sched/fair: Do not call cpufreq hook unless util changed
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 }
306 }
307
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314 }
315
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 if (se->cfs_rq == pse->cfs_rq)
325 return se->cfs_rq;
326
327 return NULL;
328 }
329
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 return se->parent;
333 }
334
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365 }
366
367 #else /* !CONFIG_FAIR_GROUP_SCHED */
368
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 return container_of(se, struct task_struct, se);
372 }
373
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 return container_of(cfs_rq, struct rq, cfs);
377 }
378
379 #define entity_is_task(se) 1
380
381 #define for_each_sched_entity(se) \
382 for (; se; se = NULL)
383
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 return &task_rq(p)->cfs;
387 }
388
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395 }
396
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 return NULL;
401 }
402
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 return NULL;
417 }
418
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
425
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428
429 /**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 s64 delta = (s64)(vruntime - max_vruntime);
436 if (delta > 0)
437 max_vruntime = vruntime;
438
439 return max_vruntime;
440 }
441
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449 }
450
451 static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453 {
454 return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
469 if (!cfs_rq->curr)
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482
483 /*
484 * Enqueue an entity into the rb-tree:
485 */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542 }
543
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552 }
553
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563 }
564
565 /**************************************************************
566 * Scheduling class statistics methods:
567 */
568
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572 {
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588
589 return 0;
590 }
591 #endif
592
593 /*
594 * delta /= w
595 */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600
601 return delta;
602 }
603
604 /*
605 * The idea is to set a period in which each task runs once.
606 *
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
618 }
619
620 /*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
624 * s = p*P[w/rw]
625 */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
636
637 if (unlikely(!se->on_rq)) {
638 lw = cfs_rq->load;
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = __calc_delta(slice, se->load.weight, load);
644 }
645 return slice;
646 }
647
648 /*
649 * We calculate the vruntime slice of a to-be-inserted task.
650 *
651 * vs = s/w
652 */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661
662 /*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
666 */
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
673 {
674 struct sched_avg *sa = &se->avg;
675
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
691 }
692
693 /*
694 * With new tasks being created, their initial util_avgs are extrapolated
695 * based on the cfs_rq's current util_avg:
696 *
697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
698 *
699 * However, in many cases, the above util_avg does not give a desired
700 * value. Moreover, the sum of the util_avgs may be divergent, such
701 * as when the series is a harmonic series.
702 *
703 * To solve this problem, we also cap the util_avg of successive tasks to
704 * only 1/2 of the left utilization budget:
705 *
706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
707 *
708 * where n denotes the nth task.
709 *
710 * For example, a simplest series from the beginning would be like:
711 *
712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
714 *
715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
716 * if util_avg > util_avg_cap.
717 */
718 void post_init_entity_util_avg(struct sched_entity *se)
719 {
720 struct cfs_rq *cfs_rq = cfs_rq_of(se);
721 struct sched_avg *sa = &se->avg;
722 long cap = (long)(scale_load_down(SCHED_LOAD_SCALE) - cfs_rq->avg.util_avg) / 2;
723
724 if (cap > 0) {
725 if (cfs_rq->avg.util_avg != 0) {
726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
727 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
728
729 if (sa->util_avg > cap)
730 sa->util_avg = cap;
731 } else {
732 sa->util_avg = cap;
733 }
734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
735 }
736 }
737
738 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
739 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
740 #else
741 void init_entity_runnable_average(struct sched_entity *se)
742 {
743 }
744 void post_init_entity_util_avg(struct sched_entity *se)
745 {
746 }
747 #endif
748
749 /*
750 * Update the current task's runtime statistics.
751 */
752 static void update_curr(struct cfs_rq *cfs_rq)
753 {
754 struct sched_entity *curr = cfs_rq->curr;
755 u64 now = rq_clock_task(rq_of(cfs_rq));
756 u64 delta_exec;
757
758 if (unlikely(!curr))
759 return;
760
761 delta_exec = now - curr->exec_start;
762 if (unlikely((s64)delta_exec <= 0))
763 return;
764
765 curr->exec_start = now;
766
767 schedstat_set(curr->statistics.exec_max,
768 max(delta_exec, curr->statistics.exec_max));
769
770 curr->sum_exec_runtime += delta_exec;
771 schedstat_add(cfs_rq, exec_clock, delta_exec);
772
773 curr->vruntime += calc_delta_fair(delta_exec, curr);
774 update_min_vruntime(cfs_rq);
775
776 if (entity_is_task(curr)) {
777 struct task_struct *curtask = task_of(curr);
778
779 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
780 cpuacct_charge(curtask, delta_exec);
781 account_group_exec_runtime(curtask, delta_exec);
782 }
783
784 account_cfs_rq_runtime(cfs_rq, delta_exec);
785 }
786
787 static void update_curr_fair(struct rq *rq)
788 {
789 update_curr(cfs_rq_of(&rq->curr->se));
790 }
791
792 #ifdef CONFIG_SCHEDSTATS
793 static inline void
794 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
795 {
796 u64 wait_start = rq_clock(rq_of(cfs_rq));
797
798 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
799 likely(wait_start > se->statistics.wait_start))
800 wait_start -= se->statistics.wait_start;
801
802 se->statistics.wait_start = wait_start;
803 }
804
805 static void
806 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
807 {
808 struct task_struct *p;
809 u64 delta;
810
811 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
812
813 if (entity_is_task(se)) {
814 p = task_of(se);
815 if (task_on_rq_migrating(p)) {
816 /*
817 * Preserve migrating task's wait time so wait_start
818 * time stamp can be adjusted to accumulate wait time
819 * prior to migration.
820 */
821 se->statistics.wait_start = delta;
822 return;
823 }
824 trace_sched_stat_wait(p, delta);
825 }
826
827 se->statistics.wait_max = max(se->statistics.wait_max, delta);
828 se->statistics.wait_count++;
829 se->statistics.wait_sum += delta;
830 se->statistics.wait_start = 0;
831 }
832
833 /*
834 * Task is being enqueued - update stats:
835 */
836 static inline void
837 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
838 {
839 /*
840 * Are we enqueueing a waiting task? (for current tasks
841 * a dequeue/enqueue event is a NOP)
842 */
843 if (se != cfs_rq->curr)
844 update_stats_wait_start(cfs_rq, se);
845 }
846
847 static inline void
848 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
849 {
850 /*
851 * Mark the end of the wait period if dequeueing a
852 * waiting task:
853 */
854 if (se != cfs_rq->curr)
855 update_stats_wait_end(cfs_rq, se);
856
857 if (flags & DEQUEUE_SLEEP) {
858 if (entity_is_task(se)) {
859 struct task_struct *tsk = task_of(se);
860
861 if (tsk->state & TASK_INTERRUPTIBLE)
862 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
863 if (tsk->state & TASK_UNINTERRUPTIBLE)
864 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
865 }
866 }
867
868 }
869 #else
870 static inline void
871 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
872 {
873 }
874
875 static inline void
876 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
877 {
878 }
879
880 static inline void
881 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
882 {
883 }
884
885 static inline void
886 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
887 {
888 }
889 #endif
890
891 /*
892 * We are picking a new current task - update its stats:
893 */
894 static inline void
895 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
896 {
897 /*
898 * We are starting a new run period:
899 */
900 se->exec_start = rq_clock_task(rq_of(cfs_rq));
901 }
902
903 /**************************************************
904 * Scheduling class queueing methods:
905 */
906
907 #ifdef CONFIG_NUMA_BALANCING
908 /*
909 * Approximate time to scan a full NUMA task in ms. The task scan period is
910 * calculated based on the tasks virtual memory size and
911 * numa_balancing_scan_size.
912 */
913 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
914 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
915
916 /* Portion of address space to scan in MB */
917 unsigned int sysctl_numa_balancing_scan_size = 256;
918
919 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
920 unsigned int sysctl_numa_balancing_scan_delay = 1000;
921
922 static unsigned int task_nr_scan_windows(struct task_struct *p)
923 {
924 unsigned long rss = 0;
925 unsigned long nr_scan_pages;
926
927 /*
928 * Calculations based on RSS as non-present and empty pages are skipped
929 * by the PTE scanner and NUMA hinting faults should be trapped based
930 * on resident pages
931 */
932 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
933 rss = get_mm_rss(p->mm);
934 if (!rss)
935 rss = nr_scan_pages;
936
937 rss = round_up(rss, nr_scan_pages);
938 return rss / nr_scan_pages;
939 }
940
941 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
942 #define MAX_SCAN_WINDOW 2560
943
944 static unsigned int task_scan_min(struct task_struct *p)
945 {
946 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
947 unsigned int scan, floor;
948 unsigned int windows = 1;
949
950 if (scan_size < MAX_SCAN_WINDOW)
951 windows = MAX_SCAN_WINDOW / scan_size;
952 floor = 1000 / windows;
953
954 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
955 return max_t(unsigned int, floor, scan);
956 }
957
958 static unsigned int task_scan_max(struct task_struct *p)
959 {
960 unsigned int smin = task_scan_min(p);
961 unsigned int smax;
962
963 /* Watch for min being lower than max due to floor calculations */
964 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
965 return max(smin, smax);
966 }
967
968 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
969 {
970 rq->nr_numa_running += (p->numa_preferred_nid != -1);
971 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
972 }
973
974 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
975 {
976 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
977 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
978 }
979
980 struct numa_group {
981 atomic_t refcount;
982
983 spinlock_t lock; /* nr_tasks, tasks */
984 int nr_tasks;
985 pid_t gid;
986 int active_nodes;
987
988 struct rcu_head rcu;
989 unsigned long total_faults;
990 unsigned long max_faults_cpu;
991 /*
992 * Faults_cpu is used to decide whether memory should move
993 * towards the CPU. As a consequence, these stats are weighted
994 * more by CPU use than by memory faults.
995 */
996 unsigned long *faults_cpu;
997 unsigned long faults[0];
998 };
999
1000 /* Shared or private faults. */
1001 #define NR_NUMA_HINT_FAULT_TYPES 2
1002
1003 /* Memory and CPU locality */
1004 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1005
1006 /* Averaged statistics, and temporary buffers. */
1007 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1008
1009 pid_t task_numa_group_id(struct task_struct *p)
1010 {
1011 return p->numa_group ? p->numa_group->gid : 0;
1012 }
1013
1014 /*
1015 * The averaged statistics, shared & private, memory & cpu,
1016 * occupy the first half of the array. The second half of the
1017 * array is for current counters, which are averaged into the
1018 * first set by task_numa_placement.
1019 */
1020 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1021 {
1022 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1023 }
1024
1025 static inline unsigned long task_faults(struct task_struct *p, int nid)
1026 {
1027 if (!p->numa_faults)
1028 return 0;
1029
1030 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1031 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1032 }
1033
1034 static inline unsigned long group_faults(struct task_struct *p, int nid)
1035 {
1036 if (!p->numa_group)
1037 return 0;
1038
1039 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1040 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1041 }
1042
1043 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1044 {
1045 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1046 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1047 }
1048
1049 /*
1050 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1051 * considered part of a numa group's pseudo-interleaving set. Migrations
1052 * between these nodes are slowed down, to allow things to settle down.
1053 */
1054 #define ACTIVE_NODE_FRACTION 3
1055
1056 static bool numa_is_active_node(int nid, struct numa_group *ng)
1057 {
1058 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1059 }
1060
1061 /* Handle placement on systems where not all nodes are directly connected. */
1062 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1063 int maxdist, bool task)
1064 {
1065 unsigned long score = 0;
1066 int node;
1067
1068 /*
1069 * All nodes are directly connected, and the same distance
1070 * from each other. No need for fancy placement algorithms.
1071 */
1072 if (sched_numa_topology_type == NUMA_DIRECT)
1073 return 0;
1074
1075 /*
1076 * This code is called for each node, introducing N^2 complexity,
1077 * which should be ok given the number of nodes rarely exceeds 8.
1078 */
1079 for_each_online_node(node) {
1080 unsigned long faults;
1081 int dist = node_distance(nid, node);
1082
1083 /*
1084 * The furthest away nodes in the system are not interesting
1085 * for placement; nid was already counted.
1086 */
1087 if (dist == sched_max_numa_distance || node == nid)
1088 continue;
1089
1090 /*
1091 * On systems with a backplane NUMA topology, compare groups
1092 * of nodes, and move tasks towards the group with the most
1093 * memory accesses. When comparing two nodes at distance
1094 * "hoplimit", only nodes closer by than "hoplimit" are part
1095 * of each group. Skip other nodes.
1096 */
1097 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1098 dist > maxdist)
1099 continue;
1100
1101 /* Add up the faults from nearby nodes. */
1102 if (task)
1103 faults = task_faults(p, node);
1104 else
1105 faults = group_faults(p, node);
1106
1107 /*
1108 * On systems with a glueless mesh NUMA topology, there are
1109 * no fixed "groups of nodes". Instead, nodes that are not
1110 * directly connected bounce traffic through intermediate
1111 * nodes; a numa_group can occupy any set of nodes.
1112 * The further away a node is, the less the faults count.
1113 * This seems to result in good task placement.
1114 */
1115 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1116 faults *= (sched_max_numa_distance - dist);
1117 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1118 }
1119
1120 score += faults;
1121 }
1122
1123 return score;
1124 }
1125
1126 /*
1127 * These return the fraction of accesses done by a particular task, or
1128 * task group, on a particular numa node. The group weight is given a
1129 * larger multiplier, in order to group tasks together that are almost
1130 * evenly spread out between numa nodes.
1131 */
1132 static inline unsigned long task_weight(struct task_struct *p, int nid,
1133 int dist)
1134 {
1135 unsigned long faults, total_faults;
1136
1137 if (!p->numa_faults)
1138 return 0;
1139
1140 total_faults = p->total_numa_faults;
1141
1142 if (!total_faults)
1143 return 0;
1144
1145 faults = task_faults(p, nid);
1146 faults += score_nearby_nodes(p, nid, dist, true);
1147
1148 return 1000 * faults / total_faults;
1149 }
1150
1151 static inline unsigned long group_weight(struct task_struct *p, int nid,
1152 int dist)
1153 {
1154 unsigned long faults, total_faults;
1155
1156 if (!p->numa_group)
1157 return 0;
1158
1159 total_faults = p->numa_group->total_faults;
1160
1161 if (!total_faults)
1162 return 0;
1163
1164 faults = group_faults(p, nid);
1165 faults += score_nearby_nodes(p, nid, dist, false);
1166
1167 return 1000 * faults / total_faults;
1168 }
1169
1170 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1171 int src_nid, int dst_cpu)
1172 {
1173 struct numa_group *ng = p->numa_group;
1174 int dst_nid = cpu_to_node(dst_cpu);
1175 int last_cpupid, this_cpupid;
1176
1177 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1178
1179 /*
1180 * Multi-stage node selection is used in conjunction with a periodic
1181 * migration fault to build a temporal task<->page relation. By using
1182 * a two-stage filter we remove short/unlikely relations.
1183 *
1184 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1185 * a task's usage of a particular page (n_p) per total usage of this
1186 * page (n_t) (in a given time-span) to a probability.
1187 *
1188 * Our periodic faults will sample this probability and getting the
1189 * same result twice in a row, given these samples are fully
1190 * independent, is then given by P(n)^2, provided our sample period
1191 * is sufficiently short compared to the usage pattern.
1192 *
1193 * This quadric squishes small probabilities, making it less likely we
1194 * act on an unlikely task<->page relation.
1195 */
1196 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1197 if (!cpupid_pid_unset(last_cpupid) &&
1198 cpupid_to_nid(last_cpupid) != dst_nid)
1199 return false;
1200
1201 /* Always allow migrate on private faults */
1202 if (cpupid_match_pid(p, last_cpupid))
1203 return true;
1204
1205 /* A shared fault, but p->numa_group has not been set up yet. */
1206 if (!ng)
1207 return true;
1208
1209 /*
1210 * Destination node is much more heavily used than the source
1211 * node? Allow migration.
1212 */
1213 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1214 ACTIVE_NODE_FRACTION)
1215 return true;
1216
1217 /*
1218 * Distribute memory according to CPU & memory use on each node,
1219 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1220 *
1221 * faults_cpu(dst) 3 faults_cpu(src)
1222 * --------------- * - > ---------------
1223 * faults_mem(dst) 4 faults_mem(src)
1224 */
1225 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1226 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1227 }
1228
1229 static unsigned long weighted_cpuload(const int cpu);
1230 static unsigned long source_load(int cpu, int type);
1231 static unsigned long target_load(int cpu, int type);
1232 static unsigned long capacity_of(int cpu);
1233 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1234
1235 /* Cached statistics for all CPUs within a node */
1236 struct numa_stats {
1237 unsigned long nr_running;
1238 unsigned long load;
1239
1240 /* Total compute capacity of CPUs on a node */
1241 unsigned long compute_capacity;
1242
1243 /* Approximate capacity in terms of runnable tasks on a node */
1244 unsigned long task_capacity;
1245 int has_free_capacity;
1246 };
1247
1248 /*
1249 * XXX borrowed from update_sg_lb_stats
1250 */
1251 static void update_numa_stats(struct numa_stats *ns, int nid)
1252 {
1253 int smt, cpu, cpus = 0;
1254 unsigned long capacity;
1255
1256 memset(ns, 0, sizeof(*ns));
1257 for_each_cpu(cpu, cpumask_of_node(nid)) {
1258 struct rq *rq = cpu_rq(cpu);
1259
1260 ns->nr_running += rq->nr_running;
1261 ns->load += weighted_cpuload(cpu);
1262 ns->compute_capacity += capacity_of(cpu);
1263
1264 cpus++;
1265 }
1266
1267 /*
1268 * If we raced with hotplug and there are no CPUs left in our mask
1269 * the @ns structure is NULL'ed and task_numa_compare() will
1270 * not find this node attractive.
1271 *
1272 * We'll either bail at !has_free_capacity, or we'll detect a huge
1273 * imbalance and bail there.
1274 */
1275 if (!cpus)
1276 return;
1277
1278 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1279 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1280 capacity = cpus / smt; /* cores */
1281
1282 ns->task_capacity = min_t(unsigned, capacity,
1283 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1284 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1285 }
1286
1287 struct task_numa_env {
1288 struct task_struct *p;
1289
1290 int src_cpu, src_nid;
1291 int dst_cpu, dst_nid;
1292
1293 struct numa_stats src_stats, dst_stats;
1294
1295 int imbalance_pct;
1296 int dist;
1297
1298 struct task_struct *best_task;
1299 long best_imp;
1300 int best_cpu;
1301 };
1302
1303 static void task_numa_assign(struct task_numa_env *env,
1304 struct task_struct *p, long imp)
1305 {
1306 if (env->best_task)
1307 put_task_struct(env->best_task);
1308
1309 env->best_task = p;
1310 env->best_imp = imp;
1311 env->best_cpu = env->dst_cpu;
1312 }
1313
1314 static bool load_too_imbalanced(long src_load, long dst_load,
1315 struct task_numa_env *env)
1316 {
1317 long imb, old_imb;
1318 long orig_src_load, orig_dst_load;
1319 long src_capacity, dst_capacity;
1320
1321 /*
1322 * The load is corrected for the CPU capacity available on each node.
1323 *
1324 * src_load dst_load
1325 * ------------ vs ---------
1326 * src_capacity dst_capacity
1327 */
1328 src_capacity = env->src_stats.compute_capacity;
1329 dst_capacity = env->dst_stats.compute_capacity;
1330
1331 /* We care about the slope of the imbalance, not the direction. */
1332 if (dst_load < src_load)
1333 swap(dst_load, src_load);
1334
1335 /* Is the difference below the threshold? */
1336 imb = dst_load * src_capacity * 100 -
1337 src_load * dst_capacity * env->imbalance_pct;
1338 if (imb <= 0)
1339 return false;
1340
1341 /*
1342 * The imbalance is above the allowed threshold.
1343 * Compare it with the old imbalance.
1344 */
1345 orig_src_load = env->src_stats.load;
1346 orig_dst_load = env->dst_stats.load;
1347
1348 if (orig_dst_load < orig_src_load)
1349 swap(orig_dst_load, orig_src_load);
1350
1351 old_imb = orig_dst_load * src_capacity * 100 -
1352 orig_src_load * dst_capacity * env->imbalance_pct;
1353
1354 /* Would this change make things worse? */
1355 return (imb > old_imb);
1356 }
1357
1358 /*
1359 * This checks if the overall compute and NUMA accesses of the system would
1360 * be improved if the source tasks was migrated to the target dst_cpu taking
1361 * into account that it might be best if task running on the dst_cpu should
1362 * be exchanged with the source task
1363 */
1364 static void task_numa_compare(struct task_numa_env *env,
1365 long taskimp, long groupimp)
1366 {
1367 struct rq *src_rq = cpu_rq(env->src_cpu);
1368 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1369 struct task_struct *cur;
1370 long src_load, dst_load;
1371 long load;
1372 long imp = env->p->numa_group ? groupimp : taskimp;
1373 long moveimp = imp;
1374 int dist = env->dist;
1375 bool assigned = false;
1376
1377 rcu_read_lock();
1378
1379 raw_spin_lock_irq(&dst_rq->lock);
1380 cur = dst_rq->curr;
1381 /*
1382 * No need to move the exiting task or idle task.
1383 */
1384 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1385 cur = NULL;
1386 else {
1387 /*
1388 * The task_struct must be protected here to protect the
1389 * p->numa_faults access in the task_weight since the
1390 * numa_faults could already be freed in the following path:
1391 * finish_task_switch()
1392 * --> put_task_struct()
1393 * --> __put_task_struct()
1394 * --> task_numa_free()
1395 */
1396 get_task_struct(cur);
1397 }
1398
1399 raw_spin_unlock_irq(&dst_rq->lock);
1400
1401 /*
1402 * Because we have preemption enabled we can get migrated around and
1403 * end try selecting ourselves (current == env->p) as a swap candidate.
1404 */
1405 if (cur == env->p)
1406 goto unlock;
1407
1408 /*
1409 * "imp" is the fault differential for the source task between the
1410 * source and destination node. Calculate the total differential for
1411 * the source task and potential destination task. The more negative
1412 * the value is, the more rmeote accesses that would be expected to
1413 * be incurred if the tasks were swapped.
1414 */
1415 if (cur) {
1416 /* Skip this swap candidate if cannot move to the source cpu */
1417 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1418 goto unlock;
1419
1420 /*
1421 * If dst and source tasks are in the same NUMA group, or not
1422 * in any group then look only at task weights.
1423 */
1424 if (cur->numa_group == env->p->numa_group) {
1425 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1426 task_weight(cur, env->dst_nid, dist);
1427 /*
1428 * Add some hysteresis to prevent swapping the
1429 * tasks within a group over tiny differences.
1430 */
1431 if (cur->numa_group)
1432 imp -= imp/16;
1433 } else {
1434 /*
1435 * Compare the group weights. If a task is all by
1436 * itself (not part of a group), use the task weight
1437 * instead.
1438 */
1439 if (cur->numa_group)
1440 imp += group_weight(cur, env->src_nid, dist) -
1441 group_weight(cur, env->dst_nid, dist);
1442 else
1443 imp += task_weight(cur, env->src_nid, dist) -
1444 task_weight(cur, env->dst_nid, dist);
1445 }
1446 }
1447
1448 if (imp <= env->best_imp && moveimp <= env->best_imp)
1449 goto unlock;
1450
1451 if (!cur) {
1452 /* Is there capacity at our destination? */
1453 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1454 !env->dst_stats.has_free_capacity)
1455 goto unlock;
1456
1457 goto balance;
1458 }
1459
1460 /* Balance doesn't matter much if we're running a task per cpu */
1461 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1462 dst_rq->nr_running == 1)
1463 goto assign;
1464
1465 /*
1466 * In the overloaded case, try and keep the load balanced.
1467 */
1468 balance:
1469 load = task_h_load(env->p);
1470 dst_load = env->dst_stats.load + load;
1471 src_load = env->src_stats.load - load;
1472
1473 if (moveimp > imp && moveimp > env->best_imp) {
1474 /*
1475 * If the improvement from just moving env->p direction is
1476 * better than swapping tasks around, check if a move is
1477 * possible. Store a slightly smaller score than moveimp,
1478 * so an actually idle CPU will win.
1479 */
1480 if (!load_too_imbalanced(src_load, dst_load, env)) {
1481 imp = moveimp - 1;
1482 put_task_struct(cur);
1483 cur = NULL;
1484 goto assign;
1485 }
1486 }
1487
1488 if (imp <= env->best_imp)
1489 goto unlock;
1490
1491 if (cur) {
1492 load = task_h_load(cur);
1493 dst_load -= load;
1494 src_load += load;
1495 }
1496
1497 if (load_too_imbalanced(src_load, dst_load, env))
1498 goto unlock;
1499
1500 /*
1501 * One idle CPU per node is evaluated for a task numa move.
1502 * Call select_idle_sibling to maybe find a better one.
1503 */
1504 if (!cur)
1505 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1506
1507 assign:
1508 assigned = true;
1509 task_numa_assign(env, cur, imp);
1510 unlock:
1511 rcu_read_unlock();
1512 /*
1513 * The dst_rq->curr isn't assigned. The protection for task_struct is
1514 * finished.
1515 */
1516 if (cur && !assigned)
1517 put_task_struct(cur);
1518 }
1519
1520 static void task_numa_find_cpu(struct task_numa_env *env,
1521 long taskimp, long groupimp)
1522 {
1523 int cpu;
1524
1525 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1526 /* Skip this CPU if the source task cannot migrate */
1527 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1528 continue;
1529
1530 env->dst_cpu = cpu;
1531 task_numa_compare(env, taskimp, groupimp);
1532 }
1533 }
1534
1535 /* Only move tasks to a NUMA node less busy than the current node. */
1536 static bool numa_has_capacity(struct task_numa_env *env)
1537 {
1538 struct numa_stats *src = &env->src_stats;
1539 struct numa_stats *dst = &env->dst_stats;
1540
1541 if (src->has_free_capacity && !dst->has_free_capacity)
1542 return false;
1543
1544 /*
1545 * Only consider a task move if the source has a higher load
1546 * than the destination, corrected for CPU capacity on each node.
1547 *
1548 * src->load dst->load
1549 * --------------------- vs ---------------------
1550 * src->compute_capacity dst->compute_capacity
1551 */
1552 if (src->load * dst->compute_capacity * env->imbalance_pct >
1553
1554 dst->load * src->compute_capacity * 100)
1555 return true;
1556
1557 return false;
1558 }
1559
1560 static int task_numa_migrate(struct task_struct *p)
1561 {
1562 struct task_numa_env env = {
1563 .p = p,
1564
1565 .src_cpu = task_cpu(p),
1566 .src_nid = task_node(p),
1567
1568 .imbalance_pct = 112,
1569
1570 .best_task = NULL,
1571 .best_imp = 0,
1572 .best_cpu = -1,
1573 };
1574 struct sched_domain *sd;
1575 unsigned long taskweight, groupweight;
1576 int nid, ret, dist;
1577 long taskimp, groupimp;
1578
1579 /*
1580 * Pick the lowest SD_NUMA domain, as that would have the smallest
1581 * imbalance and would be the first to start moving tasks about.
1582 *
1583 * And we want to avoid any moving of tasks about, as that would create
1584 * random movement of tasks -- counter the numa conditions we're trying
1585 * to satisfy here.
1586 */
1587 rcu_read_lock();
1588 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1589 if (sd)
1590 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1591 rcu_read_unlock();
1592
1593 /*
1594 * Cpusets can break the scheduler domain tree into smaller
1595 * balance domains, some of which do not cross NUMA boundaries.
1596 * Tasks that are "trapped" in such domains cannot be migrated
1597 * elsewhere, so there is no point in (re)trying.
1598 */
1599 if (unlikely(!sd)) {
1600 p->numa_preferred_nid = task_node(p);
1601 return -EINVAL;
1602 }
1603
1604 env.dst_nid = p->numa_preferred_nid;
1605 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1606 taskweight = task_weight(p, env.src_nid, dist);
1607 groupweight = group_weight(p, env.src_nid, dist);
1608 update_numa_stats(&env.src_stats, env.src_nid);
1609 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1610 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1611 update_numa_stats(&env.dst_stats, env.dst_nid);
1612
1613 /* Try to find a spot on the preferred nid. */
1614 if (numa_has_capacity(&env))
1615 task_numa_find_cpu(&env, taskimp, groupimp);
1616
1617 /*
1618 * Look at other nodes in these cases:
1619 * - there is no space available on the preferred_nid
1620 * - the task is part of a numa_group that is interleaved across
1621 * multiple NUMA nodes; in order to better consolidate the group,
1622 * we need to check other locations.
1623 */
1624 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1625 for_each_online_node(nid) {
1626 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1627 continue;
1628
1629 dist = node_distance(env.src_nid, env.dst_nid);
1630 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1631 dist != env.dist) {
1632 taskweight = task_weight(p, env.src_nid, dist);
1633 groupweight = group_weight(p, env.src_nid, dist);
1634 }
1635
1636 /* Only consider nodes where both task and groups benefit */
1637 taskimp = task_weight(p, nid, dist) - taskweight;
1638 groupimp = group_weight(p, nid, dist) - groupweight;
1639 if (taskimp < 0 && groupimp < 0)
1640 continue;
1641
1642 env.dist = dist;
1643 env.dst_nid = nid;
1644 update_numa_stats(&env.dst_stats, env.dst_nid);
1645 if (numa_has_capacity(&env))
1646 task_numa_find_cpu(&env, taskimp, groupimp);
1647 }
1648 }
1649
1650 /*
1651 * If the task is part of a workload that spans multiple NUMA nodes,
1652 * and is migrating into one of the workload's active nodes, remember
1653 * this node as the task's preferred numa node, so the workload can
1654 * settle down.
