq->runtime_remaining > 0)
3939 unthrottle_cfs_rq(cfs_rq);
3940
3941 next:
3942 raw_spin_unlock(&rq->lock);
3943
3944 if (!remaining)
3945 break;
3946 }
3947 rcu_read_unlock();
3948
3949 return starting_runtime - remaining;
3950 }
3951
3952 /*
3953 * Responsible for refilling a task_group's bandwidth and unthrottling its
3954 * cfs_rqs as appropriate. If there has been no activity within the last
3955 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3956 * used to track this state.
3957 */
3958 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3959 {
3960 u64 runtime, runtime_expires;
3961 int throttled;
3962
3963 /* no need to continue the timer with no bandwidth constraint */
3964 if (cfs_b->quota == RUNTIME_INF)
3965 goto out_deactivate;
3966
3967 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3968 cfs_b->nr_periods += overrun;
3969
3970 /*
3971 * idle depends on !throttled (for the case of a large deficit), and if
3972 * we're going inactive then everything else can be deferred
3973 */
3974 if (cfs_b->idle && !throttled)
3975 goto out_deactivate;
3976
3977 __refill_cfs_bandwidth_runtime(cfs_b);
3978
3979 if (!throttled) {
3980 /* mark as potentially idle for the upcoming period */
3981 cfs_b->idle = 1;
3982 return 0;
3983 }
3984
3985 /* account preceding periods in which throttling occurred */
3986 cfs_b->nr_throttled += overrun;
3987
3988 runtime_expires = cfs_b->runtime_expires;
3989
3990 /*
3991 * This check is repeated as we are holding onto the new bandwidth while
3992 * we unthrottle. This can potentially race with an unthrottled group
3993 * trying to acquire new bandwidth from the global pool. This can result
3994 * in us over-using our runtime if it is all used during this loop, but
3995 * only by limited amounts in that extreme case.
3996 */
3997 while (throttled && cfs_b->runtime > 0) {
3998 runtime = cfs_b->runtime;
3999 raw_spin_unlock(&cfs_b->lock);
4000 /* we can't nest cfs_b->lock while distributing bandwidth */
4001 runtime = distribute_cfs_runtime(cfs_b, runtime,
4002 runtime_expires);
4003 raw_spin_lock(&cfs_b->lock);
4004
4005 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4006
4007 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4008 }
4009
4010 /*
4011 * While we are ensured activity in the period following an
4012 * unthrottle, this also covers the case in which the new bandwidth is
4013 * insufficient to cover the existing bandwidth deficit. (Forcing the
4014 * timer to remain active while there are any throttled entities.)
4015 */
4016 cfs_b->idle = 0;
4017
4018 return 0;
4019
4020 out_deactivate:
4021 return 1;
4022 }
4023
4024 /* a cfs_rq won't donate quota below this amount */
4025 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4026 /* minimum remaining period time to redistribute slack quota */
4027 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4028 /* how long we wait to gather additional slack before distributing */
4029 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4030
4031 /*
4032 * Are we near the end of the current quota period?
4033 *
4034 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4035 * hrtimer base being cleared by hrtimer_start. In the case of
4036 * migrate_hrtimers, base is never cleared, so we are fine.
4037 */
4038 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4039 {
4040 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4041 u64 remaining;
4042
4043 /* if the call-back is running a quota refresh is already occurring */
4044 if (hrtimer_callback_running(refresh_timer))
4045 return 1;
4046
4047 /* is a quota refresh about to occur? */
4048 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4049 if (remaining < min_expire)
4050 return 1;
4051
4052 return 0;
4053 }
4054
4055 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4056 {
4057 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4058
4059 /* if there's a quota refresh soon don't bother with slack */
4060 if (runtime_refresh_within(cfs_b, min_left))
4061 return;
4062
4063 hrtimer_start(&cfs_b->slack_timer,
4064 ns_to_ktime(cfs_bandwidth_slack_period),
4065 HRTIMER_MODE_REL);
4066 }
4067
4068 /* we know any runtime found here is valid as update_curr() precedes return */
4069 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4070 {
4071 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4072 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4073
4074 if (slack_runtime <= 0)
4075 return;
4076
4077 raw_spin_lock(&cfs_b->lock);
4078 if (cfs_b->quota != RUNTIME_INF &&
4079 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4080 cfs_b->runtime += slack_runtime;
4081
4082 /* we are under rq->lock, defer unthrottling using a timer */
4083 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4084 !list_empty(&cfs_b->throttled_cfs_rq))
4085 start_cfs_slack_bandwidth(cfs_b);
4086 }
4087 raw_spin_unlock(&cfs_b->lock);
4088
4089 /* even if it's not valid for return we don't want to try again */
4090 cfs_rq->runtime_remaining -= slack_runtime;
4091 }
4092
4093 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4094 {
4095 if (!cfs_bandwidth_used())
4096 return;
4097
4098 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4099 return;
4100
4101 __return_cfs_rq_runtime(cfs_rq);
4102 }
4103
4104 /*
4105 * This is done with a timer (instead of inline with bandwidth return) since
4106 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4107 */
4108 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4109 {
4110 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4111 u64 expires;
4112
4113 /* confirm we're still not at a refresh boundary */
4114 raw_spin_lock(&cfs_b->lock);
4115 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4116 raw_spin_unlock(&cfs_b->lock);
4117 return;
4118 }
4119
4120 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4121 runtime = cfs_b->runtime;
4122
4123 expires = cfs_b->runtime_expires;
4124 raw_spin_unlock(&cfs_b->lock);
4125
4126 if (!runtime)
4127 return;
4128
4129 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4130
4131 raw_spin_lock(&cfs_b->lock);
4132 if (expires == cfs_b->runtime_expires)
4133 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4134 raw_spin_unlock(&cfs_b->lock);
4135 }
4136
4137 /*
4138 * When a group wakes up we want to make sure that its quota is not already
4139 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4140 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4141 */
4142 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4143 {
4144 if (!cfs_bandwidth_used())
4145 return;
4146
4147 /* an active group must be handled by the update_curr()->put() path */
4148 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4149 return;
4150
4151 /* ensure the group is not already throttled */
4152 if (cfs_rq_throttled(cfs_rq))
4153 return;
4154
4155 /* update runtime allocation */
4156 account_cfs_rq_runtime(cfs_rq, 0);
4157 if (cfs_rq->runtime_remaining <= 0)
4158 throttle_cfs_rq(cfs_rq);
4159 }
4160
4161 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4162 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4163 {
4164 if (!cfs_bandwidth_used())
4165 return false;
4166
4167 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4168 return false;
4169
4170 /*
4171 * it's possible for a throttled entity to be forced into a running
4172 * state (e.g. set_curr_task), in this case we're finished.
4173 */
4174 if (cfs_rq_throttled(cfs_rq))
4175 return true;
4176
4177 throttle_cfs_rq(cfs_rq);
4178 return true;
4179 }
4180
4181 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4182 {
4183 struct cfs_bandwidth *cfs_b =
4184 container_of(timer, struct cfs_bandwidth, slack_timer);
4185
4186 do_sched_cfs_slack_timer(cfs_b);
4187
4188 return HRTIMER_NORESTART;
4189 }
4190
4191 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4192 {
4193 struct cfs_bandwidth *cfs_b =
4194 container_of(timer, struct cfs_bandwidth, period_timer);
4195 int overrun;
4196 int idle = 0;
4197
4198 raw_spin_lock(&cfs_b->lock);
4199 for (;;) {
4200 overrun = hrtimer_forward_now(timer, cfs_b->period);
4201 if (!overrun)
4202 break;
4203
4204 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4205 }
4206 if (idle)
4207 cfs_b->period_active = 0;
4208 raw_spin_unlock(&cfs_b->lock);
4209
4210 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4211 }
4212
4213 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4214 {
4215 raw_spin_lock_init(&cfs_b->lock);
4216 cfs_b->runtime = 0;
4217 cfs_b->quota = RUNTIME_INF;
4218 cfs_b->period = ns_to_ktime(default_cfs_period());
4219
4220 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4221 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4222 cfs_b->period_timer.function = sched_cfs_period_timer;
4223 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4224 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4225 }
4226
4227 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4228 {
4229 cfs_rq->runtime_enabled = 0;
4230 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4231 }
4232
4233 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4234 {
4235 lockdep_assert_held(&cfs_b->lock);
4236
4237 if (!cfs_b->period_active) {
4238 cfs_b->period_active = 1;
4239 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4240 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4241 }
4242 }
4243
4244 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4245 {
4246 /* init_cfs_bandwidth() was not called */
4247 if (!cfs_b->throttled_cfs_rq.next)
4248 return;
4249
4250 hrtimer_cancel(&cfs_b->period_timer);
4251 hrtimer_cancel(&cfs_b->slack_timer);
4252 }
4253
4254 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4255 {
4256 struct cfs_rq *cfs_rq;
4257
4258 for_each_leaf_cfs_rq(rq, cfs_rq) {
4259 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4260
4261 raw_spin_lock(&cfs_b->lock);
4262 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4263 raw_spin_unlock(&cfs_b->lock);
4264 }
4265 }
4266
4267 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4268 {
4269 struct cfs_rq *cfs_rq;
4270
4271 for_each_leaf_cfs_rq(rq, cfs_rq) {
4272 if (!cfs_rq->runtime_enabled)
4273 continue;
4274
4275 /*
4276 * clock_task is not advancing so we just need to make sure
4277 * there's some valid quota amount
4278 */
4279 cfs_rq->runtime_remaining = 1;
4280 /*
4281 * Offline rq is schedulable till cpu is completely disabled
4282 * in take_cpu_down(), so we prevent new cfs throttling here.
4283 */
4284 cfs_rq->runtime_enabled = 0;
4285
4286 if (cfs_rq_throttled(cfs_rq))
4287 unthrottle_cfs_rq(cfs_rq);
4288 }
4289 }
4290
4291 #else /* CONFIG_CFS_BANDWIDTH */
4292 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4293 {
4294 return rq_clock_task(rq_of(cfs_rq));
4295 }
4296
4297 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4298 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4299 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4300 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4301
4302 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4303 {
4304 return 0;
4305 }
4306
4307 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4308 {
4309 return 0;
4310 }
4311
4312 static inline int throttled_lb_pair(struct task_group *tg,
4313 int src_cpu, int dest_cpu)
4314 {
4315 return 0;
4316 }
4317
4318 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4319
4320 #ifdef CONFIG_FAIR_GROUP_SCHED
4321 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4322 #endif
4323
4324 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4325 {
4326 return NULL;
4327 }
4328 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4329 static inline void update_runtime_enabled(struct rq *rq) {}
4330 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4331
4332 #endif /* CONFIG_CFS_BANDWIDTH */
4333
4334 /**************************************************
4335 * CFS operations on tasks:
4336 */
4337
4338 #ifdef CONFIG_SCHED_HRTICK
4339 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4340 {
4341 struct sched_entity *se = &p->se;
4342 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4343
4344 WARN_ON(task_rq(p) != rq);
4345
4346 if (cfs_rq->nr_running > 1) {
4347 u64 slice = sched_slice(cfs_rq, se);
4348 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4349 s64 delta = slice - ran;
4350
4351 if (delta < 0) {
4352 if (rq->curr == p)
4353 resched_curr(rq);
4354 return;
4355 }
4356 hrtick_start(rq, delta);
4357 }
4358 }
4359
4360 /*
4361 * called from enqueue/dequeue and updates the hrtick when the
4362 * current task is from our class and nr_running is low enough
4363 * to matter.
4364 */
4365 static void hrtick_update(struct rq *rq)
4366 {
4367 struct task_struct *curr = rq->curr;
4368
4369 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4370 return;
4371
4372 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4373 hrtick_start_fair(rq, curr);
4374 }
4375 #else /* !CONFIG_SCHED_HRTICK */
4376 static inline void
4377 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4378 {
4379 }
4380
4381 static inline void hrtick_update(struct rq *rq)
4382 {
4383 }
4384 #endif
4385
4386 /*
4387 * The enqueue_task method is called before nr_running is
4388 * increased. Here we update the fair scheduling stats and
4389 * then put the task into the rbtree:
4390 */
4391 static void
4392 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4393 {
4394 struct cfs_rq *cfs_rq;
4395 struct sched_entity *se = &p->se;
4396
4397 for_each_sched_entity(se) {
4398 if (se->on_rq)
4399 break;
4400 cfs_rq = cfs_rq_of(se);
4401 enqueue_entity(cfs_rq, se, flags);
4402
4403 /*
4404 * end evaluation on encountering a throttled cfs_rq
4405 *
4406 * note: in the case of encountering a throttled cfs_rq we will
4407 * post the final h_nr_running increment below.
4408 */
4409 if (cfs_rq_throttled(cfs_rq))
4410 break;
4411 cfs_rq->h_nr_running++;
4412
4413 flags = ENQUEUE_WAKEUP;
4414 }
4415
4416 for_each_sched_entity(se) {
4417 cfs_rq = cfs_rq_of(se);
4418 cfs_rq->h_nr_running++;
4419
4420 if (cfs_rq_throttled(cfs_rq))
4421 break;
4422
4423 update_load_avg(se, 1);
4424 update_cfs_shares(cfs_rq);
4425 }
4426
4427 if (!se)
4428 add_nr_running(rq, 1);
4429
4430 hrtick_update(rq);
4431 }
4432
4433 static void set_next_buddy(struct sched_entity *se);
4434
4435 /*
4436 * The dequeue_task method is called before nr_running is
4437 * decreased. We remove the task from the rbtree and
4438 * update the fair scheduling stats:
4439 */
4440 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4441 {
4442 struct cfs_rq *cfs_rq;
4443 struct sched_entity *se = &p->se;
4444 int task_sleep = flags & DEQUEUE_SLEEP;
4445
4446 for_each_sched_entity(se) {
4447 cfs_rq = cfs_rq_of(se);
4448 dequeue_entity(cfs_rq, se, flags);
4449
4450 /*
4451 * end evaluation on encountering a throttled cfs_rq
4452 *
4453 * note: in the case of encountering a throttled cfs_rq we will
4454 * post the final h_nr_running decrement below.
4455 */
4456 if (cfs_rq_throttled(cfs_rq))
4457 break;
4458 cfs_rq->h_nr_running--;
4459
4460 /* Don't dequeue parent if it has other entities besides us */
4461 if (cfs_rq->load.weight) {
4462 /*
4463 * Bias pick_next to pick a task from this cfs_rq, as
4464 * p is sleeping when it is within its sched_slice.
4465 */
4466 if (task_sleep && parent_entity(se))
4467 set_next_buddy(parent_entity(se));
4468
4469 /* avoid re-evaluating load for this entity */
4470 se = parent_entity(se);
4471 break;
4472 }
4473 flags |= DEQUEUE_SLEEP;
4474 }
4475
4476 for_each_sched_entity(se) {
4477 cfs_rq = cfs_rq_of(se);
4478 cfs_rq->h_nr_running--;
4479
4480 if (cfs_rq_throttled(cfs_rq))
4481 break;
4482
4483 update_load_avg(se, 1);
4484 update_cfs_shares(cfs_rq);
4485 }
4486
4487 if (!se)
4488 sub_nr_running(rq, 1);
4489
4490 hrtick_update(rq);
4491 }
4492
4493 #ifdef CONFIG_SMP
4494
4495 /*
4496 * per rq 'load' arrray crap; XXX kill this.
4497 */
4498
4499 /*
4500 * The exact cpuload calculated at every tick would be:
4501 *
4502 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4503 *
4504 * If a cpu misses updates for n ticks (as it was idle) and update gets
4505 * called on the n+1-th tick when cpu may be busy, then we have:
4506 *
4507 * load_n = (1 - 1/2^i)^n * load_0
4508 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4509 *
4510 * decay_load_missed() below does efficient calculation of
4511 *
4512 * load' = (1 - 1/2^i)^n * load
4513 *
4514 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4515 * This allows us to precompute the above in said factors, thereby allowing the
4516 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4517 * fixed_power_int())
4518 *
4519 * The calculation is approximated on a 128 point scale.
4520 */
4521 #define DEGRADE_SHIFT 7
4522
4523 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4524 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4525 { 0, 0, 0, 0, 0, 0, 0, 0 },
4526 { 64, 32, 8, 0, 0, 0, 0, 0 },
4527 { 96, 72, 40, 12, 1, 0, 0, 0 },
4528 { 112, 98, 75, 43, 15, 1, 0, 0 },
4529 { 120, 112, 98, 76, 45, 16, 2, 0 }
4530 };
4531
4532 /*
4533 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4534 * would be when CPU is idle and so we just decay the old load without
4535 * adding any new load.
4536 */
4537 static unsigned long
4538 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4539 {
4540 int j = 0;
4541
4542 if (!missed_updates)
4543 return load;
4544
4545 if (missed_updates >= degrade_zero_ticks[idx])
4546 return 0;
4547
4548 if (idx == 1)
4549 return load >> missed_updates;
4550
4551 while (missed_updates) {
4552 if (missed_updates % 2)
4553 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4554
4555 missed_updates >>= 1;
4556 j++;
4557 }
4558 return load;
4559 }
4560
4561 /**
4562 * __update_cpu_load - update the rq->cpu_load[] statistics
4563 * @this_rq: The rq to update statistics for
4564 * @this_load: The current load
4565 * @pending_updates: The number of missed updates
4566 * @active: !0 for NOHZ_FULL
4567 *
4568 * Update rq->cpu_load[] statistics. This function is usually called every
4569 * scheduler tick (TICK_NSEC).
4570 *
4571 * This function computes a decaying average:
4572 *
4573 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4574 *
4575 * Because of NOHZ it might not get called on every tick which gives need for
4576 * the @pending_updates argument.
