sched/fair: Fix cfs_rq avg tracking underflow
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 }
306 }
307
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314 }
315
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 if (se->cfs_rq == pse->cfs_rq)
325 return se->cfs_rq;
326
327 return NULL;
328 }
329
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 return se->parent;
333 }
334
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365 }
366
367 #else /* !CONFIG_FAIR_GROUP_SCHED */
368
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 return container_of(se, struct task_struct, se);
372 }
373
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 return container_of(cfs_rq, struct rq, cfs);
377 }
378
379 #define entity_is_task(se) 1
380
381 #define for_each_sched_entity(se) \
382 for (; se; se = NULL)
383
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 return &task_rq(p)->cfs;
387 }
388
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395 }
396
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 return NULL;
401 }
402
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 return NULL;
417 }
418
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
425
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428
429 /**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 s64 delta = (s64)(vruntime - max_vruntime);
436 if (delta > 0)
437 max_vruntime = vruntime;
438
439 return max_vruntime;
440 }
441
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449 }
450
451 static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453 {
454 return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
469 if (!cfs_rq->curr)
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482
483 /*
484 * Enqueue an entity into the rb-tree:
485 */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542 }
543
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552 }
553
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563 }
564
565 /**************************************************************
566 * Scheduling class statistics methods:
567 */
568
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572 {
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588
589 return 0;
590 }
591 #endif
592
593 /*
594 * delta /= w
595 */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600
601 return delta;
602 }
603
604 /*
605 * The idea is to set a period in which each task runs once.
606 *
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
618 }
619
620 /*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
624 * s = p*P[w/rw]
625 */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
636
637 if (unlikely(!se->on_rq)) {
638 lw = cfs_rq->load;
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = __calc_delta(slice, se->load.weight, load);
644 }
645 return slice;
646 }
647
648 /*
649 * We calculate the vruntime slice of a to-be-inserted task.
650 *
651 * vs = s/w
652 */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661
662 /*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
666 */
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
673 {
674 struct sched_avg *sa = &se->avg;
675
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
691 }
692
693 /*
694 * With new tasks being created, their initial util_avgs are extrapolated
695 * based on the cfs_rq's current util_avg:
696 *
697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
698 *
699 * However, in many cases, the above util_avg does not give a desired
700 * value. Moreover, the sum of the util_avgs may be divergent, such
701 * as when the series is a harmonic series.
702 *
703 * To solve this problem, we also cap the util_avg of successive tasks to
704 * only 1/2 of the left utilization budget:
705 *
706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
707 *
708 * where n denotes the nth task.
709 *
710 * For example, a simplest series from the beginning would be like:
711 *
712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
714 *
715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
716 * if util_avg > util_avg_cap.
717 */
718 void post_init_entity_util_avg(struct sched_entity *se)
719 {
720 struct cfs_rq *cfs_rq = cfs_rq_of(se);
721 struct sched_avg *sa = &se->avg;
722 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
723
724 if (cap > 0) {
725 if (cfs_rq->avg.util_avg != 0) {
726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
727 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
728
729 if (sa->util_avg > cap)
730 sa->util_avg = cap;
731 } else {
732 sa->util_avg = cap;
733 }
734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
735 }
736 }
737
738 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
739 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
740 #else
741 void init_entity_runnable_average(struct sched_entity *se)
742 {
743 }
744 void post_init_entity_util_avg(struct sched_entity *se)
745 {
746 }
747 #endif
748
749 /*
750 * Update the current task's runtime statistics.
751 */
752 static void update_curr(struct cfs_rq *cfs_rq)
753 {
754 struct sched_entity *curr = cfs_rq->curr;
755 u64 now = rq_clock_task(rq_of(cfs_rq));
756 u64 delta_exec;
757
758 if (unlikely(!curr))
759 return;
760
761 delta_exec = now - curr->exec_start;
762 if (unlikely((s64)delta_exec <= 0))
763 return;
764
765 curr->exec_start = now;
766
767 schedstat_set(curr->statistics.exec_max,
768 max(delta_exec, curr->statistics.exec_max));
769
770 curr->sum_exec_runtime += delta_exec;
771 schedstat_add(cfs_rq, exec_clock, delta_exec);
772
773 curr->vruntime += calc_delta_fair(delta_exec, curr);
774 update_min_vruntime(cfs_rq);
775
776 if (entity_is_task(curr)) {
777 struct task_struct *curtask = task_of(curr);
778
779 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
780 cpuacct_charge(curtask, delta_exec);
781 account_group_exec_runtime(curtask, delta_exec);
782 }
783
784 account_cfs_rq_runtime(cfs_rq, delta_exec);
785 }
786
787 static void update_curr_fair(struct rq *rq)
788 {
789 update_curr(cfs_rq_of(&rq->curr->se));
790 }
791
792 #ifdef CONFIG_SCHEDSTATS
793 static inline void
794 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
795 {
796 u64 wait_start = rq_clock(rq_of(cfs_rq));
797
798 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
799 likely(wait_start > se->statistics.wait_start))
800 wait_start -= se->statistics.wait_start;
801
802 se->statistics.wait_start = wait_start;
803 }
804
805 static void
806 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
807 {
808 struct task_struct *p;
809 u64 delta;
810
811 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
812
813 if (entity_is_task(se)) {
814 p = task_of(se);
815 if (task_on_rq_migrating(p)) {
816 /*
817 * Preserve migrating task's wait time so wait_start
818 * time stamp can be adjusted to accumulate wait time
819 * prior to migration.
820 */
821 se->statistics.wait_start = delta;
822 return;
823 }
824 trace_sched_stat_wait(p, delta);
825 }
826
827 se->statistics.wait_max = max(se->statistics.wait_max, delta);
828 se->statistics.wait_count++;
829 se->statistics.wait_sum += delta;
830 se->statistics.wait_start = 0;
831 }
832
833 /*
834 * Task is being enqueued - update stats:
835 */
836 static inline void
837 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
838 {
839 /*
840 * Are we enqueueing a waiting task? (for current tasks
841 * a dequeue/enqueue event is a NOP)
842 */
843 if (se != cfs_rq->curr)
844 update_stats_wait_start(cfs_rq, se);
845 }
846
847 static inline void
848 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
849 {
850 /*
851 * Mark the end of the wait period if dequeueing a
852 * waiting task:
853 */
854 if (se != cfs_rq->curr)
855 update_stats_wait_end(cfs_rq, se);
856
857 if (flags & DEQUEUE_SLEEP) {
858 if (entity_is_task(se)) {
859 struct task_struct *tsk = task_of(se);
860
861 if (tsk->state & TASK_INTERRUPTIBLE)
862 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
863 if (tsk->state & TASK_UNINTERRUPTIBLE)
864 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
865 }
866 }
867
868 }
869 #else
870 static inline void
871 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
872 {
873 }
874
875 static inline void
876 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
877 {
878 }
879
880 static inline void
881 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
882 {
883 }
884
885 static inline void
886 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
887 {
888 }
889 #endif
890
891 /*
892 * We are picking a new current task - update its stats:
893 */
894 static inline void
895 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
896 {
897 /*
898 * We are starting a new run period:
899 */
900 se->exec_start = rq_clock_task(rq_of(cfs_rq));
901 }
902
903 /**************************************************
904 * Scheduling class queueing methods:
905 */
906
907 #ifdef CONFIG_NUMA_BALANCING
908 /*
909 * Approximate time to scan a full NUMA task in ms. The task scan period is
910 * calculated based on the tasks virtual memory size and
911 * numa_balancing_scan_size.
912 */
913 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
914 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
915
916 /* Portion of address space to scan in MB */
917 unsigned int sysctl_numa_balancing_scan_size = 256;
918
919 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
920 unsigned int sysctl_numa_balancing_scan_delay = 1000;
921
922 static unsigned int task_nr_scan_windows(struct task_struct *p)
923 {
924 unsigned long rss = 0;
925 unsigned long nr_scan_pages;
926
927 /*
928 * Calculations based on RSS as non-present and empty pages are skipped
929 * by the PTE scanner and NUMA hinting faults should be trapped based
930 * on resident pages
931 */
932 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
933 rss = get_mm_rss(p->mm);
934 if (!rss)
935 rss = nr_scan_pages;
936
937 rss = round_up(rss, nr_scan_pages);
938 return rss / nr_scan_pages;
939 }
940
941 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
942 #define MAX_SCAN_WINDOW 2560
943
944 static unsigned int task_scan_min(struct task_struct *p)
945 {
946 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
947 unsigned int scan, floor;
948 unsigned int windows = 1;
949
950 if (scan_size < MAX_SCAN_WINDOW)
951 windows = MAX_SCAN_WINDOW / scan_size;
952 floor = 1000 / windows;
953
954 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
955 return max_t(unsigned int, floor, scan);
956 }
957
958 static unsigned int task_scan_max(struct task_struct *p)
959 {
960 unsigned int smin = task_scan_min(p);
961 unsigned int smax;
962
963 /* Watch for min being lower than max due to floor calculations */
964 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
965 return max(smin, smax);
966 }
967
968 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
969 {
970 rq->nr_numa_running += (p->numa_preferred_nid != -1);
971 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
972 }
973
974 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
975 {
976 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
977 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
978 }
979
980 struct numa_group {
981 atomic_t refcount;
982
983 spinlock_t lock; /* nr_tasks, tasks */
984 int nr_tasks;
985 pid_t gid;
986 int active_nodes;
987
988 struct rcu_head rcu;
989 unsigned long total_faults;
990 unsigned long max_faults_cpu;
991 /*
992 * Faults_cpu is used to decide whether memory should move
993 * towards the CPU. As a consequence, these stats are weighted
994 * more by CPU use than by memory faults.
995 */
996 unsigned long *faults_cpu;
997 unsigned long faults[0];
998 };
999
1000 /* Shared or private faults. */
1001 #define NR_NUMA_HINT_FAULT_TYPES 2
1002
1003 /* Memory and CPU locality */
1004 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1005
1006 /* Averaged statistics, and temporary buffers. */
1007 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1008
1009 pid_t task_numa_group_id(struct task_struct *p)
1010 {
1011 return p->numa_group ? p->numa_group->gid : 0;
1012 }
1013
1014 /*
1015 * The averaged statistics, shared & private, memory & cpu,
1016 * occupy the first half of the array. The second half of the
1017 * array is for current counters, which are averaged into the
1018 * first set by task_numa_placement.
1019 */
1020 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1021 {
1022 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1023 }
1024
1025 static inline unsigned long task_faults(struct task_struct *p, int nid)
1026 {
1027 if (!p->numa_faults)
1028 return 0;
1029
1030 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1031 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1032 }
1033
1034 static inline unsigned long group_faults(struct task_struct *p, int nid)
1035 {
1036 if (!p->numa_group)
1037 return 0;
1038
1039 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1040 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1041 }
1042
1043 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1044 {
1045 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1046 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1047 }
1048
1049 /*
1050 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1051 * considered part of a numa group's pseudo-interleaving set. Migrations
1052 * between these nodes are slowed down, to allow things to settle down.
1053 */
1054 #define ACTIVE_NODE_FRACTION 3
1055
1056 static bool numa_is_active_node(int nid, struct numa_group *ng)
1057 {
1058 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1059 }
1060
1061 /* Handle placement on systems where not all nodes are directly connected. */
1062 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1063 int maxdist, bool task)
1064 {
1065 unsigned long score = 0;
1066 int node;
1067
1068 /*
1069 * All nodes are directly connected, and the same distance
1070 * from each other. No need for fancy placement algorithms.
1071 */
1072 if (sched_numa_topology_type == NUMA_DIRECT)
1073 return 0;
1074
1075 /*
1076 * This code is called for each node, introducing N^2 complexity,
1077 * which should be ok given the number of nodes rarely exceeds 8.
1078 */
1079 for_each_online_node(node) {
1080 unsigned long faults;
1081 int dist = node_distance(nid, node);
1082
1083 /*
1084 * The furthest away nodes in the system are not interesting
1085 * for placement; nid was already counted.
1086 */
1087 if (dist == sched_max_numa_distance || node == nid)
1088 continue;
1089
1090 /*
1091 * On systems with a backplane NUMA topology, compare groups
1092 * of nodes, and move tasks towards the group with the most
1093 * memory accesses. When comparing two nodes at distance
1094 * "hoplimit", only nodes closer by than "hoplimit" are part
1095 * of each group. Skip other nodes.
1096 */
1097 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1098 dist > maxdist)
1099 continue;
1100
1101 /* Add up the faults from nearby nodes. */
1102 if (task)
1103 faults = task_faults(p, node);
1104 else
1105 faults = group_faults(p, node);
1106
1107 /*
1108 * On systems with a glueless mesh NUMA topology, there are
1109 * no fixed "groups of nodes". Instead, nodes that are not
1110 * directly connected bounce traffic through intermediate
1111 * nodes; a numa_group can occupy any set of nodes.
1112 * The further away a node is, the less the faults count.
1113 * This seems to result in good task placement.
1114 */
1115 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1116 faults *= (sched_max_numa_distance - dist);
1117 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1118 }
1119
1120 score += faults;
1121 }
1122
1123 return score;
1124 }
1125
1126 /*
1127 * These return the fraction of accesses done by a particular task, or
1128 * task group, on a particular numa node. The group weight is given a
1129 * larger multiplier, in order to group tasks together that are almost
1130 * evenly spread out between numa nodes.
1131 */
1132 static inline unsigned long task_weight(struct task_struct *p, int nid,
1133 int dist)
1134 {
1135 unsigned long faults, total_faults;
1136
1137 if (!p->numa_faults)
1138 return 0;
1139
1140 total_faults = p->total_numa_faults;
1141
1142 if (!total_faults)
1143 return 0;
1144
1145 faults = task_faults(p, nid);
1146 faults += score_nearby_nodes(p, nid, dist, true);
1147
1148 return 1000 * faults / total_faults;
1149 }
1150
1151 static inline unsigned long group_weight(struct task_struct *p, int nid,
1152 int dist)
1153 {
1154 unsigned long faults, total_faults;
1155
1156 if (!p->numa_group)
1157 return 0;
1158
1159 total_faults = p->numa_group->total_faults;
1160
1161 if (!total_faults)
1162 return 0;
1163
1164 faults = group_faults(p, nid);
1165 faults += score_nearby_nodes(p, nid, dist, false);
1166
1167 return 1000 * faults / total_faults;
1168 }
1169
1170 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1171 int src_nid, int dst_cpu)
1172 {
1173 struct numa_group *ng = p->numa_group;
1174 int dst_nid = cpu_to_node(dst_cpu);
1175 int last_cpupid, this_cpupid;
1176
1177 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1178
1179 /*
1180 * Multi-stage node selection is used in conjunction with a periodic
1181 * migration fault to build a temporal task<->page relation. By using
1182 * a two-stage filter we remove short/unlikely relations.
1183 *
1184 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1185 * a task's usage of a particular page (n_p) per total usage of this
1186 * page (n_t) (in a given time-span) to a probability.
1187 *
1188 * Our periodic faults will sample this probability and getting the
1189 * same result twice in a row, given these samples are fully
1190 * independent, is then given by P(n)^2, provided our sample period
1191 * is sufficiently short compared to the usage pattern.
1192 *
1193 * This quadric squishes small probabilities, making it less likely we
1194 * act on an unlikely task<->page relation.
1195 */
1196 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1197 if (!cpupid_pid_unset(last_cpupid) &&
1198 cpupid_to_nid(last_cpupid) != dst_nid)
1199 return false;
1200
1201 /* Always allow migrate on private faults */
1202 if (cpupid_match_pid(p, last_cpupid))
1203 return true;
1204
1205 /* A shared fault, but p->numa_group has not been set up yet. */
1206 if (!ng)
1207 return true;
1208
1209 /*
1210 * Destination node is much more heavily used than the source
1211 * node? Allow migration.
1212 */
1213 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1214 ACTIVE_NODE_FRACTION)
1215 return true;
1216
1217 /*
1218 * Distribute memory according to CPU & memory use on each node,
1219 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1220 *
1221 * faults_cpu(dst) 3 faults_cpu(src)
1222 * --------------- * - > ---------------
1223 * faults_mem(dst) 4 faults_mem(src)
1224 */
1225 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1226 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1227 }
1228
1229 static unsigned long weighted_cpuload(const int cpu);
1230 static unsigned long source_load(int cpu, int type);
1231 static unsigned long target_load(int cpu, int type);
1232 static unsigned long capacity_of(int cpu);
1233 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1234
1235 /* Cached statistics for all CPUs within a node */
1236 struct numa_stats {
1237 unsigned long nr_running;
1238 unsigned long load;
1239
1240 /* Total compute capacity of CPUs on a node */
1241 unsigned long compute_capacity;
1242
1243 /* Approximate capacity in terms of runnable tasks on a node */
1244 unsigned long task_capacity;
1245 int has_free_capacity;
1246 };
1247
1248 /*
1249 * XXX borrowed from update_sg_lb_stats
1250 */
1251 static void update_numa_stats(struct numa_stats *ns, int nid)
1252 {
1253 int smt, cpu, cpus = 0;
1254 unsigned long capacity;
1255
1256 memset(ns, 0, sizeof(*ns));
1257 for_each_cpu(cpu, cpumask_of_node(nid)) {
1258 struct rq *rq = cpu_rq(cpu);
1259
1260 ns->nr_running += rq->nr_running;
1261 ns->load += weighted_cpuload(cpu);
1262 ns->compute_capacity += capacity_of(cpu);
1263
1264 cpus++;
1265 }
1266
1267 /*
1268 * If we raced with hotplug and there are no CPUs left in our mask
1269 * the @ns structure is NULL'ed and task_numa_compare() will
1270 * not find this node attractive.
1271 *
1272 * We'll either bail at !has_free_capacity, or we'll detect a huge
1273 * imbalance and bail there.
1274 */
1275 if (!cpus)
1276 return;
1277
1278 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1279 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1280 capacity = cpus / smt; /* cores */
1281
1282 ns->task_capacity = min_t(unsigned, capacity,
1283 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1284 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1285 }
1286
1287 struct task_numa_env {
1288 struct task_struct *p;
1289
1290 int src_cpu, src_nid;
1291 int dst_cpu, dst_nid;
1292
1293 struct numa_stats src_stats, dst_stats;
1294
1295 int imbalance_pct;
1296 int dist;
1297
1298 struct task_struct *best_task;
1299 long best_imp;
1300 int best_cpu;
1301 };
1302
1303 static void task_numa_assign(struct task_numa_env *env,
1304 struct task_struct *p, long imp)
1305 {
1306 if (env->best_task)
1307 put_task_struct(env->best_task);
1308
1309 env->best_task = p;
1310 env->best_imp = imp;
1311 env->best_cpu = env->dst_cpu;
1312 }
1313
1314 static bool load_too_imbalanced(long src_load, long dst_load,
1315 struct task_numa_env *env)
1316 {
1317 long imb, old_imb;
1318 long orig_src_load, orig_dst_load;
1319 long src_capacity, dst_capacity;
1320
1321 /*
1322 * The load is corrected for the CPU capacity available on each node.
1323 *
1324 * src_load dst_load
1325 * ------------ vs ---------
1326 * src_capacity dst_capacity
1327 */
1328 src_capacity = env->src_stats.compute_capacity;
1329 dst_capacity = env->dst_stats.compute_capacity;
1330
1331 /* We care about the slope of the imbalance, not the direction. */
1332 if (dst_load < src_load)
1333 swap(dst_load, src_load);
1334
1335 /* Is the difference below the threshold? */
1336 imb = dst_load * src_capacity * 100 -
1337 src_load * dst_capacity * env->imbalance_pct;
1338 if (imb <= 0)
1339 return false;
1340
1341 /*
1342 * The imbalance is above the allowed threshold.
1343 * Compare it with the old imbalance.
1344 */
1345 orig_src_load = env->src_stats.load;
1346 orig_dst_load = env->dst_stats.load;
1347
1348 if (orig_dst_load < orig_src_load)
1349 swap(orig_dst_load, orig_src_load);
1350
1351 old_imb = orig_dst_load * src_capacity * 100 -
1352 orig_src_load * dst_capacity * env->imbalance_pct;
1353
1354 /* Would this change make things worse? */
1355 return (imb > old_imb);
1356 }
1357
1358 /*
1359 * This checks if the overall compute and NUMA accesses of the system would
1360 * be improved if the source tasks was migrated to the target dst_cpu taking
1361 * into account that it might be best if task running on the dst_cpu should
1362 * be exchanged with the source task
1363 */
1364 static void task_numa_compare(struct task_numa_env *env,
1365 long taskimp, long groupimp)
1366 {
1367 struct rq *src_rq = cpu_rq(env->src_cpu);
1368 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1369 struct task_struct *cur;
1370 long src_load, dst_load;
1371 long load;
1372 long imp = env->p->numa_group ? groupimp : taskimp;
1373 long moveimp = imp;
1374 int dist = env->dist;
1375 bool assigned = false;
1376
1377 rcu_read_lock();
1378
1379 raw_spin_lock_irq(&dst_rq->lock);
1380 cur = dst_rq->curr;
1381 /*
1382 * No need to move the exiting task or idle task.
1383 */
1384 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1385 cur = NULL;
1386 else {
1387 /*
1388 * The task_struct must be protected here to protect the
1389 * p->numa_faults access in the task_weight since the
1390 * numa_faults could already be freed in the following path:
1391 * finish_task_switch()
1392 * --> put_task_struct()
1393 * --> __put_task_struct()
1394 * --> task_numa_free()
1395 */
1396 get_task_struct(cur);
1397 }
1398
1399 raw_spin_unlock_irq(&dst_rq->lock);
1400
1401 /*
1402 * Because we have preemption enabled we can get migrated around and
1403 * end try selecting ourselves (current == env->p) as a swap candidate.
1404 */
1405 if (cur == env->p)
1406 goto unlock;
1407
1408 /*
1409 * "imp" is the fault differential for the source task between the
1410 * source and destination node. Calculate the total differential for
1411 * the source task and potential destination task. The more negative
1412 * the value is, the more rmeote accesses that would be expected to
1413 * be incurred if the tasks were swapped.
1414 */
1415 if (cur) {
1416 /* Skip this swap candidate if cannot move to the source cpu */
1417 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1418 goto unlock;
1419
1420 /*
1421 * If dst and source tasks are in the same NUMA group, or not
1422 * in any group then look only at task weights.
1423 */
1424 if (cur->numa_group == env->p->numa_group) {
1425 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1426 task_weight(cur, env->dst_nid, dist);
1427 /*
1428 * Add some hysteresis to prevent swapping the
1429 * tasks within a group over tiny differences.
1430 */
1431 if (cur->numa_group)
1432 imp -= imp/16;
1433 } else {
1434 /*
1435 * Compare the group weights. If a task is all by
1436 * itself (not part of a group), use the task weight
1437 * instead.
1438 */
1439 if (cur->numa_group)
1440 imp += group_weight(cur, env->src_nid, dist) -
1441 group_weight(cur, env->dst_nid, dist);
1442 else
1443 imp += task_weight(cur, env->src_nid, dist) -
1444 task_weight(cur, env->dst_nid, dist);
1445 }
1446 }
1447
1448 if (imp <= env->best_imp && moveimp <= env->best_imp)
1449 goto unlock;
1450
1451 if (!cur) {
1452 /* Is there capacity at our destination? */
1453 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1454 !env->dst_stats.has_free_capacity)
1455 goto unlock;
1456
1457 goto balance;
1458 }
1459
1460 /* Balance doesn't matter much if we're running a task per cpu */
1461 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1462 dst_rq->nr_running == 1)
1463 goto assign;
1464
1465 /*
1466 * In the overloaded case, try and keep the load balanced.
1467 */
1468 balance:
1469 load = task_h_load(env->p);
1470 dst_load = env->dst_stats.load + load;
1471 src_load = env->src_stats.load - load;
1472
1473 if (moveimp > imp && moveimp > env->best_imp) {
1474 /*
1475 * If the improvement from just moving env->p direction is
1476 * better than swapping tasks around, check if a move is
1477 * possible. Store a slightly smaller score than moveimp,
1478 * so an actually idle CPU will win.
1479 */
1480 if (!load_too_imbalanced(src_load, dst_load, env)) {
1481 imp = moveimp - 1;
1482 put_task_struct(cur);
1483 cur = NULL;
1484 goto assign;
1485 }
1486 }
1487
1488 if (imp <= env->best_imp)
1489 goto unlock;
1490
1491 if (cur) {
1492 load = task_h_load(cur);
1493 dst_load -= load;
1494 src_load += load;
1495 }
1496
1497 if (load_too_imbalanced(src_load, dst_load, env))
1498 goto unlock;
1499
1500 /*
1501 * One idle CPU per node is evaluated for a task numa move.
1502 * Call select_idle_sibling to maybe find a better one.
1503 */
1504 if (!cur)
1505 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1506
1507 assign:
1508 assigned = true;
1509 task_numa_assign(env, cur, imp);
1510 unlock:
1511 rcu_read_unlock();
1512 /*
1513 * The dst_rq->curr isn't assigned. The protection for task_struct is
1514 * finished.
1515 */
1516 if (cur && !assigned)
1517 put_task_struct(cur);
1518 }
1519
1520 static void task_numa_find_cpu(struct task_numa_env *env,
1521 long taskimp, long groupimp)
1522 {
1523 int cpu;
1524
1525 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1526 /* Skip this CPU if the source task cannot migrate */
1527 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1528 continue;
1529
1530 env->dst_cpu = cpu;
1531 task_numa_compare(env, taskimp, groupimp);
1532 }
1533 }
1534
1535 /* Only move tasks to a NUMA node less busy than the current node. */
1536 static bool numa_has_capacity(struct task_numa_env *env)
1537 {
1538 struct numa_stats *src = &env->src_stats;
1539 struct numa_stats *dst = &env->dst_stats;
1540
1541 if (src->has_free_capacity && !dst->has_free_capacity)
1542 return false;
1543
1544 /*
1545 * Only consider a task move if the source has a higher load
1546 * than the destination, corrected for CPU capacity on each node.
1547 *
1548 * src->load dst->load
1549 * --------------------- vs ---------------------
1550 * src->compute_capacity dst->compute_capacity
1551 */
1552 if (src->load * dst->compute_capacity * env->imbalance_pct >
1553
1554 dst->load * src->compute_capacity * 100)
1555 return true;
1556
1557 return false;
1558 }
1559
1560 static int task_numa_migrate(struct task_struct *p)
1561 {
1562 struct task_numa_env env = {
1563 .p = p,
1564
1565 .src_cpu = task_cpu(p),
1566 .src_nid = task_node(p),
1567
1568 .imbalance_pct = 112,
1569
1570 .best_task = NULL,
1571 .best_imp = 0,
1572 .best_cpu = -1,
1573 };
1574 struct sched_domain *sd;
1575 unsigned long taskweight, groupweight;
1576 int nid, ret, dist;
1577 long taskimp, groupimp;
1578
1579 /*
1580 * Pick the lowest SD_NUMA domain, as that would have the smallest
1581 * imbalance and would be the first to start moving tasks about.
1582 *
1583 * And we want to avoid any moving of tasks about, as that would create
1584 * random movement of tasks -- counter the numa conditions we're trying
1585 * to satisfy here.
1586 */
1587 rcu_read_lock();
1588 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1589 if (sd)
1590 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1591 rcu_read_unlock();
1592
1593 /*
1594 * Cpusets can break the scheduler domain tree into smaller
1595 * balance domains, some of which do not cross NUMA boundaries.
1596 * Tasks that are "trapped" in such domains cannot be migrated
1597 * elsewhere, so there is no point in (re)trying.
1598 */
1599 if (unlikely(!sd)) {
1600 p->numa_preferred_nid = task_node(p);
1601 return -EINVAL;
1602 }
1603
1604 env.dst_nid = p->numa_preferred_nid;
1605 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1606 taskweight = task_weight(p, env.src_nid, dist);
1607 groupweight = group_weight(p, env.src_nid, dist);
1608 update_numa_stats(&env.src_stats, env.src_nid);
1609 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1610 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1611 update_numa_stats(&env.dst_stats, env.dst_nid);
1612
1613 /* Try to find a spot on the preferred nid. */
1614 if (numa_has_capacity(&env))
1615 task_numa_find_cpu(&env, taskimp, groupimp);
1616
1617 /*
1618 * Look at other nodes in these cases:
1619 * - there is no space available on the preferred_nid
1620 * - the task is part of a numa_group that is interleaved across
1621 * multiple NUMA nodes; in order to better consolidate the group,
1622 * we need to check other locations.
1623 */
1624 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1625 for_each_online_node(nid) {
1626 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1627 continue;
1628
1629 dist = node_distance(env.src_nid, env.dst_nid);
1630 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1631 dist != env.dist) {
1632 taskweight = task_weight(p, env.src_nid, dist);
1633 groupweight = group_weight(p, env.src_nid, dist);
1634 }
1635
1636 /* Only consider nodes where both task and groups benefit */
1637 taskimp = task_weight(p, nid, dist) - taskweight;
1638 groupimp = group_weight(p, nid, dist) - groupweight;
1639 if (taskimp < 0 && groupimp < 0)
1640 continue;
1641
1642 env.dist = dist;
1643 env.dst_nid = nid;
1644 update_numa_stats(&env.dst_stats, env.dst_nid);
1645 if (numa_has_capacity(&env))
1646 task_numa_find_cpu(&env, taskimp, groupimp);
1647 }
1648 }
1649
1650 /*
1651 * If the task is part of a workload that spans multiple NUMA nodes,
1652 * and is migrating into one of the workload's active nodes, remember
1653 * this node as the task's preferred numa node, so the workload can
1654 * settle down.
1655 * A task that migrated to a second choice node will be better off
1656 * trying for a better one later. Do not set the preferred node here.
1657 */
1658 if (p->numa_group) {
1659 struct numa_group *ng = p->numa_group;
1660
1661 if (env.best_cpu == -1)
1662 nid = env.src_nid;
1663 else
1664 nid = env.dst_nid;
1665
1666 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1667 sched_setnuma(p, env.dst_nid);
1668 }
1669
1670 /* No better CPU than the current one was found. */
1671 if (env.best_cpu == -1)
1672 return -EAGAIN;
1673
1674 /*
1675 * Reset the scan period if the task is being rescheduled on an
1676 * alternative node to recheck if the tasks is now properly placed.
