sched: Reset loop counters if all tasks are pinned and we need to redo load balance
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29
30 #include <trace/events/sched.h>
31
32 #include "sched.h"
33
34 /*
35 * Targeted preemption latency for CPU-bound tasks:
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37 *
38 * NOTE: this latency value is not the same as the concept of
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
42 *
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
45 */
46 unsigned int sysctl_sched_latency = 6000000ULL;
47 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
48
49 /*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58 enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
61 /*
62 * Minimal preemption granularity for CPU-bound tasks:
63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
64 */
65 unsigned int sysctl_sched_min_granularity = 750000ULL;
66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
67
68 /*
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
71 static unsigned int sched_nr_latency = 8;
72
73 /*
74 * After fork, child runs first. If set to 0 (default) then
75 * parent will (try to) run first.
76 */
77 unsigned int sysctl_sched_child_runs_first __read_mostly;
78
79 /*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92 /*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111 #endif
112
113 /*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122 static int get_update_sysctl_factor(void)
123 {
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141 }
142
143 static void update_sysctl(void)
144 {
145 unsigned int factor = get_update_sysctl_factor();
146
147 #define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152 #undef SET_SYSCTL
153 }
154
155 void sched_init_granularity(void)
156 {
157 update_sysctl();
158 }
159
160 #if BITS_PER_LONG == 32
161 # define WMULT_CONST (~0UL)
162 #else
163 # define WMULT_CONST (1UL << 32)
164 #endif
165
166 #define WMULT_SHIFT 32
167
168 /*
169 * Shift right and round:
170 */
171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173 /*
174 * delta *= weight / lw
175 */
176 static unsigned long
177 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179 {
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213 }
214
215
216 const struct sched_class fair_sched_class;
217
218 /**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
222 #ifdef CONFIG_FAIR_GROUP_SCHED
223
224 /* cpu runqueue to which this cfs_rq is attached */
225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226 {
227 return cfs_rq->rq;
228 }
229
230 /* An entity is a task if it doesn't "own" a runqueue */
231 #define entity_is_task(se) (!se->my_q)
232
233 static inline struct task_struct *task_of(struct sched_entity *se)
234 {
235 #ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237 #endif
238 return container_of(se, struct task_struct, se);
239 }
240
241 /* Walk up scheduling entities hierarchy */
242 #define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246 {
247 return p->se.cfs_rq;
248 }
249
250 /* runqueue on which this entity is (to be) queued */
251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252 {
253 return se->cfs_rq;
254 }
255
256 /* runqueue "owned" by this group */
257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258 {
259 return grp->my_q;
260 }
261
262 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263 {
264 if (!cfs_rq->on_list) {
265 /*
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
270 */
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
275 } else {
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
278 }
279
280 cfs_rq->on_list = 1;
281 }
282 }
283
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285 {
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 cfs_rq->on_list = 0;
289 }
290 }
291
292 /* Iterate thr' all leaf cfs_rq's on a runqueue */
293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295
296 /* Do the two (enqueued) entities belong to the same group ? */
297 static inline int
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
299 {
300 if (se->cfs_rq == pse->cfs_rq)
301 return 1;
302
303 return 0;
304 }
305
306 static inline struct sched_entity *parent_entity(struct sched_entity *se)
307 {
308 return se->parent;
309 }
310
311 /* return depth at which a sched entity is present in the hierarchy */
312 static inline int depth_se(struct sched_entity *se)
313 {
314 int depth = 0;
315
316 for_each_sched_entity(se)
317 depth++;
318
319 return depth;
320 }
321
322 static void
323 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324 {
325 int se_depth, pse_depth;
326
327 /*
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
331 * parent.
332 */
333
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
337
338 while (se_depth > pse_depth) {
339 se_depth--;
340 *se = parent_entity(*se);
341 }
342
343 while (pse_depth > se_depth) {
344 pse_depth--;
345 *pse = parent_entity(*pse);
346 }
347
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
351 }
352 }
353
354 #else /* !CONFIG_FAIR_GROUP_SCHED */
355
356 static inline struct task_struct *task_of(struct sched_entity *se)
357 {
358 return container_of(se, struct task_struct, se);
359 }
360
361 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362 {
363 return container_of(cfs_rq, struct rq, cfs);
364 }
365
366 #define entity_is_task(se) 1
367
368 #define for_each_sched_entity(se) \
369 for (; se; se = NULL)
370
371 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
372 {
373 return &task_rq(p)->cfs;
374 }
375
376 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377 {
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
380
381 return &rq->cfs;
382 }
383
384 /* runqueue "owned" by this group */
385 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386 {
387 return NULL;
388 }
389
390 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391 {
392 }
393
394 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395 {
396 }
397
398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400
401 static inline int
402 is_same_group(struct sched_entity *se, struct sched_entity *pse)
403 {
404 return 1;
405 }
406
407 static inline struct sched_entity *parent_entity(struct sched_entity *se)
408 {
409 return NULL;
410 }
411
412 static inline void
413 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414 {
415 }
416
417 #endif /* CONFIG_FAIR_GROUP_SCHED */
418
419 static __always_inline
420 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
421
422 /**************************************************************
423 * Scheduling class tree data structure manipulation methods:
424 */
425
426 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
427 {
428 s64 delta = (s64)(vruntime - min_vruntime);
429 if (delta > 0)
430 min_vruntime = vruntime;
431
432 return min_vruntime;
433 }
434
435 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
436 {
437 s64 delta = (s64)(vruntime - min_vruntime);
438 if (delta < 0)
439 min_vruntime = vruntime;
440
441 return min_vruntime;
442 }
443
444 static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
446 {
447 return (s64)(a->vruntime - b->vruntime) < 0;
448 }
449
450 static void update_min_vruntime(struct cfs_rq *cfs_rq)
451 {
452 u64 vruntime = cfs_rq->min_vruntime;
453
454 if (cfs_rq->curr)
455 vruntime = cfs_rq->curr->vruntime;
456
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 struct sched_entity,
460 run_node);
461
462 if (!cfs_rq->curr)
463 vruntime = se->vruntime;
464 else
465 vruntime = min_vruntime(vruntime, se->vruntime);
466 }
467
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
469 #ifndef CONFIG_64BIT
470 smp_wmb();
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472 #endif
473 }
474
475 /*
476 * Enqueue an entity into the rb-tree:
477 */
478 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
479 {
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
483 int leftmost = 1;
484
485 /*
486 * Find the right place in the rbtree:
487 */
488 while (*link) {
489 parent = *link;
490 entry = rb_entry(parent, struct sched_entity, run_node);
491 /*
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
494 */
495 if (entity_before(se, entry)) {
496 link = &parent->rb_left;
497 } else {
498 link = &parent->rb_right;
499 leftmost = 0;
500 }
501 }
502
503 /*
504 * Maintain a cache of leftmost tree entries (it is frequently
505 * used):
506 */
507 if (leftmost)
508 cfs_rq->rb_leftmost = &se->run_node;
509
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
512 }
513
514 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
515 {
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
518
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
521 }
522
523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525
526 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
527 {
528 struct rb_node *left = cfs_rq->rb_leftmost;
529
530 if (!left)
531 return NULL;
532
533 return rb_entry(left, struct sched_entity, run_node);
534 }
535
536 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537 {
538 struct rb_node *next = rb_next(&se->run_node);
539
540 if (!next)
541 return NULL;
542
543 return rb_entry(next, struct sched_entity, run_node);
544 }
545
546 #ifdef CONFIG_SCHED_DEBUG
547 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
548 {
549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
550
551 if (!last)
552 return NULL;
553
554 return rb_entry(last, struct sched_entity, run_node);
555 }
556
557 /**************************************************************
558 * Scheduling class statistics methods:
559 */
560
561 int sched_proc_update_handler(struct ctl_table *table, int write,
562 void __user *buffer, size_t *lenp,
563 loff_t *ppos)
564 {
565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
566 int factor = get_update_sysctl_factor();
567
568 if (ret || !write)
569 return ret;
570
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
573
574 #define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
579 #undef WRT_SYSCTL
580
581 return 0;
582 }
583 #endif
584
585 /*
586 * delta /= w
587 */
588 static inline unsigned long
589 calc_delta_fair(unsigned long delta, struct sched_entity *se)
590 {
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
593
594 return delta;
595 }
596
597 /*
598 * The idea is to set a period in which each task runs once.
599 *
600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
602 *
603 * p = (nr <= nl) ? l : l*nr/nl
604 */
605 static u64 __sched_period(unsigned long nr_running)
606 {
607 u64 period = sysctl_sched_latency;
608 unsigned long nr_latency = sched_nr_latency;
609
610 if (unlikely(nr_running > nr_latency)) {
611 period = sysctl_sched_min_granularity;
612 period *= nr_running;
613 }
614
615 return period;
616 }
617
618 /*
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
621 *
622 * s = p*P[w/rw]
623 */
624 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 {
626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
627
628 for_each_sched_entity(se) {
629 struct load_weight *load;
630 struct load_weight lw;
631
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
634
635 if (unlikely(!se->on_rq)) {
636 lw = cfs_rq->load;
637
638 update_load_add(&lw, se->load.weight);
639 load = &lw;
640 }
641 slice = calc_delta_mine(slice, se->load.weight, load);
642 }
643 return slice;
644 }
645
646 /*
647 * We calculate the vruntime slice of a to be inserted task
648 *
649 * vs = s/w
650 */
651 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
654 }
655
656 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
657 static void update_cfs_shares(struct cfs_rq *cfs_rq);
658
659 /*
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
662 */
663 static inline void
664 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
666 {
667 unsigned long delta_exec_weighted;
668
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
671
672 curr->sum_exec_runtime += delta_exec;
673 schedstat_add(cfs_rq, exec_clock, delta_exec);
674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
675
676 curr->vruntime += delta_exec_weighted;
677 update_min_vruntime(cfs_rq);
678
679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
680 cfs_rq->load_unacc_exec_time += delta_exec;
681 #endif
682 }
683
684 static void update_curr(struct cfs_rq *cfs_rq)
685 {
686 struct sched_entity *curr = cfs_rq->curr;
687 u64 now = rq_of(cfs_rq)->clock_task;
688 unsigned long delta_exec;
689
690 if (unlikely(!curr))
691 return;
692
693 /*
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
697 */
698 delta_exec = (unsigned long)(now - curr->exec_start);
699 if (!delta_exec)
700 return;
701
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
704
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
707
708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
709 cpuacct_charge(curtask, delta_exec);
710 account_group_exec_runtime(curtask, delta_exec);
711 }
712
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
714 }
715
716 static inline void
717 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
718 {
719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
720 }
721
722 /*
723 * Task is being enqueued - update stats:
724 */
725 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 {
727 /*
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
730 */
731 if (se != cfs_rq->curr)
732 update_stats_wait_start(cfs_rq, se);
733 }
734
735 static void
736 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
743 #ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
747 }
748 #endif
749 schedstat_set(se->statistics.wait_start, 0);
750 }
751
752 static inline void
753 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 /*
756 * Mark the end of the wait period if dequeueing a
757 * waiting task:
758 */
759 if (se != cfs_rq->curr)
760 update_stats_wait_end(cfs_rq, se);
761 }
762
763 /*
764 * We are picking a new current task - update its stats:
765 */
766 static inline void
767 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 /*
770 * We are starting a new run period:
771 */
772 se->exec_start = rq_of(cfs_rq)->clock_task;
773 }
774
775 /**************************************************
776 * Scheduling class queueing methods:
777 */
778
779 static void
780 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
781 {
782 update_load_add(&cfs_rq->load, se->load.weight);
783 if (!parent_entity(se))
784 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
785 #ifdef CONFIG_SMP
786 if (entity_is_task(se))
787 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
788 #endif
789 cfs_rq->nr_running++;
790 }
791
792 static void
793 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 {
795 update_load_sub(&cfs_rq->load, se->load.weight);
796 if (!parent_entity(se))
797 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
798 if (entity_is_task(se))
799 list_del_init(&se->group_node);
800 cfs_rq->nr_running--;
801 }
802
803 #ifdef CONFIG_FAIR_GROUP_SCHED
804 /* we need this in update_cfs_load and load-balance functions below */
805 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
806 # ifdef CONFIG_SMP
807 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
808 int global_update)
809 {
810 struct task_group *tg = cfs_rq->tg;
811 long load_avg;
812
813 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
814 load_avg -= cfs_rq->load_contribution;
815
816 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
817 atomic_add(load_avg, &tg->load_weight);
818 cfs_rq->load_contribution += load_avg;
819 }
820 }
821
822 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
823 {
824 u64 period = sysctl_sched_shares_window;
825 u64 now, delta;
826 unsigned long load = cfs_rq->load.weight;
827
828 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
829 return;
830
831 now = rq_of(cfs_rq)->clock_task;
832 delta = now - cfs_rq->load_stamp;
833
834 /* truncate load history at 4 idle periods */
835 if (cfs_rq->load_stamp > cfs_rq->load_last &&
836 now - cfs_rq->load_last > 4 * period) {
837 cfs_rq->load_period = 0;
838 cfs_rq->load_avg = 0;
839 delta = period - 1;
840 }
841
842 cfs_rq->load_stamp = now;
843 cfs_rq->load_unacc_exec_time = 0;
844 cfs_rq->load_period += delta;
845 if (load) {
846 cfs_rq->load_last = now;
847 cfs_rq->load_avg += delta * load;
848 }
849
850 /* consider updating load contribution on each fold or truncate */
851 if (global_update || cfs_rq->load_period > period
852 || !cfs_rq->load_period)
853 update_cfs_rq_load_contribution(cfs_rq, global_update);
854
855 while (cfs_rq->load_period > period) {
856 /*
857 * Inline assembly required to prevent the compiler
858 * optimising this loop into a divmod call.
859 * See __iter_div_u64_rem() for another example of this.
860 */
861 asm("" : "+rm" (cfs_rq->load_period));
862 cfs_rq->load_period /= 2;
863 cfs_rq->load_avg /= 2;
864 }
865
866 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
867 list_del_leaf_cfs_rq(cfs_rq);
868 }
869
870 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
871 {
872 long tg_weight;
873
874 /*
875 * Use this CPU's actual weight instead of the last load_contribution
876 * to gain a more accurate current total weight. See
877 * update_cfs_rq_load_contribution().
878 */
879 tg_weight = atomic_read(&tg->load_weight);
880 tg_weight -= cfs_rq->load_contribution;
881 tg_weight += cfs_rq->load.weight;
882
883 return tg_weight;
884 }
885
886 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
887 {
888 long tg_weight, load, shares;
889
890 tg_weight = calc_tg_weight(tg, cfs_rq);
891 load = cfs_rq->load.weight;
892
893 shares = (tg->shares * load);
894 if (tg_weight)
895 shares /= tg_weight;
896
897 if (shares < MIN_SHARES)
898 shares = MIN_SHARES;
899 if (shares > tg->shares)
900 shares = tg->shares;
901
902 return shares;
903 }
904
905 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
906 {
907 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
908 update_cfs_load(cfs_rq, 0);
909 update_cfs_shares(cfs_rq);
910 }
911 }
912 # else /* CONFIG_SMP */
913 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
914 {
915 }
916
917 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
918 {
919 return tg->shares;
920 }
921
922 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
923 {
924 }
925 # endif /* CONFIG_SMP */
926 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
927 unsigned long weight)
928 {
929 if (se->on_rq) {
930 /* commit outstanding execution time */
931 if (cfs_rq->curr == se)
932 update_curr(cfs_rq);
933 account_entity_dequeue(cfs_rq, se);
934 }
935
936 update_load_set(&se->load, weight);
937
938 if (se->on_rq)
939 account_entity_enqueue(cfs_rq, se);
940 }
941
942 static void update_cfs_shares(struct cfs_rq *cfs_rq)
943 {
944 struct task_group *tg;
945 struct sched_entity *se;
946 long shares;
947
948 tg = cfs_rq->tg;
949 se = tg->se[cpu_of(rq_of(cfs_rq))];
950 if (!se || throttled_hierarchy(cfs_rq))
951 return;
952 #ifndef CONFIG_SMP
953 if (likely(se->load.weight == tg->shares))
954 return;
955 #endif
956 shares = calc_cfs_shares(cfs_rq, tg);
957
958 reweight_entity(cfs_rq_of(se), se, shares);
959 }
960 #else /* CONFIG_FAIR_GROUP_SCHED */
961 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
962 {
963 }
964
965 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
966 {
967 }
968
969 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
970 {
971 }
972 #endif /* CONFIG_FAIR_GROUP_SCHED */
973
974 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
975 {
976 #ifdef CONFIG_SCHEDSTATS
977 struct task_struct *tsk = NULL;
978
979 if (entity_is_task(se))
980 tsk = task_of(se);
981
982 if (se->statistics.sleep_start) {
983 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
984
985 if ((s64)delta < 0)
986 delta = 0;
987
988 if (unlikely(delta > se->statistics.sleep_max))
989 se->statistics.sleep_max = delta;
990
991 se->statistics.sleep_start = 0;
992 se->statistics.sum_sleep_runtime += delta;
993
994 if (tsk) {
995 account_scheduler_latency(tsk, delta >> 10, 1);
996 trace_sched_stat_sleep(tsk, delta);
997 }
998 }
999 if (se->statistics.block_start) {
1000 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1001
1002 if ((s64)delta < 0)
1003 delta = 0;
1004
1005 if (unlikely(delta > se->statistics.block_max))
1006 se->statistics.block_max = delta;
1007
1008 se->statistics.block_start = 0;
1009 se->statistics.sum_sleep_runtime += delta;
1010
1011 if (tsk) {
1012 if (tsk->in_iowait) {
1013 se->statistics.iowait_sum += delta;
1014 se->statistics.iowait_count++;
1015 trace_sched_stat_iowait(tsk, delta);
1016 }
1017
1018 trace_sched_stat_blocked(tsk, delta);
1019
1020 /*
1021 * Blocking time is in units of nanosecs, so shift by
1022 * 20 to get a milliseconds-range estimation of the
1023 * amount of time that the task spent sleeping:
1024 */
1025 if (unlikely(prof_on == SLEEP_PROFILING)) {
1026 profile_hits(SLEEP_PROFILING,
1027 (void *)get_wchan(tsk),
1028 delta >> 20);
1029 }
1030 account_scheduler_latency(tsk, delta >> 10, 0);
1031 }
1032 }
1033 #endif
1034 }
1035
1036 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1037 {
1038 #ifdef CONFIG_SCHED_DEBUG
1039 s64 d = se->vruntime - cfs_rq->min_vruntime;
1040
1041 if (d < 0)
1042 d = -d;
1043
1044 if (d > 3*sysctl_sched_latency)
1045 schedstat_inc(cfs_rq, nr_spread_over);
1046 #endif
1047 }
1048
1049 static void
1050 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1051 {
1052 u64 vruntime = cfs_rq->min_vruntime;
1053
1054 /*
1055 * The 'current' period is already promised to the current tasks,
1056 * however the extra weight of the new task will slow them down a
1057 * little, place the new task so that it fits in the slot that
1058 * stays open at the end.
