sched/fair: Fix stale overloaded status in the busiest group finding logic
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
288
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 if (!cfs_rq->on_list) {
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 }
306
307 cfs_rq->on_list = 1;
308 /* We should have no load, but we need to update last_decay. */
309 update_cfs_rq_blocked_load(cfs_rq, 0);
310 }
311 }
312
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 {
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319 }
320
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 {
329 if (se->cfs_rq == pse->cfs_rq)
330 return se->cfs_rq;
331
332 return NULL;
333 }
334
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 {
337 return se->parent;
338 }
339
340 static void
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 {
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370 }
371
372 #else /* !CONFIG_FAIR_GROUP_SCHED */
373
374 static inline struct task_struct *task_of(struct sched_entity *se)
375 {
376 return container_of(se, struct task_struct, se);
377 }
378
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 {
381 return container_of(cfs_rq, struct rq, cfs);
382 }
383
384 #define entity_is_task(se) 1
385
386 #define for_each_sched_entity(se) \
387 for (; se; se = NULL)
388
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 {
391 return &task_rq(p)->cfs;
392 }
393
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 {
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400 }
401
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404 {
405 return NULL;
406 }
407
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409 {
410 }
411
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413 {
414 }
415
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 return NULL;
422 }
423
424 static inline void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 }
428
429 #endif /* CONFIG_FAIR_GROUP_SCHED */
430
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433
434 /**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439 {
440 s64 delta = (s64)(vruntime - max_vruntime);
441 if (delta > 0)
442 max_vruntime = vruntime;
443
444 return max_vruntime;
445 }
446
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448 {
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454 }
455
456 static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458 {
459 return (s64)(a->vruntime - b->vruntime) < 0;
460 }
461
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
463 {
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
474 if (!cfs_rq->curr)
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
480 /* ensure we never gain time by being placed backwards. */
481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 #ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485 #endif
486 }
487
488 /*
489 * Enqueue an entity into the rb-tree:
490 */
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 {
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
508 if (entity_before(se, entry)) {
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
520 if (leftmost)
521 cfs_rq->rb_leftmost = &se->run_node;
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525 }
526
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
534 }
535
536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537 }
538
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540 {
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
547 }
548
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550 {
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557 }
558
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561 {
562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563
564 if (!last)
565 return NULL;
566
567 return rb_entry(last, struct sched_entity, run_node);
568 }
569
570 /**************************************************************
571 * Scheduling class statistics methods:
572 */
573
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 void __user *buffer, size_t *lenp,
576 loff_t *ppos)
577 {
578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 int factor = get_update_sysctl_factor();
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
587 #define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
592 #undef WRT_SYSCTL
593
594 return 0;
595 }
596 #endif
597
598 /*
599 * delta /= w
600 */
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602 {
603 if (unlikely(se->load.weight != NICE_0_LOAD))
604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605
606 return delta;
607 }
608
609 /*
610 * The idea is to set a period in which each task runs once.
611 *
612 * When there are too many tasks (sched_nr_latency) we have to stretch
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
617 static u64 __sched_period(unsigned long nr_running)
618 {
619 u64 period = sysctl_sched_latency;
620 unsigned long nr_latency = sched_nr_latency;
621
622 if (unlikely(nr_running > nr_latency)) {
623 period = sysctl_sched_min_granularity;
624 period *= nr_running;
625 }
626
627 return period;
628 }
629
630 /*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
634 * s = p*P[w/rw]
635 */
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639
640 for_each_sched_entity(se) {
641 struct load_weight *load;
642 struct load_weight lw;
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
646
647 if (unlikely(!se->on_rq)) {
648 lw = cfs_rq->load;
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
653 slice = __calc_delta(slice, se->load.weight, load);
654 }
655 return slice;
656 }
657
658 /*
659 * We calculate the vruntime slice of a to-be-inserted task.
660 *
661 * vs = s/w
662 */
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674 /* Give new task start runnable values to heavy its load in infant time */
675 void init_task_runnable_average(struct task_struct *p)
676 {
677 u32 slice;
678
679 p->se.avg.decay_count = 0;
680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 p->se.avg.runnable_avg_sum = slice;
682 p->se.avg.runnable_avg_period = slice;
683 __update_task_entity_contrib(&p->se);
684 }
685 #else
686 void init_task_runnable_average(struct task_struct *p)
687 {
688 }
689 #endif
690
691 /*
692 * Update the current task's runtime statistics.
693 */
694 static void update_curr(struct cfs_rq *cfs_rq)
695 {
696 struct sched_entity *curr = cfs_rq->curr;
697 u64 now = rq_clock_task(rq_of(cfs_rq));
698 u64 delta_exec;
699
700 if (unlikely(!curr))
701 return;
702
703 delta_exec = now - curr->exec_start;
704 if (unlikely((s64)delta_exec <= 0))
705 return;
706
707 curr->exec_start = now;
708
709 schedstat_set(curr->statistics.exec_max,
710 max(delta_exec, curr->statistics.exec_max));
711
712 curr->sum_exec_runtime += delta_exec;
713 schedstat_add(cfs_rq, exec_clock, delta_exec);
714
715 curr->vruntime += calc_delta_fair(delta_exec, curr);
716 update_min_vruntime(cfs_rq);
717
718 if (entity_is_task(curr)) {
719 struct task_struct *curtask = task_of(curr);
720
721 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
722 cpuacct_charge(curtask, delta_exec);
723 account_group_exec_runtime(curtask, delta_exec);
724 }
725
726 account_cfs_rq_runtime(cfs_rq, delta_exec);
727 }
728
729 static void update_curr_fair(struct rq *rq)
730 {
731 update_curr(cfs_rq_of(&rq->curr->se));
732 }
733
734 static inline void
735 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
736 {
737 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
738 }
739
740 /*
741 * Task is being enqueued - update stats:
742 */
743 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 {
745 /*
746 * Are we enqueueing a waiting task? (for current tasks
747 * a dequeue/enqueue event is a NOP)
748 */
749 if (se != cfs_rq->curr)
750 update_stats_wait_start(cfs_rq, se);
751 }
752
753 static void
754 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
755 {
756 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
758 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
759 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
760 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
761 #ifdef CONFIG_SCHEDSTATS
762 if (entity_is_task(se)) {
763 trace_sched_stat_wait(task_of(se),
764 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
765 }
766 #endif
767 schedstat_set(se->statistics.wait_start, 0);
768 }
769
770 static inline void
771 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
772 {
773 /*
774 * Mark the end of the wait period if dequeueing a
775 * waiting task:
776 */
777 if (se != cfs_rq->curr)
778 update_stats_wait_end(cfs_rq, se);
779 }
780
781 /*
782 * We are picking a new current task - update its stats:
783 */
784 static inline void
785 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
786 {
787 /*
788 * We are starting a new run period:
789 */
790 se->exec_start = rq_clock_task(rq_of(cfs_rq));
791 }
792
793 /**************************************************
794 * Scheduling class queueing methods:
795 */
796
797 #ifdef CONFIG_NUMA_BALANCING
798 /*
799 * Approximate time to scan a full NUMA task in ms. The task scan period is
800 * calculated based on the tasks virtual memory size and
801 * numa_balancing_scan_size.
802 */
803 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
804 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
805
806 /* Portion of address space to scan in MB */
807 unsigned int sysctl_numa_balancing_scan_size = 256;
808
809 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
810 unsigned int sysctl_numa_balancing_scan_delay = 1000;
811
812 static unsigned int task_nr_scan_windows(struct task_struct *p)
813 {
814 unsigned long rss = 0;
815 unsigned long nr_scan_pages;
816
817 /*
818 * Calculations based on RSS as non-present and empty pages are skipped
819 * by the PTE scanner and NUMA hinting faults should be trapped based
820 * on resident pages
821 */
822 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
823 rss = get_mm_rss(p->mm);
824 if (!rss)
825 rss = nr_scan_pages;
826
827 rss = round_up(rss, nr_scan_pages);
828 return rss / nr_scan_pages;
829 }
830
831 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
832 #define MAX_SCAN_WINDOW 2560
833
834 static unsigned int task_scan_min(struct task_struct *p)
835 {
836 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
837 unsigned int scan, floor;
838 unsigned int windows = 1;
839
840 if (scan_size < MAX_SCAN_WINDOW)
841 windows = MAX_SCAN_WINDOW / scan_size;
842 floor = 1000 / windows;
843
844 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
845 return max_t(unsigned int, floor, scan);
846 }
847
848 static unsigned int task_scan_max(struct task_struct *p)
849 {
850 unsigned int smin = task_scan_min(p);
851 unsigned int smax;
852
853 /* Watch for min being lower than max due to floor calculations */
854 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
855 return max(smin, smax);
856 }
857
858 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
859 {
860 rq->nr_numa_running += (p->numa_preferred_nid != -1);
861 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
862 }
863
864 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
865 {
866 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
867 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
868 }
869
870 struct numa_group {
871 atomic_t refcount;
872
873 spinlock_t lock; /* nr_tasks, tasks */
874 int nr_tasks;
875 pid_t gid;
876
877 struct rcu_head rcu;
878 nodemask_t active_nodes;
879 unsigned long total_faults;
880 /*
881 * Faults_cpu is used to decide whether memory should move
882 * towards the CPU. As a consequence, these stats are weighted
883 * more by CPU use than by memory faults.
884 */
885 unsigned long *faults_cpu;
886 unsigned long faults[0];
887 };
888
889 /* Shared or private faults. */
890 #define NR_NUMA_HINT_FAULT_TYPES 2
891
892 /* Memory and CPU locality */
893 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
894
895 /* Averaged statistics, and temporary buffers. */
896 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
897
898 pid_t task_numa_group_id(struct task_struct *p)
899 {
900 return p->numa_group ? p->numa_group->gid : 0;
901 }
902
903 /*
904 * The averaged statistics, shared & private, memory & cpu,
905 * occupy the first half of the array. The second half of the
906 * array is for current counters, which are averaged into the
907 * first set by task_numa_placement.
908 */
909 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
910 {
911 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
912 }
913
914 static inline unsigned long task_faults(struct task_struct *p, int nid)
915 {
916 if (!p->numa_faults)
917 return 0;
918
919 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
920 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
921 }
922
923 static inline unsigned long group_faults(struct task_struct *p, int nid)
924 {
925 if (!p->numa_group)
926 return 0;
927
928 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
929 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
930 }
931
932 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
933 {
934 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
935 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
936 }
937
938 /* Handle placement on systems where not all nodes are directly connected. */
939 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
940 int maxdist, bool task)
941 {
942 unsigned long score = 0;
943 int node;
944
945 /*
946 * All nodes are directly connected, and the same distance
947 * from each other. No need for fancy placement algorithms.
948 */
949 if (sched_numa_topology_type == NUMA_DIRECT)
950 return 0;
951
952 /*
953 * This code is called for each node, introducing N^2 complexity,
954 * which should be ok given the number of nodes rarely exceeds 8.
955 */
956 for_each_online_node(node) {
957 unsigned long faults;
958 int dist = node_distance(nid, node);
959
960 /*
961 * The furthest away nodes in the system are not interesting
962 * for placement; nid was already counted.
963 */
964 if (dist == sched_max_numa_distance || node == nid)
965 continue;
966
967 /*
968 * On systems with a backplane NUMA topology, compare groups
969 * of nodes, and move tasks towards the group with the most
970 * memory accesses. When comparing two nodes at distance
971 * "hoplimit", only nodes closer by than "hoplimit" are part
972 * of each group. Skip other nodes.
973 */
974 if (sched_numa_topology_type == NUMA_BACKPLANE &&
975 dist > maxdist)
976 continue;
977
978 /* Add up the faults from nearby nodes. */
979 if (task)
980 faults = task_faults(p, node);
981 else
982 faults = group_faults(p, node);
983
984 /*
985 * On systems with a glueless mesh NUMA topology, there are
986 * no fixed "groups of nodes". Instead, nodes that are not
987 * directly connected bounce traffic through intermediate
988 * nodes; a numa_group can occupy any set of nodes.
989 * The further away a node is, the less the faults count.
990 * This seems to result in good task placement.
991 */
992 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
993 faults *= (sched_max_numa_distance - dist);
994 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
995 }
996
997 score += faults;
998 }
999
1000 return score;
1001 }
1002
1003 /*
1004 * These return the fraction of accesses done by a particular task, or
1005 * task group, on a particular numa node. The group weight is given a
1006 * larger multiplier, in order to group tasks together that are almost
1007 * evenly spread out between numa nodes.
1008 */
1009 static inline unsigned long task_weight(struct task_struct *p, int nid,
1010 int dist)
1011 {
1012 unsigned long faults, total_faults;
1013
1014 if (!p->numa_faults)
1015 return 0;
1016
1017 total_faults = p->total_numa_faults;
1018
1019 if (!total_faults)
1020 return 0;
1021
1022 faults = task_faults(p, nid);
1023 faults += score_nearby_nodes(p, nid, dist, true);
1024
1025 return 1000 * faults / total_faults;
1026 }
1027
1028 static inline unsigned long group_weight(struct task_struct *p, int nid,
1029 int dist)
1030 {
1031 unsigned long faults, total_faults;
1032
1033 if (!p->numa_group)
1034 return 0;
1035
1036 total_faults = p->numa_group->total_faults;
1037
1038 if (!total_faults)
1039 return 0;
1040
1041 faults = group_faults(p, nid);
1042 faults += score_nearby_nodes(p, nid, dist, false);
1043
1044 return 1000 * faults / total_faults;
1045 }
1046
1047 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1048 int src_nid, int dst_cpu)
1049 {
1050 struct numa_group *ng = p->numa_group;
1051 int dst_nid = cpu_to_node(dst_cpu);
1052 int last_cpupid, this_cpupid;
1053
1054 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1055
1056 /*
1057 * Multi-stage node selection is used in conjunction with a periodic
1058 * migration fault to build a temporal task<->page relation. By using
1059 * a two-stage filter we remove short/unlikely relations.
1060 *
1061 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1062 * a task's usage of a particular page (n_p) per total usage of this
1063 * page (n_t) (in a given time-span) to a probability.
1064 *
1065 * Our periodic faults will sample this probability and getting the
1066 * same result twice in a row, given these samples are fully
1067 * independent, is then given by P(n)^2, provided our sample period
1068 * is sufficiently short compared to the usage pattern.
1069 *
1070 * This quadric squishes small probabilities, making it less likely we
1071 * act on an unlikely task<->page relation.
1072 */
1073 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1074 if (!cpupid_pid_unset(last_cpupid) &&
1075 cpupid_to_nid(last_cpupid) != dst_nid)
1076 return false;
1077
1078 /* Always allow migrate on private faults */
1079 if (cpupid_match_pid(p, last_cpupid))
1080 return true;
1081
1082 /* A shared fault, but p->numa_group has not been set up yet. */
1083 if (!ng)
1084 return true;
1085
1086 /*
1087 * Do not migrate if the destination is not a node that
1088 * is actively used by this numa group.
1089 */
1090 if (!node_isset(dst_nid, ng->active_nodes))
1091 return false;
1092
1093 /*
1094 * Source is a node that is not actively used by this
1095 * numa group, while the destination is. Migrate.
1096 */
1097 if (!node_isset(src_nid, ng->active_nodes))
1098 return true;
1099
1100 /*
1101 * Both source and destination are nodes in active
1102 * use by this numa group. Maximize memory bandwidth
1103 * by migrating from more heavily used groups, to less
1104 * heavily used ones, spreading the load around.
1105 * Use a 1/4 hysteresis to avoid spurious page movement.
1106 */
1107 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1108 }
1109
1110 static unsigned long weighted_cpuload(const int cpu);
1111 static unsigned long source_load(int cpu, int type);
1112 static unsigned long target_load(int cpu, int type);
1113 static unsigned long capacity_of(int cpu);
1114 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1115
1116 /* Cached statistics for all CPUs within a node */
1117 struct numa_stats {
1118 unsigned long nr_running;
1119 unsigned long load;
1120
1121 /* Total compute capacity of CPUs on a node */
1122 unsigned long compute_capacity;
1123
1124 /* Approximate capacity in terms of runnable tasks on a node */
1125 unsigned long task_capacity;
1126 int has_free_capacity;
1127 };
1128
1129 /*
1130 * XXX borrowed from update_sg_lb_stats
1131 */
1132 static void update_numa_stats(struct numa_stats *ns, int nid)
1133 {
1134 int smt, cpu, cpus = 0;
1135 unsigned long capacity;
1136
1137 memset(ns, 0, sizeof(*ns));
1138 for_each_cpu(cpu, cpumask_of_node(nid)) {
1139 struct rq *rq = cpu_rq(cpu);
1140
1141 ns->nr_running += rq->nr_running;
1142 ns->load += weighted_cpuload(cpu);
1143 ns->compute_capacity += capacity_of(cpu);
1144
1145 cpus++;
1146 }
1147
1148 /*
1149 * If we raced with hotplug and there are no CPUs left in our mask
1150 * the @ns structure is NULL'ed and task_numa_compare() will
1151 * not find this node attractive.
1152 *
1153 * We'll either bail at !has_free_capacity, or we'll detect a huge
1154 * imbalance and bail there.
1155 */
1156 if (!cpus)
1157 return;
1158
1159 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1160 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1161 capacity = cpus / smt; /* cores */
1162
1163 ns->task_capacity = min_t(unsigned, capacity,
1164 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1165 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1166 }
1167
1168 struct task_numa_env {
1169 struct task_struct *p;
1170
1171 int src_cpu, src_nid;
1172 int dst_cpu, dst_nid;
1173
1174 struct numa_stats src_stats, dst_stats;
1175
1176 int imbalance_pct;
1177 int dist;
1178
1179 struct task_struct *best_task;
1180 long best_imp;
1181 int best_cpu;
1182 };
1183
1184 static void task_numa_assign(struct task_numa_env *env,
1185 struct task_struct *p, long imp)
1186 {
1187 if (env->best_task)
1188 put_task_struct(env->best_task);
1189 if (p)
1190 get_task_struct(p);
1191
1192 env->best_task = p;
1193 env->best_imp = imp;
1194 env->best_cpu = env->dst_cpu;
1195 }
1196
1197 static bool load_too_imbalanced(long src_load, long dst_load,
1198 struct task_numa_env *env)
1199 {
1200 long imb, old_imb;
1201 long orig_src_load, orig_dst_load;
1202 long src_capacity, dst_capacity;
1203
1204 /*
1205 * The load is corrected for the CPU capacity available on each node.
1206 *
1207 * src_load dst_load
1208 * ------------ vs ---------
1209 * src_capacity dst_capacity
1210 */
1211 src_capacity = env->src_stats.compute_capacity;
1212 dst_capacity = env->dst_stats.compute_capacity;
1213
1214 /* We care about the slope of the imbalance, not the direction. */
1215 if (dst_load < src_load)
1216 swap(dst_load, src_load);
1217
1218 /* Is the difference below the threshold? */
1219 imb = dst_load * src_capacity * 100 -
1220 src_load * dst_capacity * env->imbalance_pct;
1221 if (imb <= 0)
1222 return false;
1223
1224 /*
1225 * The imbalance is above the allowed threshold.
1226 * Compare it with the old imbalance.
1227 */
1228 orig_src_load = env->src_stats.load;
1229 orig_dst_load = env->dst_stats.load;
1230
1231 if (orig_dst_load < orig_src_load)
1232 swap(orig_dst_load, orig_src_load);
1233
1234 old_imb = orig_dst_load * src_capacity * 100 -
1235 orig_src_load * dst_capacity * env->imbalance_pct;
1236
1237 /* Would this change make things worse? */
1238 return (imb > old_imb);
1239 }
1240
1241 /*
1242 * This checks if the overall compute and NUMA accesses of the system would
1243 * be improved if the source tasks was migrated to the target dst_cpu taking
1244 * into account that it might be best if task running on the dst_cpu should
1245 * be exchanged with the source task
1246 */
1247 static void task_numa_compare(struct task_numa_env *env,
1248 long taskimp, long groupimp)
1249 {
1250 struct rq *src_rq = cpu_rq(env->src_cpu);
1251 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1252 struct task_struct *cur;
1253 long src_load, dst_load;
1254 long load;
1255 long imp = env->p->numa_group ? groupimp : taskimp;
1256 long moveimp = imp;
1257 int dist = env->dist;
1258
1259 rcu_read_lock();
1260
1261 raw_spin_lock_irq(&dst_rq->lock);
1262 cur = dst_rq->curr;
1263 /*
1264 * No need to move the exiting task, and this ensures that ->curr
1265 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1266 * is safe under RCU read lock.
1267 * Note that rcu_read_lock() itself can't protect from the final
1268 * put_task_struct() after the last schedule().
1269 */
1270 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1271 cur = NULL;
1272 raw_spin_unlock_irq(&dst_rq->lock);
1273
1274 /*
1275 * Because we have preemption enabled we can get migrated around and
1276 * end try selecting ourselves (current == env->p) as a swap candidate.
1277 */
1278 if (cur == env->p)
1279 goto unlock;
1280
1281 /*
1282 * "imp" is the fault differential for the source task between the
1283 * source and destination node. Calculate the total differential for
1284 * the source task and potential destination task. The more negative
1285 * the value is, the more rmeote accesses that would be expected to
1286 * be incurred if the tasks were swapped.
1287 */
1288 if (cur) {
1289 /* Skip this swap candidate if cannot move to the source cpu */
1290 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1291 goto unlock;
1292
1293 /*
1294 * If dst and source tasks are in the same NUMA group, or not
1295 * in any group then look only at task weights.
1296 */
1297 if (cur->numa_group == env->p->numa_group) {
1298 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1299 task_weight(cur, env->dst_nid, dist);
1300 /*
1301 * Add some hysteresis to prevent swapping the
1302 * tasks within a group over tiny differences.
1303 */
1304 if (cur->numa_group)
1305 imp -= imp/16;
1306 } else {
1307 /*
1308 * Compare the group weights. If a task is all by
1309 * itself (not part of a group), use the task weight
1310 * instead.
1311 */
1312 if (cur->numa_group)
1313 imp += group_weight(cur, env->src_nid, dist) -
1314 group_weight(cur, env->dst_nid, dist);
1315 else
1316 imp += task_weight(cur, env->src_nid, dist) -
1317 task_weight(cur, env->dst_nid, dist);
1318 }
1319 }
1320
1321 if (imp <= env->best_imp && moveimp <= env->best_imp)
1322 goto unlock;
1323
1324 if (!cur) {
1325 /* Is there capacity at our destination? */
1326 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1327 !env->dst_stats.has_free_capacity)
1328 goto unlock;
1329
1330 goto balance;
1331 }
1332
1333 /* Balance doesn't matter much if we're running a task per cpu */
1334 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1335 dst_rq->nr_running == 1)
1336 goto assign;
1337
1338 /*
1339 * In the overloaded case, try and keep the load balanced.
1340 */
1341 balance:
1342 load = task_h_load(env->p);
1343 dst_load = env->dst_stats.load + load;
1344 src_load = env->src_stats.load - load;
1345
1346 if (moveimp > imp && moveimp > env->best_imp) {
1347 /*
1348 * If the improvement from just moving env->p direction is
1349 * better than swapping tasks around, check if a move is
1350 * possible. Store a slightly smaller score than moveimp,
1351 * so an actually idle CPU will win.
1352 */
1353 if (!load_too_imbalanced(src_load, dst_load, env)) {
1354 imp = moveimp - 1;
1355 cur = NULL;
1356 goto assign;
1357 }
1358 }
1359
1360 if (imp <= env->best_imp)
1361 goto unlock;
1362
1363 if (cur) {
1364 load = task_h_load(cur);
1365 dst_load -= load;
1366 src_load += load;
1367 }
1368
1369 if (load_too_imbalanced(src_load, dst_load, env))
1370 goto unlock;
1371
1372 /*
1373 * One idle CPU per node is evaluated for a task numa move.
1374 * Call select_idle_sibling to maybe find a better one.
1375 */
1376 if (!cur)
1377 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1378
1379 assign:
1380 task_numa_assign(env, cur, imp);
1381 unlock:
1382 rcu_read_unlock();
1383 }
1384
1385 static void task_numa_find_cpu(struct task_numa_env *env,
1386 long taskimp, long groupimp)
1387 {
1388 int cpu;
1389
1390 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1391 /* Skip this CPU if the source task cannot migrate */
1392 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1393 continue;
1394
1395 env->dst_cpu = cpu;
1396 task_numa_compare(env, taskimp, groupimp);
1397 }
1398 }
1399
1400 static int task_numa_migrate(struct task_struct *p)
1401 {
1402 struct task_numa_env env = {
1403 .p = p,
1404
1405 .src_cpu = task_cpu(p),
1406 .src_nid = task_node(p),
1407
1408 .imbalance_pct = 112,
1409
1410 .best_task = NULL,
1411 .best_imp = 0,
1412 .best_cpu = -1
1413 };
1414 struct sched_domain *sd;
1415 unsigned long taskweight, groupweight;
1416 int nid, ret, dist;
1417 long taskimp, groupimp;
1418
1419 /*
1420 * Pick the lowest SD_NUMA domain, as that would have the smallest
1421 * imbalance and would be the first to start moving tasks about.
1422 *
1423 * And we want to avoid any moving of tasks about, as that would create
1424 * random movement of tasks -- counter the numa conditions we're trying
1425 * to satisfy here.
1426 */
1427 rcu_read_lock();
1428 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1429 if (sd)
1430 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1431 rcu_read_unlock();
1432
1433 /*
1434 * Cpusets can break the scheduler domain tree into smaller
1435 * balance domains, some of which do not cross NUMA boundaries.
1436 * Tasks that are "trapped" in such domains cannot be migrated
1437 * elsewhere, so there is no point in (re)trying.
1438 */
1439 if (unlikely(!sd)) {
1440 p->numa_preferred_nid = task_node(p);
1441 return -EINVAL;
1442 }
1443
1444 env.dst_nid = p->numa_preferred_nid;
1445 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1446 taskweight = task_weight(p, env.src_nid, dist);
1447 groupweight = group_weight(p, env.src_nid, dist);
1448 update_numa_stats(&env.src_stats, env.src_nid);
1449 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1450 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1451 update_numa_stats(&env.dst_stats, env.dst_nid);
1452
1453 /* Try to find a spot on the preferred nid. */
1454 task_numa_find_cpu(&env, taskimp, groupimp);
1455
1456 /*
1457 * Look at other nodes in these cases:
1458 * - there is no space available on the preferred_nid
1459 * - the task is part of a numa_group that is interleaved across
1460 * multiple NUMA nodes; in order to better consolidate the group,
1461 * we need to check other locations.
1462 */
1463 if (env.best_cpu == -1 || (p->numa_group &&
1464 nodes_weight(p->numa_group->active_nodes) > 1)) {
1465 for_each_online_node(nid) {
1466 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1467 continue;
1468
1469 dist = node_distance(env.src_nid, env.dst_nid);
1470 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1471 dist != env.dist) {
1472 taskweight = task_weight(p, env.src_nid, dist);
1473 groupweight = group_weight(p, env.src_nid, dist);
1474 }
1475
1476 /* Only consider nodes where both task and groups benefit */
1477 taskimp = task_weight(p, nid, dist) - taskweight;
1478 groupimp = group_weight(p, nid, dist) - groupweight;
1479 if (taskimp < 0 && groupimp < 0)
1480 continue;
1481
1482 env.dist = dist;
1483 env.dst_nid = nid;
1484 update_numa_stats(&env.dst_stats, env.dst_nid);
1485 task_numa_find_cpu(&env, taskimp, groupimp);
1486 }
1487 }
1488
1489 /*
1490 * If the task is part of a workload that spans multiple NUMA nodes,
1491 * and is migrating into one of the workload's active nodes, remember
1492 * this node as the task's preferred numa node, so the workload can
1493 * settle down.
1494 * A task that migrated to a second choice node will be better off
1495 * trying for a better one later. Do not set the preferred node here.