1677 */
1678 p->numa_scan_period = task_scan_min(p);
1679
1680 if (env.best_task == NULL) {
1681 ret = migrate_task_to(p, env.best_cpu);
1682 if (ret != 0)
1683 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1684 return ret;
1685 }
1686
1687 ret = migrate_swap(p, env.best_task);
1688 if (ret != 0)
1689 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1690 put_task_struct(env.best_task);
1691 return ret;
1692 }
1693
1694 /* Attempt to migrate a task to a CPU on the preferred node. */
1695 static void numa_migrate_preferred(struct task_struct *p)
1696 {
1697 unsigned long interval = HZ;
1698
1699 /* This task has no NUMA fault statistics yet */
1700 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1701 return;
1702
1703 /* Periodically retry migrating the task to the preferred node */
1704 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1705 p->numa_migrate_retry = jiffies + interval;
1706
1707 /* Success if task is already running on preferred CPU */
1708 if (task_node(p) == p->numa_preferred_nid)
1709 return;
1710
1711 /* Otherwise, try migrate to a CPU on the preferred node */
1712 task_numa_migrate(p);
1713 }
1714
1715 /*
1716 * Find out how many nodes on the workload is actively running on. Do this by
1717 * tracking the nodes from which NUMA hinting faults are triggered. This can
1718 * be different from the set of nodes where the workload's memory is currently
1719 * located.
1720 */
1721 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1722 {
1723 unsigned long faults, max_faults = 0;
1724 int nid, active_nodes = 0;
1725
1726 for_each_online_node(nid) {
1727 faults = group_faults_cpu(numa_group, nid);
1728 if (faults > max_faults)
1729 max_faults = faults;
1730 }
1731
1732 for_each_online_node(nid) {
1733 faults = group_faults_cpu(numa_group, nid);
1734 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1735 active_nodes++;
1736 }
1737
1738 numa_group->max_faults_cpu = max_faults;
1739 numa_group->active_nodes = active_nodes;
1740 }
1741
1742 /*
1743 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1744 * increments. The more local the fault statistics are, the higher the scan
1745 * period will be for the next scan window. If local/(local+remote) ratio is
1746 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1747 * the scan period will decrease. Aim for 70% local accesses.
1748 */
1749 #define NUMA_PERIOD_SLOTS 10
1750 #define NUMA_PERIOD_THRESHOLD 7
1751
1752 /*
1753 * Increase the scan period (slow down scanning) if the majority of
1754 * our memory is already on our local node, or if the majority of
1755 * the page accesses are shared with other processes.
1756 * Otherwise, decrease the scan period.
1757 */
1758 static void update_task_scan_period(struct task_struct *p,
1759 unsigned long shared, unsigned long private)
1760 {
1761 unsigned int period_slot;
1762 int ratio;
1763 int diff;
1764
1765 unsigned long remote = p->numa_faults_locality[0];
1766 unsigned long local = p->numa_faults_locality[1];
1767
1768 /*
1769 * If there were no record hinting faults then either the task is
1770 * completely idle or all activity is areas that are not of interest
1771 * to automatic numa balancing. Related to that, if there were failed
1772 * migration then it implies we are migrating too quickly or the local
1773 * node is overloaded. In either case, scan slower
1774 */
1775 if (local + shared == 0 || p->numa_faults_locality[2]) {
1776 p->numa_scan_period = min(p->numa_scan_period_max,
1777 p->numa_scan_period << 1);
1778
1779 p->mm->numa_next_scan = jiffies +
1780 msecs_to_jiffies(p->numa_scan_period);
1781
1782 return;
1783 }
1784
1785 /*
1786 * Prepare to scale scan period relative to the current period.
1787 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1788 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1789 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1790 */
1791 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1792 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1793 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1794 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1795 if (!slot)
1796 slot = 1;
1797 diff = slot * period_slot;
1798 } else {
1799 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1800
1801 /*
1802 * Scale scan rate increases based on sharing. There is an
1803 * inverse relationship between the degree of sharing and
1804 * the adjustment made to the scanning period. Broadly
1805 * speaking the intent is that there is little point
1806 * scanning faster if shared accesses dominate as it may
1807 * simply bounce migrations uselessly
1808 */
1809 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1810 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1811 }
1812
1813 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1814 task_scan_min(p), task_scan_max(p));
1815 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1816 }
1817
1818 /*
1819 * Get the fraction of time the task has been running since the last
1820 * NUMA placement cycle. The scheduler keeps similar statistics, but
1821 * decays those on a 32ms period, which is orders of magnitude off
1822 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1823 * stats only if the task is so new there are no NUMA statistics yet.
1824 */
1825 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1826 {
1827 u64 runtime, delta, now;
1828 /* Use the start of this time slice to avoid calculations. */
1829 now = p->se.exec_start;
1830 runtime = p->se.sum_exec_runtime;
1831
1832 if (p->last_task_numa_placement) {
1833 delta = runtime - p->last_sum_exec_runtime;
1834 *period = now - p->last_task_numa_placement;
1835 } else {
1836 delta = p->se.avg.load_sum / p->se.load.weight;
1837 *period = LOAD_AVG_MAX;
1838 }
1839
1840 p->last_sum_exec_runtime = runtime;
1841 p->last_task_numa_placement = now;
1842
1843 return delta;
1844 }
1845
1846 /*
1847 * Determine the preferred nid for a task in a numa_group. This needs to
1848 * be done in a way that produces consistent results with group_weight,
1849 * otherwise workloads might not converge.
1850 */
1851 static int preferred_group_nid(struct task_struct *p, int nid)
1852 {
1853 nodemask_t nodes;
1854 int dist;
1855
1856 /* Direct connections between all NUMA nodes. */
1857 if (sched_numa_topology_type == NUMA_DIRECT)
1858 return nid;
1859
1860 /*
1861 * On a system with glueless mesh NUMA topology, group_weight
1862 * scores nodes according to the number of NUMA hinting faults on
1863 * both the node itself, and on nearby nodes.
1864 */
1865 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1866 unsigned long score, max_score = 0;
1867 int node, max_node = nid;
1868
1869 dist = sched_max_numa_distance;
1870
1871 for_each_online_node(node) {
1872 score = group_weight(p, node, dist);
1873 if (score > max_score) {
1874 max_score = score;
1875 max_node = node;
1876 }
1877 }
1878 return max_node;
1879 }
1880
1881 /*
1882 * Finding the preferred nid in a system with NUMA backplane
1883 * interconnect topology is more involved. The goal is to locate
1884 * tasks from numa_groups near each other in the system, and
1885 * untangle workloads from different sides of the system. This requires
1886 * searching down the hierarchy of node groups, recursively searching
1887 * inside the highest scoring group of nodes. The nodemask tricks
1888 * keep the complexity of the search down.
1889 */
1890 nodes = node_online_map;
1891 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1892 unsigned long max_faults = 0;
1893 nodemask_t max_group = NODE_MASK_NONE;
1894 int a, b;
1895
1896 /* Are there nodes at this distance from each other? */
1897 if (!find_numa_distance(dist))
1898 continue;
1899
1900 for_each_node_mask(a, nodes) {
1901 unsigned long faults = 0;
1902 nodemask_t this_group;
1903 nodes_clear(this_group);
1904
1905 /* Sum group's NUMA faults; includes a==b case. */
1906 for_each_node_mask(b, nodes) {
1907 if (node_distance(a, b) < dist) {
1908 faults += group_faults(p, b);
1909 node_set(b, this_group);
1910 node_clear(b, nodes);
1911 }
1912 }
1913
1914 /* Remember the top group. */
1915 if (faults > max_faults) {
1916 max_faults = faults;
1917 max_group = this_group;
1918 /*
1919 * subtle: at the smallest distance there is
1920 * just one node left in each "group", the
1921 * winner is the preferred nid.
1922 */
1923 nid = a;
1924 }
1925 }
1926 /* Next round, evaluate the nodes within max_group. */
1927 if (!max_faults)
1928 break;
1929 nodes = max_group;
1930 }
1931 return nid;
1932 }
1933
1934 static void task_numa_placement(struct task_struct *p)
1935 {
1936 int seq, nid, max_nid = -1, max_group_nid = -1;
1937 unsigned long max_faults = 0, max_group_faults = 0;
1938 unsigned long fault_types[2] = { 0, 0 };
1939 unsigned long total_faults;
1940 u64 runtime, period;
1941 spinlock_t *group_lock = NULL;
1942
1943 /*
1944 * The p->mm->numa_scan_seq field gets updated without
1945 * exclusive access. Use READ_ONCE() here to ensure
1946 * that the field is read in a single access:
1947 */
1948 seq = READ_ONCE(p->mm->numa_scan_seq);
1949 if (p->numa_scan_seq == seq)
1950 return;
1951 p->numa_scan_seq = seq;
1952 p->numa_scan_period_max = task_scan_max(p);
1953
1954 total_faults = p->numa_faults_locality[0] +
1955 p->numa_faults_locality[1];
1956 runtime = numa_get_avg_runtime(p, &period);
1957
1958 /* If the task is part of a group prevent parallel updates to group stats */
1959 if (p->numa_group) {
1960 group_lock = &p->numa_group->lock;
1961 spin_lock_irq(group_lock);
1962 }
1963
1964 /* Find the node with the highest number of faults */
1965 for_each_online_node(nid) {
1966 /* Keep track of the offsets in numa_faults array */
1967 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1968 unsigned long faults = 0, group_faults = 0;
1969 int priv;
1970
1971 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1972 long diff, f_diff, f_weight;
1973
1974 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1975 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1976 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1977 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1978
1979 /* Decay existing window, copy faults since last scan */
1980 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1981 fault_types[priv] += p->numa_faults[membuf_idx];
1982 p->numa_faults[membuf_idx] = 0;
1983
1984 /*
1985 * Normalize the faults_from, so all tasks in a group
1986 * count according to CPU use, instead of by the raw
1987 * number of faults. Tasks with little runtime have
1988 * little over-all impact on throughput, and thus their
1989 * faults are less important.
1990 */
1991 f_weight = div64_u64(runtime << 16, period + 1);
1992 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1993 (total_faults + 1);
1994 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1995 p->numa_faults[cpubuf_idx] = 0;
1996
1997 p->numa_faults[mem_idx] += diff;
1998 p->numa_faults[cpu_idx] += f_diff;
1999 faults += p->numa_faults[mem_idx];
2000 p->total_numa_faults += diff;
2001 if (p->numa_group) {
2002 /*
2003 * safe because we can only change our own group
2004 *
2005 * mem_idx represents the offset for a given
2006 * nid and priv in a specific region because it
2007 * is at the beginning of the numa_faults array.
2008 */
2009 p->numa_group->faults[mem_idx] += diff;
2010 p->numa_group->faults_cpu[mem_idx] += f_diff;
2011 p->numa_group->total_faults += diff;
2012 group_faults += p->numa_group->faults[mem_idx];
2013 }
2014 }
2015
2016 if (faults > max_faults) {
2017 max_faults = faults;
2018 max_nid = nid;
2019 }
2020
2021 if (group_faults > max_group_faults) {
2022 max_group_faults = group_faults;
2023 max_group_nid = nid;
2024 }
2025 }
2026
2027 update_task_scan_period(p, fault_types[0], fault_types[1]);
2028
2029 if (p->numa_group) {
2030 numa_group_count_active_nodes(p->numa_group);
2031 spin_unlock_irq(group_lock);
2032 max_nid = preferred_group_nid(p, max_group_nid);
2033 }
2034
2035 if (max_faults) {
2036 /* Set the new preferred node */
2037 if (max_nid != p->numa_preferred_nid)
2038 sched_setnuma(p, max_nid);
2039
2040 if (task_node(p) != p->numa_preferred_nid)
2041 numa_migrate_preferred(p);
2042 }
2043 }
2044
2045 static inline int get_numa_group(struct numa_group *grp)
2046 {
2047 return atomic_inc_not_zero(&grp->refcount);
2048 }
2049
2050 static inline void put_numa_group(struct numa_group *grp)
2051 {
2052 if (atomic_dec_and_test(&grp->refcount))
2053 kfree_rcu(grp, rcu);
2054 }
2055
2056 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2057 int *priv)
2058 {
2059 struct numa_group *grp, *my_grp;
2060 struct task_struct *tsk;
2061 bool join = false;
2062 int cpu = cpupid_to_cpu(cpupid);
2063 int i;
2064
2065 if (unlikely(!p->numa_group)) {
2066 unsigned int size = sizeof(struct numa_group) +
2067 4*nr_node_ids*sizeof(unsigned long);
2068
2069 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2070 if (!grp)
2071 return;
2072
2073 atomic_set(&grp->refcount, 1);
2074 grp->active_nodes = 1;
2075 grp->max_faults_cpu = 0;
2076 spin_lock_init(&grp->lock);
2077 grp->gid = p->pid;
2078 /* Second half of the array tracks nids where faults happen */
2079 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2080 nr_node_ids;
2081
2082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2083 grp->faults[i] = p->numa_faults[i];
2084
2085 grp->total_faults = p->total_numa_faults;
2086
2087 grp->nr_tasks++;
2088 rcu_assign_pointer(p->numa_group, grp);
2089 }
2090
2091 rcu_read_lock();
2092 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2093
2094 if (!cpupid_match_pid(tsk, cpupid))
2095 goto no_join;
2096
2097 grp = rcu_dereference(tsk->numa_group);
2098 if (!grp)
2099 goto no_join;
2100
2101 my_grp = p->numa_group;
2102 if (grp == my_grp)
2103 goto no_join;
2104
2105 /*
2106 * Only join the other group if its bigger; if we're the bigger group,
2107 * the other task will join us.
2108 */
2109 if (my_grp->nr_tasks > grp->nr_tasks)
2110 goto no_join;
2111
2112 /*
2113 * Tie-break on the grp address.
2114 */
2115 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2116 goto no_join;
2117
2118 /* Always join threads in the same process. */
2119 if (tsk->mm == current->mm)
2120 join = true;
2121
2122 /* Simple filter to avoid false positives due to PID collisions */
2123 if (flags & TNF_SHARED)
2124 join = true;
2125
2126 /* Update priv based on whether false sharing was detected */
2127 *priv = !join;
2128
2129 if (join && !get_numa_group(grp))
2130 goto no_join;
2131
2132 rcu_read_unlock();
2133
2134 if (!join)
2135 return;
2136
2137 BUG_ON(irqs_disabled());
2138 double_lock_irq(&my_grp->lock, &grp->lock);
2139
2140 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2141 my_grp->faults[i] -= p->numa_faults[i];
2142 grp->faults[i] += p->numa_faults[i];
2143 }
2144 my_grp->total_faults -= p->total_numa_faults;
2145 grp->total_faults += p->total_numa_faults;
2146
2147 my_grp->nr_tasks--;
2148 grp->nr_tasks++;
2149
2150 spin_unlock(&my_grp->lock);
2151 spin_unlock_irq(&grp->lock);
2152
2153 rcu_assign_pointer(p->numa_group, grp);
2154
2155 put_numa_group(my_grp);
2156 return;
2157
2158 no_join:
2159 rcu_read_unlock();
2160 return;
2161 }
2162
2163 void task_numa_free(struct task_struct *p)
2164 {
2165 struct numa_group *grp = p->numa_group;
2166 void *numa_faults = p->numa_faults;
2167 unsigned long flags;
2168 int i;
2169
2170 if (grp) {
2171 spin_lock_irqsave(&grp->lock, flags);
2172 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2173 grp->faults[i] -= p->numa_faults[i];
2174 grp->total_faults -= p->total_numa_faults;
2175
2176 grp->nr_tasks--;
2177 spin_unlock_irqrestore(&grp->lock, flags);
2178 RCU_INIT_POINTER(p->numa_group, NULL);
2179 put_numa_group(grp);
2180 }
2181
2182 p->numa_faults = NULL;
2183 kfree(numa_faults);
2184 }
2185
2186 /*
2187 * Got a PROT_NONE fault for a page on @node.
2188 */
2189 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2190 {
2191 struct task_struct *p = current;
2192 bool migrated = flags & TNF_MIGRATED;
2193 int cpu_node = task_node(current);
2194 int local = !!(flags & TNF_FAULT_LOCAL);
2195 struct numa_group *ng;
2196 int priv;
2197
2198 if (!static_branch_likely(&sched_numa_balancing))
2199 return;
2200
2201 /* for example, ksmd faulting in a user's mm */
2202 if (!p->mm)
2203 return;
2204
2205 /* Allocate buffer to track faults on a per-node basis */
2206 if (unlikely(!p->numa_faults)) {
2207 int size = sizeof(*p->numa_faults) *
2208 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2209
2210 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2211 if (!p->numa_faults)
2212 return;
2213
2214 p->total_numa_faults = 0;
2215 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2216 }
2217
2218 /*
2219 * First accesses are treated as private, otherwise consider accesses
2220 * to be private if the accessing pid has not changed
2221 */
2222 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2223 priv = 1;
2224 } else {
2225 priv = cpupid_match_pid(p, last_cpupid);
2226 if (!priv && !(flags & TNF_NO_GROUP))
2227 task_numa_group(p, last_cpupid, flags, &priv);
2228 }
2229
2230 /*
2231 * If a workload spans multiple NUMA nodes, a shared fault that
2232 * occurs wholly within the set of nodes that the workload is
2233 * actively using should be counted as local. This allows the
2234 * scan rate to slow down when a workload has settled down.
2235 */
2236 ng = p->numa_group;
2237 if (!priv && !local && ng && ng->active_nodes > 1 &&
2238 numa_is_active_node(cpu_node, ng) &&
2239 numa_is_active_node(mem_node, ng))
2240 local = 1;
2241
2242 task_numa_placement(p);
2243
2244 /*
2245 * Retry task to preferred node migration periodically, in case it
2246 * case it previously failed, or the scheduler moved us.
2247 */
2248 if (time_after(jiffies, p->numa_migrate_retry))
2249 numa_migrate_preferred(p);
2250
2251 if (migrated)
2252 p->numa_pages_migrated += pages;
2253 if (flags & TNF_MIGRATE_FAIL)
2254 p->numa_faults_locality[2] += pages;
2255
2256 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2257 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2258 p->numa_faults_locality[local] += pages;
2259 }
2260
2261 static void reset_ptenuma_scan(struct task_struct *p)
2262 {
2263 /*
2264 * We only did a read acquisition of the mmap sem, so
2265 * p->mm->numa_scan_seq is written to without exclusive access
2266 * and the update is not guaranteed to be atomic. That's not
2267 * much of an issue though, since this is just used for
2268 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2269 * expensive, to avoid any form of compiler optimizations:
2270 */
2271 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2272 p->mm->numa_scan_offset = 0;
2273 }
2274
2275 /*
2276 * The expensive part of numa migration is done from task_work context.
2277 * Triggered from task_tick_numa().
2278 */
2279 void task_numa_work(struct callback_head *work)
2280 {
2281 unsigned long migrate, next_scan, now = jiffies;
2282 struct task_struct *p = current;
2283 struct mm_struct *mm = p->mm;
2284 u64 runtime = p->se.sum_exec_runtime;
2285 struct vm_area_struct *vma;
2286 unsigned long start, end;
2287 unsigned long nr_pte_updates = 0;
2288 long pages, virtpages;
2289
2290 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2291
2292 work->next = work; /* protect against double add */
2293 /*
2294 * Who cares about NUMA placement when they're dying.
2295 *
2296 * NOTE: make sure not to dereference p->mm before this check,
2297 * exit_task_work() happens _after_ exit_mm() so we could be called
2298 * without p->mm even though we still had it when we enqueued this
2299 * work.
2300 */
2301 if (p->flags & PF_EXITING)
2302 return;
2303
2304 if (!mm->numa_next_scan) {
2305 mm->numa_next_scan = now +
2306 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2307 }
2308
2309 /*
2310 * Enforce maximal scan/migration frequency..
2311 */
2312 migrate = mm->numa_next_scan;
2313 if (time_before(now, migrate))
2314 return;
2315
2316 if (p->numa_scan_period == 0) {
2317 p->numa_scan_period_max = task_scan_max(p);
2318 p->numa_scan_period = task_scan_min(p);
2319 }
2320
2321 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2322 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2323 return;
2324
2325 /*
2326 * Delay this task enough that another task of this mm will likely win
2327 * the next time around.
2328 */
2329 p->node_stamp += 2 * TICK_NSEC;
2330
2331 start = mm->numa_scan_offset;
2332 pages = sysctl_numa_balancing_scan_size;
2333 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2334 virtpages = pages * 8; /* Scan up to this much virtual space */
2335 if (!pages)
2336 return;
2337
2338
2339 down_read(&mm->mmap_sem);
2340 vma = find_vma(mm, start);
2341 if (!vma) {
2342 reset_ptenuma_scan(p);
2343 start = 0;
2344 vma = mm->mmap;
2345 }
2346 for (; vma; vma = vma->vm_next) {
2347 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2348 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2349 continue;
2350 }
2351
2352 /*
2353 * Shared library pages mapped by multiple processes are not
2354 * migrated as it is expected they are cache replicated. Avoid
2355 * hinting faults in read-only file-backed mappings or the vdso
2356 * as migrating the pages will be of marginal benefit.
2357 */
2358 if (!vma->vm_mm ||
2359 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2360 continue;
2361
2362 /*
2363 * Skip inaccessible VMAs to avoid any confusion between
2364 * PROT_NONE and NUMA hinting ptes
2365 */
2366 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2367 continue;
2368
2369 do {
2370 start = max(start, vma->vm_start);
2371 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2372 end = min(end, vma->vm_end);
2373 nr_pte_updates = change_prot_numa(vma, start, end);
2374
2375 /*
2376 * Try to scan sysctl_numa_balancing_size worth of
2377 * hpages that have at least one present PTE that
2378 * is not already pte-numa. If the VMA contains
2379 * areas that are unused or already full of prot_numa
2380 * PTEs, scan up to virtpages, to skip through those
2381 * areas faster.
2382 */
2383 if (nr_pte_updates)
2384 pages -= (end - start) >> PAGE_SHIFT;
2385 virtpages -= (end - start) >> PAGE_SHIFT;
2386
2387 start = end;
2388 if (pages <= 0 || virtpages <= 0)
2389 goto out;
2390
2391 cond_resched();
2392 } while (end != vma->vm_end);
2393 }
2394
2395 out:
2396 /*
2397 * It is possible to reach the end of the VMA list but the last few
2398 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2399 * would find the !migratable VMA on the next scan but not reset the
2400 * scanner to the start so check it now.
2401 */
2402 if (vma)
2403 mm->numa_scan_offset = start;
2404 else
2405 reset_ptenuma_scan(p);
2406 up_read(&mm->mmap_sem);
2407
2408 /*
2409 * Make sure tasks use at least 32x as much time to run other code
2410 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2411 * Usually update_task_scan_period slows down scanning enough; on an
2412 * overloaded system we need to limit overhead on a per task basis.
2413 */
2414 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2415 u64 diff = p->se.sum_exec_runtime - runtime;
2416 p->node_stamp += 32 * diff;
2417 }
2418 }
2419
2420 /*
2421 * Drive the periodic memory faults..
2422 */
2423 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2424 {
2425 struct callback_head *work = &curr->numa_work;
2426 u64 period, now;
2427
2428 /*
2429 * We don't care about NUMA placement if we don't have memory.
2430 */
2431 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2432 return;
2433
2434 /*
2435 * Using runtime rather than walltime has the dual advantage that
2436 * we (mostly) drive the selection from busy threads and that the
2437 * task needs to have done some actual work before we bother with
2438 * NUMA placement.
2439 */
2440 now = curr->se.sum_exec_runtime;
2441 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2442
2443 if (now > curr->node_stamp + period) {
2444 if (!curr->node_stamp)
2445 curr->numa_scan_period = task_scan_min(curr);
2446 curr->node_stamp += period;
2447
2448 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2449 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2450 task_work_add(curr, work, true);
2451 }
2452 }
2453 }
2454 #else
2455 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2456 {
2457 }
2458
2459 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2460 {
2461 }
2462
2463 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2464 {
2465 }
2466 #endif /* CONFIG_NUMA_BALANCING */
2467
2468 static void
2469 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2470 {
2471 update_load_add(&cfs_rq->load, se->load.weight);
2472 if (!parent_entity(se))
2473 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2474 #ifdef CONFIG_SMP
2475 if (entity_is_task(se)) {
2476 struct rq *rq = rq_of(cfs_rq);
2477
2478 account_numa_enqueue(rq, task_of(se));
2479 list_add(&se->group_node, &rq->cfs_tasks);
2480 }
2481 #endif
2482 cfs_rq->nr_running++;
2483 }
2484
2485 static void
2486 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2487 {
2488 update_load_sub(&cfs_rq->load, se->load.weight);
2489 if (!parent_entity(se))
2490 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2491 #ifdef CONFIG_SMP
2492 if (entity_is_task(se)) {
2493 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2494 list_del_init(&se->group_node);
2495 }
2496 #endif
2497 cfs_rq->nr_running--;
2498 }
2499
2500 #ifdef CONFIG_FAIR_GROUP_SCHED
2501 # ifdef CONFIG_SMP
2502 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2503 {
2504 long tg_weight;
2505
2506 /*
2507 * Use this CPU's real-time load instead of the last load contribution
2508 * as the updating of the contribution is delayed, and we will use the
2509 * the real-time load to calc the share. See update_tg_load_avg().
2510 */
2511 tg_weight = atomic_long_read(&tg->load_avg);
2512 tg_weight -= cfs_rq->tg_load_avg_contrib;
2513 tg_weight += cfs_rq->load.weight;
2514
2515 return tg_weight;
2516 }
2517
2518 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2519 {
2520 long tg_weight, load, shares;
2521
2522 tg_weight = calc_tg_weight(tg, cfs_rq);
2523 load = cfs_rq->load.weight;
2524
2525 shares = (tg->shares * load);
2526 if (tg_weight)
2527 shares /= tg_weight;
2528
2529 if (shares < MIN_SHARES)
2530 shares = MIN_SHARES;
2531 if (shares > tg->shares)
2532 shares = tg->shares;
2533
2534 return shares;
2535 }
2536 # else /* CONFIG_SMP */
2537 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2538 {
2539 return tg->shares;
2540 }
2541 # endif /* CONFIG_SMP */
2542 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 unsigned long weight)
2544 {
2545 if (se->on_rq) {
2546 /* commit outstanding execution time */
2547 if (cfs_rq->curr == se)
2548 update_curr(cfs_rq);
2549 account_entity_dequeue(cfs_rq, se);
2550 }
2551
2552 update_load_set(&se->load, weight);
2553
2554 if (se->on_rq)
2555 account_entity_enqueue(cfs_rq, se);
2556 }
2557
2558 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2559
2560 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2561 {
2562 struct task_group *tg;
2563 struct sched_entity *se;
2564 long shares;
2565
2566 tg = cfs_rq->tg;
2567 se = tg->se[cpu_of(rq_of(cfs_rq))];
2568 if (!se || throttled_hierarchy(cfs_rq))
2569 return;
2570 #ifndef CONFIG_SMP
2571 if (likely(se->load.weight == tg->shares))
2572 return;
2573 #endif
2574 shares = calc_cfs_shares(cfs_rq, tg);
2575
2576 reweight_entity(cfs_rq_of(se), se, shares);
2577 }
2578 #else /* CONFIG_FAIR_GROUP_SCHED */
2579 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2580 {
2581 }
2582 #endif /* CONFIG_FAIR_GROUP_SCHED */
2583
2584 #ifdef CONFIG_SMP
2585 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2586 static const u32 runnable_avg_yN_inv[] = {
2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 0x85aac367, 0x82cd8698,
2593 };
2594
2595 /*
2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2597 * over-estimates when re-combining.
2598 */
2599 static const u32 runnable_avg_yN_sum[] = {
2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2603 };
2604
2605 /*
2606 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2607 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2608 * were generated:
2609 */
2610 static const u32 __accumulated_sum_N32[] = {
2611 0, 23371, 35056, 40899, 43820, 45281,
2612 46011, 46376, 46559, 46650, 46696, 46719,
2613 };
2614
2615 /*
2616 * Approximate:
2617 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2618 */
2619 static __always_inline u64 decay_load(u64 val, u64 n)
2620 {
2621 unsigned int local_n;
2622
2623 if (!n)
2624 return val;
2625 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2626 return 0;
2627
2628 /* after bounds checking we can collapse to 32-bit */
2629 local_n = n;
2630
2631 /*
2632 * As y^PERIOD = 1/2, we can combine
2633 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2634 * With a look-up table which covers y^n (n<PERIOD)
2635 *
2636 * To achieve constant time decay_load.
2637 */
2638 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2639 val >>= local_n / LOAD_AVG_PERIOD;
2640 local_n %= LOAD_AVG_PERIOD;
2641 }
2642
2643 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2644 return val;
2645 }
2646
2647 /*
2648 * For updates fully spanning n periods, the contribution to runnable
2649 * average will be: \Sum 1024*y^n
2650 *
2651 * We can compute this reasonably efficiently by combining:
2652 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2653 */
2654 static u32 __compute_runnable_contrib(u64 n)
2655 {
2656 u32 contrib = 0;
2657
2658 if (likely(n <= LOAD_AVG_PERIOD))
2659 return runnable_avg_yN_sum[n];
2660 else if (unlikely(n >= LOAD_AVG_MAX_N))
2661 return LOAD_AVG_MAX;
2662
2663 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2664 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2665 n %= LOAD_AVG_PERIOD;
2666 contrib = decay_load(contrib, n);
2667 return contrib + runnable_avg_yN_sum[n];
2668 }
2669
2670 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2671
2672 /*
2673 * We can represent the historical contribution to runnable average as the
2674 * coefficients of a geometric series. To do this we sub-divide our runnable
2675 * history into segments of approximately 1ms (1024us); label the segment that
2676 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2677 *
2678 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2679 * p0 p1 p2
2680 * (now) (~1ms ago) (~2ms ago)
2681 *
2682 * Let u_i denote the fraction of p_i that the entity was runnable.