1059 */
1060 if (initial && sched_feat(START_DEBIT))
1061 vruntime += sched_vslice(cfs_rq, se);
1062
1063 /* sleeps up to a single latency don't count. */
1064 if (!initial) {
1065 unsigned long thresh = sysctl_sched_latency;
1066
1067 /*
1068 * Halve their sleep time's effect, to allow
1069 * for a gentler effect of sleepers:
1070 */
1071 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1072 thresh >>= 1;
1073
1074 vruntime -= thresh;
1075 }
1076
1077 /* ensure we never gain time by being placed backwards. */
1078 vruntime = max_vruntime(se->vruntime, vruntime);
1079
1080 se->vruntime = vruntime;
1081 }
1082
1083 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1084
1085 static void
1086 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1087 {
1088 /*
1089 * Update the normalized vruntime before updating min_vruntime
1090 * through callig update_curr().
1091 */
1092 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1093 se->vruntime += cfs_rq->min_vruntime;
1094
1095 /*
1096 * Update run-time statistics of the 'current'.
1097 */
1098 update_curr(cfs_rq);
1099 update_cfs_load(cfs_rq, 0);
1100 account_entity_enqueue(cfs_rq, se);
1101 update_cfs_shares(cfs_rq);
1102
1103 if (flags & ENQUEUE_WAKEUP) {
1104 place_entity(cfs_rq, se, 0);
1105 enqueue_sleeper(cfs_rq, se);
1106 }
1107
1108 update_stats_enqueue(cfs_rq, se);
1109 check_spread(cfs_rq, se);
1110 if (se != cfs_rq->curr)
1111 __enqueue_entity(cfs_rq, se);
1112 se->on_rq = 1;
1113
1114 if (cfs_rq->nr_running == 1) {
1115 list_add_leaf_cfs_rq(cfs_rq);
1116 check_enqueue_throttle(cfs_rq);
1117 }
1118 }
1119
1120 static void __clear_buddies_last(struct sched_entity *se)
1121 {
1122 for_each_sched_entity(se) {
1123 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1124 if (cfs_rq->last == se)
1125 cfs_rq->last = NULL;
1126 else
1127 break;
1128 }
1129 }
1130
1131 static void __clear_buddies_next(struct sched_entity *se)
1132 {
1133 for_each_sched_entity(se) {
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135 if (cfs_rq->next == se)
1136 cfs_rq->next = NULL;
1137 else
1138 break;
1139 }
1140 }
1141
1142 static void __clear_buddies_skip(struct sched_entity *se)
1143 {
1144 for_each_sched_entity(se) {
1145 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1146 if (cfs_rq->skip == se)
1147 cfs_rq->skip = NULL;
1148 else
1149 break;
1150 }
1151 }
1152
1153 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1154 {
1155 if (cfs_rq->last == se)
1156 __clear_buddies_last(se);
1157
1158 if (cfs_rq->next == se)
1159 __clear_buddies_next(se);
1160
1161 if (cfs_rq->skip == se)
1162 __clear_buddies_skip(se);
1163 }
1164
1165 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1166
1167 static void
1168 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1169 {
1170 /*
1171 * Update run-time statistics of the 'current'.
1172 */
1173 update_curr(cfs_rq);
1174
1175 update_stats_dequeue(cfs_rq, se);
1176 if (flags & DEQUEUE_SLEEP) {
1177 #ifdef CONFIG_SCHEDSTATS
1178 if (entity_is_task(se)) {
1179 struct task_struct *tsk = task_of(se);
1180
1181 if (tsk->state & TASK_INTERRUPTIBLE)
1182 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1183 if (tsk->state & TASK_UNINTERRUPTIBLE)
1184 se->statistics.block_start = rq_of(cfs_rq)->clock;
1185 }
1186 #endif
1187 }
1188
1189 clear_buddies(cfs_rq, se);
1190
1191 if (se != cfs_rq->curr)
1192 __dequeue_entity(cfs_rq, se);
1193 se->on_rq = 0;
1194 update_cfs_load(cfs_rq, 0);
1195 account_entity_dequeue(cfs_rq, se);
1196
1197 /*
1198 * Normalize the entity after updating the min_vruntime because the
1199 * update can refer to the ->curr item and we need to reflect this
1200 * movement in our normalized position.
1201 */
1202 if (!(flags & DEQUEUE_SLEEP))
1203 se->vruntime -= cfs_rq->min_vruntime;
1204
1205 /* return excess runtime on last dequeue */
1206 return_cfs_rq_runtime(cfs_rq);
1207
1208 update_min_vruntime(cfs_rq);
1209 update_cfs_shares(cfs_rq);
1210 }
1211
1212 /*
1213 * Preempt the current task with a newly woken task if needed:
1214 */
1215 static void
1216 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1217 {
1218 unsigned long ideal_runtime, delta_exec;
1219 struct sched_entity *se;
1220 s64 delta;
1221
1222 ideal_runtime = sched_slice(cfs_rq, curr);
1223 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1224 if (delta_exec > ideal_runtime) {
1225 resched_task(rq_of(cfs_rq)->curr);
1226 /*
1227 * The current task ran long enough, ensure it doesn't get
1228 * re-elected due to buddy favours.
1229 */
1230 clear_buddies(cfs_rq, curr);
1231 return;
1232 }
1233
1234 /*
1235 * Ensure that a task that missed wakeup preemption by a
1236 * narrow margin doesn't have to wait for a full slice.
1237 * This also mitigates buddy induced latencies under load.
1238 */
1239 if (delta_exec < sysctl_sched_min_granularity)
1240 return;
1241
1242 se = __pick_first_entity(cfs_rq);
1243 delta = curr->vruntime - se->vruntime;
1244
1245 if (delta < 0)
1246 return;
1247
1248 if (delta > ideal_runtime)
1249 resched_task(rq_of(cfs_rq)->curr);
1250 }
1251
1252 static void
1253 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1254 {
1255 /* 'current' is not kept within the tree. */
1256 if (se->on_rq) {
1257 /*
1258 * Any task has to be enqueued before it get to execute on
1259 * a CPU. So account for the time it spent waiting on the
1260 * runqueue.
1261 */
1262 update_stats_wait_end(cfs_rq, se);
1263 __dequeue_entity(cfs_rq, se);
1264 }
1265
1266 update_stats_curr_start(cfs_rq, se);
1267 cfs_rq->curr = se;
1268 #ifdef CONFIG_SCHEDSTATS
1269 /*
1270 * Track our maximum slice length, if the CPU's load is at
1271 * least twice that of our own weight (i.e. dont track it
1272 * when there are only lesser-weight tasks around):
1273 */
1274 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1275 se->statistics.slice_max = max(se->statistics.slice_max,
1276 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1277 }
1278 #endif
1279 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1280 }
1281
1282 static int
1283 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1284
1285 /*
1286 * Pick the next process, keeping these things in mind, in this order:
1287 * 1) keep things fair between processes/task groups
1288 * 2) pick the "next" process, since someone really wants that to run
1289 * 3) pick the "last" process, for cache locality
1290 * 4) do not run the "skip" process, if something else is available
1291 */
1292 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1293 {
1294 struct sched_entity *se = __pick_first_entity(cfs_rq);
1295 struct sched_entity *left = se;
1296
1297 /*
1298 * Avoid running the skip buddy, if running something else can
1299 * be done without getting too unfair.
1300 */
1301 if (cfs_rq->skip == se) {
1302 struct sched_entity *second = __pick_next_entity(se);
1303 if (second && wakeup_preempt_entity(second, left) < 1)
1304 se = second;
1305 }
1306
1307 /*
1308 * Prefer last buddy, try to return the CPU to a preempted task.
1309 */
1310 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1311 se = cfs_rq->last;
1312
1313 /*
1314 * Someone really wants this to run. If it's not unfair, run it.
1315 */
1316 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1317 se = cfs_rq->next;
1318
1319 clear_buddies(cfs_rq, se);
1320
1321 return se;
1322 }
1323
1324 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1325
1326 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1327 {
1328 /*
1329 * If still on the runqueue then deactivate_task()
1330 * was not called and update_curr() has to be done:
1331 */
1332 if (prev->on_rq)
1333 update_curr(cfs_rq);
1334
1335 /* throttle cfs_rqs exceeding runtime */
1336 check_cfs_rq_runtime(cfs_rq);
1337
1338 check_spread(cfs_rq, prev);
1339 if (prev->on_rq) {
1340 update_stats_wait_start(cfs_rq, prev);
1341 /* Put 'current' back into the tree. */
1342 __enqueue_entity(cfs_rq, prev);
1343 }
1344 cfs_rq->curr = NULL;
1345 }
1346
1347 static void
1348 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1349 {
1350 /*
1351 * Update run-time statistics of the 'current'.
1352 */
1353 update_curr(cfs_rq);
1354
1355 /*
1356 * Update share accounting for long-running entities.
1357 */
1358 update_entity_shares_tick(cfs_rq);
1359
1360 #ifdef CONFIG_SCHED_HRTICK
1361 /*
1362 * queued ticks are scheduled to match the slice, so don't bother
1363 * validating it and just reschedule.
1364 */
1365 if (queued) {
1366 resched_task(rq_of(cfs_rq)->curr);
1367 return;
1368 }
1369 /*
1370 * don't let the period tick interfere with the hrtick preemption
1371 */
1372 if (!sched_feat(DOUBLE_TICK) &&
1373 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1374 return;
1375 #endif
1376
1377 if (cfs_rq->nr_running > 1)
1378 check_preempt_tick(cfs_rq, curr);
1379 }
1380
1381
1382 /**************************************************
1383 * CFS bandwidth control machinery
1384 */
1385
1386 #ifdef CONFIG_CFS_BANDWIDTH
1387
1388 #ifdef HAVE_JUMP_LABEL
1389 static struct static_key __cfs_bandwidth_used;
1390
1391 static inline bool cfs_bandwidth_used(void)
1392 {
1393 return static_key_false(&__cfs_bandwidth_used);
1394 }
1395
1396 void account_cfs_bandwidth_used(int enabled, int was_enabled)
1397 {
1398 /* only need to count groups transitioning between enabled/!enabled */
1399 if (enabled && !was_enabled)
1400 static_key_slow_inc(&__cfs_bandwidth_used);
1401 else if (!enabled && was_enabled)
1402 static_key_slow_dec(&__cfs_bandwidth_used);
1403 }
1404 #else /* HAVE_JUMP_LABEL */
1405 static bool cfs_bandwidth_used(void)
1406 {
1407 return true;
1408 }
1409
1410 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1411 #endif /* HAVE_JUMP_LABEL */
1412
1413 /*
1414 * default period for cfs group bandwidth.
1415 * default: 0.1s, units: nanoseconds
1416 */
1417 static inline u64 default_cfs_period(void)
1418 {
1419 return 100000000ULL;
1420 }
1421
1422 static inline u64 sched_cfs_bandwidth_slice(void)
1423 {
1424 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1425 }
1426
1427 /*
1428 * Replenish runtime according to assigned quota and update expiration time.
1429 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1430 * additional synchronization around rq->lock.
1431 *
1432 * requires cfs_b->lock
1433 */
1434 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1435 {
1436 u64 now;
1437
1438 if (cfs_b->quota == RUNTIME_INF)
1439 return;
1440
1441 now = sched_clock_cpu(smp_processor_id());
1442 cfs_b->runtime = cfs_b->quota;
1443 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1444 }
1445
1446 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1447 {
1448 return &tg->cfs_bandwidth;
1449 }
1450
1451 /* returns 0 on failure to allocate runtime */
1452 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1453 {
1454 struct task_group *tg = cfs_rq->tg;
1455 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1456 u64 amount = 0, min_amount, expires;
1457
1458 /* note: this is a positive sum as runtime_remaining <= 0 */
1459 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1460
1461 raw_spin_lock(&cfs_b->lock);
1462 if (cfs_b->quota == RUNTIME_INF)
1463 amount = min_amount;
1464 else {
1465 /*
1466 * If the bandwidth pool has become inactive, then at least one
1467 * period must have elapsed since the last consumption.
1468 * Refresh the global state and ensure bandwidth timer becomes
1469 * active.
1470 */
1471 if (!cfs_b->timer_active) {
1472 __refill_cfs_bandwidth_runtime(cfs_b);
1473 __start_cfs_bandwidth(cfs_b);
1474 }
1475
1476 if (cfs_b->runtime > 0) {
1477 amount = min(cfs_b->runtime, min_amount);
1478 cfs_b->runtime -= amount;
1479 cfs_b->idle = 0;
1480 }
1481 }
1482 expires = cfs_b->runtime_expires;
1483 raw_spin_unlock(&cfs_b->lock);
1484
1485 cfs_rq->runtime_remaining += amount;
1486 /*
1487 * we may have advanced our local expiration to account for allowed
1488 * spread between our sched_clock and the one on which runtime was
1489 * issued.
1490 */
1491 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1492 cfs_rq->runtime_expires = expires;
1493
1494 return cfs_rq->runtime_remaining > 0;
1495 }
1496
1497 /*
1498 * Note: This depends on the synchronization provided by sched_clock and the
1499 * fact that rq->clock snapshots this value.
1500 */
1501 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1502 {
1503 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1504 struct rq *rq = rq_of(cfs_rq);
1505
1506 /* if the deadline is ahead of our clock, nothing to do */
1507 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1508 return;
1509
1510 if (cfs_rq->runtime_remaining < 0)
1511 return;
1512
1513 /*
1514 * If the local deadline has passed we have to consider the
1515 * possibility that our sched_clock is 'fast' and the global deadline
1516 * has not truly expired.
1517 *
1518 * Fortunately we can check determine whether this the case by checking
1519 * whether the global deadline has advanced.
1520 */
1521
1522 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1523 /* extend local deadline, drift is bounded above by 2 ticks */
1524 cfs_rq->runtime_expires += TICK_NSEC;
1525 } else {
1526 /* global deadline is ahead, expiration has passed */
1527 cfs_rq->runtime_remaining = 0;
1528 }
1529 }
1530
1531 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1532 unsigned long delta_exec)
1533 {
1534 /* dock delta_exec before expiring quota (as it could span periods) */
1535 cfs_rq->runtime_remaining -= delta_exec;
1536 expire_cfs_rq_runtime(cfs_rq);
1537
1538 if (likely(cfs_rq->runtime_remaining > 0))
1539 return;
1540
1541 /*
1542 * if we're unable to extend our runtime we resched so that the active
1543 * hierarchy can be throttled
1544 */
1545 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1546 resched_task(rq_of(cfs_rq)->curr);
1547 }
1548
1549 static __always_inline
1550 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
1551 {
1552 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1553 return;
1554
1555 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1556 }
1557
1558 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1559 {
1560 return cfs_bandwidth_used() && cfs_rq->throttled;
1561 }
1562
1563 /* check whether cfs_rq, or any parent, is throttled */
1564 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1565 {
1566 return cfs_bandwidth_used() && cfs_rq->throttle_count;
1567 }
1568
1569 /*
1570 * Ensure that neither of the group entities corresponding to src_cpu or
1571 * dest_cpu are members of a throttled hierarchy when performing group
1572 * load-balance operations.