1496 */
1497 if (p->numa_group) {
1498 if (env.best_cpu == -1)
1499 nid = env.src_nid;
1500 else
1501 nid = env.dst_nid;
1502
1503 if (node_isset(nid, p->numa_group->active_nodes))
1504 sched_setnuma(p, env.dst_nid);
1505 }
1506
1507 /* No better CPU than the current one was found. */
1508 if (env.best_cpu == -1)
1509 return -EAGAIN;
1510
1511 /*
1512 * Reset the scan period if the task is being rescheduled on an
1513 * alternative node to recheck if the tasks is now properly placed.
1514 */
1515 p->numa_scan_period = task_scan_min(p);
1516
1517 if (env.best_task == NULL) {
1518 ret = migrate_task_to(p, env.best_cpu);
1519 if (ret != 0)
1520 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1521 return ret;
1522 }
1523
1524 ret = migrate_swap(p, env.best_task);
1525 if (ret != 0)
1526 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1527 put_task_struct(env.best_task);
1528 return ret;
1529 }
1530
1531 /* Attempt to migrate a task to a CPU on the preferred node. */
1532 static void numa_migrate_preferred(struct task_struct *p)
1533 {
1534 unsigned long interval = HZ;
1535
1536 /* This task has no NUMA fault statistics yet */
1537 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1538 return;
1539
1540 /* Periodically retry migrating the task to the preferred node */
1541 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1542 p->numa_migrate_retry = jiffies + interval;
1543
1544 /* Success if task is already running on preferred CPU */
1545 if (task_node(p) == p->numa_preferred_nid)
1546 return;
1547
1548 /* Otherwise, try migrate to a CPU on the preferred node */
1549 task_numa_migrate(p);
1550 }
1551
1552 /*
1553 * Find the nodes on which the workload is actively running. We do this by
1554 * tracking the nodes from which NUMA hinting faults are triggered. This can
1555 * be different from the set of nodes where the workload's memory is currently
1556 * located.
1557 *
1558 * The bitmask is used to make smarter decisions on when to do NUMA page
1559 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1560 * are added when they cause over 6/16 of the maximum number of faults, but
1561 * only removed when they drop below 3/16.
1562 */
1563 static void update_numa_active_node_mask(struct numa_group *numa_group)
1564 {
1565 unsigned long faults, max_faults = 0;
1566 int nid;
1567
1568 for_each_online_node(nid) {
1569 faults = group_faults_cpu(numa_group, nid);
1570 if (faults > max_faults)
1571 max_faults = faults;
1572 }
1573
1574 for_each_online_node(nid) {
1575 faults = group_faults_cpu(numa_group, nid);
1576 if (!node_isset(nid, numa_group->active_nodes)) {
1577 if (faults > max_faults * 6 / 16)
1578 node_set(nid, numa_group->active_nodes);
1579 } else if (faults < max_faults * 3 / 16)
1580 node_clear(nid, numa_group->active_nodes);
1581 }
1582 }
1583
1584 /*
1585 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1586 * increments. The more local the fault statistics are, the higher the scan
1587 * period will be for the next scan window. If local/(local+remote) ratio is
1588 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1589 * the scan period will decrease. Aim for 70% local accesses.
1590 */
1591 #define NUMA_PERIOD_SLOTS 10
1592 #define NUMA_PERIOD_THRESHOLD 7
1593
1594 /*
1595 * Increase the scan period (slow down scanning) if the majority of
1596 * our memory is already on our local node, or if the majority of
1597 * the page accesses are shared with other processes.
1598 * Otherwise, decrease the scan period.
1599 */
1600 static void update_task_scan_period(struct task_struct *p,
1601 unsigned long shared, unsigned long private)
1602 {
1603 unsigned int period_slot;
1604 int ratio;
1605 int diff;
1606
1607 unsigned long remote = p->numa_faults_locality[0];
1608 unsigned long local = p->numa_faults_locality[1];
1609
1610 /*
1611 * If there were no record hinting faults then either the task is
1612 * completely idle or all activity is areas that are not of interest
1613 * to automatic numa balancing. Scan slower
1614 */
1615 if (local + shared == 0) {
1616 p->numa_scan_period = min(p->numa_scan_period_max,
1617 p->numa_scan_period << 1);
1618
1619 p->mm->numa_next_scan = jiffies +
1620 msecs_to_jiffies(p->numa_scan_period);
1621
1622 return;
1623 }
1624
1625 /*
1626 * Prepare to scale scan period relative to the current period.
1627 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1628 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1629 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1630 */
1631 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1632 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1633 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1634 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1635 if (!slot)
1636 slot = 1;
1637 diff = slot * period_slot;
1638 } else {
1639 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1640
1641 /*
1642 * Scale scan rate increases based on sharing. There is an
1643 * inverse relationship between the degree of sharing and
1644 * the adjustment made to the scanning period. Broadly
1645 * speaking the intent is that there is little point
1646 * scanning faster if shared accesses dominate as it may
1647 * simply bounce migrations uselessly
1648 */
1649 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1650 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1651 }
1652
1653 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1654 task_scan_min(p), task_scan_max(p));
1655 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1656 }
1657
1658 /*
1659 * Get the fraction of time the task has been running since the last
1660 * NUMA placement cycle. The scheduler keeps similar statistics, but
1661 * decays those on a 32ms period, which is orders of magnitude off
1662 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1663 * stats only if the task is so new there are no NUMA statistics yet.
1664 */
1665 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1666 {
1667 u64 runtime, delta, now;
1668 /* Use the start of this time slice to avoid calculations. */
1669 now = p->se.exec_start;
1670 runtime = p->se.sum_exec_runtime;
1671
1672 if (p->last_task_numa_placement) {
1673 delta = runtime - p->last_sum_exec_runtime;
1674 *period = now - p->last_task_numa_placement;
1675 } else {
1676 delta = p->se.avg.runnable_avg_sum;
1677 *period = p->se.avg.runnable_avg_period;
1678 }
1679
1680 p->last_sum_exec_runtime = runtime;
1681 p->last_task_numa_placement = now;
1682
1683 return delta;
1684 }
1685
1686 /*
1687 * Determine the preferred nid for a task in a numa_group. This needs to
1688 * be done in a way that produces consistent results with group_weight,
1689 * otherwise workloads might not converge.
1690 */
1691 static int preferred_group_nid(struct task_struct *p, int nid)
1692 {
1693 nodemask_t nodes;
1694 int dist;
1695
1696 /* Direct connections between all NUMA nodes. */
1697 if (sched_numa_topology_type == NUMA_DIRECT)
1698 return nid;
1699
1700 /*
1701 * On a system with glueless mesh NUMA topology, group_weight
1702 * scores nodes according to the number of NUMA hinting faults on
1703 * both the node itself, and on nearby nodes.
1704 */
1705 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1706 unsigned long score, max_score = 0;
1707 int node, max_node = nid;
1708
1709 dist = sched_max_numa_distance;
1710
1711 for_each_online_node(node) {
1712 score = group_weight(p, node, dist);
1713 if (score > max_score) {
1714 max_score = score;
1715 max_node = node;
1716 }
1717 }
1718 return max_node;
1719 }
1720
1721 /*
1722 * Finding the preferred nid in a system with NUMA backplane
1723 * interconnect topology is more involved. The goal is to locate
1724 * tasks from numa_groups near each other in the system, and
1725 * untangle workloads from different sides of the system. This requires
1726 * searching down the hierarchy of node groups, recursively searching
1727 * inside the highest scoring group of nodes. The nodemask tricks
1728 * keep the complexity of the search down.
1729 */
1730 nodes = node_online_map;
1731 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1732 unsigned long max_faults = 0;
1733 nodemask_t max_group;
1734 int a, b;
1735
1736 /* Are there nodes at this distance from each other? */
1737 if (!find_numa_distance(dist))
1738 continue;
1739
1740 for_each_node_mask(a, nodes) {
1741 unsigned long faults = 0;
1742 nodemask_t this_group;
1743 nodes_clear(this_group);
1744
1745 /* Sum group's NUMA faults; includes a==b case. */
1746 for_each_node_mask(b, nodes) {
1747 if (node_distance(a, b) < dist) {
1748 faults += group_faults(p, b);
1749 node_set(b, this_group);
1750 node_clear(b, nodes);
1751 }
1752 }
1753
1754 /* Remember the top group. */
1755 if (faults > max_faults) {
1756 max_faults = faults;
1757 max_group = this_group;
1758 /*
1759 * subtle: at the smallest distance there is
1760 * just one node left in each "group", the
1761 * winner is the preferred nid.
1762 */
1763 nid = a;
1764 }
1765 }
1766 /* Next round, evaluate the nodes within max_group. */
1767 nodes = max_group;
1768 }
1769 return nid;
1770 }
1771
1772 static void task_numa_placement(struct task_struct *p)
1773 {
1774 int seq, nid, max_nid = -1, max_group_nid = -1;
1775 unsigned long max_faults = 0, max_group_faults = 0;
1776 unsigned long fault_types[2] = { 0, 0 };
1777 unsigned long total_faults;
1778 u64 runtime, period;
1779 spinlock_t *group_lock = NULL;
1780
1781 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1782 if (p->numa_scan_seq == seq)
1783 return;
1784 p->numa_scan_seq = seq;
1785 p->numa_scan_period_max = task_scan_max(p);
1786
1787 total_faults = p->numa_faults_locality[0] +
1788 p->numa_faults_locality[1];
1789 runtime = numa_get_avg_runtime(p, &period);
1790
1791 /* If the task is part of a group prevent parallel updates to group stats */
1792 if (p->numa_group) {
1793 group_lock = &p->numa_group->lock;
1794 spin_lock_irq(group_lock);
1795 }
1796
1797 /* Find the node with the highest number of faults */
1798 for_each_online_node(nid) {
1799 /* Keep track of the offsets in numa_faults array */
1800 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1801 unsigned long faults = 0, group_faults = 0;
1802 int priv;
1803
1804 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1805 long diff, f_diff, f_weight;
1806
1807 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1808 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1809 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1810 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1811
1812 /* Decay existing window, copy faults since last scan */
1813 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1814 fault_types[priv] += p->numa_faults[membuf_idx];
1815 p->numa_faults[membuf_idx] = 0;
1816
1817 /*
1818 * Normalize the faults_from, so all tasks in a group
1819 * count according to CPU use, instead of by the raw
1820 * number of faults. Tasks with little runtime have
1821 * little over-all impact on throughput, and thus their
1822 * faults are less important.
1823 */
1824 f_weight = div64_u64(runtime << 16, period + 1);
1825 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1826 (total_faults + 1);
1827 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1828 p->numa_faults[cpubuf_idx] = 0;
1829
1830 p->numa_faults[mem_idx] += diff;
1831 p->numa_faults[cpu_idx] += f_diff;
1832 faults += p->numa_faults[mem_idx];
1833 p->total_numa_faults += diff;
1834 if (p->numa_group) {
1835 /*
1836 * safe because we can only change our own group
1837 *
1838 * mem_idx represents the offset for a given
1839 * nid and priv in a specific region because it
1840 * is at the beginning of the numa_faults array.
1841 */
1842 p->numa_group->faults[mem_idx] += diff;
1843 p->numa_group->faults_cpu[mem_idx] += f_diff;
1844 p->numa_group->total_faults += diff;
1845 group_faults += p->numa_group->faults[mem_idx];
1846 }
1847 }
1848
1849 if (faults > max_faults) {
1850 max_faults = faults;
1851 max_nid = nid;
1852 }
1853
1854 if (group_faults > max_group_faults) {
1855 max_group_faults = group_faults;
1856 max_group_nid = nid;
1857 }
1858 }
1859
1860 update_task_scan_period(p, fault_types[0], fault_types[1]);
1861
1862 if (p->numa_group) {
1863 update_numa_active_node_mask(p->numa_group);
1864 spin_unlock_irq(group_lock);
1865 max_nid = preferred_group_nid(p, max_group_nid);
1866 }
1867
1868 if (max_faults) {
1869 /* Set the new preferred node */
1870 if (max_nid != p->numa_preferred_nid)
1871 sched_setnuma(p, max_nid);
1872
1873 if (task_node(p) != p->numa_preferred_nid)
1874 numa_migrate_preferred(p);
1875 }
1876 }
1877
1878 static inline int get_numa_group(struct numa_group *grp)
1879 {
1880 return atomic_inc_not_zero(&grp->refcount);
1881 }
1882
1883 static inline void put_numa_group(struct numa_group *grp)
1884 {
1885 if (atomic_dec_and_test(&grp->refcount))
1886 kfree_rcu(grp, rcu);
1887 }
1888
1889 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1890 int *priv)
1891 {
1892 struct numa_group *grp, *my_grp;
1893 struct task_struct *tsk;
1894 bool join = false;
1895 int cpu = cpupid_to_cpu(cpupid);
1896 int i;
1897
1898 if (unlikely(!p->numa_group)) {
1899 unsigned int size = sizeof(struct numa_group) +
1900 4*nr_node_ids*sizeof(unsigned long);
1901
1902 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1903 if (!grp)
1904 return;
1905
1906 atomic_set(&grp->refcount, 1);
1907 spin_lock_init(&grp->lock);
1908 grp->gid = p->pid;
1909 /* Second half of the array tracks nids where faults happen */
1910 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1911 nr_node_ids;
1912
1913 node_set(task_node(current), grp->active_nodes);
1914
1915 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1916 grp->faults[i] = p->numa_faults[i];
1917
1918 grp->total_faults = p->total_numa_faults;
1919
1920 grp->nr_tasks++;
1921 rcu_assign_pointer(p->numa_group, grp);
1922 }
1923
1924 rcu_read_lock();
1925 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1926
1927 if (!cpupid_match_pid(tsk, cpupid))
1928 goto no_join;
1929
1930 grp = rcu_dereference(tsk->numa_group);
1931 if (!grp)
1932 goto no_join;
1933
1934 my_grp = p->numa_group;
1935 if (grp == my_grp)
1936 goto no_join;
1937
1938 /*
1939 * Only join the other group if its bigger; if we're the bigger group,
1940 * the other task will join us.
1941 */
1942 if (my_grp->nr_tasks > grp->nr_tasks)
1943 goto no_join;
1944
1945 /*
1946 * Tie-break on the grp address.
1947 */
1948 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1949 goto no_join;
1950
1951 /* Always join threads in the same process. */
1952 if (tsk->mm == current->mm)
1953 join = true;
1954
1955 /* Simple filter to avoid false positives due to PID collisions */
1956 if (flags & TNF_SHARED)
1957 join = true;
1958
1959 /* Update priv based on whether false sharing was detected */
1960 *priv = !join;
1961
1962 if (join && !get_numa_group(grp))
1963 goto no_join;
1964
1965 rcu_read_unlock();
1966
1967 if (!join)
1968 return;
1969
1970 BUG_ON(irqs_disabled());
1971 double_lock_irq(&my_grp->lock, &grp->lock);
1972
1973 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1974 my_grp->faults[i] -= p->numa_faults[i];
1975 grp->faults[i] += p->numa_faults[i];
1976 }
1977 my_grp->total_faults -= p->total_numa_faults;
1978 grp->total_faults += p->total_numa_faults;
1979
1980 my_grp->nr_tasks--;
1981 grp->nr_tasks++;
1982
1983 spin_unlock(&my_grp->lock);
1984 spin_unlock_irq(&grp->lock);
1985
1986 rcu_assign_pointer(p->numa_group, grp);
1987
1988 put_numa_group(my_grp);
1989 return;
1990
1991 no_join:
1992 rcu_read_unlock();
1993 return;
1994 }
1995
1996 void task_numa_free(struct task_struct *p)
1997 {
1998 struct numa_group *grp = p->numa_group;
1999 void *numa_faults = p->numa_faults;
2000 unsigned long flags;
2001 int i;
2002
2003 if (grp) {
2004 spin_lock_irqsave(&grp->lock, flags);
2005 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2006 grp->faults[i] -= p->numa_faults[i];
2007 grp->total_faults -= p->total_numa_faults;
2008
2009 grp->nr_tasks--;
2010 spin_unlock_irqrestore(&grp->lock, flags);
2011 RCU_INIT_POINTER(p->numa_group, NULL);
2012 put_numa_group(grp);
2013 }
2014
2015 p->numa_faults = NULL;
2016 kfree(numa_faults);
2017 }
2018
2019 /*
2020 * Got a PROT_NONE fault for a page on @node.
2021 */
2022 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2023 {
2024 struct task_struct *p = current;
2025 bool migrated = flags & TNF_MIGRATED;
2026 int cpu_node = task_node(current);
2027 int local = !!(flags & TNF_FAULT_LOCAL);
2028 int priv;
2029
2030 if (!numabalancing_enabled)
2031 return;
2032
2033 /* for example, ksmd faulting in a user's mm */
2034 if (!p->mm)
2035 return;
2036
2037 /* Allocate buffer to track faults on a per-node basis */
2038 if (unlikely(!p->numa_faults)) {
2039 int size = sizeof(*p->numa_faults) *
2040 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2041
2042 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2043 if (!p->numa_faults)
2044 return;
2045
2046 p->total_numa_faults = 0;
2047 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2048 }
2049
2050 /*
2051 * First accesses are treated as private, otherwise consider accesses
2052 * to be private if the accessing pid has not changed
2053 */
2054 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2055 priv = 1;
2056 } else {
2057 priv = cpupid_match_pid(p, last_cpupid);
2058 if (!priv && !(flags & TNF_NO_GROUP))
2059 task_numa_group(p, last_cpupid, flags, &priv);
2060 }
2061
2062 /*
2063 * If a workload spans multiple NUMA nodes, a shared fault that
2064 * occurs wholly within the set of nodes that the workload is
2065 * actively using should be counted as local. This allows the
2066 * scan rate to slow down when a workload has settled down.
2067 */
2068 if (!priv && !local && p->numa_group &&
2069 node_isset(cpu_node, p->numa_group->active_nodes) &&
2070 node_isset(mem_node, p->numa_group->active_nodes))
2071 local = 1;
2072
2073 task_numa_placement(p);
2074
2075 /*
2076 * Retry task to preferred node migration periodically, in case it
2077 * case it previously failed, or the scheduler moved us.
2078 */
2079 if (time_after(jiffies, p->numa_migrate_retry))
2080 numa_migrate_preferred(p);
2081
2082 if (migrated)
2083 p->numa_pages_migrated += pages;
2084
2085 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2086 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2087 p->numa_faults_locality[local] += pages;
2088 }
2089
2090 static void reset_ptenuma_scan(struct task_struct *p)
2091 {
2092 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2093 p->mm->numa_scan_offset = 0;
2094 }
2095
2096 /*
2097 * The expensive part of numa migration is done from task_work context.
2098 * Triggered from task_tick_numa().
2099 */
2100 void task_numa_work(struct callback_head *work)
2101 {
2102 unsigned long migrate, next_scan, now = jiffies;
2103 struct task_struct *p = current;
2104 struct mm_struct *mm = p->mm;
2105 struct vm_area_struct *vma;
2106 unsigned long start, end;
2107 unsigned long nr_pte_updates = 0;
2108 long pages;
2109
2110 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2111
2112 work->next = work; /* protect against double add */
2113 /*
2114 * Who cares about NUMA placement when they're dying.
2115 *
2116 * NOTE: make sure not to dereference p->mm before this check,
2117 * exit_task_work() happens _after_ exit_mm() so we could be called
2118 * without p->mm even though we still had it when we enqueued this
2119 * work.
2120 */
2121 if (p->flags & PF_EXITING)
2122 return;
2123
2124 if (!mm->numa_next_scan) {
2125 mm->numa_next_scan = now +
2126 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2127 }
2128
2129 /*
2130 * Enforce maximal scan/migration frequency..
2131 */
2132 migrate = mm->numa_next_scan;
2133 if (time_before(now, migrate))
2134 return;
2135
2136 if (p->numa_scan_period == 0) {
2137 p->numa_scan_period_max = task_scan_max(p);
2138 p->numa_scan_period = task_scan_min(p);
2139 }
2140
2141 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2142 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2143 return;
2144
2145 /*
2146 * Delay this task enough that another task of this mm will likely win
2147 * the next time around.
2148 */
2149 p->node_stamp += 2 * TICK_NSEC;
2150
2151 start = mm->numa_scan_offset;
2152 pages = sysctl_numa_balancing_scan_size;
2153 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2154 if (!pages)
2155 return;
2156
2157 down_read(&mm->mmap_sem);
2158 vma = find_vma(mm, start);
2159 if (!vma) {
2160 reset_ptenuma_scan(p);
2161 start = 0;
2162 vma = mm->mmap;
2163 }
2164 for (; vma; vma = vma->vm_next) {
2165 if (!vma_migratable(vma) || !vma_policy_mof(vma))
2166 continue;
2167
2168 /*
2169 * Shared library pages mapped by multiple processes are not
2170 * migrated as it is expected they are cache replicated. Avoid
2171 * hinting faults in read-only file-backed mappings or the vdso
2172 * as migrating the pages will be of marginal benefit.
2173 */
2174 if (!vma->vm_mm ||
2175 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2176 continue;
2177
2178 /*
2179 * Skip inaccessible VMAs to avoid any confusion between
2180 * PROT_NONE and NUMA hinting ptes
2181 */
2182 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2183 continue;
2184
2185 do {
2186 start = max(start, vma->vm_start);
2187 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2188 end = min(end, vma->vm_end);
2189 nr_pte_updates += change_prot_numa(vma, start, end);
2190
2191 /*
2192 * Scan sysctl_numa_balancing_scan_size but ensure that
2193 * at least one PTE is updated so that unused virtual
2194 * address space is quickly skipped.
2195 */
2196 if (nr_pte_updates)
2197 pages -= (end - start) >> PAGE_SHIFT;
2198
2199 start = end;
2200 if (pages <= 0)
2201 goto out;
2202
2203 cond_resched();
2204 } while (end != vma->vm_end);
2205 }
2206
2207 out:
2208 /*
2209 * It is possible to reach the end of the VMA list but the last few
2210 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2211 * would find the !migratable VMA on the next scan but not reset the
2212 * scanner to the start so check it now.
2213 */
2214 if (vma)
2215 mm->numa_scan_offset = start;
2216 else
2217 reset_ptenuma_scan(p);
2218 up_read(&mm->mmap_sem);
2219 }
2220
2221 /*
2222 * Drive the periodic memory faults..
2223 */
2224 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2225 {
2226 struct callback_head *work = &curr->numa_work;
2227 u64 period, now;
2228
2229 /*
2230 * We don't care about NUMA placement if we don't have memory.
2231 */
2232 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2233 return;
2234
2235 /*
2236 * Using runtime rather than walltime has the dual advantage that
2237 * we (mostly) drive the selection from busy threads and that the
2238 * task needs to have done some actual work before we bother with
2239 * NUMA placement.
2240 */
2241 now = curr->se.sum_exec_runtime;
2242 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2243
2244 if (now - curr->node_stamp > period) {
2245 if (!curr->node_stamp)
2246 curr->numa_scan_period = task_scan_min(curr);
2247 curr->node_stamp += period;
2248
2249 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2250 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2251 task_work_add(curr, work, true);
2252 }
2253 }
2254 }
2255 #else
2256 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2257 {
2258 }
2259
2260 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2261 {
2262 }
2263
2264 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2265 {
2266 }
2267 #endif /* CONFIG_NUMA_BALANCING */
2268
2269 static void
2270 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2271 {
2272 update_load_add(&cfs_rq->load, se->load.weight);
2273 if (!parent_entity(se))
2274 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2275 #ifdef CONFIG_SMP
2276 if (entity_is_task(se)) {
2277 struct rq *rq = rq_of(cfs_rq);
2278
2279 account_numa_enqueue(rq, task_of(se));
2280 list_add(&se->group_node, &rq->cfs_tasks);
2281 }
2282 #endif
2283 cfs_rq->nr_running++;
2284 }
2285
2286 static void
2287 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2288 {
2289 update_load_sub(&cfs_rq->load, se->load.weight);
2290 if (!parent_entity(se))
2291 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2292 if (entity_is_task(se)) {
2293 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2294 list_del_init(&se->group_node);
2295 }
2296 cfs_rq->nr_running--;
2297 }
2298
2299 #ifdef CONFIG_FAIR_GROUP_SCHED
2300 # ifdef CONFIG_SMP
2301 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2302 {
2303 long tg_weight;
2304
2305 /*
2306 * Use this CPU's actual weight instead of the last load_contribution
2307 * to gain a more accurate current total weight. See
2308 * update_cfs_rq_load_contribution().
2309 */
2310 tg_weight = atomic_long_read(&tg->load_avg);
2311 tg_weight -= cfs_rq->tg_load_contrib;
2312 tg_weight += cfs_rq->load.weight;
2313
2314 return tg_weight;
2315 }
2316
2317 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2318 {
2319 long tg_weight, load, shares;
2320
2321 tg_weight = calc_tg_weight(tg, cfs_rq);
2322 load = cfs_rq->load.weight;
2323
2324 shares = (tg->shares * load);
2325 if (tg_weight)
2326 shares /= tg_weight;
2327
2328 if (shares < MIN_SHARES)
2329 shares = MIN_SHARES;
2330 if (shares > tg->shares)
2331 shares = tg->shares;
2332
2333 return shares;
2334 }
2335 # else /* CONFIG_SMP */
2336 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2337 {
2338 return tg->shares;
2339 }
2340 # endif /* CONFIG_SMP */
2341 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2342 unsigned long weight)
2343 {
2344 if (se->on_rq) {
2345 /* commit outstanding execution time */
2346 if (cfs_rq->curr == se)
2347 update_curr(cfs_rq);
2348 account_entity_dequeue(cfs_rq, se);
2349 }
2350
2351 update_load_set(&se->load, weight);
2352
2353 if (se->on_rq)
2354 account_entity_enqueue(cfs_rq, se);
2355 }
2356
2357 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2358
2359 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2360 {
2361 struct task_group *tg;
2362 struct sched_entity *se;
2363 long shares;
2364
2365 tg = cfs_rq->tg;
2366 se = tg->se[cpu_of(rq_of(cfs_rq))];
2367 if (!se || throttled_hierarchy(cfs_rq))
2368 return;
2369 #ifndef CONFIG_SMP
2370 if (likely(se->load.weight == tg->shares))
2371 return;
2372 #endif
2373 shares = calc_cfs_shares(cfs_rq, tg);
2374
2375 reweight_entity(cfs_rq_of(se), se, shares);
2376 }
2377 #else /* CONFIG_FAIR_GROUP_SCHED */
2378 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2379 {
2380 }
2381 #endif /* CONFIG_FAIR_GROUP_SCHED */
2382
2383 #ifdef CONFIG_SMP
2384 /*
2385 * We choose a half-life close to 1 scheduling period.
2386 * Note: The tables below are dependent on this value.
2387 */
2388 #define LOAD_AVG_PERIOD 32
2389 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2390 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2391
2392 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2393 static const u32 runnable_avg_yN_inv[] = {
2394 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2395 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2396 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2397 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2398 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2399 0x85aac367, 0x82cd8698,
2400 };
2401
2402 /*
2403 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2404 * over-estimates when re-combining.
2405 */
2406 static const u32 runnable_avg_yN_sum[] = {
2407 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2408 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2409 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2410 };
2411
2412 /*
2413 * Approximate:
2414 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2415 */
2416 static __always_inline u64 decay_load(u64 val, u64 n)
2417 {
2418 unsigned int local_n;
2419
2420 if (!n)
2421 return val;
2422 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2423 return 0;
2424
2425 /* after bounds checking we can collapse to 32-bit */
2426 local_n = n;
2427
2428 /*
2429 * As y^PERIOD = 1/2, we can combine
2430 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2431 * With a look-up table which covers y^n (n<PERIOD)
2432 *
2433 * To achieve constant time decay_load.