2683 *
2684 * We then designate the fractions u_i as our co-efficients, yielding the
2685 * following representation of historical load:
2686 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2687 *
2688 * We choose y based on the with of a reasonably scheduling period, fixing:
2689 * y^32 = 0.5
2690 *
2691 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2692 * approximately half as much as the contribution to load within the last ms
2693 * (u_0).
2694 *
2695 * When a period "rolls over" and we have new u_0`, multiplying the previous
2696 * sum again by y is sufficient to update:
2697 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2698 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2699 */
2700 static __always_inline int
2701 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2702 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2703 {
2704 u64 delta, scaled_delta, periods;
2705 u32 contrib;
2706 unsigned int delta_w, scaled_delta_w, decayed = 0;
2707 unsigned long scale_freq, scale_cpu;
2708
2709 delta = now - sa->last_update_time;
2710 /*
2711 * This should only happen when time goes backwards, which it
2712 * unfortunately does during sched clock init when we swap over to TSC.
2713 */
2714 if ((s64)delta < 0) {
2715 sa->last_update_time = now;
2716 return 0;
2717 }
2718
2719 /*
2720 * Use 1024ns as the unit of measurement since it's a reasonable
2721 * approximation of 1us and fast to compute.
2722 */
2723 delta >>= 10;
2724 if (!delta)
2725 return 0;
2726 sa->last_update_time = now;
2727
2728 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2729 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2730
2731 /* delta_w is the amount already accumulated against our next period */
2732 delta_w = sa->period_contrib;
2733 if (delta + delta_w >= 1024) {
2734 decayed = 1;
2735
2736 /* how much left for next period will start over, we don't know yet */
2737 sa->period_contrib = 0;
2738
2739 /*
2740 * Now that we know we're crossing a period boundary, figure
2741 * out how much from delta we need to complete the current
2742 * period and accrue it.
2743 */
2744 delta_w = 1024 - delta_w;
2745 scaled_delta_w = cap_scale(delta_w, scale_freq);
2746 if (weight) {
2747 sa->load_sum += weight * scaled_delta_w;
2748 if (cfs_rq) {
2749 cfs_rq->runnable_load_sum +=
2750 weight * scaled_delta_w;
2751 }
2752 }
2753 if (running)
2754 sa->util_sum += scaled_delta_w * scale_cpu;
2755
2756 delta -= delta_w;
2757
2758 /* Figure out how many additional periods this update spans */
2759 periods = delta / 1024;
2760 delta %= 1024;
2761
2762 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2763 if (cfs_rq) {
2764 cfs_rq->runnable_load_sum =
2765 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2766 }
2767 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2768
2769 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2770 contrib = __compute_runnable_contrib(periods);
2771 contrib = cap_scale(contrib, scale_freq);
2772 if (weight) {
2773 sa->load_sum += weight * contrib;
2774 if (cfs_rq)
2775 cfs_rq->runnable_load_sum += weight * contrib;
2776 }
2777 if (running)
2778 sa->util_sum += contrib * scale_cpu;
2779 }
2780
2781 /* Remainder of delta accrued against u_0` */
2782 scaled_delta = cap_scale(delta, scale_freq);
2783 if (weight) {
2784 sa->load_sum += weight * scaled_delta;
2785 if (cfs_rq)
2786 cfs_rq->runnable_load_sum += weight * scaled_delta;
2787 }
2788 if (running)
2789 sa->util_sum += scaled_delta * scale_cpu;
2790
2791 sa->period_contrib += delta;
2792
2793 if (decayed) {
2794 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2795 if (cfs_rq) {
2796 cfs_rq->runnable_load_avg =
2797 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2798 }
2799 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2800 }
2801
2802 return decayed;
2803 }
2804
2805 #ifdef CONFIG_FAIR_GROUP_SCHED
2806 /*
2807 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2808 * and effective_load (which is not done because it is too costly).
2809 */
2810 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2811 {
2812 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2813
2814 /*
2815 * No need to update load_avg for root_task_group as it is not used.
2816 */
2817 if (cfs_rq->tg == &root_task_group)
2818 return;
2819
2820 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2821 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2822 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2823 }
2824 }
2825
2826 /*
2827 * Called within set_task_rq() right before setting a task's cpu. The
2828 * caller only guarantees p->pi_lock is held; no other assumptions,
2829 * including the state of rq->lock, should be made.
2830 */
2831 void set_task_rq_fair(struct sched_entity *se,
2832 struct cfs_rq *prev, struct cfs_rq *next)
2833 {
2834 if (!sched_feat(ATTACH_AGE_LOAD))
2835 return;
2836
2837 /*
2838 * We are supposed to update the task to "current" time, then its up to
2839 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2840 * getting what current time is, so simply throw away the out-of-date
2841 * time. This will result in the wakee task is less decayed, but giving
2842 * the wakee more load sounds not bad.
2843 */
2844 if (se->avg.last_update_time && prev) {
2845 u64 p_last_update_time;
2846 u64 n_last_update_time;
2847
2848 #ifndef CONFIG_64BIT
2849 u64 p_last_update_time_copy;
2850 u64 n_last_update_time_copy;
2851
2852 do {
2853 p_last_update_time_copy = prev->load_last_update_time_copy;
2854 n_last_update_time_copy = next->load_last_update_time_copy;
2855
2856 smp_rmb();
2857
2858 p_last_update_time = prev->avg.last_update_time;
2859 n_last_update_time = next->avg.last_update_time;
2860
2861 } while (p_last_update_time != p_last_update_time_copy ||
2862 n_last_update_time != n_last_update_time_copy);
2863 #else
2864 p_last_update_time = prev->avg.last_update_time;
2865 n_last_update_time = next->avg.last_update_time;
2866 #endif
2867 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2868 &se->avg, 0, 0, NULL);
2869 se->avg.last_update_time = n_last_update_time;
2870 }
2871 }
2872 #else /* CONFIG_FAIR_GROUP_SCHED */
2873 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2874 #endif /* CONFIG_FAIR_GROUP_SCHED */
2875
2876 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2877
2878 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2879 {
2880 struct rq *rq = rq_of(cfs_rq);
2881 int cpu = cpu_of(rq);
2882
2883 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2884 unsigned long max = rq->cpu_capacity_orig;
2885
2886 /*
2887 * There are a few boundary cases this might miss but it should
2888 * get called often enough that that should (hopefully) not be
2889 * a real problem -- added to that it only calls on the local
2890 * CPU, so if we enqueue remotely we'll miss an update, but
2891 * the next tick/schedule should update.
2892 *
2893 * It will not get called when we go idle, because the idle
2894 * thread is a different class (!fair), nor will the utilization
2895 * number include things like RT tasks.
2896 *
2897 * As is, the util number is not freq-invariant (we'd have to
2898 * implement arch_scale_freq_capacity() for that).
2899 *
2900 * See cpu_util().
2901 */
2902 cpufreq_update_util(rq_clock(rq),
2903 min(cfs_rq->avg.util_avg, max), max);
2904 }
2905 }
2906
2907 /*
2908 * Unsigned subtract and clamp on underflow.
2909 *
2910 * Explicitly do a load-store to ensure the intermediate value never hits
2911 * memory. This allows lockless observations without ever seeing the negative
2912 * values.
2913 */
2914 #define sub_positive(_ptr, _val) do { \
2915 typeof(_ptr) ptr = (_ptr); \
2916 typeof(*ptr) val = (_val); \
2917 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2918 res = var - val; \
2919 if (res > var) \
2920 res = 0; \
2921 WRITE_ONCE(*ptr, res); \
2922 } while (0)
2923
2924 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2925 static inline int
2926 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2927 {
2928 struct sched_avg *sa = &cfs_rq->avg;
2929 int decayed, removed_load = 0, removed_util = 0;
2930
2931 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2932 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2933 sub_positive(&sa->load_avg, r);
2934 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
2935 removed_load = 1;
2936 }
2937
2938 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2939 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2940 sub_positive(&sa->util_avg, r);
2941 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
2942 removed_util = 1;
2943 }
2944
2945 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2946 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2947
2948 #ifndef CONFIG_64BIT
2949 smp_wmb();
2950 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2951 #endif
2952
2953 if (update_freq && (decayed || removed_util))
2954 cfs_rq_util_change(cfs_rq);
2955
2956 return decayed || removed_load;
2957 }
2958
2959 /* Update task and its cfs_rq load average */
2960 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2961 {
2962 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2963 u64 now = cfs_rq_clock_task(cfs_rq);
2964 struct rq *rq = rq_of(cfs_rq);
2965 int cpu = cpu_of(rq);
2966
2967 /*
2968 * Track task load average for carrying it to new CPU after migrated, and
2969 * track group sched_entity load average for task_h_load calc in migration
2970 */
2971 __update_load_avg(now, cpu, &se->avg,
2972 se->on_rq * scale_load_down(se->load.weight),
2973 cfs_rq->curr == se, NULL);
2974
2975 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
2976 update_tg_load_avg(cfs_rq, 0);
2977 }
2978
2979 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2980 {
2981 if (!sched_feat(ATTACH_AGE_LOAD))
2982 goto skip_aging;
2983
2984 /*
2985 * If we got migrated (either between CPUs or between cgroups) we'll
2986 * have aged the average right before clearing @last_update_time.
2987 */
2988 if (se->avg.last_update_time) {
2989 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2990 &se->avg, 0, 0, NULL);
2991
2992 /*
2993 * XXX: we could have just aged the entire load away if we've been
2994 * absent from the fair class for too long.
2995 */
2996 }
2997
2998 skip_aging:
2999 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3000 cfs_rq->avg.load_avg += se->avg.load_avg;
3001 cfs_rq->avg.load_sum += se->avg.load_sum;
3002 cfs_rq->avg.util_avg += se->avg.util_avg;
3003 cfs_rq->avg.util_sum += se->avg.util_sum;
3004
3005 cfs_rq_util_change(cfs_rq);
3006 }
3007
3008 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3009 {
3010 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3011 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3012 cfs_rq->curr == se, NULL);
3013
3014 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3015 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3016 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3017 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3018
3019 cfs_rq_util_change(cfs_rq);
3020 }
3021
3022 /* Add the load generated by se into cfs_rq's load average */
3023 static inline void
3024 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3025 {
3026 struct sched_avg *sa = &se->avg;
3027 u64 now = cfs_rq_clock_task(cfs_rq);
3028 int migrated, decayed;
3029
3030 migrated = !sa->last_update_time;
3031 if (!migrated) {
3032 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3033 se->on_rq * scale_load_down(se->load.weight),
3034 cfs_rq->curr == se, NULL);
3035 }
3036
3037 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3038
3039 cfs_rq->runnable_load_avg += sa->load_avg;
3040 cfs_rq->runnable_load_sum += sa->load_sum;
3041
3042 if (migrated)
3043 attach_entity_load_avg(cfs_rq, se);
3044
3045 if (decayed || migrated)
3046 update_tg_load_avg(cfs_rq, 0);
3047 }
3048
3049 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3050 static inline void
3051 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3052 {
3053 update_load_avg(se, 1);
3054
3055 cfs_rq->runnable_load_avg =
3056 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3057 cfs_rq->runnable_load_sum =
3058 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3059 }
3060
3061 #ifndef CONFIG_64BIT
3062 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3063 {
3064 u64 last_update_time_copy;
3065 u64 last_update_time;
3066
3067 do {
3068 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3069 smp_rmb();
3070 last_update_time = cfs_rq->avg.last_update_time;
3071 } while (last_update_time != last_update_time_copy);
3072
3073 return last_update_time;
3074 }
3075 #else
3076 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3077 {
3078 return cfs_rq->avg.last_update_time;
3079 }
3080 #endif
3081
3082 /*
3083 * Task first catches up with cfs_rq, and then subtract
3084 * itself from the cfs_rq (task must be off the queue now).
3085 */
3086 void remove_entity_load_avg(struct sched_entity *se)
3087 {
3088 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3089 u64 last_update_time;
3090
3091 /*
3092 * Newly created task or never used group entity should not be removed
3093 * from its (source) cfs_rq
3094 */
3095 if (se->avg.last_update_time == 0)
3096 return;
3097
3098 last_update_time = cfs_rq_last_update_time(cfs_rq);
3099
3100 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3101 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3102 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3103 }
3104
3105 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3106 {
3107 return cfs_rq->runnable_load_avg;
3108 }
3109
3110 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3111 {
3112 return cfs_rq->avg.load_avg;
3113 }
3114
3115 static int idle_balance(struct rq *this_rq);
3116
3117 #else /* CONFIG_SMP */
3118
3119 static inline void update_load_avg(struct sched_entity *se, int not_used)
3120 {
3121 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3122 struct rq *rq = rq_of(cfs_rq);
3123
3124 cpufreq_trigger_update(rq_clock(rq));
3125 }
3126
3127 static inline void
3128 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3129 static inline void
3130 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3131 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3132
3133 static inline void
3134 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3135 static inline void
3136 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3137
3138 static inline int idle_balance(struct rq *rq)
3139 {
3140 return 0;
3141 }
3142
3143 #endif /* CONFIG_SMP */
3144
3145 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3146 {
3147 #ifdef CONFIG_SCHEDSTATS
3148 struct task_struct *tsk = NULL;
3149
3150 if (entity_is_task(se))
3151 tsk = task_of(se);
3152
3153 if (se->statistics.sleep_start) {
3154 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3155
3156 if ((s64)delta < 0)
3157 delta = 0;
3158
3159 if (unlikely(delta > se->statistics.sleep_max))
3160 se->statistics.sleep_max = delta;
3161
3162 se->statistics.sleep_start = 0;
3163 se->statistics.sum_sleep_runtime += delta;
3164
3165 if (tsk) {
3166 account_scheduler_latency(tsk, delta >> 10, 1);
3167 trace_sched_stat_sleep(tsk, delta);
3168 }
3169 }
3170 if (se->statistics.block_start) {
3171 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3172
3173 if ((s64)delta < 0)
3174 delta = 0;
3175
3176 if (unlikely(delta > se->statistics.block_max))
3177 se->statistics.block_max = delta;
3178
3179 se->statistics.block_start = 0;
3180 se->statistics.sum_sleep_runtime += delta;
3181
3182 if (tsk) {
3183 if (tsk->in_iowait) {
3184 se->statistics.iowait_sum += delta;
3185 se->statistics.iowait_count++;
3186 trace_sched_stat_iowait(tsk, delta);
3187 }
3188
3189 trace_sched_stat_blocked(tsk, delta);
3190
3191 /*
3192 * Blocking time is in units of nanosecs, so shift by
3193 * 20 to get a milliseconds-range estimation of the
3194 * amount of time that the task spent sleeping:
3195 */
3196 if (unlikely(prof_on == SLEEP_PROFILING)) {
3197 profile_hits(SLEEP_PROFILING,
3198 (void *)get_wchan(tsk),
3199 delta >> 20);
3200 }
3201 account_scheduler_latency(tsk, delta >> 10, 0);
3202 }
3203 }
3204 #endif
3205 }
3206
3207 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3208 {
3209 #ifdef CONFIG_SCHED_DEBUG
3210 s64 d = se->vruntime - cfs_rq->min_vruntime;
3211
3212 if (d < 0)
3213 d = -d;
3214
3215 if (d > 3*sysctl_sched_latency)
3216 schedstat_inc(cfs_rq, nr_spread_over);
3217 #endif
3218 }
3219
3220 static void
3221 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3222 {
3223 u64 vruntime = cfs_rq->min_vruntime;
3224
3225 /*
3226 * The 'current' period is already promised to the current tasks,
3227 * however the extra weight of the new task will slow them down a
3228 * little, place the new task so that it fits in the slot that
3229 * stays open at the end.
3230 */
3231 if (initial && sched_feat(START_DEBIT))
3232 vruntime += sched_vslice(cfs_rq, se);
3233
3234 /* sleeps up to a single latency don't count. */
3235 if (!initial) {
3236 unsigned long thresh = sysctl_sched_latency;
3237
3238 /*
3239 * Halve their sleep time's effect, to allow
3240 * for a gentler effect of sleepers:
3241 */
3242 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3243 thresh >>= 1;
3244
3245 vruntime -= thresh;
3246 }
3247
3248 /* ensure we never gain time by being placed backwards. */
3249 se->vruntime = max_vruntime(se->vruntime, vruntime);
3250 }
3251
3252 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3253
3254 static inline void check_schedstat_required(void)
3255 {
3256 #ifdef CONFIG_SCHEDSTATS
3257 if (schedstat_enabled())
3258 return;
3259
3260 /* Force schedstat enabled if a dependent tracepoint is active */
3261 if (trace_sched_stat_wait_enabled() ||
3262 trace_sched_stat_sleep_enabled() ||
3263 trace_sched_stat_iowait_enabled() ||
3264 trace_sched_stat_blocked_enabled() ||
3265 trace_sched_stat_runtime_enabled()) {
3266 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3267 "stat_blocked and stat_runtime require the "
3268 "kernel parameter schedstats=enabled or "
3269 "kernel.sched_schedstats=1\n");
3270 }
3271 #endif
3272 }
3273
3274
3275 /*
3276 * MIGRATION
3277 *
3278 * dequeue
3279 * update_curr()
3280 * update_min_vruntime()
3281 * vruntime -= min_vruntime
3282 *
3283 * enqueue
3284 * update_curr()
3285 * update_min_vruntime()
3286 * vruntime += min_vruntime
3287 *
3288 * this way the vruntime transition between RQs is done when both
3289 * min_vruntime are up-to-date.
3290 *
3291 * WAKEUP (remote)
3292 *
3293 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3294 * vruntime -= min_vruntime
3295 *
3296 * enqueue
3297 * update_curr()
3298 * update_min_vruntime()
3299 * vruntime += min_vruntime
3300 *
3301 * this way we don't have the most up-to-date min_vruntime on the originating
3302 * CPU and an up-to-date min_vruntime on the destination CPU.
3303 */
3304
3305 static void
3306 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3307 {
3308 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3309 bool curr = cfs_rq->curr == se;
3310
3311 /*
3312 * If we're the current task, we must renormalise before calling
3313 * update_curr().
3314 */
3315 if (renorm && curr)
3316 se->vruntime += cfs_rq->min_vruntime;
3317
3318 update_curr(cfs_rq);
3319
3320 /*
3321 * Otherwise, renormalise after, such that we're placed at the current
3322 * moment in time, instead of some random moment in the past. Being
3323 * placed in the past could significantly boost this task to the
3324 * fairness detriment of existing tasks.
3325 */
3326 if (renorm && !curr)
3327 se->vruntime += cfs_rq->min_vruntime;
3328
3329 enqueue_entity_load_avg(cfs_rq, se);
3330 account_entity_enqueue(cfs_rq, se);
3331 update_cfs_shares(cfs_rq);
3332
3333 if (flags & ENQUEUE_WAKEUP) {
3334 place_entity(cfs_rq, se, 0);
3335 if (schedstat_enabled())
3336 enqueue_sleeper(cfs_rq, se);
3337 }
3338
3339 check_schedstat_required();
3340 if (schedstat_enabled()) {
3341 update_stats_enqueue(cfs_rq, se);
3342 check_spread(cfs_rq, se);
3343 }
3344 if (!curr)
3345 __enqueue_entity(cfs_rq, se);
3346 se->on_rq = 1;
3347
3348 if (cfs_rq->nr_running == 1) {
3349 list_add_leaf_cfs_rq(cfs_rq);
3350 check_enqueue_throttle(cfs_rq);
3351 }
3352 }
3353
3354 static void __clear_buddies_last(struct sched_entity *se)
3355 {
3356 for_each_sched_entity(se) {
3357 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3358 if (cfs_rq->last != se)
3359 break;
3360
3361 cfs_rq->last = NULL;
3362 }
3363 }
3364
3365 static void __clear_buddies_next(struct sched_entity *se)
3366 {
3367 for_each_sched_entity(se) {
3368 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3369 if (cfs_rq->next != se)
3370 break;
3371
3372 cfs_rq->next = NULL;
3373 }
3374 }
3375
3376 static void __clear_buddies_skip(struct sched_entity *se)
3377 {
3378 for_each_sched_entity(se) {
3379 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3380 if (cfs_rq->skip != se)
3381 break;
3382
3383 cfs_rq->skip = NULL;
3384 }
3385 }
3386
3387 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3388 {
3389 if (cfs_rq->last == se)
3390 __clear_buddies_last(se);
3391
3392 if (cfs_rq->next == se)
3393 __clear_buddies_next(se);
3394
3395 if (cfs_rq->skip == se)
3396 __clear_buddies_skip(se);
3397 }
3398
3399 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3400
3401 static void
3402 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3403 {
3404 /*
3405 * Update run-time statistics of the 'current'.
3406 */
3407 update_curr(cfs_rq);
3408 dequeue_entity_load_avg(cfs_rq, se);
3409
3410 if (schedstat_enabled())
3411 update_stats_dequeue(cfs_rq, se, flags);
3412
3413 clear_buddies(cfs_rq, se);
3414
3415 if (se != cfs_rq->curr)
3416 __dequeue_entity(cfs_rq, se);
3417 se->on_rq = 0;
3418 account_entity_dequeue(cfs_rq, se);
3419
3420 /*
3421 * Normalize the entity after updating the min_vruntime because the
3422 * update can refer to the ->curr item and we need to reflect this
3423 * movement in our normalized position.
3424 */
3425 if (!(flags & DEQUEUE_SLEEP))
3426 se->vruntime -= cfs_rq->min_vruntime;
3427
3428 /* return excess runtime on last dequeue */
3429 return_cfs_rq_runtime(cfs_rq);
3430
3431 update_min_vruntime(cfs_rq);
3432 update_cfs_shares(cfs_rq);
3433 }
3434
3435 /*
3436 * Preempt the current task with a newly woken task if needed:
3437 */
3438 static void
3439 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3440 {
3441 unsigned long ideal_runtime, delta_exec;
3442 struct sched_entity *se;
3443 s64 delta;
3444
3445 ideal_runtime = sched_slice(cfs_rq, curr);
3446 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3447 if (delta_exec > ideal_runtime) {
3448 resched_curr(rq_of(cfs_rq));
3449 /*
3450 * The current task ran long enough, ensure it doesn't get
3451 * re-elected due to buddy favours.
3452 */
3453 clear_buddies(cfs_rq, curr);
3454 return;
3455 }
3456
3457 /*
3458 * Ensure that a task that missed wakeup preemption by a
3459 * narrow margin doesn't have to wait for a full slice.
3460 * This also mitigates buddy induced latencies under load.
3461 */
3462 if (delta_exec < sysctl_sched_min_granularity)
3463 return;
3464
3465 se = __pick_first_entity(cfs_rq);
3466 delta = curr->vruntime - se->vruntime;
3467
3468 if (delta < 0)
3469 return;
3470
3471 if (delta > ideal_runtime)
3472 resched_curr(rq_of(cfs_rq));
3473 }
3474
3475 static void
3476 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3477 {
3478 /* 'current' is not kept within the tree. */
3479 if (se->on_rq) {
3480 /*
3481 * Any task has to be enqueued before it get to execute on
3482 * a CPU. So account for the time it spent waiting on the
3483 * runqueue.
3484 */
3485 if (schedstat_enabled())
3486 update_stats_wait_end(cfs_rq, se);
3487 __dequeue_entity(cfs_rq, se);
3488 update_load_avg(se, 1);
3489 }
3490
3491 update_stats_curr_start(cfs_rq, se);
3492 cfs_rq->curr = se;
3493 #ifdef CONFIG_SCHEDSTATS
3494 /*
3495 * Track our maximum slice length, if the CPU's load is at
3496 * least twice that of our own weight (i.e. dont track it
3497 * when there are only lesser-weight tasks around):
3498 */
3499 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3500 se->statistics.slice_max = max(se->statistics.slice_max,
3501 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3502 }
3503 #endif
3504 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3505 }
3506
3507 static int
3508 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3509
3510 /*
3511 * Pick the next process, keeping these things in mind, in this order:
3512 * 1) keep things fair between processes/task groups
3513 * 2) pick the "next" process, since someone really wants that to run
3514 * 3) pick the "last" process, for cache locality
3515 * 4) do not run the "skip" process, if something else is available
3516 */
3517 static struct sched_entity *
3518 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3519 {
3520 struct sched_entity *left = __pick_first_entity(cfs_rq);
3521 struct sched_entity *se;
3522
3523 /*
3524 * If curr is set we have to see if its left of the leftmost entity
3525 * still in the tree, provided there was anything in the tree at all.
3526 */
3527 if (!left || (curr && entity_before(curr, left)))
3528 left = curr;
3529
3530 se = left; /* ideally we run the leftmost entity */
3531
3532 /*
3533 * Avoid running the skip buddy, if running something else can
3534 * be done without getting too unfair.
3535 */
3536 if (cfs_rq->skip == se) {
3537 struct sched_entity *second;
3538
3539 if (se == curr) {
3540 second = __pick_first_entity(cfs_rq);
3541 } else {
3542 second = __pick_next_entity(se);
3543 if (!second || (curr && entity_before(curr, second)))
3544 second = curr;
3545 }
3546
3547 if (second && wakeup_preempt_entity(second, left) < 1)
3548 se = second;
3549 }
3550
3551 /*
3552 * Prefer last buddy, try to return the CPU to a preempted task.
3553 */
3554 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3555 se = cfs_rq->last;
3556
3557 /*
3558 * Someone really wants this to run. If it's not unfair, run it.
3559 */
3560 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3561 se = cfs_rq->next;
3562
3563 clear_buddies(cfs_rq, se);
3564
3565 return se;
3566 }
3567
3568 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3569
3570 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3571 {
3572 /*
3573 * If still on the runqueue then deactivate_task()
3574 * was not called and update_curr() has to be done:
3575 */
3576 if (prev->on_rq)
3577 update_curr(cfs_rq);
3578
3579 /* throttle cfs_rqs exceeding runtime */
3580 check_cfs_rq_runtime(cfs_rq);
3581
3582 if (schedstat_enabled()) {
3583 check_spread(cfs_rq, prev);
3584 if (prev->on_rq)
3585 update_stats_wait_start(cfs_rq, prev);
3586 }
3587
3588 if (prev->on_rq) {
3589 /* Put 'current' back into the tree. */
3590 __enqueue_entity(cfs_rq, prev);
3591 /* in !on_rq case, update occurred at dequeue */
3592 update_load_avg(prev, 0);
3593 }
3594 cfs_rq->curr = NULL;
3595 }
3596
3597 static void
3598 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3599 {
3600 /*
3601 * Update run-time statistics of the 'current'.
3602 */
3603 update_curr(cfs_rq);
3604
3605 /*
3606 * Ensure that runnable average is periodically updated.
3607 */
3608 update_load_avg(curr, 1);
3609 update_cfs_shares(cfs_rq);
3610
3611 #ifdef CONFIG_SCHED_HRTICK
3612 /*
3613 * queued ticks are scheduled to match the slice, so don't bother
3614 * validating it and just reschedule.
3615 */
3616 if (queued) {
3617 resched_curr(rq_of(cfs_rq));
3618 return;
3619 }
3620 /*
3621 * don't let the period tick interfere with the hrtick preemption
3622 */
3623 if (!sched_feat(DOUBLE_TICK) &&
3624 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3625 return;
3626 #endif
3627
3628 if (cfs_rq->nr_running > 1)
3629 check_preempt_tick(cfs_rq, curr);
3630 }
3631
3632
3633 /**************************************************
3634 * CFS bandwidth control machinery
3635 */
3636
3637 #ifdef CONFIG_CFS_BANDWIDTH
3638
3639 #ifdef HAVE_JUMP_LABEL
3640 static struct static_key __cfs_bandwidth_used;
3641
3642 static inline bool cfs_bandwidth_used(void)
3643 {
3644 return static_key_false(&__cfs_bandwidth_used);
3645 }
3646
3647 void cfs_bandwidth_usage_inc(void)
3648 {
3649 static_key_slow_inc(&__cfs_bandwidth_used);
3650 }
3651
3652 void cfs_bandwidth_usage_dec(void)
3653 {
3654 static_key_slow_dec(&__cfs_bandwidth_used);
3655 }
3656 #else /* HAVE_JUMP_LABEL */
3657 static bool cfs_bandwidth_used(void)
3658 {
3659 return true;
3660 }
3661
3662 void cfs_bandwidth_usage_inc(void) {}
3663 void cfs_bandwidth_usage_dec(void) {}
3664 #endif /* HAVE_JUMP_LABEL */
3665
3666 /*
3667 * default period for cfs group bandwidth.
3668 * default: 0.1s, units: nanoseconds
3669 */
3670 static inline u64 default_cfs_period(void)
3671 {
3672 return 100000000ULL;
3673 }
3674
3675 static inline u64 sched_cfs_bandwidth_slice(void)
3676 {
3677 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3678 }
3679
3680 /*
3681 * Replenish runtime according to assigned quota and update expiration time.
3682 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3683 * additional synchronization around rq->lock.
3684 *
3685 * requires cfs_b->lock
3686 */
3687 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3688 {
3689 u64 now;
3690
3691 if (cfs_b->quota == RUNTIME_INF)
3692 return;
3693
3694 now = sched_clock_cpu(smp_processor_id());
3695 cfs_b->runtime = cfs_b->quota;
3696 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3697 }
3698
3699 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3700 {
3701 return &tg->cfs_bandwidth;
3702 }
3703
3704 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3705 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3706 {
3707 if (unlikely(cfs_rq->throttle_count))
3708 return cfs_rq->throttled_clock_task;
3709
3710 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3711 }
3712
3713 /* returns 0 on failure to allocate runtime */
3714 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3715 {
3716 struct task_group *tg = cfs_rq->tg;
3717 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3718 u64 amount = 0, min_amount, expires;
3719
3720 /* note: this is a positive sum as runtime_remaining <= 0 */
3721 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3722
3723 raw_spin_lock(&cfs_b->lock);
3724 if (cfs_b->quota == RUNTIME_INF)
3725 amount = min_amount;
3726 else {
3727 start_cfs_bandwidth(cfs_b);
3728
3729 if (cfs_b->runtime > 0) {
3730 amount = min(cfs_b->runtime, min_amount);
3731 cfs_b->runtime -= amount;
3732 cfs_b->idle = 0;
3733 }
3734 }
3735 expires = cfs_b->runtime_expires;
3736 raw_spin_unlock(&cfs_b->lock);
3737
3738 cfs_rq->runtime_remaining += amount;
3739 /*
3740 * we may have advanced our local expiration to account for allowed
3741 * spread between our sched_clock and the one on which runtime was
3742 * issued.