1573 */
1574 static inline int throttled_lb_pair(struct task_group *tg,
1575 int src_cpu, int dest_cpu)
1576 {
1577 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1578
1579 src_cfs_rq = tg->cfs_rq[src_cpu];
1580 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1581
1582 return throttled_hierarchy(src_cfs_rq) ||
1583 throttled_hierarchy(dest_cfs_rq);
1584 }
1585
1586 /* updated child weight may affect parent so we have to do this bottom up */
1587 static int tg_unthrottle_up(struct task_group *tg, void *data)
1588 {
1589 struct rq *rq = data;
1590 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1591
1592 cfs_rq->throttle_count--;
1593 #ifdef CONFIG_SMP
1594 if (!cfs_rq->throttle_count) {
1595 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1596
1597 /* leaving throttled state, advance shares averaging windows */
1598 cfs_rq->load_stamp += delta;
1599 cfs_rq->load_last += delta;
1600
1601 /* update entity weight now that we are on_rq again */
1602 update_cfs_shares(cfs_rq);
1603 }
1604 #endif
1605
1606 return 0;
1607 }
1608
1609 static int tg_throttle_down(struct task_group *tg, void *data)
1610 {
1611 struct rq *rq = data;
1612 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1613
1614 /* group is entering throttled state, record last load */
1615 if (!cfs_rq->throttle_count)
1616 update_cfs_load(cfs_rq, 0);
1617 cfs_rq->throttle_count++;
1618
1619 return 0;
1620 }
1621
1622 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1623 {
1624 struct rq *rq = rq_of(cfs_rq);
1625 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1626 struct sched_entity *se;
1627 long task_delta, dequeue = 1;
1628
1629 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1630
1631 /* account load preceding throttle */
1632 rcu_read_lock();
1633 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1634 rcu_read_unlock();
1635
1636 task_delta = cfs_rq->h_nr_running;
1637 for_each_sched_entity(se) {
1638 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1639 /* throttled entity or throttle-on-deactivate */
1640 if (!se->on_rq)
1641 break;
1642
1643 if (dequeue)
1644 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1645 qcfs_rq->h_nr_running -= task_delta;
1646
1647 if (qcfs_rq->load.weight)
1648 dequeue = 0;
1649 }
1650
1651 if (!se)
1652 rq->nr_running -= task_delta;
1653
1654 cfs_rq->throttled = 1;
1655 cfs_rq->throttled_timestamp = rq->clock;
1656 raw_spin_lock(&cfs_b->lock);
1657 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1658 raw_spin_unlock(&cfs_b->lock);
1659 }
1660
1661 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1662 {
1663 struct rq *rq = rq_of(cfs_rq);
1664 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1665 struct sched_entity *se;
1666 int enqueue = 1;
1667 long task_delta;
1668
1669 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1670
1671 cfs_rq->throttled = 0;
1672 raw_spin_lock(&cfs_b->lock);
1673 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1674 list_del_rcu(&cfs_rq->throttled_list);
1675 raw_spin_unlock(&cfs_b->lock);
1676 cfs_rq->throttled_timestamp = 0;
1677
1678 update_rq_clock(rq);
1679 /* update hierarchical throttle state */
1680 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1681
1682 if (!cfs_rq->load.weight)
1683 return;
1684
1685 task_delta = cfs_rq->h_nr_running;
1686 for_each_sched_entity(se) {
1687 if (se->on_rq)
1688 enqueue = 0;
1689
1690 cfs_rq = cfs_rq_of(se);
1691 if (enqueue)
1692 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1693 cfs_rq->h_nr_running += task_delta;
1694
1695 if (cfs_rq_throttled(cfs_rq))
1696 break;
1697 }
1698
1699 if (!se)
1700 rq->nr_running += task_delta;
1701
1702 /* determine whether we need to wake up potentially idle cpu */
1703 if (rq->curr == rq->idle && rq->cfs.nr_running)
1704 resched_task(rq->curr);
1705 }
1706
1707 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1708 u64 remaining, u64 expires)
1709 {
1710 struct cfs_rq *cfs_rq;
1711 u64 runtime = remaining;
1712
1713 rcu_read_lock();
1714 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1715 throttled_list) {
1716 struct rq *rq = rq_of(cfs_rq);
1717
1718 raw_spin_lock(&rq->lock);
1719 if (!cfs_rq_throttled(cfs_rq))
1720 goto next;
1721
1722 runtime = -cfs_rq->runtime_remaining + 1;
1723 if (runtime > remaining)
1724 runtime = remaining;
1725 remaining -= runtime;
1726
1727 cfs_rq->runtime_remaining += runtime;
1728 cfs_rq->runtime_expires = expires;
1729
1730 /* we check whether we're throttled above */
1731 if (cfs_rq->runtime_remaining > 0)
1732 unthrottle_cfs_rq(cfs_rq);
1733
1734 next:
1735 raw_spin_unlock(&rq->lock);
1736
1737 if (!remaining)
1738 break;
1739 }
1740 rcu_read_unlock();
1741
1742 return remaining;
1743 }
1744
1745 /*
1746 * Responsible for refilling a task_group's bandwidth and unthrottling its
1747 * cfs_rqs as appropriate. If there has been no activity within the last
1748 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1749 * used to track this state.
1750 */
1751 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1752 {
1753 u64 runtime, runtime_expires;
1754 int idle = 1, throttled;
1755
1756 raw_spin_lock(&cfs_b->lock);
1757 /* no need to continue the timer with no bandwidth constraint */
1758 if (cfs_b->quota == RUNTIME_INF)
1759 goto out_unlock;
1760
1761 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1762 /* idle depends on !throttled (for the case of a large deficit) */
1763 idle = cfs_b->idle && !throttled;
1764 cfs_b->nr_periods += overrun;
1765
1766 /* if we're going inactive then everything else can be deferred */
1767 if (idle)
1768 goto out_unlock;
1769
1770 __refill_cfs_bandwidth_runtime(cfs_b);
1771
1772 if (!throttled) {
1773 /* mark as potentially idle for the upcoming period */
1774 cfs_b->idle = 1;
1775 goto out_unlock;
1776 }
1777
1778 /* account preceding periods in which throttling occurred */
1779 cfs_b->nr_throttled += overrun;
1780
1781 /*
1782 * There are throttled entities so we must first use the new bandwidth
1783 * to unthrottle them before making it generally available. This
1784 * ensures that all existing debts will be paid before a new cfs_rq is
1785 * allowed to run.
1786 */
1787 runtime = cfs_b->runtime;
1788 runtime_expires = cfs_b->runtime_expires;
1789 cfs_b->runtime = 0;
1790
1791 /*
1792 * This check is repeated as we are holding onto the new bandwidth
1793 * while we unthrottle. This can potentially race with an unthrottled
1794 * group trying to acquire new bandwidth from the global pool.
1795 */
1796 while (throttled && runtime > 0) {
1797 raw_spin_unlock(&cfs_b->lock);
1798 /* we can't nest cfs_b->lock while distributing bandwidth */
1799 runtime = distribute_cfs_runtime(cfs_b, runtime,
1800 runtime_expires);
1801 raw_spin_lock(&cfs_b->lock);
1802
1803 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1804 }
1805
1806 /* return (any) remaining runtime */
1807 cfs_b->runtime = runtime;
1808 /*
1809 * While we are ensured activity in the period following an
1810 * unthrottle, this also covers the case in which the new bandwidth is
1811 * insufficient to cover the existing bandwidth deficit. (Forcing the
1812 * timer to remain active while there are any throttled entities.)
1813 */
1814 cfs_b->idle = 0;
1815 out_unlock:
1816 if (idle)
1817 cfs_b->timer_active = 0;
1818 raw_spin_unlock(&cfs_b->lock);
1819
1820 return idle;
1821 }
1822
1823 /* a cfs_rq won't donate quota below this amount */
1824 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1825 /* minimum remaining period time to redistribute slack quota */
1826 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1827 /* how long we wait to gather additional slack before distributing */
1828 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1829
1830 /* are we near the end of the current quota period? */
1831 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1832 {
1833 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1834 u64 remaining;
1835
1836 /* if the call-back is running a quota refresh is already occurring */
1837 if (hrtimer_callback_running(refresh_timer))
1838 return 1;
1839
1840 /* is a quota refresh about to occur? */
1841 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1842 if (remaining < min_expire)
1843 return 1;
1844
1845 return 0;
1846 }
1847
1848 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1849 {
1850 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1851
1852 /* if there's a quota refresh soon don't bother with slack */
1853 if (runtime_refresh_within(cfs_b, min_left))
1854 return;
1855
1856 start_bandwidth_timer(&cfs_b->slack_timer,
1857 ns_to_ktime(cfs_bandwidth_slack_period));
1858 }
1859
1860 /* we know any runtime found here is valid as update_curr() precedes return */
1861 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1862 {
1863 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1864 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1865
1866 if (slack_runtime <= 0)
1867 return;
1868
1869 raw_spin_lock(&cfs_b->lock);
1870 if (cfs_b->quota != RUNTIME_INF &&
1871 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1872 cfs_b->runtime += slack_runtime;
1873
1874 /* we are under rq->lock, defer unthrottling using a timer */
1875 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1876 !list_empty(&cfs_b->throttled_cfs_rq))
1877 start_cfs_slack_bandwidth(cfs_b);
1878 }
1879 raw_spin_unlock(&cfs_b->lock);
1880
1881 /* even if it's not valid for return we don't want to try again */
1882 cfs_rq->runtime_remaining -= slack_runtime;
1883 }
1884
1885 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1886 {
1887 if (!cfs_bandwidth_used())
1888 return;
1889
1890 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
1891 return;
1892
1893 __return_cfs_rq_runtime(cfs_rq);
1894 }
1895
1896 /*
1897 * This is done with a timer (instead of inline with bandwidth return) since
1898 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1899 */
1900 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1901 {
1902 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1903 u64 expires;
1904
1905 /* confirm we're still not at a refresh boundary */
1906 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1907 return;
1908
1909 raw_spin_lock(&cfs_b->lock);
1910 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1911 runtime = cfs_b->runtime;
1912 cfs_b->runtime = 0;
1913 }
1914 expires = cfs_b->runtime_expires;
1915 raw_spin_unlock(&cfs_b->lock);
1916
1917 if (!runtime)
1918 return;
1919
1920 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1921
1922 raw_spin_lock(&cfs_b->lock);
1923 if (expires == cfs_b->runtime_expires)
1924 cfs_b->runtime = runtime;
1925 raw_spin_unlock(&cfs_b->lock);
1926 }
1927
1928 /*
1929 * When a group wakes up we want to make sure that its quota is not already
1930 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1931 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1932 */
1933 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1934 {
1935 if (!cfs_bandwidth_used())
1936 return;
1937
1938 /* an active group must be handled by the update_curr()->put() path */
1939 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1940 return;
1941
1942 /* ensure the group is not already throttled */
1943 if (cfs_rq_throttled(cfs_rq))
1944 return;
1945
1946 /* update runtime allocation */
1947 account_cfs_rq_runtime(cfs_rq, 0);
1948 if (cfs_rq->runtime_remaining <= 0)
1949 throttle_cfs_rq(cfs_rq);
1950 }
1951
1952 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1953 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1954 {
1955 if (!cfs_bandwidth_used())
1956 return;
1957
1958 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1959 return;
1960
1961 /*
1962 * it's possible for a throttled entity to be forced into a running
1963 * state (e.g. set_curr_task), in this case we're finished.
1964 */
1965 if (cfs_rq_throttled(cfs_rq))
1966 return;
1967
1968 throttle_cfs_rq(cfs_rq);
1969 }
1970
1971 static inline u64 default_cfs_period(void);
1972 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1973 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1974
1975 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1976 {
1977 struct cfs_bandwidth *cfs_b =
1978 container_of(timer, struct cfs_bandwidth, slack_timer);
1979 do_sched_cfs_slack_timer(cfs_b);
1980
1981 return HRTIMER_NORESTART;
1982 }
1983
1984 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
1985 {
1986 struct cfs_bandwidth *cfs_b =
1987 container_of(timer, struct cfs_bandwidth, period_timer);
1988 ktime_t now;
1989 int overrun;
1990 int idle = 0;
1991
1992 for (;;) {
1993 now = hrtimer_cb_get_time(timer);
1994 overrun = hrtimer_forward(timer, now, cfs_b->period);
1995
1996 if (!overrun)
1997 break;
1998
1999 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2000 }
2001
2002 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2003 }
2004
2005 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2006 {
2007 raw_spin_lock_init(&cfs_b->lock);
2008 cfs_b->runtime = 0;
2009 cfs_b->quota = RUNTIME_INF;
2010 cfs_b->period = ns_to_ktime(default_cfs_period());
2011
2012 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2013 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2014 cfs_b->period_timer.function = sched_cfs_period_timer;
2015 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2016 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2017 }
2018
2019 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2020 {
2021 cfs_rq->runtime_enabled = 0;
2022 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2023 }
2024
2025 /* requires cfs_b->lock, may release to reprogram timer */
2026 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2027 {
2028 /*
2029 * The timer may be active because we're trying to set a new bandwidth
2030 * period or because we're racing with the tear-down path
2031 * (timer_active==0 becomes visible before the hrtimer call-back
2032 * terminates). In either case we ensure that it's re-programmed
2033 */
2034 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2035 raw_spin_unlock(&cfs_b->lock);
2036 /* ensure cfs_b->lock is available while we wait */
2037 hrtimer_cancel(&cfs_b->period_timer);
2038
2039 raw_spin_lock(&cfs_b->lock);
2040 /* if someone else restarted the timer then we're done */
2041 if (cfs_b->timer_active)
2042 return;
2043 }
2044
2045 cfs_b->timer_active = 1;
2046 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2047 }
2048
2049 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2050 {
2051 hrtimer_cancel(&cfs_b->period_timer);
2052 hrtimer_cancel(&cfs_b->slack_timer);
2053 }
2054
2055 void unthrottle_offline_cfs_rqs(struct rq *rq)
2056 {
2057 struct cfs_rq *cfs_rq;
2058
2059 for_each_leaf_cfs_rq(rq, cfs_rq) {
2060 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2061
2062 if (!cfs_rq->runtime_enabled)
2063 continue;
2064
2065 /*
2066 * clock_task is not advancing so we just need to make sure
2067 * there's some valid quota amount
2068 */
2069 cfs_rq->runtime_remaining = cfs_b->quota;
2070 if (cfs_rq_throttled(cfs_rq))
2071 unthrottle_cfs_rq(cfs_rq);
2072 }
2073 }
2074
2075 #else /* CONFIG_CFS_BANDWIDTH */
2076 static __always_inline
2077 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
2078 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2079 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2080 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2081
2082 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2083 {
2084 return 0;
2085 }
2086
2087 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2088 {
2089 return 0;
2090 }
2091
2092 static inline int throttled_lb_pair(struct task_group *tg,
2093 int src_cpu, int dest_cpu)
2094 {
2095 return 0;
2096 }
2097
2098 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2099
2100 #ifdef CONFIG_FAIR_GROUP_SCHED
2101 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2102 #endif
2103
2104 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2105 {
2106 return NULL;
2107 }
2108 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2109 void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2110
2111 #endif /* CONFIG_CFS_BANDWIDTH */
2112
2113 /**************************************************
2114 * CFS operations on tasks:
2115 */
2116
2117 #ifdef CONFIG_SCHED_HRTICK
2118 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2119 {
2120 struct sched_entity *se = &p->se;
2121 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2122
2123 WARN_ON(task_rq(p) != rq);
2124
2125 if (cfs_rq->nr_running > 1) {
2126 u64 slice = sched_slice(cfs_rq, se);
2127 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2128 s64 delta = slice - ran;
2129
2130 if (delta < 0) {
2131 if (rq->curr == p)
2132 resched_task(p);
2133 return;
2134 }
2135
2136 /*
2137 * Don't schedule slices shorter than 10000ns, that just
2138 * doesn't make sense. Rely on vruntime for fairness.
2139 */
2140 if (rq->curr != p)
2141 delta = max_t(s64, 10000LL, delta);
2142
2143 hrtick_start(rq, delta);
2144 }
2145 }
2146
2147 /*
2148 * called from enqueue/dequeue and updates the hrtick when the
2149 * current task is from our class and nr_running is low enough
2150 * to matter.
2151 */
2152 static void hrtick_update(struct rq *rq)
2153 {
2154 struct task_struct *curr = rq->curr;
2155
2156 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2157 return;
2158
2159 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2160 hrtick_start_fair(rq, curr);
2161 }
2162 #else /* !CONFIG_SCHED_HRTICK */
2163 static inline void
2164 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2165 {
2166 }
2167
2168 static inline void hrtick_update(struct rq *rq)
2169 {
2170 }
2171 #endif
2172
2173 /*
2174 * The enqueue_task method is called before nr_running is
2175 * increased. Here we update the fair scheduling stats and
2176 * then put the task into the rbtree:
2177 */
2178 static void
2179 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2180 {
2181 struct cfs_rq *cfs_rq;
2182 struct sched_entity *se = &p->se;
2183
2184 for_each_sched_entity(se) {
2185 if (se->on_rq)
2186 break;
2187 cfs_rq = cfs_rq_of(se);
2188 enqueue_entity(cfs_rq, se, flags);
2189
2190 /*
2191 * end evaluation on encountering a throttled cfs_rq
2192 *
2193 * note: in the case of encountering a throttled cfs_rq we will
2194 * post the final h_nr_running increment below.
2195 */
2196 if (cfs_rq_throttled(cfs_rq))
2197 break;
2198 cfs_rq->h_nr_running++;
2199
2200 flags = ENQUEUE_WAKEUP;
2201 }
2202
2203 for_each_sched_entity(se) {
2204 cfs_rq = cfs_rq_of(se);
2205 cfs_rq->h_nr_running++;
2206
2207 if (cfs_rq_throttled(cfs_rq))
2208 break;
2209
2210 update_cfs_load(cfs_rq, 0);
2211 update_cfs_shares(cfs_rq);
2212 }
2213
2214 if (!se)
2215 inc_nr_running(rq);
2216 hrtick_update(rq);
2217 }
2218
2219 static void set_next_buddy(struct sched_entity *se);
2220
2221 /*
2222 * The dequeue_task method is called before nr_running is
2223 * decreased. We remove the task from the rbtree and
2224 * update the fair scheduling stats:
2225 */
2226 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2227 {
2228 struct cfs_rq *cfs_rq;
2229 struct sched_entity *se = &p->se;
2230 int task_sleep = flags & DEQUEUE_SLEEP;
2231
2232 for_each_sched_entity(se) {
2233 cfs_rq = cfs_rq_of(se);
2234 dequeue_entity(cfs_rq, se, flags);
2235
2236 /*
2237 * end evaluation on encountering a throttled cfs_rq
2238 *
2239 * note: in the case of encountering a throttled cfs_rq we will
2240 * post the final h_nr_running decrement below.
2241 */
2242 if (cfs_rq_throttled(cfs_rq))
2243 break;
2244 cfs_rq->h_nr_running--;
2245
2246 /* Don't dequeue parent if it has other entities besides us */
2247 if (cfs_rq->load.weight) {
2248 /*
2249 * Bias pick_next to pick a task from this cfs_rq, as
2250 * p is sleeping when it is within its sched_slice.
2251 */
2252 if (task_sleep && parent_entity(se))
2253 set_next_buddy(parent_entity(se));
2254
2255 /* avoid re-evaluating load for this entity */
2256 se = parent_entity(se);
2257 break;
2258 }
2259 flags |= DEQUEUE_SLEEP;
2260 }
2261
2262 for_each_sched_entity(se) {
2263 cfs_rq = cfs_rq_of(se);
2264 cfs_rq->h_nr_running--;
2265
2266 if (cfs_rq_throttled(cfs_rq))
2267 break;
2268
2269 update_cfs_load(cfs_rq, 0);
2270 update_cfs_shares(cfs_rq);
2271 }
2272
2273 if (!se)
2274 dec_nr_running(rq);
2275 hrtick_update(rq);
2276 }
2277
2278 #ifdef CONFIG_SMP
2279 /* Used instead of source_load when we know the type == 0 */
2280 static unsigned long weighted_cpuload(const int cpu)
2281 {
2282 return cpu_rq(cpu)->load.weight;
2283 }
2284
2285 /*
2286 * Return a low guess at the load of a migration-source cpu weighted
2287 * according to the scheduling class and "nice" value.
2288 *
2289 * We want to under-estimate the load of migration sources, to
2290 * balance conservatively.