1655 * A task that migrated to a second choice node will be better off
1656 * trying for a better one later. Do not set the preferred node here.
1657 */
1658 if (p->numa_group) {
1659 struct numa_group *ng = p->numa_group;
1660
1661 if (env.best_cpu == -1)
1662 nid = env.src_nid;
1663 else
1664 nid = env.dst_nid;
1665
1666 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1667 sched_setnuma(p, env.dst_nid);
1668 }
1669
1670 /* No better CPU than the current one was found. */
1671 if (env.best_cpu == -1)
1672 return -EAGAIN;
1673
1674 /*
1675 * Reset the scan period if the task is being rescheduled on an
1676 * alternative node to recheck if the tasks is now properly placed.
1677 */
1678 p->numa_scan_period = task_scan_min(p);
1679
1680 if (env.best_task == NULL) {
1681 ret = migrate_task_to(p, env.best_cpu);
1682 if (ret != 0)
1683 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1684 return ret;
1685 }
1686
1687 ret = migrate_swap(p, env.best_task);
1688 if (ret != 0)
1689 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1690 put_task_struct(env.best_task);
1691 return ret;
1692 }
1693
1694 /* Attempt to migrate a task to a CPU on the preferred node. */
1695 static void numa_migrate_preferred(struct task_struct *p)
1696 {
1697 unsigned long interval = HZ;
1698
1699 /* This task has no NUMA fault statistics yet */
1700 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1701 return;
1702
1703 /* Periodically retry migrating the task to the preferred node */
1704 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1705 p->numa_migrate_retry = jiffies + interval;
1706
1707 /* Success if task is already running on preferred CPU */
1708 if (task_node(p) == p->numa_preferred_nid)
1709 return;
1710
1711 /* Otherwise, try migrate to a CPU on the preferred node */
1712 task_numa_migrate(p);
1713 }
1714
1715 /*
1716 * Find out how many nodes on the workload is actively running on. Do this by
1717 * tracking the nodes from which NUMA hinting faults are triggered. This can
1718 * be different from the set of nodes where the workload's memory is currently
1719 * located.
1720 */
1721 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1722 {
1723 unsigned long faults, max_faults = 0;
1724 int nid, active_nodes = 0;
1725
1726 for_each_online_node(nid) {
1727 faults = group_faults_cpu(numa_group, nid);
1728 if (faults > max_faults)
1729 max_faults = faults;
1730 }
1731
1732 for_each_online_node(nid) {
1733 faults = group_faults_cpu(numa_group, nid);
1734 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1735 active_nodes++;
1736 }
1737
1738 numa_group->max_faults_cpu = max_faults;
1739 numa_group->active_nodes = active_nodes;
1740 }
1741
1742 /*
1743 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1744 * increments. The more local the fault statistics are, the higher the scan
1745 * period will be for the next scan window. If local/(local+remote) ratio is
1746 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1747 * the scan period will decrease. Aim for 70% local accesses.
1748 */
1749 #define NUMA_PERIOD_SLOTS 10
1750 #define NUMA_PERIOD_THRESHOLD 7
1751
1752 /*
1753 * Increase the scan period (slow down scanning) if the majority of
1754 * our memory is already on our local node, or if the majority of
1755 * the page accesses are shared with other processes.
1756 * Otherwise, decrease the scan period.
1757 */
1758 static void update_task_scan_period(struct task_struct *p,
1759 unsigned long shared, unsigned long private)
1760 {
1761 unsigned int period_slot;
1762 int ratio;
1763 int diff;
1764
1765 unsigned long remote = p->numa_faults_locality[0];
1766 unsigned long local = p->numa_faults_locality[1];
1767
1768 /*
1769 * If there were no record hinting faults then either the task is
1770 * completely idle or all activity is areas that are not of interest
1771 * to automatic numa balancing. Related to that, if there were failed
1772 * migration then it implies we are migrating too quickly or the local
1773 * node is overloaded. In either case, scan slower
1774 */
1775 if (local + shared == 0 || p->numa_faults_locality[2]) {
1776 p->numa_scan_period = min(p->numa_scan_period_max,
1777 p->numa_scan_period << 1);
1778
1779 p->mm->numa_next_scan = jiffies +
1780 msecs_to_jiffies(p->numa_scan_period);
1781
1782 return;
1783 }
1784
1785 /*
1786 * Prepare to scale scan period relative to the current period.
1787 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1788 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1789 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1790 */
1791 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1792 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1793 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1794 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1795 if (!slot)
1796 slot = 1;
1797 diff = slot * period_slot;
1798 } else {
1799 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1800
1801 /*
1802 * Scale scan rate increases based on sharing. There is an
1803 * inverse relationship between the degree of sharing and
1804 * the adjustment made to the scanning period. Broadly
1805 * speaking the intent is that there is little point
1806 * scanning faster if shared accesses dominate as it may
1807 * simply bounce migrations uselessly
1808 */
1809 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1810 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1811 }
1812
1813 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1814 task_scan_min(p), task_scan_max(p));
1815 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1816 }
1817
1818 /*
1819 * Get the fraction of time the task has been running since the last
1820 * NUMA placement cycle. The scheduler keeps similar statistics, but
1821 * decays those on a 32ms period, which is orders of magnitude off
1822 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1823 * stats only if the task is so new there are no NUMA statistics yet.
1824 */
1825 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1826 {
1827 u64 runtime, delta, now;
1828 /* Use the start of this time slice to avoid calculations. */
1829 now = p->se.exec_start;
1830 runtime = p->se.sum_exec_runtime;
1831
1832 if (p->last_task_numa_placement) {
1833 delta = runtime - p->last_sum_exec_runtime;
1834 *period = now - p->last_task_numa_placement;
1835 } else {
1836 delta = p->se.avg.load_sum / p->se.load.weight;
1837 *period = LOAD_AVG_MAX;
1838 }
1839
1840 p->last_sum_exec_runtime = runtime;
1841 p->last_task_numa_placement = now;
1842
1843 return delta;
1844 }
1845
1846 /*
1847 * Determine the preferred nid for a task in a numa_group. This needs to
1848 * be done in a way that produces consistent results with group_weight,
1849 * otherwise workloads might not converge.
1850 */
1851 static int preferred_group_nid(struct task_struct *p, int nid)
1852 {
1853 nodemask_t nodes;
1854 int dist;
1855
1856 /* Direct connections between all NUMA nodes. */
1857 if (sched_numa_topology_type == NUMA_DIRECT)
1858 return nid;
1859
1860 /*
1861 * On a system with glueless mesh NUMA topology, group_weight
1862 * scores nodes according to the number of NUMA hinting faults on
1863 * both the node itself, and on nearby nodes.
1864 */
1865 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1866 unsigned long score, max_score = 0;
1867 int node, max_node = nid;
1868
1869 dist = sched_max_numa_distance;
1870
1871 for_each_online_node(node) {
1872 score = group_weight(p, node, dist);
1873 if (score > max_score) {
1874 max_score = score;
1875 max_node = node;
1876 }
1877 }
1878 return max_node;
1879 }
1880
1881 /*
1882 * Finding the preferred nid in a system with NUMA backplane
1883 * interconnect topology is more involved. The goal is to locate
1884 * tasks from numa_groups near each other in the system, and
1885 * untangle workloads from different sides of the system. This requires
1886 * searching down the hierarchy of node groups, recursively searching
1887 * inside the highest scoring group of nodes. The nodemask tricks
1888 * keep the complexity of the search down.
1889 */
1890 nodes = node_online_map;
1891 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1892 unsigned long max_faults = 0;
1893 nodemask_t max_group = NODE_MASK_NONE;
1894 int a, b;
1895
1896 /* Are there nodes at this distance from each other? */
1897 if (!find_numa_distance(dist))
1898 continue;
1899
1900 for_each_node_mask(a, nodes) {
1901 unsigned long faults = 0;
1902 nodemask_t this_group;
1903 nodes_clear(this_group);
1904
1905 /* Sum group's NUMA faults; includes a==b case. */
1906 for_each_node_mask(b, nodes) {
1907 if (node_distance(a, b) < dist) {
1908 faults += group_faults(p, b);
1909 node_set(b, this_group);
1910 node_clear(b, nodes);
1911 }
1912 }
1913
1914 /* Remember the top group. */
1915 if (faults > max_faults) {
1916 max_faults = faults;
1917 max_group = this_group;
1918 /*
1919 * subtle: at the smallest distance there is
1920 * just one node left in each "group", the
1921 * winner is the preferred nid.
1922 */
1923 nid = a;
1924 }
1925 }
1926 /* Next round, evaluate the nodes within max_group. */
1927 if (!max_faults)
1928 break;
1929 nodes = max_group;
1930 }
1931 return nid;
1932 }
1933
1934 static void task_numa_placement(struct task_struct *p)
1935 {
1936 int seq, nid, max_nid = -1, max_group_nid = -1;
1937 unsigned long max_faults = 0, max_group_faults = 0;
1938 unsigned long fault_types[2] = { 0, 0 };
1939 unsigned long total_faults;
1940 u64 runtime, period;
1941 spinlock_t *group_lock = NULL;
1942
1943 /*
1944 * The p->mm->numa_scan_seq field gets updated without
1945 * exclusive access. Use READ_ONCE() here to ensure
1946 * that the field is read in a single access:
1947 */
1948 seq = READ_ONCE(p->mm->numa_scan_seq);
1949 if (p->numa_scan_seq == seq)
1950 return;
1951 p->numa_scan_seq = seq;
1952 p->numa_scan_period_max = task_scan_max(p);
1953
1954 total_faults = p->numa_faults_locality[0] +
1955 p->numa_faults_locality[1];
1956 runtime = numa_get_avg_runtime(p, &period);
1957
1958 /* If the task is part of a group prevent parallel updates to group stats */
1959 if (p->numa_group) {
1960 group_lock = &p->numa_group->lock;
1961 spin_lock_irq(group_lock);
1962 }
1963
1964 /* Find the node with the highest number of faults */
1965 for_each_online_node(nid) {
1966 /* Keep track of the offsets in numa_faults array */
1967 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1968 unsigned long faults = 0, group_faults = 0;
1969 int priv;
1970
1971 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1972 long diff, f_diff, f_weight;
1973
1974 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1975 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1976 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1977 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1978
1979 /* Decay existing window, copy faults since last scan */
1980 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1981 fault_types[priv] += p->numa_faults[membuf_idx];
1982 p->numa_faults[membuf_idx] = 0;
1983
1984 /*
1985 * Normalize the faults_from, so all tasks in a group
1986 * count according to CPU use, instead of by the raw
1987 * number of faults. Tasks with little runtime have
1988 * little over-all impact on throughput, and thus their
1989 * faults are less important.
1990 */
1991 f_weight = div64_u64(runtime << 16, period + 1);
1992 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1993 (total_faults + 1);
1994 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1995 p->numa_faults[cpubuf_idx] = 0;
1996
1997 p->numa_faults[mem_idx] += diff;
1998 p->numa_faults[cpu_idx] += f_diff;
1999 faults += p->numa_faults[mem_idx];
2000 p->total_numa_faults += diff;
2001 if (p->numa_group) {
2002 /*
2003 * safe because we can only change our own group
2004 *
2005 * mem_idx represents the offset for a given
2006 * nid and priv in a specific region because it
2007 * is at the beginning of the numa_faults array.
2008 */
2009 p->numa_group->faults[mem_idx] += diff;
2010 p->numa_group->faults_cpu[mem_idx] += f_diff;
2011 p->numa_group->total_faults += diff;
2012 group_faults += p->numa_group->faults[mem_idx];
2013 }
2014 }
2015
2016 if (faults > max_faults) {
2017 max_faults = faults;
2018 max_nid = nid;
2019 }
2020
2021 if (group_faults > max_group_faults) {
2022 max_group_faults = group_faults;
2023 max_group_nid = nid;
2024 }
2025 }
2026
2027 update_task_scan_period(p, fault_types[0], fault_types[1]);
2028
2029 if (p->numa_group) {
2030 numa_group_count_active_nodes(p->numa_group);
2031 spin_unlock_irq(group_lock);
2032 max_nid = preferred_group_nid(p, max_group_nid);
2033 }
2034
2035 if (max_faults) {
2036 /* Set the new preferred node */
2037 if (max_nid != p->numa_preferred_nid)
2038 sched_setnuma(p, max_nid);
2039
2040 if (task_node(p) != p->numa_preferred_nid)
2041 numa_migrate_preferred(p);
2042 }
2043 }
2044
2045 static inline int get_numa_group(struct numa_group *grp)
2046 {
2047 return atomic_inc_not_zero(&grp->refcount);
2048 }
2049
2050 static inline void put_numa_group(struct numa_group *grp)
2051 {
2052 if (atomic_dec_and_test(&grp->refcount))
2053 kfree_rcu(grp, rcu);
2054 }
2055
2056 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2057 int *priv)
2058 {
2059 struct numa_group *grp, *my_grp;
2060 struct task_struct *tsk;
2061 bool join = false;
2062 int cpu = cpupid_to_cpu(cpupid);
2063 int i;
2064
2065 if (unlikely(!p->numa_group)) {
2066 unsigned int size = sizeof(struct numa_group) +
2067 4*nr_node_ids*sizeof(unsigned long);
2068
2069 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2070 if (!grp)
2071 return;
2072
2073 atomic_set(&grp->refcount, 1);
2074 grp->active_nodes = 1;
2075 grp->max_faults_cpu = 0;
2076 spin_lock_init(&grp->lock);
2077 grp->gid = p->pid;
2078 /* Second half of the array tracks nids where faults happen */
2079 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2080 nr_node_ids;
2081
2082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2083 grp->faults[i] = p->numa_faults[i];
2084
2085 grp->total_faults = p->total_numa_faults;
2086
2087 grp->nr_tasks++;
2088 rcu_assign_pointer(p->numa_group, grp);
2089 }
2090
2091 rcu_read_lock();
2092 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2093
2094 if (!cpupid_match_pid(tsk, cpupid))
2095 goto no_join;
2096
2097 grp = rcu_dereference(tsk->numa_group);
2098 if (!grp)
2099 goto no_join;
2100
2101 my_grp = p->numa_group;
2102 if (grp == my_grp)
2103 goto no_join;
2104
2105 /*
2106 * Only join the other group if its bigger; if we're the bigger group,
2107 * the other task will join us.
2108 */
2109 if (my_grp->nr_tasks > grp->nr_tasks)
2110 goto no_join;
2111
2112 /*
2113 * Tie-break on the grp address.
2114 */
2115 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2116 goto no_join;
2117
2118 /* Always join threads in the same process. */
2119 if (tsk->mm == current->mm)
2120 join = true;
2121
2122 /* Simple filter to avoid false positives due to PID collisions */
2123 if (flags & TNF_SHARED)
2124 join = true;
2125
2126 /* Update priv based on whether false sharing was detected */
2127 *priv = !join;
2128
2129 if (join && !get_numa_group(grp))
2130 goto no_join;
2131
2132 rcu_read_unlock();
2133
2134 if (!join)
2135 return;
2136
2137 BUG_ON(irqs_disabled());
2138 double_lock_irq(&my_grp->lock, &grp->lock);
2139
2140 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2141 my_grp->faults[i] -= p->numa_faults[i];
2142 grp->faults[i] += p->numa_faults[i];
2143 }
2144 my_grp->total_faults -= p->total_numa_faults;
2145 grp->total_faults += p->total_numa_faults;
2146
2147 my_grp->nr_tasks--;
2148 grp->nr_tasks++;
2149
2150 spin_unlock(&my_grp->lock);
2151 spin_unlock_irq(&grp->lock);
2152
2153 rcu_assign_pointer(p->numa_group, grp);
2154
2155 put_numa_group(my_grp);
2156 return;
2157
2158 no_join:
2159 rcu_read_unlock();
2160 return;
2161 }
2162
2163 void task_numa_free(struct task_struct *p)
2164 {
2165 struct numa_group *grp = p->numa_group;
2166 void *numa_faults = p->numa_faults;
2167 unsigned long flags;
2168 int i;
2169
2170 if (grp) {
2171 spin_lock_irqsave(&grp->lock, flags);
2172 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2173 grp->faults[i] -= p->numa_faults[i];
2174 grp->total_faults -= p->total_numa_faults;
2175
2176 grp->nr_tasks--;
2177 spin_unlock_irqrestore(&grp->lock, flags);
2178 RCU_INIT_POINTER(p->numa_group, NULL);
2179 put_numa_group(grp);
2180 }
2181
2182 p->numa_faults = NULL;
2183 kfree(numa_faults);
2184 }
2185
2186 /*
2187 * Got a PROT_NONE fault for a page on @node.
2188 */
2189 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2190 {
2191 struct task_struct *p = current;
2192 bool migrated = flags & TNF_MIGRATED;
2193 int cpu_node = task_node(current);
2194 int local = !!(flags & TNF_FAULT_LOCAL);
2195 struct numa_group *ng;
2196 int priv;
2197
2198 if (!static_branch_likely(&sched_numa_balancing))
2199 return;
2200
2201 /* for example, ksmd faulting in a user's mm */
2202 if (!p->mm)
2203 return;
2204
2205 /* Allocate buffer to track faults on a per-node basis */
2206 if (unlikely(!p->numa_faults)) {
2207 int size = sizeof(*p->numa_faults) *
2208 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2209
2210 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2211 if (!p->numa_faults)
2212 return;
2213
2214 p->total_numa_faults = 0;
2215 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2216 }
2217
2218 /*
2219 * First accesses are treated as private, otherwise consider accesses
2220 * to be private if the accessing pid has not changed
2221 */
2222 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2223 priv = 1;
2224 } else {
2225 priv = cpupid_match_pid(p, last_cpupid);
2226 if (!priv && !(flags & TNF_NO_GROUP))
2227 task_numa_group(p, last_cpupid, flags, &priv);
2228 }
2229
2230 /*
2231 * If a workload spans multiple NUMA nodes, a shared fault that
2232 * occurs wholly within the set of nodes that the workload is
2233 * actively using should be counted as local. This allows the
2234 * scan rate to slow down when a workload has settled down.
2235 */
2236 ng = p->numa_group;
2237 if (!priv && !local && ng && ng->active_nodes > 1 &&
2238 numa_is_active_node(cpu_node, ng) &&
2239 numa_is_active_node(mem_node, ng))
2240 local = 1;
2241
2242 task_numa_placement(p);
2243
2244 /*
2245 * Retry task to preferred node migration periodically, in case it
2246 * case it previously failed, or the scheduler moved us.
2247 */
2248 if (time_after(jiffies, p->numa_migrate_retry))
2249 numa_migrate_preferred(p);
2250
2251 if (migrated)
2252 p->numa_pages_migrated += pages;
2253 if (flags & TNF_MIGRATE_FAIL)
2254 p->numa_faults_locality[2] += pages;
2255
2256 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2257 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2258 p->numa_faults_locality[local] += pages;
2259 }
2260
2261 static void reset_ptenuma_scan(struct task_struct *p)
2262 {
2263 /*
2264 * We only did a read acquisition of the mmap sem, so
2265 * p->mm->numa_scan_seq is written to without exclusive access
2266 * and the update is not guaranteed to be atomic. That's not
2267 * much of an issue though, since this is just used for
2268 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2269 * expensive, to avoid any form of compiler optimizations:
2270 */
2271 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2272 p->mm->numa_scan_offset = 0;
2273 }
2274
2275 /*
2276 * The expensive part of numa migration is done from task_work context.
2277 * Triggered from task_tick_numa().
2278 */
2279 void task_numa_work(struct callback_head *work)
2280 {
2281 unsigned long migrate, next_scan, now = jiffies;
2282 struct task_struct *p = current;
2283 struct mm_struct *mm = p->mm;
2284 u64 runtime = p->se.sum_exec_runtime;
2285 struct vm_area_struct *vma;
2286 unsigned long start, end;
2287 unsigned long nr_pte_updates = 0;
2288 long pages, virtpages;
2289
2290 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2291
2292 work->next = work; /* protect against double add */
2293 /*
2294 * Who cares about NUMA placement when they're dying.
2295 *
2296 * NOTE: make sure not to dereference p->mm before this check,
2297 * exit_task_work() happens _after_ exit_mm() so we could be called
2298 * without p->mm even though we still had it when we enqueued this
2299 * work.
2300 */
2301 if (p->flags & PF_EXITING)
2302 return;
2303
2304 if (!mm->numa_next_scan) {
2305 mm->numa_next_scan = now +
2306 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2307 }
2308
2309 /*
2310 * Enforce maximal scan/migration frequency..
2311 */
2312 migrate = mm->numa_next_scan;
2313 if (time_before(now, migrate))
2314 return;
2315
2316 if (p->numa_scan_period == 0) {
2317 p->numa_scan_period_max = task_scan_max(p);
2318 p->numa_scan_period = task_scan_min(p);
2319 }
2320
2321 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2322 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2323 return;
2324
2325 /*
2326 * Delay this task enough that another task of this mm will likely win
2327 * the next time around.
2328 */
2329 p->node_stamp += 2 * TICK_NSEC;
2330
2331 start = mm->numa_scan_offset;
2332 pages = sysctl_numa_balancing_scan_size;
2333 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2334 virtpages = pages * 8; /* Scan up to this much virtual space */
2335 if (!pages)
2336 return;
2337
2338
2339 down_read(&mm->mmap_sem);
2340 vma = find_vma(mm, start);
2341 if (!vma) {
2342 reset_ptenuma_scan(p);
2343 start = 0;
2344 vma = mm->mmap;
2345 }
2346 for (; vma; vma = vma->vm_next) {
2347 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2348 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2349 continue;
2350 }
2351
2352 /*
2353 * Shared library pages mapped by multiple processes are not
2354 * migrated as it is expected they are cache replicated. Avoid
2355 * hinting faults in read-only file-backed mappings or the vdso
2356 * as migrating the pages will be of marginal benefit.
2357 */
2358 if (!vma->vm_mm ||
2359 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2360 continue;
2361
2362 /*
2363 * Skip inaccessible VMAs to avoid any confusion between
2364 * PROT_NONE and NUMA hinting ptes
2365 */
2366 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2367 continue;
2368
2369 do {
2370 start = max(start, vma->vm_start);
2371 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2372 end = min(end, vma->vm_end);
2373 nr_pte_updates = change_prot_numa(vma, start, end);
2374
2375 /*
2376 * Try to scan sysctl_numa_balancing_size worth of
2377 * hpages that have at least one present PTE that
2378 * is not already pte-numa. If the VMA contains
2379 * areas that are unused or already full of prot_numa
2380 * PTEs, scan up to virtpages, to skip through those
2381 * areas faster.
2382 */
2383 if (nr_pte_updates)
2384 pages -= (end - start) >> PAGE_SHIFT;
2385 virtpages -= (end - start) >> PAGE_SHIFT;
2386
2387 start = end;
2388 if (pages <= 0 || virtpages <= 0)
2389 goto out;
2390
2391 cond_resched();
2392 } while (end != vma->vm_end);
2393 }
2394
2395 out:
2396 /*
2397 * It is possible to reach the end of the VMA list but the last few
2398 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2399 * would find the !migratable VMA on the next scan but not reset the
2400 * scanner to the start so check it now.
2401 */
2402 if (vma)
2403 mm->numa_scan_offset = start;
2404 else
2405 reset_ptenuma_scan(p);
2406 up_read(&mm->mmap_sem);
2407
2408 /*
2409 * Make sure tasks use at least 32x as much time to run other code
2410 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2411 * Usually update_task_scan_period slows down scanning enough; on an
2412 * overloaded system we need to limit overhead on a per task basis.
2413 */
2414 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2415 u64 diff = p->se.sum_exec_runtime - runtime;
2416 p->node_stamp += 32 * diff;
2417 }
2418 }
2419
2420 /*
2421 * Drive the periodic memory faults..
2422 */
2423 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2424 {
2425 struct callback_head *work = &curr->numa_work;
2426 u64 period, now;
2427
2428 /*
2429 * We don't care about NUMA placement if we don't have memory.
2430 */
2431 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2432 return;
2433
2434 /*
2435 * Using runtime rather than walltime has the dual advantage that
2436 * we (mostly) drive the selection from busy threads and that the
2437 * task needs to have done some actual work before we bother with
2438 * NUMA placement.
2439 */
2440 now = curr->se.sum_exec_runtime;
2441 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2442
2443 if (now > curr->node_stamp + period) {
2444 if (!curr->node_stamp)
2445 curr->numa_scan_period = task_scan_min(curr);
2446 curr->node_stamp += period;
2447
2448 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2449 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2450 task_work_add(curr, work, true);
2451 }
2452 }
2453 }
2454 #else
2455 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2456 {
2457 }
2458
2459 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2460 {
2461 }
2462
2463 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2464 {
2465 }
2466 #endif /* CONFIG_NUMA_BALANCING */
2467
2468 static void
2469 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2470 {
2471 update_load_add(&cfs_rq->load, se->load.weight);
2472 if (!parent_entity(se))
2473 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2474 #ifdef CONFIG_SMP
2475 if (entity_is_task(se)) {
2476 struct rq *rq = rq_of(cfs_rq);
2477
2478 account_numa_enqueue(rq, task_of(se));
2479 list_add(&se->group_node, &rq->cfs_tasks);
2480 }
2481 #endif
2482 cfs_rq->nr_running++;
2483 }
2484
2485 static void
2486 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2487 {
2488 update_load_sub(&cfs_rq->load, se->load.weight);
2489 if (!parent_entity(se))
2490 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2491 #ifdef CONFIG_SMP
2492 if (entity_is_task(se)) {
2493 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2494 list_del_init(&se->group_node);
2495 }
2496 #endif
2497 cfs_rq->nr_running--;
2498 }
2499
2500 #ifdef CONFIG_FAIR_GROUP_SCHED
2501 # ifdef CONFIG_SMP
2502 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2503 {
2504 long tg_weight;
2505
2506 /*
2507 * Use this CPU's real-time load instead of the last load contribution
2508 * as the updating of the contribution is delayed, and we will use the
2509 * the real-time load to calc the share. See update_tg_load_avg().
2510 */
2511 tg_weight = atomic_long_read(&tg->load_avg);
2512 tg_weight -= cfs_rq->tg_load_avg_contrib;
2513 tg_weight += cfs_rq->load.weight;
2514
2515 return tg_weight;
2516 }
2517
2518 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2519 {
2520 long tg_weight, load, shares;
2521
2522 tg_weight = calc_tg_weight(tg, cfs_rq);
2523 load = cfs_rq->load.weight;
2524
2525 shares = (tg->shares * load);
2526 if (tg_weight)
2527 shares /= tg_weight;
2528
2529 if (shares < MIN_SHARES)
2530 shares = MIN_SHARES;
2531 if (shares > tg->shares)
2532 shares = tg->shares;
2533
2534 return shares;
2535 }
2536 # else /* CONFIG_SMP */
2537 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2538 {
2539 return tg->shares;
2540 }
2541 # endif /* CONFIG_SMP */
2542 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 unsigned long weight)
2544 {
2545 if (se->on_rq) {
2546 /* commit outstanding execution time */
2547 if (cfs_rq->curr == se)
2548 update_curr(cfs_rq);
2549 account_entity_dequeue(cfs_rq, se);
2550 }
2551
2552 update_load_set(&se->load, weight);
2553
2554 if (se->on_rq)
2555 account_entity_enqueue(cfs_rq, se);
2556 }
2557
2558 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2559
2560 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2561 {
2562 struct task_group *tg;
2563 struct sched_entity *se;
2564 long shares;
2565
2566 tg = cfs_rq->tg;
2567 se = tg->se[cpu_of(rq_of(cfs_rq))];
2568 if (!se || throttled_hierarchy(cfs_rq))
2569 return;
2570 #ifndef CONFIG_SMP
2571 if (likely(se->load.weight == tg->shares))
2572 return;
2573 #endif
2574 shares = calc_cfs_shares(cfs_rq, tg);
2575
2576 reweight_entity(cfs_rq_of(se), se, shares);
2577 }
2578 #else /* CONFIG_FAIR_GROUP_SCHED */
2579 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2580 {
2581 }
2582 #endif /* CONFIG_FAIR_GROUP_SCHED */
2583
2584 #ifdef CONFIG_SMP
2585 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2586 static const u32 runnable_avg_yN_inv[] = {
2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 0x85aac367, 0x82cd8698,
2593 };
2594
2595 /*
2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2597 * over-estimates when re-combining.
2598 */
2599 static const u32 runnable_avg_yN_sum[] = {
2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2603 };
2604
2605 /*
2606 * Approximate:
2607 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2608 */
2609 static __always_inline u64 decay_load(u64 val, u64 n)
2610 {
2611 unsigned int local_n;
2612
2613 if (!n)
2614 return val;
2615 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2616 return 0;
2617
2618 /* after bounds checking we can collapse to 32-bit */
2619 local_n = n;
2620
2621 /*
2622 * As y^PERIOD = 1/2, we can combine
2623 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2624 * With a look-up table which covers y^n (n<PERIOD)
2625 *
2626 * To achieve constant time decay_load.