3743 */
3744 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3745 cfs_rq->runtime_expires = expires;
3746
3747 return cfs_rq->runtime_remaining > 0;
3748 }
3749
3750 /*
3751 * Note: This depends on the synchronization provided by sched_clock and the
3752 * fact that rq->clock snapshots this value.
3753 */
3754 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3755 {
3756 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3757
3758 /* if the deadline is ahead of our clock, nothing to do */
3759 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3760 return;
3761
3762 if (cfs_rq->runtime_remaining < 0)
3763 return;
3764
3765 /*
3766 * If the local deadline has passed we have to consider the
3767 * possibility that our sched_clock is 'fast' and the global deadline
3768 * has not truly expired.
3769 *
3770 * Fortunately we can check determine whether this the case by checking
3771 * whether the global deadline has advanced. It is valid to compare
3772 * cfs_b->runtime_expires without any locks since we only care about
3773 * exact equality, so a partial write will still work.
3774 */
3775
3776 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3777 /* extend local deadline, drift is bounded above by 2 ticks */
3778 cfs_rq->runtime_expires += TICK_NSEC;
3779 } else {
3780 /* global deadline is ahead, expiration has passed */
3781 cfs_rq->runtime_remaining = 0;
3782 }
3783 }
3784
3785 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3786 {
3787 /* dock delta_exec before expiring quota (as it could span periods) */
3788 cfs_rq->runtime_remaining -= delta_exec;
3789 expire_cfs_rq_runtime(cfs_rq);
3790
3791 if (likely(cfs_rq->runtime_remaining > 0))
3792 return;
3793
3794 /*
3795 * if we're unable to extend our runtime we resched so that the active
3796 * hierarchy can be throttled
3797 */
3798 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3799 resched_curr(rq_of(cfs_rq));
3800 }
3801
3802 static __always_inline
3803 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3804 {
3805 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3806 return;
3807
3808 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3809 }
3810
3811 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3812 {
3813 return cfs_bandwidth_used() && cfs_rq->throttled;
3814 }
3815
3816 /* check whether cfs_rq, or any parent, is throttled */
3817 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3818 {
3819 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3820 }
3821
3822 /*
3823 * Ensure that neither of the group entities corresponding to src_cpu or
3824 * dest_cpu are members of a throttled hierarchy when performing group
3825 * load-balance operations.
3826 */
3827 static inline int throttled_lb_pair(struct task_group *tg,
3828 int src_cpu, int dest_cpu)
3829 {
3830 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3831
3832 src_cfs_rq = tg->cfs_rq[src_cpu];
3833 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3834
3835 return throttled_hierarchy(src_cfs_rq) ||
3836 throttled_hierarchy(dest_cfs_rq);
3837 }
3838
3839 /* updated child weight may affect parent so we have to do this bottom up */
3840 static int tg_unthrottle_up(struct task_group *tg, void *data)
3841 {
3842 struct rq *rq = data;
3843 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3844
3845 cfs_rq->throttle_count--;
3846 #ifdef CONFIG_SMP
3847 if (!cfs_rq->throttle_count) {
3848 /* adjust cfs_rq_clock_task() */
3849 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3850 cfs_rq->throttled_clock_task;
3851 }
3852 #endif
3853
3854 return 0;
3855 }
3856
3857 static int tg_throttle_down(struct task_group *tg, void *data)
3858 {
3859 struct rq *rq = data;
3860 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3861
3862 /* group is entering throttled state, stop time */
3863 if (!cfs_rq->throttle_count)
3864 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3865 cfs_rq->throttle_count++;
3866
3867 return 0;
3868 }
3869
3870 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3871 {
3872 struct rq *rq = rq_of(cfs_rq);
3873 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3874 struct sched_entity *se;
3875 long task_delta, dequeue = 1;
3876 bool empty;
3877
3878 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3879
3880 /* freeze hierarchy runnable averages while throttled */
3881 rcu_read_lock();
3882 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3883 rcu_read_unlock();
3884
3885 task_delta = cfs_rq->h_nr_running;
3886 for_each_sched_entity(se) {
3887 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3888 /* throttled entity or throttle-on-deactivate */
3889 if (!se->on_rq)
3890 break;
3891
3892 if (dequeue)
3893 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3894 qcfs_rq->h_nr_running -= task_delta;
3895
3896 if (qcfs_rq->load.weight)
3897 dequeue = 0;
3898 }
3899
3900 if (!se)
3901 sub_nr_running(rq, task_delta);
3902
3903 cfs_rq->throttled = 1;
3904 cfs_rq->throttled_clock = rq_clock(rq);
3905 raw_spin_lock(&cfs_b->lock);
3906 empty = list_empty(&cfs_b->throttled_cfs_rq);
3907
3908 /*
3909 * Add to the _head_ of the list, so that an already-started
3910 * distribute_cfs_runtime will not see us
3911 */
3912 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3913
3914 /*
3915 * If we're the first throttled task, make sure the bandwidth
3916 * timer is running.
3917 */
3918 if (empty)
3919 start_cfs_bandwidth(cfs_b);
3920
3921 raw_spin_unlock(&cfs_b->lock);
3922 }
3923
3924 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3925 {
3926 struct rq *rq = rq_of(cfs_rq);
3927 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3928 struct sched_entity *se;
3929 int enqueue = 1;
3930 long task_delta;
3931
3932 se = cfs_rq->tg->se[cpu_of(rq)];
3933
3934 cfs_rq->throttled = 0;
3935
3936 update_rq_clock(rq);
3937
3938 raw_spin_lock(&cfs_b->lock);
3939 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3940 list_del_rcu(&cfs_rq->throttled_list);
3941 raw_spin_unlock(&cfs_b->lock);
3942
3943 /* update hierarchical throttle state */
3944 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3945
3946 if (!cfs_rq->load.weight)
3947 return;
3948
3949 task_delta = cfs_rq->h_nr_running;
3950 for_each_sched_entity(se) {
3951 if (se->on_rq)
3952 enqueue = 0;
3953
3954 cfs_rq = cfs_rq_of(se);
3955 if (enqueue)
3956 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3957 cfs_rq->h_nr_running += task_delta;
3958
3959 if (cfs_rq_throttled(cfs_rq))
3960 break;
3961 }
3962
3963 if (!se)
3964 add_nr_running(rq, task_delta);
3965
3966 /* determine whether we need to wake up potentially idle cpu */
3967 if (rq->curr == rq->idle && rq->cfs.nr_running)
3968 resched_curr(rq);
3969 }
3970
3971 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3972 u64 remaining, u64 expires)
3973 {
3974 struct cfs_rq *cfs_rq;
3975 u64 runtime;
3976 u64 starting_runtime = remaining;
3977
3978 rcu_read_lock();
3979 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3980 throttled_list) {
3981 struct rq *rq = rq_of(cfs_rq);
3982
3983 raw_spin_lock(&rq->lock);
3984 if (!cfs_rq_throttled(cfs_rq))
3985 goto next;
3986
3987 runtime = -cfs_rq->runtime_remaining + 1;
3988 if (runtime > remaining)
3989 runtime = remaining;
3990 remaining -= runtime;
3991
3992 cfs_rq->runtime_remaining += runtime;
3993 cfs_rq->runtime_expires = expires;
3994
3995 /* we check whether we're throttled above */
3996 if (cfs_rq->runtime_remaining > 0)
3997 unthrottle_cfs_rq(cfs_rq);
3998
3999 next:
4000 raw_spin_unlock(&rq->lock);
4001
4002 if (!remaining)
4003 break;
4004 }
4005 rcu_read_unlock();
4006
4007 return starting_runtime - remaining;
4008 }
4009
4010 /*
4011 * Responsible for refilling a task_group's bandwidth and unthrottling its
4012 * cfs_rqs as appropriate. If there has been no activity within the last
4013 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4014 * used to track this state.
4015 */
4016 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4017 {
4018 u64 runtime, runtime_expires;
4019 int throttled;
4020
4021 /* no need to continue the timer with no bandwidth constraint */
4022 if (cfs_b->quota == RUNTIME_INF)
4023 goto out_deactivate;
4024
4025 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4026 cfs_b->nr_periods += overrun;
4027
4028 /*
4029 * idle depends on !throttled (for the case of a large deficit), and if
4030 * we're going inactive then everything else can be deferred
4031 */
4032 if (cfs_b->idle && !throttled)
4033 goto out_deactivate;
4034
4035 __refill_cfs_bandwidth_runtime(cfs_b);
4036
4037 if (!throttled) {
4038 /* mark as potentially idle for the upcoming period */
4039 cfs_b->idle = 1;
4040 return 0;
4041 }
4042
4043 /* account preceding periods in which throttling occurred */
4044 cfs_b->nr_throttled += overrun;
4045
4046 runtime_expires = cfs_b->runtime_expires;
4047
4048 /*
4049 * This check is repeated as we are holding onto the new bandwidth while
4050 * we unthrottle. This can potentially race with an unthrottled group
4051 * trying to acquire new bandwidth from the global pool. This can result
4052 * in us over-using our runtime if it is all used during this loop, but
4053 * only by limited amounts in that extreme case.
4054 */
4055 while (throttled && cfs_b->runtime > 0) {
4056 runtime = cfs_b->runtime;
4057 raw_spin_unlock(&cfs_b->lock);
4058 /* we can't nest cfs_b->lock while distributing bandwidth */
4059 runtime = distribute_cfs_runtime(cfs_b, runtime,
4060 runtime_expires);
4061 raw_spin_lock(&cfs_b->lock);
4062
4063 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4064
4065 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4066 }
4067
4068 /*
4069 * While we are ensured activity in the period following an
4070 * unthrottle, this also covers the case in which the new bandwidth is
4071 * insufficient to cover the existing bandwidth deficit. (Forcing the
4072 * timer to remain active while there are any throttled entities.)
4073 */
4074 cfs_b->idle = 0;
4075
4076 return 0;
4077
4078 out_deactivate:
4079 return 1;
4080 }
4081
4082 /* a cfs_rq won't donate quota below this amount */
4083 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4084 /* minimum remaining period time to redistribute slack quota */
4085 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4086 /* how long we wait to gather additional slack before distributing */
4087 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4088
4089 /*
4090 * Are we near the end of the current quota period?
4091 *
4092 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4093 * hrtimer base being cleared by hrtimer_start. In the case of
4094 * migrate_hrtimers, base is never cleared, so we are fine.
4095 */
4096 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4097 {
4098 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4099 u64 remaining;
4100
4101 /* if the call-back is running a quota refresh is already occurring */
4102 if (hrtimer_callback_running(refresh_timer))
4103 return 1;
4104
4105 /* is a quota refresh about to occur? */
4106 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4107 if (remaining < min_expire)
4108 return 1;
4109
4110 return 0;
4111 }
4112
4113 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4114 {
4115 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4116
4117 /* if there's a quota refresh soon don't bother with slack */
4118 if (runtime_refresh_within(cfs_b, min_left))
4119 return;
4120
4121 hrtimer_start(&cfs_b->slack_timer,
4122 ns_to_ktime(cfs_bandwidth_slack_period),
4123 HRTIMER_MODE_REL);
4124 }
4125
4126 /* we know any runtime found here is valid as update_curr() precedes return */
4127 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4128 {
4129 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4130 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4131
4132 if (slack_runtime <= 0)
4133 return;
4134
4135 raw_spin_lock(&cfs_b->lock);
4136 if (cfs_b->quota != RUNTIME_INF &&
4137 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4138 cfs_b->runtime += slack_runtime;
4139
4140 /* we are under rq->lock, defer unthrottling using a timer */
4141 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4142 !list_empty(&cfs_b->throttled_cfs_rq))
4143 start_cfs_slack_bandwidth(cfs_b);
4144 }
4145 raw_spin_unlock(&cfs_b->lock);
4146
4147 /* even if it's not valid for return we don't want to try again */
4148 cfs_rq->runtime_remaining -= slack_runtime;
4149 }
4150
4151 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4152 {
4153 if (!cfs_bandwidth_used())
4154 return;
4155
4156 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4157 return;
4158
4159 __return_cfs_rq_runtime(cfs_rq);
4160 }
4161
4162 /*
4163 * This is done with a timer (instead of inline with bandwidth return) since
4164 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4165 */
4166 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4167 {
4168 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4169 u64 expires;
4170
4171 /* confirm we're still not at a refresh boundary */
4172 raw_spin_lock(&cfs_b->lock);
4173 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4174 raw_spin_unlock(&cfs_b->lock);
4175 return;
4176 }
4177
4178 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4179 runtime = cfs_b->runtime;
4180
4181 expires = cfs_b->runtime_expires;
4182 raw_spin_unlock(&cfs_b->lock);
4183
4184 if (!runtime)
4185 return;
4186
4187 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4188
4189 raw_spin_lock(&cfs_b->lock);
4190 if (expires == cfs_b->runtime_expires)
4191 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4192 raw_spin_unlock(&cfs_b->lock);
4193 }
4194
4195 /*
4196 * When a group wakes up we want to make sure that its quota is not already
4197 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4198 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4199 */
4200 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4201 {
4202 if (!cfs_bandwidth_used())
4203 return;
4204
4205 /* an active group must be handled by the update_curr()->put() path */
4206 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4207 return;
4208
4209 /* ensure the group is not already throttled */
4210 if (cfs_rq_throttled(cfs_rq))
4211 return;
4212
4213 /* update runtime allocation */
4214 account_cfs_rq_runtime(cfs_rq, 0);
4215 if (cfs_rq->runtime_remaining <= 0)
4216 throttle_cfs_rq(cfs_rq);
4217 }
4218
4219 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4220 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4221 {
4222 if (!cfs_bandwidth_used())
4223 return false;
4224
4225 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4226 return false;
4227
4228 /*
4229 * it's possible for a throttled entity to be forced into a running
4230 * state (e.g. set_curr_task), in this case we're finished.
4231 */
4232 if (cfs_rq_throttled(cfs_rq))
4233 return true;
4234
4235 throttle_cfs_rq(cfs_rq);
4236 return true;
4237 }
4238
4239 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4240 {
4241 struct cfs_bandwidth *cfs_b =
4242 container_of(timer, struct cfs_bandwidth, slack_timer);
4243
4244 do_sched_cfs_slack_timer(cfs_b);
4245
4246 return HRTIMER_NORESTART;
4247 }
4248
4249 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4250 {
4251 struct cfs_bandwidth *cfs_b =
4252 container_of(timer, struct cfs_bandwidth, period_timer);
4253 int overrun;
4254 int idle = 0;
4255
4256 raw_spin_lock(&cfs_b->lock);
4257 for (;;) {
4258 overrun = hrtimer_forward_now(timer, cfs_b->period);
4259 if (!overrun)
4260 break;
4261
4262 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4263 }
4264 if (idle)
4265 cfs_b->period_active = 0;
4266 raw_spin_unlock(&cfs_b->lock);
4267
4268 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4269 }
4270
4271 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4272 {
4273 raw_spin_lock_init(&cfs_b->lock);
4274 cfs_b->runtime = 0;
4275 cfs_b->quota = RUNTIME_INF;
4276 cfs_b->period = ns_to_ktime(default_cfs_period());
4277
4278 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4279 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4280 cfs_b->period_timer.function = sched_cfs_period_timer;
4281 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4282 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4283 }
4284
4285 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4286 {
4287 cfs_rq->runtime_enabled = 0;
4288 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4289 }
4290
4291 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4292 {
4293 lockdep_assert_held(&cfs_b->lock);
4294
4295 if (!cfs_b->period_active) {
4296 cfs_b->period_active = 1;
4297 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4298 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4299 }
4300 }
4301
4302 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4303 {
4304 /* init_cfs_bandwidth() was not called */
4305 if (!cfs_b->throttled_cfs_rq.next)
4306 return;
4307
4308 hrtimer_cancel(&cfs_b->period_timer);
4309 hrtimer_cancel(&cfs_b->slack_timer);
4310 }
4311
4312 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4313 {
4314 struct cfs_rq *cfs_rq;
4315
4316 for_each_leaf_cfs_rq(rq, cfs_rq) {
4317 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4318
4319 raw_spin_lock(&cfs_b->lock);
4320 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4321 raw_spin_unlock(&cfs_b->lock);
4322 }
4323 }
4324
4325 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4326 {
4327 struct cfs_rq *cfs_rq;
4328
4329 for_each_leaf_cfs_rq(rq, cfs_rq) {
4330 if (!cfs_rq->runtime_enabled)
4331 continue;
4332
4333 /*
4334 * clock_task is not advancing so we just need to make sure
4335 * there's some valid quota amount
4336 */
4337 cfs_rq->runtime_remaining = 1;
4338 /*
4339 * Offline rq is schedulable till cpu is completely disabled
4340 * in take_cpu_down(), so we prevent new cfs throttling here.
4341 */
4342 cfs_rq->runtime_enabled = 0;
4343
4344 if (cfs_rq_throttled(cfs_rq))
4345 unthrottle_cfs_rq(cfs_rq);
4346 }
4347 }
4348
4349 #else /* CONFIG_CFS_BANDWIDTH */
4350 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4351 {
4352 return rq_clock_task(rq_of(cfs_rq));
4353 }
4354
4355 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4356 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4357 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4358 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4359
4360 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4361 {
4362 return 0;
4363 }
4364
4365 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4366 {
4367 return 0;
4368 }
4369
4370 static inline int throttled_lb_pair(struct task_group *tg,
4371 int src_cpu, int dest_cpu)
4372 {
4373 return 0;
4374 }
4375
4376 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4377
4378 #ifdef CONFIG_FAIR_GROUP_SCHED
4379 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4380 #endif
4381
4382 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4383 {
4384 return NULL;
4385 }
4386 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4387 static inline void update_runtime_enabled(struct rq *rq) {}
4388 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4389
4390 #endif /* CONFIG_CFS_BANDWIDTH */
4391
4392 /**************************************************
4393 * CFS operations on tasks:
4394 */
4395
4396 #ifdef CONFIG_SCHED_HRTICK
4397 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4398 {
4399 struct sched_entity *se = &p->se;
4400 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4401
4402 WARN_ON(task_rq(p) != rq);
4403
4404 if (cfs_rq->nr_running > 1) {
4405 u64 slice = sched_slice(cfs_rq, se);
4406 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4407 s64 delta = slice - ran;
4408
4409 if (delta < 0) {
4410 if (rq->curr == p)
4411 resched_curr(rq);
4412 return;
4413 }
4414 hrtick_start(rq, delta);
4415 }
4416 }
4417
4418 /*
4419 * called from enqueue/dequeue and updates the hrtick when the
4420 * current task is from our class and nr_running is low enough
4421 * to matter.
4422 */
4423 static void hrtick_update(struct rq *rq)
4424 {
4425 struct task_struct *curr = rq->curr;
4426
4427 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4428 return;
4429
4430 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4431 hrtick_start_fair(rq, curr);
4432 }
4433 #else /* !CONFIG_SCHED_HRTICK */
4434 static inline void
4435 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4436 {
4437 }
4438
4439 static inline void hrtick_update(struct rq *rq)
4440 {
4441 }
4442 #endif
4443
4444 /*
4445 * The enqueue_task method is called before nr_running is
4446 * increased. Here we update the fair scheduling stats and
4447 * then put the task into the rbtree:
4448 */
4449 static void
4450 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4451 {
4452 struct cfs_rq *cfs_rq;
4453 struct sched_entity *se = &p->se;
4454
4455 for_each_sched_entity(se) {
4456 if (se->on_rq)
4457 break;
4458 cfs_rq = cfs_rq_of(se);
4459 enqueue_entity(cfs_rq, se, flags);
4460
4461 /*
4462 * end evaluation on encountering a throttled cfs_rq
4463 *
4464 * note: in the case of encountering a throttled cfs_rq we will
4465 * post the final h_nr_running increment below.
4466 */
4467 if (cfs_rq_throttled(cfs_rq))
4468 break;
4469 cfs_rq->h_nr_running++;
4470
4471 flags = ENQUEUE_WAKEUP;
4472 }
4473
4474 for_each_sched_entity(se) {
4475 cfs_rq = cfs_rq_of(se);
4476 cfs_rq->h_nr_running++;
4477
4478 if (cfs_rq_throttled(cfs_rq))
4479 break;
4480
4481 update_load_avg(se, 1);
4482 update_cfs_shares(cfs_rq);
4483 }
4484
4485 if (!se)
4486 add_nr_running(rq, 1);
4487
4488 hrtick_update(rq);
4489 }
4490
4491 static void set_next_buddy(struct sched_entity *se);
4492
4493 /*
4494 * The dequeue_task method is called before nr_running is
4495 * decreased. We remove the task from the rbtree and
4496 * update the fair scheduling stats:
4497 */
4498 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4499 {
4500 struct cfs_rq *cfs_rq;
4501 struct sched_entity *se = &p->se;
4502 int task_sleep = flags & DEQUEUE_SLEEP;
4503
4504 for_each_sched_entity(se) {
4505 cfs_rq = cfs_rq_of(se);
4506 dequeue_entity(cfs_rq, se, flags);
4507
4508 /*
4509 * end evaluation on encountering a throttled cfs_rq
4510 *
4511 * note: in the case of encountering a throttled cfs_rq we will
4512 * post the final h_nr_running decrement below.
4513 */
4514 if (cfs_rq_throttled(cfs_rq))
4515 break;
4516 cfs_rq->h_nr_running--;
4517
4518 /* Don't dequeue parent if it has other entities besides us */
4519 if (cfs_rq->load.weight) {
4520 /*
4521 * Bias pick_next to pick a task from this cfs_rq, as
4522 * p is sleeping when it is within its sched_slice.
4523 */
4524 if (task_sleep && parent_entity(se))
4525 set_next_buddy(parent_entity(se));
4526
4527 /* avoid re-evaluating load for this entity */
4528 se = parent_entity(se);
4529 break;
4530 }
4531 flags |= DEQUEUE_SLEEP;
4532 }
4533
4534 for_each_sched_entity(se) {
4535 cfs_rq = cfs_rq_of(se);
4536 cfs_rq->h_nr_running--;
4537
4538 if (cfs_rq_throttled(cfs_rq))
4539 break;
4540
4541 update_load_avg(se, 1);
4542 update_cfs_shares(cfs_rq);
4543 }
4544
4545 if (!se)
4546 sub_nr_running(rq, 1);
4547
4548 hrtick_update(rq);
4549 }
4550
4551 #ifdef CONFIG_SMP
4552 #ifdef CONFIG_NO_HZ_COMMON
4553 /*
4554 * per rq 'load' arrray crap; XXX kill this.
4555 */
4556
4557 /*
4558 * The exact cpuload calculated at every tick would be:
4559 *
4560 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4561 *
4562 * If a cpu misses updates for n ticks (as it was idle) and update gets
4563 * called on the n+1-th tick when cpu may be busy, then we have:
4564 *
4565 * load_n = (1 - 1/2^i)^n * load_0
4566 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4567 *
4568 * decay_load_missed() below does efficient calculation of
4569 *
4570 * load' = (1 - 1/2^i)^n * load
4571 *
4572 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4573 * This allows us to precompute the above in said factors, thereby allowing the
4574 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4575 * fixed_power_int())
4576 *
4577 * The calculation is approximated on a 128 point scale.
4578 */
4579 #define DEGRADE_SHIFT 7
4580
4581 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4582 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4583 { 0, 0, 0, 0, 0, 0, 0, 0 },
4584 { 64, 32, 8, 0, 0, 0, 0, 0 },
4585 { 96, 72, 40, 12, 1, 0, 0, 0 },
4586 { 112, 98, 75, 43, 15, 1, 0, 0 },
4587 { 120, 112, 98, 76, 45, 16, 2, 0 }
4588 };
4589
4590 /*
4591 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4592 * would be when CPU is idle and so we just decay the old load without
4593 * adding any new load.
4594 */
4595 static unsigned long
4596 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4597 {
4598 int j = 0;
4599
4600 if (!missed_updates)
4601 return load;
4602
4603 if (missed_updates >= degrade_zero_ticks[idx])
4604 return 0;
4605
4606 if (idx == 1)
4607 return load >> missed_updates;
4608
4609 while (missed_updates) {
4610 if (missed_updates % 2)
4611 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4612
4613 missed_updates >>= 1;
4614 j++;
4615 }
4616 return load;
4617 }
4618 #endif /* CONFIG_NO_HZ_COMMON */
4619
4620 /**
4621 * __cpu_load_update - update the rq->cpu_load[] statistics
4622 * @this_rq: The rq to update statistics for
4623 * @this_load: The current load
4624 * @pending_updates: The number of missed updates
4625 *
4626 * Update rq->cpu_load[] statistics. This function is usually called every
4627 * scheduler tick (TICK_NSEC).
4628 *
4629 * This function computes a decaying average:
4630 *
4631 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4632 *
4633 * Because of NOHZ it might not get called on every tick which gives need for
4634 * the @pending_updates argument.
4635 *
4636 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4637 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4638 * = A * (A * load[i]_n-2 + B) + B
4639 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4640 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4641 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4642 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4643 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4644 *
4645 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4646 * any change in load would have resulted in the tick being turned back on.
4647 *
4648 * For regular NOHZ, this reduces to:
4649 *
4650 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4651 *
4652 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4653 * term.
4654 */
4655 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4656 unsigned long pending_updates)
4657 {
4658 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4659 int i, scale;
4660
4661 this_rq->nr_load_updates++;
4662
4663 /* Update our load: */
4664 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4665 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4666 unsigned long old_load, new_load;
4667
4668 /* scale is effectively 1 << i now, and >> i divides by scale */
4669
4670 old_load = this_rq->cpu_load[i];
4671 #ifdef CONFIG_NO_HZ_COMMON
4672 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4673 if (tickless_load) {
4674 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4675 /*
4676 * old_load can never be a negative value because a
4677 * decayed tickless_load cannot be greater than the
4678 * original tickless_load.
4679 */
4680 old_load += tickless_load;
4681 }
4682 #endif
4683 new_load = this_load;
4684 /*
4685 * Round up the averaging division if load is increasing. This
4686 * prevents us from getting stuck on 9 if the load is 10, for
4687 * example.
4688 */
4689 if (new_load > old_load)
4690 new_load += scale - 1;
4691
4692 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4693 }
4694
4695 sched_avg_update(this_rq);
4696 }
4697
4698 /* Used instead of source_load when we know the type == 0 */
4699 static unsigned long weighted_cpuload(const int cpu)
4700 {
4701 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4702 }
4703
4704 #ifdef CONFIG_NO_HZ_COMMON
4705 /*
4706 * There is no sane way to deal with nohz on smp when using jiffies because the
4707 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4708 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4709 *
4710 * Therefore we need to avoid the delta approach from the regular tick when
4711 * possible since that would seriously skew the load calculation. This is why we
4712 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4713 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4714 * loop exit, nohz_idle_balance, nohz full exit...)
4715 *
4716 * This means we might still be one tick off for nohz periods.
4717 */
4718
4719 static void cpu_load_update_nohz(struct rq *this_rq,
4720 unsigned long curr_jiffies,
4721 unsigned long load)
4722 {
4723 unsigned long pending_updates;
4724
4725 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4726 if (pending_updates) {
4727 this_rq->last_load_update_tick = curr_jiffies;
4728 /*
4729 * In the regular NOHZ case, we were idle, this means load 0.
4730 * In the NOHZ_FULL case, we were non-idle, we should consider
4731 * its weighted load.
4732 */
4733 cpu_load_update(this_rq, load, pending_updates);
4734 }
4735 }
4736
4737 /*
4738 * Called from nohz_idle_balance() to update the load ratings before doing the
4739 * idle balance.
4740 */
4741 static void cpu_load_update_idle(struct rq *this_rq)
4742 {
4743 /*
4744 * bail if there's load or we're actually up-to-date.
4745 */
4746 if (weighted_cpuload(cpu_of(this_rq)))
4747 return;
4748
4749 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
4750 }
4751
4752 /*
4753 * Record CPU load on nohz entry so we know the tickless load to account
4754 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4755 * than other cpu_load[idx] but it should be fine as cpu_load readers
4756 * shouldn't rely into synchronized cpu_load[*] updates.
4757 */
4758 void cpu_load_update_nohz_start(void)
4759 {
4760 struct rq *this_rq = this_rq();
4761
4762 /*
4763 * This is all lockless but should be fine. If weighted_cpuload changes
4764 * concurrently we'll exit nohz. And cpu_load write can race with
4765 * cpu_load_update_idle() but both updater would be writing the same.
4766 */
4767 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4768 }
4769
4770 /*
4771 * Account the tickless load in the end of a nohz frame.
4772 */
4773 void cpu_load_update_nohz_stop(void)
4774 {
4775 unsigned long curr_jiffies = READ_ONCE(jiffies);
4776 struct rq *this_rq = this_rq();
4777 unsigned long load;
4778
4779 if (curr_jiffies == this_rq->last_load_update_tick)
4780 return;
4781
4782 load = weighted_cpuload(cpu_of(this_rq));
4783 raw_spin_lock(&this_rq->lock);
4784 update_rq_clock(this_rq);
4785 cpu_load_update_nohz(this_rq, curr_jiffies, load);
4786 raw_spin_unlock(&this_rq->lock);
4787 }
4788 #else /* !CONFIG_NO_HZ_COMMON */
4789 static inline void cpu_load_update_nohz(struct rq *this_rq,
4790 unsigned long curr_jiffies,
4791 unsigned long load) { }
4792 #endif /* CONFIG_NO_HZ_COMMON */
4793
4794 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4795 {
4796 #ifdef CONFIG_NO_HZ_COMMON
4797 /* See the mess around cpu_load_update_nohz(). */
4798 this_rq->last_load_update_tick = READ_ONCE(jiffies);
4799 #endif
4800 cpu_load_update(this_rq, load, 1);
4801 }
4802
4803 /*
4804 * Called from scheduler_tick()
4805 */
4806 void cpu_load_update_active(struct rq *this_rq)
4807 {
4808 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4809
4810 if (tick_nohz_tick_stopped())
4811 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4812 else
4813 cpu_load_update_periodic(this_rq, load);
4814 }
4815
4816 /*
4817 * Return a low guess at the load of a migration-source cpu weighted
4818 * according to the scheduling class and "nice" value.