2291 */
2292 static unsigned long source_load(int cpu, int type)
2293 {
2294 struct rq *rq = cpu_rq(cpu);
2295 unsigned long total = weighted_cpuload(cpu);
2296
2297 if (type == 0 || !sched_feat(LB_BIAS))
2298 return total;
2299
2300 return min(rq->cpu_load[type-1], total);
2301 }
2302
2303 /*
2304 * Return a high guess at the load of a migration-target cpu weighted
2305 * according to the scheduling class and "nice" value.
2306 */
2307 static unsigned long target_load(int cpu, int type)
2308 {
2309 struct rq *rq = cpu_rq(cpu);
2310 unsigned long total = weighted_cpuload(cpu);
2311
2312 if (type == 0 || !sched_feat(LB_BIAS))
2313 return total;
2314
2315 return max(rq->cpu_load[type-1], total);
2316 }
2317
2318 static unsigned long power_of(int cpu)
2319 {
2320 return cpu_rq(cpu)->cpu_power;
2321 }
2322
2323 static unsigned long cpu_avg_load_per_task(int cpu)
2324 {
2325 struct rq *rq = cpu_rq(cpu);
2326 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2327
2328 if (nr_running)
2329 return rq->load.weight / nr_running;
2330
2331 return 0;
2332 }
2333
2334
2335 static void task_waking_fair(struct task_struct *p)
2336 {
2337 struct sched_entity *se = &p->se;
2338 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2339 u64 min_vruntime;
2340
2341 #ifndef CONFIG_64BIT
2342 u64 min_vruntime_copy;
2343
2344 do {
2345 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2346 smp_rmb();
2347 min_vruntime = cfs_rq->min_vruntime;
2348 } while (min_vruntime != min_vruntime_copy);
2349 #else
2350 min_vruntime = cfs_rq->min_vruntime;
2351 #endif
2352
2353 se->vruntime -= min_vruntime;
2354 }
2355
2356 #ifdef CONFIG_FAIR_GROUP_SCHED
2357 /*
2358 * effective_load() calculates the load change as seen from the root_task_group
2359 *
2360 * Adding load to a group doesn't make a group heavier, but can cause movement
2361 * of group shares between cpus. Assuming the shares were perfectly aligned one
2362 * can calculate the shift in shares.
2363 *
2364 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2365 * on this @cpu and results in a total addition (subtraction) of @wg to the
2366 * total group weight.
2367 *
2368 * Given a runqueue weight distribution (rw_i) we can compute a shares
2369 * distribution (s_i) using:
2370 *
2371 * s_i = rw_i / \Sum rw_j (1)
2372 *
2373 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2374 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2375 * shares distribution (s_i):
2376 *
2377 * rw_i = { 2, 4, 1, 0 }
2378 * s_i = { 2/7, 4/7, 1/7, 0 }
2379 *
2380 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2381 * task used to run on and the CPU the waker is running on), we need to
2382 * compute the effect of waking a task on either CPU and, in case of a sync
2383 * wakeup, compute the effect of the current task going to sleep.
2384 *
2385 * So for a change of @wl to the local @cpu with an overall group weight change
2386 * of @wl we can compute the new shares distribution (s'_i) using:
2387 *
2388 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2389 *
2390 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2391 * differences in waking a task to CPU 0. The additional task changes the
2392 * weight and shares distributions like:
2393 *
2394 * rw'_i = { 3, 4, 1, 0 }
2395 * s'_i = { 3/8, 4/8, 1/8, 0 }
2396 *
2397 * We can then compute the difference in effective weight by using:
2398 *
2399 * dw_i = S * (s'_i - s_i) (3)
2400 *
2401 * Where 'S' is the group weight as seen by its parent.
2402 *
2403 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2404 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2405 * 4/7) times the weight of the group.
2406 */
2407 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2408 {
2409 struct sched_entity *se = tg->se[cpu];
2410
2411 if (!tg->parent) /* the trivial, non-cgroup case */
2412 return wl;
2413
2414 for_each_sched_entity(se) {
2415 long w, W;
2416
2417 tg = se->my_q->tg;
2418
2419 /*
2420 * W = @wg + \Sum rw_j
2421 */
2422 W = wg + calc_tg_weight(tg, se->my_q);
2423
2424 /*
2425 * w = rw_i + @wl
2426 */
2427 w = se->my_q->load.weight + wl;
2428
2429 /*
2430 * wl = S * s'_i; see (2)
2431 */
2432 if (W > 0 && w < W)
2433 wl = (w * tg->shares) / W;
2434 else
2435 wl = tg->shares;
2436
2437 /*
2438 * Per the above, wl is the new se->load.weight value; since
2439 * those are clipped to [MIN_SHARES, ...) do so now. See
2440 * calc_cfs_shares().
2441 */
2442 if (wl < MIN_SHARES)
2443 wl = MIN_SHARES;
2444
2445 /*
2446 * wl = dw_i = S * (s'_i - s_i); see (3)
2447 */
2448 wl -= se->load.weight;
2449
2450 /*
2451 * Recursively apply this logic to all parent groups to compute
2452 * the final effective load change on the root group. Since
2453 * only the @tg group gets extra weight, all parent groups can
2454 * only redistribute existing shares. @wl is the shift in shares
2455 * resulting from this level per the above.
2456 */
2457 wg = 0;
2458 }
2459
2460 return wl;
2461 }
2462 #else
2463
2464 static inline unsigned long effective_load(struct task_group *tg, int cpu,
2465 unsigned long wl, unsigned long wg)
2466 {
2467 return wl;
2468 }
2469
2470 #endif
2471
2472 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2473 {
2474 s64 this_load, load;
2475 int idx, this_cpu, prev_cpu;
2476 unsigned long tl_per_task;
2477 struct task_group *tg;
2478 unsigned long weight;
2479 int balanced;
2480
2481 idx = sd->wake_idx;
2482 this_cpu = smp_processor_id();
2483 prev_cpu = task_cpu(p);
2484 load = source_load(prev_cpu, idx);
2485 this_load = target_load(this_cpu, idx);
2486
2487 /*
2488 * If sync wakeup then subtract the (maximum possible)
2489 * effect of the currently running task from the load
2490 * of the current CPU:
2491 */
2492 if (sync) {
2493 tg = task_group(current);
2494 weight = current->se.load.weight;
2495
2496 this_load += effective_load(tg, this_cpu, -weight, -weight);
2497 load += effective_load(tg, prev_cpu, 0, -weight);
2498 }
2499
2500 tg = task_group(p);
2501 weight = p->se.load.weight;
2502
2503 /*
2504 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2505 * due to the sync cause above having dropped this_load to 0, we'll
2506 * always have an imbalance, but there's really nothing you can do
2507 * about that, so that's good too.
2508 *
2509 * Otherwise check if either cpus are near enough in load to allow this
2510 * task to be woken on this_cpu.
2511 */
2512 if (this_load > 0) {
2513 s64 this_eff_load, prev_eff_load;
2514
2515 this_eff_load = 100;
2516 this_eff_load *= power_of(prev_cpu);
2517 this_eff_load *= this_load +
2518 effective_load(tg, this_cpu, weight, weight);
2519
2520 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2521 prev_eff_load *= power_of(this_cpu);
2522 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2523
2524 balanced = this_eff_load <= prev_eff_load;
2525 } else
2526 balanced = true;
2527
2528 /*
2529 * If the currently running task will sleep within
2530 * a reasonable amount of time then attract this newly
2531 * woken task:
2532 */
2533 if (sync && balanced)
2534 return 1;
2535
2536 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2537 tl_per_task = cpu_avg_load_per_task(this_cpu);
2538
2539 if (balanced ||
2540 (this_load <= load &&
2541 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2542 /*
2543 * This domain has SD_WAKE_AFFINE and
2544 * p is cache cold in this domain, and
2545 * there is no bad imbalance.
2546 */
2547 schedstat_inc(sd, ttwu_move_affine);
2548 schedstat_inc(p, se.statistics.nr_wakeups_affine);
2549
2550 return 1;
2551 }
2552 return 0;
2553 }
2554
2555 /*
2556 * find_idlest_group finds and returns the least busy CPU group within the
2557 * domain.
2558 */
2559 static struct sched_group *
2560 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2561 int this_cpu, int load_idx)
2562 {
2563 struct sched_group *idlest = NULL, *group = sd->groups;
2564 unsigned long min_load = ULONG_MAX, this_load = 0;
2565 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2566
2567 do {
2568 unsigned long load, avg_load;
2569 int local_group;
2570 int i;
2571
2572 /* Skip over this group if it has no CPUs allowed */
2573 if (!cpumask_intersects(sched_group_cpus(group),
2574 tsk_cpus_allowed(p)))
2575 continue;
2576
2577 local_group = cpumask_test_cpu(this_cpu,
2578 sched_group_cpus(group));
2579
2580 /* Tally up the load of all CPUs in the group */
2581 avg_load = 0;
2582
2583 for_each_cpu(i, sched_group_cpus(group)) {
2584 /* Bias balancing toward cpus of our domain */
2585 if (local_group)
2586 load = source_load(i, load_idx);
2587 else
2588 load = target_load(i, load_idx);
2589
2590 avg_load += load;
2591 }
2592
2593 /* Adjust by relative CPU power of the group */
2594 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2595
2596 if (local_group) {
2597 this_load = avg_load;
2598 } else if (avg_load < min_load) {
2599 min_load = avg_load;
2600 idlest = group;
2601 }
2602 } while (group = group->next, group != sd->groups);
2603
2604 if (!idlest || 100*this_load < imbalance*min_load)
2605 return NULL;
2606 return idlest;
2607 }
2608
2609 /*
2610 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2611 */
2612 static int
2613 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2614 {
2615 unsigned long load, min_load = ULONG_MAX;
2616 int idlest = -1;
2617 int i;
2618
2619 /* Traverse only the allowed CPUs */
2620 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2621 load = weighted_cpuload(i);
2622
2623 if (load < min_load || (load == min_load && i == this_cpu)) {
2624 min_load = load;
2625 idlest = i;
2626 }
2627 }
2628
2629 return idlest;
2630 }
2631
2632 /*
2633 * Try and locate an idle CPU in the sched_domain.
2634 */
2635 static int select_idle_sibling(struct task_struct *p, int target)
2636 {
2637 int cpu = smp_processor_id();
2638 int prev_cpu = task_cpu(p);
2639 struct sched_domain *sd;
2640
2641 /*
2642 * If the task is going to be woken-up on this cpu and if it is
2643 * already idle, then it is the right target.
2644 */
2645 if (target == cpu && idle_cpu(cpu))
2646 return cpu;
2647
2648 /*
2649 * If the task is going to be woken-up on the cpu where it previously
2650 * ran and if it is currently idle, then it the right target.
2651 */
2652 if (target == prev_cpu && idle_cpu(prev_cpu))
2653 return prev_cpu;
2654
2655 /*
2656 * Otherwise, check assigned siblings to find an elegible idle cpu.
2657 */
2658 sd = rcu_dereference(per_cpu(sd_llc, target));
2659
2660 for_each_lower_domain(sd) {
2661 if (!cpumask_test_cpu(sd->idle_buddy, tsk_cpus_allowed(p)))
2662 continue;
2663 if (idle_cpu(sd->idle_buddy))
2664 return sd->idle_buddy;
2665 }
2666
2667 return target;
2668 }
2669
2670 /*
2671 * sched_balance_self: balance the current task (running on cpu) in domains
2672 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2673 * SD_BALANCE_EXEC.
2674 *
2675 * Balance, ie. select the least loaded group.
2676 *
2677 * Returns the target CPU number, or the same CPU if no balancing is needed.
2678 *
2679 * preempt must be disabled.
2680 */
2681 static int
2682 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2683 {
2684 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2685 int cpu = smp_processor_id();
2686 int prev_cpu = task_cpu(p);
2687 int new_cpu = cpu;
2688 int want_affine = 0;
2689 int want_sd = 1;
2690 int sync = wake_flags & WF_SYNC;
2691
2692 if (p->nr_cpus_allowed == 1)
2693 return prev_cpu;
2694
2695 if (sd_flag & SD_BALANCE_WAKE) {
2696 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2697 want_affine = 1;
2698 new_cpu = prev_cpu;
2699 }
2700
2701 rcu_read_lock();
2702 for_each_domain(cpu, tmp) {
2703 if (!(tmp->flags & SD_LOAD_BALANCE))
2704 continue;
2705
2706 /*
2707 * If power savings logic is enabled for a domain, see if we
2708 * are not overloaded, if so, don't balance wider.
2709 */
2710 if (tmp->flags & (SD_PREFER_LOCAL)) {
2711 unsigned long power = 0;
2712 unsigned long nr_running = 0;
2713 unsigned long capacity;
2714 int i;
2715
2716 for_each_cpu(i, sched_domain_span(tmp)) {
2717 power += power_of(i);
2718 nr_running += cpu_rq(i)->cfs.nr_running;
2719 }
2720
2721 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2722
2723 if (nr_running < capacity)
2724 want_sd = 0;
2725 }
2726
2727 /*
2728 * If both cpu and prev_cpu are part of this domain,
2729 * cpu is a valid SD_WAKE_AFFINE target.
2730 */
2731 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2732 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2733 affine_sd = tmp;
2734 want_affine = 0;
2735 }
2736
2737 if (!want_sd && !want_affine)
2738 break;
2739
2740 if (!(tmp->flags & sd_flag))
2741 continue;
2742
2743 if (want_sd)
2744 sd = tmp;
2745 }
2746
2747 if (affine_sd) {
2748 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2749 prev_cpu = cpu;
2750
2751 new_cpu = select_idle_sibling(p, prev_cpu);
2752 goto unlock;
2753 }
2754
2755 while (sd) {
2756 int load_idx = sd->forkexec_idx;
2757 struct sched_group *group;
2758 int weight;
2759
2760 if (!(sd->flags & sd_flag)) {
2761 sd = sd->child;
2762 continue;
2763 }
2764
2765 if (sd_flag & SD_BALANCE_WAKE)
2766 load_idx = sd->wake_idx;
2767
2768 group = find_idlest_group(sd, p, cpu, load_idx);
2769 if (!group) {
2770 sd = sd->child;
2771 continue;
2772 }
2773
2774 new_cpu = find_idlest_cpu(group, p, cpu);
2775 if (new_cpu == -1 || new_cpu == cpu) {
2776 /* Now try balancing at a lower domain level of cpu */
2777 sd = sd->child;
2778 continue;
2779 }
2780
2781 /* Now try balancing at a lower domain level of new_cpu */
2782 cpu = new_cpu;
2783 weight = sd->span_weight;
2784 sd = NULL;
2785 for_each_domain(cpu, tmp) {
2786 if (weight <= tmp->span_weight)
2787 break;
2788 if (tmp->flags & sd_flag)
2789 sd = tmp;
2790 }
2791 /* while loop will break here if sd == NULL */
2792 }
2793 unlock:
2794 rcu_read_unlock();
2795
2796 return new_cpu;
2797 }
2798 #endif /* CONFIG_SMP */
2799
2800 static unsigned long
2801 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2802 {
2803 unsigned long gran = sysctl_sched_wakeup_granularity;
2804
2805 /*
2806 * Since its curr running now, convert the gran from real-time
2807 * to virtual-time in his units.
2808 *
2809 * By using 'se' instead of 'curr' we penalize light tasks, so
2810 * they get preempted easier. That is, if 'se' < 'curr' then
2811 * the resulting gran will be larger, therefore penalizing the
2812 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2813 * be smaller, again penalizing the lighter task.
2814 *
2815 * This is especially important for buddies when the leftmost
2816 * task is higher priority than the buddy.
2817 */
2818 return calc_delta_fair(gran, se);
2819 }
2820
2821 /*
2822 * Should 'se' preempt 'curr'.
2823 *
2824 * |s1
2825 * |s2
2826 * |s3
2827 * g
2828 * |<--->|c
2829 *
2830 * w(c, s1) = -1
2831 * w(c, s2) = 0
2832 * w(c, s3) = 1
2833 *
2834 */
2835 static int
2836 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2837 {
2838 s64 gran, vdiff = curr->vruntime - se->vruntime;
2839
2840 if (vdiff <= 0)
2841 return -1;
2842
2843 gran = wakeup_gran(curr, se);
2844 if (vdiff > gran)
2845 return 1;
2846
2847 return 0;
2848 }
2849
2850 static void set_last_buddy(struct sched_entity *se)
2851 {
2852 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2853 return;
2854
2855 for_each_sched_entity(se)
2856 cfs_rq_of(se)->last = se;
2857 }
2858
2859 static void set_next_buddy(struct sched_entity *se)
2860 {
2861 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2862 return;
2863
2864 for_each_sched_entity(se)
2865 cfs_rq_of(se)->next = se;
2866 }
2867
2868 static void set_skip_buddy(struct sched_entity *se)
2869 {
2870 for_each_sched_entity(se)
2871 cfs_rq_of(se)->skip = se;
2872 }
2873
2874 /*
2875 * Preempt the current task with a newly woken task if needed:
2876 */
2877 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2878 {
2879 struct task_struct *curr = rq->curr;
2880 struct sched_entity *se = &curr->se, *pse = &p->se;
2881 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2882 int scale = cfs_rq->nr_running >= sched_nr_latency;
2883 int next_buddy_marked = 0;
2884
2885 if (unlikely(se == pse))
2886 return;
2887
2888 /*
2889 * This is possible from callers such as move_task(), in which we
2890 * unconditionally check_prempt_curr() after an enqueue (which may have
2891 * lead to a throttle). This both saves work and prevents false
2892 * next-buddy nomination below.
2893 */
2894 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2895 return;
2896
2897 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2898 set_next_buddy(pse);
2899 next_buddy_marked = 1;
2900 }
2901
2902 /*
2903 * We can come here with TIF_NEED_RESCHED already set from new task
2904 * wake up path.
2905 *
2906 * Note: this also catches the edge-case of curr being in a throttled
2907 * group (e.g. via set_curr_task), since update_curr() (in the
2908 * enqueue of curr) will have resulted in resched being set. This
2909 * prevents us from potentially nominating it as a false LAST_BUDDY
2910 * below.