2434 */
2435 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2436 val >>= local_n / LOAD_AVG_PERIOD;
2437 local_n %= LOAD_AVG_PERIOD;
2438 }
2439
2440 val *= runnable_avg_yN_inv[local_n];
2441 /* We don't use SRR here since we always want to round down. */
2442 return val >> 32;
2443 }
2444
2445 /*
2446 * For updates fully spanning n periods, the contribution to runnable
2447 * average will be: \Sum 1024*y^n
2448 *
2449 * We can compute this reasonably efficiently by combining:
2450 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2451 */
2452 static u32 __compute_runnable_contrib(u64 n)
2453 {
2454 u32 contrib = 0;
2455
2456 if (likely(n <= LOAD_AVG_PERIOD))
2457 return runnable_avg_yN_sum[n];
2458 else if (unlikely(n >= LOAD_AVG_MAX_N))
2459 return LOAD_AVG_MAX;
2460
2461 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2462 do {
2463 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2464 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2465
2466 n -= LOAD_AVG_PERIOD;
2467 } while (n > LOAD_AVG_PERIOD);
2468
2469 contrib = decay_load(contrib, n);
2470 return contrib + runnable_avg_yN_sum[n];
2471 }
2472
2473 /*
2474 * We can represent the historical contribution to runnable average as the
2475 * coefficients of a geometric series. To do this we sub-divide our runnable
2476 * history into segments of approximately 1ms (1024us); label the segment that
2477 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2478 *
2479 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2480 * p0 p1 p2
2481 * (now) (~1ms ago) (~2ms ago)
2482 *
2483 * Let u_i denote the fraction of p_i that the entity was runnable.
2484 *
2485 * We then designate the fractions u_i as our co-efficients, yielding the
2486 * following representation of historical load:
2487 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2488 *
2489 * We choose y based on the with of a reasonably scheduling period, fixing:
2490 * y^32 = 0.5
2491 *
2492 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2493 * approximately half as much as the contribution to load within the last ms
2494 * (u_0).
2495 *
2496 * When a period "rolls over" and we have new u_0`, multiplying the previous
2497 * sum again by y is sufficient to update:
2498 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2499 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2500 */
2501 static __always_inline int __update_entity_runnable_avg(u64 now,
2502 struct sched_avg *sa,
2503 int runnable)
2504 {
2505 u64 delta, periods;
2506 u32 runnable_contrib;
2507 int delta_w, decayed = 0;
2508
2509 delta = now - sa->last_runnable_update;
2510 /*
2511 * This should only happen when time goes backwards, which it
2512 * unfortunately does during sched clock init when we swap over to TSC.
2513 */
2514 if ((s64)delta < 0) {
2515 sa->last_runnable_update = now;
2516 return 0;
2517 }
2518
2519 /*
2520 * Use 1024ns as the unit of measurement since it's a reasonable
2521 * approximation of 1us and fast to compute.
2522 */
2523 delta >>= 10;
2524 if (!delta)
2525 return 0;
2526 sa->last_runnable_update = now;
2527
2528 /* delta_w is the amount already accumulated against our next period */
2529 delta_w = sa->runnable_avg_period % 1024;
2530 if (delta + delta_w >= 1024) {
2531 /* period roll-over */
2532 decayed = 1;
2533
2534 /*
2535 * Now that we know we're crossing a period boundary, figure
2536 * out how much from delta we need to complete the current
2537 * period and accrue it.
2538 */
2539 delta_w = 1024 - delta_w;
2540 if (runnable)
2541 sa->runnable_avg_sum += delta_w;
2542 sa->runnable_avg_period += delta_w;
2543
2544 delta -= delta_w;
2545
2546 /* Figure out how many additional periods this update spans */
2547 periods = delta / 1024;
2548 delta %= 1024;
2549
2550 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2551 periods + 1);
2552 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2553 periods + 1);
2554
2555 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2556 runnable_contrib = __compute_runnable_contrib(periods);
2557 if (runnable)
2558 sa->runnable_avg_sum += runnable_contrib;
2559 sa->runnable_avg_period += runnable_contrib;
2560 }
2561
2562 /* Remainder of delta accrued against u_0` */
2563 if (runnable)
2564 sa->runnable_avg_sum += delta;
2565 sa->runnable_avg_period += delta;
2566
2567 return decayed;
2568 }
2569
2570 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2571 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2572 {
2573 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2574 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2575
2576 decays -= se->avg.decay_count;
2577 if (!decays)
2578 return 0;
2579
2580 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2581 se->avg.decay_count = 0;
2582
2583 return decays;
2584 }
2585
2586 #ifdef CONFIG_FAIR_GROUP_SCHED
2587 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2588 int force_update)
2589 {
2590 struct task_group *tg = cfs_rq->tg;
2591 long tg_contrib;
2592
2593 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2594 tg_contrib -= cfs_rq->tg_load_contrib;
2595
2596 if (!tg_contrib)
2597 return;
2598
2599 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2600 atomic_long_add(tg_contrib, &tg->load_avg);
2601 cfs_rq->tg_load_contrib += tg_contrib;
2602 }
2603 }
2604
2605 /*
2606 * Aggregate cfs_rq runnable averages into an equivalent task_group
2607 * representation for computing load contributions.
2608 */
2609 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2610 struct cfs_rq *cfs_rq)
2611 {
2612 struct task_group *tg = cfs_rq->tg;
2613 long contrib;
2614
2615 /* The fraction of a cpu used by this cfs_rq */
2616 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2617 sa->runnable_avg_period + 1);
2618 contrib -= cfs_rq->tg_runnable_contrib;
2619
2620 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2621 atomic_add(contrib, &tg->runnable_avg);
2622 cfs_rq->tg_runnable_contrib += contrib;
2623 }
2624 }
2625
2626 static inline void __update_group_entity_contrib(struct sched_entity *se)
2627 {
2628 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2629 struct task_group *tg = cfs_rq->tg;
2630 int runnable_avg;
2631
2632 u64 contrib;
2633
2634 contrib = cfs_rq->tg_load_contrib * tg->shares;
2635 se->avg.load_avg_contrib = div_u64(contrib,
2636 atomic_long_read(&tg->load_avg) + 1);
2637
2638 /*
2639 * For group entities we need to compute a correction term in the case
2640 * that they are consuming <1 cpu so that we would contribute the same
2641 * load as a task of equal weight.
2642 *
2643 * Explicitly co-ordinating this measurement would be expensive, but
2644 * fortunately the sum of each cpus contribution forms a usable
2645 * lower-bound on the true value.
2646 *
2647 * Consider the aggregate of 2 contributions. Either they are disjoint
2648 * (and the sum represents true value) or they are disjoint and we are
2649 * understating by the aggregate of their overlap.
2650 *
2651 * Extending this to N cpus, for a given overlap, the maximum amount we
2652 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2653 * cpus that overlap for this interval and w_i is the interval width.
2654 *
2655 * On a small machine; the first term is well-bounded which bounds the
2656 * total error since w_i is a subset of the period. Whereas on a
2657 * larger machine, while this first term can be larger, if w_i is the
2658 * of consequential size guaranteed to see n_i*w_i quickly converge to
2659 * our upper bound of 1-cpu.
2660 */
2661 runnable_avg = atomic_read(&tg->runnable_avg);
2662 if (runnable_avg < NICE_0_LOAD) {
2663 se->avg.load_avg_contrib *= runnable_avg;
2664 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2665 }
2666 }
2667
2668 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2669 {
2670 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2671 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2672 }
2673 #else /* CONFIG_FAIR_GROUP_SCHED */
2674 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2675 int force_update) {}
2676 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2677 struct cfs_rq *cfs_rq) {}
2678 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2679 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2680 #endif /* CONFIG_FAIR_GROUP_SCHED */
2681
2682 static inline void __update_task_entity_contrib(struct sched_entity *se)
2683 {
2684 u32 contrib;
2685
2686 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2687 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2688 contrib /= (se->avg.runnable_avg_period + 1);
2689 se->avg.load_avg_contrib = scale_load(contrib);
2690 }
2691
2692 /* Compute the current contribution to load_avg by se, return any delta */
2693 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2694 {
2695 long old_contrib = se->avg.load_avg_contrib;
2696
2697 if (entity_is_task(se)) {
2698 __update_task_entity_contrib(se);
2699 } else {
2700 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2701 __update_group_entity_contrib(se);
2702 }
2703
2704 return se->avg.load_avg_contrib - old_contrib;
2705 }
2706
2707 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2708 long load_contrib)
2709 {
2710 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2711 cfs_rq->blocked_load_avg -= load_contrib;
2712 else
2713 cfs_rq->blocked_load_avg = 0;
2714 }
2715
2716 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2717
2718 /* Update a sched_entity's runnable average */
2719 static inline void update_entity_load_avg(struct sched_entity *se,
2720 int update_cfs_rq)
2721 {
2722 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2723 long contrib_delta;
2724 u64 now;
2725
2726 /*
2727 * For a group entity we need to use their owned cfs_rq_clock_task() in
2728 * case they are the parent of a throttled hierarchy.
2729 */
2730 if (entity_is_task(se))
2731 now = cfs_rq_clock_task(cfs_rq);
2732 else
2733 now = cfs_rq_clock_task(group_cfs_rq(se));
2734
2735 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2736 return;
2737
2738 contrib_delta = __update_entity_load_avg_contrib(se);
2739
2740 if (!update_cfs_rq)
2741 return;
2742
2743 if (se->on_rq)
2744 cfs_rq->runnable_load_avg += contrib_delta;
2745 else
2746 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2747 }
2748
2749 /*
2750 * Decay the load contributed by all blocked children and account this so that
2751 * their contribution may appropriately discounted when they wake up.
2752 */
2753 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2754 {
2755 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2756 u64 decays;
2757
2758 decays = now - cfs_rq->last_decay;
2759 if (!decays && !force_update)
2760 return;
2761
2762 if (atomic_long_read(&cfs_rq->removed_load)) {
2763 unsigned long removed_load;
2764 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2765 subtract_blocked_load_contrib(cfs_rq, removed_load);
2766 }
2767
2768 if (decays) {
2769 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2770 decays);
2771 atomic64_add(decays, &cfs_rq->decay_counter);
2772 cfs_rq->last_decay = now;
2773 }
2774
2775 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2776 }
2777
2778 /* Add the load generated by se into cfs_rq's child load-average */
2779 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2780 struct sched_entity *se,
2781 int wakeup)
2782 {
2783 /*
2784 * We track migrations using entity decay_count <= 0, on a wake-up
2785 * migration we use a negative decay count to track the remote decays
2786 * accumulated while sleeping.
2787 *
2788 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2789 * are seen by enqueue_entity_load_avg() as a migration with an already
2790 * constructed load_avg_contrib.
2791 */
2792 if (unlikely(se->avg.decay_count <= 0)) {
2793 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2794 if (se->avg.decay_count) {
2795 /*
2796 * In a wake-up migration we have to approximate the
2797 * time sleeping. This is because we can't synchronize
2798 * clock_task between the two cpus, and it is not
2799 * guaranteed to be read-safe. Instead, we can
2800 * approximate this using our carried decays, which are
2801 * explicitly atomically readable.
2802 */
2803 se->avg.last_runnable_update -= (-se->avg.decay_count)
2804 << 20;
2805 update_entity_load_avg(se, 0);
2806 /* Indicate that we're now synchronized and on-rq */
2807 se->avg.decay_count = 0;
2808 }
2809 wakeup = 0;
2810 } else {
2811 __synchronize_entity_decay(se);
2812 }
2813
2814 /* migrated tasks did not contribute to our blocked load */
2815 if (wakeup) {
2816 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2817 update_entity_load_avg(se, 0);
2818 }
2819
2820 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2821 /* we force update consideration on load-balancer moves */
2822 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2823 }
2824
2825 /*
2826 * Remove se's load from this cfs_rq child load-average, if the entity is
2827 * transitioning to a blocked state we track its projected decay using
2828 * blocked_load_avg.
2829 */
2830 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2831 struct sched_entity *se,
2832 int sleep)
2833 {
2834 update_entity_load_avg(se, 1);
2835 /* we force update consideration on load-balancer moves */
2836 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2837
2838 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2839 if (sleep) {
2840 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2841 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2842 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2843 }
2844
2845 /*
2846 * Update the rq's load with the elapsed running time before entering
2847 * idle. if the last scheduled task is not a CFS task, idle_enter will
2848 * be the only way to update the runnable statistic.
2849 */
2850 void idle_enter_fair(struct rq *this_rq)
2851 {
2852 update_rq_runnable_avg(this_rq, 1);
2853 }
2854
2855 /*
2856 * Update the rq's load with the elapsed idle time before a task is
2857 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2858 * be the only way to update the runnable statistic.
2859 */
2860 void idle_exit_fair(struct rq *this_rq)
2861 {
2862 update_rq_runnable_avg(this_rq, 0);
2863 }
2864
2865 static int idle_balance(struct rq *this_rq);
2866
2867 #else /* CONFIG_SMP */
2868
2869 static inline void update_entity_load_avg(struct sched_entity *se,
2870 int update_cfs_rq) {}
2871 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2872 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2873 struct sched_entity *se,
2874 int wakeup) {}
2875 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2876 struct sched_entity *se,
2877 int sleep) {}
2878 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2879 int force_update) {}
2880
2881 static inline int idle_balance(struct rq *rq)
2882 {
2883 return 0;
2884 }
2885
2886 #endif /* CONFIG_SMP */
2887
2888 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2889 {
2890 #ifdef CONFIG_SCHEDSTATS
2891 struct task_struct *tsk = NULL;
2892
2893 if (entity_is_task(se))
2894 tsk = task_of(se);
2895
2896 if (se->statistics.sleep_start) {
2897 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2898
2899 if ((s64)delta < 0)
2900 delta = 0;
2901
2902 if (unlikely(delta > se->statistics.sleep_max))
2903 se->statistics.sleep_max = delta;
2904
2905 se->statistics.sleep_start = 0;
2906 se->statistics.sum_sleep_runtime += delta;
2907
2908 if (tsk) {
2909 account_scheduler_latency(tsk, delta >> 10, 1);
2910 trace_sched_stat_sleep(tsk, delta);
2911 }
2912 }
2913 if (se->statistics.block_start) {
2914 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2915
2916 if ((s64)delta < 0)
2917 delta = 0;
2918
2919 if (unlikely(delta > se->statistics.block_max))
2920 se->statistics.block_max = delta;
2921
2922 se->statistics.block_start = 0;
2923 se->statistics.sum_sleep_runtime += delta;
2924
2925 if (tsk) {
2926 if (tsk->in_iowait) {
2927 se->statistics.iowait_sum += delta;
2928 se->statistics.iowait_count++;
2929 trace_sched_stat_iowait(tsk, delta);
2930 }
2931
2932 trace_sched_stat_blocked(tsk, delta);
2933
2934 /*
2935 * Blocking time is in units of nanosecs, so shift by
2936 * 20 to get a milliseconds-range estimation of the
2937 * amount of time that the task spent sleeping:
2938 */
2939 if (unlikely(prof_on == SLEEP_PROFILING)) {
2940 profile_hits(SLEEP_PROFILING,
2941 (void *)get_wchan(tsk),
2942 delta >> 20);
2943 }
2944 account_scheduler_latency(tsk, delta >> 10, 0);
2945 }
2946 }
2947 #endif
2948 }
2949
2950 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2951 {
2952 #ifdef CONFIG_SCHED_DEBUG
2953 s64 d = se->vruntime - cfs_rq->min_vruntime;
2954
2955 if (d < 0)
2956 d = -d;
2957
2958 if (d > 3*sysctl_sched_latency)
2959 schedstat_inc(cfs_rq, nr_spread_over);
2960 #endif
2961 }
2962
2963 static void
2964 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2965 {
2966 u64 vruntime = cfs_rq->min_vruntime;
2967
2968 /*
2969 * The 'current' period is already promised to the current tasks,
2970 * however the extra weight of the new task will slow them down a
2971 * little, place the new task so that it fits in the slot that
2972 * stays open at the end.
2973 */
2974 if (initial && sched_feat(START_DEBIT))
2975 vruntime += sched_vslice(cfs_rq, se);
2976
2977 /* sleeps up to a single latency don't count. */
2978 if (!initial) {
2979 unsigned long thresh = sysctl_sched_latency;
2980
2981 /*
2982 * Halve their sleep time's effect, to allow
2983 * for a gentler effect of sleepers:
2984 */
2985 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2986 thresh >>= 1;
2987
2988 vruntime -= thresh;
2989 }
2990
2991 /* ensure we never gain time by being placed backwards. */
2992 se->vruntime = max_vruntime(se->vruntime, vruntime);
2993 }
2994
2995 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2996
2997 static void
2998 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2999 {
3000 /*
3001 * Update the normalized vruntime before updating min_vruntime
3002 * through calling update_curr().
3003 */
3004 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3005 se->vruntime += cfs_rq->min_vruntime;
3006
3007 /*
3008 * Update run-time statistics of the 'current'.
3009 */
3010 update_curr(cfs_rq);
3011 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3012 account_entity_enqueue(cfs_rq, se);
3013 update_cfs_shares(cfs_rq);
3014
3015 if (flags & ENQUEUE_WAKEUP) {
3016 place_entity(cfs_rq, se, 0);
3017 enqueue_sleeper(cfs_rq, se);
3018 }
3019
3020 update_stats_enqueue(cfs_rq, se);
3021 check_spread(cfs_rq, se);
3022 if (se != cfs_rq->curr)
3023 __enqueue_entity(cfs_rq, se);
3024 se->on_rq = 1;
3025
3026 if (cfs_rq->nr_running == 1) {
3027 list_add_leaf_cfs_rq(cfs_rq);
3028 check_enqueue_throttle(cfs_rq);
3029 }
3030 }
3031
3032 static void __clear_buddies_last(struct sched_entity *se)
3033 {
3034 for_each_sched_entity(se) {
3035 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3036 if (cfs_rq->last != se)
3037 break;
3038
3039 cfs_rq->last = NULL;
3040 }
3041 }
3042
3043 static void __clear_buddies_next(struct sched_entity *se)
3044 {
3045 for_each_sched_entity(se) {
3046 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3047 if (cfs_rq->next != se)
3048 break;
3049
3050 cfs_rq->next = NULL;
3051 }
3052 }
3053
3054 static void __clear_buddies_skip(struct sched_entity *se)
3055 {
3056 for_each_sched_entity(se) {
3057 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3058 if (cfs_rq->skip != se)
3059 break;
3060
3061 cfs_rq->skip = NULL;
3062 }
3063 }
3064
3065 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3066 {
3067 if (cfs_rq->last == se)
3068 __clear_buddies_last(se);
3069
3070 if (cfs_rq->next == se)
3071 __clear_buddies_next(se);
3072
3073 if (cfs_rq->skip == se)
3074 __clear_buddies_skip(se);
3075 }
3076
3077 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3078
3079 static void
3080 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3081 {
3082 /*
3083 * Update run-time statistics of the 'current'.
3084 */
3085 update_curr(cfs_rq);
3086 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3087
3088 update_stats_dequeue(cfs_rq, se);
3089 if (flags & DEQUEUE_SLEEP) {
3090 #ifdef CONFIG_SCHEDSTATS
3091 if (entity_is_task(se)) {
3092 struct task_struct *tsk = task_of(se);
3093
3094 if (tsk->state & TASK_INTERRUPTIBLE)
3095 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3096 if (tsk->state & TASK_UNINTERRUPTIBLE)
3097 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3098 }
3099 #endif
3100 }
3101
3102 clear_buddies(cfs_rq, se);
3103
3104 if (se != cfs_rq->curr)
3105 __dequeue_entity(cfs_rq, se);
3106 se->on_rq = 0;
3107 account_entity_dequeue(cfs_rq, se);
3108
3109 /*
3110 * Normalize the entity after updating the min_vruntime because the
3111 * update can refer to the ->curr item and we need to reflect this
3112 * movement in our normalized position.
3113 */
3114 if (!(flags & DEQUEUE_SLEEP))
3115 se->vruntime -= cfs_rq->min_vruntime;
3116
3117 /* return excess runtime on last dequeue */
3118 return_cfs_rq_runtime(cfs_rq);
3119
3120 update_min_vruntime(cfs_rq);
3121 update_cfs_shares(cfs_rq);
3122 }
3123
3124 /*
3125 * Preempt the current task with a newly woken task if needed:
3126 */
3127 static void
3128 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3129 {
3130 unsigned long ideal_runtime, delta_exec;
3131 struct sched_entity *se;
3132 s64 delta;
3133
3134 ideal_runtime = sched_slice(cfs_rq, curr);
3135 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3136 if (delta_exec > ideal_runtime) {
3137 resched_curr(rq_of(cfs_rq));
3138 /*
3139 * The current task ran long enough, ensure it doesn't get
3140 * re-elected due to buddy favours.
3141 */
3142 clear_buddies(cfs_rq, curr);
3143 return;
3144 }
3145
3146 /*
3147 * Ensure that a task that missed wakeup preemption by a
3148 * narrow margin doesn't have to wait for a full slice.
3149 * This also mitigates buddy induced latencies under load.
3150 */
3151 if (delta_exec < sysctl_sched_min_granularity)
3152 return;
3153
3154 se = __pick_first_entity(cfs_rq);
3155 delta = curr->vruntime - se->vruntime;
3156
3157 if (delta < 0)
3158 return;
3159
3160 if (delta > ideal_runtime)
3161 resched_curr(rq_of(cfs_rq));
3162 }
3163
3164 static void
3165 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3166 {
3167 /* 'current' is not kept within the tree. */
3168 if (se->on_rq) {
3169 /*
3170 * Any task has to be enqueued before it get to execute on
3171 * a CPU. So account for the time it spent waiting on the
3172 * runqueue.
3173 */
3174 update_stats_wait_end(cfs_rq, se);
3175 __dequeue_entity(cfs_rq, se);
3176 }
3177
3178 update_stats_curr_start(cfs_rq, se);
3179 cfs_rq->curr = se;
3180 #ifdef CONFIG_SCHEDSTATS
3181 /*
3182 * Track our maximum slice length, if the CPU's load is at
3183 * least twice that of our own weight (i.e. dont track it
3184 * when there are only lesser-weight tasks around):
3185 */
3186 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3187 se->statistics.slice_max = max(se->statistics.slice_max,
3188 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3189 }
3190 #endif
3191 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3192 }
3193
3194 static int
3195 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3196
3197 /*
3198 * Pick the next process, keeping these things in mind, in this order:
3199 * 1) keep things fair between processes/task groups
3200 * 2) pick the "next" process, since someone really wants that to run
3201 * 3) pick the "last" process, for cache locality
3202 * 4) do not run the "skip" process, if something else is available
3203 */
3204 static struct sched_entity *
3205 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3206 {
3207 struct sched_entity *left = __pick_first_entity(cfs_rq);
3208 struct sched_entity *se;
3209
3210 /*
3211 * If curr is set we have to see if its left of the leftmost entity
3212 * still in the tree, provided there was anything in the tree at all.
3213 */
3214 if (!left || (curr && entity_before(curr, left)))
3215 left = curr;
3216
3217 se = left; /* ideally we run the leftmost entity */
3218
3219 /*
3220 * Avoid running the skip buddy, if running something else can
3221 * be done without getting too unfair.
3222 */
3223 if (cfs_rq->skip == se) {
3224 struct sched_entity *second;
3225
3226 if (se == curr) {
3227 second = __pick_first_entity(cfs_rq);
3228 } else {
3229 second = __pick_next_entity(se);
3230 if (!second || (curr && entity_before(curr, second)))
3231 second = curr;
3232 }
3233
3234 if (second && wakeup_preempt_entity(second, left) < 1)
3235 se = second;
3236 }
3237
3238 /*
3239 * Prefer last buddy, try to return the CPU to a preempted task.
3240 */
3241 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3242 se = cfs_rq->last;
3243
3244 /*
3245 * Someone really wants this to run. If it's not unfair, run it.
3246 */
3247 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3248 se = cfs_rq->next;
3249
3250 clear_buddies(cfs_rq, se);
3251
3252 return se;
3253 }
3254
3255 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3256
3257 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3258 {
3259 /*
3260 * If still on the runqueue then deactivate_task()
3261 * was not called and update_curr() has to be done:
3262 */
3263 if (prev->on_rq)
3264 update_curr(cfs_rq);
3265
3266 /* throttle cfs_rqs exceeding runtime */
3267 check_cfs_rq_runtime(cfs_rq);
3268
3269 check_spread(cfs_rq, prev);
3270 if (prev->on_rq) {
3271 update_stats_wait_start(cfs_rq, prev);
3272 /* Put 'current' back into the tree. */
3273 __enqueue_entity(cfs_rq, prev);
3274 /* in !on_rq case, update occurred at dequeue */
3275 update_entity_load_avg(prev, 1);
3276 }
3277 cfs_rq->curr = NULL;
3278 }
3279
3280 static void
3281 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3282 {
3283 /*
3284 * Update run-time statistics of the 'current'.
3285 */
3286 update_curr(cfs_rq);
3287
3288 /*
3289 * Ensure that runnable average is periodically updated.
3290 */
3291 update_entity_load_avg(curr, 1);
3292 update_cfs_rq_blocked_load(cfs_rq, 1);
3293 update_cfs_shares(cfs_rq);
3294
3295 #ifdef CONFIG_SCHED_HRTICK
3296 /*
3297 * queued ticks are scheduled to match the slice, so don't bother
3298 * validating it and just reschedule.
3299 */
3300 if (queued) {
3301 resched_curr(rq_of(cfs_rq));
3302 return;
3303 }
3304 /*
3305 * don't let the period tick interfere with the hrtick preemption
3306 */
3307 if (!sched_feat(DOUBLE_TICK) &&
3308 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3309 return;
3310 #endif
3311
3312 if (cfs_rq->nr_running > 1)
3313 check_preempt_tick(cfs_rq, curr);
3314 }
3315
3316
3317 /**************************************************
3318 * CFS bandwidth control machinery
3319 */
3320
3321 #ifdef CONFIG_CFS_BANDWIDTH
3322
3323 #ifdef HAVE_JUMP_LABEL
3324 static struct static_key __cfs_bandwidth_used;
3325
3326 static inline bool cfs_bandwidth_used(void)
3327 {
3328 return static_key_false(&__cfs_bandwidth_used);
3329 }
3330
3331 void cfs_bandwidth_usage_inc(void)
3332 {
3333 static_key_slow_inc(&__cfs_bandwidth_used);
3334 }
3335
3336 void cfs_bandwidth_usage_dec(void)
3337 {
3338 static_key_slow_dec(&__cfs_bandwidth_used);
3339 }
3340 #else /* HAVE_JUMP_LABEL */
3341 static bool cfs_bandwidth_used(void)
3342 {
3343 return true;
3344 }
3345
3346 void cfs_bandwidth_usage_inc(void) {}
3347 void cfs_bandwidth_usage_dec(void) {}
3348 #endif /* HAVE_JUMP_LABEL */
3349
3350 /*
3351 * default period for cfs group bandwidth.
3352 * default: 0.1s, units: nanoseconds
3353 */
3354 static inline u64 default_cfs_period(void)
3355 {
3356 return 100000000ULL;
3357 }
3358
3359 static inline u64 sched_cfs_bandwidth_slice(void)
3360 {
3361 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3362 }
3363
3364 /*
3365 * Replenish runtime according to assigned quota and update expiration time.
3366 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3367 * additional synchronization around rq->lock.
3368 *
3369 * requires cfs_b->lock
3370 */
3371 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3372 {
3373 u64 now;
3374
3375 if (cfs_b->quota == RUNTIME_INF)
3376 return;
3377
3378 now = sched_clock_cpu(smp_processor_id());
3379 cfs_b->runtime = cfs_b->quota;
3380 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3381 }
3382
3383 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3384 {
3385 return &tg->cfs_bandwidth;
3386 }
3387
3388 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3389 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3390 {
3391 if (unlikely(cfs_rq->throttle_count))
3392 return cfs_rq->throttled_clock_task;
3393
3394 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3395 }
3396
3397 /* returns 0 on failure to allocate runtime */
3398 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3399 {
3400 struct task_group *tg = cfs_rq->tg;
3401 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3402 u64 amount = 0, min_amount, expires;
3403
3404 /* note: this is a positive sum as runtime_remaining <= 0 */
3405 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3406
3407 raw_spin_lock(&cfs_b->lock);
3408 if (cfs_b->quota == RUNTIME_INF)
3409 amount = min_amount;
3410 else {
3411 /*
3412 * If the bandwidth pool has become inactive, then at least one
3413 * period must have elapsed since the last consumption.
3414 * Refresh the global state and ensure bandwidth timer becomes
3415 * active.