4819 *
4820 * We want to under-estimate the load of migration sources, to
4821 * balance conservatively.
4822 */
4823 static unsigned long source_load(int cpu, int type)
4824 {
4825 struct rq *rq = cpu_rq(cpu);
4826 unsigned long total = weighted_cpuload(cpu);
4827
4828 if (type == 0 || !sched_feat(LB_BIAS))
4829 return total;
4830
4831 return min(rq->cpu_load[type-1], total);
4832 }
4833
4834 /*
4835 * Return a high guess at the load of a migration-target cpu weighted
4836 * according to the scheduling class and "nice" value.
4837 */
4838 static unsigned long target_load(int cpu, int type)
4839 {
4840 struct rq *rq = cpu_rq(cpu);
4841 unsigned long total = weighted_cpuload(cpu);
4842
4843 if (type == 0 || !sched_feat(LB_BIAS))
4844 return total;
4845
4846 return max(rq->cpu_load[type-1], total);
4847 }
4848
4849 static unsigned long capacity_of(int cpu)
4850 {
4851 return cpu_rq(cpu)->cpu_capacity;
4852 }
4853
4854 static unsigned long capacity_orig_of(int cpu)
4855 {
4856 return cpu_rq(cpu)->cpu_capacity_orig;
4857 }
4858
4859 static unsigned long cpu_avg_load_per_task(int cpu)
4860 {
4861 struct rq *rq = cpu_rq(cpu);
4862 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4863 unsigned long load_avg = weighted_cpuload(cpu);
4864
4865 if (nr_running)
4866 return load_avg / nr_running;
4867
4868 return 0;
4869 }
4870
4871 #ifdef CONFIG_FAIR_GROUP_SCHED
4872 /*
4873 * effective_load() calculates the load change as seen from the root_task_group
4874 *
4875 * Adding load to a group doesn't make a group heavier, but can cause movement
4876 * of group shares between cpus. Assuming the shares were perfectly aligned one
4877 * can calculate the shift in shares.
4878 *
4879 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4880 * on this @cpu and results in a total addition (subtraction) of @wg to the
4881 * total group weight.
4882 *
4883 * Given a runqueue weight distribution (rw_i) we can compute a shares
4884 * distribution (s_i) using:
4885 *
4886 * s_i = rw_i / \Sum rw_j (1)
4887 *
4888 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4889 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4890 * shares distribution (s_i):
4891 *
4892 * rw_i = { 2, 4, 1, 0 }
4893 * s_i = { 2/7, 4/7, 1/7, 0 }
4894 *
4895 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4896 * task used to run on and the CPU the waker is running on), we need to
4897 * compute the effect of waking a task on either CPU and, in case of a sync
4898 * wakeup, compute the effect of the current task going to sleep.
4899 *
4900 * So for a change of @wl to the local @cpu with an overall group weight change
4901 * of @wl we can compute the new shares distribution (s'_i) using:
4902 *
4903 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4904 *
4905 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4906 * differences in waking a task to CPU 0. The additional task changes the
4907 * weight and shares distributions like:
4908 *
4909 * rw'_i = { 3, 4, 1, 0 }
4910 * s'_i = { 3/8, 4/8, 1/8, 0 }
4911 *
4912 * We can then compute the difference in effective weight by using:
4913 *
4914 * dw_i = S * (s'_i - s_i) (3)
4915 *
4916 * Where 'S' is the group weight as seen by its parent.
4917 *
4918 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4919 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4920 * 4/7) times the weight of the group.
4921 */
4922 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4923 {
4924 struct sched_entity *se = tg->se[cpu];
4925
4926 if (!tg->parent) /* the trivial, non-cgroup case */
4927 return wl;
4928
4929 for_each_sched_entity(se) {
4930 long w, W;
4931
4932 tg = se->my_q->tg;
4933
4934 /*
4935 * W = @wg + \Sum rw_j
4936 */
4937 W = wg + calc_tg_weight(tg, se->my_q);
4938
4939 /*
4940 * w = rw_i + @wl
4941 */
4942 w = cfs_rq_load_avg(se->my_q) + wl;
4943
4944 /*
4945 * wl = S * s'_i; see (2)
4946 */
4947 if (W > 0 && w < W)
4948 wl = (w * (long)tg->shares) / W;
4949 else
4950 wl = tg->shares;
4951
4952 /*
4953 * Per the above, wl is the new se->load.weight value; since
4954 * those are clipped to [MIN_SHARES, ...) do so now. See
4955 * calc_cfs_shares().
4956 */
4957 if (wl < MIN_SHARES)
4958 wl = MIN_SHARES;
4959
4960 /*
4961 * wl = dw_i = S * (s'_i - s_i); see (3)
4962 */
4963 wl -= se->avg.load_avg;
4964
4965 /*
4966 * Recursively apply this logic to all parent groups to compute
4967 * the final effective load change on the root group. Since
4968 * only the @tg group gets extra weight, all parent groups can
4969 * only redistribute existing shares. @wl is the shift in shares
4970 * resulting from this level per the above.
4971 */
4972 wg = 0;
4973 }
4974
4975 return wl;
4976 }
4977 #else
4978
4979 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4980 {
4981 return wl;
4982 }
4983
4984 #endif
4985
4986 static void record_wakee(struct task_struct *p)
4987 {
4988 /*
4989 * Only decay a single time; tasks that have less then 1 wakeup per
4990 * jiffy will not have built up many flips.
4991 */
4992 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4993 current->wakee_flips >>= 1;
4994 current->wakee_flip_decay_ts = jiffies;
4995 }
4996
4997 if (current->last_wakee != p) {
4998 current->last_wakee = p;
4999 current->wakee_flips++;
5000 }
5001 }
5002
5003 /*
5004 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5005 *
5006 * A waker of many should wake a different task than the one last awakened
5007 * at a frequency roughly N times higher than one of its wakees.
5008 *
5009 * In order to determine whether we should let the load spread vs consolidating
5010 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5011 * partner, and a factor of lls_size higher frequency in the other.
5012 *
5013 * With both conditions met, we can be relatively sure that the relationship is
5014 * non-monogamous, with partner count exceeding socket size.
5015 *
5016 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5017 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5018 * socket size.
5019 */
5020 static int wake_wide(struct task_struct *p)
5021 {
5022 unsigned int master = current->wakee_flips;
5023 unsigned int slave = p->wakee_flips;
5024 int factor = this_cpu_read(sd_llc_size);
5025
5026 if (master < slave)
5027 swap(master, slave);
5028 if (slave < factor || master < slave * factor)
5029 return 0;
5030 return 1;
5031 }
5032
5033 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
5034 {
5035 s64 this_load, load;
5036 s64 this_eff_load, prev_eff_load;
5037 int idx, this_cpu, prev_cpu;
5038 struct task_group *tg;
5039 unsigned long weight;
5040 int balanced;
5041
5042 idx = sd->wake_idx;
5043 this_cpu = smp_processor_id();
5044 prev_cpu = task_cpu(p);
5045 load = source_load(prev_cpu, idx);
5046 this_load = target_load(this_cpu, idx);
5047
5048 /*
5049 * If sync wakeup then subtract the (maximum possible)
5050 * effect of the currently running task from the load
5051 * of the current CPU:
5052 */
5053 if (sync) {
5054 tg = task_group(current);
5055 weight = current->se.avg.load_avg;
5056
5057 this_load += effective_load(tg, this_cpu, -weight, -weight);
5058 load += effective_load(tg, prev_cpu, 0, -weight);
5059 }
5060
5061 tg = task_group(p);
5062 weight = p->se.avg.load_avg;
5063
5064 /*
5065 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5066 * due to the sync cause above having dropped this_load to 0, we'll
5067 * always have an imbalance, but there's really nothing you can do
5068 * about that, so that's good too.
5069 *
5070 * Otherwise check if either cpus are near enough in load to allow this
5071 * task to be woken on this_cpu.
5072 */
5073 this_eff_load = 100;
5074 this_eff_load *= capacity_of(prev_cpu);
5075
5076 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5077 prev_eff_load *= capacity_of(this_cpu);
5078
5079 if (this_load > 0) {
5080 this_eff_load *= this_load +
5081 effective_load(tg, this_cpu, weight, weight);
5082
5083 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5084 }
5085
5086 balanced = this_eff_load <= prev_eff_load;
5087
5088 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
5089
5090 if (!balanced)
5091 return 0;
5092
5093 schedstat_inc(sd, ttwu_move_affine);
5094 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5095
5096 return 1;
5097 }
5098
5099 /*
5100 * find_idlest_group finds and returns the least busy CPU group within the
5101 * domain.
5102 */
5103 static struct sched_group *
5104 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5105 int this_cpu, int sd_flag)
5106 {
5107 struct sched_group *idlest = NULL, *group = sd->groups;
5108 unsigned long min_load = ULONG_MAX, this_load = 0;
5109 int load_idx = sd->forkexec_idx;
5110 int imbalance = 100 + (sd->imbalance_pct-100)/2;
5111
5112 if (sd_flag & SD_BALANCE_WAKE)
5113 load_idx = sd->wake_idx;
5114
5115 do {
5116 unsigned long load, avg_load;
5117 int local_group;
5118 int i;
5119
5120 /* Skip over this group if it has no CPUs allowed */
5121 if (!cpumask_intersects(sched_group_cpus(group),
5122 tsk_cpus_allowed(p)))
5123 continue;
5124
5125 local_group = cpumask_test_cpu(this_cpu,
5126 sched_group_cpus(group));
5127
5128 /* Tally up the load of all CPUs in the group */
5129 avg_load = 0;
5130
5131 for_each_cpu(i, sched_group_cpus(group)) {
5132 /* Bias balancing toward cpus of our domain */
5133 if (local_group)
5134 load = source_load(i, load_idx);
5135 else
5136 load = target_load(i, load_idx);
5137
5138 avg_load += load;
5139 }
5140
5141 /* Adjust by relative CPU capacity of the group */
5142 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5143
5144 if (local_group) {
5145 this_load = avg_load;
5146 } else if (avg_load < min_load) {
5147 min_load = avg_load;
5148 idlest = group;
5149 }
5150 } while (group = group->next, group != sd->groups);
5151
5152 if (!idlest || 100*this_load < imbalance*min_load)
5153 return NULL;
5154 return idlest;
5155 }
5156
5157 /*
5158 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5159 */
5160 static int
5161 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5162 {
5163 unsigned long load, min_load = ULONG_MAX;
5164 unsigned int min_exit_latency = UINT_MAX;
5165 u64 latest_idle_timestamp = 0;
5166 int least_loaded_cpu = this_cpu;
5167 int shallowest_idle_cpu = -1;
5168 int i;
5169
5170 /* Traverse only the allowed CPUs */
5171 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5172 if (idle_cpu(i)) {
5173 struct rq *rq = cpu_rq(i);
5174 struct cpuidle_state *idle = idle_get_state(rq);
5175 if (idle && idle->exit_latency < min_exit_latency) {
5176 /*
5177 * We give priority to a CPU whose idle state
5178 * has the smallest exit latency irrespective
5179 * of any idle timestamp.
5180 */
5181 min_exit_latency = idle->exit_latency;
5182 latest_idle_timestamp = rq->idle_stamp;
5183 shallowest_idle_cpu = i;
5184 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5185 rq->idle_stamp > latest_idle_timestamp) {
5186 /*
5187 * If equal or no active idle state, then
5188 * the most recently idled CPU might have
5189 * a warmer cache.
5190 */
5191 latest_idle_timestamp = rq->idle_stamp;
5192 shallowest_idle_cpu = i;
5193 }
5194 } else if (shallowest_idle_cpu == -1) {
5195 load = weighted_cpuload(i);
5196 if (load < min_load || (load == min_load && i == this_cpu)) {
5197 min_load = load;
5198 least_loaded_cpu = i;
5199 }
5200 }
5201 }
5202
5203 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5204 }
5205
5206 /*
5207 * Try and locate an idle CPU in the sched_domain.
5208 */
5209 static int select_idle_sibling(struct task_struct *p, int target)
5210 {
5211 struct sched_domain *sd;
5212 struct sched_group *sg;
5213 int i = task_cpu(p);
5214
5215 if (idle_cpu(target))
5216 return target;
5217
5218 /*
5219 * If the prevous cpu is cache affine and idle, don't be stupid.
5220 */
5221 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5222 return i;
5223
5224 /*
5225 * Otherwise, iterate the domains and find an eligible idle cpu.
5226 *
5227 * A completely idle sched group at higher domains is more
5228 * desirable than an idle group at a lower level, because lower
5229 * domains have smaller groups and usually share hardware
5230 * resources which causes tasks to contend on them, e.g. x86
5231 * hyperthread siblings in the lowest domain (SMT) can contend
5232 * on the shared cpu pipeline.
5233 *
5234 * However, while we prefer idle groups at higher domains
5235 * finding an idle cpu at the lowest domain is still better than
5236 * returning 'target', which we've already established, isn't
5237 * idle.
5238 */
5239 sd = rcu_dereference(per_cpu(sd_llc, target));
5240 for_each_lower_domain(sd) {
5241 sg = sd->groups;
5242 do {
5243 if (!cpumask_intersects(sched_group_cpus(sg),
5244 tsk_cpus_allowed(p)))
5245 goto next;
5246
5247 /* Ensure the entire group is idle */
5248 for_each_cpu(i, sched_group_cpus(sg)) {
5249 if (i == target || !idle_cpu(i))
5250 goto next;
5251 }
5252
5253 /*
5254 * It doesn't matter which cpu we pick, the
5255 * whole group is idle.
5256 */
5257 target = cpumask_first_and(sched_group_cpus(sg),
5258 tsk_cpus_allowed(p));
5259 goto done;
5260 next:
5261 sg = sg->next;
5262 } while (sg != sd->groups);
5263 }
5264 done:
5265 return target;
5266 }
5267
5268 /*
5269 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5270 * tasks. The unit of the return value must be the one of capacity so we can
5271 * compare the utilization with the capacity of the CPU that is available for
5272 * CFS task (ie cpu_capacity).
5273 *
5274 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5275 * recent utilization of currently non-runnable tasks on a CPU. It represents
5276 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5277 * capacity_orig is the cpu_capacity available at the highest frequency
5278 * (arch_scale_freq_capacity()).
5279 * The utilization of a CPU converges towards a sum equal to or less than the
5280 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5281 * the running time on this CPU scaled by capacity_curr.
5282 *
5283 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5284 * higher than capacity_orig because of unfortunate rounding in
5285 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5286 * the average stabilizes with the new running time. We need to check that the
5287 * utilization stays within the range of [0..capacity_orig] and cap it if
5288 * necessary. Without utilization capping, a group could be seen as overloaded
5289 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5290 * available capacity. We allow utilization to overshoot capacity_curr (but not
5291 * capacity_orig) as it useful for predicting the capacity required after task
5292 * migrations (scheduler-driven DVFS).
5293 */
5294 static int cpu_util(int cpu)
5295 {
5296 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5297 unsigned long capacity = capacity_orig_of(cpu);
5298
5299 return (util >= capacity) ? capacity : util;
5300 }
5301
5302 /*
5303 * select_task_rq_fair: Select target runqueue for the waking task in domains
5304 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5305 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5306 *
5307 * Balances load by selecting the idlest cpu in the idlest group, or under
5308 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5309 *
5310 * Returns the target cpu number.
5311 *
5312 * preempt must be disabled.
5313 */
5314 static int
5315 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5316 {
5317 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5318 int cpu = smp_processor_id();
5319 int new_cpu = prev_cpu;
5320 int want_affine = 0;
5321 int sync = wake_flags & WF_SYNC;
5322
5323 if (sd_flag & SD_BALANCE_WAKE) {
5324 record_wakee(p);
5325 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5326 }
5327
5328 rcu_read_lock();
5329 for_each_domain(cpu, tmp) {
5330 if (!(tmp->flags & SD_LOAD_BALANCE))
5331 break;
5332
5333 /*
5334 * If both cpu and prev_cpu are part of this domain,
5335 * cpu is a valid SD_WAKE_AFFINE target.
5336 */
5337 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5338 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5339 affine_sd = tmp;
5340 break;
5341 }
5342
5343 if (tmp->flags & sd_flag)
5344 sd = tmp;
5345 else if (!want_affine)
5346 break;
5347 }
5348
5349 if (affine_sd) {
5350 sd = NULL; /* Prefer wake_affine over balance flags */
5351 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5352 new_cpu = cpu;
5353 }
5354
5355 if (!sd) {
5356 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5357 new_cpu = select_idle_sibling(p, new_cpu);
5358
5359 } else while (sd) {
5360 struct sched_group *group;
5361 int weight;
5362
5363 if (!(sd->flags & sd_flag)) {
5364 sd = sd->child;
5365 continue;
5366 }
5367
5368 group = find_idlest_group(sd, p, cpu, sd_flag);
5369 if (!group) {
5370 sd = sd->child;
5371 continue;
5372 }
5373
5374 new_cpu = find_idlest_cpu(group, p, cpu);
5375 if (new_cpu == -1 || new_cpu == cpu) {
5376 /* Now try balancing at a lower domain level of cpu */
5377 sd = sd->child;
5378 continue;
5379 }
5380
5381 /* Now try balancing at a lower domain level of new_cpu */
5382 cpu = new_cpu;
5383 weight = sd->span_weight;
5384 sd = NULL;
5385 for_each_domain(cpu, tmp) {
5386 if (weight <= tmp->span_weight)
5387 break;
5388 if (tmp->flags & sd_flag)
5389 sd = tmp;
5390 }
5391 /* while loop will break here if sd == NULL */
5392 }
5393 rcu_read_unlock();
5394
5395 return new_cpu;
5396 }
5397
5398 /*
5399 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5400 * cfs_rq_of(p) references at time of call are still valid and identify the
5401 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5402 */
5403 static void migrate_task_rq_fair(struct task_struct *p)
5404 {
5405 /*
5406 * As blocked tasks retain absolute vruntime the migration needs to
5407 * deal with this by subtracting the old and adding the new
5408 * min_vruntime -- the latter is done by enqueue_entity() when placing
5409 * the task on the new runqueue.
5410 */
5411 if (p->state == TASK_WAKING) {
5412 struct sched_entity *se = &p->se;
5413 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5414 u64 min_vruntime;
5415
5416 #ifndef CONFIG_64BIT
5417 u64 min_vruntime_copy;
5418
5419 do {
5420 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5421 smp_rmb();
5422 min_vruntime = cfs_rq->min_vruntime;
5423 } while (min_vruntime != min_vruntime_copy);
5424 #else
5425 min_vruntime = cfs_rq->min_vruntime;
5426 #endif
5427
5428 se->vruntime -= min_vruntime;
5429 }
5430
5431 /*
5432 * We are supposed to update the task to "current" time, then its up to date
5433 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5434 * what current time is, so simply throw away the out-of-date time. This
5435 * will result in the wakee task is less decayed, but giving the wakee more
5436 * load sounds not bad.
5437 */
5438 remove_entity_load_avg(&p->se);
5439
5440 /* Tell new CPU we are migrated */
5441 p->se.avg.last_update_time = 0;
5442
5443 /* We have migrated, no longer consider this task hot */
5444 p->se.exec_start = 0;
5445 }
5446
5447 static void task_dead_fair(struct task_struct *p)
5448 {
5449 remove_entity_load_avg(&p->se);
5450 }
5451 #endif /* CONFIG_SMP */
5452
5453 static unsigned long
5454 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5455 {
5456 unsigned long gran = sysctl_sched_wakeup_granularity;
5457
5458 /*
5459 * Since its curr running now, convert the gran from real-time
5460 * to virtual-time in his units.
5461 *
5462 * By using 'se' instead of 'curr' we penalize light tasks, so
5463 * they get preempted easier. That is, if 'se' < 'curr' then
5464 * the resulting gran will be larger, therefore penalizing the
5465 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5466 * be smaller, again penalizing the lighter task.
5467 *
5468 * This is especially important for buddies when the leftmost
5469 * task is higher priority than the buddy.
5470 */
5471 return calc_delta_fair(gran, se);
5472 }
5473
5474 /*
5475 * Should 'se' preempt 'curr'.
5476 *
5477 * |s1
5478 * |s2
5479 * |s3
5480 * g
5481 * |<--->|c
5482 *
5483 * w(c, s1) = -1
5484 * w(c, s2) = 0
5485 * w(c, s3) = 1
5486 *
5487 */
5488 static int
5489 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5490 {
5491 s64 gran, vdiff = curr->vruntime - se->vruntime;
5492
5493 if (vdiff <= 0)
5494 return -1;
5495
5496 gran = wakeup_gran(curr, se);
5497 if (vdiff > gran)
5498 return 1;
5499
5500 return 0;
5501 }
5502
5503 static void set_last_buddy(struct sched_entity *se)
5504 {
5505 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5506 return;
5507
5508 for_each_sched_entity(se)
5509 cfs_rq_of(se)->last = se;
5510 }
5511
5512 static void set_next_buddy(struct sched_entity *se)
5513 {
5514 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5515 return;
5516
5517 for_each_sched_entity(se)
5518 cfs_rq_of(se)->next = se;
5519 }
5520
5521 static void set_skip_buddy(struct sched_entity *se)
5522 {
5523 for_each_sched_entity(se)
5524 cfs_rq_of(se)->skip = se;
5525 }
5526
5527 /*
5528 * Preempt the current task with a newly woken task if needed:
5529 */
5530 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5531 {
5532 struct task_struct *curr = rq->curr;
5533 struct sched_entity *se = &curr->se, *pse = &p->se;
5534 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5535 int scale = cfs_rq->nr_running >= sched_nr_latency;
5536 int next_buddy_marked = 0;
5537
5538 if (unlikely(se == pse))
5539 return;
5540
5541 /*
5542 * This is possible from callers such as attach_tasks(), in which we
5543 * unconditionally check_prempt_curr() after an enqueue (which may have
5544 * lead to a throttle). This both saves work and prevents false
5545 * next-buddy nomination below.
5546 */
5547 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5548 return;
5549
5550 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5551 set_next_buddy(pse);
5552 next_buddy_marked = 1;
5553 }
5554
5555 /*
5556 * We can come here with TIF_NEED_RESCHED already set from new task
5557 * wake up path.
5558 *
5559 * Note: this also catches the edge-case of curr being in a throttled
5560 * group (e.g. via set_curr_task), since update_curr() (in the
5561 * enqueue of curr) will have resulted in resched being set. This
5562 * prevents us from potentially nominating it as a false LAST_BUDDY
5563 * below.
5564 */
5565 if (test_tsk_need_resched(curr))
5566 return;
5567
5568 /* Idle tasks are by definition preempted by non-idle tasks. */
5569 if (unlikely(curr->policy == SCHED_IDLE) &&
5570 likely(p->policy != SCHED_IDLE))
5571 goto preempt;
5572
5573 /*
5574 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5575 * is driven by the tick):
5576 */
5577 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5578 return;
5579
5580 find_matching_se(&se, &pse);
5581 update_curr(cfs_rq_of(se));
5582 BUG_ON(!pse);
5583 if (wakeup_preempt_entity(se, pse) == 1) {
5584 /*
5585 * Bias pick_next to pick the sched entity that is
5586 * triggering this preemption.
5587 */
5588 if (!next_buddy_marked)
5589 set_next_buddy(pse);
5590 goto preempt;
5591 }
5592
5593 return;
5594
5595 preempt:
5596 resched_curr(rq);
5597 /*
5598 * Only set the backward buddy when the current task is still
5599 * on the rq. This can happen when a wakeup gets interleaved
5600 * with schedule on the ->pre_schedule() or idle_balance()
5601 * point, either of which can * drop the rq lock.
5602 *
5603 * Also, during early boot the idle thread is in the fair class,
5604 * for obvious reasons its a bad idea to schedule back to it.
5605 */
5606 if (unlikely(!se->on_rq || curr == rq->idle))
5607 return;
5608
5609 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5610 set_last_buddy(se);
5611 }
5612
5613 static struct task_struct *
5614 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
5615 {
5616 struct cfs_rq *cfs_rq = &rq->cfs;
5617 struct sched_entity *se;
5618 struct task_struct *p;
5619 int new_tasks;
5620
5621 again:
5622 #ifdef CONFIG_FAIR_GROUP_SCHED
5623 if (!cfs_rq->nr_running)
5624 goto idle;
5625
5626 if (prev->sched_class != &fair_sched_class)
5627 goto simple;
5628
5629 /*
5630 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5631 * likely that a next task is from the same cgroup as the current.
5632 *
5633 * Therefore attempt to avoid putting and setting the entire cgroup
5634 * hierarchy, only change the part that actually changes.
5635 */
5636
5637 do {
5638 struct sched_entity *curr = cfs_rq->curr;
5639
5640 /*
5641 * Since we got here without doing put_prev_entity() we also
5642 * have to consider cfs_rq->curr. If it is still a runnable
5643 * entity, update_curr() will update its vruntime, otherwise
5644 * forget we've ever seen it.
5645 */
5646 if (curr) {
5647 if (curr->on_rq)
5648 update_curr(cfs_rq);
5649 else
5650 curr = NULL;
5651
5652 /*
5653 * This call to check_cfs_rq_runtime() will do the
5654 * throttle and dequeue its entity in the parent(s).
5655 * Therefore the 'simple' nr_running test will indeed
5656 * be correct.
5657 */
5658 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5659 goto simple;
5660 }
5661
5662 se = pick_next_entity(cfs_rq, curr);
5663 cfs_rq = group_cfs_rq(se);
5664 } while (cfs_rq);
5665
5666 p = task_of(se);
5667
5668 /*
5669 * Since we haven't yet done put_prev_entity and if the selected task
5670 * is a different task than we started out with, try and touch the
5671 * least amount of cfs_rqs.
5672 */
5673 if (prev != p) {
5674 struct sched_entity *pse = &prev->se;
5675
5676 while (!(cfs_rq = is_same_group(se, pse))) {
5677 int se_depth = se->depth;
5678 int pse_depth = pse->depth;
5679
5680 if (se_depth <= pse_depth) {
5681 put_prev_entity(cfs_rq_of(pse), pse);
5682 pse = parent_entity(pse);
5683 }
5684 if (se_depth >= pse_depth) {
5685 set_next_entity(cfs_rq_of(se), se);
5686 se = parent_entity(se);
5687 }
5688 }
5689
5690 put_prev_entity(cfs_rq, pse);
5691 set_next_entity(cfs_rq, se);
5692 }
5693
5694 if (hrtick_enabled(rq))
5695 hrtick_start_fair(rq, p);
5696
5697 return p;
5698 simple:
5699 cfs_rq = &rq->cfs;
5700 #endif
5701
5702 if (!cfs_rq->nr_running)
5703 goto idle;
5704
5705 put_prev_task(rq, prev);
5706
5707 do {
5708 se = pick_next_entity(cfs_rq, NULL);
5709 set_next_entity(cfs_rq, se);
5710 cfs_rq = group_cfs_rq(se);
5711 } while (cfs_rq);
5712
5713 p = task_of(se);
5714
5715 if (hrtick_enabled(rq))
5716 hrtick_start_fair(rq, p);
5717
5718 return p;
5719
5720 idle:
5721 /*
5722 * This is OK, because current is on_cpu, which avoids it being picked
5723 * for load-balance and preemption/IRQs are still disabled avoiding
5724 * further scheduler activity on it and we're being very careful to
5725 * re-start the picking loop.
5726 */
5727 lockdep_unpin_lock(&rq->lock, cookie);
5728 new_tasks = idle_balance(rq);
5729 lockdep_repin_lock(&rq->lock, cookie);
5730 /*
5731 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5732 * possible for any higher priority task to appear. In that case we
5733 * must re-start the pick_next_entity() loop.
5734 */
5735 if (new_tasks < 0)
5736 return RETRY_TASK;
5737
5738 if (new_tasks > 0)
5739 goto again;
5740
5741 return NULL;
5742 }
5743
5744 /*
5745 * Account for a descheduled task:
5746 */
5747 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5748 {
5749 struct sched_entity *se = &prev->se;
5750 struct cfs_rq *cfs_rq;
5751
5752 for_each_sched_entity(se) {
5753 cfs_rq = cfs_rq_of(se);
5754 put_prev_entity(cfs_rq, se);
5755 }
5756 }
5757
5758 /*
5759 * sched_yield() is very simple
5760 *
5761 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5762 */
5763 static void yield_task_fair(struct rq *rq)
5764 {
5765 struct task_struct *curr = rq->curr;
5766 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5767 struct sched_entity *se = &curr->se;
5768
5769 /*
5770 * Are we the only task in the tree?
5771 */
5772 if (unlikely(rq->nr_running == 1))
5773 return;
5774
5775 clear_buddies(cfs_rq, se);
5776
5777 if (curr->policy != SCHED_BATCH) {
5778 update_rq_clock(rq);
5779 /*
5780 * Update run-time statistics of the 'current'.
5781 */
5782 update_curr(cfs_rq);
5783 /*
5784 * Tell update_rq_clock() that we've just updated,
5785 * so we don't do microscopic update in schedule()
5786 * and double the fastpath cost.
5787 */
5788 rq_clock_skip_update(rq, true);
5789 }
5790
5791 set_skip_buddy(se);
5792 }
5793
5794 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5795 {
5796 struct sched_entity *se = &p->se;
5797
5798 /* throttled hierarchies are not runnable */
5799 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5800 return false;
5801
5802 /* Tell the scheduler that we'd really like pse to run next. */
5803 set_next_buddy(se);
5804
5805 yield_task_fair(rq);
5806
5807 return true;
5808 }
5809
5810 #ifdef CONFIG_SMP
5811 /**************************************************
5812 * Fair scheduling class load-balancing methods.