2911 */
2912 if (test_tsk_need_resched(curr))
2913 return;
2914
2915 /* Idle tasks are by definition preempted by non-idle tasks. */
2916 if (unlikely(curr->policy == SCHED_IDLE) &&
2917 likely(p->policy != SCHED_IDLE))
2918 goto preempt;
2919
2920 /*
2921 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2922 * is driven by the tick):
2923 */
2924 if (unlikely(p->policy != SCHED_NORMAL))
2925 return;
2926
2927 find_matching_se(&se, &pse);
2928 update_curr(cfs_rq_of(se));
2929 BUG_ON(!pse);
2930 if (wakeup_preempt_entity(se, pse) == 1) {
2931 /*
2932 * Bias pick_next to pick the sched entity that is
2933 * triggering this preemption.
2934 */
2935 if (!next_buddy_marked)
2936 set_next_buddy(pse);
2937 goto preempt;
2938 }
2939
2940 return;
2941
2942 preempt:
2943 resched_task(curr);
2944 /*
2945 * Only set the backward buddy when the current task is still
2946 * on the rq. This can happen when a wakeup gets interleaved
2947 * with schedule on the ->pre_schedule() or idle_balance()
2948 * point, either of which can * drop the rq lock.
2949 *
2950 * Also, during early boot the idle thread is in the fair class,
2951 * for obvious reasons its a bad idea to schedule back to it.
2952 */
2953 if (unlikely(!se->on_rq || curr == rq->idle))
2954 return;
2955
2956 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2957 set_last_buddy(se);
2958 }
2959
2960 static struct task_struct *pick_next_task_fair(struct rq *rq)
2961 {
2962 struct task_struct *p;
2963 struct cfs_rq *cfs_rq = &rq->cfs;
2964 struct sched_entity *se;
2965
2966 if (!cfs_rq->nr_running)
2967 return NULL;
2968
2969 do {
2970 se = pick_next_entity(cfs_rq);
2971 set_next_entity(cfs_rq, se);
2972 cfs_rq = group_cfs_rq(se);
2973 } while (cfs_rq);
2974
2975 p = task_of(se);
2976 if (hrtick_enabled(rq))
2977 hrtick_start_fair(rq, p);
2978
2979 return p;
2980 }
2981
2982 /*
2983 * Account for a descheduled task:
2984 */
2985 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
2986 {
2987 struct sched_entity *se = &prev->se;
2988 struct cfs_rq *cfs_rq;
2989
2990 for_each_sched_entity(se) {
2991 cfs_rq = cfs_rq_of(se);
2992 put_prev_entity(cfs_rq, se);
2993 }
2994 }
2995
2996 /*
2997 * sched_yield() is very simple
2998 *
2999 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3000 */
3001 static void yield_task_fair(struct rq *rq)
3002 {
3003 struct task_struct *curr = rq->curr;
3004 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3005 struct sched_entity *se = &curr->se;
3006
3007 /*
3008 * Are we the only task in the tree?
3009 */
3010 if (unlikely(rq->nr_running == 1))
3011 return;
3012
3013 clear_buddies(cfs_rq, se);
3014
3015 if (curr->policy != SCHED_BATCH) {
3016 update_rq_clock(rq);
3017 /*
3018 * Update run-time statistics of the 'current'.
3019 */
3020 update_curr(cfs_rq);
3021 /*
3022 * Tell update_rq_clock() that we've just updated,
3023 * so we don't do microscopic update in schedule()
3024 * and double the fastpath cost.
3025 */
3026 rq->skip_clock_update = 1;
3027 }
3028
3029 set_skip_buddy(se);
3030 }
3031
3032 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3033 {
3034 struct sched_entity *se = &p->se;
3035
3036 /* throttled hierarchies are not runnable */
3037 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3038 return false;
3039
3040 /* Tell the scheduler that we'd really like pse to run next. */
3041 set_next_buddy(se);
3042
3043 yield_task_fair(rq);
3044
3045 return true;
3046 }
3047
3048 #ifdef CONFIG_SMP
3049 /**************************************************
3050 * Fair scheduling class load-balancing methods:
3051 */
3052
3053 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3054
3055 #define LBF_ALL_PINNED 0x01
3056 #define LBF_NEED_BREAK 0x02
3057
3058 struct lb_env {
3059 struct sched_domain *sd;
3060
3061 struct rq *src_rq;
3062 int src_cpu;
3063
3064 int dst_cpu;
3065 struct rq *dst_rq;
3066
3067 enum cpu_idle_type idle;
3068 long imbalance;
3069 unsigned int flags;
3070
3071 unsigned int loop;
3072 unsigned int loop_break;
3073 unsigned int loop_max;
3074 };
3075
3076 /*
3077 * move_task - move a task from one runqueue to another runqueue.
3078 * Both runqueues must be locked.
3079 */
3080 static void move_task(struct task_struct *p, struct lb_env *env)
3081 {
3082 deactivate_task(env->src_rq, p, 0);
3083 set_task_cpu(p, env->dst_cpu);
3084 activate_task(env->dst_rq, p, 0);
3085 check_preempt_curr(env->dst_rq, p, 0);
3086 }
3087
3088 /*
3089 * Is this task likely cache-hot:
3090 */
3091 static int
3092 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3093 {
3094 s64 delta;
3095
3096 if (p->sched_class != &fair_sched_class)
3097 return 0;
3098
3099 if (unlikely(p->policy == SCHED_IDLE))
3100 return 0;
3101
3102 /*
3103 * Buddy candidates are cache hot:
3104 */
3105 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3106 (&p->se == cfs_rq_of(&p->se)->next ||
3107 &p->se == cfs_rq_of(&p->se)->last))
3108 return 1;
3109
3110 if (sysctl_sched_migration_cost == -1)
3111 return 1;
3112 if (sysctl_sched_migration_cost == 0)
3113 return 0;
3114
3115 delta = now - p->se.exec_start;
3116
3117 return delta < (s64)sysctl_sched_migration_cost;
3118 }
3119
3120 /*
3121 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3122 */
3123 static
3124 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3125 {
3126 int tsk_cache_hot = 0;
3127 /*
3128 * We do not migrate tasks that are:
3129 * 1) running (obviously), or
3130 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3131 * 3) are cache-hot on their current CPU.
3132 */
3133 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3134 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3135 return 0;
3136 }
3137 env->flags &= ~LBF_ALL_PINNED;
3138
3139 if (task_running(env->src_rq, p)) {
3140 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3141 return 0;
3142 }
3143
3144 /*
3145 * Aggressive migration if:
3146 * 1) task is cache cold, or
3147 * 2) too many balance attempts have failed.
3148 */
3149
3150 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3151 if (!tsk_cache_hot ||
3152 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3153 #ifdef CONFIG_SCHEDSTATS
3154 if (tsk_cache_hot) {
3155 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3156 schedstat_inc(p, se.statistics.nr_forced_migrations);
3157 }
3158 #endif
3159 return 1;
3160 }
3161
3162 if (tsk_cache_hot) {
3163 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3164 return 0;
3165 }
3166 return 1;
3167 }
3168
3169 /*
3170 * move_one_task tries to move exactly one task from busiest to this_rq, as
3171 * part of active balancing operations within "domain".
3172 * Returns 1 if successful and 0 otherwise.
3173 *
3174 * Called with both runqueues locked.
3175 */
3176 static int move_one_task(struct lb_env *env)
3177 {
3178 struct task_struct *p, *n;
3179
3180 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3181 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3182 continue;
3183
3184 if (!can_migrate_task(p, env))
3185 continue;
3186
3187 move_task(p, env);
3188 /*
3189 * Right now, this is only the second place move_task()
3190 * is called, so we can safely collect move_task()
3191 * stats here rather than inside move_task().
3192 */
3193 schedstat_inc(env->sd, lb_gained[env->idle]);
3194 return 1;
3195 }
3196 return 0;
3197 }
3198
3199 static unsigned long task_h_load(struct task_struct *p);
3200
3201 static const unsigned int sched_nr_migrate_break = 32;
3202
3203 /*
3204 * move_tasks tries to move up to imbalance weighted load from busiest to
3205 * this_rq, as part of a balancing operation within domain "sd".
3206 * Returns 1 if successful and 0 otherwise.
3207 *
3208 * Called with both runqueues locked.
3209 */
3210 static int move_tasks(struct lb_env *env)
3211 {
3212 struct list_head *tasks = &env->src_rq->cfs_tasks;
3213 struct task_struct *p;
3214 unsigned long load;
3215 int pulled = 0;
3216
3217 if (env->imbalance <= 0)
3218 return 0;
3219
3220 while (!list_empty(tasks)) {
3221 p = list_first_entry(tasks, struct task_struct, se.group_node);
3222
3223 env->loop++;
3224 /* We've more or less seen every task there is, call it quits */
3225 if (env->loop > env->loop_max)
3226 break;
3227
3228 /* take a breather every nr_migrate tasks */
3229 if (env->loop > env->loop_break) {
3230 env->loop_break += sched_nr_migrate_break;
3231 env->flags |= LBF_NEED_BREAK;
3232 break;
3233 }
3234
3235 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3236 goto next;
3237
3238 load = task_h_load(p);
3239
3240 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
3241 goto next;
3242
3243 if ((load / 2) > env->imbalance)
3244 goto next;
3245
3246 if (!can_migrate_task(p, env))
3247 goto next;
3248
3249 move_task(p, env);
3250 pulled++;
3251 env->imbalance -= load;
3252
3253 #ifdef CONFIG_PREEMPT
3254 /*
3255 * NEWIDLE balancing is a source of latency, so preemptible
3256 * kernels will stop after the first task is pulled to minimize
3257 * the critical section.
3258 */
3259 if (env->idle == CPU_NEWLY_IDLE)
3260 break;
3261 #endif
3262
3263 /*
3264 * We only want to steal up to the prescribed amount of
3265 * weighted load.
3266 */
3267 if (env->imbalance <= 0)
3268 break;
3269
3270 continue;
3271 next:
3272 list_move_tail(&p->se.group_node, tasks);
3273 }
3274
3275 /*
3276 * Right now, this is one of only two places move_task() is called,
3277 * so we can safely collect move_task() stats here rather than
3278 * inside move_task().
3279 */
3280 schedstat_add(env->sd, lb_gained[env->idle], pulled);
3281
3282 return pulled;
3283 }
3284
3285 #ifdef CONFIG_FAIR_GROUP_SCHED
3286 /*
3287 * update tg->load_weight by folding this cpu's load_avg
3288 */
3289 static int update_shares_cpu(struct task_group *tg, int cpu)
3290 {
3291 struct cfs_rq *cfs_rq;
3292 unsigned long flags;
3293 struct rq *rq;
3294
3295 if (!tg->se[cpu])
3296 return 0;
3297
3298 rq = cpu_rq(cpu);
3299 cfs_rq = tg->cfs_rq[cpu];
3300
3301 raw_spin_lock_irqsave(&rq->lock, flags);
3302
3303 update_rq_clock(rq);
3304 update_cfs_load(cfs_rq, 1);
3305
3306 /*
3307 * We need to update shares after updating tg->load_weight in
3308 * order to adjust the weight of groups with long running tasks.
3309 */
3310 update_cfs_shares(cfs_rq);
3311
3312 raw_spin_unlock_irqrestore(&rq->lock, flags);
3313
3314 return 0;
3315 }
3316
3317 static void update_shares(int cpu)
3318 {
3319 struct cfs_rq *cfs_rq;
3320 struct rq *rq = cpu_rq(cpu);
3321
3322 rcu_read_lock();
3323 /*
3324 * Iterates the task_group tree in a bottom up fashion, see
3325 * list_add_leaf_cfs_rq() for details.
3326 */
3327 for_each_leaf_cfs_rq(rq, cfs_rq) {
3328 /* throttled entities do not contribute to load */
3329 if (throttled_hierarchy(cfs_rq))
3330 continue;
3331
3332 update_shares_cpu(cfs_rq->tg, cpu);
3333 }
3334 rcu_read_unlock();
3335 }
3336
3337 /*
3338 * Compute the cpu's hierarchical load factor for each task group.
3339 * This needs to be done in a top-down fashion because the load of a child
3340 * group is a fraction of its parents load.
3341 */
3342 static int tg_load_down(struct task_group *tg, void *data)
3343 {
3344 unsigned long load;
3345 long cpu = (long)data;
3346
3347 if (!tg->parent) {
3348 load = cpu_rq(cpu)->load.weight;
3349 } else {
3350 load = tg->parent->cfs_rq[cpu]->h_load;
3351 load *= tg->se[cpu]->load.weight;
3352 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3353 }
3354
3355 tg->cfs_rq[cpu]->h_load = load;
3356
3357 return 0;
3358 }
3359
3360 static void update_h_load(long cpu)
3361 {
3362 rcu_read_lock();
3363 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3364 rcu_read_unlock();
3365 }
3366
3367 static unsigned long task_h_load(struct task_struct *p)
3368 {
3369 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3370 unsigned long load;
3371
3372 load = p->se.load.weight;
3373 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
3374
3375 return load;
3376 }
3377 #else
3378 static inline void update_shares(int cpu)
3379 {
3380 }
3381
3382 static inline void update_h_load(long cpu)
3383 {
3384 }
3385
3386 static unsigned long task_h_load(struct task_struct *p)
3387 {
3388 return p->se.load.weight;
3389 }
3390 #endif
3391
3392 /********** Helpers for find_busiest_group ************************/
3393 /*
3394 * sd_lb_stats - Structure to store the statistics of a sched_domain
3395 * during load balancing.
3396 */
3397 struct sd_lb_stats {
3398 struct sched_group *busiest; /* Busiest group in this sd */
3399 struct sched_group *this; /* Local group in this sd */
3400 unsigned long total_load; /* Total load of all groups in sd */
3401 unsigned long total_pwr; /* Total power of all groups in sd */
3402 unsigned long avg_load; /* Average load across all groups in sd */
3403
3404 /** Statistics of this group */
3405 unsigned long this_load;
3406 unsigned long this_load_per_task;
3407 unsigned long this_nr_running;
3408 unsigned long this_has_capacity;
3409 unsigned int this_idle_cpus;
3410
3411 /* Statistics of the busiest group */
3412 unsigned int busiest_idle_cpus;
3413 unsigned long max_load;
3414 unsigned long busiest_load_per_task;
3415 unsigned long busiest_nr_running;
3416 unsigned long busiest_group_capacity;
3417 unsigned long busiest_has_capacity;
3418 unsigned int busiest_group_weight;
3419
3420 int group_imb; /* Is there imbalance in this sd */
3421 };
3422
3423 /*
3424 * sg_lb_stats - stats of a sched_group required for load_balancing
3425 */
3426 struct sg_lb_stats {
3427 unsigned long avg_load; /*Avg load across the CPUs of the group */
3428 unsigned long group_load; /* Total load over the CPUs of the group */
3429 unsigned long sum_nr_running; /* Nr tasks running in the group */
3430 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3431 unsigned long group_capacity;
3432 unsigned long idle_cpus;
3433 unsigned long group_weight;
3434 int group_imb; /* Is there an imbalance in the group ? */
3435 int group_has_capacity; /* Is there extra capacity in the group? */
3436 };
3437
3438 /**
3439 * get_sd_load_idx - Obtain the load index for a given sched domain.
3440 * @sd: The sched_domain whose load_idx is to be obtained.
3441 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3442 */
3443 static inline int get_sd_load_idx(struct sched_domain *sd,
3444 enum cpu_idle_type idle)
3445 {
3446 int load_idx;
3447
3448 switch (idle) {
3449 case CPU_NOT_IDLE:
3450 load_idx = sd->busy_idx;
3451 break;
3452
3453 case CPU_NEWLY_IDLE:
3454 load_idx = sd->newidle_idx;
3455 break;
3456 default:
3457 load_idx = sd->idle_idx;
3458 break;
3459 }
3460
3461 return load_idx;
3462 }
3463
3464 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3465 {
3466 return SCHED_POWER_SCALE;
3467 }
3468
3469 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3470 {
3471 return default_scale_freq_power(sd, cpu);
3472 }
3473
3474 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3475 {
3476 unsigned long weight = sd->span_weight;
3477 unsigned long smt_gain = sd->smt_gain;
3478
3479 smt_gain /= weight;
3480
3481 return smt_gain;
3482 }
3483
3484 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3485 {
3486 return default_scale_smt_power(sd, cpu);
3487 }
3488
3489 unsigned long scale_rt_power(int cpu)
3490 {
3491 struct rq *rq = cpu_rq(cpu);
3492 u64 total, available, age_stamp, avg;
3493
3494 /*
3495 * Since we're reading these variables without serialization make sure
3496 * we read them once before doing sanity checks on them.
3497 */
3498 age_stamp = ACCESS_ONCE(rq->age_stamp);
3499 avg = ACCESS_ONCE(rq->rt_avg);
3500
3501 total = sched_avg_period() + (rq->clock - age_stamp);
3502
3503 if (unlikely(total < avg)) {
3504 /* Ensures that power won't end up being negative */
3505 available = 0;
3506 } else {
3507 available = total - avg;
3508 }
3509
3510 if (unlikely((s64)total < SCHED_POWER_SCALE))
3511 total = SCHED_POWER_SCALE;
3512
3513 total >>= SCHED_POWER_SHIFT;
3514
3515 return div_u64(available, total);
3516 }
3517
3518 static void update_cpu_power(struct sched_domain *sd, int cpu)
3519 {
3520 unsigned long weight = sd->span_weight;
3521 unsigned long power = SCHED_POWER_SCALE;
3522 struct sched_group *sdg = sd->groups;
3523
3524 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3525 if (sched_feat(ARCH_POWER))
3526 power *= arch_scale_smt_power(sd, cpu);
3527 else
3528 power *= default_scale_smt_power(sd, cpu);
3529
3530 power >>= SCHED_POWER_SHIFT;
3531 }
3532
3533 sdg->sgp->power_orig = power;
3534
3535 if (sched_feat(ARCH_POWER))
3536 power *= arch_scale_freq_power(sd, cpu);
3537 else
3538 power *= default_scale_freq_power(sd, cpu);
3539
3540 power >>= SCHED_POWER_SHIFT;
3541
3542 power *= scale_rt_power(cpu);
3543 power >>= SCHED_POWER_SHIFT;
3544
3545 if (!power)
3546 power = 1;
3547
3548 cpu_rq(cpu)->cpu_power = power;
3549 sdg->sgp->power = power;
3550 }
3551
3552 void update_group_power(struct sched_domain *sd, int cpu)
3553 {
3554 struct sched_domain *child = sd->child;
3555 struct sched_group *group, *sdg = sd->groups;
3556 unsigned long power;
3557 unsigned long interval;
3558
3559 interval = msecs_to_jiffies(sd->balance_interval);
3560 interval = clamp(interval, 1UL, max_load_balance_interval);
3561 sdg->sgp->next_update = jiffies + interval;
3562
3563 if (!child) {
3564 update_cpu_power(sd, cpu);
3565 return;
3566 }
3567
3568 power = 0;
3569
3570 if (child->flags & SD_OVERLAP) {
3571 /*
3572 * SD_OVERLAP domains cannot assume that child groups
3573 * span the current group.