2627 */
2628 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2629 val >>= local_n / LOAD_AVG_PERIOD;
2630 local_n %= LOAD_AVG_PERIOD;
2631 }
2632
2633 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2634 return val;
2635 }
2636
2637 /*
2638 * For updates fully spanning n periods, the contribution to runnable
2639 * average will be: \Sum 1024*y^n
2640 *
2641 * We can compute this reasonably efficiently by combining:
2642 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2643 */
2644 static u32 __compute_runnable_contrib(u64 n)
2645 {
2646 u32 contrib = 0;
2647
2648 if (likely(n <= LOAD_AVG_PERIOD))
2649 return runnable_avg_yN_sum[n];
2650 else if (unlikely(n >= LOAD_AVG_MAX_N))
2651 return LOAD_AVG_MAX;
2652
2653 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2654 do {
2655 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2656 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2657
2658 n -= LOAD_AVG_PERIOD;
2659 } while (n > LOAD_AVG_PERIOD);
2660
2661 contrib = decay_load(contrib, n);
2662 return contrib + runnable_avg_yN_sum[n];
2663 }
2664
2665 #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2666 #error "load tracking assumes 2^10 as unit"
2667 #endif
2668
2669 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2670
2671 /*
2672 * We can represent the historical contribution to runnable average as the
2673 * coefficients of a geometric series. To do this we sub-divide our runnable
2674 * history into segments of approximately 1ms (1024us); label the segment that
2675 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2676 *
2677 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2678 * p0 p1 p2
2679 * (now) (~1ms ago) (~2ms ago)
2680 *
2681 * Let u_i denote the fraction of p_i that the entity was runnable.
2682 *
2683 * We then designate the fractions u_i as our co-efficients, yielding the
2684 * following representation of historical load:
2685 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2686 *
2687 * We choose y based on the with of a reasonably scheduling period, fixing:
2688 * y^32 = 0.5
2689 *
2690 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2691 * approximately half as much as the contribution to load within the last ms
2692 * (u_0).
2693 *
2694 * When a period "rolls over" and we have new u_0`, multiplying the previous
2695 * sum again by y is sufficient to update:
2696 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2697 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2698 */
2699 static __always_inline int
2700 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2701 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2702 {
2703 u64 delta, scaled_delta, periods;
2704 u32 contrib;
2705 unsigned int delta_w, scaled_delta_w, decayed = 0;
2706 unsigned long scale_freq, scale_cpu;
2707
2708 delta = now - sa->last_update_time;
2709 /*
2710 * This should only happen when time goes backwards, which it
2711 * unfortunately does during sched clock init when we swap over to TSC.
2712 */
2713 if ((s64)delta < 0) {
2714 sa->last_update_time = now;
2715 return 0;
2716 }
2717
2718 /*
2719 * Use 1024ns as the unit of measurement since it's a reasonable
2720 * approximation of 1us and fast to compute.
2721 */
2722 delta >>= 10;
2723 if (!delta)
2724 return 0;
2725 sa->last_update_time = now;
2726
2727 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2728 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2729
2730 /* delta_w is the amount already accumulated against our next period */
2731 delta_w = sa->period_contrib;
2732 if (delta + delta_w >= 1024) {
2733 decayed = 1;
2734
2735 /* how much left for next period will start over, we don't know yet */
2736 sa->period_contrib = 0;
2737
2738 /*
2739 * Now that we know we're crossing a period boundary, figure
2740 * out how much from delta we need to complete the current
2741 * period and accrue it.
2742 */
2743 delta_w = 1024 - delta_w;
2744 scaled_delta_w = cap_scale(delta_w, scale_freq);
2745 if (weight) {
2746 sa->load_sum += weight * scaled_delta_w;
2747 if (cfs_rq) {
2748 cfs_rq->runnable_load_sum +=
2749 weight * scaled_delta_w;
2750 }
2751 }
2752 if (running)
2753 sa->util_sum += scaled_delta_w * scale_cpu;
2754
2755 delta -= delta_w;
2756
2757 /* Figure out how many additional periods this update spans */
2758 periods = delta / 1024;
2759 delta %= 1024;
2760
2761 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2762 if (cfs_rq) {
2763 cfs_rq->runnable_load_sum =
2764 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2765 }
2766 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2767
2768 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2769 contrib = __compute_runnable_contrib(periods);
2770 contrib = cap_scale(contrib, scale_freq);
2771 if (weight) {
2772 sa->load_sum += weight * contrib;
2773 if (cfs_rq)
2774 cfs_rq->runnable_load_sum += weight * contrib;
2775 }
2776 if (running)
2777 sa->util_sum += contrib * scale_cpu;
2778 }
2779
2780 /* Remainder of delta accrued against u_0` */
2781 scaled_delta = cap_scale(delta, scale_freq);
2782 if (weight) {
2783 sa->load_sum += weight * scaled_delta;
2784 if (cfs_rq)
2785 cfs_rq->runnable_load_sum += weight * scaled_delta;
2786 }
2787 if (running)
2788 sa->util_sum += scaled_delta * scale_cpu;
2789
2790 sa->period_contrib += delta;
2791
2792 if (decayed) {
2793 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2794 if (cfs_rq) {
2795 cfs_rq->runnable_load_avg =
2796 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2797 }
2798 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2799 }
2800
2801 return decayed;
2802 }
2803
2804 #ifdef CONFIG_FAIR_GROUP_SCHED
2805 /*
2806 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2807 * and effective_load (which is not done because it is too costly).
2808 */
2809 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2810 {
2811 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2812
2813 /*
2814 * No need to update load_avg for root_task_group as it is not used.
2815 */
2816 if (cfs_rq->tg == &root_task_group)
2817 return;
2818
2819 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2820 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2821 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2822 }
2823 }
2824
2825 /*
2826 * Called within set_task_rq() right before setting a task's cpu. The
2827 * caller only guarantees p->pi_lock is held; no other assumptions,
2828 * including the state of rq->lock, should be made.
2829 */
2830 void set_task_rq_fair(struct sched_entity *se,
2831 struct cfs_rq *prev, struct cfs_rq *next)
2832 {
2833 if (!sched_feat(ATTACH_AGE_LOAD))
2834 return;
2835
2836 /*
2837 * We are supposed to update the task to "current" time, then its up to
2838 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2839 * getting what current time is, so simply throw away the out-of-date
2840 * time. This will result in the wakee task is less decayed, but giving
2841 * the wakee more load sounds not bad.
2842 */
2843 if (se->avg.last_update_time && prev) {
2844 u64 p_last_update_time;
2845 u64 n_last_update_time;
2846
2847 #ifndef CONFIG_64BIT
2848 u64 p_last_update_time_copy;
2849 u64 n_last_update_time_copy;
2850
2851 do {
2852 p_last_update_time_copy = prev->load_last_update_time_copy;
2853 n_last_update_time_copy = next->load_last_update_time_copy;
2854
2855 smp_rmb();
2856
2857 p_last_update_time = prev->avg.last_update_time;
2858 n_last_update_time = next->avg.last_update_time;
2859
2860 } while (p_last_update_time != p_last_update_time_copy ||
2861 n_last_update_time != n_last_update_time_copy);
2862 #else
2863 p_last_update_time = prev->avg.last_update_time;
2864 n_last_update_time = next->avg.last_update_time;
2865 #endif
2866 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2867 &se->avg, 0, 0, NULL);
2868 se->avg.last_update_time = n_last_update_time;
2869 }
2870 }
2871 #else /* CONFIG_FAIR_GROUP_SCHED */
2872 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2873 #endif /* CONFIG_FAIR_GROUP_SCHED */
2874
2875 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2876
2877 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2878 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2879 {
2880 struct sched_avg *sa = &cfs_rq->avg;
2881 struct rq *rq = rq_of(cfs_rq);
2882 int decayed, removed_load = 0, removed_util = 0;
2883 int cpu = cpu_of(rq);
2884
2885 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2886 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2887 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2888 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2889 removed_load = 1;
2890 }
2891
2892 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2893 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2894 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2895 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2896 removed_util = 1;
2897 }
2898
2899 decayed = __update_load_avg(now, cpu, sa,
2900 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2901
2902 #ifndef CONFIG_64BIT
2903 smp_wmb();
2904 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2905 #endif
2906
2907 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq &&
2908 (decayed || removed_util)) {
2909 unsigned long max = rq->cpu_capacity_orig;
2910
2911 /*
2912 * There are a few boundary cases this might miss but it should
2913 * get called often enough that that should (hopefully) not be
2914 * a real problem -- added to that it only calls on the local
2915 * CPU, so if we enqueue remotely we'll miss an update, but
2916 * the next tick/schedule should update.
2917 *
2918 * It will not get called when we go idle, because the idle
2919 * thread is a different class (!fair), nor will the utilization
2920 * number include things like RT tasks.
2921 *
2922 * As is, the util number is not freq-invariant (we'd have to
2923 * implement arch_scale_freq_capacity() for that).
2924 *
2925 * See cpu_util().
2926 */
2927 cpufreq_update_util(rq_clock(rq),
2928 min(sa->util_avg, max), max);
2929 }
2930
2931 return decayed || removed_load;
2932 }
2933
2934 /* Update task and its cfs_rq load average */
2935 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2936 {
2937 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2938 u64 now = cfs_rq_clock_task(cfs_rq);
2939 struct rq *rq = rq_of(cfs_rq);
2940 int cpu = cpu_of(rq);
2941
2942 /*
2943 * Track task load average for carrying it to new CPU after migrated, and
2944 * track group sched_entity load average for task_h_load calc in migration
2945 */
2946 __update_load_avg(now, cpu, &se->avg,
2947 se->on_rq * scale_load_down(se->load.weight),
2948 cfs_rq->curr == se, NULL);
2949
2950 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2951 update_tg_load_avg(cfs_rq, 0);
2952 }
2953
2954 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2955 {
2956 if (!sched_feat(ATTACH_AGE_LOAD))
2957 goto skip_aging;
2958
2959 /*
2960 * If we got migrated (either between CPUs or between cgroups) we'll
2961 * have aged the average right before clearing @last_update_time.
2962 */
2963 if (se->avg.last_update_time) {
2964 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2965 &se->avg, 0, 0, NULL);
2966
2967 /*
2968 * XXX: we could have just aged the entire load away if we've been
2969 * absent from the fair class for too long.
2970 */
2971 }
2972
2973 skip_aging:
2974 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2975 cfs_rq->avg.load_avg += se->avg.load_avg;
2976 cfs_rq->avg.load_sum += se->avg.load_sum;
2977 cfs_rq->avg.util_avg += se->avg.util_avg;
2978 cfs_rq->avg.util_sum += se->avg.util_sum;
2979 }
2980
2981 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2982 {
2983 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2984 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2985 cfs_rq->curr == se, NULL);
2986
2987 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2988 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2989 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2990 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2991 }
2992
2993 /* Add the load generated by se into cfs_rq's load average */
2994 static inline void
2995 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2996 {
2997 struct sched_avg *sa = &se->avg;
2998 u64 now = cfs_rq_clock_task(cfs_rq);
2999 int migrated, decayed;
3000
3001 migrated = !sa->last_update_time;
3002 if (!migrated) {
3003 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3004 se->on_rq * scale_load_down(se->load.weight),
3005 cfs_rq->curr == se, NULL);
3006 }
3007
3008 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3009
3010 cfs_rq->runnable_load_avg += sa->load_avg;
3011 cfs_rq->runnable_load_sum += sa->load_sum;
3012
3013 if (migrated)
3014 attach_entity_load_avg(cfs_rq, se);
3015
3016 if (decayed || migrated)
3017 update_tg_load_avg(cfs_rq, 0);
3018 }
3019
3020 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3021 static inline void
3022 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3023 {
3024 update_load_avg(se, 1);
3025
3026 cfs_rq->runnable_load_avg =
3027 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3028 cfs_rq->runnable_load_sum =
3029 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3030 }
3031
3032 #ifndef CONFIG_64BIT
3033 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3034 {
3035 u64 last_update_time_copy;
3036 u64 last_update_time;
3037
3038 do {
3039 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3040 smp_rmb();
3041 last_update_time = cfs_rq->avg.last_update_time;
3042 } while (last_update_time != last_update_time_copy);
3043
3044 return last_update_time;
3045 }
3046 #else
3047 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3048 {
3049 return cfs_rq->avg.last_update_time;
3050 }
3051 #endif
3052
3053 /*
3054 * Task first catches up with cfs_rq, and then subtract
3055 * itself from the cfs_rq (task must be off the queue now).
3056 */
3057 void remove_entity_load_avg(struct sched_entity *se)
3058 {
3059 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3060 u64 last_update_time;
3061
3062 /*
3063 * Newly created task or never used group entity should not be removed
3064 * from its (source) cfs_rq
3065 */
3066 if (se->avg.last_update_time == 0)
3067 return;
3068
3069 last_update_time = cfs_rq_last_update_time(cfs_rq);
3070
3071 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3072 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3073 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3074 }
3075
3076 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3077 {
3078 return cfs_rq->runnable_load_avg;
3079 }
3080
3081 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3082 {
3083 return cfs_rq->avg.load_avg;
3084 }
3085
3086 static int idle_balance(struct rq *this_rq);
3087
3088 #else /* CONFIG_SMP */
3089
3090 static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3091 static inline void
3092 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3093 static inline void
3094 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3095 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3096
3097 static inline void
3098 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3099 static inline void
3100 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3101
3102 static inline int idle_balance(struct rq *rq)
3103 {
3104 return 0;
3105 }
3106
3107 #endif /* CONFIG_SMP */
3108
3109 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3110 {
3111 #ifdef CONFIG_SCHEDSTATS
3112 struct task_struct *tsk = NULL;
3113
3114 if (entity_is_task(se))
3115 tsk = task_of(se);
3116
3117 if (se->statistics.sleep_start) {
3118 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3119
3120 if ((s64)delta < 0)
3121 delta = 0;
3122
3123 if (unlikely(delta > se->statistics.sleep_max))
3124 se->statistics.sleep_max = delta;
3125
3126 se->statistics.sleep_start = 0;
3127 se->statistics.sum_sleep_runtime += delta;
3128
3129 if (tsk) {
3130 account_scheduler_latency(tsk, delta >> 10, 1);
3131 trace_sched_stat_sleep(tsk, delta);
3132 }
3133 }
3134 if (se->statistics.block_start) {
3135 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3136
3137 if ((s64)delta < 0)
3138 delta = 0;
3139
3140 if (unlikely(delta > se->statistics.block_max))
3141 se->statistics.block_max = delta;
3142
3143 se->statistics.block_start = 0;
3144 se->statistics.sum_sleep_runtime += delta;
3145
3146 if (tsk) {
3147 if (tsk->in_iowait) {
3148 se->statistics.iowait_sum += delta;
3149 se->statistics.iowait_count++;
3150 trace_sched_stat_iowait(tsk, delta);
3151 }
3152
3153 trace_sched_stat_blocked(tsk, delta);
3154
3155 /*
3156 * Blocking time is in units of nanosecs, so shift by
3157 * 20 to get a milliseconds-range estimation of the
3158 * amount of time that the task spent sleeping:
3159 */
3160 if (unlikely(prof_on == SLEEP_PROFILING)) {
3161 profile_hits(SLEEP_PROFILING,
3162 (void *)get_wchan(tsk),
3163 delta >> 20);
3164 }
3165 account_scheduler_latency(tsk, delta >> 10, 0);
3166 }
3167 }
3168 #endif
3169 }
3170
3171 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3172 {
3173 #ifdef CONFIG_SCHED_DEBUG
3174 s64 d = se->vruntime - cfs_rq->min_vruntime;
3175
3176 if (d < 0)
3177 d = -d;
3178
3179 if (d > 3*sysctl_sched_latency)
3180 schedstat_inc(cfs_rq, nr_spread_over);
3181 #endif
3182 }
3183
3184 static void
3185 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3186 {
3187 u64 vruntime = cfs_rq->min_vruntime;
3188
3189 /*
3190 * The 'current' period is already promised to the current tasks,
3191 * however the extra weight of the new task will slow them down a
3192 * little, place the new task so that it fits in the slot that
3193 * stays open at the end.
3194 */
3195 if (initial && sched_feat(START_DEBIT))
3196 vruntime += sched_vslice(cfs_rq, se);
3197
3198 /* sleeps up to a single latency don't count. */
3199 if (!initial) {
3200 unsigned long thresh = sysctl_sched_latency;
3201
3202 /*
3203 * Halve their sleep time's effect, to allow
3204 * for a gentler effect of sleepers:
3205 */
3206 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3207 thresh >>= 1;
3208
3209 vruntime -= thresh;
3210 }
3211
3212 /* ensure we never gain time by being placed backwards. */
3213 se->vruntime = max_vruntime(se->vruntime, vruntime);
3214 }
3215
3216 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3217
3218 static inline void check_schedstat_required(void)
3219 {
3220 #ifdef CONFIG_SCHEDSTATS
3221 if (schedstat_enabled())
3222 return;
3223
3224 /* Force schedstat enabled if a dependent tracepoint is active */
3225 if (trace_sched_stat_wait_enabled() ||
3226 trace_sched_stat_sleep_enabled() ||
3227 trace_sched_stat_iowait_enabled() ||
3228 trace_sched_stat_blocked_enabled() ||
3229 trace_sched_stat_runtime_enabled()) {
3230 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3231 "stat_blocked and stat_runtime require the "
3232 "kernel parameter schedstats=enabled or "
3233 "kernel.sched_schedstats=1\n");
3234 }
3235 #endif
3236 }
3237
3238 static void
3239 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3240 {
3241 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING);
3242 bool curr = cfs_rq->curr == se;
3243
3244 /*
3245 * If we're the current task, we must renormalise before calling
3246 * update_curr().
3247 */
3248 if (renorm && curr)
3249 se->vruntime += cfs_rq->min_vruntime;
3250
3251 update_curr(cfs_rq);
3252
3253 /*
3254 * Otherwise, renormalise after, such that we're placed at the current
3255 * moment in time, instead of some random moment in the past.
3256 */
3257 if (renorm && !curr)
3258 se->vruntime += cfs_rq->min_vruntime;
3259
3260 enqueue_entity_load_avg(cfs_rq, se);
3261 account_entity_enqueue(cfs_rq, se);
3262 update_cfs_shares(cfs_rq);
3263
3264 if (flags & ENQUEUE_WAKEUP) {
3265 place_entity(cfs_rq, se, 0);
3266 if (schedstat_enabled())
3267 enqueue_sleeper(cfs_rq, se);
3268 }
3269
3270 check_schedstat_required();
3271 if (schedstat_enabled()) {
3272 update_stats_enqueue(cfs_rq, se);
3273 check_spread(cfs_rq, se);
3274 }
3275 if (!curr)
3276 __enqueue_entity(cfs_rq, se);
3277 se->on_rq = 1;
3278
3279 if (cfs_rq->nr_running == 1) {
3280 list_add_leaf_cfs_rq(cfs_rq);
3281 check_enqueue_throttle(cfs_rq);
3282 }
3283 }
3284
3285 static void __clear_buddies_last(struct sched_entity *se)
3286 {
3287 for_each_sched_entity(se) {
3288 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3289 if (cfs_rq->last != se)
3290 break;
3291
3292 cfs_rq->last = NULL;
3293 }
3294 }
3295
3296 static void __clear_buddies_next(struct sched_entity *se)
3297 {
3298 for_each_sched_entity(se) {
3299 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3300 if (cfs_rq->next != se)
3301 break;
3302
3303 cfs_rq->next = NULL;
3304 }
3305 }
3306
3307 static void __clear_buddies_skip(struct sched_entity *se)
3308 {
3309 for_each_sched_entity(se) {
3310 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3311 if (cfs_rq->skip != se)
3312 break;
3313
3314 cfs_rq->skip = NULL;
3315 }
3316 }
3317
3318 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3319 {
3320 if (cfs_rq->last == se)
3321 __clear_buddies_last(se);
3322
3323 if (cfs_rq->next == se)
3324 __clear_buddies_next(se);
3325
3326 if (cfs_rq->skip == se)
3327 __clear_buddies_skip(se);
3328 }
3329
3330 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3331
3332 static void
3333 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3334 {
3335 /*
3336 * Update run-time statistics of the 'current'.
3337 */
3338 update_curr(cfs_rq);
3339 dequeue_entity_load_avg(cfs_rq, se);
3340
3341 if (schedstat_enabled())
3342 update_stats_dequeue(cfs_rq, se, flags);
3343
3344 clear_buddies(cfs_rq, se);
3345
3346 if (se != cfs_rq->curr)
3347 __dequeue_entity(cfs_rq, se);
3348 se->on_rq = 0;
3349 account_entity_dequeue(cfs_rq, se);
3350
3351 /*
3352 * Normalize the entity after updating the min_vruntime because the
3353 * update can refer to the ->curr item and we need to reflect this
3354 * movement in our normalized position.
3355 */
3356 if (!(flags & DEQUEUE_SLEEP))
3357 se->vruntime -= cfs_rq->min_vruntime;
3358
3359 /* return excess runtime on last dequeue */
3360 return_cfs_rq_runtime(cfs_rq);
3361
3362 update_min_vruntime(cfs_rq);
3363 update_cfs_shares(cfs_rq);
3364 }
3365
3366 /*
3367 * Preempt the current task with a newly woken task if needed:
3368 */
3369 static void
3370 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3371 {
3372 unsigned long ideal_runtime, delta_exec;
3373 struct sched_entity *se;
3374 s64 delta;
3375
3376 ideal_runtime = sched_slice(cfs_rq, curr);
3377 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3378 if (delta_exec > ideal_runtime) {
3379 resched_curr(rq_of(cfs_rq));
3380 /*
3381 * The current task ran long enough, ensure it doesn't get
3382 * re-elected due to buddy favours.
3383 */
3384 clear_buddies(cfs_rq, curr);
3385 return;
3386 }
3387
3388 /*
3389 * Ensure that a task that missed wakeup preemption by a
3390 * narrow margin doesn't have to wait for a full slice.
3391 * This also mitigates buddy induced latencies under load.
3392 */
3393 if (delta_exec < sysctl_sched_min_granularity)
3394 return;
3395
3396 se = __pick_first_entity(cfs_rq);
3397 delta = curr->vruntime - se->vruntime;
3398
3399 if (delta < 0)
3400 return;
3401
3402 if (delta > ideal_runtime)
3403 resched_curr(rq_of(cfs_rq));
3404 }
3405
3406 static void
3407 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3408 {
3409 /* 'current' is not kept within the tree. */
3410 if (se->on_rq) {
3411 /*
3412 * Any task has to be enqueued before it get to execute on
3413 * a CPU. So account for the time it spent waiting on the
3414 * runqueue.
3415 */
3416 if (schedstat_enabled())
3417 update_stats_wait_end(cfs_rq, se);
3418 __dequeue_entity(cfs_rq, se);
3419 update_load_avg(se, 1);
3420 }
3421
3422 update_stats_curr_start(cfs_rq, se);
3423 cfs_rq->curr = se;
3424 #ifdef CONFIG_SCHEDSTATS
3425 /*
3426 * Track our maximum slice length, if the CPU's load is at
3427 * least twice that of our own weight (i.e. dont track it
3428 * when there are only lesser-weight tasks around):
3429 */
3430 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3431 se->statistics.slice_max = max(se->statistics.slice_max,
3432 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3433 }
3434 #endif
3435 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3436 }
3437
3438 static int
3439 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3440
3441 /*
3442 * Pick the next process, keeping these things in mind, in this order:
3443 * 1) keep things fair between processes/task groups
3444 * 2) pick the "next" process, since someone really wants that to run
3445 * 3) pick the "last" process, for cache locality
3446 * 4) do not run the "skip" process, if something else is available
3447 */
3448 static struct sched_entity *
3449 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3450 {
3451 struct sched_entity *left = __pick_first_entity(cfs_rq);
3452 struct sched_entity *se;
3453
3454 /*
3455 * If curr is set we have to see if its left of the leftmost entity
3456 * still in the tree, provided there was anything in the tree at all.
3457 */
3458 if (!left || (curr && entity_before(curr, left)))
3459 left = curr;
3460
3461 se = left; /* ideally we run the leftmost entity */
3462
3463 /*
3464 * Avoid running the skip buddy, if running something else can
3465 * be done without getting too unfair.
3466 */
3467 if (cfs_rq->skip == se) {
3468 struct sched_entity *second;
3469
3470 if (se == curr) {
3471 second = __pick_first_entity(cfs_rq);
3472 } else {
3473 second = __pick_next_entity(se);
3474 if (!second || (curr && entity_before(curr, second)))
3475 second = curr;
3476 }
3477
3478 if (second && wakeup_preempt_entity(second, left) < 1)
3479 se = second;
3480 }
3481
3482 /*
3483 * Prefer last buddy, try to return the CPU to a preempted task.
3484 */
3485 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3486 se = cfs_rq->last;
3487
3488 /*
3489 * Someone really wants this to run. If it's not unfair, run it.
3490 */
3491 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3492 se = cfs_rq->next;
3493
3494 clear_buddies(cfs_rq, se);
3495
3496 return se;
3497 }
3498
3499 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3500
3501 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3502 {
3503 /*
3504 * If still on the runqueue then deactivate_task()
3505 * was not called and update_curr() has to be done:
3506 */
3507 if (prev->on_rq)
3508 update_curr(cfs_rq);
3509
3510 /* throttle cfs_rqs exceeding runtime */
3511 check_cfs_rq_runtime(cfs_rq);
3512
3513 if (schedstat_enabled()) {
3514 check_spread(cfs_rq, prev);
3515 if (prev->on_rq)
3516 update_stats_wait_start(cfs_rq, prev);
3517 }
3518
3519 if (prev->on_rq) {
3520 /* Put 'current' back into the tree. */
3521 __enqueue_entity(cfs_rq, prev);
3522 /* in !on_rq case, update occurred at dequeue */
3523 update_load_avg(prev, 0);
3524 }
3525 cfs_rq->curr = NULL;
3526 }
3527
3528 static void
3529 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3530 {
3531 /*
3532 * Update run-time statistics of the 'current'.
3533 */
3534 update_curr(cfs_rq);
3535
3536 /*
3537 * Ensure that runnable average is periodically updated.
3538 */
3539 update_load_avg(curr, 1);
3540 update_cfs_shares(cfs_rq);
3541
3542 #ifdef CONFIG_SCHED_HRTICK
3543 /*
3544 * queued ticks are scheduled to match the slice, so don't bother
3545 * validating it and just reschedule.
3546 */
3547 if (queued) {
3548 resched_curr(rq_of(cfs_rq));
3549 return;
3550 }
3551 /*
3552 * don't let the period tick interfere with the hrtick preemption
3553 */
3554 if (!sched_feat(DOUBLE_TICK) &&
3555 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3556 return;
3557 #endif
3558
3559 if (cfs_rq->nr_running > 1)
3560 check_preempt_tick(cfs_rq, curr);
3561 }
3562
3563
3564 /**************************************************
3565 * CFS bandwidth control machinery
3566 */
3567
3568 #ifdef CONFIG_CFS_BANDWIDTH
3569
3570 #ifdef HAVE_JUMP_LABEL
3571 static struct static_key __cfs_bandwidth_used;
3572
3573 static inline bool cfs_bandwidth_used(void)
3574 {
3575 return static_key_false(&__cfs_bandwidth_used);
3576 }
3577
3578 void cfs_bandwidth_usage_inc(void)
3579 {
3580 static_key_slow_inc(&__cfs_bandwidth_used);
3581 }
3582
3583 void cfs_bandwidth_usage_dec(void)
3584 {
3585 static_key_slow_dec(&__cfs_bandwidth_used);
3586 }
3587 #else /* HAVE_JUMP_LABEL */
3588 static bool cfs_bandwidth_used(void)
3589 {
3590 return true;
3591 }
3592
3593 void cfs_bandwidth_usage_inc(void) {}
3594 void cfs_bandwidth_usage_dec(void) {}
3595 #endif /* HAVE_JUMP_LABEL */
3596
3597 /*
3598 * default period for cfs group bandwidth.
3599 * default: 0.1s, units: nanoseconds
3600 */
3601 static inline u64 default_cfs_period(void)
3602 {
3603 return 100000000ULL;
3604 }
3605
3606 static inline u64 sched_cfs_bandwidth_slice(void)
3607 {
3608 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3609 }
3610
3611 /*
3612 * Replenish runtime according to assigned quota and update expiration time.
3613 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3614 * additional synchronization around rq->lock.
3615 *
3616 * requires cfs_b->lock
3617 */
3618 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3619 {
3620 u64 now;
3621
3622 if (cfs_b->quota == RUNTIME_INF)
3623 return;
3624
3625 now = sched_clock_cpu(smp_processor_id());
3626 cfs_b->runtime = cfs_b->quota;
3627 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3628 }
3629
3630 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3631 {
3632 return &tg->cfs_bandwidth;
3633 }
3634
3635 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3636 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3637 {
3638 if (unlikely(cfs_rq->throttle_count))
3639 return cfs_rq->throttled_clock_task;
3640
3641 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3642 }
3643
3644 /* returns 0 on failure to allocate runtime */
3645 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3646 {
3647 struct task_group *tg = cfs_rq->tg;
3648 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3649 u64 amount = 0, min_amount, expires;
3650
3651 /* note: this is a positive sum as runtime_remaining <= 0 */
3652 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3653
3654 raw_spin_lock(&cfs_b->lock);
3655 if (cfs_b->quota == RUNTIME_INF)
3656 amount = min_amount;
3657 else {
3658 start_cfs_bandwidth(cfs_b);
3659
3660 if (cfs_b->runtime > 0) {
3661 amount = min(cfs_b->runtime, min_amount);
3662 cfs_b->runtime -= amount;
3663 cfs_b->idle = 0;
3664 }
3665 }
3666 expires = cfs_b->runtime_expires;
3667 raw_spin_unlock(&cfs_b->lock);
3668
3669 cfs_rq->runtime_remaining += amount;
3670 /*
3671 * we may have advanced our local expiration to account for allowed
3672 * spread between our sched_clock and the one on which runtime was
3673 * issued.
3674 */
3675 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3676 cfs_rq->runtime_expires = expires;
3677
3678 return cfs_rq->runtime_remaining > 0;
3679 }
3680
3681 /*
3682 * Note: This depends on the synchronization provided by sched_clock and the
3683 * fact that rq->clock snapshots this value.