5813 *
5814 * BASICS
5815 *
5816 * The purpose of load-balancing is to achieve the same basic fairness the
5817 * per-cpu scheduler provides, namely provide a proportional amount of compute
5818 * time to each task. This is expressed in the following equation:
5819 *
5820 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5821 *
5822 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5823 * W_i,0 is defined as:
5824 *
5825 * W_i,0 = \Sum_j w_i,j (2)
5826 *
5827 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5828 * is derived from the nice value as per sched_prio_to_weight[].
5829 *
5830 * The weight average is an exponential decay average of the instantaneous
5831 * weight:
5832 *
5833 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5834 *
5835 * C_i is the compute capacity of cpu i, typically it is the
5836 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5837 * can also include other factors [XXX].
5838 *
5839 * To achieve this balance we define a measure of imbalance which follows
5840 * directly from (1):
5841 *
5842 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5843 *
5844 * We them move tasks around to minimize the imbalance. In the continuous
5845 * function space it is obvious this converges, in the discrete case we get
5846 * a few fun cases generally called infeasible weight scenarios.
5847 *
5848 * [XXX expand on:
5849 * - infeasible weights;
5850 * - local vs global optima in the discrete case. ]
5851 *
5852 *
5853 * SCHED DOMAINS
5854 *
5855 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5856 * for all i,j solution, we create a tree of cpus that follows the hardware
5857 * topology where each level pairs two lower groups (or better). This results
5858 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5859 * tree to only the first of the previous level and we decrease the frequency
5860 * of load-balance at each level inv. proportional to the number of cpus in
5861 * the groups.
5862 *
5863 * This yields:
5864 *
5865 * log_2 n 1 n
5866 * \Sum { --- * --- * 2^i } = O(n) (5)
5867 * i = 0 2^i 2^i
5868 * `- size of each group
5869 * | | `- number of cpus doing load-balance
5870 * | `- freq
5871 * `- sum over all levels
5872 *
5873 * Coupled with a limit on how many tasks we can migrate every balance pass,
5874 * this makes (5) the runtime complexity of the balancer.
5875 *
5876 * An important property here is that each CPU is still (indirectly) connected
5877 * to every other cpu in at most O(log n) steps:
5878 *
5879 * The adjacency matrix of the resulting graph is given by:
5880 *
5881 * log_2 n
5882 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5883 * k = 0
5884 *
5885 * And you'll find that:
5886 *
5887 * A^(log_2 n)_i,j != 0 for all i,j (7)
5888 *
5889 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5890 * The task movement gives a factor of O(m), giving a convergence complexity
5891 * of:
5892 *
5893 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5894 *
5895 *
5896 * WORK CONSERVING
5897 *
5898 * In order to avoid CPUs going idle while there's still work to do, new idle
5899 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5900 * tree itself instead of relying on other CPUs to bring it work.
5901 *
5902 * This adds some complexity to both (5) and (8) but it reduces the total idle
5903 * time.
5904 *
5905 * [XXX more?]
5906 *
5907 *
5908 * CGROUPS
5909 *
5910 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5911 *
5912 * s_k,i
5913 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5914 * S_k
5915 *
5916 * Where
5917 *
5918 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5919 *
5920 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5921 *
5922 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5923 * property.
5924 *
5925 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5926 * rewrite all of this once again.]
5927 */
5928
5929 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5930
5931 enum fbq_type { regular, remote, all };
5932
5933 #define LBF_ALL_PINNED 0x01
5934 #define LBF_NEED_BREAK 0x02
5935 #define LBF_DST_PINNED 0x04
5936 #define LBF_SOME_PINNED 0x08
5937
5938 struct lb_env {
5939 struct sched_domain *sd;
5940
5941 struct rq *src_rq;
5942 int src_cpu;
5943
5944 int dst_cpu;
5945 struct rq *dst_rq;
5946
5947 struct cpumask *dst_grpmask;
5948 int new_dst_cpu;
5949 enum cpu_idle_type idle;
5950 long imbalance;
5951 /* The set of CPUs under consideration for load-balancing */
5952 struct cpumask *cpus;
5953
5954 unsigned int flags;
5955
5956 unsigned int loop;
5957 unsigned int loop_break;
5958 unsigned int loop_max;
5959
5960 enum fbq_type fbq_type;
5961 struct list_head tasks;
5962 };
5963
5964 /*
5965 * Is this task likely cache-hot:
5966 */
5967 static int task_hot(struct task_struct *p, struct lb_env *env)
5968 {
5969 s64 delta;
5970
5971 lockdep_assert_held(&env->src_rq->lock);
5972
5973 if (p->sched_class != &fair_sched_class)
5974 return 0;
5975
5976 if (unlikely(p->policy == SCHED_IDLE))
5977 return 0;
5978
5979 /*
5980 * Buddy candidates are cache hot:
5981 */
5982 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5983 (&p->se == cfs_rq_of(&p->se)->next ||
5984 &p->se == cfs_rq_of(&p->se)->last))
5985 return 1;
5986
5987 if (sysctl_sched_migration_cost == -1)
5988 return 1;
5989 if (sysctl_sched_migration_cost == 0)
5990 return 0;
5991
5992 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5993
5994 return delta < (s64)sysctl_sched_migration_cost;
5995 }
5996
5997 #ifdef CONFIG_NUMA_BALANCING
5998 /*
5999 * Returns 1, if task migration degrades locality
6000 * Returns 0, if task migration improves locality i.e migration preferred.
6001 * Returns -1, if task migration is not affected by locality.
6002 */
6003 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6004 {
6005 struct numa_group *numa_group = rcu_dereference(p->numa_group);
6006 unsigned long src_faults, dst_faults;
6007 int src_nid, dst_nid;
6008
6009 if (!static_branch_likely(&sched_numa_balancing))
6010 return -1;
6011
6012 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6013 return -1;
6014
6015 src_nid = cpu_to_node(env->src_cpu);
6016 dst_nid = cpu_to_node(env->dst_cpu);
6017
6018 if (src_nid == dst_nid)
6019 return -1;
6020
6021 /* Migrating away from the preferred node is always bad. */
6022 if (src_nid == p->numa_preferred_nid) {
6023 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6024 return 1;
6025 else
6026 return -1;
6027 }
6028
6029 /* Encourage migration to the preferred node. */
6030 if (dst_nid == p->numa_preferred_nid)
6031 return 0;
6032
6033 if (numa_group) {
6034 src_faults = group_faults(p, src_nid);
6035 dst_faults = group_faults(p, dst_nid);
6036 } else {
6037 src_faults = task_faults(p, src_nid);
6038 dst_faults = task_faults(p, dst_nid);
6039 }
6040
6041 return dst_faults < src_faults;
6042 }
6043
6044 #else
6045 static inline int migrate_degrades_locality(struct task_struct *p,
6046 struct lb_env *env)
6047 {
6048 return -1;
6049 }
6050 #endif
6051
6052 /*
6053 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6054 */
6055 static
6056 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6057 {
6058 int tsk_cache_hot;
6059
6060 lockdep_assert_held(&env->src_rq->lock);
6061
6062 /*
6063 * We do not migrate tasks that are:
6064 * 1) throttled_lb_pair, or
6065 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6066 * 3) running (obviously), or
6067 * 4) are cache-hot on their current CPU.
6068 */
6069 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6070 return 0;
6071
6072 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6073 int cpu;
6074
6075 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
6076
6077 env->flags |= LBF_SOME_PINNED;
6078
6079 /*
6080 * Remember if this task can be migrated to any other cpu in
6081 * our sched_group. We may want to revisit it if we couldn't
6082 * meet load balance goals by pulling other tasks on src_cpu.
6083 *
6084 * Also avoid computing new_dst_cpu if we have already computed
6085 * one in current iteration.
6086 */
6087 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6088 return 0;
6089
6090 /* Prevent to re-select dst_cpu via env's cpus */
6091 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6092 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6093 env->flags |= LBF_DST_PINNED;
6094 env->new_dst_cpu = cpu;
6095 break;
6096 }
6097 }
6098
6099 return 0;
6100 }
6101
6102 /* Record that we found atleast one task that could run on dst_cpu */
6103 env->flags &= ~LBF_ALL_PINNED;
6104
6105 if (task_running(env->src_rq, p)) {
6106 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
6107 return 0;
6108 }
6109
6110 /*
6111 * Aggressive migration if:
6112 * 1) destination numa is preferred
6113 * 2) task is cache cold, or
6114 * 3) too many balance attempts have failed.
6115 */
6116 tsk_cache_hot = migrate_degrades_locality(p, env);
6117 if (tsk_cache_hot == -1)
6118 tsk_cache_hot = task_hot(p, env);
6119
6120 if (tsk_cache_hot <= 0 ||
6121 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6122 if (tsk_cache_hot == 1) {
6123 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6124 schedstat_inc(p, se.statistics.nr_forced_migrations);
6125 }
6126 return 1;
6127 }
6128
6129 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6130 return 0;
6131 }
6132
6133 /*
6134 * detach_task() -- detach the task for the migration specified in env
6135 */
6136 static void detach_task(struct task_struct *p, struct lb_env *env)
6137 {
6138 lockdep_assert_held(&env->src_rq->lock);
6139
6140 p->on_rq = TASK_ON_RQ_MIGRATING;
6141 deactivate_task(env->src_rq, p, 0);
6142 set_task_cpu(p, env->dst_cpu);
6143 }
6144
6145 /*
6146 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6147 * part of active balancing operations within "domain".
6148 *
6149 * Returns a task if successful and NULL otherwise.
6150 */
6151 static struct task_struct *detach_one_task(struct lb_env *env)
6152 {
6153 struct task_struct *p, *n;
6154
6155 lockdep_assert_held(&env->src_rq->lock);
6156
6157 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6158 if (!can_migrate_task(p, env))
6159 continue;
6160
6161 detach_task(p, env);
6162
6163 /*
6164 * Right now, this is only the second place where
6165 * lb_gained[env->idle] is updated (other is detach_tasks)
6166 * so we can safely collect stats here rather than
6167 * inside detach_tasks().
6168 */
6169 schedstat_inc(env->sd, lb_gained[env->idle]);
6170 return p;
6171 }
6172 return NULL;
6173 }
6174
6175 static const unsigned int sched_nr_migrate_break = 32;
6176
6177 /*
6178 * detach_tasks() -- tries to detach up to imbalance weighted load from
6179 * busiest_rq, as part of a balancing operation within domain "sd".
6180 *
6181 * Returns number of detached tasks if successful and 0 otherwise.
6182 */
6183 static int detach_tasks(struct lb_env *env)
6184 {
6185 struct list_head *tasks = &env->src_rq->cfs_tasks;
6186 struct task_struct *p;
6187 unsigned long load;
6188 int detached = 0;
6189
6190 lockdep_assert_held(&env->src_rq->lock);
6191
6192 if (env->imbalance <= 0)
6193 return 0;
6194
6195 while (!list_empty(tasks)) {
6196 /*
6197 * We don't want to steal all, otherwise we may be treated likewise,
6198 * which could at worst lead to a livelock crash.
6199 */
6200 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6201 break;
6202
6203 p = list_first_entry(tasks, struct task_struct, se.group_node);
6204
6205 env->loop++;
6206 /* We've more or less seen every task there is, call it quits */
6207 if (env->loop > env->loop_max)
6208 break;
6209
6210 /* take a breather every nr_migrate tasks */
6211 if (env->loop > env->loop_break) {
6212 env->loop_break += sched_nr_migrate_break;
6213 env->flags |= LBF_NEED_BREAK;
6214 break;
6215 }
6216
6217 if (!can_migrate_task(p, env))
6218 goto next;
6219
6220 load = task_h_load(p);
6221
6222 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6223 goto next;
6224
6225 if ((load / 2) > env->imbalance)
6226 goto next;
6227
6228 detach_task(p, env);
6229 list_add(&p->se.group_node, &env->tasks);
6230
6231 detached++;
6232 env->imbalance -= load;
6233
6234 #ifdef CONFIG_PREEMPT
6235 /*
6236 * NEWIDLE balancing is a source of latency, so preemptible
6237 * kernels will stop after the first task is detached to minimize
6238 * the critical section.
6239 */
6240 if (env->idle == CPU_NEWLY_IDLE)
6241 break;
6242 #endif
6243
6244 /*
6245 * We only want to steal up to the prescribed amount of
6246 * weighted load.
6247 */
6248 if (env->imbalance <= 0)
6249 break;
6250
6251 continue;
6252 next:
6253 list_move_tail(&p->se.group_node, tasks);
6254 }
6255
6256 /*
6257 * Right now, this is one of only two places we collect this stat
6258 * so we can safely collect detach_one_task() stats here rather
6259 * than inside detach_one_task().
6260 */
6261 schedstat_add(env->sd, lb_gained[env->idle], detached);
6262
6263 return detached;
6264 }
6265
6266 /*
6267 * attach_task() -- attach the task detached by detach_task() to its new rq.
6268 */
6269 static void attach_task(struct rq *rq, struct task_struct *p)
6270 {
6271 lockdep_assert_held(&rq->lock);
6272
6273 BUG_ON(task_rq(p) != rq);
6274 activate_task(rq, p, 0);
6275 p->on_rq = TASK_ON_RQ_QUEUED;
6276 check_preempt_curr(rq, p, 0);
6277 }
6278
6279 /*
6280 * attach_one_task() -- attaches the task returned from detach_one_task() to
6281 * its new rq.
6282 */
6283 static void attach_one_task(struct rq *rq, struct task_struct *p)
6284 {
6285 raw_spin_lock(&rq->lock);
6286 attach_task(rq, p);
6287 raw_spin_unlock(&rq->lock);
6288 }
6289
6290 /*
6291 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6292 * new rq.
6293 */
6294 static void attach_tasks(struct lb_env *env)
6295 {
6296 struct list_head *tasks = &env->tasks;
6297 struct task_struct *p;
6298
6299 raw_spin_lock(&env->dst_rq->lock);
6300
6301 while (!list_empty(tasks)) {
6302 p = list_first_entry(tasks, struct task_struct, se.group_node);
6303 list_del_init(&p->se.group_node);
6304
6305 attach_task(env->dst_rq, p);
6306 }
6307
6308 raw_spin_unlock(&env->dst_rq->lock);
6309 }
6310
6311 #ifdef CONFIG_FAIR_GROUP_SCHED
6312 static void update_blocked_averages(int cpu)
6313 {
6314 struct rq *rq = cpu_rq(cpu);
6315 struct cfs_rq *cfs_rq;
6316 unsigned long flags;
6317
6318 raw_spin_lock_irqsave(&rq->lock, flags);
6319 update_rq_clock(rq);
6320
6321 /*
6322 * Iterates the task_group tree in a bottom up fashion, see
6323 * list_add_leaf_cfs_rq() for details.
6324 */
6325 for_each_leaf_cfs_rq(rq, cfs_rq) {
6326 /* throttled entities do not contribute to load */
6327 if (throttled_hierarchy(cfs_rq))
6328 continue;
6329
6330 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6331 update_tg_load_avg(cfs_rq, 0);
6332 }
6333 raw_spin_unlock_irqrestore(&rq->lock, flags);
6334 }
6335
6336 /*
6337 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6338 * This needs to be done in a top-down fashion because the load of a child
6339 * group is a fraction of its parents load.
6340 */
6341 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6342 {
6343 struct rq *rq = rq_of(cfs_rq);
6344 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6345 unsigned long now = jiffies;
6346 unsigned long load;
6347
6348 if (cfs_rq->last_h_load_update == now)
6349 return;
6350
6351 cfs_rq->h_load_next = NULL;
6352 for_each_sched_entity(se) {
6353 cfs_rq = cfs_rq_of(se);
6354 cfs_rq->h_load_next = se;
6355 if (cfs_rq->last_h_load_update == now)
6356 break;
6357 }
6358
6359 if (!se) {
6360 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6361 cfs_rq->last_h_load_update = now;
6362 }
6363
6364 while ((se = cfs_rq->h_load_next) != NULL) {
6365 load = cfs_rq->h_load;
6366 load = div64_ul(load * se->avg.load_avg,
6367 cfs_rq_load_avg(cfs_rq) + 1);
6368 cfs_rq = group_cfs_rq(se);
6369 cfs_rq->h_load = load;
6370 cfs_rq->last_h_load_update = now;
6371 }
6372 }
6373
6374 static unsigned long task_h_load(struct task_struct *p)
6375 {
6376 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6377
6378 update_cfs_rq_h_load(cfs_rq);
6379 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6380 cfs_rq_load_avg(cfs_rq) + 1);
6381 }
6382 #else
6383 static inline void update_blocked_averages(int cpu)
6384 {
6385 struct rq *rq = cpu_rq(cpu);
6386 struct cfs_rq *cfs_rq = &rq->cfs;
6387 unsigned long flags;
6388
6389 raw_spin_lock_irqsave(&rq->lock, flags);
6390 update_rq_clock(rq);
6391 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6392 raw_spin_unlock_irqrestore(&rq->lock, flags);
6393 }
6394
6395 static unsigned long task_h_load(struct task_struct *p)
6396 {
6397 return p->se.avg.load_avg;
6398 }
6399 #endif
6400
6401 /********** Helpers for find_busiest_group ************************/
6402
6403 enum group_type {
6404 group_other = 0,
6405 group_imbalanced,
6406 group_overloaded,
6407 };
6408
6409 /*
6410 * sg_lb_stats - stats of a sched_group required for load_balancing
6411 */
6412 struct sg_lb_stats {
6413 unsigned long avg_load; /*Avg load across the CPUs of the group */
6414 unsigned long group_load; /* Total load over the CPUs of the group */
6415 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6416 unsigned long load_per_task;
6417 unsigned long group_capacity;
6418 unsigned long group_util; /* Total utilization of the group */
6419 unsigned int sum_nr_running; /* Nr tasks running in the group */
6420 unsigned int idle_cpus;
6421 unsigned int group_weight;
6422 enum group_type group_type;
6423 int group_no_capacity;
6424 #ifdef CONFIG_NUMA_BALANCING
6425 unsigned int nr_numa_running;
6426 unsigned int nr_preferred_running;
6427 #endif
6428 };
6429
6430 /*
6431 * sd_lb_stats - Structure to store the statistics of a sched_domain
6432 * during load balancing.
6433 */
6434 struct sd_lb_stats {
6435 struct sched_group *busiest; /* Busiest group in this sd */
6436 struct sched_group *local; /* Local group in this sd */
6437 unsigned long total_load; /* Total load of all groups in sd */
6438 unsigned long total_capacity; /* Total capacity of all groups in sd */
6439 unsigned long avg_load; /* Average load across all groups in sd */
6440
6441 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6442 struct sg_lb_stats local_stat; /* Statistics of the local group */
6443 };
6444
6445 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6446 {
6447 /*
6448 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6449 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6450 * We must however clear busiest_stat::avg_load because
6451 * update_sd_pick_busiest() reads this before assignment.
6452 */
6453 *sds = (struct sd_lb_stats){
6454 .busiest = NULL,
6455 .local = NULL,
6456 .total_load = 0UL,
6457 .total_capacity = 0UL,
6458 .busiest_stat = {
6459 .avg_load = 0UL,
6460 .sum_nr_running = 0,
6461 .group_type = group_other,
6462 },
6463 };
6464 }
6465
6466 /**
6467 * get_sd_load_idx - Obtain the load index for a given sched domain.
6468 * @sd: The sched_domain whose load_idx is to be obtained.
6469 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6470 *
6471 * Return: The load index.
6472 */
6473 static inline int get_sd_load_idx(struct sched_domain *sd,
6474 enum cpu_idle_type idle)
6475 {
6476 int load_idx;
6477
6478 switch (idle) {
6479 case CPU_NOT_IDLE:
6480 load_idx = sd->busy_idx;
6481 break;
6482
6483 case CPU_NEWLY_IDLE:
6484 load_idx = sd->newidle_idx;
6485 break;
6486 default:
6487 load_idx = sd->idle_idx;
6488 break;
6489 }
6490
6491 return load_idx;
6492 }
6493
6494 static unsigned long scale_rt_capacity(int cpu)
6495 {
6496 struct rq *rq = cpu_rq(cpu);
6497 u64 total, used, age_stamp, avg;
6498 s64 delta;
6499
6500 /*
6501 * Since we're reading these variables without serialization make sure
6502 * we read them once before doing sanity checks on them.
6503 */
6504 age_stamp = READ_ONCE(rq->age_stamp);
6505 avg = READ_ONCE(rq->rt_avg);
6506 delta = __rq_clock_broken(rq) - age_stamp;
6507
6508 if (unlikely(delta < 0))
6509 delta = 0;
6510
6511 total = sched_avg_period() + delta;
6512
6513 used = div_u64(avg, total);
6514
6515 if (likely(used < SCHED_CAPACITY_SCALE))
6516 return SCHED_CAPACITY_SCALE - used;
6517
6518 return 1;
6519 }
6520
6521 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6522 {
6523 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6524 struct sched_group *sdg = sd->groups;
6525
6526 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6527
6528 capacity *= scale_rt_capacity(cpu);
6529 capacity >>= SCHED_CAPACITY_SHIFT;
6530
6531 if (!capacity)
6532 capacity = 1;
6533
6534 cpu_rq(cpu)->cpu_capacity = capacity;
6535 sdg->sgc->capacity = capacity;
6536 }
6537
6538 void update_group_capacity(struct sched_domain *sd, int cpu)
6539 {
6540 struct sched_domain *child = sd->child;
6541 struct sched_group *group, *sdg = sd->groups;
6542 unsigned long capacity;
6543 unsigned long interval;
6544
6545 interval = msecs_to_jiffies(sd->balance_interval);
6546 interval = clamp(interval, 1UL, max_load_balance_interval);
6547 sdg->sgc->next_update = jiffies + interval;
6548
6549 if (!child) {
6550 update_cpu_capacity(sd, cpu);
6551 return;
6552 }
6553
6554 capacity = 0;
6555
6556 if (child->flags & SD_OVERLAP) {
6557 /*
6558 * SD_OVERLAP domains cannot assume that child groups
6559 * span the current group.
6560 */
6561
6562 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6563 struct sched_group_capacity *sgc;
6564 struct rq *rq = cpu_rq(cpu);
6565
6566 /*
6567 * build_sched_domains() -> init_sched_groups_capacity()
6568 * gets here before we've attached the domains to the
6569 * runqueues.
6570 *
6571 * Use capacity_of(), which is set irrespective of domains
6572 * in update_cpu_capacity().
6573 *
6574 * This avoids capacity from being 0 and
6575 * causing divide-by-zero issues on boot.
6576 */
6577 if (unlikely(!rq->sd)) {
6578 capacity += capacity_of(cpu);
6579 continue;
6580 }
6581
6582 sgc = rq->sd->groups->sgc;
6583 capacity += sgc->capacity;
6584 }
6585 } else {
6586 /*
6587 * !SD_OVERLAP domains can assume that child groups
6588 * span the current group.
6589 */
6590
6591 group = child->groups;
6592 do {
6593 capacity += group->sgc->capacity;
6594 group = group->next;
6595 } while (group != child->groups);
6596 }
6597
6598 sdg->sgc->capacity = capacity;
6599 }
6600
6601 /*
6602 * Check whether the capacity of the rq has been noticeably reduced by side
6603 * activity. The imbalance_pct is used for the threshold.
6604 * Return true is the capacity is reduced
6605 */
6606 static inline int
6607 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6608 {
6609 return ((rq->cpu_capacity * sd->imbalance_pct) <
6610 (rq->cpu_capacity_orig * 100));
6611 }
6612
6613 /*
6614 * Group imbalance indicates (and tries to solve) the problem where balancing
6615 * groups is inadequate due to tsk_cpus_allowed() constraints.
6616 *
6617 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6618 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6619 * Something like:
6620 *
6621 * { 0 1 2 3 } { 4 5 6 7 }
6622 * * * * *
6623 *
6624 * If we were to balance group-wise we'd place two tasks in the first group and
6625 * two tasks in the second group. Clearly this is undesired as it will overload
6626 * cpu 3 and leave one of the cpus in the second group unused.
6627 *
6628 * The current solution to this issue is detecting the skew in the first group
6629 * by noticing the lower domain failed to reach balance and had difficulty
6630 * moving tasks due to affinity constraints.
6631 *
6632 * When this is so detected; this group becomes a candidate for busiest; see
6633 * update_sd_pick_busiest(). And calculate_imbalance() and
6634 * find_busiest_group() avoid some of the usual balance conditions to allow it
6635 * to create an effective group imbalance.
6636 *
6637 * This is a somewhat tricky proposition since the next run might not find the
6638 * group imbalance and decide the groups need to be balanced again. A most
6639 * subtle and fragile situation.
6640 */
6641
6642 static inline int sg_imbalanced(struct sched_group *group)
6643 {
6644 return group->sgc->imbalance;
6645 }
6646
6647 /*
6648 * group_has_capacity returns true if the group has spare capacity that could
6649 * be used by some tasks.
6650 * We consider that a group has spare capacity if the * number of task is
6651 * smaller than the number of CPUs or if the utilization is lower than the
6652 * available capacity for CFS tasks.
6653 * For the latter, we use a threshold to stabilize the state, to take into
6654 * account the variance of the tasks' load and to return true if the available
6655 * capacity in meaningful for the load balancer.
6656 * As an example, an available capacity of 1% can appear but it doesn't make
6657 * any benefit for the load balance.
6658 */
6659 static inline bool
6660 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6661 {
6662 if (sgs->sum_nr_running < sgs->group_weight)
6663 return true;
6664
6665 if ((sgs->group_capacity * 100) >
6666 (sgs->group_util * env->sd->imbalance_pct))
6667 return true;
6668
6669 return false;
6670 }
6671
6672 /*
6673 * group_is_overloaded returns true if the group has more tasks than it can
6674 * handle.
6675 * group_is_overloaded is not equals to !group_has_capacity because a group
6676 * with the exact right number of tasks, has no more spare capacity but is not
6677 * overloaded so both group_has_capacity and group_is_overloaded return
6678 * false.
6679 */
6680 static inline bool
6681 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6682 {
6683 if (sgs->sum_nr_running <= sgs->group_weight)
6684 return false;
6685
6686 if ((sgs->group_capacity * 100) <
6687 (sgs->group_util * env->sd->imbalance_pct))
6688 return true;
6689
6690 return false;
6691 }
6692
6693 static inline enum
6694 group_type group_classify(struct sched_group *group,
6695 struct sg_lb_stats *sgs)
6696 {
6697 if (sgs->group_no_capacity)
6698 return group_overloaded;
6699
6700 if (sg_imbalanced(group))
6701 return group_imbalanced;
6702
6703 return group_other;
6704 }
6705
6706 /**
6707 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6708 * @env: The load balancing environment.
6709 * @group: sched_group whose statistics are to be updated.
6710 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6711 * @local_group: Does group contain this_cpu.
6712 * @sgs: variable to hold the statistics for this group.
6713 * @overload: Indicate more than one runnable task for any CPU.
6714 */
6715 static inline void update_sg_lb_stats(struct lb_env *env,
6716 struct sched_group *group, int load_idx,
6717 int local_group, struct sg_lb_stats *sgs,
6718 bool *overload)
6719 {
6720 unsigned long load;
6721 int i, nr_running;
6722
6723 memset(sgs, 0, sizeof(*sgs));
6724
6725 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6726 struct rq *rq = cpu_rq(i);
6727
6728 /* Bias balancing toward cpus of our domain */
6729 if (local_group)
6730 load = target_load(i, load_idx);
6731 else
6732 load = source_load(i, load_idx);
6733
6734 sgs->group_load += load;
6735 sgs->group_util += cpu_util(i);
6736 sgs->sum_nr_running += rq->cfs.h_nr_running;
6737
6738 nr_running = rq->nr_running;
6739 if (nr_running > 1)
6740 *overload = true;
6741
6742 #ifdef CONFIG_NUMA_BALANCING
6743 sgs->nr_numa_running += rq->nr_numa_running;
6744 sgs->nr_preferred_running += rq->nr_preferred_running;
6745 #endif
6746 sgs->sum_weighted_load += weighted_cpuload(i);
6747 /*
6748 * No need to call idle_cpu() if nr_running is not 0
6749 */
6750 if (!nr_running && idle_cpu(i))
6751 sgs->idle_cpus++;
6752 }
6753
6754 /* Adjust by relative CPU capacity of the group */
6755 sgs->group_capacity = group->sgc->capacity;
6756 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6757
6758 if (sgs->sum_nr_running)
6759 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6760
6761 sgs->group_weight = group->group_weight;
6762
6763 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6764 sgs->group_type = group_classify(group, sgs);
6765 }
6766
6767 /**
6768 * update_sd_pick_busiest - return 1 on busiest group
6769 * @env: The load balancing environment.
6770 * @sds: sched_domain statistics
6771 * @sg: sched_group candidate to be checked for being the busiest
6772 * @sgs: sched_group statistics
6773 *
6774 * Determine if @sg is a busier group than the previously selected
6775 * busiest group.
6776 *
6777 * Return: %true if @sg is a busier group than the previously selected
6778 * busiest group. %false otherwise.
6779 */
6780 static bool update_sd_pick_busiest(struct lb_env *env,
6781 struct sd_lb_stats *sds,
6782 struct sched_group *sg,
6783 struct sg_lb_stats *sgs)
6784 {
6785 struct sg_lb_stats *busiest = &sds->busiest_stat;
6786
6787 if (sgs->group_type > busiest->group_type)
6788 return true;
6789
6790 if (sgs->group_type < busiest->group_type)
6791 return false;
6792
6793 if (sgs->avg_load <= busiest->avg_load)
6794 return false;
6795
6796 /* This is the busiest node in its class. */
6797 if (!(env->sd->flags & SD_ASYM_PACKING))
6798 return true;
6799
6800 /* No ASYM_PACKING if target cpu is already busy */
6801 if (env->idle == CPU_NOT_IDLE)
6802 return true;
6803 /*
6804 * ASYM_PACKING needs to move all the work to the lowest
6805 * numbered CPUs in the group, therefore mark all groups
6806 * higher than ourself as busy.