4577 *
4578 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4579 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4580 * = A * (A * load[i]_n-2 + B) + B
4581 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4582 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4583 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4584 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4585 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4586 *
4587 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4588 * any change in load would have resulted in the tick being turned back on.
4589 *
4590 * For regular NOHZ, this reduces to:
4591 *
4592 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4593 *
4594 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4595 * term. See the @active paramter.
4596 */
4597 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4598 unsigned long pending_updates, int active)
4599 {
4600 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4601 int i, scale;
4602
4603 this_rq->nr_load_updates++;
4604
4605 /* Update our load: */
4606 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4607 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4608 unsigned long old_load, new_load;
4609
4610 /* scale is effectively 1 << i now, and >> i divides by scale */
4611
4612 old_load = this_rq->cpu_load[i];
4613 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4614 if (tickless_load) {
4615 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4616 /*
4617 * old_load can never be a negative value because a
4618 * decayed tickless_load cannot be greater than the
4619 * original tickless_load.
4620 */
4621 old_load += tickless_load;
4622 }
4623 new_load = this_load;
4624 /*
4625 * Round up the averaging division if load is increasing. This
4626 * prevents us from getting stuck on 9 if the load is 10, for
4627 * example.
4628 */
4629 if (new_load > old_load)
4630 new_load += scale - 1;
4631
4632 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4633 }
4634
4635 sched_avg_update(this_rq);
4636 }
4637
4638 /* Used instead of source_load when we know the type == 0 */
4639 static unsigned long weighted_cpuload(const int cpu)
4640 {
4641 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4642 }
4643
4644 #ifdef CONFIG_NO_HZ_COMMON
4645 static void __update_cpu_load_nohz(struct rq *this_rq,
4646 unsigned long curr_jiffies,
4647 unsigned long load,
4648 int active)
4649 {
4650 unsigned long pending_updates;
4651
4652 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4653 if (pending_updates) {
4654 this_rq->last_load_update_tick = curr_jiffies;
4655 /*
4656 * In the regular NOHZ case, we were idle, this means load 0.
4657 * In the NOHZ_FULL case, we were non-idle, we should consider
4658 * its weighted load.
4659 */
4660 __update_cpu_load(this_rq, load, pending_updates, active);
4661 }
4662 }
4663
4664 /*
4665 * There is no sane way to deal with nohz on smp when using jiffies because the
4666 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4667 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4668 *
4669 * Therefore we cannot use the delta approach from the regular tick since that
4670 * would seriously skew the load calculation. However we'll make do for those
4671 * updates happening while idle (nohz_idle_balance) or coming out of idle
4672 * (tick_nohz_idle_exit).
4673 *
4674 * This means we might still be one tick off for nohz periods.
4675 */
4676
4677 /*
4678 * Called from nohz_idle_balance() to update the load ratings before doing the
4679 * idle balance.
4680 */
4681 static void update_cpu_load_idle(struct rq *this_rq)
4682 {
4683 /*
4684 * bail if there's load or we're actually up-to-date.
4685 */
4686 if (weighted_cpuload(cpu_of(this_rq)))
4687 return;
4688
4689 __update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
4690 }
4691
4692 /*
4693 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4694 */
4695 void update_cpu_load_nohz(int active)
4696 {
4697 struct rq *this_rq = this_rq();
4698 unsigned long curr_jiffies = READ_ONCE(jiffies);
4699 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4700
4701 if (curr_jiffies == this_rq->last_load_update_tick)
4702 return;
4703
4704 raw_spin_lock(&this_rq->lock);
4705 __update_cpu_load_nohz(this_rq, curr_jiffies, load, active);
4706 raw_spin_unlock(&this_rq->lock);
4707 }
4708 #endif /* CONFIG_NO_HZ */
4709
4710 /*
4711 * Called from scheduler_tick()
4712 */
4713 void update_cpu_load_active(struct rq *this_rq)
4714 {
4715 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4716 /*
4717 * See the mess around update_cpu_load_idle() / update_cpu_load_nohz().
4718 */
4719 this_rq->last_load_update_tick = jiffies;
4720 __update_cpu_load(this_rq, load, 1, 1);
4721 }
4722
4723 /*
4724 * Return a low guess at the load of a migration-source cpu weighted
4725 * according to the scheduling class and "nice" value.
4726 *
4727 * We want to under-estimate the load of migration sources, to
4728 * balance conservatively.
4729 */
4730 static unsigned long source_load(int cpu, int type)
4731 {
4732 struct rq *rq = cpu_rq(cpu);
4733 unsigned long total = weighted_cpuload(cpu);
4734
4735 if (type == 0 || !sched_feat(LB_BIAS))
4736 return total;
4737
4738 return min(rq->cpu_load[type-1], total);
4739 }
4740
4741 /*
4742 * Return a high guess at the load of a migration-target cpu weighted
4743 * according to the scheduling class and "nice" value.
4744 */
4745 static unsigned long target_load(int cpu, int type)
4746 {
4747 struct rq *rq = cpu_rq(cpu);
4748 unsigned long total = weighted_cpuload(cpu);
4749
4750 if (type == 0 || !sched_feat(LB_BIAS))
4751 return total;
4752
4753 return max(rq->cpu_load[type-1], total);
4754 }
4755
4756 static unsigned long capacity_of(int cpu)
4757 {
4758 return cpu_rq(cpu)->cpu_capacity;
4759 }
4760
4761 static unsigned long capacity_orig_of(int cpu)
4762 {
4763 return cpu_rq(cpu)->cpu_capacity_orig;
4764 }
4765
4766 static unsigned long cpu_avg_load_per_task(int cpu)
4767 {
4768 struct rq *rq = cpu_rq(cpu);
4769 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4770 unsigned long load_avg = weighted_cpuload(cpu);
4771
4772 if (nr_running)
4773 return load_avg / nr_running;
4774
4775 return 0;
4776 }
4777
4778 static void record_wakee(struct task_struct *p)
4779 {
4780 /*
4781 * Rough decay (wiping) for cost saving, don't worry
4782 * about the boundary, really active task won't care
4783 * about the loss.
4784 */
4785 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4786 current->wakee_flips >>= 1;
4787 current->wakee_flip_decay_ts = jiffies;
4788 }
4789
4790 if (current->last_wakee != p) {
4791 current->last_wakee = p;
4792 current->wakee_flips++;
4793 }
4794 }
4795
4796 static void task_waking_fair(struct task_struct *p)
4797 {
4798 struct sched_entity *se = &p->se;
4799 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4800 u64 min_vruntime;
4801
4802 #ifndef CONFIG_64BIT
4803 u64 min_vruntime_copy;
4804
4805 do {
4806 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4807 smp_rmb();
4808 min_vruntime = cfs_rq->min_vruntime;
4809 } while (min_vruntime != min_vruntime_copy);
4810 #else
4811 min_vruntime = cfs_rq->min_vruntime;
4812 #endif
4813
4814 se->vruntime -= min_vruntime;
4815 record_wakee(p);
4816 }
4817
4818 #ifdef CONFIG_FAIR_GROUP_SCHED
4819 /*
4820 * effective_load() calculates the load change as seen from the root_task_group
4821 *
4822 * Adding load to a group doesn't make a group heavier, but can cause movement
4823 * of group shares between cpus. Assuming the shares were perfectly aligned one
4824 * can calculate the shift in shares.
4825 *
4826 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4827 * on this @cpu and results in a total addition (subtraction) of @wg to the
4828 * total group weight.
4829 *
4830 * Given a runqueue weight distribution (rw_i) we can compute a shares
4831 * distribution (s_i) using:
4832 *
4833 * s_i = rw_i / \Sum rw_j (1)
4834 *
4835 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4836 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4837 * shares distribution (s_i):
4838 *
4839 * rw_i = { 2, 4, 1, 0 }
4840 * s_i = { 2/7, 4/7, 1/7, 0 }
4841 *
4842 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4843 * task used to run on and the CPU the waker is running on), we need to
4844 * compute the effect of waking a task on either CPU and, in case of a sync
4845 * wakeup, compute the effect of the current task going to sleep.
4846 *
4847 * So for a change of @wl to the local @cpu with an overall group weight change
4848 * of @wl we can compute the new shares distribution (s'_i) using:
4849 *
4850 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4851 *
4852 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4853 * differences in waking a task to CPU 0. The additional task changes the
4854 * weight and shares distributions like:
4855 *
4856 * rw'_i = { 3, 4, 1, 0 }
4857 * s'_i = { 3/8, 4/8, 1/8, 0 }
4858 *
4859 * We can then compute the difference in effective weight by using:
4860 *
4861 * dw_i = S * (s'_i - s_i) (3)
4862 *
4863 * Where 'S' is the group weight as seen by its parent.
4864 *
4865 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4866 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4867 * 4/7) times the weight of the group.
4868 */
4869 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4870 {
4871 struct sched_entity *se = tg->se[cpu];
4872
4873 if (!tg->parent) /* the trivial, non-cgroup case */
4874 return wl;
4875
4876 for_each_sched_entity(se) {
4877 long w, W;
4878
4879 tg = se->my_q->tg;
4880
4881 /*
4882 * W = @wg + \Sum rw_j
4883 */
4884 W = wg + calc_tg_weight(tg, se->my_q);
4885
4886 /*
4887 * w = rw_i + @wl
4888 */
4889 w = cfs_rq_load_avg(se->my_q) + wl;
4890
4891 /*
4892 * wl = S * s'_i; see (2)
4893 */
4894 if (W > 0 && w < W)
4895 wl = (w * (long)tg->shares) / W;
4896 else
4897 wl = tg->shares;
4898
4899 /*
4900 * Per the above, wl is the new se->load.weight value; since
4901 * those are clipped to [MIN_SHARES, ...) do so now. See
4902 * calc_cfs_shares().
4903 */
4904 if (wl < MIN_SHARES)
4905 wl = MIN_SHARES;
4906
4907 /*
4908 * wl = dw_i = S * (s'_i - s_i); see (3)
4909 */
4910 wl -= se->avg.load_avg;
4911
4912 /*
4913 * Recursively apply this logic to all parent groups to compute
4914 * the final effective load change on the root group. Since
4915 * only the @tg group gets extra weight, all parent groups can
4916 * only redistribute existing shares. @wl is the shift in shares
4917 * resulting from this level per the above.
4918 */
4919 wg = 0;
4920 }
4921
4922 return wl;
4923 }
4924 #else
4925
4926 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4927 {
4928 return wl;
4929 }
4930
4931 #endif
4932
4933 /*
4934 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4935 * A waker of many should wake a different task than the one last awakened
4936 * at a frequency roughly N times higher than one of its wakees. In order
4937 * to determine whether we should let the load spread vs consolodating to
4938 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4939 * partner, and a factor of lls_size higher frequency in the other. With
4940 * both conditions met, we can be relatively sure that the relationship is
4941 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4942 * being client/server, worker/dispatcher, interrupt source or whatever is
4943 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4944 */
4945 static int wake_wide(struct task_struct *p)
4946 {
4947 unsigned int master = current->wakee_flips;
4948 unsigned int slave = p->wakee_flips;
4949 int factor = this_cpu_read(sd_llc_size);
4950
4951 if (master < slave)
4952 swap(master, slave);
4953 if (slave < factor || master < slave * factor)
4954 return 0;
4955 return 1;
4956 }
4957
4958 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4959 {
4960 s64 this_load, load;
4961 s64 this_eff_load, prev_eff_load;
4962 int idx, this_cpu, prev_cpu;
4963 struct task_group *tg;
4964 unsigned long weight;
4965 int balanced;
4966
4967 idx = sd->wake_idx;
4968 this_cpu = smp_processor_id();
4969 prev_cpu = task_cpu(p);
4970 load = source_load(prev_cpu, idx);
4971 this_load = target_load(this_cpu, idx);
4972
4973 /*
4974 * If sync wakeup then subtract the (maximum possible)
4975 * effect of the currently running task from the load
4976 * of the current CPU:
4977 */
4978 if (sync) {
4979 tg = task_group(current);
4980 weight = current->se.avg.load_avg;
4981
4982 this_load += effective_load(tg, this_cpu, -weight, -weight);
4983 load += effective_load(tg, prev_cpu, 0, -weight);
4984 }
4985
4986 tg = task_group(p);
4987 weight = p->se.avg.load_avg;
4988
4989 /*
4990 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4991 * due to the sync cause above having dropped this_load to 0, we'll
4992 * always have an imbalance, but there's really nothing you can do
4993 * about that, so that's good too.
4994 *
4995 * Otherwise check if either cpus are near enough in load to allow this
4996 * task to be woken on this_cpu.
4997 */
4998 this_eff_load = 100;
4999 this_eff_load *= capacity_of(prev_cpu);
5000
5001 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5002 prev_eff_load *= capacity_of(this_cpu);
5003
5004 if (this_load > 0) {
5005 this_eff_load *= this_load +
5006 effective_load(tg, this_cpu, weight, weight);
5007
5008 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5009 }
5010
5011 balanced = this_eff_load <= prev_eff_load;
5012
5013 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
5014
5015 if (!balanced)
5016 return 0;
5017
5018 schedstat_inc(sd, ttwu_move_affine);
5019 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5020
5021 return 1;
5022 }
5023
5024 /*
5025 * find_idlest_group finds and returns the least busy CPU group within the
5026 * domain.
5027 */
5028 static struct sched_group *
5029 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5030 int this_cpu, int sd_flag)
5031 {
5032 struct sched_group *idlest = NULL, *group = sd->groups;
5033 unsigned long min_load = ULONG_MAX, this_load = 0;
5034 int load_idx = sd->forkexec_idx;
5035 int imbalance = 100 + (sd->imbalance_pct-100)/2;
5036
5037 if (sd_flag & SD_BALANCE_WAKE)
5038 load_idx = sd->wake_idx;
5039
5040 do {
5041 unsigned long load, avg_load;
5042 int local_group;
5043 int i;
5044
5045 /* Skip over this group if it has no CPUs allowed */
5046 if (!cpumask_intersects(sched_group_cpus(group),
5047 tsk_cpus_allowed(p)))
5048 continue;
5049
5050 local_group = cpumask_test_cpu(this_cpu,
5051 sched_group_cpus(group));
5052
5053 /* Tally up the load of all CPUs in the group */
5054 avg_load = 0;
5055
5056 for_each_cpu(i, sched_group_cpus(group)) {
5057 /* Bias balancing toward cpus of our domain */
5058 if (local_group)
5059 load = source_load(i, load_idx);
5060 else
5061 load = target_load(i, load_idx);
5062
5063 avg_load += load;
5064 }
5065
5066 /* Adjust by relative CPU capacity of the group */
5067 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5068
5069 if (local_group) {
5070 this_load = avg_load;
5071 } else if (avg_load < min_load) {
5072 min_load = avg_load;
5073 idlest = group;
5074 }
5075 } while (group = group->next, group != sd->groups);
5076
5077 if (!idlest || 100*this_load < imbalance*min_load)
5078 return NULL;
5079 return idlest;
5080 }
5081
5082 /*
5083 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5084 */
5085 static int
5086 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5087 {
5088 unsigned long load, min_load = ULONG_MAX;
5089 unsigned int min_exit_latency = UINT_MAX;
5090 u64 latest_idle_timestamp = 0;
5091 int least_loaded_cpu = this_cpu;
5092 int shallowest_idle_cpu = -1;
5093 int i;
5094
5095 /* Traverse only the allowed CPUs */
5096 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5097 if (idle_cpu(i)) {
5098 struct rq *rq = cpu_rq(i);
5099 struct cpuidle_state *idle = idle_get_state(rq);
5100 if (idle && idle->exit_latency < min_exit_latency) {
5101 /*
5102 * We give priority to a CPU whose idle state
5103 * has the smallest exit latency irrespective
5104 * of any idle timestamp.
5105 */
5106 min_exit_latency = idle->exit_latency;
5107 latest_idle_timestamp = rq->idle_stamp;
5108 shallowest_idle_cpu = i;
5109 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5110 rq->idle_stamp > latest_idle_timestamp) {
5111 /*
5112 * If equal or no active idle state, then
5113 * the most recently idled CPU might have
5114 * a warmer cache.
5115 */
5116 latest_idle_timestamp = rq->idle_stamp;
5117 shallowest_idle_cpu = i;
5118 }
5119 } else if (shallowest_idle_cpu == -1) {
5120 load = weighted_cpuload(i);
5121 if (load < min_load || (load == min_load && i == this_cpu)) {
5122 min_load = load;
5123 least_loaded_cpu = i;
5124 }
5125 }
5126 }
5127
5128 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5129 }
5130
5131 /*
5132 * Try and locate an idle CPU in the sched_domain.
5133 */
5134 static int select_idle_sibling(struct task_struct *p, int target)
5135 {
5136 struct sched_domain *sd;
5137 struct sched_group *sg;
5138 int i = task_cpu(p);
5139
5140 if (idle_cpu(target))
5141 return target;
5142
5143 /*
5144 * If the prevous cpu is cache affine and idle, don't be stupid.
5145 */
5146 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5147 return i;
5148
5149 /*
5150 * Otherwise, iterate the domains and find an eligible idle cpu.
5151 *
5152 * A completely idle sched group at higher domains is more
5153 * desirable than an idle group at a lower level, because lower
5154 * domains have smaller groups and usually share hardware
5155 * resources which causes tasks to contend on them, e.g. x86
5156 * hyperthread siblings in the lowest domain (SMT) can contend
5157 * on the shared cpu pipeline.
5158 *
5159 * However, while we prefer idle groups at higher domains
5160 * finding an idle cpu at the lowest domain is still better than
5161 * returning 'target', which we've already established, isn't
5162 * idle.