3574 */
3575
3576 for_each_cpu(cpu, sched_group_cpus(sdg))
3577 power += power_of(cpu);
3578 } else {
3579 /*
3580 * !SD_OVERLAP domains can assume that child groups
3581 * span the current group.
3582 */
3583
3584 group = child->groups;
3585 do {
3586 power += group->sgp->power;
3587 group = group->next;
3588 } while (group != child->groups);
3589 }
3590
3591 sdg->sgp->power_orig = sdg->sgp->power = power;
3592 }
3593
3594 /*
3595 * Try and fix up capacity for tiny siblings, this is needed when
3596 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3597 * which on its own isn't powerful enough.
3598 *
3599 * See update_sd_pick_busiest() and check_asym_packing().
3600 */
3601 static inline int
3602 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3603 {
3604 /*
3605 * Only siblings can have significantly less than SCHED_POWER_SCALE
3606 */
3607 if (!(sd->flags & SD_SHARE_CPUPOWER))
3608 return 0;
3609
3610 /*
3611 * If ~90% of the cpu_power is still there, we're good.
3612 */
3613 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3614 return 1;
3615
3616 return 0;
3617 }
3618
3619 /**
3620 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3621 * @env: The load balancing environment.
3622 * @group: sched_group whose statistics are to be updated.
3623 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3624 * @local_group: Does group contain this_cpu.
3625 * @cpus: Set of cpus considered for load balancing.
3626 * @balance: Should we balance.
3627 * @sgs: variable to hold the statistics for this group.
3628 */
3629 static inline void update_sg_lb_stats(struct lb_env *env,
3630 struct sched_group *group, int load_idx,
3631 int local_group, const struct cpumask *cpus,
3632 int *balance, struct sg_lb_stats *sgs)
3633 {
3634 unsigned long nr_running, max_nr_running, min_nr_running;
3635 unsigned long load, max_cpu_load, min_cpu_load;
3636 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3637 unsigned long avg_load_per_task = 0;
3638 int i;
3639
3640 if (local_group)
3641 balance_cpu = group_balance_cpu(group);
3642
3643 /* Tally up the load of all CPUs in the group */
3644 max_cpu_load = 0;
3645 min_cpu_load = ~0UL;
3646 max_nr_running = 0;
3647 min_nr_running = ~0UL;
3648
3649 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3650 struct rq *rq = cpu_rq(i);
3651
3652 nr_running = rq->nr_running;
3653
3654 /* Bias balancing toward cpus of our domain */
3655 if (local_group) {
3656 if (idle_cpu(i) && !first_idle_cpu &&
3657 cpumask_test_cpu(i, sched_group_mask(group))) {
3658 first_idle_cpu = 1;
3659 balance_cpu = i;
3660 }
3661
3662 load = target_load(i, load_idx);
3663 } else {
3664 load = source_load(i, load_idx);
3665 if (load > max_cpu_load)
3666 max_cpu_load = load;
3667 if (min_cpu_load > load)
3668 min_cpu_load = load;
3669
3670 if (nr_running > max_nr_running)
3671 max_nr_running = nr_running;
3672 if (min_nr_running > nr_running)
3673 min_nr_running = nr_running;
3674 }
3675
3676 sgs->group_load += load;
3677 sgs->sum_nr_running += nr_running;
3678 sgs->sum_weighted_load += weighted_cpuload(i);
3679 if (idle_cpu(i))
3680 sgs->idle_cpus++;
3681 }
3682
3683 /*
3684 * First idle cpu or the first cpu(busiest) in this sched group
3685 * is eligible for doing load balancing at this and above
3686 * domains. In the newly idle case, we will allow all the cpu's
3687 * to do the newly idle load balance.
3688 */
3689 if (local_group) {
3690 if (env->idle != CPU_NEWLY_IDLE) {
3691 if (balance_cpu != env->dst_cpu) {
3692 *balance = 0;
3693 return;
3694 }
3695 update_group_power(env->sd, env->dst_cpu);
3696 } else if (time_after_eq(jiffies, group->sgp->next_update))
3697 update_group_power(env->sd, env->dst_cpu);
3698 }
3699
3700 /* Adjust by relative CPU power of the group */
3701 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3702
3703 /*
3704 * Consider the group unbalanced when the imbalance is larger
3705 * than the average weight of a task.
3706 *
3707 * APZ: with cgroup the avg task weight can vary wildly and
3708 * might not be a suitable number - should we keep a
3709 * normalized nr_running number somewhere that negates
3710 * the hierarchy?
3711 */
3712 if (sgs->sum_nr_running)
3713 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3714
3715 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
3716 (max_nr_running - min_nr_running) > 1)
3717 sgs->group_imb = 1;
3718
3719 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3720 SCHED_POWER_SCALE);
3721 if (!sgs->group_capacity)
3722 sgs->group_capacity = fix_small_capacity(env->sd, group);
3723 sgs->group_weight = group->group_weight;
3724
3725 if (sgs->group_capacity > sgs->sum_nr_running)
3726 sgs->group_has_capacity = 1;
3727 }
3728
3729 /**
3730 * update_sd_pick_busiest - return 1 on busiest group
3731 * @env: The load balancing environment.
3732 * @sds: sched_domain statistics
3733 * @sg: sched_group candidate to be checked for being the busiest
3734 * @sgs: sched_group statistics
3735 *
3736 * Determine if @sg is a busier group than the previously selected
3737 * busiest group.
3738 */
3739 static bool update_sd_pick_busiest(struct lb_env *env,
3740 struct sd_lb_stats *sds,
3741 struct sched_group *sg,
3742 struct sg_lb_stats *sgs)
3743 {
3744 if (sgs->avg_load <= sds->max_load)
3745 return false;
3746
3747 if (sgs->sum_nr_running > sgs->group_capacity)
3748 return true;
3749
3750 if (sgs->group_imb)
3751 return true;
3752
3753 /*
3754 * ASYM_PACKING needs to move all the work to the lowest
3755 * numbered CPUs in the group, therefore mark all groups
3756 * higher than ourself as busy.
3757 */
3758 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3759 env->dst_cpu < group_first_cpu(sg)) {
3760 if (!sds->busiest)
3761 return true;
3762
3763 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3764 return true;
3765 }
3766
3767 return false;
3768 }
3769
3770 /**
3771 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3772 * @env: The load balancing environment.
3773 * @cpus: Set of cpus considered for load balancing.
3774 * @balance: Should we balance.
3775 * @sds: variable to hold the statistics for this sched_domain.
3776 */
3777 static inline void update_sd_lb_stats(struct lb_env *env,
3778 const struct cpumask *cpus,
3779 int *balance, struct sd_lb_stats *sds)
3780 {
3781 struct sched_domain *child = env->sd->child;
3782 struct sched_group *sg = env->sd->groups;
3783 struct sg_lb_stats sgs;
3784 int load_idx, prefer_sibling = 0;
3785
3786 if (child && child->flags & SD_PREFER_SIBLING)
3787 prefer_sibling = 1;
3788
3789 load_idx = get_sd_load_idx(env->sd, env->idle);
3790
3791 do {
3792 int local_group;
3793
3794 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
3795 memset(&sgs, 0, sizeof(sgs));
3796 update_sg_lb_stats(env, sg, load_idx, local_group,
3797 cpus, balance, &sgs);
3798
3799 if (local_group && !(*balance))
3800 return;
3801
3802 sds->total_load += sgs.group_load;
3803 sds->total_pwr += sg->sgp->power;
3804
3805 /*
3806 * In case the child domain prefers tasks go to siblings
3807 * first, lower the sg capacity to one so that we'll try
3808 * and move all the excess tasks away. We lower the capacity
3809 * of a group only if the local group has the capacity to fit
3810 * these excess tasks, i.e. nr_running < group_capacity. The
3811 * extra check prevents the case where you always pull from the
3812 * heaviest group when it is already under-utilized (possible
3813 * with a large weight task outweighs the tasks on the system).
3814 */
3815 if (prefer_sibling && !local_group && sds->this_has_capacity)
3816 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3817
3818 if (local_group) {
3819 sds->this_load = sgs.avg_load;
3820 sds->this = sg;
3821 sds->this_nr_running = sgs.sum_nr_running;
3822 sds->this_load_per_task = sgs.sum_weighted_load;
3823 sds->this_has_capacity = sgs.group_has_capacity;
3824 sds->this_idle_cpus = sgs.idle_cpus;
3825 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
3826 sds->max_load = sgs.avg_load;
3827 sds->busiest = sg;
3828 sds->busiest_nr_running = sgs.sum_nr_running;
3829 sds->busiest_idle_cpus = sgs.idle_cpus;
3830 sds->busiest_group_capacity = sgs.group_capacity;
3831 sds->busiest_load_per_task = sgs.sum_weighted_load;
3832 sds->busiest_has_capacity = sgs.group_has_capacity;
3833 sds->busiest_group_weight = sgs.group_weight;
3834 sds->group_imb = sgs.group_imb;
3835 }
3836
3837 sg = sg->next;
3838 } while (sg != env->sd->groups);
3839 }
3840
3841 /**
3842 * check_asym_packing - Check to see if the group is packed into the
3843 * sched doman.
3844 *
3845 * This is primarily intended to used at the sibling level. Some
3846 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3847 * case of POWER7, it can move to lower SMT modes only when higher
3848 * threads are idle. When in lower SMT modes, the threads will
3849 * perform better since they share less core resources. Hence when we
3850 * have idle threads, we want them to be the higher ones.
3851 *
3852 * This packing function is run on idle threads. It checks to see if
3853 * the busiest CPU in this domain (core in the P7 case) has a higher
3854 * CPU number than the packing function is being run on. Here we are
3855 * assuming lower CPU number will be equivalent to lower a SMT thread
3856 * number.
3857 *
3858 * Returns 1 when packing is required and a task should be moved to
3859 * this CPU. The amount of the imbalance is returned in *imbalance.
3860 *
3861 * @env: The load balancing environment.
3862 * @sds: Statistics of the sched_domain which is to be packed
3863 */
3864 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
3865 {
3866 int busiest_cpu;
3867
3868 if (!(env->sd->flags & SD_ASYM_PACKING))
3869 return 0;
3870
3871 if (!sds->busiest)
3872 return 0;
3873
3874 busiest_cpu = group_first_cpu(sds->busiest);
3875 if (env->dst_cpu > busiest_cpu)
3876 return 0;
3877
3878 env->imbalance = DIV_ROUND_CLOSEST(
3879 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
3880
3881 return 1;
3882 }
3883
3884 /**
3885 * fix_small_imbalance - Calculate the minor imbalance that exists
3886 * amongst the groups of a sched_domain, during
3887 * load balancing.
3888 * @env: The load balancing environment.
3889 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3890 */
3891 static inline
3892 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
3893 {
3894 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3895 unsigned int imbn = 2;
3896 unsigned long scaled_busy_load_per_task;
3897
3898 if (sds->this_nr_running) {
3899 sds->this_load_per_task /= sds->this_nr_running;
3900 if (sds->busiest_load_per_task >
3901 sds->this_load_per_task)
3902 imbn = 1;
3903 } else {
3904 sds->this_load_per_task =
3905 cpu_avg_load_per_task(env->dst_cpu);
3906 }
3907
3908 scaled_busy_load_per_task = sds->busiest_load_per_task
3909 * SCHED_POWER_SCALE;
3910 scaled_busy_load_per_task /= sds->busiest->sgp->power;
3911
3912 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3913 (scaled_busy_load_per_task * imbn)) {
3914 env->imbalance = sds->busiest_load_per_task;
3915 return;
3916 }
3917
3918 /*
3919 * OK, we don't have enough imbalance to justify moving tasks,
3920 * however we may be able to increase total CPU power used by
3921 * moving them.
3922 */
3923
3924 pwr_now += sds->busiest->sgp->power *
3925 min(sds->busiest_load_per_task, sds->max_load);
3926 pwr_now += sds->this->sgp->power *
3927 min(sds->this_load_per_task, sds->this_load);
3928 pwr_now /= SCHED_POWER_SCALE;
3929
3930 /* Amount of load we'd subtract */
3931 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3932 sds->busiest->sgp->power;
3933 if (sds->max_load > tmp)
3934 pwr_move += sds->busiest->sgp->power *
3935 min(sds->busiest_load_per_task, sds->max_load - tmp);
3936
3937 /* Amount of load we'd add */
3938 if (sds->max_load * sds->busiest->sgp->power <
3939 sds->busiest_load_per_task * SCHED_POWER_SCALE)
3940 tmp = (sds->max_load * sds->busiest->sgp->power) /
3941 sds->this->sgp->power;
3942 else
3943 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3944 sds->this->sgp->power;
3945 pwr_move += sds->this->sgp->power *
3946 min(sds->this_load_per_task, sds->this_load + tmp);
3947 pwr_move /= SCHED_POWER_SCALE;
3948
3949 /* Move if we gain throughput */
3950 if (pwr_move > pwr_now)
3951 env->imbalance = sds->busiest_load_per_task;
3952 }
3953
3954 /**
3955 * calculate_imbalance - Calculate the amount of imbalance present within the
3956 * groups of a given sched_domain during load balance.
3957 * @env: load balance environment
3958 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3959 */
3960 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
3961 {
3962 unsigned long max_pull, load_above_capacity = ~0UL;
3963
3964 sds->busiest_load_per_task /= sds->busiest_nr_running;
3965 if (sds->group_imb) {
3966 sds->busiest_load_per_task =
3967 min(sds->busiest_load_per_task, sds->avg_load);
3968 }
3969
3970 /*
3971 * In the presence of smp nice balancing, certain scenarios can have
3972 * max load less than avg load(as we skip the groups at or below
3973 * its cpu_power, while calculating max_load..)
3974 */
3975 if (sds->max_load < sds->avg_load) {
3976 env->imbalance = 0;
3977 return fix_small_imbalance(env, sds);
3978 }
3979
3980 if (!sds->group_imb) {
3981 /*
3982 * Don't want to pull so many tasks that a group would go idle.
3983 */
3984 load_above_capacity = (sds->busiest_nr_running -
3985 sds->busiest_group_capacity);
3986
3987 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3988
3989 load_above_capacity /= sds->busiest->sgp->power;
3990 }
3991
3992 /*
3993 * We're trying to get all the cpus to the average_load, so we don't
3994 * want to push ourselves above the average load, nor do we wish to
3995 * reduce the max loaded cpu below the average load. At the same time,
3996 * we also don't want to reduce the group load below the group capacity
3997 * (so that we can implement power-savings policies etc). Thus we look
3998 * for the minimum possible imbalance.
3999 * Be careful of negative numbers as they'll appear as very large values
4000 * with unsigned longs.
4001 */
4002 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4003
4004 /* How much load to actually move to equalise the imbalance */
4005 env->imbalance = min(max_pull * sds->busiest->sgp->power,
4006 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4007 / SCHED_POWER_SCALE;
4008
4009 /*
4010 * if *imbalance is less than the average load per runnable task
4011 * there is no guarantee that any tasks will be moved so we'll have
4012 * a think about bumping its value to force at least one task to be
4013 * moved
4014 */
4015 if (env->imbalance < sds->busiest_load_per_task)
4016 return fix_small_imbalance(env, sds);
4017
4018 }
4019
4020 /******* find_busiest_group() helpers end here *********************/
4021
4022 /**
4023 * find_busiest_group - Returns the busiest group within the sched_domain
4024 * if there is an imbalance. If there isn't an imbalance, and
4025 * the user has opted for power-savings, it returns a group whose
4026 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4027 * such a group exists.
4028 *
4029 * Also calculates the amount of weighted load which should be moved
4030 * to restore balance.
4031 *
4032 * @env: The load balancing environment.
4033 * @cpus: The set of CPUs under consideration for load-balancing.
4034 * @balance: Pointer to a variable indicating if this_cpu
4035 * is the appropriate cpu to perform load balancing at this_level.
4036 *
4037 * Returns: - the busiest group if imbalance exists.
4038 * - If no imbalance and user has opted for power-savings balance,
4039 * return the least loaded group whose CPUs can be
4040 * put to idle by rebalancing its tasks onto our group.
4041 */
4042 static struct sched_group *
4043 find_busiest_group(struct lb_env *env, const struct cpumask *cpus, int *balance)
4044 {
4045 struct sd_lb_stats sds;
4046
4047 memset(&sds, 0, sizeof(sds));
4048
4049 /*
4050 * Compute the various statistics relavent for load balancing at
4051 * this level.
4052 */
4053 update_sd_lb_stats(env, cpus, balance, &sds);
4054
4055 /*
4056 * this_cpu is not the appropriate cpu to perform load balancing at
4057 * this level.
4058 */
4059 if (!(*balance))
4060 goto ret;
4061
4062 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4063 check_asym_packing(env, &sds))
4064 return sds.busiest;
4065
4066 /* There is no busy sibling group to pull tasks from */
4067 if (!sds.busiest || sds.busiest_nr_running == 0)
4068 goto out_balanced;
4069
4070 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4071
4072 /*
4073 * If the busiest group is imbalanced the below checks don't
4074 * work because they assumes all things are equal, which typically
4075 * isn't true due to cpus_allowed constraints and the like.
4076 */
4077 if (sds.group_imb)
4078 goto force_balance;
4079
4080 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4081 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4082 !sds.busiest_has_capacity)
4083 goto force_balance;
4084
4085 /*
4086 * If the local group is more busy than the selected busiest group
4087 * don't try and pull any tasks.
4088 */
4089 if (sds.this_load >= sds.max_load)
4090 goto out_balanced;
4091
4092 /*
4093 * Don't pull any tasks if this group is already above the domain
4094 * average load.