3416 */
3417 if (!cfs_b->timer_active) {
3418 __refill_cfs_bandwidth_runtime(cfs_b);
3419 __start_cfs_bandwidth(cfs_b, false);
3420 }
3421
3422 if (cfs_b->runtime > 0) {
3423 amount = min(cfs_b->runtime, min_amount);
3424 cfs_b->runtime -= amount;
3425 cfs_b->idle = 0;
3426 }
3427 }
3428 expires = cfs_b->runtime_expires;
3429 raw_spin_unlock(&cfs_b->lock);
3430
3431 cfs_rq->runtime_remaining += amount;
3432 /*
3433 * we may have advanced our local expiration to account for allowed
3434 * spread between our sched_clock and the one on which runtime was
3435 * issued.
3436 */
3437 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3438 cfs_rq->runtime_expires = expires;
3439
3440 return cfs_rq->runtime_remaining > 0;
3441 }
3442
3443 /*
3444 * Note: This depends on the synchronization provided by sched_clock and the
3445 * fact that rq->clock snapshots this value.
3446 */
3447 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3448 {
3449 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3450
3451 /* if the deadline is ahead of our clock, nothing to do */
3452 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3453 return;
3454
3455 if (cfs_rq->runtime_remaining < 0)
3456 return;
3457
3458 /*
3459 * If the local deadline has passed we have to consider the
3460 * possibility that our sched_clock is 'fast' and the global deadline
3461 * has not truly expired.
3462 *
3463 * Fortunately we can check determine whether this the case by checking
3464 * whether the global deadline has advanced. It is valid to compare
3465 * cfs_b->runtime_expires without any locks since we only care about
3466 * exact equality, so a partial write will still work.
3467 */
3468
3469 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3470 /* extend local deadline, drift is bounded above by 2 ticks */
3471 cfs_rq->runtime_expires += TICK_NSEC;
3472 } else {
3473 /* global deadline is ahead, expiration has passed */
3474 cfs_rq->runtime_remaining = 0;
3475 }
3476 }
3477
3478 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3479 {
3480 /* dock delta_exec before expiring quota (as it could span periods) */
3481 cfs_rq->runtime_remaining -= delta_exec;
3482 expire_cfs_rq_runtime(cfs_rq);
3483
3484 if (likely(cfs_rq->runtime_remaining > 0))
3485 return;
3486
3487 /*
3488 * if we're unable to extend our runtime we resched so that the active
3489 * hierarchy can be throttled
3490 */
3491 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3492 resched_curr(rq_of(cfs_rq));
3493 }
3494
3495 static __always_inline
3496 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3497 {
3498 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3499 return;
3500
3501 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3502 }
3503
3504 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3505 {
3506 return cfs_bandwidth_used() && cfs_rq->throttled;
3507 }
3508
3509 /* check whether cfs_rq, or any parent, is throttled */
3510 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3511 {
3512 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3513 }
3514
3515 /*
3516 * Ensure that neither of the group entities corresponding to src_cpu or
3517 * dest_cpu are members of a throttled hierarchy when performing group
3518 * load-balance operations.
3519 */
3520 static inline int throttled_lb_pair(struct task_group *tg,
3521 int src_cpu, int dest_cpu)
3522 {
3523 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3524
3525 src_cfs_rq = tg->cfs_rq[src_cpu];
3526 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3527
3528 return throttled_hierarchy(src_cfs_rq) ||
3529 throttled_hierarchy(dest_cfs_rq);
3530 }
3531
3532 /* updated child weight may affect parent so we have to do this bottom up */
3533 static int tg_unthrottle_up(struct task_group *tg, void *data)
3534 {
3535 struct rq *rq = data;
3536 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3537
3538 cfs_rq->throttle_count--;
3539 #ifdef CONFIG_SMP
3540 if (!cfs_rq->throttle_count) {
3541 /* adjust cfs_rq_clock_task() */
3542 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3543 cfs_rq->throttled_clock_task;
3544 }
3545 #endif
3546
3547 return 0;
3548 }
3549
3550 static int tg_throttle_down(struct task_group *tg, void *data)
3551 {
3552 struct rq *rq = data;
3553 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3554
3555 /* group is entering throttled state, stop time */
3556 if (!cfs_rq->throttle_count)
3557 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3558 cfs_rq->throttle_count++;
3559
3560 return 0;
3561 }
3562
3563 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3564 {
3565 struct rq *rq = rq_of(cfs_rq);
3566 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3567 struct sched_entity *se;
3568 long task_delta, dequeue = 1;
3569
3570 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3571
3572 /* freeze hierarchy runnable averages while throttled */
3573 rcu_read_lock();
3574 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3575 rcu_read_unlock();
3576
3577 task_delta = cfs_rq->h_nr_running;
3578 for_each_sched_entity(se) {
3579 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3580 /* throttled entity or throttle-on-deactivate */
3581 if (!se->on_rq)
3582 break;
3583
3584 if (dequeue)
3585 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3586 qcfs_rq->h_nr_running -= task_delta;
3587
3588 if (qcfs_rq->load.weight)
3589 dequeue = 0;
3590 }
3591
3592 if (!se)
3593 sub_nr_running(rq, task_delta);
3594
3595 cfs_rq->throttled = 1;
3596 cfs_rq->throttled_clock = rq_clock(rq);
3597 raw_spin_lock(&cfs_b->lock);
3598 /*
3599 * Add to the _head_ of the list, so that an already-started
3600 * distribute_cfs_runtime will not see us
3601 */
3602 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3603 if (!cfs_b->timer_active)
3604 __start_cfs_bandwidth(cfs_b, false);
3605 raw_spin_unlock(&cfs_b->lock);
3606 }
3607
3608 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3609 {
3610 struct rq *rq = rq_of(cfs_rq);
3611 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3612 struct sched_entity *se;
3613 int enqueue = 1;
3614 long task_delta;
3615
3616 se = cfs_rq->tg->se[cpu_of(rq)];
3617
3618 cfs_rq->throttled = 0;
3619
3620 update_rq_clock(rq);
3621
3622 raw_spin_lock(&cfs_b->lock);
3623 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3624 list_del_rcu(&cfs_rq->throttled_list);
3625 raw_spin_unlock(&cfs_b->lock);
3626
3627 /* update hierarchical throttle state */
3628 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3629
3630 if (!cfs_rq->load.weight)
3631 return;
3632
3633 task_delta = cfs_rq->h_nr_running;
3634 for_each_sched_entity(se) {
3635 if (se->on_rq)
3636 enqueue = 0;
3637
3638 cfs_rq = cfs_rq_of(se);
3639 if (enqueue)
3640 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3641 cfs_rq->h_nr_running += task_delta;
3642
3643 if (cfs_rq_throttled(cfs_rq))
3644 break;
3645 }
3646
3647 if (!se)
3648 add_nr_running(rq, task_delta);
3649
3650 /* determine whether we need to wake up potentially idle cpu */
3651 if (rq->curr == rq->idle && rq->cfs.nr_running)
3652 resched_curr(rq);
3653 }
3654
3655 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3656 u64 remaining, u64 expires)
3657 {
3658 struct cfs_rq *cfs_rq;
3659 u64 runtime;
3660 u64 starting_runtime = remaining;
3661
3662 rcu_read_lock();
3663 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3664 throttled_list) {
3665 struct rq *rq = rq_of(cfs_rq);
3666
3667 raw_spin_lock(&rq->lock);
3668 if (!cfs_rq_throttled(cfs_rq))
3669 goto next;
3670
3671 runtime = -cfs_rq->runtime_remaining + 1;
3672 if (runtime > remaining)
3673 runtime = remaining;
3674 remaining -= runtime;
3675
3676 cfs_rq->runtime_remaining += runtime;
3677 cfs_rq->runtime_expires = expires;
3678
3679 /* we check whether we're throttled above */
3680 if (cfs_rq->runtime_remaining > 0)
3681 unthrottle_cfs_rq(cfs_rq);
3682
3683 next:
3684 raw_spin_unlock(&rq->lock);
3685
3686 if (!remaining)
3687 break;
3688 }
3689 rcu_read_unlock();
3690
3691 return starting_runtime - remaining;
3692 }
3693
3694 /*
3695 * Responsible for refilling a task_group's bandwidth and unthrottling its
3696 * cfs_rqs as appropriate. If there has been no activity within the last
3697 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3698 * used to track this state.
3699 */
3700 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3701 {
3702 u64 runtime, runtime_expires;
3703 int throttled;
3704
3705 /* no need to continue the timer with no bandwidth constraint */
3706 if (cfs_b->quota == RUNTIME_INF)
3707 goto out_deactivate;
3708
3709 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3710 cfs_b->nr_periods += overrun;
3711
3712 /*
3713 * idle depends on !throttled (for the case of a large deficit), and if
3714 * we're going inactive then everything else can be deferred
3715 */
3716 if (cfs_b->idle && !throttled)
3717 goto out_deactivate;
3718
3719 /*
3720 * if we have relooped after returning idle once, we need to update our
3721 * status as actually running, so that other cpus doing
3722 * __start_cfs_bandwidth will stop trying to cancel us.
3723 */
3724 cfs_b->timer_active = 1;
3725
3726 __refill_cfs_bandwidth_runtime(cfs_b);
3727
3728 if (!throttled) {
3729 /* mark as potentially idle for the upcoming period */
3730 cfs_b->idle = 1;
3731 return 0;
3732 }
3733
3734 /* account preceding periods in which throttling occurred */
3735 cfs_b->nr_throttled += overrun;
3736
3737 runtime_expires = cfs_b->runtime_expires;
3738
3739 /*
3740 * This check is repeated as we are holding onto the new bandwidth while
3741 * we unthrottle. This can potentially race with an unthrottled group
3742 * trying to acquire new bandwidth from the global pool. This can result
3743 * in us over-using our runtime if it is all used during this loop, but
3744 * only by limited amounts in that extreme case.
3745 */
3746 while (throttled && cfs_b->runtime > 0) {
3747 runtime = cfs_b->runtime;
3748 raw_spin_unlock(&cfs_b->lock);
3749 /* we can't nest cfs_b->lock while distributing bandwidth */
3750 runtime = distribute_cfs_runtime(cfs_b, runtime,
3751 runtime_expires);
3752 raw_spin_lock(&cfs_b->lock);
3753
3754 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3755
3756 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3757 }
3758
3759 /*
3760 * While we are ensured activity in the period following an
3761 * unthrottle, this also covers the case in which the new bandwidth is
3762 * insufficient to cover the existing bandwidth deficit. (Forcing the
3763 * timer to remain active while there are any throttled entities.)
3764 */
3765 cfs_b->idle = 0;
3766
3767 return 0;
3768
3769 out_deactivate:
3770 cfs_b->timer_active = 0;
3771 return 1;
3772 }
3773
3774 /* a cfs_rq won't donate quota below this amount */
3775 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3776 /* minimum remaining period time to redistribute slack quota */
3777 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3778 /* how long we wait to gather additional slack before distributing */
3779 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3780
3781 /*
3782 * Are we near the end of the current quota period?
3783 *
3784 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3785 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3786 * migrate_hrtimers, base is never cleared, so we are fine.
3787 */
3788 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3789 {
3790 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3791 u64 remaining;
3792
3793 /* if the call-back is running a quota refresh is already occurring */
3794 if (hrtimer_callback_running(refresh_timer))
3795 return 1;
3796
3797 /* is a quota refresh about to occur? */
3798 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3799 if (remaining < min_expire)
3800 return 1;
3801
3802 return 0;
3803 }
3804
3805 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3806 {
3807 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3808
3809 /* if there's a quota refresh soon don't bother with slack */
3810 if (runtime_refresh_within(cfs_b, min_left))
3811 return;
3812
3813 start_bandwidth_timer(&cfs_b->slack_timer,
3814 ns_to_ktime(cfs_bandwidth_slack_period));
3815 }
3816
3817 /* we know any runtime found here is valid as update_curr() precedes return */
3818 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3819 {
3820 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3821 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3822
3823 if (slack_runtime <= 0)
3824 return;
3825
3826 raw_spin_lock(&cfs_b->lock);
3827 if (cfs_b->quota != RUNTIME_INF &&
3828 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3829 cfs_b->runtime += slack_runtime;
3830
3831 /* we are under rq->lock, defer unthrottling using a timer */
3832 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3833 !list_empty(&cfs_b->throttled_cfs_rq))
3834 start_cfs_slack_bandwidth(cfs_b);
3835 }
3836 raw_spin_unlock(&cfs_b->lock);
3837
3838 /* even if it's not valid for return we don't want to try again */
3839 cfs_rq->runtime_remaining -= slack_runtime;
3840 }
3841
3842 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3843 {
3844 if (!cfs_bandwidth_used())
3845 return;
3846
3847 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3848 return;
3849
3850 __return_cfs_rq_runtime(cfs_rq);
3851 }
3852
3853 /*
3854 * This is done with a timer (instead of inline with bandwidth return) since
3855 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3856 */
3857 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3858 {
3859 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3860 u64 expires;
3861
3862 /* confirm we're still not at a refresh boundary */
3863 raw_spin_lock(&cfs_b->lock);
3864 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3865 raw_spin_unlock(&cfs_b->lock);
3866 return;
3867 }
3868
3869 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3870 runtime = cfs_b->runtime;
3871
3872 expires = cfs_b->runtime_expires;
3873 raw_spin_unlock(&cfs_b->lock);
3874
3875 if (!runtime)
3876 return;
3877
3878 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3879
3880 raw_spin_lock(&cfs_b->lock);
3881 if (expires == cfs_b->runtime_expires)
3882 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3883 raw_spin_unlock(&cfs_b->lock);
3884 }
3885
3886 /*
3887 * When a group wakes up we want to make sure that its quota is not already
3888 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3889 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3890 */
3891 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3892 {
3893 if (!cfs_bandwidth_used())
3894 return;
3895
3896 /* an active group must be handled by the update_curr()->put() path */
3897 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3898 return;
3899
3900 /* ensure the group is not already throttled */
3901 if (cfs_rq_throttled(cfs_rq))
3902 return;
3903
3904 /* update runtime allocation */
3905 account_cfs_rq_runtime(cfs_rq, 0);
3906 if (cfs_rq->runtime_remaining <= 0)
3907 throttle_cfs_rq(cfs_rq);
3908 }
3909
3910 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3911 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3912 {
3913 if (!cfs_bandwidth_used())
3914 return false;
3915
3916 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3917 return false;
3918
3919 /*
3920 * it's possible for a throttled entity to be forced into a running
3921 * state (e.g. set_curr_task), in this case we're finished.
3922 */
3923 if (cfs_rq_throttled(cfs_rq))
3924 return true;
3925
3926 throttle_cfs_rq(cfs_rq);
3927 return true;
3928 }
3929
3930 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3931 {
3932 struct cfs_bandwidth *cfs_b =
3933 container_of(timer, struct cfs_bandwidth, slack_timer);
3934 do_sched_cfs_slack_timer(cfs_b);
3935
3936 return HRTIMER_NORESTART;
3937 }
3938
3939 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3940 {
3941 struct cfs_bandwidth *cfs_b =
3942 container_of(timer, struct cfs_bandwidth, period_timer);
3943 ktime_t now;
3944 int overrun;
3945 int idle = 0;
3946
3947 raw_spin_lock(&cfs_b->lock);
3948 for (;;) {
3949 now = hrtimer_cb_get_time(timer);
3950 overrun = hrtimer_forward(timer, now, cfs_b->period);
3951
3952 if (!overrun)
3953 break;
3954
3955 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3956 }
3957 raw_spin_unlock(&cfs_b->lock);
3958
3959 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3960 }
3961
3962 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3963 {
3964 raw_spin_lock_init(&cfs_b->lock);
3965 cfs_b->runtime = 0;
3966 cfs_b->quota = RUNTIME_INF;
3967 cfs_b->period = ns_to_ktime(default_cfs_period());
3968
3969 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3970 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3971 cfs_b->period_timer.function = sched_cfs_period_timer;
3972 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3973 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3974 }
3975
3976 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3977 {
3978 cfs_rq->runtime_enabled = 0;
3979 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3980 }
3981
3982 /* requires cfs_b->lock, may release to reprogram timer */
3983 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3984 {
3985 /*
3986 * The timer may be active because we're trying to set a new bandwidth
3987 * period or because we're racing with the tear-down path
3988 * (timer_active==0 becomes visible before the hrtimer call-back
3989 * terminates). In either case we ensure that it's re-programmed
3990 */
3991 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3992 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3993 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3994 raw_spin_unlock(&cfs_b->lock);
3995 cpu_relax();
3996 raw_spin_lock(&cfs_b->lock);
3997 /* if someone else restarted the timer then we're done */
3998 if (!force && cfs_b->timer_active)
3999 return;
4000 }
4001
4002 cfs_b->timer_active = 1;
4003 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4004 }
4005
4006 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4007 {
4008 hrtimer_cancel(&cfs_b->period_timer);
4009 hrtimer_cancel(&cfs_b->slack_timer);
4010 }
4011
4012 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4013 {
4014 struct cfs_rq *cfs_rq;
4015
4016 for_each_leaf_cfs_rq(rq, cfs_rq) {
4017 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4018
4019 raw_spin_lock(&cfs_b->lock);
4020 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4021 raw_spin_unlock(&cfs_b->lock);
4022 }
4023 }
4024
4025 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4026 {
4027 struct cfs_rq *cfs_rq;
4028
4029 for_each_leaf_cfs_rq(rq, cfs_rq) {
4030 if (!cfs_rq->runtime_enabled)
4031 continue;
4032
4033 /*
4034 * clock_task is not advancing so we just need to make sure
4035 * there's some valid quota amount
4036 */
4037 cfs_rq->runtime_remaining = 1;
4038 /*
4039 * Offline rq is schedulable till cpu is completely disabled
4040 * in take_cpu_down(), so we prevent new cfs throttling here.
4041 */
4042 cfs_rq->runtime_enabled = 0;
4043
4044 if (cfs_rq_throttled(cfs_rq))
4045 unthrottle_cfs_rq(cfs_rq);
4046 }
4047 }
4048
4049 #else /* CONFIG_CFS_BANDWIDTH */
4050 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4051 {
4052 return rq_clock_task(rq_of(cfs_rq));
4053 }
4054
4055 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4056 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4057 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4058 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4059
4060 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4061 {
4062 return 0;
4063 }
4064
4065 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4066 {
4067 return 0;
4068 }
4069
4070 static inline int throttled_lb_pair(struct task_group *tg,
4071 int src_cpu, int dest_cpu)
4072 {
4073 return 0;
4074 }
4075
4076 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4077
4078 #ifdef CONFIG_FAIR_GROUP_SCHED
4079 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4080 #endif
4081
4082 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4083 {
4084 return NULL;
4085 }
4086 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4087 static inline void update_runtime_enabled(struct rq *rq) {}
4088 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4089
4090 #endif /* CONFIG_CFS_BANDWIDTH */
4091
4092 /**************************************************
4093 * CFS operations on tasks:
4094 */
4095
4096 #ifdef CONFIG_SCHED_HRTICK
4097 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4098 {
4099 struct sched_entity *se = &p->se;
4100 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4101
4102 WARN_ON(task_rq(p) != rq);
4103
4104 if (cfs_rq->nr_running > 1) {
4105 u64 slice = sched_slice(cfs_rq, se);
4106 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4107 s64 delta = slice - ran;
4108
4109 if (delta < 0) {
4110 if (rq->curr == p)
4111 resched_curr(rq);
4112 return;
4113 }
4114 hrtick_start(rq, delta);
4115 }
4116 }
4117
4118 /*
4119 * called from enqueue/dequeue and updates the hrtick when the
4120 * current task is from our class and nr_running is low enough
4121 * to matter.
4122 */
4123 static void hrtick_update(struct rq *rq)
4124 {
4125 struct task_struct *curr = rq->curr;
4126
4127 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4128 return;
4129
4130 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4131 hrtick_start_fair(rq, curr);
4132 }
4133 #else /* !CONFIG_SCHED_HRTICK */
4134 static inline void
4135 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4136 {
4137 }
4138
4139 static inline void hrtick_update(struct rq *rq)
4140 {
4141 }
4142 #endif
4143
4144 /*
4145 * The enqueue_task method is called before nr_running is
4146 * increased. Here we update the fair scheduling stats and
4147 * then put the task into the rbtree:
4148 */
4149 static void
4150 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4151 {
4152 struct cfs_rq *cfs_rq;
4153 struct sched_entity *se = &p->se;
4154
4155 for_each_sched_entity(se) {
4156 if (se->on_rq)
4157 break;
4158 cfs_rq = cfs_rq_of(se);
4159 enqueue_entity(cfs_rq, se, flags);
4160
4161 /*
4162 * end evaluation on encountering a throttled cfs_rq
4163 *
4164 * note: in the case of encountering a throttled cfs_rq we will
4165 * post the final h_nr_running increment below.
4166 */
4167 if (cfs_rq_throttled(cfs_rq))
4168 break;
4169 cfs_rq->h_nr_running++;
4170
4171 flags = ENQUEUE_WAKEUP;
4172 }
4173
4174 for_each_sched_entity(se) {
4175 cfs_rq = cfs_rq_of(se);
4176 cfs_rq->h_nr_running++;
4177
4178 if (cfs_rq_throttled(cfs_rq))
4179 break;
4180
4181 update_cfs_shares(cfs_rq);
4182 update_entity_load_avg(se, 1);
4183 }
4184
4185 if (!se) {
4186 update_rq_runnable_avg(rq, rq->nr_running);
4187 add_nr_running(rq, 1);
4188 }
4189 hrtick_update(rq);
4190 }
4191
4192 static void set_next_buddy(struct sched_entity *se);
4193
4194 /*
4195 * The dequeue_task method is called before nr_running is
4196 * decreased. We remove the task from the rbtree and
4197 * update the fair scheduling stats:
4198 */
4199 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4200 {
4201 struct cfs_rq *cfs_rq;
4202 struct sched_entity *se = &p->se;
4203 int task_sleep = flags & DEQUEUE_SLEEP;
4204
4205 for_each_sched_entity(se) {
4206 cfs_rq = cfs_rq_of(se);
4207 dequeue_entity(cfs_rq, se, flags);
4208
4209 /*
4210 * end evaluation on encountering a throttled cfs_rq
4211 *
4212 * note: in the case of encountering a throttled cfs_rq we will
4213 * post the final h_nr_running decrement below.
4214 */
4215 if (cfs_rq_throttled(cfs_rq))
4216 break;
4217 cfs_rq->h_nr_running--;
4218
4219 /* Don't dequeue parent if it has other entities besides us */
4220 if (cfs_rq->load.weight) {
4221 /*
4222 * Bias pick_next to pick a task from this cfs_rq, as
4223 * p is sleeping when it is within its sched_slice.
4224 */
4225 if (task_sleep && parent_entity(se))
4226 set_next_buddy(parent_entity(se));
4227
4228 /* avoid re-evaluating load for this entity */
4229 se = parent_entity(se);
4230 break;
4231 }
4232 flags |= DEQUEUE_SLEEP;
4233 }
4234
4235 for_each_sched_entity(se) {
4236 cfs_rq = cfs_rq_of(se);
4237 cfs_rq->h_nr_running--;
4238
4239 if (cfs_rq_throttled(cfs_rq))
4240 break;
4241
4242 update_cfs_shares(cfs_rq);
4243 update_entity_load_avg(se, 1);
4244 }
4245
4246 if (!se) {
4247 sub_nr_running(rq, 1);
4248 update_rq_runnable_avg(rq, 1);
4249 }
4250 hrtick_update(rq);
4251 }
4252
4253 #ifdef CONFIG_SMP
4254 /* Used instead of source_load when we know the type == 0 */
4255 static unsigned long weighted_cpuload(const int cpu)
4256 {
4257 return cpu_rq(cpu)->cfs.runnable_load_avg;
4258 }
4259
4260 /*
4261 * Return a low guess at the load of a migration-source cpu weighted
4262 * according to the scheduling class and "nice" value.
4263 *
4264 * We want to under-estimate the load of migration sources, to
4265 * balance conservatively.
4266 */
4267 static unsigned long source_load(int cpu, int type)
4268 {
4269 struct rq *rq = cpu_rq(cpu);
4270 unsigned long total = weighted_cpuload(cpu);
4271
4272 if (type == 0 || !sched_feat(LB_BIAS))
4273 return total;
4274
4275 return min(rq->cpu_load[type-1], total);
4276 }
4277
4278 /*
4279 * Return a high guess at the load of a migration-target cpu weighted
4280 * according to the scheduling class and "nice" value.
4281 */
4282 static unsigned long target_load(int cpu, int type)
4283 {
4284 struct rq *rq = cpu_rq(cpu);
4285 unsigned long total = weighted_cpuload(cpu);
4286
4287 if (type == 0 || !sched_feat(LB_BIAS))
4288 return total;
4289
4290 return max(rq->cpu_load[type-1], total);
4291 }
4292
4293 static unsigned long capacity_of(int cpu)
4294 {
4295 return cpu_rq(cpu)->cpu_capacity;
4296 }
4297
4298 static unsigned long cpu_avg_load_per_task(int cpu)
4299 {
4300 struct rq *rq = cpu_rq(cpu);
4301 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4302 unsigned long load_avg = rq->cfs.runnable_load_avg;
4303
4304 if (nr_running)
4305 return load_avg / nr_running;
4306
4307 return 0;
4308 }
4309
4310 static void record_wakee(struct task_struct *p)
4311 {
4312 /*
4313 * Rough decay (wiping) for cost saving, don't worry
4314 * about the boundary, really active task won't care
4315 * about the loss.
4316 */
4317 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4318 current->wakee_flips >>= 1;
4319 current->wakee_flip_decay_ts = jiffies;
4320 }
4321
4322 if (current->last_wakee != p) {
4323 current->last_wakee = p;
4324 current->wakee_flips++;
4325 }
4326 }
4327
4328 static void task_waking_fair(struct task_struct *p)
4329 {
4330 struct sched_entity *se = &p->se;
4331 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4332 u64 min_vruntime;
4333
4334 #ifndef CONFIG_64BIT
4335 u64 min_vruntime_copy;
4336
4337 do {
4338 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4339 smp_rmb();
4340 min_vruntime = cfs_rq->min_vruntime;
4341 } while (min_vruntime != min_vruntime_copy);
4342 #else
4343 min_vruntime = cfs_rq->min_vruntime;
4344 #endif
4345
4346 se->vruntime -= min_vruntime;
4347 record_wakee(p);
4348 }
4349
4350 #ifdef CONFIG_FAIR_GROUP_SCHED
4351 /*
4352 * effective_load() calculates the load change as seen from the root_task_group
4353 *
4354 * Adding load to a group doesn't make a group heavier, but can cause movement
4355 * of group shares between cpus. Assuming the shares were perfectly aligned one
4356 * can calculate the shift in shares.
4357 *
4358 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4359 * on this @cpu and results in a total addition (subtraction) of @wg to the
4360 * total group weight.
4361 *
4362 * Given a runqueue weight distribution (rw_i) we can compute a shares
4363 * distribution (s_i) using:
4364 *
4365 * s_i = rw_i / \Sum rw_j (1)
4366 *
4367 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4368 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4369 * shares distribution (s_i):
4370 *
4371 * rw_i = { 2, 4, 1, 0 }
4372 * s_i = { 2/7, 4/7, 1/7, 0 }
4373 *
4374 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4375 * task used to run on and the CPU the waker is running on), we need to
4376 * compute the effect of waking a task on either CPU and, in case of a sync
4377 * wakeup, compute the effect of the current task going to sleep.
4378 *
4379 * So for a change of @wl to the local @cpu with an overall group weight change
4380 * of @wl we can compute the new shares distribution (s'_i) using:
4381 *
4382 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4383 *
4384 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4385 * differences in waking a task to CPU 0. The additional task changes the
4386 * weight and shares distributions like:
4387 *
4388 * rw'_i = { 3, 4, 1, 0 }
4389 * s'_i = { 3/8, 4/8, 1/8, 0 }
4390 *
4391 * We can then compute the difference in effective weight by using:
4392 *
4393 * dw_i = S * (s'_i - s_i) (3)
4394 *
4395 * Where 'S' is the group weight as seen by its parent.
4396 *
4397 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4398 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4399 * 4/7) times the weight of the group.