3684 */
3685 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3686 {
3687 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3688
3689 /* if the deadline is ahead of our clock, nothing to do */
3690 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3691 return;
3692
3693 if (cfs_rq->runtime_remaining < 0)
3694 return;
3695
3696 /*
3697 * If the local deadline has passed we have to consider the
3698 * possibility that our sched_clock is 'fast' and the global deadline
3699 * has not truly expired.
3700 *
3701 * Fortunately we can check determine whether this the case by checking
3702 * whether the global deadline has advanced. It is valid to compare
3703 * cfs_b->runtime_expires without any locks since we only care about
3704 * exact equality, so a partial write will still work.
3705 */
3706
3707 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3708 /* extend local deadline, drift is bounded above by 2 ticks */
3709 cfs_rq->runtime_expires += TICK_NSEC;
3710 } else {
3711 /* global deadline is ahead, expiration has passed */
3712 cfs_rq->runtime_remaining = 0;
3713 }
3714 }
3715
3716 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3717 {
3718 /* dock delta_exec before expiring quota (as it could span periods) */
3719 cfs_rq->runtime_remaining -= delta_exec;
3720 expire_cfs_rq_runtime(cfs_rq);
3721
3722 if (likely(cfs_rq->runtime_remaining > 0))
3723 return;
3724
3725 /*
3726 * if we're unable to extend our runtime we resched so that the active
3727 * hierarchy can be throttled
3728 */
3729 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3730 resched_curr(rq_of(cfs_rq));
3731 }
3732
3733 static __always_inline
3734 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3735 {
3736 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3737 return;
3738
3739 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3740 }
3741
3742 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3743 {
3744 return cfs_bandwidth_used() && cfs_rq->throttled;
3745 }
3746
3747 /* check whether cfs_rq, or any parent, is throttled */
3748 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3749 {
3750 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3751 }
3752
3753 /*
3754 * Ensure that neither of the group entities corresponding to src_cpu or
3755 * dest_cpu are members of a throttled hierarchy when performing group
3756 * load-balance operations.
3757 */
3758 static inline int throttled_lb_pair(struct task_group *tg,
3759 int src_cpu, int dest_cpu)
3760 {
3761 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3762
3763 src_cfs_rq = tg->cfs_rq[src_cpu];
3764 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3765
3766 return throttled_hierarchy(src_cfs_rq) ||
3767 throttled_hierarchy(dest_cfs_rq);
3768 }
3769
3770 /* updated child weight may affect parent so we have to do this bottom up */
3771 static int tg_unthrottle_up(struct task_group *tg, void *data)
3772 {
3773 struct rq *rq = data;
3774 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3775
3776 cfs_rq->throttle_count--;
3777 #ifdef CONFIG_SMP
3778 if (!cfs_rq->throttle_count) {
3779 /* adjust cfs_rq_clock_task() */
3780 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3781 cfs_rq->throttled_clock_task;
3782 }
3783 #endif
3784
3785 return 0;
3786 }
3787
3788 static int tg_throttle_down(struct task_group *tg, void *data)
3789 {
3790 struct rq *rq = data;
3791 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3792
3793 /* group is entering throttled state, stop time */
3794 if (!cfs_rq->throttle_count)
3795 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3796 cfs_rq->throttle_count++;
3797
3798 return 0;
3799 }
3800
3801 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3802 {
3803 struct rq *rq = rq_of(cfs_rq);
3804 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3805 struct sched_entity *se;
3806 long task_delta, dequeue = 1;
3807 bool empty;
3808
3809 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3810
3811 /* freeze hierarchy runnable averages while throttled */
3812 rcu_read_lock();
3813 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3814 rcu_read_unlock();
3815
3816 task_delta = cfs_rq->h_nr_running;
3817 for_each_sched_entity(se) {
3818 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3819 /* throttled entity or throttle-on-deactivate */
3820 if (!se->on_rq)
3821 break;
3822
3823 if (dequeue)
3824 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3825 qcfs_rq->h_nr_running -= task_delta;
3826
3827 if (qcfs_rq->load.weight)
3828 dequeue = 0;
3829 }
3830
3831 if (!se)
3832 sub_nr_running(rq, task_delta);
3833
3834 cfs_rq->throttled = 1;
3835 cfs_rq->throttled_clock = rq_clock(rq);
3836 raw_spin_lock(&cfs_b->lock);
3837 empty = list_empty(&cfs_b->throttled_cfs_rq);
3838
3839 /*
3840 * Add to the _head_ of the list, so that an already-started
3841 * distribute_cfs_runtime will not see us
3842 */
3843 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3844
3845 /*
3846 * If we're the first throttled task, make sure the bandwidth
3847 * timer is running.
3848 */
3849 if (empty)
3850 start_cfs_bandwidth(cfs_b);
3851
3852 raw_spin_unlock(&cfs_b->lock);
3853 }
3854
3855 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3856 {
3857 struct rq *rq = rq_of(cfs_rq);
3858 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3859 struct sched_entity *se;
3860 int enqueue = 1;
3861 long task_delta;
3862
3863 se = cfs_rq->tg->se[cpu_of(rq)];
3864
3865 cfs_rq->throttled = 0;
3866
3867 update_rq_clock(rq);
3868
3869 raw_spin_lock(&cfs_b->lock);
3870 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3871 list_del_rcu(&cfs_rq->throttled_list);
3872 raw_spin_unlock(&cfs_b->lock);
3873
3874 /* update hierarchical throttle state */
3875 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3876
3877 if (!cfs_rq->load.weight)
3878 return;
3879
3880 task_delta = cfs_rq->h_nr_running;
3881 for_each_sched_entity(se) {
3882 if (se->on_rq)
3883 enqueue = 0;
3884
3885 cfs_rq = cfs_rq_of(se);
3886 if (enqueue)
3887 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3888 cfs_rq->h_nr_running += task_delta;
3889
3890 if (cfs_rq_throttled(cfs_rq))
3891 break;
3892 }
3893
3894 if (!se)
3895 add_nr_running(rq, task_delta);
3896
3897 /* determine whether we need to wake up potentially idle cpu */
3898 if (rq->curr == rq->idle && rq->cfs.nr_running)
3899 resched_curr(rq);
3900 }
3901
3902 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3903 u64 remaining, u64 expires)
3904 {
3905 struct cfs_rq *cfs_rq;
3906 u64 runtime;
3907 u64 starting_runtime = remaining;
3908
3909 rcu_read_lock();
3910 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3911 throttled_list) {
3912 struct rq *rq = rq_of(cfs_rq);
3913
3914 raw_spin_lock(&rq->lock);
3915 if (!cfs_rq_throttled(cfs_rq))
3916 goto next;
3917
3918 runtime = -cfs_rq->runtime_remaining + 1;
3919 if (runtime > remaining)
3920 runtime = remaining;
3921 remaining -= runtime;
3922
3923 cfs_rq->runtime_remaining += runtime;
3924 cfs_rq->runtime_expires = expires;
3925
3926 /* we check whether we're throttled above */
3927 if (cfs_rq->runtime_remaining > 0)
3928 unthrottle_cfs_rq(cfs_rq);
3929
3930 next:
3931 raw_spin_unlock(&rq->lock);
3932
3933 if (!remaining)
3934 break;
3935 }
3936 rcu_read_unlock();
3937
3938 return starting_runtime - remaining;
3939 }
3940
3941 /*
3942 * Responsible for refilling a task_group's bandwidth and unthrottling its
3943 * cfs_rqs as appropriate. If there has been no activity within the last
3944 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3945 * used to track this state.
3946 */
3947 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3948 {
3949 u64 runtime, runtime_expires;
3950 int throttled;
3951
3952 /* no need to continue the timer with no bandwidth constraint */
3953 if (cfs_b->quota == RUNTIME_INF)
3954 goto out_deactivate;
3955
3956 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3957 cfs_b->nr_periods += overrun;
3958
3959 /*
3960 * idle depends on !throttled (for the case of a large deficit), and if
3961 * we're going inactive then everything else can be deferred
3962 */
3963 if (cfs_b->idle && !throttled)
3964 goto out_deactivate;
3965
3966 __refill_cfs_bandwidth_runtime(cfs_b);
3967
3968 if (!throttled) {
3969 /* mark as potentially idle for the upcoming period */
3970 cfs_b->idle = 1;
3971 return 0;
3972 }
3973
3974 /* account preceding periods in which throttling occurred */
3975 cfs_b->nr_throttled += overrun;
3976
3977 runtime_expires = cfs_b->runtime_expires;
3978
3979 /*
3980 * This check is repeated as we are holding onto the new bandwidth while
3981 * we unthrottle. This can potentially race with an unthrottled group
3982 * trying to acquire new bandwidth from the global pool. This can result
3983 * in us over-using our runtime if it is all used during this loop, but
3984 * only by limited amounts in that extreme case.
3985 */
3986 while (throttled && cfs_b->runtime > 0) {
3987 runtime = cfs_b->runtime;
3988 raw_spin_unlock(&cfs_b->lock);
3989 /* we can't nest cfs_b->lock while distributing bandwidth */
3990 runtime = distribute_cfs_runtime(cfs_b, runtime,
3991 runtime_expires);
3992 raw_spin_lock(&cfs_b->lock);
3993
3994 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3995
3996 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3997 }
3998
3999 /*
4000 * While we are ensured activity in the period following an
4001 * unthrottle, this also covers the case in which the new bandwidth is
4002 * insufficient to cover the existing bandwidth deficit. (Forcing the
4003 * timer to remain active while there are any throttled entities.)
4004 */
4005 cfs_b->idle = 0;
4006
4007 return 0;
4008
4009 out_deactivate:
4010 return 1;
4011 }
4012
4013 /* a cfs_rq won't donate quota below this amount */
4014 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4015 /* minimum remaining period time to redistribute slack quota */
4016 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4017 /* how long we wait to gather additional slack before distributing */
4018 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4019
4020 /*
4021 * Are we near the end of the current quota period?
4022 *
4023 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4024 * hrtimer base being cleared by hrtimer_start. In the case of
4025 * migrate_hrtimers, base is never cleared, so we are fine.
4026 */
4027 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4028 {
4029 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4030 u64 remaining;
4031
4032 /* if the call-back is running a quota refresh is already occurring */
4033 if (hrtimer_callback_running(refresh_timer))
4034 return 1;
4035
4036 /* is a quota refresh about to occur? */
4037 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4038 if (remaining < min_expire)
4039 return 1;
4040
4041 return 0;
4042 }
4043
4044 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4045 {
4046 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4047
4048 /* if there's a quota refresh soon don't bother with slack */
4049 if (runtime_refresh_within(cfs_b, min_left))
4050 return;
4051
4052 hrtimer_start(&cfs_b->slack_timer,
4053 ns_to_ktime(cfs_bandwidth_slack_period),
4054 HRTIMER_MODE_REL);
4055 }
4056
4057 /* we know any runtime found here is valid as update_curr() precedes return */
4058 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4059 {
4060 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4061 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4062
4063 if (slack_runtime <= 0)
4064 return;
4065
4066 raw_spin_lock(&cfs_b->lock);
4067 if (cfs_b->quota != RUNTIME_INF &&
4068 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4069 cfs_b->runtime += slack_runtime;
4070
4071 /* we are under rq->lock, defer unthrottling using a timer */
4072 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4073 !list_empty(&cfs_b->throttled_cfs_rq))
4074 start_cfs_slack_bandwidth(cfs_b);
4075 }
4076 raw_spin_unlock(&cfs_b->lock);
4077
4078 /* even if it's not valid for return we don't want to try again */
4079 cfs_rq->runtime_remaining -= slack_runtime;
4080 }
4081
4082 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4083 {
4084 if (!cfs_bandwidth_used())
4085 return;
4086
4087 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4088 return;
4089
4090 __return_cfs_rq_runtime(cfs_rq);
4091 }
4092
4093 /*
4094 * This is done with a timer (instead of inline with bandwidth return) since
4095 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4096 */
4097 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4098 {
4099 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4100 u64 expires;
4101
4102 /* confirm we're still not at a refresh boundary */
4103 raw_spin_lock(&cfs_b->lock);
4104 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4105 raw_spin_unlock(&cfs_b->lock);
4106 return;
4107 }
4108
4109 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4110 runtime = cfs_b->runtime;
4111
4112 expires = cfs_b->runtime_expires;
4113 raw_spin_unlock(&cfs_b->lock);
4114
4115 if (!runtime)
4116 return;
4117
4118 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4119
4120 raw_spin_lock(&cfs_b->lock);
4121 if (expires == cfs_b->runtime_expires)
4122 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4123 raw_spin_unlock(&cfs_b->lock);
4124 }
4125
4126 /*
4127 * When a group wakes up we want to make sure that its quota is not already
4128 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4129 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4130 */
4131 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4132 {
4133 if (!cfs_bandwidth_used())
4134 return;
4135
4136 /* an active group must be handled by the update_curr()->put() path */
4137 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4138 return;
4139
4140 /* ensure the group is not already throttled */
4141 if (cfs_rq_throttled(cfs_rq))
4142 return;
4143
4144 /* update runtime allocation */
4145 account_cfs_rq_runtime(cfs_rq, 0);
4146 if (cfs_rq->runtime_remaining <= 0)
4147 throttle_cfs_rq(cfs_rq);
4148 }
4149
4150 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4151 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4152 {
4153 if (!cfs_bandwidth_used())
4154 return false;
4155
4156 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4157 return false;
4158
4159 /*
4160 * it's possible for a throttled entity to be forced into a running
4161 * state (e.g. set_curr_task), in this case we're finished.
4162 */
4163 if (cfs_rq_throttled(cfs_rq))
4164 return true;
4165
4166 throttle_cfs_rq(cfs_rq);
4167 return true;
4168 }
4169
4170 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4171 {
4172 struct cfs_bandwidth *cfs_b =
4173 container_of(timer, struct cfs_bandwidth, slack_timer);
4174
4175 do_sched_cfs_slack_timer(cfs_b);
4176
4177 return HRTIMER_NORESTART;
4178 }
4179
4180 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4181 {
4182 struct cfs_bandwidth *cfs_b =
4183 container_of(timer, struct cfs_bandwidth, period_timer);
4184 int overrun;
4185 int idle = 0;
4186
4187 raw_spin_lock(&cfs_b->lock);
4188 for (;;) {
4189 overrun = hrtimer_forward_now(timer, cfs_b->period);
4190 if (!overrun)
4191 break;
4192
4193 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4194 }
4195 if (idle)
4196 cfs_b->period_active = 0;
4197 raw_spin_unlock(&cfs_b->lock);
4198
4199 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4200 }
4201
4202 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4203 {
4204 raw_spin_lock_init(&cfs_b->lock);
4205 cfs_b->runtime = 0;
4206 cfs_b->quota = RUNTIME_INF;
4207 cfs_b->period = ns_to_ktime(default_cfs_period());
4208
4209 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4210 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4211 cfs_b->period_timer.function = sched_cfs_period_timer;
4212 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4213 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4214 }
4215
4216 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4217 {
4218 cfs_rq->runtime_enabled = 0;
4219 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4220 }
4221
4222 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4223 {
4224 lockdep_assert_held(&cfs_b->lock);
4225
4226 if (!cfs_b->period_active) {
4227 cfs_b->period_active = 1;
4228 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4229 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4230 }
4231 }
4232
4233 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4234 {
4235 /* init_cfs_bandwidth() was not called */
4236 if (!cfs_b->throttled_cfs_rq.next)
4237 return;
4238
4239 hrtimer_cancel(&cfs_b->period_timer);
4240 hrtimer_cancel(&cfs_b->slack_timer);
4241 }
4242
4243 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4244 {
4245 struct cfs_rq *cfs_rq;
4246
4247 for_each_leaf_cfs_rq(rq, cfs_rq) {
4248 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4249
4250 raw_spin_lock(&cfs_b->lock);
4251 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4252 raw_spin_unlock(&cfs_b->lock);
4253 }
4254 }
4255
4256 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4257 {
4258 struct cfs_rq *cfs_rq;
4259
4260 for_each_leaf_cfs_rq(rq, cfs_rq) {
4261 if (!cfs_rq->runtime_enabled)
4262 continue;
4263
4264 /*
4265 * clock_task is not advancing so we just need to make sure
4266 * there's some valid quota amount
4267 */
4268 cfs_rq->runtime_remaining = 1;
4269 /*
4270 * Offline rq is schedulable till cpu is completely disabled
4271 * in take_cpu_down(), so we prevent new cfs throttling here.
4272 */
4273 cfs_rq->runtime_enabled = 0;
4274
4275 if (cfs_rq_throttled(cfs_rq))
4276 unthrottle_cfs_rq(cfs_rq);
4277 }
4278 }
4279
4280 #else /* CONFIG_CFS_BANDWIDTH */
4281 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4282 {
4283 return rq_clock_task(rq_of(cfs_rq));
4284 }
4285
4286 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4287 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4288 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4289 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4290
4291 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4292 {
4293 return 0;
4294 }
4295
4296 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4297 {
4298 return 0;
4299 }
4300
4301 static inline int throttled_lb_pair(struct task_group *tg,
4302 int src_cpu, int dest_cpu)
4303 {
4304 return 0;
4305 }
4306
4307 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4308
4309 #ifdef CONFIG_FAIR_GROUP_SCHED
4310 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4311 #endif
4312
4313 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4314 {
4315 return NULL;
4316 }
4317 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4318 static inline void update_runtime_enabled(struct rq *rq) {}
4319 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4320
4321 #endif /* CONFIG_CFS_BANDWIDTH */
4322
4323 /**************************************************
4324 * CFS operations on tasks:
4325 */
4326
4327 #ifdef CONFIG_SCHED_HRTICK
4328 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4329 {
4330 struct sched_entity *se = &p->se;
4331 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4332
4333 WARN_ON(task_rq(p) != rq);
4334
4335 if (cfs_rq->nr_running > 1) {
4336 u64 slice = sched_slice(cfs_rq, se);
4337 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4338 s64 delta = slice - ran;
4339
4340 if (delta < 0) {
4341 if (rq->curr == p)
4342 resched_curr(rq);
4343 return;
4344 }
4345 hrtick_start(rq, delta);
4346 }
4347 }
4348
4349 /*
4350 * called from enqueue/dequeue and updates the hrtick when the
4351 * current task is from our class and nr_running is low enough
4352 * to matter.
4353 */
4354 static void hrtick_update(struct rq *rq)
4355 {
4356 struct task_struct *curr = rq->curr;
4357
4358 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4359 return;
4360
4361 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4362 hrtick_start_fair(rq, curr);
4363 }
4364 #else /* !CONFIG_SCHED_HRTICK */
4365 static inline void
4366 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4367 {
4368 }
4369
4370 static inline void hrtick_update(struct rq *rq)
4371 {
4372 }
4373 #endif
4374
4375 /*
4376 * The enqueue_task method is called before nr_running is
4377 * increased. Here we update the fair scheduling stats and
4378 * then put the task into the rbtree:
4379 */
4380 static void
4381 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4382 {
4383 struct cfs_rq *cfs_rq;
4384 struct sched_entity *se = &p->se;
4385
4386 for_each_sched_entity(se) {
4387 if (se->on_rq)
4388 break;
4389 cfs_rq = cfs_rq_of(se);
4390 enqueue_entity(cfs_rq, se, flags);
4391
4392 /*
4393 * end evaluation on encountering a throttled cfs_rq
4394 *
4395 * note: in the case of encountering a throttled cfs_rq we will
4396 * post the final h_nr_running increment below.
4397 */
4398 if (cfs_rq_throttled(cfs_rq))
4399 break;
4400 cfs_rq->h_nr_running++;
4401
4402 flags = ENQUEUE_WAKEUP;
4403 }
4404
4405 for_each_sched_entity(se) {
4406 cfs_rq = cfs_rq_of(se);
4407 cfs_rq->h_nr_running++;
4408
4409 if (cfs_rq_throttled(cfs_rq))
4410 break;
4411
4412 update_load_avg(se, 1);
4413 update_cfs_shares(cfs_rq);
4414 }
4415
4416 if (!se)
4417 add_nr_running(rq, 1);
4418
4419 hrtick_update(rq);
4420 }
4421
4422 static void set_next_buddy(struct sched_entity *se);
4423
4424 /*
4425 * The dequeue_task method is called before nr_running is
4426 * decreased. We remove the task from the rbtree and
4427 * update the fair scheduling stats:
4428 */
4429 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4430 {
4431 struct cfs_rq *cfs_rq;
4432 struct sched_entity *se = &p->se;
4433 int task_sleep = flags & DEQUEUE_SLEEP;
4434
4435 for_each_sched_entity(se) {
4436 cfs_rq = cfs_rq_of(se);
4437 dequeue_entity(cfs_rq, se, flags);
4438
4439 /*
4440 * end evaluation on encountering a throttled cfs_rq
4441 *
4442 * note: in the case of encountering a throttled cfs_rq we will
4443 * post the final h_nr_running decrement below.
4444 */
4445 if (cfs_rq_throttled(cfs_rq))
4446 break;
4447 cfs_rq->h_nr_running--;
4448
4449 /* Don't dequeue parent if it has other entities besides us */
4450 if (cfs_rq->load.weight) {
4451 /*
4452 * Bias pick_next to pick a task from this cfs_rq, as
4453 * p is sleeping when it is within its sched_slice.
4454 */
4455 if (task_sleep && parent_entity(se))
4456 set_next_buddy(parent_entity(se));
4457
4458 /* avoid re-evaluating load for this entity */
4459 se = parent_entity(se);
4460 break;
4461 }
4462 flags |= DEQUEUE_SLEEP;
4463 }
4464
4465 for_each_sched_entity(se) {
4466 cfs_rq = cfs_rq_of(se);
4467 cfs_rq->h_nr_running--;
4468
4469 if (cfs_rq_throttled(cfs_rq))
4470 break;
4471
4472 update_load_avg(se, 1);
4473 update_cfs_shares(cfs_rq);
4474 }
4475
4476 if (!se)
4477 sub_nr_running(rq, 1);
4478
4479 hrtick_update(rq);
4480 }
4481
4482 #ifdef CONFIG_SMP
4483
4484 /*
4485 * per rq 'load' arrray crap; XXX kill this.
4486 */
4487
4488 /*
4489 * The exact cpuload calculated at every tick would be:
4490 *
4491 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4492 *
4493 * If a cpu misses updates for n ticks (as it was idle) and update gets
4494 * called on the n+1-th tick when cpu may be busy, then we have:
4495 *
4496 * load_n = (1 - 1/2^i)^n * load_0
4497 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4498 *
4499 * decay_load_missed() below does efficient calculation of
4500 *
4501 * load' = (1 - 1/2^i)^n * load
4502 *
4503 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4504 * This allows us to precompute the above in said factors, thereby allowing the
4505 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4506 * fixed_power_int())
4507 *
4508 * The calculation is approximated on a 128 point scale.
4509 */
4510 #define DEGRADE_SHIFT 7
4511
4512 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4513 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4514 { 0, 0, 0, 0, 0, 0, 0, 0 },
4515 { 64, 32, 8, 0, 0, 0, 0, 0 },
4516 { 96, 72, 40, 12, 1, 0, 0, 0 },
4517 { 112, 98, 75, 43, 15, 1, 0, 0 },
4518 { 120, 112, 98, 76, 45, 16, 2, 0 }
4519 };
4520
4521 /*
4522 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4523 * would be when CPU is idle and so we just decay the old load without
4524 * adding any new load.
4525 */
4526 static unsigned long
4527 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4528 {
4529 int j = 0;
4530
4531 if (!missed_updates)
4532 return load;
4533
4534 if (missed_updates >= degrade_zero_ticks[idx])
4535 return 0;
4536
4537 if (idx == 1)
4538 return load >> missed_updates;
4539
4540 while (missed_updates) {
4541 if (missed_updates % 2)
4542 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4543
4544 missed_updates >>= 1;
4545 j++;
4546 }
4547 return load;
4548 }
4549
4550 /**
4551 * __update_cpu_load - update the rq->cpu_load[] statistics
4552 * @this_rq: The rq to update statistics for
4553 * @this_load: The current load
4554 * @pending_updates: The number of missed updates
4555 * @active: !0 for NOHZ_FULL
4556 *
4557 * Update rq->cpu_load[] statistics. This function is usually called every
4558 * scheduler tick (TICK_NSEC).
4559 *
4560 * This function computes a decaying average:
4561 *
4562 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4563 *
4564 * Because of NOHZ it might not get called on every tick which gives need for
4565 * the @pending_updates argument.
4566 *
4567 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4568 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4569 * = A * (A * load[i]_n-2 + B) + B
4570 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4571 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4572 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4573 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4574 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4575 *
4576 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4577 * any change in load would have resulted in the tick being turned back on.
4578 *
4579 * For regular NOHZ, this reduces to:
4580 *
4581 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4582 *
4583 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4584 * term. See the @active paramter.
4585 */
4586 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4587 unsigned long pending_updates, int active)
4588 {
4589 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4590 int i, scale;
4591
4592 this_rq->nr_load_updates++;
4593
4594 /* Update our load: */
4595 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4596 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4597 unsigned long old_load, new_load;
4598
4599 /* scale is effectively 1 << i now, and >> i divides by scale */
4600
4601 old_load = this_rq->cpu_load[i];
4602 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4603 if (tickless_load) {
4604 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4605 /*
4606 * old_load can never be a negative value because a
4607 * decayed tickless_load cannot be greater than the
4608 * original tickless_load.
4609 */
4610 old_load += tickless_load;
4611 }
4612 new_load = this_load;
4613 /*
4614 * Round up the averaging division if load is increasing. This
4615 * prevents us from getting stuck on 9 if the load is 10, for
4616 * example.
4617 */
4618 if (new_load > old_load)
4619 new_load += scale - 1;
4620
4621 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4622 }
4623
4624 sched_avg_update(this_rq);
4625 }
4626
4627 /* Used instead of source_load when we know the type == 0 */
4628 static unsigned long weighted_cpuload(const int cpu)
4629 {
4630 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4631 }
4632
4633 #ifdef CONFIG_NO_HZ_COMMON
4634 static void __update_cpu_load_nohz(struct rq *this_rq,
4635 unsigned long curr_jiffies,
4636 unsigned long load,
4637 int active)
4638 {
4639 unsigned long pending_updates;
4640
4641 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4642 if (pending_updates) {
4643 this_rq->last_load_update_tick = curr_jiffies;
4644 /*
4645 * In the regular NOHZ case, we were idle, this means load 0.
4646 * In the NOHZ_FULL case, we were non-idle, we should consider
4647 * its weighted load.
4648 */
4649 __update_cpu_load(this_rq, load, pending_updates, active);
4650 }
4651 }
4652
4653 /*
4654 * There is no sane way to deal with nohz on smp when using jiffies because the
4655 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4656 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4657 *
4658 * Therefore we cannot use the delta approach from the regular tick since that
4659 * would seriously skew the load calculation. However we'll make do for those
4660 * updates happening while idle (nohz_idle_balance) or coming out of idle
4661 * (tick_nohz_idle_exit).
4662 *
4663 * This means we might still be one tick off for nohz periods.
4664 */
4665
4666 /*
4667 * Called from nohz_idle_balance() to update the load ratings before doing the
4668 * idle balance.
4669 */
4670 static void update_cpu_load_idle(struct rq *this_rq)
4671 {
4672 /*
4673 * bail if there's load or we're actually up-to-date.
4674 */
4675 if (weighted_cpuload(cpu_of(this_rq)))
4676 return;
4677
4678 __update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
4679 }
4680
4681 /*
4682 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4683 */
4684 void update_cpu_load_nohz(int active)
4685 {
4686 struct rq *this_rq = this_rq();
4687 unsigned long curr_jiffies = READ_ONCE(jiffies);
4688 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4689
4690 if (curr_jiffies == this_rq->last_load_update_tick)
4691 return;
4692
4693 raw_spin_lock(&this_rq->lock);
4694 __update_cpu_load_nohz(this_rq, curr_jiffies, load, active);
4695 raw_spin_unlock(&this_rq->lock);
4696 }
4697 #endif /* CONFIG_NO_HZ */
4698
4699 /*
4700 * Called from scheduler_tick()
4701 */
4702 void update_cpu_load_active(struct rq *this_rq)
4703 {
4704 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4705 /*
4706 * See the mess around update_cpu_load_idle() / update_cpu_load_nohz().
4707 */
4708 this_rq->last_load_update_tick = jiffies;
4709 __update_cpu_load(this_rq, load, 1, 1);
4710 }
4711
4712 /*
4713 * Return a low guess at the load of a migration-source cpu weighted
4714 * according to the scheduling class and "nice" value.
4715 *
4716 * We want to under-estimate the load of migration sources, to
4717 * balance conservatively.
4718 */
4719 static unsigned long source_load(int cpu, int type)
4720 {
4721 struct rq *rq = cpu_rq(cpu);
4722 unsigned long total = weighted_cpuload(cpu);
4723
4724 if (type == 0 || !sched_feat(LB_BIAS))
4725 return total;
4726
4727 return min(rq->cpu_load[type-1], total);
4728 }
4729
4730 /*
4731 * Return a high guess at the load of a migration-target cpu weighted
4732 * according to the scheduling class and "nice" value.