6807 */
6808 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6809 if (!sds->busiest)
6810 return true;
6811
6812 /* Prefer to move from highest possible cpu's work */
6813 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
6814 return true;
6815 }
6816
6817 return false;
6818 }
6819
6820 #ifdef CONFIG_NUMA_BALANCING
6821 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6822 {
6823 if (sgs->sum_nr_running > sgs->nr_numa_running)
6824 return regular;
6825 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6826 return remote;
6827 return all;
6828 }
6829
6830 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6831 {
6832 if (rq->nr_running > rq->nr_numa_running)
6833 return regular;
6834 if (rq->nr_running > rq->nr_preferred_running)
6835 return remote;
6836 return all;
6837 }
6838 #else
6839 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6840 {
6841 return all;
6842 }
6843
6844 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6845 {
6846 return regular;
6847 }
6848 #endif /* CONFIG_NUMA_BALANCING */
6849
6850 /**
6851 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6852 * @env: The load balancing environment.
6853 * @sds: variable to hold the statistics for this sched_domain.
6854 */
6855 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6856 {
6857 struct sched_domain *child = env->sd->child;
6858 struct sched_group *sg = env->sd->groups;
6859 struct sg_lb_stats tmp_sgs;
6860 int load_idx, prefer_sibling = 0;
6861 bool overload = false;
6862
6863 if (child && child->flags & SD_PREFER_SIBLING)
6864 prefer_sibling = 1;
6865
6866 load_idx = get_sd_load_idx(env->sd, env->idle);
6867
6868 do {
6869 struct sg_lb_stats *sgs = &tmp_sgs;
6870 int local_group;
6871
6872 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6873 if (local_group) {
6874 sds->local = sg;
6875 sgs = &sds->local_stat;
6876
6877 if (env->idle != CPU_NEWLY_IDLE ||
6878 time_after_eq(jiffies, sg->sgc->next_update))
6879 update_group_capacity(env->sd, env->dst_cpu);
6880 }
6881
6882 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6883 &overload);
6884
6885 if (local_group)
6886 goto next_group;
6887
6888 /*
6889 * In case the child domain prefers tasks go to siblings
6890 * first, lower the sg capacity so that we'll try
6891 * and move all the excess tasks away. We lower the capacity
6892 * of a group only if the local group has the capacity to fit
6893 * these excess tasks. The extra check prevents the case where
6894 * you always pull from the heaviest group when it is already
6895 * under-utilized (possible with a large weight task outweighs
6896 * the tasks on the system).
6897 */
6898 if (prefer_sibling && sds->local &&
6899 group_has_capacity(env, &sds->local_stat) &&
6900 (sgs->sum_nr_running > 1)) {
6901 sgs->group_no_capacity = 1;
6902 sgs->group_type = group_classify(sg, sgs);
6903 }
6904
6905 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6906 sds->busiest = sg;
6907 sds->busiest_stat = *sgs;
6908 }
6909
6910 next_group:
6911 /* Now, start updating sd_lb_stats */
6912 sds->total_load += sgs->group_load;
6913 sds->total_capacity += sgs->group_capacity;
6914
6915 sg = sg->next;
6916 } while (sg != env->sd->groups);
6917
6918 if (env->sd->flags & SD_NUMA)
6919 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6920
6921 if (!env->sd->parent) {
6922 /* update overload indicator if we are at root domain */
6923 if (env->dst_rq->rd->overload != overload)
6924 env->dst_rq->rd->overload = overload;
6925 }
6926
6927 }
6928
6929 /**
6930 * check_asym_packing - Check to see if the group is packed into the
6931 * sched doman.
6932 *
6933 * This is primarily intended to used at the sibling level. Some
6934 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6935 * case of POWER7, it can move to lower SMT modes only when higher
6936 * threads are idle. When in lower SMT modes, the threads will
6937 * perform better since they share less core resources. Hence when we
6938 * have idle threads, we want them to be the higher ones.
6939 *
6940 * This packing function is run on idle threads. It checks to see if
6941 * the busiest CPU in this domain (core in the P7 case) has a higher
6942 * CPU number than the packing function is being run on. Here we are
6943 * assuming lower CPU number will be equivalent to lower a SMT thread
6944 * number.
6945 *
6946 * Return: 1 when packing is required and a task should be moved to
6947 * this CPU. The amount of the imbalance is returned in *imbalance.
6948 *
6949 * @env: The load balancing environment.
6950 * @sds: Statistics of the sched_domain which is to be packed
6951 */
6952 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6953 {
6954 int busiest_cpu;
6955
6956 if (!(env->sd->flags & SD_ASYM_PACKING))
6957 return 0;
6958
6959 if (env->idle == CPU_NOT_IDLE)
6960 return 0;
6961
6962 if (!sds->busiest)
6963 return 0;
6964
6965 busiest_cpu = group_first_cpu(sds->busiest);
6966 if (env->dst_cpu > busiest_cpu)
6967 return 0;
6968
6969 env->imbalance = DIV_ROUND_CLOSEST(
6970 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6971 SCHED_CAPACITY_SCALE);
6972
6973 return 1;
6974 }
6975
6976 /**
6977 * fix_small_imbalance - Calculate the minor imbalance that exists
6978 * amongst the groups of a sched_domain, during
6979 * load balancing.
6980 * @env: The load balancing environment.
6981 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6982 */
6983 static inline
6984 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6985 {
6986 unsigned long tmp, capa_now = 0, capa_move = 0;
6987 unsigned int imbn = 2;
6988 unsigned long scaled_busy_load_per_task;
6989 struct sg_lb_stats *local, *busiest;
6990
6991 local = &sds->local_stat;
6992 busiest = &sds->busiest_stat;
6993
6994 if (!local->sum_nr_running)
6995 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6996 else if (busiest->load_per_task > local->load_per_task)
6997 imbn = 1;
6998
6999 scaled_busy_load_per_task =
7000 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7001 busiest->group_capacity;
7002
7003 if (busiest->avg_load + scaled_busy_load_per_task >=
7004 local->avg_load + (scaled_busy_load_per_task * imbn)) {
7005 env->imbalance = busiest->load_per_task;
7006 return;
7007 }
7008
7009 /*
7010 * OK, we don't have enough imbalance to justify moving tasks,
7011 * however we may be able to increase total CPU capacity used by
7012 * moving them.
7013 */
7014
7015 capa_now += busiest->group_capacity *
7016 min(busiest->load_per_task, busiest->avg_load);
7017 capa_now += local->group_capacity *
7018 min(local->load_per_task, local->avg_load);
7019 capa_now /= SCHED_CAPACITY_SCALE;
7020
7021 /* Amount of load we'd subtract */
7022 if (busiest->avg_load > scaled_busy_load_per_task) {
7023 capa_move += busiest->group_capacity *
7024 min(busiest->load_per_task,
7025 busiest->avg_load - scaled_busy_load_per_task);
7026 }
7027
7028 /* Amount of load we'd add */
7029 if (busiest->avg_load * busiest->group_capacity <
7030 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7031 tmp = (busiest->avg_load * busiest->group_capacity) /
7032 local->group_capacity;
7033 } else {
7034 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7035 local->group_capacity;
7036 }
7037 capa_move += local->group_capacity *
7038 min(local->load_per_task, local->avg_load + tmp);
7039 capa_move /= SCHED_CAPACITY_SCALE;
7040
7041 /* Move if we gain throughput */
7042 if (capa_move > capa_now)
7043 env->imbalance = busiest->load_per_task;
7044 }
7045
7046 /**
7047 * calculate_imbalance - Calculate the amount of imbalance present within the
7048 * groups of a given sched_domain during load balance.
7049 * @env: load balance environment
7050 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7051 */
7052 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7053 {
7054 unsigned long max_pull, load_above_capacity = ~0UL;
7055 struct sg_lb_stats *local, *busiest;
7056
7057 local = &sds->local_stat;
7058 busiest = &sds->busiest_stat;
7059
7060 if (busiest->group_type == group_imbalanced) {
7061 /*
7062 * In the group_imb case we cannot rely on group-wide averages
7063 * to ensure cpu-load equilibrium, look at wider averages. XXX
7064 */
7065 busiest->load_per_task =
7066 min(busiest->load_per_task, sds->avg_load);
7067 }
7068
7069 /*
7070 * Avg load of busiest sg can be less and avg load of local sg can
7071 * be greater than avg load across all sgs of sd because avg load
7072 * factors in sg capacity and sgs with smaller group_type are
7073 * skipped when updating the busiest sg:
7074 */
7075 if (busiest->avg_load <= sds->avg_load ||
7076 local->avg_load >= sds->avg_load) {
7077 env->imbalance = 0;
7078 return fix_small_imbalance(env, sds);
7079 }
7080
7081 /*
7082 * If there aren't any idle cpus, avoid creating some.
7083 */
7084 if (busiest->group_type == group_overloaded &&
7085 local->group_type == group_overloaded) {
7086 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7087 if (load_above_capacity > busiest->group_capacity) {
7088 load_above_capacity -= busiest->group_capacity;
7089 load_above_capacity *= NICE_0_LOAD;
7090 load_above_capacity /= busiest->group_capacity;
7091 } else
7092 load_above_capacity = ~0UL;
7093 }
7094
7095 /*
7096 * We're trying to get all the cpus to the average_load, so we don't
7097 * want to push ourselves above the average load, nor do we wish to
7098 * reduce the max loaded cpu below the average load. At the same time,
7099 * we also don't want to reduce the group load below the group
7100 * capacity. Thus we look for the minimum possible imbalance.
7101 */
7102 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7103
7104 /* How much load to actually move to equalise the imbalance */
7105 env->imbalance = min(
7106 max_pull * busiest->group_capacity,
7107 (sds->avg_load - local->avg_load) * local->group_capacity
7108 ) / SCHED_CAPACITY_SCALE;
7109
7110 /*
7111 * if *imbalance is less than the average load per runnable task
7112 * there is no guarantee that any tasks will be moved so we'll have
7113 * a think about bumping its value to force at least one task to be
7114 * moved
7115 */
7116 if (env->imbalance < busiest->load_per_task)
7117 return fix_small_imbalance(env, sds);
7118 }
7119
7120 /******* find_busiest_group() helpers end here *********************/
7121
7122 /**
7123 * find_busiest_group - Returns the busiest group within the sched_domain
7124 * if there is an imbalance.
7125 *
7126 * Also calculates the amount of weighted load which should be moved
7127 * to restore balance.
7128 *
7129 * @env: The load balancing environment.
7130 *
7131 * Return: - The busiest group if imbalance exists.
7132 */
7133 static struct sched_group *find_busiest_group(struct lb_env *env)
7134 {
7135 struct sg_lb_stats *local, *busiest;
7136 struct sd_lb_stats sds;
7137
7138 init_sd_lb_stats(&sds);
7139
7140 /*
7141 * Compute the various statistics relavent for load balancing at
7142 * this level.
7143 */
7144 update_sd_lb_stats(env, &sds);
7145 local = &sds.local_stat;
7146 busiest = &sds.busiest_stat;
7147
7148 /* ASYM feature bypasses nice load balance check */
7149 if (check_asym_packing(env, &sds))
7150 return sds.busiest;
7151
7152 /* There is no busy sibling group to pull tasks from */
7153 if (!sds.busiest || busiest->sum_nr_running == 0)
7154 goto out_balanced;
7155
7156 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7157 / sds.total_capacity;
7158
7159 /*
7160 * If the busiest group is imbalanced the below checks don't
7161 * work because they assume all things are equal, which typically
7162 * isn't true due to cpus_allowed constraints and the like.
7163 */
7164 if (busiest->group_type == group_imbalanced)
7165 goto force_balance;
7166
7167 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7168 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7169 busiest->group_no_capacity)
7170 goto force_balance;
7171
7172 /*
7173 * If the local group is busier than the selected busiest group
7174 * don't try and pull any tasks.
7175 */
7176 if (local->avg_load >= busiest->avg_load)
7177 goto out_balanced;
7178
7179 /*
7180 * Don't pull any tasks if this group is already above the domain
7181 * average load.
7182 */
7183 if (local->avg_load >= sds.avg_load)
7184 goto out_balanced;
7185
7186 if (env->idle == CPU_IDLE) {
7187 /*
7188 * This cpu is idle. If the busiest group is not overloaded
7189 * and there is no imbalance between this and busiest group
7190 * wrt idle cpus, it is balanced. The imbalance becomes
7191 * significant if the diff is greater than 1 otherwise we
7192 * might end up to just move the imbalance on another group
7193 */
7194 if ((busiest->group_type != group_overloaded) &&
7195 (local->idle_cpus <= (busiest->idle_cpus + 1)))
7196 goto out_balanced;
7197 } else {
7198 /*
7199 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7200 * imbalance_pct to be conservative.
7201 */
7202 if (100 * busiest->avg_load <=
7203 env->sd->imbalance_pct * local->avg_load)
7204 goto out_balanced;
7205 }
7206
7207 force_balance:
7208 /* Looks like there is an imbalance. Compute it */
7209 calculate_imbalance(env, &sds);
7210 return sds.busiest;
7211
7212 out_balanced:
7213 env->imbalance = 0;
7214 return NULL;
7215 }
7216
7217 /*
7218 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7219 */
7220 static struct rq *find_busiest_queue(struct lb_env *env,
7221 struct sched_group *group)
7222 {
7223 struct rq *busiest = NULL, *rq;
7224 unsigned long busiest_load = 0, busiest_capacity = 1;
7225 int i;
7226
7227 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7228 unsigned long capacity, wl;
7229 enum fbq_type rt;
7230
7231 rq = cpu_rq(i);
7232 rt = fbq_classify_rq(rq);
7233
7234 /*
7235 * We classify groups/runqueues into three groups:
7236 * - regular: there are !numa tasks
7237 * - remote: there are numa tasks that run on the 'wrong' node
7238 * - all: there is no distinction
7239 *
7240 * In order to avoid migrating ideally placed numa tasks,
7241 * ignore those when there's better options.
7242 *
7243 * If we ignore the actual busiest queue to migrate another
7244 * task, the next balance pass can still reduce the busiest
7245 * queue by moving tasks around inside the node.
7246 *
7247 * If we cannot move enough load due to this classification
7248 * the next pass will adjust the group classification and
7249 * allow migration of more tasks.
7250 *
7251 * Both cases only affect the total convergence complexity.
7252 */
7253 if (rt > env->fbq_type)
7254 continue;
7255
7256 capacity = capacity_of(i);
7257
7258 wl = weighted_cpuload(i);
7259
7260 /*
7261 * When comparing with imbalance, use weighted_cpuload()
7262 * which is not scaled with the cpu capacity.
7263 */
7264
7265 if (rq->nr_running == 1 && wl > env->imbalance &&
7266 !check_cpu_capacity(rq, env->sd))
7267 continue;
7268
7269 /*
7270 * For the load comparisons with the other cpu's, consider
7271 * the weighted_cpuload() scaled with the cpu capacity, so
7272 * that the load can be moved away from the cpu that is
7273 * potentially running at a lower capacity.
7274 *
7275 * Thus we're looking for max(wl_i / capacity_i), crosswise
7276 * multiplication to rid ourselves of the division works out
7277 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7278 * our previous maximum.
7279 */
7280 if (wl * busiest_capacity > busiest_load * capacity) {
7281 busiest_load = wl;
7282 busiest_capacity = capacity;
7283 busiest = rq;
7284 }
7285 }
7286
7287 return busiest;
7288 }
7289
7290 /*
7291 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7292 * so long as it is large enough.
7293 */
7294 #define MAX_PINNED_INTERVAL 512
7295
7296 /* Working cpumask for load_balance and load_balance_newidle. */
7297 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7298
7299 static int need_active_balance(struct lb_env *env)
7300 {
7301 struct sched_domain *sd = env->sd;
7302
7303 if (env->idle == CPU_NEWLY_IDLE) {
7304
7305 /*
7306 * ASYM_PACKING needs to force migrate tasks from busy but
7307 * higher numbered CPUs in order to pack all tasks in the
7308 * lowest numbered CPUs.
7309 */
7310 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7311 return 1;
7312 }
7313
7314 /*
7315 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7316 * It's worth migrating the task if the src_cpu's capacity is reduced
7317 * because of other sched_class or IRQs if more capacity stays
7318 * available on dst_cpu.
7319 */
7320 if ((env->idle != CPU_NOT_IDLE) &&
7321 (env->src_rq->cfs.h_nr_running == 1)) {
7322 if ((check_cpu_capacity(env->src_rq, sd)) &&
7323 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7324 return 1;
7325 }
7326
7327 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7328 }
7329
7330 static int active_load_balance_cpu_stop(void *data);
7331
7332 static int should_we_balance(struct lb_env *env)
7333 {
7334 struct sched_group *sg = env->sd->groups;
7335 struct cpumask *sg_cpus, *sg_mask;
7336 int cpu, balance_cpu = -1;
7337
7338 /*
7339 * In the newly idle case, we will allow all the cpu's
7340 * to do the newly idle load balance.
7341 */
7342 if (env->idle == CPU_NEWLY_IDLE)
7343 return 1;
7344
7345 sg_cpus = sched_group_cpus(sg);
7346 sg_mask = sched_group_mask(sg);
7347 /* Try to find first idle cpu */
7348 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7349 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7350 continue;
7351
7352 balance_cpu = cpu;
7353 break;
7354 }
7355
7356 if (balance_cpu == -1)
7357 balance_cpu = group_balance_cpu(sg);
7358
7359 /*
7360 * First idle cpu or the first cpu(busiest) in this sched group
7361 * is eligible for doing load balancing at this and above domains.
7362 */
7363 return balance_cpu == env->dst_cpu;
7364 }
7365
7366 /*
7367 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7368 * tasks if there is an imbalance.
7369 */
7370 static int load_balance(int this_cpu, struct rq *this_rq,
7371 struct sched_domain *sd, enum cpu_idle_type idle,
7372 int *continue_balancing)
7373 {
7374 int ld_moved, cur_ld_moved, active_balance = 0;
7375 struct sched_domain *sd_parent = sd->parent;
7376 struct sched_group *group;
7377 struct rq *busiest;
7378 unsigned long flags;
7379 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7380
7381 struct lb_env env = {
7382 .sd = sd,
7383 .dst_cpu = this_cpu,
7384 .dst_rq = this_rq,
7385 .dst_grpmask = sched_group_cpus(sd->groups),
7386 .idle = idle,
7387 .loop_break = sched_nr_migrate_break,
7388 .cpus = cpus,
7389 .fbq_type = all,
7390 .tasks = LIST_HEAD_INIT(env.tasks),
7391 };
7392
7393 /*
7394 * For NEWLY_IDLE load_balancing, we don't need to consider
7395 * other cpus in our group
7396 */
7397 if (idle == CPU_NEWLY_IDLE)
7398 env.dst_grpmask = NULL;
7399
7400 cpumask_copy(cpus, cpu_active_mask);
7401
7402 schedstat_inc(sd, lb_count[idle]);
7403
7404 redo:
7405 if (!should_we_balance(&env)) {
7406 *continue_balancing = 0;
7407 goto out_balanced;
7408 }
7409
7410 group = find_busiest_group(&env);
7411 if (!group) {
7412 schedstat_inc(sd, lb_nobusyg[idle]);
7413 goto out_balanced;
7414 }
7415
7416 busiest = find_busiest_queue(&env, group);
7417 if (!busiest) {
7418 schedstat_inc(sd, lb_nobusyq[idle]);
7419 goto out_balanced;
7420 }
7421
7422 BUG_ON(busiest == env.dst_rq);
7423
7424 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7425
7426 env.src_cpu = busiest->cpu;
7427 env.src_rq = busiest;
7428
7429 ld_moved = 0;
7430 if (busiest->nr_running > 1) {
7431 /*
7432 * Attempt to move tasks. If find_busiest_group has found
7433 * an imbalance but busiest->nr_running <= 1, the group is
7434 * still unbalanced. ld_moved simply stays zero, so it is
7435 * correctly treated as an imbalance.
7436 */
7437 env.flags |= LBF_ALL_PINNED;
7438 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7439
7440 more_balance:
7441 raw_spin_lock_irqsave(&busiest->lock, flags);
7442
7443 /*
7444 * cur_ld_moved - load moved in current iteration
7445 * ld_moved - cumulative load moved across iterations
7446 */
7447 cur_ld_moved = detach_tasks(&env);
7448
7449 /*
7450 * We've detached some tasks from busiest_rq. Every
7451 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7452 * unlock busiest->lock, and we are able to be sure
7453 * that nobody can manipulate the tasks in parallel.
7454 * See task_rq_lock() family for the details.
7455 */
7456
7457 raw_spin_unlock(&busiest->lock);
7458
7459 if (cur_ld_moved) {
7460 attach_tasks(&env);
7461 ld_moved += cur_ld_moved;
7462 }
7463
7464 local_irq_restore(flags);
7465
7466 if (env.flags & LBF_NEED_BREAK) {
7467 env.flags &= ~LBF_NEED_BREAK;
7468 goto more_balance;
7469 }
7470
7471 /*
7472 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7473 * us and move them to an alternate dst_cpu in our sched_group
7474 * where they can run. The upper limit on how many times we
7475 * iterate on same src_cpu is dependent on number of cpus in our
7476 * sched_group.
7477 *
7478 * This changes load balance semantics a bit on who can move
7479 * load to a given_cpu. In addition to the given_cpu itself
7480 * (or a ilb_cpu acting on its behalf where given_cpu is
7481 * nohz-idle), we now have balance_cpu in a position to move
7482 * load to given_cpu. In rare situations, this may cause
7483 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7484 * _independently_ and at _same_ time to move some load to
7485 * given_cpu) causing exceess load to be moved to given_cpu.
7486 * This however should not happen so much in practice and
7487 * moreover subsequent load balance cycles should correct the
7488 * excess load moved.
7489 */
7490 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7491
7492 /* Prevent to re-select dst_cpu via env's cpus */
7493 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7494
7495 env.dst_rq = cpu_rq(env.new_dst_cpu);
7496 env.dst_cpu = env.new_dst_cpu;
7497 env.flags &= ~LBF_DST_PINNED;
7498 env.loop = 0;
7499 env.loop_break = sched_nr_migrate_break;
7500
7501 /*
7502 * Go back to "more_balance" rather than "redo" since we
7503 * need to continue with same src_cpu.
7504 */
7505 goto more_balance;
7506 }
7507
7508 /*
7509 * We failed to reach balance because of affinity.
7510 */
7511 if (sd_parent) {
7512 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7513
7514 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7515 *group_imbalance = 1;
7516 }
7517
7518 /* All tasks on this runqueue were pinned by CPU affinity */
7519 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7520 cpumask_clear_cpu(cpu_of(busiest), cpus);
7521 if (!cpumask_empty(cpus)) {
7522 env.loop = 0;
7523 env.loop_break = sched_nr_migrate_break;
7524 goto redo;
7525 }
7526 goto out_all_pinned;
7527 }
7528 }
7529
7530 if (!ld_moved) {
7531 schedstat_inc(sd, lb_failed[idle]);
7532 /*
7533 * Increment the failure counter only on periodic balance.
7534 * We do not want newidle balance, which can be very
7535 * frequent, pollute the failure counter causing
7536 * excessive cache_hot migrations and active balances.
7537 */
7538 if (idle != CPU_NEWLY_IDLE)
7539 sd->nr_balance_failed++;
7540
7541 if (need_active_balance(&env)) {
7542 raw_spin_lock_irqsave(&busiest->lock, flags);
7543
7544 /* don't kick the active_load_balance_cpu_stop,
7545 * if the curr task on busiest cpu can't be
7546 * moved to this_cpu
7547 */
7548 if (!cpumask_test_cpu(this_cpu,
7549 tsk_cpus_allowed(busiest->curr))) {
7550 raw_spin_unlock_irqrestore(&busiest->lock,
7551 flags);
7552 env.flags |= LBF_ALL_PINNED;
7553 goto out_one_pinned;
7554 }
7555
7556 /*
7557 * ->active_balance synchronizes accesses to
7558 * ->active_balance_work. Once set, it's cleared
7559 * only after active load balance is finished.
7560 */
7561 if (!busiest->active_balance) {
7562 busiest->active_balance = 1;
7563 busiest->push_cpu = this_cpu;
7564 active_balance = 1;
7565 }
7566 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7567
7568 if (active_balance) {
7569 stop_one_cpu_nowait(cpu_of(busiest),
7570 active_load_balance_cpu_stop, busiest,
7571 &busiest->active_balance_work);
7572 }
7573
7574 /* We've kicked active balancing, force task migration. */
7575 sd->nr_balance_failed = sd->cache_nice_tries+1;
7576 }
7577 } else
7578 sd->nr_balance_failed = 0;
7579
7580 if (likely(!active_balance)) {
7581 /* We were unbalanced, so reset the balancing interval */
7582 sd->balance_interval = sd->min_interval;
7583 } else {
7584 /*
7585 * If we've begun active balancing, start to back off. This
7586 * case may not be covered by the all_pinned logic if there
7587 * is only 1 task on the busy runqueue (because we don't call
7588 * detach_tasks).
7589 */
7590 if (sd->balance_interval < sd->max_interval)
7591 sd->balance_interval *= 2;
7592 }
7593
7594 goto out;
7595
7596 out_balanced:
7597 /*
7598 * We reach balance although we may have faced some affinity
7599 * constraints. Clear the imbalance flag if it was set.
7600 */
7601 if (sd_parent) {
7602 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7603
7604 if (*group_imbalance)
7605 *group_imbalance = 0;
7606 }
7607
7608 out_all_pinned:
7609 /*
7610 * We reach balance because all tasks are pinned at this level so
7611 * we can't migrate them. Let the imbalance flag set so parent level
7612 * can try to migrate them.
7613 */
7614 schedstat_inc(sd, lb_balanced[idle]);
7615
7616 sd->nr_balance_failed = 0;
7617
7618 out_one_pinned:
7619 /* tune up the balancing interval */
7620 if (((env.flags & LBF_ALL_PINNED) &&
7621 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7622 (sd->balance_interval < sd->max_interval))
7623 sd->balance_interval *= 2;
7624
7625 ld_moved = 0;
7626 out:
7627 return ld_moved;
7628 }
7629
7630 static inline unsigned long
7631 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7632 {
7633 unsigned long interval = sd->balance_interval;
7634
7635 if (cpu_busy)
7636 interval *= sd->busy_factor;
7637
7638 /* scale ms to jiffies */
7639 interval = msecs_to_jiffies(interval);
7640 interval = clamp(interval, 1UL, max_load_balance_interval);
7641
7642 return interval;
7643 }
7644
7645 static inline void
7646 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7647 {
7648 unsigned long interval, next;
7649
7650 interval = get_sd_balance_interval(sd, cpu_busy);
7651 next = sd->last_balance + interval;
7652
7653 if (time_after(*next_balance, next))
7654 *next_balance = next;
7655 }
7656
7657 /*
7658 * idle_balance is called by schedule() if this_cpu is about to become
7659 * idle. Attempts to pull tasks from other CPUs.
7660 */
7661 static int idle_balance(struct rq *this_rq)
7662 {
7663 unsigned long next_balance = jiffies + HZ;
7664 int this_cpu = this_rq->cpu;
7665 struct sched_domain *sd;
7666 int pulled_task = 0;
7667 u64 curr_cost = 0;
7668
7669 /*
7670 * We must set idle_stamp _before_ calling idle_balance(), such that we
7671 * measure the duration of idle_balance() as idle time.
7672 */
7673 this_rq->idle_stamp = rq_clock(this_rq);
7674
7675 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7676 !this_rq->rd->overload) {
7677 rcu_read_lock();
7678 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7679 if (sd)
7680 update_next_balance(sd, 0, &next_balance);
7681 rcu_read_unlock();
7682
7683 goto out;
7684 }
7685
7686 raw_spin_unlock(&this_rq->lock);
7687
7688 update_blocked_averages(this_cpu);
7689 rcu_read_lock();
7690 for_each_domain(this_cpu, sd) {
7691 int continue_balancing = 1;
7692 u64 t0, domain_cost;
7693
7694 if (!(sd->flags & SD_LOAD_BALANCE))
7695 continue;
7696
7697 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7698 update_next_balance(sd, 0, &next_balance);
7699 break;
7700 }
7701
7702 if (sd->flags & SD_BALANCE_NEWIDLE) {
7703 t0 = sched_clock_cpu(this_cpu);
7704
7705 pulled_task = load_balance(this_cpu, this_rq,
7706 sd, CPU_NEWLY_IDLE,
7707 &continue_balancing);
7708
7709 domain_cost = sched_clock_cpu(this_cpu) - t0;
7710 if (domain_cost > sd->max_newidle_lb_cost)
7711 sd->max_newidle_lb_cost = domain_cost;
7712
7713 curr_cost += domain_cost;
7714 }
7715
7716 update_next_balance(sd, 0, &next_balance);
7717
7718 /*
7719 * Stop searching for tasks to pull if there are
7720 * now runnable tasks on this rq.
7721 */
7722 if (pulled_task || this_rq->nr_running > 0)
7723 break;
7724 }
7725 rcu_read_unlock();
7726
7727 raw_spin_lock(&this_rq->lock);
7728
7729 if (curr_cost > this_rq->max_idle_balance_cost)
7730 this_rq->max_idle_balance_cost = curr_cost;
7731
7732 /*
7733 * While browsing the domains, we released the rq lock, a task could
7734 * have been enqueued in the meantime. Since we're not going idle,
7735 * pretend we pulled a task.
7736 */
7737 if (this_rq->cfs.h_nr_running && !pulled_task)
7738 pulled_task = 1;
7739
7740 out:
7741 /* Move the next balance forward */
7742 if (time_after(this_rq->next_balance, next_balance))
7743 this_rq->next_balance = next_balance;
7744
7745 /* Is there a task of a high priority class? */
7746 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7747 pulled_task = -1;
7748
7749 if (pulled_task)
7750 this_rq->idle_stamp = 0;
7751
7752 return pulled_task;
7753 }
7754
7755 /*
7756 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7757 * running tasks off the busiest CPU onto idle CPUs. It requires at
7758 * least 1 task to be running on each physical CPU where possible, and
7759 * avoids physical / logical imbalances.