4400 */
4401 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4402 {
4403 struct sched_entity *se = tg->se[cpu];
4404
4405 if (!tg->parent) /* the trivial, non-cgroup case */
4406 return wl;
4407
4408 for_each_sched_entity(se) {
4409 long w, W;
4410
4411 tg = se->my_q->tg;
4412
4413 /*
4414 * W = @wg + \Sum rw_j
4415 */
4416 W = wg + calc_tg_weight(tg, se->my_q);
4417
4418 /*
4419 * w = rw_i + @wl
4420 */
4421 w = se->my_q->load.weight + wl;
4422
4423 /*
4424 * wl = S * s'_i; see (2)
4425 */
4426 if (W > 0 && w < W)
4427 wl = (w * tg->shares) / W;
4428 else
4429 wl = tg->shares;
4430
4431 /*
4432 * Per the above, wl is the new se->load.weight value; since
4433 * those are clipped to [MIN_SHARES, ...) do so now. See
4434 * calc_cfs_shares().
4435 */
4436 if (wl < MIN_SHARES)
4437 wl = MIN_SHARES;
4438
4439 /*
4440 * wl = dw_i = S * (s'_i - s_i); see (3)
4441 */
4442 wl -= se->load.weight;
4443
4444 /*
4445 * Recursively apply this logic to all parent groups to compute
4446 * the final effective load change on the root group. Since
4447 * only the @tg group gets extra weight, all parent groups can
4448 * only redistribute existing shares. @wl is the shift in shares
4449 * resulting from this level per the above.
4450 */
4451 wg = 0;
4452 }
4453
4454 return wl;
4455 }
4456 #else
4457
4458 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4459 {
4460 return wl;
4461 }
4462
4463 #endif
4464
4465 static int wake_wide(struct task_struct *p)
4466 {
4467 int factor = this_cpu_read(sd_llc_size);
4468
4469 /*
4470 * Yeah, it's the switching-frequency, could means many wakee or
4471 * rapidly switch, use factor here will just help to automatically
4472 * adjust the loose-degree, so bigger node will lead to more pull.
4473 */
4474 if (p->wakee_flips > factor) {
4475 /*
4476 * wakee is somewhat hot, it needs certain amount of cpu
4477 * resource, so if waker is far more hot, prefer to leave
4478 * it alone.
4479 */
4480 if (current->wakee_flips > (factor * p->wakee_flips))
4481 return 1;
4482 }
4483
4484 return 0;
4485 }
4486
4487 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4488 {
4489 s64 this_load, load;
4490 s64 this_eff_load, prev_eff_load;
4491 int idx, this_cpu, prev_cpu;
4492 struct task_group *tg;
4493 unsigned long weight;
4494 int balanced;
4495
4496 /*
4497 * If we wake multiple tasks be careful to not bounce
4498 * ourselves around too much.
4499 */
4500 if (wake_wide(p))
4501 return 0;
4502
4503 idx = sd->wake_idx;
4504 this_cpu = smp_processor_id();
4505 prev_cpu = task_cpu(p);
4506 load = source_load(prev_cpu, idx);
4507 this_load = target_load(this_cpu, idx);
4508
4509 /*
4510 * If sync wakeup then subtract the (maximum possible)
4511 * effect of the currently running task from the load
4512 * of the current CPU:
4513 */
4514 if (sync) {
4515 tg = task_group(current);
4516 weight = current->se.load.weight;
4517
4518 this_load += effective_load(tg, this_cpu, -weight, -weight);
4519 load += effective_load(tg, prev_cpu, 0, -weight);
4520 }
4521
4522 tg = task_group(p);
4523 weight = p->se.load.weight;
4524
4525 /*
4526 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4527 * due to the sync cause above having dropped this_load to 0, we'll
4528 * always have an imbalance, but there's really nothing you can do
4529 * about that, so that's good too.
4530 *
4531 * Otherwise check if either cpus are near enough in load to allow this
4532 * task to be woken on this_cpu.
4533 */
4534 this_eff_load = 100;
4535 this_eff_load *= capacity_of(prev_cpu);
4536
4537 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4538 prev_eff_load *= capacity_of(this_cpu);
4539
4540 if (this_load > 0) {
4541 this_eff_load *= this_load +
4542 effective_load(tg, this_cpu, weight, weight);
4543
4544 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4545 }
4546
4547 balanced = this_eff_load <= prev_eff_load;
4548
4549 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4550
4551 if (!balanced)
4552 return 0;
4553
4554 schedstat_inc(sd, ttwu_move_affine);
4555 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4556
4557 return 1;
4558 }
4559
4560 /*
4561 * find_idlest_group finds and returns the least busy CPU group within the
4562 * domain.
4563 */
4564 static struct sched_group *
4565 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4566 int this_cpu, int sd_flag)
4567 {
4568 struct sched_group *idlest = NULL, *group = sd->groups;
4569 unsigned long min_load = ULONG_MAX, this_load = 0;
4570 int load_idx = sd->forkexec_idx;
4571 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4572
4573 if (sd_flag & SD_BALANCE_WAKE)
4574 load_idx = sd->wake_idx;
4575
4576 do {
4577 unsigned long load, avg_load;
4578 int local_group;
4579 int i;
4580
4581 /* Skip over this group if it has no CPUs allowed */
4582 if (!cpumask_intersects(sched_group_cpus(group),
4583 tsk_cpus_allowed(p)))
4584 continue;
4585
4586 local_group = cpumask_test_cpu(this_cpu,
4587 sched_group_cpus(group));
4588
4589 /* Tally up the load of all CPUs in the group */
4590 avg_load = 0;
4591
4592 for_each_cpu(i, sched_group_cpus(group)) {
4593 /* Bias balancing toward cpus of our domain */
4594 if (local_group)
4595 load = source_load(i, load_idx);
4596 else
4597 load = target_load(i, load_idx);
4598
4599 avg_load += load;
4600 }
4601
4602 /* Adjust by relative CPU capacity of the group */
4603 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4604
4605 if (local_group) {
4606 this_load = avg_load;
4607 } else if (avg_load < min_load) {
4608 min_load = avg_load;
4609 idlest = group;
4610 }
4611 } while (group = group->next, group != sd->groups);
4612
4613 if (!idlest || 100*this_load < imbalance*min_load)
4614 return NULL;
4615 return idlest;
4616 }
4617
4618 /*
4619 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4620 */
4621 static int
4622 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4623 {
4624 unsigned long load, min_load = ULONG_MAX;
4625 unsigned int min_exit_latency = UINT_MAX;
4626 u64 latest_idle_timestamp = 0;
4627 int least_loaded_cpu = this_cpu;
4628 int shallowest_idle_cpu = -1;
4629 int i;
4630
4631 /* Traverse only the allowed CPUs */
4632 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4633 if (idle_cpu(i)) {
4634 struct rq *rq = cpu_rq(i);
4635 struct cpuidle_state *idle = idle_get_state(rq);
4636 if (idle && idle->exit_latency < min_exit_latency) {
4637 /*
4638 * We give priority to a CPU whose idle state
4639 * has the smallest exit latency irrespective
4640 * of any idle timestamp.
4641 */
4642 min_exit_latency = idle->exit_latency;
4643 latest_idle_timestamp = rq->idle_stamp;
4644 shallowest_idle_cpu = i;
4645 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4646 rq->idle_stamp > latest_idle_timestamp) {
4647 /*
4648 * If equal or no active idle state, then
4649 * the most recently idled CPU might have
4650 * a warmer cache.
4651 */
4652 latest_idle_timestamp = rq->idle_stamp;
4653 shallowest_idle_cpu = i;
4654 }
4655 } else if (shallowest_idle_cpu == -1) {
4656 load = weighted_cpuload(i);
4657 if (load < min_load || (load == min_load && i == this_cpu)) {
4658 min_load = load;
4659 least_loaded_cpu = i;
4660 }
4661 }
4662 }
4663
4664 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4665 }
4666
4667 /*
4668 * Try and locate an idle CPU in the sched_domain.
4669 */
4670 static int select_idle_sibling(struct task_struct *p, int target)
4671 {
4672 struct sched_domain *sd;
4673 struct sched_group *sg;
4674 int i = task_cpu(p);
4675
4676 if (idle_cpu(target))
4677 return target;
4678
4679 /*
4680 * If the prevous cpu is cache affine and idle, don't be stupid.
4681 */
4682 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4683 return i;
4684
4685 /*
4686 * Otherwise, iterate the domains and find an elegible idle cpu.
4687 */
4688 sd = rcu_dereference(per_cpu(sd_llc, target));
4689 for_each_lower_domain(sd) {
4690 sg = sd->groups;
4691 do {
4692 if (!cpumask_intersects(sched_group_cpus(sg),
4693 tsk_cpus_allowed(p)))
4694 goto next;
4695
4696 for_each_cpu(i, sched_group_cpus(sg)) {
4697 if (i == target || !idle_cpu(i))
4698 goto next;
4699 }
4700
4701 target = cpumask_first_and(sched_group_cpus(sg),
4702 tsk_cpus_allowed(p));
4703 goto done;
4704 next:
4705 sg = sg->next;
4706 } while (sg != sd->groups);
4707 }
4708 done:
4709 return target;
4710 }
4711
4712 /*
4713 * select_task_rq_fair: Select target runqueue for the waking task in domains
4714 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4715 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4716 *
4717 * Balances load by selecting the idlest cpu in the idlest group, or under
4718 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4719 *
4720 * Returns the target cpu number.
4721 *
4722 * preempt must be disabled.
4723 */
4724 static int
4725 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4726 {
4727 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4728 int cpu = smp_processor_id();
4729 int new_cpu = cpu;
4730 int want_affine = 0;
4731 int sync = wake_flags & WF_SYNC;
4732
4733 if (sd_flag & SD_BALANCE_WAKE)
4734 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4735
4736 rcu_read_lock();
4737 for_each_domain(cpu, tmp) {
4738 if (!(tmp->flags & SD_LOAD_BALANCE))
4739 continue;
4740
4741 /*
4742 * If both cpu and prev_cpu are part of this domain,
4743 * cpu is a valid SD_WAKE_AFFINE target.
4744 */
4745 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4746 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4747 affine_sd = tmp;
4748 break;
4749 }
4750
4751 if (tmp->flags & sd_flag)
4752 sd = tmp;
4753 }
4754
4755 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4756 prev_cpu = cpu;
4757
4758 if (sd_flag & SD_BALANCE_WAKE) {
4759 new_cpu = select_idle_sibling(p, prev_cpu);
4760 goto unlock;
4761 }
4762
4763 while (sd) {
4764 struct sched_group *group;
4765 int weight;
4766
4767 if (!(sd->flags & sd_flag)) {
4768 sd = sd->child;
4769 continue;
4770 }
4771
4772 group = find_idlest_group(sd, p, cpu, sd_flag);
4773 if (!group) {
4774 sd = sd->child;
4775 continue;
4776 }
4777
4778 new_cpu = find_idlest_cpu(group, p, cpu);
4779 if (new_cpu == -1 || new_cpu == cpu) {
4780 /* Now try balancing at a lower domain level of cpu */
4781 sd = sd->child;
4782 continue;
4783 }
4784
4785 /* Now try balancing at a lower domain level of new_cpu */
4786 cpu = new_cpu;
4787 weight = sd->span_weight;
4788 sd = NULL;
4789 for_each_domain(cpu, tmp) {
4790 if (weight <= tmp->span_weight)
4791 break;
4792 if (tmp->flags & sd_flag)
4793 sd = tmp;
4794 }
4795 /* while loop will break here if sd == NULL */
4796 }
4797 unlock:
4798 rcu_read_unlock();
4799
4800 return new_cpu;
4801 }
4802
4803 /*
4804 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4805 * cfs_rq_of(p) references at time of call are still valid and identify the
4806 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4807 * other assumptions, including the state of rq->lock, should be made.
4808 */
4809 static void
4810 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4811 {
4812 struct sched_entity *se = &p->se;
4813 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4814
4815 /*
4816 * Load tracking: accumulate removed load so that it can be processed
4817 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4818 * to blocked load iff they have a positive decay-count. It can never
4819 * be negative here since on-rq tasks have decay-count == 0.
4820 */
4821 if (se->avg.decay_count) {
4822 se->avg.decay_count = -__synchronize_entity_decay(se);
4823 atomic_long_add(se->avg.load_avg_contrib,
4824 &cfs_rq->removed_load);
4825 }
4826
4827 /* We have migrated, no longer consider this task hot */
4828 se->exec_start = 0;
4829 }
4830 #endif /* CONFIG_SMP */
4831
4832 static unsigned long
4833 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4834 {
4835 unsigned long gran = sysctl_sched_wakeup_granularity;
4836
4837 /*
4838 * Since its curr running now, convert the gran from real-time
4839 * to virtual-time in his units.
4840 *
4841 * By using 'se' instead of 'curr' we penalize light tasks, so
4842 * they get preempted easier. That is, if 'se' < 'curr' then
4843 * the resulting gran will be larger, therefore penalizing the
4844 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4845 * be smaller, again penalizing the lighter task.
4846 *
4847 * This is especially important for buddies when the leftmost
4848 * task is higher priority than the buddy.
4849 */
4850 return calc_delta_fair(gran, se);
4851 }
4852
4853 /*
4854 * Should 'se' preempt 'curr'.
4855 *
4856 * |s1
4857 * |s2
4858 * |s3
4859 * g
4860 * |<--->|c
4861 *
4862 * w(c, s1) = -1
4863 * w(c, s2) = 0
4864 * w(c, s3) = 1
4865 *
4866 */
4867 static int
4868 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4869 {
4870 s64 gran, vdiff = curr->vruntime - se->vruntime;
4871
4872 if (vdiff <= 0)
4873 return -1;
4874
4875 gran = wakeup_gran(curr, se);
4876 if (vdiff > gran)
4877 return 1;
4878
4879 return 0;
4880 }
4881
4882 static void set_last_buddy(struct sched_entity *se)
4883 {
4884 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4885 return;
4886
4887 for_each_sched_entity(se)
4888 cfs_rq_of(se)->last = se;
4889 }
4890
4891 static void set_next_buddy(struct sched_entity *se)
4892 {
4893 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4894 return;
4895
4896 for_each_sched_entity(se)
4897 cfs_rq_of(se)->next = se;
4898 }
4899
4900 static void set_skip_buddy(struct sched_entity *se)
4901 {
4902 for_each_sched_entity(se)
4903 cfs_rq_of(se)->skip = se;
4904 }
4905
4906 /*
4907 * Preempt the current task with a newly woken task if needed:
4908 */
4909 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4910 {
4911 struct task_struct *curr = rq->curr;
4912 struct sched_entity *se = &curr->se, *pse = &p->se;
4913 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4914 int scale = cfs_rq->nr_running >= sched_nr_latency;
4915 int next_buddy_marked = 0;
4916
4917 if (unlikely(se == pse))
4918 return;
4919
4920 /*
4921 * This is possible from callers such as attach_tasks(), in which we
4922 * unconditionally check_prempt_curr() after an enqueue (which may have
4923 * lead to a throttle). This both saves work and prevents false
4924 * next-buddy nomination below.
4925 */
4926 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4927 return;
4928
4929 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4930 set_next_buddy(pse);
4931 next_buddy_marked = 1;
4932 }
4933
4934 /*
4935 * We can come here with TIF_NEED_RESCHED already set from new task
4936 * wake up path.
4937 *
4938 * Note: this also catches the edge-case of curr being in a throttled
4939 * group (e.g. via set_curr_task), since update_curr() (in the
4940 * enqueue of curr) will have resulted in resched being set. This
4941 * prevents us from potentially nominating it as a false LAST_BUDDY
4942 * below.
4943 */
4944 if (test_tsk_need_resched(curr))
4945 return;
4946
4947 /* Idle tasks are by definition preempted by non-idle tasks. */
4948 if (unlikely(curr->policy == SCHED_IDLE) &&
4949 likely(p->policy != SCHED_IDLE))
4950 goto preempt;
4951
4952 /*
4953 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4954 * is driven by the tick):
4955 */
4956 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4957 return;
4958
4959 find_matching_se(&se, &pse);
4960 update_curr(cfs_rq_of(se));
4961 BUG_ON(!pse);
4962 if (wakeup_preempt_entity(se, pse) == 1) {
4963 /*
4964 * Bias pick_next to pick the sched entity that is
4965 * triggering this preemption.
4966 */
4967 if (!next_buddy_marked)
4968 set_next_buddy(pse);
4969 goto preempt;
4970 }
4971
4972 return;
4973
4974 preempt:
4975 resched_curr(rq);
4976 /*
4977 * Only set the backward buddy when the current task is still
4978 * on the rq. This can happen when a wakeup gets interleaved
4979 * with schedule on the ->pre_schedule() or idle_balance()
4980 * point, either of which can * drop the rq lock.
4981 *
4982 * Also, during early boot the idle thread is in the fair class,
4983 * for obvious reasons its a bad idea to schedule back to it.
4984 */
4985 if (unlikely(!se->on_rq || curr == rq->idle))
4986 return;
4987
4988 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4989 set_last_buddy(se);
4990 }
4991
4992 static struct task_struct *
4993 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4994 {
4995 struct cfs_rq *cfs_rq = &rq->cfs;
4996 struct sched_entity *se;
4997 struct task_struct *p;
4998 int new_tasks;
4999
5000 again:
5001 #ifdef CONFIG_FAIR_GROUP_SCHED
5002 if (!cfs_rq->nr_running)
5003 goto idle;
5004
5005 if (prev->sched_class != &fair_sched_class)
5006 goto simple;
5007
5008 /*
5009 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5010 * likely that a next task is from the same cgroup as the current.
5011 *
5012 * Therefore attempt to avoid putting and setting the entire cgroup
5013 * hierarchy, only change the part that actually changes.
5014 */
5015
5016 do {
5017 struct sched_entity *curr = cfs_rq->curr;
5018
5019 /*
5020 * Since we got here without doing put_prev_entity() we also
5021 * have to consider cfs_rq->curr. If it is still a runnable
5022 * entity, update_curr() will update its vruntime, otherwise
5023 * forget we've ever seen it.
5024 */
5025 if (curr && curr->on_rq)
5026 update_curr(cfs_rq);
5027 else
5028 curr = NULL;
5029
5030 /*
5031 * This call to check_cfs_rq_runtime() will do the throttle and
5032 * dequeue its entity in the parent(s). Therefore the 'simple'
5033 * nr_running test will indeed be correct.
5034 */
5035 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5036 goto simple;
5037
5038 se = pick_next_entity(cfs_rq, curr);
5039 cfs_rq = group_cfs_rq(se);
5040 } while (cfs_rq);
5041
5042 p = task_of(se);
5043
5044 /*
5045 * Since we haven't yet done put_prev_entity and if the selected task
5046 * is a different task than we started out with, try and touch the
5047 * least amount of cfs_rqs.
5048 */
5049 if (prev != p) {
5050 struct sched_entity *pse = &prev->se;
5051
5052 while (!(cfs_rq = is_same_group(se, pse))) {
5053 int se_depth = se->depth;
5054 int pse_depth = pse->depth;
5055
5056 if (se_depth <= pse_depth) {
5057 put_prev_entity(cfs_rq_of(pse), pse);
5058 pse = parent_entity(pse);
5059 }
5060 if (se_depth >= pse_depth) {
5061 set_next_entity(cfs_rq_of(se), se);
5062 se = parent_entity(se);
5063 }
5064 }
5065
5066 put_prev_entity(cfs_rq, pse);
5067 set_next_entity(cfs_rq, se);
5068 }
5069
5070 if (hrtick_enabled(rq))
5071 hrtick_start_fair(rq, p);
5072
5073 return p;
5074 simple:
5075 cfs_rq = &rq->cfs;
5076 #endif
5077
5078 if (!cfs_rq->nr_running)
5079 goto idle;
5080
5081 put_prev_task(rq, prev);
5082
5083 do {
5084 se = pick_next_entity(cfs_rq, NULL);
5085 set_next_entity(cfs_rq, se);
5086 cfs_rq = group_cfs_rq(se);
5087 } while (cfs_rq);
5088
5089 p = task_of(se);
5090
5091 if (hrtick_enabled(rq))
5092 hrtick_start_fair(rq, p);
5093
5094 return p;
5095
5096 idle:
5097 new_tasks = idle_balance(rq);
5098 /*
5099 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5100 * possible for any higher priority task to appear. In that case we
5101 * must re-start the pick_next_entity() loop.
5102 */
5103 if (new_tasks < 0)
5104 return RETRY_TASK;
5105
5106 if (new_tasks > 0)
5107 goto again;
5108
5109 return NULL;
5110 }
5111
5112 /*
5113 * Account for a descheduled task:
5114 */
5115 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5116 {
5117 struct sched_entity *se = &prev->se;
5118 struct cfs_rq *cfs_rq;
5119
5120 for_each_sched_entity(se) {
5121 cfs_rq = cfs_rq_of(se);
5122 put_prev_entity(cfs_rq, se);
5123 }
5124 }
5125
5126 /*
5127 * sched_yield() is very simple
5128 *
5129 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5130 */
5131 static void yield_task_fair(struct rq *rq)
5132 {
5133 struct task_struct *curr = rq->curr;
5134 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5135 struct sched_entity *se = &curr->se;
5136
5137 /*
5138 * Are we the only task in the tree?
5139 */
5140 if (unlikely(rq->nr_running == 1))
5141 return;
5142
5143 clear_buddies(cfs_rq, se);
5144
5145 if (curr->policy != SCHED_BATCH) {
5146 update_rq_clock(rq);
5147 /*
5148 * Update run-time statistics of the 'current'.
5149 */
5150 update_curr(cfs_rq);
5151 /*
5152 * Tell update_rq_clock() that we've just updated,
5153 * so we don't do microscopic update in schedule()
5154 * and double the fastpath cost.
5155 */
5156 rq->skip_clock_update = 1;
5157 }
5158
5159 set_skip_buddy(se);
5160 }
5161
5162 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5163 {
5164 struct sched_entity *se = &p->se;
5165
5166 /* throttled hierarchies are not runnable */
5167 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5168 return false;
5169
5170 /* Tell the scheduler that we'd really like pse to run next. */
5171 set_next_buddy(se);
5172
5173 yield_task_fair(rq);
5174
5175 return true;
5176 }
5177
5178 #ifdef CONFIG_SMP
5179 /**************************************************
5180 * Fair scheduling class load-balancing methods.
5181 *
5182 * BASICS
5183 *
5184 * The purpose of load-balancing is to achieve the same basic fairness the
5185 * per-cpu scheduler provides, namely provide a proportional amount of compute
5186 * time to each task. This is expressed in the following equation:
5187 *
5188 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5189 *
5190 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5191 * W_i,0 is defined as:
5192 *
5193 * W_i,0 = \Sum_j w_i,j (2)
5194 *
5195 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5196 * is derived from the nice value as per prio_to_weight[].
5197 *
5198 * The weight average is an exponential decay average of the instantaneous
5199 * weight:
5200 *
5201 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5202 *
5203 * C_i is the compute capacity of cpu i, typically it is the
5204 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5205 * can also include other factors [XXX].
5206 *
5207 * To achieve this balance we define a measure of imbalance which follows
5208 * directly from (1):
5209 *
5210 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5211 *
5212 * We them move tasks around to minimize the imbalance. In the continuous
5213 * function space it is obvious this converges, in the discrete case we get
5214 * a few fun cases generally called infeasible weight scenarios.
5215 *
5216 * [XXX expand on:
5217 * - infeasible weights;
5218 * - local vs global optima in the discrete case. ]
5219 *
5220 *
5221 * SCHED DOMAINS
5222 *
5223 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5224 * for all i,j solution, we create a tree of cpus that follows the hardware
5225 * topology where each level pairs two lower groups (or better). This results
5226 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5227 * tree to only the first of the previous level and we decrease the frequency
5228 * of load-balance at each level inv. proportional to the number of cpus in
5229 * the groups.
5230 *
5231 * This yields:
5232 *
5233 * log_2 n 1 n
5234 * \Sum { --- * --- * 2^i } = O(n) (5)
5235 * i = 0 2^i 2^i
5236 * `- size of each group
5237 * | | `- number of cpus doing load-balance
5238 * | `- freq
5239 * `- sum over all levels
5240 *
5241 * Coupled with a limit on how many tasks we can migrate every balance pass,
5242 * this makes (5) the runtime complexity of the balancer.
5243 *
5244 * An important property here is that each CPU is still (indirectly) connected
5245 * to every other cpu in at most O(log n) steps:
5246 *
5247 * The adjacency matrix of the resulting graph is given by:
5248 *
5249 * log_2 n
5250 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5251 * k = 0
5252 *
5253 * And you'll find that:
5254 *
5255 * A^(log_2 n)_i,j != 0 for all i,j (7)
5256 *
5257 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5258 * The task movement gives a factor of O(m), giving a convergence complexity
5259 * of:
5260 *
5261 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5262 *
5263 *
5264 * WORK CONSERVING
5265 *
5266 * In order to avoid CPUs going idle while there's still work to do, new idle
5267 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5268 * tree itself instead of relying on other CPUs to bring it work.
5269 *
5270 * This adds some complexity to both (5) and (8) but it reduces the total idle
5271 * time.
5272 *
5273 * [XXX more?]
5274 *
5275 *
5276 * CGROUPS
5277 *
5278 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5279 *
5280 * s_k,i
5281 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5282 * S_k
5283 *
5284 * Where
5285 *
5286 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5287 *
5288 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5289 *
5290 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5291 * property.
5292 *
5293 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5294 * rewrite all of this once again.]
5295 */
5296
5297 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5298
5299 enum fbq_type { regular, remote, all };
5300
5301 #define LBF_ALL_PINNED 0x01
5302 #define LBF_NEED_BREAK 0x02
5303 #define LBF_DST_PINNED 0x04
5304 #define LBF_SOME_PINNED 0x08
5305
5306 struct lb_env {
5307 struct sched_domain *sd;
5308
5309 struct rq *src_rq;
5310 int src_cpu;
5311
5312 int dst_cpu;
5313 struct rq *dst_rq;
5314
5315 struct cpumask *dst_grpmask;
5316 int new_dst_cpu;
5317 enum cpu_idle_type idle;
5318 long imbalance;
5319 /* The set of CPUs under consideration for load-balancing */
5320 struct cpumask *cpus;
5321
5322 unsigned int flags;
5323
5324 unsigned int loop;
5325 unsigned int loop_break;
5326 unsigned int loop_max;
5327
5328 enum fbq_type fbq_type;
5329 struct list_head tasks;
5330 };
5331
5332 /*
5333 * Is this task likely cache-hot:
5334 */
5335 static int task_hot(struct task_struct *p, struct lb_env *env)
5336 {
5337 s64 delta;
5338
5339 lockdep_assert_held(&env->src_rq->lock);
5340
5341 if (p->sched_class != &fair_sched_class)
5342 return 0;
5343
5344 if (unlikely(p->policy == SCHED_IDLE))
5345 return 0;
5346
5347 /*
5348 * Buddy candidates are cache hot:
5349 */
5350 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5351 (&p->se == cfs_rq_of(&p->se)->next ||
5352 &p->se == cfs_rq_of(&p->se)->last))
5353 return 1;
5354
5355 if (sysctl_sched_migration_cost == -1)
5356 return 1;
5357 if (sysctl_sched_migration_cost == 0)
5358 return 0;
5359
5360 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5361
5362 return delta < (s64)sysctl_sched_migration_cost;
5363 }
5364
5365 #ifdef CONFIG_NUMA_BALANCING
5366 /* Returns true if the destination node has incurred more faults */
5367 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5368 {
5369 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5370 int src_nid, dst_nid;
5371
5372 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5373 !(env->sd->flags & SD_NUMA)) {
5374 return false;
5375 }
5376
5377 src_nid = cpu_to_node(env->src_cpu);
5378 dst_nid = cpu_to_node(env->dst_cpu);
5379
5380 if (src_nid == dst_nid)
5381 return false;
5382
5383 if (numa_group) {
5384 /* Task is already in the group's interleave set. */
5385 if (node_isset(src_nid, numa_group->active_nodes))
5386 return false;
5387
5388 /* Task is moving into the group's interleave set. */
5389 if (node_isset(dst_nid, numa_group->active_nodes))
5390 return true;
5391
5392 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5393 }
5394
5395 /* Encourage migration to the preferred node. */
5396 if (dst_nid == p->numa_preferred_nid)
5397 return true;
5398
5399 return task_faults(p, dst_nid) > task_faults(p, src_nid);
5400 }
5401
5402
5403 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5404 {
5405 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5406 int src_nid, dst_nid;
5407
5408 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5409 return false;
5410
5411 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5412 return false;
5413
5414 src_nid = cpu_to_node(env->src_cpu);
5415 dst_nid = cpu_to_node(env->dst_cpu);
5416
5417 if (src_nid == dst_nid)
5418 return false;
5419
5420 if (numa_group) {
5421 /* Task is moving within/into the group's interleave set. */
5422 if (node_isset(dst_nid, numa_group->active_nodes))
5423 return false;
5424
5425 /* Task is moving out of the group's interleave set. */
5426 if (node_isset(src_nid, numa_group->active_nodes))
5427 return true;
5428
5429 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5430 }
5431
5432 /* Migrating away from the preferred node is always bad. */
5433 if (src_nid == p->numa_preferred_nid)
5434 return true;
5435
5436 return task_faults(p, dst_nid) < task_faults(p, src_nid);
5437 }
5438
5439 #else
5440 static inline bool migrate_improves_locality(struct task_struct *p,
5441 struct lb_env *env)
5442 {
5443 return false;
5444 }
5445
5446 static inline bool migrate_degrades_locality(struct task_struct *p,
5447 struct lb_env *env)
5448 {
5449 return false;
5450 }
5451 #endif
5452
5453 /*
5454 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5455 */
5456 static
5457 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5458 {
5459 int tsk_cache_hot = 0;
5460
5461 lockdep_assert_held(&env->src_rq->lock);
5462
5463 /*
5464 * We do not migrate tasks that are:
5465 * 1) throttled_lb_pair, or
5466 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5467 * 3) running (obviously), or
5468 * 4) are cache-hot on their current CPU.