4095 */
4096 if (sds.this_load >= sds.avg_load)
4097 goto out_balanced;
4098
4099 if (env->idle == CPU_IDLE) {
4100 /*
4101 * This cpu is idle. If the busiest group load doesn't
4102 * have more tasks than the number of available cpu's and
4103 * there is no imbalance between this and busiest group
4104 * wrt to idle cpu's, it is balanced.
4105 */
4106 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4107 sds.busiest_nr_running <= sds.busiest_group_weight)
4108 goto out_balanced;
4109 } else {
4110 /*
4111 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4112 * imbalance_pct to be conservative.
4113 */
4114 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4115 goto out_balanced;
4116 }
4117
4118 force_balance:
4119 /* Looks like there is an imbalance. Compute it */
4120 calculate_imbalance(env, &sds);
4121 return sds.busiest;
4122
4123 out_balanced:
4124 ret:
4125 env->imbalance = 0;
4126 return NULL;
4127 }
4128
4129 /*
4130 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4131 */
4132 static struct rq *find_busiest_queue(struct lb_env *env,
4133 struct sched_group *group,
4134 const struct cpumask *cpus)
4135 {
4136 struct rq *busiest = NULL, *rq;
4137 unsigned long max_load = 0;
4138 int i;
4139
4140 for_each_cpu(i, sched_group_cpus(group)) {
4141 unsigned long power = power_of(i);
4142 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4143 SCHED_POWER_SCALE);
4144 unsigned long wl;
4145
4146 if (!capacity)
4147 capacity = fix_small_capacity(env->sd, group);
4148
4149 if (!cpumask_test_cpu(i, cpus))
4150 continue;
4151
4152 rq = cpu_rq(i);
4153 wl = weighted_cpuload(i);
4154
4155 /*
4156 * When comparing with imbalance, use weighted_cpuload()
4157 * which is not scaled with the cpu power.
4158 */
4159 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4160 continue;
4161
4162 /*
4163 * For the load comparisons with the other cpu's, consider
4164 * the weighted_cpuload() scaled with the cpu power, so that
4165 * the load can be moved away from the cpu that is potentially
4166 * running at a lower capacity.
4167 */
4168 wl = (wl * SCHED_POWER_SCALE) / power;
4169
4170 if (wl > max_load) {
4171 max_load = wl;
4172 busiest = rq;
4173 }
4174 }
4175
4176 return busiest;
4177 }
4178
4179 /*
4180 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4181 * so long as it is large enough.
4182 */
4183 #define MAX_PINNED_INTERVAL 512
4184
4185 /* Working cpumask for load_balance and load_balance_newidle. */
4186 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4187
4188 static int need_active_balance(struct lb_env *env)
4189 {
4190 struct sched_domain *sd = env->sd;
4191
4192 if (env->idle == CPU_NEWLY_IDLE) {
4193
4194 /*
4195 * ASYM_PACKING needs to force migrate tasks from busy but
4196 * higher numbered CPUs in order to pack all tasks in the
4197 * lowest numbered CPUs.
4198 */
4199 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4200 return 1;
4201 }
4202
4203 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4204 }
4205
4206 static int active_load_balance_cpu_stop(void *data);
4207
4208 /*
4209 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4210 * tasks if there is an imbalance.
4211 */
4212 static int load_balance(int this_cpu, struct rq *this_rq,
4213 struct sched_domain *sd, enum cpu_idle_type idle,
4214 int *balance)
4215 {
4216 int ld_moved, active_balance = 0;
4217 struct sched_group *group;
4218 struct rq *busiest;
4219 unsigned long flags;
4220 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4221
4222 struct lb_env env = {
4223 .sd = sd,
4224 .dst_cpu = this_cpu,
4225 .dst_rq = this_rq,
4226 .idle = idle,
4227 .loop_break = sched_nr_migrate_break,
4228 };
4229
4230 cpumask_copy(cpus, cpu_active_mask);
4231
4232 schedstat_inc(sd, lb_count[idle]);
4233
4234 redo:
4235 group = find_busiest_group(&env, cpus, balance);
4236
4237 if (*balance == 0)
4238 goto out_balanced;
4239
4240 if (!group) {
4241 schedstat_inc(sd, lb_nobusyg[idle]);
4242 goto out_balanced;
4243 }
4244
4245 busiest = find_busiest_queue(&env, group, cpus);
4246 if (!busiest) {
4247 schedstat_inc(sd, lb_nobusyq[idle]);
4248 goto out_balanced;
4249 }
4250
4251 BUG_ON(busiest == this_rq);
4252
4253 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
4254
4255 ld_moved = 0;
4256 if (busiest->nr_running > 1) {
4257 /*
4258 * Attempt to move tasks. If find_busiest_group has found
4259 * an imbalance but busiest->nr_running <= 1, the group is
4260 * still unbalanced. ld_moved simply stays zero, so it is
4261 * correctly treated as an imbalance.
4262 */
4263 env.flags |= LBF_ALL_PINNED;
4264 env.src_cpu = busiest->cpu;
4265 env.src_rq = busiest;
4266 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
4267
4268 more_balance:
4269 local_irq_save(flags);
4270 double_rq_lock(this_rq, busiest);
4271 if (!env.loop)
4272 update_h_load(env.src_cpu);
4273 ld_moved += move_tasks(&env);
4274 double_rq_unlock(this_rq, busiest);
4275 local_irq_restore(flags);
4276
4277 if (env.flags & LBF_NEED_BREAK) {
4278 env.flags &= ~LBF_NEED_BREAK;
4279 goto more_balance;
4280 }
4281
4282 /*
4283 * some other cpu did the load balance for us.
4284 */
4285 if (ld_moved && this_cpu != smp_processor_id())
4286 resched_cpu(this_cpu);
4287
4288 /* All tasks on this runqueue were pinned by CPU affinity */
4289 if (unlikely(env.flags & LBF_ALL_PINNED)) {
4290 cpumask_clear_cpu(cpu_of(busiest), cpus);
4291 if (!cpumask_empty(cpus)) {
4292 env.loop = 0;
4293 env.loop_break = sched_nr_migrate_break;
4294 goto redo;
4295 }
4296 goto out_balanced;
4297 }
4298 }
4299
4300 if (!ld_moved) {
4301 schedstat_inc(sd, lb_failed[idle]);
4302 /*
4303 * Increment the failure counter only on periodic balance.
4304 * We do not want newidle balance, which can be very
4305 * frequent, pollute the failure counter causing
4306 * excessive cache_hot migrations and active balances.
4307 */
4308 if (idle != CPU_NEWLY_IDLE)
4309 sd->nr_balance_failed++;
4310
4311 if (need_active_balance(&env)) {
4312 raw_spin_lock_irqsave(&busiest->lock, flags);
4313
4314 /* don't kick the active_load_balance_cpu_stop,
4315 * if the curr task on busiest cpu can't be
4316 * moved to this_cpu
4317 */
4318 if (!cpumask_test_cpu(this_cpu,
4319 tsk_cpus_allowed(busiest->curr))) {
4320 raw_spin_unlock_irqrestore(&busiest->lock,
4321 flags);
4322 env.flags |= LBF_ALL_PINNED;
4323 goto out_one_pinned;
4324 }
4325
4326 /*
4327 * ->active_balance synchronizes accesses to
4328 * ->active_balance_work. Once set, it's cleared
4329 * only after active load balance is finished.
4330 */
4331 if (!busiest->active_balance) {
4332 busiest->active_balance = 1;
4333 busiest->push_cpu = this_cpu;
4334 active_balance = 1;
4335 }
4336 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4337
4338 if (active_balance) {
4339 stop_one_cpu_nowait(cpu_of(busiest),
4340 active_load_balance_cpu_stop, busiest,
4341 &busiest->active_balance_work);
4342 }
4343
4344 /*
4345 * We've kicked active balancing, reset the failure
4346 * counter.
4347 */
4348 sd->nr_balance_failed = sd->cache_nice_tries+1;
4349 }
4350 } else
4351 sd->nr_balance_failed = 0;
4352
4353 if (likely(!active_balance)) {
4354 /* We were unbalanced, so reset the balancing interval */
4355 sd->balance_interval = sd->min_interval;
4356 } else {
4357 /*
4358 * If we've begun active balancing, start to back off. This
4359 * case may not be covered by the all_pinned logic if there
4360 * is only 1 task on the busy runqueue (because we don't call
4361 * move_tasks).
4362 */
4363 if (sd->balance_interval < sd->max_interval)
4364 sd->balance_interval *= 2;
4365 }
4366
4367 goto out;
4368
4369 out_balanced:
4370 schedstat_inc(sd, lb_balanced[idle]);
4371
4372 sd->nr_balance_failed = 0;
4373
4374 out_one_pinned:
4375 /* tune up the balancing interval */
4376 if (((env.flags & LBF_ALL_PINNED) &&
4377 sd->balance_interval < MAX_PINNED_INTERVAL) ||
4378 (sd->balance_interval < sd->max_interval))
4379 sd->balance_interval *= 2;
4380
4381 ld_moved = 0;
4382 out:
4383 return ld_moved;
4384 }
4385
4386 /*
4387 * idle_balance is called by schedule() if this_cpu is about to become
4388 * idle. Attempts to pull tasks from other CPUs.
4389 */
4390 void idle_balance(int this_cpu, struct rq *this_rq)
4391 {
4392 struct sched_domain *sd;
4393 int pulled_task = 0;
4394 unsigned long next_balance = jiffies + HZ;
4395
4396 this_rq->idle_stamp = this_rq->clock;
4397
4398 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4399 return;
4400
4401 /*
4402 * Drop the rq->lock, but keep IRQ/preempt disabled.
4403 */
4404 raw_spin_unlock(&this_rq->lock);
4405
4406 update_shares(this_cpu);
4407 rcu_read_lock();
4408 for_each_domain(this_cpu, sd) {
4409 unsigned long interval;
4410 int balance = 1;
4411
4412 if (!(sd->flags & SD_LOAD_BALANCE))
4413 continue;
4414
4415 if (sd->flags & SD_BALANCE_NEWIDLE) {
4416 /* If we've pulled tasks over stop searching: */
4417 pulled_task = load_balance(this_cpu, this_rq,
4418 sd, CPU_NEWLY_IDLE, &balance);
4419 }
4420
4421 interval = msecs_to_jiffies(sd->balance_interval);
4422 if (time_after(next_balance, sd->last_balance + interval))
4423 next_balance = sd->last_balance + interval;
4424 if (pulled_task) {
4425 this_rq->idle_stamp = 0;
4426 break;
4427 }
4428 }
4429 rcu_read_unlock();
4430
4431 raw_spin_lock(&this_rq->lock);
4432
4433 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4434 /*
4435 * We are going idle. next_balance may be set based on
4436 * a busy processor. So reset next_balance.
4437 */
4438 this_rq->next_balance = next_balance;
4439 }
4440 }
4441
4442 /*
4443 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4444 * running tasks off the busiest CPU onto idle CPUs. It requires at
4445 * least 1 task to be running on each physical CPU where possible, and
4446 * avoids physical / logical imbalances.
4447 */
4448 static int active_load_balance_cpu_stop(void *data)
4449 {
4450 struct rq *busiest_rq = data;
4451 int busiest_cpu = cpu_of(busiest_rq);
4452 int target_cpu = busiest_rq->push_cpu;
4453 struct rq *target_rq = cpu_rq(target_cpu);
4454 struct sched_domain *sd;
4455
4456 raw_spin_lock_irq(&busiest_rq->lock);
4457
4458 /* make sure the requested cpu hasn't gone down in the meantime */
4459 if (unlikely(busiest_cpu != smp_processor_id() ||
4460 !busiest_rq->active_balance))
4461 goto out_unlock;
4462
4463 /* Is there any task to move? */
4464 if (busiest_rq->nr_running <= 1)
4465 goto out_unlock;
4466
4467 /*
4468 * This condition is "impossible", if it occurs
4469 * we need to fix it. Originally reported by
4470 * Bjorn Helgaas on a 128-cpu setup.
4471 */
4472 BUG_ON(busiest_rq == target_rq);
4473
4474 /* move a task from busiest_rq to target_rq */
4475 double_lock_balance(busiest_rq, target_rq);
4476
4477 /* Search for an sd spanning us and the target CPU. */
4478 rcu_read_lock();
4479 for_each_domain(target_cpu, sd) {
4480 if ((sd->flags & SD_LOAD_BALANCE) &&
4481 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4482 break;
4483 }
4484
4485 if (likely(sd)) {
4486 struct lb_env env = {
4487 .sd = sd,
4488 .dst_cpu = target_cpu,
4489 .dst_rq = target_rq,
4490 .src_cpu = busiest_rq->cpu,
4491 .src_rq = busiest_rq,
4492 .idle = CPU_IDLE,
4493 };
4494
4495 schedstat_inc(sd, alb_count);
4496
4497 if (move_one_task(&env))
4498 schedstat_inc(sd, alb_pushed);
4499 else
4500 schedstat_inc(sd, alb_failed);
4501 }
4502 rcu_read_unlock();
4503 double_unlock_balance(busiest_rq, target_rq);
4504 out_unlock:
4505 busiest_rq->active_balance = 0;
4506 raw_spin_unlock_irq(&busiest_rq->lock);
4507 return 0;
4508 }
4509
4510 #ifdef CONFIG_NO_HZ
4511 /*
4512 * idle load balancing details
4513 * - When one of the busy CPUs notice that there may be an idle rebalancing
4514 * needed, they will kick the idle load balancer, which then does idle
4515 * load balancing for all the idle CPUs.
4516 */
4517 static struct {
4518 cpumask_var_t idle_cpus_mask;
4519 atomic_t nr_cpus;
4520 unsigned long next_balance; /* in jiffy units */
4521 } nohz ____cacheline_aligned;
4522
4523 static inline int find_new_ilb(int call_cpu)
4524 {
4525 int ilb = cpumask_first(nohz.idle_cpus_mask);
4526
4527 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4528 return ilb;
4529
4530 return nr_cpu_ids;
4531 }
4532
4533 /*
4534 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4535 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4536 * CPU (if there is one).
4537 */
4538 static void nohz_balancer_kick(int cpu)
4539 {
4540 int ilb_cpu;
4541
4542 nohz.next_balance++;
4543
4544 ilb_cpu = find_new_ilb(cpu);
4545
4546 if (ilb_cpu >= nr_cpu_ids)
4547 return;
4548
4549 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4550 return;
4551 /*
4552 * Use smp_send_reschedule() instead of resched_cpu().
4553 * This way we generate a sched IPI on the target cpu which
4554 * is idle. And the softirq performing nohz idle load balance
4555 * will be run before returning from the IPI.
4556 */
4557 smp_send_reschedule(ilb_cpu);
4558 return;
4559 }
4560
4561 static inline void clear_nohz_tick_stopped(int cpu)
4562 {
4563 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4564 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4565 atomic_dec(&nohz.nr_cpus);
4566 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4567 }
4568 }
4569
4570 static inline void set_cpu_sd_state_busy(void)
4571 {
4572 struct sched_domain *sd;
4573 int cpu = smp_processor_id();
4574
4575 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4576 return;
4577 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4578
4579 rcu_read_lock();
4580 for_each_domain(cpu, sd)
4581 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4582 rcu_read_unlock();
4583 }
4584
4585 void set_cpu_sd_state_idle(void)
4586 {
4587 struct sched_domain *sd;
4588 int cpu = smp_processor_id();
4589
4590 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4591 return;
4592 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4593
4594 rcu_read_lock();
4595 for_each_domain(cpu, sd)
4596 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4597 rcu_read_unlock();
4598 }
4599
4600 /*
4601 * This routine will record that this cpu is going idle with tick stopped.
4602 * This info will be used in performing idle load balancing in the future.
4603 */
4604 void select_nohz_load_balancer(int stop_tick)
4605 {
4606 int cpu = smp_processor_id();
4607
4608 /*
4609 * If this cpu is going down, then nothing needs to be done.
4610 */
4611 if (!cpu_active(cpu))
4612 return;
4613
4614 if (stop_tick) {
4615 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4616 return;
4617
4618 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4619 atomic_inc(&nohz.nr_cpus);
4620 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4621 }
4622 return;
4623 }
4624
4625 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4626 unsigned long action, void *hcpu)
4627 {
4628 switch (action & ~CPU_TASKS_FROZEN) {
4629 case CPU_DYING:
4630 clear_nohz_tick_stopped(smp_processor_id());
4631 return NOTIFY_OK;
4632 default:
4633 return NOTIFY_DONE;
4634 }
4635 }
4636 #endif
4637
4638 static DEFINE_SPINLOCK(balancing);
4639
4640 /*
4641 * Scale the max load_balance interval with the number of CPUs in the system.
4642 * This trades load-balance latency on larger machines for less cross talk.
4643 */
4644 void update_max_interval(void)
4645 {
4646 max_load_balance_interval = HZ*num_online_cpus()/10;
4647 }
4648
4649 /*
4650 * It checks each scheduling domain to see if it is due to be balanced,
4651 * and initiates a balancing operation if so.
4652 *
4653 * Balancing parameters are set up in arch_init_sched_domains.
4654 */
4655 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4656 {
4657 int balance = 1;
4658 struct rq *rq = cpu_rq(cpu);
4659 unsigned long interval;
4660 struct sched_domain *sd;
4661 /* Earliest time when we have to do rebalance again */
4662 unsigned long next_balance = jiffies + 60*HZ;
4663 int update_next_balance = 0;
4664 int need_serialize;
4665
4666 update_shares(cpu);
4667
4668 rcu_read_lock();
4669 for_each_domain(cpu, sd) {
4670 if (!(sd->flags & SD_LOAD_BALANCE))
4671 continue;
4672
4673 interval = sd->balance_interval;
4674 if (idle != CPU_IDLE)
4675 interval *= sd->busy_factor;
4676
4677 /* scale ms to jiffies */
4678 interval = msecs_to_jiffies(interval);
4679 interval = clamp(interval, 1UL, max_load_balance_interval);
4680
4681 need_serialize = sd->flags & SD_SERIALIZE;
4682
4683 if (need_serialize) {
4684 if (!spin_trylock(&balancing))
4685 goto out;
4686 }
4687
4688 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4689 if (load_balance(cpu, rq, sd, idle, &balance)) {
4690 /*
4691 * We've pulled tasks over so either we're no
4692 * longer idle.