4733 */
4734 static unsigned long target_load(int cpu, int type)
4735 {
4736 struct rq *rq = cpu_rq(cpu);
4737 unsigned long total = weighted_cpuload(cpu);
4738
4739 if (type == 0 || !sched_feat(LB_BIAS))
4740 return total;
4741
4742 return max(rq->cpu_load[type-1], total);
4743 }
4744
4745 static unsigned long capacity_of(int cpu)
4746 {
4747 return cpu_rq(cpu)->cpu_capacity;
4748 }
4749
4750 static unsigned long capacity_orig_of(int cpu)
4751 {
4752 return cpu_rq(cpu)->cpu_capacity_orig;
4753 }
4754
4755 static unsigned long cpu_avg_load_per_task(int cpu)
4756 {
4757 struct rq *rq = cpu_rq(cpu);
4758 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4759 unsigned long load_avg = weighted_cpuload(cpu);
4760
4761 if (nr_running)
4762 return load_avg / nr_running;
4763
4764 return 0;
4765 }
4766
4767 static void record_wakee(struct task_struct *p)
4768 {
4769 /*
4770 * Rough decay (wiping) for cost saving, don't worry
4771 * about the boundary, really active task won't care
4772 * about the loss.
4773 */
4774 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4775 current->wakee_flips >>= 1;
4776 current->wakee_flip_decay_ts = jiffies;
4777 }
4778
4779 if (current->last_wakee != p) {
4780 current->last_wakee = p;
4781 current->wakee_flips++;
4782 }
4783 }
4784
4785 static void task_waking_fair(struct task_struct *p)
4786 {
4787 struct sched_entity *se = &p->se;
4788 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4789 u64 min_vruntime;
4790
4791 #ifndef CONFIG_64BIT
4792 u64 min_vruntime_copy;
4793
4794 do {
4795 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4796 smp_rmb();
4797 min_vruntime = cfs_rq->min_vruntime;
4798 } while (min_vruntime != min_vruntime_copy);
4799 #else
4800 min_vruntime = cfs_rq->min_vruntime;
4801 #endif
4802
4803 se->vruntime -= min_vruntime;
4804 record_wakee(p);
4805 }
4806
4807 #ifdef CONFIG_FAIR_GROUP_SCHED
4808 /*
4809 * effective_load() calculates the load change as seen from the root_task_group
4810 *
4811 * Adding load to a group doesn't make a group heavier, but can cause movement
4812 * of group shares between cpus. Assuming the shares were perfectly aligned one
4813 * can calculate the shift in shares.
4814 *
4815 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4816 * on this @cpu and results in a total addition (subtraction) of @wg to the
4817 * total group weight.
4818 *
4819 * Given a runqueue weight distribution (rw_i) we can compute a shares
4820 * distribution (s_i) using:
4821 *
4822 * s_i = rw_i / \Sum rw_j (1)
4823 *
4824 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4825 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4826 * shares distribution (s_i):
4827 *
4828 * rw_i = { 2, 4, 1, 0 }
4829 * s_i = { 2/7, 4/7, 1/7, 0 }
4830 *
4831 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4832 * task used to run on and the CPU the waker is running on), we need to
4833 * compute the effect of waking a task on either CPU and, in case of a sync
4834 * wakeup, compute the effect of the current task going to sleep.
4835 *
4836 * So for a change of @wl to the local @cpu with an overall group weight change
4837 * of @wl we can compute the new shares distribution (s'_i) using:
4838 *
4839 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4840 *
4841 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4842 * differences in waking a task to CPU 0. The additional task changes the
4843 * weight and shares distributions like:
4844 *
4845 * rw'_i = { 3, 4, 1, 0 }
4846 * s'_i = { 3/8, 4/8, 1/8, 0 }
4847 *
4848 * We can then compute the difference in effective weight by using:
4849 *
4850 * dw_i = S * (s'_i - s_i) (3)
4851 *
4852 * Where 'S' is the group weight as seen by its parent.
4853 *
4854 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4855 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4856 * 4/7) times the weight of the group.
4857 */
4858 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4859 {
4860 struct sched_entity *se = tg->se[cpu];
4861
4862 if (!tg->parent) /* the trivial, non-cgroup case */
4863 return wl;
4864
4865 for_each_sched_entity(se) {
4866 long w, W;
4867
4868 tg = se->my_q->tg;
4869
4870 /*
4871 * W = @wg + \Sum rw_j
4872 */
4873 W = wg + calc_tg_weight(tg, se->my_q);
4874
4875 /*
4876 * w = rw_i + @wl
4877 */
4878 w = cfs_rq_load_avg(se->my_q) + wl;
4879
4880 /*
4881 * wl = S * s'_i; see (2)
4882 */
4883 if (W > 0 && w < W)
4884 wl = (w * (long)tg->shares) / W;
4885 else
4886 wl = tg->shares;
4887
4888 /*
4889 * Per the above, wl is the new se->load.weight value; since
4890 * those are clipped to [MIN_SHARES, ...) do so now. See
4891 * calc_cfs_shares().
4892 */
4893 if (wl < MIN_SHARES)
4894 wl = MIN_SHARES;
4895
4896 /*
4897 * wl = dw_i = S * (s'_i - s_i); see (3)
4898 */
4899 wl -= se->avg.load_avg;
4900
4901 /*
4902 * Recursively apply this logic to all parent groups to compute
4903 * the final effective load change on the root group. Since
4904 * only the @tg group gets extra weight, all parent groups can
4905 * only redistribute existing shares. @wl is the shift in shares
4906 * resulting from this level per the above.
4907 */
4908 wg = 0;
4909 }
4910
4911 return wl;
4912 }
4913 #else
4914
4915 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4916 {
4917 return wl;
4918 }
4919
4920 #endif
4921
4922 /*
4923 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4924 * A waker of many should wake a different task than the one last awakened
4925 * at a frequency roughly N times higher than one of its wakees. In order
4926 * to determine whether we should let the load spread vs consolodating to
4927 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4928 * partner, and a factor of lls_size higher frequency in the other. With
4929 * both conditions met, we can be relatively sure that the relationship is
4930 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4931 * being client/server, worker/dispatcher, interrupt source or whatever is
4932 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4933 */
4934 static int wake_wide(struct task_struct *p)
4935 {
4936 unsigned int master = current->wakee_flips;
4937 unsigned int slave = p->wakee_flips;
4938 int factor = this_cpu_read(sd_llc_size);
4939
4940 if (master < slave)
4941 swap(master, slave);
4942 if (slave < factor || master < slave * factor)
4943 return 0;
4944 return 1;
4945 }
4946
4947 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4948 {
4949 s64 this_load, load;
4950 s64 this_eff_load, prev_eff_load;
4951 int idx, this_cpu, prev_cpu;
4952 struct task_group *tg;
4953 unsigned long weight;
4954 int balanced;
4955
4956 idx = sd->wake_idx;
4957 this_cpu = smp_processor_id();
4958 prev_cpu = task_cpu(p);
4959 load = source_load(prev_cpu, idx);
4960 this_load = target_load(this_cpu, idx);
4961
4962 /*
4963 * If sync wakeup then subtract the (maximum possible)
4964 * effect of the currently running task from the load
4965 * of the current CPU:
4966 */
4967 if (sync) {
4968 tg = task_group(current);
4969 weight = current->se.avg.load_avg;
4970
4971 this_load += effective_load(tg, this_cpu, -weight, -weight);
4972 load += effective_load(tg, prev_cpu, 0, -weight);
4973 }
4974
4975 tg = task_group(p);
4976 weight = p->se.avg.load_avg;
4977
4978 /*
4979 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4980 * due to the sync cause above having dropped this_load to 0, we'll
4981 * always have an imbalance, but there's really nothing you can do
4982 * about that, so that's good too.
4983 *
4984 * Otherwise check if either cpus are near enough in load to allow this
4985 * task to be woken on this_cpu.
4986 */
4987 this_eff_load = 100;
4988 this_eff_load *= capacity_of(prev_cpu);
4989
4990 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4991 prev_eff_load *= capacity_of(this_cpu);
4992
4993 if (this_load > 0) {
4994 this_eff_load *= this_load +
4995 effective_load(tg, this_cpu, weight, weight);
4996
4997 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4998 }
4999
5000 balanced = this_eff_load <= prev_eff_load;
5001
5002 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
5003
5004 if (!balanced)
5005 return 0;
5006
5007 schedstat_inc(sd, ttwu_move_affine);
5008 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5009
5010 return 1;
5011 }
5012
5013 /*
5014 * find_idlest_group finds and returns the least busy CPU group within the
5015 * domain.
5016 */
5017 static struct sched_group *
5018 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5019 int this_cpu, int sd_flag)
5020 {
5021 struct sched_group *idlest = NULL, *group = sd->groups;
5022 unsigned long min_load = ULONG_MAX, this_load = 0;
5023 int load_idx = sd->forkexec_idx;
5024 int imbalance = 100 + (sd->imbalance_pct-100)/2;
5025
5026 if (sd_flag & SD_BALANCE_WAKE)
5027 load_idx = sd->wake_idx;
5028
5029 do {
5030 unsigned long load, avg_load;
5031 int local_group;
5032 int i;
5033
5034 /* Skip over this group if it has no CPUs allowed */
5035 if (!cpumask_intersects(sched_group_cpus(group),
5036 tsk_cpus_allowed(p)))
5037 continue;
5038
5039 local_group = cpumask_test_cpu(this_cpu,
5040 sched_group_cpus(group));
5041
5042 /* Tally up the load of all CPUs in the group */
5043 avg_load = 0;
5044
5045 for_each_cpu(i, sched_group_cpus(group)) {
5046 /* Bias balancing toward cpus of our domain */
5047 if (local_group)
5048 load = source_load(i, load_idx);
5049 else
5050 load = target_load(i, load_idx);
5051
5052 avg_load += load;
5053 }
5054
5055 /* Adjust by relative CPU capacity of the group */
5056 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5057
5058 if (local_group) {
5059 this_load = avg_load;
5060 } else if (avg_load < min_load) {
5061 min_load = avg_load;
5062 idlest = group;
5063 }
5064 } while (group = group->next, group != sd->groups);
5065
5066 if (!idlest || 100*this_load < imbalance*min_load)
5067 return NULL;
5068 return idlest;
5069 }
5070
5071 /*
5072 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5073 */
5074 static int
5075 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5076 {
5077 unsigned long load, min_load = ULONG_MAX;
5078 unsigned int min_exit_latency = UINT_MAX;
5079 u64 latest_idle_timestamp = 0;
5080 int least_loaded_cpu = this_cpu;
5081 int shallowest_idle_cpu = -1;
5082 int i;
5083
5084 /* Traverse only the allowed CPUs */
5085 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5086 if (idle_cpu(i)) {
5087 struct rq *rq = cpu_rq(i);
5088 struct cpuidle_state *idle = idle_get_state(rq);
5089 if (idle && idle->exit_latency < min_exit_latency) {
5090 /*
5091 * We give priority to a CPU whose idle state
5092 * has the smallest exit latency irrespective
5093 * of any idle timestamp.
5094 */
5095 min_exit_latency = idle->exit_latency;
5096 latest_idle_timestamp = rq->idle_stamp;
5097 shallowest_idle_cpu = i;
5098 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5099 rq->idle_stamp > latest_idle_timestamp) {
5100 /*
5101 * If equal or no active idle state, then
5102 * the most recently idled CPU might have
5103 * a warmer cache.
5104 */
5105 latest_idle_timestamp = rq->idle_stamp;
5106 shallowest_idle_cpu = i;
5107 }
5108 } else if (shallowest_idle_cpu == -1) {
5109 load = weighted_cpuload(i);
5110 if (load < min_load || (load == min_load && i == this_cpu)) {
5111 min_load = load;
5112 least_loaded_cpu = i;
5113 }
5114 }
5115 }
5116
5117 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5118 }
5119
5120 /*
5121 * Try and locate an idle CPU in the sched_domain.
5122 */
5123 static int select_idle_sibling(struct task_struct *p, int target)
5124 {
5125 struct sched_domain *sd;
5126 struct sched_group *sg;
5127 int i = task_cpu(p);
5128
5129 if (idle_cpu(target))
5130 return target;
5131
5132 /*
5133 * If the prevous cpu is cache affine and idle, don't be stupid.
5134 */
5135 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5136 return i;
5137
5138 /*
5139 * Otherwise, iterate the domains and find an eligible idle cpu.
5140 *
5141 * A completely idle sched group at higher domains is more
5142 * desirable than an idle group at a lower level, because lower
5143 * domains have smaller groups and usually share hardware
5144 * resources which causes tasks to contend on them, e.g. x86
5145 * hyperthread siblings in the lowest domain (SMT) can contend
5146 * on the shared cpu pipeline.
5147 *
5148 * However, while we prefer idle groups at higher domains
5149 * finding an idle cpu at the lowest domain is still better than
5150 * returning 'target', which we've already established, isn't
5151 * idle.
5152 */
5153 sd = rcu_dereference(per_cpu(sd_llc, target));
5154 for_each_lower_domain(sd) {
5155 sg = sd->groups;
5156 do {
5157 if (!cpumask_intersects(sched_group_cpus(sg),
5158 tsk_cpus_allowed(p)))
5159 goto next;
5160
5161 /* Ensure the entire group is idle */
5162 for_each_cpu(i, sched_group_cpus(sg)) {
5163 if (i == target || !idle_cpu(i))
5164 goto next;
5165 }
5166
5167 /*
5168 * It doesn't matter which cpu we pick, the
5169 * whole group is idle.
5170 */
5171 target = cpumask_first_and(sched_group_cpus(sg),
5172 tsk_cpus_allowed(p));
5173 goto done;
5174 next:
5175 sg = sg->next;
5176 } while (sg != sd->groups);
5177 }
5178 done:
5179 return target;
5180 }
5181
5182 /*
5183 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5184 * tasks. The unit of the return value must be the one of capacity so we can
5185 * compare the utilization with the capacity of the CPU that is available for
5186 * CFS task (ie cpu_capacity).
5187 *
5188 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5189 * recent utilization of currently non-runnable tasks on a CPU. It represents
5190 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5191 * capacity_orig is the cpu_capacity available at the highest frequency
5192 * (arch_scale_freq_capacity()).
5193 * The utilization of a CPU converges towards a sum equal to or less than the
5194 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5195 * the running time on this CPU scaled by capacity_curr.
5196 *
5197 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5198 * higher than capacity_orig because of unfortunate rounding in
5199 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5200 * the average stabilizes with the new running time. We need to check that the
5201 * utilization stays within the range of [0..capacity_orig] and cap it if
5202 * necessary. Without utilization capping, a group could be seen as overloaded
5203 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5204 * available capacity. We allow utilization to overshoot capacity_curr (but not
5205 * capacity_orig) as it useful for predicting the capacity required after task
5206 * migrations (scheduler-driven DVFS).
5207 */
5208 static int cpu_util(int cpu)
5209 {
5210 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5211 unsigned long capacity = capacity_orig_of(cpu);
5212
5213 return (util >= capacity) ? capacity : util;
5214 }
5215
5216 /*
5217 * select_task_rq_fair: Select target runqueue for the waking task in domains
5218 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5219 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5220 *
5221 * Balances load by selecting the idlest cpu in the idlest group, or under
5222 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5223 *
5224 * Returns the target cpu number.
5225 *
5226 * preempt must be disabled.
5227 */
5228 static int
5229 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5230 {
5231 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5232 int cpu = smp_processor_id();
5233 int new_cpu = prev_cpu;
5234 int want_affine = 0;
5235 int sync = wake_flags & WF_SYNC;
5236
5237 if (sd_flag & SD_BALANCE_WAKE)
5238 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5239
5240 rcu_read_lock();
5241 for_each_domain(cpu, tmp) {
5242 if (!(tmp->flags & SD_LOAD_BALANCE))
5243 break;
5244
5245 /*
5246 * If both cpu and prev_cpu are part of this domain,
5247 * cpu is a valid SD_WAKE_AFFINE target.
5248 */
5249 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5250 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5251 affine_sd = tmp;
5252 break;
5253 }
5254
5255 if (tmp->flags & sd_flag)
5256 sd = tmp;
5257 else if (!want_affine)
5258 break;
5259 }
5260
5261 if (affine_sd) {
5262 sd = NULL; /* Prefer wake_affine over balance flags */
5263 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5264 new_cpu = cpu;
5265 }
5266
5267 if (!sd) {
5268 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5269 new_cpu = select_idle_sibling(p, new_cpu);
5270
5271 } else while (sd) {
5272 struct sched_group *group;
5273 int weight;
5274
5275 if (!(sd->flags & sd_flag)) {
5276 sd = sd->child;
5277 continue;
5278 }
5279
5280 group = find_idlest_group(sd, p, cpu, sd_flag);
5281 if (!group) {
5282 sd = sd->child;
5283 continue;
5284 }
5285
5286 new_cpu = find_idlest_cpu(group, p, cpu);
5287 if (new_cpu == -1 || new_cpu == cpu) {
5288 /* Now try balancing at a lower domain level of cpu */
5289 sd = sd->child;
5290 continue;
5291 }
5292
5293 /* Now try balancing at a lower domain level of new_cpu */
5294 cpu = new_cpu;
5295 weight = sd->span_weight;
5296 sd = NULL;
5297 for_each_domain(cpu, tmp) {
5298 if (weight <= tmp->span_weight)
5299 break;
5300 if (tmp->flags & sd_flag)
5301 sd = tmp;
5302 }
5303 /* while loop will break here if sd == NULL */
5304 }
5305 rcu_read_unlock();
5306
5307 return new_cpu;
5308 }
5309
5310 /*
5311 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5312 * cfs_rq_of(p) references at time of call are still valid and identify the
5313 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5314 */
5315 static void migrate_task_rq_fair(struct task_struct *p)
5316 {
5317 /*
5318 * We are supposed to update the task to "current" time, then its up to date
5319 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5320 * what current time is, so simply throw away the out-of-date time. This
5321 * will result in the wakee task is less decayed, but giving the wakee more
5322 * load sounds not bad.
5323 */
5324 remove_entity_load_avg(&p->se);
5325
5326 /* Tell new CPU we are migrated */
5327 p->se.avg.last_update_time = 0;
5328
5329 /* We have migrated, no longer consider this task hot */
5330 p->se.exec_start = 0;
5331 }
5332
5333 static void task_dead_fair(struct task_struct *p)
5334 {
5335 remove_entity_load_avg(&p->se);
5336 }
5337 #endif /* CONFIG_SMP */
5338
5339 static unsigned long
5340 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5341 {
5342 unsigned long gran = sysctl_sched_wakeup_granularity;
5343
5344 /*
5345 * Since its curr running now, convert the gran from real-time
5346 * to virtual-time in his units.
5347 *
5348 * By using 'se' instead of 'curr' we penalize light tasks, so
5349 * they get preempted easier. That is, if 'se' < 'curr' then
5350 * the resulting gran will be larger, therefore penalizing the
5351 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5352 * be smaller, again penalizing the lighter task.
5353 *
5354 * This is especially important for buddies when the leftmost
5355 * task is higher priority than the buddy.
5356 */
5357 return calc_delta_fair(gran, se);
5358 }
5359
5360 /*
5361 * Should 'se' preempt 'curr'.
5362 *
5363 * |s1
5364 * |s2
5365 * |s3
5366 * g
5367 * |<--->|c
5368 *
5369 * w(c, s1) = -1
5370 * w(c, s2) = 0
5371 * w(c, s3) = 1
5372 *
5373 */
5374 static int
5375 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5376 {
5377 s64 gran, vdiff = curr->vruntime - se->vruntime;
5378
5379 if (vdiff <= 0)
5380 return -1;
5381
5382 gran = wakeup_gran(curr, se);
5383 if (vdiff > gran)
5384 return 1;
5385
5386 return 0;
5387 }
5388
5389 static void set_last_buddy(struct sched_entity *se)
5390 {
5391 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5392 return;
5393
5394 for_each_sched_entity(se)
5395 cfs_rq_of(se)->last = se;
5396 }
5397
5398 static void set_next_buddy(struct sched_entity *se)
5399 {
5400 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5401 return;
5402
5403 for_each_sched_entity(se)
5404 cfs_rq_of(se)->next = se;
5405 }
5406
5407 static void set_skip_buddy(struct sched_entity *se)
5408 {
5409 for_each_sched_entity(se)
5410 cfs_rq_of(se)->skip = se;
5411 }
5412
5413 /*
5414 * Preempt the current task with a newly woken task if needed:
5415 */
5416 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5417 {
5418 struct task_struct *curr = rq->curr;
5419 struct sched_entity *se = &curr->se, *pse = &p->se;
5420 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5421 int scale = cfs_rq->nr_running >= sched_nr_latency;
5422 int next_buddy_marked = 0;
5423
5424 if (unlikely(se == pse))
5425 return;
5426
5427 /*
5428 * This is possible from callers such as attach_tasks(), in which we
5429 * unconditionally check_prempt_curr() after an enqueue (which may have
5430 * lead to a throttle). This both saves work and prevents false
5431 * next-buddy nomination below.
5432 */
5433 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5434 return;
5435
5436 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5437 set_next_buddy(pse);
5438 next_buddy_marked = 1;
5439 }
5440
5441 /*
5442 * We can come here with TIF_NEED_RESCHED already set from new task
5443 * wake up path.
5444 *
5445 * Note: this also catches the edge-case of curr being in a throttled
5446 * group (e.g. via set_curr_task), since update_curr() (in the
5447 * enqueue of curr) will have resulted in resched being set. This
5448 * prevents us from potentially nominating it as a false LAST_BUDDY
5449 * below.
5450 */
5451 if (test_tsk_need_resched(curr))
5452 return;
5453
5454 /* Idle tasks are by definition preempted by non-idle tasks. */
5455 if (unlikely(curr->policy == SCHED_IDLE) &&
5456 likely(p->policy != SCHED_IDLE))
5457 goto preempt;
5458
5459 /*
5460 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5461 * is driven by the tick):
5462 */
5463 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5464 return;
5465
5466 find_matching_se(&se, &pse);
5467 update_curr(cfs_rq_of(se));
5468 BUG_ON(!pse);
5469 if (wakeup_preempt_entity(se, pse) == 1) {
5470 /*
5471 * Bias pick_next to pick the sched entity that is
5472 * triggering this preemption.
5473 */
5474 if (!next_buddy_marked)
5475 set_next_buddy(pse);
5476 goto preempt;
5477 }
5478
5479 return;
5480
5481 preempt:
5482 resched_curr(rq);
5483 /*
5484 * Only set the backward buddy when the current task is still
5485 * on the rq. This can happen when a wakeup gets interleaved
5486 * with schedule on the ->pre_schedule() or idle_balance()
5487 * point, either of which can * drop the rq lock.
5488 *
5489 * Also, during early boot the idle thread is in the fair class,
5490 * for obvious reasons its a bad idea to schedule back to it.
5491 */
5492 if (unlikely(!se->on_rq || curr == rq->idle))
5493 return;
5494
5495 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5496 set_last_buddy(se);
5497 }
5498
5499 static struct task_struct *
5500 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5501 {
5502 struct cfs_rq *cfs_rq = &rq->cfs;
5503 struct sched_entity *se;
5504 struct task_struct *p;
5505 int new_tasks;
5506
5507 again:
5508 #ifdef CONFIG_FAIR_GROUP_SCHED
5509 if (!cfs_rq->nr_running)
5510 goto idle;
5511
5512 if (prev->sched_class != &fair_sched_class)
5513 goto simple;
5514
5515 /*
5516 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5517 * likely that a next task is from the same cgroup as the current.
5518 *
5519 * Therefore attempt to avoid putting and setting the entire cgroup
5520 * hierarchy, only change the part that actually changes.
5521 */
5522
5523 do {
5524 struct sched_entity *curr = cfs_rq->curr;
5525
5526 /*
5527 * Since we got here without doing put_prev_entity() we also
5528 * have to consider cfs_rq->curr. If it is still a runnable
5529 * entity, update_curr() will update its vruntime, otherwise
5530 * forget we've ever seen it.
5531 */
5532 if (curr) {
5533 if (curr->on_rq)
5534 update_curr(cfs_rq);
5535 else
5536 curr = NULL;
5537
5538 /*
5539 * This call to check_cfs_rq_runtime() will do the
5540 * throttle and dequeue its entity in the parent(s).
5541 * Therefore the 'simple' nr_running test will indeed
5542 * be correct.
5543 */
5544 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5545 goto simple;
5546 }
5547
5548 se = pick_next_entity(cfs_rq, curr);
5549 cfs_rq = group_cfs_rq(se);
5550 } while (cfs_rq);
5551
5552 p = task_of(se);
5553
5554 /*
5555 * Since we haven't yet done put_prev_entity and if the selected task
5556 * is a different task than we started out with, try and touch the
5557 * least amount of cfs_rqs.
5558 */
5559 if (prev != p) {
5560 struct sched_entity *pse = &prev->se;
5561
5562 while (!(cfs_rq = is_same_group(se, pse))) {
5563 int se_depth = se->depth;
5564 int pse_depth = pse->depth;
5565
5566 if (se_depth <= pse_depth) {
5567 put_prev_entity(cfs_rq_of(pse), pse);
5568 pse = parent_entity(pse);
5569 }
5570 if (se_depth >= pse_depth) {
5571 set_next_entity(cfs_rq_of(se), se);
5572 se = parent_entity(se);
5573 }
5574 }
5575
5576 put_prev_entity(cfs_rq, pse);
5577 set_next_entity(cfs_rq, se);
5578 }
5579
5580 if (hrtick_enabled(rq))
5581 hrtick_start_fair(rq, p);
5582
5583 return p;
5584 simple:
5585 cfs_rq = &rq->cfs;
5586 #endif
5587
5588 if (!cfs_rq->nr_running)
5589 goto idle;
5590
5591 put_prev_task(rq, prev);
5592
5593 do {
5594 se = pick_next_entity(cfs_rq, NULL);
5595 set_next_entity(cfs_rq, se);
5596 cfs_rq = group_cfs_rq(se);
5597 } while (cfs_rq);
5598
5599 p = task_of(se);
5600
5601 if (hrtick_enabled(rq))
5602 hrtick_start_fair(rq, p);
5603
5604 return p;
5605
5606 idle:
5607 /*
5608 * This is OK, because current is on_cpu, which avoids it being picked
5609 * for load-balance and preemption/IRQs are still disabled avoiding
5610 * further scheduler activity on it and we're being very careful to
5611 * re-start the picking loop.
5612 */
5613 lockdep_unpin_lock(&rq->lock);
5614 new_tasks = idle_balance(rq);
5615 lockdep_pin_lock(&rq->lock);
5616 /*
5617 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5618 * possible for any higher priority task to appear. In that case we
5619 * must re-start the pick_next_entity() loop.
5620 */
5621 if (new_tasks < 0)
5622 return RETRY_TASK;
5623
5624 if (new_tasks > 0)
5625 goto again;
5626
5627 return NULL;
5628 }
5629
5630 /*
5631 * Account for a descheduled task:
5632 */
5633 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5634 {
5635 struct sched_entity *se = &prev->se;
5636 struct cfs_rq *cfs_rq;
5637
5638 for_each_sched_entity(se) {
5639 cfs_rq = cfs_rq_of(se);
5640 put_prev_entity(cfs_rq, se);
5641 }
5642 }
5643
5644 /*
5645 * sched_yield() is very simple
5646 *
5647 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5648 */
5649 static void yield_task_fair(struct rq *rq)
5650 {
5651 struct task_struct *curr = rq->curr;
5652 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5653 struct sched_entity *se = &curr->se;
5654
5655 /*
5656 * Are we the only task in the tree?
5657 */
5658 if (unlikely(rq->nr_running == 1))
5659 return;
5660
5661 clear_buddies(cfs_rq, se);
5662
5663 if (curr->policy != SCHED_BATCH) {
5664 update_rq_clock(rq);
5665 /*
5666 * Update run-time statistics of the 'current'.
5667 */
5668 update_curr(cfs_rq);
5669 /*
5670 * Tell update_rq_clock() that we've just updated,
5671 * so we don't do microscopic update in schedule()
5672 * and double the fastpath cost.
5673 */
5674 rq_clock_skip_update(rq, true);
5675 }
5676
5677 set_skip_buddy(se);
5678 }
5679
5680 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5681 {
5682 struct sched_entity *se = &p->se;
5683
5684 /* throttled hierarchies are not runnable */
5685 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5686 return false;
5687
5688 /* Tell the scheduler that we'd really like pse to run next. */
5689 set_next_buddy(se);
5690
5691 yield_task_fair(rq);
5692
5693 return true;
5694 }
5695
5696 #ifdef CONFIG_SMP
5697 /**************************************************
5698 * Fair scheduling class load-balancing methods.
5699 *
5700 * BASICS
5701 *
5702 * The purpose of load-balancing is to achieve the same basic fairness the
5703 * per-cpu scheduler provides, namely provide a proportional amount of compute
5704 * time to each task. This is expressed in the following equation:
5705 *
5706 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5707 *
5708 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5709 * W_i,0 is defined as:
5710 *
5711 * W_i,0 = \Sum_j w_i,j (2)
5712 *
5713 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5714 * is derived from the nice value as per sched_prio_to_weight[].
5715 *
5716 * The weight average is an exponential decay average of the instantaneous
5717 * weight:
5718 *
5719 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5720 *
5721 * C_i is the compute capacity of cpu i, typically it is the
5722 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5723 * can also include other factors [XXX].
5724 *
5725 * To achieve this balance we define a measure of imbalance which follows
5726 * directly from (1):
5727 *
5728 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5729 *
5730 * We them move tasks around to minimize the imbalance. In the continuous
5731 * function space it is obvious this converges, in the discrete case we get
5732 * a few fun cases generally called infeasible weight scenarios.
5733 *
5734 * [XXX expand on:
5735 * - infeasible weights;
5736 * - local vs global optima in the discrete case. ]
5737 *
5738 *
5739 * SCHED DOMAINS
5740 *
5741 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5742 * for all i,j solution, we create a tree of cpus that follows the hardware
5743 * topology where each level pairs two lower groups (or better). This results
5744 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5745 * tree to only the first of the previous level and we decrease the frequency
5746 * of load-balance at each level inv. proportional to the number of cpus in
5747 * the groups.