5469 */
5470 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5471 return 0;
5472
5473 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5474 int cpu;
5475
5476 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5477
5478 env->flags |= LBF_SOME_PINNED;
5479
5480 /*
5481 * Remember if this task can be migrated to any other cpu in
5482 * our sched_group. We may want to revisit it if we couldn't
5483 * meet load balance goals by pulling other tasks on src_cpu.
5484 *
5485 * Also avoid computing new_dst_cpu if we have already computed
5486 * one in current iteration.
5487 */
5488 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5489 return 0;
5490
5491 /* Prevent to re-select dst_cpu via env's cpus */
5492 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5493 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5494 env->flags |= LBF_DST_PINNED;
5495 env->new_dst_cpu = cpu;
5496 break;
5497 }
5498 }
5499
5500 return 0;
5501 }
5502
5503 /* Record that we found atleast one task that could run on dst_cpu */
5504 env->flags &= ~LBF_ALL_PINNED;
5505
5506 if (task_running(env->src_rq, p)) {
5507 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5508 return 0;
5509 }
5510
5511 /*
5512 * Aggressive migration if:
5513 * 1) destination numa is preferred
5514 * 2) task is cache cold, or
5515 * 3) too many balance attempts have failed.
5516 */
5517 tsk_cache_hot = task_hot(p, env);
5518 if (!tsk_cache_hot)
5519 tsk_cache_hot = migrate_degrades_locality(p, env);
5520
5521 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5522 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5523 if (tsk_cache_hot) {
5524 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5525 schedstat_inc(p, se.statistics.nr_forced_migrations);
5526 }
5527 return 1;
5528 }
5529
5530 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5531 return 0;
5532 }
5533
5534 /*
5535 * detach_task() -- detach the task for the migration specified in env
5536 */
5537 static void detach_task(struct task_struct *p, struct lb_env *env)
5538 {
5539 lockdep_assert_held(&env->src_rq->lock);
5540
5541 deactivate_task(env->src_rq, p, 0);
5542 p->on_rq = TASK_ON_RQ_MIGRATING;
5543 set_task_cpu(p, env->dst_cpu);
5544 }
5545
5546 /*
5547 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5548 * part of active balancing operations within "domain".
5549 *
5550 * Returns a task if successful and NULL otherwise.
5551 */
5552 static struct task_struct *detach_one_task(struct lb_env *env)
5553 {
5554 struct task_struct *p, *n;
5555
5556 lockdep_assert_held(&env->src_rq->lock);
5557
5558 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5559 if (!can_migrate_task(p, env))
5560 continue;
5561
5562 detach_task(p, env);
5563
5564 /*
5565 * Right now, this is only the second place where
5566 * lb_gained[env->idle] is updated (other is detach_tasks)
5567 * so we can safely collect stats here rather than
5568 * inside detach_tasks().
5569 */
5570 schedstat_inc(env->sd, lb_gained[env->idle]);
5571 return p;
5572 }
5573 return NULL;
5574 }
5575
5576 static const unsigned int sched_nr_migrate_break = 32;
5577
5578 /*
5579 * detach_tasks() -- tries to detach up to imbalance weighted load from
5580 * busiest_rq, as part of a balancing operation within domain "sd".
5581 *
5582 * Returns number of detached tasks if successful and 0 otherwise.
5583 */
5584 static int detach_tasks(struct lb_env *env)
5585 {
5586 struct list_head *tasks = &env->src_rq->cfs_tasks;
5587 struct task_struct *p;
5588 unsigned long load;
5589 int detached = 0;
5590
5591 lockdep_assert_held(&env->src_rq->lock);
5592
5593 if (env->imbalance <= 0)
5594 return 0;
5595
5596 while (!list_empty(tasks)) {
5597 p = list_first_entry(tasks, struct task_struct, se.group_node);
5598
5599 env->loop++;
5600 /* We've more or less seen every task there is, call it quits */
5601 if (env->loop > env->loop_max)
5602 break;
5603
5604 /* take a breather every nr_migrate tasks */
5605 if (env->loop > env->loop_break) {
5606 env->loop_break += sched_nr_migrate_break;
5607 env->flags |= LBF_NEED_BREAK;
5608 break;
5609 }
5610
5611 if (!can_migrate_task(p, env))
5612 goto next;
5613
5614 load = task_h_load(p);
5615
5616 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5617 goto next;
5618
5619 if ((load / 2) > env->imbalance)
5620 goto next;
5621
5622 detach_task(p, env);
5623 list_add(&p->se.group_node, &env->tasks);
5624
5625 detached++;
5626 env->imbalance -= load;
5627
5628 #ifdef CONFIG_PREEMPT
5629 /*
5630 * NEWIDLE balancing is a source of latency, so preemptible
5631 * kernels will stop after the first task is detached to minimize
5632 * the critical section.
5633 */
5634 if (env->idle == CPU_NEWLY_IDLE)
5635 break;
5636 #endif
5637
5638 /*
5639 * We only want to steal up to the prescribed amount of
5640 * weighted load.
5641 */
5642 if (env->imbalance <= 0)
5643 break;
5644
5645 continue;
5646 next:
5647 list_move_tail(&p->se.group_node, tasks);
5648 }
5649
5650 /*
5651 * Right now, this is one of only two places we collect this stat
5652 * so we can safely collect detach_one_task() stats here rather
5653 * than inside detach_one_task().
5654 */
5655 schedstat_add(env->sd, lb_gained[env->idle], detached);
5656
5657 return detached;
5658 }
5659
5660 /*
5661 * attach_task() -- attach the task detached by detach_task() to its new rq.
5662 */
5663 static void attach_task(struct rq *rq, struct task_struct *p)
5664 {
5665 lockdep_assert_held(&rq->lock);
5666
5667 BUG_ON(task_rq(p) != rq);
5668 p->on_rq = TASK_ON_RQ_QUEUED;
5669 activate_task(rq, p, 0);
5670 check_preempt_curr(rq, p, 0);
5671 }
5672
5673 /*
5674 * attach_one_task() -- attaches the task returned from detach_one_task() to
5675 * its new rq.
5676 */
5677 static void attach_one_task(struct rq *rq, struct task_struct *p)
5678 {
5679 raw_spin_lock(&rq->lock);
5680 attach_task(rq, p);
5681 raw_spin_unlock(&rq->lock);
5682 }
5683
5684 /*
5685 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5686 * new rq.
5687 */
5688 static void attach_tasks(struct lb_env *env)
5689 {
5690 struct list_head *tasks = &env->tasks;
5691 struct task_struct *p;
5692
5693 raw_spin_lock(&env->dst_rq->lock);
5694
5695 while (!list_empty(tasks)) {
5696 p = list_first_entry(tasks, struct task_struct, se.group_node);
5697 list_del_init(&p->se.group_node);
5698
5699 attach_task(env->dst_rq, p);
5700 }
5701
5702 raw_spin_unlock(&env->dst_rq->lock);
5703 }
5704
5705 #ifdef CONFIG_FAIR_GROUP_SCHED
5706 /*
5707 * update tg->load_weight by folding this cpu's load_avg
5708 */
5709 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5710 {
5711 struct sched_entity *se = tg->se[cpu];
5712 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5713
5714 /* throttled entities do not contribute to load */
5715 if (throttled_hierarchy(cfs_rq))
5716 return;
5717
5718 update_cfs_rq_blocked_load(cfs_rq, 1);
5719
5720 if (se) {
5721 update_entity_load_avg(se, 1);
5722 /*
5723 * We pivot on our runnable average having decayed to zero for
5724 * list removal. This generally implies that all our children
5725 * have also been removed (modulo rounding error or bandwidth
5726 * control); however, such cases are rare and we can fix these
5727 * at enqueue.
5728 *
5729 * TODO: fix up out-of-order children on enqueue.
5730 */
5731 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5732 list_del_leaf_cfs_rq(cfs_rq);
5733 } else {
5734 struct rq *rq = rq_of(cfs_rq);
5735 update_rq_runnable_avg(rq, rq->nr_running);
5736 }
5737 }
5738
5739 static void update_blocked_averages(int cpu)
5740 {
5741 struct rq *rq = cpu_rq(cpu);
5742 struct cfs_rq *cfs_rq;
5743 unsigned long flags;
5744
5745 raw_spin_lock_irqsave(&rq->lock, flags);
5746 update_rq_clock(rq);
5747 /*
5748 * Iterates the task_group tree in a bottom up fashion, see
5749 * list_add_leaf_cfs_rq() for details.
5750 */
5751 for_each_leaf_cfs_rq(rq, cfs_rq) {
5752 /*
5753 * Note: We may want to consider periodically releasing
5754 * rq->lock about these updates so that creating many task
5755 * groups does not result in continually extending hold time.
5756 */
5757 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5758 }
5759
5760 raw_spin_unlock_irqrestore(&rq->lock, flags);
5761 }
5762
5763 /*
5764 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5765 * This needs to be done in a top-down fashion because the load of a child
5766 * group is a fraction of its parents load.
5767 */
5768 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5769 {
5770 struct rq *rq = rq_of(cfs_rq);
5771 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5772 unsigned long now = jiffies;
5773 unsigned long load;
5774
5775 if (cfs_rq->last_h_load_update == now)
5776 return;
5777
5778 cfs_rq->h_load_next = NULL;
5779 for_each_sched_entity(se) {
5780 cfs_rq = cfs_rq_of(se);
5781 cfs_rq->h_load_next = se;
5782 if (cfs_rq->last_h_load_update == now)
5783 break;
5784 }
5785
5786 if (!se) {
5787 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5788 cfs_rq->last_h_load_update = now;
5789 }
5790
5791 while ((se = cfs_rq->h_load_next) != NULL) {
5792 load = cfs_rq->h_load;
5793 load = div64_ul(load * se->avg.load_avg_contrib,
5794 cfs_rq->runnable_load_avg + 1);
5795 cfs_rq = group_cfs_rq(se);
5796 cfs_rq->h_load = load;
5797 cfs_rq->last_h_load_update = now;
5798 }
5799 }
5800
5801 static unsigned long task_h_load(struct task_struct *p)
5802 {
5803 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5804
5805 update_cfs_rq_h_load(cfs_rq);
5806 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5807 cfs_rq->runnable_load_avg + 1);
5808 }
5809 #else
5810 static inline void update_blocked_averages(int cpu)
5811 {
5812 }
5813
5814 static unsigned long task_h_load(struct task_struct *p)
5815 {
5816 return p->se.avg.load_avg_contrib;
5817 }
5818 #endif
5819
5820 /********** Helpers for find_busiest_group ************************/
5821
5822 enum group_type {
5823 group_other = 0,
5824 group_imbalanced,
5825 group_overloaded,
5826 };
5827
5828 /*
5829 * sg_lb_stats - stats of a sched_group required for load_balancing
5830 */
5831 struct sg_lb_stats {
5832 unsigned long avg_load; /*Avg load across the CPUs of the group */
5833 unsigned long group_load; /* Total load over the CPUs of the group */
5834 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5835 unsigned long load_per_task;
5836 unsigned long group_capacity;
5837 unsigned int sum_nr_running; /* Nr tasks running in the group */
5838 unsigned int group_capacity_factor;
5839 unsigned int idle_cpus;
5840 unsigned int group_weight;
5841 enum group_type group_type;
5842 int group_has_free_capacity;
5843 #ifdef CONFIG_NUMA_BALANCING
5844 unsigned int nr_numa_running;
5845 unsigned int nr_preferred_running;
5846 #endif
5847 };
5848
5849 /*
5850 * sd_lb_stats - Structure to store the statistics of a sched_domain
5851 * during load balancing.
5852 */
5853 struct sd_lb_stats {
5854 struct sched_group *busiest; /* Busiest group in this sd */
5855 struct sched_group *local; /* Local group in this sd */
5856 unsigned long total_load; /* Total load of all groups in sd */
5857 unsigned long total_capacity; /* Total capacity of all groups in sd */
5858 unsigned long avg_load; /* Average load across all groups in sd */
5859
5860 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5861 struct sg_lb_stats local_stat; /* Statistics of the local group */
5862 };
5863
5864 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5865 {
5866 /*
5867 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5868 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5869 * We must however clear busiest_stat::avg_load because
5870 * update_sd_pick_busiest() reads this before assignment.
5871 */
5872 *sds = (struct sd_lb_stats){
5873 .busiest = NULL,
5874 .local = NULL,
5875 .total_load = 0UL,
5876 .total_capacity = 0UL,
5877 .busiest_stat = {
5878 .avg_load = 0UL,
5879 .sum_nr_running = 0,
5880 .group_type = group_other,
5881 },
5882 };
5883 }
5884
5885 /**
5886 * get_sd_load_idx - Obtain the load index for a given sched domain.
5887 * @sd: The sched_domain whose load_idx is to be obtained.
5888 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5889 *
5890 * Return: The load index.
5891 */
5892 static inline int get_sd_load_idx(struct sched_domain *sd,
5893 enum cpu_idle_type idle)
5894 {
5895 int load_idx;
5896
5897 switch (idle) {
5898 case CPU_NOT_IDLE:
5899 load_idx = sd->busy_idx;
5900 break;
5901
5902 case CPU_NEWLY_IDLE:
5903 load_idx = sd->newidle_idx;
5904 break;
5905 default:
5906 load_idx = sd->idle_idx;
5907 break;
5908 }
5909
5910 return load_idx;
5911 }
5912
5913 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5914 {
5915 return SCHED_CAPACITY_SCALE;
5916 }
5917
5918 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5919 {
5920 return default_scale_capacity(sd, cpu);
5921 }
5922
5923 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5924 {
5925 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5926 return sd->smt_gain / sd->span_weight;
5927
5928 return SCHED_CAPACITY_SCALE;
5929 }
5930
5931 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5932 {
5933 return default_scale_cpu_capacity(sd, cpu);
5934 }
5935
5936 static unsigned long scale_rt_capacity(int cpu)
5937 {
5938 struct rq *rq = cpu_rq(cpu);
5939 u64 total, available, age_stamp, avg;
5940 s64 delta;
5941
5942 /*
5943 * Since we're reading these variables without serialization make sure
5944 * we read them once before doing sanity checks on them.
5945 */
5946 age_stamp = ACCESS_ONCE(rq->age_stamp);
5947 avg = ACCESS_ONCE(rq->rt_avg);
5948
5949 delta = rq_clock(rq) - age_stamp;
5950 if (unlikely(delta < 0))
5951 delta = 0;
5952
5953 total = sched_avg_period() + delta;
5954
5955 if (unlikely(total < avg)) {
5956 /* Ensures that capacity won't end up being negative */
5957 available = 0;
5958 } else {
5959 available = total - avg;
5960 }
5961
5962 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5963 total = SCHED_CAPACITY_SCALE;
5964
5965 total >>= SCHED_CAPACITY_SHIFT;
5966
5967 return div_u64(available, total);
5968 }
5969
5970 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5971 {
5972 unsigned long capacity = SCHED_CAPACITY_SCALE;
5973 struct sched_group *sdg = sd->groups;
5974
5975 if (sched_feat(ARCH_CAPACITY))
5976 capacity *= arch_scale_cpu_capacity(sd, cpu);
5977 else
5978 capacity *= default_scale_cpu_capacity(sd, cpu);
5979
5980 capacity >>= SCHED_CAPACITY_SHIFT;
5981
5982 sdg->sgc->capacity_orig = capacity;
5983
5984 if (sched_feat(ARCH_CAPACITY))
5985 capacity *= arch_scale_freq_capacity(sd, cpu);
5986 else
5987 capacity *= default_scale_capacity(sd, cpu);
5988
5989 capacity >>= SCHED_CAPACITY_SHIFT;
5990
5991 capacity *= scale_rt_capacity(cpu);
5992 capacity >>= SCHED_CAPACITY_SHIFT;
5993
5994 if (!capacity)
5995 capacity = 1;
5996
5997 cpu_rq(cpu)->cpu_capacity = capacity;
5998 sdg->sgc->capacity = capacity;
5999 }
6000
6001 void update_group_capacity(struct sched_domain *sd, int cpu)
6002 {
6003 struct sched_domain *child = sd->child;
6004 struct sched_group *group, *sdg = sd->groups;
6005 unsigned long capacity, capacity_orig;
6006 unsigned long interval;
6007
6008 interval = msecs_to_jiffies(sd->balance_interval);
6009 interval = clamp(interval, 1UL, max_load_balance_interval);
6010 sdg->sgc->next_update = jiffies + interval;
6011
6012 if (!child) {
6013 update_cpu_capacity(sd, cpu);
6014 return;
6015 }
6016
6017 capacity_orig = capacity = 0;
6018
6019 if (child->flags & SD_OVERLAP) {
6020 /*
6021 * SD_OVERLAP domains cannot assume that child groups
6022 * span the current group.
6023 */
6024
6025 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6026 struct sched_group_capacity *sgc;
6027 struct rq *rq = cpu_rq(cpu);
6028
6029 /*
6030 * build_sched_domains() -> init_sched_groups_capacity()
6031 * gets here before we've attached the domains to the
6032 * runqueues.
6033 *
6034 * Use capacity_of(), which is set irrespective of domains
6035 * in update_cpu_capacity().
6036 *
6037 * This avoids capacity/capacity_orig from being 0 and
6038 * causing divide-by-zero issues on boot.
6039 *
6040 * Runtime updates will correct capacity_orig.
6041 */
6042 if (unlikely(!rq->sd)) {
6043 capacity_orig += capacity_of(cpu);
6044 capacity += capacity_of(cpu);
6045 continue;
6046 }
6047
6048 sgc = rq->sd->groups->sgc;
6049 capacity_orig += sgc->capacity_orig;
6050 capacity += sgc->capacity;
6051 }
6052 } else {
6053 /*
6054 * !SD_OVERLAP domains can assume that child groups
6055 * span the current group.
6056 */
6057
6058 group = child->groups;
6059 do {
6060 capacity_orig += group->sgc->capacity_orig;
6061 capacity += group->sgc->capacity;
6062 group = group->next;
6063 } while (group != child->groups);
6064 }
6065
6066 sdg->sgc->capacity_orig = capacity_orig;
6067 sdg->sgc->capacity = capacity;
6068 }
6069
6070 /*
6071 * Try and fix up capacity for tiny siblings, this is needed when
6072 * things like SD_ASYM_PACKING need f_b_g to select another sibling
6073 * which on its own isn't powerful enough.
6074 *
6075 * See update_sd_pick_busiest() and check_asym_packing().
6076 */
6077 static inline int
6078 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
6079 {
6080 /*
6081 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
6082 */
6083 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
6084 return 0;
6085
6086 /*
6087 * If ~90% of the cpu_capacity is still there, we're good.
6088 */
6089 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
6090 return 1;
6091
6092 return 0;
6093 }
6094
6095 /*
6096 * Group imbalance indicates (and tries to solve) the problem where balancing
6097 * groups is inadequate due to tsk_cpus_allowed() constraints.
6098 *
6099 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6100 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6101 * Something like:
6102 *
6103 * { 0 1 2 3 } { 4 5 6 7 }
6104 * * * * *
6105 *
6106 * If we were to balance group-wise we'd place two tasks in the first group and
6107 * two tasks in the second group. Clearly this is undesired as it will overload
6108 * cpu 3 and leave one of the cpus in the second group unused.
6109 *
6110 * The current solution to this issue is detecting the skew in the first group
6111 * by noticing the lower domain failed to reach balance and had difficulty
6112 * moving tasks due to affinity constraints.
6113 *
6114 * When this is so detected; this group becomes a candidate for busiest; see
6115 * update_sd_pick_busiest(). And calculate_imbalance() and
6116 * find_busiest_group() avoid some of the usual balance conditions to allow it
6117 * to create an effective group imbalance.
6118 *
6119 * This is a somewhat tricky proposition since the next run might not find the
6120 * group imbalance and decide the groups need to be balanced again. A most
6121 * subtle and fragile situation.
6122 */
6123
6124 static inline int sg_imbalanced(struct sched_group *group)
6125 {
6126 return group->sgc->imbalance;
6127 }
6128
6129 /*
6130 * Compute the group capacity factor.
6131 *
6132 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
6133 * first dividing out the smt factor and computing the actual number of cores
6134 * and limit unit capacity with that.
6135 */
6136 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
6137 {
6138 unsigned int capacity_factor, smt, cpus;
6139 unsigned int capacity, capacity_orig;
6140
6141 capacity = group->sgc->capacity;
6142 capacity_orig = group->sgc->capacity_orig;
6143 cpus = group->group_weight;
6144
6145 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
6146 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
6147 capacity_factor = cpus / smt; /* cores */
6148
6149 capacity_factor = min_t(unsigned,
6150 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
6151 if (!capacity_factor)
6152 capacity_factor = fix_small_capacity(env->sd, group);
6153
6154 return capacity_factor;
6155 }
6156
6157 static enum group_type
6158 group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
6159 {
6160 if (sgs->sum_nr_running > sgs->group_capacity_factor)
6161 return group_overloaded;
6162
6163 if (sg_imbalanced(group))
6164 return group_imbalanced;
6165
6166 return group_other;
6167 }
6168
6169 /**
6170 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6171 * @env: The load balancing environment.
6172 * @group: sched_group whose statistics are to be updated.
6173 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6174 * @local_group: Does group contain this_cpu.
6175 * @sgs: variable to hold the statistics for this group.
6176 * @overload: Indicate more than one runnable task for any CPU.
6177 */
6178 static inline void update_sg_lb_stats(struct lb_env *env,
6179 struct sched_group *group, int load_idx,
6180 int local_group, struct sg_lb_stats *sgs,
6181 bool *overload)
6182 {
6183 unsigned long load;
6184 int i;
6185
6186 memset(sgs, 0, sizeof(*sgs));
6187
6188 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6189 struct rq *rq = cpu_rq(i);
6190
6191 /* Bias balancing toward cpus of our domain */
6192 if (local_group)
6193 load = target_load(i, load_idx);
6194 else
6195 load = source_load(i, load_idx);
6196
6197 sgs->group_load += load;
6198 sgs->sum_nr_running += rq->cfs.h_nr_running;
6199
6200 if (rq->nr_running > 1)
6201 *overload = true;
6202
6203 #ifdef CONFIG_NUMA_BALANCING
6204 sgs->nr_numa_running += rq->nr_numa_running;
6205 sgs->nr_preferred_running += rq->nr_preferred_running;
6206 #endif
6207 sgs->sum_weighted_load += weighted_cpuload(i);
6208 if (idle_cpu(i))
6209 sgs->idle_cpus++;
6210 }
6211
6212 /* Adjust by relative CPU capacity of the group */
6213 sgs->group_capacity = group->sgc->capacity;
6214 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6215
6216 if (sgs->sum_nr_running)
6217 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6218
6219 sgs->group_weight = group->group_weight;
6220 sgs->group_capacity_factor = sg_capacity_factor(env, group);
6221 sgs->group_type = group_classify(group, sgs);
6222
6223 if (sgs->group_capacity_factor > sgs->sum_nr_running)
6224 sgs->group_has_free_capacity = 1;
6225 }
6226
6227 /**
6228 * update_sd_pick_busiest - return 1 on busiest group
6229 * @env: The load balancing environment.
6230 * @sds: sched_domain statistics
6231 * @sg: sched_group candidate to be checked for being the busiest
6232 * @sgs: sched_group statistics
6233 *
6234 * Determine if @sg is a busier group than the previously selected
6235 * busiest group.
6236 *
6237 * Return: %true if @sg is a busier group than the previously selected
6238 * busiest group. %false otherwise.
6239 */
6240 static bool update_sd_pick_busiest(struct lb_env *env,
6241 struct sd_lb_stats *sds,
6242 struct sched_group *sg,
6243 struct sg_lb_stats *sgs)
6244 {
6245 struct sg_lb_stats *busiest = &sds->busiest_stat;
6246
6247 if (sgs->group_type > busiest->group_type)
6248 return true;
6249
6250 if (sgs->group_type < busiest->group_type)
6251 return false;
6252
6253 if (sgs->avg_load <= busiest->avg_load)
6254 return false;
6255
6256 /* This is the busiest node in its class. */
6257 if (!(env->sd->flags & SD_ASYM_PACKING))
6258 return true;
6259
6260 /*
6261 * ASYM_PACKING needs to move all the work to the lowest
6262 * numbered CPUs in the group, therefore mark all groups
6263 * higher than ourself as busy.
6264 */
6265 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6266 if (!sds->busiest)
6267 return true;
6268
6269 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6270 return true;
6271 }
6272
6273 return false;
6274 }
6275
6276 #ifdef CONFIG_NUMA_BALANCING
6277 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6278 {
6279 if (sgs->sum_nr_running > sgs->nr_numa_running)
6280 return regular;
6281 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6282 return remote;
6283 return all;
6284 }
6285
6286 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6287 {
6288 if (rq->nr_running > rq->nr_numa_running)
6289 return regular;
6290 if (rq->nr_running > rq->nr_preferred_running)
6291 return remote;
6292 return all;
6293 }
6294 #else
6295 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6296 {
6297 return all;
6298 }
6299
6300 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6301 {
6302 return regular;
6303 }
6304 #endif /* CONFIG_NUMA_BALANCING */
6305
6306 /**
6307 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6308 * @env: The load balancing environment.
6309 * @sds: variable to hold the statistics for this sched_domain.
6310 */
6311 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6312 {
6313 struct sched_domain *child = env->sd->child;
6314 struct sched_group *sg = env->sd->groups;
6315 struct sg_lb_stats tmp_sgs;
6316 int load_idx, prefer_sibling = 0;
6317 bool overload = false;
6318
6319 if (child && child->flags & SD_PREFER_SIBLING)
6320 prefer_sibling = 1;
6321
6322 load_idx = get_sd_load_idx(env->sd, env->idle);
6323
6324 do {
6325 struct sg_lb_stats *sgs = &tmp_sgs;
6326 int local_group;
6327
6328 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6329 if (local_group) {
6330 sds->local = sg;
6331 sgs = &sds->local_stat;
6332
6333 if (env->idle != CPU_NEWLY_IDLE ||
6334 time_after_eq(jiffies, sg->sgc->next_update))
6335 update_group_capacity(env->sd, env->dst_cpu);
6336 }
6337
6338 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6339 &overload);
6340
6341 if (local_group)
6342 goto next_group;
6343
6344 /*
6345 * In case the child domain prefers tasks go to siblings
6346 * first, lower the sg capacity factor to one so that we'll try
6347 * and move all the excess tasks away. We lower the capacity
6348 * of a group only if the local group has the capacity to fit
6349 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6350 * extra check prevents the case where you always pull from the
6351 * heaviest group when it is already under-utilized (possible
6352 * with a large weight task outweighs the tasks on the system).