5163 */
5164 sd = rcu_dereference(per_cpu(sd_llc, target));
5165 for_each_lower_domain(sd) {
5166 sg = sd->groups;
5167 do {
5168 if (!cpumask_intersects(sched_group_cpus(sg),
5169 tsk_cpus_allowed(p)))
5170 goto next;
5171
5172 /* Ensure the entire group is idle */
5173 for_each_cpu(i, sched_group_cpus(sg)) {
5174 if (i == target || !idle_cpu(i))
5175 goto next;
5176 }
5177
5178 /*
5179 * It doesn't matter which cpu we pick, the
5180 * whole group is idle.
5181 */
5182 target = cpumask_first_and(sched_group_cpus(sg),
5183 tsk_cpus_allowed(p));
5184 goto done;
5185 next:
5186 sg = sg->next;
5187 } while (sg != sd->groups);
5188 }
5189 done:
5190 return target;
5191 }
5192
5193 /*
5194 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5195 * tasks. The unit of the return value must be the one of capacity so we can
5196 * compare the utilization with the capacity of the CPU that is available for
5197 * CFS task (ie cpu_capacity).
5198 *
5199 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5200 * recent utilization of currently non-runnable tasks on a CPU. It represents
5201 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5202 * capacity_orig is the cpu_capacity available at the highest frequency
5203 * (arch_scale_freq_capacity()).
5204 * The utilization of a CPU converges towards a sum equal to or less than the
5205 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5206 * the running time on this CPU scaled by capacity_curr.
5207 *
5208 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5209 * higher than capacity_orig because of unfortunate rounding in
5210 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5211 * the average stabilizes with the new running time. We need to check that the
5212 * utilization stays within the range of [0..capacity_orig] and cap it if
5213 * necessary. Without utilization capping, a group could be seen as overloaded
5214 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5215 * available capacity. We allow utilization to overshoot capacity_curr (but not
5216 * capacity_orig) as it useful for predicting the capacity required after task
5217 * migrations (scheduler-driven DVFS).
5218 */
5219 static int cpu_util(int cpu)
5220 {
5221 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5222 unsigned long capacity = capacity_orig_of(cpu);
5223
5224 return (util >= capacity) ? capacity : util;
5225 }
5226
5227 /*
5228 * select_task_rq_fair: Select target runqueue for the waking task in domains
5229 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5230 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5231 *
5232 * Balances load by selecting the idlest cpu in the idlest group, or under
5233 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5234 *
5235 * Returns the target cpu number.
5236 *
5237 * preempt must be disabled.
5238 */
5239 static int
5240 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5241 {
5242 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5243 int cpu = smp_processor_id();
5244 int new_cpu = prev_cpu;
5245 int want_affine = 0;
5246 int sync = wake_flags & WF_SYNC;
5247
5248 if (sd_flag & SD_BALANCE_WAKE)
5249 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5250
5251 rcu_read_lock();
5252 for_each_domain(cpu, tmp) {
5253 if (!(tmp->flags & SD_LOAD_BALANCE))
5254 break;
5255
5256 /*
5257 * If both cpu and prev_cpu are part of this domain,
5258 * cpu is a valid SD_WAKE_AFFINE target.
5259 */
5260 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5261 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5262 affine_sd = tmp;
5263 break;
5264 }
5265
5266 if (tmp->flags & sd_flag)
5267 sd = tmp;
5268 else if (!want_affine)
5269 break;
5270 }
5271
5272 if (affine_sd) {
5273 sd = NULL; /* Prefer wake_affine over balance flags */
5274 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5275 new_cpu = cpu;
5276 }
5277
5278 if (!sd) {
5279 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5280 new_cpu = select_idle_sibling(p, new_cpu);
5281
5282 } else while (sd) {
5283 struct sched_group *group;
5284 int weight;
5285
5286 if (!(sd->flags & sd_flag)) {
5287 sd = sd->child;
5288 continue;
5289 }
5290
5291 group = find_idlest_group(sd, p, cpu, sd_flag);
5292 if (!group) {
5293 sd = sd->child;
5294 continue;
5295 }
5296
5297 new_cpu = find_idlest_cpu(group, p, cpu);
5298 if (new_cpu == -1 || new_cpu == cpu) {
5299 /* Now try balancing at a lower domain level of cpu */
5300 sd = sd->child;
5301 continue;
5302 }
5303
5304 /* Now try balancing at a lower domain level of new_cpu */
5305 cpu = new_cpu;
5306 weight = sd->span_weight;
5307 sd = NULL;
5308 for_each_domain(cpu, tmp) {
5309 if (weight <= tmp->span_weight)
5310 break;
5311 if (tmp->flags & sd_flag)
5312 sd = tmp;
5313 }
5314 /* while loop will break here if sd == NULL */
5315 }
5316 rcu_read_unlock();
5317
5318 return new_cpu;
5319 }
5320
5321 /*
5322 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5323 * cfs_rq_of(p) references at time of call are still valid and identify the
5324 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5325 */
5326 static void migrate_task_rq_fair(struct task_struct *p)
5327 {
5328 /*
5329 * We are supposed to update the task to "current" time, then its up to date
5330 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5331 * what current time is, so simply throw away the out-of-date time. This
5332 * will result in the wakee task is less decayed, but giving the wakee more
5333 * load sounds not bad.
5334 */
5335 remove_entity_load_avg(&p->se);
5336
5337 /* Tell new CPU we are migrated */
5338 p->se.avg.last_update_time = 0;
5339
5340 /* We have migrated, no longer consider this task hot */
5341 p->se.exec_start = 0;
5342 }
5343
5344 static void task_dead_fair(struct task_struct *p)
5345 {
5346 remove_entity_load_avg(&p->se);
5347 }
5348 #endif /* CONFIG_SMP */
5349
5350 static unsigned long
5351 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5352 {
5353 unsigned long gran = sysctl_sched_wakeup_granularity;
5354
5355 /*
5356 * Since its curr running now, convert the gran from real-time
5357 * to virtual-time in his units.
5358 *
5359 * By using 'se' instead of 'curr' we penalize light tasks, so
5360 * they get preempted easier. That is, if 'se' < 'curr' then
5361 * the resulting gran will be larger, therefore penalizing the
5362 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5363 * be smaller, again penalizing the lighter task.
5364 *
5365 * This is especially important for buddies when the leftmost
5366 * task is higher priority than the buddy.
5367 */
5368 return calc_delta_fair(gran, se);
5369 }
5370
5371 /*
5372 * Should 'se' preempt 'curr'.
5373 *
5374 * |s1
5375 * |s2
5376 * |s3
5377 * g
5378 * |<--->|c
5379 *
5380 * w(c, s1) = -1
5381 * w(c, s2) = 0
5382 * w(c, s3) = 1
5383 *
5384 */
5385 static int
5386 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5387 {
5388 s64 gran, vdiff = curr->vruntime - se->vruntime;
5389
5390 if (vdiff <= 0)
5391 return -1;
5392
5393 gran = wakeup_gran(curr, se);
5394 if (vdiff > gran)
5395 return 1;
5396
5397 return 0;
5398 }
5399
5400 static void set_last_buddy(struct sched_entity *se)
5401 {
5402 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5403 return;
5404
5405 for_each_sched_entity(se)
5406 cfs_rq_of(se)->last = se;
5407 }
5408
5409 static void set_next_buddy(struct sched_entity *se)
5410 {
5411 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5412 return;
5413
5414 for_each_sched_entity(se)
5415 cfs_rq_of(se)->next = se;
5416 }
5417
5418 static void set_skip_buddy(struct sched_entity *se)
5419 {
5420 for_each_sched_entity(se)
5421 cfs_rq_of(se)->skip = se;
5422 }
5423
5424 /*
5425 * Preempt the current task with a newly woken task if needed:
5426 */
5427 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5428 {
5429 struct task_struct *curr = rq->curr;
5430 struct sched_entity *se = &curr->se, *pse = &p->se;
5431 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5432 int scale = cfs_rq->nr_running >= sched_nr_latency;
5433 int next_buddy_marked = 0;
5434
5435 if (unlikely(se == pse))
5436 return;
5437
5438 /*
5439 * This is possible from callers such as attach_tasks(), in which we
5440 * unconditionally check_prempt_curr() after an enqueue (which may have
5441 * lead to a throttle). This both saves work and prevents false
5442 * next-buddy nomination below.
5443 */
5444 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5445 return;
5446
5447 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5448 set_next_buddy(pse);
5449 next_buddy_marked = 1;
5450 }
5451
5452 /*
5453 * We can come here with TIF_NEED_RESCHED already set from new task
5454 * wake up path.
5455 *
5456 * Note: this also catches the edge-case of curr being in a throttled
5457 * group (e.g. via set_curr_task), since update_curr() (in the
5458 * enqueue of curr) will have resulted in resched being set. This
5459 * prevents us from potentially nominating it as a false LAST_BUDDY
5460 * below.
5461 */
5462 if (test_tsk_need_resched(curr))
5463 return;
5464
5465 /* Idle tasks are by definition preempted by non-idle tasks. */
5466 if (unlikely(curr->policy == SCHED_IDLE) &&
5467 likely(p->policy != SCHED_IDLE))
5468 goto preempt;
5469
5470 /*
5471 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5472 * is driven by the tick):
5473 */
5474 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5475 return;
5476
5477 find_matching_se(&se, &pse);
5478 update_curr(cfs_rq_of(se));
5479 BUG_ON(!pse);
5480 if (wakeup_preempt_entity(se, pse) == 1) {
5481 /*
5482 * Bias pick_next to pick the sched entity that is
5483 * triggering this preemption.
5484 */
5485 if (!next_buddy_marked)
5486 set_next_buddy(pse);
5487 goto preempt;
5488 }
5489
5490 return;
5491
5492 preempt:
5493 resched_curr(rq);
5494 /*
5495 * Only set the backward buddy when the current task is still
5496 * on the rq. This can happen when a wakeup gets interleaved
5497 * with schedule on the ->pre_schedule() or idle_balance()
5498 * point, either of which can * drop the rq lock.
5499 *
5500 * Also, during early boot the idle thread is in the fair class,
5501 * for obvious reasons its a bad idea to schedule back to it.
5502 */
5503 if (unlikely(!se->on_rq || curr == rq->idle))
5504 return;
5505
5506 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5507 set_last_buddy(se);
5508 }
5509
5510 static struct task_struct *
5511 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5512 {
5513 struct cfs_rq *cfs_rq = &rq->cfs;
5514 struct sched_entity *se;
5515 struct task_struct *p;
5516 int new_tasks;
5517
5518 again:
5519 #ifdef CONFIG_FAIR_GROUP_SCHED
5520 if (!cfs_rq->nr_running)
5521 goto idle;
5522
5523 if (prev->sched_class != &fair_sched_class)
5524 goto simple;
5525
5526 /*
5527 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5528 * likely that a next task is from the same cgroup as the current.
5529 *
5530 * Therefore attempt to avoid putting and setting the entire cgroup
5531 * hierarchy, only change the part that actually changes.
5532 */
5533
5534 do {
5535 struct sched_entity *curr = cfs_rq->curr;
5536
5537 /*
5538 * Since we got here without doing put_prev_entity() we also
5539 * have to consider cfs_rq->curr. If it is still a runnable
5540 * entity, update_curr() will update its vruntime, otherwise
5541 * forget we've ever seen it.
5542 */
5543 if (curr) {
5544 if (curr->on_rq)
5545 update_curr(cfs_rq);
5546 else
5547 curr = NULL;
5548
5549 /*
5550 * This call to check_cfs_rq_runtime() will do the
5551 * throttle and dequeue its entity in the parent(s).
5552 * Therefore the 'simple' nr_running test will indeed
5553 * be correct.
5554 */
5555 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5556 goto simple;
5557 }
5558
5559 se = pick_next_entity(cfs_rq, curr);
5560 cfs_rq = group_cfs_rq(se);
5561 } while (cfs_rq);
5562
5563 p = task_of(se);
5564
5565 /*
5566 * Since we haven't yet done put_prev_entity and if the selected task
5567 * is a different task than we started out with, try and touch the
5568 * least amount of cfs_rqs.
5569 */
5570 if (prev != p) {
5571 struct sched_entity *pse = &prev->se;
5572
5573 while (!(cfs_rq = is_same_group(se, pse))) {
5574 int se_depth = se->depth;
5575 int pse_depth = pse->depth;
5576
5577 if (se_depth <= pse_depth) {
5578 put_prev_entity(cfs_rq_of(pse), pse);
5579 pse = parent_entity(pse);
5580 }
5581 if (se_depth >= pse_depth) {
5582 set_next_entity(cfs_rq_of(se), se);
5583 se = parent_entity(se);
5584 }
5585 }
5586
5587 put_prev_entity(cfs_rq, pse);
5588 set_next_entity(cfs_rq, se);
5589 }
5590
5591 if (hrtick_enabled(rq))
5592 hrtick_start_fair(rq, p);
5593
5594 return p;
5595 simple:
5596 cfs_rq = &rq->cfs;
5597 #endif
5598
5599 if (!cfs_rq->nr_running)
5600 goto idle;
5601
5602 put_prev_task(rq, prev);
5603
5604 do {
5605 se = pick_next_entity(cfs_rq, NULL);
5606 set_next_entity(cfs_rq, se);
5607 cfs_rq = group_cfs_rq(se);
5608 } while (cfs_rq);
5609
5610 p = task_of(se);
5611
5612 if (hrtick_enabled(rq))
5613 hrtick_start_fair(rq, p);
5614
5615 return p;
5616
5617 idle:
5618 /*
5619 * This is OK, because current is on_cpu, which avoids it being picked
5620 * for load-balance and preemption/IRQs are still disabled avoiding
5621 * further scheduler activity on it and we're being very careful to
5622 * re-start the picking loop.
5623 */
5624 lockdep_unpin_lock(&rq->lock);
5625 new_tasks = idle_balance(rq);
5626 lockdep_pin_lock(&rq->lock);
5627 /*
5628 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5629 * possible for any higher priority task to appear. In that case we
5630 * must re-start the pick_next_entity() loop.
5631 */
5632 if (new_tasks < 0)
5633 return RETRY_TASK;
5634
5635 if (new_tasks > 0)
5636 goto again;
5637
5638 return NULL;
5639 }
5640
5641 /*
5642 * Account for a descheduled task:
5643 */
5644 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5645 {
5646 struct sched_entity *se = &prev->se;
5647 struct cfs_rq *cfs_rq;
5648
5649 for_each_sched_entity(se) {
5650 cfs_rq = cfs_rq_of(se);
5651 put_prev_entity(cfs_rq, se);
5652 }
5653 }
5654
5655 /*
5656 * sched_yield() is very simple
5657 *
5658 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5659 */
5660 static void yield_task_fair(struct rq *rq)
5661 {
5662 struct task_struct *curr = rq->curr;
5663 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5664 struct sched_entity *se = &curr->se;
5665
5666 /*
5667 * Are we the only task in the tree?
5668 */
5669 if (unlikely(rq->nr_running == 1))
5670 return;
5671
5672 clear_buddies(cfs_rq, se);
5673
5674 if (curr->policy != SCHED_BATCH) {
5675 update_rq_clock(rq);
5676 /*
5677 * Update run-time statistics of the 'current'.
5678 */
5679 update_curr(cfs_rq);
5680 /*
5681 * Tell update_rq_clock() that we've just updated,
5682 * so we don't do microscopic update in schedule()
5683 * and double the fastpath cost.
5684 */
5685 rq_clock_skip_update(rq, true);
5686 }
5687
5688 set_skip_buddy(se);
5689 }
5690
5691 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5692 {
5693 struct sched_entity *se = &p->se;
5694
5695 /* throttled hierarchies are not runnable */
5696 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5697 return false;
5698
5699 /* Tell the scheduler that we'd really like pse to run next. */
5700 set_next_buddy(se);
5701
5702 yield_task_fair(rq);
5703
5704 return true;
5705 }
5706
5707 #ifdef CONFIG_SMP
5708 /**************************************************
5709 * Fair scheduling class load-balancing methods.
5710 *
5711 * BASICS
5712 *
5713 * The purpose of load-balancing is to achieve the same basic fairness the
5714 * per-cpu scheduler provides, namely provide a proportional amount of compute
5715 * time to each task. This is expressed in the following equation:
5716 *
5717 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5718 *
5719 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5720 * W_i,0 is defined as:
5721 *
5722 * W_i,0 = \Sum_j w_i,j (2)
5723 *
5724 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5725 * is derived from the nice value as per sched_prio_to_weight[].
5726 *
5727 * The weight average is an exponential decay average of the instantaneous
5728 * weight:
5729 *
5730 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5731 *
5732 * C_i is the compute capacity of cpu i, typically it is the
5733 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5734 * can also include other factors [XXX].
5735 *
5736 * To achieve this balance we define a measure of imbalance which follows
5737 * directly from (1):
5738 *
5739 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5740 *
5741 * We them move tasks around to minimize the imbalance. In the continuous
5742 * function space it is obvious this converges, in the discrete case we get
5743 * a few fun cases generally called infeasible weight scenarios.
5744 *
5745 * [XXX expand on:
5746 * - infeasible weights;
5747 * - local vs global optima in the discrete case. ]
5748 *
5749 *
5750 * SCHED DOMAINS
5751 *
5752 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5753 * for all i,j solution, we create a tree of cpus that follows the hardware
5754 * topology where each level pairs two lower groups (or better). This results
5755 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5756 * tree to only the first of the previous level and we decrease the frequency
5757 * of load-balance at each level inv. proportional to the number of cpus in
5758 * the groups.
5759 *
5760 * This yields:
5761 *
5762 * log_2 n 1 n
5763 * \Sum { --- * --- * 2^i } = O(n) (5)
5764 * i = 0 2^i 2^i
5765 * `- size of each group
5766 * | | `- number of cpus doing load-balance
5767 * | `- freq
5768 * `- sum over all levels
5769 *
5770 * Coupled with a limit on how many tasks we can migrate every balance pass,
5771 * this makes (5) the runtime complexity of the balancer.