5748 *
5749 * This yields:
5750 *
5751 * log_2 n 1 n
5752 * \Sum { --- * --- * 2^i } = O(n) (5)
5753 * i = 0 2^i 2^i
5754 * `- size of each group
5755 * | | `- number of cpus doing load-balance
5756 * | `- freq
5757 * `- sum over all levels
5758 *
5759 * Coupled with a limit on how many tasks we can migrate every balance pass,
5760 * this makes (5) the runtime complexity of the balancer.
5761 *
5762 * An important property here is that each CPU is still (indirectly) connected
5763 * to every other cpu in at most O(log n) steps:
5764 *
5765 * The adjacency matrix of the resulting graph is given by:
5766 *
5767 * log_2 n
5768 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5769 * k = 0
5770 *
5771 * And you'll find that:
5772 *
5773 * A^(log_2 n)_i,j != 0 for all i,j (7)
5774 *
5775 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5776 * The task movement gives a factor of O(m), giving a convergence complexity
5777 * of:
5778 *
5779 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5780 *
5781 *
5782 * WORK CONSERVING
5783 *
5784 * In order to avoid CPUs going idle while there's still work to do, new idle
5785 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5786 * tree itself instead of relying on other CPUs to bring it work.
5787 *
5788 * This adds some complexity to both (5) and (8) but it reduces the total idle
5789 * time.
5790 *
5791 * [XXX more?]
5792 *
5793 *
5794 * CGROUPS
5795 *
5796 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5797 *
5798 * s_k,i
5799 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5800 * S_k
5801 *
5802 * Where
5803 *
5804 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5805 *
5806 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5807 *
5808 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5809 * property.
5810 *
5811 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5812 * rewrite all of this once again.]
5813 */
5814
5815 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5816
5817 enum fbq_type { regular, remote, all };
5818
5819 #define LBF_ALL_PINNED 0x01
5820 #define LBF_NEED_BREAK 0x02
5821 #define LBF_DST_PINNED 0x04
5822 #define LBF_SOME_PINNED 0x08
5823
5824 struct lb_env {
5825 struct sched_domain *sd;
5826
5827 struct rq *src_rq;
5828 int src_cpu;
5829
5830 int dst_cpu;
5831 struct rq *dst_rq;
5832
5833 struct cpumask *dst_grpmask;
5834 int new_dst_cpu;
5835 enum cpu_idle_type idle;
5836 long imbalance;
5837 /* The set of CPUs under consideration for load-balancing */
5838 struct cpumask *cpus;
5839
5840 unsigned int flags;
5841
5842 unsigned int loop;
5843 unsigned int loop_break;
5844 unsigned int loop_max;
5845
5846 enum fbq_type fbq_type;
5847 struct list_head tasks;
5848 };
5849
5850 /*
5851 * Is this task likely cache-hot:
5852 */
5853 static int task_hot(struct task_struct *p, struct lb_env *env)
5854 {
5855 s64 delta;
5856
5857 lockdep_assert_held(&env->src_rq->lock);
5858
5859 if (p->sched_class != &fair_sched_class)
5860 return 0;
5861
5862 if (unlikely(p->policy == SCHED_IDLE))
5863 return 0;
5864
5865 /*
5866 * Buddy candidates are cache hot:
5867 */
5868 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5869 (&p->se == cfs_rq_of(&p->se)->next ||
5870 &p->se == cfs_rq_of(&p->se)->last))
5871 return 1;
5872
5873 if (sysctl_sched_migration_cost == -1)
5874 return 1;
5875 if (sysctl_sched_migration_cost == 0)
5876 return 0;
5877
5878 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5879
5880 return delta < (s64)sysctl_sched_migration_cost;
5881 }
5882
5883 #ifdef CONFIG_NUMA_BALANCING
5884 /*
5885 * Returns 1, if task migration degrades locality
5886 * Returns 0, if task migration improves locality i.e migration preferred.
5887 * Returns -1, if task migration is not affected by locality.
5888 */
5889 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5890 {
5891 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5892 unsigned long src_faults, dst_faults;
5893 int src_nid, dst_nid;
5894
5895 if (!static_branch_likely(&sched_numa_balancing))
5896 return -1;
5897
5898 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5899 return -1;
5900
5901 src_nid = cpu_to_node(env->src_cpu);
5902 dst_nid = cpu_to_node(env->dst_cpu);
5903
5904 if (src_nid == dst_nid)
5905 return -1;
5906
5907 /* Migrating away from the preferred node is always bad. */
5908 if (src_nid == p->numa_preferred_nid) {
5909 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5910 return 1;
5911 else
5912 return -1;
5913 }
5914
5915 /* Encourage migration to the preferred node. */
5916 if (dst_nid == p->numa_preferred_nid)
5917 return 0;
5918
5919 if (numa_group) {
5920 src_faults = group_faults(p, src_nid);
5921 dst_faults = group_faults(p, dst_nid);
5922 } else {
5923 src_faults = task_faults(p, src_nid);
5924 dst_faults = task_faults(p, dst_nid);
5925 }
5926
5927 return dst_faults < src_faults;
5928 }
5929
5930 #else
5931 static inline int migrate_degrades_locality(struct task_struct *p,
5932 struct lb_env *env)
5933 {
5934 return -1;
5935 }
5936 #endif
5937
5938 /*
5939 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5940 */
5941 static
5942 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5943 {
5944 int tsk_cache_hot;
5945
5946 lockdep_assert_held(&env->src_rq->lock);
5947
5948 /*
5949 * We do not migrate tasks that are:
5950 * 1) throttled_lb_pair, or
5951 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5952 * 3) running (obviously), or
5953 * 4) are cache-hot on their current CPU.
5954 */
5955 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5956 return 0;
5957
5958 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5959 int cpu;
5960
5961 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5962
5963 env->flags |= LBF_SOME_PINNED;
5964
5965 /*
5966 * Remember if this task can be migrated to any other cpu in
5967 * our sched_group. We may want to revisit it if we couldn't
5968 * meet load balance goals by pulling other tasks on src_cpu.
5969 *
5970 * Also avoid computing new_dst_cpu if we have already computed
5971 * one in current iteration.
5972 */
5973 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5974 return 0;
5975
5976 /* Prevent to re-select dst_cpu via env's cpus */
5977 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5978 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5979 env->flags |= LBF_DST_PINNED;
5980 env->new_dst_cpu = cpu;
5981 break;
5982 }
5983 }
5984
5985 return 0;
5986 }
5987
5988 /* Record that we found atleast one task that could run on dst_cpu */
5989 env->flags &= ~LBF_ALL_PINNED;
5990
5991 if (task_running(env->src_rq, p)) {
5992 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5993 return 0;
5994 }
5995
5996 /*
5997 * Aggressive migration if:
5998 * 1) destination numa is preferred
5999 * 2) task is cache cold, or
6000 * 3) too many balance attempts have failed.
6001 */
6002 tsk_cache_hot = migrate_degrades_locality(p, env);
6003 if (tsk_cache_hot == -1)
6004 tsk_cache_hot = task_hot(p, env);
6005
6006 if (tsk_cache_hot <= 0 ||
6007 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6008 if (tsk_cache_hot == 1) {
6009 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6010 schedstat_inc(p, se.statistics.nr_forced_migrations);
6011 }
6012 return 1;
6013 }
6014
6015 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6016 return 0;
6017 }
6018
6019 /*
6020 * detach_task() -- detach the task for the migration specified in env
6021 */
6022 static void detach_task(struct task_struct *p, struct lb_env *env)
6023 {
6024 lockdep_assert_held(&env->src_rq->lock);
6025
6026 p->on_rq = TASK_ON_RQ_MIGRATING;
6027 deactivate_task(env->src_rq, p, 0);
6028 set_task_cpu(p, env->dst_cpu);
6029 }
6030
6031 /*
6032 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6033 * part of active balancing operations within "domain".
6034 *
6035 * Returns a task if successful and NULL otherwise.
6036 */
6037 static struct task_struct *detach_one_task(struct lb_env *env)
6038 {
6039 struct task_struct *p, *n;
6040
6041 lockdep_assert_held(&env->src_rq->lock);
6042
6043 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6044 if (!can_migrate_task(p, env))
6045 continue;
6046
6047 detach_task(p, env);
6048
6049 /*
6050 * Right now, this is only the second place where
6051 * lb_gained[env->idle] is updated (other is detach_tasks)
6052 * so we can safely collect stats here rather than
6053 * inside detach_tasks().
6054 */
6055 schedstat_inc(env->sd, lb_gained[env->idle]);
6056 return p;
6057 }
6058 return NULL;
6059 }
6060
6061 static const unsigned int sched_nr_migrate_break = 32;
6062
6063 /*
6064 * detach_tasks() -- tries to detach up to imbalance weighted load from
6065 * busiest_rq, as part of a balancing operation within domain "sd".
6066 *
6067 * Returns number of detached tasks if successful and 0 otherwise.
6068 */
6069 static int detach_tasks(struct lb_env *env)
6070 {
6071 struct list_head *tasks = &env->src_rq->cfs_tasks;
6072 struct task_struct *p;
6073 unsigned long load;
6074 int detached = 0;
6075
6076 lockdep_assert_held(&env->src_rq->lock);
6077
6078 if (env->imbalance <= 0)
6079 return 0;
6080
6081 while (!list_empty(tasks)) {
6082 /*
6083 * We don't want to steal all, otherwise we may be treated likewise,
6084 * which could at worst lead to a livelock crash.
6085 */
6086 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6087 break;
6088
6089 p = list_first_entry(tasks, struct task_struct, se.group_node);
6090
6091 env->loop++;
6092 /* We've more or less seen every task there is, call it quits */
6093 if (env->loop > env->loop_max)
6094 break;
6095
6096 /* take a breather every nr_migrate tasks */
6097 if (env->loop > env->loop_break) {
6098 env->loop_break += sched_nr_migrate_break;
6099 env->flags |= LBF_NEED_BREAK;
6100 break;
6101 }
6102
6103 if (!can_migrate_task(p, env))
6104 goto next;
6105
6106 load = task_h_load(p);
6107
6108 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6109 goto next;
6110
6111 if ((load / 2) > env->imbalance)
6112 goto next;
6113
6114 detach_task(p, env);
6115 list_add(&p->se.group_node, &env->tasks);
6116
6117 detached++;
6118 env->imbalance -= load;
6119
6120 #ifdef CONFIG_PREEMPT
6121 /*
6122 * NEWIDLE balancing is a source of latency, so preemptible
6123 * kernels will stop after the first task is detached to minimize
6124 * the critical section.
6125 */
6126 if (env->idle == CPU_NEWLY_IDLE)
6127 break;
6128 #endif
6129
6130 /*
6131 * We only want to steal up to the prescribed amount of
6132 * weighted load.
6133 */
6134 if (env->imbalance <= 0)
6135 break;
6136
6137 continue;
6138 next:
6139 list_move_tail(&p->se.group_node, tasks);
6140 }
6141
6142 /*
6143 * Right now, this is one of only two places we collect this stat
6144 * so we can safely collect detach_one_task() stats here rather
6145 * than inside detach_one_task().
6146 */
6147 schedstat_add(env->sd, lb_gained[env->idle], detached);
6148
6149 return detached;
6150 }
6151
6152 /*
6153 * attach_task() -- attach the task detached by detach_task() to its new rq.
6154 */
6155 static void attach_task(struct rq *rq, struct task_struct *p)
6156 {
6157 lockdep_assert_held(&rq->lock);
6158
6159 BUG_ON(task_rq(p) != rq);
6160 activate_task(rq, p, 0);
6161 p->on_rq = TASK_ON_RQ_QUEUED;
6162 check_preempt_curr(rq, p, 0);
6163 }
6164
6165 /*
6166 * attach_one_task() -- attaches the task returned from detach_one_task() to
6167 * its new rq.
6168 */
6169 static void attach_one_task(struct rq *rq, struct task_struct *p)
6170 {
6171 raw_spin_lock(&rq->lock);
6172 attach_task(rq, p);
6173 raw_spin_unlock(&rq->lock);
6174 }
6175
6176 /*
6177 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6178 * new rq.
6179 */
6180 static void attach_tasks(struct lb_env *env)
6181 {
6182 struct list_head *tasks = &env->tasks;
6183 struct task_struct *p;
6184
6185 raw_spin_lock(&env->dst_rq->lock);
6186
6187 while (!list_empty(tasks)) {
6188 p = list_first_entry(tasks, struct task_struct, se.group_node);
6189 list_del_init(&p->se.group_node);
6190
6191 attach_task(env->dst_rq, p);
6192 }
6193
6194 raw_spin_unlock(&env->dst_rq->lock);
6195 }
6196
6197 #ifdef CONFIG_FAIR_GROUP_SCHED
6198 static void update_blocked_averages(int cpu)
6199 {
6200 struct rq *rq = cpu_rq(cpu);
6201 struct cfs_rq *cfs_rq;
6202 unsigned long flags;
6203
6204 raw_spin_lock_irqsave(&rq->lock, flags);
6205 update_rq_clock(rq);
6206
6207 /*
6208 * Iterates the task_group tree in a bottom up fashion, see
6209 * list_add_leaf_cfs_rq() for details.
6210 */
6211 for_each_leaf_cfs_rq(rq, cfs_rq) {
6212 /* throttled entities do not contribute to load */
6213 if (throttled_hierarchy(cfs_rq))
6214 continue;
6215
6216 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6217 update_tg_load_avg(cfs_rq, 0);
6218 }
6219 raw_spin_unlock_irqrestore(&rq->lock, flags);
6220 }
6221
6222 /*
6223 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6224 * This needs to be done in a top-down fashion because the load of a child
6225 * group is a fraction of its parents load.
6226 */
6227 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6228 {
6229 struct rq *rq = rq_of(cfs_rq);
6230 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6231 unsigned long now = jiffies;
6232 unsigned long load;
6233
6234 if (cfs_rq->last_h_load_update == now)
6235 return;
6236
6237 cfs_rq->h_load_next = NULL;
6238 for_each_sched_entity(se) {
6239 cfs_rq = cfs_rq_of(se);
6240 cfs_rq->h_load_next = se;
6241 if (cfs_rq->last_h_load_update == now)
6242 break;
6243 }
6244
6245 if (!se) {
6246 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6247 cfs_rq->last_h_load_update = now;
6248 }
6249
6250 while ((se = cfs_rq->h_load_next) != NULL) {
6251 load = cfs_rq->h_load;
6252 load = div64_ul(load * se->avg.load_avg,
6253 cfs_rq_load_avg(cfs_rq) + 1);
6254 cfs_rq = group_cfs_rq(se);
6255 cfs_rq->h_load = load;
6256 cfs_rq->last_h_load_update = now;
6257 }
6258 }
6259
6260 static unsigned long task_h_load(struct task_struct *p)
6261 {
6262 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6263
6264 update_cfs_rq_h_load(cfs_rq);
6265 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6266 cfs_rq_load_avg(cfs_rq) + 1);
6267 }
6268 #else
6269 static inline void update_blocked_averages(int cpu)
6270 {
6271 struct rq *rq = cpu_rq(cpu);
6272 struct cfs_rq *cfs_rq = &rq->cfs;
6273 unsigned long flags;
6274
6275 raw_spin_lock_irqsave(&rq->lock, flags);
6276 update_rq_clock(rq);
6277 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6278 raw_spin_unlock_irqrestore(&rq->lock, flags);
6279 }
6280
6281 static unsigned long task_h_load(struct task_struct *p)
6282 {
6283 return p->se.avg.load_avg;
6284 }
6285 #endif
6286
6287 /********** Helpers for find_busiest_group ************************/
6288
6289 enum group_type {
6290 group_other = 0,
6291 group_imbalanced,
6292 group_overloaded,
6293 };
6294
6295 /*
6296 * sg_lb_stats - stats of a sched_group required for load_balancing
6297 */
6298 struct sg_lb_stats {
6299 unsigned long avg_load; /*Avg load across the CPUs of the group */
6300 unsigned long group_load; /* Total load over the CPUs of the group */
6301 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6302 unsigned long load_per_task;
6303 unsigned long group_capacity;
6304 unsigned long group_util; /* Total utilization of the group */
6305 unsigned int sum_nr_running; /* Nr tasks running in the group */
6306 unsigned int idle_cpus;
6307 unsigned int group_weight;
6308 enum group_type group_type;
6309 int group_no_capacity;
6310 #ifdef CONFIG_NUMA_BALANCING
6311 unsigned int nr_numa_running;
6312 unsigned int nr_preferred_running;
6313 #endif
6314 };
6315
6316 /*
6317 * sd_lb_stats - Structure to store the statistics of a sched_domain
6318 * during load balancing.
6319 */
6320 struct sd_lb_stats {
6321 struct sched_group *busiest; /* Busiest group in this sd */
6322 struct sched_group *local; /* Local group in this sd */
6323 unsigned long total_load; /* Total load of all groups in sd */
6324 unsigned long total_capacity; /* Total capacity of all groups in sd */
6325 unsigned long avg_load; /* Average load across all groups in sd */
6326
6327 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6328 struct sg_lb_stats local_stat; /* Statistics of the local group */
6329 };
6330
6331 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6332 {
6333 /*
6334 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6335 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6336 * We must however clear busiest_stat::avg_load because
6337 * update_sd_pick_busiest() reads this before assignment.
6338 */
6339 *sds = (struct sd_lb_stats){
6340 .busiest = NULL,
6341 .local = NULL,
6342 .total_load = 0UL,
6343 .total_capacity = 0UL,
6344 .busiest_stat = {
6345 .avg_load = 0UL,
6346 .sum_nr_running = 0,
6347 .group_type = group_other,
6348 },
6349 };
6350 }
6351
6352 /**
6353 * get_sd_load_idx - Obtain the load index for a given sched domain.
6354 * @sd: The sched_domain whose load_idx is to be obtained.
6355 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6356 *
6357 * Return: The load index.
6358 */
6359 static inline int get_sd_load_idx(struct sched_domain *sd,
6360 enum cpu_idle_type idle)
6361 {
6362 int load_idx;
6363
6364 switch (idle) {
6365 case CPU_NOT_IDLE:
6366 load_idx = sd->busy_idx;
6367 break;
6368
6369 case CPU_NEWLY_IDLE:
6370 load_idx = sd->newidle_idx;
6371 break;
6372 default:
6373 load_idx = sd->idle_idx;
6374 break;
6375 }
6376
6377 return load_idx;
6378 }
6379
6380 static unsigned long scale_rt_capacity(int cpu)
6381 {
6382 struct rq *rq = cpu_rq(cpu);
6383 u64 total, used, age_stamp, avg;
6384 s64 delta;
6385
6386 /*
6387 * Since we're reading these variables without serialization make sure
6388 * we read them once before doing sanity checks on them.
6389 */
6390 age_stamp = READ_ONCE(rq->age_stamp);
6391 avg = READ_ONCE(rq->rt_avg);
6392 delta = __rq_clock_broken(rq) - age_stamp;
6393
6394 if (unlikely(delta < 0))
6395 delta = 0;
6396
6397 total = sched_avg_period() + delta;
6398
6399 used = div_u64(avg, total);
6400
6401 if (likely(used < SCHED_CAPACITY_SCALE))
6402 return SCHED_CAPACITY_SCALE - used;
6403
6404 return 1;
6405 }
6406
6407 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6408 {
6409 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6410 struct sched_group *sdg = sd->groups;
6411
6412 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6413
6414 capacity *= scale_rt_capacity(cpu);
6415 capacity >>= SCHED_CAPACITY_SHIFT;
6416
6417 if (!capacity)
6418 capacity = 1;
6419
6420 cpu_rq(cpu)->cpu_capacity = capacity;
6421 sdg->sgc->capacity = capacity;
6422 }
6423
6424 void update_group_capacity(struct sched_domain *sd, int cpu)
6425 {
6426 struct sched_domain *child = sd->child;
6427 struct sched_group *group, *sdg = sd->groups;
6428 unsigned long capacity;
6429 unsigned long interval;
6430
6431 interval = msecs_to_jiffies(sd->balance_interval);
6432 interval = clamp(interval, 1UL, max_load_balance_interval);
6433 sdg->sgc->next_update = jiffies + interval;
6434
6435 if (!child) {
6436 update_cpu_capacity(sd, cpu);
6437 return;
6438 }
6439
6440 capacity = 0;
6441
6442 if (child->flags & SD_OVERLAP) {
6443 /*
6444 * SD_OVERLAP domains cannot assume that child groups
6445 * span the current group.
6446 */
6447
6448 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6449 struct sched_group_capacity *sgc;
6450 struct rq *rq = cpu_rq(cpu);
6451
6452 /*
6453 * build_sched_domains() -> init_sched_groups_capacity()
6454 * gets here before we've attached the domains to the
6455 * runqueues.
6456 *
6457 * Use capacity_of(), which is set irrespective of domains
6458 * in update_cpu_capacity().
6459 *
6460 * This avoids capacity from being 0 and
6461 * causing divide-by-zero issues on boot.
6462 */
6463 if (unlikely(!rq->sd)) {
6464 capacity += capacity_of(cpu);
6465 continue;
6466 }
6467
6468 sgc = rq->sd->groups->sgc;
6469 capacity += sgc->capacity;
6470 }
6471 } else {
6472 /*
6473 * !SD_OVERLAP domains can assume that child groups
6474 * span the current group.
6475 */
6476
6477 group = child->groups;
6478 do {
6479 capacity += group->sgc->capacity;
6480 group = group->next;
6481 } while (group != child->groups);
6482 }
6483
6484 sdg->sgc->capacity = capacity;
6485 }
6486
6487 /*
6488 * Check whether the capacity of the rq has been noticeably reduced by side
6489 * activity. The imbalance_pct is used for the threshold.
6490 * Return true is the capacity is reduced
6491 */
6492 static inline int
6493 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6494 {
6495 return ((rq->cpu_capacity * sd->imbalance_pct) <
6496 (rq->cpu_capacity_orig * 100));
6497 }
6498
6499 /*
6500 * Group imbalance indicates (and tries to solve) the problem where balancing
6501 * groups is inadequate due to tsk_cpus_allowed() constraints.
6502 *
6503 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6504 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6505 * Something like:
6506 *
6507 * { 0 1 2 3 } { 4 5 6 7 }
6508 * * * * *
6509 *
6510 * If we were to balance group-wise we'd place two tasks in the first group and
6511 * two tasks in the second group. Clearly this is undesired as it will overload
6512 * cpu 3 and leave one of the cpus in the second group unused.
6513 *
6514 * The current solution to this issue is detecting the skew in the first group
6515 * by noticing the lower domain failed to reach balance and had difficulty
6516 * moving tasks due to affinity constraints.
6517 *
6518 * When this is so detected; this group becomes a candidate for busiest; see
6519 * update_sd_pick_busiest(). And calculate_imbalance() and
6520 * find_busiest_group() avoid some of the usual balance conditions to allow it
6521 * to create an effective group imbalance.
6522 *
6523 * This is a somewhat tricky proposition since the next run might not find the
6524 * group imbalance and decide the groups need to be balanced again. A most
6525 * subtle and fragile situation.
6526 */
6527
6528 static inline int sg_imbalanced(struct sched_group *group)
6529 {
6530 return group->sgc->imbalance;
6531 }
6532
6533 /*
6534 * group_has_capacity returns true if the group has spare capacity that could
6535 * be used by some tasks.
6536 * We consider that a group has spare capacity if the * number of task is
6537 * smaller than the number of CPUs or if the utilization is lower than the
6538 * available capacity for CFS tasks.
6539 * For the latter, we use a threshold to stabilize the state, to take into
6540 * account the variance of the tasks' load and to return true if the available
6541 * capacity in meaningful for the load balancer.
6542 * As an example, an available capacity of 1% can appear but it doesn't make
6543 * any benefit for the load balance.
6544 */
6545 static inline bool
6546 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6547 {
6548 if (sgs->sum_nr_running < sgs->group_weight)
6549 return true;
6550
6551 if ((sgs->group_capacity * 100) >
6552 (sgs->group_util * env->sd->imbalance_pct))
6553 return true;
6554
6555 return false;
6556 }
6557
6558 /*
6559 * group_is_overloaded returns true if the group has more tasks than it can
6560 * handle.
6561 * group_is_overloaded is not equals to !group_has_capacity because a group
6562 * with the exact right number of tasks, has no more spare capacity but is not
6563 * overloaded so both group_has_capacity and group_is_overloaded return
6564 * false.
6565 */
6566 static inline bool
6567 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6568 {
6569 if (sgs->sum_nr_running <= sgs->group_weight)
6570 return false;
6571
6572 if ((sgs->group_capacity * 100) <
6573 (sgs->group_util * env->sd->imbalance_pct))
6574 return true;
6575
6576 return false;
6577 }
6578
6579 static inline enum
6580 group_type group_classify(struct sched_group *group,
6581 struct sg_lb_stats *sgs)
6582 {
6583 if (sgs->group_no_capacity)
6584 return group_overloaded;
6585
6586 if (sg_imbalanced(group))
6587 return group_imbalanced;
6588
6589 return group_other;
6590 }
6591
6592 /**
6593 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6594 * @env: The load balancing environment.
6595 * @group: sched_group whose statistics are to be updated.
6596 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6597 * @local_group: Does group contain this_cpu.
6598 * @sgs: variable to hold the statistics for this group.
6599 * @overload: Indicate more than one runnable task for any CPU.
6600 */
6601 static inline void update_sg_lb_stats(struct lb_env *env,
6602 struct sched_group *group, int load_idx,
6603 int local_group, struct sg_lb_stats *sgs,
6604 bool *overload)
6605 {
6606 unsigned long load;
6607 int i, nr_running;
6608
6609 memset(sgs, 0, sizeof(*sgs));
6610
6611 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6612 struct rq *rq = cpu_rq(i);
6613
6614 /* Bias balancing toward cpus of our domain */
6615 if (local_group)
6616 load = target_load(i, load_idx);
6617 else
6618 load = source_load(i, load_idx);
6619
6620 sgs->group_load += load;
6621 sgs->group_util += cpu_util(i);
6622 sgs->sum_nr_running += rq->cfs.h_nr_running;
6623
6624 nr_running = rq->nr_running;
6625 if (nr_running > 1)
6626 *overload = true;
6627
6628 #ifdef CONFIG_NUMA_BALANCING
6629 sgs->nr_numa_running += rq->nr_numa_running;
6630 sgs->nr_preferred_running += rq->nr_preferred_running;
6631 #endif
6632 sgs->sum_weighted_load += weighted_cpuload(i);
6633 /*
6634 * No need to call idle_cpu() if nr_running is not 0
6635 */
6636 if (!nr_running && idle_cpu(i))
6637 sgs->idle_cpus++;
6638 }
6639
6640 /* Adjust by relative CPU capacity of the group */
6641 sgs->group_capacity = group->sgc->capacity;
6642 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6643
6644 if (sgs->sum_nr_running)
6645 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6646
6647 sgs->group_weight = group->group_weight;
6648
6649 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6650 sgs->group_type = group_classify(group, sgs);
6651 }
6652
6653 /**
6654 * update_sd_pick_busiest - return 1 on busiest group
6655 * @env: The load balancing environment.
6656 * @sds: sched_domain statistics
6657 * @sg: sched_group candidate to be checked for being the busiest
6658 * @sgs: sched_group statistics
6659 *
6660 * Determine if @sg is a busier group than the previously selected
6661 * busiest group.
6662 *
6663 * Return: %true if @sg is a busier group than the previously selected
6664 * busiest group. %false otherwise.
6665 */
6666 static bool update_sd_pick_busiest(struct lb_env *env,
6667 struct sd_lb_stats *sds,
6668 struct sched_group *sg,
6669 struct sg_lb_stats *sgs)
6670 {
6671 struct sg_lb_stats *busiest = &sds->busiest_stat;
6672
6673 if (sgs->group_type > busiest->group_type)
6674 return true;
6675
6676 if (sgs->group_type < busiest->group_type)
6677 return false;
6678
6679 if (sgs->avg_load <= busiest->avg_load)
6680 return false;
6681
6682 /* This is the busiest node in its class. */
6683 if (!(env->sd->flags & SD_ASYM_PACKING))
6684 return true;
6685
6686 /* No ASYM_PACKING if target cpu is already busy */
6687 if (env->idle == CPU_NOT_IDLE)
6688 return true;
6689 /*
6690 * ASYM_PACKING needs to move all the work to the lowest
6691 * numbered CPUs in the group, therefore mark all groups
6692 * higher than ourself as busy.
6693 */
6694 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6695 if (!sds->busiest)
6696 return true;
6697
6698 /* Prefer to move from highest possible cpu's work */
6699 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
6700 return true;
6701 }
6702
6703 return false;
6704 }
6705
6706 #ifdef CONFIG_NUMA_BALANCING
6707 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6708 {
6709 if (sgs->sum_nr_running > sgs->nr_numa_running)
6710 return regular;
6711 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6712 return remote;
6713 return all;
6714 }
6715
6716 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6717 {
6718 if (rq->nr_running > rq->nr_numa_running)
6719 return regular;
6720 if (rq->nr_running > rq->nr_preferred_running)
6721 return remote;
6722 return all;
6723 }
6724 #else
6725 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6726 {
6727 return all;
6728 }
6729
6730 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6731 {
6732 return regular;
6733 }
6734 #endif /* CONFIG_NUMA_BALANCING */
6735
6736 /**
6737 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6738 * @env: The load balancing environment.
6739 * @sds: variable to hold the statistics for this sched_domain.