6353 */
6354 if (prefer_sibling && sds->local &&
6355 sds->local_stat.group_has_free_capacity) {
6356 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6357 sgs->group_type = group_classify(sg, sgs);
6358 }
6359
6360 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6361 sds->busiest = sg;
6362 sds->busiest_stat = *sgs;
6363 }
6364
6365 next_group:
6366 /* Now, start updating sd_lb_stats */
6367 sds->total_load += sgs->group_load;
6368 sds->total_capacity += sgs->group_capacity;
6369
6370 sg = sg->next;
6371 } while (sg != env->sd->groups);
6372
6373 if (env->sd->flags & SD_NUMA)
6374 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6375
6376 if (!env->sd->parent) {
6377 /* update overload indicator if we are at root domain */
6378 if (env->dst_rq->rd->overload != overload)
6379 env->dst_rq->rd->overload = overload;
6380 }
6381
6382 }
6383
6384 /**
6385 * check_asym_packing - Check to see if the group is packed into the
6386 * sched doman.
6387 *
6388 * This is primarily intended to used at the sibling level. Some
6389 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6390 * case of POWER7, it can move to lower SMT modes only when higher
6391 * threads are idle. When in lower SMT modes, the threads will
6392 * perform better since they share less core resources. Hence when we
6393 * have idle threads, we want them to be the higher ones.
6394 *
6395 * This packing function is run on idle threads. It checks to see if
6396 * the busiest CPU in this domain (core in the P7 case) has a higher
6397 * CPU number than the packing function is being run on. Here we are
6398 * assuming lower CPU number will be equivalent to lower a SMT thread
6399 * number.
6400 *
6401 * Return: 1 when packing is required and a task should be moved to
6402 * this CPU. The amount of the imbalance is returned in *imbalance.
6403 *
6404 * @env: The load balancing environment.
6405 * @sds: Statistics of the sched_domain which is to be packed
6406 */
6407 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6408 {
6409 int busiest_cpu;
6410
6411 if (!(env->sd->flags & SD_ASYM_PACKING))
6412 return 0;
6413
6414 if (!sds->busiest)
6415 return 0;
6416
6417 busiest_cpu = group_first_cpu(sds->busiest);
6418 if (env->dst_cpu > busiest_cpu)
6419 return 0;
6420
6421 env->imbalance = DIV_ROUND_CLOSEST(
6422 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6423 SCHED_CAPACITY_SCALE);
6424
6425 return 1;
6426 }
6427
6428 /**
6429 * fix_small_imbalance - Calculate the minor imbalance that exists
6430 * amongst the groups of a sched_domain, during
6431 * load balancing.
6432 * @env: The load balancing environment.
6433 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6434 */
6435 static inline
6436 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6437 {
6438 unsigned long tmp, capa_now = 0, capa_move = 0;
6439 unsigned int imbn = 2;
6440 unsigned long scaled_busy_load_per_task;
6441 struct sg_lb_stats *local, *busiest;
6442
6443 local = &sds->local_stat;
6444 busiest = &sds->busiest_stat;
6445
6446 if (!local->sum_nr_running)
6447 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6448 else if (busiest->load_per_task > local->load_per_task)
6449 imbn = 1;
6450
6451 scaled_busy_load_per_task =
6452 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6453 busiest->group_capacity;
6454
6455 if (busiest->avg_load + scaled_busy_load_per_task >=
6456 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6457 env->imbalance = busiest->load_per_task;
6458 return;
6459 }
6460
6461 /*
6462 * OK, we don't have enough imbalance to justify moving tasks,
6463 * however we may be able to increase total CPU capacity used by
6464 * moving them.
6465 */
6466
6467 capa_now += busiest->group_capacity *
6468 min(busiest->load_per_task, busiest->avg_load);
6469 capa_now += local->group_capacity *
6470 min(local->load_per_task, local->avg_load);
6471 capa_now /= SCHED_CAPACITY_SCALE;
6472
6473 /* Amount of load we'd subtract */
6474 if (busiest->avg_load > scaled_busy_load_per_task) {
6475 capa_move += busiest->group_capacity *
6476 min(busiest->load_per_task,
6477 busiest->avg_load - scaled_busy_load_per_task);
6478 }
6479
6480 /* Amount of load we'd add */
6481 if (busiest->avg_load * busiest->group_capacity <
6482 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6483 tmp = (busiest->avg_load * busiest->group_capacity) /
6484 local->group_capacity;
6485 } else {
6486 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6487 local->group_capacity;
6488 }
6489 capa_move += local->group_capacity *
6490 min(local->load_per_task, local->avg_load + tmp);
6491 capa_move /= SCHED_CAPACITY_SCALE;
6492
6493 /* Move if we gain throughput */
6494 if (capa_move > capa_now)
6495 env->imbalance = busiest->load_per_task;
6496 }
6497
6498 /**
6499 * calculate_imbalance - Calculate the amount of imbalance present within the
6500 * groups of a given sched_domain during load balance.
6501 * @env: load balance environment
6502 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6503 */
6504 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6505 {
6506 unsigned long max_pull, load_above_capacity = ~0UL;
6507 struct sg_lb_stats *local, *busiest;
6508
6509 local = &sds->local_stat;
6510 busiest = &sds->busiest_stat;
6511
6512 if (busiest->group_type == group_imbalanced) {
6513 /*
6514 * In the group_imb case we cannot rely on group-wide averages
6515 * to ensure cpu-load equilibrium, look at wider averages. XXX
6516 */
6517 busiest->load_per_task =
6518 min(busiest->load_per_task, sds->avg_load);
6519 }
6520
6521 /*
6522 * In the presence of smp nice balancing, certain scenarios can have
6523 * max load less than avg load(as we skip the groups at or below
6524 * its cpu_capacity, while calculating max_load..)
6525 */
6526 if (busiest->avg_load <= sds->avg_load ||
6527 local->avg_load >= sds->avg_load) {
6528 env->imbalance = 0;
6529 return fix_small_imbalance(env, sds);
6530 }
6531
6532 /*
6533 * If there aren't any idle cpus, avoid creating some.
6534 */
6535 if (busiest->group_type == group_overloaded &&
6536 local->group_type == group_overloaded) {
6537 load_above_capacity =
6538 (busiest->sum_nr_running - busiest->group_capacity_factor);
6539
6540 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6541 load_above_capacity /= busiest->group_capacity;
6542 }
6543
6544 /*
6545 * We're trying to get all the cpus to the average_load, so we don't
6546 * want to push ourselves above the average load, nor do we wish to
6547 * reduce the max loaded cpu below the average load. At the same time,
6548 * we also don't want to reduce the group load below the group capacity
6549 * (so that we can implement power-savings policies etc). Thus we look
6550 * for the minimum possible imbalance.
6551 */
6552 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6553
6554 /* How much load to actually move to equalise the imbalance */
6555 env->imbalance = min(
6556 max_pull * busiest->group_capacity,
6557 (sds->avg_load - local->avg_load) * local->group_capacity
6558 ) / SCHED_CAPACITY_SCALE;
6559
6560 /*
6561 * if *imbalance is less than the average load per runnable task
6562 * there is no guarantee that any tasks will be moved so we'll have
6563 * a think about bumping its value to force at least one task to be
6564 * moved
6565 */
6566 if (env->imbalance < busiest->load_per_task)
6567 return fix_small_imbalance(env, sds);
6568 }
6569
6570 /******* find_busiest_group() helpers end here *********************/
6571
6572 /**
6573 * find_busiest_group - Returns the busiest group within the sched_domain
6574 * if there is an imbalance. If there isn't an imbalance, and
6575 * the user has opted for power-savings, it returns a group whose
6576 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6577 * such a group exists.
6578 *
6579 * Also calculates the amount of weighted load which should be moved
6580 * to restore balance.
6581 *
6582 * @env: The load balancing environment.
6583 *
6584 * Return: - The busiest group if imbalance exists.
6585 * - If no imbalance and user has opted for power-savings balance,
6586 * return the least loaded group whose CPUs can be
6587 * put to idle by rebalancing its tasks onto our group.
6588 */
6589 static struct sched_group *find_busiest_group(struct lb_env *env)
6590 {
6591 struct sg_lb_stats *local, *busiest;
6592 struct sd_lb_stats sds;
6593
6594 init_sd_lb_stats(&sds);
6595
6596 /*
6597 * Compute the various statistics relavent for load balancing at
6598 * this level.
6599 */
6600 update_sd_lb_stats(env, &sds);
6601 local = &sds.local_stat;
6602 busiest = &sds.busiest_stat;
6603
6604 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6605 check_asym_packing(env, &sds))
6606 return sds.busiest;
6607
6608 /* There is no busy sibling group to pull tasks from */
6609 if (!sds.busiest || busiest->sum_nr_running == 0)
6610 goto out_balanced;
6611
6612 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6613 / sds.total_capacity;
6614
6615 /*
6616 * If the busiest group is imbalanced the below checks don't
6617 * work because they assume all things are equal, which typically
6618 * isn't true due to cpus_allowed constraints and the like.
6619 */
6620 if (busiest->group_type == group_imbalanced)
6621 goto force_balance;
6622
6623 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6624 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6625 !busiest->group_has_free_capacity)
6626 goto force_balance;
6627
6628 /*
6629 * If the local group is busier than the selected busiest group
6630 * don't try and pull any tasks.
6631 */
6632 if (local->avg_load >= busiest->avg_load)
6633 goto out_balanced;
6634
6635 /*
6636 * Don't pull any tasks if this group is already above the domain
6637 * average load.
6638 */
6639 if (local->avg_load >= sds.avg_load)
6640 goto out_balanced;
6641
6642 if (env->idle == CPU_IDLE) {
6643 /*
6644 * This cpu is idle. If the busiest group is not overloaded
6645 * and there is no imbalance between this and busiest group
6646 * wrt idle cpus, it is balanced. The imbalance becomes
6647 * significant if the diff is greater than 1 otherwise we
6648 * might end up to just move the imbalance on another group
6649 */
6650 if ((busiest->group_type != group_overloaded) &&
6651 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6652 goto out_balanced;
6653 } else {
6654 /*
6655 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6656 * imbalance_pct to be conservative.
6657 */
6658 if (100 * busiest->avg_load <=
6659 env->sd->imbalance_pct * local->avg_load)
6660 goto out_balanced;
6661 }
6662
6663 force_balance:
6664 /* Looks like there is an imbalance. Compute it */
6665 calculate_imbalance(env, &sds);
6666 return sds.busiest;
6667
6668 out_balanced:
6669 env->imbalance = 0;
6670 return NULL;
6671 }
6672
6673 /*
6674 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6675 */
6676 static struct rq *find_busiest_queue(struct lb_env *env,
6677 struct sched_group *group)
6678 {
6679 struct rq *busiest = NULL, *rq;
6680 unsigned long busiest_load = 0, busiest_capacity = 1;
6681 int i;
6682
6683 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6684 unsigned long capacity, capacity_factor, wl;
6685 enum fbq_type rt;
6686
6687 rq = cpu_rq(i);
6688 rt = fbq_classify_rq(rq);
6689
6690 /*
6691 * We classify groups/runqueues into three groups:
6692 * - regular: there are !numa tasks
6693 * - remote: there are numa tasks that run on the 'wrong' node
6694 * - all: there is no distinction
6695 *
6696 * In order to avoid migrating ideally placed numa tasks,
6697 * ignore those when there's better options.
6698 *
6699 * If we ignore the actual busiest queue to migrate another
6700 * task, the next balance pass can still reduce the busiest
6701 * queue by moving tasks around inside the node.
6702 *
6703 * If we cannot move enough load due to this classification
6704 * the next pass will adjust the group classification and
6705 * allow migration of more tasks.
6706 *
6707 * Both cases only affect the total convergence complexity.
6708 */
6709 if (rt > env->fbq_type)
6710 continue;
6711
6712 capacity = capacity_of(i);
6713 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6714 if (!capacity_factor)
6715 capacity_factor = fix_small_capacity(env->sd, group);
6716
6717 wl = weighted_cpuload(i);
6718
6719 /*
6720 * When comparing with imbalance, use weighted_cpuload()
6721 * which is not scaled with the cpu capacity.
6722 */
6723 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6724 continue;
6725
6726 /*
6727 * For the load comparisons with the other cpu's, consider
6728 * the weighted_cpuload() scaled with the cpu capacity, so
6729 * that the load can be moved away from the cpu that is
6730 * potentially running at a lower capacity.
6731 *
6732 * Thus we're looking for max(wl_i / capacity_i), crosswise
6733 * multiplication to rid ourselves of the division works out
6734 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6735 * our previous maximum.
6736 */
6737 if (wl * busiest_capacity > busiest_load * capacity) {
6738 busiest_load = wl;
6739 busiest_capacity = capacity;
6740 busiest = rq;
6741 }
6742 }
6743
6744 return busiest;
6745 }
6746
6747 /*
6748 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6749 * so long as it is large enough.
6750 */
6751 #define MAX_PINNED_INTERVAL 512
6752
6753 /* Working cpumask for load_balance and load_balance_newidle. */
6754 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6755
6756 static int need_active_balance(struct lb_env *env)
6757 {
6758 struct sched_domain *sd = env->sd;
6759
6760 if (env->idle == CPU_NEWLY_IDLE) {
6761
6762 /*
6763 * ASYM_PACKING needs to force migrate tasks from busy but
6764 * higher numbered CPUs in order to pack all tasks in the
6765 * lowest numbered CPUs.
6766 */
6767 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6768 return 1;
6769 }
6770
6771 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6772 }
6773
6774 static int active_load_balance_cpu_stop(void *data);
6775
6776 static int should_we_balance(struct lb_env *env)
6777 {
6778 struct sched_group *sg = env->sd->groups;
6779 struct cpumask *sg_cpus, *sg_mask;
6780 int cpu, balance_cpu = -1;
6781
6782 /*
6783 * In the newly idle case, we will allow all the cpu's
6784 * to do the newly idle load balance.
6785 */
6786 if (env->idle == CPU_NEWLY_IDLE)
6787 return 1;
6788
6789 sg_cpus = sched_group_cpus(sg);
6790 sg_mask = sched_group_mask(sg);
6791 /* Try to find first idle cpu */
6792 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6793 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6794 continue;
6795
6796 balance_cpu = cpu;
6797 break;
6798 }
6799
6800 if (balance_cpu == -1)
6801 balance_cpu = group_balance_cpu(sg);
6802
6803 /*
6804 * First idle cpu or the first cpu(busiest) in this sched group
6805 * is eligible for doing load balancing at this and above domains.
6806 */
6807 return balance_cpu == env->dst_cpu;
6808 }
6809
6810 /*
6811 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6812 * tasks if there is an imbalance.
6813 */
6814 static int load_balance(int this_cpu, struct rq *this_rq,
6815 struct sched_domain *sd, enum cpu_idle_type idle,
6816 int *continue_balancing)
6817 {
6818 int ld_moved, cur_ld_moved, active_balance = 0;
6819 struct sched_domain *sd_parent = sd->parent;
6820 struct sched_group *group;
6821 struct rq *busiest;
6822 unsigned long flags;
6823 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6824
6825 struct lb_env env = {
6826 .sd = sd,
6827 .dst_cpu = this_cpu,
6828 .dst_rq = this_rq,
6829 .dst_grpmask = sched_group_cpus(sd->groups),
6830 .idle = idle,
6831 .loop_break = sched_nr_migrate_break,
6832 .cpus = cpus,
6833 .fbq_type = all,
6834 .tasks = LIST_HEAD_INIT(env.tasks),
6835 };
6836
6837 /*
6838 * For NEWLY_IDLE load_balancing, we don't need to consider
6839 * other cpus in our group
6840 */
6841 if (idle == CPU_NEWLY_IDLE)
6842 env.dst_grpmask = NULL;
6843
6844 cpumask_copy(cpus, cpu_active_mask);
6845
6846 schedstat_inc(sd, lb_count[idle]);
6847
6848 redo:
6849 if (!should_we_balance(&env)) {
6850 *continue_balancing = 0;
6851 goto out_balanced;
6852 }
6853
6854 group = find_busiest_group(&env);
6855 if (!group) {
6856 schedstat_inc(sd, lb_nobusyg[idle]);
6857 goto out_balanced;
6858 }
6859
6860 busiest = find_busiest_queue(&env, group);
6861 if (!busiest) {
6862 schedstat_inc(sd, lb_nobusyq[idle]);
6863 goto out_balanced;
6864 }
6865
6866 BUG_ON(busiest == env.dst_rq);
6867
6868 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6869
6870 ld_moved = 0;
6871 if (busiest->nr_running > 1) {
6872 /*
6873 * Attempt to move tasks. If find_busiest_group has found
6874 * an imbalance but busiest->nr_running <= 1, the group is
6875 * still unbalanced. ld_moved simply stays zero, so it is
6876 * correctly treated as an imbalance.
6877 */
6878 env.flags |= LBF_ALL_PINNED;
6879 env.src_cpu = busiest->cpu;
6880 env.src_rq = busiest;
6881 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6882
6883 more_balance:
6884 raw_spin_lock_irqsave(&busiest->lock, flags);
6885
6886 /*
6887 * cur_ld_moved - load moved in current iteration
6888 * ld_moved - cumulative load moved across iterations
6889 */
6890 cur_ld_moved = detach_tasks(&env);
6891
6892 /*
6893 * We've detached some tasks from busiest_rq. Every
6894 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6895 * unlock busiest->lock, and we are able to be sure
6896 * that nobody can manipulate the tasks in parallel.
6897 * See task_rq_lock() family for the details.
6898 */
6899
6900 raw_spin_unlock(&busiest->lock);
6901
6902 if (cur_ld_moved) {
6903 attach_tasks(&env);
6904 ld_moved += cur_ld_moved;
6905 }
6906
6907 local_irq_restore(flags);
6908
6909 if (env.flags & LBF_NEED_BREAK) {
6910 env.flags &= ~LBF_NEED_BREAK;
6911 goto more_balance;
6912 }
6913
6914 /*
6915 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6916 * us and move them to an alternate dst_cpu in our sched_group
6917 * where they can run. The upper limit on how many times we
6918 * iterate on same src_cpu is dependent on number of cpus in our
6919 * sched_group.
6920 *
6921 * This changes load balance semantics a bit on who can move
6922 * load to a given_cpu. In addition to the given_cpu itself
6923 * (or a ilb_cpu acting on its behalf where given_cpu is
6924 * nohz-idle), we now have balance_cpu in a position to move
6925 * load to given_cpu. In rare situations, this may cause
6926 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6927 * _independently_ and at _same_ time to move some load to
6928 * given_cpu) causing exceess load to be moved to given_cpu.
6929 * This however should not happen so much in practice and
6930 * moreover subsequent load balance cycles should correct the
6931 * excess load moved.
6932 */
6933 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6934
6935 /* Prevent to re-select dst_cpu via env's cpus */
6936 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6937
6938 env.dst_rq = cpu_rq(env.new_dst_cpu);
6939 env.dst_cpu = env.new_dst_cpu;
6940 env.flags &= ~LBF_DST_PINNED;
6941 env.loop = 0;
6942 env.loop_break = sched_nr_migrate_break;
6943
6944 /*
6945 * Go back to "more_balance" rather than "redo" since we
6946 * need to continue with same src_cpu.
6947 */
6948 goto more_balance;
6949 }
6950
6951 /*
6952 * We failed to reach balance because of affinity.
6953 */
6954 if (sd_parent) {
6955 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6956
6957 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6958 *group_imbalance = 1;
6959 }
6960
6961 /* All tasks on this runqueue were pinned by CPU affinity */
6962 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6963 cpumask_clear_cpu(cpu_of(busiest), cpus);
6964 if (!cpumask_empty(cpus)) {
6965 env.loop = 0;
6966 env.loop_break = sched_nr_migrate_break;
6967 goto redo;
6968 }
6969 goto out_all_pinned;
6970 }
6971 }
6972
6973 if (!ld_moved) {
6974 schedstat_inc(sd, lb_failed[idle]);
6975 /*
6976 * Increment the failure counter only on periodic balance.
6977 * We do not want newidle balance, which can be very
6978 * frequent, pollute the failure counter causing
6979 * excessive cache_hot migrations and active balances.
6980 */
6981 if (idle != CPU_NEWLY_IDLE)
6982 sd->nr_balance_failed++;
6983
6984 if (need_active_balance(&env)) {
6985 raw_spin_lock_irqsave(&busiest->lock, flags);
6986
6987 /* don't kick the active_load_balance_cpu_stop,
6988 * if the curr task on busiest cpu can't be
6989 * moved to this_cpu
6990 */
6991 if (!cpumask_test_cpu(this_cpu,
6992 tsk_cpus_allowed(busiest->curr))) {
6993 raw_spin_unlock_irqrestore(&busiest->lock,
6994 flags);
6995 env.flags |= LBF_ALL_PINNED;
6996 goto out_one_pinned;
6997 }
6998
6999 /*
7000 * ->active_balance synchronizes accesses to
7001 * ->active_balance_work. Once set, it's cleared
7002 * only after active load balance is finished.
7003 */
7004 if (!busiest->active_balance) {
7005 busiest->active_balance = 1;
7006 busiest->push_cpu = this_cpu;
7007 active_balance = 1;
7008 }
7009 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7010
7011 if (active_balance) {
7012 stop_one_cpu_nowait(cpu_of(busiest),
7013 active_load_balance_cpu_stop, busiest,
7014 &busiest->active_balance_work);
7015 }
7016
7017 /*
7018 * We've kicked active balancing, reset the failure
7019 * counter.
7020 */
7021 sd->nr_balance_failed = sd->cache_nice_tries+1;
7022 }
7023 } else
7024 sd->nr_balance_failed = 0;
7025
7026 if (likely(!active_balance)) {
7027 /* We were unbalanced, so reset the balancing interval */
7028 sd->balance_interval = sd->min_interval;
7029 } else {
7030 /*
7031 * If we've begun active balancing, start to back off. This
7032 * case may not be covered by the all_pinned logic if there
7033 * is only 1 task on the busy runqueue (because we don't call
7034 * detach_tasks).
7035 */
7036 if (sd->balance_interval < sd->max_interval)
7037 sd->balance_interval *= 2;
7038 }
7039
7040 goto out;
7041
7042 out_balanced:
7043 /*
7044 * We reach balance although we may have faced some affinity
7045 * constraints. Clear the imbalance flag if it was set.
7046 */
7047 if (sd_parent) {
7048 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7049
7050 if (*group_imbalance)
7051 *group_imbalance = 0;
7052 }
7053
7054 out_all_pinned:
7055 /*
7056 * We reach balance because all tasks are pinned at this level so
7057 * we can't migrate them. Let the imbalance flag set so parent level
7058 * can try to migrate them.
7059 */
7060 schedstat_inc(sd, lb_balanced[idle]);
7061
7062 sd->nr_balance_failed = 0;
7063
7064 out_one_pinned:
7065 /* tune up the balancing interval */
7066 if (((env.flags & LBF_ALL_PINNED) &&
7067 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7068 (sd->balance_interval < sd->max_interval))
7069 sd->balance_interval *= 2;
7070
7071 ld_moved = 0;
7072 out:
7073 return ld_moved;
7074 }
7075
7076 static inline unsigned long
7077 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7078 {
7079 unsigned long interval = sd->balance_interval;
7080
7081 if (cpu_busy)
7082 interval *= sd->busy_factor;
7083
7084 /* scale ms to jiffies */
7085 interval = msecs_to_jiffies(interval);
7086 interval = clamp(interval, 1UL, max_load_balance_interval);
7087
7088 return interval;
7089 }
7090
7091 static inline void
7092 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7093 {
7094 unsigned long interval, next;
7095
7096 interval = get_sd_balance_interval(sd, cpu_busy);
7097 next = sd->last_balance + interval;
7098
7099 if (time_after(*next_balance, next))
7100 *next_balance = next;
7101 }
7102
7103 /*
7104 * idle_balance is called by schedule() if this_cpu is about to become
7105 * idle. Attempts to pull tasks from other CPUs.
7106 */
7107 static int idle_balance(struct rq *this_rq)
7108 {
7109 unsigned long next_balance = jiffies + HZ;
7110 int this_cpu = this_rq->cpu;
7111 struct sched_domain *sd;
7112 int pulled_task = 0;
7113 u64 curr_cost = 0;
7114
7115 idle_enter_fair(this_rq);
7116
7117 /*
7118 * We must set idle_stamp _before_ calling idle_balance(), such that we
7119 * measure the duration of idle_balance() as idle time.
7120 */
7121 this_rq->idle_stamp = rq_clock(this_rq);
7122
7123 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7124 !this_rq->rd->overload) {
7125 rcu_read_lock();
7126 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7127 if (sd)
7128 update_next_balance(sd, 0, &next_balance);
7129 rcu_read_unlock();
7130
7131 goto out;
7132 }
7133
7134 /*
7135 * Drop the rq->lock, but keep IRQ/preempt disabled.
7136 */
7137 raw_spin_unlock(&this_rq->lock);
7138
7139 update_blocked_averages(this_cpu);
7140 rcu_read_lock();
7141 for_each_domain(this_cpu, sd) {
7142 int continue_balancing = 1;
7143 u64 t0, domain_cost;
7144
7145 if (!(sd->flags & SD_LOAD_BALANCE))
7146 continue;
7147
7148 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7149 update_next_balance(sd, 0, &next_balance);
7150 break;
7151 }
7152
7153 if (sd->flags & SD_BALANCE_NEWIDLE) {
7154 t0 = sched_clock_cpu(this_cpu);
7155
7156 pulled_task = load_balance(this_cpu, this_rq,
7157 sd, CPU_NEWLY_IDLE,
7158 &continue_balancing);
7159
7160 domain_cost = sched_clock_cpu(this_cpu) - t0;
7161 if (domain_cost > sd->max_newidle_lb_cost)
7162 sd->max_newidle_lb_cost = domain_cost;
7163
7164 curr_cost += domain_cost;
7165 }
7166
7167 update_next_balance(sd, 0, &next_balance);
7168
7169 /*
7170 * Stop searching for tasks to pull if there are
7171 * now runnable tasks on this rq.
7172 */
7173 if (pulled_task || this_rq->nr_running > 0)
7174 break;
7175 }
7176 rcu_read_unlock();
7177
7178 raw_spin_lock(&this_rq->lock);
7179
7180 if (curr_cost > this_rq->max_idle_balance_cost)
7181 this_rq->max_idle_balance_cost = curr_cost;
7182
7183 /*
7184 * While browsing the domains, we released the rq lock, a task could
7185 * have been enqueued in the meantime. Since we're not going idle,
7186 * pretend we pulled a task.
7187 */
7188 if (this_rq->cfs.h_nr_running && !pulled_task)
7189 pulled_task = 1;
7190
7191 out:
7192 /* Move the next balance forward */
7193 if (time_after(this_rq->next_balance, next_balance))
7194 this_rq->next_balance = next_balance;
7195
7196 /* Is there a task of a high priority class? */
7197 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7198 pulled_task = -1;
7199
7200 if (pulled_task) {
7201 idle_exit_fair(this_rq);
7202 this_rq->idle_stamp = 0;
7203 }
7204
7205 return pulled_task;
7206 }
7207
7208 /*
7209 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7210 * running tasks off the busiest CPU onto idle CPUs. It requires at
7211 * least 1 task to be running on each physical CPU where possible, and
7212 * avoids physical / logical imbalances.