5772 *
5773 * An important property here is that each CPU is still (indirectly) connected
5774 * to every other cpu in at most O(log n) steps:
5775 *
5776 * The adjacency matrix of the resulting graph is given by:
5777 *
5778 * log_2 n
5779 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5780 * k = 0
5781 *
5782 * And you'll find that:
5783 *
5784 * A^(log_2 n)_i,j != 0 for all i,j (7)
5785 *
5786 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5787 * The task movement gives a factor of O(m), giving a convergence complexity
5788 * of:
5789 *
5790 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5791 *
5792 *
5793 * WORK CONSERVING
5794 *
5795 * In order to avoid CPUs going idle while there's still work to do, new idle
5796 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5797 * tree itself instead of relying on other CPUs to bring it work.
5798 *
5799 * This adds some complexity to both (5) and (8) but it reduces the total idle
5800 * time.
5801 *
5802 * [XXX more?]
5803 *
5804 *
5805 * CGROUPS
5806 *
5807 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5808 *
5809 * s_k,i
5810 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5811 * S_k
5812 *
5813 * Where
5814 *
5815 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5816 *
5817 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5818 *
5819 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5820 * property.
5821 *
5822 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5823 * rewrite all of this once again.]
5824 */
5825
5826 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5827
5828 enum fbq_type { regular, remote, all };
5829
5830 #define LBF_ALL_PINNED 0x01
5831 #define LBF_NEED_BREAK 0x02
5832 #define LBF_DST_PINNED 0x04
5833 #define LBF_SOME_PINNED 0x08
5834
5835 struct lb_env {
5836 struct sched_domain *sd;
5837
5838 struct rq *src_rq;
5839 int src_cpu;
5840
5841 int dst_cpu;
5842 struct rq *dst_rq;
5843
5844 struct cpumask *dst_grpmask;
5845 int new_dst_cpu;
5846 enum cpu_idle_type idle;
5847 long imbalance;
5848 /* The set of CPUs under consideration for load-balancing */
5849 struct cpumask *cpus;
5850
5851 unsigned int flags;
5852
5853 unsigned int loop;
5854 unsigned int loop_break;
5855 unsigned int loop_max;
5856
5857 enum fbq_type fbq_type;
5858 struct list_head tasks;
5859 };
5860
5861 /*
5862 * Is this task likely cache-hot:
5863 */
5864 static int task_hot(struct task_struct *p, struct lb_env *env)
5865 {
5866 s64 delta;
5867
5868 lockdep_assert_held(&env->src_rq->lock);
5869
5870 if (p->sched_class != &fair_sched_class)
5871 return 0;
5872
5873 if (unlikely(p->policy == SCHED_IDLE))
5874 return 0;
5875
5876 /*
5877 * Buddy candidates are cache hot:
5878 */
5879 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5880 (&p->se == cfs_rq_of(&p->se)->next ||
5881 &p->se == cfs_rq_of(&p->se)->last))
5882 return 1;
5883
5884 if (sysctl_sched_migration_cost == -1)
5885 return 1;
5886 if (sysctl_sched_migration_cost == 0)
5887 return 0;
5888
5889 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5890
5891 return delta < (s64)sysctl_sched_migration_cost;
5892 }
5893
5894 #ifdef CONFIG_NUMA_BALANCING
5895 /*
5896 * Returns 1, if task migration degrades locality
5897 * Returns 0, if task migration improves locality i.e migration preferred.
5898 * Returns -1, if task migration is not affected by locality.
5899 */
5900 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5901 {
5902 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5903 unsigned long src_faults, dst_faults;
5904 int src_nid, dst_nid;
5905
5906 if (!static_branch_likely(&sched_numa_balancing))
5907 return -1;
5908
5909 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5910 return -1;
5911
5912 src_nid = cpu_to_node(env->src_cpu);
5913 dst_nid = cpu_to_node(env->dst_cpu);
5914
5915 if (src_nid == dst_nid)
5916 return -1;
5917
5918 /* Migrating away from the preferred node is always bad. */
5919 if (src_nid == p->numa_preferred_nid) {
5920 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5921 return 1;
5922 else
5923 return -1;
5924 }
5925
5926 /* Encourage migration to the preferred node. */
5927 if (dst_nid == p->numa_preferred_nid)
5928 return 0;
5929
5930 if (numa_group) {
5931 src_faults = group_faults(p, src_nid);
5932 dst_faults = group_faults(p, dst_nid);
5933 } else {
5934 src_faults = task_faults(p, src_nid);
5935 dst_faults = task_faults(p, dst_nid);
5936 }
5937
5938 return dst_faults < src_faults;
5939 }
5940
5941 #else
5942 static inline int migrate_degrades_locality(struct task_struct *p,
5943 struct lb_env *env)
5944 {
5945 return -1;
5946 }
5947 #endif
5948
5949 /*
5950 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5951 */
5952 static
5953 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5954 {
5955 int tsk_cache_hot;
5956
5957 lockdep_assert_held(&env->src_rq->lock);
5958
5959 /*
5960 * We do not migrate tasks that are:
5961 * 1) throttled_lb_pair, or
5962 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5963 * 3) running (obviously), or
5964 * 4) are cache-hot on their current CPU.
5965 */
5966 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5967 return 0;
5968
5969 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5970 int cpu;
5971
5972 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5973
5974 env->flags |= LBF_SOME_PINNED;
5975
5976 /*
5977 * Remember if this task can be migrated to any other cpu in
5978 * our sched_group. We may want to revisit it if we couldn't
5979 * meet load balance goals by pulling other tasks on src_cpu.
5980 *
5981 * Also avoid computing new_dst_cpu if we have already computed
5982 * one in current iteration.
5983 */
5984 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5985 return 0;
5986
5987 /* Prevent to re-select dst_cpu via env's cpus */
5988 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5989 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5990 env->flags |= LBF_DST_PINNED;
5991 env->new_dst_cpu = cpu;
5992 break;
5993 }
5994 }
5995
5996 return 0;
5997 }
5998
5999 /* Record that we found atleast one task that could run on dst_cpu */
6000 env->flags &= ~LBF_ALL_PINNED;
6001
6002 if (task_running(env->src_rq, p)) {
6003 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
6004 return 0;
6005 }
6006
6007 /*
6008 * Aggressive migration if:
6009 * 1) destination numa is preferred
6010 * 2) task is cache cold, or
6011 * 3) too many balance attempts have failed.
6012 */
6013 tsk_cache_hot = migrate_degrades_locality(p, env);
6014 if (tsk_cache_hot == -1)
6015 tsk_cache_hot = task_hot(p, env);
6016
6017 if (tsk_cache_hot <= 0 ||
6018 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6019 if (tsk_cache_hot == 1) {
6020 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6021 schedstat_inc(p, se.statistics.nr_forced_migrations);
6022 }
6023 return 1;
6024 }
6025
6026 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6027 return 0;
6028 }
6029
6030 /*
6031 * detach_task() -- detach the task for the migration specified in env
6032 */
6033 static void detach_task(struct task_struct *p, struct lb_env *env)
6034 {
6035 lockdep_assert_held(&env->src_rq->lock);
6036
6037 p->on_rq = TASK_ON_RQ_MIGRATING;
6038 deactivate_task(env->src_rq, p, 0);
6039 set_task_cpu(p, env->dst_cpu);
6040 }
6041
6042 /*
6043 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6044 * part of active balancing operations within "domain".
6045 *
6046 * Returns a task if successful and NULL otherwise.
6047 */
6048 static struct task_struct *detach_one_task(struct lb_env *env)
6049 {
6050 struct task_struct *p, *n;
6051
6052 lockdep_assert_held(&env->src_rq->lock);
6053
6054 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6055 if (!can_migrate_task(p, env))
6056 continue;
6057
6058 detach_task(p, env);
6059
6060 /*
6061 * Right now, this is only the second place where
6062 * lb_gained[env->idle] is updated (other is detach_tasks)
6063 * so we can safely collect stats here rather than
6064 * inside detach_tasks().
6065 */
6066 schedstat_inc(env->sd, lb_gained[env->idle]);
6067 return p;
6068 }
6069 return NULL;
6070 }
6071
6072 static const unsigned int sched_nr_migrate_break = 32;
6073
6074 /*
6075 * detach_tasks() -- tries to detach up to imbalance weighted load from
6076 * busiest_rq, as part of a balancing operation within domain "sd".
6077 *
6078 * Returns number of detached tasks if successful and 0 otherwise.
6079 */
6080 static int detach_tasks(struct lb_env *env)
6081 {
6082 struct list_head *tasks = &env->src_rq->cfs_tasks;
6083 struct task_struct *p;
6084 unsigned long load;
6085 int detached = 0;
6086
6087 lockdep_assert_held(&env->src_rq->lock);
6088
6089 if (env->imbalance <= 0)
6090 return 0;
6091
6092 while (!list_empty(tasks)) {
6093 /*
6094 * We don't want to steal all, otherwise we may be treated likewise,
6095 * which could at worst lead to a livelock crash.
6096 */
6097 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6098 break;
6099
6100 p = list_first_entry(tasks, struct task_struct, se.group_node);
6101
6102 env->loop++;
6103 /* We've more or less seen every task there is, call it quits */
6104 if (env->loop > env->loop_max)
6105 break;
6106
6107 /* take a breather every nr_migrate tasks */
6108 if (env->loop > env->loop_break) {
6109 env->loop_break += sched_nr_migrate_break;
6110 env->flags |= LBF_NEED_BREAK;
6111 break;
6112 }
6113
6114 if (!can_migrate_task(p, env))
6115 goto next;
6116
6117 load = task_h_load(p);
6118
6119 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6120 goto next;
6121
6122 if ((load / 2) > env->imbalance)
6123 goto next;
6124
6125 detach_task(p, env);
6126 list_add(&p->se.group_node, &env->tasks);
6127
6128 detached++;
6129 env->imbalance -= load;
6130
6131 #ifdef CONFIG_PREEMPT
6132 /*
6133 * NEWIDLE balancing is a source of latency, so preemptible
6134 * kernels will stop after the first task is detached to minimize
6135 * the critical section.
6136 */
6137 if (env->idle == CPU_NEWLY_IDLE)
6138 break;
6139 #endif
6140
6141 /*
6142 * We only want to steal up to the prescribed amount of
6143 * weighted load.
6144 */
6145 if (env->imbalance <= 0)
6146 break;
6147
6148 continue;
6149 next:
6150 list_move_tail(&p->se.group_node, tasks);
6151 }
6152
6153 /*
6154 * Right now, this is one of only two places we collect this stat
6155 * so we can safely collect detach_one_task() stats here rather
6156 * than inside detach_one_task().
6157 */
6158 schedstat_add(env->sd, lb_gained[env->idle], detached);
6159
6160 return detached;
6161 }
6162
6163 /*
6164 * attach_task() -- attach the task detached by detach_task() to its new rq.
6165 */
6166 static void attach_task(struct rq *rq, struct task_struct *p)
6167 {
6168 lockdep_assert_held(&rq->lock);
6169
6170 BUG_ON(task_rq(p) != rq);
6171 activate_task(rq, p, 0);
6172 p->on_rq = TASK_ON_RQ_QUEUED;
6173 check_preempt_curr(rq, p, 0);
6174 }
6175
6176 /*
6177 * attach_one_task() -- attaches the task returned from detach_one_task() to
6178 * its new rq.
6179 */
6180 static void attach_one_task(struct rq *rq, struct task_struct *p)
6181 {
6182 raw_spin_lock(&rq->lock);
6183 attach_task(rq, p);
6184 raw_spin_unlock(&rq->lock);
6185 }
6186
6187 /*
6188 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6189 * new rq.
6190 */
6191 static void attach_tasks(struct lb_env *env)
6192 {
6193 struct list_head *tasks = &env->tasks;
6194 struct task_struct *p;
6195
6196 raw_spin_lock(&env->dst_rq->lock);
6197
6198 while (!list_empty(tasks)) {
6199 p = list_first_entry(tasks, struct task_struct, se.group_node);
6200 list_del_init(&p->se.group_node);
6201
6202 attach_task(env->dst_rq, p);
6203 }
6204
6205 raw_spin_unlock(&env->dst_rq->lock);
6206 }
6207
6208 #ifdef CONFIG_FAIR_GROUP_SCHED
6209 static void update_blocked_averages(int cpu)
6210 {
6211 struct rq *rq = cpu_rq(cpu);
6212 struct cfs_rq *cfs_rq;
6213 unsigned long flags;
6214
6215 raw_spin_lock_irqsave(&rq->lock, flags);
6216 update_rq_clock(rq);
6217
6218 /*
6219 * Iterates the task_group tree in a bottom up fashion, see
6220 * list_add_leaf_cfs_rq() for details.
6221 */
6222 for_each_leaf_cfs_rq(rq, cfs_rq) {
6223 /* throttled entities do not contribute to load */
6224 if (throttled_hierarchy(cfs_rq))
6225 continue;
6226
6227 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6228 update_tg_load_avg(cfs_rq, 0);
6229 }
6230 raw_spin_unlock_irqrestore(&rq->lock, flags);
6231 }
6232
6233 /*
6234 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6235 * This needs to be done in a top-down fashion because the load of a child
6236 * group is a fraction of its parents load.
6237 */
6238 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6239 {
6240 struct rq *rq = rq_of(cfs_rq);
6241 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6242 unsigned long now = jiffies;
6243 unsigned long load;
6244
6245 if (cfs_rq->last_h_load_update == now)
6246 return;
6247
6248 cfs_rq->h_load_next = NULL;
6249 for_each_sched_entity(se) {
6250 cfs_rq = cfs_rq_of(se);
6251 cfs_rq->h_load_next = se;
6252 if (cfs_rq->last_h_load_update == now)
6253 break;
6254 }
6255
6256 if (!se) {
6257 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6258 cfs_rq->last_h_load_update = now;
6259 }
6260
6261 while ((se = cfs_rq->h_load_next) != NULL) {
6262 load = cfs_rq->h_load;
6263 load = div64_ul(load * se->avg.load_avg,
6264 cfs_rq_load_avg(cfs_rq) + 1);
6265 cfs_rq = group_cfs_rq(se);
6266 cfs_rq->h_load = load;
6267 cfs_rq->last_h_load_update = now;
6268 }
6269 }
6270
6271 static unsigned long task_h_load(struct task_struct *p)
6272 {
6273 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6274
6275 update_cfs_rq_h_load(cfs_rq);
6276 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6277 cfs_rq_load_avg(cfs_rq) + 1);
6278 }
6279 #else
6280 static inline void update_blocked_averages(int cpu)
6281 {
6282 struct rq *rq = cpu_rq(cpu);
6283 struct cfs_rq *cfs_rq = &rq->cfs;
6284 unsigned long flags;
6285
6286 raw_spin_lock_irqsave(&rq->lock, flags);
6287 update_rq_clock(rq);
6288 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6289 raw_spin_unlock_irqrestore(&rq->lock, flags);
6290 }
6291
6292 static unsigned long task_h_load(struct task_struct *p)
6293 {
6294 return p->se.avg.load_avg;
6295 }
6296 #endif
6297
6298 /********** Helpers for find_busiest_group ************************/
6299
6300 enum group_type {
6301 group_other = 0,
6302 group_imbalanced,
6303 group_overloaded,
6304 };
6305
6306 /*
6307 * sg_lb_stats - stats of a sched_group required for load_balancing
6308 */
6309 struct sg_lb_stats {
6310 unsigned long avg_load; /*Avg load across the CPUs of the group */
6311 unsigned long group_load; /* Total load over the CPUs of the group */
6312 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6313 unsigned long load_per_task;
6314 unsigned long group_capacity;
6315 unsigned long group_util; /* Total utilization of the group */
6316 unsigned int sum_nr_running; /* Nr tasks running in the group */
6317 unsigned int idle_cpus;
6318 unsigned int group_weight;
6319 enum group_type group_type;
6320 int group_no_capacity;
6321 #ifdef CONFIG_NUMA_BALANCING
6322 unsigned int nr_numa_running;
6323 unsigned int nr_preferred_running;
6324 #endif
6325 };
6326
6327 /*
6328 * sd_lb_stats - Structure to store the statistics of a sched_domain
6329 * during load balancing.
6330 */
6331 struct sd_lb_stats {
6332 struct sched_group *busiest; /* Busiest group in this sd */
6333 struct sched_group *local; /* Local group in this sd */
6334 unsigned long total_load; /* Total load of all groups in sd */
6335 unsigned long total_capacity; /* Total capacity of all groups in sd */
6336 unsigned long avg_load; /* Average load across all groups in sd */
6337
6338 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6339 struct sg_lb_stats local_stat; /* Statistics of the local group */
6340 };
6341
6342 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6343 {
6344 /*
6345 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6346 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6347 * We must however clear busiest_stat::avg_load because
6348 * update_sd_pick_busiest() reads this before assignment.
6349 */
6350 *sds = (struct sd_lb_stats){
6351 .busiest = NULL,
6352 .local = NULL,
6353 .total_load = 0UL,
6354 .total_capacity = 0UL,
6355 .busiest_stat = {
6356 .avg_load = 0UL,
6357 .sum_nr_running = 0,
6358 .group_type = group_other,
6359 },
6360 };
6361 }
6362
6363 /**
6364 * get_sd_load_idx - Obtain the load index for a given sched domain.
6365 * @sd: The sched_domain whose load_idx is to be obtained.
6366 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6367 *
6368 * Return: The load index.