6740 */
6741 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6742 {
6743 struct sched_domain *child = env->sd->child;
6744 struct sched_group *sg = env->sd->groups;
6745 struct sg_lb_stats tmp_sgs;
6746 int load_idx, prefer_sibling = 0;
6747 bool overload = false;
6748
6749 if (child && child->flags & SD_PREFER_SIBLING)
6750 prefer_sibling = 1;
6751
6752 load_idx = get_sd_load_idx(env->sd, env->idle);
6753
6754 do {
6755 struct sg_lb_stats *sgs = &tmp_sgs;
6756 int local_group;
6757
6758 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6759 if (local_group) {
6760 sds->local = sg;
6761 sgs = &sds->local_stat;
6762
6763 if (env->idle != CPU_NEWLY_IDLE ||
6764 time_after_eq(jiffies, sg->sgc->next_update))
6765 update_group_capacity(env->sd, env->dst_cpu);
6766 }
6767
6768 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6769 &overload);
6770
6771 if (local_group)
6772 goto next_group;
6773
6774 /*
6775 * In case the child domain prefers tasks go to siblings
6776 * first, lower the sg capacity so that we'll try
6777 * and move all the excess tasks away. We lower the capacity
6778 * of a group only if the local group has the capacity to fit
6779 * these excess tasks. The extra check prevents the case where
6780 * you always pull from the heaviest group when it is already
6781 * under-utilized (possible with a large weight task outweighs
6782 * the tasks on the system).
6783 */
6784 if (prefer_sibling && sds->local &&
6785 group_has_capacity(env, &sds->local_stat) &&
6786 (sgs->sum_nr_running > 1)) {
6787 sgs->group_no_capacity = 1;
6788 sgs->group_type = group_classify(sg, sgs);
6789 }
6790
6791 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6792 sds->busiest = sg;
6793 sds->busiest_stat = *sgs;
6794 }
6795
6796 next_group:
6797 /* Now, start updating sd_lb_stats */
6798 sds->total_load += sgs->group_load;
6799 sds->total_capacity += sgs->group_capacity;
6800
6801 sg = sg->next;
6802 } while (sg != env->sd->groups);
6803
6804 if (env->sd->flags & SD_NUMA)
6805 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6806
6807 if (!env->sd->parent) {
6808 /* update overload indicator if we are at root domain */
6809 if (env->dst_rq->rd->overload != overload)
6810 env->dst_rq->rd->overload = overload;
6811 }
6812
6813 }
6814
6815 /**
6816 * check_asym_packing - Check to see if the group is packed into the
6817 * sched doman.
6818 *
6819 * This is primarily intended to used at the sibling level. Some
6820 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6821 * case of POWER7, it can move to lower SMT modes only when higher
6822 * threads are idle. When in lower SMT modes, the threads will
6823 * perform better since they share less core resources. Hence when we
6824 * have idle threads, we want them to be the higher ones.
6825 *
6826 * This packing function is run on idle threads. It checks to see if
6827 * the busiest CPU in this domain (core in the P7 case) has a higher
6828 * CPU number than the packing function is being run on. Here we are
6829 * assuming lower CPU number will be equivalent to lower a SMT thread
6830 * number.
6831 *
6832 * Return: 1 when packing is required and a task should be moved to
6833 * this CPU. The amount of the imbalance is returned in *imbalance.
6834 *
6835 * @env: The load balancing environment.
6836 * @sds: Statistics of the sched_domain which is to be packed
6837 */
6838 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6839 {
6840 int busiest_cpu;
6841
6842 if (!(env->sd->flags & SD_ASYM_PACKING))
6843 return 0;
6844
6845 if (env->idle == CPU_NOT_IDLE)
6846 return 0;
6847
6848 if (!sds->busiest)
6849 return 0;
6850
6851 busiest_cpu = group_first_cpu(sds->busiest);
6852 if (env->dst_cpu > busiest_cpu)
6853 return 0;
6854
6855 env->imbalance = DIV_ROUND_CLOSEST(
6856 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6857 SCHED_CAPACITY_SCALE);
6858
6859 return 1;
6860 }
6861
6862 /**
6863 * fix_small_imbalance - Calculate the minor imbalance that exists
6864 * amongst the groups of a sched_domain, during
6865 * load balancing.
6866 * @env: The load balancing environment.
6867 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6868 */
6869 static inline
6870 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6871 {
6872 unsigned long tmp, capa_now = 0, capa_move = 0;
6873 unsigned int imbn = 2;
6874 unsigned long scaled_busy_load_per_task;
6875 struct sg_lb_stats *local, *busiest;
6876
6877 local = &sds->local_stat;
6878 busiest = &sds->busiest_stat;
6879
6880 if (!local->sum_nr_running)
6881 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6882 else if (busiest->load_per_task > local->load_per_task)
6883 imbn = 1;
6884
6885 scaled_busy_load_per_task =
6886 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6887 busiest->group_capacity;
6888
6889 if (busiest->avg_load + scaled_busy_load_per_task >=
6890 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6891 env->imbalance = busiest->load_per_task;
6892 return;
6893 }
6894
6895 /*
6896 * OK, we don't have enough imbalance to justify moving tasks,
6897 * however we may be able to increase total CPU capacity used by
6898 * moving them.
6899 */
6900
6901 capa_now += busiest->group_capacity *
6902 min(busiest->load_per_task, busiest->avg_load);
6903 capa_now += local->group_capacity *
6904 min(local->load_per_task, local->avg_load);
6905 capa_now /= SCHED_CAPACITY_SCALE;
6906
6907 /* Amount of load we'd subtract */
6908 if (busiest->avg_load > scaled_busy_load_per_task) {
6909 capa_move += busiest->group_capacity *
6910 min(busiest->load_per_task,
6911 busiest->avg_load - scaled_busy_load_per_task);
6912 }
6913
6914 /* Amount of load we'd add */
6915 if (busiest->avg_load * busiest->group_capacity <
6916 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6917 tmp = (busiest->avg_load * busiest->group_capacity) /
6918 local->group_capacity;
6919 } else {
6920 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6921 local->group_capacity;
6922 }
6923 capa_move += local->group_capacity *
6924 min(local->load_per_task, local->avg_load + tmp);
6925 capa_move /= SCHED_CAPACITY_SCALE;
6926
6927 /* Move if we gain throughput */
6928 if (capa_move > capa_now)
6929 env->imbalance = busiest->load_per_task;
6930 }
6931
6932 /**
6933 * calculate_imbalance - Calculate the amount of imbalance present within the
6934 * groups of a given sched_domain during load balance.
6935 * @env: load balance environment
6936 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6937 */
6938 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6939 {
6940 unsigned long max_pull, load_above_capacity = ~0UL;
6941 struct sg_lb_stats *local, *busiest;
6942
6943 local = &sds->local_stat;
6944 busiest = &sds->busiest_stat;
6945
6946 if (busiest->group_type == group_imbalanced) {
6947 /*
6948 * In the group_imb case we cannot rely on group-wide averages
6949 * to ensure cpu-load equilibrium, look at wider averages. XXX
6950 */
6951 busiest->load_per_task =
6952 min(busiest->load_per_task, sds->avg_load);
6953 }
6954
6955 /*
6956 * In the presence of smp nice balancing, certain scenarios can have
6957 * max load less than avg load(as we skip the groups at or below
6958 * its cpu_capacity, while calculating max_load..)
6959 */
6960 if (busiest->avg_load <= sds->avg_load ||
6961 local->avg_load >= sds->avg_load) {
6962 env->imbalance = 0;
6963 return fix_small_imbalance(env, sds);
6964 }
6965
6966 /*
6967 * If there aren't any idle cpus, avoid creating some.
6968 */
6969 if (busiest->group_type == group_overloaded &&
6970 local->group_type == group_overloaded) {
6971 load_above_capacity = busiest->sum_nr_running *
6972 SCHED_LOAD_SCALE;
6973 if (load_above_capacity > busiest->group_capacity)
6974 load_above_capacity -= busiest->group_capacity;
6975 else
6976 load_above_capacity = ~0UL;
6977 }
6978
6979 /*
6980 * We're trying to get all the cpus to the average_load, so we don't
6981 * want to push ourselves above the average load, nor do we wish to
6982 * reduce the max loaded cpu below the average load. At the same time,
6983 * we also don't want to reduce the group load below the group capacity
6984 * (so that we can implement power-savings policies etc). Thus we look
6985 * for the minimum possible imbalance.
6986 */
6987 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6988
6989 /* How much load to actually move to equalise the imbalance */
6990 env->imbalance = min(
6991 max_pull * busiest->group_capacity,
6992 (sds->avg_load - local->avg_load) * local->group_capacity
6993 ) / SCHED_CAPACITY_SCALE;
6994
6995 /*
6996 * if *imbalance is less than the average load per runnable task
6997 * there is no guarantee that any tasks will be moved so we'll have
6998 * a think about bumping its value to force at least one task to be
6999 * moved
7000 */
7001 if (env->imbalance < busiest->load_per_task)
7002 return fix_small_imbalance(env, sds);
7003 }
7004
7005 /******* find_busiest_group() helpers end here *********************/
7006
7007 /**
7008 * find_busiest_group - Returns the busiest group within the sched_domain
7009 * if there is an imbalance. If there isn't an imbalance, and
7010 * the user has opted for power-savings, it returns a group whose
7011 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
7012 * such a group exists.
7013 *
7014 * Also calculates the amount of weighted load which should be moved
7015 * to restore balance.
7016 *
7017 * @env: The load balancing environment.
7018 *
7019 * Return: - The busiest group if imbalance exists.
7020 * - If no imbalance and user has opted for power-savings balance,
7021 * return the least loaded group whose CPUs can be
7022 * put to idle by rebalancing its tasks onto our group.
7023 */
7024 static struct sched_group *find_busiest_group(struct lb_env *env)
7025 {
7026 struct sg_lb_stats *local, *busiest;
7027 struct sd_lb_stats sds;
7028
7029 init_sd_lb_stats(&sds);
7030
7031 /*
7032 * Compute the various statistics relavent for load balancing at
7033 * this level.
7034 */
7035 update_sd_lb_stats(env, &sds);
7036 local = &sds.local_stat;
7037 busiest = &sds.busiest_stat;
7038
7039 /* ASYM feature bypasses nice load balance check */
7040 if (check_asym_packing(env, &sds))
7041 return sds.busiest;
7042
7043 /* There is no busy sibling group to pull tasks from */
7044 if (!sds.busiest || busiest->sum_nr_running == 0)
7045 goto out_balanced;
7046
7047 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7048 / sds.total_capacity;
7049
7050 /*
7051 * If the busiest group is imbalanced the below checks don't
7052 * work because they assume all things are equal, which typically
7053 * isn't true due to cpus_allowed constraints and the like.
7054 */
7055 if (busiest->group_type == group_imbalanced)
7056 goto force_balance;
7057
7058 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7059 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7060 busiest->group_no_capacity)
7061 goto force_balance;
7062
7063 /*
7064 * If the local group is busier than the selected busiest group
7065 * don't try and pull any tasks.
7066 */
7067 if (local->avg_load >= busiest->avg_load)
7068 goto out_balanced;
7069
7070 /*
7071 * Don't pull any tasks if this group is already above the domain
7072 * average load.
7073 */
7074 if (local->avg_load >= sds.avg_load)
7075 goto out_balanced;
7076
7077 if (env->idle == CPU_IDLE) {
7078 /*
7079 * This cpu is idle. If the busiest group is not overloaded
7080 * and there is no imbalance between this and busiest group
7081 * wrt idle cpus, it is balanced. The imbalance becomes
7082 * significant if the diff is greater than 1 otherwise we
7083 * might end up to just move the imbalance on another group
7084 */
7085 if ((busiest->group_type != group_overloaded) &&
7086 (local->idle_cpus <= (busiest->idle_cpus + 1)))
7087 goto out_balanced;
7088 } else {
7089 /*
7090 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7091 * imbalance_pct to be conservative.
7092 */
7093 if (100 * busiest->avg_load <=
7094 env->sd->imbalance_pct * local->avg_load)
7095 goto out_balanced;
7096 }
7097
7098 force_balance:
7099 /* Looks like there is an imbalance. Compute it */
7100 calculate_imbalance(env, &sds);
7101 return sds.busiest;
7102
7103 out_balanced:
7104 env->imbalance = 0;
7105 return NULL;
7106 }
7107
7108 /*
7109 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7110 */
7111 static struct rq *find_busiest_queue(struct lb_env *env,
7112 struct sched_group *group)
7113 {
7114 struct rq *busiest = NULL, *rq;
7115 unsigned long busiest_load = 0, busiest_capacity = 1;
7116 int i;
7117
7118 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7119 unsigned long capacity, wl;
7120 enum fbq_type rt;
7121
7122 rq = cpu_rq(i);
7123 rt = fbq_classify_rq(rq);
7124
7125 /*
7126 * We classify groups/runqueues into three groups:
7127 * - regular: there are !numa tasks
7128 * - remote: there are numa tasks that run on the 'wrong' node
7129 * - all: there is no distinction
7130 *
7131 * In order to avoid migrating ideally placed numa tasks,
7132 * ignore those when there's better options.
7133 *
7134 * If we ignore the actual busiest queue to migrate another
7135 * task, the next balance pass can still reduce the busiest
7136 * queue by moving tasks around inside the node.
7137 *
7138 * If we cannot move enough load due to this classification
7139 * the next pass will adjust the group classification and
7140 * allow migration of more tasks.
7141 *
7142 * Both cases only affect the total convergence complexity.
7143 */
7144 if (rt > env->fbq_type)
7145 continue;
7146
7147 capacity = capacity_of(i);
7148
7149 wl = weighted_cpuload(i);
7150
7151 /*
7152 * When comparing with imbalance, use weighted_cpuload()
7153 * which is not scaled with the cpu capacity.
7154 */
7155
7156 if (rq->nr_running == 1 && wl > env->imbalance &&
7157 !check_cpu_capacity(rq, env->sd))
7158 continue;
7159
7160 /*
7161 * For the load comparisons with the other cpu's, consider
7162 * the weighted_cpuload() scaled with the cpu capacity, so
7163 * that the load can be moved away from the cpu that is
7164 * potentially running at a lower capacity.
7165 *
7166 * Thus we're looking for max(wl_i / capacity_i), crosswise
7167 * multiplication to rid ourselves of the division works out
7168 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7169 * our previous maximum.
7170 */
7171 if (wl * busiest_capacity > busiest_load * capacity) {
7172 busiest_load = wl;
7173 busiest_capacity = capacity;
7174 busiest = rq;
7175 }
7176 }
7177
7178 return busiest;
7179 }
7180
7181 /*
7182 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7183 * so long as it is large enough.
7184 */
7185 #define MAX_PINNED_INTERVAL 512
7186
7187 /* Working cpumask for load_balance and load_balance_newidle. */
7188 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7189
7190 static int need_active_balance(struct lb_env *env)
7191 {
7192 struct sched_domain *sd = env->sd;
7193
7194 if (env->idle == CPU_NEWLY_IDLE) {
7195
7196 /*
7197 * ASYM_PACKING needs to force migrate tasks from busy but
7198 * higher numbered CPUs in order to pack all tasks in the
7199 * lowest numbered CPUs.
7200 */
7201 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7202 return 1;
7203 }
7204
7205 /*
7206 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7207 * It's worth migrating the task if the src_cpu's capacity is reduced
7208 * because of other sched_class or IRQs if more capacity stays
7209 * available on dst_cpu.
7210 */
7211 if ((env->idle != CPU_NOT_IDLE) &&
7212 (env->src_rq->cfs.h_nr_running == 1)) {
7213 if ((check_cpu_capacity(env->src_rq, sd)) &&
7214 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7215 return 1;
7216 }
7217
7218 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7219 }
7220
7221 static int active_load_balance_cpu_stop(void *data);
7222
7223 static int should_we_balance(struct lb_env *env)
7224 {
7225 struct sched_group *sg = env->sd->groups;
7226 struct cpumask *sg_cpus, *sg_mask;
7227 int cpu, balance_cpu = -1;
7228
7229 /*
7230 * In the newly idle case, we will allow all the cpu's
7231 * to do the newly idle load balance.
7232 */
7233 if (env->idle == CPU_NEWLY_IDLE)
7234 return 1;
7235
7236 sg_cpus = sched_group_cpus(sg);
7237 sg_mask = sched_group_mask(sg);
7238 /* Try to find first idle cpu */
7239 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7240 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7241 continue;
7242
7243 balance_cpu = cpu;
7244 break;
7245 }
7246
7247 if (balance_cpu == -1)
7248 balance_cpu = group_balance_cpu(sg);
7249
7250 /*
7251 * First idle cpu or the first cpu(busiest) in this sched group
7252 * is eligible for doing load balancing at this and above domains.
7253 */
7254 return balance_cpu == env->dst_cpu;
7255 }
7256
7257 /*
7258 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7259 * tasks if there is an imbalance.
7260 */
7261 static int load_balance(int this_cpu, struct rq *this_rq,
7262 struct sched_domain *sd, enum cpu_idle_type idle,
7263 int *continue_balancing)
7264 {
7265 int ld_moved, cur_ld_moved, active_balance = 0;
7266 struct sched_domain *sd_parent = sd->parent;
7267 struct sched_group *group;
7268 struct rq *busiest;
7269 unsigned long flags;
7270 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7271
7272 struct lb_env env = {
7273 .sd = sd,
7274 .dst_cpu = this_cpu,
7275 .dst_rq = this_rq,
7276 .dst_grpmask = sched_group_cpus(sd->groups),
7277 .idle = idle,
7278 .loop_break = sched_nr_migrate_break,
7279 .cpus = cpus,
7280 .fbq_type = all,
7281 .tasks = LIST_HEAD_INIT(env.tasks),
7282 };
7283
7284 /*
7285 * For NEWLY_IDLE load_balancing, we don't need to consider
7286 * other cpus in our group
7287 */
7288 if (idle == CPU_NEWLY_IDLE)
7289 env.dst_grpmask = NULL;
7290
7291 cpumask_copy(cpus, cpu_active_mask);
7292
7293 schedstat_inc(sd, lb_count[idle]);
7294
7295 redo:
7296 if (!should_we_balance(&env)) {
7297 *continue_balancing = 0;
7298 goto out_balanced;
7299 }
7300
7301 group = find_busiest_group(&env);
7302 if (!group) {
7303 schedstat_inc(sd, lb_nobusyg[idle]);
7304 goto out_balanced;
7305 }
7306
7307 busiest = find_busiest_queue(&env, group);
7308 if (!busiest) {
7309 schedstat_inc(sd, lb_nobusyq[idle]);
7310 goto out_balanced;
7311 }
7312
7313 BUG_ON(busiest == env.dst_rq);
7314
7315 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7316
7317 env.src_cpu = busiest->cpu;
7318 env.src_rq = busiest;
7319
7320 ld_moved = 0;
7321 if (busiest->nr_running > 1) {
7322 /*
7323 * Attempt to move tasks. If find_busiest_group has found
7324 * an imbalance but busiest->nr_running <= 1, the group is
7325 * still unbalanced. ld_moved simply stays zero, so it is
7326 * correctly treated as an imbalance.
7327 */
7328 env.flags |= LBF_ALL_PINNED;
7329 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7330
7331 more_balance:
7332 raw_spin_lock_irqsave(&busiest->lock, flags);
7333
7334 /*
7335 * cur_ld_moved - load moved in current iteration
7336 * ld_moved - cumulative load moved across iterations
7337 */
7338 cur_ld_moved = detach_tasks(&env);
7339
7340 /*
7341 * We've detached some tasks from busiest_rq. Every
7342 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7343 * unlock busiest->lock, and we are able to be sure
7344 * that nobody can manipulate the tasks in parallel.
7345 * See task_rq_lock() family for the details.
7346 */
7347
7348 raw_spin_unlock(&busiest->lock);
7349
7350 if (cur_ld_moved) {
7351 attach_tasks(&env);
7352 ld_moved += cur_ld_moved;
7353 }
7354
7355 local_irq_restore(flags);
7356
7357 if (env.flags & LBF_NEED_BREAK) {
7358 env.flags &= ~LBF_NEED_BREAK;
7359 goto more_balance;
7360 }
7361
7362 /*
7363 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7364 * us and move them to an alternate dst_cpu in our sched_group
7365 * where they can run. The upper limit on how many times we
7366 * iterate on same src_cpu is dependent on number of cpus in our
7367 * sched_group.
7368 *
7369 * This changes load balance semantics a bit on who can move
7370 * load to a given_cpu. In addition to the given_cpu itself
7371 * (or a ilb_cpu acting on its behalf where given_cpu is
7372 * nohz-idle), we now have balance_cpu in a position to move
7373 * load to given_cpu. In rare situations, this may cause
7374 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7375 * _independently_ and at _same_ time to move some load to
7376 * given_cpu) causing exceess load to be moved to given_cpu.
7377 * This however should not happen so much in practice and
7378 * moreover subsequent load balance cycles should correct the
7379 * excess load moved.
7380 */
7381 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7382
7383 /* Prevent to re-select dst_cpu via env's cpus */
7384 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7385
7386 env.dst_rq = cpu_rq(env.new_dst_cpu);
7387 env.dst_cpu = env.new_dst_cpu;
7388 env.flags &= ~LBF_DST_PINNED;
7389 env.loop = 0;
7390 env.loop_break = sched_nr_migrate_break;
7391
7392 /*
7393 * Go back to "more_balance" rather than "redo" since we
7394 * need to continue with same src_cpu.
7395 */
7396 goto more_balance;
7397 }
7398
7399 /*
7400 * We failed to reach balance because of affinity.
7401 */
7402 if (sd_parent) {
7403 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7404
7405 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7406 *group_imbalance = 1;
7407 }
7408
7409 /* All tasks on this runqueue were pinned by CPU affinity */
7410 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7411 cpumask_clear_cpu(cpu_of(busiest), cpus);
7412 if (!cpumask_empty(cpus)) {
7413 env.loop = 0;
7414 env.loop_break = sched_nr_migrate_break;
7415 goto redo;
7416 }
7417 goto out_all_pinned;
7418 }
7419 }
7420
7421 if (!ld_moved) {
7422 schedstat_inc(sd, lb_failed[idle]);
7423 /*
7424 * Increment the failure counter only on periodic balance.
7425 * We do not want newidle balance, which can be very
7426 * frequent, pollute the failure counter causing
7427 * excessive cache_hot migrations and active balances.
7428 */
7429 if (idle != CPU_NEWLY_IDLE)
7430 sd->nr_balance_failed++;
7431
7432 if (need_active_balance(&env)) {
7433 raw_spin_lock_irqsave(&busiest->lock, flags);
7434
7435 /* don't kick the active_load_balance_cpu_stop,
7436 * if the curr task on busiest cpu can't be
7437 * moved to this_cpu
7438 */
7439 if (!cpumask_test_cpu(this_cpu,
7440 tsk_cpus_allowed(busiest->curr))) {
7441 raw_spin_unlock_irqrestore(&busiest->lock,
7442 flags);
7443 env.flags |= LBF_ALL_PINNED;
7444 goto out_one_pinned;
7445 }
7446
7447 /*
7448 * ->active_balance synchronizes accesses to
7449 * ->active_balance_work. Once set, it's cleared
7450 * only after active load balance is finished.
7451 */
7452 if (!busiest->active_balance) {
7453 busiest->active_balance = 1;
7454 busiest->push_cpu = this_cpu;
7455 active_balance = 1;
7456 }
7457 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7458
7459 if (active_balance) {
7460 stop_one_cpu_nowait(cpu_of(busiest),
7461 active_load_balance_cpu_stop, busiest,
7462 &busiest->active_balance_work);
7463 }
7464
7465 /* We've kicked active balancing, force task migration. */
7466 sd->nr_balance_failed = sd->cache_nice_tries+1;
7467 }
7468 } else
7469 sd->nr_balance_failed = 0;
7470
7471 if (likely(!active_balance)) {
7472 /* We were unbalanced, so reset the balancing interval */
7473 sd->balance_interval = sd->min_interval;
7474 } else {
7475 /*
7476 * If we've begun active balancing, start to back off. This
7477 * case may not be covered by the all_pinned logic if there
7478 * is only 1 task on the busy runqueue (because we don't call
7479 * detach_tasks).
7480 */
7481 if (sd->balance_interval < sd->max_interval)
7482 sd->balance_interval *= 2;
7483 }
7484
7485 goto out;
7486
7487 out_balanced:
7488 /*
7489 * We reach balance although we may have faced some affinity
7490 * constraints. Clear the imbalance flag if it was set.
7491 */
7492 if (sd_parent) {
7493 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7494
7495 if (*group_imbalance)
7496 *group_imbalance = 0;
7497 }
7498
7499 out_all_pinned:
7500 /*
7501 * We reach balance because all tasks are pinned at this level so
7502 * we can't migrate them. Let the imbalance flag set so parent level
7503 * can try to migrate them.
7504 */
7505 schedstat_inc(sd, lb_balanced[idle]);
7506
7507 sd->nr_balance_failed = 0;
7508
7509 out_one_pinned:
7510 /* tune up the balancing interval */
7511 if (((env.flags & LBF_ALL_PINNED) &&
7512 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7513 (sd->balance_interval < sd->max_interval))
7514 sd->balance_interval *= 2;
7515
7516 ld_moved = 0;
7517 out:
7518 return ld_moved;
7519 }
7520
7521 static inline unsigned long
7522 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7523 {
7524 unsigned long interval = sd->balance_interval;
7525
7526 if (cpu_busy)
7527 interval *= sd->busy_factor;
7528
7529 /* scale ms to jiffies */
7530 interval = msecs_to_jiffies(interval);
7531 interval = clamp(interval, 1UL, max_load_balance_interval);
7532
7533 return interval;
7534 }
7535
7536 static inline void
7537 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7538 {
7539 unsigned long interval, next;
7540
7541 interval = get_sd_balance_interval(sd, cpu_busy);
7542 next = sd->last_balance + interval;
7543
7544 if (time_after(*next_balance, next))
7545 *next_balance = next;
7546 }
7547
7548 /*
7549 * idle_balance is called by schedule() if this_cpu is about to become
7550 * idle. Attempts to pull tasks from other CPUs.
7551 */
7552 static int idle_balance(struct rq *this_rq)
7553 {
7554 unsigned long next_balance = jiffies + HZ;
7555 int this_cpu = this_rq->cpu;
7556 struct sched_domain *sd;
7557 int pulled_task = 0;
7558 u64 curr_cost = 0;
7559
7560 /*
7561 * We must set idle_stamp _before_ calling idle_balance(), such that we
7562 * measure the duration of idle_balance() as idle time.
7563 */
7564 this_rq->idle_stamp = rq_clock(this_rq);
7565
7566 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7567 !this_rq->rd->overload) {
7568 rcu_read_lock();
7569 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7570 if (sd)
7571 update_next_balance(sd, 0, &next_balance);
7572 rcu_read_unlock();
7573
7574 goto out;
7575 }
7576
7577 raw_spin_unlock(&this_rq->lock);
7578
7579 update_blocked_averages(this_cpu);
7580 rcu_read_lock();
7581 for_each_domain(this_cpu, sd) {
7582 int continue_balancing = 1;
7583 u64 t0, domain_cost;
7584
7585 if (!(sd->flags & SD_LOAD_BALANCE))
7586 continue;
7587
7588 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7589 update_next_balance(sd, 0, &next_balance);
7590 break;
7591 }
7592
7593 if (sd->flags & SD_BALANCE_NEWIDLE) {
7594 t0 = sched_clock_cpu(this_cpu);
7595
7596 pulled_task = load_balance(this_cpu, this_rq,
7597 sd, CPU_NEWLY_IDLE,
7598 &continue_balancing);
7599
7600 domain_cost = sched_clock_cpu(this_cpu) - t0;
7601 if (domain_cost > sd->max_newidle_lb_cost)
7602 sd->max_newidle_lb_cost = domain_cost;
7603
7604 curr_cost += domain_cost;
7605 }
7606
7607 update_next_balance(sd, 0, &next_balance);
7608
7609 /*
7610 * Stop searching for tasks to pull if there are
7611 * now runnable tasks on this rq.
7612 */
7613 if (pulled_task || this_rq->nr_running > 0)
7614 break;
7615 }
7616 rcu_read_unlock();
7617
7618 raw_spin_lock(&this_rq->lock);
7619
7620 if (curr_cost > this_rq->max_idle_balance_cost)
7621 this_rq->max_idle_balance_cost = curr_cost;
7622
7623 /*
7624 * While browsing the domains, we released the rq lock, a task could
7625 * have been enqueued in the meantime. Since we're not going idle,
7626 * pretend we pulled a task.
7627 */
7628 if (this_rq->cfs.h_nr_running && !pulled_task)
7629 pulled_task = 1;
7630
7631 out:
7632 /* Move the next balance forward */
7633 if (time_after(this_rq->next_balance, next_balance))
7634 this_rq->next_balance = next_balance;
7635
7636 /* Is there a task of a high priority class? */
7637 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7638 pulled_task = -1;
7639
7640 if (pulled_task)
7641 this_rq->idle_stamp = 0;
7642
7643 return pulled_task;
7644 }
7645
7646 /*
7647 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7648 * running tasks off the busiest CPU onto idle CPUs. It requires at
7649 * least 1 task to be running on each physical CPU where possible, and
7650 * avoids physical / logical imbalances.