7213 */
7214 static int active_load_balance_cpu_stop(void *data)
7215 {
7216 struct rq *busiest_rq = data;
7217 int busiest_cpu = cpu_of(busiest_rq);
7218 int target_cpu = busiest_rq->push_cpu;
7219 struct rq *target_rq = cpu_rq(target_cpu);
7220 struct sched_domain *sd;
7221 struct task_struct *p = NULL;
7222
7223 raw_spin_lock_irq(&busiest_rq->lock);
7224
7225 /* make sure the requested cpu hasn't gone down in the meantime */
7226 if (unlikely(busiest_cpu != smp_processor_id() ||
7227 !busiest_rq->active_balance))
7228 goto out_unlock;
7229
7230 /* Is there any task to move? */
7231 if (busiest_rq->nr_running <= 1)
7232 goto out_unlock;
7233
7234 /*
7235 * This condition is "impossible", if it occurs
7236 * we need to fix it. Originally reported by
7237 * Bjorn Helgaas on a 128-cpu setup.
7238 */
7239 BUG_ON(busiest_rq == target_rq);
7240
7241 /* Search for an sd spanning us and the target CPU. */
7242 rcu_read_lock();
7243 for_each_domain(target_cpu, sd) {
7244 if ((sd->flags & SD_LOAD_BALANCE) &&
7245 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7246 break;
7247 }
7248
7249 if (likely(sd)) {
7250 struct lb_env env = {
7251 .sd = sd,
7252 .dst_cpu = target_cpu,
7253 .dst_rq = target_rq,
7254 .src_cpu = busiest_rq->cpu,
7255 .src_rq = busiest_rq,
7256 .idle = CPU_IDLE,
7257 };
7258
7259 schedstat_inc(sd, alb_count);
7260
7261 p = detach_one_task(&env);
7262 if (p)
7263 schedstat_inc(sd, alb_pushed);
7264 else
7265 schedstat_inc(sd, alb_failed);
7266 }
7267 rcu_read_unlock();
7268 out_unlock:
7269 busiest_rq->active_balance = 0;
7270 raw_spin_unlock(&busiest_rq->lock);
7271
7272 if (p)
7273 attach_one_task(target_rq, p);
7274
7275 local_irq_enable();
7276
7277 return 0;
7278 }
7279
7280 static inline int on_null_domain(struct rq *rq)
7281 {
7282 return unlikely(!rcu_dereference_sched(rq->sd));
7283 }
7284
7285 #ifdef CONFIG_NO_HZ_COMMON
7286 /*
7287 * idle load balancing details
7288 * - When one of the busy CPUs notice that there may be an idle rebalancing
7289 * needed, they will kick the idle load balancer, which then does idle
7290 * load balancing for all the idle CPUs.
7291 */
7292 static struct {
7293 cpumask_var_t idle_cpus_mask;
7294 atomic_t nr_cpus;
7295 unsigned long next_balance; /* in jiffy units */
7296 } nohz ____cacheline_aligned;
7297
7298 static inline int find_new_ilb(void)
7299 {
7300 int ilb = cpumask_first(nohz.idle_cpus_mask);
7301
7302 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7303 return ilb;
7304
7305 return nr_cpu_ids;
7306 }
7307
7308 /*
7309 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7310 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7311 * CPU (if there is one).
7312 */
7313 static void nohz_balancer_kick(void)
7314 {
7315 int ilb_cpu;
7316
7317 nohz.next_balance++;
7318
7319 ilb_cpu = find_new_ilb();
7320
7321 if (ilb_cpu >= nr_cpu_ids)
7322 return;
7323
7324 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7325 return;
7326 /*
7327 * Use smp_send_reschedule() instead of resched_cpu().
7328 * This way we generate a sched IPI on the target cpu which
7329 * is idle. And the softirq performing nohz idle load balance
7330 * will be run before returning from the IPI.
7331 */
7332 smp_send_reschedule(ilb_cpu);
7333 return;
7334 }
7335
7336 static inline void nohz_balance_exit_idle(int cpu)
7337 {
7338 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7339 /*
7340 * Completely isolated CPUs don't ever set, so we must test.
7341 */
7342 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7343 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7344 atomic_dec(&nohz.nr_cpus);
7345 }
7346 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7347 }
7348 }
7349
7350 static inline void set_cpu_sd_state_busy(void)
7351 {
7352 struct sched_domain *sd;
7353 int cpu = smp_processor_id();
7354
7355 rcu_read_lock();
7356 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7357
7358 if (!sd || !sd->nohz_idle)
7359 goto unlock;
7360 sd->nohz_idle = 0;
7361
7362 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7363 unlock:
7364 rcu_read_unlock();
7365 }
7366
7367 void set_cpu_sd_state_idle(void)
7368 {
7369 struct sched_domain *sd;
7370 int cpu = smp_processor_id();
7371
7372 rcu_read_lock();
7373 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7374
7375 if (!sd || sd->nohz_idle)
7376 goto unlock;
7377 sd->nohz_idle = 1;
7378
7379 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7380 unlock:
7381 rcu_read_unlock();
7382 }
7383
7384 /*
7385 * This routine will record that the cpu is going idle with tick stopped.
7386 * This info will be used in performing idle load balancing in the future.
7387 */
7388 void nohz_balance_enter_idle(int cpu)
7389 {
7390 /*
7391 * If this cpu is going down, then nothing needs to be done.
7392 */
7393 if (!cpu_active(cpu))
7394 return;
7395
7396 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7397 return;
7398
7399 /*
7400 * If we're a completely isolated CPU, we don't play.
7401 */
7402 if (on_null_domain(cpu_rq(cpu)))
7403 return;
7404
7405 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7406 atomic_inc(&nohz.nr_cpus);
7407 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7408 }
7409
7410 static int sched_ilb_notifier(struct notifier_block *nfb,
7411 unsigned long action, void *hcpu)
7412 {
7413 switch (action & ~CPU_TASKS_FROZEN) {
7414 case CPU_DYING:
7415 nohz_balance_exit_idle(smp_processor_id());
7416 return NOTIFY_OK;
7417 default:
7418 return NOTIFY_DONE;
7419 }
7420 }
7421 #endif
7422
7423 static DEFINE_SPINLOCK(balancing);
7424
7425 /*
7426 * Scale the max load_balance interval with the number of CPUs in the system.
7427 * This trades load-balance latency on larger machines for less cross talk.
7428 */
7429 void update_max_interval(void)
7430 {
7431 max_load_balance_interval = HZ*num_online_cpus()/10;
7432 }
7433
7434 /*
7435 * It checks each scheduling domain to see if it is due to be balanced,
7436 * and initiates a balancing operation if so.
7437 *
7438 * Balancing parameters are set up in init_sched_domains.
7439 */
7440 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7441 {
7442 int continue_balancing = 1;
7443 int cpu = rq->cpu;
7444 unsigned long interval;
7445 struct sched_domain *sd;
7446 /* Earliest time when we have to do rebalance again */
7447 unsigned long next_balance = jiffies + 60*HZ;
7448 int update_next_balance = 0;
7449 int need_serialize, need_decay = 0;
7450 u64 max_cost = 0;
7451
7452 update_blocked_averages(cpu);
7453
7454 rcu_read_lock();
7455 for_each_domain(cpu, sd) {
7456 /*
7457 * Decay the newidle max times here because this is a regular
7458 * visit to all the domains. Decay ~1% per second.
7459 */
7460 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7461 sd->max_newidle_lb_cost =
7462 (sd->max_newidle_lb_cost * 253) / 256;
7463 sd->next_decay_max_lb_cost = jiffies + HZ;
7464 need_decay = 1;
7465 }
7466 max_cost += sd->max_newidle_lb_cost;
7467
7468 if (!(sd->flags & SD_LOAD_BALANCE))
7469 continue;
7470
7471 /*
7472 * Stop the load balance at this level. There is another
7473 * CPU in our sched group which is doing load balancing more
7474 * actively.
7475 */
7476 if (!continue_balancing) {
7477 if (need_decay)
7478 continue;
7479 break;
7480 }
7481
7482 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7483
7484 need_serialize = sd->flags & SD_SERIALIZE;
7485 if (need_serialize) {
7486 if (!spin_trylock(&balancing))
7487 goto out;
7488 }
7489
7490 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7491 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7492 /*
7493 * The LBF_DST_PINNED logic could have changed
7494 * env->dst_cpu, so we can't know our idle
7495 * state even if we migrated tasks. Update it.
7496 */
7497 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7498 }
7499 sd->last_balance = jiffies;
7500 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7501 }
7502 if (need_serialize)
7503 spin_unlock(&balancing);
7504 out:
7505 if (time_after(next_balance, sd->last_balance + interval)) {
7506 next_balance = sd->last_balance + interval;
7507 update_next_balance = 1;
7508 }
7509 }
7510 if (need_decay) {
7511 /*
7512 * Ensure the rq-wide value also decays but keep it at a
7513 * reasonable floor to avoid funnies with rq->avg_idle.
7514 */
7515 rq->max_idle_balance_cost =
7516 max((u64)sysctl_sched_migration_cost, max_cost);
7517 }
7518 rcu_read_unlock();
7519
7520 /*
7521 * next_balance will be updated only when there is a need.
7522 * When the cpu is attached to null domain for ex, it will not be
7523 * updated.
7524 */
7525 if (likely(update_next_balance))
7526 rq->next_balance = next_balance;
7527 }
7528
7529 #ifdef CONFIG_NO_HZ_COMMON
7530 /*
7531 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7532 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7533 */
7534 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7535 {
7536 int this_cpu = this_rq->cpu;
7537 struct rq *rq;
7538 int balance_cpu;
7539
7540 if (idle != CPU_IDLE ||
7541 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7542 goto end;
7543
7544 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7545 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7546 continue;
7547
7548 /*
7549 * If this cpu gets work to do, stop the load balancing
7550 * work being done for other cpus. Next load
7551 * balancing owner will pick it up.
7552 */
7553 if (need_resched())
7554 break;
7555
7556 rq = cpu_rq(balance_cpu);
7557
7558 /*
7559 * If time for next balance is due,
7560 * do the balance.
7561 */
7562 if (time_after_eq(jiffies, rq->next_balance)) {
7563 raw_spin_lock_irq(&rq->lock);
7564 update_rq_clock(rq);
7565 update_idle_cpu_load(rq);
7566 raw_spin_unlock_irq(&rq->lock);
7567 rebalance_domains(rq, CPU_IDLE);
7568 }
7569
7570 if (time_after(this_rq->next_balance, rq->next_balance))
7571 this_rq->next_balance = rq->next_balance;
7572 }
7573 nohz.next_balance = this_rq->next_balance;
7574 end:
7575 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7576 }
7577
7578 /*
7579 * Current heuristic for kicking the idle load balancer in the presence
7580 * of an idle cpu is the system.
7581 * - This rq has more than one task.
7582 * - At any scheduler domain level, this cpu's scheduler group has multiple
7583 * busy cpu's exceeding the group's capacity.
7584 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7585 * domain span are idle.
7586 */
7587 static inline int nohz_kick_needed(struct rq *rq)
7588 {
7589 unsigned long now = jiffies;
7590 struct sched_domain *sd;
7591 struct sched_group_capacity *sgc;
7592 int nr_busy, cpu = rq->cpu;
7593
7594 if (unlikely(rq->idle_balance))
7595 return 0;
7596
7597 /*
7598 * We may be recently in ticked or tickless idle mode. At the first
7599 * busy tick after returning from idle, we will update the busy stats.
7600 */
7601 set_cpu_sd_state_busy();
7602 nohz_balance_exit_idle(cpu);
7603
7604 /*
7605 * None are in tickless mode and hence no need for NOHZ idle load
7606 * balancing.
7607 */
7608 if (likely(!atomic_read(&nohz.nr_cpus)))
7609 return 0;
7610
7611 if (time_before(now, nohz.next_balance))
7612 return 0;
7613
7614 if (rq->nr_running >= 2)
7615 goto need_kick;
7616
7617 rcu_read_lock();
7618 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7619
7620 if (sd) {
7621 sgc = sd->groups->sgc;
7622 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7623
7624 if (nr_busy > 1)
7625 goto need_kick_unlock;
7626 }
7627
7628 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7629
7630 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7631 sched_domain_span(sd)) < cpu))
7632 goto need_kick_unlock;
7633
7634 rcu_read_unlock();
7635 return 0;
7636
7637 need_kick_unlock:
7638 rcu_read_unlock();
7639 need_kick:
7640 return 1;
7641 }
7642 #else
7643 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7644 #endif
7645
7646 /*
7647 * run_rebalance_domains is triggered when needed from the scheduler tick.
7648 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7649 */
7650 static void run_rebalance_domains(struct softirq_action *h)
7651 {
7652 struct rq *this_rq = this_rq();
7653 enum cpu_idle_type idle = this_rq->idle_balance ?
7654 CPU_IDLE : CPU_NOT_IDLE;
7655
7656 rebalance_domains(this_rq, idle);
7657
7658 /*
7659 * If this cpu has a pending nohz_balance_kick, then do the
7660 * balancing on behalf of the other idle cpus whose ticks are
7661 * stopped.
7662 */
7663 nohz_idle_balance(this_rq, idle);
7664 }
7665
7666 /*
7667 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7668 */
7669 void trigger_load_balance(struct rq *rq)
7670 {
7671 /* Don't need to rebalance while attached to NULL domain */
7672 if (unlikely(on_null_domain(rq)))
7673 return;
7674
7675 if (time_after_eq(jiffies, rq->next_balance))
7676 raise_softirq(SCHED_SOFTIRQ);
7677 #ifdef CONFIG_NO_HZ_COMMON
7678 if (nohz_kick_needed(rq))
7679 nohz_balancer_kick();
7680 #endif
7681 }
7682
7683 static void rq_online_fair(struct rq *rq)
7684 {
7685 update_sysctl();
7686
7687 update_runtime_enabled(rq);
7688 }
7689
7690 static void rq_offline_fair(struct rq *rq)
7691 {
7692 update_sysctl();
7693
7694 /* Ensure any throttled groups are reachable by pick_next_task */
7695 unthrottle_offline_cfs_rqs(rq);
7696 }
7697
7698 #endif /* CONFIG_SMP */
7699
7700 /*
7701 * scheduler tick hitting a task of our scheduling class:
7702 */
7703 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7704 {
7705 struct cfs_rq *cfs_rq;
7706 struct sched_entity *se = &curr->se;
7707
7708 for_each_sched_entity(se) {
7709 cfs_rq = cfs_rq_of(se);
7710 entity_tick(cfs_rq, se, queued);
7711 }
7712
7713 if (numabalancing_enabled)
7714 task_tick_numa(rq, curr);
7715
7716 update_rq_runnable_avg(rq, 1);
7717 }
7718
7719 /*
7720 * called on fork with the child task as argument from the parent's context
7721 * - child not yet on the tasklist
7722 * - preemption disabled
7723 */
7724 static void task_fork_fair(struct task_struct *p)
7725 {
7726 struct cfs_rq *cfs_rq;
7727 struct sched_entity *se = &p->se, *curr;
7728 int this_cpu = smp_processor_id();
7729 struct rq *rq = this_rq();
7730 unsigned long flags;
7731
7732 raw_spin_lock_irqsave(&rq->lock, flags);
7733
7734 update_rq_clock(rq);
7735
7736 cfs_rq = task_cfs_rq(current);
7737 curr = cfs_rq->curr;
7738
7739 /*
7740 * Not only the cpu but also the task_group of the parent might have
7741 * been changed after parent->se.parent,cfs_rq were copied to
7742 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7743 * of child point to valid ones.
7744 */
7745 rcu_read_lock();
7746 __set_task_cpu(p, this_cpu);
7747 rcu_read_unlock();
7748
7749 update_curr(cfs_rq);
7750
7751 if (curr)
7752 se->vruntime = curr->vruntime;
7753 place_entity(cfs_rq, se, 1);
7754
7755 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7756 /*
7757 * Upon rescheduling, sched_class::put_prev_task() will place
7758 * 'current' within the tree based on its new key value.
7759 */
7760 swap(curr->vruntime, se->vruntime);
7761 resched_curr(rq);
7762 }
7763
7764 se->vruntime -= cfs_rq->min_vruntime;
7765
7766 raw_spin_unlock_irqrestore(&rq->lock, flags);
7767 }
7768
7769 /*
7770 * Priority of the task has changed. Check to see if we preempt
7771 * the current task.
7772 */
7773 static void
7774 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7775 {
7776 if (!task_on_rq_queued(p))
7777 return;
7778
7779 /*
7780 * Reschedule if we are currently running on this runqueue and
7781 * our priority decreased, or if we are not currently running on
7782 * this runqueue and our priority is higher than the current's
7783 */
7784 if (rq->curr == p) {
7785 if (p->prio > oldprio)
7786 resched_curr(rq);
7787 } else
7788 check_preempt_curr(rq, p, 0);
7789 }
7790
7791 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7792 {
7793 struct sched_entity *se = &p->se;
7794 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7795
7796 /*
7797 * Ensure the task's vruntime is normalized, so that when it's
7798 * switched back to the fair class the enqueue_entity(.flags=0) will
7799 * do the right thing.
7800 *
7801 * If it's queued, then the dequeue_entity(.flags=0) will already
7802 * have normalized the vruntime, if it's !queued, then only when
7803 * the task is sleeping will it still have non-normalized vruntime.
7804 */
7805 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7806 /*
7807 * Fix up our vruntime so that the current sleep doesn't
7808 * cause 'unlimited' sleep bonus.
7809 */
7810 place_entity(cfs_rq, se, 0);
7811 se->vruntime -= cfs_rq->min_vruntime;
7812 }
7813
7814 #ifdef CONFIG_SMP
7815 /*
7816 * Remove our load from contribution when we leave sched_fair
7817 * and ensure we don't carry in an old decay_count if we
7818 * switch back.
7819 */
7820 if (se->avg.decay_count) {
7821 __synchronize_entity_decay(se);
7822 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7823 }
7824 #endif
7825 }
7826
7827 /*
7828 * We switched to the sched_fair class.
7829 */
7830 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7831 {
7832 #ifdef CONFIG_FAIR_GROUP_SCHED
7833 struct sched_entity *se = &p->se;
7834 /*
7835 * Since the real-depth could have been changed (only FAIR
7836 * class maintain depth value), reset depth properly.
7837 */
7838 se->depth = se->parent ? se->parent->depth + 1 : 0;
7839 #endif
7840 if (!task_on_rq_queued(p))
7841 return;
7842
7843 /*
7844 * We were most likely switched from sched_rt, so
7845 * kick off the schedule if running, otherwise just see
7846 * if we can still preempt the current task.
7847 */
7848 if (rq->curr == p)
7849 resched_curr(rq);
7850 else
7851 check_preempt_curr(rq, p, 0);
7852 }
7853
7854 /* Account for a task changing its policy or group.
7855 *
7856 * This routine is mostly called to set cfs_rq->curr field when a task
7857 * migrates between groups/classes.
7858 */
7859 static void set_curr_task_fair(struct rq *rq)
7860 {
7861 struct sched_entity *se = &rq->curr->se;
7862
7863 for_each_sched_entity(se) {
7864 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7865
7866 set_next_entity(cfs_rq, se);
7867 /* ensure bandwidth has been allocated on our new cfs_rq */
7868 account_cfs_rq_runtime(cfs_rq, 0);
7869 }
7870 }
7871
7872 void init_cfs_rq(struct cfs_rq *cfs_rq)
7873 {
7874 cfs_rq->tasks_timeline = RB_ROOT;
7875 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7876 #ifndef CONFIG_64BIT
7877 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7878 #endif
7879 #ifdef CONFIG_SMP
7880 atomic64_set(&cfs_rq->decay_counter, 1);
7881 atomic_long_set(&cfs_rq->removed_load, 0);
7882 #endif
7883 }
7884
7885 #ifdef CONFIG_FAIR_GROUP_SCHED
7886 static void task_move_group_fair(struct task_struct *p, int queued)
7887 {
7888 struct sched_entity *se = &p->se;
7889 struct cfs_rq *cfs_rq;
7890
7891 /*
7892 * If the task was not on the rq at the time of this cgroup movement
7893 * it must have been asleep, sleeping tasks keep their ->vruntime
7894 * absolute on their old rq until wakeup (needed for the fair sleeper
7895 * bonus in place_entity()).
7896 *
7897 * If it was on the rq, we've just 'preempted' it, which does convert
7898 * ->vruntime to a relative base.
7899 *
7900 * Make sure both cases convert their relative position when migrating
7901 * to another cgroup's rq. This does somewhat interfere with the
7902 * fair sleeper stuff for the first placement, but who cares.
7903 */
7904 /*
7905 * When !queued, vruntime of the task has usually NOT been normalized.
7906 * But there are some cases where it has already been normalized:
7907 *
7908 * - Moving a forked child which is waiting for being woken up by
7909 * wake_up_new_task().
7910 * - Moving a task which has been woken up by try_to_wake_up() and
7911 * waiting for actually being woken up by sched_ttwu_pending().
7912 *
7913 * To prevent boost or penalty in the new cfs_rq caused by delta
7914 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7915 */
7916 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7917 queued = 1;
7918
7919 if (!queued)
7920 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7921 set_task_rq(p, task_cpu(p));
7922 se->depth = se->parent ? se->parent->depth + 1 : 0;
7923 if (!queued) {
7924 cfs_rq = cfs_rq_of(se);
7925 se->vruntime += cfs_rq->min_vruntime;
7926 #ifdef CONFIG_SMP
7927 /*
7928 * migrate_task_rq_fair() will have removed our previous
7929 * contribution, but we must synchronize for ongoing future
7930 * decay.
7931 */
7932 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7933 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7934 #endif
7935 }
7936 }
7937
7938 void free_fair_sched_group(struct task_group *tg)
7939 {
7940 int i;
7941
7942 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7943
7944 for_each_possible_cpu(i) {
7945 if (tg->cfs_rq)
7946 kfree(tg->cfs_rq[i]);
7947 if (tg->se)
7948 kfree(tg->se[i]);
7949 }
7950
7951 kfree(tg->cfs_rq);
7952 kfree(tg->se);
7953 }
7954
7955 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7956 {
7957 struct cfs_rq *cfs_rq;
7958 struct sched_entity *se;
7959 int i;
7960
7961 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7962 if (!tg->cfs_rq)
7963 goto err;
7964 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7965 if (!tg->se)
7966 goto err;
7967
7968 tg->shares = NICE_0_LOAD;
7969
7970 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7971
7972 for_each_possible_cpu(i) {
7973 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7974 GFP_KERNEL, cpu_to_node(i));
7975 if (!cfs_rq)
7976 goto err;
7977
7978 se = kzalloc_node(sizeof(struct sched_entity),
7979 GFP_KERNEL, cpu_to_node(i));
7980 if (!se)
7981 goto err_free_rq;
7982
7983 init_cfs_rq(cfs_rq);
7984 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7985 }
7986
7987 return 1;
7988
7989 err_free_rq:
7990 kfree(cfs_rq);
7991 err:
7992 return 0;
7993 }
7994
7995 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7996 {
7997 struct rq *rq = cpu_rq(cpu);
7998 unsigned long flags;
7999
8000 /*
8001 * Only empty task groups can be destroyed; so we can speculatively
8002 * check on_list without danger of it being re-added.
8003 */
8004 if (!tg->cfs_rq[cpu]->on_list)
8005 return;
8006
8007 raw_spin_lock_irqsave(&rq->lock, flags);
8008 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8009 raw_spin_unlock_irqrestore(&rq->lock, flags);
8010 }
8011
8012 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8013 struct sched_entity *se, int cpu,
8014 struct sched_entity *parent)
8015 {
8016 struct rq *rq = cpu_rq(cpu);
8017
8018 cfs_rq->tg = tg;
8019 cfs_rq->rq = rq;
8020 init_cfs_rq_runtime(cfs_rq);
8021
8022 tg->cfs_rq[cpu] = cfs_rq;
8023 tg->se[cpu] = se;
8024
8025 /* se could be NULL for root_task_group */
8026 if (!se)
8027 return;
8028
8029 if (!parent) {
8030 se->cfs_rq = &rq->cfs;
8031 se->depth = 0;
8032 } else {
8033 se->cfs_rq = parent->my_q;
8034 se->depth = parent->depth + 1;
8035 }
8036
8037 se->my_q = cfs_rq;
8038 /* guarantee group entities always have weight */
8039 update_load_set(&se->load, NICE_0_LOAD);
8040 se->parent = parent;
8041 }
8042
8043 static DEFINE_MUTEX(shares_mutex);
8044
8045 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8046 {
8047 int i;
8048 unsigned long flags;
8049
8050 /*
8051 * We can't change the weight of the root cgroup.
8052 */
8053 if (!tg->se[0])
8054 return -EINVAL;
8055
8056 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8057
8058 mutex_lock(&shares_mutex);
8059 if (tg->shares == shares)
8060 goto done;
8061
8062 tg->shares = shares;
8063 for_each_possible_cpu(i) {
8064 struct rq *rq = cpu_rq(i);
8065 struct sched_entity *se;
8066
8067 se = tg->se[i];
8068 /* Propagate contribution to hierarchy */
8069 raw_spin_lock_irqsave(&rq->lock, flags);
8070
8071 /* Possible calls to update_curr() need rq clock */
8072 update_rq_clock(rq);
8073 for_each_sched_entity(se)
8074 update_cfs_shares(group_cfs_rq(se));
8075 raw_spin_unlock_irqrestore(&rq->lock, flags);
8076 }
8077
8078 done:
8079 mutex_unlock(&shares_mutex);
8080 return 0;
8081 }
8082 #else /* CONFIG_FAIR_GROUP_SCHED */
8083
8084 void free_fair_sched_group(struct task_group *tg) { }
8085
8086 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8087 {
8088 return 1;
8089 }
8090
8091 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8092
8093 #endif /* CONFIG_FAIR_GROUP_SCHED */
8094
8095
8096 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8097 {
8098 struct sched_entity *se = &task->se;
8099 unsigned int rr_interval = 0;
8100
8101 /*
8102 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8103 * idle runqueue:
8104 */
8105 if (rq->cfs.load.weight)
8106 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8107
8108 return rr_interval;
8109 }
8110
8111 /*
8112 * All the scheduling class methods:
8113 */
8114 const struct sched_class fair_sched_class = {
8115 .next = &idle_sched_class,
8116 .enqueue_task = enqueue_task_fair,
8117 .dequeue_task = dequeue_task_fair,
8118 .yield_task = yield_task_fair,
8119 .yield_to_task = yield_to_task_fair,
8120
8121 .check_preempt_curr = check_preempt_wakeup,
8122
8123 .pick_next_task = pick_next_task_fair,
8124 .put_prev_task = put_prev_task_fair,
8125
8126 #ifdef CONFIG_SMP
8127 .select_task_rq = select_task_rq_fair,
8128 .migrate_task_rq = migrate_task_rq_fair,
8129
8130 .rq_online = rq_online_fair,
8131 .rq_offline = rq_offline_fair,
8132
8133 .task_waking = task_waking_fair,
8134 #endif
8135
8136 .set_curr_task = set_curr_task_fair,
8137 .task_tick = task_tick_fair,
8138 .task_fork = task_fork_fair,
8139
8140 .prio_changed = prio_changed_fair,
8141 .switched_from = switched_from_fair,
8142 .switched_to = switched_to_fair,
8143
8144 .get_rr_interval = get_rr_interval_fair,
8145
8146 .update_curr = update_curr_fair,
8147
8148 #ifdef CONFIG_FAIR_GROUP_SCHED
8149 .task_move_group = task_move_group_fair,
8150 #endif
8151 };
8152
8153 #ifdef CONFIG_SCHED_DEBUG
8154 void print_cfs_stats(struct seq_file *m, int cpu)
8155 {
8156 struct cfs_rq *cfs_rq;
8157
8158 rcu_read_lock();
8159 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8160 print_cfs_rq(m, cpu, cfs_rq);
8161 rcu_read_unlock();
8162 }
8163 #endif
8164
8165 __init void init_sched_fair_class(void)
8166 {
8167 #ifdef CONFIG_SMP
8168 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8169
8170 #ifdef CONFIG_NO_HZ_COMMON
8171 nohz.next_balance = jiffies;
8172 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8173 cpu_notifier(sched_ilb_notifier, 0);
8174 #endif
8175 #endif /* SMP */
8176
8177 }
This page took 0.202977 seconds and 5 git commands to generate.