6369 */
6370 static inline int get_sd_load_idx(struct sched_domain *sd,
6371 enum cpu_idle_type idle)
6372 {
6373 int load_idx;
6374
6375 switch (idle) {
6376 case CPU_NOT_IDLE:
6377 load_idx = sd->busy_idx;
6378 break;
6379
6380 case CPU_NEWLY_IDLE:
6381 load_idx = sd->newidle_idx;
6382 break;
6383 default:
6384 load_idx = sd->idle_idx;
6385 break;
6386 }
6387
6388 return load_idx;
6389 }
6390
6391 static unsigned long scale_rt_capacity(int cpu)
6392 {
6393 struct rq *rq = cpu_rq(cpu);
6394 u64 total, used, age_stamp, avg;
6395 s64 delta;
6396
6397 /*
6398 * Since we're reading these variables without serialization make sure
6399 * we read them once before doing sanity checks on them.
6400 */
6401 age_stamp = READ_ONCE(rq->age_stamp);
6402 avg = READ_ONCE(rq->rt_avg);
6403 delta = __rq_clock_broken(rq) - age_stamp;
6404
6405 if (unlikely(delta < 0))
6406 delta = 0;
6407
6408 total = sched_avg_period() + delta;
6409
6410 used = div_u64(avg, total);
6411
6412 if (likely(used < SCHED_CAPACITY_SCALE))
6413 return SCHED_CAPACITY_SCALE - used;
6414
6415 return 1;
6416 }
6417
6418 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6419 {
6420 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6421 struct sched_group *sdg = sd->groups;
6422
6423 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6424
6425 capacity *= scale_rt_capacity(cpu);
6426 capacity >>= SCHED_CAPACITY_SHIFT;
6427
6428 if (!capacity)
6429 capacity = 1;
6430
6431 cpu_rq(cpu)->cpu_capacity = capacity;
6432 sdg->sgc->capacity = capacity;
6433 }
6434
6435 void update_group_capacity(struct sched_domain *sd, int cpu)
6436 {
6437 struct sched_domain *child = sd->child;
6438 struct sched_group *group, *sdg = sd->groups;
6439 unsigned long capacity;
6440 unsigned long interval;
6441
6442 interval = msecs_to_jiffies(sd->balance_interval);
6443 interval = clamp(interval, 1UL, max_load_balance_interval);
6444 sdg->sgc->next_update = jiffies + interval;
6445
6446 if (!child) {
6447 update_cpu_capacity(sd, cpu);
6448 return;
6449 }
6450
6451 capacity = 0;
6452
6453 if (child->flags & SD_OVERLAP) {
6454 /*
6455 * SD_OVERLAP domains cannot assume that child groups
6456 * span the current group.
6457 */
6458
6459 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6460 struct sched_group_capacity *sgc;
6461 struct rq *rq = cpu_rq(cpu);
6462
6463 /*
6464 * build_sched_domains() -> init_sched_groups_capacity()
6465 * gets here before we've attached the domains to the
6466 * runqueues.
6467 *
6468 * Use capacity_of(), which is set irrespective of domains
6469 * in update_cpu_capacity().
6470 *
6471 * This avoids capacity from being 0 and
6472 * causing divide-by-zero issues on boot.
6473 */
6474 if (unlikely(!rq->sd)) {
6475 capacity += capacity_of(cpu);
6476 continue;
6477 }
6478
6479 sgc = rq->sd->groups->sgc;
6480 capacity += sgc->capacity;
6481 }
6482 } else {
6483 /*
6484 * !SD_OVERLAP domains can assume that child groups
6485 * span the current group.
6486 */
6487
6488 group = child->groups;
6489 do {
6490 capacity += group->sgc->capacity;
6491 group = group->next;
6492 } while (group != child->groups);
6493 }
6494
6495 sdg->sgc->capacity = capacity;
6496 }
6497
6498 /*
6499 * Check whether the capacity of the rq has been noticeably reduced by side
6500 * activity. The imbalance_pct is used for the threshold.
6501 * Return true is the capacity is reduced
6502 */
6503 static inline int
6504 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6505 {
6506 return ((rq->cpu_capacity * sd->imbalance_pct) <
6507 (rq->cpu_capacity_orig * 100));
6508 }
6509
6510 /*
6511 * Group imbalance indicates (and tries to solve) the problem where balancing
6512 * groups is inadequate due to tsk_cpus_allowed() constraints.
6513 *
6514 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6515 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6516 * Something like:
6517 *
6518 * { 0 1 2 3 } { 4 5 6 7 }
6519 * * * * *
6520 *
6521 * If we were to balance group-wise we'd place two tasks in the first group and
6522 * two tasks in the second group. Clearly this is undesired as it will overload
6523 * cpu 3 and leave one of the cpus in the second group unused.
6524 *
6525 * The current solution to this issue is detecting the skew in the first group
6526 * by noticing the lower domain failed to reach balance and had difficulty
6527 * moving tasks due to affinity constraints.
6528 *
6529 * When this is so detected; this group becomes a candidate for busiest; see
6530 * update_sd_pick_busiest(). And calculate_imbalance() and
6531 * find_busiest_group() avoid some of the usual balance conditions to allow it
6532 * to create an effective group imbalance.
6533 *
6534 * This is a somewhat tricky proposition since the next run might not find the
6535 * group imbalance and decide the groups need to be balanced again. A most
6536 * subtle and fragile situation.
6537 */
6538
6539 static inline int sg_imbalanced(struct sched_group *group)
6540 {
6541 return group->sgc->imbalance;
6542 }
6543
6544 /*
6545 * group_has_capacity returns true if the group has spare capacity that could
6546 * be used by some tasks.
6547 * We consider that a group has spare capacity if the * number of task is
6548 * smaller than the number of CPUs or if the utilization is lower than the
6549 * available capacity for CFS tasks.
6550 * For the latter, we use a threshold to stabilize the state, to take into
6551 * account the variance of the tasks' load and to return true if the available
6552 * capacity in meaningful for the load balancer.
6553 * As an example, an available capacity of 1% can appear but it doesn't make
6554 * any benefit for the load balance.
6555 */
6556 static inline bool
6557 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6558 {
6559 if (sgs->sum_nr_running < sgs->group_weight)
6560 return true;
6561
6562 if ((sgs->group_capacity * 100) >
6563 (sgs->group_util * env->sd->imbalance_pct))
6564 return true;
6565
6566 return false;
6567 }
6568
6569 /*
6570 * group_is_overloaded returns true if the group has more tasks than it can
6571 * handle.
6572 * group_is_overloaded is not equals to !group_has_capacity because a group
6573 * with the exact right number of tasks, has no more spare capacity but is not
6574 * overloaded so both group_has_capacity and group_is_overloaded return
6575 * false.
6576 */
6577 static inline bool
6578 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6579 {
6580 if (sgs->sum_nr_running <= sgs->group_weight)
6581 return false;
6582
6583 if ((sgs->group_capacity * 100) <
6584 (sgs->group_util * env->sd->imbalance_pct))
6585 return true;
6586
6587 return false;
6588 }
6589
6590 static inline enum
6591 group_type group_classify(struct sched_group *group,
6592 struct sg_lb_stats *sgs)
6593 {
6594 if (sgs->group_no_capacity)
6595 return group_overloaded;
6596
6597 if (sg_imbalanced(group))
6598 return group_imbalanced;
6599
6600 return group_other;
6601 }
6602
6603 /**
6604 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6605 * @env: The load balancing environment.
6606 * @group: sched_group whose statistics are to be updated.
6607 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6608 * @local_group: Does group contain this_cpu.
6609 * @sgs: variable to hold the statistics for this group.
6610 * @overload: Indicate more than one runnable task for any CPU.
6611 */
6612 static inline void update_sg_lb_stats(struct lb_env *env,
6613 struct sched_group *group, int load_idx,
6614 int local_group, struct sg_lb_stats *sgs,
6615 bool *overload)
6616 {
6617 unsigned long load;
6618 int i, nr_running;
6619
6620 memset(sgs, 0, sizeof(*sgs));
6621
6622 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6623 struct rq *rq = cpu_rq(i);
6624
6625 /* Bias balancing toward cpus of our domain */
6626 if (local_group)
6627 load = target_load(i, load_idx);
6628 else
6629 load = source_load(i, load_idx);
6630
6631 sgs->group_load += load;
6632 sgs->group_util += cpu_util(i);
6633 sgs->sum_nr_running += rq->cfs.h_nr_running;
6634
6635 nr_running = rq->nr_running;
6636 if (nr_running > 1)
6637 *overload = true;
6638
6639 #ifdef CONFIG_NUMA_BALANCING
6640 sgs->nr_numa_running += rq->nr_numa_running;
6641 sgs->nr_preferred_running += rq->nr_preferred_running;
6642 #endif
6643 sgs->sum_weighted_load += weighted_cpuload(i);
6644 /*
6645 * No need to call idle_cpu() if nr_running is not 0
6646 */
6647 if (!nr_running && idle_cpu(i))
6648 sgs->idle_cpus++;
6649 }
6650
6651 /* Adjust by relative CPU capacity of the group */
6652 sgs->group_capacity = group->sgc->capacity;
6653 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6654
6655 if (sgs->sum_nr_running)
6656 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6657
6658 sgs->group_weight = group->group_weight;
6659
6660 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6661 sgs->group_type = group_classify(group, sgs);
6662 }
6663
6664 /**
6665 * update_sd_pick_busiest - return 1 on busiest group
6666 * @env: The load balancing environment.
6667 * @sds: sched_domain statistics
6668 * @sg: sched_group candidate to be checked for being the busiest
6669 * @sgs: sched_group statistics
6670 *
6671 * Determine if @sg is a busier group than the previously selected
6672 * busiest group.
6673 *
6674 * Return: %true if @sg is a busier group than the previously selected
6675 * busiest group. %false otherwise.
6676 */
6677 static bool update_sd_pick_busiest(struct lb_env *env,
6678 struct sd_lb_stats *sds,
6679 struct sched_group *sg,
6680 struct sg_lb_stats *sgs)
6681 {
6682 struct sg_lb_stats *busiest = &sds->busiest_stat;
6683
6684 if (sgs->group_type > busiest->group_type)
6685 return true;
6686
6687 if (sgs->group_type < busiest->group_type)
6688 return false;
6689
6690 if (sgs->avg_load <= busiest->avg_load)
6691 return false;
6692
6693 /* This is the busiest node in its class. */
6694 if (!(env->sd->flags & SD_ASYM_PACKING))
6695 return true;
6696
6697 /* No ASYM_PACKING if target cpu is already busy */
6698 if (env->idle == CPU_NOT_IDLE)
6699 return true;
6700 /*
6701 * ASYM_PACKING needs to move all the work to the lowest
6702 * numbered CPUs in the group, therefore mark all groups
6703 * higher than ourself as busy.
6704 */
6705 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6706 if (!sds->busiest)
6707 return true;
6708
6709 /* Prefer to move from highest possible cpu's work */
6710 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
6711 return true;
6712 }
6713
6714 return false;
6715 }
6716
6717 #ifdef CONFIG_NUMA_BALANCING
6718 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6719 {
6720 if (sgs->sum_nr_running > sgs->nr_numa_running)
6721 return regular;
6722 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6723 return remote;
6724 return all;
6725 }
6726
6727 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6728 {
6729 if (rq->nr_running > rq->nr_numa_running)
6730 return regular;
6731 if (rq->nr_running > rq->nr_preferred_running)
6732 return remote;
6733 return all;
6734 }
6735 #else
6736 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6737 {
6738 return all;
6739 }
6740
6741 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6742 {
6743 return regular;
6744 }
6745 #endif /* CONFIG_NUMA_BALANCING */
6746
6747 /**
6748 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6749 * @env: The load balancing environment.
6750 * @sds: variable to hold the statistics for this sched_domain.
6751 */
6752 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6753 {
6754 struct sched_domain *child = env->sd->child;
6755 struct sched_group *sg = env->sd->groups;
6756 struct sg_lb_stats tmp_sgs;
6757 int load_idx, prefer_sibling = 0;
6758 bool overload = false;
6759
6760 if (child && child->flags & SD_PREFER_SIBLING)
6761 prefer_sibling = 1;
6762
6763 load_idx = get_sd_load_idx(env->sd, env->idle);
6764
6765 do {
6766 struct sg_lb_stats *sgs = &tmp_sgs;
6767 int local_group;
6768
6769 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6770 if (local_group) {
6771 sds->local = sg;
6772 sgs = &sds->local_stat;
6773
6774 if (env->idle != CPU_NEWLY_IDLE ||
6775 time_after_eq(jiffies, sg->sgc->next_update))
6776 update_group_capacity(env->sd, env->dst_cpu);
6777 }
6778
6779 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6780 &overload);
6781
6782 if (local_group)
6783 goto next_group;
6784
6785 /*
6786 * In case the child domain prefers tasks go to siblings
6787 * first, lower the sg capacity so that we'll try
6788 * and move all the excess tasks away. We lower the capacity
6789 * of a group only if the local group has the capacity to fit
6790 * these excess tasks. The extra check prevents the case where
6791 * you always pull from the heaviest group when it is already
6792 * under-utilized (possible with a large weight task outweighs
6793 * the tasks on the system).
6794 */
6795 if (prefer_sibling && sds->local &&
6796 group_has_capacity(env, &sds->local_stat) &&
6797 (sgs->sum_nr_running > 1)) {
6798 sgs->group_no_capacity = 1;
6799 sgs->group_type = group_classify(sg, sgs);
6800 }
6801
6802 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6803 sds->busiest = sg;
6804 sds->busiest_stat = *sgs;
6805 }
6806
6807 next_group:
6808 /* Now, start updating sd_lb_stats */
6809 sds->total_load += sgs->group_load;
6810 sds->total_capacity += sgs->group_capacity;
6811
6812 sg = sg->next;
6813 } while (sg != env->sd->groups);
6814
6815 if (env->sd->flags & SD_NUMA)
6816 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6817
6818 if (!env->sd->parent) {
6819 /* update overload indicator if we are at root domain */
6820 if (env->dst_rq->rd->overload != overload)
6821 env->dst_rq->rd->overload = overload;
6822 }
6823
6824 }
6825
6826 /**
6827 * check_asym_packing - Check to see if the group is packed into the
6828 * sched doman.
6829 *
6830 * This is primarily intended to used at the sibling level. Some
6831 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6832 * case of POWER7, it can move to lower SMT modes only when higher
6833 * threads are idle. When in lower SMT modes, the threads will
6834 * perform better since they share less core resources. Hence when we
6835 * have idle threads, we want them to be the higher ones.
6836 *
6837 * This packing function is run on idle threads. It checks to see if
6838 * the busiest CPU in this domain (core in the P7 case) has a higher
6839 * CPU number than the packing function is being run on. Here we are
6840 * assuming lower CPU number will be equivalent to lower a SMT thread
6841 * number.
6842 *
6843 * Return: 1 when packing is required and a task should be moved to
6844 * this CPU. The amount of the imbalance is returned in *imbalance.
6845 *
6846 * @env: The load balancing environment.
6847 * @sds: Statistics of the sched_domain which is to be packed
6848 */
6849 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6850 {
6851 int busiest_cpu;
6852
6853 if (!(env->sd->flags & SD_ASYM_PACKING))
6854 return 0;
6855
6856 if (env->idle == CPU_NOT_IDLE)
6857 return 0;
6858
6859 if (!sds->busiest)
6860 return 0;
6861
6862 busiest_cpu = group_first_cpu(sds->busiest);
6863 if (env->dst_cpu > busiest_cpu)
6864 return 0;
6865
6866 env->imbalance = DIV_ROUND_CLOSEST(
6867 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6868 SCHED_CAPACITY_SCALE);
6869
6870 return 1;
6871 }
6872
6873 /**
6874 * fix_small_imbalance - Calculate the minor imbalance that exists
6875 * amongst the groups of a sched_domain, during
6876 * load balancing.
6877 * @env: The load balancing environment.
6878 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6879 */
6880 static inline
6881 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6882 {
6883 unsigned long tmp, capa_now = 0, capa_move = 0;
6884 unsigned int imbn = 2;
6885 unsigned long scaled_busy_load_per_task;
6886 struct sg_lb_stats *local, *busiest;
6887
6888 local = &sds->local_stat;
6889 busiest = &sds->busiest_stat;
6890
6891 if (!local->sum_nr_running)
6892 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6893 else if (busiest->load_per_task > local->load_per_task)
6894 imbn = 1;
6895
6896 scaled_busy_load_per_task =
6897 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6898 busiest->group_capacity;
6899
6900 if (busiest->avg_load + scaled_busy_load_per_task >=
6901 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6902 env->imbalance = busiest->load_per_task;
6903 return;
6904 }
6905
6906 /*
6907 * OK, we don't have enough imbalance to justify moving tasks,
6908 * however we may be able to increase total CPU capacity used by
6909 * moving them.
6910 */
6911
6912 capa_now += busiest->group_capacity *
6913 min(busiest->load_per_task, busiest->avg_load);
6914 capa_now += local->group_capacity *
6915 min(local->load_per_task, local->avg_load);
6916 capa_now /= SCHED_CAPACITY_SCALE;
6917
6918 /* Amount of load we'd subtract */
6919 if (busiest->avg_load > scaled_busy_load_per_task) {
6920 capa_move += busiest->group_capacity *
6921 min(busiest->load_per_task,
6922 busiest->avg_load - scaled_busy_load_per_task);
6923 }
6924
6925 /* Amount of load we'd add */
6926 if (busiest->avg_load * busiest->group_capacity <
6927 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6928 tmp = (busiest->avg_load * busiest->group_capacity) /
6929 local->group_capacity;
6930 } else {
6931 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6932 local->group_capacity;
6933 }
6934 capa_move += local->group_capacity *
6935 min(local->load_per_task, local->avg_load + tmp);
6936 capa_move /= SCHED_CAPACITY_SCALE;
6937
6938 /* Move if we gain throughput */
6939 if (capa_move > capa_now)
6940 env->imbalance = busiest->load_per_task;
6941 }
6942
6943 /**
6944 * calculate_imbalance - Calculate the amount of imbalance present within the
6945 * groups of a given sched_domain during load balance.