7760 */
7761 static int active_load_balance_cpu_stop(void *data)
7762 {
7763 struct rq *busiest_rq = data;
7764 int busiest_cpu = cpu_of(busiest_rq);
7765 int target_cpu = busiest_rq->push_cpu;
7766 struct rq *target_rq = cpu_rq(target_cpu);
7767 struct sched_domain *sd;
7768 struct task_struct *p = NULL;
7769
7770 raw_spin_lock_irq(&busiest_rq->lock);
7771
7772 /* make sure the requested cpu hasn't gone down in the meantime */
7773 if (unlikely(busiest_cpu != smp_processor_id() ||
7774 !busiest_rq->active_balance))
7775 goto out_unlock;
7776
7777 /* Is there any task to move? */
7778 if (busiest_rq->nr_running <= 1)
7779 goto out_unlock;
7780
7781 /*
7782 * This condition is "impossible", if it occurs
7783 * we need to fix it. Originally reported by
7784 * Bjorn Helgaas on a 128-cpu setup.
7785 */
7786 BUG_ON(busiest_rq == target_rq);
7787
7788 /* Search for an sd spanning us and the target CPU. */
7789 rcu_read_lock();
7790 for_each_domain(target_cpu, sd) {
7791 if ((sd->flags & SD_LOAD_BALANCE) &&
7792 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7793 break;
7794 }
7795
7796 if (likely(sd)) {
7797 struct lb_env env = {
7798 .sd = sd,
7799 .dst_cpu = target_cpu,
7800 .dst_rq = target_rq,
7801 .src_cpu = busiest_rq->cpu,
7802 .src_rq = busiest_rq,
7803 .idle = CPU_IDLE,
7804 };
7805
7806 schedstat_inc(sd, alb_count);
7807
7808 p = detach_one_task(&env);
7809 if (p) {
7810 schedstat_inc(sd, alb_pushed);
7811 /* Active balancing done, reset the failure counter. */
7812 sd->nr_balance_failed = 0;
7813 } else {
7814 schedstat_inc(sd, alb_failed);
7815 }
7816 }
7817 rcu_read_unlock();
7818 out_unlock:
7819 busiest_rq->active_balance = 0;
7820 raw_spin_unlock(&busiest_rq->lock);
7821
7822 if (p)
7823 attach_one_task(target_rq, p);
7824
7825 local_irq_enable();
7826
7827 return 0;
7828 }
7829
7830 static inline int on_null_domain(struct rq *rq)
7831 {
7832 return unlikely(!rcu_dereference_sched(rq->sd));
7833 }
7834
7835 #ifdef CONFIG_NO_HZ_COMMON
7836 /*
7837 * idle load balancing details
7838 * - When one of the busy CPUs notice that there may be an idle rebalancing
7839 * needed, they will kick the idle load balancer, which then does idle
7840 * load balancing for all the idle CPUs.
7841 */
7842 static struct {
7843 cpumask_var_t idle_cpus_mask;
7844 atomic_t nr_cpus;
7845 unsigned long next_balance; /* in jiffy units */
7846 } nohz ____cacheline_aligned;
7847
7848 static inline int find_new_ilb(void)
7849 {
7850 int ilb = cpumask_first(nohz.idle_cpus_mask);
7851
7852 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7853 return ilb;
7854
7855 return nr_cpu_ids;
7856 }
7857
7858 /*
7859 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7860 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7861 * CPU (if there is one).
7862 */
7863 static void nohz_balancer_kick(void)
7864 {
7865 int ilb_cpu;
7866
7867 nohz.next_balance++;
7868
7869 ilb_cpu = find_new_ilb();
7870
7871 if (ilb_cpu >= nr_cpu_ids)
7872 return;
7873
7874 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7875 return;
7876 /*
7877 * Use smp_send_reschedule() instead of resched_cpu().
7878 * This way we generate a sched IPI on the target cpu which
7879 * is idle. And the softirq performing nohz idle load balance
7880 * will be run before returning from the IPI.
7881 */
7882 smp_send_reschedule(ilb_cpu);
7883 return;
7884 }
7885
7886 void nohz_balance_exit_idle(unsigned int cpu)
7887 {
7888 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7889 /*
7890 * Completely isolated CPUs don't ever set, so we must test.
7891 */
7892 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7893 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7894 atomic_dec(&nohz.nr_cpus);
7895 }
7896 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7897 }
7898 }
7899
7900 static inline void set_cpu_sd_state_busy(void)
7901 {
7902 struct sched_domain *sd;
7903 int cpu = smp_processor_id();
7904
7905 rcu_read_lock();
7906 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7907
7908 if (!sd || !sd->nohz_idle)
7909 goto unlock;
7910 sd->nohz_idle = 0;
7911
7912 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7913 unlock:
7914 rcu_read_unlock();
7915 }
7916
7917 void set_cpu_sd_state_idle(void)
7918 {
7919 struct sched_domain *sd;
7920 int cpu = smp_processor_id();
7921
7922 rcu_read_lock();
7923 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7924
7925 if (!sd || sd->nohz_idle)
7926 goto unlock;
7927 sd->nohz_idle = 1;
7928
7929 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7930 unlock:
7931 rcu_read_unlock();
7932 }
7933
7934 /*
7935 * This routine will record that the cpu is going idle with tick stopped.
7936 * This info will be used in performing idle load balancing in the future.
7937 */
7938 void nohz_balance_enter_idle(int cpu)
7939 {
7940 /*
7941 * If this cpu is going down, then nothing needs to be done.
7942 */
7943 if (!cpu_active(cpu))
7944 return;
7945
7946 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7947 return;
7948
7949 /*
7950 * If we're a completely isolated CPU, we don't play.
7951 */
7952 if (on_null_domain(cpu_rq(cpu)))
7953 return;
7954
7955 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7956 atomic_inc(&nohz.nr_cpus);
7957 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7958 }
7959 #endif
7960
7961 static DEFINE_SPINLOCK(balancing);
7962
7963 /*
7964 * Scale the max load_balance interval with the number of CPUs in the system.
7965 * This trades load-balance latency on larger machines for less cross talk.
7966 */
7967 void update_max_interval(void)
7968 {
7969 max_load_balance_interval = HZ*num_online_cpus()/10;
7970 }
7971
7972 /*
7973 * It checks each scheduling domain to see if it is due to be balanced,
7974 * and initiates a balancing operation if so.
7975 *
7976 * Balancing parameters are set up in init_sched_domains.
7977 */
7978 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7979 {
7980 int continue_balancing = 1;
7981 int cpu = rq->cpu;
7982 unsigned long interval;
7983 struct sched_domain *sd;
7984 /* Earliest time when we have to do rebalance again */
7985 unsigned long next_balance = jiffies + 60*HZ;
7986 int update_next_balance = 0;
7987 int need_serialize, need_decay = 0;
7988 u64 max_cost = 0;
7989
7990 update_blocked_averages(cpu);
7991
7992 rcu_read_lock();
7993 for_each_domain(cpu, sd) {
7994 /*
7995 * Decay the newidle max times here because this is a regular
7996 * visit to all the domains. Decay ~1% per second.
7997 */
7998 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7999 sd->max_newidle_lb_cost =
8000 (sd->max_newidle_lb_cost * 253) / 256;
8001 sd->next_decay_max_lb_cost = jiffies + HZ;
8002 need_decay = 1;
8003 }
8004 max_cost += sd->max_newidle_lb_cost;
8005
8006 if (!(sd->flags & SD_LOAD_BALANCE))
8007 continue;
8008
8009 /*
8010 * Stop the load balance at this level. There is another
8011 * CPU in our sched group which is doing load balancing more
8012 * actively.
8013 */
8014 if (!continue_balancing) {
8015 if (need_decay)
8016 continue;
8017 break;
8018 }
8019
8020 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8021
8022 need_serialize = sd->flags & SD_SERIALIZE;
8023 if (need_serialize) {
8024 if (!spin_trylock(&balancing))
8025 goto out;
8026 }
8027
8028 if (time_after_eq(jiffies, sd->last_balance + interval)) {
8029 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8030 /*
8031 * The LBF_DST_PINNED logic could have changed
8032 * env->dst_cpu, so we can't know our idle
8033 * state even if we migrated tasks. Update it.
8034 */
8035 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8036 }
8037 sd->last_balance = jiffies;
8038 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8039 }
8040 if (need_serialize)
8041 spin_unlock(&balancing);
8042 out:
8043 if (time_after(next_balance, sd->last_balance + interval)) {
8044 next_balance = sd->last_balance + interval;
8045 update_next_balance = 1;
8046 }
8047 }
8048 if (need_decay) {
8049 /*
8050 * Ensure the rq-wide value also decays but keep it at a
8051 * reasonable floor to avoid funnies with rq->avg_idle.
8052 */
8053 rq->max_idle_balance_cost =
8054 max((u64)sysctl_sched_migration_cost, max_cost);
8055 }
8056 rcu_read_unlock();
8057
8058 /*
8059 * next_balance will be updated only when there is a need.
8060 * When the cpu is attached to null domain for ex, it will not be
8061 * updated.
8062 */
8063 if (likely(update_next_balance)) {
8064 rq->next_balance = next_balance;
8065
8066 #ifdef CONFIG_NO_HZ_COMMON
8067 /*
8068 * If this CPU has been elected to perform the nohz idle
8069 * balance. Other idle CPUs have already rebalanced with
8070 * nohz_idle_balance() and nohz.next_balance has been
8071 * updated accordingly. This CPU is now running the idle load
8072 * balance for itself and we need to update the
8073 * nohz.next_balance accordingly.
8074 */
8075 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8076 nohz.next_balance = rq->next_balance;
8077 #endif
8078 }
8079 }
8080
8081 #ifdef CONFIG_NO_HZ_COMMON
8082 /*
8083 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8084 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8085 */
8086 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8087 {
8088 int this_cpu = this_rq->cpu;
8089 struct rq *rq;
8090 int balance_cpu;
8091 /* Earliest time when we have to do rebalance again */
8092 unsigned long next_balance = jiffies + 60*HZ;
8093 int update_next_balance = 0;
8094
8095 if (idle != CPU_IDLE ||
8096 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8097 goto end;
8098
8099 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8100 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8101 continue;
8102
8103 /*
8104 * If this cpu gets work to do, stop the load balancing
8105 * work being done for other cpus. Next load
8106 * balancing owner will pick it up.
8107 */
8108 if (need_resched())
8109 break;
8110
8111 rq = cpu_rq(balance_cpu);
8112
8113 /*
8114 * If time for next balance is due,
8115 * do the balance.
8116 */
8117 if (time_after_eq(jiffies, rq->next_balance)) {
8118 raw_spin_lock_irq(&rq->lock);
8119 update_rq_clock(rq);
8120 cpu_load_update_idle(rq);
8121 raw_spin_unlock_irq(&rq->lock);
8122 rebalance_domains(rq, CPU_IDLE);
8123 }
8124
8125 if (time_after(next_balance, rq->next_balance)) {
8126 next_balance = rq->next_balance;
8127 update_next_balance = 1;
8128 }
8129 }
8130
8131 /*
8132 * next_balance will be updated only when there is a need.
8133 * When the CPU is attached to null domain for ex, it will not be
8134 * updated.
8135 */
8136 if (likely(update_next_balance))
8137 nohz.next_balance = next_balance;
8138 end:
8139 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8140 }
8141
8142 /*
8143 * Current heuristic for kicking the idle load balancer in the presence
8144 * of an idle cpu in the system.
8145 * - This rq has more than one task.
8146 * - This rq has at least one CFS task and the capacity of the CPU is
8147 * significantly reduced because of RT tasks or IRQs.
8148 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8149 * multiple busy cpu.
8150 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8151 * domain span are idle.
8152 */
8153 static inline bool nohz_kick_needed(struct rq *rq)
8154 {
8155 unsigned long now = jiffies;
8156 struct sched_domain *sd;
8157 struct sched_group_capacity *sgc;
8158 int nr_busy, cpu = rq->cpu;
8159 bool kick = false;
8160
8161 if (unlikely(rq->idle_balance))
8162 return false;
8163
8164 /*
8165 * We may be recently in ticked or tickless idle mode. At the first
8166 * busy tick after returning from idle, we will update the busy stats.
8167 */
8168 set_cpu_sd_state_busy();
8169 nohz_balance_exit_idle(cpu);
8170
8171 /*
8172 * None are in tickless mode and hence no need for NOHZ idle load
8173 * balancing.
8174 */
8175 if (likely(!atomic_read(&nohz.nr_cpus)))
8176 return false;
8177
8178 if (time_before(now, nohz.next_balance))
8179 return false;
8180
8181 if (rq->nr_running >= 2)
8182 return true;
8183
8184 rcu_read_lock();
8185 sd = rcu_dereference(per_cpu(sd_busy, cpu));
8186 if (sd) {
8187 sgc = sd->groups->sgc;
8188 nr_busy = atomic_read(&sgc->nr_busy_cpus);
8189
8190 if (nr_busy > 1) {
8191 kick = true;
8192 goto unlock;
8193 }
8194
8195 }
8196
8197 sd = rcu_dereference(rq->sd);
8198 if (sd) {
8199 if ((rq->cfs.h_nr_running >= 1) &&
8200 check_cpu_capacity(rq, sd)) {
8201 kick = true;
8202 goto unlock;
8203 }
8204 }
8205
8206 sd = rcu_dereference(per_cpu(sd_asym, cpu));
8207 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8208 sched_domain_span(sd)) < cpu)) {
8209 kick = true;
8210 goto unlock;
8211 }
8212
8213 unlock:
8214 rcu_read_unlock();
8215 return kick;
8216 }
8217 #else
8218 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8219 #endif
8220
8221 /*
8222 * run_rebalance_domains is triggered when needed from the scheduler tick.
8223 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8224 */
8225 static void run_rebalance_domains(struct softirq_action *h)
8226 {
8227 struct rq *this_rq = this_rq();
8228 enum cpu_idle_type idle = this_rq->idle_balance ?
8229 CPU_IDLE : CPU_NOT_IDLE;
8230
8231 /*
8232 * If this cpu has a pending nohz_balance_kick, then do the
8233 * balancing on behalf of the other idle cpus whose ticks are
8234 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8235 * give the idle cpus a chance to load balance. Else we may
8236 * load balance only within the local sched_domain hierarchy
8237 * and abort nohz_idle_balance altogether if we pull some load.
8238 */
8239 nohz_idle_balance(this_rq, idle);
8240 rebalance_domains(this_rq, idle);
8241 }
8242
8243 /*
8244 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8245 */
8246 void trigger_load_balance(struct rq *rq)
8247 {
8248 /* Don't need to rebalance while attached to NULL domain */
8249 if (unlikely(on_null_domain(rq)))
8250 return;
8251
8252 if (time_after_eq(jiffies, rq->next_balance))
8253 raise_softirq(SCHED_SOFTIRQ);
8254 #ifdef CONFIG_NO_HZ_COMMON
8255 if (nohz_kick_needed(rq))
8256 nohz_balancer_kick();
8257 #endif
8258 }
8259
8260 static void rq_online_fair(struct rq *rq)
8261 {
8262 update_sysctl();
8263
8264 update_runtime_enabled(rq);
8265 }
8266
8267 static void rq_offline_fair(struct rq *rq)
8268 {
8269 update_sysctl();
8270
8271 /* Ensure any throttled groups are reachable by pick_next_task */
8272 unthrottle_offline_cfs_rqs(rq);
8273 }
8274
8275 #endif /* CONFIG_SMP */
8276
8277 /*
8278 * scheduler tick hitting a task of our scheduling class:
8279 */
8280 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8281 {
8282 struct cfs_rq *cfs_rq;
8283 struct sched_entity *se = &curr->se;
8284
8285 for_each_sched_entity(se) {
8286 cfs_rq = cfs_rq_of(se);
8287 entity_tick(cfs_rq, se, queued);
8288 }
8289
8290 if (static_branch_unlikely(&sched_numa_balancing))
8291 task_tick_numa(rq, curr);
8292 }
8293
8294 /*
8295 * called on fork with the child task as argument from the parent's context
8296 * - child not yet on the tasklist
8297 * - preemption disabled
8298 */
8299 static void task_fork_fair(struct task_struct *p)
8300 {
8301 struct cfs_rq *cfs_rq;
8302 struct sched_entity *se = &p->se, *curr;
8303 int this_cpu = smp_processor_id();
8304 struct rq *rq = this_rq();
8305 unsigned long flags;
8306
8307 raw_spin_lock_irqsave(&rq->lock, flags);
8308
8309 update_rq_clock(rq);
8310
8311 cfs_rq = task_cfs_rq(current);
8312 curr = cfs_rq->curr;
8313
8314 /*
8315 * Not only the cpu but also the task_group of the parent might have
8316 * been changed after parent->se.parent,cfs_rq were copied to
8317 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8318 * of child point to valid ones.
8319 */
8320 rcu_read_lock();
8321 __set_task_cpu(p, this_cpu);
8322 rcu_read_unlock();
8323
8324 update_curr(cfs_rq);
8325
8326 if (curr)
8327 se->vruntime = curr->vruntime;
8328 place_entity(cfs_rq, se, 1);
8329
8330 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8331 /*
8332 * Upon rescheduling, sched_class::put_prev_task() will place
8333 * 'current' within the tree based on its new key value.
8334 */
8335 swap(curr->vruntime, se->vruntime);
8336 resched_curr(rq);
8337 }
8338
8339 se->vruntime -= cfs_rq->min_vruntime;
8340
8341 raw_spin_unlock_irqrestore(&rq->lock, flags);
8342 }
8343
8344 /*
8345 * Priority of the task has changed. Check to see if we preempt
8346 * the current task.
8347 */
8348 static void
8349 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8350 {
8351 if (!task_on_rq_queued(p))
8352 return;
8353
8354 /*
8355 * Reschedule if we are currently running on this runqueue and
8356 * our priority decreased, or if we are not currently running on
8357 * this runqueue and our priority is higher than the current's
8358 */
8359 if (rq->curr == p) {
8360 if (p->prio > oldprio)
8361 resched_curr(rq);
8362 } else
8363 check_preempt_curr(rq, p, 0);
8364 }
8365
8366 static inline bool vruntime_normalized(struct task_struct *p)
8367 {
8368 struct sched_entity *se = &p->se;
8369
8370 /*
8371 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8372 * the dequeue_entity(.flags=0) will already have normalized the
8373 * vruntime.
8374 */
8375 if (p->on_rq)
8376 return true;
8377
8378 /*
8379 * When !on_rq, vruntime of the task has usually NOT been normalized.
8380 * But there are some cases where it has already been normalized:
8381 *
8382 * - A forked child which is waiting for being woken up by
8383 * wake_up_new_task().
8384 * - A task which has been woken up by try_to_wake_up() and
8385 * waiting for actually being woken up by sched_ttwu_pending().
8386 */
8387 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8388 return true;
8389
8390 return false;
8391 }
8392
8393 static void detach_task_cfs_rq(struct task_struct *p)
8394 {
8395 struct sched_entity *se = &p->se;
8396 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8397
8398 if (!vruntime_normalized(p)) {
8399 /*
8400 * Fix up our vruntime so that the current sleep doesn't
8401 * cause 'unlimited' sleep bonus.
8402 */
8403 place_entity(cfs_rq, se, 0);
8404 se->vruntime -= cfs_rq->min_vruntime;
8405 }
8406
8407 /* Catch up with the cfs_rq and remove our load when we leave */
8408 detach_entity_load_avg(cfs_rq, se);
8409 }
8410
8411 static void attach_task_cfs_rq(struct task_struct *p)
8412 {
8413 struct sched_entity *se = &p->se;
8414 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8415
8416 #ifdef CONFIG_FAIR_GROUP_SCHED
8417 /*
8418 * Since the real-depth could have been changed (only FAIR
8419 * class maintain depth value), reset depth properly.
8420 */
8421 se->depth = se->parent ? se->parent->depth + 1 : 0;
8422 #endif
8423
8424 /* Synchronize task with its cfs_rq */
8425 attach_entity_load_avg(cfs_rq, se);
8426
8427 if (!vruntime_normalized(p))
8428 se->vruntime += cfs_rq->min_vruntime;
8429 }
8430
8431 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8432 {
8433 detach_task_cfs_rq(p);
8434 }
8435
8436 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8437 {
8438 attach_task_cfs_rq(p);
8439
8440 if (task_on_rq_queued(p)) {
8441 /*
8442 * We were most likely switched from sched_rt, so
8443 * kick off the schedule if running, otherwise just see
8444 * if we can still preempt the current task.
8445 */
8446 if (rq->curr == p)
8447 resched_curr(rq);
8448 else
8449 check_preempt_curr(rq, p, 0);
8450 }
8451 }
8452
8453 /* Account for a task changing its policy or group.
8454 *
8455 * This routine is mostly called to set cfs_rq->curr field when a task
8456 * migrates between groups/classes.
8457 */
8458 static void set_curr_task_fair(struct rq *rq)
8459 {
8460 struct sched_entity *se = &rq->curr->se;
8461
8462 for_each_sched_entity(se) {
8463 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8464
8465 set_next_entity(cfs_rq, se);
8466 /* ensure bandwidth has been allocated on our new cfs_rq */
8467 account_cfs_rq_runtime(cfs_rq, 0);
8468 }
8469 }
8470
8471 void init_cfs_rq(struct cfs_rq *cfs_rq)
8472 {
8473 cfs_rq->tasks_timeline = RB_ROOT;
8474 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8475 #ifndef CONFIG_64BIT
8476 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8477 #endif
8478 #ifdef CONFIG_SMP
8479 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8480 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8481 #endif
8482 }
8483
8484 #ifdef CONFIG_FAIR_GROUP_SCHED
8485 static void task_move_group_fair(struct task_struct *p)
8486 {
8487 detach_task_cfs_rq(p);
8488 set_task_rq(p, task_cpu(p));
8489
8490 #ifdef CONFIG_SMP
8491 /* Tell se's cfs_rq has been changed -- migrated */
8492 p->se.avg.last_update_time = 0;
8493 #endif
8494 attach_task_cfs_rq(p);
8495 }
8496
8497 void free_fair_sched_group(struct task_group *tg)
8498 {
8499 int i;
8500
8501 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8502
8503 for_each_possible_cpu(i) {
8504 if (tg->cfs_rq)
8505 kfree(tg->cfs_rq[i]);
8506 if (tg->se)
8507 kfree(tg->se[i]);
8508 }
8509
8510 kfree(tg->cfs_rq);
8511 kfree(tg->se);
8512 }
8513
8514 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8515 {
8516 struct sched_entity *se;
8517 struct cfs_rq *cfs_rq;
8518 struct rq *rq;
8519 int i;
8520
8521 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8522 if (!tg->cfs_rq)
8523 goto err;
8524 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8525 if (!tg->se)
8526 goto err;
8527
8528 tg->shares = NICE_0_LOAD;
8529
8530 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8531
8532 for_each_possible_cpu(i) {
8533 rq = cpu_rq(i);
8534
8535 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8536 GFP_KERNEL, cpu_to_node(i));
8537 if (!cfs_rq)
8538 goto err;
8539
8540 se = kzalloc_node(sizeof(struct sched_entity),
8541 GFP_KERNEL, cpu_to_node(i));
8542 if (!se)
8543 goto err_free_rq;
8544
8545 init_cfs_rq(cfs_rq);
8546 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8547 init_entity_runnable_average(se);
8548
8549 raw_spin_lock_irq(&rq->lock);
8550 post_init_entity_util_avg(se);
8551 raw_spin_unlock_irq(&rq->lock);
8552 }
8553
8554 return 1;
8555
8556 err_free_rq:
8557 kfree(cfs_rq);
8558 err:
8559 return 0;
8560 }
8561
8562 void unregister_fair_sched_group(struct task_group *tg)
8563 {
8564 unsigned long flags;
8565 struct rq *rq;
8566 int cpu;
8567
8568 for_each_possible_cpu(cpu) {
8569 if (tg->se[cpu])
8570 remove_entity_load_avg(tg->se[cpu]);
8571
8572 /*
8573 * Only empty task groups can be destroyed; so we can speculatively
8574 * check on_list without danger of it being re-added.
8575 */
8576 if (!tg->cfs_rq[cpu]->on_list)
8577 continue;
8578
8579 rq = cpu_rq(cpu);
8580
8581 raw_spin_lock_irqsave(&rq->lock, flags);
8582 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8583 raw_spin_unlock_irqrestore(&rq->lock, flags);
8584 }
8585 }
8586
8587 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8588 struct sched_entity *se, int cpu,
8589 struct sched_entity *parent)
8590 {
8591 struct rq *rq = cpu_rq(cpu);
8592
8593 cfs_rq->tg = tg;
8594 cfs_rq->rq = rq;
8595 init_cfs_rq_runtime(cfs_rq);
8596
8597 tg->cfs_rq[cpu] = cfs_rq;
8598 tg->se[cpu] = se;
8599
8600 /* se could be NULL for root_task_group */
8601 if (!se)
8602 return;
8603
8604 if (!parent) {
8605 se->cfs_rq = &rq->cfs;
8606 se->depth = 0;
8607 } else {
8608 se->cfs_rq = parent->my_q;
8609 se->depth = parent->depth + 1;
8610 }
8611
8612 se->my_q = cfs_rq;
8613 /* guarantee group entities always have weight */
8614 update_load_set(&se->load, NICE_0_LOAD);
8615 se->parent = parent;
8616 }
8617
8618 static DEFINE_MUTEX(shares_mutex);
8619
8620 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8621 {
8622 int i;
8623 unsigned long flags;
8624
8625 /*
8626 * We can't change the weight of the root cgroup.
8627 */
8628 if (!tg->se[0])
8629 return -EINVAL;
8630
8631 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8632
8633 mutex_lock(&shares_mutex);
8634 if (tg->shares == shares)
8635 goto done;
8636
8637 tg->shares = shares;
8638 for_each_possible_cpu(i) {
8639 struct rq *rq = cpu_rq(i);
8640 struct sched_entity *se;
8641
8642 se = tg->se[i];
8643 /* Propagate contribution to hierarchy */
8644 raw_spin_lock_irqsave(&rq->lock, flags);
8645
8646 /* Possible calls to update_curr() need rq clock */
8647 update_rq_clock(rq);
8648 for_each_sched_entity(se)
8649 update_cfs_shares(group_cfs_rq(se));
8650 raw_spin_unlock_irqrestore(&rq->lock, flags);
8651 }
8652
8653 done:
8654 mutex_unlock(&shares_mutex);
8655 return 0;
8656 }
8657 #else /* CONFIG_FAIR_GROUP_SCHED */
8658
8659 void free_fair_sched_group(struct task_group *tg) { }
8660
8661 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8662 {
8663 return 1;
8664 }
8665
8666 void unregister_fair_sched_group(struct task_group *tg) { }
8667
8668 #endif /* CONFIG_FAIR_GROUP_SCHED */
8669
8670
8671 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8672 {
8673 struct sched_entity *se = &task->se;
8674 unsigned int rr_interval = 0;
8675
8676 /*
8677 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8678 * idle runqueue:
8679 */
8680 if (rq->cfs.load.weight)
8681 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8682
8683 return rr_interval;
8684 }
8685
8686 /*
8687 * All the scheduling class methods:
8688 */
8689 const struct sched_class fair_sched_class = {
8690 .next = &idle_sched_class,
8691 .enqueue_task = enqueue_task_fair,
8692 .dequeue_task = dequeue_task_fair,
8693 .yield_task = yield_task_fair,
8694 .yield_to_task = yield_to_task_fair,
8695
8696 .check_preempt_curr = check_preempt_wakeup,
8697
8698 .pick_next_task = pick_next_task_fair,
8699 .put_prev_task = put_prev_task_fair,
8700
8701 #ifdef CONFIG_SMP
8702 .select_task_rq = select_task_rq_fair,
8703 .migrate_task_rq = migrate_task_rq_fair,
8704
8705 .rq_online = rq_online_fair,
8706 .rq_offline = rq_offline_fair,
8707
8708 .task_dead = task_dead_fair,
8709 .set_cpus_allowed = set_cpus_allowed_common,
8710 #endif
8711
8712 .set_curr_task = set_curr_task_fair,
8713 .task_tick = task_tick_fair,
8714 .task_fork = task_fork_fair,
8715
8716 .prio_changed = prio_changed_fair,
8717 .switched_from = switched_from_fair,
8718 .switched_to = switched_to_fair,
8719
8720 .get_rr_interval = get_rr_interval_fair,
8721
8722 .update_curr = update_curr_fair,
8723
8724 #ifdef CONFIG_FAIR_GROUP_SCHED
8725 .task_move_group = task_move_group_fair,
8726 #endif
8727 };
8728
8729 #ifdef CONFIG_SCHED_DEBUG
8730 void print_cfs_stats(struct seq_file *m, int cpu)
8731 {
8732 struct cfs_rq *cfs_rq;
8733
8734 rcu_read_lock();
8735 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8736 print_cfs_rq(m, cpu, cfs_rq);
8737 rcu_read_unlock();
8738 }
8739
8740 #ifdef CONFIG_NUMA_BALANCING
8741 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8742 {
8743 int node;
8744 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8745
8746 for_each_online_node(node) {
8747 if (p->numa_faults) {
8748 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8749 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8750 }
8751 if (p->numa_group) {
8752 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8753 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8754 }
8755 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8756 }
8757 }
8758 #endif /* CONFIG_NUMA_BALANCING */
8759 #endif /* CONFIG_SCHED_DEBUG */
8760
8761 __init void init_sched_fair_class(void)
8762 {
8763 #ifdef CONFIG_SMP
8764 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8765
8766 #ifdef CONFIG_NO_HZ_COMMON
8767 nohz.next_balance = jiffies;
8768 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8769 #endif
8770 #endif /* SMP */
8771
8772 }
This page took 0.198838 seconds and 6 git commands to generate.