4693 */
4694 idle = CPU_NOT_IDLE;
4695 }
4696 sd->last_balance = jiffies;
4697 }
4698 if (need_serialize)
4699 spin_unlock(&balancing);
4700 out:
4701 if (time_after(next_balance, sd->last_balance + interval)) {
4702 next_balance = sd->last_balance + interval;
4703 update_next_balance = 1;
4704 }
4705
4706 /*
4707 * Stop the load balance at this level. There is another
4708 * CPU in our sched group which is doing load balancing more
4709 * actively.
4710 */
4711 if (!balance)
4712 break;
4713 }
4714 rcu_read_unlock();
4715
4716 /*
4717 * next_balance will be updated only when there is a need.
4718 * When the cpu is attached to null domain for ex, it will not be
4719 * updated.
4720 */
4721 if (likely(update_next_balance))
4722 rq->next_balance = next_balance;
4723 }
4724
4725 #ifdef CONFIG_NO_HZ
4726 /*
4727 * In CONFIG_NO_HZ case, the idle balance kickee will do the
4728 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4729 */
4730 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4731 {
4732 struct rq *this_rq = cpu_rq(this_cpu);
4733 struct rq *rq;
4734 int balance_cpu;
4735
4736 if (idle != CPU_IDLE ||
4737 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
4738 goto end;
4739
4740 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4741 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
4742 continue;
4743
4744 /*
4745 * If this cpu gets work to do, stop the load balancing
4746 * work being done for other cpus. Next load
4747 * balancing owner will pick it up.
4748 */
4749 if (need_resched())
4750 break;
4751
4752 raw_spin_lock_irq(&this_rq->lock);
4753 update_rq_clock(this_rq);
4754 update_idle_cpu_load(this_rq);
4755 raw_spin_unlock_irq(&this_rq->lock);
4756
4757 rebalance_domains(balance_cpu, CPU_IDLE);
4758
4759 rq = cpu_rq(balance_cpu);
4760 if (time_after(this_rq->next_balance, rq->next_balance))
4761 this_rq->next_balance = rq->next_balance;
4762 }
4763 nohz.next_balance = this_rq->next_balance;
4764 end:
4765 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
4766 }
4767
4768 /*
4769 * Current heuristic for kicking the idle load balancer in the presence
4770 * of an idle cpu is the system.
4771 * - This rq has more than one task.
4772 * - At any scheduler domain level, this cpu's scheduler group has multiple
4773 * busy cpu's exceeding the group's power.
4774 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
4775 * domain span are idle.
4776 */
4777 static inline int nohz_kick_needed(struct rq *rq, int cpu)
4778 {
4779 unsigned long now = jiffies;
4780 struct sched_domain *sd;
4781
4782 if (unlikely(idle_cpu(cpu)))
4783 return 0;
4784
4785 /*
4786 * We may be recently in ticked or tickless idle mode. At the first
4787 * busy tick after returning from idle, we will update the busy stats.
4788 */
4789 set_cpu_sd_state_busy();
4790 clear_nohz_tick_stopped(cpu);
4791
4792 /*
4793 * None are in tickless mode and hence no need for NOHZ idle load
4794 * balancing.
4795 */
4796 if (likely(!atomic_read(&nohz.nr_cpus)))
4797 return 0;
4798
4799 if (time_before(now, nohz.next_balance))
4800 return 0;
4801
4802 if (rq->nr_running >= 2)
4803 goto need_kick;
4804
4805 rcu_read_lock();
4806 for_each_domain(cpu, sd) {
4807 struct sched_group *sg = sd->groups;
4808 struct sched_group_power *sgp = sg->sgp;
4809 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
4810
4811 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
4812 goto need_kick_unlock;
4813
4814 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
4815 && (cpumask_first_and(nohz.idle_cpus_mask,
4816 sched_domain_span(sd)) < cpu))
4817 goto need_kick_unlock;
4818
4819 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
4820 break;
4821 }
4822 rcu_read_unlock();
4823 return 0;
4824
4825 need_kick_unlock:
4826 rcu_read_unlock();
4827 need_kick:
4828 return 1;
4829 }
4830 #else
4831 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4832 #endif
4833
4834 /*
4835 * run_rebalance_domains is triggered when needed from the scheduler tick.
4836 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4837 */
4838 static void run_rebalance_domains(struct softirq_action *h)
4839 {
4840 int this_cpu = smp_processor_id();
4841 struct rq *this_rq = cpu_rq(this_cpu);
4842 enum cpu_idle_type idle = this_rq->idle_balance ?
4843 CPU_IDLE : CPU_NOT_IDLE;
4844
4845 rebalance_domains(this_cpu, idle);
4846
4847 /*
4848 * If this cpu has a pending nohz_balance_kick, then do the
4849 * balancing on behalf of the other idle cpus whose ticks are
4850 * stopped.
4851 */
4852 nohz_idle_balance(this_cpu, idle);
4853 }
4854
4855 static inline int on_null_domain(int cpu)
4856 {
4857 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4858 }
4859
4860 /*
4861 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4862 */
4863 void trigger_load_balance(struct rq *rq, int cpu)
4864 {
4865 /* Don't need to rebalance while attached to NULL domain */
4866 if (time_after_eq(jiffies, rq->next_balance) &&
4867 likely(!on_null_domain(cpu)))
4868 raise_softirq(SCHED_SOFTIRQ);
4869 #ifdef CONFIG_NO_HZ
4870 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4871 nohz_balancer_kick(cpu);
4872 #endif
4873 }
4874
4875 static void rq_online_fair(struct rq *rq)
4876 {
4877 update_sysctl();
4878 }
4879
4880 static void rq_offline_fair(struct rq *rq)
4881 {
4882 update_sysctl();
4883 }
4884
4885 #endif /* CONFIG_SMP */
4886
4887 /*
4888 * scheduler tick hitting a task of our scheduling class:
4889 */
4890 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4891 {
4892 struct cfs_rq *cfs_rq;
4893 struct sched_entity *se = &curr->se;
4894
4895 for_each_sched_entity(se) {
4896 cfs_rq = cfs_rq_of(se);
4897 entity_tick(cfs_rq, se, queued);
4898 }
4899 }
4900
4901 /*
4902 * called on fork with the child task as argument from the parent's context
4903 * - child not yet on the tasklist
4904 * - preemption disabled
4905 */
4906 static void task_fork_fair(struct task_struct *p)
4907 {
4908 struct cfs_rq *cfs_rq;
4909 struct sched_entity *se = &p->se, *curr;
4910 int this_cpu = smp_processor_id();
4911 struct rq *rq = this_rq();
4912 unsigned long flags;
4913
4914 raw_spin_lock_irqsave(&rq->lock, flags);
4915
4916 update_rq_clock(rq);
4917
4918 cfs_rq = task_cfs_rq(current);
4919 curr = cfs_rq->curr;
4920
4921 if (unlikely(task_cpu(p) != this_cpu)) {
4922 rcu_read_lock();
4923 __set_task_cpu(p, this_cpu);
4924 rcu_read_unlock();
4925 }
4926
4927 update_curr(cfs_rq);
4928
4929 if (curr)
4930 se->vruntime = curr->vruntime;
4931 place_entity(cfs_rq, se, 1);
4932
4933 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4934 /*
4935 * Upon rescheduling, sched_class::put_prev_task() will place
4936 * 'current' within the tree based on its new key value.
4937 */
4938 swap(curr->vruntime, se->vruntime);
4939 resched_task(rq->curr);
4940 }
4941
4942 se->vruntime -= cfs_rq->min_vruntime;
4943
4944 raw_spin_unlock_irqrestore(&rq->lock, flags);
4945 }
4946
4947 /*
4948 * Priority of the task has changed. Check to see if we preempt
4949 * the current task.
4950 */
4951 static void
4952 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4953 {
4954 if (!p->se.on_rq)
4955 return;
4956
4957 /*
4958 * Reschedule if we are currently running on this runqueue and
4959 * our priority decreased, or if we are not currently running on
4960 * this runqueue and our priority is higher than the current's
4961 */
4962 if (rq->curr == p) {
4963 if (p->prio > oldprio)
4964 resched_task(rq->curr);
4965 } else
4966 check_preempt_curr(rq, p, 0);
4967 }
4968
4969 static void switched_from_fair(struct rq *rq, struct task_struct *p)
4970 {
4971 struct sched_entity *se = &p->se;
4972 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4973
4974 /*
4975 * Ensure the task's vruntime is normalized, so that when its
4976 * switched back to the fair class the enqueue_entity(.flags=0) will
4977 * do the right thing.
4978 *
4979 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4980 * have normalized the vruntime, if it was !on_rq, then only when
4981 * the task is sleeping will it still have non-normalized vruntime.
4982 */
4983 if (!se->on_rq && p->state != TASK_RUNNING) {
4984 /*
4985 * Fix up our vruntime so that the current sleep doesn't
4986 * cause 'unlimited' sleep bonus.
4987 */
4988 place_entity(cfs_rq, se, 0);
4989 se->vruntime -= cfs_rq->min_vruntime;
4990 }
4991 }
4992
4993 /*
4994 * We switched to the sched_fair class.
4995 */
4996 static void switched_to_fair(struct rq *rq, struct task_struct *p)
4997 {
4998 if (!p->se.on_rq)
4999 return;
5000
5001 /*
5002 * We were most likely switched from sched_rt, so
5003 * kick off the schedule if running, otherwise just see
5004 * if we can still preempt the current task.
5005 */
5006 if (rq->curr == p)
5007 resched_task(rq->curr);
5008 else
5009 check_preempt_curr(rq, p, 0);
5010 }
5011
5012 /* Account for a task changing its policy or group.
5013 *
5014 * This routine is mostly called to set cfs_rq->curr field when a task
5015 * migrates between groups/classes.
5016 */
5017 static void set_curr_task_fair(struct rq *rq)
5018 {
5019 struct sched_entity *se = &rq->curr->se;
5020
5021 for_each_sched_entity(se) {
5022 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5023
5024 set_next_entity(cfs_rq, se);
5025 /* ensure bandwidth has been allocated on our new cfs_rq */
5026 account_cfs_rq_runtime(cfs_rq, 0);
5027 }
5028 }
5029
5030 void init_cfs_rq(struct cfs_rq *cfs_rq)
5031 {
5032 cfs_rq->tasks_timeline = RB_ROOT;
5033 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5034 #ifndef CONFIG_64BIT
5035 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5036 #endif
5037 }
5038
5039 #ifdef CONFIG_FAIR_GROUP_SCHED
5040 static void task_move_group_fair(struct task_struct *p, int on_rq)
5041 {
5042 /*
5043 * If the task was not on the rq at the time of this cgroup movement
5044 * it must have been asleep, sleeping tasks keep their ->vruntime
5045 * absolute on their old rq until wakeup (needed for the fair sleeper
5046 * bonus in place_entity()).
5047 *
5048 * If it was on the rq, we've just 'preempted' it, which does convert
5049 * ->vruntime to a relative base.
5050 *
5051 * Make sure both cases convert their relative position when migrating
5052 * to another cgroup's rq. This does somewhat interfere with the
5053 * fair sleeper stuff for the first placement, but who cares.
5054 */
5055 /*
5056 * When !on_rq, vruntime of the task has usually NOT been normalized.
5057 * But there are some cases where it has already been normalized:
5058 *
5059 * - Moving a forked child which is waiting for being woken up by
5060 * wake_up_new_task().
5061 * - Moving a task which has been woken up by try_to_wake_up() and
5062 * waiting for actually being woken up by sched_ttwu_pending().
5063 *
5064 * To prevent boost or penalty in the new cfs_rq caused by delta
5065 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5066 */
5067 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5068 on_rq = 1;
5069
5070 if (!on_rq)
5071 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5072 set_task_rq(p, task_cpu(p));
5073 if (!on_rq)
5074 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
5075 }
5076
5077 void free_fair_sched_group(struct task_group *tg)
5078 {
5079 int i;
5080
5081 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5082
5083 for_each_possible_cpu(i) {
5084 if (tg->cfs_rq)
5085 kfree(tg->cfs_rq[i]);
5086 if (tg->se)
5087 kfree(tg->se[i]);
5088 }
5089
5090 kfree(tg->cfs_rq);
5091 kfree(tg->se);
5092 }
5093
5094 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5095 {
5096 struct cfs_rq *cfs_rq;
5097 struct sched_entity *se;
5098 int i;
5099
5100 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5101 if (!tg->cfs_rq)
5102 goto err;
5103 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5104 if (!tg->se)
5105 goto err;
5106
5107 tg->shares = NICE_0_LOAD;
5108
5109 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5110
5111 for_each_possible_cpu(i) {
5112 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5113 GFP_KERNEL, cpu_to_node(i));
5114 if (!cfs_rq)
5115 goto err;
5116
5117 se = kzalloc_node(sizeof(struct sched_entity),
5118 GFP_KERNEL, cpu_to_node(i));
5119 if (!se)
5120 goto err_free_rq;
5121
5122 init_cfs_rq(cfs_rq);
5123 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5124 }
5125
5126 return 1;
5127
5128 err_free_rq:
5129 kfree(cfs_rq);
5130 err:
5131 return 0;
5132 }
5133
5134 void unregister_fair_sched_group(struct task_group *tg, int cpu)
5135 {
5136 struct rq *rq = cpu_rq(cpu);
5137 unsigned long flags;
5138
5139 /*
5140 * Only empty task groups can be destroyed; so we can speculatively
5141 * check on_list without danger of it being re-added.
5142 */
5143 if (!tg->cfs_rq[cpu]->on_list)
5144 return;
5145
5146 raw_spin_lock_irqsave(&rq->lock, flags);
5147 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5148 raw_spin_unlock_irqrestore(&rq->lock, flags);
5149 }
5150
5151 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5152 struct sched_entity *se, int cpu,
5153 struct sched_entity *parent)
5154 {
5155 struct rq *rq = cpu_rq(cpu);
5156
5157 cfs_rq->tg = tg;
5158 cfs_rq->rq = rq;
5159 #ifdef CONFIG_SMP
5160 /* allow initial update_cfs_load() to truncate */
5161 cfs_rq->load_stamp = 1;
5162 #endif
5163 init_cfs_rq_runtime(cfs_rq);
5164
5165 tg->cfs_rq[cpu] = cfs_rq;
5166 tg->se[cpu] = se;
5167
5168 /* se could be NULL for root_task_group */
5169 if (!se)
5170 return;
5171
5172 if (!parent)
5173 se->cfs_rq = &rq->cfs;
5174 else
5175 se->cfs_rq = parent->my_q;
5176
5177 se->my_q = cfs_rq;
5178 update_load_set(&se->load, 0);
5179 se->parent = parent;
5180 }
5181
5182 static DEFINE_MUTEX(shares_mutex);
5183
5184 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5185 {
5186 int i;
5187 unsigned long flags;
5188
5189 /*
5190 * We can't change the weight of the root cgroup.
5191 */
5192 if (!tg->se[0])
5193 return -EINVAL;
5194
5195 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5196
5197 mutex_lock(&shares_mutex);
5198 if (tg->shares == shares)
5199 goto done;
5200
5201 tg->shares = shares;
5202 for_each_possible_cpu(i) {
5203 struct rq *rq = cpu_rq(i);
5204 struct sched_entity *se;
5205
5206 se = tg->se[i];
5207 /* Propagate contribution to hierarchy */
5208 raw_spin_lock_irqsave(&rq->lock, flags);
5209 for_each_sched_entity(se)
5210 update_cfs_shares(group_cfs_rq(se));
5211 raw_spin_unlock_irqrestore(&rq->lock, flags);
5212 }
5213
5214 done:
5215 mutex_unlock(&shares_mutex);
5216 return 0;
5217 }
5218 #else /* CONFIG_FAIR_GROUP_SCHED */
5219
5220 void free_fair_sched_group(struct task_group *tg) { }
5221
5222 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5223 {
5224 return 1;
5225 }
5226
5227 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5228
5229 #endif /* CONFIG_FAIR_GROUP_SCHED */
5230
5231
5232 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5233 {
5234 struct sched_entity *se = &task->se;
5235 unsigned int rr_interval = 0;
5236
5237 /*
5238 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5239 * idle runqueue:
5240 */
5241 if (rq->cfs.load.weight)
5242 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5243
5244 return rr_interval;
5245 }
5246
5247 /*
5248 * All the scheduling class methods:
5249 */
5250 const struct sched_class fair_sched_class = {
5251 .next = &idle_sched_class,
5252 .enqueue_task = enqueue_task_fair,
5253 .dequeue_task = dequeue_task_fair,
5254 .yield_task = yield_task_fair,
5255 .yield_to_task = yield_to_task_fair,
5256
5257 .check_preempt_curr = check_preempt_wakeup,
5258
5259 .pick_next_task = pick_next_task_fair,
5260 .put_prev_task = put_prev_task_fair,
5261
5262 #ifdef CONFIG_SMP
5263 .select_task_rq = select_task_rq_fair,
5264
5265 .rq_online = rq_online_fair,
5266 .rq_offline = rq_offline_fair,
5267
5268 .task_waking = task_waking_fair,
5269 #endif
5270
5271 .set_curr_task = set_curr_task_fair,
5272 .task_tick = task_tick_fair,
5273 .task_fork = task_fork_fair,
5274
5275 .prio_changed = prio_changed_fair,
5276 .switched_from = switched_from_fair,
5277 .switched_to = switched_to_fair,
5278
5279 .get_rr_interval = get_rr_interval_fair,
5280
5281 #ifdef CONFIG_FAIR_GROUP_SCHED
5282 .task_move_group = task_move_group_fair,
5283 #endif
5284 };
5285
5286 #ifdef CONFIG_SCHED_DEBUG
5287 void print_cfs_stats(struct seq_file *m, int cpu)
5288 {
5289 struct cfs_rq *cfs_rq;
5290
5291 rcu_read_lock();
5292 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5293 print_cfs_rq(m, cpu, cfs_rq);
5294 rcu_read_unlock();
5295 }
5296 #endif
5297
5298 __init void init_sched_fair_class(void)
5299 {
5300 #ifdef CONFIG_SMP
5301 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5302
5303 #ifdef CONFIG_NO_HZ
5304 nohz.next_balance = jiffies;
5305 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5306 cpu_notifier(sched_ilb_notifier, 0);
5307 #endif
5308 #endif /* SMP */
5309
5310 }
This page took 0.208487 seconds and 5 git commands to generate.