6946 * @env: load balance environment
6947 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6948 */
6949 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6950 {
6951 unsigned long max_pull, load_above_capacity = ~0UL;
6952 struct sg_lb_stats *local, *busiest;
6953
6954 local = &sds->local_stat;
6955 busiest = &sds->busiest_stat;
6956
6957 if (busiest->group_type == group_imbalanced) {
6958 /*
6959 * In the group_imb case we cannot rely on group-wide averages
6960 * to ensure cpu-load equilibrium, look at wider averages. XXX
6961 */
6962 busiest->load_per_task =
6963 min(busiest->load_per_task, sds->avg_load);
6964 }
6965
6966 /*
6967 * In the presence of smp nice balancing, certain scenarios can have
6968 * max load less than avg load(as we skip the groups at or below
6969 * its cpu_capacity, while calculating max_load..)
6970 */
6971 if (busiest->avg_load <= sds->avg_load ||
6972 local->avg_load >= sds->avg_load) {
6973 env->imbalance = 0;
6974 return fix_small_imbalance(env, sds);
6975 }
6976
6977 /*
6978 * If there aren't any idle cpus, avoid creating some.
6979 */
6980 if (busiest->group_type == group_overloaded &&
6981 local->group_type == group_overloaded) {
6982 load_above_capacity = busiest->sum_nr_running *
6983 SCHED_LOAD_SCALE;
6984 if (load_above_capacity > busiest->group_capacity)
6985 load_above_capacity -= busiest->group_capacity;
6986 else
6987 load_above_capacity = ~0UL;
6988 }
6989
6990 /*
6991 * We're trying to get all the cpus to the average_load, so we don't
6992 * want to push ourselves above the average load, nor do we wish to
6993 * reduce the max loaded cpu below the average load. At the same time,
6994 * we also don't want to reduce the group load below the group capacity
6995 * (so that we can implement power-savings policies etc). Thus we look
6996 * for the minimum possible imbalance.
6997 */
6998 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6999
7000 /* How much load to actually move to equalise the imbalance */
7001 env->imbalance = min(
7002 max_pull * busiest->group_capacity,
7003 (sds->avg_load - local->avg_load) * local->group_capacity
7004 ) / SCHED_CAPACITY_SCALE;
7005
7006 /*
7007 * if *imbalance is less than the average load per runnable task
7008 * there is no guarantee that any tasks will be moved so we'll have
7009 * a think about bumping its value to force at least one task to be
7010 * moved
7011 */
7012 if (env->imbalance < busiest->load_per_task)
7013 return fix_small_imbalance(env, sds);
7014 }
7015
7016 /******* find_busiest_group() helpers end here *********************/
7017
7018 /**
7019 * find_busiest_group - Returns the busiest group within the sched_domain
7020 * if there is an imbalance. If there isn't an imbalance, and
7021 * the user has opted for power-savings, it returns a group whose
7022 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
7023 * such a group exists.
7024 *
7025 * Also calculates the amount of weighted load which should be moved
7026 * to restore balance.
7027 *
7028 * @env: The load balancing environment.
7029 *
7030 * Return: - The busiest group if imbalance exists.
7031 * - If no imbalance and user has opted for power-savings balance,
7032 * return the least loaded group whose CPUs can be
7033 * put to idle by rebalancing its tasks onto our group.
7034 */
7035 static struct sched_group *find_busiest_group(struct lb_env *env)
7036 {
7037 struct sg_lb_stats *local, *busiest;
7038 struct sd_lb_stats sds;
7039
7040 init_sd_lb_stats(&sds);
7041
7042 /*
7043 * Compute the various statistics relavent for load balancing at
7044 * this level.
7045 */
7046 update_sd_lb_stats(env, &sds);
7047 local = &sds.local_stat;
7048 busiest = &sds.busiest_stat;
7049
7050 /* ASYM feature bypasses nice load balance check */
7051 if (check_asym_packing(env, &sds))
7052 return sds.busiest;
7053
7054 /* There is no busy sibling group to pull tasks from */
7055 if (!sds.busiest || busiest->sum_nr_running == 0)
7056 goto out_balanced;
7057
7058 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7059 / sds.total_capacity;
7060
7061 /*
7062 * If the busiest group is imbalanced the below checks don't
7063 * work because they assume all things are equal, which typically
7064 * isn't true due to cpus_allowed constraints and the like.
7065 */
7066 if (busiest->group_type == group_imbalanced)
7067 goto force_balance;
7068
7069 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7070 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7071 busiest->group_no_capacity)
7072 goto force_balance;
7073
7074 /*
7075 * If the local group is busier than the selected busiest group
7076 * don't try and pull any tasks.
7077 */
7078 if (local->avg_load >= busiest->avg_load)
7079 goto out_balanced;
7080
7081 /*
7082 * Don't pull any tasks if this group is already above the domain
7083 * average load.
7084 */
7085 if (local->avg_load >= sds.avg_load)
7086 goto out_balanced;
7087
7088 if (env->idle == CPU_IDLE) {
7089 /*
7090 * This cpu is idle. If the busiest group is not overloaded
7091 * and there is no imbalance between this and busiest group
7092 * wrt idle cpus, it is balanced. The imbalance becomes
7093 * significant if the diff is greater than 1 otherwise we
7094 * might end up to just move the imbalance on another group
7095 */
7096 if ((busiest->group_type != group_overloaded) &&
7097 (local->idle_cpus <= (busiest->idle_cpus + 1)))
7098 goto out_balanced;
7099 } else {
7100 /*
7101 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7102 * imbalance_pct to be conservative.
7103 */
7104 if (100 * busiest->avg_load <=
7105 env->sd->imbalance_pct * local->avg_load)
7106 goto out_balanced;
7107 }
7108
7109 force_balance:
7110 /* Looks like there is an imbalance. Compute it */
7111 calculate_imbalance(env, &sds);
7112 return sds.busiest;
7113
7114 out_balanced:
7115 env->imbalance = 0;
7116 return NULL;
7117 }
7118
7119 /*
7120 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7121 */
7122 static struct rq *find_busiest_queue(struct lb_env *env,
7123 struct sched_group *group)
7124 {
7125 struct rq *busiest = NULL, *rq;
7126 unsigned long busiest_load = 0, busiest_capacity = 1;
7127 int i;
7128
7129 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7130 unsigned long capacity, wl;
7131 enum fbq_type rt;
7132
7133 rq = cpu_rq(i);
7134 rt = fbq_classify_rq(rq);
7135
7136 /*
7137 * We classify groups/runqueues into three groups:
7138 * - regular: there are !numa tasks
7139 * - remote: there are numa tasks that run on the 'wrong' node
7140 * - all: there is no distinction
7141 *
7142 * In order to avoid migrating ideally placed numa tasks,
7143 * ignore those when there's better options.
7144 *
7145 * If we ignore the actual busiest queue to migrate another
7146 * task, the next balance pass can still reduce the busiest
7147 * queue by moving tasks around inside the node.
7148 *
7149 * If we cannot move enough load due to this classification
7150 * the next pass will adjust the group classification and
7151 * allow migration of more tasks.
7152 *
7153 * Both cases only affect the total convergence complexity.
7154 */
7155 if (rt > env->fbq_type)
7156 continue;
7157
7158 capacity = capacity_of(i);
7159
7160 wl = weighted_cpuload(i);
7161
7162 /*
7163 * When comparing with imbalance, use weighted_cpuload()
7164 * which is not scaled with the cpu capacity.
7165 */
7166
7167 if (rq->nr_running == 1 && wl > env->imbalance &&
7168 !check_cpu_capacity(rq, env->sd))
7169 continue;
7170
7171 /*
7172 * For the load comparisons with the other cpu's, consider
7173 * the weighted_cpuload() scaled with the cpu capacity, so
7174 * that the load can be moved away from the cpu that is
7175 * potentially running at a lower capacity.
7176 *
7177 * Thus we're looking for max(wl_i / capacity_i), crosswise
7178 * multiplication to rid ourselves of the division works out
7179 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7180 * our previous maximum.
7181 */
7182 if (wl * busiest_capacity > busiest_load * capacity) {
7183 busiest_load = wl;
7184 busiest_capacity = capacity;
7185 busiest = rq;
7186 }
7187 }
7188
7189 return busiest;
7190 }
7191
7192 /*
7193 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7194 * so long as it is large enough.
7195 */
7196 #define MAX_PINNED_INTERVAL 512
7197
7198 /* Working cpumask for load_balance and load_balance_newidle. */
7199 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7200
7201 static int need_active_balance(struct lb_env *env)
7202 {
7203 struct sched_domain *sd = env->sd;
7204
7205 if (env->idle == CPU_NEWLY_IDLE) {
7206
7207 /*
7208 * ASYM_PACKING needs to force migrate tasks from busy but
7209 * higher numbered CPUs in order to pack all tasks in the
7210 * lowest numbered CPUs.
7211 */
7212 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7213 return 1;
7214 }
7215
7216 /*
7217 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7218 * It's worth migrating the task if the src_cpu's capacity is reduced
7219 * because of other sched_class or IRQs if more capacity stays
7220 * available on dst_cpu.
7221 */
7222 if ((env->idle != CPU_NOT_IDLE) &&
7223 (env->src_rq->cfs.h_nr_running == 1)) {
7224 if ((check_cpu_capacity(env->src_rq, sd)) &&
7225 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7226 return 1;
7227 }
7228
7229 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7230 }
7231
7232 static int active_load_balance_cpu_stop(void *data);
7233
7234 static int should_we_balance(struct lb_env *env)
7235 {
7236 struct sched_group *sg = env->sd->groups;
7237 struct cpumask *sg_cpus, *sg_mask;
7238 int cpu, balance_cpu = -1;
7239
7240 /*
7241 * In the newly idle case, we will allow all the cpu's
7242 * to do the newly idle load balance.
7243 */
7244 if (env->idle == CPU_NEWLY_IDLE)
7245 return 1;
7246
7247 sg_cpus = sched_group_cpus(sg);
7248 sg_mask = sched_group_mask(sg);
7249 /* Try to find first idle cpu */
7250 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7251 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7252 continue;
7253
7254 balance_cpu = cpu;
7255 break;
7256 }
7257
7258 if (balance_cpu == -1)
7259 balance_cpu = group_balance_cpu(sg);
7260
7261 /*
7262 * First idle cpu or the first cpu(busiest) in this sched group
7263 * is eligible for doing load balancing at this and above domains.
7264 */
7265 return balance_cpu == env->dst_cpu;
7266 }
7267
7268 /*
7269 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7270 * tasks if there is an imbalance.
7271 */
7272 static int load_balance(int this_cpu, struct rq *this_rq,
7273 struct sched_domain *sd, enum cpu_idle_type idle,
7274 int *continue_balancing)
7275 {
7276 int ld_moved, cur_ld_moved, active_balance = 0;
7277 struct sched_domain *sd_parent = sd->parent;
7278 struct sched_group *group;
7279 struct rq *busiest;
7280 unsigned long flags;
7281 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7282
7283 struct lb_env env = {
7284 .sd = sd,
7285 .dst_cpu = this_cpu,
7286 .dst_rq = this_rq,
7287 .dst_grpmask = sched_group_cpus(sd->groups),
7288 .idle = idle,
7289 .loop_break = sched_nr_migrate_break,
7290 .cpus = cpus,
7291 .fbq_type = all,
7292 .tasks = LIST_HEAD_INIT(env.tasks),
7293 };
7294
7295 /*
7296 * For NEWLY_IDLE load_balancing, we don't need to consider
7297 * other cpus in our group
7298 */
7299 if (idle == CPU_NEWLY_IDLE)
7300 env.dst_grpmask = NULL;
7301
7302 cpumask_copy(cpus, cpu_active_mask);
7303
7304 schedstat_inc(sd, lb_count[idle]);
7305
7306 redo:
7307 if (!should_we_balance(&env)) {
7308 *continue_balancing = 0;
7309 goto out_balanced;
7310 }
7311
7312 group = find_busiest_group(&env);
7313 if (!group) {
7314 schedstat_inc(sd, lb_nobusyg[idle]);
7315 goto out_balanced;
7316 }
7317
7318 busiest = find_busiest_queue(&env, group);
7319 if (!busiest) {
7320 schedstat_inc(sd, lb_nobusyq[idle]);
7321 goto out_balanced;
7322 }
7323
7324 BUG_ON(busiest == env.dst_rq);
7325
7326 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7327
7328 env.src_cpu = busiest->cpu;
7329 env.src_rq = busiest;
7330
7331 ld_moved = 0;
7332 if (busiest->nr_running > 1) {
7333 /*
7334 * Attempt to move tasks. If find_busiest_group has found
7335 * an imbalance but busiest->nr_running <= 1, the group is
7336 * still unbalanced. ld_moved simply stays zero, so it is
7337 * correctly treated as an imbalance.
7338 */
7339 env.flags |= LBF_ALL_PINNED;
7340 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7341
7342 more_balance:
7343 raw_spin_lock_irqsave(&busiest->lock, flags);
7344
7345 /*
7346 * cur_ld_moved - load moved in current iteration
7347 * ld_moved - cumulative load moved across iterations
7348 */
7349 cur_ld_moved = detach_tasks(&env);
7350
7351 /*
7352 * We've detached some tasks from busiest_rq. Every
7353 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7354 * unlock busiest->lock, and we are able to be sure
7355 * that nobody can manipulate the tasks in parallel.
7356 * See task_rq_lock() family for the details.
7357 */
7358
7359 raw_spin_unlock(&busiest->lock);
7360
7361 if (cur_ld_moved) {
7362 attach_tasks(&env);
7363 ld_moved += cur_ld_moved;
7364 }
7365
7366 local_irq_restore(flags);
7367
7368 if (env.flags & LBF_NEED_BREAK) {
7369 env.flags &= ~LBF_NEED_BREAK;
7370 goto more_balance;
7371 }
7372
7373 /*
7374 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7375 * us and move them to an alternate dst_cpu in our sched_group
7376 * where they can run. The upper limit on how many times we
7377 * iterate on same src_cpu is dependent on number of cpus in our
7378 * sched_group.
7379 *
7380 * This changes load balance semantics a bit on who can move
7381 * load to a given_cpu. In addition to the given_cpu itself
7382 * (or a ilb_cpu acting on its behalf where given_cpu is
7383 * nohz-idle), we now have balance_cpu in a position to move
7384 * load to given_cpu. In rare situations, this may cause
7385 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7386 * _independently_ and at _same_ time to move some load to
7387 * given_cpu) causing exceess load to be moved to given_cpu.
7388 * This however should not happen so much in practice and
7389 * moreover subsequent load balance cycles should correct the
7390 * excess load moved.
7391 */
7392 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7393
7394 /* Prevent to re-select dst_cpu via env's cpus */
7395 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7396
7397 env.dst_rq = cpu_rq(env.new_dst_cpu);
7398 env.dst_cpu = env.new_dst_cpu;
7399 env.flags &= ~LBF_DST_PINNED;
7400 env.loop = 0;
7401 env.loop_break = sched_nr_migrate_break;
7402
7403 /*
7404 * Go back to "more_balance" rather than "redo" since we
7405 * need to continue with same src_cpu.
7406 */
7407 goto more_balance;
7408 }
7409
7410 /*
7411 * We failed to reach balance because of affinity.
7412 */
7413 if (sd_parent) {
7414 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7415
7416 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7417 *group_imbalance = 1;
7418 }
7419
7420 /* All tasks on this runqueue were pinned by CPU affinity */
7421 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7422 cpumask_clear_cpu(cpu_of(busiest), cpus);
7423 if (!cpumask_empty(cpus)) {
7424 env.loop = 0;
7425 env.loop_break = sched_nr_migrate_break;
7426 goto redo;
7427 }
7428 goto out_all_pinned;
7429 }
7430 }
7431
7432 if (!ld_moved) {
7433 schedstat_inc(sd, lb_failed[idle]);
7434 /*
7435 * Increment the failure counter only on periodic balance.
7436 * We do not want newidle balance, which can be very
7437 * frequent, pollute the failure counter causing
7438 * excessive cache_hot migrations and active balances.
7439 */
7440 if (idle != CPU_NEWLY_IDLE)
7441 sd->nr_balance_failed++;
7442
7443 if (need_active_balance(&env)) {
7444 raw_spin_lock_irqsave(&busiest->lock, flags);
7445
7446 /* don't kick the active_load_balance_cpu_stop,
7447 * if the curr task on busiest cpu can't be
7448 * moved to this_cpu
7449 */
7450 if (!cpumask_test_cpu(this_cpu,
7451 tsk_cpus_allowed(busiest->curr))) {
7452 raw_spin_unlock_irqrestore(&busiest->lock,
7453 flags);
7454 env.flags |= LBF_ALL_PINNED;
7455 goto out_one_pinned;
7456 }
7457
7458 /*
7459 * ->active_balance synchronizes accesses to
7460 * ->active_balance_work. Once set, it's cleared
7461 * only after active load balance is finished.
7462 */
7463 if (!busiest->active_balance) {
7464 busiest->active_balance = 1;
7465 busiest->push_cpu = this_cpu;
7466 active_balance = 1;
7467 }
7468 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7469
7470 if (active_balance) {
7471 stop_one_cpu_nowait(cpu_of(busiest),
7472 active_load_balance_cpu_stop, busiest,
7473 &busiest->active_balance_work);
7474 }
7475
7476 /* We've kicked active balancing, force task migration. */
7477 sd->nr_balance_failed = sd->cache_nice_tries+1;
7478 }
7479 } else
7480 sd->nr_balance_failed = 0;
7481
7482 if (likely(!active_balance)) {
7483 /* We were unbalanced, so reset the balancing interval */
7484 sd->balance_interval = sd->min_interval;
7485 } else {
7486 /*
7487 * If we've begun active balancing, start to back off. This
7488 * case may not be covered by the all_pinned logic if there
7489 * is only 1 task on the busy runqueue (because we don't call
7490 * detach_tasks).