7651 */
7652 static int active_load_balance_cpu_stop(void *data)
7653 {
7654 struct rq *busiest_rq = data;
7655 int busiest_cpu = cpu_of(busiest_rq);
7656 int target_cpu = busiest_rq->push_cpu;
7657 struct rq *target_rq = cpu_rq(target_cpu);
7658 struct sched_domain *sd;
7659 struct task_struct *p = NULL;
7660
7661 raw_spin_lock_irq(&busiest_rq->lock);
7662
7663 /* make sure the requested cpu hasn't gone down in the meantime */
7664 if (unlikely(busiest_cpu != smp_processor_id() ||
7665 !busiest_rq->active_balance))
7666 goto out_unlock;
7667
7668 /* Is there any task to move? */
7669 if (busiest_rq->nr_running <= 1)
7670 goto out_unlock;
7671
7672 /*
7673 * This condition is "impossible", if it occurs
7674 * we need to fix it. Originally reported by
7675 * Bjorn Helgaas on a 128-cpu setup.
7676 */
7677 BUG_ON(busiest_rq == target_rq);
7678
7679 /* Search for an sd spanning us and the target CPU. */
7680 rcu_read_lock();
7681 for_each_domain(target_cpu, sd) {
7682 if ((sd->flags & SD_LOAD_BALANCE) &&
7683 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7684 break;
7685 }
7686
7687 if (likely(sd)) {
7688 struct lb_env env = {
7689 .sd = sd,
7690 .dst_cpu = target_cpu,
7691 .dst_rq = target_rq,
7692 .src_cpu = busiest_rq->cpu,
7693 .src_rq = busiest_rq,
7694 .idle = CPU_IDLE,
7695 };
7696
7697 schedstat_inc(sd, alb_count);
7698
7699 p = detach_one_task(&env);
7700 if (p) {
7701 schedstat_inc(sd, alb_pushed);
7702 /* Active balancing done, reset the failure counter. */
7703 sd->nr_balance_failed = 0;
7704 } else {
7705 schedstat_inc(sd, alb_failed);
7706 }
7707 }
7708 rcu_read_unlock();
7709 out_unlock:
7710 busiest_rq->active_balance = 0;
7711 raw_spin_unlock(&busiest_rq->lock);
7712
7713 if (p)
7714 attach_one_task(target_rq, p);
7715
7716 local_irq_enable();
7717
7718 return 0;
7719 }
7720
7721 static inline int on_null_domain(struct rq *rq)
7722 {
7723 return unlikely(!rcu_dereference_sched(rq->sd));
7724 }
7725
7726 #ifdef CONFIG_NO_HZ_COMMON
7727 /*
7728 * idle load balancing details
7729 * - When one of the busy CPUs notice that there may be an idle rebalancing
7730 * needed, they will kick the idle load balancer, which then does idle
7731 * load balancing for all the idle CPUs.
7732 */
7733 static struct {
7734 cpumask_var_t idle_cpus_mask;
7735 atomic_t nr_cpus;
7736 unsigned long next_balance; /* in jiffy units */
7737 } nohz ____cacheline_aligned;
7738
7739 static inline int find_new_ilb(void)
7740 {
7741 int ilb = cpumask_first(nohz.idle_cpus_mask);
7742
7743 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7744 return ilb;
7745
7746 return nr_cpu_ids;
7747 }
7748
7749 /*
7750 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7751 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7752 * CPU (if there is one).
7753 */
7754 static void nohz_balancer_kick(void)
7755 {
7756 int ilb_cpu;
7757
7758 nohz.next_balance++;
7759
7760 ilb_cpu = find_new_ilb();
7761
7762 if (ilb_cpu >= nr_cpu_ids)
7763 return;
7764
7765 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7766 return;
7767 /*
7768 * Use smp_send_reschedule() instead of resched_cpu().
7769 * This way we generate a sched IPI on the target cpu which
7770 * is idle. And the softirq performing nohz idle load balance
7771 * will be run before returning from the IPI.
7772 */
7773 smp_send_reschedule(ilb_cpu);
7774 return;
7775 }
7776
7777 static inline void nohz_balance_exit_idle(int cpu)
7778 {
7779 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7780 /*
7781 * Completely isolated CPUs don't ever set, so we must test.
7782 */
7783 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7784 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7785 atomic_dec(&nohz.nr_cpus);
7786 }
7787 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7788 }
7789 }
7790
7791 static inline void set_cpu_sd_state_busy(void)
7792 {
7793 struct sched_domain *sd;
7794 int cpu = smp_processor_id();
7795
7796 rcu_read_lock();
7797 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7798
7799 if (!sd || !sd->nohz_idle)
7800 goto unlock;
7801 sd->nohz_idle = 0;
7802
7803 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7804 unlock:
7805 rcu_read_unlock();
7806 }
7807
7808 void set_cpu_sd_state_idle(void)
7809 {
7810 struct sched_domain *sd;
7811 int cpu = smp_processor_id();
7812
7813 rcu_read_lock();
7814 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7815
7816 if (!sd || sd->nohz_idle)
7817 goto unlock;
7818 sd->nohz_idle = 1;
7819
7820 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7821 unlock:
7822 rcu_read_unlock();
7823 }
7824
7825 /*
7826 * This routine will record that the cpu is going idle with tick stopped.
7827 * This info will be used in performing idle load balancing in the future.
7828 */
7829 void nohz_balance_enter_idle(int cpu)
7830 {
7831 /*
7832 * If this cpu is going down, then nothing needs to be done.
7833 */
7834 if (!cpu_active(cpu))
7835 return;
7836
7837 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7838 return;
7839
7840 /*
7841 * If we're a completely isolated CPU, we don't play.
7842 */
7843 if (on_null_domain(cpu_rq(cpu)))
7844 return;
7845
7846 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7847 atomic_inc(&nohz.nr_cpus);
7848 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7849 }
7850
7851 static int sched_ilb_notifier(struct notifier_block *nfb,
7852 unsigned long action, void *hcpu)
7853 {
7854 switch (action & ~CPU_TASKS_FROZEN) {
7855 case CPU_DYING:
7856 nohz_balance_exit_idle(smp_processor_id());
7857 return NOTIFY_OK;
7858 default:
7859 return NOTIFY_DONE;
7860 }
7861 }
7862 #endif
7863
7864 static DEFINE_SPINLOCK(balancing);
7865
7866 /*
7867 * Scale the max load_balance interval with the number of CPUs in the system.
7868 * This trades load-balance latency on larger machines for less cross talk.
7869 */
7870 void update_max_interval(void)
7871 {
7872 max_load_balance_interval = HZ*num_online_cpus()/10;
7873 }
7874
7875 /*
7876 * It checks each scheduling domain to see if it is due to be balanced,
7877 * and initiates a balancing operation if so.
7878 *
7879 * Balancing parameters are set up in init_sched_domains.
7880 */
7881 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7882 {
7883 int continue_balancing = 1;
7884 int cpu = rq->cpu;
7885 unsigned long interval;
7886 struct sched_domain *sd;
7887 /* Earliest time when we have to do rebalance again */
7888 unsigned long next_balance = jiffies + 60*HZ;
7889 int update_next_balance = 0;
7890 int need_serialize, need_decay = 0;
7891 u64 max_cost = 0;
7892
7893 update_blocked_averages(cpu);
7894
7895 rcu_read_lock();
7896 for_each_domain(cpu, sd) {
7897 /*
7898 * Decay the newidle max times here because this is a regular
7899 * visit to all the domains. Decay ~1% per second.
7900 */
7901 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7902 sd->max_newidle_lb_cost =
7903 (sd->max_newidle_lb_cost * 253) / 256;
7904 sd->next_decay_max_lb_cost = jiffies + HZ;
7905 need_decay = 1;
7906 }
7907 max_cost += sd->max_newidle_lb_cost;
7908
7909 if (!(sd->flags & SD_LOAD_BALANCE))
7910 continue;
7911
7912 /*
7913 * Stop the load balance at this level. There is another
7914 * CPU in our sched group which is doing load balancing more
7915 * actively.
7916 */
7917 if (!continue_balancing) {
7918 if (need_decay)
7919 continue;
7920 break;
7921 }
7922
7923 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7924
7925 need_serialize = sd->flags & SD_SERIALIZE;
7926 if (need_serialize) {
7927 if (!spin_trylock(&balancing))
7928 goto out;
7929 }
7930
7931 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7932 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7933 /*
7934 * The LBF_DST_PINNED logic could have changed
7935 * env->dst_cpu, so we can't know our idle
7936 * state even if we migrated tasks. Update it.
7937 */
7938 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7939 }
7940 sd->last_balance = jiffies;
7941 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7942 }
7943 if (need_serialize)
7944 spin_unlock(&balancing);
7945 out:
7946 if (time_after(next_balance, sd->last_balance + interval)) {
7947 next_balance = sd->last_balance + interval;
7948 update_next_balance = 1;
7949 }
7950 }
7951 if (need_decay) {
7952 /*
7953 * Ensure the rq-wide value also decays but keep it at a
7954 * reasonable floor to avoid funnies with rq->avg_idle.
7955 */
7956 rq->max_idle_balance_cost =
7957 max((u64)sysctl_sched_migration_cost, max_cost);
7958 }
7959 rcu_read_unlock();
7960
7961 /*
7962 * next_balance will be updated only when there is a need.
7963 * When the cpu is attached to null domain for ex, it will not be
7964 * updated.
7965 */
7966 if (likely(update_next_balance)) {
7967 rq->next_balance = next_balance;
7968
7969 #ifdef CONFIG_NO_HZ_COMMON
7970 /*
7971 * If this CPU has been elected to perform the nohz idle
7972 * balance. Other idle CPUs have already rebalanced with
7973 * nohz_idle_balance() and nohz.next_balance has been
7974 * updated accordingly. This CPU is now running the idle load
7975 * balance for itself and we need to update the
7976 * nohz.next_balance accordingly.
7977 */
7978 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7979 nohz.next_balance = rq->next_balance;
7980 #endif
7981 }
7982 }
7983
7984 #ifdef CONFIG_NO_HZ_COMMON
7985 /*
7986 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7987 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7988 */
7989 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7990 {
7991 int this_cpu = this_rq->cpu;
7992 struct rq *rq;
7993 int balance_cpu;
7994 /* Earliest time when we have to do rebalance again */
7995 unsigned long next_balance = jiffies + 60*HZ;
7996 int update_next_balance = 0;
7997
7998 if (idle != CPU_IDLE ||
7999 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8000 goto end;
8001
8002 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8003 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8004 continue;
8005
8006 /*
8007 * If this cpu gets work to do, stop the load balancing
8008 * work being done for other cpus. Next load
8009 * balancing owner will pick it up.
8010 */
8011 if (need_resched())
8012 break;
8013
8014 rq = cpu_rq(balance_cpu);
8015
8016 /*
8017 * If time for next balance is due,
8018 * do the balance.
8019 */
8020 if (time_after_eq(jiffies, rq->next_balance)) {
8021 raw_spin_lock_irq(&rq->lock);
8022 update_rq_clock(rq);
8023 update_cpu_load_idle(rq);
8024 raw_spin_unlock_irq(&rq->lock);
8025 rebalance_domains(rq, CPU_IDLE);
8026 }
8027
8028 if (time_after(next_balance, rq->next_balance)) {
8029 next_balance = rq->next_balance;
8030 update_next_balance = 1;
8031 }
8032 }
8033
8034 /*
8035 * next_balance will be updated only when there is a need.
8036 * When the CPU is attached to null domain for ex, it will not be
8037 * updated.
8038 */
8039 if (likely(update_next_balance))
8040 nohz.next_balance = next_balance;
8041 end:
8042 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8043 }
8044
8045 /*
8046 * Current heuristic for kicking the idle load balancer in the presence
8047 * of an idle cpu in the system.
8048 * - This rq has more than one task.
8049 * - This rq has at least one CFS task and the capacity of the CPU is
8050 * significantly reduced because of RT tasks or IRQs.
8051 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8052 * multiple busy cpu.
8053 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8054 * domain span are idle.
8055 */
8056 static inline bool nohz_kick_needed(struct rq *rq)
8057 {
8058 unsigned long now = jiffies;
8059 struct sched_domain *sd;
8060 struct sched_group_capacity *sgc;
8061 int nr_busy, cpu = rq->cpu;
8062 bool kick = false;
8063
8064 if (unlikely(rq->idle_balance))
8065 return false;
8066
8067 /*
8068 * We may be recently in ticked or tickless idle mode. At the first
8069 * busy tick after returning from idle, we will update the busy stats.
8070 */
8071 set_cpu_sd_state_busy();
8072 nohz_balance_exit_idle(cpu);
8073
8074 /*
8075 * None are in tickless mode and hence no need for NOHZ idle load
8076 * balancing.
8077 */
8078 if (likely(!atomic_read(&nohz.nr_cpus)))
8079 return false;
8080
8081 if (time_before(now, nohz.next_balance))
8082 return false;
8083
8084 if (rq->nr_running >= 2)
8085 return true;
8086
8087 rcu_read_lock();
8088 sd = rcu_dereference(per_cpu(sd_busy, cpu));
8089 if (sd) {
8090 sgc = sd->groups->sgc;
8091 nr_busy = atomic_read(&sgc->nr_busy_cpus);
8092
8093 if (nr_busy > 1) {
8094 kick = true;
8095 goto unlock;
8096 }
8097
8098 }
8099
8100 sd = rcu_dereference(rq->sd);
8101 if (sd) {
8102 if ((rq->cfs.h_nr_running >= 1) &&
8103 check_cpu_capacity(rq, sd)) {
8104 kick = true;
8105 goto unlock;
8106 }
8107 }
8108
8109 sd = rcu_dereference(per_cpu(sd_asym, cpu));
8110 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8111 sched_domain_span(sd)) < cpu)) {
8112 kick = true;
8113 goto unlock;
8114 }
8115
8116 unlock:
8117 rcu_read_unlock();
8118 return kick;
8119 }
8120 #else
8121 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8122 #endif
8123
8124 /*
8125 * run_rebalance_domains is triggered when needed from the scheduler tick.
8126 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8127 */
8128 static void run_rebalance_domains(struct softirq_action *h)
8129 {
8130 struct rq *this_rq = this_rq();
8131 enum cpu_idle_type idle = this_rq->idle_balance ?
8132 CPU_IDLE : CPU_NOT_IDLE;
8133
8134 /*
8135 * If this cpu has a pending nohz_balance_kick, then do the
8136 * balancing on behalf of the other idle cpus whose ticks are
8137 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8138 * give the idle cpus a chance to load balance. Else we may
8139 * load balance only within the local sched_domain hierarchy
8140 * and abort nohz_idle_balance altogether if we pull some load.
8141 */
8142 nohz_idle_balance(this_rq, idle);
8143 rebalance_domains(this_rq, idle);
8144 }
8145
8146 /*
8147 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8148 */
8149 void trigger_load_balance(struct rq *rq)
8150 {
8151 /* Don't need to rebalance while attached to NULL domain */
8152 if (unlikely(on_null_domain(rq)))
8153 return;
8154
8155 if (time_after_eq(jiffies, rq->next_balance))
8156 raise_softirq(SCHED_SOFTIRQ);
8157 #ifdef CONFIG_NO_HZ_COMMON
8158 if (nohz_kick_needed(rq))
8159 nohz_balancer_kick();
8160 #endif
8161 }
8162
8163 static void rq_online_fair(struct rq *rq)
8164 {
8165 update_sysctl();
8166
8167 update_runtime_enabled(rq);
8168 }
8169
8170 static void rq_offline_fair(struct rq *rq)
8171 {
8172 update_sysctl();
8173
8174 /* Ensure any throttled groups are reachable by pick_next_task */
8175 unthrottle_offline_cfs_rqs(rq);
8176 }
8177
8178 #endif /* CONFIG_SMP */
8179
8180 /*
8181 * scheduler tick hitting a task of our scheduling class:
8182 */
8183 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8184 {
8185 struct cfs_rq *cfs_rq;
8186 struct sched_entity *se = &curr->se;
8187
8188 for_each_sched_entity(se) {
8189 cfs_rq = cfs_rq_of(se);
8190 entity_tick(cfs_rq, se, queued);
8191 }
8192
8193 if (static_branch_unlikely(&sched_numa_balancing))
8194 task_tick_numa(rq, curr);
8195 }
8196
8197 /*
8198 * called on fork with the child task as argument from the parent's context
8199 * - child not yet on the tasklist
8200 * - preemption disabled
8201 */
8202 static void task_fork_fair(struct task_struct *p)
8203 {
8204 struct cfs_rq *cfs_rq;
8205 struct sched_entity *se = &p->se, *curr;
8206 int this_cpu = smp_processor_id();
8207 struct rq *rq = this_rq();
8208 unsigned long flags;
8209
8210 raw_spin_lock_irqsave(&rq->lock, flags);
8211
8212 update_rq_clock(rq);
8213
8214 cfs_rq = task_cfs_rq(current);
8215 curr = cfs_rq->curr;
8216
8217 /*
8218 * Not only the cpu but also the task_group of the parent might have
8219 * been changed after parent->se.parent,cfs_rq were copied to
8220 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8221 * of child point to valid ones.
8222 */
8223 rcu_read_lock();
8224 __set_task_cpu(p, this_cpu);
8225 rcu_read_unlock();
8226
8227 update_curr(cfs_rq);
8228
8229 if (curr)
8230 se->vruntime = curr->vruntime;
8231 place_entity(cfs_rq, se, 1);
8232
8233 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8234 /*
8235 * Upon rescheduling, sched_class::put_prev_task() will place
8236 * 'current' within the tree based on its new key value.
8237 */
8238 swap(curr->vruntime, se->vruntime);
8239 resched_curr(rq);
8240 }
8241
8242 se->vruntime -= cfs_rq->min_vruntime;
8243
8244 raw_spin_unlock_irqrestore(&rq->lock, flags);
8245 }
8246
8247 /*
8248 * Priority of the task has changed. Check to see if we preempt
8249 * the current task.
8250 */
8251 static void
8252 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8253 {
8254 if (!task_on_rq_queued(p))
8255 return;
8256
8257 /*
8258 * Reschedule if we are currently running on this runqueue and
8259 * our priority decreased, or if we are not currently running on
8260 * this runqueue and our priority is higher than the current's
8261 */
8262 if (rq->curr == p) {
8263 if (p->prio > oldprio)
8264 resched_curr(rq);
8265 } else
8266 check_preempt_curr(rq, p, 0);
8267 }
8268
8269 static inline bool vruntime_normalized(struct task_struct *p)
8270 {
8271 struct sched_entity *se = &p->se;
8272
8273 /*
8274 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8275 * the dequeue_entity(.flags=0) will already have normalized the
8276 * vruntime.
8277 */
8278 if (p->on_rq)
8279 return true;
8280
8281 /*
8282 * When !on_rq, vruntime of the task has usually NOT been normalized.
8283 * But there are some cases where it has already been normalized:
8284 *
8285 * - A forked child which is waiting for being woken up by
8286 * wake_up_new_task().
8287 * - A task which has been woken up by try_to_wake_up() and
8288 * waiting for actually being woken up by sched_ttwu_pending().
8289 */
8290 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8291 return true;
8292
8293 return false;
8294 }
8295
8296 static void detach_task_cfs_rq(struct task_struct *p)
8297 {
8298 struct sched_entity *se = &p->se;
8299 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8300
8301 if (!vruntime_normalized(p)) {
8302 /*
8303 * Fix up our vruntime so that the current sleep doesn't
8304 * cause 'unlimited' sleep bonus.
8305 */
8306 place_entity(cfs_rq, se, 0);
8307 se->vruntime -= cfs_rq->min_vruntime;
8308 }
8309
8310 /* Catch up with the cfs_rq and remove our load when we leave */
8311 detach_entity_load_avg(cfs_rq, se);
8312 }
8313
8314 static void attach_task_cfs_rq(struct task_struct *p)
8315 {
8316 struct sched_entity *se = &p->se;
8317 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8318
8319 #ifdef CONFIG_FAIR_GROUP_SCHED
8320 /*
8321 * Since the real-depth could have been changed (only FAIR
8322 * class maintain depth value), reset depth properly.
8323 */
8324 se->depth = se->parent ? se->parent->depth + 1 : 0;
8325 #endif
8326
8327 /* Synchronize task with its cfs_rq */
8328 attach_entity_load_avg(cfs_rq, se);
8329
8330 if (!vruntime_normalized(p))
8331 se->vruntime += cfs_rq->min_vruntime;
8332 }
8333
8334 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8335 {
8336 detach_task_cfs_rq(p);
8337 }
8338
8339 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8340 {
8341 attach_task_cfs_rq(p);
8342
8343 if (task_on_rq_queued(p)) {
8344 /*
8345 * We were most likely switched from sched_rt, so
8346 * kick off the schedule if running, otherwise just see
8347 * if we can still preempt the current task.
8348 */
8349 if (rq->curr == p)
8350 resched_curr(rq);
8351 else
8352 check_preempt_curr(rq, p, 0);
8353 }
8354 }
8355
8356 /* Account for a task changing its policy or group.
8357 *
8358 * This routine is mostly called to set cfs_rq->curr field when a task
8359 * migrates between groups/classes.
8360 */
8361 static void set_curr_task_fair(struct rq *rq)
8362 {
8363 struct sched_entity *se = &rq->curr->se;
8364
8365 for_each_sched_entity(se) {
8366 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8367
8368 set_next_entity(cfs_rq, se);
8369 /* ensure bandwidth has been allocated on our new cfs_rq */
8370 account_cfs_rq_runtime(cfs_rq, 0);
8371 }
8372 }
8373
8374 void init_cfs_rq(struct cfs_rq *cfs_rq)
8375 {
8376 cfs_rq->tasks_timeline = RB_ROOT;
8377 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8378 #ifndef CONFIG_64BIT
8379 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8380 #endif
8381 #ifdef CONFIG_SMP
8382 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8383 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8384 #endif
8385 }
8386
8387 #ifdef CONFIG_FAIR_GROUP_SCHED
8388 static void task_move_group_fair(struct task_struct *p)
8389 {
8390 detach_task_cfs_rq(p);
8391 set_task_rq(p, task_cpu(p));
8392
8393 #ifdef CONFIG_SMP
8394 /* Tell se's cfs_rq has been changed -- migrated */
8395 p->se.avg.last_update_time = 0;
8396 #endif
8397 attach_task_cfs_rq(p);
8398 }
8399
8400 void free_fair_sched_group(struct task_group *tg)
8401 {
8402 int i;
8403
8404 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8405
8406 for_each_possible_cpu(i) {
8407 if (tg->cfs_rq)
8408 kfree(tg->cfs_rq[i]);
8409 if (tg->se)
8410 kfree(tg->se[i]);
8411 }
8412
8413 kfree(tg->cfs_rq);
8414 kfree(tg->se);
8415 }
8416
8417 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8418 {
8419 struct cfs_rq *cfs_rq;
8420 struct sched_entity *se;
8421 int i;
8422
8423 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8424 if (!tg->cfs_rq)
8425 goto err;
8426 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8427 if (!tg->se)
8428 goto err;
8429
8430 tg->shares = NICE_0_LOAD;
8431
8432 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8433
8434 for_each_possible_cpu(i) {
8435 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8436 GFP_KERNEL, cpu_to_node(i));
8437 if (!cfs_rq)
8438 goto err;
8439
8440 se = kzalloc_node(sizeof(struct sched_entity),
8441 GFP_KERNEL, cpu_to_node(i));
8442 if (!se)
8443 goto err_free_rq;
8444
8445 init_cfs_rq(cfs_rq);
8446 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8447 init_entity_runnable_average(se);
8448 post_init_entity_util_avg(se);
8449 }
8450
8451 return 1;
8452
8453 err_free_rq:
8454 kfree(cfs_rq);
8455 err:
8456 return 0;
8457 }
8458
8459 void unregister_fair_sched_group(struct task_group *tg)
8460 {
8461 unsigned long flags;
8462 struct rq *rq;
8463 int cpu;
8464
8465 for_each_possible_cpu(cpu) {
8466 if (tg->se[cpu])
8467 remove_entity_load_avg(tg->se[cpu]);
8468
8469 /*
8470 * Only empty task groups can be destroyed; so we can speculatively
8471 * check on_list without danger of it being re-added.
8472 */
8473 if (!tg->cfs_rq[cpu]->on_list)
8474 continue;
8475
8476 rq = cpu_rq(cpu);
8477
8478 raw_spin_lock_irqsave(&rq->lock, flags);
8479 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8480 raw_spin_unlock_irqrestore(&rq->lock, flags);
8481 }
8482 }
8483
8484 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8485 struct sched_entity *se, int cpu,
8486 struct sched_entity *parent)
8487 {
8488 struct rq *rq = cpu_rq(cpu);
8489
8490 cfs_rq->tg = tg;
8491 cfs_rq->rq = rq;
8492 init_cfs_rq_runtime(cfs_rq);
8493
8494 tg->cfs_rq[cpu] = cfs_rq;
8495 tg->se[cpu] = se;
8496
8497 /* se could be NULL for root_task_group */
8498 if (!se)
8499 return;
8500
8501 if (!parent) {
8502 se->cfs_rq = &rq->cfs;
8503 se->depth = 0;
8504 } else {
8505 se->cfs_rq = parent->my_q;
8506 se->depth = parent->depth + 1;
8507 }
8508
8509 se->my_q = cfs_rq;
8510 /* guarantee group entities always have weight */
8511 update_load_set(&se->load, NICE_0_LOAD);
8512 se->parent = parent;
8513 }
8514
8515 static DEFINE_MUTEX(shares_mutex);
8516
8517 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8518 {
8519 int i;
8520 unsigned long flags;
8521
8522 /*
8523 * We can't change the weight of the root cgroup.
8524 */
8525 if (!tg->se[0])
8526 return -EINVAL;
8527
8528 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8529
8530 mutex_lock(&shares_mutex);
8531 if (tg->shares == shares)
8532 goto done;
8533
8534 tg->shares = shares;
8535 for_each_possible_cpu(i) {
8536 struct rq *rq = cpu_rq(i);
8537 struct sched_entity *se;
8538
8539 se = tg->se[i];
8540 /* Propagate contribution to hierarchy */
8541 raw_spin_lock_irqsave(&rq->lock, flags);
8542
8543 /* Possible calls to update_curr() need rq clock */
8544 update_rq_clock(rq);
8545 for_each_sched_entity(se)
8546 update_cfs_shares(group_cfs_rq(se));
8547 raw_spin_unlock_irqrestore(&rq->lock, flags);
8548 }
8549
8550 done:
8551 mutex_unlock(&shares_mutex);
8552 return 0;
8553 }
8554 #else /* CONFIG_FAIR_GROUP_SCHED */
8555
8556 void free_fair_sched_group(struct task_group *tg) { }
8557
8558 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8559 {
8560 return 1;
8561 }
8562
8563 void unregister_fair_sched_group(struct task_group *tg) { }
8564
8565 #endif /* CONFIG_FAIR_GROUP_SCHED */
8566
8567
8568 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8569 {
8570 struct sched_entity *se = &task->se;
8571 unsigned int rr_interval = 0;
8572
8573 /*
8574 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8575 * idle runqueue:
8576 */
8577 if (rq->cfs.load.weight)
8578 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8579
8580 return rr_interval;
8581 }
8582
8583 /*
8584 * All the scheduling class methods:
8585 */
8586 const struct sched_class fair_sched_class = {
8587 .next = &idle_sched_class,
8588 .enqueue_task = enqueue_task_fair,
8589 .dequeue_task = dequeue_task_fair,
8590 .yield_task = yield_task_fair,
8591 .yield_to_task = yield_to_task_fair,
8592
8593 .check_preempt_curr = check_preempt_wakeup,
8594
8595 .pick_next_task = pick_next_task_fair,
8596 .put_prev_task = put_prev_task_fair,
8597
8598 #ifdef CONFIG_SMP
8599 .select_task_rq = select_task_rq_fair,
8600 .migrate_task_rq = migrate_task_rq_fair,
8601
8602 .rq_online = rq_online_fair,
8603 .rq_offline = rq_offline_fair,
8604
8605 .task_waking = task_waking_fair,
8606 .task_dead = task_dead_fair,
8607 .set_cpus_allowed = set_cpus_allowed_common,
8608 #endif
8609
8610 .set_curr_task = set_curr_task_fair,
8611 .task_tick = task_tick_fair,
8612 .task_fork = task_fork_fair,
8613
8614 .prio_changed = prio_changed_fair,
8615 .switched_from = switched_from_fair,
8616 .switched_to = switched_to_fair,
8617
8618 .get_rr_interval = get_rr_interval_fair,
8619
8620 .update_curr = update_curr_fair,
8621
8622 #ifdef CONFIG_FAIR_GROUP_SCHED
8623 .task_move_group = task_move_group_fair,
8624 #endif
8625 };
8626
8627 #ifdef CONFIG_SCHED_DEBUG
8628 void print_cfs_stats(struct seq_file *m, int cpu)
8629 {
8630 struct cfs_rq *cfs_rq;
8631
8632 rcu_read_lock();
8633 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8634 print_cfs_rq(m, cpu, cfs_rq);
8635 rcu_read_unlock();
8636 }
8637
8638 #ifdef CONFIG_NUMA_BALANCING
8639 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8640 {
8641 int node;
8642 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8643
8644 for_each_online_node(node) {
8645 if (p->numa_faults) {
8646 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8647 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8648 }
8649 if (p->numa_group) {
8650 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8651 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8652 }
8653 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8654 }
8655 }
8656 #endif /* CONFIG_NUMA_BALANCING */
8657 #endif /* CONFIG_SCHED_DEBUG */
8658
8659 __init void init_sched_fair_class(void)
8660 {
8661 #ifdef CONFIG_SMP
8662 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8663
8664 #ifdef CONFIG_NO_HZ_COMMON
8665 nohz.next_balance = jiffies;
8666 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8667 cpu_notifier(sched_ilb_notifier, 0);
8668 #endif
8669 #endif /* SMP */
8670
8671 }
This page took 0.252853 seconds and 6 git commands to generate.