7491 */
7492 if (sd->balance_interval < sd->max_interval)
7493 sd->balance_interval *= 2;
7494 }
7495
7496 goto out;
7497
7498 out_balanced:
7499 /*
7500 * We reach balance although we may have faced some affinity
7501 * constraints. Clear the imbalance flag if it was set.
7502 */
7503 if (sd_parent) {
7504 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7505
7506 if (*group_imbalance)
7507 *group_imbalance = 0;
7508 }
7509
7510 out_all_pinned:
7511 /*
7512 * We reach balance because all tasks are pinned at this level so
7513 * we can't migrate them. Let the imbalance flag set so parent level
7514 * can try to migrate them.
7515 */
7516 schedstat_inc(sd, lb_balanced[idle]);
7517
7518 sd->nr_balance_failed = 0;
7519
7520 out_one_pinned:
7521 /* tune up the balancing interval */
7522 if (((env.flags & LBF_ALL_PINNED) &&
7523 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7524 (sd->balance_interval < sd->max_interval))
7525 sd->balance_interval *= 2;
7526
7527 ld_moved = 0;
7528 out:
7529 return ld_moved;
7530 }
7531
7532 static inline unsigned long
7533 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7534 {
7535 unsigned long interval = sd->balance_interval;
7536
7537 if (cpu_busy)
7538 interval *= sd->busy_factor;
7539
7540 /* scale ms to jiffies */
7541 interval = msecs_to_jiffies(interval);
7542 interval = clamp(interval, 1UL, max_load_balance_interval);
7543
7544 return interval;
7545 }
7546
7547 static inline void
7548 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7549 {
7550 unsigned long interval, next;
7551
7552 interval = get_sd_balance_interval(sd, cpu_busy);
7553 next = sd->last_balance + interval;
7554
7555 if (time_after(*next_balance, next))
7556 *next_balance = next;
7557 }
7558
7559 /*
7560 * idle_balance is called by schedule() if this_cpu is about to become
7561 * idle. Attempts to pull tasks from other CPUs.
7562 */
7563 static int idle_balance(struct rq *this_rq)
7564 {
7565 unsigned long next_balance = jiffies + HZ;
7566 int this_cpu = this_rq->cpu;
7567 struct sched_domain *sd;
7568 int pulled_task = 0;
7569 u64 curr_cost = 0;
7570
7571 /*
7572 * We must set idle_stamp _before_ calling idle_balance(), such that we
7573 * measure the duration of idle_balance() as idle time.
7574 */
7575 this_rq->idle_stamp = rq_clock(this_rq);
7576
7577 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7578 !this_rq->rd->overload) {
7579 rcu_read_lock();
7580 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7581 if (sd)
7582 update_next_balance(sd, 0, &next_balance);
7583 rcu_read_unlock();
7584
7585 goto out;
7586 }
7587
7588 raw_spin_unlock(&this_rq->lock);
7589
7590 update_blocked_averages(this_cpu);
7591 rcu_read_lock();
7592 for_each_domain(this_cpu, sd) {
7593 int continue_balancing = 1;
7594 u64 t0, domain_cost;
7595
7596 if (!(sd->flags & SD_LOAD_BALANCE))
7597 continue;
7598
7599 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7600 update_next_balance(sd, 0, &next_balance);
7601 break;
7602 }
7603
7604 if (sd->flags & SD_BALANCE_NEWIDLE) {
7605 t0 = sched_clock_cpu(this_cpu);
7606
7607 pulled_task = load_balance(this_cpu, this_rq,
7608 sd, CPU_NEWLY_IDLE,
7609 &continue_balancing);
7610
7611 domain_cost = sched_clock_cpu(this_cpu) - t0;
7612 if (domain_cost > sd->max_newidle_lb_cost)
7613 sd->max_newidle_lb_cost = domain_cost;
7614
7615 curr_cost += domain_cost;
7616 }
7617
7618 update_next_balance(sd, 0, &next_balance);
7619
7620 /*
7621 * Stop searching for tasks to pull if there are
7622 * now runnable tasks on this rq.
7623 */
7624 if (pulled_task || this_rq->nr_running > 0)
7625 break;
7626 }
7627 rcu_read_unlock();
7628
7629 raw_spin_lock(&this_rq->lock);
7630
7631 if (curr_cost > this_rq->max_idle_balance_cost)
7632 this_rq->max_idle_balance_cost = curr_cost;
7633
7634 /*
7635 * While browsing the domains, we released the rq lock, a task could
7636 * have been enqueued in the meantime. Since we're not going idle,
7637 * pretend we pulled a task.
7638 */
7639 if (this_rq->cfs.h_nr_running && !pulled_task)
7640 pulled_task = 1;
7641
7642 out:
7643 /* Move the next balance forward */
7644 if (time_after(this_rq->next_balance, next_balance))
7645 this_rq->next_balance = next_balance;
7646
7647 /* Is there a task of a high priority class? */
7648 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7649 pulled_task = -1;
7650
7651 if (pulled_task)
7652 this_rq->idle_stamp = 0;
7653
7654 return pulled_task;
7655 }
7656
7657 /*
7658 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7659 * running tasks off the busiest CPU onto idle CPUs. It requires at
7660 * least 1 task to be running on each physical CPU where possible, and
7661 * avoids physical / logical imbalances.
7662 */
7663 static int active_load_balance_cpu_stop(void *data)
7664 {
7665 struct rq *busiest_rq = data;
7666 int busiest_cpu = cpu_of(busiest_rq);
7667 int target_cpu = busiest_rq->push_cpu;
7668 struct rq *target_rq = cpu_rq(target_cpu);
7669 struct sched_domain *sd;
7670 struct task_struct *p = NULL;
7671
7672 raw_spin_lock_irq(&busiest_rq->lock);
7673
7674 /* make sure the requested cpu hasn't gone down in the meantime */
7675 if (unlikely(busiest_cpu != smp_processor_id() ||
7676 !busiest_rq->active_balance))
7677 goto out_unlock;
7678
7679 /* Is there any task to move? */
7680 if (busiest_rq->nr_running <= 1)
7681 goto out_unlock;
7682
7683 /*
7684 * This condition is "impossible", if it occurs
7685 * we need to fix it. Originally reported by
7686 * Bjorn Helgaas on a 128-cpu setup.
7687 */
7688 BUG_ON(busiest_rq == target_rq);
7689
7690 /* Search for an sd spanning us and the target CPU. */
7691 rcu_read_lock();
7692 for_each_domain(target_cpu, sd) {
7693 if ((sd->flags & SD_LOAD_BALANCE) &&
7694 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7695 break;
7696 }
7697
7698 if (likely(sd)) {
7699 struct lb_env env = {
7700 .sd = sd,
7701 .dst_cpu = target_cpu,
7702 .dst_rq = target_rq,
7703 .src_cpu = busiest_rq->cpu,
7704 .src_rq = busiest_rq,
7705 .idle = CPU_IDLE,
7706 };
7707
7708 schedstat_inc(sd, alb_count);
7709
7710 p = detach_one_task(&env);
7711 if (p) {
7712 schedstat_inc(sd, alb_pushed);
7713 /* Active balancing done, reset the failure counter. */
7714 sd->nr_balance_failed = 0;
7715 } else {
7716 schedstat_inc(sd, alb_failed);
7717 }
7718 }
7719 rcu_read_unlock();
7720 out_unlock:
7721 busiest_rq->active_balance = 0;
7722 raw_spin_unlock(&busiest_rq->lock);
7723
7724 if (p)
7725 attach_one_task(target_rq, p);
7726
7727 local_irq_enable();
7728
7729 return 0;
7730 }
7731
7732 static inline int on_null_domain(struct rq *rq)
7733 {
7734 return unlikely(!rcu_dereference_sched(rq->sd));
7735 }
7736
7737 #ifdef CONFIG_NO_HZ_COMMON
7738 /*
7739 * idle load balancing details
7740 * - When one of the busy CPUs notice that there may be an idle rebalancing
7741 * needed, they will kick the idle load balancer, which then does idle
7742 * load balancing for all the idle CPUs.
7743 */
7744 static struct {
7745 cpumask_var_t idle_cpus_mask;
7746 atomic_t nr_cpus;
7747 unsigned long next_balance; /* in jiffy units */
7748 } nohz ____cacheline_aligned;
7749
7750 static inline int find_new_ilb(void)
7751 {
7752 int ilb = cpumask_first(nohz.idle_cpus_mask);
7753
7754 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7755 return ilb;
7756
7757 return nr_cpu_ids;
7758 }
7759
7760 /*
7761 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7762 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7763 * CPU (if there is one).
7764 */
7765 static void nohz_balancer_kick(void)
7766 {
7767 int ilb_cpu;
7768
7769 nohz.next_balance++;
7770
7771 ilb_cpu = find_new_ilb();
7772
7773 if (ilb_cpu >= nr_cpu_ids)
7774 return;
7775
7776 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7777 return;
7778 /*
7779 * Use smp_send_reschedule() instead of resched_cpu().
7780 * This way we generate a sched IPI on the target cpu which
7781 * is idle. And the softirq performing nohz idle load balance
7782 * will be run before returning from the IPI.
7783 */
7784 smp_send_reschedule(ilb_cpu);
7785 return;
7786 }
7787
7788 static inline void nohz_balance_exit_idle(int cpu)
7789 {
7790 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7791 /*
7792 * Completely isolated CPUs don't ever set, so we must test.
7793 */
7794 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7795 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7796 atomic_dec(&nohz.nr_cpus);
7797 }
7798 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7799 }
7800 }
7801
7802 static inline void set_cpu_sd_state_busy(void)
7803 {
7804 struct sched_domain *sd;
7805 int cpu = smp_processor_id();
7806
7807 rcu_read_lock();
7808 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7809
7810 if (!sd || !sd->nohz_idle)
7811 goto unlock;
7812 sd->nohz_idle = 0;
7813
7814 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7815 unlock:
7816 rcu_read_unlock();
7817 }
7818
7819 void set_cpu_sd_state_idle(void)
7820 {
7821 struct sched_domain *sd;
7822 int cpu = smp_processor_id();
7823
7824 rcu_read_lock();
7825 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7826
7827 if (!sd || sd->nohz_idle)
7828 goto unlock;
7829 sd->nohz_idle = 1;
7830
7831 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7832 unlock:
7833 rcu_read_unlock();
7834 }
7835
7836 /*
7837 * This routine will record that the cpu is going idle with tick stopped.
7838 * This info will be used in performing idle load balancing in the future.
7839 */
7840 void nohz_balance_enter_idle(int cpu)
7841 {
7842 /*
7843 * If this cpu is going down, then nothing needs to be done.
7844 */
7845 if (!cpu_active(cpu))
7846 return;
7847
7848 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7849 return;
7850
7851 /*
7852 * If we're a completely isolated CPU, we don't play.
7853 */
7854 if (on_null_domain(cpu_rq(cpu)))
7855 return;
7856
7857 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7858 atomic_inc(&nohz.nr_cpus);
7859 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7860 }
7861
7862 static int sched_ilb_notifier(struct notifier_block *nfb,
7863 unsigned long action, void *hcpu)
7864 {
7865 switch (action & ~CPU_TASKS_FROZEN) {
7866 case CPU_DYING:
7867 nohz_balance_exit_idle(smp_processor_id());
7868 return NOTIFY_OK;
7869 default:
7870 return NOTIFY_DONE;
7871 }
7872 }
7873 #endif
7874
7875 static DEFINE_SPINLOCK(balancing);
7876
7877 /*
7878 * Scale the max load_balance interval with the number of CPUs in the system.
7879 * This trades load-balance latency on larger machines for less cross talk.
7880 */
7881 void update_max_interval(void)
7882 {
7883 max_load_balance_interval = HZ*num_online_cpus()/10;
7884 }
7885
7886 /*
7887 * It checks each scheduling domain to see if it is due to be balanced,
7888 * and initiates a balancing operation if so.
7889 *
7890 * Balancing parameters are set up in init_sched_domains.
7891 */
7892 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7893 {
7894 int continue_balancing = 1;
7895 int cpu = rq->cpu;
7896 unsigned long interval;
7897 struct sched_domain *sd;
7898 /* Earliest time when we have to do rebalance again */
7899 unsigned long next_balance = jiffies + 60*HZ;
7900 int update_next_balance = 0;
7901 int need_serialize, need_decay = 0;
7902 u64 max_cost = 0;
7903
7904 update_blocked_averages(cpu);
7905
7906 rcu_read_lock();
7907 for_each_domain(cpu, sd) {
7908 /*
7909 * Decay the newidle max times here because this is a regular
7910 * visit to all the domains. Decay ~1% per second.
7911 */
7912 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7913 sd->max_newidle_lb_cost =
7914 (sd->max_newidle_lb_cost * 253) / 256;
7915 sd->next_decay_max_lb_cost = jiffies + HZ;
7916 need_decay = 1;
7917 }
7918 max_cost += sd->max_newidle_lb_cost;
7919
7920 if (!(sd->flags & SD_LOAD_BALANCE))
7921 continue;
7922
7923 /*
7924 * Stop the load balance at this level. There is another
7925 * CPU in our sched group which is doing load balancing more
7926 * actively.
7927 */
7928 if (!continue_balancing) {
7929 if (need_decay)
7930 continue;
7931 break;
7932 }
7933
7934 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7935
7936 need_serialize = sd->flags & SD_SERIALIZE;
7937 if (need_serialize) {
7938 if (!spin_trylock(&balancing))
7939 goto out;
7940 }
7941
7942 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7943 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7944 /*
7945 * The LBF_DST_PINNED logic could have changed
7946 * env->dst_cpu, so we can't know our idle
7947 * state even if we migrated tasks. Update it.
7948 */
7949 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7950 }
7951 sd->last_balance = jiffies;
7952 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7953 }
7954 if (need_serialize)
7955 spin_unlock(&balancing);
7956 out:
7957 if (time_after(next_balance, sd->last_balance + interval)) {
7958 next_balance = sd->last_balance + interval;
7959 update_next_balance = 1;
7960 }
7961 }
7962 if (need_decay) {
7963 /*
7964 * Ensure the rq-wide value also decays but keep it at a
7965 * reasonable floor to avoid funnies with rq->avg_idle.
7966 */
7967 rq->max_idle_balance_cost =
7968 max((u64)sysctl_sched_migration_cost, max_cost);
7969 }
7970 rcu_read_unlock();
7971
7972 /*
7973 * next_balance will be updated only when there is a need.
7974 * When the cpu is attached to null domain for ex, it will not be
7975 * updated.
7976 */
7977 if (likely(update_next_balance)) {
7978 rq->next_balance = next_balance;
7979
7980 #ifdef CONFIG_NO_HZ_COMMON
7981 /*
7982 * If this CPU has been elected to perform the nohz idle
7983 * balance. Other idle CPUs have already rebalanced with
7984 * nohz_idle_balance() and nohz.next_balance has been
7985 * updated accordingly. This CPU is now running the idle load
7986 * balance for itself and we need to update the
7987 * nohz.next_balance accordingly.
7988 */
7989 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7990 nohz.next_balance = rq->next_balance;
7991 #endif
7992 }
7993 }
7994
7995 #ifdef CONFIG_NO_HZ_COMMON
7996 /*
7997 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7998 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7999 */
8000 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8001 {
8002 int this_cpu = this_rq->cpu;
8003 struct rq *rq;
8004 int balance_cpu;
8005 /* Earliest time when we have to do rebalance again */
8006 unsigned long next_balance = jiffies + 60*HZ;
8007 int update_next_balance = 0;
8008
8009 if (idle != CPU_IDLE ||
8010 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8011 goto end;
8012
8013 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8014 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8015 continue;
8016
8017 /*
8018 * If this cpu gets work to do, stop the load balancing
8019 * work being done for other cpus. Next load
8020 * balancing owner will pick it up.
8021 */
8022 if (need_resched())
8023 break;
8024
8025 rq = cpu_rq(balance_cpu);
8026
8027 /*
8028 * If time for next balance is due,
8029 * do the balance.
8030 */
8031 if (time_after_eq(jiffies, rq->next_balance)) {
8032 raw_spin_lock_irq(&rq->lock);
8033 update_rq_clock(rq);
8034 update_cpu_load_idle(rq);
8035 raw_spin_unlock_irq(&rq->lock);
8036 rebalance_domains(rq, CPU_IDLE);
8037 }
8038
8039 if (time_after(next_balance, rq->next_balance)) {
8040 next_balance = rq->next_balance;
8041 update_next_balance = 1;
8042 }
8043 }
8044
8045 /*
8046 * next_balance will be updated only when there is a need.
8047 * When the CPU is attached to null domain for ex, it will not be
8048 * updated.
8049 */
8050 if (likely(update_next_balance))
8051 nohz.next_balance = next_balance;
8052 end:
8053 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8054 }
8055
8056 /*
8057 * Current heuristic for kicking the idle load balancer in the presence
8058 * of an idle cpu in the system.
8059 * - This rq has more than one task.
8060 * - This rq has at least one CFS task and the capacity of the CPU is
8061 * significantly reduced because of RT tasks or IRQs.
8062 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8063 * multiple busy cpu.
8064 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8065 * domain span are idle.
8066 */
8067 static inline bool nohz_kick_needed(struct rq *rq)
8068 {
8069 unsigned long now = jiffies;
8070 struct sched_domain *sd;
8071 struct sched_group_capacity *sgc;
8072 int nr_busy, cpu = rq->cpu;
8073 bool kick = false;
8074
8075 if (unlikely(rq->idle_balance))
8076 return false;
8077
8078 /*
8079 * We may be recently in ticked or tickless idle mode. At the first
8080 * busy tick after returning from idle, we will update the busy stats.
8081 */
8082 set_cpu_sd_state_busy();
8083 nohz_balance_exit_idle(cpu);
8084
8085 /*
8086 * None are in tickless mode and hence no need for NOHZ idle load
8087 * balancing.
8088 */
8089 if (likely(!atomic_read(&nohz.nr_cpus)))
8090 return false;
8091
8092 if (time_before(now, nohz.next_balance))
8093 return false;
8094
8095 if (rq->nr_running >= 2)
8096 return true;
8097
8098 rcu_read_lock();
8099 sd = rcu_dereference(per_cpu(sd_busy, cpu));
8100 if (sd) {
8101 sgc = sd->groups->sgc;
8102 nr_busy = atomic_read(&sgc->nr_busy_cpus);
8103
8104 if (nr_busy > 1) {
8105 kick = true;
8106 goto unlock;
8107 }
8108
8109 }
8110
8111 sd = rcu_dereference(rq->sd);
8112 if (sd) {
8113 if ((rq->cfs.h_nr_running >= 1) &&
8114 check_cpu_capacity(rq, sd)) {
8115 kick = true;
8116 goto unlock;
8117 }
8118 }
8119
8120 sd = rcu_dereference(per_cpu(sd_asym, cpu));
8121 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8122 sched_domain_span(sd)) < cpu)) {
8123 kick = true;
8124 goto unlock;
8125 }
8126
8127 unlock:
8128 rcu_read_unlock();
8129 return kick;
8130 }
8131 #else
8132 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8133 #endif
8134
8135 /*
8136 * run_rebalance_domains is triggered when needed from the scheduler tick.
8137 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8138 */
8139 static void run_rebalance_domains(struct softirq_action *h)
8140 {
8141 struct rq *this_rq = this_rq();
8142 enum cpu_idle_type idle = this_rq->idle_balance ?
8143 CPU_IDLE : CPU_NOT_IDLE;
8144
8145 /*
8146 * If this cpu has a pending nohz_balance_kick, then do the
8147 * balancing on behalf of the other idle cpus whose ticks are
8148 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8149 * give the idle cpus a chance to load balance. Else we may
8150 * load balance only within the local sched_domain hierarchy
8151 * and abort nohz_idle_balance altogether if we pull some load.
8152 */
8153 nohz_idle_balance(this_rq, idle);
8154 rebalance_domains(this_rq, idle);
8155 }
8156
8157 /*
8158 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8159 */
8160 void trigger_load_balance(struct rq *rq)
8161 {
8162 /* Don't need to rebalance while attached to NULL domain */
8163 if (unlikely(on_null_domain(rq)))
8164 return;
8165
8166 if (time_after_eq(jiffies, rq->next_balance))
8167 raise_softirq(SCHED_SOFTIRQ);
8168 #ifdef CONFIG_NO_HZ_COMMON
8169 if (nohz_kick_needed(rq))
8170 nohz_balancer_kick();
8171 #endif
8172 }
8173
8174 static void rq_online_fair(struct rq *rq)
8175 {
8176 update_sysctl();
8177
8178 update_runtime_enabled(rq);
8179 }
8180
8181 static void rq_offline_fair(struct rq *rq)
8182 {
8183 update_sysctl();
8184
8185 /* Ensure any throttled groups are reachable by pick_next_task */
8186 unthrottle_offline_cfs_rqs(rq);
8187 }
8188
8189 #endif /* CONFIG_SMP */
8190
8191 /*
8192 * scheduler tick hitting a task of our scheduling class:
8193 */
8194 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8195 {
8196 struct cfs_rq *cfs_rq;
8197 struct sched_entity *se = &curr->se;
8198
8199 for_each_sched_entity(se) {
8200 cfs_rq = cfs_rq_of(se);
8201 entity_tick(cfs_rq, se, queued);
8202 }
8203
8204 if (static_branch_unlikely(&sched_numa_balancing))
8205 task_tick_numa(rq, curr);
8206 }
8207
8208 /*
8209 * called on fork with the child task as argument from the parent's context
8210 * - child not yet on the tasklist
8211 * - preemption disabled
8212 */
8213 static void task_fork_fair(struct task_struct *p)
8214 {
8215 struct cfs_rq *cfs_rq;
8216 struct sched_entity *se = &p->se, *curr;
8217 int this_cpu = smp_processor_id();
8218 struct rq *rq = this_rq();
8219 unsigned long flags;
8220
8221 raw_spin_lock_irqsave(&rq->lock, flags);
8222
8223 update_rq_clock(rq);
8224
8225 cfs_rq = task_cfs_rq(current);
8226 curr = cfs_rq->curr;
8227
8228 /*
8229 * Not only the cpu but also the task_group of the parent might have
8230 * been changed after parent->se.parent,cfs_rq were copied to
8231 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8232 * of child point to valid ones.
8233 */
8234 rcu_read_lock();
8235 __set_task_cpu(p, this_cpu);
8236 rcu_read_unlock();
8237
8238 update_curr(cfs_rq);
8239
8240 if (curr)
8241 se->vruntime = curr->vruntime;
8242 place_entity(cfs_rq, se, 1);
8243
8244 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8245 /*
8246 * Upon rescheduling, sched_class::put_prev_task() will place
8247 * 'current' within the tree based on its new key value.
8248 */
8249 swap(curr->vruntime, se->vruntime);
8250 resched_curr(rq);
8251 }
8252
8253 se->vruntime -= cfs_rq->min_vruntime;
8254
8255 raw_spin_unlock_irqrestore(&rq->lock, flags);
8256 }
8257
8258 /*
8259 * Priority of the task has changed. Check to see if we preempt
8260 * the current task.
8261 */
8262 static void
8263 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8264 {
8265 if (!task_on_rq_queued(p))
8266 return;
8267
8268 /*
8269 * Reschedule if we are currently running on this runqueue and
8270 * our priority decreased, or if we are not currently running on
8271 * this runqueue and our priority is higher than the current's
8272 */
8273 if (rq->curr == p) {
8274 if (p->prio > oldprio)
8275 resched_curr(rq);
8276 } else
8277 check_preempt_curr(rq, p, 0);
8278 }
8279
8280 static inline bool vruntime_normalized(struct task_struct *p)
8281 {
8282 struct sched_entity *se = &p->se;
8283
8284 /*
8285 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8286 * the dequeue_entity(.flags=0) will already have normalized the
8287 * vruntime.
8288 */
8289 if (p->on_rq)
8290 return true;
8291
8292 /*
8293 * When !on_rq, vruntime of the task has usually NOT been normalized.
8294 * But there are some cases where it has already been normalized:
8295 *
8296 * - A forked child which is waiting for being woken up by
8297 * wake_up_new_task().
8298 * - A task which has been woken up by try_to_wake_up() and
8299 * waiting for actually being woken up by sched_ttwu_pending().
8300 */
8301 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8302 return true;
8303
8304 return false;
8305 }
8306
8307 static void detach_task_cfs_rq(struct task_struct *p)
8308 {
8309 struct sched_entity *se = &p->se;
8310 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8311
8312 if (!vruntime_normalized(p)) {
8313 /*
8314 * Fix up our vruntime so that the current sleep doesn't
8315 * cause 'unlimited' sleep bonus.
8316 */
8317 place_entity(cfs_rq, se, 0);
8318 se->vruntime -= cfs_rq->min_vruntime;
8319 }
8320
8321 /* Catch up with the cfs_rq and remove our load when we leave */
8322 detach_entity_load_avg(cfs_rq, se);
8323 }
8324
8325 static void attach_task_cfs_rq(struct task_struct *p)
8326 {
8327 struct sched_entity *se = &p->se;
8328 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8329
8330 #ifdef CONFIG_FAIR_GROUP_SCHED
8331 /*
8332 * Since the real-depth could have been changed (only FAIR
8333 * class maintain depth value), reset depth properly.
8334 */
8335 se->depth = se->parent ? se->parent->depth + 1 : 0;
8336 #endif
8337
8338 /* Synchronize task with its cfs_rq */
8339 attach_entity_load_avg(cfs_rq, se);
8340
8341 if (!vruntime_normalized(p))
8342 se->vruntime += cfs_rq->min_vruntime;
8343 }
8344
8345 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8346 {
8347 detach_task_cfs_rq(p);
8348 }
8349
8350 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8351 {
8352 attach_task_cfs_rq(p);
8353
8354 if (task_on_rq_queued(p)) {
8355 /*
8356 * We were most likely switched from sched_rt, so
8357 * kick off the schedule if running, otherwise just see
8358 * if we can still preempt the current task.
8359 */
8360 if (rq->curr == p)
8361 resched_curr(rq);
8362 else
8363 check_preempt_curr(rq, p, 0);
8364 }
8365 }
8366
8367 /* Account for a task changing its policy or group.
8368 *
8369 * This routine is mostly called to set cfs_rq->curr field when a task
8370 * migrates between groups/classes.
8371 */
8372 static void set_curr_task_fair(struct rq *rq)
8373 {
8374 struct sched_entity *se = &rq->curr->se;
8375
8376 for_each_sched_entity(se) {
8377 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8378
8379 set_next_entity(cfs_rq, se);
8380 /* ensure bandwidth has been allocated on our new cfs_rq */
8381 account_cfs_rq_runtime(cfs_rq, 0);
8382 }
8383 }
8384
8385 void init_cfs_rq(struct cfs_rq *cfs_rq)
8386 {
8387 cfs_rq->tasks_timeline = RB_ROOT;
8388 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8389 #ifndef CONFIG_64BIT
8390 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8391 #endif
8392 #ifdef CONFIG_SMP
8393 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8394 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8395 #endif
8396 }
8397
8398 #ifdef CONFIG_FAIR_GROUP_SCHED
8399 static void task_move_group_fair(struct task_struct *p)
8400 {
8401 detach_task_cfs_rq(p);
8402 set_task_rq(p, task_cpu(p));
8403
8404 #ifdef CONFIG_SMP
8405 /* Tell se's cfs_rq has been changed -- migrated */
8406 p->se.avg.last_update_time = 0;
8407 #endif
8408 attach_task_cfs_rq(p);
8409 }
8410
8411 void free_fair_sched_group(struct task_group *tg)
8412 {
8413 int i;
8414
8415 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8416
8417 for_each_possible_cpu(i) {
8418 if (tg->cfs_rq)
8419 kfree(tg->cfs_rq[i]);
8420 if (tg->se)
8421 kfree(tg->se[i]);
8422 }
8423
8424 kfree(tg->cfs_rq);
8425 kfree(tg->se);
8426 }
8427
8428 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8429 {
8430 struct cfs_rq *cfs_rq;
8431 struct sched_entity *se;
8432 int i;
8433
8434 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8435 if (!tg->cfs_rq)
8436 goto err;
8437 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8438 if (!tg->se)
8439 goto err;
8440
8441 tg->shares = NICE_0_LOAD;
8442
8443 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8444
8445 for_each_possible_cpu(i) {
8446 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8447 GFP_KERNEL, cpu_to_node(i));
8448 if (!cfs_rq)
8449 goto err;
8450
8451 se = kzalloc_node(sizeof(struct sched_entity),
8452 GFP_KERNEL, cpu_to_node(i));
8453 if (!se)
8454 goto err_free_rq;
8455
8456 init_cfs_rq(cfs_rq);
8457 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8458 init_entity_runnable_average(se);
8459 post_init_entity_util_avg(se);
8460 }
8461
8462 return 1;
8463
8464 err_free_rq:
8465 kfree(cfs_rq);
8466 err:
8467 return 0;
8468 }
8469
8470 void unregister_fair_sched_group(struct task_group *tg)
8471 {
8472 unsigned long flags;
8473 struct rq *rq;
8474 int cpu;
8475
8476 for_each_possible_cpu(cpu) {
8477 if (tg->se[cpu])
8478 remove_entity_load_avg(tg->se[cpu]);
8479
8480 /*
8481 * Only empty task groups can be destroyed; so we can speculatively
8482 * check on_list without danger of it being re-added.
8483 */
8484 if (!tg->cfs_rq[cpu]->on_list)
8485 continue;
8486
8487 rq = cpu_rq(cpu);
8488
8489 raw_spin_lock_irqsave(&rq->lock, flags);
8490 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8491 raw_spin_unlock_irqrestore(&rq->lock, flags);
8492 }
8493 }
8494
8495 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8496 struct sched_entity *se, int cpu,
8497 struct sched_entity *parent)
8498 {
8499 struct rq *rq = cpu_rq(cpu);
8500
8501 cfs_rq->tg = tg;
8502 cfs_rq->rq = rq;
8503 init_cfs_rq_runtime(cfs_rq);
8504
8505 tg->cfs_rq[cpu] = cfs_rq;
8506 tg->se[cpu] = se;
8507
8508 /* se could be NULL for root_task_group */
8509 if (!se)
8510 return;
8511
8512 if (!parent) {
8513 se->cfs_rq = &rq->cfs;
8514 se->depth = 0;
8515 } else {
8516 se->cfs_rq = parent->my_q;
8517 se->depth = parent->depth + 1;
8518 }
8519
8520 se->my_q = cfs_rq;
8521 /* guarantee group entities always have weight */
8522 update_load_set(&se->load, NICE_0_LOAD);
8523 se->parent = parent;
8524 }
8525
8526 static DEFINE_MUTEX(shares_mutex);
8527
8528 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8529 {
8530 int i;
8531 unsigned long flags;
8532
8533 /*
8534 * We can't change the weight of the root cgroup.
8535 */
8536 if (!tg->se[0])
8537 return -EINVAL;
8538
8539 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8540
8541 mutex_lock(&shares_mutex);
8542 if (tg->shares == shares)
8543 goto done;
8544
8545 tg->shares = shares;
8546 for_each_possible_cpu(i) {
8547 struct rq *rq = cpu_rq(i);
8548 struct sched_entity *se;
8549
8550 se = tg->se[i];
8551 /* Propagate contribution to hierarchy */
8552 raw_spin_lock_irqsave(&rq->lock, flags);
8553
8554 /* Possible calls to update_curr() need rq clock */
8555 update_rq_clock(rq);
8556 for_each_sched_entity(se)
8557 update_cfs_shares(group_cfs_rq(se));
8558 raw_spin_unlock_irqrestore(&rq->lock, flags);
8559 }
8560
8561 done:
8562 mutex_unlock(&shares_mutex);
8563 return 0;
8564 }
8565 #else /* CONFIG_FAIR_GROUP_SCHED */
8566
8567 void free_fair_sched_group(struct task_group *tg) { }
8568
8569 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8570 {
8571 return 1;
8572 }
8573
8574 void unregister_fair_sched_group(struct task_group *tg) { }
8575
8576 #endif /* CONFIG_FAIR_GROUP_SCHED */
8577
8578
8579 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8580 {
8581 struct sched_entity *se = &task->se;
8582 unsigned int rr_interval = 0;
8583
8584 /*
8585 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8586 * idle runqueue:
8587 */
8588 if (rq->cfs.load.weight)
8589 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8590
8591 return rr_interval;
8592 }
8593
8594 /*
8595 * All the scheduling class methods:
8596 */
8597 const struct sched_class fair_sched_class = {
8598 .next = &idle_sched_class,
8599 .enqueue_task = enqueue_task_fair,
8600 .dequeue_task = dequeue_task_fair,
8601 .yield_task = yield_task_fair,
8602 .yield_to_task = yield_to_task_fair,
8603
8604 .check_preempt_curr = check_preempt_wakeup,
8605
8606 .pick_next_task = pick_next_task_fair,
8607 .put_prev_task = put_prev_task_fair,
8608
8609 #ifdef CONFIG_SMP
8610 .select_task_rq = select_task_rq_fair,
8611 .migrate_task_rq = migrate_task_rq_fair,
8612
8613 .rq_online = rq_online_fair,
8614 .rq_offline = rq_offline_fair,
8615
8616 .task_waking = task_waking_fair,
8617 .task_dead = task_dead_fair,
8618 .set_cpus_allowed = set_cpus_allowed_common,
8619 #endif
8620
8621 .set_curr_task = set_curr_task_fair,
8622 .task_tick = task_tick_fair,
8623 .task_fork = task_fork_fair,
8624
8625 .prio_changed = prio_changed_fair,
8626 .switched_from = switched_from_fair,
8627 .switched_to = switched_to_fair,
8628
8629 .get_rr_interval = get_rr_interval_fair,
8630
8631 .update_curr = update_curr_fair,
8632
8633 #ifdef CONFIG_FAIR_GROUP_SCHED
8634 .task_move_group = task_move_group_fair,
8635 #endif
8636 };
8637
8638 #ifdef CONFIG_SCHED_DEBUG
8639 void print_cfs_stats(struct seq_file *m, int cpu)
8640 {
8641 struct cfs_rq *cfs_rq;
8642
8643 rcu_read_lock();
8644 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8645 print_cfs_rq(m, cpu, cfs_rq);
8646 rcu_read_unlock();
8647 }
8648
8649 #ifdef CONFIG_NUMA_BALANCING
8650 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8651 {
8652 int node;
8653 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8654
8655 for_each_online_node(node) {
8656 if (p->numa_faults) {
8657 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8658 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8659 }
8660 if (p->numa_group) {
8661 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8662 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8663 }
8664 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8665 }
8666 }
8667 #endif /* CONFIG_NUMA_BALANCING */
8668 #endif /* CONFIG_SCHED_DEBUG */
8669
8670 __init void init_sched_fair_class(void)
8671 {
8672 #ifdef CONFIG_SMP
8673 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8674
8675 #ifdef CONFIG_NO_HZ_COMMON
8676 nohz.next_balance = jiffies;
8677 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8678 cpu_notifier(sched_ilb_notifier, 0);
8679 #endif
8680 #endif /* SMP */
8681
8682 }
This page took 0.470571 seconds and 5 git commands to generate.